Sprechtext;

MainWindow

> Einstieg in Windows Presentation Foundation und XAML
> Attraktive GUIs und Multimedia-Anwendungen erstellen
» Umstieg von Windows Forms, 3D-Grafiken, Animationen u.v.m.

P
Galileo Computing

DVD Al Beispielprojekte als Vorlagen
Tom in Visual C# und Visual Basic

Thomas Theis

Einstieg in WPF

Grundlagen und Praxis

[] ° ‘
Galileo Press

Liebe Leserin, lieber Leser,

dieses Buch ermdéglicht Ihnen einen schnellen Einstieg in die Nutzung der Win-
dows Presentation Foundation. Thomas Theis konzentriert sich auf die wichtigsten
Klassen und Attribute und zeigt lhnen anhand von typischen Anwendungsbeispie-
len, wie Sie diese fiir eigene Projekte nutzen. Auf diese Weise arbeiten Sie sich
schnell in die Entwicklung mit dem méachtigen Framework ein und erstellen eigene
WPF-Anwendungen.

Fur alle diejenigen, die bisher mit Windows Forms gearbeitet haben, wird beson-
ders auch das letzte Kapitel interessant sein. Dort wird gezeigt, wie Sie mit Win-
dows Forms erstellte Anwendungen durch Elemente der WPF bereichern und
auch, wie Sie WPF-Anwendungen mit Windows-Forms-Funktionalititen ausstat-
ten, flr die es in der WPF noch nichts Addquates gibt.

Auf dem beiliegenden Datentréger finden Sie die im Buch verwendeten Beispiele,
die Sie als Vorlage fiir Ihre eigenen Projekte verwenden kdénnen. Diese Vorlagen
gibt es sowohl in Ci# als auch in Visual Basic.

Sollten Sie Fragen zu diesem Buch haben, Anregungen oder Kritik loswerden wol-
len, melden Sie sich bei mir. Ich freue mich auf Ihre Riickmeldung.

lhre Anne Scheibe
Lektorat Galileo Computing

anne.scheibe@galileo-press.de
www.galileocomputing.de
Galileo Press - Rheinwerkallee 4 - 53227 Bonn

Auf einen Blick

Einfllhrung ... 13
XAML und WPF ... 19
Layout ..., 29
Steuerelementeccooiiiiii 53
Ereignisse und Kommandoscccccciiiiiiiiiii, 133
AnNWendungen ...t 155
VOrlagen ... 193
Daten ... 217
2D-Grafikccooeiiii 241
BD-Grafikoooiiii 289
Animation ... 333
Audio und Videoccooviiiiiiiiiiiii 371
Dokumente und Drucken ... 397

Interoperabilitat ... 431

Der Name Galileo Press geht auf den italienischen Mathematiker und Philosophen Galileo
Galilei (1564-1642) zurlick. Er gilt als Griindungsfigur der neuzeitlichen Wissenschaft und
wurde beriihmt als Verfechter des modernen, heliozentrischen Weltbilds. Legendar ist sein
Ausspruch Eppur si muove (Und sie bewegt sich doch). Das Emblem von Galileo Press ist der
Jupiter, umkreist von den vier Galileischen Monden. Galilei entdeckte die nach ihm benannten
Monde 1610.

Lektorat Anne Scheibe

Gutachten Matthias Geirhos

Korrektorat Friederike Daenecke, Ziilpich

Typografie und Layout Vera Brauner

Herstellung Lissy Hamann

Satz Ill-satz, Husby

Einbandgestaltung Barbara Thoben, Kdln

Titelbild Mann: © helix - Fotolia.com; Blume: © Konstantin Sutyagin - Fotolia.com;
Button: © Emanuel - Fotolia.com

Druck und Bindung Bercker Graphischer Betrieb, Kevelaer

Dieses Buch wurde gesetzt aus der Linotype Syntax Serif (9,25/13,25 pt) in FrameMaker.

Gerne stehen wir lhnen mit Rat und Tat zur Seite:

anne.scheibe@galileo-press.de bei Fragen und Anmerkungen zum Inhalt des Buches
service@galileo-press.de fiir versandkostenfreie Bestellungen und Reklamationen
britta.behrens@galileo-press.de fiir Rezensionsexemplare

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbib-
liografie; detaillierte bibliografische Daten sind im Internet tber http://dnb.d-nb.de abrufbar.

ISBN 978-3-8362-1776-7

© Galileo Press, Bonn 2012
1. Auflage 2012

Das vorliegende Werk ist in all seinen Teilen urheberrechtlich geschiitzt. Alle Rechte vorbehalten, insbesondere das Recht
der Ubersetzung, des Vortrags, der Reproduktion, der Vervielfltigung auf fotomechanischem oder anderen Wegen und der
Speicherung in elektronischen Medien. Ungeachtet der Sorgfalt, die auf die Erstellung von Text, Abbildungen und Program-
men verwendet wurde, kdnnen weder Verlag noch Autor, Herausgeber oder Ubersetzer fiir mégliche Fehler und deren Fol-
gen eine juristische Verantwortung oder irgendeine Haftung tibernehmen. Die in diesem Werk wiedergegebenen Gebrauchs-
namen, Handelsnamen, Warenbezeichnungen usw. kénnen auch ohne besondere Kennzeichnung Marken sein und als
solche den gesetzlichen Bestimmungen unterliegen.

Inhalt

1

Einfilhrung ...
1.1 Vorteile der WPFcoooiiiiiiiiiiine.
1.1.1
1.2 Aufbau des Buchs ...,
1.3 Visual Studio 2010cocceviviiiiiiien,
1.3.1 Ein neues Projekt
1.4 Kaxaml ..o
1.5 XAML und C# bzw. VBccccvveerinnnne
1.6 Danksagungccccccvoiiiiiciiincninnn.

XAML und WPF

Grafik in der WPF ...ooeei e

2.1 Dokumentstruktur ..o
2.2 Property EIementscccooiiiiiiiiiiii e
2.3 Dependency Propertiesc.cccoooiiiiiiiniiciiie e
2.4 Attached Propertiescccoomiiiiiiiiiiiiiee e
2.5 Markup EXtENSIONS ...ccovviiiiiiiiiiiiiiie e
2.6 Routed EVENTSocooiiiiiiiiiiiii e
2.7 Attached Events ..o
Layout ...
3.1 CANVAS ciiiiiiiiii
3.1.1 Positionierungcccoveiiiiiiii
3.1.2 Elemente neu erzeugenccccooeeiiiiiiiciiciec
3.1.3 Layout-Hierarchiecccccociiiiiiiiiiiiiiiieee
3.2 StackPanel ...
3.2.1 Elemente neu erzeugenccccoceviiiiiiiiiieenniieees
3.3 WrapPanel ...
3.3.1 Elemente neu erzeugenccccccoiiiiiiiiiiiciec
3.3.2 Vertikale Orientierungcccooeiiiiiiiiiiiiiiine,
3.4 DockPanel ..o
3.4.1 DockPanel in Hierarchieccccocoiiiiiiiiiiiinnn.
3.4.2 Elemente neu erzeugenccccocevniiiieiniiieenniieeens
3.5 GHId o
3.5.1 Elemente neu erzeugenc.cccooeeiiiiiiiiiiciecin
3.5.2 Elemente iiber mehrere Zellenccccocovveviiininnnn.

13

13
14
14
15
16
17
17
17

19

19
21
21
23
24
25
27

29

30
30
32
33
35
36
37
38
38
39
40
a1
42
43
45

Inhalt

3.5.3 Grole der Zellen festlegenccccevviiiiiiiniiinieenn, 46
3.5.4 Die GroBe der Zellen flexibel gestalten 47
3.6 Layout-Kombinationccccooiiniiiiiiiii 49
4 Steuerelemente ... 53
4.1 Allgemeiner Aufbauccoooiiiiiiii, 53
411 GroRe, Schrift, Farbe, Bedienung per Tastatur 54
4.1.2 Sichtbarkeit, Bedienbarkeitccooivieviiiiiiiiiiininnn.. 56
4.1.3 Elemente mit EventHandler neu erzeugen,
Elemente [6schen ... 57
4.1.4 Padding, Innenabstandccccoooiiiiiiiii i 59
4.1.5 Margin, AuBenabstandcccociiiii 61
4.1.6 Alignment, Ausrichtungccccccoiiiiiniiiii 62
4.2 SChalter ..o 64
4.2.1 BULEON e 64
4.2.2 RepeatButtoncccccciiiii, 65
4.2.3 ToggleButton und CheckBoxccccooeiiiiiiiiiinnnns 66
4.2.4 RadioBULtONooovvieiiiiee 68
4.2.5 Auswahl einstellenccccoooiiiiiiii 71
4.3 Text und Beschriftungcooooiiiiniiiiiii e 71
4.3.1 Label ooeee e 71
432 TextBIock ..o 73
4.3.3 TOOITIP cortiiieiiiiie et 76
434 TeXtBOX .ooviiiiiiiii e, 77
4.3.5 PasswWoOrdBOXcceeeeieiiiiiiiiieiie e 80
4.3.6 RIChTEXtBOX ..coivvviiiiieeieiiiiiee e 80
4.4 Auswahl ..o 81
4.41 ListBox, Einzel-Auswahlcccccoeeeiiiiiiiiiien . 82
4.4.2 ListBox, Mehrfach-Auswahlcccoiiiii . 85
4.43 CombOBOX ..ooiiiiiiiee e 88
444 TreeVIEW oo 20
4.5 ZahlenNWerteoviiiiiiieiee e 97
451 ProgressBarccccccciiiiiiiiiiiiiis 97
452 SHAEI o 100
453 SCrollBar ...coooeiieeeee e 103
4.6 CONTAINEE oot 104
4.6.1 BOIdEr ..o 104
4.6.2 GroUPBOX ..viivviiiiiiiiiiiniiiiiiiiiii 107
4.6.3 EXPANEr ...oociiiiiiiiiiiie e 108
4.6.4 TabControl ..o 111

Inhalt

4.7 Menis und Leisten 113
4.7.1 Hauptmeni 113
4.7.2 Kontextmenlccccoociiiiiiiiiiiiii 116
4.7.3 Symbolleistecccooiiiiiiiiii 118
4.7.4 Statusleiste ... 121
4.8 Datum ..o 122
4.81 Calendar ... 122
4.8.2 DatePickercccoiiiiiiiiii 126
4.9 Weitere EIementeoocceviiiiiiiiiiiiiic e 127
497 IMAZe .o 128
4.9.2 WebBrowsercccccciiiiiiiiiiiiiii 130
Ereignisse und Kommandos ... 133
51 Tastatur ..o 133
5.1.1 Anzeige der Tastaturinformationenc.ccccocerrnnn. 133
5.1.2 Steuerung durch Tastencccccciiiiiiiiniiiccieee, 135
5.2 MAUS oo 136
5.2.1 Anzeige der Mausinformationencccccociiniinnnnn. 136
5.3 Eingabestiftcooiiiiiii 139
5.4 TouchSCreenccccciiiiiiiiiiiiiii 141
55 Kommandos ..o 145
5.5.1 Eingebaute Kommandoscccccooiiiiniiiiiniinnnn. 146
5.5.2 Kommandos mit Eingabegesten verbinden 149
5.5.3 Eigene Kommandosccccociiiiiiiiiiiniiniici 150
ANWENdUNZEN ..o 155
6.1 Allgemeiner Aufbauccooiiiiiiiii 155
6.1.1 Einfache Anwendungccccceniiiniiiiiicniicne, 155
6.1.2 Anwendung mit Steuerelementccoocoiiiiis 157
6.1.3 Reihenfolge der Ereignisseccccovvvineiiiiiniennnne. 158
6.1.4 Aufruf von der Kommandozeilecccooernie. 161
6.2 RESSOUICEN ..iviiiiiiiiiiiiiiiicee e 164
6.2.1 Physische ReSSOUICeNcccocvvriiiriiriiiieniieniee e 164
6.2.2 Logische ReSSOUICENcccceviiiiiiiiiiiiiiiiiieenaiieees 166
6.3 Fenster ... 169
6.3.1 Eigenschaften und Ereignisse von Fenstern 169
6.3.2 Eigene Dialogfelderccccocoiiiiiiiiiii 173
6.4 Navigation mit Seitencccooie 175
6.4.1 Eine Reihe von Seitenccccccoviiiiiiiiiiniicieee 176

Inhalt

6.4.2 Frame mit Unterseitenccocin, 180

6.5 GadgEtSooiiiii 182
6.6 Browseranwendungccccciiiiiiiiiiiniin e 184
6.7 Ribbonanwendungcccccoiiiiiiiiiiii 186
7 VOrlagen ... 193
7 SEYIES e 193
7.1.1 Benannte Stylescoooiiiiiiiiii i 194

712 TYP-Styles ..o 197

7.1.3 Vererbung benannter Stylesccccccvviiiiniieinnnnn. 198

7.1.4 Vererbung von Typ-Styles ... 199

7.1.5 Verwandte Steuerelement-Typenccccceeviieninnennn. 200

7.1.6 EventSetter ... 202

7.2 Property Triggercoooiiiiiiiiiiiiiiiii e 204
7.2.1 Einfache Property Triggercccccvviiiiiieiniiiinieeieen 204

7.2.2 MUR-THZEEr oo 205

7.3 Control Templatescccoooiiiiiiiiiie e 207
7.3.1 Ein erstes Control Templateccccocoveiviiiniiininennn 207

7.3.2 Control Template mit Triggercccccooevviiiiineennnnnn. 208

7.3.3 Control Template mit Bindungcccceeviiiennnnnnn. 209

7.3.4 Control Template in Typ-Styleccccccoviiiiiiiieennnnn. 211

74 SKINS oo 212
8 Daten ... 217
8.1 Datenbindungcccooiiiiiii 217
8.1.1 Setzen und Lésen einer Bindungccccocoeenenn 217

8.1.2 Richtung und Zeitpunkt einer Bindung 219

8.2 Validierungcoooiiiiiii 222
8.3 Datenquellen ... 224
8.3.1 Ein Objekt als Datenquelleccccceevriiiiiiiiiiiiee. 224

8.3.2 Kontext einer Datenbindungc..cccoeiiiiinne 226

8.3.3 Auflistung von Objekten ... 227

8.3.4 Object Data Providerccccooviviiiiiiiiiiiincen, 229

8.3.5 Datenbank ... 230

8.4 DataGridccccciiiiiiiiiiii 232
8.4.1 Einfacher Aufbau ... 232

8.4.2 Standard-Einstellungen ... 234

8.4.3 Weitere Spaltentypen ... 235

10

Inhalt

8.5 DataTemplatesccocviiiiiiiiiiiiiie e 237
8.6 DataTriggerccooiiiiiiiiiiiiiii 238
2D-Grafike ..o 241
9.1 SRAPES ..o 241
9.1.1 Rechtecke und Ellipsencccerviinciiiiiicniiciee e 242
9.1.2 LINIE cooeeeei e, 244
9.1.3 Polygon und Polyliniecccceoiniiiiiiiiie 245
9.1.4 Linienende ... 247
9.2 GEOMELIEN ...ooiiiiiiiiiiiiii 248
9.2.1 Einfache geometrische Formenccccooiininnnn. 249
9.2.2 Kombinierte Geometriencccoceviiiiiiiiiieinniieees 251
9.2.3 Pfadgeometrien fir komplexe Formenc..ccce..... 253
9.2.4 Pfadgeometrie in Pfadmarkupsyntaxc.ccccoeuenne. 257
9.25 Geometriegruppeccccccviiiiiiiii 258
9.3 Drawings ...eeveiiiiiiiiiiiiiiiice 259
9.4 PINSel oo 262
9.4.1 SolidColorBrushcccccoviiiiiiiiiiiiiic e 262
9.4.2 LinearGradientBrushcccoiiiiiiiiiin 263
9.4.3 RadialGradientBrushcccccooiiiiiiiii, 265
9.4.4 ImageBrushcoooiiiiiiiii 267
9.5 Transformationencccociiiiiiiiiii e 270
9.5.1 RotateTransform mit RenderTransform 271
9.5.2 RotateTransform mit LayoutTransform 273
9.5.3 ScaleTransformccccooiiiiiiiiiiiiici e 274
9.5.4 SkewTransformccccoooiiiiiiiiiiii 276
9.5.5 TranslateTransform ..o 277
9.5.6 TransformGroupccccooeiiiiriiiciie e 278
9.6 TraNSPArENZccoiiiiiiiiiiiiie e 280
9.6.1 Transparenz mit Opacity und Background 280
9.6.2 Maskierung mit OpacityMaskcccceevviiiienninnnn. 281
9.6.3 Ausstanzung mit Clipcccoovviiiiniii 283
9.7 Effekte oo 284
9.8 VErzZIErUNGeNccociiiiiiiiiiiiiiiiiiicc e 286
BD-Grafike ..o 289
10.1 Allgemeiner Aufbau ..o 289
10.1.1 Koordinatensystemccccooiiiiiiiiiiiciiic e 289
10.1.2 Kamera, Licht und Materialcccoooeeeiiiiiiii. 291

Inhalt

11

10

10.1.3 Dreieck in XAML ... 291
10.1.4 Ein Dreieck in Programmcode erzeugen 294
10.1.5 WIrfel o 296
10.1.6 Gemeinsame Punkteccoccovviiieiiiiiiieiiniieeenine, 298
10.2 0 KAMEIa ..o 299
10.2.1 Perspektivische Kameracccoocvevinniiieeniiineenine. 299
10.2.2 Lage der Kameracc.ccceveeruiieeiniiieeeniieee e 301
T0.3 Licht oo 302
104 MOEllE i 306
10.4.1 Gruppe von 3D-K8rpernccoccvvveiiiniiiiiiiiiinnnnn. 306
10.4.2 3D-Kérper mit Ereignissencccccceeiiiiiiiiiiiiinnn. 309
10.4.3 Gruppe von 3D-Kérpern mit Ereignissen 310
10.4.4 3D-Kérper mit Oberflichengestaltung 311
10.5 Material und Texturccoooiiiiiiii e 313
1051 Material .oooooveeiiiiiii 314
10.5.2 Textur .o 316
10.6 Transformationenc.ccoceiiiiiiiiiiiiie e 319
10.6.1 ScaleTransform3Dcccviiviiiiiniiiiie e 319
10.6.2 TranslateTransform3Dccccooiiiiiiiiiiniicie e 321
10.6.3 RotateTransform3Dcccccoiiiiiiiiiiici e 322
10.6.4 Transform3DGroupccccoccvveiuieriiireiiee e 326
10.6.5 Transform3DGroup aus Rotationenccccceevneee. 327
10.7 Eine 3D-Landschaftcccccoviiiiiiiiiiiiiic 329
ANIimation ... 333
111 Allgemeiner Aufbaucoceiiiiiiiiiiic 334
11.1.1 Einfache DoubleAnimationccccooviviiiiiiinneenn, 334
11.1.2 DoubleAnimation, weitere Eigenschaften 337
11.1.3 PointAnimationcccccciiiiiiiiii 340
11.2 Storyboardcoooiiiiiiii 341
11.2.1 Storyboard als Ressourceccccocveviiiieeiiineeennnnne. 341
11.2.2 Storyboard per Programmcodecccccovivireinnnen. 343
11.2.3 Storyboard steuerncccoceiiiiiiinnii 345
11.2.4 Animierte Transformationcccociiiiiinin 347
11.2.5 ColorAnimationccccoiiiiiiiiiii e 349
11.3 Event TrigZer ..o 350
11.3.1 Event Trigger in Elementcocooiiiiiiiiiiiii, 350
11.3.2 Event Trigger und RessoUrcenccccceevvivvveennnnenn. 351

12

13

Inhalt

11.3.3 Event Trigger in Styleccccoiiiiiiiiiiii 352
11.3.4 Event Trigger zur Steuerungcccccovvviviiinnneniiinns 354
11.4 Animierte 3D-Rotationccoooiiiii 356
115 KeYframesoocuviiiiiiiiii e 359
11.5.1 Keyframes fiir Doublecccccoooiiiiiiniiiice 359
11.5.2 Keyframes fiir ColOroooiiiiiiiiiiiiiiiie e 362
11.5.3 KeyFrames flir Stringccccooviiiiiiiiiieicccnee 363
11.6 Easing Functionsccciiiiiiii 364
11.7 Pfadanimationenccccoceiiiiiiiiiiiic e 368
Audio und Video ... 371
T2.1 AUAIO oo 371
12.1.1 SoundPlayer in Programmcodeccccceerivinneennnne. 371
12.1.2 SystemSoundoccoeiiiiiiiiiii e 374
12.1.3 SoundPlayer in XAMLccccoviiiiiiiiiiiieee e 375
12.1.4 MediaPlayer fir Audioccocoeiiiiiiiiiis 375
12.1.5 MediaElement flir Audioccccooiiiiiiiiiiiiiins 378
12,2 VIO oot 380
12.2.1 MediaElement fiir Video ..o, 380
12.3 Sprachausgabeccccocoiiiiiiiiiiii 381
12.3.1 Textausgebencocoiiiiiiiiiiii 381
12.3.2 Text zusammensetzencccccccoiiiiiiiiinnnne, 386
12.4 Spracheingabe ... 390
12.4.1 Externe Spracherkennungccccccooiiiiiiiiiiiiin. 391
12.4.2 Interne Spracherkennungcccccociiiiiiiiniinnnne, 392
12.4.3 Steuerung per Spracherkennungccccccoviiniennnn. 394
Dokumente und Drucken ..., 397
13.1 FlowDocument ..o 397
13.1.1 FlowDocumentReaderccccooiiiiiiiiiiiiiiceie 398
13.1.2 Block-Typ Absatzcccoiiiiiiiii 400
13.1.3 Block-Typ Abschnitt ..o 402
13.1.4 Block-Typ Liste ..ccceeiiiiiiiiiiiiiciieeeceree e 403
13.1.5 Block-Typ Tabelleccoociiiiiiii 407
13.1.6 Block-Typ Steuerelement-Containercccoeene 410
13.1.7 1nliNes oo 412
13.1.8 Inline-Typ Figurecococoiiiiiiiiiiie e 417

"

Inhalt

13.1.9 FlowDocumentScrollViewercccccoovviviiiiieeiiiiniiii, 419

13.1.10 FlowDocumentPageViewercccccccooiiiiiiiininenne. 420

13.1.17 RIChTEXEBOX ..vvveiiiiiiiieeee e 420

13.2 FixedDOCUMENT ...oooviiiiiiiiieeeeee e 424
13.3 DIUCKEN oo 426

14 Interoperabilitat ... 431
141 Windows Forms in WPF ..o, 431
14.1.1 Windows Forms-Steuerelemente in WPF 431

14.1.2 Windows Forms-Standard-Dialogfelder in WPF.......... 432

14.2 WPF in Windows FOrmMScoiiiiiiiiiiieeee e 436
14.2.1 WPF-Steuerelemente in Windows Forms 436

14.3 MS OFfice INWPF ..ot 438
14.3.1 EXCEl-MAPPE ..evviiiiiieiiiiiiiiieeee e 439

14.3.2 Word-Dokument ... 441

INAEX <. 445

12

In diesem ersten Kapitel werden einige grundlegende Begriffe der WPF,
der Aufbau des Buchs und die Arbeit mit dem Visual Studio von
Microsoft erldutert.

1 Einfiihrung

WPF steht fur Windows Presentation Foundation. Es handelt sich dabei um eine
2006 ginzlich neu eingefiihrte Bibliothek von Klassen, die zur Gestaltung von
Oberflichen und zur Integration von Multimedia-Komponenten und Animatio-
nen dient. Sie vereint die Vorteile von DirectX, Windows Forms, Adobe Flash,
HTML und CSS.

1.1 Vorteile der WPF

Der Umstieg auf diese neue Technologie geschieht nur langsam. In der Praxis set-
zen Entwickler hiufig noch den Vorginger der WPF, Windows Forms, ein. In die-
sem Abschnitt werden einige Eigenschaften und Vorteile der WPF dargestellt.

Die WPF ermdoglicht eine verbesserte Gestaltung von Oberflichen. Layout, 3D-
Grafiken, Sprachintegration, Animation, Datenzugriff und vieles mehr basieren
auf einer einheitlichen Technik. Der Benutzer kann auerdem die Bedienung die-
ser Oberflichen schnell und intuitiv erlernen.

Einzelne Elemente oder ganze Oberflichen sind schneller anpassbar und aus-
tauschbar. Die Aufgabenbereiche des Designers (Gestaltung der Oberfliche) und
des Entwicklers (Codierung der Abldufe) sind klarer getrennt. So kann die Erstel-
lung einer Anwendung in parallelen Schritten erfolgen.

Die WPF wurde ginzlich neu entwickelt; es musste keine Rucksicht auf alte Tech-
niken genommen werden. Desktop-Anwendungen kénnen ohne grofen Auf-
wand auch fiir die Nutzung im Web umgestellt werden.

WPF-Anwendungen kénnen aufler auf die klassischen Medien Maus, Tastatur
und Bildschirm auch auf Touchscreen und Digitalisierbrett zugreifen. Sie konnen
tiber Sprache gesteuert werden und Sprachausgaben erzeugen.

13

1 | Einfihrung

Windows Forms ist linger auf dem Markt als die WPF. Daher besitzt es einige
Elemente, die in der WPF noch nicht vorliegen. Diese Elemente werden aber in
naher Zukunft hinzugefiigt. AuBerdem haben Sie die Moglichkeit, beide Techni-
ken zu vereinen. Sie koénnen Elemente aus Windows Forms in einer WPF-
Anwendung unterbringen und umgekehrt. So konnen Sie die Vorziige aus beiden
Welten nutzen.

1.1 Grafik in der WPF

Die WPF nutzt intern DirectX statt des veralteten GDI+, wie es bei Windows
Forms der Fall ist. Damit wird die Darstellung hardwarebeschleunigt. 2D- und
3D-Grafiken haben mehr Méglichkeiten und sind schneller.

Es wird Vektorgrafik statt Pixelgrafik verwendet. Damit ist eine Anwendung bes-
ser skalierbar. Sie wird unabhingig von der Auflosung und passt fiir viele ver-
schiedene Ausgabemedien. Dies wird aufgrund des mittlerweile flieBenden
Ubergangs von Smartphone iiber Pad, Netbook, Laptop, Desktop bis hin zu Gro8-
bildschirmen immer wichtiger.

Die Moglichkeiten der Grafik-Hardware beim Benutzer konnen besser genutzt
werden. Die Grafik-Hardware wurde mit den Jahren immer besser und billiger,
und damit stiegen auch die Erwartungen der Benutzer weiter an. Falls beim
Benutzer permanent oder temporir keine geeignete Grafik-Hardware vorhanden
sein sollte, so besitzt die WPF Fallback-Mechanismen. Dies beeinflusst die Ent-
wicklung nicht, nutzt aber die Moglichkeiten optimal aus.

1.2 Aufbau des Buchs

In jedem Abschnitt wird die Thematik anhand eines vollstindigen Projekts erldu-
tert. Sie sehen jeweils einen Screenshot und die wichtigen Teile des Codes. Ich
empfehle Thnen, das jeweilige Projekt auf Thren PC zu kopieren und es auf Threm
Rechner aufzurufen, parallel zum Lesen des Buchs. Viele Zusammenhinge wer-
den durch die Bedienung der Anwendung noch deutlicher.

In diesem Kapitel 1 werden einige grundlegende Begriffe erlautert. Die Besonder-
heiten und Erweiterungen von XAML gegentiber XML und der WPF im Vergleich
zu einer herkémmlichen Klassenbibliothek folgen in Kapitel 2.

Im Kapitel 3 lernen Sie verschiedene Layout-Moglichkeiten zur Anordnung der
Elemente kennen. Die WPF bietet zahlreiche Steuerelemente, diese folgen, in
Gruppen unterteilt, in Kapitel 4.

14

Visual Studio 2010

Mithilfe der WPF konnen Sie auf alte und neue Eingabemedien zugreifen. Diese
werden, zusammen mit dem Prinzip der Kommandos, in Kapitel 5 erldutert.
Kapitel 6 beschreibt die verschiedenen Anwendungstypen und das Prinzip der
Ressourcen.

Vorlagen sorgen fiir einheitliches, aber individuelles Aussehen - siehe Kapitel 7.
In Kapitel 8 wird erldutert, wie Sie eine Verbindung zwischen der Oberfliche und
den Anwendungsdaten herstellen konnen.

Die besondere Stirke der WPF liegt in der Grafik. Der Aufbau von 2D-Grafiken
und 3D-Grafiken wird in den Kapiteln 9 und 10 besprochen. Das Ganze gerit mit-
hilfe von Animationen in Bewegung, die Thema von Kapitel 11 sind.

Multimediakomponenten aus dem Bereich Audio und Video kénnen Sie mithilfe
der WPF in Thre Anwendungen integrieren. Dies ist Thema von Kapitel 12.

In Kapitel 13 lernen Sie, wie Sie verschiedene Formen von Dokumenten erstel-
len, benutzen und ausdrucken. Zu guter Letzt folgt in Kapitel 14 das Zusammen-
spiel der WPF mit Windows Forms und MS Office.

1.3 Visual Studio 2010

Die Entwicklungsumgebung Visual Studio 2010 von Microsoft ist selber mithilfe
der WPF entwickelt worden. Die frei verfiigbaren Ausgaben Visual Basic 2010
Express und Visual C# 2010 Express ermoglichen einen schnellen Einstieg in die
Programmierung mit WPF.

Die Oberfliche einer Anwendung wird mithilfe von XAML entworfen. XAML
steht flir eXtensible Application Markup Language. Es handelt sich dabei um eine
XML-basierte Markierungssprache, die nicht nur in der WPF zum Einsatz kommt.

Innerhalb des Visual Studio kénnen Sie die Oberfliche gleichzeitig in zwei
Ansichten sehen: im grafischen Entwurf und im XAML-Code. Eine Anderung in
einer der beiden Ansichten wirkt sich unmittelbar auf die jeweils andere
Ansicht aus.

Wihrend der Codierung werden Sie sowohl in XAML als auch im Programmier-
code von der kontextsensitiven Hilfe IntelliSense unterstiitzt. Dank IntelliSense
werden unter anderem nitzliche Listen eingeblendet, zum Beispiel nach einem
Punkt in der Objektschreibweise. Diese Listen enthalten nur die Elemente, in
denen die bereits eingegebene Buchstabenkombination vorkommt (sieche Abbil-
dung 1.1).

15

1

Einfihrung

‘@ Activate =
Activated

ﬁ‘ IsActive

-;9 OnActivated

ﬁ‘ ShowActivated A

Abbildung 1.1 Diese Liste enthalt nur Elemente mit »acti«.

Falls Sie einen Begriff markieren und die Taste betatigen, wird auch der Kon-
text beachtet und das passende Ziel erkannt. Dies ist dann besonders niitzlich,
falls der markierte Begriff zum Beispiel gleichzeitig eine Klasse und eine Eigen-
schaft bezeichnet.

1.3.1 Ein neues Projekt

Das Visual Studio bietet die Standardelemente einer Entwicklungsumgebung:
Projektmappenexplorer, Code- und Designfenster, Eigenschaftenfenster inklusive
einer Liste der Ereignisse und vieles mehr. Ein neues Projekt entwerfen Sie wie
folgt:

1. Rufen Sie Menil DATEI - NEUES PROJEKT auf.

2. Wihlen Sie die Vorlage WPF-ANWENDUNG aus, und vergeben Sie einen
Namen.

3. Entwerfen Sie die Oberfliche im Designer, inklusive des XAML-Codes.

4. Ordnen Sie die Ereignisse den Ereignismethoden zu, entweder innerhalb des
XAML-Codes oder im EIGENSCHAFTENFENSTER, Reiter EREIGNISSE.

5. Codieren Sie die Abliufe im Codefenster.

6. Nicht vergessen: Ment DATEI « ALLE SPEICHERN; selbst ein bereits erfolgreich
gestartetes Projekt konnte ansonsten verloren gehen!

Sollten Sie versehentlich einzelne Fenster geschlossen haben: Im Menii ANSICHT e
WEITERE FENSTER konnen Sie den Projektmappenexplorer und das Eigenschaften-
fenster wieder einblenden. Das Designfenster blenden Sie anschlieBend tiber
einen Doppelklick auf die Datei MainWindow.xaml im Projektmappenexplorer
ein, das Codefenster iiber die Datei MainWindow.xaml.cs. Zur normalen Anord-
nung der Fenster gelangen Sie iiber das Men{i FENSTER « FENSTERLAYOUT ZURUCK-
SETZEN.

16

Danksagung

1.4 Kaxaml

Bei Kaxaml handelt es sich um einen frei verfiigbaren, ressourcensparenden
XAML-Editor. Er stammt von einem Entwickler, der auch im Team der WPF titig
war: Robby Ingebretsen. Kaxaml bietet einige niitzliche Hilfen, um den ersten
Entwurf einer Oberfliche vorzunehmen. Sie finden Kaxaml auf dem Datentriger
zum Buch oder tiber http://www.kaxaml.com.

1.5 XAML und C# bzw. VB

Eine Anwendung kann ausschlieflich aus XAML-Code oder ausschlielich aus
Code in einer der Programmiersprachen bestehen, zum Beispiel Visual Basic oder
Visual C#. Meist wird allerdings gemischt: Die Oberflache wird in XAML entwor-
fen, die Abliufe werden in einer Programmiersprache codiert. Jedoch sind die
Uberginge fliefend; es herrscht keine strenge Trennung wie in Windows Forms.

In vielen Projekten dieses Buchs werden Elemente sowohl mit XAML als auch per
Programmcode erzeugt. Dies macht den hierarchischen Aufbau der Anwendung
und das Zusammenspiel der einzelnen Elemente noch deutlicher.

Die Entscheidung, welche Sprache Sie verwenden, hingt von Ihren persénlichen
Vorlieben und Erfahrungen ab. Es wird auf die gleiche Klassenbibliothek zuge-
griffen, und es stehen vergleichbare sprachliche Mittel zur Verfiigung. Alle Bei-
spielprojekte dieses Buchs liegen in zwei Versionen vor: im Buch in Visual C#, auf
dem Datentriger zum Buch in beiden Sprachen. Die Erklirungen im Buch koén-
nen ebenfalls fiir beide Sprachen genutzt werden, da dieselben WPF-Typen
zugrunde liegen.

1.6 Danksagung

An dieser Stelle mochte ich mich bei Anne Scheibe, Christine Siedle, Matthias
Geirhos, Friederike Daenecke und dem ganzen Team von Galileo Press fur die
Unterstiitzung und die hilfreiche Kritik bei der Erstellung dieses Buchs bedanken.

17

Dieses Kapitel behandelt die Besonderheiten und Erweiterungen
von XAML gegeniiber XML und der WPF im Vergleich zu einer
herkdmmlichen Klassenbibliothek.

2 XAML und WPF

Die WPF bietet einige Besonderheiten beziiglich der objektorientierten Program-
mierung. XAML beinhaltet einige Erweiterungen gegeniiber anderen Markie-
rungssprachen. Es geht in diesem Kapitel um das grundsitzliche Verstindnis.
Bitte storen Sie sich also nicht daran, falls Sie noch nicht jede einzelne Code-Zeile
der Beispielprojekte verstehen.

2.1 Dokumentstruktur

Die Elemente eines XAML-Dokuments stehen, wie bei jedem XML-Dokument, in
einer Baumstruktur. Ganz oben in der Hierarchie steht ein Hauptelement, darun-
ter ein oder mehrere Unterelemente, darunter wiederum Unterelemente und so
weiter. Es gibt Elemente, die nur ein Unterelement haben diirfen, und zwar in
der Eigenschaft Child. Im Gegensatz dazu diirfen Container-Elemente mehrere
Unterelemente haben, in der Auflistungs-Eigenschaft Children.

Beim Laden eines XAML-Dokuments wird fiir jedes Element eine Instanz des
Typs dieses Elements erzeugt. Man kann auf diese Instanz sowohl per XAML als
auch tiber Programmiersprachen wie Visual C# oder Visual Basic zugreifen.

Jedes Element verfiigt iiber Eigenschaften. Diese konnen in XAML tber Attribute
erreicht werden. In XAML werden fiir die Werte der Attribute und damit fur die
Werte der Eigenschaften Zeichenketten angegeben. Viele Eigenschaften haben
aber einen anderen Typ, zum Beispiel Zahlen oder Farben. In diesem Fall wird die
Zeichenkette mit einem internen Type Converter umgewandelt.

Viele Typen von Elementen besitzen eine Eigenschaft Name. Jedes Element kann
mit dem Bezeichner x:Name versehen werden. In beiden Fillen kann man damit
auf ein individuelles Element lesend oder schreibend zugreifen.

19

2 | XAML und WPF

Im nachfolgenden Projekt DokumentStruktur werden alle Begriffe dieses Ab-
schnitts an einem kleinen Beispiel erldutert (siche Abbildung 2.1).

(R DokumentStruktur E@g

Label-Text I | C k

Abbildung 2.1 Fenster mit Panel und zwei Unterelementen

Der XAML-Code:

<Window x:Class="DokumentStruktur.MainWindow"
xmlns="http://..." xmlns:x="http://..."
Title="DokumentStruktur" Height="200" Width="300">
MWrapPanel>
<Label Background="LightGray" Name="1b">Label-Text</Label>
<Button FontSize="24" x:Name="bu">Click</Button>
</WrapPanel>
</Window>

Das Hauptelement ist ein Fenster, das vom Typ Window abgeleitet ist. Der Name
des abgeleiteten Typs wird tiber x:Class angegeben, hier MainWindow. Ein Window
darf ein Unterelement haben. Hier ist es vom Typ WrapPanel. Ein WrapPanel ist
ein Container-Element (siche auch Abschnitt 3.3, »WrapPanel«). Hier enthilt es
Elemente vom Typ Label und vom Typ Button.

Die Elemente haben verschiedene Eigenschaften, zum Beispiel Title, Height
oder Background. Title ist vom Typ Zeichenkette; die Werte fiir die anderen Ele-
mente werden mithilfe passender Type Converter umgewandelt.

Das Label kann im Programmiercode tiber den Wert der Eigenschaft Name, der
Button tiber den Wert des Bezeichners x:Name erreicht werden.

Die Einbindung eines Namespace ermoglicht es Thnen, die Typen aus diesem
Namespace zu benutzen. Bereits bei Erstellung eines Projekts werden die wich-
tigsten Typen der WPF mithilfe von zwei Namespaces (hier sind sie nur mit
xmins=http://... und xmins:x=http://... angedeutet) automatisch zur Verfii-
gung gestellt. Weitere Namespaces konnen bei Bedarf in XAML oder im Program-
miercode von Visual C# oder Visual Basic eingebunden werden.

Sie konnen alle Projekte auf dem Datentriger zum Buch finden. Ich empfehle
Thnen, sie parallel zum Lesen des Buchs auszuprobieren. Allerdings passiert in
diesem Projekt noch nichts, falls Sie den Button betitigen.

20

Dependency Properties

2.2 Property Elements

Elemente kénnen innerhalb von XAML auf unterschiedliche Art und Weise mit
Eigenschaften versehen werden. Dies gibt Ihnen als Entwickler mehr Méglich-
keiten. Eine dieser Moglichkeiten sind die Eigenschaftselemente (Property Ele-
ments), die besonders bei komplex zusammengesetzten Eigenschaften zum Ein-
satz kommen.

Nachfolgend wird ein Beispiel im Projekt PropertyElements dargestellt, in dem drei
Label auf drei verschiedene Arten mit Inhalt geftillt werden (sieche Abbildung 2.2).

|5 PropertyElements

Inhalt 1
Inhalt 2

Inhalt 3

Abbildung 2.2 Drei Label mit Inhalt

Der zugehorige Ausschnitt des XAML-Codes:

{Label>Inhalt 1</Label>
{Label Content="Inhalt 2" />
<Label>
<Label.Content>
Inhalt 3
</Label.Content>
</Label>

Die Aufschrift eines Labels ist die Eigenschaft, die einfach innerhalb des XML-
Knotens notiert werden kann, siehe erstes Label. Damit wird die Eigenschaft
Content des Labels geftllt. Beim zweiten Label wird die Eigenschaft Content
gezielt als XML-Attribut angesprochen.

