

Bernhard Steppan

Einstieg in Java 7

Liebe Leserin, lieber Leser,

vor etwa drei Jahrzehnten begann der Siegeszug objektorientierter Spra-

chen – doch nur wenige setzten sich durch. Heute ist Java neben C++ die wichtigste Programmiersprache bzw. Plattform; Java nimmt eine Spitzen-position ein, wenn es um den Anteil an zurzeit realisierten Softwareent-wicklungsprojekten geht. Sie sind also auf dem richtigen Weg und haben

sich gut entschieden. Dieses Buch liegt hiermit in einer vierten, aktualisierten Ausgabe vor, die die einsteigerrelevanten Neuerungen von Java 7 be-

rücksichtigt. Sie haben sich für ein ausgezeichnetes Lehrwerk entschieden, dass Ihnen genau das Wissen vermittelt, das Sie als angehender Java-Programmierer brauchen. Die Themenvielfalt ist sehr groß; mit diesem kleinen Handbuch werden Sie mehr als erste Schritte machen können.

Es sollten also keine Fragen offen bleiben – zumindest die zu Java beantworten wir nahezu vollständig.

Sollten Sie kritische und freundliche Anmerkungen haben, so zögern Sie

nicht, sich mit Herrn Steppan oder mir in Verbindung zu setzen. Ihre Verbesserungsvorschläge und Ihr Zuspruch sind unentbehrlich für weitere

gute Auflagen. Ich bin gespannt auf Ihre Rückmeldung und wünsche ich

Ihnen viel Spaß beim Lesen und Programmieren!

Judith Stevens-Lemoine

Lektorat Galileo Computing

judith.stevens@galileo-press.de

www.galileocomputing.de

Galileo Press · Rheinwerkallee 4 · 53227 Bonn

Auf einen Blick

TEIL I: Basiswissen .. 25

TEIL II: Java im Detail ... 83

TEIL III: Größere Java-Projekte 321

TEIL IV: Lösungen ... 501

TEIL V: Anhang ... 541

Der Name Galileo Press geht auf den italienischen Mathematiker und Philosophen Galileo Galilei (1564–1642) zurück. Er gilt als Gründungsfigur der neuzeitlichen Wissenschaft und wurde berühmt als Verfechter des modernen, heliozentrischen Weltbilds. Legendär ist sein Ausspruch Eppur si muove (Und sie bewegt sich doch). Das Emblem von Galileo Press ist der Jupiter, umkreist von den vier Galileischen Monden. Galilei entdeckte die nach ihm benann -

ten Monde 1610.

Gerne stehen wir Ihnen mit Rat und Tat zur Seite:

judith.stevens@galileo-press.de bei Fragen und Anmerkungen zum Inhalt des Buches service@galileo-press.de für versandkostenfreie Bestellungen und Reklamationen britta.behrens@galileo-press.de für Rezensions- und Schulungsexemplare

Lektorat Judith Stevens-Lemoine

Herstellung Norbert Englert

Satz Bernhard Steppan

Einbandgestaltung Barbara Thoben, Köln

Druck und Bindung Bercker Graphischer Betrieb, Kevelaer

Dieses Buch wurde gesetzt aus der Linotype Syntax Serif (9,25/13,25 pt) in LaTeX.

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen National-bibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

ISBN 978-3-8362-1662-3

© Galileo Press, Bonn 2012

4. aktualisierte Auflage 2012

Das vorliegende Werk ist in all seinen Teilen urheberrechtlich geschützt. Alle Rechte vorbehalten, insbesondere das Recht der Übersetzung, des Vortrags, der Reproduktion, der Vervielfältigung auf fotomechanischem oder anderen Wegen und der Speicherung in elektronischen Medien. Ungeachtet der Sorgfalt, die auf die Erstellung von Text, Abbildungen und Programmen verwendet wurde, können weder Verlag noch Autor, Herausgeber oder Übersetzer für mögliche Fehler und deren Folgen eine juristische Verantwortung oder irgendeine Haftung übernehmen. Die in diesem Werk wiedergegebenen Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. können auch ohne besondere Kennzeichnung Marken sein und als solche den ge-setzlichen Bestimmungen unterliegen.

Inhalt

Vorwort ...

21

TEIL I: Basiswissen

1

Digitale Informationsverarbeitung ..

27

1.1

Einleitung ..

27

1.2

Zahlensysteme ..

27

1.2.1

Dezimalsystem ..

27

1.2.2

Binärsystem ...

28

1.2.3

Hexadezimalsystem ..

30

1.3

Informationseinheiten ..

32

1.3.1

Bit ..

32

1.3.2

Byte ...

33

1.3.3

Wort ..

33

1.4

Kodierung von Zeichen ..

33

1.4.1

ASCII-Code ..

33

1.4.2

ANSI-Code ...

35

1.4.3

Unicode ..

36

1.5

Kodierung logischer Informationen ..

37

1.5.1

Und-Funktion ..

37

1.5.2

Oder-Funktion ..

38

1.5.3

Nicht-Funktion ..

39

1.6

Zusammenfassung ...

40

1.7

Aufgaben ...

40

1.7.1

Zahlensysteme ..

40

1.7.2

Informationseinheiten ...

40

1.7.3

Zeichenkodierung ...

41

1.7.4

Kodierung logischer Informationen

41

2

Programmiersprachen ...

43

2.1

Einleitung ..

43

2.1.1

Verständigungsschwierigkeiten ..

43

2.1.2

Definition ...

43

2.1.3

Klassifizierung ...

44

2.1.4

Geschichte ...

45

5

Inhalt

2.2

Programmiersprachen der ersten Generation

46

2.2.1

Programmaufbau ..

47

2.2.2

Portabilität ...

47

2.2.3

Ausführungsgeschwindigkeit ..

48

2.2.4

Einsatzbereich ...

48

2.3

Programmiersprachen der zweiten Generation

48

2.3.1

Programmaufbau ..

49

2.3.2

Portabilität ...

50

2.3.3

Ausführungsgeschwindigkeit ..

51

2.3.4

Einsatzbereich ...

51

2.4

Programmiersprachen der dritten Generation

51

2.4.1

Programmaufbau ..

52

2.4.2

Portabilität ...

53

2.4.3

Ausführungsgeschwindigkeit ..

53

2.4.4

Einsatzbereich ...

54

2.5

Programmiersprachen der vierten Generation

54

2.5.1

Programmaufbau ..

54

2.5.2

Portabilität ...

55

2.5.3

Ausführungsgeschwindigkeit ..

55

2.5.4

Einsatzbereich ...

55

2.6

Programmiersprachen der fünften Generation

55

2.6.1

Programmaufbau ..

56

2.6.2

Portabilität ...

57

2.6.3

Ausführungsgeschwindigkeit ..

57

2.6.4

Einsatzbereich ...

57

2.7

Programmiersprachen der sechsten Generation

57

2.7.1

Programmaufbau ..

57

2.7.2

Portabilität ...

59

2.7.3

Ausführungsgeschwindigkeit ..

59

2.7.4

Einsatzbereich ...

59

2.8

Zusammenfassung ...

59

2.9

Aufgaben ...

60

2.9.1

Programmiersprachen der ersten Generation

60

2.9.2

Programmiersprachen der zweiten Generation

60

2.9.3

Programmiersprachen der dritten Generation

60

3

Objektorientierte Programmierung ..

61

3.1

Einleitung ..

61

3.1.1

Grundbegriffe ..

61

3.1.2

Prinzipien ...

62

6

Inhalt

3.2

Objekte ..

62

3.3

Klassen ...

63

3.3.1

Attribute ...

63

3.3.2

Methoden ..

65

3.4

Abstraktion ...

67

3.5

Vererbung ...

68

3.5.1

Basisklassen ...

70

3.5.2

Abgeleitete Klassen ..

70

3.5.3

Mehrfachvererbung ..

71

3.6

Kapselung ..

71

3.7

Beziehungen ...

72

3.7.1

Beziehungen, die nicht auf Vererbung beruhen

73

3.7.2

Vererbungsbeziehungen ..

74

3.8

Designfehler ..

76

3.9

Umstrukturierung ..

76

3.10 Modellierung ..

77

3.11 Persistenz ..

77

3.12 Polymorphie ...

77

3.12.1

Statische Polymorphie ...

78

3.12.2

Dynamische Polymorphie ...

78

3.13 Designregeln ...

79

3.14 Zusammenfassung ...

79

3.15 Aufgaben ...

80

3.15.1

Fragen ...

80

3.15.2

Übungen ..

80

TEIL II: Java im Detail

4

Sprache Java ..

85

4.1

Einleitung ..

85

4.1.1

Geschichte ...

85

4.1.2

Beschreibung mittels Text ...

86

4.1.3

Überblick über die Sprachelemente

87

4.2

Schlüsselwörter ..

88

4.3

Einfache Datentypen ...

90

4.3.1

Grundlagen ..

90

4.3.2

Festkommazahlen ...

94

4.3.3

Gleitkommazahlen ...

97

7

Inhalt

4.3.4

Wahrheitswerte ..

99

4.3.5

Zeichen ... 100

4.4

Erweiterte Datentypen ... 101

4.4.1

Arrays .. 101

4.4.2

Aufzählungstyp ... 105

4.5

Benutzerdefinierte Datentypen ... 106

4.5.1

Konkrete Klassen .. 106

4.5.2

Abstrakte Klassen ... 110

4.5.3

Interfaces ... 111

4.5.4

Generische Klassen .. 112

4.6

Variablen ... 116

4.7

Konstanten .. 117

4.8

Methoden ... 117

4.8.1

Methodenarten ... 117

4.8.2

Konstruktoren ... 120

4.8.3

Destruktoren ... 121

4.8.4

Zugriffsmethoden ... 121

4.8.5

Änderungsmethoden ... 122

4.8.6

Funktionen .. 123

4.9

Operatoren ... 124

4.9.1

Arithmetische Operatoren .. 124

4.9.2

Vergleichende Operatoren .. 132

4.9.3

Logische Operatoren .. 136

4.9.4

Bitweise Operatoren .. 138

4.9.5

Zuweisungsoperatoren .. 139

4.9.6

Fragezeichenoperator .. 140

4.9.7

New-Operator ... 141

4.9.8

Cast-Operator .. 142

4.10 Ausdrücke ... 143

4.10.1

Zuweisungen ... 143

4.10.2

Elementare Anweisungen ... 146

4.10.3

Verzweigungen ... 146

4.10.4

Schleifen ... 149

4.11 Module .. 154

4.11.1

Klassenimport ... 154

4.11.2

Namensräume ... 157

4.12 Fehlerbehandlung .. 157

4.13 Dokumentation .. 160

4.13.1

Zeilenbezogene Kommentare .. 161

4.13.2

Abschnittsbezogene Kommentare 161

4.13.3

Dokumentationskommentare .. 161

8

Inhalt

4.14 Zusammenfassung ... 162

4.15 Aufgaben ... 163

4.15.1

Fragen ... 163

4.15.2

Übungen .. 163

5

Entwicklungsprozesse .. 165

5.1

Einleitung .. 165

5.1.1

Phasen .. 165

5.1.2

Aktivitäten ... 166

5.1.3

Werkzeuge ... 167

5.2

Planungsphase .. 168

5.2.1

Missverständnisse ... 168

5.2.2

Anforderungen aufnehmen ... 168

5.3

Konstruktionsphase ... 169

5.3.1

Objektorientierte Analyse ... 169

5.3.2

Objektorientiertes Design ... 169

5.3.3

Implementierung in Java ... 170

5.3.4

Test .. 179

5.4

Betriebsphase ... 189

5.4.1

Verteilung .. 189

5.4.2

Pflege .. 190

5.5

Zusammenfassung ... 190

5.6

Aufgaben ... 190

5.6.1

Fragen ... 190

5.6.2

Übungen .. 191

6

Plattform Java ... 193

6.1

Einleitung .. 193

6.2

Bytecode ... 193

6.3

Java Runtime Environment .. 195

6.3.1

Virtuelle Maschine ... 196

6.3.2

Garbage Collector ... 200

6.3.3

Bibliotheken .. 201

6.3.4

Ressourcen und Property-Dateien 201

6.4

Native Java-Programme .. 201

6.5

Portabilität eines Java-Programms .. 203

6.5.1

Binärkompatibler Bytecode .. 203

6.5.2

Voraussetzungen ... 205

6.6

Programmstart .. 206

9

Inhalt

6.6.1

Application .. 206

6.6.2

Applet ... 208

6.6.3

Servlets und JavaServer Pages .. 209

6.7

Zusammenfassung ... 209

6.8

Aufgaben ... 210

6.8.1

Fragen ... 210

6.8.2

Übungen .. 210

7

Gesetzmäßigkeiten .. 211

7.1

Einleitung .. 211

7.2

Sichtbarkeit ... 211

7.2.1

Klassenkapselung .. 211

7.2.2

Gültigkeitsbereich von Variablen 220

7.3

Auswertungsreihenfolge ... 225

7.3.1

Punkt vor Strich .. 225

7.3.2

Punkt vor Punkt .. 226

7.4

Typkonvertierung ... 228

7.4.1

Implizite Konvertierung ... 229

7.4.2

Explizite Konvertierung ... 231

7.5

Polymorphie ... 234

7.5.1

Überladen von Methoden .. 234

7.5.2

Überschreiben von Methoden ... 237

7.6

Programmierkonventionen .. 241

7.6.1

Vorschriften zur Schreibweise .. 241

7.6.2

Empfehlungen zur Schreibweise .. 242

7.7

Zusammenfassung ... 244

7.7.1

Sichtbarkeit .. 244

7.7.2

Auswertungsreihenfolge .. 245

7.7.3

Typkonvertierung .. 245

7.7.4

Polymorphie .. 245

7.7.5

Programmierkonventionen ... 245

7.8

Aufgaben ... 246

7.8.1

Fragen ... 246

7.8.2

Übungen .. 246

8

Java-Klassenbibliotheken .. 247

8.1

Einleitung .. 247

8.1.1

Von der Klasse zur Bibliothek .. 247

8.1.2

Von der Bibliothek zum Universum 248

10

Inhalt

8.1.3

Vom Universum zum eigenen Programm 248

8.1.4

Bibliotheken und Bücher .. 248

8.1.5

Bibliotheken erweitern die Sprache 249

8.1.6

Bibliotheken steigern die Produktivität 249

8.1.7

Kommerzielle Klassenbibliotheken 250

8.1.8

Open-Source-Bibliotheken ... 250

8.1.9

Bibliotheken von Sun Microsystems 250

8.2

Java Standard Edition .. 250

8.2.1

Java-Language-Bibliothek ... 251

8.2.2

Klasse »System« .. 259

8.2.3

Stream-Bibliotheken .. 269

8.2.4

Hilfsklassen .. 272

8.2.5

Abstract Windowing Toolkit ... 274

8.2.6

Swing .. 285

8.2.7

JavaBeans ... 289

8.2.8

Applets ... 289

8.2.9

Applications ... 291

8.2.10

Java Database Connectivity (JDBC) 291

8.2.11

Java Native Interface .. 294

8.2.12

Remote Method Invocation ... 294

8.3

Java Enterprise Edition ... 295

8.3.1

Servlets ... 296

8.3.2

JavaServer Pages ... 297

8.3.3

CORBA ... 298

8.3.4

Enterprise JavaBeans .. 299

8.4

Java Micro Edition ... 301

8.5

Zusammenfassung ... 302

8.6

Aufgaben ... 303

8.6.1

Fragen ... 303

8.6.2

Übungen .. 303

9

Algorithmen ... 305

9.1

Einleitung .. 305

9.2

Algorithmen entwickeln ... 305

9.3

Algorithmenarten .. 306

9.3.1

Sortieren ... 307

9.3.2

Diagramme .. 308

9.4

Algorithmen anwenden .. 316

9.4.1

Sortieren ... 316

9.4.2

Suchen .. 318

11

Inhalt

9.5

Aufgaben ... 319

9.5.1

Fragen ... 319

9.5.2

Übungen .. 319

TEIL III: Größere Java-Projekte

10 Konsolenprogramme ... 323

10.1 Einleitung .. 323

10.2 Projekt »Transfer« .. 324

10.2.1

Anforderungen .. 324

10.2.2

Analyse und Design ... 324

10.2.3

Implementierung der Klasse »TransferApp« 326

10.2.4

Implementierung der Klasse »CopyThread« 330

10.2.5

Implementierung der Properties-Datei 334

10.2.6

Test .. 334

10.2.7

Verteilung .. 335

10.3 Aufgaben ... 335

10.3.1

Fragen ... 335

10.3.2

Übungen .. 336

11 Einfache Oberflächen mit Swing .. 337

11.1 Einleitung .. 337

11.2 Projekt »Abakus« ... 337

11.2.1

Anforderungen .. 337

11.2.2

Analyse und Design ... 339

11.2.3

Implementierung der Applikationsklasse 343

11.2.4

Implementierung des Hauptfensters 344

11.2.5

Implementierung der Klasse »AboutDlg« 361

11.2.6

Zeichen als Unicode kodieren .. 361

11.2.7

Dialog zentriert sich selbst ... 361

11.3 Zusammenfassung ... 363

11.4 Aufgaben ... 364

11.4.1

Fragen ... 364

11.4.2

Übungen .. 364

12

Inhalt

12 Computerspiele mit Swing .. 365

12.1 Einleitung .. 365

12.2 Projekt »Memory« ... 365

12.2.1

Anforderungen .. 365

12.2.2

Analyse und Design ... 367

12.2.3

Implementierung der Klasse »Card« 370

12.2.4

Implementierung der Klasse »CardEvent« 378

12.2.5

Implementierung des Interfaces »CardListener« 378

12.2.6

Implementierung der Klasse »CardBeanInfo« 379

12.2.7

Implementierung des Testtreibers 381

12.2.8

Implementierung der Klasse »GameBoard« 384

12.2.9

Implementierung des Hauptfensters 388

12.2.10 Implementierung der Klasse »AboutDlg« 391

12.2.11 Test .. 395

12.2.12 Verteilung .. 396

12.3 Zusammenfassung ... 397

12.4 Aufgaben ... 397

12.4.1

Fragen ... 397

12.4.2

Übungen .. 397

13 Komplexe Oberflächen mit Swing ... 399

13.1 Einleitung .. 399

13.2 Projekt »Nestor« – die Oberfläche .. 399

13.2.1

Anforderungen .. 399

13.2.2

Analyse und Design ... 401

13.2.3

Implementierung der Datenbankfassade 405

13.2.4

Implementierung der Applikationsklasse 406

13.2.5

Aufbau des Hauptfensters ... 408

13.2.6

Implementierung der Adresskomponente 408

13.2.7

Implementierung des Hauptfensters 412

13.2.8

Implementierung des Dialogs »Einstellungen« 418

13.2.9

Test .. 418

13.2.10 Verteilung .. 419

13.3 Zusammenfassung ... 420

13.4 Aufgaben ... 420

13.4.1

Fragen ... 420

13.4.2

Übungen .. 421

13

Inhalt

14 Weboberflächen mit Servlets ... 423

14.1 Einleitung .. 423

14.1.1

Hypertext Markup Language .. 423

14.1.2

Hypertext-Transfer-Protokoll .. 426

14.1.3

Common Gateway Interface ... 428

14.1.4

Servlets ... 428

14.2 Projekt »Xenia« – die Oberfläche .. 429

14.2.1

Anforderungen .. 429

14.2.2

Analyse und Design ... 431

14.2.3

Implementierung der HTML-Vorlagen 432

14.2.4

Implementierung der Klasse »GuestList« 434

14.2.5

Implementierung der Klasse »NewGuest« 439

14.2.6

Verteilung .. 445

14.3 Zusammenfassung ... 445

14.4 Aufgaben ... 446

14.4.1

Fragen ... 446

14.4.2

Übungen .. 446

15 Datenbankprogrammierung .. 447

15.1 Einleitung .. 447

15.1.1

Vom Modell zum Datenmodell ... 447

15.1.2

Vom Datenmodell zur Datenbank 447

15.1.3

Von der Datenbank zu den Daten 448

15.1.4

Von den Daten zum Programm ... 448

15.2 Projekt »Hades« ... 449

15.2.1

Anforderungen .. 449

15.2.2

Analyse & Design .. 449

15.2.3

Implementierung .. 450

15.2.4

Test .. 451

15.3 Projekt »Charon« .. 452

15.3.1

Anforderungen .. 452

15.3.2

Implementierung der Klasse »HadesDb« 453

15.3.3

Implementierung der Klasse »Charon« 457

15.3.4

Implementierung der Klasse »HadesTest« 459

15.3.5

Implementierung der Klasse »CharonTest« 462

15.3.6

Implementierung der Datei »Db.properties« 463

15.3.7

Test .. 464

15.3.8

Verteilung .. 465

15.4 Zusammenfassung ... 465

14

Inhalt

15.5 Aufgaben ... 465

15.5.1

Fragen ... 465

15.5.2

Übungen .. 465

16 Datenbankanwendungen ... 467

16.1 Einleitung .. 467

16.2 Projekt »Perseus« ... 467

16.2.1

Anforderungen .. 467

16.2.2

Analyse und Design ... 468

16.2.3

Implementierung der Klasse »BasisWnd« 471

16.2.4

Implementierung der Klasse »Alignment« 472

16.2.5

Implementierung der Klasse »SplashWnd« 473

16.2.6

Implementierung der Klasse »BasicDlg« 475

16.3 Projekt »Charon« .. 478

16.3.1

Anforderungen .. 478

16.3.2

Analyse und Design ... 479

16.3.3

Implementierung von »HadesDb« 479

16.3.4

Implementierung von »Charon« .. 480

16.3.5

Test .. 480

16.3.6

Verteilung .. 480

16.4 Projekt »Nestor« .. 480

16.4.1

Integration der Klasse »SplashWnd« 481

16.4.2

Integration der Klasse »SplashWnd« 481

16.4.3

Implementierung der Methode »showSplashScreen« 482

16.4.4

Integration der Klasse »BasicDlg« 483

16.4.5

Integration der Klasse »Charon« .. 484

16.4.6

Verteilung .. 484

16.5 Zusammenfassung ... 485

16.6 Aufgaben ... 485

16.6.1

Fragen ... 485

16.6.2

Übungen .. 485

17 Dynamische Websites .. 487

17.1

Einleitung .. 487

17.2 Projekt »Charon« .. 487

17.2.1

Anforderungen .. 487

17.2.2

Analyse und Design ... 488

17.2.3

Implementierung der Klasse »HadesDb« 489

17.2.4

Implementierung der Klasse »Charon« 490

15

Inhalt

17.3 Projekt »Xenia« .. 492

17.3.1

Anforderungen .. 492

17.3.2

Analyse und Design ... 492

17.3.3

Implementierung der Klasse »NewGuest« 492

17.3.4

Implementierung der Klasse »GuestList« 493

17.3.5

Änderungen am Projektverzeichnis 495

17.3.6

Test .. 496

17.3.7

Verteilung .. 498

17.4 Zusammenfassung ... 499

17.5 Aufgaben ... 499

17.5.1

Fragen ... 499

17.5.2

Übungen .. 499

TEIL IV: Lösungen

18 Lösungen zu Teil I .. 503

18.1 Digitale Informationsverarbeitung .. 503

18.1.1

Zahlensysteme .. 503

18.1.2

Informationseinheiten ... 503

18.1.3

Zeichenkodierung ... 504

18.1.4

Kodierung logischer Informationen 504

18.2 Programmiersprachen ... 505

18.2.1

Programmiersprachen der ersten Generation 505

18.2.2

Programmiersprachen der zweiten Generation 505

18.2.3

Programmiersprachen der dritten Generation 506

18.3 Objektorientierte Programmierung .. 506

18.3.1

Fragen ... 506

18.3.2

Übungen .. 507

19 Lösungen zu Teil II ... 511

19.1 Sprache Java ... 511

19.1.1

Fragen ... 511

19.1.2

Übungen .. 513

19.2 Entwicklungsprozesse ... 516

19.2.1

Fragen ... 516

19.2.2

Übungen .. 516

16

Inhalt

19.3 Plattform Java ... 518

19.3.1

Fragen ... 518

19.3.2

Übungen .. 518

19.4 Gesetzmäßigkeiten .. 519

19.4.1

Fragen ... 519

19.4.2

Übungen .. 520

19.5 Java-Klassenbibliotheken ... 521

19.5.1

Fragen ... 521

19.5.2

Übungen .. 522

19.6 Algorithmen .. 523

19.6.1

Fragen ... 523

19.6.2

Übungen .. 524

20 Lösungen zu Teil III .. 527

20.1 Konsolenprogramme ... 527

20.1.1

Fragen ... 527

20.1.2

Übungen .. 528

20.2 Einfache Oberflächen mit Swing ... 529

20.2.1

Fragen ... 529

20.2.2

Übungen .. 530

20.3 Computerspiele mit Swing ... 531

20.3.1

Fragen ... 531

20.3.2

Übungen .. 531

20.4 Komplexe Oberflächen mit Swing .. 532

20.4.1

Fragen ... 532

20.4.2

Übungen .. 533

20.5 Weboberflächen mit Servlets .. 533

20.5.1

Fragen ... 533

20.5.2

Übungen .. 534

20.6 Datenbankprogrammierung ... 535

20.6.1

Fragen ... 535

20.6.2

Übungen .. 535

20.7 Datenbankanwendungen ... 536

20.7.1

Fragen ... 536

20.7.2

Übungen .. 536

20.8 Dynamische Websites ... 537

20.8.1

Fragen ... 537

20.8.2

Übungen .. 537

17

Inhalt

TEIL V: Anhang

21 Import der Beispielprogramme .. 543

21.1 Einleitung .. 543

21.2 Import in Eclipse .. 543

21.3 Import in NetBeans ... 546

22 Werkzeuge ... 549

22.1 Einleitung .. 549

22.1.1

Einzelwerkzeuge versus Werkzeugsuiten 549

22.1.2

Zielgruppen ... 550

22.2 Kriterien zur Werkzeugauswahl .. 551

22.2.1

Allgemeine Kriterien .. 552

22.2.2

Projektverwaltung .. 555

22.2.3

Modellierungswerkzeuge .. 556

22.2.4

Texteditor ... 557

22.2.5

Java-Compiler .. 558

22.2.6

Java-Decompiler ... 559

22.2.7

GUI-Builder ... 559

22.2.8

Laufzeitumgebung .. 560

22.2.9

Java-Debugger .. 561

22.2.10 Werkzeuge zur Verteilung ... 562

22.2.11 Wizards ... 563

22.3 Einzelwerkzeuge .. 563

22.3.1

Modellierungswerkzeuge .. 563

22.3.2

Texteditor ... 564

22.3.3

Java-Compiler .. 565

22.3.4

Java-Decompiler ... 566

22.3.5

GUI-Builder ... 566

22.3.6

Laufzeitumgebungen ... 567

22.3.7

Java-Debugger .. 568

22.3.8

Versionskontrollwerkzeuge ... 568

22.3.9

Werkzeuge zur Verteilung ... 569

22.4 Werkzeugsuiten ... 569

22.4.1

Eclipse ... 570

22.4.2

JBuilder ... 571

22.4.3

Java Development Kit .. 572

22.4.4

NetBeans .. 578

18

Inhalt

22.4.5

Sun One Studio ... 579

22.4.6

Together ... 579

22.4.7

VisualAge Java ... 580

23 Computerhardware .. 581

23.1 Einleitung .. 581

23.2 Aufbau eines Computers .. 581

23.3 Bussystem ... 582

23.4 Prozessoren ... 582

23.4.1

Central Processing Unit ... 582

23.4.2

Grafikprozessor ... 583

23.5 Speichermedien ... 583

23.5.1

Hauptspeicher ... 583

23.5.2

Festplattenspeicher .. 584

23.6 Ein- und Ausgabesteuerung ... 585

23.7 Taktgeber ... 585

23.8 Zusammenfassung ... 585

24 Glossar .. 587

25 Literatur .. 595

25.1 Basiswissen ... 595

25.2 Java im Detail ... 595

25.3 Größere Java-Projekte ... 596

25.4 Anhang .. 597

Index .. 599

19

»Es gibt drei goldene Regeln, um ein Fachbuch zu schreiben –

leider sind sie unbekannt.«

(frei nach William Somerset Maugham)

Vorwort

Liebe Leserin, lieber Leser!

Dieses Buch ist eines der meistverkauften Java-Bücher Deutschlands geworden.

Ich möchte mich bei den vielen Leserinnen und Lesern an dieser Stelle für ihr Vertrauen herzlich bedanken. Neben der vorbildlichen Unterstützung des Verlags Galileo Press haben sie einen entscheidenden Anteil an diesem Erfolg. Ihre vielen konstruktiven Verbesserungsvorschläge haben maßgeblich dazu beigetragen, dass ich dieses Buch auch in der 4. Auflage, die Sie in den Händen halten, nochmals verbessern konnte.

Neben diesen Verbesserungen sind die wesentlichen Neuerungen von Java 7

und einige neue Beispiele in das vorliegende Buch eingeflossen. Die Beispiele wurden wieder mit den Entwicklungsumgebungen Eclipse 4.1 (Beta-Version mit Unterstützung für Java 7) und NetBeans 7.1 qualitätsgesichert und übersetzt. Sie können diese Beispielprogramme von der Buchwebsite des Verlags herunterladen (http://www.galileo-press.de/2452). Das hat den Vorteil, dass Sie stets die neuesten Updates bekommen.

Aufbau des Buchs

Dieses Buch besteht aus fünf Teilen. Es führt Sie von den Grundlagen der Softwareentwicklung (Teil I) über eine Java-Einführung (Teil II) zu der Entwicklung stabiler, professioneller Java-Programme (Teil III). Diese Java-Programme werden Schritt für Schritt in Tutorien entwickelt. Jedes dieser Tutorien schließt mit Übungsaufgaben ab, die Ihnen helfen, Ihr Wissen zu vertiefen. Die Musterlösungen finden Sie im vorletzten Teil des Buchs (Teil IV). Der Anhang (Teil V) rundet das Buch mit je einem Kapitel über Java-Werkzeuge, die Hardwaregrundlagen, einem Glossar und einem Literaturverzeichnis ab.

Der ungewöhnliche Aufbau des Buchs führt immer wieder zu Missverständnissen bei den Lesern. Deshalb an dieser Stelle ein paar Worte dazu: Das Buch ist ungewöhnlich strukturiert, um unterschiedlichen Lesergruppen und Lesegewohnheiten gerecht zu werden. Während ich in Java-Schulungen immer viele Bereiche 21

Vorwort

gleichzeitig erklären und unterschiedliche Vorkenntnisse der Teilnehmer ausgleichen kann, kann ein gedrucktes Buch dies für alle Leser nicht von selbst leisten.

Damit dies funktioniert, muss es wie das folgende Buch grundlegend anders aufgebaut sein und anders gelesen werden.

Sie müssen dieses Buch daher keinesfalls Kapitel für Kapitel nacheinander durch-arbeiten. Das liegt zum einen daran, dass je nach Ihren Vorkenntnissen mehrere einleitende Kapitel des Buchs für Sie unter Umständen nicht notwendig sind. Zum anderen sind einige Kapitel eng miteinander verzahnt und absolut gleichrangig.

Was bedeutet das im Einzelnen genau? Das bedeutet, dass Sie sich vor dem Lesen des Buchs genau überlegen sollten, welche Vorkenntnisse Sie besitzen. Erst danach sollten Sie mit dem geeigneten Einstieg beginnen:

Wenn Java Ihre erste Programmiersprache ist, beginnen Sie mit den Kapiteln 1, 2, 3 und lesen parallel dazu Kapitel 4. Wenn Sie hingegen schon eine klassische Programmiersprache wie BASIC oder COBOL gelernt haben, überspringen Sie bitte Kapitel 1 und 2, beginnen mit Kapitel 3 und lesen parallel dazu Kapitel 4. Wenn Sie schon eine objektorientierte Sprache wie C++ beherrschen oder unter dem Druck einer Prüfungsvorbereitung stehen, überspringen Sie bitte den kompletten ersten Teil und beginnen gleich mit Kapitel 4.

Beispielprogramme

Dieses Buch enthält neben rund hundert kleineren Beispielprogrammen acht grö-

ßere, sorgfältig dokumentierte Projekte aus den wichtigsten Bereichen der Java-Programmierung. Diese anspruchsvollen Projekte sind als Vorlage für Ihre eigenen Arbeiten gedacht und unterscheiden sich erheblich von den trivialen Beispielprogrammen, die Sie in den meisten anderen Computerbüchern finden. Sie können die Beispiele in die meisten Entwicklungsumgebungen problemlos importieren.

Werkzeuge

Das Buch ist kein Ratgeber bei der Auswahl von Java-Werkzeugen. Sie sollten sich aber unbedingt für eine Entwicklungsumgebung entscheiden, um die Beispielprogramme ab Kapitel 2 besser nachvollziehen zu können. Um Ihnen die Auswahl und Installation etwas zu erleichtern, enthält dieses Buch im Anhang das Kapitel 22.

Da ständig neue Werkzeuge erscheinen, finden Sie eine aktuelle Fassung dieses Kapitels auf meiner Website. Dort können Sie zudem eine Marktübersicht über die momentan aktuellen Tools anfordern. Die Beispielprogramme dieses Buchs lassen sich übrigens mit den meisten Java-Werkzeugen problemlos verwenden.

Unter den Beispielprogrammen befindet sich eine aktuelle Importanleitung für Eclipse und NetBeans.

22

Vorwort

Vorkenntnisse

Egal, ob Sie das Buch zum Selbststudium verwenden, zur Prüfungsvorbereitung oder weil Programmieren Ihr Hobby ist: Sie benötigen in keinem dieser Fälle Vorkenntnisse über Computerprogrammierung. Für einige Kapitel könnten jedoch gute Mathematikkenntnisse nicht schaden.

Schriftdarstellung

Um verschiedene Textteile deutlicher hervorzuheben, verwendet dieses Buch eine einheitliche Schriftdarstellung (Tabelle 1).

Textteil

Darstellung

Programmquelltext (Listings)

Schrift mit fester Zeichenbreite

Optionale Parameter

[]

Menübefehle, deren Menüs bzw.

Menü • Befehl

Untermenüs

Java-Bezeichner wie Variablen,

 Kursivschrift

Methoden und Klassen

Programmbeispiel: hier Kapitel

//Beispielprogramme/Sprache Java/Ex01

»Sprache Java«, Beispiel 1

Dateinamen, Pfadangaben und

Schrift mit fester Zeichenbreite

Programmausgaben

Tabelle 1 Verwendete Schriftkonventionen

Um den Rahmen dieses Buchs nicht zu sprengen, sind manche Quelltexte nicht komplett im Buch abgedruckt, sondern nur die zum Verständnis wichtigen Teile.

Die Stellen der Quelltexte, bei denen Teile ausgelassen wurden, habe ich mit einem Scherensymbol () gekennzeichnet. Sie finden die Programme vollständig unter den Downloads der Beispielprogramme (http://www.galileo-press.de/2452).

Errata

Leider lässt sich trotz größter Sorgfalt nicht immer vermeiden, dass der eine oder andere Fehler im Buch oder in den Beispielprogrammen verbleibt. Aus diesem Grund finden Sie auf der Website des Verlags und meiner Website

(http://www.steppan.net) wie schon bei der Erstauflage eine Liste der bekannten Fehler (Errata) und die aktualisierten Beispielprogramme als Download. Alle Aktualisierungen sind selbstverständlich kostenfrei.

23

Vorwort

Danksagung

Ich möchte mich herzlich bei meiner Familie für die Unterstützung an den Aben-den und Wochenenden bedanken. Herzlichen Dank auch wieder an meine Lektorin Judith Stevens-Lemoine, die mit viel Geduld das Projekt begleitete. Alexandra Müller möchte ich für die sorgfältige sprachliche Korrektur des Manuskripts danken.

Die Herstellung eines komplexen Buchs mit LATEX ist immer eine Herausforderung. Mein Dank für die Unterstützung hierbei geht an Norbert Englert von der Herstellung des Verlags Galileo Press. Mein Dank geht auch wieder an Dr. Daniel Lauer für seine LATEX-Formatvorlage, ohne die die Neuerungen beim Satz dieses Buchs nicht möglich gewesen wären.

Schreiben Sie mir, ...

wenn Sie Fragen, konstruktive Kritik oder Verbesserungsvorschläge haben. Jedes Buch lebt vom Dialog mit seinen Lesern. Deshalb sind mir Ihre Anregungen sehr wichtig. Richten Sie bitte Ihre Post an bernhard@steppan.net oder an Galileo Press. Ich wünsche Ihnen nun viel Spaß bei der Lektüre des vorliegenden Buchs und viel Erfolg bei der Entwicklung Ihrer Java-Programme!

Wiesbaden, im September 2011

Bernhard Steppan

24

TEIL I

Basiswissen

Das erstmalige Erlernen jeder Programmiersprache beginnt mit den Grundlagen der Softwareentwicklung. Darum fängt auch dieses Buch mit den grundlegenden Konzepten der Datenverarbeitung und Programmierung an. Dieser Teil stellt die Kon zepte in drei Kapiteln vor: Kapitel 1, »Digitale Informationsverarbeitung«, Kapitel 2 »Programmiersprachen« und Kapitel 3 »Objektorientierte Programmierung«.

»Dies hier ist ein erstes Kapitel, welches verhindern soll, dass vorliegendes Werkchen mit einem zweiten Kapitel beginne.«

(Franz Werfel)

1

Digitale Informationsverarbeitung

1.1

Einleitung

Alles, was der Computer verarbeitet, ganz gleich, ob es sich um ein Java-Programm oder einen Brief handelt, ist für ihn nichts anderes als Informationen.

Dieses Kapitel gibt Ihnen einen Überblick darüber, wie der Computer diese Informationen speichert und verarbeitet.

1.2

Zahlensysteme

Zahlensysteme dienen dazu, Zahlen nach einem bestimmten Verfahren darzustellen. Dazu besitzt jedes Zahlensystem einen spezifischen Satz an Ziffern. Es existieren sehr viele verschiedene Zahlensysteme. Für die Java-Programmierung ist die Kenntnis des Dezimal-, Binär- und Hexadezimalsystems in den meisten Fällen ausreichend.

1.2.1

Dezimalsystem

Das Dezimalsystem (lat. decem: zehn) stellt Zahlen mit bis zu zehn Ziffern dar.

Da es für den Menschen besonders einfach ist, mit diesem System zu rechnen, ist es das heute in aller Welt bevorzugte Zahlensystem.

Zehnerpotenzen

Abbildung 1.1 zeigt, dass sich eine Zahl wie beispielsweise 214 in Dezimaldarstellung aus Zehnerpotenzen (10x) zusammensetzt. Man sagt, alle Zahlen beziehen sich auf die Basis 10. Teilt man die Zahl 214 in eine Summe von Zehnerpotenzen auf, ergibt sich folgendes Bild:

214 = 2 * 102 + 1 * 101 + 4 * 100

27

1

Digitale Informationsverarbeitung

Verwendet man unterschiedliche Zahlensysteme parallel in einer Darstellung, so schreibt man zur besseren Unterscheidung entweder eine tiefgestellte Zehn (21410) an die Dezimalzahl, oder man verwendet ein Doppelkreuz als Präfix (#214) beziehungsweise eine Abkürzung als Postfix (214d). Ich verwende in diesem Buch überall dort die erste Schreibweise, wo Missverständnisse beim Gebrauch verschiedener Zahlensysteme auftreten können.

Abbildung 1.1 Darstellung der Dezimalzahl 214 mit Hilfe des Dezimalsystems 1.2.2

Binärsystem

Das Binärsystem (lat. bini: je zwei) verwendet im Gegensatz zum Dezimalsystem nur maximal zwei Ziffern zur Zahlendarstellung. Das Zahlensystem nennt sich auch Digital- (lat. digitus: fingerbreit, Zoll) oder Dualsystem (lat. duo: zwei, beide).

Zahlen dieses Systems bezeichnet man als Binärzahlen oder Digitalzahlen.

Digitalcomputer

Das Binärsystem passt sehr gut zu der Informationsverarbeitung heutiger Computer. Deren Speicher bestehen aus sehr vielen kleinen primitiven Bauelementen (Flip-Flops), die nur zwei elektrische Zustände einnehmen können: hohe Spannung oder niedrige Spannung.

Jedes Flip-Flop mit niedriger Spannung in einem Computer entspricht informa-tionstechnisch einer Null, jedes mit hoher Spannung einer Eins. Praktisch alle heutigen Computer basieren auf dieser Bauweise mit primitiven Bauelementen.

Sie verarbeiten ausschließlich Digitalzahlen und werden daher auch Digitalcomputer genannt.

Binärprogramme

Computerprogramme sind für einen Digitalcomputer auch nichts anderes als eine Reihe von Informationen. Sie bestehen für ihn aus einer Abfolge von Stromimpul-sen in einer bestimmten Zeiteinheit. Jeder Stromimpuls entspricht einer digitalen 28

Zahlensysteme

1.2

Eins. Fehlt ein Impuls, entspricht dies einer Null. Das Format, in dem ein Computer Software direkt ausführen kann, bezeichnet man nach dem Zahlensystem als Binärformat. Die Programme nennen sich Binärprogramme oder Maschinenprogramme.

Abbildung 1.2 Darstellung der Dezimalzahl 214 mit Hilfe des Binärsystems Wenn Sie einen Blick auf Abbildung 1.2 werfen, sehen Sie, wie die Dezimalzahl 214 in einer binären Form dargestellt wird. Es ist wichtig zu betonen, dass die Darstellung hier binär interpretiert wird. Später, in Abschnitt 1.4, »Kodierung von Zeichen«, werden Sie sehen, dass digitale Zahlenkolonnen auch ganz anders interpretiert werden können.

Zweierpotenzen

Bei der Binärdarstellung besteht die Dezimalzahl 214 aus lauter Zweierpotenzen, deren Basen sich auf die Zahl 2 beziehen. Die Summe ergibt sich durch Addition folgender Summanden: 214 = 1 * 27 + 1 * 26 + 0 * 25 + 1 * 24 + 0 * 23 + 1 * 22 + 1 * 21

+ 0 * 20. Jeder dieser Summanden entspricht der kleinsten Informationseinheit, dem legendären Bit, auf das ich im nächsten Abschnitt noch ausführlich eingehen werde.

Wertebereich

In Tabelle 1.1 sehen Sie, wie viele Informationen sich mit drei Bit darstellen lassen. Die kleinste und die größte darstellbare Zahl ergeben den Wertebereich. Die maximale Anzahl der Informationen können Sie mit folgender Formel berechnen: Anzahl = 2(Anzahl Bit). In diesem Fall ergibt sich die Anzahl aus 23 = 2 * 2 * 2 = 8.

Stellen Sie sich vor, Sie wollten die Dezimalzahl 214 im Binärsystem statt durch 29

1

Digitale Informationsverarbeitung

Flip-Flops mit Hilfe von Glühlampen darstellen oder eine solche Zahl speichern.

Dazu bräuchten Sie für jeden Summanden (von 1 * 27 bis 0 * 20) eine Glühlampe.

Das »Schaltbrett« besäße also acht Glühlampen (Abbildung 1.3).

Dezimalzahl

Binärzahl

0

0 0 0

1

0 0 1

2

0 1 0

3

0 1 1

4

1 0 0

5

1 0 1

6

1 1 0

7

1 1 1

Tabelle 1.1 Der Wertebereich einer Informationseinheit von drei Bit Wenn der Informatiker in einem Dokument verschiedene Zahlensysteme nebeneinander verwendet, muss er sie kennzeichnen, damit der Leser sie unterscheiden kann. Zahlen des Binärsystems kennzeichnet man entweder durch eine tiefgestellte Zwei (110101102), oder man verwendet ein Prozent- oder Dollarzeichen als Präfix (%11010110) beziehungsweise eine Abkürzung als Postfix (11010110b). In diesem Buch verwende ich die erste Schreibweise, wenn Missverständnisse beim Gebrauch verschiedener Zahlensysteme auftreten können.

Abbildung 1.3 Darstellung der Dezimalzahl 214 mit Hilfe von Glühlampen 1.2.3

Hexadezimalsystem

Das Hexadezimalsystem, auch Sedezimalsystem genannt (lat. sex, grch. hexa-: sechs), basiert auf sechzehn Ziffern zur Zahlendarstellung. Aus Abbildung 1.4

(Seite 31) können Sie erkennen, dass die ersten zehn Ziffern die vom Dezimalsystem bekannten Ziffern sind, während ab der 10. Stelle lateinische Großbuchstaben stehen. Was hat das zu bedeuten?

30

Zahlensysteme

1.2

Ab der 10. Ziffer ist der Zeichenvorrat des Dezimalsystems erschöpft, und es ist in diesem Fall erforderlich, neue Zeichen zur Darstellung einzusetzen.

Man hat sich dafür entschieden, hier die Großbuchstaben A bis F zu verwenden. Die Darstellungsform ist für viele Einsteiger etwas gewöhnungsbedürftig.

Sie bedeutet, dass eine dezimale 10 einem hexadezimalen A entspricht, eine 11 einem B, eine 12 einem C, eine 13 einem D, eine 14 einem E und eine 15

einem F.

Das Hexadezimalsystem ist hier aufgeführt, weil es das Lieblingssystem der Com-puterfachleute ist, um binäre, vom Computer gespeicherte Informationen darzustellen. Das kommt daher, dass Binärzahlen sehr schnell lang und unübersichtlich werden und sich das Hexadezimalsystem wegen seiner kompakten Darstellung sehr gut als Alternative eignet. Warum dies genau der Fall ist, zeigt folgendes Beispiel:

Abbildung 1.4 Darstellung der Dezimalzahl 214 mit Hilfe des Hexadezimalsystems Sechzehnerpotenzen

Bei der hexadezimalen Darstellung einer Zahl besteht diese aus lauter Potenzen zur Basis 16. Die hexadezimale Zahl D6 lässt sich hierbei durch folgende Gleichung ausdrücken: 21410 = D * 161 + 6 * 160. Da das hexadezimale Zeichen D

einer dezimalen 13 entspricht, lautet die vollständig auf das Dezimalsystem über-tragene Gleichung 214 = 13 * 16 + 6 * 1. Die hexadezimale Zahl D6 entspricht also der dezimalen Zahl 214.

Leichte Umwandlung in Binärzahlen

Vergleichen Sie nun die Hexadezimaldarstellung der Dezimalzahl 214 mit der Binärdarstellung dieser Zahl (Abbildung 1.5). Wenn Sie die acht Stellen der Bi-närzahl in zwei vierstellige Abschnitte zerlegen, erkennen Sie, wie leicht sich die Binärdarstellung einer Zahl in eine Hexadezimaldarstellung umwandeln lässt. Jeder geübte Programmierer ist mit Hilfe des Hexadezimalsystems in der Lage, die native Zahlendarstellung des Computers, das Binärsystem, besser zu lesen.

31

1

Digitale Informationsverarbeitung

Abbildung 1.5 Vergleich der Darstellung von Hexadezimal- und Binärsystem Zur leichteren Unterscheidung markiert man Zahlen des Hexadezimalsystems bei der Darstellung von Zahlen unterschiedlicher Zahlensysteme entweder durch ei-ne tiefgestellte Zahl (D616) oder man verwendet ein Prozent- oder Dollarzeichen als Präfix ($D6), beziehungsweise eine Abkürzung als Postfix (D6h). Im Folgenden verwende ich wieder die erste Schreibweise, wenn Missverständnisse beim Gebrauch verschiedener Zahlensysteme entstehen könnten.

1.3

Informationseinheiten

Wie für physikalische Größen, zum Beispiel Entfernungen oder Gewichte, gibt es auch Maßeinheiten, die den Informationsgehalt angeben. Eine Übersicht der wichtigsten Maßeinheiten und deren Werte finden Sie in Tabelle 1.2.

Informationseinheit

Wert [Bit]

Wert [Byte]

Bit

1

0,125

Halbbyte (Nibble)

4

0,5

Byte

8 * 1

1

Wort

8 * 2

2

Doppelwort

8 * 4

4

KByte (Kilobyte)

8 * 1024

1024

MByte (Megabyte)

8 * 10242

10242

GByte (Gigabyte)

8 * 10243

10243

TByte (Terabyte)

8 * 10244

10244

Tabelle 1.2 Die wichtigsten Maßeinheiten der Information

1.3.1

Bit

Die kleinste Informationseinheit ist das so genannte Bit (Kurzwort aus engl. binary digit). Mit Hilfe eines Bits lassen sich wie mit einer Glühlampe lediglich zwei Zustände speichern: ein- oder ausgeschaltet, leitend oder nicht leitend. Sie haben 32

Kodierung von Zeichen

1.4

gesehen, wie viele Bits notwendig sind, um die Dezimalzahl 214 darzustellen.

Eine einzelne dieser Speicherzellen konnte diese Information nicht festhalten.

Um größere Datenmengen speichern zu können, fasst man deshalb Gruppen von Bits zu Einheiten zusammen.

1.3.2

Byte

Die wichtigste Informationseinheit neben dem Bit ist das Byte. Ein Byte entspricht 8 Bit. Große Datenmengen gibt man in Vielfachen von Byte an, wie zum Beispiel 1 Kilobyte (Abkürzung KByte). 1 KByte entspricht übrigens 1024 Byte und nicht 1000 Byte. Um einer Verwechslung mit dem physikalischen Faktor Kilo (k = 103

= 1000) vorzubeugen, schreiben die meisten Informatiker das K vor dem Byte mit einem Großbuchstaben, also entweder KB oder KByte.

1.3.3

Wort

Das Wort (2 Byte = 16 Bit) spielt ebenfalls eine große Rolle bei der Darstellung von Informationen. Es wird in Kapitel 2, »Programmiersprachen«, bei den Bestandteilen eines Programms wieder auftauchen.

1.4

Kodierung von Zeichen

Wie eingangs schon erwähnt, sind für den Computer alle Informationen, die er verarbeitet, binäre Zahlenströme. Da er nur mit Zahlen operiert, bezeichnet man den Computer (lat. Computator: Rechner) im Deutschen auch sehr richtig als Rechner. Nun möchte man den Computer aber nicht nur dazu verwenden, mathematische Berechnungen durchzuführen, sondern auch, um Zeichen auszugeben.

Da der Digitalcomputer nur mit dem Binärformat von Zahlen arbeiten kann, bedarf es zur Zeichendarstellung eines Tricks: Die Zeichen des Alphabets müssen in Binärzahlen übersetzt werden. Dieser Vorgang nennt sich Kodierung. Die Kodierung sieht so aus, dass jedes Zeichen, das dargestellt werden soll, eine Binärzahl eindeutig zugewiesen bekommt. Auf diese Weise entstehen Übersetzungstabellen, von denen es drei sehr bedeutende gibt: die ASCII-, ANSI- und Unicode-Tabellen.

1.4.1

ASCII-Code

ASCII ist eine Abkürzung für American Standard Code for Information Interchange, also den amerikanischen Standardcode für Informationsaustausch. Er ba-33

1

Digitale Informationsverarbeitung

sierte anfangs darauf, Zeichen mit 7 Bit zu kodieren. Das heißt, der Wertebereich beschränkte sich auf lediglich 128 Zeichen. Nationale Sonderzeichen konnten noch nicht kodiert werden.

Keine nationalen Sonderzeichen

Warum war man damals so sparsam? Zu dem Zeitpunkt, als der Code entwickelt wurde, war der Speicherplatz noch sehr kostbar, und es wurde versucht, möglichst wenig davon zu verbrauchen. Außerdem war die Internationalisierung noch nicht so bedeutend und die Darstellung nationaler Sonderzeichen nicht so wichtig.

Hexadezimal

Binär

ASCII

3A

00111010

:

3B

00111011

;

3C

00111100

<

3D

00111101

=

3E

00111110

>

3F

00111111

?

40

01000000

@

41

01000001

A

42

01000010

B

43

01000011

C

44

01000100

D

45

01000101

E

Tabelle 1.3 Ausschnitt aus dem ersten Teil der ASCII-Tabelle

Da der Wertebereich von 128 Zeichen viel zu klein für die Menge an Zeichen war, die weltweit verwendet wurden, erweiterte man den ASCII-Code später auf 8 Bit (ein Byte). Damit beträgt der Wertebereich 256 Zeichen (28 = 256).

Erweiterung um nationale Sonderzeichen

Der erste Teil des normalen und erweiterten ASCII-Codes besteht aus Druckersteuerzeichen, die nicht ausgegeben werden können. Sie dienten beispielsweise dazu, einen Zeilenvorschub auszulösen. Nach diesen Druckersteuerzeichen folgt ein Abschnitt mit Zeichen für die Interpunktion sowie mit den »normalen« Zeichen des Alphabets. Der erweiterte Teil des ASCII-Codes ist für nationale sowie andere Sonderzeichen reserviert.

34

Kodierung von Zeichen

1.4

Erweiterung nicht standardisiert

Leider war der erweiterte Teil des ASCII-Codes nicht standardisiert, so dass die Sonderzeichen eines ASCII-Textes auf einem IBM-Computer anders dargestellt wurden als auf einem Apple-Computer. Ein deutschsprachiger Brief, der auf einem Apple Macintosh in einem Standardtextformat geschrieben worden war, war auf einem IBM-PC schlecht lesbar, denn alle nationalen Sonderzeichen wurden falsch dargestellt. Um diese Beschränkungen des ASCII-Codes zu überwinden und eine Internationalisierung zu fördern, entwickelte man den ANSI-Code.

1.4.2

ANSI-Code

Der ANSI-Code wurde vom American National Standards Institute (ANSI) festgelegt. Er basiert auf den ersten 127 Zeichen des ASCII-Codes, verwendet aber 16

Bit zur Darstellung von Zeichen und besitzt daher einen Wertebereich von 65536

Zeichen (216 Zeichen = 65536).

Hexadezimal

Binär

ANSI

C0

11000000

À

C1

11000001

Á

C2

11000010

Â

C3

11000011

Ã

C4

11000100

Ä

C5

11000101

Å

C6

11000110

Æ

C7

11000111

Ç

C8

11001000

È

C9

11001001

É

CA

11001010

Ê

CB

11001011

Ë

Tabelle 1.4 Ausschnitt aus einem Teil der ANSI-Tabelle

Der ANSI-Code war allerdings auch nicht der Weisheit letzter Schluss. Sein Wertebereich war zwar ausreichend, doch nicht international normiert. Daher ent-schlossen sich Fachleute verschiedener Länder, das Nonplusultra der Zeichencodes zu entwickeln: den international standardisierten Unicode, den auch die Programmiersprache Java verwendet.

35

1

Digitale Informationsverarbeitung

1.4.3

Unicode

Der Unicode ist vom Unicode-Konsortium entwickelt worden, einer Vereinigung, die aus Linguisten und anderen Fachleuten besteht. Unicode ist seit der Version 2.0 auch mit der internationalen Norm ISO/IEC 10646 abgestimmt und verwendet wie der ANSI-Code 16 Bit zur Zeichendarstellung. Im Gegensatz zum ANSI-Code ist Unicode jedoch unabhängig vom Betriebssystem, unabhängig vom Programm und unabhängig von der Landessprache.

Zeichen aller Länder

Der Unicode enthält Zeichen aller bekannten Schriftkulturen und Zeichensysteme, darunter das lateinische, tibetanische, kyrillische, hebräische, japanische und chinesische Alphabet. Damit können Programme und deren Oberflächen

problemlos in andere Sprachen übersetzt werden.

Java und Unicode

Für die Java-Programmierung hat der Unicode die größte Bedeutung, weil

Java-Programme unter allen Betriebssystemen und in allen Ländern funktionieren müssen. Man kann ohne Übertreibung sagen, dass die Entwicklung des Unicodes eine der Voraussetzungen für einige Merkmale von Java war. Mit JDK

7 unterstützt Java jetzt Unicode 6.0.

Zeichen

Unicode

Ä

\u00c4

Ö

\u00d6

Ü

\u00dc

ä

\u00e4

ö

\u00f6

ü

\u00fc

ß

\u00df

Tabelle 1.5 Die Unicodes der deutschen Sonderzeichen

Einige der in Tabelle 1.5 abgedruckten Unicodes werden Sie später (ab

Kapitel 4, »Sprache Java«) in Programmlistings finden, wenn deutsche Sonderzeichen ausgegeben werden sollen. Die Verwendung des Unicodes ist

notwendig, damit ein Programm unter verschiedenen Betriebssystemen (z. B.

Windows und Mac OS X) nationale Sonderzeichen darstellen kann.

36

Kodierung logischer Informationen

1.5

1.5

Kodierung logischer Informationen

Neben der Kodierung von Zahlen und Zeichen ist die Kodierung logischer Informationen für die Programmierung von großer Bedeutung. Logische Informationen sind Zustandsinformationen wie Wahr oder Falsch sowie logische Verknüpfungen wie Oder beziehungsweise Und. Diese Informationen steuern den Programmfluss, wie die folgenden Beispiele zeigen werden.

1.5.1

Und-Funktion

Viele Programme überprüfen vor dem Programmende, ob ein Dokument (zum

Beispiel ein Textdokument wie ein Brief) noch gespeichert werden muss, damit keine Informationen verloren gehen. Das geschieht zum Beispiel folgendermaßen:

왘

Wenn das Dokument seit dem letzten Speichern geändert wurde

(Bedingung A)

왘

und (Verknüpfung)

왘

das Programm beendet werden soll (Bedingung B),

왘

dann frage den Anwender, ob er das Dokument speichern möchte (Aktion).

Entscheidungstabelle

Das Ganze lässt sich in Form einer Entscheidungstabelle darstellen, wobei Folgendes zu beachten ist: Der Zustand Wahr lässt sich im Computer als eine 1 darstellen, der Zustand Falsch als eine 0. Ein logisches Und zwischen den Bedingungen A und B wird wie folgt geschrieben: A ∧ B.

Und-Funktion

Die Abbildung 1.6 zeigt Folgendes: Sind beide Bedingungen falsch (Fall 1) und werden sie mit Und verknüpft, ist das Ergebnis ebenfalls falsch. Ist nur eine der Bedingungen falsch und werden sie mit Und verknüpft (Fall 2 und 3), ist das Ergebnis ebenfalls falsch. In diesen beiden Fällen ist keine Aktion notwendig.

37

1

Digitale Informationsverarbeitung

A B

A ^ B

Fall 1

0

0

0

Keine Aktion

Fall 2

0

1

0

Programmende

Fall 3

1

0

0

Keine Aktion

A: Dokument nicht

gespeichert

B: Programm soll

Fall 4

1

1

1

Dialog zeigen

beendet werden

Abbildung 1.6 Und-Funktion

Nur im Fall 4, also dann, wenn beide Bedingungen erfüllt sind (Zustand Wahr), wird das Programm einen Dialog einblenden, bevor es sich verabschiedet. In diesem Fall muss das Programm die Antwort des Anwenders auswerten und das Dokument eventuell speichern.

1.5.2

Oder-Funktion

Abbildung 1.7 zeigt das vorangegangene Beispiel nochmals mit der Oder-Funktion. Wie Sie erkennen können, ist eine Oder-Verknüpfung nur dann falsch, wenn beide Bedingungen falsch sind. Das ganze Beispiel lässt sich um eine Bedingung erweitern:

왘

Wenn das Dokument seit dem letzten Speichern geändert wurde

(Bedingung A)

왘

und (Verknüpfung)

왘

das Programm beendet werden soll (Bedingung B)

왘

oder (Verknüpfung)

왘

das Dokument geschlossen wird (Bedingung C),

왘

dann frage den Anwender, ob er das Dokument speichern möchte (Aktion).

Wenn Bedingung A mit B durch ein logisches Oder verknüpft wird, schreibt man dies wie folgt: A ∨ B. Auf den neuen Anwendungsfall übertragen, sieht die Gleichung folgendermaßen aus: A ∧ B ∨ C. Damit eindeutig ist, wie der Ausdruck auszuwerten ist, setzt man ihn besser in Klammern: A ∧ (B ∨ C).

38

Kodierung logischer Informationen

1.5

A B

Fall 1

0

0

0

Keine Aktion

Fall 2

0

1

1

Dialog zeigen

Fall 3

1

0

1

Dialog zeigen

A: Programm soll

beendet werden

B: Dokument wird

Fall 4

1

1

1

Dialog zeigen

geschlossen

Abbildung 1.7 Oder-Funktion

1.5.3

Nicht-Funktion

Die Nicht-Funktion findet überall dort Verwendung, wo es notwendig ist, einfache logische Aussagen zu überprüfen. Dabei kehrt sie einfach den Wert einer Information in ihr Gegenteil um. Wenn A = 0 ist, dann ist Nicht-A eben 1. Nicht-A schreibt sich ¬ A.

Angenommen, Sie möchten zu einem bestimmten Zeitpunkt überprüfen, ob ein Dokument innerhalb eines Programms gespeichert wurde. Sie benutzen dazu eine Variable namens Gespeichert.

Ist der Wert dieser Variablen 1, so ist wahr, dass das Dokument gespeichert wurde. Ist die Variable hingegen 0, so hat der Anwender das Dokument nicht gespeichert. In diesem Fall soll ein Dialog mit der Frage »Wollen Sie jetzt speichern?«

eingeblendet werden.

Die Bedingung für das Auslösen dieser Aktion lautet: Falls das Dokument Nicht-Gespeichert ist, zeige den Dialog »Dokument sichern«. Nicht-Gespeichert muss wahr sein, damit diese Bedingung erfüllt ist (Abbildung 1.8).

Gespeichert

Gespeichert

Fall 1

1

0

Keine Aktion

Fall 2

0

1

Dialog zeigen

Abbildung 1.8 Nicht-Funktion

39

1

Digitale Informationsverarbeitung

1.6

Zusammenfassung

Der Computer speichert alle Informationen mit Hilfe primitiver Bauelemente, die nur zwei Zustände annehmen können. Diese Bauelemente werden als Träger von binären Zahlen eingesetzt.

Die Binärdarstellung von Informationen nennt sich Binärformat. Im Binärformat gespeicherte Programme heißen Binär- oder Maschinenprogramme. Binär dargestellte Informationen sind für den Menschen nur schlecht verständlich. Aus diesem Grund verwendet man lieber andere Zahlensysteme wie zum Beispiel das Hexadezimal- und das Dezimalsystem.

Die vom Computer gespeicherten Informationen in Form binärer Zahlen lassen sich auf einfache Weise in Dezimal- oder Hexadezimaldarstellung umwandeln.

Der Informationsgehalt dieser Daten wird in Bits und Bytes gemessen.

Im Gegensatz zur Zahlendarstellung basiert die Zeichendarstellung auf Codetabellen wie dem ASCII-Code. Für die Java-Programmierung ist von allen Zeichenta-bellen die Unicode-Tabelle am wichtigsten. Der Unicode erleichtert die Internationalisierung von Programmen, da er Zeichen aller Länder darstellen kann.

1.7

Aufgaben

Versuchen Sie bitte, folgende Aufgaben zu lösen:

1.7.1

Zahlensysteme

1. Woher kommt der Name »Digitalcomputer«?

2. Warum arbeiten heutige Digitalcomputer mit Binärzahlen?

3. Welchen Vorteil bietet das Hexadezimalsystem bei der Darstellung von Binärzahlen?

4. Wandeln Sie die Hexadezimalzahl 7D3 manuell in eine Dezimalzahl um. Beschreiben Sie den Lösungsweg.

1.7.2

Informationseinheiten

1. Was ist die kleinste Informationseinheit, die ein Computer verarbeitet?

2. Wie viele Bits haben Sie zur Darstellung der Hexadezimalzahl 7D3 (Aufgabe 4) benötigt?

40

Aufgaben

1.7

3. Wie viele Bytes sind ein KByte?

4. Wie kommt es zu der ungewöhnlichen Schreibweise von KByte?

1.7.3

Zeichenkodierung

1. Wofür benötigt man Codetabellen?

2. Was sind die großen Vorteile des Unicodes?

1.7.4

Kodierung logischer Informationen

1. Welche logischen Verknüpfungen gibt es?

2. Wie lautet das Ergebnis von folgendem Ausdruck: 1 ∧ (0 ∨ 1)?

Die Lösungen zu den Aufgaben finden Sie in Kapitel 18 ab Seite 503.

41

»In keiner Sprache kann man sich so schwer verständigen wie in der

Sprache.« (Karl Kraus)

2

Programmiersprachen

2.1

Einleitung

Dieses Kapitel gibt Ihnen einen Überblick über die babylonische Vielfalt der Programmiersprachen. Es hilft Ihnen, die Programmiersprache Java in den nachfolgenden Kapiteln besser einzuordnen, die Entwicklung der Sprache besser nachzuvollziehen und ihre Konzepte besser zu verstehen. Ab diesem Kapitel sollten Sie eine Java-Entwicklungsumgebung (zum Beispiel Eclipse) installiert haben, um das erste Beispiel gleich nachvollziehen zu können. Hilfe bei der Auswahl und Installation von Java-Entwicklungsumgebungen finden Sie in Kapitel 22, »Werkzeuge«.

2.1.1

Verständigungsschwierigkeiten

In Kapitel 1, »Digitale Informationsverarbeitung« haben Sie erfahren, dass ein Digitalcomputer Informationen auf sehr primitive Art darstellt. Vielleicht haben Sie sich gefragt, wie eine so dumme Maschine in der Lage ist, vom Menschen entwickelte intelligente Programme auszuführen. Das ist in der Tat nicht einfach.

Zwischen dem Menschen und dem Computer gibt es enorme Verständigungs-

schwierigkeiten, da sich die menschliche Sprache und die Maschinensprache des Computers stark unterscheiden. Es hat einige Jahrzehnte gedauert, die Verständigungsschwierigkeiten halbwegs aus dem Weg zu räumen. Der Schlüssel dazu liegt in der Entwicklung geeigneter Programmiersprachen.

2.1.2

Definition

Programmiersprachen sind Sprachen, mit deren Hilfe ein Softwareentwickler Befehle (Rechenvorschriften) für den Computer formuliert. Eine bestimmte Ansammlung von Befehlen ergibt ein Computerprogramm. Die Befehle dieser Programmiersprachen sind nicht so leicht verständlich, wie es die natürliche Sprache für uns ist. Diese Sprachen können aber vom Menschen viel besser verstanden 43

2

Programmiersprachen

werden als der Binärcode des Computers. Programmiersprachen vermitteln also zwischen beiden Welten im Kreislauf zwischen Mensch und Maschine (Abbildung 2.1).

Damit Sie eine Programmiersprache wie Java verstehen, müssen Sie diese Sprache wie jede Fremdsprache erlernen. Der Computer hat es besser: Er muss die Fremdsprache Java nicht erlernen. Für ihn haben findige Softwareentwickler eine Art Dolmetscher (Interpreter, Compiler) erfunden. Dieser Babelfisch1 übersetzt die Java-Sprache in die Muttersprache des Computers (Kapitel 5, »Entwicklungsprozesse«, und 6, »Plattform Java«, stellen den Compiler ausführlich vor).

Computer

stellt dar

Natürliche Sprache

Maschinensprache

Mensch

erlernt

Compiler

Programmiersprache

übersetzt

Abbildung 2.1 Kreislauf zwischen Mensch und Maschine

2.1.3

Klassifizierung

Es gibt verschiedene Möglichkeiten, Programmiersprachen einzuordnen: entweder nach Sprachmerkmalen (Abbildung 2.2) oder nach ihrer Abstammung (Abbildung 2.3 auf Seite 46) oder chronologisch (Abschnitt 2.1.4, »Geschichte«).

Peter Rechenberg sagt, ein einziges Klassifikationsschema sei niemals ausreichend, und schlägt stattdessen gleich zwei verschiedene Schemata vor (Abbildung 2.2).

Dieses Kapitel gruppiert die Programmiersprachen chronologisch und beginnt daher mit ihrer Geschichte.

1 Aus Douglas Adams, »Per Anhalter durch die Galaxis«: Ein Babelfisch ist ein Fisch, den man sich ins Ohr steckt und der per Gedankenübertragung alle Sprachen übersetzt.

44

Einleitung

2.1

Abbildung 2.2 Klassifikation nach Rechenberg

2.1.4

Geschichte

Programmiersprachen unterliegen einem steten Wandel. Ständig kommen neue Sprachen hinzu, alte verschwinden wieder. Der Grund für diese hektische Betrieb-samkeit ist die Suche der Softwareentwickler nach der optimalen Programmiersprache.

Die Idealsprache ist extrem leicht zu erlernen, für jeden Einsatzbereich geeignet und beflügelt die Entwicklung hochwertiger, extrem schneller Software, die auf jedem Computersystem ausgeführt werden kann – kurz: Diese Sprache gibt es (noch) nicht.

Auch wenn die optimale Programmiersprache noch nicht existiert, ist der bisher erzielte Fortschritt bei der Entwicklung neuer Programmiersprachen beachtlich.

Ausgangspunkt dieser Entwicklung war die »Muttersprache« der Computer, die so genannte Maschinensprache (Abbildung 2.3).

Von der maschinennahen Programmierung hat man sich jedoch im Laufe der Zeit immer weiter entfernt. Ordnet man die Programmiersprachen chronologisch, so kommt man heute je nach Zählweise auf bis zu sechs Generationen von Programmiersprachen, die ich Ihnen vorstellen möchte.

45

2

Programmiersprachen

Abbildung 2.3 Stammbaum der wichtigsten Programmiersprachen

2.2

Programmiersprachen der ersten Generation

Als die ersten Computer entwickelt wurden, programmierte man sie direkt in Maschinensprache. Die »Muttersprache« des Computers nennt sich Maschinensprache, weil sie vom Computer (der Maschine) direkt und ohne Übersetzung ausgeführt werden kann.

Die Maschinensprache ist sehr verschieden von den natürlichen Sprachen, mit denen sich Menschen verständigen (Humansprachen). Sie besteht aus kleinen Codeeinheiten im Binärformat, den eingangs erwähnten Befehlen.

46

Programmiersprachen der ersten Generation

2.2

2.2.1

Programmaufbau

Wenn ein Maschinenprogramm abläuft, liest der Computer diese binären Zahlen und interpretiert sie als Befehle. Das Programm befindet sich während seiner Ausführung in einem bestimmten Bereich des Hauptspeichers (Kapitel 23, »Computerhardware«). Somit kann jedem Befehl eine eindeutige Adresse zugeordnet werden. Listing 2.1 zeigt auf der linken Seite die Adresse im Hauptspeicher in hexadezimaler Notation und auf der rechten Seite das eigentliche Maschinenprogramm in hexadezimaler Notation.

1: XXXX:0100

B9

01

00

2: XXXX:0103

B8

00

00

3: XXXX:0106

01

C8

4: XXXX:0108

41

5: XXXX:0109

83

F9

05

6: XXXX:010C

76

F8

Listing 2.1 Ein Beispiel für ein Maschinenprogramm (Intel-80x86-CPU) Verständlichkeit

Durch die hexadezimale Notation des Maschinenprogramms ist es einem Experten schon viel besser möglich, das Programm zu verstehen – besonders gut lesbar ist die Ansammlung mehr oder weniger verständlicher Anweisungen jedoch nicht.

Mikrobefehle

Das Maschinenprogramm besteht aus einer Reihe von Mikrobefehlen, auf die ich an dieser Stelle bewusst nicht weiter eingehen möchte. Die Erläuterung der Befehle folgt im nächsten Abschnitt, wo das gleiche Programm in der Assembler-Sprache vorgestellt wird.

Binärcode

Nur so viel an dieser Stelle: Was Sie in Listing 2.1 sehen, ist der so genannte Binärcode eines Computerprogramms. Ein binäres Computerprogramm besteht aus Befehlen in der nativen (eigentlichen) Sprache des Computers. Wenn man ein Computerprogramm direkt in dieser Maschinensprache schreibt, muss es nicht mehr in die Sprache des Computers übersetzt werden.

2.2.2

Portabilität

Es ist wichtig, zu wissen, dass sich Computer unterschiedlicher Bauart mehr oder weniger stark in ihrem Binärcode unterscheiden. Ein Maschinenprogramm für einen Apple Macintosh G5 unterscheidet sich von einem Maschinenprogramm 47

2

Programmiersprachen

für einen Intel-PC oder einen IBM-Großrechner. Durch diese Tatsache kann ein Maschinenprogramm, das für einen Intel-PC entwickelt wurde, nicht direkt auf einem anderen Computersystem wie einem IBM-Großrechner ausgeführt werden.

Um das zu erreichen, muss das Computerprogramm von einer Maschinensprache in die andere übertragen (portiert) werden (engl. portable: übertragbar). Wenn Sie nochmals einen Blick auf Listing 2.1 werfen, können Sie sich vorstellen, was es bedeutet, Tausende von derart simplen Instruktionen zu übertragen. Ein Entwickler, der diese Arbeit manuell durchführt, muss – neben unendlicher Geduld

– über sehr gute Kenntnisse in der Hardware beider Computersysteme verfügen.

In Maschinensprache geschriebene Computerprogramme lassen sich ab einer bestimmten Komplexität praktisch nicht mehr auf andere Computersysteme übertragen. Dies ist neben der schlechten Verständlichkeit einer der Hauptnachteile der Maschinensprache und einer der Gründe, warum man Hochsprachen entwickelt hat.

2.2.3

Ausführungsgeschwindigkeit

Entwickler von Maschinenprogrammen besitzen in der Regel sehr gute Hard-warekenntnisse und können daher den Programmcode und Speicherplatzbedarf der Programme stark optimieren. Daher sind direkt in Maschinensprache entwickelte Programme meistens sehr effizient programmiert. Sie laufen im Vergleich zu Programmen, die in Hochsprachen (Pascal, Java) programmiert sind, oftmals viel schneller, benötigen nur wenig Hauptspeicher und Festplattenkapazität.

2.2.4

Einsatzbereich

Direkt in Maschinensprache wird trotz ihres Geschwindigkeitsvorteils aufgrund ihrer Hardwareabhängigkeit, ihrer schlechten Portabilität und ihrer extrem schlechten Verständlichkeit heute kaum mehr programmiert. Wenn man überhaupt maschinennah programmiert, dann in Assembler, der Programmiersprache der zweiten Generation.

2.3

Programmiersprachen der zweiten Generation

Um den Computer nicht in der für Menschen schlecht verständlichen Maschinensprache programmieren zu müssen, hat man die Assembler-Sprache erfunden. In Assembler geschriebene Programme bestehen aus einzelnen symbolischen Anweisungen, die sich der Programmierer besser merken kann.

48

Programmiersprachen der zweiten Generation

2.3

2.3.1

Programmaufbau

Das Assembler-Programm besteht im Gegensatz zu den kryptischen Zahlencodes des Maschinenprogramms aus symbolischen Befehlen. Diese Minibefehle sind nur in der Lage, sehr einfache Aufgaben wahrzunehmen.

1: ; Beispielprogramme/Programmiersprachen/Ex02

2: ; Beispiel fuer ein einfaches Assembler-Programm

3: ; Prozessor: Intel 80x86 / Assembler: TASM

4: ; Autor: Bernhard Steppan

5: ;

6: code

segment para

7:

assume

cs:code,ds:code

8:

9:

org

0100h

10: start:

mov

cx, 1

11:

mov

ax, 0

12:

add

ax, cx

13:

inc

cx

; Erhoehe cx

14:

cmp

cx, 05

15:

jbe

106

16:

17:

end

start

Listing 2.2 Ein Assembler-Programmbeispiel (Intel-80x86-CPU)

Verständlichkeit

Um das Programm zu verstehen, muss man die Hardware des Computers kennen.

Ein Intel-PC oder ein zu einem Intel-PC kompatibler Computer, für den das Programm geschrieben wurde, verfügt über mindestens einen Hauptprozessor, die so genannte Central Processing Unit (CPU). In diesem Fall ist es ein x86-kompatibler Prozessor. Dieser Prozessor besitzt einen typspezifischen Befehlssatz und mehrere Register (Kapitel 23, »Computerhardware«).

Mikrobefehle

Die Register dienen beim Ausführen des Programms als kurzfristiger Zwischenspeicher für Zahlenwerte, mit denen der Hauptprozessor beschäftigt ist: Sie besitzen daher die extrem wichtige Funktion eines Kurzzeitgedächtnisses für den Prozessor.

Zu Anfang des Programms (Listing 2.2) lädt der Prozessor den Wert 1 in das Register CX (Zeile 10). Der entsprechende Assembler-Befehl ist ein so genannter Datentransferbefehl. Er lautet MOV und ist eine Abkürzung von »to move«

49

2

Programmiersprachen

(bewegen). Jeder dieser Mikrobefehle ist ein solches Kürzel, das man sich leicht merken kann und das deshalb auch Mnemonik (Stütze fürs Gedächtnis) heißt.

Die zweite Anweisung MOV AX, 0 initialisiert das Akkumulatorregister (AX) mit dem Wert 0, um die nachfolgende Berechnung bei 0 zu beginnen (Zeile 11).

Danach addiert der Prozessor den Wert im Zählerregister CX (Counter Register) zum Register AX (Zeile 12). Im Anschluss daran erhöht der Befehl INC CX den Anfangswert um 1 (Zeile 13). Das Mnemonik lautet INC und bedeutet »increment«

(Zunahme).

Nachfolgend vergleicht der Prozessor den Wert des Registers CX mit dem Wert 5

(Zeile 14) und springt zur Adresse 106, wenn der Wert kleiner oder gleich 5 ist (Zeile 15). Die beiden Befehle CMP und JBE bilden demnach eine Einheit. CMP

bedeutet »to compare« (vergleichen) und JBE »jump below or equal« (springe, wenn kleiner oder gleich).

Binärcode

Was Sie in Listing 2.2 sehen, ist der so genannte Assembler-Quellcode eines Computerprogramms. Damit der Computer diesen Quelltext (ASCII-Code) verstehen kann, muss er in ein binäres Computerprogramm (Binärcode) übersetzt werden.

Dazu verwendet der Softwareentwickler ein spezielles Entwicklungswerkzeug, den so genannten Assembler. Der Assembler fügt das Programm zusammen (engl.

to assemble: zusammenfügen, montieren). Von diesem Werkzeug bekam die

Programmiersprache ihren Namen.

2.3.2

Portabilität

Ein Assembler-Programm von einem Computersystem auf ein anderes zu übertragen ist ähnlich schwer wie die Portierung eines Maschinenprogramms. Meist ist es sinnvoller, sich die Dokumentation durchzulesen und das gesamte Programm neu zu schreiben.

Bedenken Sie, was die Hardwareabhängigkeit von Software bedeutet: Nicht nur, um ein Computerprogramm von einem Computertyp auf einen anderen zu übertragen, muss die Software verändert werden. Sie müsste eigentlich auch dann ver-

ändert werden, wenn ein neueres Modell des gleichen Computertyps erscheint, sobald dessen Maschinensprache umfangreicher geworden ist. Wenn Sie ein in Assembler geschriebenes Programm ausliefern, müssten Sie unterschiedliche Versionen für unterschiedliche Computertypen und -modelle produzieren.

Aus diesen Gründen ist der Anteil der Assembler-Programmierung bei komplexen Projekten inzwischen unbedeutend. Es ist einfach unwirtschaftlich, in Assembler zu programmieren.

50

Programmiersprachen der dritten Generation

2.4

2.3.3

Ausführungsgeschwindigkeit

Aber egal, wie man zur hardwarenahen Programmierung steht: Da die Assembler-Sprache mit der Maschinensprache sehr verwandt ist, kann ein Assembler-Programm extrem leicht in effizienten Binärcode umgesetzt werden. Es ist kompakt, benötigt also sehr wenig Festplattenspeicherplatz, beansprucht normalerweise wenig Hauptspeicher und kann bei geschickter Programmierung deutlich schneller ausgeführt werden als vergleichbare Hochsprachenprogramme.

2.3.4

Einsatzbereich

Sinnvolle Anwendungsbereiche der Assembler-Sprachen sind dort, wo extreme Anforderungen an die Ausführungsgeschwindigkeit und Kompaktheit des Codes auftreten, zum Beispiel bei Computerspielen, bei Gerätetreibern oder bei geschwindigkeitskritischen Betriebssystemteilen.

2.4

Programmiersprachen der dritten Generation

Da heute aufgrund der genannten Nachteile niemand mehr seinen Computer

ausschließlich in Maschinen- oder Assembler-Sprache programmieren möchte, hat man eine Reihe von so genannten höheren Programmiersprachen entwickelt.

Deren wichtigste Vertreter sind FORTRAN, COBOL, Algol, Pascal, BASIC, SIMULA, C, C++, Java und C#.

Die Programmiersprachen der dritten Generation stehen zwischen der unver-ständlichen, aber extrem effizienten Maschinensprache und der für den Menschen optimal verständlichen, aber aus Maschinensicht ineffizienten und unprä-

zisen natürlichen Sprache.

Der Übergang von der Assembler-Sprache zu den Programmiersprachen der dritten Generation kommt einer Revolution gleich. Die neue Generation unterstützt die Umsetzung von Algorithmen (Kapitel 9, »Algorithmen«) viel besser als die Assembler-Sprache und besitzt nicht deren extreme Hardwareabhängigkeit.

Obwohl es heute Sprachen der fünften Generation gibt, dominieren die Programmiersprachen der dritten Generation die Welt der Softwareentwicklung. Sie bieten einen guten Kompromiss zwischen der Flexibilität der Assembler-Sprache und der Mächtigkeit der Sprachen der fünften Generation.

51

2

Programmiersprachen

2.4.1

Programmaufbau

Programme, die in einer höheren Programmiersprache geschrieben wurden, gleichen sich prinzipiell im Aufbau. Sie verfügen über eine Deklaration von Daten-strukturen, über Funktionen und Kontrollstrukturen. Listing 2.3 zeigt Ihnen ein Beispiel in Form eines einfachen Java-Programms.

1: // Beispielprogramme/Programmiersprachen/Ex03

2: // Beispiel fuer ein einfaches Java-Programm

3: // Autor: Bernhard Steppan

4:

5: class Addition {

6:

public static void main(String[] arguments) {

7:

//Anfangswert setzen:

8:

int i = 0;

9:

10:

// Schleife:

11:

while (i <= 5) {

12:

i++; //Zaehler erhoehen

13:

}

14:

// Summe ausgeben:

15:

System.out.println("Summe = " + i);

16:

}

17: }

Listing 2.3 Ein Java-Programmbeispiel

Verständlichkeit

Das kleine Programm leistet praktisch das Gleiche wie das Assembler-Programm zuvor, ist aber sicher selbst von jedem Informatik-Laien weit besser zu verstehen.

Das liegt zum Teil daran, dass sich die Java-Programmiersprache sehr an die Bezeichnungen der Mathematik anlehnt und natürliche Begriffe als Schlüsselwörter (class, main, while) verwendet.

Makrobefehle

Wenn Sie die Assembler-Programme mit Java-Programmen vergleichen, stellen Sie fest, dass ein Java-Befehl in der Regel weit mächtiger ist als ein Assembler-Befehl. Mit anderen Worten: Sie müssen nicht so viel schreiben und kommen bei der Programmierung schneller zum Ziel.

Binärcode

Damit der Computer den Java-Quellcode (ASCII-Text) ausführen kann, muss dieser in ein binäres Computerprogramm (Binärcode) übersetzt werden. An dieser Stelle soll als Erklärung genügen, dass Sie hierfür ein spezielles Programm namens Com-52

Programmiersprachen der dritten Generation

2.4

piler benötigen. Der Compiler übersetzt das Java-Programm in ein Binärprogramm zusammen (lat. compilare: zusammenraffen, plündern).

Die meisten Entwicklungsumgebungen für Sprachen der dritten Generation verwenden Compiler. Compiler übersetzen den Quelltext in einem oder mehreren Vorgängen in ein Binärprogramm. Anstelle eines Compilers lässt sich aber auch ein Interpreter einsetzen, um das Programm Schritt für Schritt in ein Binärprogramm zu übertragen. Java kombiniert beide Verfahren. Wenn Sie das Programm jetzt ausführen wollen, wechseln Sie in das Verzeichnis, in dem sich die Beispiele dieses Buchs befinden. Danach wechseln Sie in das Unterverzeichnis Programmiersprachen/Ex03/bin und geben auf der Kommandozeile ein:

java Addition

Das Programm wird nun ausgeführt und sollte folgendes Ergebnis ausgeben: Summe = 6

Es würde an dieser Stelle zu weit führen, das ganze Verfahren der Herstellung und Ausführung eines Java-Programms genau zu erklären. Dafür ist das Kapitel 6,

»Plattform Java«, reserviert.

2.4.2

Portabilität

Neben der besseren Verständlichkeit und höheren Produktivität besitzt das vorliegende Java-Programm gegenüber dem vorangegangenen Assembler-Beispiel einen weiteren entscheidenden Vorteil: Es ist nicht abhängig von einer bestimmten Hardware, sondern sehr leicht von einem Computersystem auf ein anderes zu übertragen.

Das Merkmal der leichten Portabilität trifft auf alle Programmiersprachen der dritten Generation zu – jedoch in unterschiedlichem Ausmaß. Es gibt zum Beispiel zwischen Sprachen wie C++ und Java einige deutliche Unterschiede: Bei C++ ist nur der Quelltext weitestgehend portabel, bei Java hingegen auch der Binärcode.

Java gehört zu den Programmiersprachen, deren Programme am leichtesten portierbar sind. Der vom Java-Compiler erzeugte Binärcode namens Bytecode (Kapitel 6, »Plattform Java«, Abschnitt 6.2, »Bytecode«) kann bei Einhaltung bestimmter Programmierregeln praktisch unverändert sowohl auf einem Macintosh als auch auf einem Windows-PC ausgeführt werden.

2.4.3

Ausführungsgeschwindigkeit

Es gibt heute sehr leistungsfähige Compiler, die aus einem Hochsprachen-Quelltext ein schnelles Maschinenprogramm erzeugen. Trotzdem ist es im Regelfall so, 53

2

Programmiersprachen

dass ein optimales, in Assembler geschriebenes Programm schneller ausgeführt wird als ein optimales Hochsprachenprogramm. Dieser Unterschied rechtfertigt heute jedoch in den meisten Fällen nicht mehr den Einsatz der Assembler-Sprache.

2.4.4

Einsatzbereich

Programmiersprachen der dritten Generation sind Allzweckprogrammiersprachen, die auf allen Gebieten der Softwareentwicklung verwendet werden. Mittlerweile verdrängen sie die Assembler-Sprache sogar auf dem Gebiet der Treiber-programmierung.

2.5

Programmiersprachen der vierten Generation

Mit den Programmiersprachen der vierten Generation versuchten die Entwickler Probleme wie den Datenbankzugriff in einer abstrakteren Art und Weise zu lösen als mit den Sprachen der dritten Generation. Ein Beispiel für eine Programmiersprache dieser Generation ist Natural.

2.5.1

Programmaufbau

Natural-Programme bestehen wie Programme, die mit Sprachen der dritten Generation geschrieben wurden, aus Datendeklarationen, Kontrollstrukturen und Funktionen. Ein Beispiel sehen Sie in Listing 2.4.

1: PGM-ID:

Addition

2: DEFINE

DATA

3:

LOCAL

4:

01

#i

5: END-DEFINE

6: *

7: FOR

#i

1

TO

5

STEP

1

8: END-FOR

Listing 2.4 Ein Natural-Programmbeispiel

Verständlichkeit

Wenn Sie dieses Beispiel mit dem eingangs gezeigten Assembler-Listing vergleichen, erkennen Sie ebenfalls, dass es erheblich besser zu verstehen ist.

54

Programmiersprachen der fünften Generation

2.6

Makrobefehle

Natural-Programme verfügen über Befehle, die im Vergleich zu Sprachen der dritten Generation in der Regel weit mächtiger sind. Die Sprache ist im Vergleich zu C++ oder Java weit weniger flexibel, aber in bestimmten Einsatzbereichen sicher annähernd so produktiv.

Binärcode

Um Natural-Quellcode in ein binäres Computerprogramm (Binärcode) zu übersetzen, kommt entweder ein Compiler oder ein Interpreter zum Einsatz.

2.5.2

Portabilität

Wie das Java-Beispiel ist auch das Natural-Programm im Vergleich zu Assembler-Programmen leicht portierbar, da es keine direkten Abhängigkeiten zu der zugrunde liegenden Hardware besitzt.

2.5.3

Ausführungsgeschwindigkeit

Mir sind hier keine vergleichenden Studien bekannt, die auf Unterschiede in der Ausführungsgeschwindigkeit zwischen Natural- und Assembler-Programmen hinweisen. Da Programmiersprachen wie Natural vor allem in Zusammenhang mit der Datenbankprogrammierung eingesetzt werden, kann man davon ausgehen, dass die Ausführungsgeschwindigkeit zufriedenstellend ist.

2.5.4

Einsatzbereich

Programmiersprachen wie Natural haben ihren Haupteinsatzbereich in der Programmierung von Datenbankanwendungen.

2.6

Programmiersprachen der fünften Generation

Noch weiter entfernt von der Maschinensprache als Natural sind Programmiersprachen der fünften Generation. Sie wurden konzipiert, um Expertensysteme zu entwickeln. Programmiersprachen dieser Generation nennt man auch logische Programmiersprachen. Prominentester Vertreter dieser Gattung ist neben Datalog die Sprache Prolog (Programming in logic).

55

2

Programmiersprachen

2.6.1

Programmaufbau

Ein Prolog-Programm besteht aus einer Reihe von Funktionen, deren Reihenfolge egal ist. Die Funktionen bestehen aus Sätzen (clauses). Bei diesen ist die Reihenfolge sehr wichtig. Es gibt zwei Typen von clauses: Tatsachen (facts) und Regeln (rules). Ein Beispiel sehen Sie in Listing 2.5.

1: % Wir legen fest, dass Peter ein Mann ist:

2: man (peter).

3: %

4: % Wir legen weiter fest, dass Peter ein Elternteil

5: % von Paul ist. Das geschieht nach dem Muster:

6: % parent(Eltern, Kind)

7: parent (peter, paul).

8: %

9: % Wir legen zudem fest, dass jeder Elternteil, der

10: % ein Mann ist, zugleich auch ein Vater ist:

11: father (FA, CH):-man (FA), parent (FA, CH).

12: %

13: % Nachdem die Randbedingungen klar sind,

14: % kann man dem System die Frage stellen:

15: % Wer ist Pauls Vater?

16: ?-father(X, paul).

Listing 2.5 Ein Prolog-Programmbeispiel

Verständlichkeit

Prolog wirkt auf Programmierer von mathematisch geprägten Sprachen wie Java sehr ungewohnt. Man kann jedoch erkennen, dass die Sprache ideal sein könn-te, um Software zu entwickeln, die logische Probleme lösen soll (so genannte Expertensysteme).

Makrobefehle

Die Befehle von Prolog-Programmen sind sehr mächtig. Wie Natural ist die Sprache nicht sehr flexibel, aber in einem bestimmten Nischenbereich ist der Entwickler damit sehr produktiv.

Binärcode

Auch Prolog-Quellcode muss wieder in ein binäres Computerprogramm (Binärcode) übersetzt werden. Dazu verwendet man entweder einen Compiler oder einen Interpreter.

56

Programmiersprachen der sechsten Generation

2.7

2.6.2

Portabilität

Die Sprache Prolog ist wegen ihres starken Abstraktionsgrades von der Hardware wie andere höhere Programmiersprachen prinzipiell leicht zu portieren. Es gibt eine Vielzahl von Compilern für die unterschiedlichsten Computertypen.

2.6.3

Ausführungsgeschwindigkeit

Mir sind keine vergleichenden Studien zwischen in Prolog geschriebenen Programmen und Assembler-Programmen bekannt. Es soll jedoch optimierende

Compiler geben, die hocheffizienten Binärcode erzeugen können.

2.6.4

Einsatzbereich

Logische Programmiersprachen wie Prolog werden vorzugsweise zur Programmierung von Expertensystemen eingesetzt. Expertensysteme sind Programme, die auf künstlicher Intelligenz (KI) aufbauen und logische Schlussfolgerungen ziehen können.

2.7

Programmiersprachen der sechsten Generation

Ähnlich wie der Übergang von der hardwarenahen Assembler-Sprache zu den Hochsprachen soll auch der Übergang zu den Sprachen der sechsten Generation eine Zäsur darstellen: Diese Sprachen beschreiben ein Computerprogramm nicht wie gewohnt durch Text, sondern in Form von Grafiken (zum Beispiel Ab-laufdiagrammen). Mit der Version 2.0 der Unified Modeling Language (UML) in Verbindung mit der Model Driven Architecture (MDA) entwickelt sich zurzeit eine Programmiersprache der sechsten Generation.

2.7.1

Programmaufbau

Von der grafischen Programmiersprache UML kann ich Ihnen kein Listing präsentieren, da die Programme nur grafisch beschrieben werden. Ein Beispiel für einen Ausschnitt eines Programms zeigt Abbildung 2.4.

57

2

Programmiersprachen

Abbildung 2.4 Eine UML-Beispielgrafik (Verteilungsdiagramm)

Verständlichkeit

Wie Sie der Abbildung entnehmen können, ist hier der prinzipielle Aufbau einer Internet-Anwendung skizziert. Die Abbildung zeigt allerdings nicht das vollständige Programm, sondern nur einen Teil davon. Um ein Programm mit der UML

vollständig zu beschreiben, ist eine Vielzahl von solchen Grafiken notwendig.

Diese sind jedoch sehr gut verständlich.

Grafiken

In Sprachen der sechsten Generation soll es keine einfachen Befehle mehr geben, sondern zum Beispiel eine Reihe von UML-Grafiken, die das Modell der Software bilden. Die momentan verfügbaren MDA-Werkzeuge generieren (erzeugen) aus diesen Modellen herkömmlichen Programmcode. Dazu sind in den Werkzeu-58

Zusammenfassung

2.8

gen Generatoren integriert. Der von ihnen erzeugte Programmcode ist in einer Sprache der dritten Generation geschrieben.

Binärcode

Der erzeugte Programmcode muss letztendlich wieder – direkt oder indirekt – in ein Binärprogramm (Binärcode) übersetzt werden. Dazu wird man wahrscheinlich wieder einen Compiler verwenden.

2.7.2

Portabilität

Ein Programm, das nach der Model Driven Architecture entwickelt wurde, soll unabhängig von der Hardware sein und daher leicht von einem Computertyp auf einen anderen übertragen werden können.

2.7.3

Ausführungsgeschwindigkeit

Da aus den Modellen beispielsweise C#- oder Java-Code erzeugt wird, verhält es sich mit der Ausführungsgeschwindigkeit wie bei Programmiersprachen der dritten Generation. Sie ist abhängig vom Geschick des Entwicklers, von der Qualität des Generators und von der Qualität des Compilers oder Interpreters.

2.7.4

Einsatzbereich

Programmiersprachen der sechsten Generation sind gerade in der Entstehung. Sie haben sich noch nicht durchgesetzt, auch wenn es inzwischen einige MDA-Werkzeuge gibt.

2.8

Zusammenfassung

Programmiersprachen haben sich aus der nativen Sprache der Computer (Maschinensprache) entwickelt. Sie entfernen sich von der hardwarenahen Programmierung (erste und zweite Generation) und entwickeln sich in Richtung der natürlichen Sprache (Humansprache).

Programmiersprachen der ersten und zweiten Generation eignen sich für hardwarenahe Programme, während Programmiersprachen der vierten und fünften Generation für spezielle Anwendungsfälle, wie Datenbankprogrammierung und Expertensysteme, geeignet sind. Programmiersprachen der dritten Generation beherrschen heute die Programmentwicklung. Zu ihnen gehört auch die

Programmiersprache Java.

59

2

Programmiersprachen

2.9

Aufgaben

Versuchen Sie, folgende Aufgaben zu lösen:

2.9.1

Programmiersprachen der ersten Generation

1. Wie nennen sich Programmiersprachen der ersten Generation?

2. Woher stammt ihr Name?

3. Weshalb programmiert man heute nicht mehr mit Sprachen der ersten

Generation?

2.9.2

Programmiersprachen der zweiten Generation

1. Nennen Sie die drei wichtigsten Vorteile der Assembler-Sprache gegenüber den Hochsprachen.

2. Für welche Software setzt man heute noch die Assembler-Sprache ein?

3. Was sind die drei wesentlichen Vorteile von Hochsprachen gegenüber der Assembler-Sprache?

2.9.3

Programmiersprachen der dritten Generation

1. Was versteht man unter portablen Computerprogrammen?

2. Nennen Sie drei Programmiersprachen der dritten Generation.

Die Lösungen zu den Aufgaben finden Sie in Kapitel 18 ab Seite 505.

60

»Ich sehe ein Pferd, dann sehe ich noch ein Pferd – dann noch eins. Die Pferde sind nicht ganz gleich, aber es gibt etwas, das allen Pferden gemeinsam ist, und das, was allen Pferden gemeinsam ist, ist die Form des Pferds.

Was unterschiedlich oder individuell ist, gehört zum Stoff des Pferds.«

(Jostein Gaarder)

3

Objektorientierte Programmierung

3.1

Einleitung

Mitte der 60er-Jahre des letzten Jahrhunderts kam es zu einer Softwarekrise. Die Anforderungen an Programme stiegen, und die Software wurde dadurch komplexer sowie fehlerhafter. Auf Kongressen diskutierten Experten die Ursachen der Krise und die Gründe für die gestiegene Fehlerrate. Ein Teil der Softwareexperten kam zu dem Schluss, dass die Softwarekrise nicht mit den herkömmlichen Programmiersprachen zu bewältigen sei. Sie begannen deshalb, eine Generation von neuen Programmiersprachen zu entwickeln.

Die Entwickler dieser Sprachen kritisierten an den herkömmlichen Programmiersprachen vor allem, dass sich die natürliche Welt bisher nur unzureichend abbilden lasse. Um dem zu entgehen, gingen sie von natürlichen Begriffen aus, wie sie die Formenlehre der klassischen griechischen Philosophie geprägt hat, und wan-delten sie für die Programmierung ab. Da sich alles um den Begriff des Objekts dreht, nannten sie die neue Generation von Sprachen »objektorientiert«.

3.1.1

Grundbegriffe

Alan Kay, einer der Erfinder der Programmiersprache Smalltalk, hat die Grundbegriffe der objektorientierten Programmierung folgendermaßen zusammengefasst: 왘

Alles ist ein Objekt.

왘

Objekte kommunizieren durch Nachrichtenaustausch.

왘

Objekte haben ihren eigenen Speicher.

왘

Jedes Objekt ist ein Exemplar einer Klasse.

왘

Die Klasse modelliert das gemeinsame Verhalten ihrer Objekte.

61

3

Objektorientierte Programmierung

왘

Ein Programm wird ausgeführt, indem dem ersten Objekt die Kontrolle übergeben und der Rest als dessen Nachricht behandelt wird.

3.1.2

Prinzipien

Neben diesen Grundbegriffen sind folgende Prinzipien wichtig:

왘

Abstraktion

왘

Vererbung

왘

Kapselung

왘

Beziehungen

왘

Persistenz

왘

Polymorphie

Abbildung 3.1 Hauptbegriffe der objektorientierten Programmierung 3.2

Objekte

Objekte sind für ein Java-Programm das, was Zellen für einen Organismus bedeuten: Aus diesen kleinsten Einheiten setzt sich eine Anwendung zusammen.

Objekte haben eine bestimmte Gestalt (Aussehen, Attribute, Kennzeichen) und bestimmte Fähigkeiten (Methoden, Funktionen). Gestalt und Fähigkeiten eines Objekts werden durch seine Erbinformationen bestimmt. Diese Erbinformationen sind der Bauplan, nach dem das Objekt erzeugt wird. In der objektorientierten Programmierung ist der Bauplan eines Objekts seine Klasse.

Wenn Sie eine Reihe von Pferden betrachten, fällt Ihnen auf, dass ihnen die prinzipielle Gestalt gemeinsam ist. Ihre Unterschiede sind die Attribute, die das einzelne Pferd kennzeichnen. Ein Objekt der Klasse Pferd ist beispielsweise ein 62

Klassen

3.3

Pferd mit dem Namen Xanthos, ein anderes Pferd heißt Balios. Beide Exemplare1

haben einen ähnlichen Körperbau (Gestalt) und ähnliche Fähigkeiten. Sie können beispielsweise beide laufen und wiehern.

Abbildung 3.2 Jedes Objekt besitzt sein bestimmtes Verhalten und Aussehen.

Die beiden Objekte weisen aber auch einige deutliche Unterschiede auf: Xanthos ist weiß und Balios braun, und Xanthos kann schneller laufen als Balios. Obwohl Xanthos und Balios zur gleichen Klasse gehören, sind nur ihre prinzipiellen Fähigkeiten identisch, nicht aber ihre individuellen Attribute. Was das bedeutet, wird im nächsten Abschnitt deutlich.

3.3

Klassen

Xanthos und Balios gehören zu der Klasse Pferd. Die Klasse ist es, die die prinzipielle Gestalt und die Fähigkeiten der beiden Pferde-Objekte festlegt. Man bezeichnet Klassen daher als

왘

Bauplan für Objekte oder als

왘

Oberbegriff für verschiedene Objekte (Klassifizierung) oder als

왘

Schablone für verschiedene Objekte.

3.3.1

Attribute

Die eingangs erwähnte Klasse Pferd soll die Attribute Größe, Höchstgeschwindigkeit und Geschwindigkeit besitzen. Wenn aus dieser Klasse neue Objekte (neue Exemplare) entstehen, besitzen alle eine bestimmte Größe, eine bestimmte Höchstgeschwindigkeit und eine bestimmte Geschwindigkeit – aber welche Werte haben 1 Exemplar und Objekt sind gleichbedeutend. Im Gegensatz dazu ist der Begriff »Instanz«

eine Fehlübersetzung (engl. instance: Exemplar) und taucht in diesem Buch deshalb nicht auf.

63

3

Objektorientierte Programmierung

diese Attribute? Sie werden erst beim Entstehen (Erzeugen) des Objekts mit den individuellen Werten belegt.

Konstanten

Beispielsweise soll Xanthos über folgende Attribute verfügen: Größe (Stockmaß) 1,90 m, Höchstgeschwindigkeit 65 km/h, Geschwindigkeit 0 km/h. Balios hingegen soll 1,85 m groß sein, maximal 60 km/h schnell laufen können und momentan gerade 5 km/h laufen.

Obwohl beide Pferde nach dem gleichen Bauplan erzeugt worden sind, sind zwei deutlich unterschiedliche Objekte entstanden: Beide sind unterschiedlich groß, können laufen, aber unterschiedlich schnell, beide besitzen eine Geschwindigkeit, aber ein Pferd steht, und das andere bewegt sich langsam.

Abbildung 3.3 Die Klasse »Pferd« liefert den Bauplan für Pferde-Objekte.

Zustände

Es ist Ihnen vielleicht aufgefallen, dass bei den bisherigen Attributen der beiden Pferde einige mit festen Werten belegt waren, andere hingegen mit veränderlichen Werten. Die flexiblen Attribute beschreiben den Zustand des Objekts. Zum Beispiel beschreibt die Geschwindigkeit, wie schnell sich Xanthos gerade bewegt.

Der Zustand eines Objekts kann sich im Laufe der Zeit ändern.

64

Klassen

3.3

Kennungen

Was würde passieren, wenn man Xanthos und Balios so erzeugen würde, dass sie die gleiche Größe, die gleiche Höchstgeschwindigkeit und die gleiche momentane Geschwindigkeit besitzen? Wie könnte man sie dann unterscheiden? In diesem Fall haben beide Objekte zwar individuelle Werte für ihre Attribute bekommen, aber diese sind zufällig gleich. Damit gleichen sich auch die Objekte in einem Programm wie eineiige Zwillinge.

Um die Pferde zu unterscheiden, benötigt man so etwas wie einen genetischen Fingerabdruck. In der Programmierung vergibt der Entwickler eine so genannte Kennung. Diese Kennung ist ein zusätzliches Attribut, bei dem darauf geachtet wird, dass es eindeutig ist. Objekte der gleichen Klasse besitzen also die gleichen Attribute, aber mit individuellen Werten. Erst die Kennung eines Objekts sorgt dafür, dass das Programm unterschiedliche Exemplare auch dann unterscheiden kann, wenn ihre Attribute zufällig die gleichen Werte besitzen.

3.3.2

Methoden

Angenommen, Sie wollen dem Objekt Balios mitteilen, dass es nun springen soll.

Im wirklichen Leben geben Sie ihm dazu ein Zeichen. In der objektorientierten Programmierung müssen Sie stattdessen eine Methode des Objekts Balios aufrufen. Anstelle von »Methode« werden Sie auch öfter auf die Begriffe »Botschaft«

(Smalltalk), »Nachricht« oder »Operation« stoßen, die das Gleiche bedeuten sollen.

Abbildung 3.4 Objekte verständigen sich durch den Austausch von Nachrichten.

Egal, wie der Begriff nun bei den verschiedenen Programmiersprachen und in der Literatur genannt wird, eines ist gleich: Verhaltensweisen wie Laufen und Verstän-65

3

Objektorientierte Programmierung

digen bestimmen die Fähigkeit eines Objekts, zu kommunizieren und Aufgaben zu erledigen. Objekte verständigen sich also über Methoden.

Es existiert nicht nur eine Art von Methoden, sondern es gibt folgende fünf Grundtypen: Konstruktoren (»Erbauer«), Destruktoren (»Zerstörer«), Mutatoren (»Veränderer«), Akzessoren (»Zugriffsmethoden«) und Funktionen (»Tätigkeiten«).

Konstruktoren

Die wichtigsten Methoden sind die, die ein Objekt erzeugen. Sie werden demzufolge auch Konstruktoren genannt, denn sie konstruieren, das heißt erschaffen ein Objekt.

Destruktoren

Methoden, die ein Objekt zerstören, nennen sich in der objektorientierten Programmierung Destruktoren. In Programmiersprachen wie C++ können Sie diese Destruktoren auch aufrufen und damit unmittelbar ein Objekt zerstören. In Java hat man hingegen aus Sicherheitsgründen darauf verzichtet, Destruktoren direkt aufzurufen. Hier wird ein Objekt automatisch zerstört, wenn es nicht mehr benö-

tigt wird.

Mutatoren

Methoden, die den Wert eines Attributs verändern, nennen sich Mutatoren. Sie verändern den Zustand des Objekts. Mit einer solchen Methode kann ein Reiter namens Achilles die Geschwindigkeit des Pferds Xanthos ändern (Abbildung 3.5). Die entsprechende Methode nennt sich Laufen und verfügt über einen so genannten Parameter, der den neuen Zustand, die Geschwindigkeit des Pferds, vorgibt.

Abbildung 3.5 Die Methode »Laufen« verändert den Zustand von »Xanthos«.

Akzessoren

Akzessoren sind Zugriffsmethoden, die nur ein bestimmtes Attribut abfragen, ohne etwas am Zustand des Objekts zu ändern. Eine solche Methode wäre zum Beispiel die Abfrage der momentanen Geschwindigkeit des Pferds Xanthos (Abbil-66

Abstraktion

3.4

dung 3.6). Diese Methode besitzt einen so genannten Rückgabewert: die aktuelle Geschwindigkeit, mit der sich Xanthos fortbewegt.

Abbildung 3.6 Die Methode »ZeigeGeschwindigkeit« gibt den Zustand (die momentane Geschwindigkeit) von »Xanthos« zurück.

Funktionen

Methoden, die zum Beispiel nur eine Rechenoperation durchführen, werden häufig auch in der objektorientierten Programmierung als Funktionen bezeichnet. Sie dürfen trotzdem nicht mit den Funktionen der klassischen Programmiersprachen verwechselt werden, denn es besteht zumindest ein erheblicher Unterschied: Sie werden wie andere Methoden auch von Klasse zu Klasse weitervererbt (Abschnitt 3.5, »Vererbung«).

3.4

Abstraktion

Vielleicht werden Sie jetzt sagen: »Das ist doch alles Unsinn. Die Fähigkeiten und Attribute eines Pferds sind viel komplexer und können nicht auf Größe und Farbe, auf Laufen und Wiehern reduziert werden.« Das ist in der natürlichen Welt richtig, aber in der künstlichen Welt der Softwareentwicklung in der Regel völlig falsch.

Richtig wäre es nur dann, wenn man die Natur in einem Programm vollständig abbilden müsste. Aber für so eine übertriebene Genauigkeit gibt es bei der Programmierung selten einen Grund. Die objektorientierte Programmierung erleichtert eine möglichst natürliche Abbildung der realen Welt und fördert damit gutes Softwaredesign.

Sie verführt damit auch zu übertriebenen Konstruktionen. Die Kunst besteht darin, dem entgegenzusteuern und die Wirklichkeit so genau wie nötig, aber so 67

3

Objektorientierte Programmierung

einfach wie möglich abzubilden. Wie Sie später bei größeren Beispielprogrammen sehen werden, bereitet gerade die Analyse der für das Programm wesentlichen und richtigen Bestandteile unter Umständen große Probleme.

Wenn man innerhalb eines Programms nur die für die Funktionalität wesentlichen Teile programmiert, dann hat das praktische Gründe: Das Programm lässt sich schneller entwickeln, es wird billiger und schlanker. Somit benötigt es weniger Speicherplatz, und es wird in der Regel schneller ablaufen als ein Programm, das mit unnötigen Informationen überfrachtet ist.

Um diese Kompaktheit zu erreichen, ist es notwendig, die meist extrem komplizierten natürlichen Objekte und deren Beziehungen so weit es geht zu ab-strahieren, also zu vereinfachen. Der Fachbegriff für diese Technik nennt sich demzufolge auch Abstraktion (Abbildung 3.7).

Abbildung 3.7 Durch Abstraktion erhält man das Wesentliche einer Klasse.

3.5

Vererbung

Nach der Einführung von Klassen, Objekten, Methoden und Attributen ist es an der Zeit, diese neuen Begriffe in den Zusammenhang mit dem Begriff der Vererbung zu stellen. Vererbung gestattet es, Verhalten zwischen Klassen und damit auch zwischen Objekten mit Hilfe des Bauplans zu übertragen.

Ein Beispiel: Pferd und Zebra sind eng verwandt (Abbildung 3.8), in mancherlei Hinsicht aber doch sehr verschieden. Diese Unterschiede sind von anderer Gü-

te als die Unterschiede zwischen zwei Pferden: Pferde und Zebras haben eine deutlich unterschiedliche Gestalt.

Dass Zebras im Sinne der Formenlehre eine andere Gestalt besitzen als Pferde, wird deutlich, wenn Sie überlegen, welche Farbe man einem Zebra zuordnen müsste: Schwarz oder Weiß? Zebras haben alle verschiedene Muster. Die Muster unterscheiden sich wie Fingerabdrücke beim Menschen. Das Muster des Fells ist eines der Merkmale, die ein Zebra von einem Pferd unterscheiden (es gibt noch andere).

68

Vererbung

3.5

Abbildung 3.8 Objekte verschiedener Klassen unterscheiden sich in ihrer Form.

Es ist also in den Fällen, in denen es auf die Unterschiede zwischen Farbe und Muster ankommt, immer besser, einem Zebra die Eigenschaft Muster zu geben und es einer anderen Klasse zuzuordnen (Abbildung 3.9). In allen anderen Fällen genügt eine gemeinsame Klasse.

Abbildung 3.9 Die Basisklasse überträgt Basiseigenschaften und -verhalten.

69

3

Objektorientierte Programmierung

3.5.1

Basisklassen

Was ist Pferd und Zebra gemeinsam? Jedes Zebra und jedesb Pferd haben eine bestimmte Größe, eine bestimmte Höchstgeschwindigkeit, sie können laufen und sich verständigen. Die genannten Eigenschaften teilen sie mit einer Vielzahl von Tieren. Biologisch gesehen, gehören Pferd und Zebra zu den Säugetieren – was liegt also näher, als sie auch dieser Klasse zuzuordnen?

Damit man sich nicht für jede der Klassen Pferd und Zebra das Verhalten Laufen neu ausdenken muss, bietet es sich an, dieses Verhalten und die Attribute Größe und Höchstgeschwindigkeit in eine Basisklasse zu verlagern. Wie sieht es mit der Verständigung aus? Wiehert ein Zebra? – Wohl kaum, die Methode sollte deshalb besser allgemein Verständigen genannt werden.

Die neue Basisklasse erleichtert die Erschaffung neuer Säugetier-Klassen, da wesentliche Attribute und ein Teil der Methoden schon fertig vorliegen. An die neue Basisklasse werden aber auch große Ansprüche gestellt, denn Fehler in dieser Klasse rächen sich bei den Klassen, die man ableitet, wie Sie gleich sehen werden.

3.5.2

Abgeleitete Klassen

Angenommen, Sie möchten gern eine neue Klasse namens Muli auf Basis der Klasse Säugetier erzeugen. In der objektorientierten Programmierung spricht man davon, von Säugetier eine neue Klasse namens Muli abzuleiten. Die neue Klasse Muli erbt wie schon zuvor Pferd und Zebra das Verhalten und die Attribute Größe und Höchstgeschwindigkeit der Basisklasse Säugetier. Sie stammt von Säugetier ab.

Abbildung 3.10 Die neue Klasse »Muli« ist eine von »Säugetier« abgeleitete Klasse.

70

Kapselung

3.6

3.5.3

Mehrfachvererbung

In der Natur ist sie üblich, in den Programmiersprachen Java und Smalltalk jedoch nicht erlaubt: die Mehrfachvererbung. Sie wäre dann praktisch, wenn Sie zwei Klassen verschmelzen wollten, zum Beispiel die Klasse Pferd mit der Klasse Esel.

Die neue Kreuzung Muli würde Attribute und Verhalten beider Basisklassen erben (Abbildung 3.11). Aber welche Attribute und welches Verhalten? Sollen sich Mulis verständigen und laufen wie Pferde oder wie Esel?

Bei derartigen Szenarien kommt die Softwareentwicklung an die Grenze des technisch Sinnvollen. Es ist nicht sinnvoll, Erbinformationen nach dem Zufallsprinzip zu übertragen, um die Natur zu imitieren. Der Anwender wünscht sich im Regelfall Programme, die über definierte Eigenschaften verfügen und deren Verhalten vorhersehbar ist.

Abbildung 3.11 Mehrfachvererbung am Beispiel einer Kreuzung

Aus den genannten Gründen haben sich die Entwickler der Programmiersprache Java bewusst gegen die konventionelle Mehrfachvererbung entschieden, wie sie in C++ realisierbar ist. Wie Sie trotzdem mehrere Basisklassen ohne Nebenwirkun-gen miteinander verbinden können, erfahren Sie in Abschnitt 4.5.3, »Interfaces«.

3.6

Kapselung

Eines der wichtigsten Merkmale objektorientierter Sprachen ist der Schutz von Klassen und Attributen vor unerwünschtem Zugriff. Jedes Objekt besitzt eine Kapsel, die die Daten und Methoden des Objekts schützt (Abbildung 3.12). Die Kapsel versteckt die Teile des Objekts, die von außen nicht oder nur durch be-71

3

Objektorientierte Programmierung

stimmte andere Objekte erreichbar sein sollen. Die Stellen, an denen die Kapsel durchlässig ist, nennt man Schnittstellen.

Abbildung 3.12 Die Kapsel schützt das Objekt vor unerwünschten Zugriffen.

Die wichtigste Schnittstelle der Klasse Pferd ist sein Konstruktor. Über diese spezielle Methode lässt sich ein Objekt der Klasse Pferd erzeugen. Ein anderes Beispiel für eine solche Schnittstelle ist die Methode Laufen der Klasse Pferd. Das Objekt Xanthos besitzt eine solche Methode Laufen, und Achilles, ein Objekt der Klasse Mensch, kann diese Methode verwenden. Er kommuniziert mit Xanthos über diese Schnittstelle (Abbildung 3.13) und teilt darüber Xanthos mit, dass er laufen soll. Das Objekt Achilles darf nicht alle Daten von Xanthos verändern. Zum Beispiel soll es ihm selbstverständlich nicht erlaubt sein, die Größe des Pferds zu ändern. Gäbe es eine öffentlich zugängliche Methode wie zum Beispiel Wachsen, so könnte er Xanthos damit verändern.

Abbildung 3.13 Objekte kommunizieren nur über Schnittstellen.

3.7

Beziehungen

Klassen und deren Objekte unterhalten in einem Programm die unterschiedlichsten Beziehungen untereinander. In den vorangegangenen Abschnitten haben Sie 72

Beziehungen

3.7

bereits mehrere Formen der Beziehungen kennengelernt: den Aufruf von Methoden und Vererbungen.

An dieser Stelle möchte ich Ihren Blick für die zwei grundlegend verschiedenen Arten von Beziehungen zwischen Klassen und Objekten schärfen:

왘

Beziehungen, die nicht auf Vererbung beruhen

왘

Vererbungsbeziehungen

3.7.1

Beziehungen, die nicht auf Vererbung beruhen

Man unterscheidet bei dieser Form von Beziehungen drei verschiedene Unterarten:

왘

Assoziationen (Verknüpfungen)

왘

Aggregationen (Zusammenlagerungen)

왘

Kompositionen (Zusammensetzungen

Assoziation

Assoziation ist die einfachste Form einer Beziehung zwischen Klassen und Objekten. Die Abhängigkeiten sind bei dieser Beziehungsart im Vergleich zur Vererbung gering. Man sagt auch, die Objekte sind lose gekoppelt.

Eine Assoziation besteht zum Beispiel, wenn ein Reiter-Objekt namens Achilles einem Pferde-Objekt namens Xanthos die Botschaft Springen sendet (Abbildung 3.14). Die beiden Objekte Achilles und Xanthos existieren getrennt und erben nichts voneinander.

Abbildung 3.14 Eine einfache Assoziation zwischen Mensch und Pferd Aggregation

Eine Steigerung der Assoziation ist die Aggregation. Eine solche Beziehung besteht dann, wenn ein Objekt aus anderen Objekten besteht. Zum Beispiel soll Pferdefutter aus einer nicht näher bestimmten Anzahl von Karotten bestehen 73

3

Objektorientierte Programmierung

(Abbildung 3.15). Das bedeutet zum Beispiel, dass Pferdefutter eine »Besteht-aus-Beziehung« zur Karotte unterhält.

Abbildung 3.15 Aggregation zwischen Pferdefutter und Karotten

Diese Beziehung ist aber von einer völlig anderen Qualität als im vorangegangenen Beispiel zwischen einem Menschen und einem Pferd. Während Pferd und Menschen allein und unabhängig voneinander existieren können, setzt sich das Pferdefutter (unter anderem) aus Karotten zusammen. Wichtig ist hierbei wieder, dass beide Objekte nichts voneinander erben und jedes Karotten-Objekt auch allein lebensfähig ist, was dieses Beispiel von der strengeren Komposition unterscheidet.

Komposition

Die stärkste Form der Beziehungen, die nicht auf Vererbung beruhen, stellt die Komposition dar. Wie bei der Aggregation liegt wieder eine »Besteht-aus-Beziehung« vor, sie ist aber im Gegensatz zur Aggregation abermals verschärft. Die Abhängigkeiten sind nochmals stärker.

Ein Beispiel für eine Komposition ist das Verhältnis zwischen einem Pferd und seinen vier Beinen. Hier besteht eine sehr enge Beziehung, denn ein Bein ist – im Gegensatz zur Karotte – als selbstständiges Objekt vollkommen sinnlos. Bei der Erzeugung eines Pferde-Objekts bekommt dieses automatisch vier Beine, die im Zusammenhang mit anderen Klassen nicht verwendet werden können.

Abbildung 3.16 Ein Pferd und seine vier Beine als Komposition

Pferdebeine sind also ohne ein geeignetes Objekt der Klasse Pferd nicht lebensfä-

hig. Wenn ein Pferde-Objekt stirbt, so sterben auch seine Pferdebeine.

3.7.2

Vererbungsbeziehungen

Vererbungsbeziehungen nennen sich auch Generalisierung (Verallgemeinerung) oder Spezialisierung (Verfeinerung). Dies sind nicht etwa Unterarten der Vererbung, sondern alternative Begriffe für Vererbungsbeziehungen. Welchen der zwei 74

Beziehungen

3.7

alternativen Begriffe man verwenden möchte, hängt vom Blickwinkel ab, aus dem man die Vererbungsbeziehung betrachtet.

Generalisierung

Wenn Sie die Basisklasse aus dem Blickwinkel der abgeleiteten Klasse betrachten wollen, ist Generalisierung der passende Begriff dazu. Zum Beispiel ist die Klasse Säugetier eine Generalisierung der Klassen Pferd oder Zebra. Mit anderen Worten: Die Klasse Säugetier ist der allgemeine Begriff (Oberbegriff) für die Klassen Pferd und Zebra (Klassifizierung).

Spezialisierung

Wenn Sie die abgeleitete Klasse aus dem Blickwinkel der Basisklasse betrachten wollen, ist Spezialisierung der passende Begriff dazu. Zum Beispiel sind die Klassen Pferd oder Zebra eine Spezialisierung der Klasse Säugetier. Mit anderen Worten: Die Klassen Pferd und Zebra stellen eine Verfeinerung der Klasse Säugetier dar.

Probleme mit der Vererbung

Vererbungsbeziehungen stellen eine sehr starke Kopplung zwischen Klassen und damit auch zwischen Objekten her. Eine solch starke Kopplung hat nicht nur Vorteile, sondern auch gravierende Nachteile, wie das folgende Beispiel zeigt: Eine Klasse namens Wal soll aus der Klasse Säugetier erzeugt werden (Abbildung 3.17). Die neue Klasse erbt wie die Klassen Pferd und Zebra die Attribute Größe und Höchstgeschwindigkeit sowie die Methoden Laufen und Verständigen – Moment mal: Laufen? Fast alle Säugetiere können laufen, Wale jedoch nicht.

Abbildung 3.17 Durch Vererbung vererben sich auch Designfehler.

75

3

Objektorientierte Programmierung

Hier ist genau das passiert, was tagtäglich zu den Problemen der objektorientierten Programmierung gehört: Die Funktionalität der Basisklasse ist nicht ausreichend analysiert worden. Vereinfacht gesagt: Hier liegt ein Designfehler vor, den man dadurch beheben muss, dass man die Methode Laufen durch die Methode Fortbewegen ersetzt.

3.8

Designfehler

Sie können sich vielleicht vorstellen, dass es sehr unangenehm ist, wenn die Basisklasse aufgrund eines Designfehlers geändert werden muss. Durch die starke Beziehung zwischen Basisklasse und abgeleiteter Klasse pflanzen sich etwaige Änderungen lawinenartig in alle Programmteile fort, in denen Objekte des Typs Pferd und Zebra mit der Methode Laufen verwendet wurden. An allen Stellen des Programms, wo die Methode Laufen der Klasse Säugetier verwendet wurde, muss sie durch die Methode Fortbewegen ersetzt werden.

Im Fall von Designfehlern stellt sich die Technik der Vererbung als großer Nachteil heraus. Vererbung hat neben diesem Manko auch den Nachteil, dass sich nicht nur Designfehler, sondern alle anderen vorzüglich gestalteten, aber unerwünschten Teile der Basisklasse in die abgeleiteten Klassen in Form von Ballast übertragen: Die Nachkommen solcher übergewichtiger Klassen werden immer fetter und

fetter. Daher sollten Sie Vererbung stets kritisch betrachten, sparsam einsetzen und wirklich nur dort verwenden, wo sie sinnvoll ist.

3.9

Umstrukturierung

Aber zurück zu den Designfehlern. Wie geht man mit Fehlern dieser Art um? Sie sind trotz der Vererbung heute kein so großes Problem mehr wie noch vor ein paar Jahren. Es gibt mittlerweile moderne Softwareentwicklungswerkzeuge (Kapitel 22, »Werkzeuge«), mit denen es relativ leicht ist, die notwendige Umstrukturierung (Refactoring) vorzunehmen. Allerdings sollten Sie Software möglichst nur während der Analyse- und Designphase der Software (Kapitel 5, »Entwicklungsprozesse«) umstrukturieren. Als Regel gilt: Je später Änderungen vorgenommen werden, desto höher ist der damit verbundene Aufwand.

76

Modellierung

3.10

3.10

Modellierung

Um solche Designfehler und damit kostspielige Umstrukturierungen zu vermeiden, ist es bei größeren Projekten sinnvoll, ein Modell der Software zu entwerfen.

Genauso wie man im Automobilbau vor jedem neu zu konstruierenden Automobil ein Modell entwickelt, ist es auch in der Softwareentwicklung sinnvoll, ein Modell zu konstruieren, bevor man mit der eigentlichen Umsetzung des Projekts beginnt. Ein Modell, das eine getreue Nachbildung eines kompletten Ausschnitts der Software darstellt, nennt sich Prototyp (Muster, Vorläufer).

3.11

Persistenz

Ein Programm erzeugt Objekte, die an ihrem Lebensende wieder zerstört werden.

Diese Objekte bezeichnet man als transient, also flüchtig. Manchmal ist aber ein

»Leben nach dem Tod« auch für Objekte erstrebenswert. Sie sollen auch dann wieder zum Leben erweckt werden, wenn das Programm beendet ist und der Anwender des Programms nach Hause geht. Am nächsten Tag startet der Anwender das Programm erneut und möchte mit dem gleichen Objekt weiterarbeiten.

Solche »unsterblichen« Objekte bezeichnet man als persistent (dauerhaft). Das bedeutet nichts anderes, als dass sie in geeigneter Form gespeichert werden. Sie befinden sich dann in einer Art Tiefschlaf in einer Datei auf einer Festplatte oder im Verbund mit anderen Objekten in einer Datenbank.

3.12

Polymorphie

Der Name Polymorphie kommt aus dem Griechischen und bedeutet so viel wie Vielgestaltigkeit, Verschiedengestaltigkeit. Der Begriff klingt mehr nach Minera-lienkunde als nach Informatik, und so wundert es Sie vielleicht auch nicht, dass der Chemiker Mitscherlich die Polymorphie bei Mineralien Anfang des 19. Jahrhunderts entdeckte. Er stellte fest, dass manche Mineralien wie Kalziumcarbonat (CaCO3) unterschiedliche Kristallformen annehmen können, ohne ihre chemi-sche Zusammensetzung zu ändern. Das bedeutet, sie können je nach Druck und Temperatur eine verschiedene Gestalt annehmen.

77

3

Objektorientierte Programmierung

Abbildung 3.18 »Xanthos« verfügt über zwei verschieden gestaltete Methoden namens »Laufen«. Sie unterscheiden sich durch ihre Parameter.

Alles sehr schön bis jetzt, aber was hat das mit objektorientierter Programmierung zu tun? – Das bedeutet auf keinen Fall, dass ein Objekt wie Xanthos so radikal seine Form verändern kann wie ein Mineral. Es bedeutet, dass Xanthos bei geschickter »Programmierung« situationsbedingt verschieden reagieren kann.

Klingt wie Zauberei, ist es aber nicht.

3.12.1

Statische Polymorphie

Stellen Sie sich vor, das Objekt Achilles teilt dem Objekt Xanthos mit, dass es laufen soll, und zwar mit der Geschwindigkeit 5 km/h. Was wird passieren? – Xanthos wird sich mit dieser Geschwindigkeit fortbewegen. Offensichtlich ist die Richtung ebenso egal wie die Dauer. Was würde passieren, wenn Achilles abermals Xanthos mitteilt, er solle laufen, und zwar 10 Minuten? Xanthos würde 10 Minuten lang mit 5 km/h laufen und danach stehen bleiben.

Damit Xanthos den etwas wirr klingenden Anweisungen seines Reiters Folge leisten kann, benötigt er Methoden »unterschiedlicher Gestalt«. Er benötigt eine Methode, die auf den Parameter Geschwindigkeit reagiert, und eine Methode, die auf den Parameter Zeitdauer reagiert. Obwohl die Methoden den gleichen Namen tragen, führen sie zu einer unterschiedlichen Verarbeitung durch das Objekt Xanthos. Der Fachausdruck für diese Technik heißt Überladen.

3.12.2 Dynamische Polymorphie

Anders als bei der Mehrfachvererbung sieht es aus, wenn man Eigenschaften der Basisklasse bei der Vererbung bewusst umgehen möchte. Dazu möchte ich nochmals auf das Beispiel der Basisklasse Säugetier zurückgreifen. Angenommen, Sie möchten in der abgeleiteten Klasse Pferd bestimmen, auf welche Weise sich 78

Designregeln

3.13

Pferde-Objekte verständigen. Dazu überschreiben Sie die Methode Verständigen und legen die Art und Weise des Wieherns in der Klasse Pferd für die abgeleiteten Objekte fest.

Das Überschreiben von Methoden ist ein sehr mächtiges Mittel der objektorientierten Programmierung. Es erlaubt Ihnen, unerwünschte Erbinformationen teilweise oder ganz zu unterdrücken und damit eventuelle Designfehler – in Grenzen

– auszugleichen beziehungsweise Lücken in der Basisklasse zu füllen. Dabei ist die Technik extrem simpel. Es reicht aus, eine identische Methode in der abgeleiteten Klasse Pferd zu beschreiben, damit sich Objekte wie Xanthos »plötzlich« anders verhalten.

3.13

Designregeln

Auch wenn die objektorientierte Softwareentwicklung im Vergleich zur konventionellen Programmierung gutes Softwaredesign besser unterstützt, ist sie auf keinen Fall eine Garantie für sauber strukturierte und logisch aufgebaute Programme.

Die objektorientierte Programmierung erleichtert zwar gutes Softwaredesign, sie erzwingt es jedoch nicht. Da man trotz Objektorientierung schlechte Programme entwickeln kann, sollten Sie einige Grundregeln beachten:

왘

Vermeiden Sie Vererbung.

왘

Reduzieren Sie die Anforderungen auf das Wesentliche.

왘

Kapseln Sie alle Attribute und Methoden, die nicht sichtbar sein müssen.

왘

Arbeiten Sie bei großen Projekten mit einem Modell.

왘

Verwenden Sie einen Prototyp.

3.14

Zusammenfassung

Die objektorientierte Programmierung war eine Antwort auf die Softwarekrise in der Mitte der 60er-Jahre des letzten Jahrhunderts. Durch Objektorientierung lässt sich die natürliche Welt leichter in Computerprogrammen umsetzen. Diese objektorientierten Computerprogramme bestehen aus einer Sammlung eines oder mehrerer Objekte.

Ein Objekt lässt sich mit einem natürlichen Lebewesen vergleichen und verfügt über eine Gestalt und Fähigkeiten. Die Gestalt prägen Attribute, während die Fähigkeiten von Methoden bestimmt sind. Beide Bestandteile eines Objekts sind 79

3

Objektorientierte Programmierung

in der Klasse festgelegt, von der ein Objekt abstammt. Sie liefert den Bauplan für gleichartige Objekte.

Objektorientierte Programmierung ist kein Allheilmittel. Sie unterstützt gutes Design, ohne es zu erzwingen. Es ist deshalb notwendig, auf sauberes Design zu achten, wenn man mit objektorientierter Programmierung erfolgreich sein will.

3.15

Aufgaben

Versuchen Sie, folgende Aufgaben zu lösen:

3.15.1

Fragen

1. Worin unterscheiden sich Klassen von Objekten?

2. Wie unterscheiden sich Objekte der gleichen Klasse voneinander?

3. Was bedeutet der Begriff »Basisklasse«?

4. Was bedeutet der Begriff »abgeleitete Klasse«?

5. Wie verständigen sich Objekte untereinander?

6. Welche Arten von Beziehungen gibt es, und wie unterscheiden sie sich?

7. Worin liegt die Gefahr bei Vererbungsbeziehungen?

3.15.2 Übungen

1. Zeichnen Sie zur Abbildung 3.19 eine Klasse mit Klassennamen, Attributen und Methoden.

Abbildung 3.19 Ein Objekt mit verschiedenen Merkmalen und Fähigkeiten 2. Zeichnen Sie zur Abbildung 3.20 eine gemeinsame Basisklasse und aus den zwei Objekten zwei abgeleitete Klassen mit Klassennamen, Attributen und Methoden.

80

Aufgaben

3.15

Abbildung 3.20 Zwei verschiedene Objekte

3. Zeichnen Sie zur Abbildung 3.21 ein Klassendiagramm mit einer Basisklasse und drei abgeleiteten Klassen, die in Beziehung zur Basisklasse stehen.

Abbildung 3.21 Drei verschiedene Objekte

Die Lösungen zu den Aufgaben finden Sie in Kapitel 18 ab Seite 506.

81

TEIL II

Java im Detail

Der erste Teil dieses Buchs stellte Ihnen die grundlegenden Konzepte der Datenverarbeitung, der Programmiersprachen und der objektorientierten Programmierung vor.

Dieser Teil baut direkt auf diesen Konzepten auf und setzt das Buch mit den drei Säulen der Java-Technologie fort:

1. Sprache Java (Kapitel 4)

2. Plattform Java (Kapitel 6)

3. Java-Klassenbibliotheken (Kapitel 8)

Sie erfahren zwischen diesen Eckpfeilern der Java-Technologie, welche Ent wicklungs prozesse ablaufen (Kapitel 5), welche Gesetzmäßigkeiten gelten (Kapitel 7), was Algorithmen sind und wozu sie der Java-Programmierer benötigt (Kapitel 9).

»Sprache ist das Mittel, mit dem wir unsere Gedanken ausdrücken, und die Beziehung zwischen diesen Gedanken und unserer Sprache ist heimtückisch und verzwickt.« (William Wulf)

4

Sprache Java

4.1

Einleitung

Kapitel 3 hat Ihnen die Grundlagen zur objektorientierten Programmierung aus dem naiven Blickwinkel der natürlichen Welt vermittelt. Nun folgt die Umsetzung der objektorientierten Programmierung in Java. Sie werden feststellen, dass hier ein anderer Blickwinkel notwendig ist. Das liegt daran, dass Java zwar enorm viele Möglichkeiten bietet, ein Programm aufzubauen, aber in manchen Aspekten von der reinen Lehre der objektorientierten Programmierung des Kapitels 3 abweicht.

4.1.1

Geschichte

Einige Programmierer der Firma Sun Microsystems entwickelten 1990 eine

objektorientierte Sprache namens Oak (Object Application Kernel). Im Mittelpunkt des Projekts stand die Programmierung von Haushaltsgeräten. Da diese Geräte weder leistungsfähig noch einheitlich aufgebaut waren, mussten Oak-Programme sowohl kompakt als auch plattformunabhängig sein.

Die Sprache Oak schien sich nicht nur für Haushaltsgeräte gut zu eignen, sondern ebenso gut zur Internet-Programmierung, was der Firma Sun erfolgversprechen-der schien – kurzerhand wurde das Projekt neu ausgerichtet. Das Team sollte jetzt den ersten grafischen Internet-Browser auf Basis von Oak entwickeln.

Ungefähr ein Jahr später war der neue Browser in der Lage, kleine Programme (Applets) in HTML-Seiten darzustellen. Zusammen mit der Programmiersprache Java1 erblickte er unter dem Namen »HotJava« im Jahr 1995 das Licht der Welt.

Im Jahr 1996 ist dann das erste Java-Release erschienen. Es wurde gleich im nächsten Jahr von der Version 1.1 ersetzt. Die wichtigsten Neuerungen waren 1 Java ist ein Slangausdruck für Kaffee. Laut James Gosling, einem der Java-Autoren, ver-brachte sein Team viele Stunden mit Brainstorming, um einen guten Namen für die neue Programmiersprache zu finden, bis ihnen in einer Kaffeebar die zündende Idee kam ...

85

4

Sprache Java

die Einführung der Remote Method Invocation (Abschnitt 8.2.12, »Remote Method Invocation«), innere Klassen und eine Schnittstelle zur Programmierung von SQL-Datenbanken.

Version 1.2 von Java brauchte die vollkommen neue Klassenbibliothek Swing und das Collections-Framework. Erst mit Java 5 im Jahr 2004 gab es ähnlich gravierende Änderungen. Hier hat der Java-Erfinder die Sprache gründlich verbessert und generische Datentypen sowie Aufzählungstypen eingeführt.

Java 6 im Jahr 2006 brachte vor allem eine weitere Verbesserung der Ausführungsgeschwindigkeit von Java-Programmen und die verbesserte Unterstützung von Webservices. Nach rund fünf Jahren Pause bei der Weiterentwicklung von Java meldeten sich die Entwickler im Sommer 2011 mit der neuen Version 7

zurück. Deren wichtigste Sprachänderungen wie die erweitere Switch-Anweisung finden Sie in diesem Kapitel.

4.1.2

Beschreibung mittels Text

Java-Programme werden in einer oder mehreren Unicode-Textdateien beschrieben. Unicode (Kapitel 1, »Digitale Informationsverarbeitung«) bedeutet, dass Sie auch nationale Sonderzeichen verwenden könnten. Jede der Textdateien muss den Namen der Klasse tragen, die darin definiert ist, und die Endung java besitzen. Ein Beispiel: Wenn Sie ein Programm namens Rectangle mit einer Hauptklasse gleichen Namens schreiben möchten, so speichern Sie es einfach in einer Textdatei mit dem Namen Rectangle.java (Listing 4.1) ab.

1: //Beispielprogramme/Sprache_Java/Ex01

2:

3: package language;

4:

5: class Rectangle {

6:

7:

public static void main(String[] arguments) {

8:

int height;//Hoehe

9:

int width;//Breite

10:

int area;//Flaeche

11:

height = 1;

12:

width = 5;

13:

area = height * width;

14:

System.out.println("Fl\u00e4che = " + area +

15:

" m\u00B2");

16:

}//main

17: }//class Rectangle

Listing 4.1 Das Java-Programm »Rectangle« als Textdatei »Rectangle.java«

86

Einleitung

4.1

Das hier vorgestellte Beispielprogramm Rectangle erzeugt die Ausgabe Fläche =

5 m2. Das Beispielprogramm ist zwar sehr kurz, es weist aber trotzdem schon fast alle typischen Sprachelemente eines Java-Programms auf.

4.1.3

Überblick über die Sprachelemente

Paket und Klasse

Das Beispiel (Abbildung 4.1) besteht aus einem Paket (Punkt 1 und 3) mit einer Klasse namens Rectangle (Punkt 4). Diese Klasse enthält eine Startmethode namens main() (Punkt 5). Sie setzt sich aus drei Typdeklarationen (Punkt 6), drei Zuweisungen mehrerer Werte (Punkt 7 und 8) und einer Textausgabe mit der Verwendung von Unicode (Punkt 9) zusammen.

Programmstart

Das Paket (package) und die Klasse (class) sollen Sie zunächst nicht interessieren, sondern nur der Programmstart, der von der Methode main() eingeleitet wird.

Diese Methode beginnt mit drei Typdeklarationen. Diese Deklarationen legen fest, welche Datentypen die Variablen height, width und area bekommen, und reservieren für diese Speicherplatz.

Die Wertzuweisungen im Anschluss daran definieren den aktuellen Wert der ersten beiden Variablen (Punkt 7), während die letzte Anweisung (Punkt 8) eine Wertzuweisung mit einer Rechenoperation kombiniert.

Abbildung 4.1 Übersicht über die wichtigsten Java-Sprachelemente 87

4

Sprache Java

Rechenoperation

Die Rechenoperation multipliziert die Höhe des Rechtecks (Variable height) mit der Breite des Rechtecks (Variable width) und weist das Ergebnis der Fläche (Variable area) zu. An Position 9 gibt das Programm das Ergebnis mit Hilfe der Methode println() aus. Damit unter allen Betriebssystemen der deutsche Umlaut des Wortes Fläche korrekt dargestellt wird, musste das »ä« als Unicode (\u00e4) kodiert werden.

Zusammenfassung

Zusammengefasst besteht das kurze Beispiel aus der Berechnung eines Rechtecks mit den Seiten height und width sowie der Ausgabe der Fläche area mit Hilfe der Methode println(). Das Programm enthält folgende Java-Sprachelemente:

왘

Schlüsselwörter (zum Beispiel Punkt 1)

왘

Datentypen (zum Beispiel 4 und 6)

왘

Methoden (zum Beispiel 5 und 9)

왘

Operatoren (zum Beispiel Punkt 11)

왘

Anweisungen (zum Beispiel Punkt 7)

왘

Kommentare (zum Beispiel Punkt 2)

So weit die – zugegebenermaßen sehr kurze – Analyse des Beispiels. Ich möchte im weiteren Verlauf des Kapitels Stück für Stück die Teile dieses Beispielprogramms ausführlicher beleuchten und hierzu mit den Schlüsselwörtern beginnen.

4.2

Schlüsselwörter

Bei der näheren Betrachtung des Programmbeispiels (Abbildung 4.1) fallen Ihnen eine ganze Reihe von fett gedruckten Begriffen auf, die eine reservierte Bedeutung in Java besitzen. Diese Wörter nennen sich Schlüsselwörter, von denen laut Java-Sprachdefinition zurzeit 53 existieren (Tabelle 4.1).

abstract

assert

boolean

break

byte

case

catch

char

class

const

continue

default

do

double

else

enum

extends

false

final

finally

Tabelle 4.1 Schlüsselwörter der Sprache Java

88

Schlüsselwörter

4.2

float

for

goto

if

implements

import

instanceof

int

interface

long

native

new

null

package

private

protected

public

return

short

static

strictfp

super

switch

synchronized

this

throw

throws

transient

true

try

void

volatile

while

Tabelle 4.1 Schlüsselwörter der Sprache Java (Forts.)

Das Schlüsselwort enum können Sie erst ab der Java-Version 5.0 (JDK 1.5) verwenden. Im Gegensatz dazu lassen sich die Schlüsselwörter const und goto niemals verwenden. Die Java-Erfinder haben sie reserviert, aber ihre Verwendung nicht gestattet – warum?

Sie dürfen nicht verwendet werden, um Problemen aus dem Weg zu gehen, die diese Schlüsselwörter bewirken können. Goto-Anweisungen führen zum Beispiel häufig zu schlechtem Programmdesign. Dass man sie dennoch reservierte, liegt daran, dass sie in C und C++ zum Sprachumfang gehören. Wenn ein C- oder C++-Programmierer seine ersten Java-Programme schreibt, sollte er sich beim Umstieg auf Java nicht wundern, dass sein anscheinend korrektes Java-Programm nicht wunschgemäß funktioniert. Er bekommt stattdessen schon bei der Übersetzung des Java-Programms eine aussagekräftige Fehlermeldung.

Die Schlüsselwörter (Tabelle 4.1) besitzen verschiedene Funktionen in Java. Sie sind unter anderem für Folgendes reserviert:

왘

Überwachung des Programmzustands mit Vor- und Nachbedingungen (assert)

왘

Einfache Datentypen (zum Beispiel int)

왘

Erweiterte Datentypen (zum Beispiel enum)

왘

Benutzerdefinierte Datentypen (zum Beispiel class)

왘

Klassenbeziehungen (zum Beispiel extends)

왘

Methodentypen (zum Beispiel static)

왘

Operatoren (zum Beispiel new)

왘

Anweisungen (zum Beispiel for)

왘

Module (zum Beispiel package)

왘

Fehlerbehandlung (zum Beispiel try)

89

4

Sprache Java

Neben dem Schlüsselwort class, das den so genannten benutzerdefinierten Datentypen vorbehalten ist, und dem zusammengesetzten Datentyp enum befinden sich noch weitere »Typen« unter den Schlüsselwörtern, die einfache Datentypen genannt werden.

4.3

Einfache Datentypen

Die einfachen Datentypen sind Restbestände aus der verwandten Programmiersprache C. Während es in rein objektorientierten Programmiersprachen wie Smalltalk (Kapitel 3, »Objektorientierte Programmierung«) keine derartigen Datentypen gibt, haben sich die Erfinder von Java aus mehreren Gründen

entschieden, einfache Datentypen zur Verfügung zu stellen.

