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Für Heike



Vorwort

DieAlgebra-Vorlesung gehört zu den zentralenVorlesungen einesMathematikstudi-
ums.Wir hatten uns daran gewöhnt, dass es eine zweisemestrige Vorlesung Algebra
(Algebra I/II) gab. Sicherlich haben sich im Laufe der Jahre die Inhalte weiterent-
wickelt, aber es gab doch ein allgemein akzeptiertes Kerncurriculum mit einem
zentralen Teil, der Galoistheorie. Je nach Ambition des Vorlesenden gab es diese
am Ende des ersten Semesters oder im zweiten Semester. Mit der Einführung der
Bachelor-/Masterstudiengänge hat sich da einiges geändert. Es gibt kaum noch das
zweisemestrige Modul Algebra.Dieses ist häufig durch ein Modul Algebra und dann
eine Sammlung von möglichenVertiefungsmodulen ersetzt worden, letztere oft erst
für denMaster vorgesehen.Dazu kommt,dass man heute kaumnoch erwarten kann,
dass Studierenden im Bachelorstudium ein Modul Algebra und ein weiteres Modul
Zahlentheorie besucht. Man kann das beklagen, und als Algebraiker mache ich das
auch,man kann aber dennoch versuchen,wie seit einigen Jahren in Halle geschehen,
ein Modul Algebra/Zahlentheorie mit Leben zu erfüllen, das den Studierenden so
etwas wie eine Allgemeinbildung auf beiden Gebieten vermittelt: nicht mehr, aber
auch nicht weniger. Dies bedeutet nicht „Algebra light“, der Qualitätsanspruch muss
gewahrt bleiben. Aus diesen Vorlesungen, die ich seit ein paar Jahren halte, ist die-
ses Buch hervorgegangen. Nun ist es nachvollziehbar, dass jeder Algebraiker hier
wesentliche Dinge vermissen wird, genauso wird es Zahlentheoretiker geben, denen
wichtige Dinge fehlen. Das kann auch gar nicht anders sein, wenn man bedenkt,
dass dies der Stoff eines Semesters ist. Es ist keine systematische Einführung in die
Algebra, und es ist erst recht keine in die Zahlentheorie. Die Zahlentheorie in die-
sem Buch bewegt sich imWesentlichen im Bereich der Kongruenzen, was dann mit
den quadratischen Kongruenzen am Ende des Buches seinen Höhepunkt erreichen
wird. So werden auch wichtige Gebiete wie z.B. Siebmethoden, Kettenbrüche oder
Pellsche Gleichung nicht thematisiert. Aber ich hoffe, und darüber möge der Leser
urteilen, dass das Buch gewisse Grundideen und ein grundlegendes Allgemeinwis-
sen wiedergibt, das ein Mathematiker haben sollte. So sollte man wissen, was ein
euklidischer Ring, ein Hauptidealring, eine algebraische Körpererweiterung ist.Man
sollte die Idee der Galoistheorie kennen. Im Bereich der Zahlentheorie sollte man
etwas über Primzahlen,Häufigkeit undVerteilung wissen, Kongruenzrechnung und
Zahlbereichserweiterungen als Beweismittel sollten bekannt sein, und schließlich
sollte man vielleicht grob wissen, was mit dem quadratischen Reziprozitätsgesetz
verbunden wird. Genau dies versucht das vorliegende Buch zu leisten.

Eine kurze Beschreibung der Inhalte soll hier mehr Klarheit schaffen. Wir be-
ginnen mit den Grundlagen sowohl der Körpertheorie, als das wird Algebra hier
im Wesentlichen verstanden, als auch der Zahlentheorie. Der Begriff der Primfak-
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torzerlegung steht im Vordergrund. Es werden euklidische Ringe, Hauptidealringe
und Polynomringe behandelt. Für Studierende ist es immer wieder überraschend,
dass Z[x] keine Division mit Rest hat, man aber dennoch gut mit ganzzahligen
Polynomen rechnen kann.Woran liegt das eigentlich? Nach diesem grundlegenden
Kapitel entwickeln wir die Körpertheorie ein Stück weit. Dies bedeutet in Kapitel II
die Behandlung der algebraischen Körpererweiterungen bis hin zur Konstruktion
des algebraischen Abschlusses und in Kapitel III die Klassifikation der endlichen
Körper. Die Existenz eines algebraischen Abschlusses ist im Folgenden nicht mehr
erforderlich.Was benötigt wird, sind die Existenz und Eindeutigkeit des Zerfällungs-
körpers eines Polynoms,die man in Satz II.13 und Folgerung II.20 findet.Wennman
will, kann man sich also den algebraischen Abschluss ersparen.

Nach diesem ersten algebraischen Abschnitt kommen wir zu der Zahlentheorie
mit den Begriffen Primzahl, Primzahlformel, kleiner Satz von Fermat, Eulerfunk-
tion ' bis hin zu Carmichealzahlen. Danach wird dann wieder als Teil der Algebra
die Gruppentheorie bis zum Sylow-Satz entwickelt, Auflösbarkeit wird thematisiert
und schließlich die Einfachheit der alternierenden Gruppen An, n ≥ 5, bewiesen.
Danach konnte ich trotz der eingangs gemachten Bemerkungen nicht umhin, doch
etwas zur Galoistheorie zu sagen. ImMittelpunkt steht hier die Symmetrie (Gruppe)
eines Polynoms,was zurDefinition derGaloisgruppe führt.Mit der nicht bewiesenen
Galoiskorrespondenz kann dann wieder bewiesen werden,dass die Auflösbarkeit ei-
nes Polynoms (Charakteristik 0) äquivalent zur Auflösbarkeit der Gruppe ist. Dies,
meine ich, sollte ein Gymnasiallehrer einmal in seinem Studium gesehen haben. Im
folgenden Kapitel wenden wir die Resultate über die algebraischen Körpererweite-
rungen auf die Geometrie, also auf die Konstruktion mit Zirkel und Lineal an. Dies
geht bis zum Gaußschen Satz der Konstruierbarkeit des regulären n–Ecks, wobei
auch wieder der nicht bewiesene Teil der Galoistheorie eine Rolle spielt.

Danach kehren wir endgültig in die Zahlentheorie zurück. Mit unseren alge-
braischen Hilfsmitteln können wir leicht entscheiden, welche natürlichen Zahlen
Summe von zwei Quadraten sind.Hierzu wird ein Beweis gewählt,der zeigt,wie man
die Idee der Zahlbereichserweiterung gewinnbringend einsetzen kann, am Beispiel
des Satzes von Fermat werden aber auch die Grenzen aufgezeigt. Es ergibt sich dann
natürlich im letzten Kapitel die Frage nach quadratischen Resten mit dem quadrati-
schen Reziprozitätsgesetz als Höhepunkt.Das Buch endet mit Betrachtungen zu den
Fermatschen Primzahlen.

Inhaltlich gibt es im Algebra-Teil dieses Buches (Kapitel I–III,V und VII) Über-
schneidungen mit meinem Algebra-Buch von 1998, die sich nicht vermeiden lassen.
Es wird weitgehend dem dortigen Aufbau gefolgt. Dem Verlag De Gruyter sei Dank
für die Erlaubnis, dies zu verwenden.

Eswurde versucht,wo immermöglich,auch historischeBezüge herzustellen.Die-
se stammen aus den Büchern von E. Scholz [26] und B.L. von derWaerden [31], aber
auch zu großen Teilen aus Wikipedia. Den unbekannten Autoren dieser Plattform
gilt mein ausdrücklicher Dank.

Der Aufbau des Buches spiegelt noch eine Besonderheit hier in Halle wider.Wir
lesen die Algebra für Bachelorstudierende mit 9CP1, für Studierende mit dem Ziel
Lehramt an Gymnasien mit 7CP und für die mit dem Ziel Lehramt an Sekundar-
schulen mit 5CP.Ein Kurs für letztere könnte aus den ersten vier Kapiteln und Teilen
von Kapitel VII (ohne die Konstruierbarkeit des n-Eckes) bestehen. Für Studierende

1Credit points (Leistungspunkte) gemäß EuropeanCredit Transfer andAccumulation System (ECTS).
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mit dem Ziel Lehramt an Gymnasien würde ein Kurs in Halle aus den Kapiteln I–VII
bestehen.Aber auch andere Zusammensetzungen sind denkbar.

Vorausgesetzt werden natürlich die Inhalte einerVorlesung über LineareAlgebra.
Eine Besonderheit mag sein, dass das Lemma von Zorn an einigen Stellen eingesetzt
wird, was vielleicht nicht überall zum Standardstoff der Linearen Algebra gehört.

Ich möchte mich bei den Hörern meiner Vorlesungen zur Algebra bedanken,
durch deren Rückmeldungen übersteigerte Ambitionen vermieden wurden. Frau
RebeccaWaldecker hat große Teile dieses Buches gelesen und sehr wertvolleVerbes-
serungshinweise gegeben, auch hierfür möchte ich mich an dieser Stelle bedanken.
Mein besonderer Dank geht an Frau Helbich, die die nicht immer leichte Umsetzung
des Manuskripts in den Stil der Birkhäuser-Reihe durchgeführt hat. Dem Verlag
danke ich für die angenehme und sehr hilfreiche Zusammenarbeit.

Halle, im September 2010 Gernot Stroth
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I Arithmetik

Was meinen wir eigentlich, wenn wir „Rechnen“ sagen? Normalerweise denken wir
an die ganzen Zahlen Z. Diese können wir z.B. addieren und multiplizieren, und
dabei gelten gewisse Regeln.

Das Gleiche gilt auch für die Menge der Polynome mit Koeffizienten in einem
Körper K oder Z.Aber auch in

Z[i] = {a + bi|a, b ∈ Z},
den sogenannten Gaußschen Zahlen können wir so rechnen. Dies führt zu einer
allgemeinen Definition von Rechenbereichen, den Ringen.

Ring. Sei R eine Menge mit zwei Verknüpfungen +, ·. Bezüglich + sei R eine
kommutative Gruppe mit neutralem Element 0.Weiter gelte für alle a, b, c ∈ R

a) a · (b · c) = (a · b) · c
b) a · (b + c) = a · b + a · c
c) (a + b) · c = a · c + b · c
d) Es gibt ein Element 1 ∈ Rmit 1 · a = a · 1 = a für alle a ∈ R.

Dann nennen wir R einen Ring. Ist a · b = b · a für alle a, b ∈ R, so wird
R ein kommutativer Ring genannt. Ein kommutativer Ring, in dem zusätzlich
(R \ {0}, ·) eine Gruppe ist, heißt Körper.

Definition

Statt a · b werden wir normalerweise kurz ab schreiben.

Alle eingangs genannten Beispiele sind Ringe, keines davon ist ein Körper. Beispiele
für Körper sind R, C, Q. Was ist mit R = {0} mit der Addition und Multiplikation
ganzer Zahlen als Verknüpfungen? Dies ist offenbar ein Ring. Hier gilt 1 = 0, was
durch die Axiome nicht verboten ist. Es ist aber kein Körper, da R \ {0} die leere
Menge ist. Insbesondere kann es bezüglich · keine Gruppe sein, da eine Gruppe stets
eine nicht leere Menge ist.

In diesemBuchwerden alleRinge kommutativ sein.Es gibt aber auch interessante
nicht kommutative Ringe, wie z.B.

R =
{(

a b
c d

)∣∣∣∣a, b, c, d ∈ R
}
.

 Elementare Algebra und Zahlentheorie
© Springer Basel AG 2012
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Besonders wichtig wird die folgende Konstruktion sein: IstR ein Ring,so bezeichnen
wir mit R[x] die Menge der Polynome mit Koeffizienten in R. Es ist R[x] wieder ein
Ring.

Eine weitere Rechenoperation, die wir in der Praxis häufig benutzen, ist das
Dividieren. Dies führt uns zu der Definition des Teilers:

Teiler. Sei R ein kommutativer Ring und a, b ∈ R.Wir sagen a teilt b, in Zeichen
a|b, falls es ein c ∈ R gibt, so dass b = ca ist.

Definition

Bemerkung. Es gilt 0|0, da z.B. 0 = 1 · 0 ist. Für jedes a gilt a|0, da 0 = 0 · a ist.

Achtung! Teiler und Division sind zwei verschiedene Dinge. Es ist zwar 0 ein Teiler
von 0, aber die Division von 0 durch 0 ist nicht definiert. Hier muss man sich also
vor der Alltagssprache hüten. Es gibt eben in R den Ausdruck a

b nicht.

Kann in einem Ring eigentlich beides,

a teilt b und b teilt a,

gelten? Das ist z.B. sicherlich der Fall, wenn a = b ist. Ist dies aber die einzige
Möglichkeit?

Gilt a|b, so gibt es ein c ∈ Rmit b = ca. Gilt b|a, so gibt es ein d ∈ Rmit a = db.Also
gilt

b = (cd)b.

Folgt hieraus cd = 1? In den reellen Zahlen wäre das so, falls b �= 0 ist.
Wir betrachten also zunächst den Sonderfall b = 0. Ist 0 ein Teiler von a, so ist a = 0,
also ist a = b.

Sei ab jetzt b �= 0.Dann gilt immerhin

b(1 − cd) = 0.

Folgt hieraus 1 − cd = 0?

Allgemein: Folgt aus xy = 0 stets x = 0 oder y = 0? In unseren eingangs erwähnten
Beispielen scheint dies so zu sein.

Wir betrachten den folgenden Ring R = {0, 1, 2, 3} (Reste modulo 4) mit den Ope-
rationen + und •.

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

• 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Addition und Multiplikation ist die in Z, nur wird vom Resultat nur der Rest bei
Division durch 4 genommen.Dies ist ein Ring.Aber 2 • 2 = 0.
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Dies führt zu folgender Definition:

Integritätsbereich. Sei R ein kommutativer Ring.

a) 0 �= x ∈ R heißt ein Nullteiler, falls es ein 0 �= y ∈ R gibt, so dass xy = 0 ist.

b) Ein kommutativer Ring ohne Nullteiler heißt Integritätsbereich.

Definition

Wir greifen nun unsere Frage wieder für Integritätsbereiche auf. Dann ist

1 − cd = 0.

Also haben wir cd = 1. Damit sind c und d Teiler der 1. Das liefert aber noch nicht
c = d = 1, da z.B. auch −1 ein Teiler von 1 ist. Das führt zu folgender Definition:

Einheit. Sei R ein Integritätsbereich. Ein Element c ∈ R heißt Einheit, falls c
ein Teiler von 1 ist.

Definition

Wir hatten gesehen, dass aus a teilt b und b teilt a folgt, dass b = camit einer Einheit
c ist. Ist umkehrt b = ca, mit einer Einheit c, so gibt es ein d ∈ Rmit dc = 1.Also ist
db = (dc)a = a, d.h., b teilt a. Damit haben wir:

Seien R ein Integritätsbereich und a, b ∈ R. Ist a ein Teiler von b und b ein Teiler
von a, so ist a = be mit einer Einheit e.

Lemma I.1

In Z sind die Einheiten 1 und −1.Wir werden später sehen, dass in K[x],K Körper,
die Einheiten genau die Elemente aus K sind.

Was sind die Einheiten von Z[i]?
Man sieht,dass 1,−1 aber auch i,−i Einheiten sind,da i · (−i) = 1 ist.Gibt es weitere?
Sei a + bi ∈ Z[i] eine Einheit. Dann gibt es c + di ∈ Z[i] mit

(a + bi)(c + di) = 1.

Wirwenden nun einen Trick an.Diesen werdenwir imVerlauf noch häufig einsetzen,
sodassmanauchvoneinerMethode sprechenkann.WirbildenkonjugiertKomplexe.
Da für z1, z2 ∈ C stets z1z2 = z1 z2 und z1 + z2 = z1 + z2 gilt, erhalten wir

(a + bi) (c + di) = 1

also
(a − bi)(c − di) = 1.

Nun multiplizieren wir beide Gleichungen

1 = (a + bi)(a − bi)(c + di)(c − di) = (a2 + b2)(c2 + d2).

Dies ist eine Gleichung in Z. Damit erhalten wir nun

a2 + b2 = 1 = c2 + d2.
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Aus a2 + b2 = 1 mit a, b ∈ Z, folgt a = ±1 und b = 0 oder a = 0 und b = ±1.Also ist
a + bi ∈ {1,−1, i,−i}. Damit haben wir die Einheiten von Z[i] bestimmt.
Besonders wichtig beim Rechnen in Z sind die Primzahlen. Diese wollen wir jetzt
auch in Integritätsbereichen definieren. Dazu lassen wir uns von Zmotivieren.

a) Eine Primzahl p inZ hat die Eigenschaft: Ist x ∈ Z ein Teiler von p, so ist x eine
Einheit oder x = ep mit einer Einheit e (x = ±1 oder x = ±p).

b) Eine Primzahl p in Z hat die Eigenschaft: Sind a, b ∈ Z und ist p ein Teiler von
ab, so ist p ein Teiler von a oder von b.

Üblicherweise nennt man ±1 nicht Primzahl, obwohl beide Eigenschaften a) und
b) erfüllt werden. Dies führt nun zu der folgenden Definition: Dabei wollen wir
allerdings etwas vorsichtiger vorgehen und a) und b) zunächst getrennt betrachten.
Wir werden erst einmal a) irreduzibel und b) prim nennen.

Primelement. Sei R ein Integritätsbereich. Sei p ∈ R, p �= 0, p keine Einheit.
a) Folgt für x ∈ R aus x|p stets, dass x eine Einheit oder x = ep mit einer
Einheit e ist, so nennen wir p ein irreduzibles Element.

b) Folgt für a, b ∈ R mit p teilt ab stets, dass p einen der Faktoren a oder b
teilt, so nennen wir p ein Primelement.

Definition

In Z gibt es keinen Unterschied zwischen Primelement und irreduziblem Element.
Vielleicht ist das ja immer so. Der nächste Satz gibt eine Teilantwort.

Sei R ein Integritätsbereich, p ein Primelement, so ist p irreduzibel.Satz I.2

Beweis. Sei a ein Teiler von p, also p = ab, mit b ∈ R. Da p ein Primelement ist, ist
p ein Teiler von a oder b. Sei p ein Teiler von a. Mit Lemma I.1 erhalten wir a = pe
mit einer Einheit e. Ist p ein Teiler von b, so ist b = pt. Also ist p = p(ta) und dann
p(1 − at) = 0.Da R ein Integritätsbereich ist und p �= 0 ist, folgt at = 1, also ist a eine
Einheit. Damit haben wir gezeigt, dass die Teiler von p entweder Einheiten oder von
der Form pemit einer Einheit e sind. Somit ist p irreduzibel.

Dies macht Mut, nur ist leider nicht jedes irreduzible Element prim. Dazu be-
trachten wir eine Variante des Rings der Gaußschen Zahlen

R = {a + b
√
−5|a, b ∈ Z}.

Da R eine Teilmenge vonC ist, ist R ein Integritätsbereich. Es ist 3 ∈ R. Sei a+ b
√
−5

ein Teiler von 3. Dann ist

3 = (a + b
√
−5)(c + d

√
−5), a, b.c, d ∈ Z.
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Wir wenden nun den gleichen Trick wie bei der Bestimmung der Einheiten in Z[i]
an. Es gilt auch

3 = (a − b
√
−5)(c − d

√
−5).

Also ist

9 = 3 · 3 = (a − b
√
−5)(a + b

√
−5)(c − d

√
−5)(c + d

√
−5)

= (a2 + 5b2)(c2 + 5d2).

Dies ist eine Gleichung in Z und somit ist

a2 + 5b2 = 1, 3 oder 9.

Ist a2 + 5b2 = 3, so muss b2 = 0 und a2 = 3 sein, was in Z keine Lösung hat.
Ist a2 + 5b2 = 9, so ist c2 + 5d2 = 1.Also ist stets

a2 + 5b2 = 1 oder c2 + 5d2 = 1.

Wir können per Symmetrie a2 + 5b2 = 1 annehmen.Dies hat in Z nur die Lösungen
b = 0, a = 1 oder −1.

Damit haben wir
3 ist irreduzibel in R.

Offenbar ist
3|9 = 3 · 3 = (2 +√

−5)(2 −
√
−5).

Wäre 3 prim, so wäre 3|2 +√
−5 oder 3|2 −√

−5.Dann gibt es a + b
√
−5 ∈ Rmit

(2 +
√
−5) = (a + b

√
−5)3 oder (2 −

√
−5) = (a + b

√
−5)3.

In beiden Fällen folgt
3a = 2 mit a ∈ Z.

Dies ist ein Widerspruch. Somit sind prim und irreduzibel verschiedene Begriffe.
Bevor wir uns ansehen, wann diese Begriffe doch gleich sind (z.B. in Z), wollen wir
den Teilerbegriff noch etwas weiter studieren.

In Z haben wir eine „Divison mit Rest“. Dies besagt: Sind a, b ∈ Z, a �= 0, so gibt
es q, r ∈ Zmit

b = qa + r , |r| < |a|.
Wenn wir diesen Begriff auf weitere Integritätsbereiche ausdehnen wollen, benö-
tigen wir eine Definition des Restes r, d.h. von „klein“.Wir werden dabei den Betrag
| · | auf Z durch eine Abbildung ' ersetzen.

Euklidischer1Ring. Ein Integritätsbereich R wird euklidischer Ring genannt,
falls es eine Abbildung ' :R \ {0} → N ∪ {0} gibt, die die beiden folgenden
Eigenschaften hat:

Definition

1Euklid von Alexandria (* um 365 v. Chr., † um 300 v. Chr.) wirkte in Alexandria, Verfasser des für
viele Jahrhunderte grundlegenden Mathematikwerkes „Elemente“.
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a) Sind a und b in Rmit ab �= 0, so ist ' (ab) ≥ ' (a).

b) Sind a, b ∈ R mit a �= 0, so gibt es q, r ∈ R, abhängig von dem Paar a, b,
mit

b = qa + r, wobei r = 0 oder ' (r) < ' (a) ist.

In diesem Sinne ist Z mit ' = | · | ein euklidischer Ring. Ist auch Z[i] euklidisch?
Wir setzen ' = | · |2, also

' (a + bi) = a2 + b2 = (a + bi)(a + bi).

a) Sei (a + bi)(c + di) �= 0.Dann ist
' ((a + ib)(c + id)) = (a + ib)(c + id)(a + ib)(c + id)

= (a + ib)(a + ib)(c + id)(c + id)

= ' (a + ib)' (c + id) ≥ ' (a + bi).

b) Sei ˛ = a + bi, ˇ = c + di �= 0. Für die komplexe Zahl ˛ˇ gilt dann:
˛

ˇ
=

a + bi
c + di

=
(a + bi)(c − di)
(c + di)(c − di)

=
(a + bi)(c − di)

c2 + d2
= s + it mit s, t ∈ Q.

Wir wählen nun ganze Zahlen x und y mit

|s − x| ≤ 1

2
und |t − y| ≤ 1

2
.

(x, y )

(s, t )

Z

Z

Wir haben damit (a + ib) = (x + iy)(c + id) + r, wobei

r = (c + id)[(s + it) − (x + iy)]

ist.Es ist r ∈ Z[i],da r = (a+bi)−(c+di)(x+iy) ist,und a+ib,x+iy und c+id ∈ Z[i]
sind. Setze nun q = x + iy. Dann ist a + bi = q(c + di) + r.Weiter ist

' (r) = ' (c + di)' ((s − x) + i(t − y))

= ' (c + di)[(s − x)2 + (t − y)2]

≤ ' (c + di)
[
1

4
+
1

4

]
=
1

2
' (c + di) < ' (c + di).

Somit ist Z[i] ein euklidischer Ring.
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Ist auch K[x], K ein Körper, ein euklidischer Ring? Dazu müssen wir etwas weiter
ausholen. Sei zunächst R ein kommutativer Ring. Jedes Polynom in R[x] hat einen
Grad. Sei

f =
n∑
i=0

aixi mit an �= 0.

So ist
n = grad f .

Es ist eine nützliche Konvention, grad 0 = −∞ zu setzen.

Sei R ein kommutativer Ring und f , g ∈ R[x]. Dann gilt

a) grad (fg) ≤ grad f + grad g.

b) Ist R ein Integritätsbereich, so ist grad (fg) = grad f + grad g. Insbesondere
ist R[x] ein Integritätsbereich.

Lemma I.3

Beweis. Wir beweisen a) und b) gleichzeitig. Die Behauptungen sind klar für f = 0
oder g = 0. Sei also

f =
n∑
i=0

aixi, g =
m∑
j=0

bjxi

mit an �= 0 �= bm. Dann ist

fg = anbmxn+m +
n+m−1∑
i=0

cixi.

Das ergibt grad fg ≤ n+m = grad f +grad g . Ist weiterR ein Integritätsbereich, so ist
anbm �= 0,also gilt Gleichheit. Insbesondere ist fg �= 0,d.h.R[x] ist Integritätsbereich.

Nun können wir zeigen, dass K[x] euklidisch ist. Dabei werden wir die grad
Funktion als ' benutzen. Also „klein“ bedeutet hier jetzt einfach „von kleinem
Grad“.

Sei K ein Körper

a) K[x] ist ein euklidischer Ring.

b) Die Polynome vom Grad Null sind genau die Einheiten von K[x].

Satz I.4

Beweis. a) Für f ∈ K[x], f �= 0, setze ' (f ) = grad f .
Ist fg �= 0, so gilt nach Lemma I.3b)

' (fg) = grad (fg) = grad f + grad g = ' (f ) + ' (g) ≥ ' (f ).

Seien nun f =
∑n

i=0 aix
i und g =

∑m
j=0 bjx

j mit anbm �= 0.Wir müssen q, r mit
f = qg + r

und r = 0 oder grad r < grad g angeben.
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Ist grad f < grad g , so setzen wir q = 0 und r = f und sind fertig. Also können wir
grad f ≥ grad g annehmen.Wir definieren nun f1 durch

f1 = f − xn−manb−1m g.

Dann ist grad f1 ≤ grad f − 1 = n − 1.Mit einer Induktion nach grad f erhalten wir

f1 = q1g + r1

mit r1 = 0 oder grad r1 < grad g .

Dann ist
f = (q1 + xn−manb−1m )g + r1

und wir setzen q = q1 + xn−manb−1m und r = r1.

b) Sei f eine Einheit. Dann gibt es ein g ∈ K[x] mit fg = 1.Also

0 = grad 1 =
(I.3b)

grad f + grad g.

Dies liefert grad f = 0.

Von unseren Beispielen zu Anfang dieses Kapitels bleibt Z[x]. Der obige Beweis
kann hier nicht verwendet werden, da wir b−1m in Z nicht bilden können. Dies sagt
aber noch nicht, dass Z[x] kein euklidischer Ring ist. Es ist aber in der Tat so.
Z[x] hat keine Division mit Rest, was immer ' auch sein mag. Es ist schwierig, die
Nichtexistenz von etwas zu zeigen. Deshalb wollen wir zunächst euklidische Ringe
eingehender studieren. Wir werden dann sehen, dass alle euklidischen Ringe eine
gemeinsame Eigenschaft haben, die Z[x] offenbar nicht hat.

Der Begriff „euklidischer Ring“ leitet sich vom euklidischen Algorithmus zum Be-
rechnen des ggT (a, b) her.

Seien a, b ∈ R.Wir teilen a durch bmit Rest, also

a = q1b + r2 mit ' (r2) < ' (b) oder r2 = 0.

Ist r2 �= 0, so teile b durch r2 mit Rest, also
b = q2r2 + r3 mit ' (r3) < ' (r2) oder r3 = 0.

Dieses Verfahren setzen wir fort

ri = qi+1ri+1 + ri+2 ' (ri+2) < ' (ri+1) oder ri+2 = 0.

Das endet mit
rn+2 = 0 also

rn = qn+1rn+1.

In Z kann man so den ggT (a, b) = rn+1 berechnen.Wir zeigen dies durch Induktion
nach n, also nach der Anzahl der Schritte. Ist r2 = 0, so ist b ein Teiler von a und
damit auch der größte gemeinsame Teiler von a und b. Sei also r2 �= 0.Dann besitzen
per Induktion r2 und b den größten gemeinsamen Teiler rn+1.Dann ist aber auch rn+1
ein Teiler von a, da a = q1b+ r2 ist.Da der ggT (a, b) auch r2 teilt, ist er ein Teiler von
rn+1 = ggT (b, r2). Dies bedeutet dann, dass rn+1 = ggT (a, b) ist. Eigentlich haben
wir nur gezeigt, dass rn+1 und ggT (a, b) sich nur um ein Vorzeichen unterscheiden.
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Sind a und b inN, ist der ggT ,wie wir ihn normalerweise benutzen, auch inN.Wählt
man bei der Division mit Rest immer den nicht negativen Rest, so ist auch rn+1 ∈ N.
Also ist dann wirklich rn+1 = ggT (a, b).

Wir wollen den ggT nun auch in beliebigen Integritätsbereichen definieren. Dann
haben wir aber keine natürliche Anordnung mehr. Wir gehen so wie in Z vor, also
indem wir nur den Teilerbegriff benutzen.

Größter gemeinsamer Teiler (ggT). Sei R ein Integritätsbereich, a, b ∈ R.Wir
nennen c einen ggT von a und b, falls gilt :

a) c teilt sowohl a als auch b.

b) Ist d ∈ R ein Teiler sowohl von a als auch von b, so ist d ein Teiler von c.

Definition

Der ggT (a, b) ist allerdings jetzt nichtmehr eindeutig bestimmt.Sind c und d beides
ggT von a und b, so ist c ein Teiler von d und d ein Teiler von c. Nach Lemma I.1
ist dann c bis auf eine Einheit gleich d. Also ist ggT (a, b) nur bis auf Einheiten
bestimmt. Trotzdem werden wir im Folgenden c = ggT (a, b) schreiben.

Wie inZ siehtman,dass in einem euklidischen Ring der euklidischeAlgorithmus
einen ggT (a, b) berechnet.Dass die Existenz eines ggT (a, b) nicht selbstverständlich
ist, zeigt folgendes Beispiel (siehe Schulze-Pillot [27] Aufgabe 3.4]:

Wir betrachten wieder
R = {a + b

√
−5|a, b ∈ Z}.

Wir zeigen, dass d = ggT (6, 4 + 2
√
−5) nicht existiert. Sei dazu d ein größter ge-

meinsamer Teiler von 6 und 4 + 2
√
−5. Offenbar ist 2 ein Teiler von 6 und von

4 + 2
√
−5. Somit ist 2 ein Teiler von d. Weiter ist (1 −

√
−5)(1 +

√
−5) = 6 und

4 + 2
√
−5 = −(1 −

√
−5)2.Also ist auch 1 −

√
−5 ein Teiler von d.

Ist a ein Teiler von d, so ist auch |a|2 ein Teiler von |d|2.Es ist |2|2 = 4 und |1−√
−5|2 =

6. Damit sind sowohl 4 als auch 6 ein Teiler von |d|2 in Z. Also ist 12 ein Teiler |d|2.
Da d ein Teiler von 6 ist, ist 6 = de, also 36 = |6|2 = |d|2|e|2.
Die einzige Lösung mit 12

∣∣∣|d|2 ist |d|2 = 36 und |e|2 = 1. Sei e = a + b
√
−5.Dann ist

1 = |e|2 = a2 + b25. Die einzige Lösung hiervon ist b = 0 und a2 = 1. Also ist d = 6
oder −6. Damit wäre 6 ein Teiler von 4 + 2

√
−5, was nicht geht. Also haben 6 und

4 + 2
√
−5 keinen größten gemeinsamen Teiler in R.

Für feinere Untersuchungen in Ringen benötigen wir den Begriff des Ideals.Verglei-
che hierzu auch die Bemerkungen auf Seite 126 am Ende von Kapitel VIII.

Ideal. Sei R ein Ring. Eine Teilmenge i ⊆ R heißt Links- (Rechts-) Ideal, falls
gilt:

a) (i,+) ist eine Untergruppe von (R,+).

b) Ist a ∈ R, so ist ai = {ai|i ∈ i} ⊆ i , (ia = {ia|i ∈ i} ⊆ i).

Ist i sowohl Rechts- als auch Linksideal, so nennen wir i 2-seitig.

Definition
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Ist R kommutativ, so ist jedes Rechtsideal auch Linksideal und umgekehrt. In diesem
Fall sprechen wir einfach von Idealen. So bilden z.B. die geraden Zahlen in Z ein
Ideal.

Sei R ein Ring, i ein 2-seitiges Ideal. Wir setzen R/i = {a + i|a ∈ R}.
(Da (R,+) abelsch ist, ist jede Untergruppe Normalteiler, also ist (R/i,+) die
Faktorgruppe. Siehe Seite 80.)

Wir definieren auf R/i eine Multiplikation durch

(a + i)(b + i) = ab + i, a, b ∈ R.

Dann ist R/i ein Ring, der sogenannte Faktorring.

Satz I.5

Beweis. Wir zeigen, dass die Multiplikation wohldefiniert ist.Der Rest sei dem Leser
als Übung überlassen. Sei dazu a′ + i = a + i und b′ + i = b + i. Dann ist a′ = a + i
mit i ∈ i und b′ = b + j mit j ∈ i. Es ist

(a′ + i)(b′ + i) = [(a + i) + i][(b + j) + i] = ab + aj + ib + ij + i.

Da i 2-seitig ist, ist aj + ib + ij ∈ i, also ist (a′ + i)(b′ + i) = ab + i.

Homomorphismus. Seien R1,R2 Ringe.

a) Eine Abbildung ' :R1 → R2 heißt Homomorphismus, falls

' (a + b) = ' (a) + ' (b) und

' (ab) = ' (a)' (b)

für alle a, b ∈ R1 gilt.

Einen surjektivenHomomorphismus nennen wirEpimorphismus.Einen injekti-
ven Homomorphismus nennen wirMonomorphismus. Einen bijektiven Homo-
morphismus nennen wir Isomorphismus. Ist R1 = R2, so nennen wir einen Iso-
morphismus auch Automorphismus. Ist ' ein Isomorphismus, so schreiben wir

R1 ∼= R2.

b) Sei ' :R1 → R2 ein Homomorphismus.Wir setzen

ker ' = {a|a ∈ R1,' (a) = 0}
und nennen ker ' den Kern des Homomorphismus ' .

Definition

Seien R1, R2 Ringe und ' :R1 → R2 ein Homomorphismus. Dann gilt:

a) ' (0) = 0.

b) Ist R1 einKörper, hat R2 keineNullteiler und gibt es ein a ∈ R1mit' (a) �= 0,
so ist ' (1) = 1.

Lemma I.6
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Beweis. a) Für alle a ∈ R1 ist ' (a) = ' (a + 0) = ' (a) + ' (0), also gilt ' (0) = 0.

b) Sei nun R1 ein Körper. Es ist ' (a) = ' (1a) = ' (1)' (a). Das liefert

0 = ' (a)(1 − ' (1)).

Da R2 keine Nullteiler hat, ist also 0 = ' (1) − 1 und somit ' (1) = 1.

Seien R1,R2 Ringe und ' :R1 → R2 ein Homomorphismus. Dann ist ker ' ein
2-seitiges Ideal.

Lemma I.7

Beweis. Wie in der Linearen Algebra sieht man, dass ker ' eine Untergruppe von
(R1,+) ist. Seien a ∈ R1 und b ∈ ker ' . Dann ist ' (ab) = ' (a)' (b) = 0 =
' (b)' (a) = ' (ba). Somit sind ab und ba in ker ' ,was zeigt,dass ker ' ein 2-seitiges
Ideal ist.

Homomorphiesatz. Seien R1,R2 Ringe und ' :R1 → R2 ein Homomorphismus.
Dann ist

R1/ker ' ∼= Bild ' .

Satz I.8

Beweis. Wir definieren  : Bild ' → R1/ker ' durch  (' (a)) = a + ker ' .

Man beachte,dass nach Lemma I.7R1/ker ' ein Ring ist.Wie in der LinearenAlgebra
sieht man, dass  ein Isomorphismus bezüglich der addidiven Gruppen ist. Wir
müssen also nur zeigen, dass  ein Homomorphismus ist. Dies sieht man wie folgt:

 (' (a)' (b)) =  (' (ab)) = ab + ker ' =

(a + ker ' )(b + ker ' ) =  (' (a)) (' (b)).

Der nächste Satz erscheint zunächst etwas künstlich, wird uns später aber noch
häufig gute Dienste leisten.

Ein kommmutativer Ring R mit |R| ≥ 2 ist genau dann ein Körper, wenn jedes
Ideal gleich {0} oder R ist.

Satz I.9

Beweis. Es habe R nur die Ideale {0} oder R.Wir zeigen, dass R ein Körper ist.
(1) Jedes a ∈ R \ {0} hat ein Inverses.
Wir zeigen zunächst, dass

aR = {ar|r ∈ R}
ein Ideal ist. Seien dazu ar1, ar2 ∈ aR und b ∈ R. Es ist

ar1 + ar2 = a(r1 + r2) ∈ aR

und
(ar1)b = a(r1b) ∈ aR.

Also ist aR ein Ideal.
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Es ist a = a · 1 ∈ aR. Also ist aR �= {0}. Somit ist nach der Annahme, dass es nur die
Ideale {0} und R gibt, aR = R. Da 1 ∈ R ist, gibt es ein c ∈ R mit ac = 1, d.h., a ist
invertierbar.

(2) R \ {0} ist eine Gruppe.
Da |R| ≥ 2 ist, ist R \ {0} �= ∅. Somit haben wir wegen (1) nur zu zeigen, dass aus
a �= 0 �= b stets ab �= 0 folgt.
Sei also ab = 0.Nach (1) gibt es ein c mit bc = 1.Also ist

0 = (ab)c = a(bc) = a,

einWiderspruch zu a �= 0.
Nach (2) ist nun R ein Körper.

Sei umgekehrt R ein Körper und i �= {0} ein Ideal. Dann gibt es ein a ∈ i, a �= 0. Da
R ein Körper ist, gibt es ein b ∈ Rmit ab = 1, d.h. 1 ∈ i. Dann ist

R = {1 · r|r ∈ R} ⊆ i.

Bemerkung. a) Im Beweis von Satz I.9 haben wir auch gezeigt: Ist i ein Ideal in R
mit 1 ∈ i, so ist i = R.

b) Der Ring R = {0} hat nur die Ideale {0} und R, ist aber kein Körper. Also ist die
Voraussetzung |R| ≥ 2 in Satz I.9 notwendig.

Seien K1,K2 Körper und' :K1 → K2 einHomomorphismus.Dann ist ker ' = {0}
oder ker ' = K1.

Folgerung I.10

Beweis. Nach Lemma I.7 ist ker ' ein Ideal. Nach Satz I.9 ist ker ' = K1 oder
ker ' = {0}.

Primideal. Sei R ein kommutativer Ring.Ein Ideal p �= R von R heißt Primideal,
falls R/p ein Integritätsbereich ist.

Definition

Woher kommt der Name Primideal? Sei R = Z und p ∈ Z eine Primzahl. Wir be-
haupten, dass pZ ein Primideal ist.Wir nehmen dazu an, dass

ab + pZ = (a + pZ)(b + pZ) = pZ

sei. Dann ist ab ∈ pZ, d.h., p teilt ab. Also ist p ein Teiler von a oder b. Somit ist
a + pZ = pZ oder b + pZ = pZ. Das heißt,Z/pZ ist ein Integritätsbereich.

Ist umgekehrt m = n1n2 ∈ Z, n1 �= ±m, n2 �= ±m. Dann sind beide n1 + mZ und
n2 +mZ ungleichmZ, aber (n1 +mZ)(n2 +mZ) = n1n2 +mZ = mZ.

Die von Null verschiedenen Ideale der FormmZ,m ∈ Z, sind somit genau dann
Primideale, wennm prim ist. Die Primideale sind somit eineVerallgemeinerung der
Primzahlen in Z.
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Bemerkung. Satz I.9 zeigt, dass maximale Ideale i in kommutativen Ringen R prim
sind, da R/i ein Körper ist.

Die Idee, wie wir gezeigt haben, dass pZ prim ist, kann man verallgemeinern.

Sei R ein kommuntativer Ring und i �= R ein Ideal. Es ist i genau dann ein
Primideal, falls aus a, b ∈ R mit ab ∈ i stets folgt, dass a oder b in i liegt.

Satz I.11

Beweis. a) Sei i ein Primideal und ab ∈ i. Dann ist

i = ab + i = (a + i)(b + i).

Da i ein Primideal ist, ist R/i ein Integritätsbereich.Damit erhalten wir a+ i = i oder
b + i = i, was gleichwertig zu a ∈ i oder b ∈ i ist.

b) Es gelte nun umgekehrt, dass aus ab ∈ i stets a ∈ i oder b ∈ i folgt.Wir wollen
zeigen dass R/i ein Integritätsbereich ist. Seien dazu a+ i und b+ i Elemente aus R/i
mit (a + i)(b + i) = i. Dann gilt ab ∈ i. Nach Annahme ist nun a ∈ i oder b ∈ i, also
a + i = i oder b + i = i. Somit ist R/i ist ein Integritätsbereich.

Eine weitere Analogie zu denVerhältnissen in Z, nämlich, dass prim und irredu-
zibel sich nicht unterscheiden, ist das nächste Resultat.

Seien R ein Integritätsbereich und 0 �= p ∈ R, so dass pR ein Primideal in R ist, so
ist p irreduzibel.

Lemma I.12

Beweis. Sei ab = p mit a, b ∈ R. Dann ist ab ∈ pR. Nach Satz I.11 ist a ∈ pR oder
b ∈ pR.Wir nehmen ohne Einschränkung a ∈ pR an.Dann ist a = pxmit x ∈ R. Das
liefert

p = pxb und p(1 − xb) = 0.

Da p �= 0 ist, ist 1 = xb, d.h., b ist eine Einheit. Da pR �= R ist, ist p keine Einheit.Also
ist p irreduzibel.

Wir wollen uns Z noch etwas genauer ansehen.

Sei 0 �= i ein Ideal in Z. Dann gibt es ein a �= 0mit a ∈ i.Wähle amit |a|minimal. Sei
nun b ∈ i, so teile b durch amit Rest, also

b = qa + r, |r| < |a|.

Es ist r = b − qa ∈ i. Die minimaleWahl von a liefert nun r = 0.Damit ist

i = {qa|q ∈ Z} = aZ.

Somit haben alle Ideale von Z die Gestalt aZ. Dies führt zu folgender Definition:

Hauptidealring. Sei R ein Integritätsbereich.Wir nennen R einen Hauptideal-
ring (HIR), falls jedes Ideal i von R die Gestalt aRmit geeignetem a ∈ R hat.

Definition
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Was wir gerade gezeigt haben, ist:

Z ist HIR.Lemma I.13

Die Idee von Z trägt aber weiter.

Jeder euklidische Ring R ist HIR.Satz I.14

Beweis. Wir wiederholen einfach den Beweis für Z. Sei 0 �= i ein Ideal von R, wähle
0 �= a ∈ imit ' (a) minimal. Sei b ∈ i, so teile b durch amit Rest, also

b = qa + r,' (r) < ' (a) oder r = 0.

Da r = b − qa ∈ i ist, folgt r = 0, d.h.

i = {qa|q ∈ R} = aR.

Nun kommen wir wieder zu den Begriffen „prim“ und „irreduzibel“ zurück.

Sei R ein HIR. Dann sind 0 und pR mit irreduziblem p genau die Primideale in R.
Weiter ist jedes von 0 verschiedene Primideal maximal, d.h., R/pR ist ein Körper.

Satz I.15

Beweis. Sei zunächst p ein Primideal. Da R ein Hauptidealring ist, gibt es ein p ∈ R
mit p = pR. Ist p �= 0, so ist p nach Lemma I.12 irreduzibel.

Sei umgekehrt p irreduzibel. Wir zeigen, dass pR ein maximales Ideal ist. Sei
pR � aR � R.Dann ist p = abmit geeignetem b ∈ R. Ist a eine Einheit, so ist aR = R,
einWiderspruch zur Annahme aR �= R. Also ist a keine Einheit. Da p irreduzibel ist,
ist dann b eine Einheit.

Es gibt also ein c ∈ Rmit bc = 1.Damit erhalten wir

a = abc = pc ∈ pR.

Also ist aR ⊆ pR und dann aR = pR, ein Widerspruch zur Annahme pR �= aR.
Damit ist pR ein maximales Ideal. Nach Satz I.9 ist R/pR ein Körper, insbesondere
ein Integritätsbereich. Somit ist pR ein Primideal.

Wir wissen, dass Z,K[x] (K Körper) und Z[i] Hauptidealringe sind. Aber Z[x] ist
keiner.Wir betrachten dazu das Ideal xZ[x]. Offenbar ist

Z[x]/xZ[x] ∼= Z.

Dies kann man wie folgt einsehen.Wir betrachten die Abbildung

' :Z[x] → Z

mit
' (f ) = f (0), f ∈ Z[x].
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Dann ist ' ein Homomorphismus. Es ist Bild f = Z. Weiter ist xZ[x] = ker f . Der
Homomorphiesatz I.8 liefert nun die Behauptung.

Somit ist xZ[x] ein Primideal, da Z[x]/xZ[x] ∼= Z ist, und Z ein Integritäts-
bereich ist. Da aber Z kein Körper ist, folgt mit Satz I.15, dass Z[x] kein Hauptideal-
ring sein kann.

Damit haben wir auch die Frage beantwortet,ob es inZ[x] eine Divisionmit Rest
gibt (was auch immer die Funktion ' sein mag). Diese gibt es nicht, da nach Satz
I.14 jeder euklidische Ring ein Hauptidealring ist.

Bevor wir uns wieder Z[x] zuwenden, wollen wir die Hauptidealringe noch nä-
her studieren. Wir werden als Erstes zeigen, dass diese immer einen ggT haben.
Allein davon ausgehend, werden wir zeigen, dass man in Hauptidealringen ver-
nünftig rechnen kann, d.h. insbesondere, dass wir einen Ersatz für die eindeutige
Primfaktorzerlegung aus Z finden werden.

Seien R ein Hauptidealring und a1, . . . , at ∈ R. Dann existiert ein größter ge-
meinsamer Teiler d von a1, . . . , at . Weiter gibt es b1, . . . , bt ∈ R mit

d = a1b1 + . . . + atbt .

Satz I.16

Beweis. Es ist a1R + . . . + atR ein Ideal, wie man leicht nachrechnet. Da R ein HIR
ist, ist dann a1R + . . . + atR = dR für geeignetes d ∈ R.

Dann gibt es ri ∈ R, i = 1, . . . , t mit ai = rid. Insbesondere ist d ein Teiler von
ai, i = 1, . . . , t.

Auf der anderen Seite gilt auch

d = a1b1 + . . . + atbt mit bi ∈ R geeignet.