Beim dritten Label kommt ein Property Element zum Einsatz. Die Eigenschaft
wird, zusammen mit dem Typ, als eigener XML-Knoten angegeben. Der Inhalt
des Knotens ist der Wert der Eigenschaft.

2.3 Dependency Properties

Abhingigkeitseigenschaften (Dependency Properties) sind Elemente, die den Klas-
sen in der WPF neu hinzugefiigt wurden. Dependency Properties bieten mehr

21

2 | XAML und WPF

Fihigkeiten als die Properties der klassischen Objektorientierung, die hier zur
Unterscheidung CLR-Properties genannt werden.

Unter anderem konnen Dependency Properties automatisch aktualisiert und vali-
diert werden. Wertdnderungen kénnen direkt zu Aktionen fithren. Benotigt wer-
den sie besonders im Zusammenhang mit Datenbindungen, Styles und Animati-
onen. Die Methoden GetValue() und SetValue() dienen zum Abrufen und
Setzen der Werte.

Sie konnen Dependency Properties auch in Thren eigenen Klassen einfiihren. Da
sie aber deutlich mehr Ressourcen fordern, sollten Sie dies nur machen, wenn es
wirklich notwendig ist.

Im nachfolgenden Projekt DependencyProperties wird ein Beispiel dargestellt, wie
Dependency Properties zur Datenbindung genutzt werden konnen (siehe Abbil-
dung 2.3). Mehr zum Thema Datenbindung folgt in Kapitel 8, »Datenc.

i ™y
(8] DependencyProperties Elm

Hallo

Hallo

Inhalt abrufen

Abbildung 2.3 TextBox, Label und zwei Buttons

TextBox und Label sind tGber eine Datenbindung miteinander verbunden. Sobald
sich der Inhalt der TextBox dndert, dndert sich der Inhalt des Labels ebenfalls.
Der zugehorige Ausschnitt des XAML-Codes lautet:

{TextBox x:Name="tb" Text="Hallo" Width="100" />
<Label Width="100">
<{Label.Content>
<Binding ElementName="tb" Path="Text" />
</Label.Content>
</Label>
<Button Click="abrufen" Width="100">Inhalt abrufen</Button>
<Button Click="setzen" Width="100">Inhalt setzen</Button>

Die TextBox wird tiber ihren Namen und ihre Eigenschaft Text an die Eigenschaft
Content des Labels gebunden. Im Einzelnen passiert Folgendes: Die Anderung
der CLR-Property Text der TextBox dndert die zugehodrige Dependency Property
TextProperty. Dies fithrt zu einer Aktion. Diese Aktion dndert die Dependency

22

Attached Properties | 2.4

Property ContentProperty des Labels. Damit wird die zugehérige CLR-Property
Content geandert, wodurch sich der Inhalt des Labels dndert.

Es folgen die Ereignismethoden zu den beiden Buttons:

private void abrufen(object sender, RoutedEventArgs e)
{
// MessageBox.Show(tb.Text);
MessageBox.Show(tb.GetValue(TextBox.TextProperty) + "");
}

Sie sehen zwei Moglichkeiten, den Inhalt der TextBox abzurufen: iiber die CLR-
Property Text oder tUber die Dependency Property TextProperty. Die Typangabe
darf nicht fehlen, in diesem Falle ist das TextBox.

private void setzen(object sender, RoutedEventArgs e)
{
// th.Text = "Guten Tag";
th.SetValue(TextBox.TextProperty, "Guten Tag");
}

Ebenso gibt es zwei Moglichkeiten, den Wert zu dndern. Die Methode
SetValue() benotigt den Namen der Dependency Property und den neuen Wert.

2.4 Attached Properties

Angehangte Eigenschaften (Attached Properties) erweitern in der WPF die Eigen-
schaften von Elementen um die Eigenschaften fremder Typen. Wie bei Depen-
dency Properties dienen die Methoden GetValue() und SetValue()zum Abrufen
und Setzen der Werte.

Ein Beispiel wird im Projekt AttachedProperties dargestellt (sieche Abbildung 2.4).
Der Ort eines Buttons innerhalb eines Canvas wird iiber die Eigenschaften Left und
Top des Typs Canvas festgelegt. Der Button selber hat diese Eigenschaften nicht.

[8°] AttachedProperties

Inhalt abrufen

Abbildung 2.4 Buttons innerhalb eines Canvas

23

2 | XAML und WPF

Der zugehorige Ausschnitt des XAML-Codes:

<Canvas>
<Button x:Name="bl" Canvas.Top="20" Canvas.lLeft="50"
Click="abrufen">Inhalt abrufen</Button>
<Button x:Name="b2" Canvas.Top="60" Canvas.lLeft="50"
Click="setzen">Inhalt setzen</Button>
</Canvas>

Bei den Attached Properties miissen Sie den Namen des fremden Typs angeben,
dessen Eigenschaften benutzt werden.

Die Ereignismethoden zu den beiden Buttons sehen wie folgt aus:

private void abrufen(object sender, RoutedEventArgs e)
{
MessageBox.Show(bl.GetValue(Canvas.LeftProperty) + "");
}
private void setzen(object sender, RoutedEventArgs e)
{
b2.SetValue(Canvas.LeftProperty, 10.0);
}

Das Abrufen und Setzen der Werte wird tiber die zugehoérige Dependency Pro-
perty realisiert, inklusive Typangabe. In der Methode abrufen() wird der aktuelle
Wert von LeftProperty ausgegeben. Am Anfang ist dies 50. In der Methode
setzen() wird LeftProperty auf 10 gesetzt.

2.5 Markup Extensions

XAML bietet die Moglichkeit, Markup Extensions zu nutzen. Diese Erweiterun-
gen des Markups dienen der abkiirzenden Schreibweise. Innerhalb von
geschweiften Klammern konnen die Inhalte eines XAML-Knotens in verkirzter
Form untergebracht werden.

Nachfolgend wird im Projekt MarkupExtensions ein Beispiel mit einer Datenbin-
dung von einer TextBox zu zwei Labels dargestellt, in der beide Schreibweisen
einander gegentibergestellt werden (siehe Abbildung 2.5).

Der zugehorige Ausschnitt des XAML-Codes:

{TextBox x:Name="tb" Text="Hallo" Width="100" />
<Label Width="100">
<Label.Content>

24

Routed Events | 2.6

<Binding ElementName="tb" Path="Text" />
</Label.Content>
</Label>
<Label Width="100"
Content="{Binding ElementName=tb, Path=Text}" />

<{Label Width="100" Content="{}{Klammern}" />
rlfl MarkupExtensions l""‘——' =

Hallo

Hallo

Hallo

{Klammem}

Abbildung 2.5 Label mit Markup Extension

Beim ersten Label wird die Datenbindung in der langen Form notiert. Das zweite
Label beinhaltet das Gleiche in Form einer Markup Extension: deutlich kiirzer,
innerhalb von geschweiften Klammern.

Falls Sie die geschweiften Klammern selbst darstellen mdchten, dann miissen Sie
ein Paar geschweifte Klammern voranstellen, wie Sie am dritten Label sehen.

2.6 Routed Events

Die Elemente einer auf WPF basierenden GUI liegen in einer Hierarchie; sie sind
ineinander verschachtelt. Ein Beispiel: Ein Bild liegt auf einem Button, der Button
liegt in einem Layout-Element, das Layout-Element liegt in einem Fenster. Falls
nun ein Mausklick auf dem Bild ausgelost wird, so kann es sein, dass eigentlich
eines der tibergeordneten Elemente darauf reagieren soll.

Damit dies moglich wird, werden Ereignisse in der WPF weitergeleitet (geroutet)
— daher der Begriff Routed Events. AuBerdem kann es sein, dass vor der eigentli-
chen Ereignisbehandlung Vorbereitungen getroffen werden miissen. Daher gibt
es neben den klassischen Ereignishandlern sogenannte Preview-Ereignishandler.

Im nachfolgenden Projekt RoutedEvents soll die Reihenfolge der Ereignisbehand-
lung verdeutlicht werden (siehe Abbildung 2.6). Es wird das Ereignis MouseDown
auf dem grauen Rechteck ausgefiihrt. Das Rechteck (Rectangle) liegt in einem Lay-
out-Element vom Typ StackPanel, das wiederum innerhalb des Fensters vom Typ
MainWindow liegt.

25

2

XAML und WPF

[®7 RoutedEvents E@u

PreviewMouseDown MainWindow
PreviewMouseDown StackPanel
PreviewMouseDown Rectangle
MouseDown Rectangle
MouseDown StackPanel
MouseDown MainWindow

Abbildung 2.6 Das Ereignis »MouseDown«

Beim Ereignis MouseDown wird ein Event-Bubbling durchgefiihrt. Das heif8t, das
Ereignis steigt innerhalb der Hierarchie wie eine Luftblase vom Rechteck tber
das StackPanel bis zum Fenster auf. Beim zugehorigen Preview-Ereignis Pre-
viewMouseDown wird ein Event-Tunneling durchgefiihrt. Das heifft, das Ereignis
wird in der Hierarchie vom Fenster tiber das StackPanel bis zum Rechteck nach
unten durchgetunnelt. Der zugehorige XAML-Code:

<Window ... PreviewMouseDown="mdown" MouseDown="mdown">
<StackPanel PreviewMouseDown="mdown" MouseDown="mdown">
<Rectangle Height="23" Width="80" Fill="LightGray"
PreviewMouseDown="mdown" MouseDown="mdown" />
<ListBox x:Name="1b" Height="110" />
</StackPanel>
</Window>

An insgesamt sechs Stellen wird eine Ereignisbehandlung durchgefiihrt. Zur Ver-
einfachung lésen alle sechs Ereignisse den Code derselben Methode aus:

private void mdown(object sender, MouseButtonEventArgs e)

{
1b.Items.Add(e.RoutedEvent.Name + " " + sender.GetType().Name);

}

Das Objekt der Klasse MouseButtonEventArgs beinhaltet Informationen {iber das
auslosende Ereignis. Die Eigenschaft RoutedEvent liefert den Namen dieses Ereig-
nisses, also PreviewMouseDown oder MouseDown.

Das Objekt sender gibt an, bei welchem Objekt das Ereignis registriert wurde. In
der vorliegenden Methode wird mithilfe von GetType() der Typ dieses Objekts
genannt, also Rectangle, StackPanel oder MainWindow.

26

Attached Events

2.7 Attached Events

Angehingte Ereignisse (Attached Events) erweitern in der WPF die Ereignisse
von Elementen um die Ereignisse fremder Typen. So kann man ein Ereignis ein-
malig zentral bei einem iibergeordneten Element registrieren, anstatt es jeweils
einzeln bei allen untergeordneten Elementen registrieren zu missen.

Ein Beispiel wird im Projekt AttachedEvents dargestellt (siehe Abbildung 2.7).
Das Ereignis Cl1ick bei einem der drei Buttons wird nur einmalig beim tiberge-
ordneten Layout-Element vom Typ StackPanel registriert. Beim StackPanel selber
gibt es dieses Ereignis nicht.

[®7 AttachedEvents @m

Button 1

Abbildung 2.7 Das Ereignis »Click« zentral registrieren

Der zugehorige Ausschnitt des XAML-Codes:

{StackPanel Button.Click="bclick">
<Button x:Name="bl" Width="100">Button 1</Button>
<Button x:Name="b2" Width="100">Button 2</Button>
<Button x:Name="b3" Width="100">Button 3</Button>
</StackPanel>

Das Ereignis Click muss im StackPanel gemeinsam mit dem passenden Typ
(Button) angegeben werden, da es dieses Ereignis im StackPanel nicht gibt. Die
Ereignismethode sieht so aus:

private void bclick(object sender, RoutedEventArgs e)
{

MessageBox.Show((e.Source as Button).Name);
}

Das Objekt sender gibt an, bei welchem Objekt das Ereignis registriert wurde.
Dies ist hier das StackPanel und nicht einer der Buttons. Daher nutzt uns sender
an dieser Stelle nichts.

Das Objekt der Klasse RoutedEventArgs beinhaltet Informationen tiber das gerou-
tete Ereignis. Die Eigenschaft Source liefert einen Verweis auf das auslosende
Objekt, somit also den Namen des geklickten Buttons.

27

Die WPF stellt vielfdltige Alternativen zur Anordnung der Elemente
bereit. Diese Layout-Mdoglichkeiten erleichtern die Trennung von
grafischer Gestaltung und Programmierung und damit eine Aufgaben-
teilung zwischen Designer und Entwickler.

3 Layout

Sie bestimmen die Anordnung der Steuerelemente in Ihrer Anwendung tiber das
Layout. Damit sorgen Sie fiir ein ansprechendes Aussehen und eine gute Bedien-
barkeit der Oberflache. Sie soll stufenlos in der Grofe skalierbar sein und unter-
schiedlichen Umgebungen angepasst werden konnen. Die frither tbliche Vergabe
fester Positionen sollten Sie daher moglichst vermeiden.

Der Inhalt des Client-Bereichs eines Anwendungsfensters ist genau ein Element.
Im Allgemeinen ist dies ein Layout-Element. Dieses Layout-Element kann der
Ursprung einer Hierarchie von Layouts sein. Layouts konnen also ineinander ver-
schachtelt sein (siehe auch Abschnitt 3.1.3, »Layout-Hierarchie«).

Die gemeinsame Basisklasse der verschiedenen Layout-Klassen ist die Klasse
Panel. Sie stellt viele gemeinsame Member zur Verfiigung. Im Projekt PanelAlle
(siehe Abbildung 3.1) sehen Sie fiinf mogliche Layouts: links oben Canvas, rechts
oben StackPanel, links unten WrapPanel, rechts unten DockPanel. Alle zusammen
sind innerhalb eines Grid angeordnet.

8] PanelAlle (im Grid) e |
StackPanel

sp [¥lcB
m
WrapPanel | WP Wrap] DockPanel

Panel DP [E

DP @ RB1) RB2

L

Abbildung 3.1 Alle funf Layouts

29

3 | Layout

Sie konnen auch das Innere eines Elements mithilfe von Layouts frei gestalten:
Im Projekt PanelAlle sehen Sie einen Button, der Text und eine CheckBox (hier:
CB) beinhaltet. Ein anderer Button enthélt Text und zwei RadioButtons (hier: RB).
Sie sehen: Die Grenze zwischen Layout und Steuerelement ist flieBend. Auch in
diesem Punkt zeigt sich die Vielseitigkeit der WPF.

Eine Anmerkung: Als Beispiel fiir die Steuerelemente, die mithilfe von Layouts
positioniert werden, verwende ich hiufig Buttons, unter anderem wegen ihrer
guten Erkennbarkeit.

3.1 Canvas

In fritheren Anwendungen wurden Steuerelemente haufig fest positioniert. Dies
sollten Sie, wie oben erldutert, moglichst vermeiden. Dennoch gibt es Situatio-
nen, in denen dies fir einen Teil der Oberfliche oder die gesamte Oberfliche
unumgénglich ist. Dann verwenden Sie einen Canvas.

Zur Positionierung in x-Richtung verwenden Sie dabei die Attached Properties
Canvas.Left und Canvas.Right. Fiir die Positionierung in y-Richtung nehmen Sie
Canvas.Top und Canvas.Bottom. Die Werte fiir diese Eigenschaften beziehen sich
auf das logisch tibergeordnete Element. Die Lage der Elemente in z-Richtung kén-
nen Sie mithilfe der Attached Property Panel.ZIndex beeinflussen. Elemente mit
unterschiedlichen Werten fiir ZIndex liegen vom Betrachter aus hintereinander
beziiglich der Bildschirmebene.

3.1.1 Positionierung

Im nachfolgenden Projekt CanvasPositionen wird eine Reihe von Buttons sowohl
mithilfe von XAML als auch mithilfe von Programmcode positioniert (siehe
Abbildung 3.2).

r: ™y
[®°] CanvasPositionen @Elg

1: ohne Left und Top

2: Left 30, Top 18

3: Right 5, Bottom 39
: Right 5, Bottom 22, ZIndex 1

4
(3: Left 5, Bottom 5 Hﬁ: Right 5, Bottom 5, Zndex 1|

Lo

Abbildung 3.2 Positionierte Steuerelemente

30

Canvas | 34

Zunichst der Aufbau in XAML:

<Window ... Height="150" Width="320">
<Canvas x:Name="cv">
<Button x:Name="bl" Click="bl_Click">
1: ohne Left und Top</Button>
<Button Canvas.lLeft="30" Canvas.Top="18" x:Name="b2"
Click="b2_Click">2: Left 30, Top 18</Button>
<Button Canvas.lLeft="5" Canvas.Bottom="56">
3: Left 5, Bottom 5</Button>
<Button Canvas.Right="5" Canvas.Bottom="22" Panel.ZIndex="1">
4. Right 5, Bottom 22, ZIndex 1</Button>
<Button Canvas.Right="5" Canvas.Bottom="39">
5: Right 5, Bottom 39</Button>
<Button Canvas.Right="5" Canvas.Bottom="5" Panel.ZIndex="1"
Click="b6_Click">6: Right 5, Bottom 5, ZIndex 1</Button>
</Canvas>
</Window>

Die Steuerelemente stehen innerhalb des Canvas-Containers. Dieser fiillt, als ein-
ziges Element, den gesamten Client-Bereich des Fensters aus. Er bekommt hier
einen eindeutigen Namen, weil ihm spiter ein Steuerelement per Programmcode
hinzugeftigt wird. Die Steuerelemente sind dem Canvas untergeordnet.

Bei Button 1 gibt es keine Positionsangaben, daher liegt er ganz links oben. Bei
Button 2 ist der Abstand vom linken und vom oberen Rand, bei Button 3 der
Abstand vom linken und vom unteren Rand des Canvas festgelegt. Bei den restli-
chen Buttons 4 bis 6 wird mit unterschiedlichen Abstinden vom rechten und
vom unteren Rand gearbeitet.

Sollten sich einzelne Steuerelemente iberlappen, so liegt das spater erzeugte Ele-
ment in z-Richtung tiber dem frither erzeugten Element. Dies sehen Sie bei den
Buttons 1 und 2. Mit der Attached Property Panel.ZIndex konnen Sie darauf Ein-
fluss nehmen. Ohne Angabe gilt Panel.ZIndex = 0. Ein positiver Wert »hebt« das
Steuerelement in Richtung Betrachter, ein negativer Wert »versenkt« das Steuer-
element in der Oberfliche. Daher tiberlappt Button 4 den Button 5, wird aber
von Button 6 iiberlappt.

Die Lage konnen Sie auch per Programmcode beeinflussen, wie dies fiir die But-
tons 1 und 2 durchgefiihrt wird:

private void bl_Click(object sender, RoutedEventArgs e)
{
bl.SetValue(Canvas.LeftProperty, 10.0);
bl.SetValue(Canvas.TopProperty, 10.0);

31

3 | Layout

bl.SetValue(Panel.ZIndexProperty, 1);

private void b2_Click(object sender, RoutedEventArgs e)
{

double Teft, top;

left = (double)b2.GetValue(Canvas.LeftProperty);

top = (double)b2.GetValue(Canvas.TopProperty);

b2.SetValue(Canvas.lLeftProperty, left + 10);
b2.SetValue(Canvas.TopProperty, top + 10);
b2.Content = "2: verschoben";

}

Button 1 wird absolut verschoben, und zwar auf Position 10,10. Gleichzeitig wird
er dem Betrachter entgegengehoben. Daher tberlappt er nun Button 2. Die
Methode SetValue() dient zum Verdndern der Werte von Dependency Properties.
Canvas.LeftProperty steht fiir die Attached Property Canvas.Left, und bei den
anderen verhilt es sich entsprechend. Die Werte fir Left und Top miissen vom
Typ double sein, der Wert fiir ZIndex vom Typ int.

Button 2 wird bei jedem Click relativ verschoben: um den Wert 10 nach rechts
und um den Wert 10 nach unten. Die Methode GetValue() dient zum Ermitteln
des aktuellen Werts der Dependency Property. Diese ist vom Typ object. Fiir die
spatere Weiterverwendung ist daher eine explizite Typkonvertierung notwendig.
Hier ist es wichtig, den richtigen Typ zu wahlen. Die Eigenschaft Content steht
fiir den Inhalt des Elements, also fiir die Aufschrift des Buttons.

Hinweis: Die urspriingliche Position des Buttons 1 konnen Sie nicht iiber die
Methode GetValue() ermitteln, da ihm die Eigenschaften Left und Top nicht per
XAML zugewiesen wurden. Die Methode liefert in diesem Falle den Wert »nicht
definiert«. Abhilfe: Setzen Sie Left und Top in XAML auf 0.

3.1.2 Elemente neu erzeugen

Im Projekt CanvasPositionen dient Button 6 zur Erstellung von weiteren Elemen-
ten per Programmcode:

private void bé_Click(object sender, RoutedEventArgs e)
{

Button nb = new Button();

nb.Content = "Neu";

nb.SetValue(Canvas.RightProperty, 5.0);

32

Canvas | 34

nb.SetValue(Canvas.BottomProperty, 80.0);
cv.Children.Add(nb);
}

Mit dieser Technik kénnen Sie Steuerelemente in allen Panel-Typen (Canvas,
StackPanel ...) neu erzeugen. Zunichst wird eine neue Instanz des Steuerelements
angelegt. Diese bekommt Eigenschaften, wie Aufschrift und Lage. Hier ist es
wichtig, double-Werte zu wihlen.

Anschliefend wird sie der Auflistung Children des jeweiligen Panels mithilfe der
Methode Add() hinzugefligt. Diese Auflistung verweist auf die untergeordneten
Elemente eines Panels, hier also des Canvas.

3.1.3 Layout-Hierarchie

In einer Hierarchie von Layouts lassen sich mehrere Layouts, auch unterschiedli-
chen Typs, miteinander kombinieren. Dies wird im nachfolgenden Projekt Canvas-
InCanvas anhand von Canvas-Layout-Elementen gezeigt. Angaben wie Canvas. Left
beziehen sich dabei immer auf das direkt iibergeordnete Layout-Element.

Innerhalb eines Canvas, der den Client-Bereich des Fensters einnimmt, werden
zwei untergeordnete Canvas positioniert. Diese beinhalten wiederum Buttons
(siche Abbildung 3.3).

[® CanvasInCanvas l-t'

Abbildung 3.3 Untergeordnete Elemente

Zunichst der Aufbau in XAML:

<MWindow ...>
<Canvas>
<Canvas Width="200" Height="60" x:Name="cvl"
Background="LightGray">
<Button Canvas.Top="10" Canvas.Left="50">Button 1</Button>
</Canvas>
<Canvas Width="200" Height="60" x:Name="cv2" Canvas.Top="70"
Background="LightGray">

33

3 | Layout

<Button Canvas.Top="10" Canvas.Left="50">Button 2</Button>
<Button Canvas.Top="10" Canvas.Left="110" x:Name="b3"
Click="b3_Click">Button 3</Button>
</Canvas>
</Canvas>
</Window>

Die beiden inneren Canvas cv1 und cv2 sind dem dufleren Canvas untergeordnet.
Die Angabe Canvas.Top des unteren Canvas bezieht sich auf den dufleren Canvas.
Die beiden Buttons 1 und 2 sind gleichartig positioniert. Thre Angaben Canvas
.Top und Canvas.Left beziehen sich allerdings einmal auf den ersten, einmal auf
den zweiten inneren Canvas.

Hinweis: Die Eigenschaft Background fiir die Hintergrundfarbe ist vom Typ Brush
(dt. Pinsel) und nicht vom Typ Color. In XAML werden haufig Type Converter
genutzt, die eine passende Umwandlung vornehmen kénnen. Mehr zum Typ
Brush finden Sie in Abschnitt 9.4, »Pinsel«.

Die Unterordnung beztiglich der beiden Canvas kénnen Sie auch per Programm-
code verdndern. Betitigt der Benutzer den dritten Button, so wechselt der Button
vom unteren zum oberen Canvas:

private void b3_Click(object sender, RoutedEventArgs e)
{
if (b3.Parent == cv2)
{
cv2.Children.Remove(b3);
cvl.Children.Add(b3);

}

Die Eigenschaft Parent liefert einen Verweis auf das tibergeordnete Element.
Falls es sich in diesem Fall um den unteren Canvas handelt, so wird die Unterord-
nung mithilfe der Methode Remove () aufgelost und eine neue Unterordnung zum
oberen Canvas erstellt: Der Button wechselt nach oben (siehe Abbildung 3.4).

[®7 CanvasInCanvas l":'

Abbildung 3.4 Hier wurde die Unterordnung gedndert.

34

StackPanel

3.2 StackPanel

Ein StackPanel »stapelt« wortwortlich die Steuerelemente: Diese werden einfach
in einer Reihe untereinander oder nebeneinander angeordnet. Im Projekt Stack-
PanelAnordnung werden einige Moglichkeiten dargestellt.

Den Standard-Fall mit vertikaler Orientierung sehen Sie in Abbildung 3.5 links.
In Abbildung 3.5 Mitte sind die Steuerelemente nebeneinander angeordnet.
Zusitzlich wurde die Richtung der Reihe gedndert: Die Steuerelemente werden
von rechts nach links gestapelt. Sollte die Umgebung zu wenig Platz bieten, dann
sind moglicherweise einige Elemente nicht erreichbar. Zur Abhilfe kénnen Sie
das StackPanel in ein Steuerelement vom Typ ScrollViewer einbetten (siehe
Abbildung 3.5 rechts).

Falls die Steuerelemente innerhalb eines vertikal orientierten StackPanel keine
eigene Breite haben, so nehmen sie die maximal verfuigbare Breite in Anspruch.
Entsprechendes gilt fiir die Hohe in einem horizontal orientierten StackPanel.

Alle Layouts konnen Sie in einer Hierarchie anordnen. Die drei beschriebenen
StackPanel sind insgesamt wiederum in einem {ibergeordneten StackPanel mit
horizontaler Orientierung eingebettet, diesmal in der Standard-Ablaufrichtung
»von links nach rechts«.

[877 StackPanelAnordnung

Button 7

Button 10

Lo

Abbildung 3.5 Verschiedene StackPanel

Der Aufbau in XAML:

<MWindow ...>
<StackPanel Orientation="Horizontal">
<{StackPanel Width="100" Margin="10">
<Button Click="neu_Click">Button 1</Button>
<Button>Button 2</Button>
<Button>Button 3</Button>

</StackPanel>
{StackPanel Orientation="Horizontal"
FlowDirection="RightTolLeft" ...> ... </StackPanel>

35

3 | Layout

{ScrollViewer VerticalScrollBarVisibility="Auto"...>
{StackPanel> ... </StackPanel>
</ScrollViewer>
</StackPanel>
</Window>

Die Orientierung wird mit der Eigenschaft Orientation festgelegt. Es gibt die
Werte Vertical (iibereinander) und Horizontal (nebeneinander). Die Eigen-
schaft FlowDirection bestimmt die Richtung der Reihe. Erlaubte Werte sind
LeftToRight und RightToleft. Der letztgenannte Wert macht nur Sinn, falls
Orientation den Wert Horizontal hat.

Die Eigenschaft VerticalScrol1BarVisibility des Elements vom Typ Scroll-
Viewer konnen Sie auf den Wert Auto stellen. Dann wird sie nur eingeblendet,
wenn sie benotigt wird, also wenn es »zu viele« Elemente gibt. Testen Sie dies im
vorhandenen Projekt, indem Sie einfach die Fensterhohe mit der Maus verdn-
dern.

Zur besseren Darstellung wurden die Breite sowie der AuBBenabstand der unter-
geordneten StackPanel festgelegt, und zwar tber die Eigenschaften Width und
Margin. Mehr zu diesen Eigenschaften erfahren Sie in Kapitel 4, »Steuerele-
mente«.

3.2.1 Elemente neu erzeugen

Im Projekt StackPanelAnordnung konnen Sie mithilfe der Buttons 1, 4 und 7 wei-
tere Buttons per Programmcode erstellen:

private void neu_Click(object sender, RoutedEventArgs e)
{
Button nb = new Button();
nb.Content = "Neu";
Panel p = (sender as Button).Parent as Panel;
p.Children.Add(nb);
}

Es wird ein neuer Button erzeugt und beschriftet. Dann wird das jeweils tiberge-
ordnete Panel des geklickten Buttons (1, 4 oder 7) mithilfe der Eigenschaft Parent
ermittelt. Der neu erzeugte Button wird der Auflistung Children dieses Panels
mithilfe der Methode Add () als neues, untergeordnetes Element hinzugefugt.

Sie kénnen feststellen, dass StackPanels mit vertikaler Orientierung nach unten
erweitert werden. StackPanels mit horizontaler Orientierung werden nach rechts
erweitert, unabhiangig von der Richtung der Reihe.

36

WrapPanel

3.3 WrapPanel

Ein WrapPanel ist, etwas vereinfacht ausgedriickt, ein StackPanel mit automati-
schem Zeilenumbruch. Die Steuerelemente werden der Reihe nach angeordnet.
Falls es nicht mehr gentigend Platz gibt, dann wird eine weitere Reihe aufge-
macht. Es kommt hinzu, dass die Steuerelemente nur noch den notwendigen
Platz einnehmen, nicht mehr den maximal verfiigbaren Platz. Im Projekt Wrap-
PanelAnordnung sehen Sie einige Moglichkeiten.

Das oberste WrapPanel in Abbildung 3.6 beinhaltet sieben Steuerelemente. Sie
sind jeweils nur so breit wie notig. Das letzte Element passte nicht mehr in die
Reihe, daher wurde eine neue Reihe eroffnet. Die Richtung der Reihe weist im
Standardfall von links nach rechts.

Beim zweiten WrapPanel in Abbildung 3.6 sind die fiinf Steuerelemente von
rechts nach links angeordnet. Es gibt auch hier eine zweite Reihe.

Im ndchsten WrapPanel in Abbildung 3.6 wurde die Hohe einzelner Steuerele-
mente gedndert. Dies hat Auswirkungen auf die anderen Steuerelemente, die sich
aktuell in der gleichen Reihe befinden. Sie nehmen die gleiche Hohe an, falls sie
keine eigene Hohe haben.

Sie konnen aber auch eine einheitliche Breite beziehungsweise Hohe fur alle
Steuerelemente festlegen. Dies sehen Sie am letzten WrapPanel in Abbildung 3.6.

rD WrapPanelAnordnung E‘Euw
Button 4Butl0n 6]

Button 7

[Button 4IButton SIButton EIButton 1]

Button 5

Button 1|Button 2|3: Height 40
Button 5
Button 1 | B2 | B3]
Button 4 | BS | Button 6]

L=

Abbildung 3.6 Verschiedene WrapPanel

37

3 | Layout

Der Aufbau in XAML:

<MWindow ...>
<StackPanel>
<WrapPanel Margin="5">
<Button Click="neu_Click">Button 1</Button>
<Button>B 2</Button>

<Button>Button 7</Button>
</WrapPanel>
<WrapPanel FlowDirection="RightTolLeft" ...> ... </WrapPanel>
<WrapPanel ...>

<Button Height="40">3: Height 40</Button>
<Button Height="18">4: Height 18</Button>

</WrapPanel>
<WrapPanel ItemWidth="70" ItemHeight="30" ...> ...
</WrapPanel>
</StackPanel>
</Window>

Wiederum wird tiber die Eigenschaft F1owDirection die Richtung der Reihe fest-
gelegt. In einer Reihe haben alle Steuerelemente dieselbe Hohe. Sobald eines der
Steuerelemente seine Hohe dndert (Eigenschaft Height), dndert sich auch die
Hohe der anderen Steuerelemente in der gleichen Reihe. Falls eine einheitliche
Breite beziehungsweise Hohe gewtinscht wird, kénnen Sie dies tiber die Eigen-
schaften ItemWidth und ItemHeight des Panels bestimmen.

3.3.1 Elemente neu erzeugen

Mithilfe der verschiedenen Buttons mit der Aufschrift ButtoN 1 konnen Sie wei-
tere Buttons im jeweiligen Panel per Programmcode erstellen. Die Methode neu_
Click() aus dem Abschnitt 3.2.1, »Elemente neu erzeugen«, konnen Sie hier
unverdndert anwenden, da alle Layoutklassen von der gemeinsamen Basisklasse
Panel abgeleitet sind.

3.3.2 Vertikale Orientierung

Auch in einem vertikal angeordneten WrapPanel gibt es zwei Méglichkeiten fiir
die Richtung der Reihe. Dies sehen Sie im Projekt WrapPanelOrientierung in
Abbildung 3.7.

38

DockPanel | 3.4

[87] WrapPanelOrientierung @m

[Button llBurton 5] [Button 5|Button l]
| B2 [Bs |[B 2 |
B3 B3

-

Abbildung 3.7 Zwei vertikale WrapPanel

Beide vertikalen Reihen bieten nicht gentigend Platz, daher wird jeweils eine wei-
tere vertikale Reihe eroffnet. Im zweiten Fall weist die Richtung der Reihe von
rechts nach links. Der Aufbau in XAML:

MWindow ...>
<StackPanel Orientation="Horizontal">
<WrapPanel Orientation="Vertical" ...> ... </WrapPanel>
{WrapPanel Orientation="Vertical"
FlowDirection="RightToLeft" Margin="5">

</WrapPanel>
</StackPanel>
</Window>

Auch in diesem Projekt konnen Sie tiber die beiden Buttons mit der Aufschrift
BUTTON 1 weitere Buttons erstellen.

3.4 DockPanel

In einem DockPanel ordnen Sie die Steuerelemente so an, wie Sie es aus vielen
Anwendungen kennen: Oben wird zum Beispiel das Hauptment angedockt,
unten eine Statuszeile, links und rechts gibt es weitere Bedienmoglichkeiten. In
der verbleibenden Mitte wird der zu bearbeitende Inhalt dargestellt. Ein Beispiel
sehen Sie im Projekt DockPanelTBLR (siehe Abbildung 3.8).

8] DockPanelTBLR = |5 [

1: Top

Inhalt
3:L|4L|5:L &: Right

2: Bottom

-

Abbildung 3.8 Reihenfolge »Top«, »Bottoms, »Left«, »Right«

39

3 | Layout

Der Aufbau in XAML:

<MWindow ...>
<DockPanel>
<Button DockPanel.Dock="Top">1: Top</Button>
<Button DockPanel.Dock="Bottom">2: Bottom</Button>
<Button DockPanel.Dock="Left">3: L</Button>
<Button DockPanel.Dock="Left">4: L</Button>
<Button DockPanel.Dock="Left">5: L</Button>
<Button DockPanel.Dock="Right">6: Right</Button>
{TextBlock Margin="10">Inhalt</TextBlock>
</DockPanel>
</Window>

Den Steuerelementen innerhalb eines DockPanels wird die Attached Property
DockPanel.Dock zugeordnet. Die Werte fiir die Eigenschaft stammen aus der Enu-
meration Dock: Top, Bottom, Left und Right.

Wichtig ist die Reihenfolge: Der erste Button wird oben angeordnet und erstreckt
sich tiber die gesamte Breite. Beim zweiten Button gilt das Gleiche fiir unten. Sie
koénnen mehrere Steuerelemente im gleichen Bereich andocken: Die Buttons 3
bis 5 werden nebeneinander links dargestellt. Diese Buttons konnen sich aller-
dings nicht mehr bis ganz oben oder ganz unten erstrecken, da dieser Platz
bereits durch die Buttons 1 und 2 belegt ist. Beim Button 6 gilt das Gleiche fur
rechts.

Das letzte Element, hier ein TextBlock, wird gar nicht angedockt. Daher fiillt es
den verbleibenden Platz. Mehr zum Element TextBlock folgt in Abschnitt 4.3.2.

3.4.1 DockPanel in Hierarchie

Im nachfolgenden Projekt DockPanelLRT sehen Sie Elemente, die jeweils wie-
derum andere Elemente enthalten (siehe Abbildung 3.9).

i] DockPanelLRT b= |

6: SP Top|7: SP Top|8: SP Top| (2: SP Right

Inhalt
1: Left

L=

Abbildung 3.9 DockPanel und StackPanel

40

DockPanel | 3.4

Die Elemente wurden in der Reihenfolge links, rechts und oben erzeugt. Daher
steht fir das obere Element nicht mehr die gesamte Breite zur Verfiigung. Das
rechte und das obere Element ist jeweils ein StackPanel, das weitere Elemente
beinhaltet. Der Aufbau in XAML:

MWindow ...>
<DockPanel>
<Button DockPanel.Dock="Left">1: Left</Button>
<{StackPanel DockPanel.Dock="Right">
<Button>2: SP Right</Button>

</StackPanel>
<StackPanel DockPanel.Dock="Top" Orientation="Horizontal">
<Button>6: SP Top</Button>

</StackPanel>
{TextBlock Margin="10">Inhalt</TextBlock>
</DockPanel>
</Window>

Es gibt drei Elemente, die mit der Attached Property DockPanel festgelegt wur-
den: ein Button und zwei StackPanels.

3.4.2 Elemente neu erzeugen

Im nachfolgenden Projekt DockPanelLastChild wird erldutert, wie Sie einem
DockPanel neue Elemente an der gewtnschten Stelle hinzufiigen (siehe Abbil-
dung 3.10).

(@7 DockPanelLastchild EER)
3: Top
Neu
1: Left 2: Right
Neu
4: Bottom

Abbildung 3.10 Elemente neu erzeugen
Die Elemente wurden in der Reihenfolge links, rechts, oben, unten erzeugt. Es

wurden zwei weitere Elemente mit den Werten Top und Bottom fiir die Eigen-
schaft DockPanel.Dock hinzugefugt.

41

3 | Layout

Zunichst der Aufbau in XAML:

<MWindow ...>
<DockPanel LastChildFill="False">
<Button DockPanel.Dock="Top" Click="neu_Click">
3: Top</Button>
<Button DockPanel.Dock="Bottom" Click="neu_Click">
4: Bottom</Button>
</DockPanel>
</Window>

Mithilfe der Eigenschaft LastChi1dFi11 kdnnen Sie bestimmen, ob das letzte Ele-
ment den verbleibenden Platz im Fenster fiillt (Standardwert = True) oder nicht
(Wert = False). Der Aufbau der Methode neu_Click() ist etwas aufwendiger als
bei den anderen Panels, da Sie zunichst die Position ermitteln miissen:

private void neu_Click(object sender, RoutedEventArgs e)
{

Button sb = sender as Button;

Object dp = sb.GetValue(DockPanel.DockProperty);

Button nb = new Button();
nb.Content = "Neu";
nb.SetValue(DockPanel.DockProperty, dp);

Panel p = sb.Parent as Panel;
p.Children.Add(nb);
}

Mithilfe der Methode GetValue() wird der Wert der Dependency Property
DockPanel.DockProperty ermittelt, die die Position des auslosenden Buttons
angibt. Dies wird die Position des neuen Buttons, die mithilfe von SetValue()
festgelegt wird.

3.5 Grid

Ein Grid dient zur regelmiligen, tibersichtlichen Anordnung der Elemente in
einem Raster. Sie legen zundchst die Anzahl der Zeilen und Spalten fest. Den ein-
zelnen Steuerelementen ordnen Sie anschliefend die Koordinaten ihrer Zelle im
Grid zu, die aus der Nummer der Zeile und der Nummer der Spalte bestehen. Ein
erstes Beispiel folgt im Projekt GridAnordnung (siehe Abbildung 3.11).

42

Grid

[®°] GridAnordnung @m

1:.0,0 20,1

311

4:2,0

L

Abbildung 3.11 Ein Grid mit drei Zeilen und zwei Spalten

Der Aufbau in XAML:

<MWindow ...>
<Grid x:Name="gr">

<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
<RowDefinition />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />

</Grid.ColumnDefinitions>

<Button Grid.Row="0" Grid.Column="0" Click="bl_Click">
1: 0, 0</Button>

<Button Grid.Row="0" Grid.Column="1" Click="b2_Click">
2: 0, 1</Button>

<Button Grid.Row="1" Grid.Column="1">3: 1, 1</Button>

<Button Grid.Row="2" Grid.Column="0" Click="b4_Click">
4: 2, 0</Button>

</Grid>
</Window>

Die Gestaltung der einzelnen Zeilen und damit auch ihre Anzahl wird in der Auf-
listung Grid.RowDefinitions festgelegt. Das Gleiche gilt fiir die Spalten in der
Auflistung Grid.ColumnDefinitions. Die Zuordnung zu den einzelnen Zellen des
Grids geschieht mithilfe der Attached Properties Grid.Row und Grid.Column. Die
Zahlung beginnt bei 0. Dies ist auch der Standardwert. Bei Button 1 hitten Sie
also die Zuordnung weglassen kénnen.