Der erste Grund war, dass diese primitiven Java-Datentypen nur reine Daten ohne Methoden enthalten. Sie belegen daher wenig Speicherplatz – ganz im Gegensatz zu Objekten, die aus Daten und Methoden bestehen. Der zweite Grund war, dass die Java-Erfinder es den C- und C++-Programmierern erleichtern wollten, auf Java umzusteigen.

4.3.1

Grundlagen

Einfache Datentypen sollten Sie immer dann verwenden, wenn es nur darum geht, primitive Zahlenwerte im Programm zu speichern. Dazu müssen Sie dem Computer mitteilen, von welchem Datentyp eine Variable sein soll.

Eigenschaften bezeichnen

Der Vorgang, einer Variablen einen Typ zuzuordnen, wird Deklaration genannt.

Im Englischen spricht man auch von »to declare« (bezeichnen), weshalb sich der Begriff »Deklaration« bei der Übersetzung englischer Fachbücher etabliert hat. Durch die Deklaration sind zwei Eigenschaften der Variablen unveränderlich festgelegt:

왘

Wertebereich

왘

Rechenoperationen

Java ist eine streng typisierte Programmiersprache. Das bedeutet, dass ein einmal festgelegter Datentyp für die Programmlebensdauer unveränderlich ist. Auch die Rechenoperationen, die an den Bezeichner gebunden sind, sind unveränderlich.

90

Einfache Datentypen

4.3

Aufbau der Deklaration

Wie die Deklaration aufgebaut ist, zeigt Abbildung 4.2: Zunächst folgt der Datentyp und danach die Variable. Diese Deklaration wird durch ein Semikolon abgeschlossen und ist immer Teil einer Klasse, zum Beispiel in Form eines Attributs. Das heißt, Sie können eine Variable wie height niemals losgelöst von einer Klasse verwenden.

Abbildung 4.2 Deklaration der Variablen »height«

Übersicht der Datentypen

In Tabelle 4.2 sehen Sie eine Übersicht über alle einfachen Java-Datentypen. Sie unterscheiden sich im Wertebereich, der die Größe des reservierten Speicherplatzes für den Bezeichner (Variable) bestimmt.

Typ

Speicherplatz

Wertebereich

Standardwert

[Byte]

boolean

1

true, false

false

char

2

Alle Unicode-Zeichen

\u0000

byte

1

-27 ... 27-1

0

short

2

-215 ... 215-1

0

int

4

-231 ... 231-1

0

long

8

-263 ... 263-1

0

float

4

± 3,40282347 * 1038

0,0

double

8

± 1,79769313486231570 * 10308 0,0

Tabelle 4.2 Übersicht der einfachen Java-Datentypen

Bezeichner

Die Variable wird im Fachjargon auch Bezeichner genannt. Sie bezeichnet einen Programmteil, der vom Programmierer festgelegt wird. Ein Bezeichner kann zum Beispiel eine primitive Variable sein, aber auch eine Klasse, ein Objekt oder eine Methode. Allen Bezeichnern ist gemeinsam, dass sie nicht den Namen eines der Java-Schlüsselwörter (Tabelle 4.1) tragen dürfen.

91

4

Sprache Java

Genauigkeit und Wertebereich

Der Computer reserviert so viel Speicherplatz, wie für einen bestimmten Datentyp festgelegt ist. Zum Beispiel reserviert er für den Datentyp int eine 4 Byte »große«

Speicherzelle (Abbildung 4.3). 4 Byte sind identisch mit 32 Bit (Kapitel 1, »Digitale Informationsverarbeitung«).

Abbildung 4.3 Wertebereich und belegter Speicher bei Zahlendatentypen am Beispiel des Datentyps »int«

Der reservierte Speicherbereich ist auf allen Computersystemen, auf denen ein Java-Programm läuft, identisch. Sie müssen also nicht wie bei anderen Programmiersprachen zittern, wenn Ihr Programm auf ein anderes, fremdes Computersystem übertragen und dort ausgeführt werden soll.

Der reservierte Speicherbereich ist nicht nur auf allen Computersystemen, sondern auch für die gesamte Programmlaufzeit konstant. Der Speicherbereich ist bei den Zahlendatentypen aber nicht mit dem Wertebereich identisch. Das liegt daran, dass alle Java-Zahlendatentypen über ein Vorzeichen verfügen, das ebenfalls kodiert werden muss. Es vermindert den Wertebereich um ein Bit (Abbildung 4.3). Im Fall von int bedeutet das, dass »nur« 31 Bit nutzbar sind – jetzt können Sie sich auch den merkwürdigen Wertebereich der Zahlendatentypen in Tabelle 4.2 erklären.

Anders sieht es beim Datentyp byte aus. Hier ergibt sich der negative Wertebereich aus 27, der positive Wertebereich aus 27 - 1. Dass die Zahlendatentypen ein Vorzeichen besitzen, ist leider nicht immer praktisch. Für viele Fälle wären nur positive »natürliche« Zahlen mit einem Wertebereich von 0 bis 255 notwendig, den der Datentyp byte nicht bietet.

Der Wertebereich der Zahlendatentypen orientiert sich am maximalen Wert, der auf unterschiedlichen Computersystemen realisierbar ist. Sie erinnern sich: Java erlaubt es, portable Programme zu schreiben (Kapitel 2, »Programmiersprachen«).

Um eine Portabilität der Programme zu erreichen, mussten die Erfinder der Sprache darauf Rücksicht nehmen, was auf verschiedenen Computersystemen realisierbar ist.

92

Einfache Datentypen

4.3

Die höchste darstellbare Informationsmenge (das so genannte »Rechnerunendlich«) liegt bei vielen Computersystemen bei 64 Bit, weshalb dies auch den Grenzwert der Java-Zahlendatentypen markiert. Das Rechnerunendlich bei PC-Systemen (mit mathematischem Coprozessor) beträgt allerdings 80 Bit und bleibt Java-Programmen leider verschlossen.

Durch den maximal darstellbaren Wertebereich ist auch eine gewisse Ungenauigkeit bei einigen mathematischen Berechnungen unvermeidlich, da kein Computersystem alle Zahlen beliebig exakt zu verarbeiten vermag. Bei ganzzahligen Datentypen ist die Genauigkeit innerhalb der zugesicherten Grenzen stets optimal. Sie werden immer vollständig gespeichert, solange sie sich im Wertebereich befinden.

Gleitkommazahlen haben im Gegensatz zu Ganzzahlen prinzipiell nur eine beschränkte Genauigkeit, auch wenn sie sich im Wertebereich des Datentyps befinden. Das liegt daran, dass der Computer solche Zahlen nur dann vollständig speichern kann, wenn sie über eine beschränkte Zahl von Nachkommastellen verfügen.

Beim Speichern einer Gleitkommazahl zerlegt der Computer diese in zwei Teile.

Der erste Teil ist der Exponent, und der zweite Teil ist die Mantisse; beide werden binär gespeichert. Die Dezimaldarstellung (Abbildung 4.4) zeigt, dass eine solche Zahl nur bis zu einer gewissen Nachkommastelle exakt ist, alles andere fällt unter den Tisch. Man spricht in diesem Fall von so genannten Rundungsfehlern.

Abbildung 4.4 Die Stellen der Mantisse bestimmen die Genauigkeit.

Überschreiten des Wertebereichs

Sie müssen bei der Deklaration entscheiden, ob Ihnen der reservierte Wertebereich und die Genauigkeit für eine Variable im Laufe des Programms ausreichen.

Ist das nicht der Fall und überschreitet die Variable irgendwann ihren maximal gültigen Wert oder ist zu ungenau, kommt es zu Programmfehlern. Diese können sich unterschiedlich äußern.

Im günstigsten Fall fallen Programmfehler durch einen so genannten Überlauf auf.

In manchen Fällen kann es jedoch passieren, dass das Programm verrückt spielt und völlig falsche Werte produziert. In Kapitel 7, »Gesetzmäßigkeiten«, erfahren Sie genau, in welchen Fällen dies passiert und wie Sie Ihr Programm vor solchen Zuständen schützen können.

93

4

Sprache Java

Auswahl des Datentyps

Was bedeutet die Gefahr von Fehlern für die Auswahl eines Datentyps? Das bedeutet zunächst, dass der Softwareentwickler schon bei der Programmierung sehr genau abwägen sollte, welcher einfache Datentyp sich für eine bestimmte Aufgabe aufgrund seines Wertebereichs eignet.

왘

Strategie 1

Ist der Entwickler zu sicherheitsbewusst und benutzt er stets zu »große« Datentypen, läuft sein Programm zwar sicher, es verbraucht aber zu viel Speicher.

왘

Strategie 2

Ist er zu sparsam, braucht es wenig Speicherplatz, aber es wird nicht richtig funktionieren.

Es liegt auf der Hand, dass Sie in Zweifelsfällen die erste Strategie bevorzugen sollten.

Programmtest

In jedem Fall muss der Entwickler in Bezug auf einfache Datentypen sorgfältig abwägen, welcher Datentyp für welchen Programmteil am besten geeignet ist, und sein Programm in Bezug auf einfache Datentypen ganz besonders sorgfältig testen (Kapitel 7, »Gesetzmäßigkeiten«). Wie Sie die Datentypen verwenden, zeigen einige kleine Anwendungsbeispiele in den folgenden Abschnitten.

4.3.2

Festkommazahlen

Festkommazahlen besitzen im Gegensatz zu Gleitkommazahlen (Abschnitt 4.3.3) keine Nachkommastellen. Diese Ganzzahlen dienen dazu, Zahlenwerte aus der natürlichen Zahlenmenge darzustellen. Java stellt die vier Ganzzahltypen byte, short, int und long zur Verfügung, die sich nur durch ihren Wertebereich unterscheiden.

Abbildung 4.5 Wertebereich der Ganzzahltypen (nichtlineare Darstellung) 94

Einfache Datentypen

4.3

byte

Der Datentyp byte verfügt wie alle Ganzzahltypen über ein Vorzeichen. Er besitzt einen Wertebereich von einem Byte (daher der Name des Datentyps). Für das Beispielprogramm Rectangle hätte es also völlig ausgereicht, diesen Datentyp zu verwenden, weil sich die verwendeten Werte innerhalb des Wertebereichs (Abbildung 4.5) von byte befinden.

1: //Beispielprogramme/Sprache_Java/Ex02

2:

3: package language;

4:

5: class Rectangle {

6:

7:

public static void main(String[] arguments) {

8:

byte height;//Hoehe

9:

byte width;//Breite

10:

byte area;//Flaeche

11:

height = 1;

12:

width = 5;

13:

area = (byte) (height * width);

14:

System.out.println("Fl\u00e4che = " + area +

15:

" m\u00B2");

16:

}

17: }

Listing 4.2 Variation des Beispiels »Rectangle« mit dem Datentyp »byte«

Das hier dargestellte Beispielprogramm Rectangle erzeugt die Ausgabe:

Fläche = 5 m2

short

Für den Datentyp short gilt: Er hat auf allen Plattformen die gleiche Länge, verfügt über ein Vorzeichen und einen Wertebereich von 2 Byte. Im Vergleich zu den anderen Datentypen ist der Wertebereich relativ kurz, daher sein Name.

1: //Beispielprogramme/Sprache_Java/Ex03

2:

3: package language;

4:

5: class Rectangle {

6:

7:

public static void main(String[] arguments) {

8:

short height;//Hoehe

9:

short width;//Breite

10:

short area;//Flaeche

95

4

Sprache Java

11:

height = 1;

12:

width = 5;

13:

area = (short) (height * width);

14:

System.out.println("Fl\u00e4che = " + area +

15:

" m\u00B2");

16:

}

17: }

Listing 4.3 Variation des Beispiels »Rectangle« mit dem Datentyp »short«

Auch dieses Beispiel erzeugt die Ausgabe:

Fläche = 5 m2

int

Der Datentyp int verdoppelt nochmals den Wertebereich des Vorgängers und besitzt ansonsten dessen genannte Eigenschaften. Er ist der am häufigsten einge-setzte Datentyp für Ganzzahlen in Java-Programmen.

1: //Beispielprogramme/Sprache_Java/Ex04

2:

3: package language;

4:

5: class Rectangle {

6:

7:

public static void main(String[] arguments) {

8:

int height;//Hoehe

9:

int width;//Breite

10:

int area;//Flaeche

11:

height = 1;

12:

width = 5;

13:

area = height * width;

14:

System.out.println("Fl\u00e4che = " + area +

15:

" m\u00B2");

16:

}

17: }

Listing 4.4 Variation des Beispiels »Rectangle« mit dem Datentyp »int«

Hier entsteht ebenfalls die Ausgabe:

Fläche = 5 m2

96

Einfache Datentypen

4.3

long

Dieser Datentyp erhöht nochmals den Wertebereich auf das Doppelte des Vorgängers und bietet mit 8 Byte (64 Bit) das Maximum an Wertebereich für Ganzzahlen innerhalb eines Java-Programms.

1: //Beispielprogramme/Sprache_Java/Ex05

2:

3: package language;

4:

5: class Rectangle {

6:

7:

public static void main(String[] arguments) {

8:

long height;//Hoehe

9:

long width;//Breite

10:

long area;//Flaeche

11:

height = 1L;

12:

width = 5L;

13:

area = height * width;

14:

System.out.println("Fl\u00e4che = " + area +

15:

" m\u00B2");

16:

}

17: }

Listing 4.5 Variation des Beispiels »Rectangle« mit dem Datentyp »long«

Auch dieses Beispiel verändert die Ausgabe des Programms im Vergleich zu den vorher genannten Beispielen nicht.

4.3.3

Gleitkommazahlen

Daten mit dem komischen Namen »Gleitkommazahlen« haben im Gegensatz zu

Festkommazahlen eine variable Anzahl von Nachkommastellen (daher der Name).

Sie dienen dazu, Zahlenwerte aus der rationalen Zahlenmenge zu verarbeiten. Sie können zum Beispiel durch eine Bruchrechnung entstehen.

Abbildung 4.6 Beispiel für die Entstehung einer Gleitkommazahl

Java verfügt über die zwei Datentypen float und double, die sich durch ihre Wertebereiche unterscheiden (Abbildung 4.7).

97

4

Sprache Java

Abbildung 4.7 Wertebereich der Gleitkommatypen (gerundete Werte, nichtlineare Darstellung) float

Der Typ float ist in Java-Programmen der Standardtyp für Gleitkommazahlen mit so genannter einfacher Genauigkeit (4 Byte). Einfache Genauigkeit reicht jedoch auch nur für einfache Rechenoperationen aus, weil die Anzahl der gespeicherten Nachkommastellen gering ist. Eine Anwendung zeigt Listing 4.6.

1: //Beispielprogramme/Sprache_Java/Ex06

2:

3: package language;

4:

5: class Rectangle {

6:

7:

public static void main(String[] arguments) {

8:

float height;// Hoehe

9:

float width;// Breite

10:

float area;// Flaeche

11:

height = 1.1F;

12:

width = 5.1F;

13:

area = height * width;

14:

System.out.println("Fl\u00e4che = " + area +

15:

" m\u00B2");

16:

}

17: }

Listing 4.6 Variation des Beispiels »Rectangle« mit dem Datentyp »float«

Aufgrund der geänderten Werte für Breite und Höhe entsteht folgende Ausgabe: Fläche = 5.61 m2

double

Der Typ double beschließt den Abschnitt über Gleitkommazahlen. Sie benötigen diesen Typ immer dann, wenn mit höchstmöglichem Wertebereich und maximaler Genauigkeit bei den Nachkommastellen gerechnet werden muss. Das ist zum Beispiel bei Finanzdienstleistungssoftware, Flugsteuerungssoftware, medi-98

Einfache Datentypen

4.3

zinischen Anwendungen, Navigationssystemen oder Taschenrechnern der Fall.

Listing 4.7 zeigt ein Beispiel für die Verwendung.

1: //Beispielprogramme/Sprache_Java/Ex07

2:

3: package language;

4:

5: class Rectangle {

6:

7:

public static void main(String[] arguments) {

8:

double height;

9:

double width;

10:

double area;

11:

height = 1.1;

12:

width = 5.1;

13:

area = height * width;

14:

System.out.println("Fl\u00e4che = " + area +

15:

" m\u00B2");

16:

}

17: }

Listing 4.7 Variation des Beispiels »Rectangle« mit dem Datentyp »double«

Das Programm gibt ebenfalls 5.61 m2 als Endergebnis aus.

4.3.4

Wahrheitswerte

Der in Java vordefinierte Datentyp für Wahrheitswerte kann die Werte true oder false annehmen. Das Verständnis von Wahrheitswerten ist von grundlegender Bedeutung für die Java-Programmierung. Wie Sie später sehen werden, steuern Sie mit Hilfe solcher Wahrheitswerte den Ablauf des Programms.

1: //Beispielprogramme/Sprache_Java/Ex08

2:

3: package language;

4:

5: class Login {

6:

7:

public static void main(String[] arguments) {

8:

9:

boolean passwordChecked;

10:

boolean userAuthorized;

11:

passwordChecked = true;

12:

userAuthorized = false;

13:

System.out.println("Passwort " +

14:

"\u00fcberpr\u00fcft = " +

99

4

Sprache Java

15:

passwordChecked);

16:

System.out.println("Benutzer berechtigt = " +

17:

userAuthorized);

18:

}

19: }

Listing 4.8 Programmbeispiel mit Wahrheitswerten

Dieses Beispiel erzeugt folgende Ausgabe:

Passwort überprüft = true

Benutzer berechtigt = false

4.3.5

Zeichen

Der Zeichentyp char ist mit einem Wertebereich von 2 Byte ausgestattet worden und basiert auf dem Unicode-Zeichensatz. Char-Typen sind im Gegensatz zu String-Typen (Kapitel 8, »Klassenbibliotheken«) mit einfachen Hochkommata zu initialisieren (Listing 4.9). Der Zeichentyp ist zur Ausgabe einzelner Zeichen gedacht. Um Wörter auszugeben, müssen Sie einzelne Zeichen mit Hilfe von Arrays zu Zeichenketten zusammensetzen (Abschnitt 4.4.1, »Arrays«).

1: //Beispielprogramme/Sprache_Java/Ex09

2:

3: package language;

4:

5: class Dialog {

6:

7:

public static void main(String[] arguments) {

8:

9:

char yesKey = 'J';//Taste "J" = Ja

10:

char cancelKey = 'A';//Taste "A" = Abbrechen

11:

char helpKey = '?';//Taste "?" = Hilfe

12:

System.out.println("Soll der Vorgang " +

13:

"fortgesetzt werden?");

14:

System.out.println("<Ja> [" +

15:

yesKey + "]");

16:

System.out.println("<Abbrechen> ... [" +

17:

cancelKey + "]");

18:

System.out.println("<Hilfe> [" +

19:

helpKey + "]");

20:

}

21: }

Listing 4.9 Ein Beispiel für die Verwendung des Char-Typs

100

Erweiterte Datentypen

4.4

Das Beispielprogramm sorgt für folgende Ausgabe:

Soll der Vorgang fortgesetzt werden?

<Ja> [J]

<Abbrechen> ... [A]

<Hilfe> [?]

4.4

Erweiterte Datentypen

4.4.1

Arrays

Arrays zählen zu den erweiterten Datentypen. Es sind Felder, in denen Zahlen-oder Objektmengen gespeichert werden. Anders als in manchen anderen Programmiersprachen sind Arrays auch in Java Objekte. Arrays werden also aus einer entsprechenden Klasse erzeugt.

Listing 4.10 zeigt noch einmal einen Minimaldialog, aber diesmal unter Verwendung eines Char-Arrays. In diesem Fall erzeugt das Programm zwei Felder, einmal mit zwei Elementen und einmal mit neun Elementen.

1: //Beispielprogramme/Sprache_Java/Ex10

2:

3: package language;

4:

5: class Dialog {

6:

7:

public static void main(String[] arguments) {

8:

9:

char yesKey[];//Deklaration ohne feste Laenge

10:

yesKey = new char[2];//Erzeugung

11:

yesKey[0] = 'J';//Zuweisung

12:

yesKey[1] = 'A';//Zuweisung

13:

char cancelKey[];//Deklaration ohne feste Laenge

14:

cancelKey = new char[9];//Erzeugung

15:

cancelKey[0] = 'A';//Zuweisung

16:

cancelKey[1] = 'B';//Zuweisung

17:

cancelKey[2] = 'B';//Zuweisung

18:

cancelKey[3] = 'R';//Zuweisung

19:

cancelKey[4] = 'E';//Zuweisung

20:

cancelKey[5] = 'C';//Zuweisung

21:

cancelKey[6] = 'H';//Zuweisung

22:

cancelKey[7] = 'E';//Zuweisung

23:

cancelKey[8] = 'N';//Zuweisung

24:

char helpKey = '?';

101

4

Sprache Java

25:

System.out.println("Wollen Sie eine Frage " +

26:

"stellen?");

27:

System.out.println("<Ja> [" +

28:

yesKey[0] + yesKey[1] + "]");

29:

System.out.println("<Abbrechen> ... [" +

30:

cancelKey[0] + cancelKey[1] +

31:

cancelKey[2] + cancelKey[3] +

32:

cancelKey[4] + cancelKey[5] +

33:

cancelKey[6] + cancelKey[7] +

34:

cancelKey[8] +

35:

"]");

36:

System.out.println("<Hilfe> [" +

37:

helpKey + "]");

38:

}

39: }

Listing 4.10 Ein Beispiel für ein Char-Array

Das Beispielprogramm erzeugt folgende Ausgabe:

Wollen Sie eine Frage stellen?

<Ja> [JA]

<Abbrechen> ... [ABBRECHEN]

<Hilfe> [?]

Arrays können eine Dimension oder mehrere Dimensionen besitzen. Die Anzahl der Elemente eines Arrays muss nicht zum Zeitpunkt der Deklaration feststehen.

Wenn ein Array erzeugt wird, besitzt es jedoch eine feste Länge; Arrays sind infolgedessen halbdynamisch.

1: //Beispielprogramme/Sprache_Java/Ex11

2:

3: package language;

4:

5: class Answer {

6:

7:

public static void main(String[] arguments) {

8:

int numberArray [][];//Deklaration ohne feste Laenge

9:

numberArray = new int [1][2];//Erzeugung mit fester Laenge

10:

numberArray[0][0] = 4;//Zuweisung

11:

numberArray[0][1] = 2;//Zuweisung

12:

System.out.println("Die Antwort lautet " +

13:

numberArray[0][0] + numberArray[0][1]);

14:

}

15: }

Listing 4.11 Ein Beispiel für ein Int-Array

102

Erweiterte Datentypen

4.4

Das Beispiel erzeugt folgende Ausgabe:

Die Antwort lautet 42

Die bisherigen Beispiele waren nicht gerade sehr elegant, da sie Deklaration und Erzeugung trennten. Das nächste Beispiel fasst Deklaration und Erzeugung zusammen:

1: //Beispielprogramme/Sprache_Java/Ex12

2:

3: package language;

4:

5: class Answer {

6:

7:

public static void main(String[] arguments) {

8:

9:

// Deklaration und Erzeugung mit fester Laenge:

10:

int numberArray [][] = new int [1][2];

11:

numberArray[0][0] = 4; // Zuweisung

12:

numberArray[0][1] = 2; // Zuweisung

13:

System.out.println("Die Antwort lautet immer noch " +

14:

numberArray[0][0] +

15:

numberArray[0][1]);

16:

17:

}

18: }

Listing 4.12 Kombination von Deklaration und Erzeugung

Ebenso können Sie auch gleich die Wertemenge als Aufzählung übergeben:

1: //Beispielprogramme/Sprache_Java/Ex13

2:

3: package language;

4:

5: class Dialog {

6:

7:

public static void main(String[] arguments) {

8:

9:

char yesKey[] = {'J', 'A'};

10:

char cancelKey [] = {'A', 'B', 'B', 'R', 'E',

11:

'C', 'H', 'E', 'N'};

12:

char helpKey = '?';

13:

System.out.println("Noch 'ne Frage?");

14:

System.out.println("<Ja> [" +

15:

yesKey[0] + yesKey[1] + "]");

16:

System.out.println("<Abbrechen> ... [" +

103

4

Sprache Java

17:

cancelKey[0] + cancelKey[1] + cancelKey[2] +

18:

cancelKey[3] + cancelKey[4] + cancelKey[5] +

19:

cancelKey[6] + cancelKey[7] + cancelKey[8] + "]");

20:

21:

System.out.println("<Hilfe> [" +

22:

helpKey + "]");

23:

}

24: }

Listing 4.13 Direkte Zuweisung der Zeichenkette

Der Index eines Arrays muss ein ganzzahliger Wert vom Typ int, short, byte oder char sein. Die Anzahl der Elemente können Sie über die Variable length ermitteln, die jedes Objekt eines Array-Typs besitzt.

1: //Beispielprogramme/Sprache_Java/Ex14

2:

3: package language;

4:

5: class Dialog {

6:

7:

public static void main(String[] arguments) {

8:

char yesKey[] = {'J', 'A'};

9:

char cancelKey [] = {'A', 'B', 'B', 'R',

10:

'E', 'C', 'H', 'E', 'N'};

11:

char helpKey = '?';

12:

System.out.println("<Ja> [" +

13:

yesKey[0] + yesKey[1] + "]");

14:

System.out.println("<Abbrechen> ... [" +

15:

cancelKey[0] + cancelKey[1] + cancelKey[2] +

16:

cancelKey[3] + cancelKey[4] + cancelKey[5] +

17:

cancelKey[6] + cancelKey[7] + cancelKey[8] +

18:

"]");

19:

System.out.println("<Hilfe> [" +

20:

helpKey + "]");

21:

System.out.println("Die Tasten haben " +

22:

(yesKey.length + cancelKey.length + 1) + " Zeichen");

23:

}

24: }

Listing 4.14 Dieses Programm ermittelt die Länge der Zeichenketten.

Das Programm ermittelt die Länge der Zeichenketten, addiert sie und gibt folgenden Text aus:

104

Erweiterte Datentypen

4.4

<Ja> [JA]\

<Abbrechen> ... [ABBRECHEN]\

<Hilfe> [?]\

Die Tasten haben 12 Zeichen

4.4.2

Aufzählungstyp

In Java-Kreisen wurde lange über die Notwendigkeit eines Aufzählungstyps diskutiert. Seit Java 5.0 (JDK 1.5) verfügt die Sprache endlich auch über diesen Datentyp mit dem Namen enum. Er dient vorwiegend dazu, Sammlungen von

Konstanten zusammenzufassen, zum Beispiel die Tage einer Woche, wie folgendes Beispiel zeigt.

1: //Beispielprogramme/Sprache_Java/Ex15

2:

3: package language;

4:

5: public class Week {

6:

7:

private enum DaysOfTheWeek {

8:

Montag, Dienstag, Mittwoch,

9:

Donnerstag, Freitag, Samstag, Sonntag}

10:

11:

public static void main(String[] args) {

12:

System.out.println("Die Tage einer Woche:");

13:

for (DaysOfTheWeek day : DaysOfTheWeek.values()) {

14:

System.out.println(day);

15:

}

16:

} // main

17: } // Week

Listing 4.15 Beispiel für die Verwendung des neuen »Enum«-Typs

Das Programm legt eine neue Aufzählung namens »Woche« mit sieben Konstanten (Montag, Dienstag, Mittwoch etc.) an. Danach werden die Namen der Tage über eine so genannte Schleife nach und nach ausgegeben. Die genaue Erklärung der For-Schleife erfolgt in Abschnitt 4.10.4, »For-Schleife«. An dieser Stelle soll nur wichtig sein, dass Sie hiermit folgende Liste erhalten:

Die Tage einer Woche:

Montag

Dienstag

Mittwoch

Donnerstag

Freitag

105

4

Sprache Java

Samstag

Sonntag

4.5

Benutzerdefinierte Datentypen

Klassen zählen zu den so genannten benutzerdefinierten Datentypen. Im Gegensatz zu den primitiven Datentypen wie int oder double kann der Programmierer bei einer von ihm entwickelten Klasse vollkommen frei bestimmen, aus welchen Teilen sich eine neue Klasse zusammensetzt. In der Ausprägung einer Klasse trifft die exakte Welt des Computers (Kapitel 1, »Digitale Informationsverarbeitung«) auf die menschliche Sichtweise der natürlichen Welt (Kapitel 3, »Objektorientierte Programmierung«).

Vierklassengesellschaft

Es gibt vier Arten von Klassen in Java:

1. Konkrete Klassen

2. Abstrakte Klassen

3. Interfaces

4. Generische Klassen

4.5.1

Konkrete Klassen

Wie der Name schon andeutet, können Sie von einer konkreten Klasse auch konkrete Exemplare (Objekte) erzeugen. Wenn Ihnen diese Aussage seltsam erscheint, müssen Sie bedenken, dass man von den beiden anderen Ausprägungen einer Klasse, den abstrakten Klassen und Interfaces, keine Objekte erzeugen kann.

Eine konkrete Klasse kennen Sie bereits vom Anfang dieses Kapitels: die Klasse Rectangle. Sie verfügt über die Attribute height und width, die ihre Objektvariablen sind.

1: //Beispielprogramme/Sprache_Java/Ex16

2:

3: package language;

4:

5: class Rectangle {

6:

private int height;//Hoehe

7:

private int width;//Breite

8: }

Listing 4.16 Die Klasse »Rectangle« mit ihren Attributen

106

Benutzerdefinierte Datentypen

4.5

Objekte erzeugen

Ein neues Exemplar (Objekt2) des Typs Rectangle, ein neues Rechteck, erzeugen Sie wie im Listing 4.17 angegeben mit dem so genannten New-Operator (Abschnitt 4.9.7). Der Vorgang wird in der Literatur leider auch häufig fälschlicherweise instanziieren genannt.

1: //Beispielprogramme/Sprache_Java/Ex17

2:

3: package language;

4:

5: public class TestApp {

6:

7:

public static void main(String[] arguments) {

8:

Rectangle rect; // Deklaration des Objekts rect

9:

rect = new Rectangle(); // Erzeugung des Objekts

10:

}

11: }

Listing 4.17 Ein neues Rechteck entsteht.

Die neue Variable rect des Typs Rectangle muss zuerst deklariert werden. Erst danach erfolgt die Erzeugung. Der Konstruktor Rectangle() wird hierbei wie eine normale Methode aufgerufen. Er muss allerdings immer im Verbund mit dem New-Operator verwendet werden (Abbildung 4.8).

Abbildung 4.8 Deklaration und Erzeugung des Objekts »rect«

Deklaration und Erzeugung eines Objekts lassen sich auch kombinieren und in eine Zeile schreiben (Abbildung 4.9).

2 Exemplar und Objekt sind gleichbedeutend. Im Gegensatz dazu ist der Begriff »Instanz«

eine Fehlübersetzung (engl. instance: Exemplar).

107

4

Sprache Java

Abbildung 4.9 Kombination von Deklaration und Erzeugung eines Objekts Lokale Klassen

Lokale Klassen definiert man innerhalb einer anderen Klasse. Sie können auch nur von dieser Klasse verwendet werden. Im Gegensatz zu anonymen Klassen besitzen sie einen konkreten Namen.

1: //Beispielprogramme/Sprache_Java/Ex18

2:

3: package language;

4:

5: class Rectangle {

6:

7:

private int height;

8:

private int width;

9:

10:

public Rectangle() {

11:

new Pattern(); // Erzeugung des Objekts

12:

}

13:

14:

class Pattern { // Innere Klasse

15:

private int dummy;

16:

}

17:

18: }

Listing 4.18 Die innere Klasse »Pattern«

Innere Klassen sind vor allem bei der Programmierung grafischer Oberflächen nützlich, wo sie als Hilfsklassen dienen.

Innere Klassen

Eine weitere Form von Hilfsklassen, die innerhalb einer anderen Klasse definiert werden, nennt sich innere Klassen. Im Gegensatz zu den eben erwähnten lokalen Klassen besitzt diese Spezies keinen Namen.

108

Benutzerdefinierte Datentypen

4.5

Listing 4.19 zeigt eine aus der Klasse Pattern erzeugte Klasse, die nur über ein Attribut, aber nicht über einen Namen verfügt.

1: //Beispielprogramme/Sprache_Java/Ex19

2:

3: package language;

4:

5: class Rectangle {

6:

7:

private int height;//Hoehe

8:

private int width;//Breite

9:

public Rectangle() {

10:

new Pattern() {

11:

private int dummy;

12:

};

13:

}

14: }

Listing 4.19 Beispiel für die Verwendung einer anonymen Klasse

Vererbung

Wenn man eine Klasse vererben (ableiten) möchte, erweitert man sie um bestimmte Eigenschaften. Das Schlüsselwort für die Vererbung heißt entsprechend extends.

Beispiel: Es soll eine Klasse Shape definiert werden, die als Basisklasse für geometrische Figuren dient.

1: //Beispielprogramme/Sprache_Java/Ex20

2:

3: package language;

4:

5: public class Shape {

6:

7:

private int height;//Hoehe

8:

private int width;//Breite

9:

public Shape() {

10:

}

11: }

Listing 4.20 Die Basisklasse »Shape«

Die Basisklasse Shape wird von der Klasse Rectangle erweitert.

109

4

Sprache Java

1: //Beispielprogramme/Sprache_Java/Ex20

2:

3: package language;

4:

5: class Rectangle extends Shape {

6:

public Rectangle() {

7:

}

8: }

Listing 4.21 »Rectangle« erweitert die Klasse »Shape«.

4.5.2

Abstrakte Klassen

Die im vorherigen Beispiel definierte Klasse Shape des Beispiels signalisiert zwar schon durch ihren Namen, dass von ihr keine konkreten Objekte erzeugt werden sollen. Aber um die Erzeugung eines Objekts auch wirklich zu verhindern, muss man die Klasse als abstrakt definieren (Listing 4.22).

Der zugehörige Java-Code sieht so aus:

1: //Beispielprogramme/Sprache_Java/Ex21

2:

3: package language;

4:

5: abstract public class Shape {

6:

private int height;//Hoehe

7:

private int width;//Breite

8:

public Shape() {

9:

}

10: }

Listing 4.22 Die Klasse »Shape« als abstrakte Klasse

Abbildung 4.10 Die Klasse »Rectangle« erweitert »Shape«.

110

Benutzerdefinierte Datentypen

4.5

Abbildung 4.10 zeigt die Vererbungsbeziehung zwischen Basisklasse und der abgeleiteten Klasse.

Vererbung

Wie bei einer konkreten Klasse erfolgt die Vererbung mit dem Schlüsselwort extends.

4.5.3

Interfaces

Die Schnittstelle (Interface) ist eine spezielle Form der Klasse, mit der eine Art von Mehrfachvererbung realisiert werden kann. Ein Interface ist eine Sammlung von abstrakten Methoden und Konstanten. Die Schnittstelle enthält keine Konstruktoren, und daher gibt es auch keine Objekte davon. Von einem Interface wird stets eine abgeleitete Klasse benötigt, die alle Methoden des Interfaces implementieren (mit Leben erfüllen) muss.

Abbildung 4.11 Die Klasse »Rectangle« implementiert das Interface »Shape«.

Es gibt drei wichtige Gründe, Interfaces einzusetzen:

1. Kapselung von Komponenten

2. Realisierung von Mehrfachvererbung

3. Zusammenfassung identischer Methoden

Komponenten bilden eine Kapsel um mehrere Klassen, deren Schnittstellen nicht vollständig nach außen gelangen sollen. Eine Schnittstelle bietet hier eine Unter-menge der inneren Schnittstellen.

Mehrfachvererbung ist in Java aufgrund der in Abschnitt 3.5.3, »Mehrfachvererbung«, erwähnten Nachteile nicht realisiert worden. Dennoch kann es aus ar-111

4

Sprache Java

chitektonischen Gründen wichtig sein, eine Methodendeklaration von mehr als einer Klasse zu erben. Genau dies ist der Sinn von Interfaces.

1: //Beispielprogramme/Sprache_Java/Ex22

2:

3: package language;

4:

5: public interface Shape {

6:

int height =1;//Hoehe=1

7:

int width = 5;//Breite=5

8: }

Listing 4.23 Die Klasse »Shape« als Interface

Die Klasse Shape ist hier nur in einer Minimalausführung zu sehen. Normalerweise verfügt eine solche Klasse über eine Reihe von abstrakten Methoden, die die abgeleitete Klasse mit Leben füllt. Ein Interface ist die maximale Steigerung einer abstrakten Klasse.

Vererbung

In den gerade eingeführten Interfaces gibt es eigentlich nichts zu erben, da sie nur eine Summe von Schnittstellen anbieten, die zu implementieren sind. Entsprechend heißt dort das Schlüsselwort für die Vererbung auch implements (Listing 4.24).

1: //Beispielprogramme/Sprache_Java/Ex22

2:

3: package language;

4:

5: class Rectangle implements Shape {

6:

public Rectangle() {

7:

}

8: }

Listing 4.24 Die Klasse »Rectangle« implementiert »Shape«.

4.5.4

Generische Klassen

Waren abstrakte Klassen und Interfaces für den Einstieg in die Java-Programmierung eigentlich schon mysteriös genug, so stellen die generischen Klassen (Generics) noch eine weitere Steigerung dar. Diese Klassen sind vorwiegend dazu da, beliebige Objekte aufnehmen zu können – eine Art universeller Behälter also.

Die Berechtigung für solche Klassen liegt in der besseren Typisierung. Ein Beispiel hierzu: Angenommen, Sie wollen einen Tresor entwickeln, der alle Arten von 112

Benutzerdefinierte Datentypen

4.5

Wertsachen aufbewahren kann, wie müssen Sie vorgehen? Ungeschickt wäre es, für jede Wertsache eine eigene Klasse zu entwickeln. Stattdessen benötigen Sie einen generisch (universell) verwendbaren Behälter – daher auch die englische Bezeichnung Generics.

Angenommen, Sie wollten Juwelen und Geld in einem Safe deponieren. Sie

definieren daher zuerst eine Klasse für Juwelen.

1: // Beispielprogramme/Sprache_Java/Ex23

2:

3: package language;

4:

5: public class Jewelry {

6:

7:

private String value;

8:

9:

public Jewelry(String value) {

10:

this.value = value;

11:

}

12:

13:

public String getValue() {

14:

return value;

15:

}

16: }

Listing 4.25 Die Klasse »Jewelry«

Danach schreiben Sie eine Klasse für Geld.

1: // Beispielprogramme/Sprache_Java/Ex23

2:

3: package language;

4:

5: public class Money {

6:

7:

private String value;

8:

9:

public Money(String value) {

10:

this.value = value;

11:

}

12:

13:

public String getValue() {

14:

return value;

15:

}

16: }

Listing 4.26 Die Klasse » Money«

113

4

Sprache Java

In Listing 4.27 sehen Sie, wie Sie beide Klassen Juwelry und Money mit einer generischen Klasse verwenden können. In diesem Beispiel heißt die allgemeine Basisklasse Safe.

1: //Beispielprogramme/Sprache_Java/Ex23

2:

3: package

language;

4:

5: /* Diese Klasse demonstriert die neue Art der

6:

Programmierung eines Containers mit generischen

7:

Klassen. Der Rueckgabewert der Get-Methode ist

8:

vom Typ "T". Erst im Hauptprogramm bei der

9:

Erzeugung bestimmt das Programm den konkreten

10:

Typ. Eine Typwandlung (Cast) muss deshalb nicht

11:

durchgefuehrt werden. Die Verwendung einer Con-

12:

tainer-Klasse wie Safe ist somit typsicher.

13: */

14:

15: public class Safe<T> {

16:

17:

private T valueable;

18:

19:

public void setValueable(T valueable) {

20:

this.valueable = valueable;

21:

}

22:

23:

public T getValueable() {

24:

return valueable;

25:

}

26:

27:

public static void main(String[] arguments) {

28:

29:

Safe<Money> moneyBox = new Safe<Money>();

30:

moneyBox.setValueable(new Money("400,53 Euro"));

31:

32:

Safe<Jewelry> jewelCase = new Safe<Jewelry>();

33:

jewelCase.setValueable(new Jewelry("12 Ringe"));

34:

35:

System.out.println("In der Spardose sind: " +

36:

moneyBox.getValueable().getValue());

37:

38:

System.out.println("Im Schmuckkasten sind: " +

39:

jewelCase.getValueable().getValue());

40:

}

41: }

114

Benutzerdefinierte Datentypen

4.5

Listing 4.27 Die Klasse »Safe« nimmt Wertsachen der unterschiedlichsten Arten auf.

Das Objekt moneyBox wird in Zeile 29 erzeugt. Hier wird festgelegt, dass das Objekt moneyBox nur Geld akzeptiert. Das geschieht durch die Angabe des Typs Money in spitzen Klammern. Gleiches geschieht mit dem Objekt jewelCase, das nur Juwelen akzeptieren wird.

Vergleichen Sie das Programm mit der herkömmlichen, nicht typsicheren Version im folgenden Listing. Um aus der moneyBox zu ermitteln, wie viel Geld sie enthält, muss man eine Typwandlung (Type Cast) durchführen (Zeile 40). Das geschieht auch in Zeile 45 mit dem Schmuckkasten. Solange der zugeordnete Typ beim Cast korrekt ist, ist alles in Ordnung.

1: // Beispielprogramme/Sprache_Java/Ex23

2:

3: package

language;

4:

5: /* Diese Klasse demonstriert die herkoemmliche Art

6:

der Programmierung eines Containers. Der Rueck-

7:

gabewert der Get-Methode ist vom Typ "Object".

8:

Im Hauptprogramm muss deshalb in den Zeilen 40,

9:

45 und 50 eine Typwandlung (Cast) auf den gewuenschten

10:

konkreten Typ durchgefuehrt werden.

11:

12:

In Zeile 50 scheitert diese Typwandlung, da die

13:

Typen nicht vertraeglich (kompatibel) sind: Im

14:

Objekt "jewelCase" ist ein Objekt des Typs "Jewelry"

15:

gespeichert. Ein Cast auf den verschiedenen Typ

16:

"Money" muss fehlschlagen und in der Zeile 50 zu

17:

einer "java.lang.ClassCastException" fuehren.

18: */

19:

20: public class Unsafe {

21:

22:

private Object valueable;

23:

24:

public void setValueable(Object valueable) {

25:

this.valueable = valueable;

26:

}

27:

28:

public Object getValueable() {

29:

return valueable;

30:

}

31:

32:

public static void main(String[] arguments) {

33:

115

4

Sprache Java

34:

Unsafe moneyBox = new Unsafe();

35:

moneyBox.setValueable(new Money("400,53 Euro"));

36:

37:

Unsafe jewelCase = new Unsafe();

38:

jewelCase.setValueable(new Jewelry("12 Ringe"));

39:

40:

Money money = (Money)moneyBox.getValueable();

41:

42:

System.out.println("In der Spardose sind: " +

43:

money.getValue());

44:

45:

Jewelry jewelry = (Jewelry)jewelCase.getValueable();

46:

47:

System.out.println("Im Schmuckkasten sind: " +

48:

jewelry.getValue());

49:

50:

money = (Money)jewelCase.getValueable();

51:

52:

System.out.println("Im Schmuckkasten sind: " +

53:

money.getValue());

54:

}

55: }

Listing 4.28 Die Klasse »Unsafe« ist nicht typsicher.

Schauen Sie bitte aber einmal auf Zeile 50. Dort versucht das Programm zu ermitteln, wie viel Geld sich in dem Objekt jewelCase befindet. Das Programm wirft an dieser Stelle eine java.lang.ClassCastException. Dieser Programmfehler ist bei der typsicheren Variante des Programms in Listing 4.27 nicht möglich. Das liegt daran, dass der Java-Compiler solche Fehler dank der generischen Klasse schon bei der Entwicklung des Programms erkennen und aufzeigen kann.

Das bedeutet, dass ein fehlerhaftes Programm somit erst gar nicht übersetzt und ausgeliefert werden kann. Da solche Laufzeitfehler also gar nicht mehr auftreten können, sind generische Klassen ein ganz erheblicher, mit Java 1.5 erzielter Fortschritt. Zudem vermeiden sie die arbeitsaufwändige und umständliche Typwandlung.

4.6

Variablen

Objektvariablen

Die normale Form einer Variablen ist eine Objektvariable. Sie wird beim Erzeugen eines Objekts zum Leben erweckt und mit ihm wieder zerstört.

116

Konstanten

4.7

Klassenvariablen

Klassenvariablen deklariert man durch das Schlüsselwort static. Sie sind nicht an ein Objekt gebunden, sondern existieren ab dem Zeitpunkt, an dem eine Klasse geladen wird, bis zur Beendigung des Programms. Statische Variablen können praktisch sein, da sie so lange leben wie das Programm.

4.7

Konstanten

Konstanten sind – das klingt paradox – für Java nichts anderes als Variablen mit festem Wert. Sie werden ebenfalls durch das Schlüsselwort final gekennzeichnet.

Will man eine Konstante erzeugen, die für alle Klassen gilt, kombiniert man das Schlüsselwort static mit final. Ein Beispiel aus dem Memory-Projekt des Kapitels 12 zeigt, wie das funktioniert:

final static int NUMBER_OF_IMAGES = 12; // Anzahl der Bilder

Konstanten schreibt man in Versalien (Großbuchstaben). Wie eingangs erwähnt, existiert zwar das spezielle Schlüsselwort const, es darf aber nicht verwendet werden.

4.8

Methoden

Kapitel 3 hat Methoden als die Fähigkeit eines objektorientierten Programms beschrieben, zu kommunizieren und Aufgaben zu erledigen. Methoden sind das objektorientierte Äquivalent zu den Funktionen einer prozeduralen Programmiersprache.

4.8.1

Methodenarten

Für verschiedene Zwecke besitzt Java verschiedene Arten von Methoden:

왘

Konstruktoren

왘

Destruktoren

왘

Akzessoren (Getter-Methoden)

왘

Mutatoren (Setter-Methoden)

왘

Funktionen

117

4

Sprache Java

Klassenmethoden

Klassenmethoden kennzeichnen Sie durch das Schlüsselwort static. Sie sind wie Klassenvariablen nicht an ein Objekt gebunden. Sie existieren ab dem Zeitpunkt, an dem eine Klasse geladen wird, bis zur Beendigung des Programms. Die be-kannteste Methode ist die Startmethode main() eines Programms.

Objektmethoden

Die übliche Form einer Methode ist die, die an ein Objekt gebunden ist. Alle Methoden gehören immer zu einer Klasse und bestehen aus einem Kopf und

einem Rumpf. Der Kopf setzt sich aus der Angabe der Sichtbarkeit, des Typs des Rückgabewerts sowie aus der Signatur zusammen. Der Rumpf besteht aus Anweisungen.

Abbildung 4.12 Die Signatur einer Methode

Sichtbarkeit einer Methode

Kapitel 7, »Gesetzmäßigkeiten«, behandelt die Sichtbarkeit von Klassen, Methoden und Variablen ausführlich. An dieser Stelle ist nur wichtig, dass es vier Stufen gibt, um die Kapselung einer Methode festzulegen: public, protected, default und private. Die Kapselung dient dazu, das Objekt vor Zugriffen anderer zu schützen (Abschnitt 3.6, »Kapselung«).

Typ des Rückgabewertes

Alle Methoden außer Konstruktoren besitzen in Java einen bestimmten Typ des Rückgabewertes. Man unterscheidet hier zwei Fälle:

왘

Fall 1

Falls die Methoden einen konkreten Wert zurückliefern, dann entspricht der Typ des Rückgabewerts dem Typ der Methode.

왘

Fall 2

Die Methoden geben keine konkreten Werte zurück. Dann sind sie vom Typ

void (engl. für: leer, unbesetzt).

118

Methoden

4.8

Konstruktoren geben zwar keine konkreten Werte zurück, sie dürfen aber trotzdem nicht mit void gekennzeichnet werden, um sie von normalen Methoden zu unterscheiden. Eine Definition in der Art

void Rectangle(int height, int width) { ... }

wird als normale Methode interpretiert und hat eine völlig andere Wirkung als der Konstruktor:

Rectangle(int height, int width) { ... }

Falls Sie eine Klasse Rectangle definieren, die nur eine Methode Rectangle() des Typs void enthält, wird diese klaglos ausgeführt. Bei der Erzeugung eines Objekts der Klasse Rectangle ruft das Programm jedoch nicht die Methode Rectangle() auf, sondern den Standardkonstruktor gleichen Namens. Sie erhalten somit möglicherweise einen ganz anderen Programmablauf.

Signatur

Unter der Signatur einer Methode versteht man ihren Namen und ihre Parameterliste (Abbildung 4.12).

Parameter

Über eine Liste eines oder mehrerer Parameter (Argumente) können Sie einer Methode einen oder mehrere Werte übergeben. Beispiel: Durch die Anweisung new Rectangle(10, 20);

wird mit Hilfe des Konstruktors

Rectangle(int height, int width) { ... }

ein neues Objekt mit einer Länge von 10 und einer Breite von 20 erzeugt. Die Variable height wird hierbei beim Aufruf des Konstruktors automatisch mit dem Wert 10 belegt, die Variable width mit dem Wert 20.

Rumpf einer Methode

Der Rumpf einer Methode besteht aus Anweisungen, der eigentlichen Implementierung also. Das könnte zum Beispiel so aussehen:

Rectangle(int height, int width) {

int area = heigth * width;

}

Listing 4.29 Eine Liste von Parametern

119

4

Sprache Java

Innerhalb der geschweiften Klammern berechnet das Programm das Produkt aus den Parametern height und width.

4.8.2

Konstruktoren

Die speziellen Methoden zum Erzeugen von Objekten nennen sich Konstruktoren (Erbauer). Sie dienen dazu, ein Objekt (Exemplar) zu erzeugen und eventuell sogleich mit definierten Werten zu belegen. In der Klasse Rectangle könnte die Übergabe der Attribute height und width als Parameter so erfolgen:

1: //Beispielprogramme/Sprache_Java/Ex24

2:

3: package language;

4:

5: class Rectangle implements Shape {

6:

7:

private int height;// Hoehe

8:

private int width;// Breite

9:

10:

// Konstruktor mit Parameteruebergabe:

11:

public Rectangle(int height, int width) {

12:

this.height = height;

13:

this.width = width;

14:

15:

}

16: }

Listing 4.30 Die Klasse »Rectangle« mit Konstruktor

Das Programmbeispiel (Listing 4.30) füllt die Klasse beim Erzeugen mit Hilfe von zwei Parametern gleich mit Werten für die Höhe und Breite. Es ist sinnvoll, eine Klasse mit einer Vielzahl solcher Konstruktoren auszustatten, die den unterschiedlichsten Einsatzbereichen genügen. Die Technik nennt sich Überladen von Methoden und wird in Abschnit 7.5.2, »Überschreiben von Methoden«, beschrieben.

Standardkonstruktor

Es ist nicht unbedingt notwendig, einen Konstruktor zu definieren. Wird kein Konstruktor bei der Klassendefinition angegeben, erzeugt der Compiler beim Übersetzen der Klasse automatisch einen leeren Konstruktor (Standardkonstruktor). Dieser hat allerdings nur eine Funktion: ein Objekt zu erzeugen. Für die Übergabe von Parametern müssen Sie eigene Konstruktoren schreiben.

120

Methoden

4.8

4.8.3

Destruktoren

Destruktoren (Zerstörer) im Sinne von C++ gibt es in Java nicht. Sie werden wegen der automatischen Speicherverwaltung in Java nicht benötigt. Es gibt aber eine Methode mit dem Namen finalize, über die alle Java-Klassen verfügen.

1: //Beispielprogramme/Sprache_Java/Ex25

2:

3: package language;

4:

5: class Rectangle implements Shape {

6:

7:

private int height;//Hoehe

8:

private int width;//Breite

9:

10:

public Rectangle(int height, int width) {

11:

this.height = height;

12:

this.width = width;

13:

}

14:

15:

protected void finalize() {

16:

// Anweisungen ...

17:

}

18: }

Listing 4.31 Die Methode »finalize«

Groteskerweise ist der Aufruf dieses Pseudo-Destruktors in Java nicht garantiert.

Sie sollten also die üblichen Aufräumarbeiten beim Zerstören eines Objekts nicht in diese Methode integrieren. Kritische Abläufe, die am Ende eines Programms erledigt werden müssen, sind an einer anderen Stelle besser aufgehoben.

4.8.4

Zugriffsmethoden

Will man Informationen von einem Objekt erhalten, muss man ihm eine Botschaft zukommen lassen. Diese Botschaften liefern Werte zurück und fragen Informationen des Objekts ab. Im Deutschen haben sich die Ausdrücke Abfragemethoden, Getter-Methoden oder Akzessoren etabliert.

1: //Beispielprogramme/Sprache_Java/Ex26

2:

3: package language;

4:

5: public class Rectangle implements Shape {

6:

7:

private int height;

121

4

Sprache Java

8:

private int width;

9:

10:

public Rectangle(int height, int width) {

11:

this.height = height;

12:

this.width = width;

13:

}

14:

15:

public int getHeight() {

16:

return this.height;

17:

}

18:

19:

public int getWidth() {

20:

return this.width;

21:

}

22: }

Listing 4.32 Die Akzessoren der Klasse »Rectangle«

Die Abfragemethoden sind so aufgebaut, dass vor dem Methodennamen der Typ des Rückgabewerts stehen muss (Zeile 15 und Zeile 19). Die Methoden geben das Ergebnis über die Anweisung return this.height (Zeile 16) beziehungsweise return this.width (Zeile 20) zurück. Das Schlüsselwort this ist momentan nicht wichtig. Wichtig ist das Schlüsselwort return. Es bewirkt die Rückgabe des darauf folgenden Bezeichners.

4.8.5

Änderungsmethoden

Zugriffsmethoden, die auf Daten eines Objekts zugreifen, werden Setter-Methoden, Änderungsmethoden oder Mutatoren genannt. Man nennt sie auch Muta-

toren, weil sie die Daten des Objekts mutieren (verändern). Die entsprechenden Methoden für die Klasse Rectangle und aller abgeleiteten Objekte sehen folgendermaßen aus:

1: //Beispielprogramme/Sprache_Java/Ex27

2:

3: package language;

4:

5: public class Rectangle implements Shape {

6:

7:

private int height;//Hoehe

8:

private int width;//Breite

9:

10:

public Rectangle(int height, int width) {

11:

this.height = height;

12:

this.width = width;

122

Methoden

4.8

13:

}

14:

15:

public int getHeight() {

16:

return this.height;

17:

}

18:

19:

public int getWidth() {

20:

return this.width;

21:

}

22:

23:

public void setHeight(int height) {

24:

this.height = height;

25:

}

26:

27:

public void setWidth(int width) {

28:

this.width = width;

29:

}

30: }

Listing 4.33 Die Mutatoren der Klasse »Rectangle«

Die Änderungsmethoden geben keine Werte zurück, sondern übernehmen einen oder mehrere Werte als Parameter (Argumente). Parameter sind Werte, die nach dem Namen der Methode innerhalb eines Klammerpaars übergeben werden (Zeile 23 und Zeile 27). Da Parameter deklariert werden müssen, erfolgt auch die Parameterübergabe wie bei einer Deklaration stets nach dem Schema Typ Bezeichner. In Zeile 23 sehen Sie, dass ein Bezeichner height (die Höhe des Rechtecks) vom Typ int übergeben wird. Dadurch, dass Mutatoren keine Werte zurückliefern, kennzeichnet man derartige Methoden in Java mit dem Schlüsselwort void (engl. void: leer). So sind sie leicht von Getter-Methoden und Konstruktoren zu unterscheiden.

4.8.6

Funktionen

Funktionen wie das Ausrechnen von Zinsen oder das Starten eines Programms gehören zur dritten Art von Methoden, die Sie in einem Java-Programm antreffen können. Wie die spezialisierten Getter- und Setter-Methoden können sie Rückgabewerte besitzen oder nicht. Sie sind praktisch identisch aufgebaut.

public static void main(String[] arguments) {

// Anweisungen

}

Listing 4.34 Die Startmethode eines Programms

123

4

Sprache Java

4.9

Operatoren

Operatoren verknüpfen Variablen, Attribute und Objekte zu Ausdrücken (Abschnitt 4.10). Folgende Operatoren sind verfügbar:

왘

Arithmetische Operatoren

왘

Vergleichende Operatoren

왘

Logische Operatoren

왘

Bitweise Operatoren

왘

Zuweisungsoperatoren

왘

Fragezeichenoperator

왘

New-Operator

4.9.1

Arithmetische Operatoren

Die klassischen mathematischen Operatoren Addition, Subtraktion, Division und Multiplikation sind auch in Java verfügbar. Daneben gibt es auch die Operatoren, die von C/C++ stammen.

Operator

Bezeichnung

Beispiel

Erläuterung

+

Positives Vorzeichen

+i

Synonym für i

--

Negatives Vorzeichen

--i

Vorzeichenumkehr von i

+

Summe

i + i

Führt eine Addition durch

--

Differenz

i -- i

Führt eine Subtraktion durch

*

Produkt

i * i

Führt eine Multiplikation durch

/

Quotient

i / i

Führt eine Division durch

%

Divisionsrest (Modulo)

i % i

Ermittelt den Divisionsrest

++

Präinkrement

j = ++i

1. Schritt: i = i + 1

2. Schritt: j = i

++

Postinkrement

j = i++

1. Schritt: j = i

2. Schritt: i = i + 1

--

Prädekrement

j = --i

1. Schritt: i = i -- 1

2. Schritt: j = i

--

Postdekrement

j = i--

1. Schritt: j = i

2. Schritt: i = i -- 1

Tabelle 4.3 Arithmetische Operatoren

124

Operatoren

4.9

Positives Vorzeichen

Ein positives Vorzeichen ist stets optional, das heißt, es muss nicht verwendet werden, da ein Zahlenwert ohne Vorzeichen immer positiv belegt ist.

1: //Beispielprogramme/Sprache_Java/Ex28

2:

3: package language;

4:

5: class Rectangle {

6:

7:

public static void main(String[] arguments) {

8:

9:

int height;//Hoehe

10:

int width;//Breite

11:

int area;//Flaeche

12:

height = +1;

13:

width = +5;

14:

area = height * width;

15:

System.out.println("Fl\u00e4che = " + area +

16:

" m\u00B2");

17:

}

18: }

Listing 4.35 Die Variablen »height« und »width« mit positiven Vorzeichen.

Negatives Vorzeichen

Ein negatives Vorzeichen bewirkt im Gegensatz dazu einen Vorzeichenwechsel.

Die Multiplikation zweier negativer Zahlen ergibt – wie aus der Mathematik bekannt – wieder eine positive Zahl.

1: //Beispielprogramme/Sprache_Java/Ex29

2:

3: package language;

4:

5: class Rectangle {

6:

7:

public static void main(String[] arguments) {

8:

int height;// Hoehe

9:

int width;// Breite

10:

int area;// Flaeche

11:

height = -1;

12:

width = -5;

13:

area = height * width;

14:

System.out.println("Fl\u00e4che = " + area +

15:

" m\u00B2");

16:

}

125

4

Sprache Java

17: }

Listing 4.36 Die Variablen »height« und »width« mit negativen Vorzeichen.

Summe

Der Additionsoperator bewirkt die Summenbildung der benachbarten Variablen.

1: //Beispielprogramme/Sprache_Java/Ex30

2:

3: package language;

4:

5: class Rectangle {

6:

7:

public static void main(String[] arguments) {

8:

9:

int height;// Hoehe

10:

int width;// Breite

11:

int sum;// Summe

12:

height = 1;

13:

width = 5;

14:

sum = height + width;

15:

System.out.println("Summe zweier Seiten = " +

16:

sum + " m");

17:

}

18: }

Listing 4.37 Der Summenoperator verknüpft zwei Summanden zu einer Addition.

Das Programm kalkuliert die Summe zweier Seiten und gibt Folgendes aus: Summe zweier Seiten = 6 m

Differenz

Mit dem Differenzoperator führen Sie eine Subtraktion durch.

1: //Beispielprogramme/Sprache_Java/Ex31

2:

3: package language;

4:

5: class Rectangle {

6:

7:

public static void main(String[] arguments) {

8:

int height;//Hoehe

9:

int width;//Breite

10:

int diff;//Differenz

11:

height = 1;

126

Operatoren

4.9

12:

width = 5;

13:

diff = height - width;

14:

System.out.println("Differenz zweier Seiten = " +

15:

diff + " m");

16:

}

17: }

Listing 4.38 Differenzbildung zweier Variablen

Das Ergebnis des Beispielprogramms lautet:

Differenz zweier Seiten = -4 m

Produkt

Der Produktoperator führt eine Multiplikation durch.

1: //Beispielprogramme/Sprache_Java/Ex32

2:

3: package language;

4:

5: class Rectangle {

6:

7:

public static void main(String[] arguments) {

8:

9:

int height;//Hoehe

10:

int width;//Breite

11:

int area;//Flaeche

12:

height = 1;

13:

width = 5;

14:

area = height * width;

15:

System.out.println("Fl\u00e4che = " + area +

16:

" m\u00B2");

17:

}

18: }

Listing 4.39 Produkt zweier Variablen

Das Ergebnis des Beispielprogramms ist die mehrfach verwendete Fläche eines Rechtecks.

Quotient

Bei der Verwendung des Divisionsoperators ist zu beachten, dass Java-Programme Zwischenergebnisse einer Division ganzer Zahlen als Int-Werte speichern, wenn dies nicht ausdrücklich anders deklariert wird. In diesem Fall muss der Typ des Ergebnisses konvertiert werden (Kapitel 7, »Gesetzmäßigkeiten«).

127

4

Sprache Java

1: //Beispielprogramme/Sprache_Java/Ex33

2:

3: package language;

4:

5: class DivisionOperatorDemo {

6:

7:

public static void main(String[] arguments) {

8:

9:

float div;

10:

//Fehler durch interne Verarbeitung

11:

//als Int-Wert:

12:

div = 1 / 5;

13:

System.out.println("Division (Fall 1) = " +

14:

div + " m");

15:

// Korrekt durch Deklaration:

16:

div = 1F / 5F;

17:

System.out.println("Division (Fall 2) = " +

18:

div + " m");

19:

// Korrekt durch Casting

20:

div = (float) 1 / 5;

21:

System.out.println("Division (Fall 3) = " +

22:

div + " m");

23:

}

24: }

Listing 4.40 Der Divisionsoperator

Um diese Konvertierung durchzuführen, verwenden Sie den Cast-Operator (Abschnitt 4.9.8). Damit ist gemeint, dass man den neuen Typ des Ergebnisses in Klammern vor die Division setzt. Durch diese Anweisung ist dem Programm bekannt, dass das Ergebnis von einem anderen Typ sein soll.

Divisionsrest

Der Divisionsrestoperator (Modulo-Operator) ermittelt den Rest einer ganzzahligen Division. Bei nachfolgendem Beispiel 5 : 3 = 1 ergibt sich ein Divisionsrest von 2, den das Beispiel auch anzeigt.

1: //Beispielprogramme/Sprache_Java/Ex34

2:

3: package language;

4:

5: class ModulusOperatorDemo {

6:

7:

public static void main(String[] arguments) {

8:

128

Operatoren

4.9

9:

int height;//Hoehe

10:

int width;//Breite

11:

int modulus;//Divisionsrest

12:

height = 5;

13:

width = 3;

14:

modulus = height % width;

15:

System.out.println("Divisionsrest = " +

16:

modulus);

17:

}

18: }

Listing 4.41 Der Modulo-Operator

Präinkrement

Die folgenden vier Operatoren sind ein Erbe von C++. Sie kombinieren Zuweisungen und Berechnungen. Der Präinkrement-Operator erhöht erst den Wert der Variablen height und weist ihn danach der Variablen result zu. Präinkrement bedeutet »vorher inkrementieren« (erhöhen).

1: //Beispielprogramme/Sprache_Java/Ex35

2:

3: package language;

4:

5: class PreIncrementOperatorDemo {

6:

7:

public static void main(String[] arguments) {

8:

9:

int height;//Hohe

10:

int result;//Ergebnis

11:

height = 1;

12:

//1.) height = height + 1;

13:

//2.) result = height

14:

result = ++height;

15:

System.out.println("H\u00f6he = " +

16:

height + " m");

17:

System.out.println("Ergebnis = " +

18:

result + " m");

19:

}

20: }

Listing 4.42 Der Präinkrement-Operator

Das Programm gibt Folgendes aus:

Höhe = 2 m

Ergebnis = 2 m

129

4

Sprache Java

Postinkrement

Beim Postinkrement-Operator verhält es sich entgegengesetzt. Er weist den Wert der Variablen height im ersten Schritt der Variablen result zu und erhöht danach im zweiten Schritt den Wert von height.

1: //Beispielprogramme/Sprache_Java/Ex36

2:

3: package language;

4:

5: class PostIncrementOperatorDemo {

6:

7:

public static void main(String[] arguments) {

8:

9:

int height;//Hohe

10:

int result;//Ergebnis

11:

height = 1;

12:

//1.) result = height;

13:

//2.) height = height + 1;

14:

result = height++;

15:

System.out.println("H\u00f6he = " +

16:

height + " m");

17:

System.out.println("Ergebnis = " +

18:

result + " m");

19:

20:

}

21: }

22:

Listing 4.43 Der Postinkrement-Operator

Deshalb ergeben sich für die Variable height und für result auch andere Werte: Höhe = 2 m

Ergebnis = 1 m

Prädekrement

Der Prädekrement-Operator setzt im ersten Schritt den Wert der Variablen height herab und weist ihn anschließend der Variablen result zu.

1: //Beispielprogramme/Sprache_Java/Ex37

2:

3: package language;

4:

5: class PreDecrementOperatorDemo {

6:

130

Operatoren

4.9

7:

public static void main(String[] arguments) {

8:

9:

int height;

10:

11:

int result;

12:

13:

height = 1;

14:

15:

//1.) height = height - 1; 2.) result = height

16:

result = --height;

17:

18:

System.out.println("H\u00f6he = " + height + " m"); 19:

20:

System.out.println("Ergebnis = " + result + " m");

21:

22:

}

23: }

Listing 4.44 Der Prädekrement-Operator

Aus diesem Grund sind beide Werte gleich, und das Ergebnis ist 0.

Postdekrement

Der Postdekrement-Operator verhält sich wieder entgegengesetzt. Er weist den Wert der Variablen height im ersten Schritt der Variablen result zu und setzt im zweiten Schritt den Wert der Variablen height herab.

1: //Beispielprogramme/Sprache_Java/Ex38

2:

3: package language;

4:

5: class PostDecrementOperatorDemo {

6:

7:

public static void main(String[] arguments) {

8:

9:

int height;//Hoehe

10:

int result;//Ergebnis

11:

height = 1;

12:

//1.) result = height

13:

//2.) height = height - 1:

14:

result = height--;

15:

System.out.println("H\u00f6he = " +

16:

height + " m");

17:

System.out.println("Ergebnis = " +

18:

result + " m");

131

4

Sprache Java

19:

}

20: }

Listing 4.45 Der Postdekrement-Operator

Das Ergebnis des Programms sind auch diesmal unterschiedliche Werte:

Höhe = 0 m

Ergebnis = 1 m

4.9.2

Vergleichende Operatoren

Die relationalen (vergleichenden) Operatoren dienen, wie der Name es andeutet, dazu, Ausdrücke miteinander zu vergleichen. Auch hier wieder zunächst eine Übersicht über die verfügbaren Operatoren:

Operator

Bezeichnung

Beispiel

Erläuterung

==

Gleich

i == j

Vergleich auf Gleichheit

!=

Ungleich

i != j

Vergleich auf Ungleichheit

<

Kleiner

i < j

Vergleich auf kleiner

<=

Kleiner gleich

i <= j

Vergleich auf kleiner oder gleich

>

Größer

i > j

Vergleich auf größer

>=

Größer gleich

i >= j

Vergleich auf größer oder gleich

Tabelle 4.4 Vergleichende Operatoren

Vergleich auf Gleichheit

Die einfachste Operation ist es, zu prüfen, ob zwei Ausdrücke identisch sind. Das Ergebnis der Operation ist ein Wahrheitswert. Falls zwei Werte identisch sind, ergibt sich true, falls nicht, false.

1: //Beispielprogramme/Sprache_Java/Ex39

2:

3: package language;

4:

5: class EqualOperatorDemo {

6:

7:

public static void main(String[] arguments) {

8:

9:

int height;//Hoehe

10:

int width;//Breite

11:

int area;//Flaeche

12:

height = 1;

13:

width = 5;

132

Operatoren

4.9

14:

area = height * width;

15:

System.out.println(height == width);

16:

System.out.println(area == width);

17:

}

18: }

Listing 4.46 Überprüfung zweier Werte auf Gleichheit

Das Programm erzeugt die Ausgabe:

false

true

Zuerst wird die Multiplikation durchgeführt, die das Endergebnis 5 erzielt. Dieses Endergebnis bekommt die Variable area zugewiesen und ist damit identisch mit der Variablen width.

Vergleich auf Ungleichheit

Wenn man überprüfen möchte, ob zwei Werte nicht identisch sind, verwendet man den Ungleichheitsoperator.

1: //Beispielprogramme/Sprache_Java/Ex40

2:

3: package language;

4:

5: class NotEqualOperatorDemo {

6:

7:

public static void main(String[] arguments) {

8:

9:

int height;//Hoehe

10:

int width;//Breite

11:

int area;//Flaeche

12:

height = 1;

13:

width = 5;

14:

area = height * width;

15:

System.out.println(height != width);

16:

System.out.println(area != width);

17:

}

18: }

Listing 4.47 Überprüfung zweier Werte auf Ungleichheit

Wie zu erwarten, erzeugt das Programm diesmal die umgekehrte Ausgabe:

true

false

133

4

Sprache Java

Vergleich auf kleiner

Um herauszufinden, ob ein Ausdruck oder Wert kleiner als ein anderer ist, verwenden Sie diesen relationalen Operator. Dazu wieder ein Beispiel:

1: //Beispielprogramme/Sprache_Java/Ex41

2:

3: package language;

4:

5: class LessOperatorDemo {

6:

7:

public static void main(String[] arguments) {

8:

9:

int height;//Hoehe

10:

int width;//Breite

11:

int area;//Flaeche

12:

height = 1;

13:

width = 5;

14:

area = height * width;

15:

System.out.println(height < width);

16:

System.out.println(area < width);

17:

}

18: }

Listing 4.48 Vergleich, ob ein Wert kleiner oder gleich einem anderen ist Wie zu erwarten, erzeugt das Programm auch diesmal folgende Ausgabe:

true

false

Die Variable height ist kleiner als width. Dies ist also eine wahre Aussage. Die Variable area ist aber nicht kleiner als width, sondern identisch. Dies ist also eine falsche Aussage.

Vergleich auf kleiner oder gleich

Anders sieht das vorangegangene Beispiel aus, wenn Sie überprüfen wollen, ob die Werte kleiner oder gleich sind. Es reicht also schon aus, dass gleiche Werte miteinander verglichen werden, damit die Aussage wahr ist.

1: //Beispielprogramme/Sprache_Java/Ex42

2:

3: package language;

4:

5: class LessOrEqualOperatorDemo {

6:

7:

public static void main(String[] arguments) {

134

Operatoren

4.9

8:

9:

int height;//Hoehe

10:

int width;//Breite

11:

int area;//Flaeche

12:

height = 1;

13:

width = 5;

14:

area = height * width;

15:

System.out.println(height <= width);

16:

System.out.println(area <= width);

17:

}

18: }

Listing 4.49 Vergleich, ob ein Wert kleiner oder gleich einem anderen ist Das Programm erzeugt die folgende Ausgabe:

true

true

Die Variable height ist kleiner als width. Dies ist also eine wahre Aussage. Die Variable area ist mit width identisch. Dies ist also eine wahre Aussage.

Vergleich auf größer

Um herauszufinden, ob ein Ausdruck oder Wert größer als ein anderer ist, müssen Sie diesen relationalen Operator einsetzen. Das Beispiel erzeugt diesmal eine entgegengesetzte Ausgabe, da beide Vergleiche keine wahren Aussagen ergeben: 1: //Beispielprogramme/Sprache_Java/Ex43

2:

3: package language;

4:

5: class GreaterOperatorDemo {

6:

7:

public static void main(String[] arguments) {

8:

9:

int height;//Hoehe

10:

int width;//Breite

11:

int area;//Flaeche

12:

height = 1;

13:

width = 5;

14:

area = height * width;

15:

System.out.println(height > width);

16:

System.out.println(area > width);

17:

}

18: }

Listing 4.50 Vergleich, ob ein Wert größer als ein anderer ist

135

4

Sprache Java

Vergleich auf größer oder gleich

Wenn Sie überprüfen wollen, ob Werte größer oder gleich sind, verwenden Sie den Größer-Gleich-Operator. Hier reicht es ebenfalls aus, dass gleiche Werte miteinander verglichen werden, damit die Aussage wahr ist.

1: //Beispielprogramme/Sprache_Java/Ex44

2:

3: package language;

4:

5: class GreaterOrEqualOperatorDemo {

6:

7:

public static void main(String[] arguments) {

8:

9:

int height;//Hoehe

10:

int width;//Breite

11:

int area;//Flaeche

12:

height = 1;

13:

width = 5;

14:

area = height * width;

15:

System.out.println(height >= width);

16:

System.out.println(area >= width);

17:

}

18: }

Listing 4.51 Vergleich, ob Werte größer oder gleich sind

Der Vergleich führt zu folgendem Ergebnis:

false

true

4.9.3

Logische Operatoren

Diese Operatoren setzen Sie ein, um Wahrheitswerte (Abschnitt 4.3.4, »Wahrheitswerte«) miteinander zu vergleichen. Folgende Operatoren sind in Java verfügbar:

Operator

Bezeichnung

Beispiel

Erläuterung

!

Nicht

!i

Negation

&&

Und

i && i

Und-Verknüpfung

||

Oder

i || i

Oder-Verknüpfung

Tabelle 4.5 Logische Operatoren

136

Operatoren

4.9

Negation

Um eine wahre Aussage umzukehren, verwendet man den Nicht-Operator. Das Beispiel hierzu vergleicht zwei Variablen miteinander. Das Ergebnis dieses Vergleichs ist nicht wahr, da beide unterschiedliche Werte besitzen. Der Nicht-Operator stellt diese Aussage auf den Kopf (Inversion), und daher ist das Endergebnis true.

1: ///Beispielprogramme/Sprache_Java/Ex45

2:

3: package language;

4:

5: class NotOperatorDemo {

6:

7:

public static void main(String[] arguments) {

8:

9:

int height;//Hoehe

10:

int width;//Breite

11:

int area;//Flaeche

12:

height = 1;

13:

width = 5;

14:

area = height * width;

15:

System.out.println(!(height == width));

16:

}

17: }

Listing 4.52 Der Nicht-Operator invertiert eine Aussage.

Und-Verknüpfung

Folgendes Programm vergleicht im ersten Schritt die Variablen height und width miteinander. Das Ergebnis ist eine falsche Aussage. Im zweiten Schritt vergleicht es die Variablen area und width miteinander. Das Ergebnis ist eine wahre Aussage.

Vergleichen Sie nun bitte nochmals das Listing mit der Abbildung 1.6 auf Seite 38. Der Und-Operator verknüpft eine wahre und eine falsche Aussage so, dass das Endergebnis false entsteht.

1: //Beispielprogramme/Sprache_Java/Ex46

2:

3: package language;

4:

5: class AndOperatorDemo {

6:

7:

public static void main(String[] arguments) {

8:

9:

int height;//Hoehe

10:

int width;//Breite

137

4

Sprache Java

11:

int area;//Flaeche

12:

height = 1;

13:

width = 5;

14:

area = height * width;

15:

System.out.println(((height == width) &&

16:

(area == width)));

17:

}

18: }

Listing 4.53 Eine Und-Verknüpfung zweier Aussagen

Oder-Verknüpfung

Nochmals dieselbe Konstellation, aber diesmal mit einer Oder-Verknüpfung. Das Ergebnis des ersten Ausdrucks ist eine falsche Aussage. Das Ergebnis des zweiten Ausdrucks ist eine wahre Aussage. Wenn Sie nun nochmals einen Blick auf die Abbildung 1.7 auf Seite 39 werfen, erkennen Sie, dass es reicht, wenn eine Aussage wahr ist, damit eine Oder-Verknüpfung ein wahres Ergebnis zurückliefert.

Aus diesem Grund entsteht das Endergebnis true.

1: //Beispielprogramme/Sprache_Java/Ex47

2:

3: package language;

4:

5: class OrOperatorDemo {

6:

7:

public static void main(String[] arguments) {

8:

9:

int height;//Hoehe

10:

int width;//Breite

11:

int area;//Flaeche

12:

height = 1;

13:

width = 5;

14:

area = height * width;

15:

System.out.println(((height == width) ||

16:

(area == width)));

17:

}

18: }

Listing 4.54 Diese Oder-Verknüpfung liefert ein wahres Ergebnis.

4.9.4

Bitweise Operatoren

Bitweise Operatoren dienen dazu, Manipulationen auf der niedrigsten Ebene einer Speicherzelle, der Bitebene, durchzuführen. Zu ihrem Verständnis ist nor-138

Operatoren

4.9

malerweise Erfahrung in Assembler-Programmierung nötig. Daher möchte ich auf diese Operationen hier nicht näher eingehen.

Operator

Bezeichnung

Beispiel

Erläuterung

~

Einerkomplement

~i

Bitweise Negation

|

Bitweises Oder

i | i

Bitweises Oder

&

Bitweises Und

i & i

Bitweises Und

^

Exklusives Oder

i ^ i

Bitweises exklusives Oder

>>

Rechtsschieben mit

i >> 2

Rechtsverschiebung

Vorzeichen

>>>

Rechtsschieben ohne

i >>> 2

Rechtsverschiebung ohne

Vorzeichen

Vorzeichenwechsel

<<

Linksschieben mit

i << 2

Linksverschiebung

Vorzeichen

Tabelle 4.6 Bitweise Operatoren

4.9.5

Zuweisungsoperatoren

Zuweisungsoperatoren dienen, wie ihr Name andeutet, dazu Werte zuzuweisen.

Java besitzt im Wesentlichen die von C- und C++ bekannten Operatoren, die Tabelle 4.7 zusammenfasst.

Die Zuweisungsoperatoren bieten hier nicht Neues, sondern kombinieren nur die bisher bekannten Operatoren und die Zuweisung, so dass man sich beim Schreiben eines Programms eine Zeile sparen kann. Die Lesbarkeit des Programms lässt jedoch zu wünschen übrig.

Operator

Bezeichnung

Beispiel

Erläuterung

=

Zuweisung

i = 1

i erhält den Wert 1.

+=

Additionszuweisung

i += 1

i = i + 1

–=

Subtraktionszuweisung

i –= 1

i = i – 1

*=

Produktzuweisung

i *= 1

i = i * 1

/=

Divisionszuweisung

i /= 1

i = i / 1

%=

Modulozuweisung

i %= 1

i = i % 1

&=

Und-Zuweisung

i &= 1

i = i & 1

|=

Oder-Zuweisung

i |= 1

i = i | 1

Tabelle 4.7 Zuweisungsoperatoren

139

4

Sprache Java

Operator

Bezeichnung

Beispiel

Erläuterung

^=

Exklusiv-Oder-Zuweisung

i ^= 1

i = i ^ 1

<<=

Linksschiebezuweisung

i <<= 1

i = i << 1

>>=

Rechtsschiebezuweisung

i >>= 1

i = i >> 1

>>>=

Rechtsschiebezuweisung mit

i >>>= 1

i = i >>> 1

Nullexpansion

Tabelle 4.7 Zuweisungsoperatoren (Forts.)

4.9.6

Fragezeichenoperator

Der Fragezeichenoperator ist eine extreme Kurzform einer Verzweigung (Abschnitt 4.10.3, »Verzweigungen«). Auch hier lautet meine Empfehlung: Wegen seiner schlechten Lesbarkeit sollte der einzige dreistellige Operator möglichst nicht verwendet werden. Ein Beispiel für die Überprüfung eines Ergebnisses: 1: //Beispielprogramme/Sprache_Java/Ex48

2:

3: package language;

4:

5: class TernaryOperatorDemo {

6:

7:

public static void main(String[] arguments) {

8:

9:

//Zustand als "nicht geprueft" festlegen:

10:

boolean checked = false;

11:

char state; // Zustand als Character-Variable

12:

//Falls "geprueft, "+" zuweisen,

13:

//andernfalls "-" zuweisen

14:

state = (checked ? '+' : '-');

15:

System.out.println("Status: " + state);

16:

//Zustand als "geprueft" festlegen:

17:

checked = true;

18:

//Falls "geprueft, "+" zuweisen,

19:

//andernfalls "-" zuweisen

20:

state = (checked ? '+' : '-');

21:

System.out.println("Status: " + state);

22:

}

23: }

Listing 4.55 Der Fragezeichenoperator ersetzt eine Verzweigung.

Das Programm gibt nacheinander folgende Ergebnisse aus:

140

Operatoren

4.9

Status: -

Status: +

Zuerst prüft das Beispielprogramm, ob die Variable checked den Wert true besitzt.

Falls das der Fall ist, weist sie der Variablen state das Pluszeichen zu, falls nicht, das Minuszeichen. Die Langform des Programms finden Sie in Listing 4.61.

4.9.7

New-Operator

Zum Erzeugen von Objekten dient ein Operator, den Sie auch unter den Schlüs-selbegriffen finden und der im Abschnitt über Klassen bereits erwähnt wurde: new. Er führt eine Operation aus, die dazu dient, ein neues Objekt zu erzeugen, und gehört deswegen auch zu den Operatoren.

Das nachfolgenden Listing definiert eine Klasse, aus der Objekte des Typs »Rectangle« erzeugt werden können.

1: //Beispielprogramme/Sprache_Java/Ex49

2:

3: package language;

4:

5: public class Rectangle {

6:

7:

private int height;//Hoehe

8:

private int width;//Breite

9:

10:

public Rectangle(int height, int width) {

11:

this.height = height;

12:

this.width = width;

13:

}

14:

15:

public int getHeight() {

16:

return this.height;

17:

}

18:

19:

public int getWidth() {

20:

return this.width;

21:

}

22: }

Listing 4.56 Die Klasse »Rectangle« definiert ein Rechteck.

Folgendes Listing erzeugt ein Objekt des Typs »Rectangle« mit der Höhe 1 sowie der Breite 5 und gibt im Anschluss daran diese Werte wieder aus.

141

4

Sprache Java

1: //Beispielprogramme/Sprache_Java/Ex49

2:

3: package language;

4:

5: public class NewOperatorDemo {

6:

7:

public static void main(String[] arguments) {

8:

// Neues Rechteck:

9:

Rectangle rect = new Rectangle(1, 5);

10:

System.out.println("Fl\u00e4che

=

" +

11:

rect.getHeight()

12:

* rect.getWidth() + " m\u00B2");

13:

}

14: }

Listing 4.57 Das Erzeugen eines neuen Objekts mit dem New-Operator 4.9.8

Cast-Operator

Das Umwandeln eines Datentyps wird ausführlich in Kapitel 7, »Gesetzmäßigkeiten«, behandelt. An dieser Stelle möchte ich nur den dazu notwendigen Operator der Vollständigkeit halber aufführen.

1: //Beispielprogramme/Sprache_Java/Ex50

2:

3: package language;

4:

5: public class TypeCastOperatorDemo {

6:

7:

public static void main(String[] arguments) {

8:

9:

int a = 30000;

10:

int b = 2700;

11:

short result;//Ergebnis

12:

result = (short) (a + b);

13:

System.out.println("Ergebnis = " + result);

14:

}

15: }

Listing 4.58 Eine Typkonvertierung von »int« nach »short«

Eine solche Typkonvertierung konvertiert natürlich nicht eine Variable und hebt die Deklaration auf. Das würde die Typsicherheit der Sprache Java untergraben.

Eine Typkonvertierung bedeutet nur, dass der Ausdruck (a + b), der hier entstanden ist, temporär einen anderen Typ besitzt. Die Typkonvertierung hat zur Folge, dass eine lokal begrenzte Umwandlung (Neubesetzung) vorgenommen wird, die 142

Ausdrücke

4.10

die Compilerprüfung an dieser Stelle ausnahmsweise umgeht (engl. cast: beset-zen).

Normalerweise würde der Compiler bei diesem Versuch der Zuweisung einen Fehler melden, da der Short-Typ result und die Int-Typen a sowie b andere Wertebereiche besitzen. Sie sind inkompatibel, und es besteht die Gefahr eines Datenverlusts bei der Zuweisung (Kapitel 7, »Gesetzmäßigkeiten«, Abschnitt 7.4,

»Typkonvertierung«). Die explizite Typkonvertierung des Programmierers umgeht jedoch diese Compilerprüfung. Das Programm lässt sich einwandfrei übersetzen und danach ausführen.

4.10

Ausdrücke

Bis jetzt wurde in diesem Kapitel nur eine Menge relativ lebloser Datentypen und Operatoren vorgestellt. Um etwas Dynamik in Ihre Programme zu bringen, müssen Sie die bisher bekannten Bausteine zu größeren Einheiten kombinieren und den Ablauf steuern. Sie benötigen Anweisungen, Zuweisungen, Schleifen –

kurz: all das, was man unter Ausdrücken versteht.

4.10.1 Zuweisungen

Zuweisungen haben Sie zuhauf in Programmlistings dieses Kapitels gesehen, ohne dass der Fachbegriff dafür gefallen ist. Die Zuweisung

height = 1

bewirkt, dass der Computer die nachfolgende Zahl 1 in eine Speicherzelle mit dem Namen height schreibt (Abbildung 4.13). Das Gleichheitszeichen ist einer der Java-Operatoren und hat eine vergleichbare Wirkung wie eine Methode. Das Zeichen ist für den Computer also nichts anderes als die Kurzschreibweise einer Funktion, die in diesem Fall bewirkt, dass die Speicherzelle namens height den Wert 1 bekommt.

Abbildung 4.13 Die Zuweisung des Wertes 1

143

4

Sprache Java

Java-Zuweisung – mathematische Gleichung

Wenn Sie beginnen, einen Computer zu programmieren, ist es extrem wichtig, diese Form der Zuweisung genau zu verstehen. Auf der linken Seite der Zuweisung stehen immer Programmteile, die verändert werden. Auf der rechten Seite stehen die unveränderlichen Teile des Programms. Die Richtung, in der das Programm abgearbeitet wird, ist gegen alle westlichen Lesegewohnheiten von rechts nach links (Abbildung 4.14).

Abbildung 4.14 Die Zuweisung erfolgt von rechts nach links.

Das ist aber nicht das einzige Paradox. Die Zuweisung height = 1 scheint eine mathematische Gleichung zu sein – ein Irrtum, der durch das Gleichheitszeichen hervorgerufen wird. Zum Vergleich: In der Programmiersprache Pascal sähe die Zuweisung so aus: height := 1.

Ist x = y gleich y = x?

In der Programmiersprache Pascal ist der Zuweisungsoperator zweistellig, weil der Erfinder der Sprache verhindern wollte, dass man den Operator mit dem mathematischen Gleichheitszeichen verwechselt. Es sollte unmöglich sein, dass jemand auf den Gedanken kommt, 1 = height statt height = 1 zu schreiben; das ist in Java nicht gestattet, da in Java-Programmen auf der linken Seite variable Bezeichner stehen müssen.

Aber wie ist es, wenn auf beiden Seiten Variablen stehen? Ist x = y das Gleiche wie y = x? In der Mathematik auf jeden Fall. In Java jedoch nicht. Im ersten Fall weist das Programm den Wert der Variablen y der Speicherzelle x zu. Im zweiten Fall ist es umgekehrt: Die Speicherzelle y bekommt den Wert von x vorgesetzt.

Ein Programmbeispiel (Listing 4.59) zeigt das deutlich. Es gibt Folgendes aus: Fall 1: x = 5; y = 5 und Fall 2: x = 1, y = 1. Das war nicht anders zu erwarten, weil der Computer im Fall 1 den Wert der Speicherzelle y in die Speicherzelle x kopiert hat. Im Fall 2 hingegen hat die Speicherzelle y den Wert der Speicherzelle x bekommen.

1: //Beispielprogramme/Sprache_Java/ex51

2:

3: package language;

4:

5: public class AssignmentDemo {

6:

7:

public static void main(String[] arguments) {

144

Ausdrücke

4.10

8:

9:

int x; // Deklaration x

10:

int y; // Deklaration y

11:

// Fall 1:

12:

x = 1; // x mit 1 initialisiert

13:

y = 5; // y mit 5 initialisiert

14:

x = y; // x bekommt den Wert von y

15:

System.out.println("Fall 1: x = " + x +

16:

"; y = " + y);

17:

// Fall 2:

18:

x = 1; // x erneut mit 1 initialisiert

19:

y = x; // y bekommt den Wert von x

20:

System.out.println("Fall 2: x = " + x +

21:

"; y = " + y);

22:

}

23: }

Listing 4.59 Der Ausdruck x = y ist keineswegs gleich y = x.

Die Programmiersprache Java verhält sich anders als die mathematische Sprache.

Mathematisch wäre die ganze Aktion vollkommen sinnlos, denn aus x = 1 und y

= 5 folgt nicht x = y. Die letzte Aussage ist mathematisch gesehen nicht wahr: x ist nicht gleich y, da x = 1 gleich y = 5 eine falsche Aussage ist.

Die Quintessenz dieses Beispiels zeigt, dass sich mathematische Formeln keinesfalls 1:1 in die Programmiersprache Java übertragen lassen. Sie müssen daher eine Reihe von Gesetzmäßigkeiten beachten, die Sie in Kapitel 7, »Gesetzmäßigkeiten«, kennenlernen werden.

Abbildung 4.15 Zustand der Speicherzelle nach der Zuweisung des Wertes 1

Nach diesem kleinen Exkurs in die Gefilde der niederen Mathematik kehren wir wieder zum Programm mit der Flächenberechnung eines Rechtecks zurück. Wie sieht die Speicherzelle height nach der Zuweisung aus? Sie besitzt, wie erwartet, einen neuen Wert. Der ursprüngliche Wert 00000000h ist überschrieben worden (Abbildung 4.15). Dass die Speicherzelle schon einen definierten Wert besitzt, unterscheidet Java von C und C++. Alle einfachen Datentypen besitzen schon einen Standardwert.

Je nachdem, wie man die Sprache Java strukturiert, kann man folgende Anweisungen unterscheiden:

145

4

Sprache Java

왘

Elementare Anweisungen

왘

Verzweigungen

왘

Schleifen

4.10.2 Elementare Anweisungen

Block

Der Block ist eine Anzahl von zusammengehörenden Anweisungen. Sie werden nacheinander ausgeführt. Blöcke können lokale Variablen besitzen, die außerhalb des Blocks ihre Gültigkeit verlieren. Im folgenden Beispiel wird ein Char-Array deklariert und initialisiert. Es ist außerhalb des Blocks nicht sichtbar (Abschnitt 7.2.2, »Gültigkeitsbereich von Variablen«).

1: //Beispielprogramme/Sprache_Java/ex52

2:

3: package language;

4:

5: public class BlockDemo {

6:

7:

public static void main(String[] arguments) {

8:

{

9:

char block[] = { 'B', 'l', 'o', 'c', 'k' };

10:

11:

for (int i = 0; (i < block.length); i++)

12:

System.out.print(block[i]);

13:

}

14:

System.out.print("haus");

15:

}

16: }

Listing 4.60 Ein Blockhaus

4.10.3 Verzweigungen

Verzweigungen dienen dazu, den Programmfluss zu steuern. Sie gehören daher wie die Schleifen zu den Kontrollstrukturen des Programms. Java hat die If- und die Switch-Anweisung von C- und C++ übernommen.

If-Verzweigung

Die If-Verzweigung des folgenden Beispiels kommt Ihnen vielleicht bekannt vor und ist tatsächlich fast eine Dublette des Listings 4.55 dieses Kapitels. Hier soll überprüft werden, ob der Wert checked gültig, das heißt wahr ist. Falls das der 146

Ausdrücke

4.10

Fall ist, bekommt die Variable state das Pluszeichen zugewiesen, andernfalls das Minuszeichen.

1: //Beispielprogramme/Sprache_Java/Ex53

2:

3: package language;

4:

5: class IfThenElseDemo {

6:

7:

public static void main(String[] arguments) {

8:

9:

boolean checked;

10:

checked = false; // Nicht geprueft

11:

char state; // Erfolgreich?

12:

if (checked) // checked == true?

13:

state = '+';

14:

else

15:

state = '-';

16:

System.out.println("Status: " + state);

17:

checked = true; // Geprueft

18:

if (checked) // checked == true?

19:

state = '+';

20:

else

21:

state = '-';

22:

System.out.println("Status: " + state);

23:

}

24: }

Listing 4.61 Zwei If-then-else-Konstrukte

Die Anweisungen werden in diesem Programm zweimal mit unterschiedlichem Ergebnis ausgeführt, da der Wert der Variablen checked vor jeder Ausgabe verändert wird.

Case-Verzweigung

Wenn man sehr viele Möglichkeiten einer Programmverzweigung hat, werden If-Konstruktionen als Lösung schnell unübersichtlich. Als Ersatz bietet sich dann die Case-Anweisung an. Allerdings darf die nach dem Schlüsselwort switch folgende Variable nur vom Typ char, byte, short, int, enum oder String (seit Java 7) sein. Ein Wahrheitswert ist beispielsweise nicht erlaubt.

1: //Beispielprogramme/Sprache_Java/Ex54

2:

3: package language;

4:

147

4

Sprache Java

5: public class SwitchDemoJava6 {

6:

7:

public void displayState(int checked) {

8:

String state;

9:

switch (checked) {

10:

case 0: state = "-";

11:

System.out.println("Status: " + state);

12:

break;

13:

case 1: state = "+";

14:

System.out.println("Status: " + state);

15:

break;

16:

default: state = "?";

17:

System.out.println("Status: " + state);

18:

break;

19:

}//switch()

20:

}

21: }

Listing 4.62 Das Switch-Konstrukt bis Java 6

Soll eine Case-Anweisung verlassen werden, wenn eine Bedingung erfüllt ist, so muss sie mit einem break beendet werden. Das Beispielprogramm gibt ein Minuszeichen als Status aus; falls kein break verwendet wird, kann das unerwartete Folgen haben. Im Beispielprogramm wird zum Beispiel ein Pluszeichen ausgegeben (!).

Wie schon mehrfach erwähnt, gibt es mit Java 7 die Neuerung, dass auch Strings als Argument die Switch-Anweisung verwendet werden können – etwas, was bei anderen Programmiersprachen schon seit Jahren Usus ist. Wie Strings im Zusammenhang mit der Switch-Anweisung verwendet werden, sehen Sie im nächsten Beispiel:

1: //Beispielprogramme/Sprache_Java/Ex54

2:

3: package language;

4:

5: public class SwitchDemoJava7 {

6:

7:

public void displayState(String checked) {

8:

String state;

9:

switch (checked) {

10:

case "Unchecked": state = "-";

11:

System.out.println("Status: " + state);

12:

break;

13:

case "Checked": state = "+";

14:

System.out.println("Status: " + state);

148

Ausdrücke

4.10

15:

break;

16:

default: state = "?";

17:

System.out.println("Status: " + state);

18:

break;

19:

}//switch()

20:

}

21: }

Listing 4.63 Das Switch-Konstrukt ab Java 7

Die Klasse SwitchDemo zeigt, wie Sie die beiden Beispiele verwenden:

1: //Beispielprogramme/Sprache_Java/Ex54

2:

3: package language;

4:

5: public class SwitchDemo {

6:

7:

public static void main(String[] args) {

8:

9:

//Bis Java 6

10:

new SwitchDemoJava6().displayState(0);

11:

new SwitchDemoJava6().displayState(1);

12:

new SwitchDemoJava6().displayState(2);

13:

14:

//Ab Java 7

15:

new SwitchDemoJava7().displayState("Unchecked");

16:

new SwitchDemoJava7().displayState("Checked");

17:

new SwitchDemoJava7().displayState("?");

18:

}

19: }

Listing 4.64 Eine kleine Demonstration der Switch-Anweisung

Beachten Sie bitte auch die Default-Anweisung. Sie ist wichtig, um nicht alle Fälle, die vorkommen können, ausprogrammieren zu müssen (was manchmal auch gar nicht möglich wäre). Wenn Sie nur einen oder zwei Fälle im Programm behandeln wollen, aber dafür sorgen wollen, dass alle anderen Fälle ebenfalls berücksichtigt werden, müssen Sie diese Anweisung einfügen. Sie empfiehlt sich aber generell auch, um sich gegen unerwartete Programmzustände abzusichern.

4.10.4 Schleifen

Schleifen dienen keineswegs zur Verzierung eines Java-Programms, sondern dazu, sich wiederholende Abläufe zu verpacken. Es gibt drei Schleifentypen in Java: 149

4

Sprache Java

1. While-Schleife

2. Do-Schleife

3. For-Schleife

While-Schleife

Diese Schleifenart gehört zum Typ der kopfgesteuerten Schleifen. Listing 4.65

zeigt ein Beispiel für eine While-Schleife. Im Kopf der Schleife (Zeile 12) fragt das Programm ab, ob lange kleiner als weile ist. Ist das der Fall, wird die Schleife das erste Mal ausgeführt. Danach wiederholt sich der Vorgang, bis der Ausdruck im Schleifenkopf true ist.

1: //Beispielprogramme/Sprache_Java/Ex55

2:

3: package language;

4:

5: class WhileLoopDemo {

6:

7:

public static void main(String[] arguments) {

8:

9:

byte lange, weile;

10:

lange = 1; // Nicht lange

11:

weile = 1; // Wie lange?

12:

while (lange < weile) {

13:

lange++;

14:

System.out.println("Lange");

15:

}

16:

System.out.print("Langewhile");

17:

}

18: }

Listing 4.65 Eine lange While-Schleife

Die While-Schleife ist abweisend, falls der Ausdruck im Schleifenkopf false sein sollte. Das bedeutet, dass die Schleife nicht durchlaufen wird, falls der Ausdruck im Schleifenkopf false ist.

Abbildung 4.16 Aufbau der While-Schleife

150

Ausdrücke

4.10

Do-Schleife

Die Do-Schleife gehört zu der Schleifenart mit dem lustigen Namen »fußgesteu-erte3 Schleifen«. Sie wird folgendermaßen verwendet:

1: //Beispielprogramme/Sprache_Java/Ex56

2:

3: package language;

4:

5: class DoLoopDemo {

6:

7:

public static void main(String[] arguments) {

8:

9:

byte lange, weile;

10:

lange = 1; // Nicht lange

11:

weile = 1; // Wie lange?

12:

do {

13:

lange++;

14:

System.out.println("Kurz");

15:

} while (lange < weile);

16:

System.out.print("Kurzwhile");

17:

}

18: }

Listing 4.66 Eine kurze Do-Schleife

Dieser Schleifentyp prüft nicht vor dem ersten Durchlauf, ob der Wert des Ausdrucks true oder false ist. Obwohl im Schleifenfuß ein falscher Ausdruck entsteht, kommt es trotzdem zu einem Durchlauf.

Abbildung 4.17 Aufbau der Do-Schleife

Einfache For-Schleife

Die For-Schleife gilt als die schnellste Schleifenart. In ihrem Kopf werden sämt-liche Ablaufbedingungen festgelegt. Der erste Ausdruck bestimmt den Anfangswert, der zweite die Abbruchbedingung, und der dritte ist eine Anweisung zur Steuerung der Abbruchbedingung.

3 Ich hoffe, Programme mit diesem Schleifentyp sind trotzdem kopfgesteuert.

151

4

Sprache Java

1: //Beispielprogramme/Sprache_Java/Ex57

2:

3: package language;

4:

5: class SimpleForLoopDemo {

6:

7:

static String[] day = { "Montag", "Dienstag",

8:

"Mittwoch", "Donnerstag",

9:

"Freitag", "Samstag",

10:

"Sonntag" };

11:

12:

public static void main(String[] arguments) {

13:

System.out.println("Die Tage einer Woche:");

14:

for (int dayCounter = 0;

15:

dayCounter < day.length;

16:

dayCounter++)

17:

System.out.println(day[dayCounter]);

18:

}

19: }

Listing 4.67 Eine einfache For-Schleife

Das Beispiel gibt nacheinander die Tage der Woche aus, die in einem String-Array festgelegt wurden. Da die Nummerierung eines Arrays immer bei null beginnt, startet die Schleife auch damit. Die Schleife endet, wenn das Ende des Arrays erreicht wurde. Das stellt die Schleife über die Methode day.length fest. Solange dieser Wert nicht überschritten wird, gibt die Schleife die Wochentage aus (Zeile 17).

Abbildung 4.18 Aufbau der einfachen For-Schleife

Erweiterte For-Schleife

Manchem Java-Entwickler war die Programmierung einer For-Schleife in bestimmten Fällen zu umständlich. Das gilt vor allen dann, wenn Felder abgegrast werden sollen. Aus diesem Grund gibt es seit Java 5.0 (JDK 1.5) die erweiterte For-Schleife, die Sie schon bei den Aufzählungstypen kennengelernt haben. An 152

Ausdrücke

4.10

dieser Stelle möchte ich das Beispiel nochmals aus der Perspektive der Schleife beleuchten.

1: //Beispielprogramme/Sprache_Java/Ex58

2:

3: package language;

4:

5: public class EnhancedForLoopDemo {

6:

7:

private enum DaysOfTheWeek {

8:

Montag, Dienstag, Mittwoch,

9:

Donnerstag, Freitag, Samstag, Sonntag

10:

}

11:

12:

public static void main(String[] args) {

13:

System.out.println("Die Tage einer Woche:");

14:

for (DaysOfTheWeek day :

15:

DaysOfTheWeek.values()) {

16:

System.out.println(day);

17:

}

18:

}//main()

19: }//EnhancedForLoopDemo

Listing 4.68 Eine erweiterte For-Schleife

Die erweiterte Form der Schleife benötigt keinen Index mehr. Diese Schleifenart besteht nur aus Typ, Bezeichner und Feld. Übersetzt lautet die Schleife aus Listing 4.68: »Gib für alle Tage der Woche innerhalb der Liste DaysOfWeek ihren Namen aus.«

Abbildung 4.19 Aufbau der erweiterten For-Schleife

Als abschließende Bemerkung zu diesem Abschnitt ist wichtig, dass die For-Schleife wie alle Schleifen mit break unterbrochen und mit continue wieder fortgesetzt werden kann.

153

4

Sprache Java

4.11

Module

Um größere Softwaresysteme überschaubar zu halten, gibt es bei den verschiedenen Programmiersprachen Modulkonzepte. Ein Modul nennt sich in Java Package.

Es »verpackt« eine oder mehrere Java-Klassen.

4.11.1

Klassenimport

Dynamische Importe

Diese Packages (Pakete) sind Gültigkeitsbereiche für Klassen, die sich in ihnen befinden (Kapitel 7, »Gesetzmäßigkeiten«, «Abschnitt 7.2, »Sichtbarkeit«). Auch öffentliche Klassen sind so lange für andere Module unbekannt, bis sie über eine Importanweisung übernommen werden.

Abbildung 4.20 Die Klasse »Child« hat zwei Bedeutungen.

Ein Beispiel dazu: Stellen Sie sich eine Familie vor, die aus einer Mutter und einem Vater besteht, die in Trennung leben. In einen »Haus«, dem Package mother, lebt die Tochter, in dem anderen Package father der Sohn. Beide gehören zur Klasse Child.

Wie Sie an Abbildung 4.20 erkennen können, ist die Klasse Child zweimal vorhanden. Im linken Package mother hat sie die Bedeutung eines Kindes mit starken Beziehungen zur Mutter, im rechten Package father hingegen den Status eines Kindes mit schwachen Beziehungen zur Mutter.

In Listing 4.69 erkennen Sie in Zeile 5 eine Importanweisung. Durch diese Anweisung kann die Klasse Child von der Klasse Mother erben (Child extends Mother).

Dazu muss das Package mit dem vollständigen Namen angegeben werden.

1: //Beispielprogramme/Sprache_Java/Ex59

2:

3: package language.father;

4:

5: import language.mother.Mother;

6:

7: public class Child extends Mother {

154

Module

4.11

8:

9:

public String getMothersTime() {

10:

return super.getProtectedTime();

11:

}

12:

13: }

Listing 4.69 Die Klasse »Child« ist Teil des Packages »father«.

Der Import von Klassen kann entweder einzeln für jede Klasse eines Packages ausgeführt werden oder für ein ganzes Package. Im letzteren Fall verwendet man eine Wildcard (Abbildung 4.21). Es hat einige Vorteile, jede Klasse einzeln zu importieren. Dadurch kann der Programmierer leichter nachvollziehen, welche Klasse verwendet wurde.

Abbildung 4.21 Aufbau der konventionellen Importanweisung

Statische Importe

Bei den konventionellen Importanweisungen muss der Klassenbezeichner auch dann immer bei der Verwendung einer Methode vorangestellt werden, wenn

diese statisch ist. Will man zum Beispiel mathematische Funktionen wie die Wurzeloperation anwenden, stört dies etwas, wie folgendes Beispiel zeigt: 1: //Beispielprogramme/Sprache_Java/Ex60

2:

3: package language;

4:

5: import java.lang.Math;

6:

7: public class ConventionalImportDemo {

8:

9:

public static void main(String[] arguments) {

10:

11:

double radicant = 2004;

12:

double result = Math.sqrt(radicant);

13:

System.out.println("Die Quadratwurzel aus " +

14:

radicant + " ist " + result);

15:

}

155

4

Sprache Java

16: }

Listing 4.70 Der konventionelle Import einer Klasse

Der Grund für diese Schreibweise ist klar: Java gestattet nur die Definition von Methoden, die an eine Klasse gebunden sind. Methoden können nicht losgelöst von einer Klasse existieren. Und da es keine globalen Methoden gibt, muss auf sie immer in Verbindung mit der Klasse zugegriffen werden.

Abbildung 4.22 Aufbau eines statischen Imports

Das hat auch weiter Gültigkeit, nur dass sich die Schreibweise seit Java 5.0 durch statische Importe vereinfacht hat. Jetzt lassen sich auch Methoden einzeln oder über Wildcards statisch importieren.

1: //Beispielprogramme/Sprache_Java/Ex61

2:

3: package

language;

4:

5: import static java.lang.Math.sqrt;

6:

7: public class StaticImportDemo {

8:

9:

public static void main(String[] arguments) {

10:

11:

double radicant = 2004;

12:

double result = sqrt(radicant);

13:

System.out.println("Die Quadratwurzel aus " +

14:

radicant + " ist " + result);

15:

}

16: }

Listing 4.71 Der statische Import einer Klasse

Die Schreibweise führt dazu, dass die Methode ohne die dazu gehörende Klasse aufgerufen werden kann.

156

Fehlerbehandlung

4.12

4.11.2

Namensräume

Java stört die doppelte Definition von Klassen nicht, solange sich jede Klasse gleichen Namens in einem anderen Paket befindet. Daher nennt man ein Paket in verschiedenen Programmiersprachen allgemein »Namensraum«. Er schränkt die Sichtbarkeit einer Klasse für andere Klassen ein (Kapitel 7, »Gesetzmäßigkeiten«, Abschnitt 7.2, »Sichtbarkeit«).

1: //Beispielprogramme/Sprache_Java/Ex62

2:

3: package language.father;

4:

5: import language.mother.Mother;

6:

7: public class Child extends Mother {

8:

9:

public String getMothersTime() {

10:

return super.getProtectedTime();

11:

}

12: }

Listing 4.72 Die Klasse »Mother« wird importiert und erweitert.

4.12

Fehlerbehandlung

Was passiert, wenn innerhalb von einem Java-Programm ein Fehler auftritt? Wie kann man diesen Fehler weiter behandeln? In klassischen Programmiersprachen behilft man sich mit numerischen Variablen, in der objektorientierten Sprache Java definiert man Klassen und hat vier zusätzliche Schlüsselwörter:

1. try

2. catch

3. throw

4. throws

Die nachfolgende Klasse ThrowDemo zeigt, wie zwei Exceptions geworfen werden, wenn sich der Zustand state außerhalb des gültigen Rahmens bewegt. Ist der Zustand der Wert *, ist das ein Zeichen, dass das System außer Kontrolle ist. Ist der Zustand alles andere, wird ein unbekannter Zustand eskaliert.

1: //Beispielprogramme/Sprache_Java/Ex63

2:

3: package language;

157

4

Sprache Java

4:

5: public class ThrowDemo {

6:

7:

public void displayState(int checked) throws

8:

UnknownStateException,

9:

SystemOutOfControlException {

10:

String state;

11:

switch (checked) {

12:

case 0:

13:

state = "-";

14:

System.out.println("Status: " + state);

15:

break;

16:

case 1:

17:

state = "+";

18:

System.out.println("Status: " + state);

19:

break;

20:

case 2:

21:

state = "*";

22:

throw new SystemOutOfControlException(state);

23:

default:

24:

state = "?";

25:

throw new UnknownStateException(state);

26:

}//switch()

27:

}//check()

28: }//ThrowDemo

Listing 4.73 Diese Klasse kann zwei Exceptions auslösen.

Die Klasse verwendet zwei einfache Exceptions. Exceptions sind spezialisierte Java-Klassen, die nur dazu dienen, Fehlerzustände als Objekt zu verschicken. Die erste unserer beiden Klassen heißt SystemOutOfControlException.

1: //Beispielprogramme/Sprache_Java/Ex63

2:

3: package language;

4:

5: public class SystemOutOfControlException extends Exception {

6:

7:

private static final long serialVersionUID = 1L;

8:

9:

public SystemOutOfControlException(String message) {

10:

super(message);

11:

}

12: }

Listing 4.74 Diese Klasse definiert eine Exception für eine Systemausnahme.

158

Fehlerbehandlung

4.12

Die zweite Klasse wird dann benötigt, wenn ein unbekannter Systemzustand eingetreten ist.

1: package language;

2:

3: public class UnknownStateException extends Exception {

4:

5:

private static final long serialVersionUID = 1L;

6:

7:

public UnknownStateException(String message) {

8:

super(message);

9:

}

10: }

Listing 4.75 Diese Klasse definiert eine Exception für einen unbekannten Zustand.

Die drei Klassen werden in einem einfachen Programm verwendet, das einen so genannten einfachen Try-Catch-Block enthält:

1: //Beispielprogramme/Sprache_Java/Ex63

2:

3: package language;

4:

5: public class TrySingleCatchDemo {

6:

7:

public static void main(String[] args) {

8:

9:

ThrowDemo throwDemo = new ThrowDemo();

10:

11:

try {

12:

for (int checked = 0;

13:

checked <= 4;

14:

checked++) {

15:

throwDemo.displayState(checked);

16:

}

17:

} catch (SystemOutOfControlException e) {

18:

System.out.println("State" +

19:

e.toString());

20:

} catch (UnknownStateException e) {

21:

System.out.println("State" +

22:

e.toString());

23:

};

24:

}

25: }

Listing 4.76 Diese Klasse demonstriert, wie Exceptions gefangen werden.

159

4

Sprache Java

Das Programm verändert in einer Schleife den Wert von state und übermittelt in an die Methode displayState(). Kommt es hierbei zu einer Bereichsüberschreitung, wirft das Programm eine passende Exception.

Eine der Neuerungen von Java ist es, dass Exceptions mehrfach gefangen werden können. Auch hierzu ein Beispiel, das zeigt, wie die Exceptions ausgelöst und gefangen werden können.

1: //Beispielprogramme/Sprache_Java/Ex63

2:

3: package language;

4:

5: public class TryMultiCatchDemo {

6:

7:

public static void main(String[] args) {

8:

9:

ThrowDemo throwDemo = new ThrowDemo();

10:

11:

try {

12:

for (int checked = 0;

13:

checked <= 4;

14:

checked++) {

15:

throwDemo.displayState(checked);

16:

}

17:

} catch (SystemOutOfControlException |

18:

UnknownStateException e) {

19:

System.out.println("State" +

20:

e.toString());

21:

};

22:

}

23: }

Listing 4.77 Ein Beispiel für ein Multi-Catch

Das Programm verändert wieder in einer Schleife den Wert von state und übermittelt ihn an die Methode displayState(). Kommt es wieder zu einer Bereichs-

überschreitung, wirft das Programm eine passende Exception. Es kann aber im Gegensatz zum Vorgänger gleich mehrere Exceptions werfen.

4.13

Dokumentation

Kommentarzeichen dienen dazu, Teile des Quelltextes zu dokumentieren. Java verfügt sogar über drei verschiedene Kommentararten:

160

Dokumentation

4.13

1. Zeilenbezogene Kommentare

2. Abschnittsbezogene Kommentare

3. Dokumentationskommentare

4.13.1

Zeilenbezogene Kommentare

Dieser Kommentartyp wird durch doppelte Schrägstriche eingeleitet, die den Rest der Zeile als Kommentar markieren. Sie beziehen sich also jeweils nur auf eine einzelne Zeile (Listing 4.78).

✄

// Zeilenbezogener Kommentar vor einer Anweisung

Anweisungen

// Zeilenbezogener Kommentar hinter einer Anweisung

✄

Listing 4.78 Zeilenbezogene Kommentare

4.13.2 Abschnittsbezogene Kommentare

Im Gegensatz dazu lassen sich mit abschnittsbezogenen Kommentarzeichen weite Teile für den Compiler ausblenden und als Kommentar markieren. Sie werden wie in der Programmiersprache C mit einem Schrägstrich, gefolgt von einem Sternchen (Asterisk), begonnen und enden in der umgekehrten Reihenfolge (Listing 4.79).

1: /* Dieser Kommentar

2:

erstreckt

3:

sich ueber

4:

mehrere Zeilen */

Listing 4.79 Ein abschnittsbezogener Kommentar

Der abschnittsbezogene Kommentar kann aber auch dazu verwendet werden,

mitten im Quelltext Kommentare einzufügen.

1: /* Dieser Kommentar bezieht sich auf einen Abschnitt */

2: Anweisungen

Listing 4.80 Ein weiterer abschnittsbezogener Kommentar

4.13.3 Dokumentationskommentare

Dieser interessante Kommentartyp dient dazu, aus Kommentaren, die im Quelltext eingefügt werden, HTML-Dokumente zu erzeugen. Auch diese Kommentare 161

4

Sprache Java

können sich über mehrere Zeilen erstrecken, enden wie die abschnittsbezogenen Kommentare, beginnen aber mit einem zusätzlichen Sternchen (Listing 4.81).

1: /**

2:

* Projekt: Transfer

3:

* Beschreibung: Backup-Programm

4:

* @Copyright (c) 2003 - 2011 by

5:

* @author Bernhard Steppan

6:

* @version 1.1

7: */

Listing 4.81 Beispiel für einen Dokumentationskommentar

Es gibt Java-Werkzeuge, die aus den Dokumentationskommentaren vollautomatisch eine Java-Dokumentation erzeugen können. Einzelheiten finden Sie in Kapitel 5, »Entwicklungsprozesse«, Abschnitt 5.3.4, »Dokumentieren«, und in Kapitel 22, »Werkzeuge«.

4.14

Zusammenfassung

Die Sprache Java verfügt über einfache Datentypen, erweiterte Datentypen und benutzerdefinierte Datentypen. Die acht einfachen Datentypen sind prozedurale Restbestände aus der verwandten Programmiersprache C. Sie sind keine Klassen, sondern nur Datenbehälter ohne Methoden.

Im Gegensatz dazu sind Arrays vordefinierte Klassen. Arrays können ohne feste Länge deklariert werden, müssen aber zur Erzeugung eine feste Länge besitzen.

Sie sind also halbdynamisch.

Es gibt vier Arten von benutzerdefinierten Datentypen in Java: konkrete und abstrakte Klassen, Interfaces sowie seit Java 5 generische Klassen (Generics). Während man von konkreten Klassen mit Hilfe des New-Operators Objekte erzeugen kann, lassen sich abstrakte Klassen und Interfaces nur erweitern.

Ausdrücke erlauben es, Variablen zu deklarieren, Werte zuzuweisen und den Fluss des Programms zu steuern. Java besitzt darüber hinaus noch drei Schleifenarten, die dazu dienen, wiederkehrende Abläufe zu verpacken.

162

Aufgaben

4.15

4.15

Aufgaben

4.15.1

Fragen

1. Wann ist die Programmiersprache Java veröffentlicht worden?

2. Über welche Sprachelemente verfügt Java?

3. Wozu dient eine Deklaration?

4. Wie ist eine Deklaration aufgebaut?

5. Was sind einfache Datentypen?

6. Wie unterscheiden sie sich von Klassen?

7. Wo liegen ihre Vorteile?

8. Was ist eine streng typisierte Sprache?

9. Warum sind Java-Arrays halbdynamisch?

10. Was ist ein benutzerdefinierter Datentyp?

11. Wozu benötigt man benutzerdefinierte Datentypen?

12. Welche Arten von Klassen gibt es in Java?

13. Wie kann man verhindern, dass von Klassen Objekte erzeugt werden?

14. Wozu dient ein Konstruktor?

15. Wie unterscheidet er sich von einer normalen Methode?

16. Wieso benötigt man Akzessoren und Mutatoren?

17. Welche Bedeutung hat der Cast-Operator?

18. Worin besteht der Unterschied zwischen einer mathematischen Gleichung und einer Programmzuweisung?

19. Was sind statische Importe, und wozu verwendet man sie?

4.15.2 Übungen

1. Schreiben Sie auf Basis des Listings 4.21 eine Klasse namens Circle.

2. Ergänzen Sie Circle um eine Objektvariable radius.

3. Ergänzen Sie Circle um eine Konstante Pi.

163

4

Sprache Java

4. Ergänzen Sie folgende Anweisungen um eine komplette Klasse mit einer Methode main(), und berechnen Sie, was das Programm ausgeben wird.

i = 10;

j = 10;

j = i++;

System.out.println(i);

i = 10;

j = 10;

j = ++i;

System.out.println(i);

5. Berechnen Sie, was die folgende Anweisung ausgeben wird:

boolean i = true;

boolean j = false;

System.out.println(i || j);

6. Berechnen Sie, was die folgende Anweisung ausgeben wird:

static final int i = 10;

i++;

System.out.println(i);

Die Lösungen zu den Aufgaben finden Sie in Kapitel 19 ab Seite 511.

164

»Man sollte die Dinge so nehmen, wie sie kommen. Aber man sollte dafür

sorgen, dass die Dinge so kommen, wie man sie nehmen möchte.«

(Curt Goetz)

5

Entwicklungsprozesse

5.1

Einleitung

Dieses Kapitel beleuchtet die Prozesse, die bei der Entwicklung eines Java-Programms ablaufen, angefangen bei der Planung eines neuen Programms über die Konstruktion bis zur Auslieferung der fertigen Software.

5.1.1

Phasen

Entwicklungsprozesse sind immer wiederkehrende Arbeitsabläufe bei der Softwareentwicklung. Um einen besseren Überblick über die verschiedenen Arbeitsabläufe zu bekommen, teilt man den Gesamtprozess in zusammengehörende

Teilprozesse ein.

Manche Softwareentwickler zerlegen den Gesamtprozess in drei, andere in vier Abschnitte. Um den Rahmen dieses Buchs nicht zu sprengen, möchte ich mich auf einen dreiteiligen Ablauf (Abbildung 5.1) beschränken, der für die meisten Projekte ausreichend genau ist. Der Gesamtprozess besteht dann aus folgenden Teilen (Phasen):

1. Planungsphase

2. Konstruktionsphase

3. Betriebsphase

Abbildung 5.1 Die Phasen der Softwareentwicklung

165

5

Entwicklungsprozesse

In der Planungsphase überlegen die Beteiligten, was entwickelt werden soll, in der Konstruktionsphase entwickeln Programmierer das Softwareprodukt, und in der Betriebsphase werden Teile des Produkts oder das fertige Produkt installiert und später gewartet. Der Vorgang scheint also völlig geradlinig zu verlaufen; das ist allerdings ein Trugschluss.

5.1.2

Aktivitäten

In der Praxis laufen die Aktivitäten bei der Softwareentwicklung keineswegs so schön linear und geordnet ab. Dabei ist es völlig egal, ob Sie allein Software entwickeln oder im Team. Wie verschachtelt die einzelnen Prozesse ablaufen, wird deutlich, wenn man die einzelnen Phasen mit der Lupe betrachtet.

In jeder Phase muss eine Reihe ganz unterschiedlicher Prozesse parallel durchgeführt werden. Während ein Softwareentwickler neue Anforderungen vom Kunden erhält (Anforderungsaufnahme), analysiert ein anderer in der Zwischenzeit die schon bestehenden Anforderungen (Analyse). Ein Softwaredesigner bringt parallel dazu die bereits analysierten Teile in eine sinnvolle Form (Design) und entwirft hierbei ein Designmodell.

Ein anderer Teil des Teams ist währenddessen schon dabei, einen Prototyp (Seite 189) mit Hilfe eines Grobdesigns fertigzustellen (Implementierung). Abschließend prüft ein weiteres Teammitglied, ob der Prototyp wunschgemäß funktioniert (

Test). Ist der Test nach Ansicht des Teams erfolgreich verlaufen, verpackt ein Teammitglied den Prototyp und liefert ihn an den Kunden zur fachlichen Qualitätssicherung.

Der Gesamtablauf ist in Abbildung 5.2 dargestellt. Er verläuft nicht linear, sondern eher kreisförmig, denn alle Aktivitäten müssen x-mal durchlaufen werden, bis das Gesamtprodukt fertiggestellt ist. Nach meinen Erfahrungen bekommt ein Entwickler niemals vollständig mitgeteilt, was der Auftraggeber oder sein Chef von ihm verlangt. Stattdessen muss er immer wieder von Neuem Anforderungen aufnehmen, analysieren, designen, implementieren und testen. Diese Prozesse dauern so lange, bis beide Seiten zufrieden sind und das Projekt beendet ist oder bis sie so unzufrieden sind, dass das Projekt abgebrochen wird.

Die Phasen Planung, Konstruktion und Betrieb fassen bestimmte Aktivitäten zusammen. Beispielsweise ist ein Team in der Planungsphase hauptsächlich mit der Planung beschäftigt (daher der Name der Phase). Das bedeutet, dass der Schwerpunkt dieser Phase auf der Anforderungsaufnahme liegt. Es kann aber sein, dass in der Planungsphase auch schon Java-Code geschrieben wird, um beispielsweise einen Prototyp fertigzustellen.

166

Einleitung

5.1

Abbildung 5.2 Der Ablauf der Aktivitäten bei der Softwareentwicklung Genauso verhält es sich mit der Konstruktionsphase. Hier liegt der Schwerpunkt darauf, die Anforderungen zu analysieren, ein Modell zu entwerfen und es umzusetzen.

Es kann aber auch sein, dass neue Anforderungen entdeckt werden. Dann muss wieder geschätzt werden, wie lange es dauert, diese Anforderungen einzuarbei-ten. Der Projektleiter hat dazu den Projekt- und Kostenplan anzupassen – der Ablauf beginnt von Neuem.

5.1.3

Werkzeuge

Ein guter Entwickler muss nicht nur den komplizierten Gesamtprozess kennen und beherrschen. Er muss auch noch Entwicklungswerkzeuge auswählen und deren Bedienung erlernen. Von der Auswahl und Integration geeigneter Werkzeuge ist die Produktivität des Entwicklers abhängig. Diese Erkenntnis ist ein Grund für den weit verbreiteten Werkzeugfetischismus. Ebenso falsch wie Werkzeugfetischismus wäre es aber, der Auswahl der Werkzeuge eine untergeordnete Rolle zuzuordnen. Neben einem schlanken, papierarmen Entwicklungsprozess und gut ausgebildeten Entwicklern führt eine geschickte Wahl der Werkzeuge ohne Zweifel zu weniger Stress und spürbar geringeren Produktionskosten.

Die Java-Werkzeuge und ihre Auswahl sollen sich jetzt aber nicht in den Mittelpunkt dieses Kapitels drängen. Dafür ist Kapitel 22, »Werkzeuge«, reserviert, das Sie im Anhang dieses Buchs finden. Um dieses vorliegende Kapitel nachvollziehen zu können, reicht es vorerst vollkommen aus, wenn Sie das am einfachsten zu erlernende Java-Entwicklungswerkzeug verwenden, das Java Development Kit (JDK) von Sun beziehungsweise Oracle. Um das Kapitel nachvollziehen zu können, sollten Sie es bereits installiert haben oder jetzt installieren. Eine Beschreibung und Installationsanleitung finden Sie in Abschnitt 22.4.3 »Java Development Kit«.

167

5

Entwicklungsprozesse

5.2

Planungsphase

In der Planungsphase entsteht ein Vertrag zwischen dem Softwarehersteller und dem Auftraggeber (Kunden oder Endanwender). In diesem Vertrag steht unter anderem, was hergestellt werden soll, wie teuer das ganze Projekt werden darf und welche Risiken das Projekt birgt. Ansprechpartner für den Softwareentwickler ist zum Beispiel ein Endanwender, ein Geschäftsführer, der Projekt- oder Teamleiter, der Chefdesigner oder Chefarchitekt. Von einem dieser Ansprechpartner erfährt der Softwareentwickler, welche Aufgaben er übernehmen soll.

5.2.1

Missverständnisse

Nun haben die Kunden und Chefs zuweilen eine sehr verschwommene Vorstellung davon, was der Gegenstand des Auftrags ist. Es finden zwar viele Gespräche zwischen Auftraggeber und Auftragnehmer statt. Sich aber auf ein Ziel zu einigen ist mühsam, denn in den Gesprächen prallen sehr unterschiedliches technisches und fachliches Know-how sowie sehr unterschiedliche Vorstellungen über das Projektziel und seinen Verlauf aufeinander. Eine Annäherung der Vorstellungen findet nur langsam statt.

Die Planungsphase verursacht einerseits einen Großteil der Schwierigkeiten beim Entwickeln der Software, weil Endanwender und Softwareentwickler nicht die gleiche Sprache sprechen. Andererseits legt sie den Grundstein für ein erfolgreiches Softwareprojekt. Deshalb ist es wichtig, genau zu ermitteln, welche Wünsche der Auftraggeber hat, damit das Risiko vermindert wird, etwas Falsches zu entwickeln. Bestimmte Techniken helfen hierbei.

5.2.2

Anforderungen aufnehmen

Folgendes Beispiel: Ein Softwarehaus soll einen Diagrammeditor für eine andere Firma entwickeln. Es ist noch nicht klar, über welche Merkmale der Editor verfü-

gen soll. In Gesprächen mit dem Kunden wird möglichst genau ermittelt, welche Wünsche er hat. Normalerweise schreibt der Auftragnehmer diese Wünsche in ein Dokument, das sich Lastenheft nennt.

Das Lastenheft enthält möglichst alle Anforderungen des Auftraggebers an die Lieferungen und Leistungen eines Auftragnehmers. In diesem Dokument sind die Anforderungen aus Anwendersicht einschließlich aller Randbedingungen beschrieben. In der Praxis ist das Lastenheft oftmals nur eine grobe Richtlinie, denn viele Endanwender sind nicht in der Lage, genau zu sagen, was sie benötigen.

168

Konstruktionsphase

5.3

5.3

Konstruktionsphase

5.3.1

Objektorientierte Analyse

Aus dem Lastenheft entwickeln Softwarearchitekten in der Konstruktionsphase zunächst einen Bauplan, das so genannte fachliche Analysemodell (fachliche Architektur), und eine genauere Beschreibung des Lastenhefts. Beides sollte dem Kunden (zum Beispiel dem Endanwender) vorgelegt, beides sollte erläutert und besprochen werden, damit geklärt wird, ob das Softwarehaus den Auftrag richtig verstanden hat.

Abbildung 5.3 Zusammenhang zwischen den Architekturmodellen

In diesem Abschnitt ist die Lücke zwischen den Anforderungen des Kunden und dem Verständnis des Softwareentwicklers etwas kleiner geworden. Vielleicht kann am Anfang der Konstruktionsphase schon ein Vertrag geschlossen werden, wobei das Lastenheft ein wichtiger Vertragsbestandteil ist.

5.3.2

Objektorientiertes Design

Die fachlichen Anforderungen an den Diagrammeditor müssen im nächsten Abschnitt der Entwicklung von der fachlichen in eine technische Richtung verfeinert werden. Der Bauplan eines Java-Programms, der nun entsteht, ist das so genannte objektorientierte Designmodell (technische Architektur). Das Designmodell enthält bei einem Java-Programm unter anderem Klassenmodelle. Jede der in diesem 169

5

Entwicklungsprozesse

Modell aufgeführten Java-Klassen muss im nächsten Abschnitt des Prozessablaufs, der Implementierung, kodiert werden.

Klassenmodell

implementieren

package development;

public class Rectangle{}

Implementierung

(Quelltext)

Abbildung 5.4 Vom Klassenmodell zur Implementierung

In diesem Abschnitt entwickelt der Softwaredesigner eine sinnvolle technische Form des künftigen Diagrammeditors. Beides fließt in ein weiteres Dokument ein, das Pflichtenheft genannt wird. Aus dem Pflichtenheft kann man nun konkret ableiten, was programmiert werden soll.

5.3.3

Implementierung in Java

Nun sind Sie an der Reihe. Sie werden von einem Teammitglied beauftragt, für den ersten Prototyp des Diagrammeditors eine Klasse für Rechtecke zu entwickeln. Die Klasse soll über eine Schnittstelle verfügen, mit deren Hilfe man Länge und Breite des Rechtecks verändern sowie die Gesamtfläche ermitteln kann.

Sie sehen: Die Kommunikation des Teams basiert auf Schnittstellen von Klassen beziehungsweise Objekten. Die Schnittstelle eines Objekts ist der Punkt, an dem sie mit anderen Objekten kommuniziert (Abschnitt 3.12, »Kapselung«). Aus diesem Grund hat der Chefdesigner ermittelt, welche Klassen für den Diagrammeditor benötigt werden, und danach die Schnittstellen festgelegt.

Wenn er das Modell mit einem speziellen Modellierungswerkzeug entworfen hat, ist er auch in der Lage, ein Klassenmodell als Vorlage für die Implementierung zu liefern. Ein solches Klassenmodell enthält bei einem Projekt wie einem Diagrammeditor schnell sehr viele Klassen. Um das Beispiel möglichst schlank zu 170

Konstruktionsphase

5.3

halten, habe ich nur einen Ausschnitt eines solchen Modells, die Klasse Rectangle, herausgegriffen (Abbildung 5.5).

Abbildung 5.5 Ausschnitt aus dem Klassenmodell des Diagrammeditors Bei der Implementierung setzen Sie als Java-Entwickler das Design der Software mit Hilfe der Programmiersprache Java um (engl. to implement: einbauen). Die Klassenhüllen und deren Beziehungen, die der Chefdesigner entworfen hat, füllen Sie mit Leben.

Editieren

Wie Sie aus Kapitel 4, »Sprache Java«, wissen, schreibt der Java-Entwickler sein Programm in Form eines Textes. Das spezielle Werkzeug, das er dazu verwendet, nennt sich Texteditor (Abschnitt 22.3.2 »Texteditor«). Das Dokument, das dabei entsteht, ist der Quelltext. Den Quelltext bezeichnet man auch als Java-Sourcecode oder einfach als Java-Code oder noch einfacher nur als Code. Er ist der geistige Ursprung, die Quelle des Programms, daher der Name Quelltext.

Bitte legen Sie nun ein Projektverzeichnis namens projekte mit einem Unterverzeichnis namens development an. Die Struktur auf der Festplatte muss exakt so aussehen wie in Abbildung 5.6.

projekte

Projektverzeichnis

development

Unterverzeichnis

Rectangle.java

Quelltext

Abbildung 5.6 Das Projektverzeichnis mit zwei Unterverzeichnissen Starten Sie danach einen Texteditor Ihrer Wahl, und geben Sie den in Listing 5.1 abgedruckten Quelltext ein. Speichern Sie anschließend die Textdatei im Unterverzeichnis development als Rectangle.java ab. Achten Sie darauf, dass Sie hierbei keine Formatierungen verwenden. Der Text muss unbedingt entweder als 171

5

Entwicklungsprozesse

reiner ASCII-Text oder als Unicode vorliegen. Wenn das erfolgt ist, befindet sich eine Textdatei namens Rectangle.java im Verzeichnis development.

1: //Beispielprogramme/Entwicklungsprozesse/Ex01

2:

3: package development;

4:

5: public class Rectangle {

6:

7:

private int heigth = 1; // Fehler

8:

private int width = 1;

9:

public Rectangle () {}

10:

11:

public Rectangle (int height, int width) {

12:

this.height = height;

13:

this.width = width;

14:

}

15:

16:

public int getHeight() {

17:

return height;

18:

}

19:

20:

public int getWidth() {

21:

return width;

22:

}

23:

24:

public int getArea() {

25:

return height * width;

26:

}

27:

28:

public void setHeight(int height) {

29:

this.height = height;

30:

}

31:

32:

public void setWidth(int width) {

33:

this.width = width;

34:

}

35:

36:

public void setDimension(int height, int width) {

37:

this.height = height;

38:

this.width = width;

39:

}

40:

41: }

Listing 5.1 Die Java-Klasse »Rectangle« als Textdatei »Rectangle.java«

172

Konstruktionsphase

5.3

Übersetzen

Der nächste Vorgang ist, die Datei Rectangle.java mit einem Java-Compiler zu übersetzen (kompilieren). Werfen Sie bitte einen Blick auf Abbildung 5.7. Der Quelltext muss beim Vorgang des Übersetzens in so genannten Bytecode verwandelt werden. Bytecode ist eine spezielle Form des Binärcodes. Er ist kein Maschinencode (Kapitel 2, Abschnitt 2.2.1 »Binärcode«) für einen speziellen Prozessor und enthält auch keine Aufrufe von Betriebssystemfunktionen.

Bytecode ist ein Zwischenformat, auf den Abschnitt 6.2 ausführlich eingeht. An dieser Stelle ist nur wichtig, dass der Compiler für jede Klasse, die er übersetzt, eine Datei des gleichen Titels, aber mit der Endung class erzeugt. Aus Rectangle.java wird demnach also Rectangle.class (Abbildung 5.7).

package development;

Quelltext Rectangle.java

public class Rectangle

{

private int height;

mit

private int width;

Texteditor

...)

kodieren

Quelltext

mit

Java-Compiler javac

übersetzen

iconst 1

Bytecode

istore 1

iconst 5

mit

...

Java-Interpreter java

return

ausführen

Abbildung 5.7 Vom Quelltext zum Bytecode

Öffnen Sie nun ein Terminal (Unix) oder die DOS-Eingabeaufforderung (Windows), und wechseln Sie in das Verzeichnis projekte/development. Übersetzen Sie anschließend Rectangle.java mit dem Java-Compiler namens javac. Geben Sie dazu einfach folgendes Kommando ein:

javac Rectangle.java

Der Compiler ist nicht besonders gesprächig. Wenn Sie möchten, dass er mitteilt, woran er gerade arbeitet, müssen Sie ihm dies auf diese Weise mitteilen: javac -verbose Rectangle.java

Das Kommando verbose (engl. für wortreich) bewirkt, dass der Compiler seine einsilbige Art ablegt und genau beschreibt, welche Schritte er unternimmt, bis er 173

5

Entwicklungsprozesse

– im Erfolgsfall – den Bytecode vollständig erzeugt hat. Kann der Compiler jedoch nicht gestartet werden, ist in den meisten Fällen das JDK nicht korrekt installiert.

Dann erscheint folgende Fehlermeldung:

javac: Command not found.

Unter Windows sieht das etwa so aus:

C:\projekte\development>Der Befehl ist entweder falsch

geschrieben oder konnte nicht gefunden werden. Bitte

überprüfen Sie die Schreibweise und die Umgebungsvariable

"PATH".

Werfen Sie in diesem Fall bitte nochmals einen Blick auf die Installationsanwei-sung (Abschnitt 22.4.3, »Java Development Kit«), und testen Sie die Installation wie dort beschrieben. Wenn der Test fehlschlägt, prüfen Sie bitte, ob Sie das Java Development Kit (JDK) installiert haben oder vielleicht nur die Java-Laufzeitumgebung (JRE). Bitte beachten Sie, dass die Java-Laufzeitumgebung keinen Compiler enthält und deswegen in diesem Fall nicht verwendet werden kann.

Fehler bei der Übersetzung

Sollten andere Fehler aufgetreten sein, liegt es vielleicht daran, dass Sie sich beim Übertragen des Quelltextes vertippt haben. Dann erzeugt der Compiler eine mehr oder weniger verständliche Fehlermeldung. Das ist nicht tragisch. Die Suche nach Fehlern kostet einen Großteil der Zeit beim Einstieg in eine neue Programmiersprache. Und auch später verbringen viele Softwareentwickler sehr viel Zeit mit dem Testen ihres Programms.

Listing 5.2 zeigt beispielhaft eine Fehlermeldung des Compilers. Er beschwert sich in der Zeile 12, in der Zeile 17, in der Zeile 25, in der Zeile 29 und in der Zeile 37 mit »cannot resolve symbol«: Das bedeutet, dass er das Symbol (den Bezeichner) height nicht »auflösen« kann. Damit ist in diesem Fall gemeint, dass das Symbol height vermutlich nicht korrekt deklariert wurde.

Rectangle.java:12: cannot resolve symbol

symbol

: variable height

location: class development.Rectangle

this.height = height;

ˆ

Rectangle.java:17: cannot resolve symbol

symbol

: variable height

location: class development.Rectangle

return height;

ˆ

Rectangle.java:25: cannot resolve symbol

symbol

: variable height

174

Konstruktionsphase

5.3

location: class development.Rectangle

return height * width;

ˆ

Rectangle.java:29: cannot resolve symbol

symbol

: variable height

location: class development.Rectangle

this.height = height;

ˆ

Rectangle.java:37: cannot resolve symbol

symbol

: variable height

location: class development.Rectangle

this.height = height;

ˆ

5 errors

Listing 5.2 Fehlermeldung beim Übersetzen der Klasse »Rectangle«

Und tatsächlich löste ein einfacher Tippfehler in Zeile 7 diese Compilermeldung aus. An dieser Stelle stand private int heigth = 1. Die Variable wurde also fälschlicherweise als heigth deklariert – statt korrekt als height. Leider verfügt der Compiler nicht über künstliche Intelligenz oder etwas Eigeninitiative und erkennt den wahren Grund, einen Tippfehler, nicht. Stattdessen kennzeichnet er dummerwei-se alle anderen Stellen, an denen er den Bezeichner height findet, der ihm offenbar unbekannt ist.

Testprogramm

Wenn Sie den Fehler korrigiert haben und der Quelltext fehlerfrei kompiliert wurde, muss die Klasse fachlich und technisch getestet werden. Sie müssen beispielsweise überprüfen, ob korrekte Werte zurückgeliefert werden und ob keine Laufzeitfehler auftreten. Mit der Klasse Rectangle allein können Sie aber noch nichts anfangen. Diese Klasse bildet allein noch kein Programm, weil ihr eine Methode namens main() als Startpunkt fehlt. Eine Möglichkeit wäre jetzt, die Klasse einfach mit einer Startmethode auszustatten, wie ich das im Beispiel 4.1

des Kapitels 4 getan habe.

Viel besser ist es jedoch, zum Testen der Klasse Rectangle ein spezielles kleines Programm zu schreiben. Dieses Testprogramm verwendet zwar die Klasse Rectangle. Sie ist aber kein fester Bestandteil des Gesamtprojekts, an dem Sie als Teammitglied mitarbeiten. Das Testprogramm ist nur Ihr persönliches Hilfspro-gramm, von dem das Restteam nichts zu erfahren braucht – und vielleicht auch nichts wissen möchte.

Der große Vorteil des Verfahrens mit einem separaten Testprogramm ist, dass Sie die Klasse Rectangle nicht verändern müssen, um sie auszutesten oder an andere 175

5

Entwicklungsprozesse

Teammitglieder weiterzugeben. Sie verändern die Klasse nur dann, wenn sie den Test nicht besteht und geändert werden muss. Das kleine Testprogramm kommt Ihnen aus Kapitel 4, »Sprache Java«, sicher vertraut vor. Sie finden es in Listing 5.3.

1: //Beispielprogramme/Entwicklungsprozesse/Ex01

2:

3: package development;

4:

5: public class TestApp {

6:

7:

public static void main(String[] arguments) {

8:

Rectangle rect = new Rectangle(1, 5);

9:

System.out.println("Fl\u00e4che = " +

10:

rect.getArea() + " m\u00B2");

11:

}

12: }

Listing 5.3 Das Testprogramm »TestApp« für die Klasse »Rectangle«

TestApp.java:8: cannot resolve symbol

symbol

: class Rectangle

location: class development.TestApp

Rectangle rect = new Rectangle(1, 5);

ˆ

TestApp.java:8: cannot resolve symbol

symbol

: class Rectangle

location: class development.TestApp

Rectangle rect = new Rectangle(1, 5);

ˆ

2 errors

Listing 5.4 Fehlermeldung beim Übersetzen des Testprogramms

Übersetzen Sie das Programm nun ebenfalls mit folgender Anweisung:

javac TestApp.java

Leider verläuft die Übersetzung auch diesmal nicht reibungslos, aber aus einem anderen Grund. Der Compiler gibt erneut an, dass er einen Bezeichner nicht auflösen kann. Diesmal ist es der Bezeichner der Klasse Rectangle. Das Verhalten ist insofern seltsam, als sich die Klasse Rectangle sowohl in Form der Datei Rectangle.java als auch in Form von Rectangle.class im gleichen Verzeichnis befindet. Des Rätsels Lösung ist, dass der Compiler den korrekten Pfad zu den Klassen des Beispiels, den so genannten Classpath, benötigt.

176

Konstruktionsphase

5.3

Einstellen des Projekt-Klassenpfads

Der Classpath gehört zu den Dingen, über die man sowohl als Einsteiger als auch als erfahrener Java-Programmierer immer wieder stolpert. Der Klassenpfad bezeichnet die Stelle, an der sich auf der Festplatte eines Computers das Stammverzeichnis der Java-Klassen befindet.

Festplatte

projekte

development

Rectangle.java

Rectangle.class

Classpath Package-Pfad

Bytecode & Quelltexte

Suchpfad

Abbildung 5.8 Zusammenhang zwischen Klassenpfad und Packages

Der Klassenpfad ergibt mit dem Package-Pfad im Titel einer Klasse den Suchpfad für den Compiler und die Laufzeitumgebung (Abbildung 5.8). Der Suchpfad berechnet sich also wie folgt:

Suchpfad = Classpath + Package-Pfad

Wenn Sie einen Blick auf die Klasse Rectangle.java werfen, werden Sie an der zweiten Stelle des Programms auf folgende Package-Anweisung stoßen:

//Beispielprogramme/Entwicklungsprozesse/Ex01

✄

package development;

✄

Listing 5.5 Die Package-Anweisung

Diese Package-Anweisung bewirkt nicht nur, dass der Klasse Rectangle und der Klasse TestApp dasselbe Modul zugewiesen wird. Sie bewirkt auch, dass die Datei physikalisch auf das Verzeichnis development abgebildet wird. Das heißt, die Dateien müssen sich vom Stammverzeichnis ausgehend im Unterverzeichnis development des Projekts befinden. Nun wissen Sie auch, warum es am Anfang des Kapitels notwendig war, die Verzeichnisstruktur exakt so anzulegen wie geschildert.

177

5

Entwicklungsprozesse

Wenn Sie den Compiler in dem Unterverzeichnis development starten, interpretiert er dieses Verzeichnis als Stammverzeichnis (Abbildung 5.8). Es ist jedoch nicht das Stammverzeichnis, sondern das Ende des Package-Pfads und somit schon der gesamte Suchpfad. Der Compiler, der diese Information nicht besitzt, liest die Package-Anweisung development der Datei TestApp.java und reagiert darauf folgendermaßen:

Aufgrund der Anweisung addiert er zum aktuellen Suchpfad (Classpath + Package-Pfad) nochmals das Unterverzeichnis development. Er sucht also im Verzeichnis projekte/development/development nach einer Datei namens Rectangle.class

– völlig erfolglos, wie Sie wissen, denn der Pfad existiert nicht.

