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Kapitel 1
Quantenmechanik und Thermodynamik

The true logic of this world
is the theory of probabo ility.

James Clerk Maxwell

Die Quantenmechanik ist die wahrscheinlich erfolgreichste Theorie, die die Phy-
sik im letzten Jahrhundert hervorgebracht hat. Wer hätte sich vor 100 Jahren eine
Mikroelektronik träumen lassen? Heute wird mehr als ein Drittel des Weltbrutto-
sozialprodukts mit Quantenmechanik erwirtschaftet (Lesch et al. 2007). Dennoch
haftet der Quantenmechanik etwas Mystisches an, weil sie sich der Anschauungmit
Bildern der klassischen Physik immer wieder entzieht: Das Teilchenbild der klas-
sischen Mechanik verliert seine Gültigkeit, wenn sich Elektronen als Materiewelle
zeigen und damit Welleneigenschaften annehmen. Das Wellenbild der klassischen
Elektrodynamik verliert seine Gültigkeit, wenn sich Licht als Photon zeigt und da-
mit Teilcheneigenschaften offenbart. Max Borns statistische Deutung des Quadrats
der Wellenfunktion als Aufenthaltswahrscheinlichkeit des Teilchens vermag zwar
den Welle-Teilchen-Dualismus zu überbrücken, das Quantenobjekt bleibt jedoch
ein Chamäleon, das sich je nach experimenteller Situation mal als Welle und mal
als Teilchen präsentiert. Die klassischen Bilder passen nur eingeschränkt – solange
die Thermodynamik als eigenständige klassische Theorie vernachlässigt wird.

Obwohl der Operatorformalismus der Quantenmechanik durch seine ungeheure
Einfachheit, Eleganz und Ästhetik besticht, und obwohl ihre Anwendungen ganz er-
staunliche Erfolge erzielen, ist die naturphilosophischeDeutung der Quantentheorie
immer noch umstritten. Ziel der Naturwissenschaft ist es aber seit jeher, alle Unge-
reimtheiten aus dem Weg zu räumen, um Platz für neue zu schaffen. Aus diesem
Grund wird im folgenden ein neuer Ansatz für eine thermodynamische Deutung
der Quantenmechanik entwickelt. Die thermodynamische Sichtweise soll die Dis-
krepanz zwischen dem grandiosen Erfolg und der mangelnden Anschaulichkeit der
Quantentheorie verringern. Niels Bohr sagte über die Quantenmechanik: „Wer sie
nicht verrückt findet, hat sie nicht verstanden!“ Richard Feynman hielt dagegen:
„Wer glaubt, sie verstanden zu haben, ist verrückt!“

1
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2 1 Quantenmechanik und Thermodynamik

1.1 Zielsetzung und Übersicht

Beiß mir nicht in den Finger,
schau, wohin er zeigt.

Warren S. McCulloch

Die Quantenthermodynamik beschäftigt sich mit der Frage, unter welchen Bedin-
gungen die Thermodynamik aus der Quantenmechanik abgeleitet werden kann. Im
Rahmen der vorliegenden Monographie wird der umgekehrte Weg beschritten und
die Quantenmechanik aus einer statistischen Thermodynamik abgeleitet.

Ziel der folgenden Überlegungen ist es, das weit verbreitete Vorurteil zu wider-
legen, dass es unmöglich ist, mit klassischen Begriffen konsistent und anschaulich
über Quantenphänomene zu sprechen. Die statistische Deutung der Wellenfunkti-
on wird hier erstmalig zu einer thermodynamischen Deutung des Quantenpotenti-
als erweitert, indem wir von der Wellenfunktion zur Wahrscheinlichkeit und von
dort weiter zur Entropie übergehen. Mit Einsteins Umkehrung der Boltzmann-Be-
ziehung, dass die Entropie proportional zum Logarithmus einer Wahrscheinlichkeit
ist, kann die Schrödinger-Gleichung auf thermodynamische Variablen transformiert
werden. Dass durch diese Variablentransformation plötzlich thermodynamisch und
damit „klassisch“ deutbare Terme in der bisher als „unklassisch“ angesehenen
Schrödinger-Theorie auftauchen, sollte kein Zufall sein!

Die statistische Thermodynamik könnte also ein neues Licht auf die Quanten-
welt werfen. Die Quantenwelt enthält trotz aller Zufälligkeiten ein überraschend
hohes Maß an Ordnung und Struktur. Die Abbildung dieser Ordnung in einer ther-
modynamischen Sprache ermöglicht eine tiefere statistische Fundierung der Quan-
tentheorie. Die wichtigsten Ergebnisse der thermodynamischen Umdeutung lassen
sich folgendermaßen zusammenfassen:

• Quantenobjekte werden als thermodynamische Systeme aufgefasst. Welle und
Teilchen sind zwei Gesichter eines thermodynamischen Prozesses.

• Die thermodynamische Beschreibung der Quantenvorgänge ist stetig und kausal.
• Die Schrödinger-Gleichung kann aus einer thermodynamischen Lagrange-Funk-

tion mit statistischen Potentialen hergeleitet werden.
• Quanteneffekte entstehen aus thermodynamischer Sicht durch ein subtiles Zu-

sammenspiel von Entropieproduktion und Entropiediffusion.
• Die Forderung nach thermodynamischer Stabilität erzwingt die Quantisierung

der Energie gebundener Zustände sowie eine endliche Nullpunktsenergie.
• Quantensysteme sind dissipative Systeme, die erst in stationären Zuständen kon-

servativ werden. In den Eigenzuständen verschwindet die Energiedissipation.
• Die Dekohärenz quantenmechanischer Überlagerungszustände kann thermody-

namisch begründet werden: Eigenzustände sind thermodynamisch stabiler als
Überlagerungszustände.

• Quantensprünge sind schnelle, aber stetige Übergänge des Quantensystems von
einem Eigenzustand über einen instabilen Mischzustand in einen anderen Eigen-
zustand.
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• Die Unschärferelation wird auf den zweiten Hauptsatz der Thermodynamik zu-
rückgeführt.

• Das Paradox der Zeitumkehrinvarianz löst sich im Bereich der Schrödinger-
Theorie.

Die vorliegende Monographie gliedert sich wie folgt: Kapitel 1 beschreibt die Mo-
tivationen, die es lohnenswert erscheinen lassen, Quantenmechanik und Thermody-
namik noch einmal neu zu verheiraten. In Kapitel 2 werden einige Grundbegriffe
aus der Thermodynamik irreversibler Prozesse zur Verfügung gestellt. Kapitel 3
präsentiert mit der thermodynamischen Umdeutung der Schrödinger-Gleichung das
Hauptergebnis dieser Arbeit. In Kapitel 4 wird gezeigt, wie die stationären Lösun-
gen für einfache Quantensysteme auch in den thermodynamischen Variablen ge-
funden und thermodynamisch gedeutet werden können. Der harmonische Oszilla-
tor, das „Haustier“ der theoretischen Physik, und das Wasserstoffatom dienen als
Beispiele, um die engen Zusammenhänge zwischen Nullpunktsenergie, Quantisie-
rung, Entropiediffusion und der thermodynamischen Stabilität des Quantensystems
zu verdeutlichen und anschaulich zu machen. Kapitel 5 stellt die klassischen Ana-
logien gegenüber, die optische und die hydrodynamische Analogie. In Kapitel 6
wird dann die Heisenberg’sche Unschärferelation im Sinne dieser klassischen Bil-
der interpretiert und im thermodynamischen Bild auf den zweiten Hauptsatz der
Thermodynamik zurückgeführt. Kapitel 7 untersucht die formallogischen Konse-
quenzen der Quantentheorie. Kapitel 8 behandelt abschließend verschiedene Deu-
tungen der Quantenmechanik. Durch die Emanzipation der statistischen Thermo-
dynamik in der quantenmechanischen Theoriebildung kann ein neuer Versuch zu
einer kritischen Synthese zwischen Einsteins „untrüglichem statistischen Riecher“
(Bessenrodt 1986) und Bohrs Kopenhagener Schule unternommen werden.

1.2 Der Zusammenbruch der klassischen Physik

Die Quantentheorie wurde entwickelt, um den Zusammenbruch der klassischen
Physik im mikroskopischen Bereich aufzufangen. Die Ursachen für das Versagen
der klassischen Theorie liegen im Welle-Teilchen-Dualismus, in der Quantisierung
der Wirkung und in denUnschärferelationen beimMessprozess. Die Teilcheneigen-
schaften der Strahlung, dieWelleneigenschaften derMaterie und die Quantelung der
Energiezustände des Atoms sind Beispiele für nichtklassisches Verhalten.

Das Quantengeschehen konnte mit den damals verfügbaren klassischen Begrif-
fen der Mechanik und Elektrodynamik nicht konsistent beschrieben werden. Um
trotzdem die klassischen Vorstellungen weiterverwenden zu können, wurden vor
allem zwei Analogien zur Klassik verfolgt: die optische Analogie der Materiewel-
len und die hydrodynamischeAnalogie einerWahrscheinlichkeitsflüssigkeit, die den
Zustand eines Quantensystems beschreibt.

Albert Messiah schreibt über die klassische Anschauung (Messiah 1976): „Die
Beschreibung eines quantenmechanischen Systems durch eine Wellenfunktion und
seine statistische Deutung sind wegen ihres abstrakten Charakters intuitiv nur
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schwer zu erfassen. Versucht man aber, sich die mikroskopischen Erscheinungen
konkreter vorzustellen und sie für die Anschauung zugänglicher zu machen, stößt
man stets aufWidersprüche.“Weder die Vorstellung eines Quantenobjekts als Welle
noch die als Teilchen lässt sich widerspruchsfrei in allen experimentellen Situatio-
nen durchhalten. „Das beweist natürlich nicht, dass es unmöglich ist, eine konsis-
tente und konkrete Beschreibung der mikroskopischen Erscheinungen zu liefern.
Dies ist jedoch noch niemandem gelungen. Im übrigen muss man bedenken, dass
es logisch überhaupt nicht notwendig ist, die mehr oder weniger abstrakten Vorstel-
lungen einer physikalischen Theorie konkret auszudrücken.“ Unsere Anschauung
ist von der durchweg klassischen Alltagserfahrung geprägt und damit alle Begriffe,
die zur Beschreibung eines Phänomens verwendet werden. „Nichts weist darauf hin,
dass man mit einer solchen Sprache widerspruchsfrei auch im Zusammenhang mit
Erscheinungen operieren kann, die so weit von unserer Erfahrung entfernt sind, wie
die Inhalte der mikroskopischen Physik.“

Hier drängt sich nun die Frage auf, ob sich anschaulich und widerspruchsfrei mit
klassischen Begriffen über Quantenphänomene reden lässt, wenn wir neben klas-
sischer Mechanik und Elektrodynamik auch die Thermodynamik als eigenständige
klassische Theorie zulassen.

1.3 Der Siegeszug der statistischen Physik

„Wir leben nicht im Zeitalter der Mechanik, der Elektrodynamik, Optik und viel-
leicht nicht einmal dem der Elementarteilchen – unsere Epoche ist die der Sta-
tistischen Physik. Sie hat als integrierende interdisziplinäre Methodik nach einem
Siegeszug von 125 Jahren die gesamte Physik erobert. Gewachsen am Atomismus,
beherrscht sie heute die Massenphänomene unterschiedlichster Art, von Quarks bis
Galaxienhaufen.“Mit diesenWorten beginnt Rüdiger Bessenrodt seine „Geschichte
grundlegender Ideen der Statistischen Physik“ (Bessenrodt 1987). „Es mag im all-
gemeinen zweifelhaft sein, ob man aus der Geschichte lernen kann – nicht jedoch,
was die Wissenschafts-, speziell die Physikgeschichte angeht, und zwar in mehr-
facher Hinsicht: die Einfachheit, Anschaulichkeit, Gründlichkeit und den Wagemut
der Pioniere, Kontroversen, Trends, soziale, speziell wirtschaftliche Abhängigkeiten
u. v. a. [. . . ] Die Geschichte des Eindringens statistischer Methoden in die (determi-
nistische) Physik zeigt: Es war nicht einfach, ehrbar zu werden, von verrufenen
Glücksspielen zu physikalischen Modellen der Materie zu gelangen, die quantitativ
behandelt werden können – das erforderte zwei Jahrhunderte!“

„Wenn man die Bedeutung der Statistischen Physik überschauen will, darf man
nicht übersehen, welchen grundlegenden Beitrag sie zur Quantenmechanik geleis-
tet hat: Durch Max Borns statistische Deutung (1926, Nobelpreis 1954) gelang es,
Wellen- und Teilchenbild sowohl der Strahlung wie der Materie widerspruchsfrei
zu vereinen.“ Plancks Strahlungsgesetz, die Lichtquantenhypothese und Einsteins
Theorie der spezifischen Wärmen von Festkörpern waren wesentliche Entdeckun-
gen der älteren Quantentheorie, die allesamt statistischen Überlegungen entstamm-
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ten. Borns Deutung, d. h. sein grundlegender Schritt von der Wellenfunktion zu de-
ren Betragsquadrat, das die Aufenthaltswahrscheinlichkeit eines Teilchens angibt,
wurde in ihrer Bedeutung „allgemein unterschätzt und er selbst kaum erwähnt –
vielleicht, weil sie jedem zu schnell einging“.

In den folgenden Überlegungen soll die Frage untersucht werden, ob die Statis-
tische Physik ihren „Siegeszug“ nicht noch weiter in die Quantenmechanik hinein
fortsetzen kann, als dies bisher ohnehin der Fall ist. Der Zusammenbruch angesichts
der Quantenrevolutionwar für die Klassik des Jahres 1926 zwar unvermeidbar; doch
schon in den 30er Jahren begann die klassische Theorie- und Begriffsbildung insbe-
sondere im Bereich der statistischen Physik große Fortschritte zu machen.

1.4 Einsteins trojanisches Pferd

Die Geschichte der Statistischen Physik kennt fünf Gründungsväter (Bessenrodt
1987):Maxwell (1831–1879),Boltzmann (1844–1906),Gibbs (1839–1903), Planck
(1858–1947) und Einstein (1879–1955). Bessenrodt: „Während Boltzmann und
Planck durch kritische Einwände zur Statistik gezwungen wurden, war Einstein –
wie Maxwell – ein Statistiker von Anfang an. Seine wissenschaftliche Karriere be-
gann ja – was manchen überraschen mag – mit einer von Boltzmann inspirierten
Nachentdeckung und Weiterentwicklung der statistischen Mechanik – was auf ei-
ne tief gehende Prägung schließen lässt. Zeitlich erstreckten sich Einsteins Beiträge
über 25 Jahre, von 1900 bis 1925, in denen er rund 40 Arbeiten mit ca. 460 Sei-
ten veröffentlichte. Dabei interessierte ihn vor allem die Nahtstelle zwischen Ther-
modynamik und Statistik: die Schwankungstheorie – sei es Brown’sche Bewegung,
thermische Strahlung oder ideales Quantengas. Sie erweist sich durch Einstein gera-
dezu als Hebamme der entstehenden Quantentheorie (und schließlich auch als troja-
nisches Pferd!).“ Einstein begann als Statistiker und „alle seine Beiträge zur frühen
Quantentheorie stammen aus statistischen Überlegungen“. Demgegenüber scheint
es verwunderlich, dass er Borns statistische Deutung so heftig ablehnte: „Solan-
ge die Statistik als nur durch menschliche Unkenntnis bedingt, als unvollständige
Beschreibung der Natur aufgefasst werden konnte, hatte Einstein keinerlei philoso-
phische Schwierigkeiten damit – im Gegenteil.“ Die klassische Statistik erwies sich
jedoch „als trojanisches Pferd, das – zunächst kaum beachtet – ‚echten‘ Zufall in die
Naturgesetze einschmuggelte.“ Durch Borns statistische Deutung „wurde die ‚ech-
te‘ Statistik fundamental und umfassend, im Rahmen der Theorie nicht mehr durch
bessere Kenntnis eliminierbar! Einsteins Widerstand war enorm. Seine ‚Nase‘ sagte
ihm, dass ‚Gott nicht würfelt‘ – sein Gott sieht dem Laplace’schen Dämon verteu-
felt ähnlich. Der reine Zustand eines einzelnen quantenmechanischen Systems kann
nur eine unvollständige Beschreibung dieses Systems sein; dagegen mag er sehr
wohl die Statistik eines Ensembles bestimmen – dies ist genau der Übergang von
der unvollständigen Beschreibung eines Systems zu repräsentativen Ensembles in
der klassischen Statistischen Mechanik. In diesem – und nur in diesem – Sinne kann
er Borns statistische Deutung akzeptieren. Aber dann ist sie eben unvollständig und
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deshalb vorläufig. Wird Einstein langfristig recht behalten? Reicht sein Riecher bis
ins nächste Jahrtausend? Ist die Statistik wirklich nur cleveresManagementmensch-
lichen Unvermögens – oder würfelt Gott selbst?“

1.5 Deutungen der Quantenmechanik

Wir haben hier eine ganz verrückte Theorie vor uns.
Die Frage ist nur, ob sie verrückt genug ist, um richtig zu sein.

Niels Bohr

Die Kopenhagener Deutung der Quantenmechanik beruht auf der Annahme, dass
der Zustand eines Quantensystems durch eine Wellenfunktion vollständig beschrie-
ben wird. Mit der Wellenfunktion sind nur die Wahrscheinlichkeiten von Messer-
gebnissen festgelegt. Einige Aspekte der Kopenhagener Deutung verursachen durch
ihren etwas unphysikalischen Charakter ein gewisses „Unbehagen mit Kopenha-
gen“:

• Komplementarität und Welle-Teilchen-Dualität, überbrückt nur durch Borns
Wahrscheinlichkeitsinterpretation (Quadrat der Wellenfunktion = Aufenthalts-
wahrscheinlichkeit).

• Quantensprünge und andere Unstetigkeiten wie der „Kollaps der Wellenfunkti-
on“ bei der Messung.

• Aufgabe der Kausalität: Nichtkausale Zustandsänderungen beim Messprozess.
• Die Quantenwelt wird von einem absoluten Zufall beherrscht, der nicht durch

besseres Wissen eliminiert werden kann.
• Nichtlokalität und universelle Verschränkung: Alles hängt mit allem zusammen.
• Die Wellenfunktion beschreibt nicht das Quantensystem selbst (realistische Deu-

tung), sondern enthält nur das verfügbareWissen über das Quantensystem (epis-
temische Deutung).

• Fehlende Anschaulichkeit: Stellt die Wellenfunktion eine Wahrscheinlichkeits-
welle dar? Aber kann eine Wahrscheinlichkeit überhaupt eine Welle sein?

Man kann versuchen, eine Interpretation der Quantentheorie mit verborgenenVaria-
blen zu finden, die das Verhalten eines individuellen Quantensystems bestimmen,
aber bei den heutigen Messungen herausgemittelt werden. Oder man kann versu-
chen, alternative Interpretationen ohne zusätzliche neue Parameter zu finden. Eine
neue Theorie kann durch Experimente von der alten Theorie unterscheidbar sein
oder die gleichen Voraussagen machen wie diese.

Bei allen Anwendungen statistischer Theorien im Bereich der klassischen Phy-
sik war es schließlich möglich, die Gesetzte für das Verhalten der individuellen Teile
eines statistischen Ensembles anzugeben. Entsprechend kann man für die Quanten-
theorie eine deterministische, kausale Beschreibung anstreben oder bei einer En-
semblebeschreibung bleiben.
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Bis in die heutige Zeit gibt es vielfältige Versuche, die Quantenmechanik aus
einer statistischen Mechanik abzuleiten (Fürth 1933; Fényes 1952; Weizel 1953;
Wax 1954; Wesley 1961; Comisar 1965; Nelson 1966; Favella 1967; De La Peña-
Auerbach 1967; De La Peña-Auerbach und Cetto 1969; De La Peña-Auerbach, Ve-
lasco und Cetto 1970; Ballentine 1970; Ghirardi, Omero, Rimini und Weber 1978;
Davidson 1979; Grabert, Hänggi und Talkner 1979; Ghirardi, Rimini und Weber
1986, Grabert, Schramm und Ingold 1988; Roncadelli 1991; Dittrich et al. 1998;
Bacciagaluppi 1999; Hänggi und Ingold 2005; Davidson 2007). In vielen Variantenaa
taucht allerdings eine imaginäre Diffusionskonstante auf, deren anschauliche Deu-
tung Schwierigkeiten bereitet. Die moderneTheorie derDekohärenz kann dasMess-
problem lösen (Lindblad 1976; Gorini, Kossakowski und Sudarshan 1976; Walls
und Milburn 1985; Weis 1993; Zeh 1993; Zurek 1991, 2001, 2002; Zurek und Paz
1994; Omnès 1994, 1995; Bub 1997; Braun, Braun und Haake 1999, 2000; Nielsen
und Chuang 2000; Audretsch 2002; Breuer und Petruccione 2002; Buchleitner und
Hornberger 2002; Giulini et al. 2003; Zeilinger 2003; Camejo 2006).

Die de-Broglie-Bohm-Theorie (Madelung 1926, 1927; de Broglie 1926, 1927,
1928, 1964; Bohm 1951, 1952; Bohm und Vigier 1954; Bell 1966, 1987; Kochen
und Specker 1967; Mermin 1990; Valentini 1991, 1992; Vink 1993; Bohm und Hi-
ley 1993; Holland 1993, 1998; Cushing 1994; Goldstein 1996; Ghirardi und Deotto
1998; Dürr 2001; Dürr, Goldstein und Zanghì 1992, 2004; Myrvold 2003; Passon
2004, 2006; Teufel und Tumulka 2005; Bacciagaluppi undValentini 2007) liefert ein
kausales deterministisches Modell, das nicht nur den Messprozess als ganz norma-
le Wechselwirkung behandelt, sondern auch auf den Begriff der Komplementarität
verzichten kann: Das Quantenobjekt ist gleichzeitigWelle und Teilchen. Nach einer
Aufspaltung der komplexen Schrödinger-Gleichung in zwei reelle Gleichungen in-
terpretierten de Broglie und Bohm das entstehende Quantenpotential als „Pilotwel-
le“ oder „Führungsfeld“ für die Bewegung des Teilchens, analog zu den Schienen
einer Eisenbahn. Das Führungsfeld wird von den Teilchen selbst erzeugt, so wie
sich etwa Ameisen ihre Wege markieren. Die Teilchen laufen auf Bahnen entlang,
die durch die Führungswelle bestimmt sind. Wie bei einer Fledermaus wird diese
Welle ausgesandt, um die Umgebung zu „lesen“ und entsprechende Informationen
an das Teilchen zurückzumelden. Das Teilchen „surft“ auf der Führungswelle wieTT
ein Surfer auf einer Wasserwelle. Die resultierenden Teilchenbahnen sind allerdings
vollkommen unklassisch.

Die Transformation des Quantenpotentials von der Wellenfunktion auf die Wahr-
scheinlichkeit war bereits früh bekannt (Madelung 1926, 1927). Diese Variablen-
transformation macht die Differentialgleichung aber komplizierter und unüber-
sichtlicher. Erst mit der hier vorgeschlagenen weiteren Transformation von der
Wahrscheinlichkeit auf die Entropie wird die Situation wieder einfacher und über-
sichtlicher, weil dadurch thermodynamisch deutbare Terme in den Gleichungen auf-
tauchen. In der thermodynamischen Deutung sind es statistische Kräfte, die die
Quanteneffekte erzeugen.
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1.6 Quantenthermodynamik

Die Quantenthermodynamik beschäftigt sich mit der Frage nach dem Verhältnis
zwischen Quantenmechanik und Thermodynamik. Die klassische Mechanik (oh-
ne Reibungseffekte) wie auch die Quantenmechanik beschreiben reversible Pro-
zesse, ihre Bewegungsgleichungen sind zeitumkehrinvariant. Die Thermodynamik
hingegen beschreibt auch irreversible Prozesse; die Zeitumkehrinvarianz ist durch
den zweiten Hauptsatz gebrochen. Aus diesem Grund kann die Thermodynamik
nicht vollständig aus der Mikrophysik abgeleitet werden: Es ist nicht möglich,
die Thermodynamik aus der Hamilton’schen Mechanik oder aus der Quantentheo-
rie abzuleiten, ohne eine zusätzliche Quelle der Dissipation in die mikroskopi-
schen Gleichungen einzuführen (Muschik und Kaufmann 1992, 1994; Kaufmann
1995; Kaufmann, Muschik und Schirrmeister 1996; Xing 1998; Kato et al. 2000;
Gümbel 2004; Gemmer, Michel und Mahler 2009). Um diesen Widerspruch zwi-
schen dynamischer Reversibilität und thermodynamischer Irreversibilität zu über-
winden, wurden verschiedene mikroskopische Theorien irreversibler Prozesse ent-
wickelt.

Im Rahmen der statistischen Physik des Nichtgleichgewichts eignet sich hier-
für eine zeitasymmetrische generalisierte Liouville-Gleichung (Xing 1998, 2001).
Die Annäherung an das Gleichgewicht ist von einer Entropiediffusion begleitet. In
Nichtgleichgewichtszuständen diffundiert Entropie von Bereichen hoher Dichte in
Bereiche niedriger Dichte. Diese stochastische Diffusion ist der mikroskopische Ur-
sprung der makroskopischen Irreversibilität. Die Entropiediffusion wird neben der
Entropieproduktion eine entscheidende Rolle in einer thermodynamischen Deutung
der Quantenmechanik spielen.

Als mikroskopische Repräsentation der Entropie im Rahmen der Quantenmecha-
nik wurde ein mikroskopischer Entropie-Operator vorgeschlagen (Prigogine 1979).
Die ZeitentwicklungsoperatorenUtUU bilden bei konservativen Systemen eine Gruppe
von unitären Operatoren, bei dissipativen System hingegen nur noch eine Halbgrup-
pe von nichtunitären Operatoren:

dynamische Gruppe: UtUU UsU D UtUU Cs für t; s 2 Œ�1;1�
dynamische Halbgruppe: UtUU UsU D UtUU Cs für t; s 2 Œ0;1� :

Die inversen Transformationen ergänzen die Halbgruppe zu einer Gruppe. Bei der
Halbgruppe fehlen diese Rücktransformationen in die Vergangenheit. Dissipative
Systeme vergessen ihre Anfangsbedingungen. Die Entropie unterscheidet zwischen
Vergangenheit und Zukunft. Auf diese Weise bildet sich der Symmetriebruch in den
algebraischen Strukturen ab. Sowohl die klassische Mechanik als auch die Quan-
tenmechanik beschreiben eine Physik des Seins, die Thermodynamik dagegen eine
Physik des Werdens.

Die Irreversibilität hängt eng mit der dynamischen Instabilität zusammen wie sie
z. B. für einenWürfel charakteristisch ist. Selbst ein deterministischesmechanisches
System kann in seinem Verhalten so empfindlich von seinen Anfangsbedingungen
abhängen, dass es unvorhersagbar oder gar chaotisch wird. Dadurch werden die
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Anfangsbedingungen letztlich beliebig. Diese „Zufälligkeit“ auf der Mikroebene
manifestiert sich auf der Makroebene als Irreversibilität.