Sei nun s ein Teiler von ai, i = 1, . . . , t.Dann teilt s natürlich auch alle Produkte aibi,
i = 1, . . . , t.Also ist s ein Teiler von d. Damit ist d ein ggT von a1, . . . , at .

Dies ist an sich ein ganz überraschender Satz. Er zeigt, dass der ggT, der ja rein
unter Benutzung der multiplikativen Struktur des Ringes definiert wurde, von der
additiven Struktur nicht unabhängig ist.

In einem euklidischen Ring kann man die Zerlegung

d = a1b1 + a2b2

mit dem euklidischen Algorithmus berechnen.Wenn man den ggT (a1, a2) wie auf
Seite 8 mit dem euklidischen Algorithmus bestimmt, so hat jede Zeile die Form
ri = qi+1ri+1 + ri+2. Das bedeutet, dass jedes ri+2 eine Linearkombination der vorher-
gehenden ist, sich also letztendlich in der Form a1c1 + a2c2 schreiben lässt.Der letzte
Rest rn+1 ist der ggT. Also können wir rückwärts diese Linearkombination bestim-
men.Das hat nicht nur theoretische, sondern auch praktische Bedeutung. Seien etwa
a, b, c ∈ Z gegeben. Gesucht sind x, y ∈ Zmit

ax + by = c.
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Offenbar ist ggT (a, b) = d einTeiler von c.Mit demeuklidischenAlgorithmus finden
wir x1, y1 ∈ Zmit

ax1 + by1 = d.

Ist c = ud, so ist x = ux1, y = uy1 eine Lösung.

Wir zeigen nun, dass Hauptidealringe die von uns gesuchte Verallgemeinerung
der Situation in Z sind, und zwar in der Hinsicht, dass die Begriffe prim und irredu-
zibel zusammen fallen.

In einem Hauptidealring R ist jedes irreduzible Element prim.Satz I.17

Beweis. Sei p ∈ R irreduzibel. Seien weiter a, b ∈ R und p ein Teiler von ab, also
ab = pr. Sei d = ggT (a, p). Da p durch d geteilt wird, ist d eine Einheit oder d = ep
mit einer Einheit e. Sei d = ep, so ist p ein Teiler von d. Da a von d geteilt wird, wird
dann auch a von p geteilt. Ist also p kein Teiler von a, so muss d eine Einheit sein,
also ist 1 ein ggT (a, p). Nach Satz I.16 gibt es u, v ∈ Rmit

1 = up + va.

Dann ist
b = upb + vab = upb + vpr = p(ub + vr).

Also ist p ein Teiler von b. Damit haben wir gezeigt, dass p ein Teiler von a oder b ist.
Somit ist p prim.

Das wohl wichtigste Hilfsmittel beim Rechnen in Z ist die eindeutige Primfaktor-
zerlegung.Wobei „eindeutig“ natürlich nur bis auf Multiplikation mit ±1 bedeuten
kann.Hier sieht man, warum man±1 nicht als prim bezeichnen sollte.
Eindeutige Primfaktorzerlegung. Wir nennen einen Integritätsbereich R einen
Ring mit eindeutiger Primfaktorzerlegung (EPZ-Ring), falls gilt:

a) Ist 0 �= a ∈ R, a keine Einheit, so ist a = p1 · · · pn mit irreduziblen
p1, . . . , pn.

b) Die pi in a) sind bis auf Multiplikation mit Einheiten und Reihenfolge
eindeutig durch a bestimmt.

Definition

Unser Ziel ist es nun zu zeigen, dass Hauptidealringe eine eindeutige Primfaktorzer-
legung haben. Dabei ist weniger die Eindeutigkeit ein Problem als die Existenz.

Eindeutigkeit: Sei
a = p1 · · · pu = q1 · · · qr

mit irreduziblen Elementen p1, . . . , pu, q1, . . . , qr .

Es ist p1 ein Teiler von a. Nach Satz I.17 ist p1 prim.Also gibt es ein i, so dass qi
von p1 geteilt wird, d.h. qi = p1d, d ∈ R. Da qi irreduzibel ist, ist d eine Einheit.

Bei geeigneter Anordnung können wir i = 1 annehmen.Also ist

p1(p2 · · · pu) = dp1(q2 · · · qr) d.h. p1[(p2 · · · pu) − d(q2, · · · , qr)] = 0.

Dann ist p2 · · · pu = dq2 · · · qr .
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Setze q̃2 = dq2. Dann ist auch q̃2 irreduzibel.Also haben wir

p2 · · · pu = q̃2q3 · · · qr .

Eine Induktion nach u liefert nun die Behauptung.

Es bleibt, die Existenz zu zeigen.

Ist R = Z, so kann man wie folgt argumentieren: Sei a ∈ R keine Einheit. Ist
a irreduzibel, so sind wir fertig. Ist a nicht irreduzibel, so gibt es a1, a2 ∈ R mit
a = a1a2 und |a1| < |a| > |a2|. Eine Induktion nach |a| liefert nun die Behauptung.

Es ist klar, dass wir so in beliebigen euklidischen Ringen argumentieren können.
In Hauptidealringen fehlt uns dieseMöglichkeit. Ein Ersatz liefert folgendes Lemma:

Sei R ein kommutativer Ring. Gleichwertig sind

a) Jedes Ideal i ist endlich erzeugt, d.h., es gibt ein r ∈ N und a1, . . . , ar ∈ R
mit

i = a1R + · · · + arR.

b) Jede nicht leere Teilmenge S von Idealen in R besitzt ein maximales Ele-
ment.

Lemma I.18

Beweis. a)⇒ b): Sei K eine Kette in S, d.h. eine total geordnete Teilmenge bzgl.⊆.
Setze

j =
⋃
i∈K

i.

Sind a1, a2 ∈ j, so gibt es i1, i2 ∈ K mit a1 ∈ i1, a2 ∈ i2. Da K total geordnet ist,
können wir i1 ⊆ i2 annehmen, d.h. a1 + a2 ∈ i2 ⊆ j. Genauso ist auch ra1 ∈ i1 ⊆ j
für r ∈ R.

Also ist j ein Ideal. Nach Annahme gibt es a1, . . . , ar ∈ Rmit

j = a1R + · · · + arR.

Insbesondere sind a1, . . . , ar ∈ j. Das heißt, es gibt Ideale i1, . . . , ir ∈ Kmit ai ∈ ii,
i = 1, . . . , r. Die Totalordnung liefert wieder, dass es ein k gibt mit a1, . . . , ar ∈ ik.
Das heißt, j ⊆ ik. Insbesondere ist dann j = ik ∈ K. Damit hat jede Kette eine obere
Schranke inS. Nach dem Zornschen2 Lemma hat dannSmaximale Elemente.

b)⇒ a): Sei i ein Ideal. Setze

S = {j|j ⊆ i, j endlich erzeugtes Ideal }.

Es ist 0 = 0R ∈ S, d.h.S �= ∅.NachAnnahme gibt es einmaximales Element j0 ∈ S.
Es ist

j0 = a1R + · · · + arR für geeignete a1, . . . , ar ∈ R.

2MaxZorn (*6.6.1906Hamburg,†9.3.1993Bloomington),Indiana,emigrierte 1933 in dieUSA,Profes-
sor inYale und IndianaUniversity Bloomington,Arbeitsgebiete Gruppentheorie,Mengenlehre.Besondere
Berühmtheit erlangte er durch das Zornsche Lemma (Zorn 1935, [34]).
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Ist j0 �= i, so gibt es ein b ∈ i \ j0. Es ist i ⊇ j0 + bR = a1R + · · · + arR + bR. Somit ist
j0 + bR ∈ S, aber j0 �= j0 + bR, einWiderspruch zur Maximalität von j0.Also ist j0 = i
endlich erzeugt.

Nun wenden wir uns der Existenz einer Zerlegung in irreduzible Elemente in Haupt-
idealringen zu. Sei dazu a ∈ R, a �= 0. Setze

S = {bR|a = bp1 · · · pn, mit endlich vielen irreduziblen Elementen pi}.

Da a = a ist, ist aR ∈ S, d.h.S �= ∅ (beachte, dass endlich viel auch keines bedeuten
kann). Nach Lemma I.18 hatS ein maximales Element cR.Also

a = cp1 · · · pk.

Wir zeigen, dass c eine Einheit ist. Dann haben wir unsere Zerlegung gefunden. Sei
dazu c keine Einheit, also

cR �= R.

Sei
S1 = {i|i Ideal , cR ⊆ i � R}.

Da cR ∈ S1 ist, istS1 �= ∅.Nach Lemma I.18 gibt es einmaximales Elementm inS1.

Es ist m = pR, da R ein Hauptidealring ist. Da m insbesondere ein maximales
Ideal in R ist, ist nach Satz I.9 R/m ein Körper.Also istm prim.Nach Lemma I.12 ist
dann p irreduzibel. Da cR ⊆ m ist, ist c = pd mit geeignetem d. Somit ist

cR ⊆ dR.

Es ist nun
a = dpp1 · · · pk.

Somit ist auch dR ∈ S1.Die Maximalität von cR liefert dann cR = dR.Also ist d = rc
mit geeignetem r ∈ R. Das liefert nun

c = dp = crp, also rp = 1,

ein Widerspruch, da pR �= R war. Somit ist c eine Einheit. Ist nun a keine Einheit,
so ist k ≥ 1. Setze p̃1 = cp1. Dann ist a = p̃1p2 · · · pk mit irreduziblen p̃1, p2, . . . , pk.
Damit ist die Existenz bewiesen.

Wir haben zusammenfassend:

Jeder Hauptidealring ist ein EPZ-Ring.Satz I.19

Da jeder euklidischeRing einHauptidealring ist, ist dann auch jeder euklidischeRing
ein EPZ-Ring.Somit sindZ,K[x],Z[i] alles EPZ-Ringe.Jetzt könnenwir auch zeigen,
dass in einem EPZ-Ring die Begriffe prim und irreduzibel gleichwertig sind.

Sei R ein EPZ-Ring. Ist p ∈ R, so ist p genau dann prim, wenn p irreduzibel ist.Lemma I.20
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Beweis. Nach Satz I.2 haben wir nur zu zeigen, dass irreduzible Elemente prim sind.
Seien also a, b ∈ R, so dass p ein Teiler von ab ist. Das heißt, ab = pc. Ist a eine
Einheit, so gibt es ein d mit ad = 1.Also ist b = dpc und p ein Teiler von b. Genauso
ist p ein Teiler von a, falls b eine Einheit ist. Seien also a und b beide keine Einheiten.
Dann ist a = p1 · · · pr und b = q1 · · · qs mit irreduziblen p1, . . . , pr, q1, . . . , qs. Somit
ist ab = p1 · · · prq1 · · · qs = pc. Wegen der Eindeutigkeit der Zerlegung ist p = epi
oder p = eqi für eine Einheit e und geeignetes i, d.h. p|a oder p|b.
Bemerkung. Seim ∈ Z,m kein Quadrat.Wir setzen

Mm = {a + b
√
m|a, b ∈ Q}.

Man kann zeigen, dassMm ein Körper ist.Wir betrachten inMm nun die Teilmenge

Rm = {u|u ∈ Mm, u ist Nullstelle eines Polynoms x2 + cx + d, c, d ∈ Z}.
Dann ist Rm ein Integritätsbereich.Wir können Rm auch wie folgt beschreiben:

Rm = {r + s
√
m|r, s ∈ Z}, falls m ≡ 2, 3 (mod 4) ist.

Rm = {(r + s
√
m)/2|r, s ∈ Z, r ≡ s (mod 2)} sonst.

In dieser Sprache ist Z[i] = R−1.

Wie in Z[i] können wir in Rm auch eine Norm einführen. Sei u = a + b
√
m, so

setze
N(u) = a2 −mb2 = (a + b

√
m)(a − b

√
m).

Ist m < 0 und m �= −1,−2,−3,−7,−11, so ist Rm kein euklidischer Ring. Für die
restlichen Werte m < 0 ist Rm euklidisch mit ' (r) = N(r). Der Beweis ist ähnlich
wie bei Z[i].

Für R−5 hatten wir gezeigt, dass 3 irreduzibel, aber nicht prim ist, somit ist R−5
nach Lemma I.20 kein EPZ-Ring.

Man kann zeigen, dass R−19 ein Hauptidealring ist. Also ist nicht jeder Haupt-
idealring euklidisch.

Harold Stark (1967, [29]) hat bewiesen, dass für m < 0 Rm genau dann ein
EPZ-Ring ist, falls

m = −1,−2,−3,−7,−11,−19,−43,−67,−163

ist. Istm > 0, so ist Rm euklidisch mit ' (r) = |N(r)| genau für

m = 2, 3, 5, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.

Dies stammt im Wesentlichen von Harold Chatland und Harold Davenport (1990,
[6]). Es ist eine offene Frage, für welchem > 0 Rm ein EPZ-Ring ist.

ObZ[x] einEPZ-Ring ist,könnenwir derzeit nicht klären,da,wiewirwissen,Z[x]
kein Hauptidealring ist (siehe Seite 14).Wir müssen dies auf andereArt entscheiden.

Es ist Z[x] ⊆ Q[x]. Der Ring Q[x] ist ein Hauptidealring und damit auch ein
EPZ-Ring. Dies werden wir benutzen, um zu zeigen, dass Z[x] ein EPZ-Ring ist.
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Wir wollen dies gleich etwas allgemeiner machen. Die Einbettung von Z[x] in Q[x]
wollen wir für jeden Integritätsbereich R nachvollziehen, also R[x] ⊆ K[x] für einen
geeigneten Körper K . Dazu wollen wir zunächst die Einbettung von Z in Q für
beliebige Integritätsbereiche nachvollziehen.

Sei R ein Integritätsbereich.

a) Es gibt einen Körper K und einen Monomorphismus

˛:R → K,

so dass jedes Element aus K als ˛(r1)˛(r2)−1 mit geeigneten r1, r2 ∈ R,
r2 �= 0, dargestellt werden kann.

b) Der Körper K ist durch die in a) angegebene Eigenschaft bis auf Isomorphie
eindeutig bestimmt.

c) Ist K̃ ein Körper und  :R → K̃ ein Monomorphismus, so kann  zu einem
Monomorphismus  ̃ :K → K̃ mit  ̃˛ =  erweitert werden.

Satz I.21

Beweis. a)Wir definieren zunächst auf R×(R\{0}) eine Äquivalenzrelation∼ durch
(r1, s1) ∼ (r2, s2) genau dann, wenn r1s2 = r2s1 ist. Dies ist wie 25 =

4
10 inQ.

Man sieht leicht ein, dass∼ reflexiv und symmetrisch ist.

Für die Transitivität sei (r1, s1) ∼ (r2, s2) ∼ (r3, s3), also r1s2 = r2s1 und auch
r2s3 = s2r3. Dann ist

r1s2s3 = r2s1s3 = r2s3s1 = r3s2s1.

Da s2 �= 0 ist, ist dann r1s3 = r3s1, also (r1, s1) ∼ (r3, s3). Somit ist∼ transitiv.

Sei K die Menge der Äquivalenzklassen (r, s) von∼, also
K = {(r, s)|(r, s) ∈ R × (R \ {0})}.

In Q ist offenbar 2
5 die Menge aller Brüche mit Wert

2
5 , also genau die Äquivalenz-

klasse von 2
5 .Wir definieren auf K eineAddition undMultiplikation,die auch wieder

vonQmotiviert ist, wie folgt:

(r1, s1) + (r2, s2) = (r1s2 + r2s1, s1s2)

(r1, s1) (r2, s2) = (r1r2, s1s2).

Wieman nachrechnet,wird hiermitK zu einemKörper.Es ist (0, 1) das Nullelement,
(1, 1) das Einselement und (r, s) −1 = (s, r).

Wir definieren nun
˛:R → K

durch
˛(r) = (r, 1).

Dies ist wie die Identifikation von 5 mit 51 .
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Es ist
˛(r1r2) = (r1r2, 1) = (r1, 1) (r2, 1) = ˛(r1)˛(r2)

und
˛(r1 + r2) = (r1 + r2, 1) = (r1, 1) + (r2, 1) = ˛(r1) + ˛(r2).

Somit ist ˛ ein Homomorphismus.

Sei r ∈ ker ˛. Dann ist
(0, 1) = ˛(r) = (r, 1).

Das liefert (0, 1) ∼ (r, 1), d.h. r = r · 1 = 1 · 0 = 0. Somit ist ˛ ein Monomorphismus.
Sei nun (r, s) ∈ K . Dann ist

(r, s) = (r, 1) (1, s) = (r, 1) (s, 1) −1 = ˛(r)˛(s)−1.

Damit haben wir a).

b) Sei K ′ ein Körper, der a) mit zugehörigem Monomorphismus ˇ erfüllt.

Sei ' :K → K ′ definiert durch

' ((r, s)) = ˇ(r)ˇ(s)−1.

(1) ' ist wohldefiniert.

Sei dazu (r1, s1) ∼ (r, s), also r1s = rs1. Somit ist ˇ(r1s) = ˇ(rs1), d.h.

ˇ(r1)ˇ(s1)−1 = ˇ(r)ˇ(s)−1.

(2) ' ist Homomorphismus.

Dies kann man leicht nachrechnen.

Nach a) ist
K ′ = {̌ (r)ˇ(s)−1|(r, s) ∈ R × (R \ {0})}.

Also ist ' ein Epimorphismus.

Nach Folgerung I.10 ist ker ' = 0, da ' ((1, r)) = 1 �= 0 ist. Also ist ' ein
Isomorphismus.

c) Definiere  ̃ :K → K̃ durch

 ̃ (˛(r)˛(s)−1) =  (r) (s)−1.

Wir zeigen zunächst, dass  ̃ wohldefiniert ist. Sei dazu

˛(r)˛(s)−1 = ˛(r1)˛(s1)−1.

Dann ist
˛(r)˛(s1) = ˛(r1)˛(s) also ˛(rs1) = ˛(r1s).

Da ˛ ein Monomorphismus ist, erhalten wir nun rs1 = r1s. Somit ist

 (r) (s1) =  (rs1) =  (r1s) =  (r1) (s),

was  (r) (s)−1 =  (r1) (s1)−1 liefert.Also ist  ̃ wohldefiniert.
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Man rechnet nach, dass  ̃ ein Homomorphismus ist.Wegen

 (˛(1)˛(1)−1) =  (1) (1)−1 = 1 �= 0
ist nach Folgerung I.10  ̃ ein Monomorphismus.

Sei nun r ∈ R. Dann erhalten wir

 ̃ (˛(r)(˛(1))−1) =  (r) (1)−1 =  (r).

Somit ist  =  ̃˛.

Quotientenkörper. Den in Satz I.21 konstruierten Körper nennen wir den
Quotientenkörper zuR.Der Quotientenkörper zuR[x] wirdmitR(x) bezeichnet.

Definition

Die Elemente aus K bezeichnen wir üblicherweise mit a
b , d.h., wir identifizieren a

mit ˛(a).

Wir betrachten nun Polynomringe R[x], wobei R ein EPZ-Ring ist. Für

0 �= f =
n∑
i=0

aixi

setze cont (f ) = ggT (a0, . . . , an).Wie bei der Definition des ggT bereits festgestellt,
ist auch cont (f ) nur bis auf Einheiten bestimmt.

Gaußsches3Lemma. Sei R ein EPZ-Ring und f , g ∈ R[x] \ {0}. Dann ist

cont (f ) cont (g) = cont (fg).

Lemma I.22

Beweis. Es sind f = cf1 und g = dg1 mit c = cont (f ), d = cont (g) und cont (f1) =
cont (g1) = 1.Also genügt es, die Behauptung für den Fall cont (f ) = cont (g) = 1 zu
beweisen.

Sei

f =
n∑
i=0

aixi, g =
m∑
j=0

bjxj.

3Carl Friedrich Gauß (*30.4.1777 Braunschweig, †23.2.1855 Göttingen), Professor in Göttingen, wird
als der größte Mathematiker der Neuzeit bezeichnet. In seiner Doktorarbeit bewies er den Fundamental-
satz der Algebra (Jedes nicht konstante Polynom mit komplexen Koeffizienten hat eine Nullstelle in den
komplexen Zahlen), mit 19 Jahren bewies er die Konstruierbarkeit mit Zirkel und Lineal des regelmä-
ßigen 17-Ecks, ein Problem, das bis auf Euklid zurückgeht. Mit 24 Jahren schrieb er die „Disquisitiones
Arithmeticae“, eines der bedeutendstenWerke der Mathematik.Hier wurden die Grundlagen der Zahlen-
theorie, die bis daher aus vereinzelten Problemen bestand, gelegt. Er arbeitete auf vielen verschiedenen
Gebieten (Geometrie, Algebra, Astronomie, Physik) und führte grundlegende Begiffe ein, z.B. die Gauß-
sche Glockenkurve und die erste geometrische Interpretation der komplexen Zahlen mit der Gaußschen
Zahlenebene.
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Wir müssen cont (fg) = 1 zeigen. Sei dazu p ein beliebiges irreduzibles Element in
R. Da p weder cont (f ) noch cont (g) teilt, kann p nicht alle Koeffizienten von f und
auch nicht alle Koeffizienten von g teilen. Wähle nun r maximal in 0 ≤ r ≤ n mit
p � |ar und smaximal in 0 ≤ s ≤ mmit p � |bs.Wir betrachten den Koeffizienten in fg
von xr+s, also

cr+s = a0br+s + · · · + ar+sb0.

Da p für i ≥ 1 alle ar+ibs−i und bs+iar−i teilt, aber p nicht arbs teilt, teilt p auch nicht
den Koeffizienten cr+s. Also folgt p� |cont (fg). Somit ist cont (fg) = 1, da p beliebig
war.

Das nächste Lemma gibt uns Kontrolle über die irreduziblen Elemente von R[x].

Sei R ein EPZ-Ring und K der Quotientenkörper von R. Sei weiter f ∈ R[x] mit
cont (f ) = 1. Es ist f in K[x] genau dann irreduzibel, wenn f in R[x] irreduzibel
ist.

Lemma I.23

Beweis. Sei zunächst f irreduzibel in K[x]. Ist f = gh mit g, h ∈ R[x], so können
wir annehmen, dass g eine Einheit in K[x] ist. Nach Satz I.4 ist dann grad g = 0, d.h.
g ∈ R. Da cont (f ) = 1 ist, ist g|1, d.h., g ist eine Einheit in R[x].

Sei nun f irreduzibel in R[x] und f = ghmit g, h ∈ K[x], also

g =
n∑
i=0

ai
bi
xi, h =

m∑
j=0

cj
dj
xj mit ai, bi, cj, dj ∈ R.

Wir bezeichen mit

b =
n∏
i=0

bi und d =
m∏
j=0

dj

die Hauptnenner. Damit erhalten wir bg = g0 ∈ R[x] und dh = h0 ∈ R[x].

Seien nun ˛ = cont (g0) und ˇ = cont (h0), also g0 = ˛g1 und h0 = ˇh1 mit
g1, h1 ∈ R[x] und cont (g1) = cont (h1) = 1. Das liefert

˛ˇg1h1 = g0h0 = bdgh = bdf .

Es ist ˛ˇ = cont (g0h0) und nach Lemma I.22 cont (bdf ) = bd, da cont (f ) = 1 ist.
Also ist ˛ˇ = bdemit einer Einheit e ∈ R. Das liefert nun

f = g1h1e.

Da f irreduzibel ist, können wir annehmen, dass g1 eine Einheit in R[x] ist. Dann
ist g1 auch eine Einheit in K[x] und nach Satz I.4 ist somit g1 ∈ K . Dann ist aber
g = b−1˛g1 ∈ K , d.h., g ist Einheit.Also ist f irreduzibel in K[x].

Für den Spezialfall Z haben wir

Ist f =
∑n

i=0 aix
i ∈ Z[x] irreduzibel und ggT (a0, . . . , an) = 1, so ist f irreduzibel

inQ[x].
Folgerung I.24
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Nun können wir die Frage, ob Z[x] ein EPZ-Ring ist, beantworten.

Ist R ein EPZ-Ring, so ist auch R[x] ein EPZ-Ring.Satz I.25

Beweis. Nach Satz I.19 ist K[x] ein EPZ-Ring, wobei K der Quotientenkörper von R
ist.

Jedes 0 �= f ∈ R[x] ist eindeutig als ein Produkt

f = p1 · · · pr
mit irreduziblen pi ∈ K[x] schreibbar.

Sei ai das Produkt der Nenner der Koeffizienten von pi und fi = aipi. Dann ist
fi ∈ R[x]. Es ist

fi = ciqi, ci ∈ R, qi ∈ R[x], cont (qi) = 1.

Somit ist
pi =

ci
ai
qi.

Es ist ( r∏
i=1

ai
)
f =

( r∏
i=1

ci
)
q1 · · · qr .

Sei zunächst cont (f ) = 1. Lemma I.22 liefert

r∏
i=1

ai =
( r∏

i=1

ci)e

mit einer Einheit e ∈ R. Dann haben wir

f = eq1 · · · qr .
Die pi sind in K[x] irreduzibel. Damit sind auch die fi und daraus folgend die qi
irreduzibel in K[x].Nach Lemma I.23 sind die qi auch in R[x] irreduzibel. Indem wir
q̃1 = eq1 setzen, haben wir die Existenz einer Zerlegung nachgewiesen.

Wir müssen noch die Eindeutigkeit zeigen. Sei also

f = r1 · · · rk
mit irreduziblen Elementen r1, . . . , rk ∈ R[x]. Nach Lemma I.22 ist cont (ri) = 1,
i = 1, . . . , k, da cont (f ) = 1 ist. Nach Lemma I.23 sind die ri irreduzibel in K[x]. Da
K[x] ein EPZ-Ring ist, gilt k = r und

ri = eipi

bei geeigneter Nummerierung, wobei die ei Einheiten in K[x] sind, also ei ∈ K . Das
liefert nun

airi = eiciqi.
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Nach Lemma I.22 ist dann ai = eiciẽi mit einer Einheit ẽi ∈ R.Also ist

eici(ẽiri − qi) = 0.

Das liefert
ẽiri = qi.

Damit ist die Zerlegung eindeutig.

Wir haben also gezeigt, dass sich jedes 0 �= f ∈ R[x] mit cont (f ) = 1 eindeutig
als Produkt irreduzibler Elemente schreiben lässt.

Sei nun cont (f ) = d beliebig. Dann ist f = df̃ mit cont (f̃ ) = 1. Es ist f̃ ein-
deutig darstellbar. Da d ∈ R ist, ist d = d1 · · · dk eindeutig mit irreduziblen di ∈ R
darstellbar.Also ist f als Produkt irreduzibler Elemente darstellbar.

Sei nun f = q1 · · · qr mit irreduziblen qi ∈ R[x]. Sei ci = cont (qi). Somit ist
qi = ciq̃i mit cont (q̃i) = 1. Dann ist

df̃ = f =
( r∏

i=1

ci
)
q̃1 · · · q̃r .

Nach Lemma I.22 ist d = e
∏r

i=1 ci mit einer Einheit e ∈ R.Also ist

f̃ = ẽq̃1 · · · q̃r
mit einer Einheit ẽ. Nun sind die q̃i eindeutig bestimmt. Da auch d = e

∏r
i=1 ci

eindeutig bestimmt ist, folgt, dass

f = q1 . . . qr

eindeutig ist.

a) Ist K ein Körper, so ist K[x1, . . . , xn] ein EPZ-Ring.

b) Z[x] ist ein EPZ-Ring.

Folgerung I.26

Folgerung I.26 b) zeigt, dass es EPZ-Ringe gibt, die keine Hauptidealringe sind.

Schon in Z ist es schwierig zu entscheiden, ob eine Zahl prim ist. In Z[x] kann
dies noch schwieriger sein.Wir wollen dazu einige Methoden angeben.

Sei f ∈ K[x], K ein Körper.

a) Ist a ∈ K mit f (a) = 0, so ist x − a|f . Insbesondere haben irreduzible
Polynome vom Grad größer als 1 keine Nullstellen in K.

b) f hat höchstens grad f viele verschiedene Nullstellen.

Satz I.27
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Beweis. Sei f =
∑n

i=0 aix
i.Wir ersetzen f durch g = f (x + a) =

∑n
i=0 bix

i. Dann hat
g die Nullstelle 0.Also ist

0 = g(0) = b0.

Somit ist

g = x
n−1∑
i=0

cixi mit ci = bi+1.

Nun betrachte f = g(x − a) = (x − a)
∑n−1

i=0 dix
i. Dies ist a).

Da grad (
∑n−1

i=0 dix
i) < grad f ist, folgt b) mit einer Induktion nach grad f .

Das wohl bekannteste Irreduzibilitätskriterium ist der folgende Satz von Eisenstein4.

Sei R ein EPZ-Ring mit Quotientenkörper K und

f = a0 + a1x + · · · + anxn ∈ R[x].

Für ein irreduzibles Element p ∈ R teile p alle ai, i = 0, . . . , n − 1, aber nicht an.
Weiter sei a0 nicht durch p2 teilbar. Dann ist f irreduzibel in K[x].

Satz I.28

Beweis. Nach Voraussetzung ist p kein Teiler von cont (f ). Also können wir anneh-
men, dass cont (f ) = 1 ist. Dann genügt es nach Lemma I.23 zu zeigen, dass f
irreduzibel in R[x] ist. Sei dazu

f = ghmit

g =
r∑

i=0

bixi und h =
t∑

j=0

cjxj, r, t > 0, br �= 0 �= ct .

Es ist zunächst
a0 = b0c0.

Nach Lemma I.20 ist p prim. Da a0 von p geteilt wird, folgt nun, dass b0 oder c0 von
p geteilt wird. Da a0 nicht durch p2 teilbar ist, können wir annehmen, dass b0 aber
nicht c0 von p geteilt wird. Da cont (f ) = 1 ist, ist nach Lemma I.22 cont (g) = 1, also
ist p kein Teiler von cont (g).

Damit gibt es ein k, das minimal ist, so dass bk nicht durch p geteilt wird. Es ist

ak = bkc0 + · · · + b0ck.

Angenommen, es ist k < n. Da p alle bi, i < k teilt, aber nicht bkc0, ist p auch kein
Teiler von ak, einWiderspruch zu k < n.

4Ferdinand Gotthold M. Eisenstein (*16.4.1823 Berlin, †11.10.1852 Berlin) studierte ab 1843 an der
Berliner Universität und erhielt dort den Doktorgrad ehrenhalber nach der Veröffentlichung von über
25Arbeiten. Er habilitierte 1847 an der Berliner Universität und wurde 1852 Mitglied der Berliner Akade-
mie.Eisenstein arbeitete auf Gebieten der Zahlentheorie,derAlgebra sowie der elliptischen und abelschen
Funktionen. Er beschäftigte sich mit quadratischen, kubischen und biquadratischen Reziprozitätsgeset-
zen.Herausragend sind seine Arbeiten zu quadratischen und kubischen Formen.Hier entstehen auch die
später nach ihm benannten Eisenstein-Reihen.
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Also ist k = n und dann k = r = n. Somit haben wir

grad g = grad f .

Das liefert grad h = 0, einWiderspruch zur Annahme t > 0.

Wir wollen nun an einigen Beispielen aufzeigen, mit welchen Methoden man die
Frage nach der Irreduzibilität eines Polynoms angehen kann.

a) Sei f = 2
25x

6 + 7
5x
5 + x3 + 1

5 ∈ Q[x]. Ist f irreduzibel?
Es ist

25f = 2x6 + 35x5 + 25x3 + 5 ∈ Z[x].
Mit Satz I.28 und p = 5 sehen wir, dass

2x6 + 35x5 + 25x3 + 5

irreduzibel ist, also auch f .

b) Das nächste Beispiel ist von zentraler Bedeutung. Sei

f =
xp − 1
x − 1

= xp−1 + xp−2 + . . . + 1, p Primzahl.

Wir wollen zeigen, dass f irreduzibel ist. Satz I.28 ist nicht direkt anwendbar.
Aber wir können den Trick aus dem Beweis von Satz I.27 verwenden.

f (x + 1) =
(x + 1)p − 1

x
= xp−1 +

p−1∑
i=1

(
p
i

)
xi−1 = xp−1 + pxh + pmit h ∈ Z[x].

Nun liefert Satz I.28, dass f (x + 1) irreduzibel ist. Aber jede Zerlegung von f (x)
hätte auch eine von f (x + 1) geliefert, also ist f irreduzibel.

c) Eine weitereMöglichkeit ist,nicht x zu verändern, sondern die Koeffizien-
ten des Polynoms. Ähnlich verfahren Computeralgebra-Systeme beim Testen
von Irreduzibilität.

Sei − die Abbildung von Z auf Z/nZ, n ∈ N. Diese erweitern wir zu einer Abbil-
dung von Z[x] nach (Z/nZ)[x] durch

f =
m∑
i=0

aixi −→ f̄ =
m∑
i=0

āixi.

Beispiel
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Ist n = p eine Primzahl, so ist K = Z/pZ ein Körper und wir haben, dass K[x]
ein EPZ-Ring ist.

Zerfällt f = gh in Z[x], so auch f̄ = ḡ h̄ in K[x]. Dies ist eine echte Zerlegung,
falls p � |am.
Somit gilt: Ist f̄ irreduzibel in K[x], so ist f irreduzibel in Z[x].

DerVorteil von K[x] ist die Endlichkeit von K . Es gibt also nur endlich viele Po-
lynome ḡ ∈ K[x] mit grad ḡ < grad f̄ . Damit ist das Entscheidungsproblem ein
endliches Problem geworden.Wir wollen dies an folgendemBeispiel illustrieren.

Sei
f = x4 + 5x3 + 35x2 + 10x + 7 ∈ Z[x].

Setze p = 5.Dann ist
f̄ = x4 + 2̄.

Indem man 0̄, 1̄, 2̄, 3̄, 4̄ einsetzt, sieht man, dass f̄ keine Nullstelle in Z/5Z hat.
Ist f̄ reduzibel, so ist

f̄ = ḡ h̄mit grad ḡ = grad h̄ = 2

und damit x4 + 2̄ = (x2 + āx + b̄)(x2 + c̄x + d̄). Das liefert die Gleichungen
ā = −c̄, āc̄ + b̄ + d̄ = 0, b̄d̄ = 2. Somit b̄ + d̄ = ā2. Da ā2 ∈ {0̄, 1̄, 4̄} ist, folgt nun

b̄(1 − b̄) = 2̄ oder b̄(4 − b̄) = 2̄.

Einsetzen der Werte für b̄ liefert einen Widerspruch. Also ist f̄ irreduzibel in
(Z/5Z)[x] und dann auch f in Z[x].

Wir hätten aber auch p = 3 betrachten können. Dann hätten wir

f̄ = x4 − x3 − x2 + x + 1̄

erhalten.Aber jetzt gilt

x4 − x3 − x2 + x + 1̄ = (x2 + x − 1̄)2.

Dies zeigt, dass f̄ durchaus nicht irreduzibel sein muss, selbst wenn f irredu-
zibel ist. Man muss also bei der Verwendung von p etwas vorsichtig sein. Dazu
später mehr. Zusammenfassend haben wir das folgende Verfahren zum Test der
Irreduzibilität für f ∈ Z[x]:

Sei f =
∑n

i=0 aix
i ∈ Z[x].

(1) Wir testen, ob f eine Nullstelle in Z hat:

Sei f (a) = 0. Dann ist 0 =
∑n

i=0 aia
i = a0 + a

∑n
i=1 aia

i−1.Also ist a|a0.
Da a0 nur endlich viele Teiler hat, ist dies ein endliches Problem.
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(2) Wir testen, ob f quadratfrei ist:

Es ist f ′ =
∑n

i=0 iaix
i−1. Sei f = g2h. Dann ist f ′ = 2gg ′h + g2h′.

Also ist g|ggT (f , f ′).Wir bestimmen mit dem euklidischen Algorithmus
den ggT (f , f ′). Ist dieser ungleich 1, so ist f nicht irreduzibel.

(3) Wir faktorisieren in (Z/pZ)[x]. Ist f̄ irreduzibel, so ist f irreduzibel.

Das Problem liegt im Schritt (3). Es ist z.B. x4 − x2 + 1 irreduzibel in Z[x],
aber niemals irreduzibel in (Z/pZ)[x]. Ein Beispiel, das für unendlich viele
Primzahlen irreduzibel und auch für unendlich viele reduzibel ist, werden wir
auf Seite 127 sehen.

Angenommen, wir haben eine Primzahl p, so dass die Koeffizienten aller
Teiler von f dem Betrag nach kleiner als p/2 sind. Ist dann f = f1 · · · fr , so ist
auch f̄ = f1 · · · fr , da sich die Polynome nicht verändern. Ist nun f̄ = g1 · · · gt die
Primfaktorzerlegung, so kann dies nur so gehen,dass die fi Produkte einiger der
gj sind.

Insofern testen wir, ob die Produkte der gj das Polynom f in Z[x] teilen.Das
ist allerdings ein exponentieller Algorithmus.

Sei f = x4 − x2 + 1 und p = 29.Modulo 29 ist

f̄ = (x2 + 12x − 1)(x2 − 12x − 1).

Aber weder x2 + 12x−1 noch x2 − 12x−1 teilen f inZ[x], somit ist f irreduzibel.

Die Frage ist,woher wir p kennen,warumwar p = 29 ausreichend? In der Tat
gibt es solche Schranken. Es gilt die folgende Abschätzung (Landau-Mignotte-
Ungleichung [16,19,20]).

Ist g =
∑m

j=0 bjx
j ein Teiler von f =

∑n
i=0 aix

i, an �= 0 �= bm, so gilt

m∑
j=0

|bj| ≤ 2m
∣∣∣∣ anbm

∣∣∣∣
√√√√ n∑

i=0

a2i .

In obigem Beispiel haben wir |an| = 1 = |bm|.Also ist die Schranke
24

√
3 < 29.
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Übungsaufgaben

I.1 Sei (R,+, ·) ein Ring. Wir führen auf R zwei neue Verknüpfungen ⊕ und � ein. Diese
seien für a, b ∈ R wie folgt definiert:

a ⊕ b = a + b − 1

a � b = a + b − a · b.
Zeige, dass auch (R, ⊕, �) ein Ring ist, der sogar zu (R,+, ·) isomorph ist.

I.2 Seien R ein Ring und a, b ∈ Rmit a2 = a, b2 = b und ab = ba.

a) Es ist (a − b)4 = (a − b)2.

b) Ist (a − b)n = 0 für ein n ∈ N, so ist a = b.

c) Finde solche Elemente a, b mit a �= b in R = R2, dem Ring der 2 × 2–Matrizen
über R, beide nicht das Nullelement oder Einselement.

I.3 Sei R ein Integritätsbereich. Ist 2 ≤ |R| < ∞, so ist R ein Körper.

I.4 Sei p eine Primzahl und Zp = {a
b | a, b ∈ Z, p teilt nicht b}.

a) Bestimme die Einheiten und Primelemente von Zp.

b) Ist Zp ein euklidischer Ring?

I.5 Bestimme alle q, r ∈ Z[i] mit 1 + 25i = q(3 + 4i) + r und |r| < |3 + 4i|.
I.6 Zeige, dass Z[i]/3Z[i] = K ein Körper ist. Bestimme |K|.
I.7 Bestimme die Primideale von Z/18Z.

I.8 Sei R ein kommutativer Ring, i ⊆ R ein Ideal und S ⊆ R mit {s1s2 | s1, s2 ∈ S} ⊆ S, so
dass S ∩ i = ∅ ist. Setze

P = {p | p ist Ideal in Rmit i ⊆ p und p ∩ S = ∅}.
a) Zeige mit dem Zornschen Lemma, dass P maximale Elemente bezüglich der In-

klusion hat.

b) Zeige, dass maximale Elemente in P Primideale sind.

I.9 Finde ganze Zahlen x, y mit:

a) 754x + 221y = 13.

b) 158x + 57y = 20000.

I.10 Seien f = x3 + 2x2 − x − 1 und g = x2 + x − 3 ∈ Q[x]. Zeige:
a) f und g haben in C keine gemeinsamen Nullstellen.

b) Es gibt a, b ∈ Q[x] mit af + bg = 1.

c) Gib a und b aus b) explizit an.

I.11 Bestimme die Primfaktorzerlegung von x5 + x3 + 2x2 − x + 2 in Z[x].

I.12 Betrachte das Polynom xq+1 ∈ Z[x]mit q ∈ N.Zeige,dass xq+1 genau dann irreduzibel
ist, falls q = 2m eine 2-Potenz ist.

I.13 Sei K ein Körper und ' :K[x] → K[x] ein Automorphismus. Ist p ∈ K[x] ein Polynom,
so ist p genau dann irreduzibel, wenn ' (p) irreduzibel ist.
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I.14 a) Seien f , g ∈ K[x],K Körper, Polynome vom Grad n > 0. Gibt es n + 1 paarweise
verschiedene Elemente a1, . . . , an+1 in K mit

f (ai) = g(ai), i = 1, . . . , n + 1,

so ist f = g .

b) Bestimme alle Polynome p ∈ Z[x], die die Identität
p(x2 + 1) = p(x)2 + 1

für alle x ∈ Z erfüllen und für die p(0) = 0 gilt.
I.15 Sei f ein Polynommit ganzzahligenKoeffizienten.Für vier paarweise verschiedene ganze

Zahlen a, b, c, d sei
f (a) = f (b) = f (c) = f (d) = 7.

Zeige, dass es keine ganze Zahl k gibt, so dass f (k) = 10 ist.

I.16 Sei p = xn + an−1xn−1 + . . . + a0 ∈ Z[x]. Zeige:
a) Ist s ∈ Q eine Nullstelle von p, so ist s ∈ Z.
b) Ist s ∈ Z eine Nullstelle von p, so wird a0 durch s geteilt.
c) Besitzt x37 + 12x15 + x + 1 rationale Nullstellen ?
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Wir wollen uns jetzt mit Körpern beschäftigen, nachdem in Kapitel I Ringe und ihre
Arithmetik mehr imVordergrund standen.

Wir kennen bisher C,R,Q und Z/pZ = GF(p).Wir kennen aber sogar beliebig
viele weitere. Ist nämlich i ein maximales Ideal in K[x],K Körper, so ist K[x]/i
nach Satz I.15 ein Körper. Ist f ein irreduzibles Polynom, so ist wieder nach Satz
I.15 i = fK[x] ein maximales Ideal. Also gehört zu jedem irreduziblen Polynom ein
Körper.

Den ersten Unterschied zwischen Q und GF(p) sehen wir, wenn wir die 1 auf-
addieren. In GF(p) erhalten wir, wenn wir dies p-mal fortsetzen, die 0. In Q können
wir dies beliebig oft fortsetzen und werden niemals die Null erhalten. Das führt zu
folgender Definition:

Charakteristik. SeiK einKörper.DiekleinstenatürlicheZahlnmit 1 + . . . + 1︸ ︷︷ ︸
n−mal

= 0

nennen wir die Charakteristik von K . Schreibe dann char K = n. Gibt es keine
solche Zahl, so schreibe char K = 0.

Definition

Also ist char Q = 0 und 0 < char GF(p) ≤ p.

Ist K ein Körper mit char K �= 0, so ist char K = p eine Primzahl. Lemma II.1

Beweis. Sei char K = n �= 0 und n = pqmit einer Primzahl p. Dann ist

0 = n · 1 = 1 + · · · + 1︸ ︷︷ ︸
n−mal

= (1 + · · · + 1)︸ ︷︷ ︸
p−mal

(1 + · · · + 1)︸ ︷︷ ︸
q−mal

= (p · 1)(q · 1).

Dann ist aber (p · 1) = 0 oder (q · 1) = 0. Die minimale Wahl von n liefert nun
n = p.

Primkörper,Teilkörper. SeiK ein Körper und k eine Teilmenge von K . Ist kmit
der Einschränkung von Multiplikation und Addition von K wieder ein Körper,
so nennen wir k einen Teilkörper von K . Den Durchschnitt aller Teilkörper von
K nennen wir den Primkörper von K .

Definition

 Elementare Algebra und Zahlentheorie
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Der Primkörper ist somit der kleinste in einemKörper enthaltene Körper.Der nächs-
te Satz sagt uns, dass wir alle Primkörper bereits kennen.

Sei K ein Körper.

a) Ist char K = 0, so ist der Primkörper zuQ isomorph.

b) Ist char K = p �= 0, so ist der Primkörper zu GF(p) isomorph.

Satz II.2

Beweis. Wir wollen mit k den Primkörper von K bezeichnen.

a) Sei  :N → kmit  (n) = n · 1 = (1 + · · · + 1)︸ ︷︷ ︸
n−mal

. Sei  (n) =  (m) für n,m ∈ N.

Wir können n ≥ m annehmen.Dann ist 0 = n · 1 −m · 1 = (n−m) · 1.Da char K = 0
ist, ist dann n = m.Also ist eine injektiveAbbildung.Somit ist ohne Einschränkung
N ⊆ k. Da k ein Körper ist, ist nun auch Z ⊆ k. Nach Satz I.21c) enthält k einen zu
Q isomorphen Teilkörper, also ist k ∼= Q.

b) Sei nun die Charakteristik von K endlich. Setze K1 = {0, 1, . . . , p − 1} ⊆ k,
wobei hier i für 1 + · · · + 1︸ ︷︷ ︸

i−mal

steht. Sei i = j in K1 mit 0 ≤ i ≤ j ≤ p − 1. Dann ist

j − i = 0.Da char K = p ist, ist dann j = i in Z.Also ist |K1| = p.
Sei nun 0 �= x ∈ K1. Dann ist ggT (x, p) = 1 in Z. Nach Satz I.16 gibt es a, b ∈ Zmit

ax + bp = 1.

Sei a = ã + kp mit 0 ≤ ã ≤ p − 1. Dann ist 1 = ãx + (b + kx)p. Also können wir
a ∈ K1 annehmen.Da bp = 0 in K ist, folgt ax = 1 und K1 ist ein Körper, da K1 gegen
Addition ohnehin abgeschlossen war. Nach Definition von k ist K1 = k.
Sei nun

� :GF(p) → kmit �(i + pZ) = i.

Dann ist � ein Isomorphismus.Also ist k ∼= GF(p).

Das Potenzieren mit p in einem Körper der Charakteristik p gestaltet sich besonders
einfach.

Ist char K = p �= 0, und sind a, b ∈ K, so ist

(a + b)p = ap + bp.

Lemma II.3

Beweis. Es ist (a + b)p =
∑p

i=0 a
ibp−i

(p
i

)
. Hierbei bedeutet

(p
i

)
, dass die Eins aus K

genau
(p
i

)
-mal aufaddiert wird. Ist 1 ≤ i < p, so ist p|(pi) also ist (pi) = 0 in K und

dann

(a + b)p = bp + ap.
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Wir hatten GF(p) als Z/pZ konstruiert. Sei nun k ein Körper und f =
∑n

i=0 aix
i

ein Polynom in k[x] mit an �= 0. Genauso konstruieren wir nun auch
K = k[x]/fk[x].

