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Vorwort

Die Algebra-Vorlesung gehort zu den zentralen Vorlesungen eines Mathematikstudi-
ums. Wir hatten uns daran gewo6hnt, dass es eine zweisemestrige Vorlesung Algebra
(Algebra I/IT) gab. Sicherlich haben sich im Laufe der Jahre die Inhalte weiterent-
wickelt, aber es gab doch ein allgemein akzeptiertes Kerncurriculum mit einem
zentralen Teil, der Galoistheorie. Je nach Ambition des Vorlesenden gab es diese
am Ende des ersten Semesters oder im zweiten Semester. Mit der Einfithrung der
Bachelor-/Masterstudiengdnge hat sich da einiges geédndert. Es gibt kaum noch das
zweisemestrige Modul Algebra. Dieses ist hdufig durch ein Modul Algebra und dann
eine Sammlung von mdoglichen Vertiefungsmodulen ersetzt worden, letztere oft erst
fiir den Master vorgesehen. Dazu kommt, dass man heute kaum noch erwarten kann,
dass Studierenden im Bachelorstudium ein Modul Algebra und ein weiteres Modul
Zahlentheorie besucht. Man kann das beklagen, und als Algebraiker mache ich das
auch, man kann aber dennoch versuchen, wie seit einigen Jahren in Halle geschehen,
ein Modul Algebra/Zahlentheorie mit Leben zu erfiillen, das den Studierenden so
etwas wie eine Allgemeinbildung auf beiden Gebieten vermittelt: nicht mehr, aber
auch nicht weniger. Dies bedeutet nicht ,, Algebra light, der Qualitdtsanspruch muss
gewahrt bleiben. Aus diesen Vorlesungen, die ich seit ein paar Jahren halte, ist die-
ses Buch hervorgegangen. Nun ist es nachvollziehbar, dass jeder Algebraiker hier
wesentliche Dinge vermissen wird, genauso wird es Zahlentheoretiker geben, denen
wichtige Dinge fehlen. Das kann auch gar nicht anders sein, wenn man bedenkt,
dass dies der Stoff eines Semesters ist. Es ist keine systematische Einfiihrung in die
Algebra, und es ist erst recht keine in die Zahlentheorie. Die Zahlentheorie in die-
sem Buch bewegt sich im Wesentlichen im Bereich der Kongruenzen, was dann mit
den quadratischen Kongruenzen am Ende des Buches seinen Hohepunkt erreichen
wird. So werden auch wichtige Gebiete wie z.B. Siebmethoden, Kettenbriiche oder
Pellsche Gleichung nicht thematisiert. Aber ich hoffe, und dariiber moge der Leser
urteilen, dass das Buch gewisse Grundideen und ein grundlegendes Allgemeinwis-
sen wiedergibt, das ein Mathematiker haben sollte. So sollte man wissen, was ein
euklidischer Ring, ein Hauptidealring, eine algebraische Kérpererweiterung ist. Man
sollte die Idee der Galoistheorie kennen. Im Bereich der Zahlentheorie sollte man
etwas iiber Primzahlen, Haufigkeit und Verteilung wissen, Kongruenzrechnung und
Zahlbereichserweiterungen als Beweismittel sollten bekannt sein, und schliefllich
sollte man vielleicht grob wissen, was mit dem quadratischen Reziprozititsgesetz
verbunden wird. Genau dies versucht das vorliegende Buch zu leisten.

Eine kurze Beschreibung der Inhalte soll hier mehr Klarheit schaffen. Wir be-
ginnen mit den Grundlagen sowohl der Korpertheorie, als das wird Algebra hier
im Wesentlichen verstanden, als auch der Zahlentheorie. Der Begriff der Primfak-



Vorwort

torzerlegung steht im Vordergrund. Es werden euklidische Ringe, Hauptidealringe
und Polynomringe behandelt. Fiir Studierende ist es immer wieder tiberraschend,
dass Z[x] keine Division mit Rest hat, man aber dennoch gut mit ganzzahligen
Polynomen rechnen kann. Woran liegt das eigentlich? Nach diesem grundlegenden
Kapitel entwickeln wir die Kérpertheorie ein Stiick weit. Dies bedeutet in Kapitel II
die Behandlung der algebraischen Koérpererweiterungen bis hin zur Konstruktion
des algebraischen Abschlusses und in Kapitel III die Klassifikation der endlichen
Korper. Die Existenz eines algebraischen Abschlusses ist im Folgenden nicht mehr
erforderlich. Was benétigt wird, sind die Existenz und Eindeutigkeit des Zerféllungs-
kérpers eines Polynoms, die man in Satz I1.13 und Folgerung I1.20 findet. Wenn man
will, kann man sich also den algebraischen Abschluss ersparen.

Nach diesem ersten algebraischen Abschnitt kommen wir zu der Zahlentheorie
mit den Begriffen Primzahl, Primzahlformel, kleiner Satz von Fermat, Eulerfunk-
tion ¢ bis hin zu Carmichealzahlen. Danach wird dann wieder als Teil der Algebra
die Gruppentheorie bis zum Sylow-Satz entwickelt, Auflésbarkeit wird thematisiert
und schlieSlich die Einfachheit der alternierenden Gruppen A,, n > 5, bewiesen.
Danach konnte ich trotz der eingangs gemachten Bemerkungen nicht umhin, doch
etwas zur Galoistheorie zu sagen. Im Mittelpunkt steht hier die Symmetrie (Gruppe)
eines Polynoms, was zur Definition der Galoisgruppe fithrt. Mit der nicht bewiesenen
Galoiskorrespondenz kann dann wieder bewiesen werden, dass die Auflosbarkeit ei-
nes Polynoms (Charakteristik 0) dquivalent zur Auflgsbarkeit der Gruppe ist. Dies,
meine ich, sollte ein Gymnasiallehrer einmal in seinem Studium gesehen haben. Im
folgenden Kapitel wenden wir die Resultate iiber die algebraischen Korpererweite-
rungen auf die Geometrie, also auf die Konstruktion mit Zirkel und Lineal an. Dies
geht bis zum Gauflschen Satz der Konstruierbarkeit des reguldren n-Ecks, wobei
auch wieder der nicht bewiesene Teil der Galoistheorie eine Rolle spielt.

Danach kehren wir endgiiltig in die Zahlentheorie zuriick. Mit unseren alge-
braischen Hilfsmitteln konnen wir leicht entscheiden, welche natiirlichen Zahlen
Summe von zwei Quadraten sind. Hierzu wird ein Beweis gewdhlt, der zeigt, wie man
die Idee der Zahlbereichserweiterung gewinnbringend einsetzen kann, am Beispiel
des Satzes von Fermat werden aber auch die Grenzen aufgezeigt. Es ergibt sich dann
natiirlich im letzten Kapitel die Frage nach quadratischen Resten mit dem quadrati-
schen Reziprozititsgesetz als Hohepunkt. Das Buch endet mit Betrachtungen zu den
Fermatschen Primzahlen.

Inhaltlich gibt es im Algebra-Teil dieses Buches (Kapitel I-1II, V und VII) Uber-
schneidungen mit meinem Algebra-Buch von 1998, die sich nicht vermeiden lassen.
Es wird weitgehend dem dortigen Aufbau gefolgt. Dem Verlag De Gruyter sei Dank
fiir die Erlaubnis, dies zu verwenden.

Es wurde versucht,wo immer moglich, auch historische Beziige herzustellen. Die-
se stammen aus den Biichern von E. Scholz [26] und B.L. von der Waerden [31], aber
auch zu groflen Teilen aus Wikipedia. Den unbekannten Autoren dieser Plattform
gilt mein ausdriicklicher Dank.

Der Aufbau des Buches spiegelt noch eine Besonderheit hier in Halle wider. Wir
lesen die Algebra fiir Bachelorstudierende mit 9CP!, fiir Studierende mit dem Ziel
Lehramt an Gymnasien mit 7CP und fiir die mit dem Ziel Lehramt an Sekundar-
schulen mit 5CP. Ein Kurs fiir letztere kénnte aus den ersten vier Kapiteln und Teilen
von Kapitel VII (ohne die Konstruierbarkeit des n-Eckes) bestehen. Fiir Studierende

ICredit points (Leistungspunkte) gemif European Credit Transfer and Accumulation System (ECTS).
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mit dem Ziel Lehramt an Gymnasien wiirde ein Kurs in Halle aus den Kapiteln I-VII
bestehen. Aber auch andere Zusammensetzungen sind denkbar.

Vorausgesetzt werden natiirlich die Inhalte einer Vorlesung iiber Lineare Algebra.
Eine Besonderheit mag sein, dass das Lemma von Zorn an einigen Stellen eingesetzt
wird, was vielleicht nicht {iberall zum Standardstoff der Linearen Algebra gehort.

Ich mo6chte mich bei den Horern meiner Vorlesungen zur Algebra bedanken,
durch deren Riickmeldungen tiibersteigerte Ambitionen vermieden wurden. Frau
Rebecca Waldecker hat grofle Teile dieses Buches gelesen und sehr wertvolle Verbes-
serungshinweise gegeben, auch hierfiir méchte ich mich an dieser Stelle bedanken.
Mein besonderer Dank geht an Frau Helbich, die die nicht immer leichte Umsetzung
des Manuskripts in den Stil der Birkhduser-Reihe durchgefiihrt hat. Dem Verlag
danke ich fiir die angenehme und sehr hilfreiche Zusammenarbeit.

Halle, im September 2010 Gernot Stroth
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Arithmetik

Was meinen wir eigentlich, wenn wir ,Rechnen® sagen? Normalerweise denken wir
an die ganzen Zahlen Z. Diese konnen wir z.B. addieren und multiplizieren, und
dabei gelten gewisse Regeln.

Das Gleiche gilt auch fiir die Menge der Polynome mit Koeffizienten in einem
Korper K oder Z. Aber auch in
Z[i] = {a + bila, b € Z},

den sogenannten Gauflschen Zahlen kénnen wir so rechnen. Dies fiihrt zu einer
allgemeinen Definition von Rechenbereichen, den Ringen.

Ring. Sei R eine Menge mit zwei Verkniipfungen +, -. Beziiglich + sei R eine
kommutative Gruppe mit neutralem Element 0. Weiter gelte fiir alle a, b, c € R

a)a-(b-c)=(a-b)-c
b)) a-(b+c)=a-b+a-c
¢) (a+b)-c=a-c+b-c

d) Esgibtein Elementl € Rmitl-a=a-1=afirallea € R.

Dann nennen wir R einen Ring. Ist a - b = b - a fiir alle a, b € R, so wird
R ein kommutativer Ring genannt. Ein kommutativer Ring, in dem zusitzlich
(R\ {0}, -) eine Gruppe ist, heif3t Korper.

Statt a - b werden wir normalerweise kurz ab schreiben.

Alle eingangs genannten Beispiele sind Ringe, keines davon ist ein Korper. Beispiele
fiir Korper sind R, C, Q. Was ist mit R = {0} mit der Addition und Multiplikation
ganzer Zahlen als Verkniipfungen? Dies ist offenbar ein Ring. Hier gilt 1 = 0, was
durch die Axiome nicht verboten ist. Es ist aber kein Korper, da R \ {0} die leere
Menge ist. Insbesondere kann es beziiglich - keine Gruppe sein, da eine Gruppe stets
eine nicht leere Menge ist.

In diesem Buch werden alle Ringe kommutativ sein. Es gibt aber auch interessante
nicht kommutative Ringe, wie z.B.

R ab
cd
G. Stroth, Elementare Algebra und Zahlentheorie
© Springer Basel AG 2012

a,b,c,deR}.

Definition
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Besonders wichtig wird die folgende Konstruktion sein: Ist R ein Ring, so bezeichnen
wir mit R[x] die Menge der Polynome mit Koeffizienten in R. Es ist R[x] wieder ein
Ring.

Eine weitere Rechenoperation, die wir in der Praxis hdufig benutzen, ist das
Dividieren. Dies fiihrt uns zu der Definition des Teilers:

Teiler. SeiR ein kommutativer Ring und a, b € R.Wir sagen a teilt b, in Zeichen
alb, falls es ein ¢ € R gibt, so dass b = ca ist.

Bemerkung. Es gilt 0|0, da z.B.0 =1 - 0 ist. Fiir jedes a gilt a|0,da 0 = 0 - a ist.

Achtung! Teiler und Division sind zwei verschiedene Dinge. Es ist zwar 0 ein Teiler
von 0, aber die Division von 0 durch 0 ist nicht definiert. Hier muss man sich also
vor der Alltagssprache hiiten. Es gibt eben in R den Ausdruck j nicht.

Kann in einem Ring eigentlich beides,
ateiltb und bteilta,

gelten? Das ist z.B. sicherlich der Fall, wenn a = b ist. Ist dies aber die einzige
Moglichkeit?

Gilt a|b, so gibt es ein ¢ € R mit b = ca. Gilt b|a, so gibt es ein d € R mit a = db. Also
gilt
b = (cd)b.

Folgt hieraus cd = 12 In den reellen Zahlen wire das so, falls b # 0 ist.

Wir betrachten also zunichst den Sonderfall b = 0.Ist 0 ein Teiler von a, so ista = 0,
alsoista = b.

Sei ab jetzt b # 0. Dann gilt immerhin
b(1—cd) =0.

Folgt hieraus 1 — c¢d = 0?
Allgemein: Folgt aus xy = 0 stets x = 0 oder y = 0? In unseren eingangs erwéhnten
Beispielen scheint dies so zu sein.

Wir betrachten den folgenden Ring R = {0, 1, 2, 3} (Reste modulo 4) mit den Ope-
rationen + und e.

+ 0 1 2 3 e 0 1 2 3
0 0 1 2 3 0 0 0 0 O
1 1 2 3 0 1 01 2 3
2 2 3 0 1 2 0 2 0 2
3 3 0 1 2 30 3 2 1

Addition und Multiplikation ist die in Z, nur wird vom Resultat nur der Rest bei
Division durch 4 genommen. Dies ist ein Ring. Aber 2 ¢ 2 = 0.
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Dies fiihrt zu folgender Definition:

Integrititsbereich. Sei R ein kommutativer Ring.
a) 0 # x € Rheif3t ein Nullteiler, falls es ein 0 # y € R gibt, so dass xy = 0 ist.

b) Ein kommutativer Ring ohne Nullteiler heift Integritiitsbereich.

Wir greifen nun unsere Frage wieder fiir Integritdtsbereiche auf. Dann ist
l1-cd=0.

Also haben wir ¢d = 1. Damit sind ¢ und d Teiler der 1. Das liefert aber noch nicht
¢ =d =1,daz.B.auch -1 ein Teiler von 1 ist. Das fiihrt zu folgender Definition:

Einheit. Sei R ein Integritédtsbereich. Ein Element ¢ € R heif3t Einheit, falls ¢
ein Teiler von 1 ist.

Wir hatten gesehen, dass aus a teilt b und b teilt a folgt, dass b = ca mit einer Einheit
c ist. Ist umkehrt b = ca, mit einer Einheit ¢, so gibt es ein d € R mit dc = 1. Also ist
db = (dc)a = a, d.h., b teilt a. Damit haben wir:

Seien R ein Integrititsbereich und a, b € R. Ist a ein Teiler von b und b ein Teiler
von a, so ist a = be mit einer Einheit e.

In Z sind die Einheiten 1 und —1. Wir werden spéter sehen, dass in K[x], K Kérper,
die Einheiten genau die Elemente aus K sind.

Was sind die Einheiten von Z[i]?
Man sieht,dass 1, —1 aber auch i, —i Einheiten sind,da i - (—i) = 1 ist. Gibt es weitere?

Seia + bi € Z[i] eine Einheit. Dann gibt es ¢ + di € Z[i] mit

(a+bi)(c+di) =1.

Wir wenden nun einen Trick an. Diesen werden wir im Verlauf noch haufig einsetzen,
so dass man auch von einer Methode sprechen kann. Wir bilden konjugiert Komplexe.
Da fiir z;, z, € C stets 212, = z; z; und z; + 2, = z; + 2, gilt, erhalten wir

(a+bi)(c+di)=1

also
(a = bi)(c—-di) =1.

Nun multiplizieren wir beide Gleichungen
1 = (a + bi)(a — bi)(c + di)(c — di) = (a* + b*)(c? + d?).
Dies ist eine Gleichung in Z. Damit erhalten wir nun

ad+br=1=c7*+d%

Definition

Definition

Lemmal.1
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Aus a’ + b? = 1 mita, b € Z,folgta=4+1und b = 0 oder a = 0 und b = £1. Also ist
a+ bi € {1, -1, i, —i}. Damit haben wir die Einheiten von Z[i] bestimmt.

Besonders wichtig beim Rechnen in Z sind die Primzahlen. Diese wollen wir jetzt
auch in Integritétsbereichen definieren. Dazu lassen wir uns von Z motivieren.

a) Eine Primzahl p in Z hat die Eigenschaft: Ist x € Z ein Teiler von p, so ist x eine
Einheit oder x = ep mit einer Einheit e (x = 1 oder x = £p).

b) Eine Primzahl p in Z hat die Eigenschaft: Sind a, b € Z und ist p ein Teiler von
ab, so ist p ein Teiler von a oder von b.

Ublicherweise nennt man =1 nicht Primzahl, obwohl beide Eigenschaften a) und
b) erfiillt werden. Dies fiihrt nun zu der folgenden Definition: Dabei wollen wir
allerdings etwas vorsichtiger vorgehen und a) und b) zunéchst getrennt betrachten.
Wir werden erst einmal a) irreduzibel und b) prim nennen.

Primelement. Sei R ein Integritdtsbereich. Sei p € R, p # 0, p keine Einheit.

a) Folgt fiir x € R aus x|p stets, dass x eine Einheit oder x = ep mit einer
Einheit e ist, so nennen wir p ein irreduzibles Element.

b) Folgt fiir a, b € R mit p teilt ab stets, dass p einen der Faktoren a oder b
teilt, so nennen wir p ein Primelement.

In Z gibt es keinen Unterschied zwischen Primelement und irreduziblem Element.
Vielleicht ist das ja immer so. Der nichste Satz gibt eine Teilantwort.

Sei R ein Integritdtsbereich, p ein Primelement, so ist p irreduzibel.

Beweis. Sei a ein Teiler von p, also p = ab, mit b € R. Da p ein Primelement ist, ist
p ein Teiler von a oder b. Sei p ein Teiler von a. Mit Lemma 1.1 erhalten wir a = pe
mit einer Einheit e. Ist p ein Teiler von b, so ist b = pt. Also ist p = p(ta) und dann
p(1 —at) = 0.Da R ein Integritdtsbereich ist und p # 0 ist, folgt at = 1, also ist a eine
Einheit. Damit haben wir gezeigt, dass die Teiler von p entweder Einheiten oder von
der Form pe mit einer Einheit e sind. Somit ist p irreduzibel.

Dies macht Mut, nur ist leider nicht jedes irreduzible Element prim. Dazu be-
trachten wir eine Variante des Rings der Gauf3schen Zahlen

R={a+bv-5|a,belZ).

Da R eine Teilmenge von C ist, ist R ein Integritdtsbereich. Esist 3 € R.Seia + ba/-5
ein Teiler von 3. Dann ist

3=(a+bv-5)(c+dv-5),a,bc,del.
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Wir wenden nun den gleichen Trick wie bei der Bestimmung der Einheiten in Z[i]
an. Es gilt auch
3 = (a—-bv-5)(c - dv-5).

Also ist

(a = bv/=5)(a + bv/=5)(c = dv/=5)(c + d~/-5)
(a® + 5b%)(c* + 5d2).

\O
I

w

w
I

Dies ist eine Gleichung in Z und somit ist
a*+5b% =1, 3 oder 9.

Ist a® + 5b* = 3,50 muss b* = 0 und a® = 3 sein, was in Z keine Losung hat.
Ist a® + 5b% = 9, s0 ist 2 4+ 5d% = 1. Also ist stets

a>+5% =1 oder c*+5d*=1.

Wir kénnen per Symmetrie a® + 5b* = 1 annehmen. Dies hat in Z nur die Lésungen
b=0,a=1oder -1.
Damit haben wir
3 istirreduzibelin R.

Offenbar ist
319=3-3=(2++/-5)2-+/-5).

Wire 3 prim, so wére 3|2 + /=5 oder 312 - +/=5.Dann gibtesa + ba/—=5 € R mit
(2 + v/=5) = (a + byv/=5)3 oder (2 — v/=5) = (a + b/-5)3.

In beiden Fillen folgt
3a=2 mit aelZ.

Dies ist ein Widerspruch. Somit sind prim und irreduzibel verschiedene Begriffe.
Bevor wir uns ansehen, wann diese Begriffe doch gleich sind (z.B. in Z), wollen wir
den Teilerbegriff noch etwas weiter studieren.
In Z haben wir eine ,,Divison mit Rest“. Dies besagt: Sind a, b € Z, a # 0, so gibt
es q,r € Z mit
b=qa+r, |r|] <]lal.

Wenn wir diesen Begriff auf weitere Integritdtsbereiche ausdehnen wollen, beno-
tigen wir eine Definition des Restes r, d.h. von ,klein®. Wir werden dabei den Betrag
| - | auf Z durch eine Abbildung ¢ ersetzen.

Euklidischer'Ring. Ein Integritdtsbereich R wird euklidischer Ring genannt,
falls es eine Abbildung ¢:R \ {0} — N U {0} gibt, die die beiden folgenden
Eigenschaften hat:

1Euklid von Alexandria (* um 365 v. Chr., t um 300 v. Chr.) wirkte in Alexandria, Verfasser des fiir
viele Jahrhunderte grundlegenden Mathematikwerkes ,,Elemente®,

Definition
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a) Sind a und b in R mit ab # 0, so ist ¢ (ab) > @(a).

b) Sind a, b € Rmita # 0,so gibt es g, r € R, abhidngig von dem Paar a, b,
mit

b=qa+r, wobei r=0 oder ¢(r)<e¢(a) ist

In diesem Sinne ist Z mit ¢ = | - | ein euklidischer Ring. Ist auch Z[i] euklidisch?
Wir setzen ¢ = | - |2, also

@(a+ bi) = a® + b* = (a + bi)(a + bi).
a) Sei (a + bi)(c + di) # 0. Dann ist
¢((a+ib)(c +id))

(a+ib)(c +id)(a + ib)(c + id)
(a+ib)(a+ib)(c +id)(c + id)
p(a+ib)p(c+id) > ¢(a+ bi).

b) Seia =a+ bi, f = ¢+ di # 0. Fiir die komplexe Zahl g gilt dann:

a_a+bi_(a+bi)(c—di)_(a+bi)(c—di)_$+l_t mits, t € Q
B c+di (c+di)c—di) = E+d ’ ‘

Wir wihlen nun ganze Zahlen x und y mit

1 1
s—x| < und |t—-y| < .
| I_2 | )’I_2

Z

(%y)

(st)

Wir haben damit (a + ib) = (x + iy)(c + id) + r, wobei
r=(c+id)[(s + it) = (x + iy)]

ist.Esistr € Z[i],dar = (a+bi)—(c+di)(x+iy)ist,und a+ib,x+iy und c+id € Z[i]
sind. Setze nun g = x + iy. Dann ist a + bi = gq(c + di) + r. Weiter ist

o(r) p(c+di)p((s—x)+i(t-y))

e(c+d)[(s—x)*+ (t - y)*]

IA

NEERYER! . .
(p(c+dz)|:4 + 4] = 2(p(c+dz) < @(c+di).

Somit ist Z[i] ein euklidischer Ring.
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Ist auch K[x], K ein Korper, ein euklidischer Ring? Dazu miissen wir etwas weiter
ausholen. Sei zunéchst R ein kommutativer Ring. Jedes Polynom in R[x] hat einen
Grad. Sei

n
f= Zaixi mit a, # 0.
i=0
So ist
n =gradf.

Es ist eine niitzliche Konvention, grad 0 = —oo zu setzen.

Sei R ein kommutativer Ring und f , g € R[x]. Dann gilt

a) grad (fg) < gradf + grad g.
b) Ist R ein Integrititsbereich, so ist grad (fg) = grad f + grad g. Insbesondere
ist R[x] ein Integrititsbereich.

Beweis. Wir beweisen a) und b) gleichzeitig. Die Behauptungen sind klar fiir f = 0

oder g = 0. Sei also
n m
F= . g=3be
i=0 j=0

mit a, # 0 # b,,. Dann ist

n+m-1

fg = ayb,x"" + Z cix'.
i=0

Das ergibt grad fg < n+m = grad f +grad g.Ist weiter R ein Integritétsbereich, so ist
anb, # 0,also gilt Gleichheit. Insbesondere ist fg # 0,d.h. R[x] ist Integritdtsbereich.

Nun koénnen wir zeigen, dass K[x] euklidisch ist. Dabei werden wir die grad
Funktion als ¢ benutzen. Also ,klein“ bedeutet hier jetzt einfach ,von kleinem
Grad“

Sei K ein Korper
a) K|x] ist ein euklidischer Ring.
b) Die Polynome vom Grad Null sind genau die Einheiten von K[x].

Beweis. a) Fur f € K[x],f # 0, setze ¢(f) = grad f.
Ist fg # 0, so gilt nach Lemma 1.3b)

¢(fg) = grad (fg) = gradf + gradg = ¢(f) + ¢(g) = ¢(f).
Seiennunf = 37 aix’ und g = 3.7 bjx’ mit a,b,, # 0. Wir miissen g, r mit

f=ag+r
und r = 0 oder grad r < grad g angeben.

Lemmal.3

Satzl.4
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Ist grad f < grad g, so setzen wir ¢ = 0 und r = f und sind fertig. Also konnen wir
grad f > grad g annehmen. Wir definieren nun f; durch

fi=f-x""a,by'g.
Dannist grad f; < gradf — 1 = n — 1. Mit einer Induktion nach grad f erhalten wir

h=qg+n
mitr; = 0odergradr; < gradg.
Dann ist
f=(q+x""a,b, g+ 1
und wir setzen q = q; + x" ™a,b,! und r = ry.
b) Sei f eine Einheit. Dann gibt es ein g € K[x] mit fg = 1. Also
0=gradl o gradf + grad g.

Dies liefert grad f = 0.

Von unseren Beispielen zu Anfang dieses Kapitels bleibt Z[x]. Der obige Beweis
kann hier nicht verwendet werden, da wir b,‘n1 in Z nicht bilden kénnen. Dies sagt
aber noch nicht, dass Z[x] kein euklidischer Ring ist. Es ist aber in der Tat so.
Z[x] hat keine Division mit Rest, was immer ¢ auch sein mag. Es ist schwierig, die
Nichtexistenz von etwas zu zeigen. Deshalb wollen wir zundchst euklidische Ringe
eingehender studieren. Wir werden dann sehen, dass alle euklidischen Ringe eine
gemeinsame Eigenschaft haben, die Z[x] offenbar nicht hat.

Der Begriff ,,euklidischer Ring® leitet sich vom euklidischen Algorithmus zum Be-
rechnen des ggT (a, b) her.

Seien a, b € R. Wir teilen a durch b mit Rest, also
a=qib+r, mit ¢(r) < @) oder r,=0.
Ist r, # 0, so teile b durch r, mit Rest, also
b=qnr+r mit ¢@(r3) < @(r;) oder r;=0.
Dieses Verfahren setzen wir fort
i = qinitiv1 + iz @(rie2) < @(riy1)  oder 1y = 0.

Das endet mit
Tnez =0 also

Tn = qn+1Tn+1-

In Z kann man so den ggT (a, b) = r,4; berechnen. Wir zeigen dies durch Induktion
nach n, also nach der Anzahl der Schritte. Ist r, = 0, so ist b ein Teiler von a und
damit auch der grofite gemeinsame Teiler von a und b. Sei also r, # 0. Dann besitzen
per Induktion r, und b den grofiten gemeinsamen Teiler 7,.4;. Dann ist aber auch 7,4,
ein Teiler von a,da a = q; b+ r, ist. Da der ggT (a, b) auch r; teilt, ist er ein Teiler von
tne1 = 88T (b, 11). Dies bedeutet dann, dass r,.; = ggT (a, b) ist. Eigentlich haben
wir nur gezeigt, dass r,,4; und ggT (a, b) sich nur um ein Vorzeichen unterscheiden.
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Sind a und b in N, ist der ggT , wie wir ihn normalerweise benutzen, auch in N. Wahlt
man bei der Division mit Rest immer den nicht negativen Rest, so ist auch 7,,4; € N.
Also ist dann wirklich r,,4; = ggT (a, b).

Wir wollen den ggT nun auch in beliebigen Integritéitsbereichen definieren. Dann
haben wir aber keine natiirliche Anordnung mehr. Wir gehen so wie in Z vor, also
indem wir nur den Teilerbegriff benutzen.

Groflter gemeinsamer Teiler (ggT). Sei R ein Integritétsbereich, a, b € R. Wir
nennen c einen g¢T von a und b, falls gilt :

a) c teilt sowohl a als auch b.

b) Istd € R ein Teiler sowohl von a als auch von b, so ist d ein Teiler von c.

Der ggT (a, b) ist allerdings jetzt nicht mehr eindeutig bestimmt. Sind ¢ und d beides
ggT von a und b, so ist ¢ ein Teiler von d und d ein Teiler von c¢. Nach Lemma I.1
ist dann ¢ bis auf eine Einheit gleich d. Also ist ggT (a, b) nur bis auf Einheiten
bestimmt. Trotzdem werden wir im Folgenden ¢ = ggT (a, b) schreiben.

Wie in Z sieht man, dass in einem euklidischen Ring der euklidische Algorithmus
einen ggT (a, b) berechnet. Dass die Existenz eines ggT (a, b) nicht selbstverstandlich
ist, zeigt folgendes Beispiel (siehe Schulze-Pillot [27] Aufgabe 3.4]:

Wir betrachten wieder
R={a+bv-5a,be 7}

Wir zeigen, dass d = ggT (6, 4 + 24/—5) nicht existiert. Sei dazu d ein grofiter ge-
meinsamer Teiler von 6 und 4 + 2+/—5. Offenbar ist 2 ein Teiler von 6 und von
4 + 24/-5. Somit ist 2 ein Teiler von d. Weiter ist (1 — v/=5)(1 + v/—5) = 6 und
4+ 2+4/-5 = —(1 — +/-5)% Also ist auch 1 — +/—5 ein Teiler von d.

Ist a ein Teiler von d, so ist auch |a|? ein Teiler von |d|?.Esist |2|> = 4 und |[1—+/-5|* =
6. Damit sind sowohl 4 als auch 6 ein Teiler von |d|? in Z. Also ist 12 ein Teiler |d|%.
Da d ein Teiler von 6 ist, ist 6 = de, also 36 = |6]*> = |d|?|e|?.

Die einzige Losung mit 12||d|? ist |d|* = 36 und |e|* = 1.Sei e = a + by/=5. Dann ist

1 = |e]? = a® + b?5. Die einzige Lésung hiervon ist b = 0 und a?> = 1. Also istd = 6
oder —6. Damit wire 6 ein Teiler von 4 + 24/—5, was nicht geht. Also haben 6 und
4 + 24/-5 keinen grofiten gemeinsamen Teiler in R.

Fiir feinere Untersuchungen in Ringen benétigen wir den Begriff des Ideals. Verglei-
che hierzu auch die Bemerkungen auf Seite 126 am Ende von Kapitel VIII.

Ideal. Sei R ein Ring. Eine Teilmenge i C R heif3t Links- (Rechts-) Ideal, falls
gilt:

a) (i, +) ist eine Untergruppe von (R, +).
b) Ista € R,soistai = {aili € i} C i, (ia = {iali € i} C i).

Ist i sowohl Rechts- als auch Linksideal, so nennen wir i 2-seitig.

Definition

Definition
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Ist R kommutativ, so ist jedes Rechtsideal auch Linksideal und umgekehrt. In diesem
Fall sprechen wir einfach von Idealen. So bilden z.B. die geraden Zahlen in Z ein
Ideal.

Sei R ein Ring, i ein 2-seitiges Ideal. Wir setzen R/i = {a +i|a € R}.

(Da (R, +) abelsch ist, ist jede Untergruppe Normalteiler, also ist (R/i, +) die
Faktorgruppe. Siehe Seite 80.)

Wir definieren auf R/i eine Multiplikation durch
(a+i)(b+i)=ab+1i, a,beR.

Dann ist R/i ein Ring, der sogenannte Faktorring.

Beweis. Wir zeigen, dass die Multiplikation wohldefiniert ist. Der Rest sei dem Leser
als Ubung iiberlassen. Seidazu @’ +i =a+iund b +i=b+i.Dannista = a+i
miti €eiund b’ = b + jmitj € i. Es ist

@+ +i)=[(a+ i) +il[(b+j)+il =ab+aj+ib+ij +1.

Dai 2-seitig ist,ist aj + ib + ij € i,alsoist (a’ +1)(V' +1) = ab + 1.

Homomorphismus. Seien R;, R, Ringe.
a) Eine Abbildung ¢: Ry — R, heifft Homomorphismus, falls
pla+b) = ¢(a)+ @) und
pab) = @(a)e(b)
fir allea, b € R, gilt.

Einen surjektiven Homomorphismus nennen wir Epimorphismus. Einen injekti-
ven Homomorphismus nennen wir Monomorphismus. Einen bijektiven Homo-
morphismus nennen wir Isomorphismus. Ist Ry = R,, so nennen wir einen Iso-
morphismus auch Automorphismus. Ist ¢ ein Isomorphismus, so schreiben wir

R; = R,.
b) Sei ¢: R; — R, ein Homomorphismus. Wir setzen
ker ¢ = {ala € Ry, ¢(a) = 0}

und nennen ker ¢ den Kern des Homomorphismus ¢.

Seien Ry, R, Ringe und ¢: Ry — R, ein Homomorphismus. Dann gilt:
a) ¢(0) =0.

b) IstR, ein Korper, hat R, keine Nullteiler und gibt es eina € Ry mit ¢(a) # 0,
soist (1) = 1.
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Beweis. a) Fiir allea € R, ist ¢(a) = ¢(a +0) = ¢(a) + ¢(0),also gilt ¢(0) = 0.
b) Sei nun R, ein Korper. Es ist ¢ (a) = ¢(1a) = ¢(1)¢(a). Das liefert

0=¢(a)(1-¢(1)).

Da R, keine Nullteiler hat, ist also 0 = ¢ (1) — 1 und somit ¢(1) = 1.

Seien Ry, R, Ringe und ¢:R; — R, ein Homomorphismus. Dann ist ker ¢ ein
2-seitiges Ideal.

Beweis. Wie in der Linearen Algebra sieht man, dass ker ¢ eine Untergruppe von
(Ry, +) ist. Seien a € Ry und b € ker ¢. Dann ist ¢ (ab) = @(a)p(b) = 0 =
@(b)p(a) = @(ba). Somit sind ab und ba in ker ¢, was zeigt, dass ker ¢ ein 2-seitiges
Ideal ist.

Homomorphiesatz. Seien R,, R, Ringe und ¢: Ry — R, ein Homomorphismus.
Dann ist
Ry /ker ¢ = Bild ¢.

Beweis. Wir definieren y:Bild ¢ — R;/ker ¢ durch p(¢(a)) = a + ker ¢.

Man beachte, dass nach Lemma .7 R; /ker ¢ ein Ring ist. Wie in der Linearen Algebra
sieht man, dass p ein Isomorphismus beziiglich der addidiven Gruppen ist. Wir
miissen also nur zeigen, dass  ein Homomorphismus ist. Dies sieht man wie folgt:

v(p(a)p(b)) = p(p(ab)) = ab + ker ¢ =
(a +ker ) (b + ker 9) = p(@(a)p(p(b)).

Der néchste Satz erscheint zunichst etwas kiinstlich, wird uns spéter aber noch
hiufig gute Dienste leisten.

Ein kommmutativer Ring R mit |R| > 2 ist genau dann ein Korper, wenn jedes
Ideal gleich {0} oder R ist.

Beweis. Es habe R nur die Ideale {0} oder R. Wir zeigen, dass R ein Korper ist.

(1) Jedes a € R\ {0} hat ein Inverses.
Wir zeigen zunéchst, dass
aR = {ar|r € R}

ein Ideal ist. Seien dazu ary, ar, € aR und b € R. Es ist
ar; +ar, = a(ry + ;) € aR

und
(ary)b = a(r,b) € aR.

Also ist aR ein Ideal.

Lemmal.7

Satz1.8

Satz1.9
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Esista = a-1 € aR. Also ist aR # {0}. Somit ist nach der Annahme, dass es nur die
Ideale {0} und R gibt,aR = R.Da 1 € R ist, gibt es ein ¢ € R mit ac = 1, d.h., a ist
invertierbar.

(2) R\ {0} ist eine Gruppe.
Da |R| > 2ist,ist R \ {0} # @. Somit haben wir wegen (1) nur zu zeigen, dass aus
a # 0 # b stets ab # 0 folgt.

Sei also ab = 0. Nach (1) gibt es ein ¢ mit bc = 1. Also ist
0 = (ab)c = a(bc) = a,

ein Widerspruch zu a # 0.
Nach (2) ist nun R ein Korper.

Sei umgekehrt R ein Korper und i # {0} ein Ideal. Dann gibteseina € i,a # 0. Da
R ein Korper ist, gibt es ein b € Rmit ab = 1,d.h.1 € i. Dann ist

R={1-r|lreR} Ci.

Bemerkung. a) Im Beweis von Satz 1.9 haben wir auch gezeigt: Ist i ein Ideal in R
mit1 € i,soisti=R.

b) Der Ring R = {0} hat nur die Ideale {0} und R, ist aber kein Korper. Also ist die
Voraussetzung |R| > 2 in Satz .9 notwendig.

Seien Ky, K, Korper und ¢: Ky — K, ein Homomorphismus. Dann ist ker ¢ = {0}
oder ker ¢ = Kj.

Beweis. Nach Lemma 1.7 ist ker ¢ ein Ideal. Nach Satz 1.9 ist ker ¢ = K; oder
ker ¢ = {0}.

Primideal. SeiR ein kommutativer Ring. Ein Ideal p # R von R heif3t Primideal,
falls R/p ein Integritdtsbereich ist.

Woher kommt der Name Primideal? Sei R = Z und p € Z eine Primzahl. Wir be-
haupten, dass pZ ein Primideal ist. Wir nehmen dazu an, dass

ab+ pZ = (a+ pZ)(b + pZ) = pZ

sei. Dann ist ab € pZ, d.h., p teilt ab. Also ist p ein Teiler von a oder b. Somit ist
a+ pZ = pZ oder b + pZ = pZ.Das heifdt, Z /pZ ist ein Integritdtsbereich.

Ist umgekehrt m = myn, € Z, ny # +£m, n, # £m. Dann sind beide n; + mZ und
n, + mZ ungleich mZ, aber (n, + mZ)(n, + mZ) = nyn, + mZ = mZ.

Die von Null verschiedenen Ideale der Form mZ, m € Z, sind somit genau dann
Primideale, wenn m prim ist. Die Primideale sind somit eine Verallgemeinerung der
Primzahlen in Z.
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Bemerkung. Satz 1.9 zeigt, dass maximale Ideale i in kommutativen Ringen R prim
sind, da R/i ein Korper ist.

Die Idee, wie wir gezeigt haben, dass pZ prim ist, kann man verallgemeinern.

Sei R ein kommuntativer Ring und i # R ein Ideal. Es ist i genau dann ein
Primideal, falls aus a, b € R mit ab € i stets folgt, dass a oder b in i liegt.

Beweis. a) Seii ein Primideal und ab € i.Dann ist
i=ab+i=(a+1i)(b+1i).

Dai ein Primideal ist, ist R/i ein Integritdtsbereich. Damit erhalten wir a +1i = i oder
b +1i = i,was gleichwertig zu a € i oder b € i ist.

b) Es gelte nun umgekehrt, dass aus ab € i stets a € i oder b € i folgt. Wir wollen
zeigen dass R/i ein Integritdtsbereich ist. Seien dazu a + i und b + i Elemente aus R/i
mit (a + i)(b + i) = i. Dann gilt ab € i. Nach Annahme ist nun a € i oder b € i, also
a+1i=1ioderb+1i=1i.Somitist R/iist ein Integritdtsbereich.

Eine weitere Analogie zu den Verhéltnissen in Z, ndmlich, dass prim und irredu-
zibel sich nicht unterscheiden, ist das nichste Resultat.

Seien R ein Integrititsbereich und 0 # p € R, so dass pR ein Primideal in R ist, so
ist p irreduzibel.

Beweis. Sei ab = p mit a,b € R. Dann ist ab € pR. Nach Satz .11 ist a € pR oder
b € pR.Wir nehmen ohne Einschrankung a € pR an. Dann ist a = px mit x € R.Das
liefert

p=pxb und p(1-xb)=0.

Dap # 0ist,ist 1 = xb,d.h., b ist eine Einheit. Da pR # R ist, ist p keine Einheit. Also
ist p irreduzibel.

Wir wollen uns Z noch etwas genauer ansehen.

Sei0 # i ein Ideal in Z.Dann gibt es ein a # 0 mit a € i. Wahle g mit |a| minimal. Sei
nun b € i, so teile b durch a mit Rest, also

b=qga+r,|r| <|al.
Esistr = b — qa € i. Die minimale Wahl von a liefert nun r = 0. Damit ist
i=1{qalq € Z} = aZ.

Somit haben alle Ideale von Z die Gestalt aZ. Dies fiihrt zu folgender Definition:

Hauptidealring. Sei R ein Integritétsbereich. Wir nennen R einen Hauptideal-
ring (HIR), falls jedes Ideal i von R die Gestalt aR mit geeignetem a € R hat.

Satzl.11

Lemma .12

Definition
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Was wir gerade gezeigt haben, ist:
Z ist HIR.

Die Idee von Z tragt aber weiter.

Jeder euklidische Ring R ist HIR.

Beweis. Wir wiederholen einfach den Bewetis fiir Z. Sei 0 # i ein Ideal von R, wihle
0 # a € i mit ¢ (a) minimal. Sei b € i, so teile b durch a mit Rest, also

b=gqa+r, ¢(r) < ¢(a)oderr =0.
Dar =b—qa € iist, folgt r = 0,d.h.
i={qalg € R} = aR.

Nun kommen wir wieder zu den Begriffen ,,prim“ und ,,irreduzibel zurtick.

Sei R ein HIR. Dann sind 0 und pR mit irreduziblem p genau die Primideale in R.
Weiter ist jedes von 0 verschiedene Primideal maximal, d.h., R/pR ist ein Korper.

Beweis. Sei zunéchst p ein Primideal. Da R ein Hauptidealring ist, gibt es ein p € R
mit p = pR.Ist p # 0,50 ist p nach Lemma .12 irreduzibel.

Sei umgekehrt p irreduzibel. Wir zeigen, dass pR ein maximales Ideal ist. Sei
PR G aR G R.Dannist p = ab mit geeignetem b € R.Ist a eine Einheit,so ist aR = R,
ein Widerspruch zur Annahme aR # R. Also ist a keine Einheit. Da p irreduzibel ist,
ist dann b eine Einheit.

Es gibt also ein ¢ € R mit bc = 1. Damit erhalten wir
a = abc = pc € pR.

Also ist aR C pR und dann aR = pR, ein Widerspruch zur Annahme pR # aR.
Damit ist pR ein maximales Ideal. Nach Satz 1.9 ist R/pR ein Korper, insbesondere
ein Integritdtsbereich. Somit ist pR ein Primideal.

Wir wissen, dass Z, K[x] (K Kérper) und Z[i] Hauptidealringe sind. Aber Z[x] ist
keiner. Wir betrachten dazu das Ideal xZ[x]. Offenbar ist

Z[x]/xZ[x] = Z.
Dies kann man wie folgt einsehen. Wir betrachten die Abbildung

@:Z[x] > Z

¢(f) =£(0).f € Zlx].
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Dann ist ¢ ein Homomorphismus. Es ist Bild f = Z. Weiter ist xZ[x] = ker f. Der
Homomorphiesatz 1.8 liefert nun die Behauptung.