3.5.1 Elemente neu erzeugen

Im Projekt GridAnordnung dient BUTTON 1 zur Erzeugung eines neuen Elements
innerhalb einer vorhandenen Zelle. BuTTON 2 fiigt eine neue Spalte mit einem
weiteren Element hinzu. BUTTON 4 fiigt eine neue Zeile hinzu, ebenfalls mit

43

3 | Layout

einem weiteren Element. Damit kann der Benutzer das Grid verindern, sodass es
zum Beispiel wie in Abbildung 3.12 aussieht.

[87 GridAnordnung @Eu

1:0,0 I 201 I Neu I Neu

3:p] -l

Neu

|
42,0 I Neu }
]

o

Abbildung 3.12 Ein Grid mit vier Zeilen und vier Spalten

Der zugehorige Programmcode:

private void bl_Click(...)

{
Button nb = new Button();
nb.Content = "Neu";
nb.SetValue(Grid.RowProperty, 2);
nb.SetValue(Grid.ColumnProperty, 1);
gr.Children.Add(nb);

private void b2_Click(...)
{ ...
nb.SetValue(Grid.RowProperty, 0);
gr.ColumnDefinitions.Add(new ColumnDefinition());
nb.SetValue(Grid.ColumnProperty,

gr.ColumnDefinitions.Count - 1);
gr.Children.Add(nb);

private void b4_Click(...)

{
gr.RowDefinitions.Add(new RowDefinition());
nb.SetValue(Grid.RowProperty, gr.RowDefinitions.Count - 1);
nb.SetValue(Grid.ColumnProperty, 0);
gr.Children.Add(nb);

}

Mithilfe der Methode SetValue() setzen Sie die Dependency Properties Grid.
RowProperty und Grid.ColumnProperty auf die gewtinschten Werte. Zur Erzeu-
gung einer neuen Spalte wird der Auflistung ColumnDefinitions mithilfe der
Methode Add() ein neues Element hinzugefiigt. Die Eigenschaft ColumnDefin{-

44

Grid | 3.5

tions.Count liefert die aktuelle Anzahl der Spalten. Damit kénnen Sie die Posi-
tion fiir das neue Element in der neuen Spalte bestimmen. Entsprechendes gilt
fiir die Auflistung Grid.RowDefinitions.

3.5.2 Elemente iiber mehrere Zellen

Elemente kénnen sich iiber mehrere Zellen erstrecken. Dies wird dhnlich wie in
HTML-Tabellen geldst. Ein Beispiel sehen Sie im Projekt GridSpannweite (siehe
Abbildung 3.13).

[®°] GridSpannweite H@u
1: 0, 0, ColumnSpan 2
21,0
3:1, 1, RowSpan 2
4:2,0

ke

Abbildung 3.13 Elemente liber mehrere Zellen

Der Aufbau in XAML:

<MWindow ...>
<Grid>
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Button Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="2">
1: 0, 0, ColumnSpan 2</Button>
<Button Grid.Row="1" Grid.Column="0">2: 1, 0</Button>
<Button Grid.Row="1" Grid.Column="1" Grid.RowSpan="2">
3: 1, 1, RowSpan 2</Button>
<Button Grid.Row="2" Grid.Column="0">4: 2, 0</Button>
</Grid>
</Window>

Zunichst wird das Grundgeriist aufgebaut, das aus drei Zeilen und zwei Spalten
besteht. AnschlieRend ordnen Sie die Elemente wie gewohnt tiber die Attached

45

3 | Layout

Properties Grid.Row und Grid.Column zu. Die Attached Properties Grid
.CoTumnSpan und Grid.RowSpan dienen dazu, die Elemente von der angegebenen
Zelle aus tiber die entsprechende Anzahl an Zellen zu »spannen«. Der Inhalt der
Zelle 0,1 stammt somit aus der Zelle 0,0. Der Inhalt der Zelle 2,1 stammt entspre-
chend aus der Zelle 1,1.

3.5.3 GroBe der Zellen festlegen

Bisher waren alle Zellen gleich groR. Natirlich haben Sie auch die Moglichkeit,
die GroRe der Zellen selbst zu bestimmen. Die Zellgrofle kann sich nach dem
Inhalt richten, sie kann einen bestimmten Wert annehmen oder in einem festen
Verhiltnis zur GroRe der anderen Zellen stehen.

Im nachfolgenden Projekt GridAuto wird die Hohe beziehungsweise die Breite
bestimmter Zellen nach dem Inhalt ausgerichtet (siche Abbildung 3.14).

' ™
] GridAuto b [)

1: Height Auto

2

3: Width Auto

e

Abbildung 3.14 Hohe beziehungsweise Breite automatisch

Der Aufbau in XAML:

MWindow ...>
<Grid>

<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition />
<RowDefinition />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition Width="Auto" />

</Grid.ColumnDefinitions>

</Window>

Dank des Wertes Auto fiir die Eigenschaft Height richtet sich die Hohe der ersten
Zeile nach der Hohe des Textes auf dem Element. Das Entsprechende gilt fur die

46

Grid

Breite (Width) der zweiten Spalte, die sich nach der Breite des Textes richtet. Die
gilt unabhingig von den Einstellungen fiir Grid.RowSpan und Grid.ColumnSpan.

Im nachfolgenden Projekt GridWert stehen die Hohen der Zeilen in einem
bestimmten Verhiltnis zueinander. Dagegen richtet sich die Breite bestimmter
Spalten nach einem Wert (sieche Abbildung 3.15).

(7 Griawert =X

1: W 190, H 2% 2 W% H 2*
3:W190. H * AWHEH*
5:W 190, H 3* 6:W* H3*

Lo

Abbildung 3.15 Ho6he im Verhdltnis, Breite mit Wert

Der Aufbau in XAML:

<MWindow ...>
<Grid>

<Grid.RowDefinitions>
<{RowDefinition Height="2*" />
<RowDefinition Height="*" />
<{RowDefinition Height="3*" />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="190" />
<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

</Window>

Die Hohen der Zeilen stehen im Verhiltnis 2 zu 1 zu 3. Ein einfacher * steht bei
einer Verhaltnisangabe fiir 1*. Die Breite der linken Spalte wurde mit dem Wert
190 festgelegt, fiir die rechte Spalte verbleibt der Rest. Auch hier sehen Sie wie-
der die Parallelen zu HTML.

3.5.4 Die GroBe der Zellen flexibel gestalten

Sie mochten dem Benutzer Ihrer Anwendung die Moglichkeit geben, Zeilenhohe
und Spaltenbreite zu verdndern? Dies erméglichen Thnen Elemente vom Typ
GridSplitter. Im nachfolgenden Projekt GridVerschieben wird Ihnen ein Beispiel
gezeigt (siehe Abbildung 3.16).

47

3 | Layout

8] GridVerschieben =

1: 0, 0, MinW 10 2:0, 2, MinW 10
3:1 0. MinH 10 1 4:1,2
5: 3, 0, MinH 10 g

Lo

Abbildung 3.16 Verschobenes Grid

Urspriinglich waren die Zellen mit den Buttons gleich grof8. Der Benutzer hat
aber bereits die beiden schwarz hervorgehobenen GridSplitter genutzt, um Hohe
und Breite zu verstellen. Der Aufbau in XAML:

<MWindow ...>
<Grid>

48

<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition MinHeight="10" />
<RowDefinition Height="Auto" />
<RowDefinition MinHeight="10" />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition MinWidth="10" />
<ColumnDefinition Width="Auto" />
<ColumnDefinition MinWidth="10" />
</Grid.ColumnDefinitions>
<Button Grid.Row="0" Grid.Column="0">
1: 0, 0, MinW 10</Button>
<GridSplitter Grid.Row="0" Grid.Column="1" Grid.RowSpan="4"
ResizeBehavior="PreviousAndNext" Width="3"
Background="Black" />
<Button Grid.Row="0" Grid.Column="2">
2: 0, 2, MinW 10</Button>
<Button Grid.Row="1" Grid.Column="0">
3: 1, 0, MinH 10</Button>
<Button Grid.Row="1" Grid.Column="2">4: 1, 2</Button>
<GridSplitter Grid.Row="2" Grid.Column="0"
Grid.ColumnSpan="3" ResizeBehavior="PreviousAndNext"
HorizontalAlignment="Stretch" Height="3"
Background="Black" />
<Button Grid.Row="3" Grid.Column="0">

Layout-Kombination

5: 3, 0, MinH 10</Button>
<Button Grid.Row="3" Grid.Column="2">6: 3, 2</Button>
</Grid>
</Window>

Das Grid umfasst vier Zeilen und drei Spalten. Eine Zeile und eine Spalte werden
jeweils von einem GridSplitter eingenommen. Fir die beiden Nachbarzeilen
(1 und 3) der Zeile mit dem GridSplitter (2) ist es sinnvoll, eine Minimalhohe zu
vereinbaren. Ansonsten wiirden sie bei einer extremen Verschiebung des Grid-
Splitters ganzlich verschwinden. Entsprechend haben die Nachbarspalten (0 und 2)
der Spalte mit dem GridSplitter (1) eine Minimalbreite.

Der Spalten-GridSplitter in Zelle 0,1 geht tber die gesamte Spalte (Grid
.RowSpan=4). Zur besseren Bedienung hat er eine Breite von 3 und ist schwarz.

Der Zeilen-GridSplitter in Zelle 2,0 geht tber die gesamte Zeile (Grid
.ColumnSpan=3). Zur besseren Bedienung hat er eine Hohe von 3, ist schwarz
und dehnt sich tiber die gesamte Breite aus (HorizontalAlignment = Stretch).

Bei beiden GridSplittern ist die Eigenschaft ResizeBehavior mit dem gleichen
Wert festgelegt. Damit legen Sie fest, welche Zeilen beziehungsweise Spalten ihre
GroBe verdndern. Der Wert stammt aus der Enumeration GridResizeBehavior.
Erlaubt sind:

» PreviousAndNext: Zeile tiber und unter dem GridSplitter beziehungsweise
Spalte links und rechts vom GridSplitter (gilt hier)

» CurrentAndNext: Zeile beziehungsweise Spalte des GridSplitters und Zeile da-
runter beziehungsweise Spalte rechts

» PreviousAndCurrent: Zeile beziehungsweise Spalte des GridSplitters und Zeile
dariiber beziehungsweise Spalte links

» BasedOnAlignment: Die GroBendnderung richtet sich nach den Alignment-
Eigenschaften.

3.6 Layout-Kombination

Es folgt ein Beispiel fiir die Kombination verschiedener Layouts (Projekt Panel-
Kombi). Bei einigen Steuerelementen wurde auch das Innere mithilfe eines Lay-
outs gestaltet. Zunachst sehen Sie in Abbildung 3.17 die Anwendung in Original-
grofe nach dem Start.

49

3 | Layout

(87 PanelKombi E@u

B2

Text 3

i B4

Inhalt

Text 5
[Flees ES

L

Abbildung 3.17 Nach dem Start

Innerhalb der Button-Steuerelemente 3 und 5 sind unter dem Text eine ComboBox
beziehungsweise eine CheckBox angeordnet. Nach einer Verkleinerung durch den
Benutzer kann die Anwendung aber auch so aussehen wie in Abbildung 3.18.

[®7 PanelKombi E‘m

B2
Bl Text3 |B4
Inhalt [re
[Texts B 6

Abbildung 3.18 Nach der Verkleinerung

Der Aufbau in XAML:

<MWindow ...>
<DockPanel>
<Button DockPanel.Dock="Left">B 1</Button>
<Button DockPanel.Dock="Top">B 2</Button>
<Grid DockPanel.Dock="Right">
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Button Grid.Row="0" Grid.Column="0">
<StackPanel>
{TextBlock>Text 3</TextBlock>
<ComboBox>
<ComboBoxItem IsSelected="True">3.1</ComboBoxItem>
<ComboBoxItem>3.2</ComboBoxItem>
<ComboBoxItem>3.3</ComboBoxItem>

50

Layout-Kombination

</ComboBox>
</StackPanel>
</Button>
<Button Grid.Row="0" Grid.Column="1">B 4</Button>
<Button Grid.Row="1" Grid.Column="0">
<StackPanel>
{TextBlock>Text 5</TextBlock>
<CheckBox>CB 5</CheckBox>
</StackPanel>
</Button>
<Button Grid.Row="1" Grid.Column="1">B 6</Button>
</Grid>
<TextBlock HorizontalAlignment="Center"
VerticalAlignment="Center">Inhalt</TextBlock>
</DockPanel>
</Window>

Das Hauptelement des Layouts ist ein DockPanel. Es beinhaltet drei gedockte Ele-
mente (zwei Buttons und ein Grid) sowie einen TextBlock. Das Grid hat zwei Zei-
len und zwei Spalten. Die Elemente der ersten Spalte sind Buttons, die mithilfe
eines StackPanels gestaltet wurden. Diese StackPanels beinhalten je einen Text-
Block und ein weiteres Element. Mehr zu Aufbau und Eigenschaften der Steuer-
elemente erfahren Sie im folgenden Kapitel.

51

Die Bedienung der Oberflichen wird durch Steuerelemente ermdglicht.
Die WPF bietet viele Typen mit zahlreichen Eigenschaften und
Ereignissen.

4 Steuerelemente

Steuerelemente (engl. Controls) dienen den Benutzern dazu, Ihre Anwendungen
zu bedienen. Steuerelemente konnen in der WPF auf umfangreiche Weise gestal-
tet werden. Dabei sind manchmal die Grenzen zwischen Layout und Steuerele-
ment flieBend. Zur besseren Ubersicht habe ich die Vielzahl der Steuerelemente
in Gruppen unterteilt:

» Schalter: Elemente zum Auslésen von Aktionen und zum Umschalten zwi-
schen Zustinden

» Text und Beschriftung: Elemente zur unformatierten oder formatierten Ein-
und Ausgabe von Texten

» Auswahl: Elemente zur Ubersichtlichen Darstellung und Auswahl von mehre-
ren Moglichkeiten

» Zahlenwerte: Elemente zur anschaulichen Darstellung und eindeutigen Ein-
gabe von Zahlenwerten innerhalb von Zahlenbereichen

» Container: Elemente zur Gruppierung anderer Elemente

» Meniis und Leisten: Haupt- und Kontextmeni, Symbol- und Statusleiste
» Datum: Elemente zur eindeutigen Auswahl von Datumswerten

» weitere Elemente, die keiner anderen Gruppe zugeordnet sind

Bevor es zu den einzelnen Gruppen geht, habe ich im ersten Abschnitt Eigen-
schaften beschrieben, die vielen Elementen gemeinsam sind.

4.1 Allgemeiner Aufbau

Eigenschaften, die vielen Elementen gemeinsam sind, sind unter anderem GroRe,
Farbe, Sichtbarkeit, Abstand und Ausrichtung. Als Beispiele in diesem Abschnitt
verwende ich hiufig Buttons, unter anderem wegen ihrer guten Erkennbarkeit.

53

4 | Steuerelemente

4.1.1 GroBe, Schrift, Farbe, Bedienung per Tastatur

Die Eigenschaften eines Steuerelements (Controls), die dem Benutzer sofort ins
Auge fallen, sind GroBe, Schrift und Farbe. Im nachfolgenden Projekt ControlsGe-
staltung werden einige Buttons dargestellt, bei denen diese Eigenschaften in
XAML eingestellt und per Programmcode verdndert werden (siche Abbildung 4.1).
AuBerdem wird gezeigt, wie sie per Tastatur bedient werden konnen.

p
[8] ControlsGestaltung = | [

1: H30, W180, Calibri 11 italic bold]

2: ohne Angaben
3: Grau auf Weil
4: Hallo (Alt+H)

5: Unterstrich_anzeigen (Alt+S)

Abbildung 4.1 GroRe, Schrift, Farbe, Bedienung per Tastatur

Zunichst der Aufbau des Canvas in XAML:

<Canvas>
<Button x:Name="bl" Height="30" Width="180"
FontFamily="Calibri" FontSize="11" FontStyle="Italic"
FontWeight="Bold" Click="bl_Click">
1: H30, W180, Calibri 11 italic bold</Button>
<Button Content="2: ohne Angaben" Canvas.Top="35" />
<Button x:Name="b3" Canvas.Top="63" Background="White"
Foreground="Gray" Click="b3_Click">
3: Grau auf WeiB</Button>
<Button Canvas.Top="91" Click="b4_CTick">
4: _Hallo (ATt+H)</Button>
<Button Canvas.Top="119" Click="b5_Click">
5: Unter_strich__anzeigen (AT1t+S)</Button>
</Canvas>

Der Inhalt vieler Steuerelemente entspricht der Eigenschaft Content. Sie kénnen
den Inhalt entweder tiber diese Eigenschaft zuweisen (siehe Button 2) oder inner-
halb des Elementknotens, wie bei den anderen Buttons.

Bei Steuerelementen in einem Canvas oder in einem WrapPanel richten sich die
Hohe und die Breite nach dem Inhalt (siehe Button 2) — es sei denn, Sie legen
die Eigenschaften Height und Width explizit fest (siehe Button 1). Schrifteigen-
schaften werden tiber insgesamt fiinf Eigenschaften gewdhlt: FontFamily (Fami-

54

Aligemeiner Aufbau | 4.

lie verwandter Schriftarten), FontSize (SchriftgroBe), FontStyle (Schriftstil),
FontWeight (Schriftgewicht) und FontStretch (Schriftdehnung).

Hintergrundfarbe (Eigenschaft Background) und Vordergrundfarbe (Eigenschaft
Foreground) werden tiber einen Pinsel (Brush) bestimmten Typs und bestimm-
ter Farbe festgelegt (siehe Button 3). Der Standard ist ein Pinsel vom Typ
SolidColorBrush (siehe auch den Programmcode). Dieser Pinseltyp farbt das
Element einheitlich in der angegebenen Farbe. Mehr zum Typ Brush finden Sie
in Abschnitt 9.4, »Pinsel«.

Als Hilfestellung zur Steuerung einer Anwendung per Tastatur kénnen Sie ein Zei-
chen der Beschriftung unterstreichen. Dies erreichen Sie tiber einen Unterstrich
im Text vor dem betreffenden Zeichen (siehe Button 4). Falls Sie einen Unterstrich
darstellen mochten, so sind zwei Unterstriche nacheinander notwendig (siehe
Button 5). Der Benutzer sieht die Unterstriche nach Betitigung der Taste und
kann dann das betreffende Zeichen eingeben (siche Abbildung 4.2).

[®°] ControlsGestaltung @m

1: H23, W220, Comic Sans MS 12 }

2 chne Angaben
|3: WeiB auf Grau
4: Hallo (Alt+H)

5: Unterstrich_anzeigen (Alt+5)

ke

Abbildung 4.2 Gednderte Buttons 1 und 3, Unterstriche

Zur Anderung einiger Eigenschaften der Buttons 1 und 3 kann der Benutzer sie
betdtigen (siche Abbildung 4.2). Die zugehorigen Methoden sehen so aus:

private void bl_Click(...)
{
bl.Height = 23;
bl.Width = 220;
bl.FontFamily = new FontFamily("Comic Sans MS");
bl.FontSize = 12;
bl.FontStyle = FontStyles.Normal;
bl.FontWeight = FontWeights.Normal;
bl.Content = "1: H23, W220, Comic Sans MS 12";

private void b3_Click(...)
{

55

4 | Steuerelemente

b3.Background = new SolidColorBrush(Colors.Gray);
b3.Foreground = new SolidColorBrush(Colors.White);
p3.Content = "3: WeiB auf Grau";

}

Die Eigenschaften Height, Width und FontSize sind vom Typ double. Die Eigen-
schaft FontFamily ist vom Typ FontFamily. Bei der Erzeugung einer Instanz dieses
Typs kann eine Zeichenkette mit einem Schriftartnamen und gegebenenfalls einem
Basis-URI zugewiesen werden. Den Eigenschaften FontStyle und FontWeight kann
eine statische Eigenschaft der Klassen FontStyles (Italic, Normal oder Oblique)
beziehungsweise FontWeights (Bold, Normal, Thin, ...) zugewiesen werden.

Die Farben werden mithilfe einer Instanz eines bestimmten Pinseltyps geindert;
hier ist dies SolidCoTorBrush. Ein Pinsel wird meist in einer Farbe erzeugt. Dazu
wird eine Instanz der Klasse Color genutzt. Diese ldsst sich auf vielfiltige Art anle-
gen, unter anderem mithilfe der Klasse Colors. Die Klasse Colors bietet eine
grofe Anzahl an Farben als statische Eigenschaften an. Mehr zu Pinseln finden
Sie in Abschnitt 9.4, »Pinsel«.

4.1.2 Sichtbarkeit, Bedienbarkeit

Steuerelemente konnen nur betitigt werden, wenn sie sichtbar und bedienbar
sind. Sie kénnen Steuerelemente sowohl optisch ein- und ausblenden als auch
logisch ein- und ausschalten. Sie kénnen bestimmen, ob ein aktuell nicht sichtba-
res Steuerelement einen Platz im Layout einnimmt oder nicht.

Im nachfolgenden Projekt ControlsBedienbar sehen Sie zundchst nur zwei von
insgesamt vier Elementen (siehe Abbildung 4.3). Dazwischen ist Platz fiir ein wei-
teres Element. Der Button 4 ist zurzeit nicht bedienbar. Dies wird auch optisch
verdeutlicht.

7 Co.. eS|

ControlsBedienbar

Abbildung 4.3 Nach dem Start: Zwei von vier Elementen sind sichtbar.

Sobald Sie den oberen Button betitigen, sind alle vier Elemente sichtbar. Der
vierte Button ist nun auch eingeschaltet. Auferdem wurde er nach unten ver-
schoben (siche Abbildung 4.4).

56

Aligemeiner Aufbau | 4.

1 Co. el S

ControlsBedienbar
2
3
4

Abbildung 4.4 Alle vier Buttons sind sichtbar und bedienbar.

Der Aufbau des StackPanel in XAML:

{StackPanel>
<Button Click="bl_Click">ControlsBedienbar</Button>
<Button x:Name="b2" Visibility="Hidden">2</Button>
<Button x:Name="b3" Visibility="Collapsed">3</Button>
<Button x:Name="b4" IskEnabled="False"
Click="b4_Click">4</Button>
</StackPanel>

Button 2 war zundchst versteckt — dank des Wertes Hidden fur die Eigenschaft
Visibility. Er hat aber schon einen Platz im Layout eingenommen, daher die
Lucke in Abbildung 4.3. Button 3 hatte zunichst noch keinen Platz im Layout -
dank des Wertes Collapsed fiir die Eigenschaft Visibility. Die Werte stammen
aus der Enumeration Visibility; der Standardwert ist Visible. Beim Button 4
hat die boolesche Eigenschaft IsEnabled den Wert False, daher kann er zunichst
nicht bedient werden. Es folgt der Code fiir die Anderungen:

private void bl_Click(...)

{
b2.Visibility = Visibility.Visible;
p3.Visibility = Visibility.Visible;
b4d.IsEnabled = true;

4.1.3 Elemente mit EventHandler neu erzeugen, Elemente I6schen

In Kapitel 3, »Layout«, wurden bereits Elemente innerhalb der verschiedenen
Layouts neu erzeugt. In diesem Abschnitt soll im Projekt ControlsNeuLdschen fur
das neue Element auch der zugehorige EventHandler erzeugt werden. In der
zugehorigen Ereignismethode wird gezeigt, wie man wieder Elemente aus dem
Layout loschen kann.

Zundchst gibt es innerhalb eines ScrollViewer ein StackPanel mit nur einem But-
ton. Bei jeder Betitigung des Buttons wird ein neuer Button erzeugt und ange-

57

4 | Steuerelemente

hingt, mit laufender Nummer. Die Betitigung eines der neuen Buttons fithrt
dazu, dass er geloscht wird (siehe Abbildung 4.5).

w1 ¢l LI

ControlsNeu
Meu 1
Neu 4
Meu 5 b

Abbildung 4.5 Nach dem Hinzufiigen und Ldschen einiger Buttons

Der XAML-Code (StackPanel mit Scroll1Viewer) dhnelt dem in Abschnitt 3.2,
»StackPanel«.

Es folgt der Code der Fensterklasse:

public partial class MainWindow : Window
{
int nr;
public MainWindow()
{
InitializeComponent();
nr=1;

private void bl_Click(object sender, RoutedEventArgs e)
{
Button neu = new Button();
neu.Content = "Neu " + nr;
nr++;
neu.Click += new RoutedEventHandler(loeschen);
sp.Children.Add(neu);

private void Toeschen(object sender, RoutedEventArgs e)
{
sp.Children.Remove(sender as UIElement);

}

Nach Erzeugung der Button-Instanz wird zum Ereignis C11ck ein Verweis auf eine
passende EventHandler-Methode hinzugeftigt. Diese Methode, hier 1oeschen(),
muss zur Verfiigung gestellt werden.

58

Aligemeiner Aufbau | 4.

In der Methode Toeschen() wird die Methode Remove () zum Loschen eines Ele-
ments aufgerufen. Diese verlangt einen Parameter vom Typ UIElement. Dies ist
hier der Button, der das Ereignis ausgeldst hat.

4.1.4 Padding, Innenabstand

Die Eigenschaft Padding sorgt fiir einen Innenabstand, also einen Abstand des
Elementinhalts (Text, Bild, Layout-Element, ...) zum Rand des Elements. Diese
Technik kennen Sie vielleicht aus CSS. Im nachfolgenden Projekt ControlsPadding
sehen Sie einige Mdglichkeiten zur Festlegung in XAML und zu Anderungen
durch Programmecode (siehe Abbildung 4.6).

p
[®7] ControlsPadding @

1: {ohne)

diglil

4: 30, 10

=
=)

5: 30, 10, 80, 0]

Abbildung 4.6 Padding, nach dem Start

Die Elemente liegen in einem Canvas. Der Aufbau in XAML:

<Canvas>
<{Button>1: (ohne)</Button>
<Button Padding="0" ... Click="b2_Click">2: 0</Button>
<Button Padding="10" ... Click="b3_Click">3: 10</Button>
<Button Padding="30,10" ...>4: 30, 10</Button>
<Button Padding="30,10,80,0" ... Click="b5_Click">
5: 30, 10, 80, 0</Button>
</Canvas>

Sie konnen die Eigenschaft Padding in XAML auf mehrere Arten festlegen:
» mit einem Wert, der fiir den Abstand zu allen vier Seiten gilt (siche Button 2
und 3)

» mit zwei Werten: Der erste gilt fiir den Abstand rechts und links, der zweite
fiir den Abstand oben und unten (siehe Button 4),

» mit vier Werten: Sie gelten in der Reihenfolge fiir die Abstinde links, oben,
rechts und unten, also einmal im Uhrzeigersinn herum (siehe Button 5).

59

4 | Steuerelemente

Falls Sie die Eigenschaft Padding gar nicht nutzen, so gilt ein einheitlicher Wert
von 1 (siehe Button 1). Nach Betitigung der Buttons 2, 3 und 5 werden die Werte
fiir Padding gedndert (siehe Abbildung 4.7).

[87 ControlsPadding l-'—“'

1: {ohne)

2:10

3: 20, 10, 10, 10

4: 30, 10

1)

5: 80, 0, 20, 10]

Abbildung 4.7 Padding, nach den Anderungen

Der zugehorige Programmcode:

private void b2_Click(...)

{
b2.Padding = new Thickness(10);
b2.Content "2: 10";

private void b3_Click(...)

{
Thickness th = b3.Padding;

th.Left = 20;
b3.Padding = th;
b3.Content = "3: 20, 10, 10, 10";

private void bb_Click(...)

{
b5.Padding = new Thickness(80, 0, 30, 10);
b5.Content "5: 80, 0, 30, 10";

}

Werte fiir die Eigenschaft Padding (wie auch im nichsten Abschnitt fiir die ver-
wandte Eigenschaft Margin) sind vom Typ Thickness. Ein Konstruktor fiir diese
Struktur akzeptiert einen einheitlichen double-Wert, wie er fiir Button 2 genutzt
wird. Ein weiterer Konstruktor arbeitet mit vier double-Werten fiir links, oben,
rechts und unten (siehe Button 5). Es gibt keinen Konstruktor, der zwei double-
Werte entgegennimmt.

60

Allgemeiner Aufbau

Eine Untereigenschaft wie Padding.Left konnen Sie zwar lesen, aber nicht ver-
indern. Daher miissen Sie einen Umweg gehen, falls Sie nur einen der vier Werte
verindern mdchten (wie fiir Button 3).

4.1.5 Margin, AuBenabstand

Die Eigenschaft Margin sorgt fiir einen Aullenabstand, also einen Abstand des
Elements zum Nachbarelement beziehungsweise tibergeordneten Element. Auch
diese Technik kennen Sie vielleicht aus CSS. Im nachfolgenden Projekt Controls-
Margin sehen Sie einige Moglichkeiten zur Festlegung in XAML und im Pro-
grammcode (sieche Abbildung 4.8).

' ™y
[®7] ControlsMargin é@u

1: (ohne)

(25 J

3: 80,10
4: 30, 10, 80, 0

Abbildung 4.8 Margins, nach dem Start

Die Elemente liegen in einem StackPanel. Damit sind die Auswirkungen der Mar-
gin-Anderungen deutlicher zu erkennen. Der Aufbau in XAML:

<StackPanel>
<Button>1: (ohne)</Button>
{Separator Margin="0" />
<Button Margin="5" ... Click="b2_Click">2: 5</Button>
{Separator Margin="0" />
<Button Margin="80,10">3: 80, 10</Button>
{Separator Margin="0" />
<Button Margin="30,10,80,0" ... Click="b4_Click">
4. 30, 10, 80, 0</Button>
{Separator Margin="0" />
</StackPanel>

Sie konnen die Eigenschaft Margin (analog zur Eigenschaft Padding aus dem vor-
herigen Abschnitt) in XAML auf mehrere Arten festlegen:

» mit einem Wert, der fir den Abstand zu allen vier Seiten gilt (sieche Button 2)

» mit zwei Werten: Der erste gilt fiir den Abstand rechts und links, der zweite
fiir den Abstand oben und unten (siehe Button 3).

61

4 | Steuerelemente

» mit vier Werten: Sie gelten in der Reihenfolge fiir die Abstinde links, oben,
rechts und unten, also einmal im Uhrzeigersinn herum (siche Button 4).

Es werden zusitzlich Elemente vom Typ Separator eingesetzt. Diese dienen zur
Trennung von Steuerelementen. Hier stellen sie das obere beziehungsweise untere
Nachbarelement dar, auf die sich die Eigenschaft Margin der Buttons auswirkt.

Nach Betitigung der Buttons 2 und 4 werden die Werte fir Margin gedndert
(siehe Abbildung 4.9).

- N
(=7 ControlsMargin &I@u

1: (ohne)

(28 J

3: 80, 10
4: 80, 0, 30, 10

Abbildung 4.9 Margins, nach den Anderungen

Der zugehorige Programmcode:

private void b2_Click(...)

{
b2.Margin = new Thickness(8);
b2.Content = "2: 8";

private void b4_Click(...)

{
b4.Margin = new Thickness(80, 0, 30, 10);
b4.Content = "4: 80, 0, 30, 10";

}

Werte fiir die Eigenschaft Margin sind, wie die Werte fur die Eigenschaft Padding,
vom Typ Thickness. Die Konstruktoren mit einem beziehungsweise vier Parame-
tern und die Nicht-Verinderbarkeit der Untereigenschaften (wie Margin.Left)
wurden bereits beschrieben.

4.1.6 Alignment, Ausrichtung

Es gibt vier verschiedene Ausrichtungen fiir Steuerelemente. Die Eigenschaften
HorizontalAlignment und VerticalAlignment beziehen sich auf die Ausrichtung
des Elements innerhalb des tibergeordneten Elements. Die Eigenschaften

62

Allgemeiner Aufbau

HorizontalContentAlignment und VerticalContentAlignment bestimmen die
Ausrichtung des Inhalts innerhalb eines Elements.

Im nachfolgenden Projekt ControlsAlign sehen Sie die Moglichkeiten auf einen
Blick (siehe Abbildung 4.10).

Stre

Abbildung 4.10 Vier Eigenschaften zur Ausrichtung

[87] ControlsAlign

Stretch

<

Insgesamt vier StackPanel stehen in einem tibergeordneten, horizontalen Stack-
Panel. Von links nach rechts werden dargestellt:

» HorizontalAlignment, innerhalb eines vertikalen StackPanels. Der Standard-
wert ist Stretch (das Element wird tiber den verfiigbaren Platz gedehnt); wei-
tere Werte stammen aus der Enumeration HorizontalAlignment und sind
Left, Center und Right.

» VerticalAlignment innerhalb eines horizontalen StackPanels. Der Standard-
wert ist Stretch; weitere Werte stammen aus der Enumeration
VerticalAlignment und sind Top, Center und Bottom.

» HorizontalContentAlignment, innerhalb eines vertikalen StackPanels. Der
Standardwert ist Center; die Werte stammen aus der Enumeration Hori -
zontalAlignment.

» VerticalContentAlignment, innerhalb eines horizontalen StackPanels. Der
Standardwert ist Center, die Werte stammen aus der Enumeration Verti-
calAlignment.

Es folgt der Ausschnitt des XAML-Codes fiir das erste StackPanel. Der restliche
Code ergibt sich aus den obigen Erlduterungen.

<MWindow ...>
{StackPanel Orientation="Horizontal">

{StackPanel Width="80" Margin="5">
<Button ...>Stretch</Button>
<Button HorizontalAlignment="Left">Left</Button>
<Button HorizontalAlignment="Center">Center</Button>
<Button HorizontalAlignment="Right">Right<{/Button>

</StackPanel>

63

4 | Steuerelemente

4.2 Schalter

In diesem Abschnitt sehen Sie Elemente, die hiufig zum Schalten und somit zum
Auslosen von Aktionen dienen, wie Button, RepeatButton, ToggleButton, Radio-
Button und CheckBox. Einige davon kénnen auch dazu genutzt werden, eine
Auswahl zu treffen.

4.2.1 Button

Ein Standard-Button ist die einfachste Form der Schaltfliche. Sie konnen Thren
Buttons ein besonderes Verhalten verleihen, sodass sie direkt auf die Tasten
oder reagieren. Auf vielen Steuerelementen kénnen neben Zeichen auch Bil-
der platziert werden. Dies macht die Bedienung intuitiver. Im nachfolgenden
Projekt SchalterButton sehen Sie einige Beispiele dazu innerhalb eines Canvas
(siche Abbildung 4.11).

[®°] SchalterButton l —_

Text Zeile 1
Zelle 2
@ Zeile 3

Abbildung 4.11 Buttons

Der Aufbau der Buttons in XAML:

<Button IsCancel="True" Click="bl_Click">ESC</Button>
{Button IsDefault="True" Click="b2_Click"
Canvas.lLeft="70">Enter</Button>

{Button Width="40" ...>
<{Image Source="work.gif" />

</Button>

{Button Width="40" ...>

<StackPanel>
{TextBlock HorizontalAlignment="Center">Text</TextBlock>
{Image Source="work.gif" />
</StackPanel>
</Button>
<Button ...>
{TextBlock>Zeile 1<LineBreak />Zeile 2
<LineBreak />Zeile 3</TextBlock>
</Button>

64

Schalter | 4.2

Beim ersten Button wurde die Eigenschaft IsCancel auf True gesetzt. Dies fithrt
dazu, dass die Taste die Ereignismethode des Buttons aufruft. Es macht
dann Sinn, dadurch die Anwendung zu schlie8en:

private void bl_Click(...) { Close(); }

Beim zweiten Button wurde die Eigenschaft IsDefault auf True gesetzt. Nach
dem Start der Anwendung ist dieser Button die Default-Schaltfliche. Die Taste
ruft dann die Ereignismethode dieses Buttons auf:

private void b2_Click(...) { MessageBox.Show("Taste Enter"); }

Die Eigenschaften IsCancel und IsDefault sollten nur bei jeweils einem Button
auf True gesetzt werden. Andernfalls hat die jeweilige Taste nicht die gewiinschte
Auswirkung.

Auf zwei weiteren Buttons wird der Inhalt einer Bilddatei dargestellt. Die GroRe
des Bildes wird dabei der Breite des Elements angepasst, falls diese zugewiesen
wurde. Die Bilddatei wurde dem Projekt als Ressource hinzugefiigt, einfach per
Drag&Drop. Mehr zu Ressourcen erfahren Sie in Abschnitt 6.2. Beim Steuerele-
ment vom Typ Image (zur Darstellung des Bildes) wurde die Eigenschaft Source
auf den Namen der Bilddatei gesetzt.

Auf dem ersten Button in der unteren Reihe stellt das Bild den Inhalt dar. Der
zweite Button in der unteren Reihe soll einen TextBlock und ein Bild darstellen.
Da dies nun einmal zwei Elemente sind, muss ein tibergeordnetes Element, hier
ein StackPanel, als Inhalt des Buttons dienen.

Falls Sie mehrere Zeilen Text auf dem Button benétigen (wie im dritten Button in
der unteren Reihe), kdnnten Sie wiederum ein StackPanel mit mehreren TextBl6-
cken nutzen. Einfacher geht es mithilfe des Elements LineBreak.

4.2.2 RepeatButton

Im Gegensatz zu einem Standard-Button reagiert ein RepeatButton auf dauerhat-
ten Druck mit der Wiederholung des Ereignisses. Im nachfolgenden Projekt
SchalterRepeat sehen Sie zwei RepeatButtons, die ein drittes Element innerhalb
eines Canvas nach rechts oder links »bewegen« (sieche Abbildung 4.12).

[87 SchalterRepeat =al=

x

Abbildung 4.12 Zwei RepeatButtons

65

4 | Steuerelemente

Der Aufbau des Canvas in XAML:

<Canvas>
<{RepeatButton Content=">>" Click="repeatl_Click" />
{RepeatButton Content="&1t;&1t;" Canvas.Right="0"
Click="repeat2_Click" />
<Label Canvas.lLeft="100" x:Name="1b">x</Label>
</Canvas>

Auch hier wird eine Ereignismethode fiir das Ereignis Click registriert, auch
wenn es sich streng genommen um einen dauerhaften Druck und nicht um einen
Click handelt. Die Int32-Eigenschaften Delay und Interval (hier nicht verwen-
det) stehen fiir die Millisekunden

» der Wartezeit auf die erste Wiederholung

» der Wartezeit zwischen zwei Wiederholungen

Hinweis: Falls Sie die Sonderzeichen > oder < abbilden mochten, so diirfen diese
nicht mit den Zeichen fiir XAML-Markierungen kollidieren. Daher miissen sie
innerhalb der Eigenschaft Content angegeben werden. Im Falle des Zeichens <
reicht selbst das nicht: Sie miissen wie in HTML die Entity &1t; nutzen. 1t steht
fir »lower thanc.

Die Methoden:

private void repeatl_Click(...) { bewegen(5); }

private void repeat2_Click(...) { bewegen(-5); }

private void bewegen(double wert)

{ double Teft = (double)lb.GetValue(Canvas.lLeftProperty);
1b.SetValue(Canvas.lLeftProperty, left + wert); }

4.2.3 ToggleButton und CheckBox

Diese beiden Elemente dienen als Umschalter zwischen zwei oder drei Zustin-
den: Ein, Aus und gegebenenfalls Nicht definiert. Sie unterscheiden sich nur im
Aussehen, nicht im Verhalten. Thr aktueller Zustand kann auch per Programm-
code abgefragt werden, falls nicht sofort auf das Umschalten reagiert werden soll.
ToggleButtons werden gerne in Symbolleisten eingesetzt, besonders mit Bild,
(siehe Abschnitt 4.7.3, »Symbolleiste«).