Ergänzend zu diesen hochinteressanten Entwicklungen wollen wir hier den um-
gekehrten Weg beschreiten: die Irreversibilität und den zweiten Hauptsatz als ge-
geben hinnehmen und die Quantenmechanik aus einer Thermodynamik ableiten.
Unsere Fragestellung ist also nicht, wie die makroskopische Irreversibilität mikro-
skopisch begründet werden kann, sondern – etwas einfacher – wie makroskopische
Reversibilität aus mikroskopischer Irreversibilität entstehen kann. Die Schrödinger-
Gleichung wird hier als Makroebene angenommen, die allgegenwärtigen Schwan-
kungen auf der (sub)mikroskopischen Ebene etwa als Vakuumfluktuationen.

Das Quantenteilchen kann zwar nicht ohne weiteres aus einem Potential ent-
kommen, es kann sich aber – wie wir noch sehen werden – so darin einrichten, dass
es durch eine Kompensation der äußeren Kraft durch innere statistische Kräfte bei
Einhaltung gewisser Quantisierungsbedingungen zu einem freien Teilchen wird. Im
Gleichgewicht genügt die Beschreibung durch eine Untergruppe der dynamischen
Transformationen. Die statistischen Kräfte formen im Gleichgewicht eine Art „in-ff
verse Dynamik“ zu den äußeren Kräften (z. B. von Holst und Mittelstaedt 1950;
Penrose 1955; Munn und Penrose 1955; Paul 1972, 1981; Waters 1979; Hollerbach
1980; Widrow und Stearns 1985; Isidori 1985; Ljung 1987; Varjú 1990; Haykin
1991; Daunicht 1991, 1996; De Groff et al. 1993; Benaim 1993; Bishop 1995; De
Witt, Siciliano und Bastin 1996; Olah 2001).

Eine durchaus vergleichbare Kompensationsstrategie verfolgt ein Zentralnerven-
system oder ein künstliches neuronales Netz, das ein Gliedmaßensystem bzw. einen
Roboter steuern soll: Mit Hilfe zunächst zufälliger und später zielgerichteter Bewe-
gungen erlernt ein adaptiver Regler eine inverse Kinematik und Dynamik des Glied-
maßensystems. Die Vorwärtstransformationen T des Körpers werden mit den ent-
sprechenden inversen Transformationen T �1 zu einer Einheit verknüpft, zur (sensu-
motorischen) Identität: T �1T D 1. Dadurch wird das Gliedmaßensystem zu einem
System freier Gelenke, das von höheren Hirnzentren auf einfache Weise gesteuert
werden kann. Die inverse Dynamik kompensiert automatisch die Schwerkraft, die
Reibung sowie alle dynamischen Wechselwirkungen zwischen den Gliedern. Das
Gesamtsystem aus Körper und Nervensystem erlangt seine erstaunliche Autonomie
und Bewegungsfreiheit, indem es die dynamische Halbgruppe des Körpersystems
durch eine neuronale Repräsentation der inversen Halbgruppe zu einer Gruppe er-
gänzt.
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1.7 Das Paradox der Zeitumkehrinvarianz

Dreifach ist der Schritt der Zeit
zögernd kommt die Zukunft hergezogen,
pfeilschnell ist das Jetzt entflogen,
ewig still steht die Vergangenheit.

Friedrich Schiller

Das Paradox der Zeitumkehrinvarianz besteht darin, dass die Symmetrie der fun-
damentalen Naturgesetze unter Zeitumkehr im Widerspruch zur offensichtlichen
Anisotropie der physikalischen Zeit steht (Bessenrodt 1990): „Obwohl die physi-
kalischen Grundgesetze zeitumkehrinvariant sind, ist unsere Welt zeitlich ganz un-
symmetrisch – die meisten Vorgänge laufen nur in einer Richtung ab, ihre zeitlichen
‚Spiegelbilder‘ treten niemals auf.“ Andererseits hat sich die Zeitumkehrinvarianz
in vielen Bereichen als äußerst wirkungsvolles Supergesetz erwiesen. Bessenrodt
konstatiert eine „auffallende Unterschätzung der Statistischen Thermodynamik –
des Stolpersteins aller Zeitumkehrinvarianz-Fans“. Aus thermodynamischer Sicht
drängt sich der zweite Hauptsatz als Master-Symmetriebrecher auf.

Im Rahmen der hier angestellten Überlegungen gehen wir nicht von einem zeit-
umkehrinvarianten Naturgesetz aus, um dann nach den Ursachen eines Symmetrie-
bruchs zu suchen, sondern geben umgekehrt eine Erklärung für die Entstehung der
höheren Symmetrie der Schrödinger-Gleichung beim Übergang in dissipationsfreie
stationäre Zustände und damit eine Begründung für die Nützlichkeit der Zeitum-
kehrinvarianz als Supergesetz: Wenn eine dissipative Physik des Werdens den Weg
in einen Attraktor beschreibt, eine konservative Physik des Seins die Dynamik auf
dem Attraktor, und wenn das System hinreichend schnell einen Attraktor erreicht
und sich deshalb die meiste Zeit im Gleichgewicht befindet, dann ist eine zeitum-
kehrinvariante Beschreibung gut. Der Erfolg der Zeitumkehrinvarianz als Superge-
setz kann damit aus einer impliziten Gleichgewichtsannahme begründet werden:
Zeitumkehrinvarianz beruht auf einer Zeitskalentrennung, die eine adiabatische Eli-
mination schnell relaxierender Prozessanteile ermöglicht (Haken 1981).

Die Zeitskalentrennung spielt eine wichtige Rolle in der statistischen Nicht-
gleichgewichtstheorie. Das Vorliegen von Zeitumkehrinvarianz (ZUI) und Zeitver-
schiebungsinvarianz (ZVI) ist bei linearen Systemen gleichbedeutend damit, dass
keine Energieabsorption stattfindet. Wenn umgekehrt der Energietransport zwischen
Subsystemen schnell genug, d. h. zeitskalengetrennt in ein Fließgleichgewicht über-
geht, verbleiben auf der nächst höheren Makroebene Systeme mit den Invarianzei-
genschaften ZUI und ZVI (z. B. Bessenrodt 1983).

Die Klassik folgerte aus der mikroskopischen Zeitumkehrinvarianz, dass die ma-
kroskopische Irreversibilität eine Näherung sein müsse, eine Illusion, die auf unsere
Unwissenheit zurückzuführen sei. Aus thermodynamischer Sicht ist das Gegenteil
wahrscheinlicher: Die Zeitumkehrinvarianz ist eine Näherung und die Reversibilität
damit keine universelle Eigenschaft mehr.

Von einer zeitumkehrinvarianten Schrödinger-Gleichung ist nicht zu erwarten,
dass sie die Übergänge zwischen den Eigenzuständen ohne weiteres beschreiben
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kann. Um Übergangswahrscheinlichkeiten berechnen zu können, wird deshalb ei-
ne kleine zeitabhängige Störung als Symmetriebrecher angenommen. Dem zeit-
unabhängigen Hamilton-Operator des Systems wird ein Störoperator hinzugefügt,
der den Übergang induziert. Wird ein solcher Störoperator angenommen, z. B. als
Repräsentation eines allgegenwärtigen Rauschens, oder eine weitere dissipative
Gleichung, die auf einer schnellen Zeitskala die Entwicklung bis in die Gleichge-
wichtszustände hinein beschreibt, löst sich das Paradox der Zeitumkehrinvarianz
im Bereich der Quantenmechanik. Die Schrödinger-Gleichung modelliert in dieser
Interpretation nur einen langsameren Prozessanteil für die dissipationsfreien Eigen-
zustände. Eine schnelle Relaxation der dissipativen Dynamik erzeugt die höhere
Symmetrie des reduzierten Modells.

Veränderung setzt Invarianz voraus und umgekehrt. Heinz von Foerster über ei-
ne kybernetische Epistemologie des Lebendigen (von Foerster 1981, 1985): „Die
logischen Eigenschaften von ‚Invarianz‘ und ‚Veränderung‘ sind die Eigenschaften
von Repräsentationen. Wird dies missachtet, entstehen Paradoxa.“ Das Paradox der
Zeitumkehrinvarianz entsteht in diesem Sinne durch das Fehlen einer Repräsentati-
on der hier postulierten dissipativen Dynamik.

Fazit: Zeitumkehrinvarianz ist eine Gleichgewichtseigenschaft und Folge einer
Zeitskalentrennung. Der Erfolg der Zeitumkehrinvarianz als Supergesetz beruht auf
der Annahme einer schnellen Relaxation der dissipativen Anteile der Dynamik. Der
Übergang ins Gleichgewicht lässt die zusätzliche Symmetrie entstehen. Die Zeitum-
kehrinvarianz der Naturgesetze ist also nur eine adiabatische Invarianz. Makrosko-
pische Irreversibilität entsteht aus einer instabilen Mikrodynamik, makroskopische
Reversibilität aus einer schnell relaxierenden Mikrodynamik.



Kapitel 2
Thermodynamik irreversibler Prozesse

Mathematics is a way of saying
less and less about more and more.

George Spencer Brown

Ausgangspunkt der Theorie irreversibler Prozesse ist Boltzmanns Definition der
Entropie s als Logarithmus einer Wahrscheinlichkeit P und deren Umkehrung
durch Planck und Einstein:

Boltzmann-Beziehung W s D k � lnP , P D exp.s=k/ :

Dabei ist k die Boltzmann-Konstante. Die Entropie ist ein Maß für die Irreversibili-
tät und für die Unordnung in einem thermodynamischen System. Unter dem Gesetz
der Entropiezunahme versteht man die Tendenz des Universums und jedes isolierten
Teilsystems, in Zustände wachsender Unordnung überzugehen.

In Analogie zur klassischen Mechanik werden mit thermodynamische Variablen
Lagrange-Funktionen definiert. Thermodynamische Lagrange-Funktionen wurden
von Onsager undMachlup in die Statistische Physik eingeführt (Onsager undMach-
lup 1953). Verschiedene Prozesse sollen anhand der mit ihnen einhergehenden
Entropieänderungen verglichen werden. Ausgehend von dieser These formuliert
Onsager das Prinzip der kleinsten Energiedissipation (Onsager 1931). Das Prin-
zip der kleinsten Energiedissipation entspricht dem Prinzip der kleinsten Wirkung
in der klassischen Mechanik.

Die Stabilität thermodynamischer Systeme ist durch das Vorzeichen der zweiten
Ableitung, d. h. durch die Krümmung der Entropiedichte bestimmt. Im Gleichge-
wicht können statistische Kräfte die äußeren Kräfte neutralisieren. Derartige „ther-
mische Response-Überlegungen“ gehen auf Einstein zurück, der sie im Zusammen-
hang mit seiner Theorie der Brown’schen Bewegung entwickelte (Einstein 1905;
Smoluchowski 1923; Uhlenbeck und Ornstein 1930; Onsager 1931; Chandrasekhar
1943; Kubo 1966). Die Brown’sche Bewegung ist die „wichtigste Brücke zwischen
Mikro- und Makrophysik“ (Bessenrodt 1977) und dient als einfaches Beispiel für
einen irreversiblen Prozess. In offenen Systemen sind nicht nur irreversible, son-
dern auch selbstorganisierende Prozesse möglich. Entropieexport und Expansion
sind die grundlegenden Strategien der Selbstorganisation.
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2.1 Wahrscheinlichkeit und Entropie

Bei einem thermodynamischen System können Mikro- und Makrozustände unter-
schieden werden. Die zeitliche Entwicklung des Systems soll einer Zeitskalentren-
nung genügen; es gibt eine schnelle Mikrodynamik und eine wesentlich langsa-
mere Makrodynamik. Jedem Mikrozustand ist ein wohlbestimmter Makrozustand
zugeordnet. Umgekehrt gehören jedoch zu jedem Makrozustand viele verschiedene
Mikrozustände. Die elementarste statistische Annahme besteht darin, alle Mikro-
zustände als gleichwahrscheinlich anzusehen. Die Wahrscheinlichkeit P.x/ eines
bestimmten Makrozustands x ist proportional zur Anzahl der Mikrozustände, die
diesen Makrozustand realisieren („Komplexionen“):

Wahrscheinlichkeit .Makrozustand.. /dd � Anzahl der Mikrozustände :

Die Entropie s.x; t/ eines Makrozustandes x zur Zeit t ist proportional zum Loga-
rithmus der Wahrscheinlichkeit P.x; t/ dieses Zustands:

Entropiedichte W s.x; t/ D k � lnP.x; t/ :
Die Entropie ist ein Maß für die Irreversibilität von Prozessen. Für abgeschlossene
Systeme besagt der zweite Hauptsatz der Thermodynamik, dass die Entropie nicht
abnehmen kann, sondern für irreversible Prozesse zunimmt und für reversible Pro-
zesse gleich bleibt. Für die Entropieproduktionsdichte ds=dt gilt:

Zweiter Hauptsatz W ds

dt
� 0

Irreversible Prozesse W ds

dt
> 0

Reversible Prozesse W ds

dt
D 0 :

In isolierten Systemen wächst die Entropie und erreicht im Gleichgewicht ihrenMa-
ximalwert. Nur irreversible Prozesse tragen zur Entropieerzeugung bei. Der wahr-
scheinlichste Makrozustand besitzt die meisten ihn realisierenden Mikrozustände
und ist durch ein Maximum der Entropie charakterisiert. Eine Zunahme der Entro-
pie bedeutet mikroskopisch das Streben nach dem wahrscheinlichsten Makrozu-
stand. Das thermodynamische Gleichgewicht ist ein Attraktor für Nichtgleichge-
wichtszustände. Je größer die Zahl der Mikrozustände ist, desto schärfer ist die
Wahrscheinlichkeitsverteilung gepeakt, und desto geringer sind die Fluktuationen
um das Gleichgewicht.

2.2 Thermodynamische Lagrange-Funktionen

Der makroskopische Zustand eines thermodynamischen Systems sei durch eine Ob-
servable x beschrieben. Eine thermodynamische Kraft X.x/ ist als Ableitung der
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Entropiedichte s.x/ nach der phänomenologischen Variablen x definiert:

thermodynamische Kraft W X D @s

@x
D s0 :

Ausgehend von einem Fluss, der von den statistischen Kräften abhängt, werden
phänomenologische Gleichungen oder Fluss-Kraft-Beziehungen von der folgenden
Form angenommen (vgl. z. B. Reif 1987; Jetschke 1989; Reichl 1991):

Fluss-Kraft-Beziehung W Px D J.X/ :

Damit folgt für die Entropieproduktionsdichte:

Entropieproduktionsdichte W s.x/P D @s

@x
Px D J �X � 0 :

Irreversible Prozesse werden durch thermodynamische KräfteX verursacht und ha-
ben Ströme J zur Folge. Im thermodynamischen Gleichgewicht verschwinden alle
Kräfte und Ströme:

Gleichgewicht W X D 0 ^ J D 0) Ps D 0 :

Die Entropiedichte s ist mit P � 1 und lnP � 0 eine Ljapunov-Funktion für
isolierte Systeme:

Ljapunov-Funktion W s � 0 ^ Ps � 0 :

Mit den kinetischen Koeffizienten R werden zwei Dichten wie folgt definiert:

Dissipationsfunktion W ˚ D 1

2
R�1 Px2

Entropieproduktion W � D 1

2
RX2 :

Aus diesen Größen wird eine thermodynamische Lagrange-Funktion zusammenge-
baut, ganz in Analogie zur klassischen Mechanik als Summe von kinetischen und
potentiellen Anteilen (Onsager und Machlup 1953):

Lagrange-Funktion W L D ˚ C � :
Die Dissipationsfunktion˚ ist das Analogon zur kinetischen Energie, die Entropie-
produktion entspricht einem Potential.

2.3 Das Prinzip der kleinsten Energiedissipation

Das Prinzip der kleinsten Energiedissipation (Onsager 1931) in Form des Variati-
onsprinzips

ı ŒPs � ˚� D 0
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liefert durch Variation der Px bei festem x lineare Bewegungsgleichungen:

ı ŒPs �˚� D
�
@s

@x
� @˚
@ Px

�
� ı Px D 0 , @s

@x
D @˚

@ Px , Px D R �X :

Im Falle linearer Fluss-Kraft-Gleichungen hat man

Px D J.X/ D R �X ) ˚ D � ) L D R �X2 :

Im Rahmen der linearen Theorie irreversibler Prozesse stimmen Dissipationsfunk-
tion und Entropieproduktion also überein. Die Stabilität des Gleichgewichts zieht
sofort R � 0 nach sich. Denn für die Entropieproduktionsdichte folgt aus dem
zweiten Hauptsatz

s.x/P D J �X D R �X2 � 0 :

Die Matrix R der kinetischen Koeffizienten erfüllt bei mikroskopischer Zeitumkeh-
rinvarianz Onsagers Reziprozitätsbeziehung:R D RT.

Wenn in einem stationären Nichtgleichgewichtszustand der Fluss J verschwin-
det, gilt folgende Extremalbedingung:

@

@X
s.x/P D 2R �X D 2J D 0 :

Während im thermodynamischenGleichgewicht die Entropieproduktionverschwin-
det, sind stationäre Nichtgleichgewichtszustände durch eine minimale Entropiepro-
duktion charakterisiert. Wenn also gegebene Randbedingungen das System daran
hindern, das thermodynamische Gleichgewicht zu erreichen, geht das System in
einen Zustand der geringsten Entropieproduktion über. Diese Eigenschaft ist nur
in der Nachbarschaft des Gleichgewichts streng gültig. In großer Entfernung vom
Gleichgewicht kann das thermodynamische Verhalten ganz anders sein. Das Nicht-
gleichgewicht kann eine Quelle der Ordnung sein. Diese Ordnung ist durch das
Auftreten von dissipativen Strukturen gekennzeichnet.

2.4 Thermodynamische Stabilitätstheorie

Wir leiten nun für die thermodynamische Lagrange-Funktion

L D 1

2
R�1 Px2 C 1

2
RX2

die Bewegungsgleichung her:

d

dt

�
@L

@ Px
�
� @L
@x

D 0) R�1 Rx �RXX 0 D 0 :
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Für lineare Fluss-Kraft-Beziehungen kann diese Bewegungsgleichung auf folgende
Form gebracht werden:

Rx � �R Px D 0 :

Damit die Dynamik stabil ist, muss der „Reibungskoeffizient“ � D X 0 D s00 negativ
sein und wir erhalten ein Kriterium für

thermodynamische Stabilität W � D s00 < 0 :

Die Entropiedichte s.x/ muss in der Nähe eines Maximums eine konkave Funktion
ihrer Variablen sein und folglich eine negative Krümmung besitzen. Die Entropie-
krümmung � ist ein Maß für die Reibung und auch für die Stärke der Fluktuationen
im Gleichgewicht. Eine quadratische Approximation der Entropie um einMaximum
liefert mit Einsteins Umkehrung der Boltzmann-Formel den zentralen Grenzvertei-
lungssatz für die Fluktuationen in der Nähe des Gleichgewichts. Reibung und Fluk-
tuationen sind über das Fluktuations-Dissipations-Theorem miteinander verknüpft
(z. B. Callen undWelton 1951). Onsagers Regressions-Schwankungs-Hypothese be-
sagt, dass die Mittelwerte der Schwankungen im Gleichgewicht die makroskopi-
schen Bewegungsgleichungen erfüllen (Onsager 1931; Bessenrodt 1987, 1990).
Die Entropiekrümmung � spielt als Entropiediffusion eine wichtige Rolle in neue-
ren Entwicklungen der statistischen Physik des Nichtgleichgewichts (Xing 1998,
2001).

Wenn s0 die maximale Gleichgewichtsentropie ist, so gilt in zweiter Ordnung

s D s0 C ıs C 1

2
ı2s :

Da s0 ein Maximum ist, verschwindet der Term erster Ordnung ıs und die Stabilität
ist durch das Vorzeichen des Terms zweiter Ordnung ı2s bestimmt.

Die Differenz der Entropiedichte s.x/ zum Entropiemaximum s0 wird als Über-
schussentropie oder auch Exzessentropie bezeichnet:

Exzessentropiedichte W ı2s D 2 � .s � s0/ D @2s

@x2
.ıx/2 D � � .ıx/2 � 0 :

Die zeitliche Ableitung der Exzessentropiedichte, die Exzessentropieproduktions-
dichte, ist mit der Entropieproduktion verknüpft:

Exzessentropieproduktion W 1

2

@

@t
ı2s D J �X � 0 :

Aufgrund dieser Eigenschaften spielt die Exzessentropie die Rolle einer Ljapunov-
Funktion für thermodynamische Prozesse in der Nähe des Gleichgewichts (De
Groot und Mazur 1963; Glansdorff und Prigogine 1971; Nicolis und Prigogine
1977; Jetschke 1989):

Ljapunov-Funktion W ı2s � 0 ^ d

dt
ı2s � 0 :
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Im Bereich des linearen Regimes hat die Exzessentropieerzeugung das gleiche Vor-
zeichen wie die Entropieerzeugung selbst. Fern vom Gleichgewicht ändert sich die-
se Situation. Sind ıJ und ıX die Abweichungen von einem stationären Nichtgleich-
gewichtszustand, so hängt die Exzessentropieproduktion von der Entropieprodukti-
on dieser Störung ab (Glansdorff und Prigogine 1971; Prigogine 1979):

Nichtgleichgewichtszustände W 1

2

@

@t
ı2s D ıJ � ıX :

Fern vom Gleichgewicht ist die Exzessentropie ı2s zwar weiterhin negativ, die Ex-
zessentropieproduktion hat aber im allgemeinen kein eindeutiges Vorzeichen mehr.
Die Exzessentropie verliert mithin ihre Eigenschaft, Ljapunov-Funktion zu sein.
Für stationäre Nichtgleichgewichtszustände können andere Ljapunov-Funktionen
gefunden werden (Fox 1979, 1980).

In der Nähe des Gleichgewichts gewährleistet die Existenz einer Ljapunov-
Funktion die Dämpfung aller Schwankungen. Aus diesem Grund ist in der Nähe
des Gleichgewichts eine makroskopische Beschreibung ausreichend. Schwankun-
gen treten nur als Korrekturen zu den makroskopischen Gesetzen auf und kön-
nen für große Systeme vernachlässigt werden. Oberhalb eines kritischen Abstands
vom thermodynamischen Gleichgewicht können jedoch gewisse Schwankungen
verstärkt werden und makroskopische „dissipative“ Strukturen erzeugen, die durch
eine Energiezufuhr von außen stabilisiert werden.

Die Exzessentropie hat eine weitere Bedeutung als Maß für die Komplexität ei-
nes Systems (Grassberger 1986; Feldman und Crutchfield 1998, 2003; Bialek, Ne-
menman und Tishby 2001; Crutchfield und Feldman 2003). Sie verschwindet für
die beiden Extreme totaler Zufälligkeit und totaler Vorhersagbarkeit. Im Zwischen-
bereich zwischen Zufall und Notwendigkeit ist ein komplexeres Systemverhalten
möglich bis hin zur Selbstorganisation (Haken 1981).

Fassen wir zusammen, was wir über die statistischen Potentiale wissen. Die
Entropie spielt in der Theorie irreversibler Prozesse eine Doppelrolle als Potenti-
al statistischer Kräfte und als Wahrscheinlichkeitsexponent:

• Die Entropie ist Wahrscheinlichkeitsexponent: P D exp .s=k/

• Die Entropie ist Potential der statistischen Kraft: s0 D X

• Die Entropieproduktion ist Potential des Flusses:
@

@x
Ps D 2� � Px

• Die Exzessentropie ist Ljapunov-Funktion des Flusses:
d

dt
ı2s � 0 .

Für die weiteren Untersuchungen benutzen wir die folgenden vereinfachten Dich-
ten:

Entropieproduktionsdichte W � D s02 D X2

Entropiediffusionsdichte W � D s00 D X 0 :
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2.5 Brown’sche Bewegung in einem Potential

Die Wahrscheinlichkeitsdichte P.x,t/ für die Brown’sche Bewegung in Gegenwart
einer äußeren KraftK.x/ genügt einer Fokker-Planck-Gleichung der Form

@P

@t
D � @

@x
.KP/C 1

2

@2P

@x2
:

Für stationäre Lösungen gilt:

@P

@t
D 0) @

@x
.KP/ D 1

2

@2P

@x2
:

Die resultierende Gleichung kann sofort einmal nach x hochintegriert werden; die
anfallende Integrationskonstantewird aus Gründen der hinreichendenLokalisierung
zu Null gesetzt:

KP D 1

2

@P

@x
) K D 1

2

@

@x
lnP D 1

2k

@s

@x
D 1

2k
X :

Im stationären Zustand kompensiert die thermodynamische Kraft X die äußere
Kraft K . Auf der Ebene der Potentiale zeigt sich der Potentialcharakter der Entro-
pie s. Wenn V.x/ das Potential der KraftK.x/ ist, kommt mit K D �V 0

K D 1

2k
X ) �V D 1

2k
s ) P D exp.�2V / :

V(VV x)

P(x)

s(x)

Abb. 2.1 Brown’sche Bewegung im Oszillatorpotential
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Potentialminima entsprechen Wahrscheinlichkeitsmaxima; Potentialmaxima ent-
sprechen Wahrscheinlichkeitsminima. Für einen harmonischen Oszillator mit K D
�x ist die stationäre Wahrscheinlichkeitsdichte eine Gauß-Verteilung (Abb. 2.1):

V D 1

2
x2 ) s

k
D �2V D �x2 ) P D exp.�x2/ :

Im Gleichgewicht ist die Entropie maximal. Die Schärfe des Entropiemaximums ist
ein Maß für die Schwankung einer statistischen Größe (Einstein 1905; Smoluchow-
ski 1923; Uhlenbeck und Ornstein 1930; Onsager 1931; Kubo 1966; Chandrasekhar
1943).

2.6 Selbstorganisation und Entropieexport

Das, wovon ein Organismus sich
ernährt, ist negative Entropie.

Erwin Schrödinger

Thermodynamische Prozesse können nicht nur reversibel oder irreversibel, sondern
auch selbstorganisierend sein. Von einem selbstorganisierenden System wird er-
wartet, dass es seine innere Ordnung mit der Zeit vergrößert, seine Entropie s also
abnimmt:

Selbstorganisation W ds

dt
< 0 :

Wegen des zweiten Hauptsatzes ist aber sofort klar, dass ein isoliertes System allei-
ne niemals selbstorganisierend sein kann, sondern nur selbstdesorganisierend. Die
Wechselwirkungmit einer Umwelt ist also eine notwendige Bedingung für Selbstor-
ganisation. Nur offene Systeme können selbstorganisierend sein. Selbstorganisation
ist eine Eigenschaft des Gesamtsystems, dessen Gesamtentropie natürlich insgesamt
zunehmen muss (z. B. Schrödinger 1947; Eigen und Schuster 1978; von Foerster
1981, 1985; Nicolis und Prigogine 1987; Jetschke 1989). Wenn sS die Entropie ei-
nes selbstorganisierenden Systems ist und sE die Entropie der Umwelt, dann muss
für die Gesamtentropie s des Universums der zweite Hauptsatz gelten:

s D sS C sE ) ds

dt
D dsS

dt
C dsE

dt
� 0) dsE

dt
� �dsS

dt
:

Die Entropie eines selbstorganisierenden Systems kann demzufolge nur dann ab-
nehmen, wenn die Entropie der Umwelt entsprechend zunimmt und damit die hö-
here Ordnung im Subsystem mindestens kompensiert:

dsS
dt

< 0) dsE
dt

> 0 :

Selbstorganisation ist nur auf Kosten einer Desorganisation der Umwelt möglich,
d. h. durch Entropieexport. Diese Umwelt muss demnach strukturiert sein, denn
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woher sonst soll das selbstorganisierende System seine Ordnung assimilieren? Es
muss allein deshalb eine gewisse Ordnung geben, weil der Zustand maximaler Un-
ordnung des Universums noch nicht erreicht ist. Daher nimmt die Entropie immer
noch zu. Wo aber kommt die Ordnung im Universum her, die dann abnehmen und
von „selbstorganisierenden“ Systemen assimiliert werden kann?

