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Kapitel 1
Quantenmechanik und Thermodynamik

The true logic of this world
is the theory of probability.
James Clerk Maxwell

Die Quantenmechanik ist die wahrscheinlich erfolgreichste Theorie, die die Phy-
sik im letzten Jahrhundert hervorgebracht hat. Wer hitte sich vor 100 Jahren eine
Mikroelektronik triumen lassen? Heute wird mehr als ein Drittel des Weltbrutto-
sozialprodukts mit Quantenmechanik erwirtschaftet (Lesch et al. 2007). Dennoch
haftet der Quantenmechanik etwas Mystisches an, weil sie sich der Anschauung mit
Bildern der klassischen Physik immer wieder entzieht: Das Teilchenbild der klas-
sischen Mechanik verliert seine Giiltigkeit, wenn sich Elektronen als Materiewelle
zeigen und damit Welleneigenschaften annehmen. Das Wellenbild der klassischen
Elektrodynamik verliert seine Giiltigkeit, wenn sich Licht als Photon zeigt und da-
mit Teilcheneigenschaften offenbart. Max Borns statistische Deutung des Quadrats
der Wellenfunktion als Aufenthaltswahrscheinlichkeit des Teilchens vermag zwar
den Welle-Teilchen-Dualismus zu iiberbriicken, das Quantenobjekt bleibt jedoch
ein Chamileon, das sich je nach experimenteller Situation mal als Welle und mal
als Teilchen prisentiert. Die klassischen Bilder passen nur eingeschrinkt — solange
die Thermodynamik als eigenstindige klassische Theorie vernachldssigt wird.

Obwohl der Operatorformalismus der Quantenmechanik durch seine ungeheure
Einfachheit, Eleganz und Asthetik besticht, und obwohl ihre Anwendungen ganz er-
staunliche Erfolge erzielen, ist die naturphilosophische Deutung der Quantentheorie
immer noch umstritten. Ziel der Naturwissenschaft ist es aber seit jeher, alle Unge-
reimtheiten aus dem Weg zu rdumen, um Platz fiir neue zu schaffen. Aus diesem
Grund wird im folgenden ein neuer Ansatz fiir eine thermodynamische Deutung
der Quantenmechanik entwickelt. Die thermodynamische Sichtweise soll die Dis-
krepanz zwischen dem grandiosen Erfolg und der mangelnden Anschaulichkeit der
Quantentheorie verringern. Niels Bohr sagte iiber die Quantenmechanik: ,,Wer sie
nicht verriickt findet, hat sie nicht verstanden!* Richard Feynman hielt dagegen:
,,Wer glaubt, sie verstanden zu haben, ist verriickt!*

N. Olah, Einsteins trojanisches Pferd
© Springer-Verlag/Wien 2011



2 1 Quantenmechanik und Thermodynamik

1.1 Zielsetzung und Ubersicht

Beifs mir nicht in den Finger,
schau, wohin er zeigt.
Warren S. McCulloch

Die Quantenthermodynamik beschiftigt sich mit der Frage, unter welchen Bedin-
gungen die Thermodynamik aus der Quantenmechanik abgeleitet werden kann. Im
Rahmen der vorliegenden Monographie wird der umgekehrte Weg beschritten und
die Quantenmechanik aus einer statistischen Thermodynamik abgeleitet.

Ziel der folgenden Uberlegungen ist es, das weit verbreitete Vorurteil zu wider-
legen, dass es unmdglich ist, mit klassischen Begriffen konsistent und anschaulich
iiber Quantenphidnomene zu sprechen. Die statistische Deutung der Wellenfunkti-
on wird hier erstmalig zu einer thermodynamischen Deutung des Quantenpotenti-
als erweitert, indem wir von der Wellenfunktion zur Wahrscheinlichkeit und von
dort weiter zur Entropie iibergehen. Mit Einsteins Umkehrung der Boltzmann-Be-
ziehung, dass die Entropie proportional zum Logarithmus einer Wahrscheinlichkeit
ist, kann die Schrodinger-Gleichung auf thermodynamische Variablen transformiert
werden. Dass durch diese Variablentransformation plétzlich thermodynamisch und
damit ,klassisch® deutbare Terme in der bisher als ,,unklassisch® angesehenen
Schrodinger-Theorie auftauchen, sollte kein Zufall sein!

Die statistische Thermodynamik koénnte also ein neues Licht auf die Quanten-
welt werfen. Die Quantenwelt enthilt trotz aller Zufélligkeiten ein iiberraschend
hohes Maf} an Ordnung und Struktur. Die Abbildung dieser Ordnung in einer ther-
modynamischen Sprache ermoglicht eine tiefere statistische Fundierung der Quan-
tentheorie. Die wichtigsten Ergebnisse der thermodynamischen Umdeutung lassen
sich folgendermaflen zusammenfassen:

* Quantenobjekte werden als thermodynamische Systeme aufgefasst. Welle und
Teilchen sind zwei Gesichter eines thermodynamischen Prozesses.

* Die thermodynamische Beschreibung der Quantenvorgéinge ist stetig und kausal.

* Die Schrodinger-Gleichung kann aus einer thermodynamischen Lagrange-Funk-
tion mit statistischen Potentialen hergeleitet werden.

* Quanteneffekte entstehen aus thermodynamischer Sicht durch ein subtiles Zu-
sammenspiel von Entropieproduktion und Entropiediffusion.

* Die Forderung nach thermodynamischer Stabilitit erzwingt die Quantisierung
der Energie gebundener Zustidnde sowie eine endliche Nullpunktsenergie.

* Quantensysteme sind dissipative Systeme, die erst in stationdren Zustidnden kon-
servativ werden. In den Eigenzustinden verschwindet die Energiedissipation.

s Die Dekohdrenz quantenmechanischer Uberlagerungszustinde kann thermody-
namisch begriindet werden: Eigenzustinde sind thermodynamisch stabiler als
Uberlagerungszustinde.

» Quantenspriinge sind schnelle, aber stetige Ubergiinge des Quantensystems von
einem Eigenzustand liber einen instabilen Mischzustand in einen anderen Eigen-
zustand.
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* Die Unschdrferelation wird auf den zweiten Hauptsatz der Thermodynamik zu-
riickgefiihrt.

* Das Paradox der Zeitumkehrinvarianz 16st sich im Bereich der Schrodinger-
Theorie.

Die vorliegende Monographie gliedert sich wie folgt: Kapitel 1 beschreibt die Mo-
tivationen, die es lohnenswert erscheinen lassen, Quantenmechanik und Thermody-
namik noch einmal neu zu verheiraten. In Kapitel 2 werden einige Grundbegriffe
aus der Thermodynamik irreversibler Prozesse zur Verfiigung gestellt. Kapitel 3
présentiert mit der thermodynamischen Umdeutung der Schrédinger-Gleichung das
Hauptergebnis dieser Arbeit. In Kapitel 4 wird gezeigt, wie die stationdren Losun-
gen fiir einfache Quantensysteme auch in den thermodynamischen Variablen ge-
funden und thermodynamisch gedeutet werden konnen. Der harmonische Oszilla-
tor, das ,,Haustier* der theoretischen Physik, und das Wasserstoffatom dienen als
Beispiele, um die engen Zusammenhinge zwischen Nullpunktsenergie, Quantisie-
rung, Entropiediffusion und der thermodynamischen Stabilitit des Quantensystems
zu verdeutlichen und anschaulich zu machen. Kapitel 5 stellt die klassischen Ana-
logien gegeniiber, die optische und die hydrodynamische Analogie. In Kapitel 6
wird dann die Heisenberg’sche Unschirferelation im Sinne dieser klassischen Bil-
der interpretiert und im thermodynamischen Bild auf den zweiten Hauptsatz der
Thermodynamik zuriickgefiihrt. Kapitel 7 untersucht die formallogischen Konse-
quenzen der Quantentheorie. Kapitel 8 behandelt abschlie3end verschiedene Deu-
tungen der Quantenmechanik. Durch die Emanzipation der statistischen Thermo-
dynamik in der quantenmechanischen Theoriebildung kann ein neuer Versuch zu
einer kritischen Synthese zwischen Einsteins ,,untriiglichem statistischen Riecher*
(Bessenrodt 1986) und Bohrs Kopenhagener Schule unternommen werden.

1.2 Der Zusammenbruch der klassischen Physik

Die Quantentheorie wurde entwickelt, um den Zusammenbruch der klassischen
Physik im mikroskopischen Bereich aufzufangen. Die Ursachen fiir das Versagen
der klassischen Theorie liegen im Welle-Teilchen-Dualismus, in der Quantisierung
der Wirkung und in den Unschdirferelationen beim Messprozess. Die Teilcheneigen-
schaften der Strahlung, die Welleneigenschaften der Materie und die Quantelung der
Energiezustinde des Atoms sind Beispiele fiir nichtklassisches Verhalten.

Das Quantengeschehen konnte mit den damals verfiigbaren klassischen Begrif-
fen der Mechanik und Elektrodynamik nicht konsistent beschrieben werden. Um
trotzdem die klassischen Vorstellungen weiterverwenden zu kénnen, wurden vor
allem zwei Analogien zur Klassik verfolgt: die optische Analogie der Materiewel-
len und die hydrodynamische Analogie einer Wahrscheinlichkeitsfliissigkeit, die den
Zustand eines Quantensystems beschreibt.

Albert Messiah schreibt iiber die klassische Anschauung (Messiah 1976): ,,Die
Beschreibung eines quantenmechanischen Systems durch eine Wellenfunktion und
seine statistische Deutung sind wegen ihres abstrakten Charakters intuitiv nur
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schwer zu erfassen. Versucht man aber, sich die mikroskopischen Erscheinungen
konkreter vorzustellen und sie fiir die Anschauung zuginglicher zu machen, stof3t
man stets auf Widerspriiche.* Weder die Vorstellung eines Quantenobjekts als Welle
noch die als Teilchen ldsst sich widerspruchsfrei in allen experimentellen Situatio-
nen durchhalten. ,,Das beweist natiirlich nicht, dass es unméglich ist, eine konsis-
tente und konkrete Beschreibung der mikroskopischen Erscheinungen zu liefern.
Dies ist jedoch noch niemandem gelungen. Im iibrigen muss man bedenken, dass
es logisch tiberhaupt nicht notwendig ist, die mehr oder weniger abstrakten Vorstel-
lungen einer physikalischen Theorie konkret auszudriicken.” Unsere Anschauung
ist von der durchweg klassischen Alltagserfahrung geprigt und damit alle Begriffe,
die zur Beschreibung eines Phdnomens verwendet werden. ,,Nichts weist darauf hin,
dass man mit einer solchen Sprache widerspruchsfrei auch im Zusammenhang mit
Erscheinungen operieren kann, die so weit von unserer Erfahrung entfernt sind, wie
die Inhalte der mikroskopischen Physik.*

Hier dringt sich nun die Frage auf, ob sich anschaulich und widerspruchsfrei mit
klassischen Begriffen iiber Quantenphdnomene reden ldsst, wenn wir neben klas-
sischer Mechanik und Elektrodynamik auch die Thermodynamik als eigenstidndige
klassische Theorie zulassen.

1.3 Der Siegeszug der statistischen Physik

,Wir leben nicht im Zeitalter der Mechanik, der Elektrodynamik, Optik und viel-
leicht nicht einmal dem der Elementarteilchen — unsere Epoche ist die der Sta-
tistischen Physik. Sie hat als integrierende interdisziplindre Methodik nach einem
Siegeszug von 125 Jahren die gesamte Physik erobert. Gewachsen am Atomismus,
beherrscht sie heute die Massenphinomene unterschiedlichster Art, von Quarks bis
Galaxienhaufen.* Mit diesen Worten beginnt Riidiger Bessenrodt seine ,,Geschichte
grundlegender Ideen der Statistischen Physik* (Bessenrodt 1987). ,,Es mag im all-
gemeinen zweifelhaft sein, ob man aus der Geschichte lernen kann — nicht jedoch,
was die Wissenschafts-, speziell die Physikgeschichte angeht, und zwar in mehr-
facher Hinsicht: die Einfachheit, Anschaulichkeit, Griindlichkeit und den Wagemut
der Pioniere, Kontroversen, Trends, soziale, speziell wirtschaftliche Abhdngigkeiten
u.v.a. [...] Die Geschichte des Eindringens statistischer Methoden in die (determi-
nistische) Physik zeigt: Es war nicht einfach, ehrbar zu werden, von verrufenen
Gliicksspielen zu physikalischen Modellen der Materie zu gelangen, die quantitativ
behandelt werden konnen — das erforderte zwei Jahrhunderte!*

,»Wenn man die Bedeutung der Statistischen Physik iiberschauen will, darf man
nicht tibersehen, welchen grundlegenden Beitrag sie zur Quantenmechanik geleis-
tet hat: Durch Max Borns statistische Deutung (1926, Nobelpreis 1954) gelang es,
Wellen- und Teilchenbild sowohl der Strahlung wie der Materie widerspruchsfrei
zu vereinen.” Plancks Strahlungsgesetz, die Lichtquantenhypothese und Einsteins
Theorie der spezifischen Wirmen von Festkorpern waren wesentliche Entdeckun-
gen der dlteren Quantentheorie, die allesamt statistischen Uberlegungen entstamm-
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ten. Borns Deutung, d. h. sein grundlegender Schritt von der Wellenfunktion zu de-
ren Betragsquadrat, das die Aufenthaltswahrscheinlichkeit eines Teilchens angibt,
wurde in ihrer Bedeutung ,,allgemein unterschitzt und er selbst kaum erwihnt —
vielleicht, weil sie jedem zu schnell einging®.

In den folgenden Uberlegungen soll die Frage untersucht werden, ob die Statis-
tische Physik ihren ,,Siegeszug* nicht noch weiter in die Quantenmechanik hinein
fortsetzen kann, als dies bisher ohnehin der Fall ist. Der Zusammenbruch angesichts
der Quantenrevolution war fiir die Klassik des Jahres 1926 zwar unvermeidbar; doch
schon in den 30er Jahren begann die klassische Theorie- und Begriffsbildung insbe-
sondere im Bereich der statistischen Physik grofle Fortschritte zu machen.

1.4 Einsteins trojanisches Pferd

Die Geschichte der Statistischen Physik kennt fiinf Griindungsviter (Bessenrodt
1987): Maxwell (1831-1879), Boltzmann (1844—1906), Gibbs (1839-1903), Planck
(1858-1947) und Einstein (1879-1955). Bessenrodt: ,,Wihrend Boltzmann und
Planck durch kritische Einwiédnde zur Statistik gezwungen wurden, war Einstein —
wie Maxwell — ein Statistiker von Anfang an. Seine wissenschaftliche Karriere be-
gann ja — was manchen iiberraschen mag — mit einer von Boltzmann inspirierten
Nachentdeckung und Weiterentwicklung der statistischen Mechanik — was auf ei-
ne tief gehende Priagung schlieBen ldsst. Zeitlich erstreckten sich Einsteins Beitrige
iiber 25 Jahre, von 1900 bis 1925, in denen er rund 40 Arbeiten mit ca. 460 Sei-
ten veroffentlichte. Dabei interessierte ihn vor allem die Nahtstelle zwischen Ther-
modynamik und Statistik: die Schwankungstheorie — sei es Brown’sche Bewegung,
thermische Strahlung oder ideales Quantengas. Sie erweist sich durch Einstein gera-
dezu als Hebamme der entstehenden Quantentheorie (und schlielich auch als troja-
nisches Pferd!).” Einstein begann als Statistiker und ,,alle seine Beitrige zur frithen
Quantentheorie stammen aus statistischen Uberlegungen*. Demgegeniiber scheint
es verwunderlich, dass er Borns statistische Deutung so heftig ablehnte: ,,Solan-
ge die Statistik als nur durch menschliche Unkenntnis bedingt, als unvollstindige
Beschreibung der Natur aufgefasst werden konnte, hatte Einstein keinerlei philoso-
phische Schwierigkeiten damit — im Gegenteil.* Die klassische Statistik erwies sich
jedoch ,.als trojanisches Pferd, das — zunédchst kaum beachtet — ,echten® Zufall in die
Naturgesetze einschmuggelte.* Durch Borns statistische Deutung ,,wurde die ,ech-
te* Statistik fundamental und umfassend, im Rahmen der Theorie nicht mehr durch
bessere Kenntnis eliminierbar! Einsteins Widerstand war enorm. Seine ,Nase* sagte
ihm, dass ,Gott nicht wiirfelt* — sein Gott sieht dem Laplace’schen Ddmon verteu-
felt dhnlich. Der reine Zustand eines einzelnen quantenmechanischen Systems kann
nur eine unvollstindige Beschreibung dieses Systems sein; dagegen mag er sehr
wohl die Statistik eines Ensembles bestimmen — dies ist genau der Ubergang von
der unvollstindigen Beschreibung eines Systems zu reprisentativen Ensembles in
der klassischen Statistischen Mechanik. In diesem — und nur in diesem — Sinne kann
er Borns statistische Deutung akzeptieren. Aber dann ist sie eben unvollstindig und
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deshalb vorliufig. Wird Einstein langfristig recht behalten? Reicht sein Riecher bis
ins nidchste Jahrtausend? Ist die Statistik wirklich nur cleveres Management mensch-
lichen Unvermogens — oder wiirfelt Gott selbst?*

1.5 Deutungen der Quantenmechanik

Wir haben hier eine ganz verriickte Theorie vor uns.
Die Frage ist nur, ob sie verriickt genug ist, um richtig zu sein.
Niels Bohr

Die Kopenhagener Deutung der Quantenmechanik beruht auf der Annahme, dass
der Zustand eines Quantensystems durch eine Wellenfunktion vollstindig beschrie-
ben wird. Mit der Wellenfunktion sind nur die Wahrscheinlichkeiten von Messer-
gebnissen festgelegt. Einige Aspekte der Kopenhagener Deutung verursachen durch
ihren etwas unphysikalischen Charakter ein gewisses ,,Unbehagen mit Kopenha-

113

gen‘:

*  Komplementaritit und Welle-Teilchen-Dualitdt, tiberbriickt nur durch Borns
Wahrscheinlichkeitsinterpretation (Quadrat der Wellenfunktion = Aufenthalts-
wahrscheinlichkeit).

* Quantenspriinge und andere Unstetigkeiten wie der ,,Kollaps der Wellenfunkti-
on‘ bei der Messung.

* Aufgabe der Kausalitdit: Nichtkausale Zustandsianderungen beim Messprozess.

e Die Quantenwelt wird von einem absoluten Zufall beherrscht, der nicht durch
besseres Wissen eliminiert werden kann.

* Nichtlokalitdt und universelle Verschrankung: Alles hingt mit allem zusammen.

* Die Wellenfunktion beschreibt nicht das Quantensystem selbst (realistische Deu-
tung), sondern enthilt nur das verfiigbare Wissen iiber das Quantensystem (epis-
temische Deutung).

* Fehlende Anschaulichkeit: Stellt die Wellenfunktion eine Wahrscheinlichkeits-
welle dar? Aber kann eine Wahrscheinlichkeit iiberhaupt eine Welle sein?

Man kann versuchen, eine Interpretation der Quantentheorie mit verborgenen Varia-
blen zu finden, die das Verhalten eines individuellen Quantensystems bestimmen,
aber bei den heutigen Messungen herausgemittelt werden. Oder man kann versu-
chen, alternative Interpretationen ohne zusitzliche neue Parameter zu finden. Eine
neue Theorie kann durch Experimente von der alten Theorie unterscheidbar sein
oder die gleichen Voraussagen machen wie diese.

Bei allen Anwendungen statistischer Theorien im Bereich der klassischen Phy-
sik war es schlieBlich moglich, die Gesetzte fiir das Verhalten der individuellen Teile
eines statistischen Ensembles anzugeben. Entsprechend kann man fiir die Quanten-
theorie eine deterministische, kausale Beschreibung anstreben oder bei einer En-
semblebeschreibung bleiben.
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Bis in die heutige Zeit gibt es vielfiltige Versuche, die Quantenmechanik aus
einer statistischen Mechanik abzuleiten (Fiirth 1933; Fényes 1952; Weizel 1953;
Wax 1954; Wesley 1961; Comisar 1965; Nelson 1966; Favella 1967; De La Pefia-
Auerbach 1967; De La Pefia-Auerbach und Cetto 1969; De La Pefia-Auerbach, Ve-
lasco und Cetto 1970; Ballentine 1970; Ghirardi, Omero, Rimini und Weber 1978;
Davidson 1979; Grabert, Hinggi und Talkner 1979; Ghirardi, Rimini und Weber
1986, Grabert, Schramm und Ingold 1988; Roncadelli 1991; Dittrich et al. 1998;
Bacciagaluppi 1999; Héinggi und Ingold 2005; Davidson 2007). In vielen Varianten
taucht allerdings eine imaginire Diffusionskonstante auf, deren anschauliche Deu-
tung Schwierigkeiten bereitet. Die moderne Theorie der Dekohdirenz kann das Mess-
problem I6sen (Lindblad 1976; Gorini, Kossakowski und Sudarshan 1976; Walls
und Milburn 1985; Weis 1993; Zeh 1993; Zurek 1991, 2001, 2002; Zurek und Paz
1994; Omnes 1994, 1995; Bub 1997; Braun, Braun und Haake 1999, 2000; Nielsen
und Chuang 2000; Audretsch 2002; Breuer und Petruccione 2002; Buchleitner und
Hornberger 2002; Giulini et al. 2003; Zeilinger 2003; Camejo 2006).

Die de-Broglie-Bohm-Theorie (Madelung 1926, 1927; de Broglie 1926, 1927,
1928, 1964; Bohm 1951, 1952; Bohm und Vigier 1954; Bell 1966, 1987; Kochen
und Specker 1967; Mermin 1990; Valentini 1991, 1992; Vink 1993; Bohm und Hi-
ley 1993; Holland 1993, 1998; Cushing 1994; Goldstein 1996; Ghirardi und Deotto
1998; Diirr 2001; Diirr, Goldstein und Zanghi 1992, 2004; Myrvold 2003; Passon
2004, 2006; Teufel und Tumulka 2005; Bacciagaluppi und Valentini 2007) liefert ein
kausales deterministisches Modell, das nicht nur den Messprozess als ganz norma-
le Wechselwirkung behandelt, sondern auch auf den Begriff der Komplementaritét
verzichten kann: Das Quantenobjekt ist gleichzeitig Welle und Teilchen. Nach einer
Aufspaltung der komplexen Schrodinger-Gleichung in zwei reelle Gleichungen in-
terpretierten de Broglie und Bohm das entstehende Quantenpotential als ,,Pilotwel-
le** oder ,,Fiihrungsfeld* fiir die Bewegung des Teilchens, analog zu den Schienen
einer Eisenbahn. Das Fiihrungsfeld wird von den Teilchen selbst erzeugt, so wie
sich etwa Ameisen ihre Wege markieren. Die Teilchen laufen auf Bahnen entlang,
die durch die Fiihrungswelle bestimmt sind. Wie bei einer Fledermaus wird diese
Welle ausgesandt, um die Umgebung zu ,,lesen’ und entsprechende Informationen
an das Teilchen zuriickzumelden. Das Teilchen ,,surft* auf der Fiihrungswelle wie
ein Surfer auf einer Wasserwelle. Die resultierenden Teilchenbahnen sind allerdings
vollkommen unklassisch.

Die Transformation des Quantenpotentials von der Wellenfunktion auf die Wahr-
scheinlichkeit war bereits friith bekannt (Madelung 1926, 1927). Diese Variablen-
transformation macht die Differentialgleichung aber komplizierter und uniiber-
sichtlicher. Erst mit der hier vorgeschlagenen weiteren Transformation von der
Wabhrscheinlichkeit auf die Entropie wird die Situation wieder einfacher und iiber-
sichtlicher, weil dadurch thermodynamisch deutbare Terme in den Gleichungen auf-
tauchen. In der thermodynamischen Deutung sind es statistische Krifte, die die
Quanteneffekte erzeugen.
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1.6 Quantenthermodynamik

Die Quantenthermodynamik beschiftigt sich mit der Frage nach dem Verhiltnis
zwischen Quantenmechanik und Thermodynamik. Die klassische Mechanik (oh-
ne Reibungseffekte) wie auch die Quantenmechanik beschreiben reversible Pro-
zesse, ihre Bewegungsgleichungen sind zeitumkehrinvariant. Die Thermodynamik
hingegen beschreibt auch irreversible Prozesse; die Zeitumkehrinvarianz ist durch
den zweiten Hauptsatz gebrochen. Aus diesem Grund kann die Thermodynamik
nicht vollstindig aus der Mikrophysik abgeleitet werden: Es ist nicht moglich,
die Thermodynamik aus der Hamilton’schen Mechanik oder aus der Quantentheo-
rie abzuleiten, ohne eine zusitzliche Quelle der Dissipation in die mikroskopi-
schen Gleichungen einzufiihren (Muschik und Kaufmann 1992, 1994; Kaufmann
1995; Kaufmann, Muschik und Schirrmeister 1996; Xing 1998; Kato et al. 2000;
Giimbel 2004; Gemmer, Michel und Mahler 2009). Um diesen Widerspruch zwi-
schen dynamischer Reversibilitidt und thermodynamischer Irreversibilitit zu tiber-
winden, wurden verschiedene mikroskopische Theorien irreversibler Prozesse ent-
wickelt.

Im Rahmen der statistischen Physik des Nichtgleichgewichts eignet sich hier-
fiir eine zeitasymmetrische generalisierte Liouville-Gleichung (Xing 1998, 2001).
Die Anniherung an das Gleichgewicht ist von einer Entropiediffusion begleitet. In
Nichtgleichgewichtszustinden diffundiert Entropie von Bereichen hoher Dichte in
Bereiche niedriger Dichte. Diese stochastische Diffusion ist der mikroskopische Ur-
sprung der makroskopischen Irreversibilitit. Die Entropiediffusion wird neben der
Entropieproduktion eine entscheidende Rolle in einer thermodynamischen Deutung
der Quantenmechanik spielen.

Als mikroskopische Reprisentation der Entropie im Rahmen der Quantenmecha-
nik wurde ein mikroskopischer Entropie-Operator vorgeschlagen (Prigogine 1979).
Die Zeitentwicklungsoperatoren U; bilden bei konservativen Systemen eine Gruppe
von unitiren Operatoren, bei dissipativen System hingegen nur noch eine Halbgrup-
pe von nichtunitiren Operatoren:

dynamische Gruppe: UUs = Upgy  fiirt, s € [—o0, 00]
dynamische Halbgruppe: U;Us = Uyy  fiirt,s € [0, 00] .

Die inversen Transformationen erginzen die Halbgruppe zu einer Gruppe. Bei der
Halbgruppe fehlen diese Riicktransformationen in die Vergangenheit. Dissipative
Systeme vergessen ihre Anfangsbedingungen. Die Entropie unterscheidet zwischen
Vergangenheit und Zukunft. Auf diese Weise bildet sich der Symmetriebruch in den
algebraischen Strukturen ab. Sowohl die klassische Mechanik als auch die Quan-
tenmechanik beschreiben eine Physik des Seins, die Thermodynamik dagegen eine
Physik des Werdens.

Die Irreversibilitét hiangt eng mit der dynamischen Instabilitdt zusammen wie sie
z. B. fiir einen Wiirfel charakteristisch ist. Selbst ein deterministisches mechanisches
System kann in seinem Verhalten so empfindlich von seinen Anfangsbedingungen
abhingen, dass es unvorhersagbar oder gar chaotisch wird. Dadurch werden die
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Anfangsbedingungen letztlich beliebig. Diese ,,Zufilligkeit” auf der Mikroebene
manifestiert sich auf der Makroebene als Irreversibilitit.