Ist f irreduzibel, so ist K nach Satz I.15 ein Körper. Es ist

K = {g + fk[x]|g ∈ k[x]}.
Da wir in k[x] eine Division mit Rest haben, ist g = fq + r, grad r < grad f . Dann ist

g + fk[x] = r + fk[x].

Somit ist
K = {g + fk[x]|g ∈ k[x], grad g < grad f }.

Als k-Vektorraum wird K von {xi + fk[x]|0 ≤ i ≤ n − 1} erzeugt.
Sei

∑n−1
i=0 bi(x

i + fk[x]) = fk[x] für geeignete bi ∈ k. Dann ist
∑n−1

i=0 bix
i ∈ fk[x],

d.h.

f
∣∣∣ n−1∑

i=0

bixi.

Aber grad f = n und damit ist
∑n−1

i=0 bix
i = 0 nach Lemma I.3, was bi = 0 für alle i

liefert. Somit bilden die xi + fk[x], i = 0, . . . , n − 1, eine Basis.Also ist dimk K = n.

Wenn wir kmit {b(1+ fk[x])|b ∈ k} identifizieren, können wir k ⊆ K annehmen.
Dann könnenwir f als Polynom inK[y] betrachten.Dabei werden die ai mit ai+fk[x]
identifiziert.Also

f =
n∑
i=0

(ai + fk[x])yi.

(Beachte, die „Variable“ x hat keine besondere Bedeutung.)

In dieses Polynom können wir nun x + fk[x] ∈ K einsetzen. Das ergibt

f (x + fk[x]) =
n∑
i=0

(ai + fk[x])(x + fk[x])i

=
b∑
i=0

aixi + fk[x] = f + fk[x] = fk[x] = 0.

Also istx+fk[x] eineNullstelle von f inK . Insbesondere ist f inK[y] nicht irreduzibel.
Dies ist für das Folgende eine ganz wichtige Feststellung.

Sei z.B. Q gegeben. Wir suchen einen Körper K mit Q ⊆ K , der
√
2 enthält.

Angenommen, wir kennen weder R noch C, sondern nur Q.Wir können
√
2 allein

ausQ heraus als Nullstelle von x2 − 2 definieren. Dann ist

K = Q[x]/(x2 − 2)Q[x]

der gesuchte Körper.Diese Konstruktion,die nicht die Existenz irgendwelcher Ober-
körper voraussetzt, wird im Folgenden noch eine wichtige Rolle spielen.
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Körpererweiterung. Sei K ein Körper. Ist k ein Teilkörper von K , so nennen wir
K eine Körpererweiterung von k.

Definition

Algebraisch. Seien k und K Körper,K eine Körpererweiterung von k.

a) Setze [K : k] = dimk K .Wir nennen [K : k] den Grad von K über k.

b) Ist a ∈ K und gibt es ein f ∈ k[x], f �= 0 mit f (a) = 0, so nennen
wir a algebraisch über k. Ansonsten nennen wir a transzendent. Ist jedes
Element aus K algebraisch über k, so nennen wir die Erweiterung k ⊆ K
algebraisch.

c) IstU eine Teilmenge von K , so bezeichnen wir mit k(U) den Durchschnitt
aller Unterkörper von K , die U enthalten. Statt k({x1, . . . , xn}) schreiben
wir auch k(x1, . . . , xn).

d) Gibt es {x1, . . . , xn} ⊆ K mit K = k(x1, . . . , xn), so nennen wir die Erwei-
terung endlich erzeugt.Einen KörperK nennen wir endlich erzeugt,wenn
er über seinem Primkörper endlich erzeugt ist.

Definition

Es ergeben sich nun gleich einige Fragen.Wie erkennen wir, dass k ⊆ K algebraisch
ist? Folgt aus u, v beide algebraisch über k, dass auch u+ v oder uv algebraisch sind?
Um diese Fragen beantworten zu können, müssen wir aber zunächst algebraische
Körpererweiterungen näher studieren.

Der nächste Satz gibt ein gutes Kriterium dafür, dass gewisse Körpererweiterun-
gen algebraisch sind.

Sei k ⊆ K eine Körpererweiterung mit [K : k] < ∞. Dann ist die Erweiterung
algebraisch.

Satz II.4

Beweis. Setze [K : k] = n. Wähle a ∈ K . Wir wollen zeigen, dass a Nullstelle eines
Polynoms p ∈ k[x] mit p �= 0 ist. Da K ein k-Vektorraum der Dimension n ist, sind
1, a, a2, . . . , an linear abhängig. Also gibt es geeignete ai ∈ k nicht alle gleich Null,
so dass gilt:

n∑
i=0

aiai = 0.

Setze nun

p =
n∑
i=0

aixi ∈ k[x].

Dann ist p �= 0 und p(a) = 0. Somit ist a algebraisch über k.
Der nächste Satz beschreibt die Struktur von Körpern der Form k(a).

Seien k,K Körper mit K = k(a) für ein a ∈ K. Ist a transzendent über k, so
ist K zu dem Quotientenkörper k(x) des Polynomrings k[x] isomorph. Weiter ist
[K : k] = ∞.

Satz II.5
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Ist a algebraisch über k, so existiert ein eindeutig bestimmtes normiertes irre-
duzibles Polynom ma ∈ k[x], das a als Nullstelle hat. Es ist [K : k] = gradma

und
K ∼= k[x]/mak[x].

Beweis. Wir betrachten den Einsetzungungshomomorphismus � : k[x] → K mit

� (p) = p(a), für p ∈ k[x].

Setze M = Bild � . Es ist M = {∑n
i=0 aia

i|ai ∈ k, n ∈ N ∪ {0}}. Offenbar ist M ein
Ring. DaM in K enthalten ist, istM ein Integritätsbereich.

Ist p ∈ ker � , so ist 0 = � (p) = p(a).

Ist a transzendent, so folgt p = 0, d.h., � ist ein Monomorphismus. Dann ist
k[x] ∼= M. Nach Satz I.21 enthält k(a) = K einen Quotientenkörper von M, der
dann zu dem Quotientenkörper von k[x] also k(x) isomorph ist.Da a ∈ M, und k(a)
minimal mit a ∈ k(a) ist, folgt k(a) ist der Quotientenkörper, d.h. k(x) ∼= k(a).

Sei nun a algebraisch über k. Dann gibt es ein Polynom p ∈ k[x], p �= 0 und
p(a) = 0.Also ist ker � �= {0}. Es ist ker � ein Ideal nach Lemma I.7.Nach Satz I.4 und
Satz I.14 gibt es einma ∈ k[x] mit ker � = mak[x].Wir könnenma normiert wählen.
Dann ist ma eindeutig bestimmt. Da � �= 0 ist, ist mak[x] �= k[x], also ist ma keine
Einheit. Es ist k[x]/mak[x] ∼= M, d.h. k[x]/mak[x] ist ein Integritätsbereich. Nach
Lemma I.12 ist dann ma irreduzibel. Das liefert mit Satz I.15, dass M ein Körper
ist. Somit ist M = k(a). Die Behauptung [k(a): k] = gradma hatten wir bereits
gezeigt.

Minimalpolynom. Seien k,K Körper, K eine Körpererweiterung von k und
a ∈ K algebraisch über k. Das Polynom ma aus Satz II.5 nennen wir das Mini-
malpolynom von a.

Definition

Bemerkung. Seien k,K Körper mit k ⊆ K .Dann ist K ein k-Vektorraum.Angenom-
men, es ist K = k(a) mit algebraischem a.Wir betrachten die lineare Abbildung

˛a: v → av, v ∈ K .

Dann istma das Minimalpolynom von ˛a im Sinne der linearen Algebra.

Ein überaus wichtiger Satz, der bei der Beantwortung unserer Fragen eine fun-
damentale Rolle spielen wird, ist der folgende:

Gradsatz. Seien k,K, L Körper, K eine Körpererweiterung von k und L eine Kör-
pererweiterung von K. Dann gilt

[L: k] = [L:K][K : k].

Satz II.6
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Beweis. Sei {xi|i ∈ I} eine Basis von K als k-Vektorraum, {yj|j ∈ J} eine Basis von L
als K-Vektorraum.Wir zeigen, dass

B = {xiyj|i ∈ I, j ∈ J}
eine Basis von L als k-Vektorraum ist. Dann folgt die Behauptung. Zunächst zeigen
wir die lineare Unabhängigkeit über k. Sei dazu∑

i∈I
j∈J

aij(xiyj) = 0, mit aij ∈ k,wobei nur endlich viele der aij ungleich Null sind.

Wir schreiben dies um als

∑
j∈J

{∑
i∈I

aijxi

}
yj = 0.

Die
∑

i∈I aijxi sind Elemente in K . Da die yj über K linear unabhängig sind, erhalten
wir somit, dass ∑

i∈I
aijxi = 0 für alle j ist.

Die lineare Unabhängigkeit der xi liefert dann

aij = 0 für alle i und j.

Nun zeigen wir, dass B den Körper L als k-Vektorraum erzeugt. Sei dazu a ∈ L.Dann
gibt es �j ∈ K mit

a =
∑
j∈J

�jyj.

Weiter gibt es �ij ∈ kmit

�j =
∑
i∈I

�ijxi.

Damit erhalten wir

a =
∑
i∈I
j∈J

�ijxiyj.

Wie wir in Satz II.4 gesehen haben, sind endliche Körpererweiterungen algebraisch.
Wir wollen nun zeigen, dass für endlich erzeugte algebraische Erweiterungen die
Umkehrung gilt.

SeiK = k(a1, . . . , an) eine endlich erzeugteKörpererweiterung.Dann sind gleich-
wertig

a) Die Elemente ai, i = 1, . . . , n, sind algebraisch über k.

b) Der Körpergrad [K : k] ist endlich.

c) Die Erweiterung k ⊆ K ist algebraisch.

Satz II.7
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Beweis.
a)⇒ b):Wir beweisen die Behauptung durch Induktion nach n.
Für n = 1 ist dies die Aussage von Satz II.5.
Sei n > 1.Wir haben K = k(a1, . . . , an−1)(an).Weiter ist nach Satz II.6

[K : k] = [k(a1, . . . , an−1)(an): k(a1, . . . , an−1)][k(a1, . . . , an−1): k].

Per Induktion ist [k(a1, . . . , an−1): k] endlich.Da an algebraisch über k ist, gibt es ein
p ∈ k[x], p �= 0,mit p(an) = 0. Es ist

k[x] ⊆ k(a1, . . . , an−1)[x],

also ist an auch algebraisch über k(a1, . . . , an−1). Damit ist

[k(a1, . . . , an−1)(an): k(a1, . . . , an−1)] endlich.

Somit ist [K : k] < ∞.

b)⇒ c): Dies ist die Aussage von Satz II.4.

c)⇒ a): Per Definition sind alle Elemente in K algebraisch über k.

Damit haben wir auch gezeigt, dass aus a, b ∈ K, a, b algebraisch über k, stets a + b
und a · b algebraisch über k folgt, denn nach Satz II.7 ist k(a, b) algebraisch über k
und es sind a + b und ab in k(a, b). Das Kernargument war die endliche Dimension
der Körpererweiterung. Wir haben nicht versucht, aus den Polynomen für a und b
eines für a+b zu konstruieren.Beachte,dass wir mit Hilfe von Satz II.5 k(a, b) direkt
aus k konstruieren können.

Wir wollen nun noch Satz II.7 etwas verallgemeinern, indemwir Körper betrach-
ten, die von beliebigen Mengen algebraischer Elemente erzeugt werden.

Algebraisch erzeugt. Seien k,K Körper mit k ⊆ K undM eine Teilmenge von
über k algebraischenElementen vonK .IstK = k(M) sonennenwirK algebraisch
erzeugt über k.

Definition

Seien k,K Körper, K eine Körpererweiterung von k. Ist K algebraisch erzeugt über
k, so ist die Erweiterung k ⊆ K algebraisch.

Satz II.8

Beweis. Sei M die Menge aller über k algebraischen Elemente von K . Dann ist
k(M) = K .Also ist K Quotientenkörper des Ringes

R = {
m∑
j=1

aj

nj∏
i=1

mi|m, nj ∈ N ∪ {0},mi ∈ M, aj ∈ k}.

Es ist jedes Element u ∈ K von der Gestalt ab−1, a, b ∈ R. In der Darstellung von a
und der von b kommen nur endlich viele Elemente aus M vor. Diese fassen wir zu
Mu zusammen. Dann ist u ∈ k(Mu), |Mu| < ∞,Mu ⊆ M. Nach Satz II.7 ist dann u
algebraisch über k.
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Sei A die Menge der überQ algebraischen Zahlen in C. Dann ist A ein Körper.Folgerung II.9

Es ist Q abzählbar und damit auch Q[x]. Da jedes Polynom nur endlich viele Null-
stellen inC hat, gibt es nun abzählbar viele algebraische Zahlen.DaC überabzählbar
ist, gibt es überabzählbar viele transzendente Zahlen. Es ist überraschend, dass wir
davon nur wenige konkret kennen, z.B.�, e.

Seien k,K und L Körper, K eine Körpererweiterung von k und L eine Körperer-
weiterung von K. Ist k ⊆ K algebraisch und K ⊆ L algebraisch, so ist k ⊆ L
algebraisch.

Folgerung II.10

Beweis. Sei a ∈ L. Da a algebraisch über K ist, gibt es ein Polynom p ∈ K[x], p =∑n
i=0 aix

i ,mit p �= 0 und p(a) = 0.Dann ist offenbar a algebraisch über k(a0, . . . , an).
Nach dem Gradsatz II.6 ist

[k(a0, . . . , an, a): k] = [k(a0, . . . , an, a): k(a0, . . . , an)][k(a0, . . . , an): k].

Nach Satz II.7 sind beide Körpergrade endlich.Also ist auch

[k(a0, . . . , an, a): k] < ∞.

Nach Satz II.7 ist dann a algebraisch über k.

Wir wollen nunAutomorphismen ins Spiel bringen.Zunächst erweitern wir Isomor-
phismen auf die zugehörigen Polynomringe. Dazu die folgende Definition:

AutomorphismenvonPolynomen. Seienk1 undk2 Körper.Weiter seien� : k1 →
k2 ein Isomorphismus und f ∈ k1[x], f =

∑n
i=0 aix

i. Dann setzen wir � (f ) =∑n
i=0 � (ai)x

i .

Definition

Der folgende Satz wird uns noch viele gute Dienste leisten. Seine wirkliche Stärke
kommt erst im Rahmen der Galoistheorie zum Tragen, die aber nicht mehr Gegen-
stand dieses Buches ist.

Seienk1 undk2KörperundK1,K2Körpererweiterungen.Für geeigneteui ∈ Ki, i =
1, 2, gelte K1 = k1(u1) und K2 = k2(u2). Sei weiter � : k1 → k2 ein Isomorphismus
und m1 =

∑n
i=0 aix

i ein irreduzibles Polynom in k1[x] mit m1(u1) = 0. Genau
dann gibt es eine Fortsetzung � :K1 → K2 von � mit �(u1) = u2, falls u2 eine
Nullstelle von � (m1) ist. In diesem Fall ist � eindeutig bestimmt.

Satz II.11

Beweis. Angenommen � sei eine Fortsetzung mit �(u1) = u2. Dann ist

0 = �(0) = �(
n∑
i=0

aiui1) =
n∑
i=0

�(ai)ui2 =
n∑
i=0

� (ai)ui2 = � (m1)(u2).
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Sei nun umgekehrt u2 eine Nullstelle von � (m1).Angenommen, es wäre auch

n−1∑
i=0

ciui1 = 0, mit ci ∈ k1 geeignet, nicht alle gleich Null.

Dann ist u1 Nullstelle des Polynoms g =
∑n−1

i=0 cix
i ∈ k1[x]. Dann ist u1 auch Null-

stelle des ggT (m1, g).Also istm1 ein Teiler von g . Dam1 den Grad n hat, folgt g = 0,
also ci = 0 für i = 0, . . . , n − 1. Somit ist {1, . . . , un−1} linear unabhängig. Nach Satz
II.5 ist [k1(u1): k1] = gradm1 = n. Also ist {1, . . . , un−11 } eine Basis von k1(u1) als
k1-Vektorraum.

Sei u ∈ k1(u1) beliebig gewählt. Dann gibt es eindeutig bestimmte Elemente
bi ∈ k1, i = 0, . . . , n − 1,mit

u =
n−1∑
i=0

biui1.

Definiere nun � durch

�(u) =
n−1∑
i=0

� (bi)ui2.

Klar ist, dass � ein Homomorphismus ist. Da �(1) = � (1) = 1 �= 0 ist, ist � nach
Folgerung I.10 ein Monomorphismus.Weiter ist � = �|k1 und �(u1) = u2.

Wir müssen noch zeigen, dass � ein Epimorphismus ist. Es ist mu2 |� (m1). Dann
ist t = gradmu2 ≤ n. Genauso wie eben folgt, dass {1, . . . , ut−12 } eine k2-Basis von
k2(u2) ist. Sei also v =

∑t−1
i=0 diu

i
2 ∈ k2(u2) ein beliebiges Element.Wähle ci ∈ k1 mit

� (ci) = di. Dann ist v = �(
∑t−1

i=0 ciu
i
1).Also ist � ein Epimorphismus.

Die Eindeutigkeit von � ist klar.

Als erste Anwendung von Satz II.11 erhalten wir den folgenden Satz:

Seien k ein Körper und q ∈ k[x] ein irreduzibles Polynom. Dann gibt es einen bis
auf Isomorphie eindeutig bestimmten Erweiterungskörper K von k der Form K =
k(a), wobei q(a) = 0 gilt. Für diesen Körper gilt [K : k] = grad q. Ist insbesondere
L ein Körper mit k ⊆ L und sind a1, a2 ∈ L mit q(a1) = q(a2) = 0, so ist
k(a1) ∼= k(a2).

Satz II.12

Beweis. Wir haben nur noch k(a1) ∼= k(a2) zu zeigen. Dies folgt aus Satz II.11 mit
k1 = k2 = k und � = id.

Indem wir dies fortsetzen, erhalten wir:

Seien k ein Körper und f ∈ k[x] mit grad f = n ≥ 1. Dann gibt es einen Erwei-
terungskörper K von k, so dass [K : k] ≤ n! ist, und f über K in Linearfaktoren
zerfällt.

Satz II.13
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Beweis. Nach Satz II.12 gibt es einen Erweiterungskörper k1 von k, in dem f eine
Nullstelle a hat. Es ist k1 = k(a) und [k1: k] ≤ n. Nun wenden wir Induktion nach
dem Grad auf g = (x − a)−1f und den Körper k1 an.

Dies führt zu folgender Definition:

Zerfällungskörper. Seien k ein Körper und K eine Körpererweiterung von k.

a) Sei F ⊆ k[x] eine Menge nicht konstanter Polynome.Wir nennen K einen
Zerfällungskörper von F, wenn jedes Polynom f ∈ F in K[x] in Linearfak-
toren zerfällt und weiter k(W) = K ist,wobeiW dieMenge der Nullstellen
der Polynome von f ∈ F ist.

b) Ein Körper K heißt algebraisch abgeschlossen, falls es für jedes Polynom
f ∈ K[x] mit grad f ≥ 1 ein a ∈ K mit f (a) = 0 gibt.

c) Ein algebraischer Abschluss k̄ von k ist eine algebraische Erweiterung von
k, die algebraisch abgeschlossen ist.

Definition

Bemerkung. Q(
√
2) ist ein Zerfällungskörper von F = {x2 − 2}.

C ist algebraisch abgeschlossen,aber nicht der algebraischeAbschluss vonQ,wie
wir gleich sehen werden.

Unser Ziel ist es, für jeden Körper einen algebraischen Abschluss zu konstruieren.
Dazu müssen wir aber algebraisch abgeschlossene Körper zunächst etwas näher
betrachten.

Sei k ein Körper. Gleichwertig sind

a) k = k̄.

b) Ist f ∈ k[x]mit grad f ≥ 1, so gibt es ein a ∈ k mit f (a) = 0.

c) Ist k ⊆ K eine Körpererweiterung mit [K : k] < ∞, so ist K = k.

d) Ist f ∈ k[x] ein irreduzibles Polynom, so ist grad f = 1.

Satz II.14

Beweis.

a)⇒ b): Dies ist die Definition des algebraischen Abschlusses.

b) ⇒ c): Falls k eine Erweiterungen K von endlichem Grad hat, so sind nach
Satz II.4 alle Elemente in K algebraisch über k. Es genügt also zu zeigen, dass jedes
algebraische Element schon in k liegt. Sei dazu a algebraisch über k. Betrachte das
Minimalpolynom ma zu a. Nach Voraussetzung gibt es ein u ∈ k mit ma(u) = 0. Da
ma irreduzibel ist, ist dannma = x − u.Wegenma(a) = 0 ist a = u, also ist a ∈ k.

c) ⇒ d): Sei f irreduzibel, grad f = n. Anwendung von Satz II.12 liefert, dass k
einen Erweiterungskörper K besitzt, so dass [K : k] = n gilt. Nach Voraussetzung ist
K = k, also n = 1.
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d) ⇒ a): Sei f ein nicht konstantes Polynom in k[x]. Wir wissen, dass f als
Produkt irreduzibler Polynome pi geschrieben werden kann, also f = p1 · · · pr . Nach
Voraussetzung ist nun grad p1 = 1, also ist p1 = ax + b. Nun ist −a−1b eine Nullstelle
von p1 in k. Dies ist auch eine Nullstelle von f in k. Damit hat jedes nicht konstante
Polynom f ∈ k[x] eine Nullstelle in k, was per Definition liefert, dass k algebraisch
abgeschlossen ist.

Ist K ein Zerfällungskörper aller nicht konstanten Polynome von k[x], so ist K ein
algebraischer Abschluss von k.

Folgerung II.15

Beweis. Da K ein Zerfällungskörper ist, ist K algebraisch über k. Um zu zeigen,
dass K ein algebraischer Abschluss von k ist, genügt es K = K̄ zu zeigen. Dazu
wenden wir Satz II.14c) an. Sei L eine Erweiterung von K mit [L:K] < ∞. Dann ist
L algebraisch über K . Nach Folgerung II.10 ist L auch algebraisch über k. Sei a ∈ L
und ma ∈ k[x] das Minimalpolynom. Da ma ∈ k[x] ist, zerfällt nach Annahme ma

in K[x] in Linearfaktoren, also

ma =
∏
(x − ai)ni .

Dabei sind alle ai in K . Da ma(a) = 0 ist, ist a eines der ai, also ist a ∈ K . Somit
ist jedes Element aus L in K , was L = K bedeutet. Nach Satz II.14 ist K algebraisch
abgeschlossen.

Sei k ein Körper und K eine algebraische Erweiterung von k. Ist |k| endlich, so
hat K abzählbar viele Elemente. Ist |k| unendlich, so haben k und K die gleiche
Mächtigkeit. Stets hat K = k̄ unendlich viele Elemente.

Lemma II.16

Beweis. Es ist |k[x]| = |k|ℵ0, da k[x] die abzählbare k-Basis {xi | i ∈ N ∪ {0}} hat.
Ist also |k| endlich, so ist |k[x]| abzählbar. Ist |k| unendlich, so haben k[x] und k die
gleiche Mächtigkeit.

Jedes Polynom aus k[x] kann nur endlich viele Nullstellen in K haben, da die
Anzahl der Nullstellen eines Polynoms durch den Grad beschränkt ist. Also ist die
Anzahl der Nullstellen von Polynomen aus k[x], die in K liegen, durch ℵ0|k[x]| also
|k[x]| beschränkt. Da K algebraisch über k ist, ist jedes Element in K eine Nullstelle
eines Polynoms aus k[x]. Somit ist |K| durch |k[x]| beschränkt. Ist also |k| unendlich,
so sehen wir, dass K und k die gleiche Mächtigkeit haben. Sei nun |k| endlich. Da
|k[x]| abzählbar ist, ist dann auch |K| abzählbar.

Wäre |k̄| endlich, so betrachten wir das folgende Polynom

f =
∏
x∈k̄
(x − a) + 1.

Es ist f (a) = 1 für alle a ∈ k̄ und somit hat f keine Nullstelle in k̄, ein Widerspruch.
Also hat k̄ immer unendlich viele Elemente.
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Nun sieht man auch, dass Q �= C ist. Nach Lemma II.16 ist |Q| abzählbar (siehe
auch Folgerung II.9), aber |C| ist überabzählbar.

Wir können jetzt die Existenz eines algebraischen Abschlusses des Körpers k be-
weisen. Anschaulich ist ein algebraischer Abschluss von k so etwas wie eine größte
algebraische Körpererweiterung von k. Es liegt also nahe, hier mit dem Zornschen
Lemma zum Erfolg zu kommen. Das Problem ist nur, dass die algebraischen Kör-
pererweiterungen von k keine Menge bilden.Also muss man vorsichtiger vorgehen.
Wir werden deshalb zunächst eineMenge definieren,von der wir sicher sein können,
dass ihre Kardinalität größer als die eines potenziellen algebraischenAbschlusses ist.
Dabei hilft Lemma II.16.Dann werden wir nur alle die algebraischen Erweiterungen
betrachten, die in dieser Menge liegen.Hierauf ist das Zornsche Lemma anwendbar,
was uns dann einen algebraischen Abschluss liefern wird.

Steinitz1(1910). Jeder Körper hat einen algebraischen Abschluss.Satz II.17

Beweis. Wir wählen eine Menge S, die k enthält und eine Kardinalität hat, die größer
als die jeder algebraischen Erweiterung von k ist. Nach Lemma II.16 erfüllt dies z.B.
die Menge S = k ∪P(k) ∪ R.

Wir betrachten alle Körper K = (K,+K , ·K ), die die folgenden Bedingungen
erfüllen:

• Die Menge K ist eine Teilmenge von S, die k enthält.
• Die Addition +K und Multiplikation ·K auf K seien jeweils Fortsetzungen der
Addition und Multiplikation auf k. Damit ist k ⊆ K eine Körpererweiterung.

• Die Körpererweiterung k ⊆ K ist algebraisch.

Diese bilden offenbar eine Menge, die wir mitS bezeichnen wollen.Da k ∈ S ist, ist
S nicht leer.

Als Nächstes definieren wir auf S eine Halbordnung ≤S durch die Festsetzung
K1 = (K1,+K1 , ·K1 ) ≤S (K2,+K2 , ·K2 ) = K2,

falls K1 ⊆ K2 und +K1 , ·K1 Einschränkungen von +K2 bzw. ·K2 sind, also K1 ⊆ K2 eine
Körpererweiterung ist.

Wir wollen zeigen, dass ein maximales Element in S der gesuchte algebraische
Abschluss ist. Die Existenz solcher Elemente wollen wir mit dem Zornschen Lemma
zeigen.Sei dazuK eine Kette inS.Wirmüssen eine obere Schranke fürK inS finden.
Setze dazu

L =
⋃
K∈K

K .

1Ernst Steinitz (*13.6.1871 Laurahütte, †29.9.1928 Kiel), Studium in Breslau und Berlin, ab 1894
Privatdozent an der TH Berlin, ab 1910 Professor in Breslau, ab 1920 in Kiel. Er verfasste grundlegende
Arbeiten zur Algebra. In dem 1910 veröffentlichten Artikel Algebraische Theorie der Körper definierte
er wichtige Konzepte der Körpertheorie, wie Primkörper, transzendente Erweiterungen, perfekte Körper,
und bewies die Existenz eines algebraischen Abschlusses. Außer seinen algebraischen Arbeiten schrieb
Steinitz auch wichtige Arbeiten über Polyeder.
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Dann ist L ⊆ S. Sind x, y ∈ L, so gibt es ein K ∈ Kmit x, y ∈ K , da K total geordnet
ist.Wir definieren nun eine Addition und Multiplikation auf L durch

x +L y = x +K y

x ·L y = x ·K y.

Für K1,K2 ∈ K gilt stets K1 ≤S K2 oder K2 ≤S K1. Also ist x +K1 y = x +K2 y und
x ·K1 y = x ·K2 y. Damit ist die Definition der Addition und Multiplikation in L von
derWahl des Körpers K unabhängig.

In jedem Körperaxiom kommen nur endlich viele Elemente des Körpers vor,
welche dann gemeinsam in einemKörperK ∈ K liegen.Hier gelten aber dieAxiome.
Also ist (L,+L, ·L) ein Körper.

Wir müssen jetzt noch zeigen, dass k ⊆ L algebraisch ist. Wähle dazu a ∈ L
beliebig. Dann gibt es ein K ∈ K mit a ∈ K . Da K algebraisch über k ist, ist a
algebraisch über k.Also ist k ⊆ L eine algebraische Erweiterung und somit ist

L ∈ S.

Nach dem Lemma von Zorn gibt es nun ein maximales ElementM ∈ S.Wir zeigen,
dassM ein algebraischer Abschluss von k ist.

Zunächst ist k ⊆ M algebraisch, da M ∈ S ist. Sei N eine Erweiterung von M
mit [N :M] = n < ∞. Das Problem ist nun, dass N keine Teilmenge von S sein muss.
Wir werden versuchen, einen zu N isomorphen Körper inS zu finden.

Nach Lemma II.16 wissen wir, dass |N | = |k| ist, falls |k| unendlich ist, bzw. |N |
abzählbar ist, falls |k| endlich ist. Insbesondere ist die Kardinalität von S größer als
die von N . Das bedeutet, dass es eine Injektion

� :N → S

mit �|M = id gibt.

Sei F=Bild � .Wir definieren auf F eine Addition und Multiplikation, wobei wir
die Abbildung � benutzen.

x + y = � (�−1(x) + �−1(y))

xy = � (�−1(x)�−1(y)).

Man rechnet nach, dass F dadurch ein Körper wird. Die Definition ist gerade so
gemacht, dass � dadurch ein Isomorphismus wird, wie man sofort sieht:

� (a)� (b) = � (�−1(� (a))�−1(� (b))) = � (ab)

� (a) + � (b) = � (�−1(� (a)) + �−1(� (b))) = � (a + b).

Also ist � ein Isomorphismus zwischen N und F. Da �|M = id ist, ist M ⊆ F eine
Körpererweiterung. Wir zeigen, dass diese algabraisch ist. Sei dazu a ∈ F. Dann
ist �−1(a) ∈ N . Da M ⊆ N algebraisch ist, gibt es ein nicht triviales Polynom
f =

∑m
i=0 aix

i ∈ M[x] mit f (�−1(a)) = 0. Da � ein Homomorphismus ist, erhalten
wir

0 =
m∑
i=0

ai�−1(a)i =
n∑
i=0

�−1(ai)�−1(a)i = �−1
( m∑

i=0

aiai
)

.
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Da � bijektiv ist, folgt dann f (a) = 0. Dies zeigt, dass a algebraisch über M ist.
Insgesamt haben wirM ⊆ M(a) ⊆ S undM ⊆ M(a) ist algebraisch.Nach Folgerung
II.10 ist dann auch k ⊆ M(a) algebraisch.Also haben wirM(a) ∈ S gezeigt. Es war
aberM ein maximales Elememt inS, was dannM(a) = M und somit a ∈ M liefert.
Somit ist F = M, wasM = N zur Folge hat. Nach Satz II.14c) ist dannM algebraisch
abgeschlossen.

Als Spezialfall erhalten wir

Seien k ein Körper und F ⊆ k[x] eine Menge nicht konstanter Polynome. Dann
existiert ein Zerfällungskörper zu F über k.

Satz II.18

Beweis. Nach Satz II.17 existiert ein algebraischer Abschluss k̄ von k. Sei W die
Menge der Nullstellen von F in k̄. Dann ist k(W) ⊆ k̄ ein Zerfällungskörper.

Wir wollen uns am Ende dieses Kapitels mit der Eindeutigkeit von Zerfällungskör-
pern beschäftigen.Hierbei wird Satz II.11 eine wichtige Rolle spielen.

Seien k1, k2 Körper und � : k1 → k2 ein Isomorphismus. Sei m1 =
∑n

i=0 aix
i ein

Polynom aus k1[x]. Setze m2 = � (m1) ∈ k2[x]. Wir betrachten Zerfällungskörper
Ki von mi über ki, i = 1, 2. Dann gibt es einen IsomorphismusŸ:K1 → K2, der �
erweitert.

Satz II.19

Beweis. Wir werden die Behauptung durch Induktion nach n = gradm1 beweisen.
Hierbei ist Satz II.11 der Induktionsanfang.

Sei nun p =
∑t

i=0 bix
i ein irreduzibler Teiler vonm1 in k1[x].Wir setzen q = � (p).

Dann ist q|m2.

Es enthält K1 einen Zerfällungskörper von p undK2 einen von q.Also gibt es eine
Nullstelle u1 von p in K1 und eine Nullstelle u2 von q in K2. Nach Satz II.11 gibt es
eine Fortsetzung � von �

� : k1(u1) → k2(u2)

mit
�(u1) = u2.

Da u1 auch eine Nullstelle vonm1 ist, gilt

m1 = (x − u1)
n−1∑
i=0

cixi ∈ k1(u1)[x].

Da u2 = �(u1) auch eine Nullstelle vonm2 ist, gilt

m2 = (x − �(u1))
n−1∑
i=0

�(ci)xi ∈ k2(u2)[x].
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Wir setzen g1 =
∑n−1

i=0 cix
i und g2 = �(g1). Damit sind dann m1 = (x − u1)g1 und

m2 = (x − u2)g2. Dann ist Ki Zerfällungskörper von gi über ki(ui), i = 1, 2.Weiter
ist grad g1 < n. Nun liefert die Induktion angewandt auf g1 und g2 eine Fortsetzung
Ÿ:K1 → K2 von � .

k-isomorph. Seien k,K1, und K2 Körper mit k ⊆ Ki, i = 1, 2. Wir nennen K1
und K2 k-isomorph, falls es einen Isomorphismus � :K1 → K2 mit �|k = id gibt.

Definition

Seien k ein Körper und f ∈ k[x]mit f nicht konstant. Sind K1,K2 Zerfällungskör-
per von f über k, so sind sie k-isomorph.

Folgerung II.20

Beweis. Setze in Satz II.19 k = k1 = k2, f = m1 und � = id.

Seien k1, k2 Körper und � : k1 → k2 ein Isomorphismus. Sei weiter F1 eine Menge
nicht konstanter Polynome aus k1[x]. Setze F2 = {� (f )|f ∈ F1} ⊆ k2[x]. Sei K1 ein
Zerfällungskörper von F1 über k1 und entsprechend K2 ein Zerfällungskörper von
F2 über k2. Dann gibt es einen Isomorphismus �:K1 → K2, der eine Erweiterung
von � ist.

Satz II.21

Beweis. Wir betrachten die Körper, die zwischen k1 und K1 liegen, zusammen mit
allen Einbettungen in K2, die Erweiterungen von � sind, also die Menge

S = {(k˛, �˛)|k1 ⊆ k˛ ⊆ K1, k˛ Körpererweiterung von k1, �˛ : k˛ → K2

ein Monomorphismus mit �˛|k1 = � }.
Insbesondere ist (k1, � ) ∈ S. Somit ist S �= ∅. Wir definieren nun auf S eine

Halbordnung durch
(k˛, �˛) ≤ (kˇ, �ˇ),

falls k˛ ⊆ kˇ und �ˇ|k˛ = �˛ ist. Wenn wir �˛ und �ˇ als Teilmengen von K1 × K2
betrachten, so bedeutet dies �˛ ⊆ �ˇ .

Wir wollen zeigen,dassSmaximale Elemente besitzt. Sei dazuK eine Kette inS.
Dann definieren wir (k, �) durch

k =
⋃

k˛
(k˛ ,�˛ )∈K

, � =
⋃

�˛
(k˛ ,�˛)∈K

,

wobei wir wieder �˛ als Teilmenge von K1 × K2 auffassen.

Es ist offenbar (k, �) ∈ S. Damit hat K eine obere Schranke in S. Nach dem
Lemma von Zorn gibt es ein maximales Element (k0,Ÿ) ∈ S.

Wir wollen k0 = K1 und Ÿ(K1) = K2 zeigen. Sei dazu zunächst K1 �= k0.Wegen
der minimalen Eigenschaft von K1 als Zerfällungskörper ist dann k0 nicht Zerfäl-
lungskörper von F1.Also gibt es ein f1 ∈ F1, so dass nicht alle Nullstellen von f1 in k0
liegen. SeiW die Menge der Nullstellen von f1 in K1. Setze L1 = k0(W). Dann ist L1
ein Zerfällungskörper von f1 über k0.
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Setze f2 = Ÿ(f1). DaŸ|k1 = � ist, istŸ(f1) = � (f1) ∈ F2. Dann gibt es mit gleicher
Konstruktion wie vorher in K2 einen Zerfällungskörper L2 von f2 über Ÿ(k0). Nach
Satz II.19 gibt es eine ErweiterungŸ1 vonŸ mitŸ1: L1 → L2.Also ist

(k0,Ÿ) ≤ (L1,Ÿ1) ∈ S.

Da k0 �= L1 ist, widerspricht dies der Maximalität von (k0,Ÿ).Also ist k0 = K1.Dann
istŸ(K1) ein Zerfällungskörper von

{Ÿ(f )|f ∈ F1} = {� (f )|f ∈ F1} = F2.

Nach Definition des Zerfällungskörpers ist Ÿ(K1) = K2.

a) Seien K1,K2 algebraische Abschlüsse von k. Dann gibt es einen Isomorphis-
musŸ:K1 → K2 mitŸ(a) = a für alle a ∈ k.

b) Sei F eine Menge nicht konstanter Polynome in k[x]. Dann sind alle Zer-
fällungskörper von F k-isomorph.

Folgerung II.22

Beweis. Nach Folgerung II.15 genügt es,b) zu beweisen.Das ist aber dieAussage von
Satz II.21 mit k = k1 = k2, F = F1 und � = id.

a) Sei f = (x2 − 7)(x2 + x + 2) ∈ Q[x]. In C berechnen wir

f = (x −
√
7)(x +

√
7)
(
x −

−1 + i
√
7

2

)(
x −

−1 − i
√
7

2

)
.

Also istQ(
√
7, −1−i

√
7

2 ) = Q(
√
7, i) ein Zerfällungskörper von f in C.

b) Sei f = (x2 − 2x − 6)(x2 + 1) ∈ Q[x]. Die Nullstellen von f in C sind
1± √

7,±i.Also ist wiederQ(
√
7, i) ein Zerfällungskörper von f in C.

c) Sei nun f = x2 + x + 1 ∈ GF(2)[x]. Um den Zerfällungskörper zu bestim-
men, steht nun eine Einbettung in den bekannten Körper C nicht mehr
zur Verfügung.

Es ist f (0) = 1 = f (1). Damit hat f zunächst einmal keine Nullstelle in
GF(2). Da f den Grad zwei hat, ist dann f irreduzibel.

Sei nun ˛ eine Nullstelle von f in GF(2).Dann ist ˛2 = 1 +˛. Einsetzen in
f liefert

(˛ + 1)2 + ˛ + 1 + 1 = 0.

Also ist auch ˛ + 1 eine Nullstelle von f . Das heißt, GF(2)(˛) ist ein Zer-
fällungskörper.

Es ist [GF(2)(˛):GF(2)] = 2 nach Satz II.12. Somit ist |GF(2)(˛)| = 4.Das
heißt,GF(2)(˛) = {0, 1,˛, 1 + ˛} ist ein Körper mit 4 Elementen.

d) Sei f ∈ K[x] einnicht konstantesPolynom.Wirkönnen f auchalsPolynom
aus K̄[x] auffassen. Hier zerfällt f in Linearfaktoren. Es gibt ein einfaches
Verfahren, in K[x] festzustellen, ob f in K̄[x] mehrfache Nullstellen hat.

Beispiel
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Sei f = (x−a)2g ∈ K̄[x] und f =
∑n

i=0 aix
i ∈ K[x].Setze f ′ =

∑n
i=0 iaix

i−1.

Dann gelten für f ′ die üblichen Regeln vonAbleitungen. Siehe hierzu auch
das Beispiel am Ende von Kapitel I. Insbesondere gilt: Sind h, r ∈ K[x], so
ist

(hr)′ = h′r + hr ′.

Dies wenden wir nun auf unser f an.

f ′ = 2(x − a)g + (x − a)2g ′.

Also ist x − a ein Teiler von f ′ in K̄[x]. Das heißt, ggT (f , f ′) �= 1 in K̄[x].
Ist ggT (f , f ′) = 1 in K[x], so gibt es nach Satz I.16 a, b ∈ K[x] mit

af + bf ′ = 1.

Dies ist aber auch eine Gleichung in K̄[x],was dann ggT (f , f ′) = 1 in K̄[x]
liefern würde.

Ist

f =
n∏
i=1

(x − ai) ∈ K̄[x]

mit paarweise verschiedenen ai, so ist

f ′ =
n∑
j=1

n∏
i=1
j �=i

(x − ai).

Wäre (x− aj) ein Teiler von f ′ für ein j, so würde (x− aj) auch
∏n

i=1
i �=j
(x− ai)

teilen,einWiderspruch,da alle ai verschieden sind.Also ist ggT (f , f ′) = 1,
falls f nur einfache Nullstellen in K̄ hat.

Es genügt also, den ggT (f , f ′) in K[x] zu berechnen.Wir fassen zusammen:

Sei f ∈ K[x].

a) Es hat f mehrfache Nullstellen in K̄[x] genau dann, wenn ggT (f , f ′) �= 1
ist.

b) Ist f irreduzibel, so ist entweder f ′ = 0 oder ggT (f , f ′) = 1.

Satz II.23

Beweis.

a) steht im Teil d) des vorhergehenden Beispiels.

b) Da f irreduzibel ist, ist ggT (f ′, f ) = f oder 1. Ist ggT (f ′, f ) = f , so ist f ein
Teiler von f ′. Da grad f ′ < grad f ist, ist dann f ′ = 0.
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Übungsaufgaben

II.1 Betrachte Q(
√
2) undQ(

√
3) als Teilkörper von C. Zeige, dass sie nicht isomorph sind.

II.2 Bestimme folgende Körpergrade der Teilkörper von C

a) [Q(
√
15):Q].

b) [Q(
√
2,

√
3,

√
7):Q].

c) [Q(
√
2 +

√
3):Q].

II.3 Sei K ⊆ L eine Körpererweiterung mit [L:K] = 2. Zeige:

a) Ist ˛ ∈ L \ K , so ist L = K(˛).

b) Ist char K �= 2, so gibt es ein ˛ ∈ L, so dass m˛ = x2 − a für ein geeignetes a ∈ K
gilt.

c) Ist char K = 2, und gibt es ein ˛ ∈ L \ K , so dassm˛ �= x2 + a für irgendein a ∈ K
ist, so gibt es ein ˛ mitm˛ = x2 + x + a für ein geeignetes a ∈ K .

II.4 Sei f = x3 + px + q ∈ Q[x]. In C habe f die Nullstellen ˛1,˛2,˛3. Setze

d =
(
(˛1 − ˛2)(˛2 − ˛3)(˛3 − ˛1)

)2
.

a) Bestimme d als Funktion von p und q.

b) Sei L ein Zerfällungskörper von x3 − 4x − 1 überQ. Zeige [L:Q] = 6.

II.5 Sei f = x4 + x2 + 1 ∈ K[x]. Bestimme einen Zerfällungskörper von f über K für

a) K = Q.

b) K = GF(2).

II.6 Sei k ⊆ K eine Körpererweiterung mit [K : k] = p, p eine Primzahl. Zeige:

a) Ist a ∈ K \ k, so ist K = k(a).

b) Sei f ∈ k[x] mit grad f = p. Gibt es ein a ∈ K \ k mit f (a) = 0, so ist f irreduzibel
über k.

II.7 Sei K ⊆ L eine Körpererweiterung und f ein irreduzibles Polynom aus K[x] vom Grad
n. Ist [L:K] endlich und n teilerfremd zu [L:K], so ist f auch in L[x] irreduzibel.

II.8 Es ist bekannt, dass e und � beide transzendent sind. Folgere daraus, dass nicht beide
e + � und e · � algebraisch sein können. (Es ist allerdings eine offene Frage, ob einer,
und wenn ja, wer von beiden, e + � oder e · � algebraisch ist!)
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In diesem Kapitel wollen wir uns mit einer speziellen Klasse von Körpern, den end-
lichen Körpern, beschäftigen. Davon kennen wir bisher GF(p) = Z/pZ, p Primzahl.
Weiter hatten wir am Ende von Kapitel II (siehe Seite 48) einen Körper mit vier
Elementen konstruiert.Wir wollen zunächst alle endlichen Körper angeben.

Endliche Körper spielen in vielen Bereichen eine Rolle, so z.B. in der Informatik.
EinebesonderswichtigeRolle spielen sie aber inderCodierungstheorie.Einzelheiten
hierzu kannman inWillems (2008,[32]) aus der gleichen Lehrbuchreihe finden.Aber
auchwir haben endliche Körper bereits auf Seite 27 angewandt,um die Irreduzibiltät
eines Polynoms mit ganzzahligen Koeffizienten zu entscheiden.

Das erste Lemma sagt, dass es Körper nicht zu jeder Ordnung gibt. So gibt es z.B.
keinen Körper mit genau 6 Elementen.

Sei K ein Körper, |K| < ∞. Dann gibt es eine Primzahl p mit |K| = pf für ein
geeignetes f ∈ N.

Lemma III.1

Beweis. Sei k der Primkörper. Nach Satz II.2 ist k ∼= GF(p) für eine Primzahl p. Es
ist [K : k] = f für ein f . Das heißt,K ist ein f -dimensionaler Vektorraum über GF(p)
und somit ist |K| = pf .

Wir wollen nun umgekehrt zeigen, dass es für jede Primzahlpotenz pf bis auf Iso-
morphie genau einen endlichen Körper K mit |K| = pf gibt. Dazu benötigen wir ein
wenig Gruppentheorie.

Lagrange1. Sei G eine endliche Gruppe und U eine Untergruppe von G. Dann ist

|U |
∣∣∣|G|.

Satz III.2

Beweis. Sei g ∈ G. Setze
gU = {gu|u ∈ U}.

1Joseph-Louis Lagrange (*25.1.1736 Turin, †10.4. 1813 Paris), Professor in Turin, Berlin und Paris.
Lagrange verfasste grundlegende Arbeiten zur Variationsrechnung, Zahlentheorie und Differentialrech-
nung. Er gilt als Begründer der analytischen Mechanik.

 Elementare Algebra und Zahlentheorie
© Springer Basel AG 2012
G. Stroth,
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Seien g, h ∈ G,mit gU ∩ hU �= ∅.Wähle x ∈ gU ∩ hU . Dann ist x = gu1 = hu2 mit
u1, u2 ∈ U geeignet. Somit ist

h = gu1u−12 ∈ gU .