Im nachfolgenden Projekt SchalterEinAusNull sehen Sie einige Moglichkeiten,
mit diesen Elementen zu arbeiten (siche Abbildung 4.13). Die Elemente konnen
zu Beginn auf einen der zwei (beziehungsweise drei) Zustinde gesetzt werden.

66

Schalter

[E77 SchalterEinAusNull lﬁm

Abbildung 4.13 ToggleButton und CheckBox

Zunichst der Aufbau in einem StackPanel in XAML:

{StackPanel x:Name="sp" Background="LightGray">
<ToggleButton Width="80" Click="einaus_Click">
False</ToggleButton>
<ToggleButton Width="80" Click="einaus_Click"
IsChecked="True">True</ToggleButton>
<ToggleButton Width="80" Click="null_Click" IsThreeState="True"
IsChecked="{x:Null}">x:Nul1</ToggleButton>
<{Separator />
<CheckBox Click="einaus_Click">False</CheckBox>
<CheckBox Click="einaus_Click" IsChecked="True">True</CheckBox>
<CheckBox Click="null_Click" IsThreeState="True"
IsChecked="{x:NulT}">x:Nul1</CheckBox>
</StackPanel>

Die Eigenschaft IsChecked kennzeichnet den Zustand des Elements. Sie ist nicht
vom Typ bool, sondern vom Typ boo1?, weil sie drei Zustinde annehmen kann.
Der Standardwert der Eigenschaft ist False. Falls True gewahlt wurde, so ist der
ToggleButton eingedriickt und die CheckBox markiert.

Normalerweise schaltet der Benutzer zwischen den beiden Zustinden Ein und
Aus um. Falls die Eigenschaft IsThreeState auf True gesetzt wurde, so schaltet
der Benutzer zwischen den drei Zustinden Ein, Aus und Nicht definiert um. Falls
dies als Startwert gewtinscht ist, so muss IsChecked auf {x:Nul1} gesetzt werden.
Diesen Zustand sieht man nur der CheckBox an.

Die Ereignisse Checked und Unchecked treten beim Einschalten beziehungsweise
Ausschalten ein. Das Ereignis C1ick tritt bei Betdtigung immer ein, unabhingig
vom Zustand. Aufgrund der Tatsache, dass die Klasse CheckBox von der Klasse
ToggleButton abgeleitet ist, konnen dieselben nachfolgenden Ereignismethoden
genutzt werden.

67

4 | Steuerelemente

private void einaus_Click(object sender, RoutedEventArgs e)
{

ToggleButton tb = sender as ToggleButton;

tb.Content = th.IsChecked;

private void null_Click(object sender, RoutedEventArgs e)
{
ToggleButton tb = sender as ToggleButton;

if (tb.IsChecked == null)
tb.Content = "x:Null";
else
tb.Content = tb.IsChecked;

if (tb.IsChecked == true)
sp.Background = new SolidColorBrush(Colors.White);
else if (tb.IsChecked == false)
sp.Background = new SolidColorBrush(Colors.Gray);
else
sp.Background = new SolidColorBrush(Colors.LightGray);
}

Um den Verweis auf einen ToggleButton zu erzeugen, wird der Namespace
System.Windows.Controls.Primitives bendtigt. In beiden Methoden wird
zunichst ermittelt, welcher ToggleButton betitigt wurde. Bei den ersten beiden
ToggleButtons und den ersten beiden CheckBoxen gibt es nur zwei Zustinde,
daher kann der Zustand (True oder False) der Eigenschaft IsChecked direkt aus-
gegeben oder zur Steuerung eines booleschen Wertes genutzt werden.

Bei einem ToggleButton, der drei Zustinde annehmen kann, miissen Sie den
Zustand Nicht definiert mit nul1 abfragen. Falls in Abhdngigkeit von den drei
Zustanden drei verschiedene Aktionen erfolgen sollen, so ist eine mehrfache Ver-
zweigung zu nutzen. Eine einfache Abfrage mit: if (tb.IsChecked) ist nicht mog-
lich, da der Datentyp nicht bool ist.

4.2.4 RadioButton

Dieses Element wird zum Umschalten zwischen mehreren Zustinden oder zur
Auswahl aus mehreren Moglichkeiten genutzt. Wie bei ToggleButton und Check-
Box kann sofort auf das Umschalt- beziehungsweise Auswahlereignis reagiert
werden, oder es wird erst spater der Zustand beziehungsweise die Auswahl abge-
fragt. Wichtige Ereignisse sind wiederum C1ick, Checked und Unchecked.

68

Schalter

Das nachfolgende Projekt SchalterRadio zeigt Ihnen den Umgang mit dem Radio-
Button (sieche Abbildung 4.14). Im Projekt gibt es die Moglichkeit, eine Schrift-
farbe und eine Hintergrundfarbe zu wiahlen. Zur Trennung der beiden Farbaus-
wahlen ist eine Gruppierung notwendig. Zu Beginn sollten Sie darauf achten,
dass in jeder Gruppe der aktuelle Zustand wiedergegeben wird.

[®°1 SchalterRadio l'-‘—' =] _

@ Schrift schwarz
© Schrift grau
© Schrift weil

IO Hintergrund schwarz
(© Hintergrund grau
@ Hintergrund weib

Schrift bzw. Hintergrund umschalten

Abbildung 4.14 Zwei Gruppen von RadioButtons

Zunichst der Aufbau in einem StackPanel in XAML:

<{StackPanel>
<RadioButton GroupName="s" Checked="rbl_Checked"
IsChecked="True">Schrift schwarz</RadioButton>
<RadioButton GroupName="s" Checked="rb2_Checked">
Schrift grau</RadioButton>
<RadioButton GroupName="s" Checked="rb3_Checked">
Schrift weiB</RadioButton>
{Separator />
<RadioButton GroupName="h" Checked="rbh_Checked">
Hintergrund schwarz</RadioButton>
<RadioButton GroupName="h" Checked="rbh_Checked">
Hintergrund grau</RadioButton>
<RadioButton GroupName="h" Checked="rbh_Checked"
IsChecked="True">Hintergrund weiB</RadioButton>
{Separator />
<Label x:Name="1b" HorizontalAlignment="Center">
Schrift bzw. Hintergrund umschalten</Label>
</StackPanel>

Die Unterteilung in zwei Gruppen von RadioButtons wird mithilfe der Eigen-
schaft GroupName vorgenommen. Dies ware nicht notig, falls die RadioButton-
Gruppen jeweils in einem eigenen Container liegen, zum Beispiel in unterschied-
lichen Panels. Die Eigenschaft IsChecked wird beim aktuell ausgewdahlten Radio-
Button auf True gesetzt.

69

4 | Steuerelemente

Innerhalb der oberen Gruppe wird fiir jeden RadioButton eine eigene Methode
fur das Ereignis Checked registriert. Zum Vergleich wird fiir die untere Radio-
Button-Gruppe eine gemeinsame Ereignismethode registriert. Innerhalb dieser
Methode wird ermittelt, welcher RadioButton betitigt wurde.

Es folgt der Aufbau des Programmcodes:

private void rbl_Checked(...)
{ if(IslLoaded)

1b.Foreground = new SolidColorBrush(Colors.Black); }
private void rb2_Checked(...)
{ 1b.Foreground = new SolidColorBrush(Colors.Gray); }
private void rb3_Checked(...)
{ 1b.Foreground = new SolidColorBrush(Colors.White); }

Innerhalb der ersten RadioButton-Gruppe fiihrt das Ereignis Checked zu unter-
schiedlichen Methoden, in denen jeweils eine Farbe ausgewdhlt wird.

Es gibt ein Problem beim zeitlichen Ablauf: Das Ereignis Checked der beiden vor-
eingestellten RadioButtons findet bereits innerhalb des XAML-Aufbaus statt. Zu
diesem Zeitpunkt gibt es das Label nicht; dies wiirde zu einem Fehler fiihren.
Dabher soll das Label nur dann verandert werden, wenn das gesamte Fenster gela-
den ist, also die Eigenschaft IsLoaded des Fensters auf True steht.

private void rbh_Checked(...)
{
if (IslLoaded)
{
string s = (sender as RadioButton).Content.ToString();
switch (s)
{
case "Hintergrund schwarz":
1b.Background = new SolidColorBrush(Colors.Black); break;
case "Hintergrund grau":
1b.Background = new SolidColorBrush(Colors.Gray); break;
case "Hintergrund weiB":
1b.Background = new SolidColorBrush(Colors.White); break;

}

Es wird der Wert der Eigenschaft Content ermittelt. In Abhingigkeit von diesem
Wert wird eine der drei Farben gewdhlt.

70

Text und Beschriftung

4.2.5 Auswabhl einstellen

Die Stellung der verschiedenen Umschalter (ToggleButton, CheckBox und Radio-
Button) ldsst sich nattirlich auch per Programmcode einstellen. Dazu muss ledig-
lich die Eigenschaft IsChecked auf true oder false gestellt werden. In Abbildung
4.15 sehen Sie insgesamt fiinf Buttons (EIN, AUS, ROT, GRUN und BLAU). Innerhalb
der Methoden fiir das jeweilige Click-Ereignis werden die Umschalter »von
aullen« per Programmcode betitigt (Projekt SchalterEinstellen).

[®°] SchalterEinstellen EIM
ToggleButton

Einstellen: | Ein Aus

|:| CheckBox

IO rot
@ griin
© blau

Abbildung 4.15 Umschalter einstellen

Ein Ausschnitt des Programmcodes fiir die Buttons EIN und ROT:

private void ein_Click(...)

{ tb.IsChecked = true; ch.IsChecked = true; }
private void rot_Click(...)

{ rbl.IsChecked = true; }

4.3 Text und Beschriftung

Eine Reihe von Elementen werden zur Eingabe und Ausgabe von Texten genutzt.
Zur Ausgabe dienen Label fiir eine einfache Beschriftung, TextBlocks zur forma-
tierten Ausgabe und ToolTips zur kontextsensitiven Information. Mithilfe einer
TextBox kénnen einfache Eingaben vom Benutzer entgegengenommen werden.
Verschliisselte Eingaben erfolgen in einer PasswordBox. Die RichTextBox bietet
eine formatierte Eingabe, dhnlich wie in einem Editor.

4.3.1 Label

Label werden fiir einfache Beschriftungen innerhalb eines Dialogfelds genutzt.
Die wichtigste Eigenschaft ist Content, der Inhalt des Labels. Er ist vom Typ
object und kann daher unterschiedlicher Art sein. In vielen Fillen handelt es sich

71

4 | Steuerelemente

um Text. Die Formatierungsmoglichkeiten innerhalb eines Labels sind nur
gering. Allerdings konnen Label mithilfe einer Datenbindung fiir eine erleich-
terte Benutzerfihrung sorgen. Dies sehen Sie im Projekt TBLabel (siche Abbil-

dung 4.16).
(87 TBLabel
Name
| Vorname
Ort

Abbildung 4.16 Label mit Datenbindung zu TextBox

Falls der Benutzer die Tastenkombination [A1t]+[v] betitigt, wird der Cursor in
die TextBox neben dem Label VORNAME gesetzt. Allerdings geht dies nur bei
einem unformatierten Label-Inhalt, hier also nicht beim (fett formatierten) Label
OrT. Der Aufbau in XAML:

{StackPanel>
<WrapPanel Margin="1">
<TextBox x:Name="tbname" Width="80" />
<Label Target="{Binding ElementName=tbname}">
_Name</Label>
</WrapPanel>
{WrapPanel Margin="1">
<TextBox x:Name="tbvorname" Width="80" />
<Label Target="{Binding ElementName=tbvorname}">
_Vorname</Label>
</WrapPanel>
<WrapPanel Margin="1">
{TextBox Width="80" />
<Label>
<Bo1d>0rt</Bold>
</Label>
</WrapPanel>
</StackPanel>

Die Eigenschaft Target eines Labels verweist auf das Element, das den Fokus
erhilt, falls die zugehorige Tastenkombination betitigt wird. Diese wurde mit-
hilfe des Unterstrichs vor dem betreffenden Buchstaben festgelegt.

Der Wert der Eigenschaft Target ist ein Datenbindungsobjekt (mehr zum
Thema Datenbindung finden Sie in Abschnitt 8.1). Der Wert der Eigenschaft

72

Text und Beschriftung | 4.3

ElementName des Datenbindungsobjekts ist das Objekt, das als Datenquelle
dient, in diesem Falle die TextBox.

Das letzte Label wurde fett formatiert. Das geschah mithilfe eines sogenannten
Inline-Elements, hier vom Typ Bold. Allerdings diirfen Label nur ein einzelnes
Inline-Element enthalten, im Gegensatz zum Element TextBlock (siehe nichster
Abschnitt). In einem Label sind also nur einfache Formatierungen méglich.

4.3.2 TextBlock

Elemente des Typs TextBlock bieten weit mehr Moglichkeiten zur Formatierung
als Label. Eine wichtige Eigenschaft ist Text. Im Falle eines einzelnen Textes ohne
formatierende Elemente entspricht diese Eigenschaft dem gesamten Inhalt des
TextBlocks. Allerdings kann ein TextBlock formatiert und gestaltet werden. In
diesem Falle arbeiten Sie besser mit der Eigenschaft Inlines. Dies ist eine Auflis-
tung vom Typ InlineCollection, die die einzelnen Teil-Inhalte des TextBlocks
umfasst. Informationen zum Thema Inlines finden Sie auch in Abschnitt 13.1.7.

Im nachfolgenden Projekt TBTextBlock sehen Sie verschiedene Moglichkeiten,
einen TextBlock zu gestalten und per Programmcode auf die Inhalte zuzugreifen
(siehe Abbildung 4.17).

i) TBTextBlock (B

1: Das ist ein langer Text, der Gber den Zeilenrand hin,
2: Das ist ein Text mit einem manuellen

LineBreak und einem automatischen Umbruch, falls
die Zeile zu lang wird.

3: Textteile fett oder kursiv

l4:Grau, nicht kursivextArial 10

[1 anzeigenIZ setzen13 andern]

4 anzeigen|4 andern

8

Abbildung 4.17 Nach dem Start

Sie sehen vier verschiedene Elemente vom Typ TextBlock, zur besseren Unter-
scheidung mit wechselndem Hintergrund. Zunichst der Aufbau der TextBlocks in
XAML:

{TextBlock x:Name="tbl" Background="LightGray">
1: Das ist ein langer Text, der Uber den Zeilenrand
hinausgeht und verschwindet.</TextBlock>

{TextBlock x:Name="tbh2" TextWrapping="Wrap">2: Das ist ein
Text mit einem manuellen<LineBreak />LineBreak und einem

73

4 | Steuerelemente

automatischen Umbruch, falls die Zeile zu lang
wird.</TextBlock>

{TextBlock x:Name="tb3" Background="LightGray">3: Textteile
<Bold>fett</Bold> oder <Italic>kursiv</Italic></TextBlock>

{TextBlock x:Name="tb4" FontStyle="Italic"><Run>4:</Run>
<Run Foreground="Gray" FontStyle="Normal">Grau, nicht
kursiv</Run><Run>Text</Run><Run FontFamily="Tahoma"
FontSize="20">Arial 10</Run></TextBlock>

Im ersten TextBlock steht ein langer Text ohne formatierende Elemente. Die
Eigenschaft Text umfasst den gesamten Inhalt. Dieser Inhalt ist gleichzeitig das
einzige Element der InlineCollection. Ohne besondere Einstellung wird der lange
Text Uiber den Zeilenrand hinaus geschrieben.

Die InlineCollection des zweiten TextBlocks umfasst drei Elemente: zwei Textsti-
cke und ein Element vom Typ LineBreak zur Erstellung eines Zeilenumbruchs.
Die Eigenschaft Text beinhaltet nur das erste Textstiick. Die Eigenschaft
TextWrapping des TextBlocks wurde auf den Wert Wrap gesetzt. Dies ermdglicht
einen automatischen Zeilenumbruch bei Erreichen des Zeilenrands. Weitere
Werte fiir diese Eigenschaft aus der gleichnamigen Enumeration sind NoWrap (der
Standardwert) und WrapWithOverflow. Im letzteren Falle laufen zum Beispiel sehr
lange Worte weiterhin tiber den Zeilenrand hinaus.

Die InlineCollection des dritten TextBlocks beinhaltet vier Elemente. Zwei davon
sind fett beziehungsweise kursiv formatiert. Die Formatierung wird auf einfache
Weise, mit Elementen vom Typ Bold beziehungsweise Italic, durchgefiihrt.

Die Standardelemente einer InlineCollection sind vom Typ Run, wie sie beim vier-
ten TextBlock verwendet wurden. Ein solches Element kann formatierten oder
unformatierten Lauftext umfassen. Sie haben in einem Run weitergehende For-
matierungsmoglichkeiten. Die Eigenschaften werden kaskadierend verarbeitet,
wie Sie es vielleicht aus CSS kennen: Der gesamte TextBlock ist kursiv formatiert
(FontStyle ="Italic"). In den Elementen kommen weitere Eigenschaften hinzu
(Foreground = "Gray") beziehungsweise werden Eigenschaften tberschrieben
(FontStyle = "Normal").

Hinweis: Fir die Gbersichtliche Darstellung in diesem Buch wurden die oben
angegebenen Zeilen des TextBlocks umbrochen. Im Code stehen sie jeweils in
einer einzigen Zeile, denn jeder Zeilenumbruch im XAML-Code erzeugt wie-
derum einen eigenen Run.

Kommen wir zum Zugriff auf die Elemente per Programmcode:

private void bl_Click(...)
{ MessageBox.Show(tbhl.Text); }

74

Text und Beschriftung | 4.3

Es wird der Wert der Eigenschaft Text des ersten TextBlocks abgerufen. Da dieser
nur ein Element umfasst, erscheint der gesamte Inhalt.

private void b2_Click(...)
{ tb2.Text = "2: Das ist ein neuer Text."; }

Diese Methode dient dazu, den Inhalt des zweiten TextBlocks zu ersetzen.
Anschliefend umfasst dessen InlineCollection nur noch ein Element statt drei
(siehe Abbildung 4.18).

private void b3_Click(...)

{
tb3.InTines.Add(" Hallo");
th3.Inlines.Add(new Italic(new Run(" Welt")));

}

Hier werden der InlineCollection des dritten TextBlocks mithilfe der Methode
Add() zwei Elemente angehdngt (siehe Abbildung 4.18). Beim ersten Element
handelt es sich um unformatierten Text (Typ String). Das zweite Element ist auf
einfache Weise kursiv formatiert. Dazu wird ein neues Element vom Typ Italic
erzeugt. Der Inhalt des Elements muss wiederum ein Inline-Element sein, hier
vom Typ Run.

private void b4_Click(...)
{
foreach(Run r in tb4.Inlines)
MessageBox.Show(r.Text);
}

Die Textinhalte aller Elemente der InlineCollection des vierten TextBlocks werden
ohne besonderes Format ausgegeben.

private void b5_Click(object sender, RoutedEventArgs e)

{
Inline na = th4.Inlines.ElementAt(0);
tb4.Inlines.InsertBefore(na, new Run(" Anfang "));

InTine nz = tb4.Inlines.ElementAt(tb4.Inlines.Count - 1);
Run r = new Run(" Ende");
r.Background = new SolidColorBrush(Colors.LightGray);
tb4.Inlines.InsertAfter(nz, r);

}

Sie konnen einer InlineCollection an beliebiger Stelle Elemente hinzufiigen. Im
vorliegenden Beispiel wird dies beim vierten TextBlock vor dem ersten und nach
dem letzten Element mithilfe der Methoden InsertBefore() und InsertAfter()

75

4 | Steuerelemente

durchgefiihrt (siehe Abbildung 4.18). Beim ersten Element handelt es sich um
unformatierten Text, der aber zum Hinzufiigen in einem Run gesetzt werden
muss. Das zweite Element ist ein formatierter Run. In beiden Fillen muss ein Ver-
weis vom Typ Inline auf das jeweilige Nachbarelement mithilfe der Methode
ElementAt () ermittelt werden.

i) TBTextBlock b |2)

1: Das ist ein langer Text, der Gber den Zeilenrand hin
2: Das ist ein neuer Text.
3: Textteile fett oder kursiv Hallo Welt

Anfang 4:Grau, nicht vursiviexsArial 10 ende

Abbildung 4.18 Nach den Anderungen

4.3.3 ToolTip

Ein ToolTip, auch Quickinfo genannt, dient als kontextsensitive Information zu
einem bestimmten Steuerelement. Er erscheint rechts unterhalb des Mauszeigers,
sobald sich dieser iiber dem betreffenden Element befindet. Er wird nicht als eige-
nes Element erstellt, sondern mithilfe der Eigenschaft Too1T1ip eines Elements.

Nachfolgend sehen Sie im Projekt TBToolTip zwei QuickInfos. Das erste ist ein
einfacher Text, der als Eingabehilfe fir eine TextBox dient (siehe Abbildung
4.19). Beim zweiten werden ein Bild und ein Text neben einem Button sichtbar

(siche Abbildung 4.20).
[R-] TBToolTip EIE_
Name: Ik

[Bitte geben Sie Ihren Namen ein }

Button mit ToolTip

Abbildung 4.19 TextBox mit ToolTip

[E7 TRToolTip

Name:

Button mit Tool .

Abbildung 4.20 Gestalteter ToolTip

76

Text und Beschriftung | 4.3

Der Aufbau in XAML:

<{StackPanel>
<WrapPanel Margin="5">
{Label>Name:</Label>
<TextBox ToolTip="Bitte geben Sie Ihren Namen ein"
Width="80" />
</WrapPanel>
<Button x:Name="bl" Click="b1l_CTlick"
HorizontalAlignment="Left" Margin="5">
Button mit ToolTip
<Button.ToolTip>
<StackPanel>
<{Image Source="work.gif" />
<TextBlock HorizontalAlignment="Center">Work</TextBlock>
</StackPanel>
</Button.ToolTip>
</Button>
</StackPanel>

Der einfache ToolTip fir die TextBox wird als Wert der gleichnamigen Eigen-
schaft gesetzt. Der gestaltete ToolTip erfordert ein Layout. Dieses ist der Wert der
Eigenschaft Too1Tip in der erweiterten Schreibweise. Die Bilddatei wurde dem
Projekt als Ressource hinzugefiigt, einfach per Drag & Drop. Mehr zu Ressourcen
erfahren Sie in Abschnitt 6.2.

Der Inhalt eines ToolTips lisst sich auch per Programmcode festlegen:

private void bl_Click(...)
{ bl.ToolTip = "Neuer Inhalt fir ToolTip"; }

4.3.4 TextBox

Eine TextBox bietet die Moglichkeit, Eingaben vom Benutzer entgegenzuneh-
men. Die Eigenschaft Text gibt den Inhalt der TextBox wieder. Das Ereignis
TextChanged tritt bei jeder Textdnderung auf und kann zum Beispiel zur unmittel-
baren Priifung des Textes genutzt werden.

Der Inhalt einer TextBox kann wéhrend der Eingabe auf korrekte Rechtschrei-
bung gepriift werden, wie bei einer Textverarbeitung. Per Programmcode kénnen
Sie den gesamten Text oder Teile davon markieren und auf den markierten Text
zugreifen. Innerhalb einer TextBox steht Ihnen die Zwischenablage zur Verfi-
gung. Sie konnen also Cut, Copy und Paste durchfiithren.

Eine TextBox kann mehrzeilig sein, mit oder ohne ScrollBar. Wie bei einem Text-
Block konnen Sie tiber die Eigenschaft TextWrapping das Verhalten bei Uber-

77

4 | Steuerelemente

schreitung des Zeilenrandes bestimmen. Sie konnen auch festlegen, ob die Taste
zu einem Zeilenumbruch fiihrt oder nicht.

Im nachfolgenden Projekt TBTextBox werden Ihnen einige Méglichkeiten gezeigt
(siche Abbildung 4.21). Die obere TextBox ist einzeilig, mit Ereignishandler. Die
untere TextBox ist mehrzeilig. Sie bietet bei Bedarf die Markierung der vorhande-
nen Rechtschreibfehler und eine ScrollBar.

.
] TBTextBox EET™

Hallo Welt

Mehrrgeiiirgié Teﬁl?;bx u;uhj;
ScrollBar (falls notwendig)
SpellCheck

[Mark. anzeigenITex‘t marlLITethex‘t marlc]

Abbildung 4.21 Einzeilige und mehrzeilige TextBox

Zundchst der Aufbau der wichtigen Elemente in XAML:

<StackPanel>

<TextBox x:Name="tbl" Width="150" Margin="2"
TextChanged="tbl_TextChanged">Hallo Welt</TextBox>

{TextBox x:Name="tb2" Width="150" Height="40" Margin="2"
TextWrapping="Wrap" AcceptsReturn="True"
VerticalScrollBarVisibility="Auto"
SpellCheck.IsEnabled="True">Mehrzeilige TextBox
miht ScrollBar (falls notwendig)</TextBox>

<CheckBox x:Name="cb" IsChecked="True"
Click="cb_Click">Spell1Check</CheckBox>

</StackPanel>

Bei der oberen TextBox fithrt das Ereignis TextChanged, also jede Anderung, zum
Aufruf einer Methode. Bei der unteren TextBox wurde die Hohe so eingestellt,
dass Text Uber mehrere Zeilen eingegeben werden kann. Die Eigenschaft
TextWrapping hat den Wert Wrap. So fiihrt die Eingabe eines Textes, der tiber den
Zeilenrand hinausgeht, nicht zu einem horizontalen Scrollen, sondern zu einem
Zeilenumbruch. Die Eigenschaft AcceptsReturn steht auf True, also fiihrt die
Taste zu einem Zeilenumbruch.

Mit dem Wert Auto fiir die Eigenschaft VerticalScrol1BarVisibility legen Sie
fest, dass die vertikale ScrollBar nur bei Bedarf eingeblendet wird. Die Attached
Property IsEnabled der Klasse Spel1Check bestimmt, ob der Text unmittelbar auf

78

Text und Beschriftung | 4.3

korrekte Rechtschreibung gepriift wird. Dieses Feature lasst sich im vorliegenden
Programm ein- und ausschalten.

Der zugehorige Programmcode:

private void tbl_TextChanged(
object sender, TextChangedEventArgs e)

if(IslLoaded)
foreach (TextChange tc in e.Changes)
MessageBox.Show("Position: " + tc.Offset + ", Plus: "
+ tc.AddedLength + ", Minus: " + tc.RemovedlLength);
}

Das Objekt der Klasse TextChangedEventArgs beinhaltet Informationen zum
Ereignis. Die Eigenschaft Changes ist eine Auflistung der erfolgten Anderungen.
Eine einzelne Anderung ist vom Typ TextChange. Die Eigenschaften Offset,
AddedlLength und RemovedlLength informieren dariiber, an welcher Position wie
viele Elemente zum Text hinzugefiigt oder entfernt wurden. Die Zihlung fur
Offset beginnt bei 0.

private void cb_Click(...)
{ th2.SetValue(SpellCheck.IsEnabledProperty, cb.IsChecked); }

Die Rechtschreibpriifung wird gemifs dem Zustand der CheckBox ein- und ausge-
schaltet, indem die Eigenschaft IsEnabled iber ihre Dependency Property veran-
dert wird.

private void anzeigen(...)
{ MessageBox.Show(tb2.SelectedText); }

Die Eigenschaft SelectedText beinhaltet den markierten Text als String.

private void text_markieren(...)
{

th2.Focus();

th2.SelectAl1();
}

Die Methode SelectAl1() markiert den gesamten Text. Vorher sollte der Focus in
die TextBox gesetzt werden.

private void teiltext_markieren(...)
{
th2.Focus();
tb2.SelectionStart = 12;
tb2.SelectionlLength = 7

79

4 | Steuerelemente

Falls nur ein Teil des Textes markiert werden soll, so konnen die Eigenschaften
SelectionStart (Beginn der Markierung) und SelectionLength (Linge der Mar-
kierung) genutzt werden. Die Zdhlung fiir SelectionStart beginnt bei 0.

4.3.5 PasswordBox

Eine PasswordBox dhnelt zundchst einer TextBox, allerdings fehlen viele Eigen-
schaften. Dadurch ist das Element besonders geschiitzt. Unter anderem werden
keine direkten Inhalte in XAML angenommen. Es ist kein Cut oder Copy méglich,
es kann allerdings ein Text per Paste aus der Zwischenablage eingefiigt werden.

Das anzuzeigende Zeichen lasst sich tiber die Eigenschaft PasswordChar einstel-
len. Falls kein Wert vergeben wurde, werden Bullets angezeigt, wie im Projekt
TBPasswordBox dargestellt (sieche Abbildung 4.22).

' ™y
[®7] TBPasswordBox Elm

Passwort:

Passwort-Wiederhelung:

000000

Abbildung 4.22 Zwei PasswordBox-Elemente

Die wichtigen Teile des Aufbaus in XAML:

{StackPanel>
<Label>Passwort:</Label>
<PasswordBox x:Name="pbl" MaxLength="10" Margin="2" />
<Label>Passwort-Wiederholung:</Label>
<PasswordBox x:Name="pb2" MaxLength="10" Margin="2"
PasswordChar="o0" />
</StackPanel>

Die Eigenschaft MaxLength begrenzt in Elementen vom Typ TextBox oder Pass-
wordBox die Menge der Zeichen, die eingegeben werden kann.

4.3.6 RichTextBox

Die RichTextBox bietet eine Moglichkeit zur formatierten Eingabe, dhnlich wie in
einem Editor. Es wird das Rich Text Format (RTF) verwendet, ein Dateiformat
zum Austausch und zur Speicherung von einfachen Formatierungen.

80

Auswabhl

Innerhalb einer RichTextBox steht ein Element vom Typ FlowDocument. Dieser
Typ kann Zeichen- und Absatzformatierung, mehrere Spalten, Seitennummern
und weitere Moglichkeiten zur Gestaltung von Dokumenten beinhalten. Ein
kleines Beispiel wird im Projekt TBRichTextBox dargestellt (sieche Abbildung 4.23).
Ein groBeres Beispiel finden Sie im entsprechenden Unterabschnitt tber
FlowDocument in Abschnitt 13.1.11, »RichTextBox«.

[®°] TBRichTextBox

Absatz 1, normal

Absatz 2, fett

Abbildung 4.23 Eine RichTextBox

Der Aufbau in XAML:

<RichTextBox Margin="3">
<FlowDocument>
<Paragraph>Absatz 1, normal</Paragraph>
<Paragraph>Absatz 2, <Bold>fett</Bold></Paragraph>
</FlowDocument>
</RichTextBox>

Ein Element der Klasse Paragraph beinhaltet einen Absatz mit fortlaufendem Text.
Diese Klasse steht hier als ein Beispiel fiir die Klassen, die von der abstrakten
Klasse Block abgeleitet sind. Mehr zu dieser Klasse finden Sie in Abschnitt 4.7.3,
»Symbolleiste«.

4.4 Auswahl

Steuerelemente vom Typ ListBox, ComboBox oder TreeView dienen zur tibersicht-
lichen Darstellung und Auswahl aus mehreren Moglichkeiten. Die Eintrige die-
ser Steuerelemente stehen in der Eigenschaft Items. Dies ist eine Auflistung vom
Typ ItemCollection. Eintrage in der Auflistung sind vom Typ object und kénnen
daher unterschiedlicher Art sein, wie zum Beispiel Bilder, Layout- oder Steuer-
elemente.

Zur Ausgabe von zweidimensionalen Tabellen sind Elemente vom Typ ListView
geeignet. Eine Weiterentwicklung, die auch eine Eingabe ermoglicht, stellt der
Typ DataGrid dar. Bei beiden Typen wird eine Datenbindung bendtigt. Sie wer-
den sinnvollerweise im Zusammenhang mit groeren Datenmengen eingesetzt.
Erlduterungen und Beispiele finden Sie in Kapitel 8, »Datenc.

81

4 | Steuerelemente

4.4.1 ListBox, Einzel-Auswahl

Eine ListBox listet Eintrage auf, von denen der Benutzer einen oder mehrere aus-
wihlen kann. Ein Standard-Texteintrag ist vom Typ ListBoxItem. Ein Eintrag
kann aber auch von einem anderen Typ sein.

Im nachfolgenden Projekt AuswahlListBox sehen Sie einige Moglichkeiten zur
Arbeit mit einer ListBox (siche Abbildung 4.24). Es handelt sich hier um eine
ListBox, in der nur ein einzelner Eintrag ausgewdhlt werden kann.

[87] AuswahiListBox {-‘:' =l u
Element anhangen

Berlin - =
Hamburg Element einfligen
Minchen E Element |&schen
#Bonn

. Alle Elemente I&schen
Kéin ¥
Alle Elemente anzeigen

Abbildung 4.24 ListBox mit verschiedenen Typen von Eintrdgen

Zunichst der Aufbau der ListBox in XAML:

<ListBox x:Name="1b" Height="85" Width="100" Margin="5"
SelectionChanged="1b_SelectionChanged">
<ListBoxItem>Berlin</ListBoxItem>
<ListBoxItem Selected="eintrag_Selected"
Unselected="eintrag_Unselected">Hamburg</ListBoxItem>
<ListBoxItem Selector.IsSelected="True">Minchen</ListBoxItem>
<MWrapPanel>
<Image Source="work.gif" Height="12" Width="12" />
<TextBlock>Bonn</TextBlock>
</WrapPanel>
<ListBoxItem>K&1n</ListBoxItem>
<ListBoxItem>Frankfurt</ListBoxItem>
</ListBox>

Falls fir Height und Width keine Angaben gemacht werden, dann richtet sich die
Hohe nach der Anzahl der Elemente und die Breite nach dem breitesten Eintrag.
Dies gilt auch fir Verinderungen zur Laufzeit. Im vorliegenden Beispiel sollte
sich die GroBe der ListBox nicht verdndern, daher wurden Werte vergeben. Ein
Scrollbalken erscheint bei Bedarf, aber nur, falls die Eigenschaft Height einen
Wert bekommen hat.

Hat die ListBox den Fokus, so gelangt man durch Eingabe eines einzelnen Zei-
chens zum ersten Eintrag, der mit dem betreffenden Zeichen beginnt. Dies macht
nattirlich nur bei geordneten Eintrigen Sinn.

82

Auswabhl

Sobald der Benutzer die Auswahl wechselt, tritt fiir die gesamte ListBox das
Ereignis Selection_Changed auf. Fiir ein einzelnes ListBoxItem kénnen die Ereig-
nisse Selected (ausgewdhlt) und Unselected (abgewdhlt) auftreten. Zur Voraus-
wahl eines Eintrags nutzen Sie die Attached Property IsSelected aus der Klasse
Selector.

Der vierte Eintrag der ListBox wurde mithilfe eines WrapPanels gestaltet, das ein
Bild und einen Text umfasst. Es folgen die Ereignismethoden:

private void 1b_SelectionChanged(object sender,
SelectionChangedEventArgs e)

if (IslLoaded && T1b.SelectedIndex != -1)
{
string s = "Ausgewdhlt: Index: " + 1b.SelectedIndex
+ item_info(lb.SelectedItem);
if (e.RemovedItems.Count > 0)
s += "\nAbgewdhlt:" + item_info(e.RemovedItems[0]);
MessageBox.Show(s);

private string item_info(object obj)
{
if (obj is ListBoxItem)
return " Inhalt: " + (obj as ListBoxItem).Content;
else
return " Sonstiges";
}

Das Ereignis Selection_Changed wird auch beim Start der Anwendung ausgelost,
und zwar durch die Vorauswahl eines Elements. Die Eigenschaft SelectedIndex
ergibt die laufende Nummer des Eintrags, wie tiblich bei 0 beginnend. Falls kein
Eintrag ausgewdhlt ist, dann wird -1 zurtickgeliefert.

Die Eigenschaft SelectedItem verweist auf den ausgewdhlten Eintrag vom Typ
object. Innerhalb der Hilfsmethode item_info() wird untersucht, ob es sich
beim ausgewdhlten Eintrag um ein Element vom Typ ListBoxItem oder um etwas
anderes handelt. Im ersten Falle beinhaltet die Eigenschaft Content den Text des
Eintrags.

Beim Ereignis Selection_Changed liefert das Objekt der Klasse Selection-
ChangedEventArgs Informationen iiber den Wechsel der Auswahl. In der Auflis-
tung RemovedItems stehen die Elemente (vom Typ object), deren Auswahl aufge-
hoben wurde. Da es sich im vorliegenden Projekt um eine ListBox mit Einfach-

83

4 | Steuerelemente

Auswahl handelt, gibt es hier nur ein Element in der Auflistung. Nach einem
Loschvorgang ist die Auflistung leer, daher muss vor einem Zugriff mithilfe der
Eigenschaft Count die Anzahl der Elemente gepriift werden.

private void eintrag_Selected(...)

{ (sender as ListBoxItem).Foreground =
new SolidColorBrush(Colors.Red); }

private void eintrag_Unselected(...)

{ (sender as ListBoxItem).Foreground =
new SolidColorBrush(Colors.Black); }

Durch diese beiden Methoden wird die Schriftfarbe des ausgewdihlten Eintrags
gewechselt und nach Abwahl wieder zuriickgewechselt.

private void anhaengen(...)

{
ListBoxItem 1bi = new ListBoxItem();
1bi.Content = "Dortmund";
Tb.Items.Add(1bi);
1b.SelectedIndex = 1b.Items.Count - 1;
1b.ScrollIntoView(1bi);

}

Es wird ein neues Element vom Typ ListBoxItem erzeugt und gefiillt. Die Auflis-
tungsmethode Add() dient zum Anhédngen eines Elements. Das Setzen des Wertes
der Eigenschaft SelectedIndex fithrt zur Auswahl des betreffenden Eintrags. Den
letzten Eintrag erreicht man mithilfe der Eigenschaft Items.Count. Dies heifSt
nicht, dass dieser sich dann auch im sichtbaren Bereich befindet. Die Methode
ScrollIntoView() bietet hier Abhilfe. Sie benotigt einen Verweis auf den Eintrag.

private void einfuegen(...)

{
ListBoxItem 1bi = new ListBoxItem();
1bi.Content = "Stuttgart";

int indexvor;
if (1b.SelectedIndex != -1)
indexvor 1b.SelectedIndex;
else
indexvor = 0;
1b.Items.Insert(indexvor, 1bi);

1b.SelectedIndex = indexvor;
1b.ScrollIntoView(1bi);

84

Auswabhl

Beim Einfiigen eines Elements mithilfe der Auflistungsmethode Insert() wird
ein Verweis auf ein Vorgingerelement benétigt. Entweder wurde ein Element
markiert (SelectedIndex !=-1), oder es wird ein Element zu Beginn der Liste ein-
geftigt. Dies gelingt auch bei einer leeren Liste.

private void Tloeschen(...)
{
if (1b.SelectedIndex != -1)
1b.Items.Remove(1b.SelectedItem);

}
private void alle_loeschen(...)

{ 1b.Items.Clear(); }

Falls ein Element markiert ist, so wird es mithilfe der Auflistungsmethode Remove ()
geloscht. Die Auflistungsmethode Clear () 18scht alle Elemente auf einmal.

private void alle_anzeigen(...)
{

string s = "";
for (int i = 0; i < 1b.Items.Count; i++)
s += 1+ ": " + ditem_info(lb.Items[i]) + "\n";

MessageBox.Show(s);

/* Alternativ */
foreach (object obj in 1b.Items)
s += item_info(obj) + "\n";
}

Diese Methode durchliuft alle Elemente der Auflistung mithilfe der laufenden
Nummer und zeigt sie an. Eine Alternative bietet die foreach-Schleife, allerdings
ohne laufende Nummer.

4.4.2 ListBox, Mehrfach-Auswahl

Falls der Benutzer die Moglichkeit haben soll, mehrere Eintrige auszuwdahlen, so
muss die Eigenschaft SelectionMode einen der Werte Multiple oder Extended
bekommen. Die Werte stammen aus der gleichnamigen Enumeration, der Stan-
dardwert ist Single.