Wechseln Sie nun in der Shell (Terminal oder DOS-Eingabeaufforderung) in das Projektverzeichnis projekte (einmal cd ..), und geben Sie dort folgende Anweisung ein:

javac development/TestApp.java

Durch diese Anweisung sucht der Compiler eine Datei namens TestApp.java im Unterverzeichnis development, setzt den Suchpfad richtig zusammen und übersetzt die Klasse. Da sich die ebenfalls benötigte Datei in diesem Verzeichnis befindet, kommt es diesmal zu keinem Fehler.

Make-Prozess

Natürlich ist das geschilderte Verfahren nur bei den einfachsten Projekten prak-tikabel. Bei größeren Projekten mit vielen Klassen greifen Sie entweder zu einer integrierten Entwicklungsumgebung, die diese Abläufe automatisiert und für die Konsistenz des Projekts sorgt, oder Sie schreiben sich so genannte Make-Dateien.

Make-Dateien – was ist das nun schon wieder?

Ein Werkzeug namens make achtet darauf, dass nur die Dateien eines Projekts kompiliert werden, deren Bytecode nicht mehr aktuell ist. Das ist dann der Fall, wenn der Quelltext neuer ist als der dazugehörende Bytecode. Das bedeutet schließlich, dass an der Klasse etwas verändert wurde und ihr Bytecode kompiliert werden muss.

Eine Make-Datei fasst die dafür nötigen Kommandos in einem Shellskript (Unix) oder einer Batch-Datei (Windows) zusammen. Die Kommandos steuern dann den Java-Compiler, so dass der Entwickler nicht jedes Mal überlegen muss, ob der Bytecode noch aktuell ist oder ob er – sicherheitshalber – alles neu übersetzen muss.

178

Konstruktionsphase

5.3

5.3.4

Test

Start mit dem Java-Interpreter

Das fertiggestellte Programm kann nun endlich gestartet werden. Dazu verwenden Sie wieder eine Textshell (Terminal oder DOS-Eingabeaufforderung), wechseln zum Verzeichnis projekte und führen folgende Anweisung aus, wobei die Paketstruktur stets mit Vorwärtsstrichen (/) eingegeben werden muss:

java development/TestApp

Diese Anweisung startet ein Programm (Java-Interpreter) namens java (Unix) beziehungsweise java.exe (Windows). Dieser Java-Interpreter sucht das Testprogramm TestApp im Unterverzeichnis development und führt es aus. Da sich die ebenfalls benötigte Datei Rectangle.class in diesem Verzeichnis befindet, läuft alles reibungslos, und folgende Ausgabe erscheint unmittelbar:

Fläche = 5 m2

Was ist passiert? Der Java-Interpreter hat den Bytecode der Datei TestApp.class geladen. Anschließend erzeugte das Testprogramm TestApp ein neues Objekt der Klasse Rectangle. Das Programm TestApp hat die Methode getArea() aufgerufen und von der Methode den Wert für die Fläche zurückerhalten. Diesen Wert gibt das Testprogramm auf der Shell aus.

Abbildung 5.9 Das Programm »TestApp« wird ausgeführt.

In Abbildung 5.9 sehen Sie ein so genanntes Sequenzdiagramm dieses Ablaufs.

Es beschreibt in einer Grafik die bereits geschilderte Sequenz, aber diesmal aus einer technischen Sicht. Das Diagramm muss von links nach rechts und von oben nach unten gelesen werden. Die Sequenz läuft in drei Schritten ab:

Ein Anwender (user) initialisiert die Klasse TestApp über deren Startmethode (Schritt 1: main(String[]:void). Danach ruft das Programm TestApp den Konstruktor 179

5

Entwicklungsprozesse

(Schritt 1.1: <constructor>(1,5)) der Klasse Rectangle mit den Parametern height =

1 sowie width = 5 auf. Dieser Aufruf erzeugt ein neues Objekt mit dem Namen rect. Von diesem Objekt erhält das Testprogramm über die Methode getArea() (

Schritt 1.2: getArea():int) den Wert der Fläche.

Start mit dem Debugger

Ein Werkzeug, mit dem Sie einen solchen technischen Ablauf Schritt für Schritt nachvollziehen können, ist ein Debugger. Ein Debugger ist ein spezielles Programm zur Fehlersuche. Das JDK enthält einen sehr einfachen Debugger, mit dem Sie das Programm TestApp Schritt für Schritt ausführen können.

Der Test eines Programms ist notwendig, um sicherzustellen, dass es korrekt funktioniert. Wenn der Aufruf des Programms ein falsches Verhalten zeigt, ist es erforderlich, die Ursache herauszufinden. Dazu könnten Sie an einer geeigneten Stelle zum Beispiel den Wert der Variablen height wie folgt ausgeben:

System.out.println("H\u00f6he = " + height);

Diese Methode der Fehlersuche bewirkt, dass Ihre Klassen mit vielen dieser Anweisungen durchsetzt werden. Nur so können Sie den Programmlauf nachvollziehen. Für Einzelfälle mag dieses umständliche Verfahren ausreichen. Für schwierige Fälle ist es besser, das Programm unverändert zu lassen und es stattdessen mit einem Programm zur Fehlersuche (Debugger) zu untersuchen.

Dazu muss das Programm mit Debug-Informationen übersetzt werden. Der

Java-Compiler verfügt dazu über eine spezielle Option, die Sie für beide Klassen wie folgt aufrufen:

javac -g development/TestApp.java

javac -g development/Rectangle.java

Durch die Option generiert (erzeugt) der Compiler zusätzlich zum Bytecode Informationen, die es dem Debugger erlauben, eine Verbindung zwischen Quelltext und Bytecode herzustellen. Nur so ist der Debugger in der Lage, den Wert eines Bezeichners mit dessen symbolischem Namen in der richtigen Zeile des Quelltextes anzuzeigen. Starten Sie nun wieder ein Terminal, wechseln Sie zum Projektverzeichnis, und geben Sie Folgendes ein:

jdb development/TestApp

Der Debugger startet daraufhin. Er hat die Klasse TestApp jedoch noch nicht geladen, sondern gibt nur Folgendes aus:

Initializing jdb...

>

180

Konstruktionsphase

5.3

Als Nächstes können Sie das Programm mit folgendem Befehl ablaufen lassen:

> run

Es erzeugt dann die folgende bekannte Ausgabe:

Fläche = 5 m2

Damit haben Sie noch nicht viel gewonnen, außer dass der Start des Programms umständlich war. Sie müssen dem Debugger mitteilen, an welcher Stelle er den Programmlauf unterbrechen soll, sonst führt er das Programm genauso aus, wie es der Java-Interpreter getan hat. Beispielsweise könnte man die Methode getArea() der Klasse Rectangle in der Zeile 24 untersuchen. Überprüfen Sie, ob sich die Anweisung mit der Rückgabe der Fläche tatsächlich in der Zeile 25 in Ihrem Quelltext befindet (Listing 5.6), sonst erzielen die nachfolgenden Anweisungen nicht die gewünschte Ausgabe.

//Beispielprogramme/Entwicklungsprozesse/Ex01

✄

24:

public int getArea() {

25:

return height * width;

26:

}

✄

Listing 5.6 Die Methode »getArea« der Klasse »Rectangle«

Starten Sie danach nochmals den Debugger:

jdb development/TestApp

Geben Sie anschließend nach der Initialisierung Folgendes ein, wobei die letzte Zahl der Zeilennummer entsprechen muss, an der sich die Anweisung return height * width in Ihrem Listing befindet:

> stop at development.Rectangle:25

Der Debugger reagiert mit folgender Meldung:

Deferring breakpoint development.Rectangle:25.

It will be set after the class is loaded.

Das bedeutet, dass er die Klasse aktuell noch nicht geladen hat und erst nach dem Laden der Klasse einen so genannten Breakpoint (Haltepunkt) setzen kann.

Um das zu veranlassen, starten Sie jetzt das Programm erneut mit dem Befehl run. Der Debugger reagiert dann mit folgender Ausgabe, falls die von Ihnen angegebene Zeilennummer mit der Zeilennummer im Listing für die Methode getArea() übereinstimmt:

181

5

Entwicklungsprozesse

run development/TestApp

VM Started: >

Set deferred breakpoint development.Rectangle:41

Breakpoint hit: thread="main",

development.Rectangle.getArea(), line=25, bci=0

25

return height * width;

main[1]

Der Debugger hat den Programmablauf wunschgemäß in der Zeile 25 der Methode getArea() der Klasse Rectangle unterbrochen. Sie können nun mit folgendem Befehl ermitteln, welchen Wert die Variable height an dieser Stelle besitzt: dump height

Der Debugger gibt darauf Folgendes aus:

height = 1

Ebenso können Sie den aktuellen Wert für width auslesen:

dump width

Der Debugger gibt darauf Folgendes aus:

width = 5

Beenden Sie nun die Debugger-Sitzung mit diesem Befehl:

cont

Daraufhin erscheint die bekannte Ausgabe der Rechteckfläche. Sie haben an dem kurzen Beispiel gesehen, dass die Fehlersuche mit dem JDK-Debugger jdb mit viel Tipparbeit verbunden ist. Wesentlich schneller und angenehmer ist die Arbeit mit einem so genannten grafischen Debugger. Das ist ein Debugger, der über eine grafische Oberfläche verfügt. Die meisten integrierten Entwicklungsumgebungen wie Eclipse und NetBeans verfügen über einen solchen Debugger.

Dokumentieren

Bevor Sie die getestete Klasse allen anderen Teammitgliedern zur Verfügung stellen, schreiben Sie noch eine kleine Gebrauchsanweisung dazu. Sie erleichtert es den anderen Teammitgliedern, zu verstehen, wie die Klasse zu verwenden ist.

Diese »Gebrauchsanweisung« heißt nach dem gleichnamigen JDK-Werkzeug »JavaDoc«.

Das Werkzeug javadoc erzeugt von einer Klasse eine HTML-Dokumentation,

wenn die Klasse entsprechende Anweisungen, die so genannten Tags (Kapitel 4) enthält. Bitte ergänzen Sie nun Listing 5.1, so dass es so aussieht wie Listing 5.7, und speichern Sie es wieder ab.

182

Konstruktionsphase

5.3

1: //Beispielprogramme/Entwicklungsprozesse/Ex02

2:

3: package development;

4:

5: public class Rectangle {

6:

7:

private int height = 1;//Hoehe=1

8:

private int width = 1;//Breite=1

9:

10:

/**

11:

* Konstruktor: Erzeugt ein Rechteck ohne Parameter

12:

*/

13:

public Rectangle() {

14:

}

15:

16:

/**

17:

* Konstruktor Rectangle:

18:

* Erzeugt ein Rechteck des Typs Rectangle

19:

* mit folgenden Parametern

20:

*

21:

* @param height

22:

*

Hoehe

23:

* @param width

24:

*

Breite

25:

*/

26:

public Rectangle(int height, int width) {

27:

this.height = height;

28:

this.width = width;

29:

}

30:

31:

/**

32:

* Methode getHeight:

33:

* Gibt die Hoehe des Rechtecks zurueck

34:

*

35:

* @return Hoehe

36:

*/

37:

38:

public int getHeight() {

39:

return height;

40:

}

41:

42:

/**

43:

* Methode getWidth:

44:

* Gibt die Breite des Rechtecks zurueck

45:

*

46:

* @return Breite

183

5

Entwicklungsprozesse

47:

*/

48:

49:

public int getWidth() {

50:

return width;

51:

}

52:

53:

/**

54:

* Methode getArea:

55:

* Gibt die Flaeche des Rechtecks zurueck

56:

*

57:

* @return Flaeche

58:

*/

59:

60:

public int getArea() {

61:

return height * width;

62:

}

63:

64:

/**

65:

* Methode setHeight:

66:

* Legt die Hoehe des Rechtecks fest

67:

*

68:

* @param height

69:

*

Hoehe

70:

*/

71:

public void setHeight(int height) {

72:

this.height = height;

73:

}

74:

75:

/**

76:

* Methode setWidth:

77:

* Legt die Breite des Rechtecks fest

78:

*

79:

* @param width

80:

*

Breite

81:

*/

82:

83:

public void setWidth(int width) {

84:

this.width = width;

85:

}

86:

87:

/**

88:

* Methode setDimension:

89:

* Legt die Ausdehnung des Rechtecks fest

90:

*

91:

* @param height

92:

*

Hoehe

184

Konstruktionsphase

5.3

93:

* @param width

94:

*

Breite

95:

*/

96:

97:

public void setDimension(int height, int width) {

98:

this.height = height;

99:

this.width = width;

100:

}

101:

102: }

Listing 5.7 Die vollständig dokumentierte Java-Klasse »Rectangle«

Im Prinzip ist das Werkzeug javadoc nichts anderes als ein Compiler für Java-Dokumentation, der aus dem Quelltext jedoch anstelle von Bytecode HTML-Dokumente erzeugt. Der Prozessablauf der Dokumentation ist in Abbildung 5.10

beschrieben.

package development;

Quelltext Rectangle.java

public class Rectangle

{

private int height;

mit

private int width;

Texteditor

kodieren

Quelltext

mit

JDK-Werkzeug javadoc

übersetzen

Class Rectangle

HTML-Dokumentation

java lang Object

in der

+ development Rectangle

Entwicklungsumgebung

public class Rectangle

ansehen

Abbildung 5.10 Vom Quelltext zur Java-Dokumentation

Sie können nun mit dem JDK-Werkzeug Java-Dokumentation erzeugen. Dazu

geben Sie einfach folgenden Befehl in die Shell ein:

javadoc development/*.java

Das Werkzeug meldet daraufhin, dass es beide Quelltexte lädt und daraus HTML-Dokumentation erzeugt (Abbildung 5.11).

185

5

Entwicklungsprozesse

Abbildung 5.11 Die fertige Java-Dokumentation als HTML-Dokument

Versionieren

Nach diesem Test geben Sie Ihrer neuen fertiggestellten Klasse die Versionsnum-mer 1.0 und stellen sie dem Team zur Verfügung. Das geschieht, indem Sie die Datei samt Dokumentation mit Hilfe eines speziellen Programms auf das Netzwerk Ihres Softwarehauses kopieren. Das Programm ist eine Versionsverwaltung, auch Versionskontrolle genannt (Abschnitt 22.2.2, »Versionskontrolle«). Mit Hilfe dieses Werkzeugs kann das gesamte Team auf eine bestimmte Version einer Datei zugreifen.

Eine einfache Versionskontrolle wie das Concurrent Version System (CVS) funktioniert folgendermaßen: Wenn Sie als »Besitzer« der Klasse Rectangle diese Klasse fertiggestellt haben, checken Sie diese neue Klasse ein. Die Versionskontrolle speichert sie in einem Datenpool, dem so genannten Repository (Abbildung 5.12).

Solange die Klasse nicht bearbeitet wird, können Sie die Klasse wieder zur Bearbeitung aus dem Repository auschecken.

Falls Sie die Klasse wieder bearbeiten, sperrt die Versionskontrolle das Auschecken der Datei. Durch diese Sperre kann eine Klasse nur mehr schreibgeschützt auf den lokalen Entwickler-PC kopiert werden. Dieser Vorgang heißt Ausleihen.

Durch den Schreibschutz beim Ausleihen verhindert die Versionskontrolle, dass an einer Klasse zwei oder mehrere Entwickler parallel arbeiten, was in der Regel nicht sinnvoll ist.

Integrieren

Parallel zu Ihrer Klasse sind noch viele andere Klassen des Diagrammeditors ein-gecheckt worden. Zu einem bestimmten Zeitpunkt, den in der Regel der Chefdesigner des Projekts bestimmt, baut das Team eine Version der Software zusammen.

Weil hierbei alle Klassen »integriert« werden, spricht man auch von Integration.

Nach jeder Integration bekommt der Diagrammeditor eine neue, fortlaufende Build-Nummer.

186

Konstruktionsphase

5.3

Die Integration ist ein komplizierter Vorgang, der eine gute Zusammenarbeit des Teams erfordert. Bei der Integration zeigt sich, ob alle Klassen ausreichend getestet worden sind. Für die Integration kopiert ein Teammitglied die Klassen auf einen Integrationsrechner (Abbildung 5.12), auf dem auch die Softwareentwicklungswerkzeuge vorhanden sind.

Die integrierte Version muss mit diesen Werkzeugen nochmals einer Qualitätssicherung unterzogen werden. Erst wenn diese erfolgreich verläuft, kann das Team diese Version des Diagrammeditors verpacken, um sie an den Kunden auszuliefern. Scheitert der Test, müssen der Fehler festgestellt, die Klasse(n) isoliert und neu versioniert werden. Danach finden die Integration und der Integrationstest nochmals statt.

Abbildung 5.12 Versionskontrolle und Integration im Netzwerk

Archivieren

Es wäre sehr unpraktisch, den Bytecode in Form von vielen Einzeldateien an den Kunden auszuliefern. Stattdessen bildet man aus den vielen Einzelklassen eines Projekts ein oder mehrere logisch zusammengehörende Archive. Diese Archive ergeben mit einem Installationsprogramm (Abschnitt 5.3.4, »Installationsprogramm herstellen«, Seite 189) den verteilungsfähigen Prototyp.

Ein Werkzeug, mit dem Sie Klassen zu Archiven verpacken können, ist auch im JDK enthalten und nennt sich jar. Es ist ebenso einfach zu bedienen wie die bisherigen JDK-Werkzeuge. Starten Sie wieder eine Shell, wechseln Sie in das Projektverzeichnis, und geben Sie folgenden Befehl ein:

jar cf Rectangle.jar development/Rectangle.class

Der Schalter c steht für create, der Schalter f steht für file. Der Befehl bedeutet also, dass das Werkzeug eine Datei namens Rectangle.jar erzeugen soll, die eine Klasse Rectangle.class enthalten soll, die sich im Verzeichnis development befindet.

187

5

Entwicklungsprozesse

Nun ist ein Archiv mit nur einer Klasse (fast) sinnlos. Geben Sie also nun Folgendes ein:

jar cf Rectangle.jar development/Rectangle.class

development/TestApp.class

Wenn Sie die erzeugte Datei in TestApp.zip umbenennen und mit GnuZip, Win-Zip oder einem gleichwertigen Werkzeug öffnen, stellen Sie fest, dass das Archiv eine bestimmte festgelegte Struktur besitzt (Abbildung 5.13).

TestApp.jar

development

TestApp.class

Rectangle.class

META-INF

MANIFEST.MF

Abbildung 5.13 Die Struktur des Beispielarchivs

Die Struktur des Archivs entspricht genau der Struktur der Package-Pfade, die im Quelltext angegeben sind. Dieses Archiv ist das komplette Testprogramm. Sie könnten es auch mit dem Java-Interpreter starten, wenn nicht eine Angabe in einer Datei namens MANIFEST.MF fehlen würde. Legen Sie eine solche Datei an, und geben Sie folgende Zeilen ein:

Manifest-Version: 1.0

Main-Class: development.TestApp

Speichern Sie die Datei als reinen ASCII- oder Unicode-Text, und starten Sie erneut das Jar-Werkzeug von einem Terminal mit folgendem Befehl:

jar cfm TestApp.jar MANIFEST.MF

development/Rectangle.class

development/TestApp.class

Durch den zusätzlichen Parameter m kopiert das Werkzeug die neu erzeugte Manifest-Datei in das Archiv. In dieser Manifest-Datei findet die Laufzeitumgebung (der Java-Interpreter) die Angabe der Hauptklasse, in der sich die Startmethode main() befindet.

188

Betriebsphase

5.4

Mit anderen Worten: Sie haben gerade ein komplettes Testprogramm erzeugt.

Die Laufzeitumgebung findet die Klassen des Programms im Archiv anhand des Package-Pfads genauso, wie sie sie vorher auf der Festplatte als Einzeldateien gefunden hat. Starten Sie das Programm jetzt wie folgt:

java -jar TestApp.jar

Das Programm gibt nun die Rechteckfläche aus. Das Testprogramm als Archiv ist natürlich nicht besonders sinnvoll, weil es so im Projekt nicht eingesetzt werden wird. Sie können sich aber vorstellen, dass es schon sinnvoller wäre, wenn Sie mehrere Klassen für das Gesamtprojekt entwickelt hätten, die en bloc vom Installationsprogramm verteilt werden könnten.

Wenn später am fertigen Produkt (dem Diagrammeditor) etwas an Ihren Klassen geändert werden müsste, müsste man »nur« noch das entsprechende Archiv des fertigen Programms austauschen. Bei einem guten Programmdesign wäre es weder notwendig, das gesamte Programm auszutauschen, noch notwendig, sich mit vielen einzelnen Klassendateien und deren Abhängigkeiten zu befassen.

Installationsprogramm herstellen

Für die Entwicklung eines Installationsprogramms gibt es kein JDK-Werkzeug.

Hier müssen Sie auf leistungsfähige Werkzeuge ausweichen, die es erlauben, die vorher erzeugten Jar-Archive einfach zu verteilen (Abschnitt 22.2.10, »Werkzeuge zur Verteilung«).

Prototyp

Der verteilungsfähige Prototyp kann jetzt auf CD gebrannt oder samt dem Installationsprogramm per FTP an den Kunden gesandt werden.

5.4

Betriebsphase

5.4.1

Verteilung

Der Kunde hat nun den Prototyp auf einer CD erhalten. Nun beginnt die eigentliche Verteilung. Das bedeutet, dass ein Techniker ihn im Netzwerk des Kunden verteilt oder ihn auf einen Computer installiert. Nach diesem Vorgang erhalten die Endanwender des Kunden Gelegenheit, das Programm auf Herz und Nieren zu prüfen.

In der Regel stellen sich mit dem Gebrauch der Software Fragen ein, es kommt zu Verbesserungs- und Änderungswünschen. Häufig klären sich auch Missverständnisse bei der Anforderungsaufnahme auf. Die Reaktion des Kunden führt 189

5

Entwicklungsprozesse

normalerweise zu neuen Anforderungen, die wieder aufgenommen werden müssen. Der Kreis schließt sich, und das Entwicklerteam muss von Neuem die weitere Entwicklung planen (Abschnitt 5.2, »Planungsphase«).

5.4.2

Pflege

Ist das Projekt beendet und der Diagrammeditor in seiner endgültigen Form beim Kunden installiert, beginnt der Teil der Betriebsphase, den man Pflege nennt. Das bedeutet, dass kleine und größere Fehler beim Kunden auftauchen. Er wendet sich daraufhin an den Support des Softwarehauses. Techniker an der Hotline versuchen herauszufinden, ob es sich bei der Fehlermeldung um einen Bedienungs- oder um einen Softwarefehler handelt.

Für den Fall, dass gehäuft Bedienungsfehler auftauchen, sollte man sich überlegen, ob sie mit der Programmoberfläche und der Benutzerführung in Zusammenhang stehen. Im Fall von Softwarefehlern muss der Diagrammeditor geändert werden. Ein Entwickler führt einen Test durch. Er lokalisiert hierbei mit Hilfe eines Debuggers den Fehler. Anschließend beseitigt er ihn, checkt die neue Klasse ein und stößt eine Integration an. Verläuft diese einwandfrei, kann ein so genannter Bugfix an den Kunden ausgeliefert werden.

5.5

Zusammenfassung

Der Softwareentwicklungsprozess verläuft in den drei Hauptphasen Planung, Konstruktion und Betrieb. In der Planungsphase dominiert die Anforderungsaufnahme. Die Konstruktionsphase besteht aus Analyse und Design, Implementierung und Test der Software, während der Betrieb von der Verteilung und Pflege bestimmt wird.

5.6

Aufgaben

Versuchen Sie, folgende Aufgaben zu lösen:

5.6.1

Fragen

1. In welchen Phasen verläuft der Entwicklungsprozess?

2. Nennen Sie die Hauptaktivitäten der einzelnen Phasen.

3. Welche Aufgaben hat ein Compiler?

190

Aufgaben

5.6

4. Welche Aufgaben hat ein Debugger?

5. Wozu dient die Archivierung mit dem Werkzeug Jar?

5.6.2

Übungen

Schreiben Sie das Testprogramm wie folgt um:

1: //Beispielprogramme/Entwicklungsprozesse/Ex03

2:

3: package development;

4:

5: public class TestApp {

6:

7:

public static void main(String[] arguments) {

8:

Rectangle rect = new Rectangle();

9:

rect.setDimension(10, 50);

10:

System.out.println("Fl\u00e4che = " +

11:

rect.getArea() + " m\u00B2");

12:

}

13: }

Listing 5.8 Das neue Testprogramm »TestApp« für die Klasse »Rectangle«

1. Kompilieren Sie das neue Testprogramm mit dem Java-Compiler!

2. Wie starten Sie das Programm?

3. Welche Ausgabe erzeugt das Programm?

4. Erklären Sie den Ablauf des Testprogramms!

5. Starten Sie das Programm mit dem Java-Debugger, und ermitteln Sie die Werte in der Methode getArea.

Die Lösungen zu den Aufgaben finden Sie in Kapitel 19 ab Seite 516.

191

»Jede hinreichend fortschrittliche Technologie ist von Zauberei nicht mehr zu unterscheiden.« (Arthur C. Clarke)

6

Plattform Java

6.1

Einleitung

Die Technologie Java unterscheidet sich von reinen Programmiersprachen wie zum Beispiel C++ dadurch, dass sie nicht nur eine Sprache ist. Sie besitzt neben ihren Spracheigenschaften auch Plattformcharakter. Die Plattform ist der Teil des Gesamtkonzepts, der für die hohe Portabilität von Java-Programmen sorgt. Dazu gehören die für den Einsteiger rätselhafte virtuelle Maschine und der ominöse Bytecode.

6.2

Bytecode

Wie Sie in Kapitel 5, »Entwicklungsprozesse«, erfahren haben, übersetzt der JDK-Compiler Java-Quelltext und erzeugt daraus Class-Dateien. Diese Dateien bestehen aus einem speziellen Binärcode namens Bytecode. Java-Bytecode setzt sich nicht aus nativer Maschinensprache für einen physischen Computer zusammen.

Er enthält Anweisungen für einen virtuellen Computer, der virtuelle Maschine genannt wird (Abschnitt 6.3.1, »Virtuelle Maschine«).

Die Maschinensprache der virtuellen Maschine

Beim Bytecode handelt es sich also um Anweisungen für einen Computer, der real nicht existiert. Was sich im ersten Moment wie Zauberei anhört, ist in Wirklichkeit nur eine besonders fortgeschrittene Technologie. Um sie zu verstehen, ist es notwendig, einen genaueren Blick auf den Bytecode eines Java-Programms zu werfen.

Starten Sie bitte dazu ein Terminal (DOS-Eingabeaufforderung, Shell), wechseln Sie in das Src-Verzeichnis des Projekts Beispielprogramme/Platform_Java/Ex01, und übersetzen Sie die darin enthaltene Klasse Rectangle (Listing 6.1) mit folgender Anweisung:

193

6

Plattform Java

javac platform.Rectangle

Sofern der Suchpfad zum JDK richtig eingestellt ist, erzeugt der Compiler eine Datei namens Rectangle.class. Sollte die Meldung erscheinen, dass der Befehl entweder falsch geschrieben oder nicht gefunden wurde, müssen Sie erst den Suchpfad zum JDK richtig setzen (Abschnitt 22.4.3, »Java Development Kit«).

Listing 6.1 Der Bytecode dieser Klasse soll disassembliert werden.

Um die Anweisungen des Bytecodes der Klasse Rectangle zu betrachten, reicht es nicht aus, die Datei Rectangle.class in einem Texteditor zu öffnen. Der Texteditor wäre nicht in der Lage, die Assembler-Anweisungen zu entschlüsseln (zu disassemblieren). Dazu müssen Sie ein Werkzeug aus dem JDK, den Class File Disassembler namens javap, einsetzen.

Um den Bytecode der Klasse Rectangle zu disassemblieren, verwenden Sie wieder das Terminal, wechseln erneut in das Src-Verzeichnis des Projekts Beispielprogramme/Platform_Java/Ex01 und geben Folgendes ein:

javap -c platform.Rectangle

Hat alles funktioniert, erscheint im Terminal der entschlüsselte Bytecode: 1: Compiled from Rectangle.java

2: class platform.Rectangle extends java.lang.Object {

3:

platform.Rectangle();

4:

public static void main(java.lang.String[]);

5: }

6: Method platform.Rectangle()

7:

0 aload_0

8:

1 invokespecial #1 <Method java.lang.Object()>

9:

4 return

10: Method void main(java.lang.String[])

11:

0 iconst_1

12:

1 istore_1

13:

2 iconst_5

14:

3 istore_2

15:

4 iload_1

16:

5 iload_2

17:

6 imul

18:

7 i2l

19:

8 lstore_3

20:

9 return

Listing 6.2 Der Bytecode der Klasse »Rectangle«

194

Java Runtime Environment

6.3

Der Zusammenhang zwischen Quelltext und Bytecode wird deutlicher, wenn man beide gegenüberstellt (Abbildung 6.1). Im linken Teil sehen Sie den Quelltext der Klasse, im rechten Teil den Bytecode. Die Ziffern vor dem Bytecode sind die Adressen der Anweisungen. Hinter dem Bytecode sehen Sie einige Kommentare, die nicht vom Disassembler erzeugt wurden, sondern von mir stammen. Sie dienen zum besseren Verständnis des Codes.

Abbildung 6.1 Quelltext und dazugehörender Bytecode

Der Bytecode besteht aus einer Folge von Bytes (daher sein Name). Jedes Byte entspricht einer Anweisung (OpCode) für die virtuelle Maschine. Die virtuelle Maschine verfügt im Gegensatz zu einer physischen Maschine nicht über Register. Stattdessen legt sie alle Variablen auf einem Stapel (Operandenstack) ab. Der Stapel dient beim Ausführen des Programms als Kurzzeitgedächtnis für Zahlenwerte, mit denen die virtuelle Maschine gerade jongliert.

Zum Beispiel bewirkt die erste Anweisung des Bytecodes iconst_1, dass die virtuelle Maschine eine Int-Zahl des Werts 1 auf den Stapel legt. Die nachfolgende Anweisung hat zur Folge, dass diese Zahl einer lokalen Variablen namens 1 zugeordnet wird. Die lokale Variable kommt Ihnen sicher bekannt vor. Sie ist nichts anderes als die Variable height aus dem Java-Code.

Vergleichen Sie bitte den Bytecode für die virtuelle Maschine mit dem Assembler-Code für einen 80x86-Prozessor aus Kapitel 2, »Programmiersprachen«, Listing 2.2. Sie erkennen gewisse Ähnlichkeiten, aber auch deutliche Unterschiede. Die virtuelle Maschine ist also deutlich anders aufgebaut als eine physische Maschine.

6.3

Java Runtime Environment

Das Java Runtime Environment (JRE) ist ein Teil des Java Development Kits (JDK). Diese Laufzeitumgebung müssen Sie in der Regel mit Ihrem Java-Programm 195

6

Plattform Java

installieren. Sie besteht aus der virtuellen Maschine, Bibliotheken und Ressourcen (Abbildung 6.2).

Abbildung 6.2 Das Java Runtime Environment ist Teil des JDK.

6.3.1

Virtuelle Maschine

Das Herz der Plattform Java ist die so genannte »Java Virtual Machine« (JVM) oder einfach nur »virtuelle Maschine« (VM) genannt. Diese virtuelle Maschine ist ein Computerprogramm, das für alle möglichen Betriebssysteme und Computerhardware existiert. Dieses Computerprogramm ahmt einen physischen Computer (eine Maschine) nach.

Künstlicher Computer

Da diese Computerhardware nicht wirklich existiert, sondern nur aus Software besteht, nennt man diese Maschine virtuell. Sie ist also nicht physisch, sondern lediglich ein künstlicher Minicomputer (Abbildung 6.3), der in einem realen Computer arbeitet.

Abbildung 6.3 Die virtuelle Maschine ist ein Minicomputer im Computer.

196

Java Runtime Environment

6.3

Bei der Ausführung eines Java-Programms gaukelt man diesem nur vor, dass es auf einem »richtigen« Computer läuft. Dieses »Ablaufen« kann auf verschiedene Arten geschehen: im Interpreter-Modus, mit einem JIT-Compiler oder über eine Hotspot-VM.

Interpreter-Modus

Die langsamste Art, ein Java-Programm auszuführen, ist der reine Interpreter-Betrieb. In diesem Modus interpretiert die virtuelle Maschine jede Instruktion des Bytecodes und führt ihn selbst aus. Dadurch, dass sie jede Instruktion des Bytecodes selbst verarbeitet, entsteht auch kein nativer Maschinencode (Abbildung 6.4).

Abbildung 6.4 Ausführung im reinen Interpreter-Modus

Stattdessen arbeitet die virtuelle Maschine schrittweise das Programm ab. In der Grundeinstellung der virtuellen Maschine ist dieser Modus aufgrund der enor-men Geschwindigkeitsverluste deaktiviert und muss erst eingeschaltet werden Das geschieht mit der Anweisung (java -Xint).

Just-in-Time-Compiler

Bis zu 40-mal schneller als im reinen Interpreter-Modus führt die virtuelle Maschine Java-Programme aus, wenn sie über einen Just-in-Time-Compiler (JIT-Compiler) verfügt.

197

6

Plattform Java

Abbildung 6.5 Ablauf des Programms mit einem JIT-Compiler

Die virtuelle Maschine übersetzt in diesem Modus den Bytecode mit Hilfe dieses JIT-Compilers schrittweise in echten performanten Maschinencode (Abbildung 6.5). Dadurch ist das Programm in der Regel deutlich schneller als durch die Übersetzung mit Hilfe eines Interpreters. Nur dort, wo Teile des Programms sehr selten ausgeführt werden, hat die JIT-Technik gegenüber dem Interpreter-Betrieb Nachteile bei der Ausführungsgeschwindigkeit eines Java-Programms.

Da die Geschwindigkeitsvorteile der JIT-Technologie gegenüber dem Interpreter-Betrieb überwiegen, war der reine JIT-Betrieb bis zum JDK 1.2 die Technik der Wahl, wenn man Java-Programme optimal beschleunigen wollte. Mittlerweile hat sich die noch bessere Hotspot-Technologie (Abschnitt »Hotspot-VM«) den JIT-Compiler einverleibt. Wenn Sie ein Programm weiterhin ausschließlich mit dem JIT-Compiler ausführen wollen, müssen Sie es über java -classic starten. Diese Option ist allerdings nicht standardisiert und wird daher nicht bei allen virtuellen Maschinen funktionieren.

198

Java Runtime Environment

6.3

Hotspot-VM

Zwischen dem Erscheinen des JDK 1.2 und der Version 1.3 stellte Sun ein neues Verfahren zur Beschleunigung von Java-Programmen vor: die Hotspot-VM. Der Hotspot ist eine in die virtuelle Maschine integrierte Technologie, die die Vorteile der Interpretertechnik mit denen eines JIT-Compilers verbindet.

Abbildung 6.6 Ablauf des Programms mit einer Hotspot-VM

Die Hotspot-VM arbeitet im gemischten Modus. Anders als der JIT-Compiler übersetzt sie nicht die gesamte Anwendung in Maschinencode, sondern nur die Teile, bei denen sich Optimierungen wirklich lohnen. Diese Stellen sind die »heißen Stellen« des Programms (daher der Name »Hotspot«).

Der Rest des Programms wird im Interpreter-Modus ausgeführt. Dies soll sich laut Sun jedoch nicht in schlechter Ausführungsgeschwindigkeit niederschlagen.

Und tatsächlich: Bei Geschwindigkeitsvergleichen unabhängiger Fachzeitschriften erzielte die Hotspot-VM ähnlich gute Werte wie eine virtuelle Maschine, die ausschließlich mit einem JIT-Compiler arbeitet.

199

6

Plattform Java

6.3.2

Garbage Collector

Die virtuelle Maschine stellt Java-Programmen eine automatische Speicherverwaltung zur Verfügung. Jedes Objekt bekommt von der virtuellen Maschine automatisch den Speicher zur Verfügung gestellt, den es benötigt. Der Java-Entwickler muss sich nicht um die Speicherverwaltung seines Programms kümmern. Aber was passiert, wenn Objekte nicht mehr benötigt werden?

Auch darum braucht sich ein Java-Entwickler nicht zu sorgen. In regelmäßigen Abständen überprüft die virtuelle Maschine, ob Objekte nicht mehr benötigt werden. Diese überflüssigen Objekte sind sozusagen der Müll, den das Programm erzeugt und der »entsorgt« werden muss. Damit kein Speicherbereich brachliegt und die Ressourcen des Computers geschont werden, muss jemand diesen Müll beseitigen.

Müllabfuhr

Der Teil der virtuellen Maschine, der diese Aufgabe übernimmt, ist der Garbage Collector (engl. Garbage Collection: Müllabfuhr). Sie können diese Müllabfuhr auch innerhalb Ihres Programms anweisen, dass der »Müll« sofort vernichtet werden soll. Ergänzen Sie Ihr Programm dann durch folgende Programmanweisung: System.gc()

oder durch:

Runtime.getRuntime().gc()

Beide sind Aufrufe derselben Methode der Systembibliothek (Abschnitt 8.2.2,

»Klasse ?System?«) und bewirken, dass der Garbage Collector unmittelbar mit seiner Arbeit beginnt und nicht benötigten Speicher freigibt. Was passiert aber, wenn der Garbage Collector versagt? Das sollte eigentlich nicht passieren, kommt aber hin und wieder bei manchen Java-Programmen vor.

Speicherlöcher

Es kommt vor allem in Programmen vor, die so komplizierte Konstruktionen verwenden, dass sie den Speicher mit ungenutzten Referenzen ihrer Objekte

»verschmutzen«. Der Garbage Collector ist dann der Meinung, dass diese Objekte noch benötigt werden, weil ihre Referenzen noch existieren. Aus diesem Grund kann er den Speicher dafür nicht mehr freigeben.

Abhilfe schaffen eine saubere Programmkonstruktion und eine ausreichende Test-phase. Zusätzlich gibt es Testwerkzeuge, die Speicherlöcher aufdecken. Sun Microsystems hat das Problem übrigens erkannt: In Zukunft sollen Speicherlöcher nicht mehr auftreten können, da Garbage Collectors neuerer Bauart selbst durch ungenutzte Referenzen nicht mehr blockiert werden.

200

Native Java-Programme

6.4

6.3.3

Bibliotheken

Native Bibliotheken

Die Laufzeitumgebung besteht nicht nur aus der virtuellen Maschine, sondern auch aus diversen nativen Bibliotheken, die diese virtuelle Maschine benötigt.

Das heißt, dass dieser Teil der Laufzeitumgebung auf andere Betriebssysteme und Computerhardware konventionell portiert werden muss (Abschnitt 6.5.2,

»Voraussetzungen«).

Java-Bibliotheken

Im Gepäck der Laufzeitumgebung befinden sich auch diverse Bibliotheken, die als

»Verpflegung« der Java-Programme dienen. Da diese Klassenbibliotheken für alle möglichen Anwendungsfälle geeignet und daher sehr umfangreich sind, ist hier kein Platz für eine nähere Beschreibung. Sie finden diese stattdessen in Kapitel 8,

»Java-Klassenbibliotheken«.

6.3.4

Ressourcen und Property-Dateien

Wenn Sie innerhalb des JRE-Verzeichnisses verschiedene Unterordner öffnen, werden Ihnen Systemressourcen wie Mauscursor, Zeichensätze und eine Reihe von Property-Dateien auffallen. Auch diese sind teilweise vom Betriebssystem abhängig.

6.4

Native Java-Programme

Dass Java-Programme aus keinem »richtigen« Maschinencode für einen physischen Computer bestehen, sondern aus dem künstlichen Bytecode, hat viele Entwickler gestört. Sie wollten ein »richtiges« Programm ausliefern und nicht eines, das dem Anwender vortäuscht, es handele sich um ein natives Programm.

Geschwindigkeitsgewinn

Außer diesem subjektiven Gefühl mancher Entwickler kam hinzu, dass die ersten virtuellen Maschinen auch objektiv sehr langsam waren. Die Java-Programme fraßen zudem sehr viel Rechenleistung – kurz: Man suchte eine Möglichkeit, den Makel des Bytecodes zu beseitigen und aus dem Java-Quelltext echten Maschinencode zu erzeugen. Dazu benötigte man natürlich einen Java-Compiler, bei dem die Codegenerierung anders funktioniert als bei seinem Gegenstück aus dem JDK.

201

6

Plattform Java

Echter Maschinencode

Diese Native-Code-Compiler erzeugen nativen Binärcode für einen speziellen Computer und ein spezielles Betriebssystem. Zwei Verfahren haben sich etabliert.

Die einen Native-Code-Compiler übersetzen Java-Quelltext direkt in Maschinensprache. Andere benötigen Bytecode als Ausgangsbasis.

Abbildung 6.7 Der Native-Code-Compiler erzeugt echten Maschinencode.

Wenn Sie beispielsweise das Programm Rectangle für einen Windows-PC mit einem solchen Compiler übersetzen, liegt es in Maschinensprache für einen Intel-Prozessor vor (80x86-Assembler). Sie können es mit einem Doppelklick auf die Datei Rectangle.exe ohne Beteiligung einer virtuellen Maschine starten.

Keine Binärkompatibilität

Damit ist ein großer Vorteil der Java-Technologie jedoch entfallen: die Binärkompatibilität. Solche Programme sind nur noch im Quelltext portabel. Auf jeder Plattform (zum Beispiel einem Windows-PC) muss das Programm übersetzt werden, und man benötigt dazu einen passenden Compiler. Man fragt sich, ob sich das Verfahren wirklich lohnt.

202

Portabilität eines Java-Programms

6.5

Nur in Ausnahmefällen

Aus Geschwindigkeitsgründen lohnt sich das Verfahren nicht für jede Anwendung, denn eine virtuelle Maschine mit Hotspot-Technologie ist erstaunlich flott.

In Ausnahmefällen, zum Beispiel für die Programmierung von Spielen oder anderer Grafiksoftware, kann es aber lohnend sein, das Programm durch die Verwand-lung in nativen Code zu beschleunigen. Auch die Auslieferung und das Starten eines Programms werden dadurch einfacher (Abschnitt 6.6, »Programmstart«).

6.5

Portabilität eines Java-Programms

Solange ein Java-Programm nicht mit Hilfe eines Native-Code-Compilers übersetzt wurde, ist es hochportabel. Hochportabel bedeutet, dass es auf Basis seines Bytecodes ohne Veränderungen von einem beliebigen Computer ausgeführt werden kann, falls er über eine virtuelle Maschine verfügt. Der Quelltext muss dazu nicht erneut auf dem Zielcomputer übersetzt werden.

6.5.1

Binärkompatibler Bytecode

Java-Programme sind also auf Basis ihres Bytecodes portabel. Der Bytecode ist sowohl kompatibel (verträglich) zu einer virtuellen Maschine unter Windows als auch zu einer virtuellen Maschine unter Mac OS X. Man spricht von binärkompa-tiblem Bytecode. Dieser binärkompatible Bytecode unterscheidet Java-Programme von den meisten portablen Programmen, die in anderen Sprachen entwickelt wurden.

Zum Beispiel sind C++-Programme in der Regel nur auf der Grundlage ihres Quelltextes halbwegs portabel. Der C++-Programmierer muss den Quelltext auf jeder Zielplattform in das jeweilige Binärformat kompilieren. Will er sein Programm auf zwei Zielplattformen wie Windows und Unix übertragen, benötigt er hierfür schon zwei unterschiedliche Compiler und Linker. Der Java-Entwickler kommt für die gleiche Aufgabe hingegen mit nur einem Entwicklungswerkzeug aus (Abbildung 6.8).

Die eigentliche Portierungsarbeit leisten einzig und allein die verschiedenen Hersteller der virtuellen Maschinen. Sie stellen die virtuelle Maschine nach der Spezifikation von Sun Microsystems für einen speziellen physischen Computer mit einem speziellen Betriebssystem her (Abbildung 6.9). Wenn man bedenkt, wie unterschiedlich die Hardware der verschiedenen Computer und die verschiedenen Betriebssysteme aufgebaut sind, weiß man, was das bedeutet. Und so gibt es auch hier Pferdefüße.

203

6

Plattform Java

Abbildung 6.8 Portierung im Vergleich: C++ versus Java

Abbildung 6.9 Ein Programm – diverse virtuelle Maschinen

204

Portabilität eines Java-Programms

6.5

6.5.2

Voraussetzungen

Gerade bei Einsteigern klappt die Übertragung eines Java-Programms von einer Computerplattform auf die andere oft nicht auf Anhieb. Es kommt zu rätselhaften Fehlern (beispielsweise einer ClassNotFoundException). Es scheint also gewisse Voraussetzungen für eine erfolgreiche Portierung zu geben.

Kompatible virtuelle Maschinen

Nicht alle virtuellen Maschinen werden von Sun Microsystems produziert. Für Linux gibt es zum Beispiel diverse Implementierungen von IBM. Die virtuelle Maschine des Mac OS X stammt selbstredend von Apple. Sie können sich vorstellen, was dabei herauskommt, wenn mehrere Firmen ein Computerprogramm entwickeln sollen, das sich für alle Java-Programme identisch verhalten soll.

Wenn man bedenkt, wie verschieden die Firmen sind, die virtuelle Maschinen entwickeln, und wie verschieden die Plattformen sind, ist es kein Wunder, dass die virtuellen Maschinen in gewissen Details voneinander abweichen. Sie sind also fast 100-prozentig kompatibel, es kann aber sein, dass es Unterschiede in der Darstellung von Schriften oder in der Unterstützung der Zwischenablage gibt.

Versionsgleichheit

Auf jeden Fall sollte auf dem Zielcomputer die gleiche Version der virtuellen Maschine verwendet werden wie auf dem Entwicklungscomputer. Es ist zumindest riskant, ein Java-Programm auf einer virtuellen Maschine des JDK 1.7 (Java 7) zu testen und danach zu erwarten, dass es auf einer virtuellen Maschine der Version 1.1.6 anstandslos laufen wird.

Bei Applets (Abschnitt 6.6.2) ist dieses Szenario jedoch der Regelfall. In den meisten Browsern arbeitet eine virtuelle Maschine, die hoffnungslos veraltet ist.

Hier hilft nur, eine Entwicklungsumgebung einzusetzen, die über JDK-Switching verfügt (Abschnitt 22.2.2, »Projektverwaltung«). Durch diese Funktion können Sie zwischen verschiedenen virtuellen Maschinen sowie Compilern wechseln und Ihr Programm risikolos austesten.

Um der Versionslotterie mit unterschiedlichen virtuellen Maschinen aus dem Weg zu gehen, behelfen sich Profis mit einem Trick. Sie installieren innerhalb ihres Programms eine zu ihrem Programm passende Java-Laufzeitumgebung (JRE).

Dadurch, dass diese JRE weitergegeben werden darf, entstehen keine Zusatzkos-ten. Der zusätzlich benötigte Speicherplatz ist bei der Größe heutiger Festplatten meistens kein Problem.

205

6

Plattform Java

Verteilung

Neben einer kompatiblen virtuellen Maschine ist die wichtigste Voraussetzung einer gelungenen Portierung, dass der zum Projekt gehörende Bytecode komplett übertragen wird. Was sich zunächst wie ein schlechter Scherz anhört, ist vollkommen ernst gemeint. Natürlich sollte es selbstverständlich sein, alle zu einem Projekt gehörenden Klassen zu verteilen, aber welche Klassen gehören zu meinem Projekt?

Gerade ein großes Java-Projekt kann überwiegend aus fremden Klassen bestehen, die zu anderen Klassenbibliotheken gehören. Herauszufinden, wie diese Bibliotheken heißen, ist nicht im jeden Fall einfach. Fehler, die hierbei passieren, fallen nicht unbedingt sofort auf. Aber dadurch, dass Java-Klassen im Regelfall dynamisch geladen werden, treten unter Umständen erst dann Fehler auf, wenn der Anwender eine verborgene Funktion verwendet (Laufzeitfehler).

Auch dafür gibt es eine Lösung: Bei dem Vorgang der Archivierung und Verteilung helfen entsprechende Werkzeuge der integrierten Entwicklungsumgebungen wie Eclipse und NetBeans. Sie erleichtern die Auswahl der benötigten Klassen und verpacken sie in Jar-Archive, sodass auch dieser kritische Vorgang entschärft wird.

6.6

Programmstart

Da ein Java-Programm nicht aus echtem Maschinencode besteht, kann es der Endanwender nicht wie gewohnt mit einem Doppelklick auf eine native Binärdatei (unter Windows mit der Endung exe) starten. Wie Sie aus Kapitel 5, »Entwicklungsprozesse«, wissen, müssen die Jar-Archive mit dem speziellen Kommando java -jar gestartet werden. Die Eingabe solcher Kommandos sind für Java-Entwickler zu Testzwecken kein Problem, aber dem Endanwender nicht zuzumuten.

6.6.1

Application

Damit der Endanwender ein Java-Programm, das aus mehreren Jar-Archiven besteht, problemlos starten kann, müssen Sie Ihr Programm mit einem Startskript ausliefern. Dieses Startskript kann der Endanwender wieder mit einem Doppelklick ausführen. Leider unterscheiden sich diese Skripte in ihrem Aufbau und von der Dateiendung von Betriebssystem zu Betriebssystem. Daher ist es notwendig, dass Sie für jedes Betriebssystem ein spezielles Skript ausliefern.

206

Programmstart

6.6

Windows

Für Windows reicht hierfür eine Stapelverarbeitungsdatei (Batch-Datei) aus. Sie muss die Endung bat oder cmd tragen. Ein Beispiel eines sehr einfachen Startskripts sehen Sie in Listing 6.3.

1: @echo off

2: REM

3: REM Projekt: Memory

4: REM Beschreibung: Buch "Einstieg in Java"

5: REM Copyright: (c) 2003 - 2011 by Bernhard Steppan

6: REM Verlag: Galileo Press

7: REM Autor: Bernhard Steppan

8: REM Version 1.2

9: REM

10: REM Bitte Pfad zum JDK anpassen!

11: REM

12: REM JDK oder JRE im Suchpfad:

13: REM

14: java -jar Memory.jar

15: REM

16: REM JDK oder JRE nicht im Suchpfad, hier ein Beispiel fuer

17: REM Java 7.0

18: REM

19: REM C:\Programme\Java\java_7\bin\java -jar Memory.jar

20: REM

21: @echo on

Listing 6.3 Ein Beispiel für ein Windows-Startskript

Um ein Symbol mit der Anwendung zu verbinden, erzeugt man am besten eine Referenz im Startmenü oder auf dem Desktop und verweist auf eine Datei mit der Endung ico. Diese muss in einem Windows-Ressourceneditor entworfen werden.

Mac OS X

Das Macintosh-Betriebssystem Mac OS X besitzt ein in das Betriebssystem integriertes JDK mit einer virtuellen Maschine neuerer Bauart (zur Drucklegung des Buchs war es Java 6, Java 7 ist in Entwicklung). Kleinere Java-Programme, die beispielsweise nur aus einem einzelnen Archiv bestehen, können Sie durch einen Doppelklick auf das Archiv wie eine native Anwendung starten. Das Macintosh-Betriebssystem erkennt das Archiv als Java-Programm und startet eine virtuelle Maschine. Für größere Programme, die aus mehreren Archiven bestehen und spezielle Startparameter benötigen, schreiben Sie entweder ein Shellskript und verknüpfen dieses mit einem Programmsymbol, so dass der Eindruck eines nativen Programms entsteht. Oder Sie verwenden ein Werkzeug wie Eclipse oder 207

6

Plattform Java

Xcode. Beide sind in der Lage, native Macintosh-Programme mit der Endung app sowie einen bei Mac OS X erforderlichen Ressourcenzweig zu erzeugen.

Andere Unix-Derivate

Linux, Solaris, AIX und andere Unix-Derivate besitzen kein integriertes JDK und verhalten sich auch bezüglich der Startskripte untereinander ähnlich. Hier startet man das Programm ebenfalls über ein Skript (Listing 6.4). Das Programmsymbol muss selbst portiert werden. Bei der grafischen Shell »KDE« ist es ein Symbol mit der Endung xpm, das sich mit dem KDE-Ressourceneditor zeichnen lässt.

1: #!/bin/sh

2: #

3: # Projekt: Memory

4: # Beschreibung: Buch "Einstieg in Java"

5: # Copyright: (c) 2003 - 2011 by Bernhard Steppan

6: # Verlag: Galileo Press

7: # Autor: Bernhard Steppan

8: # Version 1.1

9: #

10: # Bitte Pfad zum JDK anpassen!

11: #

12: # Beispiel fuer Java 7.0

13: #

14: # Stammverzeichnis des JDK

15: #

16: JAVA_HOME = /usr/local/java_7

17: #

18: export JAVA_HOME

19: #

20: # Vollstaendiger Pfad zur JVM

21: #

22: JAVA=$JAVA_HOME/bin/java

23: #

24: # Start des Memory-Spiels

25: $JAVA -jar Memory.jar

Listing 6.4 Ein Beispiel für ein Unix-Shellskript

6.6.2

Applet

Während es für jede Java-Anwendung normalerweise notwendig ist, ein spezielles Startskript zu schreiben, starten Internet-Browser Applets, ohne eine betriebssystemspezifische Startdatei zu laden. Die Aufgabe übernimmt eine HTML-Seite, in die das Applet eingebunden ist (Abbildung 6.10).

208

Zusammenfassung

6.7

Danach wird der Bytecode aus Sicherheitsgründen verifiziert, um herauszufinden, ob sich bösartige Anweisungen in ihm befinden. Dazu zählt zum Beispiel der Zugriff auf lokale Festplattendaten. Erst nachdem diese Hürde überwunden ist, akzeptiert die virtuelle Maschine des Browsers das Applet.

Die virtuelle Maschine einiger Internet-Browser arbeitet noch auf dem Niveau von Java 1.1. Das bedeutet, dass Sie Ihre Applets gänzlich anders entwickeln müssen, damit diese erfolgreich portiert werden. Aufgrund der Probleme, Applets zuverlässig in Browsern auszuführen, werden Applets kaum noch entwickelt.

Web-Browser

Bytecode

Applet Class

Sicherheits-

Applet Class

verifizieren

Loader

Manager

Applet Class

HTML-Seite

Namespace

Virtuelle Maschine (JVM)

Abbildung 6.10 Die virtuelle Maschine des Browsers lädt ein Applet.

6.6.3

Servlets und JavaServer Pages

Nun gibt es Java-Programme, die weder eine Application noch ein Applet sind, sondern HTML-Seiten beziehungsweise deren dynamischen Inhalt erzeugen. Sie werden ebenfalls über ein Startskript gestartet, das mit dem Skript einer Java Application vergleichbar ist. Diese Java-Programme würden jedoch den Umfang dieses Kapitels sprengen und werden darum in den folgenden Kapitel 8, »Java-Klassenbibliotheken«, Kapitel 14, »Weboberflächen mit Servlets«, und Kapitel 17,

»Dynamische Websites«, ausführlich vorgestellt.

6.7

Zusammenfassung

Java ist nicht nur eine objektorientierte Programmiersprache, sondern auch eine Plattform. Diese Plattform, die im Kern aus der virtuellen Maschine besteht, führt Programme aus, die aus Bytecode bestehen. Bytecode ist ein spezielles Binärformat eines Programms für einen künstlichen Computer, eine Software namens 209

6

Plattform Java

virtuelle Maschine. Die Verfügbarkeit der virtuellen Maschine für verschiedene Computerhardware und Betriebssysteme verhilft den Java-Programmen zu ihrer hohen Portabilität. Um ein Java-Programm auf beliebigen Computern ausführen zu können, benötigt es nur ein spezielles Startskript, das der Entwickler mitliefern muss.

6.8

Aufgaben

6.8.1

Fragen

1. Was unterscheidet Bytecode von nativem Maschinencode?

2. Warum ist der Bytecode portabel?

3. Aus welchen Teilen besteht die Java Runtime Environment (JRE)?

4. Was ist eine virtuelle Maschine, und wie funktioniert sie?

5. Auf welche Arten kann die virtuelle Maschine Java-Programme ausführen?

6. Wie funktioniert die Speicherverwaltung von Java-Programmen?

7. Was ist bei der Verteilung von Java-Programmen zu beachten?

6.8.2

Übungen

Übersetzen Sie folgendes Beispiel, disassemblieren Sie es, und versuchen Sie die Veränderungen der OpCodes nachzuvollziehen.

//Beispielprogramme/Plattform_Java/ex03

package platform;

class Rectangle {

public static void main(String[] arguments) {

double height;

double width;

double area;

height = 1.0;

width = 5.0;

area = height * width;

}

}

Listing 6.5 Ein neues Beispiel für den Disassembler

Die Lösungen zu den Aufgaben finden Sie in Kapitel 19 ab Seite 518.

210

»Je mehr Käse, desto mehr Löcher.

Je mehr Löcher, desto weniger Käse.

Also: Je mehr Käse, desto weniger Käse!

Oder?« (Aristoteles)

7

Gesetzmäßigkeiten

7.1

Einleitung

Dieses Kapitel behandelt die Gesetzmäßigkeiten, denen jedes Java-Programm un-terworfen ist. Diese Regeln für den Aufbau von Java-Anwendungen sind der Schlüssel zu Programmen, die so funktionieren, wie Sie es wollen.

7.2

Sichtbarkeit

Jede objektorientierte Sprache lässt zu, dass sich Objekte, Methoden und Attribute vor neugierigen Nachbarn und Verwandten schützen (Kapitel 3, »Objektorientierte Programmierung«). Dies geschieht entweder über die Kapselung oder über die Regeln für den Gültigkeitsbereich von Bezeichnern. Diese Gesetzmäßigkeiten erlauben Java-Programmierern, gut aufgebaute und stabile Programme zu schreiben.

7.2.1

Klassenkapselung

Vier verschiedenen Stufen stehen dem Java-Programmierer zur Verfügung, um die Stärke der Kapselung von Klassen, Methoden und Attributen nach seinen Wünschen festzulegen (Tabelle 7.1).

Schlüsselwort

Stärke

Sichtbarkeit

 public

Öffentlich (Stufe 0)

Klassen, Methoden und Variablen, die als

öffentlich deklariert sind, sind für alle an-

deren innerhalb des aktuellen Packages

oder außerhalb davon sichtbar.

Tabelle 7.1 Java verfügt über vier Geheimhaltungsstufen.

211

7

Gesetzmäßigkeiten

Schlüsselwort

Stärke

Sichtbarkeit

 protected

Vertraulich (Stufe 1)

Methoden und Variablen, die als vertrau-

lich (geschützt) deklariert sind, sind in ak-

 tuellen und in abgeleiteten Klassen unab-

hängig vom Package sichtbar.

 default

Geheim (Stufe 2)

Klassen, Methoden und Variablen sind

nur innerhalb des Packages gültig.

 private

Streng geheim (Stufe 3)

Methoden und Variablen dieses Typs sind

nur in der aktuellen Klasse sichtbar.

Tabelle 7.1 Java verfügt über vier Geheimhaltungsstufen. (Forts.) Die Stufen 0, 1 und 3 können Sie über das entsprechende Schlüsselwort (public, protected oder private) festlegen. Ist eine Klasse nicht mit einem dieser Schlüsselwörter gekennzeichnet, fällt sie unter die Sichtbarkeit default.

Abbildung 7.1 Sichtbarkeit von Java-Klassen

Abbildung 7.1 zeigt die Sichtbarkeitsregeln aus dem Blickwinkel einer Superklasse. Ihre öffentliche Methode A ist allen anderen Klassen zugänglich. Die geschütz-te Methode B kann hingegen nur von der Kindklasse 1, der Kindklasse 2 und der Freundklasse verwendet werden. Die Methode C (default) ist sogar nur für die Kindklasse 1 und die Freundklasse sichtbar, während die private Methode nur ihr selbst gehört.

212

Sichtbarkeit

7.2

Zutritt nur privat

Die Verwendung des Schlüsselworts private garantiert den stärksten Schutz vor dem Zugriff von neugierigen anderen Objekten. Nur Objekte der gleichen Klasse dürfen auf private Methoden und Variablen zugreifen. Klassen lassen sich aus naheliegenden Gründen natürlich nicht mit diesem Schlüsselwort ausstatten. Eine Klasse wie

private class Ghost {}

wäre für niemanden sichtbar, da nicht einmal ihr Konstruktor erreichbar wäre.

Interessanterweise akzeptiert der Java-Compiler aber einen privaten Konstruktor.

Was sich zunächst anhört wie die Lösung, die ein Problem sucht, kann unter Umständen sinnvoll sein. Das ist zum Beispiel dann der Fall, wenn eine Klasse über einen öffentlichen Konstruktor und einen privaten Konstruktor verfügt.

Den privaten Konstruktor verwendet sie, um sich selbst aufzurufen, also nur zum internen Gebrauch.

Sie wissen aus Abschnitt 4.8.2, »Konstruktoren«, Seite 120, dass jede Klasse über einen Standardkonstruktor verfügt – auch dann, wenn dieser gar nicht kodiert wird. Manchmal möchte man jedoch nicht, dass dieser parameterlose Konstruktor aufgerufen werden kann. Dass ist zum Beispiel immer dann der Fall, wenn ein bestimmter Anfangswert notwendig ist. Wie verhindert man den Aufruf dieses Konstruktors? Das lässt sich einfach erreichen, indem man den Konstruktor als private markiert:

public class Ghost {

private Ghost (){} // nicht aufzurufen

}

Listing 7.1 Der Standardkonstruktor kann nicht aufgerufen werden.

Default-Bereich

An zweiter Stelle der Kapselungsstärke stehen Klassen, Methoden und Variablen, die der Entwickler nicht besonders gekennzeichnet hat. Auf Bezeichner des Default-Bereichs haben nur die Klassen Zugriff, die sich im gleichen Package befinden. Anders als im Private-Bereich ist es also gestattet, dass eine Klasse nur innerhalb eines Packages Gültigkeit besitzt:

class Ghost {}

Damit bleiben ihre Methoden und Variablen innerhalb des Packages begrenzt, ganz egal, welchen Zugriffsschutz sie individuell besitzen. Die äußere Hülle hat sozusagen Vorrang.

213

7

Gesetzmäßigkeiten

Streng vertraulich

Die nächstschwächere Sicherheitsstufe erreicht man durch Verwendung des Schlüsselworts protected. In diesem vertraulichen Bereich bleibt alles in der

»Familie« und im »eigenen Haus«: Nur abgeleitete Klassen und Klassen innerhalb des gleichen Packages haben Zugriff auf die geschützten Informationen. Das Schlüsselwort können Sie im Gegensatz zu private auch für Klassen verwenden.

Eine Klassendefinition wie

protected class Ghost {}

ist also gestattet. Diese Klasse »spukt« nur innerhalb ihres Packages und in Packages von abgeleiteten Klassen.

Alles öffentlich

Anders sieht der Zugriffsschutz bei der Verwendung des Schlüsselworts public aus.

Dieses Schlüsselwort bietet die schwächste Form der Geheimhaltung, nämlich gar keine: Alle Informationen sind öffentlich, sofern sie nicht individuell durch die drei anderen Formen des Zugriffsschutzes eingeschränkt werden.

Beziehungskiste

Leider kann man mit den schönsten theoretischen Regeln in der Praxis oft wenig anfangen, und deshalb folgt nun ein dramatisches und beziehungsreiches Beispiel.

Apropos Beziehungen: Diese sind ja manchmal etwas anstrengend, besonders dann, wenn viele Personen im Spiel sind. So auch bei der Java-Familie, die ich Ihnen hiermit vorstellen möchte. Sie besteht aus einer Mutter, ihrem ehemaligen Ehemann, ihrem Hausfreund und ihren beiden Kindern.

Das Ganze wäre gar nicht so kompliziert, wenn Mutter und Vater der beiden Kinder nicht in Trennung leben würden. Bei der Trennung haben sich die beiden darauf geeinigt, dass die Tochter bei der Mutter und der Sohn beim Vater leben soll. Der Liebhaber, tja, der wohnt zum Leidwesen des Vaters mit Mutter und Tochter unter einem Dach.

magazine

+Reportage

Abbildung 7.2 Die Beziehungskiste als Package-Diagramm

214

Sichtbarkeit

7.2

Abbildung 7.2 zeigt nochmals die beiden Häuser und ihre Bewohner. Aber so spannend der Liebhaber auf den ersten Blick für Sie auch erscheinen mag, es ist eigentlich ziemlich enttäuschend, denn in Wirklichkeit dreht sich alles um die prominente Mutter.

Alle wollen mehr Zeit von ihr, der Vater, die Tochter, der Sohn und manchmal auch der Liebhaber (Abbildung 7.3). Und so bleibt der Mutter nur sehr wenig Zeit, nicht einmal für das folgende Interview. Aber sehen Sie selbst.

In Listing 7.2 sehen Sie eine Klasse Mutter. Sie besitzt vier Methoden, um mitzu-teilen, wie viel Zeit sie hat. Ihre Antwort differenziert sie nach dem Personenkreis, der sie anspricht. In der Öffentlichkeit (public) gibt sie beispielsweise immer zu verstehen, sie habe kaum Zeit (besonders nicht für Interviews).

Abbildung 7.3 Wie immer – alles dreht sich um die Mutter.

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex01

2:

3: package regularity.mother;

4:

5: public class Mother {

6:

7:

public String getPublicTime() {

8:

return " kaum ";

9:

}

10:

11:

protected String getProtectedTime() {

12:

return " viel ";

215

7

Gesetzmäßigkeiten

13:

}

14:

15:

String getDefaultTime() {

16:

return " ultra";

17:

}

18:

19:

private String getPrivateTime() {

20:

return " keine ";

21:

}

22:

23:

public String getMothersTime() {

24:

25:

return "Sorry," +

26:

new Mother().getPrivateTime() +

27:

"Zeit ...";

28:

29:

}

30: }

Listing 7.2 Eine Klasse »Mother« kann vier Antworten geben.

Wird die Mutter hingegen im vertrauten Kreis (protected) gefragt, sieht es schon besser aus. Für diese Personengruppe hat sie viel Zeit. Und noch besser sieht es für die häusliche Wohngemeinschaft (default) aus. Hier hat sie plötzlich ultraviel Zeit.

Methode

Kapselungsstärke

Antwort

getPublicTime()

keine (öffentlich)

kaum (Zeit)

getProtectedTime()

mittel (geschützt)

viel (Zeit)

getDefaultTime()

hoch (default)

ultraviel (Zeit)

getPrivateTime()

sehr hoch (private)

keine (Zeit)

Tabelle 7.2 Mutters merkwürdige Methoden

Nun können Sie sich schon vorstellen, was die anderen Akteure für Antworten bekommen, wenn sie geschickt fragen. Das Interview soll mit der Tochter beginnen (Listing 7.3). Da sie die leibliche Tochter ist und mit der Mutter unter einem Dach wohnt, kann sie natürlich sowohl auf die default als auch auf die protected Zeitreserven der Mutter zugreifen. Nur die private Methode getPrivateTime() bleibt ihr hierbei vorenthalten.

216

Sichtbarkeit

7.2

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex01

2:

3: package regularity.mother;

4:

5: public class Child extends Mother {

6:

7:

public String getMothersTime() {

8:

return super.getDefaultTime() + super.getProtectedTime();

9:

}

10: }

Listing 7.3 Die Tochter weiß, wie sie fragen muss ...

Wie Sie aus dem Listing erkennen können, hat die Tochter die günstigsten Voraussetzungen von allen Beteiligten: Da sie ein direkter Nachfahre der Mutter ist, muss sie nur das Schlüsselwort super verwenden, um auf diese Methoden zugreifen zu können. Das Schlüsselwort super ist für den Zugriff auf die Superklasse, also die Basisklasse, reserviert.

Der Liebhaber hat es ähnlich gut. Um auf die geschützten und Default-Methoden der Mutter zugreifen zu können, muss er lediglich ein neues Objekt der Mutter anlegen (Listing 7.4).

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex01

2:

3: package regularity.mother;

4:

5: public class Paramour {

6:

7:

private Mother mother = new Mother();

8:

9:

public String getMothersTime() {

10:

return

mother.getDefaultTime() +

11:

mother.getProtectedTime();

12:

}

13: }

Listing 7.4 ... und der Hausfreund auch

An diesem Beispiel mit dem Hausfreund sehen Sie, wie wichtig es ist, sich nur die »Typen« in das eigene »Haus« zu holen, zu denen man innige Beziehungen wünscht. In Java genießen Klassen des gleichen Packages fast vollständigen Zugriff auf die gesamten Informationen der Mitbewohner.

217

7

Gesetzmäßigkeiten

Nehmen Sie zum Vergleich den Sohn, der nun einmal nicht mehr mit der Mutter zusammenwohnt. Überraschenderweise sieht es für ihn nicht so gut aus wie für den Hausfreund (Listing 7.5).

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex01

2:

3: package regularity.father;

4:

5: import regularity.mother.Mother;

6:

7: public class Child extends Mother {

8:

9:

public String getMothersTime() {

10:

return super.getProtectedTime();

11:

//Nicht erlaubt:

12:

//return new Mother().getProtectedTime();

13:

}

14: }

Listing 7.5 Der Sohn hat »super« Zugriff auf den Protected-Bereich.

Der Sohn kann nicht auf den Default-Bereich zugreifen, da er aus einem fremden Haus (Package) stammt. Er hat aber zumindest Zugriff auf den geschützten Bereich der Mutter, den er über das Schlüsselwort super zu sehen bekommt. Er muss also kein neues Objekt der Mutter anlegen, wie es beim Hausfreund der Fall war.

Ist er jedoch bei seinen Fragen, ob Mutter Zeit für ihn hat, nicht geschickt, sieht es auch für ihn schlecht aus. Ein Zugriff über ein neues Objekt der Klasse Mutter, also beispielsweise

new Mother().getProtectedTime();

wäre ihm trotz Vererbungsbeziehung verwehrt.

Aber der Sohn ist noch begünstigt, denn im Vergleich zu ihm sieht es für den Ex-Ehemann viel schlechter aus. Der Vater des Sohnes steht weder in einer ver-wandtschaftlichen Beziehung zu seiner ehemaligen Ehefrau, noch wohnt er mit ihr unter einem Dach. Pech für ihn, denn er wird wie ein Fremder behandelt und bekommt damit nur die Zeit, die die Mutter auch für die Öffentlichkeit zur Verfügung stellt (Listing 7.6).

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex01

2:

3: package regularity.father;

4:

5: import regularity.mother.Mother;

6:

218

Sichtbarkeit

7.2

7: public class Father {

8:

9:

public String getMothersTime() {

10:

return new Mother().getPublicTime();

11:

}

12: }

Listing 7.6 Für den Vater bleibt nur wenig Zeit.

Nach so viel Herz und Schmerz nochmals die gesamte Reportage im Licht der Öffentlichkeit (Listing 7.7).

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex01

2:

3: package regularity.magazine;

4:

5: import regularity.father.Father;

6: import regularity.mother.Mother;

7: import regularity.mother.Paramour;

8:

9: public class Reportage {

10:

11:

public static void main(String[] args) {

12:

13:

Mother mother = new Mother();

14:

regularity.mother.Child daughter =

15:

new regularity.mother.Child();

16:

Paramour paramour = new Paramour();

17:

regularity.father.Child son =

18:

new regularity.father.Child();

19:

Father father = new Father();

20:

System.out.println("\nAus " +

21:

"'Bild der Java-Welt'," +

22:

" Ausgabe 9/2011:");

23:

System.out.println("Tochter (strahlt):" +

24:

"\tAlso f\u00FCr mich hat sie" +

25:

daughter.getMothersTime() +

26:

"Zeit");

27:

System.out.println("Hausfreund (l\u00E4chelt):" +

28:

"\tAuch f\u00FCr mich hat sie" +

29:

paramour.getMothersTime() +

30:

"Zeit");

31:

System.out.println("Sohn (gelangweilt):\tJa, " +

32:

"sie k\u00FCmmert sich" +

33:

son.getMothersTime() + "um mich");

34:

System.out.println("Vater (eifers\u00FCchtig):" +

219

7

Gesetzmäßigkeiten

35:

"\tSie hat" +

36:

father.getMothersTime() +

37:

"Zeit f\u00FCr mich");

38:

System.out.println("Sie selbst (gehetzt):\t" +

39:

mother.getMothersTime());

40:

}

41: }

Listing 7.7 Die Reportage zeigt die schwierigen Beziehungen deutlich auf.

In diesem Beispielprogramm sind einige Besonderheiten enthalten. Die erste Besonderheit kennen Sie aus Abschnitt 4.11.1, »Klassenimport« auf Seite 154. Der

»Import« der beiden Kinder erfolgt mit ihrem vollständigen, das heißt »voll qua-lifizierten« Namen.

Der voll qualifizierte Name ist bei der Verwendung gleichnamiger Klassen aus verschiedenen Packages notwendig. In diesem Fall wird er gebraucht, damit der Compiler das Kind aus dem Package mother und das andere aus dem Package father unterscheiden kann. Aus dem einen Kind soll schließlich das Tochter-Objekt werden, aus dem anderen der Sohn.

Alle Klassen besitzen eine öffentliche Methode namens getMothersTime(). In dieser Methode rufen alle Klassen die Methoden der Mutter auf, auf die sie maximal zugreifen können. Konsequenterweise besitzt auch die Mutter selbst diese Methode. Die Mutter verwendet diese Methode, um auf ihre eigene private Methode getPrivateTime() zuzugreifen. Nur ihr ist das gestattet. Und so kommt es, dass die Kapselung an dieser Stelle durchbrochen wird und in der Zeitung Folgendes ans Tageslicht gezerrt wird:

Aus 'Bild der Java-Welt', Ausgabe 9/2011:\

Tochter (strahlt):

Also für mich hat sie ultraviel Zeit\

Hausfreund (lächelt): Auch für mich hat sie ultraviel Zeit\

Sohn (genervt):

Ja, sie kümmert sich viel um mich\

Vater (eifersüchtig): Sie hat kaum Zeit für mich\

Sie selbst (gehetzt): Sorry, keine Zeit ...

7.2.2

Gültigkeitsbereich von Variablen

Jetzt wäre es schön, wenn mit der »Beziehungskiste« die Sichtbarkeit von Klassen, Methoden und Variablen ein für allemal erledigt wäre. Das ist aber nicht so, denn Java kennt vier verschiedene Arten von Variablen. Einige von diesen können von anderen Variablen verdeckt werden – und dies ohne Anwendung der Kapselung.

220

Sichtbarkeit

7.2

Variable

Verdeckung

Klassenvariablen

Möglich

Objektvariablen

Möglich

Parameter

Unmöglich

Lokale Variablen

Unmöglich

Tabelle 7.3 Die vier Variablenarten

Was versteht man unter der Verdeckung von Variablen? Darunter versteht man, dass eine Variable des gleichen Namens eine andere in einem Block überlagert.

Dazu ein Beispiel.

Klassenvariable versus lokale Variable

Ich möchte erneut die Klasse Mother verwenden. Sie bekommt diesmal als Attribut eine Zustandsvariable namens privateTime. Dieser Zustand ist für das gesamte Objekt gültig, da er in keinem lokalen Block deklariert wurde, sondern für die gesamte Klasse und damit auch für jedes Objekt. Diese Objektvariable wird sogleich mit »ultraviel« belegt. Aufgrund dieser Belegung gibt die Klasse beim Zugriff auf die Methode getPrivateTime() wie erwartet »ultraviel« zurück.

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex02

2: package regularity.mother;

3:

4: public class Mother {

5:

6:

private String privateTime = " ultra viel ";

7:

8:

public String getPublicTime() {

9:

return " kaum ";

10:

}

11:

12:

protected String getProtectedTime() {

13:

return " viel ";

14:

}

15:

16:

String getDefaultTime() {

17:

return " ultra";

18:

}

19:

20:

private String getPrivateTime() {

21:

String privateTime = " keine ";

22:

return privateTime;

23:

}

221

7

Gesetzmäßigkeiten

24:

25:

public String getMothersTime() {

26:

return "Ich habe" +

27:

new Mother().getPrivateTime() + "Zeit";

28:

}

29: }

Listing 7.8 Die Klasse »Mother« mit Objektvariable und Methode

Anders sieht es aus, wenn man eine lokale Variable namens privateTime einführt (Listing 7.9). In diesem Fall bekommt man als Antwort »keine« zurück. Was ist geschehen? Die lokale Variable hat die Objektvariable temporär, also in ihrem privaten Block, überlagert.

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex03

2: package regularity.mother;

3:

4: public class Mother {

5:

6:

private static String privateTime = " ultra viel ";

7:

8:

public String getPublicTime() {

9:

return " kaum ";

10:

}

11:

12:

protected String getProtectedTime() {

13:

return " viel ";

14:

}

15:

16:

String getDefaultTime() {

17:

return " ultra";

18:

}

19:

20:

private String getPrivateTime() {

21:

String privateTime = " keine ";

22:

return this.privateTime;

23:

}

24:

25:

public String getMothersTime() {

26:

return "Ich habe" +

27:

new Mother().getPrivateTime() + "Zeit";

28:

}

29: }

Listing 7.9 Die Klasse »Mother« mit Objektvariable und Methode

222

Sichtbarkeit

7.2

Jetzt tauchen natürlich viele Fragen auf:

왘

Ist die Objektvariable völlig verschwunden?

왘

Wie merkt sich das Programm den Wert der globalen Objektvariablen?

왘

Wie erscheint sie wieder und wann?

Zunächst: Die Objektvariable ist nicht völlig verschwunden. Ihre Bezeichnung ist nur überdeckt worden, weswegen sich auch niemand ihren Wert merken muss.

Die Objektvariable und die lokale Variable leben einträchtig nebeneinander. Es ist kein Problem, dass sie im gleichen Block verwendet werden. Dazu muss man sie nur eindeutig bezeichnen. Wie, das zeigt Listing 7.10.

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex04

2:

3: package regularity.mother;

4:

5: public class Mother {

6:

7:

private static String privateTime = " ultra viel ";

8:

9:

public String getPublicTime() {

10:

return " kaum ";

11:

}

12:

13:

protected String getProtectedTime() {

14:

return " viel ";

15:

}

16:

17:

String getDefaultTime() {

18:

return " ultra";

19:

}

20:

21:

private String getPrivateTime() {

22:

String privateTime = " keine ";

23:

return this.privateTime;

24:

}

25:

26:

public String getMothersTime() {

27:

return "Ich habe" +

28:

new Mother().getPrivateTime() +

29:

"Zeit";

30:

}

31: }

Listing 7.10 Variable und Objektvariable in Eintracht

223

7

Gesetzmäßigkeiten

Das Schlüsselwort this erlaubt den Zugriff auf das aktuelle Objekt und auch auf seine globalen Variablen. Verwendet man es zum Zugriff auf die Objektvariable (Zeile 7, Listing 7.10), ist wieder alles in Ordnung, und die Klasse gibt wieder

»ultraviel« zurück. Der Haken an diesem Beispiel ist nur, dass die lokale Variable vollkommen überflüssig geworden ist. Aber das lässt sich ändern.

Sehen Sie sich einmal folgenden Fall an: Die Klasse Mother soll über eine Methode verfügen, um ihre private Zeit festzulegen und auf die Objektvariable privateTime zugreifen zu können (Listing 7.11).

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex05

2:

3: package regularity.mother;

4:

5: public class Mother {

6:

7:

private String privateTime = " ultra viel ";

8:

9:

public String getPublicTime() {

10:

return " kaum ";

11:

}

12:

13:

protected String getProtectedTime() {

14:

return " viel ";

15:

}

16:

17:

String getDefaultTime() {

18:

return " ultra";

19:

}

20:

21:

private String getPrivateTime() {

22:

return this.privateTime;

23:

}

24:

25:

public void setPrivateTime(String privateTime) {

26:

this.privateTime = privateTime;

27:

}

28:

29:

public String getMothersTime() {

30:

return "Ich habe" +

31:

new Mother().getPrivateTime() + "Zeit";

32:

}

33: }

Listing 7.11 Variable und Objektvariable in Eintracht

224

Auswertungsreihenfolge

7.3

Wie Sie anhand der Methode setPrivateTime() sehen, koexistieren Parameter und Objektvariable wieder einträchtig. Konstruktionen der Art

public void setPrivateTime(String m_privateTime) {\

p_privateTime = m_privateTime;

}

sind nicht nur überflüssig, sie sind auch viel schlechter zu lesen.

7.3

Auswertungsreihenfolge

Bei der Auswertungsreihenfolge eines Java-Programms gelten die aus Kapitel 4,

»Sprache Java«, bekannten Regeln. Eigentlich könnte man das Thema ad acta legen, wenn man glaubte, die Auswertungsreihenfolge verlaufe genauso, wie aus der Mathematik gewohnt. Dass dies nicht immer der Fall sein muss und es sehr empfehlenswert ist, Klammern zu setzen, zeigen die zwei folgenden Beispiele.

7.3.1

Punkt vor Strich

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex06

2:

3: package regularity.calculation;

4:

5: public class Calculation {

6:

7:

public static void main(String[] arguments) {

8:

int a = 4;

9:

int b = 4;

10:

int c = 3;

11:

int d = 4;

12:

int result;

13:

result = a + b * c + d;

14:

System.out.println("Ergebnis 1 = " + result);

15:

result = a + (b * c) + d;

16:

System.out.println("Ergebnis 2 = " + result);

17:

result = (a + b) * c + d;

18:

System.out.println("Ergebnis 3 = " + result);

19:

result = ((a + b) * c) + d;

20:

System.out.println("Ergebnis 4 = " + result);

21:

result = (a + b) * (c + d);

22:

System.out.println("Ergebnis 5 = " + result);

23:

}

24: }

Listing 7.12 Addition und Multiplikation gemischt

225

7

Gesetzmäßigkeiten

Zu Anfang des Kalkulationsbeispiels (Listing 7.12) werden vier Variablen als Integer-Werte vereinbart (Zeile 8 bis 11). Anschließend verwendet das Programm sie in einer gemischten Addition und Multiplikation in vier Fällen und gibt folgende Werte aus:

Ergebnis 1 = 20

Ergebnis 2 = 20

Ergebnis 3 = 28

Ergebnis 4 = 28

Ergebnis 5 = 56

Die Erklärung der Ergebnisse erscheint nicht weiter schwierig.

Keine Klammerebenen

Im ersten Fall verzichtet das Programm auf Klammerebenen. Das Ergebnis 1 ist aus diesem Grund mit dem Fall 2 identisch, denn zuerst führt das Programm die Multiplikation aus, erhält 12 als Zwischenergebnis, addiert zweimal 4 und erhält schließlich 20. Im zweiten Fall ist das durch die Klammerebenen nur noch deutlicher.

Von innen nach außen

Im dritten und vierten Fall erzwingt das Programm, dass die linke Addition vor der Multiplikation durchgeführt wird. Der Ausdruck wird also von innen nach außen verarbeitet. Die Regel, dass ein Ausdruck immer von links nach rechts abgearbeitet werden muss, ist außer Kraft gesetzt.

Strich vor Punkt

Im fünften und letzten Fall erfolgt die Verarbeitung der beiden Additionen zuerst, da sie geklammert sind. Danach multipliziert das Programm sie miteinander.

Durch die Klammern erreicht das Programm, dass Strich vor Punkt gilt und nicht Punkt vor Strich. Diese Regel sollte aus der Mathematik bekannt sein.

7.3.2

Punkt vor Punkt

Etwas anders sieht es aus, wenn verschiedene Punktrechnungsarten (*, /, %) gemischt verwendet werden. Listing 7.13 zeigt ein Beispiel dafür.

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex07

2:

3: package regularity.calculation;

4:

5: public class Calculation {

6:

226

Auswertungsreihenfolge

7.3

7:

public static void main(String[] arguments) {

8:

int a = 4;

9:

int b = 4;

10:

int c = 3;

11:

int d = 4;

12:

int result;

13:

result = a + b * c / d;

// Fall 1

14:

System.out.println("Ergebnis 1 = " + result);

15:

result = a + (b * c) / d;

// Fall 2

16:

System.out.println("Ergebnis 2 = " + result);

17:

result = a + (c * b) / d;

// Fall 3

18:

System.out.println("Ergebnis 3 = " + result);

19:

result = a + b * (c / d);

// Fall 4

20:

System.out.println("Ergebnis 4 = " + result);

21:

result = a + (b * (c / d)); // Fall 5

22:

System.out.println("Ergebnis 5 = " + result);

23:

result = (a + b) * c / d;

// Fall 6

24:

System.out.println("Ergebnis 6 = " + result);

25:

result = ((a + b) * c) / d; // Fall 7

26:

System.out.println("Ergebnis 7 = " + result);

27:

result = (a + b) * (c / d); // Fall 8

28:

System.out.println("Ergebnis 8 = " + result);

29:

}

30: }

Listing 7.13 Addition, Division und Multiplikation gemischt

Wie beim vorangegangenen Beispiel vereinbart das Kalkulationsprogramm vier Variablen als Integer-Werte. Anschließend verwendet es sie in einer gemischten Addition, Division und Multiplikation in acht Fällen. Das Ergebnis dieser Kalkulation auf vier verschiedene Arten sieht so aus:

Ergebnis 1 = 7

Ergebnis 2 = 7

Ergebnis 3 = 7

Ergebnis 4 = 4

Ergebnis 5 = 4

Ergebnis 6 = 6

Ergebnis 7 = 6

Ergebnis 8 = 0

Das Ergebnis ist auf den ersten Blick wieder einleuchtend. Die Auswertungsreihenfolge verläuft von links nach rechts, wobei Punkt vor Strich bevorzugt wird.

Zu beachten ist, dass das Divisionszeichen hierbei als Punktoperator (wie in der Mathematik) geführt wird.

227

7

Gesetzmäßigkeiten

Punkt vor Strich

Im ersten Fall versucht das Programm, zunächst die Addition durchzuführen, darf dies aber wegen der Regel »Punkt vor Strich« nicht. Aus diesem Grund führt es zunächst die Multiplikation durch und erhält 12 als Resultat. Diesen Wert dividiert es durch b und erhält 3. Die abschließende Addition 3 plus 4 ergibt danach wieder 7.

Überflüssige Klammerebenen

Beim zweiten Fall ändern die gesetzten Klammern nichts an dem Ergebnis, da sie die Auswertungsreihenfolge nicht beeinflussen. Die Kalkulation verläuft also identisch.

Vertauschung

Im dritten Fall tritt ein Mathematikgesetz in Kraft, das so genannte Vertauschungs-gesetz (Kommutativgesetz). Das bedeutet, dass gleichwertige Operanden (Argumente) vertauscht werden können. Ob b * c zuerst bearbeitet wird oder c * b, spielt bei gleichwertigen Rechenoperationen also zunächst keine Rolle. Die Kalkulation verläuft also auch hier identisch.

Verlorener Divisionsrest

Was ist im 4. Fall passiert? Die Klammerung des Ausdrucks c / d führt im Gegensatz zum ersten Fall dazu, dass hier ein Zwischenergebnis gebildet werden muss. Dies ist auch im fünften und achten Fall geschehen, da der Ausdruck nicht sofort multipliziert werden konnte.

Im Fall der Division erfolgt eine Typkonvertierung (Abschnitt 7.4, »Typkonvertierung«, Seite 228). Da das Resultat 0,75 kein Integer-Wert ist, gehen die Nachkommastellen (Divisionsrest) verloren. Was bleibt, ist nur noch der Wert 0, und der ergibt als Multiplikator im siebten Fall als Resultat ebenfalls 0.

Von innen nach außen

In den Fällen 6 und 7 verläuft die Bearbeitung des Ausdrucks von innen nach au-

ßen. Zuerst wird die Addition berechnet, danach die Multiplikation und schließ-

lich die Division.

7.4

Typkonvertierung

Java ist im Gegensatz zu beispielsweise Smalltalk eine streng typisierte Sprache (Abschnitt 4.3.1, »Grundlagen«, Seite 90). Wenn ein Bezeichner als ein bestimmter Typ deklariert wurde, so ist dies für den gesamten Ablauf des Programms 228

Typkonvertierung

7.4

gültig. Der Compiler prüft bei Zuweisungen, ob die Datentypen zueinander passen. Folgendes wird nicht kompiliert:

long a = 1;

int b = 1;

b = a; // wird nicht kompiliert

Der Compiler überprüft, ob ein Datenverlust auftreten kann. Da die Variable a einen größeren Wertebereich belegen kann als b, weigert er sich, den Ausdruck abzusegnen. Folgendes ist hingegen erfolgreich:

long a = 1;

int b = 1;

a = b; // wird kompiliert

Dass ein Bezeichner lebenslang an seinen Typ gekettet ist, bedeutet allerdings nicht, dass es nicht möglich wäre, diese Fesseln temporär zu sprengen. Die Typkonvertierung erlaubt es, Werte zwischen Variablen unterschiedlichen Typs auszutauschen, wie folgendes Fragment zeigt:

long a = 1;

int b = 1;

int c = 1;

b = (int)a; // wird kompiliert

c = a; // wird nicht kompiliert

Wie das Beispiel zeigt, führt das Programm durch den Cast-Operator eine temporäre Konvertierung von a durch, um den Wert an b zu übergeben. Dass diese Vereinbarung nur zeitweise gilt, sehen Sie an der darauf folgenden Zeile. Hier versucht das Programm erneut, einen Wert des Typs long an eine Variable des Typs int zu übergeben, und scheitert erneut am Compiler, der das zu Recht unterbindet.

Die Programmiersprache Java verfügt über zwei Arten von Typkonvertierung.

Die implizite Typkonvertierung wird automatisch durchgeführt. Hier ist der Entwickler passiv. Bei der expliziten Konvertierung führen Sie ausdrücklich eine Konvertierung durch.

7.4.1

Implizite Konvertierung

Tückisch ist die implizite Konvertierung, bei der eine schleichende Wertumwand-lung stattfindet. Der Compiler weist nicht darauf hin, wenn ein Datenverlust droht, wie die folgenden Beispiele zeigen.

229

7

Gesetzmäßigkeiten

Verengung des Wertebereichs

Das Programm in Listing 7.14 wird von allen Entwicklungsumgebungen anstandslos übersetzt. Als Ergebnis erscheint 0, was auf einen deutlichen Informationsverlust hinweist, denn das Ergebnis müsste 0,75 sein.

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex08

2: package regularity.calculation;

3:

4: public class Calculation {

5:

6:

public static void main(String[] arguments) {

7:

int a = 3;

8:

int b = 4;

9:

float result;

10:

result = a / b;

11:

System.out.println("Ergebnis = " + result);

12:

}

13: }

Listing 7.14 Implizite Typkonvertierung mit Datenverlust

Das Programm führt bei der Division eine leicht zu übersehende implizite Konvertierung in einen Int-Wert durch. Da dieser Datentyp nur Festkommazahlen speichern kann, schneidet das Programm den Divisionsrest einfach ab. Übertragen wird nur die Vorkommastelle. Somit erscheint 0 als Ergebnis.

Das zweite Beispiel (Listing 7.15) testet die Grenze des Wertebereichs aus. Das Programm belegt zwei Integer-Werte mit ihrem Maximalwert und versucht im Anschluss daran, diese zu addieren und das Ergebnis als result zu speichern.

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex09

2: package regularity.calculation;

3:

4: public class Calculation {

5:

6:

public static void main(String[] arguments) {

7:

int a = 2147483647;

8:

int b = 2147483647;

9:

int result;

10:

result = a + b;

11:

System.out.println("Ergebnis = " + result);

12:

}

13: }

Listing 7.15 Das Programm läuft Amok.

230

Typkonvertierung

7.4

Wer vermutet, das Programm würde abstürzen, täuscht sich. Es passiert das Schlimmste: Durch die Addition wird das Zwischenergebnis wieder als Integer gespeichert, überschreitet aber diesmal den maximalen Wertebereich. Das führt nicht dazu, dass das Programm abbricht. Stattdessen erhält man einfach nur ein völlig falsches Ergebnis; das Programm arbeitet munter weiter.

Erweiterung des Wertebereichs

Bei der impliziten Typkonvertierung kann nicht nur eine gefährliche Verengung des Wertebereichs mit einem Datenverlust entstehen, sondern auch eine Erweiterung des Wertebereichs (Listing 7.16). Diesmal bleibt das Programm auf dem Teppich.

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex10

2:

3: package regularity.calculation;

4:

5: public class Calculation {

6:

7:

public static void main(String[] arguments) {

8:

byte a = 127;

9:

byte b = 127;

10:

int result;

11:

result = a + b;

12:

System.out.println("Ergebnis = " + result);

13:

}

14: }

Listing 7.16 Implizite Typkonvertierung mit Bereichserweiterung

Das Beispiel belegt zwei Byte-Variablen mit Werten dicht unterhalb des Maxi-malbereichs dieses Datentyps. Die Addition führt aber durch die implizite Konvertierung nicht dazu, dass das Programm kollabiert. Das Programm wandelt die beiden Werte stattdessen in einen Int-Wert um, der korrekt an die Variable result übergeben wird.

7.4.2

Explizite Konvertierung

Für die explizite Typkonvertierung müssen Sie aktiv in das Programm eingrei-fen und mit dem Cast-Operator eine ausdrückliche Konvertierung durchführen.

Insofern ist die explizite Konvertierung lange nicht so tückisch wie die implizite Variante. Hier gibt es wieder zwei Unterarten: die Verengung und die Erweiterung des Wertebereichs.

231

7

Gesetzmäßigkeiten

Verengung des Wertebereichs

Die Verengung des Wertebereichs (engl. narrowing) sollte nur dann durchgeführt werden, wenn kein Informationsverlust auftritt. Es ist eine Vereinbarung zwischen Programmierer und Compiler, die heißt: »Schon gut, es ist gefährlich, aber ich weiß, was ich tue.«

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex11

2:

3: package regularity.calculation;

4:

5: public class Calculation {

6:

7:

public static void main(String[] arguments) {

8:

int a = 30000;

9:

int b = 2700;

10:

short result;

11:

result = (short) (a + b);

12:

System.out.println("Ergebnis = " + result);

13:

}

14: }

Listing 7.17 Verengung des Wertebereichs durch explizite Typkonvertierung Das Beispiel in Listing 7.17 zeigt, wie man den Wertebereich durch eine explizite Typkonvertierung verengen kann. Das Programm verwendet den Cast-Operator, um sicherzustellen, dass das Ergebnis der Addition als short interpretiert wird.

Das Resultat liegt knapp unterhalb des maximalen Wertebereichs, und deshalb verläuft alles gut. Ex2

Erweiterung des Wertebereichs

Unter der Erweiterung des Wertebereichs versteht man die Typkonvertierung in Richtung von Datentypen, die mehr Speicherplatz beanspruchen (Abbildung 7.4). Vorsicht ist geboten, wenn Sie Festkommazahlen (byte, short, int, long) in Gleitkommazahlen konvertieren wollen.

Die Totenköpfe in der Grafik weisen darauf hin, dass der Übergang von Festzu Gleitkommazahlen gefährlich ist. Das kommt daher, dass Festkommazahlen prinzipiell immer nur bis zu einer bestimmten Nachkommastelle gespeichert werden können. Bei der Konvertierung kann es also zu Datenverlusten kommen (Abschnitt 4.3, »Einfache Datentypen«).

Zwei Beispiele dazu: Das erste Beispiel zeigt, wie eine Erweiterung des Wertebereichs den Ablauf des Programms retten kann (Listing 7.18).

232

Typkonvertierung

7.4

Abbildung 7.4 Erweiterung des Wertebereichs

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex12

2:

3: package regularity.calculation;

4:

5: public class Calculation {

6:

7:

public static void main(String[] arguments) {

8:

9:

int a = 2147483647;

10:

11:

int b = 2147483647;

12:

13:

long result;

14:

15:

result = (long) a + (long) b;

16:

17:

System.out.println("Ergebnis = " + result);

18:

}

19: }

Listing 7.18 Erweiterung des Wertebereichs durch explizite Typkonvertierung Vergleichen Sie dieses Programm mit Listing 7.15: Während das vorangegangene Beispiel durch eine implizite Typkonvertierung kollabiert, zieht dieses Beispiel vorher die Notbremse. Das Programm führt eine explizite Konvertierung der beiden Summanden durch und erzielt die gewünschte Wirkung: Das Ergebnis ist diesmal korrekt.

233

7

Gesetzmäßigkeiten

Das folgende Beispiel zeigt die schon erwähnte unangenehme Seite der Java-Typkonvertierung: Nicht immer ist eine Erweiterung des Wertebereichs ohne Datenverlust möglich.

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex13

2:

3: package regularity.calculation;

4:

5: public class Calculation {

6:

7:

public static void main(String[] arguments) {

8:

long a = 1234567890123456789L;

9:

float b = a;

10:

System.out.println("Gleitkommazahl = " + b);

11:

System.out.println("Festkommazahl = " + (long)b);

12:

}

13: }

Listing 7.19 Datenverlust durch Erweiterung des Wertebereichs

Das Programm gibt folgende Werte aus:

Gleitkommazahl = 1.23456794E18

Festkommazahl = 1.234567939550609408

Wie Sie an beiden Ausgaben erkennen können, ist der Verlust an Genauigkeit erheblich. Im zweiten Fall sehen Sie aber noch besser, dass der Datenverlust keine Bagatelle ist. Dazu war lediglich eine Rekonvertierung des Ergebnisses in eine Festkommazahl notwendig.

7.5

Polymorphie

In Abschnitt 3.12 habe ich Ihnen das Konzept der Polymorphie als eines der wesentlichen Merkmale objektorientierter Sprachen vorgestellt. Es äußert sich im Überladen und Überschreiben von Methoden einer Klasse.

7.5.1

Überladen von Methoden

Sie erinnern sich sicher noch an die Klasse Mother. Keine Angst, es ist diesmal einfacher. Sie besitzt zwei Methoden, um die Zeit festzulegen, die sie für die Öffentlichkeit aufbringt. Die Methoden tragen beide den gleichen Namen, es ändert sich nur der Übergabeparameter. In einem Fall ist der Parameter ein Char-Feld, im anderen Fall ein String (Listing 7.20).

234

Polymorphie

7.5

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex14

2:

3: package regularity.mother;

4:

5: public class Mother {

6:

7:

private String publicTime;

8:

9:

public String getPublicTime() {

10:

return this.publicTime;

11:

}

12:

13:

public void setPublicTime(String publicTime) {

14:

this.publicTime = publicTime;

15:

}

16:

17:

public void setPublicTime(char[] publicTime) {

18:

this.publicTime = new String(publicTime);

19:

}

20: }

Listing 7.20 Überladen einer Methode

Die Java-Laufzeitumgebung unterscheidet während der Programmausführung, welche der beiden Methoden verwendet wird. Wird das Char-Feld übergeben, führt das Programm die entsprechende Methode aus. Es erscheint: »Ich habe kaum Zeit.« Wird hingegen der String übergeben, führt das Programm die Methode mit dem String-Parameter aus. Es erscheint daraufhin: »Ich habe viel Zeit.«

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex14

2:

3: package regularity.magazine;

4:

5: import regularity.mother.Mother;

6:

7: public class Reportage {

8:

9:

public static void main(String[] args) {

10:

char publicTime[] = {' ', 'k','a','u','m', ' '};

11:

Mother mother = new Mother();

12:

mother.setPublicTime(publicTime);

13:

System.out.println("Mutter:\t" + "Ich habe" +

14:

mother.getPublicTime() + "Zeit");

15:

mother.setPublicTime(" viel ");

16:

System.out.println("Mutter:\t" + "Ich habe" +

17:

mother.getPublicTime() + "Zeit");

235

7

Gesetzmäßigkeiten

18:

}

19: }

Listing 7.21 Zwei Ausgaben durch Überladen der Methoden

Wenn also eine Methode gleichen Namens innerhalb einer Klasse definiert wird, spricht man davon, dass man sie überlädt. Es lassen sich beliebige Methoden gleichen Typs überladen, also auch Konstruktoren. Es ist jedoch nicht erlaubt, Methoden unterschiedlichen Typs zu überladen, wenn die Parameterliste vollständig übereinstimmt (Listing 7.22). Der Compiler wertet dies als doppelte Definition.

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex15

2:

3: package regularity.mother;

4:

5: public class Mother {

6:

7:

public String getPublicTime() {

8:

return " kaum ";

9:

} // nicht erlaubt

10:

11:

public char[] getPublicTime() {

12:

char publicTime[] = {' ', 'k','a','u','m', ' '};

13:

return publicTime;

14:

}

15:

16: }

Listing 7.22 Das Überladen der Methode »getPublicTime« ist nicht gestattet.

Das Überladen von Methoden unterschiedlichen Typs ist nicht erlaubt, da der Java-Interpreter sonst zur Laufzeit nicht mehr unterscheiden könnte, welche Methode gemeint ist. Dass sich Methoden gleichen Typs nicht überladen lassen, gilt damit übrigens auch für Vererbungsbeziehungen. Nachfolgend ein Beispiel mit der Basisklasse »Mother«. Diese Klasse enthält eine Methode »getPublicTime«.

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex16

2:

3: package regularity.mother;

4:

5: public class Mother {

6:

7:

public char[] getPublicTime() {

8:

char publicTime[] = {' ', 'k','a','u','m', ' '};

9:

return publicTime;

10:

}

236

Polymorphie

7.5

11: }

Listing 7.23 Die Basisklasse »Mother«

Die abgeleitete Klasse »Child« versucht, die Methode »getPublicTime« mit einer Methode gleichen Namens, aber verschiedenem Rückgabewert, zu überschreiben, was nicht gestattet ist.

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex16

2:

3: package regularity.mother;

4:

5: public class Child extends Mother {

6:

7:

public String getPublicTime() { // nicht erlaubt

8:

return " viel ";

9:

}

10: }

Listing 7.24 Die abgeleitete Klasse »Child«

Der Compiler interpretiert die neue Methode gleichen Namens als missglückten Versuch, die vorhandene Methode zu überschreiben, und verweigert die Zusammenarbeit. Wie man eine Methode korrekt überschreibt, davon handelt der nächste Abschnitt.

7.5.2

Überschreiben von Methoden

Ein wichtiger Aspekt bei der biologischen Vererbung sind Mutationen. Auch in Java müssen Erbinformationen nicht einfach so übernommen werden. Wenn man in einer abgeleiteten Klasse das Verhalten einer Methode ändern möchte, kann man sie einfach überschreiben (überlagern).

Das Überschreiben geschieht durch eine Neudefinition der Methode. Dabei muss die Signatur exakt der Basismethode entsprechen. Methoden können nur dann nicht überschrieben werden, wenn eine der folgenden Bedingungen erfüllt ist: 1. Methoden, die mit private definiert wurden

2. Methoden, die mit final definiert wurden

3. Methoden, die mit static definiert wurden

Normale Methoden überschreiben

Dazu wieder ein Beispiel mit Mutter, Tochter und Illustrierter. Sowohl Mutter als auch Tochter haben eine Methode getPublicTime(). Das bedeutet, dass diese Me-237

7

Gesetzmäßigkeiten

thode in der Tochterklasse überschrieben wird. Nun besitzt die Tochter aber noch weitere Methoden. Mit der Methode getMyPublicTime() greift sie auf getPublicTime() zu und mit der Methode getMothersPublicTime() ebenfalls. Der Unterschied besteht darin, dass sie mit der letztgenannten Methode explizit durch die Referenz super angibt, dass sie auf die Mutterklasse zugreifen möchte.

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex16

2:

3: package regularity.mother;

4:

5: public class Child extends Mother {

6:

7:

public String getPublicTime() {

8:

return " viel ";

9:

}

10:

11:

public String getMyPublicTime() {

12:

return getPublicTime();

13:

}

14:

15:

public String getMothersPublicTime() {

16:

return super.getPublicTime();

17:

}

18: }

Listing 7.25 Die Klasse »Child« überschreibt die Methode »getPublicTime«.

Die beiden Klassen sollen im folgenden Beispielprogramm verwendet werden: 1: //Beispielprogramme/Gesetzmaessigkeiten/Ex17

2:

3: package regularity.magazine;

4:

5: import regularity.mother.Mother;

6: import regularity.mother.Child;

7:

8: public class Reportage {

9:

10:

public static void main(String[] args) {

11:

Mother mother = new Mother();

12:

Child daughter = new Child();

13:

System.out.println("Mutter:\t\t" + "Ich habe" +

14:

mother.getPublicTime() + "Zeit");

15:

System.out.println("Tochter:\t" + "Ich habe" +

16:

daughter.getPublicTime() + "Zeit");

17:

System.out.println("Tochter:\t" + "Ich habe immer" +

238

Polymorphie

7.5

18:

daughter.getMyPublicTime() + "Zeit");

19:

System.out.println("Tochter:\t" + "Mutter hat wie immer" +

20:

daughter.getMothersPublicTime() + "Zeit");

21:

}

22: }

Listing 7.26 Eine Reportage über Mutter und Tochter

Das Programm erzeugt folgende Ausgabe:

Mutter:

Ich habe kaum Zeit

Tochter:

Ich habe viel Zeit

Tochter:

Ich habe immer viel Zeit

Tochter:

Mutter hat wie immer kaum Zeit

Im ersten Fall ruft das Programm die Originalmethode der Mutter auf und im zweiten Fall die Methode der Tochter. Im dritten Fall ruft die Tochter intern ihre eigene Methode auf, während sie im letzten Fall auf die Methode ihrer Mutter zugreift.

Statische Methoden überschreiben

Das folgende Beispiel sollte laut Sprachdefinition eigentlich nicht funktionieren und wird auch immer in älteren Lehrbüchern als unmöglich dargestellt. Nochmals also das Beispiel mit Mutter und Tochter, aber diesmal mit veränderter Signatur.

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex18

2:

3: package regularity.mother;

4:

5: public class Mother {

6:

7:

static String getPublicTime() {

8:

return " kaum ";

9:

}

10: }

Listing 7.27 Die Basisklasse »Mother«

Das nachfolgende Beispiel zeigt, wie eine abgeleitete Klasse eine statische Methode überschreibt.

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex18

2:

3: package regularity.mother;

4:

5: public class Child extends Mother {

239

7

Gesetzmäßigkeiten

6:

7:

static String getPublicTime() {

8:

return " viel ";

9:

}

10: }

Listing 7.28 Die abgeleitete Klasse »Child« überschreibt die Methode »getPublicTime«.

Die Klassen werden wieder von der bekannten Reportage-Klasse verwendet.

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex18

2:

3: package regularity.mother;

4:

5: public class Reportage {

6:

7:

public static void main(String[] args) {

8:

Mother mother = new Mother();

9:

Child daughter = new Child();

10:

System.out.println("Mutter:\t\t" + "Ich habe"

11:

+ mother.getPublicTime() + "Zeit");

12:

System.out.println("Tochter:\t" + "Ich habe"

13:

+ daughter.getPublicTime() + "Zeit");

14:

}

15: }

Listing 7.29 Diesmal eine statische Reportage

Wenn Sie das Programm ausführen, erscheint Folgendes:

Mutter: Ich habe kaum Zeit\

Tochter: Ich habe viel Zeit

Das bedeutet, dass die Methode getPublicTime() der Tochterklasse die gleichnamige Methode (identische Signatur!) der Mutterklasse überlagert hat. Ändert man die Tochterklasse wie folgt, kommt es – wie erwartet – zu einer Fehlermeldung des Compilers.

1: //Beispielprogramme/Gesetzmaessigkeiten/Ex19

2:

3: package regularity.mother;

4:

5: public class Child extends Mother {

6:

//Nicht erlaubt:

7:

String getPublicTime() {

8:

return " viel ";

9:

}

240

Programmierkonventionen

7.6

10: }

Listing 7.30 Diesmal funktioniert das Überschreiben nicht.

Der Compiler findet nun eine Methode, die nicht exakt die Signatur der Methode der Mutterklasse besitzt, und weigert sich, sie zu übersetzen.

Überschreiben verhindern

Wenn Sie das Überschreiben einer Methode zuverlässig verhindern wollen, müssen Sie die Methode als final kennzeichnen. Das funktioniert wie folgt: 1: //Beispielprogramme/Gesetzmaessigkeiten/Ex20

2:

3: package regularity.mother;

4:

5: public class Mother {

6:

7:

final String getPublicTime() {

8:

return " kaum ";

9:

}

10: }

Listing 7.31 Überschreiben durch Verwendung von »final« verhindern Durch das Schlüsselwort final werden Methoden vor dem Überschreiben geschützt.

7.6

Programmierkonventionen

Es gibt nur wenige Programmierkonventionen, die Sie beachten müssen. Wichtig ist hierbei die Lektüre der »Code Conventions« des Java-Erfinders Sun. Sie finden sie unter http://java.sun.com/docs/codeconv.

7.6.1

Vorschriften zur Schreibweise

Aus Kapitel 4, »Sprache Java«, wissen Sie, dass Klassen in Dateien des exakt gleichen Namens gespeichert werden müssen. Leider akzeptieren es aber manche Windows-Entwicklungssysteme, wenn Sie zum Beispiel Klassen so umbenennen, dass sie nicht mehr exakt mit dem Dateinamen übereinstimmen.

Unter Windows ist das auch weiter kein Problem, da das Betriebssystem nicht zwischen Groß- und Kleinschreibung unterscheidet (es ist nicht case-sensitiv). Das Programm wird aber auf einem Unix-Rechner möglicherweise nicht korrekt aus-241

7

Gesetzmäßigkeiten

geführt, da diese Betriebssystemfamilie streng zwischen Groß- und Kleinschreibung unterscheidet.

7.6.2

Empfehlungen zur Schreibweise

Packages

Packages sollten generell und durchgehend kleingeschrieben werden, damit sie leichter von Klassen zu unterscheiden sind. Leider schaffen es nicht einmal große Hersteller und Konsortien, sich diesen Regeln zu beugen, wie das nachfolgende Beispiel zeigt.

Das Beispiel zeigt ein Codefragement der Object Management Group, die manche Packages und Klassen in Versalien schreibt, um zu »verdeutlichen«, dass es sich um ein Akronym handelt.

import org.omg.CORBA.ORB;

orbInstance = ORB.init((String[]) args, props);

Listing 7.32 Diese Package-Bezeichnung entspricht nicht dem Java-Standard.

So wäre es konform zum Standard und wäre auch noch besser zu lesen:

import org.omg.corba.ORB;

orbInstance = ORB.init((String[]) args, props);

Listing 7.33 Die Package-Bezeichnung ist nun standardgemäß.

Klassen

Klassen beginnen mit einem Großbuchstaben und werden ansonsten kleinge-

schrieben, außer in dem Fall, dass sich die Klassenbezeichnung aus mehreren Begriffen zusammensetzt. Man sollte generell mit einem Großbuchstaben beginnen, um Klassen besser von Methoden und Packages unterscheiden zu können.

Bei Akronymen innerhalb der Klassenbezeichnung ist sich auch Java-Erfinder Sun offensichtlich nicht sicher, ob die Kleinschreibung nach dem ersten Großbuchstaben fortgesetzt werden soll. Es gibt verschiedene Beispiele aus den Java-Klassenbibliotheken, die das belegen:

242

Programmierkonventionen

7.6

import java.net.URLConnection

import java.net.HttpURLConnection

Listing 7.34 Sun-Schreibweise mancher Klassen

Obwohl HTTP ein Akronym ist, hat hier der Programmierer auf generelle Groß-

schreibung verzichtet, da der Name der Klasse sonst unleserlich werden würde.

Ich finde folgende Möglichkeiten noch besser:

import java.net.UrlConnection

import java.net.HttpUrlConnection

Listing 7.35 Bessere Lesbarkeit durch Camelback-Schreibweise

Natürlich ist es Geschmackssache, ob man die Camelback-Schreibweise (Listing 7.35) bevorzugt oder nicht. Ich finde, die Lesbarkeit des Quelltextes erhöht sich dadurch.

Methoden

Methoden sollten immer kleingeschrieben werden. Ausnahme ist nur der Konstruktor, der stets mit einem Großbuchstaben beginnen muss. Gibt die Methode einen Wert zurück, beginnt sie in der Regel mit dem Präfix get. Ausnahme bilden Methoden, die einen Wahrheitswert zurückliefern. Sie beginnen mit is.

Konstanten

Konstanten sollten generell in Großbuchstaben geschrieben werden. Dies ist unter Java-Programmierern eine allgemein akzeptierte Konvention.

private static final String CurrentVersion = "1.0"; //falsch

private static final String BuildNumber = "1.0.102.98"; //falsch

✄

private static final String CURRENT_VERSION = "1.0"; //richtig private static final String BUILD_NUMBER = "1.0.102.98"; //richtig Listing 7.36 Konstanten sind in Großbuchstaben zu schreiben.

Landessprache

Die Namen von Bezeichnern sollten keine nationalen Sonderzeichen enthalten, weil dadurch Probleme mit Entwicklungswerkzeugen auftreten können. Nicht alle US-Werkzeuge akzeptieren nationale Sonderzeichen. Das sollte zwar der Fall sein, ist aber leider nicht gängige Praxis unter den Werkzeugherstellern.

243

7

Gesetzmäßigkeiten

int erhöheMähdrescherMähtode() {

this.anzahlMähdrescher++;

}; // funktioniert nicht bei allen Tools

Listing 7.37 Nationale Sonderzeichen werden nicht von allen Tools akzeptiert.

Soll man stattdessen deutsche Klassen-, Methoden- und Variablennamen ohne Sonderzeichen verwenden? Ich rate Ihnen von Bezeichnern in deutscher Sprache ab. Dem Vorteil, dass es zweifelsfrei leichter ist, in der eigenen Landessprache zu kodieren, stehen mehrere Nachteile gegenüber. Zum einen erzeugt die Verwendung von deutschen und englischen Begriffen innerhalb eines Programms ein merkwürdiges Kauderwelsch – aber das ist eher Geschmackssache.

Der andere Nachteil wiegt schwerer: Der Austausch von Code in Newsgroups und Foren sowie mit externen Mitarbeitern ist nur innerhalb der deutschen Sprachgrenzen möglich. Bei der zunehmenden Internationalisierung innerhalb vieler Firmen ist Quelltext, der gemischt in Deutsch und Englisch verfasst wurde, keine Bagatelle, sondern eine große Hürde für Entwickler aus anderen Ländern.

Verwechslungen erschweren

Um Verwechslungen auszuschließen, sollten Bezeichner ähnlichen Namens nicht verwendet werden. Ein Beispiel wie das folgende provoziert Fehlinterpretationen.

int vectorX

int vectorx;

Listing 7.38 Ähnliche Bezeichnungen sind zu vermeiden.

7.7

Zusammenfassung

7.7.1

Sichtbarkeit

Die Kapselung von Klassen, Methoden und Variablen lässt sich in vier Stufen (

private, default, protected, public) festlegen. Verwenden Sie immer die höchstmögliche Kapselungsstärke, um das Objekt vor unerwünschtem Zugriff zu schützen.

Neben der Kapselung wird der Gültigkeitsbereich von Variablen durch Blöcke beeinflusst. Hier kann eine Verdeckung auftreten, die Klassen- und Objektvariablen überlagert. Der Zugriff auf diese muss dann explizit mit Hilfe des Schlüsselworts this erfolgen.

244

Zusammenfassung

7.7

7.7.2

Auswertungsreihenfolge

Bei der Auswertungsreihenfolge von Ausdrücken gelten einige von der Mathematik bekannte Regeln. Diese Regeln sind jedoch nur so lange gültig, bis Zwischenergebnisse gebildet werden müssen. Ist in diesem Fall eine Typumwandlung erforderlich, so kann dies zu anderen Ergebnissen führen als erwartet. Fazit: Setzen Sie im Zweifelsfall immer Klammern, um die von Ihnen gewünschte Auswertungsreihenfolge zu erzwingen.

7.7.3

Typkonvertierung

Java erfordert als typisierte Sprache eine explizite Umwandlung des Wertebereichs, wenn Datentypen nicht zueinander passen. Bei dieser expliziten Umwandlung kann es zu Datenverlusten kommen, weswegen hier Vorsicht geboten ist.

Tückischer als die explizite Umwandlung ist die automatische (implizite) Umwandlung des Typs, bei der ebenfalls Informationen verloren gehen können. Sie schützen sich gegen eine automatische Umwandlung, indem Sie Zwischenergebnisse explizit konvertieren.

7.7.4

Polymorphie

Das Überladen und Überschreiben von Methoden erlaubt Ihnen, vordefinierte Klassen über das Mittel der Vererbung abzuändern. Das Überladen funktioniert jedoch nur, wenn die beteiligten Methoden über verschiedene Parameter verfü-

gen; ein unterschiedlicher Rückgabewert reicht zur Differenzierung nicht aus.

Zum Überschreiben von Methoden müssen diese über exakt dieselbe Signatur verfügen. Will man das Überschreiben einer Methode verhindern, muss sie als final definiert werden.

7.7.5

Programmierkonventionen

Eine konsistente Verwendung von Programmierkonventionen erleichtert es, das Programm zu verstehen. Nur wenige Regeln sind hier bindend. Sicherstellen sollten Sie auf jeden Fall, dass Datei- und Klassenname exakt übereinstimmen, da es sonst zu Problemen beim Auffinden von Klassen kommen kann.

245

7

Gesetzmäßigkeiten

7.8

Aufgaben

7.8.1

Fragen

1. Welche Kapselungsstärken gibt es in Java?

2. Welchen Zugriff bietet der Default-Bereich?

3. Welchen Zugriff bietet der Protected-Bereich?

4. Was bedeutet das Schlüsselwort super?

5. Was bedeutet das Schlüsselwort this?

6. Wie lässt sich die Auswertungsreihenfolge eines Ausdrucks beeinflussen?

7. Warum ist eine Typkonvertierung notwendig?

8. Was bewirkt sie?

9. Was müssen Sie dabei beachten?

10. Wozu dient das Überladen von Methoden?

11. Welche Voraussetzungen gelten dabei?

12. Welche Methoden können Sie überschreiben, welche nicht?

13. Wozu dient das Verfahren?

7.8.2

Übungen

1. Ergänzen Sie den Ausdruck so, dass er funktioniert.

int a = 1;

byte b = 1;

byte c = 1;

b = (int)a;

c = a;

2. Ergänzen Sie den Ausdruck so, dass er funktioniert.

byte a = 127;

for (a = 1; a <= 200; a++) {

System.out.println(a);

}

Die Lösungen zu den Aufgaben finden Sie in Kapitel 19 ab Seite 519.

246

»Am Anfang entstand das Universum. Das hat eine Menge Menschen sehr

verärgert und ist weitgehend als ein schlechter Start

bewertet worden.«

(Douglas Adams)

8

Java-Klassenbibliotheken

8.1

Einleitung

Die Java-Klassenbibliotheken sind das Universum des Java-Entwicklers. Sie erweitern den Leistungsumfang der Sprache Java mit universellen Lösungen für alle erdenklichen Anwendungsbereiche der Softwareentwicklung.

8.1.1

Von der Klasse zur Bibliothek

Eine Klassenbibliothek ist eine Sammlung von logisch zusammengehörenden Klassen. Sie besteht zumeist aus mehreren Java-Archiven und kann wie der Inhalt einer Leihbücherei von mehreren Programmierern genutzt werden.

Abbildung 8.1 Die »Java-Leihbücherei« besteht aus Klassenbibliotheken.

Durch die objektorientierte Technik der Vererbung bestehen solche Bibliotheken aus Klassen, die miteinander in Beziehung stehen. Sie sind durch die Vererbung hierarchisch aufgebaut: Eine oder mehrere Basisklassen bilden die Grundlage für viele abgeleitete Klassen. Da das Ganze an einen (auf dem Kopf stehenden) Baum erinnert, bezeichnen Softwareentwickler solche Hierarchien gern auch als Klassenbaum (Abbildung 8.2).

247

8

Java-Klassenbibliotheken

Abbildung 8.2 Klassenbibliotheken sind hierarchisch in Bäumen organisiert.

8.1.2

Von der Bibliothek zum Universum

Klassenbibliotheken gibt es für alle erdenklichen Anwendungsfälle. Beispielsweise existieren Bibliotheken für grafische Oberflächen, für mathematische Berechnungen, für die Bildverarbeitung, die Mustererkennung sowie für die Anbindung an Datenbanken.

8.1.3

Vom Universum zum eigenen Programm

Sie verwenden diese Klassenbibliotheken als Baukasten und suchen sich die Bausteine heraus, die Sie für Ihr Programm am besten verwenden können. Diese Klassen setzen Sie in Ihrem Programm zu einem neuen Ganzen zusammen. Sie verbinden sie sinnvoll miteinander und reichern sie mit etwas Programmlogik an. Das klingt sehr einfach und ist im Prinzip auch wirklich nicht schwer. Voraussetzung ist allerdings, dass man die Sprache Java beherrscht und etwas Dokumentation zu den Bibliotheken bekommt.

8.1.4

Bibliotheken und Bücher

Dokumentation existiert für viele Bibliotheken in Form von JavaDoc und in Form von vielen Büchern, die einzelne Bereiche der Bibliotheken näher besprechen.

248

Einleitung

8.1

Die Dokumentation ist häufig schon in einer integrierten Entwicklungsumgebung (Kapitel 22, »Werkzeuge«) auf Knopfdruck verfügbar.

Der Hersteller Oracle bietet seine Dokumentation nicht nur über integrierte Entwicklungsumgebungen, sondern auch über das Internet an (http://java.

sun.com/docs). Sehr zu empfehlen sind auch die Seiten speziell für Java-Entwickler (http://developer.java.sun.com/developer/infodocs). Weitere interessante Informati-onsquellen sind das SourceForge.net (http://sourceforge.net) sowie Cetus-Links (

http://www.cetus-links.org).

Abbildung 8.3 Tausende von Klassen erweitern den Java-Sprachkern.

8.1.5

Bibliotheken erweitern die Sprache

Java ist wie jede objektorientierte Sprache so aufgebaut, dass ein relativ kleiner Sprachkern (Kapitel 4) durch diverse Klassenbibliotheken aufgewertet wird. Jeder Java-Entwickler kann seine eigenen Klassen ebenfalls zu Bibliotheken zusammenstellen, nur in seinen Programmen verwenden oder aber anderen zur Verfügung stellen. Dadurch, dass viele Java-Entwickler spezielle Klassen geschrieben haben, ist die Sprache Java im Laufe der Jahre um viele Tausend benutzerdefinierte Datentypen gewachsen.

8.1.6

Bibliotheken steigern die Produktivität

Der Wert einer objektorientierten Programmiersprache ist dann besonders hoch, wenn wie im Fall von Java viele qualitativ hochwertige Bibliotheken für alle erdenklichen Anwendungsbereiche existieren. Sie können viele Java-Klassenbi-249

8

Java-Klassenbibliotheken

bliotheken entweder kostenpflichtig von Softwarehäusern, kostenfrei von Ent-wicklergemeinschaften oder vom Erfinder der Sprache, Sun Microsystems, beziehen.

8.1.7

Kommerzielle Klassenbibliotheken

Viele Softwarehäuser und Beratungsunternehmen bieten kostenpflichtige Java-Klassenbibliotheken an. Darunter sind Bibliotheken für grafische Oberflächen, mathematische Klassensammlungen, kaufmännische sowie technische Lösungen.

Diese kommerziellen Bibliotheken werden aber mehr und mehr von kostenlosen Open-Source-Bibliotheken zurückgedrängt.

8.1.8

Open-Source-Bibliotheken

Viele Softwareentwickler arbeiten in ihrer Freizeit für so genannte Open-Source-Projekte. Das sind Zusammenschlüsse von Entwicklern, die ihre Programme und Klassenbibliotheken mit Quelltexten kostenlos zur Verfügung stellen. Viele Universitäten, Softwareentwickler und Buchautoren stellen zudem ihre Klassenbibliotheken kostenfrei zum Download bereit.

8.1.9

Bibliotheken von Sun Microsystems

Die offiziellen, von Sun Microsystems bereitgestellten Klassenbibliotheken hat der Hersteller in drei Editionen zusammengefasst:

1. Java Standard Edition (Java SE)

2. Java Enterprise Edition (Java EE)

3. Java Micro Edition (Java ME)

Dieses Kapitel gibt Ihnen anhand von kleinen Beispielprogrammen einen Überblick über diese drei Editionen, während der dritte Teil des Buches die Arbeit mit den Klassenbibliotheken der Java Standard Edition und der Java Enterprise Edition anhand von größeren Projekten vertieft.

8.2

Java Standard Edition

Die Java Standard Edition (Java SE) ist eine kostenlose Sammlung von Klassenbibliotheken und Entwicklungswerkzeugen des Java-Erfinders Sun Microsystems.

Sie richtet sich an alle Java-Programmierer, denn diese Bibliotheken bilden das Fundament eines jeden Java-Programms.

250

Java Standard Edition

8.2

Die Java Standard Edition (Abbildung 8.4) enthält die Funktionalität des früheren Java Development Kit (JDK) und wird auch häufig noch so bezeichnet. Da der Hersteller Sun Microsystems gern neue Abkürzungen erfindet, gibt es mittlerweile auch eine dritte Bezeichnung: Software Development Kit (SDK).

Abbildung 8.4 JDK, SDK und die JRE

Die Java SE (früher J2SE genannt) gliedert sich in die Java Runtime Environment (Abschnitt 6.3, »Java Runtime Environment«) und JDK-Werkzeuge (Kapitel 5, »Entwicklungsprozesse«, und 22, »Werkzeuge«). Die Java Runtime Environment ist für den Betrieb von Java-Anwendungen notwendig, die JDK-Werkzeuge werden zu ihrer Entwicklung benötigt.

8.2.1

Java-Language-Bibliothek

Die Java-Language-Bibliothek und ihre Klassen bilden die Basis für alle weiteren Java-Klassen. Die Klassen dieser Bibliothek nehmen eine Sonderstellung unter allen Java-SE-Bibliotheken ein: Sie werden automatisch geladen und sind so stark an den Sprachkern gebunden, dass für sie bestimmte Sprachregeln außer Kraft gesetzt sind.

Superklasse »Object«

Die Bibliothek besteht aus einem Paket namens java.lang, in dem sich auch die Basisklasse aller Java-Klassen verbirgt: die Klasse Object. Alle Klassen erben direkt 251

8

Java-Klassenbibliotheken

oder indirekt von der Klasse Object. Ein Beispiel dazu: Abbildung 8.5 zeigt eine Klassenhierarchie von drei Klassen. Die Klasse Shape setzt hier auf der Superklasse Object auf.

java.lang.Object

Shape

height:int

width:int

Rectangle

Circle

+Rectangle

+Circle

Abbildung 8.5 Die Klasse »Object« ist Basis aller Java-Klassen.

Um die Klasse Object zu verwenden, benötigen Sie keine Importanweisung (Listing 8.1). Sie wird, wie alle Klassen des Packages java.lang, vollkommen automatisch importiert.

1: //Beispielprogramme/Java_Klassenbibliotheken/Ex02

2:

3: package libraries;

4:

5: public abstract class ShapeWithExtends extends Object {

6:

7:

int height = 1;

8:

int width = 5;

9: }

Listing 8.1 Ohne Importanweisung erweitert die abgeleitete Klasse die Basisklasse »Object«.

Sie müssen die neue Klasse ShapeWithExtends sogar nicht einmal mit Hilfe des sonst notwendigen Schlüsselworts extends von Object ableiten. Listing 8.2 zeigt 252

Java Standard Edition

8.2

eine Variation der Beispielklasse Shape, wie man sie üblicherweise schreiben würde.

1: //Beispielprogramme/Java_Klassenbibliotheken/Ex02

2:

3: package libraries;

4:

5: public abstract class Shape {

6:

7:

int height = 1;

8:

int width = 5;

9: }

Listing 8.2 Shape, diesmal ohne die »extends«-Anweisung

Klasse »String«

Um Zeichenketten in Programmen zu verwenden, sind die entsprechenden Char-Datentypen (Kapitel 4, »Sprache Java«) meistens nicht flexibel genug. Als Alternative steht im Paket java.lang eine Klasse namens String (engl. für Schnur, Kette) zur Verfügung. Sie ist extrem einfach zu verwenden, wie Listing 8.3 zeigt.

1: //Beispielprogramme/Java_Klassenbibliotheken/Ex03

2:

3: package libraries;

4:

5: class StringDemo {

6:

7:

public static void main(String[] arguments) {

8:

9:

String yesKey; // Deklaration

10:

yesKey = new String(); // Erzeugung

11:

yesKey = "JA"; // Zuweisung

12:

13:

// Deklaration + Erzeugung + Zuweisung:

14:

String cancelKey = "ABBRECHEN";

15:

char helpKey = '?';

16:

System.out.println("Wollen Sie eine Fragen stellen?");

17:

System.out.println("<Ja> [" + yesKey + "]"); 18:

System.out.println("<Abbrechen> ... [" + cancelKey + "]"); 19:

System.out.println("<Hilfe> [" + helpKey + "]"); 20:

}

21: }

Listing 8.3 Ein erstes Beispiel für die Verwendung von Strings

253

8

Java-Klassenbibliotheken

Wie das Beispiel zeigt, können neue Objekte des Typs String in drei Schritten erzeugt und initialisiert werden. Im ersten Schritt deklariert man die Zeichenketten, im zweiten Schritt erzeugt man sie mit dem New-Operator und weist ihnen abschließend eine Zeichenkette zu. Weit schneller geht es, wenn man Deklaration, Erzeugung und Zuweisung in einer Anweisung verbindet (Abbildung 8.6).

Abbildung 8.6 Deklaration, Erzeugen und Zuweisen einer Zeichenkette Da die Verarbeitung von Zeichen und größeren Texten enorm wichtig für jedes Programm ist, sind Zeichenketten auch extrem bedeutend für die Java-Programmierung. Die Klasse String ist deshalb sehr umfangreich und leistungsfähig. Um Ihnen einen Eindruck von der Leistungsvielfalt zu vermitteln, möchte ich Ihnen in Tabelle 8.1 einen kleinen Ausschnitt aus der Java-Dokumentation dieser Klasse vorstellen.

Konstruktor

Bedeutung

String()

Erzeugt eine leere Zeichenkette.

String(byte[] bytes)

Erzeugt eine Zeichenkette und konvertiert

das Byte-Array.

String(byte[] ascii, int hibyte)

Diese Methode ist veraltet und sollte nicht

verwendet werden.

String(byte[] bytes, int offset,

Erzeugt eine Zeichenkette aus dem By-

int length)

te-Array. offset gibt den Startpunkt inner-

halb des Arrays an und length die Länge.

String(byte[] ascii, int hibyte,

Diese Methode ist veraltet und sollte nicht

int offset, int count)

verwendet werden.

String(byte[] bytes, int offset,

Erzeugt eine Zeichenkette aus dem By-

int length, String enc)

te-Array. offset gibt den Startpunkt inner-

halb des Arrays an, length die Länge und

 enc die Kodierung.

String(byte[] bytes, String enc)

Erzeugt eine Zeichenkette aus dem By-

te-Array. enc gibt die Kodierung an.

Tabelle 8.1 Konstruktoren der Klasse »String«

254

Java Standard Edition

8.2

Konstruktor

Bedeutung

String(char[] value)

Erzeugt eine Zeichenkette aus dem

Char-Array.

String(char[] value, int offset,

Erzeugt eine Zeichenkette aus dem

int count)

Char-Array. offset gibt den Startpunkt

innerhalb des Arrays an und count die

Anzahl der Zeichen.

String(String original)

Erzeugt eine Kopie der übergebenen

Zeichenkette.

String(StringBuffer buffer)

Erzeugt eine Zeichenkette aus einem

StringBuffer.

Tabelle 8.1 Konstruktoren der Klasse »String« (Forts.)

Wie Sie aus der Tabelle erkennen können, handelt es sich nur um Konstruktoren der Klasse String, also um Methoden, mit deren Hilfe Sie eine Zeichenkette erzeugen können. Einige von diesen Konstruktoren sind deprecated, also veraltet, und sollten nicht mehr verwendet werden. Sie stammen aus der Anfangszeit von Java und werden möglicherweise bald aus der Bibliothek entfernt.

Die restlichen Konstruktoren stehen Ihnen zur Verfügung, wenn Sie eine neue Zeichenkette erzeugen möchten. Darüber hinaus stehen Ihnen sehr viele Methoden der Klasse zur Verfügung, die ich hier aus Platzgründen nicht auflisten möchte – das ist aber auch nicht notwendig, da die Java-Dokumentation aller Klassenbibliotheken entweder in Ihrer Entwicklungsumgebung enthalten oder über das Internet verfügbar ist.

Alle grafischen Oberflächen verarbeiten praktisch ausschließlich Zeichenketten.

Auch Zahleneingaben werden von einem Java-Programm zunächst als String ent-gegengenommen. Um innerhalb des Programms damit rechnen zu können, müs-

sen sie natürlich wieder in Festkommazahlen oder Gleitkommazahlen konvertiert werden. Als Brücke für die Konvertierung dienen spezielle Wrapper-Klassen: die einfachen Klassentypen.

Einfache Klassentypen

Kapitel 4, »Sprache Java«, hat Ihnen acht einfache Datentypen vorgestellt. Um diese einfachen Datentypen wie Klassen verwenden zu können, gibt es acht dazu passende Klassen, die sie verpacken – sie umhüllen einen einfachen Datentyp mit einer objektorientierten Schale.

255

8

Java-Klassenbibliotheken

Einfacher Klassentyp

Einfacher Datentyp

Byte

byte

Short

short

Integer

int

Long

long

Double

double

Float

float

Boolean

boolean

Character

char

Tabelle 8.2 Die einfachen Klassentypen umhüllen einfache Datentypen.

Wozu der Aufwand? Kapitel 4, »Sprache Java«, hat zwar gezeigt, wie wertvoll Datentypen sein können, die nicht den Ballast von Methoden und Vererbung tragen. In verschiedenen Situationen benötigt man aber eben doch Methoden, um Werte konvertieren zu können.

Eine dieser Situationen tritt auf, wenn Strings in Zahlenwerte verwandelt werden müssen. Wie schon erwähnt, verarbeiten grafische Java-Oberflächen alle Zahlenwerte im String-Format. Um mit den Zahlenwerten kalkulieren zu können, ist es erforderlich, die Zeichenketten, die der Anwender eingegeben hat, wieder in ein Zahlenformat zu verwandeln (Abbildung 8.7).

Danach können mit den Zahlenwerten mathematische Kalkulationen durchge-

führt werden, die aus einleuchtenden Gründen mit Zeichenketten nicht möglich sind (sin(), cos(), Addition etc.). Nach der Kalkulation tritt wieder die Situation auf, dass der Anwender das Endergebnis sehen möchte. Um die Zahlenwerte anzeigen zu können, müssen sie erneut in einen String konvertiert werden (Abbildung 8.8).

Abbildung 8.7 Umwandlung eines Strings in einen Int-Wert

256

Java Standard Edition

8.2

Abbildung 8.8 Umwandlung eines int-Wertes in einen String

Die Umwandlung kann nicht so erfolgen, wie sie in Abschnitt 7.4, »Typkonvertierung«, anhand von einfachen Datentypen gezeigt wurde. Diese einfachen Datentypen sind zwar vom Wertebereich verschieden, aber einander sehr ähnlich: Sie sind einfache Speicherzellen, verfügen nicht über Methoden und sind somit auch keine Klassen. Daher kann die Typkonvertierung eines einfachen Datentyps in einen benutzerdefinierten Datentyp wie eine Klasse nur über Wrapper-Klassen erfolgen.

1: //Beispielprogramme/Java_Klassenbibliotheken/Ex04

2:

3: package libraries;

4:

5: class StringConversionDemo {

6:

7:

public static void main(String[] arguments) {

8:

9:

String text; // Deklaration des Textes

10:

int number; // Deklaration des Zahlenwertes

11:

12:

//Erster Versuch ohne Konvertierung:

13:

14:

//Wert 200 zuweisen:

15:

text = "200";

16:

17:

// Pseudokalkulation: text++ nicht erlaubt:

18:

text = text + 1;

19:

20:

// Das Ergebnis ist falsch:

21:

System.out.println("Der Wert lautet: " + text);

22:

23:

//Zweite Variante mit Konvertierung:

24:

25:

// Wert 200 erneut zuweisen:

26:

text = "200";

27:

28:

//Konvertierung von String -> int:

257

8

Java-Klassenbibliotheken

29:

number = new Integer(text).intValue();

30:

31:

// Zahl erhoehen: entspricht number++:

32:

number = number + 1;

33:

34:

//Das Ergebnis ist jetzt korrekt:

35:

System.out.println("Der Wert lautet: " + number);

36:

}

37: }

Listing 8.4 Ein erstes Beispiel für die Umwandlung von Strings

Ein Programmbeispiel (Listing 8.5) zeigt, was passiert, wenn man versucht, mit Hilfe einer Zeichenkette zu kalkulieren. Das Programm weist zu Anfang einer Zahl, die als String erzeugt wurde, den Wert 200 zu und erhöht ihn anschließend.

Danach erscheint folgende Ausgabe:

Der Wert lautet: 2001

Bei der Variante konvertiert das Programm die als String gespeicherte Zahl in einen Text, erhöht ihn anschließend und gibt ihn danach aus. Es erscheint diesmal: Der Wert lautet: 201

Ohne die Hilfe der Wrapper-Klasse Integer wäre es nicht möglich gewesen, diese Konvertierung vorzunehmen und den korrekten Wert zu berechnen.

StringBuffer

Strings mit einem Pluszeichen miteinander zu verketten ist eine wunderbar einfache Art, Zeichenketten zu verbinden – aber sie hat den Ruf, sehr langsam zu sein. Zudem hat die Klasse String eine Reihe von Einschränkungen. Als Konse-quenz daraus sollten Sie überall dort, wo Zeichenketten häufig verbunden und verändert werden müssen, die Klasse StringBuffer einsetzen.

1: //Beispielprogramme/Java_Klassenbibliotheken/Ex05

2:

3: package libraries;

4:

5: class StringBufferDemo {

6:

7:

public StringBuffer string() {

8:

StringBuffer str = new StringBuffer("String");

9:

for (int i = 0; i <= 10; i++)

10:

str.append(str);

11:

return str;

12:

}

258

Java Standard Edition

8.2

13:

14:

public static void main(String[] arguments) {

15:

StringBufferDemo stretch = new StringBufferDemo();

16:

StringBuffer str = new StringBuffer();

17:

str = stretch.string();

18:

System.out.println("Ergebnis: " + str);

19:

}

20: }

Listing 8.5 Das Programm »StringBufferDemo«

Das Programm »StringBufferDemo« zeigt eine Anwendung der Klasse StringBuffer. Es verkettet in einer Schleife eine Zeichenkette und gibt sie anschließend auf die Konsole aus. Dieser Vorgang läuft sehr schnell ab. Das Ergebnis ist ein Zeichenfeld.

8.2.2

Klasse »System«

Neben der String-Klasse und den Wrapper-Klassen ist die Klasse System ein Dreh-und Angelpunkt jedes Java-Programms. Sie hat vielfältige Aufgaben, unter anderem:

왘

Zeicheneingabe und -ausgabe auf die Konsole

왘

Aufruf des Garbage Collectors

왘

Programmbeendigung

왘

Setzen von Grundeinstellungen des Systems

왘

Abfragen von Grundeinstellungen des Systems

Die Ausgabe von Zeichen haben Sie schon in vielen Beispielen des Buchs gesehen. Über den Einsatz des Garbage Collectors wurde in Kapitel 6, »Plattform Java«, berichtet (Abschnitt 6.3.2, »Garbage Collector«). Neu ist hingegen, dass das Programm durch eine Methode der Klasse System beendet wird. Dazu reicht der Aufruf System.exit(status);.

Über die Int-Variable status übergeben Sie den Zustand des Programms. Sie sollten null übergeben, wenn das Programm normal beendet wurde. Einen definierten anderen Wert können Sie ebenfalls ausgeben, um anzuzeigen, dass das Programm nach einem kritischen Zustand beendet wurde.

Eine weitere, häufig sehr nützliche Funktion der Klasse System ist das Ein- oder Auslesen von Systemeinstellungen. Wie das Auslesen der Systeminformationen (System Properties) prinzipiell funktioniert, zeigt Listing 8.6.

259

8

Java-Klassenbibliotheken

Sie verwenden dazu die Akzessor-Methode getProperty(), der Sie eine bestimmte Zeichenkette als Parameter übergeben. Diese Zeichenketten sind in der Java-Dokumentation vordefiniert. Um zum Beispiel herauszufinden, wie das Betriebssystem heißt, unter dem das Java-Programm ausgeführt wird, verwenden Sie die Property os.name.

1: //Beispielprogramme/Java_Klassenbibliotheken/Ex06

2:

3: package libraries;

4:

5: class SystemPropertiesDemo {

6:

7:

public static void main(String[] arguments) {

8:

9:

System.out.println(

10:

"Java-Version: " +

11:

System.getProperty("java.version") + "\n" +

12:

"Java-Home " +

13:

System.getProperty("java.home") + "\n" +

14:

"JVM-Version " +

15:

System.getProperty("java.vm.version") + "\n" +

16:

"JVM-Name " +

17:

System.getProperty("java.vm.name") + "\n" +

18:

"Betriebssystemname " +

19:

System.getProperty("os.name") + "\n" +

20:

"Betriebssystemversion .. " +

21:

System.getProperty("os.version") + "\n" +

22:

"Dateitrennzeichen " +

23:

System.getProperty("file.separator") + "\n" +

24:

"Anwendername " +

25:

System.getProperty("user.name") + "\n" +

26:

"Anwenderverzeichnis " +

27:

System.getProperty("user.home"));

28:

}

29: }

Listing 8.6 Auslesen einiger System Properties

Das Programm erzeugt auf meinem Macintosh zur Zeit (ohne Java 7) folgende Ausgabe:

Java-Version: 1.6.0

Java-Home /System/.../Versions/1.6.0/Home

JVM-Version 1.6.0

JVM-Name Java HotSpot(TM) Client VM

Betriebssystemname Mac OS X

260

Java Standard Edition

8.2

Betriebssystemversion .. 10.3.9

Dateitrennzeichen /

Anwendername bsteppan

Anwenderverzeichnis /Users/bsteppan

Mit Hilfe dieser Systemgrundeinstellungen erhalten Sie wichtige Informationen, die Ihr Programm nutzen kann. Zum Beispiel ist es in der Lage, auf Basis des Anwendernamens benutzerspezifische Daten im Verzeichnis des Anwenders abzulegen.

Eine weitere Anwendung der Klasse System sind Zeitmessungen. Um diese durchzuführen, verwenden Sie die Methode currentTimeMillis. Sie gibt einen Long-Typ zurück, den Sie elegant als Stoppuhr einsetzen können (Listing 8.7).

1: //Beispielprogramme/Java_Klassenbibliotheken/Ex07

2:

3: package libraries;

4:

5: public class TimeDemo {

6:

public static void main(String[] args) {

7:

8:

long startTime = System.currentTimeMillis();

9:

long loops = 0;

10:

11:

for (int i = 0; i < 300000; i++) {

12:

loops += i;

13:

}

14:

15:

long stopTime = System.currentTimeMillis();

16:

long elapsedTime = stopTime - startTime;

17:

System.out.println(elapsedTime + " ms");

18:

}

19: }

Listing 8.7 Ein Beispiel für eine Zeitmessung

Das Programm TimeDemo ruft zu Beginn die Methode currentTimeMillis der Klasse System auf und speichert den Rückgabewert in einer Variablen namens startTime.

Danach führt das Programm eine Berechnung in einer längeren Schleife aus. Die dafür verwendete Zeit misst das Programm nach der Schleife und weist sie der Variablen stopTime zu. Anschließend bildet das Programm die Differenz beider Zeiten und gibt den errechneten Wert aus.

