

Thomas Theis

Einstieg in WPF
Grundlagen und Praxis

Liebe Leserin, lieber Leser,

dieses Buch ermöglicht Ihnen einen schnellen Einstieg in die Nutzung der Win-
dows Presentation Foundation. Thomas Theis konzentriert sich auf die wichtigsten
Klassen und Attribute und zeigt Ihnen anhand von typischen Anwendungsbeispie-
len, wie Sie diese für eigene Projekte nutzen. Auf diese Weise arbeiten Sie sich
schnell in die Entwicklung mit dem mächtigen Framework ein und erstellen eigene
WPF-Anwendungen.

Für alle diejenigen, die bisher mit Windows Forms gearbeitet haben, wird beson-
ders auch das letzte Kapitel interessant sein. Dort wird gezeigt, wie Sie mit Win-
dows Forms erstellte Anwendungen durch Elemente der WPF bereichern und
auch, wie Sie WPF-Anwendungen mit Windows-Forms-Funktionalitäten ausstat-
ten, für die es in der WPF noch nichts Adäquates gibt.

Auf dem beiliegenden Datenträger finden Sie die im Buch verwendeten Beispiele,
die Sie als Vorlage für Ihre eigenen Projekte verwenden können. Diese Vorlagen
gibt es sowohl in C# als auch in Visual Basic.

Sollten Sie Fragen zu diesem Buch haben, Anregungen oder Kritik loswerden wol-
len, melden Sie sich bei mir. Ich freue mich auf Ihre Rückmeldung.

Ihre Anne Scheibe
Lektorat Galileo Computing

anne.scheibe@galileo-press.de
www.galileocomputing.de
Galileo Press · Rheinwerkallee 4 · 53227 Bonn

Auf einen Blick

1 Einführung .. 13

2 XAML und WPF .. 19

3 Layout ... 29

4 Steuerelemente ... 53

5 Ereignisse und Kommandos ... 133

6 Anwendungen ... 155

7 Vorlagen .. 193

8 Daten .. 217

9 2D-Grafik .. 241

10 3D-Grafik .. 289

11 Animation ... 333

12 Audio und Video ... 371

13 Dokumente und Drucken ... 397

14 Interoperabilität ... 431

Der Name Galileo Press geht auf den italienischen Mathematiker und Philosophen Galileo
Galilei (1564–1642) zurück. Er gilt als Gründungsfigur der neuzeitlichen Wissenschaft und
wurde berühmt als Verfechter des modernen, heliozentrischen Weltbilds. Legendär ist sein
Ausspruch Eppur si muove (Und sie bewegt sich doch). Das Emblem von Galileo Press ist der
Jupiter, umkreist von den vier Galileischen Monden. Galilei entdeckte die nach ihm benannten
Monde 1610.

Lektorat Anne Scheibe
Gutachten Matthias Geirhos
Korrektorat Friederike Daenecke, Zülpich
Typografie und Layout Vera Brauner
Herstellung Lissy Hamann
Satz III-satz, Husby
Einbandgestaltung Barbara Thoben, Köln
Titelbild Mann: © helix - Fotolia.com; Blume: © Konstantin Sutyagin - Fotolia.com;

Button: © Emanuel - Fotolia.com
Druck und Bindung Bercker Graphischer Betrieb, Kevelaer

Dieses Buch wurde gesetzt aus der Linotype Syntax Serif (9,25/13,25 pt) in FrameMaker.

Gerne stehen wir Ihnen mit Rat und Tat zur Seite:
anne.scheibe@galileo-press.de bei Fragen und Anmerkungen zum Inhalt des Buches
service@galileo-press.de für versandkostenfreie Bestellungen und Reklamationen
britta.behrens@galileo-press.de für Rezensionsexemplare

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbib-
liografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

ISBN 978-3-8362-1776-7

© Galileo Press, Bonn 2012
1. Auflage 2012

Das vorliegende Werk ist in all seinen Teilen urheberrechtlich geschützt. Alle Rechte vorbehalten, insbesondere das Recht

der Übersetzung, des Vortrags, der Reproduktion, der Vervielfältigung auf fotomechanischem oder anderen Wegen und der

Speicherung in elektronischen Medien. Ungeachtet der Sorgfalt, die auf die Erstellung von Text, Abbildungen und Program-

men verwendet wurde, können weder Verlag noch Autor, Herausgeber oder Übersetzer für mögliche Fehler und deren Fol-

gen eine juristische Verantwortung oder irgendeine Haftung übernehmen. Die in diesem Werk wiedergegebenen Gebrauchs-

namen, Handelsnamen, Warenbezeichnungen usw. können auch ohne besondere Kennzeichnung Marken sein und als

solche den gesetzlichen Bestimmungen unterliegen.

5

Inhalt

1 Einführung ... 13

1.1 Vorteile der WPF .. 13
1.1.1 Grafik in der WPF .. 14

1.2 Aufbau des Buchs ... 14
1.3 Visual Studio 2010 ... 15

1.3.1 Ein neues Projekt .. 16
1.4 Kaxaml ... 17
1.5 XAML und C# bzw. VB ... 17
1.6 Danksagung .. 17

2 XAML und WPF ... 19

2.1 Dokumentstruktur .. 19
2.2 Property Elements .. 21
2.3 Dependency Properties ... 21
2.4 Attached Properties .. 23
2.5 Markup Extensions ... 24
2.6 Routed Events .. 25
2.7 Attached Events ... 27

3 Layout .. 29

3.1 Canvas .. 30
3.1.1 Positionierung ... 30
3.1.2 Elemente neu erzeugen ... 32
3.1.3 Layout-Hierarchie .. 33

3.2 StackPanel .. 35
3.2.1 Elemente neu erzeugen ... 36

3.3 WrapPanel .. 37
3.3.1 Elemente neu erzeugen ... 38
3.3.2 Vertikale Orientierung ... 38

3.4 DockPanel .. 39
3.4.1 DockPanel in Hierarchie .. 40
3.4.2 Elemente neu erzeugen ... 41

3.5 Grid .. 42
3.5.1 Elemente neu erzeugen ... 43
3.5.2 Elemente über mehrere Zellen 45

Inhalt

6

3.5.3 Größe der Zellen festlegen .. 46
3.5.4 Die Größe der Zellen flexibel gestalten 47

3.6 Layout-Kombination ... 49

4 Steuerelemente .. 53

4.1 Allgemeiner Aufbau .. 53
4.1.1 Größe, Schrift, Farbe, Bedienung per Tastatur 54
4.1.2 Sichtbarkeit, Bedienbarkeit 56
4.1.3 Elemente mit EventHandler neu erzeugen,

Elemente löschen .. 57
4.1.4 Padding, Innenabstand .. 59
4.1.5 Margin, Außenabstand .. 61
4.1.6 Alignment, Ausrichtung .. 62

4.2 Schalter .. 64
4.2.1 Button .. 64
4.2.2 RepeatButton .. 65
4.2.3 ToggleButton und CheckBox 66
4.2.4 RadioButton .. 68
4.2.5 Auswahl einstellen .. 71

4.3 Text und Beschriftung ... 71
4.3.1 Label ... 71
4.3.2 TextBlock .. 73
4.3.3 ToolTip ... 76
4.3.4 TextBox ... 77
4.3.5 PasswordBox ... 80
4.3.6 RichTextBox .. 80

4.4 Auswahl ... 81
4.4.1 ListBox, Einzel-Auswahl .. 82
4.4.2 ListBox, Mehrfach-Auswahl 85
4.4.3 ComboBox .. 88
4.4.4 TreeView .. 90

4.5 Zahlenwerte ... 97
4.5.1 ProgressBar ... 97
4.5.2 Slider .. 100
4.5.3 ScrollBar ... 103

4.6 Container ... 104
4.6.1 Border ... 104
4.6.2 GroupBox ... 107
4.6.3 Expander ... 108
4.6.4 TabControl .. 111

Inhalt

7

4.7 Menüs und Leisten ... 113
4.7.1 Hauptmenü ... 113
4.7.2 Kontextmenü .. 116
4.7.3 Symbolleiste .. 118
4.7.4 Statusleiste .. 121

4.8 Datum .. 122
4.8.1 Calendar .. 122
4.8.2 DatePicker .. 126

4.9 Weitere Elemente ... 127
4.9.1 Image .. 128
4.9.2 WebBrowser ... 130

5 Ereignisse und Kommandos .. 133

5.1 Tastatur .. 133
5.1.1 Anzeige der Tastaturinformationen 133
5.1.2 Steuerung durch Tasten ... 135

5.2 Maus .. 136
5.2.1 Anzeige der Mausinformationen 136

5.3 Eingabestift .. 139
5.4 Touchscreen ... 141
5.5 Kommandos ... 145

5.5.1 Eingebaute Kommandos .. 146
5.5.2 Kommandos mit Eingabegesten verbinden 149
5.5.3 Eigene Kommandos ... 150

6 Anwendungen ... 155

6.1 Allgemeiner Aufbau .. 155
6.1.1 Einfache Anwendung ... 155
6.1.2 Anwendung mit Steuerelement 157
6.1.3 Reihenfolge der Ereignisse ... 158
6.1.4 Aufruf von der Kommandozeile 161

6.2 Ressourcen ... 164
6.2.1 Physische Ressourcen .. 164
6.2.2 Logische Ressourcen ... 166

6.3 Fenster ... 169
6.3.1 Eigenschaften und Ereignisse von Fenstern 169
6.3.2 Eigene Dialogfelder ... 173

6.4 Navigation mit Seiten ... 175
6.4.1 Eine Reihe von Seiten .. 176

Inhalt

8

6.4.2 Frame mit Unterseiten .. 180
6.5 Gadgets .. 182
6.6 Browseranwendung .. 184
6.7 Ribbonanwendung ... 186

7 Vorlagen .. 193

7.1 Styles ... 193
7.1.1 Benannte Styles ... 194
7.1.2 Typ-Styles ... 197
7.1.3 Vererbung benannter Styles 198
7.1.4 Vererbung von Typ-Styles ... 199
7.1.5 Verwandte Steuerelement-Typen 200
7.1.6 EventSetter ... 202

7.2 Property Trigger ... 204
7.2.1 Einfache Property Trigger .. 204
7.2.2 Multi-Trigger .. 205

7.3 Control Templates .. 207
7.3.1 Ein erstes Control Template 207
7.3.2 Control Template mit Trigger 208
7.3.3 Control Template mit Bindung 209
7.3.4 Control Template in Typ-Style 211

7.4 Skins .. 212

8 Daten .. 217

8.1 Datenbindung .. 217
8.1.1 Setzen und Lösen einer Bindung 217
8.1.2 Richtung und Zeitpunkt einer Bindung 219

8.2 Validierung ... 222
8.3 Datenquellen ... 224

8.3.1 Ein Objekt als Datenquelle .. 224
8.3.2 Kontext einer Datenbindung 226
8.3.3 Auflistung von Objekten ... 227
8.3.4 Object Data Provider .. 229
8.3.5 Datenbank .. 230

8.4 DataGrid .. 232
8.4.1 Einfacher Aufbau ... 232
8.4.2 Standard-Einstellungen ... 234
8.4.3 Weitere Spaltentypen ... 235

Inhalt

9

8.5 DataTemplates ... 237
8.6 DataTrigger .. 238

9 2D-Grafik ... 241

9.1 Shapes .. 241
9.1.1 Rechtecke und Ellipsen .. 242
9.1.2 Linie .. 244
9.1.3 Polygon und Polylinie .. 245
9.1.4 Linienende .. 247

9.2 Geometrien .. 248
9.2.1 Einfache geometrische Formen 249
9.2.2 Kombinierte Geometrien ... 251
9.2.3 Pfadgeometrien für komplexe Formen 253
9.2.4 Pfadgeometrie in Pfadmarkupsyntax 257
9.2.5 Geometriegruppe .. 258

9.3 Drawings .. 259
9.4 Pinsel ... 262

9.4.1 SolidColorBrush ... 262
9.4.2 LinearGradientBrush .. 263
9.4.3 RadialGradientBrush .. 265
9.4.4 ImageBrush ... 267

9.5 Transformationen ... 270
9.5.1 RotateTransform mit RenderTransform 271
9.5.2 RotateTransform mit LayoutTransform 273
9.5.3 ScaleTransform .. 274
9.5.4 SkewTransform .. 276
9.5.5 TranslateTransform .. 277
9.5.6 TransformGroup .. 278

9.6 Transparenz .. 280
9.6.1 Transparenz mit Opacity und Background 280
9.6.2 Maskierung mit OpacityMask 281
9.6.3 Ausstanzung mit Clip ... 283

9.7 Effekte .. 284
9.8 Verzierungen .. 286

10 3D-Grafik ... 289

10.1 Allgemeiner Aufbau .. 289
10.1.1 Koordinatensystem ... 289
10.1.2 Kamera, Licht und Material 291

Inhalt

10

10.1.3 Dreieck in XAML ... 291
10.1.4 Ein Dreieck in Programmcode erzeugen 294
10.1.5 Würfel .. 296
10.1.6 Gemeinsame Punkte ... 298

10.2 Kamera ... 299
10.2.1 Perspektivische Kamera ... 299
10.2.2 Lage der Kamera ... 301

10.3 Licht ... 302
10.4 Modelle ... 306

10.4.1 Gruppe von 3D-Körpern ... 306
10.4.2 3D-Körper mit Ereignissen .. 309
10.4.3 Gruppe von 3D-Körpern mit Ereignissen 310
10.4.4 3D-Körper mit Oberflächengestaltung 311

10.5 Material und Textur .. 313
10.5.1 Material .. 314
10.5.2 Textur ... 316

10.6 Transformationen ... 319
10.6.1 ScaleTransform3D ... 319
10.6.2 TranslateTransform3D ... 321
10.6.3 RotateTransform3D ... 322
10.6.4 Transform3DGroup ... 326
10.6.5 Transform3DGroup aus Rotationen 327

10.7 Eine 3D-Landschaft .. 329

11 Animation .. 333

11.1 Allgemeiner Aufbau .. 334
11.1.1 Einfache DoubleAnimation .. 334
11.1.2 DoubleAnimation, weitere Eigenschaften 337
11.1.3 PointAnimation ... 340

11.2 Storyboard ... 341
11.2.1 Storyboard als Ressource ... 341
11.2.2 Storyboard per Programmcode 343
11.2.3 Storyboard steuern .. 345
11.2.4 Animierte Transformation ... 347
11.2.5 ColorAnimation ... 349

11.3 Event Trigger .. 350
11.3.1 Event Trigger in Element ... 350
11.3.2 Event Trigger und Ressourcen 351

Inhalt

11

11.3.3 Event Trigger in Style ... 352
11.3.4 Event Trigger zur Steuerung 354

11.4 Animierte 3D-Rotation ... 356
11.5 Keyframes ... 359

11.5.1 Keyframes für Double .. 359
11.5.2 Keyframes für Color ... 362
11.5.3 KeyFrames für String ... 363

11.6 Easing Functions ... 364
11.7 Pfadanimationen .. 368

12 Audio und Video .. 371

12.1 Audio ... 371
12.1.1 SoundPlayer in Programmcode 371
12.1.2 SystemSound ... 374
12.1.3 SoundPlayer in XAML ... 375
12.1.4 MediaPlayer für Audio .. 375
12.1.5 MediaElement für Audio ... 378

12.2 Video ... 380
12.2.1 MediaElement für Video ... 380

12.3 Sprachausgabe .. 381
12.3.1 Text ausgeben ... 381
12.3.2 Text zusammensetzen ... 386

12.4 Spracheingabe .. 390
12.4.1 Externe Spracherkennung .. 391
12.4.2 Interne Spracherkennung .. 392
12.4.3 Steuerung per Spracherkennung 394

13 Dokumente und Drucken ... 397

13.1 FlowDocument ... 397
13.1.1 FlowDocumentReader ... 398
13.1.2 Block-Typ Absatz ... 400
13.1.3 Block-Typ Abschnitt .. 402
13.1.4 Block-Typ Liste .. 403
13.1.5 Block-Typ Tabelle .. 407
13.1.6 Block-Typ Steuerelement-Container 410
13.1.7 Inlines ... 412
13.1.8 Inline-Typ Figure ... 417

Inhalt

12

13.1.9 FlowDocumentScrollViewer 419
13.1.10 FlowDocumentPageViewer 420
13.1.11 RichTextBox .. 420

13.2 FixedDocument .. 424
13.3 Drucken ... 426

14 Interoperabilität .. 431

14.1 Windows Forms in WPF ... 431
14.1.1 Windows Forms-Steuerelemente in WPF 431
14.1.2 Windows Forms-Standard-Dialogfelder in WPF.......... 432

14.2 WPF in Windows Forms ... 436
14.2.1 WPF-Steuerelemente in Windows Forms 436

14.3 MS Office in WPF ... 438
14.3.1 Excel-Mappe ... 439
14.3.2 Word-Dokument .. 441

Index .. 445

13

In diesem ersten Kapitel werden einige grundlegende Begriffe der WPF,
der Aufbau des Buchs und die Arbeit mit dem Visual Studio von
Microsoft erläutert.

1 Einführung

WPF steht für Windows Presentation Foundation. Es handelt sich dabei um eine
2006 gänzlich neu eingeführte Bibliothek von Klassen, die zur Gestaltung von
Oberflächen und zur Integration von Multimedia-Komponenten und Animatio-
nen dient. Sie vereint die Vorteile von DirectX, Windows Forms, Adobe Flash,
HTML und CSS.

1.1 Vorteile der WPF

Der Umstieg auf diese neue Technologie geschieht nur langsam. In der Praxis set-
zen Entwickler häufig noch den Vorgänger der WPF, Windows Forms, ein. In die-
sem Abschnitt werden einige Eigenschaften und Vorteile der WPF dargestellt.

Die WPF ermöglicht eine verbesserte Gestaltung von Oberflächen. Layout, 3D-
Grafiken, Sprachintegration, Animation, Datenzugriff und vieles mehr basieren
auf einer einheitlichen Technik. Der Benutzer kann außerdem die Bedienung die-
ser Oberflächen schnell und intuitiv erlernen.

Einzelne Elemente oder ganze Oberflächen sind schneller anpassbar und aus-
tauschbar. Die Aufgabenbereiche des Designers (Gestaltung der Oberfläche) und
des Entwicklers (Codierung der Abläufe) sind klarer getrennt. So kann die Erstel-
lung einer Anwendung in parallelen Schritten erfolgen.

Die WPF wurde gänzlich neu entwickelt; es musste keine Rücksicht auf alte Tech-
niken genommen werden. Desktop-Anwendungen können ohne großen Auf-
wand auch für die Nutzung im Web umgestellt werden.

WPF-Anwendungen können außer auf die klassischen Medien Maus, Tastatur
und Bildschirm auch auf Touchscreen und Digitalisierbrett zugreifen. Sie können
über Sprache gesteuert werden und Sprachausgaben erzeugen.

Einführung1

14

Windows Forms ist länger auf dem Markt als die WPF. Daher besitzt es einige
Elemente, die in der WPF noch nicht vorliegen. Diese Elemente werden aber in
naher Zukunft hinzugefügt. Außerdem haben Sie die Möglichkeit, beide Techni-
ken zu vereinen. Sie können Elemente aus Windows Forms in einer WPF-
Anwendung unterbringen und umgekehrt. So können Sie die Vorzüge aus beiden
Welten nutzen.

1.1.1 Grafik in der WPF

Die WPF nutzt intern DirectX statt des veralteten GDI+, wie es bei Windows
Forms der Fall ist. Damit wird die Darstellung hardwarebeschleunigt. 2D- und
3D-Grafiken haben mehr Möglichkeiten und sind schneller.

Es wird Vektorgrafik statt Pixelgrafik verwendet. Damit ist eine Anwendung bes-
ser skalierbar. Sie wird unabhängig von der Auflösung und passt für viele ver-
schiedene Ausgabemedien. Dies wird aufgrund des mittlerweile fließenden
Übergangs von Smartphone über Pad, Netbook, Laptop, Desktop bis hin zu Groß-
bildschirmen immer wichtiger.

Die Möglichkeiten der Grafik-Hardware beim Benutzer können besser genutzt
werden. Die Grafik-Hardware wurde mit den Jahren immer besser und billiger,
und damit stiegen auch die Erwartungen der Benutzer weiter an. Falls beim
Benutzer permanent oder temporär keine geeignete Grafik-Hardware vorhanden
sein sollte, so besitzt die WPF Fallback-Mechanismen. Dies beeinflusst die Ent-
wicklung nicht, nutzt aber die Möglichkeiten optimal aus.

1.2 Aufbau des Buchs

In jedem Abschnitt wird die Thematik anhand eines vollständigen Projekts erläu-
tert. Sie sehen jeweils einen Screenshot und die wichtigen Teile des Codes. Ich
empfehle Ihnen, das jeweilige Projekt auf Ihren PC zu kopieren und es auf Ihrem
Rechner aufzurufen, parallel zum Lesen des Buchs. Viele Zusammenhänge wer-
den durch die Bedienung der Anwendung noch deutlicher.

In diesem Kapitel 1 werden einige grundlegende Begriffe erläutert. Die Besonder-
heiten und Erweiterungen von XAML gegenüber XML und der WPF im Vergleich
zu einer herkömmlichen Klassenbibliothek folgen in Kapitel 2.

Im Kapitel 3 lernen Sie verschiedene Layout-Möglichkeiten zur Anordnung der
Elemente kennen. Die WPF bietet zahlreiche Steuerelemente, diese folgen, in
Gruppen unterteilt, in Kapitel 4.

Visual Studio 2010 1.3

15

Mithilfe der WPF können Sie auf alte und neue Eingabemedien zugreifen. Diese
werden, zusammen mit dem Prinzip der Kommandos, in Kapitel 5 erläutert.
Kapitel 6 beschreibt die verschiedenen Anwendungstypen und das Prinzip der
Ressourcen.

Vorlagen sorgen für einheitliches, aber individuelles Aussehen – siehe Kapitel 7.
In Kapitel 8 wird erläutert, wie Sie eine Verbindung zwischen der Oberfläche und
den Anwendungsdaten herstellen können.

Die besondere Stärke der WPF liegt in der Grafik. Der Aufbau von 2D-Grafiken
und 3D-Grafiken wird in den Kapiteln 9 und 10 besprochen. Das Ganze gerät mit-
hilfe von Animationen in Bewegung, die Thema von Kapitel 11 sind.

Multimediakomponenten aus dem Bereich Audio und Video können Sie mithilfe
der WPF in Ihre Anwendungen integrieren. Dies ist Thema von Kapitel 12.

In Kapitel 13 lernen Sie, wie Sie verschiedene Formen von Dokumenten erstel-
len, benutzen und ausdrucken. Zu guter Letzt folgt in Kapitel 14 das Zusammen-
spiel der WPF mit Windows Forms und MS Office.

1.3 Visual Studio 2010

Die Entwicklungsumgebung Visual Studio 2010 von Microsoft ist selber mithilfe
der WPF entwickelt worden. Die frei verfügbaren Ausgaben Visual Basic 2010
Express und Visual C# 2010 Express ermöglichen einen schnellen Einstieg in die
Programmierung mit WPF.

Die Oberfläche einer Anwendung wird mithilfe von XAML entworfen. XAML
steht für eXtensible Application Markup Language. Es handelt sich dabei um eine
XML-basierte Markierungssprache, die nicht nur in der WPF zum Einsatz kommt.

Innerhalb des Visual Studio können Sie die Oberfläche gleichzeitig in zwei
Ansichten sehen: im grafischen Entwurf und im XAML-Code. Eine Änderung in
einer der beiden Ansichten wirkt sich unmittelbar auf die jeweils andere
Ansicht aus.

Während der Codierung werden Sie sowohl in XAML als auch im Programmier-
code von der kontextsensitiven Hilfe IntelliSense unterstützt. Dank IntelliSense
werden unter anderem nützliche Listen eingeblendet, zum Beispiel nach einem
Punkt in der Objektschreibweise. Diese Listen enthalten nur die Elemente, in
denen die bereits eingegebene Buchstabenkombination vorkommt (siehe Abbil-
dung 1.1).

Einführung1

16

Abbildung 1.1 Diese Liste enthält nur Elemente mit »acti«.

Falls Sie einen Begriff markieren und die Taste (F1) betätigen, wird auch der Kon-
text beachtet und das passende Ziel erkannt. Dies ist dann besonders nützlich,
falls der markierte Begriff zum Beispiel gleichzeitig eine Klasse und eine Eigen-
schaft bezeichnet.

1.3.1 Ein neues Projekt

Das Visual Studio bietet die Standardelemente einer Entwicklungsumgebung:
Projektmappenexplorer, Code- und Designfenster, Eigenschaftenfenster inklusive
einer Liste der Ereignisse und vieles mehr. Ein neues Projekt entwerfen Sie wie
folgt:

1. Rufen Sie Menü Datei � Neues Projekt auf.

2. Wählen Sie die Vorlage WPF-Anwendung aus, und vergeben Sie einen
Namen.

3. Entwerfen Sie die Oberfläche im Designer, inklusive des XAML-Codes.

4. Ordnen Sie die Ereignisse den Ereignismethoden zu, entweder innerhalb des
XAML-Codes oder im Eigenschaftenfenster, Reiter Ereignisse.

5. Codieren Sie die Abläufe im Codefenster.

6. Nicht vergessen: Menü Datei � Alle speichern; selbst ein bereits erfolgreich
gestartetes Projekt könnte ansonsten verloren gehen!

Sollten Sie versehentlich einzelne Fenster geschlossen haben: Im Menü Ansicht �

Weitere Fenster können Sie den Projektmappenexplorer und das Eigenschaften-
fenster wieder einblenden. Das Designfenster blenden Sie anschließend über
einen Doppelklick auf die Datei MainWindow.xaml im Projektmappenexplorer
ein, das Codefenster über die Datei MainWindow.xaml.cs. Zur normalen Anord-
nung der Fenster gelangen Sie über das Menü Fenster � Fensterlayout zurück-

setzen.

Danksagung 1.6

17

1.4 Kaxaml

Bei Kaxaml handelt es sich um einen frei verfügbaren, ressourcensparenden
XAML-Editor. Er stammt von einem Entwickler, der auch im Team der WPF tätig
war: Robby Ingebretsen. Kaxaml bietet einige nützliche Hilfen, um den ersten
Entwurf einer Oberfläche vorzunehmen. Sie finden Kaxaml auf dem Datenträger
zum Buch oder über http://www.kaxaml.com.

1.5 XAML und C# bzw. VB

Eine Anwendung kann ausschließlich aus XAML-Code oder ausschließlich aus
Code in einer der Programmiersprachen bestehen, zum Beispiel Visual Basic oder
Visual C#. Meist wird allerdings gemischt: Die Oberfläche wird in XAML entwor-
fen, die Abläufe werden in einer Programmiersprache codiert. Jedoch sind die
Übergänge fließend; es herrscht keine strenge Trennung wie in Windows Forms.

In vielen Projekten dieses Buchs werden Elemente sowohl mit XAML als auch per
Programmcode erzeugt. Dies macht den hierarchischen Aufbau der Anwendung
und das Zusammenspiel der einzelnen Elemente noch deutlicher.

Die Entscheidung, welche Sprache Sie verwenden, hängt von Ihren persönlichen
Vorlieben und Erfahrungen ab. Es wird auf die gleiche Klassenbibliothek zuge-
griffen, und es stehen vergleichbare sprachliche Mittel zur Verfügung. Alle Bei-
spielprojekte dieses Buchs liegen in zwei Versionen vor: im Buch in Visual C#, auf
dem Datenträger zum Buch in beiden Sprachen. Die Erklärungen im Buch kön-
nen ebenfalls für beide Sprachen genutzt werden, da dieselben WPF-Typen
zugrunde liegen.

1.6 Danksagung

An dieser Stelle möchte ich mich bei Anne Scheibe, Christine Siedle, Matthias
Geirhos, Friederike Daenecke und dem ganzen Team von Galileo Press für die
Unterstützung und die hilfreiche Kritik bei der Erstellung dieses Buchs bedanken.

19

Dieses Kapitel behandelt die Besonderheiten und Erweiterungen
von XAML gegenüber XML und der WPF im Vergleich zu einer
herkömmlichen Klassenbibliothek.

2 XAML und WPF

Die WPF bietet einige Besonderheiten bezüglich der objektorientierten Program-
mierung. XAML beinhaltet einige Erweiterungen gegenüber anderen Markie-
rungssprachen. Es geht in diesem Kapitel um das grundsätzliche Verständnis.
Bitte stören Sie sich also nicht daran, falls Sie noch nicht jede einzelne Code-Zeile
der Beispielprojekte verstehen.

2.1 Dokumentstruktur

Die Elemente eines XAML-Dokuments stehen, wie bei jedem XML-Dokument, in
einer Baumstruktur. Ganz oben in der Hierarchie steht ein Hauptelement, darun-
ter ein oder mehrere Unterelemente, darunter wiederum Unterelemente und so
weiter. Es gibt Elemente, die nur ein Unterelement haben dürfen, und zwar in
der Eigenschaft Child. Im Gegensatz dazu dürfen Container-Elemente mehrere
Unterelemente haben, in der Auflistungs-Eigenschaft Children.

Beim Laden eines XAML-Dokuments wird für jedes Element eine Instanz des
Typs dieses Elements erzeugt. Man kann auf diese Instanz sowohl per XAML als
auch über Programmiersprachen wie Visual C# oder Visual Basic zugreifen.

Jedes Element verfügt über Eigenschaften. Diese können in XAML über Attribute
erreicht werden. In XAML werden für die Werte der Attribute und damit für die
Werte der Eigenschaften Zeichenketten angegeben. Viele Eigenschaften haben
aber einen anderen Typ, zum Beispiel Zahlen oder Farben. In diesem Fall wird die
Zeichenkette mit einem internen Type Converter umgewandelt.

Viele Typen von Elementen besitzen eine Eigenschaft Name. Jedes Element kann
mit dem Bezeichner x:Name versehen werden. In beiden Fällen kann man damit
auf ein individuelles Element lesend oder schreibend zugreifen.

XAML und WPF2

20

Im nachfolgenden Projekt DokumentStruktur werden alle Begriffe dieses Ab-
schnitts an einem kleinen Beispiel erläutert (siehe Abbildung 2.1).

Abbildung 2.1 Fenster mit Panel und zwei Unterelementen

Der XAML-Code:

<Window x:Class="DokumentStruktur.MainWindow"
 xmlns="http://..." xmlns:x="http://..."
 Title="DokumentStruktur" Height="200" Width="300">
 <WrapPanel>
 <Label Background="LightGray" Name="lb">Label-Text</Label>
 <Button FontSize="24" x:Name="bu">Click</Button>
 </WrapPanel>
</Window>

Das Hauptelement ist ein Fenster, das vom Typ Window abgeleitet ist. Der Name
des abgeleiteten Typs wird über x:Class angegeben, hier MainWindow. Ein Window
darf ein Unterelement haben. Hier ist es vom Typ WrapPanel. Ein WrapPanel ist
ein Container-Element (siehe auch Abschnitt 3.3, »WrapPanel«). Hier enthält es
Elemente vom Typ Label und vom Typ Button.

Die Elemente haben verschiedene Eigenschaften, zum Beispiel Title, Height
oder Background. Title ist vom Typ Zeichenkette; die Werte für die anderen Ele-
mente werden mithilfe passender Type Converter umgewandelt.

Das Label kann im Programmiercode über den Wert der Eigenschaft Name, der
Button über den Wert des Bezeichners x:Name erreicht werden.

Die Einbindung eines Namespace ermöglicht es Ihnen, die Typen aus diesem
Namespace zu benutzen. Bereits bei Erstellung eines Projekts werden die wich-
tigsten Typen der WPF mithilfe von zwei Namespaces (hier sind sie nur mit
xmlns=http://... und xmlns:x=http://... angedeutet) automatisch zur Verfü-
gung gestellt. Weitere Namespaces können bei Bedarf in XAML oder im Program-
miercode von Visual C# oder Visual Basic eingebunden werden.

Sie können alle Projekte auf dem Datenträger zum Buch finden. Ich empfehle
Ihnen, sie parallel zum Lesen des Buchs auszuprobieren. Allerdings passiert in
diesem Projekt noch nichts, falls Sie den Button betätigen.

Dependency Properties 2.3

21

2.2 Property Elements

Elemente können innerhalb von XAML auf unterschiedliche Art und Weise mit
Eigenschaften versehen werden. Dies gibt Ihnen als Entwickler mehr Möglich-
keiten. Eine dieser Möglichkeiten sind die Eigenschaftselemente (Property Ele-
ments), die besonders bei komplex zusammengesetzten Eigenschaften zum Ein-
satz kommen.

Nachfolgend wird ein Beispiel im Projekt PropertyElements dargestellt, in dem drei
Label auf drei verschiedene Arten mit Inhalt gefüllt werden (siehe Abbildung 2.2).

Abbildung 2.2 Drei Label mit Inhalt

Der zugehörige Ausschnitt des XAML-Codes:

<Label>Inhalt 1</Label>
<Label Content="Inhalt 2" />
<Label>
 <Label.Content>
 Inhalt 3
 </Label.Content>
</Label>

Die Aufschrift eines Labels ist die Eigenschaft, die einfach innerhalb des XML-
Knotens notiert werden kann, siehe erstes Label. Damit wird die Eigenschaft
Content des Labels gefüllt. Beim zweiten Label wird die Eigenschaft Content
gezielt als XML-Attribut angesprochen.

Beim dritten Label kommt ein Property Element zum Einsatz. Die Eigenschaft
wird, zusammen mit dem Typ, als eigener XML-Knoten angegeben. Der Inhalt
des Knotens ist der Wert der Eigenschaft.

2.3 Dependency Properties

Abhängigkeitseigenschaften (Dependency Properties) sind Elemente, die den Klas-
sen in der WPF neu hinzugefügt wurden. Dependency Properties bieten mehr

XAML und WPF2

22

Fähigkeiten als die Properties der klassischen Objektorientierung, die hier zur
Unterscheidung CLR-Properties genannt werden.

Unter anderem können Dependency Properties automatisch aktualisiert und vali-
diert werden. Wertänderungen können direkt zu Aktionen führen. Benötigt wer-
den sie besonders im Zusammenhang mit Datenbindungen, Styles und Animati-
onen. Die Methoden GetValue() und SetValue() dienen zum Abrufen und
Setzen der Werte.

Sie können Dependency Properties auch in Ihren eigenen Klassen einführen. Da
sie aber deutlich mehr Ressourcen fordern, sollten Sie dies nur machen, wenn es
wirklich notwendig ist.

Im nachfolgenden Projekt DependencyProperties wird ein Beispiel dargestellt, wie
Dependency Properties zur Datenbindung genutzt werden können (siehe Abbil-
dung 2.3). Mehr zum Thema Datenbindung folgt in Kapitel 8, »Daten«.

Abbildung 2.3 TextBox, Label und zwei Buttons

TextBox und Label sind über eine Datenbindung miteinander verbunden. Sobald
sich der Inhalt der TextBox ändert, ändert sich der Inhalt des Labels ebenfalls.
Der zugehörige Ausschnitt des XAML-Codes lautet:

<TextBox x:Name="tb" Text="Hallo" Width="100" />
<Label Width="100">
 <Label.Content>
 <Binding ElementName="tb" Path="Text" />
 </Label.Content>
</Label>
<Button Click="abrufen" Width="100">Inhalt abrufen</Button>
<Button Click="setzen" Width="100">Inhalt setzen</Button>

Die TextBox wird über ihren Namen und ihre Eigenschaft Text an die Eigenschaft
Content des Labels gebunden. Im Einzelnen passiert Folgendes: Die Änderung
der CLR-Property Text der TextBox ändert die zugehörige Dependency Property
TextProperty. Dies führt zu einer Aktion. Diese Aktion ändert die Dependency

Attached Properties 2.4

23

Property ContentProperty des Labels. Damit wird die zugehörige CLR-Property
Content geändert, wodurch sich der Inhalt des Labels ändert.

Es folgen die Ereignismethoden zu den beiden Buttons:

private void abrufen(object sender, RoutedEventArgs e)
{
 // MessageBox.Show(tb.Text);
 MessageBox.Show(tb.GetValue(TextBox.TextProperty) + "");
}

Sie sehen zwei Möglichkeiten, den Inhalt der TextBox abzurufen: über die CLR-
Property Text oder über die Dependency Property TextProperty. Die Typangabe
darf nicht fehlen, in diesem Falle ist das TextBox.

private void setzen(object sender, RoutedEventArgs e)
{
 // tb.Text = "Guten Tag";
 tb.SetValue(TextBox.TextProperty, "Guten Tag");
}

Ebenso gibt es zwei Möglichkeiten, den Wert zu ändern. Die Methode
SetValue() benötigt den Namen der Dependency Property und den neuen Wert.

2.4 Attached Properties

Angehängte Eigenschaften (Attached Properties) erweitern in der WPF die Eigen-
schaften von Elementen um die Eigenschaften fremder Typen. Wie bei Depen-
dency Properties dienen die Methoden GetValue() und SetValue()zum Abrufen
und Setzen der Werte.

Ein Beispiel wird im Projekt AttachedProperties dargestellt (siehe Abbildung 2.4).
Der Ort eines Buttons innerhalb eines Canvas wird über die Eigenschaften Left und
Top des Typs Canvas festgelegt. Der Button selber hat diese Eigenschaften nicht.

Abbildung 2.4 Buttons innerhalb eines Canvas

XAML und WPF2

24

Der zugehörige Ausschnitt des XAML-Codes:

<Canvas>
 <Button x:Name="b1" Canvas.Top="20" Canvas.Left="50"

 Click="abrufen">Inhalt abrufen</Button>
 <Button x:Name="b2" Canvas.Top="60" Canvas.Left="50"
 Click="setzen">Inhalt setzen</Button>

</Canvas>

Bei den Attached Properties müssen Sie den Namen des fremden Typs angeben,
dessen Eigenschaften benutzt werden.

Die Ereignismethoden zu den beiden Buttons sehen wie folgt aus:

private void abrufen(object sender, RoutedEventArgs e)
{
 MessageBox.Show(b1.GetValue(Canvas.LeftProperty) + "");

}
private void setzen(object sender, RoutedEventArgs e)
{

 b2.SetValue(Canvas.LeftProperty, 10.0);
}

Das Abrufen und Setzen der Werte wird über die zugehörige Dependency Pro-
perty realisiert, inklusive Typangabe. In der Methode abrufen() wird der aktuelle
Wert von LeftProperty ausgegeben. Am Anfang ist dies 50. In der Methode
setzen() wird LeftProperty auf 10 gesetzt.

2.5 Markup Extensions

XAML bietet die Möglichkeit, Markup Extensions zu nutzen. Diese Erweiterun-
gen des Markups dienen der abkürzenden Schreibweise. Innerhalb von
geschweiften Klammern können die Inhalte eines XAML-Knotens in verkürzter
Form untergebracht werden.

Nachfolgend wird im Projekt MarkupExtensions ein Beispiel mit einer Datenbin-
dung von einer TextBox zu zwei Labels dargestellt, in der beide Schreibweisen
einander gegenübergestellt werden (siehe Abbildung 2.5).

Der zugehörige Ausschnitt des XAML-Codes:

<TextBox x:Name="tb" Text="Hallo" Width="100" />
<Label Width="100">
 <Label.Content>

Routed Events 2.6

25

 <Binding ElementName="tb" Path="Text" />
 </Label.Content>
</Label>
<Label Width="100"
 Content="{Binding ElementName=tb, Path=Text}" />
<Label Width="100" Content="{}{Klammern}" />

Abbildung 2.5 Label mit Markup Extension

Beim ersten Label wird die Datenbindung in der langen Form notiert. Das zweite
Label beinhaltet das Gleiche in Form einer Markup Extension: deutlich kürzer,
innerhalb von geschweiften Klammern.

Falls Sie die geschweiften Klammern selbst darstellen möchten, dann müssen Sie
ein Paar geschweifte Klammern voranstellen, wie Sie am dritten Label sehen.

2.6 Routed Events

Die Elemente einer auf WPF basierenden GUI liegen in einer Hierarchie; sie sind
ineinander verschachtelt. Ein Beispiel: Ein Bild liegt auf einem Button, der Button
liegt in einem Layout-Element, das Layout-Element liegt in einem Fenster. Falls
nun ein Mausklick auf dem Bild ausgelöst wird, so kann es sein, dass eigentlich
eines der übergeordneten Elemente darauf reagieren soll.

Damit dies möglich wird, werden Ereignisse in der WPF weitergeleitet (geroutet)
– daher der Begriff Routed Events. Außerdem kann es sein, dass vor der eigentli-
chen Ereignisbehandlung Vorbereitungen getroffen werden müssen. Daher gibt
es neben den klassischen Ereignishandlern sogenannte Preview-Ereignishandler.

Im nachfolgenden Projekt RoutedEvents soll die Reihenfolge der Ereignisbehand-
lung verdeutlicht werden (siehe Abbildung 2.6). Es wird das Ereignis MouseDown
auf dem grauen Rechteck ausgeführt. Das Rechteck (Rectangle) liegt in einem Lay-
out-Element vom Typ StackPanel, das wiederum innerhalb des Fensters vom Typ
MainWindow liegt.

XAML und WPF2

26

Abbildung 2.6 Das Ereignis »MouseDown«

Beim Ereignis MouseDown wird ein Event-Bubbling durchgeführt. Das heißt, das
Ereignis steigt innerhalb der Hierarchie wie eine Luftblase vom Rechteck über
das StackPanel bis zum Fenster auf. Beim zugehörigen Preview-Ereignis Pre-
viewMouseDown wird ein Event-Tunneling durchgeführt. Das heißt, das Ereignis
wird in der Hierarchie vom Fenster über das StackPanel bis zum Rechteck nach
unten durchgetunnelt. Der zugehörige XAML-Code:

<Window ... PreviewMouseDown="mdown" MouseDown="mdown">
 <StackPanel PreviewMouseDown="mdown" MouseDown="mdown">
 <Rectangle Height="23" Width="80" Fill="LightGray"
 PreviewMouseDown="mdown" MouseDown="mdown" />
 <ListBox x:Name="lb" Height="110" />
 </StackPanel>
</Window>

An insgesamt sechs Stellen wird eine Ereignisbehandlung durchgeführt. Zur Ver-
einfachung lösen alle sechs Ereignisse den Code derselben Methode aus:

private void mdown(object sender, MouseButtonEventArgs e)
{
 lb.Items.Add(e.RoutedEvent.Name + " " + sender.GetType().Name);
}

Das Objekt der Klasse MouseButtonEventArgs beinhaltet Informationen über das
auslösende Ereignis. Die Eigenschaft RoutedEvent liefert den Namen dieses Ereig-
nisses, also PreviewMouseDown oder MouseDown.

Das Objekt sender gibt an, bei welchem Objekt das Ereignis registriert wurde. In
der vorliegenden Methode wird mithilfe von GetType() der Typ dieses Objekts
genannt, also Rectangle, StackPanel oder MainWindow.

Attached Events 2.7

27

2.7 Attached Events

Angehängte Ereignisse (Attached Events) erweitern in der WPF die Ereignisse
von Elementen um die Ereignisse fremder Typen. So kann man ein Ereignis ein-
malig zentral bei einem übergeordneten Element registrieren, anstatt es jeweils
einzeln bei allen untergeordneten Elementen registrieren zu müssen.

Ein Beispiel wird im Projekt AttachedEvents dargestellt (siehe Abbildung 2.7).
Das Ereignis Click bei einem der drei Buttons wird nur einmalig beim überge-
ordneten Layout-Element vom Typ StackPanel registriert. Beim StackPanel selber
gibt es dieses Ereignis nicht.

Abbildung 2.7 Das Ereignis »Click« zentral registrieren

Der zugehörige Ausschnitt des XAML-Codes:

<StackPanel Button.Click="bclick">
 <Button x:Name="b1" Width="100">Button 1</Button>
 <Button x:Name="b2" Width="100">Button 2</Button>
 <Button x:Name="b3" Width="100">Button 3</Button>
</StackPanel>

Das Ereignis Click muss im StackPanel gemeinsam mit dem passenden Typ
(Button) angegeben werden, da es dieses Ereignis im StackPanel nicht gibt. Die
Ereignismethode sieht so aus:

private void bclick(object sender, RoutedEventArgs e)
{
 MessageBox.Show((e.Source as Button).Name);
}

Das Objekt sender gibt an, bei welchem Objekt das Ereignis registriert wurde.
Dies ist hier das StackPanel und nicht einer der Buttons. Daher nutzt uns sender
an dieser Stelle nichts.

Das Objekt der Klasse RoutedEventArgs beinhaltet Informationen über das gerou-
tete Ereignis. Die Eigenschaft Source liefert einen Verweis auf das auslösende
Objekt, somit also den Namen des geklickten Buttons.

29

Die WPF stellt vielfältige Alternativen zur Anordnung der Elemente
bereit. Diese Layout-Möglichkeiten erleichtern die Trennung von
grafischer Gestaltung und Programmierung und damit eine Aufgaben-
teilung zwischen Designer und Entwickler.

3 Layout

Sie bestimmen die Anordnung der Steuerelemente in Ihrer Anwendung über das
Layout. Damit sorgen Sie für ein ansprechendes Aussehen und eine gute Bedien-
barkeit der Oberfläche. Sie soll stufenlos in der Größe skalierbar sein und unter-
schiedlichen Umgebungen angepasst werden können. Die früher übliche Vergabe
fester Positionen sollten Sie daher möglichst vermeiden.

Der Inhalt des Client-Bereichs eines Anwendungsfensters ist genau ein Element.
Im Allgemeinen ist dies ein Layout-Element. Dieses Layout-Element kann der
Ursprung einer Hierarchie von Layouts sein. Layouts können also ineinander ver-
schachtelt sein (siehe auch Abschnitt 3.1.3, »Layout-Hierarchie«).

Die gemeinsame Basisklasse der verschiedenen Layout-Klassen ist die Klasse
Panel. Sie stellt viele gemeinsame Member zur Verfügung. Im Projekt PanelAlle
(siehe Abbildung 3.1) sehen Sie fünf mögliche Layouts: links oben Canvas, rechts
oben StackPanel, links unten WrapPanel, rechts unten DockPanel. Alle zusammen
sind innerhalb eines Grid angeordnet.

Abbildung 3.1 Alle fünf Layouts

Layout3

30

Sie können auch das Innere eines Elements mithilfe von Layouts frei gestalten:
Im Projekt PanelAlle sehen Sie einen Button, der Text und eine CheckBox (hier:
CB) beinhaltet. Ein anderer Button enthält Text und zwei RadioButtons (hier: RB).
Sie sehen: Die Grenze zwischen Layout und Steuerelement ist fließend. Auch in
diesem Punkt zeigt sich die Vielseitigkeit der WPF.

Eine Anmerkung: Als Beispiel für die Steuerelemente, die mithilfe von Layouts
positioniert werden, verwende ich häufig Buttons, unter anderem wegen ihrer
guten Erkennbarkeit.

3.1 Canvas

In früheren Anwendungen wurden Steuerelemente häufig fest positioniert. Dies
sollten Sie, wie oben erläutert, möglichst vermeiden. Dennoch gibt es Situatio-
nen, in denen dies für einen Teil der Oberfläche oder die gesamte Oberfläche
unumgänglich ist. Dann verwenden Sie einen Canvas.

Zur Positionierung in x-Richtung verwenden Sie dabei die Attached Properties
Canvas.Left und Canvas.Right. Für die Positionierung in y-Richtung nehmen Sie
Canvas.Top und Canvas.Bottom. Die Werte für diese Eigenschaften beziehen sich
auf das logisch übergeordnete Element. Die Lage der Elemente in z-Richtung kön-
nen Sie mithilfe der Attached Property Panel.ZIndex beeinflussen. Elemente mit
unterschiedlichen Werten für ZIndex liegen vom Betrachter aus hintereinander
bezüglich der Bildschirmebene.

3.1.1 Positionierung

Im nachfolgenden Projekt CanvasPositionen wird eine Reihe von Buttons sowohl
mithilfe von XAML als auch mithilfe von Programmcode positioniert (siehe
Abbildung 3.2).

Abbildung 3.2 Positionierte Steuerelemente

Canvas 3.1

31

Zunächst der Aufbau in XAML:

<Window ... Height="150" Width="320">
 <Canvas x:Name="cv">
 <Button x:Name="b1" Click="b1_Click">
 1: ohne Left und Top</Button>
 <Button Canvas.Left="30" Canvas.Top="18" x:Name="b2"
 Click="b2_Click">2: Left 30, Top 18</Button>
 <Button Canvas.Left="5" Canvas.Bottom="5">
 3: Left 5, Bottom 5</Button>
 <Button Canvas.Right="5" Canvas.Bottom="22" Panel.ZIndex="1">
 4: Right 5, Bottom 22, ZIndex 1</Button>
 <Button Canvas.Right="5" Canvas.Bottom="39">
 5: Right 5, Bottom 39</Button>
 <Button Canvas.Right="5" Canvas.Bottom="5" Panel.ZIndex="1"
 Click="b6_Click">6: Right 5, Bottom 5, ZIndex 1</Button>
 </Canvas>
</Window>

Die Steuerelemente stehen innerhalb des Canvas-Containers. Dieser füllt, als ein-
ziges Element, den gesamten Client-Bereich des Fensters aus. Er bekommt hier
einen eindeutigen Namen, weil ihm später ein Steuerelement per Programmcode
hinzugefügt wird. Die Steuerelemente sind dem Canvas untergeordnet.

Bei Button 1 gibt es keine Positionsangaben, daher liegt er ganz links oben. Bei
Button 2 ist der Abstand vom linken und vom oberen Rand, bei Button 3 der
Abstand vom linken und vom unteren Rand des Canvas festgelegt. Bei den restli-
chen Buttons 4 bis 6 wird mit unterschiedlichen Abständen vom rechten und
vom unteren Rand gearbeitet.

Sollten sich einzelne Steuerelemente überlappen, so liegt das später erzeugte Ele-
ment in z-Richtung über dem früher erzeugten Element. Dies sehen Sie bei den
Buttons 1 und 2. Mit der Attached Property Panel.ZIndex können Sie darauf Ein-
fluss nehmen. Ohne Angabe gilt Panel.ZIndex = 0. Ein positiver Wert »hebt« das
Steuerelement in Richtung Betrachter, ein negativer Wert »versenkt« das Steuer-
element in der Oberfläche. Daher überlappt Button 4 den Button 5, wird aber
von Button 6 überlappt.

Die Lage können Sie auch per Programmcode beeinflussen, wie dies für die But-
tons 1 und 2 durchgeführt wird:

private void b1_Click(object sender, RoutedEventArgs e)
{
 b1.SetValue(Canvas.LeftProperty, 10.0);
 b1.SetValue(Canvas.TopProperty, 10.0);

Layout3

32

 b1.SetValue(Panel.ZIndexProperty, 1);
}

private void b2_Click(object sender, RoutedEventArgs e)
{
 double left, top;
 left = (double)b2.GetValue(Canvas.LeftProperty);
 top = (double)b2.GetValue(Canvas.TopProperty);

 b2.SetValue(Canvas.LeftProperty, left + 10);
 b2.SetValue(Canvas.TopProperty, top + 10);
 b2.Content = "2: verschoben";
}

Button 1 wird absolut verschoben, und zwar auf Position 10,10. Gleichzeitig wird
er dem Betrachter entgegengehoben. Daher überlappt er nun Button 2. Die
Methode SetValue() dient zum Verändern der Werte von Dependency Properties.
Canvas.LeftProperty steht für die Attached Property Canvas.Left, und bei den
anderen verhält es sich entsprechend. Die Werte für Left und Top müssen vom
Typ double sein, der Wert für ZIndex vom Typ int.

Button 2 wird bei jedem Click relativ verschoben: um den Wert 10 nach rechts
und um den Wert 10 nach unten. Die Methode GetValue() dient zum Ermitteln
des aktuellen Werts der Dependency Property. Diese ist vom Typ object. Für die
spätere Weiterverwendung ist daher eine explizite Typkonvertierung notwendig.
Hier ist es wichtig, den richtigen Typ zu wählen. Die Eigenschaft Content steht
für den Inhalt des Elements, also für die Aufschrift des Buttons.

Hinweis: Die ursprüngliche Position des Buttons 1 können Sie nicht über die
Methode GetValue() ermitteln, da ihm die Eigenschaften Left und Top nicht per
XAML zugewiesen wurden. Die Methode liefert in diesem Falle den Wert »nicht
definiert«. Abhilfe: Setzen Sie Left und Top in XAML auf 0.

3.1.2 Elemente neu erzeugen

Im Projekt CanvasPositionen dient Button 6 zur Erstellung von weiteren Elemen-
ten per Programmcode:

private void b6_Click(object sender, RoutedEventArgs e)
{
 Button nb = new Button();
 nb.Content = "Neu";
 nb.SetValue(Canvas.RightProperty, 5.0);

Canvas 3.1

33

 nb.SetValue(Canvas.BottomProperty, 80.0);
 cv.Children.Add(nb);
}

Mit dieser Technik können Sie Steuerelemente in allen Panel-Typen (Canvas,
StackPanel …) neu erzeugen. Zunächst wird eine neue Instanz des Steuerelements
angelegt. Diese bekommt Eigenschaften, wie Aufschrift und Lage. Hier ist es
wichtig, double-Werte zu wählen.

Anschließend wird sie der Auflistung Children des jeweiligen Panels mithilfe der
Methode Add() hinzugefügt. Diese Auflistung verweist auf die untergeordneten
Elemente eines Panels, hier also des Canvas.

3.1.3 Layout-Hierarchie

In einer Hierarchie von Layouts lassen sich mehrere Layouts, auch unterschiedli-
chen Typs, miteinander kombinieren. Dies wird im nachfolgenden Projekt Canvas-
InCanvas anhand von Canvas-Layout-Elementen gezeigt. Angaben wie Canvas.Left
beziehen sich dabei immer auf das direkt übergeordnete Layout-Element.

Innerhalb eines Canvas, der den Client-Bereich des Fensters einnimmt, werden
zwei untergeordnete Canvas positioniert. Diese beinhalten wiederum Buttons
(siehe Abbildung 3.3).

Abbildung 3.3 Untergeordnete Elemente

Zunächst der Aufbau in XAML:

<Window ...>
 <Canvas>
 <Canvas Width="200" Height="60" x:Name="cv1"
 Background="LightGray">
 <Button Canvas.Top="10" Canvas.Left="50">Button 1</Button>
 </Canvas>
 <Canvas Width="200" Height="60" x:Name="cv2" Canvas.Top="70"
 Background="LightGray">

Layout3

34

 <Button Canvas.Top="10" Canvas.Left="50">Button 2</Button>
 <Button Canvas.Top="10" Canvas.Left="110" x:Name="b3"
 Click="b3_Click">Button 3</Button>
 </Canvas>
 </Canvas>
</Window>

Die beiden inneren Canvas cv1 und cv2 sind dem äußeren Canvas untergeordnet.
Die Angabe Canvas.Top des unteren Canvas bezieht sich auf den äußeren Canvas.
Die beiden Buttons 1 und 2 sind gleichartig positioniert. Ihre Angaben Canvas
.Top und Canvas.Left beziehen sich allerdings einmal auf den ersten, einmal auf
den zweiten inneren Canvas.

Hinweis: Die Eigenschaft Background für die Hintergrundfarbe ist vom Typ Brush
(dt. Pinsel) und nicht vom Typ Color. In XAML werden häufig Type Converter
genutzt, die eine passende Umwandlung vornehmen können. Mehr zum Typ
Brush finden Sie in Abschnitt 9.4, »Pinsel«.

Die Unterordnung bezüglich der beiden Canvas können Sie auch per Programm-
code verändern. Betätigt der Benutzer den dritten Button, so wechselt der Button
vom unteren zum oberen Canvas:

private void b3_Click(object sender, RoutedEventArgs e)
{
 if (b3.Parent == cv2)
 {
 cv2.Children.Remove(b3);
 cv1.Children.Add(b3);
 }
}

Die Eigenschaft Parent liefert einen Verweis auf das übergeordnete Element.
Falls es sich in diesem Fall um den unteren Canvas handelt, so wird die Unterord-
nung mithilfe der Methode Remove() aufgelöst und eine neue Unterordnung zum
oberen Canvas erstellt: Der Button wechselt nach oben (siehe Abbildung 3.4).

Abbildung 3.4 Hier wurde die Unterordnung geändert.

StackPanel 3.2

35

3.2 StackPanel

Ein StackPanel »stapelt« wortwörtlich die Steuerelemente: Diese werden einfach
in einer Reihe untereinander oder nebeneinander angeordnet. Im Projekt Stack-
PanelAnordnung werden einige Möglichkeiten dargestellt.

Den Standard-Fall mit vertikaler Orientierung sehen Sie in Abbildung 3.5 links.
In Abbildung 3.5 Mitte sind die Steuerelemente nebeneinander angeordnet.
Zusätzlich wurde die Richtung der Reihe geändert: Die Steuerelemente werden
von rechts nach links gestapelt. Sollte die Umgebung zu wenig Platz bieten, dann
sind möglicherweise einige Elemente nicht erreichbar. Zur Abhilfe können Sie
das StackPanel in ein Steuerelement vom Typ ScrollViewer einbetten (siehe
Abbildung 3.5 rechts).

Falls die Steuerelemente innerhalb eines vertikal orientierten StackPanel keine
eigene Breite haben, so nehmen sie die maximal verfügbare Breite in Anspruch.
Entsprechendes gilt für die Höhe in einem horizontal orientierten StackPanel.

Alle Layouts können Sie in einer Hierarchie anordnen. Die drei beschriebenen
StackPanel sind insgesamt wiederum in einem übergeordneten StackPanel mit
horizontaler Orientierung eingebettet, diesmal in der Standard-Ablaufrichtung
»von links nach rechts«.

Abbildung 3.5 Verschiedene StackPanel

Der Aufbau in XAML:

<Window ...>
 <StackPanel Orientation="Horizontal">
 <StackPanel Width="100" Margin="10">
 <Button Click="neu_Click">Button 1</Button>
 <Button>Button 2</Button>
 <Button>Button 3</Button>
 </StackPanel>
 <StackPanel Orientation="Horizontal"
 FlowDirection="RightToLeft" ...> ... </StackPanel>

Layout3

36

 <ScrollViewer VerticalScrollBarVisibility="Auto"...>
 <StackPanel> ... </StackPanel>
 </ScrollViewer>
 </StackPanel>
</Window>

Die Orientierung wird mit der Eigenschaft Orientation festgelegt. Es gibt die
Werte Vertical (übereinander) und Horizontal (nebeneinander). Die Eigen-
schaft FlowDirection bestimmt die Richtung der Reihe. Erlaubte Werte sind
LeftToRight und RightToLeft. Der letztgenannte Wert macht nur Sinn, falls
Orientation den Wert Horizontal hat.

Die Eigenschaft VerticalScrollBarVisibility des Elements vom Typ Scroll-
Viewer können Sie auf den Wert Auto stellen. Dann wird sie nur eingeblendet,
wenn sie benötigt wird, also wenn es »zu viele« Elemente gibt. Testen Sie dies im
vorhandenen Projekt, indem Sie einfach die Fensterhöhe mit der Maus verän-
dern.

Zur besseren Darstellung wurden die Breite sowie der Außenabstand der unter-
geordneten StackPanel festgelegt, und zwar über die Eigenschaften Width und
Margin. Mehr zu diesen Eigenschaften erfahren Sie in Kapitel 4, »Steuerele-
mente«.

3.2.1 Elemente neu erzeugen

Im Projekt StackPanelAnordnung können Sie mithilfe der Buttons 1, 4 und 7 wei-
tere Buttons per Programmcode erstellen:

private void neu_Click(object sender, RoutedEventArgs e)
{
 Button nb = new Button();
 nb.Content = "Neu";
 Panel p = (sender as Button).Parent as Panel;
 p.Children.Add(nb);
}

Es wird ein neuer Button erzeugt und beschriftet. Dann wird das jeweils überge-
ordnete Panel des geklickten Buttons (1, 4 oder 7) mithilfe der Eigenschaft Parent
ermittelt. Der neu erzeugte Button wird der Auflistung Children dieses Panels
mithilfe der Methode Add() als neues, untergeordnetes Element hinzugefügt.

Sie können feststellen, dass StackPanels mit vertikaler Orientierung nach unten
erweitert werden. StackPanels mit horizontaler Orientierung werden nach rechts
erweitert, unabhängig von der Richtung der Reihe.

WrapPanel 3.3

37

3.3 WrapPanel

Ein WrapPanel ist, etwas vereinfacht ausgedrückt, ein StackPanel mit automati-
schem Zeilenumbruch. Die Steuerelemente werden der Reihe nach angeordnet.
Falls es nicht mehr genügend Platz gibt, dann wird eine weitere Reihe aufge-
macht. Es kommt hinzu, dass die Steuerelemente nur noch den notwendigen
Platz einnehmen, nicht mehr den maximal verfügbaren Platz. Im Projekt Wrap-
PanelAnordnung sehen Sie einige Möglichkeiten.

Das oberste WrapPanel in Abbildung 3.6 beinhaltet sieben Steuerelemente. Sie
sind jeweils nur so breit wie nötig. Das letzte Element passte nicht mehr in die
Reihe, daher wurde eine neue Reihe eröffnet. Die Richtung der Reihe weist im
Standardfall von links nach rechts.

Beim zweiten WrapPanel in Abbildung 3.6 sind die fünf Steuerelemente von
rechts nach links angeordnet. Es gibt auch hier eine zweite Reihe.

Im nächsten WrapPanel in Abbildung 3.6 wurde die Höhe einzelner Steuerele-
mente geändert. Dies hat Auswirkungen auf die anderen Steuerelemente, die sich
aktuell in der gleichen Reihe befinden. Sie nehmen die gleiche Höhe an, falls sie
keine eigene Höhe haben.

Sie können aber auch eine einheitliche Breite beziehungsweise Höhe für alle
Steuerelemente festlegen. Dies sehen Sie am letzten WrapPanel in Abbildung 3.6.

Abbildung 3.6 Verschiedene WrapPanel

Layout3

38

Der Aufbau in XAML:

<Window ...>
 <StackPanel>
 <WrapPanel Margin="5">
 <Button Click="neu_Click">Button 1</Button>
 <Button>B 2</Button>
 ...
 <Button>Button 7</Button>
 </WrapPanel>
 <WrapPanel FlowDirection="RightToLeft" ...> ... </WrapPanel>
 <WrapPanel ...>
 ...
 <Button Height="40">3: Height 40</Button>
 <Button Height="18">4: Height 18</Button>
 ...
 </WrapPanel>
 <WrapPanel ItemWidth="70" ItemHeight="30" ...> ...
 </WrapPanel>
 </StackPanel>
</Window>

Wiederum wird über die Eigenschaft FlowDirection die Richtung der Reihe fest-
gelegt. In einer Reihe haben alle Steuerelemente dieselbe Höhe. Sobald eines der
Steuerelemente seine Höhe ändert (Eigenschaft Height), ändert sich auch die
Höhe der anderen Steuerelemente in der gleichen Reihe. Falls eine einheitliche
Breite beziehungsweise Höhe gewünscht wird, können Sie dies über die Eigen-
schaften ItemWidth und ItemHeight des Panels bestimmen.

3.3.1 Elemente neu erzeugen

Mithilfe der verschiedenen Buttons mit der Aufschrift Button 1 können Sie wei-
tere Buttons im jeweiligen Panel per Programmcode erstellen. Die Methode neu_
Click() aus dem Abschnitt 3.2.1, »Elemente neu erzeugen«, können Sie hier
unverändert anwenden, da alle Layoutklassen von der gemeinsamen Basisklasse
Panel abgeleitet sind.

3.3.2 Vertikale Orientierung

Auch in einem vertikal angeordneten WrapPanel gibt es zwei Möglichkeiten für
die Richtung der Reihe. Dies sehen Sie im Projekt WrapPanelOrientierung in
Abbildung 3.7.

DockPanel 3.4

39

Abbildung 3.7 Zwei vertikale WrapPanel

Beide vertikalen Reihen bieten nicht genügend Platz, daher wird jeweils eine wei-
tere vertikale Reihe eröffnet. Im zweiten Fall weist die Richtung der Reihe von
rechts nach links. Der Aufbau in XAML:

<Window ...>
 <StackPanel Orientation="Horizontal">
 <WrapPanel Orientation="Vertical" ...> ... </WrapPanel>
 <WrapPanel Orientation="Vertical"
 FlowDirection="RightToLeft" Margin="5">
 ...
 </WrapPanel>
 </StackPanel>
</Window>

Auch in diesem Projekt können Sie über die beiden Buttons mit der Aufschrift
Button 1 weitere Buttons erstellen.

3.4 DockPanel

In einem DockPanel ordnen Sie die Steuerelemente so an, wie Sie es aus vielen
Anwendungen kennen: Oben wird zum Beispiel das Hauptmenü angedockt,
unten eine Statuszeile, links und rechts gibt es weitere Bedienmöglichkeiten. In
der verbleibenden Mitte wird der zu bearbeitende Inhalt dargestellt. Ein Beispiel
sehen Sie im Projekt DockPanelTBLR (siehe Abbildung 3.8).

Abbildung 3.8 Reihenfolge »Top«, »Bottom«, »Left«, »Right«

Layout3

40

Der Aufbau in XAML:

<Window ...>
 <DockPanel>
 <Button DockPanel.Dock="Top">1: Top</Button>
 <Button DockPanel.Dock="Bottom">2: Bottom</Button>
 <Button DockPanel.Dock="Left">3: L</Button>
 <Button DockPanel.Dock="Left">4: L</Button>
 <Button DockPanel.Dock="Left">5: L</Button>
 <Button DockPanel.Dock="Right">6: Right</Button>
 <TextBlock Margin="10">Inhalt</TextBlock>
 </DockPanel>
</Window>

Den Steuerelementen innerhalb eines DockPanels wird die Attached Property
DockPanel.Dock zugeordnet. Die Werte für die Eigenschaft stammen aus der Enu-
meration Dock: Top, Bottom, Left und Right.

Wichtig ist die Reihenfolge: Der erste Button wird oben angeordnet und erstreckt
sich über die gesamte Breite. Beim zweiten Button gilt das Gleiche für unten. Sie
können mehrere Steuerelemente im gleichen Bereich andocken: Die Buttons 3
bis 5 werden nebeneinander links dargestellt. Diese Buttons können sich aller-
dings nicht mehr bis ganz oben oder ganz unten erstrecken, da dieser Platz
bereits durch die Buttons 1 und 2 belegt ist. Beim Button 6 gilt das Gleiche für
rechts.

Das letzte Element, hier ein TextBlock, wird gar nicht angedockt. Daher füllt es
den verbleibenden Platz. Mehr zum Element TextBlock folgt in Abschnitt 4.3.2.

3.4.1 DockPanel in Hierarchie

Im nachfolgenden Projekt DockPanelLRT sehen Sie Elemente, die jeweils wie-
derum andere Elemente enthalten (siehe Abbildung 3.9).

Abbildung 3.9 DockPanel und StackPanel

DockPanel 3.4

41

Die Elemente wurden in der Reihenfolge links, rechts und oben erzeugt. Daher
steht für das obere Element nicht mehr die gesamte Breite zur Verfügung. Das
rechte und das obere Element ist jeweils ein StackPanel, das weitere Elemente
beinhaltet. Der Aufbau in XAML:

<Window ...>
 <DockPanel>
 <Button DockPanel.Dock="Left">1: Left</Button>
 <StackPanel DockPanel.Dock="Right">
 <Button>2: SP Right</Button>
 ...
 </StackPanel>
 <StackPanel DockPanel.Dock="Top" Orientation="Horizontal">
 <Button>6: SP Top</Button>
 ...
 </StackPanel>
 <TextBlock Margin="10">Inhalt</TextBlock>
 </DockPanel>
</Window>

Es gibt drei Elemente, die mit der Attached Property DockPanel festgelegt wur-
den: ein Button und zwei StackPanels.

3.4.2 Elemente neu erzeugen

Im nachfolgenden Projekt DockPanelLastChild wird erläutert, wie Sie einem
DockPanel neue Elemente an der gewünschten Stelle hinzufügen (siehe Abbil-
dung 3.10).

Abbildung 3.10 Elemente neu erzeugen

Die Elemente wurden in der Reihenfolge links, rechts, oben, unten erzeugt. Es
wurden zwei weitere Elemente mit den Werten Top und Bottom für die Eigen-
schaft DockPanel.Dock hinzugefügt.

Layout3

42

Zunächst der Aufbau in XAML:

<Window ...>
 <DockPanel LastChildFill="False"> ...
 <Button DockPanel.Dock="Top" Click="neu_Click">
 3: Top</Button>
 <Button DockPanel.Dock="Bottom" Click="neu_Click">
 4: Bottom</Button>
 </DockPanel>
</Window>

Mithilfe der Eigenschaft LastChildFill können Sie bestimmen, ob das letzte Ele-
ment den verbleibenden Platz im Fenster füllt (Standardwert = True) oder nicht
(Wert = False). Der Aufbau der Methode neu_Click() ist etwas aufwendiger als
bei den anderen Panels, da Sie zunächst die Position ermitteln müssen:

private void neu_Click(object sender, RoutedEventArgs e)
{
 Button sb = sender as Button;
 Object dp = sb.GetValue(DockPanel.DockProperty);

 Button nb = new Button();
 nb.Content = "Neu";
 nb.SetValue(DockPanel.DockProperty, dp);

 Panel p = sb.Parent as Panel;
 p.Children.Add(nb);
}

Mithilfe der Methode GetValue() wird der Wert der Dependency Property
DockPanel.DockProperty ermittelt, die die Position des auslösenden Buttons
angibt. Dies wird die Position des neuen Buttons, die mithilfe von SetValue()
festgelegt wird.

3.5 Grid

Ein Grid dient zur regelmäßigen, übersichtlichen Anordnung der Elemente in
einem Raster. Sie legen zunächst die Anzahl der Zeilen und Spalten fest. Den ein-
zelnen Steuerelementen ordnen Sie anschließend die Koordinaten ihrer Zelle im
Grid zu, die aus der Nummer der Zeile und der Nummer der Spalte bestehen. Ein
erstes Beispiel folgt im Projekt GridAnordnung (siehe Abbildung 3.11).

Grid 3.5

43

Abbildung 3.11 Ein Grid mit drei Zeilen und zwei Spalten

Der Aufbau in XAML:

<Window ...>
 <Grid x:Name="gr">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Button Grid.Row="0" Grid.Column="0" Click="b1_Click">
 1: 0, 0</Button>
 <Button Grid.Row="0" Grid.Column="1" Click="b2_Click">
 2: 0, 1</Button>
 <Button Grid.Row="1" Grid.Column="1">3: 1, 1</Button>
 <Button Grid.Row="2" Grid.Column="0" Click="b4_Click">
 4: 2, 0</Button>
 </Grid>
</Window>

Die Gestaltung der einzelnen Zeilen und damit auch ihre Anzahl wird in der Auf-
listung Grid.RowDefinitions festgelegt. Das Gleiche gilt für die Spalten in der
Auflistung Grid.ColumnDefinitions. Die Zuordnung zu den einzelnen Zellen des
Grids geschieht mithilfe der Attached Properties Grid.Row und Grid.Column. Die
Zählung beginnt bei 0. Dies ist auch der Standardwert. Bei Button 1 hätten Sie
also die Zuordnung weglassen können.

3.5.1 Elemente neu erzeugen

Im Projekt GridAnordnung dient Button 1 zur Erzeugung eines neuen Elements
innerhalb einer vorhandenen Zelle. Button 2 fügt eine neue Spalte mit einem
weiteren Element hinzu. Button 4 fügt eine neue Zeile hinzu, ebenfalls mit

Layout3

44

einem weiteren Element. Damit kann der Benutzer das Grid verändern, sodass es
zum Beispiel wie in Abbildung 3.12 aussieht.

Abbildung 3.12 Ein Grid mit vier Zeilen und vier Spalten

Der zugehörige Programmcode:

private void b1_Click(...)
{
 Button nb = new Button();
 nb.Content = "Neu";
 nb.SetValue(Grid.RowProperty, 2);
 nb.SetValue(Grid.ColumnProperty, 1);
 gr.Children.Add(nb);
}

private void b2_Click(...)
{ ...
 nb.SetValue(Grid.RowProperty, 0);
 gr.ColumnDefinitions.Add(new ColumnDefinition());
 nb.SetValue(Grid.ColumnProperty,
 gr.ColumnDefinitions.Count - 1);
 gr.Children.Add(nb);
}

private void b4_Click(...)
{ ...
 gr.RowDefinitions.Add(new RowDefinition());
 nb.SetValue(Grid.RowProperty, gr.RowDefinitions.Count - 1);
 nb.SetValue(Grid.ColumnProperty, 0);
 gr.Children.Add(nb);
}

Mithilfe der Methode SetValue() setzen Sie die Dependency Properties Grid.
RowProperty und Grid.ColumnProperty auf die gewünschten Werte. Zur Erzeu-
gung einer neuen Spalte wird der Auflistung ColumnDefinitions mithilfe der
Methode Add() ein neues Element hinzugefügt. Die Eigenschaft ColumnDefini-

Grid 3.5

45

tions.Count liefert die aktuelle Anzahl der Spalten. Damit können Sie die Posi-
tion für das neue Element in der neuen Spalte bestimmen. Entsprechendes gilt
für die Auflistung Grid.RowDefinitions.

3.5.2 Elemente über mehrere Zellen

Elemente können sich über mehrere Zellen erstrecken. Dies wird ähnlich wie in
HTML-Tabellen gelöst. Ein Beispiel sehen Sie im Projekt GridSpannweite (siehe
Abbildung 3.13).

Abbildung 3.13 Elemente über mehrere Zellen

Der Aufbau in XAML:

<Window ...>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Button Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="2">
 1: 0, 0, ColumnSpan 2</Button>
 <Button Grid.Row="1" Grid.Column="0">2: 1, 0</Button>
 <Button Grid.Row="1" Grid.Column="1" Grid.RowSpan="2">
 3: 1, 1, RowSpan 2</Button>
 <Button Grid.Row="2" Grid.Column="0">4: 2, 0</Button>
 </Grid>
</Window>

Zunächst wird das Grundgerüst aufgebaut, das aus drei Zeilen und zwei Spalten
besteht. Anschließend ordnen Sie die Elemente wie gewohnt über die Attached

Layout3

46

Properties Grid.Row und Grid.Column zu. Die Attached Properties Grid

.ColumnSpan und Grid.RowSpan dienen dazu, die Elemente von der angegebenen
Zelle aus über die entsprechende Anzahl an Zellen zu »spannen«. Der Inhalt der
Zelle 0,1 stammt somit aus der Zelle 0,0. Der Inhalt der Zelle 2,1 stammt entspre-
chend aus der Zelle 1,1.

3.5.3 Größe der Zellen festlegen

Bisher waren alle Zellen gleich groß. Natürlich haben Sie auch die Möglichkeit,
die Größe der Zellen selbst zu bestimmen. Die Zellgröße kann sich nach dem
Inhalt richten, sie kann einen bestimmten Wert annehmen oder in einem festen
Verhältnis zur Größe der anderen Zellen stehen.

Im nachfolgenden Projekt GridAuto wird die Höhe beziehungsweise die Breite
bestimmter Zellen nach dem Inhalt ausgerichtet (siehe Abbildung 3.14).

Abbildung 3.14 Höhe beziehungsweise Breite automatisch

Der Aufbau in XAML:

<Window ...>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 ...
</Window>

Dank des Wertes Auto für die Eigenschaft Height richtet sich die Höhe der ersten
Zeile nach der Höhe des Textes auf dem Element. Das Entsprechende gilt für die

Grid 3.5

47

Breite (Width) der zweiten Spalte, die sich nach der Breite des Textes richtet. Die
gilt unabhängig von den Einstellungen für Grid.RowSpan und Grid.ColumnSpan.

Im nachfolgenden Projekt GridWert stehen die Höhen der Zeilen in einem
bestimmten Verhältnis zueinander. Dagegen richtet sich die Breite bestimmter
Spalten nach einem Wert (siehe Abbildung 3.15).

Abbildung 3.15 Höhe im Verhältnis, Breite mit Wert

Der Aufbau in XAML:

<Window ...>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="2*" />
 <RowDefinition Height="*" />
 <RowDefinition Height="3*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="190" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 ...
</Window>

Die Höhen der Zeilen stehen im Verhältnis 2 zu 1 zu 3. Ein einfacher * steht bei
einer Verhältnisangabe für 1*. Die Breite der linken Spalte wurde mit dem Wert
190 festgelegt, für die rechte Spalte verbleibt der Rest. Auch hier sehen Sie wie-
der die Parallelen zu HTML.

3.5.4 Die Größe der Zellen flexibel gestalten

Sie möchten dem Benutzer Ihrer Anwendung die Möglichkeit geben, Zeilenhöhe
und Spaltenbreite zu verändern? Dies ermöglichen Ihnen Elemente vom Typ
GridSplitter. Im nachfolgenden Projekt GridVerschieben wird Ihnen ein Beispiel
gezeigt (siehe Abbildung 3.16).

Layout3

48

Abbildung 3.16 Verschobenes Grid

Ursprünglich waren die Zellen mit den Buttons gleich groß. Der Benutzer hat
aber bereits die beiden schwarz hervorgehobenen GridSplitter genutzt, um Höhe
und Breite zu verstellen. Der Aufbau in XAML:

<Window ...>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition MinHeight="10" />
 <RowDefinition Height="Auto" />
 <RowDefinition MinHeight="10" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition MinWidth="10" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition MinWidth="10" />
 </Grid.ColumnDefinitions>
 <Button Grid.Row="0" Grid.Column="0">
 1: 0, 0, MinW 10</Button>
 <GridSplitter Grid.Row="0" Grid.Column="1" Grid.RowSpan="4"
 ResizeBehavior="PreviousAndNext" Width="3"
 Background="Black" />
 <Button Grid.Row="0" Grid.Column="2">
 2: 0, 2, MinW 10</Button>
 <Button Grid.Row="1" Grid.Column="0">
 3: 1, 0, MinH 10</Button>
 <Button Grid.Row="1" Grid.Column="2">4: 1, 2</Button>
 <GridSplitter Grid.Row="2" Grid.Column="0"
 Grid.ColumnSpan="3" ResizeBehavior="PreviousAndNext"
 HorizontalAlignment="Stretch" Height="3"
 Background="Black" />
 <Button Grid.Row="3" Grid.Column="0">

Layout-Kombination 3.6

49

 5: 3, 0, MinH 10</Button>
 <Button Grid.Row="3" Grid.Column="2">6: 3, 2</Button>
 </Grid>
</Window>

Das Grid umfasst vier Zeilen und drei Spalten. Eine Zeile und eine Spalte werden
jeweils von einem GridSplitter eingenommen. Für die beiden Nachbarzeilen
(1 und 3) der Zeile mit dem GridSplitter (2) ist es sinnvoll, eine Minimalhöhe zu
vereinbaren. Ansonsten würden sie bei einer extremen Verschiebung des Grid-
Splitters gänzlich verschwinden. Entsprechend haben die Nachbarspalten (0 und 2)
der Spalte mit dem GridSplitter (1) eine Minimalbreite.

Der Spalten-GridSplitter in Zelle 0,1 geht über die gesamte Spalte (Grid
.RowSpan=4). Zur besseren Bedienung hat er eine Breite von 3 und ist schwarz.

Der Zeilen-GridSplitter in Zelle 2,0 geht über die gesamte Zeile (Grid
.ColumnSpan=3). Zur besseren Bedienung hat er eine Höhe von 3, ist schwarz
und dehnt sich über die gesamte Breite aus (HorizontalAlignment = Stretch).

Bei beiden GridSplittern ist die Eigenschaft ResizeBehavior mit dem gleichen
Wert festgelegt. Damit legen Sie fest, welche Zeilen beziehungsweise Spalten ihre
Größe verändern. Der Wert stammt aus der Enumeration GridResizeBehavior.
Erlaubt sind:

� PreviousAndNext: Zeile über und unter dem GridSplitter beziehungsweise
Spalte links und rechts vom GridSplitter (gilt hier)

� CurrentAndNext: Zeile beziehungsweise Spalte des GridSplitters und Zeile da-
runter beziehungsweise Spalte rechts

� PreviousAndCurrent: Zeile beziehungsweise Spalte des GridSplitters und Zeile
darüber beziehungsweise Spalte links

� BasedOnAlignment: Die Größenänderung richtet sich nach den Alignment-
Eigenschaften.

3.6 Layout-Kombination

Es folgt ein Beispiel für die Kombination verschiedener Layouts (Projekt Panel-
Kombi). Bei einigen Steuerelementen wurde auch das Innere mithilfe eines Lay-
outs gestaltet. Zunächst sehen Sie in Abbildung 3.17 die Anwendung in Original-
größe nach dem Start.

Layout3

50

Abbildung 3.17 Nach dem Start

Innerhalb der Button-Steuerelemente 3 und 5 sind unter dem Text eine ComboBox
beziehungsweise eine CheckBox angeordnet. Nach einer Verkleinerung durch den
Benutzer kann die Anwendung aber auch so aussehen wie in Abbildung 3.18.

Abbildung 3.18 Nach der Verkleinerung

Der Aufbau in XAML:

<Window ...>
 <DockPanel>
 <Button DockPanel.Dock="Left">B 1</Button>
 <Button DockPanel.Dock="Top">B 2</Button>
 <Grid DockPanel.Dock="Right">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Button Grid.Row="0" Grid.Column="0">
 <StackPanel>
 <TextBlock>Text 3</TextBlock>
 <ComboBox>
 <ComboBoxItem IsSelected="True">3.1</ComboBoxItem>
 <ComboBoxItem>3.2</ComboBoxItem>
 <ComboBoxItem>3.3</ComboBoxItem>

Layout-Kombination 3.6

51

 </ComboBox>
 </StackPanel>
 </Button>
 <Button Grid.Row="0" Grid.Column="1">B 4</Button>
 <Button Grid.Row="1" Grid.Column="0">
 <StackPanel>
 <TextBlock>Text 5</TextBlock>
 <CheckBox>CB 5</CheckBox>
 </StackPanel>
 </Button>
 <Button Grid.Row="1" Grid.Column="1">B 6</Button>
 </Grid>
 <TextBlock HorizontalAlignment="Center"
 VerticalAlignment="Center">Inhalt</TextBlock>
 </DockPanel>
</Window>

Das Hauptelement des Layouts ist ein DockPanel. Es beinhaltet drei gedockte Ele-
mente (zwei Buttons und ein Grid) sowie einen TextBlock. Das Grid hat zwei Zei-
len und zwei Spalten. Die Elemente der ersten Spalte sind Buttons, die mithilfe
eines StackPanels gestaltet wurden. Diese StackPanels beinhalten je einen Text-
Block und ein weiteres Element. Mehr zu Aufbau und Eigenschaften der Steuer-
elemente erfahren Sie im folgenden Kapitel.

53

Die Bedienung der Oberflächen wird durch Steuerelemente ermöglicht.
Die WPF bietet viele Typen mit zahlreichen Eigenschaften und
Ereignissen.

4 Steuerelemente

Steuerelemente (engl. Controls) dienen den Benutzern dazu, Ihre Anwendungen
zu bedienen. Steuerelemente können in der WPF auf umfangreiche Weise gestal-
tet werden. Dabei sind manchmal die Grenzen zwischen Layout und Steuerele-
ment fließend. Zur besseren Übersicht habe ich die Vielzahl der Steuerelemente
in Gruppen unterteilt:

� Schalter: Elemente zum Auslösen von Aktionen und zum Umschalten zwi-
schen Zuständen

� Text und Beschriftung: Elemente zur unformatierten oder formatierten Ein-
und Ausgabe von Texten

� Auswahl: Elemente zur übersichtlichen Darstellung und Auswahl von mehre-
ren Möglichkeiten

� Zahlenwerte: Elemente zur anschaulichen Darstellung und eindeutigen Ein-
gabe von Zahlenwerten innerhalb von Zahlenbereichen

� Container: Elemente zur Gruppierung anderer Elemente

� Menüs und Leisten: Haupt- und Kontextmenü, Symbol- und Statusleiste

� Datum: Elemente zur eindeutigen Auswahl von Datumswerten

� weitere Elemente, die keiner anderen Gruppe zugeordnet sind

Bevor es zu den einzelnen Gruppen geht, habe ich im ersten Abschnitt Eigen-
schaften beschrieben, die vielen Elementen gemeinsam sind.

4.1 Allgemeiner Aufbau

Eigenschaften, die vielen Elementen gemeinsam sind, sind unter anderem Größe,
Farbe, Sichtbarkeit, Abstand und Ausrichtung. Als Beispiele in diesem Abschnitt
verwende ich häufig Buttons, unter anderem wegen ihrer guten Erkennbarkeit.

Steuerelemente4

54

4.1.1 Größe, Schrift, Farbe, Bedienung per Tastatur

Die Eigenschaften eines Steuerelements (Controls), die dem Benutzer sofort ins
Auge fallen, sind Größe, Schrift und Farbe. Im nachfolgenden Projekt ControlsGe-
staltung werden einige Buttons dargestellt, bei denen diese Eigenschaften in
XAML eingestellt und per Programmcode verändert werden (siehe Abbildung 4.1).
Außerdem wird gezeigt, wie sie per Tastatur bedient werden können.

Abbildung 4.1 Größe, Schrift, Farbe, Bedienung per Tastatur

Zunächst der Aufbau des Canvas in XAML:

<Canvas>
 <Button x:Name="b1" Height="30" Width="180"
 FontFamily="Calibri" FontSize="11" FontStyle="Italic"
 FontWeight="Bold" Click="b1_Click">
 1: H30, W180, Calibri 11 italic bold</Button>
 <Button Content="2: ohne Angaben" Canvas.Top="35" />
 <Button x:Name="b3" Canvas.Top="63" Background="White"
 Foreground="Gray" Click="b3_Click">
 3: Grau auf Weiß</Button>
 <Button Canvas.Top="91" Click="b4_Click">
 4: _Hallo (Alt+H)</Button>
 <Button Canvas.Top="119" Click="b5_Click">
 5: Unter_strich__anzeigen (Alt+S)</Button>
</Canvas>

Der Inhalt vieler Steuerelemente entspricht der Eigenschaft Content. Sie können
den Inhalt entweder über diese Eigenschaft zuweisen (siehe Button 2) oder inner-
halb des Elementknotens, wie bei den anderen Buttons.

Bei Steuerelementen in einem Canvas oder in einem WrapPanel richten sich die
Höhe und die Breite nach dem Inhalt (siehe Button 2) – es sei denn, Sie legen
die Eigenschaften Height und Width explizit fest (siehe Button 1). Schrifteigen-
schaften werden über insgesamt fünf Eigenschaften gewählt: FontFamily (Fami-

Allgemeiner Aufbau 4.1

55

lie verwandter Schriftarten), FontSize (Schriftgröße), FontStyle (Schriftstil),
FontWeight (Schriftgewicht) und FontStretch (Schriftdehnung).

Hintergrundfarbe (Eigenschaft Background) und Vordergrundfarbe (Eigenschaft
Foreground) werden über einen Pinsel (Brush) bestimmten Typs und bestimm-
ter Farbe festgelegt (siehe Button 3). Der Standard ist ein Pinsel vom Typ
SolidColorBrush (siehe auch den Programmcode). Dieser Pinseltyp färbt das
Element einheitlich in der angegebenen Farbe. Mehr zum Typ Brush finden Sie
in Abschnitt 9.4, »Pinsel«.

Als Hilfestellung zur Steuerung einer Anwendung per Tastatur können Sie ein Zei-
chen der Beschriftung unterstreichen. Dies erreichen Sie über einen Unterstrich
im Text vor dem betreffenden Zeichen (siehe Button 4). Falls Sie einen Unterstrich
darstellen möchten, so sind zwei Unterstriche nacheinander notwendig (siehe
Button 5). Der Benutzer sieht die Unterstriche nach Betätigung der Taste (Alt) und
kann dann das betreffende Zeichen eingeben (siehe Abbildung 4.2).

Abbildung 4.2 Geänderte Buttons 1 und 3, Unterstriche

Zur Änderung einiger Eigenschaften der Buttons 1 und 3 kann der Benutzer sie
betätigen (siehe Abbildung 4.2). Die zugehörigen Methoden sehen so aus:

private void b1_Click(...)
{
 b1.Height = 23;
 b1.Width = 220;
 b1.FontFamily = new FontFamily("Comic Sans MS");
 b1.FontSize = 12;
 b1.FontStyle = FontStyles.Normal;
 b1.FontWeight = FontWeights.Normal;
 b1.Content = "1: H23, W220, Comic Sans MS 12";
}

private void b3_Click(...)
{

Steuerelemente4

56

 b3.Background = new SolidColorBrush(Colors.Gray);
 b3.Foreground = new SolidColorBrush(Colors.White);
 b3.Content = "3: Weiß auf Grau";
}

Die Eigenschaften Height, Width und FontSize sind vom Typ double. Die Eigen-
schaft FontFamily ist vom Typ FontFamily. Bei der Erzeugung einer Instanz dieses
Typs kann eine Zeichenkette mit einem Schriftartnamen und gegebenenfalls einem
Basis-URI zugewiesen werden. Den Eigenschaften FontStyle und FontWeight kann
eine statische Eigenschaft der Klassen FontStyles (Italic, Normal oder Oblique)
beziehungsweise FontWeights (Bold, Normal, Thin, …) zugewiesen werden.

Die Farben werden mithilfe einer Instanz eines bestimmten Pinseltyps geändert;
hier ist dies SolidColorBrush. Ein Pinsel wird meist in einer Farbe erzeugt. Dazu
wird eine Instanz der Klasse Color genutzt. Diese lässt sich auf vielfältige Art anle-
gen, unter anderem mithilfe der Klasse Colors. Die Klasse Colors bietet eine
große Anzahl an Farben als statische Eigenschaften an. Mehr zu Pinseln finden
Sie in Abschnitt 9.4, »Pinsel«.

4.1.2 Sichtbarkeit, Bedienbarkeit

Steuerelemente können nur betätigt werden, wenn sie sichtbar und bedienbar
sind. Sie können Steuerelemente sowohl optisch ein- und ausblenden als auch
logisch ein- und ausschalten. Sie können bestimmen, ob ein aktuell nicht sichtba-
res Steuerelement einen Platz im Layout einnimmt oder nicht.

Im nachfolgenden Projekt ControlsBedienbar sehen Sie zunächst nur zwei von
insgesamt vier Elementen (siehe Abbildung 4.3). Dazwischen ist Platz für ein wei-
teres Element. Der Button 4 ist zurzeit nicht bedienbar. Dies wird auch optisch
verdeutlicht.

Abbildung 4.3 Nach dem Start: Zwei von vier Elementen sind sichtbar.

Sobald Sie den oberen Button betätigen, sind alle vier Elemente sichtbar. Der
vierte Button ist nun auch eingeschaltet. Außerdem wurde er nach unten ver-
schoben (siehe Abbildung 4.4).

Allgemeiner Aufbau 4.1

57

Abbildung 4.4 Alle vier Buttons sind sichtbar und bedienbar.

Der Aufbau des StackPanel in XAML:

<StackPanel>
 <Button Click="b1_Click">ControlsBedienbar</Button>
 <Button x:Name="b2" Visibility="Hidden">2</Button>
 <Button x:Name="b3" Visibility="Collapsed">3</Button>
 <Button x:Name="b4" IsEnabled="False"
 Click="b4_Click">4</Button>
</StackPanel>

Button 2 war zunächst versteckt – dank des Wertes Hidden für die Eigenschaft
Visibility. Er hat aber schon einen Platz im Layout eingenommen, daher die
Lücke in Abbildung 4.3. Button 3 hatte zunächst noch keinen Platz im Layout –
dank des Wertes Collapsed für die Eigenschaft Visibility. Die Werte stammen
aus der Enumeration Visibility; der Standardwert ist Visible. Beim Button 4
hat die boolesche Eigenschaft IsEnabled den Wert False, daher kann er zunächst
nicht bedient werden. Es folgt der Code für die Änderungen:

private void b1_Click(...)
{
 b2.Visibility = Visibility.Visible;
 b3.Visibility = Visibility.Visible;
 b4.IsEnabled = true;
}

4.1.3 Elemente mit EventHandler neu erzeugen, Elemente löschen

In Kapitel 3, »Layout«, wurden bereits Elemente innerhalb der verschiedenen
Layouts neu erzeugt. In diesem Abschnitt soll im Projekt ControlsNeuLöschen für
das neue Element auch der zugehörige EventHandler erzeugt werden. In der
zugehörigen Ereignismethode wird gezeigt, wie man wieder Elemente aus dem
Layout löschen kann.

Zunächst gibt es innerhalb eines ScrollViewer ein StackPanel mit nur einem But-
ton. Bei jeder Betätigung des Buttons wird ein neuer Button erzeugt und ange-

Steuerelemente4

58

hängt, mit laufender Nummer. Die Betätigung eines der neuen Buttons führt
dazu, dass er gelöscht wird (siehe Abbildung 4.5).

Abbildung 4.5 Nach dem Hinzufügen und Löschen einiger Buttons

Der XAML-Code (StackPanel mit ScrollViewer) ähnelt dem in Abschnitt 3.2,
»StackPanel«.

Es folgt der Code der Fensterklasse:

public partial class MainWindow : Window
{
 int nr;
 public MainWindow()
 {
 InitializeComponent();
 nr = 1;
 }

 private void b1_Click(object sender, RoutedEventArgs e)
 {
 Button neu = new Button();
 neu.Content = "Neu " + nr;
 nr++;
 neu.Click += new RoutedEventHandler(loeschen);
 sp.Children.Add(neu);
 }

 private void loeschen(object sender, RoutedEventArgs e)
 {
 sp.Children.Remove(sender as UIElement);
 }
}

Nach Erzeugung der Button-Instanz wird zum Ereignis Click ein Verweis auf eine
passende EventHandler-Methode hinzugefügt. Diese Methode, hier loeschen(),
muss zur Verfügung gestellt werden.

Allgemeiner Aufbau 4.1

59

In der Methode loeschen() wird die Methode Remove() zum Löschen eines Ele-
ments aufgerufen. Diese verlangt einen Parameter vom Typ UIElement. Dies ist
hier der Button, der das Ereignis ausgelöst hat.

4.1.4 Padding, Innenabstand

Die Eigenschaft Padding sorgt für einen Innenabstand, also einen Abstand des
Elementinhalts (Text, Bild, Layout-Element, …) zum Rand des Elements. Diese
Technik kennen Sie vielleicht aus CSS. Im nachfolgenden Projekt ControlsPadding
sehen Sie einige Möglichkeiten zur Festlegung in XAML und zu Änderungen
durch Programmcode (siehe Abbildung 4.6).

Abbildung 4.6 Padding, nach dem Start

Die Elemente liegen in einem Canvas. Der Aufbau in XAML:

<Canvas>
 <Button>1: (ohne)</Button>
 <Button Padding="0" ... Click="b2_Click">2: 0</Button>
 <Button Padding="10" ... Click="b3_Click">3: 10</Button>
 <Button Padding="30,10" ...>4: 30, 10</Button>
 <Button Padding="30,10,80,0" ... Click="b5_Click">
 5: 30, 10, 80, 0</Button>
</Canvas>

Sie können die Eigenschaft Padding in XAML auf mehrere Arten festlegen:

� mit einem Wert, der für den Abstand zu allen vier Seiten gilt (siehe Button 2
und 3)

� mit zwei Werten: Der erste gilt für den Abstand rechts und links, der zweite
für den Abstand oben und unten (siehe Button 4),

� mit vier Werten: Sie gelten in der Reihenfolge für die Abstände links, oben,
rechts und unten, also einmal im Uhrzeigersinn herum (siehe Button 5).

Steuerelemente4

60

Falls Sie die Eigenschaft Padding gar nicht nutzen, so gilt ein einheitlicher Wert
von 1 (siehe Button 1). Nach Betätigung der Buttons 2, 3 und 5 werden die Werte
für Padding geändert (siehe Abbildung 4.7).

Abbildung 4.7 Padding, nach den Änderungen

Der zugehörige Programmcode:

private void b2_Click(...)
{
 b2.Padding = new Thickness(10);
 b2.Content = "2: 10";
}

private void b3_Click(...)
{
 Thickness th = b3.Padding;
 th.Left = 20;
 b3.Padding = th;
 b3.Content = "3: 20, 10, 10, 10";
}

private void b5_Click(...)
{
 b5.Padding = new Thickness(80, 0, 30, 10);
 b5.Content = "5: 80, 0, 30, 10";
}

Werte für die Eigenschaft Padding (wie auch im nächsten Abschnitt für die ver-
wandte Eigenschaft Margin) sind vom Typ Thickness. Ein Konstruktor für diese
Struktur akzeptiert einen einheitlichen double-Wert, wie er für Button 2 genutzt
wird. Ein weiterer Konstruktor arbeitet mit vier double-Werten für links, oben,
rechts und unten (siehe Button 5). Es gibt keinen Konstruktor, der zwei double-
Werte entgegennimmt.

Allgemeiner Aufbau 4.1

61

Eine Untereigenschaft wie Padding.Left können Sie zwar lesen, aber nicht ver-
ändern. Daher müssen Sie einen Umweg gehen, falls Sie nur einen der vier Werte
verändern möchten (wie für Button 3).

4.1.5 Margin, Außenabstand

Die Eigenschaft Margin sorgt für einen Außenabstand, also einen Abstand des
Elements zum Nachbarelement beziehungsweise übergeordneten Element. Auch
diese Technik kennen Sie vielleicht aus CSS. Im nachfolgenden Projekt Controls-
Margin sehen Sie einige Möglichkeiten zur Festlegung in XAML und im Pro-
grammcode (siehe Abbildung 4.8).

Abbildung 4.8 Margins, nach dem Start

Die Elemente liegen in einem StackPanel. Damit sind die Auswirkungen der Mar-
gin-Änderungen deutlicher zu erkennen. Der Aufbau in XAML:

<StackPanel>
 <Button>1: (ohne)</Button>
 <Separator Margin="0" />
 <Button Margin="5" ... Click="b2_Click">2: 5</Button>
 <Separator Margin="0" />
 <Button Margin="80,10">3: 80, 10</Button>
 <Separator Margin="0" />
 <Button Margin="30,10,80,0" ... Click="b4_Click">
 4: 30, 10, 80, 0</Button>
 <Separator Margin="0" />
</StackPanel>

Sie können die Eigenschaft Margin (analog zur Eigenschaft Padding aus dem vor-
herigen Abschnitt) in XAML auf mehrere Arten festlegen:

� mit einem Wert, der für den Abstand zu allen vier Seiten gilt (siehe Button 2)

� mit zwei Werten: Der erste gilt für den Abstand rechts und links, der zweite
für den Abstand oben und unten (siehe Button 3).

Steuerelemente4

62

� mit vier Werten: Sie gelten in der Reihenfolge für die Abstände links, oben,
rechts und unten, also einmal im Uhrzeigersinn herum (siehe Button 4).

Es werden zusätzlich Elemente vom Typ Separator eingesetzt. Diese dienen zur
Trennung von Steuerelementen. Hier stellen sie das obere beziehungsweise untere
Nachbarelement dar, auf die sich die Eigenschaft Margin der Buttons auswirkt.

Nach Betätigung der Buttons 2 und 4 werden die Werte für Margin geändert
(siehe Abbildung 4.9).

Abbildung 4.9 Margins, nach den Änderungen

Der zugehörige Programmcode:

private void b2_Click(...)
{
 b2.Margin = new Thickness(8);
 b2.Content = "2: 8";
}

private void b4_Click(...)
{
 b4.Margin = new Thickness(80, 0, 30, 10);
 b4.Content = "4: 80, 0, 30, 10";
}

Werte für die Eigenschaft Margin sind, wie die Werte für die Eigenschaft Padding,
vom Typ Thickness. Die Konstruktoren mit einem beziehungsweise vier Parame-
tern und die Nicht-Veränderbarkeit der Untereigenschaften (wie Margin.Left)
wurden bereits beschrieben.

4.1.6 Alignment, Ausrichtung

Es gibt vier verschiedene Ausrichtungen für Steuerelemente. Die Eigenschaften
HorizontalAlignment und VerticalAlignment beziehen sich auf die Ausrichtung
des Elements innerhalb des übergeordneten Elements. Die Eigenschaften

Allgemeiner Aufbau 4.1

63

HorizontalContentAlignment und VerticalContentAlignment bestimmen die
Ausrichtung des Inhalts innerhalb eines Elements.

Im nachfolgenden Projekt ControlsAlign sehen Sie die Möglichkeiten auf einen
Blick (siehe Abbildung 4.10).

Abbildung 4.10 Vier Eigenschaften zur Ausrichtung

Insgesamt vier StackPanel stehen in einem übergeordneten, horizontalen Stack-
Panel. Von links nach rechts werden dargestellt:

� HorizontalAlignment, innerhalb eines vertikalen StackPanels. Der Standard-
wert ist Stretch (das Element wird über den verfügbaren Platz gedehnt); wei-
tere Werte stammen aus der Enumeration HorizontalAlignment und sind
Left, Center und Right.

� VerticalAlignment innerhalb eines horizontalen StackPanels. Der Standard-
wert ist Stretch; weitere Werte stammen aus der Enumeration
VerticalAlignment und sind Top, Center und Bottom.

� HorizontalContentAlignment, innerhalb eines vertikalen StackPanels. Der
Standardwert ist Center; die Werte stammen aus der Enumeration Hori-
zontalAlignment.

� VerticalContentAlignment, innerhalb eines horizontalen StackPanels. Der
Standardwert ist Center, die Werte stammen aus der Enumeration Verti-
calAlignment.

Es folgt der Ausschnitt des XAML-Codes für das erste StackPanel. Der restliche
Code ergibt sich aus den obigen Erläuterungen.

<Window ...>
 <StackPanel Orientation="Horizontal">
 <StackPanel Width="80" Margin="5">
 <Button ...>Stretch</Button>
 <Button HorizontalAlignment="Left">Left</Button>
 <Button HorizontalAlignment="Center">Center</Button>
 <Button HorizontalAlignment="Right">Right</Button>
 </StackPanel>
 ...

Steuerelemente4

64

4.2 Schalter

In diesem Abschnitt sehen Sie Elemente, die häufig zum Schalten und somit zum
Auslösen von Aktionen dienen, wie Button, RepeatButton, ToggleButton, Radio-
Button und CheckBox. Einige davon können auch dazu genutzt werden, eine
Auswahl zu treffen.

4.2.1 Button

Ein Standard-Button ist die einfachste Form der Schaltfläche. Sie können Ihren
Buttons ein besonderes Verhalten verleihen, sodass sie direkt auf die Tasten (Esc)
oder (¢) reagieren. Auf vielen Steuerelementen können neben Zeichen auch Bil-
der platziert werden. Dies macht die Bedienung intuitiver. Im nachfolgenden
Projekt SchalterButton sehen Sie einige Beispiele dazu innerhalb eines Canvas
(siehe Abbildung 4.11).

Abbildung 4.11 Buttons

Der Aufbau der Buttons in XAML:

<Button IsCancel="True" Click="b1_Click">ESC</Button>
<Button IsDefault="True" Click="b2_Click"
 Canvas.Left="70">Enter</Button>
<Button Width="40" ...>
 <Image Source="work.gif" />
</Button>
<Button Width="40" ...>
 <StackPanel>
 <TextBlock HorizontalAlignment="Center">Text</TextBlock>
 <Image Source="work.gif" />
 </StackPanel>
</Button>
<Button ...>
 <TextBlock>Zeile 1<LineBreak />Zeile 2
 <LineBreak />Zeile 3</TextBlock>
</Button>

Schalter 4.2

65

Beim ersten Button wurde die Eigenschaft IsCancel auf True gesetzt. Dies führt
dazu, dass die Taste (Esc) die Ereignismethode des Buttons aufruft. Es macht
dann Sinn, dadurch die Anwendung zu schließen:

private void b1_Click(...) { Close(); }

Beim zweiten Button wurde die Eigenschaft IsDefault auf True gesetzt. Nach
dem Start der Anwendung ist dieser Button die Default-Schaltfläche. Die Taste
(¢) ruft dann die Ereignismethode dieses Buttons auf:

private void b2_Click(...) { MessageBox.Show("Taste Enter"); }

Die Eigenschaften IsCancel und IsDefault sollten nur bei jeweils einem Button
auf True gesetzt werden. Andernfalls hat die jeweilige Taste nicht die gewünschte
Auswirkung.

Auf zwei weiteren Buttons wird der Inhalt einer Bilddatei dargestellt. Die Größe
des Bildes wird dabei der Breite des Elements angepasst, falls diese zugewiesen
wurde. Die Bilddatei wurde dem Projekt als Ressource hinzugefügt, einfach per
Drag&Drop. Mehr zu Ressourcen erfahren Sie in Abschnitt 6.2. Beim Steuerele-
ment vom Typ Image (zur Darstellung des Bildes) wurde die Eigenschaft Source
auf den Namen der Bilddatei gesetzt.

Auf dem ersten Button in der unteren Reihe stellt das Bild den Inhalt dar. Der
zweite Button in der unteren Reihe soll einen TextBlock und ein Bild darstellen.
Da dies nun einmal zwei Elemente sind, muss ein übergeordnetes Element, hier
ein StackPanel, als Inhalt des Buttons dienen.

Falls Sie mehrere Zeilen Text auf dem Button benötigen (wie im dritten Button in
der unteren Reihe), könnten Sie wiederum ein StackPanel mit mehreren TextBlö-
cken nutzen. Einfacher geht es mithilfe des Elements LineBreak.

4.2.2 RepeatButton

Im Gegensatz zu einem Standard-Button reagiert ein RepeatButton auf dauerhaf-
ten Druck mit der Wiederholung des Ereignisses. Im nachfolgenden Projekt
SchalterRepeat sehen Sie zwei RepeatButtons, die ein drittes Element innerhalb
eines Canvas nach rechts oder links »bewegen« (siehe Abbildung 4.12).

Abbildung 4.12 Zwei RepeatButtons

Steuerelemente4

66

Der Aufbau des Canvas in XAML:

<Canvas>
 <RepeatButton Content=">>" Click="repeat1_Click" />
 <RepeatButton Content="<<" Canvas.Right="0"
 Click="repeat2_Click" />
 <Label Canvas.Left="100" x:Name="lb">x</Label>
</Canvas>

Auch hier wird eine Ereignismethode für das Ereignis Click registriert, auch
wenn es sich streng genommen um einen dauerhaften Druck und nicht um einen
Click handelt. Die Int32-Eigenschaften Delay und Interval (hier nicht verwen-
det) stehen für die Millisekunden

� der Wartezeit auf die erste Wiederholung

� der Wartezeit zwischen zwei Wiederholungen

Hinweis: Falls Sie die Sonderzeichen > oder < abbilden möchten, so dürfen diese
nicht mit den Zeichen für XAML-Markierungen kollidieren. Daher müssen sie
innerhalb der Eigenschaft Content angegeben werden. Im Falle des Zeichens <
reicht selbst das nicht: Sie müssen wie in HTML die Entity < nutzen. lt steht
für »lower than«.

Die Methoden:

private void repeat1_Click(...) { bewegen(5); }
private void repeat2_Click(...) { bewegen(-5); }
private void bewegen(double wert)
{ double left = (double)lb.GetValue(Canvas.LeftProperty);
 lb.SetValue(Canvas.LeftProperty, left + wert); }

4.2.3 ToggleButton und CheckBox

Diese beiden Elemente dienen als Umschalter zwischen zwei oder drei Zustän-
den: Ein, Aus und gegebenenfalls Nicht definiert. Sie unterscheiden sich nur im
Aussehen, nicht im Verhalten. Ihr aktueller Zustand kann auch per Programm-
code abgefragt werden, falls nicht sofort auf das Umschalten reagiert werden soll.
ToggleButtons werden gerne in Symbolleisten eingesetzt, besonders mit Bild,
(siehe Abschnitt 4.7.3, »Symbolleiste«).

Im nachfolgenden Projekt SchalterEinAusNull sehen Sie einige Möglichkeiten,
mit diesen Elementen zu arbeiten (siehe Abbildung 4.13). Die Elemente können
zu Beginn auf einen der zwei (beziehungsweise drei) Zustände gesetzt werden.

Schalter 4.2

67

Abbildung 4.13 ToggleButton und CheckBox

Zunächst der Aufbau in einem StackPanel in XAML:

<StackPanel x:Name="sp" Background="LightGray">
 <ToggleButton Width="80" Click="einaus_Click">
 False</ToggleButton>
 <ToggleButton Width="80" Click="einaus_Click"
 IsChecked="True">True</ToggleButton>
 <ToggleButton Width="80" Click="null_Click" IsThreeState="True"
 IsChecked="{x:Null}">x:Null</ToggleButton>
 <Separator />
 <CheckBox Click="einaus_Click">False</CheckBox>
 <CheckBox Click="einaus_Click" IsChecked="True">True</CheckBox>
 <CheckBox Click="null_Click" IsThreeState="True"
 IsChecked="{x:Null}">x:Null</CheckBox>
</StackPanel>

Die Eigenschaft IsChecked kennzeichnet den Zustand des Elements. Sie ist nicht
vom Typ bool, sondern vom Typ bool?, weil sie drei Zustände annehmen kann.
Der Standardwert der Eigenschaft ist False. Falls True gewählt wurde, so ist der
ToggleButton eingedrückt und die CheckBox markiert.