Sei nun u ∈ U beliebig, so ist
hu ∈ gU,

also ist
hU ⊆ gU .

Genauso erhält man auch
gU ⊆ hU .

Somit ist stets gU = hU oder gU ∩ hU = ∅.Weiter ist G =
⋃

g∈G gU . Damit gibt es
r1, . . . , rt ∈ Gmit riU ∩ rjU = ∅ für i �= j und

G =
t⋃

i=1

riU .

Da dieMultiplikationmit Gruppenelementen eine bijektiveAbbildung ist, haben wir

|riU | = |U |, i = 1, . . . , t.

Das liefert

|G| =
t∑

i=0

|riU | = t|U |.

Die Menge gU aus dem Beweis von Satz III.2 spielt in vielen Zusammenhängen eine
wichtige Rolle.Wir wollen ihr einen Namen geben.

Nebenklassenvertretersystem. SeienG eine Gruppe,U eine Untergruppe vonG
und g ∈ G.Dannnennenwir dieMenge gU = {gu|u ∈ U} eineRechtsnebenklasse
von U in G. Sei R eine Teilmenge von Gmit r1U ∩ r2U = ∅ für r1, r2 ∈ R, r1 �= r2
und G =

⋃
r∈R rU , so nennen wir R ein Rechtsnebenklassenvertretersystem von

U in G. Entsprechendes gilt für Linksnebenklassen Ug .

Definition

Seien G eine Gruppe und g ∈ G. Sei n ∈ N minimal mit gn = 1. Ist m ∈ N mit
gm = 1, so ist n ein Teiler von m.

Lemma III.3

Bemerkung. Ist n wie in Lemma III.3, so sagen wir, dass g die Ordnung n hat, und
schreiben o(g) = n.

Beweis. Wir teilenm durch nmit Rest, alsom = xn + r mit 0 ≤ r < n. Nun gilt

1 = gm = (gn)xgr = gr .

Da r < n ist und nminimal war, ist r = 0, d.h., n teiltm.
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Sei G eine endliche abelsche Gruppe und seien a, b ∈ G.

a) Sind o(a) und o(b) teilerfremd, so ist o(ab) = o(a)o(b).

b) Sei 〈a, b〉 die kleinste Untergruppe von G, die a und b enthält. Dann gibt es
ein d ∈ 〈a, b〉 mit o(d) = kgV (o(a), o(b)).

Lemma III.4

Beweis.

a) Es ist
(ab)o(a)o(b) = (ao(a))o(b)(bo(b))o(a) = 1.

Nach Lemma III.3 ist dann

m = o(ab)|o(a)o(b).
Es ist

ambm = (ab)m = 1.

Somit ist
1 = (am)o(a) = (b−m)o(a),

also
bmo(a) = 1.

Nach Lemma III.3 ist o(b) ein Teiler vonmo(a). Da ggT (o(a), o(b)) = 1 ist, ist

o(b) ein Teiler vonm.

Genauso gilt auch
o(a) ist ein Teiler vonm.

Dann ist
o(a)o(b) ein Teiler vonm.

Insgesamt erhalten wir
o(a)o(b) = o(ab).

b) Seien

o(a) = pa11 · · · parr · · · patt und o(b) = pb11 · · · pbrr qbt+1r+1 · · · qbss
die Primfaktorzerlegungen von o(a) bzw. o(b), wobei p1, . . . , pr die gemeinsamen
Primteiler seien. Dabei wollen wir die Anordnung noch so wählen, dass für ein w
und 1 ≤ i ≤ w stets ai ≥ bi und für w + 1 ≤ i ≤ r stets bi > ai sei.Wir betrachten
die zwei natürlichen Zahlen x =

∏r
i=w+1 p

ai
i und y =

∏w
i=1 p

bi
i . Dann setzen wir

d1 = ax, d2 = by.

Es ist o(d1) = pa11 · · · paww par+1r+1 · · · patt und o(d2) = pbw+1w+1 · · · pbrr qbr+1r+1 · · · qbss . Wir sehen
nun, dass ggT (o(d1), o(d2)) = 1 ist.Mit a) erhalten wir

o(d1d2) = o(d1)o(d2) = kgV (o(a), o(b)) und d = d1d2 ∈ 〈a, b〉.
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SeienG eineGruppe unda ∈ G.Seiweiter o(a) = t < ∞.Dann ist {1, a, . . . , at−1}
eine Untergruppe von G, die wir mit 〈a〉 bezeichnen. Es ist |〈a〉| = t. Ist |G| < ∞,
so ist o(a) ein Teiler von |G|.

Lemma III.5

Beweis. Offenbar ist 〈a〉 �= ∅. Seien ai und aj Elemente aus 〈a〉. Dann ist
aiaj = ai+j.

Sei i + j = xt + r mit 0 ≤ r ≤ t − 1.Dann ist

aiaj = axt+r = (at)xar = ar ∈ 〈a〉.
Sei ai mit 0 < i < t ein Element von 〈a〉. Dann ist auch at−i ∈ 〈a〉 und

aiat−i = at = 1.

Also ist 〈a〉 eine Untergruppe. Da o(a) = t ist, sind alle Elemente in 〈a〉 paarweise
verschieden, also |〈a〉| = t.

Ist |G| < ∞, so ist o(a) ein Teiler von |G| nach dem Satz von Lagrange III.2.

Nun können wir die angekündigte Klassifikation beweisen.

Zu jeder Primzahlpotenz q = pf gibt es bis auf Isomorphie genau einen Körper K
mit |K| = q.

Satz III.6

Beweis. Sei K ein Körper mit |K| = q. Dann hat die multiplikative Gruppe K∗ von K
die Ordnung q − 1. Sei a ∈ K∗ und o(a) = t. Nach Lemma III.5 ist t ein Teiler von
q− 1. Insbesondere ist dann aq−1 = 1 für alle a ∈ K∗. Somit ist dann sogar aq = a für
alle a ∈ K . Damit ist jedes Element aus K Nullstelle des Polynoms xq − x. Also ist K
im Zerfällungskörper F von xq − x über GF(p) enthalten. Es hat xq − x nach Satz I.27
höchstens q Nullstellen.Also enthält K alle Nullstellen, was K = F liefert.

Sei jetzt umgekehrt F der Zerfällungskörper von f = xq − x über GF(p). Sind a, b
Nullstellen von f , so gilt

aq = a, bq = b.

Nach Lemma II.3 ist (a + b)p = ap + bp, da char F = p ist.Also ist auch

(ab)q = aqbq = ab und (a + b)q = aq + bq = a + b.

Somit bilden die Nullstellen von f einen Körper.Wir wollen nun zeigen,dass f genau
q verschiedene Nullstellen hat.

Es ist (xq − x)′ = qxq−1 − 1 = −1, also ggT (xq − x, (xq − x)′) = 1. Nach Satz II.23
hat f = xq − x genau q paarweise verschiedene Nullstellen und damit ist |F| = q.

Wir haben gezeigt,dass es einenKörpermit qElementen gibt,und jeder solche ist
einZerfällungskörper von xq−x.Die Eindeutigkeit folgt nunmit Folgerung II.22.
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Wir wollen jetzt noch zeigen, dass es in einem endlichen Körper K mit |K| = q
stets ein Element a gibt, so dass o(a) = q − 1 ist. Eine Gruppe G, die wie in Lemma
III.5 aus den Potenzen eines einzelnen Elements besteht, nennen wir zyklisch. Wir
wollen also zeigen, dass die multiplikative Gruppe eines endlichen Körpers zyklisch
ist.Wir zeigen etwas mehr.

Jede endliche Untergruppe der multiplikativen Gruppe eines Körpers ist zyklisch. Satz III.7

Beweis. Seien K ein Körper und G eine endliche Untergruppe von K∗. Setze t =
kgV (o(a)|a ∈ G). Sei a ∈ G beliebig. Dann ist o(a) ein Teiler von t. Also ist at = 1
für alle Elemente a von G. Somit sind alle Elemente von G Nullstellen von xt − 1.
Es hat aber xt − 1 höchstens t verschiedene Nullstellen, was |G| ≤ t liefert. Mit
Lemma III.4b) erhalten wir, dass G ein Element a der Ordnung t enthält. Somit ist
G = {1, a, a2, . . . , at−1}, d.h. zyklisch.

Als Anwendung sehen wir, dass endliche Erweiterungen endlicher Körper stets
einfach sind, d.h., von einem Element erzeugt werden.

Ist K eine endliche Erweiterung eines endlichen Körpers k, so wird K über k von
einem Element erzeugt, d.h., es gibt ein a ∈ K mit K = k(a).

Lemma III.8

Beweis. Es ist [K : k] = n < ∞. Also ist |K| = |k|n < ∞. Die Anwendung von
Satz III.7 liefert die Existenz eines Elementes a ∈ K mit 〈a〉 = K∗. Insbesondere ist
dann K = k(a).

Übungsaufgaben

III.1 Seien K ein endlicher Körper mit |K| = pf ,p Primzahl, und L ein Teilkörper von K mit
|L| = pt . Zeige, dass f von t geteilt wird.

III.2 Gib einen Körper mit 27 Elementen an.

III.3 Sei q = pf eine Primzahlpotenz, K ein endlicher Körper mit |K| = q und k sein
Primkörper. Zeige:

a) Sind K1 und K2 Teilkörper von K mit |K1| = |K2|, so ist K1 = K2.

b) xq − x ∈ k[x] ist das Produkt aller normierten irreduziblen Polynome in k[x],
deren Grad f teilt.

III.4 Sei K = GF(2) der Körper mit zwei Elementen. Seien p1, p2, q ∈ K[x] Polynome mit
p1 = x4 + x3 + 1, p2 = x4 + x + 1 und q = x2 + x + 1.

a) Zeige, dass q das einzige irreduzible Polynom vom Grad zwei über K ist.

b) Zeige, dass beide Polynome p1, p2 über K irreduzibel sind.

c) Sei p1(˛1) = 0 = p2(˛2) für ˛1,˛2 ∈ K̄ , wobei K̄ ein algebraischer Abschluss von
K ist. Zeige, dass K(˛1) und K(˛2) isomorph sind.
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Wir kehren nun wieder zur Arithmetik zurück. In diesem Kapitel wollen wir uns
den ganzen Zahlen Z widmen. Da sich jede ganze Zahl als Produkt von Primzahlen
schreiben lässt, wollen wir auf diese ein Hauptaugenmerk lenken. Primzahlen sind
üblicherweise Primelemente pmit p > 0. Zunächst ein Klassiker:

Es gibt unendlich viele Primzahlen. Satz IV.1

Beweis. Euklid. Seien p1, . . . , pr sämtliche Primzahlen. Da 2 eine Primzahl ist, ist
r ≥ 1. Betrachte n = 1+ p1 · · · pr . Es ist n keine Einheit, da n > 1 ist.Also gibt es eine
Primzahl p, die n teilt. Dann ist p �= p1, · · · , pr , da p nicht 1 teilt. Somit erhalten wir
einenWiderspruch dazu, dass p1, · · · , pr die sämtlichen Primzahlen sind.

Wir wollen noch einen weiteren Beweis geben.

Sei {pi|i ∈ I}, I ⊆ N, die Menge aller Primzahlen. Betrachte die Reihe

∑
i∈I

1

pi
.

Wir zeigen, dass diese Reihe divergiert. Diese Aussage wurde zuerst von Euler ge-
macht.Der hier gegebeneBeweis derDivergenz stammtvonPaul Erdös [7].Danngibt
es insbesondere unendlich viele Primzahlen. Angenommen, die Reihe konvergiert.
Sei

an =
n∑
i=1

1

pi

die n-te Partialsumme.Die Konvergenz liefert ein kmit

ai − ak < 1/2 für alle i ≥ k + 1.

Also gilt für beliebiges N ∈ N
N(ai − ak) < N/2.

Sei nun Ns die Anzahl der natürlichen Zahlen n ≤ N , die nur durch die Primzahlen
p1, . . . , pk teilbar sind, und sei Nb die Anzahl der restlichen n ≤ N .Also

Nb + Ns = N .
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Es ist �N
pi

� die Anzahl der natürlichen Zahlen n ≤ N , die durch pi teilbar sind. Ist

pi > N , so ist �N
pi

� = 0.Also gibt es ein r mit

Nb ≤
r∑

i=k+1

⌊
N
pi

⌋
≤ N

r∑
i=k+1

1

pi
= N(ar − ak) < N/2.

Betrachte n ≤ N . Es ist
n = qns2n, qn quadratfrei.

Also ist qn ein Produkt von paarweise verschiedenen Primzahlen.

Sei nun n nur durch Primzahlen aus {p1, . . . , pk} teilbar. Dann gibt es für qn
maximal 2k Möglichkeiten. Es ist weiter

sn ≤ √
n ≤ √

N .

Also gibt es höchstens
√
N Möglichkeiten für sn. Das liefert

Ns ≤ 2k
√
N .

Setze nun N = 22k+2. Dann ist
√
N = 2k+1 und

Ns ≤ 22k+1 =
N
2

.

Damit haben wir

N = Nb + Ns <
N
2
+
N
2
= N,

einWiderspruch.Also konvergiert
∑

i∈I
1
pi
nicht.

Es ist offen,ob es unendlich viele Primzahlzwillinge,also Primzahlen imAbstand
zwei wie 5,7 oder 11,13 gibt. Sei P2 die Menge der Primzahlzwillinge. Immerhin hat
Brun1 1919 gezeigt, dass

∑
p∈P2

1
p konvergiert, so dass ein ähnlicher Beweis wie eben

nicht existiert.DerWert der Summe wird die Brunsche Konstante B genannt. Er liegt
bei 1, 902160583104......

Wir wollen uns nun die Verteilung der Primzahlen ansehen.Wenn man sich die
ersten 1000 Zahlen ansieht, so erhält man die Vorstellung, dass pro hundert Zahlen
zwischen 20 und 25 davon Primzahlen sind. Es gilt aber:

Es gibt beliebig lange Primzahllücken, d.h., für vorgegebenes n gibt es n aufein-
ander folgende Zahlen, die keine Primzahlen sind.

Lemma IV.2

Beweis. Sei n ∈ N. Dann gibt es zwischen (n + 1)! + 2 und (n + 1)! + (n + 1) keine
Primzahlen.

1Viggo Brun (*13.10.1885 Lier, †15.8.1978 Drobak), norwegischer Mathematiker, Professor an den
Universitäten Trondheim undOslo.Brun arbeitete über Primzahlzwillinge und die Goldbach-Vermutung.
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Andererseits gibt es zwischen n und 2n immer eine Primzahl, wie wir jetzt in
einer Folge von Lemmata zeigen wollen.

Für alle x ∈ R, x ≥ 2, gilt ∏
p Primzahl

p≤x

p < 4x.
Lemma IV.3

Beweis. Es genügt, x ungerade und x ∈ N zu betrachten. Also x = 2m + 1,m ∈ N.
Ist x = 3, so ist 2 · 3 < 43. Also können wir x > 3 annehmen. Setze k = m für m
ungerade und k = m + 1 fürm gerade.

Sei k < p ≤ x. Dann ist p ein Teiler von x!, aber p teilt nicht k!. Istm ungerade, so
istm ≥ 3. Es ist weiter x− k = k+1 gerade.Da p > k ist, ist p kein Teiler von (x− k)!.
Istm gerade, so ist x − k = k − 1 gerade.Also ist stets

p kein Teiler von (x − k)! ,

was ∏
k<p≤x

p ≤ x!
k!(x − k)!

=
(
x
k

)

liefert. Nun gilt

2x = (1 + 1)x =
x∑
t=1

(
x
t

)
>

(
x
k

)
+
(

x
x − k

)
= 2

(
x
k

)
.

Beachte, dass k ungerade und (x − k) gerade ist. Somit sind
(x
k

)
und

( x
x−k

)
zwei

verschiedene Summanden.Also ist

2x−1 >

(
x
k

)
.

Eine Induktion liefert nun∏
p≤x

p =
∏
p≤k

p
∏

k<p≤x

p < 4k2x−1 = 22k+x−1 ≤ 22x = 4x.

Sei n ∈ Nundn = a0+a1p+· · ·+arpr mit 0 ≤ ai ≤ p−1. Setze Sp(n) = a0+· · ·+ar.
Sei n! = pep(n!)t, wobei p kein Teiler von t sei. Dann ist

ep(n!) =
n − Sp(n)

p − 1
.

Lemma IV.4

Beweis. Von den n Faktoren in n! enthalten genau � n
p � den Faktor p, von diesen dann

� n
p2 � den Faktor p2 usw.Also ist

ep(n!) =
∞∑
i=1

� n
pi

�.
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Ist i > r, so ist � n
pi � = 0. Für 0 < i ≤ r ist

� n
pi

� = ai + ai+1p + · · · + ar−1pr−i−1 + arpr−i.

Also ist

ep(n!) = a1 + a2p + a3p2+ · · · + arpr−1

+ a2 + a3p + · · · + arpr−2

+ a3 + · · · + arpr−3

...

+ ar

= a1 + a2(p + 1) + a3(p2 + p + 1) + · · · + ar(pr−1 + pr−2 + · · · + 1)

= a1
p − 1
p − 1

+ a2
p2 − 1
p − 1

+ a3
p3 − 1
p − 1

+ · · · + ar
pr − 1
p − 1

=
(a0 + a1p + · · · + arpr) − (a0 + a1 + · · · + ar)

p − 1
=

n − Sp(n)

p − 1
.

Sei n ∈ N und n = a0 + a1p + · · · + arpr , mit 0 ≤ ai ≤ p − 1. Sei weiter
Sp(n) = a0 + a1 + · · · + ar . Ist(

2n
n

)
= pep

(
(2nn )
)
t, wobei p kein Teiler von t sei,

so ist pep
(
(2nn )
)

≤ 2n und

ep

((
2n
n

))
=
2Sp(n) − Sp(2n)

p − 1
.

Lemma IV.5

Beweis. Nach Lemma IV.4 gilt

ep

((
2n
n

))
= ep

(
(2n)!
(n!)2

)
=
2n − Sp(2n)

p − 1
− 2

(
n − Sp(n)

p − 1

)
=
2Sp(n) − Sp(2n)

p − 1
.

Sei nun
2n = b0 + b1p + . . . + bupu, 0 ≤ bi ≤ p − 1.

Sei v die Anzahl der Ziffernübertragungen, die bei der Addition von n + n = 2n
auftreten. Es ist v ≤ u. Jede Ziffernübertragung trägt höchstens den Wert p − 1 bei.
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Also
2Sp(n) − Sp(2n) ≤ v(p − 1) ≤ u(p − 1).

Also ist ep(
(2n
n

)
) ≤ u. Das liefert pep((

2n
n )) ≤ pu ≤ 2n.

Jetzt können wir das angekündigte Resultat beweisen.

Bertrand-Postulat2. Für jedes n > 1 existiert eine Primzahl p mit n < p < 2n. Satz IV.6

Beweis. Erdös3. Sei zunächst n < 128. Setze

pi = 2, 3, 5, 7, 13, 23, 43, 83, 163, i = 1, . . . , 10.

Dann ist stets pi < 2pi−1. Also erhält jedes Intervall n < y < 2n eine dieser Prim-
zahlen.

Sei ab jetzt n ≥ 128.Wir nehmen weiter an, dass es für ein n keine Primzahl p
zwischen n und 2n gibt. Dann ist(

2n
n

)
=
∏
p≤n

pep((
2n
n )).

Sei zunächst p eine Primzahl mit 23n < p ≤ n. Dann ist n = p + a0, 0 ≤ a0 ≤ p − 1.
Also ist Sp(n) = 1 + a0 und Sp(2n) = 2 + 2a0, da 2n = 2p + 2a0 und 2n < 3p, also
2a0 < p ist.Also ist

2Sp(n) = Sp(2n).

Nach Lemma IV.5 ist dann ep
((2n

n

))
= 0, d.h., ein solches p kommt in der Primfak-

torzerlegung von
(2n
n

)
nicht vor.

Betrachte nun Primzahlen p mit
√
2n < p ≤ 2

3n. Dann ist n = a1p + a0 mit
1 ≤ a1 <

p
2 und 0 ≤ a0 < p. Es ist

2n = 2a1p + 2a0 < p2.

Es kann somit bei der Addition n + n höchstens eine Ziffernübertragung auftreten.
Also ist

2Sp(n) − Sp(2n) ≤ p − 1.

Mit Lemma IV.5 erhalten wir

ep

((
2n
n

))
≤ 1.

2Joseph L.F. Bertrand (*11.3.1822, †5.4.1900, beides Paris), Professor an der École Polytechnique
und am Collège de France, war 26 Jahre Sekretär der Akademie der Wissenschaften. Bertand arbeitete
in Zahlentheorie, Differentialgeometrie, Wahrscheinlichkeitrechnung, Ökonomie und Thermodynamik.
Das Postulat wurde von ihm vermutet, aber erst 1850 von Chebyshev bewiesen. Er ist berühmt für das
Bertrand-Paradox in derWahrscheinlichkeitstheorie.

3Paul Erdös, *26.3.1913 Budapest, †20.9.1996 Warschau, ist für seine brillianten Beweise und seine
scheinbar unlösbaren Probeme, für die er Preisgelder aussetzte, bekannt. Sein Hauptarbeitsgebiet war die
Zahlentheorie. Er war einer der kreativsten Mathematiker des letzten Jahrhunderts. Sein Werk umfasst
mehr als 1500 Arbeiten mit mehr als 450 Koautoren. Paul Erdös wurde mit vielen Preisen ausgezeichnet
unter anderem dem Cole Preis und demWolf Preis. Paul Erdös promovierte im Alter von 19 Jahren mit
einem Beweis von Bertrand’s Postulat [8], auf den sich der hier gegebene bezieht. Eine schöne Biographie
findet man in “The man, who loved only numbers” [12].
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Diese Primzahlen kommen also höchstens mit der Vielfacheit 1 in der Primfaktor-
zerlegung von

(2n
n

)
vor.

Sei zuletzt p eine Primzahl mit p ≤ √
2n. Nach Lemma IV.5 ist ep

((2n
n

)) ≤ 2n.
Also ist (

2n
n

)
≤
∏

p≤√
2n

2n
∏

√
2n<p≤ 2

3 n

p.

Im ersten Produkt kommen höchstens 1
2

√
2n Faktoren vor, da 1 und die geraden

Zahlen �= 2 keine Primzahlen sind. Da n ≥ 128 ist, ist
√
2n ≥ 16. Dann sind auch 9

und 15 keine Primzahlen, also kommen weniger als 12
√
2n − 1 viele Faktoren vor.

Nach Lemma IV.3 ist ∏
p≤ 2

3 n

p < 4
2
3 n.

Also ist (
2n
n

)
< (2n)

1
2

√
2n−14

2
3 n.

Es ist (1 + 1)2n =
∑2n

i=1

(2n
i

)
< 2n

(2n
n

)
. Das liefert 22n < 2n

(2n
n

)
.Also ist

22n

2n
< (2n)

1
2

√
2n−14

2
3 n

und dann
2
2
3 n < (2n)

1
2

√
2n

und
2

3
n log 2 <

1

2

√
2n log 2n

oder anders ausgedrückt

4n√
2n
log 2 − 3 log 2n < 0 bzw.

√
8n log 2 − 3 log 2n < 0.

Wir betrachten die Abbildung

f : x → √
8x log 2 − 3 log 2x.

Es ist

f ′(x) =
1

x
(
√
2x log 2 − 3) > 0, für x ≥ 128 und

f (128) = 32 log 2 − 24 log 2 = 8 log 2 > 0.

Somit erhalten wir
f (x) > 0, für alle x ≥ 128,

ein Widerspruch zu
√
8n log 2 − 3 log 2n < 0. Somit gibt es zwischen n und 2n eine

Primzahl.

Eine offene Frage ist, ob es stets eine Primzahl zwischen n2 und (n + 1)2 gibt.
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Trotz all dieser Resultate sind die Primzahlen doch nicht ganz wild verteilt. 1792
hat C.F. Gauß den folgenden Satz vermutet:

Primzahlsatz. Sei�(x) dieAnzahl der Primzahlen kleiner gleich x.Dann ist�(x)
asymptotisch gleich x

lnx , d.h.

lim
x→∞

�(x)
( x
lnx )

= 1.

Satz IV.7

Dieser Satz wurde erst 1896 von Hadamard4 und unabhängig auch von de la Vallée-
Poussin5 bewiesen. Der Beweis benutzt analytische Hilfsmittel, die den Rahmen
dieses Buches sprengen würden.

Eine weitere, immer wieder gestellte Frage ist die nach einer Primzahlformel. Es
fragt sich zunächst, welche Art Formel man meint. Stellt man sich die Primzahlen
p1, p2, . . . in einer Reihenfolge, z.B. der Größe nach, geordnet vor, so ist

f (n) = pn (die n-te Primzahl)

sicherlich eine Formel. Man kann auch zeigen, dass die folgende Reihe konvergiert
(siehe [11] Satz 419):

∞∑
n=1

pn10−2
n
= a.

Dann ist
pn = �102na� − 102n−1�102n−1a�.

Diese Formel ist allerdings zur Berechnung von pn ziemlich nutzlos.

Wie sieht es aber aus, wenn wir uns auf Polynome beschränken? Betrachten wir
erst einmal Formeln der Form

f (n) = an + b.

Damit f (n) Primzahlen darstellt, sollte zumindest ggT (a, b) = 1 sein. Sei für ein n

an + b = p

eine Primzahl. Setze nk = n + kp, k = 0, 1, · · · . Dann ist

ank + b = a(n + kp) + b = an + b + akp = (ak + 1)p.

4Jacques S.Hadamard (*8.12.1865Versailles,†17.10.1963 Paris), arbeitete zunächst als Lehrer,promo-
vierte über Taylorreihen,wurde 1896 Professor für Astronomie undMechanik in Bordeaux und wechselte
1897 an die Sorbonne.Hadamard war in die Dreyfus-Affäre verstrickt, dessen Schwager er war. Er wurde
1906 Präsident der Société Mathématique de France, 1912 Professor für Analysis an der École Polytech-
nique (Nachfolge Camille Jordan). Er war Mitglied der Akademie derWissenschaften.Hadamard schrieb
bahnbrechende Arbeiten im Bereich der partiellen Differentialgleichungen und Geodäsie. Er arbeitete
auf den Gebieten der Optik, Hydrodynamik und Grenzwertprobleme.

5Charles de la Vallée-Poussin (*14.8.1866 Löwen, †2.3.1962 Brüssel), Professor in Löwen, Harvard,
Paris und Genf. Er arbeitete über Differentialgleichungen, Funktionentheorie und Potentialtheorie.
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Somit kann an + b niemals nur Primzahlen darstellen. Immerhin können so aber
unendlich viele Primzahlen dargestellt werden.

a) Die Folge 4n + 3, n ∈ N, enthält unendlich viele Primzahlen.

b) Die Folge 8n ± 3, n ∈ N, enthält unendlich viele Primzahlen.

Lemma IV.8

Beweis. Wir beweisen a) und b) gleichzeitig. Seien p1, . . . , pr sämtliche Primzahlen,
die durch 4n + 3 bzw. 8n ± 3 dargestellt werden können. Es gibt solche Primzahlen,
z.B. 7, 11, 5.Wir verfahren nun ähnlich wie in Satz IV.1. Ist x ∈ N ungerade, so ist

8|x2 − 1.
Also ist

8|p21 · · · p2r − 1.
Setze x = p21 · · · · · p2r − 2 in a) und x = p21 · · · · · p2r − 4 in b).

Für alle i gilt:
pi teilt nicht x.

Also ist jede Primzahl, die x teilt, von der Form 4n + 1 in a) bzw. 8n ± 1 in b). Da

(4n1 + 1)(4n2 + 1) = 4m + 1 bzw. (8n1 ± 1)(8n2 ± 1) = 8m ± 1

ist, ist also in a) x = 4t + 1 bzw. in b) x = 8t ± 1 für geeignetes t.

Es war aber 8 ein Teiler von p21 · · · p2r − 1, d.h., 8 teilt x + 1 = 4t + 2 in a) bzw.
x + 3 = 8t + 4 oder 8t + 2 in b), was offenbar nicht möglich ist.

Lemma IV.8 ist nur ein Spezialfall eines allgemeinen Satzes.

Dirichlet6. Ist ggT (a, b) = 1, so enthält die Folge an+ b, n ∈ N, unendlich viele
Primzahlen.

Satz IV.9

Auch die Bemerkung, dass an + b nicht nur Primzahlen darstellen kann, gilt allge-
meiner.

Sei f ein Polynom. Ist n ∈ N mit f (n) = p, p eine Primzahl, so ist p|f (n + kp) für
alle k ∈ N.

Satz IV.10

Beweis. Sei f (n) =
∑r

i=0 ain
i. Dann ist

f (n + kp) =
r∑

i=0

ai(n + kp)i =
r∑

i=0

aini + tp.

6Johann Peter Gustave Lejeune Dirichlet (*13.2.1805 Düren,†5.5.1859 Göttingen),Professor in Berlin
und Göttingen, dort Nachfolger von Gauß. Hauptarbeitsgebiete waren partielle Differentialgleichungen,
Zahlentheorie und Integraltheorie.
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Euler hat festgestellt, dass n2 + n + 41 für −40 ≤ n ≤ 39 immer eine Primzahl
ist, also für 80 aufeinander folgende Werte prim ist. Dies ist bisher der Rekord für
quadratische Polynome. Natürlich kann man mittels Interpolation bei genügend
großem Grad erreichen, dass für beliebig viele aufeinander folgende n ein Polynom
f mit f (n) prim existiert.

Ein ähnlicher Satz wie IV.9 für Polynome höheren Grades ist nicht bekannt. Es
ist z.B. offen, ob es unendlich viele Primzahlen der Form n2 + 1 gibt.

Vielleicht gibt es ja Polynome, die nur Primzahlen darstellen. Diese sind dann
notwendigerweise inmehrerenVariablen.Es sind allerdings keine einfachen Polyno-
me bekannt. Im Rahmen der Lösung des 10. Hilbert-Problems hat Matijassewitsch
(1970, [17]) ein Polynom in 26 Variablen angegeben. Falls bei einer Belegung der
Variablen derWert dieses Polynoms positiv ist, so ist er immer eine Primzahl.

In Kapitel I Seite 12 hatten wir uns die Ringe Z/mZ angesehen.Wir wollen jetzt
in diesen ein wenig rechnen. Zur Vereinfachung der Sprechweise führen wir die
folgende Notation ein. Seien a, b ∈ Z,m ∈ N, so schreibe

a ≡ b(modm) (inWorten: a kongruent bmodulom),

falls
a +mZ = b +mZ ist, oder anders ausgedrücktm teilt a − b.

Wie man schnell sieht, kann mit den Kongruenzen fast wie mit Gleichungen gerech-
net werden.

Seien a, b, c, d ∈ Z,m ∈ N. Dann gilt

a) Ist a ≡ b(modm), so auch b ≡ a(modm).

b) Ist a ≡ b(modm) und c ≡ d(modm), so ist a + c ≡ b + d(modm).

c) Ist a ≡ b(modm) und c ≡ d(modm), so ist ac ≡ bd(modm).

Lemma IV.11

Beweis. a) und b) sind klar.

c) Es ist ac − bd = (a− b)c + b(c − d).Dam sowohl a− b also auch c − d teilt, gilt
m teilt ac − bd.

Allerdings ist im Allgemeinen nicht richtig, dass aus ca ≡ cb(modm) stets
a ≡ b (modm) folgt. Es ist 6 ≡ 2(mod 4), aber nicht 3 ≡ 1(mod 4).

Wir wissen, dass Z/mZ kein Körper ist, falls m keine Primzahl ist. Also gibt es
nicht invertierbare Elemente.Wir können kürzen, falls c +mZ eine Einheit in Z/mZ
ist.Dies ist richtig, falls ggT (c,m) = 1 ist.Dann ist nämlich cx+my = 1 für geeignete
x, y ∈ Z, also (c +mZ)(x +mZ) + (my +mZ) = 1 +mZ, d.h.

(c +mZ)(x +mZ) = 1 +mZ.

Somit haben wir:

Seien a, b, c ∈ Z,m ∈ N und ggT (c,m) = 1. Dann folgt aus ac ≡ bc (modm)
stets a ≡ b(modm).

Lemma IV.12
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Wilson7. Sei p eine Primzahl. Dann ist

(p − 1)! ≡ −1(mod p).

Satz IV.13

Beweis. Es istZ/pZ ein Körper nach Lemma I.13 und Satz I.15.Also gibt es zu jedem
1 ≤ x ≤ p − 1 ein 1 ≤ y ≤ p − 1 mit

xy ≡ 1(mod p).

Ist x = y, so ist x2 ≡ 1(mod p). D.h. p teilt x2 − 1 = (x − 1)(x + 1).

Da p eine Primzahl ist, ist p ein Teiler von x−1 oder x+1.Somit ist x ≡ 1(mod p)
oder es ist x ≡ −1 ≡ p − 1(mod p). Für alle anderen x ist x �= y. Damit ist (p − 1)! ≡
p − 1 ≡ −1(mod p).

Ist übrigens p > 2 keine Primzahl, so ist ggT (p, (p − 1)!) �= 1. Da aber stets
ggT (−1, p) = 1 ist, ist dann (p − 1)! �≡ −1(mod p).

Dennoch eignet sichder Satz vonWilsonnicht,umzu zeigen,dass p einePrimzahl
ist. Besser steht es da schon um den folgenden Satz:

Fermat8. Sei p eine Primzahl und a ∈ Nmit ggT (a, p) = 1. Dann ist

ap−1 ≡ 1(mod p).

Satz IV.14

Beweis. Wir betrachten ā = a + pZ als Element in Z/pZ.. Nach Lemma III.5 ist o(ā)
ein Teiler von p − 1.Also ist āp−1 = 1̄, was (a + pZ)p−1 = 1 + pZ liefert. Dann ist

ap−1 + pZ = 1 + pZ

also
ap−1 ≡ 1(mod p).

Was passiert, wenn p keine Primzahl ist?

Sei z.B. p = 6 und a = 5.Dann ist ggT (p, a) = 1.

Aber es gilt

55 ≡ 52 · 52 · 5 ≡ 1 · 1 · 5 ≡ 5 ≡ −1(mod 6).

7JohnWilson (*6.8.1741 Applethwaite, †18.10. 1793, Kendal), britischer Mathematiker.Waring veröf-
fentlichte den Satz 1770 als Satz vonWilson, aber ohne Beweis.Der erste Beweis wurde 1773 von Lagrange
gegeben.

8Pierre de Fermat (*20.8.1601 Beaumont-de-Lomagne, †12.1.1665 Castres), Jurist und Mathematiker,
war Mitglied des obersten Gerichtshofs in Toulouse. Fermat beschäftigte sich mit Mathematik nur als
Hobby.Er lieferte wesentliche Beiträge zur Geometrie,Analysis undWahrscheinlichkeitstheorie.Berühmt
sind seine Beiträge zur Zahlentheorie und hier insbesondere der „Große Fermatsche Satz“. Die Versuche,
diesen Satz zu beweisen, führten zur Entwicklung der algebraischen Zahlentheorie. Schließlich wurde der
Satz 1995 von A.Wiles bewiesen.
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Das Einsetzen kleiner Zahlen zeigt, dass es für zusammengesetzte Zahlen n stets ein
amit ggT (n, a) = 1 gibt, so dass an−1 �≡ 1(mod n) ist. Zahlen nmit an−1 ≡ 1(mod n)
für alle amit ggT (a, n) = 1 wollen wirCarmichaelzahlen9 nennen.Die Frage ist nun:

Sind Carmichaelzahlen prim?

Sei n = p1 · · · pr, alle pi verschiedene ungerade Primzahlen. Ist pi − 1|n − 1 für
alle i, so ist n eine Carmichaelzahl.

Lemma IV.15

Beweis. Wir halten i fest. Dann ist n − 1 = (pi − 1)r. Sei a ∈ N mit ggT (a, n) = 1.
Nach dem Satz von Fermat IV.14 ist pi ein Teiler von api−1 − 1.Also ist

an−1 = a(pi−1)r = (api−1)r ≡ 1r ≡ 1(mod pi).

Dann ist pi ein Teiler von an−1 − 1 für alle i.Also ist

n = p1 · · · pr ein Teiler von an−1 − 1

und dann
an−1 ≡ 1(mod n).

Damit haben wir ein Verfahren, wie wir Carmichaelzahlen finden können. Es gilt
aber auch noch:

Sei n eine ungerade Carmichaelzahl und n nicht prim. Dann ist n = p1 · · · pr ,
wobei alle pi prim und paarweise verschieden sind.Weiter ist pi −1 ein Teiler von
n − 1 und r ≥ 3.

Lemma IV.16

Um dieses Lemma beweisen zu können, benötigen wir allerdings noch mehr Resul-
tate über Kongruenzen, die wir im Folgenden entwickeln wollen.

Immerhin können wir nun mit Lemma IV.15 und Lemma IV.16 die kleinste Car-
michaelzahl n finden, die keine Primzahl ist. Sie muss durch mindestens drei ver-
schiedene Primzahlen p1, p2 und p3 teilbar sein.Weiter muss pi − 1, i = 1, 2, 3, stets
n − 1 teilen. Dies liefert schnell n = 561. Somit gibt es Carmichaelzahlen, die nicht
prim sind. Da der Satz von Fermat für Primzahltests eine zentrale Bedeutung hat,
hoffte man, dass es nur endlich viele Carmichaelzahlen gibt. Dies ist aber falsch, wie
W.R. Alford, A. Granville und C. Pomerance (1994, [2]) zeigen konnten. Jeder Prim-
zahltest, der auf dem Satz von Fermat beruht,muss irgendwie die Carmichaelzahlen
umgehen.

Wir wollen nun zunächst den Satz von Fermat verallgemeinern.

Eulerfunktion. Sei n ∈ N. Mit ' (n) bezeichne die Anzahl der Einheiten in
Z/nZ.Wir nennen ' die Eulerfunktion.

Definition

9Robert D.Carmichael (*1.3.1879 Goodwater,Alabahma, †1967), amerikanischer Mathematiker, Pro-
fessor an der University of Illinois. Seine Arbeitsgebiete waren Zahlentheorie und Relativitätstheorie.
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Es ist ' (n) auch die Anzahl der x ∈ Nmit 1 ≤ x ≤ n, so dass ggT (x, n) = 1 ist.

Sei ggT (x, n) = 1. Dann gibt es a, b ∈ Zmit ax + bn = 1, also

(a + nZ)(x + nZ) = 1 + nZ,

was besagt, dass x + nZ eine Einheit ist.

Ist umgekehrt x + nZ eine Einheit, so gibt es ein a + nZmit

(a + nZ)(x + nZ) = 1 + nZ,

also
ax + nZ = 1 + nZ.

Dann ist ggT (x, n) = 1.

Euler10. Seien a, n ∈ N. Ist ggT (a, n) = 1, so ist
a' (n) ≡ 1(mod n).

Satz IV.17

Beweis. Wir folgen demBeweis von Lemma IV.14.Nach derVorbemerkung ist a+nZ
eine Einheit in Z/nZ. Also folgt, dass o(a + nZ) die Ordnung der Einheitengruppe
von Z/nZ teilt. Dies liefert

(a + nZ)' (n) = 1 + nZ

und dann
a' (n) ≡ 1(mod n).

Wie kann man ' (n) berechnen?

Es ist ' (1) = 1. Ist p eine Primzahl, so ist ' (p) = p − 1.Was ist ' (pa)? Es hat p
und auch jedesVielfache von p einen nicht trivialen Teiler mit pa und dies sind auch
genau alle solche Zahlen. Davon gibt es pa−1 viele zwischen 1 und pa.Also ist

' (pa) = pa − pa−1 = pa−1(p − 1).

Wäre' (paqb) = ' (pa)' (qb) für verschiedene Primzahlen p und q, so hätten wir eine
Formel für ' (n). Genau das wollen wir jetzt beweisen. Dazu beweisen wir zunächst
einen Satz, der auch von unabhängiger Bedeutung ist.

10Leonhard Euler (*15.4.1707 Basel, †18.9.1783 St. Petersburg), Professor in Berlin und St. Petersburg,
bedeutendster Mathematiker des 18. Jahrhunderts, lieferte auf fast allen damals zur Mathematik gehö-
renden Gebieten grundlegende Beiträge.Er publizierte über 500Arbeiten und ca. 350 tauchten noch nach
seinem Tode auf. Bedeutend waren nicht nur seine erzielten Sätze, sondern auch seine Fähigkeit, die ihm
bekannte Mathematik zu vereinheitlichen und zu systematisieren.
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Chinesischer Restsatz11. Seien m1, . . . ,mk paarweise teilerfremde natürliche
Zahlen und, a1, . . . , ak ganze Zahlen. Dann hat

x ≡ ai(modmi), i = 1, . . . , k (�)

eine Lösung x ∈ Z.

Lemma IV.18

Beweis. Es gibt eine Lösung x ≡ a1(modm1), nämlich x = a1. Alle Lösungen dieser
Kongruenz sind von der Form a1 + ym1 mit y beliebig.

Nun betrachten wir das System

ym1 ≡ ai − a1(modmi), i = 2, . . . , k. (��)

Da ggT (m1,mi) = 1 für alle i = 2, . . . , k ist, gibt es ti mit m1ti ≡ 1(modmi).Wir
betrachten jetzt

y ≡ ym1ti ≡ (ai − a1)ti(modmi), i = 2, . . . , k. (� � �)

Per Induktion nach k gibt es eine Lösung y von (� � �).Wegen (��) ist dann a1 + ym1

eine Lösung des Systems (�).

Sind a, b teilerfremd, so ist ' (ab) = ' (a)' (b). Lemma IV.19

Beweis. Wir betrachten die Menge

E = {(x, y)|1 ≤ x ≤ a, 1 ≤ y ≤ b, ggT (x, a) �= 1 oder ggT (y, b) �= 1}.

Es ist
|E| = ab − ' (a)' (b).

Wir wollen nun E noch auf eine andere Art abzählen.Dabei wird derWert ' (ab)
eingehen, was uns dann die Formel liefert. Sei 1 ≤ t ≤ abmit ggT (t, ab) �= 1. Dann
ist ggT (t, a) �= 1 oder ggT (t, b) �= 1.

Sei t1 der Rest von tmodulo a, 1 ≤ t1 ≤ a,und r1 der von tmodulo b, 1 ≤ r1 ≤ b.
Also

t ≡ t1(mod a)

t ≡ r1(mod b).

Dabei ist ggT (t1, a) �= 1 oder ggT (r1, b) �= 1. Also ist (t1, r1) ∈ E. Somit können wir
jedem t, 1 ≤ t ≤ ab mit ggT (t, ab) �= 1 ein (t1, r1) ∈ E zuordnen.Wir zeigen, dass
diese Zuordnung injektiv ist.

11Der Chinesische Restsatz wurde von den Chinesen im 13. Jahrhundert zur Berechnung der Plane-
tenbahnen benutzt. Es wurde hierbei allerdings angenommen, dass sich die Planeten auf Kreisbahnen
bewegen.
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Seien 1 ≤ t, t̃ ≤ ab, ggT (t, ab) �= 1 und ggT (t̃, ab) �= 1. Sei t → (t1, r1) und
t̃ → (t1, r1). Dann sind a und b Teiler von t − t̃. Da ggT (a, b) = 1 ist, ist auch ab ein
Teiler von t − t̃. Da t, t̃ ≤ ab sind, ist t = t̃. Damit ist die Zuordnung injektiv.Also ist

(1) |E| ≥ ab − ' (ab).

Sei nun (x, y) ∈ E. Nach dem Chinesischen Restsatz IV.18 gibt es ein t1 ∈ Zmit

t1 ≡ x(mod a)

t1 ≡ y(mod b).

Betrachte tmit t1 ≡ t(mod ab) und 1 ≤ t ≤ ab.Da ggT (x, a) �= 1 oder ggT (y, b) �= 1
ist, ist ggT (t1, a) �= 1 oder ggT (t1, b) �= 1. Also ist ggT (t, ab) �= 1. Somit ist (x, y)
ein t, 1 ≤ t ≤ ab mit ggT (t, ab) �= 1 zugeordnet.Wir zeigen, dass diese Zuordnung
injektiv ist.

Sei dazu (x̃, ỹ) ∈ E mit

t1 ≡ x̃(mod a)

t1 ≡ ỹ(mod b).

Dann teilt a sowohl x̃ − t1 als auch x − t1, also auch x − x̃. Genauso ist b ein Teiler
von y − ỹ. Da 1 ≤ x, x̃ ≤ a und 1 ≤ y, ỹ ≤ b ist, ist dann x = x̃ und y = ỹ. Also ist
die Zuordnung injektiv und damit

(2) |E| ≤ ab − ' (ab).

Das liefert |E| = ab − ' (ab). Da wir bereits |E| = ab − ' (a)' (b) gezeigt haben, folgt
' (ab) = ' (a)' (b).

Eine Konsequenz ist nun:

Sei n = pa11 . . . parr die Primfaktorzerlegung von n. Dann ist

' (n) =
r∏

i=1

pai−1i (pi − 1).

Folgerung

Der Satz von Euler spielt in der Kryptographie eine wichtige Rolle.Die tragende Idee
ist, eine Art der Verschlüsselung zu benutzen, die von der Methode her bekannt ist,
aber in der Praxis kaum von Unberechtigten entschlüsselt werden kann.

Hier ist die Idee eines solchen Systems. Jeder Nutzer A,B, . . . hat einen indivi-
duellen Schlüssel fA, fB, . . .. Diese Schlüssel werden allen Nutzern bekannt gegeben.
Zum Entschlüsseln benötigt man die inverse Funktion gA = f −1A , gB = f −1B , . . . . Die
Sicherheit des Systems ist dann gegeben, wenn gA selbst unter Kenntnis von fA nur
sehr schwer berechenbar ist. Die Nachrichtenübertragung geht nun wie folgt vor:
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Wir nehmen an,dass A eine NachrichtN an B sendenmöchte.Hierzu benutzt er den
öffentlich zugänglichen Schlüssel fB und sendet

fB(N).

B wendet auf diese Nachricht, die er empfängt, seinen Schlüssel gB an und erhält

gB(fB(N)) = N .

Eine Variante hiervon ist die elektronische Unterschrift.Wie kann B sicher sein,
dass die Nachricht N wirklich von A gekommen ist? Dazu wählt A die folgende
Variante. Er wendet zunächst gA auf N an und berechnet dann wie oben

fB(gA(N)).

Der Empfänger B wendet gB hierauf an, was gA(N) ergibt. Da er eine Nachricht von
A erwartet, wendet er nun das öffentlich bekannte fA an und erhält N .