Ergidnzend zu diesen hochinteressanten Entwicklungen wollen wir hier den um-
gekehrten Weg beschreiten: die Irreversibilitit und den zweiten Hauptsatz als ge-
geben hinnehmen und die Quantenmechanik aus einer Thermodynamik ableiten.
Unsere Fragestellung ist also nicht, wie die makroskopische Irreversibilitidt mikro-
skopisch begriindet werden kann, sondern — etwas einfacher — wie makroskopische
Reversibilitit aus mikroskopischer Irreversibilitéit entstehen kann. Die Schrodinger-
Gleichung wird hier als Makroebene angenommen, die allgegenwértigen Schwan-
kungen auf der (sub)mikroskopischen Ebene etwa als Vakuumfluktuationen.

Das Quantenteilchen kann zwar nicht ohne weiteres aus einem Potential ent-
kommen, es kann sich aber — wie wir noch sehen werden — so darin einrichten, dass
es durch eine Kompensation der dufleren Kraft durch innere statistische Krifte bei
Einhaltung gewisser Quantisierungsbedingungen zu einem freien Teilchen wird. Im
Gleichgewicht geniigt die Beschreibung durch eine Untergruppe der dynamischen
Transformationen. Die statistischen Krifte formen im Gleichgewicht eine Art ,,in-
verse Dynamik® zu den duBleren Kriften (z. B. von Holst und Mittelstaedt 1950;
Penrose 1955; Munn und Penrose 1955; Paul 1972, 1981; Waters 1979; Hollerbach
1980; Widrow und Stearns 1985; Isidori 1985; Ljung 1987; Varji 1990; Haykin
1991; Daunicht 1991, 1996; De Groff et al. 1993; Benaim 1993; Bishop 1995; De
Witt, Siciliano und Bastin 1996; Olah 2001).

Eine durchaus vergleichbare Kompensationsstrategie verfolgt ein Zentralnerven-
system oder ein kiinstliches neuronales Netz, das ein Gliedmallensystem bzw. einen
Roboter steuern soll: Mit Hilfe zunéchst zufilliger und spiter zielgerichteter Bewe-
gungen erlernt ein adaptiver Regler eine inverse Kinematik und Dynamik des Glied-
mafensystems. Die Vorwirtstransformationen 7' des Korpers werden mit den ent-
sprechenden inversen Transformationen 7! zu einer Einheit verkniipft, zur (sensu-
motorischen) Identitit: 7—'7T = 1. Dadurch wird das GliedmaBensystem zu einem
System freier Gelenke, das von hoheren Hirnzentren auf einfache Weise gesteuert
werden kann. Die inverse Dynamik kompensiert automatisch die Schwerkraft, die
Reibung sowie alle dynamischen Wechselwirkungen zwischen den Gliedern. Das
Gesamtsystem aus Korper und Nervensystem erlangt seine erstaunliche Autonomie
und Bewegungsfreiheit, indem es die dynamische Halbgruppe des Korpersystems
durch eine neuronale Repridsentation der inversen Halbgruppe zu einer Gruppe er-
ganzt.
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1.7 Das Paradox der Zeitumkehrinvarianz

Dreifach ist der Schritt der Zeit

zogernd kommt die Zukunft hergezogen,

pfeilschnell ist das Jetzt entflogen,

ewig still steht die Vergangenheit.
Friedrich Schiller

Das Paradox der Zeitumkehrinvarianz besteht darin, dass die Symmetrie der fun-
damentalen Naturgesetze unter Zeitumkehr im Widerspruch zur offensichtlichen
Anisotropie der physikalischen Zeit steht (Bessenrodt 1990): ,,Obwohl die physi-
kalischen Grundgesetze zeitumkehrinvariant sind, ist unsere Welt zeitlich ganz un-
symmetrisch — die meisten Vorgédnge laufen nur in einer Richtung ab, ihre zeitlichen
,Spiegelbilder* treten niemals auf.” Andererseits hat sich die Zeitumkehrinvarianz
in vielen Bereichen als duflerst wirkungsvolles Supergesetz erwiesen. Bessenrodt
konstatiert eine ,,auffallende Unterschitzung der Statistischen Thermodynamik —
des Stolpersteins aller Zeitumkehrinvarianz-Fans®“. Aus thermodynamischer Sicht
driingt sich der zweite Hauptsatz als Master-Symmetriebrecher auf.

Im Rahmen der hier angestellten Uberlegungen gehen wir nicht von einem zeit-
umkehrinvarianten Naturgesetz aus, um dann nach den Ursachen eines Symmetrie-
bruchs zu suchen, sondern geben umgekehrt eine Erklarung fiir die Entstehung der
hoheren Symmetrie der Schrodinger-Gleichung beim Ubergang in dissipationsfreie
stationdre Zustinde und damit eine Begriindung fiir die Niitzlichkeit der Zeitum-
kehrinvarianz als Supergesetz: Wenn eine dissipative Physik des Werdens den Weg
in einen Attraktor beschreibt, eine konservative Physik des Seins die Dynamik auf
dem Attraktor, und wenn das System hinreichend schnell einen Attraktor erreicht
und sich deshalb die meiste Zeit im Gleichgewicht befindet, dann ist eine zeitum-
kehrinvariante Beschreibung gut. Der Erfolg der Zeitumkehrinvarianz als Superge-
setz kann damit aus einer impliziten Gleichgewichtsannahme begriindet werden:
Zeitumkehrinvarianz beruht auf einer Zeitskalentrennung, die eine adiabatische Eli-
mination schnell relaxierender Prozessanteile ermoglicht (Haken 1981).

Die Zeitskalentrennung spielt eine wichtige Rolle in der statistischen Nicht-
gleichgewichtstheorie. Das Vorliegen von Zeitumkehrinvarianz (ZUl) und Zeitver-
schiebungsinvarianz (ZV1) ist bei linearen Systemen gleichbedeutend damit, dass
keine Energieabsorption stattfindet. Wenn umgekehrt der Energietransport zwischen
Subsystemen schnell genug, d. h. zeitskalengetrennt in ein FlieBgleichgewicht tiber-
geht, verbleiben auf der nichst hoheren Makroebene Systeme mit den Invarianzei-
genschaften ZUI und ZVI (z. B. Bessenrodt 1983).

Die Klassik folgerte aus der mikroskopischen Zeitumkehrinvarianz, dass die ma-
kroskopische Irreversibilitit eine Ndherung sein miisse, eine Illusion, die auf unsere
Unwissenheit zuriickzufiihren sei. Aus thermodynamischer Sicht ist das Gegenteil
wahrscheinlicher: Die Zeitumkehrinvarianz ist eine Ndherung und die Reversibilitit
damit keine universelle Eigenschaft mehr.

Von einer zeitumkehrinvarianten Schrodinger-Gleichung ist nicht zu erwarten,
dass sie die Ubergiinge zwischen den Eigenzustinden ohne weiteres beschreiben
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kann. Um Ubergangswahrscheinlichkeiten berechnen zu koénnen, wird deshalb ei-
ne kleine zeitabhingige Storung als Symmetriebrecher angenommen. Dem zeit-
unabhidngigen Hamilton-Operator des Systems wird ein Storoperator hinzugefiigt,
der den Ubergang induziert. Wird ein solcher Storoperator angenommen, z. B. als
Reprisentation eines allgegenwirtigen Rauschens, oder eine weitere dissipative
Gleichung, die auf einer schnellen Zeitskala die Entwicklung bis in die Gleichge-
wichtszustinde hinein beschreibt, 10st sich das Paradox der Zeitumkehrinvarianz
im Bereich der Quantenmechanik. Die Schrodinger-Gleichung modelliert in dieser
Interpretation nur einen langsameren Prozessanteil fiir die dissipationsfreien Eigen-
zustdnde. Eine schnelle Relaxation der dissipativen Dynamik erzeugt die hohere
Symmetrie des reduzierten Modells.

Verinderung setzt Invarianz voraus und umgekehrt. Heinz von Foerster {iber ei-
ne kybernetische Epistemologie des Lebendigen (von Foerster 1981, 1985): ,,.Die
logischen Eigenschaften von ,Invarianz‘ und , Veridnderung‘ sind die Eigenschaften
von Reprisentationen. Wird dies missachtet, entstehen Paradoxa. Das Paradox der
Zeitumkehrinvarianz entsteht in diesem Sinne durch das Fehlen einer Reprisentati-
on der hier postulierten dissipativen Dynamik.

Fazit: Zeitumkehrinvarianz ist eine Gleichgewichtseigenschaft und Folge einer
Zeitskalentrennung. Der Erfolg der Zeitumkehrinvarianz als Supergesetz beruht auf
der Annahme einer schnellen Relaxation der dissipativen Anteile der Dynamik. Der
Ubergang ins Gleichgewicht lisst die zusitzliche Symmetrie entstehen. Die Zeitum-
kehrinvarianz der Naturgesetze ist also nur eine adiabatische Invarianz. Makrosko-
pische Irreversibilitdt entsteht aus einer instabilen Mikrodynamik, makroskopische
Reversibilitit aus einer schnell relaxierenden Mikrodynamik.



Kapitel 2
Thermodynamik irreversibler Prozesse

Mathematics is a way of saying
less and less about more and more.
George Spencer Brown

Ausgangspunkt der Theorie irreversibler Prozesse ist Boltzmanns Definition der
Entropie s als Logarithmus einer Wahrscheinlichkeit P und deren Umkehrung
durch Planck und Einstein:

Boltzmann-Beziehung : s =k-InP < P =exp(s/k).

Dabei ist k die Boltzmann-Konstante. Die Entropie ist ein MaB fiir die Irreversibili-
tat und fiir die Unordnung in einem thermodynamischen System. Unter dem Gesetz
der Entropiezunahme versteht man die Tendenz des Universums und jedes isolierten
Teilsystems, in Zustdnde wachsender Unordnung iiberzugehen.

In Analogie zur klassischen Mechanik werden mit thermodynamische Variablen
Lagrange-Funktionen definiert. Thermodynamische Lagrange-Funktionen wurden
von Onsager und Machlup in die Statistische Physik eingefiihrt (Onsager und Mach-
lup 1953). Verschiedene Prozesse sollen anhand der mit ihnen einhergehenden
Entropiednderungen verglichen werden. Ausgehend von dieser These formuliert
Onsager das Prinzip der kleinsten Energiedissipation (Onsager 1931). Das Prin-
zip der kleinsten Energiedissipation entspricht dem Prinzip der kleinsten Wirkung
in der klassischen Mechanik.

Die Stabilitidt thermodynamischer Systeme ist durch das Vorzeichen der zweiten
Ableitung, d. h. durch die Kriimmung der Entropiedichte bestimmt. Im Gleichge-
wicht konnen statistische Krifte die duleren Krifte neutralisieren. Derartige ,,ther-
mische Response-Uberlegungen® gehen auf Einstein zuriick, der sie im Zusammen-
hang mit seiner Theorie der Brown’schen Bewegung entwickelte (Einstein 1905;
Smoluchowski 1923; Uhlenbeck und Ornstein 1930; Onsager 1931; Chandrasekhar
1943; Kubo 1966). Die Brown’sche Bewegung ist die ,,wichtigste Briicke zwischen
Mikro- und Makrophysik* (Bessenrodt 1977) und dient als einfaches Beispiel fiir
einen irreversiblen Prozess. In offenen Systemen sind nicht nur irreversible, son-
dern auch selbstorganisierende Prozesse moglich. Entropieexport und Expansion
sind die grundlegenden Strategien der Selbstorganisation.

N. Olah, Einsteins trojanisches Pferd
© Springer-Verlag/Wien 2011
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2.1 Wahrscheinlichkeit und Entropie

Bei einem thermodynamischen System konnen Mikro- und Makrozustinde unter-
schieden werden. Die zeitliche Entwicklung des Systems soll einer Zeitskalentren-
nung geniigen; es gibt eine schnelle Mikrodynamik und eine wesentlich langsa-
mere Makrodynamik. Jedem Mikrozustand ist ein wohlbestimmter Makrozustand
zugeordnet. Umgekehrt gehoren jedoch zu jedem Makrozustand viele verschiedene
Mikrozustinde. Die elementarste statistische Annahme besteht darin, alle Mikro-
zustinde als gleichwahrscheinlich anzusehen. Die Wahrscheinlichkeit P(x) eines
bestimmten Makrozustands x ist proportional zur Anzahl der Mikrozustinde, die
diesen Makrozustand realisieren (,,Komplexionen®):

Wahrscheinlichkeit (Makrozustand) ~ Anzahl der Mikrozustéinde .

Die Entropie s(x, t) eines Makrozustandes x zur Zeit ¢ ist proportional zum Loga-
rithmus der Wahrscheinlichkeit P (x, t) dieses Zustands:

Entropiedichte :  s(x,t) =k -In P(x,t).

Die Entropie ist ein MaB fiir die Irreversibilitit von Prozessen. Fiir abgeschlossene
Systeme besagt der zweite Hauptsatz der Thermodynamik, dass die Entropie nicht
abnehmen kann, sondern fiir irreversible Prozesse zunimmt und fiir reversible Pro-
zesse gleich bleibt. Fiir die Entropieproduktionsdichte ds /dt gilt:

ds
Zweiter Hauptsatz : @ >0
) ds
Irreversible Prozesse - E >0
) ds
Reversible Prozesse E =0.

In isolierten Systemen wéchst die Entropie und erreicht im Gleichgewicht ihren Ma-
ximalwert. Nur irreversible Prozesse tragen zur Entropieerzeugung bei. Der wahr-
scheinlichste Makrozustand besitzt die meisten ihn realisierenden Mikrozustidnde
und ist durch ein Maximum der Entropie charakterisiert. Eine Zunahme der Entro-
pie bedeutet mikroskopisch das Streben nach dem wahrscheinlichsten Makrozu-
stand. Das thermodynamische Gleichgewicht ist ein Attraktor fiir Nichtgleichge-
wichtszustidnde. Je grofer die Zahl der Mikrozustinde ist, desto schirfer ist die
Wahrscheinlichkeitsverteilung gepeakt, und desto geringer sind die Fluktuationen
um das Gleichgewicht.

2.2 Thermodynamische Lagrange-Funktionen

Der makroskopische Zustand eines thermodynamischen Systems sei durch eine Ob-
servable x beschrieben. Eine thermodynamische Kraft X (x) ist als Ableitung der
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Entropiedichte s(x) nach der phdnomenologischen Variablen x definiert:

a
thermodynamische Kraft : X = a_s =y
X

Ausgehend von einem Fluss, der von den statistischen Kriften abhédngt, werden
phidnomenologische Gleichungen oder Fluss-Kraft-Beziehungen von der folgenden
Form angenommen (vgl. z. B. Reif 1987; Jetschke 1989; Reichl 1991):

Fluss-Kraft-Beziehung :  x = J(X).
Damit folgt fiir die Entropieproduktionsdichte:
. . . . as .
Entropieproduktionsdichte :  §(x) = a—x =J-X>0.
X
Irreversible Prozesse werden durch thermodynamische Krifte X verursacht und ha-

ben Stréme J zur Folge. Im thermodynamischen Gleichgewicht verschwinden alle
Krifte und Strome:

Gleichgewicht: X =0AJ =0=5=0.

Die Entropiedichte s ist mit P < 1 und In P < O eine Ljapunov-Funktion fiir
isolierte Systeme:

Ljapunov-Funktion: s <0A$>0.

Mit den kinetischen Koeffizienten R werden zwei Dichten wie folgt definiert:

1
Dissipationsfunktion : @ = ERfl)'cz

1
Entropieproduktion: W = ERX 2,

Aus diesen GroBen wird eine thermodynamische Lagrange-Funktion zasammenge-
baut, ganz in Analogie zur klassischen Mechanik als Summe von kinetischen und
potentiellen Anteilen (Onsager und Machlup 1953):

Lagrange-Funktion: L =& + W .

Die Dissipationsfunktion @ ist das Analogon zur kinetischen Energie, die Entropie-
produktion ¥ entspricht einem Potential.

2.3 Das Prinzip der kleinsten Energiedissipation

Das Prinzip der kleinsten Energiedissipation (Onsager 1931) in Form des Variati-
onsprinzips

§[i— @] =0
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liefert durch Variation der X bei festem x lineare Bewegungsgleichungen:

@
5[3—<p]:(g—s—g—,).5x=o & —=— & i=R-X.
X X X

Im Falle linearer Fluss-Kraft-Gleichungen hat man
i=JX)=R- X=>0=¥=L=R- X%

Im Rahmen der linearen Theorie irreversibler Prozesse stimmen Dissipationsfunk-
tion und Entropieproduktion also iiberein. Die Stabilitdt des Gleichgewichts zieht
sofort R > 0 nach sich. Denn fiir die Entropieproduktionsdichte folgt aus dem
zweiten Hauptsatz

§x)=J-X=R-X*>>0.

Die Matrix R der kinetischen Koeffizienten erfiillt bei mikroskopischer Zeitumkeh-
rinvarianz Onsagers Reziprozititsbeziehung: R = R".

Wenn in einem stationédren Nichtgleichgewichtszustand der Fluss J verschwin-
det, gilt folgende Extremalbedingung:

dJ .

aXs(x) =2R-X =2J=0.

Wihrend im thermodynamischen Gleichgewicht die Entropieproduktion verschwin-
det, sind stationére Nichtgleichgewichtszustinde durch eine minimale Entropiepro-
duktion charakterisiert. Wenn also gegebene Randbedingungen das System daran
hindern, das thermodynamische Gleichgewicht zu erreichen, geht das System in
einen Zustand der geringsten Entropieproduktion iiber. Diese Eigenschaft ist nur
in der Nachbarschaft des Gleichgewichts streng giiltig. In grofer Entfernung vom
Gleichgewicht kann das thermodynamische Verhalten ganz anders sein. Das Nicht-
gleichgewicht kann eine Quelle der Ordnung sein. Diese Ordnung ist durch das
Auftreten von dissipativen Strukturen gekennzeichnet.

2.4 Thermodynamische Stabilititstheorie

Wir leiten nun fiir die thermodynamische Lagrange-Funktion

1 1
L=-R'x2+ —RX?
)

die Bewegungsgleichung her:

LN 0L oo k15— RXX =0
TACTY AT ! -
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Fiir lineare Fluss-Kraft-Beziehungen kann diese Bewegungsgleichung auf folgende
Form gebracht werden:

$—{Ri=0.

Damit die Dynamik stabil ist, muss der ,,Reibungskoeffizient“ { = X’ = s” negativ
sein und wir erhalten ein Kriterium fiir

thermodynamische Stabilitit : ¢ = 5" <0.

Die Entropiedichte s(x) muss in der Nihe eines Maximums eine konkave Funktion
ihrer Variablen sein und folglich eine negative Kriimmung besitzen. Die Entropie-
kriimmung ¢ ist ein Ma fiir die Reibung und auch fiir die Stéirke der Fluktuationen
im Gleichgewicht. Eine quadratische Approximation der Entropie um ein Maximum
liefert mit Einsteins Umkehrung der Boltzmann-Formel den zentralen Grenzvertei-
lungssatz fiir die Fluktuationen in der Nihe des Gleichgewichts. Reibung und Fluk-
tuationen sind iiber das Fluktuations-Dissipations-Theorem miteinander verkniipft
(z.B. Callen und Welton 1951). Onsagers Regressions-Schwankungs-Hypothese be-
sagt, dass die Mittelwerte der Schwankungen im Gleichgewicht die makroskopi-
schen Bewegungsgleichungen erfiillen (Onsager 1931; Bessenrodt 1987, 1990).
Die Entropiekriimmung ¢ spielt als Entropiediffusion eine wichtige Rolle in neue-
ren Entwicklungen der statistischen Physik des Nichtgleichgewichts (Xing 1998,
2001).
Wenn s die maximale Gleichgewichtsentropie ist, so gilt in zweiter Ordnung

1
s =80+ s + 5825".
Da sy ein Maximum ist, verschwindet der Term erster Ordnung §s und die Stabilitit
ist durch das Vorzeichen des Terms zweiter Ordnung §%s bestimmt.

Die Differenz der Entropiedichte s(x) zum Entropiemaximum sy wird als Uber-
schussentropie oder auch Exzessentropie bezeichnet:

32
Exzessentropiedichte :  §%s =2 (s — so) = a—sz(é’x)2 =7-(6x)?<0.
X

Die zeitliche Ableitung der Exzessentropiedichte, die Exzessentropieproduktions-
dichte, ist mit der Entropieproduktion verkniipft:

19
Exzessentropieproduktion : EESZS =J-X>0.
Aufgrund dieser Eigenschaften spielt die Exzessentropie die Rolle einer Ljapunov-
Funktion fiir thermodynamische Prozesse in der Nihe des Gleichgewichts (De

Groot und Mazur 1963; Glansdorff und Prigogine 1971; Nicolis und Prigogine
1977, Jetschke 1989):

d
Ljapunov-Funktion : 82 s <0 A ESZS >0.
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Im Bereich des linearen Regimes hat die Exzessentropieerzeugung das gleiche Vor-
zeichen wie die Entropieerzeugung selbst. Fern vom Gleichgewicht dndert sich die-
se Situation. Sind §J und §X die Abweichungen von einem stationéren Nichtgleich-
gewichtszustand, so hingt die Exzessentropieproduktion von der Entropieprodukti-
on dieser Storung ab (Glansdorff und Prigogine 1971; Prigogine 1979):

19
—8%s =68J -8X .

Nichtgleichgewichtszustdinde : 3%

Fern vom Gleichgewicht ist die Exzessentropie §2s zwar weiterhin negativ, die Ex-
zessentropieproduktion hat aber im allgemeinen kein eindeutiges Vorzeichen mehr.
Die Exzessentropie verliert mithin ihre Eigenschaft, Ljapunov-Funktion zu sein.
Fiir stationdre Nichtgleichgewichtszustinde konnen andere Ljapunov-Funktionen
gefunden werden (Fox 1979, 1980).

In der Nihe des Gleichgewichts gewdhrleistet die Existenz einer Ljapunov-
Funktion die Ddmpfung aller Schwankungen. Aus diesem Grund ist in der Nédhe
des Gleichgewichts eine makroskopische Beschreibung ausreichend. Schwankun-
gen treten nur als Korrekturen zu den makroskopischen Gesetzen auf und kon-
nen fiir grole Systeme vernachldssigt werden. Oberhalb eines kritischen Abstands
vom thermodynamischen Gleichgewicht konnen jedoch gewisse Schwankungen
verstdrkt werden und makroskopische ,.dissipative* Strukturen erzeugen, die durch
eine Energiezufuhr von auflen stabilisiert werden.

Die Exzessentropie hat eine weitere Bedeutung als Maf fiir die Komplexitit ei-
nes Systems (Grassberger 1986; Feldman und Crutchfield 1998, 2003; Bialek, Ne-
menman und Tishby 2001; Crutchfield und Feldman 2003). Sie verschwindet fiir
die beiden Extreme totaler Zufilligkeit und totaler Vorhersagbarkeit. Im Zwischen-
bereich zwischen Zufall und Notwendigkeit ist ein komplexeres Systemverhalten
moglich bis hin zur Selbstorganisation (Haken 1981).

Fassen wir zusammen, was wir iiber die statistischen Potentiale wissen. Die
Entropie spielt in der Theorie irreversibler Prozesse eine Doppelrolle als Potenti-
al statistischer Krifte und als Wahrscheinlichkeitsexponent:

» Die Entropie ist Wahrscheinlichkeitsexponent: P = exp (s/k)
e Die Entropie ist Potential der statistischen Kraft: s = X
a
* Die Entropieproduktion ist Potential des Flusses: a—s =2¢-x
X

* Die Exzessentropie ist Ljapunov-Funktion des Flusses: 5823‘ >0.

Fiir die weiteren Untersuchungen benutzen wir die folgenden vereinfachten Dich-
ten:

Entropieproduktionsdichte : o = s> = X?
Entropiediffusionsdichte : (=s"=X".
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2.5 Brown’sche Bewegung in einem Potential

Die Wahrscheinlichkeitsdichte P (x,t) fiir die Brown’sche Bewegung in Gegenwart
einer duBeren Kraft K (x) geniigt einer Fokker-Planck-Gleichung der Form

oP 9 (KP) + 19*P

a  ox 2 0x2°
Fiir stationdre Losungen gilt:

aP ad 19>P

—=0=> —(KP)=-——.

or 07 R KP) = 550

Die resultierende Gleichung kann sofort einmal nach x hochintegriert werden; die
anfallende Integrationskonstante wird aus Griinden der hinreichenden Lokalisierung
zu Null gesetzt:
1 0P 1 d 1 ds 1
K= 7= = — ™

Im stationdren Zustand kompensiert die thermodynamische Kraft X die duflere
Kraft K. Auf der Ebene der Potentiale zeigt sich der Potentialcharakter der Entro-
pie s. Wenn V(x) das Potential der Kraft K(x) ist, kommt mit K = —V"’

1 1
K=—X=-V=— P = —=2V).
7 = -V 2ks = exp(=2V)

P(x)

V(x)

s(x)

1

Abb. 2.1 Brown’sche Bewegung im Oszillatorpotential
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Potentialminima entsprechen Wahrscheinlichkeitsmaxima; Potentialmaxima ent-
sprechen Wahrscheinlichkeitsminima. Fiir einen harmonischen Oszillator mit K =
—x ist die stationdre Wahrscheinlichkeitsdichte eine Gaul3-Verteilung (Abb. 2.1):
15 S 2 2
V:Ex :>E=—2V=—x = P = exp(—x7).

Im Gleichgewicht ist die Entropie maximal. Die Schirfe des Entropiemaximums ist
ein MaB fiir die Schwankung einer statistischen Grofie (Einstein 1905; Smoluchow-
ski 1923; Uhlenbeck und Ornstein 1930; Onsager 1931; Kubo 1966; Chandrasekhar
1943).

2.6 Selbstorganisation und Entropieexport

Das, wovon ein Organismus sich
erndhrt, ist negative Entropie.
Erwin Schrodinger

Thermodynamische Prozesse konnen nicht nur reversibel oder irreversibel, sondern
auch selbstorganisierend sein. Von einem selbstorganisierenden System wird er-
wartet, dass es seine innere Ordnung mit der Zeit vergroBert, seine Entropie s also
abnimmt:

ds
Selbstorganisation : % <0.

Wegen des zweiten Hauptsatzes ist aber sofort klar, dass ein isoliertes System allei-
ne niemals selbstorganisierend sein kann, sondern nur selbstdesorganisierend. Die
Wechselwirkung mit einer Umwelt ist also eine notwendige Bedingung fiir Selbstor-
ganisation. Nur offene Systeme konnen selbstorganisierend sein. Selbstorganisation
ist eine Eigenschaft des Gesamtsystems, dessen Gesamtentropie natiirlich insgesamt
zunehmen muss (z.B. Schrodinger 1947; Eigen und Schuster 1978; von Foerster
1981, 1985; Nicolis und Prigogine 1987; Jetschke 1989). Wenn ss die Entropie ei-
nes selbstorganisierenden Systems ist und sg die Entropie der Umwelt, dann muss
fiir die Gesamtentropie s des Universums der zweite Hauptsatz gelten:
ds dss  dsg dsg dsg
S=8Ss+SE=> — = —+ — > — >
dt dt dt dt dr

Die Entropie eines selbstorganisierenden Systems kann demzufolge nur dann ab-
nehmen, wenn die Entropie der Umwelt entsprechend zunimmt und damit die ho-
here Ordnung im Subsystem mindestens kompensiert:

dSs dSE

— <0= —>0.

dr dt
Selbstorganisation ist nur auf Kosten einer Desorganisation der Umwelt moglich,
d.h. durch Entropieexport. Diese Umwelt muss demnach strukturiert sein, denn
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woher sonst soll das selbstorganisierende System seine Ordnung assimilieren? Es
muss allein deshalb eine gewisse Ordnung geben, weil der Zustand maximaler Un-
ordnung des Universums noch nicht erreicht ist. Daher nimmt die Entropie immer
noch zu. Wo aber kommt die Ordnung im Universum her, die dann abnehmen und
von ,,selbstorganisierenden* Systemen assimiliert werden kann?