Normalerweise schaltet der Benutzer zwischen den beiden Zuständen Ein und
Aus um. Falls die Eigenschaft IsThreeState auf True gesetzt wurde, so schaltet
der Benutzer zwischen den drei Zuständen Ein, Aus und Nicht definiert um. Falls
dies als Startwert gewünscht ist, so muss IsChecked auf {x:Null} gesetzt werden.
Diesen Zustand sieht man nur der CheckBox an.

Die Ereignisse Checked und Unchecked treten beim Einschalten beziehungsweise
Ausschalten ein. Das Ereignis Click tritt bei Betätigung immer ein, unabhängig
vom Zustand. Aufgrund der Tatsache, dass die Klasse CheckBox von der Klasse
ToggleButton abgeleitet ist, können dieselben nachfolgenden Ereignismethoden
genutzt werden.

Steuerelemente4

68

private void einaus_Click(object sender, RoutedEventArgs e)
{
 ToggleButton tb = sender as ToggleButton;
 tb.Content = tb.IsChecked;
}

private void null_Click(object sender, RoutedEventArgs e)
{
 ToggleButton tb = sender as ToggleButton;

 if (tb.IsChecked == null)
 tb.Content = "x:Null";
 else
 tb.Content = tb.IsChecked;

 if (tb.IsChecked == true)
 sp.Background = new SolidColorBrush(Colors.White);
 else if (tb.IsChecked == false)
 sp.Background = new SolidColorBrush(Colors.Gray);
 else
 sp.Background = new SolidColorBrush(Colors.LightGray);
}

Um den Verweis auf einen ToggleButton zu erzeugen, wird der Namespace
System.Windows.Controls.Primitives benötigt. In beiden Methoden wird
zunächst ermittelt, welcher ToggleButton betätigt wurde. Bei den ersten beiden
ToggleButtons und den ersten beiden CheckBoxen gibt es nur zwei Zustände,
daher kann der Zustand (True oder False) der Eigenschaft IsChecked direkt aus-
gegeben oder zur Steuerung eines booleschen Wertes genutzt werden.

Bei einem ToggleButton, der drei Zustände annehmen kann, müssen Sie den
Zustand Nicht definiert mit null abfragen. Falls in Abhängigkeit von den drei
Zuständen drei verschiedene Aktionen erfolgen sollen, so ist eine mehrfache Ver-
zweigung zu nutzen. Eine einfache Abfrage mit: if (tb.IsChecked) ist nicht mög-
lich, da der Datentyp nicht bool ist.

4.2.4 RadioButton

Dieses Element wird zum Umschalten zwischen mehreren Zuständen oder zur
Auswahl aus mehreren Möglichkeiten genutzt. Wie bei ToggleButton und Check-
Box kann sofort auf das Umschalt- beziehungsweise Auswahlereignis reagiert
werden, oder es wird erst später der Zustand beziehungsweise die Auswahl abge-
fragt. Wichtige Ereignisse sind wiederum Click, Checked und Unchecked.

Schalter 4.2

69

Das nachfolgende Projekt SchalterRadio zeigt Ihnen den Umgang mit dem Radio-
Button (siehe Abbildung 4.14). Im Projekt gibt es die Möglichkeit, eine Schrift-
farbe und eine Hintergrundfarbe zu wählen. Zur Trennung der beiden Farbaus-
wahlen ist eine Gruppierung notwendig. Zu Beginn sollten Sie darauf achten,
dass in jeder Gruppe der aktuelle Zustand wiedergegeben wird.

Abbildung 4.14 Zwei Gruppen von RadioButtons

Zunächst der Aufbau in einem StackPanel in XAML:

<StackPanel>
 <RadioButton GroupName="s" Checked="rb1_Checked"
 IsChecked="True">Schrift schwarz</RadioButton>
 <RadioButton GroupName="s" Checked="rb2_Checked">
 Schrift grau</RadioButton>
 <RadioButton GroupName="s" Checked="rb3_Checked">
 Schrift weiß</RadioButton>
 <Separator />
 <RadioButton GroupName="h" Checked="rbh_Checked">
 Hintergrund schwarz</RadioButton>
 <RadioButton GroupName="h" Checked="rbh_Checked">
 Hintergrund grau</RadioButton>
 <RadioButton GroupName="h" Checked="rbh_Checked"
 IsChecked="True">Hintergrund weiß</RadioButton>
 <Separator />
 <Label x:Name="lb" HorizontalAlignment="Center">
 Schrift bzw. Hintergrund umschalten</Label>
</StackPanel>

Die Unterteilung in zwei Gruppen von RadioButtons wird mithilfe der Eigen-
schaft GroupName vorgenommen. Dies wäre nicht nötig, falls die RadioButton-
Gruppen jeweils in einem eigenen Container liegen, zum Beispiel in unterschied-
lichen Panels. Die Eigenschaft IsChecked wird beim aktuell ausgewählten Radio-
Button auf True gesetzt.

Steuerelemente4

70

Innerhalb der oberen Gruppe wird für jeden RadioButton eine eigene Methode
für das Ereignis Checked registriert. Zum Vergleich wird für die untere Radio-
Button-Gruppe eine gemeinsame Ereignismethode registriert. Innerhalb dieser
Methode wird ermittelt, welcher RadioButton betätigt wurde.

Es folgt der Aufbau des Programmcodes:

private void rb1_Checked(...)
{ if(IsLoaded)
 lb.Foreground = new SolidColorBrush(Colors.Black); }
private void rb2_Checked(...)
{ lb.Foreground = new SolidColorBrush(Colors.Gray); }
private void rb3_Checked(...)
{ lb.Foreground = new SolidColorBrush(Colors.White); }

Innerhalb der ersten RadioButton-Gruppe führt das Ereignis Checked zu unter-
schiedlichen Methoden, in denen jeweils eine Farbe ausgewählt wird.

Es gibt ein Problem beim zeitlichen Ablauf: Das Ereignis Checked der beiden vor-
eingestellten RadioButtons findet bereits innerhalb des XAML-Aufbaus statt. Zu
diesem Zeitpunkt gibt es das Label nicht; dies würde zu einem Fehler führen.
Daher soll das Label nur dann verändert werden, wenn das gesamte Fenster gela-
den ist, also die Eigenschaft IsLoaded des Fensters auf True steht.

private void rbh_Checked(...)
{
 if (IsLoaded)
 {
 string s = (sender as RadioButton).Content.ToString();
 switch (s)
 {
 case "Hintergrund schwarz":
 lb.Background = new SolidColorBrush(Colors.Black); break;
 case "Hintergrund grau":
 lb.Background = new SolidColorBrush(Colors.Gray); break;
 case "Hintergrund weiß":
 lb.Background = new SolidColorBrush(Colors.White); break;
 }
 }
}

Es wird der Wert der Eigenschaft Content ermittelt. In Abhängigkeit von diesem
Wert wird eine der drei Farben gewählt.

Text und Beschriftung 4.3

71

4.2.5 Auswahl einstellen

Die Stellung der verschiedenen Umschalter (ToggleButton, CheckBox und Radio-
Button) lässt sich natürlich auch per Programmcode einstellen. Dazu muss ledig-
lich die Eigenschaft IsChecked auf true oder false gestellt werden. In Abbildung
4.15 sehen Sie insgesamt fünf Buttons (Ein, Aus, rot, grün und blau). Innerhalb
der Methoden für das jeweilige Click-Ereignis werden die Umschalter »von
außen« per Programmcode betätigt (Projekt SchalterEinstellen).

Abbildung 4.15 Umschalter einstellen

Ein Ausschnitt des Programmcodes für die Buttons Ein und rot:

private void ein_Click(...)
{ tb.IsChecked = true; cb.IsChecked = true; }
private void rot_Click(...)
{ rb1.IsChecked = true; }

4.3 Text und Beschriftung

Eine Reihe von Elementen werden zur Eingabe und Ausgabe von Texten genutzt.
Zur Ausgabe dienen Label für eine einfache Beschriftung, TextBlocks zur forma-
tierten Ausgabe und ToolTips zur kontextsensitiven Information. Mithilfe einer
TextBox können einfache Eingaben vom Benutzer entgegengenommen werden.
Verschlüsselte Eingaben erfolgen in einer PasswordBox. Die RichTextBox bietet
eine formatierte Eingabe, ähnlich wie in einem Editor.

4.3.1 Label

Label werden für einfache Beschriftungen innerhalb eines Dialogfelds genutzt.
Die wichtigste Eigenschaft ist Content, der Inhalt des Labels. Er ist vom Typ
object und kann daher unterschiedlicher Art sein. In vielen Fällen handelt es sich

Steuerelemente4

72

um Text. Die Formatierungsmöglichkeiten innerhalb eines Labels sind nur
gering. Allerdings können Label mithilfe einer Datenbindung für eine erleich-
terte Benutzerführung sorgen. Dies sehen Sie im Projekt TBLabel (siehe Abbil-
dung 4.16).

Abbildung 4.16 Label mit Datenbindung zu TextBox

Falls der Benutzer die Tastenkombination (Alt)+(V) betätigt, wird der Cursor in
die TextBox neben dem Label Vorname gesetzt. Allerdings geht dies nur bei
einem unformatierten Label-Inhalt, hier also nicht beim (fett formatierten) Label
Ort. Der Aufbau in XAML:

<StackPanel>
 <WrapPanel Margin="1">
 <TextBox x:Name="tbname" Width="80" />
 <Label Target="{Binding ElementName=tbname}">
 _Name</Label>
 </WrapPanel>
 <WrapPanel Margin="1">
 <TextBox x:Name="tbvorname" Width="80" />
 <Label Target="{Binding ElementName=tbvorname}">
 _Vorname</Label>
 </WrapPanel>
 <WrapPanel Margin="1">
 <TextBox Width="80" />
 <Label>
 <Bold>Ort</Bold>
 </Label>
 </WrapPanel>
</StackPanel>

Die Eigenschaft Target eines Labels verweist auf das Element, das den Fokus
erhält, falls die zugehörige Tastenkombination betätigt wird. Diese wurde mit-
hilfe des Unterstrichs vor dem betreffenden Buchstaben festgelegt.

Der Wert der Eigenschaft Target ist ein Datenbindungsobjekt (mehr zum
Thema Datenbindung finden Sie in Abschnitt 8.1). Der Wert der Eigenschaft

Text und Beschriftung 4.3

73

ElementName des Datenbindungsobjekts ist das Objekt, das als Datenquelle
dient, in diesem Falle die TextBox.

Das letzte Label wurde fett formatiert. Das geschah mithilfe eines sogenannten
Inline-Elements, hier vom Typ Bold. Allerdings dürfen Label nur ein einzelnes
Inline-Element enthalten, im Gegensatz zum Element TextBlock (siehe nächster
Abschnitt). In einem Label sind also nur einfache Formatierungen möglich.

4.3.2 TextBlock

Elemente des Typs TextBlock bieten weit mehr Möglichkeiten zur Formatierung
als Label. Eine wichtige Eigenschaft ist Text. Im Falle eines einzelnen Textes ohne
formatierende Elemente entspricht diese Eigenschaft dem gesamten Inhalt des
TextBlocks. Allerdings kann ein TextBlock formatiert und gestaltet werden. In
diesem Falle arbeiten Sie besser mit der Eigenschaft Inlines. Dies ist eine Auflis-
tung vom Typ InlineCollection, die die einzelnen Teil-Inhalte des TextBlocks
umfasst. Informationen zum Thema Inlines finden Sie auch in Abschnitt 13.1.7.

Im nachfolgenden Projekt TBTextBlock sehen Sie verschiedene Möglichkeiten,
einen TextBlock zu gestalten und per Programmcode auf die Inhalte zuzugreifen
(siehe Abbildung 4.17).

Abbildung 4.17 Nach dem Start

Sie sehen vier verschiedene Elemente vom Typ TextBlock, zur besseren Unter-
scheidung mit wechselndem Hintergrund. Zunächst der Aufbau der TextBlocks in
XAML:

<TextBlock x:Name="tb1" Background="LightGray">
 1: Das ist ein langer Text, der über den Zeilenrand
 hinausgeht und verschwindet.</TextBlock>
<TextBlock x:Name="tb2" TextWrapping="Wrap">2: Das ist ein
 Text mit einem manuellen<LineBreak />LineBreak und einem

Steuerelemente4

74

 automatischen Umbruch, falls die Zeile zu lang
 wird.</TextBlock>
<TextBlock x:Name="tb3" Background="LightGray">3: Textteile
 <Bold>fett</Bold> oder <Italic>kursiv</Italic></TextBlock>
<TextBlock x:Name="tb4" FontStyle="Italic"><Run>4:</Run>
 <Run Foreground="Gray" FontStyle="Normal">Grau, nicht
 kursiv</Run><Run>Text</Run><Run FontFamily="Tahoma"
 FontSize="20">Arial 10</Run></TextBlock>

Im ersten TextBlock steht ein langer Text ohne formatierende Elemente. Die
Eigenschaft Text umfasst den gesamten Inhalt. Dieser Inhalt ist gleichzeitig das
einzige Element der InlineCollection. Ohne besondere Einstellung wird der lange
Text über den Zeilenrand hinaus geschrieben.

Die InlineCollection des zweiten TextBlocks umfasst drei Elemente: zwei Textstü-
cke und ein Element vom Typ LineBreak zur Erstellung eines Zeilenumbruchs.
Die Eigenschaft Text beinhaltet nur das erste Textstück. Die Eigenschaft
TextWrapping des TextBlocks wurde auf den Wert Wrap gesetzt. Dies ermöglicht
einen automatischen Zeilenumbruch bei Erreichen des Zeilenrands. Weitere
Werte für diese Eigenschaft aus der gleichnamigen Enumeration sind NoWrap (der
Standardwert) und WrapWithOverflow. Im letzteren Falle laufen zum Beispiel sehr
lange Worte weiterhin über den Zeilenrand hinaus.

Die InlineCollection des dritten TextBlocks beinhaltet vier Elemente. Zwei davon
sind fett beziehungsweise kursiv formatiert. Die Formatierung wird auf einfache
Weise, mit Elementen vom Typ Bold beziehungsweise Italic, durchgeführt.

Die Standardelemente einer InlineCollection sind vom Typ Run, wie sie beim vier-
ten TextBlock verwendet wurden. Ein solches Element kann formatierten oder
unformatierten Lauftext umfassen. Sie haben in einem Run weitergehende For-
matierungsmöglichkeiten. Die Eigenschaften werden kaskadierend verarbeitet,
wie Sie es vielleicht aus CSS kennen: Der gesamte TextBlock ist kursiv formatiert
(FontStyle = "Italic"). In den Elementen kommen weitere Eigenschaften hinzu
(Foreground = "Gray") beziehungsweise werden Eigenschaften überschrieben
(FontStyle = "Normal").

Hinweis: Für die übersichtliche Darstellung in diesem Buch wurden die oben
angegebenen Zeilen des TextBlocks umbrochen. Im Code stehen sie jeweils in
einer einzigen Zeile, denn jeder Zeilenumbruch im XAML-Code erzeugt wie-
derum einen eigenen Run.

Kommen wir zum Zugriff auf die Elemente per Programmcode:

private void b1_Click(...)
{ MessageBox.Show(tb1.Text); }

Text und Beschriftung 4.3

75

Es wird der Wert der Eigenschaft Text des ersten TextBlocks abgerufen. Da dieser
nur ein Element umfasst, erscheint der gesamte Inhalt.

private void b2_Click(...)
{ tb2.Text = "2: Das ist ein neuer Text."; }

Diese Methode dient dazu, den Inhalt des zweiten TextBlocks zu ersetzen.
Anschließend umfasst dessen InlineCollection nur noch ein Element statt drei
(siehe Abbildung 4.18).

private void b3_Click(...)
{
 tb3.Inlines.Add(" Hallo");
 tb3.Inlines.Add(new Italic(new Run(" Welt")));
}

Hier werden der InlineCollection des dritten TextBlocks mithilfe der Methode
Add() zwei Elemente angehängt (siehe Abbildung 4.18). Beim ersten Element
handelt es sich um unformatierten Text (Typ String). Das zweite Element ist auf
einfache Weise kursiv formatiert. Dazu wird ein neues Element vom Typ Italic
erzeugt. Der Inhalt des Elements muss wiederum ein Inline-Element sein, hier
vom Typ Run.

private void b4_Click(...)
{
 foreach(Run r in tb4.Inlines)
 MessageBox.Show(r.Text);
}

Die Textinhalte aller Elemente der InlineCollection des vierten TextBlocks werden
ohne besonderes Format ausgegeben.

private void b5_Click(object sender, RoutedEventArgs e)
{
 Inline na = tb4.Inlines.ElementAt(0);
 tb4.Inlines.InsertBefore(na, new Run(" Anfang "));

 Inline nz = tb4.Inlines.ElementAt(tb4.Inlines.Count - 1);
 Run r = new Run(" Ende");
 r.Background = new SolidColorBrush(Colors.LightGray);
 tb4.Inlines.InsertAfter(nz, r);
}

Sie können einer InlineCollection an beliebiger Stelle Elemente hinzufügen. Im
vorliegenden Beispiel wird dies beim vierten TextBlock vor dem ersten und nach
dem letzten Element mithilfe der Methoden InsertBefore() und InsertAfter()

Steuerelemente4

76

durchgeführt (siehe Abbildung 4.18). Beim ersten Element handelt es sich um
unformatierten Text, der aber zum Hinzufügen in einem Run gesetzt werden
muss. Das zweite Element ist ein formatierter Run. In beiden Fällen muss ein Ver-
weis vom Typ Inline auf das jeweilige Nachbarelement mithilfe der Methode
ElementAt() ermittelt werden.

Abbildung 4.18 Nach den Änderungen

4.3.3 ToolTip

Ein ToolTip, auch QuickInfo genannt, dient als kontextsensitive Information zu
einem bestimmten Steuerelement. Er erscheint rechts unterhalb des Mauszeigers,
sobald sich dieser über dem betreffenden Element befindet. Er wird nicht als eige-
nes Element erstellt, sondern mithilfe der Eigenschaft ToolTip eines Elements.

Nachfolgend sehen Sie im Projekt TBToolTip zwei QuickInfos. Das erste ist ein
einfacher Text, der als Eingabehilfe für eine TextBox dient (siehe Abbildung
4.19). Beim zweiten werden ein Bild und ein Text neben einem Button sichtbar
(siehe Abbildung 4.20).

Abbildung 4.19 TextBox mit ToolTip

Abbildung 4.20 Gestalteter ToolTip

Text und Beschriftung 4.3

77

Der Aufbau in XAML:

<StackPanel>
 <WrapPanel Margin="5">
 <Label>Name:</Label>
 <TextBox ToolTip="Bitte geben Sie Ihren Namen ein"
 Width="80" />
 </WrapPanel>
 <Button x:Name="b1" Click="b1_Click"
 HorizontalAlignment="Left" Margin="5">
 Button mit ToolTip
 <Button.ToolTip>
 <StackPanel>
 <Image Source="work.gif" />
 <TextBlock HorizontalAlignment="Center">Work</TextBlock>
 </StackPanel>
 </Button.ToolTip>
 </Button>
</StackPanel>

Der einfache ToolTip für die TextBox wird als Wert der gleichnamigen Eigen-
schaft gesetzt. Der gestaltete ToolTip erfordert ein Layout. Dieses ist der Wert der
Eigenschaft ToolTip in der erweiterten Schreibweise. Die Bilddatei wurde dem
Projekt als Ressource hinzugefügt, einfach per Drag & Drop. Mehr zu Ressourcen
erfahren Sie in Abschnitt 6.2.

Der Inhalt eines ToolTips lässt sich auch per Programmcode festlegen:

private void b1_Click(...)
{ b1.ToolTip = "Neuer Inhalt für ToolTip"; }

4.3.4 TextBox

Eine TextBox bietet die Möglichkeit, Eingaben vom Benutzer entgegenzuneh-
men. Die Eigenschaft Text gibt den Inhalt der TextBox wieder. Das Ereignis
TextChanged tritt bei jeder Textänderung auf und kann zum Beispiel zur unmittel-
baren Prüfung des Textes genutzt werden.

Der Inhalt einer TextBox kann während der Eingabe auf korrekte Rechtschrei-
bung geprüft werden, wie bei einer Textverarbeitung. Per Programmcode können
Sie den gesamten Text oder Teile davon markieren und auf den markierten Text
zugreifen. Innerhalb einer TextBox steht Ihnen die Zwischenablage zur Verfü-
gung. Sie können also Cut, Copy und Paste durchführen.

Eine TextBox kann mehrzeilig sein, mit oder ohne ScrollBar. Wie bei einem Text-
Block können Sie über die Eigenschaft TextWrapping das Verhalten bei Über-

Steuerelemente4

78

schreitung des Zeilenrandes bestimmen. Sie können auch festlegen, ob die Taste
(¢) zu einem Zeilenumbruch führt oder nicht.

Im nachfolgenden Projekt TBTextBox werden Ihnen einige Möglichkeiten gezeigt
(siehe Abbildung 4.21). Die obere TextBox ist einzeilig, mit Ereignishandler. Die
untere TextBox ist mehrzeilig. Sie bietet bei Bedarf die Markierung der vorhande-
nen Rechtschreibfehler und eine ScrollBar.

Abbildung 4.21 Einzeilige und mehrzeilige TextBox

Zunächst der Aufbau der wichtigen Elemente in XAML:

<StackPanel>
 <TextBox x:Name="tb1" Width="150" Margin="2"
 TextChanged="tb1_TextChanged">Hallo Welt</TextBox>
 <TextBox x:Name="tb2" Width="150" Height="40" Margin="2"
 TextWrapping="Wrap" AcceptsReturn="True"
 VerticalScrollBarVisibility="Auto"
 SpellCheck.IsEnabled="True">Mehrzeilige TextBox
 miht ScrollBar (falls notwendig)</TextBox>
 <CheckBox x:Name="cb" IsChecked="True"
 Click="cb_Click">SpellCheck</CheckBox>
...
</StackPanel>

Bei der oberen TextBox führt das Ereignis TextChanged, also jede Änderung, zum
Aufruf einer Methode. Bei der unteren TextBox wurde die Höhe so eingestellt,
dass Text über mehrere Zeilen eingegeben werden kann. Die Eigenschaft
TextWrapping hat den Wert Wrap. So führt die Eingabe eines Textes, der über den
Zeilenrand hinausgeht, nicht zu einem horizontalen Scrollen, sondern zu einem
Zeilenumbruch. Die Eigenschaft AcceptsReturn steht auf True, also führt die
Taste (¢) zu einem Zeilenumbruch.

Mit dem Wert Auto für die Eigenschaft VerticalScrollBarVisibility legen Sie
fest, dass die vertikale ScrollBar nur bei Bedarf eingeblendet wird. Die Attached
Property IsEnabled der Klasse SpellCheck bestimmt, ob der Text unmittelbar auf

Text und Beschriftung 4.3

79

korrekte Rechtschreibung geprüft wird. Dieses Feature lässt sich im vorliegenden
Programm ein- und ausschalten.

Der zugehörige Programmcode:

private void tb1_TextChanged(
 object sender, TextChangedEventArgs e)
{
 if(IsLoaded)
 foreach (TextChange tc in e.Changes)
 MessageBox.Show("Position: " + tc.Offset + ", Plus: "
 + tc.AddedLength + ", Minus: " + tc.RemovedLength);
}

Das Objekt der Klasse TextChangedEventArgs beinhaltet Informationen zum
Ereignis. Die Eigenschaft Changes ist eine Auflistung der erfolgten Änderungen.
Eine einzelne Änderung ist vom Typ TextChange. Die Eigenschaften Offset,
AddedLength und RemovedLength informieren darüber, an welcher Position wie
viele Elemente zum Text hinzugefügt oder entfernt wurden. Die Zählung für
Offset beginnt bei 0.

private void cb_Click(...)
{ tb2.SetValue(SpellCheck.IsEnabledProperty, cb.IsChecked); }

Die Rechtschreibprüfung wird gemäß dem Zustand der CheckBox ein- und ausge-
schaltet, indem die Eigenschaft IsEnabled über ihre Dependency Property verän-
dert wird.

private void anzeigen(...)
{ MessageBox.Show(tb2.SelectedText); }

Die Eigenschaft SelectedText beinhaltet den markierten Text als String.

private void text_markieren(...)
{
 tb2.Focus();
 tb2.SelectAll();
}

Die Methode SelectAll() markiert den gesamten Text. Vorher sollte der Focus in
die TextBox gesetzt werden.

private void teiltext_markieren(...)
{
 tb2.Focus();
 tb2.SelectionStart = 12;
 tb2.SelectionLength = 7;
}

Steuerelemente4

80

Falls nur ein Teil des Textes markiert werden soll, so können die Eigenschaften
SelectionStart (Beginn der Markierung) und SelectionLength (Länge der Mar-
kierung) genutzt werden. Die Zählung für SelectionStart beginnt bei 0.

4.3.5 PasswordBox

Eine PasswordBox ähnelt zunächst einer TextBox, allerdings fehlen viele Eigen-
schaften. Dadurch ist das Element besonders geschützt. Unter anderem werden
keine direkten Inhalte in XAML angenommen. Es ist kein Cut oder Copy möglich,
es kann allerdings ein Text per Paste aus der Zwischenablage eingefügt werden.

Das anzuzeigende Zeichen lässt sich über die Eigenschaft PasswordChar einstel-
len. Falls kein Wert vergeben wurde, werden Bullets angezeigt, wie im Projekt
TBPasswordBox dargestellt (siehe Abbildung 4.22).

Abbildung 4.22 Zwei PasswordBox-Elemente

Die wichtigen Teile des Aufbaus in XAML:

<StackPanel>
 <Label>Passwort:</Label>
 <PasswordBox x:Name="pb1" MaxLength="10" Margin="2" />
 <Label>Passwort-Wiederholung:</Label>
 <PasswordBox x:Name="pb2" MaxLength="10" Margin="2"
 PasswordChar="o" />
</StackPanel>

Die Eigenschaft MaxLength begrenzt in Elementen vom Typ TextBox oder Pass-
wordBox die Menge der Zeichen, die eingegeben werden kann.

4.3.6 RichTextBox

Die RichTextBox bietet eine Möglichkeit zur formatierten Eingabe, ähnlich wie in
einem Editor. Es wird das Rich Text Format (RTF) verwendet, ein Dateiformat
zum Austausch und zur Speicherung von einfachen Formatierungen.

Auswahl 4.4

81

Innerhalb einer RichTextBox steht ein Element vom Typ FlowDocument. Dieser
Typ kann Zeichen- und Absatzformatierung, mehrere Spalten, Seitennummern
und weitere Möglichkeiten zur Gestaltung von Dokumenten beinhalten. Ein
kleines Beispiel wird im Projekt TBRichTextBox dargestellt (siehe Abbildung 4.23).
Ein größeres Beispiel finden Sie im entsprechenden Unterabschnitt über
FlowDocument in Abschnitt 13.1.11, »RichTextBox«.

Abbildung 4.23 Eine RichTextBox

Der Aufbau in XAML:

<RichTextBox Margin="3">
 <FlowDocument>
 <Paragraph>Absatz 1, normal</Paragraph>
 <Paragraph>Absatz 2, <Bold>fett</Bold></Paragraph>
 </FlowDocument>
</RichTextBox>

Ein Element der Klasse Paragraph beinhaltet einen Absatz mit fortlaufendem Text.
Diese Klasse steht hier als ein Beispiel für die Klassen, die von der abstrakten
Klasse Block abgeleitet sind. Mehr zu dieser Klasse finden Sie in Abschnitt 4.7.3,
»Symbolleiste«.

4.4 Auswahl

Steuerelemente vom Typ ListBox, ComboBox oder TreeView dienen zur übersicht-
lichen Darstellung und Auswahl aus mehreren Möglichkeiten. Die Einträge die-
ser Steuerelemente stehen in der Eigenschaft Items. Dies ist eine Auflistung vom
Typ ItemCollection. Einträge in der Auflistung sind vom Typ object und können
daher unterschiedlicher Art sein, wie zum Beispiel Bilder, Layout- oder Steuer-
elemente.

Zur Ausgabe von zweidimensionalen Tabellen sind Elemente vom Typ ListView
geeignet. Eine Weiterentwicklung, die auch eine Eingabe ermöglicht, stellt der
Typ DataGrid dar. Bei beiden Typen wird eine Datenbindung benötigt. Sie wer-
den sinnvollerweise im Zusammenhang mit größeren Datenmengen eingesetzt.
Erläuterungen und Beispiele finden Sie in Kapitel 8, »Daten«.

Steuerelemente4

82

4.4.1 ListBox, Einzel-Auswahl

Eine ListBox listet Einträge auf, von denen der Benutzer einen oder mehrere aus-
wählen kann. Ein Standard-Texteintrag ist vom Typ ListBoxItem. Ein Eintrag
kann aber auch von einem anderen Typ sein.

Im nachfolgenden Projekt AuswahlListBox sehen Sie einige Möglichkeiten zur
Arbeit mit einer ListBox (siehe Abbildung 4.24). Es handelt sich hier um eine
ListBox, in der nur ein einzelner Eintrag ausgewählt werden kann.

Abbildung 4.24 ListBox mit verschiedenen Typen von Einträgen

Zunächst der Aufbau der ListBox in XAML:

<ListBox x:Name="lb" Height="85" Width="100" Margin="5"
 SelectionChanged="lb_SelectionChanged">
 <ListBoxItem>Berlin</ListBoxItem>
 <ListBoxItem Selected="eintrag_Selected"
 Unselected="eintrag_Unselected">Hamburg</ListBoxItem>
 <ListBoxItem Selector.IsSelected="True">München</ListBoxItem>
 <WrapPanel>
 <Image Source="work.gif" Height="12" Width="12" />
 <TextBlock>Bonn</TextBlock>
 </WrapPanel>
 <ListBoxItem>Köln</ListBoxItem>
 <ListBoxItem>Frankfurt</ListBoxItem>
</ListBox>

Falls für Height und Width keine Angaben gemacht werden, dann richtet sich die
Höhe nach der Anzahl der Elemente und die Breite nach dem breitesten Eintrag.
Dies gilt auch für Veränderungen zur Laufzeit. Im vorliegenden Beispiel sollte
sich die Größe der ListBox nicht verändern, daher wurden Werte vergeben. Ein
Scrollbalken erscheint bei Bedarf, aber nur, falls die Eigenschaft Height einen
Wert bekommen hat.

Hat die ListBox den Fokus, so gelangt man durch Eingabe eines einzelnen Zei-
chens zum ersten Eintrag, der mit dem betreffenden Zeichen beginnt. Dies macht
natürlich nur bei geordneten Einträgen Sinn.

Auswahl 4.4

83

Sobald der Benutzer die Auswahl wechselt, tritt für die gesamte ListBox das
Ereignis Selection_Changed auf. Für ein einzelnes ListBoxItem können die Ereig-
nisse Selected (ausgewählt) und Unselected (abgewählt) auftreten. Zur Voraus-
wahl eines Eintrags nutzen Sie die Attached Property IsSelected aus der Klasse
Selector.

Der vierte Eintrag der ListBox wurde mithilfe eines WrapPanels gestaltet, das ein
Bild und einen Text umfasst. Es folgen die Ereignismethoden:

private void lb_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
{
 if (IsLoaded && lb.SelectedIndex != -1)
 {
 string s = "Ausgewählt: Index: " + lb.SelectedIndex
 + item_info(lb.SelectedItem);
 if (e.RemovedItems.Count > 0)
 s += "\nAbgewählt:" + item_info(e.RemovedItems[0]);
 MessageBox.Show(s);
 }
}

private string item_info(object obj)
{
 if (obj is ListBoxItem)
 return " Inhalt: " + (obj as ListBoxItem).Content;
 else
 return " Sonstiges";
}

Das Ereignis Selection_Changed wird auch beim Start der Anwendung ausgelöst,
und zwar durch die Vorauswahl eines Elements. Die Eigenschaft SelectedIndex
ergibt die laufende Nummer des Eintrags, wie üblich bei 0 beginnend. Falls kein
Eintrag ausgewählt ist, dann wird –1 zurückgeliefert.

Die Eigenschaft SelectedItem verweist auf den ausgewählten Eintrag vom Typ
object. Innerhalb der Hilfsmethode item_info() wird untersucht, ob es sich
beim ausgewählten Eintrag um ein Element vom Typ ListBoxItem oder um etwas
anderes handelt. Im ersten Falle beinhaltet die Eigenschaft Content den Text des
Eintrags.

Beim Ereignis Selection_Changed liefert das Objekt der Klasse Selection-
ChangedEventArgs Informationen über den Wechsel der Auswahl. In der Auflis-
tung RemovedItems stehen die Elemente (vom Typ object), deren Auswahl aufge-
hoben wurde. Da es sich im vorliegenden Projekt um eine ListBox mit Einfach-

Steuerelemente4

84

Auswahl handelt, gibt es hier nur ein Element in der Auflistung. Nach einem
Löschvorgang ist die Auflistung leer, daher muss vor einem Zugriff mithilfe der
Eigenschaft Count die Anzahl der Elemente geprüft werden.

private void eintrag_Selected(...)
{ (sender as ListBoxItem).Foreground =
 new SolidColorBrush(Colors.Red); }
private void eintrag_Unselected(...)
{ (sender as ListBoxItem).Foreground =
 new SolidColorBrush(Colors.Black); }

Durch diese beiden Methoden wird die Schriftfarbe des ausgewählten Eintrags
gewechselt und nach Abwahl wieder zurückgewechselt.

private void anhaengen(...)
{
 ListBoxItem lbi = new ListBoxItem();
 lbi.Content = "Dortmund";
 lb.Items.Add(lbi);
 lb.SelectedIndex = lb.Items.Count - 1;
 lb.ScrollIntoView(lbi);
}

Es wird ein neues Element vom Typ ListBoxItem erzeugt und gefüllt. Die Auflis-
tungsmethode Add() dient zum Anhängen eines Elements. Das Setzen des Wertes
der Eigenschaft SelectedIndex führt zur Auswahl des betreffenden Eintrags. Den
letzten Eintrag erreicht man mithilfe der Eigenschaft Items.Count. Dies heißt
nicht, dass dieser sich dann auch im sichtbaren Bereich befindet. Die Methode
ScrollIntoView() bietet hier Abhilfe. Sie benötigt einen Verweis auf den Eintrag.

private void einfuegen(...)
{
 ListBoxItem lbi = new ListBoxItem();
 lbi.Content = "Stuttgart";

 int indexvor;
 if (lb.SelectedIndex != -1)
 indexvor = lb.SelectedIndex;
 else
 indexvor = 0;
 lb.Items.Insert(indexvor, lbi);

 lb.SelectedIndex = indexvor;
 lb.ScrollIntoView(lbi);
}

Auswahl 4.4

85

Beim Einfügen eines Elements mithilfe der Auflistungsmethode Insert() wird
ein Verweis auf ein Vorgängerelement benötigt. Entweder wurde ein Element
markiert (SelectedIndex != -1), oder es wird ein Element zu Beginn der Liste ein-
gefügt. Dies gelingt auch bei einer leeren Liste.

private void loeschen(...)
{
 if (lb.SelectedIndex != -1)
 lb.Items.Remove(lb.SelectedItem);
}
private void alle_loeschen(...)
{ lb.Items.Clear(); }

Falls ein Element markiert ist, so wird es mithilfe der Auflistungsmethode Remove()
gelöscht. Die Auflistungsmethode Clear() löscht alle Elemente auf einmal.

private void alle_anzeigen(...)
{
 string s = "";
 for (int i = 0; i < lb.Items.Count; i++)
 s += i + ": " + item_info(lb.Items[i]) + "\n";
 MessageBox.Show(s);

 /* Alternativ */
 foreach (object obj in lb.Items)
 s += item_info(obj) + "\n";
}

Diese Methode durchläuft alle Elemente der Auflistung mithilfe der laufenden
Nummer und zeigt sie an. Eine Alternative bietet die foreach-Schleife, allerdings
ohne laufende Nummer.

4.4.2 ListBox, Mehrfach-Auswahl

Falls der Benutzer die Möglichkeit haben soll, mehrere Einträge auszuwählen, so
muss die Eigenschaft SelectionMode einen der Werte Multiple oder Extended
bekommen. Die Werte stammen aus der gleichnamigen Enumeration, der Stan-
dardwert ist Single.

Beim Wert Multiple kann der Benutzer mehrere gewünschte Einträge nachein-
ander markieren. Sobald er einen ausgewählten Eintrag ein zweites Mal mar-
kiert, wird dieser abgewählt. Die Sondertasten (Strg) und (ª) haben keine Wir-
kung.

Steuerelemente4

86

Beim Wert Extended löscht eine einfache Auswahl die bisherige Auswahl. Mit-
hilfe der Sondertaste (Strg) kann der Benutzer mehrere gewünschte Einträge
nacheinander markieren. Mithilfe der Sondertaste (ª) kann er eine Gruppe von
aufeinanderfolgenden Einträgen markieren.

Im nachfolgenden Projekt AuswahlListBoxMehrfach sehen Sie zwei ListBoxen.
Bei der ersten wurde Multiple, bei der zweiten Extended gewählt. Der Benutzer
hat die Möglichkeit, Einträge von der einen in die andere ListBox zu verschieben
(siehe Abbildung 4.25). Die Einträge werden vor dem einzig ausgewählten Ele-
ment in der Ziel-ListBox eingefügt. Hat der Benutzer keines markiert, so werden
sie am Anfang eingefügt. Hat er mehrere markiert, so wird die Verschiebung
nicht durchgeführt.

Abbildung 4.25 Nach dem Start

Der Aufbau in XAML besteht aus drei StackPanels innerhalb eines WrapPanel.
Das dritte StackPanel ist wie das erste aufgebaut:

<WrapPanel>
 <StackPanel>
 <ListBox x:Name="lb1" SelectionMode="Multiple"
 Height="85" Width="100" Margin="5">
 <ListBoxItem>Berlin</ListBoxItem>
 <ListBoxItem Selector.IsSelected="True">
 Hamburg</ListBoxItem>
 <ListBoxItem Selector.IsSelected="True">
 München</ListBoxItem>
 <ListBoxItem>Köln</ListBoxItem>
 <ListBoxItem>Frankfurt</ListBoxItem>
 </ListBox>
 <Button Width="100" Click="links_aus">Alle auswählen</Button>
 <Button Width="100" Click="links_ab">Alle abwählen</Button>
 </StackPanel>
 <StackPanel VerticalAlignment="Center">

Auswahl 4.4

87

 <Button Click="nach_rechts">>></Button>
 <Button Click="nach_links"><<</Button>
 </StackPanel>
 <StackPanel>
 <ListBox x:Name="lb2" SelectionMode="Extended"
 Height="85" Width="100" Margin="5">
 ...
</WrapPanel>

Zur Vorauswahl kann nun bei mehreren Einträgen die Attached Property
IsSelected aus der Klasse Selector auf den Wert True gesetzt werden.

Es folgen die Methoden zur Verschiebung:

private void nach_rechts(...) { item_move(lb1, lb2); }
private void nach_links(...) { item_move(lb2, lb1); }

private void item_move(ListBox lbquelle, ListBox lbziel)
{
 int indexvor;
 if (lbziel.SelectedItems.Count == 0)
 indexvor = 0;
 else if (lbziel.SelectedItems.Count == 1)
 indexvor = lbziel.SelectedIndex;
 else
 {
 MessageBox.Show("Max. einen Eintrag beim Ziel markieren");
 return;
 }

 for (int i = lbquelle.Items.Count - 1; i >= 0; i--)
 {
 ListBoxItem lbi = lbquelle.Items[i] as ListBoxItem;
 if (lbi.IsSelected)
 {
 lbquelle.Items.Remove(lbi);
 lbziel.Items.Insert(indexvor, lbi);
 }
 }
}

Beide Ereignismethoden führen zur Hilfsmethode item_move(), in der die Ein-
träge von der Quell-ListBox zur Ziel-ListBox verschoben werden. Darin wird
zunächst die Auflistung der ausgewählten Einträge geprüft, SelectedItems.
Abhängig von deren Größe wird der Zieleintrag gewählt, vor dem die verschobe-

Steuerelemente4

88

nen Einträge eingefügt werden. In SelectedIndex steht immer der erste ausge-
wählte Eintrag.

Zur Verschiebung werden alle Einträge der Quell-ListBox mithilfe des Index von
hinten nach vorne durchlaufen. Dies hat mehrere Gründe:

� Beim Entfernen eines Eintrags verschieben sich die Indizes. Dies wirkt sich
nur nach hinten aus.

� Beim Verschieben mehrerer Einträge bleibt die ursprüngliche Reihenfolge
erhalten.

� Innerhalb einer foreach-Schleife durch die Auflistung SelectedItems ist es
nicht möglich, Elemente aus der zugrunde liegenden Auflistung Items zu
entfernen.

Die Eigenschaft IsSelected gibt Auskunft darüber, ob der betreffende Eintrag
ausgewählt ist. Ist dies der Fall, so kann er mithilfe der Methode Remove() aus der
Auflistung Items entfernt werden. Erst anschließend kann der betreffende Ein-
trag mithilfe der Methode Insert() in der anderen Auflistung eingefügt werden.
Eine andere Reihenfolge ist nicht möglich, da ein Eintrag nicht gleichzeitig zwei
übergeordnete Elemente haben kann.

4.4.3 ComboBox

Eine ComboBox gibt es in zwei Varianten:

1. Falls die Eigenschaft IsEditable auf False steht (dies ist der Standard), dient
sie als raumsparende ListBox; sie ermöglicht nur die Auswahl.

2. Falls die Eigenschaft IsEditable auf True steht, dient sie als Kombination aus
ListBox und TextBox; sie ermöglicht Auswahl oder Eingabe.

Bei der zweiten Variante ist es möglich, ein oder mehrere Zeichen einzugeben. Falls
es einen Eintrag gibt, der mit diesen Zeichen beginnt, so wird dieser ausgewählt.
Sobald ein Zeichen eingegeben wird, das dazu führt, dass die Kombination nicht
vorkommt, wird die Auswahl zu einer Eingabe, wie bei einem TextBox-Eintrag.

Es gibt bei einer ComboBox keine Mehrfach-Auswahl.

In jedem Fall beinhaltet die Eigenschaft Text den aktuellen Eintrag. Dies gilt aller-
dings erst nach Verlassen der ComboBox, nicht während der Auswahl oder der
Eingabe. Falls die Eigenschaft StaysOpenOnEdit auf True steht und die ComboBox
vor der Auswahl oder der Eingabe geöffnet war, dann bleibt sie offen. Dies hilft
beim Suchen. Nach der Benutzung klappt die ComboBox wieder zu.

Auswahl 4.4

89

Ein Standard-Texteintrag ist vom Typ ComboBoxItem. Ein Eintrag kann aber auch,
wie bei der ListBox, anderen Typs sein. Nachfolgend sehen Sie im Projekt
AuswahlComboBox beide Möglichkeiten, Variante 1 in Abbildung 4.26 und
Variante 2 in Abbildung 4.27.

Abbildung 4.26 ComboBox als raumsparende ListBox

Abbildung 4.27 ComboBox mit Eingabe

In Abbildung 4.27 sehen Sie, dass nach Eingabe des Zeichens "F" der Eintrag
Florenz ausgewählt wurde. Nach Eingabe des Zeichens "o" wurde die Eingabe als
neu erkannt. Der Aufbau in XAML:

<StackPanel>
 <WrapPanel>
 <ComboBox x:Name="cb1" Width="85" Margin="5"
 SelectionChanged="cb1_SelectionChanged">
 <ComboBoxItem Selector.IsSelected="True">
 Berlin</ComboBoxItem>
 <ComboBoxItem>Hamburg</ComboBoxItem>
 ...
 </ComboBox>
 <TextBlock x:Name="tb1" VerticalAlignment="Center" />
 </WrapPanel>

Steuerelemente4

90

 <WrapPanel>
 <ComboBox x:Name="cb2" Width="85" Margin="5"
 IsEditable="True" StaysOpenOnEdit="True">
 <ComboBoxItem Selector.IsSelected="True">Rom</ComboBoxItem>
 <ComboBoxItem>Mailand</ComboBoxItem>
 ...
 </ComboBox>
 <Button Click="anzeigen" Height="23">Anzeigen</Button>
 <TextBlock x:Name="tb2" VerticalAlignment="Center" />
 </WrapPanel>
</StackPanel>

Eine Vorauswahl wird, wie bei der ListBox, über Selector.IsSelected vor-
genommen. Die Ereignismethoden:

private void cb1_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
{
 if (IsLoaded && cb1.SelectedIndex != -1)
 tb1.Text = "" + (cb1.SelectedItem as ComboBoxItem).Content;
}
private void anzeigen(...) { tb2.Text = " " + cb2.Text; }

Bei der ersten ComboBox steht die getroffene Auswahl unmittelbar (Ereignis
SelectionChanged) in der Eigenschaft SelectedItem zur Verfügung.

Bei der zweiten ComboBox muss auf die Eigenschaft Text zugegriffen werden, da
eine neue Eingabe des Benutzers nicht in der Eigenschaft SelectedItem steht. Die
Eigenschaft Text hat anschließend, zum Beispiel nach der Betätigung des Buttons,
den richtigen Wert.

4.4.4 TreeView

Ein Element vom Typ TreeView bietet die Möglichkeit, Texteinträge und andere
Elemente in einer Hierarchie darzustellen. Der Benutzer kann sich Ebenen dieser
Hierarchie anzeigen lassen und Einträge auswählen. Ein Standard-Texteintrag ist
vom Typ TreeViewItem. Ein Eintrag kann aber auch, wie bei ListBox oder Combo-
Box, anderen Typs sein. Es gibt für jedes Element auf jeder Ebene eine Auflistung
vom Typ ItemCollection.

Im Projekt AuswahlTreeView sehen Sie ein Beispiel mit einer Hierarchie und
einem markierten Eintrag (siehe Abbildung 4.28). Einige Elemente der Hierarchie
sind bereits aufgeklappt.

Auswahl 4.4

91

Abbildung 4.28 Nach dem Start

Der Aufbau in XAML:

<StackPanel>
 <TextBlock x:Name="tb" HorizontalAlignment="Center" />
 <TreeView x:Name="tv" Height="100"
 ScrollViewer.VerticalScrollBarVisibility="Auto"
 SelectedItemChanged="tv_SelectedItemChanged">
 <TreeViewItem Header="Deutschland">
 <TreeViewItem Header="Norden">
 <TreeViewItem Header="Hamburg" />
 <TreeViewItem Header="Kiel" />
 <TreeViewItem Header="Flensburg" />
 </TreeViewItem>
 <TreeViewItem x:Name="tvi_westen" Header="Westen"
 Expanded="tvi_westen_klapp"
 Collapsed="tvi_westen_klapp">
 <TreeViewItem Header="Köln" />
 <TreeViewItem Header="Dortmund" />
 </TreeViewItem>
 </TreeViewItem>
 <TreeViewItem Header="Italien" IsExpanded="True">
 <TreeViewItem Header="Norden" IsExpanded="True">
 <TreeViewItem Header="Mailand" IsSelected="True" />
 <TreeViewItem Header="Turin" />
 </TreeViewItem>
 <TreeViewItem x:Name="tvi_sueden" Header="Süden"
 Selected="tvi_sueden_wahl"
 Unselected="tvi_sueden_wahl">
 <TreeViewItem Header="Neapel" />
 <TreeViewItem Header="Bari" />
 <TreeViewItem Header="Palermo" />

Steuerelemente4

92

 </TreeViewItem>
 </TreeViewItem>
 </TreeView>
 ...
</StackPanel>

Sobald der Benutzer einen Eintrag auswählt, löst er für den gesamten TreeView das
Ereignis SelectedItemChanged aus. Der Wert Auto für die Attached Property
VerticalScrollBarVisibility der Klasse ScrollViewer legt fest, dass ein Scroll-
balken bei Bedarf eingeblendet wird. Ein Element vom Typ TreeViewItem stellt
einen Eintrag dar und kann gegebenenfalls als Container für Unterelemente des glei-
chen Typs dienen. In der Eigenschaft Header steht der sichtbare Text des Eintrags.

Beim Auf- und Zuklappen eines Containers treten beim betreffenden Eintrag die
Ereignisse Expanded und Collapsed auf. Diese steuern den Wert der booleschen
Eigenschaft IsExpanded. Falls diese den Wert True hat, so ist der betreffende Con-
tainer aufgeklappt. Sie ist allerdings nur sichtbar, wenn auch alle Container darü-
ber aufgeklappt sind.

Ein Eintrag verfügt über die Ereignisse Selected und Unselected. Diese beein-
flussen den Wert der booleschen Eigenschaft IsSelected. Falls diese den Wert
True hat, so ist das betreffende Element markiert.

Es folgen die Methoden für die TreeView-Ereignisse und die Buttons:

private void tv_SelectedItemChanged(object sender,
 RoutedPropertyChangedEventArgs<object> e)
{
 if (tv.SelectedItem != null)
 {
 string s = "Ausgewählt: "
 + (tv.SelectedItem as TreeViewItem).Header;
 if(e.OldValue != null)
 s += "\nAbgewählt: " + (e.OldValue as TreeViewItem).Header;
 MessageBox.Show(s);
 }
}

Bei einer Reihe von Methoden in diesem Abschnitt muss zunächst kontrolliert
werden, ob ein Eintrag ausgewählt ist. Ist dies nicht der Fall, so hat SelectedItem
den Wert null. In der Eigenschaft Header steht der sichtbare Inhalt des Eintrags.

Das Objekt der Klasse RoutedPropertyChangedEventArgs<object> bietet Informa-
tionen über den Eintragswechsel. Die Eigenschaft OldValue beinhaltet einen Ver-
weis auf das vorher markierte Element.

Auswahl 4.4

93

private void tvi_westen_klapp(...)
{
 if (IsLoaded)
 {
 TreeViewItem tvi = tv.SelectedItem as TreeViewItem;
 MessageBox.Show(tvi.Header
 + ", IsExpanded: " + tvi.IsExpanded);
 }
}

Diese Methode wird durch die Ereignisse Expanded (aufgeklappt) und Collapsed
(zugeklappt) eines bestimmten Eintrags ausgelöst (Deutschland/Westen). Aller-
dings muss dieser Eintrag vorher ausgewählt worden sein. Die Methode gibt den
Zustand der Eigenschaft IsExpanded dieses Eintrags wieder.

private void tvi_sueden_wahl(...)
{
 TreeViewItem tvi = tv.SelectedItem as TreeViewItem;
 MessageBox.Show(tvi.Header
 + ", IsSelected: " + tvi.IsSelected);
}

Diese Methode wird durch die Ereignisse Selected (ausgewählt) und Unselected
(abgewählt) eines bestimmten Eintrags ausgelöst (Italien/Süden). Sie gibt den
Zustand der Eigenschaft IsSelected dieses Eintrags wieder. Die Methode wird
aufgrund des Event-Routings auch aufgerufen, falls diese Ereignisse in unterge-
ordneten Elementen dieses Eintrags ausgelöst werden.

private void anzeige_oben(...)
{
 if (tv.SelectedItem != null)
 {
 string s;
 TreeViewItem tvi = tv.SelectedItem as TreeViewItem;
 s = "" + tvi.Header;

 TreeViewItem p = tvi;
 while (p.Parent is TreeViewItem)
 {
 p = p.Parent as TreeViewItem;
 s += ", " + p.Header;
 }
 MessageBox.Show("Nach oben: " + s);
 }
}

Steuerelemente4

94

In der Methode anzeige_oben() wird die gesamte Hierarchie von unten nach
oben bis zum Element der Hauptebene durchlaufen und angezeigt, ausgehend
vom aktuell ausgewählten Element. Das jeweils übergeordnete Element ist
bekanntlich über die Eigenschaft Parent zu erreichen. Solange es sich bei dem
Objekt, auf das Parent verweist, um ein Objekt des Typs TreeViewItem handelt,
wird die Hierarchie weiter durchlaufen.

private void anzeige_unten(...)
{
 if (tv.SelectedItem != null)
 {
 string s = "";
 TreeViewItem tvi = tv.SelectedItem as TreeViewItem;
 s += " (" + tvi.Header + elemente_anzeigen(tvi) + ") ";
 MessageBox.Show("Nach unten: " + s);
 }
}

private string elemente_anzeigen(TreeViewItem tvi)
{
 string s = "";
 foreach(TreeViewItem tvii in tvi.Items)
 s += " (" + tvii.Header + elemente_anzeigen(tvii) + ") ";
 return s;
}

In der Methode anzeige_unten() wird die gesamte Hierarchie von oben nach
unten durchlaufen und angezeigt, ausgehend vom aktuell ausgewählten Element.
Dazu wird die rekursive Hilfsmethode elemente_anzeigen() genutzt. In dieser
Methode werden alle Einträge der Auflistung Items eines Eintrags durchlaufen
und angezeigt. Außerdem wird die Hilfsmethode wiederum für jeden Eintrag auf-
gerufen.

private void element_neu(...)
{
 if (tv.SelectedItem != null)
 {
 TreeViewItem tvi = tv.SelectedItem as TreeViewItem;

 if (tvi.Parent is TreeViewItem)
 {
 TreeViewItem p = tvi.Parent as TreeViewItem;
 TreeViewItem neu = new TreeViewItem();
 neu.Header = "Neues Element";

Auswahl 4.4

95

 // p.Items.Add(neu);
 p.Items.Insert(p.Items.IndexOf(tvi), neu);
 }
 else
 haupt_neu(tv.Items.IndexOf(tvi));
 }
 else
 haupt_neu(0);
}

private void haupt_neu(int indexvor)
{
 TreeViewItem neu = new TreeViewItem();
 neu.Header = "Neues Element";
 // tv.Items.Add(neu);
 tv.Items.Insert(indexvor, neu);
}

In der Methode element_neu() wird ein neues Element direkt vor dem markier-
ten Element eingefügt, und zwar auf der gleichen Ebene. Die Methode IndexOf()
liefert die Nummer eines Eintrags, auf den verwiesen wird. Falls kein Element
markiert ist, zum Beispiel bei einem leeren TreeView, erscheint das neue Element
als erstes Element der Hauptebene. Als Alternative könnte auch die (hier auskom-
mentierte) Methode Add() zum Anhängen eines neuen Elements auf der gleichen
Ebene genutzt werden.

Es wird zunächst untersucht, ob ein Eintrag markiert ist. Ist dies der Fall, so wird
geprüft, ob er sich auf der Hauptebene oder auf einer Ebene darunter befindet.
Das neue Element wird mithilfe der Auflistungsmethode Insert() in die Auflis-
tung Items des übergeordneten Elements des markierten Eintrags eingefügt.

private void unterelement_neu(...)
{
 if (tv.SelectedItem != null)
 {
 TreeViewItem tvi = tv.SelectedItem as TreeViewItem;
 TreeViewItem neu = new TreeViewItem();
 neu.Header = "Neues Unterelement";
 // tvi.Items.Add(neu);
 tvi.Items.Insert(0, neu);
 tvi.ExpandSubtree();
 }
}

Steuerelemente4

96

In der Methode unterelement_neu() wird dem markierten Element ein neues
Unterelement hinzugefügt. Als Alternative könnte auch die (hier auskommen-
tierte) Methode Add() zum Anhängen eines neuen Unterelements genutzt wer-
den. Anschließend wird die Methode ExpandSubtree() genutzt, um das neue
Unterelement sichtbar zu machen.

private void element_loeschen(...)
{
 if (tv.SelectedItem != null)
 {
 TreeViewItem tvi = tv.SelectedItem as TreeViewItem;
 if (tvi.Parent is TreeViewItem)
 (tvi.Parent as TreeViewItem).Items.Remove(tvi);
 else
 tv.Items.Remove(tvi);
 }
}

Die Methode element_loeschen() dient zum Löschen des markierten Elements.
Dazu wird es mithilfe der Auflistungsmethode Remove() aus der Auflistung Items
des übergeordneten Elements des markierten Eintrags entfernt.

private void alle_loeschen(...)
{
 foreach(TreeViewItem tvi in tv.Items)
 liste_loeschen(tvi);
 tv.Items.Clear();
}

private void liste_loeschen(TreeViewItem tvi)
{
 foreach (TreeViewItem tvii in tvi.Items)
 liste_loeschen(tvii);
 tvi.Items.Clear();
}

Mithilfe der Methode alle_loeschen() werden alle Elemente des TreeView
gelöscht. Die rekursive Hilfsmethode liste_loeschen() wird benötigt, damit
keine herrenlosen Verweise auf Einträge der unteren Ebenen zurückbleiben.

Allgemein gilt: Eine rekursive Methode zeichnet sich dadurch aus, dass sie sich sel-
ber aufruft, gegebenenfalls mehrmals. Die Rekursion muss aufgrund einer bestimm-
ten Bedingung enden, damit sie nicht endlos wird. Im vorliegenden Fall endet sie
jeweils bei einem Element auf der untersten Ebene, das keine Unterelemente mehr
hat, die in einer weiteren foreach-Schleife durchlaufen werden können.

Zahlenwerte 4.5

97

4.5 Zahlenwerte

In diesem Abschnitt finden Sie Elemente, die Zahlenwerte innerhalb von Zahlen-
bereichen anschaulich verdeutlichen können: ProgressBar, Slider und ScrollBar.
Die beiden Letztgenannten ermöglichen auch die komfortable Eingabe bezie-
hungsweise Auswahl einer Zahl.

4.5.1 ProgressBar

Ein ProgressBar (Fortschrittsbalken) zeigt den Fortschritt eines länger dauernden
Vorgangs an. Dies kann ein Lade- oder Suchvorgang sein. Der Benutzer weiß
dann, dass noch etwas passiert und wie lange er ungefähr noch warten muss.

Die Eigenschaften Minimum, Maximum und Value sind vom Typ double und kenn-
zeichnen die Grenzen und den aktuellen Wert des ProgressBar. Falls Sie die
Eigenschaft Orientation auf den Wert Vertical stellen, sehen Sie einen vertika-
len Balken, ansonsten einen horizontalen.

Im nachfolgenden Projekt ZahlProgressBar wird der Fortschritt eines Hinter-
grundvorgangs dargestellt (siehe Abbildung 4.29). Sie können im Projekt außer-
dem mithilfe der RepeatButtons + und – den Wert des ProgressBar »von Hand«
einstellen.

Abbildung 4.29 Zustand des Hintergrundvorgangs

Falls man dem Benutzer mitteilen möchte, dass die Vorgangsdauer unbekannt ist,
der Vorgang aber noch andauert, kann der ProgressBar auch den Zustand »unde-
finiert« verdeutlichen (siehe Abbildung 4.30).

Abbildung 4.30 Undefinierter Zustand

Steuerelemente4

98

Zunächst der Aufbau in XAML:

<StackPanel>
 <WrapPanel>
 <CheckBox x:Name="cb1" ...>Auf</CheckBox>
 <Button Click="starten" ...>Start</Button>
 <ProgressBar x:Name="pbar" Width="140" Margin="5" />
 <Label x:Name="lb" .../>
 </WrapPanel>
 <WrapPanel>
 <RepeatButton Click="auf" ...>+</RepeatButton>
 <RepeatButton Click="ab" ...>-</RepeatButton>
 <CheckBox x:Name="cb2" Click="undefiniert" ...>
 undefiniert</CheckBox>
 </WrapPanel>
</StackPanel>

Ohne gesonderte Einstellung liegen die Werte für Minimum und Maximum bei 0 und
100, und der Wert für Value liegt bei 0. Zunächst sehen Sie hier die Ereignis-
methoden zur Einstellung »von Hand«:

private void auf(...)
{ pbar.Value += 5; lb.Content = pbar.Value + " %"; }
private void ab(...)
{ pbar.Value -= 5; lb.Content = pbar.Value + " %"; }
private void undefiniert(...)
{ pbar.IsIndeterminate = (bool)cb2.IsChecked; }

Die Eigenschaft Value wird um den Wert 5 verändert. Entsprechend verändern
sich der ProgressBar und die Anzeige der Prozentzahl. Falls der Wert der boole-
schen Eigenschaft IsIndeterminate auf True steht, so wird der undefinierte
Zustand angezeigt (siehe Abbildung 4.30).

Es folgt der Hintergrundvorgang: Zur Erzeugung wird ein Objekt der Klasse
BackgroundWorker aus dem Namespace System.Component.Model benötigt. Der in
diesem Projekt durchgeführte Hintergrundvorgang ist »künstlich«, eine Zeitver-
zögerung wird mithilfe der Methode Sleep() der Klasse Thread aus dem Name-
space System.Threading erzeugt. Die weiteren Elemente:

public partial class MainWindow : Window
{
 BackgroundWorker bgworker;

 public MainWindow()
 {

Zahlenwerte 4.5

99

 InitializeComponent();
 bgworker = new BackgroundWorker();
 bgworker.WorkerReportsProgress = true;
 bgworker.DoWork +=
 new DoWorkEventHandler(hintergrundvorgang);
 bgworker.ProgressChanged +=
 new ProgressChangedEventHandler(aenderung_fortschritt);
 }

 private void starten(...)
 { if (!bgworker.IsBusy) bgworker.RunWorkerAsync(); }
 ...
}

Innerhalb der Fensterklasse wird ein Verweis auf ein Objekt der Klasse
BackgroundWorker erzeugt. Im Konstruktor der Fensterklasse wird das zugehörige
Objekt erzeugt und die Eigenschaft WorkerReportsProgress auf True gestellt. Dies
ermöglicht es dem Hintergrundvorgang, von seinem Fortschritt zu berichten.

Es werden zwei EventHandler hinzugefügt. Diese ermöglichen die wichtigen
Teile der folgenden Abläufe:

� Der Benutzer ruft über den Button Start die Methode RunWorkerAsync() auf.
Dies löst das Ereignis DoWork aus. Dies führt zur Ausführung der Methode
hintergrundvorgang(). Damit wird der Hintergrundvorgang gestartet.

� Innerhalb des Hintergrundvorgangs hat der Entwickler dafür gesorgt, dass an
geeigneter Stelle mehrmals die Methode ReportProgress() aufgerufen wird.
Dies löst jeweils das Ereignis ProgressChanged aus. Dies führt zur Ausführung
der Methode aenderung_fortschritt(). Darin wird vom Fortschritt des Hin-
tergrundvorgangs berichtet.

Der BackgroundWorker kann nur eine Aufgabe zur gleichen Zeit ausführen.
Daher wird mithilfe der Eigenschaft IsBusy überprüft, ob er schon tätig ist.

private void hintergrundvorgang(
 object sender, DoWorkEventArgs e)
{
 for (int i = 1; i <= 100; i++)
 {
 Thread.Sleep(50);
 bgworker.ReportProgress(i);
 }
}

Steuerelemente4

100

private void aenderung_fortschritt(
 object sender, ProgressChangedEventArgs e)
{
 int wert;
 if ((bool)cb1.IsChecked)
 wert = e.ProgressPercentage;
 else
 wert = 100 - e.ProgressPercentage;

 lb.Content = wert + " %";
 pbar.Value = wert;
}

Innerhalb der Methode hintergrundvorgang() wird der »künstliche« Vorgang
durchgeführt. Hier würde man den Lade- oder Suchvorgang unterbringen, des-
sen Fortschritt man visualisieren möchte. Die Methode Sleep() wartet die ange-
gebene Zahl an Millisekunden. Anschließend wird in der Methode aenderung_
fortschritt() vom Fortschritt des Vorgangs berichtet. Das Objekt der Klasse
ProgressChangedEventArgs beinhaltet Informationen über den Fortschritt. Die
ganzzahlige Eigenschaft ProgressPercentage steht für den Prozentsatz des Fort-
schritts.

Im vorliegenden Projekt wird er in dem ProgressBar und in einem Label ange-
zeigt. Über die CheckBox kann die Richtung des Balkens festgelegt werden. Ein
ProgressBar kann auch abwärts laufen, zum Beispiel bei einem Deinstallations-
oder Entladevorgang.

4.5.2 Slider

Das Steuerelement Slider ermöglicht es dem Benutzer, einen Zahlenwert aus einem
Zahlenbereich eindeutig einzustellen, und zwar mithilfe eines Schiebers, der auf
einer Schiene verschoben wird. Der Schieber ist ein Objekt der Klasse Thumb, und
die Schiene ist ein Objekt der Klasse Track. Die Eigenschaften Minimum (Standard-
wert 0), Maximum (Standardwert 10) und Value (Standardwert 0) sind vom Typ
double und kennzeichnen die Grenzen und den aktuellen Wert des Sliders. Das
Ereignis ValueChanged tritt jedes Mal ein, wenn sich Value verändert hat.

Die Eigenschaft Orientation ermöglicht es, mithilfe des Werts Vertical auch
einen vertikalen Slider darzustellen. Falls der Benutzer neben den Thumb klickt, so
verändert sich Value um den Wert der Eigenschaft LargeChange (Standardwert 1).

Zur besseren Orientierung des Benutzers ist es sinnvoll, sogenannte Ticks am Sli-
der anzeigen zu lassen. Dazu muss die Eigenschaft TickPlacement einen Wert

Zahlenwerte 4.5

101

bekommen, der sich vom Standardwert None unterscheidet. Mögliche Werte aus
der gleichnamigen Enumeration sind:

� BottomRight (Ticks beim horizontalen Slider unterhalb und beim vertikalen
Slider rechts),

� TopLeft (oberhalb beziehungsweise links) und

� Both (Ticks auf beiden Seiten).

Der Abstand zwischen den Ticks ist normalerweise 1, er lässt sich über die
double-Eigenschaft TickFrequency einstellen.

Im nachfolgenden Projekt ZahlSlider werden insgesamt fünf Slider mit verschie-
denen Eigenschaften dargestellt (siehe Abbildung 4.31). Daneben gibt jeweils ein
zusätzliches Label den aktuellen Wert wieder, und zwar mithilfe einer Methode
zum Ereignis ValueChanged.

Abbildung 4.31 Slider-Einstellungen

Zunächst der Aufbau der Slider in XAML:

...
<Slider x:Name="sl1" Width="220" Value="3.5" LargeChange="0.5"
 TickFrequency="2" TickPlacement="BottomRight" Margin="5"
 ValueChanged="sl1_ValueChanged" />
...
<Slider x:Name="sl2" Width="220" Minimum="-2.5" Maximum="3.5"
 Value="0.5" TickFrequency="2" TickPlacement="BottomRight"
 IsMoveToPointEnabled="True" ValueChanged="sl2_ValueChanged"
 AutoToolTipPlacement="BottomRight" AutoToolTipPrecision="1"
 Margin="5" />
...
<Slider x:Name="sl3" Width="220" Value="2" TickFrequency="1"
 TickPlacement="BottomRight" IsSnapToTickEnabled="True"
 Margin="5" ValueChanged="sl3_ValueChanged" />
...

Steuerelemente4

102

<Slider x:Name="sl4" Width="220" Maximum="12" Value="8"
 Ticks="2,5,6,8" TickPlacement="BottomRight" Margin="5"
 IsSnapToTickEnabled="True" SelectionStart="5" SelectionEnd="8"
 IsSelectionRangeEnabled="True"
 ValueChanged="sl4_ValueChanged" />
...
<Slider x:Name="sl5" Orientation="Vertical" Height="100"
 Value="3" TickPlacement="BottomRight" TickFrequency="2"
 Margin="5" ValueChanged="sl5_ValueChanged" />
...

Bei Slider 1 steht Value zu Beginn auf 3.5 und LargeChange auf 0.5. Es geht also
in 0.5er-Schritten von 0.0 bis 10.0. Der Abstand der Ticks unterhalb des Sliders
ist 2.0.

Slider 2 zeigt Werte zwischen –2.5 und +3.5 an. Die Eigenschaft IsMoveToPoint-
Enabled wurde auf True gesetzt. Dadurch springt der Slider direkt auf den Ort
des Mausklicks. Außerdem wird der Wert während des Verschiebens als Tool-
Tip unterhalb des Thumb angezeigt. Dafür sorgt der Wert BottomRight für die
Eigenschaft AutoToolTipPlacement. Die gleichnamige Enumeration bietet noch
den Wert TopLeft und den Standardwert None.

Normalerweise kann beim Verschieben des Sliders jeder Zwischenwert erreicht
werden. Dies wird über die boolesche Eigenschaft IsSnapToTickEnabled mit dem
Standardwert False erreicht. Mit dem Werte True bewirken Sie, dass der Thumb
nur auf den Ticks einrastet, dass also keine Zwischenwerte erreicht werden kön-
nen (siehe Slider 3).

Die Ticks können nicht nur in gleichmäßigen Abständen, sondern auch individu-
ell eingestellt werden, falls nur bestimmte Werte sinnvoll sind (siehe Slider 4).
Dazu wird der Eigenschaft Ticks, die vom Typ DoubleCollection ist, eine Auf-
zählung von double-Werten zugewiesen. Bei diesem Slider sehen Sie auch, dass
ein Bereich für den Benutzer hervorgehoben wird. Dazu muss die boolesche
Eigenschaft IsSelectionRangeEnabled auf True gesetzt werden. Den Bereich
kennzeichnen Sie anschließend mit Werten für die Eigenschaften Selection-
Start und SelectionEnd vom Typ double.

Zu guter Letzt wurde noch ein vertikaler Slider eingesetzt (siehe Slider 5). Die
Werte steigen von unten nach oben an. Falls die Eigenschaft TickPlacement den
Wert BottomRight hat, dann werden die Ticks rechts vom Slider angezeigt, ent-
sprechend bei TopLeft links vom Slider.

Die Label werden jeweils nach dem Ereignis ValueChanged mit dem neuen Wert
gefüllt. Als Beispiel folgen die Methoden für Slider 2 und 3:

Zahlenwerte 4.5

103

private void sl2_ValueChanged(object sender,
 RoutedPropertyChangedEventArgs<double> e)
{
 lb2.Content = Math.Round(sl2.Value, 1);
 if(IsLoaded)
 lbalt.Content = "alt: " + Math.Round(e.OldValue, 1);
}

private void sl3_ValueChanged(object sender,
 RoutedPropertyChangedEventArgs<double> e)
{ lb3.Content = sl3.Value; }

Der Wert der Eigenschaft Value wird bei Slider 2 (und Slider 5) auf eine Stelle
gerundet ausgegeben. Bei Slider 3 (und Slider 4) ist dies nicht notwendig, da sich
wegen der Einteilung der Ticks und SnapToTick nur ganzzahlige Werte ergeben
können. Das Objekt der Klasse RoutedPropertyChangedEventArgs<double> bietet
Informationen über den Wechsel des Werts. Die Eigenschaft OldValue beinhaltet
den Wert vor der Änderung.

4.5.3 ScrollBar

Ein ScrollBar ermöglicht normalerweise einen Bildlauf. Er kann aber auch wie ein
vereinfachter Slider genutzt werden. Er besteht aus einem Thumb, der auf einer
Schiebeleiste bewegt wird; an den Enden gibt es jeweils einen RepeatButton. Es
gibt allerdings keine Ticks, also auch kein SnapToTick. Ebenso gibt es keinen per-
manenten AutoToolTip und keinen SelectionRange.

Zusätzlich zum Wert der Eigenschaft LargeChange kann auch ein Wert für die
Eigenschaft SmallChange eingestellt werden. Ersterer wirkt sich bei einem Klick
neben den Thumb aus, Letzterer bei einem Klick auf einen der RepeatButtons.
Ein kleines Beispiel sehen Sie im Projekt ZahlScrollBar (siehe Abbildung 4.32).

Abbildung 4.32 Horizontaler ScrollBar

Der Aufbau des ScrollBar in XAML:

<ScrollBar x:Name="sbar" Orientation="Horizontal" Maximum="100"
 Value="20" SmallChange="2" LargeChange="10" Width="200"
 Height="18" Margin="5" ValueChanged="sbar_ValueChanged" />

Steuerelemente4

104

Ohne weitere Angaben ist ein ScrollBar vertikal und durchläuft Werte von 0 bis 1.
Zur Änderung dieses Verhaltens sind die Eigenschaften Minimum und Maximum
beziehungsweise Orientation einzustellen. Die Betätigung der RepeatButtons
ändert Value um 2 (SmallChange), ein Klick auf die Schiebeleiste um 10
(LargeChange). Nach wie vor sind natürlich auch die Zwischenwerte durch
direkte Betätigung des Thumb zu erreichen. Das Ereignis ValueChanged führt zu
folgender Methode:

private void sbar_ValueChanged(object sender,
 RoutedPropertyChangedEventArgs<double> e)
{ lb.Content = Math.Round(sbar.Value,0); }

4.6 Container

In diesem Abschnitt werden einige Steuerelemente behandelt, die Elemente
einer Benutzeroberfläche visuell und/oder funktional gegenüber anderen Ele-
menten hervorheben beziehungsweise zusammenfassen. Es handelt sich um die
Elemente des Typs Border, GroupBox, Expander und TabControl.

Viele Steuer- und Layoutelemente haben diese Funktionalität. Ein Beispiel
wären zwei StackPanel, in denen jeweils eine Gruppe von RadioButtons ange-
ordnet ist. Bei den oben genannten Elementen handelt es sich aber um ihre
Hauptaufgabe.

4.6.1 Border

Die Klasse Border dient dazu, Elemente mit einem Rahmen zu versehen. Die
Eigenschaften BorderBrush (vom Typ Brush) und BorderThickness (vom Typ
Thickness) stehen für Farbe und Dicke des Rahmens. Sie haben die Standard-
werte Brushes.Transparent beziehungsweise 0. Es sollte daher beiden Eigen-
schaften ein Wert zugewiesen werden, damit der Rahmen sichtbar wird. Die
Eigenschaft CornerRadius der gleichnamigen Struktur kann dazu verwendet wer-
den, einen Eckenradius zu erzeugen, also die Ecken abzurunden.

Die Einstellungen für BorderThickness kennen Sie bereits von den Eigenschaften
Margin und Padding (siehe Abschnitt 4.1.4 und 4.1.5). Man kann die vier Seiten
des Rahmens also mit einem Wert einheitlich oder mit zwei beziehungsweise vier
Werten unterschiedlich gestalten.

Hinsichtlich eines Rahmens gibt es in Abhängigkeit des Elementtyps zwei mögli-
che Vorgehensweisen:

Container 4.6

105

� Rahmen als Eigenschaft: Sie stellen die Eigenschaften BorderBrush und
BorderThickness für das Element ein.

� Rahmen als Objekt: Sie betten das Element in ein Objekt des Typs Border ein.

Im nachfolgenden Projekt ContainerBorder sehen Sie einige Beispiele (siehe
Abbildung 4.33).

Abbildung 4.33 Nach dem Start

Der Reihe nach werden abgebildet:

� ein Label mit Rahmen

� ein WrapPanel mit Rahmen

� ein Button mit Rahmen und einheitlichem Eckenradius; Dicke und Ecken-
radius können über einen Slider eingestellt werden.

� ein Button mit Rahmen und uneinheitlichem Eckenradius, wiederum mit
Slider-Einstellung

Zunächst der Aufbau in XAML:

<StackPanel>
 <Label BorderBrush="Black" BorderThickness="2"
 HorizontalAlignment="Center" Margin="2">Inhalt</Label>
 <Border BorderBrush="Black" BorderThickness="2"
 Width="204" Margin="2">
 <WrapPanel HorizontalAlignment="Center">
 <Button Width="100">1</Button>
 <Button Width="100">2</Button>
 </WrapPanel>
 </Border>
 <WrapPanel HorizontalAlignment="Center">
 <Border x:Name="bo3" BorderBrush="Black" BorderThickness="5"
 CornerRadius="10" Margin="2" Width="100">
 <Button x:Name="bu3">3: 5</Button>
 </Border>

Steuerelemente4

106

 <Slider Value="5" ... />
 </WrapPanel>
 <WrapPanel HorizontalAlignment="Center">
 <Border x:Name="bo4" BorderBrush="Black" Margin="2"
 BorderThickness="2, 5, 2, 5" Width="100"
 CornerRadius="15, 15, 5, 5" Padding="5, 3, 5, 1">
 <Button x:Name="bu4">4: 5, 127</Button>
 </Border>
 <Slider Value="5" ... />
 </WrapPanel>
</StackPanel>

Beim Label werden direkt die Eigenschaften BorderBrush und BorderThickness
genutzt, um einen schwarzen Rahmen mit Einheitsdicke 2 zu erstellen. Da es
horizontal im StackPanel zentriert ist, hat das Label (somit auch der Rahmen) nur
die notwendige Breite. Ansonsten würde sich das Label einschließlich Rahmen
über die gesamte Breite erstrecken.

Die beiden Buttons 1 und 2 liegen in einem WrapPanel, das in ein Objekt der
Klasse Border eingebettet ist. Dieses Objekt hat die Breite der beiden Buttons
(jeweils 100) plus die Dicke des schwarzen Rahmens (jeweils 2), also 204. Wäre
es breiter, würde der Rahmen nicht an den Buttons im Panel »anliegen«. Wäre es
schmaler, würde der zweite Button in die nächste Zeile »rutschen«.

Im nächsten WrapPanel ist Button 3 in ein Objekt der Klasse Border eingebettet.
Dieser Rahmen ist schwarz, hat eine einheitliche Dicke von 5 und einen einheit-
lichen Eckenradius von 10.

Das letzte WrapPanel beinhaltet Button 4, der ebenfalls in ein Objekt der Klasse
Border eingebettet ist. Dieser Rahmen ist schwarz. Die Thickness-Werte für
BorderThickness sind: 2 für links, 5 für oben, 2 für rechts und 5 für unten. Der
Eckenradius ist: 15 für oben links, 15 für oben rechts, 5 für unten rechts und 5
für unten links. Es wird also auch hier im Uhrzeigersinn vorgegangen. Die
Thickness-Werte für Padding (5, 3, 5, 1) wurden so gewählt, dass der Button den
Rahmen zu Beginn nicht berührt.

Es folgen die Ereignismethoden für die beiden Slider:

private void sl3_ValueChanged(...)
{
 bo3.BorderThickness = new Thickness(sl3.Value);
 bo3.CornerRadius = new CornerRadius(2 * sl3.Value);
 bu3.Content = "3: " + Math.Round(sl3.Value, 0);
}

Container 4.6

107

private void sl4_ValueChanged(...)
{
 bo4.BorderThickness =
 new Thickness(2, sl4.Value, 2, 10 - sl4.Value);
 bo4.CornerRadius = new CornerRadius
 (3 * sl4.Value, 3 * sl4.Value, sl4.Value, sl4.Value);
 bu4.Content = "4: " + Math.Round(sl4.Value, 0);
}

Die Struktur Thickness bietet zwei Konstruktoren. Sie werden hier genauso
genutzt, wie Sie es schon bei Margin und Padding (siehe Abschnitt 4.1.4 und
4.1.5) gesehen haben. Die Struktur CornerRadius bietet ebenfalls zwei Konstruk-
toren. Der Benutzer könnte die Rahmen mithilfe der Methoden so einstellen wie
in Abbildung 4.34.

Abbildung 4.34 Rahmen-Einstellungen

4.6.2 GroupBox

Ein Element des Typs GroupBox können Sie nutzen, um die Elemente einer Benut-
zeroberfläche übersichtlich zu gruppieren. Dies wird häufig bei Gruppen von
RadioButtons genutzt. Die Eigenschaft Header beinhaltet die Bezeichnung der
GroupBox und kann wiederum aus Steuerelementen gestaltet werden.

Im nachfolgenden Projekt ContainerGroupBox werden zwei Gruppen von Ele-
menten jeweils in einer GroupBox dargestellt (siehe Abbildung 4.35). Die Sicht-
barkeit der zweiten Gruppe kann mithilfe einer CheckBox ein- und ausgeschaltet
werden.

Abbildung 4.35 Zwei Elemente vom Typ »GroupBox«

Steuerelemente4

108

Zunächst der Aufbau in XAML:

<WrapPanel>
 <GroupBox Header="Bereich 1" Margin="5" Width="130">
 <StackPanel> ...
 <CheckBox IsChecked="True" Checked="cb1_Checked"
 Unchecked="cb1_Unchecked">Bereich 2 sichtbar</CheckBox>
 </StackPanel>
 </GroupBox>
 <GroupBox x:Name="gb2" Margin="5" Width="120">
 <GroupBox.Header>
 <CheckBox IsChecked="True" Checked="cb2_Checked"
 Unchecked="cb2_Unchecked">Bereich 2 aktiv</CheckBox>
 </GroupBox.Header>
 <StackPanel x:Name="sp2"> ... </StackPanel>
 </GroupBox>
</WrapPanel>

Beide Elemente vom Typ GroupBox beinhalten ein StackPanel mit mehreren Steu-
erelementen. Diese Steuerelemente haben hier keine Funktionalität, sondern ste-
hen nur für beliebige Elemente innerhalb einer GroupBox.

Die erste GroupBox hat einen einfachen Text als Header und eine CheckBox, mit
der man die Sichtbarkeit der zweiten GroupBox steuern kann. Bei der zweiten
GroupBox besteht der Header aus einer CheckBox, mit der man die Sichtbarkeit
(Eigenschaft Visibility) des StackPanels innerhalb der GroupBox steuern kann.
Es folgen die Ereignismethoden:

private void cb1_Checked(...)
{ if(IsLoaded) gb2.Visibility = Visibility.Visible; }
private void cb1_Unchecked(...)
{ gb2.Visibility = Visibility.Hidden; }
private void cb2_Checked(...)
{ if(IsLoaded) sp2.Visibility = Visibility.Visible; }
private void cb2_Unchecked(...)
{ sp2.Visibility = Visibility.Hidden; }

4.6.3 Expander

Ein Element vom Typ Expander wird häufig dann eingesetzt, wenn Sie dem
Benutzer Text oder Steuerelemente zur Verfügung stellen wollen, die nicht dau-
ernd angezeigt werden sollen. Ein Expander kann in vier verschiedenen Richtun-
gen aufklappen. Zuständig dafür ist die Eigenschaft ExpandDirection; sie hat den
Standardwert Down. Weitere Werte aus der gleichnamigen Enumeration sind Up,
Left und Right.

Container 4.6

109

Die boolesche Eigenschaft IsExpanded dient dazu, Auskunft über den aktuellen
Zustand des Expanders zu geben und den Expander von außen zu steuern. Die
Bezeichnung des Expanders steht in der Eigenschaft Header. Die Ereignisse
Expanded und Collapsed treten beim Auf- und Zuklappen auf. Diese Ereignisse
beeinflussen außerdem das Layout. Im nachfolgenden Projekt ContainerExpander
sehen Sie vier aufgeklappte Expander in den vier möglichen Richtungen, jeweils
in einer eigenen Grid-Zelle (siehe Abbildung 4.36). Unterhalb des ersten Expan-
ders ist eine zusätzliche CheckBox positioniert.

Abbildung 4.36 Vier Expander in vier Richtungen

Der Aufbau in XAML:

<Grid>
 <Grid.ColumnDefinitions> ...
 <StackPanel>
 <Expander x:Name="ex1" Header="1: Ab" IsExpanded="True"
 Collapsed="ex1_klapp" Expanded="ex1_klapp">
 <StackPanel>
 <TextBlock>Text 1</TextBlock>
 <TextBlock>Text 2</TextBlock>
 </StackPanel>
 </Expander>
 <CheckBox x:Name="cb1" IsChecked="True"
 Click="cb1_Click">auf</CheckBox>
 </StackPanel>

 <Expander Header="2: Auf" IsExpanded="True"
 ExpandDirection="Up" Grid.Column="1"
 Background="LightGray">
 <StackPanel>
 <TextBlock>Text 1</TextBlock>
 <TextBlock>Text 2</TextBlock>
 </StackPanel>
 </Expander>

Steuerelemente4

110

 <Expander Header="3: Re" ExpandDirection="Right"
 Grid.Column="2" MouseEnter="ex3_MouseEnter"
 MouseLeave="ex3_MouseLeave">
 <WrapPanel>
 <Button Margin="2">B1</Button>
 <Button Margin="2">B2</Button>
 </WrapPanel>
 </Expander>

 <Expander IsExpanded="True" ExpandDirection="Left"
 Grid.Column="3" Background="LightGray">
 <Expander.Header>
 <TextBlock RenderTransformOrigin="0.5 0.5">4: Links
 <TextBlock.RenderTransform>
 <TransformGroup>
 <RotateTransform Angle="270" />
 <TranslateTransform Y="15" />
 </TransformGroup>
 </TextBlock.RenderTransform>
 </TextBlock>
 </Expander.Header>
 <WrapPanel FlowDirection="RightToLeft">
 <Button Margin="2">B1</Button>
 <Button Margin="2">B2</Button>
 </WrapPanel>
 </Expander>
</Grid>

Ein Expander positioniert sich im übergeordneten Element, hier in der Grid-
Zelle, automatisch in Abhängigkeit der Aufklapprichtung. Bei einem vertikalen
Expander empfiehlt sich ein StackPanel zur Aufnahme der Elemente, ansonsten
ein WrapPanel.

Falls ExpandDirection den Wert Left hat, so kann man der Eigenschaft
FlowDirection den Wert RightToLeft geben, damit das erste Element unmittel-
bar am Header des Expanders liegt. Ein Header kann einen einfachen Text enthal-
ten; er kann aber auch gestaltet werden, wie Sie es am letzten Expander sehen.
Der TextBlock wurde gedreht und verschoben. Mehr zu solchen zweidimensiona-
len Transformationen lesen Sie in Abschnitt 9.5.

Die Ereignisse Expanded und Collapsed sowie die Betätigung der CheckBox füh-
ren zu den folgenden Methoden:

private void cb1_Click(...)
{ ex1.IsExpanded = (bool)cb1.IsChecked; }

Container 4.6

111

private void ex1_klapp(...)
{ if (IsLoaded) cb1.IsChecked = ex1.IsExpanded; }
private void ex3_MouseEnter(object sender, MouseEventArgs e)
{ (sender as Expander).IsExpanded = true; }
private void ex3_MouseLeave(object sender, MouseEventArgs e)
{ (sender as Expander).IsExpanded = false; }

Der erste Expander kann auch über die Markierung beziehungsweise Entmarkie-
rung der CheckBox bedient werden. Da er auch »herkömmlich« bedient werden
kann, muss die Markierung der CheckBox aktuell gehalten werden. Der dritte
Expander wird bereits geöffnet, sobald sich die Maus darüber befindet, schon vor
dem Click. Er wird geschlossen, sobald sich die Maus wieder aus ihm heraus-
bewegt.

4.6.4 TabControl

Ein Element vom Typ TabControl stellt verschiedene Registerkarten zur Verfü-
gung, auf denen die Elemente platziert werden. Ein TabControl basiert auf Items,
wie eine ListBox. Die einzelnen Elemente sind vom Typ TabItem. Die Eigenschaft
SelectedIndex einer TabControl beinhaltet die laufende Nummer der aktiven
Registerkarte, beginnend bei 0. In der Eigenschaft Header eines TabItem steht die
Beschriftung der Registerkarte.

Eine Registerkarte wird vom Benutzer über einen Reiter (TabStrip) ausgewählt.
Üblicherweise wird der Reiter am oberen Rand platziert. Die zuständige Eigen-
schaft TabStripPlacement gilt für die gesamte TabControl und ist vom Typ Dock,
wie bei einem Element vom Typ DockPanel. Neben dem Standardwert Top gibt es
also noch Left, Right und Bottom. Der Wechsel der Registerkarte führt zum
Ereignis Selection_Changed.

Im nachfolgenden Projekt ContainerTabControl können Sie die verschiedenen
Werte für TabStripPlacement wählen (siehe Abbildung 4.37). Außerdem gibt es
einen Button auf der ersten Registerkarte, der zu einem Wechsel auf eine andere
Karte führt.

Abbildung 4.37 TabControl, Reiter oben

Steuerelemente4

112

Der Aufbau in XAML:

<TabControl x:Name="tc" Margin="5"
 SelectionChanged="tc_SelectionChanged">
 <TabItem Header="Ber. 0">
 <WrapPanel Orientation="Vertical">
 <Button>Button 0 A</Button>
 <Button x:Name="b1" Click="b1_Click">Zum Letzten</Button>
 </WrapPanel>
 </TabItem>
 <TabItem Header="Ber. 1" Selector.IsSelected="True">
 <WrapPanel Orientation="Vertical">
 <Button>Button 1 A</Button>
 <Button>Button 1 B</Button>
 </WrapPanel>
 </TabItem>
 <TabItem>
 <TabItem.Header>
 <WrapPanel>
 <TextBlock FontWeight="Bold"
 Margin="0,0,3,0">Letzter</TextBlock>
 <TextBlock>Bereich</TextBlock>
 </WrapPanel>
 </TabItem.Header>
 <WrapPanel Orientation="Vertical">
 <Button>Button 2 A</Button>
 <Button>Button 2 B</Button>
 </WrapPanel>
 </TabItem>
</TabControl>
<WrapPanel RadioButton.Checked="rb_Check"> ... </WrapPanel>

Der Header eines TabItem kann ein einfacher Text sein. Er kann aber auch gestal-
tet werden, wie es beim letzten TabItem der Fall ist. Die Attached Property
IsSelected der Klasse Selector dient zur Vorauswahl einer Registerkarte. Es fol-
gen die Methoden für die verschiedenen Ereignisse:

private void tc_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
{ if (IsLoaded)
 lb.Content = "Aktiver Index: " + tc.SelectedIndex; }

private void b1_Click(...) { tc.SelectedIndex = 2; }

private void rb_Check(object sender, RoutedEventArgs e)

Menüs und Leisten 4.7

113

{
 if (IsLoaded)
 {
 string s = (e.Source as RadioButton).Content.ToString();
 switch (s)
 {
 case "Top": tc.TabStripPlacement = Dock.Top; break;
 case "Left": tc.TabStripPlacement = Dock.Left; break;
 case "Right": tc.TabStripPlacement = Dock.Right; break;
 case "Bottom": tc.TabStripPlacement = Dock.Bottom; break;
 }
 }
}

Der Wechsel der Registerkarte, zum Beispiel durch einen Klick auf den Reiter,
führt über das Ereignis Selection_Changed zur Ausgabe der Nummer der neuen
Registerkarte. Falls man die Registerkarte durch ein anderes Ereignis als durch
einen Klick auf den Reiter wechseln möchte, so muss dazu der Wert der Eigen-
schaft SelectedIndex geändert werden.

Die vier RadioButtons sollen Ihnen helfen, sich die verschiedenen Reiter-Anord-
nungen vorzustellen. Das Ereignis RadioButton.Checked wurde nur einmalig,
beim umgebenden WrapPanel registriert. Es wird vom auslösenden RadioButton
zum WrapPanel geroutet. Die ursprüngliche Ereignisquelle lässt sich dann über
die Eigenschaft Source des Objekts der Klasse RoutedEventArgs ermitteln.

4.7 Menüs und Leisten

Haupt- und Kontextmenü sowie Symbol- und Statusleiste sind selbstverständli-
che Bestandteile einer Benutzeroberfläche. Sie werden in diesem Abschnitt vor-
gestellt.

Ribbons, also Menübänder, kennt man zum Beispiel in MS Office ab Version
2007. Sie benötigen einen eigenen Typ Vorlage (siehe Abschnitt 6.7, »Ribbonan-
wendung«).

4.7.1 Hauptmenü

Ein Hauptmenü wird meist mithilfe eines DockPanel-Objekts am oberen Fenster-
rand verankert. Das Hauptelement ist vom Typ Menu. Innerhalb dieses Elements
gibt es eine hierarchische Struktur von Elementen. Dies können Elemente des
Standardtyps MenuItem sein, aber auch Elemente anderer Typen, wie zum Beispiel

Steuerelemente4

114

RadioButton oder ComboBox. Elemente des Typs Separator dienen zur Untertei-
lung eines längeren Menüs.

Die Beschriftung eines MenuItems steht in der Eigenschaft Header. Falls Sie der
Eigenschaft IsCheckable den Wert True geben, erscheint vor dem Header eine
Markierung, wie bei einer CheckBox. Ein Bild vor dem Header kann mithilfe der
Eigenschaft Icon (vom Typ object) angezeigt werden (siehe Abbildung 4.38 aus
dem nachfolgenden Projekt MenüHaupt). Ein Unterstrich vor einem Zeichen des
Headers ermöglicht die Bedienung per Tastatur ((Alt)+(Zeichen)).

Abbildung 4.38 Aufgeklapptes Menü

Zunächst der Aufbau in XAML:

<DockPanel>
 <Menu DockPanel.Dock="Top">
 <MenuItem Header="_Bearbeiten">
 <MenuItem Header="_Kopieren" Click="menu_kopieren" />
 <MenuItem Header="_Ende" Click="menu_ende" />
 </MenuItem>

 <MenuItem Header="_Ansicht">
 <MenuItem Header="_Hintergrund"
 RadioButton.Checked="menu_hintergrund">
 <MenuItem.Icon>
 <Image Source="work.gif" Width="20" />
 </MenuItem.Icon>
 <RadioButton IsChecked="True">Weiß</RadioButton>
 <RadioButton>Gelb</RadioButton>
 <RadioButton>Rot</RadioButton>
 </MenuItem>
 <Separator />
 <WrapPanel>
 <TextBlock VerticalAlignment="Center"
 Margin="0,0,5,0">Schriftgröße</TextBlock>

Menüs und Leisten 4.7

115

 <ComboBox x:Name="cb_groesse"
 SelectionChanged="menu_cb_groesse">
 <ComboBoxItem>8</ComboBoxItem>
 <ComboBoxItem>10</ComboBoxItem>
 <ComboBoxItem Selector.IsSelected="True">
 12</ComboBoxItem>
 <ComboBoxItem>18</ComboBoxItem>
 </ComboBox>
 </WrapPanel>
 <Separator />
 <MenuItem x:Name="fett" Header="_Fett"
 IsCheckable="True" Click="menu_fett" />
 </MenuItem>
 </Menu>

 <WrapPanel DockPanel.Dock="Top" Orientation="Vertical">
 <TextBox x:Name="tb" Width="80" Margin="5" />
 <Label x:Name="lb" Margin="5">Hallo Welt</Label>
 </WrapPanel>
</DockPanel>

Im Hauptmenüpunkt Bearbeiten gibt es die Untermenüpunkte Kopieren und
Ende. Die Auswahl eines dieser Punkte führt zur Methode für das jeweilige Click-
Ereignis. Kopiert wird der Inhalt der TextBox in das Label. Ende beendet die
Anwendung.

Im Hauptmenüpunkt Ansicht werden die Hintergrundfarbe über RadioButtons,
die Schriftgröße über eine ComboBox und das Schriftgewicht über einen Menü-
eintrag mit Markierung eingestellt.

Die zugehörigen Methoden:

private void menu_kopieren(...)
{ lb.Content = tb.Text;
 if (lb.Content.ToString() == "") lb.Content = "(leer)"; }
private void menu_ende(...) { Close(); }

private void menu_hintergrund(...)
{
 if (IsLoaded)
 {
 string s = (e.Source as RadioButton).Content.ToString();
 switch (s)
 {
 case "Weiß": lb.Background =
 new SolidColorBrush(Colors.White); break;

Steuerelemente4

116

 case "Gelb": lb.Background =
 new SolidColorBrush(Colors.Yellow); break;
 case "Rot": lb.Background =
 new SolidColorBrush(Colors.Red); break;
 }
 }
}

Wie im vorherigen Abschnitt (zum Thema TabControl) wird das Ereignis
RadioButton.Checked nur einmalig, und zwar beim umgebenden MenuItem,
registriert. Die Ereignisquelle wird über e.Source ermittelt.

private void menu_cb_groesse(object sender,
 SelectionChangedEventArgs e)
{ if (IsLoaded && cb_groesse.SelectedIndex != -1)
 lb.FontSize = Convert.ToDouble(
 (cb_groesse.SelectedItem as ComboBoxItem).Content); }
private void menu_fett(...)
{ if (item_fett.IsChecked) lb.FontWeight = FontWeights.Bold;
 else lb.FontWeight = FontWeights.Normal; }

Der Eintrag eines ComboBoxItem steht in der Eigenschaft Content. Dieser Wert
kann nach der Konvertierung als Schriftgröße übernommen werden. Die Eigen-
schaft IsChecked eines MenuItem, dessen Eigenschaft IsCheckable auf True
steht, übermittelt den aktuellen Zustand dieses Items.

4.7.2 Kontextmenü

Das Hauptelement eines Kontextmenüs ist vom Typ ContextMenu. Intern hat es
den gleichen hierarchischen Aufbau wie ein Hauptmenü, mit Elementen des
Standardtyps MenuItem beziehungsweise Elementen anderer Typen.

Ein Kontextmenü wird einem Steuerelement über dessen Eigenschaft Con-
textMenu zugeordnet. Es erscheint, falls der Benutzer mit der rechten Maustaste
auf das betreffende Steuerelement klickt. Über die double-Eigenschaften
HorizontalOffset und VerticalOffset legen Sie den Abstand zum Steuerele-
ment fest. Der Standardwert ist jeweils 0. Falls Sie parallel zum Öffnen und
Schließen eines Kontextmenüs andere Aktionen ausführen möchten, so können
Sie die Ereignisse Opened und Closed nutzen.

Häufig gibt es Menüpunkte eines Kontextmenüs auch im Hauptmenü. Es gilt
natürlich, die Einträge in beiden Menüs synchron zu halten – wie im nachfolgen-
den Projekt MenüKontext (siehe Abbildung 4.39).

Menüs und Leisten 4.7

117

Abbildung 4.39 Aufgeklapptes Kontextmenü

Der Aufbau in XAML:

<DockPanel>
 <Menu DockPanel.Dock="Top">
 <MenuItem x:Name="item_fett_hauptmenu" Header="_Fett"
 IsCheckable="True" Click="menu_fett" />
 </Menu>
 <StackPanel>
 <Label x:Name="lb1" Margin="5">Label 1
 <Label.ContextMenu>
 <ContextMenu x:Name="cm" HorizontalOffset="20"
 VerticalOffset="2" Opened="status" Closed="status">
 <MenuItem x:Name="item_fett_kontextmenu" Header="_Fett"
 IsCheckable="True" Click="menu_fett" />
 </ContextMenu>
 </Label.ContextMenu>
 </Label>
 <Label x:Name="lb2" Margin="5" />
 </StackPanel>
</DockPanel>

Die Anwendung beinhaltet ein Hauptmenü. Außerdem beinhaltet sie ein Kon-
textmenü für das erste Label, das mit einem vertikalen und horizontalen Abstand
eingeblendet wird. Beide Menüs enthalten ausschließlich den gleichen, markier-
baren Menüpunkt. Damit soll das Label in Fett- oder Normalschrift gesetzt wer-
den.

Das zweite Label zeigt mithilfe der Ereignisse Opened und Closed an, ob das Kon-
textmenü geöffnet oder geschlossen ist. Die Ereignismethoden:

private void menu_fett(...)
{
 if ((sender as MenuItem).IsChecked)
 {
 lb1.FontWeight = FontWeights.Bold;
 item_fett_hauptmenu.IsChecked = true;

Steuerelemente4

118

 item_fett_kontextmenu.IsChecked = true;
 }
 else
 {
 lb1.FontWeight = FontWeights.Normal;
 item_fett_hauptmenu.IsChecked = false;
 item_fett_kontextmenu.IsChecked = false;
 }
}

private void status(...)
{
 if(cm.IsOpen)
 lb2.Content = "Kontextmenü geöffnet";
 else
 lb2.Content = "Kontextmenü geschlossen";
}

Die Methode menu_fett() wird aufgerufen, unabhängig davon, in welchem
Menü der entsprechende Menüpunkt ausgewählt wurde. Innerhalb der Methode
wird, in Abhängigkeit von der Markierung, das Label in Fett- oder Normalschrift
gesetzt. Außerdem wird in beiden Menüs der Menüpunkt synchron markiert.

Die Methode status() wird beim Öffnen und Schließen des Kontextmenüs
genutzt. Die Eigenschaft IsOpen gibt Auskunft darüber, welcher Vorgang soeben
durchgeführt wurde.

4.7.3 Symbolleiste

In Symbolleisten werden häufig genutzte Bedienungselemente untergebracht.
Eine einzelne Symbolleiste ist ein Element vom Typ ToolBar. Mehrere Symbol-
leisten werden in einem Container vom Typ ToolBarTray zusammengefasst. Die-
ser ToolBarTray wird meist mithilfe eines DockPanels an einem Fensterrand ver-
ankert. Mit dem Wert Vertical für die Eigenschaft Orientation können Sie den
ToolBarTray auch vertikal anordnen.

Falls aus Platzgründen nicht alle Inhalte einer Symbolleiste im Fenster angezeigt
werden können, so kann der Benutzer einen kleinen Pfeil rechts unten an der
Symbolleiste bedienen, der ihm den Zugang zu den restlichen Elementen ermög-
licht (siehe Abbildung 4.40). Er kann die Symbolleiste auch mit der Maus am lin-
ken Rand anfassen, sie verschieben und ihr dadurch zu Lasten der anderen Sym-
bolleisten mehr Platz verschaffen (siehe Abbildung 4.41). Das Verschieben ist
allerdings nur möglich, falls die ToolBarTray nicht gesperrt ist, also die Eigen-
schaft IsLocked des ToolBarTray den Standardwert False hat.

Menüs und Leisten 4.7

119

Abbildung 4.40 Zugriff auf Elemente außerhalb

Abbildung 4.41 Symbolleiste verschoben

Innerhalb einer Symbolleiste können, wie auch bei Menüs oder anderen Elemen-
ten der WPF, Elemente unterschiedlichen Typs angeordnet werden. Im Projekt
MenüSymbolleiste sehen Sie einen ToolBarTray mit zwei Symbolleisten. Die Sym-
bolleisten können über das Hauptmenü einzeln ein- und ausgeblendet werden.
Der ToolBarTray kann gesperrt werden. Da es im Projekt auf das Verhalten der
Symbolleiste selber ankommt, habe ich die Ereignismethoden zu den Steuerele-
menten auf den Symbolleisten eingespart.

Der XAML-Code:

<DockPanel>
 <Menu DockPanel.Dock="Top">
 <MenuItem Header="Symbolleisten">
 <MenuItem x:Name="item_tb1" Header="SL 1"
 IsCheckable="True" IsChecked="True"
 Click="sichtbar_tb1" />
 <MenuItem x:Name="item_tb2" Header="SL 2"
 IsCheckable="True" IsChecked="True"
 Click="sichtbar_tb2" />
 </MenuItem>
 </Menu>
 <ToolBarTray x:Name="tbtray" DockPanel.Dock="Top"
 Background="LightGray">
 <ToolBar x:Name="tb1">
 <Label>1: </Label>

Steuerelemente4

120

 <ToggleButton>Fett</ToggleButton>
 <ToggleButton>
 <WrapPanel>
 <Image Source="work.gif" Height="16"
 Margin="0,0,3,0" />
 <TextBlock>Kursiv</TextBlock>
 </WrapPanel>
 </ToggleButton>
 </ToolBar>
 <ToolBar x:Name="tb2">
 <Label>2:</Label>
 <Label>Schriftart:</Label>
 <ComboBox>
 <ComboBoxItem>Arial</ComboBoxItem>
 <ComboBoxItem>Tahoma</ComboBoxItem>
 <ComboBoxItem>Verdana</ComboBoxItem>
 </ComboBox>
 <Label>Schriftgröße:</Label>
 <ComboBox>
 <ComboBoxItem>10</ComboBoxItem>
 <ComboBoxItem>12</ComboBoxItem>
 <ComboBoxItem>18</ComboBoxItem>
 </ComboBox>
 </ToolBar>
 </ToolBarTray>
 <CheckBox x:Name="cb" Margin="2" Click="gesperrt">
 ToolBarTray gesperrt</CheckBox>
</DockPanel>

Innerhalb der Symbolleisten wird unter anderem eine ComboBox dargestellt. Sie
sieht anders aus als eine normale ComboBox (siehe Abbildung 4.40). Dies liegt
daran, dass über die Eigenschaft ComboBoxStyleKey der ToolBar ein spezieller
Style zur Anwendung kommt. Entsprechende Styles gibt es unter anderem auch
für Elemente des Typs CheckBox, RadioButton und ToggleButton. Mehr zu Styles
und Keys finden Sie in Kapitel 7, »Vorlagen«.

Die Ereignismethoden zum Ein- und Ausblenden beziehungsweise Sperren:

private void sichtbar_tb1(...)
{ sichtbar(item_tb1, tb1); }
private void sichtbar_tb2(...)
{ sichtbar(item_tb2, tb2); }
private void sichtbar(MenuItem mi, ToolBar tb)
{ if (mi.IsChecked) tb.Visibility = Visibility.Visible;
 else tb.Visibility = Visibility.Collapsed; }

Menüs und Leisten 4.7

121

Die erste Symbolleiste wird über den ersten Hauptmenüeintrag ein- oder ausge-
blendet (Eigenschaft Visibility). Das Entsprechende gilt für die zweite Symbol-
leiste.

private void gesperrt(...)
{ tbtray.IsLocked = (bool)cb.IsChecked; }

Der ToolBarTray wird über die Checkbox ge- und entsperrt.

4.7.4 Statusleiste

Gemäß ihrem Namen beinhaltet die Statusleiste aktuelle Informationen über den
Status einer Anwendung und ihrer Elemente. Das Element vom Typ StatusBar
kann aber auch selber Elemente enthalten, wie die Menüs und die Symbolleiste.
Sie wird meist mithilfe eines DockPanels am unteren Bildschirmrand verankert.
Im nachfolgenden Projekt MenüStatusleiste werden die aktuellen Werte von
Datum, Fenstergröße und Mausposition dargestellt (siehe Abbildung 4.42).

Abbildung 4.42 Statusleiste

Der Aufbau in XAML:

<Window ... Loaded="Window_Loaded"
 SizeChanged="Window_SizeChanged"
 MouseMove="Window_MouseMove">
 <DockPanel>
 <StatusBar DockPanel.Dock="Bottom">
 <TextBlock x:Name="tb1"></TextBlock>
 <Separator />
 <Label>Größe:</Label>
 <TextBlock x:Name="tb2"></TextBlock>
 <Separator />
 <CheckBox x:Name="cb" Click="cb_Click" />
 <WrapPanel x:Name="wp" Visibility="Collapsed">
 <Label>Position:</Label>
 <TextBlock x:Name="tb3"
 VerticalAlignment="Center"></TextBlock>
 </WrapPanel>
 </StatusBar>

Steuerelemente4

122

 <Label>Inhalt</Label>
 </DockPanel>
</Window>

Nachdem das Fenster geladen wurde, tritt das Ereignis Loaded ein. Sobald die
Fenstergröße geändert wird, also auch zu Beginn der Anwendung, wird das Ereig-
nis SizeChanged ausgelöst. Wird die Maus über dem Fenster bewegt, so führt dies
zum Ereignis MouseMove. Mehr zu Fensterereignissen sehen Sie in Abschnitt 6.3,
»Fenster«, mehr zu Mausereignissen in Abschnitt 5.2, »Maus«. Der zugehörige
Code sieht so aus:

private void Window_Loaded(...)
{ tb1.Text = DateTime.Today.ToShortDateString(); }

Es wird das aktuelle Datum in Kurzform angezeigt.

private void Window_SizeChanged(object sender,
 SizeChangedEventArgs e)
{ tb2.Text = (int)Width + "*" + (int)Height; }

Breite und Höhe des Fensters sind double-Werte.

private void Window_MouseMove(object sender, MouseEventArgs e)
{ tb3.Text = "X:" + (int)e.GetPosition(this).X
 + " Y:" + (int)e.GetPosition(this).Y; }

Die Methode GetPosition() des MouseEventArgs-Objekts gibt einen Wert vom
Typ Point zurück. Dieser enthält die X- und Y-Komponente als double-Werte.

private void cb_Click(...)
{ if ((bool)cb.IsChecked) wp.Visibility = Visibility.Visible;
 else wp.Visibility = Visibility.Collapsed; }

Ein Beispiel für ein Steuerelement in der Statusleiste: Der Benutzer kann die Posi-
tionsangabe per CheckBox ein- oder ausblenden.

4.8 Datum

Die beiden Steuerelemente vom Typ Calendar und DatePicker dienen zur ein-
deutigen Auswahl von Datumswerten beziehungsweise Datumsbereichen.

4.8.1 Calendar

Das Element vom Typ Calendar bietet zahlreiche Möglichkeiten zur Datumswahl.
Die Eigenschaft SelectionMode dient zur Festlegung des Auswahlmodus. Es gibt
dazu die folgenden Werte in der Enumeration CalendarSelectionMode:

Datum 4.8

123

� SingleDate: Dies ist der Standardwert. Es kann ein einzelner Datumswert per
Maus oder (Pfeil)-Taste bestimmt werden.