Somit ist xZ[x] ein Primideal, da Z[x]/xZ[x] = Z ist, und Z ein Integritits-
bereich ist. Da aber Z kein Korper ist, folgt mit Satz I.15, dass Z[x] kein Hauptideal-
ring sein kann.

Damit haben wir auch die Frage beantwortet, ob es in Z[x] eine Division mit Rest
gibt (was auch immer die Funktion ¢ sein mag). Diese gibt es nicht, da nach Satz
I.14 jeder euklidische Ring ein Hauptidealring ist.

Bevor wir uns wieder Z[x] zuwenden, wollen wir die Hauptidealringe noch né-
her studieren. Wir werden als Erstes zeigen, dass diese immer einen ggT haben.
Allein davon ausgehend, werden wir zeigen, dass man in Hauptidealringen ver-
niinftig rechnen kann, d.h. insbesondere, dass wir einen Ersatz fiir die eindeutige
Primfaktorzerlegung aus Z finden werden.

Seien R ein Hauptidealring und a, ..., a; € R. Dann existiert ein grifSter ge-
meinsamer Teiler d von ay, . . ., a;. Weiter gibtes by, ..., by € R mit

d=u1b1+...+atbt.

Beweis. Esist ajR + ...+ a;R ein Ideal, wie man leicht nachrechnet. Da R ein HIR
ist,ist dann a;R + ... + a;R = dR fiir geeignetes d € R.

Dann gibtesr; € R,i =1, ..., t mit a; = r;d. Insbesondere ist d ein Teiler von
ai,i=1,...,t.

Auf der anderen Seite gilt auch
d=ab, +...+ab mith; € R geeignet.

Seinun s ein Teiler von a;, i = 1, ..., t. Dann teilt s natiirlich auch alle Produkte a;b;,
i=1,...,t Alsoists ein Teiler von d. Damit ist d ein ggT vonay, ..., a;.

Dies ist an sich ein ganz tiberraschender Satz. Er zeigt, dass der ggT, der ja rein
unter Benutzung der multiplikativen Struktur des Ringes definiert wurde, von der
additiven Struktur nicht unabhéngig ist.

In einem euklidischen Ring kann man die Zerlegung
d= a; bl + azbz

mit dem euklidischen Algorithmus berechnen. Wenn man den ggT (a;, a,) wie auf
Seite 8 mit dem euklidischen Algorithmus bestimmt, so hat jede Zeile die Form
i = qir17is1 + Tiza. Das bedeutet, dass jedes r;4, eine Linearkombination der vorher-
gehenden ist, sich also letztendlich in der Form a; c; + a,¢; schreiben lésst. Der letzte
Rest 1,4 ist der ggT. Also konnen wir riickwérts diese Linearkombination bestim-
men. Das hat nicht nur theoretische, sondern auch praktische Bedeutung. Seien etwa
a, b, c € Z gegeben. Gesucht sind x, y € Z mit

ax +by =c.

Satz1.16
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Offenbarist ggT (a, b) = d ein Teiler von c. Mit dem euklidischen Algorithmus finden
wir x;, y1 € Z mit
ax, + by, =d.

Ist ¢ = ud, so ist x = ux;, y = uy; eine Losung.

Wir zeigen nun, dass Hauptidealringe die von uns gesuchte Verallgemeinerung
der Situation in Z sind, und zwar in der Hinsicht, dass die Begriffe prim und irredu-
zibel zusammen fallen.

In einem Hauptidealring R ist jedes irreduzible Element prim.

Beweis. Sei p € R irreduzibel. Seien weiter a, b € R und p ein Teiler von ab, also
ab = pr.Seid = ggT (a, p). Da p durch d geteilt wird, ist d eine Einheit oder d = ep
mit einer Einheit e. Sei d = ep, so ist p ein Teiler von d. Da a von d geteilt wird, wird
dann auch a von p geteilt. Ist also p kein Teiler von a, so muss d eine Einheit sein,
also ist 1 ein ggT (a, p). Nach Satz 1.16 gibt es u, v € R mit
1=up+va.

Dann ist

b = upb + vab = upb + vpr = p(ub + vr).
Also ist p ein Teiler von b. Damit haben wir gezeigt, dass p ein Teiler von a oder b ist.
Somit ist p prim.

Das wohl wichtigste Hilfsmittel beim Rechnen in Z ist die eindeutige Primfaktor-
zerlegung. Wobei ,eindeutig“ natiirlich nur bis auf Multiplikation mit 1 bedeuten
kann. Hier sieht man, warum man =+1 nicht als prim bezeichnen sollte.

Eindeutige Primfaktorzerlegung. Wir nennen einen Integritédtsbereich R einen
Ring mit eindeutiger Primfaktorzerlegung (EPZ-Ring), falls gilt:

a) Ist 0 # a € R, a keine Einheit, so ist a = p;---p, mit irreduziblen
P15 Pn-

b) Die p; in a) sind bis auf Multiplikation mit Einheiten und Reihenfolge
eindeutig durch a bestimmt.

Unser Ziel ist es nun zu zeigen, dass Hauptidealringe eine eindeutige Primfaktorzer-
legung haben. Dabei ist weniger die Eindeutigkeit ein Problem als die Existenz.

Eindeutigkeit: Sei
a:Pl...puqu...qr
mit irreduziblen Elementen ps, ..., pu, g1, - - - » G-

Es ist p; ein Teiler von a. Nach Satz 1.17 ist p; prim. Also gibt es ein 7, so dass g;
von p; geteilt wird, d.h. g; = p1d, d € R.Da q; irreduzibel ist, ist d eine Einheit.

Bei geeigneter Anordnung kénnen wir i = 1 annehmen. Also ist

pl(p2 . pu) = dpl(qZ e qr) d.hpl[(pZ t pu) - d(‘ZZ, B qr)] =0.
Dannistp,---p, =dqy - q,.
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Setze g, = dg,. Dann ist auch g, irreduzibel. Also haben wir

P2 Pu= G293 G

Eine Induktion nach u liefert nun die Behauptung.
Es bleibt, die Existenz zu zeigen.

Ist R = Z, so kann man wie folgt argumentieren: Sei a € R keine Einheit. Ist
a irreduzibel, so sind wir fertig. Ist a nicht irreduzibel, so gibt es a;, a, € R mit
a = aya; und |a;| < |a| > |ay|. Eine Induktion nach |a| liefert nun die Behauptung.

Es ist klar, dass wir so in beliebigen euklidischen Ringen argumentieren kénnen.
In Hauptidealringen fehlt uns diese Moglichkeit. Ein Ersatz liefert folgendes Lemma:

Sei R ein kommutativer Ring. Gleichwertig sind

a) Jedes Ideal i ist endlich erzeugt, d.h., es gibteinr € Nund ay,...,a, € R
mit
i=aR+---+aR.

b) Jede nicht leere Teilmenge S von Idealen in R besitzt ein maximales Ele-
ment.

Beweis. a)= b): Sei R eine Kette in &, d.h. eine total geordnete Teilmenge bzgl. C.

Setze
=i
ief
Sind a;,a; € j,so gibt es i;,i; € K mit a; € ij, a, € i,. Da R total geordnet ist,
konnen wir i; C i, annehmen, d.h. a; + a, € i, C j. Genauso ist auch ra; € i; C j
fiirr € R.

Also ist j ein Ideal. Nach Annahme gibtes a;, ..., a, € Rmit
j=aiR+---+a,R.

Insbesondere sind ay, ..., a, € j. Das heif$t, es gibt Ideale iy, ..., i, € A mita; € i,,
i =1,...,r. Die Totalordnung liefert wieder, dass es ein k gibt mit a;, ..., a, € i.
Das heifit,j C ir. Insbesondere ist dann j = iy € &. Damit hat jede Kette eine obere
Schranke in &. Nach dem Zornschen? Lemma hat dann & maximale Elemente.

b) = a): Sei i ein Ideal. Setze
G = {jlj C i, j endlich erzeugtes Ideal }.

Esist0 = OR € 6,d.h. 8 # &.Nach Annahme gibt es ein maximales Element j, € &.
Es ist
jo = @R+ --- + a,R fiir geeignete a;, ..., a, € R.
2Max Zorn (*6.6.1906 Hamburg, 19.3.1993 Bloomington), Indiana, emigrierte 1933 in die USA, Profes-

sor in Yale und Indiana University Bloomington, Arbeitsgebiete Gruppentheorie, Mengenlehre. Besondere
Beriihmtheit erlangte er durch das Zornsche Lemma (Zorn 1935, [34]).

Lemmal.18
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Istj, #1i,s0gibteseinb € i\ j,.Esisti D j,+ bR =a;R+ - -- + a,R + bR. Somit ist
jo + bR € B, aber j, # j, + bR, ein Widerspruch zur Maximalitdt von j,. Also ist j, = i
endlich erzeugt.

Nun wenden wir uns der Existenz einer Zerlegung in irreduzible Elemente in Haupt-
idealringen zu. Sei dazu a € R, a # 0. Setze

S = {bR|a = bp; - - - py, mit endlich vielen irreduziblen Elementen p;}.

Daa = aist,istaR € &,d.h. S # & (beachte, dass endlich viel auch keines bedeuten
kann). Nach Lemma I.18 hat & ein maximales Element cR. Also

achl"'Pk-

Wir zeigen, dass ¢ eine Einheit ist. Dann haben wir unsere Zerlegung gefunden. Sei
dazu ¢ keine Einheit, also
cR #R.

Sei
G, = {iJildeal, R Ci C R}.

DacR € G, ist,ist §; # @.Nach Lemma I.18 gibt es ein maximales Element m in &;.

Es ist m = pR, da R ein Hauptidealring ist. Da m insbesondere ein maximales
Ideal in R ist, ist nach Satz 1.9 R/m ein Korper. Also ist m prim. Nach Lemma I.12 ist
dann p irreduzibel. Da cR C m ist, ist ¢ = pd mit geeignetem d. Somit ist

¢R C dR.

Es ist nun
a:dppl...pk_

Somit ist auch dR € &;.Die Maximalitdt von cR liefert dann cR = dR. Alsoistd = rc
mit geeignetem r € R. Das liefert nun

c=dp=crp,alsorp =1,
ein Widerspruch, da pR # R war. Somit ist ¢ eine Einheit. Ist nun a keine Einheit,

so ist k > 1.Setze p; = ¢p;. Dann ist a = p1p, - - - px mit irreduziblen py, ps, . . ., k-
Damit ist die Existenz bewiesen.

Wir haben zusammenfassend:

Jeder Hauptidealring ist ein EPZ-Ring.

Dajeder euklidische Ring ein Hauptidealring ist,ist dann auch jeder euklidische Ring
ein EPZ-Ring. Somit sind Z, K[x], Z[i] alles EPZ-Ringe. Jetzt kénnen wir auch zeigen,
dass in einem EPZ-Ring die Begriffe prim und irreduzibel gleichwertig sind.

Sei R ein EPZ-Ring. Ist p € R, so ist p genau dann prim, wenn p irreduzibel ist.
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Beweis. Nach Satz 1.2 haben wir nur zu zeigen, dass irreduzible Elemente prim sind.
Seien also a, b € R, so dass p ein Teiler von ab ist. Das heif3t, ab = pc. Ist a eine
Einheit, so gibt es ein d mit ad = 1. Also ist b = dpc und p ein Teiler von b. Genauso
ist p ein Teiler von a, falls b eine Einheit ist. Seien also a und b beide keine Einheiten.
Dannista=p;---p,und b = q; - - - q; mitirreduziblen py, ..., p;, 41, . . ., 45 Somit
istab = py---prq1---qs = pc. Wegen der Eindeutigkeit der Zerlegung ist p = ep;
oder p = eq; fiir eine Einheit e und geeignetes i, d.h. p|a oder p|b.

Bemerkung. Seim € Z, m kein Quadrat. Wir setzen
M,, = {a+ b/m]a, b € Q).
Man kann zeigen, dass M,, ein Korper ist. Wir betrachten in M,, nun die Teilmenge
Ry, = {u|lu € My, u ist Nullstelle eines Polynoms x*+cx+d, c,deZ).
Dann ist R, ein Integritdtsbereich. Wir kénnen R,, auch wie folgt beschreiben:

R
Ry

{r +sy/mlr,s € Z}, falls m = 2, 3 (mod 4) ist.
{(r +so/m)/2|r,s € Z, r = s (mod 2)} sonst.

In dieser Sprache ist Z[i] = R_;.

Wie in Z[i] kénnen wir in R,, auch eine Norm einfiihren. Sei u = a + b./m, so

setze
N(u) = a* — mb* = (a + b/m)(a — by/m).

Istm < 0und m # —1,-2,-3, -7, —11, so ist R, kein euklidischer Ring. Fiir die
restlichen Werte m < 0 ist R,, euklidisch mit ¢(r) = N(r). Der Beweis ist dhnlich
wie bei Z[i].

Fiir R_5 hatten wir gezeigt, dass 3 irreduzibel, aber nicht prim ist, somit ist R_s
nach Lemma 1.20 kein EPZ-Ring.

Man kann zeigen, dass R_;9 ein Hauptidealring ist. Also ist nicht jeder Haupt-
idealring euklidisch.

Harold Stark (1967, [29]) hat bewiesen, dass fiir m < 0 R, genau dann ein
EPZ-Ring ist, falls
m=-1,-2,-3,-7,-11,—-19, —43, —67, —163
ist. Ist m > 0, so ist R, euklidisch mit ¢(r) = [N(r)| genau fiir
m=2,3,5,7,11,13,17,19, 21, 29, 33, 37, 41, 57, 73.
Dies stammt im Wesentlichen von Harold Chatland und Harold Davenport (1990,
[6]). Es ist eine offene Frage, fiir welche m > 0 R, ein EPZ-Ring ist.

Ob Z[x] ein EPZ-Ring ist,kénnen wir derzeit nicht kldren, da, wie wir wissen, Z [x]
kein Hauptidealring ist (siehe Seite 14). Wir miissen dies auf andere Art entscheiden.

Es ist Z[x] C Q[x]. Der Ring Q[x] ist ein Hauptidealring und damit auch ein
EPZ-Ring. Dies werden wir benutzen, um zu zeigen, dass Z[x] ein EPZ-Ring ist.
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Wir wollen dies gleich etwas allgemeiner machen. Die Einbettung von Z[x] in Q[x]
wollen wir fiir jeden Integritétsbereich R nachvollziehen, also R[x] C K[x] fiir einen
geeigneten Korper K. Dazu wollen wir zundchst die Einbettung von Z in Q fiir
beliebige Integritdtsbereiche nachvollziehen.

Sei R ein Integritdtsbereich.

a) Es gibt einen Korper K und einen Monomorphismus
a:R — K,

so dass jedes Element aus K als a(r;)a(r,)™" mit geeigneten r1,r, € R,
r, # 0, dargestellt werden kann.

b) Der Korper K ist durch die in a) angegebene Eigenschaft bis auf Isomorphie
eindeutig bestimmit.

¢) IstK ein Korper und p: R — K ein Monomorphismus, so kann v zu einem
Monomorphismus p: K — K mit pa = p erweitert werden.

Beweis. a) Wir definieren zunichst auf R x (R {0}) eine Aquivalenzrelation ~ durch
(11, 51) ~ (2, 5,) genau dann, wenn rys, = 1,5, ist. Dies ist wie 2 = % in Q.

Man sieht leicht ein, dass ~ reflexiv und symmetrisch ist.

Fiir die Transitivitit sei (r1, s;) ~ (12, s2) ~ (r3, s3), also r1s, = 151 und auch
7283 = spr3. Dann ist
1185283 = 18183 = 128381 = I'38287.

Da s, # 0 ist, ist dann rys3 = 7351, also (ry, s;) ~ (3, s3). Somit ist ~ transitiv.
Sei K die Menge der Aquivalenzklassen (r, s) von ~, also

K ={(r,s)|(r,s) € R x (R\ {0})}.

In Q ist offenbar ? die Menge aller Briiche mit Wert 7, also genau die Aquivalenz-
klasse von é.Wir definieren auf K eine Addition und Multiplikation, die auch wieder
von QQ motiviert ist, wie folgt:

(r1, 51) + (12, 52) (r152 + 1351, 5157)

(r1, 51) (12, 52)

(1172, 5152).

Wie man nachrechnet, wird hiermit K zu einem Korper. Es ist (0, 1) das Nullelement,
(1, 1) das Einselement und (r, s) ~! = (s, r).

Wir definieren nun
a:R— K

durch
a(r) =(r, 1).

Dies ist wie die Identifikation von 5 mit f .
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Es ist
a(riry) = (rir, 1) = (11, 1) (12, 1) = a(r)a(r,)

und
a(ry+1r) =(r1+1,1) =(r,1) + (12, 1) = a(r) + a(r).

Somit ist o ein Homomorphismus.

Sei r € ker a. Dann ist
0,1) = a(r) = (r, 1).

Das liefert (0, 1) ~ (r, 1),d.h.r =7-1 =1-0 = 0. Somit ist & ein Monomorphismus.
Seinun (r, s) € K.Dann ist
(r,s)=(r,1)(1,s) = (r,1) (s, 1) ' = a(r)a(s)™".
Damit haben wir a).
b) Sei K’ ein Kérper, der a) mit zugehdrigem Monomorphismus f erfiillt.

Sei ¢: K — K’ definiert durch
@((r,s)) = BP(s)™.
(1) ¢ ist wohldefiniert.
Seidazu (11, s1) ~ (r, s),also r;s = rs;. Somit ist B(r,s) = B(rs;),d.h.
Br)BGs)™ = (rP(s) ™.
(2) ¢ ist Homomorphismus.

Dies kann man leicht nachrechnen.

Nach a) ist
K' = {B(r)B(s)"'I(r,s) € R x (R\ {O})}.

Also ist ¢ ein Epimorphismus.

Nach Folgerung 1.10 ist ker ¢ = 0, da ¢((1,7)) = 1 # 0 ist. Also ist ¢ ein
Isomorphismus.

¢) Definiere : K — K durch
Pla(rals)™) = p(rys) ™.
Wir zeigen zunéchst, dass { wohldefiniert ist. Sei dazu
a(ra(s)™ = a(r)als)™.

Dann ist
a(r)a(sy) = a(r)al(s) also a(rs;) = a(rys).

Da a ein Monomorphismus ist, erhalten wir nun rs; = r;s. Somit ist
p(r)y(s)) = w(rs) = w(ns) = p(r)yp(s),
was w(r)p(s)™! = w(r)p(s;) ! liefert. Also ist  wohldefiniert.



| Arithmetik

Man rechnet nach, dass § ein Homomorphismus ist. Wegen
plaa®)™) = pMp1)~ =170

ist nach Folgerung 1.10 9 ein Monomorphismus.

Seinun r € R.Dann erhalten wir
Pla(r)(a(1)™) = pr)p1)™ = p(r).

Somit ist p = Pa.

Definition Quotientenkorper. Den in Satz 1.21 konstruierten Korper nennen wir den
Quotientenkdorper zu R. Der Quotientenkdrper zu R[x] wird mit R(x) bezeichnet.

Die Elemente aus K bezeichnen wir tiblicherweise mit Z, d.h., wir identifizieren a
mit a(a).

Wir betrachten nun Polynomringe R[x], wobei R ein EPZ-Ring ist. Fiir

0#f = Zn:aixi
i=0

setze cont (f) = ggT (ay, .. ., a,). Wie bei der Definition des ggT bereits festgestellt,
ist auch cont (f) nur bis auf Einheiten bestimmt.

Lemma .22 Gauflsches’Lemma. Sei R ein EPZ-Ring und f, g € R[x] \ {0}. Dann ist

cont (f) cont (g) = cont (fg).

Beweis. Essind f = ¢f; und g = dg; mit ¢ = cont (f), d = cont (g) und cont (f;) =
cont (g;) = 1. Also geniigt es, die Behauptung fiir den Fall cont (f) = cont (g) = 1 zu
beweisen.

Sei

f= Zn:aixi, g= Zm:bjxj.
i=0 j=0

3Carl Friedrich Gauf} (*30.4.1777 Braunschweig, 123.2.1855 Gottingen), Professor in Gottingen, wird
als der grofite Mathematiker der Neuzeit bezeichnet. In seiner Doktorarbeit bewies er den Fundamental-
satz der Algebra (Jedes nicht konstante Polynom mit komplexen Koeffizienten hat eine Nullstelle in den
komplexen Zahlen), mit 19 Jahren bewies er die Konstruierbarkeit mit Zirkel und Lineal des regelma-
igen 17-Ecks, ein Problem, das bis auf Euklid zuriickgeht. Mit 24 Jahren schrieb er die ,,Disquisitiones
Arithmeticae®, eines der bedeutendsten Werke der Mathematik. Hier wurden die Grundlagen der Zahlen-
theorie, die bis daher aus vereinzelten Problemen bestand, gelegt. Er arbeitete auf vielen verschiedenen
Gebieten (Geometrie, Algebra, Astronomie, Physik) und fiihrte grundlegende Begiffe ein, z.B. die Gaufi-
sche Glockenkurve und die erste geometrische Interpretation der komplexen Zahlen mit der Gauschen
Zahlenebene.
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Wir miissen cont (fg) = 1 zeigen. Sei dazu p ein beliebiges irreduzibles Element in
R.Da p weder cont (f) noch cont (g) teilt, kann p nicht alle Koeffizienten von f und
auch nicht alle Koeffizienten von g teilen. Wéhle nun r maximal in 0 < r < n mit
p fa, und s maximal in 0 < s < mmit p }b,. Wir betrachten den Koeffizienten in fg
von x'*%, also

Crs = Aobpys + - - + arysho.

Dap fiir i > 1 alle a,.;bs_; und bg;a,—; teilt, aber p nicht a,b; teilt, teilt p auch nicht
den Koeffizienten c,4,. Also folgt p fcont (fg). Somit ist cont (fg) = 1, da p beliebig
war.

Das nédchste Lemma gibt uns Kontrolle tiber die irreduziblen Elemente von R[x].

Sei R ein EPZ-Ring und K der Quotientenkdrper von R. Sei weiter f € R[x] mit
cont (f) = 1. Es ist f in K[x] genau dann irreduzibel, wenn f in R[x] irreduzibel
ist.

Beweis. Sei zundchst f irreduzibel in K[x]. Ist f = gh mit g, h € R[x], so kénnen
wir annehmen, dass g eine Einheit in K[x] ist. Nach Satz 1.4 ist dann grad g = 0,d.h.
g € R.Da cont (f) = 1ist, ist g|1,d.h., g ist eine Einheit in R[x].

Seinun f irreduzibel in R[x] und f = gh mit g, h € K[x],also
g=zn:aixi h=i ijjmitai b;, ci,d; € R.
" b,‘ > j:0 d] > s ¥)s ¥

Wir bezeichen mit ., .
b=]]biundd =]]d
i=0 j=0

die Hauptnenner. Damit erhalten wir bg = gy € R[x] und dh = hy € R[x].

Seien nun o = cont (g;) und B = cont (hy), also go = agy und hy = Bh; mit
1, h1 € R[x] und cont (g;) = cont (h;) = 1. Das liefert

afgihy = gohy = bdgh = bdf.

Es ist aff = cont (goho) und nach Lemma 1.22 cont (bdf) = bd, da cont (f) = 1 ist.
Also ist a3 = bde mit einer Einheit e € R. Das liefert nun

f = glhle.

Da f irreduzibel ist, konnen wir annehmen, dass g; eine Einheit in R[x] ist. Dann
ist g; auch eine Einheit in K[x] und nach Satz 1.4 ist somit g; € K. Dann ist aber
g =b'ag € K,d.h., g ist Einheit. Also ist f irreduzibel in K[x].

Fiir den Spezialfall Z haben wir

Istf = Z?:o a;x' € Z[x) irreduzibel und ggT (ay, . .., a,) = 1,50 ist f irreduzibel
in Q[x].

Lemma l.23

Folgerung .24
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Nun koénnen wir die Frage, ob Z[x] ein EPZ-Ring ist, beantworten.

Satz1.25 Ist R ein EPZ-Ring, so ist auch R[x] ein EPZ-Ring.

Beweis. Nach Satz I.19 ist K[x] ein EPZ-Ring, wobei K der Quotientenkorper von R
ist.

Jedes 0 # f € R[x] ist eindeutig als ein Produkt

f:pl...Pr

mit irreduziblen p; € K[x] schreibbar.

Sei a; das Produkt der Nenner der Koeffizienten von p; und f; = a;p;. Dann ist
fi € R[x].Es ist
fi = ¢iqi, ¢i € R, q; € R[x], cont (g;) = 1.

Somit ist
ci

pi= qi

a;

(ﬁa,)f: (lL[Ci)fh"-qr.

i=1 i=1

Es ist

Sei zunidchst cont (f) = 1. Lemma [.22 liefert

r r
[Tor= (e
i=1 i=1
mit einer Einheit e € R. Dann haben wir

f:eql...qr.

Die p; sind in K[x] irreduzibel. Damit sind auch die f; und daraus folgend die g;
irreduzibel in K[x]. Nach Lemma .23 sind die g; auch in R[x] irreduzibel. Indem wir
q1 = eq; setzen, haben wir die Existenz einer Zerlegung nachgewiesen.

Wir miissen noch die Eindeutigkeit zeigen. Sei also

f=r-r

mit irreduziblen Elementen r, ..., rr € R[x]. Nach Lemma 1.22 ist cont (r;) = 1,
i=1,...,k dacont(f) = 1ist. Nach Lemma I.23 sind die r; irreduzibel in K[x]. Da
K[x] ein EPZ-Ring ist, gilt k = r und

ri = eipi

bei geeigneter Nummerierung, wobei die e; Einheiten in K[x] sind, also e; € K. Das
liefert nun
a;ri = e;ciq;.
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Nach Lemma [.22 ist dann a; = e;c;e; mit einer Einheit &; € R. Also ist
eici(eiri — gi) = 0.
Das liefert
éﬂ’i = (.
Damit ist die Zerlegung eindeutig.

Wir haben also gezeigt, dass sich jedes 0 # f € R[x] mit cont (f) = 1 eindeutig
als Produkt irreduzibler Elemente schreiben ldsst.

Sei nun cont (f) = d beliebig. Dann ist f = df mit cont (f) = 1. Es ist f ein-
deutig darstellbar. Da d € R ist,ist d = d, - - - di eindeutig mit irreduziblen d; € R
darstellbar. Also ist f als Produkt irreduzibler Elemente darstellbar.

Sei nun f = ¢ ---¢q, mit irreduziblen q; € R[x]. Sei ¢; = cont (g;). Somit ist
qi = c¢iq; mit cont (§;) = 1. Dann ist

r

df:f: (Hci)ql"'qr-

i=1

Nach Lemma .22 ist d = e []\_; ¢; mit einer Einheit e € R. Also ist

f:éq“l...qr

mit einer Einheit &. Nun sind die g; eindeutig bestimmt. Da auch d = e[]._, ¢
eindeutig bestimmt ist, folgt, dass

f=a...a

eindeutig ist.

a) Ist K ein Korper, so ist K[x,, ..., x,] ein EPZ-Ring. Folgerung 1.26
b) Zl|x] ist ein EPZ-Ring.

Folgerung 1.26 b) zeigt, dass es EPZ-Ringe gibt, die keine Hauptidealringe sind.

Schon in Z ist es schwierig zu entscheiden, ob eine Zahl prim ist. In Z[x] kann
dies noch schwieriger sein. Wir wollen dazu einige Methoden angeben.

Seif € K[x], K ein Korper. Satz .27

a) Ist a € K mit f(a) = 0, so ist x — al|f. Insbesondere haben irreduzible
Polynome vom Grad grofer als 1 keine Nullstellen in K.

b) f hat hochstens grad f viele verschiedene Nullstellen.
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Beweis. Seif = > I a;x'. Wir ersetzen f durch g = f(x + a) = > ., b;x'. Dann hat
g die Nullstelle 0. Also ist

0 = g(0) = by.
Somit ist

n-1 )

g= chix’ mit ¢; = bjyq.

i=0

Nun betrachte f = g(x —a) = (x — a) Z?z_ol d;x'. Dies ist a).
Da grad (317} dix') < grad f ist, folgt b) mit einer Induktion nach grad f.

Das wohl bekannteste Irreduzibilitétskriterium ist der folgende Satz von Eisenstein®*.

Sei R ein EPZ-Ring mit Quotientenkdrper K und
f=ay+ax+---+a,x" € R[x].

Fiir ein irreduzibles Element p € R teile p alle a;, i =0, ..., n— 1, aber nicht a,.
Weiter sei ag nicht durch p* teilbar. Dann ist f irreduzibel in K[x].

Beweis. Nach Voraussetzung ist p kein Teiler von cont (f). Also kénnen wir anneh-
men, dass cont (f) = 1 ist. Dann geniigt es nach Lemma 1.23 zu zeigen, dass f
irreduzibel in R[x] ist. Sei dazu

f = gh mit

T t
g=Zb5xiundh=Zijj,r,t> 0,b, #0 # ;.
i=0

j=0

Es ist zunéichst
ap = boCo.

Nach Lemma 1.20 ist p prim. Da a, von p geteilt wird, folgt nun, dass by oder ¢y von
p geteilt wird. Da a¢ nicht durch p? teilbar ist, kénnen wir annehmen, dass b, aber
nicht ¢, von p geteilt wird. Da cont (f) = 1 ist, ist nach Lemma 1.22 cont (g) = 1, also
ist p kein Teiler von cont (g).

Damit gibt es ein k, das minimal ist, so dass by nicht durch p geteilt wird. Es ist
ay = brcy + -+ + byck.

Angenommen, es ist k < n.Da p alle b;, i < k teilt, aber nicht byco, ist p auch kein
Teiler von ay, ein Widerspruch zu k < n.

4Ferdinand Gotthold M. Eisenstein (*16.4.1823 Berlin, 111.10.1852 Berlin) studierte ab 1843 an der
Berliner Universitdt und erhielt dort den Doktorgrad ehrenhalber nach der Veréffentlichung von tiber
25 Arbeiten. Er habilitierte 1847 an der Berliner Universitit und wurde 1852 Mitglied der Berliner Akade-
mie. Eisenstein arbeitete auf Gebieten der Zahlentheorie, der Algebra sowie der elliptischen und abelschen
Funktionen. Er beschiftigte sich mit quadratischen, kubischen und biquadratischen Reziprozititsgeset-
zen. Herausragend sind seine Arbeiten zu quadratischen und kubischen Formen. Hier entstehen auch die
spéter nach ihm benannten Eisenstein-Reihen.
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Also ist k = n und dann k = r = n. Somit haben wir

grad g = gradf.
Das liefert grad h = 0, ein Widerspruch zur Annahme ¢t > 0.

Wir wollen nun an einigen Beispielen aufzeigen, mit welchen Methoden man die
Frage nach der Irreduzibilitit eines Polynoms angehen kann.

a) Seif = 2x*+ 7x’ +x* + | € Q[x]. Istf irreduzibel? Beispiel
Es ist
25f = 2x% + 35x° + 25x° + 5 € Z[«x].
Mit Satz 1.28 und p = 5 sehen wir, dass

2x5 +35x° +25x° + 5
irreduzibel ist, also auch f.

b) Das nichste Beispiel ist von zentraler Bedeutung. Sei

xP -1

L= '+ %P7+ ...+ 1, p Primzahl.
x—

f =
Wir wollen zeigen, dass f irreduzibel ist. Satz 1.28 ist nicht direkt anwendbar.
Aber wir kénnen den Trick aus dem Beweis von Satz 1.27 verwenden.

C(x+1P-1

-1
flx+1) xP! +Z(€)x"_1 = xP™' + pxh + p mit h € Z[x].
i=1

Nun liefert Satz .28, dass f(x + 1) irreduzibel ist. Aber jede Zerlegung von f (x)
hitte auch eine von f (x + 1) geliefert, also ist f irreduzibel.

c) Eine weitere Moglichkeit ist, nicht x zu verdndern, sondern die Koeffizien-
ten des Polynoms. Ahnlich verfahren Computeralgebra-Systeme beim Testen
von Irreduzibilitit.

Sei ™ die Abbildung von Z auf Z/nZ, n € N. Diese erweitern wir zu einer Abbil-
dung von Z[x] nach (Z/nZ)[x] durch

m m
f= Za,-x’ — f= Zaix’.
i=0 i=0
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Ist n = p eine Primzahl, so ist K = Z/pZ ein Korper und wir haben, dass K[x]
ein EPZ-Ring ist.

Zerfillt f = gh in Z[x], so auch f = gh in K[x]. Dies ist eine echte Zerlegung,
falls p fan,.

Somit gilt: Ist ]? irreduzibel in K[x], so ist f irreduzibel in Z[x].

Der Vorteil von K[x] ist die Endlichkeit von K. Es gibt also nur endlich viele Po-

lynome g € K[x] mit grad g < grad f. Damit ist das Entscheidungsproblem ein
endliches Problem geworden. Wir wollen dies an folgendem Beispiel illustrieren.

Sei
f=x*+5x +35x> + 10x + 7 € Z[x].

Setze p = 5. Dann ist _ B
f=x'+2.

Indem man 0, 1, 2, 3, 4 einsetzt, sieht man, dass f keine Nullstelle in Z/5Z hat.
Ist f reduzibel, so ist

f =ghmitgradg = gradh =2
und damit x* +2 = (x> + ax + I_a)(xz_ +Cx + d). Das liefert die Gleichungen
a=-c,ac+b+d=0,bd =2.Somitb+d = a*. Daa® e {0, 1, 4} ist, folgt nun
b(1—b) =2 oder b(4 — b) = 2.
Einsetzen der Werte fiir b liefert einen Widerspruch. Also ist f irreduzibel in
(Z/57)[x] und dann auch f in Z[x].

Wir hitten aber auch p = 3 betrachten kénnen. Dann hétten wir

f=x'-x-x"+x+1
erhalten. Aber jetzt gilt

- -t x+1=(+x-1)>%

Dies zeigt, dass f durchaus nicht irreduzibel sein muss, selbst wenn f irredu-
zibel ist. Man muss also bei der Verwendung von p etwas vorsichtig sein. Dazu
spéater mehr. Zusammenfassend haben wir das folgende Verfahren zum Test der
Irreduzibilitét fiir f € Z[x]:

Seif =>" aix' € Z[x].
(1) Wir testen, ob f eine Nullstelle in Z hat:
Seif(a) =0.Dannist0=>" aia =ay+ay . aa ' Alsoistala.

Da ay nur endlich viele Teiler hat, ist dies ein endliches Problem.
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(2) Wir testen, ob f quadratfrei ist:
Esistf’ = > " ia;x'"!.Seif = g*h.Dannist ' = 2gg’h + g*H'.
Also ist g|ggT (f, f'). Wir bestimmen mit dem euklidischen Algorithmus
den ggT (f, f'). Ist dieser ungleich 1, so ist f nicht irreduzibel.

(3) Wir faktorisieren in (Z/pZ)[x]. Ist f irreduzibel, so ist f irreduzibel.

Das Problem liegt im Schritt (3). Es ist z.B. x* — x? + 1 irreduzibel in Z[x],
aber niemals irreduzibel in (Z/pZ)[x]. Ein Beispiel, das fiir unendlich viele
Primzahlen irreduzibel und auch fiir unendlich viele reduzibel ist, werden wir
auf Seite 127 sehen.

Angenommen, wir haben eine Primzahl p, so dass die Koeffizienten aller
Teiler von f dem Betrag nach kleiner als p/2 sind. Ist dann f = f; - - - f;, so ist
auch f = fi - - - f;, da sich die Polynome nicht verdndern.Ist nun f = g; - - - g; die
Primfaktorzerlegung, so kann dies nur so gehen, dass die f; Produkte einiger der
g sind.

Insofern testen wir, ob die Produkte der g; das Polynom f in Z[x] teilen. Das
ist allerdings ein exponentieller Algorithmus.

Seif = x* —x? + 1 und p = 29. Modulo 29 ist
f=@*+12x - 1)(x* - 12x - 1).
Aber weder x? + 12x — 1 noch x*> — 12x — 1 teilen f in Z[x], somit ist f irreduzibel.

Die Frage ist, woher wir p kennen, warum war p = 29 ausreichend? In der Tat
gibt es solche Schranken. Es gilt die folgende Abschitzung (Landau-Mignotte-
Ungleichung [16,19,20]).

Istg = 3.7 bjxd ein Teiler von f = 37 aix’, a, # 0 # by, so gilt

an
b

m n
2 lyl=2m |t | D et
j=0 i=0

In obigem Beispiel haben wir |a,| = 1 = |b,,|. Also ist die Schranke

243 < 29.
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Ubungsaufgaben

1.1

1.2

1.3
1.4

L5
1.6
1.7
1.8

1.9

1.10

I.12

1.13

Sei (R, +, -) ein Ring. Wir fithren auf R zwei neue Verkniipfungen @ und © ein. Diese
seien fiir a, b € R wie folgt definiert:

adb a+b-1
a®Ob = a+b-a-b.

Zeige, dass auch (R, @, ©) ein Ring ist, der sogar zu (R, +, -) isomorph ist.
Seien R ein Ring und a, b € R mit a*> = a,b* = bund ab = ba.

a) Esist(a—b)* = (a-b).

b) Ist (a—b)" =0 fiireinn € N,so ista = b.

¢) Finde solche Elemente a, b mit a # b in R = R,, dem Ring der 2 x 2-Matrizen
iiber R, beide nicht das Nullelement oder Einselement.

Sei R ein Integritdtsbereich. Ist 2 < |R| < 00, so ist R ein Korper.
Sei p eine Primzahl und Z, = {; | a, b € Z, p teilt nicht b}.

a) Bestimme die Einheiten und Primelemente von Zj.

b) Ist Z, ein euklidischer Ring?
Bestimme alle g, r € Z[i] mit 1 + 25i = q(3 + 4i) + r und |r| < |3 + 4i].
Zeige, dass Z[i]/3Z[i] = K ein Korper ist. Bestimme |K|.
Bestimme die Primideale von Z/18Z.
Sei R ein kommutativer Ring,i C R ein Ideal und S C R mit {s;s, | 51,5, € S} C S, s0
dass SNi = @ ist. Setze

P={p|pistldealin Rmiti C pundp NS = }.
a) Zeige mit dem Zornschen Lemma, dass P maximale Elemente beziiglich der In-
klusion hat.

b) Zeige, dass maximale Elemente in 7 Primideale sind.
Finde ganze Zahlen x, y mit:

a) 754x + 221y = 13.
b) 158x + 57y = 20000.

Seienf =x*+2x* —x — lund g = x> + x — 3 € Q[x]. Zeige:
a) f und g haben in C keine gemeinsamen Nullstellen.
b) Esgibta, b € Q[x] mitaf + bg = 1.
¢) Gib a und b aus b) explizit an.

Bestimme die Primfaktorzerlegung von x° + x> + 2x* — x + 2 in Z[x].

Betrachte das Polynom x?+1 € Z[x] mit q € N.Zeige,dass x?+ 1 genau dann irreduzibel
ist, falls ¢ = 2™ eine 2-Potenz ist.

Sei K ein Kérper und ¢: K[x] — K[x] ein Automorphismus. Ist p € K[x] ein Polynom,
so ist p genau dann irreduzibel, wenn ¢ (p) irreduzibel ist.
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1.14 a) Seienf, g € K[x], K Korper, Polynome vom Grad n > 0. Gibt es n + 1 paarweise
verschiedene Elemente a4, ..., d,4; in K mit

fla)=gla),i=1,....,n+1,

soistf =g.
b) Bestimme alle Polynome p € Z[x], die die Identitdt

P +1) =p(x)* +1

fiir alle x € Z erfiillen und fiir die p(0) = 0 gilt.
1.15 Seif ein Polynom mit ganzzahligen Koeffizienten. Fiir vier paarweise verschiedene ganze
Zahlen a, b, c, d sei
fla)=f(b) =f(c)=f(d)=7.
Zeige, dass es keine ganze Zahl k gibt, so dass f (k) = 10 ist.
116 Seip =x"+a,1x" ' +...+ ay € Z[x]. Zeige:
a) Ists € Q eine Nullstelle von p, so ist s € Z.
b) Ists € Z eine Nullstelle von p, so wird a, durch s geteilt.

¢) Besitzt x7 + 12x" + x + 1 rationale Nullstellen ?



Korper

Wir wollen uns jetzt mit Kérpern beschéftigen, nachdem in Kapitel I Ringe und ihre
Arithmetik mehr im Vordergrund standen.

Wir kennen bisher C, R, Q und Z/pZ = GF(p). Wir kennen aber sogar beliebig
viele weitere. Ist ndmlich i ein maximales Ideal in K[x], K Korper, so ist K[x]/i
nach Satz I.15 ein Korper. Ist f ein irreduzibles Polynom, so ist wieder nach Satz
1151 = fK[x] ein maximales Ideal. Also gehért zu jedem irreduziblen Polynom ein
Korper.

Den ersten Unterschied zwischen QQ und GF(p) sehen wir, wenn wir die 1 auf-
addieren. In GF(p) erhalten wir, wenn wir dies p-mal fortsetzen, die 0. In Q kénnen
wir dies beliebig oft fortsetzen und werden niemals die Null erhalten. Das fithrt zu
folgender Definition:

Charakteristik. SeiK ein Korper.Diekleinste natiirliche Zahlnmitl +...+1=10

n—mal
nennen wir die Charakteristik von K. Schreibe dann char K = n. Gibt es keine

solche Zahl, so schreibe char K = 0.
Also ist char Q = 0und 0 < char GF(p) < p.

Ist K ein Kérper mit char K # 0, so ist char K = p eine Primzahl.

Beweis. Sei char K = n # 0 und n = pq mit einer Primzahl p. Dann ist

0=n-1=1+---+1= I+---+1)Q+---+1)=(p-1)(q-1).

~ ~ - -~ -~
n—mal p—mal q—mal

Dann ist aber (p - 1) = 0 oder (q - 1) = 0. Die minimale Wahl von 7 liefert nun

n=p.

Primkorper, Teilkorper. Sei K ein Korper und k eine Teilmenge von K. Ist k mit
der Einschridnkung von Multiplikation und Addition von K wieder ein Kérper,
so nennen wir k einen Teilkérper von K. Den Durchschnitt aller Teilkdrper von
K nennen wir den Primkdérper von K.

G. Stroth, Elementare Algebra und Zahlentheorie
© Springer Basel AG 2012
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Satz 1.2

Lemmall.3

Il Korper

Der Primkdrper ist somit der kleinste in einem Korper enthaltene Kérper. Der nichs-
te Satz sagt uns, dass wir alle Primkorper bereits kennen.

Sei K ein Korper.

a) Ist char K = 0, so ist der Primkorper zu Q isomorph.
b) Ist char K = p # 0, so ist der Primkérper zu GF(p) isomorph.

Beweis. Wir wollen mit k den Primkorper von K bezeichnen.

a)Seiy:N - kmity(n)=n-1 =£1+~-~+12.Sei1p(n)= p(m) firn,m € N.
njn:ul
Wir konnen n > m annehmen.Dannist0 =n-1—-m-1=(n—-m)-1.Dachar K =0
ist,ist dann n = m. Also ist p eine injektive Abbildung. Somit ist ohne Einschrédnkung
N C k. Da k ein Koérper ist, ist nun auch Z C k. Nach Satz [.21c) enthilt k einen zu
Q isomorphen Teilkdrper, also ist k = Q.

b) Sei nun die Charakteristik von K endlich. Setze K; = {0,1,...,p -1} C k,
wobei hierifﬁrl+---+_1/steht.Seii =jinKgmit0 < i <j < p—1. Dann ist
i—mal
j—i=0.Dachar K = pist,istdann j = i in Z. Also ist |K;| = p.
Seinun 0 # x € K;. Dann ist ggT (x, p) = 1 in Z. Nach Satz I.16 gibt es a, b € Z mit

ax+bp =1.