261

8

Java-Klassenbibliotheken

Fehlerbehandlung

Exception Handling (engl. für Ausnahmebehandlung) ist ein in Java verankertes Prinzip, auf Programmfehler zu reagieren. Im Gegensatz zu Rückgabewerten, wie sie in herkömmlichen Programmen üblich sind, zwingt das Exception Handling den Entwickler, auf Ausnahmezustände im Programm zu reagieren.

Laufzeitfehler einer Anwendung können in zwei Kategorien unterteilt werden: 1. Fachliche Fehler

2. Technische Fehler

Fachliche Fehler treten zum Beispiel dann auf, wenn der Anwender falsche Werte eingibt. Die Fehleingaben sollten nicht zu einer Instabilität des Programms führen.

Vielmehr sollte das Programm darauf mit richtigen Hinweisen reagieren. Beispiel für einen fachlichen Fehler sind die Eingabe einer Zahl in ein Namensfeld oder die falsche Eingabe eines Passworts. Fachliche Fehler können über Validierungen und Authentifizierungsprüfungen abgefangen werden.

Technische Fehler sind zum Beispiel dann gegeben, wenn zu wenig Speicherplatz zur Verfügung steht, eine Klasse von der Laufzeitumgebung nicht gefunden wurde, jemand eine Division durch null durchgeführt hat oder ein Schreib-/Lesefehler aufgetreten ist.

Auch hierfür ein Beispiel: Angenommen, Sie wollen ein Programm schreiben, das ein anderes Programm aufruft. Wenn Sie dieses Programm in der Programmiersprache C schreiben, würden Sie eine entsprechende Funktion innerhalb Ihres Programms aufrufen. Diese Funktion könnte einen Fehler produzieren, wenn die Datei, die ausgeführt werden soll, nicht gefunden wird oder zerstört ist.

Die entsprechende Funktion würde in einem solchen Fall einen Wert zurück-geben, beispielsweise Fehler 12 oder Fehler 13. Als Programmierer würden Sie den Fehlercode in der Dokumentation der Funktion nachschlagen und vielleicht lesen: »Fehler 12: Datei nicht gefunden« und »Fehler 13: Datei zerstört«. Dann würden Sie sich eine Fehlerbehandlung für Ihr Programm überlegen, die – in Java übersetzt – vielleicht so aussehen würde:

✄

int error = 12;

switch (error) {

case 12: System.out.println("Datei nicht gefunden.");

break;

case 13: System.out.println("Datei beschaedigt.");

break;

}

✄

262

Java Standard Edition

8.2

Listing 8.8 Ablauf einer Fehlerbehandlung analog einem C-Programm Die Fehlerbehandlung in Java läuft natürlich nicht sequenziell, sondern völlig objektorientiert ab. Um das zu zeigen, ist ein Vorgriff auf die Klasse Runtime notwendig. Sie erlaubt unter anderem, ein externes Programm von einem Java-Programm aus zu starten. Wenn Sie unter Windows zum Beispiel das Programm Notepad.exe starten wollen, können Sie das so realisieren, wie in Listing 8.9

aufgeführt.

1: //Beispielprogramme/Java_Klassenbibliotheken/Ex08

2:

3: package libraries;

4:

5: class ExceptionDemo {

6:

7:

public static void main(String[] arguments) {

8:

//Versuche den Notepad zu starten (nur WIN)

9:

try {

10:

Runtime.getRuntime().exec("notepad.exe");

11:

} // try

12:

catch (Exception ex) {

13:

System.out.println(ex);

14:

} // catch

15:

}//main

16: }//ExceptionDemo

Listing 8.9 Ablauf einer Fehlerbehandlung in einem Java-Programm Das Beispielprogramm besteht aus einer Methode main, in der die Methode exec mit dem Parameter [notepad.exe] aufgerufen wird. Der Aufruf der Funktion ist in einen Try-Catch-Block eingebettet. Dieser Block steckt die »Problemzone« des Programms ab: Die Methode exec ist unter Umständen eine Gefahr für die Stabilität des Programms und muss aufgrund des Fehlerrisikos abgesichert werden.

Der Programmierer darf versuchen (Try-Block), die Methode aufzurufen, muss aber dafür sorgen, dass Fehlerzustände nicht zum Programmabsturz führen. Diese Absicherung besteht darin, alle eventuellen Fehler abzufangen (Catch-Block). Was passiert, wenn etwas »schiefgeht«? Die Methode exec löst einen Fehler aus. Das heißt, sie erzeugt einen Ausnahmezustand (Exception), der behandelt werden muss. Daher auch der Name Ausnahmebehandlung.

Der Ablauf erfolgt immer in folgender Weise:

263

8

Java-Klassenbibliotheken

try {

Anweisung1 (löst SpezielleException aus);

Anweisung2 (löst AllgemeineException aus);

}

catch (SpezielleException spezielleException) {

Anweisungen zur Fehlerbehandlung;

}

catch (AllgemeineException allgemeineException) {

Anweisungen zur Fehlerbehandlung;

}

finally {

Anweisungen, die unbedingt noch erledigt werden müssen

}

Ein Try-Block kann mehrere Anweisungen umgeben, die in diesem Fall auch von einem oder mehreren Catch-Blöcken abgefangen werden müssen. Die finally-Anweisung dient dazu, Anweisungen aufzunehmen, die auf jeden Fall abgearbeitet werden müssen. Hier können wichtige Aufräumarbeiten platziert werden, zum Beispiel das Schließen von Datenbankverbindungen, ohne die ein bleibender Schaden entsteht.

Wenn es mehrere Ausnahmezustände in dem Try-Block geben kann, müssen Sie auch mehrere Exceptions abfangen. Wichtig ist hierbei die richtige Reihenfolge der Catch-Blöcke. Fangen Sie zunächst die speziellen Exceptions ab, und stellen Sie die allgemeine Exception (sofern sie benötigt wird) an den Schluss. Das folgende Beispiel zeigt, warum.

try {

Anweisung1 (löst FileNotFoundException aus);

Anweisung2 (löst AllgemeineException aus);

}

catch (FileNotFoundException fileNotFound) {

Dialog mit der Nachricht zeigen, dass

eine Datei nicht gefunden wurde;

}

catch (AllgemeineException allgemeineException) {

Allgemeine Anweisungen zur Fehlerbehandlung;

}

finally {

Anweisungen, die unbedingt noch erledigt werden müssen

}

Die Anweisung1 soll eine Datei einlesen. Diese Aktion kann dazu führen, dass eine Ausnahme auftritt, wenn die Datei nicht existiert. In diesem Fall soll das Programm den Anwender durch einen Dialog darauf aufmerksam machen. Wenn die Aktion gut verlaufen ist, wird hingegen planmäßig Anweisung2 ausgeführt.

264

Java Standard Edition

8.2

Wenn die Reihenfolge der Catch-Blöcke vertauscht wird, sieht das Listing wie folgt aus:

try {

Anweisung1 (löst FileNotFoundException aus);

Anweisung2 (löst AllgemeineException aus);

}

catch (AllgemeineException allgemeineException) {

Allgemeine Anweisungen zur Fehlerbehandlung;

}

catch (FileNotFoundException fileNotFound) {

Dialog mit der Nachricht zeigen, dass

eine Datei nicht gefunden wurde;

}

finally {

Anweisungen, die unbedingt noch erledigt werden müssen

}

Wenn die Anweisung1 ausgeführt wird und dabei eine Datei nicht findet, funktioniert das Programm nicht mehr wunschgemäß. Der Ausnahmezustand wird

schon von der allgemeinen Exception abgefangen, weil die Exception-Klasse FileNotFoundException von der allgemeinen Klasse Exception abstammt. Anstatt den Anwender korrekt zu informieren, arbeitet das Programm daher die allgemeinen Anweisungen zur Fehlerbehandlung ab.

Wie entstehen Ausnahmen? Die Erzeugung von Ausnahmen ist in einer Klasse definiert, deren Entwickler vorhergesehen hat, dass eine Methode seiner Klasse eine Programminstabilität hervorrufen kann. Wenn man eine Klasse entwickelt, die solche Instabilitäten auslösen kann, verwendet man das Schlüsselwort throws, um einen Alarmzustand auszulösen. Wie das genau funktioniert, sehen Sie in Listing 8.10.

Innerhalb der Klasse Runtime der Java SE existieren zwei Methoden, die beide ein Objekt des Typs Process zurückliefern. Bei beiden Methoden hat der Entwickler vorgesorgt, dass Fehler über eine Exception esakaliert werden.

package java.lang;

// Importe

✄

import java.io.IOException;

✄

public class Runtime {

// Attribute

private static Runtime currentRuntime;

// Konstruktoren

private Runtime() { }

265

8

Java-Klassenbibliotheken

// Methoden

✄

public Process exec(String string)

throws IOException { return null; }

public Process exec(String string, String[] stringArray)

throws IOException { return null; }

✄

Listing 8.10 Ausschnitt aus der Klasse »Runtime« der Java SE

Innerhalb der Java SE gibt es einen weit verzweigten Baum verschiedener Exceptions, die ihren Ursprung in der Klasse Throwable haben. Von Throwable leiten sich die Klassen Exception und Error ab. Klassen des Error-Zweigs werden dann ausgelöst, wenn ein Fehler aufgetreten ist, der so schwerwiegend ist, dass das Programm zumeist abstürzt. Im Gegensatz dazu handelt es sich beim Exception-Unterbaum um Klassen, die zu allen unerfreulichen, aber reparablen Lebens-lagen eines Java-Programms passen.

Die Programmiersprache Java erzwingt, dass Methodenaufrufe, die Exceptions auslösen können, mit Try-Catch-Blöcken abgesichert werden. Falls das nicht der Fall ist, verweigert der Compiler die Übersetzung des Programms. Das verankerte Prinzip der Ausnahmebehandlung beschert Java-Programmen eine ungewöhnliche Robustheit.

Runtime

Die Klasse Runtime haben Sie gerade kennengelernt. Sie hat unter anderem die Aufgabe, andere Programme aus Java-Programmen heraus zu starten. Das funktioniert, wie in Listing 8.11 gezeigt.

1: //Beispielprogramme/Java_Klassenbibliotheken/Ex09

2:

3: package libraries;

4:

5: import java.io.BufferedReader;

6: import java.io.InputStreamReader;

7:

8: class RuntimeDemo {

9:

10:

public static void main(String[] arguments) {

11:

12:

Process process = null;

13:

try {

14:

//Unix

15:

process = Runtime.getRuntime().exec("ls -l");

16:

//Win9x

266

Java Standard Edition

8.2

17:

//process = Runtime.getRuntime().exec("command /c dir");

18:

//WinNT

19:

//process = Runtime.getRuntime().exec("cmd /c dir");

20:

BufferedReader input = new BufferedReader(

21:

new InputStreamReader(process.getInputStream()));

22:

String output;

23:

while ((output = input.readLine()) != null) {

24:

System.out.println(output);

25:

}

26:

}

27:

catch (Exception ex) {

28:

System.out.println(ex);

29:

}

30:

}

31: }

Listing 8.11 Das erweiterte Beispiel eines Programmstarts

Das Programm ist in der Lage, den Verzeichnisinhalt aufzulisten. Dazu bedient es sich einer Konsole. Für ein Unix-Terminal reicht es aus, das entsprechende Unix-Kommando aufzurufen. Bei der Windows-Familie ist die Behandlung etwas anders. Hier muss die DOS-Eingabeaufforderung entweder mit cmd oder mit command gestartet werden.

Im Gegensatz zur ersten Variante des Programms wertet dieses Beispiel diesmal das Rückgabeobjekt vom Typ Process aus, um die Ausgabe der Konsole entgegen-zunehmen. Die Zeichen dieses Ausgabestroms gibt das Programm anschließend wieder auf der Konsole aus. Auf meinem Macintosh-Computer (Unix) erzeugt das Programm zum Beispiel folgende Informationen:

drwxrwxrwx

5 bsteppan

staff

170 Sep 17 11:40 bin

drwxrwxrwx

4 bsteppan

staff

136 Sep 17 11:39 src

Threads

In manchen Situationen ist es notwendig, dass ein Programm nicht nur eine Aufgabe erledigt, sondern mehrere parallel. In diesem Programm laufen dann mehrere Handlungsfäden ab, so genannte Threads (engl. für Faden). Damit nicht jeder Java-Programmierer solche schwierigen nebenläufigen Programme von Grund auf selbst entwickeln muss, gibt es auch dafür Hilfe in der Java-Language-Bibliothek.

Die Hilfe kommt von einer Klasse namens Thread und einem Interface namens Runnable. Die Klasse Thread implementiert dieses Interface und bietet jedem Ja-va-Programmierer wichtige Funktionen, mit denen er Miniprogramme innerhalb seines Programms starten, stoppen und synchronisieren kann. Wie, das zeigt das folgende Beispiel.

267

8

Java-Klassenbibliotheken

1: //Beispielprogramme/Java_Klassenbibliotheken/Ex10

2:

3: package libraries;

4:

5: public class ThreadDemo {

6:

7:

public static void main(String[] arguments) {

8:

Thread up = new Thread(new UpThread());

9:

up.start();

10:

Thread down = new Thread(new DownThread());

11:

down.start();

12:

}

13: }

Listing 8.12 Das Hauptprogramm startet die »Nähmaschine«.

Das Beispiel besteht aus drei Klassen: einer Klasse ThreadDemo mit der Startmethode main und zwei Klassen, die von der Klasse abgeleitet wurden. Die Klasse UpThread gibt Größerzeichen aus, die Klasse DownThread Kleinerzeichen. Würden die Methoden run der beiden Klassen hintereinander ausgeführt werden, würde die Verarbeitung sequenziell, also nacheinander, erfolgen.

1: //Beispielprogramme/Java_Klassenbibliotheken/Ex10

2:

3: package libraries;

4:

5: public class DownThread extends Thread {

6:

7:

public void run() {

8:

for (int i = 0; i < 100; i++) {

9:

System.out.print("<");

10:

}

11:

}

12: }

Listing 8.13 Das ist der eine Faden ...

In diesem Fall jedoch ist die Verarbeitung nebenläufig und erzielt einen Effekt, den Sie von modernen Betriebssystemen kennen: Mehrere Programme können

nebeneinander ausgeführt werden, obwohl nur eine CPU zur Verfügung steht.

Bei Betriebssystemen nennt sich das Multitasking. Multitasking innerhalb eines Programms nennt sich Multithreading.

268

Java Standard Edition

8.2

1: //Beispielprogramme/Java_Klassenbibliotheken/Ex10

2:

3: package libraries;

4:

5: public class UpThread extends Thread {

6:

7:

public void run() {

8:

for (int i = 0; i < 100; i++) {

9:

System.out.print(">");

10:

}

11:

}

12: }

Listing 8.14 ... und das ist der andere Faden.

Thread-Programmierung basiert auf einer Bewusstseinstäuschung: Es ist eine scheinbare Parallelverarbeitung. Das Programm schaltet in mehr oder weniger regelmäßigen Abständen von einem Thread zum anderen, wie die Ausgabe des Programms zeigt.

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

<<<<<<>>>

>>>

>>>>>>>>>>>>

Das Strickmuster zeigt eine ziemlich unregelmäßige Handschrift und weist freundlich darauf hin, dass es notwendig ist, sich mit dieser schwierigen Technik der nebenläufigen Programmierung intensiver auseinanderzusetzen. Dies erfolgt in Abschnitt 8.6.2, »Übungen«.

8.2.3

Stream-Bibliotheken

Für das Lesen und Schreiben von Dateien steht innerhalb der Java SE ein Paket namens java.io zur Verfügung, das so genannte Streams enthält. Streams sind spezielle Klassen, die Dateiströme erzeugen, die Sie nutzen können, um Daten einzulesen oder auszugeben, wie die folgenden Beispiele zeigen.

Dateien einlesen

Das Einlesen von Dateien erfolgt in drei Schritten. Zunächst legen Sie ein Objekt des Typs FileReader an, das die Aufgabe übernimmt, eine Datei einzulesen. Der Aufruf des Konstruktors dieser Klasse ist nicht risikolos und muss deshalb von einem Try-Catch-Block umgeben werden – schließlich könnte die Datei nicht vorhanden oder zerstört sein.

269

8

Java-Klassenbibliotheken

1: //Beispielprogramme/Java_Klassenbibliotheken/Ex11

2:

3: package libraries;

4:

5: import java.io.BufferedReader;

6: import java.io.FileNotFoundException;

7: import java.io.FileReader;

8: import java.io.IOException;

9:

10: public class FileReaderDemo {

11:

12:

public static void main(String[] arguments) {

13:

14:

BufferedReader file = null;

15:

String text;

16:

17:

try {

18:

file =

19:

new BufferedReader(

20:

new FileReader("Filet.txt"));

21:

} catch (FileNotFoundException ex) {

22:

// (...)

23:

}

24:

try {

25:

while ((text = file.readLine()) != null) {

26:

System.out.println(text);

27:

}

28:

} catch (IOException ex) {

29:

// (...)

30:

}

31:

}

32: }

Listing 8.15 Dieses Programm gibt den Inhalt einer Datei aus.

Das Ergebnis dieser Aktion ist ein Strom aus Zeichen, der wenig hilft, denn der Sinn des Programms ist es, Text auszugeben. Aus diesem Grund muss der Zeichenstrom einem Objekt des Typs BufferedReader übergeben werden. Dieses Objekt ist über eine While-Schleife in der Lage, die Zeichen wieder auszugeben, was wie folgt geschieht:

Filet mit Salat

Man nehme ein 3 cm dickes Filet, salze und pfeffere

es von einer Seite, brate es in der Pfanne 5 Minuten,

wende es anschließend, salze und pfeffere es erneut,

brate es wieder 5 Minuten und serviere es mit Salat.

270

Java Standard Edition

8.2

Dateien schreiben

Genauso problemlos und schnell, wie ein paar Zeilen Java-Code eine Datei eingelesen haben, funktioniert das Erzeugen einer neuen Datei. Dazu legen Sie ein Objekt des Typs FileWriter an, dessen Konstruktor Sie den Namen der Datei übergeben.

1: //Beispielprogramme/Java_Klassenbibliotheken/Ex12

2:

3: package libraries;

4:

5: import java.io.FileWriter;

6: import java.io.IOException;

7:

8: public class FileWriterDemo {

9:

10:

public static void main(String[] arguments) {

11:

12:

FileWriter file = null;

13:

14:

// Versuche, die Datei zu schreiben:

15:

try {

16:

// Vergabe des Dateinames:

17:

file = new FileWriter("Filet.txt");

18:

19:

// Der Text in Form eines Strings:

20:

String text = "Filet mit Salat\n"

21:

+ "Man nehme ein 3 cm dickes Filet,"

22:

+ " salze und pfeffere\n"

23:

+ "es von einer Seite, brate es "

24:

+ "in der Pfanne 5 Minuten,\n"

25:

+ "wende es anschlie\u00dfend, "

26:

+ "salze und pfeffere es erneut,\n"

27:

+ "brate es wieder 5 Minuten und "

28:

+ "serviere es mit Salat.";

29:

file.write(text);//String -> Datei

30:

file.close();//Datei schliessen

31:

} catch (IOException ex) {//Fehler

32:

// (...)

33:

}

34:

}

35: }

Listing 8.16 Dieses Programm schreibt den Inhalt eines Textes in eine Datei.

271

8

Java-Klassenbibliotheken

Das Objekt, das in diesem Programm file heißt, verfügt über mehrere Methoden.

Mit write schreiben Sie Text in diese Datei, und mit close schließen Sie die Datei wieder, so dass sie auf dem Dateisystem erscheint – mehr ist nicht zu programmieren, außer der obligatorischen Ausnahmebehandlung für den Fall, dass es zu Schreibfehlern kommt.

8.2.4

Hilfsklassen

Properties

Manchmal müssen Grundeinstellungen eines Programms gelesen und dauerhaft auf der Festplatte gespeichert werden. Unter Windows verwenden Programme Ini-Dateien oder speichern ihre Informationen in der Registrierdatenbank. Um unabhängig von der Plattform zu sein, haben sich die Java-Erfinder ein anderes Konzept überlegt: das Konzept der Property-Dateien.

Diese Property-Dateien sind trivial aufgebaut und bestehen aus einem Schlüssel und einem oder mehreren dazu passenden Werten (Abbildung 8.9). Sie lesen die Werte aus, indem Sie eine Methode der Klasse Properties aufrufen und als Rückgabewert eine Zeichenkette mit dem Wert oder der Werteliste erhalten.

Abbildung 8.9 Aufbau einer Properties-Datei

Das hört sich sehr nach den Stream-Beispielen an, und so verwundert es auch nicht, dass die Property-Klasse auf der Stream-Bibliothek aufbaut. Im Gegensatz zu den bereits gezeigten Zeichenströmen erlauben Properties es, strukturierte Dateien ein- und auszulesen. Wie das funktioniert, zeigt das folgende Beispiel (Listing 8.17).

1: //Beispielprogramme/Java_Klassenbibliotheken/Ex13

2:

3: package libraries;

4:

5: import java.io.FileInputStream;

6: import java.io.IOException;

7: import java.util.Properties;

8:

9: public class PropertiesDemo {

10:

272

Java Standard Edition

8.2

11:

public static void main(String[] arguments) {

12:

13:

Properties basicProperties = new Properties();

14:

15:

//Versuche, die Datei zu oeffnen

16:

try {

17:

basicProperties.load(

18:

new FileInputStream("week.properties"));

19:

}

20:

catch (IOException ex) {

21:

System.out.println(ex);//Fehler

22:

}

23:

24:

//Ausgabe der Datei:

25:

System.out.println((

26:

basicProperties.getProperty("week", "Montag")));

27:

}

28: }

Listing 8.17 Dieses Programm liest den Inhalt einer strukturierten Datei.

Das Programm legt ein neues Objekt des Typs Properties an und lädt anschlie-

ßend den Inhalt der Datei week.properties. Mit Hilfe des Akzessors getProperty können Sie gezielt den Inhalt der Werteliste auslesen.

Container

Ein weiterer wichtiger Bereich der Hilfsklassen ist die Aufnahme von beliebigen Werten und Objekten. Während einfache Arrays (Abschnitt 4.4.1) als erweiterte Datentypen nur halbdynamisch waren, erlauben es die mächtigen Collection-Klassen Vector und Hashtable, beliebig viele Objekte dynamisch zu verwalten.

Das Beispiel zeigt deutlich den Unterschied zwischen Arrays und Vektoren. Zu Beginn der Methode main legt das Programm ein String-Array mit vier Elementen an und belegt diesen »Einkauf« mit Begriffen von vier Edelsteinen. Diese Zeichenketten werden einem Vektor übergeben, der nicht »weiß«, wie viele Elemente er in seine »Kollektion« aufnehmen soll.

1: //Beispielprogramme/Java_Klassenbibliotheken/Ex14

2:

3: package libraries;

4:

5: import java.util.Vector;

6:

7: public class VectorDemo {

8:

273

8

Java-Klassenbibliotheken

9:

public static void main(String[] arguments) {

10:

11:

String[] purchase = new String[4];

12:

purchase[0] = "Diamanten";

13:

purchase[1] = "Rubine";

14:

purchase[2] = "Saphire";

15:

purchase[3] = "Turmaline";

16:

17:

Vector<String> collection =

18:

new Vector<String>();

19:

20:

System.out.print("Wir haben folgendes " +

21:

"in unserer Kollektion:\n");

22:

23:

for (int index = 0; index < 4; index++) {

24:

collection.addElement(purchase[index]);

25:

System.out.println(collection.get(index));

26:

}

27:

}

28: }

Listing 8.18 Ein Vektor verwaltet Objekte völlig dynamisch.

Eine einfache For-Schleife legt die neuen Edelsteine mit der Methode addElement in die Kollektion ab. Abschließend verwendet das Programm die Methode get, um die Strings der Kollektion wieder auszugeben. Die Methode get möchte dabei als Parameter den Index des Elements bekommen, den sie ausgeben soll.

8.2.5

Abstract Windowing Toolkit

Das Abstract Windowing Toolkit (AWT) diente in der Anfangszeit von Java vorwiegend dazu, grafische Oberflächen (GUIs) komplett zu gestalten. Dazu gehören keineswegs nur die Oberflächenkomponenten, sondern auch Zeichensätze, Farben und die Verarbeitung von Nachrichten.

Mit AWT entwickelte Oberflächen sehen exakt so aus wie native Oberflächen, da das AWT die Funktionen des Betriebssystems zur Darstellung verwendet. Leider enthielt das AWT viele Fehler und Unzulänglichkeiten, die zur fast vollständigen Ablösung der GUI-Teile dieser Bibliothek führten.

Heute gestaltet man Java-GUIs mit einer Kombination aus AWT und der moder-neren Bibliothek Swing. Als weitere Alternative steht vom Eclipse-Konsortium die Bibliothek SWT (Standard Widget Toolkit) zur Verfügung, die für die Eclipse-Entwicklungsumgebung entwickelt wurde (Kapitel 22, »Werkzeuge«).

274

Java Standard Edition

8.2

Abbildung 8.10 Ausschnitt aus der Klassenhierarchie des AWT

Trotz der Tatsache, dass die Oberflächenkomponenten des AWT heute praktisch keine Rolle mehr spielen, hat das AWT weiterhin eine große Bedeutung in der Ja-va-Welt. Es wird gebraucht, um Zeichensätze oder Farben zu verwenden. Weitere wichtige Aufgaben sind Layout-Manager und die Ereignisbehandlung innerhalb von Java-Programmen.

Ereignisbehandlung

Die Programmierung grafischer Oberflächen verläuft ereignisgesteuert. Das bedeutet, dass jeder Mausklick, jeder Tastendruck, das Verschieben, Vergrößern und Verkleinern von Fenstern Ereignisse auslöst. Es gibt bei der Ereignissteuerung drei Beteiligte:

1. Auslöser

2. Nachricht

3. Empfänger

Abbildung 8.11 zeigt den Ablauf in vier Stufen. In Schritt 1 vergrößert der Anwender das Fenster des Programms (Auslöser). Daraufhin sendet die Java-Lauf-275

8

Java-Klassenbibliotheken

zeitumgebung (JRE) eine Reihe von Signalen aus. Darunter befindet sich auch die Nachricht »ComponentResized«. Wenn das Programm (Empfänger) auf dieses Ereignis speziell reagieren möchte, fängt es dieses ab und zeichnet anschließend den Inhalt des Fensters neu.

Das folgende Beispiel (Listing 8.19) zeigt die Funktionsweise nochmals an einem AWT-Fenster. Der Konstruktor des Programmfensters erzeugt zunächst eine anonyme Klasse auf Basis der AWT-Klasse ComponentAdapter. Diese AWT-Klasse lässt zu, die Ereignisse von Komponenten, zu denen auch das Hauptfenster zählt, zu überwachen. Das funktioniert deshalb, weil die neue Fensterklasse EventDemo von Frame erbt, die wiederum von der AWT-Klasse Component abgeleitet ist.

1: //Beispielprogramme/Java_Klassenbibliotheken/Ex15

2:

3: package libraries;

4:

5: import java.awt.Frame;

6: import java.awt.event.ComponentEvent;

7:

8: public class EventDemo extends Frame {

9:

10:

private static final long serialVersionUID = 1L;

11:

12:

public EventDemo() {

13:

14:

this.addComponentListener(

15:

new java.awt.event.ComponentAdapter() {

16:

17:

public void componentMoved(ComponentEvent e) {

18:

System.out.println("Fenster verschoben");

19:

} // componentMoved

20:

21:

public void componentResized(ComponentEvent e) {

22:

System.out.println("Fenster veraendert");

23:

} // componentResized

24:

}); // addcomponentListener

25:

// (...)

26:

}

27:

28:

public static void main(String[] arguments) {

29:

EventDemo eventDemo = new EventDemo();

30:

eventDemo.setVisible(true);

31:

}

32: }

Listing 8.19 Das Hauptprogramm legt ein neues AWT-Fenster an.

276

Java Standard Edition

8.2

Da das Programm seine eigene individuelle Reaktion auf die Ereignisse componentMoved und componentResized installieren möchte, ist es erforderlich, die gleichnamigen Methoden zu überschreiben. Das Programm ersetzt die Implementierung der Basisklasse durch seine eigene. Die »Implementierung« sieht allerdings nur so aus, dass das Programm zu Demonstrationszwecken ausgibt, dass es die Nachricht erkannt hat. Es verarbeitet die Nachricht nicht mehr weiter.

Abbildung 8.11 Ereignisbehandlung innerhalb eines Programms

In größeren ereignisgesteuerten Programmen, die Sie in Kapitel 12, »Computerspiele mit Swing«, kennenlernen werden, laufen viele dieser Aktionen über die grundlegende Methode paint ab, die überschrieben werden muss, wenn man den grafischen Inhalt des Fensters selbst neu zeichnen möchte.

Falls das nicht der Fall ist und man Oberflächenkomponenten wie Textfelder, Listen oder Schaltflächen verwendet, sollte man aber auch auf die Größenänderung eines Fensters reagieren. Dies geschieht mit Hilfe von Layout-Managern.

Verwendung von Layout-Managern

Layout-Manager dienen dazu, auf Größenveränderungen eines Fensters nach einer bestimmten Strategie zu reagieren. Die Strategie bestimmt, welche Anordnung die Oberflächenkomponenten wie Textfelder, Schaltflächen etc. nach der Neuausrichtung bekommen.

In primitiven GUI-Bibliotheken ordnet man einzelne GUI-Bausteine durch absolute Koordinaten an. Das hat zur Folge, dass sich Fenster nicht in der Größe anpassen lassen oder nicht wie erwartet reagieren. Abbildung 8.12 zeigt ein 277

8

Java-Klassenbibliotheken

Beispiel dafür. Hier liegt, wie in allen Fenstersystemen, der Koordinatenursprung links oben. Wenn der Anwender das Fenster vergrößert, bleiben die Oberflächenkomponenten in der linken oberen Ecke (Koordinatenursprung) und verändern ihre Größe nicht.

Abbildung 8.12 Ein Programm ohne Layout-Management –

die Komponenten werden nicht neu ausgerichtet.

In Java-Programmen liegt der Koordinatenursprung ebenfalls links oben, aber man verwendet fast ausschließlich relative Koordinaten sowie Maximal- und Mi-nimalgrößen von Komponenten. Die Abbildung zeigt, was das bewirkt, wenn zusätzlich Layout-Manager die Aufgabe übernehmen, automatisch alle Komponenten auszurichten. Die Größe des Textfeldes ist angepasst worden, und wir haben seine Lage entsprechend der neuen Fenstergröße ausgerichtet (Abbildung 8.13).

Abbildung 8.13 Ein Programm mit Layout-Management –

die Komponenten werden neu ausgerichtet.

278

Java Standard Edition

8.2

Zwei Layout-Manager sind für das Verständnis der größeren Beispiele in den Kapiteln 11, 12, 13 und 16 wichtig: Border-Layout und GridBag-Layout.

Border-Layout

Das Border-Layout richtet die Oberflächenkomponenten am Rand des Fensters aus. Es gibt fünf Bereiche, nach denen eine Komponente ausgerichtet werden kann:

1. North: oberer Fensterrand

2. South: unterer Fensterrand

3. West: linker Fensterrand

4. East: rechter Fensterrand

5. Middle: Fenstermitte

Wie diese Parameter innerhalb eines Programms verwendet werden, zeigt das folgende Beispiel:

1: //Beispielprogramme/Java_Klassenbibliotheken/Ex16

2:

3: package libraries;

4:

5: // Importieren der AWT-Klassen:

6: import java.awt.BorderLayout;

7: import java.awt.Frame;

8: import java.awt.TextField;

9: import java.awt.event.WindowAdapter;

10: import java.awt.event.WindowEvent;

11:

12: public class BorderLayoutDemo extends Frame {

13:

14:

private static final long serialVersionUID = 1L;

15:

16:

public BorderLayoutDemo() {

17:

18:

this.addWindowListener(new WindowAdapter() {

19:

public void windowClosing(WindowEvent e) {

20:

dispose();

21:

System.exit(0);

22:

}

23:

});

24:

25:

setSize(500, 300);

26:

setLayout(new BorderLayout());

279

8

Java-Klassenbibliotheken

27:

28:

try {

29:

add("North", new TextField("Text 1"));

30:

add("South", new TextField("Text 2"));

31:

add("West", new TextField("Text 3"));

32:

add("East", new TextField("Text 4"));

33:

add("Center", new TextField("Text 5"));

34:

} catch (IllegalArgumentException ex) {

35:

System.out.println("Falscher Parameter: " + ex);

36:

}

37:

}

38:

39:

public static void main(String[] arguments) {

40:

BorderLayoutDemo borderLayoutDemo =

41:

new BorderLayoutDemo();

42:

borderLayoutDemo.setVisible(true);

43:

}

44:

45: }

Listing 8.20 Beispiel für ein Border-Layout

Jedes Fenster des Typs Frame besitzt eine Methode add(), die aus der Basisklasse Container stammt. Die Methode erwartet als Parameter die Ausrichtung und die Oberflächenkomponente. Wichtig: Falls der Parameter nicht stimmt, verschickt das Programm eine IllegalArgumentException. Diese muss zwar nicht abgefangen werden, falls sie aber auftritt, führt das dazu, dass die Oberfläche nicht korrekt gezeichnet wird.

Abbildung 8.14 Das Border-Layout richtet Komponenten am Rand aus.

Abbildung 8.14 zeigt, wie das Beispielprogramm dargestellt wird. Der Layout-Manager richtet alle Komponenten gemäß Ihrem Parameter am Rand aus.

280

Java Standard Edition

8.2

GridBag-Layout

Das GridBag-Layout ist bei Java-Entwicklern wegen seiner aufwändigen Programmierung gefürchtet, weswegen ein GUI-Builder zur Oberflächengestaltung mit diesem Layout durchaus sinnvoll sein kann (Kapitel 22, »Werkzeuge«). Im Gegensatz zum vorher vorgestellten Border-Layout richten sich die Komponenten, die über ein GridBag positioniert werden, nicht am Rand aus, sondern an einem imaginären Gitternetz.

1: //Beispielprogramme/Java_Klassenbibliotheken/Ex17

2:

3: package libraries;

4:

5: // Importieren der AWT-Klassen:

6: import java.awt.Frame;

7: import java.awt.GridBagConstraints;

8: import java.awt.GridBagLayout;

9: import java.awt.Insets;

10: import java.awt.TextField;

11: import java.awt.event.WindowAdapter;

12: import java.awt.event.WindowEvent;

13:

14: // Die neue Klasse AppWnd

15: @SuppressWarnings("serial")

16: public class GridBagLayoutDemo extends Frame {

17:

GridBagLayout gridBagLayout = new GridBagLayout();

18:

TextField textField1 = new TextField();

19:

TextField textField2 = new TextField();

20:

TextField textField3 = new TextField();

21:

TextField textField4 = new TextField();

22:

TextField textField5 = new TextField();

23:

TextField textField6 = new TextField();

24:

25:

public GridBagLayoutDemo() {

26:

this.addWindowListener(new WindowAdapter() {

27:

public void windowClosing(WindowEvent e) {

28:

dispose();

29:

System.exit(0);

30:

}

31:

});

32:

try {

33:

initialize();

34:

} catch (Exception e) {

35:

e.printStackTrace();

36:

}

37:

}

281

8

Java-Klassenbibliotheken

38:

39:

private void initialize() throws Exception {

40:

setSize(500, 300);

41:

this.setLayout(gridBagLayout);

42:

this.setBackground(java.awt.Color.lightGray);

43:

textField1.setText("Text 1");

44:

textField2.setText("Text 2");

45:

textField3.setText("Text 3");

46:

textField4.setText("Text 4");

47:

textField5.setText("Text 5");

48:

this.add(textField1,

49:

new GridBagConstraints(0, 0, 1, 1, 0.0, 0.0,

50:

GridBagConstraints.CENTER,

51:

GridBagConstraints.NONE,

52:

new Insets(0, 0, 0, 0), 0, 0));

53:

this.add(textField2,

54:

new GridBagConstraints(1, 0, 1, 1, 0.0, 0.0,

55:

GridBagConstraints.CENTER,

56:

GridBagConstraints.NONE,

57:

new Insets(0, 0, 0, 0), 0, 0));

58:

this.add(textField3,

59:

new GridBagConstraints(2, 0, 1, 2, 0.0, 0.0,

60:

GridBagConstraints.CENTER,

61:

GridBagConstraints.VERTICAL,

62:

new Insets(0, 0, 0, 0), 0, 0));

63:

this.add(textField4,

64:

new GridBagConstraints(0, 1, 1, 1, 0.0, 0.0,

65:

GridBagConstraints.CENTER,

66:

GridBagConstraints.NONE,

67:

new Insets(0, 0, 0, 0), 0, 0));

68:

this.add(textField5,

69:

new GridBagConstraints(1, 1, 1, 1, 0.0, 0.0,

70:

GridBagConstraints.CENTER,

71:

GridBagConstraints.NONE,

72:

new Insets(0, 0, 0, 0), 0, 0));

73:

}

74:

75:

public static void main(String[] arguments) {

76:

GridBagLayoutDemo gridBayLayoutDemo =

77:

new GridBagLayoutDemo();

78:

gridBayLayoutDemo.setVisible(true);

79:

}

80:

81: }

Listing 8.21 Beispiel für ein GridBag-Layout

282

Java Standard Edition

8.2

In Abbildung 8.15 sehen Sie ein Beispiel für ein Fenster, das mit dem GridBag-Layout mit Hilfe eines GUI-Builders gestaltet wurde. Der Konstruktor des Fensters ruft eine Initialisierungsmethode auf, in der die Textfelder erzeugt und in einem Gitternetz positioniert werden.

java.lang.Object

Shape

height:int

width:int

Rectangle

Circle

+Rectangle

+Circle

Abbildung 8.15 Das GridBag-Layout richtet Komponenten an einem Gitter aus.

Das Gitternetz besteht aus Objekten des Typs GridBagConstraint. Der Konstruktor der Klasse erwartet diverse Parameter, die zur speziellen Ausrichtung der Komponenten dienen.

Datentyp

Bezeichnung

Bedeutung

int

gridx

Rasterposition x

int

gridy

Rasterposition y

int

gridwidth

Gitterweite

int

gridheight

Gitterhöhe

double

weightx

x-Gewichtung

double

weighty

y-Gewichtung

int

anchor

Verankerung (NW, W, SW, N, Z, S, NO, O, SO)

int

fill

Füllart (ohne, horizontal, vertikal, beide)

Insets

insets

Zwischenraum

Tabelle 8.3 Parameter des Konstruktors der Klasse »GridBagContraint«

283

8

Java-Klassenbibliotheken

Datentyp

Bezeichnung

Bedeutung

int

ipadx

Zwischenabstand

int

ipady

Zwischenabstand

Tabelle 8.3 Parameter des Konstruktors der Klasse »GridBagContraint« (Forts.) Mit gridx und gridy legen Sie fest, an welcher Rasterposition die Komponente platziert wird. Zum Beispiel bewirken die Koordinaten (0 | 0), dass sich die Komponente in der ersten Zeile und in der ersten Spalte befindet. Wie bei allen Java-Grafikbibliotheken liegt der Koordinatenursprung links oben. Es wird also von links oben nach rechts unten durchnummeriert.

Durch die Einstellung Breite (gridwidth) und Höhe (gridheight) legen Sie die Anzahl der von der Komponente verwendeten Zellen fest. Bei diesem Wert handelt es sich um eine Festkommazahl, die sich auf die Anzahl der Zellen in einer Spalte oder Zeile bezieht. Beim Textfeld 3 des Beispielprogramms beträgt zum Beispiel die Breite 1, aber die Höhe 2. Das heißt, das Textfeld belegt zwei Zellen in der Höhe.

Die Parameter (weightx) und (weighty) legen die horizontale und vertikale Gewichtung der Komponente fest. Durch diese Parameter lässt sich steuern, wie viel vom freien Platz innerhalb eines Fensters für die Komponenten reserviert wird, wenn sich die Größe des Fensters ändert.

Jede Komponente muss an einer bestimmten Stelle verankert werden. Der

Ankerpunkt anchor bestimmt, in welcher Richtung sich die Komponente aus-dehnt, wenn das Fenster verändert wurde. Ähnlich dem Border-Layout stehen für die Verankerung folgende Konstanten zur Verfügung: NORTHWEST, NORTH, NORTHEAST, WEST, CENTER, EAST, SOUTHWEST, SOUTH und SOUTHEAST.

Durch die Füllart legen Sie fest, wie die Komponente den freien Platz nutzen wird.

Als Konstanten stehen wie zuvor NORTHWEST, NORTH, NORTHEAST, WEST,

CENTER, EAST, SOUTHWEST, SOUTH und SOUTHEAST zur Verfügung, die als

Parameter für ein Objekt des Typs GridBagConstraints genutzt werden. Im Programmbeispiel sehen Sie, dass das Textfeld 3 mit Hilfe der Einstellung GridBagConstraints.VERTICAL ausgerichtet wird. Das bedeutet, dass die Komponente den maximalen Platz in vertikaler Richtung einnimmt.

Auch an den Zwischenraum haben die Entwickler des GridBag-Layouts gedacht.

Mit Hilfe des Parameters insets können Sie den minimalen externen Rand der Komponente angeben. Die Werte müssen in Pixeleinheiten (Bildpunkte) angegeben werden. Die Parameter ipadx und ipady legen im Gegensatz dazu den minimalen internen Rand fest. Auch dieser Wert muss wieder in Pixeleinheiten angegeben werden.

284

Java Standard Edition

8.2

8.2.6

Swing

Seit Java 2 existiert neben dem AWT eine weitere GUI-Bibliothek namens Swing innerhalb der Java SE. Sie finden diese Bibliothek im Paket javax.swing. Swing ist nach einer Variante des Entwurfsmusters »Model View Controller« konzipiert worden. Das bedeutet im Wesentlichen, dass Geschäftsdaten und die Darstellung dieser Daten getrennt werden.

Swing zeichnet alle Oberflächenelemente selbst und bietet daher kein echtes natives Look-and-Feel auf allen Plattformen, sondern versucht, dieses mit Hilfe der Klasse UIManager nachzuempfinden, die sich im Paket javax.swing befindet. Das Verfahren hat den Nachteil, dass die Oberfläche nicht immer so aussieht, wie man das von nativen Programmen kennt, und – verglichen mit nativen Oberflächen –

relativ langsam gezeichnet wird. Es hat den Vorteil, dass die üblichen Probleme bei der Portierung von grafischen Oberflächen nahezu ausgeschaltet sind.

Die Probleme entstehen durch das unterschiedliche Aussehen und die unterschiedlichen Dimensionen gleichartiger Oberflächenkomponenten. Erschwerend kommt hinzu, dass unterschiedliche Betriebssysteme über unterschiedliche Schriften und Schriftensysteme verfügen. Dadurch besitzt eine beschriftete Schaltfläche unter Windows eine andere Ausdehnung als unter Mac OS X.

Abbildung 8.16 Ausschnitt aus der Klassenhierarchie von Swing

285

8

Java-Klassenbibliotheken

Abbildung 8.17 zeigt ein Beispiel für verschiedene Look-and-Feels, die man in einem Programm wählen kann. Neben diesen speziellen Look-and-Feels lässt sich ein Programm auch so starten, dass es das Look-and-Feel verwendet, das man als nativ bezeichnet. Unter nativ versteht man hier, dass Swing die Originaloberfläche des Betriebssystems möglichst originalgetreu wiedergibt.

Abbildung 8.17 Swing unterstützt verschiedene Look-and-Feels.

Die meisten virtuellen Maschinen verfügen heute über ein sehr gutes Ebenbild der tatsächlichen Oberflächen, so dass unerfahrene Anwender den Unterschied kaum erkennen können.

Alle Oberflächenelemente von Swing sind wesentlich angenehmer zu programmieren als ihre Verwandten aus der Bibliothek AWT. Das liegt vor allem daran, dass sie weitaus weniger Fehler haben und bei der Portierung eines Programms besser kalkulierbar sind.

In Listing 8.22 sehen Sie ein Beispielprogramm für die Auswahl von verschiedenen installierten Look-and-Feels. Im ersten Fall wird immer das »richtige«

Look-and-Feel gesetzt und werden die Komponenten so gezeichnet, wie es

der Anwender erwartet. Im zweiten Fall setzt das Programm explizit das

Windows-Look-and-Feel, im dritten Fall das Metal-Look-and-Feel und im letzten Fall das Motif-Look-and-Feel.

Sie sollten es vermeiden, das Look-and-Feel explizit zu setzen, da nicht jede virtuelle Maschine aus lizenzrechtlichen Gründen über alle Look-and-Feels verfügt.

Zum Beispiel gibt es das Aqua-Look-and-Feel nur unter Mac OS X. Ausnahmen bilden das Metal- und das Motif-Look-and-Feel, die auf jeder Plattform verfügbar sind, aber selten den Wünschen der Anwender entsprechen.

1: //Beispielprogramme/Java_Klassenbibliotheken/Ex18

2:

3: package libraries;

4:

5: // Importieren der AWT-Klassen:

6: import java.awt.BorderLayout;

7: import java.awt.GridBagConstraints;

8: import java.awt.GridBagLayout;

286

Java Standard Edition

8.2

9: import java.awt.Insets;

10: import java.awt.event.WindowAdapter;

11: import java.awt.event.WindowEvent;

12:

13: import javax.swing.JFrame;

14: import javax.swing.JPanel;

15: import javax.swing.JTextField;

16: import javax.swing.UIManager;

17:

18: public class LookAndFeelDemo extends JFrame {

19:

private static final long serialVersionUID = 1L;

20:

JPanel panel = new JPanel();

21:

JTextField textField1 = new JTextField();

22:

JTextField textField2 = new JTextField();

23:

JTextField textField3 = new JTextField();

24:

JTextField textField4 = new JTextField();

25:

JTextField textField5 = new JTextField();

26:

GridBagLayout gridBagLayout =

27:

new GridBagLayout();

28:

29:

public LookAndFeelDemo() {

30:

this.addWindowListener(new WindowAdapter() {

31:

public void windowClosing(WindowEvent e) {

32:

dispose();

33:

System.exit(0);

34:

}

35:

});

36:

try {

37:

initialize();

38:

} catch (Exception e) {

39:

e.printStackTrace();

40:

}

41:

}

42:

43:

private void initialize() throws Exception {

44:

setSize(200, 150);

45:

this.setBackground(java.awt.Color.lightGray);

46:

textField1.setText("Text 1");

47:

textField2.setText("Text 2");

48:

textField3.setText("Text 3");

49:

textField4.setText("Text 4");

50:

textField5.setText("Text 5");

51:

panel.setLayout(gridBagLayout);

52:

this.getContentPane().add(panel,

53:

BorderLayout.CENTER);

54:

panel.add(textField1,

287

8

Java-Klassenbibliotheken

55:

new GridBagConstraints(0, 0, 1, 1, 0.0, 0.0,

56:

GridBagConstraints.CENTER,

57:

GridBagConstraints.NONE,

58:

new Insets(0, 0, 0, 0), 0, 0));

59:

panel.add(textField2,

60:

new GridBagConstraints(1, 0, 1, 1, 0.0, 0.0,

61:

GridBagConstraints.CENTER,

62:

GridBagConstraints.NONE,

63:

new Insets(0, 0, 0, 0), 0, 0));

64:

panel.add(textField3,

65:

new GridBagConstraints(2, 0, 1, 2, 0.0, 0.0,

66:

GridBagConstraints.CENTER,

67:

GridBagConstraints.VERTICAL,

68:

new Insets(0, 0, 0, 0), 0, 0));

69:

panel.add(textField4,

70:

new GridBagConstraints(0, 1, 1, 1, 0.0, 0.0,

71:

GridBagConstraints.CENTER,

72:

GridBagConstraints.NONE,

73:

new Insets(0, 0, 0, 0), 0, 0));

74:

panel.add(textField5,

75:

new GridBagConstraints(1, 1, 1, 1, 0.0, 0.0,

76:

GridBagConstraints.CENTER,

77:

GridBagConstraints.NONE,

78:

new Insets(0, 0, 0, 0), 0, 0));

79:

}

80:

81:

public static void main(String[] arguments) {

82:

try {

83:

// 1. Systemunabhaengig: Natives Look + Feel

84:

UIManager.setLookAndFeel(

85:

UIManager.getSystemLookAndFeelClassName());

86:

// 2. Windows-Look + Feel

87:

UIManager.setLookAndFeel(

88:

"com.sun.java.swing.plaf.windows.WindowsLookAndFeel");

89:

// 3. Metal-Look + Feel

90:

UIManager.setLookAndFeel(

91:

"javax.swing.plaf.metal.MetalLookAndFeel");

92:

// 4. Motif-Look + Feel

93:

UIManager.setLookAndFeel(

94:

"com.sun.java.swing.plaf.motif.MotifLookAndFeel");

95:

} catch (Exception e) {

96:

e.printStackTrace();

97:

}

98:

LookAndFeelDemo lookAndFeelDemo =

99:

new LookAndFeelDemo();

100:

lookAndFeelDemo.setVisible(true);

288

Java Standard Edition

8.2

101:

}

102:

103: }

Listing 8.22 Beispiel für das Auswählen eines Look-and-Feels

Das Beispielprogramm in Listing 8.22 zeigt das Hauptfenster der Anwendung aus Abbildung 8.15. Es demonstriert die Verwendung einer der wichtigsten Fensterklassen, der Klasse JFrame. Wie zu sehen ist, musste das Programm leicht umgestellt werden. Alle Textfelder sind nun auf einem JPanel befestigt, das von der Klasse Container erbt. Im Prinzip zeigt dieses Programm schon den Aufbau der größeren Beispielprojekte ab Kapitel 11. Dort lernen Sie noch weitere Swing-Komponenten kennen, die nach dem Komponentenmodell JavaBeans konstruiert sind.

8.2.7

JavaBeans

JavaBeans sind Java-Komponenten mit standardisierten Schnittstellen und einem einfachen Programmiermodell. Es gibt zwei Arten dieser Komponenten: visuelle und nicht visuelle JavaBeans. Visuelle Komponenten dienen zur Gestaltung von grafischen Oberflächen, nicht visuelle JavaBeans könnten zum Beispiel Klassen sein, die den Zugriff auf Datenbanken erleichtern.

Jede JavaBean zeichnet sich durch folgende Besonderheiten aus:

왘

Analysierbarkeit durch spezielle Werkzeuge

왘

Parametrisierungsfunktionen

왘

Fähigkeit zur Ereignissteuerung

왘

Attribute (Properties) für die Parametrisierung

왘

Fähigkeit zur Persistenz

8.2.8

Applets

Applets sind kleine Java-Programme, die zu Entwicklungszwecken in einem Applet Viewer ablaufen, danach in Webseiten eingebaut und von einem Browser ausgeführt werden. Damit das reibungslos geschieht, ist es notwendig, einen Browser zu besitzen, der eine virtuelle Maschine unterstützt, auf deren Basis das Applet entwickelt wurde. Das hört sich vielleicht kompliziert an, ist es einerseits nicht und andererseits eben doch. Warum?

In der Anfangszeit von Java dienten Applets dazu, kleine Funktionen in HTML-Seiten auszuführen. Erst später erkannte man das Potenzial, daraus auch richtige 289

8

Java-Klassenbibliotheken

Clients zu entwickeln. Solche komplexen Clients in Webseiten einzubetten ist aus vier Gründen nicht einfach:

1. Browser-Inkompatibilitäten

2. Sicherheitseinstellungen

3. Ladezeiten

4. Firewalls

Browser-Inkompatibilitäten

Jedes Applet benötigt, wie andere Java-Programme auch, eine Laufzeitumgebung (JRE). Leider verwenden verschiedene Browser-Versionen und -Anwendungen unterschiedliche Laufzeitumgebungen. Das bedeutet, dass der Netscape Navigator eine andere Laufzeitumgebung verwendet als der Internet Explorer oder Opera.

Da jeder Entwickler sein Programm an eine bestimmte Version anpasst, ist es sehr schwierig, ein Applet zu entwickeln, das in allen Browsern zuverlässig dargestellt wird. Um das zu erreichen, verwendet man am besten eine sehr alte Version des JDK und verzichtet auf eine Swing-Oberfläche.

Sicherheitseinstellungen

Internet-Browser lassen dem Anwender die Freiheit, Java zu deaktivieren. In diesem Fall wird das Applet nicht auf dem Ziel-Browser angezeigt. Der Wunsch der Anwender, Java zu deaktivieren, ist verständlich: In der Vergangenheit entdeck-ten Experten mehr als einmal gravierende Sicherheitslücken, die es böswilligen Applets erlaubt hätten, den Ziel-Computer zu zerstören.

Heute können Entwickler ihre Applets signieren, um dem Anwender zu signalisieren, dass es sich um ein vertrauenswürdiges Applet handelt. Bei diesem Vorgang erhält das Applet eine Art Unterschrift des Entwicklers. Der Computeranwender muss trotzdem entscheiden, ob er diesem signierten Applet vertraut, und kann es gegebenenfalls zurückweisen.

Ladezeiten

Je nachdem, welche Oberflächenbibliothek Sie für Ihr Applet verwenden, müssen Sie unter Umständen eine große Anzahl von Klassen auf den entfernten Computer übertragen, weil diese im Browser nicht verfügbar sind. Ab einer bestimmten Komplexität der grafischen Oberfläche eines Applets ist es deshalb anzuraten, einerseits spezielle Ladestrategien zu entwickeln und andererseits die Oberflä-

chenbibliothek zu verwenden, die von den Browsern am besten unterstützt wird.

290

Java Standard Edition

8.2

Firewalls

So lange Applets als autarke Anwendung im Browser ausgeführt werden, tritt kein Problem auf. Setzt man sie hingegen als Frontend (Client) eines größeren Programms (Server) ein, entstehen Probleme. Das liegt an der so genannten Firewall, die Unternehmen davor schützt, dass Angreifer in ihr Netzwerk eindringen.

Leider hat die Firewall den Nachteil, dass sie nicht ohne weiteres zwischen einem freundlichen Applet und einem feindlichen Angreifer unterscheiden kann. Das Applet, das mit dem Server kommuniziert, wird unter Umständen genauso abge-wiesen wie ein Angreifer. Das liegt an dem Protokoll, mit dem sich das Applet mit seinem Server unterhält. In der Regel ist das entweder IIOP (Internet Inter Orb Protocol) oder JRMP (Java Remote Method Protocol).

Damit diese Protokolle die Firewall passieren, müssen sie erst in ein unbedenkli-ches Protokoll umgewandelt werden. Diese zusätzliche Verpackungsarbeit kostet Ausführungszeit, erhöht das Datenvolumen und verlängert damit auch die Trans-portzeit.

Ein Applet unterscheidet sich von einer Java Application. Die wichtigsten Unterschiede und Charakteristika eines Applets sind:

왘

Ableitung von der Klasse Applet

왘

keine Methode main()

왘

Interpretation durch die VM eines Internet-Browsers

왘

Sicherheitsbeschränkungen

왘

Grafikorientierung

8.2.9

Applications

Für die Programmierung von Java Applications gibt es keine spezielle Basisklasse in der JSE. Eine Java Application kann jede Java-Klasse sein. Einzige Voraussetzung ist, dass sie über eine Methode namens main() verfügen muss.

8.2.10 Java Database Connectivity (JDBC)

Über die Java Database Connectivity (JDBC) greift fast jedes Java-Programm direkt oder indirekt auf relationale Datenbanken zu, die eine SQL-Schnittstelle besitzen.

Das JDBC stellt sich dem Programmierer als Package java.sql dar. Es besitzt folgende Struktur:

291

8

Java-Klassenbibliotheken

Abbildung 8.18 Die Klassen des SQL-Packages

Die Innovation des JDBC ist, dass es den Entwickler von der Programmierung für eine spezielle Datenbank wie DB2, Oracle, Ingres oder Sybase befreit. Sie können gegen eine abstrakte Schnittstelle programmieren und brauchen sich nicht um Spezialitäten der einzelnen relationalen Datenbanken zu kümmern.

Für die konkrete Anbindung an die Datenbank sorgt ein JDBC-Treiber, der meistens vom Datenbankhersteller entwickelt wird. Er entkoppelt das Java-Programm von der Datenbank. Es gibt vier Klassen von JDBC-Treibern:

1. JDBC-ODBC-Bridge

2. Native-API-Treiber

3. Net-Treiber

4. Dünne Treiber

Typ 1: JDBC-ODBC-Bridge

Dies ist die langsamste Treiberart. Sie sollte nur dann verwendet werden, wenn relationale Datenbanken verwendet werden müssen, die nicht über eine SQL-Schnittstelle verfügen. 4th Dimension ist ein Beispiel hierfür.

292

Java Standard Edition

8.2

Typ 2: Native-API-Treiber

Diese Treiberart setzt die JDBC-Aufrufe in native API-Aufrufe der Datenbank um.

Daher können Sie direkt mit der Datenbank kommunizieren.

Typ 3: Net-Treiber

Wie der Name schon andeutet, setzt diese Treiberart JDBC-Aufrufe in daten-bankneutrale Netzwerkaufrufe um. Eine Zwischenschicht zwischen Treiber und Datenbank nimmt die endgültige Umwandlung vor.

Abbildung 8.19 Die verschiedenen Arten von JDBC-Treibern

Typ 4: Dünne Treiber

Diese Treiberart wird meistens von den Datenbankherstellern selbst geliefert und setzt direkt auf der Datenbank-API auf.

Es ist sehr ratsam, sich bei der DB-Programmierung eingehend mit diesen Typen auseinanderzusetzen, denn mit den Treibern steht und fällt die Qualität der DB-Verbindung. Entsprechend teuer sind manche Treiber (zum Beispiel Merant-Treiber).

293

8

Java-Klassenbibliotheken

Zwei Kriterien sind wichtig:

1. Fehleranfälligkeit der Verbindungen

2. Performance

Welchen Treiber sollte man verwenden? Aus den genannten Gründen sind die Treibertypen 3 und 4 vorzuziehen.

Die Kapitel 15, »Datenbankprogrammierung«, bis 17, »Dynamische Websites«, zeigen Ihnen anhand einer Datenbank und zwei Datenbankprogrammen, wie Sie eine Datenbank aufsetzen und sie mit dem JDBC programmieren.

8.2.11 Java Native Interface

Das Java Native Interface (JNI) ist eine Programmierschnittstelle, über die Sie Bibliotheken, die in anderen Programmiersprachen geschrieben wurden, von Java aus nutzen können. Es hat drei Aufgaben:

1. Zugriff auf betriebssystemspezifische Eigenschaften

2. Zugriff auf bestehende Bibliotheken

3. Geschwindigkeitsoptimierung

Besonders in der Anfangszeit von Java, in der Programme noch nicht so performant waren, schien es reizvoll, Teile, die von der Ausführungszeit her kritisch waren, in C oder C++ umzusetzen.

Heute ist es eher unter dem Aspekt des Investitionsschutzes interessant, Bibliotheken über das JNI anzudocken. Es ist zu beachten, dass das Java-Programm damit seine Portabilität verliert und Sicherheitsprobleme auftreten können. Aus dem letzten Grund ist die Verwendung des JNI in unsignierten Applets untersagt.

8.2.12 Remote Method Invocation

Die Remote Method Invocation (RMI) ist eine Architektur zum Zugriff auf Methoden entfernter Objekte (Remote Methods). Mit ihr können sehr einfach verteilte Java-Anwendungen geschrieben werden. Das liegt daran, dass im Gegensatz zu konkurrierenden Architekturen wie CORBA kein zusätzliches Produkt notwendig ist.

294

Java Enterprise Edition

8.3

Die RMI-Architektur legt vier Zugriffsschichten fest:

1. Applikationsschicht

2. Remote-Schicht

3. Proxy-Schicht

4. Transportschicht

Die Teile bedeuten im Einzelnen:

Applikationsschicht

Diese Schicht repräsentiert Client- sowie Serveranwendungen und enthält den auszuführenden Code.

Remote-Schicht

Die Remote-Schicht könnte man auch als Vermittlungsschicht zwischen der Proxy-Schicht und der zugrunde liegenden Transportschicht bezeichnen.

Proxy-Schicht

Ein Proxy ist ein Stellvertreter. Somit bildet die Proxy-Schicht den lokalen Stellvertreter von Objekten, die auf einem entfernten Computer ausgeführt werden.

Das geschieht über so genannte Stubs (Rümpfe) und Skeletons (Skelette), die mit einem speziellen Compiler erzeugt werden.

Transportschicht

Die Schicht bedarf wohl keiner großen Erklärungen mehr: Sie sorgt für den eigentlichen Transport und bildet das Pendant zu einer Socket-Kommunikation.

8.3

Java Enterprise Edition

Im Gegensatz zur Java SE ist die Java Enterprise Edition (J2EE oder JEE) für größere Unternehmen interessant, die verteilte Anwendungen entwickeln möchten. Verteilte Anwendungen sind Programme, die nicht nur auf einem Computer ablaufen, sondern auf mehreren. Damit die Objekte verschiedener Computer miteinander kommunizieren können, gibt es mehrere Techniken. Eine Technik bieten Servlets und JavaServer Pages, eine andere die Komponentenarchitektur Enterprise JavaBeans. Die Common Object Request Broker Architecture (CORBA) erlaubt es ebenfalls, verteilte Anwendungen zu produzieren.

295

8

Java-Klassenbibliotheken

Abbildung 8.20 Java Enterprise Edition

8.3.1

Servlets

Servlets sind die serverseitigen Verwandten von Applets. Es sind Webanwendungen, die dynamisch Webseiten erzeugen. Sie werden als kleine, plattformunabhängige Java-Klassen kompiliert, die dynamisch in einem Webserver geladen und von diesem ausgeführt werden. Sie kommunizieren mit dem Webbrowser über das Hypertext Transfer Protocol (HTTP) und erweitern den Funktionsumfang des Webservers. Konkurrenztechnologien zu Servlets sind:

왘

CGI-Skripte

왘

Perl-Skripte

왘

PHP-Skripte

왘

ASP

왘

JavaServer Pages

CGI-Skripte

CGI steht für Common Gateway Interface und ist eine Standardschnittstelle für Erweiterungen des Webservers. CGI-Skripte stellen als Standarderweiterung eines 296

Java Enterprise Edition

8.3

Webservers gegenüber proprietären Erweiterungen einen ziemlichen Fortschritt dar, bewahren sie doch den Entwickler davor, produktspezifischen Code schreiben zu müssen.

Perl-Skripte

Perl-Skripte können ebenso wie CGI-Skripte dazu dienen, externe Programme aufzurufen und statische HTML-Seiten mit dynamischen Daten zu versorgen. Perl besitzt im Unix-Umfeld eine große Verbreitung.

PHP-Skripte

PHP ist eine weitere konkurrierende Technologie, die in den letzten Jahren besonders im Linux-Umfeld Auftrieb bekommen hat.

ASP

Active Server Pages sind eine Microsoft-Variante des CGI-Modells. Sie stellten das Vorbild für die JavaServer Pages dar.

Servlets sind Java-Klassen, die HTML-Code erzeugen. Dazu muss der HTML-Code in die Java-Klasse eingebaut werden. Das hat den schwerwiegenden Nachteil, dass sich das Design der HTML-Seite nur noch per Hand ändern lässt. Aus diesem Grund ist die Servlet-Technologie nur für Seiten zu empfehlen, die nicht ständigen Veränderungen unterliegen.

Wenn Sie also mit Designern zusammenarbeiten, die mit HTML-Werkzeugen wie Aptana oder Dreamweaver arbeiten und den Code ihrer Seiten ständig verändern, sind Sie mit JavaServer Pages besser bedient.

8.3.2

JavaServer Pages

JavaServer Pages (JSP) erweitern wie Servlets die Fähigkeiten eines Webservers.

Sie basieren auf dem Servlet-API und dienen hauptsächlich der Erzeugung von XML- und HTML-Clients. Im Gegensatz zu Servlets erlauben es JSP, designorien-tierte HTML-Dokumente mit einer Skriptsprache zu mischen. Damit ergibt sich eine strikte Aufgabentrennung:

왘

HTML-Design/-Programmierung für das GUI-Design

왘

Java-Programmierung für die Ablauflogik

Wenn der Designer mit einer Seite und dem Ablaufplan der Site fertig ist, beginnt die eigentliche Arbeit des Programmierers. Er verbindet die markierten Teile einer Webseite zum Beispiel mit einer JavaBean, die die Geschäftslogik enthält.

297

8

Java-Klassenbibliotheken

Die Verbindungslogik kann mit vier verschiedenen Anweisungen erfolgen:

1. JSP-Direktiven

2. JSP-Scriptlets

3. JSP-Kommentare

4. JSP-Aktionen

Die Direktiven dienen zum Beispiel dazu, im Fehlerfall entsprechend auf eine andere Seite zu verzweigen. Ein Beispiel ist die Direktive errorPage:

<% ErrorPage: %>

<%@ page errorPage = "/info/errorpage.html" %>

Listing 8.23 Direktive für die Anzeige einer Fehlermeldung

Scriptlets werden bevorzugt dazu eingesetzt, HTML-Ausgaben zu erzeugen. Sie werden wie die Direktiven in spitzen Klammern mit Prozentzeichen eingebettet, damit der HTML-Editor sie ignoriert.

Die dritte Anweisungsart sind Kommentare, die wie in Java üblich ausgeführt werden können, während die letzte Anweisungsart Aktionen sind, die zum Beispiel angeben, welche JavaBean als Pendant verwendet werden soll.

Damit will ich den Ausflug in die Welt der Servlets und JavaServer Pages vorerst beenden. Beim Entwurf der Weboberfläche des Beispielprojekts Xenia in Kapitel 17, »Dynamische Websites«, werde ich näher auf dynamische Webanwendungen eingehen.

8.3.3

CORBA

Seit einiger Zeit ist CORBA Bestandteil des JDK und damit auch Bestandteil der Java SE. Dennoch sind die Klassen eher der Enterprise Edition zuzuordnen, weil die Verwendung von CORBA nur für die Programmierung von Java-Servern sinnvoll ist.

Das Akronym CORBA steht für Common Object Request Broker Architecture. Das ist eine Middleware-Architektur. Das Projekt ist das Ergebnis eines Konsortiums namens Object Management Group (OMG). Hinter diesem Begriff verbirgt sich ein Zusammenschluss von über 700 Firmen. Platt ausgedrückt, könnte man sagen, dass nicht weniger als die Gesamtheit der Softwareentwicklungsfirmen der Welt, denen ihre Unabhängigkeit von Microsoft wichtig ist, CORBA unterstützen.

298

Java Enterprise Edition

8.3

Einige Eckdaten zu CORBA:

왘

CORBA ist nahezu unabhängig von der Programmiersprache.

왘

CORBA ist nicht proprietär, sondern ein Industriestandard.

왘

CORBA ist kein Produkt, sondern eine Anleitung zum Bauen von Produkten.

Was heißt das konkret für den Java-Entwickler?

왘

Java enthält eine CORBA-Unterstützung.

왘

Sie können auf CORBA-Server objektorientiert zugreifen, die in anderen Sprachen oder in Java geschrieben sind (im Gegensatz zu JNI).

왘

Sie machen sich nicht von einer Firma abhängig.

왘

Sie benötigen ein Produkt, das eine CORBA-Infrastruktur bereitstellt.

Die CORBA-Infrastruktur besteht stark vereinfacht aus vier Grundelementen: 1. Object Request Broker (Objektbus)

2. Common Object Services (CORBA-Dienste)

3. Common Facilities (CORBA-Server)

4. Application Objects (CORBA-Clients)

Der Object Request Broker ist der Objektbus, manchmal auch als CORBA-Back-bone (Rückgrat) bezeichnet. Über ihn können Objekte transparent Anfragen an andere Objekte senden. Für die Objekte (Clients), die die Anfragen (Requests) stellen, ist es egal, wo sich das Objekt befindet, das antwortet (Server). Es könnte sich auf dem gleichen Computer befinden oder auf einem völlig anderen Rechner.

8.3.4

Enterprise JavaBeans

Enterprise JavaBeans (EJB) sind wie JavaBeans Komponenten. Das Programmiermodell ist viel mächtiger, aber im Vergleich zu JavaBeans auch schwieriger zu verstehen. Das Modell ist die momentan am weitesten entwickelte Architektur zur Kapselung von Unternehmensdaten und Geschäftslogik in standardisierten Komponenten. Diese Standardkomponenten benötigen als Laufzeitumgebung einen Applikationsserver mit integriertem EJB-Container. Die JRE als Laufzeitumgebung reicht nicht aus.

299

8

Java-Klassenbibliotheken

Das Komponentenmodell EJB ist wie folgt aufgebaut. Es gibt zwei Typen von Beans:

1. Entity Beans

2. Session Beans

3. Message Driven Beans

Die Entity Beans sind primär Datenträger und kapseln die Geschäftsdaten, wobei auch hier zwei Typen unterschieden werden:

1. Entity Beans mit Container-managed Persistence (CMP)

2. Entity Beans mit Bean-managed Persistence (BMP)

Entity Beans

Ein Beispiel für Entity Beans könnte eine Person aus einer Personaldatenbank sein. Entity Beans können aber auch in einfachen Dateien oder relationalen Datenbanken (Kapitel 15, »Datenbankprogrammierung«) gespeichert werden. Der Speicherort ist für den Java-Programmierer unwichtig.

Session Beans

Session Beans sind die Repräsentanten der Geschäftslogik. Sie bieten einen Dienst an und können nicht gespeichert werden. Man unterscheidet zwei Arten:

1. Stateless Session Beans

2. Stateful Session Beans

Stateless Session Beans sind sehr kurzlebige, zustandslose Services, die von einem Methodenaufruf zum nächsten keine Daten speichern. Sie besitzen alle die gleiche Identität, und es gibt keine Möglichkeit, sie zu unterscheiden.

Stateful Session Beans hingegen besitzen einen Zustand und speichern ihre Daten zwischen mehreren Methodenaufrufen. Sie sind aber nicht persistent. Nach dem Abschalten des Servers geht ihr Zustand verloren, wenn er nicht explizit persistent gemacht wurde.

Message Driven Beans

Message Driven Beans sind dafür gedacht, asynchrone Kommunikation zum Beispiel mit Message Brokern zu unterstützen. Will man seine Anwendung nicht zu stark mit einem anderen System koppeln, bietet sich diese Art einer EJB an.

300

Java Micro Edition

8.4

Schnittstellen

Enterprise JavaBeans besitzen zwei Schnittstellen, über die man auf sie zugreifen kann:

1. Remote Interface

2. Home Interface

Das Remote Interface dient dazu, auf die eigentliche Komponentenschnittstelle zuzugreifen, zum Beispiel den Namen einer Person zu ermitteln, während das Ho-me Interface dazu gebraucht wird, den Lebenszyklus einer Bean zu beeinflussen.

Die Enterprise-JavaBean-Architektur ist ein buchfüllendes Thema, das ich hier nicht weiter vertiefen möchte.

8.4

Java Micro Edition

Für Java-Anwendungen, die in Mobilgeräten und so genannten Embedded Systems laufen sollen, ist die Java Micro Edition gedacht. Sie richtet sich an Programmierer von Mobilgeräten und Embedded Systems und verwirrt den Einsteiger mit einer fast noch größeren Zahl von Abkürzungen, als das in den beiden anderen Editionen der Fall ist.

Abbildung 8.21 Java Micro Edition

Die Edition besteht aus zwei Teilen: der Connected Limited Device Configuration (CLDC) und der Connected Drive Configuration (CDC). Programme, die die CLDC

verwenden, werden von einer speziellen virtuellen Maschine ausgeführt, der Kilobyte Virtual Machine (KVM)). Sie ist sehr klein, sehr eingeschränkt und verfügt beispielsweise nicht über Gleitkommazahlen. CDC-Programme werden dagegen von einer vollständigen, aber kompakten virtuellen Maschine (CVM) ausgeführt.

301

8

Java-Klassenbibliotheken

Auf die Connected Limited Device Configuration setzen zwei Profile auf: das MID

Profile und das PDA Profile. MID steht für Mobile Information Device, womit Mobilfunkgeräte gemeint sind. Für diese Geräte gibt es analog zu Servlets und Applets eine spezielle Applikationsart, die MIDlets. Diese werden in Archiven ausgeliefert und mit diversen Klassenbibliotheken entwickelt.

Diese Bibliotheken befinden sich in den Paketen

왘

javax.microedition.io

왘

javax. microedition.lcdui

왘

javax.microedition.midlet

왘

javax.microedition.rms

Darüber hinaus stehen noch die Basisbibliotheken java.io, javalang und java.util zur Verfügung, die aber aufgrund der eingeschränkten virtuellen Maschine keine Gleitkommatypen anbieten.

Java-Programme, die mit Hilfe der Java SE oder gar der JEE konzipiert wurden, sind nicht auf Mobilgeräte übertragbar. Die Java ME ist eine eigene Welt, die nur garantiert, dass Anwendungen, die für ein Mobilgerät geschrieben wurden, mit Hilfe der speziellen virtuellen Maschinen (KVM, CVM) auch auf einem Mobilgerät laufen.

8.5

Zusammenfassung

Java besitzt einen kleinen Sprachkern, der durch so genannte Klassenbibliotheken erweitert wird. Neben vielen Bibliotheken von Softwarehäusern und Entwickler-gemeinschaften gibt es die offiziellen Bibliotheken des Java-Erfinders Sun Microsystems. Diese Bibliotheken sind in drei Editionen organisiert: Java Standard Edition (Java SE), Java Enterprise Edition (Java EE) und Java Micro Edition (Java ME).

Die bedeutendste unter den drei Editionen ist die Java SE alias JDK. In ihr sind nicht nur die JDK-Werkzeuge und die Java Runtime Environment (JRE) enthalten, sondern mehrere tausend nützliche Klassen für grafische Oberflächen, Da-teieingabe und -ausgabe, Zeichenketten, Ereignis- und Fehlerbehandlung sowie Komponenten.

Die Java EE richtet sich an größere Unternehmen, die auf Basis von Application Servern verteilte Anwendungen entwickeln. In dieser Edition spielen die Komponententechnik der Enterprise JavaBeans (EJB) sowie die Webtechnologien Servlets und JavaServer Pages eine große Rolle.

302

Aufgaben

8.6

Mit der Java ME schließlich kehrt Java wieder zu seinen Ursprüngen zurück: der Programmierung von Kleingeräten. Diese Edition enthält nützliche Klassen, um Mobiltelefone, Taschenkalender und andere Kleingeräte zu programmieren.

8.6

Aufgaben

8.6.1

Fragen

1. Was sind Klassenbibliotheken?

2. Welche Vorteile besitzen sie?

3. Wie sind die Java-Klassenbibliotheken von Sun Microsystems organisiert?

4. Welche Aufgabe hat das Paket java.lang?

5. Wie unterscheidet sich Swing von AWT?

6. Wieso besitzt das AWT auch heute noch große Bedeutung?

7. Was sind Applets?

8. Was versteht man unter Servlets?

9. Was ist eine verteilte Anwendung?

8.6.2

Übungen

1. Erweitern Sie die For-Schleife beider Thread-Klassen des Beispiels 10 (Listing 8.13 und Listing 8.14) um folgende Anweisung:

//Beispielprogramme/Java_Klassenbibliotheken/Ex10

for (...) {}

✄

sleep(10);

✄

}

Listing 8.24 Erweiterung der »Thread«-Klassen durch Aufruf der Methode »sleep«

2. Werfen Sie dazu einen Blick in die Java-Dokumentation der Klasse Thread.

3. Was müssen Sie beim Einfügen der Anweisung beachten?

4. Welche Ausgabe erzielt das Programm? Erklären Sie die Veränderung.

Die Lösungen zu den Aufgaben finden Sie in Kapitel 19 ab Seite 521.

303

»Die Neugier steht immer an erster Stelle des Problems,

das gelöst werden will.« (Galileo Galilei)

9

Algorithmen

9.1

Einleitung

Im vorangegangenen Kapitel haben Sie gesehen, aus welchen Teilen ein Java-Programm besteht, welche Gesetzmäßigkeiten gelten und welche Programmier-paradigmen es gibt. Setzt man bestimmte Teile eines Programms so zusammen, dass ein Verfahren zur Lösung eines Problems entsteht, spricht man von einem Algorithmus. Wie man einen Algorithmus entwickelt, welche Arten von Algorithmen es gibt und welche in Java schon vorhanden sind, darum geht es in diesem Kapitel.

9.2

Algorithmen entwickeln

Wie entwickelt man Algorithmen? Um vom Problem zielgerichtet zu einer Lö-

sung, dem Algorithmus, zu kommen, sollte man nach einem Lösungsverfahren vorgehen. Ein solcher Plan könnte beispielsweise wie folgt aussehen:

왘

Anforderungen in möglichst wenigen kurzen Sätzen benennen (circa vier bis fünf Sätze)

왘

Bekannte Fakten extrahieren

왘

Aus den bekannten Fakten die gesuchten Größen extrahieren

왘

Die gesuchten Größen nach Eingangs- und Ausgangsgrößen sortieren

왘

Einen Grobalgorithmus entwerfen

왘

Den Grobalgorithmus in einer Programmiersprache festhalten

왘

Das Programm ausprobieren

왘

Fehler und Ungenauigkeiten analysieren

왘

Den Entwurf des Grobalgorithmus gegebenenfalls verbessern

305

9

Algorithmen

왘

Das Programm verändern

왘

Das Programm testen und so weiter, bis das Ergebnis zufriedenstellend ist Schritt 1 wird als Anforderungsaufnahme bezeichnet, die Schritte 2 bis 5 als Analyse und Design, Schritt 6 als Implementierung, Schritt 7 als Test, Schritt 8 als Analyse, Schritt 9 als nochmaliges Design, Schritt 10 als Implementierung, Schritt 11 als Test und so weiter. Wie Sie sehen, wiederholt sich der gesamte Ablauf ständig (Abbildung 9.1). Die Schritte werden zyklisch in folgender Reihenfolge durchlaufen: Anforderungsaufnahme – Analyse und Design – Implementierung –

Test. Sie kommen Ihnen sicher aus Kapitel 5 bekannt vor und sind nichts anderes als der dort vorgestellte Entwicklungsprozess.

Abbildung 9.1 Verfahren zur Algorithmenentwicklung

Was ich Ihnen also gerade vorgestellt habe, ist ein Algorithmus zur Entwicklung von Algorithmen. Im Prinzip läuft die gesamte Entwicklung eines Programms so ab: Was für den Algorithmus im Kleinen gilt, trifft auch für das Programm im Großen zu.

9.3

Algorithmenarten

Algorithmen gibt es für jeden Einsatzzweck. Damit man die Fülle von Algorithmen besser unterscheiden kann, klassifiziert man sie nach folgenden Arten: 306

Algorithmenarten

9.3

왘

Sortieralgorithmen

왘

Suchalgorithmen

왘

Algorithmen zur Mustererkennung

왘

Algorithmen zur Lösung geometrischer Probleme

왘

Graphen

왘

Mathematische Aufgaben

Für zwei dieser Einsatzzwecke möchte ich Ihnen Beispiele vorstellen.

9.3.1

Sortieren

Es kommt in einem Programm ständig vor, dass Werte sortiert werden müssen.

Das können Zahlenwerte sein oder Zeichenketten. Entscheidend bei Sortieralgorithmen ist vor allem deren Geschwindigkeit. Einer der einfachsten Sortieralgorithmen ist der Selection Sort.

1:

2: //Beispielprogramme/Algorithmen/Ex01

3:

4: package algorithms;

5:

6: /**

7:

* Klasse: Selection

8:

* Zweck: Sortiert ein Array

9:

* @author Bernhard Steppan

10:

*

11:

*/

12:

13: public class Selection {

14:

15:

public static void main(String[] arguments) {

16:

17:

int array[] = new int[10];

18:

19:

int temp, index;

20:

21:

array[0] = 9;

array[1] = 87;

22:

array[2] = 732; array[3] = 136;

23:

array[4] = 0;

array[5] = 41;

24:

array[6] = 43;

array[7] = 22;

25:

array[8] = 42;

array[9] = 52;

26:

307

9

Algorithmen

27:

for (index = 0; index < (array.length - 1); index++) {

28:

for (int j = index; j < (array.length); j++) {

29:

if (array[index] > array[j]) { // Vergleich

30:

temp = array[index]; // Zwischenspeichern des Minimums

31:

array[index] = array[j]; // Minimum wird ueberschrieben

32:

array[j] = temp; // Vertauschung durch temp. Wert

33:

}

34:

}

35:

}

36:

37:

for (index = 0 ; index < array.length; index++)

38:

System.out.println(array[index]);

39:

}

40: }

Listing 9.1 Eines der einfachsten Sortierverfahren ist der »Selection Sort«.

Das Programm sucht erst nach dem kleinsten Element des Feldes, tauscht es gegen das erste Element aus, findet das zweitkleinste Element, tauscht es gegen das zweite Element aus und so weiter, bis das gesamte Feld sortiert ist. Das Programm besteht aus einem Schleifennest. Darunter versteht man mindestens zwei ineinander verschachtelte Schleifen.

In der innersten Schleife findet über eine If-Anweisung der Vergleich zwischen den Elementen statt. Ist ein Minimum gefunden, speichert das Programm es in einer temporären Variablen und vertauscht es. Danach finden weitere Durchläufe statt, bis das gesamte Feld sortiert ist.

9.3.2

Diagramme

Es gibt verschiedene Arten von Diagrammen, die zum Beispiel in Statistikpro-grammen oder Tabellenkalkulationen eingesetzt werden. Einer dieser Diagrammtypen nennt sich Balkendiagramm und eignet sich sehr gut, um absolute Werte zu beurteilen. Für diesen Diagrammtyp möchte ich hier mit Ihnen einen einfachen Algorithmus entwickeln.

Grundfiguren aus AWT

Für das Zeichnen von Grafiken mit Hilfe der Grafik-Bibliotheken von Java sind einige Vorkenntnisse notwendig. Zunächst ist wichtig, zu wissen, dass das AWT

eine Reihe von einfachen Grundfiguren für das Zeichnen bereithält. Darunter befinden sich Kreise, Ellipsen und Rechtecke. Die Figuren können gefüllt oder in Umrissen dargestellt werden. Sie befinden sich in der Klasse Graphics des Pakets java.awt.

308

Algorithmenarten

9.3

Klasse »Graphics«

Um diese anwenden zu können, ist es nicht erforderlich, ein Objekt der Klasse Graphics direkt zu erzeugen, sondern es kann eine Fensterkomponente verwendet werden, die die Methode paint() bereithält. Diese Methode bekommt als Parameter ein Objekt der Klasse Graphics, das Sie verwenden können. Eine normale Komponente zeichnet jedoch nicht automatisch das gewünschte Diagramm. Dazu benötigt man eine eigene Methode.

Überschreiben von »paint«

Es wäre jedoch nicht geschickt, eine Methode beliebigen Namens zu definieren und dort das Zeichnen des Diagramms vorzunehmen. Besser ist es, die Methode paint() der Basisklasse zu überschreiben. Diese Methode reagiert schon in der gewünschten Weise auf die richtigen Ereignisse, so dass Sie eine Ereignisbehandlung (Abschnitt 8.2.5, »Abstract Windowing Toolkit«) nicht selbst implementieren müssen.

Abbildung 9.2 Der Koordinatenursprung liegt in der linken oberen Ecke.

Die zweite wichtige Voraussetzung, um erfolgreich einen Algorithmus implementieren zu können, ist die Kenntnis des Java-Koordinatensystems. Der Ursprung des Koordinatensystems liegt in der linken oberen Ecke. Damit wird also im vierten Quadranten gezeichnet (Abbildung 9.2).

Um ein Rechteck zu zeichnen, müssen Sie sowohl in x- als auch in y-Richtung gegen die Skalierung rechnen. Die Skalierung des Diagramms wächst in entgegengesetzter Richtung zur y-Achse (Ordinate). Sie müssen also den maximalen Wert ermitteln, um die Stelle zu berechnen, an der alle Rechtecke enden sollen.

Der Algorithmus ist relativ einfach. Die Methode zum Zeichnen der Rechtecke bekommt folgende Parameter:

309

9

Algorithmen

왘

x

als Zeichenursprung in x-Richtung

왘

y

als Zeichenursprung in y-Richtung

왘

barWidth

als Breite des Balkens

왘

absoluteValue

als Wert, der angezeigt werden soll

Da der Balken in y-Richtung in negativer Richtung gezeichnet werden muss, berechnet sich die y-Koordinate des Zeichenursprungs nach folgender Formel: y = diagrammHeight - absoluteValue

Abbildung 9.3 Der Ursprung des Balkens liegt bei (x | y).

Was noch zu klären wäre, ist, wie sich die Balken am besten nebeneinander zeichnen lassen. Das lässt sich mit folgender Formel erledigen:

x = barWidth * index

Durch diese Formel wird der erste Balken am Anfang des Diagramms platziert, weil der Index mit dem Wert 0 startet. Alle weiteren Balken versetzt der Algorithmus um die Breite eines Balkens in x-Richtung. Das Ergebnis der Methode paint sehen Sie in Listing 9.2.

Die Klasse BarChart erweitert die Swing-Klasse JComponent und überschreibt dabei die Methode paint(). Zu Beginn berechnet die Methode einen Offset für die Ausgabe des Diagrammtitels. Danach legt sie den Zeichensatz mit der Methode 310

Algorithmenarten

9.3

setFont() des Objekts graphics der Klasse Graphics fest. Auf die gleiche Art und Weise legt das Programm die Farbe des Titels fest und gibt die Zeichenkette als Titel aus.

Danach folgt der Algorithmus als For-Schleife. Die Werte sind der Einfachheit halber in einem einfachen Array gespeichert. Die Schleife benutzt als Grenzwert die Länge des Arrays. Innerhalb der Schleife variiert das Programm die Farbe der Balken, so dass sie sich farblich voneinander absetzen.

1: //Beispielprogramme/Algorithmen/Ex02

2:

3: package algorithms;

4:

5: import java.awt.Color;

6: import java.awt.Font;

7: import java.awt.Graphics;

8: import javax.swing.JComponent;

9:

10: /**

11:

* Klasse: BarChart

12:

* Zweck: Zeichnet ein Balkendiagramm

13:

* @author Bernhard Steppan

14:

*

15:

*/

16: public class BarChart extends JComponent {

17:

private static final long serialVersionUID = 1L;

18:

private int origin;

19:

private int chartHeight;

20:

private int barWidth;

21:

private Color titleColor;

22:

private int[] absoluteValue = {

23:

10, 20, 30, 40, 50, 60, 70, 80, 90, 100};

24:

25:

private Color[] colors = {

26:

Color.red, Color.orange,

27:

Color.yellow, Color.cyan,

28:

Color.green, Color.magenta,

29:

Color.blue, Color.pink,

30:

Color.white, Color.gray

31:

};

32:

33:

public BarChart() {

34:

origin = 0; //x-Koordinatenursprung

35:

chartHeight = 0;

//y-Koordinatenursprung

36:

barWidth = 10; //Balkenbreite

37:

}

311

9

Algorithmen

38:

39:

public synchronized void paint(Graphics graphics) {

40:

int textPosX = origin + barWidth + 10; //Offset

41:

//Titelzeichensatz:

42:

graphics.setFont(new Font("Arial", Font.PLAIN, 12));

43:

graphics.setColor(Color.black); // Titelfarbe

44:

//Titel der Grafik:

45:

graphics.drawString("Absolute Werte",

46:

textPosX,

47:

chartHeight - 120);

48:

49:

//Der Algorithmus zum Zeichnen der Rechtecke:

50:

for (int index = 0; index < absoluteValue.length; index++) {

51:

graphics.setColor(colors[index]);

52:

graphics.fillRect(origin + barWidth * index,

53:

chartHeight - absoluteValue[index],

54:

barWidth,

55:

absoluteValue[index]);

56:

} //for

57:

} //paint

58:

59:

public Color getTitleColor() {

60:

return titleColor;

61:

}

62:

63:

public void setTitleColor(Color titleColor) {

64:

this.titleColor = titleColor;

65:

}

66:

67:

public void setBarWidth(int barWidth) {

68:

this.barWidth = barWidth;

69:

}

70:

71:

public void setOrigin(int origin) {

72:

this.origin = origin;

73:

}

74:

75:

public void setChartHeight(int chartHeight) {

76:

this.chartHeight = chartHeight;

77:

}

78: }

Listing 9.2 Die Klasse »BarChart«

312

Algorithmenarten

9.3

Die Balken werden durch die Methode fillRect() der Klasse Graphics gezeichnet.

Die Methode erwartet die schon erwähnten Parameter x, y, Breite und Höhe, die nach den bekannten Formeln berechnet werden.

Nun wäre noch wünschenswert, dass die Grafikklasse eine kleine Schnittstelle bekäme, um sie vom Programm aus aufrufen zu können. Sie kommt in Form

von drei Zugriffsmethoden, die es erlauben, den Zeichenursprung, die Höhe des Diagramms und die Breite des Balkens zu manipulieren:

public void setOrigin(int origin)

public void setChartHeight(int chartHeight)

public void setBarWidth(int barWidth)

Das Balkendiagramm wird nun in eine Swing-Klasse eingebettet und mit einem Hauptprogramm verknüpft. Das geschieht in der Initialisierungsmethode des Fensters. Als Layout-Manager verwendet das Fenster ein Border-Layout, das dem Objekt contentPane übergeben wird.

Im Anschluss daran legt das Fenster seine Größe und den Fenstertitel fest. Mit der Methode setOrigin() versetzt das Fenster den Ursprung des Balkendiagramms etwas nach rechts, mit der Methode setChartHeight() gibt es die Höhe des Diagramms vor. Zum Schluss wird das Programm in die contentPane eingefügt.

1: //Beispielprogramme/Algorithmen/Ex02

2:

3: package algorithms;

4:

5: import java.awt.AWTEvent;

6: import java.awt.BorderLayout;

7: import java.awt.Dimension;

8: import java.awt.event.WindowEvent;

9: import javax.swing.JFrame;

10: import javax.swing.JPanel;

11:

12:

13: public class ChartWnd extends JFrame {

14:

private static final long serialVersionUID = 1L;

15:

private JPanel contentPane;

16:

private BorderLayout borderLayout = new BorderLayout();

17:

private BarChart barChart = new BarChart();

18:

19:

//Den Frame konstruieren

20:

public ChartWnd() {

21:

enableEvents(AWTEvent.WINDOW_EVENT_MASK);

22:

try {

23:

initialize();

313

9

Algorithmen

24:

}

25:

catch(Exception e) {

26:

e.printStackTrace();

27:

}

28:

}

29:

30:

//Initialisierung der Komponenten

31:

private void initialize() throws Exception

{

32:

contentPane = (JPanel) this.getContentPane();

33:

contentPane.setLayout(borderLayout);

34:

this.setSize(new Dimension(250, 250));

35:

this.setTitle("Balkendiagramm");

36:

barChart.setAlignmentX((float) 0.5);

37:

barChart.setOrigin(70);

38:

barChart.setChartHeight(180);

39:

contentPane.add(barChart,

BorderLayout.CENTER);

40:

}

41:

42:

//Ueberschrieben, so dass eine Beendigung moeglich ist

43:

protected void processWindowEvent(WindowEvent e) {

44:

super.processWindowEvent(e);

45:

if (e.getID() == WindowEvent.WINDOW_CLOSING) {

46:

System.exit(0);

47:

}

48:

}

49: }

Listing 9.3 Die Klasse »ChartWnd«

Das fertiggestellte Hauptfenster kann jetzt vom Hauptprogramm aufgerufen werden. Das geschieht direkt am Anfang seines Konstruktors. Danach wird das Fenster auf dem Bildschirm zentriert und sichtbar geschaltet.

1: //Beispielprogramme/Algorithmen/Ex02

2:

3: package algorithms;

4:

5: import java.awt.Dimension;

6: import java.awt.Toolkit;

7: import javax.swing.UIManager;

8:

9: public class ChartApp {

10:

boolean packFrame = false;

11:

12:

//Konstruktor

13:

public ChartApp() {

314

Algorithmenarten

9.3

14:

ChartWnd chartWnd = new ChartWnd();

15:

if (packFrame) {

16:

chartWnd.pack();

17:

}

18:

else {

19:

chartWnd.validate();

20:

}

21:

//Das Fenster zentrieren:

22:

Dimension screenSize =

23:

Toolkit.getDefaultToolkit().getScreenSize();

24:

Dimension frameSize = chartWnd.getSize();

25:

if (frameSize.height > screenSize.height) {

26:

frameSize.height = screenSize.height;

27:

}

28:

if (frameSize.width > screenSize.width) {

29:

frameSize.width = screenSize.width;

30:

}

31:

chartWnd.setLocation((screenSize.width -

:

2

3

)

h

t

d

i

w

.

e

z

i

S

e

m

a

r

f

/

,

2

:

3

3

t

h

g

i

e

h

.

e

z

i

S

n

e

e

r

c

s

(

-

:

4

3

)

t

h

g

i

e

h

.

e

z

i

S

e

m

a

r

f

/

;

)

2

35:

chartWnd.setVisible(true);

36:

}

37:

38:

//Main-Methode

39:

public static void main(String[] args) {

40:

try {

41:

UIManager.setLookAndFeel(

42:

UIManager.getSystemLookAndFeelClassName());

43:

}

44:

catch(Exception e) {

45:

e.printStackTrace();

46:

}

47:

new ChartApp();

48:

}

49: }

Listing 9.4 Die Klasse »ChartApp«

Wenn Sie das Programm übersetzen und starten, zeigt sich das Hauptfenster, in dem sich das neue Balkendiagramm befindet.

315

9

Algorithmen

Abbildung 9.4 Das neue Balkendiagramm unter Mac OS X

9.4

Algorithmen anwenden

Viele Algorithmen müssen Sie als Java-Programmierer nicht selbst entwickeln.

Sie haben in Kapitel 8, »Java-Klassenbibliotheken«, gesehen, dass Java-Klassenbibliotheken ein gigantischer Selbstbedienungsladen voller Klassen sind. Innerhalb dieser Klassen gibt es Methoden, die einen Algorithmus enthalten. Man muss bloß wissen, ob er für den Einsatzzweck geeignet ist. Aber auch dazu ein Beispiel.

9.4.1

Sortieren

Collections

In Kapitel 8 wurde Ihnen eine Reihe von Klassenbibliotheken vorgestellt, darunter auch die Collection-Klassen, die sich im Util-Paket der Java SE befinden.

Es gibt eine ganze Reihe verschiedener Verfahren. Zum Thema Sortieren möchte ich Ihnen die Klasse Collections vorstellen. Sie enthält eine Methode, die sich ausgezeichnet zum Sortieren von Feldern eignet, wie das folgende Beispiel zeigt.

1: //Beispielprogramme/Algorithmen/Ex03

2:

3: package algorithms;

4:

5: import java.util.Arrays;

6: import java.util.Collections;

7: import java.util.List;

8:

9: /**

10:

* Klasse: Collection

316

Algorithmen anwenden

9.4

11:

* Zweck: Sortiert eine Liste von Strings

12:

* @author Bernhard Steppan

13:

*

14:

*/

15: public class Collection {

16:

17:

public static void main(String[] arguments) {

18:

19:

List<String> purchase = Arrays.asList(new String[] {

20:

"Diamanten", "Rubine",

21:

"Saphire", "Turmaline"});

22:

Collections.sort(purchase);

23:

System.out.print("Wir haben Folgendes eingekauft:\n");

24:

System.out.print(purchase);

25:

}

26: }

Listing 9.5 Sortierung mit Hilfe der Collections-Klasse

Das Programm erzeugt ein Objekt namens purchase, dem ein String-Array mit Edelsteinen übergeben wird. Diese Kollektion wird mit Hilfe der Klasse Collections sortiert und anschließend präsentiert. Im Gegensatz zum Beispiel des Listings 8.18

aus Kapitel 8 gibt das Programm diesmal den Inhalt der Kollektion geordnet aus: Wir haben Folgendes eingekauft:

[Diamanten, Rubine, Saphire, Turmaline]

Array

Wie sehr sich das Sortierprogramm des Listings 9.1 vereinfachen lässt, wenn man die mächtigen Java-Klassenbibliotheken kennt, zeigt folgendes Listing:

1: //Beispielprogramme/Algorithmen/Ex04

2:

3: package algorithms;

4:

5: import java.util.Arrays;

6:

7: /**

8:

* Klasse: Selection

9:

* Zweck: Sortiert eine Liste

10:

* @author Bernhard Steppan

11:

*

12:

*/

13: public class Selection {

14:

15:

public static void main(String[] arguments) {

317

9

Algorithmen

16:

17:

int array[] = new int[10];

18:

array[0] = 9;

array[1] = 87;

19:

array[2] = 732; array[3] = 136;

20:

array[4] = 0;

array[5] = 41;

21:

array[6] = 43;

array[7] = 22;

22:

array[8] = 42;

array[9] = 52;

23:

Arrays.sort(array); //Sortieren des Felds

24:

for (int index = 0 ; index < array.length; index++)

25:

System.out.println(array[index]);

26:

}

27: }

Listing 9.6 Sortierung mit Hilfe der Klasse »Array«

Wie Sie erkennen können, kann das gesamte Schleifennest durch einen einfachen Methodenaufruf der Klasse Arrays ersetzt werden. Sie müssen sich also nur wenige Algorithmen selbst ausdenken, weil die Java-APIs schon sehr viele vorgefertigte Lösungen bereitstellen, zum Beispiel auch für das Suchen, wie der folgende Abschnitt zeigt.

9.4.2

Suchen

Wer Edelsteine einkauft, möchte sie in seiner Kollektion natürlich wiederfinden.

Dazu sind Suchalgorithmen sinnvoll, wie das folgende Programm zeigt. Das Beispiel ist eine Erweiterung des vorangegangenen Beispiels. Diesmal wird aber nicht nur eingekauft und die vollständige Ware präsentiert, sondern auch später danach gesucht. Dazu findet die Klasse Collections erneut Verwendung. Sie verfügt über eine Methode binarySearch(), der die Liste der Edelsteine und der Schlüssel übergeben wird. Da jeder Anwender immer das Teuerste sucht, lautet der Schlüssel natürlich Diamanten.

1: //Beispielprogramme/Algorithmen/Ex05

2:

3: package algorithms;

4:

5: import java.util.Arrays;

6: import java.util.Collections;

7: import java.util.List;

8:

9: /**

10:

* Klasse: Collection

11:

* Zweck: Sucht nach einem String innerhalb eines Liste

12:

* @author Bernhard Steppan

13:

*

318

Aufgaben

9.5

14:

*/

15: public class Collection {

16:

17:

public static void main(String[] arguments) {

18:

19:

List<String> purchase =

20:

Arrays.asList(new String[] {"Diamanten", "Rubine",

21:

"Saphire", "Turmaline"});

22:

Collections.sort(purchase);

23:

System.out.print("Wir haben Folgendes eingekauft:\n");

24:

System.out.println(purchase);

25:

int index = Collections.binarySearch(purchase, "Diamanten");

26:

System.out.print("Am teuersten waren:\n");

27:

System.out.print(purchase.get(index));

28:

}

29: }

Listing 9.7 Diamanten sind natürlich wieder am teuersten gewesen.

Die ermittelten Werte werden über die Methode get() ausgegeben. Sie erwartet nur den Index des betreffenden Elements als Parameter und gibt daraufhin eine Zeichenkette zurück.

9.5

Aufgaben

9.5.1

Fragen

1. Definieren Sie den Begriff »Algorithmus«.

2. Nennen Sie die wichtigsten Schritte bei der Entwicklung eines Algorithmus.

3. Welche Arten von Algorithmen gibt es?

9.5.2

Übungen

1. Wie müsste eine Legende für das Balkendiagramm aufgebaut sein? Entwickeln Sie dazu einen Algorithmus.

2. Schreiben Sie das Collection-Programm (Listing 9.5) so um, dass es Int-Werte sortiert.

Die Lösungen zu den Aufgaben finden Sie in Kapitel 19 ab Seite 523.

319

TEIL III

Größere Java-Projekte

Der zweite Teil dieses Buchs hat Java anhand von vielen kleinen Beispielprogrammen vorgestellt. Sie haben nun einen guten Überblick über Sprache, Prozesse und Plattform gewonnen. Aber als Einsteiger möchten Sie mehr als ein Puzzle von Ein-zelteilen, von denen Sie nicht genau wissen, wie sie zusammengehören.

Aus diesem Grund stellt Ihnen dieser Teil größere Projekte vor. Er zeigt Ihnen, wie Sie die Einzelteile am geschicktesten zu größeren Projekten zusammensetzen. Der Bogen spannt sich dabei von Konsolenprogrammen über grafische Oberflächen, Web anwendungen und bis hin zu Datenbankprogrammen.

Alle Projekte des dritten Teils werden nach einem einheitlichen Prozess aufgerollt, der sich an Kapitel 5, »Entwicklungsprozesse«, orientiert und die fünf Abschnitte Anforderungen, Analyse und Design, Implementierung, Test und Verteilung enthält:

1. Anforderungen

Dieser Punkt fasst die Anforderungen an das Beispiel zusammen, also was es fachlich leisten soll.

2. Analyse und Design

Hier finden Sie zum Beispiel Klassenmodelle, also den objektorientierten Aufbau es Beispielprojekts. Bei den Programmen mit grafischer Oberfläche bekommen Sie außerdem noch Entwürfe der Oberflächen zu sehen.

3. Implementierung

In diesem Abschnitt erfolgen die Kodierung des Beispiels und eventuell das Design der grafischen Oberfläche.

4. Test

Das Beispiel wird kompiliert und anschließend gestartet.

5. Verteilung

Hier entsteht zum Schluss eine Batch-Datei beziehungsweise ein Shellskript zum Start des Programms, das damit fertiggestellt ist.

»Beispiele sind nicht ein anderer Weg, um zu lehren,

sie sind der einzige Weg.«

(Albert Einstein)

10

Konsolenprogramme

10.1

Einleitung

Konsolenprogramme scheinen ziemlich simpel zu sein: Sie besitzen keine grafische Oberfläche (Kapitel 11 ff.) und eignen sich deshalb bestens zum Einstieg in die Java-Programmierung. Aber auch professionelle Entwickler schreiben immer wieder kleinere oder größere Programme, für die sich der Aufwand einer grafischen Oberfläche nicht lohnt. Genau um solche Programme geht es in diesem Kapitel.

Abbildung 10.1 »Transfer« überträgt komplette Verzeichnisbäume.

323

10

Konsolenprogramme

10.2

Projekt »Transfer«

10.2.1 Anforderungen

Das Programm Transfer soll einen Teil eines Dateibaums von einem Verzeichnis in ein anderes kopieren (Abbildung 10.1). Dabei soll es in der Lage sein, den Verzeichnisbaum rekursiv zu übertragen. Rekursiv bedeutet, dass das Programm auch alle Unterverzeichnisse mitkopieren soll. Ausgangs- und Zielverzeichnis sollen über Kommandozeilenparameter übergeben werden. Das Programm muss

hierbei eine minimale Fehleruntersuchung durchführen, damit nicht unsinnige Eingaben zu Datenverlusten führen.

Hat der Anwender keine Parameter eingegeben, so soll das Programm nach Property-Dateien suchen, in denen die Kopierparameter gespeichert sind. Das Programm soll eine Sicherungskopie der am Tag geleisteten Arbeit erzeugen. Es wird also nicht manuell gestartet, sondern durch den Systemabschluss. Summa summarum: Transfer ist ein Programm, mit dem am Ende eines Arbeitstages Sicherungskopien von einem Verzeichnis angelegt werden können.

10.2.2 Analyse und Design

Das Programm zerfällt in drei Problembereiche: die Auswertung der Parameter, das Auslösen des Kopiervorgangs und den eigentlichen Kopiervorgang.

Auswertung der Parameter

Die Parameterauswertung erfolgt in der Methode main() des Programms über eine Fallunterscheidung. Es gibt drei Hauptfälle:

Im Fall 1 hat der Anwender keine Parameter eingegeben. Das kommt entweder daher, dass er das Programm nicht kennt und einfach so gestartet hat, oder daher, dass er die Properties-Datei verwenden wollte.

Das Programm versucht in diesem Fall, die Properties-Datei zu finden und die in ihr gespeicherten Kopierparameter auszuwerten. Wenn die Datei nicht zu finden oder zerstört ist (Fall 1.1), gibt das Programm eine Fehlermeldung aus und verabschiedet sich.

Wenn die Parameter so gewählt sind, dass Quelle gleich Ziel ist (Fall 1.2), gibt das Programm ebenfalls eine Fehlermeldung aus und verabschiedet sich. Erst wenn Quelle ungleich Ziel ist, startet Transfer den Kopiervorgang.

324

Projekt »Transfer«

10.2

Der Fall 2 ist einfacher zu behandeln: Hier hat der Anwender nur einen Parameter eingegeben. Das Programm interpretiert dies als Fehlbedienung, gibt eine entsprechende Meldung aus und beendet sich.

Im Fall 3 hat der Anwender zwei Parameter eingegeben. Falls Quelle gleich Ziel ist (Fall 3.1), gibt das Programm eine Fehlermeldung aus und verabschiedet sich.

Falls jedoch Quelle und Ziel unterschiedlich sind (Fall 3.2), startet das Programm den Kopiervorgang.

Abbildung 10.2 Die Auswertung der Parameter im Überblick

Kopierkern

Für die Lösung des Kopierproblems ist es notwendig, Dateiströme zu verwenden (Abschnitt 8.2.3, »Stream-Bibliotheken«). Damit kein Zwischenspeicher benötigt wird, sollte das Programm erst das Ausgangsverzeichnis einlesen und danach sofort das Zielverzeichnis schreiben. Der gesamte Kopiervorgang soll in einem Thread ablaufen (Abschnitt 8.2.1, »Java-Language-Bibliothek«).

Ereignissteuerung

Nur wenige Betriebssysteme wie Mac OS X verfügen über eine Funktion, die es erlaubt, ein Programm dann zu starten, wenn das Betriebssystem beendet wird. Bei Mac OS X heißen Programme, die in diesem Fall aufgerufen werden, Ausschaltobjekte.

325

10

Konsolenprogramme

Fast alle Betriebssysteme versenden aber ein Signal, wenn sie beendet werden.

Dieses Signal kann von den Anwendungen abgefangen und ausgewertet werden.

Das Problem ist nur, dass ein Java-Programm normalerweise keine native Anwendung ist (Abschnitt 6.4, »Native Java-Programme«). Anstelle des Java-Programms erhält die virtuelle Maschine das Signal vom Betriebssystem.

Was passiert mit einem Java-Programm, wenn das Betriebssystem beendet wird?

Es wird im Regelfall einfach abgewürgt und hat keine Möglichkeit, darauf zu reagieren. Das ist ärgerlich, wenn beispielsweise noch Änderungen an einer Datei ungesichert sind. Gute Anwendungen fragen in einem solchen Fall immer den Anwender, ob er seine Datei noch speichern möchte, bevor das Betriebssystem den Prozess beendet.

Seit der Java SE 1.3 ist es auch einem Java-Programm möglich, das Beenden des Betriebssystems so lange zu unterbrechen, bis wichtige Arbeiten wie das Sichern einer Datei erledigt sind. Dieser Mechanismus heißt Shutdown-Hook. Sie müssen dazu nur der Laufzeitumgebung mitteilen, dass Ihr Programm ein kritischer Fall ist, der benachrichtigt werden möchte.

10.2.3 Implementierung der Klasse »TransferApp«

Paketstruktur

Die Klasse TransferApp gehört zum Paket net.steppan.app.transfer. Bei einem Projekt wie Transfer, das nur aus zwei Klassen besteht, ist eine weitere Untergliede-rung nicht notwendig. Ebenfalls überflüssig sind Objekt- oder Klassenvariablen.

Importanweisungen

Es werden nur zwei direkte Importe benötigt. Die Klassen dienen dazu, die Property-Datei einzulesen.

✄

import java.util.Properties;

import java.io.FileInputStream;

✄

Listing 10.1 Die Importanweisungen der Klasse »TransferApp«

Konstruktor

Der Konstruktor der Klasse TransferApp besteht aus drei Teilen: dem Erzeugen eines neues Kopier-Threads, der Installation eines Shutdown-Hooks und einer Schleife, in der das Programm darauf wartet, dass es unterbrochen wird. Der Shutdown-Hook muss ein initialisierter, aber noch nicht gestarteter Thread sein.

326

Projekt »Transfer«

10.2

Die Unterbrechung kann durch einen Systemabschluss oder durch den Versuch, das Programm zu beenden, herbeigeführt werden.

✄

public TransferApp(String srcDir, String destDir) {

Thread t = new CopyThread("Transfer wartet ...",

srcDir, destDir);

Runtime.getRuntime().addShutdownHook(t);

do {

System.out.print(".");

try {

Thread.sleep(1);

}

catch (InterruptedException ie) {

Runtime.getRuntime().halt(1);

}

}

while (true);

}

✄

Listing 10.2 Der erste Konstruktor des Kopierprogramms

Während der Wartezeit gibt das Programm mit Hilfe der Methode print() Punkte auf die Konsole aus, um dem Anwender zu signalisieren, dass es im Hintergrund lauert.

Methode »helpAndTerminate«

Die Methode helpAndTerminate() wird immer dann aufgerufen, wenn eine Fehleingabe seitens des Anwenders oder innerhalb der Property-Datei erfolgt ist. Sie gibt lediglich einen Hilfetext aus und ruft danach die Methode exit() der Klasse System auf, wodurch das Programm sofort beendet wird. Über den Parameter 1 übermittelt die Methode, dass es sich nicht um ein normales Programmende handelte. Ein normales Programmende wird mit dem Rückgabewert 0 signalisiert.

✄

private static void helpAndTerminate() {

System.out.println("

Verwenden Sie bitte zwei unterschiedliche Parameter");

System.out.println("\tTransfer <Quelle> <Ziel>"); System.out.println("oder folgende Properties-Datei:");

System.out.println("

\t<Transfer-Verzeichnis>/prp/transfer.properties");

System.out.println("mit folgenden Eintr\u00e4gen:");

System.out.println("\tSrcDir <Quelle>");

327

10

Konsolenprogramme

System.out.println("\tDestDir <Ziel>");

System.exit(1);

}

✄

Listing 10.3 Die Methode »helpAndTerminate«

Methode »main«

Diese Methode setzt das Aktivitätsdiagramm aus Abbildung 10.2 um. Zu Beginn legt die Methode ein String-Objekt für die Warnung an, die das Programm im Falle von gleichen Parametern ausgibt. Danach erzeugt sie ein Objekt der Klasse Properties, das die Parameter aus einer Steuerdatei einlesen wird, falls der Anwender keine Parameter über die Kommandozeile eingegeben hat.

✄

public static void main(String args[]) {

String warning = "\nWarnung: Gleiche Parameter verwendet!\n"; Properties transferPrp = new Properties();

switch (args.length) {

case 0: // Fall 1: Keine Parameter => Properties laden

try {

transferPrp.load(

new FileInputStream("prp/bas/Basic.properties"));

}

catch (java.io.IOException e) { //Fall 1.1: Datei

//nicht gefunden

System.out.println("

Properties-Datei nicht gefunden: " + e);

helpAndTerminate(); //Das ist nicht erlaubt

}; // catch

// Quelle:

String srcDir = transferPrp.getProperty("SrcDir");

// Ziel

String destDir = transferPrp.getProperty("DestDir");

if (srcDir.equals(destDir)) { //

Fall 1.2: Quelle = Ziel

System.err.println(warning);

helpAndTerminate(); //Fehlermeldung

}

else { // Fall 1.3: Quelle != Ziel

new TransferApp(srcDir, destDir);

}

break; // case 0

case 1: // Fall 2: zu wenige Parameter

System.err.println("\nZu wenige Parameter.\n");

helpAndTerminate();

328

Projekt »Transfer«

10.2

break; // Fall 2

case 2: // Fall 3: 2 Parameter

if (args[0].equals(args[1])) { // Fall 3.1: Quelle = Ziel

System.err.println(warning);

helpAndTerminate(); //Fehlermeldung

}

// Fall 3.2: Quelle != Ziel:

new TransferApp(args[0], args[1]);

break;

}

}

}

✄

Listing 10.4 Die Methode »main« des Programms

Im Anschluss daran folgt die besagte Fallentscheidung, die von einer Case-Anweisung abgewickelt wird. Die Kommandozeilenparameter gelangen durch ein String-Array mit der Bezeichnung args in die Methode main(). Jedes String-Array besitzt eine Methode namens length, mit der seine Länge festgestellt werden kann. Ist die Länge 0, so wurde kein Parameter übergeben, ist sie 1, wurde ein Parameter übergeben und so weiter.

Abbildung 10.3 Der Gesamtablauf des Programms als Sequenzdiagramm 329

10

Konsolenprogramme

Abbildung 10.3 zeigt nochmals den Gesamtablauf des Programms Transfer in einem technischen Sequenzdiagramm. Nach dem Aufruf der Main-Funktion (Punkt 1 des Diagramms) analysiert das Programm die Benutzereingaben (Punkt 1.2 bis 1.8), um sofort zu entscheiden, ob es sinnvoll ist, den Shutdown-Hook zu installieren.

Sind die Benutzereingaben sinnvoll, erzeugt das Programm ein Objekt der Klasse TransferApp. Der Konstruktor dieser Klasse legt ein Objekt der Klasse CopyThread an und wartet danach auf ein Shutdown-Signal. Falls dieses eintrifft, weckt es den Kopier-Thread, der daraufhin seine Arbeit verrichtet.

10.2.4 Implementierung der Klasse »CopyThread«

Paketstruktur

Die Klasse CopyThread bekommt das gleiche Package zugewiesen wie die Hauptklasse der Anwendung.

Importanweisungen

Der CopyThread benötigt ausschließlich Klassen der IO-Bibliothek, um Dateien und Verzeichnisse zu kopieren.

✄

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

✄

Listing 10.5 Die Importanweisungen der Klasse »CopyThread«

Der Kopier-Thread verfügt nur über zwei Variablen, um sich das Quell- und Zielverzeichnis zu merken.

✄

private String srcDir;

private String destDir;

✄

Listing 10.6 Die Variablen der Klasse »CopyThread«

Konstruktoren

Die beiden Konstruktoren des Threads unterscheiden sich nur leicht. Dem ersten Konstruktor kann eine Meldung übergeben werden, die er umgehend auf die 330

Projekt »Transfer«

10.2

Konsole ausgibt. Im Fall des Transfer-Programms ist dies »Transfer wartet ...«.

Daran sehen Sie, dass der Thread zwar sofort initialisiert wird, aber nicht startet.

Die Methode run() wird erst dann aufgerufen, wenn Transfer ein ShutdownSignal empfängt.

✄

/**

* Erster Konstruktor

* @param message Meldung fuer die Konsolenausgabe

* @param srcDir Quelle

* @param destDir Ziel

*/

public CopyThread(String message,

String srcDir,

String destDir) {

this.srcDir = srcDir;

this.destDir = destDir;

System.out.println(message); // Meldung auf der Konsole

}

✄

Listing 10.7 Der erste Konstruktor der Klasse »CopyThread«

Wie der erste Konstruktor auch übernimmt der zweite Konstruktor über eine Parameterliste die Namen des Quell- und des Zielverzeichnisses – und damit ist seine Aufgabe auch schon beendet.

✄

/**

* Zweiter Konstruktor

* @param srcDir Quelle

* @param destDir Ziel

*/

public CopyThread(String srcDir,

String destDir) {

this.srcDir = srcDir;

this.destDir = destDir;

}

✄

Listing 10.8 Der zweite Konstruktor der Klasse »CopyThread«

Methode »run«

Die Methode run() wird dann aufgerufen, wenn der Thread zum Leben erweckt wird, das heißt, wenn ein Shutdown-Signal eingetroffen ist. Die Methode zeigt 331

10

Konsolenprogramme

danach kurz an, welches Quell- und Zielverzeichnis ihr übermittelt wurde, und ruft anschließend die Methode rcopy() auf.

✄

/**

* Methode run stoesst den Kopiervorgang an

*/

public void run() {

System.out.println("\nKopiere von " + srcDir +

" nach " + destDir);

try {

rcopy(new File(srcDir), new File(destDir));

}

catch (IOException io) {

System.err.println("Kopierfehler:" + io);

}

System.out.println("\nKopiervorgang beendet.");

}

✄

Listing 10.9 Die Methode »run«

Kopiermethode

Die Kopiermethode rcopy() ist der Kern des Programmalgorithmus. Sie sorgt dafür, dass sowohl Dateien als auch Unterverzeichnisse kopiert werden. Dazu werden ihr zwei Objekte des Typs File von der Methode run() übermittelt.

✄

/**

* Rekursive Kopiermethode (kopiert Unterverzeichnisse)

* @param source Quelle

* @param destination Ziel

* @throws IOException wird ausgeloest, wenn etwas schieflaeuft

*/

public static void rcopy(File source, File destination)

throws IOException {

if (source.isDirectory()) { // Fall 1: Verzeichnis

destination.mkdir();

String[] dirList = source.list();

for (int i = 0; i < dirList.length; i++) {

String entryName = dirList[i];

System.out.println("\nKopiere ".concat(String.valueOf(

String.valueOf(entryName)))); // Debug

rcopy(new File(source, entryName),

new File(destination, entryName));

}

332

Projekt »Transfer«

10.2

}

else { // Fall 2: Datei

int numberOfBytes;

byte[] buffer = new byte[32768];

FileInputStream in = new FileInputStream(source);

FileOutputStream out = new FileOutputStream(destination);

while ((numberOfBytes = in.read(buffer)) > 0) {

out.write(buffer, 0, numberOfBytes);

}

in.close(); // InputStream schliessen

out.close(); // OutputStream schliessen

} // else

} // rcopy

Listing 10.10 Die Methode »rcopy« kopiert Verzeichnisse rekursiv.

Im Anschluss daran stellt die Methode fest, ob ein Verzeichnis oder eine Datei kopiert werden soll. Fall es sich um ein Verzeichnis handelt (Fall 1), wird im Zielpfad ein neues Verzeichnis gleichen Namens angelegt, das Quellverzeichnis eingelesen und in ein Array verwandelt. Dieses Array arbeitet die Methode rekursiv ab, das heißt, sie ruft sich immer wieder selbst auf, bis der gesamte Verzeichnisbaum kopiert ist (Abbildung 10.4).

Dadurch, dass die Methode zu Anfang eine Fallunterscheidung trifft, ob eine Datei oder ein Verzeichnis kopiert werden soll, wird bei einem erneuten Durchlauf Folgendes erreicht: Falls der Fall 2 eintritt und eine Datei erkannt wird, wird diese kopiert. Dies setzt sich so lange fort, bis die Methode auch die letzte Datei kopiert hat.

Abbildung 10.4 Der Ablauf der Kopiermethode

333

10

Konsolenprogramme

10.2.5 Implementierung der Properties-Datei

Um zu verhindern, dass das Programm durch einen unbeabsichtigten Start Fehler produziert, stehen nach den Parametern SrcDir und DestDir der Properties-Datei anfangs keine Werte. Wenn das Programm versehentlich gestartet wird, führt es einen Vergleich aus und gibt eine Fehlermeldung aus, weil beide Parameter gleich sind (Fall 1.2).

#==

✄

#==

#

#====== Pfad fuer Windows anpassen ======

#SrcDir=C:/Source

#DestDir=U:/Destination

#==

#

#======= Pfad fuer Unix anpassen ========

#SrcDir=/usr/share/source

#DestDir=/usr/share/destination

#==

#

#=========== Voreinstellung =============

SrcDir

DestDir

#==

Listing 10.11 Die Properties-Datei enthält Quell- und Zielverzeichnis.

Der Anwender soll auf diese Weise gezwungen werden, die Datei bewusst zu bearbeiten und mit sinnvollen Werten zu füllen. Kommentare werden in Properties-Dateien mit einem Doppelkreuz eingeleitet. Sie können sie zum Beispiel nutzen, um sich mehrere Quell- und Zielverzeichnisse zu merken.

10.2.6 Test

Zum Testen des Programms verwenden Sie ein Shellskript oder eine Batch-Datei oder starten das Programm aus einer integrierten Entwicklungsumgebung. Sinnvoll sind mehrere Startkonfigurationen, um die Wirkung der Fallunterscheidung der Methode main zu überprüfen.

Beachten Sie bei Experimenten mit dem Programm Transfer, dass Kopierprogramme verheerende Schäden anrichten können, wenn sie nicht ausreichend getestet wurden. Arbeiten Sie daher nur mit Verzeichnissen, in denen sich keine wichtigen Informationen befinden.

334

Aufgaben

10.3

10.2.7 Verteilung

Die Verteilung ist der letzte Schritt, um ein Java-Programm so zu verwenden, wie der Anwender dies von anderen Programmen gewöhnt ist, die er beispielsweise mit dem Betriebssystem erhält.

Start mit virtueller Maschine

Das Programm ist zwar klein, es kann jedoch auch in einem Archiv ausgeliefert werden, damit die einzelnen Bestandteile gebündelt sind. Dazu führen Sie eine Archivierung mit dem JDK-Werkzeug jar durch (Abschnitt 5.3.4, »Archivieren«).

@echo off

rem Transfer (c) 2003 - 2011 by Bernhard Steppan

C:\Programme\JDK\jdk1.7\jre\bin\java -jar transfer.jar

@echo on

Listing 10.12 Die Batch-Datei enthält den Pfad zur JRE.

Danach müssen Sie eine Batch-Datei (Windows) oder ein Shellskript (Unix) für den Start der Anwendung schreiben (Listing 10.12). Die Batch-Datei können Sie in die Autostart-Gruppe von Windows kopieren, wo das Programm nach

dem Einschalten des Computers gestartet wird und so lange im Hintergrund schlummert, bis es ein Shutdown-Signal erhält.

Start mit nativem Wrapper

Programme wie das Archiv-Tool der Entwicklungsumgebung JBuilder oder der Export-Assistent von Eclipse erlauben es, das kleine Programm mit einer Hülle auszustatten. Der Anwender kann es auf diese Weise bequem ohne Batch-Datei starten. Unter den Beispielprogrammen finden Sie im Ordner Konsolenprogramme ein Beispiel hierfür.

10.3

Aufgaben

10.3.1 Fragen

1. Was ist ein Shutdown-Hook, und welchen Vorteil bringt er?

2. Welche Klassen benötigen Sie, um einen solchen Hook zu installieren?

3. Über welche Methode wertet ein Java-Programm Kommandozeilenparameter aus?

4. Wie bestimmt es die Anzahl der Parameter?

335

10

Konsolenprogramme

5. Was versteht man unter einer Rekursion?

6. Welche Klassen der Java SE benötigen Sie, um Dateien zu kopieren?

10.3.2 Übungen

1. Was passiert bei der momentanen Transfer-Version, wenn der Anwender zu viele Parameter eingibt?

2. Überlegen Sie sich eine Lösung dafür, und bauen Sie diese in das Programm ein.

3. Ergänzen Sie das Aktivitätsdiagramm (Abbildung 10.2) um diesen Fall.

Die Lösungen zu den Aufgaben finden Sie in Kapitel 20 ab Seite 527.

336

»Man muss das Tiefe an der Oberfläche verstecken.«

(Hugo von Hoffmannsthal)

11

Einfache Oberflächen mit Swing

11.1

Einleitung

AWT (Abstract Windowing Toolkit) und Swing sind die Standardbibliotheken zur Programmierung von grafischen Oberflächen mit Java. Während in Kapitel 8, »Klassenbibliotheken«, nur einfache Beispiele mit diesen Bibliotheken im Vordergrund standen, zeigt dieses Kapitel Ihnen an einem größeren Projekt, dem Taschenrechner Abakus, wie Sie einfache Programmoberflächen mit den beiden GUI-Bibliotheken entwickeln. Sie werden lernen, wie die Aufgabenteilung zwischen AWT und Swing aussieht.

Darüber hinaus geht es in diesem Beispiel darum, wie Sie Oberflächenbausteine (Widgets) korrekt anordnen, wie diese Bausteine auf Ereignisse (Eingaben) reagieren und wie man diese Eingaben korrekt verarbeitet und mit entsprechenden mathematischen Funktionen verbindet. Zudem sehen Sie auch, wie der Taschenrechner auf Eingabefehler reagiert, ohne dabei ins »Straucheln« zu kommen. Dieses Kapitel zeigt Ihnen schließlich auch sehr plastisch, wo bei der Konvertierung die Unterschiede zwischen den früheren Java-Versionen (bis zum JDK 1.4) und den neuen Java-Versionen 5, 6 sowie 7 von Daten liegen.

11.2

Projekt »Abakus«

11.2.1

Anforderungen

Das Programm namens Abakus stellt einen sehr einfachen Taschenrechner mit vier Grundrechenarten zur Verfügung. Um das Kapitel frei von Ballast zu halten, habe ich auf bestimmte mathematische Funktionen wie Sinus oder Cosinus verzichtet.

Der Taschenrechner ist vom inneren Aufbau her auch bewusst einfach gestaltet.

Er soll im Wesentlichen aus einem Hauptfenster bestehen.

337

11

Einfache Oberflächen mit Swing

Hauptfenster

Die Skizze, die ich von der Oberfläche des Taschenrechners angefertigt habe (Abbildung 11.1) zeigt, dass das Hauptfenster der Java-Anwendung aus verschiedenen Tasten bestehen soll, die auf der Oberseite von einem Textfeld begrenzt werden. Dieses zeigt die vom Benutzer eingegebenen Werte und die Ergebnisse der Berechnungen an.

Abbildung 11.1 Das Hauptfenster des Taschenrechners als Skizze

Wie die Spielkarten eines Memory-Spiels (Kapitel 12, »Computerspiele mit Swing«) sollen die Tasten in Form eines Gitters angeordnet werden. Es werden Tasten für die Zahlen von 0 bis 9, für die Grundrechenarten Addition (Pluszeichen), Subtraktion (Minuszeichen), Multiplikation (x-Zeichen), Division (Schrägstrich), für Kommazahlen (Dezimalpunkt), für den Vorzeichenwechsel (Plus-/Minuszeichen), zum Zurücksetzen der Rechnung (C-Zeichen) und für die vier Speicheroperationen benötigt.

Bei den Speicheroperationen soll die Funktion MC (Memory Clear) den Zusatzspeicher löschen, M+ bewirkt hingegen eine Erhöhung des Zwischenspeichers um den in der Anzeige dargestellten Betrag. M- hat die umgekehrte Wirkung.

Durch diese Funktion vermindert sich der Zwischenspeicher um den angezeigten Betrag, während MR (Memory Recall) den Wert des Zwischenspeichers auf der Anzeige erneut erscheinen lässt.

Menüs

Oberhalb des Textfelds zur Anzeige der Zahlenwerte befindet sich eine Menüleiste mit zwei Menüs. Die Menüs sollen dem Anwender erlauben, den Taschenrechner zu beenden und einen Dialog mit Informationen zum Programm anzuzeigen.

338

Projekt »Abakus«

11.2

Informationsdialog

Der Dialog Info soll Informationen über das Programm liefern, wie zum Beispiel den Namen des Taschenrechners, die Version des Programms und den Namen

des Autors.

Abbildung 11.2 Der Informationsdialog

Systemanforderungen

Der Taschenrechner muss wie alle anderen Beispielprogramme dieses Buchs unter Windows, Linux und Mac OS X laufen – eine Anforderung, die normalerweise jedes Java-Programm erfüllt.

11.2.2

Analyse und Design

Allgemeiner Programmaufbau

Bei der Realisierung des Taschenrechners stehen in erster Linie die Programmierung der Oberfläche und die Entwicklung der Rechenlogik im Mittelpunkt. Nach der Analyse habe ich mich daher entschieden, das Programm in nur vier Klassen aufzuteilen. Die Applikationsklasse AbakusApp stellt den Programmeinstieg mit der Main-Methode zur Verfügung.

Die Applikationsklasse ist im Package main untergebracht, während sich die anderen Teile im Package ui befinden. UI steht für User Interface, was auf Deutsch dem Begriff »Benutzeroberfläche« entspricht – eine Abkürzung, die Ihnen in vielen professionellen Programmen immer wieder begegnen wird.

Hauptfenster

Um den Rahmen dieses Kapitels nicht zu sprengen, soll das Hauptfenster mit der Programmlogik in einer einzigen Klasse untergebracht werden. Beachten Sie jedoch, dass dieses monolithische Design normalerweise keineswegs günstig ist.

339

11

Einfache Oberflächen mit Swing

Bei größeren Programmen sollten Sie strikt darauf achten, verschiedenartige Bestandteile eines Programms wie Rechenlogik und Oberfläche zu trennen und in unterschiedlichen Klassen zu verpacken. Das erleichtert die Pflege des Programms erheblich.

JFrame

AppWnd

DisplayVerifier

Abbildung 11.3 Das Klassendiagramm des Hauptfensters

Als Basis für die Fensterklasse kommt die Swing-Klasse JFrame zum Einsatz. Von ihr wird die neue Klasse AppWnd (Application Window) abgeleitet, die hierdurch alle Eigenschaften der Basisklasse erbt. Um die Eingaben nicht nur über die Tastatur des Taschenrechners, sondern auch Eingaben über die Tastatur des Computers direkt in das Anzeigefeld zu erlauben und diese überprüfen zu können, wird der Rechner eine neue Klasse namens DisplayVerifier einsetzen.

Ein eigener Validator bedeutet einen Mehraufwand für die Programmierung.

Er hat aber für den Benutzer den Vorteil, dass er Zahlenwerte direkt in die Anzeige eingeben oder über die Zwischenablage kopieren kann. Dazu setzen Sie einfach den Cursor auf die Anzeige des Taschenrechners. Wie Sie sehen, ist die Anzeige nicht wie bei anderen Taschenrechnern gesperrt. Sie können daher auch Exponentialzahlen bequem mit Hilfe der Computertastatur in der Form 1.6e6

(= 1,6 Millionen) direkt in die Anzeige eingeben.

Für die Realisierung des Layouts kommen verschiedene Möglichkeiten in Betracht, um eine Gitterstruktur, wie in der Skizze vorgegeben, zu erzielen. Hier ließe sich zum Beispiel ein Grid-Layout verwenden. Allerdings müssten dann alle Oberflächenbausteine die gleiche Größe haben. Höchste Flexibilität bei der Gestaltung der Oberfläche lässt das GridBag-Layout zu, bei dem Sie unterschiedliche Abstände und unterschiedlich große Tasten problemlos gestalten können.

340

Projekt »Abakus«

11.2

Menüleiste

Der Taschenrechner benutzt die Swing-Klasse JMenuBar und erzeugt daraus das neue Menüleisten-Objekt mainMenuBar. Die Menüleiste besteht aus zwei Menüs mit den Namen Datei und Hilfe, die aus der Swing-Klasse JMenu erzeugt werden.

AppWnd

javax.swing.JMenuItem

javax.swing.JMenuBar

javax.swing.JMenu

Abbildung 11.4 Zusammenhang zwischen dem Hauptfenster und den Menüs Jedes der beiden Menüs beinhaltet jeweils nur einen einzigen Menübefehl. Diese Objekte werden aus der Klasse JMenuItem erzeugt. Das Menü Datei bekommt einen Befehl namens Beenden, der dazu dient, den Taschenrechner zu beenden.

Auch das Menü Hilfe wird mit einem Befehl namens Info ausgestattet, der es erlaubt, einen Informationsdialog aufzurufen.

Dialoge

Der Informationsdialog ist sehr einfach gehalten und besteht aus der Klasse AboutDialog, die von der Swing-Klasse JDialog erbt. Der Dialog wird vom Hauptfenster immer dann aufgerufen, wenn der Anwender auf den Menübefehl Info geklickt hat.

Neben dem Informationsdialog ist ein weiterer Dialog notwendig, der erscheint, wenn der Anwender einen falschen Wert zur Berechnung eingegeben hat. Das kann zum Beispiel ein ungültiges Sonderzeichen oder ein Buchstabe sein. Für diesen Dialog wird die Swing-Klasse JOptionPane vom Programm benutzt.

Rechenlogik

Die Rechenlogik soll im Wesentlichen in einer Methode untergebracht werden, die die vier Grundrechenarten des Taschenrechners realisiert. Es gibt zwei grundlegende Fälle beim Rechenalgorithmus. Im Fall 1 findet die Eingabe eines Zeichens statt. Hierbei muss das Programm den Wert aus der Anzeige übernehmen und ihn danach überprüfen.

341

11

Einfache Oberflächen mit Swing

Abbildung 11.5 Der Hauptablauf der Rechenlogik

Im Fall 2 drückt der Anwender eine Operatortaste (+, -, *, /, =). Der Taschenrechner muss danach überprüfen, ob bereits eine solche Taste gedrückt wurde. Wenn ja, findet eine Berechnung statt, deren Ergebnis angezeigt wird. Wenn nein, wird der Wert der Anzeige zwar beibehalten. Der Rechner muss sich aber in diesem Fall den Operator merken und die Eingabe abschließen. Die folgende Tabelle zeigt den Zustandswechsel.

Anzeige

Eingabe

Eingabe

Operator

Zwischen-

Eingabe

beendet?

ergebnis

beendet?

0

1

false

+

1

true

1

2

false

*

3

true

2

3

false

/

9

true

3

4

false

=

2.25

true

2.25

true

Tabelle 11.1 Zustand des Rechners bei einer einfachen Kalkulation Hier erfolgt eine einfache Berechnung von ((1 + 2) * 3) / 4 = 2.25. Beachten Sie, dass vor der Eingabe des ersten Pluszeichens noch kein Operator gesetzt war. Aus diesem Grund bleibt die Anzeige der ersten Eingabe bestehen. Erst nach der Eingabe des Multiplikationszeichens bildet der Rechner ein Zwischenergebnis und merkt sich den letzten eingegebenen Operator, in diesem Fall das Multiplikationszeichen.

342

Projekt »Abakus«

11.2

11.2.3 Implementierung der Applikationsklasse

Wie bei den anderen Projekten möchte ich mit der Implementierung der Applikationsklasse beginnen, die die Main-Methode enthält. Sie wird zuerst von der virtuellen Maschine aufgerufen, wenn Sie ein Java-Programm durch die Angabe der Hauptklasse starten.

Paketstruktur

Wie in Abschnitt 11.2.2, »Analyse und Design«, festgelegt, soll das Programm in zwei Packages aufgeteilt werden.Der Taschenrechner zerfällt in Hauptpaket und Benutzeroberfläche. Die Applikationsklasse gehört zum Paket net.steppan.akakus.main.

Importanweisungen

Die Applikationsklasse muss nur zwei Klassen importieren, den UIManager aus der Swing-Klassenbibliothek und das Hauptfenster der Anwendung.

✄

import javax.swing.UIManager;

import net.steppan.abakus.ui.AppWnd;

✄

Listing 11.1 Die Importanweisungen

Konstruktor

Die Klasse besteht lediglich aus dem Konstruktor, der von der Main-Methode aufgerufen wird. Er erzeugt seinerseits ein Objekt: das Hauptfenster der Anwendung.

✄

public AbakusApp() {

new AppWnd().setVisible(true);

}

✄

Listing 11.2 Der Konstruktor des Hauptfensters

Damit das Hauptfenster überhaupt erscheint, ist es notwendig, die Methode setVisible(true) der Fensterklasse aufzurufen. Durch den Übergabeparameter true erreicht man, dass das das Fenster überhaupt eingeblendet wird. Mit setVisible(false) könnte man das Fenster wieder ausblenden. Beachten Sie, dass es in diesem Fall nur nicht sichtbar ist, aber bereits vollständig im Hintergrund vom Betriebssystem erzeugt wurde.

343

11

Einfache Oberflächen mit Swing

Methode »main«

In der Methode main wird lediglich das systemtypische Look-and-Feel gesetzt.

Mit Hilfe der Methode setLookAndFeel() lässt sich also erreichen, dass der Taschenrechner unter jedem Betriebssystem genau so aussieht, wie es der Anwender von nativen Anwendungen kennt.

✄

public static void main(String[] args) {

// System-Look-and-Feel setzen:

try {

UIManager.setLookAndFeel(

UIManager.getSystemLookAndFeelClassName());

} catch (Exception exception) {

exception.printStackTrace();

}

new AbakusApp();

}

✄

Listing 11.3 Die Main-Methode der Anwendung

Da es beim Aufruf des UI-Managers (er verwaltet das User Interface) zu Fehlern kommen kann, steht die Anweisung in einem Try-Catch-Block. Eventuelle Exceptions (Ausnahmezustände wie Fehler) werden vom Programm abgefangen und

mit Hilfe der Anweisung printStackTrace() auf die Konsole ausgegeben. In diesem Fall soll das ausreichen, weil Fehler beim Setzen des Look-and-Feels keinen Absturz einer Java-Anwendung verursachen können. Im Fall von Fehleingaben des Anwenders werden Sie aber sehen, dass man Exceptions vollkommen anders behandeln muss.

11.2.4 Implementierung des Hauptfensters

Wie eingangs erwähnt, enthält das Hauptfenster (fast) die gesamte Benutzeroberfläche des Taschenrechners und zudem auch die Rechenlogik. Beides ist im UI-Paket des Programms untergebracht.

Importanweisungen

Aufgrund der vielen UI-Komponenten, die das Fenster des Taschenrechners verwendet, sind auch viele Importanweisungen notwendig, von denen ich hier nur einen Ausschnitt kommentieren möchte.

344

Projekt »Abakus«

11.2

✄

import javax.swing.InputVerifier;

import javax.swing.JComponent;

import javax.swing.JOptionPane;

import javax.swing.JTextField;

import javax.swing.JButton;

import javax.swing.JMenu;

import javax.swing.JMenuItem

import javax.swing.JMenuBar;

import java.awt.event.ActionEvent;

✄

Listing 11.4 Die Importanweisungen

Der Import der Klasse InputVerifier wird für die Validierung der Eingaben in das Anzeigefeld benötigt, während JOptionPane die Fehlermeldung im Falle einer fehlgeschlagenen Validierung ausgibt. Die anderen Swing-Importe sind UI-Komponenten wie Schaltflächen, die Menüleiste, Menüs und Menübefehle (JButton, JMenuBar, JMenu, JMenuItem). Objekte der Klasse ActionEvent verwendet der Rechner beim Auslösen eines Tastendrucks oder bei einem Mausklick auf eine Taste.

Deklaration der Variablen

Wie bei den Importanweisungen ist auch die Anzahl der zu deklarierenden Variablen aufgrund der Vielzahl von Oberflächenobjekten umfangreich. Hier möchte ich mich wieder darauf beschränken, nur die wichtigsten Objekte zu kommentieren.

✄

public class AppWnd extends javax.swing.JFrame {

double currentValue;

char operator;

boolean inputFinished;

double memory = 0;

✄

}

✄

Listing 11.5 Die Zustandsvariablen des Fensters

Erinnern Sie sich noch an Kapitel 3, »Objektorientierte Programmierung«? Hier finden Sie die Aussage, dass jedes Objekt über einen inneren Zustand verfügt.

Das gilt natürlich erst recht für einen Taschenrechner. Die ersten drei Variablen sind von großer Bedeutung für den Abakus. Sie speichern den Zustand, in dem 345

11

Einfache Oberflächen mit Swing

sich der Rechner während einer Kalkulation befindet. Die Variable currentValue enthält hierbei den aktuell gespeicherten Wert (Listing 11.5).

Der vom Anwender gewählte Operator operator zeigt dem »Rechenwerk« des Programms an, was für eine Rechenoperation (+, -, *, /, =) der Anwender wünscht.

Damit klar ist, wann die Eingabe von Werten beendet ist, merkt sich der Taschenrechner diesen Zustand in der Variablen inputFinished. Die Variable memory dient dem Speichern von Zwischenberechnungen. Sie ist für die Sonderfunktionen MC, M+, M- und MR der Tastatur des Rechners notwendig.

✄

public javax.swing.JTextField display;

public javax.swing.JMenuBar mainMenuBar;

public javax.swing.JMenu fileMenu;

public javax.swing.JMenu helpMenu;

public javax.swing.JMenuItem appExitMenuItem;

public javax.swing.JMenuItem helpInfoMenuItem;

✄

Listing 11.6 Anzeige und Menüs des Fensters

Die Objekte des Listings 11.6 stellen die Anzeige und das Menü des Fensters dar. Zunächst folgt die Deklaration der Anzeige (display), danach die Menüleiste, gefolgt von den beiden Menüs und Menübefehlen.

Im Anschluss daran werden die Tasten des Tastenblocks – beginnend mit den Memory-Funktionen über die Kommataste und die Operatoren bis hin zu den Nummerntasten – deklariert.

✄

public javax.swing.JButton memoryAddButton;

public javax.swing.JButton memoryClearButton;

public javax.swing.JButton memoryRecallButton;

public javax.swing.JButton memorySubtractButton;

public javax.swing.JButton additionButton;

public javax.swing.JButton subtractButton;

public javax.swing.JButton multiplicationButton;

public javax.swing.JButton divisionButton;

public javax.swing.JButton oneButton;

✄

public javax.swing.JButton zeroButton;

✄

Listing 11.7 Anzeige und Menüs des Fensters

346

Projekt »Abakus«

11.2

Nachdem die Deklarationen beendet sind, kann der Compiler den Typ jedes Objekts erkennen. Somit sind Sie jetzt in der Lage, mit der eigentlichen Implementierung zu beginnen. Ein guter Startpunkt ist der Konstruktor der Hauptfenster-Klasse AppWnd:

Konstruktor

Der Konstruktor ruft zunächst den Konstruktor der Basisklasse über das Schlüsselwort super auf und übergibt den Titel des Programms. Danach findet die Initialisierung der grafischen Oberfläche über initComponents() statt.

public AppWnd() {

super("Abakus");

initComponents();

reset();

}

Listing 11.8 Der Konstruktor

Mit »Initialisierung« der grafischen Oberfläche ist gemeint, dass der Taschenrechner alle Objekte erzeugt, die Sie an der Oberfläche des Programms sehen (Menüs, Anzeige, Tasten etc.). Auf diese Initialisierungsmethode gehe ich im Verlauf dieses Kapitels noch näher ein. Wichtig an dieser Stelle ist nur, dass Sie die Oberfläche nicht nur programmieren können, indem Sie Java-Anweisung für Java-Anweisung in einem Texteditor manuell über die Tastatur eingeben.

Sie können die Oberfläche auch mit einem so genannten GUI-Builder visuell entwickeln. Ein GUI-Builder ist ein Werkzeug, mit dem Sie die Oberfläche eines Programms mit der Maus sehr komfortabel ohne großen Programmieraufwand

gestalten können. Die GUI-Builder der verschiedenen Entwicklungsumgebungen wie Eclipse, NetBeans, JBuilder (Kapitel 22) etc. legen bei dieser Arbeit automatisch eine Initialisierungsmethode an. Die Namen der Methode variieren jedoch von Werkzeug zu Werkzeug. Bei NetBeans heisst sie initComponents(). Beim Vi-sualEditor, dem GUI-Builder von Eclipse, können Sie einen beliebigen Namen vergeben.

Wenn Sie nicht den vom jeweiligen GUI-Builder erwarteten Namen verwenden, können Sie das Programm zwar ebenfalls problemlos übersetzen (kompilieren) und ausführen. Aber nicht alle GUI-Builder der Entwicklungsumgebungen werden in der Lage sein, die Oberfläche des Fensters visuell korrekt darzustellen.

Wie die korrekte Darstellung der Oberfläche in einem Entwicklungswerkzeug aussieht, das zeigt Abbildung 11.6 am Beispiel der integrierten Entwicklungsumgebung NetBeans.