Die relative Entropie ist definiert als Verhiltnis der tatsdchlichen Entropie ss zur
maximalen Entropie s;,, des betrachteten Systems. Aus der relativen Entropie ergibt
sich die Redundanz R:

S
Redundanz: R=1-2.
Sm
Die Redundanz ist ebenfalls ein MaB fiir die Ordnung in einem System und nimmt
offenbar Werte zwischen O und 1 an:

maximale Unordnung : ss = s, = R =0

maximale Ordnung : ss=0=R=1.

Damit ldsst sich sofort ein Kriterium dafiir angeben, dass ein System sich selbst or-
ganisiert. Es muss Redundanz erzeugen, indem es seine tatsdchliche Unordnung ss
verringert oder seine maximal mdgliche Unordnung s, vergroBert (Sahal 1979; von
Foerster 1981, 1985):

o o dR 1 dsm 1 dsg

Selbstorganisationskriterium : — >0=> ——— > ——.
dr Sy dt ss dr

Interessant an dieser Form des Selbstorganisationskriteriums, das aus dem Jahre
1960 stammt, ist vor allem, dass die tatsdchliche Entropie ss des Systems nicht
notwendig abnehmen muss, damit das System hohere Zustinde der Organisation
erreicht! Das Kriterium sagt lediglich aus, dass fiir selbstorganisierende Prozesse
die relative Zunahme der maximalen Unsicherheit grofer ist als die relative Zunah-
me der faktischen Unsicherheit. Zur Verdeutlichung werden zwei Enkel von Max-
wells Ddmon angestellt (von Foerster 1981, 1985): Der innere Ddmon arbeitet an
einer Verringerung der tatsdchlichen Unordnung ss bei konstanter maximaler Un-
ordnung (s, = const), der duflere Dimon dagegen sorgt fiir eine Vergréferung der
maximal moglichen Unordnung s, bei einer konstanten tatsdachlichen Unordnung
(ss = const):

s ds
innerer Diimon: —— =0 = =5 - 0
dr dr
.. _/3 Dii §s = dsm -0
duferer Diimon : —— = — .
dr dr

Die einfachste Moglichkeit des duleren Damons besteht darin, im ,,Verhaltensuni-
versum* des Systems neue Zustinde zu erzeugen, z. B. durch Expansion. Die Entro-
pie eines Systems mit N gleichwahrscheinlichen Zustinden beispielsweise hat die
Gestalt s, ~ In N. Die maximale Entropie wird folglich zunehmen, wenn die Zahl
der Zusténde sich vergroert. Demzufolge kann die im Universum vorhandene Ord-
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nung durch die Expansion des Universums zustande gekommen sein, insofern im
Zuge der Expansion immer neue rdaumliche Zustinde zur Verfiigung gestellt wer-
den. Expansion ist also eine mogliche Quelle von Selbstorganisation. Der duflere
Démon alleine vermag aber keine langfristig stabilen Strukturen zu schaffen. In ei-
ner begrenzten Petrischale ist kein grenzenloses Wachstum moglich. Nicht wenige
Kulturen und Unkulturen haben versucht, durch wirtschaftliche bzw. kriegerische
Expansion ihre innere Organisation aufrecht zu erhalten. Nicht selten schien eine
Expansion der einzige Ausweg aus einer Schuldenfalle, einem drohenden Staats-
bankrott und einer von der Zinseszinsformel getriebenen Vermogens- und Verschul-
dungseskalation zu sein. In der Wachstumsphase kann der duf3ere Ddmon eine wich-
tiger Motor der Entwicklung sein; in der Sdttigungsphase hingegen sollte der innere
Diamon wirksam werden. Ein wichtiges Kennzeichen selbstorganisierender Syste-
me ist, dass sie die Umweltordnung in ihrer eigenen Organisation abbilden, assimi-
lieren. Das kann z. B. dadurch geschehen, dass ein Zentralnervensystem mit Hilfe
eines inneren Didmons ein inverses Modell seiner Umwelt erlernt und dem Gesam-
torganismus auf diese Weise zu mehr Autonomie verhilft. Da fiir den Geldstrom
die gleichen Gesetze gelten wie etwa fiir den elektrischen Strom, wiirde der inne-
re Ddmon zur Stabilisierung des Finanzsystems einen Bandpass in den Geldstrom
einbauen: einen Hochpass als Offsetkorrektur in der Zinsstruktur, um den Zinses-
zinseffekt bei niedrigen Wachstumsraten zu vermeiden, und einen Tiefpass, um die
unerwiinschten spekulativen Schwankungen wichtiger volkswirtschaftlicher Varia-
blen zu ddmpfen. Dadurch wiirde die gefihrliche exponentielle Eigendynamik des
Geldes gebremst. Ziel der Regelung ist die Einhaltung der Goldenen Regel der Ka-
pitalakkumulation, wonach die Gleichheit von Realzinsniveau und Wachstumsrate
eine notwendige Bedingung fiir ein optimales Wachstum mit maximalem Konsum
und maximalem Gewinn ist (z. B. Olah 2001; Olah, Huth und Lohr 2010).

Fazit: Selbstorganisierende Systeme sind Entropieverzdgerer und Redundanzer-
zeuger, die Ordnung (Negentropie) aus ihrer Umwelt importieren und Unordnung
(Entropie) exportieren. Die beiden einfachsten Selbstorganisationsstrategien sind
Expansion und Entropieexport. Zur Maximierung der Selbstorganisationsmoglich-
keiten folgt aus der Tétigkeit des inneren bzw. dufleren Ddmons Heinz von Foersters
dsthetischer resp. ethischer Imperativ (von Foerster 1981, 1985):

Asthetischer Imperativ: Willst du erkennen, lerne zu handeln.

Ethischer Imperativ: Handle stets so, dass weitere Mdglichkeiten entstehen.



Kapitel 3
Umdeutung der Schrodinger-Gleichung

Understanding has to do with the fact
that what ever is said or done
can always be said or done a different way,
and yet all ways remain the same.
George Spencer Brown

Der Unterschied zwischen der klassischen Mechanik und der Quantenmechanik
zeigt sich am deutlichsten beim Vergleich der entsprechenden Hamilton-Jacobi-
Gleichungen. Fiir das nichtklassische Verhalten des Quantenobjekts ist das zusitz-
liche ,,Quantenpotential*“ in der quantenmechanischen Hamilton-Jacobi-Gleichung
verantwortlich zu machen. An diesem Zusatzterm kann eine statistische Deutung
mit thermodynamischen Begriffen am einfachsten ansetzen. Hierzu kann das Quan-
tenpotential von der Wellenfunktion auf die Wahrscheinlichkeitsdichte und weiter
auf die Entropiedichte umgeschrieben werden. Damit zeigt sich das Quantenpoten-
tial als Summe aus zwei statistischen Potentialen:

Quantenpotential = Entropieproduktion + Entropiediffusion .

Die stationdre Schrodinger-Gleichung ist dquivalent zu einer speziellen Riccati-
Differentialgleichung fiir eine statistische Kraft, das Superpotential. In stationéren
gebundenen Zustinden wird die dulere Kraft durch statistische Krifte kompensiert.
Durch die Kompensation wird das Quantenobjekt zu einem freien Teilchen.

In einer thermodynamischen Deutung werden Quantenobjekte nicht mehr als
konservative Systeme angesehen, sondern als dissipative Systeme, deren Energie-
dissipation in stationdren Zustinden verschwindet. Im Rahmen der linearen Ther-
modynamik irreversibler Prozesse wird eine Evolutionsgleichung fiir die Entropie-
dichte bzw. fiir die statistische Kraftdichte abgeleitet, die den Ubergang in die dis-
sipationsfreien stationédren Zustinde hinein beschreibt.

Die Schrodinger-Gleichung eines Einzelteilchens in einem &dufleren Potential
kann aus einer thermodynamischen Lagrange-Funktion hergeleitet werden. Die be-
kannten Herleitungen der Schrédinger-Gleichung aus Wirkungsprinzipien mit feld-
theoretischen Lagrange-Dichten werden ebenfalls auf thermodynamische Variablen
transformiert.

23
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3.1 Transformation des Quantenpotentials

Wir betrachten zunichst die eindimensionale Schrodinger-Gleichung fiir die Wel-
lenfunktion v (x,t) eines Teilchens mit der Masse m in einem dufleren Potenti-
al V(x):

Schrodi Gleich 'h—a v = ——hz —82 + Vv
T r- Do = .
chrodinger-Gleichung o 7 2

Dabei ist 7 ist das Planck’sche Wirkungsquantum. Die Born’sche Deutung interpre-
tiert das Quadrat der Wellenfunktion als Wahrscheinlichkeit P(x, ), das Teilchen
zur Zeit t am Ort x anzutreffen:

Born’sche Deutung :  P(x,t) = ¥>(x,1).

Durch den allgemeinen Ansatz

Y(x,t) = A(x,t) -exp (%S(x,t))

kann die komplexe Schrodinger-Gleichung in zwei reelle Differentialgleichungen
zerlegt werden, die der Schrodinger-Gleichung in Strenge dquivalent sind (Made-
lung 1926, 1927; Bohm und Vigier 1954; Messiah 1976). Mit P = A? ergibt sich
eine Hamilton-Jacobi-Gleichung fiir die Wirkung S(x, ¢) und eine Kontinuititsglei-
chung fiir die Wahrscheinlichkeitsdichte P (x,?):

as S")? K> A
Hamilton-Jacobi-Gleichung : m + (2n2 +V = P
L . aP a S’
Kontinuitdtsgleichung - — 4+ — P -—]=0.
at ax m

Die Kontinuititsgleichung ist rein klassisch und driickt die Erhaltung der Wahr-
scheinlichkeit aus. Der entscheidende Unterschied zur klassischen Mechanik zeigt
sich auf der rechten Seite der Hamilton-Jacobi-Gleichung als ein zusitzliches ,,Quan-
tenpotential*:

hz A

t tential: U = ———.
Quantenpotentia o A

Im klassischen Grenzfall verschwindet dieser Term mit dem Wirkungsquantum
und es bleibt die klassische Hamilton-Jacobi-Gleichung. Um das Quantenpotential
thermodynamisch umzudeuten, benutzen wir Einsteins Umkehrung der Boltzmann-
Beziehung, dass die Entropie proportional zum Logarithmus der Wahrscheinlich-
keit ist (Einstein 1910; Onsager 1931; Onsager und Machlup 1953). Aus der Wahr-
scheinlichkeitsdichte P (x, ¢) kann damit eine Entropiedichte s(x, t) und daraus eine
statistische Kraft s’ berechnet werden, wobei k die Boltzmann-Konstante ist:

P(x) = exp (%) =5 = k%’.
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Das Quantenpotential U wird nun wie folgt umgeformt (Olah 2001):
h A" R P 1 (P P 1 (P
U —_—_ = - | — — = | — = —— —_ + - | —
2m A dm | P 2\ P 4m P 2\ P
R [s” s?
= Tim [? + ﬂ '

Durch diese Variablentransformationen tauchen zwei bekannte Funktionen aus der
Thermodynamik irreversibler Prozesse auf:

Entropieproduktion : o (x) = s
Entropiediffusion : {(x) =s".

Das Quantenpotential besteht damit aus zwei thermodynamischen Potentialen:

Quant tential: U = hZAN— e §+(7
uantenpotential . = 2mA = m 2k 4k2 .

Von der quantenmechanischen Hamilton-Jacobi-Gleichung aus kénnen wir nun den
Weg der klassischen Mechanik riickwirts beschreiten:

as S’)?
Hamilton-Jacobi-Gleichung : m + (2 )
m

+V+U=0.

Mit Hilfe einer geeigneten kanonischen Transformation gehen wird von der thermo-
dynamischen Hamilton-Jacobi-Gleichung zu einer thermodynamischen Hamilton-
Funktion {iber, und von dort iiber eine Legendre-Transformation zu einer entspre-
chenden thermodynamischen Lagrange-Funktion (z. B. Goldstein 1987). Wenn p
den Impuls des Teilchens bedeutet, kommt also:

»?

Hamilton-Funktion: H = —+V +U
2m
1
Lagrange-Funktion: L = Em)'cz -V -U.

Aus dieser Lagrange-Funktion kann die Schrodinger-Gleichung hergeleitet werden.

3.2 Ableitung der Schrodinger-Gleichung

Um die Schrddinger-Gleichung in drei rdumlichen Dimensionen aus einer thermo-
dynamischen Lagrange-Funktion herzuleiten, werden folgende Funktionen bend-
tigt:



26 3 Umdeutung der Schrodinger-Gleichung

Wellenfunktion : Y(x,t) = A(x,t)-exp (%S(r, Z))

Wahrscheinlichkeit : P (x,t) = |¥/(x,1)]* = exp (S()]: Z))
Entropiedichte : s(x,t) =k-InP(x,1) = k-In|y|*
Entropieproduktion : o(x,t) = (Vs)>2 >0
Entropiediffusion : L(x,t) =As <0

fi[ﬂmﬂ_+awﬁq

Quantenpotential : U(x,t) = ~am T T

W [As (Vs)2j|

T R
Damit ldsst sich die Schrodinger-Gleichung fiir ein Teilchen in einem Potential V'(x)
auf dem Weg iiber die Hamilton-Jacobi-Gleichung aus einer Lagrange-Funktion ab-

leiten:

1
Lagrange-Funktion : L= Em)'c2 —V(x)=U(x,t)
Hamilton-Jacobi-Gleichung : 8S+(VS)2 V—hZAA
amilton-Jacobi-Gleichung :  — o = 54
o . oP )
Kontinuitcitsgleichung : mg +div(P -VS) =0
s . ., 0 h?
Schrodinger-Gleichung - lhEW(x’ t) = —2—A + V(x) ) ¥(x,t).
m

In der Schrodinger-Gleichung ist die Kontinuitdtsgleichung fiir die Wahrschein-
lichkeitsdichte durch die komplexe Zusammenfassung mit der Hamilton-Jacobi-
Gleichung auf elegante Art und Weise mit eingewoben. Die Kontinuititsgleichung
selbst ist klassisch; hier tritt kein Wirkungsquantum auf. Fiir das nichtklassische
Verhalten des Quantenobjekts ist das Quantenpotential auf der rechten Seite der
quantenmechanischen Hamilton-Jacobi-Gleichung verantwortlich zu machen.

3.3 Superpotential und Riccati-Gleichung

Es ist bekannt, dass die stationdre Schrodinger-Gleichung dquivalent ist zu einer
speziellen Riccati-Differentialgleichung (Kamke 1967). Dabei wird die stationire
Schrodinger-Gleichung von einer Eigenwertgleichung in eine Kompensationsglei-
chung umgeschrieben:

n o, _ v\ (V) 2m
%1// +(E—V)1//—0 < (E) +(?) —W(V—E).



3.3 Superpotential und Riccati-Gleichung 27

Mit Hilfe des Superpotentials W = —’/y aus der supersymmetrischen Quanten-
mechanik (Witten 1981; Bessenrodt 1999) kann diese Riccati-Gleichung auf eine
sehr einfache Form gebracht werden:

Riccati-Gleichung : W?—-W' = —(V —E) .

Das Superpotential ist im Wesentlichen eine statistische Kraft. Das Quantenpoten-
tial wird nun durch das Superpotential ausgedriickt. Die Lagrange-Funktion und
die Hamilton-Funktion des Quantensystems werden noch einmal aufgeschrieben.
Daraus ergeben sich die entsprechenden Bewegungsgleichungen, die Lagrange-
Gleichungen bzw. die kanonischen Gleichungen:

Y’ s’ X

Superpotential : Wi(x,t) = —E =% =
Entropieproduktion - o(x,t) =s?=X>=4k> - W?
Entropiediffusion : ((x,t)y=s"=X"==2k-W
h? h?
Quantenpotential U(x,t) = ~am I:% + 26?} =5 [W2 — W/]
: v 1 w2 hz 2 l
Lagrange-Funktion L(x,x,t) = me —V(x)+ T [W -w ]
m
p2 #H2
Hamilton-Funktion : H(p.x.t) = — + V(x) — — [W* = W]
2m 2m
hz
Lagrange-Gleichung : mi=-V' 4+ o RWW' —W"]
m
. . . O0H p . oH
kanonische Gleichungen: X = — = — ANp = ——
ap m ax
v n
=—— 4+ —RWW —-W"].
ax  2m

In den thermodynamischen Variablen sind die stationdren Zustinde durch eine
Kompensation des dufleren Potentials V' durch das Quantenpotential U bis auf die
Energie E charakterisiert:

o g 2 ) 2m
—+=—=W'-W =—(V-E).
a2k VB
Auf der Beschreibungsebene der Bewegungsgleichungen resultiert aus der Kompen-
sation der duBeren Kraft F = —V’ durch die statistischen Krifte ein freies Teilchen:

h? h?

%[Wz—W’]:(V—E):%[2WW’—W”]:—F:>m5c':p:O.

stationdire Zustinde : V+U = E <
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Die Integration dieser Kompensationsforderung liefert genau die Riccati-Gleichung
fiir die stationdren Zustdnde zuriick. Die Integrationskonstante E ist so zu bestim-
men, dass Losungen existieren.

3.4 De-Broglie-Bohm-Theorie

Fiir de Broglie war die Wellenfunktion eine Art ,,Fiihrungswelle* oder ,,Pilotwelle®,
die die Bewegung des Teilchens bestimmt (de Broglie 1926, 1927, 1928, 1964). In
dhnlicher Weise interpretierte Bohm das Quantenpotential U als ,,Fiithrungsfeld* fiir
die Bewegung des Teilchens (Bohm 1951, 1952; Bohm und Vigier 1954; Bell 1966,
1987; Kochen und Specker 1967; Mermin 1990; Valentini 1991, 1992; Vink 1993;
Bohm und Hiley 1993; Holland 1993, 1998; Cushing 1994; Goldstein 1996; Ghirar-
di und Deotto 1998; Diirr 2001; Diirr, Goldstein und Zanghi 1992, 2004; Myrvold
2003; Passon 2004, 2006; Teufel und Tumulka 2005; Bacciagaluppi und Valenti-
ni 2007). Die Hamilton-Jacobi-Gleichung mit Quantenpotential soll weiterhin eine
Teilchenbewegung beschreiben:
2

i (V)

ot 2m
Die auf das Teilchen wirkenden Krifte werden nicht nur aus dem klassischen Po-
tential V' abgeleitet, sondern zusitzlich aus dem Quantenpotential U. Das Quanten-
potential ist eine Art Bugwelle, die das Teilchen im Vakuum erzeugt.

Der klassische Weg, die Hamilton-Jacobi-Gleichung mit Teilchentrajektorien zu
verbinden, soll auch im quantenmechanischen Bereich beibehalten werden. Bohm
nahm an, dass der klassische Zusammenhang zwischen der Geschwindigkeit v des
Teilchens bzw. dem Teilchenimpuls p und der Wirkung S als sogenannte ,,Fiih-
rungsgleichung® giiltig bleibt:

+V+U=0.

WA
p=VS & v=—.
m

Fiir die stationidre Hamilton-Jacobi-Gleichung gilt aber:
as VS)?
S _ 069
ot

Andererseits folgt aus der stationdren Schrodinger-Gleichung eben auch V + U =

E fiir geeignete Energiewerte £. Im Gegensatz zur Klassik ergibt sich daraus die

rdaumliche Konstanz der verkiirzten Wirkung Sp und damit eine verschwindende
Geschwindigkeit:

+V+U=E.

V+U=E=

(VS)?
=0=>VS=p=m-v=0=>S5S=S—FE-t.
2m
Demnach kann eine ,,Fiihrung* durch einen Gradienten der Wirkung nur in nicht-
stationdren Zustinden wirksam werden. Das macht wenig Sinn fiir klassische deter-
ministische Teilchenbahnen, mehr schon fiir eine thermodynamische Deutung der
beteiligten Variablen.
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Interessant an der de-Broglie-Bohm-Theorie ist also aus thermodynamischer
Sicht die Zuriickfiihrung der Quanteneffekte auf das Quantenpotential, welches
thermodynamisch weiter ausgedeutet wurde.

3.5 Dissipationsfreiheit der stationiren Zustinde

Durch die thermodynamische Umdeutung der Schrodinger-Gleichung wird das
Quantenobjekt nicht mehr als konservatives, sondern als dissipatives System aufge-
fasst. Die Energiedissipation kann als totale Zeitableitung der Hamilton-Funktion H
langs Losungen der kanonischen Gleichungen ermittelt werden und ist durch die ex-
plizite Zeitabhingigkeit von H gegeben:

2
Hamilton-Funktion: H = ;; +V+U

m
dH d0H dU
dt 9 ot
Die explizite Zeitabhidngigkeit steckt im Quantenpotential U . In stationdren Zustin-
den stellt sich das Quantenpotential so ein, dass die Riccati-Gleichung erfiillt ist.
Ubergiinge in stationire Zustinde sind folglich durch eine Energiedissipation ge-
kennzeichnet, wihrend die Energiedissipation in stationédren Zustidnden gerade ver-
schwindet. Im klassischen Grenzfall ergibt sich ebenfalls Dissipationsfreiheit und
damit ein konservatives System:

U dH

stationdre Zustinde : — =0=—=0
ot dr

Energiedissipation :

. dH
klassischer Grenzfall : h — 0 = a — 0.

Um die dissipative Dynamik, die das System ins Gleichgewicht fiihrt, genauer zu
verstehen, betrachten wir die Bewegungsgleichung des Systems:

dv h2 _[(Vs)?  As
— =-V(V+U)=-VV 4+ —V =
" V+U) * am [ 2wz Tk }

B vv+h2 X-VX  AX
N am | k2 k|-

Mit einer linearen Fluss-Kraft-Beziehung der Form v = x = X = Vs folgt dar-
aus die gesuchte Evolutionsgleichung fiir die Entropiedichte s oder die statistische
Kraftdichte X:

ds 1 1 h? 1 1
—=—(E-V-U)=—(E-V)+ —— | ==(Vs)* + -A
dt m( ) m( )+4m2[2k2 $) +k Sj|
Y _ lywiuy=—Lury Py vx s lax
d  m om 4m? | k? k '
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Auf der Beschreibungsebene der Entropie ist die Dynamik durch ein Wechselspiel
zwischen Entropieproduktion und Entropiediffusion bestimmt, auf der Beschrei-
bungsebene der Krifte durch Konvektion und Reibung. In stationdren Zustinden
ergibt sich wieder die Riccati-Gleichung:
ds (Vs)?  As  2m
dt—O:>V+U—E© 4k2+2k 2(V E).
Mit der Annahme einer linearen Fluss-Kraft-Beziehung v = X erhalten wir einen
Zwei-Zeiten-Formalismus: Die Schrodinger-Gleichung beschreibt die langsamere
Dynamik, die Evolutionsgleichung fiir die Entropiedichte die schnellere Dynamik.
Die schnelle Dynamik sorgt fiir eine Kompensation des dufleren Potentials durch
eine entsprechende Entropieverteilung, d. h. durch ein statistisches inneres Potential,
das im System selbst erzeugt wird.

Fazit: Quantensysteme sind dissipative Systeme, die in stationiren Zustinden kon-
servativ werden. In stationidren Zustdnden wird das Quantenobjekt durch eine Kom-
pensation der duBeren Kraft durch statistische Krifte zu einem freien Teilchen.
Diese Beschleunigungsfreiheit ist der Grund, warum in den Eigenzustidnden keine
Strahlungsdampfung stattfindet.

3.6 Feldtheoretische Lagrange-Dichten

Die bekannten Herleitungen von Schrédinger-Gleichungen aus Wirkungsprinzipien
verwenden Lagrange-Dichten L, die von ¥ (x,t), ¥*(x, ) und deren ersten Ab-
leitungen abhédngen (Roman 1965; Spatschek 1990; Hasegawa und Kodama 1995).
Die hier betrachtete Schrodinger-Gleichung ergibt sich z. B. bei Variation nach ¢ *
aus

L =

ih d d K2 dv* a
I_(Ww w*) VW

2 ot ot 2m dx ox

Um die feldtheoretische Lagrange-Dichte ebenfalls konsequent auf statistische Va-
riablen zu transformieren, werden folgende Zusammenhinge benotigt:

Wellenfunktion : Y= A-exp (%S)
s N
Wirkung : S = 1—ln KZ’_
2 |y
Amplitude : A= ¥y = |y|
Entropie : s=k-In(Y*y) =k -In(A?)

Wahrscheinlichkeit: P = |w|2 = A% = exp (%) )
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Damit kann die quantenmechanische Lagrange-Dichte wie folgt transformiert wer-
den:

d h?
Lyt = 5 (V5 = ) = g TYE =V Iy

(VS)? h? (VA
L(S,A) = A% o (XA
(S, 4) = |: Jat + 2m tV+ 2m \ A
(VS)? h? (VP)?
L(S,P)=P- — | —
(S, P) |: ot + 2m tV+ 8m \ P

s\ |38 (VS)? B2 (V)2
LS,:(—)-— Vo —(22) .
(5.9) =exp(} [aﬂL am T T am \ %
In welchen Variablen die Lagrange-Dichte auch angeschrieben wird, stets liefern die
feldtheoretischen Euler-Lagrange-Gleichungen die in diesen Variablen ausgedriick-
te Hamilton-Jacobi-Gleichung und die Kontinuitétsgleichung zuriick. Alle aufge-

fiihrten Lagrange-Dichten fiihren zu dquivalenten Darstellungen der Schrédinger-
Gleichung in den entsprechenden Variablen:

Ly, y*) = Schridinger-Gleichung A  Schrodinger-Gleichung®

41 41
L(S, P) = Hamilton-Jacobi-Gleichung A Kontinuitditsgleichung .

Das Variationsprinzip, aus dem diese Gleichungen abgeleitet werden, kann auch mit
Hilfe der Fisher-Information aufgeschrieben werden (vgl. Fisher 1925; Kullback
1959; Reginatto 1998; Parwani 2005):

2

VS)? h
v3) +V}d dt+§lF

2m

Wirkungsintegral : S=/[P- [3[ +

. . P (VP P Vs
Fisher-Information : I = f— — d dr = j— — d dr .

In dieser Form kann die Fisher-Information als mittlere Entropieproduktion gedeu-
tet werden. Eine breitere (schmalere) Verteilung P (x) bedeutet eine groBere (klei-
nere) Unsicherheit in x, aber eine kleinere (groBere) Fisher-Information. Deshalb
ist die Fisher-Information ein inverses UnsicherheitsmaB. Im klassischen Grenz-
fall verschwindet die Entropieproduktion aus den Lagrange-Dichten und damit die
Fisher-Information aus dem Variationsprinzip. Es bleibt in den Variablen S und P:

(Vs)?
2m
Als feldtheoretische Euler-Lagrange-Gleichungen ergeben sich konsistenterweise

wieder die Kontinuititsgleichung fiir die Wahrscheinlichkeit (bei Variation nach S)
und die klassische Hamilton-Jacobi-Gleichung fiir die Wirkung (bei Variation

klassischer Grenzfall:  L(S,P) =P - [ o + + V}
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nach P). Quantenmechanisch sind diese beiden Gleichungen iiber das Wirkungs-
quantum aneinander gekoppelt.