Seia=a+kpmit0 < a < p—1.Dannist 1 = ax + (b + kx)p. Also konnen wir
a € K; annehmen. Da bp = 0in K ist, folgt ax = 1 und K] ist ein Korper, da K; gegen
Addition ohnehin abgeschlossen war. Nach Definition von k ist K; = k.
Sei nun

1: GF(p) — kmit 7(i + pZ) = i.

Dann ist 7 ein Isomorphismus. Also ist k = GF(p).

Das Potenzieren mit p in einem Koérper der Charakteristik p gestaltet sich besonders
einfach.

Ist char K = p # 0, und sind a, b € K, so ist

(a+ b)Y =af +bP.

Beweis. Esist (a + b)P = >4 a'bP~i(?). Hierbei bedeutet (£), dass die Eins aus K
genau (£)-mal aufaddiert wird. Ist 1 < i < p, so ist p|(%) also ist (!) = 0in K und
dann

(a+ b =bf +ab.



Il Korper

Wir hatten GF(p) als Z/pZ konstruiert. Sei nun k ein Kérper und f = > a;x’
ein Polynom in k[x] mit a,, # 0. Genauso konstruieren wir nun auch

K = k[x]/fk[x].

Ist f irreduzibel, so ist K nach Satz I.15 ein Korper. Es ist

K = {g + fk[x]|g € k[x]}.

Da wir in k[x] eine Division mit Rest haben, ist g = fq + r, grad r < grad f. Dann ist

g +fklx] = r + fk[x].

Somit ist
K = {g + fk[x]|g € k[x], gradg < gradf}.
Als k-Vektorraum wird K von {x' + fk[x]|0 < i < n — 1} erzeugt.

Sei 310 bi(x' + fk[x]) = fk[x] fir geeignete b; € k. Dann ist >/ byx' € fk[x],
d.h.

Aber grad f = n und damit ist 3./~ b;x' = 0 nach Lemma 1.3, was b; = 0 fiir alle i
liefert. Somit bilden die x’ + fk[x],i =0, ..., n — 1, eine Basis. Also ist diimy K = n.

Wenn wir k mit {b(1 + fk[x])|b € k} identifizieren,kénnen wir k C K annehmen.
Dann konnen wir f als Polynom in K[y] betrachten. Dabei werden die a; mit a;+ fk[x]
identifiziert. Also

f=> (ai+fklx])y"
i=0

(Beachte, die ,Variable® x hat keine besondere Bedeutung.)

In dieses Polynom kénnen wir nun x + fk[x] € K einsetzen. Das ergibt

fle+ fklx]) = D (ai + filx])(x + flx])’
i=0

b
= Zaixi + fklx] = f + fk[x] = fk[x] = 0.
i=0

Alsoist x+fk[x] eine Nullstelle von f in K.Insbesondere ist f in K[y] nichtirreduzibel.
Dies ist fiir das Folgende eine ganz wichtige Feststellung.

Sei z.B. Q gegeben. Wir suchen einen Koérper K mit Q C K, der A/2 enthilt.
Angenommen, wir kennen weder R noch C, sondern nur Q. Wir kénnen /2 allein
aus Q heraus als Nullstelle von x? — 2 definieren. Dann ist

K = Q[x]/(x* — 2)Q[x]

der gesuchte Korper. Diese Konstruktion, die nicht die Existenz irgendwelcher Ober-
korper voraussetzt, wird im Folgenden noch eine wichtige Rolle spielen.
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Definition

Satzll.4

SatzIl.5

Il Korper

Korpererweiterung. Sei K ein Korper. Ist k ein Teilkrper von K, so nennen wir
K eine Korpererweiterung von k.

Algebraisch. Seien k und K Korper, K eine Korpererweiterung von k.
a) Setze [K:k] = dimy K. Wir nennen [K: k] den Grad von K iiber k.
b) Ist a € K und gibt es ein f € k[x],f # 0 mit f(a) = 0, so nennen
wir a algebraisch tiber k. Ansonsten nennen wir a transzendent. Ist jedes

Element aus K algebraisch iiber k, so nennen wir die Erweiterung k C K
algebraisch.

¢) Ist U eine Teilmenge von K, so bezeichnen wir mit k(U) den Durchschnitt
aller Unterkoérper von K, die U enthalten. Statt k({xy, ..., x,}) schreiben
wir auch k(x, ..., x,).

d) Gibtes {x;,...,x,} € KmitK = k(xy, ..., X,),so nennen wir die Erwei-
terung endlich erzeugt. Einen Korper K nennen wir endlich erzeugt, wenn
er {iber seinem Primkdrper endlich erzeugt ist.

Es ergeben sich nun gleich einige Fragen. Wie erkennen wir, dass k C K algebraisch
ist? Folgt aus u, v beide algebraisch iiber k, dass auch u + v oder uv algebraisch sind?
Um diese Fragen beantworten zu kénnen, miissen wir aber zunéchst algebraische
Koérpererweiterungen niher studieren.

Der nichste Satz gibt ein gutes Kriterium dafiir, dass gewisse Korpererweiterun-
gen algebraisch sind.

Sei k C K eine Korpererweiterung mit [K:k] < oco. Dann ist die Erweiterung
algebraisch.

Beweis. Setze [K:k] = n. Wihle a € K. Wir wollen zeigen, dass a Nullstelle eines
Polynoms p € k[x] mit p # 0 ist. Da K ein k-Vektorraum der Dimension # ist, sind
1,a,a%, ...,a" linear abhéingig. Also gibt es geeignete a; € k nicht alle gleich Null,

so dass gilt:
n
Z a,-ai =0.
i=0
Setze nun
n
p= Zaixi € k[x].
i=0
Dann ist p # 0 und p(a) = 0. Somit ist a algebraisch iiber k.
Der nichste Satz beschreibt die Struktur von Kérpern der Form k(a).
Seien k, K Korper mit K = k(a) fiir ein a € K. Ist a transzendent iiber k, so

ist K zu dem Quotientenkdorper k(x) des Polynomrings k[x] isomorph. Weiter ist
[K:k] = oo.
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Ist a algebraisch iiber k, so existiert ein eindeutig bestimmtes normiertes irre-
duzibles Polynom m, € k[x], das a als Nullstelle hat. Es ist [K:k] = gradm,
und

K = k[x]/m.k([x].

Beweis. Wir betrachten den Einsetzungungshomomorphismus o: k[x] — K mit
o(p) = p(a), firp e k[x].

Setze M = Bildo. Esist M = {>" a;a'la; € k,n € NU {0}}. Offenbar ist M ein
Ring. Da M in K enthalten ist, ist M ein Integritétsbereich.

Ist p € ker 0,50 ist 0 = o (p) = p(a).

Ist a transzendent, so folgt p = 0, d.h., o ist ein Monomorphismus. Dann ist
k[x] = M. Nach Satz 1.21 enthdlt k(a) = K einen Quotientenkdrper von M, der
dann zu dem Quotientenkdrper von k[x] also k(x) isomorph ist. Daa € M, und k(a)
minimal mit a € k(a) ist, folgt k(a) ist der Quotientenkérper, d.h. k(x) = k(a).

Sei nun a algebraisch iiber k. Dann gibt es ein Polynom p € k[x], p # 0 und
pla) = 0.Also ist ker o # {0}.Esist ker o ein Ideal nach Lemma I.7. Nach Satz 1.4 und
Satz 1.14 gibt es ein m,, € k[x] mit ker 0 = m,k[x]. Wir kénnen m, normiert wihlen.
Dann ist m, eindeutig bestimmt. Da o # 0 ist, ist m,k[x] # k[x], also ist m, keine
Einheit. Es ist k[x]/m,k[x] = M, d.h.k[x]/m,k[x] ist ein Integritdtsbereich. Nach
Lemma 1.12 ist dann m, irreduzibel. Das liefert mit Satz 1.15, dass M ein Korper
ist. Somit ist M = k(a). Die Behauptung [k(a):k] = grad m, hatten wir bereits
gezeigt.

Minimalpolynom. Seien k, K Korper, K eine Kérpererweiterung von k und
a € K algebraisch tiber k. Das Polynom m, aus Satz II.5 nennen wir das Mini-
malpolynom von a.

Bemerkung. Seien k, K Korper mit k C K.Dann ist K ein k-Vektorraum. Angenom-
men, es ist K = k(a) mit algebraischem a. Wir betrachten die lineare Abbildung

a;:v— av,v € K.

Dann ist m, das Minimalpolynom von &, im Sinne der linearen Algebra.

Ein {iberaus wichtiger Satz, der bei der Beantwortung unserer Fragen eine fun-
damentale Rolle spielen wird, ist der folgende:

Gradsatz. Seien k, K, L Korper, K eine Korpererweiterung von k und L eine Kor-
pererweiterung von K. Dann gilt

[L: k] = [L: K][K:k].

Definition

Satz1l.6



Satzll.7

Il Korper

Beweis. Sei {x;|i € I} eine Basis von K als k-Vektorraum, {y;|j € J} eine Basis von L
als K-Vektorraum. Wir zeigen, dass

B={xjyliel,je]}

eine Basis von L als k-Vektorraum ist. Dann folgt die Behauptung. Zunichst zeigen
wir die lineare Unabhéngigkeit iiber k. Sei dazu

Z a;j(x;y;) = 0, mit a; € k, wobei nur endlich viele der a; ungleich Null sind.
B
Wir schreiben dies um als
S| Samfy=0

jel iel

Die >, ajix; sind Elemente in K. Da die y; iiber K linear unabhingig sind, erhalten
wir somit, dass

Z ajix; =0 fiir alle j ist.

iel
Die lineare Unabhingigkeit der x; liefert dann

a; =0 fiir alle i und .
Nun zeigen wir, dass B den Korper L als k-Vektorraum erzeugt. Sei dazu a € L. Dann
gibt es A; € K mit
a=2 Ay
jel

Aj = Z A,-jxi.

iel

Weiter gibt es A;; € k mit

Damit erhalten wir

a= ZAUxiyj.
iel
el
Wie wir in Satz I1.4 gesehen haben, sind endliche Kérpererweiterungen algebraisch.

Wir wollen nun zeigen, dass fiir endlich erzeugte algebraische Erweiterungen die
Umbkehrung gilt.

SeiK = k(ay, ..., a,) eineendlich erzeugte Kérpererweiterung. Dann sind gleich-
wertig
a) Die Elemente a;, i = 1, ..., n, sind algebraisch iiber k.

b) Der Korpergrad [K: k] ist endlich.
¢) Die Erweiterung k C K ist algebraisch.



Il Korper

Beweis.
a) = b): Wir beweisen die Behauptung durch Induktion nach n.

Fiir n = 1 ist dies die Aussage von Satz II.5.
Sein > 1.Wir haben K = k(ay, ..., a,—1)(a,). Weiter ist nach Satz I1.6

[K:k] = [k(ay,...,a,1)(ay):k(ay,...,a—1)]lk(a;y, ..., a,—1):k].

Per Induktion ist [k(ay, . . ., d4—1): k] endlich. Da a,, algebraisch tiber k ist, gibt es ein
p € k[x],p # 0,mit p(a,) = 0.Es ist

klx] C k(ay, ..., an-1)[x],
also ist a, auch algebraisch iiber k(ay, ..., a,-1). Damit ist
[k(ay, ..., a,-1)(a,):k(ay, ..., a,—1)] endlich.

Somit ist [K: k] < oo.
b) = c¢): Dies ist die Aussage von Satz II.4.

¢) = a): Per Definition sind alle Elemente in K algebraisch iiber k.

Damit haben wir auch gezeigt, dass aus a, b € K, a, b algebraisch tiber k, stets a + b
und a - b algebraisch iiber k folgt, denn nach Satz I1.7 ist k(a, b) algebraisch iiber k
und es sind a + b und ab in k(a, b). Das Kernargument war die endliche Dimension
der Korpererweiterung. Wir haben nicht versucht, aus den Polynomen fiir a und b
eines fiir a + b zu konstruieren. Beachte, dass wir mit Hilfe von Satz I1.5 k(a, b) direkt
aus k konstruieren kénnen.

Wir wollen nun noch Satz I1.7 etwas verallgemeinern, indem wir Kérper betrach-
ten, die von beliebigen Mengen algebraischer Elemente erzeugt werden.

Algebraisch erzeugt. Seien k, K Korper mit k C K und M eine Teilmenge von Definition
iiber k algebraischen Elementen von K.Ist K = k(M) so nennen wir K algebraisch
erzeugt iiber k.

Seien k, K Korper, K eine Korpererweiterung von k. Ist K algebraisch erzeugt iiber SatzI1.8
k, so ist die Erweiterung k C K algebraisch.

Beweis. Sei M die Menge aller iiber k algebraischen Elemente von K. Dann ist
k(M) = K. Also ist K Quotientenkdrper des Ringes

m nj
R = {Zame,-|m, n; € NU {0}, m; € M, a; € k}.

j=1 =1

Es ist jedes Element u € K von der Gestalt ab™!, a, b € R.In der Darstellung von a
und der von b kommen nur endlich viele Elemente aus M vor. Diese fassen wir zu
M, zusammen. Dann ist u € k(M,), |M,| < oo, M,, C M. Nach Satz II.7 ist dann u
algebraisch tiber k.



Folgerung I1.9

Folgerung I1.10

Definition

SatzIl.11

Il Korper

Sei A die Menge der iiber Q algebraischen Zahlen in C. Dann ist A ein Korper.

Es ist Q abzdhlbar und damit auch Q[x]. Da jedes Polynom nur endlich viele Null-
stellen in C hat, gibt es nun abzihlbar viele algebraische Zahlen. Da C iiberabzahlbar
ist, gibt es tiberabzdhlbar viele transzendente Zahlen. Es ist iiberraschend, dass wir
davon nur wenige konkret kennen, z.B. 7, e.

Seien k, K und L Kérper, K eine Korpererweiterung von k und L eine Korperer-
weiterung von K. Ist k C K algebraisch und K C L algebraisch, so ist k C L
algebraisch.

Beweis. Sei a € L. Da a algebraisch iiber K ist, gibt es ein Polynom p € K[x],p =
>, aix',mit p # 0und p(a) = 0. Dann ist offenbar a algebraisch iiber k(ay, . . ., a,).
Nach dem Gradsatz I1.6 ist

[k(ag, ..., a,, a):k] = [k(aq, ..., a,, a):k(ag, ..., a,)][k(ao, ..., a,):k].
Nach Satz I1.7 sind beide Kérpergrade endlich. Also ist auch
[k(ag, ..., a,, a)k] < .
Nach Satz I1.7 ist dann a algebraisch iiber k.

Wir wollen nun Automorphismen ins Spiel bringen. Zunichst erweitern wir Isomor-
phismen auf die zugehorigen Polynomringe. Dazu die folgende Definition:

Automorphismen von Polynomen. Seien k; und k, Kérper. Weiter seien o: k; —
k, ein Isomorphismus und f € ki[x],f = D" a;x'. Dann setzen wir o(f) =

> ola)x.

Der folgende Satz wird uns noch viele gute Dienste leisten. Seine wirkliche Starke
kommt erst im Rahmen der Galoistheorie zum Tragen, die aber nicht mehr Gegen-
stand dieses Buches ist.

Seien ky und k, Korper und Ky, K, Korpererweiterungen. Fiir geeignete u; € K;,i =
1,2, gelte Ky = ki(uy) und K, = ky(uy). Sei weiter 0:ky — k, ein Isomorphismus
und my = 3, a;x' ein irreduzibles Polynom in ki[x] mit m;(u;) = 0. Genau
dann gibt es eine Fortsetzung 1: Ky — K, von o mit 1(u1) = uy, falls u, eine
Nullstelle von o(m,) ist. In diesem Fall ist 1 eindeutig bestimmt.

Beweis. Angenommen 1 sei eine Fortsetzung mit 7(u;) = u,. Dann ist

n n

0=1(0) =D au) = > rla)uy = > ola)u, = o(m)(w).

i=0 i=0 i=0
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Sei nun umgekehrt u, eine Nullstelle von o(m;). Angenommen, es wire auch

n—1
Z ciui =0, mit ¢; € k; geeignet, nicht alle gleich Null.

i=0

Dann ist u; Nullstelle des Polynoms g = Zl”:_()l cix' € ky[x]. Dann ist u; auch Null-
stelle des ggT (m;, g). Also ist m, ein Teiler von g.Da m; den Grad » hat, folgt g = 0,
alsoc; =0fiiri=0,...,n—1.Somitist {1, ..., u" '} linear unabhéngig. Nach Satz
IL5 ist [ki(u1): k1] = gradm; = n. Also ist {1, ..., u?"'} eine Basis von k;(u;) als
k;-Vektorraum.

Sei u € ki(u;) beliebig gewdhlt. Dann gibt es eindeutig bestimmte Elemente
biek,i=0,...,n—1,mit
n—1
u= Z b
i=0

Definiere nun 7 durch
n—1

1(u) = Zo(bi)ug.
i=0
Klar ist, dass 7 ein Homomorphismus ist. Da 7(1) = o(1) = 1 # 0 ist, ist 7 nach
Folgerung 1.10 ein Monomorphismus. Weiter ist o = 14, und 7(u;) = u,.

Wir miissen noch zeigen, dass 7 ein Epimorphismus ist. Es ist m1,,|0(m;). Dann
ist t = grad m,, < n. Genauso wie eben folgt, dass {1, ..., u5"'} eine k,-Basis von
ko (uy) ist. Sei also v = z;;é diu; € ky(u,) ein beliebiges Element. Wahle ¢; € k; mit
o(c;) =d;.Dannistv = T(ZZ(I) c,-u’i).Also ist T ein Epimorphismus.

Die Eindeutigkeit von 7 ist klar.

Als erste Anwendung von Satz II.11 erhalten wir den folgenden Satz:

Seien k ein Korper und q € k[x] ein irreduzibles Polynom. Dann gibt es einen bis
auf Isomorphie eindeutig bestimmten Erweiterungskérper K von k der Form K =
k(a), wobei q(a) = 0 gilt. Fiir diesen Korper gilt [K: k] = grad q. Ist insbesondere
L ein Korper mit k C L und sind a,,a, € L mit q(a;) = q(a;) = 0, so ist
k(ay) = k(ay).

Beweis. Wir haben nur noch k(a;) = k(a,) zu zeigen. Dies folgt aus Satz I.11 mit
ki =k, =kund o = id.
Indem wir dies fortsetzen, erhalten wir:

Seien k ein Korper und f € k[x] mit gradf = n > 1. Dann gibt es einen Erwei-

terungskorper K von k, so dass [K:k] < nlist, und f iiber K in Linearfaktoren
zerfdllt.

Satz11.12

Satz11.13
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Beweis. Nach Satz I1.12 gibt es einen Erweiterungskérper k; von k, in dem f eine
Nullstelle a hat. Es ist k; = k(a) und [k;: k] < n. Nun wenden wir Induktion nach
dem Grad auf g = (x — a)”!f und den Kérper k; an.

Dies fiihrt zu folgender Definition:

Zerfallungskorper. Seien k ein Korper und K eine Kérpererweiterung von k.

a) SeiF C k[x] eine Menge nicht konstanter Polynome. Wir nennen K einen
Zerfillungskorper von F, wenn jedes Polynom f € F in K[x] in Linearfak-
toren zerfillt und weiter k(W) = K ist, wobei W die Menge der Nullstellen
der Polynome von f € F ist.

b) Ein Korper K heif3t algebraisch abgeschlossen, falls es fiir jedes Polynom
f € K[x] mitgradf > 1 eina € K mit f(a) = 0 gibt.

¢) Ein algebraischer Abschluss k von k ist eine algebraische Erweiterung von
k, die algebraisch abgeschlossen ist.

Bemerkung. Q(+/2) ist ein Zerfillungskorper von F = {x? — 2}.
Cist algebraisch abgeschlossen, aber nicht der algebraische Abschluss von QQ, wie
wir gleich sehen werden.

Unser Ziel ist es, fiir jeden Korper einen algebraischen Abschluss zu konstruieren.
Dazu miissen wir aber algebraisch abgeschlossene Korper zunéchst etwas néher
betrachten.

Sei k ein Korper. Gleichwertig sind
a) k=k.
b) Istf € k[x] mit gradf > 1, so gibt es ein a € k mit f(a) = 0.

¢) Istk C K eine Korpererweiterung mit [K: k] < 0o, so ist K = k.

d) Istf e k[x] ein irreduzibles Polynom, so ist grad f = 1.

Beweis.
a) = b): Dies ist die Definition des algebraischen Abschlusses.

b) = c¢): Falls k eine Erweiterungen K von endlichem Grad hat, so sind nach
Satz I1.4 alle Elemente in K algebraisch iiber k. Es geniigt also zu zeigen, dass jedes
algebraische Element schon in k liegt. Sei dazu a algebraisch tiber k. Betrachte das
Minimalpolynom m, zu a. Nach Voraussetzung gibt es ein u € k mit m,(u) = 0.Da
m, irreduzibel ist, ist dann m, = x — u. Wegen m,(a) = O ista = u,also ista € k.

c) = d): Sei f irreduzibel, grad f = n. Anwendung von Satz II.12 liefert, dass k
einen Erweiterungskorper K besitzt, so dass [K: k] = n gilt. Nach Voraussetzung ist
K =k,alson=1.
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d) = a): Sei f ein nicht konstantes Polynom in k[x]. Wir wissen, dass f als
Produkt irreduzibler Polynome p; geschrieben werden kann, also f = p; - - - p,. Nach
Voraussetzung ist nun grad p; = 1, also ist p; = ax + b. Nun ist —a~'b eine Nullstelle
von p; in k. Dies ist auch eine Nullstelle von f in k. Damit hat jedes nicht konstante
Polynom f € k[x] eine Nullstelle in k, was per Definition liefert, dass k algebraisch
abgeschlossen ist.

Ist K ein Zerfdllungskorper aller nicht konstanten Polynome von k[x], so ist K ein
algebraischer Abschluss von k.

Beweis. Da K ein Zerfillungskorper ist, ist K algebraisch iiber k. Um zu zeigen,
dass K ein algebraischer Abschluss von k ist, geniigt es K = K zu zeigen. Dazu
wenden wir Satz II.14c) an. Sei L eine Erweiterung von K mit [L: K] < co. Dann ist
L algebraisch tiber K. Nach Folgerung I1.10 ist L auch algebraisch iiber k. Seia € L
und m, € k[x] das Minimalpolynom. Da m, € k[x] ist, zerfillt nach Annahme m,
in K[x] in Linearfaktoren, also

mg = H(x —a;)".

Dabei sind alle g; in K. Da m,(a) = 0 ist, ist a eines der a;, also ist a € K. Somit
ist jedes Element aus L in K, was L = K bedeutet. Nach Satz II.14 ist K algebraisch
abgeschlossen.

Sei k ein Korper und K eine algebraische Erweiterung von k. Ist |k| endlich, so
hat K abzdihlbar viele Elemente. Ist |k| unendlich, so haben k und K die gleiche
Miichtigkeit. Stets hat K = k unendlich viele Elemente.

Beweis. Es ist |k[x]| = |k|N, da k[x] die abzihlbare k-Basis {x' | i € N U {0}} hat.
Ist also |k| endlich, so ist |k[x]| abzéhlbar. Ist |k| unendlich, so haben k[x] und k die
gleiche Michtigkeit.

Jedes Polynom aus k[x] kann nur endlich viele Nullstellen in K haben, da die
Anzahl der Nullstellen eines Polynoms durch den Grad beschrénkt ist. Also ist die
Anzahl der Nullstellen von Polynomen aus k[x], die in K liegen, durch R |k[x]| also
|k[x]| beschridnkt. Da K algebraisch iiber k ist, ist jedes Element in K eine Nullstelle
eines Polynoms aus k[x]. Somit ist |K| durch |k[x]| beschrénkt.Ist also |k| unendlich,
so sehen wir, dass K und k die gleiche Méchtigkeit haben. Sei nun |k| endlich. Da
|k[x]| abzdhlbar ist, ist dann auch |K| abzihlbar.

Wiire |k| endlich, so betrachten wir das folgende Polynom

f=]]x-a+1

XEi(

Esistf(a) = 1fiirallea € k und somit hat f keine Nullstelle in k, ein Widerspruch.
Also hat k immer unendlich viele Elemente.

Folgerung I1.15

Lemmall.16
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Nun sieht man auch, dass Q # C ist. Nach Lemma I1.16 ist | Q| abz&hlbar (siehe
auch Folgerung I1.9), aber |C| ist iberabzéhlbar.

Wir kénnen jetzt die Existenz eines algebraischen Abschlusses des Kérpers k be-
weisen. Anschaulich ist ein algebraischer Abschluss von k so etwas wie eine grofite
algebraische Korpererweiterung von k. Es liegt also nahe, hier mit dem Zornschen
Lemma zum Erfolg zu kommen. Das Problem ist nur, dass die algebraischen Kor-
pererweiterungen von k keine Menge bilden. Also muss man vorsichtiger vorgehen.
Wir werden deshalb zunéchst eine Menge definieren, von der wir sicher sein kénnen,
dass ihre Kardinalitit gro8er als die eines potenziellen algebraischen Abschlusses ist.
Dabei hilft Lemma II.16. Dann werden wir nur alle die algebraischen Erweiterungen
betrachten, die in dieser Menge liegen. Hierauf ist das Zornsche Lemma anwendbar,
was uns dann einen algebraischen Abschluss liefern wird.

Steinitz!(1910). Jeder Kérper hat einen algebraischen Abschluss.

Beweis. Wir wihlen eine Menge S, die k enthilt und eine Kardinalitét hat, die groler
als die jeder algebraischen Erweiterung von k ist. Nach Lemma II.16 erfiillt dies z.B.
die Menge S = k U P(k) UR.

Wir betrachten alle Kérper K = (K, +x, ‘x), die die folgenden Bedingungen
erfiillen:

e Die Menge K ist eine Teilmenge von S, die k enthlt.

e Die Addition +x und Multiplikation -k auf K seien jeweils Fortsetzungen der
Addition und Multiplikation auf k. Damit ist k C K eine Korpererweiterung.

o Die Korpererweiterung k C K ist algebraisch.

Diese bilden offenbar eine Menge, die wir mit & bezeichnen wollen. Da k € & ist, ist
G nicht leer.

Als Nichstes definieren wir auf & eine Halbordnung < g durch die Festsetzung
Kl = (Kls +K15 'Kl) 56 (K2> +Kz> 'Kz) = KZ)

falls K; C K, und +,, -k, Einschrankungen von +g, bzw. -, sind, also K; C K; eine
Korpererweiterung ist.

Wir wollen zeigen, dass ein maximales Element in & der gesuchte algebraische
Abschluss ist. Die Existenz solcher Elemente wollen wir mit dem Zornschen Lemma
zeigen. Sei dazu R eine Kette in G. Wir miissen eine obere Schranke fiir R in G finden.

Setze dazu
L= U K.
Keﬁ

'Ernst Steinitz (*13.6.1871 Laurahiitte, 129.9.1928 Kiel), Studium in Breslau und Berlin, ab 1894
Privatdozent an der TH Berlin, ab 1910 Professor in Breslau, ab 1920 in Kiel. Er verfasste grundlegende
Arbeiten zur Algebra. In dem 1910 veréffentlichten Artikel Algebraische Theorie der Korper definierte
er wichtige Konzepte der Korpertheorie, wie Primkorper, transzendente Erweiterungen, perfekte Korper,
und bewies die Existenz eines algebraischen Abschlusses. Aufler seinen algebraischen Arbeiten schrieb
Steinitz auch wichtige Arbeiten iiber Polyeder.
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Dannist L C S.Sind x, y € L,so gibt es ein K € A mit x, y € K, da R total geordnet
ist. Wir definieren nun eine Addition und Multiplikation auf L durch

Xty = Xx+g)
x.L)/ = x.Ky.
Fiir Ky, K, € Rgilt stets K; <g K, oder K; <g K. Also ist x +x, y = x +g, y und

X 'k, ¥ = X -k, y. Damit ist die Definition der Addition und Multiplikation in L von
der Wahl des Korpers K unabhéngig.

In jedem Korperaxiom kommen nur endlich viele Elemente des Korpers vor,
welche dann gemeinsam in einem Korper K € £ liegen. Hier gelten aber die Axiome.
Also ist (L, 4+, -1) ein Korper.

Wir miissen jetzt noch zeigen, dass k C L algebraisch ist. Wahle dazu a € L
beliebig. Dann gibt es ein K € & mit a € K. Da K algebraisch tiber k ist, ist a
algebraisch iiber k. Also ist k C L eine algebraische Erweiterung und somit ist

Le 6.

Nach dem Lemma von Zorn gibt es nun ein maximales Element M € &. Wir zeigen,
dass M ein algebraischer Abschluss von k ist.

Zunichst ist k C M algebraisch, da M € & ist. Sei N eine Erweiterung von M
mit [N: M] = n < oo.Das Problem ist nun, dass N keine Teilmenge von S sein muss.
Wir werden versuchen, einen zu N isomorphen Kérper in & zu finden.

Nach Lemma I1.16 wissen wir, dass [N| = |k| ist, falls |k| unendlich ist, bzw. |N|
abzéhlbar ist, falls |k| endlich ist. Insbesondere ist die Kardinalitdt von S gréf3er als
die von N. Das bedeutet, dass es eine Injektion

o:N—S§
mit oy = id gibt.

Sei F=Bild 0. Wir definieren auf F eine Addition und Multiplikation, wobei wir
die Abbildung o benutzen.

x+y (o7 (x) +07())
xy o(a_l(x)o_l(y)).

Man rechnet nach, dass F dadurch ein Kérper wird. Die Definition ist gerade so
gemacht, dass o dadurch ein Isomorphismus wird, wie man sofort sieht:

o(a)o(b) a(o7 " (o(a))o™"(o(b))) = o(ab)
o(a)+o) = oo o)+ o o)) =o(a+b).

Also ist o ein Isomorphismus zwischen N und F. Da o)y = id ist, ist M C F eine
Korpererweiterung. Wir zeigen, dass diese algabraisch ist. Sei dazu a € F. Dann
ist c™'(a) € N.Da M C N algebraisch ist, gibt es ein nicht triviales Polynom
f= Z:’io a;xt € M[x] mit f(0~!(a)) = 0. Da o ein Homomorphismus ist, erhalten

wir
0= Zaio_l(a)i = Z o Ya)oWa)' = o_l(z aiai).
i=0

i=0 i=0
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Da o bijektiv ist, folgt dann f(a) = 0. Dies zeigt, dass a algebraisch iiber M ist.
Insgesamt haben wir M C M(a) C Sund M C M(a) ist algebraisch. Nach Folgerung
I1.10 ist dann auch k C M(a) algebraisch. Also haben wir M(a) € G gezeigt. Es war
aber M ein maximales Elememt in &, was dann M(a) = M und somit a € M liefert.
Somit ist F = M, was M = N zur Folge hat. Nach Satz II.14c) ist dann M algebraisch
abgeschlossen.

Als Spezialfall erhalten wir

Seien k ein Korper und F C k[x] eine Menge nicht konstanter Polynome. Dann
existiert ein Zerfdllungskorper zu F iiber k.

Beweis. Nach Satz I1.17 existiert ein algebraischer Abschluss k von k. Sei W die
Menge der Nullstellen von F in k. Dann ist k(W) C k ein Zerfallungskorper.

Wir wollen uns am Ende dieses Kapitels mit der Eindeutigkeit von Zerfallungskor-
pern beschiftigen. Hierbei wird Satz I1.11 eine wichtige Rolle spielen.

Seien ky, ky Korper und o:ky — k, ein Isomorphismus. Sei m; = Z?:o a;x ein
Polynom aus k;[x]. Setze my = o(my) € ky[x]. Wir betrachten Zerfillungskérper
K; von m; iiber k;, i = 1, 2. Dann gibt es einen Isomorphismus ®:K; — K5, der o
erweitert.

Beweis. Wir werden die Behauptung durch Induktion nach n = grad m; beweisen.
Hierbei ist Satz I1.11 der Induktionsanfang.

Seinunp = ZLO b;x' ein irreduzibler Teiler von m, in k, [x]. Wir setzen g = o (p).
Dann ist g|m,.

Es enthélt K; einen Zerfillungskérper von p und K, einen von q. Also gibt es eine
Nullstelle u; von p in K; und eine Nullstelle u, von ¢q in K;. Nach Satz II.11 gibt es
eine Fortsetzung 7 von o

ik (u1) = ka(uz)

mit
(1) = uy.

Da u; auch eine Nullstelle von m; ist, gilt
n—1
my = (x—uy) Y cix' € ky(up)[x].
i=0
Da u, = 1(u;) auch eine Nullstelle von m;, ist, gilt

n—1
my = (x — 1)) D 1(ci)x’ € ky(up)[x].

i=0
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Wir setzen g = Z;:Ol cixt und g = 1(g1). Damit sind dann m; = (x — u;)g; und
my = (x — up)g,. Dann ist K; Zerfallungskorper von g; iiber k;(u;), i = 1, 2. Weiter
ist grad g; < n.Nun liefert die Induktion angewandt auf g; und g, eine Fortsetzung
0:K; = K, vonr.

k-isomorph. Seien k, K;, und K, Kérper mit k C Kj, i = 1, 2. Wir nennen K;
und K, k-isomorph, falls es einen Isomorphismus o: K; — K, mit oy = id gibt.

Seien k ein Korper und f € k[x] mit f nicht konstant. Sind K,, K, Zerfillungskor-
per von f iiber k, so sind sie k-isomorph.

Beweis. Setzein SatzI1.19k = ky = kp,f = my und 0 = id.

Seien ki, k, Korper und o:ky — k; ein Isomorphismus. Sei weiter F, eine Menge
nicht konstanter Polynome aus ki [x]. Setze F, = {o(f)|f € F1} C kz[x]. Sei K ein
Zerfillungskorper von Fy iiber ky und entsprechend K, ein Zerfdllungskérper von
F, iiber k,. Dann gibt es einen Isomorphismus ¢: K — K, der eine Erweiterung
von o ist.

Beweis. Wir betrachten die Korper, die zwischen k; und K liegen, zusammen mit
allen Einbettungen in K;, die Erweiterungen von o sind, also die Menge

S = {(ka, da)lk1 C ko C Ki, ko Korpererweiterung von ki, ¢o: ko — K;
ein Monomorphismus mit @q, = o}.

Insbesondere ist (k;, 0) € &. Somit ist & # &. Wir definieren nun auf & eine
Halbordnung durch

(kUh ¢a) S (kﬂ9 ¢ﬂ)9

falls ko, C kg und ¢gx, = ¢ ist. Wenn wir ¢, und ¢z als Teilmengen von K; x K,
betrachten, so bedeutet dies ¢, C 5.

Wir wollen zeigen, dass & maximale Elemente besitzt. Sei dazu £ eine Kette in &.
Dann definieren wir (k, ) durch

k:Ukas T=U¢a,

(ka-9a)eR (ka-9a)eR
wobei wir wieder ¢, als Teilmenge von K; x K, auffassen.

Es ist offenbar (k, 1) € &. Damit hat & eine obere Schranke in &. Nach dem
Lemma von Zorn gibt es ein maximales Element (k, ®) € G.

Wir wollen kg = K; und ©(K;) = K, zeigen. Sei dazu zunichst K; # k. Wegen
der minimalen Eigenschaft von K; als Zerféallungskorper ist dann ko nicht Zerfil-
lungskorper von F;. Also gibt es ein f; € Fy, so dass nicht alle Nullstellen von f; in kg
liegen. Sei W die Menge der Nullstellen von f; in K;. Setze L; = ko(W). Dann ist L,
ein Zerfillungskorper von f; iiber k.

Definition

Folgerung 11.20

SatzIl.21
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Setze f, = ©(f1).Da Oy, = o ist,ist O(f;) = o(f;) € F,. Dann gibt es mit gleicher
Konstruktion wie vorher in K, einen Zerfallungskorper L, von f, tiber ® (ko). Nach
Satz I1.19 gibt es eine Erweiterung ®; von © mit ®,:L; — L,.Also ist

(k09 G)) < (Ll, @1) e 6.

Da ko # L, ist, widerspricht dies der Maximalitit von (ko, ©). Also ist kg = K;.Dann
ist ®(K;) ein Zerfallungskorper von

{©NIf € i} ={o(f)If € F1} = F.
Nach Definition des Zerfillungskorpers ist ©(K;) = K;.

Folgerung Il.22 a) Seien Ky, K, algebraische Abschliisse von k. Dann gibt es einen Isomorphis-

mus ©:K; — K, mit ©(a) = afiirallea € k.

b) Sei F eine Menge nicht konstanter Polynome in k[x]. Dann sind alle Zer-
fallungskorper von F k-isomorph.

Beweis. Nach FolgerungII.15 geniigt es, b) zu beweisen. Das ist aber die Aussage von
SatzI1.21 mitk = k; = k,, F = Fyund o = id.

Beispiel
a) Seif = (x* — 7)(x* + x + 2) € Q[x]. In C berechnen wir

f= (x—\/7)(x+\/7)(x_ -1 +2i\/7)(x_ -1 —21'\/7).

Also ist Q(+/7, —1—21\/7) = Q(/7, i) ein Zerfillungskorper von f in C.

b) Sei f = (x? — 2x — 6)(x*> + 1) € Q[x]. Die Nullstellen von f in C sind
14 /7, +i. Also ist wieder Q(+/7, i) ein Zerfillungskorper von f in C.
c¢) Seinunf =x*+x+ 1 € GF(2)[x]. Um den Zerfillungskdrper zu bestim-

men, steht nun eine Einbettung in den bekannten Koérper C nicht mehr
zur Verfligung.

Es ist f(0) = 1 = f(1). Damit hat f zunichst einmal keine Nullstelle in
GF(2).Da f den Grad zwei hat, ist dann f irreduzibel.

Sei nun a eine Nullstelle von f in GF(2). Dann ist a* = 1 + a. Einsetzen in
f liefert
(x+1)P2+a+1+1=0.

Also ist auch a + 1 eine Nullstelle von f. Das heifit, GF(2)(«) ist ein Zer-
fallungskorper.

Esist [GF(2)(a): GF(2)] = 2 nach Satz I1.12. Somit ist |GF(2)(«)| = 4. Das
heiflt, GF(2)(a) = {0, 1, a, 1 + a} ist ein Korper mit 4 Elementen.

d

~

Seif e K[x] ein nichtkonstantes Polynom.Wirkénnen f auch als Polynom
aus K[x] auffassen. Hier zerféllt f in Linearfaktoren. Es gibt ein einfaches
Verfahren, in K[x] festzustellen, ob f in K[x] mehrfache Nullstellen hat.



Il Korper

Seif = (x—a)’g € K[x]undf = > aix’ € K[x].Setzef' = > " iax'.

Dann gelten fiir f’ die iiblichen Regeln von Ableitungen. Siehe hierzu auch
das Beispiel am Ende von Kapitel I. Insbesondere gilt: Sind h, r € K[x], so
ist

(hr) =HWr+hr'.

Dies wenden wir nun auf unser f an.
f'=2(x—a)g+ (x—a)g.

Also ist x — a ein Teiler von f’ in K[x]. Das heifit, ggT (f, f') # 1 in K[x].
Ist ggT (f, f') = 1in K[x], so gibt es nach Satz 1.16 a, b € K[x] mit

af +bf = 1.

Dies ist aber auch eine Gleichung in K [x], was dann ggT (f, f’) = 1 in K[x]
liefern wiirde.

Ist .
f=]]G-a)eKix
i=1

mit paarweise verschiedenen a;, so ist

f= ZH(x—a).

=1 i=1
J#

Wire (x — a;) ein Teiler von f fiir ein j, so wiirde (x — a;) auch [T (x—a:)
i

teilen, ein Widerspruch, da alle a; verschieden sind. Also ist ggT (f, f') = 1,
falls f nur einfache Nullstellen in K hat.

Es geniigt also, den ggT (f, f’) in K[x] zu berechnen. Wir fassen zusammen:

Seif € K[x]. Satz11.23
a) Es hat f mehrfache Nullstellen in K[x) genau dann, wenn ggT (f, ') # 1
ist.

b) Istf irreduzibel, so ist entweder f' = 0 oder ggT (f, f') = 1.

Beweis.
a) steht im Teil d) des vorhergehenden Beispiels.

b) Da f irreduzibel ist, ist ggT (f’, f) = f oder 1.Ist ggT (f', f) = f,so ist f ein
Teiler von f’. Da grad f’ < grad f ist,ist dann f’ = 0.



Il Korper

Ubungsaufgaben

II.1
1.2

11.3

11.4

IL.5

1.6

11.7

11.8

Betrachte Q(+/2) und Q(+/3) als Teilkérper von C. Zeige, dass sie nicht isomorph sind.

Bestimme folgende Kérpergrade der Teilkdrper von C

a) [QW15):Ql.
b) [Q(V2,v3,47):Ql.
9 [Q(v2++/3):Ql.
Sei K C L eine Korpererweiterung mit [L: K] = 2. Zeige:
a) Ista e L\ K,soistL = K(a).

b) Istchar K # 2, s0 gibt es ein a € L, so dass m, = x* — a fiir ein geeignetes a € K
gilt.

c) Istchar K =2,und gibtes ein a € L\ K, so dass m, # x* + a fiir irgendein a € K
ist, so gibt es ein a mit m, = x? + x + a fiir ein geeignetes a € K.

Seif = x> + px + q € Q[x].In C habe f die Nullstellen a;, a5, a3. Setze

@ = (o - )@ - @)y — )

a) Bestimme d als Funktion von p und q.
b) SeiL ein Zerfillungskorper von x*> — 4x — 1 iiber Q. Zeige [L: Q] = 6.
Seif = x* + x* + 1 € K[x]. Bestimme einen Zerfillungskdrper von f iiber K fiir
a) K=Q.
b) K = GF(2).
Sei k C K eine Korpererweiterung mit [K: k] = p, p eine Primzahl. Zeige:
a) Ista e K\ k,soist K = k(a).

b) Seif € k[x] mit grad f = p.Gibteseina € K \ k mit f(a) = 0,so ist f irreduzibel
tiber k.

Sei K C L eine Korpererweiterung und f ein irreduzibles Polynom aus K[x] vom Grad
n.Ist [L: K] endlich und n teilerfremd zu [L: K], so ist f auch in L[x] irreduzibel.

Es ist bekannt, dass e und 7 beide transzendent sind. Folgere daraus, dass nicht beide
e+ m und e - m algebraisch sein konnen. (Es ist allerdings eine offene Frage, ob einer,
und wenn ja, wer von beiden, e + 7 oder e - 7 algebraisch ist!)



Endliche Korper

In diesem Kapitel wollen wir uns mit einer speziellen Klasse von Kérpern, den end-
lichen Korpern, beschiftigen. Davon kennen wir bisher GF(p) = Z/pZ, p Primzahl.
Weiter hatten wir am Ende von Kapitel II (siehe Seite 48) einen Kérper mit vier
Elementen konstruiert. Wir wollen zunéchst alle endlichen Korper angeben.

Endliche Korper spielen in vielen Bereichen eine Rolle, so z.B. in der Informatik.
Eine besonders wichtige Rolle spielen sie aber in der Codierungstheorie. Einzelheiten
hierzu kann man in Willems (2008, [32]) aus der gleichen Lehrbuchreihe finden. Aber
auch wir haben endliche Korper bereits auf Seite 27 angewandt, um die Irreduzibiltdt
eines Polynoms mit ganzzahligen Koeffizienten zu entscheiden.