Die relative Entropie ist definiert als Verhältnis der tatsächlichen Entropie sS zur
maximalen Entropie sm des betrachteten Systems. Aus der relativen Entropie ergibt
sich die RedundanzR:

Redundanz W R D 1 � sS

sm
:

Die Redundanz ist ebenfalls ein Maß für die Ordnung in einem System und nimmt
offenbar Werte zwischen 0 und 1 an:

maximale Unordnung W sS D sm ) R D 0

maximale Ordnung W sS D 0) R D 1 :

Damit lässt sich sofort ein Kriterium dafür angeben, dass ein System sich selbst or-
ganisiert. Es muss Redundanz erzeugen, indem es seine tatsächliche Unordnung sS
verringert oder seine maximal mögliche Unordnung sm vergrößert (Sahal 1979; von
Foerster 1981, 1985):

Selbstorganisationskriterium W dR

dt
> 0) 1

sm

dsm
dt

>
1

sS

dsS
dt

:

Interessant an dieser Form des Selbstorganisationskriteriums, das aus dem Jahre
1960 stammt, ist vor allem, dass die tatsächliche Entropie sS des Systems nicht
notwendig abnehmen muss, damit das System höhere Zustände der Organisation
erreicht! Das Kriterium sagt lediglich aus, dass für selbstorganisierende Prozesse
die relative Zunahme der maximalen Unsicherheit größer ist als die relative Zunah-
me der faktischen Unsicherheit. Zur Verdeutlichung werden zwei Enkel von Max-
wells Dämon angestellt (von Foerster 1981, 1985): Der innere Dämon arbeitet an
einer Verringerung der tatsächlichen Unordnung sS bei konstanter maximaler Un-
ordnung (sm D const), der äußere Dämon dagegen sorgt für eine Vergrößerung der
maximal möglichen Unordnung sm bei einer konstanten tatsächlichen Unordnung
(sS D const):

innerer Dämon W dsm
dt

D 0) dsS
dt

< 0

äußerer Dämon W dsS
dt

D 0) dsm
dt

> 0 :

Die einfachste Möglichkeit des äußeren Dämons besteht darin, im „Verhaltensuni-
versum“ des Systems neue Zustände zu erzeugen, z. B. durch Expansion. Die Entro-
pie eines Systems mit N gleichwahrscheinlichen Zuständen beispielsweise hat die
Gestalt sm � lnN . Die maximale Entropie wird folglich zunehmen, wenn die Zahl
der Zustände sich vergrößert. Demzufolge kann die im Universum vorhandene Ord-
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nung durch die Expansion des Universums zustande gekommen sein, insofern im
Zuge der Expansion immer neue räumliche Zustände zur Verfügung gestellt wer-
den. Expansion ist also eine mögliche Quelle von Selbstorganisation. Der äußere
Dämon alleine vermag aber keine langfristig stabilen Strukturen zu schaffen. In ei-
ner begrenzten Petrischale ist kein grenzenloses Wachstum möglich. Nicht wenige
Kulturen und Unkulturen haben versucht, durch wirtschaftliche bzw. kriegerische
Expansion ihre innere Organisation aufrecht zu erhalten. Nicht selten schien eine
Expansion der einzige Ausweg aus einer Schuldenfalle, einem drohenden Staats-
bankrott und einer von der Zinseszinsformel getriebenen Vermögens- und Verschul-
dungseskalation zu sein. In derWachstumsphase kann der äußereDämon eine wich-
tiger Motor der Entwicklung sein; in der Sättigungsphase hingegen sollte der innere
Dämon wirksam werden. Ein wichtiges Kennzeichen selbstorganisierender Syste-
me ist, dass sie die Umweltordnung in ihrer eigenen Organisation abbilden, assimi-
lieren. Das kann z. B. dadurch geschehen, dass ein Zentralnervensystem mit Hilfe
eines inneren Dämons ein inverses Modell seiner Umwelt erlernt und dem Gesam-
torganismus auf diese Weise zu mehr Autonomie verhilft. Da für den Geldstrom
die gleichen Gesetze gelten wie etwa für den elektrischen Strom, würde der inne-
re Dämon zur Stabilisierung des Finanzsystems einen Bandpass in den Geldstrom
einbauen: einen Hochpass als Offsetkorrektur in der Zinsstruktur, um den Zinses-
zinseffekt bei niedrigen Wachstumsraten zu vermeiden, und einen Tiefpass, um die
unerwünschten spekulativen Schwankungen wichtiger volkswirtschaftlicher Varia-
blen zu dämpfen. Dadurch würde die gefährliche exponentielle Eigendynamik des
Geldes gebremst. Ziel der Regelung ist die Einhaltung der Goldenen Regel der Ka-
pitalakkumulation, wonach die Gleichheit von Realzinsniveau und Wachstumsrate
eine notwendige Bedingung für ein optimales Wachstum mit maximalem Konsum
und maximalem Gewinn ist (z. B. Olah 2001; Olah, Huth und Löhr 2010).

Fazit: Selbstorganisierende Systeme sind Entropieverzögerer und Redundanzer-
zeuger, die Ordnung (Negentropie) aus ihrer Umwelt importieren und Unordnung
(Entropie) exportieren. Die beiden einfachsten Selbstorganisationsstrategien sind
Expansion und Entropieexport. Zur Maximierung der Selbstorganisationsmöglich-
keiten folgt aus der Tätigkeit des inneren bzw. äußeren Dämons Heinz von Foersters
ästhetischer resp. ethischer Imperativ (von Foerster 1981, 1985):

Ästhetischer Imperativ:Willst du erkennen, lerne zu handeln.

Ethischer Imperativ: Handle stets so, dass weitere Möglichkeiten entstehen.



Kapitel 3
Umdeutung der Schrödinger-Gleichung

Understanding has to do with the fact
that what ever is said or done
can always be said or done a different way,
and yet all ways remain the same.

George Spencer Brown

Der Unterschied zwischen der klassischen Mechanik und der Quantenmechanik
zeigt sich am deutlichsten beim Vergleich der entsprechenden Hamilton-Jacobi-
Gleichungen. Für das nichtklassische Verhalten des Quantenobjekts ist das zusätz-
liche „Quantenpotential“ in der quantenmechanischen Hamilton-Jacobi-Gleichung
verantwortlich zu machen. An diesem Zusatzterm kann eine statistische Deutung
mit thermodynamischen Begriffen am einfachsten ansetzen. Hierzu kann das Quan-
tenpotential von der Wellenfunktion auf die Wahrscheinlichkeitsdichte und weiter
auf die Entropiedichte umgeschrieben werden. Damit zeigt sich das Quantenpoten-
tial als Summe aus zwei statistischen Potentialen:

QuantenpotentialD EntropieproduktionC Entropiediffusion :

Die stationäre Schrödinger-Gleichung ist äquivalent zu einer speziellen Riccati-
Differentialgleichung für eine statistische Kraft, das Superpotential. In stationären
gebundenen Zuständen wird die äußere Kraft durch statistische Kräfte kompensiert.
Durch die Kompensation wird das Quantenobjekt zu einem freien Teilchen.

In einer thermodynamischen Deutung werden Quantenobjekte nicht mehr als
konservative Systeme angesehen, sondern als dissipative Systeme, deren Energie-
dissipation in stationären Zuständen verschwindet. Im Rahmen der linearen Ther-
modynamik irreversibler Prozesse wird eine Evolutionsgleichung für die Entropie-
dichte bzw. für die statistische Kraftdichte abgeleitet, die den Übergang in die dis-
sipationsfreien stationären Zustände hinein beschreibt.

Die Schrödinger-Gleichung eines Einzelteilchens in einem äußeren Potential
kann aus einer thermodynamischen Lagrange-Funktion hergeleitet werden. Die be-
kannten Herleitungen der Schrödinger-Gleichung aus Wirkungsprinzipien mit feld-
theoretischen Lagrange-Dichten werden ebenfalls auf thermodynamische Variablen
transformiert.
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3.1 Transformation des Quantenpotentials

Wir betrachten zunächst die eindimensionale Schrödinger-Gleichung für die Wel-
lenfunktion  .x; t/ eines Teilchens mit der Masse m in einem äußeren Potenti-
al V.x/:

Schrödinger-Gleichung W i„ @
@t
 D

�
� „

2

2m

@2

@x2
C V

�
 :

Dabei ist „ ist das Planck’sche Wirkungsquantum.Die Born’sche Deutung interpre-
tiert das Quadrat der Wellenfunktion als Wahrscheinlichkeit P.x; t/, das Teilchen
zur Zeit t am Ort x anzutreffen:

Born’sche Deutung W P.x; t/ D  2.x; t/ :

Durch den allgemeinen Ansatz

 .x; t/ D A.x; t/ � exp
�
i

„S.x; t/
�

kann die komplexe Schrödinger-Gleichung in zwei reelle Differentialgleichungen
zerlegt werden, die der Schrödinger-Gleichung in Strenge äquivalent sind (Made-
lung 1926, 1927; Bohm und Vigier 1954; Messiah 1976). Mit P D A2 ergibt sich
eine Hamilton-Jacobi-Gleichung für die Wirkung S.x; t/ und eine Kontinuitätsglei-
chung für die Wahrscheinlichkeitsdichte P.x; t/:

Hamilton-Jacobi-Gleichung W @S

@t
C .S 0/2

2m
C V D „2

2m

A00

A

Kontinuitätsgleichung W @P

@t
C @

@x

�
P � S

0

m

�
D 0 :

Die Kontinuitätsgleichung ist rein klassisch und drückt die Erhaltung der Wahr-
scheinlichkeit aus. Der entscheidende Unterschied zur klassischen Mechanik zeigt
sich auf der rechten Seite der Hamilton-Jacobi-Gleichungals ein zusätzliches „Quan-
tenpotential“:

Quantenpotential W U D � „
2

2m

A00

A
:

Im klassischen Grenzfall verschwindet dieser Term mit dem Wirkungsquantum
und es bleibt die klassische Hamilton-Jacobi-Gleichung. Um das Quantenpotential
thermodynamisch umzudeuten, benutzen wir Einsteins Umkehrung der Boltzmann-
Beziehung, dass die Entropie proportional zum Logarithmus der Wahrscheinlich-
keit ist (Einstein 1910; Onsager 1931; Onsager und Machlup 1953). Aus der Wahr-
scheinlichkeitsdichteP.x; t/ kann damit eine Entropiedichte s.x; t/ und daraus eine
statistische Kraft s0 berechnet werden, wobei k die Boltzmann-Konstante ist:

P.x/ D exp

�
s.x/

k

�
) s0 D k

P 0

P
:
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Das Quantenpotential U wird nun wie folgt umgeformt (Olah 2001):

U D � „
2

2m

A00

A
D � „

2

4m

"
P 00

P
� 1

2

�
P 0

P

�2
#
D � „

2

4m

"�
P 0

P

�0
C 1

2

�
P 0

P

�2
#

D � „
2

4m

�
s00

k
C s02

2k2

�
:

Durch diese Variablentransformationen tauchen zwei bekannte Funktionen aus der
Thermodynamik irreversibler Prozesse auf:

Entropieproduktion W �.x/ D s02

Entropiediffusion W �.x/ D s00 :

Das Quantenpotential besteht damit aus zwei thermodynamischen Potentialen:

Quantenpotential W U D � „
2

2m

A00

A
D � „

2

2m

�
�

2k
C �

4k2

�
:

Von der quantenmechanischen Hamilton-Jacobi-Gleichung aus können wir nun den
Weg der klassischen Mechanik rückwärts beschreiten:

Hamilton-Jacobi-Gleichung W @S

@t
C .S 0/2

2m
C V C U D 0 :

Mit Hilfe einer geeigneten kanonischen Transformation gehen wird von der thermo-
dynamischen Hamilton-Jacobi-Gleichung zu einer thermodynamischen Hamilton-
Funktion über, und von dort über eine Legendre-Transformation zu einer entspre-
chenden thermodynamischen Lagrange-Funktion (z. B. Goldstein 1987). Wenn p
den Impuls des Teilchens bedeutet, kommt also:

Hamilton-Funktion W H D p2

2m
C V C U

Lagrange-Funktion W L D 1

2
m Px2 � V � U :

Aus dieser Lagrange-Funktion kann die Schrödinger-Gleichung hergeleitet werden.

3.2 Ableitung der Schrödinger-Gleichung

Um die Schrödinger-Gleichung in drei räumlichen Dimensionen aus einer thermo-
dynamischen Lagrange-Funktion herzuleiten, werden folgende Funktionen benö-
tigt:
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Wellenfunktion W  .x; t/ D A.x; t/ � exp
�
i

„S.r; t/
�

Wahrscheinlichkeit W P.x; t/ D j .x; t/j2 D exp

�
s.x; t/

k

�

Entropiedichte W s.x; t/ D k � lnP.x; t/ D k � ln j j2

Entropieproduktion W �.x; t/ D .rs/2 � 0

Entropiediffusion W �.x; t/ D �s < 0

Quantenpotential W U.x; t/ D � „
2

4m

�
�.x; t/

k
C �.x; t/

2k2

�

D � „
2

4m

�
�s

k
C .rs/2

2k2

�
:

Damit lässt sich die Schrödinger-Gleichung für ein Teilchen in einem Potential V.x/
auf demWeg über die Hamilton-Jacobi-Gleichung aus einer Lagrange-Funktion ab-
leiten:

Lagrange-Funktion W L D 1

2
m Px2 � V.x/ � U.x; t/

Hamilton-Jacobi-Gleichung W @S

@t
C .rS/2

2m
C V D „2

2m

�A

A

Kontinuitätsgleichung W m
@P

@t
C div.P � rS/ D 0

Schrödinger-Gleichung W i„ @
@t
 .x; t/ D

�
� „

2

2m
�C V.x/

�
 .x; t/ :

In der Schrödinger-Gleichung ist die Kontinuitätsgleichung für die Wahrschein-
lichkeitsdichte durch die komplexe Zusammenfassung mit der Hamilton-Jacobi-
Gleichung auf elegante Art und Weise mit eingewoben. Die Kontinuitätsgleichung
selbst ist klassisch; hier tritt kein Wirkungsquantum auf. Für das nichtklassische
Verhalten des Quantenobjekts ist das Quantenpotential auf der rechten Seite der
quantenmechanischen Hamilton-Jacobi-Gleichung verantwortlich zu machen.

3.3 Superpotential und Riccati-Gleichung

Es ist bekannt, dass die stationäre Schrödinger-Gleichung äquivalent ist zu einer
speziellen Riccati-Differentialgleichung (Kamke 1967). Dabei wird die stationäre
Schrödinger-Gleichung von einer Eigenwertgleichung in eine Kompensationsglei-
chung umgeschrieben:

„2
2m

 00 C .E � V / D 0 ,
�
 0

 

�0
C

�
 0

 

�2

D 2m

„2 .V � E/ :
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Mit Hilfe des SuperpotentialsW D � 0= aus der supersymmetrischen Quanten-
mechanik (Witten 1981; Bessenrodt 1999) kann diese Riccati-Gleichung auf eine
sehr einfache Form gebracht werden:

Riccati-Gleichung W W 2 �W 0 D 2m

„2 .V �E/ :

Das Superpotential ist im Wesentlichen eine statistische Kraft. Das Quantenpoten-
tial wird nun durch das Superpotential ausgedrückt. Die Lagrange-Funktion und
die Hamilton-Funktion des Quantensystems werden noch einmal aufgeschrieben.
Daraus ergeben sich die entsprechenden Bewegungsgleichungen, die Lagrange-
Gleichungen bzw. die kanonischen Gleichungen:

Superpotential W W.x; t/ D � 
0

 
D � s

0

2k
D � X

2k

Entropieproduktion W �.x; t/ D s02 D X2 D 4k2 �W 2

Entropiediffusion W �.x; t/ D s00 D X 0 D �2k �W 0

Quantenpotential W U.x; t/ D � „
2

4m

�
�

k
C �

2k2

�
D � „

2

2m

�
W 2 �W 0�

Lagrange-Funktion W L.x; x; t/P D 1

2
m Px2 � V.x/C „2

2m
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W 2 �W 0�

Hamilton-Funktion W H.p; x; t/ D p2

2m
C V.x/ � „2

2m
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W 2 �W 0�

Lagrange-Gleichung W m Rx D �V 0 C „2
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Œ2WW 0 �W 00�

kanonische Gleichungen W Px D @H

@p
D p

m
^ Pp D �@H

@x

D �@V
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C „2
2m

Œ2WW 0 �W 00� :

In den thermodynamischen Variablen sind die stationären Zustände durch eine
Kompensation des äußeren Potentials V durch das Quantenpotential U bis auf die
Energie E charakterisiert:

stationäre Zustände W V CU D E , �

4k2
C �

2k
D W 2�W 0 D 2m

„2 .V �E/ :

Auf der Beschreibungsebene der Bewegungsgleichungen resultiert aus der Kompen-
sation der äußerenKraft F D �V 0 durch die statistischen Kräfte ein freies Teilchen:

„2
2m

�
W 2 �W 0� D .V � E/) „2

2m

�
2WW 0 �W 00� D �F ) m Rx D Pp D 0 :
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Die Integration dieser Kompensationsforderung liefert genau die Riccati-Gleichung
für die stationären Zustände zurück. Die Integrationskonstante E ist so zu bestim-
men, dass Lösungen existieren.

3.4 De-Broglie-Bohm-Theorie

Für de Broglie war die Wellenfunktion eine Art „Führungswelle“ oder „Pilotwelle“,
die die Bewegung des Teilchens bestimmt (de Broglie 1926, 1927, 1928, 1964). In
ähnlicher Weise interpretierte Bohm das QuantenpotentialU als „Führungsfeld“ für
die Bewegung des Teilchens (Bohm 1951, 1952; Bohm und Vigier 1954; Bell 1966,
1987; Kochen und Specker 1967; Mermin 1990; Valentini 1991, 1992; Vink 1993;
Bohm und Hiley 1993; Holland 1993, 1998; Cushing 1994; Goldstein 1996; Ghirar-
di und Deotto 1998; Dürr 2001; Dürr, Goldstein und Zanghì 1992, 2004; Myrvold
2003; Passon 2004, 2006; Teufel und Tumulka 2005; Bacciagaluppi und Valenti-
ni 2007). Die Hamilton-Jacobi-Gleichung mit Quantenpotential soll weiterhin eine
Teilchenbewegung beschreiben:

@S

@t
C .rS/2

2m
C V C U D 0 :

Die auf das Teilchen wirkenden Kräfte werden nicht nur aus dem klassischen Po-
tential V abgeleitet, sondern zusätzlich aus dem QuantenpotentialU . Das Quanten-
potential ist eine Art Bugwelle, die das Teilchen im Vakuum erzeugt.

Der klassische Weg, die Hamilton-Jacobi-Gleichung mit Teilchentrajektorien zu
verbinden, soll auch im quantenmechanischen Bereich beibehalten werden. Bohm
nahm an, dass der klassische Zusammenhang zwischen der Geschwindigkeit v des
Teilchens bzw. dem Teilchenimpuls p und der Wirkung S als sogenannte „Füh-
rungsgleichung“ gültig bleibt:

p D rS , v D rS
m

:

Für die stationäre Hamilton-Jacobi-Gleichung gilt aber:

@S

@t
D �E ) .rS/2

2m
C V C U D E :

Andererseits folgt aus der stationären Schrödinger-Gleichung eben auch V C U D
E für geeignete Energiewerte E . Im Gegensatz zur Klassik ergibt sich daraus die
räumliche Konstanz der verkürzten Wirkung S0 und damit eine verschwindende
Geschwindigkeit:

V C U D E ) .rS/2
2m

D 0) rS D p D m � v D 0) S D S0 �E � t :
Demnach kann eine „Führung“ durch einen Gradienten der Wirkung nur in nicht-
stationären Zuständen wirksam werden. Das macht wenig Sinn für klassische deter-
ministische Teilchenbahnen, mehr schon für eine thermodynamische Deutung der
beteiligten Variablen.
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Interessant an der de-Broglie-Bohm-Theorie ist also aus thermodynamischer
Sicht die Zurückführung der Quanteneffekte auf das Quantenpotential, welches
thermodynamisch weiter ausgedeutet wurde.

3.5 Dissipationsfreiheit der stationären Zustände

Durch die thermodynamische Umdeutung der Schrödinger-Gleichung wird das
Quantenobjekt nicht mehr als konservatives, sondern als dissipatives System aufge-
fasst. Die Energiedissipation kann als totale Zeitableitung der Hamilton-FunktionH
längs Lösungen der kanonischen Gleichungen ermittelt werden und ist durch die ex-
plizite Zeitabhängigkeit vonH gegeben:

Hamilton-Funktion W H D p2

2m
C V C U

Energiedissipation W dH

dt
D @H

@t
D @U

@t
:

Die explizite Zeitabhängigkeit steckt im QuantenpotentialU . In stationären Zustän-
den stellt sich das Quantenpotential so ein, dass die Riccati-Gleichung erfüllt ist.
Übergänge in stationäre Zustände sind folglich durch eine Energiedissipation ge-
kennzeichnet, während die Energiedissipation in stationären Zuständen gerade ver-
schwindet. Im klassischen Grenzfall ergibt sich ebenfalls Dissipationsfreiheit und
damit ein konservatives System:

stationäre Zustände W @U

@t
D 0) dH

dt
D 0

klassischer Grenzfall W „ ! 0) dH

dt
! 0 :

Um die dissipative Dynamik, die das System ins Gleichgewicht führt, genauer zu
verstehen, betrachten wir die Bewegungsgleichung des Systems:

m
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D �r .V C U / D �rV C „2
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2k2

C �s

k

�

D �rV C „2
4m

�
X � rX
k2

C �X

k

�
:

Mit einer linearen Fluss-Kraft-Beziehung der Form v D Px D X D rs folgt dar-
aus die gesuchte Evolutionsgleichung für die Entropiedichte s oder die statistische
Kraftdichte X :
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m
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k
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�
:
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Auf der Beschreibungsebene der Entropie ist die Dynamik durch ein Wechselspiel
zwischen Entropieproduktion und Entropiediffusion bestimmt, auf der Beschrei-
bungsebene der Kräfte durch Konvektion und Reibung. In stationären Zuständen
ergibt sich wieder die Riccati-Gleichung:

ds

dt
D 0) V C U D E , .rs/2

4k2
C �s

2k
D 2m

„2 .V �E/ :

Mit der Annahme einer linearen Fluss-Kraft-Beziehung v D X erhalten wir einen
Zwei-Zeiten-Formalismus: Die Schrödinger-Gleichung beschreibt die langsamere
Dynamik, die Evolutionsgleichung für die Entropiedichte die schnellere Dynamik.
Die schnelle Dynamik sorgt für eine Kompensation des äußeren Potentials durch
eine entsprechendeEntropieverteilung, d. h. durch ein statistisches inneres Potential,
das im System selbst erzeugt wird.

Fazit: Quantensysteme sind dissipative Systeme, die in stationären Zuständen kon-
servativ werden. In stationären Zuständen wird das Quantenobjekt durch eine Kom-
pensation der äußeren Kraft durch statistische Kräfte zu einem freien Teilchen.
Diese Beschleunigungsfreiheit ist der Grund, warum in den Eigenzuständen keine
Strahlungsdämpfung stattfindet.

3.6 Feldtheoretische Lagrange-Dichten

Die bekannten Herleitungen von Schrödinger-Gleichungen aus Wirkungsprinzipien
verwenden Lagrange-Dichten L, die von  .x; t/,  �.x; t/ und deren ersten Ab-
leitungen abhängen (Roman 1965; Spatschek 1990; Hasegawa und Kodama 1995).
Die hier betrachtete Schrödinger-Gleichung ergibt sich z. B. bei Variation nach  �
aus

L D i„
2
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� @ �
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@ �
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� V � :

Um die feldtheoretische Lagrange-Dichte ebenfalls konsequent auf statistische Va-
riablen zu transformieren, werden folgende Zusammenhänge benötigt:

Wellenfunktion W  D A � exp
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„S
�

Wirkung W S D i„
2
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ˇ̌̌̌̌̌̌
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ˇ̌̌̌̌̌̌
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Amplitude W A D p
 � D j j

Entropie W s D k � ln . � / D k � ln.A2/

Wahrscheinlichkeit W P D j j2 D A2 D exp
� s
k

	
:
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Damit kann die quantenmechanische Lagrange-Dichte wie folgt transformiert wer-
den:
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In welchen Variablen die Lagrange-Dichte auch angeschriebenwird, stets liefern die
feldtheoretischen Euler-Lagrange-Gleichungen die in diesen Variablen ausgedrück-
te Hamilton-Jacobi-Gleichung und die Kontinuitätsgleichung zurück. Alle aufge-
führten Lagrange-Dichten führen zu äquivalenten Darstellungen der Schrödinger-
Gleichung in den entsprechenden Variablen:

L. ; �/) Schrödinger-Gleichung ^ Schrödinger-Gleichung�

+* +*
L.S; P / ) Hamilton-Jacobi-Gleichung ^ Kontinuitätsgleichung :

Das Variationsprinzip, aus dem diese Gleichungen abgeleitet werden, kann auch mit
Hilfe der Fisher-Information aufgeschrieben werden (vgl. Fisher 1925; Kullback
1959; Reginatto 1998; Parwani 2005):
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�
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dxdt :

In dieser Form kann die Fisher-Information als mittlere Entropieproduktion gedeu-
tet werden. Eine breitere (schmalere) Verteilung P.x/ bedeutet eine größere (klei-
nere) Unsicherheit in x, aber eine kleinere (größere) Fisher-Information. Deshalb
ist die Fisher-Information ein inverses Unsicherheitsmaß. Im klassischen Grenz-
fall verschwindet die Entropieproduktion aus den Lagrange-Dichten und damit die
Fisher-Information aus dem Variationsprinzip. Es bleibt in den Variablen S und P :

klassischer Grenzfall W L.S; P / D P �
�
@S

@t
C .rS/2

2m
C V

�
:

Als feldtheoretische Euler-Lagrange-Gleichungen ergeben sich konsistenterweise
wieder die Kontinuitätsgleichung für die Wahrscheinlichkeit (bei Variation nach S )
und die klassische Hamilton-Jacobi-Gleichung für die Wirkung (bei Variation
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nach P ). Quantenmechanisch sind diese beiden Gleichungen über das Wirkungs-
quantum aneinander gekoppelt.

Fazit: Auf der Beschreibungsebene der Lagrange-Dichten entstehen Quanteneffek-
te durch eine Entropieproduktionsdichte, die als Zusatzterm im Vergleich zur klas-
sischen Feldtheorie hinzukommt. Neben der üblichen Herleitung der Schrödinger-
Gleichung als Euler-Lagrange-Gleichung einer feldtheoretischen Lagrange-Dichte
gibt es noch einen anderen Weg, der von einer thermodynamischen Lagrange-
Funktion aus über eine Hamilton-Jacobi-Gleichung zur Schrödinger-Gleichung
führt.