Es sind also solche Funktionen fA gesucht, für die gA nur mit großem Aufwand
berechenbar ist. Eine mögliche Funktion ist die Eulerfunktion ' (n).

Seien p, q zwei verschiedene Primzahlen. Bilde

n = pq.

Es ist
' (n) = (p − 1)(q − 1) = n − p − q + 1.

Kennt man p und q, so kann man also leicht ' (n) berechnen. Sind umgekehrt n und
' (n) gegeben, so können p und q leicht bestimmt werden.

n = pq, p + q = n − ' (n) + 1.

Also sind p, q Lösungen der quadratischen Gleichung

t2 − (n − ' (n) + 1)t + n.

Die Berechnung von ' (n) direkt aus n ist also genauso schwierig wie die Bestim-
mung der Primteiler p und q. Solange wir davon ausgehen können, dass die Prim-
faktorzerlegung schwierig ist, ist auch die Berechnung der Eulerfunktion schwierig.
Eine systematische Behandlung dieser Fragen findet man, wie erwähnt, in Willems
(2008, [32]).

a) Wir wollen zeigen, dass es keine ganzzahligen Lösungen x, y von

x2 + y2 = 1203

gibt. Seien also x und y solche.Wir rechnen modulo 4. Es ist

x2 + y2 ≡ 3(mod 4).

Für jede ganze Zahl gilt x2 ≡ 0, 1(mod 4).Also ist x2+y2 ≡ 0, 1, 2(mod 4).
Das heißt, es gibt keine ganzzahlige Lösung von

x2 + y2 = 1203.

Beispiel
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b) Was sind die letzten beiden Ziffern von 31234?

Wir rechnen jetzt modulo 100. Es ist ' (100) = ' (22 · 52) = 2 · 5 · 4 = 40.
Also ist nach dem Satz IV.17 von Euler

340 ≡ 1(mod 100).

Es ist 1234 = 30 · 40 + 34.Also 31234 ≡ 334(mod 100). Es ist

34 ≡ 81 (mod 100)
38 ≡ 81 · 81 ≡ 61 (mod 100)
310 ≡ 9 · 61 ≡ 49 (mod 100)
320 ≡ 49 · 49 ≡ 1 (mod 100).

Somit ist
31234 ≡ 314 ≡ 49 · 81 ≡ 69(mod 100).

Die beiden letzten Ziffern sind also 69.

c) Sei n ∈ N, n = a0 + a1 · 10 + . . . ak · 10k die Dezimaldarstellung, also
0 ≤ ai ≤ 9, i = 0, . . . , k.

Da 10 ≡ 1(mod 3) ist, ist

n ≡ a0 + · · · + ak(mod 3).

Somit ist 3 genau dann ein Teiler vonn,wenn 3 dieQuersumme a0+· · ·+ak
teilt. Da auch 10 ≡ 1(mod 9) ist, gilt dies für 9 entsprechend.

Da 10 ≡ −1(mod 11), 100 ≡ 1(mod 11) ist, gilt: 11 teilt n genau dann,
wenn 11 die alternierende Quersumme a0 − a1 + a2 · · · (−1)kak teilt.

d) Es gibt offenbar zwei aufeinander folgende Zahlen, die einen quadrati-
schen Faktor haben: 8,9. Es gibt auch drei aufeinander folgende Zahlen:
48, 49, 50.Wie ist dies mit 100000 aufeinander folgenden? Wir betrachten
dazu die ersten 100000 Primzahlen p1, . . . , p100000.Nun lösen wir mit dem
Chinesischen Restsatz IV.18

x ≡ −i(mod p2i ), i = 1, . . . , 100000.

Die gesuchten Zahlen sind:

x + 1, x + 2, . . . , x + 100000.

Beispiel

Wir kommen nun zum
Beweis von Satz IV.16: Sei p eine Primzahl, so dass n von p2 geteilt wird. Zunächst
eine Vorbetrachtung.

Es ist

(1 + p)p =
p∑
i=0

(
p
i

)
pi.

Ist i verschieden von 0 und p, so ist p ein Teiler von
(p
i

)
.Also ist

(1 + p)p ≡ 1 + pp ≡ 1(mod p2).
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Sei
(1 + p)y ≡ 1(mod p2) für ein 1 ≤ y < p.

Da ggT (y, p) = 1 ist, gibt es nach Satz I.16 a, b ∈ Zmit 1 = ap + by.Also ist

p + 1 ≡ (p + 1)ap+by ≡ (p + 1)pa(p + 1)yb ≡ 1(mod p2).

Aber p2 teilt nicht p, einWiderspruch.Also ist o(1 + p) = p in Z/p2Z.

NachSatz III.7 gibt es inZ/pZ einElement g ,dessenPotenzengenaudieElemente
in (Z/pZ)∗ sind, d.h., (Z/pZ)∗ ist zyklisch.Also gibt es ein g ∈ Nmit

gp−1 ≡ 1(mod p),

aber
gx �≡ 1(mod p) für 1 ≤ x < p − 1.

Da g und p + 1 teilerfremd zu p2 sind, ist nach dem Satz IV.17 von Euler

(g(p + 1))p(p−1) = (g(p + 1))' (p
2) ≡ 1(mod p2).

Sei y die Ordnung von g modulo p2. Dann ist gy ≡ 1(mod p2), also auch
gy ≡ 1 (mod p). Da g modulo p die Ordnung p − 1 hat, ist nach Lemma III.3
p − 1 ein Teiler von y.Weiter ist auch y ein Teiler von ' (p2). Damit ist o(g) = p − 1
oder o(g) = ' (p2). Betrachte gp. Es ist gp ≡ g(mod p). Also ist p − 1 ein Teiler der
Ordnung von gp modulo p2.Wir können o(g) = p − 1 annehmen, indem wir notfalls
g durch gp ersetzen. Nun folgt aber mit Lemma III.4 o((p + 1)g) = ' (p2).

Setze h = (p + 1)g . Dann ist mit x = ' (p2)

hx �≡ 1(mod p2) für alle 1 ≤ x < ' (p2). (∗)
Sei n = p˛ ·rmit ggT (p, r) = 1 und˛ > 1.Nach demChinesischen Restsatz IV.18 hat

b ≡ h(mod p˛)

b ≡ 1(mod r)
(+)

eine Lösung b ∈ Z.
Sei 1 ≤ x < ' (p2). Dann ist bx ≡ hx(mod p2) und somit bx �≡ 1(mod p2)

nach (∗). Somit hat b + p2Z die Ordnung ' (p2) in der Einheitengruppe von Z/p2Z.

Da ggT (h, p) = 1 ist, ist auch ggT (b, p) = 1.Also ist ggT (b, n) = 1, da wegen (+)
ggT (r, b) = 1 ist.Mit diesem b gilt nun die Formel für die Carmichaelzahl n

bn−1 ≡ 1(mod n).

Dann ist insbesondere
bn−1 ≡ 1(mod p2).

Also ist ' (p2) ein Teiler von n − 1.Aber p teilt stets ' (p2). Da p ein Teiler von n war,
kann p nicht gleichzeitig auch n − 1 teilen.

DieserWiderspruch zeigt, dass Carmichaelzahlen quadratfrei sind.

Wir zeigen nun, dass, falls p ein Teiler von n ist, stets n − 1 von p − 1 geteilt wird.
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Sei g wie eben. Nach dem Chinesischen Restsatz IV.18 gibt es ein b ∈ Zmit
b ≡ g(mod p)

b ≡ 1(mod
n
p
).

Wie eben folgt ggT (b, n) = 1.Also ist

bn−1 ≡ 1(mod n)

und dann auch
bn−1 ≡ 1(mod p).

Da aber die Ordnung von g und bmodulo p gleich sind, folgt ' (p) = p − 1|n − 1.
Schließlich bleibt noch zu zeigen, dass r, die Anzahl der Primteiler von n, min-

destens 3 ist. Sei dazu n = pq.Wir können p > q annehmen. Es ist, wie wir gerade
gezeigt haben, p − 1 ein Teiler von n − 1. Nun ist

p − 1|(p − 1)(q − 1) − (n − 1) = (p − 1)(q − 1) − (pq − 1) = −(p − 1) − (q − 1).
Dann ist aber p − 1 ein Teiler von q − 1, was p > q widerspricht.

Übungsaufgaben

IV.1 Bestimme alle n ∈ IN , so dass 211 + 28 + 2n = m2 für einm ∈ IN gilt.

IV.2 Seien A und B disjunkte nicht leere Mengen von Primzahlen. Setze

a =
∏
p∈A

p und b =
∏
p∈B

p.

Dann wird a + b von einer Primzahl geteilt, die nicht in A ∪ B liegt. Insbesondere zeigt
dies, dass es unendlich viele Primzahlen gibt. Kann man das gleiche Resultat auch mit
a − b erreichen?

IV.3 Fürm, n ∈ N setze Bm,n = m(n + 1) − (n! + 1) und

f (m, n) =
n − 1
2

(|(B2m,n − 1)| − (B2m,n − 1)) + 2.

Zeige,dass f (m, n) immer eine Primzahl ist,dass jede Primzahl vorkommt und dass jede
Primzahl ungleich 2 genau einmal vorkommt.

IV.4 Ist p eine Primzahl, so ist jeder Primteiler von 2p − 1 größer als p.

IV.5 Sei p > 5 eine Primzahl. Dann ist p4 − 1 durch 240 teilbar.

IV.6 Bestimme für i = 0, 2, 3und4 jeweils das kleinste xi ∈ N,so dass dieGleichung' (n) = xi
genau i Lösungen n hat12.

IV.7 Die Gleichung ' (n2) = k2 ist außer für ' (1) = 1 nicht lösbar.

IV.8 Sei t = ' (52n), n ∈ IN . Zeige, dass 2t+2n in der Dezimaldarstellung mindestens n aufein-
ander folgende Nullen hat.

12Der Fall i = 1 ist offen. Die Vermutung ist, dass ' (n) = x entweder keine oder mindestens zwei
Lösungen hat.
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IV.9 Sei p eine Primzahl, so dass 2p+1 keine Primzahl ist.Dann hat' (x) = 2p keine Lösung x.

IV.10 a) Bestimme die letzten zwei Ziffern von 21000000.

b) Auf welche Ziffer endet die Dezimaldarstellung von 22
n
+ 1, für n > 1 ?

c)Wie lauten die beiden letzten Ziffern der Dezimaldarstellung von 3999 − 2999?

IV.11 a)Welchen Rest hat 4100 bei Division durch 7?

b) Welchen Rest hat 9! bei Division durch 10, und 10! bei Division durch 11, und 11! bei
Division durch 12?

c) Sei n + 1 keine Primzahl.Was ist der Rest von n! bei Division durch n + 1?

IV.12 Bestimme alle x ∈ Z, die das folgende System von simultanen Kongruenzen lösen
x ≡ 7 (mod 8)
x ≡ 2 (mod 9)
x ≡ −1 (mod 5).



V Gruppen

In diesem Kapitel beschäftigen wir unsmit einem zentralen Begriff der Algebra: den
Gruppen. In den danach folgenden zwei Kapiteln werden wir an zwei Beispielen das
Zusammenspiel der Begriffe „Gruppe“ und „Körper“ sehen.Wir setzen Kenntnisse
der Gruppentheorie voraus, wie sie in einer Vorlesung über Lineare Algebra übli-
cherweise vermittelt werden.Weiter sind unsere Gruppen, wenn nicht ausdrücklich
anders gesagt, stets endlich.

Index. Sei G eine Gruppe, U eine Untergruppe. Die Anzahl der Nebenklassen
(siehe Seite 52) gU von U in G wird mit |G:U | bezeichnet und Index von U in G
genannt.

Definition

Im Satz III.2 von Lagrange, hatten wir gesehen, dass |G| = |U ||G:U | ist.
Das Analogon zum Gradsatz ist

1. Kürzungssatz. Seien G eine Gruppe und U eine Untergruppe von G. Ist weiter
V eine Untergruppe von U, so gilt

|G:V | = |G:U ||U :V |.

Satz V.1

Beweis. Es ist |G:V | = |G|
|V | , |G:U | = |G|

|U | und |U :V | = |U |
|V | nach Satz III.2.

Wir wollen nun nicht nur Elemente, sondern auch Teilmengen in einer Gruppe
multiplizieren. Dazu definieren wir:

Multiplikation. Seien A,B ⊆ G. Setze

AB = {ab|a ∈ A, b ∈ B}.
Definition

Die Frage ist, ob AB eine Untergruppe von G ist. Dies ist im Allgemeinen nicht so.
Selbst wennA und BUntergruppen von G sind,mussAB keine Untergruppe sein. Sei
dazu G die Menge der bijektiven Abbildungen von {1, 2, 3}. Sei

f : 1 → 1, 2 → 3, 3 → 2

g : 1 → 2, 2 → 1, 3 → 3

 Elementare Algebra und Zahlentheorie
© Springer Basel AG 2012
G. Stroth,



78 V Gruppen

und A = {id, f }, B = {id, g}. Dann sind A und B Untergruppen von G. Es ist
AB = {id, fg, f , g}.

Dabei ist

fg : 1 → 3, 3 → 2, 2 → 1.

gf = (fg)−1: 1 → 2, 2 → 3, 3 → 1, aber (fg)−1 �∈ AB.

Also ist AB keine Untergruppe von G.

Der nächste Satz gibt uns ein Kriterium,wann genau AB eine Untergruppe ist.

Sind A,B Untergruppen von G, so ist AB genau dann eine Untergruppe von G,
wenn AB = BA ist.

Lemma V.2

Beweis. Da 1 · 1 ∈ AB ist, ist AB �= ∅. Sei AB = BA.Weiter sei a ∈ A und b ∈ B, also
ab ∈ AB.Wir haben

(ab)−1 = b−1a−1 ∈ BA = AB.

Also ist AB gegen Inversenbildung abgeschlossen.

Wir zeigen nun,dass AB auch gegen Multiplikation abgeschlossen ist. Seien dazu
a1b1 ∈ AB und a2b2 ∈ AB. Dann ist a1b1a2b2 = a1(b1a2)b2. Da BA = AB ist, ist
b1a2 = a3b3 mit geeigneten a3 ∈ A, b3 ∈ B.

Das liefert
a1b1a2b2 = (a1a3)(b3b2) ∈ AB.

Somit ist AB gegen Multiplikation abgeschlossen und dann eine Untergruppe.

Für die andere Richtung sei AB eine Untergruppe von G. Wir wählen ab ∈ AB
beliebig. Da AB eine Gruppe ist, ist (ab)−1 ∈ AB. Damit gilt b−1a−1 = a1b1, mit
geeigneten a1 ∈ A, b1 ∈ B, also ab = (a1b1)−1 = b−11 a−11 ∈ BA. Damit ist AB ⊆ BA.

Sei nun b ∈ B, a ∈ A. Dann sind

b = 1 · b ∈ AB und a = a · 1 ∈ AB.

Da AB nachVoraussetzung eine Untergruppe ist, ist auch

ba = (1 · b)(a · 1) ∈ AB.

Also ist BA ⊆ AB.

Auch wenn AB keine Untergruppe ist, können wir dennoch die Anzahl der Ele-
mente in AB bestimmen, was häufig sehr nützlich ist.

Seien A,B Untergruppen von G. Dann gilt

|AB| = |A||B|
|A ∩ B| .

Lemma V.3
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Beweis. Sei ⋃̇
r∈R

r(A ∩ B) = A

die Nebenklassenzerlegung nach den Nebenklassen von A ∩ B in A.Also RB ⊆ AB.

Sei x = ab ∈ AB, a ∈ A, b ∈ B, ein beliebiges Element. Es gibt ein r ∈ R mit
a ∈ r(A ∩ B). Damit ist a = ry, y ∈ A ∩ B ≤ B. Insgesamt haben wir

x = ab = r(yb) ∈ rB.

Das liefert
AB =

⋃
r∈R

rB.

Wir wollen zeigen, dass dies eine disjunkte Zerlegung ist. Seien dazu r1, r2 ∈ R und
r1B ∩ r2B �= ∅. Dann ist

r1b1 = r2b2 für geeignete b1, b2 ∈ B.

Also ist
r−12 r1 = b2b−11 ∈ A ∩ B.

Das liefert
r1(A ∩ B) = r2(A ∩ B)

und dann
r1 = r2,

da die ri in einem Nebenklassenvertretersystem von A ∩ B in A sind. Also ist die
Zerlegung disjunkt.

Da die Multiplikation mit Gruppenelementen eine bijektive Abbildung ist, ist
|rB| = |B|. Damit erhalten wir

|AB| =
∑
r∈R

|rB| = |R||B| = |A:A ∩ B||B| =
(3.2)

|A||B|
|A ∩ B| .

Wie in der Theorie derVektorräume könnenwir auch bei Gruppen Faktorstrukturen
einführen.

Normalteiler, Faktorgruppe. Sei G eine Gruppe und N ≤ G.

a) Gilt für alle g ∈ G stets gN = Ng , so nennen wir N einen Normalteiler
von G.Wir schreiben dann N � G.

b) Sei N ein Normalteiler von G. Setze G/N = {gN |g ∈ G}. Wir definieren
auf G/N eine Verknüpfung ◦ durch

(g1N) ◦ (g2N) = (g1N)(g2N) = (g1g2)N .

Wir nennen G/N die Faktorgruppe von G nach N .

Definition
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In der Tat ist G/N eine Gruppe, wie man leicht nachrechnet. Das einzige Be-
merkenswerte ist, dass die Verknüpfung wohldefiniert ist. Es ist mit der eingangs
definierten Multiplikation von Mengen

g1Ng2N = {g1n1g2n2|n1, n2 ∈ N}.

Da N � G ist, ist n1g2 = g2ñ1 mit geeignetem ñ1 ∈ N .Also ist

g1Ng2N = {g1g2ñ1n2|ñ1, n2 ∈ N} = (g1g2)N .

Dies zeigt auch, dass die Eigenschaft, Normalteiler zu sein, notwendig ist, damit
die Menge {gN |g ∈ G} mit der Multiplikation von Mengen eine Gruppe ist. Wir
können auf diese Weise nicht eine Faktorgruppe für beliebige Untergruppen N de-
finieren. Dies wird keine Gruppe sein. Bei Vektorräumen werden in der Linearen
Algebra für beliebige Unterräume Faktorräume definiert.Dass dies möglich ist, liegt
daran,dass die additive Gruppe einesVektorraumes abelsch ist, also jede Untergrup-
pe ein Normalteiler ist.

Sei G eine Gruppe, N � G. Dann ist

|G/N | = |G:N |
Satz V.4

Beweis. Dies folgt aus der Definition von G/N .

Die Menge der Normalteiler verhält sich besser als die Menge der Untergruppen.
Sie ist nicht nur gegen Durchschnittsbildung, sondern auch gegen Multiplikation
abgeschlossen, wie der nächste Satz zeigt:

Sei G eine Gruppe. Dann gilt:

a) Sind Ni � G, i ∈ I, so ist
⋂
i∈I

Ni � G.

b) Ist N�G und U ≤ G, so ist N ∩U�U und NU ist eine Untergruppe von G.

c) Sind N1,N2 � G, so ist N1N2 � G.

Satz V.5

Beweis.
a) Sei n ∈⋂

i∈I
Ni, g ∈ G. Dann haben wir

g−1ng ∈ Ni, für alle i.
Dies liefert

g−1ng ∈
⋂
i∈I

Ni,

also (⋂
i∈I

Ni

)
g = g

(⋂
i∈I

Ni

)
.

Damit ist
⋂
i∈I

Ni ein Normalteiler.
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b) Sei u ∈ U . Wir zeigen u(U ∩ N) = (U ∩ N)u. Sei dazu n ∈ U ∩ N . Dann
ist un = n′u mit geeignetem n′ ∈ N . Nun ist n′ = unu−1 ∈ U ∩ N , d.h.
u(U ∩ N) = (U ∩ N)u.Also ist U ∩ N � U .

Da uN = Nu für alle u ∈ U ist, ist UN = NU . Nach Lemma V.2 ist damit UN
eine Untergruppe von G.

c) Nach b) ist N1N2 eine Untergruppe von G. Sei g ∈ G. Dann ist

g(N1N2) = (N1g)N2 = (N1N2)g,

also ist N1N2 ein Normalteiler.

Der nächste Satz ist fundamental für die Konstruktion von Normalteilern.

Seien G,H Gruppen und f :G → H ein Homomorphismus. Dann ist

ker f : = {x|x ∈ G, f (x) = 1}
ein Normalteiler von G.

Satz V.6

Beweis. Da f (1) = 1 ist, ist ker f �= ∅. Sind a, b ∈ ker f , so ist
f (ab−1) = f (a)f (b−1) = f (a)f (b)−1 = 1.

Also ist ab−1 ∈ ker f und damit ist ker f eine Untergruppe vonG. Seien nun x ∈ ker f
und g ∈ G. Dann ist

f (g−1xg) = f (g−1)f (x)f (g) = f (g−1)f (g) = f (g−1g) = 1.

Das liefert g−1xg ∈ ker f und somit ist ker f � G.

Seien G,H Gruppen, f :G → H ein Homomorphismus. Dann ist f genau dann
ein Monomorphismus, wenn ker f = {1} ist.

Lemma V.7

Beweis. Ist f ein Monomorphismus, so hat 1 ∈ H nur 1 ∈ G als Urbild, also ist
ker f = {1}.

Sei umgekehrt ker f = {1}. Seien a, b ∈ Gmit

f (a) = f (b).

Dann ist f (ab−1) = f (a)f (b−1) = f (a)f (b)−1 = 1, also ab−1 ∈ ker f und damit
ab−1 = 1, d.h.

a = b.

Genau wie bei Ringen haben wir auch bei Gruppen einen Homomorphiesatz, auf
dessen Beweis wir hier aber verzichten wollen.

Homomorphiesatz. Seien G,H Gruppen und f :G → H ein Homomorphismus.
Dann ist

Bild f ∼= G/ker f .

Satz V.8
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Wir wollen jetzt zwei schöne Anwendungen des Homomorphiesatzes beweisen.

a) Seien G eine Gruppe, U eine Untergruppe von G und N ein Normalteiler
von G. Dann ist

U/U ∩ N ∼= UN/N .

b) (2. Kürzungssatz) Seien G eine Gruppe und M und N Normalteiler von G
mit N ≤ M. Dann ist

(G/N)
/
(M/N) ∼= G/M.

Satz V.9

Beweis. Die Idee in beiden Teilen ist gleich. Wir definieren eine Abbildung von U
bzw.G/N auf die Gruppe auf der rechten Seite von∼= mit KernU ∩N bzw.M/N .Die
Behauptung folgt dann mit dem Homomorphiesatz.

a)Wir definieren zunächst durch f (u) = uN für u ∈ U . eine Abbildung

f :U → NU/N .

Da uNvN = uvN für alle u, v ∈ U ist, ist f ein Homomorphismus.Weiter ist

Bild f = NU/N .

Ist u ∈ ker f , so gilt
N = f (u) = uN .

Also ist u ∈ N und dann ker f ≤ U ∩ N . Sei nun umgekehrt u ∈ U ∩ N . Dann
erhalten wir f (u) = uN = N . Zusammen ergibt dies

ker f = U ∩ N .

Nun folgt die Behauptung mit dem Homomorphiesatz.

b) Entsprechend wie eben definieren wir durch f (gN) = gM für g ∈ G eine
Abbildung

f :G/N → G/M.

Da gN das Element g nicht eindeutig bestimmt, müssen wir zeigen, dass f eine
Abbildung ist.

Sei dazu g1N = g2N . Dann ist g−11 g2 ∈ N ⊆ M, also ist dann g1M = g2M, und somit
erhalten wir

f (g1N) = g1M = g2M = f (g2N).

Damit ist gezeigt, dass f (gN) von der Auswahl von g unabhängig ist.Dass f ein
Homomorphismus mit Bild f = G/M ist, ist per Definition von f klar.

Es bleibt zu zeigen, dass ker f = M/N ist.
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Sei zuerst gN ∈ ker f .Wir erhalten

M = f (gN) = gM.

Das liefert g ∈ M, also gN ∈ M/N .

Sei jetzt umgekehrtmN ∈ M/N,m ∈ M. Dann erhalten wir

f (mN) = mM = M.

Somit ist mN ∈ ker f und dann ker f = M/N . Nun folgt die Behauptung mit
dem Homomorphiesatz.

Bemerkung.

a) Sei U eine Untergruppe von G mit |G:U | = 2. Dann ist G = U ∪ Ug für
g ∈ G\U .

Es ist aber auch G = U ∪ gU , da |G| − |U | = |U | ist, also |gU | = |G| − |U | und
gU ∩ U = ∅.

Somit ist Ug = gU für alle g ∈ G. Das heißt U � G.

b) Wir werden jetzt sehen, dass der Normalteilerbegriff nicht transitiv ist. Dies
bedeutet, dass aus N1 � N2 � G, nicht notwendig folgt, dass N1 � G ist!

Dazu betrachten wir ein konkretes Beispiel.Wir bestimmen zunächst die Gruppe G
der Symmetrien des Quadrates.

1

4 3

2

Drehung d: 1 → 2 → 3 → 4 → 1
d2: 1 → 3 → 1, 2 → 4 → 2
d3: 1 → 4 → 3 → 2 → 1

Spiegelung s: 1 → 1, 3 → 3, 2 → 4 → 2
ds: 1 → 2 → 1, 3 → 4 → 3
d2s: 1 → 3 → 1, 2 → 2, 4 → 4
d3s: 1 → 4 → 1, 2 → 3 → 2
id: 1 → 1, 2 → 2, 3 → 3, 4 → 4

Dies sind alle Symmetrien.Warum?

Es ist U = {id, s, d2, sd2} eine Untergruppe von G. Da |G:U | = 2 ist, ist U � G nach
a). Da U abelsch ist, ist V = {id, s} � U . Aber dV = {d, ds} �= Vd = {d, sd}, da
sd = d3s �= ds ist. Somit ist V nicht normal in G.
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Wie in der Linearen Algebra fürVektorräume definieren wir nun auch für Grup-
pen G das Erzeugnis einer Teilmenge von G.

Erzeugnis. Sei G eine Gruppe undM ⊆ G. Setze

〈M〉 =
⋂

M ⊆ U
U ≤ G

U .

Wir nennen 〈M〉 das Erzeugnis vonM. Es ist die kleinste Untergruppe von G, die
M enthält.

Definition

Man sieht leicht

〈M〉 = {1, x1 · · · xn|xi ∈ M oder x−1i ∈ M, n ∈ N}.

Zyklisch. Eine Gruppe G nennen wir zyklisch, falls es ein g ∈ G mit G = 〈g〉
gibt. Das Element g nennen wir dann auch ein erzeugendes Element.

Definition

Wir hatten in Kapitel III für endliches G diese Definition bereits gegeben (siehe
Lemma III.5).Wir sind jetzt in der Lage, alle zyklischen Gruppen anzugeben, auch
die unendlichen.

Sei G eine zyklische Gruppe, so gilt:

a) Ist |G| = ∞, so ist G ∼= Z.
b) Ist |G| = n < ∞, so ist G ∼= Z/nZ.

Satz V.10

Beweis. Da G zyklisch ist, ist G = 〈g〉 = {gi|i ∈ Z}. Sei
f :Z → Gmit f (i) = gi.

Offenbar ist f ein Epimorphismus. Sei 0 �= i ∈ ker f . Dann erhalten wir
1 = f (i) = gi,

also ist o(g)|i, d.h.,G ist endlich. Ist also G nicht endlich, so ist f ein Isomorphismus.
Das ist a).

Sei nun |G| = n.Nach Lemma III.3 ist o(g) = n|i.Also ist i ∈ nZ. Sei nun i ∈ nZ,
d.h. i = nj. Dann ist f (i) = gnj = 1.Also ist ker f = nZ. Die Behauptung b) folgt nun
mit dem Homomorphiesatz.

Dieser Satz ist typisch für weite Bereiche der Gruppentheorie. Wir haben eine
Eigenschaft, hier „zyklisch“, und wir klassifizieren alle Gruppen, die diese Eigen-
schaft haben, in Form einer Aufzählung. Danach können wir Fragen über zyklische
Gruppen beantworten, indem wir diese in den Beispielen beantworten.



V Gruppen 85

Wirwollen jetzt noch eine besonderswichtigeGruppe,die symmetrischeGruppe,
eingehend studieren.

Symmetrische Gruppe. Sei § = {1, . . . , n} und £n die Menge aller bijektiven
Abbildungen von §. Die Menge £n nennen wir die symmetrische Gruppe auf §
und ihre Elemente Permutationen. Für die Abbildung g ∈ £n führen wir die
folgende Schreibweise ein

g =
(

i1 · · · · · · in
g(i1) · · · · · · g(in)

)
, {i1, · · · , in} = §.

Definition

|£n| = n! Satz V.11

Beweis. Sei g ∈ £n. Offenbar kann g(1) jede der Zahlen 1, . . . , n sein, also gibt es
für g(1) genau n Möglichkeiten. Da g injektiv ist, ist g(1) �= g(2). Also kann g(2)
jedenWert außer g(1) annehmen. Somit gibt es für g(2) genau n − 1 Möglichkeiten.
Allgemein liefert nun die Injektivität, dass

g(i) ∈ § \ {g(1), . . . , g(i − 1)}
ist. Damit gibt es n − (i − 1) viele Möglichkeiten für g(i). Somit gibt es zusammen∏n

i=1 i = n! viele Möglichkeiten für g .

Zyklus. Kann man die Zahlen 1, . . . , n so als m1,m2, . . .mk, . . .mn anordnen,
dass die Permutation z die Form

z =
(

m1 m2 · · · mk−1 mk mk+1 · · · mn

m2 m3 · · · mk m1 mk+1 · · · mn

)
hat, so nennen wir z einen k-Zyklus.Wir schreiben dafür vereinfachend

z = (m1,m2, . . . ,mk).

Ein 2-Zyklus heißt auch Transposition.

Definition

Zyklenzerlegung. Sei g ∈ £n.

a) Wir können {1, . . . , n} als disjunkte Vereinigung von Mengen M1, . . . ,Mt

schreiben, so dass bei geeigneter Anordnung der Elemente mi1 , . . . ,miki
in Mi das Element g als Produkt der Zyklen (mi1, . . . ,miki

), i = 1, . . . , t,
geschrieben werden kann.

b) Ist n ≥ 2, so ist g ein Produkt von Transpositionen.

Satz V.12

Beweis. Wir führen eine Relation ∼ auf {1, . . . , n} ein:

i ∼ j genau dann, falls es ein k ∈ N ∪ {0} gibt, so dass gk(i) = j ist.
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∼ ist eine Äquivalenzrelation: Klar ist i ∼ i.Weiter ist auch klar, dass aus i ∼ j und
j ∼ k, sofort i ∼ k folgt.

Sei nun i ∼ j.Wir wollen j ∼ i zeigen. Es ist dann gk(i) = j für ein k ∈ N ∪ {0}.
Dann gilt natürlich j = g−k(i).Allerdings ist für k �= 0 dann −k �∈ N∪{0}.Um diesem
Problem aus dem Weg zu gehen, wenden wir einen kleinen Trick an. Sei m = o(g)
und s ∈ Nmit sm > k. Dann ist sm − k ∈ N und gsm−k(j) = g−k(j) = i.Also ist j ∼ i.

SeienM1, . . . ,Mt die Äquivalenzklassen von ∼.Wähle mi1 ∈ Mi. Dann istMi =
{gs(mi1 )|s ∈ N ∪ {0}}.

Die Behauptung folgt jetzt mit g =
∏t

i=1 g|Mi .

b) Es genügt nach a), die Behauptung für einen Zykel (m1, . . . ,mk) zu zeigen.
Ist k = 1, so ist (m1) = (m1,m2)(m1,m2).
Ist k > 1, so ist

(m1, . . . ,mk) = (m1,mk)(m1,mk−1) · · · (m1,m2).

Die letzte Zeile des Beweises bedarf noch eines Kommentars. Ein Produkt von
Permutationen lesen wir wie eine Hintereinanderausführung von Abbildungen, also
von rechts nach links, während wir einen Zyklus von links nach rechts lesen. Dies
ist nicht in allen Büchern so. Es beeinflußt zwar nicht die qualitativen, aber die
quantitativen Resultate.

DieAnzahl der Zyklen in der Zyklenzerlegung a) ist eindeutig durch g bestimmt,
es ist ja die Anzahl der Äquivalenzklassen.Das Gleiche gilt für die Zyklen selbst. Die
Zyklenzerlegung ist also bis auf die Reihenfolge eindeutig.Anders sieht das mit den
Transpositionen aus. Die Anzahl der Transpositionen in b) ist nicht eindeutig.

(1, 3) = (1, 2)(1, 3)(2, 3).

Den nachfolgenden schönen Beweis findet man in Neumann et al. (1994, [21]).

Seien h1, . . . , hr ∈ £n Transpositionen und g ∈ £n.

a) Hat h1h2 · · · hr in der Zyklenzerlegung genau c Zyklen (Zyklen der Länge 1
zählen mit), so ist

r ≡ n − c (mod 2).

b) Setze
sgn (g) = (−1)x(g),

wobei x(g) die Anzahl der Transpositionen in einer Darstellung von g als
Produkt von Transpositionen ist. Dann ist

sgn :£n → {1,−1}

ein Epimorphismus. Dabei ist {1,−1} mit der Multiplikation reeller Zahlen
eine Gruppe.

Satz V.13
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Beweis.

a) Wir beweisen die Behauptung durch Induktion nach r. Ist r = 0, so ist die
Behauptung offenbar richtig, da das Produkt von Null-Transpositionen die Identität
ist.Also gilt c = n.

Sei r > 0. Setze f = h1h2 · · · hr und g = h2 · · · hr . Sei
g = (˛1, . . . ,˛b1 )(ˇ1, · · · , ˇb1 ) . . . (�1, . . . ,�bd )

die Zyklenzerlegung von g , d.h., g hat genau d Zyklen. Per Induktion ist

r − 1 ≡ n − d (mod 2).

Die Zyklen können in jeder Reihenfolge geschrieben werden und jeder Zyklus kann
an jeder Stelle starten. Also können wir h1 = (˛1,˛s+1) annehmen, falls beide Ein-
träge im gleichen Zykel liegen, und anderenfalls h1 = (˛1, ˇ1).

Im ersten Fall ist

f = h1g = (˛1, . . . ,˛s)(˛s+1, . . . ,˛b1 )(ˇ1, . . . , ˇb2 ) . . .

also c = d + 1 und dann r ≡ n − d − 1 ≡ n − c (mod 2).

Im zweiten Fall ist

f = h1g = (˛1, . . . ,˛b1 , ˇ1, . . . , ˇb2 )(�1, . . . , �b3 ) . . .

also c = d − 1 und dann r ≡ n − d + 1 ≡ n − c (mod 2).

b) Sei f ∈ £n. Ist f das Produkt von r und auch von s vielen Transpositionen, so
ist nach a)

r ≡ n − c ≡ s (mod 2).

Also ist x(f ) modulo 2 eindeutig bestimmt. Dies bedeutet, sgn ist eine Abbildung.
Da sgn (1, 2) = −1 ist, ist sgn surjektiv.

Seien g, h ∈ £n. Dann kann gh als Produkt von x(g) + x(h) vielen Transpositionen
geschrieben werden, indem man die entsprechenden Darstellungen einfach anein-
anderhängt.Also ist

sgn gh = (−1)x(g)+x(h) = (−1)x(g)(−1)x(h) = sgn g sgn h.

Signum. Die Abbildung aus Satz V.13 b) wird Signumsabbildung genannt. Eine
Permutation g mit sgn g = 1 nennen wir eine gerade Permutation, eine mit
sgn g = −1 ungerade. Für den Kern der Signumsabbildung schreiben wir An

und nennen ihn die alternierende Gruppe.

Definition

Das nächste Lemma liefert eine einfacheMethode,umdas Signumeiner Permutation
zu berechnen.

Ist g = z1, · · · zt ∈ £n, wobei die zi Zyklen der Länge ki sind, so ist

sgn g =
t∏

i=1

(−1)ki−1.

Lemma V.14
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Beweis. Wegen SatzV.13 genügt es,die Behauptung für einen Zyklus g der Länge k zu
zeigen. Im Beweis von Satz V.12 b) haben wir gesehen, dass ein solcher ein Produkt
von k − 1 Transpositionen ist. Da die Signumsabbildung ein Homomorphismus ist
und jede Transposition das Signum −1 hat, ist

sgn g = (−1)k−1.

Die Berechnung des Signums ist also ganz einfach. Ist die Anzahl der Zyklen
gerader Länge ungerade, so ist das Signum gleich –1, sonst gleich +1.

Bemerkung.

a) Nach dem Homomorphiesatz V.8 ist £n/An
∼= Bild sgn .Also ist |An| = n!

2 .

b) Ist n �= 1, 2, 4, so sind {1},An,£n die einzigen Normalteiler von £n. Siehe dazu
auch Satz V.21 und Satz V.23.

a) Sei § eine Menge und G eine Gruppe von bijektiven Abbildungen von §.
Für a ∈ § setze

Ga = {g|g ∈ G, g(a) = a}.
Dann ist Ga eine Gruppe und |G:Ga| = |{g(a)|g ∈ G}|. Wir nennen Ga den
Stabilisator von a in G.

b) Ist G eine Gruppe und U eine Untergruppe von G, so setze

NG(U) = {g|g ∈ G, gUg−1 = U}
(Normalisator von U in G). Es ist NG(U) eine Untergruppe von G. Für den
Index erhalten wir

|G:NG(U)| = |{gUg−1|g ∈ G}|.

Lemma V.15

Beweis.

a) Sei 1 das Einselement von G. Dann ist 1 ∈ Ga. Also ist Ga �= ∅. Seien nun
g, h ∈ Ga. Dann ist

gh(a) = g(a) = a.

Damit ist gh ∈ Ga.Weiter ist

a = g−1g(a) = g−1(a)

und dann g−1 ∈ Ga. Somit ist Ga eine Untergruppe von G. Damit ist die erste
Behauptung bewiesen.

ZumBeweis der zweiten Behauptung definieren wir eineAbbildung � von derMenge
der Nebenklassen von Ga in G in die Menge {g(a)|g ∈ G} durch

�(gGa) = g(a), g ∈ G.

Ist gGa = hGa, so ist h = gx mit x ∈ Ga. Also ist h(a) = g(a). Somit ist � eine
Abbildung.
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Wir wollen zeigen, dass � injektiv ist. Sei dazu g(a) = h(a). Dann erhalten wir
h−1g(a) = a, was h−1g ∈ Ga liefert. Insbesondere haben wir gGa = hGa. Somit ist �
injektiv und damit

|G:Ga| = |Bild � | = |{g(a)|g ∈ G}|.

b)Wir betrachten die Menge § = {gUg−1|g ∈ G}. Für jedes h ∈ G definieren wir
eine Operation auf § durch

h(gU−1g) = hgUg−1h−1 = (hg)U(hg)−1.

Dadurch wird G zu einer Gruppe bijektiver Abbildungen von §. Indem wir a) auf
das Element U ∈ § anwenden, erhalten wir

GU = {g | g(U) = U} = {g | gUg−1 = U} = NG(U).

Damit folgen die Behauptungen mit a).

Der folgende Satz ist für die endliche Gruppentheorie sehr wichtig und wird
dann im nächsten Satz, dem fundamentalen Satz der endlichen Gruppentheorie
schlechthin, fortgesetzt.

Cauchy1. Sei G eine Gruppe und sei p eine Primzahl mit p||G|. Dann besitzt G
ein Element x mit o(x) = p.

Satz V.16

Beweis. James McKay [18]. Sei

E = {(x1, . . . , xp)|xi ∈ G, x1 · · · xp = 1 und (x1, . . . , xp) �= (1, . . . , , 1)}.

Sei weiter 〈g〉 = Z/pZ.Wir definieren eine Operation von g auf E durch

(x1, . . . , xp)g = (x2, . . . , xp, x1).

Dadurch wird 〈g〉 zu einer Gruppe bijektiver Abbildungen auf E. Denn ist x1 · · · xp =
1, so ist x2 · · · xp = x−11 und dann auch x2 · · · xpx1 = 1, also ist (x2, · · · , xp, x1) ∈ E.

Sei a ∈ E.Dann ist 〈g〉a eine Untergruppe von 〈g〉 nach LemmaV.15 a).Nach dem
Satz von Lagrange ist

|〈g〉a| ein Teiler |〈g〉| = p.

Also ist
〈g〉a = 1 oder 〈g〉a = 〈g〉.

Für a ∈ E setze a〈g〉 = {ax | x ∈ 〈g〉}. Nach Lemma V.15b) ist |a〈g〉| = 1 oder p. Es ist
E =

⋃̇
a∈E

a〈g〉. Da |E| = |G|p−1 − 1 ist, ist p � ||E|. Somit gibt es ein a ∈ E mit |a〈g〉| = 1.

1Augustin Louis Cauchy (*21.8.1789 Paris, †23.5 1857 Sceaux) war Ingenieur zur Zeit Napoleons und
Professor in Paris, mit Unterbrechungen, da er keinen Eid auf den König schwören wollte. Fundamentale
Arbeiten zur Algebra, Infinitesimalrechnung und zur mathematischen Physik. Mit ca. 700 Arbeiten ist
seinWerk außergewöhnlich umfangreich.
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Nach LemmaV.15 ist 〈g〉a = 〈g〉. Dann ist aber

a = (x1, . . . , xn) = (x2, . . . , xn, x1),

was
a = (x, . . . , x)

liefert. Da a ∈ E ist, ist xp = 1 und x �= 1.
Wir kommen nun zu dem fundamentalen Satz der endlichen Gruppentheorie.

Sylowsatz2. Sei G eine Gruppe und p eine Primzahl mit |G| = pam, wobei m
nicht durch p geteilt wird. Dann gilt:

a) Es gibt eine Untergruppe U von G mit |U | = pa.

b) Alle Untergruppen U von G mit |U | = pa sind konjugiert (d.h., sind U1,U2
Untergruppen mit |U1| = |U2| = pa, so gibt es ein g ∈ G mit gU1g−1 = U2).

c) Ist V eine Untergruppe von G mit |V | = pb für ein b, so gibt es eine
Untergruppe U mit |U | = pa und V ≤ U .

d) Die Anzahl der UntergruppenU mit |U | = pa ist |G:NG(U)| und kongruent
1 modulo p.

Satz V.17

Beweis. Der Beweis folgt der Darstellung von Aschbacher (1984, Seite 19 [3]).
Sei

P = {U |U ≤ G, |U | = pc für ein c}
undM die Menge der maximalen Elemente in P bezüglich Inklusion.

Es ist 〈1〉 eine p-Gruppe der Ordnung p0.Somit istP �= ∅ und dann auchM �= ∅.
Wir definieren eine Operation von G aufM durch g(U) = gUg−1 für U ∈ M. Diese
Operation hatten wir schon einmal im Beweis von Lemma V.15 b) gesehen. Wir
müssen uns jetzt aber überlegen, obM bezüglich dieser Operation invariant ist. Sei
gUg−1 �∈ M für ein U ∈ M und ein g ∈ G. Dann gibt es eine p–Untergruppe V von
Gmit gUg−1 < V .Dann ist aber auchU < g−1Vg .Da |V | = |g−1Vg| ist,wäre dannU
nicht maximal, was der Wahl U ∈ M widerspricht. Also haben wir eine Operation
aufM definiert.

Seien U,V ∈ M, U �= V . Da beide maximal sind, ist U �= U ∩ V �= V . Wäre
V ≤ NG(U), so wäre nach Satz V.5 UV eine Untergruppe von G. Nach LemmaV.3 ist

|UV | = |U ||V |
|U ∩ V |

eine p–Potenz, was der Maximalität von U widerspricht.Also ist V � NG(U).

2Peter Ludwig Sylow (*12.12.1832 Christiana, †7.9.1918 Oslo) wirkte als Lehrer bis 1898, erhielt 1898
eine Professur an der Universität Christiana.Wichtigstes Arbeitsgebiet war die Gruppentheorie, daneben
auch die Theorie der elliptischen Funktionen.
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Sei N eine unter G invariante Teilmenge vonM. Ist also H ∈ N , g ∈ G, so ist
gHg−1 ∈ N .Wir halten ein H ∈ N fest. Dann operiert H aufM \ N . Nun kann H
keinen Fixpunkt aufM \ N haben.Wäre U ein solcher, so wäre hUh−1 = U für alle
h ∈ H . Dann wäre aber H ≤ NG(U). Da H �= U ist, geht dies nicht, wie wir vorhin
gesehen haben.Nach LemmaV.15 b) sind die Längen der Bahnen von H aufM \ N
Teiler der Ordnung von H . Da H eine p–Gruppe ist, sind sie also Potenzen von p. Da
alle nicht trivial sind, ist

p ein Teiler von |M \ N |.

Sei nun H1 ∈ M \N . Dann folgt wie eben, dass H1 der einzige Fixpunkt von H1
aufM \ N ist.Also ist wieder

p ein Teiler von |M \ N | − 1.

Das ist aber nicht möglich.

Somit sehen wir, dass M die einzige G-invariante Teilmenge von M ist. Das
heißt, alle Elemente in M sind konjugiert und haben somit die gleiche Ordnung.
Weiter ist U der einzige Fixpunkt für U ∈ M, d.h. |M| ≡ 1(mod p).

Nach Lemma V.15 ist |M| = |G:NG(U)|. Da |M| nicht durch p geteilt wird, ist
pa||NG(U)|.Da U eine maximale p-Untergruppe war, folgt mit dem Satz von Cauchy,
dass |NG(U)/U | nicht von p geteilt wird.Also ist |U | = pa.

Sylowgruppen. Die Gruppen U , deren Existenz wir in Satz V.17 nachgewiesen
haben, nennen wir Sylow p-Untergruppen von G.

Definition

Wir wollen hier einige typische Anwendungen des Sylowsatzes aufzeigen.

a) Sei |G| = 20 = 4 · 5. Sei S eine Sylow 5-Untergruppe von G. Dann ist
|G:NG(S)| ein Teiler von |G: S| = 4.

Da nach dem Sylowsatz |G:NG(S)| ≡ 1(mod 5) ist, folgt

S � G.

b) Sei |G| = 4 ·5 ·19 = 380. Für p ∈ {2, 5, 19} seiNp eine Sylow p-Untergruppe
von G. Es ist

|G:NG(N19)| ein Teiler von |G:N19| = 20.
MitdemSylowsatz erhaltenwir |G:NG(N19)| = 1 oder 20.Sei |G:NG(N19)| =
20. Dann ist wegen Ng

19 ∩ N19 = 1 für N19 �= Ng
19, g ∈ G,

|
⋃
g∈G

gN19g−1| = 20 · 18 + 1 = 361.