Das erste Lemma sagt, dass es Kérper nicht zu jeder Ordnung gibt. So gibt es z.B.
keinen Kérper mit genau 6 Elementen.

Sei K ein Korper, |K| < oco. Dann gibt es eine Primzahl p mit |K| = p/ fiir ein
geeignetes f € N.

Beweis. Sei k der Primkérper. Nach Satz I1.2 ist k = GF(p) fiir eine Primzahl p. Es
ist [K: k] = f fiir ein f. Das heif3t, K ist ein f-dimensionaler Vektorraum {iber GF(p)
und somit ist |K| = p’

Wir wollen nun umgekehrt zeigen, dass es fiir jede Primzahlpotenz p/ bis auf Iso-
morphie genau einen endlichen Kérper K mit |[K| = p/ gibt. Dazu benstigen wir ein
wenig Gruppentheorie.

Lagrange'. Sei G eine endliche Gruppe und U eine Untergruppe von G. Dann ist
[U1{1GI.

Beweis. Seig € G. Setze
gU = {gu|u € U}.

1Ioseph-Louis Lagrange (*25.1.1736 Turin, 110.4. 1813 Paris), Professor in Turin, Berlin und Paris.
Lagrange verfasste grundlegende Arbeiten zur Variationsrechnung, Zahlentheorie und Differentialrech-
nung. Er gilt als Begriinder der analytischen Mechanik.

G. Stroth, Elementare Algebra und Zablentheorie
© Springer Basel AG 2012
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Definition

Lemmalll.3

Il Endliche Korper
Seien g, h € G, mit gU N hU # @.Wihle x € gU N hU.Dann ist x = gu; = hu, mit
uy, U € U geeignet. Somit ist

h=guu,' €gU.

Seinun u € U beliebig, so ist

hu e gU,
also ist

hU C gU.
Genauso erhilt man auch

gU C hU.

Somit ist stets gU = hU oder gU N hU = &. Weiter ist G = (J . §U. Damit gibt es
r,...,1r € Gmitr;UNrU = @ fiir i # jund

t
G= U r,-U.
i=1

Da die Multiplikation mit Gruppenelementen eine bijektive Abbildung ist,haben wir
lnUl=|U|, i=1,...,¢t
Das liefert
t
IGl = > InU| = t|U].
i=0

Die Menge gU aus dem Beweis von Satz II1.2 spielt in vielen Zusammenhidngen eine
wichtige Rolle. Wir wollen ihr einen Namen geben.

Nebenklassenvertretersystem. Seien G eine Gruppe, U eine Untergruppe von G
undg € G.Dannnennen wir die Menge gU = {gu|u € U} eine Rechtsnebenklasse
von U in G. Sei R eine Teilmenge von G mit nU Nr,U = @ fiirry, 1, € R, # 12
und G = |J,.; U, so nennen wir R ein Rechtsnebenklassenvertretersystem von
U in G. Entsprechendes gilt fiir Linksnebenklassen Ug.

Seien G eine Gruppe und g € G. Sei n € N minimal mit g" = 1. Ist m € N mit
g™ = 1, so ist n ein Teiler von m.

Bemerkung. Ist # wie in Lemma IIL.3, so sagen wir, dass g die Ordnung # hat, und
schreiben o(g) = n.

Beweis. Wir teilen m durch n mit Rest,also m = xn + r mit0 < r < n.Nun gilt
1 =gm — (gH)XgT —

Dar < nistund n minimal war, ist r = 0, d.h., n teilt m.



Il Endliche Korper

Sei G eine endliche abelsche Gruppe und seien a, b € G.
a) Sind o(a) und o(b) teilerfremd, so ist o(ab) = o(a)o(b).

b) Sei(a, b) die kleinste Untergruppe von G, die a und b enthdlt. Dann gibt es
eind € (a, b) mit o(d) = kgV (o(a), o(b)).

Beweis.

a) Es ist
(ab)v(ﬂ)v(b) — (av(ﬂ))o(b)(bO(b))v(ﬂ) =1.

Nach Lemma IIL.3 ist dann

m = o(ab)|o(a)o(b).

Es ist
a”b” = (ab)™ = 1.
Somit ist
1= (am)o(a) — (b—m)o(a)
also

b =1,

Nach Lemma II1.3 ist o(b) ein Teiler von mo(a). Da ggT (o(a), o(b)) = 1 ist, ist
o(b) ein Teiler von m.

Genauso gilt auch
o(a) ist ein Teiler von m.

Dann ist
o(a)o(b) ein Teiler von m.

Insgesamt erhalten wir

o(a)o(b) = o(ab).

b) Seien
o(@) =p}" - py - pif und o(b) = py' -+ plr gyt - g
die Primfaktorzerlegungen von o(a) bzw. o(b), wobei py, ..., p, die gemeinsamen

Primteiler seien. Dabei wollen wir die Anordnung noch so wihlen, dass fiir ein w
und1 < i < wstetsa; > b; und fir w +1 < i < r stets b; > a; sei. Wir betrachten
die zwei natiirlichen Zahlen x = []/_,,, p* und y = [, p’'. Dann setzen wir

d1=a", dzzby.

Es ist o(dy) = pi' - plpii - pi* und o(dy) = pyst -+ pUrgyyy -+ q%. Wir sehen
nun, dass ggT (o(d;), o(dy)) = 1 ist. Mit a) erhalten wir

o(did;) = o(d1)o(d,) = kgV (o(a), o(b)) und d = did, € (a, b).

Lemmallll.4



Lemma lll.5

Satz l1l.6

Il Endliche Korper

Seien G eine Gruppe und a € G. Seiweitero(a) = t < co.Dannist{1,a,...,a" '}
eine Untergruppe von G, die wir mit (a) bezeichnen. Es ist |{a)| = t. Ist |G| < oo,
so ist o(a) ein Teiler von |G].

Beweis. Offenbar ist (a) # @. Seien a’ und & Elemente aus (a). Dann ist
ald = a.
Seii+j=xt+rmit0 <r <t-1.Dannist
aiaj — axt+r — (at)xar =a € <a)

t—i

Seia' mit0 < i < t ein Element von (a). Dann ist auch a'~* € (a) und

i t—i

Also ist (a) eine Untergruppe. Da o(a) = t ist, sind alle Elemente in (a) paarweise
verschieden, also |{a)| = t.

Ist |G| < 00, s0 ist o(a) ein Teiler von |G| nach dem Satz von Lagrange IIL.2.

Nun kénnen wir die angekiindigte Klassifikation beweisen.

Zu jeder Primzahlpotenz q = p’ gibt es bis auf Isomorphie genau einen Korper K
mit |K| = q.

Beweis. Sei K ein Korper mit |K| = . Dann hat die multiplikative Gruppe K* von K
die Ordnung g — 1. Sei a € K* und o(a) = t. Nach Lemma IIL5 ist ¢ ein Teiler von
q —1.Insbesondere ist dann a9~! = 1 fiir alle a € K*. Somit ist dann sogar a? = a fiir
alle a € K. Damit ist jedes Element aus K Nullstelle des Polynoms x9 — x. Also ist K
im Zerfallungskorper F von x — x iiber GF(p) enthalten. Es hat x? — x nach Satz 1.27
hochstens g Nullstellen. Also enthélt K alle Nullstellen, was K = F liefert.

Sei jetzt umgekehrt F der Zerfallungskorper von f = x7 —x iiber GF(p).Sind a, b
Nullstellen von f, so gilt
al=a, b1=0b.

Nach Lemma IL.3 ist (a + b)? = aP + bP,da char F = p ist. Also ist auch
(ab)l=aibM=ab und (a+b)i=al+bl=a+b.

Somit bilden die Nullstellen von f einen Kérper. Wir wollen nun zeigen, dass f genau

q verschiedene Nullstellen hat.

Esist (x4 — x)' = gx9' — 1 = —1, also ggT (x7 — x, (x9 — x)') = 1. Nach Satz I.23
hat f = x7 — x genau q paarweise verschiedene Nullstellen und damit ist |F| = q.

Wir haben gezeigt, dass es einen Kérper mit q Elementen gibt, und jeder solche ist
ein Zerfillungskérper von x?—x. Die Eindeutigkeit folgt nun mit Folgerung I1.22.



Il Endliche Korper

Wir wollen jetzt noch zeigen, dass es in einem endlichen Korper K mit |[K| = g
stets ein Element a gibt, so dass o(a) = q — 1 ist. Eine Gruppe G, die wie in Lemma
III.5 aus den Potenzen eines einzelnen Elements besteht, nennen wir zyklisch. Wir
wollen also zeigen, dass die multiplikative Gruppe eines endlichen Korpers zyklisch
ist. Wir zeigen etwas mehr.

Jede endliche Untergruppe der multiplikativen Gruppe eines Korpers ist zyklisch.

Beweis. Seien K ein Korper und G eine endliche Untergruppe von K*. Setze t =
kgV (o(a)la € G).Sei a € G beliebig. Dann ist o(a) ein Teiler von ¢. Also ist a’ = 1
fiir alle Elemente a von G. Somit sind alle Elemente von G Nullstellen von x' — 1.
Es hat aber x’ — 1 hochstens ¢ verschiedene Nullstellen, was |G| < t liefert. Mit

Lemma III.4b) erhalten wir, dass G ein Element a der Ordnung ¢ enthélt. Somit ist
G={1,a,a% ...,a"""},dh. zyklisch.

Als Anwendung sehen wir, dass endliche Erweiterungen endlicher Korper stets
einfach sind, d.h., von einem Element erzeugt werden.

Ist K eine endliche Erweiterung eines endlichen Korpers k, so wird K iiber k von
einem Element erzeugt, d.h., es gibt ein a € K mit K = k(a).

Beweis. Es ist [K:k] = n < oo. Also ist |K| = |k|* < oo. Die Anwendung von
Satz II1.7 liefert die Existenz eines Elementes a € K mit (a) = K*. Insbesondere ist
dann K = k(a).

Ubungsaufgaben

IIL.1  Seien K ein endlicher Korper mit |[K| = p/, p Primzahl, und L ein Teilkérper von K mit
|L| = p'. Zeige, dass f von ¢ geteilt wird.

III.2  Gib einen Kérper mit 27 Elementen an.

II.3 Sei g = p/ eine Primzahlpotenz, K ein endlicher Kérper mit |[K| = g und k sein
Primkorper. Zeige:

a) Sind K; und K, Teilkdrper von K mit |K;| = |K;|,so ist K; = K.

b) x?—x € k[x] ist das Produkt aller normierten irreduziblen Polynome in k[x],
deren Grad f teilt.

III.4 Sei K = GF(2) der Korper mit zwei Elementen. Seien py, p,, ¢ € K[x] Polynome mit
p=x"+x*+L,p=x'+x+1lundg=x>+x+1.
a) Zeige, dass q das einzige irreduzible Polynom vom Grad zwei iiber K ist.
b) Zeige, dass beide Polynome p;, p, iiber K irreduzibel sind.

c) Seipi(a) =0=py(a) fiira;, a; € K, wobei K ein algebraischer Abschluss von
K ist. Zeige, dass K(a;) und K () isomorph sind.

Satz .7

Lemmallll.8



Primzahlen

Wir kehren nun wieder zur Arithmetik zuriick. In diesem Kapitel wollen wir uns
den ganzen Zahlen Z widmen. Da sich jede ganze Zahl als Produkt von Primzahlen
schreiben ldsst, wollen wir auf diese ein Hauptaugenmerk lenken. Primzahlen sind
iblicherweise Primelemente p mit p > 0. Zunéchst ein Klassiker:

Es gibt unendlich viele Primzahlen.

Beweis. Euklid. Seien py, ..., p, simtliche Primzahlen. Da 2 eine Primzahl ist, ist
r > 1.Betrachte n = 1+ p; - - - p,. Es ist n keine Einheit,da n > 1 ist. Also gibt es eine
Primzahl p, die n teilt. Dann ist p # p;, - - - , pr, da p nicht 1 teilt. Somit erhalten wir
einen Widerspruch dazu, dass p;, - - - , p, die simtlichen Primzahlen sind.

Wir wollen noch einen weiteren Beweis geben.
Sei {pili € I},I C N, die Menge aller Primzahlen. Betrachte die Reihe
1
o pi

Wir zeigen, dass diese Reihe divergiert. Diese Aussage wurde zuerst von Euler ge-
macht. Der hier gegebene Beweis der Divergenz stammt von Paul Erdos [7]. Dann gibt
es insbesondere unendlich viele Primzahlen. Angenommen, die Reihe konvergiert.
Sei

1
a, =

L
die n-te Partialsumme. Die Konvergenz liefert ein k mit
a;—ay <1/2 firalle i>k+1.
Also gilt fiir beliebiges N € N
N(a; —ax) < N/2.

Sei nun N; die Anzahl der natiirlichen Zahlen n < N, die nur durch die Primzahlen
p1, - .., Pk teilbar sind, und sei N}, die Anzahl der restlichen n < N. Also

Ny + N; = N.

G. Stroth, Elementare Algebra und Zahlentheorie
© Springer Basel AG 2012

Satz V.1



LemmalV.2

IV Primzahlen

Es ist | g | die Anzahl der natiirlichen Zahlen n < N, die durch p; teilbar sind. Ist
pi > N,soist ng = 0. Also gibt es ein r mit

Ny < > {NJ SNZ;' = N(a, - ax) < N/2.

i=k+1 £ i=k+1

Betrachte n < N.Es ist
n=qns>, qnquadratfrei.

Also ist g, ein Produkt von paarweise verschiedenen Primzahlen.

Sei nun n nur durch Primzahlen aus {pi, ..., px} teilbar. Dann gibt es fiir g,
maximal 2¥ Méglichkeiten. Es ist weiter

Sy < \/ n < \/ N.
Also gibt es hochstens v/N Moglichkeiten fiir s,. Das liefert
N, < 25VN.

Setze nun N = 2%*2 Dann ist /N = 2K*! und

N < 22k+1 _ N
< =
Damit haben wir
N N
N=Ny,+N; < _+ =N,
2 2
ein Widerspruch. Also konvergiert >, _; Pl nicht.

Es ist offen, ob es unendlich viele Primzahlzwillinge, also Primzahlen im Abstand
zwei wie 5,7 oder 11,13 gibt. Sei PP, die Menge der Primzahlzwillinge. Immerhin hat
Brun! 1919 gezeigt, dass ZpePz 11) konvergiert, so dass ein dhnlicher Beweis wie eben
nicht existiert. Der Wert der Summe wird die Brunsche Konstante B genannt. Er liegt
bei 1, 902160583104......

Wir wollen uns nun die Verteilung der Primzahlen ansehen. Wenn man sich die
ersten 1000 Zahlen ansieht, so erhdlt man die Vorstellung, dass pro hundert Zahlen
zwischen 20 und 25 davon Primzahlen sind. Es gilt aber:

Es gibt beliebig lange Primzahlliicken, d.h., fiir vorgegebenes n gibt es n aufein-
ander folgende Zahlen, die keine Primzahlen sind.

Beweis. Sei n € N. Dann gibt es zwischen (n + 1)! + 2 und (n + 1)! + (n + 1) keine
Primzahlen.

1Viggo Brun (*13.10.1885 Lier, 115.8.1978 Drobak), norwegischer Mathematiker, Professor an den
Universitdten Trondheim und Oslo. Brun arbeitete iiber Primzahlzwillinge und die Goldbach-Vermutung.



IV Primzahlen

Andererseits gibt es zwischen n und 2n immer eine Primzahl, wie wir jetzt in
einer Folge von Lemmata zeigen wollen.

Fiirallex € R, x > 2, gilt

H p < 4.

P Primzahl
p=x

Beweis. Es geniigt, x ungerade und x € N zu betrachten. Also x = 2m + 1, m € N.
Ist x = 3,50 ist 2 -3 < 4%, Also kénnen wir x > 3 annehmen. Setze k = m fiir m
ungerade und k = m + 1 fiir m gerade.

Seik < p < x.Dann ist p ein Teiler von x!, aber p teilt nicht k!. Ist m ungerade, so
istm > 3.Esist weiter x —k = k+ 1 gerade. Da p > k ist,ist p kein Teiler von (x — k)!.
Ist m gerade, so ist x — k = k — 1 gerade. Also ist stets

p kein Teiler von (x — k)!,

x! X
[P in = (k)

k<p<x

was

liefert. Nun gilt

2x=(1+1)x=§(’;) > (i)+(xfk)=2(i).

Beachte, dass k ungerade und (x — k) gerade ist. Somit sind (}) und (") zwei
verschiedene Summanden. Also ist

x
xS .
(k)
Eine Induktion liefert nun

Hp =Hp H p< 4k2x—1 — 22k+x—1 < 22% — 4%

p=<x p<k k<p<x

Sein € Nundn = ap+a,p+---+a,p" mit0 < a; < p—1.Setze S,(n) = ap+- - -+a,.

Sei n! = p"™)t, wobei p kein Teiler von t sei. Dann ist
n—Sy(n
ep(n!) = i ).
p—-1

Beweis. Von den n Faktoren in n! enthalten genau LZJ den Faktor p, von diesen dann
L p"zj den Faktor p? usw. Also ist

ep(nt) = 2L
i=1

LemmalV.3

LemmalV.4



IV Primzahlen
Isti > r,so0 ist L;J =0.Fir0 <i < rist

n _ r—i—1 r—i
Lpij—al-+u,-+1p+~--+ar_1p +a,p'".

Also ist
ep(n!) = ay + app + asp*+ -+ + a,p’”!
tay, +azp+---+ap
+a; +---+ap’
+a,
=a+ap+)+a(pP+p+ 1)+ +a, (P +p T+ 1)
-1 21 31 -1
=L11p +a2p +a3p +~--+a,p
p-1 p-1 p-1 p-1
_(agt+apt---+ap)—(a+a+---+a) n-S5n)
- p-1 S op-1
Lemma IV.5 Sein € Nundn =ag+a1p+---+a,p’, mit 0 < a; < p— 1. Sei weiter

Spy(n) =ag+ay+---+a,. Ist

2 2n
( n) = peP((")) t, wobei p kein Teiler von t sei,
n

50 istpe"((z"n)) < 2nund

2n\\ _ 2S,(n) —Sp(2n)
«(()) -7

Beweis. Nach Lemma IV.4 gilt

((Zn)) ((Zn)!) 2n = S,(2n) (n - Sp(n)> 28,(n) — Sp(2n)
€ = ¢ = -2 = :
n (n!)? p-1 p-1 p-1
Sei nun

2n=by+bip+...+b,p",0<b;<p-1.

Sei v die Anzahl der Zifferniibertragungen, die bei der Addition von n + n = 2n
auftreten. Es ist v < u. Jede Zifferniibertragung tragt hochstens den Wert p — 1 bei.



IV Primzahlen

Also
25,(n) = S,(2n) <v(p-1) < u(p —1).

Alsoist e,((*")) < u.Das liefert p%(Ci)) < p¥ < 2n.

Jetzt konnen wir das angekiindigte Resultat beweisen.

Bertrand-Postulat®. Fiir jedes n > 1 existiert eine Primzahl p mitn < p < 2n.

Beweis. Erdos’. Sei zunichst n < 128. Setze
pi=2,3,57,13,23,43,83,163,i =1, ..., 10.

Dann ist stets p; < 2p;_;. Also erhilt jedes Intervall n < y < 2n eine dieser Prim-
zahlen.

Sei ab jetzt n > 128. Wir nehmen weiter an, dass es fiir ein n keine Primzahl p
zwischen n und 2#n gibt. Dann ist

2n e znn
(n) [T (.

p=n

Sei zunichst p eine Primzahl mit gn <p<nDanmistn=p+ay,0<a <p-1.
Also ist Sp(n) = 1+ ag und S,(2n) = 2 + 2ay, da 2n = 2p + 2a, und 2n < 3p, also
2ay < pist. Also ist

25,(n) = S,(2n).

Nach Lemma IV.5 ist dann e, ((2:)) = 0, d.h,, ein solches p kommt in der Primfak-
torzerlegung von (Zn") nicht vor.

Betrachte nun Primzahlen p mit v/2n < p < gn. Dann ist n = a;p + g mit
1<a; <bund0 < ay < p.Bsist

2n = 2a1p + 2ay < p*.

Es kann somit bei der Addition #n + n hochstens eine Zifferniibertragung auftreten.
Also ist
25,(n) = §,(2n) < p-—1.

()

2]oseph L.E. Bertrand (*11.3.1822, 15.4.1900, beides Paris), Professor an der Ecole Polytechnique
und am Collége de France, war 26 Jahre Sekretdr der Akademie der Wissenschaften. Bertand arbeitete
in Zahlentheorie, Differentialgeometrie, Wahrscheinlichkeitrechnung, Okonomie und Thermodynamik.
Das Postulat wurde von ihm vermutet, aber erst 1850 von Chebyshev bewiesen. Er ist berithmt fiir das
Bertrand-Paradox in der Wahrscheinlichkeitstheorie.

3Paul Erdés, *26.3.1913 Budapest, 120.9.1996 Warschau, ist fiir seine brillianten Beweise und seine
scheinbar unlgsbaren Probeme, fiir die er Preisgelder aussetzte, bekannt. Sein Hauptarbeitsgebiet war die
Zahlentheorie. Er war einer der kreativsten Mathematiker des letzten Jahrhunderts. Sein Werk umfasst
mehr als 1500 Arbeiten mit mehr als 450 Koautoren. Paul Erdés wurde mit vielen Preisen ausgezeichnet
unter anderem dem Cole Preis und dem Wolf Preis. Paul Erdds promovierte im Alter von 19 Jahren mit
einem Beweis von Bertrand’s Postulat [8], auf den sich der hier gegebene bezieht. Eine schone Biographie
findet man in “The man, who loved only numbers” [12].

Mit Lemma IV.5 erhalten wir

SatzIv.6



IV Primzahlen

Diese Primzahlen kommen also héchstens mit der Vielfacheit 1 in der Primfaktor-
zerlegung von (Zn”) vor.

Sei zuletzt p eine Primzahl mit p < +/2n. Nach Lemma IV.5 ist e, ((*")) < 2n.
Also ist
(211) - H 5 H
n :
a )= p
p<+/2n Van<p<in

Im ersten Produkt kommen hdchstens 5\/ 2n Faktoren vor, da 1 und die geraden

Zahlen # 2 keine Primzahlen sind. Da n > 128 ist, ist »/2n > 16. Dann sind auch 9
und 15 keine Primzahlen, also kommen weniger als ix/ 2n — 1 viele Faktoren vor.

Nach Lemma IV.3 ist

Hp <43,

p<in

2 1 2
( Tl) < (2;1)2\/2”_143”.
n

Esist (1+1)2 =3 () < 2n(*"). Das liefert 22" < 2n(*"). Also ist

i

Also ist

o L V2n-1,42%n
< (2n)2 4>
n

und dann
231 < (2m)2 V2

und 5 )
3nlogZ < 2\/Zrzloan

oder anders ausgedriickt

4
" log2 —3log2n < 0bzw.+/8nlog2 — 3log2n < 0.
\/Zn
Wir betrachten die Abbildung
f:x — +/8xlog2 - 3log 2x.
Es ist
1
f(x) = («/2x10g2—3) >0, fiirx>128 wund
x
f(128) = 32]log 2 — 24log 2 = 8log2 > 0.

Somit erhalten wir
f(x) >0, furalle x> 128,

ein Widerspruch zu +/8nlog 2 — 3log 2n < 0. Somit gibt es zwischen n und 27 eine
Primzahl.

Eine offene Frage ist, ob es stets eine Primzahl zwischen n? und (n + 1)? gibt.



IV Primzahlen

Trotz all dieser Resultate sind die Primzahlen doch nicht ganz wild verteilt. 1792
hat C.E Gauf3 den folgenden Satz vermutet:

Primzahlsatz. Sei(x) die Anzahl der Primzahlen kleiner gleich x. Dann ist 1 (x)
asymptotisch gleich * , d.h.

Inx’

m(x)

lim =1.

X—00 (l;fx)

Dieser Satz wurde erst 1896 von Hadamard* und unabhingig auch von de la Vallée-
Poussin® bewiesen. Der Beweis benutzt analytische Hilfsmittel, die den Rahmen
dieses Buches sprengen wiirden.

Eine weitere, immer wieder gestellte Frage ist die nach einer Primzahlformel. Es
fragt sich zunichst, welche Art Formel man meint. Stellt man sich die Primzahlen
D1, P2, - . . in einer Reihenfolge, z.B. der Gr6f3e nach, geordnet vor, so ist

f(n) = p, (die n-te Primzahl)

sicherlich eine Formel. Man kann auch zeigen, dass die folgende Reihe konvergiert

(siehe [11] Satz 419):
> pal0 =a
n=1

Dann ist
n n-1 n-1
pn = [10"a] — 10*" [10*" a].

Diese Formel ist allerdings zur Berechnung von p,, ziemlich nutzlos.

Wie sieht es aber aus, wenn wir uns auf Polynome beschrinken? Betrachten wir
erst einmal Formeln der Form

f(n)=an+b.
Damit f(n) Primzahlen darstellt, sollte zumindest ggT (a, b) = 1 sein. Sei fiir ein n
an+b=p
eine Primzahl. Setze ny = n+ kp, k=0, 1, ---.Dann ist

ani +b

a(n+kp) +b=an+ b+ akp = (ak + 1)p.

4Jacques S. Hadamard (*8.12.1865 Versailles, 117.10.1963 Paris), arbeitete zunichst als Lehrer, promo-
vierte iiber Taylorreihen, wurde 1896 Professor fiir Astronomie und Mechanik in Bordeaux und wechselte
1897 an die Sorbonne. Hadamard war in die Dreyfus-Affire verstrickt, dessen Schwager er war. Er wurde
1906 Prisident der Société Mathématique de France, 1912 Professor fiir Analysis an der Ecole Polytech-
nique (Nachfolge Camille Jordan). Er war Mitglied der Akademie der Wissenschaften. Hadamard schrieb
bahnbrechende Arbeiten im Bereich der partiellen Differentialgleichungen und Geodésie. Er arbeitete
auf den Gebieten der Optik, Hydrodynamik und Grenzwertprobleme.

5Charles de la Vallée-Poussin (*14.8.1866 Lowen, 12.3.1962 Briissel), Professor in Lowen, Harvard,
Paris und Genf. Er arbeitete iiber Differentialgleichungen, Funktionentheorie und Potentialtheorie.

SatzIV.7
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SatzIV.9

SatzIV.10

IV Primzahlen

Somit kann an + b niemals nur Primzahlen darstellen. Immerhin konnen so aber
unendlich viele Primzahlen dargestellt werden.

a) Die Folge 4n + 3, n € N, enthdlt unendlich viele Primzahlen.
b) Die Folge 8n =+ 3, n € N, enthilt unendlich viele Primzahlen.

Beweis. Wir beweisen a) und b) gleichzeitig. Seien py, . . ., p, sémtliche Primzahlen,
die durch 4n + 3 bzw. 8n & 3 dargestellt werden kénnen. Es gibt solche Primzahlen,
z.B.7,11, 5. Wir verfahren nun dhnlich wie in Satz IV.1.Ist x € N ungerade, so ist

8|x? — 1.
Also ist
8lpt -+ py — 1.
Setzex =pi-----p*—2ina)undx =p}----- p:—4inb).
Fiir alle i gilt:

pi teilt nicht x.
Also ist jede Primzahl, die x teilt, von der Form 4n + 1 in a) bzw.8n = 1in b). Da
(4n; +1)(dn, +1) =4m+1 bzw. 8n; =1)(8n, £1)=8m =+ 1
ist,ist also in a) x = 4¢ + 1 bzw.in b) x = 8¢ + 1 fiir geeignetes t.

Es war aber 8 ein Teiler von p? ---p? — 1,d.h., 8 teilt x + 1 = 4¢ + 2 in a) bzw.
x + 3 = 8t + 4 oder 8¢ + 2 in b), was offenbar nicht méglich ist.

Lemma IV.8 ist nur ein Spezialfall eines allgemeinen Satzes.

Dirichlet®. Ist ggT (a, b) = 1, so enthiilt die Folge an + b, n € N, unendlich viele
Primzahlen.

Auch die Bemerkung, dass an + b nicht nur Primzahlen darstellen kann, gilt allge-
meiner.

Sei f ein Polynom. Ist n € N mit f(n) = p, p eine Primzahl, so ist p|f (n + kp) fiir
allek € N.

Beweis. Seif(n) = > |_ a;n'. Dann ist
r r
fn+kp)=> ain+kp)' = > ain' +tp.
i=0 i=0
%Johann Peter Gustave Lejeune Dirichlet (*13.2.1805 Diiren, 15.5.1859 Gottingen), Professor in Berlin

und Géttingen, dort Nachfolger von Gauf. Hauptarbeitsgebiete waren partielle Differentialgleichungen,
Zahlentheorie und Integraltheorie.



IV Primzahlen

Euler hat festgestellt, dass n? + n + 41 fiir —40 < n < 39 immer eine Primzahl
ist, also fiir 80 aufeinander folgende Werte prim ist. Dies ist bisher der Rekord fiir
quadratische Polynome. Natiirlich kann man mittels Interpolation bei gentigend
groflem Grad erreichen, dass fiir beliebig viele aufeinander folgende n ein Polynom
f mit f(n) prim existiert.

Ein dhnlicher Satz wie IV.9 fiir Polynome hoheren Grades ist nicht bekannt. Es
ist z.B. offen, ob es unendlich viele Primzahlen der Form n? + 1 gibt.

Vielleicht gibt es ja Polynome, die nur Primzahlen darstellen. Diese sind dann
notwendigerweise in mehreren Variablen. Es sind allerdings keine einfachen Polyno-
me bekannt. Im Rahmen der Lésung des 10. Hilbert-Problems hat Matijassewitsch
(1970, [17]) ein Polynom in 26 Variablen angegeben. Falls bei einer Belegung der
Variablen der Wert dieses Polynoms positiv ist, so ist er immer eine Primzahl.

In Kapitel I Seite 12 hatten wir uns die Ringe Z/mZ angesehen. Wir wollen jetzt
in diesen ein wenig rechnen. Zur Vereinfachung der Sprechweise fithren wir die
folgende Notation ein. Seien a, b € Z, m € N, so schreibe

a = b(mod m) (in Worten: a kongruent b modulo m),

falls
a+ mZ = b+ mZ ist, oder anders ausgedriickt m teilt a — b.

Wie man schnell sieht, kann mit den Kongruenzen fast wie mit Gleichungen gerech-
net werden.

Seiena, b, c,d € Z, m € N. Dann gilt
a) Ist a = b(mod m), so auch b = a(mod m).
b) Ista = b(mod m) und ¢ = d(mod m), so ista + ¢ = b + d(mod m).

¢) Ist a = b(mod m) und ¢ = d(mod m), so ist ac = bd(mod m).

Beweis. a) und b) sind klar.

c) Esistac—bd = (a—b)c+ b(c — d). Da m sowohl a — b also auch ¢ — d teilt, gilt
m teilt ac — bd.

Allerdings ist im Allgemeinen nicht richtig, dass aus ca = cb(mod m) stets
a = b (mod m) folgt. Es ist 6 = 2(mod 4), aber nicht 3 = 1(mod 4).

Wir wissen, dass Z/mZ kein Korper ist, falls m keine Primzahl ist. Also gibt es
nicht invertierbare Elemente. Wir kénnen kiirzen, falls ¢ + mZ eine Einheit in Z/mZ
ist. Dies ist richtig, falls ggT (c, m) = 1ist. Dann ist ndmlich cx+my = 1 fiir geeignete
X,y € Z,also (c + mZ)(x + mZ) + (my + mZ) = 1 + mZ, d.h.

(c+mZ)(x + mZ) = 1 + mZ.
Somit haben wir:

Seien a, b, c € Z, m € N und ggT (c, m) = 1. Dann folgt aus ac = bc (mod m)
stets a = b(mod m).

Lemma V.11

Lemma V.12



SatzIV.13

SatzIV.14
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Wilson’. Sei p eine Primzahl. Dann ist

(p — 1)! = —1(mod p).

Beweis. Esist Z/pZ ein Korper nach LemmaI.13 und Satz I.15. Also gibt es zu jedem
l<x<p-leinl <y <p-1mit

xy = 1(mod p).

Istx = y,s0ist x> = 1(mod p). D.h.p teilt x> — 1 = (x — 1)(x + 1).

Da p eine Primzahl ist, ist p ein Teiler von x — 1 oder x + 1. Somit ist x = 1(mod p)
oder es ist x = —1 = p — 1(mod p). Fiir alle anderen x ist x # y. Damit ist (p — 1)! =
p—1=-1(modp).

Ist iibrigens p > 2 keine Primzahl, so ist ggT (p, (p — 1)!) # 1. Da aber stets
ggT (-1,p) = list,istdann (p — 1)! £ —1(mod p).

Dennoch eignet sich der Satz von Wilson nicht,um zu zeigen, dass p eine Primzahl
ist. Besser steht es da schon um den folgenden Satz:

Fermat®. Sei p eine Primzahl und a € N mit ggT (a, p) = 1. Dann ist

a’™! = 1(mod p).

Beweis. Wir betrachten a = a + pZ gls Element in Z/pZ.. Nach Lemma IIL5 ist o(a)
ein Teiler von p — 1. Also ist @’~! = 1,was (a + pZ)P~! = 1 + pZ liefert. Dann ist

a' +pZ =1+pZ

also
a*™! = 1(mod p).

Was passiert, wenn p keine Primzahl ist?
Seiz.B.p = 6 und a = 5. Dann ist ggT (p, a) = 1.
Aber es gilt

5=52.52.5=1-1-5=5=—1(mod6).

7John Wilson (*6.8.1741 Applethwaite, 118.10. 1793, Kendal), britischer Mathematiker. Waring verof-
fentlichte den Satz 1770 als Satz von Wilson, aber ohne Beweis. Der erste Beweis wurde 1773 von Lagrange
gegeben.

8Pierre de Fermat (*20.8.1601 Beaumont-de-Lomagne, 112.1.1665 Castres), Jurist und Mathematiker,
war Mitglied des obersten Gerichtshofs in Toulouse. Fermat beschiftigte sich mit Mathematik nur als
Hobby. Er lieferte wesentliche Beitridge zur Geometrie, Analysis und Wahrscheinlichkeitstheorie. Bertithmt
sind seine Beitrdge zur Zahlentheorie und hier insbesondere der ,,Groe Fermatsche Satz®. Die Versuche,
diesen Satz zu beweisen, fithrten zur Entwicklung der algebraischen Zahlentheorie. SchliefSlich wurde der
Satz 1995 von A. Wiles bewiesen.
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Das Einsetzen kleiner Zahlen zeigt, dass es fiir zusammengesetzte Zahlen # stets ein
amit ggT (n, a) = 1 gibt, so dass a"~! # 1(mod n) ist. Zahlen n mit a"! = 1(mod n)
fiir alle a mit ggT (a, n) = 1 wollen wir Carmichaelzahlen® nennen. Die Frage ist nun:

Sind Carmichaelzahlen prim?

Sein = py---p,, alle p; verschiedene ungerade Primzahlen. Ist p; — 1|n — 1 fiir
alle i, so ist n eine Carmichaelzahl.

Beweis. Wir halten i fest. Dann ist n — 1 = (p; — 1)r. Sei a € N mit ggT (a, n) = 1.
Nach dem Satz von Fermat IV.14 ist p; ein Teiler von a?~! — 1. Also ist

a"! = a®7r = (@P71 =17 = 1(mod p;).
Dann ist p; ein Teiler von a”~! — 1 fiir alle i. Also ist
n=p;---p, einTeilervon a"'-1

und dann
a"! = 1(mod n).

Damit haben wir ein Verfahren, wie wir Carmichaelzahlen finden kdnnen. Es gilt
aber auch noch:

Sei n eine ungerade Carmichaelzahl und n nicht prim. Dann ist n = py -+ py,
wobei alle p; prim und paarweise verschieden sind. Weiter ist p; — 1 ein Teiler von
n—1lundr > 3.

Um dieses Lemma beweisen zu konnen, benétigen wir allerdings noch mehr Resul-
tate iiber Kongruenzen, die wir im Folgenden entwickeln wollen.

Immerhin kénnen wir nun mit Lemma IV.15 und Lemma IV.16 die kleinste Car-
michaelzahl » finden, die keine Primzahl ist. Sie muss durch mindestens drei ver-
schiedene Primzahlen p;, p, und p; teilbar sein. Weiter muss p; — 1,7 = 1, 2, 3, stets
n — 1 teilen. Dies liefert schnell n = 561. Somit gibt es Carmichaelzahlen, die nicht
prim sind. Da der Satz von Fermat fiir Primzahltests eine zentrale Bedeutung hat,
hoffte man, dass es nur endlich viele Carmichaelzahlen gibt. Dies ist aber falsch, wie
W.R. Alford, A. Granville und C. Pomerance (1994, [2]) zeigen konnten. Jeder Prim-
zahltest, der auf dem Satz von Fermat beruht, muss irgendwie die Carmichaelzahlen
umgehen.

Wir wollen nun zunichst den Satz von Fermat verallgemeinern.

Eulerfunktion. Sei n € N. Mit ¢(n) bezeichne die Anzahl der Einheiten in
Z/nZ.Wir nennen ¢ die Eulerfunktion.

“Robert D. Carmichael (*1.3.1879 Goodwater, Alabahma, 11967), amerikanischer Mathematiker, Pro-
fessor an der University of Illinois. Seine Arbeitsgebiete waren Zahlentheorie und Relativititstheorie.

Lemma IV.15

Lemma V.16

Definition
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Es ist ¢(n) auch die Anzahl der x € Nmit 1 < x < n,so dass ggT (x, n) = 1 ist.

Sei ggT (x, n) = 1. Dann gibt es a, b € Z mit ax + bn = 1, also
(a+nZ)(x +nZ) =1+ nZ,

was besagt, dass x + nZ eine Einheit ist.

Ist umgekehrt x + nZ eine Einheit, so gibt es ein a + nZ mit
(a+nZ)(x +nZ) =1+ nZ,
also

ax +nz =1+ nZ.

Dann ist ggT (x, n) = 1.

Euler'®. Seien a, n € N. Ist ggT (a, n) = 1, so ist

a®"™ = 1(mod n).

Beweis. Wir folgen dem Beweis von Lemma IV.14. Nach der Vorbemerkung ist a+ nZ
eine Einheit in Z/nZ. Also folgt, dass o(a + nZ) die Ordnung der Einheitengruppe
von Z/nZ teilt. Dies liefert

(a+nZ)°"™ =1+nZ

und dann
a?"™ = 1(mod n).

Wie kann man ¢(n) berechnen?

Es ist ¢(1) = 1.Ist p eine Primzahl, so ist ¢ (p) = p — 1. Was ist ¢(p“)? Es hat p
und auch jedes Vielfache von p einen nicht trivialen Teiler mit p* und dies sind auch
genau alle solche Zahlen. Davon gibt es p®~! viele zwischen 1 und p®. Also ist

(P(Pﬂ) - pa _pa—l - pa—l(p _ 1).

Wire p(p?q®) = ¢ (p*)@(qP®) fiir verschiedene Primzahlen p und g, so hitten wir eine
Formel fiir ¢ (n). Genau das wollen wir jetzt beweisen. Dazu beweisen wir zunéchst
einen Satz, der auch von unabhéngiger Bedeutung ist.

107 eonhard Euler (*15.4.1707 Basel, 118.9.1783 St. Petersburg), Professor in Berlin und St. Petersburg,
bedeutendster Mathematiker des 18. Jahrhunderts, lieferte auf fast allen damals zur Mathematik geho-
renden Gebieten grundlegende Beitrige. Er publizierte iiber 500 Arbeiten und ca. 350 tauchten noch nach
seinem Tode auf. Bedeutend waren nicht nur seine erzielten Sdtze, sondern auch seine Fahigkeit, die ihm
bekannte Mathematik zu vereinheitlichen und zu systematisieren.
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Chinesischer Restsatz!'. Seien my, ..., my paarweise teilerfremde natiirliche
Zahlen und, a,, . . ., ax ganze Zahlen. Dann hat
x=ag;(modm;),i=1,...,k (x)

eine Losung x € Z.

Beweis. Es gibt eine Losung x = a;(mod m;), ndmlich x = a,. Alle Lésungen dieser
Kongruenz sind von der Form a; + ym; mit y beliebig.

Nun betrachten wir das System
ymy = a; —ay(modm;),i=2,...,k. (%)

Da ggT (m;, m;) = 1fiirallei = 2,..., k ist, gibt es t; mit m;t; = 1(mod m;). Wir
betrachten jetzt

y=ymt; = (a; —a))ti(mod m;),i=2,..., k. (k% %)

Per Induktion nach k gibt es eine Losung y von (x x ). Wegen (%x) ist dann a; + ymy,
eine Losung des Systems (*).

Sind a, b teilerfremd, so ist ¢(ab) = ¢(a)@(b).

Beweis. Wir betrachten die Menge
E={(x, )1 <x<a,1<y<b,ggl(x,a)#1oderggT(y,b)#1}.

Es ist
|E| = ab — ¢ (a)¢(b).
Wir wollen nun E noch auf eine andere Art abzahlen. Dabei wird der Wert ¢ (ab)

eingehen, was uns dann die Formel liefert. Sei 1 < ¢t < ab mit ggT (¢, ab) # 1. Dann
ist ggT (t, a) # 1 oder ggT (¢, b) # 1.

Seit; der Restvont moduloa, 1 < t; < a,undr; dervontmodulob,1 < r; < b.
Also

t = t;(mod a)
t = ri(mod b).

Dabei ist ggT (#1, a) # 1 oder ggT (r1, b) # 1. Also ist (#;, r;) € E. Somit kénnen wir
jedem t,1 < t < ab mit ggT (¢, ab) # 1 ein (t;, ;) € E zuordnen. Wir zeigen, dass
diese Zuordnung injektiv ist.

UDer Chinesische Restsatz wurde von den Chinesen im 13. Jahrhundert zur Berechnung der Plane-
tenbahnen benutzt. Es wurde hierbei allerdings angenommen, dass sich die Planeten auf Kreisbahnen
bewegen.

Lemma V.18

Lemma V.19



Folgerung

IV Primzahlen

Seien 1 < t,f < ab, ggT (t,ab) # 1 und ggT (t,ab) # 1.Seit — (t;,r;) und
t — (t;, 7). Dann sind a und b Teiler von ¢ — 7. Da ggT (a, b) = 1 ist, ist auch ab ein
Teiler von t —t.Dat, ? < ab sind, ist t = . Damit ist die Zuordnung injektiv. Also ist

(1) |E| > ab — ¢(ab).
Seinun (x, y) € E.Nach dem Chinesischen Restsatz IV.18 gibt es ein #; € Z mit

t; = x(mod a)
f; = y(mod b).

Betrachte t mitt; = t(mod ab)und1 < t < ab.DaggT (x, a) # 1 oder ggT (y, b) # 1
ist, ist ggT (t;, a) # 1 oder ggT (t;, b) # 1. Also ist ggT (¢, ab) # 1. Somit ist (x, y)
eint,1 <t < abmit ggT (¢, ab) # 1 zugeordnet. Wir zeigen, dass diese Zuordnung
injektiv ist.

Sei dazu (%, y) € E mit

t; = xX(mod a)
t; = y(mod b).

Dann teilt a sowohl X — ¢; als auch x — t;, also auch x — X. Genauso ist b ein Teiler

vony—-y.Dal <x,X <aundl < y,y < bist,ist dann x = X und y = y. Also ist
die Zuordnung injektiv und damit

2) |E| < ab— ¢@(ab).
Das liefert |E| = ab — ¢ (ab). Da wir bereits |E| = ab — ¢(a)¢@(b) gezeigt haben, folgt
@(ab) = ¢(a)e(b).