Kapitel 4
Quanteneffekte und Entropiediffusion

Das ewig Unbegreifliche an der Natur
ist ihre Begreiflichkeit.

Albert Einstein

Da die herkömmlichen thermodynamischen Lagrange-Funktionen lediglich eine
Entropieproduktion enthalten, nicht aber eine Entropiediffusion, können wir schlie-
ßen, dass die Entropiediffusion eine entscheidende Rolle bei der Erzeugung von
Quanteneffekten spielen muss. Quanteneffekte entstehen in unserer thermodynami-
schen Interpretation durch ein Wechselspiel von Entropieproduktion und Entropie-
diffusion. Erst die Entropiediffusion ermöglicht komplexere stationäre Anziehungs-
und Abstoßungsmuster in äußeren Potentialen.

Anhand des harmonischen Oszillators und des Kepler-Problems werden die Zu-
sammenhänge zwischen thermodynamischer Stabilität, Entropieproduktion, Entro-
piediffusion, Nullpunktsenergie und der Quantisierung der Wirkung gebundener
Zustände untersucht. Die thermodynamische Stabilität erzwingt für gebundene Zu-
stände eine endliche Nullpunktsenergie. Die stationären Zustände eines Quantenob-
jekts in äußeren Feldern sind durch eine Kompensation der äußeren Kräfte durch
statistische Kräfte charakterisiert. Die Kompensationsbedingung ist eine Riccati-
Gleichung für das SuperpotentialW vom TypW 2�W 0 � V �E . Durch ein subtiles
Zusammenspiel von Entropieproduktion � � W 2 und Entropiediffusion � � �W 0
wird das Quantenobjekt zum freien Teilchen und zahlt dafür in gebundenen Zu-
ständen lediglich den Preis der Quantisierung seiner Energie, da die Kompensation
nur für bestimmte diskrete Werte En der IntegrationskonstantenE möglich ist. Die
Energiequantisierung gebundener Zustände ist eine Folge der Kompensation, inso-
fern die Kompensationsbedingung auf Eigenwertgleichungen mit diskreten Eigen-
werten führt.

Die Eigenzustände sind die thermodynamisch stabilsten Zustände des Quanten-
systems. Jede Überlagerung von Eigenzuständen führt zu einer Absenkung der mitt-
leren Entropie: Reine Zustände sind thermodynamisch stabiler als gemischte Zu-
stände. Damit ist eine thermodynamische Erklärung für die Dekohärenz quanten-
mechanischer Zustände gegeben.
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4.1 Thermodynamische Stabilität und Nullpunktsenergie

Während die Entropieproduktion � � 0 stets positiv oder Null ist, verlangt das
thermodynamische Stabilitätskriterium eine negative Entropiekrümmung �:

thermodynamische Stabilität W � D s00 < 0 :

Für die Untersuchung der thermodynamischen Stabilität eines Quantenobjekts in
einem Potential V wird die Riccati-Gleichung für die stationären Zustände zweimal
abgeleitet:

�

k
C �

2k2
D 4m

„2 .V �E/)
� 00

k
C �2 C s0 � � 0

k2
D 4m

„2 � V
00 :

Wenn wir annehmen, dass das Potential V.x/ bei x D 0 ein Minimum hat, wird
die Wahrscheinlichkeit P.x/ und damit auch die Entropiedichte s.x/ bei x D 0 ein
Maximum haben. In einer quadratischen Näherung folgt mit � 0 D 0:

�2

k2
D 4m

„2 � V
00 ) �

k
D �2

„ �
p
m

pp � V 00 :

Das Minuszeichen resultiert aus dem thermodynamischen Stabilitätskriterium � <

0. Eine Lösung � D 0 ist nur für ein Potential V mit verschwindender Krüm-
mung V 00 möglich. Sobald das Potential eine endliche Krümmung aufweist, wird
auch die Entropiekrümmung einen endlichen Wert annehmen. Für einen harmoni-
schen Oszillator folgt

V D 1

2
m!x2 ) V 00 D m!2 ) �

2k
D �m!„ ) �

4k2
D m2!2

„2 x2 :

Die Boltzmann-Konstante k ist ein Maß für die thermische Stabilität eines Systems
im Gleichgewicht und für die Größe von Schwankungen (Einstein 1904; Bessenrodt
1987). Hier koppelt sie die Krümmung � der Entropiedichte mit der Krümmung
m!2 des Potentials V .

Einsetzen von � und � in die Riccati-Gleichung liefert einen einfachen Zusam-
menhang zwischen NullpunktsenergieE0 und Entropiekrümmung �:

Nullpunktsenergie W E0 D � „
2

4m

�

k
) E0 D 1

2
„! :

Für Muldenpotentiale ergibt sich daraus eine untere Grenze für die verkürzte Wir-
kung von der Größenordnung des Wirkungsquantums.

Fazit: Thermodynamisch stabile gebundene Zustände in Muldenpotentialen sind
nur bei echt positiven Energien möglich. Die thermodynamische Stabilität erzwingt
für gebundene Zustände die Existenz einer endlichen NullpunktsenergieE0:

� < 0) E0 > 0 :
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4.2 Der harmonische Oszillator: Quantisierung

Als Beispiel betrachten wir einen harmonischen Oszillator mit der Kreisfrequenz !
und dem Potential V.x/ D 1

2m!
2x2. In stationären Zuständen gilt die folgende

Riccati-Gleichung:
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2
m!2x2 �E :

Um eine erste Lösung zu erhalten, nehmen wir eine konstante Entropiekrümmung
an. Der folgende Ansatz führt auf eine einfach integrierbare Gleichung, deren Inte-
grationskonstante wir unterdrücken, da nur s0 physikalisch relevant ist:
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Das Minuszeichen kommt aus der Stabilitätsbedingung � < 0. Wegen s D k �
lnP folgt sofort die Wahrscheinlichkeitsdichte P0PP für den Grundzustand und die
zugehörige EnergieE0:

Grundzustand W P0PP .x/ D exp
�
�m!„ x2

	
Nullpunktsenergie W E0 D 1

2
„! :

Die Entropiekrümmung lässt sich damit auch durch die Ortsunschärfe�x bzw. die
Varianz der Verteilung�x2 ausdrücken.
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:

Im klassischen Grenzfall gilt trivialerweise thermodynamische Stabilität. Die Wahr-
scheinlichkeitsverteilung strebt gegen einen ı-Peak:

klassischer Grenzfall W „ ! 0) � ! �1^ P.x/! ı.x/ :

Der Grundzustand ist durch eine Kompensation des äußeren Potentials durch die
Entropieproduktion gekennzeichnet. In den weiteren Lösungen wird das kompen-
sierende Wechselspiel zwischen den vier Termen in der Riccati-Gleichung kom-
plexer sein. Wir nehmen an, dass sich der Grundzustand stets aus diesen Lö-
sungen ausfaktorisieren lässt, so dass die Kompensation des äußeren Potentials
durch den Grundzustand erhalten bleibt. Damit die Wahrscheinlichkeit weiterhin
positiv bleibt, fügen wir das Quadrat einer Funktion HnHH .x/ hinzu und berechnen
hieraus s.x/:

P D P0PP �H 2
nHH ) s

k
D lnP D lnP0PP C lnH 2

nHH D �m!„ x2 C lnH 2
nHH :
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Differenzieren und Einsetzen in die Riccati-Gleichung liefert mit der üblichen Va-
riablentransformation

� D
r
m!

„ � x

nach kurzer Rechnung:

H 00
nHH .�/ � 2� H 0

nHH .�/

HnHH .�/
D �E � E0

E0
) H 00

nHH .�/ � 2� H 0
nHH .�/ D �E �E0

E0
HnHH .�/ :

Da die Energie E als Integrationskonstante aus der Kompensationsbedingung für
die Kräfte nicht mehr von x bzw. � abhängt, ergibt sich daraus eine Eigenwertglei-
chung für HnHH . Die Lösungen dieser Eigenwertgleichung sind genau die Hermite-
Polynome mit natürlichen Zahlen n 2 f0; 1; 2; : : :;1g und H0HH D 1 für den Grund-
zustand (vgl. Messiah 1976; Schwabl 1990):

Hermite-Polynome W HnHH .�/ D .�1/n exp.�2/
dn

d�n
exp.��2/

Differentialgleichung W
�

d2

d�2
� 2�

d

d�
C 2n

�
HnHH .�/ D 0

Rekursionsformel W HnHH C1 D 2� HnHH � 2nHnHH �1 :

Ein Vergleich liefert

2n D E � E0

E0
) E D .2nC 1/ E0 :

Damit kommt für den EnergieeigenwertEn zur Quantenzahl n sofort

En D
�
nC 1

2

�
„! :

Abbildung 4.1 zeigt die ersten vier Eigenzustände des harmonischen Oszillators
mit den zugehörigenWahrscheinlichkeitsverteilungenP.x/. Die Bilder der entspre-
chenden Entropieverteilungen s.x/ legen die Vermutung nahe, dass die „Faltun-
gen“ und Singularitäten der Entropieverteilung s.x/ in den angeregten Zuständen
n � 1 durch die thermodynamische Stabilitätsbedingung � < 0 erforderlich wer-
den: Die Entropieverteilungsfunktionmuss überall eine hinreichend negative Krüm-
mung aufweisen, so dass es insbesondere keine Wendepunkte oder Minima geben
kann. Wegen s.x/ � lnP.x/ sind die Maxima der Aufenthaltswahrscheinlichkeit
auch Maxima der Entropieverteilung und Minima der Entropieproduktion; die Mi-
nima der Aufenthaltswahrscheinlichkeit mit P D 0 sind Singularitäten der Entro-
pieverteilung und also auch Singularitäten der Entropieproduktion und der Entro-
piediffusion. Die Maxima der Entropieverteilung, die zwischen zwei Minima der
Aufenthaltswahrscheinlichkeit liegen, sind auch Maxima der Entropiediffusion.
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Abb. 4.1 Eigenzustände des Oszillatorpotentials
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4.3 Das Wasserstoffatom: Quantenzahlen

Wir betrachten nun ein Elektron im Coulomb-Potential eines Protons. Zur Verein-
fachung setzen wir alle Konstanten zu Eins. Für das Kepler-Problem in einem Zen-
tralfeld lautet das effektive Potential VeffVV .r/ in Abhängigkeit von der Radialkoordi-
nate r :

VeffVV .r/ D V.r/C VlVV .r/ D �1

r
C l2

2r2
:

Der Drehimpuls l erzeugt eine abstoßende Zentrifugalbarriere VlVV . Die Riccati-
Gleichung für die stationären Zustände wird für dieses Problem in Kugelkoordi-
naten aufgeschrieben:

VeffVV .r/CU.r/ D E ) 1

4

"�
@2

@r2
C 2

r

@

@r

�
s C 1

2

�
@s

@r

�2
#
D �1

r
C l2

2r2
�E :

Betrachten wir zunächst den Fall l D 0. Um den Grundzustand zu bekommen,
nehmen wir eine Entropieverteilung mit verschwindender Krümmung an. Mit s00 D
0 bleibt

1

2r

@s

@r
C 1

8

�
@s

@r

�2

D �1

r
�E :

Diese Gleichung soll für alle r bzw. x gelten. Ein Koeffizientenvergleich liefert
unter Vernachlässigung der Integrationskonstanten:

@s

@r
D �2) s D �2r :

Damit können wir den Grundzustand sofort angeben, d. h. die radiale Wahrschein-
lichkeitsdichte R1.r/ = exp(s/ und die NullpunktsenergieE1:

R1 D exp .�2r/
E1 D �1

2
:

Analog zu unserer früheren Vorgehensweise beim harmonischen Oszillator suchen
wir jetzt nach allgemeineren Lösungen, indem wir der Wahrscheinlichkeitsdichte
des GrundzustandsR1 das Quadrat einer weiteren Funktion L hinzufügen. Wir su-
chen Lösungen der Form

R.x/ D exp .�x/ � L2.x/) s.x/ D lnR.x/ D �x C lnL2

mit x D 2r
n
. Nach kurzer Rechnung erhält man damit für das Quantenpotential:

U D � 1

2n2
� 1

nr

�
xL00 C .2 � x/L0 � L

L

�
:



4.3 Das Wasserstoffatom: Quantenzahlen 39

Einsetzen in die Riccati-Gleichung für die stationären Zustände ergibt:

V C U D E ) 1

nr

�
xL00 C .2 � x/L0 � L

L

�
C 1

2n2
D �1

r
CEn :

Diese Gleichung soll wieder für alle r bzw. x gelten. Ein Koeffizientenvergleich
liefert eine Differentialgleichung für eine gewisse Teilmenge L1

n�1 der Laguerre-
Polynome, deren Lösung positive natürliche Zahlen n verlangt:�

xL00 C .2 � x/L0 � L
L

�
D �n) xL00 C .2� x/L0 C .n � 1/L D 0 :

Die allgemeineDefinition der Laguerre-Polynome lautet mit p; k 2 f0; 1; 2; : : : ;1g
(vgl. Messiah 1976; Schwabl 1990):

Laguerre-Polynome W L0
p D ex dp

dxp
.e�xxp/ und Lk

p D .�1/k dk

dxk
L0

pCk :

Die Laguerre-Polynome erfüllen folgende Differentialgleichung:

Differentialgleichung W
�
x

d2

dx2
C .k C 1 � x/ d

dx
C p

�
Lk

p.x/ D 0 :

Mit p D n � 1 und k D 1 lässt sich die radiale Wahrscheinlichkeitsdichte und die
Energie des n-ten Eigenzustands berechnen:

Rn D exp

�
�2r

n

�
�
�
L1

n�1

�
2r

n

��2

En D � 1

2n2
:

Für n D 1 ergibt sich wegen L1
0 D 1 wieder der Grundzustand R1 mit der Ener-

gie E1. Damit haben wir alle s-Orbitale mit der Hauptquantenzahl n durch einen
thermodynamischen Kompensationsansatz reproduziert.

ImWeiteren suchen wir Lösungenmit nichtverschwindendemDrehimpuls l ¤ 0.
Zur Vereinfachung setzen wir die Eigenwerte l.l C 1/ des Drehimpulsoperators
als bekannt voraus, d. h. die Nebenquantenzahl l 2 f0; 1; 2; : : : ; n � 1g. Wir blei-
ben unserer Strategie treu und suchen wiederum eine zusätzliche Funktion, die den
Zentrifugalterm in der Riccati-Gleichung des Kepler-Problems neutralisiert. Da ein
zweimaliges Ableiten von ln.x/ die gewünschte Potenz 1=x2 erzeugt, versuchenwir
es mit x2l . Mit dem Ansatz

R.x/ D exp .�x/ � x2l � L2.x/) s.x/ D lnR.x/ D �x C l � ln x2 C lnL2

gehen wir in die Riccati-Gleichung ein und erhalten nach einer längeren Rechnung:

1

nr

�
xL00 C .2l C 2 � x/L0 � .l C 1/L

L

�
C 1

2n2
C l.l C 1/

2r2
D �1

r
C l.l C 1/

2r2
�En :
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Der Koeffizientenvergleich ergibt jetzt

xL00 C .2l C 2 � x/L0 C .n � l � 1/L D 0 :

Dies ist die Differentialgleichung für Laguerre-Polynome vom Typ p D n � l � 1
und k D 2l C 1. Damit haben wir eine vollständige Lösung des Radialproblems
erhalten:

Rnl D exp .�x/ �x2l �
h
L2lC1

n�l�1.x/
i2 D exp

�
�2r

n

�
�
�
2r

n

�2l

�
�
L2lC1

n�l�1

�
2r

n

��2

:

Die radiale Wahrscheinlichkeitsdichte Rnl besteht im Wesentlichen aus drei An-
teilen: einem Grundzustand zur Kompensation des Coulomb-Potentials, einem An-
teil zur Kompensation der Zentrifugalbarriere und einem Anteil für die Quanten-
leiter. Die Energieeigenwerte bleiben bei Änderung der Drehimpulsquantenzahl l
unverändert. Eine Änderung in l bewirkt also lediglich eine Umverteilung derWahr-
scheinlichkeitsdichte bei gleichbleibender EnergieEn.

Die räumliche Wahrscheinlichkeitsverteilung P.r; #; '/ in Kugelkoordinaten
wird aus dem üblichen Separationsansatz gewonnen:

PnlmPP .r; #; '/ D Rnl.r/ � Y 2
lmYY .#; '/ :

Die Funktionen YlmYY .#; '/ sind die Kugelfunktionen mit der Drehimpulsquanten-
zahl l und der Magnetquantenzahl m. Die radiale Aufenthaltswahrscheinlichkeit
erhält man durch Integration über die Raumwinkel (z. B. Schwabl 1990):

PnlPP .r/ D r2 �Rnl.r/ :

Abbildung 4.2 zeigt die ersten drei Eigenzustände des Wasserstoffatoms für l D
0: die Wahrscheinlichkeitsdichte, die Entropiedichte, die Entropieproduktionsdichte
sowie die Entropiediffusionsdichte. Abbildung 4.3 zeigt einige Zustände mit l > 0.
Da das Minimum des effektiven Potentials VeffVV für l D 1 oberhalb von E1 liegt, gibt
es für l D 1 nur Eigenzustände für n > 1.

Fazit: Auch beim Kepler-Problem tritt eine Kompensation des äußeren Feldes
durch das Quantenpotential auf. Im Unterschied zum harmonischen Oszillator sind
allerdings die Rollen von Entropieproduktionund Entropiediffusion hier gerade ver-
tauscht: Das Oszillatorpotential wird im Grundzustand durch die Entropieproduk-
tion kompensiert, während das Coulomb-Potential durch die Entropiediffusion neu-
tralisiert wird. Die Nullpunktsenergie ist durch das jeweils andere statistische Poten-
tial bestimmt. Dieser Unterschied findet seine Begründung in einfachen Vorzeichen-
überlegungen: Da die Entropieproduktion nicht negativ werden kann, kann sie folg-
lich nur positive Potentiale kompensieren; umgekehrt darf die Entropiekrümmung
aus Stabilitätsgründen nicht positiv sein, so dass sie ihrerseits auch nur negative
Potentiale neutralisieren kann. Auf diese Weise zeigt sich eine interessante Arbeits-
teilung der beiden thermodynamischen Potentiale. Komplexere Probleme erfordern
entsprechend komplexere Formen des Zusammenwirkens.
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Abb. 4.2 Eigenzustände des Coulomb-Potentials (l D 0)
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Abb. 4.3 Eigenzustände des Coulomb-Potentials (l > 0)
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Wie beim harmonischen Oszillator bleibt die Kompensation des äußeren Poten-
tial durch den Grundzustand auch im Anregungsspektrum des Kepler-Problems er-
halten. Die Vorgehensweise zur Ermittlung der stationären Lösungen besteht in ei-
ner sukzessiven Kompensation der äußeren Potentialterme durch geeignete statisti-
sche Potentiale. Um diese Idee verallgemeinern zu können, müsste lediglich nach-
gewiesen werden, dass sich der Grundzustand P0PP stets aus allen Lösungen ausfak-
torisieren lässt. Es genügt dann zu zeigen, dass dieser Grundzustand das Potential
kompensiert und durch die erste Stufe einer Quantenleiter ersetzt. Ein schrittweises
Vorgehen ist bei komplexeren Problemen von Vorteil. Die Quantisierung der Ener-
gie ergibt sich durch ein Eigenwertproblem, das auf die entsprechenden Polynome
führt.

4.4 Superposition und Bifurkation

Wir nehmen nun an, dass die Übergangszustände in Quantensystemen durch Super-
positionen von Eigenzuständen dargestellt werden. Wenn  i und j Eigenzustände
der zeitunabhängigen Schrödinger-Gleichung zu den Energien Ei und Ej sind, so
ist die Superposition

 i .x/ � exp
�
� i

„Ei t

�
C  j .x/ � exp

�
� i

„Ej t

�

E0 E1 E2 E3 E4 E5 E6

Bifurkationen

x

Abb. 4.4 Bifurkationen im Oszillatorpotential
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von zeitabhängigen Lösungen ebenfalls wieder eine Lösung der zeitabhängigen
Schrödinger-Gleichung, der allerdings keine scharfe Energie zugeordnet ist (z. B.
Messiah 1976). Die Wahrscheinlichkeitsdichte P.x; t/ oszilliert zwischen den Ex-
tremwerten (j i j � j j j/2 und (j i j C j j j/2 mit der Frequenz

! D
ˇ̌̌̌
Ei � Ej

ˇ̌̌̌
„ :

Unter der vereinfachendenAnnahme, dass der oszillierende Interferenzterm im zeit-
lichen Mittel verschwindet, können wir mit " 2 Œ0; 1� einen stetigen Übergang vom
Eigenzustand i in den Eigenzustand j in folgender Weise modellieren:

P D .1 � "/ � PiP C " � PjP

E D .1 � "/ �Ei C " �Ej :

In Abb. 4.4 sind für das Oszillatorpotential die Maxima der zeitlich gemittelten
Wahrscheinlichkeitsdichte P gegen die gemittelte EnergieE aufgetragen. Das Ver-
zweigungsdiagramm zeigt, wie mit zunehmender Energie E zwischen zwei Ener-
gieeigenwerten bei x D 0 neueMaxima entstehen, die sich beim nächsten Übergang
in jeweils zwei Maxima aufspalten. In Abb. 4.5 sind einige Übergangszustände für
" D 1

4 dargestellt. Die Eigenzustände sind dadurch ausgezeichnet, dass die Minima

Wahrscheinlichkeit und Entropie

2→ 3 

Entropieproduktion und Entropiediffusion

P(x)

s(x)

s′2(x)

s″(x)

2→ 3

1→ 2 1→ 2

0→ 1 0→ 1

Abb. 4.5 Mischzustände im Oszillatorpotential
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der Wahrscheinlichkeitsverteilung auch deren Nullstellen sind. An diesen Nullstel-
len wird die Entropiedichte wegen ln.0/ D �1 singulär. Folglich gibt es keine Be-
reiche, in denen die Entropieverteilung eine positive Krümmung besitzt. Die Eigen-
zustände sind im ganzen Raum thermodynamisch stabil. Beim Übergang zwischen
zwei Eigenzuständen heben jedoch die Minima der Wahrscheinlichkeitsdichte von
der Nulllinie ab. Erst im nächsten Eigenzustand sind die Minima vonP wieder auch
Nullstellen vonP . In den Superpositionszuständen besitzt die Entropiedichte lokale
Minima mit einer positiven Krümmung. In diesen Bereichen herrscht thermodyna-
mische Instabilität.

Alle Übergangszustände zwischen den Eigenzuständen sind also thermodyna-
misch instabil. Eine Ausnahme bildet der Übergang vom Grundzustand E0 in den
ersten angeregten Zustand E1. Bis zur ersten Bifurkation gibt es kein Minimum,

Abb. 4.6 Wahrscheinlichkeitsdichte im Oszillatorpotential
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das eine Instabilität erzeugen könnte. In diesem Energiebereich sind die Mischzu-
stände aber weniger stabil als der Grundzustand. Abbildung 4.6 veranschaulicht den
Zusammenhang P.x;E/ für den harmonischen Oszillator.

4.5 Dekohärenz als Entropiemaximierung

Um die thermodynamische Stabilität der stationären Zustände weiter zu untersu-
chen, betrachten wir nun die mittlere Entropie eines Zustands mit der Wahrschein-
lichkeitsverteilung P.x/:

mittlere Entropie W S D
1Z

�1
P � lnP dx :

Was passiert mit der mittleren Entropie, wenn wir einen EigenzustandPiP verlassen,
indem wir einen anderen Eigenzustand PjP überlagern? Für kleine " folgt in linearer
Näherung:

P D .1� "/ �PiP C " �PjP ) S � .1� "/ �
1Z

�1
PiP � lnPiP dxC " �

1Z
�1

PjP � lnPiP dx :

Wegen PjP > 0 und lnPiP < 0 ist das letzte Integral negativ. Beim Verlassen eines
Eigenzustandes nimmt die mittlere Entropie also ab. Abbildung 4.7 verdeutlicht den
Zusammenhang S.E/.

E0 E1 E2 E3 E4 E5 E6

Abb. 4.7 Mittlere Entropie im Oszillatorpotential
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Fazit: Die Eigenzustände sind die thermodynamisch stabilsten Zustände eines
Quantensystems. Sie sind durch lokale Maxima der mittleren Entropie gekennzeich-
net. Ein Rauschen dürfte genügen, um das System in einen Eigenzustand relaxieren
zu lassen. Damit ist die Dekohärenz quantenmechanischer Zustände thermodyna-
misch begründet.



Kapitel 5
Klassische Analogien

Es ist schon ein Erfolg, wenn man
die Natur dazu zwingen kann,
einem die Zunge herauszustrecken.

Albert Einstein

Um die Quantenphänomene zu verstehen, wurden vor allem zwei klassische Analo-
gien betrachtet:Wellenbild und Teilchenbild. Die optische Analogie einer „Materie-
welle“ betont den Wellencharakter des Quantenobjekts; die hydrodynamische Ana-
logie einer „Wahrscheinlichkeitsflüssigkeit“ dagegen den Teilchencharakter. Gemäß
der Born’schen Deutung wird die Intensität derWelle im Teilchenbild als „Intensität
der Materie“ interpretiert.

DerWelle-Teilchen-Dualismus „triggerte“ Schrödinger zurWellenmechanik. Der
„klassische“ Zugang zur Schrödinger-Gleichung erfolgt über die optische Analogie
und de Broglies Materiewellen für freie Teilchen mit Hilfe des Korrespondenzprin-
zips und Verallgemeinerung auf äußere Potentiale per Postulat.

Nach einer kurzen Rekapitulation des Welle-Teilchen-Dualismus werfen wir ei-
nige Schlaglichter auf die optische Analogie und ihre Erfolge: die Gewinnung von
Quantisierungsbedingungen und eine erste Herleitung der Schrödinger-Gleichung
mit Hilfe des Korrespondenzprinzips und gewisser Korrespondenzregeln.

Die formale Analogie der beiden Variationsprinzipien für den geometrischen
Lichtweg und für die klassische Teilchenbahn lenkt das Augenmerk auf die Wir-
kungsintegrale und die Theorie der adiabatischen Invarianten (Bessenrodt 1987):
„Die Adiabatenhypothese beherrscht die stationären Zustände. Das Korrespondenz-
prinzip beherrscht die Übergänge zwischen den stationären Zuständen.“

Die hydrodynamischen Analogie kann unter thermodynamischen Gesichtspunk-
ten weiter ausgebaut werden: Das Wirkungsquantum ist ein Maß für die innere Rei-
bung in der Wahrscheinlichkeitsflüssigkeit.
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5.1 Der Welle-Teilchen-Dualismus

GrundlegendeÜberlegungen zur Quantentheorie wurden durch den experimentellen
Befund der Welle-Teilchen-Dualität ausgelöst (Einstein 1909a,b). Strahlung kann
auch Teilcheneigenschaften aufweisen und umgekehrt Materie auch typische Wel-
leneigenschaften: Elektronen verhalten sich z. B. in Doppelspaltexperimenten wie
Wellen, Photonen beim Photoeffekt wie Teilchen.