Beim Wert Multiple kann der Benutzer mehrere gewtinschte Eintrige nachein-
ander markieren. Sobald er einen ausgewdihlten Eintrag ein zweites Mal mar-
kiert, wird dieser abgewihlt. Die Sondertasten und (¢] haben keine Wir-
kung.

85

4 | ste

Beim Wert Extended l6scht eine einfache Auswahl die bisherige Auswahl. Mit-
fe der Sondertaste kann der Benutzer mehrere gewtinschte Eintrige
nacheinander markieren. Mithilfe der Sondertaste (] kann er eine Gruppe von

hil

uerelemente

aufeinanderfolgenden Eintrigen markieren.

Im

nachfolgenden Projekt AuswahIListBoxMehrfach sehen Sie zwei ListBoxen.
Bei der ersten wurde Multiple, bei der zweiten Extended gewahlt. Der Benutzer
hat die Méglichkeit, Eintrdge von der einen in die andere ListBox zu verschieben
(siehe Abbildung 4.25). Die Eintrige werden vor dem einzig ausgewdhlten Ele-
ment in der Ziel-ListBox eingefiigt. Hat der Benutzer keines markiert, so werden

sie am Anfang eingefuigt. Hat er mehrere markiert, so wird die Verschiebung
nicht durchgefiihrt.
[m°] AuswahlListBoxMehrfach E@B
Berlin Rom
Hamburg Mailand
Munchen Turin
Kéln Florenz
Frankfurt Neapel
[Alle auswahlen } [Alle auswahlen]
| Alleabwahlen | Alle abwahien |

Abbildung 4.25 Nach dem Start

Der Aufbau in XAML besteht aus drei StackPanels innerhalb eines WrapPanel.

Das dritte StackPanel ist wie das erste aufgebaut:

<W

86

rapPanel>
<StackPanel>
<ListBox x:Name="1bl" SelectionMode="Multiple"
Height="85" Width="100" Margin="5">
<ListBoxItem>Berlin</ListBoxItem>
<ListBoxItem Selector.IsSelected="True">
Hamburg</ListBoxItem>
<ListBoxItem Selector.IsSelected="True">
Minchen</ListBoxItem>
<ListBoxItem>K&In</ListBoxItem>
<ListBoxItem>Frankfurt</ListBoxItem>
</ListBox>
<Button Width="100" Click="Tinks_aus">ATle auswdhlen</Button>
<Button Width="100" Click="Tinks_ab">ATle abwdhlen</Button>
</StackPanel>
{StackPanel VerticalAlignment="Center">

Auswahl | 4.4

<Button Click="nach_rechts">>></Button>
<Button Click="nach_links">&1t;&1t;</Button>
</StackPanel>
<StackPanel>
<ListBox x:Name="1b2" SelectionMode="Extended"
Height="85" Width="100" Margin="5">

</WrapPanel>

Zur Vorauswahl kann nun bei mehreren Eintrigen die Attached Property
IsSelected aus der Klasse Selector auf den Wert True gesetzt werden.

Es folgen die Methoden zur Verschiebung:

private void nach_rechts(...) { item_move(Ibl, 1b2); }
private void nach_links(...) { item_move(1b2, 1b1); !}

private void item_move(ListBox lbquelle, ListBox 1bziel)
{
int indexvor;
if (1bziel.SelectedItems.Count == 0)
indexvor = 0;
else if (I1bziel.SelectedItems.Count == 1)
indexvor = lTbziel.SelectedIndex;
else
{
MessageBox.Show("Max. einen Eintrag beim Ziel markieren");
return;

for (int i = Tbquelle.Items.Count - 1; i >= 0; i--)
{
ListBoxItem 1bi = Tbquelle.Items[i] as ListBoxItem;
if (1bi.IsSelected)
{
Tbquelle.Items.Remove(1bi);
I1bziel.Items.Insert(indexvor, 1bi);

}

Beide Ereignismethoden fithren zur Hilfsmethode item_move(), in der die Ein-
trige von der Quell-ListBox zur Ziel-ListBox verschoben werden. Darin wird
zunidchst die Auflistung der ausgewdhlten Eintrige gepruft, SelectedItems.
Abhingig von deren Grofe wird der Zieleintrag gewahlt, vor dem die verschobe-

87

4 | Steuerelemente

nen Eintrage eingefiigt werden. In SelectedIndex steht immer der erste ausge-
wihlte Eintrag.

Zur Verschiebung werden alle Eintrage der Quell-ListBox mithilfe des Index von
hinten nach vorne durchlaufen. Dies hat mehrere Griinde:

» Beim Entfernen eines Eintrags verschieben sich die Indizes. Dies wirkt sich
nur nach hinten aus.

» Beim Verschieben mehrerer Eintrige bleibt die urspriingliche Reihenfolge
erhalten.

» Innerhalb einer foreach-Schleife durch die Auflistung SelectedItems ist es
nicht moglich, Elemente aus der zugrunde liegenden Auflistung Items zu
entfernen.

Die Eigenschaft IsSelected gibt Auskunft dartiber, ob der betreffende Eintrag
ausgewdhlt ist. Ist dies der Fall, so kann er mithilfe der Methode Remove () aus der
Auflistung Items entfernt werden. Erst anschliefend kann der betreffende Ein-
trag mithilfe der Methode Insert() in der anderen Auflistung eingefiigt werden.
Eine andere Reihenfolge ist nicht méglich, da ein Eintrag nicht gleichzeitig zwei
tibergeordnete Elemente haben kann.

4.4.3 ComboBox

Eine ComboBox gibt es in zwei Varianten:

1. Falls die Eigenschaft IsEditable auf False steht (dies ist der Standard), dient
sie als raumsparende ListBox; sie ermoglicht nur die Auswahl.

2. Falls die Eigenschaft IsEditable auf True steht, dient sie als Kombination aus
ListBox und TextBox; sie ermdglicht Auswahl oder Eingabe.

Bei der zweiten Variante ist es moglich, ein oder mehrere Zeichen einzugeben. Falls
es einen Eintrag gibt, der mit diesen Zeichen beginnt, so wird dieser ausgewdhlt.
Sobald ein Zeichen eingegeben wird, das dazu fiihrt, dass die Kombination nicht
vorkommt, wird die Auswahl zu einer Eingabe, wie bei einem TextBox-Eintrag.

Es gibt bei einer ComboBox keine Mehrfach-Auswahl.

In jedem Fall beinhaltet die Eigenschaft Text den aktuellen Eintrag. Dies gilt aller-
dings erst nach Verlassen der ComboBox, nicht wihrend der Auswahl oder der
Eingabe. Falls die Eigenschaft StaysOpenOnEdit auf True steht und die ComboBox
vor der Auswahl oder der Eingabe getffnet war, dann bleibt sie offen. Dies hilft
beim Suchen. Nach der Benutzung klappt die ComboBox wieder zu.

88

Auswabhl

Ein Standard-Texteintrag ist vom Typ ComboBoxItem. Ein Eintrag kann aber auch,
wie bei der ListBox, anderen Typs sein. Nachfolgend sehen Sie im Projekt
AuswahlComboBox beide Moglichkeiten, Variante 1 in Abbildung 4.26 und
Variante 2 in Abbildung 4.27.

[®] AuswahlComboBox

Minchen = | Minchen

Berlin

Kaln
Frankfurt

Abbildung 4.26 ComboBox als raumsparende ListBox

[®] AuswahlComboBox

Foggia E] [Anzeigen]

Rom
Mailand
Turin

Abbildung 4.27 ComboBox mit Eingabe

In Abbildung 4.27 sehen Sie, dass nach Eingabe des Zeichens "F" der Eintrag
Florenz ausgewdahlt wurde. Nach Eingabe des Zeichens "o" wurde die Eingabe als
neu erkannt. Der Aufbau in XAML:

<{StackPanel>
<MWrapPanel>
<ComboBox x:Name="cbl" Width="85" Margin="5"
SelectionChanged="cbl_SelectionChanged">
<ComboBoxItem Selector.IsSelected="True">
Berlin</ComboBoxItem>
<ComboBoxItem>Hamburg</ComboBoxItem>

</ComboBox>

<TextBlock x:Name="tbl" VerticalAlignment="Center" />
</WrapPanel>

89

4 | Steuerelemente

MWrapPanel>
<ComboBox x:Name="cb2" Width="85" Margin="5"
IsEditable="True" StaysOpenOnEdit="True">
<ComboBoxItem Selector.IsSelected="True">Rom</ComboBoxItem>
<ComboBoxItem>Mailand</ComboBoxItem>

</ComboBox>
<Button Click="anzeigen" Height="23">Anzeigen</Button>
{TextBlock x:Name="tbh2" VerticalAlignment="Center" />
</WrapPanel>
</StackPanel>

Eine Vorauswahl wird, wie bei der ListBox, iiber Selector.IsSelected vor-
genommen. Die Ereignismethoden:

private void cbl_SelectionChanged(object sender,
SelectionChangedEventArgs e)

if (IslLoaded && cbhl.SelectedIndex != -1)
tbl.Text = "" + (cbl.SelectedItem as ComboBoxItem).Content;
}
private void anzeigen(...) { th2.Text =" "+ ch2.Text; |}

Bei der ersten ComboBox steht die getroffene Auswahl unmittelbar (Ereignis
SelectionChanged) in der Eigenschaft SelectedItem zur Verfiigung.

Bei der zweiten ComboBox muss auf die Eigenschaft Text zugegriffen werden, da
eine neue Eingabe des Benutzers nicht in der Eigenschaft SelectedItem steht. Die
Eigenschaft Text hat anschlieend, zum Beispiel nach der Betitigung des Buttons,
den richtigen Wert.

4.4.4 TreeView

Ein Element vom Typ TreeView bietet die Moglichkeit, Texteintrage und andere
Elemente in einer Hierarchie darzustellen. Der Benutzer kann sich Ebenen dieser
Hierarchie anzeigen lassen und Eintrdge auswéhlen. Ein Standard-Texteintrag ist
vom Typ TreeViewItem. Ein Eintrag kann aber auch, wie bei ListBox oder Combo-
Box, anderen Typs sein. Es gibt fiir jedes Element auf jeder Ebene eine Auflistung
vom Typ ItemCollection.

Im Projekt AuswahlTreeView sehen Sie ein Beispiel mit einer Hierarchie und
einem markierten Eintrag (siehe Abbildung 4.28). Einige Elemente der Hierarchie
sind bereits aufgeklappt.

90

Auswahl | 4.4

[®7 AuswahlTreeView E@u

Mailand

I* Deutschland
4 Ttalien
4 Norden
Mailand
Turin
I Suden

[Anzeige, nach oben] [Anzeige, nach unten]

[Neues Element] [Neues Untelelement]

[Element I6schen][Alle Iéschen]

Abbildung 4.28 Nach dem Start

Der Aufbau in XAML:

<{StackPanel>
{TextBlock x:Name="tb" HorizontalAlignment="Center" />
{TreeView x:Name="tv" Height="100"
ScrollViewer.VerticalScrollBarVisibility="Auto"
SelectedItemChanged="tv_SelectedItemChanged">
<TreeViewltem Header="Deutschland">
{TreeViewltem Header="Norden">
{TreeViewItem Header="Hamburg" />
{TreeViewltem Header="Kiel" />
{TreeViewItem Header="Flensburg" />
</TreeViewltem>
{TreeViewItem x:Name="tvi_westen" Header="Westen"
Expanded="tvi_westen_klapp"
Collapsed="tvi_westen_klapp">
{TreeViewltem Header="Kdln" />
{TreeViewltem Header="Dortmund" />
</TreeViewltem>
</TreeViewltem>
{TreeViewltem Header="Italien" IsExpanded="True">
{TreeViewltem Header="Norden" IsExpanded="True">
{TreeViewltem Header="Mailand" IsSelected="True" />
{TreeViewltem Header="Turin" />
</TreeViewltem>
{TreeViewlItem x:Name="tvi_sueden" Header="Suden"
Selected="tvi_sueden_wahl"
Unselected="tvi_sueden_wahl">
{TreeViewltem Header="Neapel" />
{TreeViewltem Header="Bari" />
{TreeViewltem Header="Palermo" />

91

4 | Steuerelemente

</TreeViewItem>
</TreeViewItem>
</TreeView>

</StackPanel>

Sobald der Benutzer einen Eintrag auswihlt, 10st er fiir den gesamten TreeView das
Ereignis SelectedItemChanged aus. Der Wert Auto fiir die Attached Property
VerticalScrollBarVisibility der Klasse ScrollViewer legt fest, dass ein Scroll-
balken bei Bedarf eingeblendet wird. Ein Element vom Typ TreeViewItem stellt
einen Eintrag dar und kann gegebenenfalls als Container fiir Unterelemente des glei-
chen Typs dienen. In der Eigenschaft Header steht der sichtbare Text des Eintrags.

Beim Auf- und Zuklappen eines Containers treten beim betreffenden Eintrag die
Ereignisse Expanded und Collapsed auf. Diese steuern den Wert der booleschen
Eigenschaft IsExpanded. Falls diese den Wert True hat, so ist der betreffende Con-
tainer aufgeklappt. Sie ist allerdings nur sichtbar, wenn auch alle Container dart-
ber aufgeklappt sind.

Ein Eintrag verfugt tiber die Ereignisse Selected und Unselected. Diese beein-
flussen den Wert der booleschen Eigenschaft IsSelected. Falls diese den Wert
True hat, so ist das betreffende Element markiert.

Es folgen die Methoden fiir die TreeView-Ereignisse und die Buttons:

private void tv_SelectedItemChanged(object sender,
RoutedPropertyChangedEventArgs<object> e)

if (tv.SelectedItem != null)
{
string s = "Ausgewdhlt:
+ (tv.Selectedlitem as TreeViewltem).Header;
if(e.0ldValue != null)
s += "\nAbgewdhlt: " + (e.0ldValue as TreeViewltem).Header;
MessageBox.Show(s);

}

Bei einer Reihe von Methoden in diesem Abschnitt muss zunichst kontrolliert
werden, ob ein Eintrag ausgewdhlt ist. Ist dies nicht der Fall, so hat SeTectedItem
den Wert nul1l. In der Eigenschaft Header steht der sichtbare Inhalt des Eintrags.

Das Objekt der Klasse RoutedPropertyChangedEventArgs<object> bietet Informa-
tionen tiber den Eintragswechsel. Die Eigenschaft 01dValue beinhaltet einen Ver-
weis auf das vorher markierte Element.

92

Auswahl | 4.4

private void tvi_westen_klapp(...)
{
if (IsLoaded)
{
TreeViewlItem tvi = tv.SelectedItem as TreeViewltem;
MessageBox.Show(tvi.Header
+ ", IskExpanded: " + tvi.IsExpanded);

}

Diese Methode wird durch die Ereignisse Expanded (aufgeklappt) und Collapsed
(zugeklappt) eines bestimmten Eintrags ausgelost (Deutschland/Westen). Aller-
dings muss dieser Eintrag vorher ausgewdahlt worden sein. Die Methode gibt den
Zustand der Eigenschaft IsExpanded dieses Eintrags wieder.

private void tvi_sueden_wahl(...)
{
TreeViewItem tvi = tv.Selectedltem as TreeViewltem;
MessageBox.Show(tvi.Header
+ ", IsSelected: " + tvi.IsSelected);
}

Diese Methode wird durch die Ereignisse Selected (ausgewdhlt) und Unselected
(abgewdhlt) eines bestimmten Eintrags ausgelost (Italien/Siiden). Sie gibt den
Zustand der Eigenschaft IsSelected dieses Eintrags wieder. Die Methode wird
aufgrund des Event-Routings auch aufgerufen, falls diese Ereignisse in unterge-
ordneten Elementen dieses Eintrags ausgelost werden.

private void anzeige_oben(...)
{
if (tv.SelectedItem != null)
{
string s;
TreeViewlItem tvi = tv.SelectedItem as TreeViewltem;
s ="" + tvi.Header;
TreeViewltem p = tvi;
while (p.Parent is TreeViewltem)
{
p = p.Parent as TreeViewltem;
s += ", " + p.Header;
}
MessageBox.Show("Nach oben: " + s);

93

4 | Steuerelemente

In der Methode anzeige_oben() wird die gesamte Hierarchie von unten nach
oben bis zum Element der Hauptebene durchlaufen und angezeigt, ausgehend
vom aktuell ausgewdhlten Element. Das jeweils tibergeordnete Element ist
bekanntlich tiber die Eigenschaft Parent zu erreichen. Solange es sich bei dem
Objekt, auf das Parent verweist, um ein Objekt des Typs TreeViewItem handelt,
wird die Hierarchie weiter durchlaufen.

private void anzeige_unten(...)
{
if (tv.SelectedItem != null)
{
string s = "";
TreeViewItem tvi = tv.SelectedItem as TreeViewltem;
s += " (" + tvi.Header + elemente_anzeigen(tvi) + ")
MessageBox.Show("Nach unten: " + s);

private string elemente_anzeigen(TreeViewltem tvi)
{

string s = "";
foreach(TreeViewlItem tvii in tvi.ltems)

s += " (" + tvii.Header + elemente_anzeigen(tvii) + ") ";
return s;

}

In der Methode anzeige_unten() wird die gesamte Hierarchie von oben nach
unten durchlaufen und angezeigt, ausgehend vom aktuell ausgewédhlten Element.
Dazu wird die rekursive Hilfsmethode elemente_anzeigen() genutzt. In dieser
Methode werden alle Eintrige der Auflistung Items eines Eintrags durchlaufen
und angezeigt. Auferdem wird die Hilfsmethode wiederum fiir jeden Eintrag auf-
gerufen.

private void element_neu(...)
{
if (tv.SelectedItem != null)
{
TreeViewltem tvi = tv.SelectedItem as TreeViewltem;

if (tvi.Parent is TreeViewltem)

{
TreeViewItem p = tvi.Parent as TreeViewltem;
TreeViewItem neu = new TreeViewItem();
neu.Header = "Neues Element";

94

Auswahl | 4.4

// p.ltems.Add(neu);
p.Items.Insert(p.Iltems.IndexOf(tvi), neu);
}
else
haupt_neu(tv.Items.IndexOf(tvi));
}
else
haupt_neu(0);

private void haupt_neu(int indexvor)

{
TreeViewItem neu = new TreeViewItem();
neu.Header = "Neues Element";
// tv.Items.Add(neu);
tv.Items.Insert(indexvor, neu);

}

In der Methode element_neu() wird ein neues Element direkt vor dem markier-
ten Element eingefiigt, und zwar auf der gleichen Ebene. Die Methode Index0f ()
liefert die Nummer eines Eintrags, auf den verwiesen wird. Falls kein Element
markiert ist, zum Beispiel bei einem leeren TreeView, erscheint das neue Element
als erstes Element der Hauptebene. Als Alternative kénnte auch die (hier auskom-
mentierte) Methode Add() zum Anhédngen eines neuen Elements auf der gleichen
Ebene genutzt werden.

Es wird zunichst untersucht, ob ein Eintrag markiert ist. Ist dies der Fall, so wird
gepriift, ob er sich auf der Hauptebene oder auf einer Ebene darunter befindet.
Das neue Element wird mithilfe der Auflistungsmethode Insert() in die Auflis-
tung Items des tibergeordneten Elements des markierten Eintrags eingefiigt.

private void unterelement_neu(...)
{
if (tv.SelectedItem != null)
{
TreeViewlItem tvi = tv.SelectedItem as TreeViewltem;
TreeViewlItem neu = new TreeViewlItem();
neu.Header = "Neues Unterelement";
// tvi.ltems.Add(neu);
tvi.ltems.Insert(0, neu);
tvi.ExpandSubtree();

95

4 | Steuerelemente

In der Methode unterelement_neu() wird dem markierten Element ein neues
Unterelement hinzugefiigt. Als Alternative konnte auch die (hier auskommen-
tierte) Methode Add() zum Anhdngen eines neuen Unterelements genutzt wer-
den. Anschliefend wird die Methode ExpandSubtree() genutzt, um das neue
Unterelement sichtbar zu machen.

private void element_loeschen(...)
{
if (tv.SelectedItem != null)
{
TreeViewltem tvi = tv.SelectedItem as TreeViewltem;
if (tvi.Parent is TreeViewItem)
(tvi.Parent as TreeViewItem).Items.Remove(tvi);
else
tv.Items.Remove(tvi);

}

Die Methode element_loeschen() dient zum Loschen des markierten Elements.
Dazu wird es mithilfe der Auflistungsmethode Remove () aus der Auflistung Items
des tibergeordneten Elements des markierten Eintrags entfernt.

private void alle_loeschen(...)
{
foreach(TreeViewItem tvi in tv.Items)
Tiste_loeschen(tvi);
tv.Items.Clear();

private void liste_loeschen(TreeViewltem tvi)
{
foreach (TreeViewlItem tvii in tvi.Items)
1iste_loeschen(tvii);
tvi.ltems.Clear();
}

Mithilfe der Methode alle_loeschen() werden alle Elemente des TreeView
geloscht. Die rekursive Hilfsmethode 1iste_loeschen() wird benétigt, damit
keine herrenlosen Verweise auf Eintrige der unteren Ebenen zurtickbleiben.

Allgemein gilt: Eine rekursive Methode zeichnet sich dadurch aus, dass sie sich sel-
ber aufruft, gegebenenfalls mehrmals. Die Rekursion muss aufgrund einer bestimm-
ten Bedingung enden, damit sie nicht endlos wird. Im vorliegenden Fall endet sie
jeweils bei einem Element auf der untersten Ebene, das keine Unterelemente mehr
hat, die in einer weiteren foreach-Schleife durchlaufen werden kénnen.

96

Zahlenwerte

4.5 Zahlenwerte

In diesem Abschnitt finden Sie Elemente, die Zahlenwerte innerhalb von Zahlen-
bereichen anschaulich verdeutlichen konnen: ProgressBar, S1ider und Scrol1Bar.
Die beiden Letztgenannten ermoglichen auch die komfortable Eingabe bezie-
hungsweise Auswahl einer Zahl.

4.5.1 ProgressBar

Ein ProgressBar (Fortschrittsbalken) zeigt den Fortschritt eines linger dauernden
Vorgangs an. Dies kann ein Lade- oder Suchvorgang sein. Der Benutzer weil3
dann, dass noch etwas passiert und wie lange er ungefihr noch warten muss.

Die Eigenschaften Minimum, Maximum und Value sind vom Typ double und kenn-
zeichnen die Grenzen und den aktuellen Wert des ProgressBar. Falls Sie die
Eigenschaft Orientation auf den Wert Vertical stellen, sehen Sie einen vertika-
len Balken, ansonsten einen horizontalen.

Im nachfolgenden Projekt ZahlProgressBar wird der Fortschritt eines Hinter-
grundvorgangs dargestellt (siehe Abbildung 4.29). Sie kénnen im Projekt aufSer-
dem mithilfe der RepeatButtons + und — den Wert des ProgressBar »von Hand«
einstellen.

[®] ZahlProgressBar E‘Eu

[¥] Aufwirts ' 5%
E] [] undefiniert

Abbildung 4.29 Zustand des Hintergrundvorgangs

Falls man dem Benutzer mitteilen mochte, dass die Vorgangsdauer unbekannt ist,
der Vorgang aber noch andauert, kann der ProgressBar auch den Zustand »unde-
finiert« verdeutlichen (siehe Abbildung 4.30).

[®7] ZahlProgressBar @‘@u

[¥] Aufwarts %

Abbildung 4.30 Undefinierter Zustand

97

4 | Steuerelemente

Zunichst der Aufbau in XAML:

<{StackPanel>
MWrapPanel>

<CheckBox x:Name="cbl" ...>Auf</CheckBox>
<Button Click="starten" ...>Start</Button>
<ProgressBar x:Name="pbar" Width="140" Margin="5" />
<{Label x:Name="1b" .../>

</WrapPanel>

MWrapPanel>
<RepeatButton Click="auf" ...>+</RepeatButton>
{RepeatButton Click="ab" ...>-</RepeatButton>
{CheckBox x:Name="cb2" Click="undefiniert" ...>

undefiniert</CheckBox>
</WrapPanel>

</StackPanel>

Ohne gesonderte Einstellung liegen die Werte fiir Minimum und Maximum bei O und
100, und der Wert fiir Value liegt bei 0. Zundchst sehen Sie hier die Ereignis-
methoden zur Einstellung »von Hand«:

private void auf(...)

{ pbar.Value += 5; 1b.Content = pbar.Value + " %"; |}
private void ab(...)

{ pbar.Value -=5; 1b.Content = pbar.Value + " %"; |}
private void undefiniert(...)

{ pbar.IsIndeterminate = (bool)cb2.IsChecked; }

Die Eigenschaft Value wird um den Wert 5 verdndert. Entsprechend verindern
sich der ProgressBar und die Anzeige der Prozentzahl. Falls der Wert der boole-
schen Eigenschaft IsIndeterminate auf True steht, so wird der undefinierte
Zustand angezeigt (sieche Abbildung 4.30).

Es folgt der Hintergrundvorgang: Zur Erzeugung wird ein Objekt der Klasse
BackgroundWorker aus dem Namespace System.Component .Mode] benbtigt. Der in
diesem Projekt durchgeftihrte Hintergrundvorgang ist »kiinstlich«, eine Zeitver-
zo6gerung wird mithilfe der Methode S1eep() der Klasse Thread aus dem Name-
space System.Threading erzeugt. Die weiteren Elemente:

public partial class MainWindow : Window
{
BackgroundWorker bgworker;

public MainWindow()
{

98

Zahlenwerte | 4.5

InitializeComponent();
bgworker = new BackgroundWorker();
bgworker.WorkerReportsProgress = true;
bgworker.DoWork +=

new DoWorkEventHandler(hintergrundvorgang);
bgworker.ProgressChanged +=

new ProgressChangedEventHandler(aenderung_fortschritt);

private void starten(...)
{ if (!bgworker.IsBusy) bgworker.RunWorkerAsync(); }

}

Innerhalb der Fensterklasse wird ein Verweis auf ein Objekt der Klasse
BackgroundWorker erzeugt. Im Konstruktor der Fensterklasse wird das zugehorige
Objekt erzeugt und die Eigenschaft WorkerReportsProgress auf True gestellt. Dies
ermoglicht es dem Hintergrundvorgang, von seinem Fortschritt zu berichten.

Es werden zwei EventHandler hinzugefiigt. Diese ermdoglichen die wichtigen
Teile der folgenden Ablaufe:

» Der Benutzer ruft iiber den Button START die Methode RunWorkerAsync() auf.
Dies 16st das Ereignis DoWork aus. Dies fithrt zur Ausfithrung der Methode
hintergrundvorgang(). Damit wird der Hintergrundvorgang gestartet.

» Innerhalb des Hintergrundvorgangs hat der Entwickler dafiir gesorgt, dass an
geeigneter Stelle mehrmals die Methode ReportProgress() aufgerufen wird.
Dies 19st jeweils das Ereignis ProgressChanged aus. Dies fiihrt zur Ausfithrung
der Methode aenderung_fortschritt(). Darin wird vom Fortschritt des Hin-
tergrundvorgangs berichtet.

Der BackgroundWorker kann nur eine Aufgabe zur gleichen Zeit ausfiihren.
Daher wird mithilfe der Eigenschaft IsBusy Gberpriift, ob er schon titig ist.

private void hintergrundvorgang(
object sender, DoWorkEventArgs e)

for (int i =1; i <= 100; i++)
{
Thread.Sleep(50);
bgworker.ReportProgress(i);

99

4 | Steuerelemente

private void aenderung_fortschritt(
object sender, ProgressChangedEventArgs e)

int wert;
if ((bool)cbl.IsChecked)
wert = e.ProgressPercentage;
else
wert = 100 - e.ProgressPercentage;

1b.Content = wert + " %";
pbar.Value wert;
}

Innerhalb der Methode hintergrundvorgang() wird der »kiinstliche« Vorgang
durchgefiihrt. Hier wiirde man den Lade- oder Suchvorgang unterbringen, des-
sen Fortschritt man visualisieren mochte. Die Methode S1eep() wartet die ange-
gebene Zahl an Millisekunden. Anschliefend wird in der Methode aenderung_
fortschritt() vom Fortschritt des Vorgangs berichtet. Das Objekt der Klasse
ProgressChangedEventArgs beinhaltet Informationen iiber den Fortschritt. Die
ganzzahlige Eigenschaft ProgressPercentage steht fir den Prozentsatz des Fort-
schritts.

Im vorliegenden Projekt wird er in dem ProgressBar und in einem Label ange-
zeigt. Uber die CheckBox kann die Richtung des Balkens festgelegt werden. Ein
ProgressBar kann auch abwirts laufen, zum Beispiel bei einem Deinstallations-
oder Entladevorgang.

4.5.2 Slider

Das Steuerelement Slider ermoglicht es dem Benutzer, einen Zahlenwert aus einem
Zahlenbereich eindeutig einzustellen, und zwar mithilfe eines Schiebers, der auf
einer Schiene verschoben wird. Der Schieber ist ein Objekt der Klasse Thumb, und
die Schiene ist ein Objekt der Klasse Track. Die Eigenschaften Minimum (Standard-
wert 0), Maximum (Standardwert 10) und Value (Standardwert 0) sind vom Typ
double und kennzeichnen die Grenzen und den aktuellen Wert des Sliders. Das
Ereignis ValueChanged tritt jedes Mal ein, wenn sich Value verdndert hat.

Die Eigenschaft Orientation ermoglicht es, mithilfe des Werts Vertical auch
einen vertikalen Slider darzustellen. Falls der Benutzer neben den Thumb klickt, so
verdndert sich Value um den Wert der Eigenschaft LargeChange (Standardwert 1).

Zur besseren Orientierung des Benutzers ist es sinnvoll, sogenannte Ticks am Sli-
der anzeigen zu lassen. Dazu muss die Eigenschaft TickPlacement einen Wert

100

Zahlenwerte | 4.5

bekommen, der sich vom Standardwert None unterscheidet. Mégliche Werte aus
der gleichnamigen Enumeration sind:

» BottomRight (Ticks beim horizontalen Slider unterhalb und beim vertikalen
Slider rechts),

» ToplLeft (oberhalb beziehungsweise links) und
» Both (Ticks auf beiden Seiten).

Der Abstand zwischen den Ticks ist normalerweise 1, er lisst sich iiber die
double-Eigenschaft TickFrequency einstellen.

Im nachfolgenden Projekt ZahlSlider werden insgesamt fiinf Slider mit verschie-
denen Eigenschaften dargestellt (siche Abbildung 4.31). Daneben gibt jeweils ein
zusitzliches Label den aktuellen Wert wieder, und zwar mithilfe einer Methode
zum Ereignis ValueChanged.

(9 Zanisider == 3|
35 U 3
05 0
2 ¢
; —_

Abbildung 4.31 Slider-Einstellungen

Zunichst der Aufbau der Slider in XAML:

{STider x:Name="s11" Width="220" Value="3.5" LargeChange="0.5"
TickFrequency="2" TickPTacement="BottomRight" Margin="5"
ValueChanged="s11_ValueChanged" />

<STider x:Name="s12" Width="220" Minimum="-2.5" Maximum="3.5"
Value="0.5" TickFrequency="2" TickPlacement="BottomRight"
IsMoveToPointEnabled="True" ValueChanged="s12_ValueChanged"
AutoToolTipPlacement="BottomRight" AutoToolTipPrecision="1"
Margin="5" />

<STider x:Name="s13" Width="220" Value="2" TickFrequency="1"

TickPlacement="BottomRight" IsSnapToTickEnabled="True"
Margin="5" ValueChanged="s13_ValueChanged" />

101

4 | Steuerelemente

<S1ider x:Name="s14" Width="220" Maximum="12" Value="8"
Ticks="2,5,6,8" TickPlacement="BottomRight" Margin="5"
IsSnapToTickEnabled="True" SelectionStart="5" SelectionEnd="8"
IsSelectionRangeEnabled="True"
ValueChanged="s14_ValueChanged" />

{STider x:Name="s15" Orientation="Vertical" Height="100"
Value="3" TickPlacement="BottomRight" TickFrequency="2"
Margin="5" ValueChanged="s15_ValueChanged" />

Bei Slider 1 steht Value zu Beginn auf 3.5 und LargeChange auf 0.5. Es geht also
in 0.5er-Schritten von 0.0 bis 10.0. Der Abstand der Ticks unterhalb des Sliders

ist 2.0.

Slider 2 zeigt Werte zwischen -2.5 und +3.5 an. Die Eigenschaft IsMoveToPoint-
Enabled wurde auf True gesetzt. Dadurch springt der Slider direkt auf den Ort
des Mausklicks. Aulerdem wird der Wert wahrend des Verschiebens als Tool-
Tip unterhalb des Thumb angezeigt. Dafiir sorgt der Wert BottomRight fur die
Eigenschaft AutoToolTipPlacement. Die gleichnamige Enumeration bietet noch

den Wert TopLeft und den Standardwert None.

Normalerweise kann beim Verschieben des Sliders jeder Zwischenwert erreicht
werden. Dies wird tiber die boolesche Eigenschaft IsSnapToTickEnabled mit dem
Standardwert False erreicht. Mit dem Werte True bewirken Sie, dass der Thumb
nur auf den Ticks einrastet, dass also keine Zwischenwerte erreicht werden kén-

nen (siehe Slider 3).

Die Ticks konnen nicht nur in gleichméiBigen Abstinden, sondern auch individu-
ell eingestellt werden, falls nur bestimmte Werte sinnvoll sind (siehe Slider 4).
Dazu wird der Eigenschaft Ticks, die vom Typ DoubleCollection ist, eine Auf-
zdhlung von double-Werten zugewiesen. Bei diesem Slider sehen Sie auch, dass
ein Bereich fiir den Benutzer hervorgehoben wird. Dazu muss die boolesche
Eigenschaft IsSelectionRangeEnabled auf True gesetzt werden. Den Bereich
kennzeichnen Sie anschliefend mit Werten fiir die Eigenschaften Selection-

Start und SelectionEnd vom Typ double.

Zu guter Letzt wurde noch ein vertikaler Slider eingesetzt (siehe Slider 5). Die
Werte steigen von unten nach oben an. Falls die Eigenschaft TickPlacement den
Wert BottomRight hat, dann werden die Ticks rechts vom Slider angezeigt, ent-

sprechend bei TopLeft links vom Slider.

Die Label werden jeweils nach dem Ereignis ValueChanged mit dem neuen Wert

gefiillt. Als Beispiel folgen die Methoden fiir Slider 2 und 3:

102

Zahlenwerte | 4.5

private void s12_ValueChanged(object sender,
RoutedPropertyChangedEventArgs<double> e)

1b2.Content = Math.Round(s12.Value, 1);
if(IsLoaded)
Tbalt.Content = "alt: " + Math.Round(e.0ldValue, 1);

private void s13_ValueChanged(object sender,
RoutedPropertyChangedEventArgs<double> e)
{ 1b3.Content = s13.Value; }

Der Wert der Eigenschaft Value wird bei Slider 2 (und Slider 5) auf eine Stelle
gerundet ausgegeben. Bei Slider 3 (und Slider 4) ist dies nicht notwendig, da sich
wegen der Einteilung der Ticks und SnapToTick nur ganzzahlige Werte ergeben
kénnen. Das Objekt der Klasse RoutedPropertyChangedEventArgs<double> bietet
Informationen tiber den Wechsel des Werts. Die Eigenschaft 01dValue beinhaltet
den Wert vor der Anderung.

4.5.3 ScrollBar

Ein ScrollBar erméglicht normalerweise einen Bildlauf. Er kann aber auch wie ein
vereinfachter Slider genutzt werden. Er besteht aus einem Thumb, der auf einer
Schiebeleiste bewegt wird; an den Enden gibt es jeweils einen RepeatButton. Es
gibt allerdings keine Ticks, also auch kein SnapToTick. Ebenso gibt es keinen per-
manenten AutoToolTip und keinen SelectionRange.

Zusitzlich zum Wert der Eigenschaft LargeChange kann auch ein Wert fur die
Eigenschaft Smal1Change eingestellt werden. Ersterer wirkt sich bei einem Klick
neben den Thumb aus, Letzterer bei einem Klick auf einen der RepeatButtons.
Ein kleines Beispiel sehen Sie im Projekt ZahlScrollBar (siehe Abbildung 4.32).

i) ZahiScrollBar e |)
20 (o [D)

Abbildung 4.32 Horizontaler ScrollBar

Der Aufbau des ScrollBar in XAML:

<ScrollBar x:Name="sbar" Orientation="Horizontal" Maximum="100"
Value="20" SmallChange="2" LargeChange="10" Width="200"
Height="18" Margin="5" ValueChanged="sbar_ValueChanged" />

103

4 | Steuerelemente

Ohne weitere Angaben ist ein ScrollBar vertikal und durchlduft Werte von 0 bis 1.
Zur Anderung dieses Verhaltens sind die Eigenschaften Minimum und Maximum
beziehungsweise Orientation einzustellen. Die Betitigung der RepeatButtons
indert Value um 2 (SmallChange), ein Klick auf die Schiebeleiste um 10
(LargeChange). Nach wie vor sind natiirlich auch die Zwischenwerte durch
direkte Betdtigung des Thumb zu erreichen. Das Ereignis ValueChanged fithrt zu
folgender Methode:

private void sbar_ValueChanged(object sender,
RoutedPropertyChangedEventArgs<double> e)
{ 1b.Content = Math.Round(sbar.Value,0); }

4.6 Container

In diesem Abschnitt werden einige Steuerelemente behandelt, die Elemente
einer Benutzeroberfliche visuell und/oder funktional gegentiber anderen Ele-
menten hervorheben beziehungsweise zusammenfassen. Es handelt sich um die
Elemente des Typs Border, GroupBox, Expander und TabControl.

Viele Steuer- und Layoutelemente haben diese Funktionalitit. Ein Beispiel
wdren zwei StackPanel, in denen jeweils eine Gruppe von RadioButtons ange-
ordnet ist. Bei den oben genannten Elementen handelt es sich aber um ihre
Hauptaufgabe.

4.6.1 Border

Die Klasse Border dient dazu, Elemente mit einem Rahmen zu versehen. Die
Eigenschaften BorderBrush (vom Typ Brush) und BorderThickness (vom Typ
Thickness) stehen fiir Farbe und Dicke des Rahmens. Sie haben die Standard-
werte Brushes.Transparent beziehungsweise 0. Es sollte daher beiden Eigen-
schaften ein Wert zugewiesen werden, damit der Rahmen sichtbar wird. Die
Eigenschaft CornerRadius der gleichnamigen Struktur kann dazu verwendet wer-
den, einen Eckenradius zu erzeugen, also die Ecken abzurunden.

Die Einstellungen fiir BorderThickness kennen Sie bereits von den Eigenschaften
Margin und Padding (sieche Abschnitt 4.1.4 und 4.1.5). Man kann die vier Seiten
des Rahmens also mit einem Wert einheitlich oder mit zwei beziehungsweise vier
Werten unterschiedlich gestalten.

Hinsichtlich eines Rahmens gibt es in Abhangigkeit des Elementtyps zwei mogli-
che Vorgehensweisen:

104

Container | 4.6

» Rahmen als Eigenschaft: Sie stellen die Eigenschaften BorderBrush und
BorderThickness fiir das Element ein.

» Rahmen als Objekt: Sie betten das Element in ein Objekt des Typs Border ein.

Im nachfolgenden Projekt ContainerBorder sehen Sie einige Beispiele (siehe
Abbildung 4.33).

|87 ContainerBorder EIEM

p—
=

Abbildung 4.33 Nach dem Start

Der Reihe nach werden abgebildet:

» ein Label mit Rahmen
» ein WrapPanel mit Rahmen

» ein Button mit Rahmen und einheitlichem Eckenradius; Dicke und Ecken-
radius konnen tiber einen Slider eingestellt werden.