Eine Konsequenz ist nun:

Sein = p{'...p% die Primfaktorzerlegung von n. Dann ist

o) = ]p" " (pi-1).
i=1

Der Satz von Euler spielt in der Kryptographie eine wichtige Rolle. Die tragende Idee
ist, eine Art der Verschliisselung zu benutzen, die von der Methode her bekannt ist,
aber in der Praxis kaum von Unberechtigten entschliisselt werden kann.

Hier ist die Idee eines solchen Systems. Jeder Nutzer A, B, ... hat einen indivi-
duellen Schliissel fa, f5, . . .. Diese Schliissel werden allen Nutzern bekannt gegeben.
Zum Entschliisseln benétigt man die inverse Funktion g4 = f;',gs = f5',.... Die
Sicherheit des Systems ist dann gegeben, wenn g, selbst unter Kenntnis von f4 nur
sehr schwer berechenbar ist. Die Nachrichteniibertragung geht nun wie folgt vor:
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Wir nehmen an, dass A eine Nachricht N an B senden mdchte. Hierzu benutzt er den
oOffentlich zugédnglichen Schliissel fz und sendet

fe(N).
B wendet auf diese Nachricht, die er empfingt, seinen Schliissel gg an und erhalt
gs(fs(N)) = N.

Eine Variante hiervon ist die elektronische Unterschrift. Wie kann B sicher sein,
dass die Nachricht N wirklich von A gekommen ist? Dazu wahlt A die folgende
Variante. Er wendet zunéchst g4 auf N an und berechnet dann wie oben

fa(ga(N)).

Der Empfinger B wendet gg hierauf an, was g4(N) ergibt. Da er eine Nachricht von
A erwartet, wendet er nun das 6ffentlich bekannte f4 an und erhélt N.

Es sind also solche Funktionen f4 gesucht, fiir die g4 nur mit groflem Aufwand
berechenbar ist. Eine mogliche Funktion ist die Eulerfunktion ¢(n).

Seien p, q zwei verschiedene Primzahlen. Bilde
n=pq.
Es ist
enm)=p-1)(g-1)=n-p—q+1.

Kennt man p und g, so kann man also leicht ¢ (n) berechnen. Sind umgekehrt #» und
¢(n) gegeben, so kénnen p und q leicht bestimmt werden.

n=pq,p+q=n—¢@n)+1.
Also sind p, g Losungen der quadratischen Gleichung
t*—(n—g@(n)+ 1)t +n.

Die Berechnung von ¢(n) direkt aus 7 ist also genauso schwierig wie die Bestim-
mung der Primteiler p und g. Solange wir davon ausgehen konnen, dass die Prim-
faktorzerlegung schwierig ist, ist auch die Berechnung der Eulerfunktion schwierig.
Eine systematische Behandlung dieser Fragen findet man, wie erwéhnt, in Willems
(2008, [32]).

a) Wir wollen zeigen, dass es keine ganzzahligen Losungen x, y von
x* +y* = 1203
gibt. Seien also x und y solche. Wir rechnen modulo 4. Es ist
x* +y* = 3(mod 4).

Fiir jede ganze Zahl gilt x> = 0, 1(mod 4). Also ist x> +y* = 0, 1, 2(mod 4).
Das heifit, es gibt keine ganzzahlige Losung von

x* + y* = 1203.

Beispiel



Beispiel

IV Primzahlen

b)

c)

d)

Was sind die letzten beiden Ziffern von 312342

Wir rechnen jetzt modulo 100. Es ist ¢(100) = ¢(2%-5%) = 2.5 -4 = 40.
Also ist nach dem Satz IV.17 von Euler

3% = 1(mod 100).
Esist 1234 = 30 - 40 + 34. Also 3%* = 3**(mod 100). Es ist

34 = 81 (mod100)
32 = 81-81 = 61 (mod100)
30 = 9.61 = 49 (mod100)
30 = 49.49 = 1 (mod100).

Somit ist
3123 = 311 = 49. 81 = 69(mod 100).

Die beiden letzten Ziffern sind also 69.
Seine Nyn=ag+a;-10+...a; - 10% die Dezimaldarstellung, also
0<a;<9,i=0,...,k.
Da 10 = 1(mod 3) ist, ist
n=ay+---+ ax(mod 3).
Somitist 3 genau dann ein Teiler von n,wenn 3 die Quersumme ag +- - - +ax
teilt. Da auch 10 = 1(mod 9) ist, gilt dies fiir 9 entsprechend.
Da 10 = —-1(mod 11), 100 = 1(mod 11) ist, gilt: 11 teilt n genau dann,

wenn 11 die alternierende Quersumme ag — a; + g, - - - (—1)¥ay teilt.

Es gibt offenbar zwei aufeinander folgende Zahlen, die einen quadrati-
schen Faktor haben: 8,9. Es gibt auch drei aufeinander folgende Zahlen:
48, 49, 50. Wie ist dies mit 100000 aufeinander folgenden? Wir betrachten
dazu die ersten 100000 Primzahlen p;, . .., p1ooo0o- Nun losen wir mit dem
Chinesischen Restsatz IV.18

= —i(mod p?),i=1,..., 100000.
Die gesuchten Zahlen sind:

x+1,x+2,...,x+ 100000.

Wir kommen nun zum
Beweis von Satz IV.16: Sei p eine Primzahl, so dass n von p* geteilt wird. Zunéchst

eine Vorbetrachtung.

Esist

LA
(1+p) =Z(i)P’.

i=0

Ist i verschieden von 0 und p, so ist p ein Teiler von (£). Also ist

i

(1+p)’ =1+ pP = 1(mod p?).



IV Primzahlen

Sei
(1+py = l(modpz) fireinl <y <p.

Da ggT (y, p) = 1ist,gibt es nach Satz .16 a, b € Z mit 1 = ap + by. Also ist
p+1=(p+ D)%Y = (p+1)p+1Y" = 1(mod p?).
Aber p? teilt nicht p, ein Widerspruch. Also ist o(1 + p) = p in Z/p*Z.

Nach SatzIIL.7 gibtes in Z /pZ ein Element g,dessen Potenzen genau die Elemente
in (Z/pZ)* sind, d.h., (Z/pZ)* ist zyklisch. Also gibt es ein g € N mit

g’™! = 1(mod p),

aber
g # l(modp) firl <x <p-1.

Da g und p + 1 teilerfremd zu p? sind, ist nach dem Satz IV.17 von Euler

(g(p+ 1)) = (g(p+1))#?) = 1(mod p*).

Sei y die Ordnung von g modulo p?. Dann ist g = 1(modp?), also auch
g = 1 (modp). Da g modulo p die Ordnung p — 1 hat, ist nach Lemma IIL.3
p — 1 ein Teiler von y. Weiter ist auch y ein Teiler von ¢(p*). Damit ist o(g) = p — 1
oder o(g) = ¢(p?). Betrachte g”. Es ist g = g(mod p). Also ist p — 1 ein Teiler der
Ordnung von g modulo p*. Wir kénnen o(g) = p — 1 annehmen, indem wir notfalls
g durch g” ersetzen. Nun folgt aber mit Lemma I11.4 o((p + 1)g) = ¢ (p?).

Setze h = (p + 1)g. Dann ist mit x = ¢ (p?)
I* # 1(mod p?) fiiralle 1 < x < ¢(p?). (%)
Sein = p*-rmitggT (p, r) = 1und a > 1.Nach dem Chinesischen Restsatz IV.18 hat

b = h(mod p*) (+)
b= 1(modr)
eine Losung b € Z.
Seil < x < ¢(p*). Dann ist b* = h*(mod p?) und somit b* % 1(mod p?)
nach (x). Somit hat b + p?Z die Ordnung ¢(p?) in der Einheitengruppe von Z/p*Z.

Da ggT (h, p) = 1ist,ist auch ggT (b, p) = 1. Also ist ggT (b, n) = 1,da wegen (+)
ggT (r, b) = 1 ist. Mit diesem b gilt nun die Formel fiir die Carmichaelzahl n

b" ! = 1(mod n).

Dann ist insbesondere
b"! = 1(mod p?).

Also ist ¢ (p?) ein Teiler von n — 1. Aber p teilt stets ¢ (p*). Da p ein Teiler von n war,
kann p nicht gleichzeitig auch n — 1 teilen.

Dieser Widerspruch zeigt, dass Carmichaelzahlen quadratfrei sind.

Wir zeigen nun, dass, falls p ein Teiler von n ist, stets n — 1 von p — 1 geteilt wird.



IV Primzahlen

Sei g wie eben. Nach dem Chinesischen Restsatz IV.18 gibt es ein b € Z mit

b = g(mod p)
b=1(mod ).
p

Wie eben folgt ggT (b, n) = 1. Also ist

b ! = 1(mod n)

und dann auch
bl = 1(mod p).

Da aber die Ordnung von g und b modulo p gleich sind, folgt ¢ (p) = p — 1|n — 1.
Schliefllich bleibt noch zu zeigen, dass r, die Anzahl der Primteiler von n, min-

destens 3 ist. Sei dazu n = pgq. Wir kénnen p > g annehmen. Es ist, wie wir gerade
gezeigt haben, p — 1 ein Teiler von n — 1. Nun ist

p-Up-D@-D-n-1)=@P-D@E-1)-(pq-1)=-p-1)-(q-1).

Dann ist aber p — 1 ein Teiler von g — 1, was p > g widerspricht.

Ubungsaufgaben

IV.1 Bestimme alle n € N,so dass 2! + 28 + 2" = m? fiir ein m € N gilt.
IV.2 Seien A und B disjunkte nicht leere Mengen von Primzahlen. Setze

a=Hp und b=Hp.

peA peB

Dann wird a + b von einer Primzahl geteilt, die nicht in A U B liegt. Insbesondere zeigt
dies, dass es unendlich viele Primzahlen gibt. Kann man das gleiche Resultat auch mit
a — b erreichen?

IV.3 Fiir m, n € Nsetze B, , = m(n+1) — (n! + 1) und

fommy =" (B, ~ 01 - (B, — 1) +2,

Zeige, dass f (m, n) immer eine Primzahl ist, dass jede Primzahl vorkommt und dass jede
Primzahl ungleich 2 genau einmal vorkommt.

IV.4 Ist p eine Primzahl, so ist jeder Primteiler von 2# — 1 grof3er als p.
IV.5 Seip > 5 eine Primzahl. Dann ist p* — 1 durch 240 teilbar.

IV.6 Bestimmefiiri = 0, 2, 3 und 4 jeweils das kleinste x; € N,so dass die Gleichung ¢ (n) = x;
genau i Losungen 7 hat!?.

IV.7 Die Gleichung ¢(n?) = k? ist aufler fiir ¢ (1) = 1 nicht l&sbar.
IV.8 Seit = ¢(5*"), n € N. Zeige, dass 2/**" in der Dezimaldarstellung mindestens n aufein-

ander folgende Nullen hat.

2Der Fall i = 1 ist offen. Die Vermutung ist, dass ¢(n) = x entweder keine oder mindestens zwei
Losungen hat.



V.9
IV.10

IV.11

V.12

IV Primzahlen

Sei p eine Primzahl, so dass 2p+ 1 keine Primzahl ist. Dann hat ¢ (x) = 2p keine Losung x.

a) Bestimme die letzten zwei Ziffern von 2100000,
b) Auf welche Ziffer endet die Dezimaldarstellung von 22" + 1, firn > 1?

c) Wie lauten die beiden letzten Ziffern der Dezimaldarstellung von 3%%° — 2%9°?

a) Welchen Rest hat 41 bei Division durch 7?

b) Welchen Rest hat 9! bei Division durch 10, und 10! bei Division durch 11, und 11! bei
Division durch 12?2

c) Sei n + 1 keine Primzahl. Was ist der Rest von n! bei Division durch n + 12
Bestimme alle x € Z, die das folgende System von simultanen Kongruenzen 16sen
x = 7 (mod8)

x = 2 (mod?9)
x = —1 (mod 5).



Gruppen

In diesem Kapitel beschéftigen wir uns mit einem zentralen Begriff der Algebra: den
Gruppen. In den danach folgenden zwei Kapiteln werden wir an zwei Beispielen das
Zusammenspiel der Begriffe ,,Gruppe“ und ,, Kérper sehen. Wir setzen Kenntnisse
der Gruppentheorie voraus, wie sie in einer Vorlesung iiber Lineare Algebra iibli-
cherweise vermittelt werden. Weiter sind unsere Gruppen, wenn nicht ausdriicklich
anders gesagt, stets endlich.

Index. Sei G eine Gruppe, U eine Untergruppe. Die Anzahl der Nebenklassen Definition
(siehe Seite 52) gU von U in G wird mit |G: U| bezeichnet und Index von U in G
genannt.

Im Satz II1.2 von Lagrange, hatten wir gesehen, dass |G| = |U||G: U] ist.
Das Analogon zum Gradsatz ist
1. Kiirzungssatz. Seien G eine Gruppe und U eine Untergruppe von G. Ist weiter Satz V.1
V eine Untergruppe von U, so gilt
|G: V| =|G:U||U: V|.

Beweis. Esist |G: V]| = Ilgll’ |G:U| = Ilgll und |U: V| = llgll nach Satz II1.2.

Wir wollen nun nicht nur Elemente, sondern auch Teilmengen in einer Gruppe
multiplizieren. Dazu definieren wir:

Multiplikation. Seien A, B C G. Setze Definition
AB = {abla € A, b € B}.

Die Frage ist, ob AB eine Untergruppe von G ist. Dies ist im Allgemeinen nicht so.
Selbst wenn A und B Untergruppen von G sind, muss AB keine Untergruppe sein. Sei
dazu G die Menge der bijektiven Abbildungen von {1, 2, 3}. Sei

fil> 1,253,352

g$1—-2,2-1,3->3

G. Stroth, Elementare Algebra und Zahlentheorie
© Springer Basel AG 2012



LemmaV.2

LemmaV.3

V Gruppen

und A = {id,f}, B = {id, g}. Dann sind A und B Untergruppen von G. Es ist
AB={id, fg.f, g}

Dabei ist

fg:1—3,3-52,2->1.
gf =(fe)™:1 —> 2,2 3,3 1, aber (fg)' ¢ AB.

Also ist AB keine Untergruppe von G.

Der néchste Satz gibt uns ein Kriterium, wann genau AB eine Untergruppe ist.

Sind A, B Untergruppen von G, so ist AB genau dann eine Untergruppe von G,
wenn AB = BA ist.

Beweis. Dal-1 € ABist,ist AB # &.Sei AB = BA. Weiter seia € A und b € B, also
ab € AB.Wir haben
(ab)'=bla! € BA = AB.

Also ist AB gegen Inversenbildung abgeschlossen.

Wir zeigen nun, dass AB auch gegen Multiplikation abgeschlossen ist. Seien dazu
a;b;, € AB und ayb, € AB. Dann ist a;byayb, = a;(bya;)b,. Da BA = AB ist, ist
bia, = a3;b; mit geeigneten a; € A, b; € B.

Das liefert
aibiay by = (aya3)(bsb,) € AB.

Somit ist AB gegen Multiplikation abgeschlossen und dann eine Untergruppe.

Fiir die andere Richtung sei AB eine Untergruppe von G. Wir wéhlen ab € AB
beliebig. Da AB eine Gruppe ist, ist (ab)™! € AB. Damit gilt b™'a™ = a;b;, mit
geeigneten a, € A, b, € B,also ab = (a;b;)™! = b;'a;' € BA. Damitist AB C BA.

Seinun b € B, a € A. Dann sind
b=1-beAB und a=a-1¢€AB.
Da AB nach Voraussetzung eine Untergruppe ist, ist auch
ba=(1-b)(a-1) € AB.

Also ist BA C AB.

Auch wenn AB keine Untergruppe ist, kdnnen wir dennoch die Anzahl der Ele-
mente in AB bestimmen, was haufig sehr niitzlich ist.

Seien A, B Untergruppen von G. Dann gilt
|AlBI

|AB| = .
|A N B



V Gruppen

Beweis. Sei

Jr@anB) =4

reR

die Nebenklassenzerlegung nach den Nebenklassen von A N Bin A. Also RB C AB.

Seix = ab € AB,a € A, b € B, ein beliebiges Element. Es gibt ein r € R mit
a € r(AN B).Damitista = ry,y € AN B < B. Insgesamt haben wir

x =ab = r(yb) € rB.

Das liefert

AB =U 7B.

reR

Wir wollen zeigen, dass dies eine disjunkte Zerlegung ist. Seien dazu r;, 7, € R und
r1BNr,B # &. Dann ist

rby = b, fiir geeignete by, b, € B.

Also ist

r,'r =bb' € ANB.
Das liefert

T"l(A N B) = rz(A N B)
und dann

T =1,
da die r; in einem Nebenklassenvertretersystem von A N B in A sind. Also ist die

Zerlegung disjunkt.

Da die Multiplikation mit Gruppenelementen eine bijektive Abbildung ist, ist
|rB| = |B|. Damit erhalten wir

|AB| =>_ |rB| = |R||B| = |A:AN B||B| = AIIBI
(32) |AN B

reR

Wie in der Theorie der Vektorrdume konnen wir auch bei Gruppen Faktorstrukturen
einfithren.

Normalteiler, Faktorgruppe. Sei G eine Gruppe und N < G.

a) Gilt fir alle g € G stets gN = Ng, so nennen wir N einen Normalteiler
von G. Wir schreiben dann N < G.

b) Sei N ein Normalteiler von G. Setze G/N = {gN|g € G}. Wir definieren
auf G/N eine Verkniipfung o durch

(81N) o (&2N) = (g1N)(g2N) = (g182)N.
Wir nennen G/N die Faktorgruppe von G nach N.

Definition



SatzV.4

SatzV.5

V Gruppen

In der Tat ist G/N eine Gruppe, wie man leicht nachrechnet. Das einzige Be-
merkenswerte ist, dass die Verkniipfung wohldefiniert ist. Es ist mit der eingangs
definierten Multiplikation von Mengen

SaNgN = {g1n1g2”2|n1, n, € N}.
Da N J Gist,ist m;g, = g mit geeignetem 71; € N. Also ist

SGINGN = {gigpnim|hy, ny € N} = (g182)N.

Dies zeigt auch, dass die Eigenschaft, Normalteiler zu sein, notwendig ist, damit
die Menge {gN|g € G} mit der Multiplikation von Mengen eine Gruppe ist. Wir
konnen auf diese Weise nicht eine Faktorgruppe fiir beliebige Untergruppen N de-
finieren. Dies wird keine Gruppe sein. Bei Vektorrdumen werden in der Linearen
Algebra fiir beliebige Unterrdume Faktorraume definiert. Dass dies moglich ist, liegt
daran, dass die additive Gruppe eines Vektorraumes abelsch ist, also jede Untergrup-
pe ein Normalteiler ist.

Sei G eine Gruppe, N { G. Dann ist
|G/N| =|G:N|

Beweis. Dies folgt aus der Definition von G/N.

Die Menge der Normalteiler verhilt sich besser als die Menge der Untergruppen.
Sie ist nicht nur gegen Durchschnittsbildung, sondern auch gegen Multiplikation
abgeschlossen, wie der nichste Satz zeigt:

Sei G eine Gruppe. Dann gilt:
a) SindN; <G,i€l,soist (| N;<G.
iel
b) IstNAGund U < G,soist NNU < U und NU ist eine Untergruppe von G.
¢) Sind Ny, N, < G, so ist NyN, < G.

Beweis.
a) Sein €[ N;, g € G. Dann haben wir
iel
g 'ng eN;, firalle i
Dies liefert
g 'ng e[| Ni.

iel

() s=s(1)

Damit ist ] N; ein Normalteiler.
iel

also



V Gruppen

b) Sei u € U. Wir zeigen u(U N N) = (U N N)u. Sei dazu n € U N N. Dann
ist un = n'u mit geeignetem n’ € N. Nun ist ' = unu™' € UNN, d.h.
u(UNN)=(UNN)u.Alsoist UNN < U.

Da uN = Nu fiir alle u € U ist,ist UN = NU. Nach Lemma V.2 ist damit UN
eine Untergruppe von G.

¢) Nachb) ist NN, eine Untergruppe von G. Sei g € G. Dann ist
g(N1Nz) = (Ni1g)N; = (N1N,)g,
also ist N; N, ein Normalteiler.

Der nichste Satz ist fundamental fiir die Konstruktion von Normalteilern.

Seien G, H Gruppen und f: G — H ein Homomorphismus. Dann ist
kerf:={x|x € G, f(x) =1}

ein Normalteiler von G.

Beweis. Daf(1) = list,istkerf # &.Sind a, b € ker f, so ist
flab™) = f(@f (b7") = f(a)f ()" = 1.

Alsoistab™ € ker f und damit ist ker f eine Untergruppe von G.Seien nun x € ker f
und g € G. Dann ist

flg7'xg) = f(g )f (f(®) =f(g7)f (@) =f(g7'g) = 1.
Das liefert g7'xg € ker f und somit ist ker f < G.

Seien G, H Gruppen, f:G — H ein Homomorphismus. Dann ist f genau dann
ein Monomorphismus, wenn ker f = {1} ist.

Beweis. Ist f ein Monomorphismus, so hat 1 € H nur 1 € G als Urbild, also ist
ker f = {1}.
Sei umgekehrt ker f = {1}. Seien a, b € G mit

fla) = f(b).

Dann ist f(ab™') = f(a)f(b7") = f(a)f(b)™! = 1, also ab™' € kerf und damit
ab™'=1,dh.
a=b.

Genau wie bei Ringen haben wir auch bei Gruppen einen Homomorphiesatz, auf
dessen Beweis wir hier aber verzichten wollen.

Homomorphiesatz. Seien G, H Gruppen und f:G — H ein Homomorphismus.
Dann ist
Bildf = G/kerf.

SatzV.6

LemmaV.7

SatzV.8



SatzV.9

V Gruppen

Wir wollen jetzt zwei schone Anwendungen des Homomorphiesatzes beweisen.

a) Seien G eine Gruppe, U eine Untergruppe von G und N ein Normalteiler
von G. Dann ist
U/UNN = UN/N.

b) (2.Kiirzungssatz) Seien G eine Gruppe und M und N Normalteiler von G
mit N < M. Dann ist
(G/N)/(M/N) = G/M.

Beweis. Die Idee in beiden Teilen ist gleich. Wir definieren eine Abbildung von U
bzw. G/N auf die Gruppe auf der rechten Seite von = mit Kern U N N bzw. M /N. Die
Behauptung folgt dann mit dem Homomorphiesatz.

a) Wir definieren zunichst durch f (1) = uN fiir u € U. eine Abbildung
f:U - NU/N.
Da uNvN = uvN fiir alle u, v € U ist, ist f ein Homomorphismus. Weiter ist
Bildf = NU/N.
Ist u € ker f, so gilt

N = f(u) = uN.

Also ist 4 € N und dann ker f < U N N. Sei nun umgekehrt u € U N N. Dann
erhalten wir f (u) = uN = N. Zusammen ergibt dies

kerf = UNN.
Nun folgt die Behauptung mit dem Homomorphiesatz.

b) Entsprechend wie eben definieren wir durch f(gN) = gM fiir g € G eine

Abbildung
f:G/N - G/M.
Da gN das Element g nicht eindeutig bestimmt, miissen wir zeigen, dass f eine
Abbildung ist.
Sei dazu giN = goN. Dannist g;'g» € N C M, also ist dann giM = g, M, und somit
erhalten wir
f(giN) = giM = &M = f(gN).

Damit ist gezeigt, dass f(¢gN) von der Auswahl von g unabhingig ist.Dass f ein
Homomorphismus mit Bild f = G/M ist, ist per Definition von f klar.

Es bleibt zu zeigen, dass ker f = M/N ist.



V Gruppen

Sei zuerst gN € ker f. Wir erhalten
M =f(gN) = gM.

Das liefert g € M, also gN € M/N.
Sei jetzt umgekehrt mN € M/N, m € M. Dann erhalten wir

f(mN) =mM = M.

Somit ist mN € ker f und dann kerf = M/N. Nun folgt die Behauptung mit
dem Homomorphiesatz.

Bemerkung.

a) Sei U eine Untergruppe von G mit |G:U| = 2. Dann ist G = U U Ug fiir
g€ G\U.
Es ist aber auch G = U U gU, da |G| — |U| = |U] ist, also |gU| = |G| — |U| und
gunNu=wo.
Somit ist Ug = gU fiir alle g € G. Das heifit U < G.

b) Wir werden jetzt sehen, dass der Normalteilerbegriff nicht transitiv ist. Dies
bedeutet, dass aus N; < N, < G, nicht notwendig folgt, dass N; < G ist!

Dazu betrachten wir ein konkretes Beispiel. Wir bestimmen zunéchst die Gruppe G
der Symmetrien des Quadrates.

4 3
1 2
Drehung d 152535451

d: 1-53-51,254->2

P 154535251
Spiegelung s: 151,353,254 —>2

ds: 1-52—>1,3—>4—>3

d’ss 153->1,2>2,4—>4

d’s: 154-51,253->2

id: 15 1,2—>2,3—5>3,4—>4

Dies sind alle Symmetrien. Warum?
Esist U = {id, s, d*, sd*} eine Untergruppe von G.Da |G: U| = 2 ist, ist U < G nach

a). Da U abelsch ist, ist V = {id, s} < U. Aber dV = {d, ds} # Vd = {d, sd}, da
sd = d*s # ds ist. Somit ist V nicht normal in G.



V Gruppen

Wie in der Linearen Algebra fiir Vektorraume definieren wir nun auch fiir Grup-
pen G das Erzeugnis einer Teilmenge von G.

Definition Erzeugnis. Sei G eine Gruppe und M C G. Setze
M= (] U

MCU

U<G

Wir nennen (M) das Erzeugnis von M. Es ist die kleinste Untergruppe von G, die
M enthilt.

Man sieht leicht

(M) ={1,x; -+ x,|x; € Moderx;' € M, n e N}.

Definition Zyklisch. Eine Gruppe G nennen wir zyklisch, falls es ein g € G mit G = (g)
gibt. Das Element g nennen wir dann auch ein erzeugendes Element.

Wir hatten in Kapitel III fiir endliches G diese Definition bereits gegeben (siche
Lemma IIL5). Wir sind jetzt in der Lage, alle zyklischen Gruppen anzugeben, auch
die unendlichen.

Satz V.10 Sei G eine zyklische Gruppe, so gilt:
a) Ist|G| = oo, soist G = Z.
b) Ist|G| = n < o0, so ist G = Z/nZ.

Beweis. Da G zyklisch ist,ist G = (g) = {g'|i € Z}. Sei
fi7 — Gmit f(i) = g'.
Offenbar ist f ein Epimorphismus. Sei 0 # i € ker f. Dann erhalten wir
1=f() =g
also ist 0(g)|i, d.h., G ist endlich. Ist also G nicht endlich, so ist f ein Isomorphismus.

Das ist a).

Seinun |G| = n. Nach Lemma II1.3 ist o(g) = n|i. Alsoist i € nZ. Seinuni € nZ,
d.h.i = nj. Dann st f(i) = g" = 1. Also ist ker f = nZ. Die Behauptung b) folgt nun
mit dem Homomorphiesatz.

Dieser Satz ist typisch fiir weite Bereiche der Gruppentheorie. Wir haben eine
Eigenschaft, hier ,,zyklisch®, und wir klassifizieren alle Gruppen, die diese Eigen-
schaft haben, in Form einer Aufzihlung. Danach konnen wir Fragen iiber zyklische
Gruppen beantworten, indem wir diese in den Beispielen beantworten.



V Gruppen

Wir wollen jetzt noch eine besonders wichtige Gruppe, die symmetrische Gruppe,
eingehend studieren.

Symmetrische Gruppe. Sei Q = {1, ..., n} und X, die Menge aller bijektiven
Abbildungen von Q. Die Menge X, nennen wir die symmetrische Gruppe auf Q
und ihre Elemente Permutationen. Fiir die Abbildung g € X, fithren wir die
folgende Schreibweise ein

£= ( gli) - oo gliy) )7{11, ,in} = Q.
|zn| =n!

Beweis. Sei g € Z,. Offenbar kann g(1) jede der Zahlen 1, ..., n sein, also gibt es
fiir g(1) genau n Moglichkeiten. Da g injektiv ist, ist g(1) # g(2). Also kann g(2)

jeden Wert aufler g(1) annehmen. Somit gibt es fiir g(2) genau n — 1 Moglichkeiten.

Allgemein liefert nun die Injektivitat, dass

gi) e Q\{g(1),...,g(i—-1)}

ist. Damit gibt es n — (i — 1) viele Moglichkeiten fiir g(i). Somit gibt es zusammen
1, i = n! viele Méglichkeiten fiir g.

Zyklus. Kann man die Zahlen 1, ..., n so als my, my, ... m, ... m, anordnen,
dass die Permutation z die Form
o™ om  me me Mgy ey
mp; ms - mi  my Mgy -0 My

hat, so nennen wir z einen k-Zyklus. Wir schreiben dafiir vereinfachend
z=(my, my, ..., m).

Ein 2-Zyklus heifit auch Transposition.

Zyklenzerlegung. Seig € X,.

a) Wir konnen {1, ..., n} als disjunkte Vereinigung von Mengen M,, ..., M,
schreiben, so dass bei geeigneter Anordnung der Elemente m;,, ..., m;,_
in M; das Element g als Produkt der Zyklen (m;,, ..., mi, yi=1,...,t
geschrieben werden kann.

b) Istn > 2, so ist g ein Produkt von Transpositionen.

Beweis. Wir fithren eine Relation ~ auf {1, ..., n} ein:

i ~ j genau dann, falls es ein k € N U {0} gibt, so dass g*(i) = j ist.

Definition

Satz V.11

Definition

Satz V.12
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~ ist eine Aquivalenzrelation: Klar ist i ~ i. Weiter ist auch klar, dass aus i ~ j und
j ~ k,sofort i ~ k folgt.

Sei nun i ~ j. Wir wollen j ~ i zeigen. Es ist dann g*(i) = j fiir ein k € N U {0}.
Dann gilt natiirlich j = g7%(i). Allerdings ist fiir k # 0 dann —k ¢ N U {0}. Um diesem
Problem aus dem Weg zu gehen, wenden wir einen kleinen Trick an. Sei m = o(g)
und s € N mit sm > k.Dann ist sm — k € Nund g *(j) = g7(j) = i. Alsoist j ~ i.

Seien My, ..., M, die Aquivalenzklassen von ~. Wihle m; € M;. Dann ist M; =
{g°(m;,)|s e NU{0}}.

Die Behauptung folgt jetzt mit g = [i_, giu.-
b) Es geniigt nach a), die Behauptung fiir einen Zykel (m,, ..., my) zu zeigen.

Ist k = 1,s0ist (m;) = (my, my)(my, my).
Istk > 1,s0ist

(my, ..., mg) = (my, m)(my, mg_y) - - - (my, my).

Die letzte Zeile des Beweises bedarf noch eines Kommentars. Ein Produkt von
Permutationen lesen wir wie eine Hintereinanderausfithrung von Abbildungen, also
von rechts nach links, widhrend wir einen Zyklus von links nach rechts lesen. Dies
ist nicht in allen Biichern so. Es beeinflufit zwar nicht die qualitativen, aber die
quantitativen Resultate.

Die Anzahl der Zyklen in der Zyklenzerlegung a) ist eindeutig durch g bestimmt,
es ist ja die Anzahl der Aquivalenzklassen. Das Gleiche gilt fiir die Zyklen selbst. Die
Zyklenzerlegung ist also bis auf die Reihenfolge eindeutig. Anders sieht das mit den
Transpositionen aus. Die Anzahl der Transpositionen in b) ist nicht eindeutig.

(1,3) = (1,2)(1, 3)(2, 3).

Den nachfolgenden schonen Beweis findet man in Neumann et al. (1994, [21]).

Satz V.13 Seien hy, ..., h, € X, Transpositionen und g € Z,,.

a) Hat hih, - - - h, in der Zyklenzerlegung genau ¢ Zyklen (Zyklen der Linge 1
zdhlen mit), so ist
r=n-—c(mod?2).

b) Setze
sgn (g) = (1)@,

wobei x(g) die Anzahl der Transpositionen in einer Darstellung von g als
Produkt von Transpositionen ist. Dann ist

sgn:X, = {1,-1}

ein Epimorphismus. Dabei ist {1, —1} mit der Multiplikation reeller Zahlen
eine Gruppe.
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Beweis.

a) Wir beweisen die Behauptung durch Induktion nach r. Ist r = 0, so ist die
Behauptung offenbar richtig, da das Produkt von Null-Transpositionen die Identitdt
ist. Also gilt ¢ = n.

Seir > 0.Setzef = hjhy---h,und g = h, - - - h,. Sei
g=(an,....,0) B, Br) ... (A, ..., Ap,)
die Zyklenzerlegung von g, d.h., g hat genau d Zyklen. Per Induktion ist
r—1=n-d (mod2).

Die Zyklen konnen in jeder Reihenfolge geschrieben werden und jeder Zyklus kann
an jeder Stelle starten. Also konnen wir h; = (a1, a+1) annehmen, falls beide Ein-
trage im gleichen Zykel liegen, und anderenfalls h; = (a;, B1).

Im ersten Fall ist

f=hmg=C(o1,...,0) (A1, ..., 0 )(P1,..., Bp,) .

alsoc=d+1lunddannr=n—-d—-1=n-c(mod2).

Im zweiten Fall ist

f=mg=(ar,....ap, B, Bo)(yis - s ¥0) - -

alsoc=d—-1unddannr=n—-d+1=n-c(mod?2).

b) Sei f € X,. Ist f das Produkt von r und auch von s vielen Transpositionen, so
ist nach a)
r=n-c=s(mod2).

Also ist x(f) modulo 2 eindeutig bestimmt. Dies bedeutet, sgn ist eine Abbildung.
Dasgn (1, 2) = —1 ist,ist sgn surjektiv.

Seien g, h € X,. Dann kann gh als Produkt von x(g) + x(h) vielen Transpositionen
geschrieben werden, indem man die entsprechenden Darstellungen einfach anein-
anderhéngt. Also ist

sgngh = (-1)*@+" = (—1)*®(-1)*® = sgn g sgn h.

Signum. Die Abbildung aus Satz V.13 b) wird Signumsabbildung genannt. Eine
Permutation ¢ mit sgng = 1 nennen wir eine gerade Permutation, eine mit
sgng = —1 ungerade. Fiir den Kern der Signumsabbildung schreiben wir 4,
und nennen ihn die alternierende Gruppe.

Das nidchste Lemma liefert eine einfache Methode, um das Signum einer Permutation
zu berechnen.

Istg =2z,---2; € Z,, wobei die z; Zyklen der Linge k; sind, so ist

t
sgng = [ [-D"".

i=1

Definition

LemmaV.14
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Beweis. Wegen Satz V.13 geniigt es, die Behauptung fiir einen Zyklus g der Lange k zu
zeigen. Im Beweis von Satz V.12 b) haben wir gesehen, dass ein solcher ein Produkt
von k — 1 Transpositionen ist. Da die Signumsabbildung ein Homomorphismus ist
und jede Transposition das Signum —1 hat, ist

sgng = (-1)F 1,

Die Berechnung des Signums ist also ganz einfach. Ist die Anzahl der Zyklen
gerader Linge ungerade, so ist das Signum gleich -1, sonst gleich +1.

Bemerkung.
a) Nach dem Homomorphiesatz V.8 ist £, /A, = Bild sgn . Also ist |[A,| = ';!.

b) Istn # 1,2, 4,s0sind {1}, A,, Z, die einzigen Normalteiler von X,. Siehe dazu
auch Satz V.21 und Satz V.23.

a) Sei Q eine Menge und G eine Gruppe von bijektiven Abbildungen von Q.
Fiir a € Q setze

G, = {glg € G, g(a) = a}.

Dann ist G, eine Gruppe und |G: G,| = |{g(a)|g € G}|. Wir nennen G, den
Stabilisator von a in G.

b) Ist G eine Gruppe und U eine Untergruppe von G, so setze
Ne(U) = {glg € G.gUg ™" = U}

(Normalisator von U in G). Es ist Ng(U) eine Untergruppe von G. Fiir den
Index erhalten wir

|G:Ng(U)| = |{gUg""Ig € G}I.

Beweis.

a) Sei 1 das Einselement von G. Dann ist 1 € G,. Also ist G, # &. Seien nun
g, h € G,. Dann ist

gh(a) = g(a) = a.
Damit ist gh € G,. Weiter ist

a=g'ga)=g""(a)

und dann g7! € G,. Somit ist G, eine Untergruppe von G. Damit ist die erste
Behauptung bewiesen.

Zum Beweis der zweiten Behauptung definieren wir eine Abbildung r von der Menge
der Nebenklassen von G, in G in die Menge {g(a)|g € G} durch

1(gG,) = g(a), g € G.

Ist gG, = hGg,, so ist h = gx mit x € G,. Also ist h(a) = g(a). Somit ist 7 eine
Abbildung.
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Wir wollen zeigen, dass 7 injektiv ist. Sei dazu g(a) = h(a). Dann erhalten wir
h7'g(a) = a,was h™'g € G, liefert. Insbesondere haben wir gG, = hG,. Somit ist T
injektiv und damit

|G: G,| = [Bild 7| = |{g(a)lg € G)I.

b) Wir betrachten die Menge Q = {gUg'|g € G}. Fiir jedes h € G definieren wir
eine Operation auf Q durch

h(gU™'g) = hgUg™'h™" = (hg)U(hg)™".

Dadurch wird G zu einer Gruppe bijektiver Abbildungen von Q. Indem wir a) auf
das Element U € Q anwenden, erhalten wir

Gy ={g1g(U)="U}={g|gUg™" = U} = Ng(U).
Damit folgen die Behauptungen mit a).

Der folgende Satz ist fiir die endliche Gruppentheorie sehr wichtig und wird
dann im néchsten Satz, dem fundamentalen Satz der endlichen Gruppentheorie
schlechthin, fortgesetzt.

Cauchy'. Sei G eine Gruppe und sei p eine Primzahl mit p||G|. Dann besitzt G
ein Element x mit o(x) = p.

Beweis. James McKay [18]. Sei
E={(x1,...,%)|xi € G,x;---xp =1und (x1,...,%,) #(1,...,, 1)}
Sei weiter (g) = Z/pZ. Wir definieren eine Operation von g auf E durch
(X155 %p)8 = (X2, ..., Xp, X1).

Dadurch wird (g) zu einer Gruppe bijektiver Abbildungen auf E. Dennist x; - - - x, =
1,s0istx;---x, = x7! und dann auch x; - - -xpx1 = Lyalsoist (x3, -+, %p, x1) € E.
Seia € E.Dann st (g), eine Untergruppe von (g) nach Lemma V.15 a). Nach dem
Satz von Lagrange ist
[(g)a| ein Teiler |{g)| = p.

Also ist
(g)a = 1oder (g), = (g).

Fiir a € E setze a®® = {a* | x € (g)}. Nach Lemma V.15b) ist |a®®’| = 1 oder p. Es ist
E=J a'®. Da|E| = |G|F"! — list,ist p f|E|. Somit gibt es ein a € E mit [a’€!| = 1.

acE

! Augustin Louis Cauchy (*21.8.1789 Paris, 123.5 1857 Sceaux) war Ingenieur zur Zeit Napoleons und
Professor in Paris, mit Unterbrechungen, da er keinen Eid auf den Konig schworen wollte. Fundamentale
Arbeiten zur Algebra, Infinitesimalrechnung und zur mathematischen Physik. Mit ca. 700 Arbeiten ist
sein Werk auergewdhnlich umfangreich.

Satz V.16
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Nach Lemma V.15 ist (g), = (g). Dann ist aber

a:(xls-~-sxn):(x23-~-9xn5xl)a

was
a=(x,...,x)

liefert. Daa € E ist,ist X’ = 1und x # 1.

Wir kommen nun zu dem fundamentalen Satz der endlichen Gruppentheorie.

Sylowsatz?. Sei G eine Gruppe und p eine Primzahl mit |G| = p*m, wobei m
nicht durch p geteilt wird. Dann gilt:

a) Es gibt eine Untergruppe U von G mit |U| = p*.

b) Alle Untergruppen U von G mit |U| = p* sind konjugiert (d.h., sind Uy, U,
Untergruppen mit |U;| = |U,| = p%, so gibt es eing € G mit gU g~' = Up).

c) Ist V eine Untergruppe von G mit |V| = p® fiir ein b, so gibt es eine
Untergruppe U mit |U| = p* und V < U.

d) Die Anzahl der Untergruppen U mit |U| = p“ ist |G: Ng(U)| und kongruent
1 modulo p.

Beweis. Der Beweis folgt der Darstellung von Aschbacher (1984, Seite 19 [3]).
Sei
P ={U|U < G, |U| = p* fiir ein c}

und M die Menge der maximalen Elemente in P beztiglich Inklusion.

Esist (1) eine p-Gruppe der Ordnung p°. Somitist P # & und dann auch M # @.
Wir definieren eine Operation von G auf M durch g(U) = gUg ™" fiir U € M. Diese
Operation hatten wir schon einmal im Beweis von Lemma V.15 b) gesehen. Wir
miissen uns jetzt aber tiberlegen, ob M beziiglich dieser Operation invariant ist. Sei
gUg™ & M fiirein U € M und ein g € G. Dann gibt es eine p-Untergruppe V von
GmitgUg™' < V.Dannistaberauch U < g7'Vg.Da|V| = |g”!Vg| ist, wire dann U
nicht maximal, was der Wahl U € M widerspricht. Also haben wir eine Operation
auf M definiert.

Seien U,V € M, U # V. Da beide maximal sind,ist U # UNV # V. Wire
V < Ng(U), so wire nach Satz V.5 UV eine Untergruppe von G. Nach Lemma V.3 ist

_ UV
|UV| =
|UN V|

eine p-Potenz, was der Maximalitdt von U widerspricht. Also ist V ﬁ Ng(U).
2Peter Ludwig Sylow (*12.12.1832 Christiana, 17.9.1918 Oslo) wirkte als Lehrer bis 1898, erhielt 1898

eine Professur an der Universitdt Christiana. Wichtigstes Arbeitsgebiet war die Gruppentheorie, daneben
auch die Theorie der elliptischen Funktionen.
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Sei \V eine unter G invariante Teilmenge von M. Istalso H € N, g € G, so ist
gHg ! € N. Wir halten ein H € N fest. Dann operiert H auf M \ N. Nun kann H
keinen Fixpunkt auf M \ N haben. Wire U ein solcher, so wire hUK™! = U fiir alle
h € H.Dann wire aber H < Ng(U).Da H # U ist, geht dies nicht, wie wir vorhin
gesehen haben. Nach Lemma V.15 b) sind die Langen der Bahnen von H auf M \ N/
Teiler der Ordnung von H.Da H eine p-Gruppe ist, sind sie also Potenzen von p. Da
alle nicht trivial sind, ist

p ein Teiler von |[M \ V.

Seinun H; € M\ V. Dann folgt wie eben, dass H; der einzige Fixpunkt von H;
auf M \ N ist. Also ist wieder

p ein Teiler von M \ V| — 1.

Das ist aber nicht méglich.

Somit sehen wir, dass M die einzige G-invariante Teilmenge von M ist. Das
heifit, alle Elemente in M sind konjugiert und haben somit die gleiche Ordnung.
Weiter ist U der einzige Fixpunkt fiir U € M, d.h. M| = 1(mod p).

Nach Lemma V.15 ist M| = |G: Ng(U)|. Da | M| nicht durch p geteilt wird, ist
P°lING(U)|. Da U eine maximale p-Untergruppe war, folgt mit dem Satz von Cauchy,
dass |[Ng(U)/U]| nicht von p geteilt wird. Also ist |U| = p*.