347

11

Einfache Oberflächen mit Swing

Abbildung 11.6 Die Oberfläche des Fensters im GUI-Builder von NetBeans Initialisierungsmethode

Das folgende Listing enthält Teile aus der Initialisierungsmethode, die für das Erzeugen der UI-Objekte zuständig ist. Wie zu sehen ist, wird jedes einzelne Objekt mit dem New-Operator erzeugt und dem vorher deklarierten Namen

zugewiesen. Die Erzeugung beginnt mit dem Anlegen der Anzeige des Rechners und seiner beiden Menüs.

✄

display = new javax.swing.JTextField();

mainMenuBar = new javax.swing.JMenuBar();

fileMenu = new javax.swing.JMenu();

helpMenu = new javax.swing.JMenu();

appExitMenuItem = new javax.swing.JMenuItem();

helpInfoMenuItem = new javax.swing.JMenuItem();

✄

Listing 11.9 Die Erzeugung der Anzeige und der Menüs

Im Anschluss daran erzeugt die Methode die Sondertasten. Das sind die Tasten für die Speicherfunktionen, für das Löschen der Eingabe, für den Vorzeichenwechsel und den Dezimalpunkt.

✄

memoryClearButton = new javax.swing.JButton();

memorySubtractButton = new javax.swing.JButton();

memoryRecallButton = new javax.swing.JButton();

memoryAddButton = new javax.swing.JButton();

clearButton = new javax.swing.JButton();

changeSignButton = new javax.swing.JButton();

348

Projekt »Abakus«

11.2

commaButton = new javax.swing.JButton();

✄

Listing 11.10 Die Erzeugung der Sondertasten

Danach schließt sich die Erzeugung der Funktionstasten für die Grundrechenarten und die Ergebnisausgabe an.

✄

divisionButton = new javax.swing.JButton();

multiplicationButton = new javax.swing.JButton();

subtractButton = new javax.swing.JButton();

additionButton = new javax.swing.JButton();

resultButton = new javax.swing.JButton();

✄

Listing 11.11 Die Erzeugung der Funktionstasten

Mit der Erzeugung der Objekte der Nummerntasten scheint die Initialisierung der grafischen Oberfläche zunächst beendet zu sein. Das ist aber ein Trugschluss.

✄

oneButton = new javax.swing.JButton();

twoButton = new javax.swing.JButton();

threeButton = new javax.swing.JButton();

fourButton = new javax.swing.JButton();

fiveButton = new javax.swing.JButton();

sixButton = new javax.swing.JButton();

sevenButton = new javax.swing.JButton();

eightButton = new javax.swing.JButton();

nineButton = new javax.swing.JButton();

zeroButton = new javax.swing.JButton();

✄

Listing 11.12 Die Erzeugung der Nummerntasten

Abbildung 11.7 Der Aufbau des Hauptfensters

349

11

Einfache Oberflächen mit Swing

Zur Initialisierung der Oberfläche fehlt noch ein entscheidender Schritt, ohne den die Widgets überhaupt nicht an der geplanten Stelle erscheinen werden: das korrekte Layout. Die korrekte Anordnung wird über das schon erwähnte GridBag-Layout erreicht. Dazu müssen Sie der so genannten ContentPane des Fensters mitteilen, dass sie dieses Layout verwenden soll. Im Anschluss daran legt die Anweisung setDefaultCloseOperation fest, dass ein Schließen des Fensters zugleich das Ende des Taschenrechners bedeuten soll. Ebenfalls festgelegt wird, dass das Fenster in seiner Größe nicht verändert werden darf (setResizable(false)).

Nach dieser Anweisung überschreibt die Initialisierungsmethode die übliche wei-

ße Hintergrundfarbe eines Textfelds und legt einen Gelbton fest (display.setBackground(new java.awt.Color(255, 255, 204))). Im Anschluss daran ordnet sie der Anzeige einen Validator zu, der die Eingaben überprüft (display.setInputVerifier(new DisplayVerifier())). Auf diesen Validator komme ich noch im weiteren Verlauf des Kapitels zurück.

✄

getContentPane().setLayout(new java.awt.GridBagLayout());

setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

setName("appWndFrame");

setResizable(false);

display.setBackground(new java.awt.Color(255, 255, 204));

display.setInputVerifier(new DisplayVerifier());

gridBagConstraints = new java.awt.GridBagConstraints();

gridBagConstraints.fill = java.awt.GridBagConstraints.HORIZONTAL;

gridBagConstraints.anchor = java.awt.GridBagConstraints.WEST;

✄

Listing 11.13 Festlegen des Layouts

Der restliche Teil der Initialisierungsmethode beschäftigt sich damit, den Oberflä-

chenbausteinen (Widgets) ihre Position im Gitter des GridBag-Layouts zuzuweisen und das Widget zum Layout hinzuzufügen. Am Beispiel der Anzeige sieht das folgendermaßen aus: Zunächst werden die Position, beginnend mit x = 0 und y

= 0 im Gitter, sowie der Raum, den das Display einnehmen soll, festgelegt. Die Grundposition der Anzeige im Gitter ist die Koordinate (0|0). Der Raum, den das Display einnimmt, errechnet sich über die Anzahl der Zellen (gridwidth = 4), die dem Layout-Manager für das Display übergeben wird.

✄

gridBagConstraints.gridx = 0;

gridBagConstraints.gridy = 0;

gridBagConstraints.gridwidth = 4;

gridBagConstraints.insets = new java.awt.Insets(1, 1, 1, 1);

350

Projekt »Abakus«

11.2

getContentPane().add(display, gridBagConstraints);

✄

Listing 11.14 Ausrichten der Anzeige

Im Klartext bedeutet das, dass die Anzeige des Rechners die komplette erste Zeile des Gitters mit den vier Zellen von Zelle (0|0) bis (0|3) ausfüllen wird. Den Abstand zum nächsten Element legen die so genannten Insets (Einfügungen) fest.

Die hier gewählte Einstellung bedeutet, dass ein Rand von einem Pixel Abstand gehalten wird.

Abbildung 11.8 Das Layout der Anzeige des Rechners

Neben dem Festlegen der Position der Elemente kann zudem noch die Größe der Widgets beeinflusst werden. Das Beispiel der Clear-Taste zeigt dies. Über setText("MC") wird die Beschriftung erzeugt, und über setMaximumSize(), setMinimumSize() sowie setMinimumSize() legt man die maximale, minimale und die bevorzugte Dimension des Schalters fest. Wenn das Fenster so eingestellt wird, dass man die Größe verändern kann, kommt der maximalen und minimalen

Größe eine Bedeutung zu. Im Fall des Taschenrechners, dessen Fenster nicht in der Größe verändert werden kann, ist eigentlich nur die bevorzugte Größe von Bedeutung. Die anderen Angaben erscheinen hier nur der Vollständigkeit halber.

memoryClearButton.setText("MC");

memoryClearButton.setMaximumSize(new java.awt.Dimension(50, 50));

memoryClearButton.setMinimumSize(new java.awt.Dimension(50, 30));

memoryClearButton.setPreferredSize(new java.awt.Dimension(50, 30));

Listing 11.15 Ausrichten der Anzeige

351

11

Einfache Oberflächen mit Swing

Nachdem das Layout und damit die Ausrichtung der Widgets feststeht, müssen die bereits erzeugten Menübefehle zu den Menüs und die Menüs zur Menüleiste hinzugefügt werden. Anschließend legen Sie über setJMenuBar() die Menüleiste der Anwendung fest. Zum Schluss ist es noch notwendig, das Fenster und somit alle Widgets mit pack() auf die Größe zu bringen, die die Widgets bevorzugen (

preferredSize).

✄

fileMenu.add(appExitMenuItem);

helpMenu.add(helpInfoMenuItem);

setJMenuBar(mainMenuBar);

mainMenuBar.add(fileMenu);

mainMenuBar.add(helpMenu);

pack();

✄

Listing 11.16 Hinzufügen von Menüleiste und Menüs

Neben dem Layout ist noch von entscheidender Bedeutung, wie der Taschenrechner auf Ereignisse reagiert. Hierzu wird jeder Taste ein Handler zugewiesen. Das ist eine Methode, die ein Ereignis behandelt (daher der Name). Wie das aussieht, zeigt nochmals das Beispiel der Clear-Taste. Dem Objekt clearButton wird über die Methode addActionListener() mitgeteilt, dass die Behandlung eines Tastendrucks an den Handler addActionListener() delegiert wird.

✄

clearButton.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {

clearButtonActionPerformed(evt);

}

});

✄

Listing 11.17 Zuordnen eines Handlers

Nach dieser Zuordnung muss nur noch der Handler realisiert werden. Bei der C-Taste ist dies relativ einfach, wie folgender Abschnitt zeigt.

Handler »clearButtonActionPerformed«

Wenn der Anwender auf die C-Taste klickt, um die Rechenoperation zu beenden, soll der Taschenrechner zurückgesetzt werden. Beachten Sie bitte, dass diese Funktion bei einigen Taschenrechnern anders umgesetzt wurde. Normalerweise löschen Sie mit einem Klick auf die C-Taste lediglich die aktuelle Zahl der Anzeige. Für das Zurücksetzen des Rechenvorgangs gibt es üblicherweise noch eine 352

Projekt »Abakus«

11.2

zusätzliche Taste. Im Fall dieses Taschenrechners soll aber die Methode reset() aufgerufen werden, wobei auch der Rechenvorgang abgebrochen wird.

private void clearButtonActionPerformed(

java.awt.event.ActionEvent evt) {

reset();

}

Listing 11.18 Zurücksetzen der Anzeige

Methode »reset«

Die Methode reset() bewirkt, dass die Berechnung komplett zurückgesetzt wird und sich der Rechner praktisch wieder im Anfangszustand befindet. Hierzu setzt die Methode die drei Zustandsvariablen wieder auf den Anfangswert zurück und löscht die Anzeige.

private void reset() {

operator = '='; // Operator auf Anfangswert setzen

currentValue = 0; // Anfangswert der Kalkulation auf null setzen

inputFinished = false; // Flag f. Eingabe: false = Eingabe beendet

display.setText("0");// Anfangswert der Anzeige auf null setzen

}

Listing 11.19 Zurücksetzen des Rechners

Eingabe von Zahlen

Die Eingabe von Zahlen kann entweder über die Computertastatur oder über die Tastatur des Rechners erfolgen. Geschieht Letzteres, ruft der Rechner den zur Taste passenden Handler auf (Listing 11.20), der die Verarbeitung der Eingabe an eine Methode namens showInput() delegiert.

private void oneButtonActionPerformed(

java.awt.event.ActionEvent evt) {

showInput("1");

}

Listing 11.20 Handler der Nummerntaste »1«

Die Methode showInput() hat die Aufgabe, die Eingabe anzuzeigen, führende Nullen zu entfernen und hierbei zu unterscheiden, ob die Eingabe schon komplett ist. Wenn Sie zum Beispiel wiederholt auf eine Nummerntaste klicken, ist die Eingabe so lange nicht abgeschlossen, bis eine Operatortaste gedrückt wurde.

Erst in diesem Fall muss die Eingabe mit dem neuen Wert überschrieben werden.

Andernfalls hängt die Methode die neue Eingabe wieder an die alte an.

353

11

Einfache Oberflächen mit Swing

private void showInput(String input) {

// Fuehrende Null loeschen

if(display.getText().equals("0"))

display.setText(null); // Display loeschen

if (inputFinished == true) { // Eingabe war gesperrt

display.setText(input); // Eingabe darstellen

inputFinished = false; // Eingabesperre aufheben

} else {

display.setText(display.getText() + input);

}

}

Listing 11.21 Diese Methode bringt die Werte auf die Anzeige.

Eingabe eines Operators

Die Eingabe eines Operators funktioniert wie alle Handler des Programms über das Abfangen eines ActionEvents. Danach verzweigt das Programm zu der Methode operatorButtonActionPerformed(), der der Operator in Form eines (einstelligen) Zeichens übergeben wird. Am Beispiel der Plustaste sieht das wie folgt aus: private void additionButtonActionPerformed(

java.awt.event.ActionEvent evt) {

operatorButtonActionPerformed('+');

}

Listing 11.22 Handler für die Plustaste

Analog der Eingabe von Zeichen muss auch hier wieder unterschieden werden, ob bereits eine Operatortaste angeklickt wurde. Falls noch kein Operator gewählt wurde, konvertiert der Rechner lediglich den angezeigten Wert, merkt sich, dass die Eingabe beendet wurde, und speichert den dazugehörenden Operator.

private void operatorButtonActionPerformed(char buttonType) {

// Wurde bereits eine Operatortaste gedrueckt?

if (operator != '=') {

calculate(); // Ja: Kalkulieren und anzeigen

} else

// Nein: Konvertieren und anzeigen

currentValue = convertStringToDouble(display.getText());

inputFinished = true;

operator = buttonType;

}

Listing 11.23 Handler für die Operatortasten

354

Projekt »Abakus«

11.2

Ist hingegen bereits ein Operator eingegeben worden, muss zunächst die Operation durchgeführt werden. Dazu ruft das Programm die Kalkulationsmethode auf und gibt den Wert aus. Das führt uns zur Implementierung der Rechenlogik.

Implementierung der Rechenlogik

Die Rechenlogik, das Herz des Taschenrechners, ist einfach aufgebaut (Listing 11.24) und besteht aus einer Switch-Anweisung, die eine Fallunterscheidung nach dem letzten ausgewählten Operator trifft. Der Aufruf der Methode convertStringToDouble() hat hierbei nur eine Aufgabe: Sie konvertiert den Wert, der in der Anzeige steht, von einer Zeichenkette in einen Double-Wert.

private void calculate() {

double newValue;

newValue = convertStringToDouble(display.getText());

switch (operator) { // Welcher Operator?

case '/': // Division

currentValue /= newValue;

break;

case '*': // Multiplikation

currentValue *= newValue;

break;

case '-': // Subtraktion

currentValue -= newValue;

break;

case '+': // Addition

currentValue += newValue;

break;

case '=': // Nur Ergebnistaste gedrueckt ohne Operation

currentValue = newValue;

break;

}

showResult(currentValue);

}

Listing 11.24 Die Rechenlogik

Der Grund für die Konvertierung der angezeigten Zeichenkette liegt für den Einsteiger in die GUI-Programmierung vielleicht nicht unbedingt auf der Hand: Der Aufruf der Methode und die dabei ablaufende Konvertierung des Double-Werts sind notwendig, da grafische Oberflächen nur Zeichenketten weiterverarbeiten können. Mit einer Zeichenkette wie »20« kann der Computer aber natürlich nicht kalkulieren. Warum? Diese Frage führt uns wieder zum Anfang des Buchs zurück (Kapitel 1, »Digitale Informationsverarbeitung«).

355

11

Einfache Oberflächen mit Swing

Um den in die Anzeige eingegebenen Wert berechnen zu können, muss er erst interpretiert werden. Was bedeutet es für den Computer zum Beispiel, wenn der Benutzer zwei Zeichen wie »20« eingegeben hat? Für den Computer ist ohne eine klare Anweisung überhaupt nicht ersichtlich, wo hier ein grundlegender Unterschied zu einer Eingabe wie »AB« liegen soll. Aus diesem Grund verfügt der Taschenrechner über einen Algorithmus, der die Zeichenkette interpretiert.

Dieser Algorithmus legt genau fest, dass die im Display angezeigte Zeichenkette einem Double-Wert entsprechen soll, und versucht, ihn zu konvertieren. Diese Konvertierung geschieht mit Hilfe der Methode convertStringToDouble(), die einem String-Objekt in einen Double-Wert umwandelt. Wenn das erfolgreich war, beendet der Rechner die Kalkulation, wandelt das Ergebnis der Berechnung mit Hilfe von showResult(currentValue) wieder in eine Zeichenkette zurück und stellt sie auf der Anzeige dar.

Bei der Realisierung der Methode convertStringToDouble() gibt es verschiedene Möglichkeiten, die von der jeweiligen Java-Version und der Verwendung eines Validators für das Textfeld der Anzeige abhängen. Zunächst zur Java-Version: Mit Java 5 und 6 sowie dem aktuellen Java 7 ist es möglich, die notwendige Konvertierung des Strings stark abzukürzen. Bis Java 1.4 war es erforderlich, explizit die Methode doubleValue() aufzurufen, die jetzt entfallen kann.

Beachten Sie bitte, dass in allen folgenden Listings und bei allen Beispielprogrammen die Konvertierungsanweisung

Double.valueOf(display)

auskommentiert ist, damit die Beispiele auch bei den Lesern einwandfrei funktionieren, die eine ältere Java-Version installiert haben. Falls Sie eine neuere Java-Version ab 5.0 verwenden, können Sie die Kommentare aufheben. Sie sollten dann die Anweisung

Double.valueOf(display).doubleValue()

beziehungsweise

return Double.valueOf(display).doubleValue()

löschen oder einkommentieren.

Die Umwandlung löst unter bestimmten Umständen eine so genannte Number-

FormatException aus, wenn der Anwender zum Beispiel eine Zeichenfolge wie

»AB« eingibt und danach eine Operatortaste drückt. Wenn Sie keinen Validator für die Anzeige verwenden wollen, den ich schon eingangs erwähnt habe, müssen Sie die Exception in der Methode convertStringToDouble() direkt abfangen.

Das sieht dann wie folgt aus:

356

Projekt »Abakus«

11.2

private double convertStringToDouble(String display) {

try {

return Double.valueOf(display).doubleValue();// bis JDK 1.4

// return Double.valueOf(display); // ab Java 5

} catch (NumberFormatException exception) {

// Meldung als Dialog ausgeben:

JOptionPane.showConfirmDialog(null,

"Ung\u00fcltige Eingabe! Nur Zahlenwerte sind er-

laubt.",

"Abakus", JOptionPane.CLOSED_OPTION,

JOptionPane.WARNING_MESSAGE);

return 0d;

}

}

Listing 11.25 Umwandlung eines Strings in einen Double-Wert

Die Konverteranweisung im Try-Block der Methode convertStringToDouble() kann normalerweise mit einer Zeichenfolge wie »AB« nichts anfangen und sendet eine Botschaft an den Aufrufer zurück. Der Taschenrechner fängt diese Meldung im Catch-Block ab und gibt eine Fehlermeldung aus. Wenn Sie einen Validierer für die Anzeige einsetzen, ist es nicht notwendig, die Exception abzufangen. In diesem Fall sieht die Methode wie folgt aus:

private double convertStringToDouble(String display) {

return Double.valueOf(display).doubleValue();// bis JDK 1.4

// return Double.valueOf(display); // ab Java 5

}

Listing 11.26 Umwandlung eines Strings in einen Double-Wert

Sie müssen aber am Anfang der Initialisierungsmethode beim Aufruf von display.setInputVerifier() einen eigenen Validierer für das Textfeld der Anzeige festlegen. Dessen Logik sieht ganz ähnlich aus wie die aufwändige Implementierung der Methode convertStringToDouble() in der Variante mit Try-Catch-Block: class DisplayVerifier extends InputVerifier {

public boolean verify(JComponent input) {

display = (JTextField) input;

try { // Wird eine Exception ausgeloest?

Double.valueOf(display.getText()); // Konvertierung

return true; // Konvertierung erfolgreich

} catch (Exception exception) {

// Meldung als Dialog ausgeben:

JOptionPane.showConfirmDialog(

null,

357

11

Einfache Oberflächen mit Swing

"Ung\u00fcltige Eingabe! Nur Zahlenwerte sind erlaubt.",

"Abakus", JOptionPane.CLOSED_OPTION,

JOptionPane.WARNING_MESSAGE);

// Meldung auf die Konsole ausgeben:

System.out.println("Fehler beim Konvertieren: " +

exception);

return false; // Konvertierung nicht erfolgreich

}

}

}

Listing 11.27 Der Validierer der Anzeige

Die eigene Validator-Klasse DisplayVerifier erweitert die Basisklasse InputVerifier und überschreibt hierbei deren Methode verify() mit einer eigenen Logik. Diese funktioniert so, dass versucht wird, die Anzeige zu konvertieren. Gelingt dies, gibt sie true zurück – falls aber nicht, wird ein Dialog eingeblendet, der dem Anwender mitteilt, dass er einen falschen Wert eingegeben hat.

Was passiert, wenn die Berechnung glatt verlaufen ist? In diesem Fall muss der berechnete Wert wieder auf der Anzeige erscheinen. Das bedeutet, er muss wieder in der entgegengesetzten Richtung von Double nach String konvertiert werden.

Dies leistet die Anweisung String.valueOf(value), die einen String-Wert zurückgibt.

Dieser kann dann als Parameter der Methode setText() des Objekts display (die Anzeige des Taschenrechners) dienen, wie folgendes Listing zeigt:

private void showResult(double value) {

display.setText(String.valueOf(value)); // Wert anzeigen

}

Listing 11.28 Umwandlung und Anzeige des berechneten Double-Werts Für die Umsetzung der Funktion der Kommataste gibt es verschieden gute Möglichkeiten. Eine davon wäre, an die bestehende Anzeige einfach ein Komma (oder einen Punkt) anzuhängen. Diese Lösung zeigt das folgende Listing:

private void commaButtonActionPerformed(

java.awt.event.ActionEvent evt) {

display.setText(display.getText() + ".");

}

Listing 11.29 Handler, der auf die Kommataste reagiert

Die Lösung hat leider den Nachteil, dass bereits eingegebene Kommata nicht berücksichtigt werden. Besser ist es, die aktuelle Zeichenkette auszuwerten, die 358

Projekt »Abakus«

11.2

angezeigt wird. Um zu ermitteln, ob in einem String ein Teilstring vorhanden ist, müssen Sie sich vor Java 5 mit der Methode indexOf() behelfen.

Mit Java 5, 6 und 7 geht es einfacher: Seit der Java-Version 5 verfügt die String-Klasse über eine Methode namens contains(). Auch bei diesen Listings bitte ich Sie wieder, das Programm entsprechend der Java-Version, die Sie verwenden, zu kor-rigieren. Wenn Sie eine neuere Java-Version ab 5 einsetzen, löschen Sie einfach if (!(currentDisplay.indexOf(".") > 0)) und ersetzen sie durch if (!currentDisplay.contains(".")).

private void commaButtonActionPerformed(

java.awt.event.ActionEvent evt) {

// Momentane Anzeige:

String currentDisplay = display.getText();

if (!(currentDisplay.indexOf(".") > 0)) // JDK 1.4

//if (!currentDisplay.contains(".")) // ab Java 5

display.setText(currentDisplay + ".");

}

Listing 11.30 Eine bessere Lösung für die Kommataste

Bliebe noch zu klären, wie die Funktionalität der Speichertasten realisiert werden soll. Das Beispiel der M+, MC- und MR-Taste soll dies zeigen. Die Taste M+ dient dazu, einen Wert erstmalig zu speichern bzw. den Zwischenspeicher um den Betrag zu erhöhen, der momentan angezeigt wird. Um das zu realisieren, muss der Rechner den aktuellen Wert über display.getText() aus der Anzeige ermitteln und lediglich zur Variablen memory hinzuaddieren.

private void memoryAddButtonActionPerformed(

java.awt.event.ActionEvent evt) {

// Neuen Wert zum alten Wert addieren

memory += convertStringToDouble(display.getText());

// Anzeige setzen, dass Zusatzspeicher gefuellt ist

memoryRecallButton.setForeground(java.awt.Color.BLUE);

}

Listing 11.31 Handler für die Taste M+

Damit sich der Anwender erinnert, dass der Rechner bereits einen Wert gespeichert hat, setzt der Rechner ein optisches Signal. Dazu ruft er die Methode setForeground() der Taste MR auf und setzt die Farbe der Tastenbeschriftung auf Blau. Wenn der Speicher gelöscht wird, muss dieser Vorgang umgekehrt und die Taste wieder blockiert werden, wie die Realisierung des Handlers der Taste MC

zeigt:

359

11

Einfache Oberflächen mit Swing

private void memoryClearButtonActionPerformed(

java.awt.event.ActionEvent evt) {

memory = 0;

// Anzeige zuruecksetzen: Zusatzspeicher ist leer

memoryRecallButton.setForeground(java.awt.Color.BLACK);

// Schaltflaeche ist jetzt nicht mehr verfuegbar:

memoryRecallButton.setEnabled(false);

}

Listing 11.32 Handler für die Taste MC

Die Tastenfunktion MR ist ebenso einfach zu realisieren. Dazu ruft das Programm die Methode displayValue() mit dem aktuellen Wert der Variablen memory auf.

private void memoryRecallButtonActionPerformed(

java.awt.event.ActionEvent evt) {

displayValue(memory);

}

Listing 11.33 Handler für die Taste MR

Das Beenden des Taschenrechners kann einerseits durch ein Schließen des Hauptfensters über die entsprechende X-Schaltfläche erreicht werden. Ebenso ist ein Programmende mit Hilfe des Menübefehls Beenden möglich. Dies lässt sich über einen Handler erreichen, der das entsprechende Ereignis abfängt und mit System.exit() aufruft. Wenn hierbei eine Null übergeben wird, ist dies ein Zeichen für ein normales Programmende.

private void appExitMenuItemActionPerformed(

java.awt.event.ActionEvent evt) {

System.exit(0); // Normales Programmende

}

Listing 11.34 Beenden des Taschenrechners

Bliebe noch zum Schluss zu erklären, wie der Informationsdialog des Taschenrechners aufgerufen wird. Das geschieht ebenfalls über einen Handler für einen Menübefehl. Dieser erzeugt einfach ein neues Objekt des Typs AboutDlg und ruft die Methode setVisible() mit dem Parameter true auf.

private void showAboutDialog(java.awt.event.ActionEvent evt) {

new AboutDlg(this).setVisible(true);

}

Listing 11.35 Aufruf des Informationsdialogs

360

Projekt »Abakus«

11.2

Damit das klappt, muss natürlich noch der entsprechende Dialog implementiert werden, was in einer neuen Klasse geschieht.

11.2.5 Implementierung der Klasse »AboutDlg«

Der Informationsdialog entspricht dem gleichnamigen Dialog des Memory-Spiels bis auf drei Kleinigkeiten, weswegen ich mich bei den Erklärungen zur Implementierung auf die drei Unterschiede beschränken möchte. Es sind dies das Copyright-Symbol, das Programmsymbol und die Art und Weise, wie der Dialog auf dem Bildschirm zentriert wird.

11.2.6 Zeichen als Unicode kodieren

Um Zeichen auf allen Betriebssystemen gleich auszugeben, verwendet Java, wie in 1 erwähnt, den so genannten Unicode. Hiermit lassen sich aber nicht nur deutsche Umlaute unter allen Betriebssystemen gleich darstellen (wie beim Titel des Informationsdialogs), sondern auch praktischerweise Sonderzeichen auf der Programmoberfläche darstellen, die Sie gar nicht auf der Tastatur finden. Schauen Sie sich bitte folgendes Listing hierzu an:

✄

private String about = "Info \u00fcber Abakus";

private String product = "Abakus";

private String version = "Version 1.1";

private String copyright = "Copyright \u00a9 2005 - 2011 by"; private String comments = "Bernhard Steppan";

private String freeMemory = "Freier Speicher: ";

✄

Listing 11.36 Der Informationstext des Dialogs

Zu Beginn des Listings sehen Sie, wie ein deutsches »Ü« mit Hilfe des Unicodes

»\u00fc« kodiert wird. Das ist nichts Ungewöhnliches und funktioniert exakt so wie im vorangegangenen gehenden Kapitel. Anstatt jedoch das Copyright-Symbol mit einem einfachen C-Zeichen auszugeben, kodiert der Dialog dies ein paar Zeilen unterhalb mit dem entsprechenden Code »\u00a9«. Es erscheint daraufhin als Sonderzeichen auf der Oberfläche des Dialogs.

11.2.7 Dialog zentriert sich selbst

Sie erinnern sich vielleicht noch an das Memory-Spiel. Der gleichnamige Dialog wurde vom Hauptfenster aus zentriert. Das geschah innerhalb der Methode, die den Dialog aufgerufen hat. Aber es geht auch anders, zum Beispiel, indem man 361

11

Einfache Oberflächen mit Swing

die Anweisungen zum Zentrieren des Dialogs einfach wie folgt in den Konstruktor des Dialogs integriert:

✄

/**

* Dialog Info ueber ...

* @param parent Objekt der Klasse Frame

*/

public AboutDlg(Frame parent) {

super(parent);

enableEvents(AWTEvent.WINDOW_EVENT_MASK);

initComponents();

pack();

Rectangle parentBounds = parent.getBounds();

Dimension size = getSize();

// Dialog zentrieren

int x = Math.max(0, parentBounds.x +

(parentBounds.width - size.width) / 2);

int y = Math.max(0, parentBounds.y +

(parentBounds.height - size.height) / 2);

setLocation(new Point(x, y));

}

✄

Listing 11.37 Der Konstruktor zentriert den Dialog.

Dialog in der

Designansicht

Komponenten

Abbildung 11.9 Der Informationsdialog in Eclipse

362

Zusammenfassung

11.3

Der Dialog verfügt wieder über ein GridBag-Layout und kann dank seiner Initialisierungsmethode in den gängigen GUI-Buildern visuell bearbeitet werden. Abbildung 11.9 zeigt eine Ansicht im GUI-Builder von Eclipse (Visual Editor).

11.3

Zusammenfassung

Der Taschenrechner Abakus ist eine einfache AWT/Swing-Applikation. Sie besteht lediglich aus einem Hauptfenster und einem Informationsdialog. Das Hauptfenster ist von der Swing-Klasse JFrame abgeleitet (Vererbung). Es setzt sich im Wesentlichen aus folgenden Objekten zusammen: zwei Menüs (Swing-Klasse JMenu), einer Anzeige (erzeugt aus der Swing-Klasse JTextField) und einem Tastenfeld, das aus 22 Tastenobjekten des Typs JButton besteht.

Das Programm richtet die Tasten des Tastenfelds und die Anzeige nach einem Git-termuster aus. Hierfür kommt die AWT-Klasse GridBagLayout zum Einsatz. Dieser so genannte Layout-Manager ist in der Lage, sowohl das Textfeld (Anzeige) als auch alle Tasten so zu gruppieren, dass das Textfeld der Anzeige vier Zellen Platz (eine Zeile des Gitters) einnimmt, während jede Taste bis auf zwei Ausnahmen genau in einer Zelle Platz findet.

Der Taschenrechner funktioniert ereignisgesteuert. Das bedeutet, dass jeder Tastendruck oder Mausklick spezielle AWT-Ereignisse auslöst, die die Anwendung mit Hilfe von so genannten Listener-Klassen der AWT-Klassenbibliothek abfängt.

Der Taschenrechner lenkt danach die weitere Bearbeitung der Ereignisse auf eigene Methoden (Handler) um.

Abbildung 11.10 Die Bestandteile von »Abakus« im Überblick

363

11

Einfache Oberflächen mit Swing

11.4

Aufgaben

11.4.1

Fragen

1. Was ist am Design des Taschenrechners grundsätzlich nicht optimal?

2. Welche Klassen werden benötigt, um das Menü des Taschenrechners darzustellen?

3. Wie werden seine Tasten und die Anzeige angeordnet?

4. Welches Ereignis wird bei einem Tastendruck ausgelöst?

5. Wie fängt das Programm dieses Ereignis ab?

6. Wie nennt man die Methoden, die ein solches Ereignis behandeln?

7. Erklären Sie die Überprüfung der Eingaben des Taschenrechners.

11.4.2 Übungen

1. Realisieren Sie eine Methode, die durch die Taste M- aufgerufen wird.

2. Realisieren Sie eine Methode, die durch die Taste ± aufgerufen wird.

Die Lösungen zu den Aufgaben finden Sie in Kapitel 20 ab Seite 529.

364

»Wer unter die Oberfläche dringt, tut es auf eigene Gefahr.«

(Oscar Wilde)

12

Computerspiele mit Swing

12.1

Einleitung

Dieses Kapitel zeigt Ihnen anhand des Computerspiels »Memory«, wie Sie einfache Programmoberflächen mit Java programmieren. Im Mittelpunkt des Beispielprojekts steht die Entwicklung eines Spielalgorithmus, einer JavaBean-Komponente und verschiedener Hilfsklassen zur Ereignissteuerung des Spiels.

12.2

Projekt »Memory«

12.2.1

Anforderungen

Memory ist ein einfaches Spiel zum Gedächtnistraining. Das Originalspiel wird mit einem Kartensatz gespielt, der eine bestimmte Anzahl von Bildpaaren enthält.

Ein Spieler legt alle Karten mit der Bildseite nach unten auf den Tisch und mischt sie gut durch.

Im Anschluss daran bleiben die Karten entweder an der Stelle liegen, an der sie sich nach dem Mischen gerade befinden, oder sie werden zu einem Rechteck oder Quadrat angeordnet. Wichtig ist in beiden Fällen lediglich, dass sie sich nicht überlappen.

Es spielen zwei oder mehrere Spieler. Wer an der Reihe ist, deckt zwei beliebige Karten auf. Sind die Bilder beider Karten identisch, darf er sich das Kartenpaar nehmen, auf seinen Stapel legen und nochmals zwei Karten aufdecken.

Das wiederholt sich so lange, bis der Spieler ein Kartenpaar aufdeckt, dessen Bilder nicht gleich sind. Diese Karten werden wieder umgedreht, und der nächste Spieler ist an der Reihe. Das Spiel ist zu Ende, wenn alle zusammengehörenden Kartenpaare gefunden wurden. Sieger ist derjenige, der die meisten Kartenpaare gefunden hat.

365

12

Computerspiele mit Swing

Für das vorliegende Computerspiel soll nur eine einfache Variante mit einem Spieler realisiert werden. Dieser Spieler spielt auch nicht gegen den Computer, denn diese Maschinen haben in der Regel die unsympathische Eigenschaft, sich alles perfekt zu merken. Der Spieler spielt vielmehr nur gegen sich selbst und dreht dabei so lange Karten um, bis er alle Kartenpaare gefunden hat.

Hauptfenster

Als Oberfläche soll ein Hauptfenster dienen, das aus einer einfachen Menüleiste und einem Spielbrett aufgebaut ist. Das Spielbrett nimmt zwölf Kartenpaare auf, besteht also aus 24 Karten. Die Karten sollen über eine Vorderseite und eine Rückseite verfügen, die das Programm aus Grafikdateien einliest, die sich auf der Festplatte befinden.

Abbildung 12.1 Die Oberfläche von Memory als Skizze

Das Hauptfenster soll auf Größenänderungen so reagieren, dass die Spielkarten neu angeordnet werden. Selbstverständlich sollen alle Spielkarten danach wieder richtig gezeichnet werden und sich an der zuletzt bekannten Position befinden.

Dialoge

Das Spiel soll nur zwei Dialoge besitzen: einen Dialog, der erscheint, wenn das Spiel vorüber ist, und einen Dialog, der den Namen des Spiels, des Autors und die Version anzeigt. Dieser Informationsdialog soll, wie üblich, modal sein. Das bedeutet, dass er Benutzereingaben in das Hauptfenster blockiert, solange er sichtbar ist. Der Dialog zeigt das Programmsymbol an, den Namen des Programms, seines Autors, die übliche Copyright-Meldung sowie den verfügbaren Platz im Hauptspeicher.

366

Projekt »Memory«

12.2

12.2.2 Analyse und Design

Es gibt viele Möglichkeiten, ein relativ einfaches Spiel wie Memory zu entwickeln.

Die meisten Lösungen, die ich bisher gesehen habe, waren allerdings wenig objektorientiert realisiert und sind wohl nach dem Vorbild des Spiels Tic, Tac, Toe entstanden, das sich im Java-JDK befindet. Die Implementierung dieses Spiels besteht im Kern aus vielen verschiedenen Schleifen, die die Position der Spielkarten abfragen und deren Status ermitteln.

Mir ging es beim Design des vorliegenden Spiels darum, zu zeigen, wie einzelne Objekte miteinander Nachrichten austauschen können. Der Kern des Spiels ist daher sehr klein, und die Aufgaben sind auf verschiedene Hilfsklassen und die Kartenklasse verteilt.

Hauptfenster

Wie schon erwähnt, setzt sich das Hauptfenster aus zwei Komponenten zusammen: der Menüleiste und dem Spielbrett. Beide sollen durch ein Border-Layout auf Distanz zueinander gehalten werden. Das Hauptfenster der Klasse AppWnd erbt von der Swing-Klasse JFrame. Das Border-Layout stammt von der AWT-Klasse gleichen Namens.

Abbildung 12.2 Das Klassendiagramm des Hauptfensters

Menüleiste

Für die Menüleiste kommt ein Objekt der Swing-Klasse JMenuBar zum Einsatz.

Sie wird durch zwei Menüs angereichert, die auf der Swing-Klasse JMenu aufbauen. Diese bekommen jeweils einen Menüeintrag: beides Objekte des Typs JMenuItem. Der erste Menüeintrag erlaubt dem Anwender, das Programm zu beenden. Der zweite Menüeintrag dient dazu, den Informationsdialog aufzurufen.

367

12

Computerspiele mit Swing

Abbildung 12.3 Das Klassendiagramm der Menüleiste

Jedem Menüeintrag muss eine Methode zugeordnet werden. Beim ersten

Menüeintrag behandelt die Methode den Wunsch, das Programm zu beenden,

beim zweiten Menüeintrag den Wunsch, den Dialog aufzurufen.

Spielkarte

Die Spielkarte ist die Klasse Card, die von der Swing-Klasse JComponent erbt. Ziel beim Design der Karte war es, eine Basisklasse aus den Java-Klassenbibliotheken zu finden, die möglichst wenig Ballast enthält und trotzdem alle Methoden zur Verfügung stellt, die eine Spielkarte benötigt.

Folgende Kriterien mussten erfüllt werden: Eine Spielkarte muss auf Mausereignisse reagieren, sie muss verschiedene Bilder darstellen können und über eine Methode verfügen, die den Inhalt neu zeichnet, wenn sich das Fenster verändert hat. Die Spielkarte besitzt zwei Seiten: eine Vorderseite und eine Rückseite.

Auf der Vorderseite ist ein Spielsymbol dargestellt, das sich von Karte zu Karte unterscheidet. Im Gegensatz dazu ist auf der Rückseite desselben Kartenstapels immer das gleiche Muster zu sehen. Beide Bilder müssen aus einer Grafikdatei geladen werden können.

In Abbildung 12.4 sehen Sie die Beziehungen der Spielkarte. Sie benötigt einen Mausadapter, um auf Mausereignisse reagieren zu können. Außerdem besitzt sie eine Vererbungsbeziehung zu der erwähnten Swing-Klasse JComponent. Diese Basisklasse verfügt über eine Methode paint, die immer dann aufgerufen wird, wenn sich die Komponenten oder ihr Umfeld ändern.

368

Projekt »Memory«

12.2

Abbildung 12.4 Der Aufbau der Spielkarte

Im Umfeld der Karte befindet sich ein spezielles, selbst definiertes Ereignis namens CardEvent. Die Karte versendet immer dann ein CardEvent, wenn jemand sie angeklickt hat. Über dieses CardEvent können Informationen über die angeklickte Karte eingeholt werden, zum Beispiel welche Kennung sie besitzt. Mehr dazu erfahren Sie bei der Implementierung der Klasse.

Spielbrett

Es gibt zwei Hauptfälle, auf die das Spiel reagieren muss. Im Fall 1 ist noch keine Karte aufgedeckt. Wenn der Spieler auf die erste Karte klickt, muss sie sich umdrehen und die Vorderseite präsentieren. Diese Karte wird nun fixiert. Das heißt, sie bekommt ein Signal, dass sie nicht mehr auf Mausklicks reagieren soll, bis das Spiel sie wieder freigibt (Karte lösen).

Im Fall 2 hat der Spieler schon eine Karte aufgedeckt. Dieser Fall verzweigt zu einer Fallunterscheidung. Diese findet heraus, ob es sich jetzt um gleiche (Fall 2.1) oder um verschiedene Karten handelt (Fall 2.2).

Im Fall 2.1 fixiert das Spiel beide Karten. Das heißt, sie reagieren nicht mehr auf Mausklicks und bleiben bis zum Spielende mit der Vorderseite auf dem Spielbrett liegen.

Anders sieht es im Fall 2.2 aus. Hier sind verschiedene Karten aufgedeckt worden.

Sie bleiben einstweilen liegen, werden aber vom Spiel beim nächsten Mausklick auf eine andere Karte wieder umgedreht. Bei der Implementierung werden Sie sehen, wie das Spiel dies löst.

369

12

Computerspiele mit Swing

Abbildung 12.5 Der Algorithmus des Spiels als Aktivitätsdiagramm Informationsdialog

Der Informationsdialog ist ein einfacher Dialog, der von der Swing-Klasse JDialog abgeleitet ist und das AWT-Interface ActionListener implementiert. Dadurch, dass der Dialog dieses Interface implementiert, ist er in der Lage, auf Ereignisse des Typs ActionEvent zu reagieren. Das ist wichtig, damit sich der Dialog schließt, wenn der Anwender auf die Schaltfläche OK klickt.

12.2.3 Implementierung der Klasse »Card«

Zu den nun folgenden Listings dieses Beispiels muss ich einige Bemerkungen vorausschicken: Aus Platzgründen musste ich viele Kommentare aus den Quelltexten entfernen. Sie sind aber im Originalquelltext unter den Beispielprogrammen vorhanden, die sich von der Homepage des Verlags herunterladen können.

Im Gegensatz zu den vielen Kommentaren habe ich viele Programmausgaben auf die Konsole hingegen in den Listings belassen, damit Sie auch beim Durchle-sen des Buchs erkennen, wo sich Programmausgaben auf die Konsole befinden.

Durch diese Programmausgaben »erklärt« das Memoryspiel selbst beim normalen Programmablauf, wie es funktioniert.

370

Projekt »Memory«

12.2

Paketstruktur

Die Kartenklasse gehört zum Paket net.steppan.app.memory. Bei einem relativ kleinen Projekt wie diesem Spiel ist eine Aufteilung der Schichten in verschiedene Pakete nicht zwingend.

Importanweisungen

Um die Funktionen des Dialogs mit möglichst wenig eigener Programmierung umzusetzen, ist eine Reihe von Klassenimporten notwendig. Damit stehen die importierten Klassen als Vorlage für Objekte oder als Basisklasse zur Verfügung.

package net.steppan.app.memory;

import java.awt.Graphics;

import java.awt.Image;

import java.awt.event.MouseEvent;

import java.util.Vector;

import javax.swing.JComponent;

✄

Listing 12.1 Die Importanweisungen

Die Klasse Image aus der AWT-Bibliothek wird benötigt, um die Bilder der Spielkarten darzustellen, die Klasse MouseEvent, um auf Mausereignisse zu reagieren und die Klasse JComponent, weil diese durch die Klasse Card erweitert wird.

Variablen

Die Karte benötigt zwei Objekte des Typs Image, um die Bilddateien für die Vorder- und Rückseite der Karte darzustellen. Sie verfügt über zwei Spielzustände: turned und playable. Mit turned merkt sich die Karte, ob sie auf der Vorder- oder auf der Rückseite liegt, während playable markiert, ob die Karte noch im Spiel ist.

✄

public class Card extends JComponent {

private Image face; // Vorderseite der Karte

private Image back; // Rueckseite der Karte

private boolean turned = false; // ... Umgedreht: Nein

private boolean playable = true; // .. Spielbar: Ja

private int cardID; // Kennung der Karte

private Vector listeners = new Vector(); //

... Listener

private String faceFile; // .. Dateiname des Vorderseitenbilds

private String backFile; // .. Dateiname des Rueckseitenbilds

✄

Listing 12.2 Die Variablen der Klasse »Card«

371

12

Computerspiele mit Swing

Die restlichen Variablen hängen vom Algorithmus des Spiels ab. Die Kartenkennung wird in einer cardID festgehalten. Sie ist eine eindeutige Nummer für das Kartenobjekt. Die Zeichenketten faceFile und backFile speichern den Namen der Grafikdatei und sind der Schlüssel für den Vergleich der Bilder.

Konstruktoren

Die folgenden Konstruktoren sind ein gutes Beispiel für die Anwendung von Polymorphie. Durch die unterschiedlichen Konstruktoren der Kartenklasse kann ein Programm auf verschiedene Weise Kartenobjekte erzeugen. Der erste Konstruktor erzeugt eine Karte durch Übergabe zweier Bilddateien. Die Bilddateien müssen hierbei vom Programm erzeugt und danach der Kartenklasse als Referenz übermittelt werden. Ein nicht besonders elegantes Verfahren, das aber manchmal praktisch sein kann.

✄

/**

* Erster Konstruktor

* Erzeugt eine Karte durch Uebergabe von zwei Bildern:

* @param face Vorderseite der Karte

* @param back Rueckseite der Karte

*/

public Card(Image face, Image back) {

super();

this.face = face;

this.back = back;

addMouseListener(new MouseAdapter(this));

}

✄

Listing 12.3 Der erste Konstruktor der Kartenklasse

Der zweite Konstruktor erledigt dies besser. Er verwendet zwei Zeichenketten, um selbsttätig Bilddateien zu erzeugen. Die Erzeugung von Bilddateien bleibt somit dem Programm, das die Karte verwenden will, erspart. Der Konstruktor ist natürlich deswegen etwas aufwändiger. Er generiert mit Hilfe des AWT-Toolkits zwei Bilder, die den Variablen face und back übergeben werden. Sie werden dann in der Methode paint verwendet (nächster Abschnitt).

✄

/**

* Zweiter Konstruktor

* Erzeugt eine Karte durch Uebergabe von zwei Bildern:

* @param face Vorderseite der Karte

* @param back Rueckseite der Karte

*/

372

Projekt »Memory«

12.2

public Card(String faceFile, String backFile) {

super();

face = getToolkit().getImage(faceFile);// Bild Vorderseite

back = getToolkit().getImage(backFile);// Bild Rueckseite

this.faceFile = faceFile;

this.backFile = backFile;

addMouseListener(new MouseAdapter(this));

}

✄

Listing 12.4 Der zweite Konstruktor der Kartenklasse

Der dritte Konstruktor mag Ihnen eigenartig erscheinen, denn er »versorgt« die Karte mit Standardbildern. Das ist sinnvoll, weil der Konstruktor nicht über eine Parameterliste verfügt. Da der Klasse Bilddateien auch später über Mutatoren übergeben werden, kann dieser Konstruktor für Kartenspiele verwendet werden, bei denen der Anwender Karten ohnehin austauschen möchte.

✄

/**

* Dritter Konstruktor

* Erzeugt eine Karte mit Standardbildern

* Vorderseite der Karte: card32x32color.gif

* Rueckseite der Karte: card32x32mono.gif

*/

public Card() {

super();

face = getToolkit().getImage(Card.class.getResource(

"card32x32color.gif").getFile()); // Bild f. GUI-Builder

back = getToolkit().getImage(Card.class.getResource(

"card32x32mono.gif").getFile()); // Bild fuer GUI-Builder

addMouseListener(new MouseAdapter(this));

}

✄

Listing 12.5 Der dritte Konstruktor der Kartenklasse

Der dritte Konstruktor lädt die Grafikdateien aus einer Ressource. Das bedeutet, dass sie sich im Klassenpfad der Klasse befinden müssen. Aus diesem Grund ermittelt der Konstruktor auch die Bilddatei über die Methode getResource.

Wichtig bei allen Konstruktoren ist, dass ein MouseListener die Aufgabe übernimmt, nach Mausereignissen Ausschau zu halten. Erst durch den Aufruf der Methode addMouseListener ist die Karte in der Lage, auf Mausklicks zu reagieren.

373

12

Computerspiele mit Swing

Methode »paint«

Die Methode paint hat die Aufgabe, die Spielkarte zu zeichnen. Ihr Aufbau ist extrem einfach: Entweder ist der Kartenzustand auf turned = true gesetzt, dann ist die Karte aufgedeckt, oder ihr Zustand ist turned = false, dann ist die Karte zugedeckt. Im ersten Fall wird die Vorderseite der Karte gezeichnet, wozu die Klasse eine Methode der AWT-Klasse Graphics verwendet. Im zweiten Fall geschieht das Gleiche mit der Rückseite.

✄

/**

* Methode paint

* Ueberschrieben von der Basisklasse JComponent

* @param g Graphics

*/

public synchronized void paint(Graphics g) {

super.paint(g);

//System.out.println("Paint called"); // Debug

if (turned) { // .. Status aufgedeckt => Vorderseite zeichnen

g.drawImage(face, 0, 0, this);

//System.out.println("Karte ist aufgedeckt"); // Debug

}

else { // Status nicht aufgedeckt => Rueckseite zeichnen

g.drawImage(back, 0, 0, this);

//System.out.println("Karte ist zugedeckt"); // Debug

}

}

✄

Listing 12.6 Die Methode »paint«

Methode »mousePressed«

Die Methode mousePressed wird durch die innere Klasse MouseAdapter zur Verfügung gestellt (beschrieben auf Seite 377). Die Klasse Card überschreibt diese, um die Behandlung der MouseEvents selbst in die Hand zu nehmen. Was passiert, wenn eine Karte angeklickt wurde? Die Karte verfügt über zwei Zustände. Sie kann fixiert sein, und sie kann umgedreht sein.

✄

void mousePressed(MouseEvent e) {

//System.out.println("Karte "+ cardID +

" Playable: "+ playable); // Debug

// Debug:

//System.out.println("Karte "+ cardID + " Turned: "+ turned); if (playable) { // Ist die Karte noch im Spiel?

if (turned) { // Ist die Karte schon umgedreht worden?

374

Projekt »Memory«

12.2

turned = false; // Karte als aufgedeckt markieren

}

else { // Bild der Karte ist aufgedeckt

turned = true; // Karte als zugedeckt markieren

}

this.notifyCard(new CardEvent(this, cardID));

paint(getGraphics()); // Karte zeichnen

}

}

✄

Listing 12.7 Die Methode »mousePressed«

Wenn sie fixiert ist, ist sie nicht mehr »spielbar« und wurde vom Spiel – temporär oder dauerhaft – aus dem Verkehr gezogen. Sie reagiert nicht mehr auf Mausklicks. In einem solchen Fall verweigert sie so lange die Zusammenarbeit mit der Außenwelt, bis ihr jemand sagt, dass sie wieder »spielbar« ist.

Abbildung 12.6 Der Ereignisfluss nach dem Anklicken einer Karte

In dem anderen Fall findet die Methode mousePressed() heraus, welche Seite oben liegt, dreht den Zustand um, benachrichtigt interessierte Anwender der Karte und zeichnet sie neu. Die innere Abfrage der Methode lässt sich natürlich noch viel kürzer schreiben, indem der Zustand durch den Nicht-Operator einfach invertiert wird (Listing 12.8). Das geht schneller und spart zwei Kontrollstrukturen.

375

12

Computerspiele mit Swing

✄

if (playable) { // Ist die Karte noch im Spiel?

this.setTurned(!turned);

this.notifyCard(new CardEvent(this, cardID));

paint(getGraphics()); // Karte zeichnen

}

✄

Listing 12.8 Die Kurzform der Abfrage innerhalb von »mousePressed«

Akzessoren und Mutatoren

Neben den Konstruktoren verfügt die Karte über eine speziell gestaltete Schnittstelle, um ihren Zustand zu ändern. Über die Methoden setBack und getBack können Sie der Karte andere Bilder zuordnen, über setFace und getFace das Bild der Vorderseite ermitteln, und über setPlayable fixieren und lösen Sie die Karte.

Diesen Zustand fragen Sie mit isPlayable bei Bedarf wieder ab.

✄

public void setBack(Image back) {

this.back = back;

}

public Image getBack() {

return back;

}

public void setFace(Image face) {

this.face = face;

}

public Image getFace() {

return face;

}

public void setPlayable(boolean playable) {

this.playable = playable;

}

public boolean isPlayable() {

return this.playable;

}

public int getCardID() {

return cardID;

}

public void setCardID(int cardID) {

this.cardID = cardID;

}

public boolean isTurned() {

return this.turned;

}

376

Projekt »Memory«

12.2

public void setTurned(boolean turned) {

if (playable) { // Ist die Karte noch im Spiel?

if (this.turned != turned) {

this.turned = turned;// Falls ja, Karte markieren

paint(getGraphics()); // und Karte zeichnen

} // if

} // playable

}

public String getFaceFile() {

return this.faceFile;

}

public String getBackFile() {

return this.backFile;

}

✄

Listing 12.9 Die Akzessoren und Mutatoren

Listener

Über die Methode addCardListener() verwaltet das Spielbrett die Anzahl der »Zu-hörer«, über removeCardListenener() entfernt es die Methode wieder. Nachrichten des Typs CardEvent verschickt die Klasse über notifyCard().

✄

public void addCardListener(CardListener listener) {

listeners.addElement(listener);

//System.out.println("Listener addiert"); // Debug

}

public void removeCardListener(CardListener listener) {

listeners.removeElement(listener);

}

protected synchronized void notifyCard(CardEvent e) {

for (int i = 0; i < listeners.size(); i++)

((CardListener)listeners.elementAt(i)).turned(e);

}

} // Klasse Card

✄

Listing 12.10 Die Listener-Methoden

Innere Klasse »MouseAdapter«

Java bietet diverse Möglichkeiten, Ereignisse abzufangen. Eine ist ein spezieller Adapter, der über eine innere Klasse sehr leicht zu implementieren ist. Eine einfache Möglichkeit, Mausereignisse abzufangen, ist der Mausadapter. Er wird zu Beginn der Klasse Card über addMouseListener() eingebunden und »lauscht« fortan 377

12

Computerspiele mit Swing

auf Mausereignisse und reicht sie an die Methode mousePressed() der Kartenklasse weiter, wo sie individuell verarbeitet werden.

✄

class MouseAdapter extends java.awt.event.MouseAdapter {

Card adaptee;

protected MouseAdapter(Card adaptee) {

this.adaptee = adaptee;

}

public void mousePressed(MouseEvent e) {

adaptee.mousePressed(e);

}

}

✄

Listing 12.11 Die innere Klasse »MouseAdapter«

12.2.4 Implementierung der Klasse »CardEvent«

Die Klasse CardEvent hat die Aufgabe, als Bote für die Kennung der Karte zu dienen, wenn diese angeklickt worden ist. Die Kartenklasse ist durch sie in der Lage, aktiv zu reagieren, wenn jemand eine Karte angeklickt hat (Interrupt-Betrieb). Das ist ein völlig anderes und wesentlich eleganteres Verfahren, als ständig die Karte mit überflüssigen Anfragen zu bombardieren, welchen Status sie besitzt (Polling).

package net.steppan.app.memory;

import java.util.EventObject;

✄

public class CardEvent extends EventObject {

int cardID;

public CardEvent(Object source, int cardID) {

super(source);

this.cardID = cardID;

}

}

Listing 12.12 Die neue Klasse »CardEvent«

12.2.5 Implementierung des Interfaces »CardListener«

Das Interface CardListener ist minimalistisch und verfügt nur über eine Methode, die natürlich keine Implementierung besitzt, weil ein Interface vollkommen abstrakt ist. Wer das Interface implementiert, hat die Aufgabe, auf die Methode turned individuell zu reagieren.

378

Projekt »Memory«

12.2

package net.steppan.app.memory;

import java.util.EventListener;

✄

interface CardListener extends EventListener {

void turned(CardEvent e);

}

Listing 12.13 Das neue Interface »CardListener«

Die Methode turned() wird stets dann aufgerufen, wenn die Karte umgedreht wurde.

12.2.6 Implementierung der Klasse »CardBeanInfo«

Die Klasse CardBeanInfo sorgt dafür, dass die JavaBean von einem GUI-Builder erkannt wird. Wenn das der Fall ist, kann der GUI-Builder an seiner Oberfläche sinnvolle Werte anzeigen.

✄

public class CardBeanInfo extends SimpleBeanInfo {

private Class beanClass = Card.class;

private String iconColor16x16Filename = "card16x16color.gif"; private String iconColor32x32Filename = "card32x32color.gif"; private String iconMono16x16Filename = "card16x16mono.gif";

private String iconMono32x32Filename = "card32x32mono.gif";

public CardBeanInfo() {

}

public PropertyDescriptor[] getPropertyDescriptors() {

try {

PropertyDescriptor _back =

new PropertyDescriptor("back", beanClass,

"getBack", "setBack");

_back.setDisplayName("Back image");

_back.setShortDescription("Back image of the card");

PropertyDescriptor _backFile =

new PropertyDescriptor("backFile", beanClass,

"getBackFile", null);

PropertyDescriptor _cardID =

new PropertyDescriptor("cardID", beanClass,

"getCardID", "setCardID");

PropertyDescriptor _face =

new PropertyDescriptor("face", beanClass,

"getFace", "setFace");

_face.setDisplayName("Face image");

_face.setShortDescription("Face image of the card");

379

12

Computerspiele mit Swing

PropertyDescriptor _faceFile =

new PropertyDescriptor("faceFile", beanClass,

"getFaceFile", null);

PropertyDescriptor _listeners =

new PropertyDescriptor("listeners", beanClass,

null, null);

PropertyDescriptor _playable =

new PropertyDescriptor("playable", beanClass,

"isPlayable", "setPlayable");

PropertyDescriptor _turned =

new PropertyDescriptor("turned", beanClass,

"isTurned", "setTurned");

PropertyDescriptor[] pds =

new PropertyDescriptor[] {

_back,

_backFile,

_cardID, _covered, _face,

_faceFile, _listeners, _playable, _turned};

return pds;

}

catch(IntrospectionException ex) {

ex.printStackTrace();

return null;

}

}

public java.awt.Image getIcon(int iconKind) {

switch (iconKind) {

case BeanInfo.ICON_COLOR_16x16:

return iconColor16x16Filename != null ?

loadImage(iconColor16x16Filename) : null;

case BeanInfo.ICON_COLOR_32x32:

return iconColor32x32Filename != null ?

loadImage(iconColor32x32Filename) : null;

case BeanInfo.ICON_MONO_16x16:

return iconMono16x16Filename != null ?

loadImage(iconMono16x16Filename) : null;

case BeanInfo.ICON_MONO_32x32:

return iconMono32x32Filename != null ?

loadImage(iconMono32x32Filename) : null;

}

return null;

}

}

Listing 12.14 Die Klasse »BeanInfo« gehört zu einer richtigen JavaBean.

380

Projekt »Memory«

12.2

12.2.7 Implementierung des Testtreibers

Der Testtreiber CardTest ist das erste Programm, das die neue Kartenklasse verwendet. Es ist unbedingt empfehlenswert, die neue Kartenkomponente in einem überschaubaren Rahmen zu testen, anstatt sie sofort an einem relativ komplizierten Programm wie dem Spiel Memory auszuprobieren. Die Seiteneffekte des Memoryspiels würden sich mit den Seiteneffekten der Spielkarte vermischen und die Fehlersuche erschweren.

Die Klasse CardTest ist hybrid implementiert. Das heißt, sie kann entweder als Applet oder als Applikation gestartet werden. Jedes Applet, das über eine Main-Methode verfügt, ist hybrid und besitzt diese Eigenschaft. Das ist praktisch, wenn man das Programm ohne entsprechende HTML-Seite oder Applet Viewer ausprobieren möchte.

Importanweisungen

Wie fast jede Swing-Applikation ist auch das Hauptfenster des Testtreibers aus der Klasse JFrame entstanden. Zusätzlich benötigt das Programm diverse AWT-Ereignisse sowie Schaltflächen.

package net.steppan.app.memory;

import java.awt.BorderLayout;

import java.awt.Dimension;

import java.awt.GridLayout;

import java.awt.Image;

import java.awt.Toolkit;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.event.WindowAdapter;

import java.awt.event.WindowEvent;

import javax.swing.JApplet;

import javax.swing.JButton;

import javax.swing.JFrame;

✄

Listing 12.15 Die Importanweisungen

Variablen

Das Programm benötigt nur wenige Variablen, unter anderem Bilder für Vorder-und Rückseite sowie zwei Schaltflächen.

✄

public class CardTest extends JApplet {

Image front, back;

static Card card;

381

12

Computerspiele mit Swing

static JButton playBtn;

static JButton turnBtn;

✄

Listing 12.16 Die Variablen der Klasse »CardTest«

Initialisierungsmethode

Die Initialisierungsmethode muss bei einem Applet implementiert werden und übernimmt die Initialisierung der Oberflächenkomponenten. In diesem Fall heißt das, dass sie zwei Bilder erzeugt, die einem Kartenobjekt als Parameter mit auf den Weg gegeben werden. Im Anschluss daran fügt das Programm die Karten-komponenten zum Layout hinzu.

✄

public void initialize() {

setBackground(java.awt.Color.white);

front = getImage(getCodeBase(), "../img/img0.gif");

back = getImage(getCodeBase(), "../img/back.gif");

System.out.println(getCodeBase());

card = new Card(front, back);

getContentPane().add(card, BorderLayout.CENTER);

}

Listing 12.17 Die Methode » initialize« des Testtreibers

Abbildung 12.7 »CardTest« lässt sich als Application oder Applet starten.

382

Projekt »Memory«

12.2

Startmethode

Die Methode main() startet den Testtreiber als Java Application. Sie legt ein neues Grid-Layout sowie zwei Bilddateien an, die einer Karte übergeben werden. Danach erzeugt sie zwei Schaltflächen und verbindet sie mit den dazugehörenden Handlern. Zum Schluss werden alle Komponenten zum Layout hinzugefügt:

public static void main(String[] args) {

GridLayout grid = new GridLayout(1, 3, 5, 5);

Image back = Toolkit.getDefaultToolkit().getImage(

"img/back.gif");

Image front = Toolkit.getDefaultToolkit().getImage(

"img/img0.gif");

card = new Card(front, back);

card.setPreferredSize(new Dimension(60,60));

playBtn = new JButton("Fixieren");

turnBtn = new JButton("Umdrehen");

playBtn.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

//System.out.println(card.isPlayable());

if (card.isPlayable()) {

card.setPlayable(false); // Fixieren

playBtn.setText("L\u00f6sen");

} else {

card.setPlayable(true); // Loesen

playBtn.setText("Fixieren");

}

}

});

turnBtn.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

card.setTurned(!card.isTurned());

}

});

JFrame appWnd = new JFrame("Card Test");

appWnd.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

});

appWnd.getContentPane().setLayout(grid);

appWnd.getContentPane().add(card);

383

12

Computerspiele mit Swing

appWnd.getContentPane().add(playBtn);

appWnd.getContentPane().add(turnBtn);

appWnd.setSize(new Dimension(310,90));

appWnd.setVisible(true);

}

}

Listing 12.18 Die Startmethode des Programms

12.2.8 Implementierung der Klasse »GameBoard«

Nachdem der Test mit dem Kartentreiber erfolgreich verlaufen ist, kann die Implementierung des eigentlichen Programms beginnen. Den Anfang soll das Spielbrett bilden.

Paketstruktur

Das Spielbrett gehört wie alle anderen Klassen zum Paket net.steppan.app.memory.

Importanweisungen

Um die entsprechende Funktionalität des Spielbretts zu realisieren, bedient sich das Programm großzügig aus dem Fundus der Hilfsklassen der Java SE, der AWT-Bibliothek und der Swing-Bibliothek. Aus der Sammlung von Hilfsklassen werden Arrays und Collections benötigt, um die Karten zu mischen.

import java.awt.Dimension;

import java.awt.GridLayout;

import java.util.Arrays;

import java.util.Collections;

import javax.swing.JOptionPane;

import javax.swing.JPanel;

✄

Listing 12.19 Die Importanweisungen

Die Klasse JOptionPane erlaubt es, ein Nachrichtenfenster anzuzeigen, wie es für die Nachricht benötigt wird, wenn das Spiel beendet ist. Die Klasse JPanel bildet die Basisklasse des Spielbretts.

Variablen

Die Variablen der Klasse sind nicht alle variabel. Die meisten sind konstant. Sie dienen nur dazu, das Spiel schnell an andere Verhältnisse (zum Beispiel mehr Karten) anzupassen.

384

Projekt »Memory«

12.2

public class GameBoard extends JPanel implements CardListener {

private final static int NUMBER_OF_IMAGES = 12;

private final static int NUMBER_OF_CARDS = 2* NUMBER_OF_IMAGES;

private final static String PATH = "img/";

private final static String PREFIX = "img";

private final static String IMAGETYPE = ".gif";

private final static String BACK = PATH + "back.gif";

private int currentPair [] = {-1, -1};

private GridLayout grid; // Gitternetz des Spielbretts

private Card card[] = new Card[NUMBER_OF_CARDS]; // Spielkarten

private byte pairCounter = 1;

✄

Listing 12.20 Die Variablen der Klasse

Wichtig sind vor allem currentPair und pairCounter. Die erste Variable dient in der Methode turned dazu, sich die Kennung der umgedrehten Karten zu merken, während die zweite Variable die Aufgabe übernimmt, das Spielende festzustellen.

Das Spielende ist dann erreicht, wenn pairCounter gleich der Anzahl der Bilder ist.

Konstruktor

Der Konstruktor übernimmt zwei wichtige Aufgaben: Zum einen weist er jeder Karte ein Symbol zu, und zum anderen mischt er die Karten durch. Die Zuweisung der Symbole erfolgt in der inneren For-Schleife. Sie weist jedoch nicht nur ein Symbol zu, sondern setzt auch die bevorzugte Kartengröße und verbindet jede Karte mit ihrem Listener.

✄

public GameBoard() {

grid = new GridLayout(4,6,5,5); // 4 x 6 Felder 5 Pix. Abstd.

setLayout(grid); // Layout festlegen

int cardID = 0; // Kartenkennung

for (int i = 1; i < 3; i++) {

for (int imageID = 0;

imageID < NUMBER_OF_IMAGES; imageID++) {

card[cardID] = new Card(PATH + PREFIX + imageID +

IMAGETYPE, BACK);

card[cardID].setPreferredSize(new Dimension(60, 60));

card[cardID].addCardListener (this);

cardID++;

}

}

385

12

Computerspiele mit Swing

Collections.shuffle(Arrays.asList(card));

for (int i = 0; i < NUMBER_OF_CARDS; i++) {

this.add(card[i]);

card[i].setCardID(i);

}

} // Konstruktor

✄

Listing 12.21 Der Konstruktor des Spielbretts

Zum Mischen der Karten verwendet das Programm die Klasse Collections, die ausführlich in Kapitel 9, »Algorithmen« vorgestellt wurde. Sie besitzt praktischerweise eine Methode shuffle(), die jedoch ein Objekt der Klasse List erwartet.

Methode »turned«

Diese Methode ist der Kern des Spiels. Sie implementiert den Algorithmus aus Abbildung 12.5. Der einzige Unterschied zur Abbildung ist der, dass die Implementierung verschiedene Variablen verwendet, um sich den Zustand des Spielbretts zu merken.

Die Methode startet mit der Abfrage des letzten Paars, das aufgedeckt wurde.

Wenn das Array mit Werten größer 0 belegt ist, handelt es sich um ein Paar ungleicher Karten. Sie müssen wieder verdeckt werden. Abschließend setzt die Methode die Variablen currentPair auf -1.

✄

/**

* Implementierung Methode turned des Interfaces CardListener

* @param e CardEvent

*/

public void turned(CardEvent e) {

// Letztes Paar wieder umdrehen

if (currentPair[0] > -1 && currentPair[1] > -1) {

System.out.println("Paar umdrehen: (" + currentPair[0] +

" | " + currentPair[1] + ")");

card[currentPair[0]].setPlayable(true);

card[currentPair[1]].setPlayable(true);

card[currentPair[0]].setTurned(false);

card[currentPair[1]].setTurned(false);

currentPair[0] = -1;

currentPair[1] = -1;

}

if (card[e.cardID].isPlayable()) {

if (currentPair[0] < 0) { // Fall 1: Erste Karte

System.out.println("Fall 1: Einzelkarte");

386

Projekt »Memory«

12.2

currentPair[0] = e.cardID; // Nummer merken

card[e.cardID].setPlayable(false); //Fixieren

System.out.println("Aktuelle Karte ist jetzt:" +

e.cardID);

}

else { // Fall 2: Zweite Karte

if (card[e.cardID].getFaceFile().startsWith(

card[currentPair[0]].getFaceFile())) { //. Fall 2.1

System.out.println("Fall 2: Gleiches Paar (" +

currentPair[0] + " | "+ e.cardID +")");

card[e.cardID].setPlayable(false);

card[currentPair[0]].setPlayable(false);

currentPair[0] = -1;

currentPair[1] = -1;

if (pairCounter < NUMBER_OF_IMAGES)

pairCounter++;

else

JOptionPane.showConfirmDialog(null,

"Sie haben gewonnen.",

"Memory",

JOptionPane.DEFAULT_OPTION,

JOptionPane.WARNING_MESSAGE);

} else { // Fall 2.2

System.out.println("Fall 3: Ungleiches Paar (" +

currentPair[0] + " | "+ e.cardID +")");

currentPair[1] = e.cardID;

card[currentPair[1]].setPlayable(false);

}

} // Fall 2.2

}

}

}

✄

Listing 12.22 Die Methode »turned« bildet den Algorithmus des Spiels.

Der Rest der Methode ist exakt nach dem Aktivitätsdiagramm implementiert.

Dieses sagt jedoch wenig darüber aus, wie sich das Spielbrett die Karten und aufgedeckten Paare merkt. Dies funktioniert wieder über das Array currentPair.

Die Methode wertet das Ereignis CardEvent aus, das die Kennung der Spielkarte übermittelt. Die Kennung hat zwei Funktionen. Zum einen erlaubt sie es, die Bilddateien miteinander zu vergleichen, zum anderen, die richtigen Karten wieder umzudrehen.

387

12

Computerspiele mit Swing

12.2.9 Implementierung des Hauptfensters

Paketstruktur

Das Hauptfenster gehört ebenfalls zum Paket net.steppan.app.memory. Ein Unter-paket ist nicht notwendig.

Importanweisungen

Das Hauptfenster benötigt ein Border-Layout, um Menüleiste und Spielbrett zu trennen, und ein Fenster des Typs JFrame sowie Menüs und Menüeinträge. Während für die Oberfläche ausschließlich Swing zuständig ist, läuft die Ereignisbehandlung weiterhin über das AWT.

✄

import java.awt.BorderLayout;

import java.awt.Dimension;

import java.awt.Point; // Ermittlung der Fensterposition

import java.awt.Toolkit; // Fuer das Programmsymbol

import java.awt.event.ActionEvent;

import java.awt.event.WindowEvent;

import javax.swing.JFrame;

import javax.swing.JMenu;

import javax.swing.JMenuBar;

import javax.swing.JMenuItem;

✄

Listing 12.23 Die Importanweisungen

Variablen

Das Hauptfenster benötigt ein Spielbrett, eine Menüleiste sowie zwei Menüs und zwei Menüeinträge.

✄

public class AppWnd extends JFrame {

private GameBoard board = new GameBoard();

private JMenuBar menuBar = new JMenuBar();

private JMenu gameMenu = new JMenu();

private JMenuItem appExitMenuItem = new JMenuItem();

private JMenu helpMenu = new JMenu();

private JMenuItem helpInfoMenuItem = new JMenuItem();

✄

Listing 12.24 Die Variablen des Hauptfensters

388

Projekt »Memory«

12.2

Konstruktor

Der Konstruktor des Hauptfensters übergibt die Kontrolle sofort an die Initialisierungsmethode. Dieser Aufruf muss in einem Try-Catch-Block stehen, da es bei der Initialisierung der Komponenten zu Fehlern kommen kann.

✄

public AppWnd() {

super("Memory");

try {

initialize();

}

catch(Exception e) {

e.printStackTrace();

}

}

Listing 12.25 Der Konstruktor des Hauptfensters

Handler

//Aktion Datei | Beenden durchgefuehrt

public void exitApp(ActionEvent e) {

System.exit(0);

}

//Ueberschrieben, so dass eine Beendigung der App moeglich ist.

protected void processWindowEvent(WindowEvent e) {

super.processWindowEvent(e);

if (e.getID() == WindowEvent.WINDOW_CLOSING) {

exitApp(null);

}

}

void showAboutDlg(ActionEvent e) {

AboutDlg dlg = new AboutDlg(this);

Dimension dlgSize = dlg.getPreferredSize();

Dimension frmSize = getSize();

Point loc = getLocation();

dlg.setLocation((frmSize.width - dlgSize.width) / 2 +

loc.x,

(frmSize.height - dlgSize.height) / 2 +

loc.y);

dlg.setModal(true);

dlg.show();

}

}

✄

Listing 12.26 Die Handler

389

12

Computerspiele mit Swing

Initialisierungsmethode

Die Initialisierungsmethode sorgt dafür, dass die Komponenten des Fensters initialisiert werden. Zunächst setzt die Methode ein Programmsymbol, das aus einer Ressource erzeugt wird. Es muss sich daher im Pfad der Klasse befinden. Danach folgt das Menü Spiel. Ihm werden sein Name und der Menüeintrag Beenden

zugewiesen.

✄

private void initialize() throws Exception {

board.setMinimumSize(new Dimension(350, 250));

setIconImage(Toolkit.getDefaultToolkit().createImage(

AppWnd.class.getResource("app.gif")));

// Menu Spiel:

gameMenu.setText("Spiel");

appExitMenuItem.setText("Beenden");

appExitMenuItem.addActionListener(

new java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent e) {

exitApp(e);

}

});

// Menues zusammenbauen:

helpMenu.setText("Hilfe");

helpInfoMenuItem.setText("Info ...");

helpInfoMenuItem.addActionListener(

new java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent e) {

showAboutDlg(e);

}

});

gameMenu.add(appExitMenuItem);

helpMenu.add(helpInfoMenuItem);

// Menueleiste zusammenbauen:

menuBar.add(gameMenu);

menuBar.add(helpMenu);

this.getContentPane().add(board, BorderLayout.CENTER);

this.getContentPane().add(menuBar, BorderLayout.NORTH);

this.setSize(new Dimension(450, 400)); // Groesse festlegen

}

Listing 12.27 Die Initialisierungsmethode des Fensters

390

Projekt »Memory«

12.2

Abbildung 12.8 Der Aufbau des Hauptfensters

Im Anschluss daran folgt die Zusammenstellung des Menüs Hilfe. Es bekommt den Menüeintrag Hilfe, der mit dem Handler showAboutDlg verbunden wird.

Zuletzt müssen die verschiedenen Teile auf das Hauptfenster montiert werden (siehe Abbildung 12.8). Ein Border-Layout trennt die Bestandteile, so dass sich nichts überlappen kann.

12.2.10 Implementierung der Klasse »AboutDlg«

Importanweisungen

Der Informationsdialog ist zwar sehr klein, besitzt aber schon alle Merkmale eines richtigen Dialogs und benötigt auch entsprechend viele Klassen. Zunächst ist eine Reihe von AWT-Klassen zu erkennen, die der Dialog als Layout-Manager der verschiedenen Teilbereiche einsetzt. Danach schließt sich die Klasse an, die der Dialog für seine Oberfläche aus der Swing-Bibliothek verwendet.

package net.steppan.app.memory;

import java.awt.AWTEvent;

import java.awt.BorderLayout;

import java.awt.Dimension;

import java.awt.FlowLayout;

import java.awt.Frame;

import java.awt.GridBagConstraints;

import java.awt.GridBagLayout;

import java.awt.Insets;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.event.WindowEvent;

391

12

Computerspiele mit Swing

import javax.swing.BorderFactory;

import javax.swing.ImageIcon;

import javax.swing.JButton;

import javax.swing.JDialog;

import javax.swing.JLabel;

import javax.swing.JPanel;

✄

Listing 12.28 Die Importanweisungen

Variablen

Als Variablen benötigt der Dialog verschiedene Komponenten, die alle aus der Klasse JPanel erzeugt werden. Ferner wird ein Objekt der Klasse JLabel benötigt, das das Programmsymbol darstellen wird. Die verschiedenen Layout-Manager dienen dazu, die verschiedenen Komponenten sauber auszurichten, wenn sich die Dialoggröße bei der Verwendung anderer Schriften ändern sollte.

✄

public class

AboutDlg extends JDialog implements ActionListener {

JPanel panel1 = new JPanel();

JPanel panel2 = new JPanel();

JPanel insetsPanel1 = new JPanel();

JPanel insetsPanel2 = new JPanel();

JPanel insetsPanel3 = new JPanel();

JButton button1 = new JButton();

JLabel imageLabel = new JLabel();

JLabel appNameTextfield = new JLabel();

JLabel versionTextfield = new JLabel();

JLabel copyrightTextfield = new JLabel();

JLabel authorTextfield = new JLabel();

BorderLayout borderLayout1 = new BorderLayout();

BorderLayout borderLayout2 = new BorderLayout();

FlowLayout flowLayout1 = new FlowLayout();

String about = "Info \u00fcber Memory";

String product = "Memory";

String version = "Version 1.1";

String copyright = "Copyright (c) 2003 - 2007 by";

String comments = "Bernhard Steppan";

String freeMemory = "Freier Speicher: ";

GridBagLayout gridBagLayout1 = new GridBagLayout();

GridBagLayout gridBagLayout1 = new GridBagLayout();

✄

Listing 12.29 Die Variablen des Dialogs

392

Projekt »Memory«

12.2

Konstruktor

Der Konstruktor erzeugt ein Objekt des Typs AboutDlg. Da nicht die gesamte Funktionalität der Basisklasse überschrieben werden soll, ruft der Dialog seinen Vorgänger mit super auf. Im Anschluss daran übergibt der Konstruktor der Initialisierungsmethode die Kontrolle.

✄

/**

* Dialog Info ueber ...

* @param parent Objekt der Klasse Frame

*/

public AboutDlg(Frame parent) {

super(parent);

enableEvents(AWTEvent.WINDOW_EVENT_MASK);

try {

initialize();

}

catch(Exception e) {

e.printStackTrace();

}

pack();

}

✄

Listing 12.30 Der Konstruktor des Dialogs

Initialisierungsmethode

Auch bei diesem Dialog ist es notwendig, die Komponenten zu initialisieren, das heißt mit sinnvollen Anfangswerten zu belegen. Zunächst setzt das Programm das Symbol, das auf der Oberfläche des Dialogs erscheinen wird. Danach ordnet der Dialog seinen Panel-Objekten entsprechende Layout-Manager zu. Das innerste Panel bekommt die Textfelder zugewiesen und verfügt über ein GridBag-Layout.

✄

//Initialisierung der Komponenten

private void initialize() throws Exception

{

imageLabel.setIcon(new ImageIcon(AboutDlg.class.getResource(

"app.gif")));

this.setTitle("Info \u00fcber Memory");

setResizable(false);

panel1.setLayout(borderLayout1);

panel2.setLayout(borderLayout2);

insetsPanel1.setLayout(flowLayout1);

insetsPanel2.setLayout(flowLayout1);

393

12

Computerspiele mit Swing

insetsPanel2.setBorder(BorderFactory.createEmptyBorder(

10, 10, 10, 10));

insetsPanel2.setMinimumSize(new Dimension(60, 47));

insetsPanel2.setPreferredSize(new Dimension(60, 47));

appNameTextfield.setText(product);

versionTextfield.setText(version);

copyrightTextfield.setText(copyright);

authorTextfield.setText(comments);

insetsPanel3.setLayout(gridBagLayout1);

insetsPanel3.setBorder(BorderFactory.createEmptyBorder(

10, 60, 10, 10));

insetsPanel3.setMinimumSize(new Dimension(200, 88));

insetsPanel3.setPreferredSize(new Dimension(200, 88));

button1.setText("OK");

button1.addActionListener(this);

panel1.setMinimumSize(new Dimension(200, 125));

memoryTextfield.setText(freeMemory +

new Long(Runtime.getRuntime().freeMemory()/1024).toString() +

" KByte");

this.getContentPane().add(panel1, null);

insetsPanel3.add(appNameTextfield,

new GridBagConstraints(0, 0, 1, 1, 0.0, 0.0,

GridBagConstraints.WEST,

GridBagConstraints.NONE,

new Insets(0, 35, 0, 0), 181, 0));

insetsPanel3.add(versionTextfield,

new GridBagConstraints(0, 1, 1, 1, 0.0, 0.0,

GridBagConstraints.WEST,

GridBagConstraints.NONE,

new Insets(0, 35, 0, 0), 163, 0));

insetsPanel3.add(copyrightTextfield,

new GridBagConstraints(0, 2, 1, 1, 0.0, 0.0,

GridBagConstraints.WEST,

GridBagConstraints.NONE,

new Insets(0, 35, 0, 0), 143, 0));

insetsPanel3.add(authorTextfield,

new GridBagConstraints(0, 3, 1, 1, 0.0, 0.0,

GridBagConstraints.WEST,

GridBagConstraints.NONE,

new Insets(0, 35, 0, 0), 171, 0));

insetsPanel3.add(memoryTextfield,

new GridBagConstraints(0, 5, 1, 1, 0.0, 0.0,

GridBagConstraints.SOUTHWEST,

GridBagConstraints.NONE,

new Insets(0, 35, 0, 0), 0, 0));

panel2.add(insetsPanel2,

BorderLayout.WEST);

394

Projekt »Memory«

12.2

insetsPanel2.add(imageLabel, null);

panel2.add(insetsPanel3, BorderLayout.CENTER);

insetsPanel1.add(button1, null);

panel1.add(insetsPanel1, BorderLayout.SOUTH);

panel1.add(panel2, BorderLayout.NORTH);

}

✄

Listing 12.31 Die Initialisierungsmethode des Dialogs

Handler

Ein Fenster und somit auch ein Dialog kann auf verschiedene Arten geschlossen werden. Zunächst ist es möglich, ihn über einen Mausklick auf die Schaltfläche OK zu schließen. Wenn der Anwender auf die entsprechende Schaltfläche auf dem Fensterrahmen klickt, muss sich der Dialog ebenfalls schließen.

✄

//Ueberschrieben, so dass das Fenster geschlossen werden kann

protected void processWindowEvent(WindowEvent e) {

if (e.getID() == WindowEvent.WINDOW_CLOSING) {

cancel();

}

super.processWindowEvent(e);

}

//Dialog schliessen

void cancel() {

dispose();

}

//Dialog bei Ereignis der Schaltflaeche schliessen

public void actionPerformed(ActionEvent e) {

if (e.getSource() == button1) {

cancel();

}

}

✄

Listing 12.32 Die Handler des Dialogs

12.2.11 Test

Ein Projekt wie dieses Memoryspiel muss man einem gründlichen Test unter-ziehen, weil die internen Zustände sowohl der Karte als auch des Spielbretts empfindlich auf Programmierfehler reagieren. Die Programmierung eines speziellen Testtreibers hatte den Sinn, die Karte so lange austesten zu können, bis sie einwandfrei funktioniert.

395

12

Computerspiele mit Swing

Abbildung 12.9 Das Programm mit seinem Informationsdialog

Kommt es zum Beispiel zu Inkonsistenzen, würde das Programm im wahrsten Sinne des Wortes sehr schnell verrückt spielen und den Anwender verwirren.

Die vielen Debug-Ausgaben, die Sie in den Listings sicher bemerkt haben, dienen dazu, Ihnen zu erlauben, den Spielverlauf auch ohne integrierte Entwicklungsumgebung verfolgen zu können.

12.2.12 Verteilung

Das Programm lässt sich zu einem Archiv zusammenstellen und von einer Batch-datei beziehungsweise einem Shellskript starten. Die Windows-Startdatei zum Start der Anwendung sieht wie folgt aus:

@echo off

REM

REM Projekt: Memory

REM Beschreibung: Buch "Einstieg in Java"

REM Copyright: (c) 2003 - 2011 by Bernhard Steppan

REM Verlag: Galileo Press

REM Autor: Bernhard Steppan

REM Version 1.1

REM

REM Bitte Pfad zum JDK anpassen!

REM

REM JDK oder JRE im Suchpfad:

REM

java -jar Memory.jar

REM

REM JDK oder JRE nicht im Suchpfad, hier ein Beispiel fuer JRE 1.7

REM

396

Zusammenfassung

12.3

REM C:\Programme\Java\jre1.7\bin\java -jar Memory.jar

REM

@echo on

Listing 12.33 Windows-Startdatei für Memory

Die Datei enthält den Pfad zur Java-Laufzeitumgebung (JRE), von der aus die virtuelle Maschine das Spiel startet.

12.3

Zusammenfassung

Das Kapitel hat anhand des Programms Memory gezeigt, wie ein Computerspiel mit Swing-Komponenten entwickelt wird. Das Hauptfenster besteht aus einem Objekt der Klasse AppWnd, das von der Swing-Klasse JFrame abgeleitet wurde.

Das Spiel verwendet eine Menüleiste mit zwei Menüs. Der Spielalgorithmus musste neu entwickelt werden, während für den Algorithmus des Mischens eine Collection-Klasse verwendet werden konnte.

12.4

Aufgaben

12.4.1 Fragen

1. Was ist eine JavaBean?

2. Was ist ein Testtreiber?

3. Welche Aufgabe erfüllt er?

4. Wie erreicht man eine individuelle Grafikausgabe auf Basis der Klasse JComponent?

5. Welche Methode der Klasse Card reagiert auf Mausereignisse?

6. Welche Methode der Klasse GameBoard reagiert auf Mausereignisse?

12.4.2 Übungen

Entfernen Sie aus der Methode actionPerformed() folgende Zeilen:

if (e.getSource() == button1) {\

dispose();\

}

397

12

Computerspiele mit Swing

Kompilieren Sie das Programm danach erneut. Versuchen Sie, den Dialog mit Hilfe der Schaltfläche OK zu schließen. Probieren Sie es nun erneut mit der entsprechenden Schaltfläche des Fensterrahmens. Was passiert? Begründen Sie das Verhalten.

Die Lösungen zu den Aufgaben finden Sie in Kapitel 20 ab Seite 531.

398

»Es gibt nichts Aufregenderes als die Oberfläche.«

(Alex Katz)

13

Komplexe Oberflächen mit Swing

13.1

Einleitung

Eine gute grafische Oberfläche ist das Aushängeschild Ihres Programms. Sie ist ein Kriterium, an dem sich Ihr Programm messen lassen muss. Das Kapitel 8,

»Klassenbibliotheken«, stellte viele Komponenten von Swing wie Fenster, Dialoge, Symbolleisten und Menüs anhand von kleinen Beispielen vor. Der Fokus dieses Kapitels liegt darauf, die Swing-Komponenten jetzt zu einem sinnvollen Projekt zusammenzusetzen: zur Oberfläche eines Adressbuchs.

13.2

Projekt »Nestor« – die Oberfläche

13.2.1

Anforderungen

Das Projekt hat die Aufgabe, ein Adressbuch mit einfacher Funktionalität zur Verfügung zu stellen. Folgende Anforderungen sollen erfüllt werden:

Hauptfenster

Um die Oberfläche nicht planlos in einem Werkzeug zu entwerfen, ist es sinnvoll, erst einmal eine Skizze anzufertigen. Wie in Abbildung 13.1 zu sehen ist, soll das Hauptfenster des Programms aus verschiedenen Textfeldern bestehen, die in der Mitte angeordnet werden. Das Fenster soll auf Größenänderungen so reagieren, dass sich die Elemente wieder automatisch ausrichten. Acht Textfelder nehmen die Angaben zu den Personen auf: Anrede, Vorname, Nachname, Postleitzahl, Ort, Staat, Telefon und E-Mail.

Menüs

Im oberen Bereich des Hauptfensters befinden sich eine Symbolleiste und vier Menüs. Die Menüs sollen über Funktionen verfügen, mit denen ein Datensatz neu angelegt, gespeichert und gelöscht werden kann. Wichtig ist ferner, dass 399

13

Komplexe Oberflächen mit Swing

Funktionen zum Blättern vorhanden sind und zum Springen an den Beginn und an das Ende des Adressbuchs.

Abbildung 13.1 Das Hauptfenster des Adressbuchs

Symbolleiste

Die Symbolleiste soll sich unterhalb des Menüs befinden, sich aber so konfigurie-ren lassen, dass man sie überall andocken oder als Palette verwenden kann. Über die Symbolleiste sollen die wichtigsten Funktionen der Menüs erreichbar sein.

Dialog »Einstellungen«

Der Dialog Einstellungen soll Funktionen zur Verfügung stellen, mit denen das Erscheinungsbild und die Sprache ausgewählt sowie bestimmte Grundeinstellungen gewählt werden können. Dazu zählt, das Fenster zu maximieren, zu zentrieren, die Fensterposition zu speichern und die Dialoge zentriert darzustellen.

Abbildung 13.2 Der Dialog »Einstellungen«

400

Projekt »Nestor« – die Oberfläche

13.2

Systemanforderungen

Das Programm soll unter Windows, Linux und Mac OS X laufen, muss nicht über das Internet gestartet werden und kann somit in Form einer nativen Datei ausgeliefert werden. Dadurch erscheint das Adressbuch als betriebssystemtypisches Programm.

13.2.2 Analyse und Design

Um eine Datenbank andocken zu können, ist es am besten, zur Entwicklung der Oberfläche eine Fassade einzusetzen. Die Fassade wird in Form einer Bibliothek in das Projekt integriert. Aus diesem Grund befinden sich auch zwei verschiedene Packages auf unterster Ebene innerhalb des Projekts (Abbildung 13.3). Die Bibliothek Charon wird in Abschnitt 13.2.3, »Implementierung der Datenbankfassade«, erklärt.

Abbildung 13.3 Das Paketdiagramm der Anwendung

Wie können die Anforderungen in Bezug auf die Oberfläche am besten umgesetzt werden? – Dadurch, dass das Programm eine Java Application werden soll, ist Swing als Oberflächenbibliothek die erste Wahl. Die Bibliothek bietet eine reiche Auswahl an vorgefertigten Menüs, Symbolleisten und Fenstern.

Abbildung 13.4 Das Hauptfenster mit den verwendeten Klassen

401

13

Komplexe Oberflächen mit Swing

Hauptfenster

Das Hauptfenster der Anwendung erbt von der Swing-Klasse JFrame und verbindet sich mit einer Adressenkomponente, mit vier Menüs und einer Symbolleiste.

Abbildung 13.4 zeigt die Klassenstruktur.

Menüleiste

Die Menüleiste besteht aus den vier Menüs Datensatz, Bearbeiten, Suchen und Hilfe. Das Menü Datensatz fasst hierbei Datenbankbefehle zusammen und dient zum Beenden des Programms. Befehle, die sich auf die Zwischenablage beziehen, gruppiert das Menü Bearbeiten. Dieses Menü enthält auch einen Befehl für die Konfiguration des Programms. Das Menü Suchen erlaubt es, in den Datensätzen zu blättern. Den Abschluss bildet das Menü Hilfe.

Abbildung 13.5 Das Klassendiagramm der Menüleiste

Die Klasse AppWnd legt zehn Objekte des Typs JMenuItem an, die die Menü-

befehle aufnehmen. Diese zehn Objekte befinden sich in vier Objekten des Typs JMenu. Zusammen ergeben sie die Menüleiste, ein Objekt des Typs JMenuBar.

Symbolleiste

Die Symbolleiste dient dem Schnellzugriff auf wichtige Menübefehle. Vier Gruppen sind aus der Anforderungsaufnahme erkennbar: Datei-, Bearbeiten-, Suche-und Hilfegruppe. Für diese Schaltflächen sind sieben Objekte des Typs JButton notwendig. Die Klasse befindet sich im Paket javax.swing. Jedes dieser Objekte bekommt ein Objekt des Typs ImageIcon. Auch diese Klasse befindet sich im gleichen Swing-Paket. Abbildung 13.6 zeigt die Beziehungen des Applikationsfensters zu den eben aufgeführten Klassen.

402

Projekt »Nestor« – die Oberfläche

13.2

Abbildung 13.6 Das Klassendiagramm der Symbolleiste

Adressenkomponente

Die Klasse AddressPnl erbt von der Swing-Klasse JComponent. Die Klasse verwendet neun Textfelder, um Vorname, Name, Straße etc. darstellen zu können. Für die Textfelder sind ebenso viele Beschriftungen notwendig, die sich mit Objekten der Klasse JPanel realisieren lassen.

Wie in Abbildung 13.7 zu sehen ist, bauen alle Swing-Komponenten auf AWT-Komponenten auf. So stammt zum Beispiel das JPanel in zweiter Generation von java.awt.Container ab. Diese Klasse ist demzufolge nichts anderes als ein Behälter für weitere GUI-Bausteine.

Den Zusammenhalt dieser GUI-Bausteine erreicht die Adressenkomponente über ein GridBag-Layout, das später in einem GUI-Builder implementiert wird. Das GridBag-Layout ist eine Klasse aus dem AWT-Paket java.awt.

Dialog »Einstellungen«

Der Dialog Einstellungen soll erlauben, die Grundeinstellungen des Programms zu verändern und dauerhaft zu sichern. Um das zu erreichen, muss er seine Einstellungen in einer Properties-Datei speichern. Diese Datei wird beim Start des Programms und bei Bedarf gelesen.

Wenn der Anwender den Dialog wieder schließt, sichert der Dialog die Einstellungen wieder in die Properties-Datei zurück.

403

13

Komplexe Oberflächen mit Swing

Abbildung 13.7 Das Klassendiagramm der Klasse »AddressPnl«

Abbildung 13.8 Das Klassendiagramm der Klasse »SettingsDlg«

404

Projekt »Nestor« – die Oberfläche

13.2

13.2.3 Implementierung der Datenbankfassade

Da (noch) keine Datenbank zur Verfügung steht, arbeitet Nestor mit einer Datenbankfassade, die so lange unveränderliche Daten liefert, bis die Zugriffsschicht Charon fertiggestellt ist. In Kapitel 15, »Datenbankprogrammierung«, sehen Sie, wie Charon konstruiert ist, und in Kapitel 16, »Datenbankanwendungen«, wie die fertige Datenbankschicht an Nestor angekoppelt wird.

Die Fassade besteht einstweilen nur aus einer Klasse, die sich direkt im Projekt, in einem separaten Paket, befindet. Charon bietet die in Listing 13.1 genannten Akzessor-Methoden an. Die Methoden getTitle(), getLastName() und getCity() sind allerdings nur teilweise implementiert, da sie zu Testzwecken momentan nicht benötigt werden.

Die Methode getFirstName() gibt den Vornamen aus einem einfachen Array zu-rück. Als Übergabeparameter erwartet die Methode den Index des Datensatzes.

Der Index beginnt, wie bei Arrays üblich, bei 0 und endet bei einem nach außen hin ungewissen Ende, das aber mit Array.length intern ermittelt werden kann.

Soll zum Beispiel der Vorname der ersten Person ermittelt werden, muss getFirstName() mit dem Parameter 0 aufgerufen werden. Wie ermittelt man nun die letzte Person, die in der Datenbank gespeichert wurde? Dazu dient die Methode getLastRecord, die den letzten verfügbaren Index zurückliefert.

public String getTitle(int index) {

return " ";

}

public String getFirstName(int index) {

return firstNames[index];

}

public String getLastName(int index) {

return " ";

}

public String getEmail(int index) {

return email[index];

}

public String getCity(int index) {

return " ";

}

public int getLastRecord() {

return lastRecord.length - 1;

}

Listing 13.1 Die Zugriffsmethoden der Datenbankfassade

405

13

Komplexe Oberflächen mit Swing

Um die Zugriffsmethoden zu verwenden, muss das Adressbuch Nestor die Position des Datensatzes über einen Parameter übermitteln. Die Anzahl der Datensätze holt sich Nestor über die gerade erwähnte Methode getLastRecord().

13.2.4 Implementierung der Applikationsklasse

Die Applikationsklasse bekommt ein eigenes Paket (Abbildung 13.9). Sie besteht aus einer Main-Methode, die die Grundeinstellungen einliest und das Look-andFeel entsprechend setzt.

Abbildung 13.9 Das Paketdiagramm der Kernapplikation

Danach erzeugt das Hauptprogramm ein Objekt frame der Klasse AppWnd des Hauptfensters und reduziert die Größe mit Hilfe der Methode pack() auf das zulässige Minimum. Dann zentriert die Klasse das Fenster und übergibt diesem die Kontrolle über den weiteren Ereignisfluss.

public class NestorApp {

boolean packFrame = false;

static Properties basicProperties = new Properties();

// Konstruktor

public NestorApp() {

AppWnd frame = new AppWnd();

if (packFrame) {

frame.pack();

}

else {

frame.validate();

}

//Das Fenster zentrieren

Dimension screenSize =

Toolkit.getDefaultToolkit().getScreenSize();

Dimension frameSize = frame.getSize();

if (frameSize.height > screenSize.height) {

frameSize.height = screenSize.height;

}

if (frameSize.width > screenSize.width) {

frameSize.width = screenSize.width;

}

406

Projekt »Nestor« – die Oberfläche

13.2

frame.setLocation((

screenSize.width - frameSize.width) / 2,

(screenSize.height - frameSize.height) / 2);

frame.setVisible(true);

}

//Main-Methode

public static void main(String[] args) {

try {

basicProperties.load(

new FileInputStream("prp/bas/Basic.properties"));

}

catch (java.io.IOException e) {

System.out.println(e);

}; // catch

try {

UIManager.setLookAndFeel(

basicProperties.getProperty("LookAndFeel"));

}

catch(Exception e) {

e.printStackTrace();

}

new NestorApp();

}

}

Listing 13.2 Das Hauptprogramm erzeugt das Hauptfenster.

Das voreingestellte Look-and-Feel der Anwendung, das das Hauptprogramm aus-liest, steht in einer Datei namens Basic.properties. Diese Datei müssen Sie selbst erzeugen; sie befindet sich innerhalb des Projektes im Unterordner prp.

Hier nur ein kurzer Ausschnitt daraus:

✄

LookAndFeel=com.sun.java.swing.plaf.windows.WindowsLookAndFeel

✄

Listing 13.3 Die Basic-Properties enthalten die »Nestor«-Grundeinstellungen.

Die Datei kann mit einem normalen Texteditor erzeugt werden. Wie in Kapitel 8,

»Java-Klassenbiblioheken«, erwähnt, müssen Sie für jede Zeile einer Properties-Datei einen Schlüssel (zum Beispiel LookAndFeel) und die dazugehörenden Werte (zum Beispiel das WindowsLookAndFeel oder SystemLookAndFeel definieren.

Wie die Anwendung der Property-Datei aussieht, sehen Sie am Beispiel der Methode getProperty(). Mit ihrer Hilfe liest das Programm zuerst den Namen der Look-and-Feel-Klasse über den Schlüssel LookAndFeel. Danach setzt das Programm 407

13

Komplexe Oberflächen mit Swing

über setLookandFeel() der Klasse UIManager den vorher ermittelten Wert für das Look-and-Feel.

13.2.5 Aufbau des Hauptfensters

Das Hauptfenster soll sich aus fünf wesentlichen Bestandteilen zusammensetzen: 1. Menüleiste

2. Symbolleiste

3. Adressenkomponente

4. Statusleiste

5. Fensterrahmen

Abbildung 13.10 zeigt, wie Bestandteile aufeinander aufbauen. Wichtig ist vor allem, dass die Adressenkomponente ausgegliedert wird. Wäre sie Bestandteil der Klasse AppWnd, so würde sie diese Fensterklasse nur unnötig aufblähen.

Abbildung 13.10 Der Aufbau der grafischen Oberfläche von »Nestor«

Die Adresskomponente sorgt dafür, dass das Hauptfenster übersichtlich und leicht zu warten bleibt.

13.2.6 Implementierung der Adresskomponente

Konstruktor

Der Konstruktor der Klasse AddressPnl besteht nur aus dem Aufruf der Initialisierungsmethode, in der die Grafikkomponenten initialisiert werden. Da die 408

Projekt »Nestor« – die Oberfläche

13.2

Initialisierungsmethode Exceptions auslösen kann, ist ein Try-Catch-Block zur Behandlung eventueller Fehler notwendig.

public AddressPnl(int recordIndex) {

this.recordCounter recordIndex;

enableEvents(AWTEvent.WINDOW_EVENT_MASK);

try {

initialize();

}

catch (Exception e) {

e.printStackTrace();

}

}

Listing 13.4 Der Konstruktor ruft die Initialisierungsmethode auf.

Layout

Um die Felder gleichmäßig zu verteilen, verwendet das AddressPanel ein kompliziertes GridBag-Layout. Ich möchte dieses Layout hier nicht nochmals erklären, sondern verweise auf den Abschnitt »GridBag-Layout« (Seite 281). Der Java-Code, der bei der Implementierung eines GridBag-Layouts anfällt, ist schlecht zu lesen.

Weit übersichtlicher ist es, mit einem GUI-Builder zu arbeiten (Abbildung 13.11).

Über diesen können Sie die Elemente nach der Größe ausrichten und Abstände visuell festlegen. Ein guter GUI-Builder ist ebenfalls in der Lage, »Life-Daten«

anzuzeigen, das heißt, hier schon die Werte aus der Datenbankfassade zu präsentieren, wie Sie es auch in Abbildung 13.11 erkennen können.

Abbildung 13.11 Das Layout der Adressenkomponente

409

13

Komplexe Oberflächen mit Swing

Initialisierungsmethode

Die Initialisierungsmethode des Fensters setzt zunächst das gewünschte GridBag-Layout, legt die minimale und bevorzugte Größe des Fensters fest und ruft danach eine interne Methode namens firstRecord() auf. Was dann passiert, sehen Sie in Abbildung 13.12.

Abbildung 13.12 Aufruf der Methode »firstRecord«

Das Programm ruft die Methode updateWidgets() auf, die die Oberflächenelemente auf den neuesten Stand bringt. Die Methode wird im nächsten Abschnitt erklärt.

✄

this.setLayout(panelGridBagLayout);

this.setMinimumSize(new Dimension(400, 250));

this.setPreferredSize(new Dimension(400, 250));

firstRecord(); // Ersten Datensatz holen

// Anrede:

titleLabel.setText("Anrede");

// Vorname:

firstNameLabel.setText("Vorname");

// Nachname:

lastNameLabel.setText("Nachname");

// StrassStarten eines Java-Programmse:

StreetLabel.setText("Stra\u00dfe");

// Postleitzahl:

zipLabel.setText("PLZ");

// Stadt:

410

Projekt »Nestor« – die Oberfläche

13.2

cityLabel.setText("Ort");

// Land:

countryLabel.setText("Staat");

// Telefon:

telephoneLabel.setText("Telefon");

// E-Mail:

emailLabel.setText("E-Mail");

✄

Listing 13.5 Das Innenleben der Initialisierungsmethode

Im Anschluss daran gibt das Programm die Beschriftungen für die verschiedenen Textfelder aus. Beachten Sie, dass hier nur der Einfachheit halber Zeichenketten direkt im Programm stehen. Um die Anwendung später in eine andere Sprache zu übersetzen, ist es dringend notwendig, solche Zeichenketten auszulagern.

Wichtig ist auch noch, dass das deutsche ß (und andere Umlaute der Nestor-Oberfläche) im entsprechenden Unicode eingetragen wird. Falls Sie das Sonderzeichen direkt eingeben, wird es beim Übersetzen des Quelltextes auf einem anderen Betriebssystem nicht korrekt erscheinen. Der Bytecode bleibt davon aber selbstverständlich unberührt.

Sie müssen den korrekten Unicode aus einer Unicode-Tabelle entnehmen, wie er in Abschnitt 1.4.3, »Unicode«, abgedruckt ist.

Widgets aktualisieren

Das Aktualisieren der Oberfläche übernimmt die schon erwähnte Methode

updateWidgets(). Sie sorgt dafür, dass die richtigen Oberflächenelemente aktualisiert werden, da Charon zu diesem Zeitpunkt nicht für alle Elemente Daten liefern kann.

Die Methode updateWidgets() wird von allen Methoden aufgerufen, die auf eine Änderung der Anzeige reagieren, darunter zum Beispiel auch firstRecord():.

✄

public void updateWidgets() {

titleTextfield.setText(dbLayer.getTitle(recordCounter));

firstNameTextfield.setText(

dbLayer.getFirstName(recordCounter));

lastNameTextfield.setText(

dbLayer.getLastName(recordCounter));

emailTextfield.setText(dbLayer.getEmail(recordCounter));

}

✄

public void firstRecord() {

411

13

Komplexe Oberflächen mit Swing

recordCounter = 0;

updateWidgets();

}

✄

Listing 13.6 Die Oberfläche wird aktualisiert.

13.2.7 Implementierung des Hauptfensters

Konstruktor

Der Konstruktor des Hauptfensters ist sehr einfach aufgebaut und hat nur die Aufgabe, die Initialisierungsmethode aufzurufen, in der die Grafikkomponenten initialisiert werden.

// Konstruktor des Applikationsfensters

public AppWnd() {

enableEvents(AWTEvent.WINDOW_EVENT_MASK);

try {

jbInit();

}

catch (Exception e) {

e.printStackTrace();

}

}

Listing 13.7 Der Konstruktor ruft die Initialisierungsmethode auf.

Da dieser Aufruf zu Fehlern führen kann, ist es notwendig, die Initialisierungsmethode mit einem Try-Catch-Block zu umgeben. Eventuelle Exceptions werden auf diesem Weg abgefangen und auf die Konsole ausgegeben.

Layout

Im zweiten Schritt müssen Sie wieder eine Initialisierungsmethode für das Hauptfenster anlegen. Diese Methode hat – je nachdem, mit welchem Entwicklungswerkzeug Sie arbeiten – einen anderen Namen, als im Listing zu sehen ist. Arbeiten Sie ohne GUI-Builder, können Sie die Methode einfach init() nennen. Arbeiten Sie beispielsweise mit dem GUI-Builder von Eclipse, können Sie zwischen verschiedenen Namen wählen. Im Gegensatz dazu bestehen ältere JBuilder-Versionen auf dem Namen jbInit().

✄

setIconImage(Toolkit.getDefaultToolkit().createImage(

AppWnd.class.getResource("app.gif")));

contentPane = (JPanel)this.getContentPane();

412

Projekt »Nestor« – die Oberfläche

13.2

contentPane.setLayout(appBorderLayout); //

Layout festlegen

this.setSize(new Dimension(600, 400)); // Fenstergroesse festlegen

this.setTitle("Nestor - ein Adressbuch"); // Fenstertitel

this.firstRecord();

✄

Listing 13.8 Das Layout des Hauptfensters wird festgelegt.

Die Initialisierungsmethode ruft zu Anfang setIconImage der Mutterklasse JFrame auf, um das Programmsymbol darzustellen. Das Symbol wird über die Methode getResource geladen. Das bedeutet, dass es sich innerhalb des Package-Pfads befinden muss. Genauer gesagt, befindet es sich dort, wo der Bytecode des Fensters (Class-Dateien) abgelegt ist.

Im Anschluss daran legt das Fenster fest, dass es alle Elemente nach dem Border-Layout ausrichtet, das für das einfache Layout des Hauptfensters ausreicht.

Danach ruft das Hauptfenster seine Methode firstRecord auf, die diesen Aufruf an das Panel weiterleitet und die Schaltflächen der Symbolleiste »ausgraut« (deaktiviert).

Schaltflächen

Die Schaltflächen der Symbolleiste müssen jetzt mit einem Symbol versehen werden. Das geschieht mit der Methode setIcon() der Klasse JButton. Diese Swing-Klasse ist schon »von Natur aus« in der Lage, Symbole darzustellen. Dazu erwartet sie lediglich ein Symbol des Typs ImageIcon.

✄

newRecordImage = new ImageIcon(

AppWnd.class.getResource("newRecord.gif"));

fileNewButton.setIcon(newRecordImage);

fileNewButton.setToolTipText("Neuer Datensatz");

fileNewButton.addActionListener(

new java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent e) {

notImplemented(); // Handler

}

});

✄

Listing 13.9 Die Schaltfläche »Neuer Datensatz« wird verdrahtet.

Die Grafik für das ImageIcon befindet sich innerhalb des Klassenpfads beim Bytecode. Sie wird wie das Programmsymbol über die Methode getResource() geladen.

Danach folgt der Aufruf der Methode setToolTipText(). Ein ToolTip ist eine schnelle Hilfe für den Anwender, der nicht weiß, was das Symbol bedeuten soll. Ein 413

13

Komplexe Oberflächen mit Swing

kleines Fenster mit dem Hinweistext erscheint für eine kurze Zeit, wenn sich der Mauszeiger darüber befindet.

✄

saveRecordImage = new ImageIcon(

AppWnd.class.getResource("saveRecord.gif"));

fileSaveButton.setIcon(saveRecordImage);

fileSaveButton.setToolTipText("Datensatz sichern");

fileSaveButton.addActionListener(

new java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent e) {

notImplemented();

}

});

✄

Listing 13.10 Die Schaltfläche »Datensatz sichern« wird verdrahtet.

Den beiden ersten Schaltflächen wird der Handler notImplemented() zugeordnet, der ein kleines Fenster einblendet, das anzeigt, dass die Funktion zwar vorge-sehen, aber bisher nicht implementiert wurde. Alternativ dazu kann man die Schaltfläche auch einfach ausgegraut darstellen.

firstRecordImage = new ImageIcon(AppWnd.class.getResource(

"firstRecord.gif"));

firstRecordButton.setIcon(firstRecordImage);

firstRecordButton.setToolTipText("Erster Datensatz");

firstRecordButton.addActionListener(

new java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent e) {

firstRecord();

}

});

✄

Listing 13.11 Die Schaltfläche »Erster Datensatz« wird verdrahtet.

Die Schaltfläche Erster Datensatz erhält im Gegensatz zu den beiden ersten Schaltflächen schon Funktionalität. Das geschieht über die Methode addActionListener(), die Ereignisse des Typs ActionEvent abfängt. Da die Methode ein Objekt des Typs ActionListener erwartet, ist es das Einfachste, eine anonyme Klasse vom Typ ActionListener anzulegen.

Die Klasse überschreibt die Methode actionPerformed(), indem sie die Methode firstRecord() aufruft (Abschnitt 13.2.7, »Handler«). Die Methode behandelt das Ereignis, dass der erste Datensatz angezeigt werden soll.

414

Projekt »Nestor« – die Oberfläche

13.2

Symbolleiste

Wenn alle Schaltflächen mit Symbolen versehen und mit Handlern »verdrahtet«

sind, muss die Symbolleiste zusammengesetzt werden. Das geschieht durch den Aufruf der Methode add() des Objekts appToolBar.

appToolBar.add(fileNewButton, null);

appToolBar.add(fileSaveButton, null);

appToolBar.add(firstRecordButton, null);

appToolBar.add(previousRecordButton, null);

appToolBar.add(nextRecordButton, null);

appToolBar.add(lastRecordButton, null);

appToolBar.add(helpIndexButton, null);

Listing 13.12 Zusammensetzen der Symbolleiste

Menüs

Die Fertigstellung der Menüs verläuft analog zur Fertigstellung der Schaltflächen der Symbolleiste. Hier muss allerdings nicht unbedingt ein Symbol eingefügt werden – obwohl auch die Swing-Klasse dazu in der Lage ist. Wichtiger ist natürlich der Menütext, der über einen Akzessor festgelegt wird.

Aus Platzgründen können hier nicht alle Menüs aufgeführt werden. Stellvertretend für die anderen Menüs sehen Sie in Listing 13.13 nur das Menü Suchen.

Auch hier ist das Schema das gleiche wie bei der Symbolleiste. Jeder Menüeintrag wird mit einem eigenen Handler über eine anonyme Klasse verknüpft, die hier sehr praktisch ist, weil sich für das Überschreiben einer Methode weder eine konkrete Klasse noch eine Klasse lohnt, die in einer eigenen Datei definiert wird.

searchMenu.setText("Suchen");

firstRecordMenuItem.setText("Erster Datensatz");

firstRecordMenuItem.addActionListener(

new java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent e) {

firstRecord();

}

});

searchMenu.add(firstRecordMenuItem);

previousRecordMenuItem.setText("Vorheriger Datensatz");

previousRecordMenuItem.addActionListener(

new java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent e) {

previousRecord();

}

});

searchMenu.add(previousRecordMenuItem);

415

13

Komplexe Oberflächen mit Swing

searchMenu.addSeparator();

nextRecordMenuItem.setText("N\u00e4chster Datensatz");

nextRecordMenuItem.addActionListener(

new java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent e) {

nextRecord();

}

});

searchMenu.add(nextRecordMenuItem);

lastRecordMenuItem.setText("Letzter Datensatz");

searchMenu.add(lastRecordMenuItem);

lastRecordMenuItem.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

lastRecord();

}

});

Listing 13.13 Das Menü »Suchen«

Menüleiste

In diesem Schritt müssen die Menüs zu einer Menüleiste zusammengesetzt werden. Das geschieht über die Methode add() der Menüleiste. Dieser Methode wird einfach das Menüobjekt als Parameter übermittelt.

✄

appMenuBar.add(recordMenu);

appMenuBar.add(editMenu);

appMenuBar.add(searchMenu);

appMenuBar.add(helpMnu);

this.setJMenuBar(appMenuBar);

✄

Listing 13.14 Die Menüleiste wird zusammengesetzt.

Zum Schluss müssen Sie noch die Methode setJMenuBar() aufrufen, der Sie als Parameter ein Objekt der Klasse JMenuBar übergeben. Danach müssen nur noch die restlichen Teile zusammengefügt werden.

Teile zusammenfügen

Die Statusleiste blieb bislang unerwähnt – und ungenutzt. Sie kann verwendet werden, um eine Kurzhilfe anzuzeigen. Ihren Text legt das Programm mit dem Akzessor setText() fest. Danach muss die Größe des Fensters festgelegt werden, wobei mehrere Methoden aufgerufen werden können. Wichtig ist die Größeninformation über die minimale und die bevorzugte Größe.

416

Projekt »Nestor« – die Oberfläche

13.2

appStatusBar.setText("...");

contentPane.setMinimumSize(new Dimension(400, 250));

contentPane.setPreferredSize(new Dimension(400, 250));

contentPane.add(appStatusBar, BorderLayout.SOUTH);

contentPane.add(appToolBar, BorderLayout.NORTH);

contentPane.add(addressPanel, BorderLayout.CENTER);

Listing 13.15 Zusammenbau der GUI-Bestandteile

Wenn es zum Beispiel keinen Sinn hat, das Adressbuch zu einem briefmarken-großen Fenster zu verkleinern, können Sie dies hier unterbinden. Ebenfalls wichtig: Das Programm sollte seine bevorzugte Größe festschreiben. Diese Informationen werden beim Vorgang des Packens vom Hauptprogramm ausgewertet.

In den nächsten Zeilen folgen Anweisungen, die das Layout der Anwendung festlegen. Da Nestor ein Border-Layout für das Hauptfenster verwendet, ist die Zuordnung sehr simpel. Die Statuszeile wandert in den »Süden«, die Symbolleiste in den »Norden«, und der Adressenkomponente bleibt der Rest: die Mitte des Hauptfensters.

Handler

Handler heißen im Fachjargon Methoden, die ein bestimmtes Ereignis »behandeln«. Nestor benötigt eine Reihe von Handlern für die verschiedenen Suchfunktionen, die mit der Fassade Charon kommunizieren, um die Daten zu erfragen.

private void nextRecord() {

addressPanel.nextRecord();

firstRecordButton.setEnabled(true);

previousRecordButton.setEnabled(true);

}

Listing 13.16 Der Handler »nextRecord«

Der Handler nextRecord() übermittelt an die Adressenkomponente, dass sie den ersten Datensatz anzeigen soll. Dann sorgt die Methode dafür, dass Schaltflächen, die bisher eventuell ausgegraut waren, wieder freigeschaltet werden.

private void lastRecord() {

addressPanel.lastRecord();

firstRecordButton.setEnabled(true);

previousRecordButton.setEnabled(true);

nextRecordButton.setEnabled(false);

lastRecordButton.setEnabled(false);

}

Listing 13.17 Der Handler »lastRecord«

417

13

Komplexe Oberflächen mit Swing

Die Methode lastRecord() hat etwas mehr Funktionalität. Falls der letzte Datensatz angewählt wurde, muss die Methode sowohl die Schaltflächen Nächster Datensatz als auch Letzter Datensatz grau stellen. Alle anderen Schaltflächen muss sie wieder freigeben.

13.2.8 Implementierung des Dialogs »Einstellungen«

Konstruktor

Der Konstruktor des Dialogs ist ebenso aufgebaut wie der des Hauptfensters und hat ebenfalls die Aufgabe, eine Initialisierungsmethode aufzurufen.

13.2.9 Test

Das Programm kann nun getestet werden und zeigt sich unter Windows, Linux und Mac OS X wie folgt: In Abbildung 13.13 sehen Sie links oben das native Look-and-Feel unter Windows NT/2000/XP/7. Rechts daneben befindet sich eine Abbildung des Programms unter Red Hat Linux mit einer Gnome-Oberfläche.

Links unten ist das Programm nochmals unter Windows zu sehen, allerdings mit einem Motif-Look-and-Feel, während es rechts unten unter Mac OS X im Aqua-Look-and-Feel dargestellt ist. Die Screenshots entstanden ohne Eingriff ins Programm.

Abbildung 13.13 Ein Programm, drei Betriebssysteme

418

Projekt »Nestor« – die Oberfläche

13.2

Auch der Dialog Einstellungen kann ohne Änderungen übernommen werden.

Aufgrund des GridBag-Layouts passt er sich sehr variabel an das Fenstersystem und an Größenveränderungen an. Die Elemente richten sich nach Größenänderungen des Dialogs neu aus (Abbildung 13.14).

Abbildung 13.14 Das Programm reagiert auf Größenänderungen flexibel.

Aufgrund der Verwendung der Swing-Klasse JToolBar kann die Symbolleiste sowohl als Palette allein verwendet werden als auch an den Fensterrändern andocken. Dazu war keinerlei Programmierarbeit erforderlich.

13.2.10 Verteilung

Das Programm wird zu einem Archiv gebündelt und von einer Batch-Datei beziehungsweise einem Shellskript gestartet. Alternativ dazu kann es mit einem

»Start-Wrapper« versehen werden. Sie können das Archiv auch mit einer ausführ-baren Datei verpacken oder in nativen Binärcode verwandeln. Die Werkzeuge dafür sind in Kapitel 22, »Werkzeuge«, beschrieben. Die Startdatei zum Start der Anwendung sieht einfach aus:

@echo off

REM Batch-Datei "Nestor.bat" zum Start von Nestor

✄

c:\programme\jdk1.7\bin\java -jar nestor.jar

✄

@echo on

Listing 13.18 Startdatei für »Nestor«

Wichtig ist nur der richtige Pfad zur Java-Laufzeitumgebung (JRE). Da man oft nicht weiß, wo sich diese Laufzeitumgebung befindet, wird die Startdatei häufig vom Installationsprogramm erzeugt. Alternativ dazu kann die JRE mitgeliefert werden (Abschnitt 6.6, »Programmstart«).

419

13

Komplexe Oberflächen mit Swing

13.3

Zusammenfassung

Das Adressbuch Nestor ist eine Swing-Applikation und besteht aus einem Hauptfenster, das von der Klasse JFrame abgeleitet ist. Dieses Hauptfenster setzt sich im Wesentlichen aus einer Symbolleiste (Swing-Klasse JToolBar), diversen Menüs (Swing-Klasse JMenu) und einer neuen Klasse namens AddressPnl (Abbildung 13.15) zusammen.

Das AddressPnl stammt von JPanel und stellt die Adressen dar. Es besteht aus Textfeldern, die im GridBag-Layout ausgerichtet werden. Zum Datenbankzugriff verwendet das Adressbuch eine Datenbankfassade, zur Speicherung der Grundeinstellungen java.util.Properties.

Abbildung 13.15 Die Bestandteile von »Nestor« im Überblick

13.4

Aufgaben

13.4.1 Fragen

1. Was versteht man unter einem Look-and-Feel von Swing-Komponenten?

2. Wie speichert Nestor seine Grundeinstellungen?

3. Was ist ein ToolTip, und wozu dient er?

4. Wie werden Schaltflächen mit Symbolen versehen?

5. Wie verbindet man einen Handler mit einer Schaltfläche?

6. Welche Klassen werden dazu verwendet?

7. Warum müssen die Zugriffsmethoden von Charon public sein?

8. Warum ist die Methode updateWidgets() der Adressenkomponente private?

420

Aufgaben

13.4

13.4.2 Übungen

1. Implementieren Sie die restlichen Methoden (getLastName(), getPlz() etc.), die notwendig sind, um die Oberfläche der Adressenkomponente zu füllen. Nehmen Sie als Vorlage die Methode getFirstName(), und ergänzen Sie die notwendigen Testdaten.

public String getFirstName(int index) {

return firstName[index];

}

public String getLastName(int index) {

return " "; // Implementieren

}

public String getEmail(int index) {

return email[index];

}

public String getCity(int index) {

return " "; // Implementieren

}

✄

Listing 13.19 Einige Methoden müssen noch implementiert werden.

2. Bringen Sie im Anschluss daran die Methode updateWidgets auf den neuesten Stand.

private void updateWidgets() {

titleTextfield.setText(dbLayer.getTitle(recordCounter));

firstNameTextfield.setText(dbLayer.getFirstName(recordCounter));

lastNameTextfield.setText(dbLayer.getLastName(recordCounter));

emailTextfield.setText(dbLayer.getEmail(recordCounter));

}

✄

Listing 13.20 Die Methode »updateWidgets« ist noch nicht komplett.

Die Lösungen zu den Aufgaben finden Sie in Kapitel 20 ab Seite 532.

421

»Browser. Was sind denn jetzt noch mal Browser?«

(Bundesjustizministerin Brigitte Zypries auf die Frage in einem von Kindern geführten Interview, ein paar Browser zu nennen)

14

Weboberflächen mit Servlets

14.1

Einleitung

Java-Programme für das Internet zu entwickeln bedeutet, sich in erster Linie mit Servlets zu beschäftigen. Servlets sind die Basis für JavaServer Pages sowie JavaServer Faces und der Schlüssel zu schnellen, stabilen und einfach aufgebauten Internet-Programmen. Dieses Kapitel konzentriert sich auf den Oberflächenanteil der Servlet-Programmierung. Wie Sie Weboberflächen zu dynamischen Websites ausbauen können, erfahren Sie in Kapitel 17, »Dynamische Websites«.

14.1.1

Hypertext Markup Language

Wenn Sie sich mit Internet-Programmierung beschäftigen möchten, kommen Sie um die Kenntnis einiger Abkürzungen nicht herum. Sie werden schnell feststellen, dass Webprogrammierer ständig von Begriffen wie Flash, CGI und vor allem von HTML sprechen. HTML, das ist die Hypertext Markup Language, eine Programmiersprache, die zum Synonym des World Wide Web (WWW) geworden

ist.

Auszeichnungssprache

Nahezu jede Website, auf Sie im Internet stoßen, enthält ein oder mehrere HTML-Dokumente. Sie bestehen aus Tags (Auszeichnungen, Befehle, Marken), die angeben, was der Teil eines Dokuments zu bedeuten hat. Hier gibt es einen großen Unterschied zu anderen Dateiformaten: Die Hypertext Markup Language legt die Gestalt eines Dokuments nicht hundertprozentig fest, sondern beschreibt nur in mehr oder weniger groben Zügen, wie es auszusehen hat. Das ist der Grund, warum eine Webseite häufig auf dem einen Computer anders aussieht als auf dem anderen.

423

14

Weboberflächen mit Servlets

Kopf, Körper und Seele

HTML-Dokumente sind extrem einfach aufgebaut. Sie bestehen nur aus drei Teilen, die Webentwickler Behälter nennen: der Gesamtseite, ihrem Kopf und dem Körper (Abbildung 14.1). Den Kopf leitet das Tag <head> ein, und es beendet ihn mit </head>. Im Kopf einer Seite stehen ihr Titel und Angaben über den Autor, die Sprache der Seite und Informationen für Suchmaschinen.

Der Körper beginnt mit <body> und endet mit </body>. Er enthält die wesentlichen Informationen der Seite: Tabellen, Bilder, reinen Text, Java Applets usw.

Kopf und Körper werden durch die Gesamtseite eingefasst, die mit <html> beginnt und mit </html> endet.

Abbildung 14.1 Aufbau eines HTML-Dokuments

Guten <Tag>

Die Teile eines HTML-Dokuments, die ein bestimmtes Aussehen erhalten sollen, werden von Tags umschlossen. Damit der Browser weiß, wo eine Textauszeich-nung beginnt und wo sie endet, gibt es ein öffnendes Tag und ein schließendes Tag. Das öffnende Tag steht ohne Zusatz in spitzen Klammern, während das schließende Tag durch einen führenden Schrägstrich gekennzeichnet wird.

Es gibt eine Vielzahl von Tags, die aufzuzählen den Rahmen dieses Buchs sprengen würde (Kapitel 25, »Literatur«). Im Folgenden möchte ich nur auf die Tags eingehen, die für das Xenia-Projekt, ein Internet-Gästebuch, das im Mittelpunkt dieses Kapitels steht, wichtig sind.

Textgrößen und Schrifttypen

Es gibt sechs unterschiedliche Schriftgrößen für Überschriften (Abbildung 14.2) und sieben unterschiedliche Schriftgrößen für den Fließtext einer Seite. Die Schriftgrößen können untereinander kombiniert werden, so dass Sie die Überschrift 1 (Maximum) mit der Textgröße 7 (Maximum) verbinden können, wo-

durch sie nochmals um Faktoren größer erscheint. Darüber hinaus ist es erlaubt, Schriften unterschiedlicher Größe in einer Zeile, ja sogar in einem Wort zu mischen.

424

Einleitung

14.1

Im Gegensatz zu der Formatierung mit Hilfe von Textverarbeitungsprogrammen sind diese Schriftgrößen immer relativ zu verstehen. Sie sind relativ zu den Einstellungen zu interpretieren, die der Anwender in seinen Internet-Browser eingegeben hat. Der Anwender hat in seinem Browser folgende Einstellungen festgelegt: den Standardzeichensatz, seine Größe, eine Serifenschrift und eine serifenlose Schrift. Zur Differenzierung unterschiedlicher Inhalte hat er außerdem eine Schrift mit fester Breite, einen Kursiv- und einen Fantasiezeichensatz festgelegt.

Viele Anwender wählen diese Einstellungen natürlich nicht bewusst aus. Manche behalten sogar die Grundeinstellungen ihres Browsers bei. Da sich aber kein Browser-Hersteller auf bestimmte Grundeinstellungen festlegen möchte, müssen Sie wissen, dass Ihre HTML-Seite bei verschiedenen Anwendern unterschiedlich aussehen kann. Sie können jedoch damit rechnen, dass die meisten Anwender die Textgröße 3 in ihrem Browser eingestellt haben.

Abbildung 14.2 Überschrift als HTML-Code und Browser-Darstellung Tabellen

Neben dem reinen Text und Überschriften spielen Tabellen im Internet eine große Rolle. Sie werden für viele Aufgaben verwendet, die man ihnen gar nicht zutrauen würde. An dieser Stelle soll nur ihr eigentlicher Zweck im Vordergrund stehen: die Darstellung einer geordneten Liste.

Tabellen sind sehr aufwändig zu programmieren. Man benötigt schon für eine kleine Tabelle sehr viele Tags. In Abbildung 14.3 sehen Sie, wie eine extrem einfache Tabelle aufgebaut ist. Sie wird in ein Tabellen-Tag mit dem Namen <table> eingeschlossen. Um die Größe der Tabelle festzulegen, können sowohl in horizontaler als auch in vertikaler Richtung absolute oder prozentuale oder beide Parameter gemischt verwenden. Die Breite der Beispieltabelle beträgt 25 Prozent des Bildschirms, und sie ist 50 Pixel breit. Ihre Randbreite beträgt 1 Pixel und wird durch den Bezeichner border festgelegt.

425

14

Weboberflächen mit Servlets

Abbildung 14.3 Eine HTML-Tabelle mit zwei Zellen und einer Zeile Jede Zeile beginnt mit einem Tag namens <tr> (Table Row) und enthält Daten, die mit <td> (Table Data) ausgezeichnet werden. Für die Datenspalten geben Sie wieder die Breite und Höhe relativ oder absolut an. Zwischen den Tags namens

<code> befindet sich im Beispiel die eigentliche Information. Das Tag <code> ist ein Beispiel für einen Schrifttyp und legt eine Schrift mit konstanter Breite fest.

14.1.2

Hypertext-Transfer-Protokoll

Um eine HTML-Seite in einem Browser darzustellen, muss sie von einem Computer heruntergeladen werden. Der Computer, auf dem sich der Browser befindet, heißt Client (Kunde). Der Computer, auf dem sich die Seite befindet, nennt sich Server (Diener).

426

Einleitung

14.1

Diese »Kundenbeziehung« ist insofern merkwürdig, als sich die beiden Parteien in einer speziellen Sprache unterhalten, dem Hypertext-Transfer-Protokoll. Das Protokoll dient dazu, Daten zu übertragen, nicht nur Text, wie der Name vermuten lässt. Es musste ein Standardprotokoll definiert werden, damit die Abfragen zwischen Client und Server geregelt sind und sich beide Partner sicher verständigen können.

Abbildung 14.4 Kommunikation zwischen Webbrowser und Webserver

Der Server in der Kundenbeziehung heißt aufgrund des Protokolls auch HTTP-Server und der Client HTTP-Client. Nur um Missverständnissen vorzubeugen: Es handelt sich bei beiden Partnern um Software, auch wenn dieser feine Unterschied im allgemeinen Sprachgebrauch verschwimmt.

Beide Softwareteile befinden sich normalerweise auf unterschiedlichen Computern, daher verwendet man Hardware- und Softwarebezeichnungen synonym.

Ein HTTP-Client ist ein Webbrowser wie der Internet Explorer oder der Mozilla Firefox. Ein HTTP-Server ist zum Beispiel das Gespann Apache/Tomcat (Kapitel 22, »Werkzeuge«).

Ein Programm nennt sich aufgrund der beiden Partner demzufolge eine Client-Server-Anwendung. Sie kann den Server bitten, bestimmte Dienstleistungen zu erbringen, wie zum Beispiel ein Bild zu liefern. Dazu enthält das Hypertext-Transfer-Protokoll bestimmte HTTP-Befehle (Tabelle 14.1).

HTTP-Befehl

Bedeutung

GET

Fordert eine beschränkte Datenmenge vom Server an (Standardanfrage

einer Webseite).

POST

Fordert eine unbeschränkte Datenmenge vom Server an (für

Webformulare).

TRACE

Dieser Befehl wird zur Fehlersuche benötigt.

Tabelle 14.1 Übersicht über die HTTP-Befehle, die der Client verwendet 427

14

Weboberflächen mit Servlets

HTTP-Befehl

Bedeutung

OPTIONS

Fordert Informationen zu einem Objekt auf dem Server an, zum Bei-

spiel zu einem Bild.

HEAD

Überträgt nur den Kopf des HTML-Dokuments.

PUT

Erlaubt dem Client, eine beschränkte Datenmenge auf dem Server

abzulegen.

DELETE

Erlaubt dem Client, Daten auf dem Server zu löschen.

Tabelle 14.1 Übersicht über die HTTP-Befehle, die der Client verwendet (Forts.) Die HTTP-Befehle reichen aber nur aus, um statische Webseiten vom Server zu erhalten. Der Client stellt eine Anfrage an einen Server und bekommt ein Bild oder eine Webseite zurückgeliefert, die sich bereits fix und fertig auf dem Server befindet.

So weit, so gut, aber wie kommt der Anwender zu lebendigen Daten aus einer Datenbank? Da eine HTML-Seite keine Logik enthält, um auf entfernte Datenbanken zuzugreifen, ist es so nicht möglich, variable Inhalte anzuzeigen. Der Schlüssel zu dynamischen Daten sind Programme, die auf dem Server ausgeführt werden, so genannte CGI-Programme.

14.1.3

Common Gateway Interface

CGI ist die Abkürzung für Common Gateway Interface und stellt eine Standardschnittstelle des Webservers für externe Programme zur Verfügung. Diese Programme können in allen möglichen Programmiersprachen geschrieben werden wie zum Beispiel C oder Perl. Wenn ein Client in Gestalt eines Webbrowsers eine Anfrage an eines dieser Programme stellt, startet der Webserver dieses Programm.

Das CGI-Programm liefert als Ergebnis der Abfrage die angeforderten Daten, die der Webserver an den Client überträgt.

14.1.4 Servlets

Um Java-Programmierern zu erlauben, ohne den Umweg über das Common

Gateway Interface dynamische Webseiten zu produzieren, hat Sun Microsystems Servlets, JavaServer Pages und eine Klassenbibliothek entwickelt, die in Kapitel 8, »Java-Klassenbibliotheken«, kurz erwähnt wurde. Die Klassen des Servlet-API befinden sich im Paket javax.servlet.

Besonders interessant für das folgende Projekt ist die Klasse HttpServlet, die eine Reihe von Methoden zur Verfügung stellt, die unverkennbare Ähnlichkeiten mit den HTTP-Befehlen aufweisen (Tabelle 14.2).

428

Projekt »Xenia« – die Oberfläche

14.2

Im Gegensatz zu CGI-Programmierern kann der Java-Entwickler aus dem Fundus der Klassenbibliotheken der Java SE schöpfen. Damit ist er zum Beispiel in der La-ge, problemlos auf relationale Datenbanken zuzugreifen (Kapitel 15, »Datenbankprogrammierung«) und kann relativ einfach dynamische Webseiten erzeugen – es stehen aber, wie eingangs erwähnt, in diesem Kapitel nicht dynamische Websites, sondern lediglich die Oberfläche zweier Servlets im Vordergrund. Es geht darum, eine Webanwendung zu programmieren, die wie im Fall von Nestor einstweilen mit einer Fassade arbeiten wird. Erst Kapitel 17, »Dynamische Websites«, erweckt das Gästebuch zu richtigem Leben.

Servlet-Methode

Bedeutung

doGet()

Fordert eine beschränkte Datenmenge vom Server an (Stan-

dardanfrage einer Webseite).

doPost()

Fordert eine unbeschränkte Datenmenge vom Server an (für

Webformulare).

doTrace()

Dieser Befehl wird zur Fehlersuche benötigt.

doOptions()

Fordert Informationen zu einem Objekt auf dem Server an,

zum Beispiel zu einem Bild.

doHead()

Überträgt nur den Kopf des HTML-Dokuments.

doPut()

Erlaubt dem Client, eine beschränkte Datenmenge auf dem

Server abzulegen.

doDelete()

Erlaubt dem Client, Daten auf dem Server zu löschen.

Tabelle 14.2 Übersicht über die Methoden der Klasse »HttpServlet«

14.2

Projekt »Xenia« – die Oberfläche

14.2.1 Anforderungen

Das Projekt »Xenia« realisiert ein Internet-Gästebuch als kleine Website. Der Benutzer kann seinen Namen eintragen und einen Kommentar eingeben. Sein Name und der Kommentar werden daraufhin in einer tabellarischen Übersicht erscheinen. Im Anschluss an den Eintrag in das Gästebuch blendet das Servlet eine Mitteilung ein, wenn die Aktion erfolgreich verlaufen ist. Das Projekt hat also drei Teile:

왘

Gästeliste

왘

HTML-Formular

왘

HTML-Seite, die eine Mitteilung an den Besucher ausgibt

429

14

Weboberflächen mit Servlets

Gästeliste

Die Gästeliste besteht aus einem Titel, einem Textfeld und aus einer tabellarischen Übersicht mit dem Namen des Besuchers, seiner E-Mail-Adresse und einem Kom-mentarfeld (Abbildung 14.5). Die Tabelle muss sich dynamisch an die gelieferte Datenmenge anpassen.

Xenias G stebuch

Meine G ste:

Name

E-Mail-Adresse

Kommentar

Tabelle

Abbildung 14.5 Die Oberfläche des Gästebuchs

Webformular

Das Webformular (Abbildung 14.6) setzt sich aus einem Titel und einer Gruppe zusammen, die aus drei Textfeldern aufgebaut ist. In das erste Feld trägt der Besucher seinen Vornamen ein, in das zweite seine E-Mail-Adresse und in das dritte einen Kommentar, den eigentlichen Eintrag des Gästebuchs.

Xenias G stebuch

Abbildung 14.6 Das Formular erlaubt, sich in das Gästebuch einzutragen.

Zwei Schaltflächen im unteren Bereich komplettieren die Seite. Die Schaltfläche Senden dient dazu, den Gästebucheintrag an den Webserver abzusenden. Die 430

Projekt »Xenia« – die Oberfläche

14.2

Schaltfläche Löschen hat die Aufgabe, alle bisherigen Eingaben wieder zurückzu-nehmen und den Text zu löschen. Beide Schaltflächen sind für ein Webformular Standard.

Mitteilung

Nachdem sich ein Besucher eingetragen hat, ist es bei Gästebüchern im Internet üblich, sich dafür zu bedanken und den Eintrag zu bestätigen. Das geschieht mit einer einfachen HTML-Seite (Abbildung 14.7), die aus einem Titel und einer Mitteilung besteht.

Xenia Mitteilung

Titel

Xenias G stebuch

Sie wurden in mein G stebuch eingetragen.

Mitteilung

Vielen Dank f r Ihren Besuch!

Abbildung 14.7 Dieser Hinweis erscheint nach einem erfolgreichen Eintrag.

14.2.2 Analyse und Design

Nachdem die Anforderungen nun feststehen, stellt sich die Frage, wie sie am besten umgesetzt werden können. Dazu muss man einen Blick in die Klassenbibliotheken des Pakets javax.servlet werfen.

Gästeliste

Die Gästeliste erbt sinnvollerweise von der Klasse HttpServlet, da sie die entsprechenden Methoden zur Verfügung stellt, die das Gästebuch benötigt. Die Klasse HttpServlet ist von GenericServlet abgeleitet. HttpServlet stellt die Methoden doGet() und doPost() als Vorlagen zur Verfügung.

Die Gästeliste implementiert nur die Methode doGet(), da sie lediglich die aktuellen Daten aus der Datenbank holen muss. Sie ist mit der HTTP-Funktion GET

vergleichbar.

Webformular

Das Webformular hat eine etwas andere Aufgabe, weil es auch die Methode doPost() benötigt. Diese Methode gibt eine Seite mit der Meldung aus, dass der Eintrag in das Gästebuch erfolgreich vorgenommen wurde.

431

14

Weboberflächen mit Servlets

Abbildung 14.8 HttpServlet liefert alle Methoden für Gästebuch und -liste.

14.2.3 Implementierung der HTML-Vorlagen

Projektstruktur

Das Xenia-Projekt ist zwar von der Programmierung her nicht so aufwändig wie Nestor oder Memory, hat aber eine deutlich komplexere Projektstruktur, weswegen ich hier gesondert darauf eingehe.

Abbildung 14.9 Das Projektverzeichnis mit dem Webarchiv

Die Projektstruktur ist deshalb nicht so einfach zu verstehen, weil anstelle der Java-Laufzeitumgebung eine so genannte Servlet Engine und ein Webserver als Laufzeitumgebung (Kapitel 6, »Plattform Java«, und 22, »Werkzeuge«) verwendet werden. Das Servlet kommuniziert mit ihnen über die Klassen der Servlet-Biblio-432

Projekt »Xenia« – die Oberfläche

14.2

thek. Die Bibliotheken der Java SE reichen zur Programmierung eines Servlets leider nicht aus.

Der Webserver und die Servlet Engine bilden zusammen das Gespann, das die Anfragen der Servlets verarbeitet. Dazu ist es erforderlich, dass beide auch zum Entwicklungszeitpunkt gestartet sind. Außerdem muss ein Webarchiv des Servlet-Bytecodes in ein spezielles Verzeichnis des Webservers kopiert werden. Mehr dazu erfahren Sie im Abschnitt über die Verteilung des Programms in diesem Kapitel (Abschnitt 14.2.6, »Verteilung«).

HTML-Prototyp

Im Gegensatz zu JavaServer Pages haben Servlets den Nachteil, dass sie in einer normalen Java-Entwicklungsumgebung nicht vollständig entwickelt werden können. Für die HTML-Oberfläche benötigen Sie einen Editor wie Dreamweaver oder Aptana (Kapitel 22, »Werkzeuge«). Mit diesem Werkzeug entwickeln Sie zunächst eine statische Site, die Sie anschließend in Ihren Java-Code integrieren.

In Abbildung 14.10 sehen Sie die Projektverwaltung von Dreamweaver mit dem kleinen Site-Baum des Xenia-Projekts. Mit einem Doppelklick auf eine Datei startet der Editor, der erlaubt, die HTML-Seiten nahezu ohne Kodierung komfortabel zu entwickeln. Erst mit diesen Vorlagen kann die eigentliche Implementierung beginnen, wie der folgende Abschnitt zeigen wird.

Abbildung 14.10 Der HTML-Prototyp im Editor Dreamweaver

433

14

Weboberflächen mit Servlets

14.2.4 Implementierung der Klasse »GuestList«

Paketstruktur

Die Paketstruktur des Projekts ist einfach und besteht nur aus dem Paket net.

steppan.app.xenia, in dem sich die zwei Klassen NewGuest und GuestList befinden.

Importanweisungen

Die Klasse GuestList erzeugt eine HTML-Tabelle mit den Namen der Gäste des Gästebuchs. Sie benötigt dazu zwei Klassen aus der I/O-Bibliothek. Darunter befindet sich auch die Klasse PrintWriter, die die Datenströme verarbeitet. Die Klasse HttpServlet ist aufgrund der Vererbungsbeziehung zwischen GuestList und HttpServlet notwendig. Die Datenbankfassade Charon kennen Sie bereits aus Kapitel 13, »Komplexe Oberflächen mit Swing«. Sie wird dem Servlet statische Daten für die HTML-Tabelle liefern und den Eindruck erwecken, es sei schon mit einer Datenbank verbunden.

1: import java.io.IOException;

2: import java.io.PrintWriter;

3: import javax.servlet.ServletException;

4: import javax.servlet.http.HttpServlet;

5: import javax.servlet.http.HttpServletRequest;

6: import javax.servlet.http.HttpServletResponse;

7: import net.steppan.lib.charon.Charon;

Listing 14.1 Die Importanweisungen der Gästeliste

Variablen

Es wird nur eine Konstante benötigt, die im Kopf jedes HTML-Dokuments enthalten sein muss und ihren MIME-Typ (Multipurpose Internet Mail Extensions) festlegt. Anhand dieses Typs erkennt der Browser, wie er die Daten darstellen soll.

HTML-Dokumenten wird text/html zugewiesen, und sie werden natürlich anders dargestellt als GIF-Bilder, die sich durch den Typ image/gif zu erkennen geben.

1: public class GuestList extends HttpServlet {

2:

static final private String CONTENT_TYPE = "text/html";

Listing 14.2 Die einzige Konstante bestimmt den MIME-Typ.

Methode »doGet«

Ein Servlet gehorcht bei der Implementierung anderen Gesetzmäßigkeiten als eine Java-Anwendung. Während Java-Anwendungen aus purem Java-Code bestehen, sind Servlets hybrid aufgebaut. Sie bestehen zu einem Teil aus Java-Code, 434

Projekt »Xenia« – die Oberfläche

14.2

zum anderen Teil aus eingebetteten HTML-Anweisungen. Die HTML-Anweisun-

gen kommen durch eine HTML-Vorlage in das Servlet.

Das Mühsame an Servlets ist, dass Sie diese HTML-Anweisungen manuell Zeile für Zeile an die richtige Stelle einfügen müssen. Abbildung 14.11 zeigt das Verfahren: Der in der Abbildung fett gedruckte Code der HTML-Vorlage wird manuell als Parameter der Methode println() verwendet. Diese Methode ist Teil der Klasse PrintWriter.

Abbildung 14.11 Die Implementierung eines Servlets

In Listing 14.3 sehen Sie, an welcher Stelle der HTML-Code eingefügt wurde. Es ist die Methode doGet(), die die gleichnamigen Anforderungen des Clients verarbeitet. Sie wird immer aufgerufen, wenn der Anwender zum Beispiel den Link einer HTML-Seite anklickt oder die Webadresswe eines Servlets (URL) eingibt.