� SingleRange: Es kann ein einzelner Bereich per Maus und (ª)-Taste oder per
(Pfeil)- und (ª)-Taste ausgewählt werden. Je nach Richtung der Auswahl
handelt es sich um auf- oder absteigende Daten.

� MultipleRange: Es können mehrere getrennte Datumswerte oder Datumsbe-
reiche per Maus, (ª)- und (Strg)-Taste oder per (Pfeil)-, (ª)- und (Strg)-
Taste bestimmt werden. Die Reihenfolge der Auswahl entscheidet wiederum
über die Reihenfolge der Daten. Ein Beispiel sehen Sie in Abbildung 4.43.
Zuerst wurde der Bereich 16.03.–17.03., anschließend der Bereich 02.03–
03.03. markiert.

Im nachfolgenden Projekt DatumCalendar werden die ausgewählten Daten in
einem Label angezeigt. Außerdem gibt es die Möglichkeit, den SelectionMode zu
wechseln.

Abbildung 4.43 Auswahl getrennter Bereiche

Falls der Benutzer im Kopf der Monatsansicht auf März 2012 klickt, so wird ihm
die Jahresansicht mit allen 12 Monaten des Jahres 2012 angezeigt. Klickt er
anschließend in der Jahresansicht auf 2012, so wird ihm die 12-Jahresansicht mit
insgesamt 12 Jahren angezeigt. Ein Klick auf eines der 12 Jahre beziehungsweise
einen der 12 Monate führt ihn über die Jahres- wieder zur Monatsansicht.

Ein Klick auf einen der Pfeile bewirkt, dass der benachbarte Monat beziehungs-
weise das benachbarte Jahr oder die benachbarten 12 Jahre angezeigt werden.
Klickt er auf einen der angezeigten letzten Tage des Vormonats oder auf einen der
angezeigten ersten Tage des Nachfolgemonats, so wechselt die Anzeige zum ent-
sprechenden Monat.

Steuerelemente4

124

Der Aufbau in XAML:

<Window ...>
 <StackPanel>
 <Label x:Name="lb" HorizontalAlignment="Center" />
 <Calendar x:Name="cal" SelectedDatesChanged="anzeige"
 DisplayDate="3/2/2012" SelectionMode="MultipleRange"
 xmlns:sys="clr-namespace:System;assembly=mscorlib">
 <Calendar.SelectedDates>
 <sys:DateTime>3/16/2012</sys:DateTime>
 <sys:DateTime>3/17/2012</sys:DateTime>
 <sys:DateTime>3/2/2012</sys:DateTime>
 <sys:DateTime>3/3/2012</sys:DateTime>
 </Calendar.SelectedDates>
 </Calendar>
 <WrapPanel HorizontalAlignment="Center"
 RadioButton.Click="umschalten">
 <RadioButton x:Name="sdate" ... </RadioButton>
 <RadioButton x:Name="sange" ... </RadioButton>
 <RadioButton x:Name="mrange" ... </RadioButton>
 </WrapPanel>
 </StackPanel>
</Window>

Zunächst muss der Namespace System eingebunden werden, damit der Typ
DateTime für die Vorauswahl in XAML zur Verfügung steht. Der Wert der Eigen-
schaft DisplayDate bestimmt den Monat, der zu Beginn angezeigt wird. Die
Eigenschaft SelectedDates beinhaltet alle ausgewählten Daten. Sie ist vom Typ
SelectedDatesCollection. Im Beispiel wurde bereits eine Vorauswahl getroffen.
Das Ereignis SelectedDatesChanged wird ausgelöst, wenn sich die Datumsaus-
wahl ändert. Dies gilt unabhängig vom Auswahlmodus. Ausgewählte und ange-
zeigte Daten müssen nicht im gleichen Monat liegen.

Die Ereignismethoden:

private void umschalten(...)
{
 if ((bool)sdate.IsChecked)
 cal.SelectionMode = CalendarSelectionMode.SingleDate;
 else if ((bool)srange.IsChecked)
 cal.SelectionMode = CalendarSelectionMode.SingleRange;
 else if ((bool)mrange.IsChecked)
 cal.SelectionMode = CalendarSelectionMode.MultipleRange;
}

Die Betätigung der RadioButtons führt zur Änderung des Auswahlmodus.

Datum 4.8

125

private void anzeige(...)
{
 if (cal.SelectedDates.Count > 0)
 {
 if (cal.SelectionMode == CalendarSelectionMode.SingleDate)
 {
 DateTime dt = (DateTime)cal.SelectedDate;
 lb.Content = dt.ToShortDateString();
 }
 else if (cal.SelectionMode ==
 CalendarSelectionMode.SingleRange)
 {
 DateTime dt_start = cal.SelectedDates[0];
 DateTime dt_end = cal.SelectedDates
 [cal.SelectedDates.Count - 1];
 lb.Content = dt_start.ToShortDateString() + " - "
 + dt_end.ToShortDateString();
 }
 else if (cal.SelectionMode ==
 CalendarSelectionMode.MultipleRange)
 {
 string ausgabe = "";
 foreach (DateTime dt in cal.SelectedDates)
 ausgabe += dt.ToShortDateString() + " ";
 lb.Content = ausgabe;
 }
 }
 else
 lb.Content = "Kein Datum";
}

Die Methode anzeige() wird beim Wechsel der Auswahl aufgerufen. Ein Wechsel
der Auswahl tritt auch beim Laden des Fensters auf, daher werden die ausgewähl-
ten Daten sofort angezeigt. Zunächst muss mithilfe der Eigenschaft Count der Auf-
listung SelectedDates geprüft werden, ob eine Auswahl stattgefunden hat.

Beim Auswahlmodus SingleDate steht in der Eigenschaft SelectedDate ein ein-
zelnes Datum vom Typ DateTime?. Erst nach einer Umwandlung in DateTime
(ohne Fragezeichen) stehen Ausgabeformate zur Verfügung. Dem Typ DateTime?
kann aber der Wert null zugewiesen werden. Dies entspricht: kein Datum ausge-
wählt.

Beim Auswahlmodus SingleRange werden das erste und das letzte Element aus
der Auflistung SelectedDates ermittelt und ausgegeben. Bei MultipleRange wer-
den alle Werte der Auflistung ausgegeben.

Steuerelemente4

126

Calendar, mit Grenzen

Innerhalb des Objekts vom Typ Calendar können Sie die Anzeige für den Benut-
zer einschränken. Die Werte der Eigenschaften DisplayDateStart und Dis-
playDateEnd vom Typ DateTime? kennzeichnen die Grenzen des auswählbaren
Bereichs. Darüber hinaus können Sie einzelne Daten innerhalb des auswählba-
ren Bereichs ausschließen. Diese Daten müssen Sie in der Auflistung Black-
outDates vom Typ CalendarBlackoutDatesCollection eintragen. Es werden
jeweils Datumsbereiche als Objekte vom Typ CalendarDateRange notiert. Im
Projekt DatumCalendarGrenzen wird ein Beispiel behandelt (siehe Abbildung
4.44).

Falls die Woche in der Anzeige nicht mit dem Montag beginnen soll, so können
Sie einen Wert vom Typ DayOfWeek für die Eigenschaft FirstDayOfWeek eintragen.

Abbildung 4.44 Eingeschränkte Auswahl

Der Aufbau des Calendar-Objekts in XAML:

<Calendar x:Name="cal" FirstDayOfWeek="Sunday"
 DisplayDateStart="2012-3-3" DisplayDateEnd="2012-3-23"
 SelectedDatesChanged="anzeige">
 <Calendar.BlackoutDates>
 <CalendarDateRange Start="2012-3-5" End="2012-3-7" />
 <CalendarDateRange Start="2012-3-16" End="2012-3-17" />
 </Calendar.BlackoutDates>
</Calendar>

Die restlichen Elemente sind bereits aus dem vorherigen Projekt bekannt.

4.8.2 DatePicker

Ein DatePicker ermöglicht die Auswahl und Anzeige eines einzelnen Datums mit
einem kleinen Steuerelement. Sobald der Benutzer das Icon rechts im DatePicker
anklickt, klappt ein komfortabler Kalender auf, ähnlich wie beim Objekt des Typs

Weitere Elemente 4.9

127

Calendar. Die Eigenschaft SelectedDateFormat bietet aus der Enumeration
DatePickerFormat den Standardwert Short, außerdem den Wert Long. Das aus-
gewählte Datum wird dann wie bei der Methode ToShortDateString() bezie-
hungsweise ToLongDateString() des Typs DateTime ausgegeben. Im nachfol-
genden Projekt DatumDatePicker wird das Steuerelement dargestellt (siehe
Abbildung 4.45).

Abbildung 4.45 DatePicker

Der Aufbau des Steuerelements in XAML:

<StackPanel>
 <Label x:Name="lb" HorizontalAlignment="Center"></Label>
 <DatePicker x:Name="dp" Width="200" SelectedDate="2012-3-20"
 SelectedDateFormat="Long" SelectedDateChanged="anzeige" />
</StackPanel>

Der Code des Ereignisses SelectedDateChanged:

private void anzeige(object sender, SelectionChangedEventArgs e)
{
 if (dp.SelectedDate.HasValue)
 {
 DateTime dt = (DateTime)dp.SelectedDate;
 lb.Content = dt.ToShortDateString();
 }
 else
 lb.Content = "Kein Datum";
}

Wie beim Typ Calendar ist die Eigenschaft SelectedDate vom Typ DateTime?. Es
kann also vorkommen, dass kein Wert ausgewählt ist. Dies kann man über die
boolesche Eigenschaft HasValue feststellen.

4.9 Weitere Elemente

Es folgen noch zwei Typen von Elementen, die keiner der anderen Gruppen
zugeordnet werden: Image und WebBrowser.

Steuerelemente4

128

4.9.1 Image

Ein Objekt vom Typ Image für ein Bild wurde bereits häufiger benutzt. Meist
dient es als Aufschrift beziehungsweise als »Aufkleber« für ein umgebendes Ele-
ment. Dies kann ein Layout- oder ein Steuerelement sein.

Die Eigenschaft Source vom Typ ImageSource verweist auf die Datenquelle. Als
Wert kann ein absoluter Pfad angegeben werden. Häufig wird die Bildquelle dem
Projekt aber per Drag&Drop hinzugefügt. Dies hat den Vorteil, dass sie ohne Pfad
angegeben und gemeinsam mit dem Projekt veröffentlicht beziehungsweise
installiert werden kann.

Die double-Eigenschaften Width und Height bestimmen den Raum für die Dar-
stellung des Bildes. Fehlen sie, so wird der Raum des umgebenden Elements
genutzt. Die Eigenschaft Stretch bestimmt, ob und wie das Bild gedehnt oder
gestaucht im Raum dargestellt wird. Sie kann folgende Werte aus der Enumera-
tion Stretch annehmen:

� Fill: Das Bild füllt den Raum vollständig aus. Es wird eventuell verzerrt.

� None: Das Bild behält seine ursprüngliche Größe. Es wird eventuell unten und/
oder rechts abgeschnitten.

� Uniform: Das Bild wird in der Größe geändert, sodass es vollständig in den
Raum passt. Das Verhältnis Breite zu Höhe bleibt. Es entsteht eventuell Leer-
raum oben und unten oder an den Seiten. Uniform ist der Standardwert.

� UniformToFill: Das Bild wird in der Größe geändert, sodass es den Raum voll-
ständig ausfüllt. Das Verhältnis Breite zu Höhe bleibt. Es wird eventuell unten
oder rechts abgeschnitten.

Im nachfolgenden Projekt ImageStretch werden alle vier Möglichkeiten darge-
stellt (siehe Abbildung 4.46). Innerhalb eines Grid sehen Sie in der ersten Zeile
ein Bild, das zu klein für den Raum ist, in der zweiten Zeile ein Bild, das zu groß
für den Raum ist.

Abbildung 4.46 Die Eigenschaft »Stretch«

Weitere Elemente 4.9

129

Der Aufbau in XAML:

<Window ... Width="400" Height="180">
 <Grid Width="360" Height="130">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="90" />
 <ColumnDefinition Width="90" />
 <ColumnDefinition Width="90" />
 <ColumnDefinition Width="90" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="60" />
 <RowDefinition Height="50" />
 <RowDefinition Height="20" />
 </Grid.RowDefinitions>

 <Button>
 <Image Source="work.gif" Stretch="Fill" />
 </Button>
 <Button Grid.Column="1">
 <Image Source="work.gif" Stretch="None" />
 </Button>
 <Button Grid.Column="2">
 <Image Source="work.gif" Stretch="Uniform" />
 </Button>
 <Button Grid.Column="3">
 <Image Source="work.gif" Stretch="UniformToFill" />
 </Button>

 <Button Grid.Row="1">
 <Image Source="blume.jpg" Stretch="Fill" />
 </Button>
 <Button Grid.Row="1" Grid.Column="1">
 <Image Source="blume.jpg" Stretch="None" />
 </Button>
 <Button Grid.Row="1" Grid.Column="2">
 <Image Source="blume.jpg" Stretch="Uniform" />
 </Button>
 <Button Grid.Row="1" Grid.Column="3">
 <Image Source="blume.jpg" Stretch="UniformToFill" />
 </Button>

 <TextBlock Grid.Row="2" ...>Fill</TextBlock>
 ...
 </Grid>
</Window>

Steuerelemente4

130

Der Raum für das Bild entspricht der Größe der Zellen, also 90 mal 60 in der ers-
ten Zeile und 90 mal 50 in der zweiten Zeile. Das Baustellenbild hat die Original-
größe 40 mal 40, das Bild mit der Blume die Originalgröße 800 mal 600. Beide
werden also immer in der Größe verändert, außer beim Wert None. Beim Wert
Fill werden sie verzerrt, da die Seitenverhältnisse nie passen. Die Werte werden
in geräteunabhängigen Pixeln angegeben.

4.9.2 WebBrowser

Das Element vom Typ WebBrowser ermöglicht Ihnen die Einbindung eines Brow-
sers in Ihre Anwendung. Die Eigenschaft Source vom Typ Uri verweist auf die
angezeigte Seite. Der Browser ermöglicht mithilfe der Methode Navigate() die
Navigation zu einem URI. Sie können auch mithilfe der Methode Navi-
gateToString() einen HTML-Code aufrufen, der in einer Zeichenkette abgelegt
ist. Das Ereignis Navigated tritt ein, sobald der Download des neuen Dokuments
gestartet wurde. Nach Abschluss des Downloads wird das Ereignis Load_Com-
pleted ausgelöst.

Im nachfolgenden Projekt BrowserNavi werden einige Möglichkeiten dargestellt
(siehe Abbildung 4.47).

Abbildung 4.47 Eigener Browser

Es wurden einige Buttons, ein Textfeld und eine ComboBox für die History ober-
halb des Browser-Elements angeordnet. Der Aufbau in XAML:

<Window ... WindowState="Maximized">
 <DockPanel>
 <WrapPanel DockPanel.Dock="Top">
 <Button Margin="5" Click="gehe">Gehe zu:</Button>
 <TextBox x:Name="tb" Margin="5" Width="250"></TextBox>
 </WrapPanel>
 <WrapPanel DockPanel.Dock="Top">
 <Button Margin="5" Click="rueck">Rückwärts</Button>
 <Button Margin="5" Click="vor">Vorwärts</Button>
 <Label VerticalAlignment="Center">History:</Label>

Weitere Elemente 4.9

131

 <ComboBox x:Name="cb" Width="150" Margin="5"
 SelectionChanged="cb_SelectionChanged" />
 </WrapPanel>
 <WebBrowser x:Name="wb" Source="http://www.galileo-press.de"
 Navigated="wb_Navigated" />
 </DockPanel>
</Window>

Die Eigenschaft WindowState wurde auf den Wert Maximized gesetzt, damit mög-
lichst viele Informationen zu sehen sind. Falls sich der Benutzer verschiedene Sei-
ten anschaut, füllt sich die ComboBox History mit Einträgen. Falls einer der Ein-
träge ausgewählt wird, so wird die Seite direkt angesteuert. Der Benutzer kann
sich auch mit den Buttons vorwärts oder rückwärts durch die Liste der bisher
besuchten Seiten bewegen.

Die Ereignismethoden:

private void gehe(...)
{
 try { wb.Navigate(new Uri(tb.Text)); }
 catch (UriFormatException) { tb.Text = "(Ungültiger URI)"; }
}

Die Methode Navigate() fordert den entsprechenden URI an. Bei einem ungülti-
gen URI wird eine URIFormatException ausgelöst.

private void rueck(...)
{ if (wb.CanGoBack) wb.GoBack(); }
private void vor(...)
{ if (wb.CanGoForward) wb.GoForward(); }

Die Methoden GoBack() und GoForward() ermöglichen den Aufruf der letzten
beziehungsweise nächsten Seite in der History. Falls dies nicht möglich ist, wird
eine Ausnahme ausgelöst. Daher muss vorher mit den Methoden CanGoBack()
und CanGoForward() geprüft werden.

private void wb_Navigated(object sender, NavigationEventArgs e)
{
 cb.Items.Add(wb.Source);
 tb.Text = "" + wb.Source;
}
private void cb_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
{
 wb.Navigate(cb.SelectedItem.ToString());
}

Steuerelemente4

132

Nach dem Wechsel zu einer neuen Seite (Ereignis Navigated) wird dessen URI
(Eigenschaft Source) der ComboBox hinzugefügt und im Textfeld angezeigt. Der
Eintrag aus der ComboBox kann mithilfe der Methode Navigate() direkt ange-
steuert werden.

133

In diesem Kapitel lernen Sie die Ereignisse der verschiedenen Eingabe-
geräte und das Konzept der gekapselten Kommandos kennen.

5 Ereignisse und Kommandos

Der Benutzer kann Ihre WPF-Anwendungen auf vielfältige Art und Weise bedie-
nen. Neben Tastatur und Maus kann er einen Eingabestift oder einen Touch-
screen einsetzen. All diese Geräte erzeugen Eingabe-Ereignisse, die es auszuwer-
ten gilt.

Die WPF ermöglicht es Ihnen, vorgefertigte und eigene Kommandos zu kapseln
und sie damit vielseitiger und wartungsfreundlicher zu machen.

5.1 Tastatur

Die Bedienung der Tastatur besteht bekanntlich darin, eine Taste herunterzudrü-
cken und sie wieder loszulassen. In der WPF entsprechen diese Vorgänge den
beiden Ereignissen KeyDown und KeyUp. Innerhalb einer Anwendung sollen sie zu
Aktionen führen. Dies können Sie zum Beispiel zur Durchführung von Animati-
onen nutzen (siehe Kapitel 11, »Maus«).

Sie können die Ereignisse für ein typisches Eingabe-Steuerelement, wie zum
Beispiel eine TextBox, aber auch für das ganze Fenster registrieren. Informatio-
nen über das Ereignis, wie zum Beispiel die verwendeten Tasten oder das aus-
lösende Steuerelement, können Sie über ein Objekt der Klasse KeyEventArgs
gewinnen.

5.1.1 Anzeige der Tastaturinformationen

Im Projekt TastaturAnzeige werden ausgegeben: die Bezeichnungen der Tasten,
die in einer TextBox betätigt wurden, die zugehörigen Keycodes aus der Enume-
ration Key, das Routed Event und der Name des Steuerelementes (siehe Abbil-
dung 5.1).

Ereignisse und Kommandos5

134

Abbildung 5.1 Tastenbezeichnungen mit Keycodes

Es wurden nacheinander die Tasten (A), (1) auf dem Ziffernblock, (1) im norma-
len Tastaturbereich, die Funktionstaste (F1), die Taste für den Umlaut (Ä) und die
linke (Strg)-Taste betätigt. Voraussetzung ist, dass der Ziffernblock vorher einge-
schaltet wurde. Der Aufbau der Anwendung:

<StackPanel>
 <Button Click="leeren_Click">Leeren</Button>
 <TextBox x:Name="tb" KeyDown="tb_KeyDown" />
 <ListBox x:Name="lb" Height="210"></ListBox>
</StackPanel>

Falls der Benutzer innerhalb der TextBox eine Taste betätigt, so wird die folgende
Ereignismethode aufgerufen:

private void tb_KeyDown(object sender, KeyEventArgs e)
{
 if (e.IsRepeat)
 return;
 lb.Items.Add(e.Key + " (" + Convert.ToInt32(e.Key) + ") "
 + e.RoutedEvent.Name + " " + (sender as TextBox).Name);
}

Die Eigenschaft IsRepeat des Objekts der Klasse KeyEventArgs gibt an, ob die
Taste wiederholt gedrückt wurde. Ist dies der Fall, so können Sie die Methode
verlassen, falls Sie die Taste nur einmal erfassen möchten.

Die Eigenschaft Key liefert das Element der Enumeration Key zu der betätigten
Taste. Den zugehörigen Keycode können Sie durch die Umwandlung in eine
Int32-Zahl ermitteln. Die Eigenschaft RoutedEvent stellt das auslösende Ereignis
dar. Dies ist wichtig, falls verschiedene Ereignisse zur gleichen Ereignismethode
führen.

Tastatur 5.1

135

5.1.2 Steuerung durch Tasten

Im Projekt TastaturSteuerung nutzen Sie einige Tasten, um ein Element innerhalb
der Anwendung zu bewegen. Nach dem Start sehen Sie ein kleines Rechteck, das
zunächst in der Mitte steht (siehe Abbildung 5.2).

Abbildung 5.2 Nach dem Start

Durch Betätigung einer der Tasten (W) (nach oben), (A) (nach links), (S) (nach
unten) oder (D) (nach rechts) können Sie die Lage verändern (siehe Abbildung 5.3).

Abbildung 5.3 Nach einigen Tastendrucken

Der Aufbau der Anwendung:

<Window ... KeyDown="Window_KeyDown" KeyUp="Window_KeyUp">
 <Canvas>
 <Rectangle x:Name="rc" Width="20" Height="20"
 Canvas.Left="130" Canvas.Top="25" Fill="Gray" />
 </Canvas>
</Window>

Ein Rechteck der Klasse Rectangle wird mithilfe von Attached Properties in
einem Canvas angeordnet. Die Ereignisse KeyDown und KeyUp registrieren Sie für
das gesamte Fenster. Der Code der Ereignismethoden:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
 double top = (double)rc.GetValue(Canvas.TopProperty);
 double left = (double)rc.GetValue(Canvas.LeftProperty);

 switch (e.Key)
 {
 case Key.W:
 rc.SetValue(Canvas.TopProperty, top - 5); break;

Ereignisse und Kommandos5

136

 case Key.S:
 rc.SetValue(Canvas.TopProperty, top + 5); break;
 case Key.A:
 rc.SetValue(Canvas.LeftProperty, left - 5); break;
 case Key.D:
 rc.SetValue(Canvas.LeftProperty, left + 5); break;
 }
 rc.Fill = new SolidColorBrush(Colors.LightGray);
}

private void Window_KeyUp(object sender, KeyEventArgs e)
{
 rc.Fill = new SolidColorBrush(Colors.Gray);
}

Mithilfe der Methode GetValue() wird jeweils der aktuelle Wert der Attached
Properties Canvas.Left und Canvas.Top ermittelt. Das Element der Enumeration
Key, das zur betätigten Taste (e.Key) gehört, führt zur Änderung des Werts der
Attached Property mithilfe von SetValue().

Ein permanenter Tastendruck führt zum wiederholten Aufruf der Ereignisme-
thode, also zu einer dauerhaften Bewegung in die gewünschte Richtung. Wäh-
rend der Bewegung ist das Rechteck hellgrau, anschließend ist es wieder grau.

5.2 Maus

Beim Eingabegerät Maus wird zwischen den Maus-Ereignissen, den Maustasten-
Ereignissen und den Mausrad-Ereignissen unterschieden. Zu diesen Ereignissen
stellen Objekte der Klassen MouseEventArgs, MouseButtonEventArgs und
MouseWheelEventArgs weitere Informationen bereit. Dies können sein: Name,
Ort und Anzahl des Ereignisses, benutzte Taste, aktueller Status der Maustaste
und vieles mehr. Die Ereignisse können Sie für ein Steuerelement, aber auch für
das ganze Fenster registrieren.

5.2.1 Anzeige der Mausinformationen

Im nachfolgenden Projekt MausAnzeige werten Sie die Ereignisse aus. Als typi-
sche Beispiele sehen Sie den Ort, an dem sich beim MouseMove-Ereignis die Maus
befindet (siehe Abbildung 5.4), Informationen über eine Maustaste beim Loslas-
sen (siehe Abbildung 5.5) und die Darstellung eines MouseWheel-Ereignisses
(siehe Abbildung 5.6).

Maus 5.2

137

Abbildung 5.4 MouseMove über einen Button

Abbildung 5.5 Mittlere Maustaste losgelassen

Abbildung 5.6 MouseWheel-Ereignis

Zunächst der Aufbau der Anwendung:

<Window ... MouseDown="mdu" MouseUp="mdu" MouseWheel="mwh">
 <Canvas>
 <Label x:Name="lb" />
 <Button Canvas.Left="150" Padding="10" MouseEnter="mbew"
 MouseLeave="mbew">Enter / Leave</Button>
 <Button Canvas.Left="150" Canvas.Top="60" Padding="20"
 MouseMove="mbew">Move</Button>
 </Canvas>
</Window>

Die Maustasten-Ereignisse MouseDown und MouseUp und das Mausrad-Ereignis
MouseWheel werden hier für das gesamte Fenster registriert. Das Betreten
(MouseEnter) und das Verlassen (MouseLeave) eines Steuerelements beziehen sich

Ereignisse und Kommandos5

138

auf den ersten Button. Die Bewegung (MouseMove) über einem Steuerelement
wird bezüglich des zweiten Buttons angezeigt.

Der Programmcode für MouseEnter, MouseLeave und MouseMove:

private void mbew(object sender, MouseEventArgs e)
{
 lb.Content = e.RoutedEvent.Name
 + " X : " + (int)e.GetPosition(this).X
 + " Y : " + (int)e.GetPosition(this).Y;
}

Die Eigenschaft RoutedEvent liefert den Namen des Ereignisses. Die Methode
GetPosition() liefert die X/Y-Position relativ zum angegebenen Element zurück.
In diesem Fall ist es mithilfe von this das Fenster, genauer gesagt: der Client-
Bereich des Fensters. Die Position als Objekt der Struktur Point stellt X- und Y-
Komponenten als double-Werte bereit.

Der Programmcode für MouseDown und MouseUp:

private void mdu(object sender, MouseButtonEventArgs e)
{
 lb.Content = "Ereignis: " + e.RoutedEvent.Name + "\n"
 + "Button-Status: " + e.ButtonState + "\n"
 + "Button: " + e.ChangedButton + "\n"
 + "Anzahl Clicks: " + e.ClickCount + "\n"
 + "Position X: " + (int)e.GetPosition(this).X
 + " Y: " + (int)e.GetPosition(this).Y;
}

Auch hier liefert die Eigenschaft RoutedEvent den Namen des Ereignisses. Die
Eigenschaft ButtonState gibt den Status des Mausbuttons nach Eintritt des Ereig-
nisses wieder. Dies ist einer der beiden Werte der Enumeration MouseButtonState:
Pressed oder Released. Die Eigenschaft ChangedButton liefert den Namen der
Maustaste. Dies ist einer der fünf Werte der Enumeration MouseButton: Left,
Middle, Right, erste oder zweite erweiterte Maustaste (XButton1, XButton2). Sie
können die Reaktion auf das Ereignis davon abhängig machen, ob die Maustaste
einfach, doppelt, dreifach oder gar öfter gedrückt wurde. Dazu nutzen Sie die
Eigenschaft ClickCount. Auch hier liefert GetPosition() die X/Y-Position.

Der Programmcode für MouseWheel:

private void mwh(object sender, MouseWheelEventArgs e)
{
 lb.Content = "Ereignis: " + e.RoutedEvent.Name + "\n"
 + "Änderung um: " + e.Delta + "\n"

Eingabestift 5.3

139

 + "Position X: " + (int)e.GetPosition(this).X
 + " Y: " + (int)e.GetPosition(this).Y;
}

RoutedEvent und GetPosition() liefern wiederum Ereignis und Position. Die
Änderung durch die Betätigung des Mausrads wird über die Eigenschaft Delta
wiedergegeben. Bei der Drehung nach unten ergeben sich vorgegebene Werte
wie zum Beispiel –120, –240, –360 und so weiter. Die Drehung nach oben ergibt
die entsprechenden positiven Werte.

5.3 Eingabestift

Einen Eingabestift (engl. Stylus) nutzen Sie bei berührungsempfindlichen Bild-
schirmen. Solche Bildschirme haben zum Beispiel Tablet-PCs, Smartphones, PDAs
und Digitalisiertabletts. Eingabestifte ermöglichen eine genauere Bedienung.
Bewegungen oberhalb und auf dem Bildschirm lösen Ereignisse aus.

Die WPF bietet Ihnen mit den Objekten der Klassen StylusEventArgs, StylusSys-
temGestureEventArgs, StylusButtonEventArgs und StylusDownEventArgs die Mög-
lichkeit, Informationen über diese Ereignisse und die betroffenen Steuerele-
mente auszuwerten und damit Ihre Anwendungen zu steuern.

Diese Informationen verdeutliche ich Ihnen mithilfe des nachfolgenden Projekts
EingabeStift (siehe Abbildung 5.7). Es kann natürlich nur mit einem Eingabestift
sinnvoll bedient werden.

Abbildung 5.7 Einfache Anwendung für einen Eingabestift

Zunächst der Aufbau:

<Window ...>
 <StackPanel>
 <Button Width="80" Height="30" Margin="5"
 StylusSystemGesture="ssg"
 StylusButtonDown="sb" StylusButtonUp="sb"
 StylusDown="sd" StylusUp="s"
 StylusEnter="s" StylusMove="s" StylusLeave="s"
 StylusInAirMove="s"

Ereignisse und Kommandos5

140

 StylusInRange="s" StylusOutOfRange="s">Button</Button>
 </StackPanel>
</Window>

Es handelt sich um Ereignisse des Stifts über einem Steuerelement innerhalb
Ihrer Anwendung. Dabei müssen Sie zwei Zustände unterscheiden:

� Der Stift berührt den Bildschirm.

� Der Stift befindet sich nahe oberhalb des Bildschirms, ohne ihn zu berühren.

Das Ereignis StylusSystemGesture tritt bei den spezifischen Berührungen oder
Bewegungen auf, die der Benutzer mit einem Stift durchführen kann (siehe Ereig-
nismethode ssg() weiter unten).

Das Drücken oder Loslassen der Stiftschaltfläche führt zu den Ereignissen
StylusButtonDown und StylusButtonUp. Die Berührung des Bildschirms oder
das Abheben nach einer Berührung entspricht den Ereignissen StylusDown und
StylusUp.

Die Ereignisse StylusEnter, StylusMove und StylusLeave entsprechen dem Ein-
treten, Bewegen und Verlassen des berührenden Stifts bezüglich der Grenzen
eines Elements.

Eine Bewegung über einem Element (ohne Berührung) entspricht dem Ereignis
StylusInAirMove. Sobald der Stift nahe genug am Bildschirm ist, um erkannt zu
werden, tritt das Ereignis StylusInRange auf. Umgekehrt tritt das Ereignis
StylusOutOfRange auf, sobald der Stift nicht mehr erkannt wird.

Die Ereignismethoden liefern weitere Informationen:

private void s(object sender, StylusEventArgs e)
{
 MessageBox.Show("StylusDevice, Event: " + e.RoutedEvent
 + ", Device: " + e.StylusDevice
 + ", InAir: " + e.InAir
 + ", Inverted: " + e.Inverted);
}

Die Eigenschaft StylusDevice der Klasse StylusDevice steht für den Eingabestift
selbst. Die beiden booleschen Eigenschaften InAir und Inverted geben an, ob
sich der Stift nahe oberhalb des Bildschirms befindet beziehungsweise ob der
Stift umgekehrt ist.

private void ssg(object sender, StylusSystemGestureEventArgs e)
{ MessageBox.Show("SystemGesture: " + e.SystemGesture); }

Touchscreen 5.4

141

Die Eigenschaft SystemGesture liefert Informationen über die Art der Berührung
oder Bewegung. Die Werte stammen aus der gleichnamigen Enumeration. Viele
Aktionen entsprechen Mausaktionen: Tap und RightTap entsprechen dem Click,
Drag und RightDrag dem Ziehen, HoverEnter und HoverLeave dem Betreten und
Verlassen, HoldEnter dem Drücken und Halten und TwoFingerTap dem Dop-
pelklick. Eine schnelle, strichartige Stiftbewegung ist ein Flick.

private void sb(object sender, StylusButtonEventArgs e)
{
 MessageBox.Show("StylusButton, Event: " + e.RoutedEvent
 + ", Guid: " + e.StylusButton.Guid
 + ", Name: " + e.StylusButton.Name
 + ", State: " + e.StylusButton.StylusButtonState);
}

Zur genaueren Betrachtung der Stiftschaltflächen: Die Eigenschaften Guid (aus
der Struktur Guid) und Name liefern die ID und den Namen der Stiftschaltfläche.
Die Eigenschaft StylusButtonState gibt an, ob die Schaltfläche gedrückt ist oder
nicht. Die Werte stammen aus der gleichnamigen Enumeration: Down oder Up.

private void sd(object sender, StylusDownEventArgs e)
{ MessageBox.Show("TapCount: " + e.TapCount); }

Die Eigenschaft TapCount gibt an, wie oft der Stift angetippt wurde.

5.4 Touchscreen

Die WPF ermöglicht in Zusammenarbeit mit einem berührungsempfindlichen
Bildschirm (Touchscreen) die Auswertung verschiedener Ereignisse:

� Touch- und Multitouch-Ereignisse: Die verschiedenen Stadien der Berührung
des Bildschirms mit einem Finger (oder mehreren Fingern gleichzeitig) und
die Position der Berührung(en).

� Manipulations-Ereignisse: Die Nutzung komplexer Berührungsaktionen auf
dem Bildschirm für einzelne Teile der Anwendung.

Die einzelnen Ereignisse werden mit einem TouchDevice, üblicherweise dem Fin-
ger, ausgelöst. Ein TouchDevice-Objekt hat für jede Berührung eine eindeutige ID,
sodass die einzelnen Berührungen voneinander unterschieden werden können. Es
gibt einzelne Elemente, deren Scrollbalken direkt per Touch bewegt werden kann.

Bei einem Touch-Ereignis werden über ein TouchEventArgs-Objekt weitere Infor-
mationen über die Berührung zur Ereignismethode geliefert, unter anderem:

Ereignisse und Kommandos5

142

� GetTouchPoint(): Liefert ein Objekt des Typs TouchPoint. Dieses hat unter
anderem die Eigenschaft Position vom Typ Point. Darin stehen die X- und Y-
Koordinaten der Berührung.

� GetIntermediateTouchPoints(): Liefert ein Objekt des Typs TouchPoint-
Collection. Darin werden die TouchPoint-Objekte der letzten Touch-Ereig-
nisse gesammelt.

Es gibt unter anderem folgende Touch-Ereignisse:

� TouchDown: Das Berühren des Bildschirms mit dem Finger.

� TouchMove: Die Bewegung des berührenden Fingers auf dem Bildschirm. Sie
findet mehrfach statt.

� TouchUp: Das Abheben des Fingers vom Bildschirm.

� TouchEnter: Das Betreten eines Elements mit dem berührenden Finger.

� TouchLeave: Das Verlassen eines Elements mit dem berührenden Finger.

Die Manipulationsereignisse werden üblicherweise direkt auf einzelne Elemente
angewendet. Sie führen erst zu Aktionen, wenn die boolesche Eigenschaft
IsManipulationEnabled des betreffenden Elements auf true gestellt wurde. Es
gibt folgende Transformationsmöglichkeiten:

� Verschieben: Berühren eines Objekts mit einem Finger, anschließend Verschie-
ben des Objekts.

� Skalieren: Berühren eines Objekts mit zwei Fingern, anschließend Skalieren
des Objekts durch Veränderung des Fingerabstands.

� Drehen: Berühren eines Objekts mit zwei Fingern, anschließend Drehen des
Objekts durch Drehen der beiden Finger umeinander.

Sie können die verschiedenen Aktionen weiterführen, auch nachdem die Berüh-
rung geendet hat. Es gibt unter anderem folgende Manipulationsereignisse:

� ManipulationStarting: Der Beginn der Berührung des Objekts.

� ManipulationStarted: Die Berührung des Objekts hat stattgefunden. Die Posi-
tion kann festgestellt werden.

� ManipulationDelta: Die Veränderung der Berührung. Sie findet mehrfach
statt. Art und Umfang der Aktion können festgestellt werden.

� ManipulationInertiaStarting: Das Abheben vom Bildschirm. Bei einer wei-
terführenden Bewegung kann seine Trägheit, somit also das realistische Nach-
lassen der Bewegung eingestellt werden.

Touchscreen 5.4

143

� ManipulationCompleted: Das Ende der Aktion, inklusive der (träge) weiterfüh-
renden Aktionen.

� ManipulationBoundaryFeedback: Das Auftreffen des bewegten Objekts auf
eine Grenze innerhalb der Anwendung.

Im nachfolgenden Projekt TouchBildschirm sehen Sie zwei eingerahmte Canvas
und eine ComboBox. Zu dem linken Canvas sind Touch-Ereignisse, zum rechten
Canvas Manipulationsereignisse registriert. Informationen zu den ausgelösten
Ereignissen werden in der ComboBox aufgelistet.

Der XAML-Code:

<Window ...>
 <Canvas>
 <Border BorderBrush="Black" BorderThickness="1" Margin="3">
 <Canvas x:Name="cvt" Width="180" Height="120"
 TouchDown="td" TouchMove="td" TouchUp="td" />
 </Border>
 <Border BorderBrush="Black" BorderThickness="1" Margin="3"
 Canvas.Left="195">
 <Canvas x:Name="cvm" Width="180" Height="120"
 IsManipulationEnabled="True"
 ManipulationStarting="msi" ManipulationStarted="msd"
 ManipulationDelta="md" ManipulationInertiaStarting="mis"
 ManipulationCompleted="mc" />
 </Border>
 <ComboBox x:Name="lb" IsEditable="False" Canvas.Top="130"
 Canvas.Left="10" Width="360" Height="23" />
 </Canvas>
</Window>

Die drei verwendeten Touch-Ereignisse führen alle zur selben Methode:

private void td(object sender, TouchEventArgs e)
{
 lb.Items.Add(e.RoutedEvent + " ID: " + e.TouchDevice.Id
 + " X: " + e.GetTouchPoint(cvt).Position.X
 + " Y: " + e.GetTouchPoint(cvt).Position.Y);
}

Bei jedem Touch-Ereignis werden die Art (TouchDown, TouchMove, TouchUp), die
eindeutige ID des Ereignisses und die Position relativ zum Canvas geliefert.

Die Manipulationsereignisse führen zu verschiedenen Methoden, da die jeweili-
gen ...EventArgs-Objekte unterschiedliche Informationen bieten.

Ereignisse und Kommandos5

144

Zunächst die Startmethoden:

private void msi(object sender, ManipulationStartingEventArgs e)
{
 lb.Items.Add("Starting, Container: "
 + e.ManipulationContainer.ToString());
}
private void msd(object sender, ManipulationStartedEventArgs e)
{
 lb.Items.Add("Started, X: " + e.ManipulationOrigin.X
 + " Y: " + e.ManipulationOrigin.Y);
}

Nur während des ManipulationStarting-Ereignisses kann das Element bestimmt
werden, das als Container verwendet wird, auf den sich alle Ereignisse und Berech-
nungen beziehen. Nach dem ManipulationStarted-Ereignis liefert die Eigenschaft
ManipulationOrigin vom Typ Point die Position der Start-Berührung an.

Die Methode zum Ereignis ManipulationDelta:

private void md(object sender, ManipulationDeltaEventArgs e)
{
 lb.Items.Add("Delta, TrX: " + e.DeltaManipulation.Translation.X
 + " TrY: " + e.DeltaManipulation.Translation.Y
 + " SkX: " + e.DeltaManipulation.Scale.X
 + " SkY: " + e.DeltaManipulation.Scale.Y
 + " Rot: " + e.DeltaManipulation.Rotation);
}

Während der Manipulation tritt dieses Ereignis mehrfach auf. Das gelieferte
ManipulationDeltaEventArgs-Objekt hat die Eigenschaft DeltaManipulation

vom Typ ManipulationDelta. Dieses beinhaltet die folgenden Eigenschaften:

� Translation vom Typ Vector, für den Wert der Verschiebung

� Scale vom Typ Vector, für den Wert der Skalierung

� Rotation vom Typ double, für den Wert der Drehung in Grad

Die Methode zum Ereignis ManipulationInertiaStarting:

private void mis(object sender,
 ManipulationInertiaStartingEventArgs e)
{
 lb.Items.Add(
 "Trägheit, TrGX: " + e.InitialVelocities.LinearVelocity.X
 + " TrGY: " + e.InitialVelocities.LinearVelocity.Y
 + " SkGX: " + e.InitialVelocities.ExpansionVelocity.X

Kommandos 5.5

145

 + " SkGY: " + e.InitialVelocities.ExpansionVelocity.Y
 + " RotG: " + e.InitialVelocities.AngularVelocity);
}

Zum Zeitpunkt des Abhebens werden die verschiedenen Aktionen mit einer
bestimmten Geschwindigkeit ausgeführt. Diese sollte aufgrund der Trägheit
nachlassen. Das gelieferte ManipulationInertiaStartingEventArgs-Objekt hat
die Eigenschaft InitialVelocities vom Typ ManipulationVelocities. Dieses
beinhaltet die folgenden Eigenschaften:

� LinearVelocity vom Typ Vector, für den Wert der Verschiebung pro Milli-
sekunde

� ExpansionVelocity vom Typ Vector, für den Wert der Skalierung pro Milli-
sekunde

� AngleVelocity vom Typ double, für den Wert der Drehung in Grad pro Milli-
sekunde

Die Methode zum Ereignis ManipulationCompleted:

private void mc(object sender, ManipulationCompletedEventArgs e)
{
 lb.Items.Add(
 "Total, TrX: " + e.TotalManipulation.Translation.X
 + " TrY: " + e.TotalManipulation.Translation.Y
 + " SkX: " + e.TotalManipulation.Scale.X
 + " SkY: " + e.TotalManipulation.Scale.Y
 + " Rot: " + e.TotalManipulation.Rotation);
}

Nach dem Ende der Manipulation tritt dieses Ereignis auf. Das gelieferte
ManipulationCompletedEventArgs-Objekt hat die Eigenschaft TotalManipulation
vom bereits bekannten Typ ManipulationDelta. Es werden die Werte der gesam-
ten Veränderung geliefert.

5.5 Kommandos

Häufig vorkommende Aufgaben können Sie in Kommandos kapseln. Diese
ermöglichen eine deutliche Trennung zwischen Design und Programmierung und
verbessern die Wartbarkeit einer Anwendung. In der WPF gibt es zahlreiche vor-
gefertigte Kommandos aus folgenden Gruppen:

� ApplicationCommands für Anwendungen. Beispiele: Close, Print

� ComponentCommands für Komponenten. Beispiele: MoveRight, SelectToEnd

Ereignisse und Kommandos5

146

� EditingCommands für Dokumente. Beispiele: AlignRight, ToggleBold

� MediaCommands für Medien. Beispiele: Play, Rewind

� NavigationCommands zur Navigation. Beispiele: NextPage, Refresh

Zum Teil sind diese vorgefertigten Commands bereits für definierte Einsatzzwe-
cke vollständig implementiert. Ein anderer Teil dieser vorgefertigten Commands
ist nur teilweise implementiert. Sie müssen das jeweilige Command dann ver-
vollständigen, indem Sie es an die Elemente in Ihrer Anwendung anpassen. Diese
Anpassung wird über ein CommandBinding zwischen dem Command und einer
oder mehreren Ereignismethoden realisiert.

Tastenkombinationen zu Erleichterung der Benutzung lassen sich mit Commands
verbinden. Neben den vorgefertigten Commands können Sie auch eigene Com-
mands erstellen und einsetzen.

5.5.1 Eingebaute Kommandos

Im Projekt KommandosEingebaut verdeutliche ich Ihnen die Kapselung und die
Mehrfachverwendung von Kommandos. Genutzt werden ein fertig implemen-
tiertes EditingCommand und ein teilweise implementiertes ApplicationCommand.

Der Benutzer kann Text in zwei Steuerelementen vom Typ RichTextBox markie-
ren und fett beziehungsweise nicht fett formatieren. Außerdem kann er die
Anwendung über zwei verschiedene Buttons beenden, falls bestimmte Bedin-
gungen zutreffen (siehe Abbildung 5.8).

Mehr über das Steuerelement RichTextBox finden Sie in Abschnitt 13.1.11.

Abbildung 5.8 Eingebaute Kommandos

Zunächst geht es um den Aufbau des Kommandos, inklusive der Bindung an die
Ereignismethoden:

<Window ...>
 <Window.CommandBindings>
 <CommandBinding Command="ApplicationCommands.Close"

Kommandos 5.5

147

 CanExecute="erlaubt" Executed="ausfuehren" />
 </Window.CommandBindings>
 ...
</Window>

Das Application-Kommando Close ist nicht fertig implementiert, daher benötigt
es noch die Verbindung zu Ereignismethoden mithilfe einer CommandBinding.
Objekte dieser Klasse stehen innerhalb der Auflistung CommandBindings, die Sie
einem Element der Anwendung zuordnen. Falls Sie die Auflistung dem Fenster
zuordnen, dann stehen die CommandBindings allen Elementen des Fensters zur
Verfügung.

In der Eigenschaft Command der CommandBinding steht das Kommando. Über das
Ereignis CanExecute können Sie prüfen, ob das Kommando ausgeführt werden
darf. Das Ereignis Executed tritt bei Ausführung des Kommandos auf. Die zuge-
hörigen Ereignismethoden:

private void erlaubt(object sender, CanExecuteRoutedEventArgs e)
{ if (bearbeitet1 || bearbeitet2) e.CanExecute = false;
 else e.CanExecute = true; }
private void ausfuehren(object sender, ExecutedRoutedEventArgs e)
{ Close(); }

Die Methode für das Ereignis CanExecute (hier: erlaubt()) prüft die Durchführ-
barkeit der geplanten Aktion und liefert einen booleschen Wert. Dieser Wert ist
hier von bestimmten Bedingungen abhängig, die weiter unten erläutert werden.
Die Methode für das Ereignis Executed (hier: ausfuehren()) führt die geplante
Aktion aus. Diese Aktion sollte natürlich im Zusammenhang mit dem Schließen
der Anwendung stehen.

Das Kommando steht nunmehr vollständig zur Verfügung und kann von mehre-
ren Steuerelementen genutzt werden. Ein weiterer Vorteil dieses vorgefertigten
Commands: Die Eigenschaft IsEnabled der betreffenden Steuerelemente wird in
Abhängigkeit von der Prüfung durch CanExecute gesetzt.

Der weitere Aufbau der Anwendung:

<Window ...>
 ...
 <StackPanel>
 <WrapPanel HorizontalAlignment="Center">
 <Button Command="EditingCommands.ToggleBold"
 CommandTarget="{Binding ElementName=rtb1}"
 Margin="5" Width="50">Fett 1</Button>
 <Button Command="EditingCommands.ToggleBold"

Ereignisse und Kommandos5

148

 CommandTarget="{Binding ElementName=rtb2}"
 Margin="5" Width="50">Fett 2</Button>
 <Button Command="ApplicationCommands.Close"
 Margin="5" Width="50">Ende 1</Button>
 <Button Command="ApplicationCommands.Close"
 Margin="5" Width="50">Ende 2</Button>
 </WrapPanel>
 <RichTextBox x:Name="rtb1" Margin="5" Height="35"
 TextChanged="tc1" />
 <RichTextBox x:Name="rtb2" Margin="5" Height="35"
 TextChanged="tc2" />
 </StackPanel>
</Window>

Zwei Buttons setzen das vorgefertigte Editing-Kommando ToggleBold um. Es ist
bereits vollständig implementiert. Eine CommandBinding an Ereignismethoden ist
also nicht mehr nötig. Allerdings benötigt das Kommando die Bindung zu dem
Steuerelement, in dem das Formatieren des markierten Inhalts stattfindet. Diese
Bindung wird über die Eigenschaft CommandTarget hergestellt.

Es gibt zwei Buttons, die das vorgefertigte Application-Kommando Close umset-
zen. Es wurde erst in dieser Anwendung vervollständigt. Außerdem gibt es zwei
Steuerelemente vom Typ RichTextBox. Eine Bearbeitung des Textes darin löst
jeweils das Ereignis TextChanged aus. Die zugehörigen Ereignismethoden im
Zusammenhang der Fensterklasse:

public partial class MainWindow : Window
{
 bool bearbeitet1, bearbeitet2;
 public MainWindow()
 {
 InitializeComponent();
 bearbeitet1 = false;
 bearbeitet2 = false;
 }
 ...
 private void tc1(object sender, TextChangedEventArgs e)
 { bearbeitet1 = true; }
 private void tc2(object sender, TextChangedEventArgs e)
 { bearbeitet2 = true; }
}

Sobald einer der Texte bearbeitet wird, wird die zugehörige boolesche Variable
gesetzt. In der Methode zum Ereignis CanExecute des Application-Kommandos
Close wird dadurch das Schließen des Fensters verhindert.

Kommandos 5.5

149

5.5.2 Kommandos mit Eingabegesten verbinden

Sie können Kommandos mit Eingabegesten verbinden. Damit werden Ihre
Anwendungen einfacher bedienbar. Dies gilt besonders dann, wenn Sie sich an
verbreitete Konventionen halten. Ein Beispiel für eine Konvention ist, Datei

öffnen mit (Strg)+(O) zu verknüpfen.

Hinweis: Der Begriff Eingabegeste wird hier als Oberbegriff für Tastenkombinati-
onen und Mausaktionen verstanden. Er hat nichts mit den Gesten für berüh-
rungsempfindliche Bildschirme zu tun.

Der Benutzer muss natürlich wissen, welche Aktionen welche Wirkung haben.
Häufig werden diese Informationen neben den entsprechenden Menübefehlen
angegeben.

Im Projekt KommandosInput wird das Editing-Kommando ToggleBold mit den
Tastenkombinationen (Strg)+(F), Funktionstaste (F12) und (Strg)+(Alt)+(G)
sowie den Mausaktionen Rechter Doppelklick und Drehung des Mausrads

verbunden. Wie im vorherigen Beispiel wird damit Text in einem Steuerelement
vom Typ RichTextBox fett formatiert. Die Information über die Bedienung wird
neben dem Menüpunkt Bearbeiten � Fett angegeben (siehe Abbildung 5.9).

Abbildung 5.9 Tasten- und Mausbedienung

Der Aufbau der Anwendung:

<Window ...>
 <Window.InputBindings>
 <KeyBinding Command="EditingCommands.ToggleBold"
 CommandTarget="{Binding ElementName=rtb}"
 Key="F" Modifiers="Control" />
 <KeyBinding Command="..." CommandTarget="..." Key="F12" />
 <KeyBinding Command="..." CommandTarget="..."
 Key="G" Modifiers="Control+Alt" />
 <MouseBinding Command="..." CommandTarget="..."
 MouseAction="WheelClick" />
 </Window.InputBindings>
 ...
 <MenuItem Header="Fett (Strg+F) (F12) (Strg+Alt+G)

Ereignisse und Kommandos5

150

 (RightDoubleClick) (WheelClick)"
 Command="EditingCommands.ToggleBold"
 CommandTarget="{Binding ElementName=rtb}" />
 ...
</Window>

Die Verbindung zwischen dem Editing-Kommando ToggleBold und den Tasten-
kombinationen wird mithilfe einer KeyBinding hergestellt. Mausaktionen stehen
innerhalb einer MouseBinding. Objekte dieser Klassen stehen innerhalb der Auf-
listung InputBindings, die Sie einem Element der Anwendung zuordnen. Falls
Sie die Auflistung dem Fenster zuordnen, dann stehen die InputBindings allen
Elementen des Fensters zur Verfügung.

In der Eigenschaft Command der KeyBinding steht das Kommando. Es benötigt wei-
terhin die Bindung zu dem RichTextBox-Steuerelement rtb, in dem das Formatie-
ren stattfindet. Die Bindung wird über die Eigenschaft CommandTarget hergestellt.

Bei Tastenkombinationen beinhalten die Eigenschaften Key und Modifiers die
Taste und gegebenenfalls die Sondertasten. Falls es mehrere Sondertasten gibt,
die der Benutzer gleichzeitig betätigen muss, so verbinden Sie sie über ein + mit-
einander. Werte für die Eigenschaft Key kommen aus der Enumeration Key (siehe
Abschnitt 5.1.1, »Anzeige der Tastaturinformationen«). Werte für die Eigenschaft
Modifiers kommen aus der Enumeration ModifierKeys. Es gibt die Werte None,
Alt, Control, Shift und Windows (für die Windows-Taste).

Der Name der Mausaktion steht in der Eigenschaft MouseAction. Werte für die
Eigenschaft kommen aus der Enumeration MouseAction. Es gibt die Werte None,
LeftClick, MiddleClick, RightClick, WheelClick, LeftDoubleClick, MiddleDouble-
Click und RightDoubleClick.

Eingabegesten können Sie eigenen Kommandos direkt bei ihrer Erzeugung
zuordnen (siehe dazu den nächsten Abschnitt).

5.5.3 Eigene Kommandos

Um ein eigenes Kommando zu erstellen, benötigen Sie eine neue statische Klasse.
Das Kommando ist eine statische Eigenschaft dieser Klasse, vom Typ
RoutedCommand. Sie müssen sie über ein CommandBinding mit Ereignismethoden
verbinden. Den Aufruf des Kommandos können Sie noch über Eingabegesten
vereinfachen, wie es in Abschnitt 5.5.2 gezeigt wurde.

Im nachfolgenden Projekt KommandosEigene werden zwei Kommandos erzeugt.
Der Aufruf der Kommandos wird jeweils über eine CheckBox gestattet und über
einen Button durchgeführt (siehe Abbildung 5.10).

Kommandos 5.5

151

Abbildung 5.10 Eigene Kommandos

Zunächst folgt hier der Aufbau der neuen Klasse meineKommandos, in der die bei-
den eigenen Kommandos erzeugt werden:

using System;
using System.Windows.Input;
namespace KommandosEigene
{
 public static class meineKommandos
 {
 private static RoutedCommand ausgabe_eins;
 public static RoutedCommand Ausgabe_Eins
 { get { return ausgabe_eins; } }

 private static RoutedCommand ausgabe_zwei;
 public static RoutedCommand Ausgabe_Zwei
 { get { return ausgabe_zwei; } }

 static meineKommandos()
 {
 ausgabe_eins = new RoutedCommand();

 InputGestureCollection meineGestensammlung =
 new InputGestureCollection();

 KeyGesture meineGeste_StrgZ = new KeyGesture(Key.Z,
 ModifierKeys.Control);
 meineGestensammlung.Add(meineGeste_StrgZ);

 MouseGesture meineGeste_RightDoubleClick =
 new MouseGesture(MouseAction.RightDoubleClick);
 meineGestensammlung.Add(meineGeste_RightDoubleClick);

Ereignisse und Kommandos5

152

 ausgabe_zwei = new RoutedCommand("Kommando Zwei",
 typeof(meineKommandos), meineGestensammlung);
 }
 }
}

Der Namespace System.Windows.Input wird für die Klasse RoutedCommand benö-
tigt. Es werden die beiden neuen Kommandos Ausgabe_eins und Ausgabe_zwei
als statische Eigenschaften der Klasse angelegt, die vom Typ RoutedCommand sind.

Das RoutedCommand ausgabe_eins wird ohne Parameter erzeugt. Zu diesem
Kommando können Sie später noch Eingabegesten hinzufügen.

Zum Vergleich wird das RoutedCommand ausgabe_zwei schon mit einer fertigen
Sammlung von Eingabegesten erzeugt. Dazu müssen Sie zunächst eine leere Auf-
listung des Typs InputGestureCollection anlegen. Sie können dann eine neue
Tastenkombination vom Typ KeyGesture oder eine neue Mausaktion vom Typ
MouseGesture erzeugen.

Beide Gesten werden der Auflistung jeweils mithilfe der Methode Add() hinzuge-
fügt. Das Kommando selbst wird nun mit drei Parametern erzeugt:

� mit dem selbst gewählten Namen des Kommandos

� mit dem Typ des Besitzers des Kommandos, also dem Typ dieser Klasse

� mit der Auflistung der Eingabegesten

Es folgt der Aufbau der Anwendung, in der die beiden neuen Kommandos einge-
setzt werden:

<Window ... xmlns:ke="clr-namespace:KommandosEigene" ...>
 <Window.CommandBindings>
 <CommandBinding Command="ke:meineKommandos.Ausgabe_Eins"
 CanExecute="Ausgabe_Eins_erlaubt"
 Executed="Ausgabe_Eins_ausgefuehrt" />
 <CommandBinding Command="ke:meineKommandos.Ausgabe_Zwei"
 CanExecute="Ausgabe_Zwei_erlaubt"
 Executed="Ausgabe_Zwei_ausgefuehrt" />
 </Window.CommandBindings>
 <StackPanel>
 <CheckBox x:Name="cb1" Width="100" Margin="5">
 "Eins" erlaubt</CheckBox>
 <Button Command="ke:meineKommandos.Ausgabe_Eins"
 Width="100" Margin="5">Eins</Button>
 <CheckBox x:Name="cb2" Width="100" Margin="5">
 "Zwei" erlaubt</CheckBox>

Kommandos 5.5

153

 <Button Command="ke:meineKommandos.Ausgabe_Zwei"
 Width="100" Margin="5">Zwei</Button>
 </StackPanel>
</Window>

Zunächst müssen Sie den lokalen Namespace dieses Projekts (KommandosEigene)
einbinden, ansonsten wäre die Klasse meineKommandos hier nicht bekannt. Als
selbst gewähltes Kürzel für den Namespace wird hier im weiteren Verlauf des
XAML-Codes ke verwendet.

Beide Kommandos verbinden Sie jeweils über ein CommandBinding mit Methoden
zu den Ereignissen CanExecute und Executed (vergleiche Abschnitt 5.5.1, »Einge-
baute Kommandos«). Den beiden Buttons ordnen Sie jeweils ein Kommando zu.
Nachfolgend sehen Sie die Ereignismethoden:

private void Ausgabe_Eins_erlaubt(object sender,
 CanExecuteRoutedEventArgs e)
{ e.CanExecute = (bool) cb1.IsChecked; }

private void Ausgabe_Eins_ausgefuehrt(object sender,
 ExecutedRoutedEventArgs e)
{ MessageBox.Show("Eins"); }

private void Ausgabe_Zwei_erlaubt(object sender,
 CanExecuteRoutedEventArgs e)
{ e.CanExecute = (bool)cb2.IsChecked; }

private void Ausgabe_Zwei_ausgefuehrt(object sender,
 ExecutedRoutedEventArgs e)
{ MessageBox.Show("Zwei"); }

Die beiden Methoden …_erlaubt() liefern das Ergebnis zum Ereignis
CanExecute. Sie ändern auch die Optik der Buttons. Es lässt sich leicht erkennen,
ob ein Button bedienbar ist oder nicht (siehe Abbildung 5.10). Die beiden
Methoden …_ausgefuehrt() führen die Aktionen gemäß dem jeweiligen
Executed-Ereignis durch.

155

In diesem Kapitel lernen Sie den Aufbau einer WPF-Anwendung und
verschiedene Formen von Anwendungen kennen.

6 Anwendungen

In diesem Kapitel wird der grundsätzliche Aufbau von WPF-Anwendungen erläu-
tert. Innerhalb Ihrer Anwendungen wiederum können Sie auf Ressourcen zugrei-
fen. Es wird dargestellt, welcher Art diese Ressourcen sind und auf welche Weise
Sie darauf zugreifen können.

Standard-Anwendungen sind aus Fenstern zusammengesetzt. Sie lernen Eigen-
schaften und Ereignisse von Fenstern und den Datenaustausch zwischen den
Fenstern kennen. Eine Alternative bietet die Navigation mit Seiten.

In ihrer Vielfalt bietet die WPF auch die Möglichkeit, Gadgets zu erstellen. Mit
wenig Aufwand lassen sich Desktop-Anwendungen in Browser-Anwendungen,
sogenannte XBAPs, umwandeln. Es wird auch erläutert, welchen Einschränkun-
gen diese unterliegen.

6.1 Allgemeiner Aufbau

Zunächst wird eine minimale WPF-Anwendung mit einem leeren Fenster entwi-
ckelt. Diese wird anschließend um ein Steuerelement erweitert. Dabei wird die
Reihenfolge der Ereignisse beim Start und beim Beenden einer Anwendung ver-
deutlicht. Im letzten Abschnitt geht es um Aufrufparameter und den Rückgabe-
wert einer Anwendung.

6.1.1 Einfache Anwendung

In diesem Abschnitt wird eine einfache Anwendung entwickelt, die nur aus
einem leeren Fenster besteht, das der Benutzer vergrößern, verkleinern, ver-
schieben und schließen kann (siehe Abbildung 6.1). Daran wird Ihnen der Mini-
mal-Aufbau einer WPF-Anwendung verdeutlicht (Projekt AnwendungEinfach).

Anwendungen6

156

Abbildung 6.1 Ein einfaches Fenster

Zur Erstellung sind folgende Schritte durchzuführen:

� Erstellen Sie eine WPF-Anwendung, hier mit dem Namen AnwendungEinfach.

� Löschen Sie im Projektmappenexplorer die Dateien App.xaml und MainWin-
dow.xaml. Dabei werden die zugehörigen Programmcode-Dateien ebenfalls
gelöscht.

� Fügen Sie dem Projekt eine neue Klasse hinzu, hier mit dem Namen
meinFenster. Dabei wird die Datei meinFenster.cs erzeugt.

Darin muss sich lediglich der folgende Programmcode befinden:

using System;
using System.Windows;
namespace AnwendungEinfach
{
 class meinFenster : Window
 {
 [STAThread]
 public static void Main()
 {
 Application a = new Application();
 meinFenster mf = new meinFenster();
 a.Run(mf);
 }
 }
}

Sie benötigen die Namespaces System und System.Windows. Die Klasse
meinFenster erbt die grundsätzlichen Eigenschaften und Ereignisse von der
Klasse Window.

Für viele Elemente der Anwendung ist es erforderlich, dass sie in einem Single-
Threaded Apartment Thread (STAThread) läuft. Dies kennzeichnet die Art der
Kommunikation dieser Anwendung mit anderen Prozessen und geht noch auf die
Zeit vor der WPF und vor .NET zurück.

Allgemeiner Aufbau 6.1

157

Innerhalb der bekannten statischen Methode Main() wird eine Instanz der
Anwendungsklasse Application und eine Instanz der Fensterklasse meinFenster
erzeugt. Mithilfe der Methode Run() wird die Anwendung gestartet und das
angegebene Fenster geöffnet.

6.1.2 Anwendung mit Steuerelement

In diesem Abschnitt wird die vorherige Minimal-Anwendung um ein Steuerele-
ment mit Eigenschaften und einem Ereignishandler ergänzt. Das Projekt Anwen-
dungElement sehen Sie in Abbildung 6.2.

Abbildung 6.2 Fenster mit Steuerelement

Die Erstellung des Projekts wurde bereits im vorherigen Abschnitt beschrieben.
Der Code in der Datei meinFenster.cs wurde erweitert:

using System;
using System.Windows;
using System.Windows.Controls;
namespace AnwendungElement
{
 class meinFenster : Window
 {
 public meinFenster()
 {
 Button b = new Button();
 b.Margin = new Thickness(5);
 b.Content = "Hallo";
 b.Click += new RoutedEventHandler(b_Click);

 this.Width = 250;
 this.Height = 80;
 this.Title = "AnwendungElement";
 this.Content = b;
 }

 private void b_Click(object sender, RoutedEventArgs e)
 { MessageBox.Show("Hallo"); }

Anwendungen6

158

 [STAThread]
 public static void Main() { ... }
 }
}

Es wird zusätzlich der Namespace System.Windows.Controls für den Button (und
andere Steuerelemente) benötigt. Im Konstruktor des Fensters wird ein Button
mit Werten für die Eigenschaften Margin und Content erzeugt. Für das Click-
Ereignis des Buttons wird ein Delegate vom Typ RoutedEventHandler hinzuge-
fügt. Dieser verweist auf die zugehörige Ereignismethode b_Click().

Die Eigenschaften Width, Height und Title des Fensters bekommen Werte. Als
Letztes wird der Button als Content für das Fenster festgelegt. Da der Button das
einzige Element des Fensters ist, kann auf ein umgebendes Layout-Element ver-
zichtet werden. Die Main-Methode bleibt unverändert. Damit endet die Minimal-
Anwendung.

6.1.3 Reihenfolge der Ereignisse

Bei AnwendungReihenfolge handelt es sich wieder um ein Projekt, das auf
gewohnte Art und Weise nach der Vorlage WPF-Anwendung mit MainWin-
dow.xaml und App.xaml erzeugt wird. Es verdeutlicht, in welcher Reihenfolge
die einzelnen Elemente beim Start der Anwendung initialisiert und geladen wer-
den. Damit wird klar, welche Daten zu welchem Zeitpunkt bereits vorhanden
sind beziehungsweise von Ihnen schon geändert werden können.

Außerdem sehen Sie die Reihenfolge beim Beenden der Anwendung. Das Schlie-
ßen des Fensters können Sie aufgrund von bestimmten Bedingungen abbrechen.
Zum richtigen Zeitpunkt können Sie noch Daten sichern und Aufräumarbeiten
durchführen.

Die Anwendung beinhaltet ein Fenster, in dem mithilfe eines StackPanels zwei
Buttons angeordnet werden (siehe Abbildung 6.3). Mithilfe von zwei RadioBut-
tons legt der Benutzer fest, ob das Fenster geschlossen werden kann.

Abbildung 6.3 Verdeutlichung der Reihenfolge

Allgemeiner Aufbau 6.1

159

Der Start läuft wie folgt ab:

1. Die Anwendung wird gestartet.

2. Button 1 ist initialisiert.

3. Button 2 ist initialisiert.

4. Das StackPanel ist initialisiert.

5. Das Fenster ist initialisiert.

6. Das Fenster ist geladen.

7. Das StackPanel ist geladen.

8. Button 1 ist geladen.

9. Button 2 ist geladen.

Das Beenden der Anwendung, falls das Fenster geschlossen werden kann, erfolgt so:

1. Das Fenster wird geschlossen.

2. Das Fenster ist entladen.

3. Die Anwendung wird beendet.

4. Das Fenster ist geschlossen.

Es sind Ereignismethoden für die Anwendung und für das Fenster definiert. Den
Aufbau der Anwendung sehen Sie in der Datei App.xaml:

<Application x:Class="AnwendungReihenfolge.App"
 xmlns="http://..." xmlns:x="http://..."
 StartupUri="MainWindow.xaml"
 Startup="Application_Startup"
 Exit="Application_Exit">
</Application>

In der Eigenschaft StartupUri wird die Startdatei für die Anwendung festgelegt.
Die Ereignisse Startup (Starten der Anwendung) und Exit (Beenden der Anwen-
dung) führen zu den Ereignismethoden der Anwendung.

Der Programmcode in der Datei App.xaml.cs:

public partial class App : Application
{
 private void Application_Startup(object sender,
 StartupEventArgs e)
 { MessageBox.Show("Anwendung gestartet"); }
 private void Application_Exit(object sender, ExitEventArgs e)
 { MessageBox.Show("Anwendung beendet"); }
}

Anwendungen6

160

Die Instanz der Klasse StartupEventArgs kann zur Übermittlung von Aufrufpara-
metern dienen. Entsprechend können Sie die Instanz der Klasse ExitEventArgs
zur Übermittlung von Rückgabeparametern verwenden (siehe den nächsten
Abschnitt).

Der Aufbau des Fensters in der Datei MainWindow.xaml:

<Window ... Initialized="Window_Initialized"
 Loaded="Window_Loaded" Closing="Window_Closing"
 Unloaded="Window_Unloaded" Closed="Window_Closed">
 <StackPanel x:Name="StP" Initialized="init" Loaded="load">
 <Button x:Name="Bu1" Initialized="init"
 Loaded="load">Bu 1</Button>
 <Button x:Name="Bu2" Initialized="init"
 Loaded="load">Bu 2</Button>
 <RadioButton IsChecked="True">Schließen</RadioButton>
 <RadioButton x:Name="rb2" >Nicht schließen</RadioButton>
 </StackPanel>
</Window>

Die Ereignisse Initialized, Loaded, Closing, Unloaded und Closed führen zu den
Ereignismethoden des Fensters. Die Ereignisse Initialized und Loaded des
StackPanels und der Buttons führen zu den Ereignismethoden der Elemente.

Der Programmcode in der Datei MainWindow.xaml.cs:

private void Window_Initialized(object sender, EventArgs e)
{ MessageBox.Show("Fenster ist initialisiert"); }
private void Window_Loaded(object sender, RoutedEventArgs e)
{ MessageBox.Show("Fenster ist geladen"); }

private void Window_Closing(object sender,
 System.ComponentModel.CancelEventArgs e)
{
 if ((bool)rb2.IsChecked)
 {
 e.Cancel = true;
 MessageBox.Show("Fenster wird nicht geschlossen");
 }
 else
 MessageBox.Show("Fenster wird geschlossen");
}

private void Window_Unloaded(object sender, RoutedEventArgs e)
{ MessageBox.Show("Fenster ist entladen"); }
private void Window_Closed(object sender, EventArgs e)

Allgemeiner Aufbau 6.1

161

{ MessageBox.Show("Fenster ist geschlossen"); }

private void init(object sender, EventArgs e)
{ MessageBox.Show(((FrameworkElement)sender).Name
 + " initialisiert"); }
private void load(object sender, RoutedEventArgs e)
{ MessageBox.Show(((FrameworkElement)sender).Name
 + " geladen"); }

Der zweite Parameter der Methode Window_Closing() ist vom Typ CancelEventArgs
aus dem Namespace System.Component.Model. Wird dessen Eigenschaft Cancel
auf true gesetzt, so wird das Schließen des Fensters abgebrochen. Außerdem
könnten Sie in dieser Methode noch Daten sichern und Aufräumarbeiten durch-
führen.

6.1.4 Aufruf von der Kommandozeile

Wie bereits angesprochen, können Sie die Ereignisse Startup und Exit der
Anwendung nutzen, um bei einem Aufruf der Anwendung von der Kommando-
zeile Aufrufparameter zu übermitteln beziehungsweise einen Rückgabewert an
Windows zu liefern.

Dies verdeutliche ich Ihnen im Projekt AnwendungKommandozeile. Darin wer-
den der Anwendung zwei ganze Zahlen übergeben. Die Summe der beiden Zah-
len wird an Windows geliefert.

Der Aufruf von der Kommandozeile erfolgt während der Entwicklung eines Pro-
jekts aus dem Verzeichnis C:\Users\[Benutzername]\Documents\Visual Studio
2010\Projects\AnwendungKommandozeile\AnwendungKommandozeile\bin\
Debug.

Ein Beispielaufruf: AnwendungKommandozeile 4 8. Nach Ablauf der Anwendung
wird der Wert 12 an Windows zurückgeliefert. Zum Aufruf der Anwendung und
zur Ausgabe des Wertes eignet sich eine kleine Batch-Datei (hier anw.bat) im
oben genannten Verzeichnis:

@echo off
AnwendungKommandozeile 4 8
echo %errorlevel%

Der Aufbau der Anwendung in der Datei App.xaml sieht aus wie im vorherigen
Projekt:

<Application x:Class="AnwendungKommandozeile.App"
 xmlns="http://..." xmlns:x="http://..."

Anwendungen6

162

 StartupUri="MainWindow.xaml"
 Startup="Application_Startup"
 Exit="Application_Exit">
</Application>

Der Programmcode der Anwendungsklasse App in der Datei App.xaml.cs wurde
geändert:

public partial class App : Application
{
 public static int arg0, arg1, erg;

 private void Application_Startup(object sender,
 StartupEventArgs e)
 {
 MessageBox.Show(System.Environment.CommandLine);
 MessageBox.Show(String.Join(", ", e.Args));

 if (e.Args.Count() > 0)
 {
 arg0 = Convert.ToInt32(e.Args[0]);
 arg1 = Convert.ToInt32(e.Args[1]);
 }
 else
 { arg0 = 0; arg1 = 0; }
 erg = arg0 + arg1;
 }

 private void Application_Exit(object sender, ExitEventArgs e)
 { e.ApplicationExitCode = erg; }
}

Sie vereinbaren die öffentlichen Klassenvariablen arg0, arg1 und erg. Diese die-
nen zur Übermittlung der Aufrufparameter und des Ergebnisses an die Fenster-
instanz. Die Nutzung sehen Sie weiter unten.

Es wird vereinfachend davon ausgegangen, dass der Benutzer die Anwendung
fehlerfrei aufruft. Bei einem Aufruf mit oben angegebener Batch-Datei erschei-
nen die Ausgaben gemäß Abbildung 6.4 und Abbildung 6.5.

Abbildung 6.4 Ausgabe von »System.Environment.CommandLine«

Allgemeiner Aufbau 6.1

163

Abbildung 6.5 Ausgabe von »e.Args«

Beschreibung der Methode »Application_Startup()«

Die Eigenschaft CommandLine der Klasse System.Environment beinhaltet das in
Abbildung 6.4 dargestellte Aufrufkommando der Anwendung. Die Eigenschaft
Args der Instanz der Klasse StartupEventArgs beinhaltet eine Auflistung der Auf-
rufparameter (siehe Abbildung 6.5).

Falls der Aufruf aus der Entwicklungsumgebung erfolgte, so liefert die Methode
Count() den Wert 0, da es keine Aufrufparameter gibt. Die Variablen arg0 und arg1
bekommen dann den Wert 0. Falls der Aufruf über die oben angegebene Batch-
Datei erfolgte, so bekommen arg0 und arg1 die Werte der Aufrufparameter.

Beschreibung der Methode »Application_Exit()«

Der Wert der Eigenschaft ApplicationExitCode der Instanz der Klasse Exit-
EventArgs dient zur Übermittlung des Rückgabeparameters.

In der Fensterinstanz stehen die Aufrufparameter über die beiden öffentlichen
Klassenvariablen arg0 und arg1 aus der Anwendungsklasse zur Verfügung. Falls
der Benutzer den Button aus Abbildung 6.6 betätigt, so sieht er das Ergebnis aus
Abbildung 6.7.

Abbildung 6.6 Aufruf der Werte

Abbildung 6.7 Werte

Nachfolgend der zugehörige Programmcode:

private void b_Click(...) { MessageBox.Show
 (App.arg0 + " + " + App.arg1 + " = " + App.erg); }

Anwendungen6

164

6.2 Ressourcen

Bestandteile einer Anwendung, die Sie häufig benötigen, sollten Sie in Ressour-
cen anlegen. Physische Ressourcen sind zum Beispiel Bild- oder Sounddateien.
Logische Ressourcen sind Bestandteile des Codes, die von mehreren Steuerele-
menten verwendet werden.

Ressourcen sind austauschbar und erleichtern die Pflege einer Anwendung. Logi-
sche Ressourcen organisieren Sie in Ressourcen-Wörterbüchern (Resource Dictio-
naries). In Abschnitt 7.4, »Skins«, finden Sie eine Anwendung zu diesem Thema.

6.2.1 Physische Ressourcen

Physische Ressourcen sind Dateien, die Sie dem Projekt hinzufügen. Dies können
Sie auf zwei Arten machen:

� per Drag&Drop in den Projektmappenexplorer

� über den Menüpunkt Projekt � Vorhandenes Element hinzufügen

Anschließend sehen Sie die Datei im Projektmappenexplorer. In Abbildung 6.8
sind dies die Bilddateien computer.gif und paint.gif sowie die Sounddatei
tada.wav im Projekt RessourcenPhysisch.

Abbildung 6.8 Physische Ressourcen

Die Bilder werden im Projekt angezeigt, entweder unmittelbar nach Aufruf
oder nach einer Benutzeraktion. Die Sounddatei soll der Benutzer bei Bedarf
abspielen können. Im Falle der Sounddatei ist es allerdings notwendig, die
Eigenschaft In Ausgabeverzeichnis kopieren auf Immer kopieren zu stellen
(siehe Abbildung 6.9). Alle Dateien stehen nun im Projektverzeichnis und sind
bei einer Installation eingeschlossen.

Ressourcen 6.2

165

Abbildung 6.9 Die Eigenschaft »In Ausgabeverzeichnis kopieren«

Die Anwendung sieht zunächst so aus wie in Abbildung 6.10.

Abbildung 6.10 Nach dem Start

Die RadioButtons geben die Möglichkeit, das Bild zu wechseln (siehe Abbildung 6.11).

Abbildung 6.11 Nach einem Wechsel der Auswahl

Zunächst der Aufbau des Fensters:

<StackPanel>
 <Image x:Name="im" Source="computer.gif"
 Height="32" Width="32" />
 <RadioButton x:Name="computer"
 Click="rb_Click" IsChecked="True">Computer</RadioButton>
 <RadioButton x:Name="paint"

Anwendungen6

166

 Click="rb_Click">Paint</RadioButton>
 <Button Width="60" Click="b_Click">Sound</Button>
</StackPanel>

Die Eigenschaft Source des Steuerelements Image bekommt als Wert den Dateina-
men. Es ist kein Pfad notwendig, da die Datei eine Ressource des Projekts ist.
Beide RadioButtons führen zur gleichen Ereignismethode.

Im Programmcode muss der Namespace System.Media eingebunden werden. Es
folgt der Code:

private void rb_Click(object sender, RoutedEventArgs e)
{
 Control c = (Control)sender;
 im.Source = new BitmapImage(new Uri(c.Name + ".gif",
 UriKind.Relative));
}

private void b_Click(object sender, RoutedEventArgs e)
{
 SoundPlayer sp = new SoundPlayer("tada.wav");
 sp.Play();
}

Der Name des aufrufenden RadioButtons dient hier als Teil des Dateinamens. Der
Konstruktor der BitmapImage-Klasse stellt ein BitmapSource-Objekt zum Laden
von Bildern über ein Uri-Objekt bereit. Die Zeichenfolge des URI können Sie mit-
hilfe eines Wertes aus der Enumeration UriKind absolut oder relativ angeben. Bei
einer Ressource innerhalb des Projekts eignet sich der Wert Relative.

Die Klasse SoundPlayer aus dem Namespace System.Media eignet sich zur einfa-
chen Wiedergabe einer WAV-Datei. Den Namen der Datei können Sie im Kon-
struktor als Wert für die Eigenschaft SoundLocation angeben. Hier ist dies die hin-
zugefügte Projekt-Ressource. Das Abspielen mithilfe der Methode Play() gelingt
Ihnen allerdings nur, wenn Sie die Eigenschaft In Ausgabeverzeichnis kopieren

der Ressourcendatei auf Immer kopieren gestellt haben, wie bereits oben erwähnt
wurde. Mehr zu Audio- und Videodateien finden Sie in Kapitel 12, »Audio und
Video«.

6.2.2 Logische Ressourcen

Logische Ressourcen sind Bestandteile des Codes, die von mehreren Steuerele-
menten verwendet werden. Dies können zum Beispiel Vorlagen sein. Logische
Ressourcen haben unterschiedliche Gültigkeitsbereiche:

Ressourcen 6.2

167

� Falls sie in der Anwendungsdatei App.xaml definiert werden, gelten sie für die
gesamte Anwendung.

� Falls sie in der Fensterdatei definiert werden, zum Beispiel in MainWin-
dow.xaml, gelten sie nur für dieses Fenster.

Sie müssen am Ort ihrer Definition eindeutig gekennzeichnet sein, zum Beispiel
durch einen Schlüssel. Sollte es zwei logische Ressourcen mit gleichem Schlüssel
in der Anwendungsdatei und in einer Fensterdatei geben, so wird diejenige
genutzt, die dem Steuerelement »näher« ist, also die Ressource aus der Fensterda-
tei. Logische Ressourcen können statisch oder dynamisch sein:

� Statische Ressourcen werden bereits frühzeitig geprüft. Sie werden mit der
Anwendung (beziehungsweise mit dem Fenster) geladen und stehen so
schneller zur Verfügung als dynamische Ressourcen. Sie müssen allerdings vor
ihrer Nutzung definiert sein.

� Dynamische Ressourcen müssen nicht vor ihrer Nutzung definiert sein. Der
Benutzer kann sie während der Laufzeit austauschen. Dynamische Ressourcen
werden erst geladen, wenn der Benutzer sie zur Laufzeit benötigt, allerdings
ist dann die Ladezeit länger als bei statischen Ressourcen.

Nachfolgend sehen Sie die Anwendung RessourcenLogisch. Darin werden stati-
sche und dynamische Ressourcen sowohl anwendungsweit als auch fensterweit
definiert und genutzt. Als einfaches Beispiel für eine Ressource dienen Pinsel
unterschiedlicher Farbe. Nach dem Start sieht die Anwendung so aus wie in
Abbildung 6.12.

Abbildung 6.12 Nach dem Start

Nach einem Wechsel der Auswahl sieht die Anwendung so aus wie in Abbildung 6.13.

Abbildung 6.13 Nach dem Wechsel der Auswahl

Anwendungen6

168

Zunächst sind hier die anwendungsweiten Ressourcen in der Datei App.xaml:

<Application.Resources>
 <SolidColorBrush x:Key="fgbrush">White</SolidColorBrush>
 <SolidColorBrush x:Key="bgbrush">Red</SolidColorBrush>
</Application.Resources>

Die Ressourcen werden in der Auflistung Resources des Application-Objekts defini-
ert. Es wird ein weißer Pinsel mit dem Schlüssel fgbrush und ein roter Pinsel mit dem
Namen bgbrush definiert. Damit ist noch nichts darüber ausgesagt, ob, wann, bei
welchem Steuerelement und für welche Eigenschaft Sie die Ressourcen nutzen.

Es folgen die fensterweiten Ressourcen, die in der Datei MainWindow.xaml defi-
niert sind:

<Window ... Background="{DynamicResource winbrush}">
 <Window.Resources>
 <SolidColorBrush x:Key="winbrush">LightGray</SolidColorBrush>
 <SolidColorBrush x:Key="bgbrush">Gray</SolidColorBrush>
 </Window.Resources>
 ...
</Window>

Die Ressourcen werden in der Auflistung Resources des Window-Objekts definiert.
Innerhalb des Fensters hat der graue Pinsel mit dem Schlüssel bgbrush Vorrang
gegenüber dem roten Pinsel mit dem gleichnamigen Schlüssel aus App.xaml.

Der hellgraue Pinsel mit dem Schlüssel winbrush kommt als Hintergrundfarbe für
das Fenster zum Einsatz. Dieser Einsatz findet vor der Definition statt, daher
kann er nur dynamisch, also über DynamicResource, erfolgen.

Der Aufbau der Steuerelemente innerhalb des Fensters:

<StackPanel>
 <Button x:Name="b" Background="{StaticResource bgbrush}"
 Foreground="{StaticResource fgbrush}" Width="120"
 Margin="5">Button 1</Button>
 <RadioButton IsChecked="True" Click="rb1_Click">
 Schrift weiß</RadioButton>
 <RadioButton Click="rb2_Click">Schrift hellgrau</RadioButton>
</StackPanel>

Beim Button kommen zwei statische Ressourcen, und zwar über StaticResource,
zum Einsatz: zum einen der graue Pinsel aus den Fensterressourcen für die Hin-
tergrundfarbe, zum anderen der weiße Pinsel aus den Anwendungsressourcen
für die Schriftfarbe.

Fenster 6.3

169

Die Betätigung der RadioButtons führt zu folgenden Ereignismethoden:

private void rb1_Click(...)
{ b.Foreground = FindResource("fgbrush") as Brush; }
private void rb2_Click(...)
{ b.Foreground = FindResource("winbrush") as Brush; }

Die Methode FindResource() sucht nach einer Ressource mit dem genannten
Schlüssel. Nach einer Typkonvertierung können Sie diesen Schlüssel für die
Schriftfarbe des Buttons nutzen.

Logische Ressourcen organisieren Sie in Ressourcen-Wörterbüchern (Resource
Dictionaries). Diese stellen eine Sammlung von WPF-Ressourcen dar. In
Abschnitt 7.4, »Skins«, finden Sie eine Anwendung zu diesem Thema.

6.3 Fenster

Die meisten Desktop-Anwendungen, auch in diesem Buch, werden in Fenstern
dargestellt. Die Klasse Window stellt Fenster mit einer Vielzahl an Eigenschaften
und Ereignissen zur Verfügung. Einige werden hier erläutert.

Außerdem verdeutliche ich den Aufruf von Unterfenstern, also eigenen Dialog-
feldern, und den Austausch von Daten zwischen Haupt- und Unterfenstern.

In der WPF gibt es nur wenige Möglichkeiten, auf Standard-Dialogfelder zuzu-
greifen. Das Standard-Dialogfeld zum Drucken wird mithilfe der Klasse
PrintDialog aufgerufen (siehe Abschnitt 13.3, »Drucken«).

In Windows Forms gibt es die Standard-Dialogfelder zur Auswahl einer Datei,
eines Verzeichnisses, einer Farbe oder einer Schrift. Die Integration derselben in
eine WPF-Anwendung und die Umsetzung der Ergebnisse stelle ich in Abschnitt
14.1.2, »Windows Forms-Standard-Dialogfelder in WPF«, dar.

6.3.1 Eigenschaften und Ereignisse von Fenstern

Bereits häufig benutzt wurden die Eigenschaften Title, Height und Width. Einige
Fensterereignisse und ihre Ablaufreihenfolge wurden in Abschnitt 6.1.3, »Rei-
henfolge der Ereignisse«, erläutert.

In diesem Abschnitt stelle ich im Projekt FensterMember ein Fenster mit einer
Reihe von Bedienungsmöglichkeiten und Informationen vor, die weitere Eigen-
schaften und Ereignisse verdeutlichen (siehe Abbildung 6.14).

Anwendungen6

170

Abbildung 6.14 Nach dem Start

Zunächst der Aufbau des Fensters. Der Aufbau der Steuerelemente wird nicht
gesondert wiedergegeben, sondern es werden hier nur die Auswirkungen der
Bedienung gezeigt.

<Window ... WindowStartupLocation="CenterScreen"
 ShowInTaskbar="False" ResizeMode="NoResize"
 Topmost="True" LocationChanged="Window_LocationChanged"
 StateChanged="Window_StateChanged"
 SizeChanged="Window_SizeChanged">
 ...
</Window>

Die Eigenschaft WindowStartupLocation legt fest, an welcher Position das betref-
fende Fenster zum Start auf dem Bildschirm erscheint. Als Eigenschaftswerte sind
Elemente der gleichnamigen Enumeration zugelassen:

� Der Standardwert Manual überlässt den Eigenschaften Top und Left die Anord-
nung. Falls diese nicht vorhanden sind, so wird eine Standard-Einstellung
genommen.

� Der Wert CenterOwner legt fest, dass ein Unterfenster im Zentrum des besit-
zenden, also aufrufenden Fensters liegt. Ein Beispiel sehen Sie im nächsten
Abschnitt.

� Hier wurde der Wert CenterScreen gewählt, der das Fenster in der Mitte des
Bildschirms platziert. Dies ergibt beim hier benutzten Laptop die angezeigten
Werte für Top und Left.

Die Eigenschaft ShowInTaskbar steht normalerweise auf True. Dies führt dazu,
dass das Fenster in der Taskbar angezeigt wird. Hier wurde der Wert False
gewählt. Den Wert kann der Benutzer auch zur Laufzeit ändern.

Mithilfe der Eigenschaft ResizeMode wird festgelegt, ob der Benutzer die Größe
des Fensters verändern kann. Als Eigenschaftswerte sind Elemente der gleichna-
migen Enumeration zugelassen:

Fenster 6.3

171

� Der Standardwert CanResize erlaubt die Größenänderung, das Minimieren
und das Maximieren.

� Der Wert CanResizeWithGrip zeigt zusätzlich noch einen Ziehpunkt unten
rechts an.

� Der Wert CanMinimize erlaubt nur die Minimierung und Wiederherstellung.

� Hier wurde der Wert NoResize gewählt, der gar keine Größenänderung
erlaubt.

Die Einstellungen gelten nur für Benutzeraktionen. Per Programmcode können
Sie Größenänderungen jederzeit durchführen.

Die Eigenschaft Topmost steht normalerweise auf False. Dies führt dazu, dass das
Fenster von einem anderen Fenster der gleichen Anwendung oder einer anderen
Anwendung verdeckt werden kann. Hier wurde der Wert True gewählt; das Fens-
ter ist damit immer das oberste. Der Wert kann auch zur Laufzeit geändert werden.

Die Ereignisse LocationChanged, StateChanged und SizeChanged werden bei
Änderung des Ortes, des Fensterstatus und der Größe ausgelöst und führen zu
den nachfolgenden Ereignismethoden:

private void Window_LocationChanged(...)
{ lb1.Content = "Location: Top " + (int)Top
 + " / Left " + (int)Left; }
private void Window_StateChanged(...)
{ lb2.Content = "State: " + WindowState; }

private void Window_SizeChanged(..., SizeChangedEventArgs e)
{ lb3.Content = "Size: Height " + (int)e.NewSize.Height
 + " / Width " + (int)e.NewSize.Width; }

Es gibt insgesamt drei Label zur Anzeige. Das erste Label zeigt die Werte von Top
und Left nach einer Änderung des Ortes an. Im zweiten Label wird über den
Wert von WindowState der Fensterstatus nach einer Änderung angezeigt. Dies ist
einer der Werte aus der gleichnamigen Enumeration: entweder Maximized,
Minimized oder Normal. Der Start der Anwendung führt übrigens nicht zu einer
Änderung des Fensterstatus.

Nach einer Änderung der Größe bietet die Instanz der Klasse SizeChangedEventArgs
eine Reihe von Informationen. Dies sind zum Beispiel die vorherige Größe
(PreviousSize) und die neue Größe (NewSize).

Die Bedienung der drei Checkboxen (siehe Abbildung 6.14) führt zu den nachfol-
genden Ereignismethoden:

Anwendungen6

172

private void cb1_Click(...)
{ ShowInTaskbar = (bool)cb1.IsChecked; }
private void cb3_Click()
{ Topmost = (bool)cb3.IsChecked; }

private void cb2_Checked(...)
{ ResizeMode = ResizeMode.CanResize; }
private void cb2_Unchecked(...)
{ ResizeMode = ResizeMode.NoResize; }

Die Werte der Eigenschaften ShowInTaskbar und Topmost richten sich jeweils
nach dem Wert der zugehörigen CheckBox. Außerdem kann der Benutzer zwei
der vier möglichen Werte der Eigenschaft ResizeMode einstellen.

Zu guter Letzt kann der Benutzer über insgesamt vier Buttons Änderungen der
Größe und des Orts durchführen (siehe Abbildung 6.14).

private void b1_Click(...)
{ SizeToContent = SizeToContent.WidthAndHeight; }
private void b2_Click(...)
{ SizeToContent = SizeToContent.Manual;
 Height = 200; Width = 300; }

private void b3_Click(...)
{ Height = Height + 20; Width = Width + 20; }
private void b4_Click(...)
{ Top = Top + 50; Left = Left + 50; }

Eine besondere Möglichkeit zur Einstellung der Größe bietet die Eigenschaft
SizeToContent: eine Anpassung der Größe an den Inhalt. Als Werte sind Ele-
mente der gleichnamigen Enumeration zugelassen:

� Der Standardwert Manual gibt an, dass die Größe nicht dem Inhalt angepasst
wird.

� Mit den Werten Height beziehungsweise Width wird festgelegt, dass die Größe
an die Höhe beziehungsweise an die Breite des Inhalts angepasst wird.

� Der Wert WidthAndHeight bedeutet: Die Anpassung erfolgt sowohl an die
Breite als auch an die Höhe des Inhalts.

Falls im Beispiel zuerst b1_Click() durchlaufen wurde, so muss für die Änderung
von Width und Height in b2_Click() zunächst wieder der Wert Manual eingestellt
werden. Der Benutzer kann Größenänderungen jedoch unabhängig vom aktuel-
len Wert der Eigenschaft SizeToContent durchführen (vorausgesetzt, der Wert
der Eigenschaft ResizeMode lässt dies zu).

Fenster 6.3

173

Rufen Sie zur Verdeutlichung die Anwendung FensterMember auf, führen Sie die
möglichen Aktionen durch, und beachten Sie die Auswirkungen.

6.3.2 Eigene Dialogfelder

Vom Hauptfenster einer Anwendung aus kann der Benutzer Unterfenster aufru-
fen, also eigene Dialogfelder. Diese dienen häufig zur Einstellung von Werten für
das Hauptfenster. Daher ist der Austausch von Daten zwischen Haupt- und Unter-
fenster zu betrachten.

Im Projekt FensterUnter ist zunächst das Hauptfenster mit einem eingegebenen
Text zu sehen (siehe Abbildung 6.15).

Abbildung 6.15 Nach Start und Eingabe

Nach dem Aufruf des neuen Fensters erscheint dieses mit dem übermittelten Text
(siehe Abbildung 6.16).

Abbildung 6.16 Unterfenster mit übermittelten Daten

Im neuen Fenster kann der Benutzer den Text ändern. Nach dem Schließen
erscheint das Hauptfenster mit dem geänderten Text (siehe Abbildung 6.17).

Sie erzeugen ein neues Fenster in einer Anwendung über den Menüpunkt Pro-

jekt � Fenster hinzufügen. Nachdem Sie dem Fenster einen Namen gegeben
haben (hier: Unterfenster), erscheinen die beiden Dateien Unterfenster.xaml
und Unterfenster.xaml.cs zur weiteren Bearbeitung.

Anwendungen6

174

Abbildung 6.17 Hauptfenster mit übermittelten Daten

Hier sehen Sie zunächst die Ereignismethode für den Button im Hauptfenster:

private void b_Click(...)
{
 Unterfenster uf = new Unterfenster(tb.Text);
 uf.Owner = this;

 if (uf.ShowDialog() == true)
 {
 lb.Content = "Beendet mit Ok";
 tb.Text = uf.Eingabetext;
 }
 else
 lb.Content = "Beendet mit Abbrechen";
}

Es wird eine Instanz der Klasse des Unterfensters erzeugt. Die Klasse ist weiter
unten definiert. Der Konstruktor dient zur Übermittlung der Daten an das Unter-
fenster. Das Hauptfenster wird zum Owner (Besitzer) des Unterfensters erklärt.
Dies ist nur für die Platzierung des Unterfensters, nicht unbedingt für das logi-
sche Zusammenspiel der beiden Fenster notwendig.

Mithilfe der Methode ShowDialog() wird das Unterfenster modal geöffnet. Dies
bedeutet, dass es erst geschlossen werden muss, bevor man das Hauptfenster wie-
der bedienen kann. Aus der Unterfensterklasse kann in diesem Fall ein Wert vom
Typ bool? zurückgeliefert werden. Damit teilen Sie dem Hauptfenster mit, ob die
Bedienung des Unterfensters ordnungsgemäß beendet oder abgebrochen wurde.
Ein Aufruf mit der Methode Show() hätte zu einem nicht-modalen Aufruf geführt.

Nur im ersten Fall erscheinen die Daten, die im Unterfenster eingegeben wur-
den, auch im Hauptfenster. Diese Daten werden über eine Property des Unter-
fensters weitergegeben. Das Unterfenster ist so aufgebaut:

<Window ... WindowStartupLocation="CenterOwner"> ... </Window>

Navigation mit Seiten 6.4

175

Die Platzierung wurde über die Eigenschaft WindowStartupLocation festgelegt.
Da das Hauptfenster als Owner festgelegt wurde, kann sich der Eigenschaftswert
CenterOwner auswirken.

Es folgt der Programmcode für das Unterfenster:

public partial class Unterfenster : Window
{ string eingabetext;

 public Unterfenster(string et)
 { InitializeComponent(); tb.Text = et; }

 private void ok_Click(...)
 { eingabetext = tb.Text; DialogResult = true; }

 private void abbr_Click(...)
 { DialogResult = false; }

 public string Eingabetext
 { get{return eingabetext;} }
}

Der Konstruktor wurde erweitert. Auf diese Weise können der Unterfenster-
Instanz bei der Erzeugung Daten aus dem Hauptfenster übermittelt werden.

Abhängig vom betätigten Button wird der Eigenschaft DialogResult einer der
Werte true oder false gegeben. Dies führt dazu, dass der Programmcode im
Hauptfenster an der Stelle des Aufrufs durch ShowDialog() weitergeführt wird.
Außerdem wird übermittelt, auf welche Weise das Unterfenster beendet wurde.

Im Falle der ordnungsgemäßen Beendigung wurden vorher die Daten, die an das
Hauptfenster übergeben werden sollen, einer Property des Unterfensters zuge-
wiesen. Damit stehen sie im Hauptfenster zur Verfügung.

6.4 Navigation mit Seiten

Die Navigation mit Seiten bietet eine Alternative zur klassischen Fenstertechnik.
In diesem Abschnitt stelle ich zwei Möglichkeiten vor:

� eine Reihe von Seiten, die der Benutzer nacheinander aufruft, ähnlich einer MS
Power Point-Präsentation

� ein Frame mit Unterseiten, die der Benutzer in beliebiger Reihenfolge aufruft,
ähnlich einer Anwendung mit Frames in einem Browser

Anwendungen6

176

Seiten sind Instanzen der Klasse Page. Sie ähneln Fenstern, haben aber eine ein-
geschränkte Funktionalität. Sie können nicht einzeln auftreten, sondern nur
innerhalb einer Steuerseite der Klasse NavigationWindow.

6.4.1 Eine Reihe von Seiten

Im Projekt NavigationReihe werden insgesamt drei verschiedene Seiten ange-
zeigt, die der Benutzer der Reihe nach durchlaufen kann.

Ablauf

Nach dem Start erscheint Seite 1 (siehe Abbildung 6.18).

Abbildung 6.18 Nach dem Start, auf Seite 1

Von Seite 1 aus kann der Benutzer auf verschiedene Arten zur Seite 2 gelangen.
Dabei können auch Daten zwischen den Seiten transportiert werden, wie es in
Abbildung 6.19 zu sehen ist.

Abbildung 6.19 Inhalt der Seite 2

Von Seite 2 aus sind die Seiten 1 und 3 erreichbar. Die Seite 3 sieht so aus wie in
Abbildung 6.20.

Navigation mit Seiten 6.4

177

Abbildung 6.20 Inhalt der Seite 3

Die Klasse NavigationWindow stellt automatisch eine browserähnliche Navigation
mit Vorwärts- und Rückwärts-Buttons und einer History zur Verfügung, wie sie in
Abbildung 6.18 bis Abbildung 6.20 zu sehen sind. Für die Anwendung benötigen
Sie die vier Dateien MainWindow.xaml, Seite1.xaml, Seite2.xaml und Seite3.xaml,
jeweils mit zugehöriger Codedatei (siehe Abbildung 6.21). Weiter unten wird
erläutert, wie Sie die Dateien hinzufügen.

Abbildung 6.21 Projektdateien

Navigationsdatei

Hier sehen Sie zunächst den Aufbau der Navigation in der Datei MainWin-
dow.xaml:

<NavigationWindow x:Class="NavigationReihe.MainWindow"
 xmlns="http://..." xmlns:x="http://..."
 Height="200" Width="300" Source="Seite1.xaml" />

Als Grundlage zur Erstellung dient eine klassische WPF-Anwendung. Statt eines
Window wird ein NavigationWindow verwendet; die Klasse muss also geändert
werden. Ein Inhalt wird nicht benötigt. Ebenso wenig wird ein Titel gebraucht,
da dieser jeweils auf den Seiten steht. Die Eigenschaft Source verweist auf den
URI der ersten Page, die nach dem Start im NavigationWindow angezeigt wird.

Im Programmcode müssen Sie die Basisklasse ebenfalls ändern:

Anwendungen6

178

public partial class MainWindow : NavigationWindow { ... }

Nun fügen Sie die Seiten hinzu, jeweils über den Menüpunkt Projekt � Seite hin-

zufügen.

Seite 1

Im Folgenden sehen Sie die wichtigen Teile des Page-Objekts in der Datei
Seite1.xaml (siehe Abbildung 6.18):

<Page x:Class="NavigationReihe.Seite1"
 xmlns="http://..." xmlns:x="http://..."
 WindowTitle="NavigationReihe, Seite 1">
...
 <TextBlock ...>
 <Hyperlink NavigateUri="Seite2.xaml">
 Vorwärts zur Seite 2</Hyperlink>
 </TextBlock>
...
</Page>

Einige Eigenschaften aus einer Standard-Page benötigen Sie hier nicht mehr; Sie
können sie löschen. Sichtbar ist nicht der Anwendungstitel, sondern der jewei-
lige Seitentitel. Dieser wird über die Eigenschaft WindowTitle festgelegt.

Hyperlinks sind Inline-Elemente eines Dokuments (siehe auch Abschnitt 13.1.7,
»Inlines«). Sie müssen sie innerhalb eines Steuerelements, zum Beispiel in einem
TextBlock-Objekt, platzieren. Die Eigenschaft NavigateUri verweist auf den URI
der Page, die bei Betätigung des Hyperlinks aufgerufen wird.

Es folgt der Programmcode der Klasse Seite1:

public partial class Seite1 : Page
{ public Seite1() { InitializeComponent(); }

 private void vorwaerts_Click(...)
 { NavigationService.Navigate(new Uri("Seite2.xaml",
 UriKind.Relative)); }

 private void daten_Click(...)
 { NavigationService.Navigate(new Seite2(tb.Text)); }
}

Über die Eigenschaft NavigationService können Sie auf den Navigationsdienst
des übergeordneten NavigationWindow zugreifen. Die Methode Navigate() kann
das gewünschte Ziel über einen URI oder ein Objekt erreichen.

Navigation mit Seiten 6.4

179

� Beim Zugriff per URI können Sie die Zeichenfolge des URI mithilfe der Enu-
meration UriKind absolut oder relativ angeben. Bei Pages innerhalb eines Pro-
jekts eignet sich der Wert Relative.

� Beim Zugriff per Objekt wird eine neue Instanz der Klasse für Seite 2 erzeugt.
Der Konstruktor dient zur Übermittlung der Daten aus der Textbox an das
Unterfenster.

Seite 2

Die zweite Page in Seite2.xaml sehen Sie in Abbildung 6.19. Zwei Elemente der
Klasse Hyperlink, jeweils in einem Textblock, führen zu den Seiten 1 und 3, ähn-
lich wie in Seite1.xaml. Der Programmcode in Seite2.xaml.cs:

public partial class Seite2 : Page
 { public Seite2() { InitializeComponent(); }

 public Seite2(string s)
 {
 InitializeComponent();
 lb.Content = "Daten von Seite 1: " + s;
 }

 private void journal_Click(...)
 {
 if (NavigationService.CanGoBack)
 NavigationService.GoBack();
 }
}

Der Benutzer kann die zweite Seite auf verschiedene Arten aufrufen. Daher wird
neben dem Standard-Konstruktor noch ein weiterer Konstruktor benötigt, dem
bei der Erzeugung der Instanz Daten von der aufrufenden Seite 1 übergeben wer-
den können.

Die Funktionalität der Vorwärts- und Rückwärts-Buttons des NavigationWindow
können Sie auch per Programmcode nutzen. Die Methoden GoForward() und
GoBack() des Navigationsdienstes dienen dazu. Vor der Ausführung sollten Sie zur
Sicherheit die Eigenschaften CanGoForward beziehungsweise CanGoBack abfragen.

Seite 3

Die dritte Page in Seite3.xaml sehen Sie in Abbildung 6.20. Ein Element der
Klasse Hyperlink, das in einem Textblock steht, führt zur Seite 2, ähnlich wie in
Seite1.xaml.

Anwendungen6

180

6.4.2 Frame mit Unterseiten

Im Projekt NavigationFrame kann sich der Benutzer zwei verschiedene Seiten in
beliebiger Reihenfolge anzeigen lassen.

Ablauf

Nach dem Start erscheint nur die Steuerung (siehe Abbildung 6.22).

Abbildung 6.22 Steuerung

Von hier aus kann der Benutzer die beiden Seiten über Hyperlinks erreichen. Als
Beispiel sehen Sie in Abbildung 6.23 die Seite 1.

Abbildung 6.23 Anzeige der Seite 1

Auch hier stellt die Klasse NavigationWindow eine browserähnliche Navigation
mit Vorwärts- und Rückwärts-Buttons und einer History zur Verfügung. Für die
Anwendung benötigen Sie die fünf XAML-Dateien MainWindow.xaml, Auf-
bau.xaml, Steuerung.xaml, Seite1.xaml und Seite2.xaml, jeweils mit einer Pro-
grammcodedatei (siehe Abbildung 6.24).

Abbildung 6.24 Projektdateien

Navigation mit Seiten 6.4

181

Navigationsdatei

Hier ist zunächst der Aufbau der Navigation in der Datei MainWindow.xaml:

<NavigationWindow x:Class="NavigationFrame.MainWindow"
 xmlns="http://..." xmlns:x="http://..."
 Title="NavigationFrame" Height="200" Width="300"
 Source="Aufbau.xaml" />

Wie im vorherigen Projekt wird eine klassische WPF-Anwendung mit einem
NavigationWindow verwendet. Die Eigenschaft Source verweist auf den URI der
ersten Page, die nach dem Start im NavigationWindow angezeigt wird. In dieser
Page ordnen Sie zwei Bereiche an, in denen wiederum jeweils eine Page
erscheint. Der Titel der Anwendung wird hier mithilfe der Eigenschaft Title fest-
gelegt. Die Klasse wird im Programmcode wie folgt geändert:

public partial class MainWindow : NavigationWindow { ... }

Nun fügen Sie die Seiten hinzu, und zwar jeweils über den Menüpunkt Projekt

� Seite hinzufügen.

Aufbauseite

Es folgt das Layout der Aufbauseite in der Datei Aufbau.xaml:

<Page x:Class="NavigationFrame.Aufbau"
 xmlns="http://..." xmlns:x="http://...">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="90" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Frame Grid.Row="0" Grid.Column="0"
 Source="Steuerung.xaml" />
 <Frame x:Name="fr" Grid.Row="0" Grid.Column="1" />
 </Grid>
</Page>

Das Grid-Layout der Aufbauseite umfasst zwei Spalten. Eine davon hat eine feste
Breite. In beiden Spalten wird ein Steuerelement der Klasse Frame erzeugt. Die
Eigenschaft Source des linken Frames verweist auf den URI der Page, die links
angezeigt wird.

Der rechte Frame bekommt einen Namen, damit er später als Ziel für die Naviga-
tion dienen kann. Zunächst wird im rechten Frame noch keine Seite angezeigt.

Anwendungen6

182

Steuerungsseite

Es folgt der Code der Steuerungsseite, der in der Datei Steuerung.xaml steht:

<Page x:Class="NavigationFrame.Steuerung"
 xmlns="http://..." xmlns:x="http://..."
 Background="LightGray">
 ...
 <Hyperlink NavigateUri="Seite1.xaml" TargetName="fr">
 Zur Seite 1</Hyperlink>
 ...
 <Hyperlink NavigateUri="Seite2.xaml" TargetName="fr">
 Zur Seite 2</Hyperlink>
 ...
</Page>

Die Eigenschaft NavigateUri der beiden Hyperlink-Objekte verweist auf die URI
der Seiten, die nach der Betätigung angezeigt werden sollen. Mithilfe der Eigen-
schaft TargetName wird festgelegt, dass die Seiten im rechten Frame erscheinen.
In Seite1.xaml und Seite2.xaml steht jeweils eine einfache Page ohne besondere
Elemente.

6.5 Gadgets

Die visuellen Mittel der WPF bieten auch die Möglichkeit, »technische Spiele-
reien« (Gadgets) herzustellen. Nachfolgend wird Ihnen eine Anwendung vorge-
stellt, deren Oberfläche aus drei halbtransparenten Elementen besteht. Dabei
handelt es sich um zwei Kreise und einen Button, die scheinbar nicht miteinan-
der verbunden sind. In Abbildung 6.25 sehen Sie die Anwendung mit dem
Namen Gadget. Sie »schwebt« gerade vor dem Hintergrund einer anderen
Anwendung: in einem Browser wird der Wikipedia-Artikel über Gadgets gezeigt.