Sylowgruppen. Die Gruppen U, deren Existenz wir in Satz V.17 nachgewiesen
haben, nennen wir Sylow p-Untergruppen von G.

Wir wollen hier einige typische Anwendungen des Sylowsatzes aufzeigen.

a) Sei |G| =20=4"5. Sei§ eine Sylow 5-Untergruppe von G. Dann ist
|G: Ng(S)| ein Teiler von |G: S| = 4.
Da nach dem Sylowsatz |G: Ng(S)| = 1(mod 5) ist, folgt
S<G.
b) Sei|G| =4-5-19 = 380. Fiirp € {2, 5, 19} sei N, eine Sylow p-Untergruppe
von G. Es ist
|G: Ng(Ny9)| ein Teiler von |G: Nyg| = 20.

Mit dem Sylowsatz erhalten wir |G: Ng(N19)| = 1 oder 20. Sei |G: Ng(Nyo)| =
20. Dann ist wegen Nj, N Nyg = 1 fiir Njg # N5, g € G,
| gNwog ™1 =20 18 + 1 = 361.
geG

Es ist weiter

|G: Ng(Ns)| ein Teiler von |G: N5| = 4 - 19 = 76.

Definition

Beispiel
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Mit dem Sylowsatz folgt |G: Ng(Ns)| = 1 oder 76. Sei |G: Ng(Ns)| = 76, so
erhalten wir mit dem gleichen Argument wie fiir Nyg

|| gNsg™'1 =76 -4+ 1 = 305.
geG
Somit gibt es in G genau 360 Elemente der Ordnung 19 und 304 der Ord-
nung 5, was zusammen 664 Elemente ergibt. Aber |G| = 380.
Also ist N5 <1 G. Sei @ € G,o(w) = 19. Da |Ns \ {1}| = 4 ist, folgt mit
Lemma V.15 a), dass @ nur Bahnen der Lange 1 auf den Elementen von Nj

induziert, also @wx = xw fiir alle x € Ns.Somit ist N5 < Ng({@)). Dann ist
aber |G: Ng(Ny9)| < 4, ein Widerspruch zur Annahme |G: Ng(Nyo)| = 20.

Also haben wir Njg < G gezeigt. Nach Lemma V.15 a) hat N5 Bahnen der
Linge 1 oder 5 auf Nyo \ {1}. Also gibtesein 1 # @ € Ny, das unter N; fest
bleibt, d.h., xw = wx fiir alle x € N5 oder @ € Ng(Ns). Da Njg zyklisch
von der Ordnung 19 ist, ist (@) = Nyo und somit folgt Nyg < Ng(N5) und
dann auch N5 <1 G.

c) Sei|G| = 36 = 2%-3%. Sei S eine Sylow 3-Untergruppe von G. Angenommen
S 4 G. Dann ist |G: Ng(S)| = 4 nach dem Sylowsatz. Es induziert G eine
Gruppe von bijektiven Abbildungen auf Q = {gS¢~! | ¢ € G}. Da |Q| = 4
ist,gibt es einen Homomorphismus f von G in Z4. Dieser ist nicht trivial,da
nach dem Sylowsatz G nicht trivial auf Q operiert. Da |G| > 24 = 2, ist, ist
ker f # 1. Also gibt es in jedem Fall einen Normalteiler 1 # N <G, N # G.

SatzV.18 Sei G eine p-Gruppe (|G| = p*), G # 1. Dann gilt
a) Z(G):= {h|h € G, gh = hg fiiralleg € G} # 1.

b) Es gibt einen Normalteiler G, von G mit |G: G| = p.

Beweis.

a) Wir betrachten die Gruppe G als Menge M = {x|x € G}. Hierauf definieren
wir eine Aquivalenzrelation ~ durch

x ~ y, falls y = g”'xg mit geeignetem g € G gilt.

Seien My, . .., M, die Aquivalenzklassen. Dann haben wir

.
Gl = > IMil.
i=1

Ist m; € M;, so ist G, = {glg € G,g‘lmig = m;}. Bs ist [M;| = |G: Gp,| nach
Lemma V.15 eine p-Potenz.

Wir wihlen die Notation so, dass M; = {1} die Aquivalenzklasse des neutralen
Elementes ist. Dann gilt

r
Gl =1+ > |Mj.
=2
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Da |G| eine p-Potenz ist, muss es ein i > 2 geben, so dass |M;| = 1 ist. Also ist
M; = {m;}, m; # 1,und g"'m;g = m; fiir alle g € G,d.h. m; € Z(G).

b) Nach a) ist Z(G) # 1. Wir wihlen N < Z(G), |[N| = p. Dann ist N < G. Nun
liefert eine Induktion angewandt auf G/N die Behauptung.

Auflosbar. Eine Gruppe G heifit auflosbar, falls es eine Kette N;, i = 1, ..., k+1,
von Untergruppen von G so gibt, dass

1=Nj; <--- <IN, <N; = Gund N;/Nj,; fiirallei =1, ..., k abelsch ist.

Normalteiler in endlichen Gruppen erméglichen Induktionsbeweise, wie wir es be-
reits im Beweis von V.18b) gesehen haben. Sei N ein Normalteiler. Ist 1 # N und
N # G, so sind beide |N| und |G/N| kleiner als |G|. Haben wir also eine Ausage, die
wir beweisen wollen, und iibertragen sich die Voraussetzungen auf Normalteiler und
Faktorgruppen, so gilt unsere Aussage per Induktion in N und G/N.Wir miissen das
dann nur noch zusammensetzen, um die Giiltigkeit in G zu bekommen. Nicht jede
Eigenschaft wird dies so einfach zulassen. Die Auflosbarkeit ist in dieser Hinsicht
eine sehr angenehme Eigenschaft, wie der folgende Satz zeigt.

Sei G eine Gruppe.

a) Ist G auflosbar, so auch die Faktorgruppe G/N fiir jeden Normalteiler N
von G.

b) Ist G auflosbar, so auch jede Untergruppe U von G.

¢) Ist N ein auflosbarer Normalteiler von G, so dass auch die Faktorgruppe
G/N auflosbar ist, so ist G auflosbar.

Beweis.

a) Da G auflosbar ist, gibt es eine Kette 1 = Njy; <N <...<IN; = G mit N;/Niy,
abelsch. Wihle n1N, n;N € N;N/N. Da N;/N;;; abelsch ist, ist n;n, = nyn; s mit
geeignetem 71 € Nj;;. Dann ist (nN)(nN) = (mny)N = npmnN mit 1 € Niyg.
Somit ist

(N;N/N)/(N;z1N/N) abelsch und
N = N¢y 1N/N INgk]N/N <...N;N/N = G/N.
Also ist G/N auflosbar.
b) Da G auflosbar ist, gibt es wieder eine Kette 1 = Niy; < ... I N; = G mit

N;/N;;; abelsch. Wir setzen U; = N;N U, i = 1,...,k + 1. Da nach Satz V.9 a)
Ui/Uy1 =N;NU/Niyy NU = (N; N U)Njy1/Niy ist, fOlgt fiir die Kette

1=Und---4U, = U,

dass U;/U;,; abelsch ist. Somit ist U auflosbar.

Definition

Satz V.19
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c) Da N und G/N auflosbar sind, gibt es Ketten 1 = Ny <--- I N; = N
und 1 = My/N <.--M;/N = G/N. Diese konnen wir zusammensetzen zu ei-
ner Kette 1 = Niy; <--- <N, = Mg, <--- << M; = G. Da nach Satz V.9 b)
(M;/N)/(M;;1/N) = M;/M;,, ist,sind alle Faktoren abelsch,d.h., G ist aufldsbar.

Das folgende Lemma werden wir in Kapitel VI bendstigen.

Sei 1 # G eine auflosbare Gruppe. Dann gibt es einen Normalteiler N von G, so
dass |G/N| eine Primzahl ist.

Beweis. Da G auflosbar ist, gibt es eine Kette von Untergruppen Ni, ..., N4 mit
1 = Ngyy <--- 9N, <N; = G und N;/N;y ist abelsch fiir i = 1,...,k. Da
G # 1 ist, konnen wir N, # G annehmen. Also ist G/N, eine nicht triviale abel-
sche Faktorgruppe. Es geniigt also, die Behauptung fiir abelsches G zu beweisen.
Dann ist aber jede Untergruppe von G normal. Sei N # G eine maximale Untergrup-
pe von G.Dann hat G/N keine echten Untergruppen. Sei p ein Primteiler von |G/N]|.
Nach dem Satz von Cauchy gibt es ein Element gN € G/N mit o(gN) = p. Wegen der
Maximalitdt von N ist (gN) = G/N, also ist |G/N| = p, die Behauptung.

Es konnte nun sein, dass jede Gruppe auflosbar ist. Dann wire der Begriff Auflos-
barkeit nicht sonderlich niitzlich. Dass dem nicht so ist, werden wir in den nichsten
zwei Sdtzen zeigen.

Istn >5und1 #N <A,,soistN = A,.

Beweis. Wir zeigen zunichst, dass die Behauptung richtig ist, falls N einen 3-Zyklus
enthilt. Dazu kénnen wir (1, 2, 3) € N annehmen. Fiir k > 3 ist dann

(3,2,k)1,2,3)(3,2, k) =(1,k,2) € N.

Also ist auch
(1,k,2)*=(1,2,k) € N.

Esist
= ()1 <i<j<n

nach Satz V.12. Da (i, j) = (1, i)(1, j)(1, i) ist, erhalten wir auch
=Ll <i<n).
Da(1,j)(1,i) =(1,4,j),1 #i #j # 1,ist, ergibt das
A, =, L)L, j=2,...,n,i#j).
Da(1,1,j) = (1,2,7)7(1, 2, )(1, 2, j) ist, ist sogar
A, =((1,2,k)|k > 3).

Somit ist N = A,. Enthélt also N einen 3-Zyklus, so ist N = A,,.
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Wir nehmen nun an, dass N keinen 3-Zyklus enthilt. Dies wollen wir zum Wi-
derspruch fithren. Sei x = abc... € N, a, b, c Zyklus der Zyklenzerlegung. Sei

a=(ay,...,ay,), m> 4.Setzet = (a;, a,, as). Dann ist t "'xt € N.
Esist
t'xt =tlatbc...=z e N.
Nun ist
Nozx ! =ttata™ = (a1, as, aq),

der gewiinschte Widerspruch.

Also enthilt x nur 2-Zyklus und 3-Zyklus in der Zyklenzerlegung. Angenommen,
x enthalte zwei 3-Zyklen. Dann kénnen wir

x=(1,2,3)(4,5,6)y.

annehmen.

Setze nun t = (2, 3, 4). Dann erhalten wir
N>t lxx™ =(1,5,2,4,3),
ein Widerspruch, da Elemente aus N keine 5-Zyklen enthalten.
Sei nun
x = (1, 2, 3)p, wobei p nur 2-Zyklen enthilt.
Dann ist p* = 1 und somit
x?=(1,2,3%=(1,3,2) €N,

ein Widerspruch, da wir keine 3-Zyklen in N haben. Somit enthilt x nur 2-Zyklen.
Wir kénnen also
x = (1,2)(3,4)p, mitp* =1

annehmen. Setze jetzt t = (2, 4, 3). Das liefert
N s 7 lxtx™! = (1, 4)(2, 3) =y.
Da n > 5 ist, enthilt A,, das Element u = (1, 4, 5). Dann ist auch
N> u'yu=(1,5)(2,3) =z

Aber
N>zy=(1,4,5)

und wieder haben wir einen Widerspruch dazu, dass N keine 3-Zyklen enthilt. Das
beweist den Satz.

Gruppen, die genau zwei Normalteiler haben, ndmlich {1} und G, nennen wir
einfach. Nach Satz V.21 ist somit A,, n > 5, einfach. Sei SL(n, K) die Gruppe der
linearen Abbildungen eines Vektorraumes der Dimension 7 {iber einem endlichen
Korper K mit Determinante 1. Ist dann n > 2 oder |K| > 3 fiir n = 2, so ist
stets SL(n, K)/Z(SL(n, K)) einfach. Es gibt noch weitere Serien einfacher Gruppen,
die dhnlich gebildet sind. Hinzu kommen noch 26 sogenannte sporadische einfache
Gruppen, die scheinbar kein gemeinsames Bildungsgesetz haben. Die erste davon
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wurde von Emile Mathieu® 1860 gefunden, die letzte von Zvonimir Janko* 1976. Eine
der groflen Leistungen der Mathematik des letzten Jahrhunderts war die Klassifi-
kation der endlichen einfachen Gruppen (ein guter Ubersichtsartikel ist Solomon,
1995 [28]).

Fiir n > 5 ist 2, nicht auflésbar.

Beweis. Esist A, <Z,.Da A, nicht abelsch ((1, 2, 3)(1, 2,4) # (1, 2,4)(1, 2, 3)) und
einfach ist, ist A, nicht auflosbar. Nun folgt die Behauptung mit Satz V.19 b).

Fiir n < 4 ist 2, auflosbar.

Beweis. Es ist X, abelsch und damit auflosbar. Es ist [A3]| = 3, also ist A3 auflosbar.
Da |23/A3| = 2 ist, ist auch X3 /A3 auflosbar. Somit ist nach Satz V.19 ¢) 25 auflésbar.

Setze V = {(1,2)(3,4), (1,3)(2,4), (1,4)(2, 3), id}. Dann besteht V aus allen
Elementen aus A4, die in der Zyklenzerlegung nur 2-Zyklen haben. Wir sehen somit,
dass V <A, ist.Esist |[A4/ V| = 3.Also ist A4/ V auflésbar. Offenbar ist V abelsch und
damit auflosbar. Also ist nach Satz V.19 ¢) A4 auflosbar. Da |2,/A4| = 2 ist, ist auch
¥4/A4 auflosbar und nach Satz V.19 ¢) ist dann X, auflsbar.

Dieses unterschiedliche Verhalten von X, fiir n > 5 und n < 4 ist letztlich der
Grund dafiir, warum es fiir die Nullstellen von Polynomen vom Grad n Auflgsungs-
formeln fiir n < 4 gibt, die nur arithmetische Operationen und Wurzeln benutzen,
und keine fiir n > 5. Das werden wir im nichsten Kapitel ndher ausfiithren.

Wir wollen nun noch die bisher entwickelten Methoden benutzen, um zwei Re-
sultate von Evariste Galois® zu beweisen: erstens, dass jede Gruppe der Ordnung
kleiner als 60 auflosbar ist, und zweitens, dass As die einzige einfache Gruppe der
Ordnung 60 ist.

3Emile Leonard Mathieu (*15.5.1835 Metz, 119.10.1890 Nancy). Er endeckte zwischen 1860 und 1873
die ersten fiinf sporadischen einfachen Gruppen, die spiter nach ihm benannt wurden. Mathieu war
Professor in Besan¢on und ab 1874 in Nancy, wo er sich hauptsédchlich mit mathematischer Physik be-
schiftigte. Neben den Mathieu-Gruppen sind auch die mathieuschen Differentialgleichungen nach ihm
benannt.

4Zvonimir Janko (*26.7.1932 Bjelovar, Kroatien) studierte in Zagreb und wurde zunichst Gymnasial-
lehrer, promovierte 1960 an der Universitdt in Zagreb. Aus politischen Griinden konnte er keine Anstellung
an einer Universitdt in Jugoslawien finden. Er ging 1962 nach Australien an die Universitit in Canberra
und spiter an die Monash University, 1968/69 an das Institute for Advanced Study in Princeton und war
bis 1972 Professor an der Ohio State University in Columbus, ab 1972 bis zur Emeritierung 2000 war er
Professor an der Universitdt Heidelberg. Er endeckte 90 Jahre nach Mathieu die erste neue sporadische
einfache Gruppe J;,danach 1968 die Gruppen /> und J3 und 1976 die letzte sporadische einfache Gruppe J4.
Seit 2000 arbeitet Z. Janko erfolgreich auf dem Gebiet der p-Gruppen.

5Evariste Galois (*25.10.1811 Bologna, 131.5.1832 Paris) war Mathematiker und Begriinder der Ga-
loistheorie (detaillierte Information findet man in Kapitel VI auf Seite 110).
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a) Ist1 # |G| = p%, p Primzahl, so ist G auflosbar. Nach Satz V.18 gibt es einen
abelschen Normalteiler 1 # N von G. Dann folgt die Behauptung mit Satz
V.19 ¢) und Induktion.

b) Sei|G| = p-r mit verschiedenen Primzahlen p und r. Dann ist G auflosbar.
Wire G nicht auflosbar, so wire G einfach nach Satz V.19 ¢). Dann ist nach
dem Sylowsatz p = 1(mod r) und r = 1(mod p), was nicht moglich ist.

¢) Sei |G| < 59. Dann ist G auflosbar. Per Induktion kénnen wir fiir ein
Gegenbeispiel G annehmen, dass G einfach ist.

)

Ist |G| ungerade, so ist G auflosbar. Nach a) und b) konnen wir |G| =
p? - r mit verschiedenen Primzahlen p und r annehmen. Also ist
|G| = 32.5. Aber 5 # 1(mod 3), d.h., G hat eine normale Sylow
3-Untergruppe.

Nach «) ist ab jetzt |G| gerade.

B

)

5)

Sei |G| =2 - u,u # 1 ungerade. Sei x € G, o(x) = 2. Dieses x existiert
nach dem Satz von Cauchy. Wir lassen G auf G durch Multiplikation
vermoge

g—>gh firheG

operieren. Dies liefert einen Homomorphismus von G in die 2.
Dabei induziert das Element x eine Permutation, die aus genau
|G|/2 = uvielen Transpositionen besteht,da g # gx fiiralleg € Gist.
Also ist sgnx = —1, d.h,,x & Ajg. Da G einfach ist,ist Ajg; N G = 1.
Nun ist aber |2g,/Ag| = 2, was u # 1 widerspricht.

Sei |G| = 4 - u, uungerade, u # 1. Dann ist u < 15.Ist u prim, so
konnen wir mit Satz V.19 ¢) wieder 4 = 1(mod u) annehmen. Also
ist u = 3, d.h. |G| = 12. Nun ist G isomorph in X, eingebettet, aber
Y, ist auflosbar nach Satz V.23.

Sei nun u nicht prim. Dann ist u = 32. Nach Beispiel c) auf Seite 92
ist dann G auflosbar.

Sei |G| = 8-u,alsou < 7.Dannist |G| = 8-3,8-5,8-7 oder 16-3.Ist
|G| = 8-3 oder 16- 3,s0 hat G nach dem Sylow-Satz genau drei Sylow
2—Untergruppen. Dann gibt einen nicht trivialen Homomorphismus
a von G in Z5. Aber jetzt ist kera # 1 und auch kera # G. Da
ker & < G nach Satz V.6 ist, erhalten wir einen Widerspruch zur
Einfachheit von G.

Da 8 # 1(mod5) ist, ist |G| # 8 - 5. Es bleibt |G| = 8 - 7. Dann gibt
es 8 Sylow 7—Untergruppen. Sei T eine solche. Da T die Ordnung 7,
also eine Primzahl, hat,ist TN T8 = 1 fir T # T¢,g € G. Also ist

1J T8=8-6+1=49.
geG

Esbleiben somit 7 Elemente iibrig. Eine Sylow 2-Untergruppe enthélt
8 Elemente. Also bilden die restlichen 7 Elemente und die Identitit
die einzige Sylow 2-Untergruppe, die damit normal in G ist.

Beispiel
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d) Ist |G| = 60 und G einfach, so ist G = As.

Sei S € Syls(G) und ns = |G: Ng(S)|. Dann ist ns = 1(mod5). Also ist
ns = 6. Damit gibt es einen Monomorphismus

a:G— .

Da G einfach ist, ist a(G) < Ag. Wir kénnen somit G < A4 annehmen. Wir
zeigen nun:

Ist G < Ag, |Ag: G| = 6, G einfach,soist G = As.

Seien Ghy, ..., Ghs die Nebenklassen von Gin A.Es operiert A¢ auf diesen
Nebenklassen durch

(Ghi)g = G(hig).

Der Stabilisator der Nebenklasse G in Ag ist G. Das heif$t, G operiert auf
den restlichen 5 Nebenklassen. Damit existiert ein Homomorphismus

ﬂ: G—> Zs.
Sei B(G) = 1. Dies bedeutet
Ghg = Gh

fir alle g € G und h € A, oder hgh™' € G fiir alle h € Ag. Also ist
G < Ag, was Satz V.21 widerspricht. Somit ist f(G) = G einfach. Es ist
As N B(G) < B(G).Da B(G) > 2ist,ist As N B(G) # 1. Da B(G) einfach ist,
ist As N B(G) = P(G), also B(G) < As.Aber |B(G)| = |As|, d.h. B(G) = As.
Somit ist G = As.

Ubungsaufgaben

V.1 Jede Gruppe G mit |G| = 4 ist abelsch.
V.2 Sei G eine Gruppe, in der fiir ein n € N die folgenden Gleichungen fiir ein Paar a, b von
Elementen aus G gelten:

(ab)n — anbn’ (ab)n+1 — an+1bn+l’ (ab)n+2 - an+2bn+2'

Dann ist ab = ba.

Gilt die Aussage ab = ba auch noch, wenn wir nur noch die zwei Gleichungen
(ab)" = a"b" und (ab)™' = a""'b"*! fiir ein n € N haben?

V.3 Sei G eine endliche Gruppe.
a) Sein > 2.Dann ist die Anzahl der Elemente der Ordnung # in G gerade.

b) Ist |G| gerade, so ist die Anzahl der Elemente der Ordnung 2 in G ungerade (ins-
besondere existiert mindestens ein solches).
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Seien G eine Gruppe und a, b € G mit @’ = 1 und aba™

von b.

= b%. Bestimme die Ordnung

Sei G eine Gruppe. Dann gilt:

a) Genau dann ist G abelsch, wenn die Abbildung g — ¢! (¢ € G) ein Automor-
phismus ist.

b) Istg? = 1fiiralle g € G, so ist G abelsch.

Seien G eine Gruppe und H eine Untergruppe von G.Fiir g € G setze HS = g"'Hg. Zeige:
a) Esistg € HH® genau dann,wenn g € H ist.
b) Ist G = HHE fiireing € G,soist G = H.

Seien G eine endliche Gruppe und U, V zwei Untergruppen von G. Sei |G: U| = n und
|G: V| = m. Zeige:

a) Esist|G:U N V| >kgV(m, n).
b) Sind n und m teilerfremd, so ist |G: U N V| = nm.
Seien G eine endliche Gruppe, U eine Untergruppe und N ein Normalteiler. Zeige:
a) AusggT (|G/N|, |U|) =1folgt U C N.
b) AusggT (|G:U|,|N|) =1folgtN C U.
Dedekind®-Identitit. Seien A, B, C Untergruppen der Gruppe G mit A C C. Dann gilt
ABNC=ABNCO).

(Alle Permutationen seien in X.)

a) Berechne
1 2 3 4 5 6 7 8 9 1
57 9 3 1 6 8 2 4 5

und -1
1 2 3 4 5 6 7 8 9
37 6 5 2 8 9 1 4 ’
b) Schreibe als Produkt von elementfremden Zyklen (1, 3, 6)(2, 5, 4)(4, 8)(6, 3, 7, 8, 9).

c) Schreibe als Produkt von Transpositionen (1, 2, 4)71(5, 9)(7, 3, 6, 2).
d) Bestimme das Signum von (3, 8, 4, 6, 5)7'(1, 6)(1, 9)(1, 2)(9, 6, 7).

NW
[N
o\
o o
-
w oo
NGV
SN~—"

O N

a) Seien G eine Gruppe und U eine Untergruppe mit |G: U| = n. Dann gibt es einen
Homomorphismus ¢: G — X, mitker ¢ = (,_; U* (U* wie in Aufgabe V.6).
b) Seien |G| < oo und p der kleinste Primteiler von |G|. Ist H eine Untergruppe von
G mit |G: H| = p, so ist H ein Normalteiler von G.
Seien |G| = p*q, p und g Primzahlen. Es habe G keine normale Sylow p-Untergruppe
und auch keine normale Sylow g-Untergruppe. Dann ist G = Z,.
Zeige:
a) EsistX, zu einer Untergruppe von 4,.,, isomorph.

b) Aufer fiir n = 1 enthilt A,,, keine Untergruppe, die zu X, isomorph ist.

®Julius Wilhelm Richard Dedekind (*6.10.1831 Braunschweig, 112.2.1916 Braunschweig) war Profes-
sor in Braunschweig. Er verfasste grundlegende Arbeiten in der Algebra und der Mengenlehre.
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V.14 Seien A und B Normalteiler einer Gruppe G. Sind A und B beide auflgsbar, so ist auch
AB ein auflésbarer Normalteiler von G.

V.15 Seien G eine endliche Gruppe und N ein Normalteiler von G. Sei weiter P eine Sylow
p-Untergruppe von N. Dann gilt G = NN (P).

V.16 Sei G eine Gruppe mit |G| = 168. Wie viele Elemente der Ordnung 7 hat G, falls G keine
normale Sylow 7-Untergruppe hat?



Symmetrien

Gruppen sind die Axiomatisierung des Begriffes der Symmetrie. Wo immer Symme-
trien eine Rolle spielen, spielen auch Gruppen eine Rolle. Diese Sichtweise wollen
wir jetzt in den Mittelpunkt stellen. Jeder kann sich unter einer Symmetrie eines
geometrischen Korpers, also eines Wiirfels, Tetraeders usw. etwas vorstellen. Insbe-
sondere ist klar, dass die Symmetrien eine Gruppe bilden. Auch spielen Symmetrien
(Gruppen) bei der Abzdhlung von Mustern eine wichtige Rolle (siehe hierzu Polya,
1937 [24]).

Wir wollen im Folgenden einen v6llig anderen Typ von Symmetrien betrachten
und sehen, wie diese helfen kénnen, gewisse Probleme zu 16sen.

Wir betrachten zunédchst Symmetrien von C. Was bedeutet da aber Symmetrie?
Bei der Symmetrie eines geometrischen Korpers, z.B. eines Wiirfels, denken wir an
eine bijektive Abbildung, die die Struktur des Korpers erhdlt. Genau das Gleiche
stellen wir uns unter einer Symmetrie von C vor, also eine bijektive Abbildung o, die
die Struktur von C, namlich Addition und Multiplikation erhilt, d.h.

o(a+b)=o0(a)+o(b)

o(ab) = o(a)o(b)

fiiralle a, b € C. Dies haben wir unter dem Namen Automorphismus (siehe Seite 10)
bereits kennengelernt.

Esist (1) = 1 und 0(0) = 0 (siche Lemma 1.6).Ist n € N, so ist

Also ist 0(n) = n.Da 0(0) = 0 ist, ist
0=0(0)=0(n+(-n)) =o(n)+o(-n) =n+o(-n).

Somit ist o0(z) = z fiir alle z € Z.Nun ist 0(1) = o(aa™!) = o(a)o(a™?) fira € Z,
a # 0.Dann ist o(a™!) = a™}, also oQ = id. Als Ergebnis erhalten wir, dass jeder
Automorphismus von C den Kérper Q elementweise fest ldsst.

Wir sind aber weniger an Symmetrien von C als an Symmetrien von Polynomen
f € Q[x] interessiert. Eine solche sollte das Polynom invariant lassen. Auf Seite 40
hatten wir o(f) definiert. Wir haben gerade gezeigt, dass wir fiir Automorphismen o

G. Stroth, Elementare Algebra und Zahlentheorie
© Springer Basel AG 2012
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von C stets o(f) = f haben. Somit induzieren Symmetrien von C auch Symmetrien
jedes Polynoms f € Q[x]. Sie permutieren also die Nullstellen von f in C. Also
induziert o einen Automorphismus des Zerféllungskérpers von f in C.

Scheinbar kommt es somit nur auf die Automorphismen des Zerfallungskorpers
an. Deshalb definieren wir etwas allgemeiner:

Galoisgruppe. Sei f € Q[x] und K der Zerfillungskorper von f in C. Setze
Gy = Aut (K). Dann nennen wir Gy die Galoisgruppe von f.

Es ist Gy die gesuchte Gruppe von Symmetrien von f. Fiir die Berechnung von Ga-
loisgruppen ist das folgende Resultat sehr hilfreich.

Ist f € Q[x] irreduzibel, so operiert Gy transitiv auf den Nullstellen von f.

Beweis. Seien a,, a, Nullstellen von f.Nach Satz II.11 gibt es einen Isomorphismus
7:Q(a;) — Q(az) mit 7(a;) = a,. Nach Satz I1.19 kann 7 zu einem Automorphismus
des Zerfallungskorpers K von f erweitert werden.

Sei f € Qlx], f irreduzibel, und grad f = n. Dann ist Gy zu einer Untergruppe
von %, isomorph.

Beweis. SeiK der Zerfallungskorper von f in C.Ist o € Aut (K) mit o(a) = a fiir alle
Nullstellen a von f,so ist o = id,da K von Q und den Nullstellen von f erzeugt wird.
Also operiert Gy treu auf den Nullstellen. Da f hochstens n verschiedene Nullstellen
hat, ist Gy zu einer Untergruppe von X, isomorph.

Sei f = x* =2 € Q[x]. Nach dem Satz 1.28 von Eisenstein mit p = 2 ist f
irreduzibel. Die Nullstellen in C sind /2, —+/2, ix/2, —i~/2, wobei /2 € R sei.
Also ist K = Q(v/2, i) der Zerfallungskorper.

Sei 1 das Bilden des konjugiert Komplexen. Dann ist 7 € Aut (K).
Nach Satz VI.1 gibt es ein 0 € Aut (K) mit

o(v2) = iv2.

Esist i eine Nullstelle von x? + 1 = g.Da o (g) = g ist, ist auch o (i) eine Nullstelle
von g. Somit ist 0(i) = i oder o(i) = —i. Indem wir notfalls o durch ot ersetzen
(beachte 01(+/2) = i/2) kénnen wir o(i) = i annehmen. Dann ist

o(iV2) = io(¥/2) = iiv/2 = =2

und

o(v2) = —iv/2.
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Damit entspricht o einem 4-Zyklus auf den Nullstellen. Es ist
101(v/2) = —iv2 = 07 (V2).
Das liefert o7 = 0~'. Damit haben wir 8 Elemente aus Gy gefunden.
{0,0% 0% id, 1,01,0%,0°1) =U.
Nach Folgerung V1.2 ist Gy eine Untergruppe von Z.

Offenbar ist U eine Gruppe. Nach dem Satz von Lagrange ist Gf = U oder
Gf = 24.

Sei Gy = Z,. Dann sind alle 3-Zyklen in Gy. Wir betrachten den 3-Zyklus w
aus X, mit

@(V2) = V2, @0(=v/2) = iv2, @(iv2) = —iv2, o(=iv2) = —v/2.

Da w € Gy ist, ist wQ = id, d.h. @(—1) = —1 und somit ist mit (0({’/2) =2

auch w(—+v/2) = —v/2, ein Widerspruch zur oben angenommenen Operation
von w. Dies zeigt
U = Gy.

Im Allgemeinen ist die Berechnung der Galoisgruppe eines Polynoms keine leich-
te Sache. Hier war uns zur Hilfe gekommen, dass wir die Nullstellen kannten. Wir
werden am Ende dieses Kapitels sehen, dass man durchaus auch die Galoisgruppe
berechnen kann, ohne auch nur eine einzige Nullstelle zu kennen.

Was haben wir von der Kenntnis der Galoisgruppe G¢? Galois beschiftigte sich
mit der Frage nach der Auflosbarkeit von Polynomen durch sogenannte Radikale,
dies bedeutet grob gesprochen, ob man die Nullstellen von Polynomen als Aus-
driicke schreiben kann, die nur Addition, Subtraktion, Multiplikation, Division und
Wurzelausdriicke benutzen. Bekannt ist sicherlich jedem die Losungsformel fiir qua-
dratische Gleichungen

x*+ax+b.

Die Nullstellen x;, x, kénnen wie folgt beschrieben werden:
1 1
x1=2(—a+\/a2—4b), x2=2(—a—«/a2—4b).

Ahnliche Formeln gibt es auch fiir die Gleichungen vom Grad 3 und 4. Wir wollen
hier nur noch Grad 3 betrachten, also

x° + ax* + bx + c.
Durch eine Transformation x — x — § kann man diese immer in die Form
X +px+q
bringen. Hierfiir wollen wir die Nullstellen bestimmen. Es gilt die folgende Identitit:

w+v)? -3uwuw+v)- @ ++) =o0.
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Setzen wir 3uv = —p und —(u*> + v*) = g dann ist x = u + v eine Lésung von

X +px+q=0.
Das fiihrt zu den beiden Gleichungen:
1 v+u® = —q
(2) —uv = P

Wir quadrieren (1) und bilden die dritte Potenz von (2), die dann noch mit 4 multi-
pliziert wird. Das liefert

1 v$+2u¥v+u® = czz
(2) —4u3y3 = 421’7.

Addition der beiden Gleichungen liefert

)= 4p

(w—-v)=q+ s
und dann
Py = \/27q2 +4p3.
27
Zusammen mit v + u> = —q erhalten wir dann

3 27q% + 4p? 3 27q% + 4p3
u=\/—q+\/ C 4 und v=\/—q—\/ q+p.
2 108 2 108

Dies ist nicht eindeutig, da es mehr als eine dritte Wurzel gibt. Sei @ eine primitive
dritte Einheitswurzel, also

_ —1+iy/3

= ,

Dann ist v* = (wv)’ = (@?v)*. Damit haben wir jeweils drei dritte Wurzeln, was
zunidchst 9 Paare (u, v) ergibt. Wir wihlen hiervon die 3 Paare (u, v), die zusétzlich

[69]

3uv = —p

erfiillen. Sei (u;, v;) ein solches zuldssige Paar. Dann sind die Paare (wu;, @*v;) und
(w’u;, @v;) auch zuldssige Paare. Die Nullstellen der Gleichung x* + px + g = 0
sind nun

X1 uy + v

Xy = U + (I)ZV]

X3 = @iy + vy,

die offenbar von der Auswahl von (u;, v;) unabhéngig sind. Man nennt diese Form
die Cardano'-Form.

1Gerolamo Cardano (*24.9.1501 Pavia, 121.9.1576 Rom) war Arzt, Philosoph, Techniker, Mathemati-
ker, 1523 Gymnasiallehrer fiir Mathematik, 1525 Rektor der Universitit Padua, 1543 Professor fiir Medizin
in Pavia, 1562 Professor in Bologna, 1570 wegen Ketzerei eingesperrt. Sein mathematisches Hauptwerk
besteht in den Auflésungsformeln fiir kubische Gleichungen, was ein 2000 Jahre altes Problem lste. Ein
weiteres Arbeitsgebiet sind Anfinge der Wahrscheinlichkeitsrechnung. Philosophisch stand er Galilei sehr
nahe. Er hat auch viele technische Erfindungen gemacht. Die kardanischen Aufhdngungen sind nach ihm
benannt, aber vermutlich ilter.
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Interessant hierbei ist, dass die komplexen Zahlen (in w) auftauchen. Zum ersten
Mal wurden Mathematiker mit den komplexen Zahlen im 16. Jahrhundert konfron-
tiert, und zwar beim Losen von Gleichungen. Die einfachste, bei denen man auf
Wurzeln negativer Zahlen st6f3t, sind die quadratischen, z.B.

2 +1=0.

Trotzdem waren es nicht die quadratischen, sondern die kubischen Gleichungen, die
die Beschiftigung mit den komplexen Zahlen erzwungen haben. Betrachten wir z.B.

K +2=x.

Wir interpretieren diese Gleichung als den Durchschnitt der Geraden y = x mit der
Parabel y = x? + 2.

y=x*+2

Fiir die Losung dieser Gleichung erhalten wir mit den obigen Formeln

1
x = 2(1 +/=7).

Dies ist offenbar innerhalb der reellen Zahlen ein sinnloser Ausdruck, da man aus
—7 in R keine Quadratwurzel ziehen kann. Diese Sinnlosigkeit ist aber nicht beun-
ruhigend, da sich die beiden Kurven y = x* + 2 und y = x in der Tat nicht schneiden.
Die Idee, den Zahlenbereich zu erweitern, um auch in diesem Fall eine Losung zu
haben, ist eher ein moderner Ansatz, aber nicht der, der die Einfiihrung komplexer
Zahlen historisch nahegelegt hat.

Ganz anders sieht dies bei Gleichungen dritten Grades aus. Rafael Bombelli®
beschiftigte sich 1572 mit der Gleichung

x> = 15x + 4.

Die Formel von Cardano liefert dann fiir eine Nullstelle

u=d2+\/—121,v=\72—\/—121.

2Rafael Bombelli (*1526 Bologna, 11572 Rom) war Ingenieur und Mathematiker, gab 1572 ein fiinf-
bindiges Werk zur Algebra heraus, das das mathematische Wissen seiner Zeit zusammenfasste, die beiden
letzten Bénde sind erst 1929 aus seinem Nachlass erschienen. Diese Biicher enthalten die Gleichungstheo-
rie und zum ersten Mal sowohl negative als auch imaginire Zahlen.
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Also
X = \3/2 ++/-121 + \72 - /-121,
wobei zu beachten ist, dass uv = 5 sein muss.

Wieder haben wir den sinnlosen Ausdruck +/—121. Allerdings entspricht x; der
Losung x; = 4. Die Kurven schneiden sich in der Tat. Hier hat man also ein Problem,
da man bei Benutzung der Formeln auf Ausdriicke gefithrt wird, die Quadratwurzeln
aus negativen Zahlen enthalten, aber durchaus reellen Lésungen der Gleichung ent-
sprechen. Wenn man nun einfach so fortfahrt und mit der ,,imaginédren® Zahl J-121
so rechnet, wie man es von reellen Zahlen gewohnt ist, und (v/—121)% = —121 setzt,
so kann man in der Tat

\3/2+~/—121+\3/2—«/—121 =4

nachrechnen. Auf diese Weise haben die italienischen Ingenieure des 16. Jahrhun-
derts erfolgreich mit den komplexen Zahlen gerechnet. Allerdings waren diese ,ima-
gindren® Zahlen zunéchst nicht sonderlich beliebt. Man konnte sie zwar nicht einfach
als Unfug abtun, man konnte damit ja reelle Lsungen von Gleichungen bekommen,
auf der anderen Seite existierten sie aber nicht. Nicht alle Mathematiker haben solche
Rechenausdriicke erlaubt. Erst durch Gaufl und Hamilton® wurden sie allgemein an-
erkannt, nachdem sie als Paare reeller Zahlen mit gewissen Rechenregeln eingefiihrt
wurden.

Die Frage, der wir jetzt nachgehen wollen, ist, ob solche Formeln auch fiir andere
Grade als 2 oder 3 existieren bzw. fiir welche Polynome es diese gibt. Fiir manche gilt
dies natiirlich. Die Nullstellen von x® — 1 sind Wurzelausdriicke.

Niels Abel* hatte 1824 gezeigt, dass es fiir die allgemeine Gleichung vom Grad 5
keine solche Formeln gibt, und 1826 [1], dass dies auch fiir die allgemeine Gleichung
vom Grad mindestens 5 richtig ist. Galois wollte aber dariiber hinaus verstehen,
warum es fiir manche Gleichungen solche Formeln gibt, fiir andere aber nicht. Hier-
auf gab er eine Antwort. Das Neue dabei war, dass die Antwort nicht irgendwelche
Bedingungen an die Koeffizienten a; des Polynoms f war, wie sie seine Vorgdnger
gesucht hatten, sondern eine Eigenschaft der Galoisgruppe Gy. Der Hauptsatz ist:

Die Gleichung f = 0 mit f € Q[x] ist genau dann durch Radikale auflosbar,
d.h., die Nullstellen lassen sich durch arithmetische Operationen und Wurzeln
ausdriicken, falls Gy auflosbar ist.

Fiir den Beweis ist es sinnvoll, den Begriff der Galoisgruppe eines Polynoms etwas
zu verallgemeinern.

3Sir William Rowen Hamilton (*4.8.1805 Dublin, 12.9 1865 in Dunsink bei Dublin) wurde bereits 1827
vor Beendigung seines Studiums Professor fiir Astronomie am Trinity College in Dublin. Sein Hauptar-
beitsgebiet war die mathematische Physik, beriihmt wurde er durch die nach ihm benannte Hamiltonsche
Mechanik und die Entdeckung der Quaternionen.

4Niels Henrik Abel (*5.8.1802 Finn6 (Norwegen), 16.4.1829 Froland) war als Stipendiat in Paris, Berlin
und Italien. Er leistete bedeutende Beitrége auf den Gebieten der algebraischen Gleichungen, elliptischen
Kurven und Reihenlehre.
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Seien L C CeinKérperundf € L[x].Dann verstehen wir unter der Galoisgruppe
Gy beziiglich L die Menge aller Automorphismen eines Zerfallungskorpers von f iiber
Lin C, die L elementweise festlassen. Fiir L = Q ist dies genau unsere Definition der
Galoisgruppe.

Die folgenden Aussagen sind zentral in der Galoistheorie. Ein Beweis wiirde den
Rahmen dieses Buches allerdings sprengen.

Bemerkung. Seien L C C, f € L[x] und K der Zerfillungskorper tiber L von f in C.
Sei Gy die zugehorige Galoisgruppe. Galois zeigte

a) Es gibt eine bijektive Beziehung zwischen den Untergruppen U von Gy und
den Zwischenkorpern M mit L C M C K. Jeder Untergruppe U wird dabei
Fix (U) = {s € K|u(s) = s fiir alle u € U} zugeordnet.

b) Dass U normal in Gy ist, ist dquivalent dazu, dass es zu M = Fix (U) ein
g € L[x] gibt, so dass M der Zerféllungskorper von g ist.

c) Ist U normal in Gy. So ist U die Galoisgruppe von f tiber M = Fix (U) und
Gy /U ist die Galoisgruppe von g iiber L, wobei g das Polynom aus b) sei.

d) Isth € L[x],s0 dass K ein Zerfallungskorper von h ist, so ist Gy = Gj.

Diese Aussagen werden zum Beweis von Satz V1.3 eingesetzt, den wir gleich skizzie-
ren wollen. Dabei sind b) und c) wesentlich, da sie Induktionsbeweise erméglichen.

Beweisskizze von VI.3. Sei K der Zerfillungskorper von f iiber Q in C. Ist die Glei-
chung f auflosbar, so ist dies gleichwertig dazu, dass es eine Kette

QCK C---K =K

gibt, so dass K; = K;_,(¥/b;) fiir geeignete b; € K;_; ist. Man beachte, dass die
Ausdriicke fiir die Losungen ineinander geschachtelte Wurzelausdriicke sind. Indem
wir die Kette noch verfeinern, kénnen wir n; als Primzahl wihlen. Wir wollen nun
noch Q um alle n;-ten Einheitswurzeln vergrofiern, also die Nullstellen von x™ — 1
(auch bei den Losungsformeln fiir die Gleichung dritten Grades gehen ja dritte
Einheitswurzeln ein, selbst wenn die Nullstellen alle reell sind). Also sei L dieser
groflere Korper und Ly der Zerféllungskorper von f iiber L in C. Dann haben wir
wieder eine Kette

L=L,C---CL =L mitL; = Li.y(¥/by), b; € Liy.
Es hat x™ — 1 nach Satz I1.23 paarweise verschiedene Nullstellen, also genau n; viele.
Da alle n;-ten Einheitswurzeln in L;_, liegen und die Nullstellen von
x”" - bi

gerade € ¥/b; mit einer festen Nullstelle %/b; und beliebiger n;-ter Einheitswurzel €
sind, ist L; Zerféllungskorper von x™ — b; tiber L;_;.