Es ist weiter

|G:NG(N5)| ein Teiler von |G:N5| = 4 · 19 = 76.

Beispiel



92 V Gruppen

Mit dem Sylowsatz folgt |G:NG(N5)| = 1 oder 76. Sei |G:NG(N5)| = 76, so
erhalten wir mit dem gleichen Argument wie für N19

|
⋃
g∈G

gN5g−1| = 76 · 4 + 1 = 305.

Somit gibt es in G genau 360 Elemente der Ordnung 19 und 304 der Ord-
nung 5, was zusammen 664 Elemente ergibt.Aber |G| = 380.
Also ist N5 � G. Sei ! ∈ G, o(!) = 19. Da |N5 \ {1}| = 4 ist, folgt mit
LemmaV.15 a), dass! nur Bahnen der Länge 1 auf den Elementen vonN5
induziert, also!x = x! für alle x ∈ N5. Somit ist N5 ≤ NG(〈!〉).Dann ist
aber |G:NG(N19)| ≤ 4, einWiderspruch zur Annahme |G:NG(N19)| = 20.
Also haben wir N19 � G gezeigt. Nach Lemma V.15 a) hat N5 Bahnen der
Länge 1 oder 5 auf N19 \ {1}.Also gibt es ein 1 �= ! ∈ N19, das unter N5 fest
bleibt, d.h., x! = !x für alle x ∈ N5 oder ! ∈ NG(N5). Da N19 zyklisch
von der Ordnung 19 ist, ist 〈!〉 = N19 und somit folgt N19 ≤ NG(N5) und
dann auch N5 � G.

c) Sei |G| = 36 = 22 ·32. Sei S eine Sylow 3-Untergruppe vonG.Angenommen
S � G. Dann ist |G:NG(S)| = 4 nach dem Sylowsatz. Es induziert G eine
Gruppe von bijektiven Abbildungen auf § = {gSg−1 | g ∈ G}. Da |§| = 4
ist,gibt es einenHomomorphismus f vonG in£4.Dieser ist nicht trivial,da
nach dem Sylowsatz G nicht trivial auf § operiert.Da |G| > 24 = £4 ist, ist
ker f �= 1.Also gibt es in jedem Fall einen Normalteiler 1 �= N�G, N �= G.

Sei G eine p-Gruppe (|G| = pa), G �= 1. Dann gilt

a) Z(G): = {h|h ∈ G, gh = hg für alle g ∈ G} �= 1.
b) Es gibt einen Normalteiler G1 von G mit |G:G1| = p.

Satz V.18

Beweis.

a) Wir betrachten die Gruppe G als Menge M = {x|x ∈ G}. Hierauf definieren
wir eine Äquivalenzrelation ∼ durch

x ∼ y, falls y = g−1xg mit geeignetem g ∈ G gilt.

SeienM1, . . . ,Mr die Äquivalenzklassen. Dann haben wir

|G| =
r∑

i=1

|Mi|.

Ist mi ∈ Mi, so ist Gmi = {g|g ∈ G, g−1mig = mi}. Es ist |Mi| = |G:Gmi | nach
LemmaV.15 eine p–Potenz.

Wir wählen die Notation so, dass M1 = {1} die Äquivalenzklasse des neutralen
Elementes ist. Dann gilt

|G| = 1 +
r∑

i=2

|Mi|.
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Da |G| eine p-Potenz ist, muss es ein i ≥ 2 geben, so dass |Mi| = 1 ist. Also ist
Mi = {mi},mi �= 1, und g−1mig = mi für alle g ∈ G, d.h.mi ∈ Z(G).

b) Nach a) ist Z(G) �= 1.Wir wählen N ≤ Z(G), |N | = p. Dann ist N � G. Nun
liefert eine Induktion angewandt auf G/N die Behauptung.

Auflösbar. Eine GruppeG heißt auflösbar, falls es eine KetteNi, i = 1, . . . , k+1,
von Untergruppen von G so gibt, dass

1 = Nk+1 � · · ·� N2 � N1 = G und Ni/Ni+1 für alle i = 1, . . . , k abelsch ist.

Definition

Normalteiler in endlichen Gruppen ermöglichen Induktionsbeweise, wie wir es be-
reits im Beweis von V.18b) gesehen haben. Sei N ein Normalteiler. Ist 1 �= N und
N �= G, so sind beide |N | und |G/N | kleiner als |G|. Haben wir also eine Ausage, die
wir beweisen wollen,und übertragen sich dieVoraussetzungen auf Normalteiler und
Faktorgruppen, so gilt unsereAussage per Induktion inN undG/N .Wir müssen das
dann nur noch zusammensetzen, um die Gültigkeit in G zu bekommen. Nicht jede
Eigenschaft wird dies so einfach zulassen. Die Auflösbarkeit ist in dieser Hinsicht
eine sehr angenehme Eigenschaft, wie der folgende Satz zeigt.

Sei G eine Gruppe.

a) Ist G auflösbar, so auch die Faktorgruppe G/N für jeden Normalteiler N
von G.

b) Ist G auflösbar, so auch jede Untergruppe U von G.

c) Ist N ein auflösbarer Normalteiler von G, so dass auch die Faktorgruppe
G/N auflösbar ist, so ist G auflösbar.

Satz V.19

Beweis.

a) Da G auflösbar ist, gibt es eine Kette 1 = Nk+1�Nk� . . .�N1 = GmitNi/Ni+1

abelsch. Wähle n1N, n2N ∈ NiN/N . Da Ni/Ni+1 abelsch ist, ist n1n2 = n2n1ñ mit
geeignetem ñ ∈ Ni+1. Dann ist (n1N)(n2N) = (n1n2)N = n2n1ñN mit ñ ∈ Ni+1.
Somit ist

(NiN/N)/(Ni+1N/N) abelsch und

N = Nk+1N/N � NkN/N � . . .N1N/N = G/N .

Also ist G/N auflösbar.

b) Da G auflösbar ist, gibt es wieder eine Kette 1 = Nk+1 � . . . � N1 = G mit
Ni/Ni+1 abelsch. Wir setzen Ui = Ni ∩ U, i = 1, . . . , k + 1. Da nach Satz V.9 a)
Ui/Ui+1 = Ni ∩ U/Ni+1 ∩ U ∼= (Ni ∩ U)Ni+1/Ni+1 ist, folgt für die Kette

1 = Uk+1 � · · ·� U1 = U,

dass Ui/Ui+1 abelsch ist. Somit ist U auflösbar.
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c) Da N und G/N auflösbar sind, gibt es Ketten 1 = Nk+1 � · · · � N1 = N
und 1 = Ms+1/N � · · ·M1/N = G/N . Diese können wir zusammensetzen zu ei-
ner Kette 1 = Nk+1 � · · · � N1 = Ms+1 � · · · � M1 = G. Da nach Satz V.9 b)
(Mi/N)/(Mi+1/N) ∼= Mi/Mi+1 ist,sind alle Faktoren abelsch,d.h.,G ist auflösbar.

Das folgende Lemma werden wir in Kapitel VI benötigen.

Sei 1 �= G eine auflösbare Gruppe. Dann gibt es einen Normalteiler N von G, so
dass |G/N | eine Primzahl ist.

Lemma V.20

Beweis. Da G auflösbar ist, gibt es eine Kette von Untergruppen N1, . . . ,Nk+1 mit
1 = Nk+1 � · · · � N2 � N1 = G und Ni/Ni+1 ist abelsch für i = 1, . . . , k. Da
G �= 1 ist, können wir N2 �= G annehmen. Also ist G/N2 eine nicht triviale abel-
sche Faktorgruppe. Es genügt also, die Behauptung für abelsches G zu beweisen.
Dann ist aber jede Untergruppe von G normal. SeiN �= G eine maximale Untergrup-
pe von G. Dann hat G/N keine echten Untergruppen. Sei p ein Primteiler von |G/N |.
Nach dem Satz von Cauchy gibt es ein Element gN ∈ G/N mit o(gN) = p.Wegen der
Maximalität von N ist 〈gN〉 = G/N , also ist |G/N | = p, die Behauptung.

Es könnte nun sein,dass jede Gruppe auflösbar ist.Dann wäre der Begriff Auflös-
barkeit nicht sonderlich nützlich. Dass dem nicht so ist, werden wir in den nächsten
zwei Sätzen zeigen.

Ist n ≥ 5 und 1 �= N � An, so ist N = An.Satz V.21

Beweis. Wir zeigen zunächst, dass die Behauptung richtig ist, falls N einen 3-Zyklus
enthält. Dazu können wir (1, 2, 3) ∈ N annehmen. Für k > 3 ist dann

(3, 2, k)(1, 2, 3)(3, 2, k)−1 = (1, k, 2) ∈ N .

Also ist auch
(1, k, 2)2 = (1, 2, k) ∈ N .

Es ist
£n = 〈(i, j)|1 ≤ i < j ≤ n〉

nach Satz V.12. Da (i, j) = (1, i)(1, j)(1, i) ist, erhalten wir auch

£n = 〈(1, i)|1 < i ≤ n〉.
Da (1, j)(1, i) = (1, i, j), 1 �= i �= j �= 1, ist, ergibt das

An = 〈(1, i, j)|i, j = 2, . . . , n, i �= j〉.
Da (1, i, j) = (1, 2, j)−1(1, 2, i)(1, 2, j) ist, ist sogar

An = 〈(1, 2, k)|k ≥ 3〉.
Somit ist N = An. Enthält also N einen 3-Zyklus, so ist N = An.
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Wir nehmen nun an, dass N keinen 3-Zyklus enthält. Dies wollen wir zum Wi-
derspruch führen. Sei x = abc . . . ∈ N , a, b, c Zyklus der Zyklenzerlegung. Sei
a = (a1, . . . , am), m ≥ 4. Setze t = (a1, a2, a3). Dann ist t−1xt ∈ N .

Es ist
t−1xt = t−1atbc . . . = z ∈ N .

Nun ist
N � zx−1 = t−1ata−1 = (a1, a3, a4),

der gewünschteWiderspruch.

Also enthält x nur 2-Zyklus und 3-Zyklus in der Zyklenzerlegung.Angenommen,
x enthalte zwei 3-Zyklen. Dann können wir

x = (1, 2, 3)(4, 5, 6)y.

annehmen.

Setze nun t = (2, 3, 4). Dann erhalten wir

N � t−1xtx−1 = (1, 5, 2, 4, 3),

einWiderspruch, da Elemente aus N keine 5-Zyklen enthalten.

Sei nun
x = (1, 2, 3)p, wobei p nur 2-Zyklen enthält.

Dann ist p2 = 1 und somit

x2 = (1, 2, 3)2 = (1, 3, 2) ∈ N,

ein Widerspruch, da wir keine 3-Zyklen in N haben. Somit enthält x nur 2-Zyklen.
Wir können also

x = (1, 2)(3, 4)p, mit p2 = 1

annehmen. Setze jetzt t = (2, 4, 3). Das liefert

N � t−1xtx−1 = (1, 4)(2, 3) = y.

Da n ≥ 5 ist, enthält An das Element u = (1, 4, 5). Dann ist auch

N � u−1yu = (1, 5)(2, 3) = z.

Aber
N � zy = (1, 4, 5)

und wieder haben wir einen Widerspruch dazu, dass N keine 3-Zyklen enthält. Das
beweist den Satz.

Gruppen, die genau zwei Normalteiler haben, nämlich {1} und G, nennen wir
einfach. Nach Satz V.21 ist somit An, n ≥ 5, einfach. Sei SL(n,K) die Gruppe der
linearen Abbildungen eines Vektorraumes der Dimension n über einem endlichen
Körper K mit Determinante 1. Ist dann n > 2 oder |K| > 3 für n = 2, so ist
stets SL(n,K)/Z(SL(n,K)) einfach. Es gibt noch weitere Serien einfacher Gruppen,
die ähnlich gebildet sind. Hinzu kommen noch 26 sogenannte sporadische einfache
Gruppen, die scheinbar kein gemeinsames Bildungsgesetz haben. Die erste davon
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wurde von Emile Mathieu3 1860 gefunden, die letzte von Zvonimir Janko4 1976. Eine
der großen Leistungen der Mathematik des letzten Jahrhunderts war die Klassifi-
kation der endlichen einfachen Gruppen (ein guter Übersichtsartikel ist Solomon,
1995 [28]).

Für n ≥ 5 ist £n nicht auflösbar.Satz V.22

Beweis. Es ist An� £n.Da An nicht abelsch ((1, 2, 3)(1, 2, 4) �= (1, 2, 4)(1, 2, 3)) und
einfach ist, ist An nicht auflösbar. Nun folgt die Behauptung mit Satz V.19 b).

Für n ≤ 4 ist £n auflösbar.Satz V.23

Beweis. Es ist £2 abelsch und damit auflösbar. Es ist |A3| = 3, also ist A3 auflösbar.
Da |£3/A3| = 2 ist, ist auch £3/A3 auflösbar. Somit ist nach Satz V.19 c) £3 auflösbar.

Setze V = {(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), id}. Dann besteht V aus allen
Elementen aus A4, die in der Zyklenzerlegung nur 2-Zyklen haben.Wir sehen somit,
dassV�A4 ist. Es ist |A4/V | = 3.Also istA4/V auflösbar.Offenbar istV abelsch und
damit auflösbar. Also ist nach Satz V.19 c) A4 auflösbar. Da |£4/A4| = 2 ist, ist auch
£4/A4 auflösbar und nach Satz V.19 c) ist dann £4 auflösbar.

Dieses unterschiedliche Verhalten von £n für n ≥ 5 und n ≤ 4 ist letztlich der
Grund dafür, warum es für die Nullstellen von Polynomen vom Grad n Auflösungs-
formeln für n ≤ 4 gibt, die nur arithmetische Operationen und Wurzeln benutzen,
und keine für n ≥ 5. Das werden wir im nächsten Kapitel näher ausführen.

Wir wollen nun noch die bisher entwickelten Methoden benutzen, um zwei Re-
sultate von Évariste Galois5 zu beweisen: erstens, dass jede Gruppe der Ordnung
kleiner als 60 auflösbar ist, und zweitens, dass A5 die einzige einfache Gruppe der
Ordnung 60 ist.

3Emile Leonard Mathieu (*15.5.1835 Metz, †19.10.1890 Nancy). Er endeckte zwischen 1860 und 1873
die ersten fünf sporadischen einfachen Gruppen, die später nach ihm benannt wurden. Mathieu war
Professor in Besançon und ab 1874 in Nancy, wo er sich hauptsächlich mit mathematischer Physik be-
schäftigte. Neben den Mathieu-Gruppen sind auch die mathieuschen Differentialgleichungen nach ihm
benannt.

4Zvonimir Janko (*26.7.1932 Bjelovar,Kroatien) studierte in Zagreb und wurde zunächst Gymnasial-
lehrer,promovierte 1960 an derUniversität in Zagreb.Aus politischenGründen konnte er keineAnstellung
an einer Universität in Jugoslawien finden. Er ging 1962 nach Australien an die Universität in Canberra
und später an die Monash University, 1968/69 an das Institute for Advanced Study in Princeton und war
bis 1972 Professor an der Ohio State University in Columbus, ab 1972 bis zur Emeritierung 2000 war er
Professor an der Universität Heidelberg. Er endeckte 90 Jahre nach Mathieu die erste neue sporadische
einfacheGruppe J1,danach 1968 die Gruppen J2 und J3 und 1976 die letzte sporadische einfacheGruppe J4.
Seit 2000 arbeitet Z. Janko erfolgreich auf dem Gebiet der p-Gruppen.

5Évariste Galois (*25.10.1811 Bologna, †31.5.1832 Paris) war Mathematiker und Begründer der Ga-
loistheorie (detaillierte Information findet man in Kapitel VI auf Seite 110).
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a) Ist 1 �= |G| = p˛ ,p Primzahl, so istG auflösbar.Nach SatzV.18 gibt es einen
abelschen Normalteiler 1 �= N von G. Dann folgt die Behauptung mit Satz
V.19 c) und Induktion.

b) Sei |G| = p · r mit verschiedenen Primzahlen p und r.Dann istG auflösbar.
Wäre G nicht auflösbar, so wäre G einfach nach SatzV.19 c).Dann ist nach
dem Sylowsatz p ≡ 1(mod r) und r ≡ 1(mod p), was nicht möglich ist.

c) Sei |G| ≤ 59. Dann ist G auflösbar. Per Induktion können wir für ein
Gegenbeispiel G annehmen, dass G einfach ist.

˛) Ist |G| ungerade, so ist G auflösbar. Nach a) und b) können wir |G| =
p2 · r mit verschiedenen Primzahlen p und r annehmen. Also ist
|G| = 32 · 5. Aber 5 �≡ 1(mod 3), d.h., G hat eine normale Sylow
3-Untergruppe.

Nach ˛) ist ab jetzt |G| gerade.
ˇ) Sei |G| = 2 · u,u �= 1 ungerade. Sei x ∈ G, o(x) = 2. Dieses x existiert

nach dem Satz von Cauchy.Wir lassen G auf G durch Multiplikation
vermöge

g → gh, für h ∈ G

operieren. Dies liefert einen Homomorphismus von G in die £|G|.
Dabei induziert das Element x eine Permutation, die aus genau
|G|/2 = u vielen Transpositionen besteht,da g �= gx für alle g ∈ G ist.
Also ist sgn x = −1, d.h., x �∈ A|G|. Da G einfach ist, ist A|G| ∩ G = 1.
Nun ist aber |£|G|/A|G|| = 2, was u �= 1 widerspricht.

� ) Sei |G| = 4 · u, u ungerade, u �= 1. Dann ist u < 15. Ist u prim, so
können wir mit Satz V.19 c) wieder 4 ≡ 1(mod u) annehmen. Also
ist u = 3, d.h. |G| = 12. Nun ist G isomorph in £4 eingebettet, aber
£4 ist auflösbar nach Satz V.23.
Sei nun u nicht prim. Dann ist u = 32. Nach Beispiel c) auf Seite 92
ist dann G auflösbar.

ı) Sei |G| = 8 ·u, also u ≤ 7.Dann ist |G| = 8 ·3, 8 ·5, 8 ·7 oder 16 ·3. Ist
|G| = 8 ·3 oder 16 ·3, so hatG nach dem Sylow-Satz genau drei Sylow
2−Untergruppen.Dann gibt einen nicht trivialen Homomorphismus
˛ von G in £3. Aber jetzt ist ker ˛ �= 1 und auch ker ˛ �= G. Da
ker ˛ � G nach Satz V.6 ist, erhalten wir einen Widerspruch zur
Einfachheit von G.
Da 8 �≡ 1(mod 5) ist, ist |G| �= 8 · 5. Es bleibt |G| = 8 · 7. Dann gibt
es 8 Sylow 7−Untergruppen. Sei T eine solche. Da T die Ordnung 7,
also eine Primzahl, hat, ist T ∩ Tg = 1 für T �= Tg , g ∈ G.Also ist

|
⋃
g∈G

Tg | = 8 · 6 + 1 = 49.

Es bleiben somit 7 Elemente übrig.Eine Sylow 2-Untergruppe enthält
8 Elemente. Also bilden die restlichen 7 Elemente und die Identität
die einzige Sylow 2-Untergruppe, die damit normal in G ist.

Beispiel
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d) Ist |G| = 60 und G einfach, so ist G ∼= A5.

Sei S ∈ Syl5(G) und n5 = |G:NG(S)|. Dann ist n5 ≡ 1(mod 5). Also ist
n5 = 6. Damit gibt es einen Monomorphismus

˛:G → £6.

Da G einfach ist, ist ˛(G) ≤ A6.Wir können somit G ≤ A6 annehmen.Wir
zeigen nun:

Ist G ≤ A6, |A6:G| = 6, G einfach, so ist G ∼= A5.

SeienGh1, . . . ,Gh6 dieNebenklassen vonG inA6.Es operiertA6 auf diesen
Nebenklassen durch

(Ghi)g = G(hig).

Der Stabilisator der Nebenklasse G in A6 ist G. Das heißt, G operiert auf
den restlichen 5 Nebenklassen. Damit existiert ein Homomorphismus

ˇ:G → £5.

Sei ˇ(G) = 1. Dies bedeutet

Ghg = Gh

für alle g ∈ G und h ∈ A6, oder hgh−1 ∈ G für alle h ∈ A6. Also ist
G � A6, was Satz V.21 widerspricht. Somit ist ˇ(G) ∼= G einfach. Es ist
A5 ∩ ˇ(G)� ˇ(G). Da ˇ(G) > 2 ist, ist A5 ∩ ˇ(G) �= 1.Da ˇ(G) einfach ist,
ist A5 ∩ ˇ(G) = ˇ(G), also ˇ(G) ≤ A5. Aber |ˇ(G)| = |A5|, d.h. ˇ(G) = A5.
Somit ist G ∼= A5.

Übungsaufgaben

V.1 Jede Gruppe Gmit |G| = 4 ist abelsch.
V.2 Sei G eine Gruppe, in der für ein n ∈ N die folgenden Gleichungen für ein Paar a, b von

Elementen aus G gelten:

(ab)n = anbn, (ab)n+1 = an+1bn+1, (ab)n+2 = an+2bn+2.

Dann ist ab = ba.
Gilt die Aussage ab = ba auch noch, wenn wir nur noch die zwei Gleichungen
(ab)n = anbn und (ab)n+1 = an+1bn+1 für ein n ∈ N haben ?

V.3 Sei G eine endliche Gruppe.

a) Sei n > 2. Dann ist die Anzahl der Elemente der Ordnung n in G gerade.

b) Ist |G| gerade, so ist die Anzahl der Elemente der Ordnung 2 in G ungerade (ins-
besondere existiert mindestens ein solches).
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V.4 Seien G eine Gruppe und a, b ∈ G mit a7 = 1 und aba−1 = b2. Bestimme die Ordnung
von b.

V.5 Sei G eine Gruppe. Dann gilt:

a) Genau dann ist G abelsch, wenn die Abbildung g → g−1 (g ∈ G) ein Automor-
phismus ist.

b) Ist g2 = 1 für alle g ∈ G, so ist G abelsch.

V.6 SeienG eine Gruppe undH eine Untergruppe von G. Für g ∈ G setzeHg = g−1Hg . Zeige:

a) Es ist g ∈ HHg genau dann, wenn g ∈ H ist.

b) Ist G = HHg für ein g ∈ G, so ist G = H .

V.7 Seien G eine endliche Gruppe und U , V zwei Untergruppen von G. Sei |G:U | = n und
|G:V | = m. Zeige:

a) Es ist |G:U ∩ V | ≥kgV(m, n).

b) Sind n undm teilerfremd, so ist |G:U ∩ V | = nm.

V.8 Seien G eine endliche Gruppe,U eine Untergruppe und N ein Normalteiler. Zeige:

a) Aus ggT (|G/N |, |U |) = 1 folgt U ⊆ N .

b) Aus ggT (|G:U |, |N |) = 1 folgt N ⊆ U .

V.9 Dedekind6-Identität. Seien A,B,C Untergruppen der Gruppe Gmit A ⊆ C. Dann gilt

AB ∩ C = A(B ∩ C).

V.10 (Alle Permutationen seien in £9.)

a) Berechne(
1 2 3 4 5 6 7 8 9
5 7 9 3 1 6 8 2 4

)
·
(
1 2 3 4 5 6 7 8 9
5 9 7 6 2 8 1 3 4

)

und (
1 2 3 4 5 6 7 8 9
3 7 6 5 2 8 9 1 4

)−1
.

b) Schreibe als Produkt vonelementfremdenZyklen (1, 3, 6)(2, 5, 4)(4, 8)(6, 3, 7, 8, 9).

c) Schreibe als Produkt von Transpositionen (1, 2, 4)−1(5, 9)(7, 3, 6, 2).

d) Bestimme das Signum von (3, 8, 4, 6, 5)−1(1, 6)(1, 9)(1, 2)(9, 6, 7)−1.

V.11 a) Seien G eine Gruppe und U eine Untergruppe mit |G:U | = n. Dann gibt es einen
Homomorphismus ' :G −→ £n mit ker ' =

⋂
g∈G U

g (Ug wie in AufgabeV.6).

b) Seien |G| < ∞ und p der kleinste Primteiler von |G|. Ist H eine Untergruppe von
Gmit |G:H| = p, so ist H ein Normalteiler von G.

V.12 Seien |G| = p3q, p und q Primzahlen. Es habe G keine normale Sylow p–Untergruppe
und auch keine normale Sylow q–Untergruppe. Dann ist G ∼= £4.

V.13 Zeige:

a) Es ist £n zu einer Untergruppe von An+2 isomorph.

b) Außer für n = 1 enthält An+1 keine Untergruppe, die zu £n isomorph ist.

6JuliusWilhelm Richard Dedekind (*6.10.1831 Braunschweig, †12.2.1916 Braunschweig) war Profes-
sor in Braunschweig. Er verfasste grundlegende Arbeiten in der Algebra und der Mengenlehre.
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V.14 Seien A und B Normalteiler einer Gruppe G. Sind A und B beide auflösbar, so ist auch
AB ein auflösbarer Normalteiler von G.

V.15 Seien G eine endliche Gruppe und N ein Normalteiler von G. Sei weiter P eine Sylow
p-Untergruppe von N . Dann gilt G = NNG(P).

V.16 Sei G eine Gruppe mit |G| = 168.Wie viele Elemente der Ordnung 7 hat G, falls G keine
normale Sylow 7–Untergruppe hat?



VI Symmetrien

Gruppen sind die Axiomatisierung des Begriffes der Symmetrie.Wo immer Symme-
trien eine Rolle spielen, spielen auch Gruppen eine Rolle. Diese Sichtweise wollen
wir jetzt in den Mittelpunkt stellen. Jeder kann sich unter einer Symmetrie eines
geometrischen Körpers, also eines Würfels, Tetraeders usw. etwas vorstellen. Insbe-
sondere ist klar, dass die Symmetrien eine Gruppe bilden.Auch spielen Symmetrien
(Gruppen) bei der Abzählung von Mustern eine wichtige Rolle (siehe hierzu Polya,
1937 [24]).

Wir wollen im Folgenden einen völlig anderen Typ von Symmetrien betrachten
und sehen, wie diese helfen können, gewisse Probleme zu lösen.

Wir betrachten zunächst Symmetrien von C.Was bedeutet da aber Symmetrie?
Bei der Symmetrie eines geometrischen Körpers, z.B. eines Würfels, denken wir an
eine bijektive Abbildung, die die Struktur des Körpers erhält. Genau das Gleiche
stellen wir uns unter einer Symmetrie vonC vor, also eine bijektive Abbildung � , die
die Struktur von C, nämlich Addition und Multiplikation erhält, d.h.

� (a + b) = � (a) + � (b)

� (ab) = � (a)� (b)

für alle a, b ∈ C.Dies haben wir unter demNamenAutomorphismus (siehe Seite 10)
bereits kennengelernt.

Es ist � (1) = 1 und � (0) = 0 (siehe Lemma I.6). Ist n ∈ N, so ist

n = 1 + · · · + 1︸ ︷︷ ︸
n−mal

.

Also ist � (n) = n. Da � (0) = 0 ist, ist

0 = � (0) = � (n + (−n)) = � (n) + � (−n) = n + � (−n).

Somit ist � (z) = z für alle z ∈ Z. Nun ist � (1) = � (aa−1) = � (a)� (a−1) für a ∈ Z,
a �= 0. Dann ist � (a−1) = a−1, also �|Q = id. Als Ergebnis erhalten wir, dass jeder
Automorphismus von C den KörperQ elementweise fest lässt.

Wir sind aber weniger an Symmetrien vonC als an Symmetrien von Polynomen
f ∈ Q[x] interessiert. Eine solche sollte das Polynom invariant lassen. Auf Seite 40
hatten wir � (f ) definiert.Wir haben gerade gezeigt, dass wir für Automorphismen �
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von C stets � (f ) = f haben. Somit induzieren Symmetrien von C auch Symmetrien
jedes Polynoms f ∈ Q[x]. Sie permutieren also die Nullstellen von f in C. Also
induziert � einen Automorphismus des Zerfällungskörpers von f in C.

Scheinbar kommt es somit nur auf die Automorphismen des Zerfällungskörpers
an. Deshalb definieren wir etwas allgemeiner:

Galoisgruppe. Sei f ∈ Q[x] und K der Zerfällungskörper von f in C. Setze
Gf = Aut (K). Dann nennen wir Gf die Galoisgruppe von f .

Definition

Es ist Gf die gesuchte Gruppe von Symmetrien von f . Für die Berechnung von Ga-
loisgruppen ist das folgende Resultat sehr hilfreich.

Ist f ∈ Q[x] irreduzibel, so operiert Gf transitiv auf den Nullstellen von f .Satz VI.1

Beweis. Seien a1, a2 Nullstellen von f . Nach Satz II.11 gibt es einen Isomorphismus
� :Q(a1) → Q(a2) mit �(a1) = a2. Nach Satz II.19 kann � zu einemAutomorphismus
des Zerfällungskörpers K von f erweitert werden.

Sei f ∈ Q[x], f irreduzibel, und grad f = n. Dann ist Gf zu einer Untergruppe
von £n isomorph.

Folgerung VI.2

Beweis. SeiK der Zerfällungskörper von f inC. Ist � ∈ Aut (K) mit � (a) = a für alle
Nullstellen a von f , so ist � = id, da K vonQ und den Nullstellen von f erzeugt wird.
Also operiert Gf treu auf den Nullstellen. Da f höchstens n verschiedene Nullstellen
hat, ist Gf zu einer Untergruppe von £n isomorph.

Sei f = x4 − 2 ∈ Q[x]. Nach dem Satz I.28 von Eisenstein mit p = 2 ist f
irreduzibel. Die Nullstellen in C sind 4

√
2,− 4

√
2, i 4

√
2,−i 4

√
2, wobei 4

√
2 ∈ R sei.

Also ist K = Q( 4
√
2, i) der Zerfällungskörper.

Sei � das Bilden des konjugiert Komplexen. Dann ist � ∈ Aut (K).
Nach Satz VI.1 gibt es ein � ∈ Aut (K) mit

� ( 4
√
2) = i 4

√
2.

Es ist i eine Nullstelle von x2 +1 = g .Da � (g) = g ist, ist auch � (i) eine Nullstelle
von g . Somit ist � (i) = i oder � (i) = −i. Indem wir notfalls � durch �� ersetzen
(beachte ��( 4

√
2) = i 4

√
2) können wir � (i) = i annehmen.Dann ist

� (i 4
√
2) = i� ( 4

√
2) = ii 4

√
2 = − 4

√
2

und
� ( 4

√
2) = −i 4

√
2.

Beispiel
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Damit entspricht � einem 4-Zyklus auf den Nullstellen. Es ist

���( 4
√
2) = −i 4

√
2 = �−1( 4

√
2).

Das liefert ��� = �−1. Damit haben wir 8 Elemente aus Gf gefunden.

{� , � 2, � 3, id, � , �� , � 2� , � 3�} = U .

Nach FolgerungVI.2 ist Gf eine Untergruppe von £4.

Offenbar ist U eine Gruppe. Nach dem Satz von Lagrange ist Gf = U oder
Gf = £4.

Sei Gf = £4. Dann sind alle 3-Zyklen in Gf .Wir betrachten den 3-Zyklus !
aus £4 mit

!( 4
√
2) = 4

√
2,!(− 4

√
2) = i 4

√
2,!(i 4

√
2) = −i 4

√
2,!(−i 4

√
2) = − 4

√
2.

Da ! ∈ Gf ist, ist !|Q = id, d.h.!(−1) = −1 und somit ist mit !( 4
√
2) = 4

√
2

auch !(− 4
√
2) = − 4

√
2, ein Widerspruch zur oben angenommenen Operation

von!. Dies zeigt
U = Gf .

ImAllgemeinen ist die BerechnungderGaloisgruppe eines Polynomskeine leich-
te Sache. Hier war uns zur Hilfe gekommen, dass wir die Nullstellen kannten. Wir
werden am Ende dieses Kapitels sehen, dass man durchaus auch die Galoisgruppe
berechnen kann, ohne auch nur eine einzige Nullstelle zu kennen.

Was haben wir von der Kenntnis der Galoisgruppe Gf ? Galois beschäftigte sich
mit der Frage nach der Auflösbarkeit von Polynomen durch sogenannte Radikale,
dies bedeutet grob gesprochen, ob man die Nullstellen von Polynomen als Aus-
drücke schreiben kann, die nur Addition, Subtraktion, Multiplikation, Division und
Wurzelausdrücke benutzen.Bekannt ist sicherlich jedem die Lösungsformel für qua-
dratische Gleichungen

x2 + ax + b.

Die Nullstellen x1, x2 können wie folgt beschrieben werden:

x1 =
1

2
(−a +

√
a2 − 4b), x2 =

1

2
(−a −

√
a2 − 4b).

Ähnliche Formeln gibt es auch für die Gleichungen vom Grad 3 und 4.Wir wollen
hier nur noch Grad 3 betrachten, also

x3 + ax2 + bx + c.

Durch eine Transformation x → x − a
3 kann man diese immer in die Form

x3 + px + q

bringen.Hierfür wollen wir die Nullstellen bestimmen.Es gilt die folgende Identität:

(u + v)3 − 3uv(u + v) − (u3 + v3) = 0.
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Setzen wir 3uv = −p und −(u3 + v3) = q dann ist x = u + v eine Lösung von

x3 + px + q = 0.

Das führt zu den beiden Gleichungen:

(1) v3 + u3 = −q
(2) −uv = p

3 .

Wir quadrieren (1) und bilden die dritte Potenz von (2), die dann noch mit 4 multi-
pliziert wird. Das liefert

(1) v6 + 2u3v3 + u3 = q2

(2) −4u3v3 = 4p3

27 .

Addition der beiden Gleichungen liefert

(u3 − v3)2 = q2 +
4p3

27

und dann

u3 − v3 =

√
27q2 + 4p3

27
.

Zusammen mit v3 + u3 = −q erhalten wir dann

u =
3

√
−
q
2
+

√
27q2 + 4p3

108
und v =

3

√
−
q
2
−

√
27q2 + 4p3

108
.

Dies ist nicht eindeutig, da es mehr als eine dritte Wurzel gibt. Sei ! eine primitive
dritte Einheitswurzel, also

! =
−1 + i

√
3

2
.

Dann ist v3 = (!v)3 = (!2v)3. Damit haben wir jeweils drei dritte Wurzeln, was
zunächst 9 Paare (u, v) ergibt.Wir wählen hiervon die 3 Paare (u, v), die zusätzlich

3uv = −p

erfüllen. Sei (u1, v1) ein solches zulässige Paar.Dann sind die Paare (!u1,!2v1) und
(!2u1,!v1) auch zulässige Paare. Die Nullstellen der Gleichung x3 + px + q = 0
sind nun

x1 = u1 + v1

x2 = !u1 +!2v1

x3 = !2u1 +!v1,

die offenbar von der Auswahl von (u1, v1) unabhängig sind. Man nennt diese Form
die Cardano1-Form.

1Gerolamo Cardano (*24.9.1501 Pavia, †21.9.1576 Rom) war Arzt, Philosoph, Techniker, Mathemati-
ker, 1523 Gymnasiallehrer fürMathematik, 1525 Rektor der Universität Padua, 1543 Professor fürMedizin
in Pavia, 1562 Professor in Bologna, 1570 wegen Ketzerei eingesperrt. Sein mathematisches Hauptwerk
besteht in den Auflösungsformeln für kubische Gleichungen, was ein 2000 Jahre altes Problem löste. Ein
weiteresArbeitsgebiet sindAnfänge derWahrscheinlichkeitsrechnung.Philosophisch stand erGalilei sehr
nahe. Er hat auch viele technische Erfindungen gemacht.Die kardanischenAufhängungen sind nach ihm
benannt, aber vermutlich älter.
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Interessant hierbei ist,dass die komplexen Zahlen (in!) auftauchen.Zum ersten
Mal wurden Mathematiker mit den komplexen Zahlen im 16. Jahrhundert konfron-
tiert, und zwar beim Lösen von Gleichungen. Die einfachste, bei denen man auf
Wurzeln negativer Zahlen stößt, sind die quadratischen, z.B.

x2 + 1 = 0.

Trotzdem waren es nicht die quadratischen, sondern die kubischen Gleichungen,die
die Beschäftigung mit den komplexen Zahlen erzwungen haben. Betrachten wir z.B.

x2 + 2 = x.

Wir interpretieren diese Gleichung als den Durchschnitt der Geraden y = x mit der
Parabel y = x2 + 2.

y = x2 + 2
y = x

Für die Lösung dieser Gleichung erhalten wir mit den obigen Formeln

x =
1

2
(1± √

−7).

Dies ist offenbar innerhalb der reellen Zahlen ein sinnloser Ausdruck, da man aus
−7 in R keine Quadratwurzel ziehen kann. Diese Sinnlosigkeit ist aber nicht beun-
ruhigend, da sich die beiden Kurven y = x2 + 2 und y = x in der Tat nicht schneiden.
Die Idee, den Zahlenbereich zu erweitern, um auch in diesem Fall eine Lösung zu
haben, ist eher ein moderner Ansatz, aber nicht der, der die Einführung komplexer
Zahlen historisch nahegelegt hat.

Ganz anders sieht dies bei Gleichungen dritten Grades aus. Rafael Bombelli2

beschäftigte sich 1572 mit der Gleichung

x3 = 15x + 4.

Die Formel von Cardano liefert dann für eine Nullstelle

u =
3

√
2 +

√
−121, v =

3

√
2 −

√
−121.

2Rafael Bombelli (*1526 Bologna, †1572 Rom) war Ingenieur und Mathematiker, gab 1572 ein fünf-
bändigesWerk zurAlgebra heraus,das dasmathematischeWissen seiner Zeit zusammenfasste,die beiden
letzten Bände sind erst 1929 aus seinemNachlass erschienen.Diese Bücher enthalten die Gleichungstheo-
rie und zum ersten Mal sowohl negative als auch imaginäre Zahlen.
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Also

x1 =
3

√
2 +

√
−121 +

3

√
2 −

√
−121,

wobei zu beachten ist, dass uv = 5 sein muss.

Wieder haben wir den sinnlosen Ausdruck
√
−121. Allerdings entspricht x1 der

Lösung x1 = 4.Die Kurven schneiden sich in der Tat.Hier hat man also ein Problem,
daman bei Benutzung der Formeln auf Ausdrücke geführt wird,die Quadratwurzeln
aus negativen Zahlen enthalten, aber durchaus reellen Lösungen der Gleichung ent-
sprechen.Wennman nun einfach so fortfährt undmit der„imaginären“ Zahl

√
−121

so rechnet, wie man es von reellen Zahlen gewohnt ist, und (
√
−121)2 = −121 setzt,

so kann man in der Tat

3

√
2 +

√
−121 +

3

√
2 −

√
−121 = 4

nachrechnen. Auf diese Weise haben die italienischen Ingenieure des 16. Jahrhun-
derts erfolgreichmit den komplexen Zahlen gerechnet.Allerdings waren diese„ima-
ginären“Zahlen zunächst nicht sonderlich beliebt.Mankonnte sie zwar nicht einfach
als Unfug abtun,man konnte damit ja reelle Lösungen von Gleichungen bekommen,
auf der anderen Seite existierten sie aber nicht.Nicht alleMathematiker haben solche
Rechenausdrücke erlaubt. Erst durch Gauß und Hamilton3 wurden sie allgemein an-
erkannt, nachdem sie als Paare reeller Zahlen mit gewissen Rechenregeln eingeführt
wurden.

Die Frage, der wir jetzt nachgehen wollen, ist, ob solche Formeln auch für andere
Grade als 2 oder 3 existieren bzw. für welche Polynome es diese gibt. Für manche gilt
dies natürlich. Die Nullstellen von x6 − 1 sindWurzelausdrücke.

Niels Abel4 hatte 1824 gezeigt, dass es für die allgemeine Gleichung vom Grad 5
keine solche Formeln gibt, und 1826 [1], dass dies auch für die allgemeine Gleichung
vom Grad mindestens 5 richtig ist. Galois wollte aber darüber hinaus verstehen,
warum es für manche Gleichungen solche Formeln gibt, für andere aber nicht.Hier-
auf gab er eine Antwort. Das Neue dabei war, dass die Antwort nicht irgendwelche
Bedingungen an die Koeffizienten ai des Polynoms f war, wie sie seine Vorgänger
gesucht hatten, sondern eine Eigenschaft der Galoisgruppe Gf . Der Hauptsatz ist:

Die Gleichung f = 0 mit f ∈ Q[x] ist genau dann durch Radikale auflösbar,
d.h., die Nullstellen lassen sich durch arithmetische Operationen und Wurzeln
ausdrücken, falls Gf auflösbar ist.

Satz VI.3

Für den Beweis ist es sinnvoll, den Begriff der Galoisgruppe eines Polynoms etwas
zu verallgemeinern.

3SirWilliamRowenHamilton (*4.8.1805 Dublin,†2.9 1865 in Dunsink bei Dublin) wurde bereits 1827
vor Beendigung seines Studiums Professor für Astronomie am Trinity College in Dublin. Sein Hauptar-
beitsgebiet war die mathematische Physik,berühmt wurde er durch die nach ihm benannte Hamiltonsche
Mechanik und die Entdeckung der Quaternionen.

4NielsHenrikAbel (*5.8.1802 Finnö (Norwegen),†6.4.1829 Froland)war als Stipendiat in Paris,Berlin
und Italien. Er leistete bedeutende Beiträge auf den Gebieten der algebraischen Gleichungen, elliptischen
Kurven und Reihenlehre.
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SeienL ⊆ C einKörper und f ∈ L[x].Dannverstehenwir unter derGaloisgruppe
Gf bezüglichLdieMenge allerAutomorphismen einesZerfällungskörpers von f über
L in C, die L elementweise festlassen. Für L = Q ist dies genau unsere Definition der
Galoisgruppe.

Die folgenden Aussagen sind zentral in der Galoistheorie. Ein Beweis würde den
Rahmen dieses Buches allerdings sprengen.

Bemerkung. Seien L ⊆ C, f ∈ L[x] und K der Zerfällungskörper über L von f in C.
Sei Gf die zugehörige Galoisgruppe. Galois zeigte

a) Es gibt eine bijektive Beziehung zwischen den Untergruppen U von Gf und
den Zwischenkörpern M mit L ⊆ M ⊆ K . Jeder Untergruppe U wird dabei
Fix (U) = {s ∈ K|u(s) = s für alle u ∈ U} zugeordnet.

b) Dass U normal in Gf ist, ist äquivalent dazu, dass es zu M = Fix (U) ein
g ∈ L[x] gibt, so dassM der Zerfällungskörper von g ist.

c) Ist U normal in Gf . So ist U die Galoisgruppe von f über M = Fix (U) und
Gf /U ist die Galoisgruppe von g über L, wobei g das Polynom aus b) sei.

d) Ist h ∈ L[x], so dass K ein Zerfällungskörper von h ist, so ist Gf = Gh.

Diese Aussagen werden zum Beweis von Satz VI.3 eingesetzt, den wir gleich skizzie-
ren wollen. Dabei sind b) und c) wesentlich, da sie Induktionsbeweise ermöglichen.

Beweisskizze von VI.3. Sei K der Zerfällungskörper von f über Q in C. Ist die Glei-
chung f auflösbar, so ist dies gleichwertig dazu, dass es eine Kette

Q ⊆ K1 ⊆ · · ·Kr = K

gibt, so dass Ki = Ki−1(
ni
√
bi) für geeignete bi ∈ Ki−1 ist. Man beachte, dass die

Ausdrücke für die Lösungen ineinander geschachtelteWurzelausdrücke sind. Indem
wir die Kette noch verfeinern, können wir ni als Primzahl wählen. Wir wollen nun
noch Q um alle ni-ten Einheitswurzeln vergrößern, also die Nullstellen von xni − 1
(auch bei den Lösungsformeln für die Gleichung dritten Grades gehen ja dritte
Einheitswurzeln ein, selbst wenn die Nullstellen alle reell sind). Also sei L dieser
größere Körper und Lf der Zerfällungskörper von f über L in C. Dann haben wir
wieder eine Kette

L = L1 ⊆ · · · ⊆ Lr = Lf mit Li = Li−1(
ni
√
bi), bi ∈ Li−1.

Es hat xni − 1 nach Satz II.23 paarweise verschiedene Nullstellen, also genau ni viele.
Da alle ni-ten Einheitswurzeln in Li−1 liegen und die Nullstellen von

xni − bi

gerade � ni
√
bi mit einer festen Nullstelle

ni
√
bi und beliebiger ni-ter Einheitswurzel �

sind, ist Li Zerfällungskörper von xni − bi über Li−1.

Die Elemente der Galoisgruppe von xni − bi über Li bilden
ni
√
bi → �j ni

√
bi für

geeignetes j ab, also sind sie einfach die Multiplikation mit �j.Da �i+j = �j+i ist, ist die
Gruppe abelsch und damit auflösbar.
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Wir setzen nun i = 1.Nach der obigen Bemerkung b) gibt es einM �Gf , so dass
Fix (M) = L1 ist. Nun ist nach Bemerkungen c) und d) Gf /M die Galoisgruppe von
xn1 −b1 über L,d.h.abelsch,undM ist die Galoisgruppe von f über L1.Da f auch über
L1 auflösbar ist, folgt per Induktion, dassM auflösbar ist. Nun folgt die Behauptung
mit Satz V.19.

Wir betrachten nun die umgekehrte Richtung, also Gf ist auflösbar.Wie eben sei
L der Körper, der alle notwendigen Einheitswurzeln enthält. Nach Lemma V.20 gibt
esM � Gmit |G:M| = p prim. Sei L1 = Fix (M). Dann istM die Galoisgruppe von f
über L1. DaM nach Satz V.19 auflösbar ist, gibt es per Induktion eine Kette

L1 ⊆ L2 ⊆ · · · ⊆ Lr = Lf mit Li = Li−1(
ni
√
bi), bi ∈ Li−1.

Nach der Bemerkung c) ist G/M die Galoisgruppe eines Polynoms g über L, wobei
L1 der Zerfällungskörper von g über L ist.Also genügt es,die Behauptung für L1 = Lf
und damit für |Gf | = p zu zeigen.

Dies geht wie folgt: Sei � eine primitive p-te Einheitswurzel in L, die per Kon-
struktion von L existiert,undGf = 〈� 〉.Wir betrachten das lineareGleichungssystem
(auch Lagrange-Resolvente genannt):

(∗)
p−1∑
i=0

�ij� i(x) = 0, j = 0, . . . p − 1.

Dieses System hat die Vandermonde5 als Determinante, also nur triviale Lösungen.