Innerhalb der Methode doGet() können die beiden Parameter HttpServletRequest (Anforderung des Clients) oder HttpServletResponse (Antwort des Servlets) ausgewertet werden. Im Fall der Gästeliste ist es nur notwendig, dem Client zu antworten. Aus diesem Grund wertet dieses Servlet nur den Response-Parameter aus und schickt an den Client die HTML-Tabelle zurück.

1: /**

2:

* Die HTTP-Anforderung Get bearbeiten

3:

* @param request

4:

* @param response

5:

* @throws ServletException

6:

* @throws IOException

7:

*/

8: public void doGet(HttpServletRequest request

9:

HttpServletResponse response)

10:

throws ServletException, IOException {

435

14

Weboberflächen mit Servlets

11:

response.setContentType(CONTENT_TYPE); // MIME-Typ setzen

12:

PrintWriter out = response.getWriter();

13:

printHeader(out);

14:

printGuestList(out);

15:

printFooter(out);

16: }

Listing 14.3 Die Methode »doGet« verarbeitet die Anforderung des Clients.

Um den Java-Code besser zu strukturieren, habe ich die Ausgabe der HTML-Datei in drei Teile zerlegt: Als Erstes schickt das Servlet den Kopf des HTML-Dokuments, danach die eigentliche Gästeliste (Tabelle) und danach die Fußzeile (Abbildung 14.12).

Abbildung 14.12 Das Sequenzdiagramm des Aufrufs der Methode »doGet«

Methode »printHeader«

Die Methode printHeader() übernimmt die Aufgabe, den Kopf der HTML-Vorla-ge zurückzuschicken. Bitte vergleichen Sie das nochmals mit Abbildung 14.11, die dieses Beispiel heranzieht, um zu demonstrieren, wie der HTML-Code in das Servlet gelangt. Die Ausgabe der HTML-Seite folgt immer dem Verfahren, dass ein Stream-Objekt der Klasse PrintWriter über die Methode println() einen Zeichenstrom erzeugt. Dieser wird von der Methode doGet() des Servlets an den Client (Webbrowser) zurückgesandt.

1: /**

2:

* Gibt den Kopf der Seite aus

3:

* @param out ein Objekt der Klasse PrintWriter

4:

* @throws IOException

436

Projekt »Xenia« – die Oberfläche

14.2

5:

*/

6: public void printHeader(PrintWriter out) throws IOException {

7:

out.println("<html>");

8:

out.println("<title>Xenias Gästebuch</title>"); 9:

out.println("<body>");

10:

out.println("<h1><code>Xenias Gästebuch</code></h1>"); 11:

out.println("<p><code>Meine Gäste:</code></p>"); 12:

out.println("<hr>");

13: }

Listing 14.4 Diese Methode gibt den Titel der Seite aus.

Methode »printGuestList«

Diese Methode übernimmt die eigentliche Datenausgabe. In Abbildung 14.3 wurde der Aufbau einer HTML-Tabelle dargestellt. Hier sehen Sie, wie eine solche Tabelle in ein Servlet eingebettet wird. Um Daten aus einer Liste ausgeben zu können, verwendet die Methode die Datenbankfassade Charon aus Kapitel 13,

»Komplexe Oberflächen mit Swing«, und legt zunächst ein neues Objekt gleichen Namens an.

Im Anschluss daran baut die Methode den Tabellenkopf auf, der aus den Überschriften Vorname, E-Mail-Adresse und Kommentar besteht. Dann arbeitet das Servlet eine For-Schleife ab, die die Aufgabe übernimmt, die Gästeliste von der Datenbankfassade abzuholen – das Verfahren verläuft exakt so, wie Sie es aus Nestor kennen.

1: /**

2:

* Gibt die Tabelle aus

3:

* @param out

4:

* @throws IOException

5:

*/

6: public void printGuestList(PrintWriter out)

7:

throws IOException {

8:

Charon dbLayer = new Charon(); // Datenbankfassade

9:

out.println("<table id='guestlist' align=

10:

'left' cellspacing='5' border='0' cellpadding='7'>");

11:

out.println("<tr bgcolor='#666699'>");

12:

out.println("<th width='56'> <div align=

13:

'left'>

14:

<code>Vorname</code></div></th>"); 15:

out.println("<th width='136'> <div align='left'>

16:

17:

<code>E-Mail</code>

18:

</div></th>");

19:

out.println("<th width='531'> <div align='left'>

437

14

Weboberflächen mit Servlets

20:

21:

<code>Kommentar</code>

22:

</div></th>");

23:

out.println("</tr>");

24:

// Liste aus der Datenbank (bzw. Datenbankfassade)

25:

// (hier holt das Servlet spaeter dynamisch Daten):

26:

for (int i = 0; i <= dbLayer.getLastRecord(); i++) {

27:

out.println("<tr bgcolor='#CCCCCC'>");

28:

out.println("<td> <div align='left'><code>"

29:

+dbLayer.getFirstName(i)

30:

+"</code></div></td>");

31:

out.println("<td> <div align='left'><code>"

32:

+dbLayer.getEmail(i)

33:

+"</code></div></td>");

34:

out.println("<td>

<div align='left'><code>"+";-)

35:

"+"</code></div></td>");

36:

out.println("</tr>");

37:

}

38:

out.println("</tr>");

39:

out.println("</table>");

40: }

Listing 14.5 Die Methode »printGuestList« erzeugt die HTML-Tabelle.

Am Ende der Ausgabe folgen die schließenden Tags der Tabellenzeile (</tr>) und der Tabelle (</table>). Damit ist die Seite schon fast komplett. Was fehlt, ist ihr Abschluss.

Abbildung 14.13 Die fertige Gästeliste im Webbrowser

438

Projekt »Xenia« – die Oberfläche

14.2

Methode »printFooter«

Mit der Methode printFooter() schließt das Programm die Ausgabe einer Seite ab. Sie erzeugt lediglich die schließenden Tags für den Seitenrumpf und die Gesamtseite.

1: /**

2:

* Gibt den Fuss der Seite aus

3:

* @param out ein Objekt der Klasse PrintWriter

4:

* @throws IOException

5:

*/

6: public void printFooter(PrintWriter out) throws IOException {

7:

out.println("</body>");

8:

out.println("</html>");

9: }

Listing 14.6 Diese Methode komplettiert die HTML-Seite.

14.2.5 Implementierung der Klasse »NewGuest«

Ein Webformular ist etwas anders aufgebaut als die Gästeliste. Es ist vergleichbar mit einem Dialog einer grafischen Java-Oberfläche. Hier werden nicht nur Daten ausgegeben (Request), sondern auch zurückgeschickt (Response). Trotzdem ist die Klasse mit der Gästeliste vergleichbar: Sie gibt erst den Kopf der Seite aus, danach das Formular und am Schluss die Fußzeile.

Paketstruktur

Die Klasse befindet sich wie GuestList wieder im Paket net.steppan.app.xenia.

Importanweisungen

Die Importanweisungen sind fast identisch mit der Klasse GuestList. Was fehlt, ist die Datenbankfassade. Es hätte keinen Sinn, sie hier zu verwenden, weil ihr noch die Methoden fehlen, um Datensätze zu schreiben. Diese Funktionalität liefert erst Kapitel 15, »Datenbankprogrammierung«.

1: import java.io.IOException;

2: import java.io.PrintWriter;

3: import javax.servlet.ServletException;

4: import javax.servlet.http.HttpServlet;

5: import javax.servlet.http.HttpServletRequest;

6: import javax.servlet.http.HttpServletResponse;

Listing 14.7 Die Importanweisungen für das Formular

439

14

Weboberflächen mit Servlets

Variablen

Auch bei diesem Formular muss dem Webbrowser mitgeteilt werden, welchen Datentyp er erhalten wird. Erst dadurch stellt er die Seite korrekt als Text dar.

1: public class NewGuest extends HttpServlet {

2:

static final private String CONTENT_TYPE = "text/html";

Listing 14.8 Die Konstante setzt den MIME-Typ.

Methode »doGet«

Die Methode doGet() reagiert auf die Anforderung eines Webbrowsers. Sie gibt den Kopf des HTML-Dokuments, einen Hinweis, das Formular und die Fußzeile aus. Sie bedient sich dazu der eigenen Methoden printHeader(), printHelpMsg(), printForm() und printFooter().

1: /**

2:

* Die HTTP-Anforderung Get bearbeiten

3:

* @param request

4:

* @param response

5:

* @throws ServletException

6:

* @throws IOException

7:

*/

8: public void doGet(HttpServletRequest request,

9:

HttpServletResponse response)

10:

throws ServletException, IOException {

11:

response.setContentType(CONTENT_TYPE); // MIME-Typ setzen

12:

PrintWriter out = response.getWriter();

13:

printHeader(out);

14:

printHelpMsg(out);

15:

printForm(out);

16:

printFooter(out);

17: }

Listing 14.9 Die Methode »doGet« erzeugt das Webformular.

Methode »printHeader«

Listing 14.10 zeigt die Methode printHeader(). Sie gibt den Titel des Gästebuchs und die Überschrift in der Größe <h1> aus (Abbildung 14.2). Der Titel der Seite erscheint als Überschrift des Browser-Fensters.

1: /**

2:

* Gibt den Kopf der Seite aus

3:

* @param out ein Objekt der Klasse PrintWriter

4:

* @throws IOException

5:

*/

440

Projekt »Xenia« – die Oberfläche

14.2

6: public void

7: printHeader(PrintWriter out) throws IOException {

8:

out.println("<html>");

9:

out.println("<title>Xenias Gästebuch</title>"); 10:

out.println("<body>");

11:

out.println("<h1><code>Xenias Gästebuch</code></h1>"); 12: }

Listing 14.10 Die Methode »printHeader« gibt den Kopf der Seite aus.

Methode »printHelpMsg«

Die Methode printHelpMsg() gibt dem Gast einen freundlichen Hinweis, dass er die leeren Felder auszufüllen hat.

1: /**

2:

* Gibt eine Nachricht als Hilfe aus

3:

* @param out

4:

* @throws IOException

5:

*/

6: public void

7: printHelpMsg(PrintWriter out) throws IOException {

8:

out.println("<p><code>Bitte die leeren Felder

9:

ausfüllen</code></p>");

10:

out.println("<hr>");

11: }

Listing 14.11 Diese Methode gibt einen kleinen Hinweis aus.

Abbildung 14.14 Das neue Webformular

441

14

Weboberflächen mit Servlets

Methode »printForm«

In dieser Methode ist das gesamte Webformular enthalten, das die Methode doGet() erzeugt, wenn jemand den Link des Servlets angeklickt oder die Servlet-Adresse eingegeben hat (Abbildung 14.14). Im Kopf des Formulars ist die HTTP-Funktion POST enthalten, danach folgen das Textfeld für den Vornamen, ein Textfeld für die E-Mail-Adresse sowie eine Textfläche für die Eingabe eines mehrzeiligen Kommentars.

1: /**

2:

* Gibt das Formular aus

3:

* @param out PrintWriter

4:

* @throws IOException

5:

*/

6: public void printForm(PrintWriter out) throws IOException {

7:

out.println("<form method='POST'>");

8:

out.println("<p><code>Vorname</code><code>"); 9:

out.println("
");

10:

out.println("</code><code>");

11:

out.println("<input type='text' id='Firstname'

12:

name='Firstname' size='50'>");

13:

out.println("</code> </p>");

14:

out.println("<p><code>E-Mail-Adresse</code><code>"); 15:

out.println("
");

16:

out.println("</code><code>");

17:

out.println("<input type='text'

18:

id='Email' name='Email' size='50'>");

19:

out.println("</code> </p>");

20:

out.println("<p><code>Kommentar</code><code>"); 21:

out.println("
");

22:

out.println("</code><code>");

23:

out.println("<textarea name='Comment' cols='96'

24:

rows='10' id='Comment'></textarea>");

25:

out.println("</code> </p>");

26:

out.println("<p> <code>");

27:

out.println("<input name='submit' type='submit' value=

28:

'Senden' width='100' height='50'>");

29:

out.println("<input name='delete' type = 'reset' id=

30:

'delete' value='Löschen'>");

31:

out.println("</code></p>");

32:

}

Listing 14.12 Diese Methode gibt das Formular aus.

442

Projekt »Xenia« – die Oberfläche

14.2

Jeder GUI-Baustein dieses Formulars ist durch eine ID gekennzeichnet. Diese Kennung wertet das Servlet in Kapitel 17, »Dynamische Websites«, aus, um die Daten auszulesen, die der Gast eingegeben hat. Mit diesen Daten wird das Servlet einen neuen Datensatz erzeugen.

Methode »doPost«

Listing 14.13 zeigt, wie das Servlet reagiert, wenn der Anwender auf die Schaltflä-

che Senden klickt. Es antwortet mit einem dreiteiligen Hinweis, dessen Entwurf Sie aus Abbildung 14.7 kennen. Es verwendet dazu drei Methoden, die in der Klasse NewGuest definiert sind: printHeader(), printThankYouMsg() und printFooter().

1: /**

2:

* Die HTTP-Anforderung Post bearbeiten

3:

* @param request die Anforderung

4:

* @param response die Antwort

5:

* @throws ServletException

6:

* @throws IOException

7:

*/

8: public void doPost(HttpServletRequest request,

9:

HttpServletResponse response)

10:

throws ServletException, IOException {

11:

response.setContentType(CONTENT_TYPE); // MIME-Typ setzen

12:

PrintWriter out = response.getWriter();

13:

printHeader(out);

14:

printThankYouMsg(out);

15:

printFooter(out);

16: }

Listing 14.13 Das ist die »Antwort« der Servlets.

Methode »printThankYouMsg«

Listing 14.14 zeigt den kurzen Hinweis, den das Servlet ausgibt, nachdem die Schaltfläche Senden angeklickt wurde. Die Mitteilung besteht nur aus der Bestä-

tigung und einem Dankestext (Abbildung 14.15).

1: /**

2:

* Gibt eine Nachricht als Bestaetigung aus

3:

* @param out

4:

* @throws IOException

5:

*/

6: public void printThankYouMsg(PrintWriter out)

7:

throws IOException {

8:

out.println("<p><code>Sie wurden in mein Gästebuch 9:

eingetragen.</code></p>");

443

14

Weboberflächen mit Servlets

10:

out.println("<p><code>

11:

Vielen Dank für Ihren Besuch!</code></p>");

12:

out.println("<hr>");

13: }

Listing 14.14 Diese Methode bedankt sich für den neuen Eintrag.

Abbildung 14.15 Die freundliche Antwort des Servlets

Methode »printFooter«

Die Methode printFooter() beschließt den Ablauf, indem sie das Ende der HTML-Seite erzeugt. Sie verwendet dazu wie ihre gleichnamige Methode aus der Schwes-terklasse GuestList die schließenden Tags für den Seitenrumpf und die Gesamtseite.

1: /**

2:

* Gibt den Fuss der Seite aus

3:

* @param out ein Objekt der Klasse PrintWriter

4:

* @throws IOException

5:

*/

6: public void

7: printFooter(PrintWriter out) throws IOException {

8:

out.println("</body>");

9:

out.println("</html>");

10: }

Listing 14.15 Die Ausgabe des Seitenendes

Test

Sie benötigen zum Testen von Xenia eine Entwicklungsumgebung mit eingebau-tem Webserver oder ein Startskript zum Start eines externen Webservers. Ich habe für dieses Projekt den Tomcat-Webserver verwendet und ein Startskript entwickelt, das Sie im Projektordner unter dem Namen Xenia.bat finden.

Ohne spezielle Entwicklungsumgebung müssen Sie die Klassen kompilieren und in das Verzeichnis Ihres Webservers kopieren. Danach starten Sie den Web-444

Zusammenfassung

14.3

server mit einem Startskript und einen Internet-Browser. Die Adresse des lokalen Webservers ist im Regelfall:

http//:localhost:8080

An diese Adresse müssen Sie nun die Adresse des Servlets anhängen. Im Fall der Gästeliste wäre das:

/servlet/net.steppan.app.xenia.NewGuest

Wenn Sie beides zusammen eingeben, versucht der Webbrowser den lokalen

Webserver zu bewegen, das Servlet NewGuest zu starten, das sich im Package net.steppan.app.xenia befindet. Die Kommunikation läuft hierbei über den Port 8080 ab. Näheres zum Start des Servlets entnehmen Sie bitte der Readme-Datei im Verzeichnis ch13.

14.2.6 Verteilung

Zur Verteilung steht ein War-Archiv (Webarchiv) im gleichnamigen Ordner des Projekts zur Verfügung. Es muss in das Verzeichnis des Webcontainers gelegt werden, das in den Grundeinstellungen festgelegt wurde. Das Webarchiv ist zum Start eines Servlets nicht unbedingt erforderlich, erleichtert aber die Verteilung des Bytecodes von größeren Projekten.

Durch ein solches Archiv ist es unnötig, jede Datei eines Projekts separat zum Webserver zu übertragen. Das War-Format ist mit dem Jar-Format eng verwandt.

Beide können wie Zip-Archive gepackt und von einem Werkzeug, das Zip-Dateien auslesen kann, wieder entpackt werden.

14.3

Zusammenfassung

Servlets sind die serverseitigen Verwandten von Applets. Es sind sehr einfach zu entwickelnde Java-Programme, die dynamisch HTML-Seiten erzeugen. Dazu muss HTML-Code in den Quelltext eines Servlets eingefügt werden. In der Regel implementiert ein Servlet zwei Methoden der Basisklasse HttpServlet: doGet() und doPost(). Während doGet() für Standardanfragen nach einer HTML-Seite zuständig ist, empfängt doPost() zum Beispiel Daten, die aus einem Webformular eintreffen.

Servlets werden von einer Servlet Engine eines Webbrowsers ausgeführt. Ei-ne Servlet Engine erweitert den Webserver um die Fähigkeit, mit Java-Servlets zu kommunizieren. Eine Laufzeitumgebung in Form der virtuellen Maschine ist zum Betrieb von Servlets nicht ausreichend. Aus diesem Grund verfügen Servlet-Entwicklungsumgebungen über einen eingebauten Webserver mit einer Servlet Engine.

445

14

Weboberflächen mit Servlets

14.4

Aufgaben

14.4.1 Fragen

1. Aus welchen Teilen besteht ein HTML-Dokument?

2. Wie wird die Gestalt eines solchen Dokuments festgelegt?

3. Aus welchen Gründen gibt es das HTTP?

4. Wozu benötigt man das Common Gateway Interface?

5. Mit welcher Methode reagiert ein Servlet auf eine Client-Anfrage?

6. Was ist ein War-Archiv?

7. Wozu dient es?

14.4.2 Übungen

1. Entwickeln Sie ein einfaches Servlet auf Basis von folgendem HTML-Quelltext nach dem Vorbild der Klasse GuestList:

1: <html>

2: <head>

3: <title>Xenias Gästebuch - Willkommen</title>

4: </head>

5: <body>

6: <h1><code>Xenias Gästebuch</code></h1> 7: <p><code>Willkommen!</code></p>

8:

<div align="left">

9: <hr>

10:

<p><code>In das Gästebuch eintragen</code></p> 11:

<p><code>Zur Gästeliste</code></p>

12: </div>

13: </body>

14: </html>

Listing 14.16 Die HTML-Vorlage für das neue Servlet

2. Kompilieren Sie es, und starten Sie den Webserver mit Hilfe des Startskripts aus ch13. Führen Sie danach das Servlet aus, indem Sie die Webadresse in die Adresszeile des Browsers eingeben (Abbildung 14.15).

Die Lösungen zu den Aufgaben finden Sie in Kapitel 20 ab Seite 533.

446

»Der Worte sind genug gewechselt, lasst uns endlich Daten sehen.«

(Gerhard Kocher)

15

Datenbankprogrammierung

15.1

Einleitung

Die Projekte der vorangegangenen Kapitel haben ihre Daten dauerhaft in einzelnen Dateien abgelegt – ein gängiges Verfahren für kleine Datenmengen. Möchte man jedoch große Datenmengen speichern und auf diese schnell zugreifen, benö-

tigt man eine leistungsfähige Datenbank. Und um auf diese Datenbank zugreifen zu können, muss man sie programmieren. Das lässt sich mit Java relativ leicht erledigen, wie dieses Kapitel zeigt.

15.1.1

Vom Modell zum Datenmodell

Objekte haben innerhalb eines Java-Programms nur eine begrenzte Lebensdauer. Nach dem Programmende sind sie wieder verschwunden. Damit das nicht passiert, muss man sie dauerhaft speichern. Dauerhafte Objekte nennen sich persistent und unterscheiden sich von transienten (flüchtigen) Objekten. Ein Adressbuch ist ein Beispiel dafür, wie Objekte dauerhaft gespeichert werden. Schließlich kann der Anwender nicht jedes Mal, wenn er das Adressbuch startet, alle Adressen neu eingeben.

15.1.2

Vom Datenmodell zur Datenbank

Um die Adressen sinnvoll zu ordnen, analysiert man die persistenten Objekte des Programms und versucht, sie möglichst geschickt in einer Datenbank zu speichern. Persistente Objekte sind alle Objekte, die nach dem Ende eines Programms nicht verloren gehen dürfen. Eine Datenbank fasst alle derartigen Daten (zum Beispiel Adressen) zusammen, die in enger Beziehung zueinander stehen.

Eine solche Datenbank wird von einem speziellen Programm verwaltet, einem Datenbank-Managementsystem (DBMS).

Ein Datenbank-Managementsystem können Sie sich als ein Programm vorstellen, das es erlaubt, auf strukturierte Daten schneller und einfacher zuzugreifen, als 447

15

Datenbankprogrammierung

dies möglich wäre, wenn diese verstreut auf der Festplatte gespeichert wären.

Die DBMS, die sich heute auf dem Markt durchgesetzt haben, speichern ihre Informationen in einer so genannten relationalen Form.

Die Art und Weise, wie relationale Datenbanken ihre Informationen ablegen, passt besser zu prozeduralen Sprachen wie C oder Pascal. Das liegt daran, dass relationale Datenbanksysteme keine Objekte kennen, sondern ihre Daten in Form von Tabellen verwalten. Diese Tabellen werden über Relationen (Beziehungen) miteinander verbunden, was den Datenbanksystemen ihren Namen gab.

15.1.3

Von der Datenbank zu den Daten

Um Informationen von einer relationalen Datenbank zu erhalten, verwendet man eine international genormte Abfragesprache, die Structured Query Language (SQL). Obwohl es davon eine Reihe von Dialekten gibt, ist man mit der Abfragesprache in der Lage, praktisch mit beliebigen Datenbanksystemen zu arbeiten.

Die Sprache SQL verfügt über Befehle für das Anlegen von Datenbanken, für das Anlegen und Löschen von Tabellen und Relationen, für das Anlegen und Löschen von Datensätzen und selbstverständlich auch für das Auslesen der Daten. Die Abfragesprache ist sehr einfach zu erlernen, aber nicht objektorientiert (Kapitel 25, »Literatur«).

15.1.4 Von den Daten zum Programm

Relationale Datenbanken sind hocheffiziente Datencontainer – leider haben sie einen aus Java-Sicht schweren Nachteil: Sie sind wie ihre Abfragesprache SQL

ebenfalls nicht objektorientiert strukturiert. Sie verwalten nur statische Daten und können mit der dynamischen Seite eines Programms, mit seinen Methoden, nichts anfangen.

Das bedeutet, dass Sie in Ihrem Java-Programm selbst dafür sorgen müssen, dass die gespeicherten statischen Daten eines Datenbankprogramms zu seinen dynamischen passen. Dazu müssen Sie die Daten einer relationalen Datenbank auf die Daten und Methoden ihrer Objekte abbilden. Diesen Abbildungsvorgang nennt man Mapping.

Damit das Mapping nicht so mühsam wird, gibt es diverse Lösungen. Die einfachste ist die in Java enthaltene Programmierschnittstelle namens Java Database Connectivity (JDBC). Die JDBC bildet eine Hülle um die Sprache SQL, so dass man mit Hilfe dieser Abfragesprache innerhalb eines Java-Programms arbeiten kann. Die zur Java Database Connectivity gehörenden Klassen befinden sich im 448

Projekt »Hades«

15.2

Paket java.sql. Wie sie verwendet werden, möchte ich Ihnen anhand der Projekte Hades und Charon zeigen.

15.2

Projekt »Hades«

Hades ist die relationale Datenbank, die die Adressen der Java Application Nestor und der Webanwendung Xenia speichern wird.

15.2.1 Anforderungen

Die Anforderungen können schnell auf einen Nenner gebracht werden: Der Anwender möchte gerne, dass folgende Informationen auch nach Beendigung der Programme erhalten bleiben:

왘

Anrede

왘

Vorname

왘

Nachname

왘

Straße

왘

Ort

왘

Postleitzahl

왘

Land

왘

Telefonnummer

왘

E-Mail-Adresse

왘

Kommentar

Bei der Planung einer neuen Datenbank müssen Sie wie bei einem Programm auch Datentypen und Wertebereiche analysieren.

15.2.2 Analyse & Design

Klassenmodell

Aus technischen Gründen ist es bisher sowohl für Nestor als auch Xenia gar nicht erforderlich gewesen, eine Person als Klasse zu modellieren. Daher liegen die Personenobjekte innerhalb des Adressbuchs ziemlich zerpflückt vor. In der Datenbankfassade Charon können Sie sie zum Beispiel als Array wiederfinden (Kapitel 13, »Komplexe Oberflächen mit Swing«). Im Normalfall, bei größeren 449

15

Datenbankprogrammierung

Programmen, wäre ein solches Design nicht wünschenswert. Für die überschaubaren Beispiele ist es aber nicht tragisch, denn die Klammer um die zerpflückten Objekte bildet die Datenbank Hades. Sie fasst die imaginären Personen in einer Tabellenstruktur zusammen, wie Sie gleich sehen werden.

Datenmodell

In Abbildung 15.1 sehen Sie die Datenbanktabelle Persons. Jede Zeile dieser Tabelle entspricht den Daten eines Personenobjekts. Sie können sich eine Datenbanktabelle als ein Array von Personenobjekten vorstellen. Jede Spalte einer solchen Tabelle wird mit einem bestimmten Datentyp belegt. Nur so kann das Datenbanksystem überprüfen, ob der Wertebereich eingehalten wird. Es gibt verschiedene Datentypen wie IDs, Datumsformate etc.

Abbildung 15.1 Das »Datenmodell« der Adressdatenbank

Um den Rahmen dieses Buchs nicht zu sprengen, verzichte ich an dieser Stelle auf eine saubere Normalisierung der Daten, wie sie in größeren Programmen üblich ist. Unter dem Begriff »Normalisierung« versteht man, dass Daten ohne (oder mit geringen) Redundanzen in der Datenbank abgelegt werden. Dazu müssen die Klassen in mehreren Schritten auf verschiedene Tabellen verteilt werden.

Redundanzen sind immer dann gegeben, wenn Daten in einer Datenbank mehrfach gespeichert werden. Diese mehrfach gespeicherten Daten erhöhen den Pfle-geaufwand. Sie vergrößern zudem das Risiko, dass die Datenbank irgendwann unbrauchbar wird, weil sie widersprüchliche Daten enthält.

15.2.3 Implementierung

Die Datenbank Hades ist mit Hilfe des freien Datenbanksystems hsqldb entstanden (Abschnitt 22.3.6, »Laufzeitumgebungen«). Dieses Datenbanksystem ist nicht nur kostenlos, sondern auch extrem einfach in der Handhabung. Sie binden die Datenbankbibliothek einfach durch das Archiv hsqldb.jar in Ihr Projekt ein.

Das Archiv befindet sich im Lib-Unterverzeichnis des Projekts Charon (Abbildung 15.3). Sie finden die Dateien im Verzeichnis Datenbankprogrammierung unter den 450

Projekt »Hades«

15.2

Beispielprogrammen beziehungsweise nach der Installation im Unterverzeichnis Datenbankprogrammierung des von Ihnen gewählten Installationsverzeichnisses.

Abbildung 15.2 »Xenia« und »Nestor« verwenden die Datenbank »Hades«.

Abbildung 15.3 Das Projektverzeichnis mit allen notwendigen Ressourcen 15.2.4 Test

Für den Test stehen zwei Testklassen innerhalb des Projekts Charon zur Verfügung, die die Datenbankinformationen auslesen. Sie sind als Zusatzprodukt bei der Entwicklung der Datenbankschicht Charon entstanden und werden im nächsten Abschnitt erklärt.

451

15

Datenbankprogrammierung

15.3

Projekt »Charon«

Mit dem Datenbanksystem und der Datenbank Hades ist eine gute Basis entstanden, auf die die Datenbankschicht Charon aufsetzen kann. Beide Projekte, Nestor und Xenia, sollen dieselbe Datenbank verwenden (Abbildung 15.2). Aus diesem Grund wäre es sehr ungeschickt, wenn beide Projekte den Zugriff auf die Adressendatenbank selbst lösen würden.

Stattdessen übernimmt die Datenbankschicht Charon die Aufgabe eines gemeinsa-men Zugangs (Abbildung 15.4) zu der Datenbank Hades. Sie bildet eine Brücke zur relationalen Welt und ersetzt die Fassade gleichen Namens, die Sie in den Kapiteln 13, »Komplexe Oberflächen mit Swing«, und 14, »Weboberflächen mit Servlets«, kennengelernt haben. In Kapitel 16, »Datenbankanwendungen«, und 17, »Dynamische Websites«, werden Sie sehen, dass die Fassade lediglich ausgetauscht werden muss, ohne dass gravierende Änderungen am Quelltext notwendig sind.

Abbildung 15.4 »Charon« bildet die Brücke zur Datenbank »Hades«.

15.3.1 Anforderungen

Die Anforderungen an Charon sind momentan nur, die Datenbankfassade aus Kapitel 13 »Komplexe Oberflächen mit Swing«, zu implementieren. Eine Zusammenfassung der Methoden sehen Sie in Listing 15.1.

452

Projekt »Charon«

15.3

public String getResults() {

return "Nicht implementiert";

}

public String getTitle(int index) {

return "Nicht implementiert";

}

public String getFirstName(int index) {

return firstName[index];

}

public String getLastName(int index) {

return "Nicht implementiert";

}

public String getEmail(int index) {

return email[index];

}

public String getCity(int index) {

return "Nicht implementiert";

}

public int getLastRecord() {

return lastRecord;

}

}

Listing 15.1 Die Zugriffsmethoden der Datenbankfassade

Die Methoden der Fassade müssen so ersetzt werden, dass sich die Schnittstelle für die Anwendungen Nestor und Xenia nicht ändert. Das geschieht durch eine einfache Zweiteilung der Miniaturbibliothek: Die Klasse Charon ersetzt die Fassade und übernimmt die Ausgabe der Schnittstelle, während die neue Klasse HadesDb den eigentlichen Zugang zur Datenbank herstellt und deren Struktur kennt.

15.3.2 Implementierung der Klasse »HadesDb«

Paketstruktur

Die eigentlichen Anwendungen sollten von der Datenbank möglichst getrennt werden. Da aus Charon eine Bibliothek (Library) entstehen soll, ist es auch sinnvoll, sie in einem anderen Paket unterzubringen: net.steppan.lib.charon.

Importanweisungen

Wie schon kurz in Kapitel 8, »Java-Klassenbibliotheken«, erwähnt wurde, befinden sich die Java-SE-Datenbankklassen im Package java.sql. Hier steht eine 453

15

Datenbankprogrammierung

Vielzahl von Spezialklassen zur Auswahl, von denen die Klasse HadesDb sechs benötigt.

Durch die Klasse Connection können Sie eine oder mehrere Verbindungen zur Datenbank aufbauen. Mehrere Verbindungen (zum Beispiel für mehrere Anwender) müssen in einem Pool verwaltet werden, damit feststeht, wer auf welche Daten gerade zugegriffen hat. Im Fall von HadesDb reicht eine einzige Verbindung aus.

Zur Verbindung mit der Datenbank setzt JDBC auf ein Treiberkonzept. Das ist geschickt, denn Sun Microsystems hat sich nur eine Schnittstelle zum Zugriff auf relationale Datenbanken ausgedacht, die dem Programmierer als Klassenbibliothek zur Verfügung steht. Die Arbeit, die Schnittstelle auf eine spezielle Datenbank wie Oracle oder hsqldb abzubilden, muss jemand anderes leisten – meistens der Datenbankhersteller.

Er sorgt dafür, dass die allgemeine JDBC-Schnittstelle auf seine spezielle Datenbankschnittstelle abgebildet wird. Das ist für den Java-Programmierer ungemein praktisch. Er ist nahezu unabhängig von einem speziellen DBMS-Produkt. Sie können also mit vergleichsweise geringem Einsatz HadesDb von hsqldb nach beispielsweise Access oder Oracle portieren. Wie das funktioniert, das zeige ich Ihnen am Schluss dieses Kapitels.

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.ResultSetMetaData;

import java.sql.SQLException;

import java.sql.Statement;

Listing 15.2 Die Importanweisungen

Die Klasse ResultSet ist, der Name deutet es an, die Ergebnismenge, die eine Daten-bankabfrage zurückliefert. Sie fragen als Java-Programm beim Datenbanksystem mit Hilfe der Klasse Statement an und bekommen eine Treffermenge zurückgeliefert. Diese Treffermenge befindet sich nun im Bereich Ihres Programms. Sie können sie beliebig bearbeiten, solange das Objekt der Klasse Statement lebt.

Nach seinem Ableben ist auch das ResultSet ungültig.

Konstruktor

Die Implementierung der Klasse ist nicht aufwändig. Der Konstruktor (Listing 15.3) besteht aus zwei Anweisungen. Mit Class.forName wird der Datenbanktreiber geladen. Dieser Treiber besteht im Regelfall aus einer oder mehreren Dateien.

454

Projekt »Charon«

15.3

/**

* @param dbUrl Datenbankadresse

* @param userName Anwendername

* @param password Passwort

* @param driver Datenbanktreiber

* @throws Exception Ausnahmen

*/

public HadesDb(String dbUrl,

String userName,

String password,

String driver) throws Exception {

Class.forName(driver);

// Aufbauen einer Datenbankverbindung: Startet die Datenbank

connection = DriverManager.getConnection(dbUrl,

userName,

password);

}

Listing 15.3 Der Konstruktor der Datenbankklasse

Im Anschluss daran holt sich der Konstruktor über die Klasse DriverManager die Datenbankverbindung, die im weiteren Verlauf noch mehrmals benötigt wird.

Sie ist so lange gültig, bis sie wieder explizit von den Anwendungen Nestor oder Xenia geschlossen wird.

Methode »executeQuery«

Eine weitere wichtige Funktion der Klasse befindet sich in der Methode executeQuery(). Mit Hilfe dieser Methode können Sie SQL-Anweisungen austesten. Dazu ist es nur erforderlich, eine Zeichenkette mit der Anweisung zu übergeben, zum Beispiel SELECT * FROM Persons. Diese SQL-Anfrage würde die gesamte Tabelle Persons als Treffermenge ergeben und mit Hilfe der Methode show() auf die Konsole ausgeben.

/**

* Fuehrt eine SQL-Anweisung aus

* @param expression die SQL-Anweisung

* @throws SQLException

*/

public synchronized void executeQuery(String expression)

throws SQLException {

Statement statement = null;

ResultSet resultSet = null;

statement = connection.createStatement();

resultSet = statement.executeQuery(expression);

show(resultSet);

455

15

Datenbankprogrammierung

statement.close(); // ResultSet ebenfalls geschlossen

}

Listing 15.4 Die Methode »executeQuery«

Methode »getFirstName«

Während executeQuery() nur zu Testzwecken dient oder um Datenbanken neu anzulegen, enthält die Klasse HadesDb noch eine Reihe von Akzessoren, die der Fassade Charon Personendaten liefern werden. Ich möchte hier nur eine dieser Methoden stellvertretend für alle weiteren vorstellen. Den Gebrauch der anderen Methoden sehen Sie bei der Implementierung der Testtreiber im weiteren Verlauf dieses Kapitels.

Die Methode getFirstName() liefert mit Hilfe des Schlüssels index den Namen einer Person, die in der Datenbank gespeichert ist. Dazu legt sie ein Objekt der Klasse Statement und ein Objekt der Klasse ResultSet an. Das Statement-Objekt verwaltet die Anfrage, das ResultSet-Objekt die Treffermenge.

/**

* Ermittelt den Vornamen

* @param index die Datenbankzeile

* @return

* @throws SQLException

*/

public String getFirstName(int index) throws SQLException {

Statement statement = null;

ResultSet resultSet = null;

int colMax;

Object record = null;

String id = new Integer(index - 1).toString();

statement = connection.createStatement();

resultSet = statement.executeQuery("SELECT * FROM Persons

WHERE id = " + id);

resultSet.next(); // Cursor zur ersten Zeile

record = resultSet.getObject(3); // Position 3: Vorname

statement.close(); // ResultSet ab jetzt leer

return record.toString();

} // getFirstName

Listing 15.5 Die Methode »getFirstName«

Danach holt sich die Methode eine Datenbankverbindung und setzt die Anfrage SELECT * FROM Persons WHERE id = id an die Datenbank Hades ab. Die Anfrage bewirkt, dass der Datensatz ausgelesen wird, der mit dem Index übereinstimmt.

Von dieser Treffermenge interessiert nur die dritte Stelle, an der der Vorname 456

Projekt »Charon«

15.3

steht. Dieser lässt sich über die Methode getObjekt() ermitteln. Danach schließt die Methode close() das Statement-Objekt (statement) und gibt den Vornamen als Zeichenkette über return record.toString() zurück.

15.3.3 Implementierung der Klasse »Charon«

Paketstruktur

Wie HadesDb ist die Klasse Charon Bestandteil der Bibliothek net.steppan.lib.charon.

Importanweisungen

Die Klasse Charon benötigt die Klasse FileInputStream und Properties zum Auslesen ihrer Grundeinstellungen und die Klasse SQLException, falls Fehler auftreten.

import java.io.FileInputStream;

import java.sql.SQLException;

//Properties:

import java.util.Properties;

Listing 15.6 Die Importanweisungen der Klasse

Variablen

Die Datenbankschicht verwendet nur wenige Objektvariablen. Die Variable lastRecord speichert die Anzahl der Datensätze. Das Objekt database ist die Verbindung zur Datenbank Hades, und das Objekt dbProperties speichert die Grundeinstellungen.

public class Charon {

private int lastRecord;

private HadesDb database;

private Properties dbProperties = new Properties();

Listing 15.7 Die Objektvariablen

Konstruktor

Der Konstruktor von Charon hat die Aufgabe, die Grundeinstellungen der Datenbankzugriffsschicht auszulesen (Listing 15.8). Benötigt werden die Datenbankadresse, der Anwendername, das Passwort und der JDBC-Treiber. Zum Schluss setzt der Konstruktor die interne Variable lastRecord auf den Wert, den die Datenbank zurückliefert.

/**

* Standardkonstruktor

*/

457

15

Datenbankprogrammierung

public Charon() {

database = null;

try {

dbProperties.load(new FileInputStream(

"prp/db/Db.properties"));

}

catch (java.io.IOException ex) {

ex.printStackTrace(); // Props. defekt oder nicht gefunden

}; // catch

try {

database = new HadesDb(dbProperties.getProperty(

"DatabaseUrl"), //

DB-URL

dbProperties.getProperty("UserName"), // Name

dbProperties.getProperty("Password"), // Passwort

dbProperties.getProperty("DatabaseDriver"));

lastRecord = database.getLastRow();

}

catch (Exception ex) {

ex.printStackTrace(); // Datenbank nicht zu starten

return; // Im Fehler => Ende des Treibers

}

}

Listing 15.8 Der Konstruktor der Klasse »Charon«

Methode »finalize«

Aus Kapitel 4, »Sprache Java«, wissen Sie, dass die Methode finalize() mit Vorsicht zu genießen ist. Bei älteren virtuellen Maschinen war kein Verlass darauf, dass sie aufgerufen wird. Ich habe sie trotzdem für den Fall implementiert, dass neue virtuelle Maschinen den Aufruf der Methode garantierten. Sie hätte den Vorteil, dass die Datenbank automatisch geschlossen wird, wenn ein Objekt der Klasse Charon vom Garbage Collector entsorgt wird.

protected void finalize() {

try {

database.shutdown(); // Datenbank herunterfahren

}

catch (SQLException ex) {

ex.printStackTrace();

}

}

Listing 15.9 Die Methode »finalize« fährt die Datenbank herunter.

458

Projekt »Charon«

15.3

Methode »getFirstName«

Die Methode getFirstName() gehört zu der Reihe von Akzessoren, die die Schnittstelle von Charon zu Nestor und Xenia bilden. Mit Hilfe dieser Methoden fordern diese Programme Personendaten aus der Datenbank an.

public String getFirstName(int index) {

String firstName = null;

try {

firstName = database.getFirstName(index);

}

catch (SQLException ex) {

ex.printStackTrace();

}

return firstName;

}

Listing 15.10 Die Methode »getFirstName«

Methode »getLastRecord«

Dieser Akzessor ist für die Anwendungen Nestor und Xenia wichtig, um den letzten Datensatz zu ermitteln. Der Rückgabewert bestimmt das Ende der Schleifen, mit denen die Programme ihre Daten anfordern.

public int getLastRecord() {

return lastRecord;

}

}

Listing 15.11 Die Methode »getLastRecord« ermittelt die Anzahl der Datensätze.

15.3.4 Implementierung der Klasse »HadesTest«

Die Klasse HadesTest stellt einen einfachen Testtreiber für die Klasse HadesDb dar.

Mit Hilfe des Testtreibers können Sie Datenbanken, Tabellen und neue Datensätze anlegen.

Paketstruktur

Die Paketstruktur ist so ausgelegt, dass der Testtreiber leicht von der Bibliothek zu trennen ist. Er soll nicht mit ihr ausgeliefert werden und liegt deshalb im Paket net.steppan.lib.testdriver.

459

15

Datenbankprogrammierung

Importanweisungen

Der Testtreiber verwendet nur zwei Klassen: SQLException und HadesDb. Die Klasse SQLException wird im Fall eines Fehlers benötigt und HadesDb als Datenbankzugriffsschicht.

import java.sql.SQLException;

import net.steppan.lib.charon.HadesDb;

Listing 15.12 Die Importanweisungen des Treibers

Methode »main«

Diese Startmethode des Treibers legt zunächst ein neues Datenbankobjekt der Klasse HadesDb an. Die Methode versucht, eine Datenbank mit der zugewiesenen Datenbankadresse (DB-URL) zu finden. Falls keine Datenbank dieses Namens existiert, wird durch diesen Aufruf eine Datenbank Hades im Unterverzeichnis db angelegt (Abbildung 15.3).

Danach ruft die Methode mit Hilfe des neuen Objekts die Methode executeQuery auf und versucht, eine Tabelle mit der Struktur aus Abbildung 15.1 anzulegen.

Sollte das nicht klappen, weil die Tabelle schon existiert, wird eine Exception auftreten, die vom Programm abgefangen wird. Es reagiert mit der Ausgabe: Datenbank schon angelegt.

Danach erzeugt das Programm über die Methode update() neue Datensätze, die ebenfalls der Struktur gehorchen, die Sie aus Abbildung 15.1 kennen. Zum Schluss setzt das Programm die SQL-Abfrage SELECT * FROM Persons ab, die dazu führt, dass alle Datensätze ausgelesen und auf die Konsole ausgegeben werden.

public static void main(String[] args) {

HadesDb database = null;

try {

database = new HadesDb("jdbc:hsqldb:db/Hades", // .. DB-URL

"sa", // Anwendername

"", // Passwort

"org.hsqldb.jdbcDriver"); // Treiber

}

catch (Exception ex1) {

ex1.printStackTrace(); // Datenbank nicht zu starten

return; // Im Fehlerfall => Programmende

}

try {

// Erzeugen einer leeren Tabelle:

database.executeQuery(

"CREATE TABLE Persons (" + // ... Tabelle erzeugen

"id INTEGER IDENTITY," + // Kennung

460

Projekt »Charon«

15.3

"Title VARCHAR(256)," + // Spalte Titel

"FirstName VARCHAR(256)," + // Spalte Vorname

"LastName VARCHAR(256)," + // Spalte Nachname

"Street VARCHAR(256)," + // Spalte Strasse

"Zip VARCHAR(256)," + // Spalte Zip

"City VARCHAR(256)," + // Spalte Stadt

"Country VARCHAR(256)," + // Spalte Land

"Telephone VARCHAR(256)," + // Spalte Telefon

"Email VARCHAR(256))" + // Spalte Email

"Comment VARCHAR(256))"); // Spalte Kommentar

}

catch (SQLException ex) {

System.out.println("Testtreiber: " +

"Datenbank schon angelegt");

}

try {

// Die Testdaten fuer Nestor + Xenia anlegen:

database.update(

"INSERT INTO Persons(Title, FirstName,

LastName, Street,

Zip, City, Country,

Telephone, Email)

VALUES('-', 'Orpheus', '-', '-', '-',

'Hades', 'Griechenland', '-',

'orpheus@hades.org')");

database.update(

"INSERT INTO Persons(Title, FirstName,

LastName, Street,

Zip, City, Country,

Telephone, Email)

VALUES('-', 'Eurydike', '-','-','-',

'Hades', 'Griechenland','-',

'eurydike@hades.org')");

database.update(

"INSERT INTO Persons(Title, FirstName,

LastName, Street,

Zip, City, Country,

Telephone, Email)

VALUES('-','Odysseus','-',',',',',

'Hades','Griechenland','-',',

odysseus@hades.org')");

database.update(

"INSERT INTO Persons(Title,FirstName,

LastName,Street,

Zip,City,Country,

Telephone,Email)

461

15

Datenbankprogrammierung

VALUES('-','Penelope','-','-','-',

'Hades','Griechenland','-',

'penelope@hades.org')");

// Query ausfuehren:

database.executeQuery("SELECT * FROM Persons");

// Datenbank herunterfahren:

database.shutdown();

}

catch (SQLException ex3) {

ex3.printStackTrace();

}

} // main()

}

Listing 15.13 Die Methode »main« des Testtreibers

15.3.5 Implementierung der Klasse »CharonTest«

Um wie viel einfacher die Implementierung einer Anwendung ist, die mit Hilfe der Klasse Charon nur Personendaten ein- oder auslesen möchte, zeigt der zweite Testtreiber: die Klasse CharonTest.

Paketstruktur

Aus den vorher genannten Gründen befindet sich auch dieser Testtreiber nicht im Bibliothekspaket, sondern in einem Package namens net.steppan.lib.testdriver.

Er wird keinesfalls mit der Bibliothek in ein Archiv verpackt, sondern dient nur zu Testzwecken.

Importanweisungen

Die Importanweisungen bestehen nur aus einer Zeile, in der auf die Klasse Charon verwiesen wird. Der Testtreiber verwendet keine weiteren Klassen.

Methode »main«

public static void main(String[] args) {

Charon c = new Charon();

int lr = c.getLastRecord();

for (int i = 1; i <= lr; i++) {

System.out.print("Datensatz: " + i + ": ");

System.out.println(c.getFirstName(i) + ", " +

c.getLastName(i) + ", " +

c.getEmail(i));

}

System.exit(0);

462

Projekt »Charon«

15.3

}

}

Listing 15.14 Die Methode »main« des Testtreibers

15.3.6 Implementierung der Datei »Db.properties«

Damit Charon von dem Datenbanksystem entkoppelt wird, verwendet die Zu-

griffsschicht eine spezielle Properties-Datei (Listing 15.15). Diese Properties-Datei mag Ihnen vielleicht überflüssig erscheinen – warum sind die Informationen nicht direkt in der Klasse? Eine Properties-Datei hat drei Vorteile:

1. Trennung der Klasse HadesDb von einem speziellen Datenbanksystem

2. Keine Neuübersetzung der Klasse notwendig, wenn sich Treiber oder URL

ändern

3. Leichter Test der Datenbankanwendungen

Durch die Auslagerung der Grundeinstellungen kann man das Datenbanksystem wechseln, ohne dass es die Klasse beeinflusst. Sie arbeitet unverändert mit einem anderen Datenbanksystem, aber mit einer Tabelle der gleichen Struktur weiter.

Wenn die Properties-Informationen in der Klasse integriert wären, müsste die Bibliothek jedes Mal neu übersetzt werden, wenn sich etwas an dem JDBC-Treiber oder der Datenbank-URL ändert.

Der letzte Vorteil dieser Trennung betrifft den leichteren Test der Anwendungen. Es ist gefährlich, Ihr Java-Programm an den Produktivdaten zu testen, zum Beispiel an dem Adressbuch, mit dem Sie täglich arbeiten. Für Testzwecke verwendet man immer eine Testdatenbank, und diese besitzt natürlich eine andere Datenbankadresse.

Um die Anwendung zu testen, legen Sie einfach eine Properties-Datei mit Testdaten in das entsprechende Verzeichnis der Anwendung, und schon liest sie ihre Informationen aus einer ganz anderen Datenbank. Wenn in diesem Fall Daten zerstört werden, so ist das nicht tragisch, denn Sie können sich immer wieder neue Testdaten erzeugen.

#Projekt: Charon

✄

Datenbanksystem: hsqldb

DatabaseUrl=jdbc:hsqldb:db/Hades

UserName=sa

DatabaseDriver=org.hsqldb.jdbcDriver

Password=

Listing 15.15 Diese Datei steuert die Verbindung zum Datenbanksystem.

463

15

Datenbankprogrammierung

Die Properties-Datei finden Sie im Unterverzeichnis prp des Projekts (Abbildung 15.3). Sie besteht aus einigen Kommentaren am Anfang und vier Einträgen: der Datenbankadresse, dem Anwendernamen, dem Datenbanktreiber und dem Passwort. Datenbankadresse und Treibername sind spezifische Angaben, die das Datenbanksystem hsqldb benötigt.

Der Anwendername ist der Administrator der Datenbank und somit die Grundeinstellung, in der ich das Datenbanksystem belassen habe. Das Passwort ist nicht gesetzt, es sollte hier auch nur zu Testzwecken stehen. Für eine professionelle Anwendung ist eine so genannte Authentifizierung mit Hilfe eines Passwort-Dialogs notwendig.

15.3.7 Test

Für den Test der Klassen stehen die besprochenen zwei Testtreiber zur Verfügung.

Sie werden wie folgt gestartet:

HadesTest

Sie starten HadesTest über die Batch-Datei Hades.bat bzw. das Shellskript Hades.sh im Verzeichnis ch15. Das Programm müsste nach einem erfolgreichen Start folgende Ausgaben erzeugen:

0, -, Orpheus, -, -, -, Hades, Griechenland, -, orpheus@hades.org,

1, -, Eurydike, -, -, -, Hades, Griechenland, -, eurydike@hades.org,

2, -, Odysseus, -, -, -, Hades, Griechenland, -, odysseus@hades.org,

3, -, Penelope, -, -, -, Hades, Griechenland, -, penelope@hades.org,

Die Ausgabe hängt natürlich vom Füllstand der Datenbank ab. Da nach mehreren Durchläufen deutlich mehr Datensätze erzeugt werden, wird die Liste mit der Zeit immer länger.

CharonTest

Der Testtreiber CharonTest gibt nur einen Teil der Datenbank aus. Er wird durch die gleichnamige Batch-Datei bzw. das Shellskript gestartet und erzeugt folgende Ausgabe:

Datensatz: 1: Orpheus, -, orpheus@hades.org

Datensatz: 2: Eurydike, -, eurydike@hades.org

Datensatz: 3: Odysseus, -, odysseus@hades.org

Datensatz: 4: Penelope, -, penelope@hades.org

Diese Programmausgabe ist, wie die Ausgabe von HadesTest, vom Füllstand der Datenbank abhängig. Dieser Testtreiber legt aber keine neuen Datensätze an, so dass ein mehrmaliger Start nichts an der Programmausgabe ändert.

464

Zusammenfassung

15.4

15.3.8 Verteilung

Die Bibliothek Charon wird als Jar-Archiv gespeichert und in den Lib-Verzeichnissen von Nestor und Xenia abgelegt (Verzeichnisse ch16 und ch17). Beim Aufruf von Nestor und Xenia stehen somit die Methoden der Zugriffsschicht über ein Java-Archiv zur Verfügung.

15.4

Zusammenfassung

Die Klassen Charon und HadesDb bilden zusammen die Datenbankschicht Charon. Diese Zugriffsschicht kapselt die Personendaten und erlaubt den Datenbankanwendungen Nestor und Xenia einen komfortablen Zugriff auf die Hades-Datenbank.

Zu ihrer Programmierung verwendet Charon die Java-Datenbankschnittstelle JDBC und somit viele Klassen aus dem Paket java.sql. Die Datenbank Hades ist mit Hilfe des freien Datenbanksystems hsqldb entstanden. Um die Datenbank leicht wechseln zu können, sind alle datenbankspezifischen Grundeinstellungen in eine Properties-Datei ausgelagert.

15.5

Aufgaben

15.5.1 Fragen

1. Beschreiben Sie, was JDBC für den Java-Entwickler leistet.

2. Welche Aufgabe übernehmen JDBC-Treiber?

3. Welchen Vorteil bietet eine Datenbankzugriffsschicht wie Charon?

4. Warum befinden sich die Charon-Einstellungen für den Datenbanktreiber und die URL in einer Properties-Datei?

5. Beschreiben Sie, was zu tun ist, wenn man Charon mit einem anderen Datenbanksystem verbinden möchte.

15.5.2 Übungen

Legen Sie mit Hilfe der Klasse HadesTest zwei neue beliebige Datensätze an. Beschreiben Sie die dafür erforderlichen Schritte. Was müssen Sie beachten?

Die Lösungen zu den Aufgaben finden Sie in Kapitel 20 ab Seite 535.

465

»Wenn Sie glauben, dies sei ein großes Problem – warten Sie mal ab, bis wir versuchen, die Lösung zu finden.« (Walter Matthau)

16

Datenbankanwendungen

16.1

Einleitung

In Kapitel 13, »Komplexe Oberflächen mit Swing«, habe ich Ihnen die Oberfläche des Projekts Nestor vorgestellt und in Kapitel 15, »Datenbankprogrammierung«, eine Bibliothek, die den Programmen Nestor und Xenia einen komfortablen Zugang zu der Datenbank Hades erlaubt. Dieses Kapitel kombiniert beide Teile und gibt dem Projekt Nestor den letzten Schliff.

16.2

Projekt »Perseus«

16.2.1 Anforderungen

Sie haben vielleicht bemerkt, dass die Dialoge von Nestor (Kapitel 13, »Komplexe Oberflächen mit Swing«) und das Hauptfenster des Programms zentriert erscheinen. Dies zu erreichen war kein großer Programmieraufwand. Schön wäre es allerdings, wenn man die Funktion zum Zentrieren von Fenstern nicht in jedem neuen Programm immer wieder aufs Neue programmieren müsste. Um sich diese Arbeit zu ersparen, müsste sich die Funktion nicht im Programm befinden, sondern in einer Basisbibliothek wie Swing.

Zentrierte Dialoge

Neben einer generellen Methode, Dialoge zu zentrieren, wäre es zudem wünschenswert, dass sich die Dialoge nur dann in der Bildschirmmitte befänden, wenn der Anwender das Hauptfenster auch in der Bildschirmmitte angeordnet hat. Viele Anwender arbeiten jedoch mit mehreren Programmen gleichzeitig und verschieben beispielsweise das eine Fenster nach links und das andere nach rechts. Professionelle Programme reagieren entsprechend: Sie platzieren ihre Dialoge immer zentriert zum Hauptfenster und nicht zentriert zur Bildschirmmitte.

467

16

Datenbankanwendungen

»Splash-Screen«

Leider gibt es in den Klassen von Swing keine Methode, Fenster und Dialoge zu zentrieren, ohne selbst programmieren zu müssen. Was ebenfalls fehlt, ist ein vorgefertigtes Begrüßungsfenster, das Programmierer »Splash-Screen« nennen.

Splash-Screens sind Fenster, die erscheinen, bevor die Anwendung sichtbar ist, und die zeitgesteuert wieder verschwinden.

Neue Funktionen

Aufgrund der Mängel des Adressbuchs aus Kapitel 13, »Komplexe Oberflächen mit Swing«, sollen diese neuen Anforderungen an Nestor eingearbeitet werden.

Außerdem muss das Programm noch eine Reihe von Funktionen bekommen, die für eine Datenbankanwendung notwendig sind. Aber dazu später mehr.

16.2.2 Analyse und Design

Die Anforderungen lassen sich mit geringem Aufwand mit einer kleinen Bibliothek realisieren, die später in Nestor integriert wird. Sie besteht aus zwei Basis-fenstern und einem Basisdialog, die auf Swing-Klassen aufbauen.

Klasse »BasicWnd«

Für einen Splash-Screen ist es nicht notwendig, eine sehr komplizierte Basisklasse zu verwenden. Das Fenster soll nicht dekoriert sein, das heißt, nicht über Ränder, Rahmen und dergleichen verfügen. Er muss nur zentriert erscheinen und die Möglichkeit bieten, Text und eine Grafik auszugeben.

Die Ausgabe von Text und einer Grafik ist eine spezielle Angelegenheit des Splash-Screens. Sie steht im Gegensatz zu der allgemeinen Fähigkeit eines Fensters, zentriert am Bildschirm zu erscheinen. Beim Design einer Klassenhierarchie ist diese Unterscheidung wichtig. Es ist notwendig, die allgemeine von den speziellen Eigenschaften beim Klassendesign zu trennen.

Aus diesem Grund ist es sinnvoll, ein allgemeines Basisfenster zu entwickeln sowie einen von diesem Fenster abgeleiteten speziellen Splash-Screen. Das allgemeine Basisfenster kann zentriert werden, während der spezielle Splash-Screen neben dieser Fähigkeit auch noch Text ausgeben kann.

Aufgrund des Designs erhält die neue Basisklasse BasisWnd eine Methode, mit der das Fenster auf dem Bildschirm zentriert ausgerichtet werden kann. Die Basisklasse hat nur minimale Ansprüche und erbt daher von einer der einfachsten Swing-Klassen: der Klasse JWindow (Abbildung 16.1).

468

Projekt »Perseus«

16.2

Klasse »SplashWnd«

Der Splash-Screen namens SplashWnd wird von dieser neuen Basisklasse abgeleitet und erbt somit die Methode zur Ausrichtung des Fensters. Er muss darüber hinaus eine Methode besitzen, durch die er eine Grafik sowie Text auf dem Bildschirm ausgeben kann. Da kein Fenster einer GUI-Bibliothek einfach an einer x-beliebigen Stelle auf den Bildschirm zeichnen darf, benötigt der Splash-Screen zwei GUI-Bausteine: einen für die Darstellung des Textes und einen für die Darstellung der Grafik.

Die Auswahl innerhalb von Swing ist groß. Ich habe mich zur Textausgabe für die Klasse JTextField und zur Grafikdarstellung für die Klasse JLabel entschieden.

Beide stammen aus der Swing-Bibliothek. Die Klasse SplashWnd benötigt nur noch eine Zugriffsmethode für das als private deklarierte Textfeld und für das Label.

Abbildung 16.1 Die Klassenhierarchie von »BasisWnd« und »SplashWnd«

469

16

Datenbankanwendungen

Damit ein GUI-Builder auf die Gestaltung des Fensters Einfluss nehmen kann, wird die Initialisierung in eine eigene Initialisierungsmethode verlagert. Nach diesen Vorüberlegungen zum Design der Fensterklasse muss der neue Basisdialog entworfen werden.

Klasse »BasicDlg«

Die Vorarbeiten für den Basisdialog sind einfacher. Er benötigt nur eine Methode, um zentriert zu dem Fenster zu erscheinen, das den Dialog erzeugt hat. Das bedeutet, dass die Funktionalität, die bisher Nestor enthielt, in eine Methode des Dialogs »wandert«.

Abbildung 16.2 Der neue Basisdialog steht in einer langen Ahnenreihe.

Jetzt muss nur noch geklärt werden, von welcher Klasse der neue Basisdialog abgeleitet werden soll. Hier gibt es keine großen Entscheidungsschwierigkeiten, denn es bietet sich praktisch nur die Swing-Klasse JDialog an. Sie baut direkt auf die AWT-Klasse Dialog auf und verfügt über Methoden, mit denen der Dialog erzeugt und wieder zerstört werden kann.

470

Projekt »Perseus«

16.2

16.2.3 Implementierung der Klasse »BasisWnd«

Paketstruktur

Wie die Bibliothek Charon bekommt die neue Bibliothek Perseus ein eigenes Paket und wird dadurch von Nestor getrennt. Das Package heißt net.steppan.lib.

perseus.

Importanweisungen

Es werden die AWT-Klassen Dimension und Point benötigt, um die Bildschirm-koordinaten zu berechnen, und JWindow als Basisklasse für das Fenster.

import java.awt.Dimension;

import java.awt.Point;

import javax.swing.JWindow;

Listing 16.1 Die Importanweisungen der Klasse »BasisWnd«

Variablen

Es wird nur eine Objektvariable benötigt, die aus der Klasse Alignment erzeugt wird. Sie dient dazu, die Ausrichtung des Fensters zu steuern.

Konstruktor

Das Fenster besitzt nur einen Standardkonstruktor ohne Parameterübergabe. Dadurch, dass die Basisklassen über eine Vielzahl von Methoden verfügen, um den Dialog nach der Erzeugung entsprechend zu verändern, sind weitere Konstruktoren überflüssig.

Methode »setAlignment«

Mit Hilfe dieser Methode ist es möglich, das Fenster entweder zur Bildschirmmitte zu zentrieren oder zu dem Fenster, das das Basisfenster erzeugt hat. Hier wird die Variable alignment als Parameter übergeben. Durch diese Methode ist es auch möglich, das Fenster nachträglich auszurichten.

/**

* setAlignment zentriert das Fenster

* auf dem Bildschirm oder zu dem Fenster,

* von dem es erzeugt wurde

* @param alignment die Ausrichtung

*/

public void

setAlignment(net.steppan.lib.perseus.Alignment alignment) {

Dimension wndSize = getSize();

if (alignment == Alignment.CENTER_ON_PARENT) {

471

16

Datenbankanwendungen

Dimension parentSize = getParent().getSize();

Point loc = getParent().getLocation();

setLocation((parentSize.width

- wndSize.width)

/ 2 + loc.x,

(parentSize.height - wndSize.height) / 2 + loc.y);

} else {

Dimension screenSize = getToolkit().getScreenSize();

setLocation((screenSize.width

- wndSize.width)

/ 2,

(screenSize.height - wndSize.height) / 2);

}

}

Listing 16.2 Die Methode »setAlignment« richtet das Fenster aus.

Methode »getAlignment«

Die Methode getAlignment() ist das Gegenstück zum gerade besprochenen Mutator. Dieser Akzessor gibt lediglich den Zustand des Fensters zurück.

/**

* getAlignment gibt die Ausrichtung des Fensters zurueck

* @return alignment die Ausrichtung

*/

public net.steppan.lib.perseus.Alignment getAlignment() {

return alignment;

}

}

Listing 16.3 Die Methode »getAlignment« gibt den Fensterzustand zurück.

16.2.4 Implementierung der Klasse »Alignment«

Diese Klasse ist so klein, dass sie kaum einer Erwähnung bedarf. Sie dient als Ersatz für einen Enum-Typ, den es erst ab Java 5 gibt (Kapitel 4, »Sprache Java«).

Damit Java-Programme auch mit anderen JDKs beziehungsweise JREs funktionieren, schlägt Sun Microsystems verschiedene Ersatzkonstruktionen vor, von denen ich hier eine vorstelle. Die genaue Erklärung muss ich Ihnen einstweilen schuldig bleiben. Sie wird beim Einbau der Fenster in das Adressbuch Nestor aber nachgeliefert.

public final class Alignment {

public final static Alignment

CENTER_ON_PARENT = new Alignment(),

CENTER_ON_SCREEN = new Alignment();

public final static Alignment[] alignment = {

472

Projekt »Perseus«

16.2

CENTER_ON_PARENT, CENTER_ON_SCREEN

};

}

Listing 16.4 »Alignment« liefert zwei Konstanten als Aufzählungstyp.

16.2.5 Implementierung der Klasse »SplashWnd«

Paketstruktur

Die Klasse soll, wie die gesamte Bibliothek, zum Paket net.steppan.lib.perseus gehören.

Importanweisungen

Für das Fenster werden die Klasse BorderLayout benötigt, um die Widgets an-zuordnen, die Klasse Color, um die Farbe des Textfelds zu bestimmen, und die Klassen der beiden GUI-Komponenten.

import java.awt.BorderLayout;

import java.awt.Color;

import javax.swing.ImageIcon;

import javax.swing.JLabel;

import javax.swing.JTextField;

Variablen

Zu Anfang legt die Klasse zwei neue Objekte an, um Grafik und Text auszugeben. Außerdem benötigt sie ein Objekt des Typs String, um den Dateinamen zu speichern, der als Text übergeben werden muss.

public class SplashWnd extends BasicWnd {

private JLabel imageLbl = new JLabel();

private JTextField splashTxf = new JTextField();

private String fileName;

private Color textBackgroundColor;

private Color textColor;

Listing 16.5 Die Variablen der Klasse »SplashWnd«

Konstruktor

Der Konstruktor weist den Namen der Grafik einer Objektvariablen zu und delegiert danach die Initialisierung der GUI-Bausteine an eine Initialisierungsmethode.

473

16

Datenbankanwendungen

/**

* Fensterklasse zur Anzeige eines Splash-Screens

* @param fileName Dateiname der Grafik

*/

public SplashWnd(String fileName) {

this.fileName = fileName;

try {

initialize();

}

catch (Exception e) {

e.printStackTrace();

}

pack();

}

Listing 16.6 Der Konstruktor »SplashWnd« erzeugt einen neuen Splash-Screen.

Methode »setText«

Mit Hilfe dieser Methode lässt sich Text am unteren Rand des Fensters ausgeben.

public void setText(String text) {

splashTxf.setText(text);

}

Listing 16.7 Die Methode »setText« gibt Text aus.

Initialisierungsmethode

Die Initialisierungsmethode erlaubt es GUI-Buildern, den Splash-Screen visuell zu bearbeiten. Sie besteht aus der Erzeugung einer Grafik aus einem ImageIcon und dem Aufbau der Komponenten innerhalb des Border-Layouts.

/**

* Init-Methode fuer GUI-Builder

* @throws Exception, falls die Initialisierung fehlschlaegt

*/

void initialize() throws Exception {

imageLbl.setIcon(new ImageIcon(this.fileName));

splashTxf.setEnabled(false);

splashTxf.setBorder(null);

splashTxf.setOpaque(false);

this.getContentPane().add(imageLbl, BorderLayout.NORTH);

this.getContentPane().add(splashTxf, BorderLayout.SOUTH);

}

Listing 16.8 Die Initialisierungsmethode erzeugt die grafische Oberfläche.

474

Projekt »Perseus«

16.2

Methode »setBackgroundColor«

Für bestimmte Fälle, in denen man beispielsweise eine weiße Grafik verwendet, ist es nützlich, die Farbe des Textfelds ändern zu können.

/**

* setTextBackgroundColor setzt die Hintergrundfarbe

* des Textfelds

* @param textBackgroundColor

*/

public void setTextBackgroundColor(Color textBackgroundColor) {

this.textBackgroundColor = textBackgroundColor;

splashTxf.setBackground(textBackgroundColor);

}

Listing 16.9 Die Methode »setTextBackgroundColor« legt die Farbe des Textfeldhintergrunds fest.

Methode »TextColor«

Auch diese Methode ist sinnvoll, wenn man bestimmte Grafiken verwenden

möchte. Sie erlaubt es, die Textfarbe des Splash-Screens zu ändern.

/**

* setTextColor setzt die Textfarbe

* @param textColor

*/

public void setTextColor(Color textColor) {

this.textColor = textColor;

splashTxf.setDisabledTextColor(textColor);

}

}

Listing 16.10 Die Methode »setTextColor« legt die Farbe des Textes fest.

16.2.6 Implementierung der Klasse »BasicDlg«

Die Klasse ähnelt in ihrem Aufbau unverkennbar der Fensterklasse BasicWnd.

Paketstruktur

Wie die Fensterklassen gehört auch diese Klasse zum Package net.steppan.lib.

perseus.

Importanweisungen

Die Klasse benötigt, wie schon zuvor BasicWnd, die Klassen Dimension und Point, um sich auf dem Bildschirm zu zentrieren.

475

16

Datenbankanwendungen

import java.awt.Dimension;

import java.awt.Frame;

import java.awt.Point;

import javax.swing.JDialog;

Listing 16.11 Die Importanweisungen des Basisdialogs

Variablen

Auch hier ist die Ähnlichkeit mit BasicWnd offensichtlich: Zur Ausrichtung verwendet der Basisdialog den selbst entwickelten Enum-Typ.

public class BasicDlg extends JDialog {

private net.steppan.lib.perseus.Alignment alignment;

Listing 16.12 Die Variable zur Ausrichtung des Dialogs

Konstruktoren

Der Basisdialog verfügt über drei Konstruktoren, von denen ich hier nur einen vorstellen möchte (Listing 16.13). Er leitet den Aufruf nur an die Basisklasse weiter.

/**

* Erster Konstruktor

* erzeugt einen Basisdialog

* @param frame das Fenster

* @param title der Titel

* @param modal modal oder nicht modal

*/

public BasicDlg(Frame frame, String title, boolean modal) {

super(frame, title, modal);

}

Listing 16.13 Der erste von drei Konstruktoren

Methode »setAlignment«

Die Methode setAlignment richtet den Dialog nach dem übergebenen Parameter aus. Wenn Sie die Konstante alignment.CENTER_ON_PARENT übergeben, zentriert sich der Dialog nach dem Fenster, das ihn erzeugt hat. Wollen Sie den Dialog in der Mitte des Bildschirms zentrieren, rufen Sie die Methode einfach mit dem Parameter alignment.CENTER_ON_SCREEN auf.

/**

* setAlignment richtet das Fenster aus

* @param alignment Ausrichtung

*/

476

Projekt »Perseus«

16.2

public void setAlignment(net.steppan.lib.perseus.Alignment alignment) {

Dimension wndSize = getSize();

if (alignment == Alignment.CENTER_ON_PARENT) {

Dimension parentSize = getParent().getSize();

Point loc = getParent().getLocation();

setLocation((parentSize.width

- wndSize.width)

/ 2

+ loc.x,

(parentSize.height - wndSize.height) / 2

+ loc.y);

} else {

Dimension screenSize = getToolkit().getScreenSize();

setLocation((screenSize.width

- wndSize.width)

/ 2,

(screenSize.height - wndSize.height) / 2);

}

}

Listing 16.14 Die Methode »setAlignment« legt die Ausrichtung fest.

Methode »getAlignment«

Diese Methode wird nur in seltenen Fällen benötigt, um festzustellen, welche Einstellungen gewählt wurden.

/**

* getAlignment gibt die Ausrichtung zurueck

* @return Alignment

*/

public net.steppan.lib.perseus.Alignment getAlignment() {

return alignment;

}

Listing 16.15 Diese Methode gibt die Ausrichtung des Dialogs zurück.

Methode »centerOnParent«

Die Methode setAlignment() ist speziell für Programme gedacht, die konfigurierbar sein müssen. Im Gegensatz dazu stehen die folgenden beiden Methoden. Die erste von beiden, die Methode centerOnParent(), zentriert das Programm in der Mitte des Fensters, das es erzeugt hat.

/**

* centerOnParent: Methode fuer Programme,

* die nicht konfigurierbar sind.

* Die Methode zentriert den Dialog zu

* dem Fenster, von dem sie aufgerufen wurde

*/

public void centerOnParent() {

Dimension wndSize = getPreferredSize();

477

16

Datenbankanwendungen

Dimension parentSize = getParent().getSize();

Point loc = getParent().getLocation();

setLocation((parentSize.width

- wndSize.width)

/ 2

+ loc.x,

(parentSize.height - wndSize.height) / 2

+ loc.y);

}

Listing 16.16 Diese Methode zentriert den Dialog über dem Fenster, das ihn erzeugt hat.

Methode »centerOnScreen«

Wie zuvor die Methode centerOnParent() liefert auch centerOnScreen() ein vorgefertigtes Verhalten und benötigt somit keinen Übergabeparameter.

/**

* centerOnScreen: Methode fuer Programme,

* die nicht konfigurierbar sind

* Die Methode zentriert den Dialog

* auf dem Bildschirm

*/

public void centerOnScreen() {

Dimension wndSize = getPreferredSize();

Dimension screenSize = getToolkit().getScreenSize();

setLocation((screenSize.width

- wndSize.width)

/ 2,

(screenSize.height - wndSize.height) / 2);

}

Listing 16.17 Die Methode »centerOnScreen« zentriert den Dialog auf dem Bildschirm.

Test

Für den Test der Oberflächenbibliothek ist kein spezieller Testtreiber nötig. Der Test kann nach der Integration in Nestor vorgenommen werden.

16.3

Projekt »Charon«

16.3.1 Anforderungen

Nestor fehlen neben den Funktionen zur Ausrichtung von Dialogen und einem Splash-Screen noch andere, wesentlich wichtigere Funktionen wie das Löschen und Speichern eines Datensatzes. Für diese Funktionen ist es sinnvoll, wieder auf die Datenbankzugriffsschicht Charon zurückzugreifen, um diese zu erweitern.

478

Projekt »Charon«

16.3

16.3.2 Analyse und Design

Ich möchte Ihnen hier stellvertretend für die anderen Methoden der Datenbankzugriffsschicht nur zeigen, wie deleteRow aufgebaut ist. Die Methode insertRow wird im nächsten Kapitel bei der Umsetzung der Webanwendung Xenia erläutert.

Es gibt mehrere Möglichkeiten der Implementierung. Das liegt daran, dass nach dem Löschen eines Datensatzes die Stelle der Datenbankzeile zunächst unbesetzt ist. Wenn beispielsweise eine Person mit der ID 5 gelöscht wird, besitzt der Vorgänger weiterhin die Kennung 4, aber der Nachfolger die ID 6.

Nun gibt es zwei Möglichkeiten: Entweder man behält die Lücke bei und erwartet vom aufrufenden Programm, dass es den Fehler abfängt, wenn es auf die entsprechende Zeile zugreifen möchte, oder man sortiert ab dem Datensatz, der gelöscht wurde, die Datenbank um und vergibt neue Kennungen.

Das erste Verfahren ist für große Datenbanken sinnvoll, bei denen zum Beispiel die Kennung identisch mit einer Kundennummer ist, die sich nicht ändern darf.

Das zweite Verfahren kann man dort anwenden, wo nur eine kleine Datenmenge verwaltet werden muss, wie das bei Nestor der Fall ist.

16.3.3 Implementierung von »HadesDb«

Für die Implementierung der Methode deleteRow der Klasse HadesDb gibt es zwei Möglichkeiten. Die erste Möglichkeit ist, auf die JDBC-Schnittstelle zurückzugreifen und die entsprechenden Methoden aufzurufen. Die zweite Möglichkeit ist, eine SQL-Anweisung an die Datenbank abzusetzen. Damit würde das Löschen eines Datensatzes wie der Zugriff auf die Daten funktionieren. Auch hier habe ich mich für die letzte Möglichkeit entschieden.

/**

* deleteRow loescht eine Datenbankzeile

* @param index die Zeile

*/

public void deleteRow(int index) throws SQLException {

String id = new Integer(index - 1).toString(); // Korrekt

//System.out.println(id); // Debug

Statement statement = null;

ResultSet resultSet = null;

statement = connection.createStatement();

int i = statement.executeUpdate("DELETE FROM Persons

WHERE id = " + id);

if (i == -1) { // Debug

System.out.println("Charon [deleteRow]: Fehler beim

Loeschen");

479

16

Datenbankanwendungen

}

statement.close();

}

Listing 16.18 Die Methode »deleteRow« löscht eine Datenbankzeile.

16.3.4 Implementierung von »Charon«

Die Schnittstelle zur Datenbank, die Klasse Charon, reicht diese Methode im Prinzip nur weiter (Listing 16.19).

public void deleteRecord(int index) throws SQLException {

database.deleteRow(index);

✄

}

Listing 16.19 Die Methode »deleteRecord« reicht das Löschen einfach weiter.

16.3.5 Test

Für die Tests der Bibliothek sollten wieder die entsprechenden Testtreiber (Kapitel 15, »Datenbankprogrammierung«) zum Einsatz kommen. Dazu wechseln Sie wieder in das Projekt des Verzeichnisses Datenbankanwendungen und starten über Ihre Entwicklungsumgebung oder das JDK die entsprechenden Klassen.

16.3.6 Verteilung

Damit das Adressbuch Nestor die neue Bibliothek verwenden kann, ist es

sinnvoll, sie zu einem Archiv zusammenzubauen. Dazu starten Sie wieder das JDK-Werkzeug jar oder ein vergleichbares Werkzeug und integrieren die Klassen Charon sowie HadesDb.

16.4 Projekt »Nestor«

Die einzige Arbeit, die am Adressbuch noch zu verrichten ist, besteht darin, die beiden vorher genannten Bibliotheken zu integrieren. Dazu bedarf es weder einer neuen Aktivität »Anforderungen« noch einer Analyse oder eines Designs.

480

Projekt »Nestor«

16.4

16.4.1 Integration der Klasse »SplashWnd«

Setzen der Bibliothekspfade

Um auf die neuen Bibliotheken zugreifen zu können, müssen Sie sie in den Klassenpfad Ihres Projekts aufnehmen. Das Setzen der Bibliothekspfade funktioniert mit jeder Entwicklungsumgebung etwas anders und ist allein ein Thema, mit dem sich ein Buch füllen ließe. Ich möchte deswegen an dieser Stelle nicht näher darauf eingehen und Ihnen stattdessen nur ein Beispiel geben, wie der Klassenpfad prinzipiell aussehen muss, damit Nestor alle Klassen findet:

/usr/share/prj/book/javaprimer/ch16/nestor/bin:

/usr/share/prj/book/javaprimer/ch15/charon/lib/hsqldb.jar:

/usr/share/prj/book/javaprimer/ch15/charon/jar/charon.jar:

/usr/share/prj/book/javaprimer/ch16/perseus/jar/perseus.jar:

/System/Library/Frameworks/JavaVM.framework/

Versions/1.7/Classes/classes.jar:

/System/Library/Frameworks/JavaVM.framework/

Versions/1.7/Classes/i18n.jar:

/System/Library/Frameworks/JavaVM.framework/

Versions/1.7/Classes/sunrsasign.jar:

/System/Library/Frameworks/JavaVM.framework/

Versions/1.7/Classes/ui.jar:

/System/Library/Frameworks/JavaVM.framework/

Versions/1.7/Home/lib/dt.jar:

/System/Library/Frameworks/JavaVM.framework/

Versions/1.7/Home/lib/ext/jcert.jar:

/System/Library/Frameworks/JavaVM.framework/

Versions/1.7/Home/lib/ext/jnet.jar:

/System/Library/Frameworks/JavaVM.framework/

Versions/1.7/Home/lib/ext/jpda.jar:

/System/Library/Frameworks/JavaVM.framework/

Versions/1.7/Home/lib/ext/jsse.jar

Listing 16.20 Der Klassenpfad beim Start von »Nestor«

Sie finden im Projektverzeichnis einige Projektdateien für die wichtigsten Entwicklungsumgebungen sowie Make-Dateien für das JDK. Mit diesen Dateien

können Sie Nestor sofort übersetzen.

16.4.2 Integration der Klasse »SplashWnd«

Der Konstruktor muss nur leicht modifiziert werden. Die Änderungen sind schon damit getan, einen Aufruf der Methode showSplashScreen einzufügen. Die Methode wird im nächsten Abschnitt erklärt.

481

16

Datenbankanwendungen

// Konstruktor

public NestorApp() {

showSplashScreen(); // Splash-Screen anzeigen

AppWnd frame = new AppWnd();

// Frames ueberpruefen, die voreingestellte Groesse haben

// Frames packen, die nutzbare bevorzugte

// Groesseninformationen

//enthalten, z. B. aus ihrem Layout

if (packFrame) {

frame.pack();

}

else {

frame.validate();

}

frame.setAlignment(Alignment.CENTER_ON_SCREEN);

frame.setVisible(true);

}

Listing 16.21 Die Änderungen am Konstruktor der Klasse »NestorApp«

16.4.3 Implementierung der Methode »showSplashScreen«

Durch die Methode showSplashScreen präsentiert Nestor einen Splash-Screen, der für zwei Sekunden am Bildschirm erscheint, bevor er durch die Methode dispose zerstört wird. Die Methode ruft das Fenster auf und übergibt die Grafik in Form einer Zeichenkette.

/**

* showSplashScreen zeigt einen SplashScreen an

*/

private void showSplashScreen() {

SplashWnd splashScreen = new SplashWnd("img/splash.gif");

splashScreen.setAlignment(Alignment.CENTER_ON_SCREEN);

splashScreen.getContentPane().setBackground(Color.black);

splashScreen.setTextColor(Color.white);

splashScreen.show();

//splashScreen.setText("Initialisierung ...");

try {

Thread.sleep(2000);

}

catch (InterruptedException ex) {

System.out.println(ex);

}

splashScreen.dispose(); // Zerstoeren des Fensters

Listing 16.22 Die neue Methode »showSplashScreen«

482

Projekt »Nestor«

16.4

16.4.4 Integration der Klasse »BasicDlg«

Der neue Basisdialog steht als Mittler zwischen Swing und den Dialogen des Programms Nestor. Um ihn zu integrieren, müssen nur die entsprechende Dialog-Klasse verändert und eine der zuvor vorgestellten Methoden verwendet werden.

Abbildung 16.3 Der »BasisDlg« als Mittler zwischen Nestor und Swing Änderung der Klasse »SettingsDlg«

An dieser Klasse sind nur maximal zwei Änderungen notwendig. Die Klasse Alignment muss nur dann importiert werden, wenn eine variable Ausrichtung ge-wünscht ist.

import net.steppan.lib.perseus.BasicDlg;

✄

public class SettingsDlg extends BasicDlg {

Listing 16.23 Die Klasse »SettingsDlg« leitet vom neuen Basisdialog ab.

Änderung der Klasse »AppWnd«

Diese Klasse muss nur dort geändert werden, wo die Methode aufgerufen wird.

Dazu fügt man nur den Aufruf centerOnParent ein.

//Aktion Hilfe | Info durchgefuehrt

public void showSettingsDlg(ActionEvent e) {

SettingsDlg dlg = new SettingsDlg(this, "Einstellungen", true); dlg.centerOnParent(); // neu!

dlg.setModal(true);

dlg.show();

}

Listing 16.24 Diese Methode erzeugt den neuen Dialog.

483

16

Datenbankanwendungen

16.4.5 Integration der Klasse »Charon«

Setzen der Bibliothekspfade

Wie bei der Integration von Perseus ist es notwendig, die Bibliothekspfade anzupassen. Sollten Sie das vergessen haben, entsteht zur Laufzeit eine Exception, weil Klassen aus der Bibliothek nicht gefunden werden.

Änderung der Klasse »AddressPnl«

Die Adressenkomponente ist die Steuerzentrale des Adressbuchs und wird nun um einen Aufruf der neuen Funktion erweitert. Im Anschluss daran müssen Sie nur noch die Funktion in die Klasse AppWnd integrieren, um die Funktionalität von Nestor zu erweitern.

protected void deleteRecord() {

try {

dbLayer.deleteRecord(recordCounter);

}

catch (SQLException ex) {

System.out.println("Fehler beim Loeschen");

}

}

Listing 16.25 Die Methode »deleteRecord« löscht einen Datensatz.

Für den Test der Anwendung kompilieren Sie erst die Bibliotheken, um diese auf den neuesten Stand zu bringen, und danach die Anwendung Nestor. Wenn alles funktioniert hat, können Sie die Anwendung über eine der mitgelieferten Startdateien ausführen. Optisch hat sich anscheinend bis auf den Splash-Screen nicht viel geändert. Sie merken nur, dass die bisher noch fehlenden Funktionen verwendet werden können.

16.4.6 Verteilung

Von der Gesamtanwendung kann abschließend ein Jar-Archiv in der bekannten Art und Weise gebildet werden. Damit besteht das Projekt aus drei Archiven, die der virtuellen Maschine durch eine Batch-Datei oder ein Shellskript übergeben werden. Testen Sie nochmals den Start der Anwendung. Wenn alles geklappt hat, ist das Projekt Nestor abgeschlossen.

484

Zusammenfassung

16.5

16.5

Zusammenfassung

Das Projekt Nestor hat in diesem Kapitel seinen Feinschliff bekommen. Zwei neue Bibliotheken, Perseus und Charon, wurden integriert. Die Oberflächenbibliothek Perseus hat einen Basisdialog und einen Splash-Screen eingebracht, während die Datenbankbibliothek Charon für die Datenbanklogik sorgte.

16.6 Aufgaben

16.6.1 Fragen

1. Was ist der Vorteil einer GUI-Bibliothek wie Perseus?

2. Von welcher Klasse stammt BasicWnd ab?

3. Was ist ein Splash-Screen?

4. Welche Anweisungen bewirken, dass der Screen nur einige Sekunden auf dem Bildschirm bleibt?

16.6.2 Übungen

1. Verändern Sie die beiden Testtreiber CharonTest und HadesTest so, dass sie einen Datensatz löschen. Übersetzen und starten Sie beide Programme. Welche Ausgabe erzielen Sie? Ist ein Unterschied zu sehen? Wenn ja, warum?

2. Die Klasse SplashScreen verfügt über eine Methode setText(), mit deren Hilfe Sie Text ausgeben können. Verändern Sie den Konstruktor von NestorApp

so, dass er diese Methode aufruft, und übergeben Sie dann die Zeichenkette

»Initialisierung ...«. Kompilieren Sie anschließend das Programm, und starten Sie es.

Die Lösungen zu den Aufgaben finden Sie in Kapitel 20 ab Seite 536.

485

»Ins Internet bin ich, glaube ich, einmal oder zweimal bisher gegangen.«

Hans-Christian Ströbele, MdB (Grüne), auf die Frage: »Benutzen Sie auch Internet?«

17

Dynamische Websites

17.1

Einleitung

In der Anfangszeit des Internets haben Webprogrammierer ihre Webseiten wie andere Dokumente konventionell bearbeitet, veröffentlicht und nach jeder Änderung erneut verändert. Dieses extrem arbeitsaufwändige Verfahren ist heute unüblich. Stattdessen präsentiert man nur Fassaden, deren Inhalt aus Datenbanken stammt. Diese Websites sind interaktiv und ihre Informationen tagesaktuell.

Man spricht daher von dynamischen Websites.

Die Vorarbeiten für die dynamische Website Xenia sind in den Kapiteln 14, »Weboberflächen mit Servlets«, und 15, »Datenbankprogrammierung«, erfolgt. Jetzt geht es nur noch darum, die dort entstandene Datenbankbibliothek Charon und die Datenbank Hades zu integrieren und alle Teile so zusammenzusetzen, dass Xenia mit ihrem Gästebuch endlich »ans Netz« gehen kann.

17.2

Projekt »Charon«

17.2.1

Anforderungen

Das Projekt Xenia verwendet die Servlet-Oberfläche aus Kapitel 14, »Weboberflächen mit Servlets«, in Kombination mit der Datenbankbibliothek Charon und der Datenbank Hades (beide aus Kapitel 15, »Datenbankprogrammierung«). Die Anforderungen an die dynamische Website sind nach den geleisteten Vorarbeiten relativ leicht zu erfüllen: Die verschiedenen Teile aus den vorangegangenen Kapiteln sollen integriert werden, damit die Gäste jetzt permanent in der Datenbank Hades verweilen.

487

17

Dynamische Websites

17.2.2 Analyse und Design

Die Version der Website Xenia aus Kapitel 14 und die Version der Website aus diesem Kapitel unterscheiden sich nur geringfügig. Aufgrund der provisorischen Charon-Fassade war es zum Beispiel nicht möglich, neue Personen und Kommentare einzugeben. Es konnten nur die bestehenden Testdaten aus primitiven Arrays ausgelesen werden.

Migrationen

Durch den Wechsel zu einer relationalen Datenbank muss die Charon-Fassa-de jetzt gegen die Charon-Bibliothek ausgetauscht werden. Das eigentliche Xenia-Projekt schrumpft deshalb auf zwei Klassen zusammen. Das bedeutet auch, dass Charon als Java-Archiv in den Klassenpfad aufgenommen werden muss.

Charon-Fassade

Werfen Sie bitte einen Blick auf Abbildung 17.1. Hier sehen Sie nochmals den grundsätzlichen Aufbau beider Projekte. Die Charon-Schnittstelle schirmt fassa-dengleich die beiden Programme aus 14 und diesem Kapitel von der Datenhaltung ab. Bis auf die neuen, jetzt notwendigen Funktionen ist keine Änderung an den Servlets notwendig.

Abbildung 17.1 Unterschiede zwischen dem Aufbau von Xenia I und II Neue Funktionen

Zum Anlegen eines neuen Datensatzes und zum Abfragen des Kommentars ist es erforderlich, die Charon-Bibliothek um mindestens zwei Methoden zu erweitern 488

Projekt »Charon«

17.2

und diese Erweiterung in die Servlets NewGuest sowie GuestList zu integrieren.

Die Vorarbeiten spielen sich vor allem in der Klasse HadesDb ab.

17.2.3 Implementierung der Klasse »HadesDb«

Die Datenbankklasse, die die direkte Umsetzung zur Hades-Datenbank übernimmt, wird um zwei neue Methoden erweitert, um die restlichen Anforde-

rungen von Xenia zu erfüllen.

Methode »insertRow«

Durch die Methode insertRow() kann die Klasse eine Methode zur Verfügung stellen, die es dem Gästebuch Xenia erlaubt, eine Tabellenzeile einzufügen. Die Methode lässt sich mit einer SQL-Anweisung einfach umsetzen. Dazu verwendet die Klasse die eigene Methode update(), die sich darum kümmert, die Datenbankverbindung zu halten, ein Datenbank-Statement zu erzeugen und die Anfrage abzusetzen.

/**

* insertRow fuegt eine Tabellenzeile ein

* @param firstName der Vorname

* @param email die E-Mail-Adresse

* @param comment der Kommentar

* @throws SQLException, wenn etwas schieflaeuft

*/

public void insertRow(String firstName,

String email,

String comment)

throws SQLException {

update(

"INSERT INTO Persons(Title,FirstName,LastName,"+

"Street,Zip,City,Country,Telephone,Email,Comment)"+

" VALUES('-','" + firstName +"','-','-','-','-',"+

"'-','-','" + email + "','"+ comment +"')");

}

Listing 17.1 Die Methode »insertRow« der Klasse »HadesDb«

Da die Vorarbeiten für die Methode schon in Kapitel 15, »Datenbankprogrammierung«, weitestgehend berücksichtigt wurden, ist die Implementierung mit der Übergabe des SQL-Befehls in Form einer Zeichenkette erledigt. Die neue Methode kann eine SQL-Exception erzeugen, die von der Klasse abgefangen werden muss, die sie verwendet.

489

17

Dynamische Websites

Methode »getComment«

Bislang gab es in der Datenbankschnittstelle von Charon keine Methode, mit der ein Kommentar ermittelt werden konnte. Das lag daran, dass diese Funktion bisher nicht benötigt wurde – das Adressbuch Nestor hatte keinen Bedarf an einer solchen Funktion.

Mit der Komplettierung von Xenia ändert sich das, da der Anwender jetzt auch Kommentare in das Webformular eingeben soll, die persistent in der Datenbank gespeichert werden. Dies wird mit der Methode getComment() erreicht, die wie die anderen Zugriffsmethoden aus Kapitel 15, »Datenbankprogrammierung«, aufgebaut ist.

/**

* Ermittelt den Kommentar

* @param index

* @return

* @throws SQLException

*/

public String getComment(int index) throws SQLException {

Statement statement = null;

ResultSet resultSet = null;

int colMax;

Object record = null;

String id = new Integer(index - 1).toString();

statement = connection.createStatement();

resultSet = statement.executeQuery("SELECT * "+

"FROM Persons WHERE id = " + id);

resultSet.next(); // Cursor zur ersten Zeile

record = resultSet.getObject(11); //

Position 10: Kommentar

statement.close(); // ResultSet ab jetzt leer

return record.toString();

} // getComment

Listing 17.2 Die Methode »getComment« der Klasse »HadesDb«

17.2.4 Implementierung der Klasse »Charon«

Die Klasse Charon ist die eigentliche Fassade, die als dünne Schicht über HadesDb liegt. Sie befreit die Programme Nestor und Xenia davon, sich mit den Datenbankdetails zu befassen, die notwendig wären, um die Klasse HadesDb direkt anzusprechen. Hier werden Pendants zu den gerade entwickelten Methoden benötigt, die die Funktionen einfach zur der Datenbankklasse HadesDb durchschleifen.

490

Projekt »Charon«

17.2

Methode »getComment«

Diese Methode ist die Umsetzung der Methode gleichen Namens der Klasse HadesDb. Hier ist die Frage, ob die Exception, die in der Klasse HadesDb ausgelöst wird, abgefangen oder weitergereicht werden soll. Die momentane Implementierung fängt die Exception in einem eigenen Try/Catch-Block ab und reicht sie nicht weiter.

/**

* getComment ermittelt den Kommentar

* @param index Kennung der Person

* @return der Kommentar

*/

public String getComment(int index) {

String comment = null;

try {

comment = database.getComment(index);

}

catch (SQLException ex) {

ex.printStackTrace();

}

return comment;

}

Listing 17.3 Die Methode »getComment« der Klasse »Charon«

Methode »insertRecord«

Auch diese Methode ist eine 1:1-Umsetzung der verwandten Methode insertRow() aus HadesDb. Sie schleift wie die Methode zuvor nur die Parameter zu der Klasse durch, die die eigentliche Arbeit mit der Datenbank erledigt.

/**

* insertRecord fuegt einen Datensatz ein

* @param firstName der Vorname

* @param email die E-Mail-Adresse

* @param comment der Kommentar

* @throws SQLException, wenn etwas schieflaeuft

*/

public void insertRecord(String firstName,

String email,

String comment)

throws SQLException {

database.insertRow(firstName, email, comment);

}

Listing 17.4 Die Methode »insertRecord« der Klasse »Charon«

491

17

Dynamische Websites

Mit dieser Methode ist die Arbeit an der Datenbankbibliothek Charon abgeschlossen. Die Methoden können in Xenia integriert werden.

17.3

Projekt »Xenia«

17.3.1

Anforderungen

Das Projekt Xenia verwendet die Xenia-Oberfläche aus Kapitel 14, »Weboberflächen mit Servlets«, in Kombination mit der Datenbankbibliothek Charon des Kapitels 15, »Datenbankprogrammierung«, und der Datenbank Hades. Die Anforderungen lassen sich leicht auf einen Nenner bringen: Die Gäste sollen jetzt persistent (dauerhaft) gespeichert werden.

17.3.2 Analyse und Design

Da Xenia nicht in dem Maße wie das Parallelprojekt Nestor geändert werden muss, ist ein Softwaredesign nicht mehr notwendig, wohl aber einige Überlegungen zur Integration. Um die Anforderungen zu erfüllen, müssen mehrere Änderungen am Projekt vollzogen werden:

왘

Implementierung der neuen Methoden

왘

Integration der Datenbankbibliothek Charon

왘

Integration der Datenbank Hades

왘

Integration der Datenbank-Properties

왘

Integration der Bibliothek HSQLDB

Damit die Gäste permanent in der Datenbank gespeichert werden, ist es erforderlich, dass Charon eine Methode bekommt, die neue Datensätze anlegt. Das betrifft nur die Klasse NewGuest.

17.3.3 Implementierung der Klasse »NewGuest«

Um die Eingaben des Anwenders weiterzureichen, wertet die Methode doPost() der Klasse NewGuest den Parameter request des Servlets aus. Mit Hilfe dieses Parameters kann die Methode die Felder des HTML-Formulars abfragen, die eine entsprechende Kennung besitzen. Die Klasse HttpServletRequest besitzt dazu eine Methode getParameter(), der man die Kennung des HTML-Widgets in Form einer Zeichenkette übergibt.

492

Projekt »Xenia«

17.3

/**

* Die HTTP-Anforderung Post bearbeiten

* @param request die Anforderung

* @param response die Antwort

* @throws ServletException

* @throws IOException

*/

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType(CONTENT_TYPE); // MIME-Typ setzen

PrintWriter out = response.getWriter();

printHeader(out);

printThankYouMsg(out);

try {

new Charon().insertRecord(

request.getParameter("Firstname"),

request.getParameter("Email"),

request.getParameter("Comment"));

}

catch (SQLException ex) {

System.out.println("Xenia: " + ex);

}

printFooter(out);

}

Listing 17.5 Die Methode »doPost« der Klasse »NewGuest«

Um diese Daten an die Datenbankbibliothek Charon weiterzureichen, genügt es, ein anonymes Objekt anzulegen und dessen Methode insertRecord() aufzurufen.

Den Rest erledigt Charon von selbst, ohne dass sich das Servlet um Datenbanktreiber und dergleichen kümmern muss.

17.3.4 Implementierung der Klasse »GuestList«

Infolge der Änderungen an der Schnittstelle der Datenbankbibliothek und der Erweiterung um die Fähigkeit, Kommentare zu speichern, kann jetzt auch die Gästeliste die tatsächlich eingegebenen Kommentare aus der Datenbank anzeigen.

Dazu müssen Sie lediglich die For-Schleife um eine Abfrage erweitern.

/**

* Gibt die Tabelle aus

* @param out

* @throws IOException

*/

493

17

Dynamische Websites

public void printGuestList(PrintWriter out)

throws IOException {

Charon dbLayer = new Charon(); // Datenbankbibliothek

out.println("<table id='guestlist'

align='left' cellspacing='5'

border='0' cellpadding='7'>");

out.println("<tr bgcolor='#666699'>");

out.println("<th width='56'>

<div align='left'>

<code>Vorname</code>

</div></th>");

out.println("<th width='136'>

<div align='left'>

<code>E-Mail</code>

</div></th>");

out.println("<th width='531'>

<div align='left'>

<code>Kommentar</code>

</div></th>");

out.println("</tr>");

// Liste aus der Datenbank:

for (int i = 1; i <= dbLayer.getLastRecord(); i++) {

out.println("<tr bgcolor='#CCCCCC'>");

out.println("<td><div align='left'><code>"+

dbLayer.getFirstName(i)+

"</code></div></td>");

out.println("<td> <div align='left'><code>"+

dbLayer.getEmail(i)+

"</code></div></td>");

out.println("<td>

<div align='left'><code>"+

dbLayer.getComment(i)+

"</code></div></td>");

out.println("</tr>");

}

out.println("</tr>");

out.println("</table>");

}

Listing 17.6 Die Methode »printGuestList« der Klasse »GuestList«

494

Projekt »Xenia«

17.3

17.3.5 Änderungen am Projektverzeichnis

Die Programmierarbeiten sind leider nicht die einzige Umstellungsarbeit, die das Projekt Xenia auf dem Weg zu einer dynamischen Website erdulden muss. Sie müssen auch die Struktur des Projektverzeichnisses umstellen beziehungsweise ergänzen, damit der Webserver Datenbank, Properties sowie Bibliotheken findet.

Während dies bei Java Applications von der virtuellen Maschine ausgeführt wird, ist die Laufzeitumgebung von Servlets und JavaServer Pages ein Webserver. Ich habe mich beim Xenia-Projekt für den nicht mehr aktuellen, aber frei verfügbaren Apache/Tomcat-Webserver in der Version 3.3 entschieden. Um ihn für ein Datenbank-Servlet einzurichten, sind einige minimale Kenntnisse notwendig.

Abbildung 17.2 Die erforderlichen Änderungen am Projektbaum

Properties

Die Charon-Bibliothek holt sich ihre Informationen über Datenbank, Datenbanktreiber, Anwender und Passwort aus der Properties-Datei Db.properties, die sich als Vorlage im Unterverzeichnis prp/db des Projekts Charon befindet. Sie müssen diese Datei in das Tomcat-Verzeichnis kopieren, wo sich das Arbeitsverzeichnis des Webservers befindet.

495

17

Dynamische Websites

Integration der Datenbank

Nachdem das erfolgt ist, müssen die Datenbanktabellen der relationalen Datenbank hsqldb in das Unterverzeichnis des Webservers Tomcat kopiert werden. Erst danach ist es überhaupt möglich, auf Tabellen und Datensätze zuzugreifen.

Datenbankbibliothek »Charon«

Die neue Bibliothek Charon mit dem Dateinamen charon.jar muss sich nur im Klassenpfad befinden und kann im Unterverzeichnis ch15/jar verbleiben.

Datenbankbibliothek und JDBC-Treiber »hsqldb«

Ebenso wie bei der Charon-Bibliothek ist es auch hier nicht erforderlich, den Datenbanktreiber und die HSQLDB-Bibliothek in das Xenia-Projektverzeichnis zu kopieren. Sie befinden sich im Ordner ch15/lib und sollten dort bleiben.

Integration der Servlet-Bibliothek

Die Servlet-Bibliothek muss in das Projektverzeichnis aufgenommen werden, damit die Servlet-Klassen überhaupt zur Verfügung stehen. Abbildung 17.2 zeigt eine Zusammenfassung der notwendigen Bibliotheken und wo sie sich in beiden Verzeichnissen befinden.

17.3.6 Test

Für einen ersten Test der neuen Methoden können Sie wieder die Testtreiber des Charon-Projekts einsetzen. Sie sind in der Lage, eine neue Datenbank mit neuen Tabellen sowie Datensätzen anzulegen.

Ist das erfolgt, müssen Sie den Webserver starten, damit HTTP-Services auf Ihrem lokalen Computer (Host) zur Verfügung stehen. Danach steht Ihnen ein localhost zur Verfügung, und Sie können folgende Adresse in einen Webbrowser eingeben: http://localhost:8080/servlet/net.steppan.app.xenia.NewGuest

Daraufhin müsste das Webformular im Browser erscheinen (Abbildung 17.3).

Geben Sie einen neuen Gast ein, indem Sie das Formular ausfüllen, und klicken Sie auf Senden. Das Formular wird nun an den Server geschickt, der daraufhin den neuen Gast einträgt und, wie in Abbildung 17.4 zu sehen ist, mit einer Mitteilung antwortet.

496

Projekt »Xenia«

17.3

Abbildung 17.3 Das Webformular von »Xenia« im Internet Explorer

Abbildung 17.4 Das Servlet antwortet mit einer Mitteilung.

Sie können nun überprüfen, ob der neue Gast in der Gästeliste erscheint. Geben Sie dazu folgende Webadresse ein:

497

17

Dynamische Websites

http://localhost:8080/servlet/net.steppan.app.xenia.GuestList

Danach müsste sofort eine neue Gästeliste erscheinen, die auch diesen neuen Gast beinhaltet (Abbildung 17.5).

Abbildung 17.5 Die Gästeliste von »Xenia« im Internet Explorer

17.3.7 Verteilung

Die Verteilung eines solchen Datenbank-Projekts ist nicht gerade einfach. Sie erfordert in jedem Fall den Beistand eines Webadministrators Ihres Internetpro-viders. Er kann Ihnen sagen, in welche Verzeichnisse des Application Servers (Kapitel 22, »Werkzeuge«) beziehungsweise des Webservers (beispielsweise Apache/Tomcat) Ihre Projektdateien verteilt werden müssen.

Zusätzlich steht Ihnen ein War-Archiv (Webarchiv) im gleichnamigen Ordner des Projekts zur Verfügung. Es muss in das Verzeichnis des Webcontainers gelegt werden, das in den Grundeinstellungen festgelegt wurde. Das Webarchiv erleichtert die Verteilung des Bytecodes von größeren Projekten, weil es sie in einem Archiv zusammenfasst.

498

Zusammenfassung

17.4

17.4

Zusammenfassung

Mit diesem Kapitel endet das Projekt des Gästebuchs Xenia. Im Gegensatz zu Nestor ist nur die Bibliothek Charon integriert worden. Damit war es ohne Änderungen an der Schnittstelle möglich, die Datenhaltung auf eine relationale Datenbank umzustellen.

Das Projekt Xenia besteht aus zwei Teilen: der Datenbankbibliothek Charon und der Oberfläche Xenia. Diese setzt sich aus zwei Servlets zusammen: einer Gästeliste und einem Formular sowie einem Mitteilungsdialog.

17.5

Aufgaben

17.5.1

Fragen

1. Was sind statische Webseiten?

2. Worin besteht der Vorteil von dynamischen Websites?

3. Mit welcher Servlet-Methode wertet man Benutzereingaben aus?

4. Wie funktioniert das Einfügen eines Datensatzes beim Projekt Charon?

17.5.2 Übungen

1. Schreiben Sie die Testtreiber von Charon so um, dass sie die neuen Funktionen insertRecord() und insertRow() verwenden.

2. Verändern Sie die Methode printThankYouMsg() der Klasse NewGuest so, dass der Anwender einen persönlichen Dank erhält, wenn er sich in das Gästebuch eingetragen hat. Die Mitteilung soll so aussehen:

Sie wurden in mein Gästebuch eingetragen

<Vorname>, vielen Dank für Ihren Besuch

3. Ersetzen Sie <Vorname> durch die Zeichenkette, die der Anwender eingegeben hat. Orientieren Sie sich dabei an der Methode doPost(), die die Eingaben des Anwenders ebenfalls auswertet.

Die Lösungen zu den Aufgaben finden Sie in Kapitel 20 ab Seite 537.

499

TEIL IV

Lösungen

In diesem Teil finden Sie die Musterlösungen zu den Aufgaben des ersten Teils (Kapitel 18), des zweiten Teils (Kapitel 19) und des dritten Teils (Kapitel 20).

»Die Welt ist voller Rätsel, für dieses Rätsel aber ist der Mensch die

Lösung.« (Joseph Beuys)

18

Lösungen zu Teil I

18.1

Digitale Informationsverarbeitung

18.1.1

Zahlensysteme

1. Woher kommt der Name Digitalcomputer?

Ein Digitalcomputer kann nur mit Digitalzahlen (Binärzahlen) rechnen, daher auch sein Name.

2. Warum arbeiten heutige Digitalcomputer mit Binärzahlen?

Ein Digitalcomputer besteht aus primitiven Bauelementen, die nur zwei Zu-stände speichern können. Aus diesem Grund ist die Muttersprache des Digitalcomputers das Digitalsystem.

3. Welchen Vorteil bietet das Hexadezimalsystem bei der Darstellung von Binärzahlen?

Hexadezimalzahlen lassen sich sehr leicht in Binärcode umrechnen. Jede Stelle einer Hexadezimalzahl entspricht vier Bit.

4. Wandeln Sie die Hexadezimalzahl 7D3 manuell in eine Dezimalzahl um. Beschreiben Sie den Lösungsweg.

Jede Stelle der Hexadezimalzahl entspricht einer Potenz zur Basis 16. Das bedeutet 7D316 = (7 * 162 + 13 * 161 + 3 * 160)10 = (1792 + 208 + 3) = 200310.

Die Hexadezimalzahl 7D3 entspricht der Dezimalzahl 2003.

18.1.2

Informationseinheiten

1. Was ist die kleinste Informationseinheit, die ein Computer verarbeitet?

Die kleinsten Informationseinheit, die ein Computer verarbeiten kann, ist das Bit.

503

18

Lösungen zu Teil I

2. Wie viele Bits haben Sie zur Darstellung der Hexadezimalzahl 7D3 (Kapitel 1,

»Digitale Informationsverarbeitung«, Aufgabe 4) benötigt?

Jede Stelle einer Hexadezimalzahl entspricht vier Bit, daher benötigt die Darstellung einer dreistelligen Hexadezimalzahl 12 Bit Speicherplatz.

3. Wie viele Bytes sind ein KByte?

Ein KByte entspricht 1024 Byte.

4. Wie kommt es zu der ungewöhnlichen Schreibweise von KByte?

Durch die Großschreibung des Faktors Kilo wollte man Verwechslungen mit dem kleingeschriebenen physikalischen Faktor kilo = 1000 vermeiden.

18.1.3

Zeichenkodierung

1. Wofür benötigt man Codetabellen?

Computer speichern alle Informationen im Binärformat. Dieses Format muss erst als Zeichen interpretiert, das heißt übersetzt werden. Dabei muss man festlegen, welche Binärzahl welchem Zeichen entspricht. Dies geschieht durch Übersetzungstabellen, die einem Code entsprechen.

2. Was sind die großen Vorteile des Unicodes?

Unicode hat einen 16 Bit großen Wertebereich, der ausreicht, um alle Zeichen aller Landessprachen darzustellen. Da er international normiert ist, sieht ein Unicode-Text auf jedem beliebigen Computer, der Unicode versteht, absolut gleich aus. Da Java-Programme Unicode beispielsweise zur Darstellung ihrer grafischen Oberflächen verwenden, lassen sich deren Oberflächen leicht internationalisieren.

18.1.4 Kodierung logischer Informationen

1. Welche logischen Verknüpfungen gibt es?

Es gibt drei Arten: die Und-Funktion, die Oder-Funktion und die Nicht-Funktion.

2. Wie lautet das Ergebnis von folgendem Ausdruck: 1 ∧ (0 ∨ 1)?

1 ∧ (0 ∨ 1) = 1 ∧ 1 = 1

504

Programmiersprachen

18.2

18.2

Programmiersprachen

18.2.1 Programmiersprachen der ersten Generation

1. Wie nennen sich Programmiersprachen der ersten Generation?

Die Programmiersprache der ersten Generation ist die Maschinensprache.

2. Woher stammt ihr Name?

Die Maschinensprache ist die eigentliche Sprache des Computers (der Maschine).

3. Weshalb programmiert man heute nicht mehr mit Sprachen der ersten Generation?

Die Maschinensprache ist das Binärformat eines Programms für einen speziellen Computer und deshalb praktisch nicht portabel oder nur schwer portierbar. Außerdem ist die Sprache relativ schwer verständlich, da sie nicht mit symbolischen Informationen arbeitet. Die Entwicklung von Programmen in Maschinensprache ist zudem sehr unproduktiv, da die Sprache aus sehr leistungsarmen Befehlen besteht.

18.2.2 Programmiersprachen der zweiten Generation

1. Nennen Sie die drei wichtigsten Vorteile der Assembler-Sprache gegenüber den Hochsprachen.

Erster Vorteil: Schnelligkeit der Programme. Zweiter Vorteil: weniger Haupt-speicherbedarf. Dritter Vorteil: geringerer Bedarf an Festplattenkapazität. Ein anderer Vorteil wäre die unbegrenzte Flexibilität.

2. Für welche Software setzt man heute noch die Assembler-Sprache ein?

Für die Treiber- und Spieleprogrammierung sowie für geschwindigkeitskritische Teile des Betriebssystems.

3. Was sind die drei wesentlichen Vorteile von Hochsprachen gegenüber der Assembler-Sprache?

Bessere Portabilität, höhere Produktivität (mächtigere Befehle) und vergleichsweise gute Verständlichkeit.

505

18

Lösungen zu Teil I

18.2.3 Programmiersprachen der dritten Generation

1. Was versteht man unter portablen Computerprogrammen?

Portable Programme lassen sich leicht von einem Computersystem auf ein

anderes übertragen.

2. Nennen Sie drei Programmiersprachen der dritten Generation.

Beispielsweise C, Pascal und Java (aber auch COBOL, FORTRAN, C++ und C#

wären richtig).

18.3

Objektorientierte Programmierung

18.3.1 Fragen

1. Worin unterscheiden sich Klassen von Objekten?

Klassen sind der Bauplan für Objekte. Ein Programm besteht aus einem oder mehreren Objekten.

2. Wie unterscheiden sich Objekte der gleichen Klasse voneinander?

Objekte der gleichen Klasse unterscheiden sich nur durch ihre Attribute, und zwar in einer bestimmten Art von Attribut, dem Zustand.

3. Was bedeutet der Begriff »Basisklasse«?

Basisklassen bilden die Grundlage für andere Klassen, die von ihnen abgeleitet sind. Sie sind Elternklassen.

4. Was bedeutet der Begriff »abgeleitete Klasse«?

Eine abgeleitete Klasse stammt von einer Basisklasse ab. Das Verhältnis von Basisklasse zu abgeleiteter Klasse ist analog zu dem von Eltern zu Kindern.

5. Wie verständigen sich Objekte untereinander?

Objekte kommunizieren über Botschaften miteinander.

6. Welche Arten von Beziehungen gibt es, und wie unterscheiden sie sich?

Es gibt Vererbungsbeziehungen und Assoziationen. Bei Assoziationen unterscheidet man nochmals zwischen einer einfachen Assoziation, einer Aggregation und einer Komposition.

506

Objektorientierte Programmierung

18.3

7. Worin liegt die Gefahr bei Vererbungsbeziehungen?

Vererbung pflanzt sich durch alle abgeleiteten Klassen fort. Bei Anpassungen von Basisklassen (zum Beispiel infolge von Designfehlern) muss die Software unter Umständen massiv geändert werden.

18.3.2 Übungen

1. Zeichnen Sie zur Abbildung 18.1 eine Klasse mit Klassennamen, Attributen und Methoden.

Abbildung 18.1 Ein Objekt mit verschiedenen Merkmalen und Fähigkeiten Eine allgemeine Klasse für dieses Objekt wäre die Klasse Auto (oder auch die Klasse Fahrzeug). Fahren und Hupen sind Verben und somit Methoden, während Hubraum, Höchstgeschwindigkeit und Geschwindigkeit Attribute sind. Das Attribut Geschwindigkeit ist ein Zustand, der (eigentlich) durch die Methoden Beschleunigen und Verzögern gesteuert werden sollte.

Abbildung 18.2 Die Klasse »Auto« als Lösung

2. Zeichnen Sie zur Abbildung 18.3 eine gemeinsame Basisklasse und aus den zwei Objekten zwei abgeleitete Klassen mit Klassennamen, Attributen und Methoden.

507

18

Lösungen zu Teil I

Abbildung 18.3 Zwei verschiedene Objekte

Aus den zwei Objekten lassen sich zwei Klassen erahnen, die Klasse Omnibus und die Klasse Pkw. Eine möglichst allgemein gehaltene Basisklasse wäre die Klasse Fahrzeug. Wie beim vorangegangenen Beispiel ist das Attribut Höchstgeschwindigkeit ein Zustand, der (eigentlich) durch die Methoden Beschleunigen und Verzögern gesteuert werden sollte.

Abbildung 18.4 Die neue Basisklasse »Fahrzeug«

3. Zeichnen Sie zur Abbildung 18.5 ein Klassendiagramm mit einer Basisklasse und drei abgeleiteten Klassen, die in Beziehung zur Basisklasse stehen.

508

Objektorientierte Programmierung

18.3

Abbildung 18.5 Drei verschiedene Objekte

Bei der Lösung dieser Aufgabe ist wichtig, dass nur die Attribute Höchstgeschwindigkeit und Geschwindigkeit vererbt werden. Aus der Vorlage mit den drei Objekten ist nicht zu entnehmen, dass die Basisklasse über weitere Methoden verfügen soll. Die drei abgeleiteten Klassen erben beide Attribute. Sie müssen aber selbst für ihre Methode zur Fortbewegung sorgen. Diese kann nicht vererbt werden, weil die drei Objekte über verschiedene Arten der Fortbewegung verfügen.

Abbildung 18.6 Die Basisklasse »Verkehrsmittel« mit drei abgeleiteten Klassen 509

»Künstler ist einer, der aus einer Lösung ein Rätsel machen kann.«

(Karl Kraus)

19

Lösungen zu Teil II

19.1

Sprache Java

19.1.1

Fragen

1. Wann ist die Programmiersprache Java veröffentlicht worden?

Im Jahr 1995 ist Java veröffentlicht worden. Die erste Java-Version 1.0 erschien 1996.

2. Über welche Sprachelemente verfügt Java?

왘

Schlüsselwörter

왘

Datentypen

왘

Methoden

왘

Operatoren

왘

Anweisungen

왘

Kommentare

3. Wozu dient eine Deklaration?

Eine Deklaration dient dazu, einer Variablen einen Typ zuzuordnen. Durch die Deklaration sind zwei Eigenschaften der Variablen unveränderlich festgelegt: 왘

Wertebereich

왘

Rechenoperationen

4. Wie ist eine Deklaration aufgebaut?

Die Deklaration besteht in Java aus dem Datentyp, dem der Bezeichner folgt.

5. Was sind einfache Datentypen?

Es sind reine Daten ohne Methoden.

511

19

Lösungen zu Teil II

6. Wie unterscheiden sie sich von Klassen?

Sie verfügen nicht über die Klassenmerkmale wie Methoden.

7. Worin liegen ihre Vorteile?

Sie benötigen wenig Speicherplatz und besitzen nicht den Ballast mancher Klassen. Wenn es nur darum geht, einen Wert zu speichern, sind sie ideal.

8. Was ist eine streng typisierte Sprache?

Bei einer streng typisierten Sprache wird darauf geachtet, dass Datentypen innerhalb des Programms zusammenpassen und primitive Fehler bei Zuweisungen somit weitestgehend ausgeschlossen sind.

9. Warum sind Java-Arrays halbdynamisch?

Da die Anzahl der Elemente eines Arrays nicht zum Zeitpunkt der Deklaration feststehen muss, wohl aber bei der Erzeugung, sind Arrays halbdynamisch.

10. Was ist ein benutzerdefinierter Datentyp?

Ein benutzerdefinierter Datentyp ist ein Datentyp, den man selbst gestalten kann und der sich von vordefinierten (eingebauten) Datentypen unterscheidet.

Eine Klasse ist ein Beispiel für einen benutzerdefinierten Datentyp.

11. Wozu benötigt man benutzerdefinierte Datentypen?

Natürliche Objekte können durch primitive oder vordefinierte Datentypen nur unzulänglich abgebildet werden. Eine bessere Form der Modellierung der natürlichen Welt erreichen benutzerdefinierte Datentypen wie Klassen.

12. Welche Arten von Klassen gibt es in Java?

Es gibt normale (konkrete) Klassen, abstrakte Klassen, Interfaces und seit Java 5 (JDK 1.5) auch generische Klassen.

13. Wie kann man verhindern, dass von Klassen Objekte erzeugt werden?

Man verhindert dies, indem man Klassen als abstract deklariert.

14. Wozu dient ein Konstruktor?

Zum Erzeugen eines Objekts.

15. Wie unterscheidet er sich von einer normalen Methode?

Die Methode besitzt keinen konkreten Rückgabewert im Methodenkopf.

512

Sprache Java

19.1

16. Wieso benötigt man Akzessoren und Mutatoren?

Diese beiden Methodenarten dienen dazu, die Zustände des Objekts zu erfragen oder zu verändern.

17. Welche Bedeutung hat der Cast-Operator?

Er führt eine Typkonvertierung durch.

18. Worin besteht der Unterschied zwischen einer mathematischen Gleichung und einer Programmzuweisung?

Bei einer mathematischen Gleichung sind beide Seiten gleich, bei einer Zuweisung sind sie verschieden. Eine Zuweisung ist eine Abbildungsvorschrift.

19. Was sind statische Importe, und wozu verwendet man sie?

Zum Import von statischen Methoden. Sie erhöhen die Lesbarkeit des Pro-

grammquelltextes, da es nicht mehr erforderlich ist, den Klassenbezeichner vor den Methodennamen zu schreiben.

19.1.2

Übungen

1. Schreiben Sie auf Basis des Listings 4.21 eine Klasse namens Circle.

1: //Beispielprogramme/Loesungen_Teil_II/Ex01

2: package language;

3:

4: public class Circle extends Shape {

5:

6:

public Circle() {

7:

}

8: }

Listing 19.1 »Circle« erweitert die Klasse »Shape«.

2. Ergänzen Sie Circle um eine Objektvariable radius.

1: //Beispielprogramme/Loesungen_Teil_II/Ex02

2: package language;

3:

4: public class Circle extends Shape {

5:

private double radius = 0;

6:

7:

public Circle() {

8:

}

9: }

Listing 19.2 »Circle« mit einem »Radius«

513

19

Lösungen zu Teil II

3. Ergänzen Sie Circle um eine Konstante Pi.

1: //Beispielprogramme/Loesungen_Teil_II/Ex03

2: package language;

3:

4: public class Circle extends Shape {

5:

private double radius = 0;

6:

private final static double pi = 3.141592654;

7:

8:

public Circle() {

9:

}

10: }

Listing 19.3 »Circle« jetzt zusätzlich mit der Kreiszahl »pi«

4. Ergänzen Sie folgende Anweisungen um eine komplette Klasse mit einer Methode main(), und berechnen Sie, was das Programm ausgeben wird.

1: //Beispielprogramme/Loesungen_Teil_II/Ex04

2: package language;

3:

4: public class Operator {

5:

6:

public static void main(String[] args) {

7:

int i;

8:

i = 10;

9:

int j;

10:

j = 10;

11:

j = i++;

12:

System.out.println(j);

13:

i = 10;

14:

j = 10;

15:

j = ++i;

16:

System.out.println(j);

17:

}

18: }

Listing 19.4 Die neue Klasse »Operator«

Das Programm gibt Folgendes aus:

10

11

514

Sprache Java

19.1

5. Berechnen Sie, was die Anweisung ausgeben wird.

1: //Beispielprogramme/Loesungen_Teil_II/Ex05

2: package language;

3:

4: public class Bool {

5:

6:

public static void main(String[] args) {

7:

8:

boolean i = true;

9:

boolean j = false;

10:

System.out.println(i || j);

11:

12:

}

13: }

Listing 19.5 Ausgabe eines Wahrheitswerts

Das Programm gibt Folgendes aus:

true

6. Berechnen Sie, was die Anweisung ausgeben wird.

1: //Beispielprogramme/Loesungen_Teil_II/Ex06

2: package language;

3:

4: public class Fin {

5:

static final int i = 10;

6:

7:

public static void main(String[] args) {

8:

i++;

9:

System.out.println(i);

10:

}

11: }

Listing 19.6 Dieses Programm gibt nichts aus.

Das Programm gibt gar nichts aus, denn die Variable i ist als final deklariert worden und kann infolgedessen nicht mehr verändert werden.

515

19

Lösungen zu Teil II

19.2

Entwicklungsprozesse

19.2.1 Fragen

1. In welchen Phasen verläuft der Entwicklungsprozess?

In drei beziehungsweise vier Phasen. Fasst man ihn in drei Phasen zusammen, heißen diese Planung, Konstruktion und Betrieb.

2. Nennen Sie die Hauptaktivitäten der einzelnen Phasen.

Während der Planungsphase ist die Hauptaktivität, die Anforderungen aufzunehmen. Während der Konstruktion sind die Hauptaktivitäten primär Analyse und Design, Implementierung und Test, während sich die Betriebsphase mit Verteilung und Wartung beschäftigt.

3. Welche Aufgaben hat ein Compiler?

Ein Compiler übersetzt den Quelltext in Bytecode (Java-Compiler) oder Maschinencode (Native-Code-Compiler).

4. Welche Aufgaben hat ein Debugger?

Ein Debugger dient zur Fehlersuche.

5. Wozu dient die Archivierung mit dem Werkzeug jar?

Zur leichteren Verteilung mehrerer Klassen.

19.2.2 Übungen

1. Schreiben Sie das Testprogramm wie folgt um:

1: //Beispielprogramme/Loesungen_Teil_II/Ex07

2: package development;

3:

4: public class TestApp {

5:

6:

public static void main(String[] arguments) {

7:

Rectangle rect = new Rectangle();

8:

rect.setDimension(10, 50);

9:

System.out.println("Fl\u00fcche = " +

10:

rect.getArea() + " m\u00B2");

11:

}

12: }

Listing 19.7 Das neue Testprogramm »TestApp« für die Klasse »Rectangle«

516

Entwicklungsprozesse

19.2

2. Kompilieren Sie das neue Testprogramm mit dem Java-Compiler!

Abbildung 19.1 Das Beispiel wird kompiliert.

3. Wie starten Sie das Programm?

Mit dem Java-Interpreter über java development/TestApp.

4. Welche Ausgabe erzeugt das Programm?

Fläche = 500 m2

5. Erklären Sie den Ablauf des Testprogramms!

Das Programm erzeugt zunächst ein neues Objekt rect der Klasse Rectangle: Rectangle rect = new Rectangle();

Danach ruft es die Methode setDimension() des Objekts rect auf und übergibt die Werte height = 10 und width = 50 an das Objekt und verändert somit

seinen Zustand:

rect.setDimension(10,50);

Zum Schluss gibt das Programm die Fläche aus, indem es zunächst die Methode getArea() des Objekts aufruft. Der erhaltene Wert wird zusammen mit dem Text »Fläche =« und »m

u00B2« von der Methode println() auf ein Terminal ausgegeben:

System.out.println("Fläche = " + rect.getArea() +

" m\u00B2");

Danach beendet sich das Programm automatisch.

6. Starten Sie das Programm mit dem Java-Debugger, und ermitteln Sie die Werte in der Methode getArea().

Die Werte in der Methode getArea() betragen für height = 10 und für width =

50.

517

19

Lösungen zu Teil II

19.3

Plattform Java

19.3.1 Fragen

1. Was unterscheidet Bytecode von nativem Maschinencode?

Bytecode ist kein Code für eine reale, sondern für die virtuelle Java-Maschine.

Der Bytecode kann im Gegensatz zum Maschinencode nicht ohne Hilfsmittel von einem Computer ausgeführt werden.

2. Warum ist der Bytecode portabel?

Bytecode besteht aus Anweisungen für eine virtuelle Maschine und enthält keine Anweisungen für eine reale Maschine. Er ist somit maschinenunabhängig und läuft auf jeder virtuellen Maschine, die die Sun-Spezifikationen erfüllt.

Die Hersteller der virtuellen Maschinen übernehmen die Portierung für den Java-Programmierer.

3. Aus welchen Teilen besteht die Java Runtime Environment (JRE)?

Aus der virtuellen Maschine, ihren nativen Bibliotheken und den Java-Klassenbibliotheken.

4. Was ist eine virtuelle Maschine, und wie funktioniert sie?

Eine virtuelle Maschine ist ein kleiner künstlicher Computer, der einen echten Computer nachahmt. Er führt den Java-Bytecode aus, emuliert ihn oder übersetzt ihn in Maschinensprache.

5. Auf welche Arten kann die virtuelle Maschine Java-Programme ausführen?

Im Interpreter-Modus, mit einem Just-in-Time-Compiler oder mit Hotspot-

Technologie.

6. Wie funktioniert die Speicherverwaltung von Java-Programmen?

Die Speicherverwaltung funktioniert automatisch. Nicht mehr benötigte Objekte entsorgt der Garbage Collector.

7. Was ist bei der Verteilung von Java-Programmen zu beachten?

Dass zwei Voraussetzungen stimmen: eine kompatible virtuelle Maschine und die komplette Übertragung des Bytecodes.

19.3.2 Übungen

Übersetzen Sie folgendes Beispiel, disassemblieren Sie es, und versuchen Sie, die Veränderungen der OpCodes nachzuvollziehen.

518

Gesetzmäßigkeiten

19.4

Method platform.Rectangle()

0 aload_0

1 invokespecial #1 <Method java.lang.Object()>

4 return

Method void main(java.lang.String[])

0 dconst_1

1 dstore_1

2 ldc2_w #2 <Double 5.0>

5 dstore_3

6 dload_1

7 dload_3

8 dmul

9 dstore 5

11 return

Listing 19.8 Der disassemblierte Bytecode

Da das Programm keine Integer- und Long-, sondern Double-Werte verwendet hat, haben sich auch die OpCodes entsprechend verändert: Zum Beispiel heißt es hier dconst anstelle von iconst.

19.4

Gesetzmäßigkeiten

19.4.1 Fragen

1. Welche Kapselungsstärken gibt es in Java?

Es gibt vier Kapselungsstärken: public, protected, default und private.

2. Welchen Zugriff bietet der Default-Bereich?

Klassen, Methoden und Variablen sind nur innerhalb des Packages gültig.

3. Welchen Zugriff bietet der Protected-Bereich?

Methoden und Variablen, die öffentlich geschützt deklariert sind, sind in aktuellen, in abgeleiteten Klassen und im selben Package sichtbar.

4. Was bedeutet das Schlüsselwort super?

Dieses Schlüsselwort dient dem Zugriff auf die Superklasse (Basisklasse).

5. Was bedeutet das Schlüsselwort this?

Unter this versteht man einen Zeiger auf das eigene Objekt. Das Schlüsselwort dient dazu, eigene Methoden und Variablen anzusprechen.

519

19

Lösungen zu Teil II

6. Wie lässt sich die Auswertungsreihenfolge eines Ausdrucks beeinflussen?

Durch Klammersetzung.

7. Warum ist eine Typkonvertierung notwendig?

Um die Typisierung von Java (temporär) zu umgehen.

8. Was bewirkt sie?

Die temporäre Umwandlung eines Typs.

9. Was müssen Sie dabei beachten?

Dass der Wertebereich nicht überschritten wird.

10. Wozu dient das Überladen von Methoden?

Es dient dazu, Polymorphie zu realisieren und Methoden mit unterschiedlichen Parametern anzubieten.

11. Welche Voraussetzungen gelten dabei?

Die Methoden müssen den gleichen Namen und den gleichen Typ besitzen.

12. Welche Methoden können Sie überschreiben, welche nicht?

Es lassen sich nur Methoden gleicher Signatur, die nicht private, final oder static sind, überschreiben.

13. Wozu dient das Verfahren?

Es dient dazu, nicht erwünschte Eigenschaften zu überlagern.

19.4.2 Übungen

1. Ergänzen Sie den Ausdruck so, dass er funktioniert.

1: //Beispielprogramme/Loesungen_Teil_II/Ex09

2: package regularity;

3: public class TestApp {

4:

public static void main(String[] arguments) {

5:

int a = 1;

6:

byte b = 1;

7:

byte c = 1;

8:

b = (byte) a;

9:

c = (byte) a;

10:

}

11: }

Listing 19.9 Zweimalige Typumwandlung in einen Byte-Wert

520

Java-Klassenbibliotheken

19.5

2. Ergänzen Sie den Ausdruck so, dass er funktioniert.

1: //Beispielprogramme/Loesungen_Teil_II/Ex10

2: package regularity;

3:

4: public class TestApp {

5:

6:

public static void main(String[] arguments) {

7:

int a = 127;

8:

for (a = 1; a <= 200; a++) {

9:

System.out.println(a);

10:

}

11:

12:

}

13: }

Listing 19.10 Der Int-Typ war die Lösung.

19.5

Java-Klassenbibliotheken

19.5.1 Fragen

1. Was sind Klassenbibliotheken?

Klassenbibliotheken sind eine Sammlung von logisch zusammengehörenden

Klassen.

2. Welche Vorteile besitzen sie?

Die Klassen einer Klassenbibliothek können von mehreren Programmierern

leicht wiederverwendet werden.

3. Wie sind die Java-Klassenbibliotheken von Sun Microsystems organisiert?

Es gibt drei Editionen: Java Standard Edition (Java SE), Java Enterprise Edition (Java EE) und Java Micro Edition (Java ME).

4. Welche Aufgabe hat das Paket java.lang?

Dieser Teil der Java SE bildet die Basis aller Java-Klassen und ist als Ergänzung der Sprache Java gedacht (daher der Name des Packages).

5. Wie unterscheidet sich Swing von AWT?

Während Swing eine reine GUI-Bibliothek ist, hat AWT eine Reihe von anderen Aufgaben. Der GUI-Anteil des AWT verwendet native Widgets (GUI-Bau-

steine), während Swing alle GUI-Komponenten emuliert.

521

19

Lösungen zu Teil II

6. Wieso besitzt das AWT auch heute noch große Bedeutung?

Viele der AWT-Klassen sind für Java-Programme unentbehrlich, wie zum Beispiel die gesamte Ereignissteuerung, die Layout-Manager oder Hilfsklassen wie Dimension.

7. Was sind Applets?

Applets sind kleine Java-Programme, die dazu gedacht waren, Webseiten zu verschönern. Sie lassen sich beispielsweise von der Klasse java.applet.Applet ableiten und werden über eine spezielle Anweisung in HTML-Seiten eingebunden und von der virtuellen Maschine eines Browsers ausgeführt.

8. Was versteht man unter Servlets?

Servlets sind Java-Programme, die HTML-Seiten erzeugen und von HttpServlet abgeleitet werden. Mit ihnen lassen sich dynamische Websites erzeugen.

9. Was ist eine verteilte Anwendung?

Eine verteilte Anwendung befindet sich in der Regel nicht nur auf einem Computer, sondern wird auf mehrere Computern verteilt. Sie besteht mindestens aus einem Client und einem Server.

19.5.2 Übungen

1. Erweitern Sie die For-Schleife beider Thread-Klassen des Beispiels 10 um folgende Anweisung:

1: //Beispielprogramme/Loesungen_Teil_II/Ex11

2: package libraries;

3: public class DownThread extends Thread {

4:

public void run() {

5:

for (int i = 0; i < 100; i++) {

6:

System.out.print(">");

7:

try {

8:

this.sleep(1);

9:

}

10:

catch (InterruptedException ex) {

11:

System.out.println("Kann nicht schlafen," +

12:

"traeume von Schafen");

13:

}

14:

}

15:

}

16: }

Listing 19.11 Erweiterung der »Thread«-Klassen durch die Methode »sleep«

522

Algorithmen

19.6

2. Werfen Sie dazu einen Blick in die Java-Dokumentation der Klasse Thread.

Abbildung 19.2 Die Java-Dokumentation der Klasse »Thread«

3. Was müssen Sie beim Einfügen der Anweisung beachten?

Die Anweisung muss von einem Try-Catch-Block umgeben sein.

4. Welche Ausgabe erzielt das Programm? Erklären Sie die Veränderung.

<<><><><><><><><><><><><><><><><><>< Die kurze Wartezeit des einen Threads reicht für den anderen aus, das Zeichen auf dem Bildschirm auszugeben. Der Wechsel zwischen den Threads findet

häufiger statt.

19.6 Algorithmen

19.6.1 Fragen

1. Definieren Sie den Begriff »Algorithmus«.

Ein Algorithmus ist ein Verfahren zur Lösung eines Problems.

2. Nennen Sie die wichtigsten Schritte bei der Entwicklung eines Algorithmus.

523

19

Lösungen zu Teil II

Anforderungen benennen, Fakten und gesuchte Größen extrahieren, einen

Grobalgorithmus entwerfen, implementieren und testen.

3. Welche Arten von Algorithmen gibt es?

왘

Sortieralgorithmen

왘

Suchalgorithmen

왘

Algorithmen zur Mustererkennung

왘

Algorithmen zur Lösung geometrischer Probleme

왘

Graphen

왘

Algorithmen für mathematische Aufgaben

19.6.2 Übungen

1. Wie müsste eine Legende für das Balkendiagramm aufgebaut sein? Entwickeln Sie dazu einen Algorithmus.

Position berechnen

Zeile ausgeben

Noch ein Wert?

Ja: Zurück zur Berechnung

Nein: Ende

Abbildung 19.3 Der Grobalgorithmus für eine Legende

2. Schreiben Sie das Collection-Programm (Listing 9.5) so um, dass es Int-Werte sortiert.

1: //Beispielprogramme/Loesungen_Teil_II/Ex12

2:

3: package algorithms;

4:

5: import java.util.Collections;

6: import java.util.List;

7: import java.util.Vector;

8:

9:

524

Algorithmen

19.6

10: public class Collection {

11:

public static void main(String[] arguments) {

12:

List<Integer> list = new Vector<Integer>();

13:

list.add(new Integer(14238));

14:

list.add(new Integer(38));

15:

list.add(new Integer(26));

16:

list.add(new Integer(123));

17:

Collections.sort(list);

18:

System.out.print("Die sortierte Liste:\n");

19:

System.out.print(list);

20:

}

21: }

Listing 19.12 Das neue Collection-Programm

525

»Übergangslösungen sind Untergangslösungen.«

(Helmut Qualtinger)

20

Lösungen zu Teil III

20.1

Konsolenprogramme

20.1.1

Fragen

1. Was ist ein Shutdown-Hook, und welchen Vorteil bringt er?

Ein Shutdown-Hook ist ein Mechanismus, um zu verhindern, dass ein Pro-

gramm beendet wird (Shutdown), ohne seine Datei sichern zu können. Das

Programm, das ihn installiert hat, wird benachrichtigt, wenn die virtuelle Maschine beendet werden soll. Das hat den Vorteil, dass das Programm noch wichtige Aufräumarbeiten erledigen kann.

2. Welche Klassen benötigen Sie, um einen solchen Hook zu installieren?

Die Klasse java.lang.Runtime.

3. Über welche Methode wertet ein Java-Programm Kommandozeilenparameter aus?

Über die Methode main().

4. Wie bestimmt es die Anzahl der Parameter?

Durch die Methode length() des String-Arrays.

5. Was versteht man unter einer Rekursion?

Den wiederholten Aufruf der gleichen Funktion oder Methode.

6. Welche Klassen der Java SE benötigen Sie, um Dateien zu kopieren?

Die Klassen java.io.File, java.io.FileInputStream, java.io.FileOutputStream und java.io.IOException.

527

20

Lösungen zu Teil III

20.1.2 Übungen

1. Was passiert bei der momentanen Transfer-Version, wenn der Anwender zu viele Parameter eingibt?

Das Programm kann den Fehler nicht abfangen und beendet sich ohne Reak-

tion.

2. Überlegen Sie sich eine Lösung dafür, und implementieren Sie diese in das Programm.

Zur Lösung des Problems muss das Switch-Statement um eine Default-Marke erweitert werden. Die Default-Marke fängt die Anzahl aller Parameter ab, die vorher nicht berücksichtigt wurden.

// Transfer

✄

default: // Fall 4: Zu viele Parameter

System.err.println("\nZu viele Parameter.\n");

helpAndTerminate(); // Fehlermeldung

break;

✄

Listing 20.1 Die Erweiterung des Programms »Transfer«

3. Ergänzen Sie das Aktivitätsdiagramm um diesen Fall.

Für diesen Fall ist es nur notwendig, Fall 1 mit dem neuen Fall zusammenzu-legen. Das Diagramm ändert sich deswegen kaum.

„

„

Abbildung 20.1 Das neue Aktivitätsdiagramm

528

Einfache Oberflächen mit Swing

20.2

20.2

Einfache Oberflächen mit Swing

20.2.1 Fragen

1. Was ist am Design des Taschenrechners grundsätzlich nicht optimal?

Es gibt mehrere Designschwächen. Grundsätzlich ist es nicht optimal, fachliche Logik wie das Rechenwerk und die Oberflächen zu verheiraten. Es gilt die Designregel »Trennung von Zuständigkeiten«. Besser wäre es also, die Rechenlogik in eine separate Klasse auszulagern.

2. Welche Klassen werden benötigt, um das Menü des Taschenrechners darzustellen?

Für die Menüleiste wird die Klasse javax.swing.JMenuBar, für die Menüs

die Klasse javax.swing.JMenu und für die Menübefehle wird die Klasse

javax.swing.JMenuItem verwendet.

3. Wie werden seine Tasten und die Anzeige angeordnet?

Über ein GridBag-Layout. Das ist eine Java-Klasse, mit deren Hilfe sich UI-Bausteine (Widgets) nach einem bestimmten Schema anordnen lassen.

4. Welches Ereignis wird bei einem Tastendruck ausgelöst?

Ein so genanntes ActionEvent. Das ist eine Klasse aus dem AWT-Package

java.awt.event.

5. Wie fängt das Programm dieses Ereignis ab?

Durch einen so genannten Listener. Ein Listener, der eine Aktion wie einen Tastendruck oder einen Mausklick abfangen soll, heißt ActionListener und ist ein Bestandteil der Klassenbibliothek AWT.

6. Wie nennt man die Methoden, die ein solches Ereignis behandeln?

Das sind so genannte Handler.

7. Erklären Sie die Überprüfung der Eingaben des Taschenrechners.

Die Eingabeüberprüfung muss stattfinden, um die Rechenlogik des Programms davor zu schützen, unsinnige Werte zu bearbeiten. Unsinnige Werte sind

zunächst alle Eingaben, die nicht von einer Zeichenkette (String) in einen mathematisch berechenbaren Wert (zum Beispiel double) konvertiert werden.

529

20

Lösungen zu Teil III

Für die Validierung der Werte gibt es zwei prinzipiell verschiedene Wege: Der erste ist die Entwicklung und Zuordnung eines Validators. Hierfür hält ein Swing-Textfeld eine entsprechende Methode bereit, der der Validator übergeben werden muss. Der andere Weg ist eine Überprüfung in der Methode, die die Datenkonvertierung vornimmt.

20.2.2 Übungen

1. Realisieren Sie eine Methode, die durch die Taste M- aufgerufen wird.

Die Methode funktioniert vollkommen analog zum Gegenstück für die Taste M+. Es findet eine Kombination aus Subtraktion und Wertzuweisung statt. Im Anschluss daran muss die Anzeige gesetzt werden, da der Anwender daran

erinnert werden soll, dass sich ein Wert im Zwischenspeicher befindet.

private void memorySubtractButtonActionPerformed(

java.awt.event.ActionEvent evt) {

// Neuen Wert vom alten subtrahieren

memory -= convertStringToDouble(display.getText());

// Anzeige setzen, dass Zusatzspeicher gefuellt ist

memoryRecallButton.setForeground(java.awt.Color.BLUE);

}

Listing 20.2 Handler für die Taste M-

2. Realisieren Sie eine Methode, die durch die Taste ± aufgerufen wird.

Für die Umsetzung dieser Methode lässt sich die Methode showResult() mit der Methode convertStringToDouble() gewinnbringend kombinieren. Letztere Methode konvertiert die aktuelle Zeichenkette, die auf der Anzeige steht.

Über eine einfache Multiplikation wird ein Vorzeichenwechsel herbeigeführt.

Anschließend muss nur noch das Ergebnis mit der Methode showResult() in eine Zeichenkette zurückkonveriert und angezeigt werden.

private void changeSignButtonActionPerformed(

java.awt.event.ActionEvent evt) {

showResult((-1) * convertStringToDouble(display.getText()));

}

Listing 20.3 Handler für die Taste ±

530

Computerspiele mit Swing

20.3

20.3

Computerspiele mit Swing

20.3.1 Fragen

1. Was ist eine JavaBean?

Eine visuell in einem GUI-Builder veränderbare Komponente. Es gibt JavaBeans, die als GUI-Bausteine dienen (visuell), und JavaBeans, die andere nichtvisuelle Aufgaben übernehmen können, wie zum Beispiel Datenbankan-bindungen.

2. Was ist ein Testtreiber?

Ein kleines Programm, das hilft, andere Programme auszutesten.

3. Welche Aufgabe erfüllt er?

Er kann zu Dauertests oder Belastungstests eingesetzt werden und ergänzt den Debugger.

4. Wie erreicht man eine individuelle Grafikausgabe auf Basis der Klasse JComponent?

Durch Überschreiben der Methode paint().

5. Welche Methode der Klasse Card reagiert auf Mausereignisse?

Die Methode mousePressed().

6. Welche Methode der Klasse GameBoard reagiert auf Mausereignisse?

Die Methode turned().

20.3.2 Übungen

Entfernen Sie aus der Methode actionPerformed() folgende Zeilen

if (e.getSource() == button1) {

dispose();

}

Kompilieren Sie das Programm danach erneut. Versuchen Sie, den Dialog mit Hilfe der Schaltfläche OK zu schließen. Probieren Sie es nun erneut mit der entsprechenden Schaltfläche des Fensterrahmens. Was passiert? Begründen Sie das Verhalten.

531

20

Lösungen zu Teil III

Das Fenster lässt sich über die Schaltfläche OK nicht schließen, weil der Aufruf der Methode dispose() fehlt. Durch dispose() wird der Dialog zerstört. Die Schaltfläche des Fensters funktioniert weiterhin, weil dieses Verhalten schon von der Basisklasse geerbt wird.