Die Elemente der Galoisgruppe von x™ — b; iiber L; bilden «/ bi = 'ej %/b; fiir
geeignetes j ab, also sind sie einfach die Multiplikation mit €. Da €'*7 = &' ist, ist die
Gruppe abelsch und damit auflgsbar.
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Wir setzen nun i = 1. Nach der obigen Bemerkung b) gibt es ein M < Gy, so dass
Fix (M) = L, ist. Nun ist nach Bemerkungen c) und d) Gy/M die Galoisgruppe von
x™ —b, tiber L,d.h. abelsch,und M ist die Galoisgruppe von f iiber L,.Da f auch iiber
L, auflosbar ist, folgt per Induktion, dass M auflosbar ist. Nun folgt die Behauptung
mit Satz V.19.

Wir betrachten nun die umgekehrte Richtung, also Gy ist auflésbar. Wie eben sei
L der Korper, der alle notwendigen Einheitswurzeln enthélt. Nach Lemma V.20 gibt
es M < G mit |G: M| = p prim. Sei L; = Fix (M). Dann ist M die Galoisgruppe von f
iiber L;. Da M nach Satz V.19 auflosbar ist, gibt es per Induktion eine Kette

L €L C - CL =LymitL; = Liy(Vb), bi € Li-y.

Nach der Bemerkung c) ist G/M die Galoisgruppe eines Polynoms g iiber L, wobei
L, der Zerfallungskorper von g tiber L ist. Also geniigt es, die Behauptung fiir L, = L¢
und damit fiir |Gy| = p zu zeigen.

Dies geht wie folgt: Sei € eine primitive p-te Einheitswurzel in L, die per Kon-
struktion von L existiert,und Gy = (o). Wir betrachten das lineare Gleichungssystem
(auch Lagrange-Resolvente genannt):

p-1
(%) ZGijai(x) =0,j=0,...p—-1.
i=0
Dieses System hat die Vandermonde® als Determinante, also nur triviale Losungen.
In () spielt die erste Gleichung eine besondere Rolle. Wir wollen annehmen, dass
es ein b gibt, das alle Gleichungen bis auf die erste 16st, und dies zum Widerspruch
fithren. Seialso b € L; \ L mit
p-1
> €ioi(b) = 0 fiirallej # 0.
i=0

Dann ist

p-1 p-1 ,p-1
Zo(b) Z(Zé&;(b)): ( Eij)oi(b).

i=0 =0

-

Isti # 0, so ist Z 0 ! ¢ii die Summe aller p-ten Einheitwurzeln, also der Koeffizient
von x”~! in x — 1. Dies ergibt ZP o €7 =0 fiir alle i # 0. Also ist

p-1 p-1
> i) = (Z ej'o) a’(b) = pb
i=0

j=0
Da a(z 0 oi(b)) = Zl 0 0’+l(b) = 10 i(b) = Z Lo i(b) ist (beachte dabei
0 = of =id),ist 31, ' oi(b) e Fix (Gy). Somlt ist
pb € Fix (Gy).
5 Alexandre-Théophile Vandermonde (*28.2.1735 Paris, 11.1.1796 Paris) war Musiker, Mathematiker

und Chemiker. Er wurde 1771 in die Académie de Sciences aufgenommen. Sein Name wird mit der
Determinantentheorie verbunden.
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Da wir nach der Bemerkung a) eine bijektive Zuordnung zwischen den Untergrup-
pen und den Zwischenkérpern haben und nach dem Satz von Lagrange G nur die
Untergruppen {id} und Gy hat, gibt es auch nur die Zwischenkoérper L und L¢, so dass

p-1

> oiby=pbel

i=0
ist. Aber b war nicht in L, ein Widerspruch.
Wiéhle nun b € L; \ L beliebig. Dann gibt es ein j > 0, so dass

p-1
Z €’o'(b) #0
i=0
ist. Indem wir notfalls € durch eine geeignete Potenz €* ersetzen, kénnen wir

p-1
c=> €a'(b)#0

i=0
annehmen. Es ist
p-1 p-1
o/(c) = D €a™i(b) =D o™ (b) = ce .
i=0

i=0
Beachte o(¢) = €/, da € e L ist. Also ist
€ =col(c)™.

Es ist weiter
p-1 p-1 p-1
o[ =] @) =[] .
j=0 j=0 j=0

Also ist wieder Hf;ol o/(c) € L. Weiter ist
p-1 p-1 p-1
L> HEJ = l_lccrj(c)_1 = cP(H ol (c)) 7.
j=0 j=0 =0
Dann ist aber auch
c?el.

Dal # € = co(c) list,ist o(c) # c,somitist ¢ ¢ L. Dann ist L(c) ein Zwischenkdrper
ungleich L und somit L(c) = L¢, d.h.

Ly = L(¥/cP) mit ¢f e L.
Damit ist die Behauptung bewiesen.
Die hier zum ersten Mal angewandte Methode war spéter noch in vielen ande-
ren Gebieten fruchtbar. Man beweist Eigenschaften eines Objektes, indem man die

Symmetrien dieses Objektes studiert und die gewiinschten Resultate in Verbindung
zu Eigenschaften der Symmetriegruppe setzt.
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Nach Satz V.22 ist 2, fiir n > 4 nie mehr auflosbar. Man kann Polynome iiber
konstruieren, die als Galoisgruppe die £, haben, weshalb es fiir n > 4 keine allgemein
giiltigen Formeln geben kann. Wir wollen fiir n = 5 ein solches Polynom angeben.

Seif = x> — 6x + 3 € Q[x]. Dann ist Gy = Zs.

Beweis. Nach dem Satz von Eisenstein mit p = 3 ist f irreduzibel. Es ist
fl=5x"-6#0

und somit hat nach Satz I1.23 f fiinf verschiedene Nullstellen. Nach Satz VI.1 ist Gy
hierauf transitiv. Damit ist 5 ein Teiler von |Gy|. Nun ist weiter

f(_z) = _177f(_1) = 8’f(0) = 35f(1) = _2’f(2) =23.

Also hat f mindestens drei reelle Nullstellen. Da die Nullstellen von f nur +/6/5 sind
und diese die reellen Nullstellen von f trennen, hat f genau drei reelle Nullstellen.
Somit hat f genau zwei komplexe Nullstellen x;, x,. Es ist x, = x; das konjugiert
Komplexe. Damit ist ~ ein nicht trivialer Automorphismus 7 des Zerfallungskorpers
von f.Wir identifizieren die Nullstellen x;, x,, x3, x4, x5 mit 1, 2, 3, 4, 5.Dann kénnen
wir also annehmen

1=(1,2) € Gr,0 =(1,2,3,4,5) € Gy.
Es ist

oot =(2,3)
01072 =(3, 4)
o’to™® =(4, 5)

olro™ =(5,1).

In X, haben wir
1, m(m,m+1)1,m)=(1,m+1).

Also haben wir (1, 2), (1, 3), (1,4), (1, 5) € Gy. Esist (1, i)(1,)(1, i) = (i, j). Damit
sind alle Transpositionen in Gy. Nach Satz V.12 ist dann G = 2.

Zum Ende dieses Abschnittes noch ein paar Worte zu der Person Evariste Galois.
Er wurde 1811 geboren und starb 1832 in einem Duell. Mit 15 Jahren publizierte
er bereits seine ersten Arbeiten. Wie im politischen war er auch im mathemati-
schen Denken revolutionér und hatte es schwer, von seinen Zeitgenossen verstanden
zu werden. Seine erste Arbeit auf dem Gebiet der Auflosbarkeit von Polynomglei-
chungen reichte Galois 1829 bei der Akademie der Wissenschaften in Paris ein. Der
Referent Cauchy lehnte diese und eine acht Tage spéter zum gleichen Thema ein-
gereichte Arbeit ab. Die Manuskripte sind leider verschollen. Das gleiche Schicksal
hatte auch die 1830 anlifilich des Wettbewerbs ,,Grof3er Preis der Mathematik ein-
gereichte Arbeit. Im Jahre 1831 sandte Galois zum letzten Mal eine Arbeit an die
Akademie. Zu Gutachtern wurden Poisson und Lacroix bestellt. Beide waren aller-
dings mehr an Physik als an Algebra interessiert. So lehnten sie nach fiinf Monaten
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die Arbeit mit der Begriindung ab, dass sie die Bedeutung der Arbeit nicht sehen.
Das Werk Galois wurde von seinen Zeitgenossen weder verstanden noch gewiirdigt.
Es wire verlorengegangen, wenn er nicht am Vorabend seines Duells seine Resultate
in einem Brief an seinen Freund Auguste Chevalier zusammengefasst hétte. Ob das
Duell ein politisches war oder es um eine Frau ging, wird wohl nie geklédrt werden.
Erst 1846 wurde sein Nachlass herausgegeben. Als Cauchy seine im alt hergebrach-
ten Stil verfassten Arbeiten zur Auflosbarkeit von Polynomgleichungen publizierte,
erkannte Liouville die wesentliche Bedeutung der Galois’schen Arbeiten und gab
sie 1846 heraus. Fiir weitere Informationen zu diesem Themenkreis sei auf die sehr
lesenswerte Biographie von Rigatelli (1996, [25]) verwiesen.

Ubungsaufgaben

VL1 Bestimme die Symmetriegruppe des Tetraeders. Ist dies eine schon bekannte Gruppe?

V1.2 Seien f € Q[x] und K C C der Zerfillungskorper von f. Es habe f paarweise ver-
schiedene Wurzeln in K. Ist Gy transitiv auf den Nullstellen von f, so ist f irreduzibel
iiber Q.

V1.3 Sei K C C ein Zerfillungskérper von f = x° — 2 € Q[x]. Zeige, dass Gy = 2 ist.

V14 Sei K C C der Zerfillungskorper von f € Q[x]. Weiter sei Gy eine endliche einfache
Gruppe. Ist Q € M C K und M Zerfillungskorper eines Polynoms g € Q[x], so ist
M =QoderM =K.



Konstruktion mit Zirkel
und Lineal

In diesem Kapitel wollen wir die Resultate iiber algebraische Kérpererweiterungen
auf Probleme der Geometrie anwenden. Dazu gehort zunéchst die Ubersetzung geo-
metrischer Fragestellungen in die Sprache der Algebra.

Sei Py C IR? eine Punktmenge. Wir betrachten die folgenden zwei Operationen:
(L): Durch zwei Punkte aus P, ziehe eine Gerade.

(Z): Schlage einen Kreis um einen Punkt aus Py. Hierbei sei der Radius der Abstand
zweier Punkte aus P,.

Achtung! Unser Lineal (L) hat keine Einteilung. Man kann damit also keine Strecken
fester Linge, z.B. 2 cm, abtragen.

Konstruierbar. Sei P, C R? eine Punktmenge.

a) Die Schnittpunkte von Geraden und Kreisen, die mit (L) und (Z) konstru-
iert werden, nennen wir im ersten Schritt aus Py konstruierbare Punkte.

b) EinPunktr € R? wird von P, aus konstruierbar genannt, falls es eine Kette
von Punkten ry, ..., r, = r gibt, so dass jedes r;,i = 1,..., n, im ersten
Schritt aus der Menge Py U {ry, ..., ri_;} konstruierbar ist.

¢) Mit Ky bezeichnen wir den Unterkérper von R, der von den Koordinaten
der Punkte von P, erzeugt wird.

d) Seir,...,rn = 1,1 = (x;, i), im ersten Schritt aus Py U {ry, ..., ri_1}
konstruierbar. Dann setze

Ki=Ki.i(xi, p0),i=1,...,n.

Wir haben also in d) eine Kette Ky C K; C -+ C K,, C R von Korpern, die den
Koordinaten der Punkte zugeordnet sind. Diese Kette spiegelt die einzelnen Schritte
der Konstruktion des Punktes r wider.

Alles ist natiirlich von der Startmenge P, abhidngig. Wir werden ab jetzt stets an-
nehmen, dass (0, 0) und (1, 0) in Py sind. Dadurch sind dann die Koordinatenachsen
konstruierbar. Wir werden aber sehen, dass noch mehr gilt.

G. Stroth, Elementare Algebra und Zahlentheorie
© Springer Basel AG 2012

Definition



Lemma VII.1

Lemma VII.2
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VIl Konstruktion mit Zirkel und Lineal

Sei Py C P C R2 Dann ist (x, y) genau dann aus P konstruierbar, wenn (0, x)
und (0, y) aus P konstruierbar sind.

Beweis. Aus (0, 0) und (1, 0) kénnen wir die Koordinatenachsen konstruieren. Ist
(x, y) gegeben, so konnen wir die Parallelen durch (x, y) zu den Achsen konstruieren.
Also kénnen (0, x) und (0, y) konstruiert werden.

(0, x)
0,y) (xy)
(0, 0) (x, oﬂ (1,0)

Sind umgekehrt (0, x) und (0, y) gegeben, so kénnen wir daraus (x, y) konstruieren.
Wir kénnen zunichst (x, 0) konstruieren. Der Schnittpunkt der Senkrechten durch
(x,0) und (0, y) liefert dann (x, y).

Sei Py C P C R Sind (0, x) und (0, y) aus P konstruierbar, so auch die Punkte
(0, x = y), (0, xy) und (0, x/y)(y # 0).

Beweis. Der Kreis um (0, y) mit Radius 0x schneidet die y-Achse in (0, x + y) und
(0, x — y). Somit sind (0, x =+ y) konstruierbar.

(0, x
0,y

. (a~
(1,0) (u,0)

Sei y # 0. Verbinde (0, y) mit (1,0). Danach ziehe eine Parallele zur Geraden
(0, ¥)(1, 0) durch (0, x). Dann erhalten wir den Schnittpunkt (u, 0) mit der x-Achse.
Esist u/x = tana = 1/y.Das liefert u = x/y. Damit ist auch (0, x/y) konstruierbar.

Wiéhle nun x = 1.Ist y # 0, so haben wir gerade gezeigt, dass (0, 1/y) konstru-
ierbar ist. Aus (0, x) und (0, 1/y) kann nun auch (0, x(1/y)™!) = (0, xy) konstruiert
werden.

Sei Py C R? mit (0, 0), (1, 0) € P,. Sind x,y € Ko, so ist (x, y) aus Py konstruier-
bar.

Beweis. Wir wollen die Behauptung aus Lemma VII.1 und Lemma VIL.2 folgern.
Dazu setzen wir dort P = P,. Sei zunidchst (x, y) € Py. Nach Lemma VII.1 sind dann
(0, x) und (0, y) aus Py konstruierbar. Es wird K, von den Koordinaten der Punkte aus
Py erzeugt. Nach Lemma VII.2 sind somit alle (0, k) mit k € K, aus P, konstruierbar.
Nach Lemma VII.1 sind dann alle (x, y) mit x, y € K, aus Py konstruierbar.

Da der Korper K| stets Q enthilt, sind also alle Punkte mit rationalen Koordinaten
konstruierbar.
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Nun stellen wir den Zusammenhang zu algebraischen Korpererweiterungen her.

SeiPy C R>undr = (x, y) im ersten Schritt aus Py konstruierbar. Dann sind x
und y Nullstellen quadratischer Polynome mit Koeffizienten in K.

Beweis. Es gibt drei Fille.
(1) rist Schnittpunkt zweier Geraden.
(2) r ist Schnittpunkt eines Kreises mit einer Geraden.
(3) r ist Schnittpunkt zweier Kreise.

Wir wollen nur den zweiten Fall betrachten. Die anderen seien dem Leser iiberlassen.

Wir haben eine Gerade durch die Punkte A = (a, b) und B = (c, d) und einen
Kreis mit Mittelpunkt C = (¢, s) und Radius 7, der der Abstand zwischen (a;, a,) und
(bls bZ) iSt) ar, a, bl’ b2) t,s,a, b’ (o5} d € KO-

B
(blx bZ)
A @)

Es gilt nach Pythagoras
(b = a1)* + (a = by)* = 1* € K,.

Die Kreisgleichung ist
(x—1)*+ (y- s)? =12

Die Geradengleichung ist
(x—a)(s—Db)=(y—b)(t—a).

Das liefert fiir den Schnittpunkt (x-Koordinate)

2
(x—t)2+(E':Z;(x—a)ub—s)) =2,

Damit ist x Nullstelle einer quadratischen Gleichung. Genauso ist y Nullstelle einer
quadratischen Gleichung.

Der Fall (3) kann auf Fall (2) zuriickgefiihrt werden.

K, K,

g

Statt K; schneidet K, kann auch K; schneidet g betrachtet werden.

Lemma VIl.4



Satz VIL.5

Satz VIl.6

Satz VII.7

VIl Konstruktion mit Zirkel und Lineal

Als Konsequenz erhalten wir

Sei Py C R und r = (x,y) aus Py konstruierbar. Dann sind [Ky(x): K] und
[Ko(y): Ko] 2-Potenzen.

Beweis. Seiry,...,r, = r eine Kette von Punkten im R?, wobei die r; = (x;, yi) im
ersten Schritt aus Py U {ry, ..., r,_1} konstruierbar seien. Nach Lemma VII.4 haben
die x; und y; ein Minimalpolynom vom Grad hochstens zwei iiber K;_;. Also ist nach
Satz I1.12 [Kj_1(x;): Ki—1] = 1 oder 2 und [K;—;(y;): Ki—1] = 1 oder 2. Der Gradsatz
liefert nun

[Ki:Ki—1] = [Kio1(xi, yi): Kis ] =

[Ki-1(xi, yi): Kic1 (x0)][Ki-1(x:): Ki-1] = 1, 2 oder 4.
Dies bedeutet, dass [K;: K;_;] eine 2-Potenz ist. Da nach dem Gradsatz
[Kn:KO] = [Kn:Kn—I][Kn—I:Kn—Z] cee [KI:KO]

ist, ist [K,: Ko] eine 2-Potenz. Wegen

[K: Ko(x)][Ko(x): Ko] = [Ky: Ko] und
[K: Ko)1[Ko(y): Kol = [Ky: Kol

sind [Ko(x): Ko] und [Ko(y): Ko] 2-Potenzen.

Satz VIL5 kann schon benutzt werden, um zu zeigen, dass gewisse Dinge nicht
konstruierbar sind.

Die Verdoppelung des Wiirfels ist nicht moglich. Das heif$t, ist der Einheitswiirfel
gegeben, so ist es nicht moglich, die Seite eines Wiirfels mit doppeltem Volumen
aus den Daten des gegebenen Wiirfels, also Py = {(0, 0), (1, 0)}, zu konstruieren.

Beweis. Wir miissen aus einem Wiirfel mit einer Ecke auf (0, 1) einen neuen kon-
struieren, der eine Ecke auf (0, v/2) hat. Also ist r = (0, +/2) aus P, = {(0.0), (1, 0)}
zu konstruieren. Das heif3t, wir haben Q = Kj. Ist  konstruierbar, so ist nach Satz
VIL5 [Q(+/2): Q] eine 2-Potenz. Aber x> — 2 ist nach Eisenstein irreduzibel, d.h.

[Q(/2):Q] =3

nach Satz I1.12. Dies ist ein Widerspruch.

Der Winkel 60° = 1t /3 kann nicht gedrittelt werden.

Beweis. Ist die Drittelung des Winkels 7 /3 moglich, so kann auch der Punkt (a, 0)
mit a = cos 71/9 konstruiert werden. Es ist (cos 71 /3, 0) = (;, 0) € P,.
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(0,1)

|

(0, 0) (a, 0)
Dann ist aber auch der Punkt (y, 0) mit y = 2 cos /9 konstruierbar. Mit Satz VII.5
erhalten wir, dass [Q(y): Q] eine 2-Potenz ist. Es gilt die Formel
cos /3 =4cos’ /9 —3cosm/9,

also

und dann auch

¥y =3y-1=0.
Da =1 keine Nullstellen von x> — 3x — 1 sind, ist x> — 3x — 1 € Q[x] irreduzibel. Also
gilt nach Satz I1.12 [Q(y): Q] = 3. Damit ist (y, 0) nicht konstruierbar.

Die Quadratur des Kreises ist nicht maglich.

Beweis. Dies folgt aus der Tatsache, dass 7 nicht algebraisch ist.

Diese Resultate waren alle von destruktiver Art. Wenn wir beweisen wollen, dass
etwas konstruierbar ist, miissen wir also anders vorgehen, insbesondere eine Art
Umkehrung von Satz VIL.5 beweisen. Einen ersten Schritt in diese Richtung liefert
der nichste Satz.

Sei Py eine Punktmenge mit (0, 0), (1,0) € Py. Sei Ky C L C R mit [L: Ko] = 2,
so ist jeder Punkt (x, y) € L? aus Py konstruierbar.

Beweis. Esist L = Ky(a), wobei a Nullstelle eines Polynoms x* + px + q € Ko[x]
ist. Daar € Rist,ist p* —4q > Ound o = )} (—p + V/P? — 4q). Kann man (0, /7) fiir
alle r € Ky, r > 0 aus P,y konstruieren, so setze P = P, U {(0, \/pz —4¢q)}.Dann st L
der von den Koordinaten der Punkte aus P erzeugte Kérper. Nach Lemma VIIL.3 sind
dann alle (x, y) € L? aus P und damit auch aus P, konstruierbar.

Wir zeigen nun, dass (0, 4/r) fiir r € Ko, r > 0, konstruierbar ist. Wieder kénnen
wir die Koordinatenachsen konstruieren. Da r € K ist, konnen wir nach Lemma
VIL.3 auch (-1, 0) und (r, 0) konstruieren.

(0,s)

(-1,0) (r, 0)

Satz VII.8

SatzVII.9



Satz VIL.10

Folgerung VII.11

Lemma VII.12

VIl Konstruktion mit Zirkel und Lineal

Wir konnen die Strecke (-1, 0)(r, 0) halbieren und dann den Kreis um diesen Mit-
telpunkt mit (-1, 0)(r, 0) als Durchmesser konstruieren. Dieser trifft die y-Achse im
Punkt (0, s). Somit ist der Punkt (0, s) konstruierbar. Wir zeigen jetzt, dass s = /r
gilt.Essinds?+1 = 2, s> +r* = v und * +u? = (r+1)%. Alsoist (r+1)* = 25>+ 14712,
dh.s = /r.

Wir wollen uns nun noch der Konstruktion des reguldren n-Ecks zuwenden.
Dabei sei immer P, C Q2. Das n-Eck sei dem Einheitskreis einbeschrieben.

Esseienn, m € N,

a) Ist das reguliire n-Eck konstruierbar, so ist fiir jeden Teiler m von n auch
das regulire m-Eck konstruierbar.

b) Sind sowohl das reguliire n-Eck als auch das regulire m-Eck konstruierbar
und ist ggT (n, m) = 1, so ist das regulire nm-Eck konstruierbat.

Beweis.

a) Setze d = n/m.Verbinden wir jede d-te Ecke des reguldren n-Ecks, so erhalten
wir ein regulédres m-Eck.

b) Nach Annahme ist ggT (n, m) = 1. Damit gibt es a, b € Z mit am + bn = 1.
Dies kénnen wir auch als

1
=a +b-
mn n

schreiben.

Also konnen wir aus 27 /n und 27 /m auch 27 /nm konstruieren, indem wir
zundchst den Winkel 271 /n genau a-mal und dann b-mal den Winkel 271 /m abtragen,
wobei wir dies im Uhrzeigersinn oder Gegenuhrzeigersinn machen, je nachdem, ob
a bzw. b positiv oder negativ ist.

Sein € N und pi" ---p% die Primfaktorzerlegung. Das regulire n-Eck kann
genau dann konstruiert werden, wenn jedes regulire p}'-Eck konstruierbar ist.

Das reguldre 2*-Eck ist konstruierbat.

Beweis. Dies geschieht durch fortgesetzte Halbierung des Winkels, die mit Zirkel
und Lineal méglich ist.

Wir miissen jetzt nur noch feststellen, wann das reguldre p"-Eck, fiir ungerade
Primzahlen p, konstruierbar ist. Es geht also darum, den Punkt

(x,y) = (cos2m /p", sin 21 /p"),
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eine Ecke des reguldren p"-Ecks, zu konstruieren. Die Idee ist, den R? als die GauB3-
sche Zahlenebene C zu betrachten. Dann entspricht (x, y) der komplexen Zahl
x +iy. Es ist € = cos2m/p" + isin2m /p" = e*™'/F" eine p"-te Einheitswurzel. Ist
(x, y) konstruierbar, so ist nach Satz VIL5 [Q(x, y): Q] eine 2-Potenz. Weiter ist
[Q(x, y, 1):Q(x, ¥)] = 2. Dann ist [Q(e): Q] nach dem Gradsatz II1.6 eine 2-Potenz.
Das liefert den folgenden Satz:

Fiir eine ungerade Primzahl p und eine natiirliche Zahl n sei das reguldire p"-Eck
konstruierbar. Weiter sei € eine primitive p"-te Einheitswurzel in C und m, das
Minimalpolynom von € iiber Q. Dann ist grad m, eine 2-Potenz.

Sei € eine primitive n-te Einheitswurzel in C. Gemif3 Satz VII.13 miissen wir uns mit
dem Minimalpolynom m, beschiftigen und sehen, wann dieses einen Grad hat, der
eine 2-Potenz ist.

Seien p eine ungerade Primzahl, € eine primitive p-te Einheitswurzel in C und m,
das Minimalpolynom von € iiber Q. Dann ist

me=x"+xP 2+ x4+ 1.

Beweis. Es ist € Nullstelle von ’f__ll =xP~'+ ...+ x + 1. Nach Beispiel b) auf Seite 27
ist dieses Polynom irreduzibel.

Seien p eine ungerade Primzahl, € eine primitive p*-te Einheitswurzel in C und
me das Minimalpolynom von € iiber Q. Dann ist

me = xPP7D 4 xP7D 4P 41

Beweis. Esist € Nullstelle von g = x?* —1/xP —1 = x?® ™V 4 ... + x? + 1. Wir ersetzen
x in g durch 1 + u. Dann erhalten wir auf der linken Seite

Q+uwf -1 (1+u)-1

_ oD
A+wp—1- (Q+uwy—1 =% (modp)

gx)=g(1+u) =

Beachte hierbei, dass das Potenzieren mit p modulo p nach Lemma II.3 ein Homo-
morphismus ist. Also erhalten wir

g1 +u) = w??™) 4 pf(u), mit f e Z[x].
Andererseits, wenn wir 1 + u in die rechte Seite einsetzen, erhalten wir
g+u) =1+ +u)f +-- +(1+upft
Setzen wir jetzt u = 0 ein, so ergibt sich

P =g(1+0)=pf(0).

Satz VII.13

Lemma VIl.14

Lemma VII.15



SatzVIl.16

Satz VIl.17

VIl Konstruktion mit Zirkel und Lineal

Das liefert f(0) = 1. Somit sind alle Koeffizienten von g, auler dem héchsten, durch
p teilbar und das Absolutglied ist nicht durch p? teilbar. Mit dem Satz von Eisenstein
erhalten wir, dass g irreduzibel ist.

Dies zusammenfassend erhalten wir:

Sei p eine ungerade Primzahl. Ist das reguldre p"-Eck konstruierbar, so ist n = 1
und p eine Fermatzahl, d.h. p = 2™ + 1 fiir ein m € N.

Beweis. Ist n > 2,so0 ist nach Satz VII.10 a) auch das regulére pZ-Eck konstruierbar.
Nach Satz VIIL.15 und Satz VIIL.13 ist dann p(p — 1) eine 2-Potenz, was nicht méglich
ist. Also ist n = 1. Nach Satz VII.13 und Lemma VII.14 ist dann p — 1 eine 2-Potenz,
also ist p eine Fermatzahl.

Es gilt auch die Umkehrung, dass das regulédre p-Eck fiir p eine Fermatzahl kon-
struierbar ist. Der Beweis beruht wieder wesentlich auf Bemerkung a) aus Kapitel VI
Seite 107.

Ist p eine Fermatprimzahl, so ist das reguldre p-Eck konstruierbar.

Beweis. Sei € eine primitive p-te Einheitswurzel. Nach Lemma VII.14 ist dann
[Q(e): Q] = p—1 = 2". Es ist Q(e) Zerfillungskorper iiber Q von m,, da alle Ein-
heitswurzeln Potenzen von € sind. Sei G die zugehorige Galoisgruppe und g, h € G.
Dann ist g(€) = € und h(e) = ¢ fiir i, j geeignet. Also ist gh = hg, d.h. G ist abelsch.
Nach Satz VI.1 ist G transitiv auf den Nullstellen von m.. Ist ¢ € G mit g(e) = ¢, so
ist g die Identitét auf Q(e). Also ist Gc = 1. Nach Lemma V.15 ist dann |G| = p — 1.
Somit ist |G| eine 2-Potenz. Nach Satz V.18 gibt es eine Kette von Normalteilern

1=No<d--- <IN, =G, mit [Ny, /N;| = 2.

Zu jedem Normalteiler gehdrt nach der Bemerkung a) auf Seite 107 im vorherigen
Kapitel ein Zwischenkorper. Also ist

Q:KOQ"' QKHZQ(E).
Dabei ist K; = Fix (N,—;). Da N; # N, ist, ist K; # K;—1. Da |G| = [Q(€): Q] ist, ist

[K;: K;—1] = 2. Wir bilden nun K; N R. Dann ist [K; N R: K;_; N R] < 2. Also sind alle
Elemente in (Q(¢) N R)? nach Satz VII.9 konstruierbar.

2n i 2m 2
B _— mn =, -
(0 CoS 7 (S 7 CoS 7
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Esist cos 2;‘ = (e+€)/2 € Q(e)NR.Damit ist (0, cos 2; ) konstruierbar. Wenn wir die
Senkrechte auf der y-Achse in (0, cos 2; ) mit dem Einheitskreis schneiden, erhalten
wir (sin %7, cos 2;’ ).

Der hier gegebene Beweis geht auf Gauf3 zurtick, der feststellte, dass das reguldre

17-Eck konstruierbar ist, und damit am 30.3.1796 ein 2000 Jahre altes Problem loste.
Die allgemeine Theorie findet sich in den Disquisitiones Arithmeticae.

Es ist {ibrigens

21 1
cos’ = (—1+J17+\/34—2«/17)

17

1
*le \/68+ 123/17 - 16\/34+2J17—2(1 —«/17)\/34—2\/17

Ubungsaufgaben

VIL.1 Die folgenden Konstruktionen sind mit Zirkel und Lineal durchzufiihren:

a) Konstruiere aus Py = {(0, 0), (1, 0)} den Punkt (0, +/5).

b) Sei g eine Gerade und P = (x, y) ein Punkt, der nicht auf g liegt. Konstruiere die
Parallele zu g durch den Punkt P.

VIL.2 Beschreibe eine Konstruktion des reguldren 5-Ecks.

11

16 mit Zirkel und Lineal in drei gleiche Teile

VIL.3 Zeige, dass ein Winkel o mit cos(ar) =
geteilt werden kann.



Summe von
Quadraten

In diesem und dem néchsten Kapitel kommen wir wieder zur Zahlentheorie zuriick.
Wir werden sehen, dass wir unsere Resultate aus der Algebra gut anwenden kénnen.
Zunichst beschiftigen wir uns mit der folgenden Frage:

Welche natiirlichen Zahlen n sind Summe von zwei Quadraten ganzer Zahlen, also
n=x*+y.
Wie wir bereits im Beispiel auf Seite 71 gesehen haben, ist # = 1(mod 4) notwendig.

Wie wir an n = 21 sehen kénnen, ist das nicht hinreichend.

Betrachten wir zunichst eine Variante
n=x*-y,

so sehen wir
n=x>—y"=(x-y)(x+y).

—_ —_ —_ : _ my+m — hmp—m
Ist n = mymy,so setze m; =x —y, my =x+y. Dannistx = ™",y ="

Die Idee hierbei war, aus der additiven Form des Problems eine multiplikative
Form zu machen. Dann haben wir die Zahlentheorie mit der Primfaktorzerlegung
zur Verfiigung. Wir suchen somit eine Faktorisation von x? + y2. Diese finden wir
nicht in Z. Ein allgemeines und sehr effektives Verfahren in der Zahlentheorie ist es,
in solchen Fillen den Zahlbereich zu erweitern. Dies machen wir hier auch so und
gehen zu Z[i] tiber, wo wir eine Faktorisation haben:

n=x> +y2 = (x + iy)(x — iy).
Dies bedeutet, dass n eine Norm in Z[i] ist. Also ist unsere Frage jetzt:
Welche natiirlichen Zahlen sind Normen in Z[i]?
Es kommt uns zur Hilfe, dass die Norm multiplikativ ist. Ist also
n=xi+y,m=x;+y;,

so ist
. . 2 2 2
nm = |(x1 + iy1)(x2 + iy2)|° = x5 +y3

mit X3 = X1X2 — Y1)2 undy3 = X1)2 + X2)1.

G. Stroth, Elementare Algebra und Zahlentheorie
© Springer Basel AG 2012



Lemma VIII.1

Satz VIIl.2

VIl Summe von Quadraten

Ist umgekehrt 7 = x> + y* und m ein Teiler von 7, so muss nicht m = x? + y? sein,
wie das Beispiel n = 21 = 21? + 0> und m = 21 zeigt. Dennoch gibt es etwas, das
anndhernd einer Umkehrung gleichkommt.

Sei dazu zunichst p eine Primzahl, die auch in Z[i] prim ist. Sei weiter
p ein Teiler von n = x* + y* = (x + iy)(x — iy).

Da p prim in Z[i] ist, ist p ein Teiler von x + iy oder x — iy. Wir kdnnen annehmen,
dass x + iy von p geteilt wird. Dann ist

x +iy = p(a + ib).

Also ist x = pa und y = pb, d.h., p teilt x und y. Dann teilt p* auch x* + y* = n. Nun

1st " 2 yy2
-(,) <)
j p p
Damit ist auch ;’2 eine Summe von zwei Quadraten. Indem wir dies so weiter fortset-
zen, erhalten wir, dass die Primzahlen aus Z, die prim in Z[i] bleiben, mit geradem
Exponenten in der Primfaktorenzerlegung von n auftauchen. Dies hilft uns aller-

dings noch wenig, solange wir die Frage, welche Primzahlen in Z bleiben prim in
Z[i], nicht beantworten kénnen.

Schauen wir uns erst einmal den umgekehrten Fall an. Sei also p prim in Z, aber
nicht in Z[{].

Dann ist
p = (a+ib)(c +id),

wobei a + id und ¢ + id keine Einheiten sind, d.h. a? + b*> # 1 # ¢ + d*. Dann erhalten
wir mit unserem alten Trick

p* = pp = (a+ib)(a—ib)(c + id)(c — id) = (a* + b*)(* + d*).
Die Primfaktorenzerlegung in Z liefert mit a> + b* # 1 # ¢* + d*> dann
p=a’+b=c"+d.
Also ist p = 2 = 12 + 12 oder p = 1(mod 4) nach dem Beispiel a) auf Seite 71 in

Kapitel IV. Somit bleibt jede Primzahl, die kongruent 3 modulo 4 ist, prim in Z[i].
Damit erhalten wir erstens

Ist p eine Primzahl in Z, die nicht prim in Z[i] ist, so ist p eine Summe von zwei
Quadraten.

und zweitens

Ist n = x* + y%, so kommt jeder Primteiler p = 3(mod 4) von n in der Primfaktor-
zerlegung von n mit geradem Exponenten vor.
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Esist 2 = 12 + 12. Um zu demonstrieren, dass die Bedingung in Satz VIII.2 auch hin-
reichend ist, wollen wir jetzt zeigen, dass jede Primzahl p mit p = 1(mod 4) eine
Norm in Z([i] ist. Dazu machen wir folgende Uberlegung:

Sei —1 ein Quadrat modulo p, also

= —1(mod p)
hat eine Losung w € Z. Dann ist
p ein Teiler von w2+ 1= (w+i)(w—i).

Ist p prim in Z[i], so konnen wir ohne Einschriankung der Allgemeinheit annehmen,
dass p ein Teiler von w +i ist. Also p(a+ bi) = w+i.Dann ist pb = 1 ein Widerspruch
dazu,dass p eine Primzahl ist. Also ist p kein Primelement in Z[i]. Nach Lemma VIII.1
ist dann p = a® + b? mit geeigneten a, b.

Es geniigt also zu zeigen, dass fiir p = 1(mod 4) stets —1 ein Quadrat modulo p
ist.

Wir betrachten dazu die multiplikative Gruppe von Z/pZ.Nach Satz II1.7 ist diese
zyklisch von der Ordnung p — 1. Sei g ein Erzeuger. Da (p — 1)/4 € N ist, kénnen wir
h = g~V bilden. Dann ist o(h) = 4, d.h., h ist Nullstelle von x* — 1, aber nicht von

x% — 1. Also ist & Nullstelle von x2 + 1. d.h. k> = —1. Damit haben wir, dass —1 ein
Quadrat modulo p ist. Wir haben also bewiesen:

Ist p eine Primzahl mit p = 1(mod 4), so ist —1 ein Quadrat modulo p.
Dies liefert jetzt das gewiinschte Resultat:

Esistn = x>+ y*> mit n € N genau dann, wenn jede Primzahl p mit p = 3(mod 4)
in der Primfaktorzerlegung von n mit geradem Exponenten vorkommt.

Dieses sehr effektive Verfahren, den Zahlenbereich zu erweitern, um multiplikative
Darstellungen zu bekommen, kann man auch bei anderen Fragestellungen anwen-
den.

Betrachten wir die Fermat-Gleichung
x+yP =2 x,y,zeN
mit einer ungeraden Primzahl p. Wir kénnen diese umschreiben in der Form
xf =z —yP.
Sei nun € eine p-te Einheitswurzel ungleich 1. Dann ist

2P =y =(z-y)Nz—-ey)(z—€Yy)---(z—€y).

Lemma VIII.3

Satz VIil.4



Satz VIIL.5

VIl Summe von Quadraten

Also ist
X =(z-y)z-ey)z-€ey) - (z—ey).

Dies ist eine Zerlegung in dem Ring
Zle] = {ao + are + ay€* + - - - + ap 1€ | a; € L},

Da €' = —(le + --- + €72) ist, ist dies in der Tat ein Ring. Nun haben wir ei-
ne Zerlegung und kénnen versuchen zu zeigen, dass die einzelnen Faktoren selbst
p-te Potenzen sind, was gehen sollte, wenn wir die Primfaktoren (in Z[e]) auf bei-
den Seiten vergleichen. Dies kénnte dann einen Beweis fiir p > 2 liefern, dass die
Fermat-Gleichung keine Losungen x, y, z € N hat. Leider hat dieser Ring im Allge-
meinen fiir p > 19 keine eindeutige Primfaktorzerlegung mehr. Das fithrte Ernst
Kummer! dazu, sogenannte ideale Zahlen einzufiihren. Dies waren nicht mehr ein-
zelne Elemente eines Ringes, sondern Teilmengen. Hieraus ist dann der Begriff Ideal
entstanden. Kummer hat gezeigt, dass sich algebraische Zahlen, und Z[¢] ist ein Bei-
spiel dafiir, wenn sie sich zwar nicht eindeutig in Primzahlen zerlegen lassen, doch
eindeutig in diese idealen Zahlen faktorisieren lassen. Hiermit hat er dann den Satz
von Fermat fiir sogenannte reguldre Primzahlen (unter 100 sind dies alle aufler 37,
59 und 67) bewiesen. In der Welt der Ideale iibernehmen die Primideale die Rolle der
Primelemente, und die Begriffe irreduzibles Ideal und Primideal fallen hier wieder
zusammen.

Wir haben gesehen, dass jede Primzahl p mit p = 1(mod 4) eine Summe von zwei
Quadraten ist. Es gilt aber sogar:

Sei p = 1(mod 4), p prim. Dann ist die Darstellung p = x* + y* mitx, y € NU {0}
bis auf die Reihenfolge eindeutig.

Beweis. Sei p = x* + y*> = a* + b*. Wir konnen x, b ungerade und y, a gerade
annehmen. Es ist

x2a2 _y2b2 — (XZ +y2 _y2)a2 _yZbZ — (x2 +)/2)(612 _}/2).
Dap = x? + y? ist, teilt p dann x*a® — y?b?. Also ist
p ein Teiler von (xa — yb)(xa + yb).

Es sind alle x, y, a, b < ,/p. Sei zunichst p ein Teiler von ay + yp. Wir haben dann
0 < xa+ yb < 2p. Also ist p = xa + yb. Aber 2 teilt xa + yb, ein Widerspruch zu
xa+ yb < 2p.Somit ist p ein Teiler von xa — yb.Ist xa — yb > 0, so erhalten wir wie
eben xa — yb = p, aber xa — yb ist gerade, ein Widerspruch. Das liefert xa — yb = 0.
Da ggT (x, y) = 1ist, folgt x teilt b und y teilt a,d.h.x = b, y = a.

1Ernst Eduard Kummer (*29.1.1810 Sorau, 114.5.1893 Berlin) war zunichst 10 Jahre lang Lehrer
an einem Gymnasium, bevor er Nachfolger von Dirichlet in Berlin wurde. Hauptarbeitsgebiete waren
algebraische Geometrie und Zahlentheorie. Bekannt ist die Kummersche Fliche. Durch seine Beitréige
zum Fermatschen Satz wurde er zum Wegbereiter der Klassenkorpertheorie und damit der algebraischen
Zahlentheorie.
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Interessant ist, dass auch die Umkehrung gilt. Der Beweis sei dem Leser iiberlassen.

Seig € N,g = 1(mod4),g # 1. Ist g auf genau eine Art als Summe zweier
Quadrate darstellbar, g = x* + y*, x,y € NU {0}, ggT (x,y) = 1, so ist g eine
Primzahl.

Man kann sich nun fragen, wie das mit der Summe von drei Quadraten aussieht. Die
Antwort hierauf ist nicht ganz einfach. Uberraschend ist aber, dass Lagrange 1770
zeigen konnte: Jede natiirliche Zahl ist Summe von vier Quadraten.

Nun kann man ja auch anstelle Quadraten Kuben, Biquadrate oder allgemein
n-te Potenzen betrachten. Sei k > 2. Bezeichne mit g(k) die kleinste natiirliche Zahl,
so dass sich jede natiirliche Zahl als Summe von g(k) vielen, nicht negativen k-ten
Potenzen schreiben ld8t. Die Bestimmung dieser Funktion g(k) ist als Waring?-

Problem bekannt. Indem man die Zahl n = ZkL(;)kJ — 1 als Summe von k-ten
Potenzen schreibt, kann man elementar zeigen, dass

k
g(k) > 2k + {(z) J -2

ist. Die Vermutung ist, dass hier immer Gleichheit besteht. Dies ist bewiesen fiir
k < 471600000, also g(2) = 4, g(3) = 9, g(4) = 19 usw. Fiir k > 471600000 ist
bekannt, dass es hdchstens endlich viele k gibt, fiir die die Gleichheit nicht besteht.

Wir hatten in Lemma VIII.3 gesehen, dass fiir p = 1(mod 4) stets —1 ein Quadrat
modulo p ist. Dies bedeutet, dass x> + 1 fiir diese p modulo p nicht irreduzibel
ist. Ist aber p = 3(mod 4), so ist es irreduzibel. Anderenfalls wire —1 ein Quadrat
modulo p. Damit haben wir gesehen, dass der in Beispiel c) auf Seite 27 angegebene
Algorithmus fiir das irreduzible Polynom x* + 1 € Z[x] unendlich oft ein reduzibles
Polynom liefert. Das heif3t, es geniigt dort nicht, die Primzahl méoglichst grofl zu
wihlen.

Die Frage, ob —1 ein Quadrat modulo p ist, ist nur ein Spezialfall der Frage, ob
x* = a(mod p) lésbar ist, wobei a vorgegeben ist.