» ein Button mit Rahmen und uneinheitlichem Eckenradius, wiederum mit
Slider-Einstellung

Zunichst der Aufbau in XAML:

<{StackPanel>
<Label BorderBrush="Black" BorderThickness="2"
HorizontalAlignment="Center" Margin="2">Inhalt</Label>
<Border BorderBrush="Black" BorderThickness="2"
Width="204" Margin="2">
<WrapPanel HorizontalAlignment="Center">
<Button Width="100">1</Button>
<Button Width="100">2</Button>
</WrapPanel>
</Border>
<WrapPanel HorizontalAlignment="Center">
<Border x:Name="bo3" BorderBrush="Black" BorderThickness="5"
CornerRadius="10" Margin="2" Width="100">
<Button x:Name="bu3">3: 5</Button>
</Border>

105

4 | Steuerelemente

<Slider Value="H" ... />
</WrapPanel>
<WrapPanel HorizontalAlignment="Center">
<Border x:Name="bo4" BorderBrush="Black" Margin="2"
BorderThickness="2, 5, 2, 5" Width="100"
CornerRadius="15, 15, 5, 5" Padding="5, 3, 5, 1">
<Button x:Name="bud4">4: 5, 127</Button>
</Border>
<Slider Value="H" ... />
</WrapPanel>
</StackPanel>

Beim Label werden direkt die Eigenschaften BorderBrush und BorderThickness
genutzt, um einen schwarzen Rahmen mit Einheitsdicke 2 zu erstellen. Da es
horizontal im StackPanel zentriert ist, hat das Label (somit auch der Rahmen) nur
die notwendige Breite. Ansonsten wiirde sich das Label einschlieflich Rahmen
tber die gesamte Breite erstrecken.

Die beiden Buttons 1 und 2 liegen in einem WrapPanel, das in ein Objekt der
Klasse Border eingebettet ist. Dieses Objekt hat die Breite der beiden Buttons
(jeweils 100) plus die Dicke des schwarzen Rahmens (jeweils 2), also 204. Wire
es breiter, wiirde der Rahmen nicht an den Buttons im Panel »anliegen«. Wire es
schmaler, wiirde der zweite Button in die nichste Zeile »rutschenc.

Im néachsten WrapPanel ist Button 3 in ein Objekt der Klasse Border eingebettet.
Dieser Rahmen ist schwarz, hat eine einheitliche Dicke von 5 und einen einheit-
lichen Eckenradius von 10.

Das letzte WrapPanel beinhaltet Button 4, der ebenfalls in ein Objekt der Klasse
Border eingebettet ist. Dieser Rahmen ist schwarz. Die Thickness-Werte fiir
BorderThickness sind: 2 fiir links, 5 fiir oben, 2 fiir rechts und 5 fiir unten. Der
Eckenradius ist: 15 fiir oben links, 15 fiir oben rechts, 5 fiir unten rechts und 5
fiir unten links. Es wird also auch hier im Uhrzeigersinn vorgegangen. Die
Thickness-Werte fir Padding (5, 3, 5, 1) wurden so gewihlt, dass der Button den
Rahmen zu Beginn nicht bertihrt.

Es folgen die Ereignismethoden fiir die beiden Slider:

private void s13_ValueChanged(...)

{
bo3.BorderThickness = new Thickness(sl13.Value);
bo3.CornerRadius = new CornerRadius(2 * s13.Value);
bu3.Content = "3: " + Math.Round(s13.Value, 0);

106

Container | 4.6

private void s14_ValueChanged(...)
{
bo4.BorderThickness =
new Thickness(2, sl14.Value, 2, 10 - s14.Value);
bo4.CornerRadius = new CornerRadius
(3 * s14.Value, 3 * sl4.Value, sl4.Value, sld4.Value);
bu4.Content = "4: " + Math.Round(s14.Value, 0);
}

Die Struktur Thickness bietet zwei Konstruktoren. Sie werden hier genauso
genutzt, wie Sie es schon bei Margin und Padding (siche Abschnitt 4.1.4 und
4.1.5) gesehen haben. Die Struktur CornerRadius bietet ebenfalls zwei Konstruk-
toren. Der Benutzer kénnte die Rahmen mithilfe der Methoden so einstellen wie
in Abbildung 4.34.

Abbildung 4.34 Rahmen-Einstellungen

4.6.2 GroupBox

Ein Element des Typs GroupBox konnen Sie nutzen, um die Elemente einer Benut-
zeroberfliche tibersichtlich zu gruppieren. Dies wird hiufig bei Gruppen von
RadioButtons genutzt. Die Eigenschaft Header beinhaltet die Bezeichnung der
GroupBox und kann wiederum aus Steuerelementen gestaltet werden.

Im nachfolgenden Projekt ContainerGroupBox werden zwei Gruppen von Ele-
menten jeweils in einer GroupBox dargestellt (siehe Abbildung 4.35). Die Sicht-
barkeit der zweiten Gruppe kann mithilfe einer CheckBox ein- und ausgeschaltet

werden.
' ™y
[E7] ContainerGroupBox @‘Eﬂ
Bereich 1 Bereich 2 aktiv
@A @D
©s8 (@)
Bereich 2 sichtbar

Abbildung 4.35 Zwei Elemente vom Typ »GroupBox«

107

4 | Steuerelemente

Zunichst der Aufbau in XAML:

<WrapPanel>
<GroupBox Header="Bereich 1" Margin="5" Width="130">
<StackPanel> ...
<CheckBox IsChecked="True" Checked="cbl_Checked"
Unchecked="cbl_Unchecked">Bereich 2 sichtbar</CheckBox>
</StackPanel>
</GroupBox>
<GroupBox x:Name="gb2" Margin="5" Width="120">
<GroupBox.Header>
<CheckBox IsChecked="True" Checked="cb2_Checked"
Unchecked="cb2_Unchecked">Bereich 2 aktiv</CheckBox>
</GroupBox.Header>
{StackPanel x:Name="sp2"> ... </StackPanel>
</GroupBox>
</WrapPanel>

Beide Elemente vom Typ GroupBox beinhalten ein StackPanel mit mehreren Steu-
erelementen. Diese Steuerelemente haben hier keine Funktionalitdt, sondern ste-
hen nur fur beliebige Elemente innerhalb einer GroupBox.

Die erste GroupBox hat einen einfachen Text als Header und eine CheckBox, mit
der man die Sichtbarkeit der zweiten GroupBox steuern kann. Bei der zweiten
GroupBox besteht der Header aus einer CheckBox, mit der man die Sichtbarkeit
(Eigenschaft Visibility) des StackPanels innerhalb der GroupBox steuern kann.
Es folgen die Ereignismethoden:

private void cbl_Checked(...)

{ if(IsLoaded) gb2.Visibility = Visibility.Visible; }
private void cbl_Unchecked(...)

{ gh2.Visibility = Visibility.Hidden; }

private void cb2_Checked(...)

{ if(IsLoaded) sp2.Visibility = Visibility.Visible; }
private void cb2_Unchecked(...)

{ sp2.Visibility = Visibility.Hidden; }

4.6.3 Expander

Ein Element vom Typ Expander wird hdufig dann eingesetzt, wenn Sie dem
Benutzer Text oder Steuerelemente zur Verfiigung stellen wollen, die nicht dau-
ernd angezeigt werden sollen. Ein Expander kann in vier verschiedenen Richtun-
gen aufklappen. Zustindig dafiir ist die Eigenschaft ExpandDirection; sie hat den
Standardwert Down. Weitere Werte aus der gleichnamigen Enumeration sind Up,
Left und Right.

108

Container | 4.6

Die boolesche Eigenschaft IsExpanded dient dazu, Auskunft iiber den aktuellen
Zustand des Expanders zu geben und den Expander von auen zu steuern. Die
Bezeichnung des Expanders steht in der Eigenschaft Header. Die Ereignisse
Expanded und Collapsed treten beim Auf- und Zuklappen auf. Diese Ereignisse
beeinflussen aullerdem das Layout. Im nachfolgenden Projekt ContainerExpander
sehen Sie vier aufgeklappte Expander in den vier moglichen Richtungen, jeweils
in einer eigenen Grid-Zelle (siehe Abbildung 4.36). Unterhalb des ersten Expan-
ders ist eine zusitzliche CheckBox positioniert.

[®"] ContainerExpander lgiﬂu

a_\l 1: Ab Text 1 (2‘ f;

Text 1 e 3:Re 2

Text 2 5

auf <
(v) 2 Auf

Abbildung 4.36 Vier Expander in vier Richtungen

Der Aufbau in XAML:

<Grid>
<Grid.ColumnDefinitions>
<{StackPanel>
<Expander x:Name="ex1" Header="1: Ab" IsExpanded="True"
Collapsed="ex1_klapp" Expanded="exl_klapp">
<StackPanel>
{TextBlock>Text 1</TextBlock>
{TextBlock>Text 2</TextBlock>
</StackPanel>
</Expander>
<CheckBox x:Name="cbl" IsChecked="True"
Click="cbl_Click">auf</CheckBox>
</StackPanel>

<Expander Header="2: Auf" IsExpanded="True"
ExpandDirection="Up" Grid.Column="1"
Background="LightGray">
<StackPanel>
{TextBlock>Text 1</TextBlock>
{TextBlock>Text 2</TextBlock>
</StackPanel>
</Expander>

109

4 | Steuerelemente

<Expander Header="3: Re" ExpandDirection="Right"
Grid.Column="2" MouseEnter="ex3_MouseEnter"
Mouseleave="ex3_Mouseleave">
<WrapPanel>
<Button Margin="2">B1</Button>
<Button Margin="2">B2</Button>
</WrapPanel>
<{/Expander>

<Expander IsExpanded="True" ExpandDirection="Left"
Grid.Column="3" Background="LightGray">
<Expander.Header>
<TextBlock RenderTransformOrigin="0.5 0.5">4: Links
{TextBlock.RenderTransform>
<TransformGroup>
<RotateTransform Angle="270" />
{TranslateTransform Y="15" />
</TransformGroup>
</TextBlock.RenderTransform>
</TextBlock>
</Expander.Header>
<WrapPanel FlowDirection="RightTolLeft">
<Button Margin="2">B1</Button>
<Button Margin="2">B2</Button>
</WrapPanel>
<{/Expander>
</Grid>

Ein Expander positioniert sich im tibergeordneten Element, hier in der Grid-
Zelle, automatisch in Abhingigkeit der Aufklapprichtung. Bei einem vertikalen
Expander empfiehlt sich ein StackPanel zur Aufnahme der Elemente, ansonsten
ein WrapPanel.

Falls ExpandDirection den Wert Left hat, so kann man der Eigenschaft
FlowDirection den Wert RightToLeft geben, damit das erste Element unmittel-
bar am Header des Expanders liegt. Ein Header kann einen einfachen Text enthal-
ten; er kann aber auch gestaltet werden, wie Sie es am letzten Expander sehen.
Der TextBlock wurde gedreht und verschoben. Mehr zu solchen zweidimensiona-
len Transformationen lesen Sie in Abschnitt 9.5.

Die Ereignisse Expanded und Collapsed sowie die Betdtigung der CheckBox fiih-
ren zu den folgenden Methoden:

private void cbl_Click(...)
{ exl.IsExpanded = (bool)cbl.IsChecked; }

110

Container | 4.6

private void ex1_kTlapp(...)

{ if (IsLoaded) cbl.IsChecked = exl.IsExpanded; }

private void ex3_MouseEnter(object sender, MouseEventArgs e)
{ (sender as Expander).IsExpanded = true; }

private void ex3_Mouseleave(object sender, MouseEventArgs e)
{ (sender as Expander).IsExpanded = false; }

Der erste Expander kann auch tiber die Markierung beziehungsweise Entmarkie-
rung der CheckBox bedient werden. Da er auch »herkémmlich« bedient werden
kann, muss die Markierung der CheckBox aktuell gehalten werden. Der dritte
Expander wird bereits geéffnet, sobald sich die Maus dartiber befindet, schon vor
dem Click. Er wird geschlossen, sobald sich die Maus wieder aus ihm heraus-
bewegt.

4.6.4 TabControl

Ein Element vom Typ TabControl stellt verschiedene Registerkarten zur Verfu-
gung, auf denen die Elemente platziert werden. Ein TabControl basiert auf Items,
wie eine ListBox. Die einzelnen Elemente sind vom Typ TabItem. Die Eigenschaft
SelectedIndex einer TabControl beinhaltet die laufende Nummer der aktiven
Registerkarte, beginnend bei 0. In der Eigenschaft Header eines TabItem steht die
Beschriftung der Registerkarte.

Eine Registerkarte wird vom Benutzer Uber einen Reiter (TabStrip) ausgewdhlt.
Ublicherweise wird der Reiter am oberen Rand platziert. Die zustindige Eigen-
schaft TabStripPlacement gilt fur die gesamte TabControl und ist vom Typ Dock,
wie bei einem Element vom Typ DockPanel. Neben dem Standardwert Top gibt es
also noch Left, Right und Bottom. Der Wechsel der Registerkarte fithrt zum
Ereignis Selection_Changed.

Im nachfolgenden Projekt ContainerTabControl kénnen Sie die verschiedenen
Werte fiir TabStripPlacement wahlen (siehe Abbildung 4.37). Aulerdem gibt es
einen Button auf der ersten Registerkarte, der zu einem Wechsel auf eine andere
Karte fiihrt.

[®°] ContainerTabControl E@M

- Ber. 1 | Letzter Bereich

@ Top © Left © Right © Bottom

Abbildung 4.37 TabControl, Reiter oben

1M

4 | Steuerelemente

Der Aufbau in XAML:

<TabControl x:Name="tc" Margin="5"
SelectionChanged="tc_SelectionChanged">
<TabItem Header="Ber. 0">
<WrapPanel Orientation="Vertical">
<Button>Button 0 A</Button>
<Button x:Name="bl" Click="b1l_Click">Zum Letzten</Button>
</WrapPanel>
</Tabltem>
<TabItem Header="Ber. 1" Selector.IsSelected="True">
<WrapPanel Orientation="Vertical">
<Button>Button 1 A</Button>
<Button>Button 1 B</Button>
</WrapPanel>
</Tabltem>
<TabItem>
<TabItem.Header>
<WrapPanel>
<TextBlock FontWeight="Bold"
Margin="0,0,3,0">Letzter</TextBlock>
{TextBlock>Bereich</TextBlock>
</WrapPanel>
</Tabltem.Header>
<WrapPanel Orientation="Vertical">
<Button>Button 2 A</Button>
<Button>Button 2 B</Button>
</WrapPanel>
</Tabltem>
</TabControl>
<WrapPanel RadioButton.Checked="rb_Check"> ... </WrapPanel>

Der Header eines TabItem kann ein einfacher Text sein. Er kann aber auch gestal-
tet werden, wie es beim letzten TabItem der Fall ist. Die Attached Property
IsSelected der Klasse Selector dient zur Vorauswahl einer Registerkarte. Es fol-
gen die Methoden fiir die verschiedenen Ereignisse:

private void tc_SelectionChanged(object sender,
SelectionChangedEventArgs e)
{ if (IslLoaded)
1b.Content = "Aktiver Index: " + tc.SelectedIndex; }
private void bl_Click(...) { tc.SelectedIndex = 2; |

private void rb_Check(object sender, RoutedEventArgs e)

112

Meniis und Leisten | 4.7

if (IslLoaded)

{
string s = (e.Source as RadioButton).Content.ToString();
switch (s)
{

case "Top": tc.TabStripPlacement = Dock.Top; break;

case "Left": tc.TabStripPlacement = Dock.lLeft; break;
case "Right": tc.TabStripPlacement = Dock.Right; break;
case "Bottom": tc.TabStripPlacement = Dock.Bottom; break;

}

Der Wechsel der Registerkarte, zum Beispiel durch einen Klick auf den Reiter,
fithrt tiber das Ereignis Selection_Changed zur Ausgabe der Nummer der neuen
Registerkarte. Falls man die Registerkarte durch ein anderes Ereignis als durch
einen Klick auf den Reiter wechseln mochte, so muss dazu der Wert der Eigen-
schaft SelectedIndex gedndert werden.

Die vier RadioButtons sollen Thnen helfen, sich die verschiedenen Reiter-Anord-
nungen vorzustellen. Das Ereignis RadioButton.Checked wurde nur einmalig,
beim umgebenden WrapPanel registriert. Es wird vom auslésenden RadioButton
zum WrapPanel geroutet. Die urspriingliche Ereignisquelle ldsst sich dann tiber
die Eigenschaft Source des Objekts der Klasse RoutedEventArgs ermitteln.

4.7 Meniis und Leisten

Haupt- und Kontextmenii sowie Symbol- und Statusleiste sind selbstverstindli-
che Bestandteile einer Benutzeroberfliche. Sie werden in diesem Abschnitt vor-
gestellt.

Ribbons, also Meniibinder, kennt man zum Beispiel in MS Office ab Version
2007. Sie benotigen einen eigenen Typ Vorlage (siehe Abschnitt 6.7, »Ribbonan-
wendung«).

4.7.1 Hauptmenii

Ein Hauptmeni wird meist mithilfe eines DockPane1-Objekts am oberen Fenster-
rand verankert. Das Hauptelement ist vom Typ Menu. Innerhalb dieses Elements
gibt es eine hierarchische Struktur von Elementen. Dies kénnen Elemente des
Standardtyps MenuItem sein, aber auch Elemente anderer Typen, wie zum Beispiel

13

4 | Steuerelemente

RadioButton oder ComboBox. Elemente des Typs Separator dienen zur Untertei-
lung eines lingeren Menis.

Die Beschriftung eines Menultems steht in der Eigenschaft Header. Falls Sie der
Eigenschaft IsCheckable den Wert True geben, erscheint vor dem Header eine
Markierung, wie bei einer CheckBox. Ein Bild vor dem Header kann mithilfe der
Eigenschaft Icon (vom Typ object) angezeigt werden (siche Abbildung 4.38 aus
dem nachfolgenden Projekt MeniiHaupt). Ein Unterstrich vor einem Zeichen des
Headers ermoglicht die Bedienung per Tastatur ([A1t]+[Zeichen)).

[®°] MentHaupt E@u]

Bearbeiten | Ansicht |
@ Hintergrund » © weis
@ Gelb
Hallo Welt Schriftgroke © Rot
v | Fett

Abbildung 4.38 Aufgeklapptes Menii

Zunichst der Aufbau in XAML:

<DockPanel>
<{Menu DockPanel.Dock="Top">
{Menultem Header="_Bearbeiten">
<Menultem Header="_Kopieren" Click="menu_kopieren" />
{Menultem Header="_Ende" Click="menu_ende" />
</Menultem>

{Menultem Header="_Ansicht">
{Menultem Header="_Hintergrund"
RadioButton.Checked="menu_hintergrund">
{Menultem.Icon>
<Image Source="work.gif" Width="20" />
</Menultem.Icon>
<RadioButton IsChecked="True">WeiB</RadioButton>
<RadioButton>Gelb</RadioButton>
<RadioButton>Rot</RadioButton>
</Menultem>
<{Separator />
<WrapPanel>
<(TextBlock VerticalAlignment="Center"
Margin="0,0,5,0">SchriftgroBe</TextBlock>

14

Meniis und Leisten | 4.7

<ComboBox x:Name="cb_groesse"
SelectionChanged="menu_cb_groesse">
<ComboBoxItem>8</ComboBoxItem>
<ComboBoxItem>10</ComboBoxItem>
<ComboBoxItem Selector.IsSelected="True">
12</ComboBoxItem>
<ComboBoxItem>18</ComboBoxItem>
</ComboBox>
</WrapPanel>
<Separator />
<Menultem x:Name="fett" Header="_Fett"
IsCheckable="True" Click="menu_fett" />
</Menultem>
</Menu>

<WrapPanel DockPanel.Dock="Top" Orientation="Vertical">
<TextBox x:Name="tb" Width="80" Margin="5" />
<Label x:Name="1b" Margin="5">Hallo Welt</Label>
</WrapPanel>
</DockPanel>

Im Hauptmentipunkt BEARBEITEN gibt es die Untermentipunkte KOPIEREN und
ENDE. Die Auswahl eines dieser Punkte fithrt zur Methode fur das jeweilige Click-
Ereignis. Kopiert wird der Inhalt der TextBox in das Label. ENDE beendet die
Anwendung.

Im Hauptmeniipunkt ANsicHT werden die Hintergrundfarbe tiber RadioButtons,
die SchriftgroBe iiber eine ComboBox und das Schriftgewicht {iber einen Menii-
eintrag mit Markierung eingestellt.

Die zugehorigen Methoden:

private void menu_kopieren(...)
{ 1b.Content = tb.Text;

if (1b.Content.ToString() == "") 1b.Content = "(leer)"; }
private void menu_ende(...) { Close(); }

private void menu_hintergrund(...)
{
if (IslLoaded)
{
string s = (e.Source as RadioButton).Content.ToString();
switch (s)
{
case "WeiB": 1b.Background =
new SolidColorBrush(Colors.White); break;

15

4 | Steuerelemente

case "Gelb": 1b.Background =

new SolidColorBrush(Colors.Yellow); break;
case "Rot": T1b.Background =

new SolidColorBrush(Colors.Red); break;

}

Wie im vorherigen Abschnitt (zum Thema TabControl) wird das Ereignis
RadioButton.Checked nur einmalig, und zwar beim umgebenden Menultem,
registriert. Die Ereignisquelle wird {iber e.Source ermittelt.

private void menu_cb_groesse(object sender,
SelectionChangedEventArgs e)
{ if (IsLoaded && cb_groesse.SelectedIndex != -1)
1b.FontSize = Convert.ToDouble(
(cb_groesse.SelectedItem as ComboBoxItem).Content); }
private void menu_fett(...)
{ if (item_fett.IsChecked) Tb.FontWeight = FontWeights.Bold;
else Tb.FontWeight = FontWeights.Normal; }

Der Eintrag eines ComboBoxItem steht in der Eigenschaft Content. Dieser Wert
kann nach der Konvertierung als Schriftgroe tbernommen werden. Die Eigen-
schaft IsChecked eines Menultem, dessen Eigenschaft IsCheckable auf True
steht, ibermittelt den aktuellen Zustand dieses Items.

4.7.2 Kontextmenii

Das Hauptelement eines Kontextmeniis ist vom Typ ContextMenu. Intern hat es
den gleichen hierarchischen Aufbau wie ein Hauptment, mit Elementen des
Standardtyps Menultem beziehungsweise Elementen anderer Typen.

Ein Kontextmenii wird einem Steuerelement tiber dessen Eigenschaft Con-
textMenu zugeordnet. Es erscheint, falls der Benutzer mit der rechten Maustaste
auf das betreffende Steuerelement klickt. Uber die double-Eigenschaften
HorizontalOffset und VerticalOffset legen Sie den Abstand zum Steuerele-
ment fest. Der Standardwert ist jeweils 0. Falls Sie parallel zum Offnen und
Schlieflen eines Kontextmeniis andere Aktionen ausfithren mochten, so konnen
Sie die Ereignisse Opened und Closed nutzen.

Haufig gibt es Mentipunkte eines Kontextmeniis auch im Hauptmenii. Es gilt
nattirlich, die Eintrdge in beiden Meniis synchron zu halten — wie im nachfolgen-
den Projekt MeniiKontext (siehe Abbildung 4.39).

116

Meniis und Leisten | 4.7

[®7] MenuKontext E@u

v Fett

Label 1
v | Fett

Kontextmend geoffne

Abbildung 4.39 Aufgeklapptes Kontextmenii

Der Aufbau in XAML:

<DockPanel>
<{Menu DockPanel.Dock="Top">
<Menultem x:Name="item_fett_hauptmenu" Header="_Fett"
IsCheckable="True" Click="menu_fett" />
</Menu>
<StackPanel>
<Label x:Name="1bl" Margin="5">Label 1
<Label.ContextMenu>
<ContextMenu x:Name="cm" HorizontalOffset="20"
VerticalOffset="2" Opened="status" Closed="status">
{Menultem x:Name="item_fett_kontextmenu" Header="_Fett"
IsCheckable="True" Click="menu_fett" />
</ContextMenu>
</Label.ContextMenu>
</Label>
<Label x:Name="1b2" Margin="5" />
</StackPanel>
</DockPanel>

Die Anwendung beinhaltet ein Hauptment. Auflerdem beinhaltet sie ein Kon-
textment fiir das erste Label, das mit einem vertikalen und horizontalen Abstand
eingeblendet wird. Beide Meniis enthalten ausschlieflich den gleichen, markier-
baren Meniipunkt. Damit soll das Label in Fett- oder Normalschrift gesetzt wer-
den.

Das zweite Label zeigt mithilfe der Ereignisse Opened und Closed an, ob das Kon-
textment gedffnet oder geschlossen ist. Die Ereignismethoden:

private void menu_fett(...)
{
if ((sender as Menultem).IsChecked)

{
1bl.FontWeight = FontWeights.Bold;
item_fett_hauptmenu.IsChecked = true;

v

4 | Steuerelemente

item_fett_kontextmenu.IsChecked = true;
}
else
{
1bl.FontWeight = FontWeights.Normal;
item_fett_hauptmenu.IsChecked = false;
item_fett_kontextmenu.IsChecked = false;

private void status(...)
{
if(cm.IsOpen)

1b2.Content = "Kontextmeni gedffnet";
else
1b2.Content = "Kontextmenl geschlossen";

}

Die Methode menu_fett() wird aufgerufen, unabhingig davon, in welchem
Ment der entsprechende Mentpunkt ausgewédhlt wurde. Innerhalb der Methode
wird, in Abhingigkeit von der Markierung, das Label in Fett- oder Normalschrift
gesetzt. Auflerdem wird in beiden Mentis der Mentpunkt synchron markiert.

Die Methode status() wird beim Offnen und SchlieBen des Kontextmeniis
genutzt. Die Eigenschaft IsOpen gibt Auskunft dariiber, welcher Vorgang soeben
durchgefithrt wurde.

4.7.3 Symbolleiste

In Symbolleisten werden hidufig genutzte Bedienungselemente untergebracht.
Eine einzelne Symbolleiste ist ein Element vom Typ ToolBar. Mehrere Symbol-
leisten werden in einem Container vom Typ Tool1BarTray zusammengefasst. Die-
ser ToolBarTray wird meist mithilfe eines DockPanels an einem Fensterrand ver-
ankert. Mit dem Wert Vertical fiir die Eigenschaft Orientation kénnen Sie den
ToolBarTray auch vertikal anordnen.

Falls aus Platzgriinden nicht alle Inhalte einer Symbolleiste im Fenster angezeigt
werden konnen, so kann der Benutzer einen kleinen Pfeil rechts unten an der
Symbolleiste bedienen, der ihm den Zugang zu den restlichen Elementen ermog-
licht (siehe Abbildung 4.40). Er kann die Symbolleiste auch mit der Maus am lin-
ken Rand anfassen, sie verschieben und ihr dadurch zu Lasten der anderen Sym-
bolleisten mehr Platz verschaffen (sieche Abbildung 4.41). Das Verschieben ist
allerdings nur moglich, falls die ToolBarTray nicht gesperrt ist, also die Eigen-
schaft IsLocked des ToolBarTray den Standardwert False hat.

118

Meniis und Leisten | 4.7

[®7 MenaSymbolleiste E@u

Symbolleisten

1: Fett @Kursiv 2. Schriftart: ~ _
=

] ToolBarTray gesperrt SchriftgroBe: | =

Abbildung 4.40 Zugriff auf Elemente auRerhalb

[8-] MenaSymbolleiste Elm

Symbolleisten

1: _|: 2 Schriftart: I:EI Schriftgrofe: -~
| -} =

O ToolBarTray gesperrt

Abbildung 4.41 Symbolleiste verschoben

Innerhalb einer Symbolleiste konnen, wie auch bei Menitis oder anderen Elemen-
ten der WPF, Elemente unterschiedlichen Typs angeordnet werden. Im Projekt
MeniiSymbolleiste sehen Sie einen ToolBarTray mit zwei Symbolleisten. Die Sym-
bolleisten kénnen tiber das Hauptment einzeln ein- und ausgeblendet werden.
Der ToolBarTray kann gesperrt werden. Da es im Projekt auf das Verhalten der
Symbolleiste selber ankommt, habe ich die Ereignismethoden zu den Steuerele-
menten auf den Symbolleisten eingespart.

Der XAML-Code:

<DockPanel>
<{Menu DockPanel.Dock="Top">
{Menultem Header="Symbolleisten">
{Menultem x:Name="item_tbl" Header="SL 1"
IsCheckable="True" IsChecked="True"
Click="sichtbar_tbl" />
{Menultem x:Name="item_tb2" Header="SL 2"
IsCheckable="True" IsChecked="True"
Click="sichtbar_tb2" />
</Menultem>
</Menu>
<ToolBarTray x:Name="tbtray" DockPanel.Dock="Top"
Background="LightGray">
<ToolBar x:Name="tbl">
<Label>1: </Label>

19

4 | Steuerelemente

<ToggleButton>Fett</ToggleButton>
<ToggleButton>
<WrapPanel>
<{Image Source="work.gif" Height="16"
Margin="0,0,3,0" />
{TextBlock>Kursiv</TextBlock>
</WrapPanel>
</ToggleButton>
</ToolBar>
<ToolBar x:Name="tb2">
<Label>2:</Label>
<Label>Schriftart:</Label>
<ComboBox>
<ComboBoxItem>Arial</ComboBoxItem>
<ComboBoxItem>Tahoma</ComboBoxItem>
<ComboBoxItem>Verdana</ComboBoxItem>
</ComboBox>
<Label>SchriftgréBe:</Label>
<ComboBox>
<ComboBoxItem>10</ComboBoxItem>
<ComboBoxItem>12</ComboBoxItem>
<ComboBoxItem>18</ComboBoxItem>
</ComboBox>
</ToolBar>
</ToolBarTray>
<CheckBox x:Name="cb" Margin="2" Click="gesperrt">
ToolBarTray gesperrt</CheckBox>
</DockPanel>

Innerhalb der Symbolleisten wird unter anderem eine ComboBox dargestellt. Sie
sieht anders aus als eine normale ComboBox (sieche Abbildung 4.40). Dies liegt
daran, dass Uber die Eigenschaft ComboBoxStyleKey der ToolBar ein spezieller
Style zur Anwendung kommt. Entsprechende Styles gibt es unter anderem auch
fir Elemente des Typs CheckBox, RadioButton und ToggleButton. Mehr zu Styles
und Keys finden Sie in Kapitel 7, »Vorlagenc.

Die Ereignismethoden zum Ein- und Ausblenden beziehungsweise Sperren:

private void sichtbar_tbl(...)

{ sichtbar(item_tbl, tbl); }

private void sichtbar_tb2(...)

{ sichtbar(item_tb2, tb2); }

private void sichtbar(Menultem mi, ToolBar tb)

{ if (mi.IsChecked) tb.Visibility = Visibility.Visible;
else th.Visibility = Visibility.Collapsed; }

120

Menis und Leisten

Die erste Symbolleiste wird tiber den ersten Hauptmenieintrag ein- oder ausge-
blendet (Eigenschaft Visibility). Das Entsprechende gilt fur die zweite Symbol-
leiste.

private void gesperrt(...)
{ tbtray.IslLocked = (bool)ch.IsChecked; }

Der ToolBarTray wird tiber die Checkbox ge- und entsperrt.

4.7-.4 Statusleiste

Gemadl} ihrem Namen beinhaltet die Statusleiste aktuelle Informationen tiber den
Status einer Anwendung und ihrer Elemente. Das Element vom Typ StatusBar
kann aber auch selber Elemente enthalten, wie die Meniis und die Symbolleiste.
Sie wird meist mithilfe eines DockPanels am unteren Bildschirmrand verankert.
Im nachfolgenden Projekt MeniiStatusleiste werden die aktuellen Werte von
Datum, Fenstergrofe und Mausposition dargestellt (siehe Abbildung 4.42).

[57] MenaStatusleiste L= E] [t
Inhalt%

03.07.2011 ‘ GroBe: 350%120 | Position: X:36 Y:19

Abbildung 4.42 Statusleiste

Der Aufbau in XAML:

<Window ... Loaded="Window_Loaded"
SizeChanged="Window_SizeChanged"
MouseMove="Window_MouseMove">
<DockPanel>
<StatusBar DockPanel.Dock="Bottom">
{TextBlock x:Name="tb1"></TextBlock>
<Separator />
<Label>GroBe:</Label>
<TextBlock x:Name="tb2"></TextBlock>
<{Separator />
<CheckBox x:Name="cb" Click="cb_Click" />
<WrapPanel x:Name="wp" Visibility="Collapsed">
{Label>Position:</Label>
{TextBlock x:Name="th3"
VerticalAlignment="Center"></TextBlock>
</WrapPanel>
</StatusBar>

121

4 | Steuerelemente

<Label>Inhalt</Label>
</DockPanel>
</Window>

Nachdem das Fenster geladen wurde, tritt das Ereignis Loaded ein. Sobald die
FenstergroBe gedndert wird, also auch zu Beginn der Anwendung, wird das Ereig-
nis SizeChanged ausgelost. Wird die Maus tiber dem Fenster bewegt, so fithrt dies
zum Ereignis MouseMove. Mehr zu Fensterereignissen sehen Sie in Abschnitt 6.3,
»Fenster«, mehr zu Mausereignissen in Abschnitt 5.2, »Maus«. Der zugehdrige
Code sieht so aus:

private void Window_Loaded(...)
{ thl.Text = DateTime.Today.ToShortDateString(); }

Es wird das aktuelle Datum in Kurzform angezeigt.

private void Window_SizeChanged(object sender,
SizeChangedEventArgs e)
{ th2.Text = (int)Width + "*" + (int)Height; }

Breite und Hohe des Fensters sind double-Werte.

private void Window_MouseMove(object sender, MouseEventArgs e)
{ th3.Text = "X:" + (int)e.GetPosition(this).X
+ " Y:" 4+ (int)e.GetPosition(this).Y; }

Die Methode GetPosition() des MouseEventArgs-Objekts gibt einen Wert vom
Typ Point zurtick. Dieser enthélt die X- und Y-Komponente als doub1e-Werte.

private void cb_Click(...)
{ if ((bool)cb.IsChecked) wp.Visibility = Visibility.Visible;
else wp.Visibility = Visibility.Collapsed; }

Ein Beispiel fiir ein Steuerelement in der Statusleiste: Der Benutzer kann die Posi-
tionsangabe per CheckBox ein- oder ausblenden.

4.8 Datum

Die beiden Steuerelemente vom Typ Calendar und DatePicker dienen zur ein-
deutigen Auswahl von Datumswerten beziehungsweise Datumsbereichen.

4.8.1 Calendar

Das Element vom Typ Calendar bietet zahlreiche Méglichkeiten zur Datumswahl.
Die Eigenschaft SelectionMode dient zur Festlegung des Auswahlmodus. Es gibt
dazu die folgenden Werte in der Enumeration CalendarSelectionMode:

122

Datum

» SingleDate: Dies ist der Standardwert. Es kann ein einzelner Datumswert per
Maus oder [Pfeil]-Taste bestimmt werden.

» SingleRange: Es kann ein einzelner Bereich per Maus und [« J-Taste oder per
(Pfeil)- und [e]-Taste ausgewdhlt werden. Je nach Richtung der Auswahl
handelt es sich um auf- oder absteigende Daten.

» MultipleRange: Es konnen mehrere getrennte Datumswerte oder Datumsbe-
reiche per Maus, [o]- und (Strg]-Taste oder per (Pfeil)-, [o]- und (Strgl-
Taste bestimmt werden. Die Reihenfolge der Auswahl entscheidet wiederum
tiber die Reihenfolge der Daten. Ein Beispiel sehen Sie in Abbildung 4.43.
Zuerst wurde der Bereich 16.03.-17.03., anschliefend der Bereich 02.03-
03.03. markiert.

Im nachfolgenden Projekt DatumCalendar werden die ausgewdhlten Daten in
einem Label angezeigt. AuBerdem gibt es die Moglichkeit, den SelectionMode zu
wechseln.

[®°] DatumCalendar E@u

16.03.2012 17.03.2012 02.03.2012 03.03.2012

4 Marz 2012 >

Mo Di Mi Do Fr Sa So

27 28 29 1[2 3 4
5 6 72 &8 9 101
12 13 14 1516 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
2 3 4 5 6 7 8

© SingleDate © SingleRange @ MultipleRange

-

Abbildung 4.43 Auswahl getrennter Bereiche

Falls der Benutzer im Kopf der Monatsansicht auf MARz 2012 klickt, so wird ihm
die Jahresansicht mit allen 12 Monaten des Jahres 2012 angezeigt. Klickt er
anschliefend in der Jahresansicht auf 2012, so wird ihm die 12-Jahresansicht mit
insgesamt 12 Jahren angezeigt. Ein Klick auf eines der 12 Jahre beziehungsweise
einen der 12 Monate fiihrt ihn tGber die Jahres- wieder zur Monatsansicht.

Ein Klick auf einen der Pfeile bewirkt, dass der benachbarte Monat beziehungs-
weise das benachbarte Jahr oder die benachbarten 12 Jahre angezeigt werden.
Klickt er auf einen der angezeigten letzten Tage des Vormonats oder auf einen der
angezeigten ersten Tage des Nachfolgemonats, so wechselt die Anzeige zum ent-
sprechenden Monat.

123

4 | Steuerelemente

Der Aufbau in XAML:

<MWindow ...>
<StackPanel>
<Label x:Name="1b" HorizontalAlignment="Center" />
<Calendar x:Name="cal" SelectedDatesChanged="anzeige"
DisplayDate="3/2/2012" SelectionMode="MultipleRange"
xmins:sys="clr-namespace:System;assembly=mscorlib">
<Calendar.SelectedDates>
<sys:DateTime>3/16/2012</sys:DateTime>
<sys:DateTime>3/17/2012</sys:DateTime>
{sys:DateTime>3/2/2012</sys:DateTime>
{sys:DateTime>3/3/2012</sys:DateTime>
</Calendar.SelectedDates>
</Calendar>
<WrapPanel HorizontalAlignment="Center"
RadioButton.Click="umschalten">

<RadioButton x:Name="sdate" ... </RadioButton>
<RadioButton x:Name="sange" ... </RadioButton>
<RadioButton x:Name="mrange" ... </RadioButton>

</WrapPanel>
</StackPanel>
</Window>

Zundchst muss der Namespace System eingebunden werden, damit der Typ
DateTime fiir die Vorauswahl in XAML zur Verfligung steht. Der Wert der Eigen-
schaft DisplayDate bestimmt den Monat, der zu Beginn angezeigt wird. Die
Eigenschaft SelectedDates beinhaltet alle ausgewdhlten Daten. Sie ist vom Typ
SelectedDatesCollection. Im Beispiel wurde bereits eine Vorauswahl getroffen.
Das Ereignis SelectedDatesChanged wird ausgeldst, wenn sich die Datumsaus-
wahl dndert. Dies gilt unabhingig vom Auswahlmodus. Ausgewahlte und ange-
zeigte Daten miissen nicht im gleichen Monat liegen.

Die Ereignismethoden:

private void umschalten(...)
{
if ((bool)sdate.IsChecked)
cal.SelectionMode = CalendarSelectionMode.SingleDate;
else if ((bool)srange.IsChecked)
cal.SelectionMode = CalendarSelectionMode.SingleRange;
else if ((bool)mrange.IsChecked)
cal.SelectionMode = CalendarSelectionMode.MultipleRange;
}

Die Betitigung der RadioButtons fithrt zur Anderung des Auswahlmodus.

124

Datum | 4.8

private void anzeige(...)
{
if (cal.SelectedDates.Count > 0)
{
if (cal.SelectionMode == CalendarSelectionMode.SingleDate)
{

DateTime dt = (DateTime)cal.SelectedDate;
1b.Content = dt.ToShortDateString();
}
else if (cal.SelectionMode ==
CalendarSelectionMode.SingleRange)

DateTime dt_start = cal.SelectedDates[0];
DateTime dt_end = cal.SelectedDates
[cal.SelectedDates.Count - 117;
1b.Content = dt_start.ToShortDateString() + " - "
+ dt_end.ToShortDateString();
}
else if (cal.SelectionMode ==
CalendarSelectionMode.MultipleRange)

string ausgabe =
foreach (DateTime dt in cal.SelectedDates)

ausgabe += dt.ToShortDateString() + " ";
1b.Content = ausgabe;

}
else
1b.Content = "Kein Datum";
}

Die Methode anzeige() wird beim Wechsel der Auswahl aufgerufen. Ein Wechsel
der Auswahl tritt auch beim Laden des Fensters auf, daher werden die ausgewahl-
ten Daten sofort angezeigt. Zunichst muss mithilfe der Eigenschaft Count der Auf-
listung SelectedDates geprift werden, ob eine Auswahl stattgefunden hat.