Fazit: Auf der Beschreibungsebene der Lagrange-Dichten entstehen Quanteneffek-
te durch eine Entropieproduktionsdichte, die als Zusatzterm im Vergleich zur klas-
sischen Feldtheorie hinzukommt. Neben der iiblichen Herleitung der Schrodinger-
Gleichung als Euler-Lagrange-Gleichung einer feldtheoretischen Lagrange-Dichte
gibt es noch einen anderen Weg, der von einer thermodynamischen Lagrange-
Funktion aus iiber eine Hamilton-Jacobi-Gleichung zur Schrodinger-Gleichung
fiihrt.



Kapitel 4
Quanteneffekte und Entropiediffusion

Das ewig Unbegreifliche an der Natur
ist ihre Begreiflichkeit.
Albert Einstein

Da die herkdmmlichen thermodynamischen Lagrange-Funktionen lediglich eine
Entropieproduktion enthalten, nicht aber eine Entropiediffusion, konnen wir schlie-
Ben, dass die Entropiediffusion eine entscheidende Rolle bei der Erzeugung von
Quanteneffekten spielen muss. Quanteneffekte entstehen in unserer thermodynami-
schen Interpretation durch ein Wechselspiel von Entropieproduktion und Entropie-
diffusion. Erst die Entropiediffusion ermoglicht komplexere stationdre Anziehungs-
und AbstoBungsmuster in dulleren Potentialen.

Anhand des harmonischen Oszillators und des Kepler-Problems werden die Zu-
sammenhinge zwischen thermodynamischer Stabilitit, Entropieproduktion, Entro-
piediffusion, Nullpunktsenergie und der Quantisierung der Wirkung gebundener
Zustiande untersucht. Die thermodynamische Stabilitit erzwingt fiir gebundene Zu-
stande eine endliche Nullpunktsenergie. Die stationdren Zustidnde eines Quantenob-
jekts in d@uBeren Feldern sind durch eine Kompensation der dufleren Krifte durch
statistische Krifte charakterisiert. Die Kompensationsbedingung ist eine Riccati-
Gleichung fiir das Superpotential W vom Typ W2 —W' ~ V — E. Durch ein subtiles
Zusammenspiel von Entropieproduktion & ~ W?2 und Entropiediffusion { ~ —W’
wird das Quantenobjekt zum freien Teilchen und zahlt dafiir in gebundenen Zu-
stinden lediglich den Preis der Quantisierung seiner Energie, da die Kompensation
nur fiir bestimmte diskrete Werte E, der Integrationskonstanten £ moglich ist. Die
Energiequantisierung gebundener Zustinde ist eine Folge der Kompensation, inso-
fern die Kompensationsbedingung auf Eigenwertgleichungen mit diskreten Eigen-
werten fiihrt.

Die Eigenzustinde sind die thermodynamisch stabilsten Zustinde des Quanten-
systems. Jede Uberlagerung von Eigenzustinden fiihrt zu einer Absenkung der mitt-
leren Entropie: Reine Zustdnde sind thermodynamisch stabiler als gemischte Zu-
stinde. Damit ist eine thermodynamische Erklidrung fiir die Dekohédrenz quanten-
mechanischer Zustinde gegeben.

33
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4.1 Thermodynamische Stabilitit und Nullpunktsenergie

Wihrend die Entropieproduktion 6 > 0 stets positiv oder Null ist, verlangt das
thermodynamische Stabilititskriterium eine negative Entropiekrimmung :

thermodynamische Stabilitit : ¢ = 5" <0.

Fiir die Untersuchung der thermodynamischen Stabilitét eines Quantenobjekts in
einem Potential V' wird die Riccati-Gleichung fiir die stationidren Zustinde zweimal
abgeleitet:

¢ o 4m ¢+ Y Am
-+ —=—=V-E)=>"—-—4+"—F—"=—-V".
k  2k? h? ) k k? h?
Wenn wir annehmen, dass das Potential V' (x) bei x = 0 ein Minimum hat, wird
die Wahrscheinlichkeit P (x) und damit auch die Entropiedichte s(x) bei x = 0 ein
Maximum haben. In einer quadratischen N#herung folgt mit ¢’ = 0:

52 4m " ; 2

_=_V = —:——-\/l’l’l'V”.

k? h? k h
Das Minuszeichen resultiert aus dem thermodynamischen Stabilitdtskriterium ¢ <
0. Eine Losung ¢ = 0 ist nur fiir ein Potential ¥ mit verschwindender Kriim-
mung V" moglich. Sobald das Potential eine endliche Kriimmung aufweist, wird
auch die Entropiekriimmung einen endlichen Wert annehmen. Fiir einen harmoni-
schen Oszillator folgt

1 ¢ me o m?w?
V = — 2 = VN — 2 = 2 = = — = 2 )
X mOT= ok oAk m

Die Boltzmann-Konstante k ist ein MaB fiir die thermische Stabilitit eines Systems
im Gleichgewicht und fiir die Grofe von Schwankungen (Einstein 1904; Bessenrodt
1987). Hier koppelt sie die Kriimmung ¢ der Entropiedichte mit der Kriimmung
mw? des Potentials V.

Einsetzen von ¢ und ¢ in die Riccati-Gleichung liefert einen einfachen Zusam-
menhang zwischen Nullpunktsenergie £ und Entropiekriimmung ¢:

1
Nullpunktsenergie: Ey=——=- = Ey = Eha).
Fiir Muldenpotentiale ergibt sich daraus eine untere Grenze fiir die verkiirzte Wir-
kung von der Groenordnung des Wirkungsquantums.

Fazit: Thermodynamisch stabile gebundene Zustinde in Muldenpotentialen sind
nur bei echt positiven Energien moglich. Die thermodynamische Stabilitéit erzwingt
fiir gebundene Zustinde die Existenz einer endlichen Nullpunktsenergie Ey:

t<0= Ey>0.
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4.2 Der harmonische Oszillator: Quantisierung

Als Beispiel betrachten wir einen harmonischen Oszillator mit der Kreisfrequenz w
und dem Potential V(x) = %ma)zxz. In stationdren Zustidnden gilt die folgende
Riccati-Gleichung:

hz S// S/Z 1 5 5

V4+U=E= —|—+ = |=-mwx" —E.
4m [ kK 2k? 2

Um eine erste Losung zu erhalten, nehmen wir eine konstante Entropiekriimmung

an. Der folgende Ansatz fiihrt auf eine einfach integrierbare Gleichung, deren Inte-

grationskonstante wir unterdriicken, da nur s’ physikalisch relevant ist:

h* s 1L, % sx) mow, ¢ s 2mo

am & 2 Skl k h K-k

Das Minuszeichen kommt aus der Stabilititsbedingung { < 0. Wegen s = k -
In P folgt sofort die Wahrscheinlichkeitsdichte Py fiir den Grundzustand und die
zugehorige Energie E:

Grundzustand : Py(x) = exp (—n;—wxz)

1
Nullpunktsenergie : Ej = Ehw.

Die Entropiekriimmung lésst sich damit auch durch die Ortsunschirfe Ax bzw. die
Varianz der Verteilung Ax? ausdriicken.
é- s” - m wz | 744 1

k  k  Ey,  E, Ax%

Im klassischen Grenzfall gilt trivialerweise thermodynamische Stabilitit. Die Wahr-
scheinlichkeitsverteilung strebt gegen einen §-Peak:

klassischer Grenzfall: h — 0= { - —oc0 A P(x) = 8(x).

Der Grundzustand ist durch eine Kompensation des dufleren Potentials durch die
Entropieproduktion gekennzeichnet. In den weiteren Losungen wird das kompen-
sierende Wechselspiel zwischen den vier Termen in der Riccati-Gleichung kom-
plexer sein. Wir nehmen an, dass sich der Grundzustand stets aus diesen Lo-
sungen ausfaktorisieren ldsst, so dass die Kompensation des dufleren Potentials
durch den Grundzustand erhalten bleibt. Damit die Wahrscheinlichkeit weiterhin
positiv bleibt, fiigen wir das Quadrat einer Funktion H,,(x) hinzu und berechnen
hieraus s(x):

p:pO.H,§:>%:mp:1nP0+1nH,f=—n;—wx2+lnH,3.
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Differenzieren und Einsetzen in die Riccati-Gleichung liefert mit der iiblichen Va-
riablentransformation

[mw
£ = T'X

nach kurzer Rechnung:

Hr/z/(é:) - 25: Hr/z(g) E—Ey ” ’ E—Ey

TRE) B = HI© -2 HEe) =
Da die Energie E als Integrationskonstante aus der Kompensationsbedingung fiir
die Krifte nicht mehr von x bzw. £ abhingt, ergibt sich daraus eine Eigenwertglei-
chung fiir H,. Die Losungen dieser Eigenwertgleichung sind genau die Hermite-
Polynome mit natiirlichen Zahlen n € {0,1,2,...,00} und Hy = 1 fiir den Grund-
zustand (vgl. Messiah 1976; Schwabl 1990):

Hy(§).

Hermite-Polynome : Hy (&) = (—1)" exp(£?) & exp(—£?)

dgn
Differentialgleich & 25d+2 H,(&) =0
ifferentialgleichung : | — — 26— n =
Rekursionsformel : Hyy1 =28H, —2n H,_; .
Ein Vergleich liefert
E—E
= S E=Qn+1)E,.

Ey

Damit kommt fiir den Energieeigenwert E, zur Quantenzahl n sofort

1
E,,:(n+§)ha).

Abbildung 4.1 zeigt die ersten vier Eigenzustinde des harmonischen Oszillators
mit den zugehdrigen Wahrscheinlichkeitsverteilungen P (x). Die Bilder der entspre-
chenden Entropieverteilungen s(x) legen die Vermutung nahe, dass die ,,Faltun-
gen® und Singularititen der Entropieverteilung s(x) in den angeregten Zustdnden
n > 1 durch die thermodynamische Stabilititsbedingung ¢ < 0 erforderlich wer-
den: Die Entropieverteilungsfunktion muss iiberall eine hinreichend negative Kriim-
mung aufweisen, so dass es insbesondere keine Wendepunkte oder Minima geben
kann. Wegen s(x) ~ In P(x) sind die Maxima der Aufenthaltswahrscheinlichkeit
auch Maxima der Entropieverteilung und Minima der Entropieproduktion; die Mi-
nima der Aufenthaltswahrscheinlichkeit mit P = 0 sind Singularititen der Entro-
pieverteilung und also auch Singularititen der Entropieproduktion und der Entro-
piediffusion. Die Maxima der Entropieverteilung, die zwischen zwei Minima der
Aufenthaltswahrscheinlichkeit liegen, sind auch Maxima der Entropiediffusion.
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Eigenzustinde des harmonischen Oszillators
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4.3 Das Wasserstoffatom: Quantenzahlen

Wir betrachten nun ein Elektron im Coulomb-Potential eines Protons. Zur Verein-
fachung setzen wir alle Konstanten zu Eins. Fiir das Kepler-Problem in einem Zen-
tralfeld lautet das effektive Potential Vi (r) in Abhéngigkeit von der Radialkoordi-

nate r:
12
Verr) = V() + Vi(r) = = + 2.
r 2r

Der Drehimpuls / erzeugt eine abstoBende Zentrifugalbarriere V;. Die Riccati-
Gleichung fiir die stationdren Zustdnde wird fiir dieses Problem in Kugelkoordi-
naten aufgeschrieben:

eftl” = 41\ or2  ror 5§73 or T 22 ’

Betrachten wir zunichst den Fall / = 0. Um den Grundzustand zu bekommen,
nehmen wir eine Entropieverteilung mit verschwindender Kriimmung an. Mit s” =
0 bleibt

Lds 1 (0 P e

2ror  8\or) — r '
Diese Gleichung soll fiir alle » bzw. x gelten. Ein Koeffizientenvergleich liefert
unter Vernachldssigung der Integrationskonstanten:

s

—=-2=s5=-2r.

ar
Damit kdnnen wir den Grundzustand sofort angeben, d. h. die radiale Wahrschein-
lichkeitsdichte R;(r) = exp(s) und die Nullpunktsenergie E;:

Ry = exp (—2r)
1
E 1 = —5 .
Analog zu unserer fritheren Vorgehensweise beim harmonischen Oszillator suchen
wir jetzt nach allgemeineren Losungen, indem wir der Wahrscheinlichkeitsdichte
des Grundzustands R; das Quadrat einer weiteren Funktion L hinzufiigen. Wir su-
chen Losungen der Form

R(x) = exp(—x) - Lz(x) = s(x) =InR(x) =—x+1In L?

mit x = Zn—’ Nach kurzer Rechnung erhélt man damit fiir das Quantenpotential:

11 [xL”+(2—x)L’—L}
- .
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Einsetzen in die Riccati-Gleichung fiir die stationdren Zusténde ergibt:

xL’/+(2—x)L/—Lj| 1 1

— = —— 4+ E,.
i + ~+ En

1
ViU=E= —
+ nr|: 2n?

Diese Gleichung soll wieder fiir alle r bzw. x gelten. Ein Koeffizientenvergleich
liefert eine Differentialgleichung fiir eine gewisse Teilmenge Li;—l der Laguerre-
Polynome, deren Losung positive natiirliche Zahlen n verlangt:

[xL” +(Q2-x)L — L}

7 =-n=xL"+Q2-x)L'+(n—1)L=0.

Die allgemeine Definition der Laguerre-Polynome lautet mit p, k € {0,1,2,..., 00}
(vgl. Messiah 1976; Schwabl 1990):

dr
Laguerre-Polynome : Lop = d—p(e x?) und Lk = (—l)kd kL0p+k

Die Laguerre-Polynome erfiillen folgende Differentialgleichung:

. o d d k
Differentialgleichung : x—+k+1—-x)—+p|LT(x)=0.
dx? dx r

Mit p = n — 1 und k = 1 lésst sich die radiale Wahrscheinlichkeitsdichte und die
Energie des n-ten Eigenzustands berechnen:

AECSGN

Fiir n = 1 ergibt sich wegen L(l) = 1 wieder der Grundzustand R; mit der Ener-
gie E;. Damit haben wir alle s-Orbitale mit der Hauptquantenzahl n durch einen
thermodynamischen Kompensationsansatz reproduziert.

Im Weiteren suchen wir Losungen mit nichtverschwindendem Drehimpuls / # 0.
Zur Vereinfachung setzen wir die Eigenwerte /(I 4 1) des Drehimpulsoperators
als bekannt voraus, d.h. die Nebenquantenzahl / € {0,1,2,...,n — 1}. Wir blei-
ben unserer Strategie treu und suchen wiederum eine zusétzliche Funktion, die den
Zentrifugalterm in der Riccati-Gleichung des Kepler-Problems neutralisiert. Da ein
zweimaliges Ableiten von In(x) die gewiinschte Potenz 1/x? erzeugt, versuchen wir
es mit x>/, Mit dem Ansatz

Ry

Il
a
b
S

|

|5

R(x) =exp(—x)-x? - L*(x) = s(x) =InR(x) = —x 4+ -Inx> + In L?
gehen wir in die Riccati-Gleichung ein und erhalten nach einer langeren Rechnung:

L[xL”+(2[+2—x)L’—(l+1)L} D 1 I+
L

-E,.

nr 2n? 2772y 2r2
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Der Koeffizientenvergleich ergibt jetzt
xL"+ @ +2—-x)L'+(mn—1—-1)L =0.

Dies ist die Differentialgleichung fiir Laguerre-Polynome vom Typ p = n — [ — 1
und k = 2/ + 1. Damit haben wir eine vollstindige Losung des Radialproblems
erhalten:

21 2
R, =exp (_x).xﬂ,[Lil__S]_l(x)jlz = exp (_2_]‘)(2_]‘) I:Lil—_;]—l (z_r)j| .
n n n

Die radiale Wahrscheinlichkeitsdichte R,,; besteht im Wesentlichen aus drei An-
teilen: einem Grundzustand zur Kompensation des Coulomb-Potentials, einem An-
teil zur Kompensation der Zentrifugalbarriere und einem Anteil fiir die Quanten-
leiter. Die Energieeigenwerte bleiben bei Anderung der Drehimpulsquantenzahl /
unverindert. Eine Anderung in / bewirkt also lediglich eine Umverteilung der Wahr-
scheinlichkeitsdichte bei gleichbleibender Energie E,.

Die rdaumliche Wahrscheinlichkeitsverteilung P(r, ¢}, ¢) in Kugelkoordinaten
wird aus dem iiblichen Separationsansatz gewonnen:

Patm(r,0,9) = Ry (r) - Y}, (9, 9).

Die Funktionen Y7,,(9, ¢) sind die Kugelfunktionen mit der Drehimpulsquanten-
zahl [ und der Magnetquantenzahl m. Die radiale Aufenthaltswahrscheinlichkeit
erhilt man durch Integration iiber die Raumwinkel (z. B. Schwabl 1990):

Pnl(r):rz'Rnl(r)-

Abbildung 4.2 zeigt die ersten drei Eigenzustinde des Wasserstoffatoms fiir / =
0: die Wahrscheinlichkeitsdichte, die Entropiedichte, die Entropieproduktionsdichte
sowie die Entropiediffusionsdichte. Abbildung 4.3 zeigt einige Zustinde mit / > 0.
Da das Minimum des effektiven Potentials Vg fiir / = 1 oberhalb von E; liegt, gibt
es fiir / = 1 nur Eigenzustéinde fiirn > 1.

Fazit: Auch beim Kepler-Problem tritt eine Kompensation des dufleren Feldes
durch das Quantenpotential auf. Im Unterschied zum harmonischen Oszillator sind
allerdings die Rollen von Entropieproduktion und Entropiediffusion hier gerade ver-
tauscht: Das Oszillatorpotential wird im Grundzustand durch die Entropieproduk-
tion kompensiert, wiahrend das Coulomb-Potential durch die Entropiediffusion neu-
tralisiert wird. Die Nullpunktsenergie ist durch das jeweils andere statistische Poten-
tial bestimmt. Dieser Unterschied findet seine Begriindung in einfachen Vorzeichen-
tiberlegungen: Da die Entropieproduktion nicht negativ werden kann, kann sie folg-
lich nur positive Potentiale kompensieren; umgekehrt darf die Entropiekriimmung
aus Stabilitdtsgriinden nicht positiv sein, so dass sie ihrerseits auch nur negative
Potentiale neutralisieren kann. Auf diese Weise zeigt sich eine interessante Arbeits-
teilung der beiden thermodynamischen Potentiale. Komplexere Probleme erfordern
entsprechend komplexere Formen des Zusammenwirkens.
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Abb. 4.3 Eigenzustiinde des Coulomb-Potentials (/ > 0)
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Wie beim harmonischen Oszillator bleibt die Kompensation des dufleren Poten-
tial durch den Grundzustand auch im Anregungsspektrum des Kepler-Problems er-
halten. Die Vorgehensweise zur Ermittlung der stationdren Losungen besteht in ei-
ner sukzessiven Kompensation der dufleren Potentialterme durch geeignete statisti-
sche Potentiale. Um diese Idee verallgemeinern zu konnen, miisste lediglich nach-
gewiesen werden, dass sich der Grundzustand Py stets aus allen Losungen ausfak-
torisieren ldsst. Es geniigt dann zu zeigen, dass dieser Grundzustand das Potential
kompensiert und durch die erste Stufe einer Quantenleiter ersetzt. Ein schrittweises
Vorgehen ist bei komplexeren Problemen von Vorteil. Die Quantisierung der Ener-
gie ergibt sich durch ein Eigenwertproblem, das auf die entsprechenden Polynome
fihrt.

4.4 Superposition und Bifurkation

Wir nehmen nun an, dass die Ubergangszustinde in Quantensystemen durch Super-
positionen von Eigenzustinden dargestellt werden. Wenn v; und v/ ; Eigenzustinde
der zeitunabhingigen Schrodinger-Gleichung zu den Energien E; und E; sind, so
ist die Superposition

Yi(x) - exp (—%Ei t) + ¥j(x) -exp (—%Ej t)

Bifurkationen
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Abb. 4.4 Bifurkationen im Oszillatorpotential
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von zeitabhingigen Losungen ebenfalls wieder eine Losung der zeitabhidngigen
Schrodinger-Gleichung, der allerdings keine scharfe Energie zugeordnet ist (z. B.
Messiah 1976). Die Wahrscheinlichkeitsdichte P (x, t) oszilliert zwischen den Ex-
tremwerten (|¥;| — |¥;|)* und (|y;| + |¥;|)* mit der Frequenz

_ |Ei - E)|
- B2

Unter der vereinfachenden Annahme, dass der oszillierende Interferenzterm im zeit-
lichen Mittel verschwindet, konnen wir mit ¢ € [0, 1] einen stetigen Ubergang vom
Eigenzustand i in den Eigenzustand j in folgender Weise modellieren:

w

P=(1-¢)-Pi+e-Pj
E=(1-¢)-Ei+¢e-Ej.

In Abb. 4.4 sind fiir das Oszillatorpotential die Maxima der zeitlich gemittelten
Wahrscheinlichkeitsdichte P gegen die gemittelte Energie E aufgetragen. Das Ver-
zweigungsdiagramm zeigt, wie mit zunehmender Energie £ zwischen zwei Ener-
gieeigenwerten bei x = 0 neue Maxima entstehen, die sich beim niichsten Ubergang
in jeweils zwei Maxima aufspalten. In Abb. 4.5 sind einige Ubergangszustinde fiir
&= % dargestellt. Die Eigenzustidnde sind dadurch ausgezeichnet, dass die Minima

Wabhrscheinlichkeit und Entropie Entropieproduktion und Entropiediffusion
P(x) 5"2(x)
5"(x)
s(x)
0—1 0—1

PN

1-2 1—2

2—-3 2—-3

Abb. 4.5 Mischzustidnde im Oszillatorpotential
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der Wahrscheinlichkeitsverteilung auch deren Nullstellen sind. An diesen Nullstel-
len wird die Entropiedichte wegen In(0) = —oo singulir. Folglich gibt es keine Be-
reiche, in denen die Entropieverteilung eine positive Kriimmung besitzt. Die Eigen-
zustinde sind im ganzen Raum thermodynamisch stabil. Beim Ubergang zwischen
zwei Eigenzustidnden heben jedoch die Minima der Wahrscheinlichkeitsdichte von
der Nulllinie ab. Erst im néchsten Eigenzustand sind die Minima von P wieder auch
Nullstellen von P. In den Superpositionszustidnden besitzt die Entropiedichte lokale
Minima mit einer positiven Kriimmung. In diesen Bereichen herrscht thermodyna-
mische Instabilitit.

Alle Ubergangszustinde zwischen den Eigenzustinden sind also thermodyna-
misch instabil. Eine Ausnahme bildet der Ubergang vom Grundzustand Ej in den
ersten angeregten Zustand E;. Bis zur ersten Bifurkation gibt es kein Minimum,

Abb. 4.6 Wahrscheinlichkeitsdichte im Oszillatorpotential
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das eine Instabilitiit erzeugen konnte. In diesem Energiebereich sind die Mischzu-
stande aber weniger stabil als der Grundzustand. Abbildung 4.6 veranschaulicht den
Zusammenhang P (x, E) fiir den harmonischen Oszillator.

4.5 Dekohirenz als Entropiemaximierung

Um die thermodynamische Stabilitét der stationidren Zustdnde weiter zu untersu-
chen, betrachten wir nun die mittlere Entropie eines Zustands mit der Wahrschein-
lichkeitsverteilung P(x):

o0

mittlere Entropie : S = / P -In Pdx.
—00
Was passiert mit der mittleren Entropie, wenn wir einen Eigenzustand P; verlassen,
indem wir einen anderen Eigenzustand P; liberlagern? Fiir kleine ¢ folgt in linearer
Niéherung:

o0 oo
P=(0-¢)-Pi+e-P;=>S~ (1—8)'/ P; -In Pidx +¢- / Pj -1In P;dx.
—00 —00
Wegen P; > 0 und In P; < 0 ist das letzte Integral negativ. Beim Verlassen eines
Eigenzustandes nimmt die mittlere Entropie also ab. Abbildung 4.7 verdeutlicht den
Zusammenhang S(E).

EO El E2 E3 E4 E5 E6
Abb. 4.7 Mittlere Entropie im Oszillatorpotential
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Fazit: Die Eigenzustinde sind die thermodynamisch stabilsten Zustinde eines
Quantensystems. Sie sind durch lokale Maxima der mittleren Entropie gekennzeich-
net. Ein Rauschen diirfte geniigen, um das System in einen Eigenzustand relaxieren
zu lassen. Damit ist die Dekohédrenz quantenmechanischer Zustdnde thermodyna-
misch begriindet.



Kapitel 5
Klassische Analogien

Es ist schon ein Erfolg, wenn man

die Natur dazu zwingen kann,

einem die Zunge herauszustrecken.
Albert Einstein

Um die Quantenphidnomene zu verstehen, wurden vor allem zwei klassische Analo-
gien betrachtet: Wellenbild und Teilchenbild. Die optische Analogie einer ,,Materie-
welle* betont den Wellencharakter des Quantenobjekts; die hydrodynamische Ana-
logie einer ,, Wahrscheinlichkeitsfliissigkeit dagegen den Teilchencharakter. Gemalfy
der Born’schen Deutung wird die Intensitit der Welle im Teilchenbild als ,,Intensitt
der Materie* interpretiert.

Der Welle-Teilchen-Dualismus ,triggerte Schrodinger zur Wellenmechanik. Der
,.klassische* Zugang zur Schrédinger-Gleichung erfolgt iiber die optische Analogie
und de Broglies Materiewellen fiir freie Teilchen mit Hilfe des Korrespondenzprin-
zips und Verallgemeinerung auf duflere Potentiale per Postulat.

Nach einer kurzen Rekapitulation des Welle-Teilchen-Dualismus werfen wir ei-
nige Schlaglichter auf die optische Analogie und ihre Erfolge: die Gewinnung von
Quantisierungsbedingungen und eine erste Herleitung der Schrodinger-Gleichung
mit Hilfe des Korrespondenzprinzips und gewisser Korrespondenzregeln.

Die formale Analogie der beiden Variationsprinzipien fiir den geometrischen
Lichtweg und fiir die klassische Teilchenbahn lenkt das Augenmerk auf die Wir-
kungsintegrale und die Theorie der adiabatischen Invarianten (Bessenrodt 1987):
,.Die Adiabatenhypothese beherrscht die stationdiren Zustinde. Das Korrespondenz-
prinzip beherrscht die Uberginge zwischen den stationiren Zustinden.*

Die hydrodynamischen Analogie kann unter thermodynamischen Gesichtspunk-
ten weiter ausgebaut werden: Das Wirkungsquantum ist ein MaB fiir die innere Rei-
bung in der Wahrscheinlichkeitsfliissigkeit.

49
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5.1 Der Welle-Teilchen-Dualismus

Grundlegende Uberlegungen zur Quantentheorie wurden durch den experimentellen
Befund der Welle-Teilchen-Dualitit ausgeldst (Einstein 1909a,b). Strahlung kann
auch Teilcheneigenschaften aufweisen und umgekehrt Materie auch typische Wel-
leneigenschaften: Elektronen verhalten sich z. B. in Doppelspaltexperimenten wie
Wellen, Photonen beim Photoeffekt wie Teilchen.

Die Existenz der Welle-Teilchen-Dualitét ist mit den klassischen Theorien un-
vereinbar: Die klassische Lehre, nach der sich ein Teilchen in Raum und Zeit stetig
bewegt, versagt in diesem Punkt. Diese Unvereinbarkeit bezieht sich jedoch nur auf
die klassische Mechanik und auf die klassische Elektrodynamik. Von Thermodyna-
mik ist in diesem Zusammenhang kaum die Rede. Es ist aber eine statistische Deu-
tung der Wellenfunktion als Wahrscheinlichkeitsamplitude, die den Welle-Teilchen-
Dualismus iiberbriickt, die Born’sche Wahrscheinlichkeitsinterpretation: Die Inten-
sitdt der Welle an einem Ort gibt die Wahrscheinlichkeit dafiir an, das ihr zugeord-
nete Teilchen dort anzutreffen (Born 1926).