Fiir ein konkretes p ist dies sicherlich kein Problem. Wir kénnen die Frage durch
Ausprobieren beantworten. Interessant ist aber die umgekehrte Frage. Fiir welche p
ist a ein Quadrat modulo p. Fiir a = —1 hatten wir dies bereits beantwortet.

Seip eine ungerade Primzahl. Dann hat x* = —1(mod p) genau dann eine Losung,
falls p = 1(mod 4) ist.

Im nichsten Kapitel wollen wir uns der allgemeineren Frage zuwenden. Wir werden
dort einen der wichtigsten Sétze der Zahlentheorie beweisen, das quadratische Re-
ziprozititsgesetz, das besagt, dass dieses scheinbar unendliche Problem (fiir welche
unendlich vielen p?) in Wirklichkeit ein endliches ist.

2Edward Waring (*1736 Old Heath, 115.8. 1798 Pontesbury) war ab 1760 Professor in Cambridge,
seine Arbeitsgebiete waren Zahlentheorie und Geometrie.

Satz VIII.6

Lemma VIII.7



VIl Summe von Quadraten

Ubungsaufgaben
VIII.1 a) Sei G eine endliche Gruppe. Zeige: Sind A,B Teilmengen von G mit
|A| > |G|/2 < |B|,s0ist G = AB. (Hinweis: fiir g € GistgB™' N A # &.)
b) Ineinem endlichen Korper ist jedes Element Summe von zwei Quadraten.
VIIL.2 Zeige:

a) n=2%undn =5-2" haben keine Darstellung als n* = x? + y* + z? mit x, y, z € Z,
xyz # 0.
b) Es gibt keine allgemeingiiltige Gleichung der folgenden Form in Z:

2 2 2 2 2 2 2 2 2
(] + x5 +x3) (7 +y, +y3) =20 + 25 +z5.

VIIL3 Zeige:

a) Sind x, y € N, so dass x? + y* von 4 geteilt wird, so sind x und y beide gerade.

b) Esgibtkeine x, y,z € N mit x> + y* + 22 = 2xyz.



Das quadratische
Reziprozitatsgesetz

In diesem Kapitel wollen wir uns mit der Lésung quadratischer Gleichungen modulo
einer Primzahl p beschiftigen. Es ist klar, dass wir uns nur der Frage des Quadrat-
wurzelziehens widmen miissen. Wir kniipfen an Lemma VIIL.7 an und betrachten
den allgemeinen Fall: Sei p eine ungerade Primzahl, a € Z mit ggT (p, a) = 1, wann
hat

x* = a(mod p)

eine Losung?

Dies ist nicht ganz eindeutig formuliert. Wir konnen z.B. p festhalten und dann
nach den Zahlen a fragen. Dies ist sicherlich durch einfaches Probieren lsbar. Wir
kénnen aber auch a festhalten und nach den Primzahlen p fragen. Dies ist sicherlich
nicht so einfach.

Weiter ist in dem Zusammenhang nur p ungerade sinnvoll, da modulo 2 jedes a
ein Quadrat ist. Sei also ab jetzt stets p ungerade. Wir halten zunéichst einmal p fest
und betrachten die Quadrate

12,25, ..., (p -1~

Istl<i<j<p-1lund

i2 Ejz(modp),

so ist p ein Teiler von (i — j)(i + j). Also ist i = j(mod p) oder i = p — j(mod p).
Somit kommt jedes Quadrat zweimal vor. Damit ist die Hilfte der Reste modulo p
ein Quadrat.

Dies bedeutet, dass wir fiir die Hélfte der 1 < a < p — 1 eine Lsung von
x* = a(mod p) haben, fiir die andere nicht.

Ein erstes notwendiges Kriterium ist nun

Seien p eine ungerade Primzahl und a € Z mit ggT (a, p) = 1. Hat
x* = a(mod p)

-1
eine LOsung x, so ist a = 1(mod p).

- p-1
Beweis. a2 =x2? =x"1 = 1(mod p).
(Iv.14)

G. Stroth, Elementare Algebra und Zahlentheorie
© Springer Basel AG 2012

Lemma IX.1
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Gilt aber auch die Umkehrung? Folgt aus a"? = 1(mod p), dass a ein quadrati-
scher Rest ist?

Lemma IX.2 Seien p eine ungerade Primzahl und a € 7 mit ggT (a, p) = 1. Hat
= a(mod p)

keine Losung, so ist a" = —1(mod p).

Beweis. Nach dem kleinen Satz IV.14 von Fermat ist (ap;1 )* = 1(mod p). Also ist

a”: eine Nullstelle von x* — 1 modulo p-Das liefert a? = +1(mod p). Nun gilt aber
-1

bereits a”> = 1(mod p) fiir P; Werte von a. Da x> — 1 modulo p hochstens ¥

viele Nullstellen hat, gilt fiir alle anderen Werte a? =-1(mod p)-

Damit haben wir nun ein notwendiges und hinreichendes Kriterium:

Lemma IX.3 Seien p eine ungerade Primzahl und a € Z mit ggT (a, p) = 1. Dann gibt es fiir
x? = a(mod p) genau dann eine Losung x, falls a = 1(mod p) ist.

Beispiel Betrachte x2 = 7(mod 31). Es ist 731"1/2 = 715 zu berechnen.
77= 49 = 18 (mod 31)
74= 18 = 324 = 14 (mod3l)
7= 14> = 196 = 10 (mod3l)

7%= 10> = 100 = 7 (mod3l).

Also ist 7!° = 1(mod 31). Das heifit, x> = 7(mod 31) hat eine Losung.
Eine Mdéglichkeit nun eine Losung zu finden ist, stets p zu addieren, bis man
ein Quadrat hat. Also
=7

38 = 69 = 100 = 10*(mod 31).

Somit sind x = 10 und x = 21 die beiden Lésungen.

Definition Legendre!-Symbol. Sei p eine ungerade Primzahl und a € Z, so dass a nicht
von p geteilt wird. Setze

ay 1 falls x* = a(mod p) eine Losung hat
p) | -1 fallsx* = a(mod p) keine Lésung hat

Ist p ein Teiler von g, so setze (;) = 0. Wir nennen (;) das Legendre-Symbol.

!Adrien-Marie Legendre (*18.9.1752 Paris, 19.1.1833 Paris), Professor in Paris mit Arbeiten zur Zah-
lentheorie, Variationsrechnung, partiellen Differentialgleichungen, elliptischen Integralen.
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Wir kénnen nun Lemma IX.3 umformulieren als:

a p-1
=q: dp).
(p) @* (modp)

Es ergibt sich die Frage, wie wir (?) effektiv berechnen konnen, und insbesonde-
re, wie wir zu gegebenem a die p mit (;) = 1 bestimmen kénnen. Dazu wollen wir
zunéchst einmal ein paar Rechenregeln fiir das Legendre-Symbol aufstellen.

Ist p ungerade, so ist

Seien p eine ungerade Primzahl und a, b € Z. Dann gilt

a) Ista = b(modp), so ist (§) = (}).
b) Ist p kein Teiler von a, so ist (?:) =1.

¢) Esist () = (3)(}).

Beweis.

a) Ist p ein Teiler von a,so ist p auch ein Teiler von b. Damit ist dann (;) =0= (Ib) ).

Sei nun ggT (p,a) = 1. Es hat x> = a(modp) genau dann eine Losung, wenn
x* = b(mod p) eine hat, was (;) = (z) liefert.

b) x> = a*(mod p) hat die Lésung x = a.

c) Ist p ein Teiler von a oder b, so ist (‘;b) =0= (;) bzw. (‘;b) =0= (2) und c)
gilt. Sei also p kein Teiler von ab. Nach Lemma IX.4 ist

b -1 -1 p-1 b
(a ) = (ab)pz =a2b" = (a)( )(modp).
p P/ \p
Da (Z)(;) = +1und (‘;b) = =+1 ist, folgt aus der Kongruenz modulo p die Gleichheit.

Wir wollen nun den Hauptsatz dieses Paragraphen formulieren.

Quadratisches Reziprozititsgesetz?. Seien p, q ungerade Primzahlen. Dann ist

P q (p-1)(g-1)
= (-1 p) .
( Q) (P) v

2Dies ist einer der wichtigsten Sitze. GauB hat es theorema fundamentale genannt und selbst acht
wesentlich verschiedene Beweise angegeben. Inzwischen sind mehr als 150 bekannt (siehe Pieper, 1978
[23]).

Lemma IX.4

Lemma IX.5

Satz IX.6
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Sei q gegeben. Die Frage ist, fiir welche p die Zahl g ein Quadrat modulo p ist. Dies
ist ein unendliches Problem. Aber Satz IX.6 besagt, dass dies nicht ganz stimmt, denn
wir miissen nur feststellen, welche p fiir das gegebene g ein Quadrat sind. Davon gibt
es aber nur endlich viele Kongruenzklassen, also doch ein endliches Problem.

Bevor wir Satz IX.6 beweisen, folgt ein Beispiel, das dessen Nutzen zeigt.

Beispiel Hat x* = 85(mod 97) eine Losung?

()= (%) i () ()

Da 4 sowohl 17 — 1 als auch 97 — 1 teilt, ist nach Satz IX.6

(2)-(2)m(2)-(7)

() i (9)-(2) 2 ()) 22
w ()0
0 - (-

Alsoist (3) = (—=1)(~1) = 1. Damit ist 85 ein Quadrat modulo 97.

Dieses Beispiel zeigt auch, warum Satz IX.6 ,Reziprozititsgesetz“ genannt
wird.

Schneller wire es wie folgt gegangen:

() = G- -()E)
(937) (937) ) (;) -t

Alsoist (52) = (51)- Nach Lemma VIIL7 ist (5}) = 1.

Es ist

Wir formulieren Lemma VIIL.7 neu.

Lemma IX.7 (‘Pl) =(-1)", d.h.

-1\ 1 fiir p = 1(mod 4)
p ) | -1 fiirp=3(mod4)

Wir wollen nun den Beweis von Satz IX.6 angehen. Dies geschieht in mehreren
Schritten. Sei dazu a ein Rest modulo p mit ggT (a, p) = 1. Wir betrachten die Viel-
fachen

p-1

l-a,2-a,...,
2

a
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und definieren1 < 7, < ? ;1 durch

-1
k~azekrk(modp),k=1,...,p , mit e, = =£1.

Wir wollen uns zunichst einmal ansehen, ob die rx hierbei mehrmals vorkom-
men. Dieses konnte auf zweierlei Weise geschehen. Seien dazul < k,I < (p —1)/2.
Die eine Moglichkeit wére
ka=  r(modp)
la= -r(modp).
Dann ist aber p ein Teiler von k + 1.Da 1 < k + [ < p ist,kann das nicht sein.

Die andere Méglichkeit ist

ka

la

rr(mod p)
rr(mod p).

Dann ist p ein Teiler von k — I, was k = [ liefert. Somit kommt jedes r; mit geeignetem
Vorzeichen genau einmal vor. Es sind +a, ..., +7 ;1 a alle moglichen Reste modulo
D> die nicht Null sind. Also ist

p-1

2}'

{rla"'arl’;l}z{l,...,

Wir erhalten jetzt mit diesen Bezeichnungen eine erste Formel fiir die Berechnung
von (;).

Sei p eine Primzahl mit ggT (a, p) = 1. Dann ist (;) =eley---ep1.

Beweis.

a2 . 1.2...07D

ejriexry - ep-11p-1
2 2

= oo (1 2. (P;”) (mod p).

Somit ist

Q

a —1
( ) i " =e;---ep1(modp).
2
Da die e; = %1 sind, ist Kongruenz dasselbe wie Gleichheit.

Damit haben wir das Problem, das Legendre-Symbol zu berechnen, auf die Be-
rechnung der e verlagert. Dies wollen wir nun angehen. Es ist

p—-1

ak=u-p+er,0 <rp < , mit geeignetem u.

Lemma IX.8



Lemma IX.9
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Also ist
2ak = 2up + 2exrk
und
2ak 21
=2u+ e
Dabei ist ) 1
r _
k < P < 1.
p p

Das liefert 2;" =2u+ emit0 < € < 1,wobei das Plus-Zeichen fiir e; = 1 und das
Minus-Zeichen fiir e, = —1 steht.

Somit haben wir

2ak
ex = +1 fir {;J gerade

2ak
ex. = -1 fir {aJ ungerade.
p
Also ist -
ex=(-1)'7 7.

Damit haben wir die e berechnet. Wir wollen nun das Legendre-Symbol berechnen.
Sei dazu zunéchst a ungerade. Dann gilt fiir das Legendre-Symbol:

() - (57)-(5)-(5)

P ek L s
(_I)Zk:1 L » I (_I)Zk:1 LPJ"'Z;(:] k.

Es ist 1
PZZZk: 1(p—1)(p+1) _p-l
pa 2 2 2 8
Also gilt fiir das Legendre-Symbol:

p-1
(20) = ()AL,
p

Damit kénnen wir nun zunéchst den Spezialfall a = 1 behandeln.

(2) = (_1)st71 also
p

2\ 1 filr p =1, 7(mod 8)
p) | —1fiarp=3,5(mods8)
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Beweis. Setze a = 1. Dann haben wir gerade gezeigt

2 2-1 2 7
),
p p
Dak < pist,ist L;J = 0. Das ist die Behauptung.

Wir kénnen Lemma IX.9 zur Berechnung von (2;) anwenden, indem wir die
Multiplikativitdt des Legendre-Symbols benutzen

.
D . ] ] . . F ]f. (u)

Sei p eine Primzahl mit ggT (a, p) = 1. Dann ist Lemma IX.10

(“) _ (T,
p

Jetzt kdnnen wir den Beweis des Hauptsatzes angehen.
Beweis von Satz IX.6: Nach Lemma IX.10 ist
p LY 5% L)
= ()2 = DA
q

Esist LZyJ die Anzahlder ganzen Zahlen zwischen 1 und Zy. Isty < q;l ,801ist Zy < 12’

Also liegen die Zahlen, die kleiner oder gleich Z y sind, im Bereich zwischen 1 und

q-1
pgl.Somit zihlt 37 7, LP;J die Paare (x, y) mitx € {1,..., Pgl},y efl,..., qgl},fﬁr
diex < Z y ist, oder anders ausgedriickt, fiir die gx < py ist. Sei N die Anzahl dieser

(p) = (=1)V.

q

(‘1) = (-1)M,
p

wobei M die Anzahl der Paare (x, y) mitx € {1, ..., pgl}undy ef1,..., qgl}ist,so

dass py < gx ist. Somit ist
(P) (q) — (_1)N+M.
q/ \p

Hierbei ist N + M die Anzahl der Paare (x,y) € {1,..., p;l} x {1,..., qgl} fiir die
py > gx oder py < gx ist. Da aus py = gx stets q|y folgen wiirde, aber y < ¢
ist, sind dies aber alle Paare (x, y) mitx = 1,..., Pgl undy =1, ..., q;. Also ist
N+M-= p? : q; . Damit ist Satz IX.6 bewiesen.

Paare. Dann ist

Genauso ist



Definition

Lemma IX.11
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Nun ist es sehr miihselig (;‘) zu berechnen, wenn man dazu zunichst a in seine

Primfaktoren zerlegen muss, wie im Beispiel auf Seite 132 geschehen, was nicht
einfach ist. Schliefllich beruht die Sicherheit von gewissen Verschliisselungssystemen
darauf, dass die Primfaktorzerlegung ein schwieriges Problem ist, siehe Seite 71. Um
diesem Problem aus dem Weg zu gehen, erweitern wir die Definition des Legendre-
Symbols.

Jacobi’-Symbol. Sei 7 eine ungerade Zahl und sein = p; - - - px mit Primzahlen
pi- Wir definieren das Jacobi-Symbol (?) fiir a € Z durch

(=G ()

Hierbei sind die (; ) die Legendre-Symbole.

Dies ist eine rein formale Definition. Obwohl sich das Jacobi-Symbol genauso
wie das Legendre-Symbol verhilt, wie wir gleich sehen werden, beantwortet es die
Frage, ob a ein Quadrat modulo # ist, nicht. Betrachte dazu

(5)-()C) -

Die Quadrate modulo 15 sind: 12,22 = 4,3% = 9,4% = 1(mod 15), 5% = 10(mod 15),
6% = 6(mod 15), 7% = 4(mod 15). Also ist 2 kein Quadrat modulo 15.

Fiir das Jacobi-Symbol gelten die gleichen Rechenregeln wie fiir das Legendre-
Symbol.
Seien a, b € Z, n € N ungerade.
a) Ista = b(mod n), so ist (1) = (Z).
b) ()=1()=D%.
¢) IstggT (n, ab) = 1,s0ist () = (“)(?).

d) IstggT (n,a) =1,s0 ist(‘j;) =1

Beweis. a) Dies folgt direkt aus Lemma IX.5 a) und der Definition von ().

3Carl Gustav Jacob Jacobi (*10.12.1804 Potsdam, 118.2.1851 Berlin) war Professor in Kénigsberg. Er
arbeitete sowohlin der Analysis, mathematischen Physik als auch in der Zahlentheorie. Als Erster wendete
er elliptische Funktionen in der Zahlentheorie an. Viele Begriffe in der Mathematik tragen seinen Namen,
z.B Jacobi-Determinante, Jacobi-Theta-Funktion, Jacobi-Integral. Jacobi gab mehrere neue Beweise des
quadratischen Reziprozititsgesetzes. Auf dem Mond gibt es einen Krater, der nach ihm benannt wurde.
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1y — 1 e 1 =
b (D=(1)()=1
Sind x, y ungerade, so ist stets 4 ein Teiler von (x —1)(y — 1) = xy —x —y + 1. Also ist
xy = x+y— 1(mod4)

und dann
xy—1=(x-1)+ (y — 1)(mod 4).

Seinun#n = p; - - - pr. Dann ist
pipz- - prk—l=p1—1+p,—1+---pr—1(mod4).

Alsoist 5! = 3% 77 (mod 2).

Nun ist
n 2 pr /) uxa)

¢), d) Diese folgen aus Lemma IX.5 b) bzw. c).

Sei n € N ungerade. Dann ist (2) = (—I)nzs_l .

Beweis. Sind x, y ungerade, so ist 16 ein Teiler von (x* — 1)(y* — 1). Also ist
x*y* = x* + y* — 1(mod 16)

und dann
x2y2 —1=(*-1)+ (y2 —1)(mod 16).

Seinun n = p; - - - px mit Primzahlen p;. Dann erhalten wir
n—1=(p}-1)+---+(p} — 1)(mod 16).

2— . .
Also ist ”28_1 = Zf;l P"s '(mod 2). Damit erhalten wir

n )2 pr/ ux.9)

Auch das Analogon zum quadratischen Reziprozititsgesetz gilt.

Sind m und n ungerade und teilerfremd, so ist

(m) _ (_l)mz—llngl (Tl)
n m

Satz IX.12

SatzIX.13
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Beweis. Seim =q; ---q, und n = p; - - - p; mit Primzahlen p;, g;. Es ist
(m) (ql-“qt)=(q1~-~qz).__(q1--~qr)
n PPk b Pk

I (2 )(IXG)Hf[(PJy H())

i=1 j=1 j=1 i=1

( : )‘—nzjﬂ za (%) ()

m

( )( p(Zh %) (2 ),

Wie wir im Beweis von Lemma IX.11 gesehen haben, ist

Zf:l(sz_l) = " '(mod2)und
ST = ™l(mod2).

Alsoist (™) = (")(-1)"

Wir wollen nun das Jacobi-Symbol dazu benutzen, das Legendre-Symbol zu be-
rechnen. Immerhin ist jedes Legendre-Symbol auch ein Jabobi-Symbol. Wir kénnen
daher die Regeln fiir Jacobi-Symbole benutzen, um (;’) zu berechnen, falls p eine

Primzahl ist, ohne vorher die Primfaktorzerlegung von a bestimmen zu miissen.

28559
46237

28559  (46237\ (17678 _
46237 ) (x.13) \ 28559 ) ax.11) \ 28559 ) ax.11)

Beispiel Es soll das Legendre-Symbol ( ) berechnet werden.

8839\ 28559
(28559) 8559) (IX12) _( 8839 )
~ 2042 2 1021
- (8839)_ (8839)(8839)
1021 8839\ (671 (1021 (350
(8839) - (1021) N _(1021) - _< 671 ) - _(671)

_(671) (6;)(6;1) (6;1) (6;1) (_71)=—1.

Also ist 28559 kein Quadrat modulo 46237.

Bisher haben wir nur die Frage betrachtet, ob a quadratischer Rest modulo einer
Primzahl ist. Wir wollen dies nun darauf ausdehnen, dass n nicht prim ist. Das
Jacobi-Symbol hilft dabei erst einmal nicht.
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Es war a2 = 1(mod p) genau fiir einen quadratischen Rest a modulo p mit
ggT (a, p) = 1.Beibeliebigem n wird dann vermutlich (wie beim Satz von Euler) p—1
durch ¢(n) zu ersetzen sein. Wir kénnen also erwarten, dass fiir a mit ggT (a, n) = 1
wir genau dann einen quadratischen Rest haben, falls a?"/? = 1(mod n) ist. Wir
werden sehen, dass das fast richtig ist. Um dies zu untersuchen, werden wir zwei
Dinge tun.Istn = p}" - - - pr die Primfaktorzerlegung von n,so werden wir versuchen
die Frage, ob a ein quadratischer Rest modulo 7 ist, auf die zuriickzufiihren, ob a
quadratischer Rest modulo der p;” ist. Wir werden also zunéchst den Fall betrachten,
dass n eine Primzahlpotenz ist. Fiir diese studieren wir die Einheitengruppe von
Z./nZ.

Seien p eine ungerade Primzahl und a € N. Dann gibt es ein ¢ € N mit
ggT (c,p) = 1 und o0pa(c) = @(p*), d.h., c + p*7Z ist Erzeuger der Einheiten-
gruppe von Z/p*Z.

Beweis. Wie im Beweis von Lemma IV.16 wihlen wir ¢ mit
?™! = 1(mod p), ¢*! # 1(mod p*)

(z.B. mit g Erzeuger von Z/pZ und ¢ = g(p + 1)).

Wir zeigen zunéchst
(%) =077 2 1(mod p%).

Dies geschieht mit Induktion nach a. Fiir « = 2 ist das die obige Aussage.

Nach Euler ist
a—2 a—1
P70 = 9™ = 1(mod p* 7).

Das liefert 1
C(P—l)pvt- _ (1 + bpa—l)p =1+ bpa + dPZa—l,

dap stets (?),0 < r < p teilt.

Per Induktionsannahme ist p 1 b. Weiter ist 2a — 1 > a + 1. Also ist
PP =1 4 bp® 2 1(mod p**').

Damit ist (%) bewiesen.
Es ist 0pe ()| (p*) = p* Y (p—1).Da 0,(c) = p — 1 ist, folgt, dass 0ya(c) durch
p — 1 geteilt wird. Somit folgt mit ()

0pe(c) = p* 1 (p - 1).

Die Aussage von Satz IX.14 ist fiir p = 2 falsch. Es ist {1, 3, 5, 7} die Einheiten-
gruppe von Z/8Z und ¢(8) = 4. Es gilt aber i> = 1(mod 8) fiir alle i. Somit haben
alle Elemente die Ordnung 1 oder 2.

SatzIX.14
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SatzIX.16
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Der néchste Satz gibt {iber die Verhiltnisse fiir p = 2 Auskuntft.

Sein = 2™ > 8. Dann ist 0,(5) = 2™2. Die Einheitengruppe von 7./nZ besteht
aus den Potenzen 5' + nZ und —5' + nZ.

Beweis. Esist 5% — 1 = 24, also ist 2° ein Teiler von 5% — 1. Wir zeigen mit Induktion
(+) 22 teilt 52 — 1, ¢ > 1.
Esist
t t—1 t=1
(52 =1)=(* -1)(5* +1).
Also ist 2*1 . 2 = 2*2 ein Teiler von 5% — 1 per Induktion.

Nach (+) ist 0,(5) ein Teiler von 22, Sei 0,,(5) ein Teiler von 2™~3. Dann ist 2"
ein Teiler von 52" — 1. Das liefert dann, dass 52" _ 1 durch 2! teilbar ist, und
schliefRlich, dass 5% — 1 durch 16 geteilt wird, ein Widerspruch.

Also ist
0,(5) = 22,

Ist m = 3, s0 ist 5 £ —1(mod 8), also ist 8 kein Teiler von 52"7 4 1.

Sei m > 3.Dann ist

m=3

-3 2m=3 om=3
5 +1=(1+4)° +1=2+ . 4+ + 47

Bis auf den ersten Summanden sind alle anderen durch 4 teilbar. Somit gilt:
(++4) 2™ ist kein Teiler von 52" + 1.

Wire 5' = —1(mod 2™) fiir i < 272, s0 wire 5% = 1(mod 2™). Da die Ordnung von
5 modulo 2™ gleich 22 ist, wire dann nach Lemma II1.3 22 ein Teiler von 2i, d.h.
i = 2™, ein Widerspruch zu (++).

Ist 2" 2 > i > jund 5 = —5(mod 2™), so ist 57 = —1(mod 2™) ein Wider-
spruch zu (++). Also sind 5/ und -5, 0 < i < 2"~2 die Einheiten modulo 2.

Fiir den néchsten Satz vergleiche man Lemma IX.3.

Seienn € N, n # 2 und a € 7Z mit ggT (a, n) = 1. Es gebe ein c, dessen Ordnung
modulo n gleich ¢(n) ist. Dann sind gleichwertig

a) x* = a(mod n) hat eine Lésung x.

b) a*"/2 = 1(mod n).
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Beweis.
a) = b). Da x* = a(mod n) ist, ist auch ggT (x, n) = 1. Nach dem Satz von Euler
ist
a?™? = x#™ = 1(mod n).

b) = a). Sei ¢ mit 0,(c) = ¢(n). Dann ist ¢ ein Erzeuger der Einheitengruppe
modulo n.Da ggT (a, n) = 1 ist, ist a eine Einheit modulo #. Somit gibt es ein j mit
d = a(mod n).
Es ist d¢™/2 = q?M/2 = 1(mod n). Also ist ¢(n)|je(n)/2, d.h. 2|j, und damit ist
j = 2i.Dann ist .
(¢")?* = a(mod n).

Mit x = ¢! erhalten wir x> = a(mod n).

Damit haben wir das Problem nur verschoben. Wann gibt es denn ein ¢ mit
0,(c) = ¢(n)? Immerhin, wenn n eine ungerade Primzahlpotenz ist, so gibt es
dies nach Satz IX.14. Der néchste Satz ist nun entscheidend, da er die angekiindigte
Reduktion des allgemeinen Problems auf das der Primzahlpotenzen liefert.

Seien ggT (a, my) = ggT (a, my) = 1 und ggT (my, my) = 1. Ist a ein Quadrat SatzIX.17
modulo my und m, so ist a auch Quadrat modulo mym,.

Beweis. Sei
x? = a(mod m,)
x5 = a(mod my).
Nach dem Chinesischen Restsatz gibt es ein x mit
x = x;(mod m;)
x = x(mod my).
Also ist mymy|x? — a.

Nun sind wir in der Lage, ein notwendiges und hinreichendes Kriterium dafiir
anzugeben, dass a ein Quadrat modulo # ist.

Seienn € N und a € Z mit ggT (a, n) = 1. Sei n = 2% [[,_, p;* die Primfaktor- SatzIX.18
zerlegung. Dann ist x* = a(mod n) genau dann lésbar, wenn

a = 1(mod 2™in(@0.3))
ist, und

y2 =a(modp),i=1,...,t

lsbar sind.

Beweis. Sei zunichst x eine Losung von x> = a(mod n). Dann ist offenbar auch
x* = a(modp;),i = 1,...,t,und x> = a(mod 2%). Somit gilt auch die Kongruenz
x2 = a(mod 2™n@.3)) [st oy > 1, s0 ist 1 gerade und dann a ungerade. Damit ist
auch x ungerade. Also ist x> = 1(mod 8) und damit a = 1(mod 2™in(®-3),



Beispiel
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Wir betrachten nun die Umkehrung. Wir zeigen zunéchst, dass a quadratischer
Rest modulo 2% ist. Dies ist richtig fiir &g < 2.Sei g > 3,s0 ist a = 1(mod 8). Nach
Satz IX.15 sind 5" und -5’ die Einheiten modulo 2%. Sei a = +5/(mod 2%). Dann ist
45! = 1(mod 8). Es ist 52 = 1(mod 8). Also ist a = 5%(mod 2%), d.h. ein Quadrat.

Da a quadratischer Rest modulo p; ist, folgt mit Lemma IX.1

a(Pi;) = 1(mod p;).

-1
Alsoista™ =1+ ap; und dann

aj—

-1\ Pi ' . aj .
(a™)" =1+Bpf, dh.a?®2 = 1(mod pi).

Nach Satz IX.14 und Satz IX.16 gilt, dass a ein Quadrat modulo p?", i=1,..., tist
Mit Satz IX.17 folgt nun, dass a ein Quadrat modulo # ist.

Hat die Kongruenz x* = 453(mod 1236) eine Losung?

Wie oft bei Anwendungen schoner Theorien, geht dies nicht direkt. Wir miissen
erst eine Situation herstellen, in der Satz IX.18 anwendbar ist. Zunichst ist die
Voraussetzung der Teilerfremdheit nicht erfiillt, da ggT (453, 1236) = 3 ist. Gibt
es eine Losung x, so ist 3|x. Dies ist dquivalent zu der Frage, ob es eine Losung
gibt von 3y? = 151(mod 412).

Nun sind zwar 151 und 412 teilerfremd, mit 3)12 haben wir aber kein Quadrat
mehr. Esist 2 - 412 = 3 - 275 — 1. Also ist

37! = 275(mod 412).

Das liefert
y* = -87(mod 412).

Nun koénnen wir Satz IX.18 anwenden. Es ist 412 = 4 - 103. Nach Satz IX.18 gibt
es genau dann eine Losung y?, falls

y* = —87(mod 103)
losbar ist.

Wir berechnen das Legendre-Symbol
(ex) = Cie) aa) Gin) = e ) (i)
103 103 103 103 103 103
() = (%))
103 3 3
(103) _ (3-29+ 16) _ (16) _1
29 29 29

Also ist (1337 ) = 1,d.h,, es gibt eine Lésung y und dann auch eine Losung x.

N
—
s 3
N
I
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Wir wollen jetzt noch der Frage nachgehen, fiir wie viele Primzahlen eine Zahl a
ein quadratischer Rest sein kann. Dazu definieren wir:

Extremalzahlen. Seia € Z.Ist x> = a(mod p) fiir alle Primzahlen p, die a nicht
teilen, 16sbar, so nennen wir a eine quadratische Extremalzahl.

Hat x> = a(mod p) fiir alle ungeraden Primzahlen p, die a nicht teilen,
niemals eine Losung, so nennen wir a eine nichtquadratische Extremalzahl.

Es gibt keine nichtquadratischen Extremalzahlen.

Beweis. Sei a eine nichtquadratische Extremalzahl. Wiahle x mit ggT (a,x) = 1,
x # a(mod 2) und x> — a > 1.Insbesondere ist x> — a ungerade.

Es ist x? # a(mod p) fiir alle p, die a nicht teilen, da a nichtquadratische Extre-
malzahl ist. Da ggT (a, x) = 1 ist, ist auch x* # a(mod p) fiir alle Primteiler p von a.
Also hitte x> — a keine Primteiler, ein Widerspruch.

Es gilt aber sogar noch mehr:

Zu jeder Zahl a gibt es unendlich viele ungerade Primzahlen p, so dass a ein
Quadrat modulo p ist.

Beweis. Nach Lemma IX.19 gibt es mindestens ein solches p. Seien nun py, ..., p;
samtliche ungerade Primzahlen mit

a .
( )=l,z=1,...,t.
pi

Setze Q = p; - --p, und wihle n mit Q*" — 4a > 1. Es ist Q ungerade. Sei q eine
Primzahl, die Q*" — 4a teilt. Ist q ein Teiler von Q, so ist g eines der p;. Dann teilt
aber g nicht a. Also ist g kein Teiler von Q und somit q # p; fiir alle i. Dann ist

1= (Q;") = (4;) = (;). Also hat Q** — 4a nur Primteiler, nach denen a ein Quadrat
ist, aber diese sind genau py, ..., ps, ein Widerspruchzug # p;,i=1...,t.

Ist a nicht selbst schon ein Quadrat, so gibt es immer Primzahlen modulo derer
a kein quadratischer Rest ist.

a) Ist a € N kein Quadrat, so gibt es unendlich viele Primzahlen p mit

(-~

b) Ist a eine quadratische Extremalzahl, so ist a ein Quadrat.

Definition

Lemma IX.19

Satz IX.20

Satz IX.21
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Beweis.

a) Ist b € N mit (z) = —1,so0 ist auch (bf) = —1 fiir ggT (m, p) = 1. Also kénnen
wir annehmen, dass a quadratfrei ist. Sei

a=2q1...qu, €=0,1

die Primfaktorzerlegung von a. Es habe zunichst a mindestens einen ungeraden
Primteiler. Wir wihlen ein s mit

s

qn

Insbesondere ist g, kein Teiler von s. Weiter wihlen wir ungerade Primzahlen
1, ..., die verschieden von q, . . ., g, sind.

Nach dem Chinesischen Restsatz gibt es ein b € N mit
b = 1(mod8)
b= 1(modr)i=1,...,k

(+) b =1(modg;)i=1,...,n-1
b = s(mod g,)

Sei b = p;---pn die Primfaktorzerlegung von b. Dann sind die p; ungleich 2, r;,
j=1,...k,und g;, j = 1,...,n,da ggT (a, b) = 1 ist. Wir zeigen (;) = —1 fiir
eini € {1,...,m}. Dawir {r, ..., ¢} beliebig grofl wihlen kénnen, folgt dann die
Behauptung.

Wir betrachten dazu das Jacobi-Symbol (}). Es ist

a = 2 ‘ ql .. qn

b b b b))
Da b = 1(mod 8) ist, gilt nach Lemma IX.9 (}) = 1. Aus dem gleichen Grund folgt
mit Satz IX.13 (%") = (;).Also ist

(0)=() ()2 G) - () () ==
(2)-G)- ()

Das liefert (;) = —1 fiir mindestens ein i.

Es gilt aber

Es bleibt der Fall a = 2 {ibrig. Es ist (12)) = —1 fiir alle p = £3(mod 8) nach Lem-
ma IX.9. Nach Lemma I'V.8 gibt es unendlich viele Primzahlen p mit p = +3(mod 8).

b) Ist x kein Quadrat, so ist x keine quadratische Extremalzahl nach a).

Dieser Satz ist ein Spezialfall eines allgemeineren Satzes.
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Minkowski*-Hasse®. Seif(x1, ..., x,) ein homogenes Polynom vom Grad 2 mit
ganzen Koeffizienten. Dann ist f(xy, ..., x,) = 0 in Z genau dann nichttrivial
losbar, wenn die Gleichung in R und modulo jeder Primzahl nichttrivial l6sbar
ist. Hierbei meint nichttrivial, dass ein (x1, . .., x,) # (0, ..., 0) eine Losung ist.

Dies ist iibrigens fiir h6heren Grad falsch. Betrachte dazu
(x* - 2)/2)(x2 + 7)/2)(x2 + 14y2) =0.

Wir haben die Losungen x = +y+/2 € R.Ist p = 7, so reduziert sich die Gleichung
auf
x* —2y* = 0(mod 7).

Da 3% = 2(mod 7) ist, hat die Gleichung die Lésung x = 3, y = 1.

Ist p = 2,s0 bleibt
x? +y2 = 0(mod 2).

Diese hat die Losung x = y = 1.

()-G) ()
p p/\p/)
Also ist eine der Zahlen 2, =7, —14 ein Quadrat modulo p, womit wir wieder eine
Losung haben. In Z gibt es aber nur die Losung (0, 0).

Istp #2,7,s0 ist

Wir wollen uns nun noch mit einem speziellen Typ von Zahlen,den Fermatzahlen
F, =2 +1, beschiftigen. Diese sind fiir n = 0, 1, 2, 3 und 4 Primzahlen. Fermat
vermutete, dass sie immer Primzahlen sind. Allerdings konnte schon Euler zeigen,
dass Fs5 keine Primzahl ist. Bis heute sind keine weiteren Fermatzahlen bekannt,
die Primzahlen sind. Die kleinste Fermatzahl, fiir die nicht bekannt ist, ob sie eine
Primzahl ist, ist derzeit Fs3.

Ist n # m, so ist ggT (F,, Fy,) = 1. Insbesondere gibt es unendlich viele Prim-
zahlen.

Beweis. Wir zeigen:
(%) oo Fx = F, - 2.

Da offenbar ggT (F,, F,, — 2) = 1 ist, folgt dann die Behauptung.

SHermann Minkowski (*22.6.1864 Alexota, 112.1.1909 Gottingen), Professor in Konigsberg, Ziirich
und Géttingen, mit den Arbeitsgebieten Zahlentheorie und mathematische Grundlagen der speziellen
Relativitatstheorie.

SHelmut Hasse (*25.8.1898 Kassel, 126.12.1979 Ahrensburg), Professor in Kiel, Halle, Marburg, Got-
tingen und Hamburg, mit den Arbeitsgebieten Algebra und Zahlentheorie. Der spéter sogenannte Satz
von Minkowski-Hasse war seine Dissertation.

Satz 1X.22

Lemma IX.23



Satz1X.24

Lemma IX.25

IX Das quadratische Reziprozitatsgesetz

Wir beweisen (*) durch Induktion nach n.Esist3 =Fy=5—-2=F, — 2.

n n—1
HFk:<HFk)Fn = (F-2F = - D@ +1) =22 —1=F,, -2.
k=0 k=0 (nd)

Um zu zeigen, dass Fs keine Primzahl ist, betrachten wir zunichst mogliche Teiler
von Fermatzahlen.

Sei p ein Primteiler von F,, n > 2. Dann ist

p=2"%.k+1mitkeN.

Beweis. Es ist 22" = —1(mod p). Damit erhalten wir 22" = 1(mod p). Dies zeigt,
dass 0,(2) = 2"*! ist. Nach dem kleinen Satz IV.14 von Fermat gilt

2P7! = 1(mod p).

Also ist 2"*! ein Teiler vonp—1.Dan > 2ist,ist p = 1(mod 8). Somit ist nach Lemma

IX.9
( )
1.
p

Damit gibt es ein x mit x> = 2(mod p).

Das liefert
2n+2 2n+l
X =2

= 1(mod p).
Somit ist 0,(x) = 2 mitj < n + 2. Wegen 0,(x?) = 2"*!, folgt 0,(x) = 2"*2

Es ist aber auch
x?~! = 1(mod p).

Also ist

2"*? ein Teiler von p — 1,

was die Behauptung ist.

Mit diesem Satz IX.24 kénnen wir nun zeigen, dass Fs keine Primzahl ist.

Euler. F; ist keine Primzahl.

Beweis. Nach Satz IX.24 miissen wir nur Primteiler der Form 128k + 1 betrachten.
Diese wiren 129, 257, 385, 513, 641 usw.

Es sind 129, 385 und 513 keine Primzahlen. Es ist 257 = F3. Nach Lemma IX.23
ist F5 1 Fs. Also miissen wir als erste Zahl 641 testen.

Es ist
641—1=640=5-27.
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Weiter ist
54228 = (641 — 1)* = (-1)* = 1(mod 641)
und dann
641 = 5* + 2% also 5* = —2*(mod 641).
Das liefert

1 =228 = —23%(mod 641).
Somit ist 641|232 + 1 = Fs.
In der Tat ist F5 ein Produkt von zwei Primzahlen
Fs =641 - 6700417.

Sei F, = 22" + 1 eine Primzahl. Dann ist 3 kein Quadrat modulo F,, da
Vo (B 2 (%) -
F,)] \3) \3)

Ist also F,, eine Primzahl, so ist

ist.

3571 = 1(mod F,) aber 3> % 1(modF,).
(X 2)

Also ist
or, (3) = 2%

1(mod F,) aber 32" # 1(modF,). Dann erhalten wir

Sei umgekehrt 32
or,(3) = 2%

Nach dem Satz von Euler IV.17 gilt immer:
0g, (3) ist ein Teiler von ¢ (F,).

Somit ist F, — 1 = 22" ein Teiler von ¢(F,). Das liefert dann ¢ (F,) = F, — 1. Also sind
alle Elemente in Z/F,Z invertierbar, was bedeutet, dass Z/F,Z ein Korper ist. Nach
der Bemerkung auf Seite 12 ist dann F, eine Primzahl. Damit haben wir

F, ist genau dann Primzahl, wenn or, (3) = 22" ist.

Unter den Primzahlen spielen noch die Mersenne-Zahlen M,, = 2" — 1 eine
wichtige Rolle. Es ist M, = 3, M3 = 7, My = 15, M5 = 31. Ist n = kr,soist 2" — 1
ein Teiler von M,. Also ist M, hochstens fiir n = p, p prim, eine Primzahl. Die
Rekordprimzahlen sind hdufig MersenneS-Primzahlen. Wir wollen dies hier aber
nicht weiter vertiefen.

6Marin Mersenne (*8.9.1588 Soultiére, 11.9.1648 Paris) studierte zusammen mit René Descartes am
Jesuitenkolleg in La Fleche und wurde 1611 Franziskanerménch. Mersenne gilt als wichtiger Vermittler
von Informationen, da er Briefkontakt mit vielen fithrenden Wissenschaftlern seiner Zeit hatte. Er lieferte
Beitrige zur Mathematik, Akustik, Optik und Musiktheorie.

Lemma IX.26
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Ubungsaufgaben

IX.1 Seia = 849.Haben die folgenden Kongruenzen eine Losung?

a) x? = a(mod 9800).
b) x? = a(mod 10160).

IX.2 Seia > 2und a" + 1 eine Primzahl. Dann ist a gerade und n = 2" fiir geeignetes m.
IX.3 Sein > 1und a” — 1 eine Primzahl. Dann ist @ = 2 und » eine Primzahl.

IX.4 Seien M, = 2 — 1 und M, = 29 — 1, p und g Primzahlen, M, # M,. Zeige:
ggT (M,, M) = 1.

IX.5 Berechne das Legendre-Symbol (2% ).

IX.6 Bestimme die letzten drei Ziffern von F;.

IX.7 Bestimme alle Primzahlen p, fiir die —5 ein quadratischer Rest ist.
IX.8 Man bestimme die Lésungen von x* + 12x + 11 = 0(mod 23).

IX.9 Seien p eine ungerade Primzahl und a,b € Z beide teilerfremd zu p. Dann hat
ax? + by> = 0(mod p) genau dann eine Losung x, y, beide teilerfremd zu p, wenn
()= Chist
IX.10 Seia € Z.Zeige (;) = a(mod 3).
IX.11 Seip # 3 eine ungerade Primzahl. Zeige, dass (;) =1 fiir alle p mit p = £1(mod 12)
und (;) = —1 fiir alle p mit p = 45(mod 12) ist.

IX.12 Sein > 1.Zeige, dass das Jacobi-Symbol (,,’ ) den Wert (—1)"*" hat.
IX.13 Man bestimme alle a € N, so dass fiir ein k € Z die Zahl a + 29k eine Quadratzahl ist.

IX.14 Zeige, dass es unendlich viele Primzahlen p mit p = 1 (mod 4) gibt.
(Hinweis: Betrachte n = (2p;, ---pn,)? + 1 und zeige, dass —1 ein Quadrat fiir jeden
Primteiler p von # ist.)
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Sylow, L., 90
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Symbol
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Verdoppelung des Wiirfels, 116

Waring-Problem, 127
Wilson, J., 66
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Carmichael-, 67,72,73
Extremal-, 143
Fermat-, 145-147
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Mersenne-, 147
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transzendente, 40
Zerfillungskorper, 42, 46
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