Die Existenz der Welle-Teilchen-Dualität ist mit den klassischen Theorien un-
vereinbar: Die klassische Lehre, nach der sich ein Teilchen in Raum und Zeit stetig
bewegt, versagt in diesem Punkt. Diese Unvereinbarkeit bezieht sich jedoch nur auf
die klassische Mechanik und auf die klassische Elektrodynamik. Von Thermodyna-
mik ist in diesem Zusammenhang kaum die Rede. Es ist aber eine statistische Deu-
tung der Wellenfunktion als Wahrscheinlichkeitsamplitude, die denWelle-Teilchen-
Dualismus überbrückt, die Born’sche Wahrscheinlichkeitsinterpretation: Die Inten-
sität der Welle an einem Ort gibt die Wahrscheinlichkeit dafür an, das ihr zugeord-
nete Teilchen dort anzutreffen (Born 1926).

Der Übergang von einer Welle mit der Frequenz ! und demWellenvektor k zum
korrespondierenden Teilchen mit der Energie E und dem Impuls p erfolgt über die
Einstein-de-Broglie-Relation:

Einstein=de Broglie W
�
E

p

�
D „

�
!

k

�
:

Über diese Gleichung sind die beiden Hauptursachen für den Zusammenbruch der
klassischen Theorie miteinander verknüpft: der Atomismus der Wirkung und die
Welle-Teilchen-Dualität. Im klassischen Grenzfall verschwindet dieser Zusammen-
hang zwischenWellen- und Teilchenaspekt mit demWirkungsquantum.Breitet sich
eine Welle mit Lichtgeschwindigkeit c aus, so gilt c D !=k. Hat das zugeordne-
te Teilchen den Impuls p D mc, erhält man die relativistischen Beziehungen für
Photonen:�

E

p

�
D

�
mc2

mc

�
) E D p � c :

Ist m0 die Ruhemasse des Teilchens, so gilt allgemeiner:

E2 D m2
0c

4 C p2c2 :

5.2 Das Korrespondenzprinzip

Das Korrespondenzprinzip besagt, dass die Quantentheorie im klassischen Grenzfall
asymptotisch in die klassische Theorie übergehen muss:

Korrespondenzprinzip W Quantentheorie
„! 0�! Klassik:
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In der optischen Analogie müssen die Materiewellen gemäß dem Korrespondenz-
prinzip in der geometrisch-optischenNäherung klassisches Verhalten zeigen. So wie
dieWellenoptik in die Strahlenoptik übergeht, muss dieWellenmechanik in die klas-
sische Mechanik übergehen.Weil die Geschwindigkeit eines Teilchens proportional
zum Gradienten der Wirkung S ist, sind die Teilchenbahnen orthogonal zu den Flä-
chen gleicher Phase S D const:

rS D p D „k :
In der Sprache der Optik sind dies die Wellenflächen, während die Teilchenbahnen
den Strahlen entsprechen. Der Wellenvektor k steht (im Falle eines isotropen Medi-
ums) ebenfalls senkrecht auf denWellenflächen. Die klassische Näherung entspricht
im Wellenbild der Näherung der geometrischen Optik.

Das Korrespondenzprinzip war eine wichtige Hilfe bei der Aufstellung der
Schrödinger-Gleichung (Schrödinger 1926). Aus dem Korrespondenzprinzip und
der optischen Analogie schließt man auf eine formale Analogie zwischen der zu
erstellenden Schrödinger-Gleichung und der Energiegleichung der klassischen Me-
chanik; mit Hilfe der sogenannten Korrespondenzregelnwerden die klassischen Va-
riablen durch Differentialoperatoren ersetzt:

Korrespondenzregeln W E ! i„ @
@t

p ! �i„ @
@x
:

Durch diese Ersetzungen wird aus der klassischen Hamilton-FunktionH.p; x/ der
quantenmechanische Hamilton-Operator:

Hamilton-Operator W _

HD � „
2

2m

@2

@x2
C V :

Die Schrödinger-Gleichung erhält man mit den Korrespondenzregeln als Operator-
übersetzung des klassischen Energiesatzes:

Energiegleichung W E D p2

2m
C V ! i„ @

@t
 D OH :

Dass eine solche quantentheoretische Übersetzung der klassischen Energieglei-
chung auch außerhalb der „geometrisch-optischen Näherung“ gilt, wird schlicht
postuliert. Hieraus ergibt sich der Bedarf nach weiteren Begründungen für die Gül-
tigkeit der Korrespondenzregeln.

Wird dem Impuls p über die de-Broglie-Relation eine Ortsfrequenz k und der
Energie E über die Einstein-Relation eine Zeitfrequenz ! zugeordnet, ergibt sich
die Korrespondenzvorschrift in der optischen Analogie aus der Tatsache, dass die
Fourier-Transformation aus dem Frequenzraum auf entsprechende Ableitungen auf
der Raumzeit führt:

Korrespondenzregeln W ! ! i
@

@t
k ! �i @

@x
:
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Die imaginäre Einheit i sichert zunächst nur die Hermitezität der Differentialopera-
toren.

In der hydrodynamischenAnalogie erscheint die Korrespondenzregel,wenn man
von der quantenmechanischen Hamilton-Jacobi-Gleichung zu einer ruhenden Flüs-
sigkeit übergeht. Für stationäre Zustände gilt:

V C U D E ) V � „2
2m

A00

A
D E )

�
� „

2

2m

@2

@x2
C V

�
A D EA :

Mit der Definition des Hamilton-Operators ergibt sich die stationäre Schrödinger-
Gleichung für die Wahrscheinlichkeitsamplitude A. Der fehlende Phasenfaktor ist
für die stationären Zustände unwesentlich:

OHA D EA :

Ein Vergleich der Lagrange-Funktion, ausgedrückt durchH undp, mit der formalen
totalen Zeitableitung von S.x; t/ liefert wie üblich:

dS

dt
D L D p Px �H ^ dS

dt
D @S

@t
C @S

@x
Px) @S

@t
D �H ^ @S

@x
D p :

Mit diesen Beziehungen erhält man mit Blick auf die quantenmechanische Hamil-
ton-Jacobi-Gleichung die Ersetzungsregeln aus folgender Viererdarstellung:�

@t

@x

�
S D

��E
p

�
D „

��!
k

�
! �i„

�
@t

@x

�

5.3 Das Wirkungsprinzip

Die totale Zeitableitung der Wirkung S.x; t/ längs einer Bahn ist durch die Lagran-
ge-Funktion L gegeben. Die Gesetze der Mechanik leiten sich aus dem Prinzip der
kleinsten Wirkung ab:

Wirkungsintegral W S.x; t/ D R
L.x; x; t/P dt , dS

dt
D L

Wirkungsprinzip W ıS.x; t/ D ı
R
L.x; x; t/P dt D 0 :

Die Lagrange-Funktionhängt über eine Legendre-Transformationmit der Hamilton-
Funktion H zusammen. Die Wirkung S kann somit auch durch H und p ausge-
drückt werden:

Hamilton-Funktion W H.p; x; t/ D p Px � L.x; x; t/P
Wirkungsintegral W S D R

.pdx �Hdt/ :

Verschwindet in stationären Zuständen die Energiedissipation, enthält die Hamilton-
Funktion die Zeit nicht mehr explizit. In diesem Fall bleibt die Energie erhalten
und H kann durch die Konstante E ersetzt werden. Mit Hilfe der verkürzten Wir-
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kung I ergibt sich ein einfacher Ausdruck für die stationäre Wirkung:

stationäre Wirkung W S.x; t/ D I.x/ �Et
verkürzte Wirkung W I.x/ D R

pdx :

Durch die de-Broglie-Beziehung p D „k für Materiewellen offenbart sich eine for-
male Analogie der beiden Variationsprinzipien für den geometrischen Lichtweg und
für die klassische Teilchenbahn bei konstanter EnergieE D p � Px�L, also des Fer-
mat’schen und des Hamilton’schen Prinzips für das verkürzte Wirkungsintegral I :

Fermat’sches Prinzip W ı
R
k � dx D 0

Hamilton’sches Prinzip W ı
R
p � dx D 0 :

Wird nun im Wellenbild das Atom als Hohlraumresonator aufgefasst, so können
die stationären Zustände als stehende Wellen angenommen werden. Damit eine ste-
hende Welle entstehen kann, muss die Phase für einen Umlauf ein ganzzahliges
Vielfaches von 2	 sein. Daraus ergibt sich die Bohr-Sommerfeld’sche Quantisie-
rungsbedingung für die verkürzte Wirkung I :

Bohr-Sommerfeld W
I
k � dx D 2	 � n ,

I
p � dx D 2	 � n„ :

5.4 Die Adiabatenhypothese

Neben dem Korrespondenzprinzipwar die Theorie der adiabatischen Invarianten ei-
ne wichtige Hilfe bei den Versuchen, die Quantisierung atomarer Größen zu erklä-
ren. Adiabatische Invarianten bleiben näherungsweise konstant bei quasistatischen,
d. h. hinreichend langsamen Veränderungen der Systemparameter. Für endliche Be-
wegungen ist die verkürzte Wirkung I eine adiabatische Invariante (Landau und
Lifschitz 1977). Bei periodischen Bewegungen gibt dasWirkungsintegral I den von
der Trajektorie eingeschlossenen Flächeninhalt im Phasenraum an.

Ein tieferes Verständnis der Sommerfeld’schen Quantenregeln wurde durch die
Ehrenfest’sche Adiabatenhypothese ermöglicht: Die Adiabatenhypothese besagt,
dass quantenmechanisch mögliche Zustände bei adiabatischen Parameteränderun-
gen wieder in erlaubte Quantenzustände übergehen. Damit können die Quanten-
bedingungen des harmonischen Oszillators auf jeden eindimensionalen Schwinger
übertragen werden, der daraus durch adiabatische Transformation gewonnen wird.

Rayleigh hatte die adiabatische Invarianz von E=! für das ebene Pendel mit
veränderlicher Pendellänge bzw. Eigenfrequenz gezeigt. Nach Einstein ist diese In-
variante gerade das Wirkungsquantum und es folgt die Einstein-Relation E D „!.

Einstein (1917) betrachtet die Impulse p als Funktion der Lagekoordinaten x.
Besitzt das Vektorfeld p.x/ ein Potential, so hat das LinienintegralI

p.x/dx

für alle geschlossenen Kurven im Konfigurationsraum der x, die stetig ineinander
überführt werden können, denselbenWert. Dieser Wert ist Null, wenn alle geschlos-
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senen Kurven stetig in einen Punkt zusammengezogenwerden können und der Kon-
figurationsraum somit einfach zusammenhängend ist. Gilt dies nicht für alle ge-
schlossenen Kurven, so ist der Konfigurationsraum mehrfach zusammenhängend
und das Linienintegral von Null verschieden. Es wird aber dann abzählbar viele
geschlossene Linien geben, auf die sich alle geschlossenen Kurven durch stetige
Änderungen reduzieren lassen. Die Anzahl der Zusammenhangskomponenten im
Konfigurationsraum ist durch den Knotensatz der Sturm-Liouville-Theorie gege-
ben: Der n-te angeregte Zustand besitzt genau n Knoten.

5.5 Die Wahrscheinlichkeitsflüssigkeit

The first processes in the effectual studies
of the sciences, must be ones
of simplification and reduction of the results
of previous investigations to a form
in which the mind can grasp them.

James Clerk Maxwell

Neben der optischen liefert auch die hydrodynamischeAnalogie wichtige Anschau-
ungen über die Quantenphänomene. In der hydrodynamischen Analogie beschreibt
das Quadrat der Wellenfunktion im klassischen Grenzfall eine strömende Flüssig-
keit von klassischen Teilchen der Masse m, die ohne gegenseitige Wechselwirkung
dem Potential V unterworfen sind. Mit mv D rS ergibt sich aus der klassischen
Hamilton-Jacobi-Gleichung durchGradientenbildungdie Newton’sche Bewegungs-
gleichung für die klassische Flüssigkeit (Messiah 1976):

@S

@t
C mv2

2
C V D 0) m

dv

dt
D m

�
@v

@t
C v � rv

�
D �rV :

Messiah bleibt jedoch hier stehen und warnt sogar in einer Fußnote: „Die Analo-
gie zwischen dieser ‚Wahrscheinlichkeitsflüssigkeit‘ und der klassischen Flüssig-
keit darf natürlich nicht zu weit getrieben werden.“ Wir wollen diese Analogie hier
aber trotzdem noch etwas weiter treiben und die Gradientenbildung auch für die
quantenmechanische Hamilton-Jacobi-Gleichung durchführen, um dann weiter zu
fragen, welche Wechselwirkungen das Quantenpotential in der klassischen Wahr-
scheinlichkeitsflüssigkeit hervorruft:

@S

@t
C mv2

2
C V C U D 0) m

dv

dt
D �r ŒV C U � :

Das Quantenpotential U erzeugt offenbar Wechselwirkungen innerhalb der klas-
sischen Wahrscheinlichkeitsflüssigkeit und damit statistische Abhängigkeiten im
sonst klassischen Ensemble. Diese Wechselwirkungen können durch Entropiepro-
duktion und Entropiediffusion oder auch durch das Superpotential ausgedrückt wer-
den. Über die stationären Lösungen wissen wir bereits, dass sie durch eine Kompen-
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sation charakterisiert sind:

stationäre Zustände W V C U D E ) m
dv

dt
D 0 :

In der hydrodynamischenAnalogie werden die Quanteneffekte durch Korrelationen
in einer sonst statistisch unabhängigen Wahrscheinlichkeitsflüssigkeit beschrieben.
Im Gleichgewicht zeigt sich eine ruhende Flüssigkeit. Durch innere Wechselwir-
kungen in der Wahrscheinlichkeitsflüssigkeit werden die äußeren Wechselwirkun-
gen gerade kompensiert. Die Strömung verhält sich dadurch, als ob sie wechselwir-
kungsfrei wäre.

Um die Wechselwirkungen in der Wahrscheinlichkeitsflüssigkeit thermodyna-
misch zu deuten, können wir das Quantenpotential durch eine thermodynamische
Kraft X.x/ D rs.x/ ausdrücken:

Quantenpotential W U D � „
2

2m

�
�s

2k
C .rs/2

4k2

�
D � „

2

2m

�r �X
2k

C X2

4k2

�
:

Damit kann die Bewegungsgleichung der Wahrscheinlichkeitsflüssigkeit in die fol-
gende Form gebracht werden:

m
dv

dt
D �r.V C U / D �rV C „2

4m

�
�X

k
C X � rX

k2

�
:

Des Weiteren nehmen wir eine lineare Fluss-Kraft-Beziehung an:

X D R Px D Rv :

Mit den folgenden Festlegungen für den kinetischen Koeffizienten R und den Rei-
bungskoeffizienten 


R D 2m

„ k ^ 
 D
„
2

erhält man daraus:

m
dv

dt
D m

�
@v

@t
C v � rv

�
D �rV C 
�v Cm.v � rv/ :

Der Konvektionsterm hebt sich weg und es bleibt

m
@v

@t
D �rV C 
�v :

Dieses Ergebnis kann mit der Navier-Stokes-Gleichung verglichen werden. Die
Navier-Stokes-Gleichung beschreibt die Kraftdichte, die auf ein Flüssigkeitsele-
ment wirkt, als Summe zweier Anteile aus Druck } und Reibung 
:

Navier-Stokes-Gleichung W �
dv

dt
D �

�
@v

@t
C v � rv

�
D �r} C 
�v :
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Die hierin auftretende Massendichte � genügt einer Kontinuitätsgleichung. Beson-
ders wichtig im Hinblick auf Turbulenzerscheinungen ist das Verhältnis vonKonvek-
tion und innerer Reibung. Eine verschwindende Reibung kennzeichnet eine ideale
oder Euler-Flüssigkeit. Je nachdem, welche Terme dominieren bzw. vernachlässig-
bar sind, unterscheidet man folgende Spezialfälle einer Strömung:

ideal stationär laminar turbulent

� D 0 @tv D 0 �v � rv � ��v �v � rv � ��v

Der Vergleich mit der Wahrscheinlichkeitsflüssigkeit zeigt, dass wir es mit einer
laminaren, d. h. konvektionsfreien Strömung zu tun haben, deren innere Reibung
durch das Wirkungsquantum bestimmt ist. Das früher betrachteteWechselspiel zwi-
schen Entropieproduktion und Entropiediffusion ist hier offenbar übertragen auf ein
Wechselspiel zwischen Konvektion und Reibung. Die Entropiediffusion wird im hy-
drodynamischen Bild zu einem Reibungsterm, der für Stabilität sorgt.



Kapitel 6
Die Unschärferelation

Objectivity is a subject’s delusion
that observing can be done without him.

Heinz von Foerster

Ein wichtiges Ergebnis der Schrödinger-Theorie ist die Heisenberg’sche Unschärfe-
relation. Im Folgenden wird die Frage untersucht, inwieweit die betrachteten klas-
sischen Analogien und unsere thermodynamische Deutung ein anschauliches Ver-
ständnis dieser Unschärfen ermöglichen. Unschärferelationen bestehen zwischen
komplementären Variablen, deren zugeordnete Operatoren nicht vertauschen. Es
ist nicht möglich, zwei Messgrößen eines Quantenobjekts, deren Produkt die Di-
mension einer Wirkung hat, gleichzeitig und exakt zu bestimmen. Je genauer wir
beispielsweise den Ort eines Quantenobjektes festlegen, desto ungewisser können
wir seinen Impuls und damit seine weitere Bahn voraussagen. Diese charakteris-
tischen Unbestimmtheiten dürfen nicht mit den überall auftretenden Messfehlern
verwechselt werden.

ImWellenbild werden Unschärferelationen auf den Ähnlichkeitssatz der Fourier-
Transformation zurückgeführt. Die Unschärfe ist im Wellenbild eine rein klassische
Eigenschaft, die etwa die stets endliche Übertragungsbandbreite eines Wechselwir-
kungskanals oder das stets endliche Auflösungsvermögen optischer Messgeräte be-
schreibt. Jedes System ist ein Tiefpass.

Im Teilchenbild führt eine Brown’sche Bewegung mit Korrelationen zwischen
den beiden Marginalverteilungen zu einer Orts-Impuls-Unschärfe. Hierzu wird die
thermische Energie kT in den stationären Lösungen durch die NullpunktsenergieE0

ersetzt. In dieser Heuristik bedingen sich Unschärfe und Nullpunktsenergie gegen-
seitig.

In der thermodynamischen Deutung wird die Ort-Impuls-Unschärfe aus dem
zweiten Hauptsatz der Thermodynamik abgeleitet. Zumindest für die Dauer einer
Messung ist das Quantensystem ein offenes System, das Entropie bzw. Informati-
on mit seiner Umwelt austauscht. Jede Messung ist mit einer Entropieproduktion
verbunden, die deren Informationsgewinn im Sinne des zweiten Hauptsatzes kom-
pensiert und so die Entropiebilanz zumindest ausgleicht. Der Messprozess setzt der
Subjekt-Objekt-Spaltung eine prinzipielle Begrenzung.
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6.1 Optische Analogie: Ähnlichkeitssatz

Die Erklärung der Unschärferelation im Wellenbild geht von der Tatsache aus, dass
die Wellenfunktionen in der Ortsdarstellung und in der Impulsdarstellung Fourier-
Transformierte sind. Der Ähnlichkeitssatz der Fourier-Transformationverbietet eine
gleichzeitige scharfe Lokalisierung im Ortsraum und im Impulsraum. Die wichtigs-
ten Unschärfen können als „Vierer-Unschärfe“ zusammengefasst werden:

Ort-Impuls-Unschärfe W �x ��p � 1

2
„

Energie-Zeit-Unschärfe W �t ��E � 1

2
„ :

Diese Relationen beschreiben Streuungen vieler für sich genommen jeweils scharfer
Messergebnisse. Über Einstein/de Broglie ins Wellenbild überspielt lauten sie:

Ort-Impuls-Unschärfe W �x ��k � 1

2

Energie-Zeit-Unschärfe W �t ��! � 1

2
:

Die Unschärfe zwischen Zeit und Frequenz trägt in der Signalverarbeitung den un-
spektakulären Namen „Zeitgesetz der Nachrichtentechnik“ („Lucky“ Lüke 1990):
Je kürzer das Signal im Zeitbereich ist, desto breiter ist das Fourier-Spektrum die-
ses Signals im Frequenzbereich. Es handelt sich hierbei um eine Eigenschaft eines
Nachrichtenübertragungskanals, dessen Produkt aus Übertragungsbandbreite und
der für die Übertragung einer Nachrichtenmenge aufzuwendenden Zeit eine Kon-
stante ist. Es gibt keinen physikalischen Allpass, kein vollkommen verzerrungsfrei-
es System. Die Welt ist ein Tiefpass und das All ist kein Allpass. (Ein idealer Tief-
pass ist allerdings nicht kausal, es sei denn es gibt hinreichende Zeitverzögerungen.)
Um eine wirklich vollständige Beschreibung aller Frequenzanteile eines Vorgangs
in endlicher Zeit zu erhalten, bräuchte man demnach eine unendliche Bandbrei-
te des Übertragungskanals, der die Informationen über diesen Vorgang vermittelt.
Die „prinzipielle Eliminierbarkeit des Unwissens“, die der klassischen Statistik un-
terstellt wird, besteht also im Grunde in einer gedanklichen Heraufsetzung dieser
Übertragungsbandbreite ins Unendliche.

Der Ähnlichkeitssatz gilt als mathematischer Satz nicht nur für die Zeit t und
die Frequenz !, sondern auch für den Ort x und die Ortsfrequenz k. Das klassische
Analogon bei räumlichen Variablen ist das stets begrenzte Auflösungsvermögen op-
tischer Geräte: Ein unendlichesAuflösungsvermögen erfordert eine unendlich große
Linse; und die benötigt ein unendlich großes Universum, was es – wenn überhaupt –
erst in unendlich ferner Zukunft geben kann.

Fazit: Die Unschärferelationen beruhen im Wellenbild auf dem Ähnlichkeitssatz
der Fourier-Transformation. Für raumzeitliche Wellenerscheinungen sind Unschär-
ferelationen also nichts außergewöhnliches, sondern vollkommen klassische Eigen-
schaften.
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Das Problem der klassischen Anschauung tritt erst beim Übergang zum Teil-
chenbild auf. Um die Unschärferelation auch im Teilchenbild einer klassischen An-
schauung näher zu bringen, wird nun die Brown’sche Bewegung genauer untersucht,
durch die schon auf klassische Weise die Messgenauigkeit eingeschränkt wird (Bar-
nes und Silvermann 1934; Bessenrodt 1987).

6.2 Hydrodynamische Analogie: Brown’sche Bewegung

Wir betrachten die Verallgemeinerung der Brown’schen Bewegung auf den ganzen
Phasenraum. Die Brown’sche Bewegung eines harmonisch gebundenen Teilchens
kann durch eine Langevin-Gleichung vom Typ

dv

dt
D �ˇv � !2x CK.t/

mit der Frequenz! und einem Reibungsparameter ˇ beschrieben werden. Die Kraft
ist hierin zerlegt in einen systematischen und einen schnell fluktuierenden An-
teil K.t/. Eine äquivalente Beschreibung ist die durch eine generalisierte Fokker-
Planck-Gleichung für die Wahrscheinlichkeitsdichte �.x; v; t/:

d

dt
� D @�

@t
C v @�

@x
� !2x

@�

@v
D ˇ

@

@v
.v�/C q @

2

@v2
� :

Diese Fokker-Planck-Gleichung kann als Verallgemeinerung der Liouville-Glei-
chung auf Brown’sche Bewegung aufgefasst werden. Auf der linken Seite stehen
die Liouville’schen Konvektionsterme, rechts stehen anstelle der Null die Terme der
Brown’schen Bewegung: Drift und Diffusion im Geschwindigkeitsraum. Da wir die
Brown’sche Bewegung auf einer schnellen Zeitskala annehmen, betrachten wir nur
die stationären Verteilungen:

@

@t
� D �v @

@x
�C @

@v

�

ˇv C !2x

�
�
�C q @2

@v2
� D 0 :

Des Weiteren machen wir den üblichen Separationsansatz

�.x; v/ D P.x/ �Q.v/ :

Die stationären Lösungen der Fokker-Planck-Gleichung lauten (Chandrasekhar
1943):

P.x/ � exp

�
�m!

2x2

2kT

�
D exp

�
�Epot

kT

�

Q.v/ � exp

�
�mv

2

2kT

�
D exp

�
�Ekin

kT

�
:
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Weil die Temperatur T nicht beliebig klein und die Eigenfrequenz ! nicht belie-
big groß gemacht werden kann, gibt es bereits bei diesem klassischen Modell eine
gewisse Unschärfe:

�x ��p D �x �m�v D
r
kT

m!2
�m

r
kT

m
D kT

!
:

Nun ist zu beachten, dass die thermische Energie kT auf künstlichem Weg in diese
Lösungen hineingekommen ist. Hierzu Chandrasekhar: „The physical circumstan-
ces of the problem require that we demand ofQ.v; t I vo/ that it tends to a Maxwel-
lian distribution for the temperature T of the surrounding field, independently of vo

as t !1.“ Aus dieser Forderung folgt nämlich für den Diffusionskoeffizienten

q D ˇ

m
kT :

Unter den hier betrachteten quantenmechanischen Umständen nehmen wir an, dass
die Brown’sche Bewegung durch Vakuumfluktuationen hervorgerufen wird. Mit
dem gleichen Recht wie Chandrasekhar fordern wir hier, dass die stationäre Ver-
teilung den quantenmechanischen Grundzustand wiedergibt. Um dies zu erreichen,
müssen wir offenbar in den stationären Lösungen lediglich die thermische Energie
kT durch die GrundzustandsenergieE0 ersetzen:

kT ! 1

2
„! D E0 :

Mit dieser Ersetzung, die quasi einem submikroskopischen Gleichverteilungssatz
für Vakuumfluktuationen gleichkommt, folgt für den quantenmechanischen Fall:

P.x/ � exp
�
�m!„ x2
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:

Unter Verwendung von�p D m�v ergeben sich daraus Orts- und Impulsunschärfe
zu

�x D
r

„
2m!

�p D
r
m„!
2

:

Eine stärkere Lokalisierung des Brown’schen Teilchens durch eine Erhöhung der
Federkonstanten wird mit einer Verbreiterung der Geschwindigkeitsverteilung be-
zahlt; die Eigenfrequenz! steht einmal im Nenner und einmal im Zähler der statio-
nären Lösung:

�.x; v/ D P.x/ �Q.v/ � exp

�
� E
E0
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:
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Im Produkt aus Orts- und Impulsunschärfe hebt sich die Frequenz hingegen heraus.
Damit ergibt sich die Heisenberg’sche Unschärferelation aus den Eigenschaften der
Brown’schen Bewegung und der Existenz einer NullpunktsenergieE0:

�x ��p D 1

2
„ :

Diese Gleichung gilt bei bestem experimentellem Wissen und bildet so eine untere
Schranke für die Messgenauigkeit der komplementären Variablen x und p. Man
kann sich davon überzeugen, dass �.x; v/ eine Lösung der generalisierten Fokker-
Planck-Gleichung ist, und zwar mit dem Diffusionskoeffizienten

q D ˇ„!
2m

D ˇ

m
E0 :

Der Reibungskoeffizient ˇ kürzt sich im stationären Fall heraus; die Reibung wirkt
offenbar nur bis zur Einstellung des Gleichgewichts. Auch hier zeigt sich die Dissi-
pationsfreiheit des stationären Zustands, denn ˇ gibt im Wesentlichen die mittlere
Entropieproduktion an, die im Gleichgewicht im Einklang mit dem 2. Hauptsatz
verschwinden muss.