Abbildung 6.25 Gadget-Anwendung

Gadgets 6.5

183

Sobald sich die Maus über dem linken Kreis befindet, wird ein Hilfstext einge-
blendet. Dieser informiert den Benutzer darüber, dass er die Oberfläche mithilfe
der Maus auf dem rechten Kreis verschieben kann. Der Button dient zum Been-
den. Zunächst die Fenstereigenschaften:

<Window ... Height="200" Width="300"
 AllowsTransparency="True"
 WindowStyle="None" Background="Transparent">
 ...
</Window>

Die Eigenschaft AllowsTransparency legt fest, ob der Clientbereich des Fensters
Transparenz unterstützt. Der Wert True ist hier die Voraussetzung für die weite-
ren Einstellungen. Die verschiedenen Werte der Enumeration WindowStyle ste-
hen für die Art des Rahmens um den Clientbereich des Fensters. Es gibt die fol-
genden Werte:

� None: ohne Rahmen und Titelleiste. Dieser Wert wird hier genutzt.

� SingleBorderWindow: einfacher Rahmen; der Standardwert

� ThreeDBorderWindow: 3D-Rahmen

� ToolWindow: Verankertes Toolfenster

Mithilfe des Werts Transparent wird der Hintergrund des Fensters (Eigenschaft
Background) durchsichtig. Es folgen das Layout und die Steuerelemente:

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="110" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="110" />
 </Grid.ColumnDefinitions>
 <Ellipse Fill="LightGray" Opacity="0.5" Width="100"
 Height="100" Grid.Column="0" MouseEnter="links_ein"
 MouseLeave="links_aus"/>
 <TextBlock x:Name="tb" Visibility="Hidden"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 Grid.Column="0" MouseMove="links_ein">
 Verschieben:<LineBreak />rechte Seite</TextBlock>
 <Button Width="23" Height="23" Opacity="0.5"
 Grid.Column="1" Click="ende">X</Button>
 <Ellipse Fill="Gray" Opacity="0.5" Width="100" Height="100"
 Grid.Column="2" MouseLeftButtonDown="rechts" />
</Grid>

Anwendungen6

184

Das Layout beinhaltet drei Spalten. Die Elemente darin ordnen Sie mithilfe der
Attached Property Grid.Column an. Der Wert 0.5 für die Eigenschaft Opacity
sorgt dafür, dass die beiden Kreise und der Button halbtransparent dargestellt
werden. Die Ereignisse MouseEnter und MouseLeave auf dem linken Kreis,
MouseMove auf dem Textblock, Click auf dem Button und MouseLeftButtonDown
auf dem rechten Kreis führen zu den Ereignismethoden:

private void links_ein(object sender, MouseEventArgs e)
{ tb.Visibility = Visibility.Visible; }

private void links_aus(object sender, MouseEventArgs e)
{ tb.Visibility = Visibility.Hidden; }

private void rechts(object sender, MouseButtonEventArgs e)
{ DragMove(); }

private void ende (...) { Close(); }

Der Textblock wird sichtbar, sobald die Maus im linken Kreis steht. Nach dem
Verlassen wird der Textblock wieder ausgeblendet. Die Sichtbarkeit wird über die
Werte aus der Enumeration Visibility verändert.

Auch die Bewegung der Maus über dem eingeblendeten Textblock führt zur
Sichtbarkeit. Andernfalls würden sich unschöne Flackereffekte ergeben, weil die
Maus den Kreis verlässt, sobald sie über dem Textblock schwebt.

Die Methode DragMove() ermöglicht das Ziehen mithilfe der linken Maustaste.

6.6 Browseranwendung

Die Vorteile der WPF bieten sich auch in einer WPF-Browseranwendung. Sie
wird XBAP genannt, für XAML Browser Application. Die Dateiendung ist eben-
falls .xbap. Der Browser arbeitet in diesem Falle als Navigationshost, wie ein
Fenster der Klasse NavigationWindow, in dem einzelne Seiten der Klasse Page
abgerufen werden. Diese Technik haben Sie bereits in Abschnitt 6.4, »Navigation
mit Seiten«, kennengelernt. Sie können in XBAPs viele komfortable Features der
WPF einsetzen. Allerdings gibt es einige Sicherheitseinschränkungen.

Den Aufruf einer XBAP-Anwendung ermöglicht ein lokaler Server des Visual Stu-
dio: der Windows Presentation Foundation-Host. Falls der Internet Explorer Ihr
Standard-Browser ist, so führt der Aufruf direkt zur Darstellung im IE (siehe
Abbildung 6.26).

Browseranwendung 6.6

185

Abbildung 6.26 Anwendung im Internet Explorer 9

Zur Erstellung einer XBAP wählen Sie in Visual Studio 2010 die Vorlage WPF-

Browseranwendung. Es wird automatisch eine Seite mit dem Namen
Page1.xaml erstellt. Dies ist die erste Seite Ihrer neuen Anwendung.

Im nachfolgenden Projekt Browseranwendung werden zwei Seiten angezeigt, die
miteinander verlinkt sind. Auf der ersten Seite wird versucht, eine Datei auszu-
wählen und eine Datei zum Lesen zu öffnen (siehe Abbildung 6.26).

Der Aufbau von Page1.xaml:

<Page x:Class="Browseranwendung.Page1" xmlns="..." xmlns:x="...">
 <WrapPanel>
 <Label Margin="5">Hier ist Seite 1</Label>
 <TextBlock Margin="5" VerticalAlignment="Center">
 <Hyperlink NavigateUri="Seite2.xaml">
 Zur Seite 2</Hyperlink>
 </TextBlock>
 <Button Margin="5" Click="seite2">Zur Seite 2</Button>
 <Button Margin="5" Click="auswahl">Datei-Auswahl</Button>
 <Button Margin="5" Click="oeffnen">Datei öffnen</Button>
 </WrapPanel>
</Page>

Sie können in bekannter Form auf die Navigationsdienste des Navigationshosts
zugreifen: Über Hyperlinks, über NavigationService (siehe Programmcode) und
über die Browser-Buttons können Sie zwischen den Seiten navigieren. Viele andere
Möglichkeiten und Steuerelemente der WPF stehen ebenfalls zur Verfügung.

Kommen wir zu einigen Sicherheitseinschränkungen. Zunächst sehen wir uns die
Voraussetzungen für den nachfolgenden Programmcode an.

In der WPF steht kein Standard-Dialogfeld zur Dateiauswahl zur Verfügung, daher
wird er hier aus Windows Forms übernommen. Dazu ist es notwendig, einen Ver-
weis auf die .NET-Komponente System.Windows.Forms und den gleichnamigen
Namespace zum Projekt hinzuzufügen. Mehr zur Interaktion zwischen Windows
Forms und WPF finden Sie in Abschnitt 14.1. Zum Öffnen einer Datei wird die
Klasse FileStream aus dem Namespace System.IO benötigt.

Anwendungen6

186

Der Programmcode in der Datei Page1.xaml.cs:

public partial class Page1 : Page
{
 ...
 private void seite2(...)
 { NavigationService.Navigate(new Uri("Seite2.xaml",
 UriKind.Relative)); }

 private void auswahl(...)
 {
 OpenFileDialog ofd = new OpenFileDialog();
 // ofd.InitialDirectory = "C:\\Temp";
 // ofd.Title = "Datei zum Öffnen auswählen";
 ofd.Filter = "Tabellen (*.xls)|*.xls| Texte
 (*.txt;*.doc)|*.txt;*.doc| Alle Dateien (*.*)|*.*";

 DialogResult dr = ofd.ShowDialog();
 System.Windows.MessageBox.Show(dr.ToString());
 // System.Windows.MessageBox.Show("Auswahl: " +
 ofd.FileName);
 }

 private void oeffnen(...)
 { FileStream fs = new FileStream("test.txt", FileMode.Open); }
}

Bei der Benutzung werden Sie feststellen, dass es möglich ist, den Dialog zur
Dateiauswahl zu öffnen. Allerdings tritt eine SecurityException auf, falls Sie ein
Startverzeichnis oder einen Titel festlegen möchten oder den Namen der ausge-
wählten Datei ermitteln möchten. Auch das Öffnen einer Datei zum Lesen führt
zu einer SecurityException.

6.7 Ribbonanwendung

Ribbonanwendungen sind seit der Einführung von MS Office 2007 bekannt. Bei
dem Ribbon handelt es sich um das Menüband, das in den MS Office-Anwendun-
gen das Menü und die Symbolleisten abgelöst hat.

Sie können Ribbonanwendungen mithilfe der WPF und Visual Studio erzeugen,
nachdem Sie die Datei Microsoft Ribbon for WPF.msi (ca. 3,5 MB) installiert
haben. Diese Datei können Sie bei Microsoft herunterladen, sie befindet sich
aber auch auf dem Datenträger zu diesem Buch. Die Installation sorgt dafür, dass
die .NET-Komponente RibbonControlsLibrary hinzugefügt wird.

Ribbonanwendung 6.7

187

Bei der Erzeugung eines neuen Projekts wählen Sie die neu hinzugekommene
Vorlage WPF Ribbon Application. Anschließend haben Sie bereits das Grundge-
rüst einer Ribbonanwendung vor sich, die Sie sofort starten können (siehe Abbil-
dung 6.27).

Abbildung 6.27 Grundgerüst einer Ribbonanwendung

Eine Ribbonanwendung ist wie folgt aufgebaut: Innerhalb eines RibbonWindow-
Objekts gibt es ein Ribbon-Objekt für das gesamte Menüband. Darin befindet sich
ein RibbonApplicationMenu-Objekt für das einzige Anwendungsmenü. Bei MS
Word 2010 finden sich im Anwendungsmenü unter anderem die zentralen
Befehle Speichern, Öffnen, Schliessen, Neu und Drucken.

Die Registerkarten des Ribbons stehen in RibbonTab-Objekten. Die einzelnen
Registerkarten kann man per Mausklick oder auch mithilfe des Mausrads aus-
wählen. Jede Registerkarte ist in Gruppen unterteilt, und diese stehen in
RibbonGroup-Objekten. Die Gruppen bilden die Container für die speziellen Rib-
bon-Steuerelemente, von denen es zahlreiche Typen gibt.

Nachfolgend wird das Projekt RibbonAnwendung dargestellt (siehe Abbildung
6.28). Darin wurden einige Änderungen und Ergänzungen zum Grundgerüst vor-
genommen. Alle verwendeten Bilder wurden dem Projekt als Ressourcen hinzu-
gefügt, und zwar per Drag&Drop im Projektmappenexplorer.

Abbildung 6.28 Eigene Ribbonanwendung

Anwendungen6

188

Der XAML-Code:

<mband:RibbonWindow x:Class="RibbonAnwendung.MainWindow"
 xmlns="http://..." xmlns:x="http://..."
 xmlns:mb="clr-namespace:Microsoft.Windows.Controls.Ribbon;
 assembly=RibbonControlsLibrary"
 Title="RibbonAnwendung" Width="400" Height="250">
 <mb:Ribbon>
 <mb:Ribbon.ApplicationMenu>
 <mb:RibbonApplicationMenu SmallImageSource="work.gif"
 mb:RibbonApplicationMenuItem.Click="rami_Click">
 <mb:RibbonApplicationMenuItem Header="Menüpunkt 1"
 ImageSource="computer.gif" />
 <mb:RibbonApplicationMenuItem Header="Menüpunkt 2"
 ImageSource="ms.gif" />
 <mb:RibbonApplicationMenuItem Header="Menüpunkt 3"
 ImageSource="paint.gif" />
 </mb:RibbonApplicationMenu>
 </mb:Ribbon.ApplicationMenu>

 <mb:RibbonTab Header="Registerkarte 1">
 <mb:RibbonGroup Header="Gruppe 1a">
 <mb:RibbonButton LargeImageSource="blume.jpg"
 Label="Button 1" Click="rb1_Click" />
 <mb:RibbonButton SmallImageSource="work.gif"
 Label="Button 2" Click="rb2_Click" />
 <mb:RibbonComboBox>
 <mb:RibbonGallery x:Name="rgc"
 SelectedValue="Eintrag 2"
 SelectedValuePath="Content"
 SelectionChanged="rgc_SelectionChanged">
 <mb:RibbonGalleryCategory>
 <mb:RibbonGalleryItem Content="Eintrag 1" />
 <mb:RibbonGalleryItem Content="Eintrag 2" />
 </mb:RibbonGalleryCategory>
 </mb:RibbonGallery>
 </mb:RibbonComboBox>
 </mb:RibbonGroup>
 <mb:RibbonGroup Header="Gruppe 1b">
 <mb:RibbonToggleButton LargeImageSource="computer.gif"
 Label="TB" Click="rtb_Click" />
 <mb:RibbonCheckBox
 Label="CheckBox" Click="rcb_Click" />
 </mb:RibbonGroup>
 </mb:RibbonTab>

Ribbonanwendung 6.7

189

 <mb:RibbonTab Header="Registerkarte 2">
 <mb:RibbonGroup Header="Gruppe 2a"
 mb:RibbonRadioButton.Click="rrb_Click">
 <mb:RibbonRadioButton SmallImageSource="paint.gif"
 Label="RB1" />
 <mb:RibbonRadioButton SmallImageSource="ms.gif"
 Label="RB2" />
 <mb:RibbonRadioButton SmallImageSource="work.gif"
 Label="RB3" />
 </mb:RibbonGroup>

 <mb:RibbonGroup Header="Gruppe 2b">
 <mb:RibbonMenuButton Label="Menü"
 mb:RibbonMenuItem.Click="rmi_Click">
 <mb:RibbonMenuItem Header="Menüpunkt 1" />
 <mb:RibbonMenuItem Header="Menüpunkt 2">
 <mb:RibbonMenuItem Header="Menüpunkt 2a"
 ImageSource="work.gif" />
 <mb:RibbonMenuItem Header="Menüpunkt 2b"
 ImageSource="ms.gif" />
 </mb:RibbonMenuItem>
 <mb:RibbonMenuItem Header="Menüpunkt 3" />
 </mb:RibbonMenuButton>
 </mb:RibbonGroup>
 </mb:RibbonTab>
 </mb:Ribbon>
</mb:RibbonWindow>

Es wird der Namespace Microsoft.Windows.Controls.Ribbon aus der .NET-
Komponente RibbonControlsLibrary eingebunden. Er bekommt hier den loka-
len Namen mb. Als Fenster wird ein RibbonWindow-Objekt verwendet. Dieses bein-
haltet ein Ribbon-Objekt (das Menüband) mit einem RibbonApplicationMenu-
Objekt für das Anwendungsmenü (siehe Abbildung 6.29). Innerhalb des Menüs
stehen die einzelnen RibbonApplicationMenuItem-Objekte. Das Ereignis Klick auf
Menüeintrag wurde hier an das übergeordnete Anwendungsmenü weitergeleitet.

Viele Ribbonelemente haben die Eigenschaften LargeImageSource und Small-
ImageSource. Diese verweisen auf die Bilder zur Darstellung des Elements, in gro-
ßer oder kleiner Ausführung. Beim Element RibbonMenuItem (für Menüeinträge)
steht das Bild in der Eigenschaft ImageSource, der Text in der Eigenschaft Header.

Es folgt die Registerkarte 1 (Typ RibbonTab), die in zwei Gruppen (Typ
RibbonGroup) unterteilt ist (siehe Abbildung 6.28). In Gruppe 1a sehen Sie zwei
RibbonButton-Objekte, einmal mit einem großen, einmal mit einem kleinen Bild.

Anwendungen6

190

Abbildung 6.29 Das Anwendungsmenü der eigenen Ribbonanwendung

Weiter steht in Gruppe 1a ein RibbonComboBox-Objekt. Eine ComboBox können Sie
in mehrere Galerien (Typ RibbonGallery) unterteilen und eine Galerie wiederum
in mehrere Kategorien (Typ RibbonGalleryCategory). Dies gibt Ihnen eine Mög-
lichkeit zur unterschiedlichen Gestaltung der Einträge (Typ RibbonGalleryItem).
Ein RibbonGallery-Objekt verweist mithilfe der Eigenschaften SelectedValue und
SelectedValuePath auf den aktuellen Eintragswert und die zugehörige Eigenschaft.
Das Ereignis SelectionChanged tritt beim Wechsel der Auswahl ein.

In der Gruppe 1b stehen ein ToggleButton (Typ RibbonToggleButton) und eine
CheckBox (Typ RibbonCheckBox).

Die Registerkarte 2 ist ebenfalls in zwei Gruppen unterteilt (siehe Abbildung
6.30). In Gruppe 2a sehen Sie drei RadioButtons (Typ RibbonRadioButton). Das
Ereignis Klick auf RadioButton wurde hier an die übergeordnete Gruppe weiter-
geleitet. In Gruppe 2b steht ein Menü (Typ RibbonMenuButton) mit Einträgen und
Untereinträgen (Typ RibbonMenuItem). Das Ereignis Klick auf Eintrag wurde hier
an das übergeordnete Menü weitergeleitet.

Abbildung 6.30 Zweite Registerkarte der eigenen Ribbonanwendung

Ribbonanwendung 6.7

191

Es folgen die Ereignismethoden:

private void rami_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show(
 (e.Source as RibbonApplicationMenuItem).Header + "");
}

private void rb1_Click(...) { MessageBox.Show("Button 1"); }
private void rb2_Click(...) { MessageBox.Show("Button 2"); }

private void rgc_SelectionChanged(object sender,
 RoutedPropertyChangedEventArgs<object> e)
 {
 if(IsLoaded)
 MessageBox.Show(
 (rgc.SelectedItem as RibbonGalleryItem).Content + "");
 }

private void rtb_Click(...)
{
 if ((sender as RibbonToggleButton).IsChecked == true)
 MessageBox.Show("Ein");
 else
 MessageBox.Show("Aus");
}
private void rcb_Click(...)
{
 if ((sender as RibbonCheckBox).IsChecked == true)
 MessageBox.Show("Ein");
 else
 MessageBox.Show("Aus");
}

private void rrb_Click(...)
{ MessageBox.Show((e.Source as RibbonRadioButton).Label); }
private void rmi_Click(...)
{ MessageBox.Show((e.Source as RibbonMenuItem).Header + ""); }

Der Verweis auf das auslösende Objekt wird jeweils umgewandelt. Anschließend
wird die passende Ausgabe gemacht.

193

Vorlagen bieten die Möglichkeit, das Erscheinungsbild einer Anwendung
mit geringem Aufwand anzupassen und die Arbeit von Entwickler und
Designer zu trennen.

7 Vorlagen

Die WPF bietet verschiedene Arten von Vorlagen, mit denen Sie einer Anwen-
dung ein individuelles und einheitliches Aussehen geben können: Styles, Trigger,
Templates und Skins.

Vorlagen bieten im Idealfall die Möglichkeit, die Programmierung durch den Ent-
wickler und die Gestaltung durch den Designer voneinander zu trennen. Dies
vereinfacht auch die Wartung einer Anwendung.

Sie nutzen Styles, um den Steuerelementen Ihrer Benutzeroberflächen ein ein-
heitliches Aussehen zu geben. Trigger helfen Ihnen, auf Ereignisse innerhalb der
Anwendung zu reagieren. Mithilfe von Templates können Sie eigene Steuerele-
mente gestalten, und die Benutzer Ihrer Anwendung können Skins dazu nutzen,
um »mal eben« das Aussehen der Benutzeroberfläche auszutauschen.

In diesem Kapitel erläutere ich Vorlagen anhand einfacher Beispiele, damit Sie die
Techniken schnell umsetzen können. Sie können anschließend sehr bunte, fanta-
sievolle Vorlagen entwerfen. Denken Sie aber daran: Der Benutzer soll die
Anwendungen nicht nur schön finden, sondern auch leicht und intuitiv bedienen
können.

7.1 Styles

Sie möchten den Steuerelementen einer Oberfläche ein einheitliches Aussehen
geben? Dann gibt es zwei Möglichkeiten:

� Sie legen die Eigenschaftswerte mehrmals fest, und zwar bei jedem Steuerele-
ment.

� Sie legen die Eigenschaftswerte einmalig innerhalb eines selbst definierten
Styles fest. Anschließend ordnen Sie diesen Style jedem Steuerelement zu.

Die zweite Variante ist übersichtlicher und benötigt weniger Programmcode.

Vorlagen7

194

Styles haben in der WPF viele Parallelen zu den Cascading Style Sheets (CSS), wie
Sie sie aus der Gestaltung von Webseiten kennen. Sie können Eigenschaften zen-
tral definieren und direkt bei einem Steuerelement individuell ergänzen oder
überschreiben. Sie können Styles an Steuerelement-Typen binden, aber auch all-
gemein definieren. Sowohl typgebundene als auch allgemeine Styles können ver-
erbt werden.

In XAML definieren Sie Styles als Ressourcen, siehe auch Abschnitt 6.2. Demzu-
folge unterscheiden sie sich:

� nach dem Zeitpunkt der Nutzung: statisch oder dynamisch

� nach dem Gültigkeitsbereich: fensterweit oder anwendungsweit

7.1.1 Benannte Styles

In diesem Abschnitt zeige ich Ihnen zunächst die benannten Styles. Wir verwen-
den dazu das Projekt StylesBenannt. Benannte Styles werden auch explizite Styles
genannt, da Sie sie einem Steuerelement explizit zuweisen müssen.

In Abbildung 7.1 sehen Sie eine Oberfläche, in der vier verschiedene Steuerele-
mente (Button, CheckBox, TextBox und Separator) denselben Style nutzen. Zum
Vergleich sehen Sie am oberen Rand einen Button ohne Style.

Abbildung 7.1 Nach dem Start

Nach der Auswahl des zweiten Styles ändert sich das Aussehen der vier Steuer-
elemente (siehe Abbildung 7.2).

Styles 7.1

195

Abbildung 7.2 Nach der Auswahl des zweiten Styles

Im Folgenden sehen Sie zunächst die Definition des ersten Styles als Ressource
für das Fenster:

<Window.Resources>
 <Style x:Key="meinStyle1">
 <Setter Property="Control.FontSize" Value="16" />
 <Setter Property="Control.FontFamily" Value="Courier New" />
 <Setter Property="TextBox.TextAlignment" Value="Right" />
 <Setter Property="Control.Margin" Value="1" />
 <Setter Property="Control.Width">
 <Setter.Value>190</Setter.Value>
 </Setter>
 </Style>
</Window.Resources>

Einen benannten Style kennzeichnen Sie mit einem Schlüssel (x:Key). Der Schlüs-
sel muss im betreffenden Gültigkeitsbereich eindeutig sein. Jede Eigenschaft
wird innerhalb des Styles mit einem Setter gesetzt. Der Name der Eigenschaft
steht im Attribut Property, der Eigenschaftswert im Attribut Value. Statt Attribu-
ten können Sie auch Property Elements verwenden, wie beim letzten Setter für
die Eigenschaft Width. Setter können Sie nur für Dependency Properties verwen-
den.

Für das Attribut Property müssen Sie vor der Eigenschaft immer einen Steuerele-
ment-Typ angeben. Bei vielen Eigenschaften wird dafür der übergeordnete Steu-
erelement-Typ Control verwendet, um deutlich zu machen, dass Sie die betref-
fende Eigenschaft bei verschiedenen Steuerelement-Typen nutzen können. Die
Eigenschaft muss für den betreffenden Steuerelement-Typ existieren, daher kön-
nen Sie zum Beispiel die Eigenschaft TextAlignment nicht für den Typ Control
angeben.

Vorlagen7

196

Der zweite Style wird auf die gleiche Art, nur mit anderen Eigenschaftswerten,
aufgebaut. Auf eine Darstellung wird hier verzichtet.

Es folgt der Aufbau der Oberfläche. Sie ordnen den definierten Style den einzel-
nen Steuerelementen als Ressource zu, und zwar über das Attribut Style:

<StackPanel>
 <Button>ohne Style</Button>
 <Button x:Name="bu" Style="{StaticResource meinStyle1}">
 meinStyle1</Button>
 <CheckBox x:Name="cb" Style="{StaticResource meinStyle1}"
 FontSize="10" FontWeight="Bold">
 meinStyle1 (überschrieben)</CheckBox>
 <TextBox x:Name="tb" Style="{StaticResource meinStyle1}">
 meinStyle1</TextBox>
 <Separator x:Name="sp" Style="{StaticResource meinStyle1}" />
 ...
</StackPanel>

Bei CheckBox können Sie die Ähnlichkeit von Styles und CSS erkennen:

� Die Eigenschaft FontWeight wird zu den vorhandenen Style-Eigenschaften
individuell hinzugefügt.

� Der Eigenschaftswert für FontSize wird individuell überschrieben, da der
Wert, der näher am Steuerelement steht, Vorrang hat.

Nicht vorhandene Eigenschaften werden ignoriert. Im vorliegenden Beispiel

� wird die Eigenschaft TextAlignment von Button, CheckBox und Separator
ignoriert und nur von TextBox genutzt.

� werden außerdem die Eigenschaften FontSize und FontFamily von Separator
ignoriert. Er nutzt nur die Eigenschaften Margin und Width.

Es folgt die dynamische Zuordnung eines Styles über Programmcode:

private void rb2_Checked(...)
{
 Style st = FindResource("meinStyle2") as Style;
 bu.Style = st;
 cb.Style = st;
 tb.Style = st;
 sp.Style = st;
 ...
}

Zunächst wird die Ressource, also der Style meinStyle2, mithilfe der Methode
FindResource() gesucht. Sie wird dem Style st nach der expliziten Typkonvertie-

Styles 7.1

197

rung zugewiesen. Anschließend können Sie diesen Style st der Eigenschaft Style
der gewünschten Steuerelemente zuweisen.

7.1.2 Typ-Styles

Typ-Styles dienen zur Definition von Eigenschaften, die nur für einen bestimmten
Steuerelement-Typ gelten. Sie werden auch implizite Styles genannt, da sie implizit
gelten, also ohne gesonderte Zuweisung. Dabei sind einige Besonderheiten zu
beachten, wie Sie im Projekt StylesType sehen können (siehe Abbildung 7.3).

Abbildung 7.3 Typ-Styles

Zunächst die Style-Definition:

<Window.Resources>
 <Style TargetType="{x:Type Button}">
 <Setter Property="FontSize" Value="16" />
 </Style>
 <Style x:Key="meinAndererStyle">
 <Setter Property="Control.FontFamily" Value="Courier New" />
 </Style>
 <Style x:Key="meinCheckBoxStyle"
 TargetType="{x:Type CheckBox}">
 <Setter Property="FontSize" Value="16" />
 </Style>
</Window.Resources>

� Der erste Style ist ein Typ-Style. Sie geben den Steuerelement-Typ Button über
das Attribut TargetType und x:Type an. Alle Buttons bekommen automatisch
den Typ-Style, außer Sie weisen einem Button explizit einen anderen, benann-
ten Style zu.

� Der zweite Style ist ein benannter Style. Er gilt nur für die Steuerelemente,
denen Sie ihn explizit zuweisen.

� Der dritte Style ist eine Kombination aus Typ-Style und benanntem Style. Er
gilt für CheckBoxen und auch nur, wenn Sie ihn explizit zuweisen.

Vorlagen7

198

In Typ-Styles wird beim Attribut Property der Name des Steuerelement-Typs
nicht angegeben. Dieser ist bereits über TargetType festgelegt.

Innerhalb eines Gültigkeitsbereichs (Application.Resources oder Window

.Resources) können Sie für einen Steuerelement-Typ nur einen Typ-Style definie-
ren.

Die Zuweisung der genannten Styles für das gezeigte Beispiel:

<StackPanel>
 <Button>mein Button-Style</Button>
 <Button Style="{StaticResource meinAndererStyle}">
 mein anderer Style</Button>
 <CheckBox>ohne CheckBox-Style</CheckBox>
 <CheckBox Style="{StaticResource meinCheckBoxStyle}">
 mit CheckBox-Style</CheckBox>
</StackPanel>

� Dem ersten Button wird automatisch der Typ-Style für Buttons zugewiesen.

� Dem zweiten Button wird der benannte Style explizit zugewiesen, daher gilt
der Typ-Style nicht.

� Der ersten CheckBox wird gar kein Style zugewiesen, da der Typ-Style für
CheckBoxen gleichzeitig ein benannter Style ist und hier nicht explizit zuge-
wiesen wurde.

� Im Gegensatz dazu wird der zweiten CheckBox der benannte Typ-Style expli-
zit zugewiesen.

7.1.3 Vererbung benannter Styles

Styles können vererbt werden. Neben Standard-Styles für das allgemeine Ausse-
hen können Sie auch davon abgeleitete Styles für bestimmte Sonderfälle definie-
ren. Im Projekt StylesVererbungBenannt werden zunächst benannte Styles vererbt
(siehe Abbildung 7.4).

Abbildung 7.4 Vererbung benannter Styles

Styles 7.1

199

Die Style-Definition:

<Window.Resources>
 <Style x:Key="meinBasisStyle">
 <Setter Property="Control.FontSize" Value="16" />
 </Style>
 <Style x:Key="meinAbgeleiteterStyle"
 BasedOn="{StaticResource meinBasisStyle}">
 <Setter Property="Control.FontFamily" Value="Courier New" />
 </Style>
</Window.Resources>

Der erste Style ist ein benannter Style. Er dient als Basis für die Vererbung. Der
zweite Style ist ebenfalls benannt. Das Attribut BasedOn gibt an, auf welchem
Style er basiert. Damit übernimmt er alle Eigenschaften des ersten Styles. Sie kön-
nen die Eigenschaften in diesem abgeleiteten Style sowohl ergänzen als auch
überschreiben. Es gibt keine Mehrfachvererbung.

Die Zuweisung der Styles erfolgt in der gewohnten Weise:

<StackPanel>
 <Button Style="{StaticResource meinBasisStyle}">
 mein Basis-Style</Button>
 <Button Style="{StaticResource meinAbgeleiteterStyle}">
 mein abgeleiteter Style</Button>
</StackPanel>

Der zweite Button hat sowohl Schriftgröße als auch Schriftart übernommen, da
ihm der abgeleitete Style zugewiesen wurde.

7.1.4 Vererbung von Typ-Styles

Typ-Styles können ebenfalls vererbt werden. Damit ist es Ihnen möglich, sowohl
einen Standard-Style als auch davon abgeleitete Styles für einen einzelnen Steuer-
element-Typ zu definieren. Ein Beispiel finden Sie im Projekt StylesVererbungType
(siehe Abbildung 7.5).

Abbildung 7.5 Vererbung von Typ-Styles

Vorlagen7

200

Zunächst die Style-Definition:

<Window.Resources>
 <Style TargetType="{x:Type Button}">
 <Setter Property="FontSize" Value="16" />
 </Style>
 <Style x:Key="abgButtonStyle" TargetType="{x:Type Button}"
 BasedOn="{StaticResource {x:Type Button}}">
 <Setter Property="FontFamily" Value="Courier New" />
 </Style>
</Window.Resources>

Beide Styles gelten für den Steuerelement-Typ Button (siehe TargetType). Das
Attribut BasedOn des abgeleiteten Styles verweist auf den Basis-Typ-Style.

Falls Sie den abgeleiteten Style im gleichen Gültigkeitsbereich wie den Basis-Style
definieren, dann müssen Sie ihn benennen, denn es gilt weiterhin: Für einen
Steuerelement-Typ dürfen Sie nur einen einzigen reinen Typ-Style definieren.

Selbst wenn Sie den Basis-Style in den Anwendungsressourcen und den abgelei-
teten Style in den Fensterressourcen definieren, ist eine Benennung sinnvoll.
Ansonsten würden Sie automatisch immer nur auf den abgeleiteten Style zugrei-
fen, da er näher am Steuerelement liegt.

Es folgt die Zuweisung der Styles:

<StackPanel>
 <Button>Button-Style, Basis</Button>
 <Button Style="{StaticResource abgButtonStyle}">
 Button-Style, abgeleitet</Button>
</StackPanel>

Dem ersten Button wird automatisch der einzig vorhandene reine Typ-Style zuge-
wiesen, also der Basis-Typ-Style. Dem zweiten Button wird der benannte Style –
hier also der abgeleitete Typ-Style – zugewiesen.

7.1.5 Verwandte Steuerelement-Typen

Weitere Flexibilität bei der Style-Definition gewinnen Sie, indem Sie einen Basis-
Style definieren, der für einen Basis-Typ gilt. Anschließend können Sie abgelei-
tete Styles für diesen Steuerelement-Typ oder für unterschiedliche abgeleitete
Steuerelement-Typen definieren. Ein Beispiel finden Sie im Projekt StylesTypHie-
rarchie (siehe Abbildung 7.6).

Styles 7.1

201

Abbildung 7.6 Verwandte Steuerelement-Typen

Zunächst die Style-Definition:

<Window.Resources>
 <Style TargetType="{x:Type ButtonBase}">
 <Setter Property="FontSize" Value="16" />
 </Style>
 <Style TargetType="{x:Type CheckBox}"
 BasedOn="{StaticResource {x:Type ButtonBase}}">
 <Setter Property="FontFamily" Value="Courier New" />
 </Style>
 <Style TargetType="{x:Type RadioButton}"
 BasedOn="{StaticResource {x:Type ButtonBase}}">
 <Setter Property="FontFamily" Value="Verdana" />
 </Style>
</Window.Resources>

Als Erstes wird ein Style für den Steuerelement-Typ ButtonBase definiert. Dies ist
unter anderem der Basis-Typ für CheckBoxen, RadioButtons und Buttons. Dieser
Style wird anschließend von zwei weiteren Styles geerbt: einem für den Steuer-
element-Typ CheckBox und einem für den Steuerelement-Typ RadioButton.

Es folgt die Zuweisung der Styles:

<StackPanel>
 <CheckBox>mein CheckBox-Style</CheckBox>
 <RadioButton>mein RadioButton-Style</RadioButton>
 <Button>ohne Style</Button>
</StackPanel>

Der CheckBox und dem RadioButton wird der jeweilige abgeleitete Typ-Style
automatisch zugewiesen. Dem Button wird kein Style zugewiesen. Zwar erbt der
Steuerelement-Typ Button vom Steuerelement-Typ ButtonBase, jedoch gibt es
keinen Style für den Steuerelement-Typ Button selbst.

Vorlagen7

202

7.1.6 EventSetter

Innerhalb eines Styles können Sie EventSetter definieren. Diese dienen zur Reak-
tion auf Ereignisse. Alle Steuerelemente, denen ein Style mit einem EventSetter
zugewiesen wird, reagieren dann auf das entsprechende Ereignis. Sie müssen die-
ses Ereignis also nicht mehr für jedes Steuerelement einzeln registrieren.

Falls ein Steuerelement-Typ nicht über das betreffende Ereignis verfügt, so wird
das Ereignis ignoriert, wie dies auch bei einer nicht existierenden Eigenschaft der
Fall ist. Beispiel: Einem Separator können Sie über einen Style weder die Eigen-
schaft Schriftgröße noch das Ereignis Click zuordnen.

Wird ein Style vererbt, so wird auch der EventSetter vererbt. Dasselbe Ereignis
können Sie an mehreren Stellen registrieren. Dabei richtet sich die Bearbeitungs-
reihenfolge nach dem Bubbling-Prinzip der Routed Events (siehe auch Abschnitt 2.6,
»Routed Events«:

� Zuerst wird die Ereignismethode durchlaufen, die direkt im Steuerelement
selbst registriert wurde.

� Dann wird die Ereignismethode durchlaufen, die im abgeleiteten Style regis-
triert wurde.

� Danach wird die Ereignismethode durchlaufen, die im Basis-Style registriert
wurde.

In Abbildung 7.7 sehen Sie das Projekt StylesEventSetter – ein Beispiel mit drei
Buttons, einem Separator und einer CheckBox, das einige Möglichkeiten verdeut-
licht.

Abbildung 7.7 Styles mit Event Settern

Zunächst die Style-Definition:

<Window.Resources>
 <Style x:Key="basStyle">
 <Setter Property="Control.FontSize" Value="16" />
 <EventSetter Event="Button.Click" Handler="bas_Click" />
 </Style>

Styles 7.1

203

 <Style x:Key="abgStyle" BasedOn="{StaticResource basStyle}">
 <Setter Property="Control.FontFamily" Value="Courier New" />
 <EventSetter Event="Button.Click" Handler="abg_Click" />
 </Style>
</Window.Resources>

Es werden zwei benannte Styles definiert. Der zweite Style erbt vom ersten Style.
In beiden Styles wird jeweils ein EventSetter eingeführt. Das Attribut Event dient
dazu, das Ereignis Click des Steuerelement-Typs Button zu registrieren. Das Attri-
but Handler verweist auf die jeweilige Ereignismethode.

Es folgt die Zuweisung der Styles:

<StackPanel>
 <Button Style="{StaticResource abgStyle}">Button 1</Button>
 <Separator Style="{StaticResource abgStyle}" />
 <Button Style="{StaticResource abgStyle}"
 Click="b2_Click">Button 2</Button>
 <CheckBox Style="{StaticResource abgStyle}"
 Click="cb_Click">CheckBox</CheckBox>
 <Button Style="{StaticResource abgStyle}"
 Click="b3_Click">Button 3</Button>
</StackPanel>

Allen Steuerelementen wird der abgeleitete Style zugewiesen. Die Reaktionen auf
einen Click sind jedoch unterschiedlich:

� Ein Click auf den ersten Button ruft die beiden Ereignismethoden abg_Click()
und bas_Click() auf, und zwar in dieser Reihenfolge.

� Ein Click auf den Separator führt zu keiner Reaktion, da dieser Steuerelement-
Typ nicht über das Ereignis Click verfügt. Die EventSetter werden also igno-
riert.

Bei den restlichen Steuerelementen ist zusätzlich das Click-Ereignis direkt regis-
triert, und zwar mit den folgenden Ereignismethoden:

private void b2_Click(...) { MessageBox.Show("b2_Click"); }
private void cb_Click(...) { MessageBox.Show("cb_Click"); }
private void b3_Click(object sender, RoutedEventArgs e)
{ MessageBox.Show("b3_Click");
 e.Handled = true; }

Die Reaktion hängt davon ab, ob das Event-Routing vollständig durchgeführt
wird oder nicht:

Vorlagen7

204

� Beim zweiten Button und bei der CheckBox wird die jeweilige Ereignisme-
thode für das direkt registrierte Click-Ereignis als erste durchlaufen. Anschlie-
ßend folgen die beiden anderen Methoden in der gleichen Reihenfolge wie
beim ersten Button.

� Beim dritten Button wird nur die Ereignismethode für das direkt registrierte
Click-Ereignis durchlaufen. Innerhalb dieser Methode wird die Eigenschaft
Handled auf true gestellt. Damit erklären Sie das Event-Routing für beendet.

7.2 Property Trigger

Trigger reagieren auf Änderungen innerhalb einer Anwendung. In der WPF gibt
es mehrere Arten von Triggern:

� Property Trigger reagieren auf die Änderung einer Eigenschaft. Diese Trigger
behandle ich im vorliegenden Abschnitt.

� Data Trigger dienen dazu, auf Änderung bei Dateninhalten zu reagieren (siehe
Abschnitt 8.6).

� Event Trigger werden zur Steuerung von Animationen eingesetzt (siehe
Abschnitt 11.3).

7.2.1 Einfache Property Trigger

Ein Property Trigger kontrolliert permanent den Wert einer Eigenschaft. Ein ein-
facher Property Trigger arbeitet mit einer Bedingung: Falls die kontrollierte
Eigenschaft einen bestimmten Wert annimmt, so wird eine Änderung durchge-
führt. Falls die kontrollierte Eigenschaft diesen Wert wieder verliert, so wird die
Änderung rückgängig gemacht. Ein Property Trigger entspricht in seiner Wirkung
also gleich zwei Ereignismethoden.

Das nachfolgende Beispiel im Projekt TriggerProperty zeigt, wie die Eigenschaft
IsChecked eines RadioButtons zur Triggerung genutzt wird (siehe Abbildung 7.8).

Abbildung 7.8 Nach dem Start

Beiden RadioButtons wurde der gleiche Style zugewiesen. In diesem Style sorgt
ein Property Trigger dafür, dass die ausgewählte Option automatisch fett darge-

Property Trigger 7.2

205

stellt wird. Nach Auswahl des zweiten RadioButtons ändert sich also das Bild (siehe
Abbildung 7.9).

Abbildung 7.9 Nach einem Wechsel der Auswahl

Hier sehen Sie zunächst die Definition des Property Trigger. Sie wird meist in
einem Style untergebracht:

<Window.Resources>
 <Style TargetType="{x:Type RadioButton}">
 <Setter Property="FontSize" Value="16" />
 <Style.Triggers>
 <Trigger Property="IsChecked" Value="True">
 <Setter Property="FontWeight" Value="Bold" />
 </Trigger>
 </Style.Triggers>
 </Style>
</Window.Resources>

Innerhalb eines Styles können Sie in der Auflistung Triggers mehrere Property
Trigger anlegen. Ein Trigger verweist über das Attribut Property auf die perma-
nent kontrollierte Eigenschaft und über das Attribut Value auf den Wert, der zu
der Änderung führt. Hier ist dies die Eigenschaft IsChecked des RadioButtons.
Falls sich diese auf True ändert, so werden der oder die zugehörigen Setter akti-
viert. Hier gibt es nur einen Setter, der den Schriftschnitt auf Bold stellt.

Das Besondere daran ist: Sobald die Eigenschaft IsChecked des RadioButtons wie-
der auf False steht, wird die Änderung rückgängig gemacht.

Der Typ-Style wird den beiden RadioButtons automatisch zugeordnet.

7.2.2 Multi-Trigger

Ein Multi-Trigger ist ein Property Trigger, der mit mehreren Bedingungen arbei-
tet: Falls mehrere Eigenschaften jeweils einen bestimmten Wert annehmen, so
wird eine Änderung durchgeführt. Falls eine dieser Eigenschaften diesen Wert
wieder verliert, so wird die Änderung rückgängig gemacht. Sie verknüpfen also
mehrere Bedingungen über ein logisches »Und« miteinander.

Ein Beispiel sehen Sie im Projekt TriggerMulti (siehe Abbildung 7.10).

Vorlagen7

206

Abbildung 7.10 Nach dem Start

Auch hier soll die Auswahl eines RadioButtons dazu führen, dass die jeweilige
Auswahl fett dargestellt wird – allerdings nur, wenn sich gleichzeitig die Maus
darüber befindet. Es müssen also zwei Bedingungen zutreffen (siehe Abbil-
dung 7.11).

Abbildung 7.11 Mauszeiger über Auswahl

Es folgt die Style-Definition mit dem Multi-Trigger:

<Window.Resources>
 <Style TargetType="{x:Type RadioButton}">
 <Setter Property="FontSize" Value="16" />
 <Style.Triggers>
 <MultiTrigger>
 <MultiTrigger.Conditions>
 <Condition Property="IsChecked" Value="True" />
 <Condition Property="IsMouseOver" Value="True" />
 </MultiTrigger.Conditions>
 <Setter Property="FontWeight" Value="Bold" />
 </MultiTrigger>
 </Style.Triggers>
 </Style>
</Window.Resources>

In einem Style können Sie mehrere Multi-Trigger anlegen. Innerhalb eines
MultiTrigger legen Sie die Bedingungen in der Auflistung Conditions an. Hier
sind dies zwei Bedingungen:

� IsChecked muss auf True stehen, und

� IsMouseOver muss auf True stehen.

Falls beides zutrifft, so wird der Schriftschnitt auf Bold gestellt. Falls eine der bei-
den Bedingungen nicht mehr zutrifft, so wird dies wieder rückgängig gemacht.

Control Templates 7.3

207

Wie im vorherigen Beispiel wird der Typ-Style den beiden RadioButtons automa-
tisch zugeordnet.

7.3 Control Templates

In der WPF gibt es Data Templates und Control Templates. Data Templates legen
das Verhalten von Datenobjekten fest; ich erläutere sie in Abschnitt 8.5.

In diesem Abschnitt geht es um Control Templates. Sie legen das Aussehen der
Steuerelemente einer Anwendung fest. In der WPF gibt es für jedes Steuerele-
ment ein vorgefertigtes Control Template. Sie haben darüber hinaus die Möglich-
keit, eigene Control Templates zu definieren, also das Aussehen der Steuerele-
mente selbst zu gestalten. Dies geht über den Einsatz von Styles weit hinaus.

7.3.1 Ein erstes Control Template

Control Templates definieren Sie in XAML meist zentral als Anwendungs-Res-
source (Datei App.xaml), weil sie im gesamten Projekt benötigt werden. Im Projekt
TemplatesErstes sehen Sie einen selbst definierten Button (siehe Abbildung 7.12).

Abbildung 7.12 Selbst gestalteter Button

Hier sehen Sie zunächst die Definition des Control Templates in der Datei
App.xaml:

<Application.Resources>
 <ControlTemplate x:Key="meinTemplate"
 TargetType="{x:Type Button}">
 <Grid>
 <Ellipse Width="50" Height="50" Fill="DarkGray" />
 <Ellipse Width="40" Height="40" Fill="LightGray" />
 </Grid>
 </ControlTemplate>
</Application.Resources>

Ein einzeln definiertes Control Template muss immer über einen Schlüssel iden-
tifizierbar sein (x:Key). Control Templates ordnen Sie meist einem Steuerelement-

Vorlagen7

208

Typ zu, hier dem Steuerelement-Typ Button. Dies geschieht mithilfe der Eigen-
schaft TargetType. Innerhalb des Control Templates wird der geometrische Auf-
bau angegeben. Dies sind hier zwei konzentrische Kreise unterschiedlicher Größe
und Farbe.

Die Zuweisung des Control Templates erfolgt so:

<WrapPanel>
 <Button Template="{StaticResource meinTemplate}"
 Click="b1_Click" />
</WrapPanel>

Das Control Template wird über das Attribut Template zugewiesen. Der Button
behält seine sonstige Funktionalität. Daher führt der Click zum gewohnten Ergebnis.

7.3.2 Control Template mit Trigger

Property Trigger haben Sie bereits in Abschnitt 7.2 kennengelernt. Dort wurden
sie innerhalb von Styles definiert. Alle Steuerelemente, denen dieser Style zuge-
wiesen wurde, reagierten auf den Trigger.

Einen Schritt weiter gehen Sie, indem Sie Property Trigger innerhalb eines Control
Templates definieren. Damit reagieren alle Steuerelemente, die gemäß diesem
Control Template aufgebaut sind, auf den Trigger. Ein Beispiel mit zwei selbst
gestalteten RadioButtons folgt im Projekt TemplatesTrigger (siehe Abbildung 7.13).

Abbildung 7.13 Erste Option ausgewählt

Nach der Auswahl der zweiten Option sieht es so aus wie in Abbildung 7.14.

Abbildung 7.14 Zweite Option ausgewählt

Hier sehen Sie zunächst die Definition des Control Templates:

Control Templates 7.3

209

<Application.Resources>
 <ControlTemplate x:Key="meinTemplate"
 TargetType="{x:Type RadioButton}">
 <Grid>
 <Rectangle x:Name="aussen" Width="50" Height="50"
 Fill="DarkGray" />
 <Ellipse Width="40" Height="40" Fill="LightGray" />
 </Grid>
 <ControlTemplate.Triggers>
 <Trigger Property="IsChecked" Value="True">
 <Setter TargetName="aussen"
 Property="Fill" Value="Black" />
 </Trigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>
</Application.Resources>

Der RadioButton wird mithilfe eines Quadrats und eines Kreises unterschiedli-
cher Größe und Farbe gestaltet. Das Quadrat bekommt einen Namen, damit es als
Ziel für den Trigger dienen kann.

Der Trigger wird innerhalb des Control Templates in der Auflistung Triggers
definiert. Innerhalb des Triggers wird der Eigenschaft Fill der Wert Black zuge-
wiesen, falls der betreffende RadioButton ausgewählt ist. Da es sich bei Fill
nicht um eine Eigenschaft des RadioButtons selbst handelt, wird mithilfe des
Attributs TargetName das Ziel ausgewählt, das die gewünschte Farbe annehmen
soll. Sie müssen das Ziel definieren, bevor Sie es auswählen.

Die Zuweisung des Control Templates erfolgt in gewohnter Weise:

<WrapPanel>
 <RadioButton Template="{StaticResource meinTemplate}"
 IsChecked="True" />
 <RadioButton Template="{StaticResource meinTemplate}" />
</WrapPanel>

7.3.3 Control Template mit Bindung

Steuerelemente, die nach einem Control Template aufgebaut wurden, müssen
nicht immer identisch aussehen. Sie können individuelle Werte direkt im Steuer-
element vereinbaren. Sie müssen nur vorher definieren, an welche Eigenschaft
des Control Templates Sie den Wert weiter reichenmöchten. Dies wird Ihnen
durch das TemplateBinding ermöglicht.

Vorlagen7

210

Im nachfolgenden Projekt TemplatesBindung werden die Eigenschaften
BorderBrush, Background und Content eines Buttons mit Werten belegt, um sie
an das Control Template weiterzureichen (siehe Abbildung 7.15).

Abbildung 7.15 Individuelle Eigenschaften

Hier sehen Sie zunächst die Definition des Control Templates:

<Application.Resources>
 <ControlTemplate x:Key="meinTemplate"
 TargetType="{x:Type Button}">
 <Grid>
 <Ellipse Width="50" Height="50"
 Fill="{TemplateBinding BorderBrush}" />
 <Ellipse Width="40" Height="40"
 Fill="{TemplateBinding Background}" />
 <ContentControl HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Content="{TemplateBinding Content}" />
 </Grid>
 </ControlTemplate>
</Application.Resources>

Die beiden konzentrischen Kreise werden nicht mit einer festgelegten Farbe
gefüllt, sondern individuell mithilfe eines TemplateBinding. Der äußere Kreis
dient zur Übernahme der Eigenschaft BorderBrush, der innere Kreis zur Über-
nahme der Eigenschaft Background des Buttons.

Zur Übernahme der Eigenschaft Content des Buttons können Sie ein Steuerele-
ment vom Typ ContentControl nutzen. Dessen Eigenschaft Content wiederum
übernimmt den individuellen Content des Buttons über ein TemplateBinding.
Das ContentControl wurde horizontal und vertikal zentriert, damit der Content
geometrisch an der richtigen Stelle landet.

Die Zuweisung des Control Templates mit der Angabe der individuellen Eigen-
schaften sieht so aus:

<WrapPanel>
 <Button Template="{StaticResource meinTemplate}"
 BorderBrush="Black" Background="White">B 1</Button>

Control Templates 7.3

211

 <Button Template="{StaticResource meinTemplate}">B 2</Button>
</WrapPanel>

Beim ersten Button wird die Randfarbe (Black) als Füllfarbe an den äußeren Kreis
und der Hintergrund (White) als Füllfarbe an den inneren Kreis über das
TemplateBinding weitergereicht. Der Content (B 1) wird über das TemplateBinding
im ContentControl weitergegeben.

Der zweite Button verfügt über keine individuelle Farbgebung, also werden die
Standardfarben eines Buttons verwendet.

7.3.4 Control Template in Typ-Style

Control Templates können Sie auch innerhalb eines Typ-Styles anwenden. Damit
entfällt die explizite Zuweisung. Nachfolgend sehen Sie dazu zwei Varianten:

� Im Projekt TemplatesStylesIntern wird das gesamte Control Template inner-
halb des Styles definiert.

� Im Projekt TemplatesStylesExtern wird das Control Template außerhalb des
Styles definiert und im Style zugewiesen.

In beiden Projekten wird das gleiche Control Template verwendet, das Sie bereits
im Projekt TemplatesBindung im vorherigen Abschnitt kennengelernt haben. Zur
Darstellung kann weiterhin Abbildung 7.15 dienen.

Es folgen Template und Style für das Projekt TemplatesStylesIntern:

<Window.Resources>
 <Style TargetType="{x:Type Button}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Button}">
 <Grid> ... </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
</Window.Resources>

Im Style wird ein Setter definiert. Das Attribut Property hat den Wert Template.
Das Attribut Value hat als »Wert« die Definition des Control Templates. Ein
Schlüssel ist für das Control Template nicht mehr notwendig, da es innerhalb des
Styles definiert wurde.

Es folgen Template und Style für das Projekt TemplatesStylesExtern:

Vorlagen7

212

<Window.Resources>
 <ControlTemplate x:Key="meinTemplate"
 TargetType="{x:Type Button}">
 <Grid> ... </Grid>
 </ControlTemplate>
 <Style TargetType="{x:Type Button}">
 <Setter Property="Template"
 Value="{StaticResource meinTemplate}" />
 </Style>
</Window.Resources>

Das Control Template hat diesmal einen eindeutigen Schlüssel. Dieser Schlüssel
wird als Ressource dem Attribut Value des Setters zugewiesen.

Für beide Projekte gilt:

� Den inneren Aufbau des Control Templates können Sie dem vorherigen
Abschnitt entnehmen.

� Die Anwendung des Control Templates ist jetzt einfacher, da es innerhalb
eines Typ-Styles definiert wurde. Die explizite Zuweisung entfällt:

<WrapPanel>
 <Button BorderBrush="Black" Background="White">B 1</Button>
 <Button>B 2</Button>
</WrapPanel>

7.4 Skins

Viele Anwendungen bieten dem Benutzer die Möglichkeit, das Aussehen der
Benutzeroberfläche schnell zu wechseln, um sie dem persönlichen Geschmack
anzupassen.

Eine einfache Lösung dazu konnten Sie bereits in Abschnitt 7.1.1, »Benannte Sty-
les«, sehen, nämlich im Projekt StylesBenannt. Dort wurden Styles per Pro-
grammcode dynamisch zugewiesen.

Zum schnellen Austausch ganzer Style-Sammlungen, also zum Wechsel eines Skins,
bieten sich in der WPF Ressourcen-Wörterbücher an. Der Entwickler legt für jeden
Skin eine Sammlung von Styles für die verschiedenen Steuerelemente an. Jede
Style-Sammlung wird in einem eigenen Wörterbuch für dynamische Ressourcen
gespeichert, die gemeinsam mit der Anwendung ausgeliefert werden. Dem Benut-
zer wird die Möglichkeit gegeben, das Ressourcen-Wörterbuch zu wechseln.

Ein Beispiel mit zwei Skins bietet das Projekt SkinsRessourcen (siehe Abbildung 7.16).

Skins 7.4

213

Abbildung 7.16 Nach dem Start

Nach Auswahl des zweiten Skins sieht es so aus wie in Abbildung 7.17.

Abbildung 7.17 Nach Auswahl des zweiten Skins

Ein neues Ressourcen-Wörterbuch fügen Sie dem Projekt über den Menüpunkt
Projekt � Ressourcen-Wörterbuch hinzufügen hinzu. Darin wird die Style-
Sammlung angelegt, was hier am Beispiel der Datei redir1.xaml gezeigt ist:

<ResourceDictionary ...>
 <Style x:Key="meinButtonStyle" TargetType="{x:Type Button}">
 <Setter Property="FontFamily" Value="Courier New" />
 <Setter Property="Background" Value="LightGray" />
 </Style>
 <Style x:Key="meinRadioButtonStyle"
 TargetType="{x:Type RadioButton}">
 <Setter Property="FontFamily" Value="Tahoma" />
 <Setter Property="FontSize" Value="16" />
 </Style>
</ResourceDictionary>

Es handelt sich um benannte Styles für jeden Steuerelement-Typ. Das zweite Res-
sourcen-Wörterbuch wird auf die gleiche Art in der Datei redir2.xaml angelegt,
nur mit anderen Eigenschaftswerten. In allen Ressourcen-Wörterbüchern sollten
Sie dieselben Style-Namen verwenden. Es folgt der Aufbau des Teils der Oberflä-
che, dessen Aussehen der Benutzer austauschen kann:

Vorlagen7

214

<Window ... Initialized="Window_Initialized">
 <StackPanel>
 <Button Style="{DynamicResource meinButtonStyle}">
 mein Button-Style</Button>
 <RadioButton Style="{DynamicResource meinRadioButtonStyle}">
 mein RadioButton-Style</RadioButton>
 ...
 </StackPanel>
</Window>

Beachten Sie, dass das Initialized-Ereignis des Fensters, das noch vor dem
Loaded-Ereignis liegt, zum Durchlauf einer Methode führt. Die Styles weisen Sie
als dynamische Ressourcen zu. Diese dynamischen Ressourcen liegen im jeweili-
gen Ressourcen-Wörterbuch.

Der Programmcode für die Zuweisung der Ressourcen:

private void Window_Initialized(object sender, EventArgs e)
{ rd_laden("redir1.xaml"); }
private void rb1_Checked(object sender, RoutedEventArgs e)
{ rd_laden("redir1.xaml"); }
private void rb2_Checked(object sender, RoutedEventArgs e)
{ rd_laden("redir2.xaml"); }

private void rd_laden(string rd_datei)
{
 FileStream fs = new FileStream("..\\..\\" + rd_datei,
 FileMode.Open);
 ResourceDictionary rd = XamlReader.Load(fs)
 as ResourceDictionary;
 Application.Current.Resources = rd;
}

Sowohl die Initialisierung des Fensters als auch die Auswahl eines Skins durch
den Benutzer führt jeweils zum Aufruf der Methode rd_laden(). Darin wird ein
Objekt der Klasse FileStream angelegt, das zum Öffnen der jeweiligen Projekt-
Datei mit dem Ressourcen-Wörterbuch dient. Für die Klasse FileStream wird der
Namespace System.IO benötigt.

Die Methode Load() der Klasse XamlReader liefert das Stammelement der XAML-
Struktur aus dem gelesenen Filestream. Das gelieferte Stammelement wird nach
einer Typkonvertierung der Auflistung Application.Current.Resources als
neuer Wert zugewiesen. Damit ist gleichzeitig auch der Gültigkeitsbereich der
Ressourcen aus dem geladenen Wörterbuch festgelegt: Sie gelten für die gesamte

Skins 7.4

215

aktuelle Anwendung. Für die Klasse XamlReader wird der Namespace System
.Windows.Markup benötigt.

Styles innerhalb eines Ressourcen-Wörterbuchs können keine EventSetter enthal-
ten, da der Handler des EventSetters Programmcode benötigt.

217

Die Verbindung zwischen einer Anwendung und den zugrunde liegenden
Daten wird in der WPF mit einer neuen Technologie direkt unterstützt.

8 Daten

Die WPF bietet eine Technologie zur direkten Datenbindung zwischen Anwen-
dungsdaten und der Benutzeroberfläche beziehungsweise zwischen den Elemen-
ten der Benutzeroberfläche. Die Quelle einer Datenbindung können zum Beispiel
Objekte oder Inhalte von Datenbanken sein. Es gibt die Möglichkeit, die Quell-
daten vor der Weitergabe zu validieren.

Bei größeren Datenmengen bietet sich das Steuerelement DataGrid zur Darstel-
lung und Bearbeitung an. Die Form der Darstellung kann mithilfe eines DataTem-
plate einheitlich gestaltet werden. DataTrigger kontrollieren bestimmte Daten-
werte und reagieren auf Änderungen.

8.1 Datenbindung

Es wird zunächst die Datenbindung zwischen zwei Elementen der Benutzerober-
fläche erläutert. Eine Änderung der Daten der Quelle führt dabei zu einer Aktua-
lisierung der Daten des Ziels. Dies wird intern mithilfe von Dependency Proper-
ties realisiert.

8.1.1 Setzen und Lösen einer Bindung

Sie können eine Datenbindung zur Entwurfszeit in XAML erstellen. Zusätzlich
können Sie eine Datenbindung auch zur Laufzeit per Programmcode erzeugen,
ändern oder entfernen. Im nachfolgenden Projekt DatenBindung wird die Bin-
dung einer TextBox an verschiedene Label dargestellt (siehe Abbildung 8.1).

Daten8

218

Abbildung 8.1 TextBox, gebunden an Label

Zunächst der Code in XAML:

<StackPanel>
 <WrapPanel>
 <Label Margin="3" Width="60">Quelle:</Label>
 <TextBox x:Name="tb" Margin="3" Width="200">Hallo</TextBox>
 </WrapPanel>
 <WrapPanel>
 <Label Margin="3" Width="60">Ziel 1:</Label>
 <Label Margin="3" Width="200" Background="LightGray"
 Content="{Binding ElementName=tb, Path=Text}" />
 </WrapPanel>
 <WrapPanel>
 <Label Margin="3" Width="60">Ziel 2:</Label>
 <Label x:Name="lb" Margin="3" Width="120"
 Background="LightGray" Height="25" />
 <CheckBox x:Name="cb" Margin="3" VerticalAlignment="Center"
 Checked="cb_Checked" Unchecked="cb_Unchecked">
 Bindung</CheckBox>
 </WrapPanel>
</StackPanel>

Die TextBox hat den Namen tb. Die Eigenschaft Text der TextBox ist an die Eigen-
schaft Content des Labels nach Ziel 1 gebunden. Zur verkürzten Schreibweise der
Bindung wurde eine Markup Extension verwendet (siehe Abschnitt 2.5). Natür-
lich wäre auch die längere Schreibweise über Property Elements möglich gewesen
(siehe Abschnitt 2.2). Die Bindung hat Eigenschaften: ElementName und Path. Als
Werte für diese Eigenschaften werden der Name und die verbindende Eigen-
schaft des Quellelements benötigt.

Das Label nach Ziel 2 wird erst zur Laufzeit an die Textbox gebunden, und zwar
nachdem die Markierung der CheckBox gesetzt wurde. Diese Bindung wird
durch ein Löschen der Markierung wieder gelöst. Die zugehörigen Ereignisme-
thoden sehen so aus:

Datenbindung 8.1

219

private void cb_Checked(...)
{
 Binding bi = new Binding();
 bi.ElementName = "tb";
 bi.Path = new PropertyPath("Text");

 // lb.SetBinding(Label.ContentProperty, bi);
 BindingOperations.SetBinding(lb, Label.ContentProperty, bi);
}

private void cb_Unchecked(...)
{
 BindingOperations.ClearBinding(lb, Label.ContentProperty);
 // BindingOperations.ClearAllBindings(lb);
}

Um eine neue Datenbindung zu erstellen, wird zunächst ein neues Objekt der
Klasse Binding erzeugt. Anschließend werden die Eigenschaften ElementName
und Path für die Quelle gesetzt. Für die Eigenschaft Path wird ein Objekt der
Klasse PropertyPath benötigt. Der Konstruktor-Parameter ist der Name der
Eigenschaft als String. Das Ziel können Sie auf zwei Arten definieren:

� Bei der ersten Variante wird für das Zielobjekt die Methode SetBinding() auf-
gerufen. Diese verlangt als ersten Parameter die Dependency Property des
Ziels, als zweiten Parameter die vorher erstellte Bindung inklusive Quelldaten.

� Die zweite Variante bedient sich einer der vielen statischen Methoden der
Klasse BindingOperations. Die Methode SetBinding() dieser Klasse verlangt
zunächst den Namen des Ziels, anschließend wie ihr Namensvetter die Depen-
dency Property des Ziels und die vorher erstellte Bindung.

Auch zum Lösen der Datenbindung gibt es zwei Möglichkeiten:

� Die statische Methode ClearBinding() der Klasse BindingOperations löst die
Bindung an eine bestimmte Dependency Property des Ziels. Hier ist dies
ContentProperty.

� Die statische Methode ClearAllBindings() löst die Bindung an alle Depen-
dency Properties des Ziels.

8.1.2 Richtung und Zeitpunkt einer Bindung

Es gibt verschiedene Möglichkeiten, die Richtung einer Datenbindung festzule-
gen. Dazu dient die Eigenschaft Mode der Bindung. Sie kann Werte aus der gleich-
namigen Enumeration enthalten:

Daten8

220

� TwoWay: Änderungen sind in beide Richtungen möglich, also von der Quelle
zum Ziel und umgekehrt.

� OneWay: Eine Änderung ist nur von der Quelle zum Ziel möglich.

� OneTime: Es wird nur eine einmalige Änderung von der Quelle zum Ziel durch-
geführt, und zwar in dem Moment, in dem die Bindung gültig wird.

� OneWayToSource: Es ist nur eine Änderung vom Ziel zur Quelle möglich.

� Default (Standardwert): TwoWay, falls der Benutzer den Inhalt der beteiligten
Steuerelemente verändern kann, andernfalls OneWay.

Die Eigenschaft UpdateSourceTrigger der Bindung beeinflusst den Zeitpunkt der
Änderung bei einer Datenbindung. Die Werte aus der gleichnamigen Enumera-
tion:

� PropertyChanged: Die Änderung wird durchgeführt, sobald sich die Quell-
eigenschaft ändert.

� LostFocus: Die Änderung wird durchgeführt, wenn die Quelle den Fokus ver-
liert.

� Explicit: Die Änderung wird nur bei explizitem Aufruf der Methode
UpdateSource() der Klasse BindingExpression durchgeführt.

� Default (Standardwert): PropertyChanged; eine Ausnahme ist die Eigenschaft
Text, hier gilt LostFocus.

Nachfolgend sehen Sie ein Beispiel im Projekt DatenRichtung (siehe Abbildung 8.2).

Abbildung 8.2 Zwei verbundene TextBoxen

Ohne besondere Einstellung gelten für die zwei verbundenen TextBoxen die
Werte TwoWay und LostFocus. Im XAML-Code des Projekts wurden allerdings die
Einstellungen OneWay und PropertyChanged gewählt:

Datenbindung 8.1

221

<StackPanel>
 <WrapPanel>
 <Label Margin="3" Width="30">1:</Label>
 <TextBox x:Name="tb1" Margin="3" Width="230">Hallo</TextBox>
 </WrapPanel>
 <WrapPanel>
 <Label Margin="3" Width="30">2:</Label>
 <TextBox x:Name="tb2" Margin="3" Width="230">
 <Binding ElementName="tb1" Path="Text" Mode="OneWay"
 UpdateSourceTrigger="PropertyChanged" />
 </TextBox>
 </WrapPanel>
 <GroupBox Header="Richtung">
 <StackPanel RadioButton.Checked="richtung">
 <RadioButton>TwoWay</RadioButton>
 <RadioButton IsChecked="True">OneWay</RadioButton>
 <RadioButton>OneTime</RadioButton>
 <RadioButton>OneWayToSource</RadioButton>
 </StackPanel>
 </GroupBox>
</StackPanel>

Die Quelle der Bindung ist die erste TextBox tb1, das Ziel ist die zweite TextBox
tb2. Die RadioButtons im unteren Teil bieten Ihnen die Möglichkeit, die Richtung
zu verändern, um das unterschiedliche Verhalten zu testen. Dazu wurde im Stack-
Panel das Attached Event RadioButton.Checked notiert. Die zugehörige Ereignis-
methode sieht so aus:

private void richtung(object sender, RoutedEventArgs e)
{
 if (!IsLoaded) return;

 Binding bi = new Binding();
 bi.ElementName = "tb1";
 bi.Path = new PropertyPath("Text");
 bi.UpdateSourceTrigger = UpdateSourceTrigger.PropertyChanged;

 switch ((e.Source as RadioButton).Content.ToString())
 {
 case "TwoWay":
 bi.Mode = BindingMode.TwoWay; break;
 case "OneWay":
 bi.Mode = BindingMode.OneWay; break;
 case "OneTime":

Daten8

222

 bi.Mode = BindingMode.OneTime; break;
 case "OneWayToSource":
 bi.Mode = BindingMode.OneWayToSource; break;
 }
 BindingOperations.SetBinding(tb2, TextBox.TextProperty, bi);
}

Es wird eine neue Bindung zur Eigenschaft Text der TextBox tb1 erzeugt. Der
Wert der Eigenschaft UpdateSourceTrigger bleibt unverändert. Die Eigenschaft
Content des auslösenden RadioButtons wird dazu genutzt, die Eigenschaft Mode
auf den gewünschten Wert einzustellen. Zu guter Letzt wird die neue Bindung
mithilfe der statischen Methode SetBinding() der TextBox tb2 zugeordnet. Die-
ser Vorgang ersetzt die alte Bindung.

Die Eigenschaften einer bereits genutzten Bindung können nicht geändert wer-
den. Daher ist es zwar möglich, einen Verweis auf die bereits vorhandene Bin-
dung mithilfe der statischen Methode GetBinding() zu ermitteln, aber anschlie-
ßend kann die Eigenschaft Mode nicht geändert werden.

8.2 Validierung

Es kann wichtig sein, die Daten bei einer Datenbindung zu validieren, sodass nur
geprüfte Daten zum gewünschten Empfänger gelangen. Eine Datenbindung
besitzt dazu die Eigenschaft ValidationRules. Dieser Auflistung müssen Sie ein-
zelne Validierungsregeln hinzufügen. Eigene Validierungsregeln können Sie
erzeugen, indem Sie von der abstrakten Klasse ValidationRule ableiten und
darin die Methode Validate() vom Typ ValidationResult überschreiben.

Nachfolgend sehen Sie ein Beispiel im Projekt DatenValidierung (siehe Abbil-
dung 8.3). Darin werden zwei TextBoxen über eine Datenbindung gekoppelt.
Solange falsche Daten eingegeben werden, ist die TextBox rot umrandet. Nur die
richtigen Daten, in diesem Fall der Text »Hallo«, werden zum Empfänger geleitet
(siehe Abbildung 8.4).

Abbildung 8.3 Eingabe der falschen Daten

Validierung 8.2

223

Abbildung 8.4 Weiterleitung der richtigen Daten

Zunächst der XAML-Code:

<Window ... Loaded="Window_Loaded">
 <StackPanel>
 <WrapPanel>
 <Label Margin="3" Width="60">Quelle:</Label>
 <TextBox x:Name="tb1" Margin="3" Width="200" />
 </WrapPanel>
 <WrapPanel>
 <Label Margin="3" Width="60">Ziel:</Label>
 <TextBox Margin="3" Width="200">
 <Binding x:Name="bg" ElementName="tb1"
 Path="Text" Mode="OneWayToSource"
 UpdateSourceTrigger="PropertyChanged" />
 </TextBox>
 </WrapPanel>
 </StackPanel>
</Window>

Die zweite TextBox ist im Modus OneWayToSource an die erste TextBox gebunden.
Sobald in der zweiten TextBox eine Änderung erfolgt, wird ihr Inhalt validiert
und gegebenenfalls in die erste TextBox kopiert. Nach dem Laden des Fensters
wird die Ereignismethode Window_Loaded() aufgerufen:

private void Window_Loaded(...)
{ bg.ValidationRules.Add(new meineValidierungsregel()); }

Darin wird der Auflistung ValidationRules der Datenbindung eine neue Instanz
der Klasse meineValidierungsregel hinzugefügt. Diese Klasse wurde in der Datei
meineValidierungsregel.cs innerhalb des aktuellen Projekts wie folgt definiert:

using System.Windows.Controls;
namespace DatenValidierung
{
 class meineValidierungsregel : ValidationRule
 {
 public override ValidationResult Validate(object eingabe,
 System.Globalization.CultureInfo cultureInfo)

Daten8

224

 {
 if (eingabe as string == "Hallo")
 return ValidationResult.ValidResult;
 else
 return new ValidationResult(false, "Fehler");
 }
 }
}

Die Klasse wird von der abstrakten Klasse ValidationRule aus dem Namespace
System.Windows.Controls abgeleitet. Darin wird die Methode Validate() über-
schrieben. Im ersten Parameter vom Typ object steht der Wert, der zu validieren
ist. Falls dieser den Regeln entspricht, so wird mithilfe der statischen Eigenschaft
ValidResult eine Instanz der Klasse ValidationResult mit einem gültigen Ergeb-
nis zurückgeliefert. Ansonsten wird eine neue Instanz zurückgeliefert, die einen
Fehler anzeigt.

8.3 Datenquellen

Die Quellen einer Datenbindung können unterschiedlich sein. Es ist möglich, die
Steuerelemente einer Anwendung mit anderen Elementen zu verbinden, wie in
den vorherigen Abschnitten gezeigt wurde. Die Datenquelle kann aber auch ein
Objekt, eine Liste von Objekten oder eine Datenbank sein. Diese Möglichkeiten
werden nachfolgend dargestellt.

8.3.1 Ein Objekt als Datenquelle

In diesem Abschnitt wird ein Objekt einem Projekt als Ressource zur Verfügung
gestellt. Dieses Objekt wird im Projekt QuelleObjekt innerhalb von drei Text-
Boxen zur Ansicht gebracht (siehe Abbildung 8.5).

Abbildung 8.5 Ein Objekt als Datenquelle

Datenquellen 8.3

225

Schauen wir uns zunächst den Datentyp des Objekts an. Er soll einige Daten über
eine Stadt beinhalten und wird in der Klassendatei stadt.cs des aktuellen Projekts
definiert:

namespace QuelleObjekt
{
 class stadt
 {
 public string name { get; set; }
 public string lage { get; set; }
 public int einwohner { get; set; }
 public override string ToString()
 { return name + ", " + lage + ", " + einwohner; }
 }
}

Es werden die drei Properties name, lage und einwohner definiert, außerdem eine
Ausgabemethode für die Daten eines Objekts.

Der XAML-Code:

<Window ... xmlns:local="clr-namespace:QuelleObjekt" ... >
 <Window.Resources>
 <local:stadt x:Key="st" name="Berlin" lage="Osten"
 einwohner="3500000" />
 </Window.Resources>
 <StackPanel>
 <WrapPanel>
 <Label Margin="3" Width="70">Stadt:</Label>
 <TextBox Margin="3" Width="190">
 <Binding Source="{StaticResource st}" Path="name" />
 </TextBox>
 </WrapPanel>
 <WrapPanel>
 <Label Margin="3" Width="70">Lage:</Label>
 <TextBox Margin="3" Width="190">
 <Binding Source="{StaticResource st}" Path="lage" />
 </TextBox>
 </WrapPanel>
 <WrapPanel>
 <Label Margin="3" Width="70">Einwohner:</Label>
 <TextBox Margin="3" Width="190">
 <Binding Source="{StaticResource st}" Path="einwohner" />
 </TextBox>
 </WrapPanel>

Daten8

226

 <Button Margin="3" Width="80" Click="aus">Ausgabe</Button>
 </StackPanel>
</Window>

Der lokale Namespace QuelleObjekt wird innerhalb der Fensterdefinition
bekannt gemacht, ansonsten könnte der Typ stadt nicht gefunden werden.
Anschließend wird eine Instanz dieses lokalen Typs erzeugt und als Ressource zur
Verfügung gestellt. Die Eigenschaft Source der Datenbindung greift auf die
Instanz zu, die als Bindungsquelle dient. In diesem Falle ist dies eine Ressource,
die über ihren Schlüssel erreicht wird. Die jeweilige Property der Instanz dient als
Wert für Path.

In der Ausgabemethode aus() wird mithilfe von FindResource() ebenfalls über
die Ressource auf die Instanz zugegriffen:

private void aus(...)
{ MessageBox.Show((FindResource("st") as stadt).ToString()); }

8.3.2 Kontext einer Datenbindung

Falls mehrere Elemente bei einer Datenbindung auf die gleiche Quelle zugreifen,
so bietet sich eine Vereinfachung an. Anstatt bei jedem Element über die Eigen-
schaft Source auf die Ressource zu verweisen, können Sie dies über die Eigen-
schaft DataContext eines übergeordneten Elements vornehmen.

Das Beispiel aus dem vorherigen Abschnitt wurde für das nachfolgende Projekt
QuelleKontext entsprechend geändert. Klassendefinition, Ressource und Ausgabe
bleiben gleich. Der geänderte XAML-Code sieht so aus:

<Window ... xmlns:local="clr-namespace:QuelleKontext" ...>
 <Window.Resources>
 <local:stadt x:Key="st" name="Berlin" lage="Osten"
 einwohner="3500000" />
 </Window.Resources>
 <StackPanel DataContext="{StaticResource st}">
 <WrapPanel>
 <Label Margin="3" Width="70">Stadt:</Label>
 <TextBox Margin="3" Width="190">
 <Binding Path="name" />
 </TextBox>
 </WrapPanel>
 ...
 </StackPanel>
</Window>

Datenquellen 8.3

227

Beim übergeordneten StackPanel entspricht der Wert der Eigenschaft
DataContext der statischen Ressource. Inhalt der statischen Ressource ist die
Instanz, die als Bindungsquelle dient. Bei den Datenbindungen der TextBoxen
reicht nunmehr der Pfad zur Property.

8.3.3 Auflistung von Objekten

In diesem Abschnitt wird die Datenquelle von einem Objekt auf mehrere Objekte
des gleichen Typs erweitert. Diese Objekte werden in einer Auflistung zusam-
mengefasst. Diese Auflistung wiederum dient als Ressource für die Datenbin-
dung. Zur Darstellung ist zum Beispiel eine ListBox geeignet, wie Sie sie im nach-
folgenden Projekt QuelleCollection finden (siehe Abbildung 8.6). Darin wird der
aktuell ausgewählte Eintrag der ListBox über eine weitere Datenbindung mit
TextBoxen gekoppelt.

Abbildung 8.6 Auflistung von Objekten

Der Datentyp des Objekts in der Projektdatei stadt.cs wurde um einen Konstruk-
tor erweitert. Dieser wird zum Hinzufügen einzelner Objekte zu der Auflistung
benötigt:

namespace QuelleCollection
{
 class stadt
 {
 public stadt(string n, string l, int e)
 { name = n; lage = l; einwohner = e; }

 public string name { get; set; }
 public string lage { get; set; }
 public int einwohner { get; set; }
 public override string ToString()
 { return name + ", " + lage + ", " + einwohner; }
 }
}

Daten8

228

In der Projektdatei stadtauflistung.cs wird der Auflistungstyp definiert:

using System.Collections.ObjectModel;
namespace QuelleCollection
{
 class stadtauflistung : ObservableCollection<stadt> {}
}

Der Typ ObservableCollection<> aus dem Namespace System.Collections
.ObjectModel bietet die Möglichkeit, die Auflistung eines bestimmten Datentyps
zu erzeugen. Bei diesem Typ von Auflistung werden Benachrichtigungen gesandt,
falls sie verändert wird.

Der XAML-Code:

<Window ... xmlns:local="clr-namespace:QuelleCollection"
 ... Loaded="Window_Loaded">
 <Window.Resources>
 <local:stadtauflistung x:Key="stadtressource" />
 </Window.Resources>
 <StackPanel>
 <ListBox x:Name="lb" Height="60" Margin="3">
 <ListBox.ItemsSource>
 <Binding Source="{StaticResource stadtressource}" />
 </ListBox.ItemsSource>
 </ListBox>
 <WrapPanel>
 <Label Margin="3" Width="85" Background="LightGray">
 <Binding ElementName="lb" Path="SelectedItem.name" />
 </Label>
 <Label Margin="3" Width="85" Background="LightGray">
 <Binding ElementName="lb" Path="SelectedItem.lage" />
 </Label>
 <Label Margin="3" Width="85" Background="LightGray">
 <Binding ElementName="lb"
 Path="SelectedItem.einwohner" />
 </Label>
 </WrapPanel>
 </StackPanel>
</Window>

Zu Beginn muss die Auflistung mit Objekten gefüllt werden. Dies wird nach dem
Laden des Fensters (Ereignis Loaded) durchgeführt.

Die erste Datenbindung besteht zwischen der Auflistung und der ListBox. Es
wird eine Instanz des lokalen Typs stadtauflistung erzeugt und als Ressource
zur Verfügung gestellt. Die Eigenschaft Source der Datenbindung eines einzelnen

Datenquellen 8.3

229

ListBox-Eintrags greift über die Ressource auf die Instanz zu. Jeder ListBox-Ein-
trag stellt anschließend mithilfe der Methode ToString() des Typs stadt ein
Objekt der Auflistung dar.

Die zweite Datenbindung besteht zwischen der ListBox und den einzelnen
Labels. Die jeweilige Property des aktuell ausgewählten Eintrags (SelectedItem)
dient als Wert für Path.

Es folgt der Code zum Füllen der Auflistung:

private void Window_Loaded(...)
{
 stadtauflistung sa =
 FindResource("stadtressource") as stadtauflistung;
 sa.Add(new stadt("Berlin", "Osten", 3500000));
 sa.Add(new stadt("Hamburg", "Norden", 1800000));
 sa.Add(new stadt("München", "Süden", 1100000));
}

Über die Ressource wird die Auflistung zur Verfügung gestellt. Mithilfe der
Methode Add() wird Element für Element hinzugefügt.

8.3.4 Object Data Provider

Ein Object Data Provider umfasst ein Objekt und kann als Ressource für eine
Datenbindung dienen. Nachfolgend wird im Projekt QuelleProvider ein Object
Data Provider genutzt. Dieser ist zunächst leer, das Objekt wird erst zur Laufzeit
erzeugt. Die Klasse stadt mit ihren Properties name, lage und einwohner ist
bereits aus den vorherigen Projekten bekannt.

Zunächst der XAML-Code:

<Window ... xmlns:local="clr-namespace:QuelleProvider" ...>
 <Window.Resources>
 <ObjectDataProvider x:Key="odp_resource" />
 </Window.Resources>
 <StackPanel DataContext="{StaticResource odp_resource}">
 <WrapPanel>
 <Label Margin="3" Width="70">Stadt:</Label>
 <TextBox Margin="3" Width="190">
 <Binding Path="name" />
 </TextBox>
 ...
 <Button Margin="3" Width="80" Click="neu">Erzeugen</Button>
 <Button Margin="3" Width="80" Click="aus">Ausgabe</Button>
 </StackPanel>
</Window>

Daten8

230

Die Instanz der Klasse ObjectDataProvider wird als Ressource erzeugt. Über die
Eigenschaft DataContext des übergeordneten StackPanels wird sie den insgesamt
drei ausgebenden TextBoxen zur Verfügung gestellt. Bei einer TextBox muss nur
noch der Name der jeweiligen Property angegeben werden. Es folgt der Code in
den beiden Ereignismethoden zur Erzeugung des Objekts für den Object Data
Provider und für die Ausgabe:

private void neu(...)
{
 ObjectDataProvider odp =
 FindResource("odp_resource") as ObjectDataProvider;
 odp.ObjectInstance = new stadt("Berlin", "Osten", 3500000);
}

private void aus(...)
{
 ObjectDataProvider odp =
 FindResource("odp_resource") as ObjectDataProvider;
 if (odp.ObjectInstance != null)
 MessageBox.Show((odp.ObjectInstance as stadt).ToString());
 else
 MessageBox.Show("Es gibt noch keine Instanz im Provider");
}

Mithilfe der Methode FindResource() wird auf die Ressource vom Typ
ObjectDataProvider zugegriffen. Die Eigenschaft ObjectInstance verweist auf
das umfasste Objekt, falls es bereits vorhanden ist.

8.3.5 Datenbank

Eine Datenbank ist die klassische Quelle für eine Datenbindung. Im nachfolgen-
den Projekt QuelleAccess wird auf die MS Access-Datenbank firma.mdb zugegrif-
fen. Diese beinhaltet die Tabelle personen mit den Feldern Name, Vorname,
Personalnummer und Gehalt. Sie wird in einem Steuerelement vom Typ ListView
dargestellt (siehe Abbildung 8.7).

Abbildung 8.7 Access-Datenbank in einem ListView

Datenquellen 8.3

231

Die Datenbank firma.mdb wird dem Projekt per Drag&Drop im Projektmappen-
explorer hinzugefügt (siehe Abbildung 8.8). Während dieses Vorgangs startet
automatisch ein Assistent zur Erstellung eines DataSets. Da aber im Projekt eine
DataTable (ein untergeordnetes Element eines DataSets) per Code erstellt wird,
wird der Assistent nicht benötigt und abgebrochen.

Abbildung 8.8 Die Datenbank »firma.mdb« im Projekt

Es folgt der XAML-Code:

<Window ... Loaded="Window_Loaded">
 <StackPanel>
 <ListView x:Name="lv" ItemsSource="{Binding}">
 <ListView.View>
 <GridView>
 <GridViewColumn Header="PNr"
 DisplayMemberBinding=
 "{Binding Path=personalnummer}" />
 <GridViewColumn Header="Name"
 DisplayMemberBinding="{Binding Path=name}" />
 <GridViewColumn Header="Vorname"
 DisplayMemberBinding="{Binding Path=vorname}" />
 <GridViewColumn Header="Gehalt"
 DisplayMemberBinding="{Binding Path=gehalt}" />
 </GridView>
 </ListView.View>
 </ListView>
 </StackPanel>
</Window>

Auf die MS Access-Datenbank wird nach dem Laden des Fensters zugegriffen, und
zwar in der Ereignismethode Window_Loaded(). Die Eigenschaft ItemsSource ver-
weist auf die Auflistung, die als Inhalt für den ListView dienen soll. Die Auflistung
wird in diesem Falle über eine Datenbindung ermittelt. Die Eigenschaft View ist
für die Darstellung und Organisation der Daten des ListView verantwortlich.

Daten8

232

Ein GridView stellt die Daten in Spalten dar. Jede Spalte ist eine Instanz der Klasse
GridViewColumn. Die Eigenschaft Header steht für den Spaltenkopf. Die Eigen-
schaft DisplayMemberBinding nutzt die vorhandene Datenbindung. Die Eigen-
schaft Path beinhaltet dabei den Namen des Feldes aus der Datenbanktabelle,
dessen Werte in dieser Spalte angezeigt werden.

In der Ereignismethode zum Laden der Daten werden die beiden Namespaces
System.Data und System.Data.OleDb zum Zugriff auf die MS Access-Datenbank
benötigt:

private void Window_Loaded(...)
{
 OleDbConnection con =
 new OleDbConnection(@"Provider=Microsoft.Jet.OLEDB.4.0;
 Data Source=firma.mdb");
 OleDbDataAdapter da =
 new OleDbDataAdapter("select * from personen", con);
 DataTable dt = new DataTable();
 da.Fill(dt);
 lv.DataContext = dt;
}

Die Instanz der Klasse OleDbConnection erzeugt eine Verbindung zur Datenbank.
Die Instanz der Klasse OleDbAdapter soll die Befehle beinhalten, die zum Füllen
eines DataSets aus einer Datenquelle und zur Aktualisierung der Datenquelle aus
dem DataSet benötigt werden. Im vorliegenden Fall werden zum Füllen alle
Daten der Tabelle personen per SQL-Anweisung über die existierende Verbin-
dung zur Datenbank firma.mdb angefordert.

Ein DataTable-Objekt steht für eine einzelne Tabelle eines DataSets. Die Data-
Table wird über den Adapter gefüllt. Die Eigenschaft DataContext der ListView
verweist auf die gefüllte DataTable.

8.4 DataGrid

Das DataGrid ist ein Steuerelement, das viel Komfort durch eine große Anzahl an
Einstellmöglichkeiten bietet. Es ist editierbar und somit nicht nur zur Darstellung
von großen Datenmengen (zum Beispiel aus Datenbanken), sondern auch zur
Veränderung derselben geeignet.

8.4.1 Einfacher Aufbau

Ein erstes Beispiel im Projekt DataGridAccess soll zeigen, wie einfach die Verbin-
dung zu einer Datenbank hergestellt werden kann (siehe Abbildung 8.9). Es wird

DataGrid 8.4

233

die gleiche Datenbank firma.mdb mit der Tabelle personen verwendet wie im
vorherigen Abschnitt. Sie wird dem Projekt per Drag&Drop im Projektmappen-
explorer hinzugefügt. Auch hier wird die Erstellung des DataSets abgebrochen.

Zu Beginn wird der Inhalt der Tabelle geladen und dargestellt. Der Benutzer kann
Daten ändern, neu hinzufügen oder löschen. Beim Schließen des Fensters wird
die Datenbank mit den geänderten Daten aktualisiert.

Abbildung 8.9 Access-Datenbank in einem DataGrid

Der Aufbau in XAML ist einfach:

<Window ... Loaded="Window_Loaded" Closing="Window_Closing">
 <StackPanel>
 <DataGrid x:Name="dg" ItemsSource="{Binding}" />
 </StackPanel>
</Window>

Die Eigenschaft ItemsSource verweist auf die Auflistung, die als Inhalt für das
DataGrid dienen soll. Die Auflistung wird in diesem Falle über eine Datenbin-
dung ermittelt.

Es folgt der Code der Fensterklasse:

public partial class MainWindow : Window
{
 OleDbDataAdapter da;
 DataTable dt;

 public MainWindow()
 {
 InitializeComponent();
 OleDbConnection con =
 new OleDbConnection(@"Provider=Microsoft.Jet.OLEDB.4.0;
 Data Source=firma.mdb");
 da = new OleDbDataAdapter("select * from personen", con);
 OleDbCommandBuilder cb = new OleDbCommandBuilder(da);
 dt = new DataTable();
 }

Daten8

234

 private void Window_Loaded(...)
 {
 da.Fill(dt);
 dg.DataContext = dt;
 }

 private void Window_Closing(object sender,
 System.ComponentModel.CancelEventArgs e)
 {
 da.Update(dt);
 }
}

Sie sehen Parallelen zum ListView-Beispiel aus dem letzten Abschnitt. Es werden
die beiden Namespaces System.Data und System.Data.OleDb benötigt. Die
Instanzen der Klassen OleDbAdapter und DataTable werden sowohl beim Laden
als auch beim Aktualisieren der Daten genutzt, daher werden sie zu Eigenschaf-
ten der Fensterklasse.

Im Konstruktor der Fensterklasse wird über die Instanz der Klasse OleDbConnection
die Verbindung zur Datenbank hergestellt. Die Instanz der Klasse OleDbAdapter
beinhaltet nach ihrer Erzeugung den Inhalt des SQL-Kommandos select zur Aus-
wahl der Daten. Die Instanz der Klasse OleDbCommandBuilder erzeugt passend für
diesen Adapter die Inhalte der SQL-Kommandos insert, update und delete. Es
wird eine Instanz einer DataTable erzeugt.

Beim Laden des Fensters wird die DataTable über den Adapter gefüllt. Die Eigen-
schaft DataContext des DataGrid verweist auf die gefüllte DataTable.

Beim Schließen des Fensters (Ereignis Window_Closing()) wird die Datenbank aus
der DataTable über den Adapter durch Aufruf der Methode Update() aktualisiert.
Dabei kommen die SQL-Kommandos zum Einsatz, die über die Instanz der Klasse
OleDbCommandBuilder erzeugt wurden.

8.4.2 Standard-Einstellungen

Der XAML-Code des Beispielprojekts DataGridAccess aus dem vorherigen
Abschnitt 8.4.1 ist sehr kurz. Dies liegt daran, dass ein DataGrid in seinen Stan-
dard-Einstellungen bereits viel Funktionalität bietet. Diese Standard-Einstellun-
gen können Sie mithilfe der nachfolgenden Beschreibung testen. Außerdem kön-
nen Sie die genannten Alternativen ausprobieren.

Sie können Daten ändern, hinzufügen oder löschen, weil die boolesche Eigen-
schaft IsReadOnly den Wert False hat. Auch wenn sie den Wert True hat, können

DataGrid 8.4

235

Sie das Hinzufügen neuer Datensätze verhindern, indem Sie CanUserAddRows auf
False setzen. Das Entsprechende gilt für das Löschen von Datensätzen und
CanUserDeleteRows.

Sie können mehrere Datensätze, ob zusammenhängend oder nicht, auswählen,
weil die Eigenschaft SelectionMode den Wert Extended hat. Die Enumeration
DataGridSelectionMode bietet noch den Wert Single.

Falls Sie auf eine beliebige Zelle in einer Zeile klicken, so wird die gesamte Zeile
ausgewählt, weil die Eigenschaft SelectionUnit den Wert FullRow hat. Der Wert
Cell aus der Enumeration DataGridSelectionUnit ermöglicht die Auswahl einer
einzelnen Zelle. Der Wert CellOrRowHeader ermöglicht beides, dabei muss zur
Auswahl einer ganzen Zeile auf den Zeilenkopf geklickt werden.

Die Spalten lassen sich nach Wert sortieren, weil CanUserSortColumns den Wert
True hat. Derselbe Wert für CanUserReorderColumns ermöglicht den Tausch von
Spalten. Spaltenbreite und Zeilenhöhe lassen sich verändern, weil
CanUserResizeColumns und CanUserResizeRows den Wert True haben.

Es sind alle Gitternetzlinien sichtbar, weil die Eigenschaft GridLinesVisibility den
Wert All hat. Weitere Werte aus der Enumeration DataGridGridLinesVisibility
sind None, Horizontal und Vertical. Alle Zeilen- und Spaltenköpfe sind sichtbar,
weil die Eigenschaft HeadersVisibility ebenfalls den Wert All hat. Die Enumera-
tion DataGridHeadersVisibility bietet noch die Werte None, Column und Row.

Sie können eine ganze Zeile ohne Header in Form einer Tabellenzeile in die Zwi-
schenablage kopieren, zum Beispiel mit (Strg)+(C). Dafür sorgt der Wert
ExcludeHeader für die Eigenschaft ClipboardCopyMode. Weitere Werte in der Enu-
meration DataGridClipboardCopyMode sind IncludeHeader und None. Anschlie-
ßend können Sie die Tabellenzeile(n) zum Beispiel in MS Word oder MS Excel
einfügen.

8.4.3 Weitere Spaltentypen

Das Beispielprojekt DataGridAccess aus Abschnitt 8.4.1 wird in diesem Abschnitt
zum Projekt DataGridFormat ausgebaut, um Ihnen einige weitere Möglichkeiten
des DataGrid zu zeigen. Die Darstellung sehen Sie in Abbildung 8.10.

Es wird wiederum eine Datenbank mit dem Namen firma.mdb mit der Tabelle
personen verwendet. In der Tabelle personen sind gegenüber dem letzten Bei-
spiel zwei Felder hinzugekommen: das Ja/Nein-Feld urlaub und das Textfeld
email. Die Datenbank wird dem Projekt per Drag&Drop im Projektmappenexplo-
rer hinzugefügt. Auch hier wird die Erstellung des DataSets abgebrochen.

Daten8

236

Abbildung 8.10 Formatiertes DataGrid

Zunächst der XAML-Code:

<Window ... Loaded="Window_Loaded" Closing="Window_Closing">
 <StackPanel>
 <DataGrid x:Name="dg" SelectionChanged="zeilenauswahl"
 ItemsSource="{Binding}" AutoGenerateColumns="False">
 <DataGrid.Columns>
 <DataGridTextColumn Header="PNr"
 Binding="{Binding Path=personalnummer}" />
 <DataGridTextColumn Header="Name"
 Binding="{Binding Path=name}" />
 <DataGridTextColumn Header="Vorname"
 Binding="{Binding Path=vorname}" />
 <DataGridTextColumn Header="Gehalt"
 Binding="{Binding Path=gehalt}" />
 <DataGridCheckBoxColumn Header="In Urlaub"
 Binding="{Binding Path=urlaub}" />
 <DataGridHyperlinkColumn Header="E-Mail"
 Binding="{Binding Path=email}" />
 </DataGrid.Columns>
 </DataGrid>
 </StackPanel>
</Window>

Falls der Benutzer eine oder mehrere Zeilen auswählt, so tritt das Ereignis
SelectionChanged ein. Im vorliegenden Projekt werden dann die Daten der Zei-
len angezeigt. Die Eigenschaft AutoGenerateColumns zur automatischen Über-
nahme und Darstellung der Felder der Datenquelle muss auf False gestellt wer-
den, da die Darstellung der Spalten hier selbst gewählt wird. Ansonsten würden
alle Spalten doppelt angezeigt werden.

In der Auflistungseigenschaft Columns des DataGrid stehen die einzelnen Spal-
ten, die angezeigt werden sollen, mit ihren Typen. Neben dem Standardtyp
DataGridTextColumn zur Darstellung von Text und Zahlen wird hier noch der
Typ DataGridCheckBoxColumn für das Ja/Nein-Feld urlaub und der Typ

DataTemplates 8.5

237

DataGridHyperlinkColumn für das Feld email verwendet. Es gibt noch den Typ
DataGridComboBoxColumn für Werte aus Enumerationen. Außerdem können Sie
den Typ DataGridTemplateColumn wählen, dessen Inhalte Sie mithilfe eines
DataTemplate selber gestalten können (siehe dazu den nächsten Abschnitt).

Die Methoden Window_Loaded und Window_Closing entsprechen denen aus dem
zugrunde liegenden Projekt DataGridAccess. Es folgt die Methode zeilenaus-
wahl():

private void zeilenauswahl(object sender,
 SelectionChangedEventArgs e)
{
 string s = "";
 for (int i = 0; i < dg.SelectedItems.Count; i++)
 if (dg.SelectedItems[i] is DataRowView)
 {
 DataRowView drv = dg.SelectedItems[i] as DataRowView;
 s += drv.Row["name"] + ", " + drv.Row["vorname"] + "\n";
 }
 if(s != "") MessageBox.Show(s);
}

In der Auflistung SelectedItems stehen die ausgewählten Zeilen. Sie sind vom
Typ DataRowView, außer der Zeile für einen neuen Eintrag. Diese ist vom Typ
MS.Internal.NamedObject. Über die Eigenschaft Row des DataRowView-Objekts
und den Namen des Feldes können Sie die aktuellen Werte ermitteln.

8.5 DataTemplates

Ein DataTemplate ist eine Vorlage für die Darstellung eines bestimmten Daten-
typs. Zuordnung und Gültigkeitsbereich dieser Vorlagen entsprechen denen von
Templates (siehe Abschnitt 7.3, »Control Templates«). Das nachfolgende Projekt
DatenVorlage wurde auf Basis des Beispielprojekts QuelleCollection erzeugt (siehe
Abschnitt 8.3.3, »Auflistung von Objekten«. Es wird ein DataTemplate für den
lokalen Datentyp stadt entworfen. Jeder Eintrag in der Listbox ist eine Instanz
dieses Datentyps (siehe Abbildung 8.11).

Abbildung 8.11 DataTemplate für Datentyp »stadt«

Daten8

238

Der XAML-Code:

<Window ... xmlns:local="clr-namespace:DatenVorlage"
 ... Loaded="Window_Loaded">
 <Window.Resources>
 <local:stadtauflistung x:Key="stadtressource" />
 <DataTemplate DataType="{x:Type local:stadt}">
 <StackPanel x:Name="sp" Height="25"
 Orientation="Horizontal">
 <Image Source="ms.gif" Width="16" />
 <Label Content="{Binding Path=name}" />
 <Label Content="," />
 <Label Content="{Binding Path=lage}" />
 <Label Content="," />
 <Label Content="{Binding Path=einwohner}" />
 </StackPanel>
 </DataTemplate>
 </Window.Resources>
 <StackPanel>
 <ListBox x:Name="lb">
 <ListBox.ItemsSource>
 <Binding Source="{StaticResource stadtressource}" />
 </ListBox.ItemsSource>
 </ListBox>
 </StackPanel>
</Window>

Den Aufbau der beiden Klassen stadt und stadtauflistung und das Füllen der
Auflistung entnehmen Sie bitte Abschnitt 8.3.3. Es gibt zwei Ressourcen:

� die Ressource für die Daten selbst: die Auflistung der Städte

� das DataTemplate für die Darstellung der Daten einer einzelnen Stadt als Ein-
trag für die Listbox

Die Eigenschaft DataType des DataTemplate ähnelt der Eigenschaft TargetType
eines Style. Sie binden das DataTemplate über x:Type an einen Datentyp. Das
DataTemplate beinhaltet im vorliegenden Fall ein StackPanel mit einem Bild und
mehreren Labels.

8.6 DataTrigger

Ein DataTrigger ähnelt einem Property Trigger (siehe Abschnitt 7.2.1, »Einfache
Property Trigger«), bezogen auf Daten. Falls eine kontrollierte Eigenschaft eines

DataTrigger 8.6

239

Datenobjekts einen bestimmten Wert hat, so wird die Darstellung des Datenob-
jekts geändert.

Das DataTemplate im Beispielprojekt DatenVorlage aus dem vorherigen
Abschnitt 8.5, »DataTemplates«, wird im nachfolgenden Projekt DatenTrigger um
einen DataTrigger erweitert. Falls die Eigenschaft lage den Wert Norden hat, so
wird das Datenobjekt in Hellgrau dargestellt. Falls sie den Wert Süden hat, so wird
das Datenobjekt in Hellblau und mit einer Höhe 35 angezeigt, in geräteunabhän-
gigen Pixeln (siehe Abbildung 8.12).

Abbildung 8.12 DateTemplate mit DataTrigger

Es folgt der geänderte XAML-Code des DataTemplate:

<DataTemplate DataType="{x:Type local:stadt}">
 <StackPanel x:Name="sp" ...> ... </StackPanel>
 <DataTemplate.Triggers>
 <DataTrigger Binding="{Binding Path=lage}" Value="Norden">
 <Setter Property="Background" TargetName="sp"
 Value="Lightgray" />
 </DataTrigger>
 <DataTrigger Binding="{Binding Path=lage}" Value="Süden">
 <Setter Property="Background" TargetName="sp"
 Value="Lightblue" />
 <Setter Property="Height" TargetName="sp" Value="35" />
 </DataTrigger>
 </DataTemplate.Triggers>
</DataTemplate>

Ein DataTemplate kann in der Eigenschaft Triggers eine Auflistung von Triggern
enthalten. Einen DataTrigger verbinden Sie über die Eigenschaft Binding mit der
kontrollierten Eigenschaft. Die Eigenschaft Value setzen Sie auf den Wert, auf
den reagiert werden soll.

Falls dieser Wert bei der kontrollierten Eigenschaft auftritt, so können Sie einen
oder mehrere Setter einsetzen. Innerhalb eines Setters bezeichnen Sie über die
Eigenschaft TargetName das Zielelement, das verändert werden soll. Mit der

Daten8

240

Eigenschaft Property kennzeichnen Sie die zu verändernde Eigenschaft des Ziel-
elements, und über die Eigenschaft Value kennzeichnen Sie den einzustellenden
Wert.

241

Die Elemente der zweidimensionalen Grafik dienen sowohl für das
Erstellen von Zeichnungen in einer Anwendung als auch für die Gestal-
tung von Steuerelementen.

9 2D-Grafik

Zweidimensionale Grafiken sind Zeichnungen in der Ebene. In diesem Kapitel
werden unterschiedliche Typen erläutert:

� Shapes (Formen) sind eigenständige grafische Objekte. Sie sind von der Basis-
klasse Shape abgeleitet.

� Geometrien sind keine eigenständigen Grafiken, sondern stellen die grafische
Form eines umgebenden Elements dar. Sie sind von der Basisklasse Geometry
abgeleitet.

� Drawings (Zeichnungen) dienen dazu, Bilder zu erstellen. Sie sind von der
Basisklasse Drawing abgeleitet.

Es gibt Pinsel, um zweidimensionale Flächen zu füllen. Transformationen ermög-
lichen die Drehung, Skalierung, Neigung oder Verschiebung eines Elements in
der Ebene. Elemente oder Teile von Elementen können transparent gestaltet wer-
den. Bitmapeffekte und Verzierungen führen zu weiteren Veränderungen.

In zweidimensionalen Grafiken werden die Positionsangaben von der oberen lin-
ken Ecke des umgebenden Elements aus berechnet: die X-Koordinate nach rechts
und die Y-Koordinate nach unten. Dies entspricht der Denkweise für die Eigen-
schaften Left und Top in einem Canvas.

Wenn Sie mit zweidimensionalen Grafiken umgehen können, werden Sie es
leichter haben, dreidimensionale Grafiken zu erstellen, nicht zuletzt aufgrund der
vielen Parallelen.

9.1 Shapes

Shapes (Formen) sind eigenständige grafische Objekte. Sie dienen zum Erstellen
von einfachen Grafiken, die für Zeichnungen oder Hintergründe geeignet sind.

2D-Grafik9

242

Sie können nur einfache Ereignisse für Shapes registrieren; sie sind nicht primär
als Bedienungselemente für eine Anwendung gedacht. Die verschiedenen Klas-
sen für Shapes (Rectangle, Ellipse, Line, Polygon, Polyline und Path) werden
von der abstrakten Basisklasse Shape abgeleitet, die bereits zahlreiche Eigenschaf-
ten zur Verfügung stellt.

Das Aussehen eines Shapes kann auf einfache Weise gestaltet werden, wie Sie in
diesem Abschnitt sehen werden. Eine Ausnahme bildet die Klasse Path: Hier wird
eine Geometrie benötigt. Beispiele dazu finden Sie in Abschnitt 9.3, »Drawings«.

9.1.1 Rechtecke und Ellipsen

Rechtecke und Ellipsen sind Instanzen der Klassen Rectangle und Ellipse und
werden durch ihre Breite und ihre Höhe gekennzeichnet. Bei der Ellipse bezieht
man sich dabei auf die Maße des umgebenden Rechtecks. Sie können eine Fül-
lung und einen Umriss haben.

Im nachfolgenden Projekt ShapeRectEllipse werden einige dieser Objekte mithilfe
von XAML beziehungsweise durch Programmiercode erstellt und verändert
(siehe Abbildung 9.1).

Abbildung 9.1 Rechtecke und Ellipsen

Zunächst der XAML-Code:

<StackPanel>
 <WrapPanel>
 <Rectangle Width="80" Height="30" Fill="LightGray"
 Margin="3" />
 <Rectangle Width="80" Height="30" Fill="LightGray"
 Stroke="Gray" StrokeThickness="3" Margin="3" />
 <Ellipse Width="80" Height="30" Fill="LightGray"
 Stroke="Gray" StrokeThickness="3" Margin="3" />
 </WrapPanel>

Shapes 9.1

243

 <WrapPanel x:Name="wp">
 <Rectangle Width="80" Height="30" Fill="LightGray"
 Margin="3" MouseDown="rc1_MouseDown" />
 </WrapPanel>
 <Canvas>
 <Rectangle x:Name="rc2" Width="100" Height="30"
 Fill="LightGray" Margin="3" />
 <Ellipse x:Name="el" Width="100" Height="30"
 Fill="Gray" Margin="3" MouseDown="el_MouseDown" />
 ...
 </Canvas>
</StackPanel>

Alle Rechtecke und Ellipsen besitzen spezifische Werte für die Eigenschaften
Width, Height und Margin zur Angabe der Größe und des Abstands. Die Eigen-
schaften Fill und Stroke sind vom Typ Brush und dienen zur Festlegung der Fül-
lung und des Umrisses. Die Dicke der Umrisslinie wird über die double-Eigen-
schaft StrokeThickness gewählt. Am unteren Rand wurden ein Rechteck und
eine Ellipse innerhalb eines Canvas an derselben Stelle angeordnet, also überein-
andergelegt.

Die Ereignismethoden sehen so aus:

private void neu(object sender, RoutedEventArgs e)
{
 Rectangle r = new Rectangle();
 r.Height = 30;
 r.Width = 30;
 r.Fill = new SolidColorBrush(Colors.LightGray);
 r.Stroke = new SolidColorBrush(Colors.Gray);
 r.StrokeThickness = 3;
 r.Margin = new Thickness(3);
 wp.Children.Add(r);
}

Es wird ein neues Rechteck erzeugt, mit den gewünschten Eigenschaftswerten
versehen und als weiteres Element dem umgebenden WrapPanel hinzugefügt.

private void aendern(object sender, RoutedEventArgs e)
{
 el.Width = el.Width + 20;
 rc2.Width = rc2.Width + 20;
}

Die Breite von Rechteck und Ellipse wird jedes Mal um 20 vergrößert.

2D-Grafik9

244

9.1.2 Linie

Linien sind Instanzen der Klasse Line und durch die Koordinaten ihrer Anfangs-
und Endpunkte gekennzeichnet. Die Koordinatenwerte beziehen sich auf das
jeweils direkt übergeordnete Element. Das nachfolgende Projekt ShapeLine bein-
haltet innerhalb eines Canvas einige Linien, die per XAML beziehungsweise Pro-
grammiercode erstellt und verändert werden (siehe Abbildung 9.2).

Abbildung 9.2 Linien

Der XAML-Code:

<Canvas>
 <Line x:Name="l1" X1="10" Y1="20" X2="50" Y2="35"
 Stroke="Gray" StrokeThickness="3" />
 <Line X1="50" Y1="20" X2="90" Y2="35"
 Stroke="Gray" StrokeThickness="3" />
 <Canvas x:Name="cv" Width="150" Height="40" Canvas.Left="30"
 Canvas.Top="50" Background="LightGray">
 <Line X1="10" Y1="20" X2="50" Y2="35"
 Stroke="Gray" StrokeThickness="3" />
 </Canvas>
 ...
</Canvas>

Die double-Eigenschaften X1, Y1, X2 und Y2 stehen für die X- und Y-Koordinaten
von Anfangs- und Endpunkt der Linie. Die Eigenschaften Stroke und
StrokeThickness sind bereits aus dem vorherigen Abschnitt bekannt. Innerhalb
des umgebenden Canvas liegt ein innerer Canvas. Die Koordinaten beziehen sich
immer auf das direkt umgebende Element, bei der unteren Linie also auf den
inneren Canvas.

Die Fensterklasse mit den Ereignismethoden sieht so aus:

public partial class MainWindow : Window
{
 double obenlinks;

Shapes 9.1

245

 public MainWindow()
 {
 InitializeComponent();
 obenlinks = 30;
 }

 private void aendern(...)
 {
 l1.X1 = l1.X1 + 20;
 l1.X2 = l1.X2 + 20;
 }

 private void neu(...)
 {
 Line li = new Line();
 li.X1 = obenlinks;
 li.Y1 = 20;
 li.X2 = obenlinks + 40;
 li.Y2 = 35;
 li.Stroke = new SolidColorBrush(Colors.Gray);
 li.StrokeThickness = 3;
 cv.Children.Add(li);
 obenlinks += 20;
 }
}

In der Methode neu() wird eine neue Linie erzeugt, mit den gewünschten Eigen-
schaftswerten versehen und als weiteres Element dem umgebenden Canvas hin-
zugefügt. Jede neue Linie wird weiter rechts erzeugt.