Der Ubergang von einer Welle mit der Frequenz @ und dem Wellenvektor k zum
korrespondierenden Teilchen mit der Energie £ und dem Impuls p erfolgt iiber die
Einstein-de-Broglie-Relation:

L . EY\ )
Einstein/de Broglie : ( » ) =h (k ) .

Uber diese Gleichung sind die beiden Hauptursachen fiir den Zusammenbruch der
klassischen Theorie miteinander verkniipft: der Aromismus der Wirkung und die
Welle-Teilchen-Dualitdt. Im klassischen Grenzfall verschwindet dieser Zusammen-
hang zwischen Wellen- und Teilchenaspekt mit dem Wirkungsquantum. Breitet sich
eine Welle mit Lichtgeschwindigkeit ¢ aus, so gilt ¢ = w/k. Hat das zugeordne-
te Teilchen den Impuls p = mc, erhilt man die relativistischen Beziehungen fiir
Photonen:

2
(E) :(mc )=>E:p-c.
p mc
Ist m( die Ruhemasse des Teilchens, so gilt allgemeiner:

2 2.4 2.2
E*=myc" + pc.

5.2 Das Korrespondenzprinzip

Das Korrespondenzprinzip besagt, dass die Quantentheorie im klassischen Grenzfall
asymptotisch in die klassische Theorie iibergehen muss:

L . h—>0 .
Korrespondenzprinzip :  Quantentheorie — Klassik.
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In der optischen Analogie miissen die Materiewellen gemill dem Korrespondenz-
prinzip in der geometrisch-optischen Niherung klassisches Verhalten zeigen. So wie
die Wellenoptik in die Strahlenoptik iibergeht, muss die Wellenmechanik in die klas-
sische Mechanik iibergehen. Weil die Geschwindigkeit eines Teilchens proportional
zum Gradienten der Wirkung S ist, sind die Teilchenbahnen orthogonal zu den Fla-
chen gleicher Phase S = const:

VS =p=nhk.

In der Sprache der Optik sind dies die Wellenflichen, wéhrend die Teilchenbahnen
den Strahlen entsprechen. Der Wellenvektor k steht (im Falle eines isotropen Medi-
ums) ebenfalls senkrecht auf den Wellenflichen. Die klassische Nidherung entspricht
im Wellenbild der Niherung der geometrischen Optik.

Das Korrespondenzprinzip war eine wichtige Hilfe bei der Aufstellung der
Schrodinger-Gleichung (Schrodinger 1926). Aus dem Korrespondenzprinzip und
der optischen Analogie schlieft man auf eine formale Analogie zwischen der zu
erstellenden Schrodinger-Gleichung und der Energiegleichung der klassischen Me-
chanik; mit Hilfe der sogenannten Korrespondenzregeln werden die klassischen Va-
riablen durch Differentialoperatoren ersetzt:

0
Korrespondenzregeln : E — ih— p— —ih—.
ot ox
Durch diese Ersetzungen wird aus der klassischen Hamilton-Funktion H(p, x) der
quantenmechanische Hamilton-Operator:
~ K 92
Hamilton-Operator : =——
amilton-Operator: H 2 92
Die Schrodinger-Gleichung erhilt man mit den Korrespondenzregeln als Operator-
iibersetzung des klassischen Energiesatzes:

2
Energiegleichung : E = L +V - ihgl// = ﬁgl/.
2m ot
Dass eine solche quantentheoretische Ubersetzung der klassischen Energieglei-
chung auch auflerhalb der ,,geometrisch-optischen Nidherung* gilt, wird schlicht
postuliert. Hieraus ergibt sich der Bedarf nach weiteren Begriindungen fiir die Giil-
tigkeit der Korrespondenzregeln.

Wird dem Impuls p iiber die de-Broglie-Relation eine Ortsfrequenz k und der
Energie E iiber die Einstein-Relation eine Zeitfrequenz w zugeordnet, ergibt sich
die Korrespondenzvorschrift in der optischen Analogie aus der Tatsache, dass die
Fourier-Transformation aus dem Frequenzraum auf entsprechende Ableitungen auf
der Raumzeit fiihrt:

0

Korrespondenzregeln: o —i— k — —i—

ot ox
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Die imaginire Einheit i sichert zunéchst nur die Hermitezitét der Differentialopera-
toren.

In der hydrodynamischen Analogie erscheint die Korrespondenzregel, wenn man
von der quantenmechanischen Hamilton-Jacobi-Gleichung zu einer ruhenden Fliis-
sigkeit iibergeht. Fiir stationdre Zustinde gilt:

h2 A" h2 82
V+U=FE=V—-——=E=|-———+V]|A=FEA.
+ 2m A ( 2m 9x? + )
Mit der Definition des Hamilton-Operators ergibt sich die stationdre Schrédinger-
Gleichung fiir die Wahrscheinlichkeitsamplitude A. Der fehlende Phasenfaktor ist
fiir die stationdren Zustinde unwesentlich:

HA=EA.

Ein Vergleich der Lagrange-Funktion, ausgedriickt durch H und p, mit der formalen
totalen Zeitableitung von S(x, ¢) liefert wie tiblich:

ds ds 9SS aS as as

— =L=px—-HAN—=—+—X=> —=—HA—=p.

i P a o Tt ox P
Mit diesen Beziehungen erhélt man mit Blick auf die quantenmechanische Hamil-
ton-Jacobi-Gleichung die Ersetzungsregeln aus folgender Viererdarstellung:

8[ _ —-F _ —w . 8[
()5 =(5) =2 (%) = (i)
5.3 Das Wirkungsprinzip

Die totale Zeitableitung der Wirkung S(x, ¢) lings einer Bahn ist durch die Lagran-
ge-Funktion L gegeben. Die Gesetze der Mechanik leiten sich aus dem Prinzip der
kleinsten Wirkung ab:

ds
Wirkungsintegral . S(x,t) = [ L(x,%,t)dt < o= L

Wirkungsprinzip :  8S(x,t) =8 [ L(x,x,t)dt = 0.

Die Lagrange-Funktion hdngt tiber eine Legendre-Transformation mit der Hamilton-
Funktion H zusammen. Die Wirkung S kann somit auch durch H und p ausge-
driickt werden:

Hamilton-Funktion: H(p,x,t) = px — L(x, X,t)
Wirkungsintegral : S = [ (pdx — Hdr).
Verschwindet in stationdren Zustinden die Energiedissipation, enthilt die Hamilton-

Funktion die Zeit nicht mehr explizit. In diesem Fall bleibt die Energie erhalten
und H kann durch die Konstante E ersetzt werden. Mit Hilfe der verkiirzten Wir-
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kung I ergibt sich ein einfacher Ausdruck fiir die stationdre Wirkung:
stationdire Wirkung :  S(x,t) = I(x) — Et
verkiirzte Wirkung :  1(x) = [ pdx.

Durch die de-Broglie-Bezichung p = Ak fiir Materiewellen offenbart sich eine for-
male Analogie der beiden Variationsprinzipien fiir den geometrischen Lichtweg und
fiir die klassische Teilchenbahn bei konstanter Energie £ = p - x — L, also des Fer-
mat’schen und des Hamilton’schen Prinzips fiir das verkiirzte Wirkungsintegral /:

Fermat’sches Prinzip : §[k-dx=0
Hamilton’sches Prinzip : 8 [ p-dx =0.

Wird nun im Wellenbild das Atom als Hohlraumresonator aufgefasst, so konnen
die stationdren Zustdnde als stehende Wellen angenommen werden. Damit eine ste-
hende Welle entstehen kann, muss die Phase fiir einen Umlauf ein ganzzahliges
Vielfaches von 2 sein. Daraus ergibt sich die Bohr-Sommerfeld’sche Quantisie-
rungsbedingung fiir die verkiirzte Wirkung /:

Bohr-Sommerfeld : %k-dx:Zn-n & ¢p-dx=271-nh.

5.4 Die Adiabatenhypothese

Neben dem Korrespondenzprinzip war die Theorie der adiabatischen Invarianten ei-
ne wichtige Hilfe bei den Versuchen, die Quantisierung atomarer Groflen zu erkla-
ren. Adiabatische Invarianten bleiben nidherungsweise konstant bei quasistatischen,
d. h. hinreichend langsamen Veridnderungen der Systemparameter. Fiir endliche Be-
wegungen ist die verkiirzte Wirkung / eine adiabatische Invariante (Landau und
Lifschitz 1977). Bei periodischen Bewegungen gibt das Wirkungsintegral / den von
der Trajektorie eingeschlossenen Fldcheninhalt im Phasenraum an.

Ein tieferes Verstidndnis der Sommerfeld’schen Quantenregeln wurde durch die
Ehrenfest’sche Adiabatenhypothese ermoglicht: Die Adiabatenhypothese besagt,
dass quantenmechanisch mogliche Zustinde bei adiabatischen Parameterdnderun-
gen wieder in erlaubte Quantenzustdnde iibergehen. Damit konnen die Quanten-
bedingungen des harmonischen Oszillators auf jeden eindimensionalen Schwinger
ibertragen werden, der daraus durch adiabatische Transformation gewonnen wird.

Rayleigh hatte die adiabatische Invarianz von E/w fiir das ebene Pendel mit
verianderlicher Pendelldnge bzw. Eigenfrequenz gezeigt. Nach Einstein ist diese In-
variante gerade das Wirkungsquantum und es folgt die Einstein-Relation £ = hw.

Einstein (1917) betrachtet die Impulse p als Funktion der Lagekoordinaten x.
Besitzt das Vektorfeld p(x) ein Potential, so hat das Linienintegral

95 p(x)dx

fiir alle geschlossenen Kurven im Konfigurationsraum der x, die stetig ineinander
iberfiihrt werden konnen, denselben Wert. Dieser Wert ist Null, wenn alle geschlos-
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senen Kurven stetig in einen Punkt zusammengezogen werden knnen und der Kon-
figurationsraum somit einfach zusammenhingend ist. Gilt dies nicht fiir alle ge-
schlossenen Kurven, so ist der Konfigurationsraum mehrfach zusammenhingend
und das Linienintegral von Null verschieden. Es wird aber dann abzihlbar viele
geschlossene Linien geben, auf die sich alle geschlossenen Kurven durch stetige
Anderungen reduzieren lassen. Die Anzahl der Zusammenhangskomponenten im
Konfigurationsraum ist durch den Knotensatz der Sturm-Liouville-Theorie gege-
ben: Der n-te angeregte Zustand besitzt genau n Knoten.

5.5 Die Wahrscheinlichkeitsfliissigkeit

The first processes in the effectual studies
of the sciences, must be ones
of simplification and reduction of the results
of previous investigations to a form
in which the mind can grasp them.

James Clerk Maxwell

Neben der optischen liefert auch die hydrodynamische Analogie wichtige Anschau-
ungen iiber die Quantenphdnomene. In der hydrodynamischen Analogie beschreibt
das Quadrat der Wellenfunktion im klassischen Grenzfall eine stromende Fliissig-
keit von klassischen Teilchen der Masse m, die ohne gegenseitige Wechselwirkung
dem Potential V' unterworfen sind. Mit mv = V§ ergibt sich aus der klassischen
Hamilton-Jacobi-Gleichung durch Gradientenbildung die Newton’sche Bewegungs-
gleichung fiir die klassische Fliissigkeit (Messiah 1976):

s mv? V=0 dv v v vy
8t+ 5 +V = :mdl—m(at+v v)— .
Messiah bleibt jedoch hier stehen und warnt sogar in einer FuBinote: ,,Die Analo-
gie zwischen dieser ,Wahrscheinlichkeitsfliissigkeit und der klassischen Fliissig-
keit darf natiirlich nicht zu weit getrieben werden.* Wir wollen diese Analogie hier
aber trotzdem noch etwas weiter treiben und die Gradientenbildung auch fiir die
quantenmechanische Hamilton-Jacobi-Gleichung durchfiihren, um dann weiter zu
fragen, welche Wechselwirkungen das Quantenpotential in der klassischen Wahr-
scheinlichkeitsfliissigkeit hervorruft:

s mv? dv v

St tVHU=0=m ==V +U].
Das Quantenpotential U erzeugt offenbar Wechselwirkungen innerhalb der klas-
sischen Wahrscheinlichkeitsfliissigkeit und damit statistische Abhzngigkeiten im
sonst klassischen Ensemble. Diese Wechselwirkungen kdnnen durch Entropiepro-
duktion und Entropiediffusion oder auch durch das Superpotential ausgedriickt wer-
den. Uber die stationiren Losungen wissen wir bereits, dass sie durch eine Kompen-



5.5 Die Wahrscheinlichkeitsfliissigkeit 55

sation charakterisiert sind:

stationdre Zustinde : 'V +U = E = m(;—l; =0.

In der hydrodynamischen Analogie werden die Quanteneffekte durch Korrelationen
in einer sonst statistisch unabhéngigen Wahrscheinlichkeitsfliissigkeit beschrieben.
Im Gleichgewicht zeigt sich eine ruhende Fliissigkeit. Durch innere Wechselwir-
kungen in der Wahrscheinlichkeitsfliissigkeit werden die duferen Wechselwirkun-
gen gerade kompensiert. Die Stromung verhilt sich dadurch, als ob sie wechselwir-
kungsfrei wiire.

Um die Wechselwirkungen in der Wahrscheinlichkeitsfliissigkeit thermodyna-
misch zu deuten, konnen wir das Quantenpotential durch eine thermodynamische
Kraft X(x) = Vs(x) ausdriicken:

B [As (V)] # V-X+X_2
2m - 2k 4k2 |

Quantenpotential : U = —
2m

T

Damit kann die Bewegungsgleichung der Wahrscheinlichkeitsfliissigkeit in die fol-
gende Form gebracht werden:

dv R [AX  X-VX
L vy =y |2
" V+U) +4m[k T e }

Des Weiteren nehmen wir eine lineare Fluss-Kraft-Beziehung an:
X = Rx = Rv.

Mit den folgenden Festlegungen fiir den kinetischen Koeffizienten R und den Rei-
bungskoeffizienten n

h
R=—kAn=—
P

erhilt man daraus:

dv ov
ma:m E—ku-Vv =-VV +nAv+m@- Vo).

Der Konvektionsterm hebt sich weg und es bleibt

)
m— =—-VV +nAv.
ot 1
Dieses Ergebnis kann mit der Navier-Stokes-Gleichung verglichen werden. Die
Navier-Stokes-Gleichung beschreibt die Kraftdichte, die auf ein Fliissigkeitsele-
ment wirkt, als Summe zweier Anteile aus Druck g und Reibung 7:

d ad
Navier-Stokes-Gleichung : pd—]; =p (8_1; +v- VU) =—-Vp +1nAv.
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Die hierin auftretende Massendichte p geniigt einer Kontinuititsgleichung. Beson-
ders wichtig im Hinblick auf Turbulenzerscheinungenist das Verhiltnis von Konvek-
tion und innerer Reibung. Eine verschwindende Reibung kennzeichnet eine ideale
oder Euler-Fliissigkeit. Je nachdem, welche Terme dominieren bzw. vernachléssig-
bar sind, unterscheidet man folgende Spezialfille einer Stromung:

ideal  stationdr laminar turbulent

n=0 dv=0 pv-Vv<KnAv pv-Vov>nAv

Der Vergleich mit der Wahrscheinlichkeitsfliissigkeit zeigt, dass wir es mit einer
laminaren, d.h. konvektionsfreien Stromung zu tun haben, deren innere Reibung
durch das Wirkungsquantum bestimmt ist. Das friiher betrachtete Wechselspiel zwi-
schen Entropieproduktion und Entropiediffusion ist hier offenbar iibertragen auf ein
Wechselspiel zwischen Konvektion und Reibung. Die Entropiediffusion wird im hy-
drodynamischen Bild zu einem Reibungsterm, der fiir Stabilitét sorgt.



Kapitel 6
Die Unschirferelation

Objectivity is a subject’s delusion
that observing can be done without him.
Heinz von Foerster

Ein wichtiges Ergebnis der Schrodinger-Theorie ist die Heisenberg’sche Unschirfe-
relation. Im Folgenden wird die Frage untersucht, inwieweit die betrachteten klas-
sischen Analogien und unsere thermodynamische Deutung ein anschauliches Ver-
stindnis dieser Unschirfen ermoglichen. Unschirferelationen bestehen zwischen
komplementidren Variablen, deren zugeordnete Operatoren nicht vertauschen. Es
ist nicht moglich, zwei Messgrofien eines Quantenobjekts, deren Produkt die Di-
mension einer Wirkung hat, gleichzeitig und exakt zu bestimmen. Je genauer wir
beispielsweise den Ort eines Quantenobjektes festlegen, desto ungewisser knnen
wir seinen Impuls und damit seine weitere Bahn voraussagen. Diese charakteris-
tischen Unbestimmtheiten diirfen nicht mit den iiberall auftretenden Messfehlern
verwechselt werden.

Im Wellenbild werden Unschirferelationen auf den Ahnlichkeitssatz der Fourier-
Transformation zuriickgefiihrt. Die Unschirfe ist im Wellenbild eine rein klassische
Eigenschaft, die etwa die stets endliche Ubertragungsbandbreite eines Wechselwir-
kungskanals oder das stets endliche Auflosungsvermogen optischer Messgerite be-
schreibt. Jedes System ist ein Tiefpass.

Im Teilchenbild fiihrt eine Brown’sche Bewegung mit Korrelationen zwischen
den beiden Marginalverteilungen zu einer Orts-Impuls-Unschérfe. Hierzu wird die
thermische Energie kT in den stationdren Losungen durch die Nullpunktsenergie Eq
ersetzt. In dieser Heuristik bedingen sich Unschérfe und Nullpunktsenergie gegen-
seitig.

In der thermodynamischen Deutung wird die Ort-Impuls-Unschérfe aus dem
zweiten Hauptsatz der Thermodynamik abgeleitet. Zumindest fiir die Dauer einer
Messung ist das Quantensystem ein offenes System, das Entropie bzw. Informati-
on mit seiner Umwelt austauscht. Jede Messung ist mit einer Entropieproduktion
verbunden, die deren Informationsgewinn im Sinne des zweiten Hauptsatzes kom-
pensiert und so die Entropiebilanz zumindest ausgleicht. Der Messprozess setzt der
Subjekt-Objekt-Spaltung eine prinzipielle Begrenzung.
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6.1 Optische Analogie: Ahnlichkeitssatz

Die Erkldrung der Unschirferelation im Wellenbild geht von der Tatsache aus, dass
die Wellenfunktionen in der Ortsdarstellung und in der Impulsdarstellung Fourier-
Transformierte sind. Der Ahnlichkeitssatz der Fourier-Transformation verbietet eine
gleichzeitige scharfe Lokalisierung im Ortsraum und im Impulsraum. Die wichtigs-
ten Unschirfen konnen als ,,Vierer-Unschérfe* zusammengefasst werden:

1
Ort-Impuls-Unschdirfe :  Ax-Ap > Eh

1
Energie-Zeit-Unschéirfe : At - AE > Eh .

Diese Relationen beschreiben Streuungen vieler fiir sich genommen jeweils scharfer
Messergebnisse. Uber Einstein/de Broglie ins Wellenbild iiberspielt lauten sie:

1
Ort-Impuls-Unschéirfe :  Ax - Ak > 3

1
Energie-Zeit-Unschdrfe : At - Aw > 5

Die Unschirfe zwischen Zeit und Frequenz trigt in der Signalverarbeitung den un-
spektakuldren Namen ,,Zeitgesetz der Nachrichtentechnik* (,,Lucky* Liike 1990):
Je kiirzer das Signal im Zeitbereich ist, desto breiter ist das Fourier-Spektrum die-
ses Signals im Frequenzbereich. Es handelt sich hierbei um eine Eigenschaft eines
Nachrichteniibertragungskanals, dessen Produkt aus Ubertragungsbandbreite und
der fiir die Ubertragung einer Nachrichtenmenge aufzuwendenden Zeit eine Kon-
stante ist. Es gibt keinen physikalischen Allpass, kein vollkommen verzerrungsfrei-
es System. Die Welt ist ein Tiefpass und das All ist kein Allpass. (Ein idealer Tief-
pass ist allerdings nicht kausal, es sei denn es gibt hinreichende Zeitverzégerungen.)
Um eine wirklich vollstindige Beschreibung aller Frequenzanteile eines Vorgangs
in endlicher Zeit zu erhalten, brauchte man demnach eine unendliche Bandbrei-
te des Ubertragungskanals, der die Informationen iiber diesen Vorgang vermittelt.
Die ,,prinzipielle Eliminierbarkeit des Unwissens®, die der klassischen Statistik un-
terstellt wird, besteht also im Grunde in einer gedanklichen Heraufsetzung dieser
Ubertragungsbandbreite ins Unendliche.

Der Ahnlichkeitssatz gilt als mathematischer Satz nicht nur fiir die Zeit ¢ und
die Frequenz w, sondern auch fiir den Ort x und die Ortsfrequenz k. Das klassische
Analogon bei rdumlichen Variablen ist das stets begrenzte Auflosungsvermdogen op-
tischer Gerite: Ein unendliches Auflosungsvermogen erfordert eine unendlich grof3e
Linse; und die benotigt ein unendlich groes Universum, was es — wenn iiberhaupt —
erst in unendlich ferner Zukunft geben kann.

Fazit: Die Unschirferelationen beruhen im Wellenbild auf dem Ahnlichkeitssatz
der Fourier-Transformation. Fiir raumzeitliche Wellenerscheinungen sind Unschir-
ferelationen also nichts aulergewdhnliches, sondern vollkommen klassische Eigen-
schaften.
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Das Problem der klassischen Anschauung tritt erst beim Ubergang zum Teil-
chenbild auf. Um die Unschérferelation auch im Teilchenbild einer klassischen An-
schauung néher zu bringen, wird nun die Brown’sche Bewegung genauer untersucht,
durch die schon auf klassische Weise die Messgenauigkeit eingeschrinkt wird (Bar-
nes und Silvermann 1934; Bessenrodt 1987).

6.2 Hydrodynamische Analogie: Brown’sche Bewegung

Wir betrachten die Verallgemeinerung der Brown’schen Bewegung auf den ganzen
Phasenraum. Die Brown’sche Bewegung eines harmonisch gebundenen Teilchens
kann durch eine Langevin-Gleichung vom Typ

dv 2

— =—pPv—wx+ K(t

=P 0

mit der Frequenz w und einem Reibungsparameter 8 beschrieben werden. Die Kraft
ist hierin zerlegt in einen systematischen und einen schnell fluktuierenden An-
teil K(¢). Eine dquivalente Beschreibung ist die durch eine generalisierte Fokker-
Planck-Gleichung fiir die Wahrscheinlichkeitsdichte p(x, v, ?):

2

d ap ) ap ad ad
= ? ﬂﬁ(W’)‘FflmP-

50—54—05—0) X%—
Diese Fokker-Planck-Gleichung kann als Verallgemeinerung der Liouville-Glei-
chung auf Brown’sche Bewegung aufgefasst werden. Auf der linken Seite stehen
die Liouville’schen Konvektionsterme, rechts stehen anstelle der Null die Terme der
Brown’schen Bewegung: Drift und Diffusion im Geschwindigkeitsraum. Da wir die
Brown’sche Bewegung auf einer schnellen Zeitskala annehmen, betrachten wir nur
die stationdren Verteilungen:

d 0 0 92

N 2 9
T vaxp+av[(,3v+wx)p]+qavzp 0.

Des Weiteren machen wir den iiblichen Separationsansatz
p(x.v) = P(x)- O(v).

Die stationdren Losungen der Fokker-Planck-Gleichung lauten (Chandrasekhar
1943):

maw?x? Epot
P(x) ~exp (— % ) = exp (— T )

z Ein
0(v) ~ exp (—Z{—UT) = exp (— kl;" ) .
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Weil die Temperatur 7" nicht beliebig klein und die Eigenfrequenz w nicht belie-
big grofl gemacht werden kann, gibt es bereits bei diesem klassischen Modell eine
gewisse Unschirfe:

[ kT kT kT
Ax-Ap = Ax -mAv =/ —= -my| — = —.
mo m 1)

Nun ist zu beachten, dass die thermische Energie k7T auf kiinstlichem Weg in diese
Losungen hineingekommen ist. Hierzu Chandrasekhar: ,,The physical circumstan-
ces of the problem require that we demand of Q (v, t; v,) that it tends to a Maxwel-
lian distribution for the temperature 7' of the surrounding field, independently of v,
ast — 00.“ Aus dieser Forderung folgt ndmlich fiir den Diffusionskoeffizienten

q:EkT.
m

Unter den hier betrachteten quantenmechanischen Umstdnden nehmen wir an, dass
die Brown’sche Bewegung durch Vakuumfluktuationen hervorgerufen wird. Mit
dem gleichen Recht wie Chandrasekhar fordern wir hier, dass die stationidre Ver-
teilung den quantenmechanischen Grundzustand wiedergibt. Um dies zu erreichen,
miissen wir offenbar in den stationdren Losungen lediglich die thermische Energie
kT durch die Grundzustandsenergie E ersetzen:

1
kT—)Eha)on.

Mit dieser Ersetzung, die quasi einem submikroskopischen Gleichverteilungssatz
fiir Vakuumfluktuationen gleichkommt, folgt fiir den quantenmechanischen Fall:

E in
0(v) ~exp (—%vz) = exp (_ELO) .

Unter Verwendung von Ap = mAv ergeben sich daraus Orts- und Impulsunschirfe

zu
[ h [mh
Ax =4 —— Ap= m_w'
2mw 2

Eine stirkere Lokalisierung des Brown’schen Teilchens durch eine Erhohung der
Federkonstanten wird mit einer Verbreiterung der Geschwindigkeitsverteilung be-
zahlt; die Eigenfrequenz w steht einmal im Nenner und einmal im Zihler der statio-
niren Losung:

h o
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Im Produkt aus Orts- und Impulsunschirfe hebt sich die Frequenz hingegen heraus.
Damit ergibt sich die Heisenberg’sche Unschérferelation aus den Eigenschaften der
Brown’schen Bewegung und der Existenz einer Nullpunktsenergie Eg:

1

Diese Gleichung gilt bei bestem experimentellem Wissen und bildet so eine untere
Schranke fiir die Messgenauigkeit der komplementidren Variablen x und p. Man
kann sich davon iiberzeugen, dass p(x, v) eine Losung der generalisierten Fokker-
Planck-Gleichung ist, und zwar mit dem Diffusionskoeffizienten

pho B
g =22

2m m

Der Reibungskoeffizient § kiirzt sich im stationiren Fall heraus; die Reibung wirkt
offenbar nur bis zur Einstellung des Gleichgewichts. Auch hier zeigt sich die Dissi-
pationsfreiheit des stationdren Zustands, denn 8 gibt im Wesentlichen die mittlere
Entropieproduktion an, die im Gleichgewicht im Einklang mit dem 2. Hauptsatz
verschwinden muss.