Fazit: Die Heisenberg’sche Unschärferelation ist aus den Eigenschaften der
Brown’schen Bewegung herleitbar. Eine Ortsmessung wird hierfür als Einschluss in
ein Oszillatorpotential bei fester Energie E0 aufgefasst. Die Ort-Impuls-Unschärfe
folgt dann aus der stationären Lösung einer verallgemeinerten Fokker-Planck-Glei-
chung für ein harmonisch gebundenes Brown’sches Teilchen unter dem Einfluss von
Vakuumfluktuationen:
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@t
�.x; p; t/ D �p

m
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Die Brown’sche Bewegung relaxiert nach Annahme so schnell, dass praktische
Messungen nur die Gleichgewichtslösung „sehen“, an der die Reziprozität von Orts-
und Impulsunschärfe über den Term m! explizit sichtbar wird:

�.x; p/ D P.x/ �Q.p/ � exp

�
�H.x; p/

E0

�
D exp

�
�1

„
�
m!x2 C p2

m!

��
:

Es gibt also Korrelationen zwischen den Marginalverteilungen, die sich über das
Wirkungsquantum bzw. die Nullpunktsenergie E0 in einer Unschärferelation nie-
derschlagen.

6.3 Thermodynamische Analogie: Entropieaustausch

Um nun die hydrodynamische Analogie weiter thermodynamisch auszudeuten, ge-
hen wir von der Wahrscheinlichkeit �.x; p/ zur Entropie s.x; p/ über. Die statio-
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näre Entropiedichte über dem Phasenraum lautet für ein harmonisch gebundenes
Brown’sches Teilchen:

s.x; p/ � lnW.x; p/ � �H
E0

D �1

„
�
m!x2 C p2

m!

�
:

In dieser Darstellung lässt sich die Unschärferelation mit Hilfe von Krümmungen
ausdrücken. Für die beiden Hauptkrümmungen der Entropiefläche s.x; p/ ergibt
sich ein unmittelbarer Zusammenhang zu den Varianzen der entsprechendenMargi-
nalverteilungen:

@2s

@x2
D �2m!

„ D � 1

�x2

@2s

@p2
D � 2

m!„ D � 1

�p2
:

Thermodynamische Stabilität ist wegen der negativenVorzeichen stets gegeben. Die
Varianzen der Marginalverteilungen können als Hauptkrümmungsradien der statio-
nären Entropiefläche s.x; p/ gedeutet werden. Die Unschärferelation wird auf diese
Weise zu einer Aussage über die maximale Gauß’sche Krümmung dieser Fläche:

@2s

@x2
� @

2s

@p2
D 4

„2 D
1

�x2 ��p2
) �x ��p D 1

2
„ :

Eine stärkere Lokalisierung im Ortsraum mit der entsprechend höheren Krümmung
der Entropieverteilunghat eine kompensierendeDelokalisierung im Impulsraum zur
Folge und umgekehrt. Eine stärkere Krümmung in der einen Richtung wird durch
eine schwächere in der anderen ausgeglichen und umgekehrt, also durch einen Aus-
tausch von Entropie zwischen Orts- und Impulsraum.

Die mittlere Krümmung der Entropiefläche besitzt eine obere Schranke, wobei
der Maximalfall für m! =1 eintritt:

mittlere Krümmung W 1

2
�.x; p/ D 1

2

�
@2s

@x2
C @2s

@p2
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„
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��
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� �2
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Der mittlere Krümmungsradius der Entropiefläche ist seinem Betrag nach mindes-
tens von der Ordnung „:

Krümmungsradius W
ˇ̌̌̌̌̌̌
ˇ̌̌̌̌̌ 1
1
2�

ˇ̌̌̌̌̌̌
ˇ̌̌̌̌̌ � „

2
:

Fazit: Die Vorstellung einer allgegenwärtigen Brown’schen Bewegung in der Mi-
krowelt in Form von Vakuumfluktuationen liefert eine plausible Erklärung für die
Unschärferelation in der hydrodynamischen Analogie: Der Ort-Impuls-Unschärfe
entspricht eine maximale Gauß’sche Krümmung der Entropiefläche. Die mittlere
Krümmung ist betragsmäßig stets größer als 2=„, wodurch die thermodynamische
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Stabilität des Systems sichergestellt wird:

Gauß’sche Krümmung W @2s

@x2
� @
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@p2
� 4
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�
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„ :

Der Betrag der Krümmung der Entropiefläche ist demnach nach oben und unten
beschränkt: nach oben durch die Unschärferelation, die eine maximale Gauß’sche
Krümmung festlegt, während die thermodynamische Stabilität eine negative mitt-
lere Mindestkrümmung verlangt und damit den Betrag der mittleren Krümmung
nach unten begrenzt. Das Wirkungsquantum ist ein Maß für quantenphysikalische
Schwankungen und damit gleichzeitig auch ein Maß für die Lokalisierbarkeit eines
Quantenobjekts im Phasenraum.

6.4 Zweiter Hauptsatz und Messprozess

In einer thermodynamischen Sichtweise kann die Unschärferelation als Folge des
zweiten Hauptsatzes gedeutet werden: Bei einer Messung wird Information gewon-
nen und damit Negentropie erzeugt. Damit der zweite Hauptsatz seine Gültigkeit
behält, muss die Entropie an anderer Stelle zwangsläufig zunehmen, z. B. in der
jeweils anderen, „komplementären“Marginalverteilung. Bezeichnen wir die margi-
nalen Entropiedichten im Gleichgewicht mit s1.x/ und s2.p/, so gilt bis auf Kon-
stanten

s.x; p/ D s1.x/C s2.p/ D �m!x
2

„ � p2

m!„ D � x2

2�x2
� p2

2�p2

Der zweite Hauptsatz verlangt im günstigsten Fall eine konstante Gesamtentropie:

s.x; p/P D Ps1.x/C Ps2.p/ D 0) Ps2.p/ D �Ps1.x/ :
Ein Informationsgewinn im Ortsraum zieht einen Informationsverlust im Impuls-
raum nach sich und umgekehrt. Eine Halbierung der Ortsunschärfe �x etwa als
quasistatische Verengung des Potentials bedeutet wegen

�x D
r „

2m!
und �p D

r
m„!
2

eine Vervierfachung der Eigenfrequenz !, was wiederum eine Verdopplung der
Impulsunschärfe �p zur Folge hat. Ein messender Eingriff im Ortsraum, der ein
gewisses Maß an Information erzeugt, führt also im Geschwindigkeitsraum zu ei-
ner entsprechenden Entropiezunahme und umgekehrt. Diese Entropie wird quasi als
Nichtwissen in das System exportiert. Die Vorstellung, dass jede Messung prinzi-
piell mit einer mittleren Entropieerzeugung verbunden ist, geht auf Szilard zurück
(Szilard 1929; Bessenrodt 1987).
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Fazit: In einer thermodynamischenDeutung der Unschärferelation findet die Kom-
pensation des Informationsgewinns, die dem zweiten Hauptsatz Geltung verschafft,
im jeweils komplementären Teil des Phasenraums statt. Damit ist die Existenz einer
Ort-Impuls-Unschärfe auf den zweiten Hauptsatz zurückgeführt.

6.5 Unschärfe und Nullpunktsenergie

Die Unschärferelation kann unter der Annahme einer durch Vakuumfluktuationen
getriebenen Brown’schen Bewegung gedeutet werden. Hierzu wurde die Grund-
zustandsenergie E0 anstelle der thermischen Energie kT in die Fokker-Planck-
Gleichung eines harmonisch gebundenen Brown’schen Teilchens eingesetzt. Mit
diesen Voraussetzungen impliziert die Existenz einer endlichen Nullpunktsenergie
eine Unschärfe. Doch auch umgekehrt lässt sich bekanntlich schließen: von der Un-
schärfe auf die Nullpunktsenergie. Betrachten wir für diese heuristische Ableitung
die Gesamtenergie eines klassischen harmonischen Oszillators

E.p; x/ D p2

2m
C 1

2
m!2x2

mit dem klassischen Energieminimum E.0; 0/ bei x0 D p0 D 0. Ein solcher Zu-
stand absoluter Ruhe steht imWiderspruch zur Unschärferelation. Bei vorgegebener
Ortsunschärfe x0 ergibt sich die minimale Impulsunschärfe p0 zu

p0 D „
2x0

:

Einsetzen in die Energiegleichung liefert

E.x0/ D „2
8mx2

0

C 1

2
m!2x2

0 :

Diese Gleichung beschreibt eine Konkurrenz zwischen kinetischer und potentieller
Energie als Funktion der Ortsunschärfe. Wie Abb. 6.1 zeigt, ergibt sich eine Art
„Zentrifugalbarriere“. Das klassische Energieminimum bei x0 D 0 ist zu einem
endlichen Wert verschoben. Die Minimierung von E.x0/ liefert die richtigen Un-
schärfen zurück:

E.x0/
ŠD Min:) d

dx0
E D 0) x0 D

r
„

2m!
) p0 D

r
m„!
2

:

Damit kommt wieder die korrekte Nullpunktsenergie als minimaler Energiewert
E.x0/ heraus:

E0 D 1

2
„! :

Für den klassischen harmonischen Oszillator ist der Quotient E/!// eine adiabatische
Invariante, so dass sich die Energie bei langsamer Änderung proportional zur Fre-
quenz ändert. Wird eine Ortsmessung wieder als stärkere Lokalisierung in einem
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Abb. 6.1 Unschärfe und Nullpunktsenergie

Oszillatorpotential aufgefasst, so folgt eine Erhöhung der Energie gemäßff

E D I � ! ) �E D I ��! :
Zieht man weiterhin in Betracht, dass zur Messung dieser Energie mindestens eine
Schwingung betrachtet werden muss, so folgt mit der Beobachtungszeit�t � !�1

wieder eine Energie-Zeit-Unschärfe der Form

�E ��t � 1

2
„ :

Fazit: Unschärfe und Nullpunktsenergie bedingen sich gegenseitig.

6.6 Strukturelle Stabilität und Nullpunktsenergie

Für eine weitere klassische heuristische Begründung der Nullpunktsenergie betrach-
ten wird noch einmal die klassische Bewegungsgleichung eines harmonischen Os-
zillators:

x.t/R C !2x.t/ D 0 :
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Eine grundsätzliche Ursache dafür, dass der klassische Oszillator kein quanten-
mechanisches Verhalten zeigen kann, ist dessen strukturelle Instabilität im Sinne
der Theorie dynamischer Systeme: Schon die kleinste Störung der Differential-
gleichung, etwa durch einen kleinen Reibungsterm, verändert das qualitative Sys-
temverhalten grundlegend. Im Allgemeinen sind aber strukturell instabile Zustände
in der Natur nicht beobachtbar, weil Störungen und Schwankungen allgegenwär-
tig sind. Aus diesem Blickwinkel gesehen sind die Quantisierungsbedingungen von
Bohr und Sommerfeld nichts anderes als eine künstliche strukturelle Stabilisierung
eines eigentlich strukturell instabilen Systems.

Nehmen wir als Beispiel ein Wasserstoffmolekül: Von einem naiv-anschaulichen
Standpunkt aus könnte man meinen, dass die Information über den Ort des einen
Atoms eine gewisse Zeit � braucht, um zum jeweils anderen Atom zu gelangen.
Diese Zeitverzögerung hängt von der Lichtgeschwindigkeit c ab. Die klassische Os-
zillatorgleichung beruht auf der Annahme einer instantanen Ausbreitung der Wir-
kung, also auf der nichtrelativistischen Näherung c ! 1. Tatsächlich käme die
Kraft F.t/ D �m!2x.t � �/ aber ein bisschen zu spät, also actio D reactio, aber
retardiert. Damit hätte man eine Delay-Differentialgleichung der Form

x.t/R C !2x.t � �/ D 0 :

Diese Gleichung ist zwar strukturell stabil, dynamisch jedoch instabil, wie der erste
Term einer Taylor-Entwicklung für konstantes � zeigt (vgl. El’sgol’ts und Norkin
1973):

x.t/R C !2x.t/ � �!2x.t/P D 0 :

Aufgrund des „negativen Reibungsterms“ ist das System instabil, die Zustandskurve
spiralt sich nach außen. Als stabilisierendes Element könnte man eine klassische
Strahlungsdämpfung annehmen (vgl. Jackson 1981).

Die Kraft auf das eine Atom resultiert aus dem Ort des jeweils anderen Atoms.
Aufgrund der quantenmechanischen Natur des Wasserstoffoszillators können wir
aber nicht erwarten, dass dieses Potential selbst scharf ist, denn es wird durch ein
Objekt erzeugt, das einer Unschärferelation unterliegt. Wir müssen deshalb damit
rechnen, dass das Potential selbst fluktuiert.

Fazit: Die Instabilität der Ruhelage aufgrund einer endlichen Ausbreitungsge-
schwindigkeit der Wirkung kann als klassische Erklärung für die Notwendigkeit
einer Nullpunktsunruhe angesehen werden.
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Die Grenze zwischen dem Gewussten und Nichtgewussten
ist also selbst nichts „Objektives“, sondern ich kann sie
nach meiner Willkür legen, wohin ich will,
nur zum Verschwinden bringen kann ich sie nicht.

Carl Friedrich von Weizsäcker

Eine wichtige Voraussetzung der klassischen Physik ist eine – zumindest gedank-
lich durchführbare – klare Trennung zwischen Beobachter und Beobachtetem, die
Subjekt-Objekt-Spaltung: Erkenntnis gewinnt das Subjekt nur dadurch, dass es sich
vom Erkannten lösen kann. Diese Trennung der Erfahrung in einen Subjektanteil
und einen Objektanteil vollzieht sich bereits in der Sprache, mit deren Hilfe der
Meinende das Gemeinte durch Begriffe erfasst.

Ein „vollständiges Wissen“ bedeutet ein getreues Bild der Gegenstände „an
sich“. Doch der Mikrokosmos zeigt sich nicht vollständig. Die Unschärferelati-
on setzt der Subjekt-Objekt-Spaltung eine Grenze: Jede Messung ist ein Eingriff.
Die Unschärferelationen beschreiben Einschränkungen in den gleichzeitig messba-
ren Eigenschaften. Diese neue Erkenntnissituation in der Quantenphysik fand ih-
ren Ausdruck in Bohrs Komplementaritätsprinzip: Die Ergebnisse von Beobachtun-
gen, die unter verschiedenen experimentellen Bedingungen gemacht werden, kön-
nen nicht in ein einheitliches Bild zusammengefasst werden. Sie müssen stattdessen
als komplementär angesehen werden. Das erfordert eine Unterscheidung zwischen
zueinander kompatiblen und inkompatiblen Aussagen.

Im Folgenden wird der Frage nach den formal-logischen Konsequenzen der
Quantenmechanik nachgegangen. Die Wahl eines Logikkalküls ist eine willkürliche
Entscheidung. Es stellt sich allerdings heraus, dass eine dreiwertige Logik besser
zur Observablenalgebra und zur Struktur des quantenmechanischen Zustandsraums
passt als die klassische zweiwertige Logik. Mit der Beibehaltung einer zweiwerti-
gen Logik müssen gewisse Aussagen für sinnlos erklärt werden, bei einer dreiwerti-
gen Quantenlogik hingegen nur als beschränkt verfügbar. Damit wird der klassische
Boole’schen Aussagenverband abgeschwächt zu einem orthomodularenVerband, in
dem es keine allgemeine Distributivität mehr gibt.
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7.1 Klassische Logik

Aussagen über Eigenschaften eines klassischen Systems können als Teilmengen des
Zustandsraums dargestellt werden. Die Teilmengen des Zustandsraums bilden mit
den Operationen Vereinigung, Schnitt und Komplement eine Boole’sche Algebra.
Der Logikkalkül der klassischen Physik ist die klassische Logik, d. h. eine zweiwer-
tige Aussagenlogik. Ein allgemeiner Verband ist charakterisiert durch eine refle-
xive Halbordnung (Existenz einer Ordnungsrelation), Beschränktheit (Existenz ei-
nes Supremums bzw. Infimums) und Vollständigkeit (Existenz eines kleinsten bzw.
größten Elements). Das Maximum bzw. Minimum bilden neutrale Elemente bezüg-
lich Schnitt resp. Vereinigung. In einem komplementären Verband gelten zusätzlich
die Komplementgesetze für Schnitt und Vereinigung (Existenz inverser Elemente).
In einem distributiven Verband gelten weiterhin Distributivgesetze für Schnitt und
Vereinigung, in denen die Strukturverträglichkeit zwischen „und“ und „oder“ zum
Ausdruck kommt. Ein Boole’scherVerband ist ein komplementärer und distributiver
Verband. Die wichtigsten Realisierungen dieser abstrakten Struktur sind die Aussa-
genalgebra, die Schaltalgebra, die Mengenalgebra und die Algebra der Unterräume
eines Vektorraums:

Verband Aussagen Teilmengen Unterräume

Ordnungsrelation Implikation Inklusion Inklusion

Supremum Konjunktion Vereinigung lineare Hülle

Infimum Disjunktion Schnitt Schnitt

Maximum Tautologie Grundmenge Vektorraum

Minimum Kontradiktion leere Menge Nullvektor

Komplement Negation Komplement Komplement

Distributivität Distributivgesetze Distributivgesetze Distributivgesetze

Die Aussagen der klassischen Physik sind unbegrenzt objektivierbar (vgl. Witt-
genstein 1921). Es wird angenommen, dass eine Aussage wahr oder falsch ist, unab-
hängig davon, ob jemand diese Behauptung nachgeprüft hat oder nicht. Die Aussa-
gen der Quantenphysik hingegen können auch nicht-objektivierbar sein. Das bedeu-
tet, dass wir über das Vorliegen einer komplementären Eigenschaft nicht nur keine
Kenntnis haben, sondern dass diese Eigenschaften dem betrachteten System nicht
notwendigerweise zukommen oder nicht. Zwischen komplementären Variablen be-
stehen Unschärferelationen: Ein Gewinn an Information über den Impuls führt zu
einem Verlust an Information über den Ort und umgekehrt.

7.2 Doppelspaltexperimente

Die klassische Logik kann in der Quantenphysik zu Widersprüchen führen, wie am
Beispiel eines Doppelspaltexperiments mit Teilchen deutlich wird. Für einen Teil-
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chenstrahl mit homogenem Impuls werden folgende Aussagen betrachtet (Rütti-
mann 1977):

• A D Teilchen gehen durch den Schlitz 1.
• B D Teilchen gehen durch den Schlitz 2.
• C D Die Verteilung der Teilchen auf dem Schirm ist die arithmetische Summe

der Verteilungen, die sich ergeben, wenn jeweils nur ein Schlitz offen ist.

Im Rahmen der klassischen Mechanik bestünde folgende Beziehung zwischen den
Aussagen:

A _ B ) C :

Experimente zeigen indessen, dass C falsch ist. Nach dem Gesetz der implikativen
Kontraposition kommt als indirekter Schluss:

Œ.A _ B ) C/ ^ :C �) :.A _ B/) :A ^ :B :

Der letzte Satz folgt mit Anwendung des Distributivgesetzes und besagt, dass die
Teilchen, die auf dem Schirm auftreffen, weder durch den einen noch durch den an-
deren Schlitz hindurchgegangen sind. Durch die Anwendung der Gesetze der klas-
sischen Logik ist damit eine unklare, widersprüchliche Situation entstanden.

Die Diskussion kann noch weiter präzisiert werden: Wenn die klassische Aussa-
ge für das individuelle Teilchen nicht in einem logischen „oder“ zwischen A und B
besteht, sondern in einem „entweder-oder“, dann geht das einzelne Teilchen entwe-
der durch den ersten oder durch den zweiten Schlitz. Die Negation des exklusiven
Oder ist aber die Äquivalenz von A und B . Der experimentelle Befund :C lässt
somit noch zusätzlich ein „sowohl-als-auch“ zu. Das bedeutet, das Teilchen geht
entweder durch keinen der Schlitze oder durch beide Schlitze gleichzeitig. Die Un-
klarheit bleibt: Denn auch ein Teilchen, was sich teilt, um gleichzeitig durch zwei
Schlitze zu fliegen, widerspricht der klassischen Vorstellung von einem Teilchen.
Die Teilchen verhalten sich am Doppelspalt wie eine Welle. Wie in der Wellenoptik
ist das Quadrieren einer Amplitudenfunktiondafür verantwortlich, dass das Schwär-
zungsbild beim Doppelspalt von der Summe der Schwärzungsbilder der Einzelspal-
te abweicht. Es besteht also Bedarf nach einer Untersuchung möglicher alternativer
Logikkalküle für die Quantenphysik.

7.3 Komplementaritätslogik

Die Schwierigkeiten mit der klassischen Logik treten anscheinend durch die An-
wendung des Distributivgesetzes auf. Um dem Komplementaritätsgedanken gerecht
zu werden, wurde als Verallgemeinerung der klassischen Logik eine dreiwertige Lo-
gik für quantenphysikalische Aussagen vorgeschlagen (von Weizsäcker 1942; Rei-
chenbach 1949;Mittelstaedt 1963). Neben den klassischenWahrheitswerten „wahr“
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und „falsch“ wird noch ein dritter zugelassen, der als „unbestimmt“ bezeichnet wer-
den kann. Im Sinne dieser Komplementaritätslogik ist es ungewiss, durch welchen
Schlitz die Teilchen fliegen. Der Ausdruck „unbestimmt“ ist vom Ausdruck „unbe-
kannt“ zu unterscheiden. Letzterer bezieht sich auf einen Sachverhalt, der an sich
entschieden ist, wobei wir das Resultat aber nicht kennen; ersterer macht dagegen
keine Aussage über das Vorliegen oder Nichtvorliegen einer Eigenschaft.

Um die zweiwertige Logik im Quantenbereich widerspruchsfrei durchhalten zu
können, müssen gewisse Aussagen für sinnlos erklärt werden, die in einem komple-
mentären Verhältnis zum bisherigen Wissen über das gerade betrachtete Quanten-
system stehen (Interpretation mit Sinneseinschränkung). In der dreiwertigen Kom-
plementaritätslogik hingegen werden diese Aussagen nicht im Sinn, sondern in
ihrer Aussagbarkeit oder Verfügbarkeit eingeschränkt (Interpretation ohne Sinnes-
einschränkung). Der „klassische Grenzfall“ der Quantenphysik besteht auf der lo-
gischen Ebene darin, dass die nur beschränkt verfügbaren Aussagen unbeschränkt
verfügbar und objektivierbar werden.

Ein komplementärer Aussagenverband enthält mit einer Aussage A auch deren
Negation. Die Komplementaritätslogik unterscheidet zwei Arten der Negation einer
Aussage: Die Negation des objektiven Satzes und die Negation des Wissens, die
wir aktive bzw. passive Negation nennen können. Die Negation des Wissens um
die Wahrheit einer Aussage ist zu unterscheiden vom Wissen um die Falschheit
dieser Aussage. Bei der aktiven Negation wird der Verneinungsoperator quasi in die
Realität hineingezogen, bei der passiven Negation hingegen nicht:

passive Negation W Ich weiß nicht, ob A gilt. , :Wissen .A/

aktive Negation W Ich weiß, dass A nicht gilt. , Wissen .:A/ :
Der Logikkalkül der unbeschränkt verfügbaren Aussagen hat die Struktur eines
Boole’schen Verbandes. Für unbeschränkt verfügbare Aussagen A und B besteht
die Möglichkeit des direkten Schlusses in der Form

Œ.A _ :B/ ^ B�) A :

Aussagenmit dieser Eigenschaft heißen kompatibel. Die Kompatibilität zweier Aus-
sagen ist somit das verbandstheoretische Analogon zur unbeschränkten Verfügbar-
keit.

Der Logikkalkül der beschränkt verfügbaren Aussagen hat die Struktur eines or-
thomodularen Verbandes. Im Unterschied zum Boole’schen Verband ist das Distri-
butivgesetz nicht mehr allgemein gültig. Mit dem Verzicht auf die Distributivität
entsteht zunächst ein orthokomplementärer Verband. Durch Hinzufügen eines ein-
geschränkten direkten Schlusses der Form

.A) B/) Œ.A _ :B/ ^ B� D A

wird ein orthokomplementärer Verband orthomodular (Rüttimann 1977). Distribu-
tivität impliziert Orthomodularität, jeder Boole’scher Verband ist auch ein orthomo-
dularer Verband, aber nicht umgekehrt:
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Verbandsstruktur Eigenschaft

komplementärer Verband Komplementgesetz

orthokomplementärer Verband Kontrapositionsgesetz

orthomodularer Verband Orthomodularitätsgesetz

Boole’scher Verband Distributivgesetz

Orthomodularität ist also die schwächere Struktur, die in der „klassischen Nähe-
rung“ in die Distributivität übergeht; der „klassische Grenzfall“ eines orthomodula-
ren Aussagenverbandes ist ein Boole’scher Verband.

Ein Kriterium für die eventuelle Teildistributivität eines orthomodularenVerban-
des wird durch die Kompatibilitätseigenschaften der Aussagen gegeben. Die kom-
patiblen Aussagen eines orthomodularen Aussagenverbandes bilden einen distribu-
tiven, d. h. Boole’schen Teilverband. Ein orthomodularer Verband ist genau dann
Boole’sch, wenn alle Elemente paarweise kompatibel sind. Das Fehlen eines Dis-
tributivgesetzes entspricht umgekehrt der Tatsache, dass die Quantenmechanik in-
kompatible Eigenschaften beschreibt.

Die dreiwertige Quantenlogik ist ein Versuch, eine Struktur, in der sich Proble-
me ergeben, so weit abzuschwächen, bis die Probleme gerade verschwinden. Im
Falle der Quantenphysik genügt hierfür die Abschwächung der Distributivität zur
Orthomodularität.