Die Methode aendern() führt dazu, dass die X-Koordinaten von Anfangs- und
Endpunkt der Linie jedes Mal um 20 vergrößert werden.

9.1.3 Polygon und Polylinie

Polygone und Polylinien sind Instanzen der Klassen Polygon und Polyline. Sie
basieren auf einer Auflistung von Punkten, die mithilfe ihrer Koordinaten ange-
geben werden. Die Punkte werden in der angegebenen Reihenfolge miteinander
verbunden. Die Koordinatenwerte beziehen sich auf das jeweils direkt überge-
ordnete Element. Sie können eine Füllung und einen Umriss haben.

Ein Polygon ist immer geschlossen. Falls bei einer Polylinie der letzte Punkt dem
ersten Punkt entspricht, dann ist die Polylinie geschlossen, ansonsten ist sie
offen.

2D-Grafik9

246

Das nachfolgende Projekt ShapePoly beinhaltet innerhalb eines Canvas einige
Polygone und Polylinien, die mithilfe von XAML beziehungsweise Programmier-
code erstellt und verändert werden (siehe Abbildung 9.3).

Abbildung 9.3 Polygone und Polylinien

Der XAML-Code:

<Canvas x:Name="cv">
 <Polygon Points="10,10 50,10 30,50" Fill="LightGray" />
 <Polygon Points="60,50 80,10 120,10 140,50" Fill="LightGray" />
 <Polyline Points="60,50 80,10 120,10 140,50"
 Stroke="Gray" StrokeThickness="4" />
 <Polyline x:Name="pl" Points="150,10 190,10 170,50"
 Fill="Gray" />
 ...
</Canvas>

Polygon und Polylinie beinhalten in der Eigenschaft Points vom Auflistungstyp
PointCollection eine Reihe von X- und Y-Koordinaten. Diese werden zur besse-
ren Übersicht am besten paarweise, durch ein Komma getrennt, angegeben.
Jedes Paar ist eine Instanz der Struktur Point. Die Eigenschaften Fill, Stroke
und StrokeThickness sind bereits aus dem ersten Abschnitt bekannt. Die Ereig-
nismethoden:

private void aendern(...)
{
 pl.Points[2] = new Point(pl.Points[2].X + 10, pl.Points[2].Y);
}

Die Eigenschaften X und Y eines Punktes innerhalb der Auflistung können nicht
direkt überschrieben werden. Daher wird der gesamte Punkt durch einen neuen
Punkt ersetzt.

private void neu(object sender, RoutedEventArgs e)
{
 PointCollection pc = new PointCollection();
 pc.Add(new Point(10, 110));

Shapes 9.1

247

 pc.Add(new Point(50, 110));
 pc.Add(new Point(30, 150));

 Polygon pg = new Polygon();
 pg.Fill = new SolidColorBrush(Colors.LightGray);
 pg.Points = pc;
 cv.Children.Add(pg);

 Polyline pl = new Polyline();
 pl.Stroke = new SolidColorBrush(Colors.Gray);
 pl.Points = pc;
 cv.Children.Add(pl);
}

Es wird eine neue Instanz der Klasse PointCollection erstellt, der mithilfe der
Methode Add() einzelne Punkte hinzugefügt werden. Diese PointCollection
kennzeichnet anschließend sowohl ein neues, gefülltes Polygon als auch eine
neue, ungefüllte, nicht geschlossene Polylinie. Beide Shapes werden dem umge-
benden Canvas hinzugefügt.

9.1.4 Linienende

Linien können sich nicht nur durch ihre Pinsel (Stroke) oder ihre Dicke
(StrokeThickness) unterscheiden, sondern auch durch die Linienenden. Dafür
sind die Eigenschaften StrokeStartLineCap und StrokeEndLineCap zuständig. Bei
Polylinien und Umrisslinien kann es auch einen Unterschied in der Verbindung
zweier Linienstücke geben. Dies wird mithilfe der Eigenschaft StrokeLineJoin
festgelegt.

Im nachfolgenden Projekt ShapeStroke werden einige Möglichkeiten dargestellt
(siehe Abbildung 9.4).

Abbildung 9.4 Linienarten

Der XAML-Code:

2D-Grafik9

248

<Canvas>
 <Polyline StrokeLineJoin="Bevel"
 Stroke="Black" StrokeThickness="10" ... />
 <Polyline StrokeLineJoin="Miter" ... />
 <Polyline StrokeLineJoin="Round" ... />

 <Line StrokeStartLineCap="Flat" StrokeEndLineCap="Flat"
 Stroke="Black" StrokeThickness="10" ... />
 <Line StrokeStartLineCap="Round"
 StrokeEndLineCap="Round" ... />
 <Line StrokeStartLineCap="Square"
 StrokeEndLineCap="Square" ... />
 <Line StrokeStartLineCap="Triangle"
 StrokeEndLineCap="Triangle" ... />
</Canvas>

Der Wert für die Eigenschaft StrokeLineJoin stammt aus der Enumeration
PenLineJoin. Der Standardwert ist Miter; dabei werden die Ecken ausgeprägt. Beim
Wert Bevel sind die Ecken abgeschnitten, beim Wert Round sind sie abgerundet.

Ein Wert für eine der Eigenschaften StrokeStartLineCap oder StrikeEndLineCap
stammt aus der Enumeration PenLineCap. Nur für den Standardwert Flat endet
die Linie genau am angegebenen Koordinatenpunkt. Der Halbkreis bei Round, das
Rechteck bei Square und das Dreieck bei Triangle enden erst eine halbe Linien-
dicke später.

9.2 Geometrien

Geometrien sind keine eigenständigen Grafiken, sondern stellen die grafische
Form eines umgebenden Elements dar. Sie können zum Beispiel die Form eines
Bildausschnitts oder den Pfad einer Animation mithilfe einer Geometrie bilden.
Geometrien haben nur wenige Eigenschaften. Zum Beispiel gibt es keine Infor-
mationen darüber, wie die Füllung oder der Umriss aussehen. Diese hängen vom
umgebenden Element ab. Außerdem können Sie keine Ereignisse für Geometrien
registrieren.

Alle Klassen für Geometrien sind von der abstrakten Basisklasse Geometry abge-
leitet. Es gibt folgende Geometrien:

� einfache geometrische Formen: RectangleGeometry, EllipseGeometry und
LineGeometry

� kombinierte Geometrien, die die Füllung und den Umriss gemeinsam haben:
CombinedGeometry

Geometrien 9.2

249

� zusammengesetzte Geometrien, die die Füllung und den Umriss getrennt
haben: GeometryGroup

� Pfadgeometrien für komplexe Formen, die zum Beispiel aus Linien und Bögen
bestehen können: PathGeometry

� Geometrien für einfache Formen, als Alternative zu PathGeometry: StreamGeo-
metry

9.2.1 Einfache geometrische Formen

Klassen für einfache geometrische Formen sind RectangleGeometry, EllipseGeo-
metry und LineGeometry. Das nachfolgende Projekt GeometrieEinfach beinhaltet
Instanzen dieser Klassen, die mithilfe von XAML beziehungsweise von Program-
miercode erstellt und verändert werden (siehe Abbildung 9.5).

Abbildung 9.5 Einfache geometrische Formen

Der XAML-Code:

<Canvas x:Name="cv">
 <Path x:Name="prg" Fill="LightGray" Stroke="Gray"
 StrokeThickness="2">
 <Path.Data>
 <RectangleGeometry x:Name="rg" Rect="10,10 100,30"
 RadiusX="10" RadiusY="10" />
 </Path.Data>
 </Path>
 <Path Fill="LightGray" Stroke="Gray" StrokeThickness="2">
 <Path.Data>
 <EllipseGeometry x:Name="eg" Center="60,70" RadiusX="50"
 RadiusY="15" />
 </Path.Data>
 </Path>
 <Path Stroke="Gray" StrokeThickness="2">
 <Path.Data>

2D-Grafik9

250

 <LineGeometry x:Name="lg" StartPoint="10,100"
 EndPoint="110,100" />
 </Path.Data>
 </Path>
 ...
</Canvas>

Das umgebende Element in diesem Beispiel ist jeweils ein Path. Die Klasse Path
ist von der abstrakten Klasse Shape abgeleitet. Die geometrische Form eines Path
wird über den Inhalt der Eigenschaft Data bestimmt. Diese ist vom Typ Geometry.
Ein Path kann eine Füllung und einen Umriss haben, die mithilfe der bereits
bekannten Eigenschaften Fill, Stroke und StrokeThickness definiert werden.

Bei einer RectangleGeometry werden Lage und Größe über die Eigenschaft Rect
festgelegt. Diese ist vom Typ Rect. Einer der möglichen Konstruktoren der Struk-
tur Rect verlangt zur Festlegung double-Werte für die X- und Y-Koordinaten der
oberen linken Ecke sowie für die Breite und Höhe des Rechtecks. Die Koordina-
ten beziehen sich auf den übergeordneten Canvas. Die double-Eigenschaften
RadiusX und RadiusY bestimmen die Größe der Ellipse, die zur Abrundung der
Ecken dient. Der Standardwert 0 bedeutet: keine Abrundung.

Die Eigenschaft Center für das Zentrum einer EllipseGeometry ist vom Typ
Point. Einer der möglichen Konstruktoren der Struktur Point verlangt zur Festle-
gung double-Werte für die X- und Y-Koordinaten innerhalb des Canvas. Die
double-Eigenschaften RadiusX und RadiusY bestimmen die Größe der Ellipse.

Bei einer LineGeometry dienen die Eigenschaften StartPoint und EndPoint zur
Ortsbestimmung. Sie sind ebenfalls vom Typ Point.

Es folgen die Ereignismethoden, zunächst für die RectangleGeometry:

private void aendern_r(...)
{
 prg.StrokeThickness = 3;
 RectangleGeometry rg = prg.Data as RectangleGeometry;
 rg.Rect = new Rect(rg.Rect.Left, rg.Rect.Top,
 rg.Rect.Width + 10, rg.Rect.Height);
}
private void neu_r(...)
{
 Path p = new Path();
 p.Fill = new SolidColorBrush(Colors.LightGray);
 p.Data = new RectangleGeometry(
 new Rect(180, 10, 100, 30), 10, 10);
 cv.Children.Add(p);
}

Geometrien 9.2

251

Die Eigenschaften des umgebenden Path-Elements, wie zum Beispiel Fill,
Stroke oder StrokeThickness können direkt festgelegt werden. Darüber hinaus
kann die vorhandene Geometrie mithilfe eines Verweises vom Typ
RectangleGeometry geändert werden. Eine neue Geometrie wird mithilfe einer
neuen Instanz von RectangleGeometry erstellt. Das neue Path-Element wird
dem Canvas hinzugefügt.

Die Methoden für die EllipseGeometry sehen so aus:

private void aendern_e(...)
{
 peg.Fill = new SolidColorBrush(Colors.Gray);
 EllipseGeometry eg = peg.Data as EllipseGeometry;
 eg.Center = new Point(eg.Center.X + 10, eg.Center.Y);
}
private void neu_e(...)
{
 Path p = new Path();
 p.Fill = new SolidColorBrush(Colors.LightGray);
 p.Data = new EllipseGeometry(new Point(230, 70), 50, 15);
 cv.Children.Add(p);
}

Die Methoden für die LineGeometry sehen so aus:

private void aendern_l(...)
{
 plg.Stroke = new SolidColorBrush(Colors.LightGray);
 LineGeometry lg = plg.Data as LineGeometry;
 lg.EndPoint = new Point(lg.EndPoint.X + 10, lg.EndPoint.Y);
}
private void neu_l(...)
{
 Path p = new Path();
 p.Stroke = new SolidColorBrush(Colors.Gray);
 p.StrokeThickness = 2;
 p.Data = new LineGeometry(new Point(180, 100),
 new Point(280, 100));
 cv.Children.Add(p);
}

9.2.2 Kombinierte Geometrien

Zwei einzelne Grundgeometrien lassen sich mithilfe einer CombinedGeometry ver-
binden. Diese kombinierte Geometrie wird wie eine einzige Geometrie betrach-

2D-Grafik9

252

tet, mit einer gemeinsamen Füllung und einem gemeinsamen Umriss. Die Eigen-
schaft GeometryCombineMode bestimmt dabei über die Art der Verbindung.

Die beiden einzelnen Grundgeometrien können einfache Geometrien sein, wie
zum Beispiel eine RectangleGeometry. Sie können aber auch wiederum aus einer
CombinedGeometry bestehen. So lassen sich beliebig viele Geometrien kombinieren.

Das nachfolgende Projekt GeometrieKombiniert beinhaltet eine Ellipse, die mit
einem Rechteck kombiniert wurde. Sie können den Wert der Eigenschaft
GeometryCombineMode mithilfe von RadioButtons einstellen (siehe Abbildung 9.6).

Abbildung 9.6 Ellipse und Rechteck kombiniert

Der XAML-Code:

<Canvas>
 <Path Fill="LightGray" Stroke="Gray" StrokeThickness="2">
 <Path.Data>
 <CombinedGeometry GeometryCombineMode="Exclude"
 x:Name="cg">
 <CombinedGeometry.Geometry1>
 <EllipseGeometry Center="190,40"
 RadiusX="30" RadiusY="30" />
 </CombinedGeometry.Geometry1>
 <CombinedGeometry.Geometry2>
 <RectangleGeometry Rect="200,25 50,30" />
 </CombinedGeometry.Geometry2>
 </CombinedGeometry>
 </Path.Data>
 </Path>
 <GroupBox Header="GeometryCombineMode">
 <StackPanel RadioButton.Checked="cm"> ... </StackPanel>
 </GroupBox>
</Canvas>

Der Wert der Eigenschaft Data des Path-Elements ist eine CombinedGeometry.
Diese hat die beiden Eigenschaften Geometry1 und Geometry2 für die beiden
beteiligten Grundgeometrien; sie werden in Property Elements definiert. Die vier

Geometrien 9.2

253

möglichen Werte für die Eigenschaft GeometryCombineMode der CombinedGeometry
aus der gleichnamigen Enumeration sind folgende:

� Bei Exclude wird die Differenzmenge gebildet. Die Fläche umfasst nur den Teil
der Ellipse, der nicht im Rechteck liegt.

� Der Wert Intersect bezeichnet die Schnittmenge. Die Fläche umfasst nur den
Teil der Ellipse, der auch im Rechteck liegt.

� Der Standardwert ist Union. In diesem Fall umfasst die kombinierte Geometrie
die Vereinigungsmenge beider Grundgeometrien.

� Es gibt noch den Wert Xor (Exklusives Oder), das auch als symmetrische Dif-
ferenz bezeichnet wird. Dies ist der Teil, der entweder im Rechteck oder in der
Ellipse liegt.

Die Methode zum Umstellen des GeometryCombineMode, die über das Attached
Event im StackPanel aufgerufen wird, sieht so aus:

private void cm(...)
{
 if (!IsLoaded) return;
 switch ((e.Source as RadioButton).Content.ToString())
 {
 case "Exclude":
 cg.GeometryCombineMode = GeometryCombineMode.Exclude;
 break;
 case "Intersect":
 cg.GeometryCombineMode = GeometryCombineMode.Intersect;
 break;
 case "Union":
 cg.GeometryCombineMode = GeometryCombineMode.Union;
 break;
 case "Xor":
 cg.GeometryCombineMode = GeometryCombineMode.Xor;
 break;
 }
}

Der Text des RadioButtons, der als Ereignisquelle dient, bestimmt über den Wert
der Eigenschaft GeometryCombineMode.

9.2.3 Pfadgeometrien für komplexe Formen

Eine Pfadgeometrie für komplexe Formen wird mithilfe der Klasse PathGeometry
aufgebaut. Eine solche Geometrie besteht aus einer einzelnen Figur (Typ
PathFigure) oder aus einer Auflistung von Figuren (Typ PathFigureCollection).

2D-Grafik9

254

Eine Figur wiederum besteht aus einem einzelnen Segment oder aus einer Auflis-
tung von Segmenten (Typ PathSegmentCollection). Es gibt verschiedene Arten
von Segmenten:

� einfache Segmente wie Linie (Typ LineSegment), Bogen (Typ ArcSegment) und
Gruppen von Linien (Typ PolyLineSegment)

� quadratische oder kubische Bézier-Kurven der Typen QuadraticBezierSegment
und BezierSegment

� Gruppen von quadratischen oder kubischen Bézier-Kurven der Typen
PolyQuadraticBezierSegment und PolyBezierSegment

Bézier-Kurven werden im CAD-Bereich verwendet. Sie lassen sich mithilfe weni-
ger Parameter aus (relativ) einfachen mathematischen Formeln erstellen.

Nachfolgend wird im Projekt GeometriePfad ein Beispiel für eine Pfadgeometrie
dargestellt (siehe Abbildung 9.7). Sie besteht aus zwei Figuren mit jeweils zwei
Segmenten.

Abbildung 9.7 Pfadgeometrie

Der XAML-Code:

<Canvas x:Name="cv">
 <Path x:Name="pt" Fill="LightGray"
 Stroke="Black" StrokeThickness="2">
 <Path.Data>
 <PathGeometry>
 <PathFigureCollection>
 <PathFigure IsFilled="True" StartPoint="10,60">
 <PathSegmentCollection>
 <LineSegment Point="60,10" />
 <ArcSegment Point="110,60" Size="120,120" />
 </PathSegmentCollection>
 </PathFigure>
 <PathFigure IsFilled="True" StartPoint="160,60">
 <PathSegmentCollection>
 <ArcSegment Point="210,10" Size="40,40" />
 <LineSegment Point="260,60" />

Geometrien 9.2

255

 </PathSegmentCollection>
 </PathFigure>
 </PathFigureCollection>
 </PathGeometry>
 </Path.Data>
 </Path>
 ...
</Canvas>

Füllung und Umriss sind weiterhin Eigenschaften des umgebenden Elements
Path. Die Eigenschaft Data beinhaltet eine Instanz der Klasse PathGeometry, diese
wiederum enthält in der Eigenschaft Figures (vom Typ PathFigureCollection)
die Auflistung der Figuren.

Die Umrisslinie einer Figur startet bei den Koordinaten, die durch die Eigenschaft
StartPoint vom Typ Point gegeben werden. Sie durchläuft die einzelnen Seg-
mente in der Auflistung Segments (vom Typ PathSegmentCollection). Sie wird
geschlossen, falls die boolesche Eigenschaft IsClosed den Wert True hat. Die im
umgebenden Element definierte Füllung wird dargestellt, falls die boolesche
Eigenschaft IsFilled den Wert True hat. Dies ist der Standard.

Die Segmente sind im vorliegenden Fall vom Typ LineSegment und ArcSegment.
Diese haben gemeinsame Eigenschaften: Die Umrisslinie läuft in jedem Segment
zu den Koordinaten, die durch die Eigenschaft Point vom Typ Point gegeben
werden. Der im umgebenden Element definierte Umriss wird dargestellt, falls die
boolesche Eigenschaft IsStroked den Wert True hat. Dies ist der Standard. Size
vom Typ Size ist dagegen eine Eigenschaft eines ArcSegment. Damit wird die
Größe der Ellipse bestimmt, die den Bogenradius festlegt: Je größer der Radius
ist, desto flacher ist die Kurve (siehe Abbildung 9.7).

Die Methode zum Ändern einer Pfadgeometrie:

private void aendern(...)
{
 PathGeometry pg = pt.Data as PathGeometry;
 ArcSegment asg = pg.Figures[1].Segments[0] as ArcSegment;
 asg.Size = new Size(asg.Size.Width + 5, asg.Size.Height + 5);
}

Es wird der Bogenradius des ersten Segments der zweiten Figur vergrößert.

Die Methode zum Erstellen einer neuen Pfadgeometrie sieht so aus:

private void neu(...)
{
 PathSegmentCollection psc1 = new PathSegmentCollection();

2D-Grafik9

256

 psc1.Add(new LineSegment(new Point(60, 110), true));
 psc1.Add(new ArcSegment(new Point(110, 160), new Size(120,
 120), 0, false, SweepDirection.Counterclockwise, true));

 PathSegmentCollection psc2 = new PathSegmentCollection();
 psc2.Add(new ArcSegment(new Point(210, 110), new Size(40,40),
 0, false, SweepDirection.Counterclockwise, true));
 psc2.Add(new LineSegment(new Point(260, 160), true));

 PathFigureCollection pfc = new PathFigureCollection();
 pfc.Add(new PathFigure(new Point(10, 160), psc1, false));
 pfc.Add(new PathFigure(new Point(160, 160), psc2, false));

 PathGeometry pg = new PathGeometry(pfc);

 Path p = new Path();
 p.Data = pg;
 p.Fill = new SolidColorBrush(Colors.LightGray);
 p.Stroke = new SolidColorBrush(Colors.Black);
 p.StrokeThickness = 2;

 cv.Children.Add(p);
}

Die Pfadgeometrie wird von innen nach außen entworfen. Zunächst werden
Instanzen von PathSegmentCollection erzeugt. Diese werden mithilfe der
Methode Add() mit Segmenten gefüllt.

Ein LineSegment benötigt den Zielpunkt und einen Wert für IsStroked. Ein
ArcSegment benötigt den Zielpunkt, die Größe der Ellipse für den Bogenradius, die
double-Eigenschaft RotationAngle, die boolesche Eigenschaft IsLargeArc, die
Eigenschaft SweepDirection vom gleichnamigen Typ und einen Wert für IsStroked.

Der RotationAngle bestimmt den Wert in Grad, um den die Ellipse für den
Bogenradius um die x-Achse gedreht wird. Da die Ellipse in unserem Fall ein
Kreis ist (Höhe = Breite), hat eine Änderung des Wertes keine Auswirkung. Mit
IsLargeArc legt man fest, ob der Bogen größer als 180 Grad werden soll. Die
SweepDirection gibt die Drehrichtung des Bogens an: gegen den Uhrzeigersinn
(dies ist Standard) oder mit dem Uhrzeigersinn.

Es wird eine neue Instanz vom Typ PathFigureCollection erzeugt. Dieser wer-
den neue Instanzen der Klasse PathFigure hinzugefügt. Der Konstruktor der
Klasse PathFigure benötigt den Startpunkt der Figur vom Typ Point, die zuvor
definierte PathSegmentCollection und eine boolesche Variable für die Eigen-
schaft IsClosed.

Geometrien 9.2

257

Mit der PathFigureCollection wird wiederum eine neue Instanz des Typs
PathGeometry erzeugt. Diese wird der Eigenschaft Data der neuen Path-Instanz
zugewiesen. Als Letztes wird der Path dem Canvas hinzugefügt.

Sie sehen: Bereits die einfachen Segmenttypen bieten zahlreiche Parameter. Eine
Darstellung und Erläuterung der komplexen Typen würde den Rahmen dieses
Buchs überschreiten.

9.2.4 Pfadgeometrie in Pfadmarkupsyntax

Bisher wurde eine Pfadgeometrie Element für Element erzeugt. Es gibt eine kom-
paktere Schreibweise: die Pfadmarkupsyntax. Im nachfolgenden Projekt Geome-
triePfadMarkup wird dargestellt, wie Sie die Pfadgeometrie mit den beiden Figu-
ren aus dem vorherigen Abschnitt (siehe Abbildung 9.7) alternativ definieren
können:

<Canvas>
 <Path Fill="LightGray" Stroke="Black"
 Data="M10,60 l50,-50 a120,120 0 0 0 50,50
 m50,0 a40,40 0 0 0 50,-50 l50,50" />
</Canvas>

Es wird eine Zeichenkette für die Eigenschaft Data zusammengesetzt. Mit großen
Buchstaben wird ein Punkt mit absoluten Koordinaten angesteuert. Kleine Buch-
staben bedeutet: es handelt sich nur um einen Offset zum vorherigen Punkt. In
diesem Falle ist es für Sie einfacher, eine Pfadgeometrie zu versetzen, da Sie nur
den Startpunkt ändern müssen. Die Buchstaben haben folgende Bedeutung:

� M (oder m) Punkt: Bewege den Zeichenstift zu dem Punkt, ohne eine Linie zu
ziehen.

� L (oder l) Punkt: Ziehe mit dem Zeichenstift eine gerade Linie zu dem Punkt
(LineSegment).

� H (oder h) X: Ziehe eine horizontale Linie zur x-Koordinate.

� V (oder v) Y: Ziehe einen vertikale Linie zur y-Koordinate.

� A (oder a) [mit sechs Parametern]: Ziehe einen Bogen. Die Parameter sind die
gleichen wie für den Konstruktor der Klasse ArcSegment, der im vorherigen
Abschnitt erläutert wurde. Ausnahme: Der Endpunkt ist jetzt der letzte Para-
meter.

� Z: Schließe die Figur mit einer geraden Linie; entspricht PathFigure.IsClosed
= True.

Es gibt weitere Buchstaben, zum Beispiel für die Bézier-Kurven.

2D-Grafik9

258

9.2.5 Geometriegruppe

Mehrere einzelne Pfadgeometrien lassen sich mithilfe einer GeometryGroup grup-
pieren. Die einzelnen Pfadgeometrien haben dieselben Eigenschaften für Füllung
und Umriss. Allerdings wird der Umriss für jede Pfadgeometrie einzeln gezeich-
net. Für den überlappenden Teil der Füllung gibt es eine Füllregel. Die Eigen-
schaft FillRule bietet dazu eine Einstellmöglichkeit.

Nachfolgend sehen Sie im Projekt GeometrieGruppe ein Beispiel mit einer
Gruppe, die drei Pfadgeometrien mit jeweils einer Figur beinhaltet. Innerhalb
jeder Figur steht ein PolyLineSegment. Sie können den Wert der Eigenschaft
FillRule mithilfe von RadioButtons einstellen (siehe Abbildung 9.8).

Abbildung 9.8 Gruppe von Pfadgeometrien, »FillRule="EvenOdd"«

Der XAML-Code:

<Canvas>
 <Path Fill="LightGray" Stroke="Black">
 <Path.Data>
 <GeometryGroup x:Name="gg" FillRule="EvenOdd">
 <PathGeometry>
 <PathFigure StartPoint="100,60" IsClosed="True">
 <PolyLineSegment Points="150,10 200,60" />
 </PathFigure>
 </PathGeometry>
 <PathGeometry>
 <PathFigure StartPoint="100,80" IsClosed="True">
 <PolyLineSegment Points="150,30 200,80" />
 </PathFigure>
 </PathGeometry>
 <PathGeometry>
 <PathFigure StartPoint="100,115" IsClosed="True">
 <PolyLineSegment Points="200,115 150,65" />
 </PathFigure>
 </PathGeometry>
 </GeometryGroup>

Drawings 9.3

259

 </Path.Data>
 </Path>
 ...
</Canvas>

Zum Verständnis der Füllregel (Eigenschaft FillRule): Innerhalb der Geome-
triegruppe gibt es verschiedene eingeschlossene Flächen. Falls Sie eine gerade
Linie von einem Punkt innerhalb einer dieser Flächen bis zu einem Punkt außer-
halb der Geometriegruppe ziehen, so überschreiten Sie jeweils mehrere Umriss-
linien.

Für den Wert EvenOdd (dt. gerade, ungerade) gilt folgende Regel: Falls Sie auf der
Linie eine gerade Anzahl an Umrisslinien überschreiten, so wird die eingeschlos-
sene Fläche nicht gefüllt (siehe die weißen Dreiecke 1 und 2 in Abbildung 9.8).
Ansonsten wird sie gefüllt (siehe die grauen Flächen in Abbildung 9.8).

Für den Wert NonZero (etwa: »nicht bei 0«) müssen Sie zusätzlich die Verlaufsrich-
tung der jeweiligen Umrisslinien betrachten, und zwar ausgehend vom Start-
punkt. Diese ist für die oberen beiden Instanzen des Typs PolyLineSegment im
Uhrzeigersinn, für die dritte Instanz gegen den Uhrzeigersinn. Sie prüfen nun, ob
die überschrittene Linie von links nach rechts oder von rechts nach links verläuft.
Im ersten Falle addieren Sie den Wert 1, im zweiten Falle subtrahieren Sie den
Wert 1. Falls die Summe der Werte anschließend 0 beträgt, wird die Fläche nicht
gefüllt (siehe das weiße Dreieck 2 in Abbildung 9.9). Ansonsten wird sie gefüllt
(siehe das graue Dreieck 1 und die restlichen grauen Flächen in Abbildung 9.9).

Abbildung 9.9 Gruppe von Pfadgeometrien, FillRule="NonZero"

9.3 Drawings

Bilder, also Image-Objekte, können vorgefertigt aus einer Datei geladen oder mit-
hilfe von Drawing-Objekten (Zeichnungen) selbst erstellt werden. Es gibt ver-
schiedene Drawing-Typen, die alle von der abstrakten Basisklasse Drawing abgelei-
tet sind:

2D-Grafik9

260

� GeometryDrawing: zum Zeichnen einer Geometrie

� GlyphRunDrawing: zum Gestalten mithilfe von Zeichen einer Schriftart

� ImageDrawing: zum Laden einer Bilddatei

� VideoDrawing: zum Laden einer Videodatei

� DrawingGroup: zum Gruppieren mehrerer Drawing-Objekte

Im nachfolgenden Projekt DrawingBild wird ein Bild dargestellt, das mithilfe
einer GeometryDrawing aufgebaut wurde. Nach dem Betätigen der Taste (N) wird
ein weiteres Bild erzeugt. Nach dem Betätigen der Taste (A) wird das Größenver-
hältnis im vorhandenen Bild geändert (siehe Abbildung 9.10).

Abbildung 9.10 Bild aus GeometryDrawing

Der XAML-Code:

<Window ... KeyDown="Window_KeyDown">
 <StackPanel x:Name="sp">
 <Image Width="200" Height="50" Margin="1">
 <Image.Source>
 <DrawingImage>
 <DrawingImage.Drawing>
 <GeometryDrawing Brush="LightGray">
 <GeometryDrawing.Pen>
 <Pen Thickness="2" Brush="Gray" />
 </GeometryDrawing.Pen>
 <GeometryDrawing.Geometry>
 <RectangleGeometry Rect="0,0 200,50"
 RadiusX="10" RadiusY="10" />
 </GeometryDrawing.Geometry>
 </GeometryDrawing>
 </DrawingImage.Drawing>
 </DrawingImage>
 </Image.Source>
 </Image>
 </StackPanel>
</Window>

Drawings 9.3

261

Das Image-Objekt hat eine Größe von 200 mal 50, in geräteunabhängigen Pixeln.
Die Eigenschaft Source wird nicht mit Pfad und Name einer Bilddatei gefüllt, son-
dern mit einem DrawingImage-Objekt. Die Eigenschaft Drawing dieses Objekts ist
eine GeometryDrawing, also eine Zeichnung.

Dieses Drawing-Objekt hat die Eigenschaften Brush (Füllung), Pen (Randlinie) und
Geometry (Form). Die Form wird durch ein RectangleGeometry-Objekt erzeugt. In
der Eigenschaft Rect wird unter anderem das Verhältnis zwischen Breite und
Höhe des Rechtecks innerhalb des Bildes festgelegt. Da es in diesem Falle dem
Verhältnis zwischen Breite und Höhe des umgebenden Image-Objekts entspricht,
wird dieses ganz ausgefüllt.

Die Ereignismethode:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
 if (e.Key == Key.N)
 {
 GeometryDrawing gd = new GeometryDrawing(
 new SolidColorBrush(Colors.LightGray),
 new Pen(new SolidColorBrush(Colors.Gray), 2),
 new RectangleGeometry(new Rect(0, 0, 200, 50), 10, 10));
 Image im = new Image();
 im.Source = new DrawingImage(gd);
 im.Width = 200;
 im.Height = 50;
 im.Margin = new Thickness(1);
 sp.Children.Add(im);
 }
 else if (e.Key == Key.A)
 {
 Image im = sp.Children[0] as Image;
 DrawingImage di = im.Source as DrawingImage;
 GeometryDrawing gd = di.Drawing as GeometryDrawing;
 RectangleGeometry rg = gd.Geometry as RectangleGeometry;
 double wi = rg.Rect.Width - 20;
 if(wi > 0)
 rg.Rect = new Rect(0, 0, wi, 50);
 }

Eine neue GeometryDrawing fügen Sie hier wie folgt hinzu: Erzeugen Sie ein
neues GeometryDrawing-Objekt mit Werten für die Eigenschaften Brush, Pen und
Geometry. Dieses Objekt nutzen Sie als die Eigenschaft Drawing bei der Erzeugung
eines neuen DrawingImage-Objekts. Dieses Objekt stellt den Wert der Eigenschaft
Source eines neuen Image-Objekts dar, das dem StackPanel hinzugefügt wird.

2D-Grafik9

262

Eine vorhandene GeometryDrawing ändern Sie hier folgendermaßen: Über Stack-
Panel, Image, DrawingImage gelangen Sie zum vorhandenen GeometryDrawing-
Objekt. Die Eigenschaft Geometry dieses Objekts ist eine RectangleGeometry.
Deren Eigenschaft Rect müssen Sie nun ändern.

9.4 Pinsel

Pinsel dienen zum Einfärben beziehungsweise Füllen einer Fläche oder einer
Linie. Alle Pinsel erben von der abstrakten Basisklasse Brush. Ein SolidColor-
Brush färbt einheitlich ein, und ein LinearGradientBrush oder ein Radial-
GradientBrush erzeugt einen Farbverlauf. Ein ImageBrush füllt eine Fläche mit
einem Bild. Die Transparenz eines Pinsels wird auch in Abschnitt 9.6.2, »Maskie-
rung mit OpacityMask«, behandelt.

9.4.1 SolidColorBrush

Ein Pinsel der Klasse SolidColorBrush färbt die Fläche oder Linie in einer einheit-
lichen Farbe. Im nachfolgenden Projekt BrushSolid werden die Werte für die
Eigenschaften Fill und Stroke mit einem solchen Pinsel bestimmt (siehe Abbil-
dung 9.11). Sie haben die Möglichkeit, den Alphakanal und die RGB-Komponen-
ten der Füllung mithilfe von Slidern zu verändern. Der Alphakanal steht für die
Undurchsichtigkeit. Je höher der Wert ist, desto undurchsichtiger ist die Fläche
oder Linie. RGB steht für die drei Farbkomponenten Rot, Grün und Blau. Je höher
der Wert ist, desto höher ist der Anteil dieser Komponente an der gesamten Farbe.

Abbildung 9.11 Einheitliche Füllung mit SolidColorBrush

Der XAML-Code:

<Window ... Loaded="Window_Loaded">
 <StackPanel>
 <Rectangle x:Name="rc" Width="280" Height="30" Margin="5"
 Stroke="Gray" StrokeThickness="3">
 <Rectangle.Fill>
 <SolidColorBrush x:Name="scb" />

Pinsel 9.4

263

 </Rectangle.Fill>
 </Rectangle>
 <WrapPanel>
 <Slider x:Name="sla" Width="70" Minimum="0" Maximum="255"
 Value="127" TickFrequency="32" Margin="2"
 TickPlacement="BottomRight" ValueChanged="sl" />
 ...
</Window>

Die Werte für den Alphakanal und die RGB-Komponenten sind vom Typ Byte.
Der Alphawert 0 bedeutet: volle Transparenz der Farbe, und der Alphawert 255
bedeutet: keine Transparenz. Die Ereignismethoden sehen so aus:

private void Window_Loaded(...)
{ scb.Color = Color.FromArgb(127, 127, 127, 127); }
private void sl(object sender,
 RoutedPropertyChangedEventArgs<double> e)
{
 if(IsLoaded)
 scb.Color = Color.FromArgb((byte)sla.Value,
 (byte)slr.Value, (byte)slg.Value, (byte)slb.Value);
}

Der Eigenschaft Color eines Pinsels vom Typ SolidColorBrush kann eine Farbe
mithilfe der Struktur Color zugeordnet werden. Die statische Methode
FromArgb() verlangt vier Byte-Werte, die jeweils von 0 bis 255 reichen.

9.4.2 LinearGradientBrush

Ein LinearGradientBrush erzeugt einen linearen Farbverlauf von einer Startfarbe
zu einer Endfarbe. Alle Punkte auf der Fläche, die eingefärbt werden sollen, wer-
den mit relativen Koordinaten vom Typ Point bezeichnet. Die Werte gehen
sowohl horizontal als auch vertikal von 0 bis 1 (siehe Abbildung 9.12).

Im nachfolgenden Projekt BrushLinear wird zunächst ein horizontaler Farbverlauf
von 0,0 nach 1,0 dargestellt. Sie können die Endpunkte verändern, dann ergibt sich
ein vertikaler Farbverlauf (nach 0,1) oder ein diagonaler Farbverlauf (nach 1,1).

Der XAML-Code:

<Canvas>
 <Rectangle Width="100" Height="100"
 Canvas.Top="20" Canvas.Left="20">
 <Rectangle.Fill>
 <LinearGradientBrush x:Name="lgb"
 StartPoint="0,0" EndPoint="1,0">

2D-Grafik9

264

 <GradientStop Offset="0.0" Color="Black" />
 <GradientStop Offset="1.0" Color="White" />
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 ...
 <RadioButton Checked="rechts_oben"
 IsChecked="True">1,0</RadioButton>
 <RadioButton Checked="links_unten">0,1</RadioButton>
 <RadioButton Checked="rechts_unten">1,1</RadioButton>
 ...
</Canvas>

Abbildung 9.12 Linearer Farbverlauf mit LinearGradientBrush

Die Eigenschaften StartPoint und EndPoint bestimmen den Anfangspunkt und
den Endpunkt einer Linie, auf der der Farbverlauf stattfindet. Mithilfe der Klasse
GradientStop werden Übergangspunkte auf dieser Linie festgelegt. Jeder Über-
gangspunkt hat die Eigenschaft Offset vom Typ double und die Eigenschaft
Color vom Typ Color. Offset legt die relative Position auf der Linie fest. Zwi-
schen den Übergangspunkten wird linear interpoliert.

Die Ereignismethoden für die RadioButtons sehen wie folgt aus:

private void rechts_oben(...) {lgb.EndPoint = new Point(1, 0);}
private void links_unten(...) {lgb.EndPoint = new Point(0, 1);}
private void rechts_unten(...) {lgb.EndPoint = new Point(1, 1);}

Die Eigenschaft EndPoint vom Typ Point bekommt jeweils einen neuen Wert. Im
nachfolgenden Projekt BrushGradient folgt ein weiteres Beispiel mit einem ein-
stellbaren Übergangspunkt (siehe Abbildung 9.13).

Der XAML-Code:

<StackPanel>
 <Rectangle Width="200" Height="30" Margin="5">
 <Rectangle.Fill>

Pinsel 9.4

265

 <LinearGradientBrush x:Name="lgb"
 StartPoint="0,0" EndPoint="1,0">
 <GradientStop Offset="0.0" Color="Black" />
 <GradientStop Offset="0.5" Color="White" />
 <GradientStop Offset="1.0" Color="Black" />
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 <Slider x:Name="sl" Width="200" Minimum="0" Maximum="1"
 Value="0.5" TickFrequency="0.1" TickPlacement="BottomRight"
 Margin="5" ValueChanged="vc" />
 <Label x:Name="lb" HorizontalAlignment="Center">0.5</Label>
</StackPanel>

Abbildung 9.13 Einstellbarer Übergangspunkt

Die Farbe verläuft von Schwarz zu Weiß und anschließend wieder zu Schwarz. Zu
Beginn liegt Weiß in der Mitte. Die Ereignismethode sieht so aus:

private void vc(object sender,
 RoutedPropertyChangedEventArgs<double> e)
{
 lgb.GradientStops[1].Offset = sl.Value;
 if(IsLoaded)
 lb.Content = Math.Round(sl.Value,2);
}

Auf die Übergangspunkte kann mithilfe der Auflistungseigenschaft GradientStops
vom Typ GradientStopCollection zugegriffen werden. Die relative Position des
zweiten Übergangspunkts (für die Farbe Weiß) wird über den Slider festgelegt.

9.4.3 RadialGradientBrush

Mithilfe eines RadialGradientBrush erzeugen Sie einen radialen Farbverlauf. Die
Linie für den Farbverlauf geht von innen nach außen von einer Startfarbe zu
einer Endfarbe. Auf der Linie gelten die gleichen Regeln für die Übergangspunkte
wie beim linearen Farbverlauf.

2D-Grafik9

266

Die Eigenschaft GradientOrigin bestimmt die Strahlquelle, während die Eigen-
schaft Center die Strahlrichtung festlegt. Beide sind vom Typ Point und haben
den Standardwert 0.5, 0.5, also den Mittelpunkt der Fläche.

Im nachfolgenden Projekt BrushRadial wurden die Strahlquelle nach rechts und
die Strahlrichtung nach links verschoben (siehe Abbildung 9.14). Beide Werte
sind über Slider einstellbar.

Abbildung 9.14 Radialer Farbverlauf mit RadialGradientBrush

Der XAML-Code:

<StackPanel>
 <Rectangle Width="80" Height="80" Margin="5">
 <Rectangle.Fill>
 <RadialGradientBrush x:Name="radgb"
 GradientOrigin="0.7, 0.5" Center="0.3, 0.5">
 <GradientStop Offset="0.1" Color="White" />
 <GradientStop Offset="1.0" Color="Black" />
 </RadialGradientBrush>
 </Rectangle.Fill>
 </Rectangle>

 <WrapPanel>
 <Label x:Name="lb1" Width="60">GO: 0,7</Label>
 <Slider x:Name="sl1" Width="160" Minimum="0" Maximum="1"
 Value="0.7" TickFrequency="0.1" TickPlacement="BottomRight"
 Margin="5" ValueChanged="sl1_ValueChanged" />
 </WrapPanel>
 <WrapPanel>
 <Label x:Name="lb2" Width="60">C: 0,3</Label>
 <Slider x:Name="sl2" Width="160" Minimum="0" Maximum="1"
 Value="0.3" TickFrequency="0.1" TickPlacement="BottomRight"

Pinsel 9.4

267

 Margin="5" ValueChanged="sl2_ValueChanged" />
 </WrapPanel>
</StackPanel>

Die Farbe verläuft von Weiß nach Schwarz. Allerdings hat der erste Übergangs-
punkt den Wert 0.1, sodass innen ein weißer Kreis erscheint. Die Strahlquelle
(Eigenschaft GradientOrigin) liegt bei 0.7, 0.5, also nach rechts verschoben. Die
Strahlrichtung (Eigenschaft Center) liegt bei 0.3, 0.5, also nach links verschoben.
Dieser Punkt bezeichnet die Mitte des äußeren Kreises, daher der Eigenschafts-
name Center.

Es folgen die Ereignismethoden:

private void sl1_ValueChanged(object sender,
 RoutedPropertyChangedEventArgs<double> e)
{
 radgb.GradientOrigin = new Point(sl1.Value, 0.5);
 lb1.Content = "GO: " + Math.Round(sl1.Value, 2);
}

private void sl2_ValueChanged(object sender,
 RoutedPropertyChangedEventArgs<double> e)
{
 radgb.Center = new Point(sl2.Value, 0.5);
 lb2.Content = "C: " + Math.Round(sl2.Value, 2);
}

In beiden Fällen bestimmt der Wert des Sliders die x-Koordinate des neuen
Punkts. Die y-Koordinate bleibt bei 0.5, also vertikal in der Mitte.

9.4.4 ImageBrush

Ein ImageBrush füllt eine Fläche mit einer oder mehreren Kacheln (engl. Tile). Auf
jeder Kachel ist ein Bild. Die Eigenschaft ImageSource vom Typ ImageSource ver-
weist auf die Bildquelle (siehe auch Abschnitt 4.9.1, »Image«). Ort und Größe
einer Kachel innerhalb der Fläche werden mithilfe der Eigenschaft Viewport
angegeben. Die Eigenschaft Viewbox dient zur Auswahl des dargestellten Aus-
schnitts einer Kachel. Die beiden letztgenannten Eigenschaften sind vom Typ
Rect (siehe auch Abschnitt 9.2.1, »Einfache geometrische Formen«).

Die Eigenschaft TileMode bestimmt die Anordnung der Kacheln. Im Projekt
BrushTile werden die verschiedenen Werte aus der Enumeration TileMode inner-
halb eines Grids dargestellt (siehe Abbildung 9.15).

2D-Grafik9

268

Abbildung 9.15 Kacheln mit ImageBrush, verschiedene TileModes

Der XAML-Code:

<Grid ... >
...
<Rectangle Stroke="Black">
 <Rectangle.Fill>
 <ImageBrush ImageSource="work.gif" Viewbox="0.2 0.2 0.6 0.6"
 Viewport="0.1 0.1 0.5 0.5" TileMode="None" />
 </Rectangle.Fill>
</Rectangle>
<Rectangle Grid.Column="1" Stroke="Black">
 <Rectangle.Fill>
 <ImageBrush ImageSource="work.gif"
 Viewport="0.1 0.1 0.5 0.5" TileMode="Tile" />
 </Rectangle.Fill>
</Rectangle>
<Rectangle Grid.Column="2" Stroke="Black">
 <Rectangle.Fill>
 <ImageBrush ImageSource="work.gif"
 Viewport="0.1 0.1 0.5 0.5" TileMode="FlipX" />
 </Rectangle.Fill>
 </Rectangle>
 <Rectangle Grid.Column="3" Stroke="Black">
 <Rectangle.Fill>
 <ImageBrush ImageSource="work.gif"
 Viewport="0.1 0.1 0.5 0.5" TileMode="FlipY" />
 </Rectangle.Fill>
 </Rectangle>
 <Rectangle Grid.Column="4" Stroke="Black">
 <Rectangle.Fill>
 <ImageBrush ImageSource="work.gif"
 Viewport="0.1 0.1 0.5 0.5" TileMode="FlipXY" />
 </Rectangle.Fill>
 </Rectangle>
 ...
</Grid>

Pinsel 9.4

269

Betrachten wir zunächst die Eigenschaftswerte, die für die Darstellungen in allen
Grid-Zellen übereinstimmen: Es wird das Bild aus der Datei work.gif als Füllung
einer rechteckigen, schwarz umrandeten Fläche verwendet. Der Viewport inner-
halb des Rechtecks beginnt an der relativen Position 0.1, 0.1. Die erste Kachel liegt
also leicht nach rechts unten gerückt, ausgehend von der linken oberen Ecke. Der
Viewport hat die relative Größe 0.5, 0.5, nimmt also die Hälfte der Breite des Recht-
ecks und die Hälfte der Höhe des Rechtecks ein. Daher ist Platz für vier Kacheln.

Für das Bild in der Grid-Zelle ganz links wird mithilfe der Eigenschaft Viewbox ein
Ausschnitt bestimmt. Dieser beginnt innerhalb des Bildes an der relativen Position
0.2, 0.2 und hat die relative Größe 0.6, 0.6. Es werden also die mittleren 60 % des
Bildes dargestellt. Für die Bilder in den restlichen Grid-Zellen wird die Eigenschaft
Viewbox nicht festgelegt, daher gelten die Standardwerte 0,0 und 1,1. Der Ausschnitt
beginnt also an der linken oberen Ecke des Bildes und umfasst das gesamte Bild.

Die verschiedenen Werte für die Eigenschaft TileMode:

� None: Es wird nur eine Kachel abgebildet. Dies ist der Standardwert.

� Tile: Die Fläche wird mit Kacheln gefüllt. Jede Kachel sieht gleich aus.

� FlipX: Wie Tile, zusätzlich wird jede zweite Kachel in horizontaler Richtung
horizontal gespiegelt.

� FlipY: Wie Tile, zusätzlich wird jede zweite Kachel in vertikaler Richtung ver-
tikal gespiegelt.

� FlipXY: Eine Kombination aus FlipX und FlipY.

Die Werte für Viewbox und Viewport wurden im Beispiel relativ festgelegt, also zwi-
schen 0 und 1. Sie können auch absolute Werte verwenden. Dazu müssen Sie die
Eigenschaften ViewboxUnits beziehungsweise ViewportUnits entsprechend ändern.

Es folgt im Projekt BrushViewbox ein weiteres Beispiel für einen ImageBrush. Die
Viewbox, also der dargestellte Bildausschnitt, lässt sich über Slider einstellen
(siehe Abbildung 9.16). Zum Vergleich ist links das gesamte Bild dargestellt.

Abbildung 9.16 Viewbox, einstellbar

2D-Grafik9

270

Der XAML-Code:

<WrapPanel>
 <Rectangle Width="160" Height="120" Margin="3">
 <Rectangle.Fill>
 <ImageBrush ImageSource="blume.jpg" />
 </Rectangle.Fill>
 </Rectangle>
 <Rectangle Width="160" Height="120" Margin="3">
 <Rectangle.Fill>
 <ImageBrush x:Name="ib" ImageSource="blume.jpg"
 Viewbox="0 0 0.5 0.5" />
 </Rectangle.Fill>
 </Rectangle>
 <Slider x:Name="sl1" Height="120" Minimum="0" Maximum="0.5"
 Value="0" TickFrequency="0.1" TickPlacement="BottomRight"
 Margin="5" ValueChanged="vc" Orientation="Vertical" />
 <Slider x:Name="sl2" Width="160" Minimum="0" Maximum="0.5"
 Value="0" TickFrequency="0.1" TickPlacement="BottomRight"
 Margin="170,5,5,5" ValueChanged="vc" />
</WrapPanel>

Die relativen Werte für die Eigenschaft Viewbox sind zunächst 0,0 und 0.5,0.5.
Der Ausschnitt beginnt also links oben im Bild, und es wird die halbe Breite und
die halbe Höhe dargestellt. Die Ereignismethode sieht so aus:

private void vc(object sender,
 RoutedPropertyChangedEventArgs<double> e)
{ ib.Viewbox = new Rect(sl2.Value, sl1.Value, 0.5, 0.5); }

Über die beiden Slider kann jeweils ein relativer Wert zwischen 0 und 0.5 für die
linke obere Ecke des Ausschnitts eingestellt werden. Die Größe des Ausschnitts
bleibt fest bei den relativen Werten 0.5, 0.5.

9.5 Transformationen

Ein Element kann in der zweidimensionalen Ebene auf mehrere Arten transfor-
miert werden. Dazu dienen die folgenden Klassen, die alle von der Klasse
Transform abgeleitet sind:

� RotateTransform: Drehung

� ScaleTransform: Größenänderung, gegebenenfalls mit Verzerrung

� SkewTransform: Abschrägung beziehungsweise Neigung

Transformationen 9.5

271

� TranslateTransform: Verschiebung

� TransformGroup: Zusammenfassung mehrerer Transformationen

Die Auswirkungen auf die Nachbarn eines transformierten Elements können
unterschiedlich sein. Dies legen Sie durch die Auswahl einer der beiden folgen-
den Eigenschaften des transformierten Elements fest:

� RenderTransform: Die Nachbarelemente werden durch die Transformation
nicht beeinflusst, es können also mehrere Elemente übereinander liegen.

� LayoutTransform: Die Nachbarelemente werden durch die Transformation
verschoben.

9.5.1 RotateTransform mit RenderTransform

Sie können ein Element mithilfe eines Objekts des Typs RotateTransform drehen.
Die double-Eigenschaft Angle bestimmt den Winkel der Drehung; der Standard-
wert ist 0.

Im ersten Beispielprojekt TransRender wird die Drehung von zwei Buttons
jeweils durch Auswahl der Eigenschaft RenderTransform ausgeführt. Die Nach-
barelemente werden also nicht verschoben (siehe Abbildung 9.17).

Abbildung 9.17 Drehung mit RotateTransform, Render

Der Ursprung der Transformation kann mithilfe der Eigenschaft RenderTrans-
formOrigin des transformierten Elements festgelegt werden. Diese Eigenschaft ist
vom Typ Point und legt bei einer Rotation den Drehpunkt mit relativen Werten
fest. Der Standardwert ist 0,0. Die Drehung wird damit um die linke obere Ecke
des Elements ausgeführt.

Durch wiederholtes Betätigen des ersten Buttons können Sie den Winkel verän-
dern, den Button also weiter drehen. Die Betätigung des zweiten Buttons führt
zur wiederholten Veränderung des Drehpunkts.

2D-Grafik9

272

Der XAML-Code:

<StackPanel>
 <Button Width="120">Button 1</Button>
 <Button Width="120" x:Name="b2" Panel.ZIndex="1"
 Click="b2_Click">Angle 15
 <Button.RenderTransform>
 <RotateTransform x:Name="rt" Angle="15" />
 </Button.RenderTransform>
 </Button>
 <Button Width="120">Button 3</Button>
 <Button Width="120">Button 4</Button>
 <Button Width="120" x:Name="b5" Panel.ZIndex="1"
 RenderTransformOrigin="0.5 0.5" Click="b5_Click">Mitte
 <Button.RenderTransform>
 <RotateTransform Angle="15" />
 </Button.RenderTransform>
 </Button>
 <Button Width="120">Button 6</Button>
</StackPanel>

Bei beiden gedrehten Buttons wurde die Attached Property Panel.ZIndex auf 1
gesetzt, sodass sie in z-Richtung über den anderen Buttons stehen. Die Eigen-
schaft RenderTransform der Buttons wird mit einem Objekt des Typs
RotateTransform besetzt. Der Startwinkel (Eigenschaft Angle) wurde jeweils mit
15 Grad festgelegt.

Beim zweiten gedrehten Button wird zusätzlich der Drehpunkt auf 0.5, 0.5 fest-
gelegt. Die Drehung wird damit um die Mitte des Elements ausgeführt.

Es folgt die Fensterklasse mit Eigenschaften und Ereignismethoden:

public partial class MainWindow : Window
{
 Point[] p;
 string[] s;
 int rto_index;

 public MainWindow()
 {
 InitializeComponent();

 p = new Point[5];
 p[0] = new Point(0, 0);
 p[1] = new Point(1, 0);
 p[2] = new Point(0, 1);
 p[3] = new Point(1, 1);
 p[4] = new Point(0.5, 0.5);

Transformationen 9.5

273

 s = new string[5];
 s[0] = "Links oben";
 s[1] = "Rechts oben";
 s[2] = "Links unten";
 s[3] = "Rechts unten";
 s[4] = "Mitte";

 rto_index = 4;
 }

 private void b2_Click(...)
 {
 rt.Angle = rt.Angle + 15;
 b2.Content = "Angle " + rt.Angle % 360;
 }

 private void b5_Click(...)
 {
 rto_index++;
 rto_index = rto_index % 5;
 b5.RenderTransformOrigin = p[rto_index];
 b5.Content = s[rto_index];
 }
}

Beim ersten gedrehten Button wird der Wert der Eigenschaft Angle jeweils um 15
(Grad) erhöht. Der Button wird mit dem Wert des aktuellen Winkels, der von 0
bis 360 Grad reichen kann, beschriftet.

Für den zweiten gedrehten Button werden fünf bestimmte Möglichkeiten für den
Drehpunkt festgelegt und in einem Feld gespeichert. Parallel dazu wird ein Feld
mit den fünf entsprechenden Beschriftungen gefüllt. Bei jedem Click auf den But-
ton werden seine Eigenschaft RenderTransformOrigin und seine Beschriftung
geändert. Der Modulo-Operator % liefert bekanntlich den Rest einer Division.
Dies sorgt im vorliegenden Fall dafür, dass rto_index nur einen der Werte von 0
bis 4 bekommen kann.

9.5.2 RotateTransform mit LayoutTransform

Es folgt das Beispielprojekt TransLayout, in dem die Drehung eines Buttons durch
Auswahl der Eigenschaft LayoutTransform ausgeführt wird. Die Nachbarele-
mente werden also verschoben (siehe Abbildung 9.18). Durch wiederholtes Betä-
tigen des Buttons können Sie auch hier den Button weiter drehen.

2D-Grafik9

274

Abbildung 9.18 Drehung mit RotateTransform, Layout

Der XAML-Code:

<StackPanel>
 <Button Width="120">Button 1</Button>
 <Button Width="120" Height="23" x:Name="b2"
 Click="b2_Click">Angle 15
 <Button.LayoutTransform>
 <RotateTransform x:Name="rt" Angle="15" />
 </Button.LayoutTransform>
 </Button>
 <Button Width="120">Button 3</Button>
</StackPanel>

Die Eigenschaft LayoutTransform der Buttons wird mit einem Objekt des Typs
RotateTransform besetzt. Der Winkel (Eigenschaft Angle) wird mit 15 Grad fest-
gelegt und kann durch folgende Ereignismethode geändert werden:

private void b2_Click(...)
{
 rt.Angle = rt.Angle + 15;
 b2.Content = "Angle " + rt.Angle % 360;
}

9.5.3 ScaleTransform

Die Größenänderung (Skalierung) eines Elements können Sie mithilfe eines
Objekts des Typs ScaleTransform durchführen. Falls Sie die beiden double-Eigen-
schaften ScaleX und ScaleY als Skalierungsfaktoren für die x- und y-Richtung
unterschiedlich wählen, wird das Element verzerrt. Der Standardwert für beide
Faktoren ist 1.

Im nachfolgenden Projekt TransScale werden zwei Skalierungen durchgeführt: ein-
mal innerhalb einer RenderTransform und einmal innerhalb einer LayoutTransform.
Entsprechend verschieben sich im zweiten Fall die Nachbarelemente (siehe Abbil-
dung 9.19). Durch wiederholtes Betätigen der beiden Buttons wird die Skalierung in
x-Richtung verkleinert und in y-Richtung vergrößert.

Transformationen 9.5

275

Abbildung 9.19 Größenänderung mit ScaleTransform

Der XAML-Code:

<StackPanel>
 <Button Width="100">Button 1</Button>
 <Button x:Name="b2" RenderTransformOrigin="0.5 0.5"
 Width="100" Panel.ZIndex="1" Click="b2_Click">X:2,5 Y:1,6
 <Button.RenderTransform>
 <ScaleTransform x:Name="st2" ScaleX="2.5" ScaleY="1.6" />
 </Button.RenderTransform>
 </Button>
 <Button Width="100">Button 3</Button>
 <Button x:Name="b4" Width="100" Click="b4_Click">X:2,5 Y:1,6
 <Button.LayoutTransform>
 <ScaleTransform x:Name="st4" ScaleX="2.5" ScaleY="1.6" />
 </Button.LayoutTransform>
 </Button>
 <Button Width="100">Button 5</Button>
</StackPanel>

In beiden Fällen wird der Button in x-Richtung um den Faktor 2.5, in y-Richtung
um den Faktor 1.6 vergrößert. Damit ergibt sich eine Verzerrung. Durch die Werte
0.5, 0.5 für die Eigenschaft RenderTransformOrigin wird die Mitte des Elements
als Ursprung für den RenderTransform gewählt. Somit überlappt das Element die
Nachbarelemente gleichmäßig. Falls kein Wert für RenderTransformOrigin festge-
legt würde, dann würde das Element wegen des Standardwerts 0,0 nur nach rechts
und unten überlappen.

Die Ereignismethoden sehen so aus:

private void b2_Click(...)
{
 st2.ScaleX = st2.ScaleX - 0.1;
 st2.ScaleY = st2.ScaleY + 0.1;
 b2.Content = "X:" + Math.Round(st2.ScaleX,1)
 + " Y:" + Math.Round(st2.ScaleY,1);
}

2D-Grafik9

276

private void b4_Click(...)
{
 st4.ScaleX = st4.ScaleX - 0.1;
 st4.ScaleY = st4.ScaleY + 0.1;
 b4.Content = "X:" + Math.Round(st4.ScaleX, 1)
 + " Y:" + Math.Round(st4.ScaleY, 1);
}

Bei jedem Betätigen der beiden Buttons wird der Skalierungsfaktor in x-Richtung
um 0.1 verkleinert und in y-Richtung um 0.1 vergrößert.

9.5.4 SkewTransform

Mithilfe eines Objekts des Typs SkewTransform können Sie ein Element abschrä-
gen beziehungsweise neigen. Die double-Eigenschaft AngleX legt den Neigungs-
winkel fest, den der vertikale Rand des Elements gegenüber der y-Achse hat. Ent-
sprechend bestimmt AngleY den Neigungswinkel für den horizontalen Rand
gegenüber der x-Achse. Der Standardwert für beide Winkel ist 0.

Im nachfolgenden Projekt TransSkew werden zwei Elemente geneigt: einmal
innerhalb einer RenderTransform und einmal innerhalb einer LayoutTransform.
Entsprechend verschieben sich im zweiten Fall die Nachbarelemente (siehe
Abbildung 9.20). Durch wiederholtes Betätigen der beiden Buttons wird die Nei-
gung für den horizontalen Rand (AngleY) vergrößert.

Abbildung 9.20 Neigung mit SkewTransform

Der XAML-Code:

<StackPanel>
 <Button Width="100">Button 1</Button>
 <Button x:Name="b2" RenderTransformOrigin="0.5 0.5"
 Width="100" Panel.ZIndex="1" Click="b2_Click">X:30 Y:5
 <Button.RenderTransform>
 <SkewTransform x:Name="st2" AngleX="30" AngleY="5" />
 </Button.RenderTransform>
 </Button>

Transformationen 9.5

277

 <Button Width="100">Button 3</Button>
 <Button x:Name="b4" Width="100" Click="b4_Click">X:30 Y:5
 <Button.LayoutTransform>
 <SkewTransform x:Name="st4" AngleX="30" AngleY="5" />
 </Button.LayoutTransform>
 </Button>
 <Button Width="100">Button 5</Button>
</StackPanel>

In beiden Fällen wird der Button relativ zur y-Achse um 30 Grad und relativ zur
x-Achse um 5 Grad geneigt. Auch hier wird die Mitte des Elements als Ursprung
für den RenderTransform gewählt. Die Ereignismethoden sehen wie folgt aus:

private void b2_Click(...)
{
 st2.AngleY = st2.AngleY + 5;
 b2.Content = "X:30 Y:" + st2.AngleY;
}

private void b4_Click(...)
{
 st4.AngleY = st4.AngleY + 5;
 b4.Content = "X:30 Y:" + st4.AngleY;
}

Bei jedem Betätigen der beiden Buttons erhöht sich die Neigung um weitere 5
Grad relativ zur x-Achse.

9.5.5 TranslateTransform

Die Verschiebung eines Elements führen Sie mithilfe eines Objekts des Typs
TranslateTransform durch. Die beiden double-Eigenschaften X und Y legen die
Werte für die Verschiebung in x- und y-Richtung einzeln fest. Der Standardwert
für beide Eigenschaften ist 0.

Im nachfolgenden Projekt TransTranslate wird eine Verschiebung innerhalb einer
RenderTransform durchgeführt (siehe Abbildung 9.21). Durch wiederholtes Betä-
tigen des Buttons wird die Verschiebung geändert.

Abbildung 9.21 Verschiebung mit TranslateTransform

2D-Grafik9

278

Der XAML-Code:

<StackPanel>
 <Button Width="100">Button 1</Button>
 <Button x:Name="b2" Width="100" Panel.ZIndex="1"
 Click="b2_Click">X:30 Y:-10
 <Button.RenderTransform>
 <TranslateTransform x:Name="tt2" X="30" Y="-10" />
 </Button.RenderTransform>
 </Button>
 <Button Width="100">Button 3</Button>
</StackPanel>

Der Button wird um den Wert 30 in x-Richtung und um den Wert –10 in y-Rich-
tung verschoben. Die Ereignismethode sieht wie folgt aus:

private void b2_Click(...)
{
 tt2.X = tt2.X + 10;
 tt2.Y = tt2.Y + 10;
 b2.Content = "X:" + tt2.X + " Y:" + tt2.Y;
}

Bei jedem Betätigen des Buttons wird er um den Wert 10 nach rechts und nach
unten verschoben.

9.5.6 TransformGroup

Innerhalb eines Objekts des Typs TransformGroup haben Sie die Möglichkeit,
mehrere Transformationen auf ein Element anzuwenden. Ein Element kann also
gleichzeitig gedreht, skaliert, geneigt und verschoben werden. Die einzelnen
Transformationen sind untergeordnete Elemente des TransformGroup-Objekts.

Im nachfolgenden Projekt TransGroup wird dies mit einem Button durchgeführt
(siehe Abbildung 9.22). Durch wiederholtes Betätigen des Buttons wird er wei-
tergedreht.

Der XAML-Code:

<StackPanel Margin="3">
 <Button Width="100">Button 1</Button>
 <Button x:Name="b2" Width="100" Panel.ZIndex="1"
 Click="b2_Click">Rot.Angle:20
 <Button.RenderTransform>
 <TransformGroup x:Name="tg2">

Transformationen 9.5

279

 <RotateTransform Angle="20" />
 <ScaleTransform ScaleX="1.5" ScaleY="0.8" />
 <SkewTransform AngleX="0" AngleY="20" />
 <TranslateTransform X="50" Y="-10" />
 </TransformGroup>
 </Button.RenderTransform>
 </Button>
 <Button Width="100">Button 3</Button>
</StackPanel>

Abbildung 9.22 Mehrere Transformationen mit TransformGroup

Mit dem Button werden, bezogen auf seine linke obere Ecke als Ursprung der
RenderTransform, folgende Transformationen durchgeführt:

� Er wird um 20 Grad gedreht.

� Er wird verzerrt, da er um den Faktor 1.5 in x-Richtung vergrößert und um
den Faktor 0.8 in y-Richtung verkleinert wird.

� Seine obere und untere Seite werden um weitere 20 Grad gegenüber der
x-Achse geneigt.

� Er wird um den Wert 50 nach rechts und um den Wert 10 nach oben verschoben.

Die Ereignismethode sieht so aus:

private void b2_Click(...)
{
 RotateTransform rt = tg2.Children[0] as RotateTransform;
 rt.Angle = rt.Angle + 10;
 b2.Content = "Rot.Angle: " + rt.Angle;
}

Das erste untergeordnete Element der TransformGroup ist das Objekt des Typs
RotateTransform. Dessen Eigenschaft Angle wird bei jedem Betätigen des But-
tons um den Wert 10 (Grad) geändert.

2D-Grafik9

280

9.6 Transparenz

Die Eigenschaften Opacity und Background dienen dazu, die Transparenz ganzer
Elemente oder des Hintergrunds eines Elements einzustellen. Gleichmäßige
Übergänge zur Transparenz können Sie mit Maskierungen erreichen. Außerdem
können Teile von Elementen mithilfe der Eigenschaft Clip ausgestanzt werden.

9.6.1 Transparenz mit Opacity und Background

Die Opazität oder Undurchsichtigkeit eines Elements können Sie über die
double-Eigenschaft Opacity festlegen. Der Standardwert ist 1.0. Das Element ist
damit vollkommen undurchsichtig. Sie können Werte zwischen 0.0 und 1.0 ver-
wenden. Ein Beispiel haben Sie schon in Abschnitt 6.5, »Gadgets«, gesehen.

Ein Pinsel, zum Beispiel für die Eigenschaft Background vom Typ Brush, wird aus
dem Alphakanal und den drei RGB-Komponenten zusammengesetzt (siehe auch
Abschnitt 9.4.1, »SolidColorBrush«). Der Alphakanal steht für die Undurchsich-
tigkeit. Je höher der Wert ist, desto undurchsichtiger ist die Farbe.

Im nachfolgenden Projekt Transparenz wird ein halb undurchsichtiges Bild als
Hintergrund genutzt. Auf diesem Bild wurden Buttons mit unterschiedlicher
Undurchsichtigkeit und TextBlöcke mit unterschiedlich undurchsichtigem Hin-
tergrund platziert (siehe Abbildung 9.23).

Abbildung 9.23 Transparenz mit Opacity und Background

Der XAML-Code:

<Canvas>
 <Image Opacity="0.5" Source="blume.jpg" ... />

 <Button Opacity="0.25" ...>Button 1</Button>
 <Button Opacity="0.5" ...>Button 2</Button>
 <Button Opacity="1.0" ...>Button 3</Button>

Transparenz 9.6

281

 <TextBlock Background="#40FFFFFF" ...>TextBlock 1</TextBlock>
 <TextBlock Background="#80FFFFFF" ...>TextBlock 2</TextBlock>
 <TextBlock Background="#FFFFFFFF" ...>TextBlock 3</TextBlock>

 <TextBlock ...>TextBlock 4
 <TextBlock.Background>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,0">
 <GradientStop Offset="0.0" Color="#00FFFFFF" />
 <GradientStop Offset="0.3" Color="#FFFFFFFF" />
 <GradientStop Offset="0.7" Color="#FFFFFFFF" />
 <GradientStop Offset="1.0" Color="#00FFFFFF" />
 </LinearGradientBrush>
 </TextBlock.Background>
 </TextBlock>
</Canvas>

Das Bild ist wegen des Werts 0.5 für die Eigenschaft Opacity halb undurchsichtig.
Die drei Buttons sind, einschließlich der Aufschrift, unterschiedlich undurchsich-
tig, abhängig von den Opacity-Werten.

Die drei Textblöcke auf der rechten Seite haben einen weißen Hintergrund. Dafür
stehen die drei hinteren Blöcke von hexadezimalen Ziffern für die RGB-Anteile.
Es sind Werte von 00 bis FF (= 255) möglich. Dieser weiße Hintergrund ist unter-
schiedlich undurchsichtig, abhängig von dem ersten Block von hexadezimalen
Ziffern für den Alphakanal.

Der untere Textblock hat mithilfe eines LinearGradientBrush einen veränderli-
chen Hintergrund erhalten. Am linken Rand ist er vollkommen durchsichtig; zum
mittleren Bereich hin wird er immer undurchsichtiger, und zum rechten Rand hin
wird er wieder vollkommen durchsichtig. Der Wert #00FFFFFF steht für einen
vollkommen durchsichtigen Hintergrund. Das Gleiche erreicht man mit
Background="Transparent". Die Werte 0.0 und 1.0 für StartPoint und EndPoint
sind der Standard, sie dienen hier nur zur Verdeutlichung.

9.6.2 Maskierung mit OpacityMask

Die Eigenschaft OpacityMask vom Typ Brush dient zum Erzeugen unterschiedlich
geformter Masken für Transparenzeffekte. Im vorherigen Abschnitt wurde ein
teil-transparenter Pinsel für den Hintergrund eines Elements genutzt. Das Gleiche
können Sie mit OpacityMask für das gesamte Element erreichen.

Im nachfolgenden Projekt Maskierung werden mithilfe eines RadialGradientBrush
und eines LinearGradientBrush zwei verschiedene Masken erzeugt (siehe Abbil-
dung 9.24).

2D-Grafik9

282

Abbildung 9.24 Maskierung mit OpacityMask

Der XAML-Code:

<WrapPanel>
 <Image Source="blume.jpg" Width="200" Height="150" Margin="5">
 <Image.OpacityMask>
 <RadialGradientBrush GradientOrigin="0.5 0.3">
 <GradientStop Offset="0.0" Color="#FFFFFFFF" />
 <GradientStop Offset="0.2" Color="#FFFFFFFF" />
 <GradientStop Offset="1.0" Color="#00FFFFFF" />
 </RadialGradientBrush>
 </Image.OpacityMask>
 </Image>
 <Image Source="blume.jpg" Width="200" Height="150" Margin="5">
 <Image.OpacityMask>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0.0" Color="#00FFFFFF" />
 <GradientStop Offset="0.3" Color="#FFFFFFFF" />
 <GradientStop Offset="0.4" Color="#FFFFFFFF" />
 <GradientStop Offset="0.9" Color="#00FFFFFF" />
 </LinearGradientBrush>
 </Image.OpacityMask>
 </Image>
</WrapPanel>

Im linken Bild wurde zur Maskierung ein RadialGradientBrush genutzt, mit dem
Ursprung (0.5 0.3) oberhalb der Bildmitte. Nur die inneren 20 % sind vollkom-
men undurchsichtig, danach wird das Bild zum Rand hin immer durchsichtiger.

Die Maskierung im rechten Bild verläuft mithilfe eines LinearGradientBrush ver-
tikal. Nur in dem schmalen Bereich mit den blauen Blüten, von 0.3 bis 0.4, ist das
Bild vollkommen undurchsichtig. Zum Rand hin wird es immer durchsichtiger.

Transparenz 9.6

283

9.6.3 Ausstanzung mit Clip

Die Eigenschaft Clip vom Typ Geometry dient zum Ausstanzen einer Geometrie
aus einem Element. Der Aufbau von Geometrien wurde in Abschnitt 9.2
beschrieben.

Im nachfolgenden Projekt Ausstanzung werden Teile eines Bildes ausgestanzt:
einmal mithilfe einer Pfadgeometrie in Pfadmarkupsyntax und einmal mithilfe
einer elliptischen Geometrie (siehe Abbildung 9.25).

Abbildung 9.25 Ausstanzung mit Clip

Der XAML-Code:

<WrapPanel>
 <Image Source="blume.jpg" Width="200" Height="150" Margin="5"
 Clip="M0,50 L50,0 L150,0 L200,50 L200,100 L150,150
 L50,150 L0,100" />
 <Image Source="blume.jpg" Width="200" Height="150" Margin="5">
 <Image.Clip>
 <EllipseGeometry Center="100,75"
 RadiusX="80" RadiusY="60" />
 </Image.Clip>
 </Image>
</WrapPanel>

Die Pfadgeometrie für die linke Ausstanzung folgt den Regeln für die Pfadmarkup-
syntax, wie sie in Abschnitt 9.2.4 beschrieben werden. Zur Erinnerung:

� M steht für Move, also für Bewegung zum angegebenen Punkt.

� L steht für Line, also für eine Linie zum angegebenen Punkt.

Die Ellipse für die rechte Ausstanzung hat ihren Mittelpunkt in der Mitte des Bil-
des und ist in x-Richtung weiter ausgedehnt als in y-Richtung.

2D-Grafik9

284

9.7 Effekte

Die Eigenschaft Effect (vom Typ Effect) eines Elements können Sie nutzen, um
einen Bitmapeffekt auf das Element anzuwenden. Ein Objekt des Typs
BlurEffect verwischt das Element, sodass es unscharf wird wie bei einem Weich-
zeichner. Mit einem Objekt des Typs DropShadowEffect wirft es einen Schlag-
schatten in die gewünschte Richtung.

Im nachfolgenden Projekt Bitmapeffekt werden Objekte dieser beiden Typen ein-
gesetzt (siehe Abbildung 9.26). Zwei Slider ermöglichen es, den jeweiligen Effekt
zu verändern.

Abbildung 9.26 BlurEffect und DropShadowEffect

Der XAML-Code:

<StackPanel>
 <Button Width="120" Margin="3">BlurEffect
 <Button.Effect>
 <BlurEffect x:Name="be" Radius="0" />
 </Button.Effect>
 </Button>
 <WrapPanel Margin="3">
 <Label x:Name="lb1" Width="40">3</Label>
 <Slider x:Name="sl1" Width="200" Minimum="0" Maximum="5"
 Value="3" TickFrequency="1" IsSnapToTickEnabled="True"
 TickPlacement="BottomRight" ValueChanged="vc_blur" />
 </WrapPanel>

 <Button Width="120" Margin="3">DropShadowEffect
 <Button.Effect>
 <DropShadowEffect x:Name="dse" BlurRadius="8" Color="Gray"
 Direction="45" Opacity="0.8" ShadowDepth="8" />
 </Button.Effect>
 </Button>

Effekte 9.7

285

 <WrapPanel Margin="3">
 <Label x:Name="lb2" Width="40">315</Label>
 <Slider x:Name="sl2" Width="200" Minimum="0" Maximum="360"
 Value="45" TickFrequency="45" TickPlacement="BottomRight"
 ValueChanged="vc_drop" />
 </WrapPanel>
</StackPanel>

Die double-Eigenschaft Radius des Objekts des Typs BlurEffect gibt den Grad
des Weichzeichners an. Der Standardwert ist 5, der Wert 0 steht für »kein Weich-
zeichnereffekt«.

Bei dem Objekt des Typs DropShadowEffect können Sie folgende Eigenschaften
des Schattens einstellen:

� BlurRadius: Grad des Weichzeichners; der Standard ist 5.

� Color: Farbe; der Standard ist Black.

� Opacity: Transparenz; der Standard ist 1, also ein undurchsichtiger Schatten.

� ShadowDepth: Abstand vom Element; der Standard ist 5.

Alle Eigenschaften sind vom Typ double, nur Color ist vom Typ Color. Die
double-Eigenschaft Direction gibt die Richtung des Schattens an. Der Standard
ist 315 Grad, also rechts unten. Die Gradzahl geht von 0 bis 360 gegen den Uhr-
zeigersinn; 0 Grad ist in positiver x-Richtung.

Die Ereignismethoden sehen so aus:

private void vc_blur(object sender,
 RoutedPropertyChangedEventArgs<double> e)
{
 lb1.Content = Math.Round(sl1.Value);
 be.Radius = sl1.Value;
}
private void vc_drop(object sender,
 RoutedPropertyChangedEventArgs<double> e)
{
 lb2.Content = Math.Round(sl2.Value);
 dse.Direction = sl2.Value;
}

Der Radius des Objekts vom Typ BlurEffect und die Richtung des Schattens für
das Objekt vom Typ DropShadowEffect lassen sich per Slider einstellen.

2D-Grafik9

286

9.8 Verzierungen

Sie können einem Element Verzierungen hinzufügen. Eine solche Verzierung wird
in einem eigenen Layer (dt. Schicht) angezeigt. Diese Verzierungsschicht liegt in
z-Richtung oberhalb des Objekts, also vom Betrachter aus vor dem Objekt. Die Ver-
zierung wird in einer eigenen Klasse erzeugt, die von der abstrakten Klasse Adorner
abgeleitet ist.

Im nachfolgenden Projekt Verzierung wird ein Objekt mit zwei Ellipsen auf den
beiden oberen Ecken verziert (siehe Abbildung 9.27).

Abbildung 9.27 Verzierung durch zwei Ellipsen

Der XAML-Code:

<Window ... Loaded="Window_Loaded">
 <StackPanel>
 <Button x:Name="bu" Width="80" Margin="10">Button</Button>
 <TextBox x:Name="tx" Width="80" Margin="10">TextBox</TextBox>
 </StackPanel>
</Window>

Als Beispiele werden ein Button und eine TextBox verziert. Die Ereignismethode
sieht so aus:

private void Window_Loaded(...)
{
 AdornerLayer al = AdornerLayer.GetAdornerLayer(bu);
 al.Add(new verzierung_ellipse(bu));
 al = AdornerLayer.GetAdornerLayer(tx);
 al.Add(new verzierung_ellipse(tx));
}

Mithilfe der Methode GetAdornerLayer() der Klasse AdornerLayer wird ein Ver-
weis auf die erste Verzierungsschicht oberhalb des Elements erzeugt, das verziert
werden soll. Dieser Schicht wird mithilfe der Methode Add() der Klasse
AdornerLayer eine Verzierung hinzugefügt.

Verzierungen 9.8

287

Diese Verzierung muss von einem Typ sein, der von der abstrakten Klasse
Adorner abgeleitet wurde. In diesem Falle ist es der nachfolgend beschriebene
Typ verzierung_ellipse. Als Parameter wird dem Konstruktor der Verweis auf
das Element mitgegeben, das verziert werden soll.

Die Datei verzierung_ellipse.cs mit der Klasse verzierung_ellipse sieht so aus:

using System.Windows;
using System.Windows.Media;
using System.Windows.Documents;
namespace Verzierung
{
 class verzierung_ellipse : Adorner
 {
 public verzierung_ellipse(UIElement ae) : base(ae) { }

 protected override void OnRender(DrawingContext dc)
 {
 SolidColorBrush br = new SolidColorBrush(Colors.LightGray);
 Pen pn = new Pen(new SolidColorBrush(Colors.Black), 1);
 Rect rc = new Rect(this.AdornedElement.RenderSize);
 dc.DrawEllipse(br, pn, rc.TopLeft, 10, 5);
 dc.DrawEllipse(br, pn, rc.TopRight, 10, 5);
 }
 }
}

Die Basisklasse Adorner hat nur einen Konstruktor. Dieser verlangt einen Verweis
auf das geschmückte Element. Der Konstruktor der hier abgeleiteten Klasse leitet
diesen Verweis zur Basisklasse Adorner weiter.

Zum Zeichnen der Verzierung im Layer eignet sich die Methode OnRender(). Der
Zeichnungskontext wird über ein DrawingContext-Objekt bereitgestellt. Es wer-
den ein Pinsel für die Füllung der Ellipsen und ein Stift für den Rand der Ellipsen
erzeugt.

Die Eigenschaft AdornedElement der Klasse Adorner stellt einen Verweis auf das
Element zur Verfügung, das verziert werden soll. Die Eigenschaft RenderSize lie-
fert die Größe dieses Elements. Mit diesen Daten wird ein umgebendes Rechteck
gleicher Größe erzeugt. Das Zentrum der beiden Ellipsen liegt an der oberen lin-
ken Ecke beziehungsweise an der oberen rechten Ecke des umgebenden Recht-
ecks. Sie werden mithilfe der Methode DrawEllipse() der Klasse DrawingContext
gezeichnet.

289

Gestalten Sie anschauliche Anwendungen, indem Sie die dritte Dimen-
sion nutzen. Erlernen Sie den Aufbau und die Darstellung dreidimensio-
naler Körper innerhalb einer WPF-Anwendung.

10 3D-Grafik

Objekte der realen Welt sind bekanntlich nicht auf die zwei Dimensionen eines
Bildschirms beschränkt, sondern besitzen eine dritte Dimension. Eine Anwen-
dung wird für den Betrachter viel realistischer, wenn sie dies berücksichtigt. Der
Aufwand für den Entwickler wird natürlich höher.

In diesem Kapitel geht es zunächst um die Elemente, die für den Aufbau und das
Verständnis einer dreidimensionalen Szene und der dreidimensionalen Körper
(3D-Körper) darin wichtig sind. Es folgen Abschnitte über verschiedene Möglich-
keiten für Kamera und Licht. Sie lernen verschiedene 3D-Modelle kennen, inklu-
sive der Gestaltung der Oberflächen der 3D-Körper. Den Abschluss bilden die
dreidimensionalen Transformationen und eine dreidimensionale Landschaft als
ausbaufähige »Spielwiese« für den Entwickler.

Bei allen Projekten des Kapitels ist für die Steuerung per Programmcode der
Namespace System.Windows.Media.Media3D zusätzlich notwendig.

10.1 Allgemeiner Aufbau

Zum Verständnis von dreidimensionalen Grafiken in WPF-Anwendungen ist ein
wenig Theorie nicht zu umgehen. In diesem Abschnitt wird anhand eines ersten
Beispiels erläutert, wie ein 3D-Körper auf die zwei Dimensionen eines Bild-
schirms oder eines Buchs abgebildet wird, sodass die dritte Dimension für den
Betrachter erkennbar wird.

10.1.1 Koordinatensystem

Punkte im dreidimensionalen Raum werden durch ihre drei Koordinatenwerte auf
der x-, y- und z-Achse beschrieben. Betrachten Sie das Modell in Abbildung 10.1:

3D-Grafik10

290

� Die x-Achse verläuft in der Blattebene von links nach rechts.

� Die y-Achse verläuft in der Blattebene von unten nach oben.

� Die z-Achse startet »hinter« der Blattebene und kommt dem Betrachter genau
nach »vorne« entgegen. Der Betrachter sieht die z-Achse von »vorne«, sie wäre
also nur als Punkt erkennbar. Zur besseren Erkennbarkeit wird sie hier schräg
gezeichnet.

� Die drei Achsen treffen sich im Nullpunkt des Koordinatensystems.

Abbildung 10.1 Dreidimensionales Koordinatensystem mit Dreieck

3D-Körper werden durch ihre Eckpunkte in der Notation x,y,z gekennzeichnet.
In Abbildung 10.1 sehen Sie einen einfachen 3D-Körper: ein Dreieck, das flach in
der Blattebene liegt. Die z-Koordinate aller drei Eckpunkte ist also 0. Die Eck-
punkte sind von 0 bis 2 nummeriert:

� Eckpunkt 0 (oben links) liegt bei –1,1,0.

� Eckpunkt 1 (unten links) liegt bei –1,–1,0.

� Eckpunkt 2 (unten rechts) liegt bei 1,–1,0.

Im Projekt DreiDDreieck wird dieses Dreieck in einer dreidimensionalen Szene
angezeigt (siehe Abbildung 10.2). Die Angaben in der Titelleiste werden später
erläutert.

Alle 3D-Körper in WPF-Anwendungen werden aus Dreiecken aufgebaut. Ein Bei-
spiel: Mit zwei Dreiecken kann ein Rechteck gebildet werden. Bei geeigneter Sei-
tenlänge handelt es sich um ein Quadrat. Aus sechs Quadraten kann ein dreidi-
mensionaler Würfel gebildet werden.

Allgemeiner Aufbau 10.1

291

Abbildung 10.2 Dreieck im dreidimensionalen Raum

10.1.2 Kamera, Licht und Material

Es werden noch weitere Komponenten benötigt, damit der Betrachter eine geeig-
nete Vorstellung bekommt.

Zunächst muss eine Kamera aufgestellt werden, mit deren Hilfe die 3D-Körper
gesehen werden. Dabei sind die Position und die Blickrichtung wichtig. Im Pro-
jekt DreiDDreieck (siehe Abbildung 10.2) »schwebt« die Kamera an der Position
0,0,5, also vor der Blattebene, genau vor dem Nullpunkt. Die Blickrichtung (engl.
LookDirection) wird mit 0,0,–5 angegeben. Die Kamera blickt also zu einem Punkt
hinter der Blattebene, durch den Nullpunkt hindurch. Das Dreieck liegt am Null-
punkt, also kann der Betrachter es sehen.

Innerhalb des Projekts DreiDDreieck können Position und Blickrichtung per
Mausklick geändert werden. Die Angaben in der Titelleiste geben die jeweils
aktuellen Werte für Position (P) und LookDirection (LD) wieder.

Die Szene muss mit Licht ausgeleuchtet werden. Im Projekt DreiDDreieck wird dazu
ein gleichmäßiges, ungerichtetes Umgebungslicht genutzt. 3D-Körper in der Szene
müssen aus einem geeigneten Material bestehen und eine Farbe besitzen. Im Pro-
jekt DreiDDreieck wird ein einfaches, diffuses Material in grauer Farbe gewählt.

10.1.3 Dreieck in XAML

Das bereits angesprochene Projekt DreiDDreieck zeigt ein Dreieck im dreidimen-
sionalen Raum. Nachfolgend sehen Sie den XAML-Code:

<Window ... MouseDown="Window_MouseDown">
 <Viewport3D>
 <Viewport3D.Camera>
 <OrthographicCamera x:Name="oc" Position="0,0,5"
 LookDirection="0,0,-5" Width="6"/>

3D-Grafik10

292

 </Viewport3D.Camera>

 <Viewport3D.Children>
 <ModelVisual3D>
 <ModelVisual3D.Content>
 <AmbientLight />
 </ModelVisual3D.Content>
 </ModelVisual3D>

 <ModelVisual3D>
 <ModelVisual3D.Content>
 <GeometryModel3D>
 <GeometryModel3D.Material>
 <DiffuseMaterial Brush="Gray" />
 </GeometryModel3D.Material>

 <GeometryModel3D.Geometry>
 <MeshGeometry3D Positions="-1,1,0 -1,-1,0 1,-1,0"
 TriangleIndices="0,1,2"/>
 </GeometryModel3D.Geometry>
 </GeometryModel3D>
 </ModelVisual3D.Content>
 </ModelVisual3D>
 </Viewport3D.Children>
 </Viewport3D>
</Window>

Falls innerhalb des Fensters eine Maustaste heruntergedrückt wird, dann reagiert
darauf die Ereignismethode Window_MouseDown. Dadurch ändern sich Position
und Blickrichtung der Kamera.

Das Objekt des Typs Viewport3D ist die zweidimensionale Leinwand für die drei-
dimensionale Szene.

Die Eigenschaft Camera des Viewport3D-Objekts beinhaltet hier eine orthographi-
sche Kamera. Damit werden gleich große 3D-Körper immer gleich groß darge-
stellt, unabhängig von ihrem Abstand zur Kamera. Wichtige Eigenschaften für
OrthographicCamera sind:

� Position, vom Typ Point3D, für die Position der Kamera, wie oben erläutert.
Mit dem Typ Point3D werden Punkte im dreidimensionalen Raum beschrieben.

� LookDirection, vom Typ Vector3D, für die Blickrichtung, ebenfalls wie oben
erläutert. Mit dem Typ Vector3D werden Richtungen im dreidimensionalen
Raum beschrieben.

Allgemeiner Aufbau 10.1

293

� Width, vom Typ double, für die Breite des Sichtfelds in x-Richtung. Das darge-
stellte Dreieck hat in x-Richtung die Größe 2, und die Breite des Sichtfelds
beträgt 6.

Die Auflistungseigenschaft Children des Viewport3D-Objekts kann als unterge-
ordnete Elemente vom Typ ModelVisual3D verschiedene Lichttypen, eine Geome-
trie oder eine Gruppe von Geometrien beinhalten. In diesem Projekt handelt es
sich um

� ein Objekt des Typs AmbientLight für ein gleichmäßiges Umgebungslicht und
um

� ein Objekt vom Typ GeometryModel3D mit den Eigenschaften Material und
Geometry (Form).

Auf das nicht selbstleuchtende Material vom Typ DiffuseMaterial kann ein Pin-
sel für zweidimensionale Flächen, zum Beispiel ein SolidColorBrush angewandt
werden, um es gleichmäßig einzufärben. Die Eigenschaft Brush bestimmt die
Farbe (hier Grau).

Die Form wird über ein Objekt des Typs MeshGeometry3D bestimmt. Darin stehen
die Dreiecke, aus denen eine dreidimensionale Form aufgebaut wird. Wichtige
Eigenschaften sind:

� Positions, vom Typ Point3DCollection, beinhaltet eine Auflistung von
Point3D-Objekten, also Punkten im dreidimensionalen Raum. Jedes Point3D-
Objekt besteht aus einer Gruppe von drei double-Zahlen. Wie in einer Auflis-
tung üblich, sind die Elemente nummeriert, und zwar beginnend bei 0. Diese
Nummern werden für die nächste Eigenschaft benötigt.

� TriangleIndices, vom Typ Int32Collection, besteht aus Gruppen von drei
ganzen Zahlen. Eine Gruppe ergibt ein Dreieck. Die drei ganzen Zahlen geben
an, welche Point3D-Objekte der Auflistung Positions für das Dreieck verwen-
det werden.

Im XAML-Code und im Beispiel in Abbildung 10.1 beträgt der Wert von
TriangleIndices 0,1,2. Also werden die drei Punkte aus der Auflistung
Positions in der folgenden Reihenfolge verwendet:

� Eckpunkt 0 (oben links) liegt bei –1,1,0.

� Eckpunkt 1 (unten links) liegt bei –1,–1,0.

� Eckpunkt 2 (unten rechts) liegt bei 1,–1,0.

Im vorliegenden Fall wird das Dreieck mit der Reihenfolge 0,1,2 gegen den Uhr-
zeigersinn umlaufen. Bei diesem Umlaufsinn sieht der Betrachter die graue Vor-

3D-Grafik10

294

derseite. Falls der Wert von TriangleIndices 0,2,1 betragen hätte, so würde das
gleiche Dreieck gebildet. Es würde aber im Uhrzeigersinn umlaufen. Bei diesem
Umlaufsinn sieht der Betrachter die Rückseite. Diese hat keine Farbe, also sieht
der Betrachter nichts.

Für die Veränderungen in der nachfolgenden Ereignismethode werden neue
Objekte der Typen Point3D und Vector3D benötigt. Beide Typen verfügen über
die double-Eigenschaften X, Y und Z.

private void Window_MouseDown(object sender,
 MouseButtonEventArgs e)
{
 oc.Position = new Point3D(
 oc.Position.X + 0.5, 0, oc.Position.Z - 0.5);
 oc.LookDirection = new Vector3D(
 oc.LookDirection.X - 0.5, 0, oc.LookDirection.Z + 0.5);
 Title = "P: " + oc.Position.X + "/0/" + oc.Position.Z
 + ", LD: " + oc.LookDirection.X + "/0/" + oc.LookDirection.Z;
}

Mit jedem Mausklick wird die Position der Kamera um 0.5 nach rechts (in posi-
tive x-Richtung) und um 0.5 nach vorne (in negative z-Richtung), zur Blattebene
hin verschoben. Die Blickrichtung wird auch verändert, sodass der Betrachter
weiterhin durch den Nullpunkt schaut. Er sieht das Dreieck aber aus immer spit-
zerem Winkel, es wird für ihn also immer kleiner. Bei z=0 schaut er genau auf die
Seitenkante des Dreiecks, und bei z<0 schaut er auf die Rückseite des Dreiecks.
Diese hat keine Farbe; er sieht also nichts mehr.

10.1.4 Ein Dreieck in Programmcode erzeugen

Es kann vorkommen, dass Sie eine dreidimensionale Szene aus 3D-Körpern auf-
bauen, deren Daten aus einer externen Quelle stammen. Dazu ist es notwendig,
die Szene ganz oder teilweise mithilfe von Programmcode zu erstellen. Im nach-
folgenden Projekt DreiDExtern wird nur das Fenster mithilfe von XAML erzeugt,
der Rest in Programmcode. Es handelt sich um das einfache Dreieck aus dem vor-
herigen Abschnitt (siehe Abbildung 10.2).

Zunächst der kurze XAML-Code:

<Window ... Height="200" Width="300" Loaded="Window_Loaded" />

Die nachfolgende Ereignismethode wird beim Laden des Fensters durchlaufen:

private void Window_Loaded(...)
{

Allgemeiner Aufbau 10.1

295

 /* Positionen für MeshGeometry */
 Point3DCollection p3dc = new Point3DCollection();
 p3dc.Add(new Point3D(-1, 1, 0));
 p3dc.Add(new Point3D(-1, -1, 0));
 p3dc.Add(new Point3D(1, -1, 0));

 /* Indizes für MeshGeometry */
 Int32Collection i32c = new Int32Collection();
 i32c.Add(0);
 i32c.Add(1);
 i32c.Add(2);

 /* MeshGeometry, mit Eigenschaften */
 MeshGeometry3D mg3d = new MeshGeometry3D();
 mg3d.Positions = p3dc;
 mg3d.TriangleIndices = i32c;

 /* Geometrie-Modell mit MeshGeometry und Material */
 GeometryModel3D gm3d = new GeometryModel3D(mg3d,
 new DiffuseMaterial(new SolidColorBrush(Colors.Gray)));

 /* ModelVisual3D-Element für Geometrie */
 ModelVisual3D mv3dg = new ModelVisual3D();
 mv3dg.Content = gm3d;

 /* ModelVisual3D-Element für Licht */
 ModelVisual3D mv3dl = new ModelVisual3D();
 mv3dl.Content = new AmbientLight();

 /* Viewport3D, mit Kamera, mit Licht, mit Geometrie */
 Viewport3D vp3d = new Viewport3D();
 vp3d.Camera = new OrthographicCamera(new Point3D(0, 0, 5),
 new Vector3D(0, 0, -5), new Vector3D(0, 1, 0), 6);
 vp3d.Children.Add(mv3dl);
 vp3d.Children.Add(mv3dg);

 /* Viewport3D wird Inhalt des Fensters */
 Content = vp3d;
}

Die Szene wird von innen nach außen aufgebaut. Zunächst werden die beiden
Collections für die Eigenschaften Positions und TriangleIndices erzeugt. Die
einzelnen Punkte und ihre Indizes werden mithilfe der Methode Add() hinzuge-
fügt.

3D-Grafik10

296

Der verwendete Konstruktor des Typs GeometryModel3D benötigt ein Objekt des
Typs Geometry3D und ein Objekt des Typs Material. Dieses braucht wiederum ein
Objekt des Typs Brush.

Der verwendete Konstruktor des Typs OrthographicCamera benötigt vier Parame-
ter der folgenden Typen:

� Point3D für die Eigenschaft Position (Kameraposition)

� Vector3D für die Eigenschaft LookDirection (Blickrichtung)

� Vector3D für die Eigenschaft UpDirection (Lage der Kamera)

� double für die Eigenschaft Width (Breite des Sichtfelds)

Die Kamera steht mit den Standardwerten 0,1,0 für die Eigenschaft UpDirection
genau aufrecht. Das heißt, das obere Ende ist in positive y-Richtung ausgerichtet.
Mehr zum Thema Kameralage finden Sie in Abschnitt 10.2, »Kamera«.

10.1.5 Würfel

In diesem Abschnitt wird im Projekt DreiDWürfel ein Würfel dargestellt. Die
Kantenlänge ist 2, das Zentrum des Würfels ist der Nullpunkt des Koordinaten-
systems. Der Betrachter sieht die drei vorderen Seiten des Würfels wie in Abbil-
dung 10.3. Jede Seite ist aus zwei Dreiecken aufgebaut. Der Betrachter kann sich
den Würfel per Tastendruck auch von hinten anschauen ((V) = vorne, (H) = hin-
ten).

Abbildung 10.3 Drei Seiten eines Würfels

Der Aufbau hat viele Ähnlichkeiten mit dem Aufbau des einzelnen Dreiecks aus
dem vorherigen Abschnitt. Nachfolgend sehen Sie nur die geänderten Teile des
XAML-Codes:

<Window ... KeyDown="Window_KeyDown">
 ...

Allgemeiner Aufbau 10.1

297

 <OrthographicCamera x:Name="oc" Position="1,3,5"
 LookDirection="-1,-3,-5" Width="6"/>
 ...
 <DirectionalLight x:Name="dl" Color="White"
 Direction="-1,-3,-5" />
 ...
 <GeometryModel3D.Material>
 <DiffuseMaterial Brush="LightGray" />
 </GeometryModel3D.Material> ...
 ...
 <GeometryModel3D.BackMaterial>
 <DiffuseMaterial Brush="Red" />
 </GeometryModel3D.BackMaterial>
 ...
 <MeshGeometry3D Positions="-1,1,1 -1,-1,1 1,-1,1 1,1,1 1,1,1
 1,-1,1 1,-1,-1 1,1,-1 -1,1,-1 -1,1,1 1,1,1 1,1,-1"
 TriangleIndices="0,1,2 2,3,0 4,5,6 6,7,4 8,9,10 10,11,8"/>
 ...
</Window>

Falls innerhalb des Fensters eine Taste heruntergedrückt wird, dann reagiert dar-
auf die Ereignismethode Window_KeyDown.

Die orthographische Kamera ist diesmal anders positioniert. Sie liegt (mit den
Position-Werten 1,3,5) wiederum ein Stück vor der Blattebene, ist aber leicht
nach rechts und ein Stück nach oben gerückt. Die LookDirection-Werte sind mit
–1,–3,–5 entsprechend angepasst, sodass der Betrachter nach wie vor durch den
Nullpunkt schaut. Dort liegt der Würfel.

Bei einem gleichmäßigen Umgebungslicht vom Typ AmbientLight hätten alle drei
sichtbaren Seiten des Würfels für den Betrachter die gleichen Farbtöne. In diesem
Projekt wurde ein gerichtetes Licht vom Typ DirectionalLight verwendet. Die-
ses strahlt aus einer bestimmten Richtung, die mithilfe der Eigenschaft Direction
vom Typ Vector3D angegeben wird. Hier wurde die gleiche Richtung wie die
Blickrichtung genommen. Die drei sichtbaren Seiten des Würfels werden von
diesem Licht aus unterschiedlichen Winkeln beleuchtet, daher erscheinen sie für
den Betrachter in verschiedenen Farbtönen. Die Farbe des Lichts ist Weiß (Eigen-
schaft Color); dies ist das Licht mit der höchsten Intensität.

Das Material für die Vorderseite ist diffus und hellgrau. Bei diesem 3D-Körper
wurde über die Eigenschaft BackMaterial auch eine Farbe für die Rückseite
gewählt: Rot. Der Betrachter kann den 3D-Körper also auch von hinten sehen.

Die Auflistung der Point3D-Objekte für die Eigenschaft Positions umfasst dies-
mal insgesamt 12 Elemente. Aus diesen Elementen werden mithilfe der Eigen-

3D-Grafik10

298

schaft TriangleIndices sechs Dreiecke gebildet. Der Umlaufsinn jedes Dreiecks
wurde so gewählt, dass der Betrachter alle Vorderseiten sieht. Jeweils zwei Drei-
ecke bilden eine der drei sichtbaren Seiten des Würfels. Im Einzelnen sind dies:

� die hellgraue vordere Seite: Indizes 0 (links oben), 1 (links unten), 2 (rechts
unten) und 2, 3 (rechts oben), 0

� die schwarze rechte Seite: Indizes 4 (vorne oben), 5 (vorne unten), 6 (hinten
unten) und 6, 7 (hinten oben), 4

� die dunkelgraue obere Seite: Indizes 8 (links hinten), 9 (links vorne), 10
(rechts vorne) und 10, 11 (rechts hinten), 8

Die Ereignismethode sieht so aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
 if (e.Key == Key.V)
 {
 oc.Position = new Point3D(1, 3, 5);
 oc.LookDirection = new Vector3D(-1, -3, -5);
 dl.Direction = new Vector3D(-1, -3, -5);
 Title = "DreiDWürfel, von vorne";
 }
 else if (e.Key == Key.H)
 {
 oc.Position = new Point3D(-1, -3, -5);
 oc.LookDirection = new Vector3D(1, 3, 5);
 dl.Direction = new Vector3D(1, 3, 5);
 Title = "DreiDWürfel, von hinten";
 }
}

Bezüglich der Auswertung der gedrückten Tasten verweise ich auf Abschnitt 10.2,
»Kamera«. Nach dem Betätigen einer der beiden Tasten (V) oder (H) werden die
Position und die Blickrichtung der orthographischen Kamera und die Richtung
des gerichteten Lichts geändert.

10.1.6 Gemeinsame Punkte

Wenn Sie die Auflistung Positions im vorherigen Projekt DreiDWürfel genauer
betrachten, so stellen Sie fest, dass einige Punkte mehrmals vorkommen. Theore-
tisch könnten die drei Seiten des Würfels also auch mit weniger Punkten auskom-
men. Allerdings gehen zwei Flächen, die gemeinsame Punkte einer Auflistung
nutzen, ineinander über. Damit werden die Kanten zwischen den Flächen schwer
oder gar nicht mehr erkennbar.

Kamera 10.2

299

Das nachfolgende Projekt DreiDGemeinsam zeigt dies (siehe Abbildung 10.4). Es
handelt sich um einen Würfel mit den gleichen Eckpunkten, allerdings wurde die
Auflistung Positions verkürzt: Jeder Punkt kommt nur noch einmal vor. Das
direktionale Licht ermöglicht aber zumindest die grobe Erkennung der drei Seiten.

Abbildung 10.4 Mehrfache Nutzung der Punkte

Der entsprechende Ausschnitt des XAML-Codes sieht so aus:

<MeshGeometry3D
 Positions="-1,1,1 -1,-1,1 1,-1,1 1,1,1 1,-1,-1 1,1,-1 -1,1,-1"
 TriangleIndices="0,1,2 2,3,0 3,2,4 4,5,3 6,0,3 3,5,6"/>

Insgesamt gibt es nur noch sieben Punkte, die teilweise zwei- oder dreifach ge-
nutzt werden.

10.2 Kamera

In diesem Abschnitt werden die Möglichkeiten einer perspektivischen Kamera
und einer Veränderung der Kameralage erläutert.

10.2.1 Perspektivische Kamera

Eine Alternative zur orthographischen Kamera ist die perspektivische Kamera. Sie
bildet gleich große 3D-Körper abhängig von ihrem Abstand zur Kamera unter-
schiedlich groß ab.

Im Projekt DreiDPerspektive werden drei gleich große Dreiecke dargestellt (siehe
Abbildung 10.5). Das mittlere Dreieck liegt genau in der Blattebene (z-Koordi-
nate 0). Das linke Dreieck liegt in der Ebene mit der z-Koordinate 1, also vom Be-
trachter aus vorne. Das rechte Dreieck liegt in der Ebene mit der z-Koordinate –1,
vom Betrachter aus hinten. Die Dreiecke werden unterschiedlich groß dargestellt.
Dies erhöht die Räumlichkeit der Szene. Der Betrachter kann mit den Tasten (O)

3D-Grafik10

300

(orthographisch) und (P) (perpektivisch) zwischen den beiden Kameratypen hin
und her schalten.

Abbildung 10.5 Drei Dreiecke in unterschiedlicher Entfernung

Dies sind die wichtigen Teile des XAML-Codes für die perspektivische Kamera:

<Window ... KeyDown="Window_KeyDown">
 ...
 <PerspectiveCamera Position="0,0,5" LookDirection="0,0,-5"
 FieldOfView="80" />
 ...
 <MeshGeometry3D Positions="-3,1,1 -3,-1,1 -1,-1,1 -1,1,0
 -1,-1,0 1,-1,0 1,1,-1 1,-1,-1 3,-1,-1"
 TriangleIndices="0,1,2 3,4,5 6,7,8"/>
 ...
</Window>

Das Objekt des Type PerspectiveCamera hat die bereits bekannten Eigenschaften
Position und LookDirection vom Typ Point3D beziehungsweise Vector3D. Die
Sichtweite wird mithilfe der double-Eigenschaft FieldOfView angegeben.

Die linke Kante des linken Dreiecks liegt bei –3, und die rechte Ecke des rechten
Dreiecks liegt bei 3. Nach der Umschaltung auf die orthographische Kamera mit-
hilfe der nachfolgenden Ereignismethode beträgt die Sichtweite 6. Daher füllen
die Dreiecke dann das gesamte Fenster aus.

private void Window_KeyDown(object sender, KeyEventArgs e)
{
 if (e.Key == Key.O)
 {
 v3d.Camera = new OrthographicCamera(new Point3D(0, 0, 5),
 new Vector3D(0, 0, -5), new Vector3D(0, 1, 0), 6);
 Title = "OrthographicCamera";
 }

Kamera 10.2

301

 else if (e.Key == Key.P)
 {
 v3d.Camera = new PerspectiveCamera(new Point3D(0, 0, 5),
 new Vector3D(0, 0, -5), new Vector3D(0, 1, 0), 80);
 Title = "PerspectiveCamera";
 }
}

Die Parameter der Konstruktoren der beiden Kameratypen stehen für Position,
Blickrichtung, Lage der Kamera und Sichtweite.

10.2.2 Lage der Kamera

Die Eigenschaft UpDirection vom Typ Vector3D ist für die Lage der Kamera ver-
antwortlich, unabhängig von der Blickrichtung. Der Standardwert ist 0,1,0.
Damit steht die Kamera genau aufrecht, d.h., das obere Ende ist in positive
y-Richtung ausgerichtet.

Im nachfolgenden Projekt DreiDKameralage ist die Kamera mit den Werten
0.2,1,0 leicht nach rechts gekippt. Relativ dazu erscheint der bereits aus Abschnitt
10.1.5 bekannte Würfel leicht nach links gekippt (siehe Abbildung 10.6). Der
Betrachter kann die Kamera mit den Tasten (L) (links) und (R) (rechts) weiter
nach links oder rechts kippen. Das direktionale Licht lässt die drei Seiten unter-
schiedlich erscheinen.

Abbildung 10.6 Veränderte Kameralage

Zunächst sehen Sie hier die wichtigen Teile des XAML-Codes:

<Window ... KeyDown="Window_KeyDown">
 ...
 <OrthographicCamera x:Name="oc" Position="1,3,5"
 LookDirection="-1,-3,-5" UpDirection="0.2,1,0" Width="6"/>
 ...

3D-Grafik10

302

 <DirectionalLight Color="White" Direction="-1,-3,-5" />
 ...
</Window>

Die Ereignismethode sieht so aus:

private void Window_KeyDown(...)
{
 if (e.Key == Key.R)
 oc.UpDirection = new Vector3D(oc.UpDirection.X + 0.1, 1, 0);
 else if (e.Key == Key.L)
 oc.UpDirection = new Vector3D(oc.UpDirection.X - 0.1, 1, 0);

 Title = "UpDirection: " + Math.Round(oc.UpDirection.X, 1)
 + " / 1 / 0";
}

Der aktuelle Wert der x-Komponente der Kameralage wird durch die Betätigung
der Tasten herauf- beziehungsweise herabgesetzt.

10.3 Licht

Es gibt vier verschiedene Arten von Licht, mit denen man eine dreidimensionale
Szene beleuchten kann:

� Ein AmbientLight erschafft ein gleichmäßiges Umgebungslicht.

� Ein DirectionalLight erzeugt ein Licht, das in eine bestimmte Richtung
strahlt.

� Ein SpotLight dient zur Beleuchtung mithilfe eines Lichtkegels, der von einer
bestimmten Position aus in eine bestimmte Richtung strahlt.

� Ein PointLight ist eine Lichtquelle an einer bestimmten Position, die in alle
Richtungen strahlt.

Es können auch mehrere Lichtarten kombiniert werden.