Fazit: Die Heisenberg’sche Unschirferelation ist aus den Eigenschaften der
Brown’schen Bewegung herleitbar. Eine Ortsmessung wird hierfiir als Einschluss in
ein Oszillatorpotential bei fester Energie E( aufgefasst. Die Ort-Impuls-Unschirfe
folgt dann aus der stationdren Losung einer verallgemeinerten Fokker-Planck-Glei-
chung fiir ein harmonisch gebundenes Brown’sches Teilchen unter dem Einfluss von
Vakuumfluktuationen:

2

"

ad p 0 0 2 1

—px,pt)y=———p+ — + mw°x)p|+ zhofm

g PCe P = — e+ o [(Bp ) p]+ Shop
Die Brown’sche Bewegung relaxiert nach Annahme so schnell, dass praktische
Messungen nur die Gleichgewichtslosung ,,sehen®, an der die Reziprozitét von Orts-
und Impulsunschirfe iiber den Term mw explizit sichtbar wird:

H(x, 1 2
p(x, p) = P(x)- Q(p) ~ exp (— (gop)) = exp [—£ (ma)x2 + nf—a))} .

Es gibt also Korrelationen zwischen den Marginalverteilungen, die sich iiber das
Wirkungsquantum bzw. die Nullpunktsenergie £y in einer Unschirferelation nie-
derschlagen.

6.3 Thermodynamische Analogie: Entropieaustausch

Um nun die hydrodynamische Analogie weiter thermodynamisch auszudeuten, ge-
hen wir von der Wahrscheinlichkeit p(x, p) zur Entropie s(x, p) iiber. Die statio-
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nire Entropiedichte iiber dem Phasenraum lautet fiir ein harmonisch gebundenes
Brown’sches Teilchen:

2
s(x, p) ~InW(x, p) ~ —E = ! (ma)x2 + p_) .
Ey h maw
In dieser Darstellung ldsst sich die Unschérferelation mit Hilfe von Kriimmungen
ausdriicken. Fiir die beiden Hauptkriimmungen der Entropiefliche s(x, p) ergibt
sich ein unmittelbarer Zusammenhang zu den Varianzen der entsprechenden Margi-
nalverteilungen:

Ps  2mo 1
ax2 A Ax2
0%s 2 1

ap? moh  Ap?’

Thermodynamische Stabilitét ist wegen der negativen Vorzeichen stets gegeben. Die
Varianzen der Marginalverteilungen konnen als Hauptkriimmungsradien der statio-
niren Entropiefliche s(x, p) gedeutet werden. Die Unschirferelation wird auf diese
Weise zu einer Aussage iiber die maximale Gauf3’sche Kriimmung dieser Fliche:
?s s 4 1 1

Eine stirkere Lokalisierung im Ortsraum mit der entsprechend hoheren Kriimmung
der Entropieverteilung hat eine kompensierende Delokalisierung im Impulsraum zur
Folge und umgekehrt. Eine stirkere Kriimmung in der einen Richtung wird durch
eine schwiichere in der anderen ausgeglichen und umgekehrt, also durch einen Aus-
tausch von Entropie zwischen Orts- und Impulsraum.

Die mittlere Kriimmung der Entropiefliche besitzt eine obere Schranke, wobei
der Maximalfall fiir me =1 eintritt:

ittlere Krii 1;( ) 1 (8 + &s ! L R
mittlere Kriimmung : =C(x,p) == |— 4+ —| = —= (mo + —| < —=.
8- 0P = oG T g2 7 7

Der mittlere Kriimmungsradius der Entropiefldche ist seinem Betrag nach mindes-
tens von der Ordnung %:

Kriimmungsradius -

Fazit: Die Vorstellung einer allgegenwértigen Brown’schen Bewegung in der Mi-
krowelt in Form von Vakuumfluktuationen liefert eine plausible Erkldrung fiir die
Unschirferelation in der hydrodynamischen Analogie: Der Ort-Impuls-Unschérfe
entspricht eine maximale Gauf3’sche Kriimmung der Entropiefliche. Die mittlere
Kriimmung ist betragsmiBig stets groBer als 2/, wodurch die thermodynamische
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Stabilitét des Systems sichergestellt wird:

Gauf3’sche Kriimmung : 8_2s . & < 4
ox? dp? — h?

mittlere Kriimmung : ! (ﬁ + &) < _2 )
2\0x2  9p2) T h

Der Betrag der Kriimmung der Entropieflache ist demnach nach oben und unten
beschrinkt: nach oben durch die Unschirferelation, die eine maximale Gaul3’sche
Kriimmung festlegt, wihrend die thermodynamische Stabilitit eine negative mitt-
lere Mindestkriimmung verlangt und damit den Betrag der mittleren Kriimmung
nach unten begrenzt. Das Wirkungsquantum ist ein Maf fiir quantenphysikalische
Schwankungen und damit gleichzeitig auch ein Maf fiir die Lokalisierbarkeit eines
Quantenobjekts im Phasenraum.

6.4 Zweiter Hauptsatz und Messprozess

In einer thermodynamischen Sichtweise kann die Unschérferelation als Folge des
zweiten Hauptsatzes gedeutet werden: Bei einer Messung wird Information gewon-
nen und damit Negentropie erzeugt. Damit der zweite Hauptsatz seine Giiltigkeit
behilt, muss die Entropie an anderer Stelle zwangsldufig zunehmen, z. B. in der
jeweils anderen, ,,komplementidren* Marginalverteilung. Bezeichnen wir die margi-
nalen Entropiedichten im Gleichgewicht mit s (x) und s,(p), so gilt bis auf Kon-
stanten

mwx? p? x? P’
s(x,p) =s51(x) +52(p) = — h moh = RN 2Ap?

Der zweite Hauptsatz verlangt im giinstigsten Fall eine konstante Gesamtentropie:

$(x, p) = 81(x) + 52(p) = 0 = $2(p) = —$1(x).

Ein Informationsgewinn im Ortsraum zieht einen Informationsverlust im Impuls-
raum nach sich und umgekehrt. Eine Halbierung der Ortsunschédrfe Ax etwa als
quasistatische Verengung des Potentials bedeutet wegen

h mhw
Ax = /—— und Ap =,/ —
2mw 2
eine Vervierfachung der Eigenfrequenz w, was wiederum eine Verdopplung der
Impulsunschirfe Ap zur Folge hat. Ein messender Eingriff im Ortsraum, der ein
gewisses Maf} an Information erzeugt, fiihrt also im Geschwindigkeitsraum zu ei-
ner entsprechenden Entropiezunahme und umgekehrt. Diese Entropie wird quasi als
Nichtwissen in das System exportiert. Die Vorstellung, dass jede Messung prinzi-
piell mit einer mittleren Entropieerzeugung verbunden ist, geht auf Szilard zuriick
(Szilard 1929; Bessenrodt 1987).
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Fazit: In einer thermodynamischen Deutung der Unschirferelation findet die Kom-
pensation des Informationsgewinns, die dem zweiten Hauptsatz Geltung verschafft,
im jeweils komplementiren Teil des Phasenraums statt. Damit ist die Existenz einer
Ort-Impuls-Unschirfe auf den zweiten Hauptsatz zuriickgefiihrt.

6.5 Unschirfe und Nullpunktsenergie

Die Unschirferelation kann unter der Annahme einer durch Vakuumfluktuationen
getriebenen Brown’schen Bewegung gedeutet werden. Hierzu wurde die Grund-
zustandsenergie E( anstelle der thermischen Energie k7 in die Fokker-Planck-
Gleichung eines harmonisch gebundenen Brown’schen Teilchens eingesetzt. Mit
diesen Voraussetzungen impliziert die Existenz einer endlichen Nullpunktsenergie
eine Unschirfe. Doch auch umgekehrt lidsst sich bekanntlich schlieBen: von der Un-
schirfe auf die Nullpunktsenergie. Betrachten wir fiir diese heuristische Ableitung
die Gesamtenergie eines klassischen harmonischen Oszillators

p* 1
E(p,x) = % =+ Ema)zxz

mit dem klassischen Energieminimum £ (0, 0) bei xg = po = 0. Ein solcher Zu-
stand absoluter Ruhe steht im Widerspruch zur Unschérferelation. Bei vorgegebener
Ortsunschirfe x( ergibt sich die minimale Impulsunschirfe py zu

_ h
_2)60.

Einsetzen in die Energiegleichung liefert

Po

2 1
E(xo) = m + Ema)zxg.
Diese Gleichung beschreibt eine Konkurrenz zwischen kinetischer und potentieller
Energie als Funktion der Ortsunschirfe. Wie Abb. 6.1 zeigt, ergibt sich eine Art
Zentrifugalbarriere®. Das klassische Energieminimum bei x, = 0 ist zu einem
endlichen Wert verschoben. Die Minimierung von E(xo) liefert die richtigen Un-
schérfen zuriick:

- d | h mhw
E(Xo):Mln.ﬁaEzoﬁ.X(): %ﬁpoz T

Damit kommt wieder die korrekte Nullpunktsenergie als minimaler Energiewert
E(xo) heraus:

1
Ey=-ho.
72
Fiir den klassischen harmonischen Oszillator ist der Quotient E/w eine adiabatische

Invariante, so dass sich die Energie bei langsamer Anderung proportional zur Fre-
quenz dndert. Wird eine Ortsmessung wieder als stirkere Lokalisierung in einem
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Nullpunktsenergie
2
5
s
14
Vesr
EO
~1/x2
Ortsunschérfe

Abb. 6.1 Unschirfe und Nullpunktsenergie

Oszillatorpotential aufgefasst, so folgt eine Erh6hung der Energie gemif
E:]-a):}AE:I-Aa).

Zieht man weiterhin in Betracht, dass zur Messung dieser Energie mindestens eine
Schwingung betrachtet werden muss, so folgt mit der Beobachtungszeit At ~ @'
wieder eine Energie-Zeit-Unschirfe der Form

1
AE-AtaEh.

Fazit: Unschirfe und Nullpunktsenergie bedingen sich gegenseitig.

6.6 Strukturelle Stabilitit und Nullpunktsenergie

Fiir eine weitere klassische heuristische Begriindung der Nullpunktsenergie betrach-
ten wird noch einmal die klassische Bewegungsgleichung eines harmonischen Os-
zillators:

(1) +o’x(t) =0.



66 6 Die Unschirferelation

Eine grundsitzliche Ursache dafiir, dass der klassische Oszillator kein quanten-
mechanisches Verhalten zeigen kann, ist dessen strukturelle Instabilitdt im Sinne
der Theorie dynamischer Systeme: Schon die kleinste Storung der Differential-
gleichung, etwa durch einen kleinen Reibungsterm, verdndert das qualitative Sys-
temverhalten grundlegend. Im Allgemeinen sind aber strukturell instabile Zustinde
in der Natur nicht beobachtbar, weil Stérungen und Schwankungen allgegenwir-
tig sind. Aus diesem Blickwinkel gesehen sind die Quantisierungsbedingungen von
Bohr und Sommerfeld nichts anderes als eine kiinstliche strukturelle Stabilisierung
eines eigentlich strukturell instabilen Systems.

Nehmen wir als Beispiel ein Wasserstoffmolekiil: Von einem naiv-anschaulichen
Standpunkt aus konnte man meinen, dass die Information iiber den Ort des einen
Atoms eine gewisse Zeit t braucht, um zum jeweils anderen Atom zu gelangen.
Diese Zeitverzogerung hingt von der Lichtgeschwindigkeit ¢ ab. Die klassische Os-
zillatorgleichung beruht auf der Annahme einer instantanen Ausbreitung der Wir-
kung, also auf der nichtrelativistischen Nidherung ¢ — oo. Tatsdchlich kime die
Kraft F(t) = —mw?x(t — t) aber ein bisschen zu spiit, also actio = reactio, aber
retardiert. Damit hitte man eine Delay-Differentialgleichung der Form

(1) + 0’x(t—1)=0.

Diese Gleichung ist zwar strukturell stabil, dynamisch jedoch instabil, wie der erste
Term einer Taylor-Entwicklung fiir konstantes t zeigt (vgl. EI’'sgol’ts und Norkin
1973):

$(t) + 02x (1) — 10 (t) = 0.

Aufgrund des ,,negativen Reibungsterms* ist das System instabil, die Zustandskurve
spiralt sich nach auBlen. Als stabilisierendes Element konnte man eine klassische
Strahlungsdampfung annehmen (vgl. Jackson 1981).

Die Kraft auf das eine Atom resultiert aus dem Ort des jeweils anderen Atoms.
Aufgrund der quantenmechanischen Natur des Wasserstoffoszillators konnen wir
aber nicht erwarten, dass dieses Potential selbst scharf ist, denn es wird durch ein
Objekt erzeugt, das einer Unschérferelation unterliegt. Wir miissen deshalb damit
rechnen, dass das Potential selbst fluktuiert.

Fazit: Die Instabilitit der Ruhelage aufgrund einer endlichen Ausbreitungsge-
schwindigkeit der Wirkung kann als klassische Erkldrung fiir die Notwendigkeit
einer Nullpunktsunruhe angesehen werden.



Kapitel 7
Quantenlogik

Die Grenze zwischen dem Gewussten und Nichtgewussten
ist also selbst nichts ,,Objektives*“, sondern ich kann sie
nach meiner Willkiir legen, wohin ich will,
nur zum Verschwinden bringen kann ich sie nicht.

Carl Friedrich von Weizsdicker

Eine wichtige Voraussetzung der klassischen Physik ist eine — zumindest gedank-
lich durchfiihrbare — klare Trennung zwischen Beobachter und Beobachtetem, die
Subjekt-Objekt-Spaltung: Erkenntnis gewinnt das Subjekt nur dadurch, dass es sich
vom Erkannten 16sen kann. Diese Trennung der Erfahrung in einen Subjektanteil
und einen Objektanteil vollzieht sich bereits in der Sprache, mit deren Hilfe der
Meinende das Gemeinte durch Begriffe erfasst.

Ein ,,vollstandiges Wissen® bedeutet ein getreues Bild der Gegenstinde ,,an
sich®. Doch der Mikrokosmos zeigt sich nicht vollstindig. Die Unschirferelati-
on setzt der Subjekt-Objekt-Spaltung eine Grenze: Jede Messung ist ein Eingriff.
Die Unschirferelationen beschreiben Einschrinkungen in den gleichzeitig messba-
ren Eigenschaften. Diese neue Erkenntnissituation in der Quantenphysik fand ih-
ren Ausdruck in Bohrs Komplementaritdtsprinzip: Die Ergebnisse von Beobachtun-
gen, die unter verschiedenen experimentellen Bedingungen gemacht werden, kon-
nen nicht in ein einheitliches Bild zusammengefasst werden. Sie miissen stattdessen
als komplementdr angesehen werden. Das erfordert eine Unterscheidung zwischen
zueinander kompatiblen und inkompatiblen Aussagen.

Im Folgenden wird der Frage nach den formal-logischen Konsequenzen der
Quantenmechanik nachgegangen. Die Wahl eines Logikkalkiils ist eine willkiirliche
Entscheidung. Es stellt sich allerdings heraus, dass eine dreiwertige Logik besser
zur Observablenalgebra und zur Struktur des quantenmechanischen Zustandsraums
passt als die klassische zweiwertige Logik. Mit der Beibehaltung einer zweiwerti-
gen Logik miissen gewisse Aussagen fiir sinnlos erkldrt werden, bei einer dreiwerti-
gen Quantenlogik hingegen nur als beschrénkt verfiigbar. Damit wird der klassische
Boole’schen Aussagenverband abgeschwiicht zu einem orthomodularen Verband, in
dem es keine allgemeine Distributivitit mehr gibt.
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7.1 Klassische Logik

Aussagen iiber Eigenschaften eines klassischen Systems konnen als Teilmengen des
Zustandsraums dargestellt werden. Die Teilmengen des Zustandsraums bilden mit
den Operationen Vereinigung, Schnitt und Komplement eine Boole’sche Algebra.
Der Logikkalkiil der klassischen Physik ist die klassische Logik, d. h. eine zweiwer-
tige Aussagenlogik. Ein allgemeiner Verband ist charakterisiert durch eine refle-
xive Halbordnung (Existenz einer Ordnungsrelation), Beschrdanktheit (Existenz ei-
nes Supremums bzw. Infimums) und Vollstindigkeit (Existenz eines kleinsten bzw.
grofBten Elements). Das Maximum bzw. Minimum bilden neutrale Elemente beziig-
lich Schnitt resp. Vereinigung. In einem komplementdren Verband gelten zusitzlich
die Komplementgesetze fiir Schnitt und Vereinigung (Existenz inverser Elemente).
In einem distributiven Verband gelten weiterhin Distributivgesetze fiir Schnitt und
Vereinigung, in denen die Strukturvertrdglichkeit zwischen ,,und* und ,,oder* zum
Ausdruck kommt. Ein Boole’scher Verband ist ein komplementérer und distributiver
Verband. Die wichtigsten Realisierungen dieser abstrakten Struktur sind die Aussa-
genalgebra, die Schaltalgebra, die Mengenalgebra und die Algebra der Unterrdume
eines Vektorraums:

Verband Aussagen Teilmengen Unterrdume
Ordnungsrelation  Implikation Inklusion Inklusion
Supremum Konjunktion Vereinigung lineare Hiille
Infimum Disjunktion Schnitt Schnitt

Maximum Tautologie Grundmenge Vektorraum
Minimum Kontradiktion leere Menge Nullvektor
Komplement Negation Komplement Komplement
Distributivitdt Distributivgesetze Distributivgesetze Distributivgesetze

Die Aussagen der klassischen Physik sind unbegrenzt objektivierbar (vgl. Witt-
genstein 1921). Es wird angenommen, dass eine Aussage wahr oder falsch ist, unab-
hiingig davon, ob jemand diese Behauptung nachgepriift hat oder nicht. Die Aussa-
gen der Quantenphysik hingegen konnen auch nicht-objektivierbar sein. Das bedeu-
tet, dass wir iiber das Vorliegen einer komplementiren Eigenschaft nicht nur keine
Kenntnis haben, sondern dass diese Figenschaften dem betrachteten System nicht
notwendigerweise zukommen oder nicht. Zwischen komplementéren Variablen be-
stehen Unschdirferelationen: Ein Gewinn an Information iiber den Impuls fiihrt zu
einem Verlust an Information iiber den Ort und umgekehrt.

7.2 Doppelspaltexperimente

Die klassische Logik kann in der Quantenphysik zu Widerspriichen fiihren, wie am
Beispiel eines Doppelspaltexperiments mit Teilchen deutlich wird. Fiir einen Teil-



7.3 Komplementarititslogik 69

chenstrahl mit homogenem Impuls werden folgende Aussagen betrachtet (Riitti-
mann 1977):

e A = Teilchen gehen durch den Schlitz 1.

e B = Teilchen gehen durch den Schlitz 2.

e C = Die Verteilung der Teilchen auf dem Schirm ist die arithmetische Summe
der Verteilungen, die sich ergeben, wenn jeweils nur ein Schlitz offen ist.

Im Rahmen der klassischen Mechanik bestiinde folgende Beziehung zwischen den
Aussagen:

AVvB=C.

Experimente zeigen indessen, dass C falsch ist. Nach dem Gesetz der implikativen
Kontraposition kommt als indirekter Schluss:

[(AVvB=C)A=C]=>—=(AV B)=>—-AA—B.

Der letzte Satz folgt mit Anwendung des Distributivgesetzes und besagt, dass die
Teilchen, die auf dem Schirm auftreffen, weder durch den einen noch durch den an-
deren Schlitz hindurchgegangen sind. Durch die Anwendung der Gesetze der klas-
sischen Logik ist damit eine unklare, widerspriichliche Situation entstanden.

Die Diskussion kann noch weiter prizisiert werden: Wenn die klassische Aussa-
ge fiir das individuelle Teilchen nicht in einem logischen ,,oder zwischen A und B
besteht, sondern in einem ,,entweder-oder®, dann geht das einzelne Teilchen entwe-
der durch den ersten oder durch den zweiten Schlitz. Die Negation des exklusiven
Oder ist aber die Aquivalenz von A und B. Der experimentelle Befund —C lisst
somit noch zusitzlich ein ,,sowohl-als-auch* zu. Das bedeutet, das Teilchen geht
entweder durch keinen der Schlitze oder durch beide Schlitze gleichzeitig. Die Un-
klarheit bleibt: Denn auch ein Teilchen, was sich teilt, um gleichzeitig durch zwei
Schlitze zu fliegen, widerspricht der klassischen Vorstellung von einem Teilchen.
Die Teilchen verhalten sich am Doppelspalt wie eine Welle. Wie in der Wellenoptik
ist das Quadrieren einer Amplitudenfunktion dafiir verantwortlich, dass das Schwir-
zungsbild beim Doppelspalt von der Summe der Schwirzungsbilder der Einzelspal-
te abweicht. Es besteht also Bedarf nach einer Untersuchung mdéglicher alternativer
Logikkalkiile fiir die Quantenphysik.

7.3 Komplementarititslogik

Die Schwierigkeiten mit der klassischen Logik treten anscheinend durch die An-
wendung des Distributivgesetzes auf. Um dem Komplementaritdtsgedanken gerecht
zu werden, wurde als Verallgemeinerung der klassischen Logik eine dreiwertige Lo-
gik fiir quantenphysikalische Aussagen vorgeschlagen (von Weizsdcker 1942; Rei-
chenbach 1949; Mittelstaedt 1963). Neben den klassischen Wahrheitswerten ,,wahr*



70 7 Quantenlogik

und ,,falsch* wird noch ein dritter zugelassen, der als ,,unbestimmt* bezeichnet wer-
den kann. Im Sinne dieser Komplementarititslogik ist es ungewiss, durch welchen
Schlitz die Teilchen fliegen. Der Ausdruck ,,unbestimmt* ist vom Ausdruck ,,unbe-
kannt“ zu unterscheiden. Letzterer bezieht sich auf einen Sachverhalt, der an sich
entschieden ist, wobei wir das Resultat aber nicht kennen; ersterer macht dagegen
keine Aussage iiber das Vorliegen oder Nichtvorliegen einer Eigenschaft.

Um die zweiwertige Logik im Quantenbereich widerspruchsfrei durchhalten zu
konnen, miissen gewisse Aussagen fiir sinnlos erklédrt werden, die in einem komple-
mentédren Verhiltnis zum bisherigen Wissen iiber das gerade betrachtete Quanten-
system stehen (Interpretation mit Sinneseinschrinkung). In der dreiwertigen Kom-
plementarititslogik hingegen werden diese Aussagen nicht im Sinn, sondern in
ihrer Aussagbarkeit oder Verfiigbarkeit eingeschrinkt (Interpretation ohne Sinnes-
einschrinkung). Der ,klassische Grenzfall“ der Quantenphysik besteht auf der lo-
gischen Ebene darin, dass die nur beschrinkt verfiigbaren Aussagen unbeschrinkt
verfiigbar und objektivierbar werden.

Ein komplementirer Aussagenverband enthilt mit einer Aussage A auch deren
Negation. Die Komplementarititslogik unterscheidet zwei Arten der Negation einer
Aussage: Die Negation des objektiven Satzes und die Negation des Wissens, die
wir aktive bzw. passive Negation nennen konnen. Die Negation des Wissens um
die Wahrheit einer Aussage ist zu unterscheiden vom Wissen um die Falschheit
dieser Aussage. Bei der aktiven Negation wird der Verneinungsoperator quasi in die
Realitit hineingezogen, bei der passiven Negation hingegen nicht:

passive Negation :  Ich weif3 nicht, ob A gilt. & —Wissen (A)
aktive Negation :  Ich weifs, dass A nicht gilt. < Wissen (—A).

Der Logikkalkiil der unbeschrinkt verfiigbaren Aussagen hat die Struktur eines
Boole’schen Verbandes. Fiir unbeschrinkt verfiigbare Aussagen A und B besteht
die Moglichkeit des direkten Schlusses in der Form

[(AvV—-B)AB]= A.

Aussagen mit dieser Eigenschaft heilen kompatibel. Die Kompatibilitit zweier Aus-
sagen ist somit das verbandstheoretische Analogon zur unbeschriankten Verfiigbar-
keit.

Der Logikkalkiil der beschrénkt verfiigbaren Aussagen hat die Struktur eines or-
thomodularen Verbandes. Im Unterschied zum Boole’schen Verband ist das Distri-
butivgesetz nicht mehr allgemein giiltig. Mit dem Verzicht auf die Distributivitit
entsteht zunichst ein orthokomplementérer Verband. Durch Hinzufiigen eines ein-
geschrinkten direkten Schlusses der Form

(A= B)=[(Av—B)AB]= 4

wird ein orthokomplementirer Verband orthomodular (Riittimann 1977). Distribu-
tivitdt impliziert Orthomodularitit, jeder Boole’scher Verband ist auch ein orthomo-
dularer Verband, aber nicht umgekehrt:
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Verbandsstruktur Eigenschaft
komplementirer Verband Komplementgesetz
orthokomplementirer Verband Kontrapositionsgesetz
orthomodularer Verband Orthomodularititsgesetz
Boole’scher Verband Distributivgesetz

Orthomodularitét ist also die schwéchere Struktur, die in der ,,klassischen Néhe-
rung* in die Distributivitit ibergeht; der ,,klassische Grenzfall* eines orthomodula-
ren Aussagenverbandes ist ein Boole’scher Verband.

Ein Kriterium fiir die eventuelle Teildistributivitit eines orthomodularen Verban-
des wird durch die Kompatibilititseigenschaften der Aussagen gegeben. Die kom-
patiblen Aussagen eines orthomodularen Aussagenverbandes bilden einen distribu-
tiven, d. h. Boole’schen Teilverband. Ein orthomodularer Verband ist genau dann
Boole’sch, wenn alle Elemente paarweise kompatibel sind. Das Fehlen eines Dis-
tributivgesetzes entspricht umgekehrt der Tatsache, dass die Quantenmechanik in-
kompatible Eigenschaften beschreibt.

Die dreiwertige Quantenlogik ist ein Versuch, eine Struktur, in der sich Proble-
me ergeben, so weit abzuschwichen, bis die Probleme gerade verschwinden. Im
Falle der Quantenphysik geniigt hierfiir die Abschwichung der Distributivitit zur
Orthomodularitit.

7.4 Zustandsriume und Projektoren

Der Boole’sche Verband der Aussagen iiber klassische Systeme ist isomorph zum
Verband der Teilmengen des Phasenraums. Der orthomodulare Verband der Aussa-
gen liber Quantensysteme ist isomorph zum Verband der linearen Unterrdume des
Hilbertraums, auf dem die Wellenfunktion lebt. Dem maximalen Wissen iiber ein
klassisches System entspricht ein Zustandspunkt im Phasenraum. Dem maximalen
Wissen iiber ein Quantensystem entspricht ein Zustandsvektor im Hilbertraum. Der
Zustandsvektor repridsentiert das maximal verfiigbare Wissen, welches nur im klas-
sischen Grenzfall auch ein vollstindiges Wissen ist. Die quantenmechanische Be-
schreibung ist vollstindig in dem Sinne, dass ihr nichts hinzugefiigt werden kann,
was zu weiterem Wissen fiihrt, ohne auf Teile des bereits gewonnenen Wissens ver-
zichten zu miissen. Die maximale Information iiber ein System ist durch eine genaue
Messung eines vollstindigen Satzes kompatibler Variabler gegeben (Messiah 1976):
,.Die Beschreibung von physikalischen Eigenschaften mikroskopischer Objekte in
klassischer Sprache verlangt den Gebrauch von Paaren komplementirer Variabler.
Jede Variable eines Paares kann nur auf Kosten der Genauigkeit bei der Bestimmung
der zweiten Variablen schirfer bestimmt werden.

Statt der linearen Unterrdume konnen auch die entsprechenden Projektoren be-
trachtet werden, die jedem Unterraum in eindeutiger Weise zugeordnet werden kon-
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nen. Zwei Aussagen sind genau dann kompatibel, wenn die entsprechenden Projek-
toren kommutieren; die Kompatibilitidt von Aussagen entspricht der Vertauschbar-
keit der zugehorigen Projektoren. Inkompatible, d. h. komplementire Eigenschaften
A und B werden dargestellt durch nichtvertauschende Observablen A und B mit

[A.B] #0 < AB # BA.