Beim Auswahlmodus SingleDate steht in der Eigenschaft SelectedDate ein ein-
zelnes Datum vom Typ DateTime?. Erst nach einer Umwandlung in DateTime
(ohne Fragezeichen) stehen Ausgabeformate zur Verfiigung. Dem Typ DateTime?
kann aber der Wert nu11 zugewiesen werden. Dies entspricht: kein Datum ausge-
wdhlt.

Beim Auswahlmodus SingleRange werden das erste und das letzte Element aus
der Auflistung SelectedDates ermittelt und ausgegeben. Bei MultipleRange wer-
den alle Werte der Auflistung ausgegeben.

125

4 | Steuerelemente

Calendar, mit Grenzen

Innerhalb des Objekts vom Typ Calendar kénnen Sie die Anzeige fiir den Benut-
zer einschrinken. Die Werte der Eigenschaften DisplayDateStart und Dis-
playDateEnd vom Typ DateTime? kennzeichnen die Grenzen des auswéihlbaren
Bereichs. Dartiber hinaus kénnen Sie einzelne Daten innerhalb des auswéhlba-
ren Bereichs ausschliefen. Diese Daten missen Sie in der Auflistung Black-
outDates vom Typ CalendarBlackoutDatesCollection eintragen. Es werden
jeweils Datumsbereiche als Objekte vom Typ CalendarDateRange notiert. Im
Projekt DatumCalendarGrenzen wird ein Beispiel behandelt (siche Abbildung
4.44).

Falls die Woche in der Anzeige nicht mit dem Montag beginnen soll, so konnen
Sie einen Wert vom Typ DayOfWeek fiir die Eigenschaft FirstDayOflieek eintragen.

- -
[DatumCalendarGrenzen | (=]
Kein Datum
4 Marz 2012 »

So Mo Di Mi Do Fr Sa

4 A A A 8 9 10
1112 13 14 15 6 W
18 19 20 21 22 23

Abbildung 4.44 Eingeschrankte Auswahl

Der Aufbau des Calendar-Objekts in XAML:

<Calendar x:Name="cal" FirstDayOfWeek="Sunday"
DisplayDateStart="2012-3-3" DisplayDateEnd="2012-3-23"
SelectedDatesChanged="anzeige">
<Calendar.BlackoutDates>
<CalendarDateRange Start="2012-3-5" End="2012-3-7" />
<CalendarDateRange Start="2012-3-16" End="2012-3-17" />
</Calendar.BlackoutDates>
</Calendar>

Die restlichen Elemente sind bereits aus dem vorherigen Projekt bekannt.

4.8.2 DatePicker

Ein DatePicker erméglicht die Auswahl und Anzeige eines einzelnen Datums mit
einem kleinen Steuerelement. Sobald der Benutzer das Icon rechts im DatePicker
anklickt, klappt ein komfortabler Kalender auf, dhnlich wie beim Objekt des Typs

126

Weitere Elemente | 4.9

Calendar. Die Eigenschaft SelectedDateFormat bietet aus der Enumeration
DatePickerFormat den Standardwert Short, auerdem den Wert Long. Das aus-
gewdhlte Datum wird dann wie bei der Methode ToShortDateString() bezie-
hungsweise TolLongDateString() des Typs DateTime ausgegeben. Im nachfol-
genden Projekt DatumDatePicker wird das Steuerelement dargestellt (siehe
Abbildung 4.45).

[®] DatumDatePicker E@u

20.03.2012

[Dienstag, 20. Mérz 2012)

Abbildung 4.45 DatePicker

Der Aufbau des Steuerelements in XAML:

<{StackPanel>
<Label x:Name="1b" HorizontalAlignment="Center"></Label>
<DatePicker x:Name="dp" Width="200" SelectedDate="2012-3-20"
SelectedDateFormat="Long" SelectedDateChanged="anzeige" />
</StackPanel>

Der Code des Ereignisses SelectedDateChanged:

private void anzeige(object sender, SelectionChangedEventArgs e)
{
if (dp.SelectedDate.HasValue)
{
DateTime dt = (DateTime)dp.SelectedDate;
1b.Content = dt.ToShortDateString();
}
else
1b.Content = "Kein Datum";
}

Wie beim Typ Calendar ist die Eigenschaft SelectedDate vom Typ DateTime?. Es
kann also vorkommen, dass kein Wert ausgewdhlt ist. Dies kann man tber die
boolesche Eigenschaft HasValue feststellen.

4.9 Weitere Elemente

Es folgen noch zwei Typen von Elementen, die keiner der anderen Gruppen
zugeordnet werden: Image und WebBrowser.

127

4 | Steuerelemente

4.9.1 Image

Ein Objekt vom Typ Image fiir ein Bild wurde bereits hdufiger benutzt. Meist
dient es als Aufschrift beziehungsweise als »Aufkleber« fiir ein umgebendes Ele-
ment. Dies kann ein Layout- oder ein Steuerelement sein.

Die Eigenschaft Source vom Typ ImageSource verweist auf die Datenquelle. Als
Wert kann ein absoluter Pfad angegeben werden. Haufig wird die Bildquelle dem
Projekt aber per Drag&Drop hinzugeftigt. Dies hat den Vorteil, dass sie ohne Pfad
angegeben und gemeinsam mit dem Projekt veroffentlicht beziehungsweise
installiert werden kann.

Die double-Eigenschaften Width und Height bestimmen den Raum fiir die Dar-
stellung des Bildes. Fehlen sie, so wird der Raum des umgebenden Elements
genutzt. Die Eigenschaft Stretch bestimmt, ob und wie das Bild gedehnt oder
gestaucht im Raum dargestellt wird. Sie kann folgende Werte aus der Enumera-
tion Stretch annehmen:

» Fil1: Das Bild fiillt den Raum vollstindig aus. Es wird eventuell verzerrt.

» None: Das Bild behalt seine urspriingliche GroRe. Es wird eventuell unten und/
oder rechts abgeschnitten.

» Uniform: Das Bild wird in der Grofe gedndert, sodass es vollstindig in den
Raum passt. Das Verhiltnis Breite zu Hohe bleibt. Es entsteht eventuell Leer-
raum oben und unten oder an den Seiten. Uniform ist der Standardwert.

» UniformToFi11: Das Bild wird in der GroR8e gedndert, sodass es den Raum voll-
standig ausfullt. Das Verhiltnis Breite zu Hohe bleibt. Es wird eventuell unten
oder rechts abgeschnitten.

Im nachfolgenden Projekt ImageStretch werden alle vier Moglichkeiten darge-
stellt (siehe Abbildung 4.46). Innerhalb eines Grid sehen Sie in der ersten Zeile
ein Bild, das zu klein fiir den Raum ist, in der zweiten Zeile ein Bild, das zu grof§
fur den Raum ist.

IEI ImageStretch

© e |® |<6-5\
=

None Uniform UniformTeFill

-

Abbildung 4.46 Die Eigenschaft »Stretch«

128

Weitere Elemente | 4.9

Der Aufbau in XAML:

<MWindow ... Width="400" Height="180">
<Grid Width="360" Height="130">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="90" />
<ColumnDefinition Width="90" />
<ColumnDefinition Width="90" />
<ColumnDefinition Width="90" />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="60" />
<RowDefinition Height="50" />
<RowDefinition Height="20" />
</Grid.RowDefinitions>

<Button>

<Image Source="work.gif" Stretch="Fill" />
</Button>
<Button Grid.Column="1">

<Image Source="work.gif" Stretch="None" />
</Button>
<Button Grid.Column="2">

<Image Source="work.gif" Stretch="Uniform" />
</Button>
<Button Grid.Column="3">

<{Image Source="work.gif" Stretch="UniformToFill" />
</Button>

<Button Grid.Row="1">

<Image Source="blume.jpg" Stretch="Fill" />
</Button>
<Button Grid.Row="1" Grid.Column="1">

<Image Source="blume.jpg" Stretch="None" />
</Button>
<Button Grid.Row="1" Grid.Column="2">

<Image Source="blume.jpg" Stretch="Uniform" />
</Button>
<Button Grid.Row="1" Grid.Column="3">

<Image Source="blume.jpg" Stretch="UniformToFill" />
</Button>

{TextBlock Grid.Row="2" ...>Fil11</TextBlock>
</Grid>

</Window>

129

4 | Steuerelemente

Der Raum fiir das Bild entspricht der Gr6Be der Zellen, also 90 mal 60 in der ers-
ten Zeile und 90 mal 50 in der zweiten Zeile. Das Baustellenbild hat die Original-
grofe 40 mal 40, das Bild mit der Blume die Originalgrole 800 mal 600. Beide
werden also immer in der Gréfe verindert, aulBer beim Wert None. Beim Wert
Fi11 werden sie verzerrt, da die Seitenverhiltnisse nie passen. Die Werte werden
in gerdteunabhingigen Pixeln angegeben.

4.9.2 WebBrowser

Das Element vom Typ WebBrowser ermdglicht Ihnen die Einbindung eines Brow-
sers in Thre Anwendung. Die Eigenschaft Source vom Typ Uri verweist auf die
angezeigte Seite. Der Browser ermoglicht mithilfe der Methode Navigate() die
Navigation zu einem URI. Sie kénnen auch mithilfe der Methode Navi-
gateToString() einen HTML-Code aufrufen, der in einer Zeichenkette abgelegt
ist. Das Ereignis Navigated tritt ein, sobald der Download des neuen Dokuments
gestartet wurde. Nach Abschluss des Downloads wird das Ereignis Load_Com-
pleted ausgelost.

Im nachfolgenden Projekt BrowserNavi werden einige Moglichkeiten dargestellt
(siehe Abbildung 4.47).

BrowserNavi

Gehe zu:| http://www.galileo-press.de/

ZEJ}H’I ‘l"d\fsfeﬂkl?fh Herzlich willkommen!
irektbestellung und Fotografie. Mit unse

Abbildung 4.47 Eigener Browser

Es wurden einige Buttons, ein Textfeld und eine ComboBox fiir die History ober-
halb des Browser-Elements angeordnet. Der Aufbau in XAML:

MWindow ... WindowState="Maximized">
<DockPanel>

<WrapPanel DockPanel.Dock="Top">
<Button Margin="5" Click="gehe">Gehe zu:</Button>
<TextBox x:Name="tb" Margin="5" Width="250"></TextBox>

</WrapPanel>

<WrapPanel DockPanel.Dock="Top">
<Button Margin="5" Click="rueck">Rlckwdrts</Button>
<Button Margin="5" Click="vor">Vorwdarts</Button>
<Label VerticalAlignment="Center">History:</Label>

130

Weitere Elemente | 4.9

<ComboBox x:Name="cb" Width="150" Margin="5"
SelectionChanged="cb_SelectionChanged" />
</WrapPanel>
<WebBrowser x:Name="wb" Source="http://www.galileo-press.de"
Navigated="wb_Navigated" />
</DockPanel>
</Window>

Die Eigenschaft WindowState wurde auf den Wert Maximized gesetzt, damit mog-
lichst viele Informationen zu sehen sind. Falls sich der Benutzer verschiedene Sei-
ten anschaut, fiillt sich die ComboBox HISTORY mit Eintrigen. Falls einer der Ein-
trige ausgewdhlt wird, so wird die Seite direkt angesteuert. Der Benutzer kann
sich auch mit den Buttons vorwirts oder riickwirts durch die Liste der bisher
besuchten Seiten bewegen.

Die Ereignismethoden:

private void gehe(...)
{

try { wb.Navigate(new Uri(tb.Text)); }

catch (UriFormatException) { th.Text = "(Ungtltiger URI)"; }
}

Die Methode Navigate() fordert den entsprechenden URI an. Bei einem ungtilti-
gen URI wird eine URIFormatException ausgelost.

private void rueck(...)

{ if (wb.CanGoBack) wb.GoBack(); }
private void vor(...)

{ if (wb.CanGoForward) wb.GoForward(); }

Die Methoden GoBack() und GoForward() ermdglichen den Aufruf der letzten
beziehungsweise nichsten Seite in der History. Falls dies nicht moglich ist, wird
eine Ausnahme ausgeldst. Daher muss vorher mit den Methoden CanGoBack()
und CanGoForward() gepriift werden.

private void wb_Navigated(object sender, NavigationEventArgs e)
{
cb.Items.Add(wb.Source);
th.Text = "" + wb.Source;
}
private void cb_SelectionChanged(object sender,
SelectionChangedEventArgs e)

wb.Navigate(ch.SelectedItem.ToString());

131

4 | Steuerelemente

Nach dem Wechsel zu einer neuen Seite (Ereignis Navigated) wird dessen URI
(Eigenschaft Source) der ComboBox hinzugefiigt und im Textfeld angezeigt. Der
Eintrag aus der ComboBox kann mithilfe der Methode Navigate() direkt ange-
steuert werden.

132

In diesem Kapitel lernen Sie die Ereignisse der verschiedenen Eingabe-
gerdte und das Konzept der gekapselten Kommandos kennen.

5 Ereignisse und Kommandos

Der Benutzer kann Thre WPF-Anwendungen auf vielféltige Art und Weise bedie-
nen. Neben Tastatur und Maus kann er einen Eingabestift oder einen Touch-
screen einsetzen. All diese Gerite erzeugen Eingabe-Ereignisse, die es auszuwer-
ten gilt.

Die WPF ermoglicht es Thnen, vorgefertigte und eigene Kommandos zu kapseln
und sie damit vielseitiger und wartungsfreundlicher zu machen.

5.1 Tastatur

Die Bedienung der Tastatur besteht bekanntlich darin, eine Taste herunterzudri-
cken und sie wieder loszulassen. In der WPF entsprechen diese Vorginge den
beiden Ereignissen KeyDown und KeyUp. Innerhalb einer Anwendung sollen sie zu
Aktionen fithren. Dies konnen Sie zum Beispiel zur Durchfithrung von Animati-
onen nutzen (siehe Kapitel 11, »Maus«).

Sie konnen die Ereignisse fiir ein typisches Eingabe-Steuerelement, wie zum
Beispiel eine TextBox, aber auch fur das ganze Fenster registrieren. Informatio-
nen tiber das Ereignis, wie zum Beispiel die verwendeten Tasten oder das aus-
losende Steuerelement, konnen Sie tiber ein Objekt der Klasse KeyEventArgs
gewinnen.

5.1.1 Anzeige der Tastaturinformationen

Im Projekt TastaturAnzeige werden ausgegeben: die Bezeichnungen der Tasten,
die in einer TextBox betitigt wurden, die zugeh6rigen Keycodes aus der Enume-
ration Key, das Routed Event und der Name des Steuerelementes (siehe Abbil-
dung 5.1).

133

5 | Ereignisse und Kommandos

[E°] TastaturAnzeige l | (=]

Leeren

alla

A (44) KeyDown th

MNumPad1l (75) KeyDown th
D1 (35) KeyDown th

F1 (90) KeyDown tb
OemQuotes (152) KeyDown tb
LeftCtrl (118) KeyDown tb

Abbildung 5.1 Tastenbezeichnungen mit Keycodes

Es wurden nacheinander die Tasten [A], auf dem Ziffernblock, im norma-
len Tastaturbereich, die Funktionstaste (F1], die Taste fiir den Umlaut und die
linke [Strg]-Taste betitigt. Voraussetzung ist, dass der Ziffernblock vorher einge-
schaltet wurde. Der Aufbau der Anwendung:

{StackPanel>
<Button Click="leeren_Click">Leeren</Button>
{TextBox x:Name="tb" KeyDown="tb_KeyDown" />
<ListBox x:Name="1b" Height="210"></ListBox>
</StackPanel>

Falls der Benutzer innerhalb der TextBox eine Taste betitigt, so wird die folgende
Ereignismethode aufgerufen:

private void tb_KeyDown(object sender, KeyEventArgs e)
{
if (e.IsRepeat)

return;
1b.Items.Add(e.Key + " (" + Convert.ToInt32(e.Key) + ") "
+ e.RoutedEvent.Name + " " + (sender as TextBox).Name);

}

Die Eigenschaft IsRepeat des Objekts der Klasse KeyEventArgs gibt an, ob die
Taste wiederholt gedriickt wurde. Ist dies der Fall, so kénnen Sie die Methode
verlassen, falls Sie die Taste nur einmal erfassen mochten.

Die Eigenschaft Key liefert das Element der Enumeration Key zu der betitigten
Taste. Den zugehorigen Keycode koénnen Sie durch die Umwandlung in eine
Int32-Zahl ermitteln. Die Eigenschaft RoutedEvent stellt das auslésende Ereignis
dar. Dies ist wichtig, falls verschiedene Ereignisse zur gleichen Ereignismethode
fithren.

134

Tastatur | 54

5.1.2 Steuerung durch Tasten

Im Projekt TastaturSteuerung nutzen Sie einige Tasten, um ein Element innerhalb
der Anwendung zu bewegen. Nach dem Start sehen Sie ein kleines Rechteck, das
zundchst in der Mitte steht (siehe Abbildung 5.2).

[W77] TastaturSteuerung l"=l

Abbildung 5.2 Nach dem Start

Durch Betitigung einer der Tasten (nach oben), (nach links), (nach
unten) oder (D] (nach rechts) konnen Sie die Lage verdndern (sieche Abbildung 5.3).

[®77] TastaturSteuerung l"':"

Abbildung 5.3 Nach einigen Tastendrucken

Der Aufbau der Anwendung:

<MWindow ... KeyDown="Window_KeyDown" KeyUp="Window_KeyUp">
<Canvas>
<Rectangle x:Name="rc" Width="20" Height="20"
Canvas.Left="130" Canvas.Top="25" Fill="Gray" />
</Canvas>
</Window>

Ein Rechteck der Klasse Rectangle wird mithilfe von Attached Properties in
einem Canvas angeordnet. Die Ereignisse KeyDown und KeyUp registrieren Sie fir
das gesamte Fenster. Der Code der Ereignismethoden:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
double top = (double)rc.GetValue(Canvas.TopProperty);
double Teft = (double)rc.GetValue(Canvas.LeftProperty);

switch (e.Key)
{
case Key.W:
rc.SetValue(Canvas.TopProperty, top - 5); break;

135

5 | Ereignisse und Kommandos

case Key.S:
rc.SetValue(Canvas.TopProperty, top + 5); break;
case Key.A:
rc.SetValue(Canvas.LeftProperty, left - 5); break;
case Key.D:
rc.SetValue(Canvas.LeftProperty, left + 5); break;
}
rc.Fi1l = new SolidColorBrush(Colors.LightGray);

private void Window_KeyUp(object sender, KeyEventArgs e)
{
rc.Fi1l = new SolidColorBrush(Colors.Gray);

}

Mithilfe der Methode GetValue() wird jeweils der aktuelle Wert der Attached
Properties Canvas.Left und Canvas.Top ermittelt. Das Element der Enumeration
Key, das zur betitigten Taste (e.Key) gehért, fithrt zur Anderung des Werts der
Attached Property mithilfe von Setvalue().

Ein permanenter Tastendruck fithrt zum wiederholten Aufruf der Ereignisme-
thode, also zu einer dauerhaften Bewegung in die gewiinschte Richtung. Wih-
rend der Bewegung ist das Rechteck hellgrau, anschliefend ist es wieder grau.

5.2 Maus

Beim Eingabegerat Maus wird zwischen den Maus-Ereignissen, den Maustasten-
Ereignissen und den Mausrad-Ereignissen unterschieden. Zu diesen Ereignissen
stellen Objekte der Klassen MouseEventArgs, MouseButtonEventArgs und
MouseWheelEventArgs weitere Informationen bereit. Dies kdénnen sein: Name,
Ort und Anzahl des Ereignisses, benutzte Taste, aktueller Status der Maustaste
und vieles mehr. Die Ereignisse konnen Sie fiir ein Steuerelement, aber auch fiir
das ganze Fenster registrieren.

5.2.1 Anzeige der Mausinformationen

Im nachfolgenden Projekt MausAnzeige werten Sie die Ereignisse aus. Als typi-
sche Beispiele sehen Sie den Ort, an dem sich beim MouseMove-Ereignis die Maus
befindet (siehe Abbildung 5.4), Informationen iiber eine Maustaste beim Loslas-
sen (siche Abbildung 5.5) und die Darstellung eines MouseWheel-Ereignisses
(siehe Abbildung 5.6).

136

Maus | 5.2

(R MausAnzeige é@u

MouseMove X : 203 Y:93 T Al

M ow:m

Abbildung 5.4 MouseMove lber einen Button

[8] MausAnzeige E
Ereignis: MouseUp
Button-Status: Released Enter 15
Button: Middle
Anzahl Clicks: 1
Position X: 115 Y: 81[}
Move

Abbildung 5.5 Mittlere Maustaste losgelassen

|

[®7] MausAnzeige

Ereignis: MouseWheel
Anderung um: 120
Position X: 113 Y: 4%

Enter

-

Abbildung 5.6 MouseWheel-Ereignis

Zundchst der Aufbau der Anwendung:

<Window ... MouseDown="mdu" MouseUp="mdu" MouseWheel="mwh">
<Canvas>
<Label x:Name="1b" />
<Button Canvas.Left="150" Padding="10" MouseEnter="mbew"
Mouseleave="mbew">Enter / Leave</Button>
<Button Canvas.lLeft="150" Canvas.Top="60" Padding="20"
MouseMove="mbew" >Move</Button>
</Canvas>
</Window>

Die Maustasten-Ereignisse MouseDown und MouseUp und das Mausrad-Ereignis
MouseWheel werden hier fiir das gesamte Fenster registriert. Das Betreten
(MouseEnter) und das Verlassen (Mouseleave) eines Steuerelements beziehen sich

137

5 | Ereignisse und Kommandos

auf den ersten Button. Die Bewegung (MouseMove) Uiber einem Steuerelement
wird beziiglich des zweiten Buttons angezeigt.

Der Programmcode fiir MouseEnter, MouseLeave und MouseMove:

private void mbew(object sender, MouseEventArgs e)
{
1b.Content = e.RoutedEvent.Name
+ " X ¢ "+ (int)e.GetPosition(this).X
+ " Y : "+ (int)e.GetPosition(this).Y;
}

Die Eigenschaft RoutedEvent liefert den Namen des Ereignisses. Die Methode
GetPosition() liefert die X/Y-Position relativ zum angegebenen Element zurtick.
In diesem Fall ist es mithilfe von this das Fenster, genauer gesagt: der Client-
Bereich des Fensters. Die Position als Objekt der Struktur Point stellt X- und Y-
Komponenten als double-Werte bereit.

Der Programmcode fiir MouseDown und MouseUp:

private void mdu(object sender, MouseButtonEventArgs e)
{
1b.Content = "Ereignis: + e.RoutedEvent.Name + "\n"
"Button-Status: " + e.ButtonState + "\n"
"Button: " + e.ChangedButton + "\n"
"Anzahl Clicks: " + e.ClickCount + "\n"
"Position X: " + (int)e.GetPosition(this).X
" Y: " 4+ (int)e.GetPosition(this).Y;

o+ o+ o+

}

Auch hier liefert die Eigenschaft RoutedEvent den Namen des Ereignisses. Die
Eigenschaft ButtonState gibt den Status des Mausbuttons nach Eintritt des Ereig-
nisses wieder. Dies ist einer der beiden Werte der Enumeration MouseButtonState:
Pressed oder Released. Die Eigenschaft ChangedButton liefert den Namen der
Maustaste. Dies ist einer der fiinf Werte der Enumeration MouseButton: Left,
Middle, Right, erste oder zweite erweiterte Maustaste (XButtonl, XButton?2). Sie
konnen die Reaktion auf das Ereignis davon abhdngig machen, ob die Maustaste
einfach, doppelt, dreifach oder gar ofter gedriickt wurde. Dazu nutzen Sie die
Eigenschaft C1ickCount. Auch hier liefert GetPosition() die X/Y-Position.

Der Programmecode fiir MouseWheel:

private void mwh(object sender, MouseWheelEventArgs e)
{
1b.Content = "Ereignis: + e.RoutedEvent.Name + "\n"
+ "Anderung um: " + e.Delta + "\n"

138

Eingabestift

+ "Position X: " + (int)e.GetPosition(this).X
+ " Y: " + (int)e.GetPosition(this).Y;
}

RoutedEvent und GetPosition() liefern wiederum Ereignis und Position. Die
Anderung durch die Betitigung des Mausrads wird tiber die Eigenschaft Delta
wiedergegeben. Bei der Drehung nach unten ergeben sich vorgegebene Werte
wie zum Beispiel -120, -240, -360 und so weiter. Die Drehung nach oben ergibt
die entsprechenden positiven Werte.

5.3 Eingabestift

Einen Eingabestift (engl. Stylus) nutzen Sie bei bertihrungsempfindlichen Bild-
schirmen. Solche Bildschirme haben zum Beispiel Tablet-PCs, Smartphones, PDAs
und Digitalisiertabletts. Eingabestifte ermoglichen eine genauere Bedienung.
Bewegungen oberhalb und auf dem Bildschirm 18sen Ereignisse aus.

Die WPF bietet IThnen mit den Objekten der Klassen StylusEventArgs, StylusSys-
temGestureEventArgs, StylusButtonEventArgs und StylusDownEventArgs die Mog-
lichkeit, Informationen iiber diese Ereignisse und die betroffenen Steuerele-
mente auszuwerten und damit Thre Anwendungen zu steuern.

Diese Informationen verdeutliche ich Thnen mithilfe des nachfolgenden Projekts
EingabeStift (siehe Abbildung 5.7). Es kann natiirlich nur mit einem Eingabestift
sinnvoll bedient werden.

[W7] EingabesStift &

Abbildung 5.7 Einfache Anwendung fiir einen Eingabestift

Zunichst der Aufbau:

<MWindow ...>
<{StackPanel>
<Button Width="80" Height="30" Margin="5"

StylusSystemGesture="ssg"
StylTusButtonDown="sb" StylusButtonUp="sb"
StylusDown="sd" StylusUp="s"
StylusEnter="s" StylusMove="s" StyluslLeave="s"
StylusInAirMove="s"

139

5 | Ereignisse und Kommandos

StylusInRange="s" StylusOutOfRange="s">Button</Button>
</StackPanel>
</Window>

Es handelt sich um Ereignisse des Stifts tiber einem Steuerelement innerhalb
Threr Anwendung. Dabei miissen Sie zwei Zustinde unterscheiden:

» Der Stift beriithrt den Bildschirm.
» Der Stift befindet sich nahe oberhalb des Bildschirms, ohne ihn zu beriihren.

Das Ereignis StylusSystemGesture tritt bei den spezifischen Bertihrungen oder
Bewegungen auf, die der Benutzer mit einem Stift durchfiithren kann (siehe Ereig-
nismethode ssg() weiter unten).

Das Driicken oder Loslassen der Stiftschaltfliche fiihrt zu den Ereignissen
StylusButtonDown und StylusButtonUp. Die Berithrung des Bildschirms oder
das Abheben nach einer Bertihrung entspricht den Ereignissen StylusDown und
StylusUp.

Die Ereignisse StylusEnter, StylusMove und StylusLeave entsprechen dem Ein-
treten, Bewegen und Verlassen des bertihrenden Stifts beziiglich der Grenzen
eines Elements.

Eine Bewegung tber einem Element (ohne Berithrung) entspricht dem Ereignis
StylusInAirMove. Sobald der Stift nahe genug am Bildschirm ist, um erkannt zu
werden, tritt das Ereignis StylusInRange auf. Umgekehrt tritt das Ereignis
StylusOutOfRange auf, sobald der Stift nicht mehr erkannt wird.

Die Ereignismethoden liefern weitere Informationen:

private void s(object sender, StylusEventArgs e)
{

MessageBox.Show("StylusDevice, Event: " + e.RoutedEvent
+ ", Device: " + e.StylusDevice
+ ", InAir: " + e.InAir
+ ", Inverted: " + e.Inverted);

}

Die Eigenschaft StylusDevice der Klasse StylusDevice steht fur den Eingabestift
selbst. Die beiden booleschen Eigenschaften InAir und Inverted geben an, ob
sich der Stift nahe oberhalb des Bildschirms befindet beziehungsweise ob der
Stift umgekehrt ist.

private void ssg(object sender, StylusSystemGestureEventArgs e)
{ MessageBox.Show("SystemGesture: " + e.SystemGesture); }

140

Touchscreen | 5.4

Die Eigenschaft SystemGesture liefert Informationen tiber die Art der Bertihrung
oder Bewegung. Die Werte stammen aus der gleichnamigen Enumeration. Viele
Aktionen entsprechen Mausaktionen: Tap und RightTap entsprechen dem Click,
Drag und RightDrag dem Ziehen, HoverEnter und HoverLeave dem Betreten und
Verlassen, HoldEnter dem Driicken und Halten und TwoFingerTap dem Dop-
pelklick. Eine schnelle, strichartige Stiftbewegung ist ein F1ick.

private void sb(object sender, StylusButtonEventArgs e)
{
MessageBox.Show("StylusButton, Event: " + e.RoutedEvent
+ ", Guid: " + e.StylusButton.Guid
+ ", Name: " + e.StylusButton.Name
+ ", State: " + e.StylusButton.StylusButtonState);
}

Zur genaueren Betrachtung der Stiftschaltflichen: Die Eigenschaften Guid (aus
der Struktur Guid) und Name liefern die ID und den Namen der Stiftschaltfliche.
Die Eigenschaft StylusButtonState gibt an, ob die Schaltfliche gedriickt ist oder
nicht. Die Werte stammen aus der gleichnamigen Enumeration: Down oder Up.

private void sd(object sender, StylusDownEventArgs e)
{ MessageBox.Show("TapCount: " + e.TapCount); }

Die Eigenschaft TapCount gibt an, wie oft der Stift angetippt wurde.

5.4 Touchscreen

Die WPF ermoglicht in Zusammenarbeit mit einem bertthrungsempfindlichen
Bildschirm (Touchscreen) die Auswertung verschiedener Ereignisse:

» Touch- und Multitouch-Ereignisse: Die verschiedenen Stadien der Berithrung
des Bildschirms mit einem Finger (oder mehreren Fingern gleichzeitig) und
die Position der Berithrung(en).

» Manipulations-Ereignisse: Die Nutzung komplexer Bertihrungsaktionen auf
dem Bildschirm fiir einzelne Teile der Anwendung.

Die einzelnen Ereignisse werden mit einem TouchDevice, tiblicherweise dem Fin-
ger, ausgelost. Ein TouchDevice-Objekt hat fur jede Berithrung eine eindeutige ID,
sodass die einzelnen Beriihrungen voneinander unterschieden werden kénnen. Es
gibt einzelne Elemente, deren Scrollbalken direkt per Touch bewegt werden kann.

Bei einem Touch-Ereignis werden tiber ein TouchEventArgs-Objekt weitere Infor-
mationen tiber die Bertihrung zur Ereignismethode geliefert, unter anderem:

141

5 | Ereignisse und Kommandos

» GetTouchPoint(): Liefert ein Objekt des Typs TouchPoint. Dieses hat unter
anderem die Eigenschaft Position vom Typ Point. Darin stehen die X- und Y-
Koordinaten der Bertihrung.

» GetlIntermediateTouchPoints(): Liefert ein Objekt des Typs TouchPoint-
Collection. Darin werden die TouchPoint-Objekte der letzten Touch-Ereig-
nisse gesammelt.

Es gibt unter anderem folgende Touch-Ereignisse:

» TouchDown: Das Bertihren des Bildschirms mit dem Finger.

» TouchMove: Die Bewegung des berithrenden Fingers auf dem Bildschirm. Sie
findet mehrfach statt.

» TouchUp: Das Abheben des Fingers vom Bildschirm.

» TouchEnter: Das Betreten eines Elements mit dem bertihrenden Finger.

» TouchLeave: Das Verlassen eines Elements mit dem berithrenden Finger.

Die Manipulationsereignisse werden iiblicherweise direkt auf einzelne Elemente
angewendet. Sie fihren erst zu Aktionen, wenn die boolesche Eigenschaft

IsManipulationEnabled des betreffenden Elements auf true gestellt wurde. Es
gibt folgende Transformationsmoglichkeiten:

» Verschieben: Bertihren eines Objekts mit einem Finger, anschlielend Verschie-
ben des Objekts.

» Skalieren: Berithren eines Objekts mit zwei Fingern, anschliefend Skalieren
des Objekts durch Verdnderung des Fingerabstands.

» Drehen: Bertihren eines Objekts mit zwei Fingern, anschliefend Drehen des

Objekts durch Drehen der beiden Finger umeinander.

Sie konnen die verschiedenen Aktionen weiterfithren, auch nachdem die Beriih-
rung geendet hat. Es gibt unter anderem folgende Manipulationsereignisse:
» ManipulationStarting: Der Beginn der Berithrung des Objekts.

» ManipulationStarted: Die Berthrung des Objekts hat stattgefunden. Die Posi-
tion kann festgestellt werden.

» ManipulationDelta: Die Verdnderung der Berithrung. Sie findet mehrfach
statt. Art und Umfang der Aktion konnen festgestellt werden.

» ManipulationInertiaStarting: Das Abheben vom Bildschirm. Bei einer wei-
terfithrenden Bewegung kann seine Tragheit, somit also das realistische Nach-
lassen der Bewegung eingestellt werden.

142

Touchscreen | 5.4

» ManipulationCompleted: Das Ende der Aktion, inklusive der (trige) weiterfiih-
renden Aktionen.

» ManipulationBoundaryFeedback: Das Auftreffen des bewegten Objekts auf
eine Grenze innerhalb der Anwendung.

Im nachfolgenden Projekt TouchBildschirm sehen Sie zwei eingerahmte Canvas
und eine ComboBox. Zu dem linken Canvas sind Touch-Ereignisse, zum rechten
Canvas Manipulationsereignisse registriert. Informationen zu den ausgelosten
Ereignissen werden in der ComboBox aufgelistet.

Der XAML-Code:

MWindow ...>
<Canvas>
<Border BorderBrush="Black" BorderThickness="1" Margin="3">
<Canvas x:Name="cvt" Width="180" Height="120"
TouchDown="td" TouchMove="td" TouchUp="td" />
</Border>
<Border BorderBrush="Black" BorderThickness="1" Margin="3"
Canvas.lLeft="195">
<Canvas x:Name="cvm" Width="180" Height="120"
IsManipulationkEnabled="True"
ManipulationStarting="msi" ManipulationStarted="msd"
ManipulationDelta="md" ManipulationlnertiaStarting="mis"
ManipulationCompleted="mc" />
</Border>
<ComboBox x:Name="1b" IskEditable="False" Canvas.Top="130"
Canvas.lLeft="10" Width="360" Height="23" />
</Canvas>
</Window>

Die drei verwendeten Touch-Ereignisse fithren alle zur selben Methode:

private void td(object sender, TouchEventArgs e)
{
Ib.Items.Add(e.RoutedEvent + " ID: " + e.TouchDevice.Id
+ " X: " + e.GetTouchPoint(cvt).Position.X
+ " Y: " + e.GetTouchPoint(cvt).Position.Y);
}

Bei jedem Touch-Ereignis werden die Art (TouchDown, TouchMove, TouchUp), die
eindeutige ID des Ereignisses und die Position relativ zum Canvas geliefert.

Die Manipulationsereignisse fithren zu verschiedenen Methoden, da die jeweili-
gen ...EventArgs-Objekte unterschiedliche Informationen bieten.

143

5 | Ereignisse und Kommandos

Zunichst die Startmethoden:

private void msi(object sender, ManipulationStartingEventArgs e)
{
1b.Items.Add("Starting, Container: "
+ e.ManipulationContainer.ToString());
}
private void msd(object sender, ManipulationStartedEventArgs e)
{
1b.Items.Add("Started, X: " + e.ManipulationOrigin.X
+ " Y: " + e.ManipulationOrigin.Y);
}

Nur wihrend des ManipulationStarting-Ereignisses kann das Element bestimmt
werden, das als Container verwendet wird, auf den sich alle Ereignisse und Berech-
nungen beziehen. Nach dem ManipulationStarted-Ereignis liefert die Eigenschaft
ManipulationOrigin vom Typ Point die Position der Start-Berithrung an.

Die Methode zum Ereignis ManipulationDelta:

private void md(object sender, ManipulationDeltaEventArgs e)
{
1b.Items.Add("Delta, TrX: " + e.DeltaManipulation.Translation.X

+ " TrY: " + e.DeltaManipulation.Translation.Y
+ " SkX: " + e.DeltaManipulation.Scale.X

+ " SkY: " + e.DeltaManipulation.Scale.Y

+ " Rot: " + e.DeltaManipulation.Rotation);

}

Wihrend der Manipulation tritt dieses Ereignis mehrfach auf. Das gelieferte
ManipulationDeltaEventArgs-Objekt hat die Eigenschaft DeltaManipulation
vom Typ ManipulationDelta. Dieses beinhaltet die folgenden Eigenschaften:

» Translation vom Typ Vector, fir den Wert der Verschiebung
» Scale vom Typ Vector, fur den Wert der Skalierung

» Rotation vom Typ double, fiir den Wert der Drehung in Grad
Die Methode zum Ereignis ManipulationInertiaStarting:

private void mis(object sender,
ManipulationlnertiaStartingEventArgs e)

1b.Items.Add(

"Tragheit, TrGX: " + e.InitialVelocities.LinearVelocity.X
+ " TrGY: " + e.InitialVelocities.LinearVelocity.Y
+ " SkGX: " + e.InitialVelocities.ExpansionVelocity.X

144

Kommandos | 5.5

+ " SkGY: " + e.InitialVelocities.ExpansionVelocity.Y
+ " RotG: " + e.InitialVelocities.AngularVelocity);
}

Zum Zeitpunkt des Abhebens werden die verschiedenen Aktionen mit einer
bestimmten Geschwindigkeit ausgefiihrt. Diese sollte aufgrund der Trigheit
nachlassen. Das gelieferte ManipulationInertiaStartingEventArgs-Objekt hat
die Eigenschaft InitialVelocities vom Typ ManipulationVelocities. Dieses
beinhaltet die folgenden Eigenschaften:

» LinearVelocity vom Typ Vector, fiir den Wert der Verschiebung pro Milli-
sekunde

» ExpansionVelocity vom Typ Vector, fiir den Wert der Skalierung pro Milli-
sekunde

» AngleVelocity vom Typ double, fiir den Wert der Drehung in Grad pro Milli-
sekunde

Die Methode zum Ereignis ManipulationCompleted:

private void mc(object sender, ManipulationCompletedEventArgs e)
{
1b.Items.Add(
"Total, TrX: " + e.TotalManipulation.Translation.X

+ " TrY: " + e.TotalManipulation.Translation.Y
+ " SkX: " + e.TotalManipulation.Scale.X

+ " SkY: " + e.TotalManipulation.Scale.Y

+ " Rot: " + e.TotalManipulation.Rotation);

}

Nach dem Ende der Manipulation tritt dieses Ereignis auf. Das gelieferte
ManipulationCompletedEventArgs-Objekt hat die Eigenschaft TotalManipulation
vom bereits bekannten Typ ManipulationDelta. Es werden die Werte der gesam-
ten Verinderung geliefert.

5.5 Kommandos

Hiufig vorkommende Aufgaben kénnen Sie in Kommandos kapseln. Diese
ermoglichen eine deutliche Trennung zwischen Design und Programmierung und
verbessern die Wartbarkeit einer Anwendung. In der WPF gibt es zahlreiche vor-
gefertigte Kommandos aus folgenden Gruppen:

» ApplicationCommands fiir Anwendungen. Beispiele: Close, Print

» ComponentCommands fiir Komponenten. Beispiele: MoveRight, SelectToEnd

145

5 | Ereignisse und Kommandos

» EditingCommands fiir Dokumente. Beispiele: A1ignRight, ToggleBold
» MediaCommands fiir Medien. Beispiele: P1ay, Rewind

» NavigationCommands zur Navigation. Beispiele: NextPage, Refresh

Zum Teil sind diese vorgefertigten Commands bereits fiir definierte Einsatzzwe-
cke vollstindig implementiert. Ein anderer Teil dieser vorgefertigten Commands
ist nur teilweise implementiert. Sie miissen das jeweilige Command dann ver-
vollstindigen, indem Sie es an die Elemente in Ihrer Anwendung anpassen. Diese
Anpassung wird iiber ein CommandBinding zwischen dem Command und einer
oder mehreren Ereignismethoden realisiert.