Die vier Lichtarten können Sie im nachfolgenden Projekt DreiDLicht miteinander
vergleichen, und zwar mithilfe der Tasten (A) (für AmbientLight), (D) (für
DirectionLight), (S) (für SpotLight) und (P) (für PointLight). Als 3D-Körper
wird eine halbe zylindrische Röhre dargestellt (siehe Abbildung 10.7).

Die Röhre ist per Programmcode aus einzelnen, schmalen Rechtecken konstru-
iert. Ihre Achse entspricht der y-Achse. Der Betrachter schaut von vorne rechts
(positive x- und z-Richtung) auf die Blattebene; die Wölbung der Röhre kommt

Licht 10.3

303

ihm entgegen. Die Blickrichtung ist leicht von unten (negative y-Richtung), damit
er den Rand der Röhre besser erkennen kann.

Abbildung 10.7 Halbe Röhre, Beleuchtung mit SpotLight

Der XAML-Code:

<Window ... Loaded="Window_Loaded" KeyDown="Window_KeyDown">
 <Viewport3D>
 <Viewport3D.Camera>
 <OrthographicCamera
 Position="5,-2,5" LookDirection="-5,2,-5" Width="6"/>
 </Viewport3D.Camera>

 <Viewport3D.Children>
 <ModelVisual3D x:Name="mv3dl">
 <ModelVisual3D.Content>
 <SpotLight Color="White" Position="5,-2,5" Direction=
 "-5,2,-5" InnerConeAngle="15" OuterConeAngle="30" />
 </ModelVisual3D.Content>
 </ModelVisual3D>

 <ModelVisual3D>
 <ModelVisual3D.Content>
 <GeometryModel3D>
 <GeometryModel3D.Material>
 <DiffuseMaterial Brush="LightGray" />
 </GeometryModel3D.Material>

 <GeometryModel3D.Geometry>
 <MeshGeometry3D x:Name="mg3d" />
 </GeometryModel3D.Geometry>

 </GeometryModel3D>

3D-Grafik10

304

 </ModelVisual3D.Content>
 </ModelVisual3D>
 </Viewport3D.Children>
 </Viewport3D>
</Window>

Nach dem Laden des Fensters wird in der Methode Window_Loaded() die Geome-
trie der halben Röhre erzeugt. Die Methode Window_KeyDown() dient zum
Umschalten zwischen den Lichtarten.

Die Position und die Strahlrichtung des SpotLight-Objekts entsprechen in diesem
Projekt der Position und der Blickrichtung der orthographischen Kamera. Sie sind
wie diese vom Typ Point3D beziehungsweise Vector3D. Die beiden double-Eigen-
schaften InnerConeAngle und OuterConeAngle bezeichnen Winkel. Diese stehen
für die innere und äußere Grenze des Lichtkegels. Innerhalb des Lichtkegels wer-
den die 3D-Körper vollständig vom SpotLight-Objekt ausgeleuchtet.

Das Material des 3D-Körpers ist diffus hellgrau, und die Geometrie wird per Pro-
grammcode erzeugt. Die Methode zum Umschalten der Lichtarten sieht so aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
 if (e.Key == Key.A)
 {
 mv3dl.Content = new AmbientLight(Colors.White);
 Title = "AmbientLight";
 }
 else if (e.Key == Key.D)
 {
 mv3dl.Content = new DirectionalLight(
 Colors.White, new Vector3D(-5, 2, -5));
 Title = "DirectionalLight";
 }
 else if (e.Key == Key.P)
 {
 mv3dl.Content = new PointLight(
 Colors.White, new Point3D(5, -2, 5));
 Title = "PointLight";
 }
 else if (e.Key == Key.S)
 {
 mv3dl.Content = new SpotLight(Colors.White,
 new Point3D(5, -2, 5), new Vector3D(-5, 2, -5), 30, 15);
 Title = "SpotLight";
 }
}

Licht 10.3

305

Das AmbientLight benötigt nur eine Farbe. Weiß ist am hellsten. Das
DirectionalLight benötigt zusätzlich ein Objekt vom Typ Vector3D für die Rich-
tung des Lichts. Beim PointLight ist neben der Farbe die Position der Lichtquelle
wichtig. Sie wird mithilfe eines Point3D-Objekts angegeben.

Das SpotLight wird mithilfe der Farbe, der Position der Lichtquelle, der Richtung
für den Lichtkegel und den beiden Angaben für den äußeren und den inneren
Winkel des Lichtkegels konstruiert.

Es folgt die Konstruktion der halben Röhre:

private void Window_Loaded(...)
{
 /* Faktor für Bogenmaß */
 double bf = Math.PI / 180;

 /* Positionen und Dreiecks-Indizes für MeshGeometry */
 Point3DCollection p3dc = new Point3DCollection();
 Int32Collection i32c = new Int32Collection();

 /* Start für Dreiecks-Index */
 int ti = 0;

 /* Alle 10 Grad ein Rechteck */
 for (double w = 0; w <= 170; w += 10)
 {
 double wd = w + 10;
 double wb = w * bf; // Bogenmaß
 double wdb = wd * bf; // Bogenmaß

 /* Eckpunkte 0,1,2,3 eines Rechtecks */
 p3dc.Add(new Point3D(-Math.Cos(wb), 1, Math.Sin(wb)));
 p3dc.Add(new Point3D(-Math.Cos(wb), -1, Math.Sin(wb)));
 p3dc.Add(new Point3D(-Math.Cos(wdb), -1, Math.Sin(wdb)));
 p3dc.Add(new Point3D(-Math.Cos(wdb), 1, Math.Sin(wdb)));

 /* Rechteck aus zwei Dreiecken: 0,1,2 und 2,3,0 */
 i32c.Add(ti);
 i32c.Add(ti + 1);
 i32c.Add(ti + 2);
 i32c.Add(ti + 2);
 i32c.Add(ti + 3);
 i32c.Add(ti);
 ti += 4;
 }

3D-Grafik10

306

 /* MeshGeometry-Eigenschaften */
 mg3d.Positions = p3dc;
 mg3d.TriangleIndices = i32c;
}

Die halbe Röhre ist aus 18 schmalen Rechtecken zusammengesetzt. Jedes Recht-
eck steht relativ zur Lichtquelle in einem anderen Winkel, daher ergeben sich die
Beleuchtungseffekte. Die Eckpunkte der Rechtecke werden mithilfe der trigono-
metrischen Funktionen Sinus und Cosinus ermittelt.

Die entsprechenden Methoden Math.Sin() und Math.Cos() benötigen den Win-
kel im Bogenmaß. Daher wird vorher jeder Winkel von Grad in Bogenmaß umge-
rechnet, und zwar mithilfe der mathematischen Konstante pi und der Formel wb
= w * pi / 180.

10.4 Modelle

3D-Körper können innerhalb von unterschiedlichen Modellen angeordnet wer-
den:

� Objekte des Typs ModelVisual3D haben Sie bereits kennengelernt. Diese kön-
nen ein einzelnes GeometryModel3D-Objekt beinhalten.

� Innerhalb eines ModelVisual3D-Objekts kann aber auch ein Model3DGroup-
Objekt stehen. Dieses kann eine Gruppe von mehreren GeometryModel3D-
Objekten beinhalten.

� Verwendet man ModelUIElement3D statt ModelVisual3D, dann können auf dem
3D-Körper Ereignisse ausgelöst werden.

� Ein ContainerUIElement3D-Objekt kann eine Gruppe von ModelUIElement3D-
Objekten enthalten, bei denen jeweils eigene Ereignisse ausgelöst werden
können.

� Verwendet man Viewport2DVisual3D statt ModelVisual3D, so wird die zwei-
dimensionale Gestaltung der Oberflächen der 3D-Körper ermöglicht, zum Bei-
spiel mit Steuerelementen.

10.4.1 Gruppe von 3D-Körpern

Innerhalb eines Objekts des Typs Model3DGroup können Sie mehrere Objekte des
Typs GeometryModel3D anordnen. Damit kann eine Szene aus 3D-Körpern unter-
schiedlichen Materials bestehen.

Modelle 10.4

307

Im nachfolgenden Projekt DreiDGruppe werden zwei Dreiecke unterschiedlicher
Farbe dargestellt, die ein Quadrat bilden (siehe Abbildung 10.8). Das Quadrat
liegt in der Blattebene, bei z = 0. Sein Zentrum ist der Nullpunkt. Der Betrachter
kann die Farben der Dreiecke per Mausklick umschalten.

Abbildung 10.8 Gruppe von 3D-Körpern

Der XAML-Code:

<Window ... MouseDown="Window_MouseDown">
 ...
 <ModelVisual3D>
 <ModelVisual3D.Content>
 <Model3DGroup x:Name="m3dg">

 <GeometryModel3D>
 <GeometryModel3D.Material>
 <DiffuseMaterial Brush="Gray" />
 </GeometryModel3D.Material>
 <GeometryModel3D.Geometry>
 <MeshGeometry3D Positions="-1,1,0 -1,-1,0 1,-1,0"
 TriangleIndices="0,1,2"/>
 </GeometryModel3D.Geometry>
 </GeometryModel3D>

 <GeometryModel3D>
 <GeometryModel3D.Material>
 <DiffuseMaterial Brush="LightGray" />
 </GeometryModel3D.Material>
 <GeometryModel3D.Geometry>
 <MeshGeometry3D Positions="1,-1,0 1,1,0 -1,1,0"
 TriangleIndices="0,1,2"/>
 </GeometryModel3D.Geometry>
 </GeometryModel3D>

3D-Grafik10

308

 </Model3DGroup>
 </ModelVisual3D.Content>
 </ModelVisual3D>
 ...
</Window>

Das erste Dreieck in der Gruppe ist grau, das zweite hellgrau. Die Eigenschaften
Positions und TriangleIndices sind unabhängig voneinander. Es folgt die
Klasse mit der Ereignismethode zum Wechseln des Materials:

public partial class MainWindow : Window
{
 bool unten_dunkel;
 public MainWindow()
 {
 InitializeComponent();
 unten_dunkel = true;
 }

 private void Window_MouseDown(object sender,
 MouseButtonEventArgs e)
 {
 GeometryModel3D gm3d1 = m3dg.Children[0] as GeometryModel3D;
 GeometryModel3D gm3d2 = m3dg.Children[1] as GeometryModel3D;
 if (unten_dunkel)
 {
 gm3d1.Material = new DiffuseMaterial(
 new SolidColorBrush(Colors.LightGray));
 gm3d2.Material = new DiffuseMaterial(
 new SolidColorBrush(Colors.Gray));
 }
 else
 {
 gm3d1.Material = new DiffuseMaterial(
 new SolidColorBrush(Colors.Gray));
 gm3d2.Material = new DiffuseMaterial(
 new SolidColorBrush(Colors.LightGray));
 }
 unten_dunkel = !unten_dunkel;
 }
}

Die Auflistungseigenschaft Children des Model3DGroup-Objekts ist vom Typ
Model3DCollection. Sie beinhaltet die einzelnen Objekte vom Typ Geo-

metryModel3D.

Modelle 10.4

309

10.4.2 3D-Körper mit Ereignissen

Bisher konnten Ereignisse nur bezüglich des Fensters ausgelöst werden. In die-
sem Abschnitt sollen Objekte des Typs ModelUIElement3D vorgestellt werden. Sie
bieten im Gegensatz zur Klasse ModelVisual3D die Möglichkeit, Ereignisse direkt
auf dem 3D-Körper auszulösen.

ModelUIElement3D-Objekte können wiederum entweder einzelne 3D-Körper
mithilfe von GeometryModel3D oder Gruppen von 3D-Körpern mithilfe von
Model3DGroup beinhalten.

Im nachfolgenden Projekt DreiDModelUI wird jeweils ein Ereignis ausgelöst,
wenn wir die Oberfläche des bereits aus Abschnitt 10.1.5 bekannten Würfel mit
der Maus betreten und wieder verlassen. In den zugehörigen Ereignismethoden
wird die Farbe des Würfels gewechselt (siehe Abbildung 10.9).

Abbildung 10.9 Betreten der Oberfläche des Würfels mit der Maus

Der XAML-Code:

<Window ...>
 <Viewport3D>
 ...
 <Viewport3D.Children>
 ...
 <ModelUIElement3D
 MouseEnter="betreten" MouseLeave="verlassen">
 <GeometryModel3D>
 <GeometryModel3D.Material>
 <DiffuseMaterial x:Name="dm" Brush="LightGray" />
 </GeometryModel3D.Material>
 ...
 </GeometryModel3D>
 </ModelUIElement3D>

3D-Grafik10

310

 </Viewport3D.Children>
 </Viewport3D>
</Window>

Es wird ein Objekt der Klasse ModelUIElement3D statt der Klasse ModelVisual3D
genutzt. Darin stehen die beiden Ereignishandler, die zu den folgenden Metho-
den führen:

private void betreten(object sender, MouseEventArgs e)
{ dm.Brush = new SolidColorBrush(Colors.Gray); }
private void verlassen(object sender, MouseEventArgs e)
{ dm.Brush = new SolidColorBrush(Colors.LightGray); }

Innerhalb der Methoden wird die Eigenschaft Brush des Materials des
GeometryModel3D-Objekts geändert.

10.4.3 Gruppe von 3D-Körpern mit Ereignissen

Ein Objekt der Klasse ContainerUIElement3D ermöglicht Gruppen von 3D-Kör-
pern unterschiedlichen Materials, bei denen jeweils Ereignisse ausgelöst werden
können. Es werden also die Möglichkeiten der Klassen Model3DGroup und
ModelUIElement3D kombiniert.

Im nachfolgenden Projekt DreiDContainerUI wird das bereits aus Abschnitt
10.4.1, »Gruppe von 3D-Körpern«, bekannte Quadrat dargestellt. Auf den beiden
Dreiecken, aus denen es besteht, können jeweils Ereignisse ausgelöst werden.
Das Betreten und das Verlassen mit der Maus führen zu einem Farbwechsel des
jeweiligen Dreiecks (siehe Abbildung 10.10).

Abbildung 10.10 Betreten des ersten Dreiecks mit der Maus

Der XAML-Code:

<Window ...>
 <Viewport3D>

Modelle 10.4

311

 ...
 <Viewport3D.Children>
 ...
 <ContainerUIElement3D>

 <ModelUIElement3D
 MouseEnter="betreten1" MouseLeave="verlassen1">
 <GeometryModel3D>
 <GeometryModel3D.Material>
 <DiffuseMaterial x:Name="dm1" Brush="Gray" />
 </GeometryModel3D.Material>
 ...
 </GeometryModel3D>
 </ModelUIElement3D>

 <ModelUIElement3D
 MouseEnter="betreten2" MouseLeave="verlassen2">
 <GeometryModel3D>
 <GeometryModel3D.Material>
 <DiffuseMaterial x:Name="dm2" Brush="LightGray" />
 </GeometryModel3D.Material>
 ...
 </GeometryModel3D>
 </ModelUIElement3D>

 </ContainerUIElement3D>
 </Viewport3D.Children>
 </Viewport3D>
</Window>

Innerhalb des ContainerUIElement3D-Objekts sind zwei Objekte des Typs
ModelUIElement3D angeordnet. Jedes davon beschreibt ein Dreieck, auf dem
Ereignisse ausgelöst werden können. Die vier Ereignismethoden entsprechen
denen aus Abschnitt 10.4.2, »3D-Körper mit Ereignissen«.

10.4.4 3D-Körper mit Oberflächengestaltung

Eine weitere Alternative bieten Objekte der Klasse Viewport2DVisual3D. Damit
können die Oberflächen der 3D-Körper wie zweidimensionale Flächen gestaltet
werden. Sie können dort also auch bedienbare Steuerelemente anordnen.

Im nachfolgenden Projekt DreiDViewport2D werden auf den drei Seiten des
bereits aus Abschnitt 10.1.5 bekannten Würfels jeweils zwei Buttons abgebildet
(siehe Abbildung 10.11). Die Betätigung der Buttons führt jeweils zu einer Ereig-
nismethode.

3D-Grafik10

312

Abbildung 10.11 Steuerelemente auf der Oberfläche des Würfels

Der XAML-Code:

<Window ...>
 <Viewport3D>
 ...
 <Viewport3D.Children>
 ...
 <Viewport2DVisual3D>
 <Viewport2DVisual3D.Material>
 <DiffuseMaterial
 Viewport2DVisual3D.IsVisualHostMaterial="True" />
 </Viewport2DVisual3D.Material>

 <Viewport2DVisual3D.Geometry>
 <MeshGeometry3D Positions="-1,1,1 -1,-1,1 1,-1,1 1,1,1
 1,1,1 1,-1,1 1,-1,-1 1,1,-1 -1,1,-1 -1,1,1 1,1,1 1,1,-1"
 TriangleIndices="0,1,2 2,3,0 4,5,6 6,7,4 8,9,10 10,11,8"
 TextureCoordinates="0,0 0,1 1,1 1,0
 0,0 0,1 0.5,1 0.5,0
 0,0 0,1 1,1 1,0" />
 </Viewport2DVisual3D.Geometry>

 <Viewport2DVisual3D.Visual>
 <StackPanel>
 <Button Click="a_Click">A</Button>
 <Button Click="b_Click">B</Button>
 </StackPanel>
 </Viewport2DVisual3D.Visual>
 </Viewport2DVisual3D>

</Viewport3D.Children>
</Viewport3D>
</Window>

Material und Textur 10.5

313

Es wird ein Objekt der Klasse Viewport2DVisual3D statt der Klasse ModelVisual3D
genutzt. Dies ermöglicht die Gestaltung der Oberflächen. Als Material wird ein
Objekt des Typs DiffuseMaterial verwendet. Die angefügte boolesche Eigen-
schaft IsVisualHostMaterial wird auf True gesetzt. Damit wird das Material
interaktiv.

Beim MeshGeometry3D-Objekt wurde die Eigenschaft TextureCoordinates vom
Typ PointCollection mit Werten gefüllt. Die Textur gibt an, wie die drei Seiten
des Würfels belegt werden. Die zweidimensionalen Punkte 0,0 0,1 1,1 und so
weiter stehen für die relativen Koordinaten des zweidimensionalen Elements, die
auf die dreidimensionalen Punkte des 3D-Körpers abgebildet werden.

Solche relativen Koordinaten haben Sie bereits in Abschnitt 9.4.2 über den linea-
ren Farbverlauf mithilfe eines LinearGradientBrush gesehen. Wie dort steht 0,0
für »links oben«, 0,1 für »links unten«, 1,1 für »rechts unten« und 1,0 für »rechts
oben« (siehe auch Abbildung 9.12).

Es folgt die Zuordnung der relativen Koordinaten:

� Die ersten vier Punkte in Positions stehen für die vordere Seite des Würfels.
Dort wird das vollständige StackPanel mit den beiden Buttons abgebildet, da
die ersten vier Punkte aus TextureCoordinates einmal vollständig gegen den
Uhrzeigersinn um das StackPanel herumlaufen.

� Die zweiten vier Punkte in Positions stehen für die rechte Seite des Würfels.
Dort wird nur die linke Hälfte des StackPanels abgebildet, da die zweiten vier
Punkte aus TextureCoordinates einmal um die linke Hälfte um das StackPanel
herumlaufen. Die x-Koordinate geht nur von 0 bis 0.5.

� Die dritten vier Punkte in Positions stehen für die obere Seite des Würfels.
Dort wird wieder das vollständige StackPanel abgebildet.

Im Viewport2DVisual3D-Objekt folgt nach den Eigenschaften Material und
Geometry die Eigenschaft Visual. Diese beinhaltet das zweidimensionale Ele-
ment, das abgebildet werden soll. Die Ereignismethoden beinhalten nur den Auf-
ruf der Methode MessageBox.Show().

10.5 Material und Textur

Die zweidimensionalen Oberflächen der 3D-Körper können aus verschiedenen
Materialien bestehen und mit unterschiedlichen Texturen bedeckt sein.

3D-Grafik10

314

10.5.1 Material

Kommen wir zunächst zu den Materialien:

� DiffuseMaterial ist nicht selbstleuchtend, ist aber zur Anwendung mit einem
zweidimensionalen Pinsel geeignet.

� SpecularMaterial glänzt zusätzlich in der angegebenen Farbe.

� EmissiveMaterial strahlt zusätzlich Licht in der angegebenen Farbe aus und
kann sogar ohne Beleuchtung eingesetzt werden.

� Eine MaterialGroup beinhaltet eine Auflistung mehrerer Materialien.

Glänzendes beziehungsweise strahlendes Material wird zusammen mit einem
diffusen Material als Basis in einer MaterialGroup kombiniert.

Im nachfolgenden Projekt DreiDMaterial können Sie einzelne Material- und
Lichtkombinationen miteinander vergleichen (siehe Abbildung 10.12). Es gibt
folgende Tasten:

� die Taste (E) für EmissiveMaterial mit einem PointLight

� die Taste (S) für SpecularMaterial mit einem PointLight

� die Taste (O) für EmissiveMaterial ohne Licht

Als 3D-Körper wird wiederum die halbe zylindrische Röhre aus Abschnitt 10.3,
»Licht«, genutzt.

Abbildung 10.12 Licht emittierendes Material

Der XAML-Code:

<Window ... Loaded="Window_Loaded" KeyDown="Window_KeyDown">
 <Viewport3D>
 ...
 <Viewport3D.Children>
 <ModelVisual3D x:Name="mv3dl">

Material und Textur 10.5

315

 <ModelVisual3D.Content>
 <PointLight Color="White" Position="5,-2,5" />
 </ModelVisual3D.Content>
 </ModelVisual3D>

 <ModelVisual3D>
 <ModelVisual3D.Content>
 <GeometryModel3D>
 <GeometryModel3D.Material>
 <MaterialGroup x:Name="mg">
 <DiffuseMaterial Brush="LightGray" />
 <EmissiveMaterial Brush="DarkBlue" />
 </MaterialGroup>
 </GeometryModel3D.Material>
 ...
</Window>

Nach dem Laden des Fensters wird in der Methode Window_Loaded() die Geome-
trie der halben Röhre erzeugt. Die Methode Window_KeyDown() dient zum
Umschalten zwischen den Material- und Lichtkombinationen.

Anordnung, Positionen und Richtungen von Kamera und Licht und die Konstruk-
tion der halben Röhre kennen Sie bereits aus Abschnitt 10.3, »Licht«. Als Materi-
alien der Röhre werden innerhalb der MaterialGroup ein diffuses, hellgraues
Basismaterial und ein strahlendes, dunkelblaues Material genutzt.

Die Methode zum Umschalten sieht so aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
 if (e.Key == Key.E)
 {
 mv3dl.Content = new PointLight(
 Colors.White, new Point3D(5,-2,5));
 mg.Children.Clear();
 mg.Children.Add(new DiffuseMaterial(
 new SolidColorBrush(Colors.LightGray)));
 mg.Children.Add(new EmissiveMaterial(
 new SolidColorBrush(Colors.DarkBlue)));
 Title = "EmissiveMaterial mit Licht";
 }
 else if (e.Key == Key.S)
 {
 mv3dl.Content = new PointLight(
 Colors.White, new Point3D(5, -2, 5));
 mg.Children.Clear();

3D-Grafik10

316

 mg.Children.Add(new DiffuseMaterial(
 new SolidColorBrush(Colors.LightGray)));
 mg.Children.Add(new SpecularMaterial(
 new SolidColorBrush(Colors.DarkBlue), 30));
 Title = "SpecularMaterial mit Licht";
 }
 else if (e.Key == Key.O)
 {
 mv3dl.Content = null;
 mg.Children.Clear();
 mg.Children.Add(new DiffuseMaterial(
 new SolidColorBrush(Colors.LightGray)));
 mg.Children.Add(new EmissiveMaterial(
 new SolidColorBrush(Colors.DarkBlue)));
 Title = "EmissiveMaterial ohne Licht";
 }
}

Das Licht wird durch ein neues PointLight-Objekt erzeugt. »Gelöscht« wird es
mithilfe eines Null-Zeigers. Die Auflistung innerhalb der MaterialGroup wird
zunächst mit der Methode Clear() gelöscht. Anschließend werden Objekte für
die einzelnen Materialien mithilfe von Add() hinzugefügt.

Als erster Konstruktor-Parameter wird jeweils die Farbe benötigt: für
DiffuseMaterial die Farbe des Basismaterials, für SpecularMaterial zusätzlich
die Farbe des Glanzes und für EmissiveMaterial zusätzlich die strahlende Farbe.
Bei SpecularMaterial kommt noch ein Wert für die double-Eigenschaft
SpecularPower hinzu. Dieser Wert stellt einen Grad dar, bis zu dem das Material
als Glanz verwendet wird. Je niedriger der Grad ist, desto stärker sieht man die
glänzende Farbe relativ zur Farbe des Basismaterials.

10.5.2 Textur

Die Oberflächen eines 3D-Körpers können mit einer Textur gestaltet werden.
Dazu wird auf ein Material vom Typ DiffuseMaterial ein zweidimensionaler
Pinsel (Eigenschaft Brush) angewandt. Es kommen Texturkoordinaten zum Ein-
satz, wie sie bereits in Abschnitt 10.4.4, »3D-Körper mit Oberflächengestaltung«,
erläutert wurden.

Im nachfolgenden Projekt DreiDTextur wird der dreiseitige Würfel aus Abschnitt
10.1.5 dargestellt (siehe Abbildung 10.13). Diesmal werden die drei Seiten aller-
dings mit verschiedenen Materialien gestaltet: einem ImageBrush, einem
RadialGradientBrush und einem LinearGradientBrush. Dazu ist es notwendig,
drei GeometryModel3D-Objekte innerhalb einer Model3DGroup anzuordnen.

Material und Textur 10.5

317

Abbildung 10.13 Drei verschiedene Texturen

Der XAML-Code:

<Window ...>
 <Viewport3D>
 ...
 <AmbientLight />
 ...
 <DirectionalLight Color="White" Direction="-3,-3,-5" />
 ...
 <ModelVisual3D>
 <ModelVisual3D.Content>
 <Model3DGroup>

 <GeometryModel3D>
 <GeometryModel3D.Material>
 <DiffuseMaterial>
 <DiffuseMaterial.Brush>
 <ImageBrush ImageSource="blume.jpg" />
 </DiffuseMaterial.Brush>
 </DiffuseMaterial>
 </GeometryModel3D.Material>
 <GeometryModel3D.Geometry>
 <MeshGeometry3D
 Positions="-1,1,1 -1,-1,1 1,-1,1 1,1,1"
 TriangleIndices="0,1,2 2,3,0"
 TextureCoordinates="0,0 0,1 1,1 1,0" />
 </GeometryModel3D.Geometry>
 </GeometryModel3D>

 <GeometryModel3D>
 <GeometryModel3D.Material>
 <DiffuseMaterial>

3D-Grafik10

318

 <DiffuseMaterial.Brush>
 <RadialGradientBrush>
 <GradientStop Offset="0.1" Color="Black" />
 <GradientStop
 Offset="0.9" Color="LightGray" />
 </RadialGradientBrush>
 </DiffuseMaterial.Brush>
 </DiffuseMaterial>
 </GeometryModel3D.Material>
 <GeometryModel3D.Geometry>
 <MeshGeometry3D
 Positions="1,1,1 1,-1,1 1,-1,-1 1,1,-1"
 TriangleIndices="0,1,2 2,3,0"
 TextureCoordinates="0,0 0,1 1,1 1,0" />
 </GeometryModel3D.Geometry>
 </GeometryModel3D>

 <GeometryModel3D>
 <GeometryModel3D.Material>
 <DiffuseMaterial>
 <DiffuseMaterial.Brush>
 <LinearGradientBrush
 StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0.1" Color="Black" />
 <GradientStop
 Offset="0.9" Color="LightGray" />
 </LinearGradientBrush>
 </DiffuseMaterial.Brush>
 </DiffuseMaterial>
 </GeometryModel3D.Material>
 <GeometryModel3D.Geometry>
 <MeshGeometry3D
 Positions="-1,1,-1 -1,1,1 1,1,1 1,1,-1"
 TriangleIndices="0,1,2 2,3,0"
 TextureCoordinates="0,0 0,1 1,1 1,0" />
 </GeometryModel3D.Geometry>
 </GeometryModel3D>

 </Model3DGroup>
 </ModelVisual3D.Content>
 </ModelVisual3D>
 </Viewport3D.Children>
 </Viewport3D>
</Window>

Transformationen 10.6

319

Es werden sowohl ein Umgebungslicht als auch ein gerichtetes Licht eingesetzt,
ansonsten wird das Bild nicht hell genung. Die Model3DGroup besteht aus drei
GeometryModel3D-Objekten. Jedes Objekt steht für eine Seite des Würfels:

� Die Eigenschaft Brush des DiffuseMaterial-Objekts beinhaltet für die Vorder-
seite des Würfels einen ImageBrush mit Zugriff auf eine Bilddatei.

� Für die rechte Seite des Würfels ist die Eigenschaft Brush mit einem
RadialGradientBrush belegt, in dem die Farbe von innen nach außen von
Schwarz zu Hellgrau übergeht. Die ersten 10 % und die letzten 10 % sind noch
außerhalb des Übergangs, also in voller Farbe.

� Auf der Oberseite kommt ein LinearGradientBrush entlang eines Wegs von
oben nach unten zum Einsatz. Der Startpunkt 0,0 des Wegs bezeichnet die
(vom Betrachter aus) hintere linke Ecke der Oberseite, und der Endpunkt 0,1
bezeichnet die vordere linke Ecke. Die Farben und Übergänge sind wie beim
RadialGradientBrush gewählt.

10.6 Transformationen

Ein 3D-Körper kann auf mehrere Arten transformiert werden. Sie werden sehen,
dass es Parallelen zu den Transformationen in der zweidimensionalen Ebene gibt.
Zur Transformation dienen die folgenden Klassen, die alle von der Klasse
Transform3D abgeleitet sind:

� RotateTransform3D: Drehung

� ScaleTransform3D: Größenänderung, gegebenenfalls mit Verzerrung

� TranslateTransform3D: Verschiebung

� Transform3DGroup: Zusammenfassung mehrerer Transformationen

10.6.1 ScaleTransform3D

Die Größenänderung (Skalierung) eines 3D-Körpers können Sie mithilfe eines
Objekts des Typs ScaleTransform3D durchführen. Falls Sie die drei double-Eigen-
schaften ScaleX, ScaleY und ScaleZ als Skalierungsfaktoren für die x-, y- und z-
Richtung unterschiedlich wählen, wird der 3D-Körper verzerrt. Der Standardwert
für alle Faktoren ist 1. Der Mittelpunkt der Transformation wird mithilfe der drei
double-Eigenschaften CenterX, CenterY und CenterZ festgelegt. Der Standardwert
ist jeweils 0.

Im nachfolgenden Projekt DreiDTransScale wird der dreiseitige Würfel aus
Abschnitt 10.1.5 in alle drei Richtungen unterschiedlich skaliert. Dadurch wird er

3D-Grafik10

320

zu einem Quader (siehe Abbildung 10.14). Mithilfe der Tasten (X), (Y) und (Z)
können Sie die Skalierung weiter vergrößern.

Abbildung 10.14 Skalierung

Der XAML-Code:

<Window ... KeyDown="Window_KeyDown">
 ...
 <GeometryModel3D>
 ...
 <GeometryModel3D.Transform>
 <ScaleTransform3D x:Name="st3d"
 CenterX="0" CenterY="-1" CenterZ="1"
 ScaleX="1.5" ScaleY="1.0" ScaleZ="0.5" />
 </GeometryModel3D.Transform>
 ...
 </GeometryModel3D>
 ...
</Window>

Die Methode Window_KeyDown() dient zum Vergrößern der Skalierung in der
jeweiligen Richtung. Das GeometryModel3D-Objekt hat neben den Eigenschaften
Material und Geometry für Material und Form die Eigenschaft Transform vom
Typ Transform3D für die Art und Weise der Transformation.

Die Klasse ScaleTransform3D besitzt die oben erläuterten double-Eigenschaften
für die Skalierungsfaktoren und den Transformationsmittelpunkt. Die Faktoren
sind 1.5, 1.0 und 0.5. Der Würfel ist also in x-Richtung gedehnt, in y-Richtung
unverändert und in z-Richtung gestaucht. Der Mittelpunkt liegt bei 0,-1,1, mit
folgenden Auswirkungen:

� In x-Richtung liegt er in der Mitte des 3D-Körpers, dadurch verändert sich der
3D-Körper gleichmäßig zu beiden Seiten.

Transformationen 10.6

321

� In y-Richtung liegt er am unteren Rand des 3D-Körpers, dadurch verändert
sich der 3D-Körper nur nach oben.

� In z-Richtung liegt er am vorderen Rand des 3D-Körpers, dadurch verändert
sich der 3D-Körper nur nach hinten.

Die Ereignismethode zum weiteren Vergrößern der Skalierung sieht so aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
 if (e.Key == Key.X)
 st3d.ScaleX += 0.1;
 else if (e.Key == Key.Y)
 st3d.ScaleY += 0.1;
 else if (e.Key == Key.Z)
 st3d.ScaleZ += 0.1;
}

Die Faktoren ScaleX, ScaleY beziehungsweise ScaleZ werden jeweils um 0.1 ver-
größert.

10.6.2 TranslateTransform3D

Die Verschiebung eines 3D-Körpers führen Sie mithilfe eines Objekts des Typs
TranslateTransform3D durch. Die drei double-Eigenschaften OffsetX, OffsetY
und OffsetZ legen die Werte für die Verschiebung in x-, y- und z-Richtung ein-
zeln fest. Der Standardwert für alle Eigenschaften ist 0.

Im nachfolgenden Projekt DreiDTransTranslate wird der dreiseitige Würfel aus
Abschnitt 10.1.5 nach links oben und nach hinten, also weg vom Betrachter, ver-
schoben (siehe Abbildung 10.14). Mithilfe der Tasten (X), (Y) und (Z) können Sie
ihn weiter verschieben.

Abbildung 10.15 Verschiebung

3D-Grafik10

322

Der XAML-Code:

<Window ... KeyDown="Window_KeyDown">
 ...
 <GeometryModel3D>
 ...
 <GeometryModel3D.Transform>
 <TranslateTransform3D x:Name="tt3d"
 OffsetX="-1.5" OffsetY="0.5" OffsetZ="-0.5" />
 </GeometryModel3D.Transform>
 ...
 </GeometryModel3D>
 ...
</Window>

Die Methode Window_KeyDown() dient zur Verschiebung. Die Klasse Trans-
lateTransform3D besitzt die oben erläuterten double-Eigenschaften für die Ver-
schiebung. Die Offsets sind -1.5, 0.5 und -0.5. Der Würfel ist also nach links oben
und nach hinten, weg vom Betrachter, verschoben. Die Ereignismethode zur wei-
teren Verschiebung sieht so aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
 if (e.Key == Key.X)
 tt3d.OffsetX += 0.2;
 else if (e.Key == Key.Y)
 tt3d.OffsetY += 0.2;
 else if (e.Key == Key.Z)
 tt3d.OffsetZ += 0.2;
}

Die Offset-Werte dienen jeweils zur Verschiebung in die positive Richtung, also
nach rechts, nach oben beziehungsweise nach vorne zum Betrachter.

10.6.3 RotateTransform3D

Sie können einen 3D-Körper mithilfe eines Objekts des Typs RotateTransform3D
drehen. Bei dieser komplexen Transformation werden zwei Arten angeboten: die
AxisAngleRotation3D und die QuaternionRotation3D.

Nur die Axis-Angle-Rotation, die einfachere der beiden, wird im nachfolgenden
Projekt erläutert. Die Quaternion-Rotation basiert auf dem Zahlensystem der
Quaternionen. Dieses Zahlensystem dient zur Beschreibung des dreidimensiona-
len Raumes und kann zum Beispiel im Zusammenhang mit Drehungen in diesem
Raum genutzt werden.

Transformationen 10.6

323

Bei der AxisAngleRotation3D wird der 3D-Körper um einen bestimmten Winkel
um eine bestimmte Achse gedreht. Die double-Eigenschaft Angle bestimmt den
Winkel der Drehung. Der Standardwert ist 0. Die Eigenschaft Axis vom Typ
Vector3D legt die Richtung der Drehachse fest.

Außerdem können Sie über die double-Eigenschaften CenterX, CenterY und
CenterZ die Koordinaten des Drehpunkts bestimmen. Dieser liegt mit dem Stan-
dardwert 0,0,0 im Nullpunkt des Koordinatensystems.

Im nachfolgenden Projekt DreiDTransRotate wird der dreiseitige Würfel aus
Abschnitt 10.1.5 um die z-Achse, also die auf den Betrachter zuweisende Achse,
gedreht (siehe Abbildung 10.16). Mithilfe der Tasten (X), (Y) und (Z) können Sie
den Würfel um die x-Achse, die y-Achse beziehungsweise die z-Achse drehen,
jeweils ausgehend von der Normallage ohne Rotation.

Die Taste (S) setzt alles wieder auf Anfang: Der Drehpunkt liegt dann im Null-
punkt, und es erfolgt keine Rotation. Falls Sie abwechselnd die Tasten (X) und (S)
oder die Tasten (Y) und (S) oder die Tasten (Z) und (S) betätigen, sehen Sie die
jeweilige Drehung deutlicher.

Abbildung 10.16 Rotation um die z-Achse

Sie haben eine weitere Möglichkeit: Die Taste (C) verschiebt den Drehpunkt zur
rechten oberen vorderen Ecke des Würfels. Der Wert für die Richtung der Dreh-
achse bleibt gleich. Durch die Änderung des Drehpunkts handelt es sich dabei
aber nicht mehr um die z-Achse, sondern um eine Parallele zur z-Achse. Neben
dem Drehpunkt bleibt auch die rechte obere hintere Ecke des Würfels an ihrem
Platz, da die Würfelkante zwischen diesen beiden Punkten parallel zur z-Achse
verläuft (siehe Abbildung 10.17). Falls Sie abwechselnd die Tasten (C) und (S)
betätigen, sehen Sie die beschriebene Drehung um diese Würfelkante deutli-
cher.

3D-Grafik10

324

Abbildung 10.17 Rotation um eine Achse parallel zur z-Achse

Der XAML-Code:

<Window ... KeyDown="Window_KeyDown">
 ...
 <GeometryModel3D>
 ...
 <GeometryModel3D.Transform>
 <RotateTransform3D x:Name="rt3d">
 <RotateTransform3D.Rotation>
 <AxisAngleRotation3D x:Name="aar3d"
 Axis="0,0,1" Angle="10" />
 </RotateTransform3D.Rotation>
 </RotateTransform3D>
 </GeometryModel3D.Transform>
 ...
</Window>

Die Methode Window_KeyDown() dient zur Durchführung der verschiedenen Rota-
tionsarten. Die Klasse RotateTransform3D besitzt die Eigenschaft Rotation vom
Typ Rotation3D. Diese beinhaltet mit einem Objekt des Typs AxisAngleRota-
tion3D die Art der Rotation. AxisAngleRotation3D wiederum hat die oben erläu-
terten Eigenschaften Axis für die Richtung der Drehachse und Angle für den
Drehwinkel. Die Werte 0,0,1 bedeuten: Die Drehachse verläuft parallel zur
z-Achse.

Es folgt die Ereignismethode inklusive einer Hilfsmethode:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
 if (e.Key == Key.X)
 {
 drehpunkt(0, 0, 0);
 aar3d.Axis = new Vector3D(1, 0, 0);

Transformationen 10.6

325

 aar3d.Angle = 10;
 }
 else if (e.Key == Key.Y)
 {
 drehpunkt(0, 0, 0);
 aar3d.Axis = new Vector3D(0, 1, 0);
 aar3d.Angle = -10;
 }
 else if (e.Key == Key.Z)
 {
 drehpunkt(0, 0, 0);
 aar3d.Axis = new Vector3D(0, 0, 1);
 aar3d.Angle = 10;
 }
 else if (e.Key == Key.C)
 {
 drehpunkt(1, 1, 1);
 aar3d.Axis = new Vector3D(0, 0, 1);
 aar3d.Angle = 30;
 }
 else if (e.Key == Key.S)
 {
 drehpunkt(0, 0, 0);
 aar3d.Axis = new Vector3D(0, 0, 1);
 aar3d.Angle = 0;
 }
}

private void drehpunkt(double x, double y, double z)
{
 rt3d.CenterX = x;
 rt3d.CenterY = y;
 rt3d.CenterZ = z;
}

Die Tasten (X), (Y), (Z) und (S) führen dazu, dass der Drehpunkt im Nullpunkt
liegt und die Drehachse der x-, y- beziehungsweise z-Achse entspricht. Nur bei
der Taste (C) ist der Drehpunkt nicht im Nullpunkt und die Drehachse nur paral-
lel zur z-Achse.

Der Drehsinn des Winkels wird gemäß der Rechte-Hand-Regel interpretiert:

� Der abgespreizte Daumen der rechten Hand hat die Richtung des Vector3D-
Objekts für die Drehachse.

� Die restlichen Finger werden gekrümmt. Die Fingerspitzen gehen in Richtung
des positiven Drehwinkels.

3D-Grafik10

326

10.6.4 Transform3DGroup

Innerhalb eines Objekts des Typs Transform3DGroup haben Sie die Möglichkeit,
mehrere Transformationen auf einen 3D-Körper anzuwenden. Er kann also
gleichzeitig gedreht, skaliert und verschoben werden. Die einzelnen Transforma-
tionen sind untergeordnete Elemente des Transform3DGroup-Objekts.

Im nachfolgenden Projekt DreiDTransGroup sehen Sie den dreiseitigen Würfel
aus Abschnitt 10.1.5. Er wurde in x-Richtung vergrößert und in negativer y-Rich-
tung verschoben, außerdem um 5 Grad mit dem Drehsinn um die y-Achse
gedreht (siehe Abbildung 10.18). Bei jedem Tastendruck wird er weiter in x-Rich-
tung vergrößert, in die positive y-Richtung verschoben und gegen den Drehsinn
um die y-Achse gedreht.

Abbildung 10.18 Vergrößert, verschoben und gedreht

Der XAML-Code:

<Window ... KeyDown="Window_KeyDown">
 ...
 <GeometryModel3D>
 ...
 <GeometryModel3D.Transform>
 <Transform3DGroup x:Name="t3dg">
 <ScaleTransform3D ScaleX="1.5" />
 <TranslateTransform3D OffsetY="-0.5" />
 <RotateTransform3D>
 <RotateTransform3D.Rotation>
 <AxisAngleRotation3D Axis="0,1,0" Angle="5" />
 </RotateTransform3D.Rotation>
 </RotateTransform3D>
 </Transform3DGroup>
 </GeometryModel3D.Transform>
 ...

Transformationen 10.6

327

 </GeometryModel3D>
 ...
</Window>

Die Methode Window_KeyDown() dient zur Durchführung der weiteren Transfor-
mationen. Die Eigenschaft Transform des GeometryModelD-Objekts ist vom Typ
Transform3D und beinhaltet hier ein Objekt des Typs Transform3DGroup. Darin
steht eine Auflistung mehrerer Transformationen von unterschiedlichen Typen.
Die jeweils nicht genannten Eigenschaften haben ihre Standardwerte, also:

� ScaleY und ScaleZ haben den Wert 1.

� OffsetX und OffsetZ haben den Wert 0.

� CenterX, CenterY und CenterZ haben den Wert 0.

Der Drehpunkt ist der Nullpunkt des Koordinatensystems, und die Drehachse
liegt genau auf der y-Achse. Die Ereignismethode sieht so aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
 (t3dg.Children[0] as ScaleTransform3D).ScaleX += 0.3;
 (t3dg.Children[1] as TranslateTransform3D).OffsetY += 0.5;
 ((t3dg.Children[2] as RotateTransform3D).Rotation as
 AxisAngleRotation3D).Angle -= 10;
}

Die Auflistungselemente des Transform3DGroup-Objekts werden passend inter-
pretiert. Bei der Rotationstransformation geschieht dies in zwei Schritten, da es
zwei Rotationsarten gibt, die der Eigenschaft Rotation zugeordnet werden kön-
nen. Anschließend wird die jeweils gewünschte Eigenschaft verändert.

10.6.5 Transform3DGroup aus Rotationen

In diesem Abschnitt sehen Sie im Projekt DreiDTransRotateAll ein weiteres Bei-
spiel für eine Transform3DGroup. Sie beinhaltet drei Rotationen um drei verschie-
dene Achsen, die jeweils in positivem Drehsinn erfolgen. Die aktuellen Werte der
drei Drehwinkel werden in der Titelleiste angezeigt.

Im Projekt wird der dreiseitige Würfel aus Abschnitt 10.1.5 verwendet (siehe
Abbildung 10.19). Er kann dank eines Werts für die Eigenschaft BackMaterial
auch von der Rückseite gesehen werden. Mithilfe der Tasten (X), (Y) und (Z) wird
die Drehung um die jeweilige Achse vergrößert.

3D-Grafik10

328

Abbildung 10.19 Rotation um drei Achsen

Der XAML-Code:

<Window ... KeyDown="Window_KeyDown">
 ...
 <GeometryModel3D>
 <GeometryModel3D.Material>
 <DiffuseMaterial Brush="LightGray" />
 </GeometryModel3D.Material>
 <GeometryModel3D.BackMaterial>
 <DiffuseMaterial Brush="Red" />
 </GeometryModel3D.BackMaterial>

 <GeometryModel3D.Transform>
 <Transform3DGroup>
 <RotateTransform3D>
 <RotateTransform3D.Rotation>
 <AxisAngleRotation3D
 x:Name="aar3dx" Axis="1,0,0" Angle="5" />
 </RotateTransform3D.Rotation>
 </RotateTransform3D>
 <RotateTransform3D>
 <RotateTransform3D.Rotation>
 <AxisAngleRotation3D
 x:Name="aar3dy" Axis="0,1,0" Angle="5" />
 </RotateTransform3D.Rotation>
 </RotateTransform3D>
 <RotateTransform3D>
 <RotateTransform3D.Rotation>
 <AxisAngleRotation3D
 x:Name="aar3dz" Axis="0,0,1" Angle="5" />
 </RotateTransform3D.Rotation>
 </RotateTransform3D>

Eine 3D-Landschaft 10.7

329

 </Transform3DGroup>
 </GeometryModel3D.Transform>
 ...
</Window>

Die Methode Window_KeyDown() dient zur Durchführung der weiteren Rotatio-
nen. Die Auflistung in der Transform3DGroup besteht aus drei Rotationen des
Typs AxisAngleRotation3D. Jede bezieht sich auf eine der drei Achsen. Der 3D-
Körper ist zu Beginn jeweils um 5 Grad im positiven Drehsinn gedreht. Der Dreh-
punkt ist der Nullpunkt des Koordinatensystems. Die Ereignismethode sieht so
aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
 if (e.Key == Key.X)
 aar3dx.Angle = (aar3dx.Angle + 5) % 360;
 else if (e.Key == Key.Y)
 aar3dy.Angle = (aar3dy.Angle + 5) % 360;
 else if (e.Key == Key.Z)
 aar3dz.Angle = (aar3dz.Angle + 5) % 360;
 Title = "X:" + aar3dx.Angle + " Y:"
 + aar3dy.Angle + " Z:" + aar3dz.Angle;
}

Diesmal wird nicht auf die untergeordneten Elemente der Transform3DGroup,
sondern direkt auf die AxisAngleRotation3D-Objekte zugegriffen. Nach Errei-
chen des Winkels 360 Grad wird der Winkel wieder auf 0 Grad gesetzt. Der aktu-
elle Winkel pro Drehachse wird in der Titelleiste angezeigt.

10.7 Eine 3D-Landschaft

Zum Abschluss des Kapitels über 3D-Grafik wird im Projekt DreiDLandschaft
eine komplexe Szene vorgestellt: eine dreidimensionale Landschaft mit Straßen,
Bäumen, Häusern und Fahrzeugen. Diese Szene kann mithilfe von fünf verschie-
denen Kameras betrachtet werden. Die Fahrzeuge können durch Anklicken mit
der Maus bewegt werden. In Abbildung 10.20 sehen Sie die Landschaft durch
eine perspektivische Kamera von vorne.

Die Straßen sind graue Rechtecke, die Bäume sind grüne, regelmäßige Tetraeder,
die Häuser sind große blaue Quader, und die Fahrzeuge sind kleine gelbe Quader.
Aufgrund der Mehrfachnutzung vieler Elemente ist die Szene komplett in Pro-
grammcode aufgebaut. Der XAML-Code ist kurz:

3D-Grafik10

330

<Window ... Title="DreiDLandschaft" Height="400" Width="600"
 Loaded="Window_Loaded" KeyDown="Window_KeyDown" />

Abbildung 10.20 Landschaftsgestaltung

Die Methode Window_Loaded() führt zur Erzeugung und Anordnung der ver-
schiedenen 3D-Körper. Die Methode Window_KeyDown() dient zum Umschalten
zwischen den fünf verschiedenen Kameras mithilfe der folgenden Tasten: (V)
(vorne), (H) (hinten), (R) (rechts), (L) (links) und (O) (oben). Die Kameras sind
perspektivisch, nur die Kamera von oben ist orthographisch.

Es wird ein ContainerUIElement3D-Objekt verwendet, in dem die einzelnen 3D-
Körper als ModelUIElement3D-Objekte erzeugt werden (siehe auch Abschnitt
10.4.3, »Gruppe von 3D-Körpern mit Ereignissen«). Damit ist es möglich, sie mit
einem MouseDown-EventHandler zu versehen. Sie sind nun per Maus auswählbar.

Den gesamten Programmcode abzudrucken würde den Rahmen des Buchs spren-
gen. Es folgt nur eine Liste der weiteren Methoden mit ihren Aufgaben:

� szene(): Erzeugt den Viewport3D als Fensterinhalt, zwei Lichttypen und das
ContainerUIElement3D.

� mesh2container(): Erzeugt aus angelieferten Positionen und Dreiecks-Indizes
eine MeshGeometry3D, bettet diese in ein GeometryModel3D mit Transformatio-
nen ein, bettet dieses wiederum in ein ModelUIElement3D und dieses in das
ContainerUIElement3D.

� mui3d_MouseDown(): Bewegt ein angeklicktes Fahrzeug.

� strasse(): Erzeugt eine graue Straße.

� baum(): Erzeugt einen grünen Baum.

Eine 3D-Landschaft 10.7

331

� pkw(): Erzeugt ein gelbes Fahrzeug aus einem Quader.

� haus(): Erzeugt ein blaues Haus aus einem Quader.

� quader(): Erzeugt einen Quader.

Alle Methoden sind mit Kommentaren versehen. Damit wird es Ihnen ermög-
licht, den Aufbau zu verstehen und gegebenenfalls die Landschaft nach Ihrem
Geschmack zu verändern und zu erweitern.

333

Bringen Sie die Dinge in Bewegung. Viele Zusammenhänge werden den
Benutzern der Anwendungen durch zwei- oder dreidimensionale Anima-
tionen klarer.

11 Animation

Eine Animation innerhalb eines Computer-Programms entspricht wie ein Kino-
film einer Abfolge von Einzelbildern. Ist diese Abfolge schnell genug, so hat der
Betrachter den Eindruck eines kontinuierlichen Ablaufs. Häufig handelt es sich
dabei um eine Bewegung in eine Richtung. Es kann aber auch die Änderung eines
Inhalts oder einer Form stattfinden, wie zum Beispiel ein Farbwechsel oder eine
Größenänderung.

Innerhalb Ihrer Anwendungen können Sie Animationen dazu nutzen, Abläufe zu
visualisieren und sie damit für den Betrachter noch anschaulicher zu machen. Die
WPF bietet Möglichkeiten für zwei- und dreidimensionale Animationen, zum
Beispiel Bewegungen und Drehungen.

Es werden verschiedene Klassen vorgestellt, die von der abstrakten Klasse
AnimationTimeline abgeleitet sind. Die Auswahl der Klasse richtet sich nach dem
Datentyp der animierten Eigenschaft, zum Beispiel DoubleAnimation (siehe
Abschnitt 11.1.1 und 11.1.2). Entsprechende ...Animation-Klassen gibt es auch
für die Datentypen: Byte, Color, Decimal, Int16, Int32, Int64, Point, Point3D,
Quaternion, Rect, Rotation3D (siehe Abschnitt 11.4, »Animierte 3D-Rotation«),
Single, Size, Thickness, Vector3D, Vector.

Die Animationen können in Drehbücher (Storyboards) eingebettet werden, um
komplexere Abläufe zu erzeugen. Event Trigger dienen zum Zuordnen und Star-
ten von Storyboards in XAML-Code.

Keyframes und Easing Functions bieten Ihnen die Möglichkeit, nicht-lineare Ani-
mationsverläufe zu nutzen. Bei Keyframes wird die Animation in Abschnitte
unterteilt und läuft gemäß unterschiedlichen Funktionen. Easing Functions bie-
ten zahlreiche Möglichkeiten, zum Beispiel einen Verlauf gemäß einer Bounce-
Funktion (engl. to bounce = dt. springen, abprallen).

Bei allen Projekten des Kapitels ist für die Steuerung per Programmcode zusätz-
lich der Namespace System.Windows.Media.Animation notwendig.

Animation11

334

11.1 Allgemeiner Aufbau

Es gibt viele Arten von möglichen Animationen. Eine gute Vorstellung bekom-
men Sie, wenn Sie ein Element sehen, das sich über den Bildschirm bewegt. Dazu
wird eine Eigenschaft benötigt, deren Wert sich im Laufe der Animation verän-
dert. Ist diese Eigenschaft vom Typ double, so wird ein Objekt des Typs
DoubleAnimation benötigt.

11.1.1 Einfache DoubleAnimation

Im nachfolgenden Projekt AnimAufbauErstes werden verschiedene Buttons dar-
gestellt, die sich nach dem Anklicken in x-Richtung über den Bildschirm bewegen
(siehe Abbildung 11.1). Dies wird durch die dauernde Änderung des Werts der
Eigenschaft Canvas.Left im Laufe der Animation bewirkt. Andere Arten von Ani-
mationen funktionieren ähnlich, daher kann dies als anschauliches Beispiel die-
nen.

Abbildung 11.1 Animation des zweiten Buttons

Für die double-Eigenschaft Left wird ein Objekt der Klasse DoubleAnimation
genutzt. Damit wird die zur Eigenschaft Left gehörige Abhängigkeitseigenschaft
LeftProperty verändert. Eigenschaften anderer Typen benötigen andere Anima-
tionsklassen. Sie erben alle von der abstrakten Klasse AnimationTimeline.

Die Klasse DoubleAnimation bietet unter anderem die folgenden Eigenschaften
vom Typ double?:

� From: Die Animation beginnt bei diesem Wert.

� To: Die Animation endet bei diesem Wert.

� By: Die Animation verändert den Wert der Abhängigkeitseigenschaft um die-
sen Wert.

Allgemeiner Aufbau 11.1

335

Eigenschaften des Typs double? können neben Werten des Typs double auch
den Wert null annehmen. Dies bedeutet, dass die Eigenschaft keinen Wert hat.
Mithilfe der Eigenschaft HasValue können Sie prüfen, ob eine Eigenschaft einen
Wert hat.

Zeitdauer und Geschwindigkeit der Animation wurden in den Beispielen dieses
Projekts (noch) nicht explizit festgelegt. Daher gilt: Die Animation läuft in gleich-
mäßiger Geschwindigkeit innerhalb einer Sekunde ab. Am Ende einer Animation
passiert nichts mehr, es wird also zum Beispiel nicht automatisch wieder der
Zustand vor der Animation wiederhergestellt.

Die Animation, die animierte Eigenschaft und das animierte Element werden
getrennt betrachtet. Damit haben Sie viele Kombinationsmöglichkeiten: Sie kön-
nen sowohl mehrere Animationen auf ein Element als auch eine Animation auf
mehrere Eigenschaften oder mehrere Elemente anwenden.

Der XAML-Code des Projekts AnimAufbauErstes dient zur Anordnung der But-
tons b1 bis b6 von oben nach unten innerhalb des Canvas:

<Window ...>
 <Canvas>
 <Button Canvas.Top="10" Canvas.Left="10" Width="60"
 x:Name="b1" Click="b1_Click">From</Button>
 <Button Canvas.Top="40" Canvas.Left="10" Width="60"
 x:Name="b2" Click="b2_Click">To</Button>
 ...
 </Canvas>
</Window>

Die Ereignismethoden sehen so aus:

private void b1_Click(...)
{
 DoubleAnimation da = new DoubleAnimation();
 da.From = 110;
 b1.BeginAnimation(Canvas.LeftProperty, da);
}

Ein neues Objekt des Typs DoubleAnimation wird hier mithilfe eines parameter-
losen Konstruktors erzeugt. Nur die Eigenschaft From wird festgelegt. Dies bewirkt,
dass sich der Wert von 110 im Laufe der Animation zum vorher aktuellen Wert
ändert. Erst die Methode BeginAnimation() bestimmt, auf welche Abhängigkeits-
eigenschaft vom Typ double von welchem Element sich die Wertänderung bezieht.
In diesem Falle ist es die Abhängigkeitseigenschaft Canvas.LeftProperty des But-

Animation11

336

tons b1. Bei jedem Anklicken bewegt sich der Button vom Wert 110 zum Wert 10,
dem vorher aktuellen Wert.

private void b2_Click(...)
{
 DoubleAnimation da = new DoubleAnimation();
 da.To = 110;
 b2.BeginAnimation(Canvas.LeftProperty, da);
}

Diesmal wird nur die Eigenschaft To festgelegt. Bei jedem Anklicken bewegt sich
der Button vom vorher aktuellen Wert zum Zielwert 110. Nach dem ersten Ankli-
cken steht der Button beim Wert 110. Ein weiteres Anklicken ergibt keine Bewe-
gung mehr, da der vorher aktuelle Wert und der Zielwert übereinstimmen.

private void b3_Click(...)
{
 DoubleAnimation da = new DoubleAnimation();
 da.By = 50;
 b3.BeginAnimation(Canvas.LeftProperty, da);
}

Es wird nur die Eigenschaft By festgelegt. Bei jedem Anklicken bewegt sich der
Button um den Wert 50 weiter.

private void b4_Click(...)
{
 DoubleAnimation da = new DoubleAnimation();
 da.From = 60;
 da.To = 110;
 b4.BeginAnimation(Canvas.LeftProperty, da);
}

Die Eigenschaften From und To werden festgelegt. Bei jedem Anklicken bewegt
sich der Button vom Wert 60 zum Wert 110.

private void b5_Click(...)
{
 DoubleAnimation da = new DoubleAnimation();
 da.From = 110;
 da.By = 50;
 b5.BeginAnimation(Canvas.LeftProperty, da);

 if (da.By.HasValue) MessageBox.Show("By: " + da.By);
 if (da.To.HasValue) MessageBox.Show("To: " + da.To);
}

Allgemeiner Aufbau 11.1

337

Die Eigenschaften From und By werden festgelegt. Bei jedem Anklicken bewegt
sich der Button um den Wert 50 weiter. Da der Anfangspunkt immer bei 110
liegt, handelt es sich immer um die gleiche Bewegung.

Mithilfe der Eigenschaft HasValue werden die beiden Eigenschaften By und To
geprüft. Falls sie explizit festgelegt wurden, so wird der Wert ausgegeben. Dies
trifft im Beispiel auf By, aber nicht auf To zu.

private void b6_Click(...)
{
 DoubleAnimation da = new DoubleAnimation();
 da.By = 50;
 DoubleAnimation db = new DoubleAnimation();
 db.By = -50;

 b6.BeginAnimation(Canvas.LeftProperty, da);
 b6.BeginAnimation(Button.WidthProperty, da);
 b6.BeginAnimation(Canvas.TopProperty, db);
}

Hier werden mehrere Animationen gleichzeitig auf ein Element angewendet. Es
handelt sich jedes Mal um die Veränderung eines double-Werts: einmal um 50,
einmal um –50. Die Vergrößerung bezieht sich auf die Eigenschaften Canvas.Left
und Button.Width, die Verkleinerung auf die Eigenschaft Canvas.Top. Bei jedem
Anklicken bewegt sich der Button also nach rechts oben und wird breiter.

11.1.2 DoubleAnimation, weitere Eigenschaften

Die abstrakte Klasse AnimationTimeline, von der die Klasse DoubleAnimation und
andere Animationsklassen erben, bietet weitere Eigenschaften zur Einstellung
des Animationsverhaltens:

� Duration: Diese Eigenschaft dient zur Einstellung der Zeitdauer und ist vom
Typ Duration. Mögliche Werte sind: Automatic (abhängig von anderen Wer-
ten), Forever (unendliche Zeitdauer) oder eine Zeitangabe vom Typ TimeSpan.

� AutoReverse: Diese Eigenschaft ist vom Typ bool und bestimmt darüber, ob
die Animation nach einem Durchgang noch einmal umgekehrt abläuft.

� RepeatBehavior: Diese Eigenschaft legt das Verhalten für eine Wiederholung
fest und ist vom Typ RepeatBehavior. Mögliche Werte sind: eine Anzahl vom
Typ double, Forever (unendlich oft) oder eine Zeitangabe vom Typ TimeSpan.

� AccelerationRatio und DecelerationRatio: Diese beiden Eigenschaften sind
vom Typ double und bestimmen den Anteil an der Dauer der Animation, der
für die Beschleunigung zu Beginn und die Bremsung am Ende benötigt wird.

Animation11

338

� BeginTime: Diese Eigenschaft ist vom Typ TimeSpan? und bestimmt darüber,
ob und wenn ja nach welcher Verzögerung die Animation beginnen soll. Mög-
liche Werte sind eine Zeitangabe vom Typ TimeSpan oder null.

Der Name der Klasse AnimationTimeline steht für »Zeitleiste der Animation«. Mit
den vorgestellten Eigenschaften gestalten Sie die Animationsabläufe entlang die-
ser Zeitleiste.

Im nachfolgenden Projekt AnimAufbauDauer werden verschiedene Buttons dar-
gestellt, bei deren Animation die genannten Eigenschaften veranschaulicht wer-
den (siehe Abbildung 11.2).

Abbildung 11.2 Animation mit Wiederholung

Der XAML-Code des Projekts AnimAufbauErstes dient dazu, die Buttons b1 bis b5
von oben nach unten innerhalb des Canvas anzuordnen:

<Window ...>
 <Canvas>
 <Button Canvas.Top="10" Canvas.Left="10" Width="100"
 x:Name="b1" Click="b1_Click">Duration</Button>
 <Button Canvas.Top="40" Canvas.Left="10" Width="100"
 x:Name="b2" Click="b2_Click">AutoReverse</Button>
 ...
 </Canvas>
</Window>

Die Ereignismethoden sehen so aus:

private void b1_Click(...)
{
 DoubleAnimation da = new DoubleAnimation(10, 110,
 new Duration(TimeSpan.Parse("0:0:3")));
 b1.BeginAnimation(Canvas.LeftProperty, da);
}

Allgemeiner Aufbau 11.1

339

Ein weiterer Konstruktor für das DoubleAnimation-Objekt benötigt double?-
Werte für From und To sowie einen TimeSpan-Wert für die Duration. Die Methode
Parse() erzeugt mithilfe einer Zeichenkette, die eine Zeitangabe in gut lesbarer
Form enthält, den entsprechenden Wert für Duration. Eine Alternative wäre new
Duration(new TimeSpan(0,0,3)). Der Button wird dadurch in drei Sekunden
vom Wert 10 zum Wert 110 bewegt.

private void b2_Click(...)
{
 DoubleAnimation da = new DoubleAnimation(110,
 new Duration(TimeSpan.Parse("0:0:3")));
 da.AutoReverse = true;
 b2.BeginAnimation(Canvas.LeftProperty, da);
}

Der Wert true für die Eigenschaft AutoReverse bewirkt, dass die gesamte Anima-
tion, wiederum in drei Sekunden, rückwärts abläuft. Der Button steht dann wie-
der beim Wert 10.

private void b3_Click(...)
{
 DoubleAnimation da = new DoubleAnimation(10, 110,
 new Duration(TimeSpan.Parse("0:0:3")));
 da.RepeatBehavior = new RepeatBehavior(2);
 b3.BeginAnimation(Canvas.LeftProperty, da);
}

Der Wert 2 für die Eigenschaft RepeatBehavior bewirkt, dass die gesamte Anima-
tion, wiederum in drei Sekunden, noch einmal abläuft. Der Button wird zweimal
vom Wert 10 zum Wert 110 bewegt.

private void b4_Click(...)
{
 DoubleAnimation da = new DoubleAnimation(10, 110,
 new Duration(TimeSpan.Parse("0:0:3")));
 da.RepeatBehavior =
 new RepeatBehavior(TimeSpan.Parse("0:0:3.5"));
 b4.BeginAnimation(Canvas.LeftProperty, da);
}

Diesmal bekommt die Eigenschaft RepeatBehavior eine Zeitdauer zugewiesen.
Der Button wird so lange vom Wert 10 zum Wert 110 bewegt, bis diese Zeitdauer
abgelaufen ist. In diesem Falle endet die Animation kurz nach Beginn des zweiten
Durchlaufs.

Animation11

340

private void b5_Click(...)
 DoubleAnimation da = new DoubleAnimation(10, 110,
 new Duration(TimeSpan.Parse("0:0:3")));
 da.BeginTime = TimeSpan.Parse("0:0:3");
 da.AccelerationRatio = 0.4;
 da.DecelerationRatio = 0.4;
 b5.BeginAnimation(Canvas.LeftProperty, da);
}

Die Animation beginnt nach einer Verzögerung von drei Sekunden. Anschlie-
ßend dauert sie weitere drei Sekunden. Innerhalb der ersten 1,2 Sekunden (40 %
von drei Sekunden) wird der Button beschleunigt, innerhalb der letzten 1,2
Sekunden wird er abgebremst.

11.1.3 PointAnimation

Im nachfolgenden Projekt AnimAufbauPoint wird eine PointAnimation darge-
stellt (siehe Abbildung 11.3). Ein Kreis wird vom Punkt 30,30 zum Punkt
200,100 und wieder zurück bewegt. Die Eigenschaft Center eines EllipseGeo-
metry-Objekts wird zur Animation verwendet. Sie ist vom Typ Point.

Abbildung 11.3 Animierter Kreis

Der XAML-Code:

<Window ...>
 <Canvas>
 <Path Fill="Gray">
 <Path.Data>
 <EllipseGeometry x:Name="el" Center="30,30"
 RadiusX="20" RadiusY="20" />
 </Path.Data>
 </Path>
 <Button Canvas.Top="10" Canvas.Left="120"
 Click="bewegen">PointAnimation</Button>
 </Canvas>
</Window>

Storyboard 11.2

341

RadiusX und RadiusY bestimmen die Größe der Ellipse. Die Ereignismethode
sieht so aus:

private void bewegen(...)
{
 PointAnimation pa = new PointAnimation();
 pa.To = new Point(200,100);
 pa.AutoReverse = true;
 el.BeginAnimation(EllipseGeometry.CenterProperty, pa);
}

Dadurch wird eine neue PointAnimation erzeugt und werden Werte für die
Eigenschaften To vom Typ Point und AutoReverse vom Typ bool bestimmt. Die
Animation wird der Abhängigkeitseigenschaft CenterProperty der EllipseGeo-
metry zugeordnet.

11.2 Storyboard

Bisher haben Sie einfache, einzelne Animationen kennengelernt. Falls Sie kom-
plexere Abläufe gestalten möchten, dann sollten Sie mit einem Storyboard-
Objekt arbeiten. In diesem Drehbuch legen Sie wie in einem Film fest, welche
Elemente zu welchem Zeitpunkt »in die Geschehnisse eingreifen«.

11.2.1 Storyboard als Ressource

Ein Storyboard-Objekt können Sie in einer Anwendung als Ressource bereitstel-
len. Verschiedene Elemente der Anwendung können dann auf diese Ressource
zugreifen. Ein Storyboard-Objekt kann mehrere Animationen beinhalten. Beim
Storyboard-Objekt werden Eigenschaften eingestellt, die allen Animationen
gemeinsam sind. Jede einzelne Animation definiert hingegen ihren eigenen
Ablauf und die bezogene Eigenschaft.

Normalerweise bezieht sich eine einzelne Animation auf das Element, das die
umgebende Storyboard-Ressource nutzt. Sie können allerdings auch ein anderes
Element als Ziel der Animation angeben.

Nachfolgend wird im Projekt AnimStoryErstes ein Drehbuch für drei Buttons vor-
gestellt. Falls Sie einen der ersten beiden Buttons betätigen, so wird der jeweilige
Button nach einer kurzen Verzögerung nach rechts bewegt, verschwindet für eine
kurze Zeit, taucht wieder auf und kehrt zum Ausgangspunkt zurück. Während
der Zeit, in der er unsichtbar ist, bewegt sich der dritte Button nach unten und
wieder nach oben (siehe Abbildung 11.4).

Animation11

342

Abbildung 11.4 Drehbuch für drei (zeitweise unsichtbare) Buttons

Der XAML-Code:

<Window ...>
 <Window.Resources>
 <Storyboard x:Key="sbres" AutoReverse="True"
 BeginTime="0:0:1">
 <DoubleAnimation Storyboard.TargetProperty="(Canvas.Left)"
 By="50" Duration="0:0:2" />
 <DoubleAnimation Storyboard.TargetProperty="Opacity"
 To="0" Duration="0:0:2" BeginTime="0:0:2 "/>
 <DoubleAnimation Storyboard.TargetProperty="(Canvas.Top)"
 Storyboard.TargetName="b3"
 By="50" Duration="0:0:2" BeginTime="0:0:4" />
 </Storyboard>
 </Window.Resources>
 <Canvas>
 <Button Canvas.Top="10" Canvas.Left="10" Width="60"
 Click="bewegen">Button 1</Button>
 <Button Canvas.Top="40" Canvas.Left="10" Width="60"
 Click="bewegen">Button 2</Button>
 <Button x:Name="b3" Canvas.Top="70" Canvas.Left="10"
 Width="60">Button 3</Button>
 </Canvas>
</Window>

Es folgt unmittelbar der Code der Ereignismethoden, weil XAML- und Pro-
grammcode hier gemeinsam vorgestellt werden:

private void bewegen(object sender, RoutedEventArgs e)
{
 Storyboard sb = FindResource("sbres") as Storyboard;
 sb.Begin(sender as Button);
}

Storyboard 11.2

343

Die Storyboard-Ressource hat den eindeutigen Schlüssel sbres. Es werden die
zentralen Eigenschaften AutoReverse und BeginTime eingestellt. Der gesamte
Ablauf wird also wieder rückgängig gemacht und startet erst nach einer kurzen
Verzögerung.

In den einzelnen Animationen wird über die Attached Property Storyboard
.TargetProperty vom Typ DependencyProperty die Abhängigkeitseigenschaft
bestimmt, die animiert werden soll.

Die Nutzer der Storyboard-Ressource sind die Buttons. In der Ereignismethode
wird zunächst über die Methode FindResource() auf die Ressource zugegriffen.
Anschließend wird die Animation mithilfe der Methode Begin() des Storyboard-
Objekts auf den auslösenden Button angewandt und gestartet.

Die dem Button angehängten Eigenschaften Canvas.Left und Canvas.Top wer-
den in den einzelnen Animationen jeweils um 50 geräteunabhängige Pixel verän-
dert. Dies führt zu einer Verschiebung nach links beziehungsweise nach unten.
Die Button-Eigenschaft Opacity wird auf den Wert 0 verändert, dies hat die
Durchsichtigkeit des Elements zur Folge. Beachten Sie, dass Canvas.Left und
Canvas.Top in Klammern notiert werden müssen, da es sich um Attached Proper-
ties des Buttons handelt.

Die Animationseigenschaften Duration und BeginTime koordinieren den zeitli-
chen Ablauf der drei Animationen:

� Als Erstes kommt die Bewegung nach rechts innerhalb von zwei Sekunden,

� anschließend die Durchsichtigkeit innerhalb von zwei Sekunden,

� anschließend die Bewegung nach unten innerhalb von zwei Sekunden.

In der dritten Animation wird über die angehängte Eigenschaft Storyboard
.TargetName das animierte Element bestimmt.

11.2.2 Storyboard per Programmcode

Ein Storyboard-Objekt kann mit seinen Animationen auch im Programmcode
erzeugt werden. Im nachfolgenden Projekt AnimStoryCode wird ein PathGeo-
metry-Objekt mit zwei ArcSegment-Objekten dargestellt. Deren Eigenschaft Size
wird mithilfe einer SizeAnimation geändert (siehe Abbildung 11.5).

Der XAML-Code:

<Window ... Loaded="Window_Loaded">
 <Canvas>
 <Path Fill="LightGray" Stroke="Black" StrokeThickness="2">
 <Path.Data>

Animation11

344

 <PathGeometry>
 <PathFigure StartPoint="10,60">
 <PathSegmentCollection>
 <ArcSegment x:Name="as1" Point="110,60"
 Size="50,50" SweepDirection="Clockwise" />
 <ArcSegment x:Name="as2" Point="210,60"
 Size="50,50" />
 </PathSegmentCollection>
 </PathFigure>
 </PathGeometry>
 </Path.Data>
 </Path>
 </Canvas>
</Window>

Abbildung 11.5 PathGeometry mit SizeAnimation

Die Pfadgeometrie besteht aus zwei Bögen. Der erste Bogen verläuft im Uhrzei-
gersinn, der zweite Bogen gegen den Uhrzeigersinn.

Die Ereignismethode sieht so aus:

private void Window_Loaded(...)
{
 SizeAnimation sa1 = new SizeAnimation();
 sa1.To = new Size(80, 80);
 Storyboard.SetTargetName(sa1, "as1");
 Storyboard.SetTargetProperty(sa1,
 new PropertyPath(ArcSegment.SizeProperty));

 SizeAnimation sa2 = new SizeAnimation();
 sa2.To = new Size(80, 80);
 Storyboard.SetTargetName(sa2, "as2");
 Storyboard.SetTargetProperty(sa2,
 new PropertyPath(ArcSegment.SizeProperty));

 Storyboard sb = new Storyboard();

Storyboard 11.2

345

 sb.AutoReverse = true;
 sb.RepeatBehavior = RepeatBehavior.Forever;
 sb.Children.Add(sa1);
 sb.Children.Add(sa2);
 sb.Begin(this);
}

Die beiden neu erzeugten SizeAnimation-Objekte verändern den Wert Size von
50,50 auf 80,80. Sie beziehen sich mithilfe der statischen Methode
SetTargetName() der Storyboard-Klasse auf die beiden Bögen as1 und as2. Mit-
hilfe der statischen Methode SetTargetProperty() stellen sie den Bezug zur
Dependency Property SizeProperty der Klasse ArcSegment her.

Für das neu erzeugte Storyboard-Objekt werden die Eigenschaften AutoReverse
und RepeatBehavior eingestellt. Die beiden SizeAnimation-Objekte werden ihm
als untergeordnete Elemente hinzugefügt. Die Animation wird bezogen auf das
gesamte Fenster gestartet.

11.2.3 Storyboard steuern

Der Ablauf der Animation lässt sich mit weiteren Methoden des Storyboard-
Objekts steuern. Die Animation kann zum Beispiel anhalten, weiterlaufen, zu
einem bestimmten Punkt oder zum Endpunkt springen, ihre Geschwindigkeit
verändern oder beendet werden.

Im nachfolgenden Projekt AnimStorySteuerung wird auf diese Weise die Bewe-
gung eines Buttons gesteuert, der sich von links nach rechts bewegt (siehe Abbil-
dung 11.6).

Abbildung 11.6 Storyboard steuern

Der XAML-Code:

<Window ...>
 <Window.Resources>
 <Storyboard x:Key="sbres">
 <DoubleAnimation Storyboard.TargetName="b_anim"
 Storyboard.TargetProperty="(Canvas.Left)"
 From="10" To="225" Duration="0:0:10" />

Animation11

346

 </Storyboard>
 </Window.Resources>
 <Canvas>
 <Button x:Name="b_anim"
 Canvas.Top="10" Canvas.Left="10">Button</Button>
 <StackPanel Orientation="Horizontal"
 Canvas.Top="40" Canvas.Left="10">
 <Button Margin="1" Click="starten">Start</Button>
 <Button Margin="1" Click="anhalten">Pause</Button>
 ...
 </StackPanel>
 </Canvas>
</Window>

Das Storyboard ist als Ressource definiert. Das Zielelement für die
DoubleAnimation ist über die Attached Property Storyboard.TargetName festge-
legt. Der Button bewegt sich innerhalb von 10 Sekunden vom Wert 10 zum Wert
225. Die insgesamt sieben Steuerungsbuttons sind gleichartig aufgebaut und
rufen die Ereignismethoden in der nachfolgenden Klasse auf:

public partial class MainWindow : Window
{
 Storyboard sb;
 public MainWindow()
 {
 InitializeComponent();
 sb = FindResource("sbres") as Storyboard;
 }

 private void starten(...) { sb.Begin(b_anim, true); }
 private void anhalten(...) { sb.Pause(b_anim); }
 private void weiter(...) { sb.Resume(b_anim); }
 private void springen_auf(...) { sb.Seek(b_anim,
 TimeSpan.Parse("0:0:5"), TimeSeekOrigin.BeginTime); }
 private void springen_ende(...) { sb.SkipToFill(b_anim); }
 private void schneller(...) { sb.SetSpeedRatio(b_anim, 5); }
 private void beenden(...) { sb.Stop(b_anim); }
}

Es wird ein Verweis auf ein Storyboard-Objekt innerhalb der Fensterklasse defi-
niert. Im Konstruktor der Klasse wird ihm die Storyboard-Ressource zugeordnet.
Bei der hier verwendeten Überladung der Methode Begin() wird als zweiter
Parameter ein boolescher Wert übermittelt, der das Storyboard steuerbar macht.
Der erste Parameter stellt nach wie vor die Verbindung zwischen Storyboard und
animiertem Objekt her.

Storyboard 11.2

347

Die Methode Pause() hält die Animation an, die Methode Resume() setzt sie an
der Anhaltestelle wieder fort. Die Methode Seek() springt zu dem angegebenen
Punkt innerhalb der Animation. Dieser Punkt wird vom dritten Parameter aus
gemessen. Dieser Parameter stammt aus der Enumeration TimeSeekOrigin; mög-
liche Werte sind BeginTime und Duration. Die Methode SkipToFill() springt ans
Ende der Animation. Die Methode SetSpeedRatio() ändert die Geschwindigkeit
der Animation um den angegebenen Faktor. Die Methode Stop() beendet die
Animation und setzt alles auf den Anfang zurück.

11.2.4 Animierte Transformation

Interessante Effekte lassen sich auch mit animierten Transformationen erzielen.
Die Transformationen müssen bereits zusammen mit dem betroffenen Element
erzeugt werden. Nur dann können sie anschließend animiert werden.

Im nachfolgenden Projekt AnimStoryTrans wird ein Storyboard verwendet, um eine
Vergrößerung, eine Drehung und eine Neigung zu animieren. Zusätzlich wird
eine dynamische Änderung der Schriftgröße durchgeführt (siehe Abbildung 11.7).

Abbildung 11.7 Storyboard mit drei Transformationsanimationen

Der XAML-Code:

<Window ...>
 <Window.Resources>
 <Storyboard x:Key="sbres">
 <DoubleAnimation Storyboard.TargetName="b1"
 Storyboard.TargetProperty="RenderTransform.ScaleX"
 To="2" Duration="0:0:4" />
 <DoubleAnimation Storyboard.TargetName="b2"
 Storyboard.TargetProperty="RenderTransform.Angle"
 To="360" Duration="0:0:4" />
 <DoubleAnimation Storyboard.TargetName="b2"
 Storyboard.TargetProperty="FontSize"
 To="24" Duration="0:0:4" />
 <DoubleAnimation Storyboard.TargetName="b3"

Animation11

348

 Storyboard.TargetProperty="RenderTransform.AngleX"
 To="30" Duration="0:0:4" />
 </Storyboard>
 </Window.Resources>
 <StackPanel>
 <Button x:Name="b1" Width="60" Margin="3" Click="bewegen"
 RenderTransformOrigin="0.5,0.5">Button 1
 <Button.RenderTransform>
 <ScaleTransform />
 </Button.RenderTransform>
 </Button>
 <Button x:Name="b2" Width="60" Margin="3" Panel.ZIndex="1"
 RenderTransformOrigin="0.5,0.5">Button 2
 <Button.RenderTransform>
 <RotateTransform />
 </Button.RenderTransform>
 </Button>
 <Button x:Name="b3" Width="60" Margin="3"
 RenderTransformOrigin="0.5,0.5">Button 3
 <Button.RenderTransform>
 <SkewTransform />
 </Button.RenderTransform>
 </Button>
 </StackPanel>
</Window>

Die Storyboard-Ressource hat den eindeutigen Schlüssel sbres. Alle Animationen
betreffen double-Eigenschaften, daher sind es Objekte des Typs DoubleAnimation.
Bei den Transformationen handelt es sich um verschiedene Formen einer Render-
Transformation, also um eine Transformation ohne Verschiebung der Nachbar-
elemente. Mit RenderTransformOrigin = 0.5, 0.5 wird jeweils das Button-Zen-
trum als Ursprung der Transformation gewählt.

Über Storyboard.TargetName werden die jeweils zugeordneten Buttons
bestimmt. Nur im ersten Fall ist dies nicht nötig, da das Storyboard dem ersten
Button zugeordnet ist. Mithilfe von Storyboard.TargetProperty wird die jeweils
animierte Eigenschaft eingestellt. Bei den Transformationen handelt es sich um
die Untereigenschaften der Button-Eigenschaft RenderTransform. Außerdem ist
die Button-Eigenschaft FontSize betroffen.

Der erste Button wird über ScaleX = 2 auf das Doppelte vergrößert. Der zweite
Button wird mit Angle = 360 einmal vollständig um 360 Grad gedreht. Da die
angehängte Eigenschaft Panel.ZIndex auf 1 steht, verdeckt dieser Button die
anderen bei seiner Drehung. Außerdem wird bei diesem Button die Schrift auf 24

Storyboard 11.2

349

vergrößert. Beim dritten Button wird mit AngleX = 30 eine Neigung um 30 Grad
erzeugt.

Die Ereignismethode dient zum Zuordnen des Storyboards zum ersten Button
und zum Start des Ablaufs:

private void bewegen(...)
{
 Storyboard sb = FindResource("sbres") as Storyboard;
 sb.Begin(b1);
}

11.2.5 ColorAnimation

Im letzten Beispiel dieses Abschnitts folgt das Projekt AnimStoryColor. Darin wird
eine ColorAnimation dargestellt (siehe Abbildung 11.8). Die Farbe eines Rechtecks
wechselt nach dem Start der Anwendung endlos zwischen Grau und Hellgrau.

Abbildung 11.8 Animation einer Farbe

Der XAML-Code:

<Window ... Loaded="Window_Loaded">
 <Window.Resources>
 <Storyboard x:Key="sbres">
 <ColorAnimation Storyboard.TargetProperty="Fill.Color"
 To="LightGray" RepeatBehavior="Forever"
 AutoReverse="True"/>
 </Storyboard>
 </Window.Resources>
 <Rectangle x:Name="rc" Width="80" Height="30"
 VerticalAlignment="Top" Fill="Gray" />
</Window>

Die Ereignismethode:

private void Window_Loaded(...)
{
 Storyboard sb = FindResource("sbres") as Storyboard;
 sb.Begin(rc);
}

Animation11

350

Nach dem Laden des Fensters wird dem grauen Rechteck die Storyboard-Res-
source zugeordnet, und die Animation wird gestartet. Die Zieleigenschaft ist die
Untereigenschaft Color vom Typ Color der Eigenschaft Fill. Für den Typ Color
ist die Klasse ColorAnimation geeignet. Die Zielfarbe ist Hellgrau (Eigenschaft To).
Die Einstellungen für AutoReverse und RepeatBehavior bewirken die Rückkehr
zu Grau und die endlose Wiederholung.

11.3 Event Trigger

Event Trigger dienen dazu, ein Storyboard vollständig innerhalb des XAML-
Codes eines Elements unterzubringen. Die Animation kann dann ohne den Ein-
satz von Programmcode gestartet und gesteuert werden. Die Aufgabe der ver-
schiedenen Methoden des Storyboard-Objekts wird von eigenen Objekten über-
nommen, wie zum Beispiel von BeginStoryboard oder StopStoryboard.

Event Trigger werden in XAML innerhalb der Triggers-Auflistung von Elemen-
ten oder Styles definiert. Der Zugriff auf Storyboards in Ressourcen ist weiterhin
möglich.

11.3.1 Event Trigger in Element

Im nachfolgenden Projekt AnimEventErstes wird gezeigt, wie Sie mithilfe eines
Event Triggers ein Storyboard innerhalb eines Buttons einbetten. Der Inhalt des
Storyboards ist nur eine einfache Animation zur Bewegung des Buttons um 50
geräteunabhängige Pixel nach rechts, nachdem er betätigt wurde (siehe Abbil-
dung 11.9).

Abbildung 11.9 Storyboard in Event Trigger

Der XAML-Code:

<Window ...>
 <Canvas>
 <Button Canvas.Top="10" Canvas.Left="10" Width="60">Button 1
 <Button.Triggers>
 <EventTrigger RoutedEvent="Button.Click">
 <BeginStoryboard>
 <BeginStoryboard.Storyboard>

Event Trigger 11.3

351

 <Storyboard>
 <DoubleAnimation By="50"
 Storyboard.TargetProperty="(Canvas.Left)" />
 </Storyboard>
 </BeginStoryboard.Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Button.Triggers>
 </Button>
 </Canvas>
</Window>

Steuerelemente haben die Auflistungseigenschaft Triggers vom Typ TriggerCol-
lection. In dieser Auflistung können mehrere Trigger stehen, unter anderem
vom Typ EventTrigger. Die Eigenschaft RoutedEvent des EventTrigger-Objekts
bestimmt das Ereignis, das die Animation auslöst, in diesem Falle die Betätigung
des Buttons.

Das EventTrigger-Objekt beinhaltet ein BeginStoryboard-Objekt. Dieses Objekt
dient zum Starten eines Storyboards. Es ist also kein Programmcode zum Starten
der Animation notwendig. Das BeginStoryboard-Objekt enthält das Storyboard-
Objekt, wie Sie es bereits kennengelernt haben.

11.3.2 Event Trigger und Ressourcen

Soll ein Storyboard von mehreren Elementen genutzt werden, so wird es als Res-
source definiert. Diese Ressource kann auch innerhalb von Event Triggern
genutzt werden. Das nachfolgende Projekt AnimEventRessource zeigt, wie die
Animation aus dem vorherigen Abschnitt gleich für zwei Buttons verwendet wird
(siehe Abbildung 11.10).

Abbildung 11.10 Storyboard als Ressource für mehrere Event Trigger

Der XAML-Code:

<Window ...>
 <Window.Resources>
 <Storyboard x:Key="sbres">
 <DoubleAnimation By="50"

Animation11

352

 Storyboard.TargetProperty="(Canvas.Left)" />
 </Storyboard>
 </Window.Resources>
 <Canvas>
 <Button Canvas.Top="10" Canvas.Left="10" Width="60">Button 1
 <Button.Triggers>
 <EventTrigger RoutedEvent="Button.Click">
 <BeginStoryboard Storyboard="{StaticResource sbres}" />
 </EventTrigger>
 </Button.Triggers>
 </Button>
 <Button Canvas.Top="40" Canvas.Left="10" Width="60">Button 2
 <Button.Triggers>
 <EventTrigger RoutedEvent="Button.Click">
 <BeginStoryboard Storyboard="{StaticResource sbres}" />
 </EventTrigger>
 </Button.Triggers>
 </Button>
 </Canvas>
</Window>

Das Storyboard wird als Ressource angelegt. Das EventTrigger-Objekt jedes But-
tons beinhaltet ein BeginStoryboard-Objekt zum Starten der Animation nach
Betätigung des Buttons. Die Eigenschaft Storyboard des BeginStoryboard-Objekts
bekommt die Ressource zugewiesen.

11.3.3 Event Trigger in Style

Styles verwenden Sie, um Elementen ein gleichartiges Aussehen zu geben. Styles
können auch Event Trigger beinhalten. Dies führt dazu, dass sich die Elemente
auch gleichartig verhalten. Dazu sehen Sie in diesem Abschnitt zwei Beispiele.

Im ersten Projekt, AnimEventStyle, werden ein Storyboard und ein Type-Style als
Ressourcen definiert. Der Style umfasst Angaben zum Aussehen und zum Verhal-
ten eines Buttons (siehe Abbildung 11.11). Anschließend werden zwei Buttons
erzeugt, die diesen Type-Style nutzen.

Abbildung 11.11 Zwei Buttons mit gleichem Verhalten

Event Trigger 11.3

353

Der XAML-Code:

<Window ...>
 <Window.Resources>
 <Storyboard x:Key="sbres">
 <DoubleAnimation Storyboard.TargetProperty="(Canvas.Left)"
 By="50" Duration="0:0:2" />
 </Storyboard>
 <Style TargetType="{x:Type Button}">
 <Setter Property="FontSize" Value="16" />
 <Setter Property="Width" Value="80" />
 <Style.Triggers>
 <EventTrigger RoutedEvent="Button.Click">
 <BeginStoryboard Storyboard="{StaticResource sbres}" />
 </EventTrigger>
 </Style.Triggers>
 </Style>
 </Window.Resources>
 <Canvas>
 <Button Canvas.Top="10" Canvas.Left="10">Button 1</Button>
 <Button Canvas.Top="50" Canvas.Left="10">Button 2</Button>
 </Canvas>
</Window>

Als erste Ressource wird ein einfaches Storyboard definiert. Die zweite Ressource
ist ein Type-Style für Buttons. Zwei Setter enthalten Angaben über das Aussehen
(FontSize, Width). Die Triggers-Auflistung beinhaltet eine Angabe zum Verhal-
ten des Buttons bei Betätigung. Dabei handelt es sich um einen Event Trigger für
das Ereignis Click.

Im zweiten Projekt, AnimEventQuake, wird ein Type-Style für Buttons definiert,
der zwei Event Trigger für die Ereignisse Button.MouseEnter und Button
.MouseLeave enthält. Diese nutzen jeweils eine Storyboard-Ressource.

Zum Verhalten: Beim Betreten des Buttons mit der Maus wird der Button inner-
halb einer Zehntelsekunde um 10 geräteunabhängige Pixel verschoben. Diese
Vergrößerung wird mithilfe der Eigenschaften AutoReverse und RepeatBehavior
wieder rückgängig gemacht beziehungsweise endlos wiederholt. Man bekommt
den Eindruck, dass der Button von einem Erdbeben betroffen ist. Beim Verlassen
des Buttons mit der Maus »beruhigt« sich der Button wieder.

Der XAML-Code:

<Window ...>
 <Window.Resources>
 <Storyboard x:Key="sbres1">

Animation11

354

 <DoubleAnimation Storyboard.TargetProperty="(Canvas.Left)"
 To="20" Duration="0:0:0.1" AutoReverse="True"
 RepeatBehavior="Forever" />
 </Storyboard>
 <Storyboard x:Key="sbres2">
 <DoubleAnimation Storyboard.TargetProperty="(Canvas.Left)"
 To="10" Duration="0:0:0.1" />
 </Storyboard>
 <Style TargetType="{x:Type Button}">
 <Setter Property="Width" Value="90" />
 <Style.Triggers>
 <EventTrigger RoutedEvent="Button.MouseEnter">
 <BeginStoryboard
 Storyboard="{StaticResource sbres1}" />
 </EventTrigger>
 <EventTrigger RoutedEvent="Button.MouseLeave">
 <BeginStoryboard
 Storyboard="{StaticResource sbres2}" />
 </EventTrigger>
 </Style.Triggers>
 </Style>
 </Window.Resources>
 <Canvas>
 <Button Canvas.Top="10" Canvas.Left="10">Button 1</Button>
 </Canvas>
</Window>

11.3.4 Event Trigger zur Steuerung

Auch mit Event Triggern lässt sich der Ablauf der Animation steuern, also anhalten,
stoppen und so weiter. Im Projekt AnimEventSteuerung sehen Sie das Beispiel aus
Abschnitt 11.2.2, »Storyboard per Programmcode« (siehe Abbildung 11.6),
diesmal aber ohne Programmcode.

Der XAML-Code:

<Window ...>
 <Window.Resources>
 <Storyboard x:Key="sbres">
 <DoubleAnimation Storyboard.TargetName="b_anim"
 Storyboard.TargetProperty="(Canvas.Left)"
 From="10" To="225" Duration="0:0:10" />
 </Storyboard>
 </Window.Resources>
 <Canvas>

Event Trigger 11.3

355

 <Canvas.Triggers>
 <EventTrigger RoutedEvent="Button.Click" SourceName="b1">
 <BeginStoryboard Name="sb"
 Storyboard="{StaticResource sbres}" />
 </EventTrigger>
 <EventTrigger RoutedEvent="Button.Click" SourceName="b2">
 <PauseStoryboard BeginStoryboardName="sb" />
 </EventTrigger>
 <EventTrigger RoutedEvent="Button.Click" SourceName="b3">
 <ResumeStoryboard BeginStoryboardName="sb" />
 </EventTrigger>
 <EventTrigger RoutedEvent="Button.Click" SourceName="b4">
 <SeekStoryboard Offset="0:0:5"
 BeginStoryboardName="sb" />
 </EventTrigger>
 <EventTrigger RoutedEvent="Button.Click" SourceName="b5">
 <SkipStoryboardToFill BeginStoryboardName="sb" />
 </EventTrigger>
 <EventTrigger RoutedEvent="Button.Click" SourceName="b6">
 <SetStoryboardSpeedRatio SpeedRatio="5"
 BeginStoryboardName="sb" />
 </EventTrigger>
 <EventTrigger RoutedEvent="Button.Click" SourceName="b7">
 <StopStoryboard BeginStoryboardName="sb" />
 </EventTrigger>
 </Canvas.Triggers>

 <Button x:Name="b_anim"
 Canvas.Top="10" Canvas.Left="10">Button</Button>
 <StackPanel Orientation="Horizontal"
 Canvas.Top="40" Canvas.Left="10">
 <Button x:Name="b1" Margin="1">Start</Button>
 <Button x:Name="b2" Margin="1">Pause</Button>
 ...
 </StackPanel>
 </Canvas>
</Window>

Die Event Trigger sind diesmal zur besseren Übersicht alle in der Triggers-Auf-
listung des übergeordneten Canvas-Objekts definiert. Die Zuordnung zu den ein-
zelnen Buttons findet jeweils über die Eigenschaft SourceName statt.

Die Betätigung des Buttons Start führt zum BeginStoryboard-Objekt. Dieses star-
tet die Animation aus der Storyboard-Ressource. Das animierte Objekt wird über
die Attached Property Storyboard.TargetName bestimmt.

Animation11

356

Die Betätigung der anderen Buttons führt zu den Objekten des Typs
PauseStoryboard, ResumeStoryboard, SeekStoryboard, SkipStoryboardToFill,
SetStoryboardSpeedRatio und StopStoryboard und damit zu den jeweiligen Akti-
onen. In der Eigenschaft BeginStoryboardName dieser Objekte muss jeweils ange-
geben werden, auf welches Storyboard sich die Aktion bezieht. Falls die Animation
noch nicht gestartet wurde, so gibt es noch keinen Bezug, und es passiert nichts.

Beim Objekt des Typs SeekStoryboard wird über die Eigenschaft Offset vom Typ
TimeSpan der Punkt eingestellt, zu dem gesprungen wird. Die Eigenschaft Origin
ist aus der Enumeration TimeSeekOrigin; mögliche Werte sind BeginTime und
Duration. Beim Objekt des Typs SetStoryboardSpeedRatio wird die Geschwindig-
keit der Animation um den Faktor aus der double-Eigenschaft SpeedRatio geän-
dert.

11.4 Animierte 3D-Rotation

Das nachfolgende Projekt AnimDreiDRotation zeigt eine Kombination aus ver-
schiedenen Elementen: aus der Animation einer dreidimensionalen Rotations-
transformation, einem Storyboard als Ressource und einem Event Trigger.

Damit rotiert der bereits aus Abschnitt 10.1.5 bekannte Würfel nacheinander um
drei verschiedene Achsen, sobald das Fenster geladen wird: In den ersten zehn
Sekunden dreht er sich von 0 auf 180 Grad um die x-Achse und wieder zurück auf
0 Grad, in den nächsten Sekunden dreht er sich ebenso um die y-Achse, dann
ebenso zehn Sekunden um die z-Achse (siehe Abbildung 11.12). Dieser Ablauf
wird endlos fortgesetzt.

Abbildung 11.12 Animierte Rotation, hier um die z-Achse

Zunächst betrachten wir den Würfel mit seiner Transformation und dem Event
Trigger in XAML:

Animierte 3D-Rotation 11.4

357

<Window ...>
 <Window.Resources>
 <Storyboard x:Key="sbres" ...> ... </Storyboard>
 </Window.Resources>
 <Window.Triggers>
 <EventTrigger RoutedEvent="Loaded">
 <BeginStoryboard Storyboard="{StaticResource sbres}" />
 </EventTrigger>
 </Window.Triggers>

 <Viewport3D>
 <Viewport3D.Camera> ... [Kamera]
 <Viewport3D.Children>
 <ModelVisual3D> ... [Licht]

 <ModelVisual3D>
 <ModelVisual3D.Content>
 <GeometryModel3D>
 <GeometryModel3D.Geometry ... [Geometrie] >
 <GeometryModel3D.Material ... [Material vorne] >
 <GeometryModel3D.BackMaterial ... [Material hinten]>

 <GeometryModel3D.Transform>
 <RotateTransform3D x:Name="rt3d" >
 <RotateTransform3D.Rotation>
 <AxisAngleRotation3D />
 </RotateTransform3D.Rotation>
 </RotateTransform3D>
 </GeometryModel3D.Transform>
 </GeometryModel3D>
 </ModelVisual3D.Content>
 </ModelVisual3D>
 </Viewport3D.Children>
 </Viewport3D>
</Window>

Die Ressource hat den Schlüssel sbres. Der Event Trigger reagiert, sobald das
Ereignis Loaded des Fensters eingetreten ist, und startet das Storyboard aus der
Ressource sbres.

Es folgt der bekannte Aufbau von Szene und Würfel mit Kamera, Licht, Geome-
trie und Material. Als neues Element von GeometryModel3D folgt die Transforma-
tion. Die Art der Transformation (hier: RotateTransform3D) ist das Zielelement
der Animation (TargetName). Die Art der Rotation (hier: AxisAngleRotation) ist

Animation11

358

die Zieleigenschaft der Animation (TargetProperty). Es werden keine Werte für
Axis oder Angle eingetragen, diese folgen erst im Storyboard.

Kommen wir nun zum Storyboard innerhalb der Ressource:

<Window.Resources>
 <Storyboard x:Key="sbres" RepeatBehavior="Forever">
 <Rotation3DAnimation Storyboard.TargetName="rt3d"
 Storyboard.TargetProperty="Rotation"
 Duration="0:0:5" AutoReverse="True">
 <Rotation3DAnimation.From>
 <AxisAngleRotation3D Axis="1,0,0" Angle="0" />
 </Rotation3DAnimation.From>
 <Rotation3DAnimation.To>
 <AxisAngleRotation3D Axis="1,0,0" Angle="180" />
 </Rotation3DAnimation.To>
 </Rotation3DAnimation>

 <Rotation3DAnimation Storyboard.TargetName="rt3d"
 Storyboard.TargetProperty="Rotation"
 Duration="0:0:5" BeginTime="0:0:10" AutoReverse="True">
 <Rotation3DAnimation.From>
 <AxisAngleRotation3D Axis="0,1,0" Angle="0" />
 </Rotation3DAnimation.From>
 <Rotation3DAnimation.To>
 <AxisAngleRotation3D Axis="0,1,0" Angle="180" />
 </Rotation3DAnimation.To>
 </Rotation3DAnimation>

 <Rotation3DAnimation Storyboard.TargetName="rt3d"
 Storyboard.TargetProperty="Rotation"
 Duration="0:0:5" BeginTime="0:0:20" AutoReverse="True">
 <Rotation3DAnimation.From>
 <AxisAngleRotation3D Axis="0,0,1" Angle="0" />
 </Rotation3DAnimation.From>
 <Rotation3DAnimation.To>
 <AxisAngleRotation3D Axis="0,0,1" Angle="180" />
 </Rotation3DAnimation.To>
 </Rotation3DAnimation>
 </Storyboard>
</Window.Resources>

Das gesamte Storyboard wird endlos wiederholt.

Jede der drei Animationen vom Typ Rotation3DAnimation hat als Zielelement
(TargetName) die Art der Transformation und als Zieleigenschaft (TargetProperty)

Keyframes 11.5

359

die Art der Rotation. Jede dauert 5 Sekunden und wird dann wieder rückgängig
gemacht; das macht zehn Sekunden. Jede verläuft vom Winkel 0 Grad bis zum
Winkel 180 Grad (Animationseigenschaften From und To).

Die drei Animationen unterscheiden sich in der Drehachse: Erst ist es die x-, dann
die y- und dann die z-Achse. Außerdem starten sie dank der unterschiedlichen
Werte der Eigenschaft BeginTime zeitversetzt, im Ergebnis also nacheinander.

11.5 Keyframes

Die bisherigen Animationen verliefen in gleichförmiger Geschwindigkeit vom
Anfangs- zum Endpunkt. Keyframes ermöglichen die Unterteilung einer Anima-
tion in einzelne Abschnitte. Innerhalb dieser Keyframe-Abschnitte wiederum
kann sich die Geschwindigkeit nach unterschiedlichen Funktionen richten.

Die Eigenschaften KeyTime und Value bestimmen darüber, wann der betreffende
Keyframe-Abschnitt endet und welchen Wert die Animation anschließend hat.

Für Keyframe-Animationen werden eigene Klassen verwendet, die vom Daten-
typ abhängen, zum Beispiel DoubleAnimationUsingKeyFrames (siehe Abschnitt
11.5.1, »Keyframes für Double«). Entsprechende ...AnimationUsingKeyFrames-
Klassen gibt es auch für die Datentypen: Boolean, Byte, Color (siehe Abschnitt
11.5.2, »Keyframes für Color«), Decimal, Int16, Int32, Int64, Matrix, Object,
Point, Point3D, Quaternion, Rect, Rotation3D, Single, String (siehe Abschnitt
11.5.3, »KeyFrames für String«), Size, Thickness, Vector3D und Vector.

11.5.1 Keyframes für Double

Die Klasse DoubleAnimationUsingKeyFrames wird für double-Eigenschaften ver-
wendet. Dabei gibt es für die einzelnen Keyframes folgende Typen, mit dem
angegebenen Verlauf der Animation:

� LinearDoubleKeyFrame: Die Animation verläuft linear, also mit gleichförmiger
Geschwindigkeit.

� DiscreteDoubleKeyFrame: Die Animation verläuft sprunghaft.

� EasingDoubleKeyFrame: Die Animation verläuft gemäß einer Easing-Funktion
(mehr dazu folgt in Abschnitt 11.6, »Easing Functions«).

� SplineDoubleKeyFrame: Die Animation verläuft gemäß einer kubischen
Bézier-Funktion.

Die Eigenschaft KeyTime bestimmt die zeitliche Länge eines Keyframes. Sie kann
einen der folgenden Werte haben:

Animation11

360

� ein TimeSpan-Objekt mit einer Zeitangabe, oder

� einen double-Wert, gefolgt von einem Prozentzeichen für den prozentualen
Anteil an der Gesamtzeit, oder

� den Wert Uniform für eine zeitlich gleichmäßige Aufteilung, oder

� den Wert Paced für eine Interpolation mit konstanter Frequenz.

Im nachfolgenden Projekt AnimKeyDouble werden einige der genannten Mög-
lichkeiten anhand der Bewegung von vier Buttons verdeutlicht (siehe Abbildung
11.13). Jedem der Buttons ist eine eigene Storyboard-Ressource zugeordnet.

Abbildung 11.13 Vier Keyframe-Animationen

Der XAML-Code:

<Window ...>
 <Window.Resources>
 <Storyboard x:Key="sbres1">
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetProperty="(Canvas.Left)">
 <LinearDoubleKeyFrame KeyTime="0:0:1" Value="60" />
 <LinearDoubleKeyFrame KeyTime="0:0:4" Value="110" />
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 <Storyboard x:Key="sbres2">
 <DoubleAnimationUsingKeyFrames Duration="0:0:4"
 Storyboard.TargetProperty="(Canvas.Left)">
 <LinearDoubleKeyFrame KeyTime="75%" Value="60" />
 <LinearDoubleKeyFrame KeyTime="100%" Value="110" />
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 <Storyboard x:Key="sbres3">
 <DoubleAnimationUsingKeyFrames Duration="0:0:4"
 Storyboard.TargetProperty="(Canvas.Left)">
 <LinearDoubleKeyFrame KeyTime="Uniform" Value="60" />

Keyframes 11.5

361

 <LinearDoubleKeyFrame KeyTime="Uniform" Value="80" />
 <LinearDoubleKeyFrame KeyTime="Uniform" Value="140" />
 <LinearDoubleKeyFrame KeyTime="Uniform" Value="160" />
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 <Storyboard x:Key="sbres4">
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetProperty="(Canvas.Left)">
 <LinearDoubleKeyFrame KeyTime="0:0:1" Value="30" />
 <DiscreteDoubleKeyFrame KeyTime="0:0:3" Value="50" />
 <SplineDoubleKeyFrame KeyTime="0:0:8"
 KeySpline="0,0.5 0.5,1" Value="90" />
 <SplineDoubleKeyFrame KeyTime="0:0:13"
 KeySpline="0.5,0 0,0.5" Value="150" />
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </Window.Resources>
 <Canvas>
 <Button x:Name="b1" Canvas.Top="10" Canvas.Left="10"
 Width="60" Click="b1_Click">Button 1</Button>
 <Button x:Name="b2" Canvas.Top="40" Canvas.Left="10"
 Width="60" Click="b2_Click">Button 2</Button>
 ...
 </Canvas>
</Window>

Bei der ersten Animation werden zwei LinearDoubleKeyFrame-Objekte genutzt.
Dies bedeutet für jeden Abschnitt eine gleichförmige Geschwindigkeit. Zunächst
gelangt der Button innerhalb einer Sekunde vom Wert 10 zum Wert 60, anschlie-
ßend innerhalb von weiteren drei Sekunden vom Wert 60 bis zum Wert 110. Es
ist also die gleiche Strecke innerhalb der dreifachen Zeit zurückzulegen. Daher ist
der Button auf dem zweiten Abschnitt deutlich langsamer.

Die zweite Animation verhält sich umgekehrt. Es sind wiederum zwei Linear-
DoubleKeyFrame-Objekte, die Abschnitte sind auch gleich, allerdings ist die zeitli-
che Aufteilung andersherum. Für den ersten Abschnitt steht 75% der Zeit zur
Verfügung, für den zweiten Abschnitt die restlichen 25%. Die Gesamtzeit, die
100 % entspricht, wird über die Eigenschaft Duration zentral für die gesamte Ani-
mation festgelegt.

Bei der dritten Animation wird die Zeit mithilfe des Werts Uniform für die Eigen-
schaft KeyTime gleichmäßig zwischen den linearen Abschnitten verteilt. Da die
Abschnitte verschieden lang sind (50, 20, 60, 20), resultieren unterschiedliche
Geschwindigkeiten.

Animation11

362

Die vierte Animation beginnt mit einem kurzen linearen Abschnitt. Es folgt eine
Pause von zwei Sekunden, anschließend – mithilfe eines DiscreteDoubleKeyFrame-
Objekts – ein Sprung auf den nächsten Wert. Für die nächsten zwei Abschnitte von
jeweils 5 Sekunden folgt die Animation dank zweier SplineDoubleKeyFrame-
Objekte kubischen Funktionen. Dabei werden mithilfe der Eigenschaft KeySpline
jeweils zwei Kontrollpunkte definiert, die den Verlauf der Funktionskurve bestim-
men.

Die vier Ereignismethoden sind wie üblich aufgebaut. Hier sehen Sie nur die
erste:

private void b1_Click(...)
{ (FindResource("sbres1") as Storyboard).Begin(b1); }

11.5.2 Keyframes für Color

Bei einer Animation mit einem Farbwechsel wird die Klasse ColorAnimation-
UsingKeyFrames verwendet. Im nachfolgenden Projekt AnimKeyColor wird ein
schwarzes Rechteck dargestellt, das zunächst in gleichförmiger Geschwindigkeit
innerhalb von sechs Sekunden zu einem weißen Rechteck wird, und zwar mit-
hilfe eines LinearColorKeyFrame (siehe Abbildung 11.14). Nach einer Pause von
zwei Sekunden springt die Farbe wieder auf Schwarz, wozu DiscreteColor-
KeyFrame verwendet wird.