Fiir zwei nicht-vertauschende Observablen gibt es keinen gemeinsamen Eigenvek-
tor, denn die Eigenwertgleichungen fiir diese Observablen konnen nicht simultan er-
fiillt sein. Daher konnen zwei nicht-kommutierende Observablen nicht gleichzeitig
einen exakten Wert haben. Es gibt Potentialitiiten in der Natur, die prinzipiell nicht
gleichzeitig aktualisierbar sind. Das maximal verfiigbare Wissen iiber ein Quanten-
system ist in geeigneten Sidtzen von kommutierenden Observablen enthalten. In der
Klassik sind alle Aussagen objektivierbar, unbeschrinkt verfiigbar und kompatibel,
wihrend es in der Quantenphysik auch Aussagen gibt, die nicht-objektivierbar, be-
schrinkt verfiigbar und inkompatibel, d. h. komplementér sind.

Bohr betont immer wieder die Existenz inkompatibler Aussagen, hilt aber gleich-
zeitig nur kompatible fiir sinnvoll, d. h. die Aussagen der Boole’schen Teilverbédnde.
Er erfand zwar das Komplementaritétsprinzip, weigerte sich jedoch, diesem Prinzip
durch eine entsprechende algebraische Struktur fiir inkompatible Aussagen Rech-
nung zu tragen. Obschon eine dreiwertige Komplementarititslogik mit der Kopen-
hagener Deutung durchaus vereinbar ist, hat sich Bohr gegen diese Mdoglichkeit
ausgesprochen (Bohr 1948): ,,Incidentally, it would seem that the recourse to three-
valued logic, sometimes proposed as means for dealing with the paradoxical features
of quantum theory, is not suited to give a clearer account of the situation, since all
well-defined experimental evidence, even if it cannot be analysed in terms of classi-
cal physics, must be expressed in ordinary language making use of common logic.*
Bohrs Haltung lédsst sich widerspruchsfrei durchhalten, allerdings nur auf Kosten
einer Sinneseinschriankung. Die Entscheidung fiir einen Logikkalkiil der Quanten-
physik ist also nicht zwingend, sondern willkiirlich. Es zeigt sich aber, dass eine
dreiwertige Quantenlogik besser zur Observablenalgebra der Quantenphysik passt
als die klassische Logik:

System klassisch quantenmechanisch
Aussagen objektivierbar nicht objektivierbar
Verfiigbarkeit unbeschrinkt  beschrinkt
Zustandsraum Phasenraum Hilbertraum
Zustdinde Teilmengen Unterrdume
Verbandsstruktur distributiv orthomodular
Logikkalkiil zweiwertig dreiwertig
Observablen kompatibel inkompatibel

Observablenalgebra kommutativ nicht kommutativ
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Dreiwertige Logikkalkiile werden auch zur Beschreibung der Selbstreferenz in
lebenden Organismen mit Nervensystem verwendet (Spencer-Brown 1969; Howe
und von Foerster 1975; Varela 1975, 1979; Varela und Goguen 1978; Kauffman
und Varela 1980; Kauffman 1990). Der dritte Wahrheitswert heifit hier allerdings
nicht ,,unbestimmt®, sondern ,,autonom* oder ,,paradox‘. Der Ubergang Zu einer
dreiwertigen Logik entspricht dem Ubergang von den reellen zu komplexen Zahlen
bei der Losung von Gleichungen vom Typ x> = —1. Losungen dieser Gleichung
sind weder positive noch negative, sondern imaginire Zahlen. Entsprechend ist der
dritte Wahrheitswert ein imaginédrer Boole’scher Wert. ,,Dieser Satz ist falsch* hat
diesen paradoxen, oszillierenden, imagindren Wahrheitswert.



Kapitel 8
Quantenphilosophie

Erst die Theorie entscheidet dariiber,
was man beobachten kann.
Albert Einstein

Der Formalismus der Quantenmechanik ist von einer in sich geschlossenen Harmo-
nie und Schonheit, seine Vorhersagen experimentell hervorragend bestitigt. Seine
naturphilosophische Deutung ist jedoch nach wie vor umstritten. Die Kopenhage-
ner Deutung war lange Zeit die Standardinterpretation der Quantenmechanik (vgl.
Schrodinger 1935; Bohr 1948; Heisenberg 1956, 1973; Zeh 1970; Messiah 1976;
Baumann und Sexl 1984; Landau und Lifschitz 1988; Audretsch und Mainzer 1990;
Schwabl 1990; Omnes 1994, 1995; Tegmark und Wheeler 2001; Bertlmann und Zei-
linger 2002; Zeilinger 2003; Rebhan 2008). Charakteristisch fiir die Kopenhagener
Deutung sind die Unbestimmtheitsrelationen, die Komplementaritiit der Beschrei-
bungen und der ,,Kollaps der Wellenfunktion® bei einer Messung, der Erwin Schro-
dinger zur Formulierung seines Katzenparadoxons veranlasste.

In jiingster Zeit wird die Kopenhagener Deutung mehr und mehr von der Theo-
rie der Dekohdrenz abgeldst. Unter Kohdrenz versteht die Fahigkeit, Interferenz zu
erzeugen. Mit Dekohdrenz bezeichnet man alle Prozesse, die diese Interferenzfa-
higkeit beeintrichtigen. Eine Messung etwa zur Lokalisierung von Elektronen oder
Atomen stellt eine Storung der Welle dar und bewirkt damit das Verschwinden
der Interferenz. Jede Wechselwirkung mit der Umwelt, z. B. die allgegenwirtige
Wirmestrahlung, zerstort die quantenmechanische Interferenzfihigkeit. Die Deko-
hirenz erklirt, warum sich makroskopische Systeme klassisch verhalten und wie
sich das Katzenparadoxon damit in Luft auflost.

Im Folgenden wird die Debatte um die Deutung der Quantenmechanik von einem
thermodynamischen Standpunkt aus noch einmal aufgegriffen. Es wird nicht tiber-
raschen, dass Einsteins Ensemble-Interpretation der Quantenmechanik am besten
zu einer thermodynamischen Deutung passt.
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8.1 Schrodingers Katze

Wenn ich jemanden von Schrodingers Katze
sprechen hore, greife ich nach meinem Gewehr.
Stephen Hawking

Wichtige Aspekte der kontroversen Debatte um die Deutung der Quantentheorie
verdeutlicht das unscharfe Leben von Schrodingers Katze (Audretsch und Main-
zer 1990). Diese ,,Burleske® wurde von Schrodinger selbst zur Diskussion gestellt
(Schrodinger 1935):

,Man kann auch ganz burleske Fille konstruieren. Eine Katze wird in eine Stahl-
kammer gesperrt, zusammen mit folgender Hollenmaschine (die man gegen den
direkten Zugriff der Katze sichern muss): in einem Geigerschen Zihlrohr befin-
det sich eine winzige Menge radioaktiver Substanz, so wenig, dass im Laufe einer
Stunde vielleicht eines von den Atomen zerfillt, ebenso wahrscheinlich aber auch
keines; geschieht es, so spricht das Zidhlrohr an und betitigt liber ein Relais ein
Héammerchen, das ein Kolbchen mit Blausdure zertriimmert. Hat man dieses ganze
System eine Stunde lang sich selbst iiberlassen, so wird man sich sagen, dass die
Katze noch lebt, wenn inzwischen kein Atom zerfallen ist. Der erste Atomzerfall
wiirde sie vergiftet haben. Die y-Funktion des ganzen Systems wiirde das so zum
Ausdruck bringen, dass in ihr die lebende und die tote Katze zu gleichen Teilen
gemischt oder verschmiert sind.

Das Typische an diesen Fillen ist, dass eine urspriinglich auf den Atombereich
beschriankte Unbestimmtheit sich in grobsinnliche Unbestimmtheit umsetzt, die sich
dann durch direkte Beobachtung entscheiden ldsst. Das hindert uns, ein in so naiver
Weise ,verwaschenes Modell‘ als Abbild der Wirklichkeit gelten zu lassen.*

Abbildung 8.1 veranschaulicht die Situation. Mit diesem Gedankenexperiment
stellte Schrodinger die Frage, ob und inwieweit die Unbestimmtheit quantenme-
chanischer Messgroflen vom mikroskopischen Bereich in die makroskopische All-
tagswelt tibertragen werden kann. Die radioaktive Substanz befindet sich nach einer
Stunde in einer Superposition aus ,,zerfallen* und ,,nicht zerfallen“. Da das Leben
der Katze von dem Zustand der radioaktiven Substanz abhingt, befindet sich diese
ebenfalls in einem Uberlagerungszustand aus ,,Katze lebt* und ,,Katze tot*:

|1/fKalze> = (| wlebendig) + |1/flot)) -

N =

Fiir die Katze ist eine solche Verschmierung von Leben und Tod jedoch undenkbar
und so entsteht ein Paradoxon, das Katzenparadoxon: Nach der klassischen Physik
ist die Katze entweder tot oder lebendig. Die Quantenmechanik sagt dagegen einen
Zustand voraus, in dem die Katze tot und lebendig zugleich ist. Erst wenn jemand
die Kammer 6ffnet und nachsieht, geht die Katze durch einen ,,Kollaps der Wellen-
funktion® in einen der Zustinde ,,tot* oder ,,lebendig* iiber. Schrodinger wollte mit
seinem Gedankenexperiment darauf hinweisen, wie absurd eine solche Vorstellung
ist.
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Abb. 8.1 Schrédingers Katze (gezeichnet von Monika Olah nach Vorlage von Abb. 4 aus Mittel-
staedt (1990))

Das Katzenparadoxon ist eine Veranschaulichung des Superpositionsprinzips.
In der Dynamik der Schrodinger-Gleichung bleibt ein Uberlagerungszustand ein
Uberlagerungszustand und ein Eigenzustand bleibt ein Eigenzustand. Es gibt ohne
Wechselwirkung mit der Umwelt keine Ubergiinge zwischen reinen und gemisch-
ten Zustinden. Der Ubergang in einen Eigenzustand wurde dem Einfluss der Mes-
sung zugeschrieben. Wenn wir aber annehmen, dass allgegenwértige Schwankun-
gen Quantensysteme schnell genug in einen thermodynamisch stabileren Eigen-
zustand relaxieren lassen und die typischen Dekohirenz-Zeiten klein genug sind,
dann macht sich die Superposition nicht makroskopisch bemerkbar. Ein ,,Kollaps
der Wellenfunktion“ finde nur in unserer Kenntnis des aktuellen Zustandes statt.
Katzenexperimente wiirden obsolet und Schrédingers Katze wire gerettet — von
Einsteins trojanischem Pferd, der Schwankungstheorie. Tierschiitzer konnten auf-
atmen.

8.2 Komplementaritit

Voraussagen sind schwierig
— besonders fiir die Zukunft.
Niels Bohr

Die Kopenhagener Deutung der Quantenmechanik beruht auf drei wesentlichen An-
nahmen:

1. Die Anschauung ist klassisch: Bei jeder Naturbeschreibung benutzt man eine
klassische Terminologie, wie wenig ein Vorgang auch mit der klassischen Phy-
sik zu tun haben mag.
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2. Grengze fiir Subjekt-Objekt-Spaltung: Im mikroskopischen Bereich ist eine klare
Trennung zwischen dem beobachteten Objekt und dem beobachtenden Subjekt
nicht mehr moglich.

3. Contraria sunt Complementae: Die Beschreibungen mit klassischen Begriffen
liefern kein einheitliches Bild, sondern verhalten sich komplementdr zueinander.

Der Bruch der Kopenhagener Schule mit der klassischen Physik kann an zwei
Begriffen festgemacht werden: Die Quantenmechanik bricht mit dem klassischen
Grundsatz, dass ein physikalisches System beobachtungsfrei und wahrscheinlich-
keitsfrei beschrieben wird (Audretsch und Mainzer 1990). Eine klassische Beschrei-
bung ist damit zugleich auch objektiviert und determiniert. Die Einbeziehung des
Beobachters fiihrt bei Bohr auf einen Indeterminismus bei der Messung und eine
Komplementaritit des Messbaren.

Die Quantenmechanik erlaubt keine einheitliche objektivierte Beschreibung,
sondern nur eine Beschreibung in zueinander komplementidren Begriffen. Objekt-
eigenschaften sind genau dann objektivierbar, wenn sie durch klassische Observa-
ble beschrieben werden, die mit allen iibrigen Observablen vertauschen, d. h. mit-
einander kompatibel sind. Die Inkompatibilitdt von Eigenschaften resultiert aus der
Nichtvertauschbarkeit der entsprechenden Operatoren.

Die Messgenauigkeiten bei gleichzeitigen Messungen komplementirer Obser-
vablen werden durch Unschirferelationen beschrinkt. Ort und Impuls, aber auch
Welle und Teilchen sind Beispiele fiir komplementire Aspekte. Ob sich das Quan-
tenobjekt als Welle oder Teilchen zeigt hingt ausschlieBlich davon ab, in welche
experimentelle Situation es gebracht wird. Die Erkenntnis wird von der Absicht des
Erkennens, von der Fragestellung des Forschers mitbeeinflusst.

Als Metapher fiir das Komplementarititsprinzip kann ein sogenanntes ,,Weder-
Noch-Objekt* wie in Abb. 8.2 dienen. Bei diesem Weder-Noch-Objekt handelt es
sich weder um drei Rohren noch um ein U-Eisen. Trotzdem scheint es aus drei Roh-
ren zu bestehen, wenn man nur den oberen Teil betrachtet, und aus einem U-Eisen,
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Abb. 8.2 Weder-Noch-Objekt
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wenn man nur den unteren Teil ansieht. Bei speziellen ,,Messungen® weist es al-
so jeweils die Eigenschaft bekannter Objekte auf. Versucht man aber, diese beiden
Eigenschaften gemeinsam an dem Objekt zu entdecken, werden sie unbestimmt.
Genaugenommen besitzt es diese Eigenschaften gar nicht.

Nach Messiah (1976) ,,scheint der Zusammenbruch der klassischen Theorie sei-
ne alleinige Ursache im Atomismus der Wirkung zu haben.* Max Planck, der Er-
finder des Wirkungsquantums, ist stets dafiir eingetreten, den Anschluss der Quan-
tentheorie an die klassische Dynamik so eng als moglich zu gestalten. Das Wir-
kungsquantum erwies sich jedoch gegeniiber allen Versuchen, es in den Rahmen
der klassischen Theorie einzupassen, als sperrig und widerspenstig. Einstein 1924
in einem Brief an Born (1971): ,,Meine Versuche, den Quanten greifbare Gestalt zu
geben, sind allerdings immer wieder gescheitert, aber die Hoffnung gebe ich nicht
auf.“ Er wolle dann doch ,lieber Schuster oder gar Angestellter in einer Spielbank
sein als Physiker*.

Aus thermodynamischer Sicht kann die Wirkungsquantelung als Aussage iiber
zuldssige und stabile Entropieverteilungen gedeutet werden, die aus dem Wechsel-
spiel von Entropieproduktion und Entropiediffusion entstehen.

8.3 Akausalitit

Ich verzichte aber sehr ungern
auf die vollstindige Kausalitdit.
Albert Einstein

Fiir die Kopenhagener Schule besteht ein Quantenphdnomen aus einem quanten-
theoretisch zu beschreibenden Objekt und einer klassisch zu beschreibenden Ver-
suchsanordnung. Wollen wir etwas iiber den Zustand des Systems aussagen, miis-
sen wir es einem Messprozess unterwerfen. Im Unterschied zur klassischen Phy-
sik verdndern Messungen im Allgemeinen den Zustand der Quantenobjekte. Vor
der Messung kann das Quantensystem iiber seine Zustdnde verschmiert sein, es be-
findet sich dann in einem Uberlagerungszustand und alle moglichen Werte fiir die
MessgroBe sind simultan im System enthalten. Die Messung liefert jeweils einen
speziellen Messwert und das System geht durch die Messung in den zugehdrigen
Eigenzustand iiber. ,,Es wird heute allgemein angenommen®, dass die Wellenfunk-
tion den Zustand des isolierten Quantensystems vollstindig beschreibt. Wihrend
des Messvorgangs ist das Quantensystem jedoch kein isoliertes System mehr, so
dass die Messapparatur mit ihren Variablen ebenfalls in die Beschreibung mit ein-
bezogen werden muss. Messiah (1976): ,,Erst wenn die Messung abgeschlossen
ist, ist es wieder moglich, das System durch eine Wellenfunktion zu beschreiben,
die sich nur auf seine dynamischen Variablen bezieht. Diese unterscheidet sich si-
cher von der Wellenfunktion unmittelbar vor der Messung, falls letztere nicht gera-
de Eigenfunktion der der Messgrofie zugeordneten Observablen ist. Die durch den
Messvorgang bewirkte (nichtkausale) Anderung der Wellenfunktion nennt man Re-
duktion des Wellenpakets (Zustandsreduktion). Kausalitit gibt es in voller Strenge
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nur bei isolierten Systemen.” Der Einfluss der Messapparatur erscheint in dieser
Deutung als unkontrollierbare Storung, die den kausalen Zusammenhang zwischen
dem Zustand des Systems vor und nach der Messung zerstort und so der zu jeder
Erkenntnis notwendigen Unterscheidung zwischen Subjekt und Objekt eine Gren-
ze setzt. Durch die Unkontrollierbarkeit der Wechselwirkung verschmelzen Objekt
und Messapparat zu einer neuen unauflosbaren Einheit. Der Zusammenhang zwi-
schen der Wellenfunktion, die den Zustand des Quantensystems beschreibt, und den
messbaren Objekteigenschaften ist statistischer Natur.

Der Preis fiir die Kopenhagener Deutung ist also ein teilweiser Verzicht auf
Kausalitdt und eine Dualitit der Zeitentwicklung: stetig und deterministisch fiir
das Reich des Potentiellen, unstetig und akausal dagegen fiir die beobachteten
Aktualisierungen. Um alle quantenmechanischen Effekte vollstindig beschreiben
zu konnen, bedarf es zweier Formen der dynamischen Entwicklung eines Quan-
tenzustands: Die zeitliche Entwicklung zwischen den Messungen wird durch die
Schrodinger-Gleichung beschrieben, wihrend die Messung durch den Kollaps der
Wellenfunktion charakterisiert ist. Unbefriedigend daran ist, dass der Messprozess
selbst nicht weiter analysierbar ist; er verlduft nicht mehr deterministisch, sondern
indeterministisch oder akausal. Das erkenntnistheoretische Problem ist in der Tat
delikat: Die Vollstindigkeit der Beschreibung bricht ausgerechnet dann zusammen,
wenn die einzig observablen Messwerte gewonnen werden sollen; denn vollkom-
men isolierte Systeme sind nicht beobachtbar.

Die Kopenhagener Deutung interpretiert die Wellenfunktion als Voraussage der
Ergebnisse moglicher Messungen. Aus dieser Sicht 16st sich das Katzenparadoxon
in trivialer Weise: Die Wellenfunktion wird nicht als Eigenschaft des Objekts (on-
tisch) aufgefasst, sondern als Wissenskatalog, der das Wissen eines wissenden Sub-
jekts enthilt (epistemisch). Der plotzliche ,,Kollaps der Wellenfunktion* beruht ein-
fach auf einer Unstetigkeit in der Kenntnisnahme eines Sachverhalts und ist damit
unvermeidlich. Wirft man zwei Wiirfel hintereinander, so ist die Wahrscheinlichkeit
dafiir, insgesamt 12 Augen zu werfen, gleich 1/36. Liest man das Ergebnis des ers-
ten Wiirfels ab, so dndert sich diese Wahrscheinlichkeit auf den Wert 0 oder 1/6.
Die gewonnene Information wird dahingehend genutzt, dass die Einschitzung der
Wahrscheinlichkeit des darauffolgenden Ereignisses abgedndert wird. Diese Form
der akausalen Reduktion (,, epistemischer Schnitt®) ist in jeder Statistik iiblich. Die
Wiirfel sind gefallen, aber erst das Aufheben des Wiirfelbechers fiihrt zu einem
Erkenntnisgewinn. Unsere Zurkenntnisnahme ist akausal, denn sie ist willkiirlich
(Rebhan 2008).

Die Annahme einer wirklichen Akausalitdit physikalischer Prozesse fiihrt in eine
gewisse Form des Obskurantismus. Denn in einem akausalen Vorgang gibt es Wir-
kungen ohne Ursache; eine Wirkung ohne Ursache ist aber definitionsgemif} ein
Wunder. Wunder sind ihrerseits nicht Gegenstand physikalischer Untersuchungen.
Ergo kann ,,Akausalitdt” kein physikalischer Begriff sein; Physik ist keine Mystik.
Dagegen kann der Kausalititsbegriff in einem thermodynamischen Rahmen durch-
aus in eine statistische Kausalitit abgeschwicht werden (Bessenrodt 1987).

Obwohl die Kopenhagener Deutung zur Standardinterpretation der Quantenme-
chanik wurde, blieb sie nicht unwidersprochen.
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8.4 Vollstandigkeit

Raffiniert ist der Herrgott,
aber boshaft ist er nicht.
Albert Einstein

Zur Kopenhagener Schule gehorten Niels Bohr, Werner Heisenberg, Wolfgang Pau-
li, Max Born und John von Neumann. Zu den Gegnern der Kopenhagener Schule
zidhlten Albert Einstein, Erwin Schrodinger, Louis de Broglie, John Bell und David
Bohm. Ein wesentlicher Diskussionspunkt in der Debatte um die Quantenmechanik
betraf ihre Vollstidndigkeit, also die Frage, ob die Quantentheorie eine vollstindige
Beschreibung der objektiven Wirklichkeit liefert, oder ob es eine bestimmte Anzahl
,.verborgener Parameter* giibe, deren Werte wegen der Unvollkommenheit unserer
Beobachtungsmittel fiir die Beschreibung des individuellen Quantensystems nicht
verfiigbar sind (Bohr 1935; Einstein, Podolsky und Rosen 1935). Bohm etwa ver-
suchte mehrfach, durch eigene Ansitze das Kopenhagener Interpretationsmonopol
zu brechen (de Broglie 1926, 1927, 1928, 1964; Bohm 1951, 1952; Bohm und Vi-
gier 1954; Mermin 1990; Valentini 1991, 1992; Vink 1993; Bohm und Hiley 1993;
Holland 1993, 1998; Cushing 1994; Goldstein 1996; Diirr 2001; Diirr, Goldstein und
Zanghi 1992, 2004; Myrvold 2003; Passon 2004, 2006; Teufel und Tumulka 2005;
Bacciagaluppi und Valentini 2007). Auf der anderen Seite erbrachte von Neumann
verschiedene Unmoglichkeitsbeweise fiir eine ontische Objektbeschreibung mittels
verborgener Parameter (von Neumann 1932; Kochen und Specker 1967). Dariiber
hinaus stehen Bohms frithe Theorien mit verborgenen Parametern im Widerspruch
zu experimentellen Befunden (Baumann und Sexl 1984; Schwabl 1990; Audretsch
und Mainzer 1990). Andererseits fand John Bell Liicken in den Unmoglichkeitsbe-
weisen und deren Annahmen (Bell 1966, 1987). Bis in die heutige Zeit gibt es viel-
faltige Versuche, die Quantenmechanik aus einer statistischen Mechanik abzuleiten
(Fiirth 1933; Fényes 1952; Weizel 1953; Wax 1954; Wesley 1961; Comisar 1965;
Nelson 1966; Favella 1967; De La Pefia-Auerbach 1967; De La Pefia-Auerbach und
Cetto 1969; De La Pefia-Auerbach, Velasco und Cetto 1970; Ballentine 1970; Ghi-
rardi, Omero, Rimini und Weber 1978; Davidson 1979; Grabert, Hinggi und Talkner
1979; Ghirardi, Rimini und Weber 1986; Grabert, Schramm und Ingold 1988; Ron-
cadelli 1991; Dittrich et al. 1998; Bacciagaluppi 1999; Hinggi und Ingold 2005;
Davidson 2007).

Der Beitrag der vorliegenden Arbeit besteht in einer Ableitung der Schrodinger-
Gleichung aus einer thermodynamischen Lagrange-Funktion ohne weitere ,,ver-
borgene* Parameter. Unvollstindig an der Beschreibung durch die Schroédinger-
Gleichung ist aus dieser Sicht das Fehlen einer dissipativen Dynamik, die das Sys-
tem aus Mischzustinden in die Eigenzustinde hinein relaxieren lisst und Ubergiinge
zwischen Eigenzustinden thermodynamisch erklért.
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8.5 Quantenspriinge

Wenn es bei dieser verdammten Quantenspringerei

bleiben soll, so bedauere ich, mich mit der

Quantentheorie iiberhaupt beschdiftigt zu haben.
Erwin Schrodinger

Auch Schrodinger war mit der Kopenhagener Deutung nicht zufrieden: Er lehnte
Bohrs Vorstellung von den Quantenspriingen ab. Nach Bohrs Theorie springt das
Elektron spontan von einer Bahn auf eine andere. Fiir Schrodinger sollte das Elek-
tron aber vielmehr als stehende Welle um den Atomkern interpretiert werden und
die Emission von Lichtquanten durch eine Mischung verschiedener Schwingungs-
zustidnde zu erkldren sein. Damit wollte Schrodinger zu einem kausalen, determi-
nistischen Modell der atomaren Vorginge gelangen (Schrodinger 1951). Bohr hin-
gegen vertrat die Ansicht, dass das unstetige, akausale Verhalten ein wesentlicher
Grundzug der Quantentheorie sei, und dass prinzipiell keine Mdglichkeit zu einer
anschaulichen raumzeitlichen Beschreibung der Vorginge im Atom bestehe.

,Natura non facit saltus. Die Natur macht keine Spriinge. Diese Aussage von
Leibnitz kennzeichnet die Auffassung der klassischen Physik, dass alle Vorginge
stetig verlaufen — bezogen auf eine gewisse Zeitskala. Schrodinger hat an dieser
Stelle Recht behalten: ,,Quantenspriinge®, d. h. Uberg’ange zwischen den Eigenzu-
standen, werden durch Mischzustiinde reprisentiert. Die Storungstheorie modelliert
solche Ubergiinge durch zeitabhiingige Storoperatoren, die die Zeitumkehrinvari-
anz der Schrodinger-Gleichung brechen. Die Mischzustinde sind thermodynamisch
weniger stabil als die Eigenzustinde. Bei Ubergiingen von Mischzustinden in Ei-
genzustinde nimmt die mittlere Entropie zu.

8.6 Dekohirenz

Der Physiker aber muss in seiner Wissenschaft voraussetzen,

dass er eine Welt studiert, die er nicht selbst gemacht hat und

die ohne ihn auch, im Wesentlichen genau so, vorhanden wiire.
Werner Heisenberg

In letzter Zeit wird die Kopenhagener Deutung mit ihrem Kollaps der Wellenfunk-
tion mehr und mehr von der Theorie der Dekohdirenz verdringt (Lindblad 1976;
Gorini, Kossakowski und Sudarshan 1976; Walls und Milburn 1985; Weis 1993;
Zeh 1993; Zurek 1991, 2001, 2002; Zurek und Paz 1994; Omnes 1994, 1995; Bub
1997; Braun, Braun und Haake 1999, 2000; Nielsen und Chuang 2000; Audretsch
2002; Breuer und Petruccione 2002; Buchleitner und Hornberger 2002; Giulini et
al. 2003; Zeilinger 2003; Camejo 2006). Die Wellenfunktion kollabiert nicht erst
plotzlich durch eine Messung, sondern kontinuierlich durch Wechselwirkungen des
Quantensystems mit der Umgebung.
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Kohirenz bezeichnet die Fihigkeit von Wellen zur Interferenz, Dekohérenz den
Verlust dieser Interferenzfihigkeit. Die Dekohirenz beschreibt den Ubergang eines
kohirenten Uberlagerungszustandes in einen ,,messbaren® Eigenzustand hinein.