In (∗) spielt die erste Gleichung eine besondere Rolle.Wir wollen annehmen,dass
es ein b gibt, das alle Gleichungen bis auf die erste löst, und dies zumWiderspruch
führen. Sei also b ∈ L1 \ Lmit

p−1∑
i=0

�ij� i(b) = 0 für alle j �= 0.

Dann ist
p−1∑
i=0

� i(b) =
p−1∑
j=0

( p−1∑
i=0

�ij� i(b)
)
=

p−1∑
i=0

( p−1∑
j=0

�ij
)
� i(b).

Ist i �= 0, so ist∑p−1
j=0 �

ij die Summe aller p–ten Einheitwurzeln, also der Koeffizient

von xp−1 in xp − 1.Dies ergibt
∑p−1

j=0 �
ij = 0 für alle i �= 0.Also ist

p−1∑
i=0

� i(b) =
( p−1∑

j=0

�j·0
)
� 0(b) = pb.

Da � (
∑p−1

i=0 �
i(b)) =

∑p−1
i=0 �

i+1(b) =
∑p

i=1 �
i(b) =

∑p−1
i=0 �

i(b) ist (beachte dabei
� 0 = � p = id), ist

∑p−1
i=0 �

i(b) ∈ Fix (Gf ). Somit ist

pb ∈ Fix (Gf ).

5Alexandre-Théophile Vandermonde (*28.2.1735 Paris, †1.1.1796 Paris) war Musiker, Mathematiker
und Chemiker. Er wurde 1771 in die Académie de Sciences aufgenommen. Sein Name wird mit der
Determinantentheorie verbunden.
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Da wir nach der Bemerkung a) eine bijektive Zuordnung zwischen den Untergrup-
pen und den Zwischenkörpern haben und nach dem Satz von Lagrange Gf nur die
Untergruppen {id} undGf hat, gibt es auch nur die Zwischenkörper L und Lf , so dass

p−1∑
i=0

� i(b) = pb ∈ L

ist.Aber b war nicht in L, einWiderspruch.
Wähle nun b ∈ L1 \ L beliebig. Dann gibt es ein j > 0, so dass

p−1∑
i=0

�ij� i(b) �= 0

ist. Indem wir notfalls � durch eine geeignete Potenz �k ersetzen, können wir

c =
p−1∑
i=0

�i� i(b) �= 0

annehmen. Es ist

� j(c) =
p−1∑
i=0

�i� i+j(b) =
p−1∑
i=0

�−j�i+j� i+j(b) = c�−j.

Beachte � (�i) = �i , da �i ∈ L ist.Also ist

�j = c� j(c)−1.

Es ist weiter

� (
p−1∏
j=0

� j(c)) =
p−1∏
j=0

� j+1(c) =
p−1∏
j=0

� j(c).

Also ist wieder
∏p−1

j=0 �
j(c) ∈ L.Weiter ist

L �
p−1∏
j=0

�j =
p−1∏
j=0

c� j(c)−1 = cp(
p−1∏
j=0

� j(c))−1.

Dann ist aber auch
cp ∈ L.

Da 1 �= � = c� (c)−1 ist, ist � (c) �= c, somit ist c �∈ L.Dann ist L(c) ein Zwischenkörper
ungleich L und somit L(c) = Lf , d.h.

Lf = L( p
√
cp) mit cp ∈ L.

Damit ist die Behauptung bewiesen.

Die hier zum ersten Mal angewandte Methode war später noch in vielen ande-
ren Gebieten fruchtbar. Man beweist Eigenschaften eines Objektes, indem man die
Symmetrien dieses Objektes studiert und die gewünschten Resultate in Verbindung
zu Eigenschaften der Symmetriegruppe setzt.
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Nach Satz V.22 ist £n für n > 4 nie mehr auflösbar. Man kann Polynome über Q
konstruieren,die alsGaloisgruppedie£n haben,weshalb es fürn > 4 keine allgemein
gültigen Formeln geben kann.Wir wollen für n = 5 ein solches Polynom angeben.

Sei f = x5 − 6x + 3 ∈ Q[x]. Dann ist Gf
∼= £5.Lemma VI.4

Beweis. Nach dem Satz von Eisenstein mit p = 3 ist f irreduzibel. Es ist

f ′ = 5x4 − 6 �= 0
und somit hat nach Satz II.23 f fünf verschiedene Nullstellen. Nach Satz VI.1 ist Gf

hierauf transitiv. Damit ist 5 ein Teiler von |Gf |. Nun ist weiter
f (−2) = −17, f (−1) = 8, f (0) = 3, f (1) = −2, f (2) = 23.

Alsohat f mindestensdrei reelleNullstellen.DadieNullstellen von f ′ nur± 4
√
6/5 sind

und diese die reellen Nullstellen von f trennen, hat f genau drei reelle Nullstellen.
Somit hat f genau zwei komplexe Nullstellen x1, x2. Es ist x2 = x̄1 das konjugiert
Komplexe. Damit ist − ein nicht trivialer Automorphismus � des Zerfällungskörpers
von f .Wir identifizierendieNullstellenx1, x2, x3, x4, x5 mit 1, 2, 3, 4, 5.Dannkönnen
wir also annehmen

� = (1, 2) ∈ Gf , � = (1, 2, 3, 4, 5) ∈ Gf .

Es ist

���−1 =(2, 3)

� 2��−2 =(3, 4)

� 3��−3 =(4, 5)

� 4��−4 =(5, 1).

In £n haben wir
(1,m)(m,m + 1)(1,m) = (1,m + 1).

Also haben wir (1, 2), (1, 3), (1, 4), (1, 5) ∈ Gf . Es ist (1, i)(1, j)(1, i) = (i, j). Damit
sind alle Transpositionen in Gf . Nach Satz V.12 ist dann Gf = £5.

Zum Ende dieses Abschnittes noch ein paarWorte zu der Person Evariste Galois.
Er wurde 1811 geboren und starb 1832 in einem Duell. Mit 15 Jahren publizierte
er bereits seine ersten Arbeiten. Wie im politischen war er auch im mathemati-
schen Denken revolutionär und hatte es schwer, von seinen Zeitgenossen verstanden
zu werden. Seine erste Arbeit auf dem Gebiet der Auflösbarkeit von Polynomglei-
chungen reichte Galois 1829 bei der Akademie der Wissenschaften in Paris ein. Der
Referent Cauchy lehnte diese und eine acht Tage später zum gleichen Thema ein-
gereichte Arbeit ab. Die Manuskripte sind leider verschollen. Das gleiche Schicksal
hatte auch die 1830 anläßlich des Wettbewerbs „Großer Preis der Mathematik“ ein-
gereichte Arbeit. Im Jahre 1831 sandte Galois zum letzten Mal eine Arbeit an die
Akademie. Zu Gutachtern wurden Poisson und Lacroix bestellt. Beide waren aller-
dings mehr an Physik als an Algebra interessiert. So lehnten sie nach fünf Monaten
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die Arbeit mit der Begründung ab, dass sie die Bedeutung der Arbeit nicht sehen.
DasWerk Galois wurde von seinen Zeitgenossen weder verstanden noch gewürdigt.
Es wäre verlorengegangen,wenn er nicht amVorabend seines Duells seine Resultate
in einem Brief an seinen Freund Auguste Chevalier zusammengefasst hätte. Ob das
Duell ein politisches war oder es um eine Frau ging, wird wohl nie geklärt werden.
Erst 1846 wurde sein Nachlass herausgegeben. Als Cauchy seine im alt hergebrach-
ten Stil verfassten Arbeiten zur Auflösbarkeit von Polynomgleichungen publizierte,
erkannte Liouville die wesentliche Bedeutung der Galois’schen Arbeiten und gab
sie 1846 heraus. Für weitere Informationen zu diesem Themenkreis sei auf die sehr
lesenswerte Biographie von Rigatelli (1996, [25]) verwiesen.

Übungsaufgaben

VI.1 Bestimme die Symmetriegruppe des Tetraeders. Ist dies eine schon bekannte Gruppe?

VI.2 Seien f ∈ Q[x] und K ⊆ C der Zerfällungskörper von f . Es habe f paarweise ver-
schiedene Wurzeln in K . Ist Gf transitiv auf den Nullstellen von f , so ist f irreduzibel
überQ.

VI.3 Sei K ⊆ C ein Zerfällungskörper von f = x3 − 2 ∈ Q[x]. Zeige, dass Gf
∼= £3 ist.

VI.4 Sei K ⊆ C der Zerfällungskörper von f ∈ Q[x]. Weiter sei Gf eine endliche einfache
Gruppe. Ist Q ⊆ M ⊆ K und M Zerfällungskörper eines Polynoms g ∈ Q[x], so ist
M = Q oderM = K .



VII Konstruktion mit Zirkel
und Lineal

In diesem Kapitel wollen wir die Resultate über algebraische Körpererweiterungen
auf Probleme der Geometrie anwenden.Dazu gehört zunächst die Übersetzung geo-
metrischer Fragestellungen in die Sprache der Algebra.

Sei P0 ⊆ R2 eine Punktmenge.Wir betrachten die folgenden zwei Operationen:

(L): Durch zwei Punkte aus P0 ziehe eine Gerade.

(Z): Schlage einen Kreis um einen Punkt aus P0.Hierbei sei der Radius derAbstand
zweier Punkte aus P0.

Achtung!Unser Lineal (L) hat keine Einteilung.Man kann damit also keine Strecken
fester Länge, z.B. 2 cm, abtragen.

Konstruierbar. Sei P0 ⊆ R2 eine Punktmenge.

a) Die Schnittpunkte von Geraden und Kreisen, die mit (L) und (Z) konstru-
iert werden, nennen wir im ersten Schritt aus P0 konstruierbare Punkte.

b) Ein Punkt r ∈ R2 wird von P0 aus konstruierbar genannt, falls es eine Kette
von Punkten r1, . . . , rn = r gibt, so dass jedes ri, i = 1, . . . , n, im ersten
Schritt aus der Menge P0 ∪ {r1, . . . , ri−1} konstruierbar ist.

c) Mit K0 bezeichnen wir den Unterkörper von R, der von den Koordinaten
der Punkte von P0 erzeugt wird.

d) Sei r1, . . . , rn = r, ri = (xi, yi), im ersten Schritt aus P0 ∪ {r1, . . . , ri−1}
konstruierbar. Dann setze

Ki = Ki−1(xi, yi), i = 1, . . . , n.

Definition

Wir haben also in d) eine Kette K0 ⊆ K1 ⊆ · · · ⊆ Kn ⊆ R von Körpern, die den
Koordinaten der Punkte zugeordnet sind.Diese Kette spiegelt die einzelnen Schritte
der Konstruktion des Punktes r wider.

Alles ist natürlich von der Startmenge P0 abhängig.Wir werden ab jetzt stets an-
nehmen, dass (0, 0) und (1, 0) in P0 sind.Dadurch sind dann die Koordinatenachsen
konstruierbar.Wir werden aber sehen, dass noch mehr gilt.

 Elementare Algebra und Zahlentheorie
© Springer Basel AG 2012
G. Stroth,
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Sei P0 ⊆ P ⊆ R2. Dann ist (x, y) genau dann aus P konstruierbar, wenn (0, x)
und (0, y) aus P konstruierbar sind.

Lemma VII.1

Beweis. Aus (0, 0) und (1, 0) können wir die Koordinatenachsen konstruieren. Ist
(x, y) gegeben,so könnenwir die Parallelen durch (x, y) zu denAchsen konstruieren.
Also können (0, x) und (0, y) konstruiert werden.

(0, 0)
(1, 0)

(x, 0)

(0, y ) (x, y )

(0, x )

Sind umgekehrt (0, x) und (0, y) gegeben, so können wir daraus (x, y) konstruieren.
Wir können zunächst (x, 0) konstruieren. Der Schnittpunkt der Senkrechten durch
(x, 0) und (0, y) liefert dann (x, y).

Sei P0 ⊆ P ⊆ R2. Sind (0, x) und (0, y) aus P konstruierbar, so auch die Punkte
(0, x ± y), (0, xy) und (0, x/y)(y �= 0).

Lemma VII.2

Beweis. Der Kreis um (0, y) mit Radius 0x schneidet die y-Achse in (0, x + y) und
(0, x − y). Somit sind (0, x ± y) konstruierbar.

(1, 0) (u, 0)

(0, y )
(0, x )

α α

Sei y �= 0. Verbinde (0, y) mit (1, 0). Danach ziehe eine Parallele zur Geraden
(0, y)(1, 0) durch (0, x). Dann erhalten wir den Schnittpunkt (u, 0) mit der x-Achse.
Es ist u/x = tan˛ = 1/y. Das liefert u = x/y. Damit ist auch (0, x/y) konstruierbar.

Wähle nun x = 1. Ist y �= 0, so haben wir gerade gezeigt, dass (0, 1/y) konstru-
ierbar ist. Aus (0, x) und (0, 1/y) kann nun auch (0, x(1/y)−1) = (0, xy) konstruiert
werden.

Sei P0 ⊆ R2 mit (0, 0), (1, 0) ∈ P0. Sind x, y ∈ K0, so ist (x, y) aus P0 konstruier-
bar.

Lemma VII.3

Beweis. Wir wollen die Behauptung aus Lemma VII.1 und Lemma VII.2 folgern.
Dazu setzen wir dort P = P0. Sei zunächst (x, y) ∈ P0. Nach LemmaVII.1 sind dann
(0, x) und (0, y) ausP0 konstruierbar.EswirdK0 vondenKoordinaten der Punkte aus
P0 erzeugt.Nach LemmaVII.2 sind somit alle (0, k) mit k ∈ K0 aus P0 konstruierbar.
Nach LemmaVII.1 sind dann alle (x, y) mit x, y ∈ K0 aus P0 konstruierbar.

Da der Körper K0 stets Q enthält, sind also alle Punkte mit rationalen Koordinaten
konstruierbar.
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Nun stellen wir den Zusammenhang zu algebraischen Körpererweiterungen her.

Sei P0 ⊆ R2 und r = (x, y) im ersten Schritt aus P0 konstruierbar. Dann sind x
und y Nullstellen quadratischer Polynome mit Koeffizienten in K0.

Lemma VII.4

Beweis. Es gibt drei Fälle.

(1) r ist Schnittpunkt zweier Geraden.

(2) r ist Schnittpunkt eines Kreises mit einer Geraden.

(3) r ist Schnittpunkt zweier Kreise.

Wir wollen nur den zweiten Fall betrachten.Die anderen seien dem Leser überlassen.

Wir haben eine Gerade durch die Punkte A = (a, b) und B = (c, d) und einen
Kreis mitMittelpunktC = (t, s) und Radius r, der derAbstand zwischen (a1, a2) und
(b1, b2) ist, a1, a2, b1, b2, t, s, a, b, c, d ∈ K0.

A

B

C
(b1 , b2 )

(a1 , a2 )

Es gilt nach Pythagoras

(b1 − a1)2 + (a2 − b2)2 = r2 ∈ K0.

Die Kreisgleichung ist
(x − t)2 + (y − s)2 = r2.

Die Geradengleichung ist

(x − a)(s − b) = (y − b)(t − a).

Das liefert für den Schnittpunkt (x-Koordinate)

(x − t)2 +
(
(s − b)
(t − b)

(x − a) + (b − s)
)2
= r2.

Damit ist x Nullstelle einer quadratischen Gleichung. Genauso ist y Nullstelle einer
quadratischen Gleichung.

Der Fall (3) kann auf Fall (2) zurückgeführt werden.

g

K 1 K 2

Statt K1 schneidet K2 kann auch K1 schneidet g betrachtet werden.
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Als Konsequenz erhalten wir

Sei P0 ⊆ R und r = (x, y) aus P0 konstruierbar. Dann sind [K0(x):K0] und
[K0(y):K0] 2-Potenzen.

Satz VII.5

Beweis. Sei r1, . . . , rn = r eine Kette von Punkten im R2, wobei die ri = (xi, yi) im
ersten Schritt aus P0 ∪ {r1, . . . , ri−1} konstruierbar seien. Nach Lemma VII.4 haben
die xi und yi ein Minimalpolynom vom Grad höchstens zwei über Ki−1.Also ist nach
Satz II.12 [Ki−1(xi):Ki−1] = 1 oder 2 und [Ki−1(yi):Ki−1] = 1 oder 2. Der Gradsatz
liefert nun

[Ki:Ki−1] = [Ki−1(xi, yi):Ki−1] =

[Ki−1(xi, yi):Ki−1(xi)][Ki−1(xi):Ki−1] = 1, 2 oder 4.

Dies bedeutet, dass [Ki:Ki−1] eine 2-Potenz ist. Da nach dem Gradsatz

[Kn:K0] = [Kn:Kn−1][Kn−1:Kn−2] . . . [K1:K0]

ist, ist [Kn:K0] eine 2-Potenz.Wegen

[Kn:K0(x)][K0(x):K0] = [Kn:K0] und

[Kn:K0(y)][K0(y):K0] = [Kn:K0]

sind [K0(x):K0] und [K0(y):K0] 2-Potenzen.

Satz VII.5 kann schon benutzt werden, um zu zeigen, dass gewisse Dinge nicht
konstruierbar sind.

Die Verdoppelung des Würfels ist nicht möglich. Das heißt, ist der Einheitswürfel
gegeben, so ist es nicht möglich, die Seite eines Würfels mit doppeltem Volumen
aus den Daten des gegebenenWürfels, also P0 = {(0, 0), (1, 0)}, zu konstruieren.

Satz VII.6

Beweis. Wir müssen aus einem Würfel mit einer Ecke auf (0, 1) einen neuen kon-
struieren, der eine Ecke auf (0, 3

√
2) hat. Also ist r = (0, 3

√
2) aus P0 = {(0.0), (1, 0)}

zu konstruieren. Das heißt, wir haben Q = K0. Ist r konstruierbar, so ist nach Satz
VII.5 [Q( 3

√
2):Q] eine 2-Potenz.Aber x3 − 2 ist nach Eisenstein irreduzibel, d.h.

[Q( 3
√
2):Q] = 3

nach Satz II.12. Dies ist einWiderspruch.

Der Winkel 60° = �/3 kann nicht gedrittelt werden.Satz VII.7

Beweis. Ist die Drittelung des Winkels �/3 möglich, so kann auch der Punkt (a, 0)
mit a = cos�/9 konstruiert werden. Es ist (cos�/3, 0) = ( 12 , 0) ∈ P0.
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(0, 1)

(0, 0)

π
9

(a, 0)

Dann ist aber auch der Punkt (y, 0) mit y = 2 cos�/9 konstruierbar. Mit Satz VII.5
erhalten wir, dass [Q(y):Q] eine 2-Potenz ist. Es gilt die Formel

cos�/3 = 4 cos3 �/9 − 3 cos�/9,

also
1

2
=
1

2
y3 −

3

2
y

und dann auch
y3 − 3y − 1 = 0.

Da±1 keine Nullstellen von x3 − 3x − 1 sind, ist x3 − 3x − 1 ∈ Q[x] irreduzibel.Also
gilt nach Satz II.12 [Q(y):Q] = 3. Damit ist (y, 0) nicht konstruierbar.

Die Quadratur des Kreises ist nicht möglich. Satz VII.8

Beweis. Dies folgt aus der Tatsache, dass � nicht algebraisch ist.

Diese Resultate waren alle von destruktiver Art.Wenn wir beweisen wollen, dass
etwas konstruierbar ist, müssen wir also anders vorgehen, insbesondere eine Art
Umkehrung von Satz VII.5 beweisen. Einen ersten Schritt in diese Richtung liefert
der nächste Satz.

Sei P0 eine Punktmenge mit (0, 0), (1, 0) ∈ P0. Sei K0 ⊆ L ⊆ R mit [L:K0] = 2,
so ist jeder Punkt (x, y) ∈ L2 aus P0 konstruierbar.

Satz VII.9

Beweis. Es ist L = K0(˛), wobei ˛ Nullstelle eines Polynoms x2 + px + q ∈ K0[x]
ist. Da ˛ ∈ R ist, ist p2 − 4q ≥ 0 und ˛ = 1

2 (−p +
√
p2 − 4q). Kann man (0,

√
r) für

alle r ∈ K0, r ≥ 0 aus P0 konstruieren, so setze P = P0 ∪ {(0,√p2 − 4q)}. Dann ist L
der von den Koordinaten der Punkte aus P erzeugte Körper.Nach LemmaVII.3 sind
dann alle (x, y) ∈ L2 aus P und damit auch aus P0 konstruierbar.

Wir zeigen nun, dass (0,
√
r) für r ∈ K0, r ≥ 0, konstruierbar ist.Wieder können

wir die Koordinatenachsen konstruieren. Da r ∈ K0 ist, können wir nach Lemma
VII.3 auch (−1, 0) und (r, 0) konstruieren.

(− 1, 0) (r, 0)

ut

(0, s )
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Wir können die Strecke (−1, 0)(r, 0) halbieren und dann den Kreis um diesen Mit-
telpunkt mit (−1, 0)(r, 0) als Durchmesser konstruieren.Dieser trifft die y-Achse im
Punkt (0, s). Somit ist der Punkt (0, s) konstruierbar.Wir zeigen jetzt, dass s =

√
r

gilt.Es sind s2+1 = t2, s2+r2 = u2 und t2+u2 = (r+1)2.Also ist (r+1)2 = 2s2+1+r2,
d.h. s =

√
r.

Wir wollen uns nun noch der Konstruktion des regulären n-Ecks zuwenden.
Dabei sei immer P0 ⊆ Q2. Das n-Eck sei dem Einheitskreis einbeschrieben.

Es seien n,m ∈ N.
a) Ist das reguläre n-Eck konstruierbar, so ist für jeden Teiler m von n auch

das reguläre m-Eck konstruierbar.

b) Sind sowohl das reguläre n-Eck als auch das reguläre m-Eck konstruierbar
und ist ggT (n,m) = 1, so ist das reguläre nm-Eck konstruierbar.

Satz VII.10

Beweis.

a) Setze d = n/m.Verbinden wir jede d-te Ecke des regulären n-Ecks, so erhalten
wir ein reguläresm-Eck.

b) Nach Annahme ist ggT (n,m) = 1. Damit gibt es a, b ∈ Z mit am + bn = 1.
Dies können wir auch als

1

mn
= a

1

n
+ b · 1

m
schreiben.

Also können wir aus 2�/n und 2�/m auch 2�/nm konstruieren, indem wir
zunächst denWinkel 2�/n genaua–malunddannb–maldenWinkel 2�/m abtragen,
wobei wir dies im Uhrzeigersinn oder Gegenuhrzeigersinn machen, je nachdem, ob
a bzw. b positiv oder negativ ist.

Sei n ∈ N und p˛11 · · · p˛r
r die Primfaktorzerlegung. Das reguläre n-Eck kann

genau dann konstruiert werden, wenn jedes reguläre p˛i
i -Eck konstruierbar ist.

Folgerung VII.11

Das reguläre 2˛-Eck ist konstruierbar.Lemma VII.12

Beweis. Dies geschieht durch fortgesetzte Halbierung des Winkels, die mit Zirkel
und Lineal möglich ist.

Wir müssen jetzt nur noch feststellen, wann das reguläre pn–Eck, für ungerade
Primzahlen p, konstruierbar ist. Es geht also darum, den Punkt

(x, y) = (cos 2�/pn, sin 2�/pn),
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eine Ecke des regulären pn–Ecks, zu konstruieren. Die Idee ist, den R2 als die Gauß-
sche Zahlenebene C zu betrachten. Dann entspricht (x, y) der komplexen Zahl
x + iy. Es ist � = cos 2�/pn + i sin 2�/pn = e2� i/p

n
eine pn–te Einheitswurzel. Ist

(x, y) konstruierbar, so ist nach Satz VII.5 [Q(x, y):Q] eine 2-Potenz. Weiter ist
[Q(x, y, i):Q(x, y)] = 2. Dann ist [Q(�):Q] nach dem Gradsatz II.6 eine 2-Potenz.
Das liefert den folgenden Satz:

Für eine ungerade Primzahl p und eine natürliche Zahl n sei das reguläre pn-Eck
konstruierbar. Weiter sei � eine primitive pn-te Einheitswurzel in C und m� das
Minimalpolynom von � überQ. Dann ist gradm� eine 2-Potenz.

Satz VII.13

Sei � eine primitive n-te Einheitswurzel inC. Gemäß SatzVII.13 müssen wir uns mit
dem Minimalpolynom m� beschäftigen und sehen, wann dieses einen Grad hat, der
eine 2-Potenz ist.

Seien p eine ungerade Primzahl, � eine primitive p-te Einheitswurzel inC undm�

das Minimalpolynom von � überQ. Dann ist

m� = xp−1 + xp−2 + · · · x + 1.

Lemma VII.14

Beweis. Es ist � Nullstelle von xp−1
x−1 = xp−1 + · · · + x + 1.Nach Beispiel b) auf Seite 27

ist dieses Polynom irreduzibel.

Seien p eine ungerade Primzahl, � eine primitive p2-te Einheitswurzel in C und
m� das Minimalpolynom von � überQ. Dann ist

m� = xp(p−1) + xp(p−2) + · · · + xp + 1.

Lemma VII.15

Beweis. Es ist � Nullstelle von g = xp
2
− 1/xp −1 = xp(p−1) + · · ·+ xp +1.Wir ersetzen

x in g durch 1 + u. Dann erhalten wir auf der linken Seite

g(x) = g(1 + u) =
(1 + u)p

2
− 1

(1 + u)p − 1
=
(1 + up

2
) − 1

(1 + up) − 1
≡ up(p−1) (mod p).

Beachte hierbei, dass das Potenzieren mit p modulo p nach Lemma II.3 ein Homo-
morphismus ist.Also erhalten wir

g(1 + u) = up(p−1) + pf (u), mit f ∈ Z[x].
Andererseits, wenn wir 1 + u in die rechte Seite einsetzen, erhalten wir

g(1 + u) = 1 + (1 + u)p + · · · + (1 + u)p(p−1).

Setzen wir jetzt u = 0 ein, so ergibt sich

p = g(1 + 0) = pf (0).
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Das liefert f (0) = 1. Somit sind alle Koeffizienten von g , außer dem höchsten, durch
p teilbar und das Absolutglied ist nicht durch p2 teilbar.Mit dem Satz von Eisenstein
erhalten wir, dass g irreduzibel ist.

Dies zusammenfassend erhalten wir:

Sei p eine ungerade Primzahl. Ist das reguläre pn-Eck konstruierbar, so ist n = 1
und p eine Fermatzahl, d.h. p = 2m + 1 für ein m ∈ N.

Satz VII.16

Beweis. Ist n ≥ 2, so ist nach Satz VII.10 a) auch das reguläre p2-Eck konstruierbar.
Nach Satz VII.15 und Satz VII.13 ist dann p(p − 1) eine 2-Potenz, was nicht möglich
ist. Also ist n = 1. Nach Satz VII.13 und Lemma VII.14 ist dann p − 1 eine 2-Potenz,
also ist p eine Fermatzahl.

Es gilt auch die Umkehrung, dass das reguläre p-Eck für p eine Fermatzahl kon-
struierbar ist.Der Beweis beruht wieder wesentlich auf Bemerkung a) aus KapitelVI
Seite 107.

Ist p eine Fermatprimzahl, so ist das reguläre p-Eck konstruierbar.Satz VII.17

Beweis. Sei � eine primitive p-te Einheitswurzel. Nach Lemma VII.14 ist dann
[Q(�):Q] = p − 1 = 2n. Es ist Q(�) Zerfällungskörper über Q von m�, da alle Ein-
heitswurzeln Potenzen von � sind. Sei G die zugehörige Galoisgruppe und g, h ∈ G.
Dann ist g(�) = �i und h(�) = �j für i, j geeignet.Also ist gh = hg , d.h.G ist abelsch.
Nach Satz VI.1 ist G transitiv auf den Nullstellen von m�. Ist g ∈ G mit g(�) = �, so
ist g die Identität auf Q(�). Also ist G� = 1. Nach Lemma V.15 ist dann |G| = p − 1.
Somit ist |G| eine 2-Potenz. Nach Satz V.18 gibt es eine Kette von Normalteilern

1 = N0 � · · ·� Nn = G, mit |Ni+1/Ni| = 2.

Zu jedem Normalteiler gehört nach der Bemerkung a) auf Seite 107 im vorherigen
Kapitel ein Zwischenkörper.Also ist

Q = K0 ⊆ · · · ⊆ Kn = Q(�).

Dabei ist Ki = Fix (Nn−i). Da Ni �= Ni+1 ist, ist Ki �= Ki−1. Da |G| = [Q(�):Q] ist, ist
[Ki:Ki−1] = 2.Wir bilden nun Ki ∩R. Dann ist [Ki ∩R:Ki−1 ∩R] ≤ 2.Also sind alle
Elemente in (Q(�) ∩ R)2 nach Satz VII.9 konstruierbar.

(0, cos 2π
p ) (sin 2π

p , cos 2π
p )
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Es ist cos 2�p = (�+ �̄)/2 ∈ Q(�)∩R.Damit ist (0, cos 2�p ) konstruierbar.Wennwir die
Senkrechte auf der y-Achse in (0, cos 2�p ) mit dem Einheitskreis schneiden, erhalten

wir (sin 2�
p , cos 2�p ).

Der hier gegebene Beweis geht auf Gauß zurück, der feststellte, dass das reguläre
17–Eck konstruierbar ist, und damit am 30.3.1796 ein 2000 Jahre altes Problem löste.
Die allgemeine Theorie findet sich in den Disquisitiones Arithmeticae.

Es ist übrigens

cos
2�

17
=
1

16

(
−1 +

√
17 +

√
34 − 2

√
17
)

+
1

16

⎛
⎝
√
68 + 12

√
17 − 16

√
34 + 2

√
17 − 2(1 −

√
17)

√
34 − 2

√
17

⎞
⎠ .

Übungsaufgaben

VII.1 Die folgenden Konstruktionen sind mit Zirkel und Lineal durchzuführen:

a) Konstruiere aus P0 = {(0, 0), (1, 0)} den Punkt (0, √5).
b) Sei g eine Gerade und P = (x, y) ein Punkt, der nicht auf g liegt. Konstruiere die

Parallele zu g durch den Punkt P.

VII.2 Beschreibe eine Konstruktion des regulären 5-Ecks.

VII.3 Zeige, dass ein Winkel ˛ mit cos(˛) = 11
16 mit Zirkel und Lineal in drei gleiche Teile

geteilt werden kann.



VIII Summe von
Quadraten

In diesem und dem nächsten Kapitel kommen wir wieder zur Zahlentheorie zurück.
Wir werden sehen, dass wir unsere Resultate aus der Algebra gut anwenden können.
Zunächst beschäftigen wir uns mit der folgenden Frage:

Welche natürlichen Zahlen n sind Summe von zwei Quadraten ganzer Zahlen, also

n = x2 + y2.

Wie wir bereits im Beispiel auf Seite 71 gesehen haben, ist n ≡ 1(mod 4) notwendig.
Wie wir an n = 21 sehen können, ist das nicht hinreichend.

Betrachten wir zunächst eine Variante

n = x2 − y2,

so sehen wir
n = x2 − y2 = (x − y)(x + y).

Ist n = m1m2, so setzem1 = x − y,m2 = x + y. Dann ist x = m1+m2
2 , y = m2−m1

2 .

Die Idee hierbei war, aus der additiven Form des Problems eine multiplikative
Form zu machen. Dann haben wir die Zahlentheorie mit der Primfaktorzerlegung
zur Verfügung. Wir suchen somit eine Faktorisation von x2 + y2. Diese finden wir
nicht in Z. Ein allgemeines und sehr effektives Verfahren in der Zahlentheorie ist es,
in solchen Fällen den Zahlbereich zu erweitern. Dies machen wir hier auch so und
gehen zu Z[i] über, wo wir eine Faktorisation haben:

n = x2 + y2 = (x + iy)(x − iy).

Dies bedeutet, dass n eine Norm in Z[i] ist.Also ist unsere Frage jetzt:

Welche natürlichen Zahlen sind Normen in Z[i]?

Es kommt uns zur Hilfe, dass die Norm multiplikativ ist. Ist also

n = x21 + y21,m = x22 + y22,

so ist
nm = |(x1 + iy1)(x2 + iy2)|2 = x23 + y23

mit x3 = x1x2 − y1y2 und y3 = x1y2 + x2y1.

 Elementare Algebra und Zahlentheorie
© Springer Basel AG 2012
G. Stroth,



124 VIII Summe von Quadraten

Ist umgekehrt n = x2 + y2 undm ein Teiler von n, so muss nichtm = x21 + y21 sein,
wie das Beispiel n = 212 = 212 + 02 und m = 21 zeigt. Dennoch gibt es etwas, das
annähernd einer Umkehrung gleichkommt.

Sei dazu zunächst p eine Primzahl, die auch in Z[i] prim ist. Sei weiter

p ein Teiler von n = x2 + y2 = (x + iy)(x − iy).

Da p prim in Z[i] ist, ist p ein Teiler von x + iy oder x − iy.Wir können annehmen,
dass x + iy von p geteilt wird. Dann ist

x + iy = p(a + ib).

Also ist x = pa und y = pb, d.h., p teilt x und y. Dann teilt p2 auch x2 + y2 = n. Nun
ist

n
p2
=
(x
p

)2
+
(y
p

)2
.

Damit ist auch n
p2 eine Summe von zwei Quadraten. Indem wir dies so weiter fortset-

zen, erhalten wir, dass die Primzahlen aus Z, die prim in Z[i] bleiben, mit geradem
Exponenten in der Primfaktorenzerlegung von n auftauchen. Dies hilft uns aller-
dings noch wenig, solange wir die Frage, welche Primzahlen in Z bleiben prim in
Z[i], nicht beantworten können.

Schauen wir uns erst einmal den umgekehrten Fall an. Sei also p prim in Z, aber
nicht in Z[i].

Dann ist
p = (a + ib)(c + id),

wobei a+ id und c+ id keine Einheiten sind,d.h.a2 +b2 �= 1 �= c2 +d2.Dann erhalten
wir mit unserem alten Trick

p2 = pp̄ = (a + ib)(a − ib)(c + id)(c − id) = (a2 + b2)(c2 + d2).

Die Primfaktorenzerlegung in Z liefert mit a2 + b2 �= 1 �= c2 + d2 dann

p = a2 + b2 = c2 + d2.

Also ist p = 2 = 12 + 12 oder p ≡ 1(mod 4) nach dem Beispiel a) auf Seite 71 in
Kapitel IV. Somit bleibt jede Primzahl, die kongruent 3 modulo 4 ist, prim in Z[i].
Damit erhalten wir erstens

Ist p eine Primzahl in Z, die nicht prim in Z[i] ist, so ist p eine Summe von zwei
Quadraten.

Lemma VIII.1

und zweitens

Ist n = x2 + y2, so kommt jeder Primteiler p ≡ 3(mod 4) von n in der Primfaktor-
zerlegung von n mit geradem Exponenten vor.

Satz VIII.2
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Es ist 2 = 12 + 12.Um zu demonstrieren, dass die Bedingung in SatzVIII.2 auch hin-
reichend ist, wollen wir jetzt zeigen, dass jede Primzahl p mit p ≡ 1(mod 4) eine
Norm in Z[i] ist. Dazu machen wir folgende Überlegung:

Sei −1 ein Quadrat modulo p, also

x2 ≡ −1(mod p)

hat eine Lösung w ∈ Z. Dann ist

p ein Teiler von w2 + 1 = (w + i)(w − i).

Ist p prim in Z[i], so können wir ohne Einschränkung der Allgemeinheit annehmen,
dass p ein Teiler vonw+ i ist.Also p(a+bi) = w+ i.Dann ist pb = 1 einWiderspruch
dazu,dass p eine Primzahl ist.Also ist p kein Primelement inZ[i].Nach LemmaVIII.1
ist dann p = a2 + b2 mit geeigneten a, b.

Es genügt also zu zeigen, dass für p ≡ 1(mod 4) stets −1 ein Quadrat modulo p
ist.

Wir betrachten dazu diemultiplikative Gruppe vonZ/pZ.Nach Satz III.7 ist diese
zyklisch von der Ordnung p − 1. Sei g ein Erzeuger.Da (p − 1)/4 ∈ N ist, können wir
h = gp−1/4 bilden. Dann ist o(h) = 4, d.h., h ist Nullstelle von x4 − 1, aber nicht von
x2 − 1. Also ist h Nullstelle von x2 + 1. d.h. h2 = −1. Damit haben wir, dass −1 ein
Quadrat modulo p ist.Wir haben also bewiesen:

Ist p eine Primzahl mit p ≡ 1(mod 4), so ist −1 ein Quadrat modulo p. Lemma VIII.3

Dies liefert jetzt das gewünschte Resultat:

Es ist n = x2 + y2 mit n ∈ N genau dann, wenn jede Primzahl p mit p ≡ 3(mod 4)
in der Primfaktorzerlegung von n mit geradem Exponenten vorkommt.

Satz VIII.4

Dieses sehr effektive Verfahren, den Zahlenbereich zu erweitern, um multiplikative
Darstellungen zu bekommen, kann man auch bei anderen Fragestellungen anwen-
den.

Betrachten wir die Fermat-Gleichung

xp + yp = zp, x, y, z ∈ N

mit einer ungeraden Primzahl p.Wir können diese umschreiben in der Form

xp = zp − yp.

Sei nun � eine p-te Einheitswurzel ungleich 1. Dann ist

zp − yp = (z − y)(z − �y)(z − �2y) · · · (z − �p−1y).
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Also ist
xp = (z − y)(z − �y)(z − �2y) · · · (z − �p−1y).

Dies ist eine Zerlegung in dem Ring

Z[�] = {a0 + a1� + a2�2 + · · · + ap−2�p−2 | ai ∈ Z}.

Da �p−1 = −(1� + · · · + �p−2) ist, ist dies in der Tat ein Ring. Nun haben wir ei-
ne Zerlegung und können versuchen zu zeigen, dass die einzelnen Faktoren selbst
p-te Potenzen sind, was gehen sollte, wenn wir die Primfaktoren (in Z[�]) auf bei-
den Seiten vergleichen. Dies könnte dann einen Beweis für p > 2 liefern, dass die
Fermat-Gleichung keine Lösungen x, y, z ∈ N hat. Leider hat dieser Ring im Allge-
meinen für p > 19 keine eindeutige Primfaktorzerlegung mehr. Das führte Ernst
Kummer1 dazu, sogenannte ideale Zahlen einzuführen. Dies waren nicht mehr ein-
zelne Elemente eines Ringes, sondern Teilmengen.Hieraus ist dann der Begriff Ideal
entstanden.Kummer hat gezeigt, dass sich algebraische Zahlen, und Z[�] ist ein Bei-
spiel dafür, wenn sie sich zwar nicht eindeutig in Primzahlen zerlegen lassen, doch
eindeutig in diese idealen Zahlen faktorisieren lassen. Hiermit hat er dann den Satz
von Fermat für sogenannte reguläre Primzahlen (unter 100 sind dies alle außer 37,
59 und 67) bewiesen. In derWelt der Ideale übernehmen die Primideale die Rolle der
Primelemente, und die Begriffe irreduzibles Ideal und Primideal fallen hier wieder
zusammen.

Wir haben gesehen,dass jede Primzahl pmit p ≡ 1(mod 4) eine Summe von zwei
Quadraten ist. Es gilt aber sogar:

Sei p ≡ 1(mod 4), p prim. Dann ist die Darstellung p = x2 + y2 mit x, y ∈ N∪{0}
bis auf die Reihenfolge eindeutig.

Satz VIII.5

Beweis. Sei p = x2 + y2 = a2 + b2. Wir können x, b ungerade und y, a gerade
annehmen. Es ist

x2a2 − y2b2 = (x2 + y2 − y2)a2 − y2b2 = (x2 + y2)(a2 − y2).

Da p = x2 + y2 ist, teilt p dann x2a2 − y2b2.Also ist

p ein Teiler von (xa − yb)(xa + yb).

Es sind alle x, y, a, b <
√
p. Sei zunächst p ein Teiler von ay + yp.Wir haben dann

0 < xa + yb < 2p. Also ist p = xa + yb. Aber 2 teilt xa + yb, ein Widerspruch zu
xa + yb < 2p. Somit ist p ein Teiler von xa − yb. Ist xa − yb > 0, so erhalten wir wie
eben xa − yb = p, aber xa − yb ist gerade, ein Widerspruch. Das liefert xa − yb = 0.
Da ggT (x, y) = 1 ist, folgt x teilt b und y teilt a, d.h. x = b, y = a.

1Ernst Eduard Kummer (*29.1.1810 Sorau, †14.5.1893 Berlin) war zunächst 10 Jahre lang Lehrer
an einem Gymnasium, bevor er Nachfolger von Dirichlet in Berlin wurde. Hauptarbeitsgebiete waren
algebraische Geometrie und Zahlentheorie. Bekannt ist die Kummersche Fläche. Durch seine Beiträge
zum Fermatschen Satz wurde er zumWegbereiter der Klassenkörpertheorie und damit der algebraischen
Zahlentheorie.
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Interessant ist, dass auch die Umkehrung gilt. Der Beweis sei dem Leser überlassen.

Sei g ∈ N, g ≡ 1(mod 4), g �= 1. Ist g auf genau eine Art als Summe zweier
Quadrate darstellbar, g = x2 + y2, x, y ∈ N ∪ {0}, ggT (x, y) = 1, so ist g eine
Primzahl.

Satz VIII.6

Man kann sich nun fragen,wie das mit der Summe von drei Quadraten aussieht.Die
Antwort hierauf ist nicht ganz einfach. Überraschend ist aber, dass Lagrange 1770
zeigen konnte: Jede natürliche Zahl ist Summe von vier Quadraten.

Nun kann man ja auch anstelle Quadraten Kuben, Biquadrate oder allgemein
n-te Potenzen betrachten. Sei k ≥ 2. Bezeichne mit g(k) die kleinste natürliche Zahl,
so dass sich jede natürliche Zahl als Summe von g(k) vielen, nicht negativen k–ten
Potenzen schreiben läßt. Die Bestimmung dieser Funktion g(k) ist als Waring2-

Problem bekannt. Indem man die Zahl n = 2k�( 32)k� − 1 als Summe von k-ten
Potenzen schreibt, kann man elementar zeigen, dass

g(k) ≥ 2k +

⌊(
3

2

)k
⌋
− 2

ist. Die Vermutung ist, dass hier immer Gleichheit besteht. Dies ist bewiesen für
k ≤ 471600000, also g(2) = 4, g(3) = 9, g(4) = 19 usw. Für k > 471600000 ist
bekannt, dass es höchstens endlich viele k gibt, für die die Gleichheit nicht besteht.

Wir hatten in LemmaVIII.3 gesehen, dass für p ≡ 1(mod 4) stets −1 ein Quadrat
modulo p ist. Dies bedeutet, dass x2 + 1 für diese p modulo p nicht irreduzibel
ist. Ist aber p ≡ 3(mod 4), so ist es irreduzibel. Anderenfalls wäre −1 ein Quadrat
modulo p. Damit haben wir gesehen, dass der in Beispiel c) auf Seite 27 angegebene
Algorithmus für das irreduzible Polynom x2 + 1 ∈ Z[x] unendlich oft ein reduzibles
Polynom liefert. Das heißt, es genügt dort nicht, die Primzahl möglichst groß zu
wählen.

Die Frage, ob −1 ein Quadrat modulo p ist, ist nur ein Spezialfall der Frage, ob
x2 ≡ a(mod p) lösbar ist, wobei a vorgegeben ist.

Für ein konkretes p ist dies sicherlich kein Problem.Wir können die Frage durch
Ausprobieren beantworten. Interessant ist aber die umgekehrte Frage. Für welche p
ist a ein Quadrat modulo p. Für a = −1 hatten wir dies bereits beantwortet.

Sei p eineungeradePrimzahl.Dannhat x2 ≡ −1(mod p) genaudann eineLösung,
falls p ≡ 1(mod 4) ist.

Lemma VIII.7

Im nächsten Kapitel wollen wir uns der allgemeineren Frage zuwenden.Wir werden
dort einen der wichtigsten Sätze der Zahlentheorie beweisen, das quadratische Re-
ziprozitätsgesetz, das besagt, dass dieses scheinbar unendliche Problem (für welche
unendlich vielen p?) inWirklichkeit ein endliches ist.

2Edward Waring (*1736 Old Heath, †15.8. 1798 Pontesbury) war ab 1760 Professor in Cambridge,
seine Arbeitsgebiete waren Zahlentheorie und Geometrie.
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Übungsaufgaben

VIII.1 a) Sei G eine endliche Gruppe. Zeige: Sind A,B Teilmengen von G mit
|A| > |G|/2 < |B|, so ist G = AB. (Hinweis: für g ∈ G ist gB−1 ∩ A �= ∅.)

b) In einem endlichen Körper ist jedes Element Summe von zwei Quadraten.

VIII.2 Zeige:

a) n = 2k und n = 5 · 2k haben keine Darstellung als n2 = x2 + y2 + z2 mit x, y, z ∈ Z,
xyz �= 0.

b) Es gibt keine allgemeingültige Gleichung der folgenden Form in Z:

(x21 + x22 + x23)(y
2
1 + y22 + y23) = z21 + z22 + z23 .

VIII.3 Zeige:

a) Sind x, y ∈ IN , so dass x2 + y2 von 4 geteilt wird, so sind x und y beide gerade.

b) Es gibt keine x, y, z ∈ IN mit x2 + y2 + z2 = 2xyz.
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Reziprozitätsgesetz

In diesemKapitel wollen wir unsmit der Lösung quadratischer Gleichungenmodulo
einer Primzahl p beschäftigen. Es ist klar, dass wir uns nur der Frage des Quadrat-
wurzelziehens widmen müssen. Wir knüpfen an Lemma VIII.7 an und betrachten
den allgemeinen Fall: Sei p eine ungerade Primzahl, a ∈ Zmit ggT (p, a) = 1, wann
hat

x2 ≡ a(mod p)

eine Lösung?

Dies ist nicht ganz eindeutig formuliert.Wir können z.B. p festhalten und dann
nach den Zahlen a fragen. Dies ist sicherlich durch einfaches Probieren lösbar.Wir
können aber auch a festhalten und nach den Primzahlen p fragen.Dies ist sicherlich
nicht so einfach.

Weiter ist in dem Zusammenhang nur p ungerade sinnvoll, da modulo 2 jedes a
ein Quadrat ist. Sei also ab jetzt stets p ungerade.Wir halten zunächst einmal p fest
und betrachten die Quadrate

12, 22, . . . , (p − 1)2.

Ist 1 ≤ i ≤ j ≤ p − 1 und
i2 ≡ j2(mod p),

so ist p ein Teiler von (i − j)(i + j). Also ist i ≡ j(mod p) oder i ≡ p − j(mod p).
Somit kommt jedes Quadrat zweimal vor. Damit ist die Hälfte der Reste modulo p
ein Quadrat.