Abbildung 11.14 KeyFrame-Animation für Farbe

Der XAML-Code:

<Window ... Loaded="Window_Loaded">
 <Window.Resources>
 <Storyboard x:Key="sbres">
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetProperty="Fill.Color">
 <LinearColorKeyFrame KeyTime="0:0:6" Value="White" />
 <DiscreteColorKeyFrame KeyTime="0:0:8" Value="Black" />
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </Window.Resources>

Keyframes 11.5

363

 <Rectangle x:Name="rc" Width="80" Height="30" Fill="Black"
 VerticalAlignment="Top" />
</Window>

Die Ereignismethode:

private void Window_Loaded(...)
{ (FindResource("sbres") as Storyboard).Begin(rc); }

11.5.3 KeyFrames für String

Eine Zeichenkette lässt sich ebenfalls animieren. Dabei wird die Klasse
StringAnimationUsingKeyFrames verwendet. Im nachfolgenden Projekt Anim-
KeyString wechselt der Inhalt eines Textblocks einmal pro Sekunde zwischen
dem Text »Hallo« und dem Text »Welt« hin und her. Das geschieht insgesamt
sechs Sekunden lang, und zwar mithilfe eines DiscreteStringKeyFrame (siehe
Abbildung 11.15).

Abbildung 11.15 KeyFrame-Animation für Zeichenkette

Der XAML-Code:

<Window ... Loaded="Window_Loaded">
 <Window.Resources>
 <Storyboard x:Key="sbres" RepeatBehavior="0:0:6">
 <StringAnimationUsingKeyFrames
 Storyboard.TargetProperty="Text">
 <DiscreteStringKeyFrame KeyTime="0:0:1" Value="Welt" />
 <DiscreteStringKeyFrame KeyTime="0:0:2" Value="Hallo" />
 </StringAnimationUsingKeyFrames>
 </Storyboard>
 </Window.Resources>
 <TextBlock x:Name="tb" Width="80" Height="18"
 VerticalAlignment="Top">Hallo</TextBlock>
</Window>

Die Ereignismethode:

private void Window_Loaded(...)
{ (FindResource("sbres") as Storyboard).Begin(tb); }

Animation11

364

11.6 Easing Functions

Es gibt eine weitere Möglichkeit zur Erzeugung eines nicht gleichförmigen Ani-
mationsverlaufs: Sie können eine Funktion aus der Gruppe der Easing Functions
verwenden. Diese Beschleunigungsfunktionen bieten zahlreiche Möglichkeiten,
zum Beispiel einen Verlauf gemäß einer quadratischen Funktion, einer Exponen-
tialfunktion oder einer Bounce-Funktion (engl. to bounce = dt. springen, abprallen).

Eine einfache, horizontale Animation kann diese Funktionsverläufe nicht geeig-
net verdeutlichen. Daher wurde im nachfolgenden Projekt AnimEasing eine wei-
tere, vertikale Animation hinzugefügt. Ein grauer Kreis bewegt sich linear von
links nach rechts und gemäß einer Easing Function von oben nach unten. Der
Betrachter kann zwischen den verschiedenen Easing Functions wählen (siehe
Abbildung 11.16).

Abbildung 11.16 Animation mit ausgewählter Easing Function

Außerdem kann er den EasingMode wählen. Diese Eigenschaft bestimmt darüber,
an welcher Stelle des Animationsverlaufs die Funktion eingesetzt wird. Mögliche
Werte aus der gleichnamigen Enumeration sind:

� EaseIn: am Anfang des Verlaufs

� EaseOut: am Ende des Verlaufs (dies ist der Standardwert)

� EaseInOut: an Anfang und Ende des Verlaufs

Die Klassen der verschiedenen Easing Functions sind von der abstrakten Klasse
EasingFunctionBase abgeleitet. Falls Sie eine Klasse für eine eigene Easing Func-
tion entwickeln, so muss sie ebenfalls von dieser Klasse erben.

Easing Functions 11.6

365

Der XAML-Code:

<Window ...>
 <Window.Resources>
 <Storyboard x:Key="sbres">
 <DoubleAnimation From="10" To="255" Duration="0:0:3"
 Storyboard.TargetProperty="(Canvas.Left)" />
 <DoubleAnimation From="10" To="135" Duration="0:0:3"
 Storyboard.TargetProperty="(Canvas.Top)">
 <DoubleAnimation.EasingFunction>
 <CubicEase EasingMode="EaseInOut" />
 </DoubleAnimation.EasingFunction>
 </DoubleAnimation>
 </Storyboard>
 </Window.Resources>
 <Canvas>
 <Ellipse x:Name="el" Canvas.Top="10" Canvas.Left="10"
 Fill="Gray" Height="20" Width="20" />
 <Button Canvas.Top="130" Canvas.Left="10"
 Click="starten">Start</Button>

 <ComboBox x:Name="cbmode" Canvas.Top="10" Canvas.Left="190">
 <ComboBoxItem>EaseIn</ComboBoxItem>
 <ComboBoxItem>EaseOut</ComboBoxItem>
 <ComboBoxItem
 Selector.IsSelected="True">EaseInOut</ComboBoxItem>
 </ComboBox>

 <ComboBox x:Name="cbfunc" Canvas.Top="40" Canvas.Left="190">
 <ComboBoxItem>Quadratic</ComboBoxItem>
 <ComboBoxItem
 Selector.IsSelected="True">Cubic</ComboBoxItem>
 <ComboBoxItem>Quartic</ComboBoxItem>
 ...
 </ComboBox>
 </Canvas>
</Window>

Der Kreis bewegt sich nach Betätigung des Buttons Start innerhalb von drei
Sekunden mit gleichförmiger Geschwindigkeit vom Wert 10 zum Wert 255 von
links nach rechts. Gleichzeitig bewegt er sich gemäß einer Easing Function vom
Wert 10 zum Wert 135 von oben nach unten.

Als Wert der Eigenschaft EasingFunction der Klasse DoubleAnimation wird der
Funktionstyp festgelegt. Hier ist dies CubicEase mit dem Wert EaseInOut für die

Animation11

366

Eigenschaft EasingMode. Es handelt sich also um eine Beschleunigung gemäß
einer kubischen Funktion zu Anfang und zu Ende des Animationsverlaufs.

Der Betrachter kann mithilfe von zwei ComboBoxen den Funktionstyp und den
EasingMode einstellen. Die Ereignismethode sieht so aus:

private void starten(...)
{
 Storyboard sb = FindResource("sbres") as Storyboard;
 DoubleAnimation da = sb.Children[1] as DoubleAnimation;

 switch (cbfunc.Text)
 {
 case "Quadratic":
 da.EasingFunction = new QuadraticEase(); break;
 case "Cubic":
 da.EasingFunction = new CubicEase(); break;
 case "Quartic":
 da.EasingFunction = new QuarticEase(); break;
 case "Quintic":
 da.EasingFunction = new QuinticEase(); break;
 case "Power":
 PowerEase px = new PowerEase();
 px.Power = 10;
 da.EasingFunction = px; break;
 case "Back":
 BackEase bk = new BackEase();
 bk.Amplitude = 2;
 da.EasingFunction = bk; break;
 case "Bounce":
 BounceEase bc = new BounceEase();
 bc.Bounces = 1;
 bc.Bounciness = 1;
 da.EasingFunction = bc; break;
 case "Circle":
 da.EasingFunction = new CircleEase(); break;
 case "Elastic":
 ElasticEase et = new ElasticEase();
 et.Oscillations = 1;
 et.Springiness = 1;
 da.EasingFunction = et; break;
 case "Exponential":
 ExponentialEase ep = new ExponentialEase();
 ep.Exponent = 3;
 da.EasingFunction = ep; break;

Easing Functions 11.6

367

 case "Sine":
 da.EasingFunction = new SineEase(); break;
 }

 EasingFunctionBase efb =
 da.EasingFunction as EasingFunctionBase;
 switch (cbmode.Text)
 {
 case "EaseIn":
 efb.EasingMode = EasingMode.EaseIn; break;
 case "EaseOut":
 efb.EasingMode = EasingMode.EaseOut; break;
 case "EaseInOut":
 efb.EasingMode = EasingMode.EaseInOut; break;
 }
 sb.Begin(el);
}

Zunächst wird ein Veweis auf die zweite Animation des Storyboards erzeugt.
Anschließend wird der Eigenschaft EasingFunction dieser Animation eine der
Easing Functions gemäß der aktuellen Auswahl der ersten ComboBox zugewiesen.

Die Klassen QuadraticEase, CubicEase, QuarticEase, QuinticEase und PowerEase
arbeiten mit einer Funktion gemäß f(x) = x2, x3, x4, x5 beziehungsweise xp. Die
double-Eigenschaft Power der Klasse PowerEase bestimmt den Exponenten p. Der
Standardwert ist 2.

Bei BackEase wird der Wert zunächst leicht zurückgenommen. Der Grad der
Zurücknahme wird über die double-Eigenschaft Amplitude bestimmt. Der Stan-
dardwert ist 1.

Bei BounceEase sehen Sie einen sprunghaften Verlauf der Animation. Die
Integer-Eigenschaft Bounces bestimmt die Anzahl der Sprünge. Der Standard-
wert ist 3. Die double-Eigenschaft Bounciness legt fest, wie elastisch die Anima-
tion ist. Der Standardwert ist 2. Ein niedriger Wert steht für eine hohe Elastizität,
damit ist der Höhenverlust zwischen den Sprüngen geringer.

Die Klassen CircleEase und SineEase stehen für einen kreisförmigen bezie-
hungsweise sinusförmigen Verlauf der Animation.

Bei ElasticEase federt die Animation über die Grenzwerte hinaus. Die Integer-
Eigenschaft Oscillations gibt an, wie oft dies geschieht. Der Standardwert ist 3.
Die double-Eigenschaft Springiness sagt etwas über die Härte der Feder aus. Der
Standardwert ist ebenfalls 3. Ein niedriger Wert steht für eine große Härte und
damit für ein schnelleres Abklingen der Bewegung.

Animation11

368

Die Klasse ExponentialEase arbeitet mit einer Funktion gemäß f(x) = ex. Die
double-Eigenschaft Exponent bestimmt den Exponenten x. Der Standardwert ist 2.

Die aktuelle Auswahl der zweiten ComboBox entscheidet über den EasingMode.
Zunächst muss noch ein Verweis auf die zuvor ausgewählte Easing Function
erstellt werden. Diese ist in jedem Fall von EasingFunctionBase abgeleitet. Als
Letztes wird die Animation gestartet.

11.7 Pfadanimationen

Eine weitere Gruppe von Klassen ermöglicht Ihnen Pfadanimationen. Dabei
bewegt sich das animierte Element entlang einer PathGeometry. Dies wird im
nachfolgenden Projekt AnimPathPoint mithilfe eines Kreises verdeutlicht, dessen
Zentrum sich entlang einer Kurve bewegt, die aus vier Halbkreisen besteht (siehe
Abbildung 11.17). Hier wird die Klasse PointAnimationUsingPath verwendet.
Entsprechende ...AnimationUsingPath-Klassen gibt es noch für die Datentypen
Double und Matrix.

Abbildung 11.17 Pfadanimation

Der XAML-Code:

<Window ... Loaded="Window_Loaded">
 <Canvas>
 <Path Stroke="Black" StrokeThickness="2">
 <Path.Data>
 <PathGeometry x:Name="pg" >
 <PathFigure StartPoint="10,35">
 <PathSegmentCollection>
 <ArcSegment Point="60,35" Size="25,25"
 SweepDirection="Clockwise" />
 <ArcSegment Point="110,35" Size="25,25" />
 <ArcSegment Point="160,35" Size="25,25"
 SweepDirection="Clockwise" />
 <ArcSegment Point="210,35" Size="25,25" />
 </PathSegmentCollection>

Pfadanimationen 11.7

369

 </PathFigure>
 </PathGeometry>
 </Path.Data>
 </Path>

 <Path Fill="LightGray" Stroke="Black" StrokeThickness="2">
 <Path.Data>
 <EllipseGeometry x:Name="eg" Center="10,35"
 RadiusX="10" RadiusY="10" />
 </Path.Data>
 </Path>
 </Canvas>
</Window>

Dank der Eigenschaftswerte für Stroke und StrokeThickness wird der Pfad sicht-
bar gezeichnet. Die Pfadgeometrie ist mit dem Namen pg gekennzeichnet. Das
Zentrum der Ellipsen-Geometrie, die mit dem Namen eg gekennzeichnet ist, liegt
auf dem Startpunkt der Pfadgeometrie.

Der Programmcode zur Erzeugung der Animation sieht so aus:

private void Window_Loaded(...)
{
 PointAnimationUsingPath pa = new PointAnimationUsingPath();
 pa.PathGeometry = pg;
 pa.Duration = TimeSpan.Parse("0:0:5");
 pa.RepeatBehavior = RepeatBehavior.Forever;
 pa.AutoReverse = true;
 pa.AccelerationRatio = 0.4;
 pa.DecelerationRatio = 0.4;
 eg.BeginAnimation(EllipseGeometry.CenterProperty, pa);
}

Es wird ein neues Objekt der Klasse PointAnimationUsingPath erzeugt. Neben
den bekannten Eigenschaften (Duration, RepeatBehavior, …) wird der Eigen-
schaft PathGeometry ein Verweis auf die Pfadgeometrie zugewiesen. Die Methode
BeginAnimation() startet die Animation und ordnet sie der Dependency Property
der Eigenschaft Center zu.

371

Multimedia-Elemente sowie die Möglichkeit zur Steuerung durch
Sprache und zur Ausgabe von Sprache erleichtern die Bedienung
Ihrer Anwendungen.

12 Audio und Video

In diesem Kapitel werden verschiedenen Klassen vorgestellt, mit deren Hilfe man
Audio- und Video-Ausgaben in WPF-Anwendungen steuern kann. Außerdem
bietet die WPF Klassen zur Ausgabe, zur Eingabe und zur Erkennung von Spra-
che. Dies bietet weitere Möglichkeiten für die vereinfachte Bedienung der
Anwendungen.

12.1 Audio

Die Klassen SoundPlayer und SoundPlayerAction dienen zum Steuern der Aus-
gabe von Audio-Dateien des Typs WAV. Systemtöne können mit der Klasse
SystemSound wiedergegeben werden.

Die Wiedergabe von Mediendateien mit Audio- und Video-Komponenten wird
mithilfe der Klassen MediaPlayer und MediaElement gesteuert.

12.1.1 SoundPlayer in Programmcode

Die Klasse SoundPlayer gibt Ihnen eine einfache Möglichkeit, WAV-Dateien abzu-
spielen. Die Klasse bietet unter anderem folgende Eigenschaften und Methoden:

� Play(): Spielt eine WAV-Datei asynchron ab. Asynchron bedeutet, dass die
Aktion parallel zu anderen Aktionen erfolgen kann und unterbrochen werden
kann.

� PlaySync(): Spielt eine WAV-Datei synchron ab. Synchron bedeutet, dass die
Aktion erst nach Beendigung anderer Aktionen erfolgen kann und nicht
unterbrochen werden kann.

� PlayLooping(): Spielt eine WAV-Datei unendlich oft asynchron ab.

� Stop(): Unterbricht das asynchrone Abspielen einer WAV-Datei.

� Load(): Lädt eine WAV-Datei synchron.

Audio und Video12

372

� LoadAsync(): Lädt eine WAV-Datei asynchron.

� SoundLocation: Beinhaltet beziehungsweise setzt den Pfad und den Namen
der WAV-Datei.

Die drei Play-Methoden laden die WAV-Datei vorher, falls sie noch nicht geladen
ist, und spielen die Datei von Beginn an ab. Sie können Ihre WPF-Anwendungen
zusammen mit den darin verwendeten WAV-Dateien installieren. Dazu müssen
Sie die Dateien, wie andere Ressourcen auch, per Drag&Drop zu Ihrem Projekt
hinzufügen. Anschließend müssen Sie deren Eigenschaft In Ausgabeverzeichnis
kopieren auf den Wert Immer kopieren setzen. Als Wert für die Eigenschaft
SoundLocation genügt dann die Angabe des Dateinamens.

Die Anwendung der Methoden Load() und LoadAsync() empfiehlt sich, falls Sie
beim Wechsel auf eine neue, umfangreiche WAV-Datei den Ladevorgang nicht
abwarten, sondern bereits vorher erledigen möchten.

Im ersten Teil des nachfolgenden Projekts AVSound können Sie die genannten
Möglichkeiten der Klasse SoundPlayer nutzen (siehe Abbildung 12.1).

Abbildung 12.1 SoundPlayer und SystemSound

Der XAML-Code des ersten Teils:

<Window ...>
 <StackPanel>
 <ComboBox x:Name="cbwav" Width="160" Margin="3">
 <ComboBoxItem Selector.IsSelected="True">
 Gitarrensound.wav</ComboBoxItem>
 <ComboBoxItem>GAkkord.wav</ComboBoxItem>
 <ComboBoxItem>tada.wav</ComboBoxItem>
 </ComboBox>
 <WrapPanel HorizontalAlignment="Center">
 <Button Width="80" Margin="3" Click="async_spielen">

Audio 12.1

373

 Asynchron</Button>
 <Button Width="80" Margin="3" Click="sync_spielen">
 Synchron</Button>
 <Button Width="80" Margin="3" Click="dauernd_spielen">
 Dauernd</Button>
 </WrapPanel>
 <Button Width="80" Margin="3" Click="stoppen">Stop</Button>
 ...
</Window>

Die ComboBox bietet die Auswahl zwischen den drei projektinternen WAV-
Dateien. Die drei Buttons führen zu den verschiedenen Play-Methoden in der
nachfolgenden Klasse. Es werden die Namespaces System.Media und System.IO
benötigt.

public partial class MainWindow : Window
{
 SoundPlayer sp;
 public MainWindow()
 {
 InitializeComponent();
 sp = new SoundPlayer();
 }

 private void async_spielen(...)
 { wechseln(); sp.Play(); }
 private void sync_spielen(...)
 { wechseln(); sp.PlaySync(); }
 private void dauernd_spielen(...)
 { wechseln(); sp.PlayLooping(); }
 private void wechseln()
 {
 if (!File.Exists(cbwav.Text)) return;
 sp.SoundLocation = cbwav.Text;
 }
 private void stoppen(...) { sp.Stop(); }
 ...
}

Das SoundPlayer-Objekt wird als Member der Klasse erzeugt, ansonsten wäre das
Anhalten nicht möglich. Vor dem Wechsel der WAV-Datei wird geprüft, ob die
Datei, deren Name in der ComboBox ausgewählt wurde, im Projekt existiert.

Audio und Video12

374

12.1.2 SystemSound

Die Klasse SystemSound dient zum Abspielen von Systemtönen, die mit bestimmten
Windows-Ereignissen verbunden sind. Im zweiten Teil des Projekts AVSound kön-
nen Sie sich die verschiedenen Systemtöne anhören (siehe auch Abbildung 12.1).

Der XAML-Code des zweiten Teils:

<Window ...>
 ...
 <ComboBox x:Name="cbsys" Width="160" Margin="3">
 <ComboBoxItem Selector.IsSelected="True">
 Asterisk</ComboBoxItem>
 <ComboBoxItem>Beep</ComboBoxItem>
 <ComboBoxItem>Exclamation</ComboBoxItem>
 <ComboBoxItem>Hand</ComboBoxItem>
 <ComboBoxItem>Question</ComboBoxItem>
 </ComboBox>
 <Button Width="80" Margin="3" Click="system_spielen">
 Systemton</Button>
 </StackPanel>
</Window>

Die ComboBox bietet die Auswahl zwischen fünf Systemtönen. Die Ereignisme-
thode sieht so aus:

private void system_spielen(...)
{
 switch (cbsys.Text)
 {
 case "Asterisk":
 SystemSounds.Asterisk.Play(); break;
 case "Beep":
 SystemSounds.Beep.Play(); break;
 case "Exclamation":
 SystemSounds.Exclamation.Play(); break;
 case "Hand":
 SystemSounds.Hand.Play(); break;
 case "Question":
 SystemSounds.Question.Play(); break;
 }
}

Zunächst wird ein Systemton mithilfe der entsprechenden statischen Eigenschaft
der Klasse SystemSounds ausgewählt (Asterisk, Beep, Exclamation, Hand und
Question). Diese Eigenschaft liefert einen Verweis auf ein Objekt der Klasse

Audio 12.1

375

SystemSound. Anschließend spielt die Methode Play() der Klasse SystemSound
den Systemton asynchron ab.

12.1.3 SoundPlayer in XAML

Die Klasse SoundPlayerAction dient zum asynchronen Abspielen einer WAV-
Datei aus dem XAML-Code heraus. Das SoundPlayerAction-Objekt wird dazu in
einen Event Trigger eingebettet. Im nachfolgenden Projekt AVSoundAction sehen
Sie ein Beispiel.

<Window ...>
 <StackPanel>
 <Rectangle Fill="Gray" Width="80" Height="30">
 <Rectangle.Triggers>
 <EventTrigger RoutedEvent="Rectangle.MouseEnter">
 <SoundPlayerAction Source="Gitarrensound.wav" />
 </EventTrigger>
 </Rectangle.Triggers>
 </Rectangle>
 </StackPanel>
</Window>

Es wird ein graues Rechteck dargestellt. Beim Betreten des Rechtecks mit der
Maus wird die WAV-Datei abgespielt. Die Datei wurde dem Projekt per
Drag&Drop hinzugefügt. Die Eigenschaft In Ausgabeverzeichnis kopieren

wurde auf den Wert Immer kopieren gesetzt. Die Eigenschaft Source vom Typ Uri
legt Pfad und Namen zur Datei fest.

12.1.4 MediaPlayer für Audio

Die Klasse MediaPlayer dient zur Wiedergabe von Mediendateien, sowohl für
Audio als auch für Video. Es können zahlreiche Typen von Mediendateien abgespielt
werden. Sie bietet unter anderem die folgenden Eigenschaften und Methoden:

� Open(): zum Öffnen einer Mediendatei mithilfe eines URI

� Play(): zur asynchronen Wiedergabe einer Mediendatei, ab der aktuellen
Position (siehe die Eigenschaft Position)

� Position: vom Typ TimeSpan, dient zur Einstellung der Position innerhalb der
Mediendatei, Standardwert 0

� Pause(): zum Anhalten der Wiedergabe

� Stop(): zum Beenden der Wiedergabe

� IsMuted: vom Typ Bool, zum Stummschalten

Audio und Video12

376

� Balance: vom Typ double, zur Einstellung der Balance zwischen linkem und
rechtem Lautsprecher, Werte zwischen –1 (nur links) und +1 (nur rechts),
Standardwert 0

� SpeedRatio: vom Typ double, zur Einstellung eines Faktors für die Wieder-
gabe-Geschwindigkeit. Der Standardwert 1 steht für die normale Geschwin-
digkeit.

� Volume: vom Typ double, zur Einstellung eines Faktors für die Lautstärke zwi-
schen 0 und 1. Der Standardwert ist 0.5.

Im nachfolgenden Projekt AVMediaAudio werden die genannten Möglichkeiten
mithilfe einer MP3-Datei verdeutlicht (siehe Abbildung 12.2). Die Datei wurde
dem Projekt per Drag&Drop hinzugefügt. Die Eigenschaft In Ausgabeverzeichnis
kopieren wurde auf den Wert Immer kopieren gesetzt.

Abbildung 12.2 Wiedergabe einer Mediendatei

Der XAML-Code:

<Window ...>
 <StackPanel>
 <WrapPanel HorizontalAlignment="Center" Margin="3">
 <Button Margin="3" Click="abspielen">Play</Button>
 <Button Margin="3" Click="anhalten">Pause</Button>
 <Button Margin="3" Click="beenden">Stop</Button>
 <CheckBox x:Name="cbmute" VerticalAlignment="Center"
 Click="stumm_schalten">Stumm</CheckBox>
 </WrapPanel>
 <WrapPanel>
 <Label Width="75">Balance:</Label>
 <Slider x:Name="slbal" Minimum="-1" Maximum="1" Value="0"
 Width="200" TickPlacement="BottomRight"
 TickFrequency="0.2" AutoToolTipPlacement="BottomRight"
 AutoToolTipPrecision="1" ValueChanged="balance" />
 </WrapPanel>

Audio 12.1

377

 <WrapPanel>
 <Label Width="75">SpeedRatio:</Label>
 <Slider x:Name="slgsw" Minimum="0" Maximum="2" Value="1"
 Width="200" TickPlacement="BottomRight"
 TickFrequency="0.2" AutoToolTipPlacement="BottomRight"
 AutoToolTipPrecision="1" ValueChanged="geschwindigkeit"/>
 </WrapPanel>
 <WrapPanel>
 <Label Width="75">Position:</Label>
 <Slider x:Name="slpos" Minimum="0" Maximum="348"
 Value="0" Width="200" TickPlacement="BottomRight"
 TickFrequency="30" AutoToolTipPlacement="BottomRight"
 ValueChanged="position" />
 </WrapPanel>
 <WrapPanel>
 <Label Width="75">Volume:</Label>
 <Slider x:Name="slvol" Minimum="0" Maximum="1"
 Value="0.5" Width="200" TickPlacement="BottomRight"
 TickFrequency="0.1" AutoToolTipPlacement="BottomRight"
 AutoToolTipPrecision="1" ValueChanged="lautstaerke" />
 </WrapPanel>
 </StackPanel>
</Window>

Die drei Buttons und die CheckBox dienen zum Abspielen, Anhalten, Beenden
und Stummschalten. Die vier Slider sind zum Einstellen der Eigenschaften
Balance, SpeedRatio, Position und Volume. Sie sind zu Beginn auf die jeweiligen
Standardwerte eingestellt und reichen über die gesamte Spanne der jeweiligen
Werte. Der aktuelle Wert wird mithilfe des AutoToolTip angezeigt.

Es folgen die Ereignismethoden innerhalb der Fensterklasse. Für die Prüfung, ob
die Datei existiert, wird der Namespace System.IO benötigt.

public partial class MainWindow : Window
{
 MediaPlayer mp = new MediaPlayer();
 public MainWindow()
 {
 InitializeComponent();
 if (File.Exists("Kalimba.mp3"))
 mp.Open(new Uri("Kalimba.mp3", UriKind.Relative));
 }

 private void abspielen(...) { mp.Play(); }
 private void anhalten(...) { mp.Pause(); }
 private void beenden(...) { mp.Stop(); }

Audio und Video12

378

 private void stumm_schalten(...)
 { mp.IsMuted = (bool)cbmute.IsChecked; }

 private void balance(object sender,
 RoutedPropertyChangedEventArgs<double> e)
 { mp.Balance = slbal.Value; }
 private void geschwindigkeit(object sender,
 RoutedPropertyChangedEventArgs<double> e)
 { mp.SpeedRatio = slgsw.Value; }
 private void position(object sender,
 RoutedPropertyChangedEventArgs<double> e)
 { mp.Position = new TimeSpan(0, 0, (int)slpos.Value); }
 private void lautstaerke(object sender,
 RoutedPropertyChangedEventArgs<double> e)
 { mp.Volume = slvol.Value; }
}

Die Methode Open() benötigt einen URI als Parameter. Die Eigenschaft IsChecked
der CheckBox ist vom Typ bool? und muss für die Eigenschaft IsMuted des Media-
Player-Objekts umgewandelt werden. Die Sliderwerte können direkt für die
Eigenschaften des MediaPlayer-Objekts genutzt werden. Eine Ausnahme ist der
Slider für die Eigenschaft Position. Er liefert eine Anzahl in Sekunden. Diese
muss zunächst in ein TimeSpan-Objekt umgewandelt werden.

12.1.5 MediaElement für Audio

Die Klasse MediaElement dient zur Verwendung des Media-Players in XAML. Dies
geschieht mithilfe eines Event Triggers, also ohne Programmcode. Ein Media-
Element-Objekt ist ein Steuerelement. Sie können es sichtbar machen, zum Bei-
spiel mithilfe eines Rahmens und Werten für die Eigenschaften Height und
Width. Dies ist im Falle einer reinen Audio-Wiedergabe nicht unbedingt nötig.

Im nachfolgenden Projekt AVMediaStory wird ein graues Rechteck zum Starten
und Beenden der Wiedergabe einer MP3-Datei verwendet (siehe Abbildung 12.3).
Die Datei wurde dem Projekt per Drag&Drop hinzugefügt. Die Eigenschaft In
Ausgabeverzeichnis kopieren wurde auf den Wert Immer kopieren gesetzt.

Abbildung 12.3 Sichtbares MediaElement

Audio 12.1

379

Der XAML-Code:

<Window ...>
 <WrapPanel>
 <Border BorderBrush="Black" BorderThickness="1">
 <MediaElement Width="80" Height="30" Margin="1"
 MediaFailed="medienfehler" x:Name="me" />
 </Border>
 <Rectangle Fill="Gray" Width="80" Height="30" Margin="1">
 <Rectangle.Triggers>
 <EventTrigger RoutedEvent="Rectangle.MouseEnter">
 <BeginStoryboard Name="sb">
 <Storyboard>
 <MediaTimeline Source="Kalimba.mp3"
 Storyboard.TargetName="me" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 <EventTrigger RoutedEvent="Rectangle.MouseLeave">
 <StopStoryboard BeginStoryboardName="sb" />
 </EventTrigger>
 </Rectangle.Triggers>
 </Rectangle>
 </WrapPanel>
</Window>

Zunächst wird das Steuerelement des Typs MediaElement erzeugt. Das Ereignis
MediaFailed tritt nach einem Fehler beim Laden oder bei der Wiedergabe auf. Sie
können das Ereignis mit Programmcode verbinden; ansonsten würden Sie keine
Fehlermeldung bekommen.

Das Betreten und das Verlassen des Rechtecks mit der Maus führt zum Starten
beziehungsweise Beenden der Wiedergabe. Das Objekt der Klasse MediaTimeline
greift auf das MediaElement-Objekt zu. Die Eigenschaft Source vom Typ Uri steht
für die Medienquelle, die vom MediaElement abgespielt wird.

Sie hätten der Eigenschaft Source bereits im MediaElement-Objekt ihren Wert
geben können. Dann wäre das Medium unmittelbar nach dem Laden der Anwen-
dung abgespielt worden.

Die Ereignismethode zur Ausgabe eines Fehlers sieht so aus:

private void medienfehler(object sender,
 ExceptionRoutedEventArgs e)
{ MessageBox.Show(e.ErrorException.Message); }

Audio und Video12

380

12.2 Video

Die bereits im Audio-Abschnitt vorgestellten Klassen MediaPlayer und
MediaElement dienen auch zum Steuern der Ausgabe von Video-Dateien.

12.2.1 MediaElement für Video

In diesem Abschnitt wird im Projekt AVMediaVideo ein MediaElement-Objekt zur
Wiedergabe eines Videos aus einer MPG-Datei eingesetzt. Das Video wird ver-
kleinert, wobei das Verhältnis zwischen Höhe und Breite gleich bleibt. Außerdem
wird es ausgeschnitten, indem der Eigenschaft Clip eine Ellipsengeometrie zuge-
wiesen wird (siehe Abbildung 12.4). Es werden die bekannten Storyboard-
Objekte zur Steuerung der Wiedergabe verwendet.

Abbildung 12.4 MediaElement steuert Video.

Der XAML-Code:

<Window ...>
 <StackPanel>
 <WrapPanel HorizontalAlignment="Center" Margin="3">
 <WrapPanel.Triggers>
 <EventTrigger RoutedEvent="Button.Click"
 SourceName="starten">
 <BeginStoryboard Name="sb">
 <Storyboard>
 <MediaTimeline Source="SynChiralRotate.mpg"
 Storyboard.TargetName="me" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>

Sprachausgabe 12.3

381

 <EventTrigger RoutedEvent="Button.Click"
 SourceName="anhalten">
 <PauseStoryboard BeginStoryboardName="sb" />
 </EventTrigger>
 ...
 </WrapPanel.Triggers>
 <Button x:Name="starten" Margin="3">Play</Button>
 ...
 </WrapPanel>
 <WrapPanel HorizontalAlignment="Center">
 <MediaElement x:Name="me" Width="150" Height="168"
 MediaFailed="medienfehler">
 <MediaElement.Clip>
 <EllipseGeometry Center="75,84" RadiusX="75"
 RadiusY="96" />
 </MediaElement.Clip>
 </MediaElement>
 </WrapPanel>
 </StackPanel>
</Window>

Die Event Trigger der Buttons sind im übergeordneten WrapPanel angeordnet.
Der jeweilige Button wird über die Eigenschaft SourceName ausgewählt. In der
Eigenschaft Clip des MediaElement-Objekts sorgt ein EllipseGeometry-Objekt für
den passenden Bildausschnitt aus dem Video.

12.3 Sprachausgabe

Die Klasse SpeechSynthesizer aus dem Namespace System.Speech.Synthesis
der .NET-Komponente System.Speech dient dazu, geschriebenen Text in Sprache
umzusetzen. Damit haben Sie die Möglichkeit, Ihre Anwendung um ein Ausgabe-
medium zu erweitern.

Mithilfe der Klasse PromptBuilder werden Texte zusammengesetzt, die in Form
von Sprache ausgegeben werden sollen. Die Markierungssprache SSML dient
dabei als Basis zur Erzeugung der Textelemente.

12.3.1 Text ausgeben

Der Text für ein SpeechSynthesizer-Objekt kann aus einer Zeichenkette, einem
Prompt-Objekt (zum Beispiel mit einer Text-Datei) oder einem PromptBuilder-
Objekt (siehe nächster Abschnitt) stammen. Der gesprochene Text kann zum

Audio und Video12

382

Anhören an einen Lautsprecher geleitet werden oder in einer WAV-Datei gespei-
chert werden.

Die Klasse SpeechSynthesizer bietet unter anderem folgende Eigenschaften,
Methoden und Ereignisse:

� Speak(): Der angegebene Text wird synchron gesprochen.

� SpeakAsync(): Der angegebene Text wird asynchron gesprochen.

� Pause(): Eine asynchrone Sprachausgabe wird angehalten.

� Resume(): Eine asynchrone, angehaltene Sprachausgabe läuft weiter.

� Das Ereignis SpeakCompleted tritt nach Beendigung einer asynchronen Aus-
gabe ein.

� Volume: Dient zur Regelung der Ausgabe-Lautstärke und ist vom Typ Integer.

� SetOutputToDefaultAudioDevice(): Es wird die Standard-Ausgabe genutzt.
Dies ist normalerweise der Lautsprecher.

� SetOutputToWaveFile(): Es wird eine WAV-Datei zur Ausgabe genutzt. Falls
die Datei bereits existiert, wird die Ausgabe am Ende angehängt.

� SelectVoice(): Wählt die angegebene Stimme zur Sprachausgabe aus den
installierten Stimmen aus.

� GetInstalledVoices: Eine Auflistung der installierten Stimmen. Ohne weitere
zugekaufte Stimmen gibt es nur ein Element in der Auflistung: Microsoft

Anna.

Im nachfolgenden Projekt AVSynthesis wird eine Anwendung der genannten
Möglichkeiten dargestellt (siehe Abbildung 12.5).

Abbildung 12.5 Sprachausgabe, Einstellmöglichkeiten

Sprachausgabe 12.3

383

Der XAML-Code:

<Window ...>
 <StackPanel>
 <WrapPanel HorizontalAlignment="Center">
 ...
 <RadioButton IsChecked="True" Checked="rbkurz">
 kurz</RadioButton>
 <RadioButton Checked="rblang">lang</RadioButton>
 ...
 <RadioButton x:Name="rbs" IsChecked="True"
 Click="rbsyn">synchron</RadioButton>
 <RadioButton Click="rbsyn">asynchron</RadioButton>
 ...
 <RadioButton IsChecked="True" Checked="rblaut">
 laut</RadioButton>
 <RadioButton Checked="rbleise">leise</RadioButton>
 ...
 <RadioButton IsChecked="True"
 Checked="rblautsprecher">Lautsprecher</RadioButton>
 <RadioButton Checked="rbwavdatei">
 WAV-Datei</RadioButton>
 ...
 </WrapPanel>
 <WrapPanel HorizontalAlignment="Center">
 <Button Margin="3" Click="sprechen">Sprechen</Button>
 <Button Margin="3" x:Name="pause_button" Click="anhalten"
 IsEnabled="False">Anhalten</Button>
 <Button Margin="3" x:Name="resume_button" Click="weiter"
 IsEnabled="False">Weiter</Button>
 </WrapPanel>
 <WrapPanel HorizontalAlignment="Center">
 <Button Margin="3" Click="sw">Stimme wechseln</Button>
 <Button Margin="3" Click="as">Anzahl Stimmen</Button>
 </WrapPanel>
 <WrapPanel HorizontalAlignment="Center">
 <Button Margin="3" Click="wa">WAV abspielen</Button>
 <Button Margin="3" Click="txa">TXT abspielen</Button>
 <Button Margin="3" Click="tba">TextBox abspielen</Button>
 </WrapPanel>
 <TextBox x:Name="tb" TextWrapping="Wrap" Height="40"
 Margin="3">This is Microsoft Anna speaking</TextBox>
 </StackPanel>
</Window>

Audio und Video12

384

Die ersten beiden RadioButtons dienen zum Wechseln zwischen einer langen
und einer kurzen Zeichenkette, die jeweils gesprochen werden kann. Das nächste
Paar RadioButtons bestimmt darüber, ob der Text mit SpeakSync() oder
SpeakAsync() gesprochen wird. Im zweiten Fall werden die beiden Buttons frei-
gegeben, die die Methoden Pause() und Resume() aufrufen. Über das dritte Paar
RadioButtons wird der Wert der Eigenschaft Volume festgelegt. Das letzte Paar
RadioButtons dient zur Auswahl des Ausgabemediums mithilfe einer der
SetOutputTo…-Methoden.

Der Button Sprechen startet die Sprachausgabe. Nur im Falle einer asynchronen
Ausgabe tritt am Ende das Ereignis SpeakCompleted auf. Die nächsten beiden But-
tons rufen die Methode SelectVoice() auf beziehungsweise den Wert der Eigen-
schaft Count der Auflistung GetInstalledVoices ab.

Der Button WAV abspielen führt zur Methode Play() eines SoundPlayer-
Objekts. Die WAV-Datei sollte nicht in dem Moment abgespielt werden, wäh-
rend eine Ausgabe in dieselbe WAV-Datei erfolgt. Der Button TextBox abspielen

dient dazu, den Inhalt der unten stehenden Textbox mithilfe der Methode
Speak() auszugeben.

Zur Ausgabe des Inhalts einer Textdatei über den Button TXT abspielen wird ein
neues FilePrompt-Objekt erzeugt. Der erste Konstruktor-Parameter ist die Datei
mit dem Pfad und Namen oder dem URI. Der zweite Konstruktor-Parameter ist
ein Element der Enumeration SynthesisMediaType. Mögliche Werte sind:

� Ssml: Die Datei beinhaltet Inhalt in SSML, der Speech Synthesis Markup Lan-
guage, einer Markierungssprache zur Steuerung von Sprachausgabe.

� Text: Die Datei beinhaltet lesbaren Text.

� WaveAudio: Die Datei ist vom Typ WAV.

Dem Projekt muss ein Verweis auf die .NET-Komponente System.Speech hinzuge-
fügt werden. Die Fensterklasse benötigt die Namespaces System.Speech.Synthesis,
System.IO und System.Media.

public partial class MainWindow : Window
{
 SpeechSynthesizer syn = new SpeechSynthesizer();
 string Sprechtext;
 public MainWindow()
 {
 InitializeComponent();
 syn.SpeakCompleted += new
 EventHandler<SpeakCompletedEventArgs>(sprechen_beendet);
 File.Delete("ausgabe.wav");

Sprachausgabe 12.3

385

 }

 private void rbkurz(...)
 { Sprechtext = "This is my first example"; }
 private void rblang(...)
 { Sprechtext = "Berlin is the capital city of ..."; }

 private void rbsyn(...)
 {
 pause_button.IsEnabled = !((bool)rbs.IsChecked);
 resume_button.IsEnabled = !((bool)rbs.IsChecked);
 }

 private void rblaut(...) { syn.Volume = 100; }
 private void rbleise(...) { syn.Volume = 50; }

 private void rblautsprecher(...)
 { syn.SetOutputToDefaultAudioDevice(); }
 private void rbwavdatei(...)
 { syn.SetOutputToWaveFile("ausgabe.wav"); }

 private void sprechen(...)
 {
 if ((bool)rbs.IsChecked)
 syn.Speak(Sprechtext);
 else
 syn.SpeakAsync(Sprechtext);
 }

 private void sprechen_beendet(object sender,
 SpeakCompletedEventArgs e)
 { MessageBox.Show("Sprachausgabe beendet"); }

 private void anhalten(...) { syn.Pause(); }
 private void weiter(...) { syn.Resume(); }

 private void sw(...) { syn.SelectVoice("Microsoft Anna"); }
 private void av(...)
 { MessageBox.Show("Anzahl installierte Stimmen: "
 + syn.GetInstalledVoices().Count); }

 private void wa(...)
 {
 if(!File.Exists("ausgabe.wav")) return;
 SoundPlayer sp = new SoundPlayer("ausgabe.wav");

Audio und Video12

386

 sp.Play();
 }

 private void txa(...)
 {
 FilePrompt fp = new FilePrompt(
 "wpf.txt", SynthesisMediaType.Text);
 if ((bool)rbs.IsChecked)
 syn.Speak(fp);
 else
 syn.SpeakAsync(fp);
 }

 private void tba(...)
 {
 if ((bool)rbs.IsChecked)
 syn.Speak(tb.Text);
 else
 syn.SpeakAsync(tb.Text);
 }
}

Der Zugriff auf das neu erzeugte SpeechSynthesizer-Objekt ist innerhalb der
gesamten Klasse möglich. Der hinzugefügte EventHandler für das Ereignis
SpeakCompleted verweist auf die Methode sprechen_beendet().

12.3.2 Text zusammensetzen

Die Klasse PromptBuilder dient dazu, einen Text aus verschiedenen Elementen
zusammenzusetzen und für die Sprachausgabe vorzubereiten. Ein PromptBuilder-
Objekt kann anschließend durch ein SpeechSynthesizer-Objekt ausgegeben wer-
den.

Die Klasse PromptBuilder basiert auf der SSML (Speech Synthesis Markup Langu-
age), einer Markierungssprache zur Steuerung von Sprachausgabe (siehe http://
www.w3.org/TR/speech-synthesis). Die Klasse bietet weniger Möglichkeiten als die
Sprache, ist aber einfacher zu handhaben. Im Folgenden sind einige Eigenschaf-
ten und Methoden aufgeführt:

� ClearContent(): Dient zum Löschen des Textes, damit ein neuer Text zusam-
mengesetzt werden kann.

� StartStyle(): Dient zum Auswählen und Starten eines Sprechstils für einen
Teiltext. Ein Sprechstil ist vom Typ PromptStyle und besitzt unter anderem
seine eigene Geschwindigkeit und Lautstärke.

Sprachausgabe 12.3

387

� EndStyle(): Dient zum Schließen eines Sprechstils. Ein gestarteter Sprechstil
muss geschlossen werden.

� AppendText(): Dient zum Hinzufügen von einfachem Text.

� AppendTextWithHint(): Dient zum Hinzufügen von Text, der auf eine
bestimmte Weise gesprochen werden soll.

� AppendBreak(): Dient zum Hinzufügen einer Pause.

� ToXml(): Dient zum Ausgeben in SSML-Form in eine XML-Datei.

Im nachfolgenden Projekt AVPromptBuilder können Sie sich zwei verschiedene
Texte anhören (siehe Abbildung 12.6). Der erste Text gibt eine Rechenaufgabe
wieder, die Sie eingeben. Der zweite Text gibt einen Text aus, der einen Satz, eine
Uhrzeit und einzelne Buchstaben beinhaltet. Dem Projekt muss ein Verweis auf
die .NET-Komponente System.Speech hinzugefügt werden.

Abbildung 12.6 Ausgabe eines PromptBuilder-Objekts

Der XAML-Code:

<Window ...>
 <StackPanel>
 <WrapPanel HorizontalAlignment="Center" Margin="3">
 <TextBox x:Name="tb1" Width="40" Margin="3"
 TextChanged="kontrolle"></TextBox>
 <TextBlock VerticalAlignment="Center"
 Margin="3">+</TextBlock>
 <TextBox x:Name="tb2" Width="40" Margin="3"
 TextChanged="kontrolle"></TextBox>
 <TextBlock VerticalAlignment="Center"
 Margin="3">=</TextBlock>
 <TextBlock x:Name="tb3" Width="40"
 VerticalAlignment="Center" Margin="3"></TextBlock>
 </WrapPanel>
 <Button Width="80" Click="rechnen" Margin="3">
 Rechnen</Button>
 <Button Width="160" Click="text" Margin="3">
 Text, Buchstaben und Zeit</Button>

Audio und Video12

388

 </StackPanel>
</Window>

Eine Änderung in einer Textbox führt zur Methode kontrolle().

Es folgt die Fensterklasse, die hier in einzelne Stücke zerlegt wurde, um sie besser
erläutern zu können. Sie benötigt die Namespaces System.Speech.Synthesis und
System.IO.

public partial class MainWindow : Window
{
 SpeechSynthesizer syn;
 PromptBuilder pb;
 double tb1wert, tb2wert;

 public MainWindow()
 {
 InitializeComponent();
 syn = new SpeechSynthesizer();
 pb = new PromptBuilder();
 }

 private void rechnen(...)
 {
 pb.ClearContent();
 PromptStyle ps = new PromptStyle();
 ps.Rate = PromptRate.Slow;
 ps.Volume = PromptVolume.Loud;
 pb.StartStyle(ps);
 pb.AppendText(tb1wert + "+" + tb2wert + "=" + tb3.Text);
 pb.EndStyle();
 xml_ausgabe(pb);
 syn.Speak(pb);
 }
 ...

Die beiden double-Variablen tb1wert und tb2wert dienen zur Speicherung der
eingegebenen Zahlenwerte.

In der Methode rechnen() erwartet die Methode StartStyle() ein Objekt des
Typs PromptStyle für den Sprachstil. Sie können für diesen Stil unter anderem
Folgendes einstellen:

� Die Eigenschaft Rate vom Typ PromptRate für die Geschwindigkeit. Sie
bekommt Werte aus der gleichnamigen Enumeration, von ExtraFast bis
ExtraSlow.

Sprachausgabe 12.3

389

� Die Eigenschaft Volume vom Typ PromptVolume für die Lautstärke. Die Werte
aus der gleichnamigen Enumeration reichen von ExtraLoud bis ExtraSoft.

 private void text(...)
 {
 pb.ClearContent();
 pb.AppendText("Now it is");
 pb.AppendTextWithHint(DateTime.Now.ToShortTimeString(),
 SayAs.Time12);
 pb.AppendBreak(new TimeSpan(0, 0, 1));
 pb.AppendText("This is the Windows Presentation Foundation");
 pb.AppendBreak(new TimeSpan(0, 0, 0, 300));
 pb.AppendTextWithHint("WPF", SayAs.SpellOut);
 syn.Speak(pb);
 }
 ...

Der zweite Parameter der Methode AppendTextWithHint() ist ein Objekt des
Typs SayAs. Damit wird festgelegt, auf welche Weise der Text ausgegeben werden
soll. Mögliche Werte kommen aus der gleichnamigen Enumeration.

Die Methode AppendBreak() zum Einfügen einer Pause erwartet ein TimeSpan-
Objekt für eine Zeitspanne oder ein PromptBreak-Objekt. Die gleichnamige Enu-
meration bietet Werte von ExtraLarge bis ExtraSmall.

 private void xml_ausgabe(PromptBuilder pb)
 {
 FileStream fs = new FileStream("rechnen.xml",
 FileMode.Create);
 StreamWriter sw = new StreamWriter(fs);
 sw.Write(pb.ToXml());
 sw.Close();
 }
 ...

Die Methode ToXml() liefert ein SSML-Dokument in einer XML-Datei. Hier sehen
Sie ein Beispiel mit den oben genannten Werten für das PromptStyle-Objekt:

<?xml version="1.0"?>
<speak xml:lang="de-DE"
 xmlns="http://www.w3.org/2001/10/synthesis" version="1.0">
 <prosody volume="loud" rate="slow">
 23+38=61
 </prosody>
</speak>

Audio und Video12

390

Als Letztes folgt in der Fensterklasse die Methode kontrolle(). Darin findet eine
Kontrolle der eingegebenen Zahlen statt.

 private void kontrolle(object sender, TextChangedEventArgs e)
 {
 bool korrekt = true;
 if (!IsLoaded) return;
 if (tb1.Text == "" || tb2.Text == "")
 {
 tb3.Text = "";
 return;
 }

 try { tb1wert = Convert.ToDouble(tb1.Text); }
 catch { korrekt = false; }
 try { tb2wert = Convert.ToDouble(tb2.Text); }
 catch { korrekt = false; }

 if(korrekt)
 tb3.Text = (tb1wert + tb2wert).ToString();
 else
 tb3.Text = "Fehler";
 }
}

Eine Ausnahmebehandlung sorgt dafür, dass als Ergebnis »Fehler« erscheint,
sobald in einer Textbox keine gültige Zahl steht.

12.4 Spracheingabe

Die Klassen des Namespaces System.Speech.Recognition aus der .NET-Kompo-
nente System.Speech dienen dazu, gesprochene Worte zu verstehen. Diese Worte
können entweder als Text in die Anwendung geschrieben werden oder als Befehl
in der Anwendung ausgeführt werden. Am einfachsten klappt es mit der Sprach-
steuerung, wenn Sie eine Anwendung entwickeln, die mit wenigen, leicht unter-
scheidbaren Befehlen auskommt. Ein Beispiel dafür sehen Sie in Abschnitt
12.4.3, »Steuerung per Spracherkennung«.

Als Voraussetzung für alle Projekte, die mit der Spracherkennung arbeiten, müs-
sen Sie zuerst die Windows-Spracherkennung konfigurieren und das zugehörige
Lernprogramm für den PC durchlaufen. Jeder Mensch hat einen anderen Sprach-
stil. Der PC muss daran gewöhnt werden, die Worte zu erkennen, die Sie in Ihr
Mikro sprechen. Sie finden die Windows-Spracherkennung über Programme �

Zubehör � Erleichterte Bedienung.

Spracheingabe 12.4

391

12.4.1 Externe Spracherkennung

In diesem Abschnitt wird zunächst mit der Klasse SpeechRecognizer gearbeitet. Im
nachfolgenden Projekt AVRecognition wird eine Textbox in der WPF-Anwendung
angezeigt sowie extern die Windows-Spracherkennung (siehe Abbildung 12.7).

Sie müssen die Spracherkennung noch einschalten. Anschließend sprechen Sie in
das Mikro und sehen den entsprechenden Text in der Textbox. Die Qualität der
Erkennung richtet sich nach dem Erfolg im Lernprogramm. Dem Projekt muss
ein Verweis auf die .NET-Komponente System.Speech hinzugefügt werden.

Nach Beendigung der WPF-Anwendung müssen Sie die externe Windows-Sprach-
erkennung noch beenden. Ansonsten landet weiterer gesprochener Text eventu-
ell in einer anderen Anwendung.

Abbildung 12.7 WPF-Anwendung und die Windows-Spracherkennung

Der XAML-Code:

<Window ... Loaded="Window_Loaded">
 <TextBox x:Name="tb" TextWrapping="Wrap" Margin="3" />
</Window>

Die Textbox zur Anzeige des gesprochenen Textes arbeitet mit automatischem
Zeilenumbruch. Die nachfolgende Fensterklasse für die Anwendung benötigt den
Namespace System.Speech.Recognition.

public partial class MainWindow : Window
{
 SpeechRecognizer sr;
 public MainWindow() { InitializeComponent(); }

 private void Window_Loaded(...)
 {
 sr = new SpeechRecognizer();
 sr.LoadGrammar(new DictationGrammar());
 sr.SpeechRecognized += new
 EventHandler<SpeechRecognizedEventArgs>(sprache_erkannt);

Audio und Video12

392

 if (sr.State == RecognizerState.Stopped)
 MessageBox.Show("Spracherkennung einschalten");
 }

 void sprache_erkannt(object sender,
 SpeechRecognizedEventArgs e)
 {
 if (e.Result != null)
 tb.Text += e.Result.Text + " ";
 }
}

Nach dem Erzeugen eines neuen SpeechRecognizer-Objekts muss zunächst eine
Grammatik geladen werden. Dies geschieht mithilfe der Methode LoadGrammar().
Standard ist ein neues Objekt des Typs DictationGrammar. In Abschnitt 12.4.3,
»Steuerung per Spracherkennung«, sehen Sie, wie man eine eigene Grammatik ein-
richtet.

Ein Geräusch am Mikro löst das Ereignis SpeechRecognized aus. Für dieses Ereig-
nis wurde ein neuer EventHandler angelegt, der auf die Methode sprache_
erkannt() verweist. In dieser Methode wird untersucht, ob es sich bei dem
Geräusch um erkennbaren Text handelte. Diese Information bekommt man über
die Eigenschaft Result des Objekts SpeechRecognizedEventArgs. Sie ist vom Typ
RecognitionResult und liefert Informationen über das Gehörte. Falls es ein
Result gibt, so liefert die Untereigenschaft Text den gehörten Text. Dieser Text
wird in die Textbox geschrieben.

12.4.2 Interne Spracherkennung

Die Klasse SpeechRecognitionEngine bietet noch mehr Möglichkeiten. Die Win-
dows-Spracherkennung ist bereits integriert. Sie wird nicht extern angezeigt und
muss nicht separat ein- oder ausgeschaltet werden. Im nachfolgenden Projekt
AVEngine wird wiederum eine Textbox für den gesprochenen Text dargestellt
(siehe Abbildung 12.8). Voraussetzung ist natürlich nach wie vor, dass die Win-
dows-Spracherkennung im Vorfeld richtig konfiguriert wurde.

Abbildung 12.8 Hier wurde Sprache erkannt.

Spracheingabe 12.4

393

Der XAML-Code:

<Window ... Loaded="Window_Loaded" Unloaded="Window_Unloaded">
 <TextBox x:Name="tb" TextWrapping="Wrap" Margin="3" />
</Window>

Die Ereignisse Loaded und Unloaded führen zu Methoden, in denen unter ande-
rem die Windows-Spracherkennung ein- beziehungsweise wieder ausgeschaltet
wird, ohne dass es zu einer externen Anzeige kommt.

Dem Projekt muss ein Verweis auf die .NET-Komponente System.Speech hinzu-
gefügt werden. Die nachfolgende Fensterklasse für die Anwendung benötigt den
Namespace System.Speech.Recognition.

public partial class MainWindow : Window
{
 SpeechRecognitionEngine sre;
 public MainWindow() { InitializeComponent(); }

 private void Window_Loaded(...)
 {
 sre = new SpeechRecognitionEngine();
 sre.LoadGrammar(new DictationGrammar());
 sre.SetInputToDefaultAudioDevice();
 sre.RecognizeAsync(RecognizeMode.Multiple);
 sre.SpeechRecognized += new
 EventHandler<SpeechRecognizedEventArgs>(sprache_erkannt);
 }

 void sprache_erkannt(object sender,
 SpeechRecognizedEventArgs e)
 {
 if (e.Result != null)
 tb.Text += e.Result.Text + " ";
 }

 private void Window_Unloaded(...)
 { sre.RecognizeAsyncCancel(); }
}

Nach dem Erzeugen eines neuen SpeechRecognitionEngine-Objekts und dem
Laden der Grammatik wird das Standard-Audio-Eingabegerät auf die Engine
gesetzt. Dies geschieht mit der Methode SetInputToDefaultAudioDevice() des
Engine-Objekts.

Audio und Video12

394

Die Methode RecognizeAsync() des SpeechRecognitionEngine-Objekts startet
den Vorgang des Zuhörens. Der Modus Multiple der Enumeration RecognizeMode
legt dabei fest, dass der Vorgang nicht nach der ersten Erkennung wieder abge-
schaltet wird, wie dies beim Wert Single geschehen würde.

Wie vorher führt das Ereignis SpeechRecognized zum Erkennen und zur Ausgabe
eines Textes. Die Methode RecognizeAsyncCancel() beendet den Vorgang des
Zuhörens und schaltet die Spracherkennung am Ende des Projekts wieder aus.

12.4.3 Steuerung per Spracherkennung

Sie können für Ihre Anwendung eine eigene Grammatik mithilfe der Klasse
GrammarBuilder einführen. Dazu müssen Sie alle Befehle definieren, die erlaubt
sind, zusammen mit ihren jeweiligen Auswirkungen. Die wenigen möglichen
Worte können leichter voneinander unterschieden und damit besser erkannt
werden als die vielen möglichen Worte einer Standard-Grammatik.

Die Klasse GrammarBuilder basiert auf SRGS, der Speech Recognition Grammar
Specification (siehe http://www.w3.org/TR/speech-grammar).

Im nachfolgenden Projekt AVGrammar bewegen Sie ein graues Rechteck durch
Spracheingabe der Worte »oben«, »unten«, »rechts« und »links« über den Bild-
schirm (siehe Abbildung 12.9).

Abbildung 12.9 Sprache steuert ein Rechteck.

Der XAML-Code:

<Window ... Loaded="Window_Loaded" Unloaded="Window_Unloaded">
 <Canvas>
 <Rectangle x:Name="re" Canvas.Top="30" Canvas.Left="95"
 Width="80" Height="30" Fill="Gray" />
 </Canvas>
</Window>

Es wird wie im letzten Abschnitt mit einem SpeechRecognitionEngine-Objekt
gearbeitet. Die Ereignisse Loaded und Unloaded führen unter anderem zum Ein-
und Ausschalten der Windows-Spracherkennung.

Spracheingabe 12.4

395

Dem Projekt muss ein Verweis auf die .NET-Komponente System.Speech hinzu-
gefügt werden. Die nachfolgende Fensterklasse für die Anwendung benötigt die
beiden Namespaces System.Speech.Recognition und System.Speech.Recog-
nition.SrgsGrammar.

public partial class MainWindow : Window
{
 SpeechRecognitionEngine sre;
 public MainWindow() { InitializeComponent(); }
 private void Window_Loaded(...)
 {
 sre = new SpeechRecognitionEngine();
 GrammarBuilder gb = new GrammarBuilder(
 new Choices("oben", "unten", "rechts", "links"));
 sre.LoadGrammar(new Grammar(gb));
 sre.SetInputToDefaultAudioDevice();
 sre.RecognizeAsync(RecognizeMode.Multiple);
 sre.SpeechRecognized += new
 EventHandler<SpeechRecognizedEventArgs>(sprache_erkannt);
 }

 void sprache_erkannt(object sender,
 SpeechRecognizedEventArgs e)
 {
 if (e.Result != null)
 {
 double left = (double)re.GetValue(Canvas.LeftProperty);
 double top = (double)re.GetValue(Canvas.TopProperty);
 switch (e.Result.Text)
 {
 case "oben":
 re.SetValue(Canvas.TopProperty, top - 20); break;
 case "unten":
 re.SetValue(Canvas.TopProperty, top + 20); break;
 case "links":
 re.SetValue(Canvas.LeftProperty, left - 20); break;
 case "rechts":
 re.SetValue(Canvas.LeftProperty, left + 20); break;
 }
 }
 }

 private void Window_Unloaded(...)
 { sre.RecognizeAsyncCancel(); }
}

Audio und Video12

396

Ein neues GrammarBuilder-Objekt kann unter anderem mithilfe eines neuen
Choices-Objekts erzeugt werden. Dieses enthält ein Params-Feld vom Typ Zei-
chenkette mit den erlaubten Worten. Das neu erzeugte GrammarBuilder-Objekt
kann anschließend mithilfe der Methode LoadGrammar() als Grammatik für die
SpeechRecognitionEngine geladen werden.

Nach dem Spracherkennungsereignis wird festgestellt, ob es sich um eines der
erlaubten Worte handelt. Daraufhin kommt es zu den entsprechenden Auswir-
kungen, also zur Änderung der Eigenschaft Canvas.Left beziehungsweise Canvas
.Top des Rechtecks.

397

Dokumente können mithilfe der WPF dynamisch wie Internetseiten und
exakt wie Druckseiten gestaltet werden. Ein Ausdruck kann vorbereitet
und ausgeführt werden.

13 Dokumente und Drucken

Dokumente beinhalten Text, Bilder, Tabellen, Listen und weitere Elemente. Es
gibt zwei Arten von Dokumenten in der WPF:

� Ein FlowDocument ist dynamisch, d.h., seine Inhalte werden der aktuellen
äußeren Form angepasst. Man kann es mit einer Internetseite vergleichen,
deren Aussehen sich nach dem benutzten Bildschirm und der aktuellen Auf-
lösung richtet.

� Ein FixedDocument ist statisch, d.h., seine Inhalte sind fest positioniert. Es eig-
net sich besonders für eine Druckausgabe.

Die Klasse PrintDialog wird zur Vorbereitung und Durchführung eines Druck-
vorgangs verwendet.

13.1 FlowDocument

Ein FlowDocument-Objekt wird innerhalb eines Steuerelements angezeigt. In die-
sem Abschnitt werden dazu vier Möglichkeiten vorgestellt. Davon dienen die ers-
ten drei nur zur Anzeige, während das letzte Element zum Ändern dient:

� FlowDocumentReader: Dieses Element ist sehr vielseitig. Es bietet mehrere
Anzeigemodi: den Seitenmodus, den Zwei-Seiten-Modus und den Scrollmo-
dus. Man kann zwischen den Modi umschalten, den Inhalt zoomen und im
Inhalt suchen.

� FlowDocumentScrollViewer: Bietet nur den Scrollmodus.

� FlowDocumentPageViewer: Bietet nur den Seitenmodus und das Zoomen des
Inhalts.

� RichTextBox: Dieses Element bietet die Möglichkeit, den Inhalt des
FlowDocument zu verändern, zu formatieren, zu ergänzen oder zu löschen.

Dokumente und Drucken13

398

Der Inhalt eines FlowDocument steht in der Auflistung Blocks vom Typ
BlockCollection. Ein einzelnes Element dieser Auflistung ist vom Typ Block.
Dies ist die abstrakte Basisklasse für die folgenden Klassen:

� Paragraph: Dient zum Erzeugen eines Absatzes, ähnlich wie in MS Word.

� Section: Entspricht einem Abschnitt, dient zum Gruppieren von Absätzen.

� List: Generiert Aufzählungen oder Listen mit oder ohne Nummerierung. Lis-
tenelemente können wiederum Paragraph-Objekte sein.

� Table: Dient zum Erzeugen einer Tabelle. Innerhalb einer Tabellenzelle kön-
nen wiederum Paragraph-Objekte stehen.

� BlockUIContainer: Beinhaltet Steuerelemente.

Der Inhalt eines Paragraph-Objekts steht in der Auflistung Inlines vom Typ
InlineCollection. Ein einzelnes Element dieser Auflistung ist vom Typ Inline.
Dies ist ebenfalls eine abstrakte Basisklasse. Mehr dazu folgt in Abschnitt 13.1.7,
»Inlines«.

13.1.1 FlowDocumentReader

Im nachfolgenden Projekt FlowParagraph wird ein FlowDocument in einem
FlowDocumentReader dargestellt. Das Dokument besteht aus einzelnen Absätzen
(Paragraph-Objekten), von denen Sie zwei in Abbildung 13.1 sehen.

Abbildung 13.1 FlowDocumentReader im Scrollmodus

Der XAML-Code:

<Window ...>
 <FlowDocumentReader ViewingMode="Scroll">
 <FlowDocument ...>
 <Paragraph ...> ... </Paragraph>

FlowDocument 13.1

399

 <Paragraph ...> ... </Paragraph>
 <Paragraph ...> ... </Paragraph>
 </FlowDocument>
 </FlowDocumentReader>
</Window>

Ein FlowDocumentReader kann zwischen drei verschiedenen Darstellungsmodi
umgeschaltet werden. Das geschieht mithilfe der eingeblendeten Bedienungsele-
mente (siehe Abbildung 13.1) oder mithilfe der Eigenschaft ViewingMode. Die
Werte kommen aus der Enumeration FlowDocumentReaderViewingMode:

� Page: Seitenmodus; Sie sehen eine Seite und können um eine Seite weiterblät-
tern. Dies ist der Standard (siehe Abbildung 13.2).

� TwoPage: Zwei-Seiten-Modus; Sie sehen zwei Seiten wie in einem Buch und
können um zwei Seiten weiterblättern (siehe Abbildung 13.3).

� Scroll: Scrollmodus; Sie sehen den Text fortlaufend und können scrollen.

Abbildung 13.2 FlowDocumentReader im Seitenmodus

Abbildung 13.3 FlowDocumentReader im Zwei-Seiten-Modus

Dokumente und Drucken13

400

Sie können die booleschen Eigenschaften IsPageViewEnabled, IsTwoPageView-
Enabled, IsScrollViewEnabled des Readers auf False schalten, um einzelne Modi
zu unterbinden.

Zusätzlich können Sie den Dokumentinhalt zoomen. Die double-Eigenschaft Zoom
steht standardmäßig auf 100 (für 100 %). Der Wert verändert sich nach Betäti-
gung des Plus- oder Minuszeichens unten rechts standardmäßig um 10 %. Dieser
Änderungswert kann mithilfe der double-Eigenschaft ZoomIncrement eingestellt
werden. Die Grenzen werden über die double-Eigenschaften MinZoom und
MaxZoom eingestellt. Der Standard ist 80 beziehungsweise 200. Je nach Größe des
Fensters sehen Sie auch einen Zoom-Slider.

Nach Betätigung der Lupe unten links sehen Sie ein Feld zur Eingabe eines Such-
begriffs.

13.1.2 Block-Typ Absatz

Ein Absatz entspricht einem Block-Objekt vom Typ Paragraph. Er kann ähnlich
wie in MS Word formatiert werden. Im bereits vorgestellten Projekt FlowPara-
graph stehen drei formatierte Absätze. Nach Betätigung der Taste (N) wird ein
neuer Absatz hinzugefügt. Die Betätigung der Taste (A) ergänzt den zweiten
Absatz um weiteren Text.

Zunächst der XAML-Code:

<Window ... KeyDown="Window_KeyDown">
 <FlowDocumentReader ViewingMode="Scroll">
 <FlowDocument x:Name="fd" FontSize="12">
 <Paragraph TextAlignment="Center" FontSize="14pt">
 Berlin
 </Paragraph>
 <Paragraph FontFamily="Arial" Background="LightGray">
 Berlin ist mit 3,4 Millionen Einwohnern die ...
 </Paragraph>
 <Paragraph BorderBrush="Black" BorderThickness="1"
 FontFamily="Tahoma" TextIndent="40" Padding="5">
 Berlin ist in zwölf Bezirke unterteilt. Im ...
 </Paragraph>
 </FlowDocument>
 </FlowDocumentReader>
</Window>

Im FlowDocument-Objekt können Sie zentrale Formatierungen vornehmen, die
für das gesamte Dokument gelten. Sie können sie in den Unterelementen ergän-
zen beziehungsweise überschreiben, wie in Styles oder bei CSS.

FlowDocument 13.1

401

In diesem Dokument gilt die zentrale Schriftgröße 12 wegen des Werts für die
Eigenschaft FontSize der Klasse FlowDocument. Werte können als einfache
double-Zahl oder als qualified double angegeben werden. Ein qualified double hat
einen der folgenden Einheitenbezeichner:

� px: Dies ist der Standardwert. Er steht für geräteunabhängige Pixel.

� in: steht für Inch, also Zoll. 1 Zoll entspricht 96 px.

� cm: steht für Zentimeter. 1 cm entspricht 96/2,54 px.

� pt: steht für Punkt. 1 pt entspricht 96/72 px.

Der erste Absatz wird mithilfe des Werts Center für die Eigenschaft Text-
Alignment der Klasse Block zentriert dargestellt. Weitere Werte aus der gleichna-
migen Enumeration sind Left (Standard), Right und Justify.

Die Schriftart wird über die Eigenschaft FontFamily der Klasse TextElement ange-
geben. Die Eigenschaft TextIndent der Klasse Paragraph legt den Erstzeilenein-
zug eines Absatzes fest. Die Werte dazu können als einfache double-Zahl oder als
qualified double notiert werden.

Die boolesche Eigenschaft KeepTogether der Klasse Paragraph sorgt im (Zwei-)
Seiten-Modus dafür, dass ein Absatz in einem Stück dargestellt wird, falls dies
vom Platz her möglich ist. Dies kann einen Seitenumbruch vor dem Absatz
bewirken. Etwas Ähnliches bewirkt die boolesche Eigenschaft KeepWithNext der
Klasse Paragraph für den aktuellen Absatz und seinen Nachfolger.

Die Ereignismethode sieht so aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
 if (e.Key == Key.N)
 fd.Blocks.Add(new Paragraph(new Run("Neuer Absatz")));
 else if (e.Key == Key.A)
 {
 Paragraph p = fd.Blocks.ElementAt(1) as Paragraph;
 p.Inlines.Add(new Run(" neu"));
 }
}

Die Elemente der obersten Ebene eines FlowDocument stehen in der Auflistung
Blocks vom Typ BlockCollection.

Einen neuen Absatz fügen Sie wie folgt hinzu: Ein neues Block-Objekt fügen Sie
mit der Methode Add() hinzu. Das Block-Objekt ist hier vom Typ Paragraph. Ein
neues Paragraph-Objekt können Sie direkt mit einem neuen Inline-Objekt erzeu-
gen. Das Inline-Objekt ist hier vom Typ Run, was für unformatierten Lauftext sorgt.

Dokumente und Drucken13

402

Einen vorhandenen Absatz ändern Sie so: Die Methode ElementAt() liefert einen
Verweis auf ein Element der Auflistung Blocks. Die Elemente innerhalb eines
Paragraph-Objekts stehen in der Auflistung Inlines vom Typ InlineCollection.
Ein neues Inline-Objekt fügen Sie ebenso mit der Methode Add() hinzu.

Einen Verweis auf den ersten beziehungsweise letzten Block eines FlowDocument
bekommen Sie auch über zwei besondere Eigenschaften: fd.Blocks.FirstBlock
und fd.Blocks.LastBlock.

13.1.3 Block-Typ Abschnitt

Ein Abschnitt steht in einem Block-Objekt vom Typ Section. Sie nutzen
Abschnitte zum Gruppieren von Blöcken innerhalb eines Dokuments. Ein
Abschnitt enthält wiederum Block-Elemente. Sie können Formatierungen vor-
nehmen, die für den gesamten Abschnitt gelten.

Im nachfolgenden Projekt FlowSection besteht das FlowDocument aus einem
Absatz und einem Abschnitt, der zwei Absätze beinhaltet. Vor dem Abschnitt
wurde ein Seitenumbruch eingeführt. Außerdem gilt im Abschnitt eine gemein-
same Schriftart (siehe Abbildung 13.4).

Nach Betätigung der Taste (N) wird ein neuer Abschnitt hinzugefügt, mit einem
Seitenumbruch davor. Die Betätigung der Taste (A) ergänzt den vorhandenen
Abschnitt um einen weiteren Absatz.

Abbildung 13.4 Inhalt des zweiten Abschnitts

Der XAML-Code:

<Window ... KeyDown="Window_KeyDown">
 <FlowDocumentReader>
 <FlowDocument x:Name="fd">
 <Paragraph>Abschnitt 1 von 2, Absatz 1 von 1</Paragraph>
 <Section BreakPageBefore="True" FontFamily="Arial">
 <Paragraph>Abschnitt 2 von 2, Absatz 1 von 2, mit

FlowDocument 13.1

403

 Seitenumbruch vor dem Abschnitt</Paragraph>
 <Paragraph>Abschnitt 2 von 2, Absatz 2 von 2</Paragraph>
 </Section>
 </FlowDocument>
 </FlowDocumentReader>
</Window>

Die Schriftart wird über die Eigenschaft FontFamily der Klasse TextElement ange-
geben. Die boolesche Eigenschaft BreakPageBefore der Klasse Block regelt den
Seitenumbruch.

Es folgt die Ereignismethode:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
 if (e.Key == Key.N)
 {
 Section s = new Section(new Paragraph(
 new Run("Neuer Abschnitt")));
 s.BreakPageBefore = true;
 fd.Blocks.Add(s);
 }
 else if (e.Key == Key.A)
 {
 Section s = fd.Blocks.ElementAt(1) as Section;
 s.Blocks.Add(new Paragraph(
 new Run("Abschnitt, neuer Absatz")));
 }
}

Einen neuen Abschnitts fügen Sie hier wie folgt hinzu: Erzeugen Sie ein neues
Section-Objekt, direkt mit einem neuen Block-Objekt. Das Block-Objekt ist hier
vom Typ Paragraph. Stellen Sie die Eigenschaft BreakPageBefore ein. Anschlie-
ßend fügen Sie das Section-Objekt der Auflistung Blocks des FlowDocument hinzu.

Einen vorhandenen Abschnitt ändern Sie hier wie folgt: Erzeugen Sie zunächst
einen Verweis auf das Section-Objekt. Anschließend fügen Sie ein neues
Paragraph-Objekt der Auflistung Blocks des Section-Objekts hinzu.

13.1.4 Block-Typ Liste

Aufzählungen oder Listen stehen in Block-Objekten vom Typ List. Listen kön-
nen sowohl nummeriert als auch nicht nummeriert sein. Einträge in einer Liste
beinhalten wiederum Block-Elemente. Dies können Absätze, aber auch unterge-
ordnete Listen sein.

Dokumente und Drucken13

404

Im nachfolgenden Projekt FlowList wird eine nummerierte Liste dargestellt. Der
erste Eintrag beinhaltet nur einen Absatz. Der zweite Eintrag beinhaltet einen
Absatz und eine untergeordnete, nicht nummerierte Liste (siehe Abbildung 13.5).

Abbildung 13.5 Liste mit untergeordneter Liste

Nach Betätigung der Taste (N) wird eine neue Liste hinzugefügt, die zwei Einträge
aufweist. Die Betätigung der Taste (A) ändert einen Eintrag in der vorhandenen
Liste auf oberster Ebene und einen Eintrag in der untergeordneten Liste.

Der XAML-Code:

<Window ... KeyDown="Window_KeyDown">
 <FlowDocumentReader ViewingMode="Scroll">
 <FlowDocument x:Name="fd">
 <Paragraph>Länder:</Paragraph>
 <List MarkerStyle="Decimal" StartIndex="3">
 <ListItem>
 <Paragraph>Frankreich</Paragraph>
 </ListItem>
 <ListItem>
 <Paragraph>Italien</Paragraph>
 <List Margin="0" MarkerOffset="2">
 <ListItem>
 <Paragraph>Rom</Paragraph>
 </ListItem>
 <ListItem>
 <Paragraph>Turin</Paragraph>
 </ListItem>
 </List>
 </ListItem>
 </List>
 </FlowDocument>
 </FlowDocumentReader>
</Window>

FlowDocument 13.1

405

Die Nummerierung der Liste wird mit dem Wert Decimal für die Eigenschaft
MarkerStyle der Klasse List erzeugt. Die Einträge können mit folgenden weite-
ren Werten aus der Enumeration TextMarkerStyle markiert werden:

� None: keine Markierung

� Circle, Disc: Kreis, leer oder ausgefüllt (Standard)

� Square, Box: Quadrat, leer oder ausgefüllt

� LowerRoman, UpperRoman: römische Zahl, klein oder groß

� LowerLatin, UpperLatin: Buchstabe, klein oder groß

Die Integer-Eigenschaft StartIndex der Klasse List bestimmt den Anfangswert
einer nummerierten Liste. Der Standardwert ist 1 beziehungsweise i, I, a oder A.
Innerhalb eines List-Objekts gibt es eine ListItemCollection. Darin stehen
ListItem-Objekte. Ein ListItem-Objekt kann ein Block-Objekt enthalten, zum
Beispiel ein Paragraph-Objekt.

Sie können den vertikalen Abstand einer untergeordneten Liste mit der Eigen-
schaft Margin beeinflussen. Die Eigenschaft MarkerOffset der Klasse List
bestimmt den horizontalen Abstand zwischen Eintrag und Markierung. Die
Werte dazu können als einfache double-Zahl oder als qualified double notiert
werden. Außerdem ist der Wert Auto möglich. Dann ist der Abstand von der
Schriftart abhängig.

Es folgt die Ereignismethode:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
 if (e.Key == Key.N)
 {
 ListItem li1 = new ListItem(
 new Paragraph(new Run("Eintrag 1")));
 ListItem li2 = new ListItem(
 new Paragraph(new Run("Eintrag 2")));
 List l = new List();
 l.ListItems.Add(li1);
 l.ListItems.Add(li2);

 fd.Blocks.Add(new Paragraph(new Run("Neue Liste:")));
 fd.Blocks.Add(l);
 }
 else if (e.Key == Key.A)
 {
 List l = fd.Blocks.ElementAt(1) as List;

Dokumente und Drucken13

406

 ListItem li1 = l.ListItems.ElementAt(0);
 li1.Blocks.Clear();
 li1.Blocks.Add(new Paragraph(new Run("Spanien")));

 ListItem li2 = l.ListItems.ElementAt(1);
 List lu = li2.Blocks.ElementAt(1) as List;
 lu.MarkerOffset = 10;
 lu.MarkerStyle = TextMarkerStyle.LowerLatin;
 lu.StartIndex = 2;

 ListItem li3 = lu.ListItems.ElementAt(0);
 li3.Blocks.Clear();
 li3.Blocks.Add(new Paragraph(new Run("Mailand")));
 }
}

Eine neue Liste fügen Sie hier wie folgt hinzu: Erzeugen Sie zwei neue ListItem-
Objekte, jeweils direkt mit einem neuen Paragraph-Objekt als Eintrag. Dann
erzeugen Sie ein neues List-Objekt. Zu dessen Auflistung ListItems fügen Sie
die beiden neuen ListItem-Objekte hinzu. Anschließend fügen Sie einen neuen
Absatz als Listenüberschrift und die neue Liste selbst zur Auflistung Blocks des
FlowDocument hinzu.

Eine vorhandene Liste ändern Sie auf Ebene 1 hier wie folgt: Legen Sie einen Ver-
weis auf das vorhandene List-Objekt an. Legen Sie anschließend einen Verweis
auf das erste ListItem-Objekt dieser Liste an. Löschen Sie dessen Inhalt, und
ersetzen Sie ihn durch einen neuen Absatz (siehe Abbildung 13.6).

Eine vorhandene Liste ändern Sie hier auf Ebene 2 wie folgt: Legen Sie einen Ver-
weis auf das zweite ListItem-Objekt der Liste an. Legen Sie anschließend einen
Verweis auf die Unterliste an, der den zweiten Block dieses zweiten ListItem-
Objekts bildet. Bei dieser Unterliste ändern Sie die Art, die Nummer und den
Abstand der Markierung. Es folgt ein Verweis auf das erste ListItem-Objekt die-
ser Unterliste. Löschen Sie dessen Inhalt, und ersetzen Sie ihn durch einen neuen
Absatz (siehe Abbildung 13.6).

Abbildung 13.6 Änderungen auf zwei Listenebenen

FlowDocument 13.1

407

13.1.5 Block-Typ Tabelle

Tabellen können Sie mit Block-Objekten vom Typ Table anlegen. Das Layout der
Spalten wird durch die Auflistung Columns vom Typ TableColumnCollection fest-
gelegt. In der Auflistung stehen einzelne TableColumn-Objekte. Der Inhalt einer
Tabelle ist hierarchisch aufgebaut:

� Die Tabellenzeilen sind in Gruppen zusammengefasst. Die Gruppen stehen in
der Auflistung RowGroups vom Typ TableRowGroupCollection. Die Auflistung
beinhaltet einzelne TableRowGroup-Objekte.

� Innerhalb einer Gruppe gibt es die Auflistung Rows vom Typ TableRowCol-
lection. In der Auflistung bezeichnet ein TableRow-Objekt eine einzelne
Tabellenzeile.

� Innerhalb einer Tabellenzeile steht die Auflistung Cells vom Typ TableCellCol-
lection. In der Auflistung ist ein TableCell-Objekt eine einzelne Zelle.

� Eine Zelle beinhaltet Blöcke in der Auflistung Blocks. Dies können Absätze,
aber auch untergeordnete Tabellen sein.

Im nachfolgenden Projekt FlowTable wird eine Tabelle mit drei Zeilen und zwei
Spalten dargestellt. Die beiden Zellen der obersten Zeile sind als Überschrift
zusammengefasst (siehe Abbildung 13.7).

Abbildung 13.7 Table, TableRowGroup, TableRow und TableCell

Nach Betätigung der Taste (N) wird eine neue Tabelle hinzugefügt. Sie enthält
einen Teil des kleinen Einmaleins (acht Zeilen, zehn Spalten). Die Betätigung der
Taste (A) ändert einen Eintrag in einer Zelle der vorhandenen Tabelle.

Der XAML-Code:

<Window ... KeyDown="Window_KeyDown">
 <FlowDocumentReader>
 <FlowDocument x:Name="fd">
 <Table BorderBrush="Black" BorderThickness="1" Padding="5">

Dokumente und Drucken13

408

 <Table.Columns>
 <TableColumn Width="2*" />
 <TableColumn Width="1*" />
 </Table.Columns>

 <TableRowGroup>
 <TableRow>
 <TableCell ColumnSpan="2" BorderBrush="Black"
 BorderThickness="1">
 <Paragraph TextAlignment="Center">
 Länder</Paragraph>
 </TableCell>
 </TableRow>

 <TableRow>
 <TableCell>
 <Paragraph>Frankreich</Paragraph>
 </TableCell>
 <TableCell>
 <Paragraph>Paris</Paragraph>
 </TableCell>
 </TableRow>
 <TableRow> ... </TableRow>

 </TableRowGroup>
 </Table>
 </FlowDocument>
 </FlowDocumentReader>
</Window>

Auf der Ebene der Tabelle oder einer Zelle können Sie unter anderem Rahmen
oder Innenabstände festlegen.

Die ganzzahlige Eigenschaft ColumnSpan einer Zelle legt fest, wie viele Spalten
diese Zelle überspannen soll. Entsprechend gibt es auch RowSpan für die Anzahl
der Zeilen, die diese Zelle überspannen soll.

Die Breite einer Spalte können Sie über die Eigenschaft Width vom Typ
GridLength wählen. Die Werte dazu können als einfache double-Zahl oder als
qualified double oder mithilfe der Enumeration GridUnitType notiert werden.
Diese bietet die Werte Auto, Pixel oder Star (Stern). Bei Auto bestimmen die Zell-
inhalte die Breite. Star wird zur Erstellung von Größenverhältnissen genutzt –
wie in der vorliegenden Tabelle: Die erste Spalte hat die doppelte Breite der zwei-
ten Spalte.

FlowDocument 13.1

409

Die Ereignismethode sieht so aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
 if (e.Key == Key.N)
 {
 Table t = new Table();
 t.FontSize = 9;
 t.FontFamily = new FontFamily("Arial");

 for(int s = 1; s <= 10; s++)
 {
 TableColumn tco = new TableColumn();
 tco.Width = new GridLength(1, GridUnitType.Star);
 t.Columns.Add(tco);
 }

 TableRowGroup trg = new TableRowGroup();
 t.RowGroups.Add(trg);

 for (int z = 1; z <= 8; z++)
 {
 TableRow trow = new TableRow();
 for (int s = 1; s <= 10; s++)
 trow.Cells.Add(new TableCell(
 new Paragraph(new Run("" + z * s))));
 trg.Rows.Add(trow);
 }
 fd.Blocks.Add(t);
 }
 else if (e.Key == Key.A)
 {
 Table t = fd.Blocks.ElementAt(0) as Table;
 TableCell tce = t.RowGroups[0].Rows[2].Cells[1];
 tce.Blocks.Clear();
 tce.Blocks.Add(new Paragraph(new Run("Mailand")));
 }
}

Eine neue Tabelle fügen Sie hier wie folgt hinzu: Legen Sie ein neues Table-
Objekt an. Die Inhalte sollen in Arial 9 geschrieben werden. Anschließend erzeu-
gen Sie zehn neue TableColumn-Objekte, alle mit gleicher Spaltenbreite. Dann
legen Sie ein neues TableRowGroup-Objekt an und fügen es der Tabelle hinzu.
Erzeugen Sie acht neue TableRow-Objekte mit jeweils zehn TableCell-Objekten,

Dokumente und Drucken13

410

und fügen Sie sie dem TableRowGroup-Objekt hinzu. In jeder Zelle steht das Pro-
dukt aus Zeilen- und Spaltennummer, beginnend bei 1 mal 1. Fügen Sie die neue
Tabelle der Auflistung Blocks des FlowDocument hinzu (siehe Abbildung 13.8).

Eine vorhandene Tabelle ändern Sie hier wie folgt: Legen Sie einen Verweis auf
das vorhandene Table-Objekt an. Anschließend erzeugen Sie einen Verweis auf
die zweite Zelle der dritten Zeile der ersten Zeilengruppe dieser Tabelle. Deren
Inhalt löschen Sie mithilfe der Methode Clear() der Klasse Blocks und ersetzen
ihn durch einen neuen Absatz.

Abbildung 13.8 Die neu hinzugefügte Tabelle

13.1.6 Block-Typ Steuerelement-Container

Ein FlowDocument kann auch Steuerelemente enthalten. Diese werden in einem
Block-Objekt vom Typ BlockUIContainer angeordnet. Die Eigenschaft Child vom
Typ UIElement enthält das Steuerelement. Dies kann auch ein Container-Element
sein.

Im nachfolgenden Projekt FlowBlockUI werden innerhalb eines Dokuments ein
Absatz und ein WrapPanel mit zwei RadioButtons dargestellt (siehe Abbildung
13.9).

Abbildung 13.9 Steuerelemente im BlockUIContainer-Objekt

Nach Betätigung der Taste (N) wird ein weiterer BlockUIContainer mit einem
Button hinzugefügt. Die Betätigung der Taste (A) ändert die Aufschrift des zwei-
ten RadioButtons im vorhandenen BlockUIContainer.

FlowDocument 13.1

411

Der XAML-Code:

<Window ... KeyDown="Window_KeyDown">
 <FlowDocumentReader>
 <FlowDocument x:Name="fd">
 <Paragraph>Absatz mit Text</Paragraph>
 <BlockUIContainer>
 <WrapPanel RadioButton.Checked="rb_Checked">
 <RadioButton IsChecked="True" Margin="3">
 RB 1</RadioButton>
 <RadioButton Margin="3">RB 2</RadioButton>
 </WrapPanel>
 </BlockUIContainer>
 </FlowDocument>
 </FlowDocumentReader>
</Window>

Der BlockUIContainer enthält als einzig mögliches Kind-Element ein WrapPanel.
Dieses kann natürlich mehrere Elemente beinhalten. Das Checked-Ereignis der
RadioButtons wird an das WrapPanel weitergeleitet.

Die Ereignismethoden sehen so aus:

private void rb_Checked(object sender, RoutedEventArgs e)
{
 if (IsLoaded) MessageBox.Show(
 (e.Source as RadioButton).Content.ToString());
}

Es wird die Aufschrift des auslösenden RadioButtons ausgegeben.

private void Window_KeyDown(object sender, KeyEventArgs e)
{

 if (e.Key == Key.N)
 {
 Button b = new Button();

 b.Content = "Button";
 b.Click += new RoutedEventHandler(b_Click);
 BlockUIContainer bc = new BlockUIContainer(b);

 fd.Blocks.Add(bc);
 }
 else if (e.Key == Key.A)

 {
 BlockUIContainer bc =
 fd.Blocks.ElementAt(1) as BlockUIContainer;

 WrapPanel wp = bc.Child as WrapPanel;

Dokumente und Drucken13

412

 (wp.Children[1] as RadioButton).Content = "Radio 2";
 }
}

private void b_Click(object sender, RoutedEventArgs e)
{ MessageBox.Show("Button"); }

Einen neuen BlockUIContainer fügen Sie hier wie folgt hinzu: Erzeugen Sie
einen neuen Button mit einer Aufschrift und einem Click-Ereignishandler.
Erzeugen Sie anschließend ein neues BlockUIContainer-Objekt, direkt mit dem
Verweis auf den Button als Child-Eigenschaft. Fügen Sie das neue BlockUICon-
tainer-Objekt zur Auflistung Blocks des FlowDocument hinzu (siehe Abbildung
13.10).

Einen vorhandenen BlockUIContainer ändern Sie hier wie folgt: Legen Sie einen
Verweis auf das vorhandene BlockUIContainer-Objekt an. Erzeugen Sie anschlie-
ßend einen Verweis auf das WrapPanel, das den Wert der Eigenschaft Child des
BlockUIContainer-Objekts darstellt. Ändern Sie die Aufschrift des zweiten unter-
geordneten Elements des WrapPanel (siehe Abbildung 13.10).

Abbildung 13.10 Neuer und geänderter BlockUIContainer

13.1.7 Inlines

Ein Absatz (Klasse Paragraph) beinhaltet die Eigenschaft Inlines vom Typ
InlineCollection. Aus den Elementen dieser Auflistung besteht der formatierte
Text eines Absatzes. Ein einzelnes Element muss von einem Typ sein, der von der
abstrakten Klasse Inline abgeleitet ist. Ein Steuerelement vom Typ TextBlock
(siehe Abschnitt 4.3.2) besteht ebenfalls aus Inlines.

Die verschiedenen abgeleiteten Inline-Typen bieten unterschiedliche Möglich-
keiten zur Formatierung. Viele Inline-Typen haben wiederum die Eigenschaft
Inlines. Es kann also Inline-Objekte auf verschiedenen Ebenen geben. Damit ist
es möglich, Formatierungen zu verschachteln. Auf der untersten Ebene steht der
einfachste Inline-Typ: die Klasse Run. Die Eigenschaft Text eines Run-Objekts
beinhaltet den Text.

FlowDocument 13.1

413

Es gibt unter anderem folgende Inline-Typen:

� Run: Enthält fortlaufenden Text, mit oder ohne Formatierung; enthält aber
keine weiteren Inlines.

� Span: Enthält fortlaufenden Text, mit oder ohne Formatierung; dient zur Grup-
pierung.

� Bold: Enthält fortlaufenden, fetten Text, mit oder ohne weitere Formatierung.

� Italic: Enthält fortlaufenden, kursiven Text, mit oder ohne weitere Formatie-
rung.

� Underline: Enthält fortlaufenden, unterstrichenen Text, mit oder ohne wei-
tere Formatierung.

� LineBreak: Führt zu einem Zeilenumbruch.

� InlineUIContainer: Enthält ein Steuerelement, das im fortlaufenden Text ein-
gebettet wird. Dies kann auch ein Container-Element sein, wie zum Beispiel
ein WrapPanel.

� Hyperlink: Enthält einen Hyperlink zu einem internen oder externen Ziel
(siehe Abschnitt 6.4, »Navigation mit Seiten«).

� Figure: Enthält ein Bild oder einen Absatz und kann innerhalb eines Absatzes
fest positioniert werden (siehe Abschnitt 13.1.8, »Inline-Typ Figure«).

Im nachfolgenden Projekt FlowInline werden viele der genannten Inline-Typen
dargestellt (siehe Abbildung 13.11).

Abbildung 13.11 Verschiedene Inline-Typen

Nach Betätigung der Taste (N) werden weitere Inline-Objekte hinzugefügt. Die
Betätigung der Taste (A) ändert den Inhalt eines vorhandenen Inline-Objekts auf
der dritten Ebene und den Inhalt eines Steuerelements innerhalb eines vorhande-
nen InlineUIContainer (siehe Abbildung 13.12).

Dokumente und Drucken13

414

Abbildung 13.12 Zwei Inlines geändert

Nach Betätigung der Taste (S) wird zur besseren Übersicht eine Liste der Inline-
Objekte des vorhandenen Absatzes ausgegeben – mit laufender Nummer, Typ
und Text (siehe Abbildung 13.13).

Der XAML-Code:

<Window ... KeyDown="Window_KeyDown">
 <FlowDocumentReader>
 <FlowDocument x:Name="fd">
 <Paragraph>
 normal
 <Bold>fett</Bold>
 <Italic>kursiv</Italic>
 <Underline>unterstrichen</Underline>
 <LineBreak />
 <Bold><Underline><Italic>
 fett, kursiv, unterstrichen</Italic></Underline></Bold>
 <LineBreak />
 <Run Background="Black" FontFamily="Tahoma" FontSize="12"
 Foreground="White" TextDecorations="Strikethrough">
 Es folgt eine Formel:</Run>
 y<Span BaselineAlignment="Subscript"
 FontSize="12">0
 = x<Span BaselineAlignment="Superscript"
 FontSize="12">2
 <LineBreak />
 Ein Satz mit
 <InlineUIContainer>
 <Button Height="16" FontSize="11" Click="b_Click">
 Button</Button>
 </InlineUIContainer>
 im Text
 </Paragraph>
 </FlowDocument>

FlowDocument 13.1

415

 </FlowDocumentReader>
</Window>

Nach einem unformatierten Text folgen nacheinander ein fetter Text (Bold-
Objekt), ein kursiver Text (Italic-Objekt) und ein unterstrichener Text
(Underline-Objekt). Nach dem ersten Zeilenumbruch folgt ein Text, der gleichzei-
tig fett, kursiv und unterstrichen ist. Es handelt sich dabei um Inline-Objekte auf
verschiedenen Ebenen.

Nach dem nächsten Zeilenumbruch folgt ein Run mit geänderter Vorder- und Hin-
tergrundfarbe, Schriftart und -größe. Die Auflistung TextDecorations kann ver-
schiedene Möglichkeiten der Schriftverzierung enthalten, wie zum Beispiel
durchgestrichenen Text, überstrichenen Text, Unter- und Überstreichungsarten,
Animationen und so weiter.

Anschließend wird in zwei Spans die Eigenschaft BaselineAlignment vorgestellt.
Sie dient zur Einstellung der vertikalen Schriftposition. Die Werte kommen aus
der gleichnamigen Enumeration. Der Wert Subscript (tiefgestellt) kann für einen
mathematischen Index genutzt werden, der Wert Superscript (hochgestellt) für
einen mathematischen Exponenten.

Nach dem letzten Zeilenumbruch steht ein Satz, der ein bedienbares Steuerele-
ment innerhalb eines InlineUIContainer beinhaltet.

Die Ereignismethode sieht so aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
 if (e.Key == Key.N)
 {
 Paragraph p = fd.Blocks.ElementAt(0) as Paragraph;

 p.Inlines.Add(new LineBreak());
 p.Inlines.Add(new Run("normal "));
 p.Inlines.Add(new Bold(new Run("fett ")));

 Span sp = new Span(new Run("tief, Größe 12"));
 sp.BaselineAlignment = BaselineAlignment.Subscript;
 sp.FontSize = 12;
 p.Inlines.Add(sp);
 }
 ...

Neue Elemente fügen Sie hier wie folgt hinzu: Fügen Sie einen Zeilenumbruch,
einen einfachen Run und einen fett formatierten Text hinzu. Einzelne Inline-

Dokumente und Drucken13

416

Objekte werden nicht automatisch durch Leerzeichen getrennt, daher stehen am
Ende der Run-Objekte eigens Leerzeichen. Als Letztes folgt ein tiefgestellter Text
innerhalb eines Span.

 ...
 else if (e.Key == Key.A)
 {
 Paragraph p = fd.Blocks.ElementAt(0) as Paragraph;

 Bold bo = p.Inlines.ElementAt(7) as Bold;
 Underline un = bo.Inlines.ElementAt(0) as Underline;
 Italic it = un.Inlines.ElementAt(0) as Italic;
 Run r = it.Inlines.ElementAt(0) as Run;
 r.Text = "FKU";

 InlineUIContainer ic =
 p.Inlines.ElementAt(16) as InlineUIContainer;
 Button bu = ic.Child as Button;
 bu.Content = "Click";
 }
 ...

Vorhandene Elemente ändern Sie hier wie folgt: Das Element 7 ist ein Bold-
Objekt, das ein Underline-Objekt als erstes Element seiner Inlines-Auflistung
enthält. Dieses enthält wiederum ein Italic-Objekt als erstes Element seiner
Inlines-Auflistung. Dessen Inlines-Auflistung wiederum enthält ein Run-
Objekt, das geändert wird.

Das Element 16 ist ein InlineUIContainer-Objekt. Dessen Eigenschaft Child ist
ein Steuerelement vom Typ Button. Dessen Aufschrift ändern Sie.

 ...
 else if (e.Key == Key.S)
 {
 Paragraph p = fd.Blocks.ElementAt(0) as Paragraph;
 string ausgabe = "";
 for (int i = 0; i < p.Inlines.Count; i++)
 {
 Inline inl = p.Inlines.ElementAt(i) as Inline;
 ausgabe += i + ": " + inl.GetType().ToString()
 + " |" + runtext(inl) + "|\n";
 }
 MessageBox.Show(ausgabe);
 }
}

FlowDocument 13.1

417

private string runtext(Inline i)
{
 if (i is Run)
 return (i as Run).Text;
 else if(i is Bold)
 return runtext((i as Bold).Inlines.ElementAt(0));
 else if (i is Italic)
 return runtext((i as Italic).Inlines.ElementAt(0));
 else if (i is Underline)
 return runtext((i as Underline).Inlines.ElementAt(0));
 else if (i is Span)
 return runtext((i as Span).Inlines.ElementAt(0));
 else
 return "";
}

Jedes Element der Inlines-Auflistung des vorhandenen Absatzes wird ausgegeben,
und zwar mit einer laufenden Nummer, mit einem Typ und meist mit Text (siehe
Abbildung 13.13). Es wird die rekursive Hilfsmethode runtext() genutzt, da meh-
rere Ebenen vorliegen können. Es wird vereinfacht davon ausgegangen, dass
Inlines-Auflistungen auf einer untergeordneten Ebene nur ein Element enthalten.

Abbildung 13.13 Liste der Inlines (Ausschnitt)

Die (leeren) Run-Objekte 2 und 4 der Liste entstehen, weil zwischen dem Bold-
und dem Italic-Objekt beziehungsweise zwischen dem Italic- und dem
Underline-Objekt im XAML-Code ein Zeilenumbruch eingegeben wurde.

13.1.8 Inline-Typ Figure

Ein Figure-Objekt gehört zu den Inline-Objekten. Es kann innerhalb eines
Absatzes fest positioniert werden und enthält ein Element auf Block-Ebene, das

Dokumente und Drucken13

418

hervorgehoben werden soll. Dies kann zum Beispiel ein Bild in einem
BlockUIContainer oder ein Absatz mit wichtigem Inhalt sein.

Die Positionierung kann zum Beispiel mithilfe der Eigenschaft HorizontalAnchor
geschehen. Die Enumeration FigureHorizontalAnchor bietet Werte, um das
Figure-Objekt links, mittig oder rechts zu platzieren, bezogen auf die ganze Seite,
den Inhaltsbereich der Seite oder den Inhaltsbereich der Spalte.

Ähnlich sieht es mit der Eigenschaft VerticalAnchor aus. Die Enumeration
FigureVerticalAnchor bietet Werte, um das Figure-Objekt oben, mittig oder
unten zu platzieren – bezogen auf die ganze Seite, den Inhaltsbereich der Seite
oder einen Absatz.

Nachfolgend wird im Projekt FlowFigure ein Absatz mit einem Bild dargestellt,
das in einem Figure-Objekt eingebettet ist (siehe Abbildung 13.14). Nach Betäti-
gung einer beliebigen Taste wird die Positionierung des Figure-Objekts geändert.

Abbildung 13.14 Inline-Typ Figure

Der XAML-Code:

<Window ... KeyDown="Window_KeyDown">
 <FlowDocumentReader>
 <FlowDocument x:Name="fd">
 <Paragraph FontFamily="Arial" FontSize="14">
 In diesem Absatz ...
 <Figure HorizontalAnchor="ContentCenter"
 VerticalAnchor="ContentTop" BorderBrush="Black"
 BorderThickness="1" Width="40">
 <BlockUIContainer>
 <Image Source="work.gif" Height="20" Width="20" />
 </BlockUIContainer>
 </Figure>
 </Paragraph>
 </FlowDocument>
 </FlowDocumentReader>
</Window>

FlowDocument 13.1

419

Es wurde ein schwarzer Rahmen um das Figure-Objekte gelegt, damit es besser
zu erkennen ist. Die Breite wurde begrenzt. Ansonsten würde es die gesamte
Absatzbreite einnehmen und nicht mehr vom Text des Absatzes umflossen.

Die Ereignismethode zum Ändern der Positionierung sieht so aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
 Paragraph p = fd.Blocks.ElementAt(0) as Paragraph;
 Figure f = p.Inlines.ElementAt(1) as Figure;
 f.VerticalAnchor = FigureVerticalAnchor.ContentBottom;
 f.HorizontalAnchor = FigureHorizontalAnchor.ContentLeft;
}

Das Figure-Objekt ist das zweite Element der Inlines-Auflistung des Absatzes.

13.1.9 FlowDocumentScrollViewer

Ein FlowDocumentScrollViewer dient zur Darstellung eines FlowDocument im
Scrollmodus. Der Text ist fortlaufend, die Anzeige kann gescrollt werden (siehe
Abbildung 13.15). Er ähnelt dem FlowDocumentReader im Scroll-Modus, besitzt
allerdings keine Umschalt-, Zoom- oder Suchmöglichkeiten. Nachfolgend sehen
Sie das Projekt FlowScroll mit den gleichen Absatz-Inhalten wie in Abschnitt
13.1.2, »Block-Typ Absatz«.

Abbildung 13.15 FlowDocument im FlowDocumentScrollViewer

Der XAML-Code:

<Window ...>
 <FlowDocumentScrollViewer>
 <FlowDocument FontSize="12">
 <Paragraph ...> ... </Paragraph>
 <Paragraph ...> ... </Paragraph>

Dokumente und Drucken13

420

 <Paragraph ...> ... </Paragraph>
 </FlowDocument>
 </FlowDocumentScrollViewer>
</Window>

13.1.10 FlowDocumentPageViewer

Ein FlowDocumentPageViewer dient zur Darstellung eines FlowDocument im Seiten-
modus. Sie sehen eine Seite und können um eine Seite weiterblättern (siehe
Abbildung 13.16). Er ähnelt dem FlowDocumentReader im Seitenmodus, besitzt
auch die Zoom-Möglichkeit, aber keine Umschalt- oder Suchmöglichkeiten.
Nachfolgend sehen Sie das Projekt FlowPage mit den gleichen Absatz-Inhalten
wie in Abschnitt 13.1.2, »Block-Typ Absatz«.

Abbildung 13.16 FlowDocument im FlowDocumentPageViewer

Der XAML-Code:

<Window ...>
 <FlowDocumentPageViewer >
 <FlowDocument FontSize="12">
 <Paragraph ...> ... </Paragraph>
 <Paragraph ...> ... </Paragraph>
 <Paragraph ...> ... </Paragraph>
 </FlowDocument>
 </FlowDocumentPageViewer>
</Window>

13.1.11 RichTextBox

Eine RichTextBox dient zur Anzeige und zur Bearbeitung eines FlowDocument. Im
Unterschied zu den bisher vorgestellten Readern und Viewern können Sie Teile

FlowDocument 13.1

421

des Dokuments ändern, formatieren, ergänzen oder löschen. Zur Unterstützung
können Sie eingebaute Kommandos aus der Gruppe der EditingCommands ver-
wenden (siehe auch Abschnitt 5.5, »Kommandos«).

Ein Dokument vom Typ FlowDocument kann gespeichert oder geladen werden.
Dies ist besonders dann sinnvoll, wenn das Dokument verändert werden kann,
wie z.B. in einer RichTextBox.

Nachfolgend wird im Projekt FlowRichTextBox ein FlowDocument dargestellt, das
aus zwei Absätzen besteht. Die Inhalte können geändert und mithilfe von einigen
vorgefertigten EditingCommands formatiert werden. Das gesamte Dokument
beziehungsweise der erste Absatz können in einer Datei gespeichert werden.
Ebenso können ein Dokument oder ein Absatz aus einer Datei geladen werden
(siehe Abbildung 13.17).

Abbildung 13.17 FlowDocument in RichTextBox editieren

Der XAML-Code:

<Window ...>
 <StackPanel>
 <WrapPanel HorizontalAlignment="Center">
 <Button Command="EditingCommands.AlignLeft"
 CommandTarget="{Binding ElementName=rtb}"
 Margin="3">Links</Button>
 <Button Command="EditingCommands.AlignCenter" ...
 <Button Command="EditingCommands.AlignRight" ...
 <Button Command="EditingCommands.ToggleBold" ...
 <Button Command="EditingCommands.ToggleUnderline" ...
 </WrapPanel>
 <WrapPanel HorizontalAlignment="Center">
 <Button ... Click="dspeichern">Dokument speichern</Button>
 <Button ... Click="dladen">Dokument laden</Button>

Dokumente und Drucken13

422

 </WrapPanel>
 <WrapPanel HorizontalAlignment="Center">
 <Button ... Click="aspeichern">1. Absatz speichern</Button>
 <Button ... Click="aladen">1. Absatz laden</Button>
 </WrapPanel>
 <RichTextBox Width="270" Height="70" Margin="3"
 ScrollViewer.VerticalScrollBarVisibility="Auto">
 <FlowDocument x:Name="fd" FontSize="12">
 <Paragraph>
 Das ist <Bold>Absatz</Bold> 1
 </Paragraph>
 <Paragraph TextAlignment="Center">
 Und das ist Absatz 2
 </Paragraph>
 </FlowDocument>
 </RichTextBox>
 </StackPanel>
</Window>

Für die Eigenschaft Command werden die EditingCommands AlignLeft, AlignCenter
und AlignRight zur Absatzformatierung sowie ToggleBold und ToggleUnderline
zur Schriftformatierung eingesetzt. Diese vorgefertigten Kommandos benötigen
keinen weiteren Programmcode. Als Kommandoziel (Eigenschaft CommandTarget)
ist über eine Datenbindung jeweils die RichTextBox angegeben.

Innerhalb der RichTextBox wird ein ScrollViewer-Objekt genutzt. Dies erleich-
tert die Erreichbarkeit aller Dokumentteile.

Es folgen die Methoden zum Speichern und Laden, zunächst für das gesamte
Dokument. Sie benötigen den Namespace System.IO.

void dspeichern(...)
{
 TextRange tr = new TextRange(fd.ContentStart, fd.ContentEnd);
 FileStream fs = new FileStream("dokument.xp", FileMode.Create);
 tr.Save(fs, DataFormats.XamlPackage);
 fs.Close();
}
void dladen(...)
{
 if (File.Exists("dokument.xp"))
 {
 TextRange tr = new TextRange(fd.ContentStart, fd.ContentEnd);
 FileStream fs = new FileStream("dokument.xp", FileMode.Open);
 tr.Load(fs, DataFormats.XamlPackage);

FlowDocument 13.1

423

 fs.Close();
 }
}

Gespeichert beziehungsweise geladen wird ein TextRange-Objekt. Dies ist ein Text-
bereich, der zwischen zwei TextPointer-Objekten liegt. Ein TextPointer-Objekt
bezeichnet eine Position innerhalb eines FlowDocument oder eines TextBlock.

Das neu erzeugte TextRange-Objekt liegt zwischen den zwei Positionen, die hier
von den Eigenschaften ContentStart und ContentEnd des FlowDocument geliefert
werden. Der Textbereich umfasst also den gesamten Inhalt des Dokuments.

Zum Speichern wird ein neues FileStream-Objekt erzeugt. Zum Laden wird ein
vorhandenes FileStream-Objekt geöffnet. Als Speicherformat eignet sich das
XAML-Paketdatenformat. Dieses Format kann über das Element XamlPackage aus
der Enumeration DataFormats ausgewählt werden. Die Enumeration stellt eine
ganze Reihe von Datenformaten bereit.

Es folgen die Methoden zum Speichern und Laden eines Absatzes:

void aspeichern(...)
{
 Paragraph p = fd.Blocks.ElementAt(0) as Paragraph;
 TextRange tr = new TextRange(p.ContentStart, p.ContentEnd);
 FileStream fs = new FileStream("absatz.xp", FileMode.Create);
 tr.Save(fs, DataFormats.XamlPackage);
 fs.Close();
}
void aladen(...)
{
 if (File.Exists("absatz.xp"))
 {
 Paragraph p = fd.Blocks.ElementAt(0) as Paragraph;
 TextRange tr = new TextRange(p.ContentStart, p.ContentEnd);
 FileStream fs = new FileStream("absatz.xp", FileMode.Open);
 tr.Load(fs, DataFormats.XamlPackage);
 fs.Close();
 }
}

Das ermittelte TextRange-Objekt wird mithilfe der Methoden Save() und Load()
gespeichert beziehungsweise geladen. Ein Paragraph-Objekt besitzt ebenfalls die
Eigenschaften ContentStart und ContentEnd, um den Start und das Ende des
Inhalts zu markieren.

Dokumente und Drucken13

424

13.2 FixedDocument

Im Unterschied zu einem FlowDocument werden die Elemente bei einem
FixedDocument auf einzelnen Seiten fest positioniert. Damit ist es besonders zum
Ausdrucken geeignet.

Ein FixedDocument-Objekt besitzt die Eigenschaft Pages vom Typ PageContent-
Collection. Darin stehen die einzelnen Seiteninhalte des Dokuments vom Typ
PageContent. Die Eigenschaft Child eines PageContent-Objekts ist ein FixedPage-
Objekt. Es umfasst die eigentlichen Elemente einer einzelnen Seite.