7.4 Zustandsräume und Projektoren

Der Boole’sche Verband der Aussagen über klassische Systeme ist isomorph zum
Verband der Teilmengen des Phasenraums. Der orthomodulare Verband der Aussa-
gen über Quantensysteme ist isomorph zum Verband der linearen Unterräume des
Hilbertraums, auf dem die Wellenfunktion lebt. Dem maximalen Wissen über ein
klassisches System entspricht ein Zustandspunkt im Phasenraum. Dem maximalen
Wissen über ein Quantensystem entspricht ein Zustandsvektor im Hilbertraum. Der
Zustandsvektor repräsentiert das maximal verfügbareWissen, welches nur im klas-
sischen Grenzfall auch ein vollständiges Wissen ist. Die quantenmechanische Be-
schreibung ist vollständig in dem Sinne, dass ihr nichts hinzugefügt werden kann,
was zu weiterem Wissen führt, ohne auf Teile des bereits gewonnenenWissens ver-
zichten zu müssen. Die maximale Information über ein System ist durch eine genaue
Messung eines vollständigen Satzes kompatibler Variabler gegeben (Messiah 1976):
„Die Beschreibung von physikalischen Eigenschaften mikroskopischer Objekte in
klassischer Sprache verlangt den Gebrauch von Paaren komplementärer Variabler.
Jede Variable eines Paares kann nur auf Kosten der Genauigkeit bei der Bestimmung
der zweiten Variablen schärfer bestimmt werden.“

Statt der linearen Unterräume können auch die entsprechenden Projektoren be-
trachtet werden, die jedem Unterraum in eindeutigerWeise zugeordnet werden kön-
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nen. Zwei Aussagen sind genau dann kompatibel, wenn die entsprechenden Projek-
toren kommutieren; die Kompatibilität von Aussagen entspricht der Vertauschbar-
keit der zugehörigen Projektoren. Inkompatible, d. h. komplementäre Eigenschaften
A und B werden dargestellt durch nichtvertauschende Observablen OA und OB mit

Œ OA; OB� ¤ 0 , OA OB ¤ OB OA :

Für zwei nicht-vertauschende Observablen gibt es keinen gemeinsamen Eigenvek-
tor, denn die Eigenwertgleichungen für diese Observablen können nicht simultan er-
füllt sein. Daher können zwei nicht-kommutierende Observablen nicht gleichzeitig
einen exakten Wert haben. Es gibt Potentialitäten in der Natur, die prinzipiell nicht
gleichzeitig aktualisierbar sind. Das maximal verfügbare Wissen über ein Quanten-
system ist in geeigneten Sätzen von kommutierenden Observablen enthalten. In der
Klassik sind alle Aussagen objektivierbar, unbeschränkt verfügbar und kompatibel,
während es in der Quantenphysik auch Aussagen gibt, die nicht-objektivierbar, be-
schränkt verfügbar und inkompatibel, d. h. komplementär sind.

Bohr betont immer wieder die Existenz inkompatiblerAussagen, hält aber gleich-
zeitig nur kompatible für sinnvoll, d. h. die Aussagen der Boole’schen Teilverbände.
Er erfand zwar das Komplementaritätsprinzip, weigerte sich jedoch, diesem Prinzip
durch eine entsprechende algebraische Struktur für inkompatible Aussagen Rech-
nung zu tragen. Obschon eine dreiwertige Komplementaritätslogik mit der Kopen-
hagener Deutung durchaus vereinbar ist, hat sich Bohr gegen diese Möglichkeit
ausgesprochen (Bohr 1948): „Incidentally, it would seem that the recourse to three-
valued logic, sometimes proposed as means for dealing with the paradoxical features
of quantum theory, is not suited to give a clearer account of the situation, since all
well-defined experimental evidence, even if it cannot be analysed in terms of classi-
cal physics, must be expressed in ordinary language making use of common logic.“
Bohrs Haltung lässt sich widerspruchsfrei durchhalten, allerdings nur auf Kosten
einer Sinneseinschränkung. Die Entscheidung für einen Logikkalkül der Quanten-
physik ist also nicht zwingend, sondern willkürlich. Es zeigt sich aber, dass eine
dreiwertige Quantenlogik besser zur Observablenalgebra der Quantenphysik passt
als die klassische Logik:

System klassisch quantenmechanisch

Aussagen objektivierbar nicht objektivierbar

Verfügbarkeit unbeschränkt beschränkt

Zustandsraum Phasenraum Hilbertraum

Zustände Teilmengen Unterräume

Verbandsstruktur distributiv orthomodular

Logikkalkül zweiwertig dreiwertig

Observablen kompatibel inkompatibel

Observablenalgebra kommutativ nicht kommutativ
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Dreiwertige Logikkalküle werden auch zur Beschreibung der Selbstreferenz in
lebenden Organismen mit Nervensystem verwendet (Spencer-Brown 1969; Howe
und von Foerster 1975; Varela 1975, 1979; Varela und Goguen 1978; Kauffman
und Varela 1980; Kauffman 1990). Der dritte Wahrheitswert heißt hier allerdings
nicht „unbestimmt“, sondern „autonom“ oder „paradox“. Der Übergang zu einer
dreiwertigen Logik entspricht dem Übergang von den reellen zu komplexen Zahlen
bei der Lösung von Gleichungen vom Typ x2 D �1. Lösungen dieser Gleichung
sind weder positive noch negative, sondern imaginäre Zahlen. Entsprechend ist der
dritte Wahrheitswert ein imaginärer Boole’scher Wert. „Dieser Satz ist falsch“ hat
diesen paradoxen, oszillierenden, imaginären Wahrheitswert.



Kapitel 8
Quantenphilosophie

Erst die Theorie entscheidet darüber,
was man beobachten kann.

Albert Einstein

Der Formalismus der Quantenmechanik ist von einer in sich geschlossenen Harmo-
nie und Schönheit, seine Vorhersagen experimentell hervorragend bestätigt. Seine
naturphilosophische Deutung ist jedoch nach wie vor umstritten. Die Kopenhage-
ner Deutung war lange Zeit die Standardinterpretation der Quantenmechanik (vgl.
Schrödinger 1935; Bohr 1948; Heisenberg 1956, 1973; Zeh 1970; Messiah 1976;
Baumann und Sexl 1984; Landau und Lifschitz 1988; Audretsch undMainzer 1990;
Schwabl 1990; Omnès 1994, 1995; Tegmark undWheeler 2001; Bertlmann und Zei-
linger 2002; Zeilinger 2003; Rebhan 2008). Charakteristisch für die Kopenhagener
Deutung sind die Unbestimmtheitsrelationen, die Komplementarität der Beschrei-
bungen und der „Kollaps der Wellenfunktion“ bei einer Messung, der Erwin Schrö-
dinger zur Formulierung seines Katzenparadoxons veranlasste.

In jüngster Zeit wird die Kopenhagener Deutung mehr und mehr von der Theo-
rie der Dekohärenz abgelöst. Unter Kohärenz versteht die Fähigkeit, Interferenz zu
erzeugen. Mit Dekohärenz bezeichnet man alle Prozesse, die diese Interferenzfä-
higkeit beeinträchtigen. Eine Messung etwa zur Lokalisierung von Elektronen oder
Atomen stellt eine Störung der Welle dar und bewirkt damit das Verschwinden
der Interferenz. Jede Wechselwirkung mit der Umwelt, z. B. die allgegenwärtige
Wärmestrahlung, zerstört die quantenmechanische Interferenzfähigkeit. Die Deko-
härenz erklärt, warum sich makroskopische Systeme klassisch verhalten und wie
sich das Katzenparadoxon damit in Luft auflöst.

Im Folgendenwird die Debatte um die Deutung der Quantenmechanik von einem
thermodynamischen Standpunkt aus noch einmal aufgegriffen. Es wird nicht über-
raschen, dass Einsteins Ensemble-Interpretation der Quantenmechanik am besten
zu einer thermodynamischen Deutung passt.
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8.1 Schrödingers Katze

Wenn ich jemanden von Schrödingers Katze
sprechen höre, greife ich nach meinem Gewehr.

Stephen Hawking

Wichtige Aspekte der kontroversen Debatte um die Deutung der Quantentheorie
verdeutlicht das unscharfe Leben von Schrödingers Katze (Audretsch und Main-
zer 1990). Diese „Burleske“ wurde von Schrödinger selbst zur Diskussion gestellt
(Schrödinger 1935):

„Man kann auch ganz burleske Fälle konstruieren. Eine Katze wird in eine Stahl-
kammer gesperrt, zusammen mit folgender Höllenmaschine (die man gegen den
direkten Zugriff der Katze sichern muss): in einem Geigerschen Zählrohr befin-
det sich eine winzige Menge radioaktiver Substanz, so wenig, dass im Laufe einer
Stunde vielleicht eines von den Atomen zerfällt, ebenso wahrscheinlich aber auch
keines; geschieht es, so spricht das Zählrohr an und betätigt über ein Relais ein
Hämmerchen, das ein Kölbchen mit Blausäure zertrümmert. Hat man dieses ganze
System eine Stunde lang sich selbst überlassen, so wird man sich sagen, dass die
Katze noch lebt, wenn inzwischen kein Atom zerfallen ist. Der erste Atomzerfall
würde sie vergiftet haben. Die  -Funktion des ganzen Systems würde das so zum
Ausdruck bringen, dass in ihr die lebende und die tote Katze zu gleichen Teilen
gemischt oder verschmiert sind.

Das Typische an diesen Fällen ist, dass eine ursprünglich auf den Atombereich
beschränkte Unbestimmtheit sich in grobsinnlicheUnbestimmtheit umsetzt, die sich
dann durch direkte Beobachtung entscheiden lässt. Das hindert uns, ein in so naiver
Weise ‚verwaschenes Modell‘ als Abbild der Wirklichkeit gelten zu lassen.“

Abbildung 8.1 veranschaulicht die Situation. Mit diesem Gedankenexperiment
stellte Schrödinger die Frage, ob und inwieweit die Unbestimmtheit quantenme-
chanischer Messgrößen vom mikroskopischen Bereich in die makroskopische All-
tagswelt übertragen werden kann. Die radioaktive Substanz befindet sich nach einer
Stunde in einer Superposition aus „zerfallen“ und „nicht zerfallen“. Da das Leben
der Katze von dem Zustand der radioaktiven Substanz abhängt, befindet sich diese
ebenfalls in einem Überlagerungszustand aus „Katze lebt“ und „Katze tot“:

j Katzei D 1

2


j lebendigi C j toti
�
:

Für die Katze ist eine solche Verschmierung von Leben und Tod jedoch undenkbar
und so entsteht ein Paradoxon, das Katzenparadoxon: Nach der klassischen Physik
ist die Katze entweder tot oder lebendig. Die Quantenmechanik sagt dagegen einen
Zustand voraus, in dem die Katze tot und lebendig zugleich ist. Erst wenn jemand
die Kammer öffnet und nachsieht, geht die Katze durch einen „Kollaps der Wellen-
funktion“ in einen der Zustände „tot“ oder „lebendig“ über. Schrödinger wollte mit
seinem Gedankenexperiment darauf hinweisen, wie absurd eine solche Vorstellung
ist.
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Abb. 8.1 Schrödingers Katze (gezeichnet von Monika Olah nach Vorlage von Abb. 4 aus Mittel-
staedt (1990))

Das Katzenparadoxon ist eine Veranschaulichung des Superpositionsprinzips.
In der Dynamik der Schrödinger-Gleichung bleibt ein Überlagerungszustand ein
Überlagerungszustand und ein Eigenzustand bleibt ein Eigenzustand. Es gibt ohne
Wechselwirkung mit der Umwelt keine Übergänge zwischen reinen und gemisch-
ten Zuständen. Der Übergang in einen Eigenzustand wurde dem Einfluss der Mes-
sung zugeschrieben. Wenn wir aber annehmen, dass allgegenwärtige Schwankun-
gen Quantensysteme schnell genug in einen thermodynamisch stabileren Eigen-
zustand relaxieren lassen und die typischen Dekohärenz-Zeiten klein genug sind,
dann macht sich die Superposition nicht makroskopisch bemerkbar. Ein „Kollaps
der Wellenfunktion“ fände nur in unserer Kenntnis des aktuellen Zustandes statt.
Katzenexperimente würden obsolet und Schrödingers Katze wäre gerettet – von
Einsteins trojanischem Pferd, der Schwankungstheorie. Tierschützer könnten auf-
atmen.

8.2 Komplementarität

Voraussagen sind schwierig
– besonders für die Zukunft.

Niels Bohr

Die KopenhagenerDeutung der Quantenmechanik beruht auf drei wesentlichen An-
nahmen:

1. Die Anschauung ist klassisch: Bei jeder Naturbeschreibung benutzt man eine
klassische Terminologie, wie wenig ein Vorgang auch mit der klassischen Phy-
sik zu tun haben mag.
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2. Grenze für Subjekt-Objekt-Spaltung: Im mikroskopischen Bereich ist eine klare
Trennung zwischen dem beobachteten Objekt und dem beobachtenden Subjekt
nicht mehr möglich.

3. Contraria sunt Complementae: Die Beschreibungen mit klassischen Begriffen
liefern kein einheitliches Bild, sondern verhalten sich komplementär zueinander.

Der Bruch der Kopenhagener Schule mit der klassischen Physik kann an zwei
Begriffen festgemacht werden: Die Quantenmechanik bricht mit dem klassischen
Grundsatz, dass ein physikalisches System beobachtungsfrei und wahrscheinlich-
keitsfrei beschrieben wird (Audretsch undMainzer 1990). Eine klassische Beschrei-
bung ist damit zugleich auch objektiviert und determiniert. Die Einbeziehung des
Beobachters führt bei Bohr auf einen Indeterminismus bei der Messung und eine
Komplementarität des Messbaren.

Die Quantenmechanik erlaubt keine einheitliche objektivierte Beschreibung,
sondern nur eine Beschreibung in zueinander komplementären Begriffen. Objekt-
eigenschaften sind genau dann objektivierbar, wenn sie durch klassische Observa-
ble beschrieben werden, die mit allen übrigen Observablen vertauschen, d. h. mit-
einander kompatibel sind. Die Inkompatibilität von Eigenschaften resultiert aus der
Nichtvertauschbarkeit der entsprechenden Operatoren.

Die Messgenauigkeiten bei gleichzeitigen Messungen komplementärer Obser-
vablen werden durch Unschärferelationen beschränkt. Ort und Impuls, aber auch
Welle und Teilchen sind Beispiele für komplementäre Aspekte. Ob sich das Quan-
tenobjekt als Welle oder Teilchen zeigt hängt ausschließlich davon ab, in welche
experimentelle Situation es gebracht wird. Die Erkenntnis wird von der Absicht des
Erkennens, von der Fragestellung des Forschers mitbeeinflusst.

Als Metapher für das Komplementaritätsprinzip kann ein sogenanntes „Weder-
Noch-Objekt“ wie in Abb. 8.2 dienen. Bei diesem Weder-Noch-Objekt handelt es
sich weder um drei Röhren noch um ein U-Eisen. Trotzdem scheint es aus drei Röh-
ren zu bestehen, wenn man nur den oberen Teil betrachtet, und aus einem U-Eisen,

Abb. 8.2 Weder-Noch-Objekt
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wenn man nur den unteren Teil ansieht. Bei speziellen „Messungen“ weist es al-
so jeweils die Eigenschaft bekannter Objekte auf. Versucht man aber, diese beiden
Eigenschaften gemeinsam an dem Objekt zu entdecken, werden sie unbestimmt.
Genaugenommen besitzt es diese Eigenschaften gar nicht.

Nach Messiah (1976) „scheint der Zusammenbruch der klassischen Theorie sei-
ne alleinige Ursache im Atomismus der Wirkung zu haben.“ Max Planck, der Er-
finder des Wirkungsquantums, ist stets dafür eingetreten, den Anschluss der Quan-
tentheorie an die klassische Dynamik so eng als möglich zu gestalten. Das Wir-
kungsquantum erwies sich jedoch gegenüber allen Versuchen, es in den Rahmen
der klassischen Theorie einzupassen, als sperrig und widerspenstig. Einstein 1924
in einem Brief an Born (1971): „Meine Versuche, den Quanten greifbare Gestalt zu
geben, sind allerdings immer wieder gescheitert, aber die Hoffnung gebe ich nicht
auf.“ Er wolle dann doch „lieber Schuster oder gar Angestellter in einer Spielbank
sein als Physiker“.

Aus thermodynamischer Sicht kann die Wirkungsquantelung als Aussage über
zulässige und stabile Entropieverteilungen gedeutet werden, die aus dem Wechsel-
spiel von Entropieproduktion und Entropiediffusion entstehen.

8.3 Akausalität

Ich verzichte aber sehr ungern
auf die vollständige Kausalität.

Albert Einstein

Für die Kopenhagener Schule besteht ein Quantenphänomen aus einem quanten-
theoretisch zu beschreibenden Objekt und einer klassisch zu beschreibenden Ver-
suchsanordnung. Wollen wir etwas über den Zustand des Systems aussagen, müs-
sen wir es einem Messprozess unterwerfen. Im Unterschied zur klassischen Phy-
sik verändern Messungen im Allgemeinen den Zustand der Quantenobjekte. Vor
der Messung kann das Quantensystem über seine Zustände verschmiert sein, es be-
findet sich dann in einem Überlagerungszustand und alle möglichen Werte für die
Messgröße sind simultan im System enthalten. Die Messung liefert jeweils einen
speziellen Messwert und das System geht durch die Messung in den zugehörigen
Eigenzustand über. „Es wird heute allgemein angenommen“, dass die Wellenfunk-
tion den Zustand des isolierten Quantensystems vollständig beschreibt. Während
des Messvorgangs ist das Quantensystem jedoch kein isoliertes System mehr, so
dass die Messapparatur mit ihren Variablen ebenfalls in die Beschreibung mit ein-
bezogen werden muss. Messiah (1976): „Erst wenn die Messung abgeschlossen
ist, ist es wieder möglich, das System durch eine Wellenfunktion zu beschreiben,
die sich nur auf seine dynamischen Variablen bezieht. Diese unterscheidet sich si-
cher von der Wellenfunktion unmittelbar vor der Messung, falls letztere nicht gera-
de Eigenfunktion der der Messgröße zugeordneten Observablen ist. Die durch den
Messvorgang bewirkte (nichtkausale) Änderung der Wellenfunktion nennt man Re-
duktion des Wellenpakets (Zustandsreduktion). Kausalität gibt es in voller Strenge
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nur bei isolierten Systemen.“ Der Einfluss der Messapparatur erscheint in dieser
Deutung als unkontrollierbare Störung, die den kausalen Zusammenhang zwischen
dem Zustand des Systems vor und nach der Messung zerstört und so der zu jeder
Erkenntnis notwendigen Unterscheidung zwischen Subjekt und Objekt eine Gren-
ze setzt. Durch die Unkontrollierbarkeit der Wechselwirkung verschmelzen Objekt
und Messapparat zu einer neuen unauflösbaren Einheit. Der Zusammenhang zwi-
schen der Wellenfunktion, die den Zustand des Quantensystems beschreibt, und den
messbaren Objekteigenschaften ist statistischer Natur.ff

Der Preis für die Kopenhagener Deutung ist also ein teilweiser Verzicht auf
Kausalität und eine Dualität der Zeitentwicklung: stetig und deterministisch für
das Reich des Potentiellen, unstetig und akausal dagegen für die beobachteten
Aktualisierungen. Um alle quantenmechanischen Effekte vollständig beschreiben
zu können, bedarf es zweier Formen der dynamischen Entwicklung eines Quan-
tenzustands: Die zeitliche Entwicklung zwischen den Messungen wird durch die
Schrödinger-Gleichung beschrieben, während die Messung durch den Kollaps der
Wellenfunktion charakterisiert ist. Unbefriedigend daran ist, dass der Messprozess
selbst nicht weiter analysierbar ist; er verläuft nicht mehr deterministisch, sondern
indeterministisch oder akausal. Das erkenntnistheoretische Problem ist in der Tat
delikat: Die Vollständigkeit der Beschreibung bricht ausgerechnet dann zusammen,
wenn die einzig observablen Messwerte gewonnen werden sollen; denn vollkom-
men isolierte Systeme sind nicht beobachtbar.

Die Kopenhagener Deutung interpretiert die Wellenfunktion als Voraussage der
Ergebnisse möglicher Messungen. Aus dieser Sicht löst sich das Katzenparadoxon
in trivialer Weise: Die Wellenfunktion wird nicht als Eigenschaft des Objekts (on-
tisch) aufgefasst, sondern als Wissenskatalog, der das Wissen eines wissenden Sub-
jekts enthält (epistemisch). Der plötzliche „Kollaps der Wellenfunktion“ beruht ein-
fach auf einer Unstetigkeit in der Kenntnisnahme eines Sachverhalts und ist damit
unvermeidlich.Wirft man zwei Würfel hintereinander, so ist die Wahrscheinlichkeit
dafür, insgesamt 12 Augen zu werfen, gleich 1=36. Liest man das Ergebnis des ers-
ten Würfels ab, so ändert sich diese Wahrscheinlichkeit auf den Wert 0 oder 1=6.
Die gewonnene Information wird dahingehend genutzt, dass die Einschätzung der
Wahrscheinlichkeit des darauffolgenden Ereignisses abgeändert wird. Diese Form
der akausalen Reduktion („ epistemischer Schnitt“) ist in jeder Statistik üblich. Die
Würfel sind gefallen, aber erst das Aufheben des Würfelbechers führt zu einem
Erkenntnisgewinn. Unsere Zurkenntnisnahme ist akausal, denn sie ist willkürlich
(Rebhan 2008).

Die Annahme einer wirklichen Akausalität physikalischer Prozesse führt in eine
gewisse Form des Obskurantismus. Denn in einem akausalen Vorgang gibt es Wir-
kungen ohne Ursache; eine Wirkung ohne Ursache ist aber definitionsgemäß ein
Wunder. Wunder sind ihrerseits nicht Gegenstand physikalischer Untersuchungen.
Ergo kann „Akausalität“ kein physikalischer Begriff sein; Physik ist keine Mystik.
Dagegen kann der Kausalitätsbegriff in einem thermodynamischen Rahmen durch-
aus in eine statistische Kausalität abgeschwächt werden (Bessenrodt 1987).

Obwohl die Kopenhagener Deutung zur Standardinterpretation der Quantenme-
chanik wurde, blieb sie nicht unwidersprochen.
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8.4 Vollständigkeit

Raffiniert ist der Herrgott,
aber boshaft ist er nicht.

Albert Einstein

Zur Kopenhagener Schule gehörten Niels Bohr, Werner Heisenberg, Wolfgang Pau-
li, Max Born und John von Neumann. Zu den Gegnern der Kopenhagener Schule
zählten Albert Einstein, Erwin Schrödinger, Louis de Broglie, John Bell und David
Bohm. Ein wesentlicher Diskussionspunkt in der Debatte um die Quantenmechanik
betraf ihre Vollständigkeit, also die Frage, ob die Quantentheorie eine vollständige
Beschreibung der objektivenWirklichkeit liefert, oder ob es eine bestimmte Anzahl
„verborgener Parameter“ gäbe, deren Werte wegen der Unvollkommenheit unserer
Beobachtungsmittel für die Beschreibung des individuellen Quantensystems nicht
verfügbar sind (Bohr 1935; Einstein, Podolsky und Rosen 1935). Bohm etwa ver-
suchte mehrfach, durch eigene Ansätze das Kopenhagener Interpretationsmonopol
zu brechen (de Broglie 1926, 1927, 1928, 1964; Bohm 1951, 1952; Bohm und Vi-
gier 1954; Mermin 1990; Valentini 1991, 1992; Vink 1993; Bohm und Hiley 1993;
Holland 1993, 1998; Cushing 1994; Goldstein 1996; Dürr 2001; Dürr, Goldstein und
Zanghì 1992, 2004; Myrvold 2003; Passon 2004, 2006; Teufel und Tumulka 2005;
Bacciagaluppi und Valentini 2007). Auf der anderen Seite erbrachte von Neumann
verschiedene Unmöglichkeitsbeweise für eine ontische Objektbeschreibung mittels
verborgener Parameter (von Neumann 1932; Kochen und Specker 1967). Darüber
hinaus stehen Bohms frühe Theorien mit verborgenen Parametern im Widerspruch
zu experimentellen Befunden (Baumann und Sexl 1984; Schwabl 1990; Audretsch
und Mainzer 1990). Andererseits fand John Bell Lücken in den Unmöglichkeitsbe-
weisen und deren Annahmen (Bell 1966, 1987). Bis in die heutige Zeit gibt es viel-
fältige Versuche, die Quantenmechanik aus einer statistischen Mechanik abzuleiten
(Fürth 1933; Fényes 1952; Weizel 1953; Wax 1954; Wesley 1961; Comisar 1965;
Nelson 1966; Favella 1967; De La Peña-Auerbach 1967; De La Peña-Auerbach und
Cetto 1969; De La Peña-Auerbach, Velasco und Cetto 1970; Ballentine 1970; Ghi-
rardi, Omero, Rimini undWeber 1978; Davidson 1979; Grabert, Hänggi und Talkner
1979; Ghirardi, Rimini und Weber 1986; Grabert, Schramm und Ingold 1988; Ron-
cadelli 1991; Dittrich et al. 1998; Bacciagaluppi 1999; Hänggi und Ingold 2005;
Davidson 2007).

Der Beitrag der vorliegenden Arbeit besteht in einer Ableitung der Schrödinger-
Gleichung aus einer thermodynamischen Lagrange-Funktion ohne weitere „ver-
borgene“ Parameter. Unvollständig an der Beschreibung durch die Schrödinger-
Gleichung ist aus dieser Sicht das Fehlen einer dissipativen Dynamik, die das Sys-
tem ausMischzuständen in die Eigenzustände hinein relaxieren lässt und Übergänge
zwischen Eigenzuständen thermodynamisch erklärt.
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8.5 Quantensprünge

Wenn es bei dieser verdammten Quantenspringerei
bleiben soll, so bedauere ich, mich mit der
Quantentheorie überhaupt bescrr häftigt zu haben.

Erwin Schrödinger

Auch Schrödinger war mit der Kopenhagener Deutung nicht zufrieden: Er lehnte
Bohrs Vorstellung von den Quantensprüngen ab. Nach Bohrs Theorie springt das
Elektron spontan von einer Bahn auf eine andere. Für Schrödinger sollte das Elek-
tron aber vielmehr als stehende Welle um den Atomkern interpretiert werden und
die Emission von Lichtquanten durch eine Mischung verschiedener Schwingungs-
zustände zu erklären sein. Damit wollte Schrödinger zu einem kausalen, determi-
nistischen Modell der atomaren Vorgänge gelangen (Schrödinger 1951). Bohr hin-
gegen vertrat die Ansicht, dass das unstetige, akausale Verhalten ein wesentlicher
Grundzug der Quantentheorie sei, und dass prinzipiell keine Möglichkeit zu einer
anschaulichen raumzeitlichen Beschreibung der Vorgänge im Atom bestehe.

„Natura non facit saltus.“ Die Natur macht keine Sprünge. Diese Aussage von
Leibnitz kennzeichnet die Auffassung der klassischen Physik, dass alle Vorgänge
stetig verlaufen – bezogen auf eine gewisse Zeitskala. Schrödinger hat an dieser
Stelle Recht behalten: „Quantensprünge“, d. h. Übergänge zwischen den Eigenzu-
ständen, werden durch Mischzustände repräsentiert. Die Störungstheorie modelliert
solche Übergänge durch zeitabhängige Störoperatoren, die die Zeitumkehrinvari-
anz der Schrödinger-Gleichung brechen. Die Mischzustände sind thermodynamisch
weniger stabil als die Eigenzustände. Bei Übergängen von Mischzuständen in Ei-
genzustände nimmt die mittlere Entropie zu.

8.6 Dekohärenz

Der Physiker aber muss in seiner Wissenschaft voraussetzen,
dass er eine Welt studiert, die er nicht selbst gemacht hat und
die ohne ihn auch, im Wesentlichen genau so, vorhanden wäre.