20.4 Komplexe Oberflächen mit Swing

20.4.1 Fragen

1. Was versteht man unter einem Look-and-Feel von Swing-Komponenten?

Swing-Komponenten werden emuliert und können ihr Aussehen verändern.

Es gibt verschiedene dieser Look-and-Feels, die man in einem Java-Programm auswählen kann.

2. Wie speichert Nestor seine Grundeinstellungen?

Nestor speichert seine Grundeinstellungen in Property-Dateien.

3. Was ist ein ToolTip, und wozu dient er?

Ein ToolTip ist ein kleines Fenster, das eingeblendet wird, wenn sich der Mauszeiger über einer GUI-Komponente befindet, die eine solche Schnellhilfe einblendet. Der Anwender bekommt einen kurzen Hilfetext angezeigt.

4. Wie werden Schaltflächen mit Symbolen versehen?

Durch Objekte der Klasse ImageIcon.

5. Wie verbindet man einen Handler mit einer Schaltfläche?

Indem man einen ActionListener zu der Komponente installiert.

6. Welche Klassen werden dazu verwendet?

Die Klassen ActionListener, ActionEvent und JButton.

7. Warum müssen die Zugriffsmethoden von Charon public sein?

Da sich Charon in einem anderen Paket befindet, müssen sie public sein, weil das Programm Nestor sie sonst nicht aufrufen könnte.

8. Warum ist die Methode updateWidgets() der Adressenkomponente private?

Sie wird außerhalb der Adressenkomponente nicht benötigt.

532

Weboberflächen mit Servlets

20.5

20.4.2 Übungen

1. Implementieren Sie die restlichen Methoden (getLastName(), getPlz() etc.), die notwendig sind, um die Oberfläche der Adressenkomponente zu füllen. Nehmen Sie als Vorlage die Methode getFirstName(), und ergänzen Sie die notwendigen Testdaten.

public String getFirstName(int index) {

return firstName[index];

}

public String getLastName(int index) {

return lastName[index];

}

public String getEmail(int index) {

return email[index];

}

public String getCity(int index) {

return city[index];

}

Listing 20.4 Die neuen implementierten Methoden

2. Bringen Sie im Anschluss daran die Methode updateWidgets() auf den neuesten Stand.

private void updateWidgets() {

titleTextfield.setText(dbLayer.getTitle(recordCounter));

firstNameTextfield.setText(dbLayer.getFirstName(recordCounter));

lastNameTextfield.setText(dbLayer.getLastName(recordCounter));

emailTextfield.setText(dbLayer.getEmail(recordCounter));

cityTextfield.setText(dbLayer.getCity(recordCounter)); }

✄

}

Listing 20.5 Die Methode »updateWidgets«

20.5 Weboberflächen mit Servlets

20.5.1 Fragen

1. Aus welchen Teilen besteht ein HTML-Dokument?

Aus Gesamtseite, Kopf und Rumpf.

533

20

Lösungen zu Teil III

2. Wie wird die Gestalt eines solchen Dokuments festgelegt?

Durch Tags.

3. Aus welchen Gründen gibt es das HTTP?

Damit sich Client und Server verständigen können.

4. Wozu benötigt man das Common Gateway Interface?

Zum Start von externen Programmen über den Webserver.

5. Durch welche Methode reagiert ein Servlet auf eine Client-Anfrage?

Durch die Methode doPost().

6. Was ist ein War-Archiv?

Ein War-Archiv ist ein Webarchiv..

7. Wozu dient es?

Es bündelt alle Bestandteile einer Site ähnlich wie ein Jar-Archiv. Es beinhaltet Klassen und Einstellungen einer Webanwendung.

20.5.2 Übungen

1. Entwickeln Sie ein einfaches Servlet auf Basis von folgendem HTML-Quelltext nach dem Vorbild der Klasse GuestList:

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType(CONTENT_TYPE); // MIME-Typ setzen

PrintWriter out = response.getWriter();

out.println("<html> ");

out.println("<head> ");

out.println("<title>Xenias Gästebuch -

Willkommen</title> ");

out.println("</head> ");

out.println("<body> ");

out.println("<h1><code>Xenias Gästebuch</code></h1> "); out.println("<p><code>Willkommen!</code></p> "); out.println("<div align="left"> ");

out.println("<hr> ");

out.println(" <p><code>In das Gästebuch

eintragen</code>

</p> ");

out.println(" <p><code>Zur Gästeliste</code></p> "); 534

Datenbankprogrammierung

20.6

out.println("</div> ");

out.println("</body> ");

out.println("</html> ");

✄

Listing 20.6 Das neue Servlet

20.6 Datenbankprogrammierung

20.6.1 Fragen

1. Beschreiben Sie, was JDBC für den Java-Entwickler leistet.

JDBC bietet eine einheitliche Programmierschnittstelle für relationale Datenbanken.

2. Welche Aufgabe übernehmen JDBC-Treiber?

Die Umsetzung der allgemeinen JDBC-Schnittstelle auf die spezielle Datenbankschnittstelle.

3. Welchen Vorteil bietet eine Datenbankzugriffsschicht wie Charon?

Abschirmung von den Datenbankdetails, komfortable Zugriffsschicht, Verbergen der Umstellung auf eine relationale Datenbank.

4. Warum befinden sich die Charon-Einstellungen für den Datenbanktreiber und der URL in einer Properties-Datei?

Damit die Anwendung unabhängig von einer Datenbank bleibt und nicht neu übersetzt werden muss, wenn sich Treiber oder Adresse ändern.

5. Beschreiben Sie, was zu tun ist, wenn man Charon mit einem anderen Datenbanksystem verbinden möchte.

Man muss eine neue Datenbank mit gleicher Struktur aufsetzen und die Properties ändern.

20.6.2 Übungen

Legen Sie mit Hilfe der Klasse HadesTest zwei neue beliebige Datensätze an. Beschreiben Sie die dafür erforderlichen Schritte. Was müssen Sie beachten?

Dazu muss die Methode main() des Datenbanktreibers verändert werden. Wichtig: Die Struktur muss identisch sein.

535

20

Lösungen zu Teil III

20.7

Datenbankanwendungen

20.7.1 Fragen

1. Was ist der Vorteil einer GUI-Bibliothek wie Perseus?

Der Vorteil besteht in der Wiederverwendung von Methoden beispielsweise zur Zentrierung von Fenstern.

2. Von welcher Klasse stammt BasicWnd ab?

Von der Swing-Klasse JWindow.

3. Was ist ein Splash-Screen?

Ein Informationsfenster, das beim Programmstart kurz eingeblendet wird.

4. Welche Anweisungen bewirken, dass der Screen einige Sekunden auf dem Bildschirm bleibt?

Die Anweisung Thread.sleep(2000).

20.7.2 Übungen

1. Verändern Sie die beiden Testtreiber CharonTest und HadesTest so, dass sie einen Datensatz löschen. Übersetzen und starten Sie beide Programme. Welche Ausgabe erzielen Sie? Ist ein Unterschied zu sehen? Wenn ja, warum?

Bei HadesTest kommt es zu einem Fehler, weil nur CharonTest eine Neusortierung der Indizes der Datenbank vornimmt.

2. Die Klasse SplashScreen verfügt über eine Methode setText(), mit deren Hilfe Sie Text ausgeben können. Verändern Sie dann den Konstruktor von NestorApp

so, dass er diese Methode aufruft, und übergeben Sie dann die Zeichenkette

»Initialisierung ...«. Kompilieren Sie anschließend das Programm, und starten Sie es erneut.

private void showSplashScreen() {

SplashWnd splashScreen = new SplashWnd("img/splash.gif");

splashScreen.setAlignment(Alignment.CENTER_ON_SCREEN);

splashScreen.getContentPane().setBackground(Color.black);

splashScreen.setTextColor(Color.white);

splashScreen.show();

splashScreen.setText("Initialisierung ..."); //Textausgabe

try {

Thread.sleep(2000);

}

536

Dynamische Websites

20.8

catch (InterruptedException ex) {

System.out.println(ex);

}

splashScreen.dispose(); // Zerstoeren des Fensters

}

Listing 20.7 Die Methode »showSplashScreen« der Klasse »NestorApp«

20.8 Dynamische Websites

20.8.1 Fragen

1. Was sind statische Webseiten?

Statische Webseiten sind HTML-Dokumente, die nicht durch ein Servlet oder CGI-Skript erzeugt werden. Ihr Inhalt passt sich nicht automatisch an neue Datenbankinhalte an. Solange das Dokument nicht bearbeitet wird, sind seine Informationen unveränderlich (statisch). Statische Webseiten können mit dem Anwender nicht interagieren.

2. Worin besteht der Vorteil von dynamischen Websites?

Einmal erzeugte HTML-Dokumente können automatisch mit Hilfe einer Da-

tenbankverbindung auf den neuesten Stand gebracht werden. Dynamische

Websites interagieren mit dem Anwender. Das bedeutet, der Anwender kann bestimmte Informationen individuell abfragen.

3. Mit welcher Servlet-Methode wertet man Benutzereingaben aus?

Entweder mit der Methode doPost() oder mit der Methode doGet().

4. Wie funktioniert das Einfügen eines Datensatzes beim Projekt Charon?

Durch den SQL-Befehl INSERT INTO, der der Methode update() der Klasse

HadesDb() übergeben wird.

20.8.2 Übungen

1. Schreiben Sie die Testtreiber von Charon so um, dass sie die neuen Funktionen insertRecord() und insertRow() verwenden.

Methode »main« von »CharonTest«

Der Testtreiber CharonTest muss wie folgt verändert werden:

537

20

Lösungen zu Teil III

✄

try {

c.insertRecord("firstName", "email", "comment");

}

catch (SQLException ex) {

System.out.print("Fehler beim Einfuegen " +

"eines Datensatzes: " + ex);

}

✄

Listing 20.8 Der veränderte Testtreiber »CharonTest«

Methode »main« von »HadesTest«

Zur Erweiterung des Testtreibers HadesTest reicht das Einfügen der folgenden Zeile aus:

✄

database.insertRow("firstName", "email", "comment");

✄

Listing 20.9 Der veränderte Testtreiber »HadesTest«

2. Verändern Sie die Methode printThankYouMsg() der Klasse NewGuest so, dass der Anwender einen persönlichen Dank erhält, wenn er sich in das Gästebuch eingetragen hat.

In der Methode doPost muss folgender Aufruf eingefügt werden:

✄

printThankYouMsg(out, request.getParameter("Firstname"));

✄

Listing 20.10 Die Methode »doPost« der Klasse »GuestList«

Abbildung 20.2 Die veränderte Programmausgabe

538

Dynamische Websites

20.8

Methode »printThankYouMsg«

Die Methode printThankYouMsg() sieht so aus:

public void printThankYouMsg(PrintWriter out, String firstName)

throws IOException {

out.println("<p><code>Sie wurden in mein Gästebuch "+

"eingetragen.</code></p>");

out.println("<p><code>"+firstName+

", vielen Dank für Ihren " +

"Besuch!</code></p>");

out.println("<hr>");

}

Listing 20.11 Die Methode »printThankYouMsg« der Klasse »GuestList«

539

TEIL V

Anhang

Der Anhang beschließt dieses Buch mit Informationen zu Java-Werkzeugen, mit einem Kapitel über Hardware-Grundlagen, einem Glossar und Literaturhinweisen.

»Versuch es nicht mit Gewalt. Nimm einfach einen größeren Hammer«

(Murphy’s Law)

21

Import der Beispielprogramme

21.1

Einleitung

Alle Beispielprogramme dieses Buchs funktionieren mit jeder Java-konformen Entwicklungsumgebung. Da es derzeit sehr viele verschiedene Entwicklungsumgebungen gibt, ist es nicht möglich, den Import der Beispiele für jede dieser Umgebungen zu beschreiben. Um den Rahmen dieses Kapitels nicht zu sprengen, habe ich mich bei dieser Anleitung auf den Import in NetBeans 7.1 und Eclipse 3.6 (Indigo) beschränkt. Das sind aktuellen Versionen der Entwicklungsumgebungen, die am meisten verbreitet sind. Beachten Sie bitte, dass nicht jede derzeit erhältliche Entwicklungsumgebung schon Java 7 unterstützt. Programmbeispie-le, die Java 7 voraussetzen, liefen zum Zeitpunkt der Drucklegung dieses Buchs ausschließlich mit NetBeans 7.1 einwandfrei.

21.2

Import in Eclipse

Starten Sie die Eclipse-Entwicklungsumgebung. Sofern der Startbildschirm erscheint, wechseln Sie zur Workbench. Legen Sie danach am besten für jedes Kapitel einen neuen Workspace dort an, wo Sie die Beispiele installiert haben.

Dazu müssen Sie den Worksspace Launcher aufrufen. Das geht über FileS-

witch|Workspace|Select a workspace|Browse.

Ist das geschehen, wählen Sie File|New|Java Project (Abbildung 21.1). Geben Sie daraufhin dem Projekt einen neuen Namen und weisen ihm das Verzeichnis zu, in dem sich das Beispiel befindet. Das funktioniert über den Schalter Create Project from existing source.

543

21

Import der Beispielprogramme

Abbildung 21.1 Anlegen eines neuen Projekts

Kontrollieren Sie anschließend das Verzeichnis für den Quelltext (Register Source des Dialogs). Die Eclipse-IDE erkennt normalerweise automatisch, dass sich der Quelltext des ausgewählten Projekts im Unterverzeichnis src findet. Auch das Zielverzeichnis für den Bytecode belegt die Eclipse-IDE normalerweise mit bin automatisch korrekt vor.

544

Import in Eclipse

21.2

Abbildung 21.2 Verzeichnis der Quellen festlegen

Bei größeren Programmen wie Transfer befinden sich noch fertig zusammengestellte Bibliotheken des Programms in diesem Verzeichnis, die Sie zur Ausführung des Programms von der Kommandozeile benötigen, aber nicht von Eclipse-Entwicklungsumgebung aus. Beim Projekt Transfer ist dies zum Beispiel die Datei Transfer.jar im Verzeichnis lib und im Root des Projekts.

545

21

Import der Beispielprogramme

Sie entfernen diese Dateien über Register Libraries, indem Sie die Bibliotheken einfach markieren und über die Schaltfläche Remove entfernen (Abbildung 21.3).

Abbildung 21.3 Entfernen der Bibliotheken

21.3

Import in NetBeans

Starten Sie NetBeans, und erzeugen Sie über File|New Project ein neues Projekt.

Daraufhin erscheint ein Dialog, aus dem Sie Java Project with Existing Sources auswählen und danach auf Next klicken.

546

Import in NetBeans

21.3

Abbildung 21.4 Anlegen eines neuen Projekts

Geben Sie jetzt den Namen des Projekts an und das dazu gehörende Pro-

jektverzeichnis (Abbildung 21.5). Das Projektverzeichnis für das jeweilige Beispiel hängt davon ab, wo Sie die Beispiele auf Ihrer Festplatte installiert haben. Wenn Sie die Java-Beispiele beispielsweise in das Verzeichnis d:\Beispielprogramme kopiert haben, lautet das Projektverzeichnis für Beispiel 1, Kapitel 4: d:\Beispielprogramme\Sprache\Ex01.

Abbildung 21.5 Angabe von Projektnamen und Projektverzeichnis

Wenn Sie das Verzeichnis korrekt eingegeben haben, klicken Sie danach nochmals auf Next und geben über Browse das Verzeichnis an, in dem sich die bereits 547

21

Import der Beispielprogramme

bestehenden Java-Quelltexte (Sourcen) befinden. Alle Beispiele haben ein Verzeichnis namens src, in dem sich die Java-Quelltexte befinden.

Abbildung 21.6 Angabe des Verzeichnisses der Java-Quellen

Im Regelfall beenden Sie jetzt den Import mit Finish. Bei den komplexeren Projekten wie Nestor und Xenia müssen Sie noch die Datenbankbibliotheken zu Ihrem Projekt hinzufügen. Danach können Sie das Programm starten.

Abbildung 21.7 Der Start des importierten Java-Programms

548

»Wenn Dein einziges Werkzeug ein Hammer ist, neigst du dazu,

in jedem Problem einen Nagel zu sehen.« (Abraham Maslow)

22

Werkzeuge

22.1

Einleitung

Der Markt der Java-Entwicklungswerkzeuge verändert sich so rasch, dass dieses Kapitel unter Umständen schon bei Drucklegung nicht mehr aktuell ist. Aus diesem Grund können Sie sich eine regelmäßig aktualisierte Fassung auf meiner Website http://www.steppan.net anfordern. Diese Fassung befindet sich sozusagen nur der Vollständigkeit halber in diesem Anhang. Worum geht es in diesem Kapitel? Es geht um Java-Werkzeuge, die Sie entweder einzeln oder als Komplettpaket erwerben können.

22.1.1

Einzelwerkzeuge versus Werkzeugsuiten

Der Unterschied zwischen einem Sammelsurium aus lauter Einzelwerkzeugen und einer Werkzeugsuite ist gewaltig. Wenn Sie lauter Einzelwerkzeuge erwerben und zusammenstellen wollen, sind Sie selbst dafür verantwortlich, dass deren Zusammenspiel reibungsfrei funktioniert. Bei einer Werkzeugsuite hat ein Hersteller diesen Job für Sie schon – mehr oder weniger gut – erledigt.

Sind Suiten besser?

Ist eine Werkzeugsuite immer die bessere Wahl? Nein, nicht unbedingt, denn auch diese Umgebungen haben ihre Schwächen. Zum Beispiel sind Komplett-suiten eben keineswegs komplett. Will man aber neue Werkzeuge integrieren, so ist das nicht immer einfach. Außerdem ist die Einarbeitung in eine umfangreiche Suite sehr langwierig. Diese integrierten Umgebungen benötigen vielfach indiskutabel viel Speicherplatz und sehr viel Prozessorleistung. Man benötigt für Werkzeugsuiten einen extrem leistungsfähigen Computer.

Sind Suiten billiger?

Ist eine Werkzeugsuite wenigstens billiger? Im Vergleich zu dem, was alle in dieser Suite enthaltenen Einzelwerkzeuge vom gleichen Hersteller kosten würden, 549

22

Werkzeuge

lautet die Antwort: im Prinzip ja. Aber mittlerweile gibt es schon viele kostenlose Einzelwerkzeuge und Entwicklungsumgebungen, so dass man leider auch beim Preis keine Regel aufstellen kann.

22.1.2

Zielgruppen

Einsteiger

Wenn Sie beginnen, Java zu programmieren, empfehle ich Ihnen, zunächst mit dem Java Development Kit (JDK) von Oracle zu beginnen. Anhand der einzelnen Werkzeuge lernen Sie den Prozessablauf am besten kennen und können

später gut beurteilen, was bei einer integrierten Entwicklungsumgebung im Hintergrund abläuft. Das JDK ist zwar nicht besonders komfortabel, aber einfach in der Handhabung, kostenlos und bietet schon vieles von dem, was Sie benötigen.

Was allerdings fehlt, sind sowohl ein Texteditor (Abschnitt 22.2.4, »Texteditor«) als auch ein GUI-Builder (Abschnitt 22.2.7, »GUI-Builder«). Mit einem Texteditor schreiben Sie den Quelltext eines Programms. Für den Anfang reicht es aus, den Editor zu nehmen, der zum Betriebssystem gehört. Oder Sie greifen zu einem der leistungsfähigeren Editoren, die ich unter den Einzelwerkzeugen aufgelistet habe (Abschnitt 22.3.2, »Texteditor«).

Ein GUI-Builder dient dazu, grafische Oberflächen visuell zu gestalten. Das Fehlen eines GUI-Builders für HTML-Oberflächen lässt sich leicht ausgleichen, da hier genügend hochwertige Einzelwerkzeuge erhältlich sind. Anders sieht es bei Java-Oberflächen aus: Hier sind die meisten derartigen GUI-Builder in Werkzeugsuiten integriert und nicht einzeln verfügbar.

Bis zum dritten Teil dieses Buchs reicht das Java Development Kit vollkommen aus. Für den dritten Teil empfehle ich Ihnen dringend, eine Werkzeugsuite wie Eclipse oder NetBeans zu installieren. Beide Suite erhalten Sie kostenfrei im Internet. Unter den Beispielprogrammen finden Sie eine Anleitung für die ersten Schritte mit beiden Programmierumgebungen.

Fortgeschrittener Entwickler

Wenn Sie dieses Buch durchgearbeitet haben und noch kein zusätzliches Werkzeug installiert haben, ist es jetzt höchste Zeit, sich einige Werkzeugsuiten anzu-sehen, zum Beispiel die Eclipse-Workbench oder NetBeans.

Diese Suiten sind bedeutend leistungsfähiger als das JDK und werden Ihnen nach einer gewissen Einarbeitungsphase erlauben, wesentlich produktiver zu arbeiten.

Für welche der Suiten Sie sich entscheiden, ist stark vom Geschmack, persönlichen Arbeitsweise und von der Gewichtung einzelner Werkzeuge abhängig.

550

Kriterien zur Werkzeugauswahl

22.2

Ich kann aus diesem Grund keine Empfehlungen geben, sondern nur auf die Kriterientabellen dieses Kapitels als Entscheidungshilfe verweisen. Mit Hilfe dieser Kriterientabellen und den Vor- und Nachteilen der Werkzeuge, die ich in diesem Kapitel für Sie zusammengestellt habe, können Sie eine passende Suite finden.

22.2

Kriterien zur Werkzeugauswahl

Ich habe in diesem Abschnitt eine Reihe von Kriterientabellen zur Werkzeugauswahl zusammengestellt, wie sie Zeitschriften und Firmen zur Produktauswahl oder für Marktübersichten verwenden. Die vielen nachfolgenden Tabellen bieten fast alle Kriterien, die bei einer Auswahl in Frage kommen können. Bedenken Sie, dass dies vollständige Listen sind, die alle eventuell notwendigen Kriterien zusammenfassen.

Sie benötigen aus den einzelnen Listen wahrscheinlich nur einen Bruchteil der Kriterien. Die Listen sind nur als Vorlage gedacht, um eine eigene Auswahl zu erleichtern und Ihnen zu zeigen, auf welche verschiedenen Funktionen Sie achten müssen.

Sie können aus den Vorlagen Ihre eigenen Kriterien zusammenstellen und sowohl Einzelwerkzeuge als auch Suiten individuell nach eigenen Gesichtspunkten auswählen. Auf den Websites einiger Hersteller finden Sie zudem Funktionsta-bellen (Feature Matrix), denen Sie Informationen über das Werkzeug entnehmen können. Diese Informationen sind jedoch meistens geschönt.

Kriterium

Gewichtung [%]

Punkte

Einzelpreis des Produkts

10

A(10) B(0)

Erweiterbarkeit

5

A(5) B(5)

Verfügbarkeit von Erweiterungen

5

A(5) B(5)

Projektverwaltung

15

A(15) B(10)

Modellierungswerkzeug

10

A(5) B(5)

Texteditor

10

A(10) B(8)

Compiler

5

A(5) B(5)

GUI-Builder

10

A(0) B(6)

Laufzeitumgebung

5

A(4) B(5)

Debugger

15

A(15) B(10)

Tabelle 22.1 Beispiel einer Liste der Gesamtkriterien zur Auswahl einer Suite 551

22

Werkzeuge

Kriterium

Gewichtung [%]

Punkte

Archiv-Werkzeug

5

A(0) B(5)

Assistenten

5

A(0) B(5)

Summe

100

A(74) B(69)

Tabelle 22.1 Beispiel einer Liste der Gesamtkriterien zur Auswahl einer Suite (Forts.) Ein Beispiel für eine fertiggestellte Feature Matrix mit den imaginären Produkten A und B sehen Sie in Tabelle 22.1. Die Tabelle ist auf eine Gesamtpunktzahl von maximal 100 ausgelegt, die auf die einzelnen Werkzeuge verteilt wurde. Bei der Gewichtung habe ich den Schwerpunkt vor allem auf Projektverwaltung und Debugger gelegt.

22.2.1

Allgemeine Kriterien

Preis und Rabatte

In Tabelle 22.2 finden Sie allgemeine Kriterien für eine Werkzeugauswahl. Zum Einzelpreis des Produkts und zum Kriterium Rabatte muss man sicher nicht viel sagen. Diese Kriterien spielen bei jeder Werkzeugauswahl eine große Rolle.

Kriterium

Gewichtung [%]

Punkte

Einzelpreis des Produkts

Rabatte

Support (Verfügbarkeit, Qualität)

Preis für Support

Wartung (Verfügbarkeit, Qualität)

Preis für Wartung

Betaversionen (Verfügbarkeit, Kosten)

Schulungen (Verfügbarkeit, Qualität)

Preis für Schulungen

Anpassungen (Customizing)

Lizenzmodell (Einzelplatz, Floating)

Investitionsschutzrisiko (proprietäre

Bestandteile)

Tabelle 22.2 Allgemeine Kriterien bei der Werkzeugauswahl

552

Kriterien zur Werkzeugauswahl

22.2

Kriterium

Gewichtung [%]

Punkte

Erweiterbarkeit

Verfügbarkeit von Erweiterungen

Systemvoraussetzungen

Tabelle 22.2 Allgemeine Kriterien bei der Werkzeugauswahl (Forts.) Support

Aber auch die Verfügbarkeit des Supports und die Qualität dieser Dienstleistung ist für Firmen unter Umständen ein wichtiges Kriterium. Das ist zum Beispiel dann der Fall, wenn Ihre Firma ein kritisches Projekt durchführt und es zu einem Problem mit einem Ihrer Werkzeuge kommt, das die Mitarbeiter nicht selbst lösen können. Haben Sie in diesem Fall keinen Zugriff auf ein gutes Supportteam, kann der Ausfall viel mehr Geld kosten, als Sie durch einen geringeren Preis für die Werkzeuge eingespart haben.

Wartung

Unter Wartung versteht man einen Vertrag, der es erlaubt, Updates und Bugfixes kostenlos zu bekommen. Hier schwanken bei vielen Herstellern Verfügbarkeit und Qualität sehr stark. Manche Hersteller bieten kostenfrei Downloads über einen Freischaltcode, andere verschicken kostenpflichtige CDs mit den neuesten Versionen, wieder andere bieten überhaupt keine Wartung an.

Betaversionen

Betaversionen sind Versionen der Software, die sich noch im Teststadium befinden. Manche Werkzeughersteller erlauben dem Kunden, an einem Betatest teilzunehmen, manche nicht. In der Regel ist es gut, wenn man dem Hersteller schon während eines Betatests Fehler melden kann. Auch hier schwankt die Politik der einzelnen Werkzeughersteller: Open-Source-Produkte werden in einem öffentlichen Betatest entwickelt, hier entstehen keine zusätzlichen Kosten.

Manche Hersteller bieten kostenpflichtige Betaversionen an, andere wiederum belohnen die Teilnahme an Betatests durch die kostenlose Abgabe einer Lizenz.

Schulung

Bei komplizierten Entwicklungsumgebungen ist es häufig notwendig, an einer Schulung teilzunehmen. Aber nicht für jede Umgebung wird eine gute Schulung zu einem akzeptablen Preis angeboten. Dies ist wieder ein wichtiges Kriterium für Firmen, die professionell Software entwickeln.

553

22

Werkzeuge

Anpassungen

Unter Anpassungen (Customizing) versteht man den Vorgang, Werkzeuge so einzurichten, dass sie den persönlichen Bedürfnissen entsprechen. Bei manchen Werkzeugen sind Anpassungen sehr aufwändig, bei manchen fast nicht notwendig. Entsprechend unterschiedlich sind die verdeckten Kosten, die dabei entstehen.

Lizenzmodelle

Bei den Lizenzmodellen gibt es viele Unterschiede. Viele Hersteller bieten Werkzeuge in Form einer Einzelplatzlizenz, aber einige vergeben diese Lizenz maschi-nengebunden. Das bedeutet, dass Sie zum Beispiel die Festplattenkennung angeben müssen, um die Software zu installieren. Wenn Sie den Computer wechseln, müssen Sie dem Hersteller die Gründe mitteilen und eine neue Lizenz beantragen.

Einige Hersteller bieten einen Lizenzserver (Floating-Lizenz) an, der vor allem für größere Firmen praktisch ist. Sie bezahlen in diesem Fall nicht für eine Einzelli-zenz, sondern für eine Gruppe von Lizenzen. Ein Lizenzserver, der an einer zen-tralen Stelle installiert wird, überwacht, dass nur so viele Lizenzen im Netzwerk der Firma aktiv sind, wie bezahlt wurden. Positiv dabei: Auch wenn eine Firma 50 Entwickler beschäftigt, können unter Umständen 30 Lizenzen ausreichen, weil nicht alle 50 Entwickler ununterbrochen mit einem Werkzeug arbeiten.

Investitionsschutz

Ein wichtiges Kriterium ist die Bewertung eines Investitionsschutzrisikos. Mit dem Kauf von Werkzeugen erwirbt man diese meistens nicht allein, sondern immer im Verbund mit bestimmten Technologien. Zum Beispiel gibt es Entwicklungsumgebungen, die Java-Code erzeugen, der mit anderen Werkzeugen nicht kompiliert werden kann. Andere erzeugen Code für grafische Oberflächen, der mit anderen Umgebungen nicht visualisiert werden kann.

Erweiterbarkeit

Das Kriterium Erweiterbarkeit spielt in letzter Zeit eine immer größere Rolle, da der Java-Programmierer eine Vielzahl von Technologien verwendet, die kaum von einem Produkt abgedeckt werden können. Entscheidet man sich für eine Werkzeugsuite, so muss sich diese erweitern lassen. Hier gibt es unterschiedlich gute Konzepte. Die Qualität der Konzepte entscheidet meistens darüber, ob Erweiterungen von anderen Herstellern existieren. Dies kann ein wichtiges Kriterium sein, wenn die Wunschumgebung zwar nur wenige Defizite aufweist, diese sich aber nicht ausgleichen lassen.

554

Kriterien zur Werkzeugauswahl

22.2

Systemvoraussetzungen

Wie schon eingangs erwähnt, benötigen besonders Werkzeugsuiten viel Speicherplatz und Rechenkapazität. Manche Werkzeuge sind nur für bestimmte Betriebssysteme erhältlich, so dass auch dieses Kriterium unter Umständen wichtig werden kann.

22.2.2 Projektverwaltung

Die Projektverwaltung ist meines Wissens nicht als Einzelwerkzeug verfügbar, sondern immer Bestandteil einer Werkzeugsuite. Diese Schaltzentrale erlaubt es Ihnen, einen Überblick über alle Dateien zu bekommen, die zum Projekt gehören.

Wichtig ist hierbei, dass die Projektverwaltung gestattet, verschiedene Ansichten als Arbeitsumgebung (Workspaces) zu definieren. Dazu zählen zum Beispiel eine Ansicht aller Projekte, eine Ansicht aller Packages und eine Ansicht aller Klassen.

Kriterium

Gewichtung [%]

Punkte

Package-Ansichten

Package-Filter

Workspaces

JDK-Switching

Versionskontrolle (SCM-Anbindung oder

Integration)

Handhabung

Geschwindigkeit

Tabelle 22.3 Spezielle Kriterien für die Projektverwaltung

Filter und JDK-Switching

Darüber hinaus ist wichtig, dass Sie Filter setzen können, um die Ansichten auf bestimmte Elemente zu begrenzen. Eine gute Projektverwaltung muss eine Möglichkeit bieten, das JDK zu wechseln. Das ist besonders dann wichtig, wenn man auch noch ältere Projekte zu betreuen hat oder austesten möchte, ob das Programm auch unter einem neuen JDK funktionieren wird. Diese Funktion

sollte dann automatisch die notwendigen Informationen an andere Werkzeuge wie den Java-Compiler weiterleiten.

Versionskontrolle

Nicht nur die Anbindung an den Compiler ist wichtig. Auch die Anbindung an ei-ne Versionskontrolle ist von hoher Wichtigkeit, wenn man im Team mit mehreren Entwicklern arbeitet. Es gibt Werkzeugsuiten wie VisualAge, die eine integrierte 555

22

Werkzeuge

Versionskontrolle besitzen, andere verfügen über eine mehr oder weniger gute Anbindung externer Tools.

22.2.3 Modellierungswerkzeuge

Modellierungswerkzeuge dienen zur Analyse der Anforderungen und zum De-

sign des Programms. Mit ihnen entwirft der Softwaredesigner ein fachliches und technisches Modell der Anwendung. Solche Werkzeuge werden vor allem für grö-

ßere Projekte benötigt, bei denen auf eine saubere Architektur Wert gelegt wird.

Diese Architektur wird inzwischen mit einer einheitlichen grafischen Notation gezeichnet, der so genannten Unified Modeling Language (UML).

UML-konform

Von der UML gibt es mehrere Versionen, die verschiedene Diagrammtypen definieren und sich teilweise erheblich unterscheiden. Modellierungswerkzeuge sollten nicht nur möglichst konform zur UML-Spezifikation sein, sie sollten auch über Funktionen verfügen, mit denen sich die Architektur der Anwendung leicht verändern lässt.

Kriterium

Gewichtung [%]

Punkte

UML-konform (Version, Diagrammarten)

Restrukturierungsfunktionen (Refactoring)

Reengineering (Quelltext, Bytecode, Qualität)

XMI-Schnittstelle (Version, Qualität)

Handhabung

Geschwindigkeit

Tabelle 22.4 Spezielle Kriterien für Modellierungswerkzeuge

Restrukturierungsfunktionen

Die Qualität dieser Restrukturierungsfunktionen unterscheidet sich von Werkzeug zu Werkzeug erheblich. Große Unterschiede gibt es auch in der Qualität des Reengineerings (Import bestehender Klassen). Manche Werkzeuge sind in der Lage, alle Beziehungen zwischen den importierten Klassen anzuzeigen. Andere Werkzeuge zeigen nur Vererbungsbeziehungen an.

XMI-Schnittstelle

Zum Austausch von Modellen zwischen Modellierungswerkzeugen gibt es die XMI-Schnittstelle, die in verschiedenen Versionen inzwischen halbwegs genormt ist. Sie basiert auf dem Im- und Export von XML-Dateien mit einem standardisier-556

Kriterien zur Werkzeugauswahl

22.2

ten Format. Die Ergebnisse beim Im- und Export sind nach meinen Erfahrungen nicht immer überzeugend. Man sollte diese Funktionen testen, wenn man sie benötigt.

Handhabung und Geschwindigkeit

Nicht zuletzt sollten Handhabung und Geschwindigkeit eine nicht untergeordnete Rolle spielen. Einige Werkzeuge werden bei großen Projekten so langsam, dass sich kaum noch damit arbeiten lässt. Das ist paradox, da sie eigentlich nur für große Projekte sinnvoll sind.

22.2.4 Texteditor

Für eine effiziente Java-Programmierung ist ein sehr guter Texteditor von entscheidender Bedeutung. Er sollte über eine veränderbare Syntaxhervorhebung verfügen, also verschiedene Bestandteile des Java-Programms in unterschiedlichen Farben darstellen können. Ebenfalls Standard sollten die Anzeige von Zeilen-und Spaltennummern und eine flexible Tastaturbelegung sein.

Kriterium

Gewichtung [%]

Punkte

Syntaxhervorhebung

Zeilennummern

Tastaturbelegung (CUA, Emacs)

Automatische Formatierung

Funktionen zum Suchen und Ersetzen

Programmierhilfe (Syntaxprüfung etc.)

Debugger-Anbindung

Geschwindigkeit

Tabelle 22.5 Spezielle Kriterien für Texteditoren

Formatierungsfunktion

Ebenfalls sehr hilfreich ist eine gute Formatierungsfunktion, möglichst schon bei der Eingabe. Dazu zählen eine automatische Einrückung von Blöcken, das Setzen von geschweiften Klammern und ein automatischer Zeilenumbruch. Funktionen zum Suchen und Ersetzen von Text sind essenziell. Sie sollten pfadübergreifend funktionieren und nicht nur innerhalb einer Datei.

Programmierhilfe

In Werkzeugsuiten ist häufig eine Programmierhilfe eingebaut, die mit der Projektverwaltung verzahnt ist. Sie prüft die Syntax in Abhängigkeit vom JDK, er-557

22

Werkzeuge

gänzt Methodennamen und Bibliothekspfade. Ebenfalls nur in integrierten Entwicklungsumgebungen vorhanden ist eine Debugger-Anbindung, bei der der Co-de schon während des Testens bearbeitet werden kann. Bei einer solchen Anbindung lassen sich Breakpoints im Quelltext setzen und der Programmlauf im Editor verfolgen.

Geschwindigkeit

Nicht zuletzt sollte der Editor extrem schnell sein, denn in der Programmierung ist jeder Zeitverlust infolge langsamer und unzuverlässiger Werkzeuge ein weiterer Stressfaktor.

22.2.5 Java-Compiler

Sehr bedeutsam für den Betrieb des fertigen Programms und für einen schnellen Entwicklungszyklus ist ein Java-Compiler. Er sollte sehr guten Code erzeugen.

Das ist vor allem für Native-Code-Compiler wichtig, also für Compiler, die echten Maschinencode und keinen Bytecode erzeugen. Hier muss nach Codegröße oder Geschwindigkeit optimiert werden können. Bei Bytecode-Compilern sind die Optimierungen nicht so bedeutend, da der Bytecode weitgehend genormt ist.

Kriterium

Gewichtung [%]

Punkte

Bytecode standardkonform

Native Code

Optimierungen

Ziel-VM einstellbar

Obfuscate-Funktion

Geschwindigkeit

Bedienung

Tabelle 22.6 Spezielle Kriterien für Java-Compiler

Schutz vor Reverse-Engineering

Wichtig ist außerdem eine Funktion, mit der sich der Bytecode vor Reverse-Engineering schützen lässt (Obfuscate-Funktion). Sie wissen, dass der Bytecode von der virtuellen Maschine interpretiert wird (siehe Kapitel 6, »Plattform Java«). Ein Problem dieser Vorgehensweise ist, dass sich der Quelltext aus dem Bytecode problemlos wieder zurückgewinnen lässt.

Das ist aber insbesondere bei professionellen Programmen unerwünscht, weil sich damit auch der Bauplan eines Programms rekonstruieren lässt. Softwarehäuser 558

Kriterien zur Werkzeugauswahl

22.2

versuchen daher immer, ihre Programme gegen ein Dekompilieren zu schützen, um das Know-how nicht preisgeben zu müssen.

Geschwindigkeit

Für den Entwickler sind Geschwindigkeit und Bedienung eines Compilers wichtiger als die vorher genannten Funktionen. Gerade bei großen Projekten ist ein sehr schneller Compiler notwendig: Er kann Tage an Entwicklungszeit sparen.

22.2.6 Java-Decompiler

Ein Decompiler spielt für den normalen Entwickler nur eine untergeordnete Rolle. Er wird in den meisten Projekten nicht benötigt. Der Decompiler bildet das Gegenstück zu einem Java-Compiler und ist in der Lage, aus dem Bytecode eines Java-Programms Quelltext ganz oder teilweise zurückzugewinnen.

Bei den Decompilern gibt es unterschiedliche Ausführungen: vom einfachen Modell, das nur die Signaturen von Klassen und Methoden (so genannte Stubs) erzeugt, bis zum luxuriösen Modell, das den kompletten Quelltext wieder zu-rückgewinnt.

Kriterium

Gewichtung [%]

Punkte

Vollständiges Reverse-Engineering

Geschwindigkeit

Bedienung

Tabelle 22.7 Spezielle Kriterien für Java-Decompiler

Beachten Sie bitte: Das Dekompilieren der meisten Programme ist untersagt, um das Know-how des Programms zu schützen. Es ist auf jeden Fall illegal, wenn Sie damit eine Raubkopie erzeugen, also den erzeugten Quelltext als Ihre eigene geistige Leistung ausgeben.

22.2.7 GUI-Builder

Ein GUI-Builder ist gerade für den Einsteiger sehr sinnvoll. Er erlaubt es, eine grafische Oberfläche visuell zu entwerfen, anstatt sie mit Hilfe eines Texteditors zu programmieren. Es gibt zwei Arten von GUI-Buildern: Java-GUI-Builder und HTML-Editoren.

Java-Oberflächen lassen sich mit den Bibliotheken AWT, Swing oder SWT entwickeln. Für Java-Oberflächen ist es notwendig, dass der GUI-Builder mit ver-559

22

Werkzeuge

schiedenen Layout-Managern einwandfrei zurechtkommt und eine gute WYSI-

WYG-Voransicht bietet (WYSIWYG: What you see is what you get).

Kriterium

Gewichtung [%]

Punkte

WYSIWYG

Testfunktion

GUI-Typen (AWT, Swing, SWT, HTML)

Codegenerierung

Geschwindigkeit

Bedienung

Tabelle 22.8 Spezielle Kriterien für GUI-Builder

Die Oberfläche von Servlet- und JSP-Programmen können Sie visuell mit einem HTML-Editor gestalten. Im Gegensatz zu einem GUI-Builder für Java-Oberflächen gibt es bei HTML-Editoren eine riesige Auswahl hochwertiger Werkzeuge.

22.2.8 Laufzeitumgebung

Zur Ausführung eines Java-Programms benötigen Sie immer eine entsprechende Laufzeitumgebung. Sie gehört eigentlich nicht zu den Werkzeugen, ist aber in allen Entwicklungsumgebungen eingebaut, da man seine Programme zum Testen auch ausführen muss.

Applet und Applications

Die Laufzeitumgebung für Applets ist ein Applet Viewer oder Webbrowser. Für Java-Applications reicht im einfachsten Fall der Java-Interpreter aus dem JDK.

Kriterium

Gewichtung [%]

Punkte

Applet (ohne/mit HTML-Startseite)

Application

Servlet

JSP

CORBA

EJB

Standardkonformität

Geschwindigkeit

Bedienung

Tabelle 22.9 Spezielle Kriterien für eine Laufzeitumgebung

560

Kriterien zur Werkzeugauswahl

22.2

Servlets

Wenn Sie Servlets und JavaServer Pages (JSP) programmieren, ist ein Webserver mit einer Servlet-Erweiterung notwendig. Die meisten Application Server bieten schon eine integrierte Umgebung zur Ausführung von Servlets und JSP.

CORBA und EJB

Für die komplexen Technologien CORBA und EJB benötigen Sie entweder nur einen Object Request Broker (CORBA) oder einen Application Server (CORBA und EJB). Manche Werkzeugsuiten werden mit einem solchen Application Server als Teil der Entwicklungsumgebung ausgeliefert (JBuilder, NetBeans).

Datenbanken

Für die Entwicklung von Datenbankanwendungen mit JDBC benötigen Sie neben einer funktionierenden SQL-Datenbank einen passenden JDBC-Treiber. Hinter dem Begriff »JDBC-Treiber« verbergen sich in der Regel nur ein paar Java-Klassen, die Sie in den Classpath Ihres Projekts legen müssen.

22.2.9 Java-Debugger

Der Debugger stellt eine besondere Form der Laufzeitumgebung dar, denn er ist in der Lage, ein Programm zum Test schrittweise auszuführen. Der Debugger sollte verschiedene Breakpoint-Arten beherrschen und Zugriff auf alle Daten des Programms gewähren, um diese zur Laufzeit ändern zu können.

Kriterium

Gewichtung [%]

Punkte

Breakpoint-Arten

(fest, bedingt)

Inspektionsarten

(Variable, Threads, Stack)

Filter

Hot-Swap-Funktion

(ab JDK 1.4)

Remote-Betrieb

(RMI, CORBA, EJB)

Geschwindigkeit

Bedienung

Tabelle 22.10 Spezielle Kriterien für Debugger

561

22

Werkzeuge

Wichtig sind außerdem Filter, mit denen man erreicht, dass der Debugger irrele-vante Teile des Projekts (zum Beispiel Zusatzbibliotheken) ausblendet. Bei großen Projekten sollte der Debugger die neuen Debugging-Funktionen des JDK 1.4 beherrschen, wozu die Hot-Swap-Funktion gehört. Mit ihr lassen sich geänderte Klassen während des Programmlaufs ändern und austauschen.

Hot Swap

Hot-Swap-Debugging spart sehr viel Zeit, weil der Entwickler Fehler sofort beseitigen kann, ohne das Programm zu unterbrechen und abermals zu starten. Da bei den meisten Entwicklungsumgebungen der Start des Debuggers zu den zeit-raubenden Tätigkeiten gehört, sollte diese Funktion zu den selbstverständlichen Bestandteilen eines Debuggers zählen.

Remote-Debugging

Für die Entwicklung von CORBA- und EJB-Programmen ist es wünschenswert, diese unter Umständen auch auf einem anderen Computer untersuchen zu können als dem, auf dem man gerade das Programm entwickelt. Der Grund dafür ist, dass sich einerseits manche Fehler erst nach der Installation einstellen. Andererseits befindet sich die Laufzeitumgebung für EJB-Programme manchmal nicht auf dem eigenen PC.

Geschwindigkeit und Handhabung

Wie bei fast allen Werkzeugen sind Geschwindigkeit und Handhabung extrem wichtig. Manche Java-Debugger sind so langsam, dass die Fehlersuche – eine ohnehin nicht sehr beliebte Tätigkeit – zur Bestrafung wird. Zudem sollte es nicht notwendig sein, zur Bedienung des Debuggers einen Kurs zu besuchen. Er sollte intuitiv erlernbar sein.

22.2.10 Werkzeuge zur Verteilung

Vor der Verteilung eines Java-Programms erfolgt die Einteilung in ein oder mehrere Archive. Dies erledigt ein spezielles Werkzeug, über das man nicht sehr viele Worte verlieren muss. Bei einer integrierten Entwicklungsumgebung sollte es auf jeden Fall zum Lieferumfang gehören und leicht zu bedienen sein.

Schön wäre auch eine Wrapper-Funktion, die ein Archiv um ein natives Startprogramm ergänzt. Solche Wrapper erzeugen keinen echten Maschinencode,

sondern verpacken das Archiv nur in einem nativen Startprogramm – eine Ja-va-Laufzeitumgebung wird weiterhin benötigt.

Nach der Archivierung müssen manche Programme in Form eines Installationsprogramms an den Kunden ausgeliefert werden. Wichtig bei diesen Werkzeugen 562

Einzelwerkzeuge

22.3

sind hauptsächlich der Preis, die Bedienung und die unterstützten Betriebssysteme (Tabelle 22.11).

Kriterium

Gewichtung [%]

Punkte

Anzahl Archivtypen

Wrapper-Funktion

Bedienung

Tabelle 22.11 Spezielle Kriterien für Verteilungswerkzeuge

22.2.11 Wizards

Alle mir bekannten Werkzeugsuiten bieten mehr oder weniger sinnvolle Assistenten (auch Experten oder Wizards genannt). Diese Werkzeuge sind meistens von keiner berauschenden Qualität, nehmen dem Entwickler aber die eine oder andere Routinetätigkeit ab, indem sie Codevorlagen produzieren, die »nur« noch implementiert werden müssen. Manche Assistenten sind mehr zum Rapid Prototyping geeignet und eher entbehrlich. Andere dienen dazu, den Code zu überprüfen (JavaBean-Assistenten). Sie sind notwendig und zeitsparend.

Kriterium

Gewichtung [%]

Punkte

Servlet

JSP

JavaBeans

EJB

Tabelle 22.12 Spezielle Kriterien für Assistenten

22.3

Einzelwerkzeuge

Wie eingangs erwähnt, reichen viele Werkzeugsuiten nicht aus und müssen durch spezielle Einzelwerkzeuge ergänzt werden. Die folgende Aufstellung erhebt keinen Anspruch auf Vollständigkeit. Sie fasst nur die wichtigsten Einzelwerkzeuge des Marktes zusammen.

22.3.1 Modellierungswerkzeuge

Diese Werkzeuge benötigen Sie nur zur Planung umfangreicher Software. Sie erzeugen damit ein Modell der Software mit einer grafischen Standardsprache namens UML (Unified Modeling Language). Die meisten dieser Werkzeuge sind 563

22

Werkzeuge

extrem teuer; ich habe hier zwei preiswerte Exemplare und das hochpreisige Werkzeug Together aufgeführt.

ArgoUML

ArgoUML ist von der Carnegie Mellon University entwickelt worden. Das kostenlose Modellierungswerkzeug (http://www.argouml.tigris.org) reicht für den »Haus-gebrauch« meistens aus, kann aber mit kommerziellen Mitbewerbern nicht konkurrieren.

Poseidon

Auf ArgoUML baut Poseidon (http://www.gentleware.com) auf. Es kann schon etwas mehr bieten als das Werkzeug, auf dem es basiert. Es hat aber eklatante Probleme beim Reverse-Engineering (Einlesen von fertiggestellten Projekten), verfügt über keine besonders ausgefeilte Oberfläche und ist zudem extrem langsam. Von Poseidon gibt es eine kostenfreie Community Edition und eine kostengünstige Professional Edition.

Together

Together (http://www.borland.com/de/products/together) gibt es sowohl als Werkzeugsuite (Abschnitt 22.4.6, »Together«) als auch als Einzelwerkzeug in Form eines Plugins für Eclipse beziehungsweise der IBM-Entwicklungsumgebungen.

Ebenfalls erhältlich ist eine Spezialversion als Ergänzung Embarcaderos JBuilder.

Für mich ist dieses ausgesprochen teure Produkt eines der interessantesten Modellierungswerkzeuge. Mit kaum einem anderen UML-Werkzeug lassen sich so schnell ansprechende Java-Modelle erzeugen.

22.3.2 Texteditor

Um den Quelltext eines Java-Programms zu schreiben, benötigen Sie einen guten Editor mit Syntaxunterstützung, der Schlüsselwörter zumindest fett anzeigt und den Quelltext ohne Formatierungen speichern kann. In jeder integrierten Entwicklungsumgebung wie Eclipse befindet sich ein Texteditor. Alternativ dazu können Sie auch einen Texteditor als einzelnes Programm einsetzen.

jEdit

Der Texteditor jEdit ist ein ausgezeichneter kostenfreier Java-Texteditor. Er ist in Java geschrieben, unterstützt Unicode und ist im Quelltext unter http://www.

jedit.org erhältlich – eine gute Ergänzung zum JDK.

564

Einzelwerkzeuge

22.3

UltraEdit

Ein preiswerter Editor für Windows ist UltraEdit. Er beherrscht verschiedene Programmiersprachen, Syntaxhervorhebung und eine Reihe von Suchfunktionen.

Er ist unter http://www.ultraedit.com erhältlich.

22.3.3 Java-Compiler

Jikes

Der IBM-Compiler Jikes hat den Ruf, ein schnellerer Compiler als der von Suns JDK zu sein. Er ist frei verfügbar (http://oss.software.ibm.com/developerworks/ open-source/jikes). In manchen Entwicklungsumgebungen lässt sich der eingebaute Compiler durch Jikes austauschen, so dass man von seinen Vorzügen profitie-ren kann, ohne die gewohnte Umgebung verlassen zu müssen.

Excelsior

Der JET-Compiler von Excelsior (http://www.excelsior-usa.com/jet.html) ist ein so genannter Native-Code-Compiler. Er generiert also echten Maschinencode (nativen Code) für Windows-Betriebssysteme sowie Linux und läuft auch nur unter diesen Betriebssystemen. Leider besitzt er eine etwas langsame Swing-Oberfläche (Abbildung 22.1).

Abbildung 22.1 Excelsiors JET-Compiler für native Windows-Programme 565

22

Werkzeuge

Der Compiler, der sich hinter dieser Oberfläche verbirgt, erzeugt hervorragenden Maschinencode und lässt viele Optimierungen zu – sehr empfehlenswert, wenn Sie Java-Programme als native Windows- oder Linux-Executables ausliefern möchten.

22.3.4 Java-Decompiler

Decompiler bewirken genau das Gegenteil eines Compilers. Sie entschlüsseln den Bytecode eines Java-Programms und übersetzen ihn wieder in Java-Quelltext zurück. Das Verfahren ist übrigens illegal, wenn es dazu verwendet wird, Raubkopien zu erzeugen.

JAD

Der Java-Decompiler JAD ist ein hervorragendes Werkzeug (http://kpdus.

tripod.com/jad.html). Er entschlüsselt den Bytecode schnell und zuverlässig. Für die meisten integrierten Entwicklungsumgebungen ist er als Plugin verfügbar.

SourceAgain

SourceAgain ist ein weiterer, allerdings kommerzieller Decompiler (http://www.

ahpah.com/product.html). Er funktioniert ebenso gut, ist allerdings kostenpflichtig, wobei der Preis von der Edition abhängt.

22.3.5 GUI-Builder

BX for Java

Die US-Firma ICS hat kürzlich einen neuen GUI-Builder namens BX for Java vorgestellt. Er unterstützt sowohl AWT- als auch Swing-Komponenten, soll sehr schnell sein und wenig Systemleistung beanspruchen. Nähere Informationen gibt es unter http://www.ics.com/news/pr.php?cont=bxjava.

Dreamweaver

Der Webeditor Dreamweaver von Adobe (http://www.adobe.com/de/products/

dreamweaver.html) ist ein Universaltalent. Mit ihm lassen sich nicht nur HTML-Oberflächen entwerfen, sondern auch Java-Quelltexte kodieren. Er verfügt zudem über eine interessante JSP-Entwicklungsumgebung.

jvider

Der GUI-Builder jvider ist einer der wenigen einzeln erhältlichen GUI-Builder. Es soll JavaBeans sowie Drag & Drop unterstützen. Nähere Informationen erhalten Sie unter http://jvider.com.

566

Einzelwerkzeuge

22.3

Java GUI Builder

In dem bekannten Archiv SourceForge ist ein weiterer, ebenfalls einzeln er-hältlicher GUI-Builder gelistet. Nähere Informationen bekommen Sie unter http://sourceforge.net/projects/jgb.

22.3.6 Laufzeitumgebungen

Informationen über eine Laufzeitumgebung gehören eigentlich nicht in ein Kapitel über Werkzeuge. Sie sind trotzdem notwendig, weil Sie auch während der Entwicklung Java-Programme entweder im Normal- oder im Testmodus ausführen müssen. Aus diesem Grund ist eine Laufzeitumgebung stets Bestandteil einer Werkzeugsuite. Manche integrierten Umgebungen sind jedoch in dieser Beziehung nicht ganz komplett. Es fehlt eine Servlet-, JSP-, CORBA- oder EJB-Umgebung, aber dies lässt sich ausgleichen.

Tomcat

Neben Jetty ist die Servlet-Laufzeitumgebung Tomcat der absolute Stand unter Laufzeitumgebungen für Webanwendungen. Sie ist mittlerweile Bestandteil vieler Entwicklungsumgebungen wie Borlands JBuilder. Sie erhalten sie unter http://tomcat.apache.org.

Application Server

Zur Entwicklung von EJB benötigen Sie einen so genannten EJB-Container. Für CORBA-Anwendungen ist ein Object Request Broker (ORB) erforderlich. Manche sehr teuren integrierten Umgebungen wie die Enterprise Edition von Embarcaderos JBuilder bieten einen Application Server als Testumgebung für CORBA- und EJB-Programme an. Diese Application Server sind sehr speziell und komplex.

Ich möchte hier auf folgende Website verweisen: http://www.theserverside.com/

reviews/index.jsp.

Java-Datenbank Derby

Seit Java 6 gibt es eine in Java integrierte Datenbank, die mit der nachfolgenden Datenbank HSQLDB konkurriert. Sie besteht ebenfalls zu 100 Prozent aus Java-Quelltext, ist sehr klein und einfach zu installieren. Um sie zu verwenden, verwenden Sie eine aktuelle Java-Version 7. Nähere Infos finden Sie unter: http://db.apache.org/derby/.

Java-Datenbank HSQLDB

Die Beispielprogramme der Kapitel 15, »Datenbankprogrammierung«, 16, »Datenbankanwendungen«, und, 17 »Dynamische Websites«, sind mit Hilfe dieser frei-567

22

Werkzeuge

en SQL-Datenbank entstanden. Sie besteht zu 100 Prozent aus Java-Quelltext, ist ungewöhnlich klein (etwa 160 KByte) und einfach zu installieren. Um sie zu verwenden, muss lediglich die Bibliothek hsqldb.jar in den Classpath eingebunden werden. Die Datenbank befindet sich unter: http://hsqldb.sourceforge.net.

SQL-Datenbank Firebird

Etwas größer und nicht in Java geschrieben ist die Datenbank Firebird, die mit Borlands InterBase nahezu kompatibel ist und über einen JDBC-Treiber verfügt. Das ist eine richtige relationale Datenbank, die es angeblich mit vielen Unternehmensdatenbanken wie Oracle oder DB2 aufnehmen können soll. Na

ja, am besten, Sie werfen einmal selbst einen Blick auf den Feuervogel unter http://firebird.sourceforge.net.

MySQL

Die populärste unter allen Open-Source-Datenbanken ist sicher MySQL. Sie ist ebenfalls leicht zu installieren, sehr schnell und unterstützt – nomen est omen –

die Abfragesprache SQL. Mittlerweile ist auch ein JDBC-Treiber erhältlich. Infos gibt es im Web unter http://www.mysql.com.

22.3.7 Java-Debugger

JSwat

JSwat ist ein grafischer Debugger, den Sie als Ergänzung zum JDK einsetzen können. Er soll das Debugging von Applets, Servlets und JSP erlauben und wenig Systemleistung beanspruchen. JSwat ist kostenlos unter der Webadresse http://www.bluemarsh.com/java/jswat verfügbar.

22.3.8 Versionskontrollwerkzeuge

Für den Einsteiger eher hinderlich, aber für die professionelle Softwareentwicklung unentbehrlich sind so genannte Versionskontrollwerkzeuge. Sie dienen dazu, Klassen zu versionieren und eine Integration (Kapitel 5, »Entwicklungsprozesse«) zu erleichtern. Versionskontrollwerkzeuge lassen sich auch dann sehr gut verwenden, wenn Sie nur mit Einzelwerkzeugen arbeiten.

CVS

CVS ist die Abkürzung für Concurrent Version System, ein kostenfrei erhältliches Versionskontrollwerkzeug (http://www.cvshome.org). Es ist für praktisch al-le integrierten Entwicklungswerkzeuge verfügbar und wegen seiner einfachen Handhabung auch für Einsteiger sehr empfehlenswert. Es wird von vielen Ent-568

Werkzeugsuiten

22.4

wicklungsumgebungen unterstützt und ist zum Beispiel in Eclipse, JBuilder und Together nahtlos integriert worden.

Perforce

Als Geheimtipp unter den Versionskontrollwerkzeugen wird seit einiger Zeit Perforce gehandelt. Es soll ultraschnell sein und sich mit vielen IDEs (Abschnitt 22.4,

»Werkzeugsuiten«) verbinden lassen. Weitere Informationen bekommen Sie unter http://www.perforce.com/perforce.

22.3.9 Werkzeuge zur Verteilung

JexePack

JexePack ist ein Produkt, mit dem Sie ein Bytecode-Archiv in einem Win-

dows-Executable verpacken können. Das Werkzeug ist preisgünstig, leicht zu bedienen und ein gute Alternative zum Start eines Java-Programms über ein Archiv. Nähere Informationen gibt es unter http://www.duckware.com/jexepack.

InstallAnywhere

Das Werkzeug InstallAnywhere erlaubt es, Installationsprogramme für (fast) alle Betriebssysteme herzustellen. Es wird von vielen Softwarehäusern eingesetzt und gilt mittlerweile als Standard für die Installation von Java-Programmen. Weitere Informationen zum Produkt gibt es unter http://www. zerog.com.

22.4

Werkzeugsuiten

Eine Werkzeugsuite ist ein Verbund von sinnvoll aufeinander abgestimmten Werkzeugen. Die meisten Hersteller bieten zu ihrer Suite eine gemeinsame Oberfläche an und bezeichnen diese als Integrated Development Environment (IDE).

Eine solche IDE besteht im Kern aus der Projektverwaltung, einer Strukturan-sicht des Quelltextes, einem Editor mit Quelltextparser, einem Java-Compiler und einem Java-Debugger (siehe Abbildung 22.2). Bei manchen dieser IDEs hat der Hersteller noch zusätzliche Werkzeuge integriert wie einen GUI-Builder, ein Modellierungswerkzeug und weitere Testwerkzeuge.

Auf dem Markt existieren also mehr oder weniger komplette IDEs. Es gibt drei Typen: monolithische Suiten, bedingt erweiterbare Suiten und leicht erweiterbare Suiten.

569

22

Werkzeuge

Abbildung 22.2 Der Aufbau einer integrierten Entwicklungsumgebung (IDE) 22.4.1 Eclipse

Eclipse (http://www.eclipse.org) von der IBM-Tochter OTI ist eine Plattform für Werkzeugsuiten und nicht auf eine bestimmte Programmiersprache fixiert. Die Besonderheit von Eclipse ist, dass sie die bisher bestehenden Plugin-Konzepte anderer Entwicklungsumgebungen wie Microsofts Visual Studio oder Borlands JBuilder logisch weitergedacht und perfektioniert hat.

Eine konventionelle Werkzeugsuite verfügt über eine eher monolithische Architektur, die einen großen Kern enthält, der über Plugins erweiterbar ist. Eclipse hingegen enthält nur einen sehr kleinen Kern und besteht ansonsten nur aus Komponenten. Die Eclipse-Komponenten nennen sich zwar wie bei anderen Entwicklungsumgebungen auch Plugins, aber der Unterschied ist gravierend.

Während sich bei einer herkömmlichen Entwicklungsumgebung bestimmte

Werkzeuge wie der Texteditor nicht einfach austauschen lassen, ist dies bei Eclipse kein großes Problem. Insofern kann man im Fall von Eclipse kaum noch von Werkzeugsuite sprechen, sondern eher von einer Plattform für Werk-zeugkomponenten. Die einzelnen Module kommunizieren über ein Bussystem

miteinander. Der Eclipse-Kern, der so genannte Plugin-Loader, sorgt dafür, dass sie verifiziert und angedockt werden.

570

Werkzeugsuiten

22.4

Abbildung 22.3 Die Java-IDE von Eclipse mit Projektverwaltung und Editor Die Java-Umgebung von Eclipse besteht im Wesentlichen aus einer Projektverwaltung, einer Java-Laufzeitumgebung, einem erstklassigen Editor, einem Compiler und einem hervorragenden Debugger. Alle Werkzeuge sind bestens aufeinander abgestimmt. Sie können das JDK wechseln und die Entwicklungsumgebung fast beliebig erweitern oder reduzieren.

Sie können sich vorstellen, dass dazu jedoch Know-how notwendig ist, über das ein Einsteiger nicht unbedingt verfügt. Er erwartet eine komplette Suite, die Eclipse nicht unbedingt bietet. Was zum Beispiel für den Einsteiger momentan noch fehlt, wenn er die Eclipse-IDE herunterlädt, ist ein integrierter GUI-Builder.

Hier sind aber entsprechende Plugins mittlerweile verfügbar.

22.4.2 JBuilder

Embarcaderos JBuilder (http://www.embarcadero.com/products/jbuilder) ist eine sehr gut zu bedienende Entwicklungsumgebung, der man den langen Reifungs-prozess anmerkt. Viele Funktionen erschließen sich auch ohne Handbuch oder Schulung. Die Architektur der Umgebung basiert auf Eclipse. Daher lassen sich 571

22

Werkzeuge

auch alle Eclipse-Plug-ins in JBuilder integrieren. Vom JBuilder gibt es mehrere Editionen, die sich in Preis und Leistungsfähigkeit unterscheiden.

Abbildung 22.4 Die JBuilder-IDE mit integriertem Profiler

22.4.3 Java Development Kit

Das Java Development Kit (JDK oder Java SDK) des Java-Erfinders Sun Microsystems (http://java.sun.com/j2se) beziehungsweise von Oracle enthält keine integrierte Umgebung (IDE). Das ist zwar unkomfortabel, aber dafür ist die Bedienung für Einsteiger ohne großen Aufwand zu erlernen. Die sehr empfehlenswerte Suite finden Sie kostenfrei im Internet. Im Folgenden schildere ich kurz die Installation und den Gebrauch der verschiedenen Werkzeuge.

Installation

Unter Mac OS X ist das JDK bereits installiert. Unter allen anderen Betriebssystemen müssen Sie zur Installation des JDK auf das Installationsprogramm zurückgreifen. Die Bezeichnung des Installationsprogramms hängt von der Version des JDKs und von der Zielplattform ab. Die Windows-Version für Intel-PCs heißt zum Beispiel jdk-7-windows-i586.exe.

572

Werkzeugsuiten

22.4

Sie müssen nach dem Start des Installationsprogramms das Zielverzeichnis angeben. Der Rest läuft von allein ab. Unter Windows trägt sich das Installationsprogramm in der Windows-Registry (Registrierdatenbank) ein. Je nach JDK-Version kann dies aber nicht ausreichen. In diesem Fall müssen Sie den Suchpfad zu den JDK-Werkzeugen ergänzen.

Sofern der Suchpfad zu den Werkzeugen korrekt ist, können Sie nach dem Öffnen eines Terminals (Abbildung 22.5) sofort auf Compiler, Debugger etc. zugreifen.

Probieren Sie einfach folgende Anweisung in einem Terminal aus:

java -version

Sollte eine Fehlermeldung und nicht die korrekte Java-Version erscheinen, müssen Sie die Variable PATH um den Pfad zum JDK-Verzeichnis bin ergänzen. Das geschieht bei allen Betriebssystemen etwas anders.

Abbildung 22.5 Die Bedienung des JDK ist unkomfortabel, aber einfach.

Wenn Sie beispielsweise unter Windows 7 das JDK unter c:\programme\

jdk installiert haben, so müssen Sie zu der Variablen PATH den Pfad c:\programme\jdk\bin hinzufügen. Das lässt sich unter Windows 7 mit Hilfe der Systemsteuerung ergänzen. Bitte sehen Sie dazu in Ihrer Betriebssystemdoku-mentation nach.

Editor

Wie schon erwähnt: Das JDK verfügt nicht über einen Texteditor. Sie verwenden einfach den Editor des Betriebsystems, um Java-Code zu programmieren, oder einen der freien Editoren, die ich im Abschnitt 22.3.2, »Texteditor«, aufgelistet habe. Sofern Sie eine Textverarbeitung wie WordPad verwenden, müssen Sie darauf achten, dass Sie den Quelltext ohne Formatierungen speichern.

Compiler

Der Standard-Compiler des JDKs ist auch der Referenz-Compiler aller Entwicklungsumgebungen. Er übersetzt Java-Quelltext in Bytecode und wird folgendermaßen gestartet:

573

22

Werkzeuge

javac <Optionen> <Dateiname(n).java>

Er verfügt über einige Optionen, die Sie der folgenden Tabelle entnehmen: Optionen

Bedeutung

-g

Erzeugt Standard-Debugging-Informationen

-g:none

Ohne Debugging-Informationen

-g:Zeilen, Variable, Quelltext

Erzeugt spezielle Debugging-Informationen

-O

Schaltet Optimierungen ein

-nowarn

Unterdrückt Warnungen

-verbose

Zeigt ausführliche Informationen zu gela-

denen Klassen an

-deprecation

Zeigt Informationen darüber an, wo veral-

tete APIs verwendet werden

-classpath <Pfad>

Legt den Klassenpfad fest

-sourcepath <Pfad>

Legt den Pfad zum Quelltext fest

-bootclasspath <Pfad>

Überschreibt den Suchpfad für die

Initialisierung

-extdirs <Pfad>

Überschreibt den Suchpfad für Erweiterun-

gen mit einem neuen Pfad

-d <Verzeichnis>

Legt das Ausgabeverzeichnis der Klassen-

dateien fest

-encoding

Legt die Zeichenkodierung des Quelltexts

fest

-target

Erzeugt Code für eine spezielle Version ei-

ner VM

Tabelle 22.13 Optionen des Java-Compilers (Java 7)

Laufzeitumgebung

Die Java-Laufzeitumgebung wird auch virtuelle Maschine (VM) genannt und besteht im wesentlichen aus einem Java-Interpreter. Das JDK bietet gleich zwei von diesen Java-Interpretern an: einen Interpreter für Java Applications und einen Interpreter für Applets (Applet Viewer).

Sie starten den Interpreter für Java Applications über einen der folgenden Aufrufe:

574

Werkzeugsuiten

22.4

java [-Optionen] Klassenname [Argumente]

javaw [-Optionen] Klassenname [Argumente]

Beim ersten Aufruf öffnet sich ein Terminalfenster, beim zweiten nicht. Beim zweiten Aufruf lassen sich zudem keine Standard-Streams verwenden.

Der Interpreter für Java Applications besitzt eine Reihe verborgener Fähigkeiten.

So ist er beispielsweise in der Lage, Profiling-Informationen zu erzeugen. Damit kann ein Entwickler Laufzeitanalysen durchführen und Geschwindigkeitsengpäs-se in Java-Programmen aufspüren.

Der Schlüssel zu manchen verborgenen Fähigkeiten des Interpreters sind seine Startoptionen. Tabelle 22.14 listet diese Optionen und ihre Bedeutung auf.

Optionen

Bedeutung

-client

Wählt die Client-VM aus

(Grundeinstellung)

-jvm

Wählt die JVM (Java VM) aus

-hotspot

Schaltet den Hotspot ein

-server

Wählt die Server-VM aus

-cp <Pfad>

Übersicht über alle Optionen

-D<Name>=<Wert>

Systemeinstellungen festlegen

-jar [-Optionen]<Dateiname>

Programm aus Jar-Archiv starten

-verbose [:Klasse|gc|jni]

Ausführliche Informationen zu geladenen

Klassen, zum Garbage Collector und zur

Verwendung des Java Native Interfaces

-version

Version anzeigen und beenden

-showversion

Version anzeigen und nicht beenden

-?, -help

Gibt die Optionen aus

-X

Zeigt Meldungen an, die nicht zum Stan-

dard gehören

-Xmixed

Führt das Programm im gemischten Mo-

dus aus (Grundeinstellung)

-Xint

Neuen Pfad für den Class Loader eingeben

Tabelle 22.14 Optionen des Interpreters für Java Applications (Java 7) 575

22

Werkzeuge

Optionen

Bedeutung

-Xbootclasspath:<Verzeichnisse

Suchpfad für die Initialisierung

und Zip/Jar-Dateien getrennt mit

Doppelpunkt>

-Xbootclasspath//a:<Verzeichnisse

Anhängen eines Pfads an den Suchpfad

und Zip/Jar-Dateien getrennt mit

für die Initialisierung

Doppelpunkt>

-Xbootclasspath//p:<Verzeichnisse

Voranstellen eines Pfads an den Suchpfad

und Zip/Jar-Dateien getrennt mit

für die Initialisierung

Doppelpunkt>

-Xnoclassgc

Schaltet den Klassen-Garbage-Collector

aus

-Xincgc

Schaltet die inkrementelle Garbage Col-

lection ein

-Xms <Größe>

Anfängliche Heapgröße

-Xmx <Größe>

Maximale Heapgröße

-Xprof

Gibt Informationen zum CPU-Profiling aus

-Xrunhprof[:help] |

Gibt Heap-, CPU- oder Monitor-Profiling

[:<Optionen>=<Wert>]

aus

-Xdebug

Schaltet Remote-Debugging ein

-Xdock:Name=<Programmname>

Überschreibt Standardprogrammnamen

[:Symbol=<Symbolpfad>]

und -symbol

Tabelle 22.14 Optionen des Interpreters für Java Applications (Java 7) (Forts.) Der Interpreter für Java-Applets verfügt nicht über eine solche Vielzahl an Optionen. Sie starten ihn einfach über:

appletviewer [Optionen] url(s)

Folgende Optionen können Sie verwenden:

Optionen

Bedeutung

-debug

Stellt die Kompatibilität zum JDK 1.1 her

-encoding <Kodierung>

Disassembliert den Code

-J<Flag>

Übergibt ein Arguments an die Laufzeitum-

gebung (keine Standardoption)

Tabelle 22.15 Optionen des Applet-Viewers (Java 7)

576

Werkzeugsuiten

22.4

Debugger

Der Java-Debugger ist genau genommen eine spezielle virtuelle Maschine. Der Debugger des JDK ist zwar umständlich zu bedienen, verfügt aber über erstaunlich viele Funktionen. Er erlaubt es, ein Programm zu testen, Haltepunkte zu setzen und den Wert von Variablen abzufragen. Sie starten ihn einfach mit jdb <Optionen><Klassenname><Argumente>

Er verfügt über folgende Optionen:

Optionen

Bedeutung

-help

Gibt ausführliche Hilfe aus

-sourcepath <Pfade

Pfad zum Quelltext festlegen

getrennt mit»:«>+

-attach <Adresse>

Mit einem laufenden Programm verbinden

-listen

Auf ein laufendes Programm warten und

verbinden

-connect <Connector>=

Mit einem laufenden Programm über einen

<Name=<>Wert>

Connector verbinden

-dbgtrace[Flags]

Gibt Informationen zum Debugger aus

-tclient

Debugging via Hotspot

-tclassic

Debugging via Classic VM

-v,-verbose

Ausführliche Informationen

-D<Name><Wert>

Systemeinstellungen festlegen

-classpath <pathlist>

Setzt den Pfad zu Klassendateien

-X<Optionen>

Gibt Optionen aus, die nicht standardisiert

wurden

Tabelle 22.16 Standardoptionen des Java-Debuggers (Java 7)

Trotz der Vielzahl von Optionen bietet der Debugger nur eine Textoberfläche und stellt keine Konkurrenz für die grafischen Debugger der Entwicklungsumgebungen dar.

Disassembler

Der Java-Disassembler erlaubt es, den Bytecode zu entschlüsseln. Das Werkzeug, das man durch die Eingabe von javap startet, wandelt den Bytecode in Assem-blercode zurück.

577

22

Werkzeuge

Optionen

Bedeutung

-b

Stellt die Kompatibilität zum JDK 1.1 her

-c

Disassembliert den Code

-classpath <pathlist>

Setzt den Pfad zu Klassendateien

-extdirs <dir>

Überschreibt den Suchpfad für Erweiterungen mit

einem neuen Pfad

-help

Gibt die Optionen aus

-J<Flag>

Übergibt ein Argument an die Laufzeitumgebung

-l

Gibt Zeilennummern und lokale Variablen aus

-public

Nur öffentliche Klassen, Methoden und Variablen

anzeigen

-protected

Öffentliche und geschützte Klassen, Methoden und

Variablen anzeigen

-package

Öffentliche und geschützte Klassen, Methoden und

Variablen des Packages anzeigen (Grundeinstellung)

-private

Alle Klassen, Methoden und Variablen anzeigen

-s

Interne Typ-Signaturen ausgeben

-bootclasspath <pathlist>

Neuen Pfad für den Class Loader eingeben

-verbose

Erweiterte Meldungen wie Stackgröße, Anzahl loka-

ler Variablen und Parameter

Tabelle 22.17 Optionen des Disassemblers (Java 7)

Archiv-Tool JAR

Das Archiv-Tool des JDK ist leicht zu bedienen und erzeugt die bekannten Java-Archive, die für die Verteilung von Java-Programmen verwendet werden. Näheres zur Verwendung erfahren Sie in 5, »Entwicklungsprozesse«.

Dokumentationswerkzeug

Das JavaDoc-Tool liest die JavaDoc-Informationen, die im Quelltext enthalten sind, und erzeugt eine strukturierte weitverzweigte HTML-Dokumentation. Nä-

heres zur Verwendung erfahren Sie ebenfalls in Kapitel 5, »Entwicklungsprozesse«.

22.4.4 NetBeans

NetBeans (http://www.netbeans.org) ist eine mit Eclipse vergleichbare frei erhältliche integrierte Entwicklungsumgebung (IDE). Sie besteht aus einer Laufzeitumgebung, einem Editor, einem Compiler, einem Debugger und einem GUI-Builder.

578

Werkzeugsuiten

22.4

Vom Funktionsumfang her ist sie unter den kostenfreien Java-Entwicklungsumgebungen unbestritten der Marktführer. Im Vergleich zu Eclipse besitzt sie keine so elegante Oberfläche, ist aber sehr leicht zu bedienen.

22.4.5 Sun One Studio

Das Sun One Studio basiert auf der kostenfreien Umgebung NetBeans, bietet nur wenig mehr. Aus diesem Grund möchte ich auf die Umgebung hier nicht näher eingehen. Unter http://www.oracle.com finden Sie Details.

22.4.6 Together

Eine Ausnahmestellung unter den integrierten Entwicklungsumgebungen nimmt Together (http://www.borland.com/de/products/together) ein. Es ist meiner Meinung nach derzeit eine der interessantesten Java-Entwicklungsumgebungen: relativ leicht zu bedienen, aber mit mächtigen Funktionen.

Abbildung 22.6 Together ControlCenter ist eine der leistungsfähigsten IDEs.

Die Architektur der Umgebung ist nicht so modern wie die von Eclipse. Ähnlich dem JBuilder lässt sie sich auch durch Plugins erweitern. Da diese Umgebung ebenfalls kein Repository verwendet, ist die Integration von anderen Einzelwerk-579

22

Werkzeuge

zeugen auch ohne Plugins kein Problem. Es gibt eine kostenlose Edition (Together Community Edition) und zwei kostenpflichtige Editionen: Together solo und Together ControlCenter.

22.4.7 VisualAge Java

IBMs VisualAge (http://www.ibm.com/software/ad/vajava) für Java war der Vorgänger von Eclipse beziehungsweise des WebSphere Studios. Das Produkt wird momentan nicht mehr von IBM vertrieben, ist aber über Softwarehändler noch erhältlich. Es bietet eine an Smalltalk-Umgebungen erinnernde hochintegrierte Umgebung, die praktisch kaum zu erweitern ist. Immer dann, wenn man ein zu-sätzliches Werkzeug benötigt, das in der integrierten Umgebung nicht vorhanden ist, gibt es mit VisualAge Probleme.

VisualAge enthält eine integrierte flexible Projektverwaltung. Es beherrscht verschiedene Ansichten. Jeder Entwickler eines Teams kann seinen individuellen Workspace gestalten. Dieser Workspace bietet eine Teilansicht des Teamreposi-torys, auf dem VisualAge basiert. Nachteile der Umgebung sind, dass es wenig Schnittstellen gibt, um auf das Repository zuzugreifen, und dass es keine Möglichkeit gibt, das JDK zu wechseln oder beliebige JDKs zu verwenden.

Der Texteditor von VisualAge ist schnell und sehr gut mit der Laufzeitumgebung und dem Debugger verzahnt. Er bietet Syntaxhervorhebung und ausreichende Suchfunktionen. Mit dem GUI-Builder Visual Composition Editor ging IBM eigene Wege. Der Editor für Java-Oberflächen greift die Funktionen der Smalltalk-Umgebung Parts auf und erlaubt es auf eine sehr einfache Art, Oberflächen zusam-menzuklicken. Der erzeugte Code ist allerdings gewöhnungsbedürftig. Auch ist dieser GUI-Builder nicht immer in der Lage, handgeschriebenen Code wieder einzulesen.

Einen HTML-Editor sucht man in VisualAge vergebens. Es ist auch unmöglich, einen entsprechenden Editor zu integrieren. Die Entwicklung von JavaServer Pages ist somit auch nicht besonders komfortabel. Dazu müssen Sie einen externen HTML-Editor verwenden und die neu erzeugten Seiten importieren.

Neben dem Debugger ist die Versionsverwaltung ein weiterer Pluspunkt der Umgebung. Sie ist nahtlos eingebettet und in der Lage, Methoden zu versionieren

– ein allerdings fragwürdiges Verfahren. Die Laufzeitumgebung ist in die monolithische Umgebung fest verdrahtet, und ein Wechsel des JDK ist damit nicht möglich. Der Debugger ist sicherlich das Glanzlicht des Produkts. Er ist schnell und bot schon lange vor dem JDK 1.4 Hot-Swap-Funktionen.

580

»Computer werden kleiner und kleiner, bald verschwinden sie völlig.«

(Ephraim Kishon)

23

Computerhardware

23.1

Einleitung

Java ist zwar eine plattformunabhängige Sprache. Das bedeutet jedoch nicht, dass der Java-Entwickler nicht wissen muss, aus welchen Teilen ein Computer zusammengesetzt ist. Die Kenntnis der prinzipiellen Funktion einiger Hardwarekomponenten ist für das tiefere Verständnis des ersten und sechsten Kapitels dieses Buchs notwendig. Diese Hardwarekomponenten stehen im Mittelpunkt des vorliegenden Kapitels.

Abbildung 23.1 Überblick über den Aufbau eines Computers

23.2

Aufbau eines Computers

Ein Computer besteht aus der Zentraleinheit, der Peripherie und verschiedenen Schnittstellen (serielle und parallele Schnittstelle etc.). Für den Java-Programmierer ist vor allem die Funktion der Zentraleinheit mit ihren verschiedenen Prozessoren und dem Speicher relevant.

581

23

Computerhardware

23.3

Bussystem

Wenn man die Zentraleinheit in ihre Bestandteile zerlegt, erhält man im Wesentlichen drei Komponenten: eine Reihe von Prozessoren, verschiedene Speichermedien und das Bussystem (Abbildung 23.1). Das Bussystem (Datenbus, Adressbus, Steuerbus) bildet das Rückgrat des Computers. Alle Komponenten kommunizieren über diese Leitung.

Der Adressbus dient zur Übertragung der Adressen eines nativen Programms wie zum Beispiel der virtuellen Maschine (JVM). Das Steuerwerk hat die Aufgabe, Steuersignale zwischen Steuerwerk und den anderen Komponenten zu übertragen. Der Datenbus schließlich ist für die Übermittlung der Daten zwischen Rechenwerk und Arbeitspeicher sowie für die Ein- und Ausgabesteuerung zuständig.

23.4

Prozessoren

23.4.1 Central Processing Unit

Der Java-Interpreter verarbeitet die Anweisungen des Java-Programms, die die CPU über mehr oder weniger verschlungene Umwege verarbeitet. Jede CPU hat ihren speziellen Befehlssatz, die OpCodes (Operanden-Code). Native Programme bestehen ausschließlich aus Anweisungen mit OpCodes für einen speziellen Prozessor.

Abbildung 23.2 Zusammenspiel zwischen Steuer- und Rechenwerk

582

Speichermedien

23.5

Rechenwerk

Die CPU besteht aus einem Steuerwerk und einem Rechenwerk. Das Rechenwerk, der Name sagt es, verrechnet alle Informationen in Form digitaler Ströme (Kapitel 1, »Digitale Informationsverarbeitung«). Alle vom Rechenwerk durchgeführten Operationen lassen sich auf eine Addition zurückführen. Insofern ist der Name Computer sehr treffend (lat. Computator: Rechner).

Steuerwerk

Das Steuerwerk hat die Aufgabe, die Zusammenarbeit von Rechenwerk und Ar-beitsspeicher zu steuern. Ist ein Programm im Hauptspeicher geladen, müssen die OpCodes in den Prozessor zum Rechenwerk gelangen. Sie landen nacheinander im Befehlsregister des Steuerwerks, das sie dosiert in das Rechenwerk schickt, wo die eigentliche Verarbeitung abläuft. Die Informationen kommen nach der Verarbeitung wieder in das Steuerwerk zurück, wo sie an der richtigen Stelle des Hauptspeichers abgelegt werden.

23.4.2 Grafikprozessor

Die Steuerung des Grafikprozessors ist bei höheren Betriebssystemen wie Unix und Windows deren alleinige Angelegenheit. Kein Java-Programm kann direkt in den Grafikspeicher schreiben oder den Grafikprozessor direkt ansprechen.

23.5

Speichermedien

Der Computer besitzt verschiedene Speichermedien. Einen Teil davon verwendet ein Java-Programm direkt. Während der Ausführung des Programms legt es transiente und – in manchen Fällen – persistente Informationen ab.

23.5.1 Hauptspeicher

Der Hauptspeicher nimmt die transienten (flüchtigen) Informationen eines Java-Programms auf. Man unterscheidet zwei Bereiche: den Heap und den Stack.

Heap

Der Heap nimmt die globalen Daten eines Programms wie der virtuellen Maschine auf. Sofern das Java-Programm in Form von Bytecode vorliegt, ist der Heap im Hauptspeicher für Sie uninteressant. Wenn das Java-Programm mit einem Native-Code-Compiler in Maschinencode verwandelt wurde, sieht es anders aus.

583

23

Computerhardware

In diesem Fall müssen die Einstellungen, die beim Start des Programms über die virtuelle Maschine festgelegt wurden, auf das native Programm übertragen werden. Diese Aufgabe übernehmen Native-Code-Compiler (Kapitel 22, »Werkzeuge«).

Stack

Was für den Heap gilt, gilt auch übertragen für den Stack. Er ist für die lokalen Daten eines Programms wie der virtuellen Maschine zuständig. Solange das Java-Programm im Bytecode-Format vorliegt, ist die Verwaltung des Stacks das Geheimnis der virtuellen Maschine und nicht das Problem eines Java-Programmierers.

Java-Programm (Native Code)

Java-Programm

Java Virtuelle Maschine (JVM)

Arbeits-

speicher

(RAM)

Natives Programm

Betriebssystem

Abbildung 23.3 Der Hauptspeicher

Wird das Programm jedoch in ein natives Format übertragen, müssen die Informationen für die virtuelle Maschine ebenfalls übertragen werden. Auch diese Aufgabe übernimmt ein entsprechendes Entwicklungssystem.

23.5.2 Festplattenspeicher

Die Festplatte dient dazu, Dateien wie zum Beispiel Java-Quelltext dauerhaft zu speichern. Die Verwendung ist für eine Java-Anwendung sehr komfortabel, da betriebssystem- oder plattformspezifische Konventionen nicht gelten. Sie programmieren auch hier gegen ein virtuelles Betriebssystem, die virtuelle Maschine.

Kenntnisse über spezielle Konventionen sind daher überflüssig.

584

Ein- und Ausgabesteuerung

23.6

23.6 Ein- und Ausgabesteuerung

Datenverarbeitung hat wenig Sinn, wenn die Informationen den Anwender nicht erreichen oder er keine Informationen eingeben kann. Damit die im Computer verarbeiteten Informationen an die Außenwelt dringen, sind so genannte Peri-pheriegeräte wie Drucker und Bildschirme notwendig. Geräte wie die Tastatur, die Maus oder das Mikrofon erlauben es, Daten einzugeben. Die Kontrolle dieser Geräte übernimmt die Ein- und Ausgabesteuerung.

23.7

Taktgeber

Der Informationsstrom verläuft im Computer nicht gleichmäßig, sondern mit einer bestimmten Taktrate, die ein Kriterium für die Geschwindigkeit eines Computers ist. Die Kontrolle über die Taktrate hat der Taktgeber, der quarzgesteuert ist.

23.8

Zusammenfassung

Der Computer besteht im Wesentlichen aus drei Einheiten: dem Bussystem, den Prozessoren und den Speichermedien. Das Bussystem überträgt Informationen von einer Hardwarekomponente zur anderen, während Prozessoren die Anweisungen von Programmen verarbeiten. Speichermedien sind das Lang- und Kurzzeitgedächtnis des Computers.

585

24

Glossar

Acceleratoren (auch Shortcuts oder Tasta-

die die Zusammenhänge zwischen verschie-

turkombinationen genannt) sind system-

denen Schichten (z. B. Client-/

typische Kombinationen aus einer Sonder-

Server oder Host-Schichten u. a.) und die

und einer Alphataste.

Verteilung und Kommunikation der Kompo-

nenten darauf beschreibt.

American National Standards Institute

Das Normungsinstitut in den Vereinigten

Anwendungsfall Eine für einen Benutzer

Staaten.

sichtbare Aktion oder ein abgegrenztes Ziel.

American Standard Code for Information

Architektur ist die Spezifikation der grund-

Interchange (ASCII) Eine Norm für eine

legenden Struktur eines Systems.

systemübergreifende Darstellung von Zei-

chen. Jedes ASCII-Zeichen besitzt einen ein-

AWT bedeutet Abstract Windowing Toolkit

deutigen Zahlencode.

und ist die älteste der drei GUI-Bibliothe-

ken, die für die Sprache Java existieren.

ANSI Abkürzung für American National

Standards Institute (ANSI). Es ist schlicht-

Basisklasse Synonym für Oberklasse,

weg das Normungsinstitut in den Vereinig-

Superklasse.

ten Staaten.

Behälterklasse Eine Klasse, die andere auf-

API Abkürzung für Application Program-

nehmen kann, wie zum Beispiel ein Vektor.

ming Interface.

Bildlauffeld Ein Schieber, der die momen-

Application Programming Interface ist die

tan abgebildete Stelle eines Dokuments in-

Bezeichnung für eine Programmschnittstel-

nerhalb einer Datei kennzeichnet.

le. Das kann zum Beispiel das API eines Be-

triebssystems oder einer

Bildlaufleiste (auch Scrollbar) dient dazu,

Java-Klassenbibliothek sein.

innerhalb eines dargestellten Dokuments

vor- oder zurückzublättern. Dazu besitzt die

ASCII Abkürzung für American Standard

Leiste ein Bildlauffeld und Schaltflächen,

Code for Information Interchange

die die Form von Pfeilen besitzen.

Abstrakte Klasse Von einer abstrakten

Binärformat Das Format, in dem ein Com-

Klasse können keine Instanzen erzeugt wer-

puter Informationen verarbeitet.

den. Sie ist bewusst unvollständig und bil-

det die Basis für weitere konkrete Unter-

Button Synonym für Schaltfläche.

klassen.

Bytecode Ein binäres Zwischenformat, das

Abstrakte Methode Eine unvollständige

der Java-Compiler erzeugt. Jede Instruktion

Methode, für die nur eine Signatur, jedoch

ist ein Byte groß, daher der Name. Bytecode

keine Anweisungsfolge definiert ist. Einer

ist nicht zu verwechseln mit nativem Binär-

abstrakten Methode fehlt die Implementie-

code für einen speziellen Computer. Es ist

rung.

Maschinencode für die virtuelle Maschine.

Anwendungsarchitektur Die fachliche und

CGI Abkürzung für Common Gateway

technische Architektur einer Anwendung,

Interface.

587

24

Glossar

CGI-Programm Ein Programm, das von der

Einfachvererbung Bei der Einfachvererbung

Serversoftware gestartet wird, zum Beispiel

stammt jede Unterklasse nur von

zur Darstellung eines Formulars und Wei-

einer direkten Oberklasse ab.

tergabe der so erhaltenen Daten.

Entwurfsmuster Vorlagen für das Softwa-

Combo Box Synonym für Kombinationsfeld.

redesign, die helfen, ein architektonisches

Problem zu lösen. Man unterscheidet Er-

Common Gateway Interface Eine allge-

zeugungs-, Struktur- und Verhaltensmuster.

mein verfügbare Schnittstelle eines Webser-

vers für CGI-Programme.

Enumeration Enumerationen sind Auf-

zählungstypen wie zum Beispiel Woche

Common Object Request Broker Archi-

= (Sonntag, Montag, Dienstag, Mittwoch,

tecture (CORBA) Von der Object Manage-

Donnerstag, Freitag, Samstag). In Java gibt

ment Group verabschiedete Architektur für

es Aufzählungstypen ab dem JDK 1.5.

Objekttechnologien. Durch diese Architek-

tur können Objekte auf unterschiedlichen

Ereignis Spezielle Klasse, die zum Beispiel

Rechnern miteinander kommunizieren.

dann verschickt wird, wenn der Anwender

einen Mausklick durchführt.

Compiler Ein Entwicklungswerkzeug, das

Quelltext in Maschinensprache (Binärpro-

ER-Modell Entity-Relationsship-Modell, ei-

gramm) übersetzt. In Java übersetzt der

ne Darstellungsart, die die Beziehungen von

Compiler den Quelltext in Bytecode.

Datenbank-Entities (eine oder mehrere Ta-

bellen) zeigt.

Computer Aided Software Engineering

(CAD) Ein Sammelbegriff für Software-

Exemplar Synonym für Objekt.

werkzeuge, die den Entwurf und die Pro-

grammierung von Software automatisieren

Extensible Markup Language (XML)

oder unterstützen sollen.

Eine Erweiterung von HTML, bei der eigene

Tags definiert werden können.

Container-Klasse Synonym für Behälter-

klasse.

Extranet Eine als Netzwerk verbundene

Ansammlung von Webservern und -seiten,

CORBA Abkürzung für Common Object Re-

außerhalb einer Firma, aber nicht zugäng-

quest Broker Architecture.

lich für Internet-Benutzer.

Datenbank-Managementsystem (DBMS)

Fachliche Architektur Ein Modell, das die

Ein Programm oder eine Schicht, die zwi-

grundsätzlichen fachlichen Zusammenhänge

schen dem aufrufenden Programm und ei-

eines Anwendungsbereiches repräsentiert.

ner Datenbank vermittelt.

Fachliches Klassenmodell Ein vollstän-

DBMS Abkürzung für Datenbank-

diges Klassenmodell oder Teilklassenmo-

Managementsystem.

dell, das aus der direkten Überführung von

fachlichen Diagrammen (Anwendungsfäl-

Dialogfenster (oder Dialogfeld bzw. ein-

len, Aktivitätsdiagrammen) entstanden ist.

fach nur Dialog) In der Regel ein nichtmo-

Es enthält ausschließlich oder vorwiegend

dales Fenster, das dazu dient, Programmein-

fachliche Klassen und ist eine Momentauf-

stellungen vorzunehmen oder eine Mittei-

nahme in der Analysephase eines Software-

lung einzublenden.

systems.

588

Glossar

24

Floating Window Synonym für eine

nikation zwischen Webbrowser und Web-

schwimmende Palette, ein Fenster, das immer

server abgewickelt.

sichtbar bleibt.

Instanz Fehlübersetzung des englischen Be-

Fokus Bei der Programmierung von Fens-

griffs Instance (Exemplar). Mit Instanz ist in

tersystemen wird der Begriff Fokus immer

der Regel Objekt gemeint.

in Verbindung mit Eingaben von Tastatur

und Maus verwendet. »Ein Fenster besitzt

Interpreter Ein Interpreter überträgt ein

den Fokus« bedeutet, dass das Fenster die

Programm (im Regelfall) von einer Hoch-

Eingaben von Tastatur und Maus, die im

sprache in die Maschinensprache. Bei der

System kursieren, mit höchster Priorität ent-

Programmiersprache Java überträgt der Ja-

gegennimmt. Dieses Fenster ist für den An-

va-Interpreter den Bytecode (in der Regel)

wender sichtbar als aktiv hervorgehoben;

in Maschinensprache.

kein anderes Fenster hat zu der gleichen

Zeit ebenfalls den Fokus.

Internet Ein weltweites Netzwerk aus

Computern.

FTP Abkürzung für File Transfer Protocol,

ein 1971 standardisiertes Internet-Protokoll

Intranet Eine als Netzwerk verbundene

für die Dateiübertragung zwischen Compu-

Ansammlung von Webservern und -seiten,

tern.

normalerweise innerhalb einer Firma oder

einer anderen Organisation.

Generalisierung Synonym für Vererbung

Instantiierung oder Instanziierung Das Er-

Graphical User Interface (GUI) Die eng-

zeugen eines Exemplars, das heißt eines Ob-

lische Bezeichnung einer grafischen Be-

jekts einer Klasse.

dieneroberfläche (Schnittstelle) eines Pro-

gramms.

Java Remote Method Protocol (JRMP) Ein

Java-Protokoll, das alternativ zu IIOP der

Group Box Synonym für Gruppenfeld

Kommunikation entfernter Objekte dienen

kann.

Gruppenfeld Ein Gruppenfeld fasst logisch

zueinander gehörende GUI-Elemente op-

JRMP Abkürzung für Java Remote Method

tisch mit einem Rahmen und einem Titel

Protocol.

zusammen.

Kardinalität Bezeichnung für die Anzahl

GUI Abkürzung für Graphical User Inter-

der Elemente in einem Klassendiagramm.

face, grafische Benutzeroberfläche.

Klasse Bauanleitung für Objekte.

HTML Abkürzung für Hypertext Markup

Language. Eine textbasierte Methode zur

Klassenattribut Synonym für

Darstellung von Text, Grafik und Hyperlinks

Klassenvariable.

im World Wide Web.

Klassenbibliothek Bezeichnung für eine

HTTP Abkürzung für Hypertext Transfer Pro-

Sammlung von Klassen.

tocol

Klassenmethode Eine Klassenmethode ist

Hypertext Transfer Protocol Über das Hy-

für alle Exemplare einer Klasse unveränder-

pertext Transfer Protocol wird die Kommu-

lich (statisch). Klassenmethoden werden

durch das Schlüsselwort static deklariert.

589

24

Glossar

Klassenoperation Synonym für Klassen-

Im Gegensatz dazu kann nach der Ausga-

methode.

be eines systemmodalen Dialogs im gesam-

ten Betriebssystem so lange nicht weiterge-

Klassenvariable Eine Klassenvariable ist für

arbeitet werden, bis der Dialog geschlossen

alle Exemplare einer Klasse unveränderlich

wird.

(statisch). Klassenvariablen werden durch

das Schlüsselwort static deklariert.

Model View Controller Ein Entwurfsmus-

ter für die Trennung von Präsentation und

Konkrete Klasse Eine Klasse, von der man

Daten.

Objekte ableiten kann.

Multiple Vererbung Synonym für Mehr-

Kontrollfeld Dient zur Auswahl und Anzei-

fachvererbung

ge von booleschen Werten, also Variablen,

die nur zwei Zustände besitzen.

MVC Abkürzung für Model View

Controller.

Konstruktor Eine auf das Erzeugen von

Objekten spezialisierte Methode.

Nativ Eine nativ kompilierte Anwendung

ist speziell für diesen Computer sowie sein

Maschinensprache Die Muttersprache des

Betriebssystem entwickelt worden und läuft

Computers. Ein Maschinenprogramm wird

nur auf diesem oder auf einer kompatiblen

im Binärformat gespeichert.

Emulation (engl. native: gebürtig).

Mehrfachvererbung Gestattet es einer ab-

Netzwerk Eine Gruppe von Computern,

geleiteten Klasse, von zwei Basisklassen zu

die mit Hilfe spezieller Soft- und Hardware

erben.

miteinander verbunden ist und Daten und

Geräte gemeinsam nutzen kann.

Mnemonics (lat. so viel wie Stütze für das

Gedächtnis) sind Buchstaben, die in den

Nichtmodale Dialogfenster Dialogfenster

Menüeinträgen unterstrichen sind und da-

dieser Art müssen nicht geschlossen wer-

rauf hinweisen, dass man dieses Menü auch

den, um die Arbeit mit dem Programm fort-

durch eine Kombination aus der Alt- und ei-

setzen zu können.

ner Alphataste öffnen kann.

Oberklasse Synonym für Basis-, Superklas-

Modales Dialogfenster Diese Dialoge müs-

se.

sen erst beendet werden, bevor das Pro-

gramm fortgesetzt werden kann. Es existie-

Object Management Group (OMG) Ein

ren zwei verschiedene Dialogarten:

Standardisierungskonsortium der Com-

puterindustrie für OO-Technologien.

왘

anwendungsmodale Dialoge

왘

systemmodale Dialoge

Object Request Broker (ORB) Ein Teil der

CORBA-Spezifikationen der OMG. Er er-

Anwendungsmodale Dialoge lassen es nicht

laubt es, auf Objekte zuzugreifen, die sich

zu, mit dem Programm weiterzuarbeiten,

auf entfernten Rechnern befinden.

von dem sie eingeblendet wurden, bis der

Dialog geschlossen wird. Das Betriebssys-

Objekt Eine spezielle benutzerdefinierte

tem wird durch sie hingegen nicht blo-

Variable, die Daten und Methoden kapselt.

ckiert.

590

Glossar

24

Objektidentität Die Objekteigenschaft, die

Missverständnisse über die grafische Ober-

ein Objekt von allen anderen Objekten un-

fläche auszuräumen.

terscheidet.

Remote Method Invocation Das

Objektorientierte Programmiersprache

Java-API für die Kommunikation

Programmiersprache, die die Basisvorausset-

zwischen Java-Objekten auf unterschiedli-

zungen der Objektorientierung umsetzt.

chen Computern und Prozessen.

Objektvariable Variable, die nur für ein

Reverse-Engineering Der Vorgang, bei

spezielles Objekt gültig ist.

dem aus dem Quelltext ein Modell oder

dem Bytecode der Quelltext erzeugt wird.

OMG Abkürzung für Object Management

Group.

RDBMS Relationales Datenbank-Manage-

mentsystem. Datenbank-Managementsystem,

OO Abkürzung für Objektorientierung.

das Beziehungen zwischen Tabellen mittels

Relationen abbildet.

Optionsfeld Synonym für Radioschalter.

RMI Abkürzung für Remote Method Invoca-

ORB Abkürzung für

tion

Object Request Broker.

Roundtrip-Engineering Der Vorgang, der

Persistentes Objekt Persistente Objekte (lat.

Quelltext und UML-Modell konsistent hält.

»anhaltend«) sind solche, deren Lebensdau-

Dies geschieht durch wechselseitiges For-

er über die Laufzeit einer Programmsitzung

ward- und Reverse-Engineering.

hinausreicht. Die Objekte werden hierzu

auf nichtflüchtigen Speichermedien (zum

Schaltfläche Die Schaltfläche funktioniert

Beispiel Datenbanken) gehalten.

bei grafischen Oberflächen entweder als

Taster oder als Schalter. Im ersten Fall löst

Polymorphie (Vielgestaltigkeit) heißt, dass

ein aktivierter Taster das Ereignis aus und

gleich lautende Methoden ein unterschied-

kehrt wieder in die Ausgangsposition zu-

liches Verhalten bewirken. Beim dynami-

rück. Die zweite Kategorie signalisiert, dass

schen Polymorphismus wird eine Nachricht

sie aktiviert wurde, indem der Zustand des

nicht zur Entwicklungszeit, sondern erst

hineingedrückten Schalters beibehalten

beim Empfang zur Programmlaufzeit einer

wird.

konkreten Methode zugeordnet.

Shell Bezeichnung für eine textorientierte

Radio Button Synonym für Radioschalter

Benutzerschnittstelle.

oder Optionsfeld

Shellskript Unix-Programm, einem Win-

Radioschalter Ein Radioschalter funktio-

dows-Batch-Programm vergleichbar, das

niert wie ein Wechselschalter. Bei einer

von der Shell ausgeführt wird.

Gruppe von Radioschaltern ist normaler-

weise stets nur einer aktiv.

Shortcuts Synonym für Acceleratoren.

Rapid Prototyping Eine Technik, um

Signatur Die Signatur einer Methode setzt

schnell einen Programmrohbau zu erzeugen

sich aus dem Namen der Methode, ihrer Pa-

und dadurch in der Lage zu sein, frühzei-

rameterliste und der Angabe eines eventuel-

tig zusammen mit dem späteren Anwender

len Rückgabetyps zusammen.

591

24

Glossar

Spin Button Synonym für Drehknopf.

Toolbar Synonym für Symbolleiste.

SQL Abkürzung für Structured Query Lan-

Transientes Objekt Ein Objekt, das nur

guage.

während der Laufzeit eines Prozesses exis-

tiert.

static Schlüsselwort, um eine Klassenvaria-

ble oder eine Klassenmethode zu kennzeich-

UI Abkürzung für User Interface.

nen.

Unicode Vom Betriebssystem, vom Pro-

Structured Query Language Eine von IBM

gramm und der Landessprache unabhängi-

entwickelte Datenbank-Abfragesprache, die

ger Zeichencode.

eine relativ komfortable Kommunikation

mit einer (relationalen) Datenbank erlaubt.

Uniplexed Information and Computing

System Besser als Unix bekannt: ein Be-

Subklasse Synonym für Unterklasse, abge-

triebssystem. Unix-Derivate (Abkömmlinge)

leitete Klasse.

sind zum Beispiel Linux, Mac OS X oder So-

laris.

super Das Schlüsselwort super bewirkt,

dass die Nachricht an die Superklasse (daher

Unix Abkürzung für Uniplexed Information

der Begriff) weitergeleitet wird, die über die

and Computing System.

genannte Methode verfügt.

Uniform Resource Locator Die »Adresse«

Superklasse Synonym für Oberklasse.

bzw. der Speicherort einer Website, Daten-

bank oder Datei.

Symbolleiste Programmiertechnisch gese-

hen ein einfaches Fenster mit Symbolen,

URL Abkürzung für

das normalerweise direkt unter der Menü-

Uniform Resource Locator.

leiste platziert wird.

Unterklasse (abgeleitete Klasse) Spezialisie-

Systemarchitektur Architektur für die

rung einer Oberklasse, die alle Eigenschaf-

IT-Infrastruktur.

ten der Oberklasse erbt.

Tags Auszeichnungen in einem

User Interface Benutzerschnittstelle.

HTML-Quelltext, zum Beispiel um die Grö-

ße einer Schrift festzulegen.

Vererbung Bezeichnung für eine enge Be-

ziehung zwischen einer Ober- und

Tastaturkombinationen Synonym für Acce-

einer Unterklasse oder zwischen zwei An-

leratoren.

wendungsfällen.

Technische Architektur Im Gegensatz zur

Verifizierung Überprüfung der Wahrheit ei-

fachlichen Architektur stellt die technische Ar-

nes Ausdrucks.

chitektur die fertige Implementierung des

Programms dar.

Virtuelle Maschinen Nachbau einer rea-

len Maschine (CPU). Sie ist in der Lage, Ja-

this Ein Java-Schlüsselwort, das benutzt

va-Bytecode auszuführen, indem sie die An-

wird, wenn ein Objekt sich selbst eine

weisungen interpretiert.

Nachricht senden soll. Das heißt, es ruft ei-

ne seiner eigenen Methoden auf.

What you see is what you get Ein Ver-

halten eines Editors, bei dem die Vorschau

592

Glossar

24

exakt das anzeigt, was später im Ausdruck

World Wide Web (WWW) Das World

oder im fertigen Programm zu sehen ist.

Wide Web wurde als Erweiterung des In-

ternets 1993 am europäischen Forschungs-

Webbrowser Ein Programm, das HTML-

institut für Kernphysik (CERN) entwickelt

Seiten darstellen kann, zum Beispiel Micro-

und erlaubt den Zugriff auf Dokumente, die

soft Internet Explorer und Mozilla Firefox

auf Servern weltweit verfügbar sind.

(manchmal auch »Navigationsprogramm«

oder »Webclient« genannt).

WWW Abkürzung für World Wide Web.

Webseite Jedes HTML-Dokument, das

WYSIWYG Abkürzung für What you see is

durch einen Webserver veröffentlicht wird.

what you get.

Webserver Ein Computer, auf dem Softwa-

XML Abkürzung für Extensible Markup Lan-

re installiert ist, mit der HTML-Dateien und

guage.

andere Inhalte über das Internet (oder ein

Intranet) gemeinsam genutzt werden kön-

Zwischenablage Der Speicherbereich,

nen. Häufig wird auch die Serversoftware

den Programme verwenden können, um

als Webserver bezeichnet.

mit anderen auf einfachste Art Daten

auszutauschen.

Website Eine Ansammlung von HTML-Da-

teien und anderen Inhalten. Der Zugriff auf

die Website erfolgt über einen URL.

593

»Die besten Bücher sind die, von denen jeder Leser meint,

er hätte sie selbst machen können.« (Blaise Pascal)

25

Literatur

25.1

Basiswissen

Digitale Informationsverarbeitung

Böhm, Gerald: Grundbegriffe der Datenverarbeitung; Wiley-VCH, 1992

Programmiersprachen

Klaeren, Herbert/Sperber, Michael: Die Macht der Abstraktion –

Einführung in die Programmierung; Vieweg+Teubner, 2007

Rechenberg, Peter: Programming Languages as Thought Models;

Structured Programming 11 (1990), S. 105 - 115

Objektorientierte Programmierung

Meyer, Bertrand: Objektorientierte Softwareentwicklung; Hanser, 1988

Coad, Peter/Mayfield, Mark: Design mit Java; Markt und Technik, 1999

25.2

Java im Detail

Sprache Java

Ullenboom, Christian: Java ist auch eine Insel; Galileo Press, 2011

Entwicklungsprozesse

Balzert, Helmut: Lehrbuch der Softwaretechnik;

Spektrum Akademischer Verlag, 2008

Plattform Java

Gosling, James et al.: Java – Die Sprachspezifikation; Addison-Wesley, 1999

595

25

Literatur

Steppan, Bernhard; Nachbrenner; iX 9/2004, S. 50 ff.

Java-Klassenbibliotheken

Zukowski, John: Definitive Guide to Swing for Java; Apress, 2005

Algorithmen

Sedgewick, Robert: Algorithmen; Pearson Studium, 2002 Sedgewick, Robert: Algorithmen in Java; Pearson Studium, 2003

25.3

Größere Java-Projekte

Konsolenprogramme

Ullenboom, Christian: Java ist auch eine Insel; Galileo Press, 2011

Einfache Oberflächen mit Swing

Zukowski, John: Definitive Guide to Swing for Java; Apress, 2005

Computerspiele mit Swing

Zukowski, John: Definitive Guide to Swing for Java; Apress, 2005

Komplexe Oberflächen mit Swing

Zukowski, John: Definitive Guide to Swing for Java; Apress, 2005

Weboberflächen mit Servlets

Bashman, Brayan et al.: Servlets and JSP von Kopf bis Fuß; O’Reilly, 2008

Datenbankprogrammierung

Sauer, Herrmann: Relationale Datenbanken; Addison-Wesley, 2002

Dehnhardt, Wolfgang: Anwendungsprogrammierung mit JDBC; Hanser, 2003

Datenbankanwendungen

Dehnhardt, Wolfgang: Anwendungsprogrammierung mit JDBC; Hanser, 2003

Dynamische Websites

Bashman, Brayan et al.: Servlets and JSP von Kopf bis Fuß; O’Reilly, 2008

Geary, David/Horstmann, Cay: Core JavaServer Faces; Prentice Hall, 2010

596

Anhang

25.4

25.4 Anhang

Werkzeuge

http://www.steppan.net

Computerhardware

Ortmann, J: Einführung in die PC-Grundlagen; Addison-Wesley, 1991

597

Index

A

Argumente übergeben 123

Arithmetische Operatoren 124

Abakus 337

Arrays 101

Abgeleitete Klasse 70

ASCII 587

Ableiten 109

ASCII-Code 33

Abschnittsbezogene Kommentare 160,

ASP 297

161

Assembler-Sprache 48

abstract 88

assert 88, 89

Abstract Windowing Toolkit 274, 587

Assoziation 73

Abstrakte Klasse 106, 110, 587

Attribut 62, 63

Abstrakte Methode 587

Aufbau eines Computers 581

Abstraktion 62, 67

Aufzählungstyp 105

Acceleratoren 587

Ausdruck 143

Active Server Pages 297

Ausnahmebehandlung 262

Aggregation 73

AWT 274, 587

Aktivitäten 166

Akzessor 66, 121

B

Algol 51

Algorithmen 304

BASIC 51

anwenden 316

Basisklasse 70, 587

Algorithmen entwickeln 305

Behälterklasse 587

Algorithmenarten 306

Betriebsphase 165

American National Standards Institu-

Bezeichner 91

te 587

Beziehung 62, 72, 73

American Standard Code for Information

Bildlauffeld 587

Interchange 587

Bildlaufleiste 587

Analyse 166

Binärcode 47, 50

Änderungsmethoden 122

Binärformat 46

Anforderungsaufnahme 166

Binärprogramm 28

Anonyme Klasse 108

Binärsystem 28

ANSI 587

Binärzahlen 28, 31

ANSI-Code 35

Bit 32

Anweisungen 143

Bitweise Operatoren 138

Anwendungsarchitektur 587

Block 146

Anwendungsfall 587

BMP 300

API 587

boolean 88, 91, 99

Applets 289

Border-Layout 279

appletviewer 576

break 88

Application 291

Bussystem 582

Application Objects 299

Button 587

Application Programming Interface 587

BX for Java 566

Application Server 567

Byte 33

Applikationsschicht 295

byte 88, 91, 95, 104

Architektur 587, 588, 592

ArgoUML 564

Argument 119, 123

599

Index

C

Deklaration 91

Deployment 562, 569

C 51, 124, 146, 161, 294

Derby 567

C++ 51, 121, 124, 146, 294

Design 166

C# 51

Designfehler 76

CardListener 378

Designregel 79

case 88

Destruktor 66, 121

Case-Verzweigung 147

Dezimaldarstellung 27

Cast-Operator 142, 228

Dezimalsystem 27

catch 88

Dezimalzahl 29

Central Processing Unit 582

Dialog 588

CGI 296, 423, 428, 587

Dialogfeld 588

CGI-Programm 587

Dialogfenster 588

char 88, 91, 100, 104

Differenz 126

Charon 452, 487

Digitalcomputer 28

class 88

Digitalsystem 28

Clipboard 593

Digitalzahlen 28

CMP 300

do 88

COBOL 51

Do-Schleife 151

Combo Box 588

doGet 434

Common Facilities 299

Dokumentation 160

Common Gateway Interface 296, 428,

Dokumentationskommentare 160, 161

588

Doppelwort 32

Common Object Services 299

double 88, 91, 98

Compiler 173

Dreamweaver 566

Compilieren 173

Dualsystem 28

Computer Aided Software Enginee-

Dünner Treiber 293

ring 588

Dynamische Polymorphie 78

Computerhardware 581

Dynamische Websites 486

const 88

Container 273

E

Container Managed Persistence 300

Container-Klasse 588

Eclipse 570

continue 88

Editieren 171

Coprozessor 92

Ein- und Ausgabesteuerung 585

CORBA 298, 561, 588

Einfache Klassentypen 255

CPU 582

Einfacher Datentyp 90

CVS 568

Einfachvererbung 588

Einzelwerkzeuge 563

D

EJB 299, 561

Elementare Anweisungen 146

Datenbank 447, 561

else 88

Datenbank-Managementsystem 588

Enterprise JavaBeans 295, 299, 301

Datenbankanwendungen 466

Entity Beans 300

Datenbankprogrammierung 447

Entwicklungsprozess 165

Datenmodell 447

Entwicklungsumgebung 549

Datentyp 91

Entwurfsmuster 588

DBMS 588

enum 88, 89

Debugger 561

Enumeration 588

default 88, 211

ER-Modell 449, 588

600

Index

Ereignis 588

goto 88

Ereignisbehandlung 275

Grafikprozessor 583

Ereignissteuerung 275, 289

Graphics 309

Erweiterter Datentyp 101

GridBag-Layout 281

Event-Handling 275

Group Box 589

Excelsior 565

Gruppenfeld 589

Exception Handling 262, 269

GUI 589

Exemplar 588

GUI-Builder 559, 566

extends 88, 109, 111

Extensible Markup Language 588

H

Extranet 588

Hades 449

F

HadesTest 459

Handler 395, 417

Fachliche Architektur 588

Hauptspeicher 583

Fachliches Klassenmodell 588

Heap 583

false 88

Hexadezimalsystem 30

Fehlerbehandlung 157, 262, 263

Hilfsklasse 272

Festkommazahl 94

Höhere Datentypen 106

Festplattenspeicher 584

Home Interface 301

FileReader 269

Hot Swap 562

FileWriter 271

HotJava 85

final 88

HSQLDB 567

finalize 121

HTML 423, 589

finally 88

HTTP 296, 589

Firebird 568

Hypertext Markup Language 423

Firewalls 291

Hypertext Transfer Protocol 296, 426,

Flash 423

589

float 88, 91, 98

Floating Window 588

I

Fokus 589

for 88

IBM 592

For-Schleife, einfach 151

if 88

For-Schleife, erweitert 152

If-Verzweigung 146

FORTRAN 51

IIOP 291, 589

Fragezeichenoperator 140

Implementierung 587, 592

FTP 589

implements 88, 112

Funktion 67, 123

Import 154

import 88

G

Importanweisung 154

InstallAnywhere 569

Ganzzahl 93

Installation 569

Garbage Collector 200

Installationsprogramm 569

GByte 32

instanceof 88

Genauigkeit 92

Instantiierung 589

Generalisierung 75, 589

Instanz 62, 107, 589

Generics 106, 112

Instanze 587

Generische Klasse 106, 112

Instanziieren 107

Getter-Methoden 121

Instanziierung 589

Gleitkommazahl 93

int 88, 91, 96, 104

601

Index

Interface 106, 111, 587, 589, 592

Jikes 565

interface 88

JMenu 367

Internet 589, 593

JMenuBar 367

Internet Inter Orb Protocol 291

JNI 294

Intranet 589

JRE 251

JRMP 589

J

JSP 297

JSwat 568

J2EE 250

jvider 566

J2ME 250

J2SE 250

K

JAD 566

JAR 578

Kapselung 62, 71, 111, 299

Java 51, 98, 99, 101, 106, 121, 250, 251,

Kardinalität 589

262, 285, 290, 295, 298, 299, 301, 587

KByte 32

Java 2 Enterprise Edition 250, 295

Kennung 65

Java 2 Micro Edition 250, 301

Klasse 61, 62, 101, 109, 111, 112, 120,

Java 2 Standard Edition 250

154, 211, 213, 236, 237, 262, 291,

Java Database Connectivity 291

587–589, 592

Java Development Kit 572

Klassenattribut 589

Java Enterprise Edition 250, 295

Klassenbibliothek 247, 589

Java GUI Builder 567

Klassenimport 154

Java ME 301

Klassenmethode 589

Java Micro Edition 250, 301

Klassenoperation 589

Java Native Interface 294

Klassenvariable 117, 590

Java Remote Method Protocol 589

Kommentar 160

Java Runtime Environment 251

Kompilieren 173

Java SE 250

Komposition 74

Java Standard Edition 250

Konkrete Klasse 106, 590

Java-Compiler 558, 565

Konsolenprogramme 322

Java-Datenbank Derby 567

Konstanten 64, 117

Java-Datenbank HSQLDB 567

Konstruktionsphase 165

Java-Debugger 561

Konstruktor 66, 120, 590

Java-Decompiler 559, 566

Kontrollfeld 590

Java-Entwicklungsumgebung 549

Kriterien zur Werkzeugauswahl 551

Java-Klassenbibliothek 247

Java-Language-Bibliothek 251

L

JavaBean 289, 298, 379

javac 573

Laufzeitumgebung 560, 567

javap 577

Layout-Manager 277

JavaServer Pages 295, 297

Lebensdauer 591

JBuilder 571

Linux 592

jdb 577

Logische Operatoren 37, 136

JDBC 291, 292, 448

Lokale Klasse 108

JDBC-ODBC-Bridge 292

long 88, 91, 97

JDBC-Treiber 292

JDK 250, 572

JDK-Switching 555

jEdit 564

JexePack 569

602

Index

M

O

Makrobefehle 52

Oak 85

Maschinenprogramm 47

Oberklasse 590

Maschinensprache 46

Object 251

MByte 32

Object Management Group 298, 588, 590

Mehrfachvererbung 71, 111, 590

Object Request Broker 299, 588, 590

Menüleiste 367, 402

Objekt 61–63, 101, 124, 294, 299, 590

Menüs 338, 399

Objekte 589, 590

Message Driven Beans 300

Objekte erzeugen 107

Methode 65, 117, 236, 237, 587, 589,

Objektidentität 590

591, 592

Objektmethode 118

Mikrobefehle 47, 49

Objektorientierte Programmier-

Mnemonics 590

sprache 61, 591

Modales Dialogfenster 590

Objektorientierung 591

Model View Controller 590

Objektvariable 116, 591

Modell 77

Oder-Funktion 38

Modellierung 77

Oder-Verknüpfung 138

Modellierungswerkzeuge 556

OMG 298, 591

Modul 154

OO 591

Mutator 66, 122

OOA/OOD 77

MVC 590

Operator 124

MySQL 568

Optionsfeld 591

ORB 591

N

P

Namensraum 157

Nativ 590

Package 154, 157

native 88

package 88

Native Java-Programme 201

Paket 87, 154

Native-API-Treiber 293

Parameter 119, 123

Native-Code-Compiler 201

Parameter übergeben 123

Natural 54

Parameterübergabe 123

Negation 137

Parameterliste 119

Nestor 399, 480

Pascal 51

Net-Treiber 293

Perforce 569

NetBeans 578

Perl-Skripte 297

Netscape 593

Perseus 467

Netzwerk 590

Persistentes Objekt 591

new 88

Persistenz 62, 77

New-Operator 141

Phase 165

Nibble 32

PHP-Skripte 297

Nicht-Funktion 39

Planungsphase 165

Nichtmodale Dialogfenster 590

Polymorphie 62, 77, 234, 591

null 88

Polymorphismus 77, 591

Portabilität 47, 50, 53, 55, 57

Poseidon 564

Postdekrement 131

Postinkrement 130

Prädekrement 130

603

Index

Präinkrement 129

Shellskript 591

private 88, 211

short 88, 91, 95, 104

Produkt 127

Shortcuts 587, 591

Programmierkonventionen 241

Sicherheitseinstellungen 290

Prolog 55

Sichtbarkeit einer Methode 118

Properties 272

Signatur 119, 591

Properties-Datei 334

SIMULA 51

protected 88, 211

Smalltalk 61

Proxy-Schicht 295

Solaris 592

Prozessoren 582

Sortieren 307, 316

public 88, 211

SourceAgain 566

Speicher freigeben 200

Q

Speichermedien 583

Spin Button 591

Query 592

SplashWnd 469

Quotient 127

SQL 592

Stack 584

R

Standardkonstruktor 120

Stateful Session Beans 300

Radio Button 591

Stateless Session Beans 300

Radioschalter 591

static 88, 592

Rapid Prototyping 591

Statische Polymorphie 78

Rechenwerk 583

Steuerwerk 583

Rechnerunendlich 92

strictfp 88

Refactoring 76

String 253

Remote Interface 301

StringBuffer 258

Remote Method Invocation 294, 591

Subklasse 592

Remote-Debugging 562

Summe 126

Remote-Schicht 295

Sun Microsystems 85

return 88

Sun One Studio 579

Reverse-Engineering 591

super 88, 592

RMI 294, 591

Superklasse 592

Roundtrip-Engineering 591

Superklasse Object 251

Rumpf einer Methode 119

Swing 274, 337, 365, 399

Runtime 266

switch 88

switch-Anweisung 147

S

Symbolleiste 400, 592

synchronized 88

System 259

Schaltfläche 591

Systemarchitektur 592

Schlüsselwort 88

Schleifen 149

T

Schnittstelle 111

Schriftkonventionen 23

Scrollbar 587

Tag 423

Sedezimalsystem 30

Tags 592

Servlets 296, 422, 561

Taktgeber 585

Session Beans 300

Taschenrechner 337

Setter-Methoden 122

Tastaturkombinationen 587, 592

Shell 591

Tastenkombinationen 587

TByte 32

604

Index

Technische Architektur 592

Vergleich auf Ungleichheit 133

Test 166

Vergleichender Operator 132

Texteditor 557, 564

Verifizierung 592

this 88, 592

Versionskontrolle 555

Thread 267, 330

Versionskontrollwerkzeuge 568

throw 88

Verteilung 569, 587

throws 88

Verteilung von Java-Programmen 562

Together 564, 579

Verzweigungen 146

Tomcat 567

Vielgestaltigkeit 591

Toolbar 592

VisualAge Java 580

Transfer 324

VM 196

transient 88

void 88, 123

Transientes Objekt 592

volatile 88

Transportschicht 295

Vorzeichen 92, 125

true 88

try 88

W

Typ des Rückgabewertes 118

Typkonvertierung 142, 228

Wahrheitswert 37, 99, 136

Webbrowser 593

U

Weboberflächen 422

Webseite 593

Überladen von Methoden 234

Webserver 593

Überschreiben verhindern 241

Website 593

Überschreiben von Methoden 237

Werkzeug 167, 549

Übersetzen 173

Werkzeuge zur Verteilung 562

UI 592

Werkzeugsuiten 549, 569

UltraEdit 565

Wertebereich 92

UML 57, 591

while 88

UML-konform 556

While-Schleife 150

Umstrukturierung 76

World Wide Web 593

Und-Funktion 37

Wort 33

Und-Verknüpfung 137

Wrapper-Klasse 258

Unicode 36

WWW 593

Uniform Resource Locator 592

WYSIWYG 593

Uniplexed Information and Computing

System 592

X

Unix 592

Unterklasse 592

XML 297, 588, 593

URL 592

Z

V

Zahlensysteme 27

Vererbung 62, 68, 109, 112, 237, 589,

Zeichen 100

590, 592

Zeilenbezogene Kommentare 160, 161

Vergleich auf Gleichheit 132

Zugriffsmethoden 121, 122

Vergleich auf größer 135

Zustand 64

Vergleich auf größer oder gleich 136

Zuweisung 143

Vergleich auf kleiner 134

Zuweisungsoperator 139

Vergleich auf kleiner oder gleich 134

Zwischenablage 593

605

OEBPS/Images/image01845.png

OEBPS/Images/image01846.png

OEBPS/Images/image01843.png

OEBPS/Images/image01844.png

OEBPS/Images/image01841.png

OEBPS/Images/image01842.png

OEBPS/Images/image01839.png

OEBPS/Images/image01840.png

OEBPS/Images/image01837.png

OEBPS/Images/image01838.png

OEBPS/Images/image01856.png

OEBPS/Images/image01854.png

OEBPS/Images/image01855.png

OEBPS/Images/image01852.png

OEBPS/Images/image01853.png

OEBPS/Images/image01850.png

OEBPS/Images/image01851.png

OEBPS/Images/image01848.png

OEBPS/Images/image01849.png
11harcehr++ 1

OEBPS/Images/image01847.png

OEBPS/Images/image01865.png

OEBPS/Images/image01866.png

OEBPS/Images/image01863.png

OEBPS/Images/image01864.png

OEBPS/Images/image01861.png

OEBPS/Images/image01862.png

OEBPS/Images/image01859.png

OEBPS/Images/image01860.png

OEBPS/Images/image01857.png

OEBPS/Images/image01858.png

OEBPS/Images/image03576.png

OEBPS/Images/image03575.png

OEBPS/Images/image03574.png

OEBPS/Images/image03573.png

OEBPS/Images/image03572.png

OEBPS/Images/image03571.png

OEBPS/Images/image03570.png

OEBPS/Images/image03569.png

OEBPS/Images/image03568.png

OEBPS/Images/image03567.png

OEBPS/Images/image03586.png

OEBPS/Images/image03585.png

OEBPS/Images/image03584.png

OEBPS/Images/image03583.png

OEBPS/Images/image03582.png

OEBPS/Images/image03581.png

OEBPS/Images/image03580.png

OEBPS/Images/image03579.png

OEBPS/Images/image03578.png

OEBPS/Images/image03577.png

OEBPS/Images/image03596.png

OEBPS/Images/image03595.png

OEBPS/Images/image03594.png

OEBPS/Images/image03593.png

OEBPS/Images/image03592.png

OEBPS/Images/image03591.png

OEBPS/Images/image03590.png

OEBPS/Images/image03589.png

OEBPS/Images/image03588.png

OEBPS/Images/image03587.png

OEBPS/Images/image03606.png

OEBPS/Images/image03605.png

OEBPS/Images/image03604.png

OEBPS/Images/image03603.png

OEBPS/Images/image03602.png

OEBPS/Images/image03601.png

OEBPS/Images/image03600.png

OEBPS/Images/image03599.png

OEBPS/Images/image03598.png

OEBPS/Images/image03597.png

OEBPS/Images/image03616.png

OEBPS/Images/image03615.png

OEBPS/Images/image03614.png

OEBPS/Images/image03613.png

OEBPS/Images/image03612.png
800 @ Xenias Gastebuch

TEEIE it/ ocaihost 5030, v let/<teppan.spp xenis ewbuest Explorer

Xenias Gadstebuch

Sie wurden in mein Gastebuch eingetragen.

Vielen Dank fir Inren Besuch!

oot mhine zone

OEBPS/Images/image03611.png

OEBPS/Images/image03610.png

OEBPS/Images/image03609.png

OEBPS/Images/image03608.png

OEBPS/Images/image03607.png

OEBPS/Images/image03626.png

OEBPS/Images/image03625.png

OEBPS/Images/image03624.png

OEBPS/Images/image03623.png

OEBPS/Images/image03622.png

OEBPS/Images/image03621.png

OEBPS/Images/image03620.png

OEBPS/Images/image03619.png

OEBPS/Images/image03618.png

OEBPS/Images/image03617.png

OEBPS/Images/image03636.png

OEBPS/Images/image03635.png

OEBPS/Images/image03634.png

OEBPS/Images/image03633.png

OEBPS/Images/image03632.png

OEBPS/Images/image03631.png

OEBPS/Images/image03630.png

OEBPS/Images/image03629.png

OEBPS/Images/image03628.png

OEBPS/Images/image03627.png

OEBPS/Images/image03646.png

OEBPS/Images/image03645.png

OEBPS/Images/image03644.png

OEBPS/Images/image03643.png

OEBPS/Images/image03642.png

OEBPS/Images/image03641.png

OEBPS/Images/image03640.png

OEBPS/Images/image03639.png

OEBPS/Images/image03638.png

OEBPS/Images/image03637.png

OEBPS/Images/image03656.png

OEBPS/Images/image03655.png

OEBPS/Images/image03654.png

OEBPS/Images/image03653.png

OEBPS/Images/image03652.png

OEBPS/Images/image03651.png

OEBPS/Images/image03650.png

OEBPS/Images/image03649.png

OEBPS/Images/image03648.png

OEBPS/Images/image03647.png

OEBPS/Images/image03666.png

OEBPS/Images/image03665.png

OEBPS/Images/image03664.png

OEBPS/Images/image03663.png

OEBPS/Images/image03662.png

OEBPS/Images/image03661.png

OEBPS/Images/image03660.png

OEBPS/Images/image03659.png

OEBPS/Images/image03658.png

OEBPS/Images/image03657.png

OEBPS/Images/image04373.png

OEBPS/Images/image04372.png

OEBPS/Images/image04371.png

OEBPS/Images/image04370.png

OEBPS/Images/image04369.png

OEBPS/Images/image04368.png

OEBPS/Images/image04367.png

OEBPS/Images/image04384.png

OEBPS/Images/image01177.png

OEBPS/Images/image04383.png

OEBPS/Images/image04382.png

OEBPS/Images/image04381.png

OEBPS/Images/image01180.png

OEBPS/Images/image04380.png

OEBPS/Images/image01181.png

OEBPS/Images/image04379.png

OEBPS/Images/image01178.png

OEBPS/Images/image04378.png

OEBPS/Images/image01179.png

OEBPS/Images/image04377.png

OEBPS/Images/image01184.png

OEBPS/Images/image01185.png

OEBPS/Images/image01182.png

OEBPS/Images/image01183.png

OEBPS/Images/image01186.png

OEBPS/Images/image04376.png

OEBPS/Images/image04375.png

OEBPS/Images/image04374.png

OEBPS/Images/image04395.png

OEBPS/Images/image04394.png

OEBPS/Images/image04393.png

OEBPS/Images/image04392.png

OEBPS/Images/image01169.png

OEBPS/Images/image04391.png

OEBPS/Images/image01170.png

OEBPS/Images/image04390.png

OEBPS/Images/image01167.png

OEBPS/Images/image04389.png

OEBPS/Images/image01168.png

OEBPS/Images/image04388.png

OEBPS/Images/image01173.png

OEBPS/Images/image04387.png

OEBPS/Images/image01174.png

OEBPS/Images/image01171.png

OEBPS/Images/image01172.png

OEBPS/Images/image01175.png

OEBPS/Images/image01176.png

OEBPS/Images/image04386.png

OEBPS/Images/image04385.png

OEBPS/Images/image01198.png

OEBPS/Images/image03075.png

OEBPS/Images/image04406.png

OEBPS/Images/image01199.png

OEBPS/Images/image03074.png

OEBPS/Images/image04405.png

OEBPS/Images/image03073.png

OEBPS/Images/image04404.png

OEBPS/Images/image01197.png

OEBPS/Images/image03072.png

OEBPS/Images/image04403.png

OEBPS/Images/image01202.png

OEBPS/Images/image03071.png

OEBPS/Images/image04402.png

OEBPS/Images/image01203.png

OEBPS/Images/image03070.png

OEBPS/Images/image04401.png

OEBPS/Images/image01200.png

OEBPS/Images/image03069.png

OEBPS/Images/image04400.png

OEBPS/Images/image01201.png

OEBPS/Images/image03068.png

OEBPS/Images/image04399.png

OEBPS/Images/image01206.png

OEBPS/Images/image03067.png

OEBPS/Images/image04398.png

OEBPS/Images/image04397.png

OEBPS/Images/image01204.png

OEBPS/Images/image01205.png

OEBPS/Images/image04396.png

OEBPS/Images/image01187.png

OEBPS/Images/image03086.png

OEBPS/Images/image01188.png

OEBPS/Images/image03085.png

OEBPS/Images/image04416.png

OEBPS/Images/image03084.png

OEBPS/Images/image04415.png

OEBPS/Images/image03083.png

OEBPS/Images/image04414.png

OEBPS/Images/image01191.png

OEBPS/Images/image03082.png

OEBPS/Images/image04413.png

OEBPS/Images/image01192.png

OEBPS/Images/image03081.png

OEBPS/Images/image04412.png

OEBPS/Images/image01189.png

OEBPS/Images/image03080.png

OEBPS/Images/image04411.png

OEBPS/Images/image01190.png

OEBPS/Images/image03079.png

OEBPS/Images/image04410.png

OEBPS/Images/image01195.png

OEBPS/Images/image03078.png

OEBPS/Images/image04409.png

OEBPS/Images/image01196.png

OEBPS/Images/image03077.png

OEBPS/Images/image04408.png

OEBPS/Images/image01193.png

OEBPS/Images/image04407.png

OEBPS/Images/image01194.png

OEBPS/Images/image03076.png

OEBPS/Images/image01220.png

OEBPS/Images/image01221.png

OEBPS/Images/image03096.png

OEBPS/Images/image01218.png

OEBPS/Images/image03095.png

OEBPS/Images/image04426.png

OEBPS/Images/image01219.png

OEBPS/Images/image03094.png

OEBPS/Images/image04425.png

OEBPS/Images/image01224.png

OEBPS/Images/image03093.png

OEBPS/Images/image04424.png

OEBPS/Images/image01225.png

OEBPS/Images/image03092.png

OEBPS/Images/image04423.png

OEBPS/Images/image01222.png

OEBPS/Images/image03091.png

OEBPS/Images/image04422.png

OEBPS/Images/image01223.png

OEBPS/Images/image03090.png

OEBPS/Images/image04421.png

OEBPS/Images/image03089.png

OEBPS/Images/image04420.png

OEBPS/Images/image03088.png

OEBPS/Images/image04419.png

OEBPS/Images/image01226.png

OEBPS/Images/image03087.png

OEBPS/Images/image04418.png

OEBPS/Images/image04417.png

OEBPS/Images/image01227.png

OEBPS/Images/image01228.png

OEBPS/Images/image01209.png

OEBPS/Images/image01776.png

OEBPS/Images/image01210.png

OEBPS/Images/image01207.png

OEBPS/Images/image01774.png

OEBPS/Images/image03106.png

OEBPS/Images/image01208.png

OEBPS/Images/image01775.png

OEBPS/Images/image03105.png

OEBPS/Images/image04436.png

OEBPS/Images/image01213.png

OEBPS/Images/image01772.png

OEBPS/Images/image03104.png

OEBPS/Images/image04435.png

OEBPS/Images/image01214.png

OEBPS/Images/image01773.png

OEBPS/Images/image03103.png

OEBPS/Images/image04434.png

OEBPS/Images/image01211.png

OEBPS/Images/image01770.png

OEBPS/Images/image03102.png

OEBPS/Images/image04433.png

OEBPS/Images/image01212.png

OEBPS/Images/image01771.png

OEBPS/Images/image03101.png

OEBPS/Images/image04432.png

OEBPS/Images/image01768.png

OEBPS/Images/image03100.png

OEBPS/Images/image04431.png

OEBPS/Images/image01769.jpeg

OEBPS/Images/image03099.png

OEBPS/Images/image04430.png

OEBPS/Images/image01215.png

OEBPS/Images/image03098.png

OEBPS/Images/image04429.png

OEBPS/Images/image01216.png

OEBPS/Images/image01767.png

OEBPS/Images/image03097.png

OEBPS/Images/image04428.png

OEBPS/Images/image04427.png

OEBPS/Images/image01217.png

OEBPS/Images/image01242.png

OEBPS/Images/image01243.png

OEBPS/Images/image01240.png

OEBPS/Images/image01785.png

OEBPS/Images/image01241.png

OEBPS/Images/image01786.png

OEBPS/Images/image03116.png

OEBPS/Images/image01246.png

OEBPS/Images/image01783.png

OEBPS/Images/image03115.png

OEBPS/Images/image04446.png

OEBPS/Images/image01784.png

OEBPS/Images/image03114.png

OEBPS/Images/image04445.png

OEBPS/Images/image01244.png

OEBPS/Images/image01781.png

OEBPS/Images/image03113.png

OEBPS/Images/image04444.png

OEBPS/Images/image01245.png

OEBPS/Images/image01782.png

OEBPS/Images/image03112.png

OEBPS/Images/image04443.png

OEBPS/Images/image01779.png

OEBPS/Images/image03111.png

OEBPS/Images/image04442.png

OEBPS/Images/image01780.png

OEBPS/Images/image03110.png

OEBPS/Images/image04441.png

OEBPS/Images/image01777.png

OEBPS/Images/image03109.png

OEBPS/Images/image04440.png

OEBPS/Images/image01778.png

OEBPS/Images/image03108.png

OEBPS/Images/image04439.png
Anvede

Vornams. | [orpheus

Nachnarme.

Pz

ot

Stast

Telefan

el | | [orpheus@haces org

OEBPS/Images/image03107.png

OEBPS/Images/image04438.png

OEBPS/Images/image04437.png

OEBPS/Images/image01249.png

OEBPS/Images/image01250.png

OEBPS/Images/image01247.png

OEBPS/Images/image01248.png

OEBPS/Images/image01231.png

OEBPS/Images/image01232.png

OEBPS/Images/image01229.png

OEBPS/Images/image01796.png

OEBPS/Images/image01230.png

OEBPS/Images/image01235.png

OEBPS/Images/image01794.png

OEBPS/Images/image03126.png

OEBPS/Images/image01236.png

OEBPS/Images/image01795.png

OEBPS/Images/image03125.png

OEBPS/Images/image04456.png

OEBPS/Images/image01233.png

OEBPS/Images/image01792.png

OEBPS/Images/image03124.png

OEBPS/Images/image04455.png

OEBPS/Images/image01234.png

OEBPS/Images/image01793.png

OEBPS/Images/image03123.png

OEBPS/Images/image04454.png

OEBPS/Images/image01790.png

OEBPS/Images/image03122.png

OEBPS/Images/image04453.png

OEBPS/Images/image01791.png

OEBPS/Images/image03121.png

OEBPS/Images/image04452.png

OEBPS/Images/image01788.png

OEBPS/Images/image03120.png

OEBPS/Images/image04451.png

OEBPS/Images/image01789.png

OEBPS/Images/image03119.png

OEBPS/Images/image04450.png

OEBPS/Images/image03118.png

OEBPS/Images/image04449.png

OEBPS/Images/image01787.png

OEBPS/Images/image03117.png

OEBPS/Images/image04448.png

OEBPS/Images/image04447.png

OEBPS/Images/image01238.png

OEBPS/Images/image01239.png

OEBPS/Images/image01237.png

OEBPS/Images/image01264.png

OEBPS/Images/image01265.png

OEBPS/Images/image01262.png

OEBPS/Images/image01263.png

OEBPS/Images/image01805.png

OEBPS/Images/image01806.png

OEBPS/Images/image03136.png

OEBPS/Images/image01266.png

OEBPS/Images/image01803.png

OEBPS/Images/image03135.png

OEBPS/Images/image04466.png

OEBPS/Images/image01804.png

OEBPS/Images/image03134.png

OEBPS/Images/image04465.png

OEBPS/Images/image01801.png

OEBPS/Images/image03133.png

OEBPS/Images/image04464.png

OEBPS/Images/image01802.png

OEBPS/Images/image03132.png

OEBPS/Images/image04463.png

OEBPS/Images/image01799.png

OEBPS/Images/image03131.png

OEBPS/Images/image04462.png

OEBPS/Images/image01800.png

OEBPS/Images/image03130.png

OEBPS/Images/image04461.png

OEBPS/Images/image01797.png

OEBPS/Images/image03129.png

OEBPS/Images/image04460.png

OEBPS/Images/image01798.png

OEBPS/Images/image03128.png

OEBPS/Images/image04459.png

OEBPS/Images/image03127.png

OEBPS/Images/image04458.png

OEBPS/Images/image04457.png

OEBPS/Images/image01253.png

OEBPS/Images/image01254.png

OEBPS/Images/image01251.png

OEBPS/Images/image01252.png

OEBPS/Images/image01816.png

OEBPS/Images/image01255.png

OEBPS/Images/image01814.png

OEBPS/Images/image03146.png

OEBPS/Images/image01256.png

OEBPS/Images/image01815.png

OEBPS/Images/image03145.png

OEBPS/Images/image01812.png

OEBPS/Images/image03144.png

OEBPS/Images/image01813.png

OEBPS/Images/image03143.png

OEBPS/Images/image01810.png

OEBPS/Images/image03142.png

OEBPS/Images/image01811.png

OEBPS/Images/image03141.png

OEBPS/Images/image01808.png

OEBPS/Images/image03140.png

OEBPS/Images/image01809.png

OEBPS/Images/image03139.png

OEBPS/Images/image03138.png

OEBPS/Images/image01807.png

OEBPS/Images/image03137.png

OEBPS/Images/image01257.png

OEBPS/Images/image01260.jpeg
O 00 Abakus

Datei Hilfe |
2
(mc)[(m+][(m-][MrI®OO
| | ! | Version 1.1

Copyright © 2005 - 2006 by
(ESEDERE Bernhard Steppan

Freier Sy er: 1083 KByte
L4 JUs JLs I

OK

R EEE Co)
L [L.

Info iber Abakus

.