Ein FixedPage-Objekt hat Format-Eigenschaften wie Höhe und Breite. Die Eigen-
schaft Children vom Typ UIElementCollection beinhaltet die einzelnen Oberflä-
chen-Elemente, die auf der Seite positioniert werden.

Wie ein FlowDocument benötigt ein FixedDocument ein Steuerelement zur Darstel-
lung auf dem Bildschirm. Geeignet dazu ist ein DocumentViewer-Objekt. Dessen
Eigenschaft Document beinhaltet das FixedDocument. Ein DocumentViewer bietet die
Möglichkeit, das Dokument auszudrucken, es zu zoomen, nach Begriffen zu suchen
und zwischen einem Seitenmodus und einem Zwei-Seiten-Modus zu wechseln.

Im nachfolgenden Projekt DruckDokument wird ein DocumentViewer mit einem
FixedDocument dargestellt, das aus zwei Seiten in der Größe DIN A8 im Querfor-
mat besteht (siehe Abbildung 13.18).

Abbildung 13.18 FixedDocument im DocumentViewer

FixedDocument 13.2

425

Der XAML-Code ist kurz, da das eigentliche FixedDocument hier per Programm-
code erzeugt wird:

<Window ... Loaded="Window_Loaded">
 <DocumentViewer x:Name="dv" />
</Window>

Es folgen die Ereignismethode Window_Loaded() und die Hilfsmethode seite()
zur Erzeugung einer einzelnen Seite. Dazu wird der Namespace System.Windows
.Markup benötigt.

private void Window_Loaded(...)
{
 FixedDocument fx = new FixedDocument();
 seite(fx, 1);
 seite(fx, 2);
 dv.Document = fx;
}

In der Methode Window_Loaded() wird das FixedDocument-Objekt erzeugt. Es
werden zwei Seiten hinzugefügt. Anschließend wird das FixedDocument dem
DocumentViewer hinzugefügt.

private void seite(FixedDocument fx, int nr)
{
 FixedPage fp = new FixedPage();
 fp.Height = 198;
 fp.Width = 281;

 TextBlock tbt = new TextBlock(new Run("Text " + nr));
 tbt.SetValue(FixedPage.LeftProperty, 30.0);
 tbt.SetValue(FixedPage.TopProperty, 10.0);
 fp.Children.Add(tbt);

 TextBlock tbs = new TextBlock(new Run("Seite " + nr));
 tbs.SetValue(FixedPage.LeftProperty, 130.0);
 tbs.SetValue(FixedPage.TopProperty, 170.0);
 fp.Children.Add(tbs);

 PageContent pc = new PageContent();
 ((IAddChild)pc).AddChild(fp);
 fx.Pages.Add(pc);
}

In der Hilfsmethode seite() wird ein einzelnes FixedPage-Objekt erzeugt. Die
Werte für die Eigenschaften Height und Width ergeben DIN A8 im Querformat.

Dokumente und Drucken13

426

Eine DIN-A4-Seite hat die Größe 21,0 cm mal 29,7 cm. Teilt man beide Werte
durch vier, ergeben sich 5,25 cm (ca. 2,067 Inch) und 7,425 cm (ca. 2,923 Inch).
Bei 96 Punkten pro Inch als Standard-Druckwert für WPF-Dokumente ergeben
sich ca. 198 Punkte und ca. 281 Punkte.

Es werden zwei TextBlock-Objekte erzeugt: einmal für den Text oben links, ein-
mal für die Seitennummer unten in der Mitte. Diese werden über die Dependency
Properties LeftProperty und TopProperty des FixedDocument fest positioniert
und ihm als untergeordnete Elemente hinzugefügt.

Es wird ein PageContent-Objekt für die einzelne Seite erzeugt. Das formatierte
und gefüllte FixedPage-Objekt wird ihm mithilfe der Methode AddChild() und
des Interfaces IAddChild untergeordnet. Das PageContent-Objekt wird der Auflis-
tung Pages des FixedDocument hinzugefügt.

13.3 Drucken

Die Klasse PrintDialog wird zur Vorbereitung und Durchführung eines Druck-
vorgangs verwendet. Sie können vor dem eigentlichen Druckvorgang die
Methode ShowDialog() dieser Klasse aufrufen. Damit wird der Windows-Druck-
dialog angezeigt, in dem Sie weitere Einstellungen vornehmen können: Auswahl
des Druckers, Anzahl der Exemplare und so weiter. Der Rückgabewert der
Methode ist vom Typ bool? und liefert die Information, ob der Druck ausgeführt
werden soll oder nicht.

Die Eigenschaft PrintQueue der Klasse PrintDialog liefert ein Objekt vom Typ
PrintQueue. Dieses können Sie zum Steuern des Druckers, des Druckauftrags und
der Druckerwarteschlange verwenden. Außerdem werden zahlreiche Informatio-
nen bereitgestellt. Für den Zugriff auf die Klasse PrintQueue wird ein Verweis auf
die .NET-Komponente System.Printing benötigt. Der gleichnamige Namespace
muss eingebunden werden.

Die Methode PrintVisual() der Klasse PrintDialog wird zum Drucken von visu-
ellen Objekten verwendet. Dies können die gesamte Anwendungsoberfläche
oder einzelne Teile davon sein.

Im nachfolgenden Projekt DruckenVisual (siehe Abbildung 13.19) werden drei
verschiedene Druckaufträge ausgeführt:

1. der Druck der gesamten Anwendungsoberfläche

2. der Druck der gesamten Anwendungsoberfläche, an veränderter Position und
in veränderter Größe

3. der Druck eines Elements der Anwendungsoberfläche, an veränderter Position

Drucken 13.3

427

Außerdem werden einige Drucker-Informationen ausgegeben.

Abbildung 13.19 Drucken mit PrintDialog

Der XAML-Code für die vier Buttons und die ListBox in einem Canvas:

<Window ... Height="120" Width="260">
 <Canvas>
 <Button Click="dr1">Drucken 1</Button>
 <Button Canvas.Right="0" Click="infos">Infos</Button>
 <Button Canvas.Bottom="0" Click="dr2">Drucken 2</Button>
 <Button Canvas.Right="0" Canvas.Bottom="0"
 Click="dr3">Drucken 3</Button>
 <ListBox x:Name="lb" Canvas.Left="90"
 Width="65" Height="80"> ... </ListBox>
 </Canvas>
</Window>

Die Ereignismethoden sehen so aus:

private void dr1(...)
{
 PrintDialog pd = new PrintDialog();
 if(pd.ShowDialog() == true)
 pd.PrintVisual(this, "Drucken 1");
}

Es wird das gesamte Fensterobjekt (this) gedruckt, ohne Veränderung von Posi-
tion und Größe. Vorher wird der Windows-Druckdialog aufgerufen, damit der
Benutzer noch Einstellungen vornehmen beziehungsweise den Druck abbrechen
kann.

private void infos(...)
{
 PrintDialog pd = new PrintDialog();
 PrintQueue pq = pd.PrintQueue;
 string ausgabe = "Name des Druckers: " + pq.Name + "\n";
 ausgabe += "Drucker offline: " + pq.IsOffline + "\n";
 ausgabe += "Anzahl Druckjobs: " + pq.NumberOfJobs + "\n";

Dokumente und Drucken13

428

 double br = pd.PrintableAreaWidth / 96 * 2.54;
 double ho = pd.PrintableAreaHeight / 96 * 2.54;
 ausgabe += "Breite: " + Math.Round(br, 1)
 + " cm, Höhe: " + Math.Round(ho, 1) + " cm";
 MessageBox.Show(ausgabe);
}

Mithilfe der Eigenschaften Name, IsOffline und NumberOfJobs der Klasse
PrintQueue werden Informationen über den druckbaren Bereich, den Namen des
Druckers, den Anschaltzustand und die Anzahl der Druckjobs ausgegeben. Die
Eigenschaften PrintableAreaWidth und PrintableAreaHeight der Klasse
PrintDialog liefern einen Wert in Punkten. Bei 96 Punkten pro Inch als Stan-
dard-Druckwert für WPF-Dokumente ergeben sich nach der obigen Umrechnung
die Werte in Zentimeter.

private void dr2(...)
{
 Size s = new Size(600, 100);
 Point p = new Point(100, 15);
 this.Measure(s);
 this.Arrange(new Rect(p, s));

 PrintDialog pd = new PrintDialog();
 pd.PrintVisual(this, "Drucken 2");

 s = new Size(this.Width, this.Height);
 p = new Point(0, 0);
 this.Measure(s);
 this.Arrange(new Rect(p, s));
}

Die Methoden Measure() und Arrange() führen eine Aktualisierung des Layouts
des visuellen Objekts (hier des Fensters) durch. Dies ist die Voraussetzung für
einen Ausdruck des Objekts in der gewünschten Größe an der gewünschten Posi-
tion. Anschließend wird wieder das Original-Layout hergestellt.

private void dr3(...)
{
 Size s = new Size(lb.Width, lb.Height);
 Point p = new Point(20, 20);
 lb.Measure(s);
 lb.Arrange(new Rect(p, s));

 PrintDialog pd = new PrintDialog();
 pd.PrintVisual(lb, "Stadtauswahl");

Drucken 13.3

429

 s = new Size(lb.Width, lb.Height);
 p = new Point(90, 0);
 lb.Measure(s);
 lb.Arrange(new Rect(p, s));
}

Es wird nur die ListBox mit ihren Inhalten ausgedruckt, und zwar an der
gewünschten Position. Vorher wird das Layout der ListBox für den Ausdruck
vorbereitet, und anschließend wird wieder das Original-Layout hergestellt.

431

Die WPF kann mit Elementen aus Windows Forms und mit Dateien aus
MS Office arbeiten.

14 Interoperabilität

Sie können die Vorteile der WPF nutzen, ohne all Ihre Windows Forms-Anwen-
dungen vollständig neu zu programmieren. Es ist leicht möglich, WPF-Elemente
in eine Windows Forms-Anwendung einzubetten.

Anders herum gibt es in der WPF noch nicht alle Elemente, die Sie aus Windows
Forms kennen. Sie können aber eine WPF-Anwendung mit Elementen aus Win-
dows Forms erweitern.

Außerdem können Sie Dateien für MS Office-Anwendungen mithilfe einer WPF-
Anwendung erzeugen.

14.1 Windows Forms in WPF

In diesem Abschnitt werden Steuerelemente und Standard-Dialoge aus Windows
Forms in WPF-Anwendungen eingesetzt. Es wird wie bisher mit einem Projekt
vom Typ WPF-Anwendung gearbeitet. Zur Arbeit mit Windows Forms müssen
Sie dem jeweiligen WPF-Projekt einen Verweis auf die .NET-Komponente
System.Windows.Forms hinzufügen.

14.1.1 Windows Forms-Steuerelemente in WPF

Zur Einbettung eines Windows Forms-Steuerelements in eine WPF-Anwendung
muss der Namespace System.Windows.Forms aus der gleichnamigen .NET-Kompo-
nente im XAML-Code zur Verfügung gestellt werden. Außerdem wird für die Nut-
zung im Programmcode die .NET-Komponente WindowsFormsIntegration benötigt.

Anschließend können Sie im XAML-Code ein WPF-Element des Typs
WindowsFormsHost einsetzen. Dessen Eigenschaft Child enthält ein Steuerelement
aus Windows Forms.

Im nachfolgenden WPF-Projekt FormsInWPF werden zwei Buttons dargestellt:
ein WPF-Button und ein Windows Forms-Button (siehe Abbildung 14.1).

Interoperabilität14

432

Abbildung 14.1 Windows Forms-Button in einer WPF-Anwendung

Der XAML-Code:

<Window x:Class=... xmlns="http://..." xmlns:x="http://..."
 xmlns:wfalt="clr-namespace:System.Windows.Forms;
 assembly=System.Windows.Forms" ...>
 <Canvas>
 <Button Width="150" Margin="3" Click="WPF_Click">
 Hallo WPF</Button>
 <WindowsFormsHost x:Name="wfh" Canvas.Top="30"
 Width="150" Height="23" Margin="3"
 Background="LightGray" Foreground="Black">
 <wfalt:Button Click="WFO_Click"
 Text="Hallo Windows Forms" />
 </WindowsFormsHost>
 </Canvas>
</Window>

Der Namespace System.Windows.Forms aus der gleichnamigen .NET-Komponente
bekommt hier den lokalen Namen wfalt. Damit ist es möglich, einen Windows
Forms-Button mit seinen spezifischen Eigenschaften (zum Beispiel: Text) zu
erzeugen. Die Click-Ereignisse der beiden Buttons führen zu folgenden Ereignis-
methoden:

private void WPF_Click(object sender, RoutedEventArgs e)
{ MessageBox.Show("Hallo WPF"); }
private void WFO_Click(object sender, EventArgs e)
{ MessageBox.Show(wfh.Child.Text); }

Die Eigenschaft Child des WindowsFormsHost beinhaltet den Windows Forms-
Button. Dessen Eigenschaft Text wird ausgegeben.

14.1.2 Windows Forms-Standard-Dialogfelder in WPF

Im nachfolgenden Projekt FormsDialogInWPF werden einige Standard-Dialogfel-
der aus Windows Forms innerhalb einer WPF-Anwendung aufgerufen. Die But-
tons in Abbildung 14.2 starten die nachfolgend genannten Dialogfelder: Datei

Windows Forms in WPF 14.1

433

Öffnen, Verzeichnis Auswählen, Farbe Auswählen und Schrift Auswählen.
In der WPF gibt es noch keine gleichwertigen Dialogfelder.

Abbildung 14.2 Standard-Dialogfelder aus Windows Forms

Es wird der Namespace System.Windows.Forms aus der gleichnamigen .NET-Kom-
ponente verwendet. Zusätzlich wird die .NET-Komponente System.Drawing zur
Bereitstellung der Klassen System.Drawing.Color und System.Drawing.Font aus
Windows Forms benötigt. Damit ist es möglich, die Ergebnisse der Standard-Dia-
logfelder für Farbe und Schrift für die entsprechenden Klassen des WPF-Name-
spaces System.Windows.Media zu »übersetzen«.

Der XAML-Code:

<Window ...>
 <StackPanel>
 <Button Width="80" Margin="3" Click="datei">Datei</Button>
 <Button Width="80" Margin="3" Click="verzeichnis">
 Verzeichnis</Button>
 <Button Width="80" Margin="3" Click="farbe">Farbe</Button>
 <Button Width="80" Margin="3" Click="schrift">
 Schrift</Button>
 <Label x:Name="lb" Margin="3" HorizontalAlignment="Center" />
 </StackPanel>
</Window>

Das Ergebnis des jeweiligen Standard-Dialogfelds wird im Label angezeigt.

Die Ereignismethode zum Start des Dialogfelds Datei Öffnen sieht so aus:

private void datei(...)
{
 OpenFileDialog ofd = new OpenFileDialog();
 ofd.InitialDirectory = "C:\\Temp";
 ofd.Filter = "Tabellen (*.xls)|*.xls| Texte
 (*.txt;*.doc)|*.txt;*.doc| Alle Dateien (*.*)|*.*";
 ofd.Title = "Datei zum Öffnen auswählen";

Interoperabilität14

434

 if (ofd.ShowDialog() == System.Windows.Forms.DialogResult.OK)
 lb.Content = ofd.FileName;
 else
 lb.Content = "Datei-Auswahl abgebrochen";
}

Es wird ein neues OpenFileDialog-Objekt für das Standard-Dialogfeld Datei Öff-

nen erzeugt. Mithilfe der Eigenschaften InitialDirectory, Filter und Title
werden einige Voreinstellungen vorgenommen: Dazu geben Sie Startverzeichnis,
eine Liste von Dateitypen mit Endungen und einen Fenstertitel an.

Die Methode ShowDialog() ruft das Dialogfeld auf und liefert einen Rückgabe-
wert vom Typ DialogResult. Falls der Benutzer im Dialogfeld Datei Öffnen den
Button Öffnen betätigt hat, dann entspricht der Rückgabewert dem Wert OK aus
der Enumeration DialogResult. In diesem Falle wird der Name der ausgewählten
Datei im Label angezeigt (Eigenschaft FileName). Falls er das Dialogfeld abgebro-
chen hat, erscheint eine entsprechende Meldung.

Die Ereignismethode zum Start des Dialogfelds Verzeichnis Auswählen sieht so
aus:

private void verzeichnis(...)
{
 FolderBrowserDialog fbd = new FolderBrowserDialog();
 fbd.RootFolder = Environment.SpecialFolder.MyDocuments;
 fbd.ShowNewFolderButton = false;
 fbd.Description = "Verzeichnis auswählen";

 if (fbd.ShowDialog() == System.Windows.Forms.DialogResult.OK)
 lb.Content = fbd.SelectedPath;
 else
 lb.Content = "Verzeichnis-Auswahl abgebrochen";
}

Es wird ein neues FolderBrowserDialog-Objekt für das Standard-Dialogfeld Ver-

zeichnis Auswählen erzeugt. Mithilfe der Eigenschaften RootFolder,
ShowNewFolderButton und Description werden einige Voreinstellungen vorge-
nommen: Startverzeichnis, mögliche Erzeugung eines neuen Verzeichnisses und
ein Fenstertitel.

Die Methode ShowDialog() füllt im Erfolgsfall die Eigenschaft SelectedPath. Der
Name des ausgewählten Verzeichnisses wird im Label angezeigt.

Die Ereignismethode zum Start des Dialogfelds Farbe Auswählen sieht so aus:

Windows Forms in WPF 14.1

435

private void farbe(...)
{
 ColorDialog cd = new ColorDialog();

 if (cd.ShowDialog() == System.Windows.Forms.DialogResult.OK)
 {
 System.Windows.Media.Color c =
 System.Windows.Media.Color.FromArgb(
 cd.Color.A, cd.Color.R, cd.Color.G, cd.Color.B);
 lb.Background = new SolidColorBrush(c);
 lb.Content = "Farbe: " + c.ToString();
 }
 else
 lb.Content = "Farb-Auswahl abgebrochen";
}

Es wird ein neues ColorDialog-Objekt für das Standard-Dialogfeld Farbe aus-

wählen erzeugt. Im Erfolgsfall ist in der Eigenschaft Color vom Typ System
.Drawing.Color aus Windows Forms der Farbwert gespeichert.

Dieser Typ entspricht nicht dem Typ System.Windows.Media.Color aus der WPF.
Daher werden die Farbkomponenten einzeln mithilfe der Methode FromArgb()
übernommen. Der Hexadezimalwert der Farbe wird im Label ausgegeben.
Außerdem wird der Hintergrund des Labels entsprechend eingefärbt.

Die Ereignismethode zum Start des Dialogfelds Schrift Auswählen sieht so aus:

private void schrift(...)
{
 FontDialog fd = new FontDialog();
 fd.ShowColor = true;
 fd.MinSize = 8;
 fd.MaxSize = 20;

 if (fd.ShowDialog() == System.Windows.Forms.DialogResult.OK)
 {
 lb.FontFamily =
 new System.Windows.Media.FontFamily(fd.Font.Name);
 lb.FontSize = fd.Font.Size;
 lb.Content = "Schrift: " + lb.FontFamily
 + ", Größe: " + lb.FontSize;
 }
 else
 lb.Content = "Schrift-Auswahl abgebrochen";
}

Interoperabilität14

436

Es wird ein neues FontDialog-Objekt für das Standard-Dialogfeld Schrift Aus-

wählen erzeugt. Mithilfe der Eigenschaften ShowColor, MinSize und MaxSize
werden einige Voreinstellungen vorgenommen: Die Schriftfarbe wird auswähl-
bar gemacht, und es wird ein kleinster und ein größter Wert für die Schriftgröße
festgelegt.

Im Erfolgsfall sind in der Eigenschaft Font der Klasse System.Drawing.Font aus
Windows Forms Informationen über die ausgewählte Schrift gespeichert.

Diese Klasse hat keine direkte Entsprechung in der WPF. Daher müssen die Kom-
ponenten der Schrift einzeln übernommen werden. Name und Größe der Schrift
werden im Label ausgegeben. Außerdem wird die Schrift des Labels entspre-
chend gesetzt.

14.2 WPF in Windows Forms

In diesem Abschnitt werden Steuerelemente aus der WPF in einem Projekt vom
Typ Windows Forms-Anwendung eingesetzt. Zur Arbeit mit der WPF müssen Sie
dem jeweiligen Windows Forms-Projekt folgende Verweise auf .NET-Komponen-
ten hinzufügen: PresentationCore, PresentationFramework, WindowsBase, Win-
dowsFormsIntegration und System.Xaml.

In einer Windows Forms-Anwendung kann ein ElementHost ein WPF-Steuerele-
ment vom Typ UIElement enthalten. Dies kann auch ein Layout-Objekt sein.

14.2.1 WPF-Steuerelemente in Windows Forms

Im nachfolgenden Projekt WPFInForms werden ein Windows Forms-Button, ein
WPF-Button und ein WPF-Expander mit drei WPF-TextBlock-Objekten eingesetzt
(siehe Abbildung 14.3). Expander- und TextBlock-Objekte stehen bekanntlich
unter Windows Forms ohne die WPF nicht zur Verfügung.

Abbildung 14.3 Windows Forms-Anwendung mit WPF-Elementen

WPF in Windows Forms 14.2

437

Es wird ein neues Projekt vom Typ Windows Forms-Anwendung erzeugt. Das
Formular bekommt die Größe 350 mal 200 geräteunabhängige Pixel. Anschlie-
ßend werden aus der Toolbox ein Button und zwei Steuerelemente vom Typ
ElementHost hinzugefügt, und zwar aus der Kategorie WPF-Interoperabilität.
Der Button bekommt den Namen WFO_Button und die Größe 160 mal 23 gerä-
teunabhängige Pixel. Die beiden ElementHost-Objekte bekommen die Namen
ehost1 und ehost2 und die Größen 160 mal 23 und 160 mal 80 geräteunabhän-
gige Pixel. Das Ergebnis sehen Sie in Abbildung 14.4 im Entwurfsmodus.

Abbildung 14.4 Windows Forms-Anwendung im Entwurf

Es folgt der Code zum Formular in der Datei Form1.cs:

using System;
using System.Windows;
using System.Windows.Forms;
using System.Windows.Controls;

namespace WPFInForms
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();

 System.Windows.Controls.Button nb =
 new System.Windows.Controls.Button();
 nb.Content = "WPF Button";
 nb.Click += new RoutedEventHandler(nb_Click);
 ehost1.Child = nb;

 StackPanel sp = new StackPanel();
 for (int i = 1; i <= 3; i++)
 {
 TextBlock tb = new TextBlock();

Interoperabilität14

438

 tb.Text = "Inhalt " + i;
 sp.Children.Add(tb);
 }
 Expander ep = new Expander();
 ep.Header = "WPF Expander";
 ep.Content = sp;
 ehost2.Child = ep;
 }

 private void nb_Click(object sender,
 System.Windows.RoutedEventArgs e)
 {
 System.Windows.Forms.MessageBox.Show((sender as
 System.Windows.Controls.Button).Content + "");
 }

 private void WFO_Button_Click(object sender, EventArgs e)
 {
 System.Windows.Forms.MessageBox.Show(
 "Windows Forms Button");
 }
 }
}

Einige Klassennamen müssen mit dem vollständigen Namen des jeweiligen
Namespace angegeben werden. Ansonsten besteht ein Konflikt aufgrund der glei-
chen Klassennamen aus verschiedenen Namespaces.

Es wird ein WPF-Button erzeugt. Dem Button werden ein EventHandler und eine
Ereignismethode zugeordnet. Der Button wird der Eigenschaft Child des ersten
ElementHost-Objekts zugeordnet.

Außerdem wird ein StackPanel mit drei TextBlock-Objekten erzeugt. Dieses
StackPanel wird der Inhalt eines Expander-Objekts. Das Expander-Objekt wird
der Eigenschaft Child des zweiten ElementHost-Objekts zugeordnet.

14.3 MS Office in WPF

Sie können in einer WPF-Anwendung Dateien für MS Office-Anwendungen
erzeugen. Dazu muss die entsprechende COM-Komponente dem WPF-Projekt als
Verweis hinzugefügt werden. Dies ist im Falle von MS Excel 2010 die Microsoft
Excel 14.0 Object Library und im Falle von MS Word 2010 die Microsoft Word
14.0 Object Library. Falls auf dem PC des Benutzers eine frühere Office-Version

MS Office in WPF 14.3

439

installiert ist, dann sind die entsprechenden älteren Library-Versionen zu ver-
wenden.

Im nachfolgenden Projekt OfficeInWPF werden eine neue Excel-Mappe und ein
neues Word-Dokument erzeugt. Der XAML-Code beinhaltet nur zwei Buttons
zum Aufruf der beiden Vorgänge. Nachfolgend sehen Sie zunächst die Vereinba-
rung der Namespaces, die in diesem Projekt benötigt werden. Außerdem sehen
Sie den Kopf der Fensterklasse.

using System;
using System.Windows;
using System.Windows.Controls;
using Microsoft.Office.Interop.Excel;
using Microsoft.Office.Interop.Word;

namespace OfficeInWPF
{
 public partial class MainWindow : System.Windows.Window
 { ...

Die beiden Namespaces aus Microsoft.Office.Interop stehen nach dem Hinzu-
fügen der beiden eingangs genannten COM-Komponenten zur Verfügung. Sie
beinhalten die Klassen, die für die jeweilige Interoperabilität notwendig sind.

Die Klasse Window, von der die Klasse für das WPF-Hauptfenster erbt, muss inklu-
sive Namespace angegeben werden. Da es die Klasse Window auch in den Name-
spaces unter Microsoft.Office.Interop gibt, würde ansonsten eine Mehrdeutig-
keit auftreten.

14.3.1 Excel-Mappe

Im Projekt OfficeInWPF wird die MS Excel-Arbeitsmappe in Abbildung 14.5
erzeugt.

Der Programmcode sieht so aus:

private void excel_Click(...)
{
 Microsoft.Office.Interop.Excel.Application anw =
 new Microsoft.Office.Interop.Excel.Application();
 anw.Visible = true;
 anw.WindowState = XlWindowState.xlNormal;

 Workbook wb = anw.Workbooks.Add(XlWBATemplate.xlWBATWorksheet);
 Worksheet ws = wb.Worksheets[1];

Interoperabilität14

440

 ws.Range["A1:A3"].Value = 42;
 ws.Range["A4"].Value = "Hallo Welt";
 ws.Range["A5"].Value = new DateTime(2011, 10, 18);
 ws.Range["A6"].FormulaLocal = "= A1 + 1";
 ws.Range["A7"].FormulaLocal = "=SUMME(A1:A3)";
 for (int i = 1; i <= 10; i++)
 ws.Range["B" + i].Value = i * 10;

 wb.SaveAs("C:\\Temp\\ExcelInWPF.xlsx");
 // wb.Close();
 // anw.Quit();
}

Abbildung 14.5 MS Excel 2010-Arbeitsmappe, mit WPF erzeugt

Zunächst wird ein Excel-Anwendungsobjekt erzeugt. Der Wert true für die
Eigenschaft Visible sorgt dafür, dass das Excel-Anwendungsfenster angezeigt
wird. Für die Erzeugung der Daten und die Speicherung der Datei wäre dies nicht
notwendig. Der Fensterstatus wird mithilfe des Werts xlNormal aus der Enume-
ration XlWindowState auf normale Größe gestellt. Es gibt noch die Werte
xlMaximized und xlMinimized. Elemente aus der Excel-Bibliothek sind meist am
Präfix Xl oder xl erkennbar.

MS Office in WPF 14.3

441

Die Auflistung Workbooks enthält die aktuell geöffneten Excel-Dateien. Die
Methode Add() erzeugt eine neue, leere Arbeitsmappe und liefert einen Verweis
darauf. Man kann als Parameter den Typ des ersten Blatts der neuen Arbeits-
mappe übergeben. Dies ist ein Wert aus der Enumeration XlWBATemplate. Der
Wert xlWBATWorksheet erzeugt ein Tabellenblatt. Der Wert xlWBATChart würde
ein Diagrammblatt erzeugen.

Die Auflistung Worksheets enthält die Blätter der Excel-Arbeitsmappe. Es wird ein
Verweis auf das erste Tabellenblatt angelegt. Es hat die Nummer 1. Die Eigenschaft
Range dient zur Angabe einer Zelle oder eines Zellbereichs auf dem Tabellenblatt.
Die Untereigenschaft Value steht für den Inhalt, und die Untereigenschaft
FormulaLocal steht für die Formel in dieser Zelle oder in diesem Zellbereich. Als
Value können Zahlen, Zeichenketten oder Datumsangaben geliefert werden.

Die Methode SaveAs() dient zum Speichern der Excel-Arbeitsmappe unter dem
angegebenen Namen. Die Methode Close() schließt die Arbeitsmappe, und die
Methode Quit() beendet die Anwendung Excel.

14.3.2 Word-Dokument

Im Projekt OfficeInWPF wird das MS Word-Dokument in Abbildung 14.6
erzeugt.

Der Programmcode sieht so aus:

private void word_Click(...)
{
 Microsoft.Office.Interop.Word.Application anw =
 new Microsoft.Office.Interop.Word.Application();
 anw.Visible = true;
 anw.WindowState = WdWindowState.wdWindowStateNormal;

 Microsoft.Office.Interop.Word.Document doc =
 anw.Documents.Add();

 Paragraph p = doc.Paragraphs.Add();
 string s = "Hallo Welt";
 p.Range.Text = s;

 Table t = doc.Tables.Add(doc.Range(s.Length), 3, 5);
 t.Borders.InsideLineStyle = WdLineStyle.wdLineStyleSingle;
 t.Borders.OutsideLineStyle = WdLineStyle.wdLineStyleSingle;
 for (int i = 1; i <= 3; i++)
 for (int k = 1; k <= 5; k++)
 t.Cell(i, k).Range.Text = i + " / " + k;

Interoperabilität14

442

 doc.SaveAs("C:\\Temp\\WordInWPF.docx");
 // doc.Close();
 // anw.Quit();
}

Abbildung 14.6 MS Word 2010-Dokument, mit WPF erzeugt

Zunächst wird ein Word-Anwendungsobjekt erzeugt. Es werden wiederum Sicht-
barkeit und Fensterstatus eingestellt. Für den Fensterstatus ist es hier der Wert
wdWindowStateNormal aus der Enumeration WdWindowState. Es gibt noch die
Werte wdWindowStateMaximize und wdWindowStateMinimize. Elemente aus der
Word-Bibliothek sind meist am Präfix Wd oder wd erkennbar.

Die Auflistung Documents enthält die aktuell geöffneten Word-Dateien. Die
Methode Add() erzeugt ein neues, leeres Dokument und liefert einen Verweis
darauf.

Die Auflistung Paragraphs enthält die Absätze des Word-Dokuments. Die
Methode Add() fügt einen neuen Absatz hinzu und liefert einen Verweis darauf.
Die Eigenschaft Range verschiedener Objekte liefert den Verweis auf eine Posi-
tion oder einen Textbereich. Die Eigenschaft Text beinhaltet den Text an dieser
Position oder in diesem Textbereich. Ohne weitere Angaben ist dies bei einem
Absatz der gesamte Text des Absatzes.

MS Office in WPF 14.3

443

Die Auflistung Tables enthält die Tabellen des Word-Dokuments. Die Methode
Add() fügt eine neue Tabelle hinzu und liefert einen Verweis darauf. Als Parame-
ter muss angegeben werden, an welcher Stelle des Dokuments die Tabelle notiert
werden soll. Dies ist hier der Bereich nach dem ersten Absatz, wie über die Eigen-
schaft Range des Dokuments angegeben wird. Außerdem werden die gewünschte
Anzahl der Zeilen und Spalten der Tabelle benötigt.

Die Auflistung Borders beinhaltet den Aufbau der verschiedenen Rahmen einer
Tabelle. Die Eigenschaften InsideLineStyle und OutsideLineStyle geben an,
welche Linienart für die inneren und äußeren Tabellenlinien verwendet werden
soll. Werte dafür kommen aus der Enumeration WdLineStyle. Der Wert
wdLineStyleSingle bezeichnet eine einfache Linie.

Über die Eigenschaft Cell einer Tabelle kann man die einzelnen Zellen erreichen.
Die beiden Indizes für Zeile und Spalte beginnen bei 1.

Die Methoden SaveAs(), Close() und Quit() haben die gleichen Aufgaben wie
bei MS Excel.

Zum Schluss

Nun haben Sie, auch mithilfe von vielen praktischen Beispielen, einen Überblick
über die zahlreichen Aspekte der WPF gewonnen. Ich wünsche Ihnen viel Erfolg
bei der Anwendung des neu gewonnenen Wissens.

445

Index

> 66
< 66
* Größenangabe 408
< anzeigen 66
> anzeigen 66
2D-Grafik 241

für 3D-Oberfläche 311
3D-Grafik 289

aus externen Daten 294
Drehung 322
Form des Objekts 293
gemeinsame Punkte 298
Grundelement 290
Kamera 292, 299
Kameralage 296, 301
Landschaft 329
Leinwand 292
Licht 293, 297, 302
Material 293, 313
mehrere Körper 306
mehrere Körper, mit Ereignis 310
mit 2D-Oberfläche 311
mit Ereignis 309
mit Steuerelementen 311
Modell 306
Rotationsgruppe 327
Rückseite 297
Skalierung 319
Textur 313, 316
Transformation 319
Transformationsgruppe 326
Verschiebung 321
Vorderseite 293

3D-Würfel 296

A

Abhängigkeitseigenschaft 21
Absatz 81, 398, 400

ändern 402
ausrichten 401
Beginn 423
einrücken 401

Ende 423
erster / letzter 402
formatieren 422
hinzufügen 401
Inhalt 412
zusammenhalten 401

Abschnitt 398, 402
ändern 403
formatieren 402
hinzufügen 403

AccelerationRatio
AnimationTimeline 337

AcceptsReturn
TextBox 78

Add()
AdornerLayer 286
Blocks 401
Children 33
ColumnDefinitions 44
eigene Auflistung 229
Inlines 75
InputGestureCollection 152
Int32Collection 295
Items 84, 95
PathSegmentCollection 256
Point3DCollection 295
PointCollection 247
ValidationRules 223

AddChild()
IAddChild 426

AddedLength
TextChange 79

Adobe Flash 13
AdornedElement

Adorner 287
RenderSize 287

Adorner 286
AdornedElement 287
OnRender() 287

AdornerLayer
Add() 286
GetAdornerLayer() 286

Index

446

AlignCenter
EditingCommands 422

AlignLeft
EditingCommands 422

AlignRight
EditingCommands 422

AllowsTransparency
Window 183

Alphakanal 263, 280
Alt

ModifierKeys 150
AmbientLight 293, 302
Angehängte Eigenschaft 23
Angehängtes Ereignis 27
Angle

AxisAngleRotation3D 323
RotateTransform 271, 272, 274

AngleVelocity
ManipulationVelocities 145

AngleX
SkewTransform 276

AngleY
SkewTransform 276

Animation 333
anhalten 347
beenden 347
Beginn 334
Beschleunigung 337
der 3D-Rotation 356
der Bewegung 334
der Farbe 349, 362
der Größe 343
der Transformation 347
der Transparenz 343
der Zeichenkette 363
Ende 334
entlang Pfad 368
federt 367
fortsetzen 347
gemeinsame Eigenschaften 341
Geschwindigkeit 335
Geschwindigkeit ändern 347, 356
mit Event Trigger steuern 354
nach Funktion 364
nach Sinus 367
nach Spline 359
ohne Programmcode 350

per Programmcode 343
Rückkehr 337
springen 356
sprunghafte 359, 367
starten 335, 343, 346, 351
Startverzögerung 338
steuern 345
unterteilen 359
variable Geschwindigkeit 359
Veränderung 334
Wiederholung 337
Zeitdauer 335, 337
Zieleigenschaft 343, 345
Zielelement 343, 345
zu Punkt springen 347
zum Ende springen 347
zuordnen 335, 343, 346, 356

AnimationTimeline 333, 334, 337
Anwendung

Anzahl Aufrufparameter 163
Aufbau 155
Aufruf von Kommandozeile 161
Aufrufkommando 163
Aufrufparameter 160, 163
Installation 164
Minimal-Aufbau 155
Ressource 164
Rückgabeparameter 160, 163
schließen 147
Startdatei 159
starten 157
wird beendet 159, 161
wird gestartet 159, 161

App.xaml 159, 161, 167
App.xaml.cs 159, 162
AppendBreak()

PromptBuilder 387, 389
AppendText()

PromptBuilder 387
AppendTextWithHint()

PromptBuilder 387, 389
Application 157

Current.Resources 214
Exit 159, 161
Resources 168, 207
Run() 157
Startup 159, 161
StartupUri 159

Index

447

ApplicationCommands 145
Close 147

ApplicationExitCode
ExitEventArgs 163

ArcSegment 255, 343
IsLargeArc 256
IsStroked 255
Point 255
RotationAngle 256
Size 255
SweepDirection 256

Args
Count() 163
StartupEventArgs 163

Arrange() 428
Asterisk

SystemSounds 374
Attached Event 27, 221
Attached Property 23
Audio-Ausgabe 371, 375
Aufklappelement 108
Auflistung 81

Anzahl Einträge 84
eigener Typ 228
Eintrag 81
Eintrag einfügen 85
Eintrag hinzufügen 84
Eintrag löschen 85, 88
leeren 85, 96
Nummer eines Eintrags 95

Auflistungstyp 81
Aufrufparameter 160
Aufzählung

in Dokument 398, 403
Ausrichtung 401

horizontal 49, 63
vertikal 63

Ausrichtung des Inhalts
horizontal 63
vertikal 63

Ausstanzung 283, 380
Auswahl

einstellen 71
Auswahlelement 68, 81
AutoGenerateColumns

DataGrid 236

AutoReverse
AnimationTimeline 337

AutoToolTipPlacement
BottomRight 102
Slider 102
TopLeft 102

Axis
AxisAngleRotation3D 323

AxisAngleRotation
animieren 357

AxisAngleRotation3D 322

B

BackEase 367
Background 34, 55, 280
BackgroundWorker 98

DoWork() 99
IsBusy 99
ProgressChanged 99
ReportProgress() 99
RunWorkerAsync() 99
WorkerReportsProgress 99

BackMaterial
GeometryModel3D 297

Balance
MediaPlayer 376

BasedOn
Style 199

BasedOnAlignment
GridResizeBehavior 49

BaselineAlignment
Inline 415

Batch-Datei 161
Baumstruktur 19
Bedienbarkeit 56
Beep

SystemSounds 374
Begin()

Storyboard 343, 346
BeginAnimation() 335
BeginStoryboard 351, 355
BeginStoryboardName 356
BeginTime

AnimationTimeline 338
TimeSeekOrigin 347

Index

448

Benannter Style 194
vererben 198

Benutzeroberfläche
wechseln 212

Berühren
beenden 142
beginnen 142

Berührung
Bildschirm 141
Punkt 142

Berührungsempfindlich 139
Beschriftung 71

einfach 71
formatierte 73

Bevel
PenLineJoin 248

Bézier-Kurve 254
BezierSegment 254
Bild 128

als Farbpinsel 267
Datenquelle 128
Dehnung 128
Größe 128
in Dokument 413, 418
neu laden 166

Bilddatei
in Geometrie 260

Bildlaufleiste 103
Binding 218

DataTrigger 239
ElementName 218
GetBinding() 222
Mode 219
Path 218
Source 226
UpdateSourceTrigger 220
ValidationRules 222

BindingExpression
UpdateSource() 220

BindingOperations 219
ClearAllBindings() 219
ClearBinding() 219
SetBinding() 219

Bindung
an Geste 150
an Maus 150
an Taste 150

Bitmapeffekt 284
BitmapImage 166
BitmapSource 166
BlackoutDates

Calendar 126
Blickrichtung 292
Block 81, 398

alle löschen 410
BreakPageBefore 403
gruppieren 402
TextAlignment 401
Verweis auf Element 402

BlockCollection 398
Blocks 398

Add() 401
Clear() 410
ElementAt() 402
FirstBlock 402
LastBlock 402

Blocksatz 401
BlockUIContainer 398, 410

ändern 412
hinzufügen 412

BlurEffect 284
Radius 285

BlurRadius
DropShadowEffect 285

Bogensegment 255
Bogen sichtbar 255
Drehrichtung 256
Drehwinkel 256
mehr als 180 Grad 256
Radius 255
Zielpunkt 255

Bold 74
FontWeights 56
Inline-Typ 413

bool? 67
BooleanAnimationUsingKeyFrames 359
Border 104

BorderBrush 104
BorderThickness 104
CornerRadius 104

BorderBrush
Border 104
Tabelle 408

Index

449

BorderThickness
Border 104
Tabelle 408

Both
TickPlacement 101

Bottom
Canvas 30

BottomRight
AutoToolTipPlacement 102
TickPlacement 101

BounceEase 367
Bounces 367
Bounciness 367

Bounces
BounceEase 367

Bounciness
BounceEase 367

Box
TextMarkerStyle 405

BreakPageBefore
Block 403

Browser 130
angezeigte Seite 130
darf sich in History bewegen 131
in History bewegen 131
navigieren zu HTML-Code 130
navigieren zu URI 130
Seite ganz geladen 130
Seite gewechselt 130

Browseranwendung 184
Brush 55, 104, 262

DiffuseMaterial 293, 316
GeometryDrawing 261

Brushes
Transparent 104

Button 64
Basistyp 201
dauernd betätigen 65

ButtonBase 201
ButtonState

MouseButtonEventArgs 138
By

AnimationTimeline 334
Byte 263
ByteAnimation 333
ByteAnimationUsingKeyFrames 359

C

Calendar 122
BlackoutDates 126
DisplayDate 124
DisplayDateEnd 126
DisplayDateStart 126
FirstDayOfWeek 126
SelectedDate 125
SelectedDates 124
SelectedDatesChanged 124
SelectionMode 122

CalendarBlackoutDatesCollection 126
CalendarDateRange 126
CalendarSelectionMode 122
Camera 292
Cancel

CancelEventArgs 161
CancelEventArgs 161

Cancel 161
CanExecute

CommandBinding 147
CanGoBack

NavigationService 179
CanGoBack()

WebBrowser 131
CanGoForward

NavigationService 179
CanGoForward()

WebBrowser 131
CanMinimize

ResizeMode 171
CanResize

ResizeMode 171
CanResizeWithGrip

ResizeMode 171
CanUserAddRows

DataGrid 235
CanUserDeleteRows

DataGrid 235
CanUserReorderColumns

DataGrid 235
CanUserResizeColumns

DataGrid 235
CanUserResizeRows

DataGrid 235

Index

450

CanUserSortColumns
DataGrid 235

Canvas 30
Bottom 30
Left 30
LeftProperty 32
Right 30
Top 30
TopProperty 32

Cascading Style Sheets 194
Cell

DataGridSelectionUnit 235
CellOrRowHeader

DataGridSelectionUnit 235
Cells

TableRow 407
Center

EllipseGeometry 250
RadialGradientBrush 266

CenterOwner
WindowStartupLocation 170, 175

CenterScreen
WindowStartupLocation 170

CenterX/Y/Z
RotateTransform3D 323
ScaleTransform3D 319

ChangedButton
MouseButtonEventArgs 138

Changes
TextChangedEventArgs 79

CheckBox 66
Basistyp 201
Checked 67
IsChecked 67
IsThreeState 67
Unchecked 67
Zustand 67

Checked
CheckBox 67
RadioButton 68
ToggleButton 67

Child 19
BlockUIContainer 410
ElementHost 438
PageContent 424
WindowsFormsHost 431

Children 19
Add() 33
FixedPage 424
Remove() 34, 59
TransformGroup 279
Viewport3D 293

Choices 396
Circle

TextMarkerStyle 405
CircleEase 367
Clear()

Blocks 410
Items 85, 96

ClearAllBindings()
BindingOperations 219

ClearBinding()
BindingOperations 219

ClearContent()
PromptBuilder 386

ClickCount
MouseButtonEventArgs 138

Client-Bereich 29
Clip 283

MediaElement 380
ClipboardCopyMode

DataGrid 235
Close

ApplicationCommands 147
Closed

ContextMenu 116
Window 160

Closing
Window 160

CLR-Property 22
cm

Größe 401
Code

mehrfach verwenden 166
Collapsed

Expander 109
TreeViewItem 92
Visibility 57

Color 56
DirectionalLight 297
DropShadowEffect 285
EmissiveMaterial 316
FromArgb() 263, 435

Index

451

GradientStop 264
PointLight 305
SolidColorBrush 263
SpecularMaterial 316

ColorAnimation 333, 349
ColorAnimationUsingKeyFrames 359, 362
ColorDialog 435
Colors 56
Column

Grid 43
ColumnDefinitions

Count 45
Grid 43

ColumnProperty
Grid 44

Columns
DataGrid 236
Table 407

ColumnSpan
Grid 46
TableCell 408

CombinedGeometry 251
Geometry1 252
Geometry2 252
GeometryCombineMode 253

ComboBox 88
Auswahl gewechselt 90
editierbar 88
Eintrag 89
IsEditable 88
SelectionChanged 90
StaysOpenOnEdit 88
Text 88
Text der Auswahl 88
Vorauswahl 90

ComboBoxItem 89
ComboBoxStyleKey

ToolBar 120
COM-Komponente 438
Command 422

CommandBinding 147
KeyBinding 150

CommandBinding 147
CanExecute 147
Command 147
Executed 147

CommandBindings 147
CommandLine

Environment 163
Commands 146
CommandTarget 422

KeyBinding 150
ComponentCommands 145
Condition

Property 206
Value 206

Conditions
MultiTrigger 206

ContainerUIElement3D 310
Content 54

ContentControl 210
Label 71

ContentControl 210
Content 210

ContentEnd
FlowDocument 423
Paragraph 423

ContentStart
FlowDocument 423
Paragraph 423

ContextMenu 116
Closed 116
HorizontalOffset 116
IsOpen 118
Opened 116
VerticalOffset 116

Control 166
ModifierKeys 150

Control Template 207
Definition 207
in Typ-Style 211
mit Property Trigger 208
Triggers 209
Zieleigenschaft 209
Zuordnung 208

ControlTemplate
TargetType 208
Zieltyp 208

Copy 77
CopyToOutputDirectory 164
CornerRadius

Border 104

Index

452

Count
RemovedItems 84
SelectedDates 125

Count()
Args 163

CSS 74, 194, 400
CubicEase 367
CurrentAndNext

GridResizeBehavior 49
Cut 77

D

Data
Path 250, 257

DataContext 227, 230, 232
DataFormats 423
DataGrid 232

ausgewählte Inhalte 237
Auswahl gewechselt 236
AutoGenerateColumns 236
CanDeleteAddRows 235
CanUserAddRows 235
CanUserReorderColumns 235
CanUserResizeColumns 235
CanUserResizeRows 235
CanUserSortColumns 235
CheckBox 236
ClipboardCopyMode 235
Columns 236
ComboBox 237
Daten ändern 234
Daten hinzufügen 235
Daten löschen 235
Datenquelle 233
Datensätze auswählen 235
eigenes Feld 237
Felder übernehmen 236
GridLinesVisibility 235
HeadersVisibility 235
Hyperlink 237
IsReadOnly 234
ItemsSource 233
Köpfe sichtbar 235
Kopiermodus 235
Linien sichtbar 235
SelectedItems 237
SelectionChanged 236

SelectionMode 235
SelectionUnit 235
Spalte sortieren 235
Spalten 236
Spalten tauschen 235
Spaltenbreite 235
Spaltentypen 235
Zeilenhöhe 235
Zelle auswählen 235

DataGridCheckBoxColumn 236
DataGridClipboardCopyMode 235
DataGridComboBoxColumn 237
DataGridGridLinesVisibility 235
DataGridHeadersVisibility 235
DataGridHyperlinkColumn 237
DataGridSelectionMode 235
DataGridSelectionUnit 235
DataGridTemplateColumn 237
DataGridTextColumn 236
DataRowView 237

Row 237
DataTable 232
DataTemplate 237

DataType 238
Triggers 239

DataTrigger 238
Bedingung 239
Binding 239
Value 239

DataType
DataTemplate 238

Datei öffnen
Dialogfeld 434

Dateiauswahl 186
Daten

externe 217
Datenbank 230

Adapter 232
aktualisieren 234
im DataGrid 232
Provider 232
SQL-Befehle 234
Tabelle 232
Verbindung 232

Datenbindung 217
aktualisieren 220
alle auflösen 219

Index

453

an Auflistung von Objekten 227
an Datenbank 230, 232
an ObjectDataProvider 229
an Objekt 224
eine auflösen 219
ermitteln 222
gebundene Eigenschaft 218
gebundenes Element 218
Kontext 226
Label 72
ListBox 228
mit Data Template 238
Quelle 224, 226
Richtung 219
setzen 219
Validierung 222
Zeitpunkt 220

Datenformat 423
Datenquelle

Auflistung von Objekten 227
Datenbank 230, 232
Object Data Provider 229
Objekt 224

DatePicker 126
SelectedDate 127
SelectedDateChanged 127
SelectedDateFormat 127

DatePickerFormat 127
DateTime 122, 124, 127
DateTime? 125

auf Wert prüfen 127
HasValue 127

Datum 122
Datumsbereiche 122
Datumswähler 126

ausgewähltes Datum 127
Format 127
Wechsel der Auswahl 127

Datumswerte 122
DayOfWeek 126
DecelerationRatio

AnimationTimeline 337
DecimalAnimation 333
DecimalAnimationUsingKeyFrames 359
Dehnung 128
Delegate 158
delete

SQL 234

Delta
MouseWheelEventArgs 139

DeltaManipulation
ManipulationDeltaEventArgs 144

Dependency Property 21
Wert ermitteln 32
Wert setzen 32

Dialogfeld
eigenes 173

DialogResult 434
Window 175

Dicke 60, 62
DictationGrammar 392
DiffuseMaterial 293

Brush 293, 316
Digitalisiertablett 139
Direction

DirectionalLight 297
DropShadowEffect 285
SpotLight 304

DirectionalLight 297, 302
Color 297
Direction 297

DirectX 13
Disc

TextMarkerStyle 405
DiscreteDoubleKeyFrame 359
DisplayDate

Calendar 124
DisplayDateEnd

Calendar 126
DisplayDateStart

Calendar 126
DisplayMemberBinding

GridViewColumn 232
Dock

DockPanel 40
TabStripPlacement 111

DockPanel 39, 113, 118, 121
Dock 40
DockProperty 42
LastChildFill 42

DockProperty
DockPanel 42

Document
DocumentViewer 424

DocumentViewer 424

Index

454

Dokument
Absatz 400
ändern 397, 420
anzeigen 397
Beginn 423
blättern 399, 420
dynamisches 397
Ende 423
formatieren 400, 420
mit Element 410
Position 423
scrollen 399, 419
Seite 424
statisches 397
zoomen 400
zum Drucken 424

double? 335
HasValue 337

DoubleAnimation 333, 334
DoubleAnimationUsingKeyFrames 359
DoubleAnimationUsingPath 368
DoubleCollection 102
DoWork()

BackgroundWorker 99
Drag

SystemGesture 141
Drag&Drop 164

ermöglichen 184
DragMove()

Window 184
DrawEllipse

DrawingContext 287
Drawing 259
DrawingContext 287

DrawEllipse 287
DrawingGroup 260
DrawingImage 261
Drehbuch 341
Drehung

2D-Grafik 271
3D-Grafik 322
Touchscreen 142

Dreidimensionale Grafik 289
Dreidimensionale Landschaft 329
Dreieck

in 3D-Grafik 290
DropShadowEffect 284

Druck
vorbereiten 426
Warteschlange 426

Drucken
visuelles Objekt 426

Drucker
angeschaltet 428
Anzahl Jobs 428
Dokumentgröße 428
Druckbereich 428
Name 428

Duration
AnimationTimeline 337
TimeSeekOrigin 347

Durchsichtigkeit 183, 280
DynamicResource 168
Dynamische Ressource 167, 168

E

EaseIn
EasingMode 364

EaseInOut
EasingMode 364

EaseOut
EasingMode 364

Easing Function 364
Modus 364

EasingDoubleKeyFrame 359
EasingFunctionBase 364
EasingMode

in Easing Function 364
echo off 161
Ecke abrunden 104
EditingCommands 146, 421

ToggleBold 148
Effect 284
Eigenschaft

Abhängigkeits- 21
zentral definieren 194

Eigenschaftselement 21
Eigenschaftswert

überschreiben 196
Eingabegeste 149

hinzufügen 152
Sammlung 152

Eingabestift 139

Index

455

ElasticEase 367
Oscillations 367
Springiness 367

Element
allgemeine Eigenschaften 53
andocken 39
Ausrichtung 62
Außenabstand 36, 61
ausstanzen 283
bedienbares 56
binden 219
Breite 36, 54
Datenkontext 227, 230
drehen 271
Eigenschaft 20
einrahmen 104
entfernen 59
Fokus setzen 79
gestalten 30, 207
gruppieren 107
hervorheben 104
Hintergrund 280
Hintergrundfarbe 34, 55
Höhe 54
im Layout 56
in Dokument eingebettet 410
in Dokument verankern 418
in Raster anordnen 42
in Text eingebettet 413
Inhalt 54
Innenabstand 59
ist geladen 160
ist initialisiert 160
Kontext-Info 76
letztes zum Füllen 42
mit Bild 64
mit Schatten 284
Name 19
neigen 276
neu erzeugen 32
positionieren 30
Schriftart 55
Schriftdehnung 55
Schriftgewicht 55
Schriftgröße 55
Schriftstil 55
sichtbares 56

skalieren 274
stapeln 35
stapeln mit Umbruch 37
Stil 193
Tastatursteuerung 64
Template 208
Transparenz 280
übereinander 272
übergeordnetes 25, 34, 94
verschieben 277
verwischen 284
Vordergrundfarbe 55
Zuordnung lösen 34
zusammenfassen 104

ElementAt()
Blocks 402
Inlines 76

ElementHost 436
ElementName 73

Binding 218
Ellipse 242, 249

Größe 250
Ort 250

EllipseGeometry 249
Center 250
RadiusX 250

EmissiveMaterial 314
Color 316

EndPoint
LinearGradientBrush 264
LineGeometry 250

EndStyle()
PromptBuilder 387

Environment
CommandLine 163

Ereignis
angehängtes 23, 27
Auslöser 26
Bearbeitungsreihenfolge 202
Behandlung abbrechen 204
geroutetes 25, 27
in 3D-Grafik 309
Registrierer 26
Style für Reaktion 202
wiederholen 65

Ereignishandler 25
Ereignismethode 203

Index

456

Ereignisreihenfolge 158
errorlevel 161
EvenOdd

FillRule 259
Event

EventSetter 203
Event Trigger 350

als Ressource 351
in Style 352
steuert Animation 354
zuordnen 355

EventArgs 26
Event-Bubbling 26
EventHandler

neu erzeugen 57
EventSetter

Bearbeitungsreihenfolge 202
Event 203
Handler 203
Style 202

EventTrigger
RoutedEvent 351
SourceName 355

Event-Tunneling 26
Exclamation

SystemSounds 374
Exclude

GeometryCombineMode 253
Executed

CommandBinding 147
Exit

Application 159, 161
ExitEventArgs 160

ApplicationExitCode 163
ExpandDirection

Expander 108
Expanded

Expander 109
TreeViewItem 92

Expander 108
Aufklapprichtung 108
Beschriftung 109
Collapsed 109
ExpandDirection 108
Expanded 109
Header 109
in Windows Forms 436

IsExpanded 109
ist aufgeklappt 109
klappt auf 109
klappt zu 109

ExpandSubtree()
TreeViewItem 96

ExpansionVelocity
ManipulationVelocities 145

Explicit
UpdateSourceTrigger 220

Expliziter Style 194
Exponent

ExponentialEase 368
ExponentialEase 368

Exponent 368
Extended

DataGridSelectionMode 235
SelectionMode 85

eXtensible Application Markup Language
15

F

Farbe 56
animieren 349, 362
Komponente 263, 280
konvertieren 435
linearer Verlauf 263
radialer Verlauf 265

Farbe auswählen
Dialogfeld 435

Farbverlauf
Übergangspunkt 264

Fenster 169
Änderung der Größe 170
Besitzer 174
darf transparent sein 183
eigenes Unterfenster 173
Eigenschaft 169
Ereignis 169
Größe 169
Größe anpassen 172
Größe geändert 122
Größe vorher, nachher 171
Größe wurde geändert 171
immer oben 171
in Taskbar anzeigen 170

Index

457

ist entladen 160
ist geladen 70, 122, 160
ist geschlossen 160
ist initialisiert 160, 214
Layout-Aktualisierung 428
modal anzeigen 174
Navigation 175
nicht-modal anzeigen 174
Position wurde geändert 171
Rahmenart 183
Rückgabewert 175
Schließen abbrechen 161
Startposition 170
Status 131
Status wurde geändert 171
Titel 169
Unterfenster erzeugen 174
versehentlich geschlossen 16
wird geschlossen 160, 234

Fettschrift 56, 74, 148, 413
FieldOfView

PerspectiveCamera 300
Figure

Inline-Typ 413, 417
FigureHorizontalAnchor 418
Figures

PathGeometry 255
FigureVerticalAnchor 418
FilePrompt 384
FileStream 185, 214
Fill

Path 250
Shape 243
Stretch 128

Fill()
OleDbAdapter 232

FillRule
GeometryGroup 259

FindResource() 169, 196
Finger

Touch 141
FirstBlock

Blocks 402
FirstDayOfWeek

Calendar 126
FixedDocument 424
FixedPage 424

Flat
PenLineCap 248

Flick
SystemGesture 141

FlipX
TileMode 269

FlipXY
TileMode 269

FlipY
TileMode 269

FlowDirection
StackPanel 36
WrapPanel 38, 110

FlowDocument 81, 397
FlowDocumentPageViewer 397, 420
FlowDocumentReader 397, 398

ViewingMode 399
FlowDocumentReaderViewingMode 399
FlowDocumentScrollViewer 397, 419
Focus() 79
FolderBrowserDialog 434
FontDialog 436
FontFamily 54

TextElement 401
FontSize 55, 401
FontStretch 55
FontStyle 55
FontWeight 55
Foreground 55
Forever

Duration 337
RepeatBehavior 337

Formatierung 400
kaskadierende 74

Fortschritt
ist eingetreten 100
Prozentsatz 100

Fortschrittsbalken 97
Frame 180

Aufbau 181
Datei 181
erste 181
Navigationsziel 181
Source 181
Titel 181

From
AnimationTimeline 334

Index

458

FromArgb()
Color 263, 435

FullRow
DataGridSelectionUnit 235

G

Gadget 182
Geometrie 248

Füllregel 259
gruppieren 258
kombinierte 251
kompakte Schreibweise 257
komplexe 253
Mengenlehre 253
mit Bilddatei 260
mit Schriftartzeichen 260
mit Videodatei 260
Teilfigur 253
Teilsegment 254

Geometry 248, 283
GeometryDrawing 261
GeometryModel3D 293
Viewport2DVisual3D 313

Geometry1
CombinedGeometry 252

Geometry2
CombinedGeometry 252

GeometryCombineMode
CombinedGeometry 253

GeometryDrawing 261
GeometryGroup 258

FillRule 259
GeometryModel3D 293, 306

BackMaterial 297
Transform 320

Gerichtetes Licht 297, 302
Geste 149

Bindung 150
hinzufügen 152
Sammlung 152

GetAdornerLayer()
AdornerLayer 286

GetBinding()
Binding 222

GetInstalledVoices
SpeechSynthesizer 382

GetIntermediateTouchPoints()
TouchEventArgs 142

GetPosition()
MouseButtonEventArgs 138
MouseEventArgs 122, 138
MouseWheelEventArgs 139

GetTouchPoint()
TouchEventArgs 142

GetType() 26
GetValue() 22, 32, 136
Glänzendes Material 314
GlyphRunDrawing 260
GoBack()

NavigationService 179
WebBrowser 131

GoForward()
NavigationService 179
WebBrowser 131

GradientOrigin
RadialGradientBrush 266

GradientStop 264
Color 264
Offset 264

GradientStopCollection 265
GradientStops

LinearGradientBrush 265
Grafik 241, 289
Grafik-Hardware 14
GrammarBuilder 394, 396
Grammatik

eigene 394
laden 392, 396

Grid 42
Anzahl der Spalten 45
Anzahl der Zeilen 45
Column 43
ColumnDefinitions 43
ColumnProperty 44
ColumnSpan 46
Row 43
RowDefinitions 43
RowProperty 44
RowSpan 46
Spalte hinzufügen 44
Spalten 43
Zeile hinzufügen 44
Zeilen 43

Index

459

Zellen aufspannen 46
Zellgröße 46
Zellgröße flexibel 47

GridLength 408
GridLinesVisibility

DataGrid 235
GridResizeBehavior 49
GridSplitter 47

HorizontalAlignment 49
ResizeBehavior 49

GridUnitType 408
GridView 232

Datenbindung 232
Spaltenbeschriftung 232

GridViewColumn 232
DisplayMemberBinding 232
Header 232

Größenänderung
2D-Grafik 274
3D-Grafik 319
Faktor 274
Verhalten 49

GroupBox 107
Beschriftung 108
Header 108

GroupName
RadioButton 69

Guid
StylusButton 141

Gültigkeitsbereich 166
Style 198, 200

H

Hand
SystemSounds 374

Handled
RoutedEventArgs 204

Handler
EventSetter 203

HasValue
DateTime? 127
double? 337

Hauptelement 19
Hauptmenü 113
Header

Expander 109
GridViewColumn 232

GroupBox 108
MenuItem 114
RibbonMenuItem 189
TabItem 111
TreeViewItem 92

HeadersVisibility
DataGrid 235

Height 54
Image 128
ListBox 82
RowDefinition 46
SizeToContent 172
Window 169

Hidden
Visibility 57

Hierarchie 19, 25
darstellen 90
von Layouts 33

Hilfestellung 15
Hintergrund

durchsichtiger 280
Hintergrundvorgang 98

berichtet 99
darf berichten 99
ist tätig 99
starten 99
Zustand geändert 99

History
Navigation 177

HoldEnter
SystemGesture 141

Horizontal
Orientation 36

HorizontalAlignment 63
GridSplitter 49
Stretch 49

HorizontalAnchor
Figure 418

HorizontalContentAlignment 63
HorizontalOffset

ContextMenu 116
HoverEnter

SystemGesture 141
HoverLeave

SystemGesture 141
Hyperlink 178

Inline-Typ 413
NavigateUri 178, 182

Index

460

TargetName 182
Ziel 178, 182
Zielframe 182

I

IAddChild 426
Icon

MenuItem 114
Image 65, 128

Height 128
Source 65, 128, 166, 261
Stretch 128
Width 128

ImageBrush 267
für 3D-Grafik 319
ImageSource 267
TileMode 267
Viewbox 267
ViewboxUnits 269
Viewport 267
ViewportUnits 269

ImageDrawing 260
ImageSource 128

ImageBrush 267
RibbonMenuItem 189

Impliziter Style 197
in

Größe 401
InAir

StylusEventArgs 140
Inch 401
IndexOf()

Items 95
Ingebretsen 17
Initialized

Element 160
Window 160, 214

InitialVelocities
ManipulationInertiaStartingEventArgs

145
Inline 398

BaselineAlignment 415
TextDecorations 415

InlineCollection 73, 398, 412
Inlines 73

Add() 75
ElementAt() 76

InsertAfter() 75
InsertBefore() 75
Paragraph 398, 412

InlineUIContainer
Inline-Typ 413

InnerConeAngle
SpotLight 304

InputBindings 150
InputGestureCollection 152

Add() 152
insert

SQL 234
Insert()

Items 85, 95
InsertAfter()

Inlines 75
InsertBefore()

Inlines 75
Installation 164
Int16Animation 333
Int16AnimationUsingKeyFrames 359
Int32Animation 333
Int32AnimationUsingKeyFrames 359
Int32Collection 293

Add() 295
Int64Animation 333
Int64AnimationUsingKeyFrames 359
IntelliSense 15
Interoperabilität 431
Intersect

GeometryCombineMode 253
Inverted

StylusEventArgs 140
IsBusy

BackgroundWorker 99
IsCancel 65
IsCheckable

MenuItem 114
IsChecked

CheckBox 67
MenuItem 116
RadioButton 69
ToggleButton 67

IsClosed
PathFigure 255

IsDefault 65

Index

461

IsEditable
ComboBox 88

IsEnabled 57
SpellCheck 78

IsEnabledProperty
SpellCheck 79

IsExpanded
Expander 109
TreeViewItem 92

IsFilled
PathFigure 255

IsIndeterminate
ProgressBar 98

IsLargeArc
ArcSegment 256

IsLoaded
Window 70

IsLocked
ToolBarTray 118

IsManipulationEnabled 142
IsMoveToPointEnabled

Slider 102
IsMuted

MediaPlayer 375
IsOpen

ContextMenu 118
IsPageViewEnabled

FlowDocumentReader 400
IsReadOnly

DataGrid 234
IsRepeat

KeyEventArgs 134
IsScrollViewEnabled

FlowDocumentReader 400
IsSelected

Selector 83, 87, 90, 112
TreeViewItem 92

IsSelectionRangeEnabled
Slider 102

IsSnapToTickEnabled
Slider 102

IsStroked
ArcSegment 255
LineSegment 255

IsThreeState
CheckBox 67
ToggleButton 67

IsTwoPageViewEnabled
FlowDocumentReader 400

IsVisualHostMaterial
Viewport2DVisual3D 313

Italic 74
FontStyles 56
Inline-Typ 413

ItemCollection 81
ItemHeight

WrapPanel 38
Items 81

Add() 84, 95
Clear() 85, 96
Count 84
IndexOf() 95
Insert() 85, 95
Remove() 85, 88, 96

ItemsSource
DataGrid 233
ListView 231

ItemWidth
WrapPanel 38

J

Justify
TextAlignment 401

K

Kachel 267
Kalender 122

Anzahl ausgewählte Daten 125
Anzeigedatum 124
ausgeschlossene Daten 126
ausgewählte Daten 124
ausgewähltes Datum 125
Auswahlmodus 122
Datumsbereich 126
erster Wochentag 126
Grenzwerte 126
Wechsel der Auswahl 124

Kamera
Blickrichtung 292
für 3D-Grafik 292, 299
perspektivische 299
Position 292
Sichtfeld 293

Index

462

Kameralage
für 3D-Grafik 296, 301

Kaskadierend 74
Kaxaml 17
KeepTogether

Paragraph 401
KeepWithNext

Paragraph 401
Key 133

KeyBinding 150
KeyBinding 150

Command 150
CommandTarget 150
Key 150
Modifiers 150

KeyDown 133
KeyEventArgs 133

IsRepeat 134
RoutedEvent 134

Keyframes 333, 359
KeyGesture 152
KeySpline

SplineDoubleKeyFrame 362
KeyTime

für KeyFrame 359
Paced 360
Uniform 360

KeyUp 133
Kombinierte Geometrie 251
Kommando 145, 422

ausführen 147
Bindung 147
darf ausgeführt werden 147
geroutetes 152
Sondertaste 150
Tastenbindung 150
Ziel 422
Zielelement 150

Kommandozeile 161
Komplexe Geometrie 253
Kontextmenü 116

Eintrag 116
ist offen 118
öffnet sich 116
Platzierung 116
schließt sich 116
synchron halten 116

Koordinatensystem 289
Kopieren

in Ausgabeverzeichnis 164
Kursivschrift 56, 74, 413

L

Label 71
Content 71
Datenbindung 72
Inhalt 71
Target 72

Landschaft
in 3D-Grafik 329

LargeChange
ScrollBar 103
Slider 100

LargeImageSource
Ribbon 189

LastBlock
Blocks 402

LastChildFill
DockPanel 42

Laufleiste 35
Laufzeit 167
Lautstärke

Mediendatei 376
Sprachausgabe 382
Sprache 389

Layer
für Verzierung 286

Layout 29
Basisklasse 29
Hierarchie 33
kombinieren 49

LayoutTransform 271, 273
Left

Canvas 30
LeftClick

MouseAction 150
LeftDoubleClick

MouseAction 150
LeftProperty

Canvas 32
LeftToRight

FlowDirection 36
Leinwand

für 3D-Grafik 292

Index

463

Leiste 113
Lernprogramm

für Spracherkennung 390
Licht 293

für 3D-Grafik 297, 302
Lichtkegel 302
Line 244

Koordinaten 244
LinearDoubleKeyFrame 359
Linearer Farbverlauf 263
LinearGradientBrush 263

EndPoint 264
für 3D-Grafik 319
GradientStops 265
StartPoint 264

LinearVelocity
ManipulationVelocities 145

LineBreak 65, 74
Inline-Typ 413

LineGeometry 249
EndPoint 250
StartPoint 250

LineSegment 255
IsStroked 255
Point 255

Linie 244, 249
Endpunkt 250
Startpunkt 250

Linienende 247
Liniensegment 255

Linie sichtbar 255
Zielpunkt 255

List
Block-Typ 398, 403
MarkerOffset 405
MarkerStyle 405
StartIndex 405

ListBox 82
ausgewählte Einträge 83, 87
Auswahl gewechselt 83
Datenbindung 228
Eintrag 82
Eintrag auswählen 84
Eintrag sichtbar machen 84
Mehrfachauswahl 85
nicht mehr ausgewählter Eintrag 83

Nummer des ausgewählten Eintrags 83
raumsparende Variante 88
ScrollIntoView() 84
SelectedIndex 83
SelectedItem 83
SelectedItems 87
Selection_Changed 83
SelectionMode 85
Vorauswahl 83, 87

ListBoxItem 82
Selected 83
Unselected 83

Liste 82
ändern 406
hinzufügen 406
in Dokument 403
markieren 405
Markierungsabstand 405

ListItem 405
ListItemCollection 405
ListView 230

Darstellung 231
Datenquelle 231
füllen 232
ItemsSource 231
View 231

Load()
SoundPlayer 371
TextRange 423
XamlReader 214

LoadAsync()
SoundPlayer 372

LoadCompleted
WebBrowser 130

Loaded
Element 160
Window 122, 160

LoadGrammar() 392
SpeechRecognitionEngine 396

LocationChanged
Window 171

Logische Ressource 166
Long

DatePickerFormat 127
LookDirection

OrthographicCamera 292
PerspectiveCamera 300

Index

464

LostFocus
UpdateSourceTrigger 220

LowerLatin
TextMarkerStyle 405

LowerRoman
TextMarkerStyle 405

M

Magere Schrift 56
Main()

Window 157
MainWindow.xaml 167
Manipulation

Ereignis 141, 142
erlaubt 142
Trägheit 142

ManipulationBoundaryFeedback 143
ManipulationCompleted 143, 145
ManipulationCompletedEventArgs 145
ManipulationDelta 142, 144
ManipulationDeltaEventArgs 144
ManipulationInertiaStarting 142, 144
ManipulationInertiaStartingEventArgs 145
ManipulationOrigin 144
ManipulationStarted 142, 144
ManipulationStarting 142, 144
ManipulationVelocities 145
Manual

SizeToContent 172
WindowStartupLocation 170

Margin 36, 61
MarkerOffset

List 405
MarkerStyle

List 405
Markup Extension 24, 218
Maske 281
Material 293

für 3D-Grafik 313
GeometryModel3D 293

MaterialGroup 314
MatrixAnimationUsingKeyFrames 359
MatrixAnimationUsingPath 368
Maus 136

Anzahl Clicks 138
bewegt 122

Bindung 150
Buttonstatus 138
Click-Arten 150
Ereignis 138
erweiterte Taste 138
Position 122, 138, 139
welcher Button 138

Mausaktion 149, 152
Mausrad

Änderung 139
Click 150
Ereignis 139
Info über 136

Maustaste
Ereignis 138
Info über 136

Maximized
WindowState 131, 171

Maximum
ProgressBar 98
ScrollBar 104
Slider 100

MaxLength
TextBox 80

Measure() 428
MediaCommands 146
MediaElement 378, 380
MediaFailed

MediaElement 379
MediaPlayer 375
MediaTimeline 379
Mediendatei

abspielen 375, 378, 380
Fehler anzeigen 379

Menu 113
Eintrag 113

Menü 113
Platzierung 113

Menüband 186
MenuItem 113, 116

Beschriftung 114
Bild 114
Header 114
Icon 114
IsCheckable 114
IsChecked 116
markierbares 114
markiertes 116

Index

465

MeshGeometry3D 293
TextureCoordinates 313

Microsoft Excel 14.0 Object Library 438
Microsoft Ribbon for WPF.msi 186
Microsoft Word 14.0 Object Library 438
Microsoft.Jet.OLEDB.4.0 232
Microsoft.Office.Interop 439
Microsoft.Windows.Controls.Ribbon 189
MiddleClick

MouseAction 150
MiddleDoubleClick

MouseAction 150
Mikro 390

setzen 393
Minimized

WindowState 171
Minimum

ProgressBar 98
ScrollBar 104
Slider 100

Miter
PenLineJoin 248

Modales Fenster 174
Mode

Binding 219
Model3DCollection 308
Model3DGroup 306
Modell

für 3D-Grafik 306
ModelUIElement3D 309

MouseEnter 310
MouseLeave 310

ModelVisual3D 293
ModifierKeys 150
Modifiers

KeyBinding 150
MouseAction

MouseBinding 150
MouseBinding 150

MouseAction 150
MouseButton 138
MouseButtonEventArgs 136

ButtonState 138
ChangedButton 138
ClickCount 138
GetPosition() 138
RoutedEvent 138

MouseButtonState 138

MouseDown 26, 137
MouseEnter 137

ModelUIElement3D 310
MouseEventArgs 122, 136

GetPosition() 122, 138
RoutedEvent 138

MouseGesture 152
MouseLeave 137

ModelUIElement3D 310
MouseMove 138

Window 122
MouseUp 137
MouseWheel 137
MouseWheelEventArgs 136

Delta 139
GetPosition() 139
RoutedEvent 139

MP3-Datei
abspielen 376, 378

MPG-Datei
abspielen 380

MS Access 230
MS Excel

Mappe erzeugen 439
MS Excel 2010 438
MS Office

in WPF 438
MS Word

Dokument erzeugen 441
MS Word 2010 438
MS.Internal.NamedObject 237
Multiple

SelectionMode 85
MultipleRange

CalendarSelectionMode 123
Multitouch

Ereignis 141
Multi-Trigger 205
MultiTrigger 206

Conditions 206

N

Name 19
StylusButton 141

Namespace
einbinden 20, 153
lokaler 153, 226

Index

466

Navigate()
NavigationService 178
WebBrowser 130

Navigated
WebBrowser 130

NavigateToString()
WebBrowser 130

NavigateUri
Hyperlink 178, 182

Navigation 175
History 177
Vorwärts, Rückwärts 177

NavigationCommands 146
Navigationsdienst 178
NavigationService 185

CanGoBack 179
CanGoForward 179
GoBack() 179
GoForward() 179
Navigate() 178
Page 178

Navigationshost 184
NavigationWindow 176, 177, 181

Source 177, 181
Title 181

Neigung
2D-Grafik 276
Winkel 276

new 33
NewSize

SizeChangedEventArgs 171
Nicht definiert 67, 68
None

Stretch 128
NonZero

FillRule 259
NoResize

ResizeMode 171
Normal

FontStyles 56
FontWeights 56
WindowState 171

NoWrap
TextWrapping 74

null 68, 125, 335

O

Oberfläche
gestalten 29

object 71, 81, 114
ObjectAnimationUsingKeyFrames 359
ObjectDataProvider 230
ObjectInstance

ObjectDataProvider 230
Objekt

Ereignisauslöser 27
Oblique

FontStyles 56
ObservableCollection 228
Offset

GradientStop 264
SeekStoryboard 356
TextChange 79

OffsetX/Y/Z
TranslateTransform3D 321

OldValue
RoutedPropertyChangedEventArgs 92, 103

OleDbAdapter 232
Fill() 232
Update() 234

OleDbCommandBuilder 234
OleDbConnection 232
OneTime

Mode 220
OneWay

Mode 220
OneWayToSource

Mode 220
OnRender()

Adorner 287
Opacity 280

DropShadowEffect 285
OpacityMask 281
Opazität 280
Open()

MediaPlayer 375
Opened

ContextMenu 116
OpenFileDialog 434
Orientation

ProgressBar 97
ScrollBar 104

Index

467

Slider 100
StackPanel 36
ToolBarTray 118
WrapPanel 38

OrthographicCamera 292
UpDirection 296, 301

Orthographische Kamera 292
Oscillations

ElasticEase 367
OuterConeAngle

SpotLight 304
Owner

Window 174

P

Paced
KeyTime 360

Padding 59
Page 176, 178

FlowDocumentReaderViewingMode 399
NavigationService 178
WindowTitle 178

PageContent 424
PageContentCollection 424
Pages

FixedDocument 424
Panel 29

ZIndex 30, 272
ZIndexProperty 32

Paragraph 81, 398, 400
KeepTogether 401
KeepWithNext 401
TextIndent 401

Parent 34, 94
Parse()

TimeSpan 339
PasswordBox

PasswordChar 80
PasswordChar

PasswordBox 80
Paste 77
Path 250

Binding 218
Data 250, 257
Fill 250
Stroke 250
StrokeThickness 250

PathFigure 253
IsClosed 255
IsFilled 255
StartPoint 255

PathFigureCollection 253
PathGeometry 253, 343

Figures 255
PointAnimationUsingPath 369
zur Animation 368

PathSegmentCollection 254
Add() 256

Pause()
MediaPlayer 375
SpeechSynthesizer 382
Storyboard 347

PauseStoryboard 356
Pen

GeometryDrawing 261
PenLineCap 248
PenLineJoin 248
PerspectiveCamera 300
Perspektivische Kamera 299
Pfadanimation 368
Pfadgeometrie 253, 283
Pfadmarkupsyntax 257, 283
Physische Ressource 164
Pinsel 262

einheitliche Farbe 262
linearer Farbverlauf 263
radialer Farbverlauf 265

Pinseltyp 56
Pixel 401

GridUnitType 408
Play()

MediaPlayer 375
SoundPlayer 166, 371
SystemSound 375

PlayLooping()
SoundPlayer 371

PlaySync()
SoundPlayer 371

Point 246, 250
ArcSegment 255
LineSegment 255
relative Koordinaten 263

Point3D 292, 293

Index

468

Point3DCollection 293
Add() 295

PointAnimation 333, 340
PointAnimationUsingKeyFrames 359
PointAnimationUsingPath 368

PathGeometry 369
PointCollection 246, 313

Add() 247
PointLight 302
Points

Polygon 246
PolyBezierSegment 254
Polygon 245

Points 246
Polyline 245
PolyLineSegment 254, 258
Polylinie 245
PolyQuadraticBezierSegment 254
Position

MediaPlayer 375
MeshGeometry3D 293
OrthographicCamera 292
PerspectiveCamera 300
PointLight 305
SpotLight 304
TouchPoint 142

Positionierung
fest 30

Power
PowerEase 367

PowerEase 367
Power 367

PresentationCore 436
PresentationFramework 436
Pressed

MouseButtonState 138
Preview-Ereignishandler 25
PreviewMouseDown 26
PreviousAndCurrent

GridResizeBehavior 49
PreviousAndNext

GridResizeBehavior 49
PreviousSize

SizeChangedEventArgs 171
Primitives 68
PrintDialog 426

PrintQueue
PrintDialog 426

PrintVisual()
PrintDialog 426

ProgressBar 97
Grenzwerte 98
IsIndeterminate 98
Lage 97
Maximum 98
Minimum 98
Orientation 97
undefinierter Zustand 98
Value 98
Werte 98

ProgressChanged
BackgroundWorker 99

ProgressChangedEventArgs 100
ProgressPercentage 100

ProgressPercentage
ProgressChangedEventArgs 100

Projekt
Datenbank hinzufügen 231, 233, 235
Element hinzufügen 164
Fenster hinzufügen 173
neu erzeugen 16
Ressource 164
Ressourcen-Wörterbuch hinzufügen 213
Seite hinzufügen 178
speichern 16
WAV-Datei hinzufügen 372

Projektmappenexplorer 16, 164
PromptBreak 389
PromptBuilder 386

AppendBreak() 389
AppendTextWithHint() 389
ToXml() 389

PromptRate 388
PromptStyle 386

StartStyle() 388
PromptVolume 389
Property 22

Condition 206
Setter 195
Trigger 205

Property Element 21
Property Trigger 204, 238

in Control Template 208
mehrere Bedingungen 205

Index

469

PropertyChanged
UpdateSourceTrigger 220

PropertyPath 219
Provider 232
pt

Größe 401
Punkt

Größe 401
im 3D-Raum 292

Punktlicht 302
px

Größe 401

Q

QuadraticBezierSegment 254
QuadraticEase 367
qualified double 401
QuarticEase 367
QuaternionAnimation 333
QuaternionAnimationUsingKeyFrames 359
QuaternionRotation3D 322
Question

SystemSounds 374
QuickInfo 76
QuinticEase 367

R

Radialer Farbverlauf 265
RadialGradientBrush 265

Center 266
für 3D-Grafik 319
GradientOrigin 266

RadioButton 69
Basistyp 201
Checked 68
GroupName 69
gruppieren 69, 107
IsChecked 69
Unchecked 68
Zustand 68

Radius
BlurEffect 285

RadiusX
EllipseGeometry 250
RectangleGeometry 250

RadiusY
RectangleGeometry 250

Rahmen 104
Dicke 104
durchsichtig 104
Eckenradius 104
Farbe 104

Rate
PromptRate 388

Rechteck 242, 249
Eckenabrundung 250
Ort und Größe 250

Rechtschreibung
prüfen 79

RecognitionResult 392
RecognizeAsync()

SpeechRecognitionEngine 394
RecognizeAsyncCancel()

SpeechRecognitionEngine 394
RecognizeMode 394
Rect 250

RectangleGeometry 250
Rectangle 242
RectangleGeometry 249

RadiusX 250
RadiusY 250
Rect 250

RectAnimation 333
RectAnimationUsingKeyFrames 359
Registerkarte 111
Reiter

Registerkarte 111
Relative

UriKind 166, 179
Released

MouseButtonState 138
Remove()

Children 34, 59
Items 85, 88, 96

RemovedItems
Count 84
SelectionChangedEventArgs 83

RemovedLength
TextChange 79

RenderSize
AdornedElement 287

Index

470

RenderTransform 271
RenderTransformOrigin 271

RenderTransformOrigin
RenderTransform 271

RepeatBehavior
AnimationTimeline 337

RepeatButton 65, 103
ReportProgress()

BackgroundWorker 99
ResizeBehavior

GridSplitter 49
ResizeMode

Window 170
Resource Dictionaries 169
Resources

Application 168, 207
Window 168

Ressource 164
aktuell 214
Auflistung von Objekten 228
dynamische 167, 168
Event Trigger 351
für gesamte Anwendung 167, 207
logische 166
nur für Fenster 167
Objekt 226
physische 164
Schlüssel 167
statische 167, 168
Storyboard 341
Style 195
suchen 169, 196
Wörterbuch 169
Wörterbuch hinzufügen 213
zur Laufzeit tauschen 167

Result
SpeechRecognizedEventArgs 392

Resume()
SpeechSynthesizer 382
Storyboard 347

ResumeStoryboard 356
RGB-Komponente 263, 280
Ribbon 187

Anwendungsmenü 187
Registerkarte 187

Ribbonanwendung 186
RibbonApplicationMenu 187
RibbonApplicationMenuItem 189

RibbonButton 189
RibbonCheckBox 190
RibbonComboBox 190
RibbonControlsLibrary 186
RibbonGallery 190
RibbonGalleryCategory 190
RibbonGalleryItem 190
RibbonGroup 187
RibbonMenuButton 190
RibbonMenuItem 189, 190
RibbonRadioButton 190
RibbonTab 187
RibbonToggleButton 190
RibbonWindow 187, 189
RichTextBox 80, 397, 420
Richtung

im 3D-Raum 292
Right

Canvas 30
RightClick

MouseAction 150
RightDoubleClick

MouseAction 150
RightDrag

SystemGesture 141
RightTap

SystemGesture 141
RightToLeft

FlowDirection 36
RotateTransform 271

Angle 271, 272, 274
RotateTransform3D 322
Rotation

2D-Grafik 271
3D-Grafik 322
Drehpunkt 271
Drehwinkel 271
in 3D-Grafik animieren 356
ManipulationDelta 144

Rotation3DAnimation 333
Rotation3DAnimationUsingKeyFrames 359
RotationAngle

ArcSegment 256
Rotationsgruppe

3D-Grafik 327
Round

PenLineCap 248
PenLineJoin 248

Index

471

Routed Events 25
RoutedCommand 152
RoutedEvent 26

EventTrigger 351
KeyEventArgs 134
MouseButtonEventArgs 138
MouseEventArgs 138
MouseWheelEventArgs 139

RoutedEventArgs 27
Handled 204
Source 113

RoutedEventHandler
neu erzeugen 58, 157

RoutedPropertyChangedEventArgs 92, 103
OldValue 92, 103

Row
DataRowView 237
Grid 43

RowDefinitions
Count 45
Grid 43

RowGroups
Table 407

RowProperty
Grid 44

Rows
TableRowGroup 407

RowSpan
Grid 46
TableCell 408

Rückgabeparameter 160, 163
Rückwärts

Navigation 177
Run 74, 401

Inline-Typ 413
Run()

Application 157
RunWorkerAsync()

BackgroundWorker 99

S

Save()
TextRange 423

SayAs 389
Scale

ManipulationDelta 144

ScaleTransform 274
ScaleX 274
ScaleY 274

ScaleTransform3D 319
ScaleX/Y

ScaleTransform 274
ScaleX/Y/Z

ScaleTransform3D 319
Schaltfläche 64
Schieber

Slider 100
Schiene

Slider 100
Schlagschatten 284
Schlüssel

Control Template 207
Ressource 167
Style 195

Schrift
formatieren 422
hochgestellt 415
konvertieren 436
tiefgestellt 415

Schrift auswählen
Dialogfeld 433, 436

Schriftart 401
Schriftartzeichen

in Geometrie 260
Schriftgröße 401
Schriftposition

vertikal 415
Schriftverzierung 415
Scroll

FlowDocumentReaderViewingMode 399
Scrollbalken

ListBox 82
ScrollBar 103

Grenzwerte 104
große Änderung 103
kleine Änderung 103
Lage 104
LargeChange 103
Maximum 104
Minimum 104
Orientation 104
SmallChange 103
ValueChanged 104
Wert geändert 104

Index

472

ScrollIntoView()
ListBox 84

ScrollViewer 35
Sichtbarkeit 36

Section 398, 402
SecurityException 186
Seek()

Storyboard 347
SeekStoryboard 356

Offset 356
SeekToFill()

Storyboard 347
Seite 178

darf in History bewegen 179
Daten übermitteln 179
der Reihe nach 176
erste 177
in Frames 180
in History bewegen 179
Navigation 175
wechseln 178

Seitenumbruch 403
SelectAll()

TextBox 79
Selected

ListBoxItem 83
TreeViewItem 92

SelectedDate
Calendar 125
DatePicker 127

SelectedDateChanged
DatePicker 127

SelectedDateFormat
DatePicker 127

SelectedDates
Calendar 124
Count 125

SelectedDatesChanged
Calendar 124

SelectedDatesCollection 124
SelectedIndex

ListBox 83
TabControl 111

SelectedItem
ListBox 83

SelectedItemChanged
TreeView 92

SelectedItems
DataGrid 237
ListBox 87

SelectedText
TextBox 79

SelectedValue
RibbonGallery 190

SelectedValuePath
RibbonGallery 190

Selection_Changed
ListBox 83
TabControl 111

SelectionChanged
ComboBox 90
DataGrid 236
RibbonGallery 190

SelectionChangedEventArgs 83
RemovedItems 83

SelectionEnd
Slider 102

SelectionLength
TextBox 80

SelectionMode
Calendar 122
DataGrid 235
ListBox 85

SelectionStart
Slider 102
TextBox 80

SelectionUnit
DataGrid 235

Selector
IsSelected 83, 87, 90, 112

SelectVoice()
SpeechSynthesizer 382

sender 26
Separator 62, 114
SetBinding() 219

BindingOperations 219
SetInputToDefaultAudioDevice()

SpeechRecognitionEngine 393
SetOutputToDefaultAudioDevice()

SpeechSynthesizer 382
SetOutputToWaveFile()

SpeechSynthesizer 382
SetSpeedRatio()

Storyboard 347

Index

473

SetStoryboardSpeedRatio 356
SpeedRatio 356

SetTargetName()
Storyboard 345

SetTargetProperty()
Storyboard 345

Setter 195
Property 195
TargetName 209
Value 195

SetValue() 22, 32, 136
ShadowDepth

DropShadowEffect 285
Shape 241

Fill 243
Füllfarbe 243
Liniendicke 243
Linienende 247
Linienfarbe 243
Stroke 243
StrokeEndLineCap 247
StrokeLineJoin 247
StrokeStartLineCap 247
StrokeThickness 243

Shift
ModifierKeys 150

Short
DatePickerFormat 127

Show()
Window 174

ShowDialog()
PrintDialog 426
Standard-Dialogfeld 434
Window 174

ShowInTaskbar
Window 170

Sicherheitseinschränkung 185
Sichtbarkeit 56, 108, 121, 122
Sichtfeld 293
SineEase 367
Single

DataGridSelectionMode 235
SelectionMode 85

SingleAnimation 333
SingleAnimationUsingKeyFrames 359
SingleBorderWindow

WindowStyle 183

SingleDate
CalendarSelectionMode 123

SingleRange
CalendarSelectionMode 123

Single-Threaded Apartment Thread 156
Size 255

ArcSegment 255
SizeAnimation 333, 343
SizeAnimationUsingKeyFrames 359
SizeChanged

Window 122, 171
SizeChangedEventArgs 171
SizeToContent

Window 172
Skalierung

2D-Grafik 274
3D-Grafik 319
Touchscreen 142

SkewTransform 276
AngleX 276
AngleY 276

Skin 212
SkipStoryboardToFill 356
Sleep()

Thread 98
Slider 100

AutoToolTipPlacement 102
Bereich markiert 102
Grenzwerte 100
große Änderung 100
IsMoveToPointEnabled 102
IsSelectionRangeEnabled 102
IsSnapToTickEnabled 102
Lage 100
LargeChange 100
Markierungsgrenze 102
Maximum 100
Minimum 100
Orientation 100
SelectionEnd 102
SelectionStart 102
Skala 102
Skala, Platzierung 100
Skala, Strichdichte 101
springt nur zu Skalenstrich 102
springt zu Mausposition 102
TickFrequency 101

Index

474

TickPlacement 100
Ticks 102
ToolTip, Platzierung 102
Value 100
ValueChanged 100
Wert 100
Wert geändert 100

SmallChange
ScrollBar 103

SmallImageSource
Ribbon 189

SolidColorBrush 56, 262
Color 263

Sondertaste
Kommando 150

Sonderzeichen
anzeigen 66

SoundLocation
SoundPlayer 166, 372

SoundPlayer 166, 371
Play() 166
SoundLocation 166

SoundPlayerAction 375
Source

Binding 226
Frame 181
Image 65, 128, 166, 261
MediaElement 379
MediaTimeline 379
NavigationWindow 177, 181
RoutedEventArgs 113
SoundPlayerAction 375
WebBrowser 130

SourceName
EventTrigger 355

Span
Inline-Typ 413

Speak()
SpeechSynthesizer 382

SpeakAsync()
SpeechSynthesizer 382

SpeakCompleted
EventHandler 386
SpeechSynthesizer 382

SpecularMaterial 314
Color 316
SpecularPower 316

SpecularPower
SpecularMaterial 316

Speech Recognition Grammar Specification
394

Speech Synthesis Markup Language 384,
386

SpeechRecognitionEngine 392
RecognizeAsync() 394
RecognizeAsyncCancel() 394
SetInputToDefaultAudioDevice() 393

SpeechRecognized
SpeechRecognizer 392

SpeechRecognizedEventArgs 392
SpeechRecognizer 392
SpeechSynthesizer 381
SpeedRatio

MediaPlayer 376
SetStoryboardSpeedRatio 356

SpellCheck 78
IsEnabled 78
IsEnabledProperty 79

Spielerei 182
SplineDoubleKeyFrame 359

KeySpline 362
SpotLight 302
Sprache

Art der Ausgabe 389
aus Datei 384
Ausgabe gemäß W3C 386
ausgeben 381
Eingabe gemäß W3C 394
Eingabegerät 393
eingeben 390
erkennen 390
Pause 389
speichern in SSML 387, 389
speichern in WAV 382
steuert Anwendung 394
Zuhören beenden 394
Zuhören starten 394
zusammensetzen 381, 386

Spracherkennung
einschalten 391
integrierte 392
von Windows 390

Sprachgeschwindigkeit 388
Sprachlautstärke 389

Index

475

Sprachstil 388
Springiness

ElasticEase 367
SQL-Befehl 234
Square

PenLineCap 248
TextMarkerStyle 405

SRGS 394
SSML 386
Ssml

SynthesisMediaType 384
StackPanel 35

Orientierung 36
Richtung 36

Standard-Dialogfeld 185, 432
Rückgabewert 434

Star
GridUnitType 408

StartIndex
List 405

StartPoint
LinearGradientBrush 264
LineGeometry 250
PathFigure 255

StartStyle()
PromptBuilder 386
PromptStyle 388

Startup
Application 159, 161

StartupEventArgs 160
Args 163

StartupUri
Application 159

StateChanged
Window 171

STAThread 156
StaticResource 168
Statische Ressource 167, 168
StatusBar 121
Statusleiste 121

Platzierung 121
StaysOpenOnEdit

ComboBox 88
Stern

Größenangabe 408
Steuerelement

anordnen 29
Gruppen 53

Stift
berührt 140
schwebt 140

Stop()
MediaPlayer 375
SoundPlayer 371
Storyboard 347

StopStoryboard 356
Storyboard 341

als Ressource 341
Begin() 343, 346
für Mediendatei 380
Pause() 347
Resume() 347
Seek() 347
SeekToFill() 347
SetSpeedRatio() 347
SetTargetName() 345
SetTargetProperty() 345
Stop() 347
TargetName 343
TargetProperty 343

Strahlendes Material 314
Stretch 128

HorizontalAlignment 49, 63
Image 128
VerticalAlignment 63

StringAnimationUsingKeyFrames 359, 363
Stroke

Path 250
Shape 243

StrokeEndLineCap
Shape 247

StrokeLineJoin
Shape 247

StrokeStartLineCap
Shape 247

StrokeThickness
Path 250
Shape 243

Style 193, 400
abgeleiteter Style 199
als Ressource 195
BasedOn 199
Basis-Style 199
benannter 194
Definition 195

Index

476

Eigenschaft 195
Eigenschaftswert 195
EventSetter 202
expliziter 194
für Typ 197
für verwandte Typen 200
Gültigkeitsbereich 198, 200
impliziter 197
mit Event Trigger 352
Sammlung 212
Schlüssel 195
TargetType 197
Triggers 205
vererben 198, 199
Ziel 197
Zuordnung 196, 197

Stylus 139
Anzahl der Tipps 141
Geste 141
Schaltfläche 140, 141

StylusButton
Guid 141
Name 141
StylusButtonState 141

StylusButtonDown 140
StylusButtonState

StylusButton 141
StylusButtonUp 140
StylusDevice

StylusEventArgs 140
StylusDown 140
StylusDownEventArgs

TapCount 141
StylusEnter 140
StylusEventArgs

InAir 140
Inverted 140
StylusDevice 140

StylusInAirMove 140
StylusInRange 140
StylusLeave 140
StylusMove 140
StylusOutOfRange 140
StylusSystemGesture 140
StylusSystemGestureEventArgs

SystemGesture 141

StylusUp 140
Subscript

BaselineAlignment 415
Superscript

BaselineAlignment 415
SweepDirection

ArcSegment 256
Symbolleiste 118

Platzierung 118
Styles 120

Symbolleistencontainer 118
ist gesperrt 118
Lage 118

SynthesisMediaType 384
System 124, 156
System.Collections.ObjectModel 228
System.Component.Model 98, 161
System.Data 232
System.Data.OleDb 232
System.Drawing 433
System.Drawing.Color 435
System.Drawing.Font 436
System.IO 185, 214, 377
System.Media 166, 384
System.Printing 426
System.Speech 390
System.Speech.Recognition 390
System.Speech.Synthesis 381
System.Threading 98
System.Windows 156
System.Windows.Controls 158, 224
System.Windows.Controls.Primitives 68
System.Windows.Forms 185, 431
System.Windows.Input 152
System.Windows.Markup 215, 425
System.Windows.Media.Animation 333
System.Windows.Media.Media3D 289
System.Xaml 436
SystemGesture

StylusSystemGestureEventArgs 141
SystemSound 374

Play() 375
SystemSounds 374
Systemton

abspielen 374

Index

477

T

TabControl 111
Auswahl gewechselt 111
Nummer der ausgewählten Karte 111
Platzierung 111
SelectedIndex 111
Selection_Changed 111
TabStripPlacement 111

Tabelle 398, 407
ändern 410
hinzufügen 409
Rahmen 408
Spalte 407
Zeile 407
Zeilengruppe 407
Zelle 407
Zellen überspannen 408

TabItem 111
Beschriftung 111
Header 111

Table 398, 407
Columns 407
RowGroups 407

TableCell 407
ColumnSpan 408
RowSpan 408

TableCellCollection 407
TableColumnCollection 407
TableRow 407

Cells 407
TableRowCollection 407
TableRowGroup 407

Rows 407
TableRowGroupCollection 407
TabStripPlacement

Dock 111
TabControl 111

Tap
SystemGesture 141

TapCount
StylusDownEventArgs 141

Target
Label 72

TargetName
Hyperlink 182
Setter 209
Storyboard 343

TargetProperty
Storyboard 343

TargetType
ControlTemplate 208
Style 197

Tastatur 133
Tastatursteuerung 55
Taste

Alt 55
bedienen 133
Bindung 150
Enter 64
Ereignis 134
ESC 64
F1 16
Info über 133
Return 64
wiederholt gedrückt 134

Tastenkombination 149, 152
Template 207, 237
TemplateBinding 209
Text

Änderung prüfen 79
anhängen 75
ComboBox 88
Ein- und Ausgabe 71
einfügen 75
eingeben 77
ganz markieren 79
geschützter 80
Länge begrenzen 80
markierter Teil 79
Position 76
Spracherkennung 392
SynthesisMediaType 384
teilweise markieren 80
TextBlock 73

TextAlignment
Block 401

Textbereich 423
TextBlock 73

in FixedDocument 426
Inhalt 73
mit Inlines 412
Text 73
TextWrapping 74

Index

478

TextBox 77
AcceptsReturn 78
MaxLength 80
mehrzeilig 77
mit Scrollbalken 78
SelectAll() 79
SelectedText 79
SelectionLength 80
SelectionStart 80
TextChanged 77
TextWrapping 78
VerticalScrollBarVisibility 78

TextChange 79
TextChanged

TextBox 77
TextChangedEventArgs 79

Changes 79
TextDecorations

Inline 415
Text-Editor 80
Text-Eingabe 80
TextElement

FontFamily 401
TextIndent

Paragraph 401
TextMarkerStyle 405
TextPointer 423
TextRange 423
Textur

für 3D-Grafik 313, 316
TextureCoordinates

MeshGeometry3D 313
TextWrapping

TextBlock 74
TextBox 78

Thickness 60, 62, 104
ThicknessAnimation 333
ThicknessAnimationUsingKeyFrames 359
Thin

FontWeights 56
Thread

Sleep() 98
ThreeDBorderWindow

WindowStyle 183
Thumb 100, 103
TickFrequency

Slider 101

TickPlacement
Both 101
BottomRight 101
Slider 100
TopLeft 101

Ticks
Slider 102

Tile 267
TileMode 269

TileMode
ImageBrush 267

TimeSeekOrigin 347
TimeSpan 337

Parse() 339
Title

NavigationWindow 181
Window 169

To
AnimationTimeline 334

ToggleBold
EditingCommands 148, 422

ToggleButton 66
Checked 67
IsChecked 67
IsThreeState 67
Unchecked 67
Zustand 67

ToggleUnderline
EditingCommands 422

ToLongDateString()
DateTime 127

ToolBar 118
ComboBoxStyleKey 120

ToolBarTray 118
IsLocked 118
Orientation 118

ToolTip 76
ToolWindow

WindowStyle 183
Top

Canvas 30
TopLeft

AutoToolTipPlacement 102
TickPlacement 101

TopMost
Window 171

Index

479

TopProperty
Canvas 32

ToShortDateString()
DateTime 127

TotalManipulation
ManipulationCompletedEventArgs 145

Touch
Ereignis 141, 142

TouchDevice 141
TouchDown 142, 143
TouchEnter 142
TouchEventArgs 141
TouchLeave 142
TouchMove 142, 143
TouchPoint 142
TouchPointCollection 142
Touchscreen 141
TouchUp 142, 143
ToXml()

PromptBuilder 387, 389
Track 100
Trägheit

bei Manipulation 142
Transform 270

GeometryModel3D 320
Transform3D 319
Transform3DGroup 326
Transformation 270

3D-Grafik 319
animieren 347
mit Verschiebung 271
ohne Verschiebung 271
Ursprung 271

Transformationsgruppe
2D-Grafik 278
3D-Grafik 326

TransformGroup 278
Children 279

TranslateTransform 277
X 277
Y 277

TranslateTransform3D 321
Translation

ManipulationDelta 144
Transparenz 183, 263, 280

animieren 343
Effekt 281

gleitende 281
Maske 281

TreeView 90
alle übergeordneten Elemente 94
alle untergeordneten Elemente 94
ausgewählter Eintrag 92
Auswahl gewechselt 92
Eintrag 90
Eintrag anhängen 95
Eintrag einfügen 95
SelectedItemChanged 92
vorher ausgewählter Eintrag 92

TreeViewItem 90
Beschriftung 92
Collapsed 92
Expanded 92
ExpandSubtree() 96
Header 92
IsExpanded 92
IsSelected 92
ist aufgeklappt 92
ist ausgewählt 92
klappt auf 92
klappt zu 92
Selected 92
Unselected 92
Untereinträge aufklappen 96
wurde abgewählt 92
wurde ausgewählt 92

Triangle
PenLineCap 248

TriangleIndices
MeshGeometry3D 293

Trigger 204, 351
Bedingung 205, 206
Control Template 209
DataTemplate 239
für Daten 238
für Eigenschaft 204
für Ereignis 350
in Style 353
Property 205
Style 205
Value 205
Zielelement 209

TriggerCollection 351

Index

480

TwoFingerTap
SystemGesture 141

TwoPage
FlowDocumentReaderViewingMode 399

TwoWay
Mode 220

Typ
ermitteln 26
Umwandlung 19

Type Converter 19
Typ-Style 197

mit Control Template 211
vererben 199

U

UIElement 410
Umgebungslicht 293, 302
Umschalter 66, 68

einstellen 71
Unchecked

CheckBox 67
RadioButton 68
ToggleButton 67

Underline
Inline-Typ 413

Undurchsichtigkeit 280
Uniform

KeyTime 360
Stretch 128

UniformToFill
Stretch 128

Union
GeometryCombineMode 253

Unloaded
Window 160

Unselected
ListBoxItem 83
TreeViewItem 92

Unterelement 19
Unterstreichung 413

Art 415
Unterstrich

Tastatursteuerung 55, 114
Unterteilung 62, 114
update

SQL 234

Update()
OleDbAdapter 234

UpdateSource()
BindingExpression 220

UpdateSourceTrigger
Binding 220

UpDirection
OrthographicCamera 296, 301

UpperLatin
TextMarkerStyle 405

UpperRoman
TextMarkerStyle 405

Uri 166, 179
UriKind 179

Relative 166

V

Validate()
ValidationRule 224

ValidationResult 224
ValidationRules 224

Add() 223
Binding 222
Validate() 224

Value
Condition 206
DataTrigger 239
ProgressBar 98
Setter 195
Slider 100
Trigger 205

ValueChanged
ScrollBar 104
Slider 100

Vector3D 292
Vector3DAnimation 333
Vector3DAnimationUsingKeyFrames 359
VectorAnimation 333
VectorAnimationUsingKeyFrames 359
Vektorgrafik 14
Verschiebung

2D-Grafik 277
3D-Grafik 321
Touchscreen 142
Wert 277

Index

481

Vertical
Orientation 36

VerticalAlignment 63
VerticalAnchor 418
VerticalContentAlignment 63
VerticalOffset

ContextMenu 116
VerticalScrollBarVisibility

ScrollViewer 36
TextBox 78

Verzeichnis auswählen
Dialogfeld 434

Verzierung 286
Video-Ausgabe 380
Videodatei

in Geometrie 260
VideoDrawing 260
View

ListView 231
Viewbox

ImageBrush 267
ViewboxUnits

ImageBrush 269
ViewingMode

FlowDocumentReader 399
Viewport

ImageBrush 267
Viewport2DVisual3D 311

Geometry 313
IsVisualHostMaterial 313
Visual 313

Viewport3D 292
Children 293

ViewportUnits
ImageBrush 269

Visibility 57, 108, 121, 122
Visible

Visibility 57
Visual

Viewport2DVisual3D 313
Visual Basic 15, 17
Visual C# 15, 17
Visual Studio 15
Volume

MediaPlayer 376
PromptVolume 389
SpeechSynthesizer 382

Vorlage 193
WPF Ribbon Application 187
WPF-Anwendung 16
WPF-Browseranwendung 185

Vorwärts
Navigation 177

W

WAV-Datei 166
abspielen 166, 371, 375
Dateiname 166
laden 371

WaveAudio
SynthesisMediaType 384

WebBrowser 130
CanGoBack() 131
CanGoForward() 131
GoBack() 131
GoForward() 131
LoadCompleted 130
Navigate() 130
Navigated 130
NavigateToString() 130
Source 130

Weichzeichner 284
WheelClick

MouseAction 150
Width 36, 54

ColumnDefinition 47
Image 128
ListBox 82
OrthographicCamera 293
SizeToContent 172
Tabellenzelle 408
Window 169

WidthAndHeight
SizeToContent 172

Window 20, 169
AllowsTransparency 183
Closed 160
Closing 160
DialogResult 175
DragMove() 184
Height 169
Initialized 160, 214
IsLoaded 70

Index

482

Loaded 122, 160
LocationChanged 171
Main() 157
MouseMove 122
Owner 174
ResizeMode 170
Resources 168
Show() 174
ShowDialog() 174
ShowInTaskbar 170
SizeChanged 122, 171
SizeToContent 172
StateChanged 171
Title 169
Topmost 171
Unloaded 160
Width 169
Window_Closing() 234
WindowStartupLocation 170
WindowState 131
WindowStyle 183

Window_Closing()
Window 234

Windows
Druckdialog 426
ModifierKeys 150
Spracherkennung 390

Windows Forms
in WPF-Anwendung 431
mit WPF-Element 436
Standard-Dialogfeld in WPF 432

Windows Presentation Foundation 13
Windows Presentation Foundation-Host

184
WindowsBase 436
WindowsFormsHost 431
WindowsFormsIntegration 431, 436
Windows-Spracherkennung

integrierte 392
WindowStartupLocation

CenterOwner 175
Window 170

WindowState
Window 131

WindowStyle
Window 183

WindowTitle
Page 178

Wochentag 126
WorkerReportsProgress

BackgroundWorker 99
WPF 13

Eigenschaften 13
Vorteile 13

WPF-Anwendung
Minimal-Aufbau 155

WPF-Browseranwendung 184
WPF-Interoperabilität

Toolbox-Kategorie 437
Wrap

TextWrapping 74
WrapPanel 37

einheitliche Größe 38
FlowDirection 110
Orientierung 38
Richtung 38, 110

WrapWithOverflow
TextWrapping 74

Würfel
in 3D-Grafik 296

X

X
Point 246
TranslateTransform 277

x:Class 20
x:Key 195, 207
x:Name 19
x:Null 67
x:Type 197, 238
X1

Line 244
X2

Line 244
XAML 15

Attribut 19
Editor 17
Erweiterung 24
mit Programmiercode 17
Paketdatenformat 423

XAML Browser Application 184

Index

483

XamlPackage
DataFormats 423

XamlReader 214
Load() 214

XBAP 184
XML

Knoten 21
XML-Datei

mit SSML 387, 389
xmlns 20
xmlns:x 20
Xor

GeometryCombineMode 253

Y

Y
Point 246
TranslateTransform 277

Y1
Line 244

Y2
Line 244

Z

z-Achse 289
Zahlenbereich

darstellen 97
Wert darstellen 100

Zahlenwerte
darstellen 97

Zeichenkette
animieren 363

Zeilenumbruch 65, 74, 413
steuern 74, 78

Zeitspanne 339
Zeitverzögerung 98
Zentimeter 401
ZIndex

Panel 30, 272
ZIndexProperty

Canvas 32
Zoom

FlowDocumentReader 400
ZoomIncrement 400
Zweidimensionale Grafik 241
Zwischenablage 77