Die Dekohirenz-Zeit tp ist die Zeit, die das System zum Relaxieren in einen
Eigenzustand benoétigt. Sie ist umgekehrt proportional zur Temperatur 7' und zur
Masse m des Systems:

. 1
Dekohdirenz-Zeit: tp ~ ——.
T -m
Die Dekohirenz-Zeit ist also umso lianger, je niedriger die Temperatur und je kleiner
die Masse des Systems ist. Fiir makroskopische Systeme bei normalen Temperatu-
ren bedeutet dies, dass der Verlust der Kohirenz sehr schnell stattfindet im Vergleich
zu anderen beteiligten Zeitskalen. Eine quantenmechanische Kohérenz kann folg-
lich im Alltag nicht beobachtet werden. In mikroskopischen Systemen mit sehr viel
geringeren Massen hingegen kann die lingere Dekohdrenz-Zeit zu Quanteneffekten
fithren. Um Quanteneffekte sichtbar zu machen, untersucht man also sinnvollerwei-
se sehr kleine, sehr leichte und sehr langsame, d. h. kalte Objekte.

Fiir die Dekohérenz kohidrenter Mischzustinde konnte eine thermodynamische
Erkldarung gefunden werden: Die Eigenzustidnde eines Quantensystems besitzen ei-
ne groflere mittlere Entropie und sind damit thermodynamisch stabiler als die Super-
positionszustinde. Die Ubergiinge in die Eigenzustinde sind in einem statistischen
Sinne kausale Prozesse. Insbesondere ist der ,,Kollaps der Wellenfunktion* bei der
Messung ein kausaler und kein akausaler Vorgang.

8.7 Nichtlokalitit

Die Theorie an und fiir sich ist nichts niitze,
als insofern sie uns an den Zusammenhang
der Erscheinungen glauben macht.

Johann Wolfgang von Goethe

Das Superpositionsprinzip liefert korrelierte, ,,verschrinkte* Gesamtzustinde von
Systemen, selbst wenn deren Teilsysteme schon lidngst rdumlich getrennt und oh-
ne Wechselwirkung sind. Diese fundamentale Nichtlokalitdt der Quantentheorie
kommt beispielhaft in den sogenannten EPR-Experimenten zum Ausdruck, die von
Einstein, Podolsky und Rosen vorgeschlagen wurden (Einstein, Podolsky und Rosen
1935; Bohm 1951; Bohm und Aharonov 1957; Bell 1964). In der einfachsten Vari-
ante werden zwei Teilchen mit Spin 1 in einem Uberlagerungszustand pripariert, in

2
dem fiir beide Teilchen die Spinzustinde 1 und | gleichwahrscheinlich sind:

1
l¥) = E(IT)IM—IL)IT))-
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Die beiden Teilchen werden von einer Quelle emittiert und bewegen sich voneinan-
der weg. Auch wenn die Teilchen so weit voneinander entfernt sind, dass sie nicht
mehr wechselwirken konnen, findet man folgende Korrelation bei Messungen der
Spinzustinde der Einzelteilchen: Misst man bei Teilchen 1 Spin 1, so ergibt sich
bei Teilchen 2 Spin | und umgekehrt. Die Messung am Teilchen 1 beeinflusst das
Ergebnis der Messung an Teilchen 2, obwohl keine Beeinflussung zwischen den
beiden Teilchen stattgefunden haben kann.

Derartige ,,spukhafte Fernwirkungen® (Born 1971; Bell 1987) sind mit dem loka-
len Realismus der klassischen Physik unvereinbar. Die uneingeschriankte Giiltigkeit
des Superpositionsprinzips suggeriert einen universellen Holismus: Alles hiangt mit
allem zusammen. Eine lokale Interpretation der Quantenmechanik muss hingegen
davon ausgehen, dass die Spinzustdnde schon vor den Messungen festgelegen ha-
ben und nicht erst durch die Messung mit einem abrupten Kollaps der Wellenfunk-
tion entstanden sind. Einstein, Podolsky und Rosen schlossen daraus, dass es eine
vollstandigere Theorie mit verborgenen Parametern geben miisse. Die verborgenen
Parameter tragen die Information iiber die Spinzusténde.

Die Einfiihrung verborgener Parameter ist aber nun nicht mehr die einzige Al-
ternative zu einem letztlich mystischen Holismus. Die Dekohérenz ldsst den pripa-
rierten Superpositionszustand rasch genug in geeignete Eigenzustinde relaxieren.
In diesem Falle wiirden sich die Spins einstellen, solange die beiden Teilchen noch
wechselwirken. Das Ergebnis steht ldngst fest, wir haben nur noch keine Kenntnis
davon genommen.

Urspriinglich waren die EPR-Experimente reine Gedankenexperimente. Mit der
heutigen Experimentiertechnik konnen diese Experimente tatsidchlich durchgefiihrt

Abb. 8.3 Der nichtklassische Skildufer (gezeichnet von Monika Olah nach Vorlage von Abb. 4 aus
Audretsch (1990))
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werden und fiihren zu spannenden Ergebnissen (Greenberger, Horne und Zeilinger
1989; Greenberger, Horne, Shimony und Zeilinger 1990; Mermin 1990; Bouwmees-
ter, Pan, Daniell, Weinfurter und Zeilinger 1999).

Kohirenz und Dekohérenz konnen bei Doppelspaltexperimenten mit Elektronen
beobachtet werden: Ohne Wechselwirkungen befinden sich die Elektronen in einem
Superpositionszustand, in dem sich die Beitrdge der beiden Wege iiberlagern und
hinter dem Doppelspalt ein Interferenzmuster erzeugen. Das Elektron fliegt quasi
durch beide Spalte gleichzeitig hindurch. Wie das geht, zeigt der nicht-klassische
Skildufer in Abb. 8.3. Je mehr das Elektron jedoch auf seinem Weg Wechselwir-
kungen mit der Umgebung erfihrt, desto mehr verschwindet das Interferenzmuster
hinter dem Doppelspalt. Das gilt auch fiir die Wechselwirkung mit einem Mess-
instrument, das feststellt, durch welchen Spalt das Elektron hindurchfliegt: Immer
wenn die experimentelle Anordnung die Entscheidung ermoglicht, durch welchen
Spalt ein Elektron tritt, verschwindet das Interferenzmuster. Und immer, wenn eine
solche Entscheidung nicht méglich ist, zeigt sich das Interferenzmuster.

Fazit: Der Nichtlokalitit der Quantentheorie wird durch die Dekohérenz eine Gren-
ze gesetzt.

8.8 Absoluter Zufall?

Die Quantenmechanik ist sehr achtunggebietend.

Aber eine innere Stimme sagt mir, dass das noch nicht

der wahre Jakob ist. Die Theorie liefert viel, aber

dem Geheimnis des Alten bringt sie uns kaum néher.

Jedenfalls bin ich iiberzeugt, dass der Alte nicht wiirfelt.
Albert Einstein

Im Unterschied zur klassischen statistischen Mechanik sind inkompatible Eigen-
schaften von Quantensystemen prinzipiell unbestimmt und nicht mit besseren ex-
perimentellen Kenntnissen beliebig genau bestimmbar. Wéhrend die klassische Sta-
tistik nur ein Hilfsmittel gegen das prinzipiell eliminierbare Unwissen ist, gibt es
im Quantenbereich eine ,,echte Statistik®, einen ,,absoluten Zufall“, der nicht durch
besseres Wissen eliminierbar ist (Audretsch und Mainzer 1990). Mit dieser funda-
mentalen Art der Statistik konnte sich Einstein nicht abfinden (Born 1971): ,,Ich
glaube noch an die Moglichkeit eines Modells der Wirklichkeit, d. h. einer Theorie,
die die Dinge selbst und nicht nur die Wahrscheinlichkeit ihres Auftretens darstellt.*
Aus klassischer Sicht kann die Quantentheorie nicht das einzelne Quantensystem
beschreiben, sondern nur ein Ensemble von Quantensystemen (Einstein 1984; Bal-
lentine 1970; Baumann und Sexl 1984; Home und Whitaker 1992).

Hinter der klassischen Vorstellung steht der Laplace’sche Ddamon, dem es mog-
lich ist, unter Kenntnis samtlicher Naturgesetze und aller Anfangsbedingungen je-
den vergangenen und jeden zukiinftigen Zustand der Welt zu berechnen. Die An-
zahl der simultan zu 16senden Bewegungsgleichungen ist allerdings so grof3, dass
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der Diamon fiir diese Berechnung mindestens genau so lange bendtigen wiirde wie
das Universum braucht, um den berechneten Zustand einzunehmen. Zudem miiss-
ten die Anfangsbedingungen fiir jedes Atom beliebig genau messbar sein, damit
auch die chaotischen Anteile der Systemdynamik mit ihren Bifurkationen vorher-
gesagt werden konnen. Die Erforschung des deterministischen Chaos zeigt, dass
eine liangerfristige Vorhersage selbst bei rein deterministischen Systemen aufgrund
einer extrem empfindlichen Abhingigkeit der Dynamik von den Anfangsbedingun-
gen praktisch unmoglich sein kann.

Die klassische Idee des uneingeschriankten Determinismus in Verbindung mit
einer prinzipiellen Vorhersagbarkeit ldsst sich also kaum durchhalten. Doch auch
die Vorstellung vom ,,absoluten Zufall* und die Annahme einer spezifisch quan-
tenmechanischen ,,echten Statistik* kann ebenso kritisch hinterfragt werden. Was
wiirde passieren, wenn jemand hinginge und eine vielleicht chaotische, aber deter-
ministische submikroskopische Dynamik konstruieren wiirde, die im eingeschwun-
genen Zustand exakt die gleichen beobachtbaren Wahrscheinlichkeitsverteilungen
hervorbringt wie die Schrodinger-Gleichung (z. B. Cohen 1992)? Dann ldge der Un-
schirferelation ein deterministischer Prozess zugrunde, der die Impulsverteilung im
Ensemble-Mittel aufweitet, wenn die Ortsverteilung zusammengedriickt wird und
umgekehrt. Woher wollen wir wissen, ob eine solche Konstruktion unmoglich ist?

Die klassische Statistik unterstellt im Grunde, dass die Wahrscheinlichkeitsver-
teilung letztlich in allen Richtungen bis zum Deltapeak zusammengedriickt und mit-
hin die Kriimmung der Entropiedichte prinzipiell beliebig gro3 gemacht werden
kann. Nach dem zweiten Hauptsatz der Thermodynamik ist aber jeder Informati-
onsgewinn innerhalb eines isolierten Systems stets mit einem Informationsverlust
an einer anderen Stelle des Systems verbunden. Die ,,echte* Statistik ist eine etwas
unklare Umschreibung dieser Zusammenhinge zwischen den Streuungen der Mar-
ginalverteilungen fiir Ort und Impuls. Die Begriffe ,,absoluter Zufall* oder ,, Akau-
salitdt” sind ungeeignet, um diese Zusammenhinge zu charakterisieren. Es handelt
sich eher um einen relativen, d.h. bedingten Zufall; und die Zusammenhénge sind
in einem statistischen Sinne kausal. Die Unschirferelation macht die Statistik irre-
duzibel.

Mit dem ,.echten Zufall* widerspricht die Quantenmechanik dem Prinzip des
hinreichenden Grundes: Nichts geschieht ohne eine Ursache (Leibniz). Aus der
Wahrscheinlichkeitstheorie bleibt das Prinzip des unzureichenden Grundes: Wenn
kein Ereignis ausgezeichnet erscheint, dann sind die Ereignisse als gleichwahr-
scheinlich anzunehmen (Laplace). Als Verallgemeinerung kann das Prinzip der ma-
ximalen Unvoreingenommenheit gegeniiber fehlender Information formuliert wer-
den. In der Quantenmechanik gibt es prinzipiell fehlende Information.

Aus einer konstruktivistischen Sicht spiegeln die Begriffe ,,Zufall*“ und ,,Not-
wendigkeit™ nicht die Eigenschaften der Natur wider, sondern unsere eigenen Fa-
higkeiten und Unfahigkeiten: Notwendigkeit entsteht aus der Fihigkeit, unfehlbare
Deduktionen zu machen. Zufall ergibt sich aus der Unfihigkeit, unfehlbare Induk-
tionen vorzunehmen (von Foerster 1981, 1985).
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8.9 Ensemble-Interpretation

Ist nun das so skizzierte Credo der Naturwissenschaft
endgiiltig? Ich denke: Ein Licheln ist besser angezeigt
als der Versuch einer Antwort.

Albert Einstein

Die Kopenhagener Deutung tut sich schwer bei der Beantwortung der Frage, was
der Wellenfunktion fiir eine Bedeutung zukommen soll. Wenn das Quadrat der Wel-
lenfunktion eine Wahrscheinlichkeit angibt, ist die Wellenfunktion dann eine Wahr-
scheinlichkeitswelle? Kann eine Wahrscheinlichkeit eine Welle sein? Eine extre-
me, epistemische Deutung sieht die Wellenfunktion nicht als eine Eigenschaft des
Quantensystems selbst, sondern als etwas, das unser Wissen iiber das System zum
Ausdruck bringt. So schreibt Heisenberg in einem Brief an Renninger (Renninger
1960): ,,Der Akt der Registrierung andererseits, der zur Zustandsreduktion fiihrt, ist
janicht ein physikalischer, sondern sozusagen mathematischer Vorgang. Mit der un-
stetigen Anderung unserer Kenntnis #ndert sich natiirlich auch die mathematische
Darstellung unserer Kenntnis unstetig.“ Die Wellenfunktion enthélt die Information
tiber das System, die uns im Prinzip zuginglich ist. Um diese Information als sol-
che deutlicher hervortreten zu lassen, haben wir die Schrédinger-Gleichung von der
Wellenfunktion iiber die Wahrscheinlichkeit auf die Entropie transformiert.

Die Kopenhagener Deutung offenbart eine recht subjektive, idealistische, teilwei-
se indeterministische Einstellung zur Quantenmechanik. Im Gegensatz dazu bietet
die de-Broglie-Bohm-Theorie eine klassische, realistische, kausale und sogar de-
terministische Theorie an. In ihren modernen Formen macht die Bohm’schen Me-
chanik dieselben experimentellen Voraussagen wie die herkommliche Quantenme-
chanik, so dass das Experiment nicht entscheiden kann, welche Theorie richtiger
ist als die andere. Die Entscheidung zugunsten einer der beiden Theorien ist damit
eine metaphysische Entscheidung. Die Bohm’sche Theorie wird hier nicht aus phy-
sikalischen, sondern aus &sthetischen Griinden abgelehnt, weil sie die Symmetrie
zwischen Orts- und Impulsdarstellung zerstort. Wie die Wellenfunktion als ,,Fiih-
rungsfeld” Krifte auf das Quantenteilchen ausiiben kann, bleibt etwas mysterios.
Ein interessanter Aspekt der de-Broglie-Bohm-Theorie ist allerdings die Riickfiih-
rung der Quanteneffekte auf das Quantenpotential. Die aus dem Quantenpotential
resultierenden Krifte konnen als statistische Krifte gedeutet werden.

Unsere thermodynamische Deutung der Quantenmechanik ist der Versuch einer
kritischen Synthese zwischen der epistemischen Kopenhagener Deutung und der
ontologischen Bohm’schen Interpretation. Einerseits wird die Wahrscheinlichkeits-
interpretation mit Hilfe des Entropiebegriffs weiter ausgebaut, andererseits wird
die realistische Deutung des Quantenpotentials auf eine neue, thermodynamische
Grundlage gestellt.

Aus Sicht der statistischen Thermodynamik ist die naheliegendste Deutung die
Ensemble-Interpretation, die von Einstein vorgeschlagen wurde (Einstein 1984;
Ballentine 1970; Baumann und Sexl 1984; Home und Whitaker 1992): ,Die /-
Funktion beschreibt iiberhaupt nicht einen Zustand, der einem einzelnen System
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zukommen konnte; sie bezieht sich vielmehr auf so viele Systeme, eine ,System-
Gesamtheit* im Sinne der statistischen Mechanik. Wenn die 1/-Funktion abgese-
hen von besonderen Fillen nur statistische Aussagen iiber messbare Grofien lie-
fert, so liegt dies also nicht nur daran, dass der Vorgang der Messung unbekannte,
nur statistisch erfassbare Elemente einfiihrt, sondern eben daran, dass die ¥ -Funk-
tion iiberhaupt nicht den Zustand eines Einzelsystems beschreibt. Die Schrodinger-
Gleichung bestimmt die zeitlichen Anderungen, welche die System-Gesamtheit
erfahrt. [...] Dass die Quantenmechanik in so einfacher Weise Aussagen iiber
(scheinbar) diskontinuierliche Ubergéinge von einem Gesamtzustand in einen an-
dern abzuleiten gestattet, ohne wirklich eine Darstellung des eigentlichen Prozesses
zu geben, hingt damit zusammen, dass die Theorie in Wahrheit nicht mit dem Ein-
zelsystem, sondern mit einer System-Gesamtheit operiert.*

Will man wieder zuriick zu einer klassischen Situation, in der die Statistik nur
wieder nichts weiter ist als ein kluges Management des prinzipiell eliminierbaren
Unwissens, so kann man sich die Rolle der Statistik in der Thermodynamik als
Beispiel nehmen. Man braucht eine subatomare Mikrodynamik aus vielen Elemen-
ten, liber die man fiir eine mesoskopische oder makroskopische Beschreibung mit-
teln kann. Dass eine solche Mikrodynamik deterministisch sein soll, ist vielleicht
wiinschenswert, aber keine notwendige Voraussetzung fiir eine physikalische Theo-
rie. Um Statistik treiben zu konnen, miissen auf der jeweiligen Mikroebene nicht
zwangsldufig deterministische Gesetze gelten (Bessenrodt 1987). Es fragt sich, ob
eine solche Mikrodynamik etwa aus Vakuumfluktuationen existiert (vgl. Valentini
1991, 1992; Zurek 2001, 2002). Auf eine gewisse Art sind mit der Hinzunahme von
Quarks und anderen Kleintieren aus dem subatomaren Zoo bereits ,,verborgene
Parameter und Eigenschaften in die Atomphysik eingefiihrt worden.



Kapitel 9
Zusammenfassung

Morgen werden wir gelernt haben, die gesamte Physik in der
Sprache der Information zu verstehen und auszudriicken.
John Wheeler

Die vorliegende Arbeit entstand aus dem Bediirfnis nach anschaulichen Vorstellun-
gen von der Quantenwelt. Viele Physiker brauchen keine Anschauung. Thnen ge-
niigt ein funktionierender Formalismus mit abstrakten mathematischen Begriffen.
Als Quellen der Anschaulichkeit bieten sich an die Mechanik mit ihrem Teilchen-
bild (hydrodynamische Analogie) oder die Elektrodynamik mit ihrem Wellenbild
(optische Analogie) — oder auch die Thermodynamik mit ihren eigenen Begriffen
der Entropie und Information. Die Entropie ist der Schliissel zu einem anschauli-
chen Verstindnis der Quantenwelt.

Messiah (1976): ,,Die konkreten Bilder, die uns unsere tigliche Erfahrung ein-
gibt, entstammen einer Welt, in der ¢ unendlich groB und % gleich Null zu sein
scheinen. Sie konnen nicht ohne weiteres auf einen Bereich iibertragen werden, in
dem die eine oder andere dieser Nédherungen nicht mehr giiltig ist.“ Die Endlichkeit
der Lichtgeschwindigkeit erzwingt eine Revision des Gleichzeitigkeitsbegriffs; die
Endlichkeit des Wirkungsquantums erzwingt eine Revision des Begriffs der gleich-
zeitigen Messung. Die Beobachtung ist relativ zum Standpunkt des Beobachters,
die Unsicherheit bei der Beobachtung ist absolut. Ein MaB fiir die (beseitigte) Un-
sicherheit ist die Entropie.

Eine thermodynamische Umdeutung der Schrodinger-Gleichung ermoglicht ei-
nen klassischen Zugang zur Quantenmechanik. Der Schliissel zu diesem Eingang
ist Einsteins ,,trojanisches Pferd*, die Schwankungstheorie. Mit dem klassischen
Entropiebegriff gelingt eine Transformation der Schrodinger-Gleichung auf ther-
modynamische Variablen. Die wesentlichen Ergebnisse lassen sich wie folgt zu-
sammenfassen:

* Quantenobjekte werden als thermodynamische Systeme aufgefasst. Welle und
Teilchen sind zwei Erscheinungsformen eines thermodynamischen Prozesses.
e Die thermodynamische Beschreibung der Quantenvorgénge ist stetig und kausal.
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Die thermodynamische Umdeutung der Schrodinger-Gleichung erfolgt in zwei
Schritten:

Borns Deutung: Wahrscheinlichkeit = Quadrat der Wellenfunktion

Boltzmanns Prinzip: Entropie = Logarithmus der Wahrscheinlichkeit

Quanteneffekte entstehen durch das Zusammenspiel von zwei statistischen Po-
tentialen:

Quantenpotential = Entropieproduktion + Entropiediffusion

Die Schrédinger-Gleichung eines Teilchens in einem duBleren Potential kann auf
dem Weg iiber die Hamilton-Jacobi-Gleichung aus einer thermodynamischen
Lagrange-Funktion mit statistischen Potentialen hergeleitet werden.

Auf der Beschreibungsebene der feldtheoretischen Lagrange-Dichten zeigt sich
der Unterschied zur Klassik als Zusatzterm in Form einer Entropieproduktions-
dichte, die im klassischen Grenzfall mit dem Wirkungsquantum verschwindet.
Die Quantenthermodynamik bekommt eine neue Blickrichtung: Die Quantenme-
chanik wird aus einer statistischen Thermodynamik abgeleitet und nicht — wie
sonst iiblich — umgekehrt die Thermodynamik aus der Quantenmechanik.

Die Forderung nach thermodynamischer Stabilitdt erzwingt die Quantisierung
der Energie gebundener Zustidnde sowie eine endliche Nullpunktsenergie.

In stationdren Zustinden kompensiert das Quantenobjekt dulere Krifte durch
statistische, innere Krifte. Die Kompensation ist in gebundenen Zustéinden nur
fiir gewisse diskrete Energieeigenwerte moglich. Durch die Neutralisierung der
duBeren Krifte wird das Quantenobjekt zu einem freien Teilchen, welches in ge-
bundenen Zustinden einer Energiequantisierung unterliegt. Die Einhaltung ge-
wisser Quantenregeln ist gleichsam der Preis fiir die Freiheit.

Stationire Losungen der Schrodinger-Gleichung konnen durch schrittweise Kom-
pensation der duBleren Krifte durch thermodynamische Krifte gefunden werden.
Quantensysteme sind dissipative Systeme, die erst in stationdren Zustinden kon-
servativ werden. In den Eigenzustinden verschwindet die Energiedissipation.
Die Dekohdirenz quantenmechanischer Uberlagerungszustinde kann thermody-
namisch begriindet werden: Eigenzustidnde sind thermodynamisch stabiler als
Uberlagerungszustinde.

Quantenspriinge sind stetige Ubergiinge des Quantensystems von einem Eigen-
zustand iiber einen instabilen Mischzustand in einen anderen Eigenzustand auf
einer schnellen Zeitskala.

Die Dissipationsfreiheit der stationdren Zustinde liefert eine Begriindung dafiir,
dass in den Eigenzustdnden keine Strahlungsdampfung stattfindet. Eine Abstrah-
lung erfolgt nur in Superpositionszustinden, die die Ubergiinge zwischen den
Eigenzustdnden beschreiben.

Die Schrédinger-Gleichung beschreibt nur die stationdren Zustinde und deren
Uberlagerungen, nicht aber die dissipativen Prozesse in die Eigenzustinde hin-
ein: Mit der Annahme einer schnellen dissipativen Dynamik 16st sich das Para-
dox der Zeitumkehrinvarianz im Bereich der Schrodinger-Theorie.
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e Zeitumkehrinvarianz ist eine Gleichgewichtseigenschaft und Folge einer Zeitska-
lentrennung. Der Erfolg der Zeitumkehrinvarianz als Supergesetz beruht auf der
Annahme einer schnellen Relaxation der dissipativen Anteile der Dynamik. Die
Einschriankung auf das Gleichgewicht ldsst ein Modell mit hoherer Symmetrie
entstehen. Die Frage ist also nicht, wie Irreversibilitét in eine reversible Welt ein-
gefiihrt werden kann, sondern umgekehrt, wie Reversibilitit in einer irreversiblen
Welt entstehen kann.

* Die Heisenberg’sche Unschdrferelation kann auf klassische Begriffe zuriickge-
fiihrt werden: im Wellenbild auf den Ahnlichkeitssatz der Fourier-Transforma-
tion, im Teilchenbild auf eine Brown’sche Bewegung mit Korrelationen zwi-
schen den beiden Marginalverteilungen, und im thermodynamischen Bild auf
dem zweiten Hauptsatz der Thermodynamik.

* Eine dreiwertige Quantenlogik ist besser an die Struktur quantenmechanischer
Zustandsriume angepasst als die klassische zweiwertige Logik. Der Ubergang zu
einer dreiwertigen Logik entspricht dem Ubergang vom SchwarzweiBfernsehen
zum Farbfernsehen.

e Die thermodynamische Deutung der Quantenmechanik beinhaltet eine Synthe-
se zwischen der epistemischen Kopenhagener Deutung und der ontologischen
Bohm’schen Interpretation: Die Wahrscheinlichkeitsinterpretation wird mit dem
Entropiebegriff weiter ausgebaut und das Quantenpotential als Summe thermo-
dynamischer Potentiale gedeutet.

Mit diesen Ergebnissen sind keineswegs alle Fragen geklért. Denn die Betrachtung
war eingeschrinkt auf eine nichtrelativistische Beschreibung von spinfreien Teil-
chen in duferen Feldern. Es bleiben viele Fragen offen im Hinblick auf eine Wei-
terentwicklung der thermodynamischen Modellvorstellung:

*  Wie sieht eine Verallgemeinerung auf Mehrteilchensysteme aus?

e Wie kann der Tunneleffekt thermodynamisch beschrieben werden?

*  Wie kann der Spin in einer thermodynamischen Sichtweise beriicksichtigt wer-
den?

e Wie kann das Pauli-Prinzip thermodynamisch erklirt werden?

*  Wie transformieren sich die Pauli-Gleichung, die Dirac-Gleichung und die Klein-
Gordon-Gleichung auf thermodynamische Variablen?

Louis de Broglie: ,,Die Wissenschaftsgeschichte zeigt uns die Wissenschaft in kon-
stantem Fortschritt, indem sie die erworbenen Kenntnisse und deren Interpretation
stindig tiberarbeitet und tiberpriift, sie fiihrt uns vor Augen, wie die Vergangenheit
trotz ihrer Unzulidnglichkeiten die Gegenwart vorbereitet. Aber wir sollten niemals
vergessen, dass unsere Wissenschaft auch nur ein provisorisches Stadium des wis-
senschaftlichen Fortschritts ist, das seinerseits voller Schwichen und Fehler ist und
dessen Rolle von daher gesehen vor allem darin besteht, die Zukunft vorzubereiten.
Es ist ein groBer und leicht zu begehender Fehler, zu glauben, dass die aktuellen
wissenschaftlichen Konzepte definitiv seien.*
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