Werner Heisenberg

In letzter Zeit wird die Kopenhagener Deutung mit ihrem Kollaps der Wellenfunk-
tion mehr und mehr von der Theorie der Dekohärenz verdrängt (Lindblad 1976;
Gorini, Kossakowski und Sudarshan 1976; Walls und Milburn 1985; Weis 1993;
Zeh 1993; Zurek 1991, 2001, 2002; Zurek und Paz 1994; Omnès 1994, 1995; Bub
1997; Braun, Braun und Haake 1999, 2000; Nielsen und Chuang 2000; Audretsch
2002; Breuer und Petruccione 2002; Buchleitner und Hornberger 2002; Giulini et
al. 2003; Zeilinger 2003; Camejo 2006). Die Wellenfunktion kollabiert nicht erst
plötzlich durch eine Messung, sondern kontinuierlich durch Wechselwirkungen des
Quantensystems mit der Umgebung.
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Kohärenz bezeichnet die Fähigkeit von Wellen zur Interferenz, Dekohärenz den
Verlust dieser Interferenzfähigkeit. Die Dekohärenz beschreibt den Übergang eines
kohärenten Überlagerungszustandes in einen „messbaren“ Eigenzustand hinein.

Die Dekohärenz-Zeit tD ist die Zeit, die das System zum Relaxieren in einen
Eigenzustand benötigt. Sie ist umgekehrt proportional zur Temperatur T und zur
Masse m des Systems:

Dekohärenz-Zeit W tD � 1

T �m :

Die Dekohärenz-Zeit ist also umso länger, je niedriger die Temperatur und je kleiner
die Masse des Systems ist. Für makroskopische Systeme bei normalen Temperatu-
ren bedeutet dies, dass der Verlust der Kohärenz sehr schnell stattfindet im Vergleich
zu anderen beteiligten Zeitskalen. Eine quantenmechanische Kohärenz kann folg-
lich im Alltag nicht beobachtet werden. In mikroskopischen Systemen mit sehr viel
geringerenMassen hingegen kann die längere Dekohärenz-Zeit zu Quanteneffekten
führen. Um Quanteneffekte sichtbar zu machen, untersucht man also sinnvollerwei-
se sehr kleine, sehr leichte und sehr langsame, d. h. kalte Objekte.

Für die Dekohärenz kohärenter Mischzustände konnte eine thermodynamische
Erklärung gefunden werden: Die Eigenzustände eines Quantensystems besitzen ei-
ne größeremittlere Entropie und sind damit thermodynamisch stabiler als die Super-
positionszustände. Die Übergänge in die Eigenzustände sind in einem statistischen
Sinne kausale Prozesse. Insbesondere ist der „Kollaps der Wellenfunktion“ bei der
Messung ein kausaler und kein akausaler Vorgang.

8.7 Nichtlokalität

Die Theorie an und für sich ist nichts nütze,
als insofern sie uns an den Zusammenhang
der Erscheinungen glauben macht.

Johann Wolfgang von Goethe

Das Superpositionsprinzip liefert korrelierte, „verschränkte“ Gesamtzustände von
Systemen, selbst wenn deren Teilsysteme schon längst räumlich getrennt und oh-
ne Wechselwirkung sind. Diese fundamentale Nichtlokalität der Quantentheorie
kommt beispielhaft in den sogenannten EPR-Experimenten zum Ausdruck, die von
Einstein, Podolsky und Rosen vorgeschlagenwurden (Einstein, Podolsky und Rosen
1935; Bohm 1951; Bohm und Aharonov 1957; Bell 1964). In der einfachsten Vari-
ante werden zwei Teilchen mit Spin 1

2 in einem Überlagerungszustand präpariert, in
dem für beide Teilchen die Spinzustände " und # gleichwahrscheinlich sind:

j i D 1p
2
. j"ij#i � j#ij"i/ :
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Die beiden Teilchen werden von einer Quelle emittiert und bewegen sich voneinan-
der weg. Auch wenn die Teilchen so weit voneinander entfernt sind, dass sie nicht
mehr wechselwirken können, findet man folgende Korrelation bei Messungen der
Spinzustände der Einzelteilchen: Misst man bei Teilchen 1 Spin ", so ergibt sich
bei Teilchen 2 Spin # und umgekehrt. Die Messung am Teilchen 1 beeinflusst das
Ergebnis der Messung an Teilchen 2, obwohl keine Beeinflussung zwischen den
beiden Teilchen stattgefunden haben kann.

Derartige „spukhafte Fernwirkungen“ (Born 1971; Bell 1987) sind mit dem loka-
len Realismus der klassischen Physik unvereinbar. Die uneingeschränkte Gültigkeit
des Superpositionsprinzips suggeriert einen universellen Holismus: Alles hängt mit
allem zusammen. Eine lokale Interpretation der Quantenmechanik muss hingegen
davon ausgehen, dass die Spinzustände schon vor den Messungen festgelegen ha-
ben und nicht erst durch die Messung mit einem abrupten Kollaps der Wellenfunk-
tion entstanden sind. Einstein, Podolsky und Rosen schlossen daraus, dass es eine
vollständigere Theorie mit verborgenen Parametern geben müsse. Die verborgenen
Parameter tragen die Information über die Spinzustände.

Die Einführung verborgener Parameter ist aber nun nicht mehr die einzige Al-
ternative zu einem letztlich mystischen Holismus. Die Dekohärenz lässt den präpa-
rierten Superpositionszustand rasch genug in geeignete Eigenzustände relaxieren.
In diesem Falle würden sich die Spins einstellen, solange die beiden Teilchen noch
wechselwirken. Das Ergebnis steht längst fest, wir haben nur noch keine Kenntnis
davon genommen.

Ursprünglich waren die EPR-Experimente reine Gedankenexperimente. Mit der
heutigen Experimentiertechnik können diese Experimente tatsächlich durchgeführt

Abb. 8.3 Der nichtklassische Skiläufer (gezeichnet von Monika Olah nach Vorlage von Abb. 4 aus
Audretsch (1990))
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werden und führen zu spannenden Ergebnissen (Greenberger, Horne und Zeilinger
1989; Greenberger,Horne, Shimony und Zeilinger 1990;Mermin 1990; Bouwmees-
ter, Pan, Daniell, Weinfurter und Zeilinger 1999).

Kohärenz und Dekohärenz können bei Doppelspaltexperimenten mit Elektronen
beobachtet werden: Ohne Wechselwirkungen befinden sich die Elektronen in einem
Superpositionszustand, in dem sich die Beiträge der beiden Wege überlagern und
hinter dem Doppelspalt ein Interferenzmuster erzeugen. Das Elektron fliegt quasi
durch beide Spalte gleichzeitig hindurch. Wie das geht, zeigt der nicht-klassischeWW
Skiläufer in Abb. 8.3. Je mehr das Elektron jedoch auf seinem Weg Wechselwir-
kungen mit der Umgebung erfährt, desto mehr verschwindet das Interferenzmuster
hinter dem Doppelspalt. Das gilt auch für die Wechselwirkung mit einem Mess-
instrument, das feststellt, durch welchen Spalt das Elektron hindurchfliegt: Immer
wenn die experimentelle Anordnung die Entscheidung ermöglicht, durch welchen
Spalt ein Elektron tritt, verschwindet das Interferenzmuster. Und immer, wenn eine
solche Entscheidung nicht möglich ist, zeigt sich das Interferenzmuster.

Fazit: Der Nichtlokalität der Quantentheoriewird durch die Dekohärenz eine Gren-
ze gesetzt.

8.8 Absoluter Zufall?

Die Quantenmechanik ist sehr achtunggebietend.
Aber eine innere Stimme sagt mir, dass das noch nicht
der wahre Jakob ist. Die Theorie liefert viel, aber
dem Geheimnis des Alten bringt sie uns kaum näher.
Jedenfalls bin ich überzeugt, dass der Alte nicht würfelt.

Albert Einstein

Im Unterschied zur klassischen statistischen Mechanik sind inkompatible Eigen-
schaften von Quantensystemen prinzipiell unbestimmt und nicht mit besseren ex-
perimentellen Kenntnissen beliebig genau bestimmbar. Während die klassische Sta-
tistik nur ein Hilfsmittel gegen das prinzipiell eliminierbare Unwissen ist, gibt es
im Quantenbereich eine „echte Statistik“, einen „absoluten Zufall“, der nicht durch
besseres Wissen eliminierbar ist (Audretsch und Mainzer 1990). Mit dieser funda-
mentalen Art der Statistik konnte sich Einstein nicht abfinden (Born 1971): „Ich
glaube noch an die Möglichkeit eines Modells der Wirklichkeit, d. h. einer Theorie,
die die Dinge selbst und nicht nur die Wahrscheinlichkeit ihres Auftretens darstellt.“
Aus klassischer Sicht kann die Quantentheorie nicht das einzelne Quantensystem
beschreiben, sondern nur ein Ensemble von Quantensystemen (Einstein 1984; Bal-
lentine 1970; Baumann und Sexl 1984; Home und Whitaker 1992).

Hinter der klassischen Vorstellung steht der Laplace’sche Dämon, dem es mög-
lich ist, unter Kenntnis sämtlicher Naturgesetze und aller Anfangsbedingungen je-
den vergangenen und jeden zukünftigen Zustand der Welt zu berechnen. Die An-
zahl der simultan zu lösenden Bewegungsgleichungen ist allerdings so groß, dass
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der Dämon für diese Berechnung mindestens genau so lange benötigen würde wie
das Universum braucht, um den berechneten Zustand einzunehmen. Zudem müss-
ten die Anfangsbedingungen für jedes Atom beliebig genau messbar sein, damit
auch die chaotischen Anteile der Systemdynamik mit ihren Bifurkationen vorher-
gesagt werden können. Die Erforschung des deterministischen Chaos zeigt, dass
eine längerfristige Vorhersage selbst bei rein deterministischen Systemen aufgrund
einer extrem empfindlichen Abhängigkeit der Dynamik von den Anfangsbedingun-
gen praktisch unmöglich sein kann.

Die klassische Idee des uneingeschränkten Determinismus in Verbindung mit
einer prinzipiellen Vorhersagbarkeit lässt sich also kaum durchhalten. Doch auch
die Vorstellung vom „absoluten Zufall“ und die Annahme einer spezifisch quan-
tenmechanischen „echten Statistik“ kann ebenso kritisch hinterfragt werden. Was
würde passieren, wenn jemand hinginge und eine vielleicht chaotische, aber deter-
ministische submikroskopische Dynamik konstruieren würde, die im eingeschwun-
genen Zustand exakt die gleichen beobachtbaren Wahrscheinlichkeitsverteilungen
hervorbringt wie die Schrödinger-Gleichung (z. B. Cohen 1992)? Dann läge der Un-
schärferelation ein deterministischer Prozess zugrunde, der die Impulsverteilung im
Ensemble-Mittel aufweitet, wenn die Ortsverteilung zusammengedrückt wird und
umgekehrt. Woher wollen wir wissen, ob eine solche Konstruktion unmöglich ist?

Die klassische Statistik unterstellt im Grunde, dass die Wahrscheinlichkeitsver-
teilung letztlich in allen Richtungen bis zum Deltapeak zusammengedrückt und mit-
hin die Krümmung der Entropiedichte prinzipiell beliebig groß gemacht werden
kann. Nach dem zweiten Hauptsatz der Thermodynamik ist aber jeder Informati-
onsgewinn innerhalb eines isolierten Systems stets mit einem Informationsverlust
an einer anderen Stelle des Systems verbunden. Die „echte“ Statistik ist eine etwas
unklare Umschreibung dieser Zusammenhänge zwischen den Streuungen der Mar-
ginalverteilungen für Ort und Impuls. Die Begriffe „absoluter Zufall“ oder „ Akau-
salität“ sind ungeeignet, um diese Zusammenhänge zu charakterisieren. Es handelt
sich eher um einen relativen, d. h. bedingten Zufall; und die Zusammenhänge sind
in einem statistischen Sinne kausal. Die Unschärferelation macht die Statistik irre-
duzibel.

Mit dem „echten Zufall“ widerspricht die Quantenmechanik dem Prinzip des
hinreichenden Grundes: Nichts geschieht ohne eine Ursache (Leibniz). Aus der
Wahrscheinlichkeitstheorie bleibt das Prinzip des unzureichenden Grundes: Wenn
kein Ereignis ausgezeichnet erscheint, dann sind die Ereignisse als gleichwahr-
scheinlich anzunehmen (Laplace). Als Verallgemeinerung kann das Prinzip der ma-
ximalen Unvoreingenommenheit gegenüber fehlender Information formuliert wer-
den. In der Quantenmechanik gibt es prinzipiell fehlende Information.

Aus einer konstruktivistischen Sicht spiegeln die Begriffe „Zufall“ und „Not-
wendigkeit“ nicht die Eigenschaften der Natur wider, sondern unsere eigenen Fä-
higkeiten und Unfähigkeiten: Notwendigkeit entsteht aus der Fähigkeit, unfehlbare
Deduktionen zu machen. Zufall ergibt sich aus der Unfähigkeit, unfehlbare Induk-
tionen vorzunehmen (von Foerster 1981, 1985).
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8.9 Ensemble-Interpretation

Ist nun das so skizzierte Credo der Naturwissenschaft
endgültig? Ich denke: Ein Lächeln ist besser angezeigt
als der Versuch einer Antwort.

Albert Einstein

Die Kopenhagener Deutung tut sich schwer bei der Beantwortung der Frage, was
der Wellenfunktion für eine Bedeutung zukommen soll. Wenn das Quadrat der Wel-
lenfunktion eine Wahrscheinlichkeit angibt, ist die Wellenfunktion dann eine Wahr-
scheinlichkeitswelle? Kann eine Wahrscheinlichkeit eine Welle sein? Eine extre-
me, epistemische Deutung sieht die Wellenfunktion nicht als eine Eigenschaft des
Quantensystems selbst, sondern als etwas, das unser Wissen über das System zum
Ausdruck bringt. So schreibt Heisenberg in einem Brief an Renninger (Renninger
1960): „Der Akt der Registrierung andererseits, der zur Zustandsreduktion führt, ist
ja nicht ein physikalischer, sondern sozusagen mathematischer Vorgang.Mit der un-
stetigen Änderung unserer Kenntnis ändert sich natürlich auch die mathematische
Darstellung unserer Kenntnis unstetig.“ Die Wellenfunktion enthält die Information
über das System, die uns im Prinzip zugänglich ist. Um diese Information als sol-
che deutlicher hervortreten zu lassen, haben wir die Schrödinger-Gleichung von der
Wellenfunktion über die Wahrscheinlichkeit auf die Entropie transformiert.

Die KopenhagenerDeutung offenbart eine recht subjektive, idealistische, teilwei-
se indeterministische Einstellung zur Quantenmechanik. Im Gegensatz dazu bietet
die de-Broglie-Bohm-Theorie eine klassische, realistische, kausale und sogar de-
terministische Theorie an. In ihren modernen Formen macht die Bohm’schen Me-
chanik dieselben experimentellen Voraussagen wie die herkömmliche Quantenme-
chanik, so dass das Experiment nicht entscheiden kann, welche Theorie richtiger
ist als die andere. Die Entscheidung zugunsten einer der beiden Theorien ist damit
eine metaphysische Entscheidung. Die Bohm’sche Theorie wird hier nicht aus phy-
sikalischen, sondern aus ästhetischen Gründen abgelehnt, weil sie die Symmetrie
zwischen Orts- und Impulsdarstellung zerstört. Wie die Wellenfunktion als „Füh-
rungsfeld“ Kräfte auf das Quantenteilchen ausüben kann, bleibt etwas mysteriös.
Ein interessanter Aspekt der de-Broglie-Bohm-Theorie ist allerdings die Rückfüh-
rung der Quanteneffekte auf das Quantenpotential. Die aus dem Quantenpotential
resultierenden Kräfte können als statistische Kräfte gedeutet werden.

Unsere thermodynamische Deutung der Quantenmechanik ist der Versuch einer
kritischen Synthese zwischen der epistemischen Kopenhagener Deutung und der
ontologischen Bohm’schen Interpretation. Einerseits wird die Wahrscheinlichkeits-
interpretation mit Hilfe des Entropiebegriffs weiter ausgebaut, andererseits wird
die realistische Deutung des Quantenpotentials auf eine neue, thermodynamische
Grundlage gestellt.

Aus Sicht der statistischen Thermodynamik ist die naheliegendste Deutung die
Ensemble-Interpretation, die von Einstein vorgeschlagen wurde (Einstein 1984;
Ballentine 1970; Baumann und Sexl 1984; Home und Whitaker 1992): „Die  -
Funktion beschreibt überhaupt nicht einen Zustand, der einem einzelnen System
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zukommen könnte; sie bezieht sich vielmehr auf so viele Systeme, eine ‚System-
Gesamtheit‘ im Sinne der statistischen Mechanik. Wenn die  -Funktion abgese-
hen von besonderen Fällen nur statistische Aussagen über messbare Größen lie-
fert, so liegt dies also nicht nur daran, dass der Vorgang der Messung unbekannte,
nur statistisch erfassbare Elemente einführt, sondern eben daran, dass die  -Funk-
tion überhaupt nicht den Zustand eines Einzelsystems beschreibt. Die Schrödinger-
Gleichung bestimmt die zeitlichen Änderungen, welche die System-Gesamtheit
erfährt. [. . . ] Dass die Quantenmechanik in so einfacher Weise Aussagen über
(scheinbar) diskontinuierliche Übergänge von einem Gesamtzustand in einen an-
dern abzuleiten gestattet, ohne wirklich eine Darstellung des eigentlichen Prozesses
zu geben, hängt damit zusammen, dass die Theorie in Wahrheit nicht mit dem Ein-
zelsystem, sondern mit einer System-Gesamtheit operiert.“

Will man wieder zurück zu einer klassischen Situation, in der die Statistik nur
wieder nichts weiter ist als ein kluges Management des prinzipiell eliminierbaren
Unwissens, so kann man sich die Rolle der Statistik in der Thermodynamik als
Beispiel nehmen. Man braucht eine subatomare Mikrodynamik aus vielen Elemen-
ten, über die man für eine mesoskopische oder makroskopische Beschreibung mit-
teln kann. Dass eine solche Mikrodynamik deterministisch sein soll, ist vielleicht
wünschenswert, aber keine notwendige Voraussetzung für eine physikalische Theo-
rie. Um Statistik treiben zu können, müssen auf der jeweiligen Mikroebene nicht
zwangsläufig deterministische Gesetze gelten (Bessenrodt 1987). Es fragt sich, ob
eine solche Mikrodynamik etwa aus Vakuumfluktuationen existiert (vgl. Valentini
1991, 1992; Zurek 2001, 2002). Auf eine gewisse Art sind mit der Hinzunahme von
Quarks und anderen Kleintieren aus dem subatomaren Zoo bereits „verborgene“
Parameter und Eigenschaften in die Atomphysik eingeführt worden.



Kapitel 9
Zusammenfassung

Morgen werden wir gelernt haben, die gesamte Physik in der
Sprache der Information zu verstehen und auszudrücken.

John Wheeler

Die vorliegende Arbeit entstand aus dem Bedürfnis nach anschaulichen Vorstellun-
gen von der Quantenwelt. Viele Physiker brauchen keine Anschauung. Ihnen ge-
nügt ein funktionierender Formalismus mit abstrakten mathematischen Begriffen.
Als Quellen der Anschaulichkeit bieten sich an die Mechanik mit ihrem Teilchen-
bild (hydrodynamische Analogie) oder die Elektrodynamik mit ihrem Wellenbild
(optische Analogie) – oder auch die Thermodynamik mit ihren eigenen Begriffen
der Entropie und Information. Die Entropie ist der Schlüssel zu einem anschauli-
chen Verständnis der Quantenwelt.

Messiah (1976): „Die konkreten Bilder, die uns unsere tägliche Erfahrung ein-
gibt, entstammen einer Welt, in der c unendlich groß und „ gleich Null zu sein
scheinen. Sie können nicht ohne weiteres auf einen Bereich übertragen werden, in
dem die eine oder andere dieser Näherungen nicht mehr gültig ist.“ Die Endlichkeit
der Lichtgeschwindigkeit erzwingt eine Revision des Gleichzeitigkeitsbegriffs; die
Endlichkeit des Wirkungsquantums erzwingt eine Revision des Begriffs der gleich-
zeitigen Messung. Die Beobachtung ist relativ zum Standpunkt des Beobachters,
die Unsicherheit bei der Beobachtung ist absolut. Ein Maß für die (beseitigte) Un-
sicherheit ist die Entropie.

Eine thermodynamische Umdeutung der Schrödinger-Gleichung ermöglicht ei-
nen klassischen Zugang zur Quantenmechanik. Der Schlüssel zu diesem Eingang
ist Einsteins „trojanisches Pferd“, die Schwankungstheorie. Mit dem klassischen
Entropiebegriff gelingt eine Transformation der Schrödinger-Gleichung auf ther-
modynamische Variablen. Die wesentlichen Ergebnisse lassen sich wie folgt zu-
sammenfassen:

• Quantenobjekte werden als thermodynamische Systeme aufgefasst. Welle und
Teilchen sind zwei Erscheinungsformen eines thermodynamischen Prozesses.

• Die thermodynamische Beschreibung der Quantenvorgänge ist stetig und kausal.
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• Die thermodynamische Umdeutung der Schrödinger-Gleichung erfolgt in zwei
Schritten:

Borns Deutung: Wahrscheinlichkeit D Quadrat der Wellenfunktion

Boltzmanns Prinzip: Entropie D Logarithmus der Wahrscheinlichkeit

• Quanteneffekte entstehen durch das Zusammenspiel von zwei statistischen Po-
tentialen:

QuantenpotentialD EntropieproduktionC Entropiediffusion

• Die Schrödinger-Gleichung eines Teilchens in einem äußeren Potential kann auf
dem Weg über die Hamilton-Jacobi-Gleichung aus einer thermodynamischen
Lagrange-Funktion mit statistischen Potentialen hergeleitet werden.

• Auf der Beschreibungsebene der feldtheoretischen Lagrange-Dichten zeigt sich
der Unterschied zur Klassik als Zusatzterm in Form einer Entropieproduktions-
dichte, die im klassischen Grenzfall mit dem Wirkungsquantum verschwindet.

• DieQuantenthermodynamik bekommt eine neue Blickrichtung: Die Quantenme-
chanik wird aus einer statistischen Thermodynamik abgeleitet und nicht – wie
sonst üblich – umgekehrt die Thermodynamik aus der Quantenmechanik.

• Die Forderung nach thermodynamischer Stabilität erzwingt die Quantisierung
der Energie gebundener Zustände sowie eine endliche Nullpunktsenergie.

• In stationären Zuständen kompensiert das Quantenobjekt äußere Kräfte durch
statistische, innere Kräfte. Die Kompensation ist in gebundenen Zuständen nur
für gewisse diskrete Energieeigenwerte möglich. Durch die Neutralisierung der
äußeren Kräfte wird das Quantenobjekt zu einem freien Teilchen, welches in ge-
bundenen Zuständen einer Energiequantisierung unterliegt. Die Einhaltung ge-
wisser Quantenregeln ist gleichsam der Preis für die Freiheit.

• Stationäre Lösungen der Schrödinger-Gleichung können durch schrittweiseKom-
pensation der äußeren Kräfte durch thermodynamische Kräfte gefunden werden.

• Quantensysteme sind dissipative Systeme, die erst in stationären Zuständen kon-
servativ werden. In den Eigenzuständen verschwindet die Energiedissipation.

• Die Dekohärenz quantenmechanischer Überlagerungszustände kann thermody-
namisch begründet werden: Eigenzustände sind thermodynamisch stabiler als
Überlagerungszustände.

• Quantensprünge sind stetige Übergänge des Quantensystems von einem Eigen-
zustand über einen instabilen Mischzustand in einen anderen Eigenzustand auf
einer schnellen Zeitskala.

• Die Dissipationsfreiheit der stationären Zustände liefert eine Begründung dafür,
dass in den Eigenzuständen keine Strahlungsdämpfung stattfindet. Eine Abstrah-
lung erfolgt nur in Superpositionszuständen, die die Übergänge zwischen den
Eigenzuständen beschreiben.

• Die Schrödinger-Gleichung beschreibt nur die stationären Zustände und deren
Überlagerungen, nicht aber die dissipativen Prozesse in die Eigenzustände hin-
ein: Mit der Annahme einer schnellen dissipativen Dynamik löst sich das Para-
dox der Zeitumkehrinvarianz im Bereich der Schrödinger-Theorie.
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• Zeitumkehrinvarianz ist eine Gleichgewichtseigenschaft und Folge einer Zeitska-
lentrennung. Der Erfolg der Zeitumkehrinvarianz als Supergesetz beruht auf der
Annahme einer schnellen Relaxation der dissipativen Anteile der Dynamik. Die
Einschränkung auf das Gleichgewicht lässt ein Modell mit höherer Symmetrie
entstehen. Die Frage ist also nicht, wie Irreversibilität in eine reversible Welt ein-
geführt werden kann, sondern umgekehrt, wie Reversibilität in einer irreversiblen
Welt entstehen kann.

• Die Heisenberg’sche Unschärferelation kann auf klassische Begriffe zurückge-
führt werden: im Wellenbild auf den Ähnlichkeitssatz der Fourier-Transforma-
tion, im Teilchenbild auf eine Brown’sche Bewegung mit Korrelationen zwi-
schen den beiden Marginalverteilungen, und im thermodynamischen Bild auf
dem zweiten Hauptsatz der Thermodynamik.

• Eine dreiwertige Quantenlogik ist besser an die Struktur quantenmechanischer
Zustandsräume angepasst als die klassische zweiwertige Logik. Der Übergang zu
einer dreiwertigen Logik entspricht dem Übergang vom Schwarzweißfernsehen
zum Farbfernsehen.

• Die thermodynamische Deutung der Quantenmechanik beinhaltet eine Synthe-
se zwischen der epistemischen Kopenhagener Deutung und der ontologischen
Bohm’schen Interpretation: Die Wahrscheinlichkeitsinterpretation wird mit dem
Entropiebegriff weiter ausgebaut und das Quantenpotential als Summe thermo-
dynamischer Potentiale gedeutet.

Mit diesen Ergebnissen sind keineswegs alle Fragen geklärt. Denn die Betrachtung
war eingeschränkt auf eine nichtrelativistische Beschreibung von spinfreien Teil-
chen in äußeren Feldern. Es bleiben viele Fragen offen im Hinblick auf eine Wei-
terentwicklung der thermodynamischenModellvorstellung:

• Wie sieht eine Verallgemeinerung aufMehrteilchensysteme aus?
• Wie kann der Tunneleffekt thermodynamisch beschrieben werden?
• Wie kann der Spin in einer thermodynamischen Sichtweise berücksichtigt wer-

den?
• Wie kann das Pauli-Prinzip thermodynamisch erklärt werden?
• Wie transformieren sich die Pauli-Gleichung, dieDirac-Gleichung und dieKlein-

Gordon-Gleichung auf thermodynamische Variablen?

Louis de Broglie: „Die Wissenschaftsgeschichte zeigt uns die Wissenschaft in kon-
stantem Fortschritt, indem sie die erworbenen Kenntnisse und deren Interpretation
ständig überarbeitet und überprüft, sie führt uns vor Augen, wie die Vergangenheit
trotz ihrer Unzulänglichkeiten die Gegenwart vorbereitet. Aber wir sollten niemals
vergessen, dass unsere Wissenschaft auch nur ein provisorisches Stadium des wis-
senschaftlichen Fortschritts ist, das seinerseits voller Schwächen und Fehler ist und
dessen Rolle von daher gesehen vor allem darin besteht, die Zukunft vorzubereiten.
Es ist ein großer und leicht zu begehender Fehler, zu glauben, dass die aktuellen
wissenschaftlichen Konzepte definitiv seien.“
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