OEBPS/Images/image01261.jpeg
eoo s

Slal Ve

OEBPS/Images/image01258.png

OEBPS/Images/image01259.png

OEBPS/Images/image01825.png

OEBPS/Images/image01826.png

OEBPS/Images/image03156.png

OEBPS/Images/image01823.jpeg
N oo
S0

OEBPS/Images/image03155.png

OEBPS/Images/image01824.png

OEBPS/Images/image03154.png

OEBPS/Images/image01821.png

OEBPS/Images/image03153.png

OEBPS/Images/image01822.png

OEBPS/Images/image03152.png

OEBPS/Images/image01819.png

OEBPS/Images/image03151.png

OEBPS/Images/image01820.png

OEBPS/Images/image03150.png

OEBPS/Images/image01817.png

OEBPS/Images/image03149.png

OEBPS/Images/image01818.png

OEBPS/Images/image03148.png

OEBPS/Images/image03147.png

OEBPS/Images/image01836.png

OEBPS/Images/image01834.png

OEBPS/Images/image03166.png

OEBPS/Images/image01835.png

OEBPS/Images/image03165.png

OEBPS/Images/image01832.png

OEBPS/Images/image03164.png

OEBPS/Images/image01833.png

OEBPS/Images/image03163.png

OEBPS/Images/image01830.png

OEBPS/Images/image03162.png

OEBPS/Images/image01831.png

OEBPS/Images/image03161.png

OEBPS/Images/image01828.png

OEBPS/Images/image03160.png

OEBPS/Images/image01829.png

OEBPS/Images/image03159.png

OEBPS/Images/image03158.png

OEBPS/Images/image01827.png

OEBPS/Images/image03157.png

OEBPS/Images/image01726.png

OEBPS/Images/image01724.png

OEBPS/Images/image03056.png

OEBPS/Images/image01725.png

OEBPS/Images/image03055.png

OEBPS/Images/image01722.png

OEBPS/Images/image03054.png

OEBPS/Images/image01723.png

OEBPS/Images/image03053.png

OEBPS/Images/image01720.png

OEBPS/Images/image03052.png

OEBPS/Images/image01721.png

OEBPS/Images/image03051.png

OEBPS/Images/image01718.png

OEBPS/Images/image03050.png

OEBPS/Images/image01719.png

OEBPS/Images/image03049.png

OEBPS/Images/image03048.png

OEBPS/Images/image01717.png

OEBPS/Images/image03047.png

OEBPS/Images/image01735.png

OEBPS/Images/image01736.png

OEBPS/Images/image03066.png

OEBPS/Images/image01733.png

OEBPS/Images/image03065.png

OEBPS/Images/image01734.png

OEBPS/Images/image03064.png

OEBPS/Images/image01731.png

OEBPS/Images/image03063.png

OEBPS/Images/image01732.png

OEBPS/Images/image03062.png

OEBPS/Images/image01729.png

OEBPS/Images/image03061.png

OEBPS/Images/image01730.png

OEBPS/Images/image03060.png

OEBPS/Images/image01727.png

OEBPS/Images/image03059.png

OEBPS/Images/image01728.png

OEBPS/Images/image03058.png

OEBPS/Images/image03057.png

OEBPS/Images/image01746.png

OEBPS/Images/image01744.png

OEBPS/Images/image01745.png

OEBPS/Images/image01742.png

OEBPS/Images/image01743.png

OEBPS/Images/image01740.png

OEBPS/Images/image01741.png

OEBPS/Images/image01738.png

OEBPS/Images/image01739.png

OEBPS/Images/image01737.png

OEBPS/Images/image01755.png

OEBPS/Images/image01756.png

OEBPS/Images/image01753.png

OEBPS/Images/image01754.png

OEBPS/Images/image01751.png

OEBPS/Images/image01752.png

OEBPS/Images/image01749.png

OEBPS/Images/image01750.png

OEBPS/Images/image01747.png

OEBPS/Images/image01748.png

OEBPS/Images/image01766.png

OEBPS/Images/image01764.png

OEBPS/Images/image01765.png

OEBPS/Images/image01762.png

OEBPS/Images/image01763.png

OEBPS/Images/image01760.png

OEBPS/Images/image01761.png

OEBPS/Images/image01758.png

OEBPS/Images/image01759.png

OEBPS/Images/image01757.png

OEBPS/Images/image03476.png

OEBPS/Images/image03475.png

OEBPS/Images/image03474.png

OEBPS/Images/image03473.png

OEBPS/Images/image03472.png

OEBPS/Images/image03471.png

OEBPS/Images/image03470.png

OEBPS/Images/image03469.png

OEBPS/Images/image03468.png

OEBPS/Images/image03467.png

OEBPS/Images/image03486.png

OEBPS/Images/image03485.png

OEBPS/Images/image03484.png

OEBPS/Images/image03483.png

OEBPS/Images/image03482.png

OEBPS/Images/image03481.png

OEBPS/Images/image03480.png

OEBPS/Images/image03479.png

OEBPS/Images/image03478.png
Datensatz Bearbeten Suchen Hife

(u] M| @

Anvede

Vorname [orpheus

Nachname.

Strarie

PLz

ot

Stast

Telefan

EMal [orpheus@haces org

OEBPS/Images/image03477.png

OEBPS/Images/image03496.png

OEBPS/Images/image03495.png

OEBPS/Images/image03494.png

OEBPS/Images/image03493.png

OEBPS/Images/image03492.png

OEBPS/Images/image03491.png

OEBPS/Images/image03490.png

OEBPS/Images/image03489.png

OEBPS/Images/image03488.png

OEBPS/Images/image03487.png

OEBPS/Images/image03506.png

OEBPS/Images/image03505.png

OEBPS/Images/image03504.png

OEBPS/Images/image03503.png

OEBPS/Images/image03502.png

OEBPS/Images/image03501.png

OEBPS/Images/image03500.png

OEBPS/Images/image03499.png

OEBPS/Images/image03498.png

OEBPS/Images/image03497.png

OEBPS/Images/image03516.png

OEBPS/Images/image03515.png

OEBPS/Images/image03514.png

OEBPS/Images/image03513.png

OEBPS/Images/image03512.png

OEBPS/Images/image03511.png

OEBPS/Images/image03510.png

OEBPS/Images/image03509.png

OEBPS/Images/image03508.png

OEBPS/Images/image03507.png

OEBPS/Images/image03526.png

OEBPS/Images/image03525.png

OEBPS/Images/image03524.png

OEBPS/Images/image03523.png

OEBPS/Images/image03522.png

OEBPS/Images/image03521.png

OEBPS/Images/image03520.png

OEBPS/Images/image03519.png

OEBPS/Images/image03518.png

OEBPS/Images/image03517.png

OEBPS/Images/image03536.png

OEBPS/Images/image03535.png

OEBPS/Images/image03534.png

OEBPS/Images/image03533.png

OEBPS/Images/image03532.png

OEBPS/Images/image03531.png

OEBPS/Images/image03530.png

OEBPS/Images/image03529.png

OEBPS/Images/image03528.png

OEBPS/Images/image03527.png

OEBPS/Images/image03546.png

OEBPS/Images/image03545.png

OEBPS/Images/image03544.png

OEBPS/Images/image03543.png

OEBPS/Images/image03542.png

OEBPS/Images/image03541.png

OEBPS/Images/image03540.png

OEBPS/Images/image03539.png

OEBPS/Images/image03538.png

OEBPS/Images/image03537.png

OEBPS/Images/image03556.png

OEBPS/Images/image03555.png

OEBPS/Images/image03554.png

OEBPS/Images/image03553.png

OEBPS/Images/image03552.png

OEBPS/Images/image03551.png

OEBPS/Images/image03550.png

OEBPS/Images/image03549.png

OEBPS/Images/image03548.png

OEBPS/Images/image03547.png

OEBPS/Images/image03566.png

OEBPS/Images/image03565.png

OEBPS/Images/image03564.png

OEBPS/Images/image03563.png

OEBPS/Images/image03562.png

OEBPS/Images/image03561.png

OEBPS/Images/image03560.png

OEBPS/Images/image03559.png

OEBPS/Images/image03558.png

OEBPS/Images/image03557.png

OEBPS/Images/image04274.png

OEBPS/Images/image04273.png

OEBPS/Images/image04272.png

OEBPS/Images/image04271.png

OEBPS/Images/image04270.png

OEBPS/Images/image04269.png

OEBPS/Images/image04268.png

OEBPS/Images/image04267.png

OEBPS/Images/image01077.png

OEBPS/Images/image04285.png

OEBPS/Images/image01078.png

OEBPS/Images/image04284.png

OEBPS/Images/image04283.png

OEBPS/Images/image04282.png

OEBPS/Images/image01081.png

OEBPS/Images/image04281.png

OEBPS/Images/image01082.png

OEBPS/Images/image04280.png

OEBPS/Images/image01079.png

OEBPS/Images/image04279.png

OEBPS/Images/image01080.png

OEBPS/Images/image04278.png

OEBPS/Images/image01085.png

OEBPS/Images/image04277.png

OEBPS/Images/image01086.png

OEBPS/Images/image01083.png

OEBPS/Images/image01084.png

OEBPS/Images/image04276.png

OEBPS/Images/image04275.png

OEBPS/Images/image04296.png

OEBPS/Images/image01067.png

OEBPS/Images/image04295.png

OEBPS/Images/image04294.png

OEBPS/Images/image04293.png

OEBPS/Images/image01070.png

OEBPS/Images/image04292.png

OEBPS/Images/image01071.png

OEBPS/Images/image04291.png

OEBPS/Images/image01068.png

OEBPS/Images/image04290.png

OEBPS/Images/image01069.png

OEBPS/Images/image04289.png

OEBPS/Images/image01074.png

OEBPS/Images/image04288.png

OEBPS/Images/image01075.png

OEBPS/Images/image04287.png

OEBPS/Images/image01072.png

OEBPS/Images/image01073.png

OEBPS/Images/image01076.png

OEBPS/Images/image04286.png

OEBPS/Images/image01099.png

OEBPS/Images/image02976.png

OEBPS/Images/image01100.png

OEBPS/Images/image02975.png

OEBPS/Images/image04306.png

OEBPS/Images/image01097.png

OEBPS/Images/image02974.png

OEBPS/Images/image04305.png

OEBPS/Images/image01098.png

OEBPS/Images/image02973.png

OEBPS/Images/image04304.png

OEBPS/Images/image01103.png

OEBPS/Images/image02972.png

OEBPS/Images/image04303.png

OEBPS/Images/image01104.png

OEBPS/Images/image02971.png

OEBPS/Images/image04302.png

OEBPS/Images/image01101.png

OEBPS/Images/image02970.png

OEBPS/Images/image04301.png

OEBPS/Images/image01102.png

OEBPS/Images/image02969.png

OEBPS/Images/image04300.png

OEBPS/Images/image02968.png

OEBPS/Images/image04299.png

OEBPS/Images/image02967.png

OEBPS/Images/image04298.png

OEBPS/Images/image01105.png

OEBPS/Images/image04297.png

OEBPS/Images/image01106.png

OEBPS/Images/image01107.png

OEBPS/Images/image01088.png

OEBPS/Images/image01089.png

OEBPS/Images/image02986.png

OEBPS/Images/image02985.png

OEBPS/Images/image04316.png

OEBPS/Images/image01087.png

OEBPS/Images/image02984.png

OEBPS/Images/image04315.png

OEBPS/Images/image01092.png

OEBPS/Images/image02983.png

OEBPS/Images/image04314.png

OEBPS/Images/image01093.png

OEBPS/Images/image02982.png

OEBPS/Images/image04313.png

OEBPS/Images/image01090.png

OEBPS/Images/image02981.png

OEBPS/Images/image04312.png

OEBPS/Images/image01091.png

OEBPS/Images/image02980.png

OEBPS/Images/image04311.png

OEBPS/Images/image01096.png

OEBPS/Images/image02979.png

OEBPS/Images/image04310.png

OEBPS/Images/image02978.png

OEBPS/Images/image04309.png

OEBPS/Images/image01094.png
Uberachrift 5
harscheist &

OEBPS/Images/image02977.png

OEBPS/Images/image04308.png

OEBPS/Images/image01095.png

OEBPS/Images/image04307.png

OEBPS/Images/image01121.png

OEBPS/Images/image01122.png

OEBPS/Images/image01119.png

OEBPS/Images/image02996.png

OEBPS/Images/image01120.png

OEBPS/Images/image02995.png

OEBPS/Images/image04326.png

OEBPS/Images/image01125.png

OEBPS/Images/image02994.png

OEBPS/Images/image04325.png

OEBPS/Images/image01126.png

OEBPS/Images/image02993.jpeg

OEBPS/Images/image04324.png

OEBPS/Images/image01123.png

OEBPS/Images/image02992.png

OEBPS/Images/image04323.png

OEBPS/Images/image01124.png

OEBPS/Images/image02991.png

OEBPS/Images/image04322.png

OEBPS/Images/image02990.png

OEBPS/Images/image04321.png

OEBPS/Images/image02989.png

OEBPS/Images/image04320.png

OEBPS/Images/image02988.png

OEBPS/Images/image04319.png

OEBPS/Images/image02987.png

OEBPS/Images/image04318.png

OEBPS/Images/image04317.png

OEBPS/Images/image01128.png

OEBPS/Images/image01129.png

OEBPS/Images/image01127.png

OEBPS/Images/image01110.png

OEBPS/Images/image01111.png

OEBPS/Images/image01108.png

OEBPS/Images/image01675.png

OEBPS/Images/image01109.png

OEBPS/Images/image01676.png

OEBPS/Images/image03006.png

OEBPS/Images/image01114.png

OEBPS/Images/image01673.png

OEBPS/Images/image03005.png

OEBPS/Images/image04336.png

OEBPS/Images/image01115.png

OEBPS/Images/image01674.png

OEBPS/Images/image03004.png

OEBPS/Images/image04335.png

OEBPS/Images/image01112.png

OEBPS/Images/image01671.png

OEBPS/Images/image03003.png

OEBPS/Images/image04334.png

OEBPS/Images/image01113.png

OEBPS/Images/image01672.png

OEBPS/Images/image03002.png

OEBPS/Images/image04333.png

OEBPS/Images/image01669.png

OEBPS/Images/image03001.png

OEBPS/Images/image04332.png

OEBPS/Images/image01670.png

OEBPS/Images/image03000.png

OEBPS/Images/image04331.png

OEBPS/Images/image01116.png

OEBPS/Images/image01667.png

OEBPS/Images/image02999.png

OEBPS/Images/image04330.png

OEBPS/Images/image01668.png

OEBPS/Images/image02998.png

OEBPS/Images/image04329.png

OEBPS/Images/image02997.png

OEBPS/Images/image04328.png

OEBPS/Images/image04327.png

OEBPS/Images/image01117.png

OEBPS/Images/image01118.png

OEBPS/Images/image01143.png

OEBPS/Images/image01144.png

OEBPS/Images/image01141.png

OEBPS/Images/image01686.png

OEBPS/Images/image01142.png

OEBPS/Images/image01684.png

OEBPS/Images/image03016.png

OEBPS/Images/image01685.jpeg
(Projects] Files Runtime A
v & Bo1
v [Source Packages
¥ @ chO4.rectangle
» [B Rectangle java
» (@ Ubraries

(Navigator I —

<No View Available>

(Output - ExO1 (run)

it
deps-3ar

Created air: /Projekte/Java/java.primer.book/ch04/ex01/build/classes
Compiling 1 source file to /Projekte/Java/java.primer.book/ch04/ex01/build/
compile:

Fliche - 5 m"2

BUILD SUCCESSFUL (total time: 0 seconds)|

ing EO1 (run).

OEBPS/Images/image03015.png

OEBPS/Images/image04346.png

OEBPS/Images/image01145.png

OEBPS/Images/image01682.png

OEBPS/Images/image03014.png

OEBPS/Images/image04345.png

OEBPS/Images/image01146.png

OEBPS/Images/image01683.png

OEBPS/Images/image03013.png

OEBPS/Images/image04344.png

OEBPS/Images/image01680.png

OEBPS/Images/image03012.png

OEBPS/Images/image04343.png

OEBPS/Images/image01681.png

OEBPS/Images/image03011.png

OEBPS/Images/image04342.png

OEBPS/Images/image01678.png

OEBPS/Images/image03010.png

OEBPS/Images/image04341.png

OEBPS/Images/image01679.png

OEBPS/Images/image03009.png

OEBPS/Images/image04340.png

OEBPS/Images/image03008.png

OEBPS/Images/image04339.png

OEBPS/Images/image01677.png

OEBPS/Images/image03007.png

OEBPS/Images/image04338.png

OEBPS/Images/image04337.png

OEBPS/Images/image01147.png

OEBPS/Images/image01150.png

OEBPS/Images/image01151.png

OEBPS/Images/image01148.png

OEBPS/Images/image01149.png

OEBPS/Images/image01132.png

OEBPS/Images/image01133.png

OEBPS/Images/image01130.png

OEBPS/Images/image01131.png

OEBPS/Images/image01136.png

OEBPS/Images/image01695.png

OEBPS/Images/image01696.png

OEBPS/Images/image03026.png

OEBPS/Images/image01134.png

OEBPS/Images/image01693.png

OEBPS/Images/image03025.png

OEBPS/Images/image04356.png

OEBPS/Images/image01135.png

OEBPS/Images/image01694.png

OEBPS/Images/image03024.png

OEBPS/Images/image04355.png

OEBPS/Images/image01691.png

OEBPS/Images/image03023.png

OEBPS/Images/image04354.png

OEBPS/Images/image01692.png

OEBPS/Images/image03022.png

OEBPS/Images/image04353.png

OEBPS/Images/image01689.png

OEBPS/Images/image03021.png

OEBPS/Images/image04352.png

OEBPS/Images/image01690.png

OEBPS/Images/image03020.png

OEBPS/Images/image04351.png

OEBPS/Images/image01687.png

OEBPS/Images/image03019.png

OEBPS/Images/image04350.png

OEBPS/Images/image01688.png

OEBPS/Images/image03018.png

OEBPS/Images/image04349.png

OEBPS/Images/image03017.png

OEBPS/Images/image04348.png

OEBPS/Images/image04347.png

OEBPS/Images/image01139.png

OEBPS/Images/image01140.png

OEBPS/Images/image01137.png

OEBPS/Images/image01138.png

OEBPS/Images/image01165.png

OEBPS/Images/image01166.png

OEBPS/Images/image01163.png

OEBPS/Images/image01164.png

OEBPS/Images/image01706.png

OEBPS/Images/image01704.png

OEBPS/Images/image03036.png

OEBPS/Images/image01705.png

OEBPS/Images/image03035.png

OEBPS/Images/image04366.png

OEBPS/Images/image01702.png

OEBPS/Images/image03034.png

OEBPS/Images/image04365.png

OEBPS/Images/image01703.png

OEBPS/Images/image03033.png

OEBPS/Images/image04364.png

OEBPS/Images/image01700.png

OEBPS/Images/image03032.png

OEBPS/Images/image04363.png

OEBPS/Images/image01701.png

OEBPS/Images/image03031.png

OEBPS/Images/image04362.png

OEBPS/Images/image01698.png

OEBPS/Images/image03030.png

OEBPS/Images/image04361.png

OEBPS/Images/image01699.png

OEBPS/Images/image03029.png

OEBPS/Images/image04360.png

OEBPS/Images/image03028.png

OEBPS/Images/image04359.png

OEBPS/Images/image01697.png

OEBPS/Images/image03027.png

OEBPS/Images/image04358.png

OEBPS/Images/image04357.png

OEBPS/Images/image01154.png

OEBPS/Images/image01155.png

OEBPS/Images/image01152.png

OEBPS/Images/image01153.png

OEBPS/Images/image01156.png

OEBPS/Images/image01715.png

OEBPS/Images/image01716.png

OEBPS/Images/image03046.png

OEBPS/Images/image01713.png

OEBPS/Images/image03045.png

OEBPS/Images/image01714.png

OEBPS/Images/image03044.png

OEBPS/Images/image01711.png

OEBPS/Images/image03043.png

OEBPS/Images/image01712.png

OEBPS/Images/image03042.png

OEBPS/Images/image01709.png

OEBPS/Images/image03041.png

OEBPS/Images/image01710.png

OEBPS/Images/image03040.png

OEBPS/Images/image01707.png

OEBPS/Images/image03039.png

OEBPS/Images/image01708.png

OEBPS/Images/image03038.png

OEBPS/Images/image03037.png

OEBPS/Images/image01157.png

OEBPS/Images/image01158.png

OEBPS/Images/image01161.png

OEBPS/Images/image01162.png

OEBPS/Images/image01159.png

OEBPS/Images/image01160.png

OEBPS/Images/image01066.png

OEBPS/Images/image01064.png

OEBPS/Images/image01065.png

OEBPS/Images/image03786.png

OEBPS/Images/image03785.png

OEBPS/Images/image03784.png

OEBPS/Images/image03783.png

OEBPS/Images/image03782.png

OEBPS/Images/image03781.png

OEBPS/Images/image03780.png

OEBPS/Images/image03779.png

OEBPS/Images/image03778.png

OEBPS/Images/image03777.png

OEBPS/Images/image01055.png

OEBPS/Images/image01056.png

OEBPS/Images/image01053.png

OEBPS/Images/image01054.png

OEBPS/Images/image03796.png

OEBPS/Images/image03795.png

OEBPS/Images/image03794.png

OEBPS/Images/image03793.png

OEBPS/Images/image03792.png

OEBPS/Images/image03791.png

OEBPS/Images/image03790.png

OEBPS/Images/image03789.png

OEBPS/Images/image03788.png

OEBPS/Images/image03787.png

OEBPS/Images/image01058.png

OEBPS/Images/image01059.png

OEBPS/Images/image01057.png

OEBPS/Images/image01062.png

OEBPS/Images/image01063.png

OEBPS/Images/image01060.png

OEBPS/Images/image01061.png

OEBPS/Images/image02476.png

OEBPS/Images/image02475.png

OEBPS/Images/image03806.png

OEBPS/Images/image02474.png

OEBPS/Images/image03805.png

OEBPS/Images/image02473.png

OEBPS/Images/image03804.png

OEBPS/Images/image02472.png

OEBPS/Images/image03803.png

OEBPS/Images/image02471.png

OEBPS/Images/image03802.png

OEBPS/Images/image02470.png

OEBPS/Images/image03801.png

OEBPS/Images/image02469.png

OEBPS/Images/image03800.png

OEBPS/Images/image02468.png

OEBPS/Images/image03799.png

OEBPS/Images/image02467.png

OEBPS/Images/image03798.png

OEBPS/Images/image03797.png

OEBPS/Images/image02486.png

OEBPS/Images/image02485.jpeg
=loix|
fle Eut Seach View Broect fun Depoy Sekcton Doob Hel

DEaE&|9¢ |XhE (M EENGD| 0| E| =] 0% | @ workspace [Poyaan -~
xqtorer % O x| [pesiner w o x
e | e |20 BlesRE|NIE]

k3 [N | (88] 4 o showserchancy
a

e
o Clss Disgrams
T Use Case Disgrams
0, Seauence Disgrams

fl, Appiine showBarChrt(1)
2 Colaboraton Digrams
% Sttechrt Disgrams
%, activty Disgrams.
% Business Process Disgrams

ComponeniDisgram Disgrams

3 Deployment Diagrams
@ Robustness Disgrams

5 £18 Assentie Disrams
€ Webh Applcaton Disrans
£R Applcstion Clet igrams
& Enterprise Applcation Diograms
48 TeoLn Disgrams
 Resouce Adapter Digrans
69 YL Structure Digrams
@y Relstionstip Diegrams

-
Q
%
=
N

[D)
[inies][otz] |

OEBPS/Images/image03816.png

OEBPS/Images/image02484.png

OEBPS/Images/image03815.png

OEBPS/Images/image02483.png

OEBPS/Images/image03814.png

OEBPS/Images/image02482.png

OEBPS/Images/image03813.png

OEBPS/Images/image02481.png

OEBPS/Images/image03812.png

OEBPS/Images/image02480.png

OEBPS/Images/image03811.png

OEBPS/Images/image02479.png

OEBPS/Images/image03810.png

OEBPS/Images/image02478.png

OEBPS/Images/image03809.png

OEBPS/Images/image02477.png

OEBPS/Images/image03808.png

OEBPS/Images/image03807.png

OEBPS/Images/image02496.png

OEBPS/Images/image02495.png

OEBPS/Images/image03826.png

OEBPS/Images/image02494.png

OEBPS/Images/image03825.png

OEBPS/Images/image02493.png

OEBPS/Images/image03824.png

OEBPS/Images/image02492.png

OEBPS/Images/image03823.png

OEBPS/Images/image02491.jpeg

OEBPS/Images/image03822.png

OEBPS/Images/image02490.png

OEBPS/Images/image03821.png

OEBPS/Images/image02489.png
Spiel Hilfe

OEBPS/Images/image03820.png

OEBPS/Images/image02488.png

OEBPS/Images/image03819.png

OEBPS/Images/image02487.png

OEBPS/Images/image03818.png

OEBPS/Images/image03817.png

OEBPS/Images/image02506.png

OEBPS/Images/image02505.png

OEBPS/Images/image03836.png

OEBPS/Images/image02504.png

OEBPS/Images/image03835.png

OEBPS/Images/image02503.png

OEBPS/Images/image03834.png

OEBPS/Images/image02502.png

OEBPS/Images/image03833.png

OEBPS/Images/image02501.png

OEBPS/Images/image03832.png

OEBPS/Images/image02500.png

OEBPS/Images/image03831.png

OEBPS/Images/image02499.png

OEBPS/Images/image03830.png

OEBPS/Images/image02498.png

OEBPS/Images/image03829.png

OEBPS/Images/image02497.png

OEBPS/Images/image03828.png

OEBPS/Images/image03827.png

OEBPS/Images/image02516.png

OEBPS/Images/image02515.png

OEBPS/Images/image03846.png

OEBPS/Images/image02514.png

OEBPS/Images/image03845.png

OEBPS/Images/image02513.png

OEBPS/Images/image03844.png

OEBPS/Images/image02512.jpeg

OEBPS/Images/image03843.png

OEBPS/Images/image02511.png

OEBPS/Images/image03842.png

OEBPS/Images/image02510.png

OEBPS/Images/image03841.png

OEBPS/Images/image02509.png

OEBPS/Images/image03840.png

OEBPS/Images/image02508.png

OEBPS/Images/image03839.png

OEBPS/Images/image02507.png

OEBPS/Images/image03838.png

OEBPS/Images/image03837.png

OEBPS/Images/image02526.png

OEBPS/Images/image02525.png

OEBPS/Images/image03856.png

OEBPS/Images/image02524.png

OEBPS/Images/image03855.png

OEBPS/Images/image02523.png

OEBPS/Images/image03854.png

OEBPS/Images/image02522.png

OEBPS/Images/image03853.png

OEBPS/Images/image02521.png

OEBPS/Images/image03852.png

OEBPS/Images/image02520.png

OEBPS/Images/image03851.png

OEBPS/Images/image02519.png

OEBPS/Images/image03850.png

OEBPS/Images/image02518.png

OEBPS/Images/image03849.png

OEBPS/Images/image02517.png

OEBPS/Images/image03848.png

OEBPS/Images/image03847.png

OEBPS/Images/image02536.png

OEBPS/Images/image02535.png

OEBPS/Images/image03866.png

OEBPS/Images/image02534.png

OEBPS/Images/image03865.png

OEBPS/Images/image02533.jpeg
ene New Java Project

Create a Java project
Create a Java project n the workspace or in an external location.

Project name: [Transfer

Contents

O Create new project in workspace

@ Create project from existing source

Directory: |/Users/bsteppan/Einstieginjava/ Examples /ch 10/ transfer Browse...

3

) Use default JRE (Currently ‘)VM 1.5.0 (MacOS X Default)) Configure JREs.

©) (e = prejec spesie e JVM 150 OMac0S X Default)

) Use an execution environment JRE:

Project layout

Use project folder as root for sources and class files

3 Create separate folders for sources and class files Configure defau

Working sets

) Add project to working sets

Working sets: 7) (Cselea)

“The wizard will automatically configure the JRE and the project layout based on the existing

@ﬁ/

OEBPS/Images/image03864.png

OEBPS/Images/image02532.png

OEBPS/Images/image03863.png

OEBPS/Images/image02531.png

OEBPS/Images/image03862.png

OEBPS/Images/image02530.png

OEBPS/Images/image03861.png

OEBPS/Images/image02529.jpeg

OEBPS/Images/image03860.png

OEBPS/Images/image02528.png

OEBPS/Images/image03859.png

OEBPS/Images/image02527.png

OEBPS/Images/image03858.png

OEBPS/Images/image03857.png

OEBPS/Images/image02546.png

OEBPS/Images/image02545.png

OEBPS/Images/image02544.png

OEBPS/Images/image02543.png

OEBPS/Images/image02542.png

OEBPS/Images/image02541.png

OEBPS/Images/image02540.png

OEBPS/Images/image02539.png

OEBPS/Images/image02538.png

OEBPS/Images/image02537.png

OEBPS/Images/image02556.png

OEBPS/Images/image02555.png

OEBPS/Images/image02554.png

OEBPS/Images/image02553.png

OEBPS/Images/image02552.jpeg

OEBPS/Images/image02551.png

OEBPS/Images/image02550.png

OEBPS/Images/image02549.png

OEBPS/Images/image02548.png

OEBPS/Images/image02547.png

OEBPS/Images/image02566.png

OEBPS/Images/image02565.png

OEBPS/Images/image02564.png

OEBPS/Images/image02563.png

OEBPS/Images/image02562.png

OEBPS/Images/image02561.png

OEBPS/Images/image02560.png

OEBPS/Images/image02559.png

OEBPS/Images/image02558.png

OEBPS/Images/image02557.png

OEBPS/Images/image03273.png

OEBPS/Images/image03272.png

OEBPS/Images/image03271.png

OEBPS/Images/image03270.png

OEBPS/Images/image03269.png

OEBPS/Images/image03268.png

OEBPS/Images/image03267.png

OEBPS/Images/image03284.png

OEBPS/Images/image03283.png

OEBPS/Images/image03282.png

OEBPS/Images/image03281.png

OEBPS/Images/image03280.png

OEBPS/Images/image03279.png

OEBPS/Images/image03278.png

OEBPS/Images/image03277.png

OEBPS/Images/image03276.png

OEBPS/Images/image03275.png

OEBPS/Images/image03274.png

OEBPS/Images/image03295.png

OEBPS/Images/image03294.png

OEBPS/Images/image03293.png

OEBPS/Images/image03292.png

OEBPS/Images/image03291.png

OEBPS/Images/image03290.png

OEBPS/Images/image03289.png

OEBPS/Images/image03288.png
Anvede

Varname.

Nachname.

Strasse

PLz

ot

Stast

Telefan

el

[oaysseus

foysseus@hades org

OEBPS/Images/image03287.png

OEBPS/Images/image03286.png

OEBPS/Images/image03285.png

OEBPS/Images/image01974.png

OEBPS/Images/image03306.png

OEBPS/Images/image01975.png

OEBPS/Images/image03305.png

OEBPS/Images/image01972.png

OEBPS/Images/image03304.png

OEBPS/Images/image01973.png

OEBPS/Images/image03303.png

OEBPS/Images/image01970.png

OEBPS/Images/image03302.png

OEBPS/Images/image01971.png

OEBPS/Images/image03301.png

OEBPS/Images/image01968.png

OEBPS/Images/image03300.png

OEBPS/Images/image01969.png

OEBPS/Images/image03299.png

OEBPS/Images/image03298.png

OEBPS/Images/image01967.png

OEBPS/Images/image03297.png

OEBPS/Images/image03296.png

OEBPS/Images/image01985.png

OEBPS/Images/image01986.png

OEBPS/Images/image03316.png

OEBPS/Images/image01983.png

OEBPS/Images/image03315.png

OEBPS/Images/image01984.png

OEBPS/Images/image03314.png

OEBPS/Images/image01981.png

OEBPS/Images/image03313.png

OEBPS/Images/image01982.png

OEBPS/Images/image03312.png

OEBPS/Images/image01979.png

OEBPS/Images/image03311.png

OEBPS/Images/image01980.png

OEBPS/Images/image03310.png

OEBPS/Images/image01977.png

OEBPS/Images/image03309.png

OEBPS/Images/image01978.png

OEBPS/Images/image03308.png

OEBPS/Images/image03307.png

OEBPS/Images/image01976.png

OEBPS/Images/image01996.png

OEBPS/Images/image01994.png

OEBPS/Images/image03326.png

OEBPS/Images/image01995.png

OEBPS/Images/image03325.png

OEBPS/Images/image01992.png

OEBPS/Images/image03324.png

OEBPS/Images/image01993.png

OEBPS/Images/image03323.png

OEBPS/Images/image01990.png

OEBPS/Images/image03322.png

OEBPS/Images/image01991.png

OEBPS/Images/image03321.png

OEBPS/Images/image01988.png

OEBPS/Images/image03320.png

OEBPS/Images/image01989.png

OEBPS/Images/image03319.png

OEBPS/Images/image03318.png

OEBPS/Images/image01987.png

OEBPS/Images/image03317.png

OEBPS/Images/image00978.png

OEBPS/Images/image00979.png

OEBPS/Images/image02005.png

OEBPS/Images/image00977.png

OEBPS/Images/image02006.png

OEBPS/Images/image03336.png

OEBPS/Images/image00982.png

OEBPS/Images/image02003.png

OEBPS/Images/image03335.png

OEBPS/Images/image00983.png

OEBPS/Images/image02004.png

OEBPS/Images/image03334.png

OEBPS/Images/image00980.png

OEBPS/Images/image02001.png

OEBPS/Images/image03333.png

OEBPS/Images/image00981.png

OEBPS/Images/image02002.png

OEBPS/Images/image03332.png

OEBPS/Images/image00986.png

OEBPS/Images/image01999.png

OEBPS/Images/image03331.png

OEBPS/Images/image02000.png

OEBPS/Images/image03330.png

OEBPS/Images/image00984.png

OEBPS/Images/image01997.png

OEBPS/Images/image03329.png

OEBPS/Images/image00985.png

OEBPS/Images/image01998.png

OEBPS/Images/image03328.png

OEBPS/Images/image03327.png

OEBPS/Images/image00967.png

OEBPS/Images/image00968.png

OEBPS/Images/image02016.png

OEBPS/Images/image00971.png

OEBPS/Images/image02014.png

OEBPS/Images/image03346.png

OEBPS/Images/image00972.png
Datensatz Bearbeiten Suchen Hifle

~=lolx|

DR[| 4| > M| &

Anrede

Vormame

Nachname

Strasse

PLZ

o

Staat

Telefan

E-Mail

Odysseus

fatysseus@hades.or

OEBPS/Images/image02015.png

OEBPS/Images/image03345.png

OEBPS/Images/image00969.png

OEBPS/Images/image02012.png

OEBPS/Images/image03344.png

OEBPS/Images/image00970.png

OEBPS/Images/image02013.png

OEBPS/Images/image03343.png

OEBPS/Images/image00975.png

OEBPS/Images/image02010.png

OEBPS/Images/image03342.png

OEBPS/Images/image00976.png

OEBPS/Images/image02011.png

OEBPS/Images/image03341.png

OEBPS/Images/image00973.png

OEBPS/Images/image02008.png

OEBPS/Images/image03340.png

OEBPS/Images/image00974.png

OEBPS/Images/image02009.png

OEBPS/Images/image03339.png

OEBPS/Images/image03338.png

OEBPS/Images/image02007.png

OEBPS/Images/image03337.png

OEBPS/Images/image01000.png

OEBPS/Images/image01001.png

OEBPS/Images/image00998.png

OEBPS/Images/image00999.png

OEBPS/Images/image01004.png

OEBPS/Images/image02025.png

OEBPS/Images/image01005.png

OEBPS/Images/image02026.png
Text 1 Text 2

OEBPS/Images/image03356.png

OEBPS/Images/image01002.png

OEBPS/Images/image02023.png

OEBPS/Images/image03355.png

OEBPS/Images/image01003.png

OEBPS/Images/image02024.jpeg

OEBPS/Images/image03354.png

OEBPS/Images/image02021.png

OEBPS/Images/image03353.png

OEBPS/Images/image02022.png

OEBPS/Images/image03352.png

OEBPS/Images/image01006.png

OEBPS/Images/image02019.png

OEBPS/Images/image03351.png

OEBPS/Images/image02020.png

OEBPS/Images/image03350.png

OEBPS/Images/image02017.png

OEBPS/Images/image03349.png

OEBPS/Images/image02018.png

OEBPS/Images/image03348.png

OEBPS/Images/image03347.png

OEBPS/Images/image01007.png

OEBPS/Images/image01008.png

OEBPS/Images/image00989.png

OEBPS/Images/image00990.png

OEBPS/Images/image00987.png

OEBPS/Images/image00988.png

OEBPS/Images/image00993.png

OEBPS/Images/image02036.png

OEBPS/Images/image00994.png

OEBPS/Images/image00991.png

OEBPS/Images/image02034.png

OEBPS/Images/image03366.png

OEBPS/Images/image00992.png

OEBPS/Images/image02035.png

OEBPS/Images/image03365.png

OEBPS/Images/image02032.png

OEBPS/Images/image03364.png

OEBPS/Images/image02033.png

OEBPS/Images/image03363.png

OEBPS/Images/image00995.png

OEBPS/Images/image02030.png

OEBPS/Images/image03362.jpeg

OEBPS/Images/image00996.png

OEBPS/Images/image02031.png

OEBPS/Images/image03361.png

OEBPS/Images/image02028.png

OEBPS/Images/image03360.png

OEBPS/Images/image02029.png

OEBPS/Images/image03359.png

OEBPS/Images/image03358.png

OEBPS/Images/image02027.png

OEBPS/Images/image03357.png

OEBPS/Images/image00997.png

OEBPS/Images/image01022.png

OEBPS/Images/image01023.png

OEBPS/Images/image01020.png

OEBPS/Images/image01021.png

OEBPS/Images/image01026.png

OEBPS/Images/image01024.png

OEBPS/Images/image02045.png

OEBPS/Images/image01025.png

OEBPS/Images/image02046.png

OEBPS/Images/image02043.png

OEBPS/Images/image02044.png

OEBPS/Images/image02041.png

OEBPS/Images/image02042.png

OEBPS/Images/image02039.png

OEBPS/Images/image02040.png

OEBPS/Images/image02037.png

OEBPS/Images/image02038.png

OEBPS/Images/image01029.png

OEBPS/Images/image01030.png

OEBPS/Images/image01027.png

OEBPS/Images/image01028.png

OEBPS/Images/image01011.png

OEBPS/Images/image01012.png

OEBPS/Images/image01009.png

OEBPS/Images/image01010.png

OEBPS/Images/image01015.png

OEBPS/Images/image01016.png

OEBPS/Images/image01013.png

OEBPS/Images/image02056.png

OEBPS/Images/image01014.png

OEBPS/Images/image02054.png

OEBPS/Images/image02055.png

OEBPS/Images/image02052.png

OEBPS/Images/image02053.png

OEBPS/Images/image02050.png

OEBPS/Images/image02051.png

OEBPS/Images/image02048.png

OEBPS/Images/image02049.png

OEBPS/Images/image02047.png

OEBPS/Images/image01018.png

OEBPS/Images/image01019.png

OEBPS/Images/image01017.png

OEBPS/Images/image01044.png

OEBPS/Images/image01045.png

OEBPS/Images/image01042.png

OEBPS/Images/image01043.png

OEBPS/Images/image01046.png

OEBPS/Images/image02065.png

OEBPS/Images/image02066.png

OEBPS/Images/image02063.png

OEBPS/Images/image02064.png

OEBPS/Images/image02061.png

OEBPS/Images/image02062.png

OEBPS/Images/image02059.png

OEBPS/Images/image02060.png

OEBPS/Images/image02057.png

OEBPS/Images/image02058.png

OEBPS/Images/image01047.png

OEBPS/Images/image01048.png

OEBPS/Images/image01051.png

OEBPS/Images/image01052.png

OEBPS/Images/image01049.png

OEBPS/Images/image01050.png

OEBPS/Images/image01033.png

OEBPS/Images/image01034.png

OEBPS/Images/image01031.png

OEBPS/Images/image01032.png

OEBPS/Images/image03776.png

OEBPS/Images/image03775.png

OEBPS/Images/image03774.png

OEBPS/Images/image01035.png

OEBPS/Images/image03773.png

OEBPS/Images/image01036.png

OEBPS/Images/image03772.png

OEBPS/Images/image03771.png

OEBPS/Images/image03770.png

OEBPS/Images/image03769.png

OEBPS/Images/image03768.png

OEBPS/Images/image03767.png

OEBPS/Images/image01037.png

OEBPS/Images/image01040.png

OEBPS/Images/image01041.png

OEBPS/Images/image01038.png

OEBPS/Images/image01039.png

OEBPS/Images/image00945.png

OEBPS/Images/image00946.png

OEBPS/Images/image00943.png

OEBPS/Images/image00944.png

OEBPS/Images/image01966.png

OEBPS/Images/image01964.jpeg
800 Memory

OEBPS/Images/image01965.png

OEBPS/Images/image01962.png

OEBPS/Images/image01963.png

OEBPS/Images/image01960.png

OEBPS/Images/image01961.png

OEBPS/Images/image01958.png

OEBPS/Images/image01959.png

OEBPS/Images/image01957.png

OEBPS/Images/image00948.png

OEBPS/Images/image00949.png

OEBPS/Images/image00947.png

OEBPS/Images/image00952.png

OEBPS/Images/image00953.png

OEBPS/Images/image00950.png

OEBPS/Images/image00951.png

OEBPS/Images/image00934.png

OEBPS/Images/image00935.png

OEBPS/Images/image00932.png

OEBPS/Images/image00933.png

OEBPS/Images/image03676.png

OEBPS/Images/image03675.png

OEBPS/Images/image00936.png

OEBPS/Images/image03674.png

OEBPS/Images/image03673.jpeg

OEBPS/Images/image03672.png

OEBPS/Images/image03671.png

OEBPS/Images/image03670.png

OEBPS/Images/image03669.png

OEBPS/Images/image03668.png

OEBPS/Images/image03667.png

OEBPS/Images/image00937.jpeg
0GS- VWIS ~ Rt WwR2 L Ee
PRI | e — 8 et

private

atic LogonDialog instance;

i O private static String pass = "7
fromaine) private static String login = "
§L.:‘w...,.“ private ResourceBundle res

private Jpancl contentPane

JButton cancelButton = new Jutton();
private JButton okButton = mew JEutton();
private srancl clic

w Jpanel();

private Jrancl buttonser = new Jeanel();

s immissirny
T

NEEFEr LT L
18 o [T e 17 corie]

OEBPS/Images/image00938.png

OEBPS/Images/image00941.png

OEBPS/Images/image00942.png

OEBPS/Images/image00939.png

OEBPS/Images/image00940.png

OEBPS/Images/image00965.png

OEBPS/Images/image00966.png

OEBPS/Images/image03686.png

OEBPS/Images/image03685.png

OEBPS/Images/image03684.png

OEBPS/Images/image03683.png

OEBPS/Images/image03682.png

OEBPS/Images/image03681.png

OEBPS/Images/image03680.png

OEBPS/Images/image03679.png

OEBPS/Images/image03678.png

OEBPS/Images/image03677.png

OEBPS/Images/image00956.png

OEBPS/Images/image00954.png

OEBPS/Images/image00955.png

OEBPS/Images/image03696.png

OEBPS/Images/image03695.png

OEBPS/Images/image03694.png

OEBPS/Images/image03693.png

OEBPS/Images/image03692.png

OEBPS/Images/image03691.png

OEBPS/Images/image03690.png

OEBPS/Images/image03689.png

OEBPS/Images/image03688.jpeg
. Jewe-joslc-|sie
SRS SO
=0\ Gt [0 i

OEBPS/Images/image03687.png

OEBPS/Images/image00959.png

OEBPS/Images/image00960.png

OEBPS/Images/image00957.png

OEBPS/Images/image00958.png

OEBPS/Images/image00963.png

OEBPS/Images/image00964.png

OEBPS/Images/image00961.png

OEBPS/Images/image00962.png

OEBPS/Images/image03706.png

OEBPS/Images/image03705.png

OEBPS/Images/image03704.png

OEBPS/Images/image03703.png

OEBPS/Images/image03702.png

OEBPS/Images/image03701.png

OEBPS/Images/image03700.png

OEBPS/Images/image03699.png

OEBPS/Images/image03698.png

OEBPS/Images/image03697.png

OEBPS/Images/image03716.png

OEBPS/Images/image03715.png

OEBPS/Images/image03714.png

OEBPS/Images/image03713.png

OEBPS/Images/image03712.png

OEBPS/Images/image03711.png

OEBPS/Images/image03710.png

OEBPS/Images/image03709.png

OEBPS/Images/image03708.png

OEBPS/Images/image03707.png

OEBPS/Images/image03726.png

OEBPS/Images/image03725.png

OEBPS/Images/image03724.png

OEBPS/Images/image03723.png

OEBPS/Images/image03722.png

OEBPS/Images/image03721.png

OEBPS/Images/image03720.png

OEBPS/Images/image03719.png

OEBPS/Images/image03718.png

OEBPS/Images/image03717.png

OEBPS/Images/image03736.png

OEBPS/Images/image03735.png

OEBPS/Images/image03734.png

OEBPS/Images/image03733.png

OEBPS/Images/image03732.png

OEBPS/Images/image03731.png

OEBPS/Images/image03730.png

OEBPS/Images/image03729.png

OEBPS/Images/image03728.png

OEBPS/Images/image03727.png

OEBPS/Images/image03746.png

OEBPS/Images/image03745.png

OEBPS/Images/image03744.png

OEBPS/Images/image03743.png

OEBPS/Images/image03742.png

OEBPS/Images/image03741.png

OEBPS/Images/image03740.png

OEBPS/Images/image03739.png

OEBPS/Images/image03738.png

OEBPS/Images/image03737.png

OEBPS/Images/image03756.png

OEBPS/Images/image03755.png

OEBPS/Images/image03754.png

OEBPS/Images/image03753.png

OEBPS/Images/image03752.png

OEBPS/Images/image03751.png

OEBPS/Images/image03750.png

OEBPS/Images/image03749.png

OEBPS/Images/image03748.png

OEBPS/Images/image03747.png

OEBPS/Images/image03766.png

OEBPS/Images/image03765.png

OEBPS/Images/image03764.png

OEBPS/Images/image03763.png

OEBPS/Images/image03762.png

OEBPS/Images/image03761.png

OEBPS/Images/image03760.png

OEBPS/Images/image03759.png

OEBPS/Images/image03758.png
/Systen/Library/Frameworks/JavaWM. framework/Versions/1.3.1/Home/bin/ java ~classpath
" fusr/share/pr)/app/polyaraph/v3/bin: /Systen/Library/Framenorks/JavaWM. framenork
steppan.app.polygraph.main. App

OEBPS/Images/image03757.png

OEBPS/Images/image03174.png

OEBPS/Images/image03173.png

OEBPS/Images/image03172.png

OEBPS/Images/image03171.png

OEBPS/Images/image03170.png

OEBPS/Images/image03169.png

OEBPS/Images/image03168.png

OEBPS/Images/image03167.png

OEBPS/Images/image03185.png

OEBPS/Images/image03184.png

OEBPS/Images/image03183.png

OEBPS/Images/image03182.png

OEBPS/Images/image03181.png

OEBPS/Images/image03180.png

OEBPS/Images/image03179.png

OEBPS/Images/image03178.png

OEBPS/Images/image03177.png

OEBPS/Images/image03176.png

OEBPS/Images/image03175.png

OEBPS/Images/image03196.png

OEBPS/Images/image03195.png

OEBPS/Images/image03194.png

OEBPS/Images/image03193.png

OEBPS/Images/image03192.png

OEBPS/Images/image03191.png

OEBPS/Images/image03190.png

OEBPS/Images/image03189.png

OEBPS/Images/image03188.png

OEBPS/Images/image03187.png

OEBPS/Images/image03186.png

OEBPS/Images/image01875.png

OEBPS/Images/image01876.png

OEBPS/Images/image03206.png

OEBPS/Images/image01873.png

OEBPS/Images/image03205.png

OEBPS/Images/image01874.png

OEBPS/Images/image03204.png

OEBPS/Images/image01871.png

OEBPS/Images/image03203.png

OEBPS/Images/image01872.png

OEBPS/Images/image03202.png

OEBPS/Images/image01869.png

OEBPS/Images/image03201.png

OEBPS/Images/image01870.png

OEBPS/Images/image03200.jpeg
b @ Javadoc 2 eclarati sole =

s

& development RectangleRectangle(int height, int width)

Konstrukior Rectangle: Erzeugt ein Rechteck des Typs Rectangle mit folgenden Parametern

Parameters:
height die Hoche des Rechtecks
width die Breite des Rechtecks

OEBPS/Images/image01867.png

OEBPS/Images/image03199.png

OEBPS/Images/image01868.png

OEBPS/Images/image03198.png
806 @ Xenias Gastebuch o
L@ http:/ locathost 8080 /ser vt /steppan.app xenia NewGuest Explorer

Xenias Gadstebuch

Bitte die leeren Felder ausfillen

Vorname
[Orpheus.

5-Mail-Adresse
[orpheus@hades org

Xommentar

[Wo ist Eurydke?

oot mtine zone

OEBPS/Images/image03197.png

OEBPS/Images/image01886.png

OEBPS/Images/image01884.png

OEBPS/Images/image03216.png

OEBPS/Images/image01885.png

OEBPS/Images/image03215.png

OEBPS/Images/image01882.png

OEBPS/Images/image03214.png

OEBPS/Images/image01883.png

OEBPS/Images/image03213.png

OEBPS/Images/image01880.png

OEBPS/Images/image03212.png

OEBPS/Images/image01881.png

OEBPS/Images/image03211.jpeg

OEBPS/Images/image01878.png

OEBPS/Images/image03210.png

OEBPS/Images/image01879.png

OEBPS/Images/image03209.png

OEBPS/Images/image03208.png

OEBPS/Images/image01877.png

OEBPS/Images/image03207.png

OEBPS/Images/image01895.png

OEBPS/Images/image01896.png

OEBPS/Images/image03226.png

OEBPS/Images/image01893.png

OEBPS/Images/image03225.png

OEBPS/Images/image01894.png

OEBPS/Images/image03224.png

OEBPS/Images/image01891.png

OEBPS/Images/image03223.png
1hercerhri ¥4+ 7

OEBPS/Images/image01892.png

OEBPS/Images/image03222.png

OEBPS/Images/image01889.jpeg
000 Site - xenia
= | site: (xemia M fC|ttiralo

. Site Navigation: @ index.html

v B i e Glousharepd
& mdexhm

@ guestisthtml
@ thankyouhuml @
@ newguesthuml indexhtml

> ® Computer L—l_l

MC) & @]

EpG thankyouht.. EbG) newguesth...
questis EbE thankyo.

[D

»[100% _ Ready.

OEBPS/Images/image03221.png

OEBPS/Images/image01890.png

OEBPS/Images/image03220.png

OEBPS/Images/image01887.png

OEBPS/Images/image03219.png

OEBPS/Images/image01888.png

OEBPS/Images/image03218.png

OEBPS/Images/image03217.png

OEBPS/Images/image00879.png

OEBPS/Images/image00880.png

OEBPS/Images/image00877.png

OEBPS/Images/image01906.png

OEBPS/Images/image00878.png

OEBPS/Images/image00883.png

OEBPS/Images/image01904.png

OEBPS/Images/image03236.png

OEBPS/Images/image00884.png

OEBPS/Images/image01905.png

OEBPS/Images/image03235.png

OEBPS/Images/image00881.png

OEBPS/Images/image01902.png

OEBPS/Images/image03234.png

OEBPS/Images/image00882.png

OEBPS/Images/image01903.png

OEBPS/Images/image03233.png

OEBPS/Images/image01900.png

OEBPS/Images/image03232.png

OEBPS/Images/image01901.png

OEBPS/Images/image03231.png

OEBPS/Images/image00885.png

OEBPS/Images/image01898.png

OEBPS/Images/image03230.png

OEBPS/Images/image00886.png

OEBPS/Images/image01899.png

OEBPS/Images/image03229.png

OEBPS/Images/image03228.png

OEBPS/Images/image01897.png

OEBPS/Images/image03227.png

OEBPS/Images/image00887.png

OEBPS/Images/image00867.png

OEBPS/Images/image00868.png

OEBPS/Images/image00866.png

OEBPS/Images/image00871.png

OEBPS/Images/image01915.png

OEBPS/Images/image00872.png

OEBPS/Images/image01916.png

OEBPS/Images/image03246.png

OEBPS/Images/image00869.png

OEBPS/Images/image01913.png

OEBPS/Images/image03245.png

OEBPS/Images/image00870.png

OEBPS/Images/image01914.png

OEBPS/Images/image03244.png

OEBPS/Images/image00876.png

OEBPS/Images/image01911.png

OEBPS/Images/image03243.png

OEBPS/Images/image01912.png

OEBPS/Images/image03242.png

OEBPS/Images/image00873.png

OEBPS/Images/image01909.png

OEBPS/Images/image03241.png

OEBPS/Images/image01910.png

OEBPS/Images/image03240.png

OEBPS/Images/image01907.png

OEBPS/Images/image03239.png

OEBPS/Images/image01908.png

OEBPS/Images/image03238.png

OEBPS/Images/image03237.png

OEBPS/Images/image00901.png

OEBPS/Images/image00902.png

OEBPS/Images/image00899.png

OEBPS/Images/image00900.png

OEBPS/Images/image00905.png

OEBPS/Images/image01926.png

OEBPS/Images/image00906.png

OEBPS/Images/image00903.png

OEBPS/Images/image01924.png

OEBPS/Images/image03256.png

OEBPS/Images/image00904.png

OEBPS/Images/image01925.png

OEBPS/Images/image03255.png

OEBPS/Images/image01922.png

OEBPS/Images/image03254.png

OEBPS/Images/image01923.png

OEBPS/Images/image03253.png

OEBPS/Images/image01920.png

OEBPS/Images/image03252.png

OEBPS/Images/image01921.png

OEBPS/Images/image03251.png

OEBPS/Images/image01918.png

OEBPS/Images/image03250.png

OEBPS/Images/image01919.png

OEBPS/Images/image03249.png

OEBPS/Images/image03248.png

OEBPS/Images/image01917.png

OEBPS/Images/image03247.png

OEBPS/Images/image00908.png

OEBPS/Images/image00909.png

OEBPS/Images/image00907.png

OEBPS/Images/image00890.png

OEBPS/Images/image00891.png

OEBPS/Images/image00888.png

OEBPS/Images/image00889.png

OEBPS/Images/image00894.png

OEBPS/Images/image00895.png

OEBPS/Images/image00892.png

OEBPS/Images/image01935.png

OEBPS/Images/image00893.png

OEBPS/Images/image01936.png

OEBPS/Images/image03266.png

OEBPS/Images/image01933.png

OEBPS/Images/image03265.png

OEBPS/Images/image01934.png

OEBPS/Images/image03264.png

OEBPS/Images/image00896.png

OEBPS/Images/image01931.png

OEBPS/Images/image03263.png

OEBPS/Images/image01932.png

OEBPS/Images/image03262.png

OEBPS/Images/image01929.png

OEBPS/Images/image03261.png

OEBPS/Images/image01930.png

OEBPS/Images/image03260.png

OEBPS/Images/image01927.png

OEBPS/Images/image03259.png

OEBPS/Images/image01928.png

OEBPS/Images/image03258.png

OEBPS/Images/image03257.png

OEBPS/Images/image00897.png

OEBPS/Images/image00898.png

OEBPS/Images/image00923.png

OEBPS/Images/image00924.png

OEBPS/Images/image00921.png

OEBPS/Images/image00922.png

OEBPS/Images/image00925.png

OEBPS/Images/image01946.png

OEBPS/Images/image00926.png

OEBPS/Images/image01944.png

OEBPS/Images/image01945.png

OEBPS/Images/image01942.png

OEBPS/Images/image01943.png

OEBPS/Images/image01940.png

OEBPS/Images/image01941.png

OEBPS/Images/image01938.png

OEBPS/Images/image01939.png

OEBPS/Images/image01937.png

OEBPS/Images/image00927.png

OEBPS/Images/image00930.png

OEBPS/Images/image00931.png
& Bildlauf Eingabeaufforderung

OEBPS/Images/image00928.png

OEBPS/Images/image00929.png

OEBPS/Images/image00912.png

OEBPS/Images/image00913.png

OEBPS/Images/image00910.png

OEBPS/Images/image00911.png

OEBPS/Images/image00916.png

OEBPS/Images/image00914.png

OEBPS/Images/image00915.png

OEBPS/Images/image01955.png

OEBPS/Images/image01956.png

OEBPS/Images/image01953.png

OEBPS/Images/image01954.png

OEBPS/Images/image01951.png

OEBPS/Images/image01952.png

OEBPS/Images/image01949.png

OEBPS/Images/image01950.png

OEBPS/Images/image01947.png

OEBPS/Images/image01948.png

OEBPS/Images/image00919.png

OEBPS/Images/image00920.png

OEBPS/Images/image00917.png

OEBPS/Images/image00918.png

OEBPS/Images/image00823.png

OEBPS/Images/image00824.png

OEBPS/Images/image00821.png

OEBPS/Images/image00822.png

OEBPS/Images/image02696.png

OEBPS/Images/image00825.png

OEBPS/Images/image02695.png

OEBPS/Images/image04026.png

OEBPS/Images/image02694.png

OEBPS/Images/image04025.png

OEBPS/Images/image02693.png

OEBPS/Images/image04024.png

OEBPS/Images/image02692.png

OEBPS/Images/image04023.png

OEBPS/Images/image02691.png

OEBPS/Images/image04022.png

OEBPS/Images/image02690.png

OEBPS/Images/image04021.png

OEBPS/Images/image02689.png

OEBPS/Images/image04020.png

OEBPS/Images/image02688.png

OEBPS/Images/image04019.png

OEBPS/Images/image02687.png

OEBPS/Images/image04018.png

OEBPS/Images/image04017.png

OEBPS/Images/image00826.png

OEBPS/Images/image00827.png

OEBPS/Images/image00830.png

OEBPS/Images/image00831.png

OEBPS/Images/image00828.png

OEBPS/Images/image00829.png

OEBPS/Images/image00812.png

OEBPS/Images/image00813.png

OEBPS/Images/image00810.png

OEBPS/Images/image00811.png

OEBPS/Images/image00814.png

OEBPS/Images/image02706.png

OEBPS/Images/image00815.png

OEBPS/Images/image02705.png

OEBPS/Images/image04036.png

OEBPS/Images/image02704.png

OEBPS/Images/image04035.png

OEBPS/Images/image02703.png

OEBPS/Images/image04034.png

OEBPS/Images/image02702.png

OEBPS/Images/image04033.png

OEBPS/Images/image02701.png

OEBPS/Images/image04032.png

OEBPS/Images/image02700.png

OEBPS/Images/image04031.png

OEBPS/Images/image02699.png

OEBPS/Images/image04030.png

OEBPS/Images/image02698.png

OEBPS/Images/image04029.png

OEBPS/Images/image02697.png

OEBPS/Images/image04028.png

OEBPS/Images/image04027.png

OEBPS/Images/image00816.png

OEBPS/Images/image00819.png

OEBPS/Images/image00820.png

OEBPS/Images/image00817.png

OEBPS/Images/image00818.png

OEBPS/Images/image00845.png

OEBPS/Images/image00843.png

OEBPS/Images/image00844.png

OEBPS/Images/image02716.png

OEBPS/Images/image02715.png

OEBPS/Images/image04046.png

OEBPS/Images/image02714.png

OEBPS/Images/image04045.png

OEBPS/Images/image02713.png

OEBPS/Images/image04044.png

OEBPS/Images/image02712.png

OEBPS/Images/image04043.png

OEBPS/Images/image02711.png

OEBPS/Images/image04042.png

OEBPS/Images/image02710.png

OEBPS/Images/image04041.png

OEBPS/Images/image02709.png

OEBPS/Images/image04040.png

OEBPS/Images/image02708.png

OEBPS/Images/image04039.png

OEBPS/Images/image02707.jpeg
0068 @ Xenias Gastebuch =3
k| © o locabost 3060 serviestpan pxenosuesti [

Xenias Gastebuch

Meine Gaste

Orpheus. orpheus@hades.org

Burydike eurydike@hades.org

Odysseus odysseus@hades.org i-)
Penelope pemelope@hades.org ;=)
Hades hades@hades.org.

B oot e zone

OEBPS/Images/image04038.png

OEBPS/Images/image04037.png

OEBPS/Images/image00848.png

OEBPS/Images/image00849.png

OEBPS/Images/image00846.png

OEBPS/Images/image00847.png

OEBPS/Images/image00852.png

OEBPS/Images/image00853.png

OEBPS/Images/image00850.png

OEBPS/Images/image00851.png

OEBPS/Images/image00834.png

OEBPS/Images/image00835.png

OEBPS/Images/image00832.png

OEBPS/Images/image00833.png

OEBPS/Images/image02726.png

OEBPS/Images/image02725.png

OEBPS/Images/image04056.png

OEBPS/Images/image02724.png

OEBPS/Images/image04055.png

OEBPS/Images/image02723.png

OEBPS/Images/image04054.png

OEBPS/Images/image02722.png

OEBPS/Images/image04053.png

OEBPS/Images/image02721.png

OEBPS/Images/image04052.png

OEBPS/Images/image02720.png

OEBPS/Images/image04051.png
e G Yew Gols Sorce BAJ B Relghr Verdonng Colborwte Mewgemert Teck Mrdm b =
Cop@¥eanNcL @0 DD B E[Enas |

b 2o @ s
T o |5 8 WA E

5 v
bty
25 e

OEBPS/Images/image02719.png

OEBPS/Images/image04050.png

OEBPS/Images/image02718.png

OEBPS/Images/image04049.png

OEBPS/Images/image02717.png

OEBPS/Images/image04048.png

OEBPS/Images/image04047.png

OEBPS/Images/image00837.png

OEBPS/Images/image00838.png

OEBPS/Images/image00836.png

OEBPS/Images/image00841.png

OEBPS/Images/image00842.png

OEBPS/Images/image00839.png

OEBPS/Images/image00840.png

OEBPS/Images/image00865.png

OEBPS/Images/image02736.png

OEBPS/Images/image00545.png

OEBPS/Images/image02735.png

OEBPS/Images/image04066.png

OEBPS/Images/image00544.png
Nest

Datensatz

Anrede

Vorname

Nachname

Strasse

pLz

ot

Staat

Telefon

E-Mail

Bearbeiten Suchen Hilfe

olaul > o)

Eurydike

eurydike@hades org

OEBPS/Images/image02734.png

OEBPS/Images/image04065.png

OEBPS/Images/image00543.png

OEBPS/Images/image02733.png

OEBPS/Images/image04064.png

OEBPS/Images/image00542.png

OEBPS/Images/image02732.png

OEBPS/Images/image04063.png

OEBPS/Images/image00541.png

OEBPS/Images/image02731.png

OEBPS/Images/image04062.png

OEBPS/Images/image00540.png

OEBPS/Images/image02730.png

OEBPS/Images/image04061.png

OEBPS/Images/image00539.png

OEBPS/Images/image02729.png

OEBPS/Images/image04060.png

OEBPS/Images/image00538.png

OEBPS/Images/image02728.png

OEBPS/Images/image04059.png

OEBPS/Images/image00537.png

OEBPS/Images/image02727.png

OEBPS/Images/image04058.png

OEBPS/Images/image00536.png

OEBPS/Images/image04057.png
& PieChart
2 ICompenent
S PieChart(Model model)
© getTitleColor()
© paint(Graphics a)
© setHeigthiint heigth)
© setTitleColor(Color titleColor)

OEBPS/Images/image00854.png

OEBPS/Images/image00855.png

OEBPS/Images/image00535.png
8006 Terminal — tesh (ttyp1)

[babour in:ch13/2x87/51c] bsteppanis javac —verbose chi9/rectangle, TestApp . Java
[parsing started chi/rectangle, Testhpp. java]
[porsing conpleted 606ns]

[loading /SystenL ibrary,/Franeworks /JavaH.franework,/Versions/1.3.1/Classes/classes.
[ioading /SystenL ibrary,/Franeworks /JavaM.franework,ersions/1.3.1/Classes/classes.

ehecking ch13.rectangle. Testipp]
Loading -/chiS/rectangle/Rectangle.class]

[ioading /SystenL ibrary,Franeworks Javavi.franework,/Versions/1.3.1/Classes/classes.
[ioading /SystenL tbrary,/Franeworks /JavaH.franework,ersions/1.3.1/Classes/classes.
[ioading /SystenL tbrary,/Franeworks /JavaH.franework,ersions/1.3.1/Classes/classes.
[ioading /SystenL tbrary,/Franeworks /JavaH.franework,ersions/1.3.1/Classes/classes.
[ioading /SystenL ibrary,/Franeworks /JavaM.franework,ersions/1.3.1/Classes/classes.

firote chis/rectangleTestpp.class]
ftotal 15a3ue]
fanbourin:chis/ex@?/sre] bsteppar |

jar (javay Lang/Object .class)]
ar (Javay Lang/string class)]

Jar (javal lang/Systen.class)]
jar (Javayto/Pr intStrean.class)]

jar (Javay to/FiLtertutputStrean.class)]
jar (Javay to/Outputstrean .class)]

ar (aval Lang/StringBuf fer .class)]

gL}

<

OEBPS/Images/image00534.png

OEBPS/Images/image02746.png

OEBPS/Images/image00533.png

OEBPS/Images/image02745.png

OEBPS/Images/image00532.png

OEBPS/Images/image02744.png

OEBPS/Images/image00531.png

OEBPS/Images/image02743.png

OEBPS/Images/image00530.png

OEBPS/Images/image02742.png

OEBPS/Images/image00529.png

OEBPS/Images/image02741.png

OEBPS/Images/image00528.png

OEBPS/Images/image02740.png

OEBPS/Images/image00527.png

OEBPS/Images/image02739.png

OEBPS/Images/image02738.png

OEBPS/Images/image02737.png

OEBPS/Images/image00856.png

OEBPS/Images/image00859.png

OEBPS/Images/image00860.png

OEBPS/Images/image00857.png

OEBPS/Images/image00858.png

OEBPS/Images/image00863.png

OEBPS/Images/image00864.png

OEBPS/Images/image00861.png

OEBPS/Images/image00862.png

OEBPS/Images/image02756.png

OEBPS/Images/image00565.png

OEBPS/Images/image02755.png
aljold |euosiad

OEBPS/Images/image00564.png

OEBPS/Images/image02754.png

OEBPS/Images/image00563.png

OEBPS/Images/image02753.png

OEBPS/Images/image00562.png

OEBPS/Images/image02752.png

OEBPS/Images/image00561.png

OEBPS/Images/image02751.png

OEBPS/Images/image00560.png

OEBPS/Images/image02750.png

OEBPS/Images/image00559.png

OEBPS/Images/image02749.png

OEBPS/Images/image00558.png

OEBPS/Images/image02748.png

OEBPS/Images/image00557.png

OEBPS/Images/image02747.png

OEBPS/Images/image00556.png

OEBPS/Images/image00555.png

OEBPS/Images/image00554.png

OEBPS/Images/image02766.png

OEBPS/Images/image00553.png

OEBPS/Images/image02765.png

OEBPS/Images/image00552.png

OEBPS/Images/image02764.png

OEBPS/Images/image00551.png

OEBPS/Images/image02763.png

OEBPS/Images/image00550.png

OEBPS/Images/image02762.png

OEBPS/Images/image00549.png

OEBPS/Images/image02761.png

OEBPS/Images/image00548.png

OEBPS/Images/image02760.png

OEBPS/Images/image00547.png

OEBPS/Images/image02759.png

OEBPS/Images/image00546.png

OEBPS/Images/image02758.png

OEBPS/Images/image02757.png

OEBPS/Images/image04477.png

OEBPS/Images/image04478.png

OEBPS/Images/image04479.png

OEBPS/Images/image04480.png

OEBPS/Images/image04481.png

OEBPS/Images/image04482.png

OEBPS/Images/image04483.png

OEBPS/Images/image04484.png

OEBPS/Images/image04485.png

OEBPS/Images/image04486.png

OEBPS/Images/image04467.png

OEBPS/Images/image04468.png

OEBPS/Images/image04469.png

OEBPS/Images/image04470.png

OEBPS/Images/image04471.png

OEBPS/Images/image04472.png

OEBPS/Images/image04473.png

OEBPS/Images/image04474.jpeg
lr:

Wy ’
\ @/

OEBPS/Images/image04475.png

OEBPS/Images/image04476.png

OEBPS/Images/cover00874.jpeg
+ Eine umfassende und professionelle Einfihrung
» At vielen Beispielen und kommentierten Losungen

> Programmierung von GUIS, Datenbanken, dynamischen

Websites wm.
®..
Galieo Computig

OEBPS/Images/image04497.png

OEBPS/Images/image04498.png

OEBPS/Images/image04499.png

OEBPS/Images/image04500.png

OEBPS/Images/image04501.png

OEBPS/Images/image04502.png

OEBPS/Images/image04503.png

OEBPS/Images/image04504.png

OEBPS/Images/image04505.png

OEBPS/Images/image04506.png

OEBPS/Images/image04487.png

OEBPS/Images/image04488.png

OEBPS/Images/image04489.png

OEBPS/Images/image04490.png

OEBPS/Images/image04491.png

OEBPS/Images/image04492.png

OEBPS/Images/image04493.png

OEBPS/Images/image04494.png

OEBPS/Images/image04495.png

OEBPS/Images/image04496.png

OEBPS/Images/image04507.png

OEBPS/Images/image04508.png

OEBPS/Images/image04509.png

OEBPS/Images/image04510.png

OEBPS/Images/image04511.png

OEBPS/Images/image04512.png

OEBPS/Images/image04513.png

OEBPS/Images/image04514.png

OEBPS/Images/image04515.png

OEBPS/Images/image04516.png

OEBPS/Images/image02271.png

OEBPS/Images/image02272.png

OEBPS/Images/image02269.png

OEBPS/Images/image02270.png

OEBPS/Images/image02267.png

OEBPS/Images/image02268.png

OEBPS/Images/image02172.png

OEBPS/Images/image02173.png

OEBPS/Images/image02170.png

OEBPS/Images/image02171.png

OEBPS/Images/image02168.png

OEBPS/Images/image02169.png

OEBPS/Images/image02167.png

OEBPS/Images/image02183.png

OEBPS/Images/image02184.png

OEBPS/Images/image02181.png

OEBPS/Images/image02182.png
Uberschrift 4

OEBPS/Images/image02179.png

OEBPS/Images/image02180.png

OEBPS/Images/image02177.png

OEBPS/Images/image02178.png

OEBPS/Images/image02176.png

OEBPS/Images/image02174.png

OEBPS/Images/image02175.png

OEBPS/Images/image02194.png

OEBPS/Images/image02195.png

OEBPS/Images/image02192.png

OEBPS/Images/image02193.png

OEBPS/Images/image02190.png

OEBPS/Images/image02191.png

OEBPS/Images/image02188.png

OEBPS/Images/image02189.png

OEBPS/Images/image02187.png

OEBPS/Images/image02185.png

OEBPS/Images/image02186.png

OEBPS/Images/image02205.png

OEBPS/Images/image02206.png

OEBPS/Images/image02203.png

OEBPS/Images/image02204.png

OEBPS/Images/image02201.png

OEBPS/Images/image02202.png

OEBPS/Images/image02199.png

OEBPS/Images/image02200.png

OEBPS/Images/image02197.png

OEBPS/Images/image02198.png

OEBPS/Images/image02196.png

OEBPS/Images/image02216.png

OEBPS/Images/image02214.png

OEBPS/Images/image02215.png

OEBPS/Images/image02212.png

OEBPS/Images/image02213.png

OEBPS/Images/image02210.png

OEBPS/Images/image02211.png

OEBPS/Images/image02208.png

OEBPS/Images/image02209.png

OEBPS/Images/image02207.png

OEBPS/Images/image02225.png

OEBPS/Images/image02226.png

OEBPS/Images/image02223.png

OEBPS/Images/image02224.png

OEBPS/Images/image02221.png

OEBPS/Images/image02222.png

OEBPS/Images/image02219.png

OEBPS/Images/image02220.png

OEBPS/Images/image02217.png

OEBPS/Images/image02218.png

OEBPS/Images/image02236.png

OEBPS/Images/image02234.png

OEBPS/Images/image02235.png

OEBPS/Images/image02232.png

OEBPS/Images/image02233.png

OEBPS/Images/image02230.png

OEBPS/Images/image02231.png
rest 1
T3 [Tens

OEBPS/Images/image02228.png

OEBPS/Images/image02229.png

OEBPS/Images/image02227.png

OEBPS/Images/image02245.png

OEBPS/Images/image02246.png

OEBPS/Images/image02243.png

OEBPS/Images/image02244.png

OEBPS/Images/image02241.png

OEBPS/Images/image02242.png

OEBPS/Images/image02239.png

OEBPS/Images/image02240.png

OEBPS/Images/image02237.png

OEBPS/Images/image02238.png

OEBPS/Images/image02256.png

OEBPS/Images/image02254.png

OEBPS/Images/image02255.png

OEBPS/Images/image02252.png

OEBPS/Images/image02253.png

OEBPS/Images/image02250.png

OEBPS/Images/image02251.png

OEBPS/Images/image02248.png

OEBPS/Images/image02249.png

OEBPS/Images/image02247.png

OEBPS/Images/image02265.png

OEBPS/Images/image02266.png

OEBPS/Images/image02263.png

OEBPS/Images/image02264.png

OEBPS/Images/image02261.png

OEBPS/Images/image02262.png

OEBPS/Images/image02259.png

OEBPS/Images/image02260.png

OEBPS/Images/image02257.png

OEBPS/Images/image02258.png

OEBPS/Images/image03976.png

OEBPS/Images/image03975.png

OEBPS/Images/image03974.png

OEBPS/Images/image03973.png

OEBPS/Images/image03972.png

OEBPS/Images/image03971.png

OEBPS/Images/image03970.png

OEBPS/Images/image03969.png

OEBPS/Images/image03968.png

OEBPS/Images/image03967.png

OEBPS/Images/image00779.png

OEBPS/Images/image00780.png

OEBPS/Images/image00777.png

OEBPS/Images/image03986.png

OEBPS/Images/image00778.png

OEBPS/Images/image03985.png

OEBPS/Images/image00783.png

OEBPS/Images/image03984.png

OEBPS/Images/image00784.png

OEBPS/Images/image03983.png

OEBPS/Images/image00781.png

OEBPS/Images/image03982.png

OEBPS/Images/image00782.png

OEBPS/Images/image03981.png

OEBPS/Images/image03980.png

OEBPS/Images/image03979.png

OEBPS/Images/image00785.png

OEBPS/Images/image03978.png

OEBPS/Images/image03977.png

OEBPS/Images/image00786.png

OEBPS/Images/image00787.png

OEBPS/Images/image00768.png

OEBPS/Images/image00769.png

OEBPS/Images/image00766.png

OEBPS/Images/image00767.png

OEBPS/Images/image03996.png

OEBPS/Images/image00772.png

OEBPS/Images/image03995.png

OEBPS/Images/image00773.png

OEBPS/Images/image03994.png

OEBPS/Images/image00770.png

OEBPS/Images/image03993.png

OEBPS/Images/image00771.png

OEBPS/Images/image03992.png

OEBPS/Images/image03991.png

OEBPS/Images/image03990.png

OEBPS/Images/image00774.png

OEBPS/Images/image03989.png

OEBPS/Images/image00775.png

OEBPS/Images/image03988.png

OEBPS/Images/image03987.png

OEBPS/Images/image00776.png

OEBPS/Images/image00801.png

OEBPS/Images/image00802.png

OEBPS/Images/image00799.png

OEBPS/Images/image00800.jpeg
806 New Java Project

Java Settings
Define the Java build settings.

| Source 5 Projects |iSiitibrariess % Orderand Export |

JARS and class folders on the build path:

> B JRE System Library VM 1.5.0 (MacOS X Default)]

‘Add External Class Folder...

(— Wigrate JARFile.)
—e

OEBPS/Images/image02676.png

OEBPS/Images/image00805.png

OEBPS/Images/image02675.png

OEBPS/Images/image04006.png

OEBPS/Images/image02674.jpeg

OEBPS/Images/image04005.png

OEBPS/Images/image00803.png

OEBPS/Images/image02673.png

OEBPS/Images/image04004.png

OEBPS/Images/image00804.png

OEBPS/Images/image02672.png

OEBPS/Images/image04003.png
- Nestor - ein Adressbuch S =/ Y|

Datensatz Bearbeiten Suchen Hilfe

O K d4|>|M|&

Anrede
vomame [ohews
Nachname
strake
PLZ

o

Staat
Telefan

E-Mal foroheus @nades org

OEBPS/Images/image02671.png

OEBPS/Images/image04002.png

OEBPS/Images/image02670.png

OEBPS/Images/image04001.png

OEBPS/Images/image02669.png

OEBPS/Images/image04000.png

OEBPS/Images/image02668.png

OEBPS/Images/image03999.png

OEBPS/Images/image02667.png

OEBPS/Images/image03998.png

OEBPS/Images/image03997.png

OEBPS/Images/image00808.png

OEBPS/Images/image00809.png
[

OEBPS/Images/image00806.png

OEBPS/Images/image00807.png

OEBPS/Images/image00790.png

OEBPS/Images/image00791.png

OEBPS/Images/image00788.png

OEBPS/Images/image00789.png

OEBPS/Images/image00794.png

OEBPS/Images/image02686.png

OEBPS/Images/image00795.png

OEBPS/Images/image02685.png
PDA

OEBPS/Images/image04016.png

OEBPS/Images/image00792.png

OEBPS/Images/image02684.png

OEBPS/Images/image04015.png

OEBPS/Images/image00793.png

OEBPS/Images/image02683.jpeg
(X excelsior JET 3.0

Eile_Page Appiication _Heln

STEP 3 OF 7. Define Compilation Set

~

@

SOURCE

CLASSPATHENTRIES
 C:\ProjectslappitransferV1\bin

CLASSES

RESOURCES

OPTIONS

TARGET

COMPILE

APPLICATION MAIN CLASS

B LEGEND

\ (B STATISTICS

To be compiled. Located in classpath

includled m not includedt
importedt w ignored

COMPILABLE CLASSES

IMPORT SCANNER.

[

scan automatically [

Overriding Miscellansous
» overrides others

15 overriden

+ s Java 2 APl class
- has unresolved import

A E

OEBPS/Images/image04014.png

OEBPS/Images/image02682.png

OEBPS/Images/image04013.png

OEBPS/Images/image02681.png

OEBPS/Images/image04012.png

OEBPS/Images/image02680.png

OEBPS/Images/image04011.png

OEBPS/Images/image02679.png

OEBPS/Images/image04010.png

OEBPS/Images/image02678.png

OEBPS/Images/image04009.png

OEBPS/Images/image02677.png

OEBPS/Images/image04008.png

OEBPS/Images/image04007.png

OEBPS/Images/image00797.png

OEBPS/Images/image00798.png

OEBPS/Images/image00796.png

OEBPS/Images/image00702.png

OEBPS/Images/image00703.png

OEBPS/Images/image00700.png

OEBPS/Images/image00701.png

OEBPS/Images/image02576.png

OEBPS/Images/image02575.png

OEBPS/Images/image03906.png

OEBPS/Images/image00704.png

OEBPS/Images/image02574.png

OEBPS/Images/image03905.png

OEBPS/Images/image00705.png

OEBPS/Images/image02573.png

OEBPS/Images/image03904.png

OEBPS/Images/image02572.png

OEBPS/Images/image03903.png

OEBPS/Images/image02571.png

OEBPS/Images/image03902.png

OEBPS/Images/image02570.png

OEBPS/Images/image03901.png

OEBPS/Images/image02569.png

OEBPS/Images/image03900.png

OEBPS/Images/image02568.png

OEBPS/Images/image03899.png

OEBPS/Images/image02567.png

OEBPS/Images/image03898.png

OEBPS/Images/image03897.png

OEBPS/Images/image00706.png

OEBPS/Images/image00709.png

OEBPS/Images/image00710.png

OEBPS/Images/image00707.png

OEBPS/Images/image00708.png

OEBPS/Images/image00691.png

OEBPS/Images/image00692.png

OEBPS/Images/image00689.png

OEBPS/Images/image00690.png

OEBPS/Images/image00695.png

OEBPS/Images/image02586.png

OEBPS/Images/image00693.png

OEBPS/Images/image02585.png

OEBPS/Images/image03916.png

OEBPS/Images/image00694.png

OEBPS/Images/image02584.png

OEBPS/Images/image03915.png

OEBPS/Images/image02583.png

OEBPS/Images/image03914.png

OEBPS/Images/image02582.jpeg

OEBPS/Images/image03913.png

OEBPS/Images/image02581.png

OEBPS/Images/image03912.png

OEBPS/Images/image02580.png

OEBPS/Images/image03911.png
Datensatz Bearbeten Suchen Hife

[} Kld4|» | M| &

Anvede

Vorname [odysseus

Nachname.

Strasse

PLz

ot

Stast

Telefan

EMal [odysseus@nades org

OEBPS/Images/image02579.png

OEBPS/Images/image03910.png

OEBPS/Images/image02578.jpeg
@

OEBPS/Images/image03909.png

OEBPS/Images/image02577.png

OEBPS/Images/image03908.png

OEBPS/Images/image03907.png

OEBPS/Images/image00698.png

OEBPS/Images/image00699.png

OEBPS/Images/image00696.png

OEBPS/Images/image00697.png

OEBPS/Images/image00724.png

OEBPS/Images/image00725.png

OEBPS/Images/image00722.png

OEBPS/Images/image00723.png

OEBPS/Images/image02596.png

OEBPS/Images/image02595.png

OEBPS/Images/image03926.png

OEBPS/Images/image02594.png

OEBPS/Images/image03925.png

OEBPS/Images/image02593.png

OEBPS/Images/image03924.png

OEBPS/Images/image02592.png

OEBPS/Images/image03923.png

OEBPS/Images/image02591.png

OEBPS/Images/image03922.png

OEBPS/Images/image02590.png

OEBPS/Images/image03921.png

OEBPS/Images/image02589.png

OEBPS/Images/image03920.png

OEBPS/Images/image02588.png

OEBPS/Images/image03919.png

OEBPS/Images/image02587.png

OEBPS/Images/image03918.png

OEBPS/Images/image03917.png

OEBPS/Images/image00727.png

OEBPS/Images/image00728.png

OEBPS/Images/image00726.png

OEBPS/Images/image00731.png

OEBPS/Images/image00732.png

OEBPS/Images/image00729.png

OEBPS/Images/image00730.png

OEBPS/Images/image00713.png

OEBPS/Images/image00714.png

OEBPS/Images/image00711.png

OEBPS/Images/image00712.png

OEBPS/Images/image00715.png

OEBPS/Images/image02606.png

OEBPS/Images/image02605.png

OEBPS/Images/image03936.png

OEBPS/Images/image02604.png

OEBPS/Images/image03935.png

OEBPS/Images/image02603.png

OEBPS/Images/image03934.png

OEBPS/Images/image02602.png

OEBPS/Images/image03933.png

OEBPS/Images/image02601.png

OEBPS/Images/image03932.png

OEBPS/Images/image02600.png

OEBPS/Images/image03931.png

OEBPS/Images/image02599.png

OEBPS/Images/image03930.jpeg
6006 @ Xenias Gastebuch (=}

2 > ©
Zurick_Vorwarts_AbbrechenAktualisieren Startseite

Adresses [T TIORE T Ry IRS | Explorer.

Xenias Gadstebuch

Meine Gaste:

Orpheus orpheus@hades.org Wo ist Burydike?

Burydike eurydikeGhades.org Hier!
Odysseus odysseus@hades.org Wo ist Penelope?
Penelope penelope@hades.org Auch hier!

Hades hades@hades.org. Willkommen zu Hause!

ot mashing zone

OEBPS/Images/image02598.png

OEBPS/Images/image03929.png

OEBPS/Images/image02597.jpeg
‘(l. \ (i. (.
|

‘ ‘{'m.
(.‘ ‘

OEBPS/Images/image03928.png

OEBPS/Images/image03927.png

OEBPS/Images/image00716.png

OEBPS/Images/image00717.png

OEBPS/Images/image00720.png

OEBPS/Images/image00721.png

OEBPS/Images/image00718.png

OEBPS/Images/image00719.png

OEBPS/Images/image00744.png

OEBPS/Images/image00745.png

OEBPS/Images/image02616.png

OEBPS/Images/image02615.png

OEBPS/Images/image03946.png

OEBPS/Images/image02614.png

OEBPS/Images/image03945.png

OEBPS/Images/image02613.png

OEBPS/Images/image03944.png

OEBPS/Images/image02612.png

OEBPS/Images/image03943.png

OEBPS/Images/image02611.png

OEBPS/Images/image03942.png

OEBPS/Images/image02610.png

OEBPS/Images/image03941.png

OEBPS/Images/image02609.png

OEBPS/Images/image03940.png

OEBPS/Images/image02608.png

OEBPS/Images/image03939.png

OEBPS/Images/image02607.png

OEBPS/Images/image03938.png

OEBPS/Images/image03937.png

OEBPS/Images/image00746.png

OEBPS/Images/image00749.png

OEBPS/Images/image00750.jpeg
O € Card Test

Fixieren Umdrehen

© 0O steppan.app.memory.CardTest
(nfo) ¢ st > (stop) (TBeenden)

OEBPS/Images/image00747.png

OEBPS/Images/image00748.png

OEBPS/Images/image00753.png

OEBPS/Images/image00754.png

OEBPS/Images/image00751.png

OEBPS/Images/image00752.png

OEBPS/Images/image00735.png

OEBPS/Images/image00733.png

OEBPS/Images/image00734.png

OEBPS/Images/image02626.png

OEBPS/Images/image02625.png

OEBPS/Images/image03956.png
@ steppan.app polyaraph
B main
& Appiava
& model
& wodeljaa
B

£ AboutDigjava
AppWnd java
BarChartjava
Chartviewjava
Legendjava
ListViewjava

PieChartjava

CEEEeee

OEBPS/Images/image02624.png

OEBPS/Images/image03955.png

OEBPS/Images/image02623.png

OEBPS/Images/image03954.png

OEBPS/Images/image02622.png

OEBPS/Images/image03953.png

OEBPS/Images/image02621.png

OEBPS/Images/image03952.png

OEBPS/Images/image02620.png

OEBPS/Images/image03951.png

OEBPS/Images/image02619.png

OEBPS/Images/image03950.png

OEBPS/Images/image02618.png

OEBPS/Images/image03949.png

OEBPS/Images/image02617.png

OEBPS/Images/image03948.png

OEBPS/Images/image03947.png

OEBPS/Images/image00738.png

OEBPS/Images/image00739.png

OEBPS/Images/image00736.png

OEBPS/Images/image00737.png

OEBPS/Images/image00742.png

OEBPS/Images/image00743.png

OEBPS/Images/image00740.png

OEBPS/Images/image00741.png

OEBPS/Images/image02636.png

OEBPS/Images/image02635.png

OEBPS/Images/image03966.png

OEBPS/Images/image02634.png

OEBPS/Images/image03965.png

OEBPS/Images/image02633.png

OEBPS/Images/image03964.png

OEBPS/Images/image02632.png

OEBPS/Images/image03963.png

OEBPS/Images/image02631.png

OEBPS/Images/image03962.png

OEBPS/Images/image02630.png

OEBPS/Images/image03961.png

OEBPS/Images/image02629.png

OEBPS/Images/image03960.png

OEBPS/Images/image02628.png

OEBPS/Images/image03959.png

OEBPS/Images/image02627.png

OEBPS/Images/image03958.png

OEBPS/Images/image03957.png

OEBPS/Images/image00755.png

OEBPS/Images/image02646.png

OEBPS/Images/image02645.png

OEBPS/Images/image02644.png

OEBPS/Images/image02643.png

OEBPS/Images/image02642.png

OEBPS/Images/image02641.png

OEBPS/Images/image02640.png

OEBPS/Images/image02639.png

OEBPS/Images/image02638.png

OEBPS/Images/image00756.png

OEBPS/Images/image02637.png

OEBPS/Images/image00757.png

OEBPS/Images/image00760.png

OEBPS/Images/image00761.png

OEBPS/Images/image00758.png

OEBPS/Images/image00759.png

OEBPS/Images/image00764.png

OEBPS/Images/image00765.png

OEBPS/Images/image00762.png

OEBPS/Images/image00763.png

OEBPS/Images/image02656.png

OEBPS/Images/image02655.png

OEBPS/Images/image02654.png

OEBPS/Images/image02653.png

OEBPS/Images/image02652.png

OEBPS/Images/image02651.png

OEBPS/Images/image02650.png

OEBPS/Images/image02649.png

OEBPS/Images/image02648.png

OEBPS/Images/image02647.png

OEBPS/Images/image02666.png

OEBPS/Images/image02665.png

OEBPS/Images/image02664.png

OEBPS/Images/image02663.png

OEBPS/Images/image02662.png
j04d AIW

OEBPS/Images/image02661.png

OEBPS/Images/image02660.png

OEBPS/Images/image02659.png

OEBPS/Images/image02658.png

OEBPS/Images/image02657.png

OEBPS/Images/image03372.png

OEBPS/Images/image03371.png

OEBPS/Images/image03370.png

OEBPS/Images/image03369.png

OEBPS/Images/image03368.png

OEBPS/Images/image03367.png

OEBPS/Images/image03383.png

OEBPS/Images/image03382.png

OEBPS/Images/image03381.png

OEBPS/Images/image03380.png

OEBPS/Images/image03379.png

OEBPS/Images/image03378.png

OEBPS/Images/image03377.png

OEBPS/Images/image03376.png

OEBPS/Images/image03375.png

OEBPS/Images/image03374.png

OEBPS/Images/image03373.png

OEBPS/Images/image03394.png

OEBPS/Images/image03393.png

OEBPS/Images/image03392.png

OEBPS/Images/image03391.png

OEBPS/Images/image03390.png

OEBPS/Images/image03389.png

OEBPS/Images/image03388.png

OEBPS/Images/image03387.png

OEBPS/Images/image03386.png

OEBPS/Images/image03385.png

OEBPS/Images/image03384.png

OEBPS/Images/image02073.png

OEBPS/Images/image03405.png

OEBPS/Images/image02074.png

OEBPS/Images/image03404.png

OEBPS/Images/image02071.png

OEBPS/Images/image03403.png

OEBPS/Images/image02072.png

OEBPS/Images/image03402.png

OEBPS/Images/image02069.png

OEBPS/Images/image03401.png

OEBPS/Images/image02070.png

OEBPS/Images/image03400.png
Bernhard Steppan

> Eine umfassende und professionelle Einfiihrung
> Mit vielen Beispielen und kommentierten Losungen
» Programmierung von GUIs, Datenbanken, dynamischen

Websites u.v.m.
Galileo Compi

OEBPS/Images/image02067.png

OEBPS/Images/image03399.png

OEBPS/Images/image02068.png

OEBPS/Images/image03398.png

OEBPS/Images/image03397.png

OEBPS/Images/image03396.png

OEBPS/Images/image03395.png

OEBPS/Images/image02084.png

OEBPS/Images/image03416.png

OEBPS/Images/image02085.png

OEBPS/Images/image03415.png

OEBPS/Images/image02082.png

OEBPS/Images/image03414.png

OEBPS/Images/image02083.png

OEBPS/Images/image03413.png

OEBPS/Images/image02080.png

OEBPS/Images/image03412.png

OEBPS/Images/image02081.png

OEBPS/Images/image03411.png

OEBPS/Images/image02078.png

OEBPS/Images/image03410.png

OEBPS/Images/image02079.png

OEBPS/Images/image03409.png

OEBPS/Images/image03408.png

OEBPS/Images/image02077.png

OEBPS/Images/image03407.png

OEBPS/Images/image02075.png

OEBPS/Images/image02076.png

OEBPS/Images/image03406.png

OEBPS/Images/image02095.png

OEBPS/Images/image02096.png

OEBPS/Images/image03426.png

OEBPS/Images/image02093.png

OEBPS/Images/image03425.png

OEBPS/Images/image02094.png

OEBPS/Images/image03424.png

OEBPS/Images/image02091.png

OEBPS/Images/image03423.png

OEBPS/Images/image02092.png

OEBPS/Images/image03422.png

OEBPS/Images/image02089.png

OEBPS/Images/image03421.png

OEBPS/Images/image02090.png

OEBPS/Images/image03420.png

OEBPS/Images/image02087.png

OEBPS/Images/image03419.png

OEBPS/Images/image02088.png

OEBPS/Images/image03418.png

OEBPS/Images/image03417.png

OEBPS/Images/image02086.png

OEBPS/Images/image02106.png

OEBPS/Images/image02104.png

OEBPS/Images/image03436.png

OEBPS/Images/image02105.png

OEBPS/Images/image03435.png

OEBPS/Images/image02102.png

OEBPS/Images/image03434.png

OEBPS/Images/image02103.png

OEBPS/Images/image03433.png

OEBPS/Images/image02100.png

OEBPS/Images/image03432.png

OEBPS/Images/image02101.png

OEBPS/Images/image03431.png

OEBPS/Images/image02098.png

OEBPS/Images/image03430.png

OEBPS/Images/image02099.png

OEBPS/Images/image03429.png

OEBPS/Images/image03428.png

OEBPS/Images/image02097.png

OEBPS/Images/image03427.png

OEBPS/Images/image02115.png

OEBPS/Images/image02116.png

OEBPS/Images/image03446.png

OEBPS/Images/image02113.png

OEBPS/Images/image03445.png

OEBPS/Images/image02114.png

OEBPS/Images/image03444.png

OEBPS/Images/image02111.png

OEBPS/Images/image03443.png

OEBPS/Images/image02112.png

OEBPS/Images/image03442.png

OEBPS/Images/image02109.png

OEBPS/Images/image03441.png

OEBPS/Images/image02110.png

OEBPS/Images/image03440.png

OEBPS/Images/image02107.png

OEBPS/Images/image03439.png

OEBPS/Images/image02108.png

OEBPS/Images/image03438.png

OEBPS/Images/image03437.png

OEBPS/Images/image02126.png

OEBPS/Images/image02124.png

OEBPS/Images/image03456.png

OEBPS/Images/image02125.png

OEBPS/Images/image03455.png

OEBPS/Images/image02122.png

OEBPS/Images/image03454.png

OEBPS/Images/image02123.png

OEBPS/Images/image03453.png

OEBPS/Images/image02120.png

OEBPS/Images/image03452.png

OEBPS/Images/image02121.png

OEBPS/Images/image03451.png

OEBPS/Images/image02118.png

OEBPS/Images/image03450.png

OEBPS/Images/image02119.png

OEBPS/Images/image03449.jpeg
e

— @ 0O Info aber Memory
Memory
@ Version 1.0
_BE | Copyright (¢) 2003 by

Bernhard Steppan

E Freier Speicher: 273 Keyte ﬂ

o B

OEBPS/Images/image03448.png

OEBPS/Images/image02117.png

OEBPS/Images/image03447.png

OEBPS/Images/image02135.png

OEBPS/Images/image02136.png

OEBPS/Images/image03466.png

OEBPS/Images/image02133.png

OEBPS/Images/image03465.png

OEBPS/Images/image02134.png

OEBPS/Images/image03464.png

OEBPS/Images/image02131.png

OEBPS/Images/image03463.png

OEBPS/Images/image02132.png

OEBPS/Images/image03462.png

OEBPS/Images/image02129.png

OEBPS/Images/image03461.png

OEBPS/Images/image02130.png

OEBPS/Images/image03460.png

OEBPS/Images/image02127.png

OEBPS/Images/image03459.png

OEBPS/Images/image02128.png

OEBPS/Images/image03458.png

OEBPS/Images/image03457.png

OEBPS/Images/image02146.png

OEBPS/Images/image02144.png

OEBPS/Images/image02145.png

OEBPS/Images/image02142.png

OEBPS/Images/image02143.png

OEBPS/Images/image02140.png

OEBPS/Images/image02141.jpeg
ene New Java Project

Create a Java project
Create a Java project n the workspace or in an external location.

Project name: [Transfer

Contents

O Create new project in workspace

@ Create project from existing source

Directory: |/Users /bsteppan/Einstieginjava/ Examples /ch 10/ transfer Browse...

.3

=) Use default JRE (Currently JVM 1.5.0 (acOS X Default)) Configure REs.

) Use a projec specific JRE:

) Use an execution environment JRE:

Project layout

Use project folder as root for sources and class files

3 Create separate folders for sources and class files Configure defau

Working sets.

) Add project to working sets

Working sets:) (Cselea)

‘The wizard will automatically configure the JRE and the project layout based on the existing

@i/

OEBPS/Images/image02138.png

OEBPS/Images/image02139.png

OEBPS/Images/image02137.png

OEBPS/Images/image02155.png

OEBPS/Images/image02156.png

OEBPS/Images/image02153.png

OEBPS/Images/image02154.png

OEBPS/Images/image02151.png

OEBPS/Images/image02152.png

OEBPS/Images/image02149.png

OEBPS/Images/image02150.png

OEBPS/Images/image02147.png

OEBPS/Images/image02148.png

OEBPS/Images/image02166.png

OEBPS/Images/image02164.png

OEBPS/Images/image02165.png

OEBPS/Images/image02162.png

OEBPS/Images/image02163.png

OEBPS/Images/image02160.png

OEBPS/Images/image02161.png

OEBPS/Images/image02158.png

OEBPS/Images/image02159.png

OEBPS/Images/image02157.png

OEBPS/Images/image00666.png

OEBPS/Images/image03876.png

OEBPS/Images/image03875.png
public class PieChart extends JComponent {
private int x;
private int y;
private int width;
private int heigth;
private Color
private Hodel

public PieChart (todel model) {
model;

)

public synchronized void paint(Graphics g) {
int sum = 0;
int startangle = 0;
int textPosX = x + width + 10; // Offsec

the model

OEBPS/Images/image03874.png

OEBPS/Images/image03873.png

OEBPS/Images/image03872.png

OEBPS/Images/image03871.png

OEBPS/Images/image03870.png

OEBPS/Images/image03869.png

OEBPS/Images/image03868.png

OEBPS/Images/image03867.png

OEBPS/Images/image00680.png

OEBPS/Images/image00681.png

OEBPS/Images/image00678.png

OEBPS/Images/image00679.png

OEBPS/Images/image03886.png

OEBPS/Images/image00684.png

OEBPS/Images/image03885.png

OEBPS/Images/image00685.png

OEBPS/Images/image03884.png

OEBPS/Images/image00682.png
uperscnrirc 5

OEBPS/Images/image03883.png

OEBPS/Images/image00683.png

OEBPS/Images/image03882.png
[Java

(3] DiectogPrijava
(3] LicencePrliava
(3] WelcomePrliava
(3] WizaDigiava
[E) view.dPackage
vew dPackage.smf

e
& desteppan

& deseppanamp

G desteppanappitex

) defs dPackage

{3 D\Prects\eAdig\iridi
& bk

& doc

=

[appwndiava X

b

This setJHenuBar(rteslinb), / Henu bar

rtexlinb.add(fileMnu): /7 1st lemu
rtexlinb add(vizardlinn); </ 2nd lenu
rtexlinb add(helpnu); // 3rd Hemu

filelinu.setText ("File"):
filelnn add(exithni)
wizardiinu_setText ("fizard");
wizardiinu_add (vizardiini) ;
helplinu.setText ("Help')
helplinu_add(aboutini)

/7 1st menu_item
exitlini setText ("Exit"):
exitlini addhctionlistener(new Actionlistener() {
public void actionPerforned(ActionEvent o) {
endExit(2)

b
i
/7 2nd menu item
wizardiini setText ("Fizard Dialog"):
wizardiini addictionlistener(new java.awt event Actionlistener()

public void acticnPerforned(AotionEvent s) {
shovilizardDlg(e)

b
i
/7 3rd menu item
aboutlini . setText ("About”) :
aboutlni addictionListensr(new ActionListener() {
public void acticnPerforned(hctionEvent s) {
shovhboutDlg(e) :

b
i

sxxFile|Exites
public void cadExit(ActionEvent =) {

1

Systen.exit(D):

feppan 3pp ek view
1t declaations
nd
conteniPri: JPanel
tesbinb : IMeruBar
fleru: JMenu
wizardhiru : Menu
helphr: JMenu
exibii: IMerutem
wizardhri: Merultem
abauthri: Menulem
bordetLay Borderlayout
Appwr)
bl
emdE sihctionk vent)
showabouDlglActonE vert)
processWindowE veri(windowE vert)

OEBPS/Images/image03881.png

OEBPS/Images/image03880.png

OEBPS/Images/image03879.png

OEBPS/Images/image03878.png

OEBPS/Images/image03877.png

OEBPS/Images/image00687.png

OEBPS/Images/image00688.png

OEBPS/Images/image00686.png

OEBPS/Images/image00669.png

OEBPS/Images/image00670.png

OEBPS/Images/image00667.png

OEBPS/Images/image00668.png

OEBPS/Images/image00673.png

OEBPS/Images/image03896.png

OEBPS/Images/image00674.png

OEBPS/Images/image03895.png

OEBPS/Images/image00671.png

OEBPS/Images/image03894.png

OEBPS/Images/image00672.png

OEBPS/Images/image03893.png

OEBPS/Images/image03892.png

OEBPS/Images/image03891.png

OEBPS/Images/image00675.png

OEBPS/Images/image03890.png

OEBPS/Images/image03889.png

OEBPS/Images/image03888.png

OEBPS/Images/image03887.png

OEBPS/Images/image00676.png

OEBPS/Images/image00677.png

OEBPS/Images/image00581.png

OEBPS/Images/image00582.png

OEBPS/Images/image00579.png

OEBPS/Images/image00580.png

OEBPS/Images/image00585.png

OEBPS/Images/image00583.png

OEBPS/Images/image01605.png

OEBPS/Images/image00584.png

OEBPS/Images/image01606.png

OEBPS/Images/image02936.png

OEBPS/Images/image01603.png

OEBPS/Images/image02935.png

OEBPS/Images/image04266.png

OEBPS/Images/image01604.png

OEBPS/Images/image02934.png

OEBPS/Images/image04265.png

OEBPS/Images/image01601.png

OEBPS/Images/image02933.png

OEBPS/Images/image04264.png

OEBPS/Images/image01602.png

OEBPS/Images/image02932.png

OEBPS/Images/image04263.png

OEBPS/Images/image01599.png

OEBPS/Images/image02931.png

OEBPS/Images/image04262.png

OEBPS/Images/image01600.png

OEBPS/Images/image02930.png

OEBPS/Images/image04261.png

OEBPS/Images/image01597.png

OEBPS/Images/image02929.png

OEBPS/Images/image04260.png

OEBPS/Images/image01598.png

OEBPS/Images/image02928.png

OEBPS/Images/image04259.png

OEBPS/Images/image02927.png

OEBPS/Images/image04258.png

OEBPS/Images/image04257.png

OEBPS/Images/image00588.png

OEBPS/Images/image00589.png

OEBPS/Images/image00586.png

OEBPS/Images/image00587.png

OEBPS/Images/image00570.png

OEBPS/Images/image00571.png

OEBPS/Images/image00568.png

OEBPS/Images/image00569.png

OEBPS/Images/image00574.png

OEBPS/Images/image00575.png

OEBPS/Images/image00572.png

OEBPS/Images/image01616.png

OEBPS/Images/image00573.png

OEBPS/Images/image01614.png

OEBPS/Images/image02946.png

OEBPS/Images/image01615.png

OEBPS/Images/image02945.png

OEBPS/Images/image01612.png

OEBPS/Images/image02944.png

OEBPS/Images/image01613.png

OEBPS/Images/image02943.png

OEBPS/Images/image01610.png

OEBPS/Images/image02942.png

OEBPS/Images/image01611.png

OEBPS/Images/image02941.png

OEBPS/Images/image01608.jpeg

OEBPS/Images/image02940.png

OEBPS/Images/image01609.png

OEBPS/Images/image02939.png

OEBPS/Images/image02938.png

OEBPS/Images/image01607.png

OEBPS/Images/image02937.png

OEBPS/Images/image00577.png

OEBPS/Images/image00578.png

OEBPS/Images/image00576.png

OEBPS/Images/image00603.png

OEBPS/Images/image00604.png

OEBPS/Images/image00601.png

OEBPS/Images/image00602.png

OEBPS/Images/image00605.png

OEBPS/Images/image01625.png

OEBPS/Images/image01626.png

OEBPS/Images/image02956.png

OEBPS/Images/image01623.jpeg
8086

New Java Project with Existing Sources

Steps

L. Choose Project

=

ing Sources

2. Name and Loc
3. Existing Sources

Specify the folders containing the source packages and JUnit

Source Package Folders:

[Projekte Java/java.primer.book/ch04 /ex01/src

Test Package Folders:

Help) ((<Back) (Next>

Ecinisk

OEBPS/Images/image02955.png

OEBPS/Images/image01624.png
Javan2 Platiorm
Std_Ed.v13.1

SUMMARY: WAGR | EL0 | COUSTE | METHOD. OFTAL: L0 | CONSTR | METHOD

java.lang
Class Thread

java.lang.Object
|

+--java.lang. Thread

All Implemented Interfaces:
Runnable

public class Thread
extends Object
implements Runnable

A thread is a thread of exceution in a program. The Java Virtual Machine allows an application to have multiple threads of exceution
running concurrently.

Every thread has a priority. Threads with higher priority are executed in preference to threads with lower priority. Each thread may or
may not also be marked as a dacmon. When code running in some thread creates a new Thread object, the new thread has it priority
initially set equal to the priority of the creating thread, and is a dacmon thread ifand only if the creating thread is a daemon.

When a Java Virtual Machine starts up, there s usually a single non-dacmon thread (which typically calls the method named main of
some designated class). The Java Virtual Machine continues to exccute threads until cither of the following occurs:

* The exit method of class Runtime has been called and the sccurity manager has permitted the exit operation to take place
* Al threads thatare not dacmon threads have died, cither by retuming from the callto the Fun method or by throwing an
exception that propagates beyond the Fun method.

There are two ways to create a new thread of execution. One is to declare a class to be a subclass of Thread. This subclass should
overide the run method of class Thrread. An instance of the subclass can then be allocated and started. For example, a thread that
computes primes larger than a stated value could be wrtten as follows:

OEBPS/Images/image02954.png

OEBPS/Images/image01621.png

OEBPS/Images/image02953.png

OEBPS/Images/image01622.png

OEBPS/Images/image02952.png

OEBPS/Images/image01619.png

OEBPS/Images/image02951.png

OEBPS/Images/image01620.png

OEBPS/Images/image02950.png

OEBPS/Images/image01617.png

OEBPS/Images/image02949.png

OEBPS/Images/image01618.png

OEBPS/Images/image02948.png

OEBPS/Images/image02947.png

OEBPS/Images/image00606.png

OEBPS/Images/image00607.png

OEBPS/Images/image00610.png

OEBPS/Images/image00611.png

OEBPS/Images/image00608.png

OEBPS/Images/image00609.png

OEBPS/Images/image00592.png

OEBPS/Images/image00593.png

OEBPS/Images/image00590.png

OEBPS/Images/image00591.png

OEBPS/Images/image00594.png

OEBPS/Images/image00595.png

OEBPS/Images/image01636.png

OEBPS/Images/image01634.png

OEBPS/Images/image02966.png

OEBPS/Images/image01635.png

OEBPS/Images/image02965.png

OEBPS/Images/image01632.png

OEBPS/Images/image02964.png

OEBPS/Images/image01633.png

OEBPS/Images/image02963.png

OEBPS/Images/image01630.png

OEBPS/Images/image02962.png

OEBPS/Images/image01631.png

OEBPS/Images/image02961.png

OEBPS/Images/image01628.png

OEBPS/Images/image02960.png

OEBPS/Images/image01629.png

OEBPS/Images/image02959.png

OEBPS/Images/image02958.png

OEBPS/Images/image01627.jpeg

OEBPS/Images/image02957.png

OEBPS/Images/image00596.png

OEBPS/Images/image00599.png

OEBPS/Images/image00600.png

OEBPS/Images/image00597.png

OEBPS/Images/image00598.png

OEBPS/Images/image00625.png

OEBPS/Images/image00623.png

OEBPS/Images/image00624.png

OEBPS/Images/image01645.png

OEBPS/Images/image01646.png

OEBPS/Images/image01643.png

OEBPS/Images/image01644.png

OEBPS/Images/image01641.png

OEBPS/Images/image01642.png

OEBPS/Images/image01639.png

OEBPS/Images/image01640.png

OEBPS/Images/image01637.png

OEBPS/Images/image01638.png

OEBPS/Images/image00628.png

OEBPS/Images/image00629.png

OEBPS/Images/image00626.png

OEBPS/Images/image00627.png

OEBPS/Images/image00632.png

OEBPS/Images/image00633.png

OEBPS/Images/image00630.png

OEBPS/Images/image00631.png

OEBPS/Images/image00614.png

OEBPS/Images/image00615.png

OEBPS/Images/image00612.png

OEBPS/Images/image00613.png

OEBPS/Images/image01656.png

OEBPS/Images/image01654.png

OEBPS/Images/image01655.png
®]
®]
®]

@© Xenias Gastebuch [=)
Adresse: [GY Ty y Y Explorer

Xenias Gadstebuch

Sie wurden in mein Gastebuch eingetragen.

Hades, vielen Dank fur Inren Besuch!

B Loca mashine zome

OEBPS/Images/image01652.png

OEBPS/Images/image01653.png

OEBPS/Images/image01650.png

OEBPS/Images/image01651.png

OEBPS/Images/image01648.png

OEBPS/Images/image01649.png

OEBPS/Images/image01647.png

OEBPS/Images/image00617.png

OEBPS/Images/image00618.png

OEBPS/Images/image00616.png

OEBPS/Images/image00621.png

OEBPS/Images/image00622.png

OEBPS/Images/image00619.png

OEBPS/Images/image00620.png

OEBPS/Images/image00645.png

OEBPS/Images/image01665.png

OEBPS/Images/image01666.png

OEBPS/Images/image01663.png

OEBPS/Images/image01664.png

OEBPS/Images/image01661.png

OEBPS/Images/image01662.png

OEBPS/Images/image01659.png

OEBPS/Images/image01660.png

OEBPS/Images/image00646.png

OEBPS/Images/image01657.png

OEBPS/Images/image00647.png

OEBPS/Images/image01658.png

OEBPS/Images/image00650.png

OEBPS/Images/image00651.png
Datensatz Bearbetten Suchen Hife

OEBPS/Images/image00648.png

OEBPS/Images/image00649.png

OEBPS/Images/image00654.png

OEBPS/Images/image00655.png

OEBPS/Images/image00652.png

OEBPS/Images/image00653.png

OEBPS/Images/image00634.png

OEBPS/Images/image00635.png

OEBPS/Images/image00636.png

OEBPS/Images/image00639.png

OEBPS/Images/image00640.png

OEBPS/Images/image00637.png

OEBPS/Images/image00638.png

OEBPS/Images/image00643.png

OEBPS/Images/image00644.png

OEBPS/Images/image00641.png

OEBPS/Images/image00642.png

OEBPS/Images/image00657.png

OEBPS/Images/image00658.png

OEBPS/Images/image00656.png

OEBPS/Images/image00661.png

OEBPS/Images/image00662.png

OEBPS/Images/image00659.png

OEBPS/Images/image00660.png

OEBPS/Images/image00665.png

OEBPS/Images/image00663.png

OEBPS/Images/image00664.png

OEBPS/Images/image02403.png

OEBPS/Images/image02404.png

OEBPS/Images/image02401.png

OEBPS/Images/image02402.png

OEBPS/Images/image01378.png

OEBPS/Images/image02399.png
00 @ Xenias Gastebuch [=}
- 3 - @

Zurlick _ Vorwarts Abbrechen Aktualisieren Startseite

TV hitp/ ooatnoet 5080 zerviet teppan sppsania ewbuest | D Sl

Xenias Gadstebuch

Sie wurden in mein Gastebuch eingetragen.

Vielen Dank fir Inren Besuch!

oot e zone

OEBPS/Images/image01379.png

OEBPS/Images/image02400.png

OEBPS/Images/image02397.png

OEBPS/Images/image01377.png

OEBPS/Images/image02398.png

OEBPS/Images/image01382.png

OEBPS/Images/image01383.png

OEBPS/Images/image01380.png

OEBPS/Images/image01381.png

OEBPS/Images/image01386.png

OEBPS/Images/image01384.png

OEBPS/Images/image01385.png

OEBPS/Images/image02396.png

OEBPS/Images/image02394.png

OEBPS/Images/image02395.png

OEBPS/Images/image02414.png

OEBPS/Images/image02415.png

OEBPS/Images/image02412.jpeg
ene New Project

Steps Choose Project

1. Choose Project Categories: Projects:

2 [General & Java Application
3 web & Java Class Library
[ER= % Java Project with Existing
[Netseans Plug-in Modules Java Project with Existing

» [samples
Descriptior

Imports an existing Java application into a standard IDE proj
application can have multiple source folders. Standard projects
IDE-generated Ant build script to build, run, and debug your,

Chelp) (<iack) @NERED)

inish}

OEBPS/Images/image02413.png

OEBPS/Images/image01367.png

OEBPS/Images/image02410.png

OEBPS/Images/image01368.png

OEBPS/Images/image02411.png

OEBPS/Images/image02408.png

OEBPS/Images/image02409.png

OEBPS/Images/image01371.png

OEBPS/Images/image01372.png

OEBPS/Images/image02407.png

OEBPS/Images/image01369.jpeg

OEBPS/Images/image01370.png

OEBPS/Images/image01375.png

OEBPS/Images/image01376.png

OEBPS/Images/image01373.png

OEBPS/Images/image01374.png

OEBPS/Images/image02405.png

OEBPS/Images/image02406.png

OEBPS/Images/image02425.png

OEBPS/Images/image01397.png

OEBPS/Images/image02426.png

OEBPS/Images/image02423.png

OEBPS/Images/image02424.png

OEBPS/Images/image01400.png

OEBPS/Images/image02421.png

OEBPS/Images/image01401.png

OEBPS/Images/image02422.png

OEBPS/Images/image01398.png

OEBPS/Images/image02419.jpeg
8006 @ Xenias Géstebuch =}
«© -4 = e
Zurick Vorwars Abbrechen Aktualieren Startseite - Auto-Ausfllen Drucken _E-Mail

PRITE it/ ocaihost 5030, vt/ <teppan.spp xenis Newbuest Explorer

Xenias Giastebuch

Bitte die leeren Felder ausfillen

Vorname
Fades

5-Mail-Adresse
hades@nhades org

Komnentar
[Wilkommen zu Hausel

Senden

Looat mshine zone

OEBPS/Images/image01399.png

OEBPS/Images/image02420.png

OEBPS/Images/image01404.png

OEBPS/Images/image02417.png

OEBPS/Images/image01405.png

OEBPS/Images/image02418.png

OEBPS/Images/image01402.png

OEBPS/Images/image01403.png

OEBPS/Images/image01406.png

OEBPS/Images/image02416.png

OEBPS/Images/image02436.png

OEBPS/Images/image02434.png

OEBPS/Images/image02435.png

OEBPS/Images/image01389.png

OEBPS/Images/image02432.png

OEBPS/Images/image01390.png

OEBPS/Images/image02433.png

OEBPS/Images/image01387.png

OEBPS/Images/image02430.png

OEBPS/Images/image01388.png

OEBPS/Images/image02431.png

OEBPS/Images/image01393.png

OEBPS/Images/image02428.png

OEBPS/Images/image01394.png

OEBPS/Images/image02429.png

OEBPS/Images/image01391.png

OEBPS/Images/image01392.png

OEBPS/Images/image02427.png

OEBPS/Images/image01395.png

OEBPS/Images/image01396.png

OEBPS/Images/image01418.png

OEBPS/Images/image01419.png

OEBPS/Images/image02445.png

OEBPS/Images/image01417.jpeg
eoo s

Slal Ve

OEBPS/Images/image02446.png

OEBPS/Images/image01422.png

OEBPS/Images/image02443.png

OEBPS/Images/image01423.png

OEBPS/Images/image02444.png

OEBPS/Images/image01420.png

OEBPS/Images/image02441.png

OEBPS/Images/image01421.png

OEBPS/Images/image02442.png

OEBPS/Images/image01426.png
Datensatz Bearbeten Suchen Hife

[} Kld4|» | M| &

Anvede

Vorname [odysseus

Nachname.

Strasse

PLz

ot

Stast

Telefan

EMal [odysseus@nades org

OEBPS/Images/image02439.png

OEBPS/Images/image02440.png

OEBPS/Images/image01424.png

OEBPS/Images/image02437.png

OEBPS/Images/image01425.png

OEBPS/Images/image02438.png

OEBPS/Images/image01407.png

OEBPS/Images/image01408.png

OEBPS/Images/image02456.png

OEBPS/Images/image01411.png

OEBPS/Images/image02454.png

OEBPS/Images/image01412.png

OEBPS/Images/image02455.png

OEBPS/Images/image01409.png

OEBPS/Images/image02452.png

OEBPS/Images/image01410.png

OEBPS/Images/image02453.png

OEBPS/Images/image01415.png

OEBPS/Images/image02450.png

OEBPS/Images/image01416.png

OEBPS/Images/image02451.png

OEBPS/Images/image01413.png

OEBPS/Images/image02448.png

OEBPS/Images/image01414.png

OEBPS/Images/image02449.png

OEBPS/Images/image02447.png

OEBPS/Images/image01440.png

OEBPS/Images/image01441.png

OEBPS/Images/image01438.png

OEBPS/Images/image01439.png

OEBPS/Images/image01444.png

OEBPS/Images/image02465.png

OEBPS/Images/image01445.png

OEBPS/Images/image02466.png

OEBPS/Images/image01442.png

OEBPS/Images/image02463.png

OEBPS/Images/image01443.png

OEBPS/Images/image02464.png

OEBPS/Images/image02461.png

OEBPS/Images/image02462.png

OEBPS/Images/image01446.png

OEBPS/Images/image02459.png

OEBPS/Images/image02460.png

OEBPS/Images/image02457.png

OEBPS/Images/image02458.png

OEBPS/Images/image01447.png

OEBPS/Images/image01448.png

OEBPS/Images/image01429.png

OEBPS/Images/image04175.png

OEBPS/Images/image01430.png

OEBPS/Images/image04174.png

OEBPS/Images/image01427.png

OEBPS/Images/image04173.png

OEBPS/Images/image01428.png

OEBPS/Images/image04172.png

OEBPS/Images/image01433.png

OEBPS/Images/image04171.png

OEBPS/Images/image01434.png

OEBPS/Images/image04170.png

OEBPS/Images/image01431.png

OEBPS/Images/image04169.png

OEBPS/Images/image01432.png

OEBPS/Images/image04168.png

OEBPS/Images/image04167.png

OEBPS/Images/image01435.png

OEBPS/Images/image01436.png

OEBPS/Images/image01437.png

OEBPS/Images/image01462.png

OEBPS/Images/image04186.png

OEBPS/Images/image01463.png

OEBPS/Images/image04185.png

OEBPS/Images/image01460.png

OEBPS/Images/image04184.png

OEBPS/Images/image01461.png

OEBPS/Images/image04183.png

OEBPS/Images/image01466.png

OEBPS/Images/image04182.png

OEBPS/Images/image04181.png

OEBPS/Images/image01464.png

OEBPS/Images/image04180.png

OEBPS/Images/image01465.png

OEBPS/Images/image04179.png

OEBPS/Images/image04178.png

OEBPS/Images/image04177.png

OEBPS/Images/image04176.png

OEBPS/Images/image01451.png
o =lojx|

yT]

OEBPS/Images/image01452.png

OEBPS/Images/image04196.png

OEBPS/Images/image01449.png

OEBPS/Images/image04195.png

OEBPS/Images/image01450.png

OEBPS/Images/image04194.png

OEBPS/Images/image01455.png

OEBPS/Images/image04193.png

OEBPS/Images/image01456.png

OEBPS/Images/image04192.png

OEBPS/Images/image01453.png

OEBPS/Images/image04191.png
© O O salkendiagramm

OEBPS/Images/image01454.png

OEBPS/Images/image04190.png

OEBPS/Images/image04189.png

OEBPS/Images/image04188.png

OEBPS/Images/image04187.png

OEBPS/Images/image01458.png

OEBPS/Images/image01459.png

OEBPS/Images/image01457.png

OEBPS/Images/image02876.png

OEBPS/Images/image02875.png

OEBPS/Images/image04206.png

OEBPS/Images/image02874.png

OEBPS/Images/image04205.png

OEBPS/Images/image02873.png

OEBPS/Images/image04204.png

OEBPS/Images/image02872.png

OEBPS/Images/image04203.png

OEBPS/Images/image02871.png

OEBPS/Images/image04202.png

OEBPS/Images/image02870.png

OEBPS/Images/image04201.png

OEBPS/Images/image02869.png

OEBPS/Images/image04200.png

OEBPS/Images/image02868.png

OEBPS/Images/image04199.png

OEBPS/Images/image02867.png

OEBPS/Images/image04198.png

OEBPS/Images/image04197.png

OEBPS/Images/image02886.png

OEBPS/Images/image02885.png

OEBPS/Images/image04216.png

OEBPS/Images/image02884.png

OEBPS/Images/image04215.png

OEBPS/Images/image02883.png

OEBPS/Images/image04214.png

OEBPS/Images/image02882.png

OEBPS/Images/image04213.png

OEBPS/Images/image02881.png

OEBPS/Images/image04212.png

OEBPS/Images/image02880.png

OEBPS/Images/image04211.png

OEBPS/Images/image02879.png

OEBPS/Images/image04210.png

OEBPS/Images/image02878.png

OEBPS/Images/image04209.png

OEBPS/Images/image02877.png

OEBPS/Images/image04208.png

OEBPS/Images/image04207.png

OEBPS/Images/image02896.png

OEBPS/Images/image02895.png

OEBPS/Images/image04226.png

OEBPS/Images/image02894.png

OEBPS/Images/image04225.png

OEBPS/Images/image02893.png

OEBPS/Images/image04224.png

OEBPS/Images/image02892.png

OEBPS/Images/image04223.png

OEBPS/Images/image02891.png

OEBPS/Images/image04222.png

OEBPS/Images/image02890.png

OEBPS/Images/image04221.png

OEBPS/Images/image02889.png

OEBPS/Images/image04220.png

OEBPS/Images/image02888.png

OEBPS/Images/image04219.png

OEBPS/Images/image02887.png

OEBPS/Images/image04218.png

OEBPS/Images/image04217.png

OEBPS/Images/image01576.png

OEBPS/Images/image01574.png

OEBPS/Images/image02906.png

OEBPS/Images/image01575.png

OEBPS/Images/image02905.png

OEBPS/Images/image04236.png

OEBPS/Images/image01572.png

OEBPS/Images/image02904.png

OEBPS/Images/image04235.png

OEBPS/Images/image01573.png

OEBPS/Images/image02903.png

OEBPS/Images/image04234.png

OEBPS/Images/image01570.png

OEBPS/Images/image02902.png

OEBPS/Images/image04233.png

OEBPS/Images/image01571.png

OEBPS/Images/image02901.png

OEBPS/Images/image04232.png

OEBPS/Images/image01568.png

OEBPS/Images/image02900.png

OEBPS/Images/image04231.png

OEBPS/Images/image01569.png

OEBPS/Images/image02899.png

OEBPS/Images/image04230.png

OEBPS/Images/image02898.png

OEBPS/Images/image04229.png

OEBPS/Images/image01567.png

OEBPS/Images/image02897.png

OEBPS/Images/image04228.png

OEBPS/Images/image04227.png

OEBPS/Images/image01585.png

OEBPS/Images/image01586.png

OEBPS/Images/image02916.png

OEBPS/Images/image01583.png

OEBPS/Images/image02915.png

OEBPS/Images/image04246.png

OEBPS/Images/image01584.png

OEBPS/Images/image02914.png

OEBPS/Images/image04245.png

OEBPS/Images/image01581.png

OEBPS/Images/image02913.png

OEBPS/Images/image04244.png

OEBPS/Images/image01582.png

OEBPS/Images/image02912.png

OEBPS/Images/image04243.png

OEBPS/Images/image01579.png

OEBPS/Images/image02911.png

OEBPS/Images/image04242.png

OEBPS/Images/image01580.png

OEBPS/Images/image02910.png

OEBPS/Images/image04241.png

OEBPS/Images/image01577.png

OEBPS/Images/image02909.png

OEBPS/Images/image04240.png

OEBPS/Images/image01578.png

OEBPS/Images/image02908.png

OEBPS/Images/image04239.png

OEBPS/Images/image02907.png

OEBPS/Images/image04238.png

OEBPS/Images/image04237.png

OEBPS/Images/image00566.png

OEBPS/Images/image00567.png

OEBPS/Images/image01596.png

OEBPS/Images/image01594.png

OEBPS/Images/image02926.png

OEBPS/Images/image01595.png

OEBPS/Images/image02925.png

OEBPS/Images/image04256.png

OEBPS/Images/image01592.png

OEBPS/Images/image02924.png

OEBPS/Images/image04255.png

OEBPS/Images/image01593.png

OEBPS/Images/image02923.png

OEBPS/Images/image04254.png

OEBPS/Images/image01590.png

OEBPS/Images/image02922.png

OEBPS/Images/image04253.png

OEBPS/Images/image01591.png

OEBPS/Images/image02921.png

OEBPS/Images/image04252.png

OEBPS/Images/image01588.png

OEBPS/Images/image02920.png

OEBPS/Images/image04251.png

OEBPS/Images/image01589.png

OEBPS/Images/image02919.png

OEBPS/Images/image04250.png

OEBPS/Images/image02918.png

OEBPS/Images/image04249.png

OEBPS/Images/image01587.png

OEBPS/Images/image02917.png

OEBPS/Images/image04248.png

OEBPS/Images/image04247.png

OEBPS/Images/image01486.png

OEBPS/Images/image01484.jpeg

OEBPS/Images/image02816.png

OEBPS/Images/image01485.png

OEBPS/Images/image02815.png

OEBPS/Images/image04146.png

OEBPS/Images/image01482.png

OEBPS/Images/image02814.png

OEBPS/Images/image04145.png

OEBPS/Images/image01483.png

OEBPS/Images/image02813.png

OEBPS/Images/image04144.png

OEBPS/Images/image01480.png

OEBPS/Images/image02812.png

OEBPS/Images/image04143.png

OEBPS/Images/image01481.png

OEBPS/Images/image02811.png

OEBPS/Images/image04142.png

OEBPS/Images/image01478.png

OEBPS/Images/image02810.png

OEBPS/Images/image04141.png

OEBPS/Images/image01479.png

OEBPS/Images/image02809.png

OEBPS/Images/image04140.png

OEBPS/Images/image02808.png

OEBPS/Images/image04139.png

OEBPS/Images/image01477.png

OEBPS/Images/image02807.png

OEBPS/Images/image04138.png

OEBPS/Images/image04137.png

OEBPS/Images/image01495.png

OEBPS/Images/image01496.png

OEBPS/Images/image02826.png

OEBPS/Images/image01493.png

OEBPS/Images/image02825.png

OEBPS/Images/image04156.png

OEBPS/Images/image01494.png

OEBPS/Images/image02824.png

OEBPS/Images/image04155.png

OEBPS/Images/image01491.png

OEBPS/Images/image02823.png

OEBPS/Images/image04154.png

OEBPS/Images/image01492.png

OEBPS/Images/image02822.png

OEBPS/Images/image04153.png

OEBPS/Images/image01489.png

OEBPS/Images/image02821.png
[

OEBPS/Images/image04152.png

OEBPS/Images/image01490.png

OEBPS/Images/image02820.png

OEBPS/Images/image04151.png

OEBPS/Images/image01487.png

OEBPS/Images/image02819.png

OEBPS/Images/image04150.png

OEBPS/Images/image01488.png

OEBPS/Images/image02818.png

OEBPS/Images/image04149.png

OEBPS/Images/image02817.png

OEBPS/Images/image04148.png

OEBPS/Images/image04147.png

OEBPS/Images/image01506.png

OEBPS/Images/image01504.png

OEBPS/Images/image02836.png

OEBPS/Images/image01505.png

OEBPS/Images/image02835.png

OEBPS/Images/image04166.png

OEBPS/Images/image01502.png

OEBPS/Images/image02834.png

OEBPS/Images/image04165.png

OEBPS/Images/image01503.png

OEBPS/Images/image02833.png

OEBPS/Images/image04164.png

OEBPS/Images/image01500.png

OEBPS/Images/image02832.jpeg

OEBPS/Images/image04163.png

OEBPS/Images/image01501.png

OEBPS/Images/image02831.png

OEBPS/Images/image04162.png

OEBPS/Images/image01498.png

OEBPS/Images/image02830.png

OEBPS/Images/image04161.png

OEBPS/Images/image01499.png

OEBPS/Images/image02829.png

OEBPS/Images/image04160.png

OEBPS/Images/image02828.jpeg

OEBPS/Images/image04159.png

OEBPS/Images/image01497.png

OEBPS/Images/image02827.png

OEBPS/Images/image04158.png

OEBPS/Images/image04157.png

OEBPS/Images/image01515.png

OEBPS/Images/image01516.png

OEBPS/Images/image02846.png

OEBPS/Images/image01513.png

OEBPS/Images/image02845.png

OEBPS/Images/image01514.png

OEBPS/Images/image02844.png

OEBPS/Images/image01511.png

OEBPS/Images/image02843.png

OEBPS/Images/image01512.png

OEBPS/Images/image02842.png

OEBPS/Images/image01509.png

OEBPS/Images/image02841.png

OEBPS/Images/image01510.png

OEBPS/Images/image02840.png

OEBPS/Images/image01507.png

OEBPS/Images/image02839.jpeg

OEBPS/Images/image01508.png

OEBPS/Images/image02838.png

OEBPS/Images/image02837.png

OEBPS/Images/image01526.png

OEBPS/Images/image01524.png

OEBPS/Images/image02856.png

OEBPS/Images/image01525.png

OEBPS/Images/image02855.jpeg

OEBPS/Images/image01522.png

OEBPS/Images/image02854.png

OEBPS/Images/image01523.png

OEBPS/Images/image02853.png

OEBPS/Images/image01520.png

OEBPS/Images/image02852.png

OEBPS/Images/image01521.png

OEBPS/Images/image02851.png

OEBPS/Images/image01518.png

OEBPS/Images/image02850.png

OEBPS/Images/image01519.png

OEBPS/Images/image02849.png

OEBPS/Images/image02848.png

OEBPS/Images/image01517.png

OEBPS/Images/image02847.png

OEBPS/Images/image01535.png

OEBPS/Images/image01536.png

OEBPS/Images/image02866.png

OEBPS/Images/image01533.png

OEBPS/Images/image02865.png

OEBPS/Images/image01534.png

OEBPS/Images/image02864.png

OEBPS/Images/image01531.png

OEBPS/Images/image02863.png

OEBPS/Images/image01532.png

OEBPS/Images/image02862.jpeg
lr:

Wy ’
\ @/

OEBPS/Images/image01529.png

OEBPS/Images/image02861.png

OEBPS/Images/image01530.png

OEBPS/Images/image02860.png

OEBPS/Images/image01527.png

OEBPS/Images/image02859.png

OEBPS/Images/image01528.png

OEBPS/Images/image02858.png

OEBPS/Images/image02857.png

OEBPS/Images/image01546.png

OEBPS/Images/image01544.png

OEBPS/Images/image01545.png

OEBPS/Images/image01542.png

OEBPS/Images/image01543.png

OEBPS/Images/image01540.png

OEBPS/Images/image01541.png

OEBPS/Images/image01538.png

OEBPS/Images/image01539.png

OEBPS/Images/image01537.png

OEBPS/Images/image01555.png

OEBPS/Images/image01556.jpeg

OEBPS/Images/image01553.png

OEBPS/Images/image01554.png

OEBPS/Images/image01551.png

OEBPS/Images/image01552.png

OEBPS/Images/image01549.png

OEBPS/Images/image01550.png

OEBPS/Images/image01547.png

OEBPS/Images/image01548.png

OEBPS/Images/image01566.png

OEBPS/Images/image01564.png

OEBPS/Images/image01565.png

OEBPS/Images/image01562.png

OEBPS/Images/image01563.png

OEBPS/Images/image01560.png

OEBPS/Images/image01561.png

OEBPS/Images/image01558.png

OEBPS/Images/image01559.png

OEBPS/Images/image01557.png

OEBPS/Images/image02370.png

OEBPS/Images/image02371.png

OEBPS/Images/image02368.png

OEBPS/Images/image02369.png

OEBPS/Images/image02367.png

OEBPS/Images/image02381.png

OEBPS/Images/image02382.png

OEBPS/Images/image02379.png

OEBPS/Images/image02380.png

OEBPS/Images/image02377.png

OEBPS/Images/image02378.png

OEBPS/Images/image02376.png

OEBPS/Images/image02374.png

OEBPS/Images/image02375.png

OEBPS/Images/image02372.png

OEBPS/Images/image02373.png

OEBPS/Images/image02392.png

OEBPS/Images/image02393.png

OEBPS/Images/image02390.png

OEBPS/Images/image02391.png

OEBPS/Images/image02388.png

OEBPS/Images/image02389.png

OEBPS/Images/image02387.png

OEBPS/Images/image02385.png

OEBPS/Images/image02386.png

OEBPS/Images/image02383.png

OEBPS/Images/image02384.png

OEBPS/Images/image02282.png

OEBPS/Images/image02283.png

OEBPS/Images/image02280.png

OEBPS/Images/image02281.png

OEBPS/Images/image02278.png

OEBPS/Images/image02279.png

OEBPS/Images/image02277.png

OEBPS/Images/image02275.png

OEBPS/Images/image02276.png

OEBPS/Images/image02273.png

OEBPS/Images/image02274.png

OEBPS/Images/image02293.png

OEBPS/Images/image02294.png

OEBPS/Images/image02291.png

OEBPS/Images/image02292.png

OEBPS/Images/image02289.png

OEBPS/Images/image02290.png

OEBPS/Images/image02287.png

OEBPS/Images/image02288.png

OEBPS/Images/image02286.png

OEBPS/Images/image02284.png

OEBPS/Images/image02285.png

OEBPS/Images/image02304.png

OEBPS/Images/image02305.png

OEBPS/Images/image02302.png

OEBPS/Images/image02303.png

OEBPS/Images/image01279.png

OEBPS/Images/image02300.png

OEBPS/Images/image01280.png

OEBPS/Images/image02301.png

OEBPS/Images/image01277.png

OEBPS/Images/image02298.png

OEBPS/Images/image01278.png

OEBPS/Images/image02299.png

OEBPS/Images/image01283.jpeg
eoo s

Slal Ve

OEBPS/Images/image01284.png

OEBPS/Images/image02297.png

OEBPS/Images/image01281.png

OEBPS/Images/image01282.png

OEBPS/Images/image01285.png

OEBPS/Images/image01286.png

OEBPS/Images/image02295.png

OEBPS/Images/image02296.png

OEBPS/Images/image02315.png

OEBPS/Images/image02316.png

OEBPS/Images/image02313.png

OEBPS/Images/image02314.png

OEBPS/Images/image01268.png

OEBPS/Images/image02311.png

OEBPS/Images/image01269.png

OEBPS/Images/image02312.png

OEBPS/Images/image02309.png

OEBPS/Images/image01267.png
TN NN T RN Rl e

OEBPS/Images/image02310.png

OEBPS/Images/image01272.png

OEBPS/Images/image02307.png

OEBPS/Images/image01273.png

OEBPS/Images/image02308.png

OEBPS/Images/image01270.png

OEBPS/Images/image01271.png

OEBPS/Images/image01276.png

OEBPS/Images/image01274.jpeg

OEBPS/Images/image01275.png

OEBPS/Images/image02306.png

OEBPS/Images/image01297.png

OEBPS/Images/image02326.png

OEBPS/Images/image01298.png

OEBPS/Images/image02324.png

OEBPS/Images/image02325.png

OEBPS/Images/image01301.png

OEBPS/Images/image02322.png

OEBPS/Images/image01302.png

OEBPS/Images/image02323.png

OEBPS/Images/image01299.png

OEBPS/Images/image02320.png

OEBPS/Images/image01300.png

OEBPS/Images/image02321.png

OEBPS/Images/image01305.png

OEBPS/Images/image02318.png

OEBPS/Images/image01306.png

OEBPS/Images/image02319.png

OEBPS/Images/image01303.png

OEBPS/Images/image01304.png

OEBPS/Images/image02317.png

OEBPS/Images/image01287.png

OEBPS/Images/image02335.png

OEBPS/Images/image02336.png

OEBPS/Images/image01290.png

OEBPS/Images/image02333.png

OEBPS/Images/image01291.png

OEBPS/Images/image02334.png

OEBPS/Images/image01288.png

OEBPS/Images/image02331.png

OEBPS/Images/image01289.png

OEBPS/Images/image02332.png

OEBPS/Images/image01294.png

OEBPS/Images/image02329.png

OEBPS/Images/image01295.png

OEBPS/Images/image02330.png

OEBPS/Images/image01292.png

OEBPS/Images/image02327.png

OEBPS/Images/image01293.png

OEBPS/Images/image02328.jpeg
6086

New Java Project with Existing Sources

Steps

Name and Location

L. Choose Project
2. Name and Location
3. Existing Sources

Specify a name and location for the new project.

Project Name: [Ex01]

Project Folder: |/Projekte/Java/java.primer.book/ch04/ex01

Set as Main Project

(o) (<Back) @eEsD)

OEBPS/Images/image01296.png

OEBPS/Images/image01319.png

OEBPS/Images/image01320.png

OEBPS/Images/image01317.png

OEBPS/Images/image02346.png

OEBPS/Images/image01318.png

OEBPS/Images/image01323.png

OEBPS/Images/image02344.png

OEBPS/Images/image01324.png

OEBPS/Images/image02345.png

OEBPS/Images/image01321.png

OEBPS/Images/image02342.png

OEBPS/Images/image01322.png

OEBPS/Images/image02343.png

OEBPS/Images/image02340.png

OEBPS/Images/image02341.png

OEBPS/Images/image01325.png

OEBPS/Images/image02338.png

OEBPS/Images/image01326.png

OEBPS/Images/image02339.png

OEBPS/Images/image02337.png

OEBPS/Images/image01327.png

OEBPS/Images/image01308.png

OEBPS/Images/image01309.png

OEBPS/Images/image01307.png

OEBPS/Images/image01312.png

OEBPS/Images/image02355.png

OEBPS/Images/image01313.png

OEBPS/Images/image02356.png

OEBPS/Images/image01310.png

OEBPS/Images/image02353.png

OEBPS/Images/image01311.png

OEBPS/Images/image02354.png

OEBPS/Images/image01316.png

OEBPS/Images/image02351.png

OEBPS/Images/image02352.png

OEBPS/Images/image01314.png

OEBPS/Images/image02349.png

OEBPS/Images/image01315.png

OEBPS/Images/image02350.png

OEBPS/Images/image02347.png

OEBPS/Images/image02348.png

OEBPS/Images/image01341.png

OEBPS/Images/image01342.png

OEBPS/Images/image01339.png

OEBPS/Images/image01340.png

OEBPS/Images/image01345.png

OEBPS/Images/image02366.png

OEBPS/Images/image01346.png

OEBPS/Images/image01343.png

OEBPS/Images/image02364.png

OEBPS/Images/image01344.png

OEBPS/Images/image02365.png

OEBPS/Images/image02362.png

OEBPS/Images/image02363.png

OEBPS/Images/image02360.png

OEBPS/Images/image02361.png

OEBPS/Images/image02358.png

OEBPS/Images/image02359.png

OEBPS/Images/image02357.png

OEBPS/Images/image01348.png

OEBPS/Images/image01349.png

OEBPS/Images/image01347.png

OEBPS/Images/image01330.png

OEBPS/Images/image04076.png

OEBPS/Images/image01331.png

OEBPS/Images/image04075.jpeg

OEBPS/Images/image01328.png

OEBPS/Images/image04074.png

OEBPS/Images/image01329.png

OEBPS/Images/image04073.png

OEBPS/Images/image01334.png

OEBPS/Images/image04072.jpeg

OEBPS/Images/image01335.png

OEBPS/Images/image04071.png

OEBPS/Images/image01332.png

OEBPS/Images/image04070.png

OEBPS/Images/image01333.png

OEBPS/Images/image04069.png

OEBPS/Images/image04068.png

OEBPS/Images/image04067.png

OEBPS/Images/image01336.png

OEBPS/Images/image01337.png

OEBPS/Images/image01338.png

OEBPS/Images/image01363.png

OEBPS/Images/image01364.png

OEBPS/Images/image04086.png

OEBPS/Images/image01361.png

OEBPS/Images/image04085.png

OEBPS/Images/image01362.png

OEBPS/Images/image04084.png

OEBPS/Images/image04083.png

OEBPS/Images/image04082.png

OEBPS/Images/image01365.png

OEBPS/Images/image04081.png

OEBPS/Images/image01366.png

OEBPS/Images/image04080.png

OEBPS/Images/image04079.png

OEBPS/Images/image04078.png

OEBPS/Images/image04077.png

OEBPS/Images/image01352.png

OEBPS/Images/image01353.png

OEBPS/Images/image01350.png

OEBPS/Images/image04096.png

OEBPS/Images/image01351.png

OEBPS/Images/image04095.png

OEBPS/Images/image01356.png

OEBPS/Images/image04094.png

OEBPS/Images/image04093.png

OEBPS/Images/image01354.png

OEBPS/Images/image04092.png

OEBPS/Images/image01355.png

OEBPS/Images/image04091.png

OEBPS/Images/image04090.png

OEBPS/Images/image04089.png

OEBPS/Images/image04088.png

OEBPS/Images/image04087.jpeg

OEBPS/Images/image01359.png

OEBPS/Images/image01360.png

OEBPS/Images/image01357.png

OEBPS/Images/image01358.png

OEBPS/Images/image02776.png

OEBPS/Images/image02775.png

OEBPS/Images/image04106.png

OEBPS/Images/image02774.png

OEBPS/Images/image04105.png

OEBPS/Images/image02773.png

OEBPS/Images/image04104.png

OEBPS/Images/image02772.png

OEBPS/Images/image04103.png

OEBPS/Images/image02771.png

OEBPS/Images/image04102.png

OEBPS/Images/image02770.png

OEBPS/Images/image04101.png

OEBPS/Images/image02769.png

OEBPS/Images/image04100.png

OEBPS/Images/image02768.png

OEBPS/Images/image04099.png

OEBPS/Images/image02767.png

OEBPS/Images/image04098.png

OEBPS/Images/image04097.png

OEBPS/Images/image02786.png

OEBPS/Images/image02785.png

OEBPS/Images/image04116.png

OEBPS/Images/image02784.png

OEBPS/Images/image04115.png

OEBPS/Images/image02783.png

OEBPS/Images/image04114.png

OEBPS/Images/image02782.png

OEBPS/Images/image04113.png

OEBPS/Images/image02781.png

OEBPS/Images/image04112.png

OEBPS/Images/image02780.png

OEBPS/Images/image04111.png

OEBPS/Images/image02779.png

OEBPS/Images/image04110.png

OEBPS/Images/image02778.png

OEBPS/Images/image04109.png

OEBPS/Images/image02777.png

OEBPS/Images/image04108.png

OEBPS/Images/image04107.png

OEBPS/Images/image02796.jpeg

OEBPS/Images/image02795.png

OEBPS/Images/image04126.png

OEBPS/Images/image02794.png

OEBPS/Images/image04125.png

OEBPS/Images/image02793.png

OEBPS/Images/image04124.png

OEBPS/Images/image02792.png

OEBPS/Images/image04123.png

OEBPS/Images/image02791.png

OEBPS/Images/image04122.png

OEBPS/Images/image02790.png

OEBPS/Images/image04121.png

OEBPS/Images/image02789.png

OEBPS/Images/image04120.png

OEBPS/Images/image02788.png

OEBPS/Images/image04119.png

OEBPS/Images/image02787.png

OEBPS/Images/image04118.png

OEBPS/Images/image04117.png

OEBPS/Images/image01475.png

OEBPS/Images/image01476.png

OEBPS/Images/image02806.png

OEBPS/Images/image01473.png

OEBPS/Images/image02805.png

OEBPS/Images/image04136.png

OEBPS/Images/image01474.png

OEBPS/Images/image02804.png

OEBPS/Images/image04135.png

OEBPS/Images/image01471.png

OEBPS/Images/image02803.png

OEBPS/Images/image04134.png

OEBPS/Images/image01472.png

OEBPS/Images/image02802.png

OEBPS/Images/image04133.png

OEBPS/Images/image01469.png

OEBPS/Images/image02801.png

OEBPS/Images/image04132.png

OEBPS/Images/image01470.png

OEBPS/Images/image02800.png

OEBPS/Images/image04131.png

OEBPS/Images/image01467.png

OEBPS/Images/image02799.png

OEBPS/Images/image04130.png

OEBPS/Images/image01468.png

OEBPS/Images/image02798.png

OEBPS/Images/image04129.png

OEBPS/Images/image02797.png

OEBPS/Images/image04128.png

OEBPS/Images/image04127.png