Dies bedeutet, dass wir für die Hälfte der 1 ≤ a ≤ p − 1 eine Lösung von
x2 ≡ a(mod p) haben, für die andere nicht.

Ein erstes notwendiges Kriterium ist nun

Seien p eine ungerade Primzahl und a ∈ Zmit ggT (a, p) = 1. Hat

x2 ≡ a(mod p)

eine Lösung x, so ist a
p−1
2 ≡ 1(mod p).

Lemma IX.1

Beweis. a
p−1
2 ≡ x2

p−1
2 ≡ xp−1 ≡

(IV.14)
1(mod p).

 Elementare Algebra und Zahlentheorie
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Gilt aber auch die Umkehrung? Folgt aus a
p−1
2 ≡ 1(mod p), dass a ein quadrati-

scher Rest ist?

Seien p eine ungerade Primzahl und a ∈ Zmit ggT (a, p) = 1. Hat

x2 ≡ a(mod p)

keine Lösung, so ist a
p−1
2 ≡ −1(mod p).

Lemma IX.2

Beweis. Nach dem kleinen Satz IV.14 von Fermat ist (a
p−1
2 )2 ≡ 1(mod p). Also ist

a
p−1
2 eine Nullstelle von x2 − 1 modulo p. Das liefert a

p−1
2 ≡ ±1(mod p).Nun gilt aber

bereits a
p−1
2 ≡ 1(mod p) für p−1

2 Werte von a. Da x
p−1
2 − 1 modulo p höchstens p−1

2

viele Nullstellen hat, gilt für alle anderenWerte a
p−1
2 ≡ −1(mod p).

Damit haben wir nun ein notwendiges und hinreichendes Kriterium:

Seien p eine ungerade Primzahl und a ∈ Z mit ggT (a, p) = 1. Dann gibt es für
x2 ≡ a(mod p) genau dann eine Lösung x, falls a

p−1
2 ≡ 1(mod p) ist.

Lemma IX.3

Betrachte x2 ≡ 7(mod 31). Es ist 7(31−1)/2 = 715 zu berechnen.

72 = 49 ≡ 18 (mod 31)
74 ≡ 182 ≡ 324 ≡ 14 (mod 31)
78 ≡ 142 = 196 ≡ 10 (mod 31)
716 ≡ 102 = 100 ≡ 7 (mod 31).

Also ist 715 ≡ 1(mod 31). Das heißt, x2 ≡ 7(mod 31) hat eine Lösung.
Eine Möglichkeit nun eine Lösung zu finden ist, stets p zu addieren, bis man

ein Quadrat hat.Also

x2 ≡ 7 ≡ 38 ≡ 69 ≡ 100 ≡ 102(mod 31).

Somit sind x = 10 und x = 21 die beiden Lösungen.

Beispiel

Legendre1-Symbol. Sei p eine ungerade Primzahl und a ∈ Z, so dass a nicht
von p geteilt wird. Setze(

a
p

)
=
{

1 falls x2 ≡ a(mod p) eine Lösung hat
−1 falls x2 ≡ a(mod p) keine Lösung hat

Ist p ein Teiler von a, so setze ( ap ) = 0.Wir nennen (
a
p ) das Legendre-Symbol.

Definition

1Adrien-Marie Legendre (*18.9.1752 Paris, †9.1.1833 Paris), Professor in Paris mit Arbeiten zur Zah-
lentheorie,Variationsrechnung, partiellen Differentialgleichungen, elliptischen Integralen.
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Wir können nun Lemma IX.3 umformulieren als:

Ist p ungerade, so ist (
a
p

)
≡ a

p−1
2 (mod p).

Lemma IX.4

Es ergibt sich die Frage,wie wir ( ap ) effektiv berechnen können, und insbesonde-
re, wie wir zu gegebenem a die p mit ( ap ) = 1 bestimmen können. Dazu wollen wir
zunächst einmal ein paar Rechenregeln für das Legendre-Symbol aufstellen.

Seien p eine ungerade Primzahl und a, b ∈ Z. Dann gilt

a) Ist a ≡ b(mod p), so ist ( ap ) = (
b
p ).

b) Ist p kein Teiler von a, so ist ( a
2

p ) = 1.

c) Es ist ( abp ) = (
a
p )(

b
p ).

Lemma IX.5

Beweis.

a) Ist p ein Teiler von a, so ist p auch ein Teiler von b.Damit ist dann ( ap ) = 0 = (
b
p ).

Sei nun ggT (p, a) = 1. Es hat x2 ≡ a(mod p) genau dann eine Lösung, wenn
x2 ≡ b(mod p) eine hat, was ( ap ) = (

b
p ) liefert.

b) x2 ≡ a2(mod p) hat die Lösung x = a.

c) Ist p ein Teiler von a oder b, so ist ( abp ) = 0 = (
a
p ) bzw. (

ab
p ) = 0 = (

b
p ) und c)

gilt. Sei also p kein Teiler von ab. Nach Lemma IX.4 ist

(
ab
p

)
≡ (ab)

p−1
2 ≡ a

p−1
2 b

p−1
2 ≡

(
a
p

)(
b
p

)
(mod p).

Da ( ab )(
b
p ) = ±1 und ( abp ) = ±1 ist, folgt aus der Kongruenz modulo p die Gleichheit.

Wir wollen nun den Hauptsatz dieses Paragraphen formulieren.

Quadratisches Reziprozitätsgesetz2. Seien p, q ungerade Primzahlen. Dann ist(
p
q

)(
q
p

)
= (−1)

(p−1)(q−1)
4 .

Satz IX.6

2Dies ist einer der wichtigsten Sätze. Gauß hat es theorema fundamentale genannt und selbst acht
wesentlich verschiedene Beweise angegeben. Inzwischen sind mehr als 150 bekannt (siehe Pieper, 1978
[23]).
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Sei q gegeben.Die Frage ist, für welche p die Zahl q ein Quadratmodulo p ist.Dies
ist ein unendliches Problem.Aber Satz IX.6 besagt,dass dies nicht ganz stimmt,denn
wir müssen nur feststellen,welche p für das gegebene q ein Quadrat sind.Davon gibt
es aber nur endlich viele Kongruenzklassen, also doch ein endliches Problem.

Bevor wir Satz IX.6 beweisen, folgt ein Beispiel, das dessen Nutzen zeigt.

Hat x2 ≡ 85(mod 97) eine Lösung?(
85

97

)
=
(
17 · 5
97

)
=

(IX.5)

(
17

97

)(
5

97

)
.

Da 4 sowohl 17 − 1 als auch 97 − 1 teilt, ist nach Satz IX.6(
17

97

)
=
(
97

17

)
und

(
5

97

)
=
(
97

5

)
.

Es ist (
97

17

)
=

(IX.5)

(
12

17

)
=
(
4 · 3
17

)
=

(IX.5)

(
4

17

)(
3

17

)
=

(IX.5)

(
3

17

)

=
(IX.6)

(
17

3

)
=
(
2

3

)
= −1.

(
97

5

)
=

(
2

5

)
= −1.

Also ist ( 8597 ) = (−1)(−1) = 1. Damit ist 85 ein Quadrat modulo 97.
Dieses Beispiel zeigt auch, warum Satz IX.6 „Reziprozitätsgesetz“ genannt

wird.
Schneller wäre es wie folgt gegangen:(

85

97

)
=

(
−12

77

)
=
(
−1

97

)(
4

97

)(
3

97

)
=
(
−1

97

)(
3

97

)
.

(
3

97

)
=

(
97

3

)
=
(
1

3

)
= 1.

Also ist
(
85
97

)
=
(
−1
97

)
. Nach LemmaVIII.7 ist ( −197 ) = 1.

Beispiel

Wir formulieren LemmaVIII.7 neu.

(−1p ) = (−1)
p−1
2 , d.h. (

−1

p

)
=
{

1 für p ≡ 1(mod 4)
−1 für p ≡ 3(mod 4)

Lemma IX.7

Wir wollen nun den Beweis von Satz IX.6 angehen. Dies geschieht in mehreren
Schritten. Sei dazu a ein Rest modulo p mit ggT (a, p) = 1.Wir betrachten die Viel-
fachen

1 · a, 2 · a, . . . , p − 1
2

· a
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und definieren 1 ≤ rk ≤ p−1
2 durch

k · a ≡ ekrk(mod p), k = 1, . . . ,
p − 1
2

, mit ek = ±1.

Wir wollen uns zunächst einmal ansehen, ob die rk hierbei mehrmals vorkom-
men.Dieses könnte auf zweierlei Weise geschehen. Seien dazu 1 ≤ k, l ≤ (p − 1)/2.

Die eine Möglichkeit wäre

ka ≡ rk(mod p)

la ≡ −rk(mod p).

Dann ist aber p ein Teiler von k + 1.Da 1 ≤ k + l < p ist, kann das nicht sein.

Die andere Möglichkeit ist

ka ≡ rk(mod p)

la ≡ rk(mod p).

Dann ist p ein Teiler von k− l,was k = l liefert. Somit kommt jedes rk mit geeignetem
Vorzeichen genau einmal vor. Es sind ±a, . . . ,± p−1

2 a alle möglichen Reste modulo
p, die nicht Null sind.Also ist

{r1, . . . , r p−1
2

} = {1, . . . , p − 1
2

}.

Wir erhalten jetzt mit diesen Bezeichnungen eine erste Formel für die Berechnung
von ( ap ).

Sei p eine Primzahl mit ggT (a, p) = 1. Dann ist ( ap ) = e1e2 · · · e p−1
2

. Lemma IX.8

Beweis.

a
p−1
2 · 1 · 2 · · · (p−1)2 ≡ e1r1e2r2 · · · e p−1

2
r p−1

2

≡ e1 · · · e p−1
2

(
1 · 2 · · · (p−1)2

)
(mod p).

Somit ist (
a
p

)
≡
(IX.4)

a
p−1
2 ≡ e1 · · · e p−1

2
(mod p).

Da die ei = ±1 sind, ist Kongruenz dasselbe wie Gleichheit.
Damit haben wir das Problem, das Legendre-Symbol zu berechnen, auf die Be-

rechnung der ek verlagert. Dies wollen wir nun angehen. Es ist

ak = u · p + ekrk, 0 < rk ≤ p − 1
2

, mit geeignetem u.
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Also ist
2ak = 2up + 2ekrk

und
2ak
p
= 2u + ek

2rk
p

.

Dabei ist
2rk
p

≤ p − 1
p

< 1.

Das liefert 2akp = 2u ± �mit 0 < � < 1, wobei das Plus-Zeichen für ek = 1 und das
Minus-Zeichen für ek = −1 steht.

Somit haben wir

ek = +1 für
⌊
2ak
p

⌋
gerade

ek = −1 für
⌊
2ak
p

⌋
ungerade.

Also ist
ek = (−1)

� 2akp �
.

Damit haben wir die ek berechnet.Wir wollen nun das Legendre-Symbol berechnen.
Sei dazu zunächst a ungerade. Dann gilt für das Legendre-Symbol:

(
2a
p

)
=

(
2a + 2p

p

)
=
(
4( a+p2 )

p

)
=
( a+p

2

p

)

= (−1)
∑ p−1

2
k=1 � (a+p)kp � = (−1)

∑ p−1
2

k=1 � ak
p �+∑ p−1

2
k=1 k

.

Es ist
p−1
2∑

k=1

k =
1

2

(
p − 1
2

)(
p + 1
2

)
=

p2 − 1
8

.

Also gilt für das Legendre-Symbol:

(
2a
p

)
= (−1)

p2−1
8 +

∑ p−1
2

k=1 � ak
p �

.

Damit können wir nun zunächst den Spezialfall a = 1 behandeln.

(
2

p

)
= (−1)

p2−1
8 also

(
2

p

)
=
{

1 für p ≡ 1, 7(mod 8)
−1 für p ≡ 3, 5(mod 8)

Lemma IX.9
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Beweis. Setze a = 1.Dann haben wir gerade gezeigt(
2

p

)
=
(
2 · 1
p

)
= (−1)

p2−1
8 +

∑ p−1
2

k=1 � k
p �

.

Da k < p ist, ist � k
p� = 0.Das ist die Behauptung.

Wir können Lemma IX.9 zur Berechnung von ( 2ap ) anwenden, indem wir die
Multiplikativität des Legendre-Symbols benutzen(

2a
p

)
=
(
2

p

)(
a
p

)
.

Damit haben wir eine neue Formel für ( ap ).

Sei p eine Primzahl mit ggT (a, p) = 1. Dann ist(
a
p

)
= (−1)

∑ p−1
2

k=1 � ak
p �

.

Lemma IX.10

Jetzt können wir den Beweis des Hauptsatzes angehen.

Beweis von Satz IX.6: Nach Lemma IX.10 ist(
p
q

)
= (−1)

∑ q−1
2

y=1 � py
q � = (−1)

∑ q−1
2

y=1 � p
q y�.

Es ist � p
qy�dieAnzahlder ganzenZahlen zwischen1und p

qy.Isty ≤ q−1
2 ,so ist

p
qy <

p
2 .

Also liegen die Zahlen, die kleiner oder gleich p
qy sind, im Bereich zwischen 1 und

p−1
2 . Somit zählt

∑ q−1
2

y=1� py
q � die Paare (x, y) mit x ∈ {1, . . . , p−1

2 }, y ∈ {1, . . . , q−1
2 }, für

die x <
p
qy ist, oder anders ausgedrückt, für die qx < py ist. Sei N die Anzahl dieser

Paare. Dann ist (
p
q

)
= (−1)N .

Genauso ist (
q
p

)
= (−1)M,

wobeiM die Anzahl der Paare (x, y) mit x ∈ {1, . . . , p−1
2 } und y ∈ {1, . . . , q−1

2 } ist, so
dass py < qx ist. Somit ist (

p
q

)(
q
p

)
= (−1)N+M .

Hierbei ist N +M die Anzahl der Paare (x, y) ∈ {1, . . . , p−1
2 } × {1, . . . , q−1

2 } für die
py > qx oder py < qx ist. Da aus py = qx stets q|y folgen würde, aber y < q
ist, sind dies aber alle Paare (x, y) mit x = 1, . . . , p−1

2 und y = 1, . . . , q−1
2 . Also ist

N +M = p−1
2 · q−1

2 . Damit ist Satz IX.6 bewiesen.
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Nun ist es sehr mühselig ( ap ) zu berechnen, wenn man dazu zunächst a in seine
Primfaktoren zerlegen muss, wie im Beispiel auf Seite 132 geschehen, was nicht
einfach ist.Schließlich beruht die Sicherheit von gewissenVerschlüsselungssystemen
darauf, dass die Primfaktorzerlegung ein schwieriges Problem ist, siehe Seite 71.Um
diesem Problem aus demWeg zu gehen, erweitern wir die Definition des Legendre-
Symbols.

Jacobi3-Symbol. Sei n eine ungerade Zahl und sei n = p1 · · · pk mit Primzahlen
pi.Wir definieren das Jacobi-Symbol ( an ) für a ∈ Z durch

(
a
n

)
=
(
a
p1

)
· · ·

(
a
pk

)
.

Hierbei sind die ( api ) die Legendre-Symbole.

Definition

Dies ist eine rein formale Definition. Obwohl sich das Jacobi-Symbol genauso
wie das Legendre-Symbol verhält, wie wir gleich sehen werden, beantwortet es die
Frage, ob a ein Quadrat modulo n ist, nicht. Betrachte dazu

(
2

15

)
=
(
2

3

)(
2

5

)
= 1.

Die Quadrate modulo 15 sind: 12, 22 = 4, 32 = 9, 42 ≡ 1(mod 15), 52 ≡ 10(mod 15),
62 ≡ 6(mod 15), 72 ≡ 4(mod 15).Also ist 2 kein Quadrat modulo 15.

Für das Jacobi-Symbol gelten die gleichen Rechenregeln wie für das Legendre-
Symbol.

Seien a, b ∈ Z, n ∈ N ungerade.

a) Ist a ≡ b(mod n), so ist ( an ) = (
b
n ).

b) ( 1n ) = 1, (
−1
n ) = (−1)

n−1
2 .

c) Ist ggT (n, ab) = 1, so ist ( abn ) = (
a
n )(

b
n ).

d) Ist ggT (n, a) = 1, so ist ( a
2

n ) = 1.

Lemma IX.11

Beweis. a) Dies folgt direkt aus Lemma IX.5 a) und der Definition von ( an ).

3Carl Gustav Jacob Jacobi (*10.12.1804 Potsdam, †18.2.1851 Berlin) war Professor in Königsberg. Er
arbeitete sowohl in derAnalysis,mathematischen Physik als auch in der Zahlentheorie.Als Erster wendete
er elliptische Funktionen in der Zahlentheorie an.Viele Begriffe in der Mathematik tragen seinen Namen,
z.B Jacobi-Determinante, Jacobi-Theta-Funktion, Jacobi-Integral. Jacobi gab mehrere neue Beweise des
quadratischen Reziprozitätsgesetzes.Auf dem Mond gibt es einen Krater, der nach ihm benannt wurde.
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b) ( 1n ) = (
1
p1
) · · · ( 1pn ) = 1.

Sind x, y ungerade, so ist stets 4 ein Teiler von (x − 1)(y − 1) = xy − x− y + 1.Also ist

xy ≡ x + y − 1(mod 4)

und dann
xy − 1 ≡ (x − 1) + (y − 1)(mod 4).

Sei nun n = p1 · · · pk. Dann ist

p1p2 · · · pk − 1 ≡ p1 − 1 + p2 − 1 + · · · pk − 1(mod 4).

Also ist n−1
2 ≡ ∑k

i=1
pi−1
2 (mod 2).

Nun ist (
−1

n

)
=
(
−1

p1

)
· · ·

(
−1

pk

)
=

(IX.4)
(−1)

∑k
i=1

pi−1
2 = (−1)

n−1
2 .

c), d) Diese folgen aus Lemma IX.5 b) bzw. c).

Sei n ∈ N ungerade. Dann ist ( 2n ) = (−1)
n2−1
8 . Satz IX.12

Beweis. Sind x, y ungerade, so ist 16 ein Teiler von (x2 − 1)(y2 − 1).Also ist

x2y2 ≡ x2 + y2 − 1(mod 16)

und dann
x2y2 − 1 ≡ (x2 − 1) + (y2 − 1)(mod 16).

Sei nun n = p1 · · · pk mit Primzahlen pi . Dann erhalten wir

n2 − 1 ≡ (p21 − 1) + · · · + (p2k − 1)(mod 16).

Also ist n2−1
8 ≡ ∑k

i=1
p2i −1
8 (mod 2). Damit erhalten wir(

2

n

)
=
(
2

p1

)
· · ·

(
2

pk

)
=

(IX.9)
(−1)

∑k
i=1

p2i −1

8 = (−1)
n2−1
8 .

Auch das Analogon zum quadratischen Reziprozitätsgesetz gilt.

Sind m und n ungerade und teilerfremd, so ist(
m
n

)
= (−1)

m−1
2 · n−12

(
n
m

)
.

Satz IX.13
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Beweis. Seim = q1 · · · qt und n = p1 · · · pk mit Primzahlen pi, qi. Es ist(
m
n

)
=

(
q1 · · · qt
p1 · · · pk

)
=
(
q1 · · · qt

p1

)
· · ·

(
q1 · · · qt

pk

)

=
t∏

i=1

k∏
j=1

(
qi
pj

)
=

(IX.6)

k∏
j=1

t∏
i=1

(
pj
qi

)
(−1)

(
pj−1

2

)(
qi−1
2

)

=
(
n
m

)
(−1)

∑k
j=1

∑t
i=1

(
pj−1

2

)(
qi−1
2

)

=
(
n
m

)
(−1)

(∑k
j=1

pj−1

2

)(∑t
i=1

qi−1
2

)
.

Wie wir im Beweis von Lemma IX.11 gesehen haben, ist

∑k
j=1(

pj−1
2 ) ≡ n−1

2 (mod 2) und∑t
i=1(

qi−1
2 ) ≡ m−1

2 (mod 2).

Also ist
(
m
n

)
=
(
n
m )(−1)

n−1
2 ·m−12 .

Wir wollen nun das Jacobi-Symbol dazu benutzen, das Legendre-Symbol zu be-
rechnen. Immerhin ist jedes Legendre-Symbol auch ein Jabobi-Symbol.Wir können
daher die Regeln für Jacobi-Symbole benutzen, um

(
a
p

)
zu berechnen, falls p eine

Primzahl ist, ohne vorher die Primfaktorzerlegung von a bestimmen zu müssen.

Es soll das Legendre-Symbol
(
28559
46237

)
berechnet werden.

(
28559

46237

)
=

(IX.13)

(
46237

28559

)
=

(IX.11)

(
17678

28559

)
=

(IX.11)(
2

28559

)(
8839

28559

)
=

(IX.12)
−
(
28559

8839

)

= −
(
2042

8839

)
= −

(
2

8839

)(
1021

8839

)

= −
(
1021

8839

)
= −

(
8839

1021

)
= −

(
671

1021

)
= −

(
1021

671

)
= −

(
350

671

)

= −
(
14

671

)
= −

(
2

671

)(
7

671

)
= −

(
7

671

)
=
(
671

7

)
=
(
−1

7

)
= −1.

Also ist 28559 kein Quadrat modulo 46237.

Beispiel

Bisher haben wir nur die Frage betrachtet, ob a quadratischer Rest modulo einer
Primzahl ist. Wir wollen dies nun darauf ausdehnen, dass n nicht prim ist. Das
Jacobi-Symbol hilft dabei erst einmal nicht.
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Es war a
p−1
2 ≡ 1(mod p) genau für einen quadratischen Rest a modulo p mit

ggT (a, p) = 1.Bei beliebigem nwird dann vermutlich (wie beim Satz von Euler) p−1
durch ' (n) zu ersetzen sein.Wir können also erwarten, dass für amit ggT (a, n) = 1
wir genau dann einen quadratischen Rest haben, falls a' (n)/2 ≡ 1(mod n) ist. Wir
werden sehen, dass das fast richtig ist. Um dies zu untersuchen, werden wir zwei
Dinge tun.Istn = pn11 · · · pnrr die Primfaktorzerlegung vonn, sowerdenwir versuchen
die Frage, ob a ein quadratischer Rest modulo n ist, auf die zurückzuführen, ob a
quadratischer Rest modulo der pnii ist.Wir werden also zunächst den Fall betrachten,
dass n eine Primzahlpotenz ist. Für diese studieren wir die Einheitengruppe von
Z/nZ.

Seien p eine ungerade Primzahl und ˛ ∈ N. Dann gibt es ein c ∈ N mit
ggT (c, p) = 1 und op˛ (c) = ' (p˛), d.h., c + p˛Z ist Erzeuger der Einheiten-
gruppe von Z/p˛Z.

Satz IX.14

Beweis. Wie im Beweis von Lemma IV.16 wählen wir c mit

cp−1 ≡ 1(mod p), cp−1 �≡ 1(mod p2)

(z.B.mit g Erzeuger von Z/pZ und c = g(p + 1)).

Wir zeigen zunächst

(∗) c(p−1)p
˛−2 �≡ 1(mod p˛).

Dies geschieht mit Induktion nach ˛. Für ˛ = 2 ist das die obige Aussage.

Nach Euler ist
c(p−1)p

˛−2
= c' (p

˛−1) ≡ 1(mod p˛−1).

Das liefert
c(p−1)p

˛−1
= (1 + bp˛−1)p = 1 + bp˛ + dp2˛−1,

da p stets
(p
r

)
, 0 < r < p teilt.

Per Induktionsannahme ist p � b.Weiter ist 2˛ − 1 ≥ ˛ + 1.Also ist

c(p−1)p
˛−1 ≡ 1 + bp˛ �≡ 1(mod p˛+1).

Damit ist (∗) bewiesen.
Es ist op˛ (c)|' (p˛) = p˛−1(p − 1). Da op(c) = p − 1 ist, folgt, dass op˛ (c) durch

p − 1 geteilt wird. Somit folgt mit (∗)

op˛ (c) = p˛−1(p − 1).

Die Aussage von Satz IX.14 ist für p = 2 falsch. Es ist {1̄, 3̄, 5̄, 7̄} die Einheiten-
gruppe von Z/8Z und ' (8) = 4. Es gilt aber ī2 ≡ 1(mod 8) für alle i. Somit haben
alle Elemente die Ordnung 1 oder 2.
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Der nächste Satz gibt über die Verhältnisse für p = 2 Auskunft.

Sei n = 2m ≥ 8. Dann ist on(5) = 2m−2. Die Einheitengruppe von Z/nZ besteht
aus den Potenzen 5i + nZ und −5i + nZ.

Satz IX.15

Beweis. Es ist 52 − 1 = 24, also ist 23 ein Teiler von 52 − 1.Wir zeigen mit Induktion

(+) 2t+2 teilt 52
t
− 1, t ≥ 1.

Es ist
(52

t
− 1) = (52

t−1
− 1)(52

t−1
+ 1).

Also ist 2t+1 · 2 = 2t+2 ein Teiler von 52t − 1 per Induktion.
Nach (+) ist on(5) ein Teiler von 2m−2. Sei on(5) ein Teiler von 2m−3. Dann ist 2m

ein Teiler von 52
m−3
− 1. Das liefert dann, dass 52

m−4
− 1 durch 2m−1 teilbar ist, und

schließlich, dass 52 − 1 durch 16 geteilt wird, einWiderspruch.

Also ist
on(5) = 2m−2.

Istm = 3, so ist 5 �≡ −1(mod 8), also ist 8 kein Teiler von 52
m−3
+ 1.

Seim > 3. Dann ist

52
m−3
+ 1 = (1 + 4)2

m−3
+ 1 = 2 +

(
2m−3

1

)
· 4 + · · · + 42m−3 .

Bis auf den ersten Summanden sind alle anderen durch 4 teilbar. Somit gilt:

(++) 2m ist kein Teiler von 52
m−3
+ 1.

Wäre 5i ≡ −1(mod 2m) für i < 2m−2, so wäre 52i ≡ 1(mod 2m). Da die Ordnung von
5 modulo 2m gleich 2m−2 ist, wäre dann nach Lemma III.3 2m−2 ein Teiler von 2i, d.h.
i = 2m−3, einWiderspruch zu (++).

Ist 2m−2 ≥ i > j und 5i ≡ −5j(mod 2m), so ist 5i−j ≡ −1(mod 2m) ein Wider-
spruch zu (++).Also sind 5i und −5i, 0 ≤ i < 2m−2 die Einheiten modulo 2m.

Für den nächsten Satz vergleiche man Lemma IX.3.

Seien n ∈ N, n �= 2 und a ∈ Z mit ggT (a, n) = 1. Es gebe ein c, dessen Ordnung
modulo n gleich ' (n) ist. Dann sind gleichwertig

a) x2 ≡ a(mod n) hat eine Lösung x.

b) a' (n)/2 ≡ 1(mod n).

Satz IX.16
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Beweis.
a)⇒ b). Da x2 ≡ a(mod n) ist, ist auch ggT (x, n) = 1. Nach dem Satz von Euler

ist
a' (n)/2 ≡ x' (n) ≡ 1(mod n).

b) ⇒ a). Sei c mit on(c) = ' (n). Dann ist c ein Erzeuger der Einheitengruppe
modulo n. Da ggT (a, n) = 1 ist, ist a eine Einheit modulo n. Somit gibt es ein j mit

cj ≡ a(mod n).

Es ist cj' (n)/2 ≡ a' (n)/2 ≡ 1(mod n). Also ist ' (n)|j' (n)/2, d.h. 2|j, und damit ist
j = 2i. Dann ist

(ci)2 ≡ a(mod n).

Mit x = ci erhalten wir x2 ≡ a(mod n).

Damit haben wir das Problem nur verschoben. Wann gibt es denn ein c mit
on(c) = ' (n)? Immerhin, wenn n eine ungerade Primzahlpotenz ist, so gibt es
dies nach Satz IX.14. Der nächste Satz ist nun entscheidend, da er die angekündigte
Reduktion des allgemeinen Problems auf das der Primzahlpotenzen liefert.

Seien ggT (a,m1) = ggT (a,m2) = 1 und ggT (m1,m2) = 1. Ist a ein Quadrat
modulo m1 und m2, so ist a auch Quadrat modulo m1m2.

Satz IX.17

Beweis. Sei
x21 ≡ a(modm1)
x22 ≡ a(modm2).

Nach dem Chinesischen Restsatz gibt es ein xmit

x ≡ x1(modm1)
x ≡ x2(modm2).

Also istm1m2|x2 − a.

Nun sind wir in der Lage, ein notwendiges und hinreichendes Kriterium dafür
anzugeben, dass a ein Quadrat modulo n ist.

Seien n ∈ N und a ∈ Z mit ggT (a, n) = 1. Sei n = 2˛0
∏t

k=1 p
˛k
k die Primfaktor-

zerlegung. Dann ist x2 ≡ a(mod n) genau dann lösbar, wenn

a ≡ 1(mod 2min(˛0,3))

ist, und
y2i ≡ a(mod pi), i = 1, . . . , t

lösbar sind.

Satz IX.18

Beweis. Sei zunächst x eine Lösung von x2 ≡ a(mod n). Dann ist offenbar auch
x2 ≡ a(mod pi), i = 1, . . . , t, und x2 ≡ a(mod 2˛0 ). Somit gilt auch die Kongruenz
x2 ≡ a(mod 2min(˛0,3)). Ist ˛0 ≥ 1, so ist n gerade und dann a ungerade. Damit ist
auch x ungerade.Also ist x2 ≡ 1(mod 8) und damit a ≡ 1(mod 2min(˛0,3)).
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Wir betrachten nun die Umkehrung.Wir zeigen zunächst, dass a quadratischer
Rest modulo 2˛0 ist. Dies ist richtig für ˛0 ≤ 2. Sei ˛0 ≥ 3, so ist a ≡ 1(mod 8).Nach
Satz IX.15 sind 5i und −5i die Einheiten modulo 2˛o . Sei a ≡ ±5i(mod 2˛o).Dann ist
±5i ≡ 1(mod 8). Es ist 52 ≡ 1(mod 8).Also ist a ≡ 52j(mod 2˛o), d.h. ein Quadrat.

Da a quadratischer Rest modulo pi ist, folgt mit Lemma IX.1

a
(pi−1)
2 ≡ 1(mod pi).

Also ist a
pi−1
2 = 1 + ˛pi und dann

(
a

pi−1
2

)p˛i−1i
= 1 + ˇp˛i

i , d.h. a' (p
˛i
i )/2 ≡ 1(mod p˛i

i ).

Nach Satz IX.14 und Satz IX.16 gilt, dass a ein Quadrat modulo paii , i = 1, . . . , t ist.
Mit Satz IX.17 folgt nun, dass a ein Quadrat modulo n ist.

Hat die Kongruenz x2 ≡ 453(mod 1236) eine Lösung?

Wie oft bei Anwendungen schöner Theorien, geht dies nicht direkt.Wir müssen
erst eine Situation herstellen, in der Satz IX.18 anwendbar ist. Zunächst ist die
Voraussetzung der Teilerfremdheit nicht erfüllt, da ggT (453, 1236) = 3 ist. Gibt
es eine Lösung x, so ist 3|x. Dies ist äquivalent zu der Frage, ob es eine Lösung
gibt von 3y2 ≡ 151(mod 412).

Nun sind zwar 151 und 412 teilerfremd,mit 3y2 haben wir aber kein Quadrat
mehr. Es ist 2 · 412 = 3 · 275 − 1.Also ist

3−1 ≡ 275(mod 412).

Das liefert
y2 ≡ −87(mod 412).

Nun können wir Satz IX.18 anwenden. Es ist 412 = 4 · 103. Nach Satz IX.18 gibt
es genau dann eine Lösung y2, falls

y2 ≡ −87(mod 103)

lösbar ist.

Wir berechnen das Legendre-Symbol(
−87

103

)
=

(
−1

103

)(
3

103

)(
29

103

)
= (−1)

(
3

103

)(
29

103

)
.

(
3

103

)
= −

(
103

3

)
= −

(
1

3

)
= −1.

(
29

103

)
=

(
103

29

)
=
(
3 · 29 + 16

29

)
=
(
16

29

)
= 1.

Also ist
(
−87
103

)
= 1, d.h., es gibt eine Lösung y und dann auch eine Lösung x.

Beispiel
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Wir wollen jetzt noch der Frage nachgehen, für wie viele Primzahlen eine Zahl a
ein quadratischer Rest sein kann. Dazu definieren wir:

Extremalzahlen. Sei a ∈ Z. Ist x2 ≡ a(mod p) für alle Primzahlen p, die a nicht
teilen, lösbar, so nennen wir a eine quadratische Extremalzahl.

Hat x2 ≡ a(mod p) für alle ungeraden Primzahlen p, die a nicht teilen,
niemals eine Lösung, so nennen wir a eine nichtquadratische Extremalzahl.

Definition

Es gibt keine nichtquadratischen Extremalzahlen. Lemma IX.19

Beweis. Sei a eine nichtquadratische Extremalzahl. Wähle x mit ggT (a, x) = 1,
x �= a(mod 2) und x2 − a > 1. Insbesondere ist x2 − a ungerade.

Es ist x2 �≡ a(mod p) für alle p, die a nicht teilen, da a nichtquadratische Extre-
malzahl ist. Da ggT (a, x) = 1 ist, ist auch x2 �≡ a(mod p) für alle Primteiler p von a.
Also hätte x2 − a keine Primteiler, einWiderspruch.

Es gilt aber sogar noch mehr:

Zu jeder Zahl a gibt es unendlich viele ungerade Primzahlen p, so dass a ein
Quadrat modulo p ist.

Satz IX.20

Beweis. Nach Lemma IX.19 gibt es mindestens ein solches p. Seien nun p1, . . . , pt
sämtliche ungerade Primzahlen mit(

a
pi

)
= 1, i = 1, . . . , t.

Setze Q = p1 · · · pt und wähle n mit Q2n − 4a > 1. Es ist Q ungerade. Sei q eine
Primzahl, die Q2n − 4a teilt. Ist q ein Teiler von Q, so ist q eines der pi . Dann teilt
aber q nicht a. Also ist q kein Teiler von Q und somit q �= pi für alle i. Dann ist
1 = (Q

2n

q ) = (
4a
q ) = (

a
q ). Also hat Q

2n − 4a nur Primteiler, nach denen a ein Quadrat
ist, aber diese sind genau p1, . . . , pt , einWiderspruch zu q �= pi, i = 1 . . . , t.

Ist a nicht selbst schon ein Quadrat, so gibt es immer Primzahlen modulo derer
a kein quadratischer Rest ist.

a) Ist a ∈ N kein Quadrat, so gibt es unendlich viele Primzahlen p mit(
a
p

)
= −1.

b) Ist a eine quadratische Extremalzahl, so ist a ein Quadrat.

Satz IX.21
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Beweis.

a) Ist b ∈ Nmit ( bp ) = −1, so ist auch ( bm
2

p ) = −1 für ggT (m, p) = 1.Also können
wir annehmen, dass a quadratfrei ist. Sei

a = 2�q1 . . . qn, � = 0, 1

die Primfaktorzerlegung von a. Es habe zunächst a mindestens einen ungeraden
Primteiler.Wir wählen ein smit (

s
qn

)
= −1

Insbesondere ist qn kein Teiler von s. Weiter wählen wir ungerade Primzahlen
r1, . . . , rk, die verschieden von q1, . . . , qn sind.

Nach dem Chinesischen Restsatz gibt es ein b ∈ Nmit
b ≡ 1(mod 8)
b ≡ 1(mod ri) i = 1, . . . , k

(+) b ≡ 1(mod qi) i = 1, . . . , n − 1
b ≡ s(mod qn)

Sei b = p1 · · · pm die Primfaktorzerlegung von b. Dann sind die pi ungleich 2, rj,
j = 1, . . . k , und qj, j = 1, . . . , n, da ggT (a, b) = 1 ist. Wir zeigen ( api ) = −1 für
ein i ∈ {1, . . . ,m}. Da wir {r1, . . . , rk} beliebig groß wählen können, folgt dann die
Behauptung.

Wir betrachten dazu das Jacobi-Symbol ( ab ). Es ist(
a
b

)
=
(
2

b

)�(
q1
b

)
· · ·

(
qn
b

)
.

Da b ≡ 1(mod 8) ist, gilt nach Lemma IX.9 ( 2b ) = 1. Aus dem gleichen Grund folgt
mit Satz IX.13 ( qib ) = (

b
qi
).Also ist

(
a
b

)
=
(

b
q1

)
· · ·

(
b
qn

)
=
(+)

(
1

q1

)
· · ·

(
1

qn−1

)(
s
qn

)
= −1.

Es gilt aber (
a
b

)
=
(

a
p1

)
· · ·

(
a
pm

)
.

Das liefert ( api ) = −1 für mindestens ein i.

Es bleibt der Fall a = 2 übrig. Es ist ( 2p ) = −1 für alle p ≡ ±3(mod 8) nach Lem-
ma IX.9.Nach Lemma IV.8 gibt es unendlich viele Primzahlen pmit p ≡ ±3(mod 8).

b) Ist x kein Quadrat, so ist x keine quadratische Extremalzahl nach a).

Dieser Satz ist ein Spezialfall eines allgemeineren Satzes.
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Minkowski4-Hasse5. Sei f (x1, . . . , xn) ein homogenes Polynom vom Grad 2mit
ganzen Koeffizienten. Dann ist f (x1, . . . , xn) = 0 in Z genau dann nichttrivial
lösbar, wenn die Gleichung in R und modulo jeder Primzahl nichttrivial lösbar
ist. Hierbei meint nichttrivial, dass ein (x1, . . . , xn) �= (0, . . . , 0) eine Lösung ist.

Satz IX.22

Dies ist übrigens für höheren Grad falsch. Betrachte dazu

(x2 − 2y2)(x2 + 7y2)(x2 + 14y2) = 0.

Wir haben die Lösungen x = ±y
√
2 ∈ R. Ist p = 7, so reduziert sich die Gleichung

auf
x2 − 2y2 ≡ 0(mod 7).

Da 32 ≡ 2(mod 7) ist, hat die Gleichung die Lösung x = 3, y = 1.

Ist p = 2, so bleibt
x2 + y2 ≡ 0(mod 2).

Diese hat die Lösung x = y = 1.

Ist p �= 2, 7, so ist (
−14

p

)
=
(
2

p

)(
−7

p

)
.

Also ist eine der Zahlen 2,−7,−14 ein Quadrat modulo p, womit wir wieder eine
Lösung haben. In Z gibt es aber nur die Lösung (0, 0).

Wirwollen uns nunnochmit einem speziellenTyp vonZahlen,den Fermatzahlen
Fn = 22

n
+ 1, beschäftigen. Diese sind für n = 0, 1, 2, 3 und 4 Primzahlen. Fermat

vermutete, dass sie immer Primzahlen sind. Allerdings konnte schon Euler zeigen,
dass F5 keine Primzahl ist. Bis heute sind keine weiteren Fermatzahlen bekannt,
die Primzahlen sind. Die kleinste Fermatzahl, für die nicht bekannt ist, ob sie eine
Primzahl ist, ist derzeit F33.

Ist n �= m, so ist ggT (Fn, Fm) = 1. Insbesondere gibt es unendlich viele Prim-
zahlen.

Lemma IX.23

Beweis. Wir zeigen:

(∗) ∏n−1
k=0 Fk = Fn − 2.

Da offenbar ggT (Fn, Fn − 2) = 1 ist, folgt dann die Behauptung.

5Hermann Minkowski (*22.6.1864 Alexota, †12.1.1909 Göttingen), Professor in Königsberg, Zürich
und Göttingen, mit den Arbeitsgebieten Zahlentheorie und mathematische Grundlagen der speziellen
Relativitätstheorie.

5Helmut Hasse (*25.8.1898 Kassel, †26.12.1979 Ahrensburg), Professor in Kiel, Halle, Marburg, Göt-
tingen und Hamburg, mit den Arbeitsgebieten Algebra und Zahlentheorie. Der später sogenannte Satz
von Minkowski-Hasse war seine Dissertation.
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Wir beweisen (∗) durch Induktion nach n. Es ist 3 = F0 = 5 − 2 = F1 − 2.

n∏
k=0

Fk =
( n−1∏

k=0

Fk

)
Fn =

(Ind)
(Fn − 2)Fn = (22

n
− 1)(22

n
+ 1) = 22

n+1
− 1 = Fn+1 − 2.

Umzu zeigen,dass F5 keine Primzahl ist,betrachtenwir zunächstmögliche Teiler
von Fermatzahlen.

Sei p ein Primteiler von Fn, n ≥ 2. Dann ist

p = 2n+2 · k + 1mit k ∈ N.

Satz IX.24

Beweis. Es ist 22
n ≡ −1(mod p). Damit erhalten wir 22

n+1 ≡ 1(mod p). Dies zeigt,
dass op(2) = 2n+1 ist. Nach dem kleinen Satz IV.14 von Fermat gilt

2p−1 ≡ 1(mod p).

Also ist 2n+1 ein Teiler von p−1.Da n ≥ 2 ist, ist p ≡ 1(mod 8).Somit ist nach Lemma
IX.9 (

2

p

)
= 1.

Damit gibt es ein xmit x2 ≡ 2(mod p).

Das liefert
x2

n+2 ≡ 22
n+1 ≡ 1(mod p).

Somit ist op(x) = 2j mit j ≤ n + 2.Wegen op(x2) = 2n+1, folgt op(x) = 2n+2.

Es ist aber auch
xp−1 ≡ 1(mod p).

Also ist
2n+2 ein Teiler von p − 1,

was die Behauptung ist.

Mit diesem Satz IX.24 können wir nun zeigen, dass F5 keine Primzahl ist.

Euler. F5 ist keine Primzahl.Lemma IX.25

Beweis. Nach Satz IX.24 müssen wir nur Primteiler der Form 128k + 1 betrachten.
Diese wären 129, 257, 385, 513, 641 usw.

Es sind 129, 385 und 513 keine Primzahlen. Es ist 257 = F3. Nach Lemma IX.23
ist F3 � F5.Also müssen wir als erste Zahl 641 testen.

Es ist
641 − 1 = 640 = 5 · 27.
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Weiter ist
54228 = (641 − 1)4 ≡ (−1)4 ≡ 1(mod 641)

und dann
641 = 54 + 24 also 54 ≡ −24(mod 641).

Das liefert
1 ≡ −24228 ≡ −232(mod 641).

Somit ist 641|232 + 1 = F5.

In der Tat ist F5 ein Produkt von zwei Primzahlen

F5 = 641 · 6700417.
Sei Fn = 22

n
+ 1 eine Primzahl. Dann ist 3 kein Quadrat modulo Fn, da(

3

Fn

)
=
(
Fn
3

)
=
(
2

3

)
= −1

ist.

Ist also Fn eine Primzahl, so ist

3Fn−1 ≡ 1(mod Fn) aber 3
Fn−1
2 �≡

(IX.2)
1(mod Fn).

Also ist
oFn(3) = 2

2n .

Sei umgekehrt 32
2n ≡ 1(mod Fn) aber 32

2n−1 �≡ 1(mod Fn). Dann erhalten wir
oFn(3) = 2

2n .

Nach dem Satz von Euler IV.17 gilt immer:

oFn(3) ist ein Teiler von ' (Fn).

Somit ist Fn −1 = 22
n
ein Teiler von ' (Fn).Das liefert dann ' (Fn) = Fn −1.Also sind

alle Elemente in Z/FnZ invertierbar, was bedeutet, dass Z/FnZ ein Körper ist. Nach
der Bemerkung auf Seite 12 ist dann Fn eine Primzahl. Damit haben wir

Fn ist genau dann Primzahl, wenn oFn(3) = 2
2n ist. Lemma IX.26

Unter den Primzahlen spielen noch die Mersenne-Zahlen Mn = 2n − 1 eine
wichtige Rolle. Es ist M2 = 3,M3 = 7,M4 = 15,M5 = 31. Ist n = kr, so ist 2r − 1
ein Teiler von Mn. Also ist Mn höchstens für n = p, p prim, eine Primzahl. Die
Rekordprimzahlen sind häufig Mersenne6-Primzahlen. Wir wollen dies hier aber
nicht weiter vertiefen.

6Marin Mersenne (*8.9.1588 Soultière, †1.9.1648 Paris) studierte zusammen mit René Descartes am
Jesuitenkolleg in La Flèche und wurde 1611 Franziskanermönch. Mersenne gilt als wichtiger Vermittler
von Informationen,da er Briefkontakt mit vielen führendenWissenschaftlern seiner Zeit hatte. Er lieferte
Beiträge zur Mathematik,Akustik, Optik und Musiktheorie.
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Übungsaufgaben

IX.1 Sei a = 849.Haben die folgenden Kongruenzen eine Lösung?

a) x2 ≡ a (mod 9800).

b) x2 ≡ a (mod 10160).

IX.2 Sei a ≥ 2 und an + 1 eine Primzahl. Dann ist a gerade und n = 2m für geeignetesm.

IX.3 Sei n > 1 und an − 1 eine Primzahl. Dann ist a = 2 und n eine Primzahl.

IX.4 SeienMp = 2p − 1 undMq = 2q − 1, p und q Primzahlen,Mp �= Mq. Zeige:

ggT (Mp,Mq) = 1.

IX.5 Berechne das Legendre-Symbol
(
2005
44021

)
.

IX.6 Bestimme die letzten drei Ziffern von F73.

IX.7 Bestimme alle Primzahlen p, für die −5 ein quadratischer Rest ist.

IX.8 Man bestimme die Lösungen von x2 + 12x + 11 ≡ 0(mod 23).

IX.9 Seien p eine ungerade Primzahl und a, b ∈ Z beide teilerfremd zu p. Dann hat
ax2 + by2 ≡ 0(mod p) genau dann eine Lösung x, y, beide teilerfremd zu p, wenn
( ap ) = (

−b
p ) ist.

IX.10 Sei a ∈ Z. Zeige ( a3 ) ≡ a(mod 3).

IX.11 Sei p �= 3 eine ungerade Primzahl. Zeige, dass ( 3p ) = 1 für alle p mit p ≡ ±1(mod 12)
und ( 3p ) = −1 für alle pmit p ≡ ±5(mod 12) ist.

IX.12 Sei n > 1. Zeige, dass das Jacobi-Symbol
(

3
3n−2

)
denWert (−1)n+1 hat.

IX.13 Man bestimme alle a ∈ N, so dass für ein k ∈ Z die Zahl a + 29k eine Quadratzahl ist.
IX.14 Zeige, dass es unendlich viele Primzahlen pmit p ≡ 1 (mod 4) gibt.

(Hinweis: Betrachte n = (2p1 · · · pm)2 + 1 und zeige, dass −1 ein Quadrat für jeden
Primteiler p von n ist.)
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