Tastenkombinationen zu Erleichterung der Benutzung lassen sich mit Commands
verbinden. Neben den vorgefertigten Commands konnen Sie auch eigene Com-
mands erstellen und einsetzen.

5.5.1 Eingebaute Kommandos

Im Projekt KommandosEingebaut verdeutliche ich Thnen die Kapselung und die
Mehrfachverwendung von Kommandos. Genutzt werden ein fertig implemen-
tiertes EditingCommand und ein teilweise implementiertes App1icationCommand.

Der Benutzer kann Text in zwei Steuerelementen vom Typ RichTextBox markie-
ren und fett beziehungsweise nicht fett formatieren. AuBerdem kann er die
Anwendung tiber zwei verschiedene Buttons beenden, falls bestimmte Bedin-
gungen zutreffen (sieche Abbildung 5.8).

Mehr iiber das Steuerelement RichTextBox finden Sie in Abschnitt 13.1.11.

rlEl KommandosEingebaut E@u1
Ende 1 Ende 2

Nicht fett, fett

Fett, nicht fett

Abbildung 5.8 Eingebaute Kommandos

Zundchst geht es um den Aufbau des Kommandos, inklusive der Bindung an die
Ereignismethoden:

<MWindow ...>
<Window.CommandBindings>
<CommandBinding Command="ApplicationCommands.Close"

146

Kommandos | 5.5

CanExecute="erlaubt" Executed="ausfuehren" />
</Window.CommandBindings>

</Window>

Das Application-Kommando Close ist nicht fertig implementiert, daher benétigt
es noch die Verbindung zu Ereignismethoden mithilfe einer CommandBinding.
Objekte dieser Klasse stehen innerhalb der Auflistung CommandBindings, die Sie
einem Element der Anwendung zuordnen. Falls Sie die Auflistung dem Fenster
zuordnen, dann stehen die CommandBindings allen Elementen des Fensters zur
Verfligung.

In der Eigenschaft Command der CommandBinding steht das Kommando. Uber das
Ereignis Cantxecute konnen Sie prifen, ob das Kommando ausgefithrt werden
darf. Das Ereignis Executed tritt bei Ausfiihrung des Kommandos auf. Die zuge-
horigen Ereignismethoden:

private void erlaubt(object sender, CantExecuteRoutedEventArgs e)
{ if (bearbeitetl || bearbeitet2) e.CanExecute = false;

else e.CankExecute = true; |
private void ausfuehren(object sender, ExecutedRoutedEventArgs e)
{ Close(); }

Die Methode fuir das Ereignis CanExecute (hier: erlaubt()) priift die Durchfiihr-
barkeit der geplanten Aktion und liefert einen booleschen Wert. Dieser Wert ist
hier von bestimmten Bedingungen abhingig, die weiter unten erldutert werden.
Die Methode fiir das Ereignis Executed (hier: ausfuehren()) fithrt die geplante
Aktion aus. Diese Aktion sollte natiirlich im Zusammenhang mit dem SchlieSen
der Anwendung stehen.

Das Kommando steht nunmehr vollstindig zur Verfiigung und kann von mehre-
ren Steuerelementen genutzt werden. Ein weiterer Vorteil dieses vorgefertigten
Commands: Die Eigenschaft IsEnabled der betreffenden Steuerelemente wird in
Abhiangigkeit von der Prifung durch CanExecute gesetzt.

Der weitere Aufbau der Anwendung:

<MWindow ...>

<StackPanel>
<WrapPanel HorizontalAlignment="Center">
<Button Command="EditingCommands.ToggleBold"
CommandTarget="{Binding ElementName=rtbl}"
Margin="5" Width="50">Fett 1</Button>
<Button Command="EditingCommands.ToggleBold"

147

5 | Ereignisse und Kommandos

CommandTarget="{Binding ElementName=rtb2}"
Margin="5" Width="50">Fett 2</Button>
<Button Command="ApplicationCommands.Close"
Margin="5" Width="50">Ende 1</Button>
<Button Command="ApplicationCommands.Close"
Margin="5" Width="50">Ende 2</Button>
</WrapPanel>
<RichTextBox x:Name="rtbl" Margin="5" Height="35"
TextChanged="tcl" />
<RichTextBox x:Name="rtbh2" Margin="5" Height="35"
TextChanged="tc2" />
</StackPanel>
</Window>

Zwei Buttons setzen das vorgefertigte Editing-Kommando ToggleBold um. Es ist
bereits vollstindig implementiert. Eine CommandBinding an Ereignismethoden ist
also nicht mehr notig. Allerdings benétigt das Kommando die Bindung zu dem
Steuerelement, in dem das Formatieren des markierten Inhalts stattfindet. Diese
Bindung wird tiber die Eigenschaft CommandTarget hergestellt.

Es gibt zwei Buttons, die das vorgefertigte Application-Kommando Close umset-
zen. Es wurde erst in dieser Anwendung vervollstindigt. Aulerdem gibt es zwei
Steuerelemente vom Typ RichTextBox. Eine Bearbeitung des Textes darin 16st
jeweils das Ereignis TextChanged aus. Die zugehorigen Ereignismethoden im
Zusammenhang der Fensterklasse:

public partial class MainWindow : Window
{
bool bearbeitetl, bearbeitet?;
public MainWindow()
{
InitializeComponent();
bearbeitetl = false;
bearbeitet? = false;

private void tcl(object sender, TextChangedEventArgs e)
{ bearbeitetl = true; }
private void tc2(object sender, TextChangedEventArgs e)
{ bearbeitet2 = true; }

}

Sobald einer der Texte bearbeitet wird, wird die zugehdrige boolesche Variable
gesetzt. In der Methode zum Ereignis CanExecute des Application-Kommandos
Close wird dadurch das Schliefen des Fensters verhindert.

148

Kommandos | 5.5

5.5.2 Kommandos mit Eingabegesten verbinden

Sie kénnen Kommandos mit Eingabegesten verbinden. Damit werden Ihre
Anwendungen einfacher bedienbar. Dies gilt besonders dann, wenn Sie sich an
verbreitete Konventionen halten. Ein Beispiel fiir eine Konvention ist, DATEI

OFFNEN mit [Strg]+(0] zu verkntipfen.

Hinweis: Der Begrift Eingabegeste wird hier als Oberbegriff fiir Tastenkombinati-
onen und Mausaktionen verstanden. Er hat nichts mit den Gesten fur bertih-
rungsempfindliche Bildschirme zu tun.

Der Benutzer muss natiirlich wissen, welche Aktionen welche Wirkung haben.
Hiufig werden diese Informationen neben den entsprechenden Mentbefehlen
angegeben.

Im Projekt Kommandosinput wird das Editing-Kommando ToggleBold mit den
Tastenkombinationen (Strg)+(F], Funktionstaste (F12] und [Strg)+(A1t])+(g]
sowie den Mausaktionen RECHTER DOPPELKLICK und DREHUNG DES MAUSRADS
verbunden. Wie im vorherigen Beispiel wird damit Text in einem Steuerelement
vom Typ RichTextBox fett formatiert. Die Information tber die Bedienung wird
neben dem Mentipunkt BEARBEITEN « FETT angegeben (siehe Abbildung 5.9).

[®] KommandosInput @Eﬂ
| Bearbeiten ﬂ |

Fett (Strg+F) (F12) (Strg+Alt+G) (WheelClick)

Fett, nicht fett

Abbildung 5.9 Tasten- und Mausbedienung

Der Aufbau der Anwendung:

<MWindow ...>
<Window.InputBindings>
<KeyBinding Command="EditingCommands.ToggleBold"
CommandTarget="{Binding ElementName=rtb}"
Key="F" Modifiers="Control" />

<KeyBinding Command="..." CommandTarget="..." Key="F12" />
<KeyBinding Command="..." CommandTarget="..."

Key="G" Modifiers="Control+Alt" />
{MouseBinding Command="..." CommandTarget="..."

MouseAction="WheelClick" />
</Window.InputBindings>

{Menultem Header="Fett (Strg+F) (F12) (Strg+tAl1t+G)

149

5 | Ereignisse und Kommandos

(RightDoubleClick) (WheelClick)"
Command="EditingCommands.ToggleBold"
CommandTarget="{Binding ElementName=rtb}" />

</Window>

Die Verbindung zwischen dem Editing-Kommando ToggleBold und den Tasten-
kombinationen wird mithilfe einer KeyBinding hergestellt. Mausaktionen stehen
innerhalb einer MouseBinding. Objekte dieser Klassen stehen innerhalb der Auf-
listung InputBindings, die Sie einem Element der Anwendung zuordnen. Falls
Sie die Auflistung dem Fenster zuordnen, dann stehen die InputBindings allen
Elementen des Fensters zur Verfiigung.

In der Eigenschaft Command der KeyBinding steht das Kommando. Es bendtigt wei-
terhin die Bindung zu dem RichTextBox-Steuerelement rtb, in dem das Formatie-
ren stattfindet. Die Bindung wird tiber die Eigenschaft CommandTarget hergestellt.

Bei Tastenkombinationen beinhalten die Eigenschaften Key und Modifiers die
Taste und gegebenenfalls die Sondertasten. Falls es mehrere Sondertasten gibt,
die der Benutzer gleichzeitig betitigen muss, so verbinden Sie sie {iber ein + mit-
einander. Werte fiir die Eigenschaft Key kommen aus der Enumeration Key (siehe
Abschnitt 5.1.1, »Anzeige der Tastaturinformationen«). Werte fiir die Eigenschaft
Modifiers kommen aus der Enumeration ModifierKeys. Es gibt die Werte None,
Alt, Control, Shift und Windows (fiir die Windows-Taste).

Der Name der Mausaktion steht in der Eigenschaft MouseAction. Werte fiir die
Eigenschaft kommen aus der Enumeration MouseAction. Es gibt die Werte None,
LeftClick, MiddleClick, RightClick, WheelClick, LeftDoubleClick, MiddleDouble-
Click und RightDoubleClick.

Eingabegesten konnen Sie eigenen Kommandos direkt bei ihrer Erzeugung
zuordnen (siehe dazu den nichsten Abschnitt).

5.5.3 Eigene Kommandos

Um ein eigenes Kommando zu erstellen, benétigen Sie eine neue statische Klasse.
Das Kommando ist eine statische Eigenschaft dieser Klasse, vom Typ
RoutedCommand. Sie mussen sie Uiber ein CommandBinding mit Ereignismethoden
verbinden. Den Aufruf des Kommandos kénnen Sie noch tiber Eingabegesten
vereinfachen, wie es in Abschnitt 5.5.2 gezeigt wurde.

Im nachfolgenden Projekt KommandosEigene werden zwei Kommandos erzeugt.
Der Aufruf der Kommandos wird jeweils tiber eine CheckBox gestattet und tiber
einen Button durchgefiihrt (siehe Abbildung 5.10).

150

Kommandos | 5.5

[KommandosEigene |E

[C] "Eins" erlaubt Zwei

| Eins |

"Zwei” erlaubt
| :

Abbildung 5.10 Eigene Kommandos

Zunichst folgt hier der Aufbau der neuen Klasse meinekommandos, in der die bei-
den eigenen Kommandos erzeugt werden:

using System;
using System.Windows.Input;
namespace KommandosEigene
{
public static class meineKommandos
{
private static RoutedCommand ausgabe_eins;
public static RoutedCommand Ausgabe_Eins
{ get { return ausgabe_eins; })}

private static RoutedCommand ausgabe_zwei;
public static RoutedCommand Ausgabe_Zwei
{ get { return ausgabe_zwei; })}

static meineKommandos ()
{
ausgabe_eins = new RoutedCommand();

InputGestureCollection meineGestensammlung =
new InputGestureCollection();

KeyGesture meineGeste_StrgZ = new KeyGesture(Key.Z,
ModifierKeys.Control);
meineGestensammlung.Add(meineGeste_StrgZ);

MouseGesture meineGeste_RightDoubleClick =

new MouseGesture(MouseAction.RightDoubleClick);
meineGestensammlung.Add(meineGeste_RightDoubleClick);

151

5 | Ereignisse und Kommandos

ausgabe_zwei = new RoutedCommand("Kommando Zwei",
typeof(meineKommandos), meineGestensammlung);

}

Der Namespace System.Windows.Input wird fiir die Klasse RoutedCommand beno-
tigt. Es werden die beiden neuen Kommandos Ausgabe_eins und Ausgabe_zwei
als statische Eigenschaften der Klasse angelegt, die vom Typ RoutedCommand sind.

Das RoutedCommand ausgabe_eins wird ohne Parameter erzeugt. Zu diesem
Kommando konnen Sie spiter noch Eingabegesten hinzuftigen.

Zum Vergleich wird das RoutedCommand ausgabe_zwei schon mit einer fertigen
Sammlung von Eingabegesten erzeugt. Dazu miissen Sie zunichst eine leere Auf-
listung des Typs InputGestureCollection anlegen. Sie kénnen dann eine neue
Tastenkombination vom Typ KeyGesture oder eine neue Mausaktion vom Typ
MouseGesture erzeugen.

Beide Gesten werden der Auflistung jeweils mithilfe der Methode Add () hinzuge-
fiigt. Das Kommando selbst wird nun mit drei Parametern erzeugt:

» mit dem selbst gewdhlten Namen des Kommandos
» mit dem Typ des Besitzers des Kommandos, also dem Typ dieser Klasse

» mit der Auflistung der Eingabegesten

Es folgt der Aufbau der Anwendung, in der die beiden neuen Kommandos einge-
setzt werden:

<Window ... xmlns:ke="clr-namespace:KommandosEigene" ...>
<MWindow.CommandBindings>
<CommandBinding Command="ke:meineKommandos.Ausgabe_Eins"
CanExecute="Ausgabe_Eins_erlaubt"
Executed="Ausgabe_Eins_ausgefuehrt" />
<CommandBinding Command="ke:meineKommandos.Ausgabe_Zwei"
CanExecute="Ausgabe_Zwei_erlaubt"
Executed="Ausgabe_Zwei_ausgefuehrt" />
</Window.CommandBindings>
{StackPanel>
{CheckBox x:Name="cbl" Width="100" Margin="5">
"Eins" erlaubt</CheckBox>
<Button Command="ke:meineKommandos.Ausgabe_Eins"
Width="100" Margin="5">Eins</Button>
{CheckBox x:Name="cb2" Width="100" Margin="5">
"Zwei" erlaubt</CheckBox>

152

Kommandos | 5.5

<Button Command="ke:meineKommandos.Ausgabe_Zwei"
Width="100" Margin="5">Zwei</Button>
</StackPanel>
</Window>

Zunichst mussen Sie den lokalen Namespace dieses Projekts (KommandosEigene)
einbinden, ansonsten wire die Klasse meineKommandos hier nicht bekannt. Als
selbst gewdhltes Kirzel fiir den Namespace wird hier im weiteren Verlauf des
XAML-Codes ke verwendet.

Beide Kommandos verbinden Sie jeweils tiber ein CommandBinding mit Methoden
zu den Ereignissen CanExecute und Executed (vergleiche Abschnitt 5.5.1, »Einge-
baute Kommandos«). Den beiden Buttons ordnen Sie jeweils ein Kommando zu.
Nachfolgend sehen Sie die Ereignismethoden:

private void Ausgabe_FEins_erlaubt(object sender,
CankExecuteRoutedEventArgs e)
{ e.CanExecute = (bool) cbl.IsChecked; }

private void Ausgabe_FEins_ausgefuehrt(object sender,
ExecutedRoutedEventArgs e)
{ MessageBox.Show("Eins"); }

private void Ausgabe_Zwei_erlaubt(object sender,
CanExecuteRoutedEventArgs e)
{ e.CanExecute = (bool)cb2.IsChecked; }

private void Ausgabe_Zwei_ausgefuehrt(object sender,
ExecutedRoutedEventArgs e)
{ MessageBox.Show("Zwei"); }

Die beiden Methoden ..._erlaubt() liefern das Ergebnis zum Ereignis
CanExecute. Sie dndern auch die Optik der Buttons. Es ldsst sich leicht erkennen,
ob ein Button bedienbar ist oder nicht (siehe Abbildung 5.10). Die beiden
Methoden ..._ausgefuehrt() fithren die Aktionen gemil dem jeweiligen
Executed-Ereignis durch.

153

In diesem Kapitel lernen Sie den Aufbau einer WPF-Anwendung und
verschiedene Formen von Anwendungen kennen.

6 Anwendungen

In diesem Kapitel wird der grundsitzliche Aufbau von WPF-Anwendungen erldu-
tert. Innerhalb Threr Anwendungen wiederum kénnen Sie auf Ressourcen zugrei-
fen. Es wird dargestellt, welcher Art diese Ressourcen sind und auf welche Weise
Sie darauf zugreifen konnen.

Standard-Anwendungen sind aus Fenstern zusammengesetzt. Sie lernen Eigen-
schaften und Ereignisse von Fenstern und den Datenaustausch zwischen den
Fenstern kennen. Eine Alternative bietet die Navigation mit Seiten.

In ihrer Vielfalt bietet die WPF auch die Moglichkeit, Gadgets zu erstellen. Mit
wenig Aufwand lassen sich Desktop-Anwendungen in Browser-Anwendungen,
sogenannte XBAPs, umwandeln. Es wird auch erldutert, welchen Einschrinkun-
gen diese unterliegen.

6.1 Allgemeiner Aufbau

Zunichst wird eine minimale WPF-Anwendung mit einem leeren Fenster entwi-
ckelt. Diese wird anschlieBend um ein Steuerelement erweitert. Dabei wird die
Reihenfolge der Ereignisse beim Start und beim Beenden einer Anwendung ver-
deutlicht. Im letzten Abschnitt geht es um Aufrufparameter und den Riickgabe-
wert einer Anwendung.

6.1.1 Einfache Anwendung

In diesem Abschnitt wird eine einfache Anwendung entwickelt, die nur aus
einem leeren Fenster besteht, das der Benutzer vergrofern, verkleinern, ver-
schieben und schliefen kann (siehe Abbildung 6.1). Daran wird Thnen der Mini-
mal-Aufbau einer WPF-Anwendung verdeutlicht (Projekt AnwendungEinfach).

155

6 | Anwendungen

& =)]

Abbildung 6.1 Ein einfaches Fenster

Zur Erstellung sind folgende Schritte durchzuftihren:

» Erstellen Sie eine WPF-Anwendung, hier mit dem Namen AnwendungEinfach.

» Loschen Sie im Projektmappenexplorer die Dateien App.xaml und MainWin-
dow.xaml. Dabei werden die zugehorigen Programmcode-Dateien ebenfalls
geldscht.

» Fligen Sie dem Projekt eine neue Klasse hinzu, hier mit dem Namen
meinFenster. Dabei wird die Datei meinFenster.cs erzeugt.

Darin muss sich lediglich der folgende Programmcode befinden:

using System;
using System.Windows;
namespace AnwendungEinfach
{
class meinFenster : Window
{
[STAThread]
public static void Main()
{
Application a = new Application();
meinFenster mf = new meinFenster();
a.Run(mf);

}

Sie bendtigen die Namespaces System und System.Windows. Die Klasse
meinFenster erbt die grundsitzlichen Eigenschaften und Ereignisse von der
Klasse Window.

Fur viele Elemente der Anwendung ist es erforderlich, dass sie in einem Single-
Threaded Apartment Thread (STAThread) lduft. Dies kennzeichnet die Art der
Kommunikation dieser Anwendung mit anderen Prozessen und geht noch auf die
Zeit vor der WPF und vor .NET zurtick.

156

Aligemeiner Aufbau | 6.

Innerhalb der bekannten statischen Methode Main() wird eine Instanz der
Anwendungsklasse Application und eine Instanz der Fensterklasse meinFenster
erzeugt. Mithilfe der Methode Run() wird die Anwendung gestartet und das
angegebene Fenster geoffnet.

6.1.2 Anwendung mit Steuerelement

In diesem Abschnitt wird die vorherige Minimal-Anwendung um ein Steuerele-
ment mit Eigenschaften und einem Ereignishandler erginzt. Das Projekt Anwen-
dungElement sehen Sie in Abbildung 6.2.

[®7 AnwendungElement lilgu

Hallo]

Abbildung 6.2 Fenster mit Steuerelement

Die Erstellung des Projekts wurde bereits im vorherigen Abschnitt beschrieben.
Der Code in der Datei meinFenster.cs wurde erweitert:

using System;
using System.Windows;
using System.Windows.Controls;
namespace AnwendungElement
{
class meinFenster : Window
{
public meinFenster()
{
Button b = new Button();
b.Margin = new Thickness(5);
b.Content = "Hallo";
b.Click += new RoutedEventHandler(b_Click);

this.Width = 250;
this.Height = 80;
this.Title = "AnwendungElement";
this.Content = b;

private void b_Click(object sender, RoutedEventArgs e)
{ MessageBox.Show("Hallo"); }

157

6 | Anwendungen

[STAThread]
public static void Main() { ... }

}

Es wird zusitzlich der Namespace System.Windows.Controls fiir den Button (und
andere Steuerelemente) bendtigt. Im Konstruktor des Fensters wird ein Button
mit Werten fir die Eigenschaften Margin und Content erzeugt. Fur das Click-
Ereignis des Buttons wird ein Delegate vom Typ RoutedEventHandler hinzuge-
fugt. Dieser verweist auf die zugehorige Ereignismethode b_C1ick().

Die Eigenschaften Width, Height und Title des Fensters bekommen Werte. Als
Letztes wird der Button als Content fiir das Fenster festgelegt. Da der Button das
einzige Element des Fensters ist, kann auf ein umgebendes Layout-Element ver-
zichtet werden. Die Main-Methode bleibt unverdndert. Damit endet die Minimal-
Anwendung.

6.1.3 Reihenfolge der Ereignisse

Bei AnwendungReihenfolge handelt es sich wieder um ein Projekt, das auf
gewohnte Art und Weise nach der Vorlage WPF-ANWENDUNG mit MainWin-
dow.xaml und App.xaml erzeugt wird. Es verdeutlicht, in welcher Reihenfolge
die einzelnen Elemente beim Start der Anwendung initialisiert und geladen wer-
den. Damit wird klar, welche Daten zu welchem Zeitpunkt bereits vorhanden
sind beziehungsweise von Thnen schon gedndert werden konnen.

Auferdem sehen Sie die Reihenfolge beim Beenden der Anwendung. Das Schlie-
Ben des Fensters konnen Sie aufgrund von bestimmten Bedingungen abbrechen.
Zum richtigen Zeitpunkt konnen Sie noch Daten sichern und Aufriumarbeiten
durchfiihren.

Die Anwendung beinhaltet ein Fenster, in dem mithilfe eines StackPanels zwei
Buttons angeordnet werden (siehe Abbildung 6.3). Mithilfe von zwei RadioBut-
tons legt der Benutzer fest, ob das Fenster geschlossen werden kann.

[®] AnwendungReihenfolge =

Bul
Bu 2

@ SchlieRen
© Nicht schlieBen

Abbildung 6.3 Verdeutlichung der Reihenfolge

158

Aligemeiner Aufbau | 6.

Der Start lduft wie folgt ab:

Die Anwendung wird gestartet.
Button 1 ist initialisiert.

Button 2 ist initialisiert.

Das StackPanel ist initialisiert.
Das Fenster ist initialisiert.

Das Fenster ist geladen.

Das StackPanel ist geladen.
Button 1 ist geladen.

Y 0 N o vk W N

Button 2 ist geladen.
Das Beenden der Anwendung, falls das Fenster geschlossen werden kann, erfolgt so:

1. Das Fenster wird geschlossen.
2. Das Fenster ist entladen.

3. Die Anwendung wird beendet.
4

. Das Fenster ist geschlossen.

Es sind Ereignismethoden fiir die Anwendung und fiir das Fenster definiert. Den
Aufbau der Anwendung sehen Sie in der Datei App.xaml:

<Application x:Class="AnwendungReihenfolge.App"
xmlns="http://..." xmlns:x="http://..."
StartupUri="MainWindow.xaml"
Startup="Application_Startup"
Exit="Application_Exit">

</Application>

In der Eigenschaft StartupUri wird die Startdatei fiir die Anwendung festgelegt.
Die Ereignisse Startup (Starten der Anwendung) und Exit (Beenden der Anwen-
dung) fithren zu den Ereignismethoden der Anwendung.

Der Programmcode in der Datei App.xaml.cs:

public partial class App : Application
{
private void Application_Startup(object sender,
StartupEventArgs e)
{ MessageBox.Show("Anwendung gestartet"); }
private void Application_Exit(object sender, ExitEventArgs e)
{ MessageBox.Show("Anwendung beendet"); }

159

6 | Anwendungen

Die Instanz der Klasse StartupEventArgs kann zur Ubermittlung von Aufrufpara-
metern dienen. Entsprechend konnen Sie die Instanz der Klasse ExitEventArgs
zur Ubermittlung von Riickgabeparametern verwenden (siehe den nichsten
Abschnitt).

Der Aufbau des Fensters in der Datei MainWindow.xaml:

<Window ... Initialized="Window_Initialized"
Loaded="Window_Loaded" Closing="Window_Closing"
UnToaded="Window_Unloaded" Closed="Window_Closed">
<StackPanel x:Name="StP" Initialized="init" Loaded="load">
<Button x:Name="Bul" Initialized="init"
Loaded="1oad">Bu 1</Button>
<Button x:Name="Bu2" Initialized="init"
Loaded="1oad">Bu 2</Button>
<RadioButton IsChecked="True">SchlieBen</RadioButton>
<RadioButton x:Name="rb2" >Nicht schlieBen</RadioButton>
<{/StackPanel>
</Window>

Die Ereignisse Initialized, Loaded, Closing, Unloaded und Closed fithren zu den
Ereignismethoden des Fensters. Die Ereignisse Initialized und Loaded des
StackPanels und der Buttons fithren zu den Ereignismethoden der Elemente.

Der Programmcode in der Datei MainWindow.xaml.cs:

private void Window_Initialized(object sender, EventArgs e)
{ MessageBox.Show("Fenster ist initialisiert"); }

private void Window_lLoaded(object sender, RoutedEventArgs e)
{ MessageBox.Show("Fenster ist geladen"); }

private void Window_Closing(object sender,
System.ComponentModel.CancelEventArgs e)

if ((bool)rb2.IsChecked)
{
e.Cancel = true;
MessageBox.Show("Fenster wird nicht geschlossen");
}
else
MessageBox.Show("Fenster wird geschlossen");

private void Window_Unloaded(object sender, RoutedEventArgs e)
{ MessageBox.Show("Fenster ist entladen"); }
private void Window_Closed(object sender, EventArgs e)

160

Aligemeiner Aufbau | 6.

{ MessageBox.Show("Fenster ist geschlossen"); }

private void init(object sender, EventArgs e)

{ MessageBox.Show(((FrameworkElement)sender).Name
+ " dinitialisiert"); }

private void load(object sender, RoutedEventArgs e)

{ MessageBox.Show(((FrameworkElement)sender).Name
+ " geladen"); !}

Der zweite Parameter der Methode Window_Closing() ist vom Typ CancelEventArgs
aus dem Namespace System.Component.Model. Wird dessen Eigenschaft Cance]
auf true gesetzt, so wird das Schliefen des Fensters abgebrochen. Auferdem
kénnten Sie in dieser Methode noch Daten sichern und Aufraumarbeiten durch-
fithren.

6.1.4 Aufruf von der Kommandozeile

Wie bereits angesprochen, koénnen Sie die Ereignisse Startup und Exit der
Anwendung nutzen, um bei einem Aufruf der Anwendung von der Kommando-
zeile Aufrufparameter zu Gbermitteln beziehungsweise einen Riickgabewert an
Windows zu liefern.

Dies verdeutliche ich Thnen im Projekt AnwendungKommandozeile. Darin wer-
den der Anwendung zwei ganze Zahlen iibergeben. Die Summe der beiden Zah-
len wird an Windows geliefert.

Der Aufruf von der Kommandozeile erfolgt wihrend der Entwicklung eines Pro-
jekts aus dem Verzeichnis C:\Users\[Benutzername]\Documents\Visual Studio
2010\Projects\AnwendungKommandozeile\AnwendungKommandozeile\bin\
Debug.

Ein Beispielaufruf: AnwendungKommandozeile 4 8. Nach Ablauf der Anwendung
wird der Wert 12 an Windows zuriickgeliefert. Zum Aufruf der Anwendung und
zur Ausgabe des Wertes eignet sich eine kleine Batch-Datei (hier anw.bat) im
oben genannten Verzeichnis:

@echo off
AnwendungKommandozeile 4 8
echo %errorlevel’%

Der Aufbau der Anwendung in der Datei App.xaml sieht aus wie im vorherigen
Projekt:

<Application x:Class="AnwendungKommandozeile.App"
xmlns="http://..." xmlns:x="http://..."

161

6 | Anwendungen

StartupUri="MainWindow.xaml"

Startup="Application_Startup"

Exit="Application_Exit">
</Application>

Der Programmcode der Anwendungsklasse App in der Datei App.xaml.cs wurde
geandert:

public partial class App : Application
{
public static int arg0, argl, erg;

private void Application_Startup(object sender,
StartupEventArgs e)

MessageBox.Show(System.Environment.CommandLine);
MessageBox.Show(String.Join(", ", e.Args));

if (e.Args.Count() > 0)

{
argd = Convert.ToInt32(e.Args[0]);
argl = Convert.ToInt32(e.Args[1]1);

}

else

{ arg0 = 0; argl = 0; }
erg = arg0 + argl;

private void Application_Exit(object sender, ExitEventArgs e)
{ e.ApplicationExitCode = erg; }
}

Sie vereinbaren die 6ffentlichen Klassenvariablen arg0, argl und erg. Diese die-
nen zur Ubermittlung der Aufrufparameter und des Ergebnisses an die Fenster-
instanz. Die Nutzung sehen Sie weiter unten.

Es wird vereinfachend davon ausgegangen, dass der Benutzer die Anwendung
fehlerfrei aufruft. Bei einem Aufruf mit oben angegebener Batch-Datei erschei-
nen die Ausgaben gemaf Abbildung 6.4 und Abbildung 6.5.

==

AnwendungKommandozeile 4 8

Abbildung 6.4 Ausgabe von »System.Environment.CommandLine«

162

Allgemeiner Aufbau

48

Abbildung 6.5 Ausgabe von »e.Args«

Beschreibung der Methode »Application_Startup()«

Die Eigenschaft CommandLine der Klasse System.Environment beinhaltet das in
Abbildung 6.4 dargestellte Aufrufkommando der Anwendung. Die Eigenschaft
Args der Instanz der Klasse StartupEventArgs beinhaltet eine Auflistung der Auf-
rufparameter (siehe Abbildung 6.5).

Falls der Aufruf aus der Entwicklungsumgebung erfolgte, so liefert die Methode
Count() den Wert O, da es keine Aufrufparameter gibt. Die Variablen arg0 und argl
bekommen dann den Wert 0. Falls der Aufruf tiber die oben angegebene Batch-
Datei erfolgte, so bekommen arg0 und argl die Werte der Aufrufparameter.

Beschreibung der Methode »Application_Exit()«

Der Wert der Eigenschaft ApplicationExitCode der Instanz der Klasse Exit-
EventArgs dient zur Ubermittlung des Riickgabeparameters.

In der Fensterinstanz stehen die Aufrufparameter iiber die beiden 6ffentlichen
Klassenvariablen arg0 und argl aus der Anwendungsklasse zur Verfiigung. Falls
der Benutzer den Button aus Abbildung 6.6 betitigt, so sieht er das Ergebnis aus
Abbildung 6.7.

[®] AnwendungKommandozeile @Eﬂ

Start-Argumente und Riickgabewert

Abbildung 6.6 Aufruf der Werte

4+8=12

Abbildung 6.7 Werte

Nachfolgend der zugehoérige Programmcode:

private void b_Click(...) { MessageBox.Show
(App.argd + " + " + App.argl + " =" + App.erg); }

163

6 | Anwendungen

6.2 Ressourcen

Bestandteile einer Anwendung, die Sie hdufig benétigen, sollten Sie in Ressour-
cen anlegen. Physische Ressourcen sind zum Beispiel Bild- oder Sounddateien.
Logische Ressourcen sind Bestandteile des Codes, die von mehreren Steuerele-
menten verwendet werden.

Ressourcen sind austauschbar und erleichtern die Pflege einer Anwendung. Logi-
sche Ressourcen organisieren Sie in Ressourcen-Worterbiichern (Resource Dictio-
naries). In Abschnitt 7.4, »Skins«, finden Sie eine Anwendung zu diesem Thema.

6.2.1 Physische Ressourcen

Physische Ressourcen sind Dateien, die Sie dem Projekt hinzufiigen. Dies kénnen
Sie auf zwei Arten machen:

» per Drag&Drop in den Projektmappenexplorer

» Uber den Meniipunkt PROJEKT « VORHANDENES ELEMENT HINZUFUGEN
AnschlieBend sehen Sie die Datei im Projektmappenexplorer. In Abbildung 6.8

sind dies die Bilddateien computer.gif und paint.gif sowie die Sounddatei
tada.wav im Projekt RessourcenPhysisch.

Projektmappen-Explorer
|2 &
[sd Projektmappe "RessourcenPhysisch”
- |@ RessourcenPhysisch\
i = Properties
b Verweise
o Appxaml
& computer.gif
r & MainWindow.xaml
[& paintgif
{1 tada.wav

Abbildung 6.8 Physische Ressourcen

Die Bilder werden im Projekt angezeigt, entweder unmittelbar nach Aufruf
oder nach einer Benutzeraktion. Die Sounddatei soll der Benutzer bei Bedarf
abspielen konnen. Im Falle der Sounddatei ist es allerdings notwendig, die
Eigenschaft IN AUSGABEVERZEICHNIS KOPIEREN auf IMMER KOPIEREN zu stellen
(siehe Abbildung 6.9). Alle Dateien stehen nun im Projektverzeichnis und sind
bei einer Installation eingeschlossen.

164

Ressourcen | 6.2

& paint.gif
Mﬁ tada.wav|

Eigenschaften

tada.wav Dateieigenschaften
e =

4 Erweitert

Benutzerdefiniertes Tool
Buildvorgang Inhalt
In Ausgabeverzeichnis kopieren Immer kopieren

Abbildung 6.9 Die Eigenschaft »In Ausgabeverzeichnis kopieren«

Die Anwendung sieht zunéchst so aus wie in Abbildung 6.10.

[®°] RessourcenPhysisch

-

|® Computer
/O Paint

Abbildung 6.10 Nach dem Start

Die RadioButtons geben die Méglichkeit, das Bild zu wechseln (siehe Abbildung 6.11).

[E7] RessourcenPhysisch

5

Abbildung 6.11 Nach einem Wechsel der Auswahl

IO Computer
|@ Paint

Zunichst der Aufbau des Fensters:

<{StackPanel>
<Image x:Name="im" Source="computer.gif"
Height="32" Width="32" />
<RadioButton x:Name="computer"
Click="rb_Click" IsChecked="True">Computer</RadioButton>
<RadioButton x:Name="paint"

165

6 | Anwendungen

Click="rb_Click">Paint</RadioButton>
<Button Width="60" Click="b_Click">Sound</Button>
</StackPanel>

Die Eigenschaft Source des Steuerelements Image bekommt als Wert den Dateina-
men. Es ist kein Pfad notwendig, da die Datei eine Ressource des Projekts ist.
Beide RadioButtons fithren zur gleichen Ereignismethode.

Im Programmcode muss der Namespace System.Media eingebunden werden. Es
folgt der Code:

private void rb_Click(object sender, RoutedEventArgs e)
{
Control ¢ = (Control)sender;
im.Source = new BitmapImage(new Uri(c.Name + ".gif",
UriKind.Relative));

private void b_Click(object sender, RoutedEventArgs e)
{
SoundPTlayer sp = new SoundPlayer("tada.wav");
sp.Play();
}

Der Name des aufrufenden RadioButtons dient hier als Teil des Dateinamens. Der
Konstruktor der BitmapImage-Klasse stellt ein BitmapSource-Objekt zum Laden
von Bildern tiber ein Uri-Objekt bereit. Die Zeichenfolge des URI kénnen Sie mit-
hilfe eines Wertes aus der Enumeration UriKind absolut oder relativ angeben. Bei
einer Ressource innerhalb des Projekts eignet sich der Wert Relative.

Die Klasse SoundPlayer aus dem Namespace System.Media eignet sich zur einfa-
chen Wiedergabe einer WAV-Datei. Den Namen der Datei kénnen Sie im Kon-
struktor als Wert fiir die Eigenschaft SoundLocation angeben. Hier ist dies die hin-
zugefligte Projekt-Ressource. Das Abspielen mithilfe der Methode P1ay() gelingt
Thnen allerdings nur, wenn Sie die Eigenschaft IN AUSGABEVERZEICHNIS KOPIEREN
der Ressourcendatei auf IMMER KOPIEREN gestellt haben, wie bereits oben erwihnt
wurde. Mehr zu Audio- und Videodateien finden Sie in Kapitel 12, »Audio und
Video«.

6.2.2 Logische Ressourcen

Logische Ressourcen sind Bestandteile des Codes, die von mehreren Steuerele-
menten verwendet werden. Dies konnen zum Beispiel Vorlagen sein. Logische
Ressourcen haben unterschiedliche Giiltigkeitsbereiche:

166

Ressourcen | 6.2

» Falls sie in der Anwendungsdatei App.xaml definiert werden, gelten sie fiir die
gesamte Anwendung.

» Falls sie in der Fensterdatei definiert werden, zum Beispiel in MainWin-
dow.xaml, gelten sie nur fur dieses Fenster.

Sie miissen am Ort ihrer Definition eindeutig gekennzeichnet sein, zum Beispiel
durch einen Schliissel. Sollte es zwei logische Ressourcen mit gleichem Schliissel
in der Anwendungsdatei und in einer Fensterdatei geben, so wird diejenige
genutzt, die dem Steuerelement »ndher« ist, also die Ressource aus der Fensterda-
tei. Logische Ressourcen konnen statisch oder dynamisch sein:

» Statische Ressourcen werden bereits frihzeitig gepriift. Sie werden mit der
Anwendung (beziehungsweise mit dem Fenster) geladen und stehen so
schneller zur Verfiigung als dynamische Ressourcen. Sie miissen allerdings vor
ihrer Nutzung definiert sein.

» Dynamische Ressourcen mussen nicht vor ihrer Nutzung definiert sein. Der
Benutzer kann sie wihrend der Laufzeit austauschen. Dynamische Ressourcen
werden erst geladen, wenn der Benutzer sie zur Laufzeit benoétigt, allerdings
ist dann die Ladezeit linger als bei statischen Ressourcen.

Nachfolgend sehen Sie die Anwendung RessourcenLogisch. Darin werden stati-
sche und dynamische Ressourcen sowohl anwendungsweit als auch fensterweit
definiert und genutzt. Als einfaches Beispiel fiir eine Ressource dienen Pinsel
unterschiedlicher Farbe. Nach dem Start sieht die Anwendung so aus wie in
Abbildung 6.12.

[8°] RessourcenlLogisch E[
T
Schrift weil3
Schrift hellgrau

Abbildung 6.12 Nach dem Start

Nach einem Wechsel der Auswahl sieht die Anwendung so aus wie in Abbildung 6.13.

[®] RessourcenLogisch EL
BT
Schrift weil
Schrift hellgrau

Abbildung 6.13 Nach dem Wechsel der Auswahl

167

6 | Anwendungen

Zundchst sind hier die anwendungsweiten Ressourcen in der Datei App.xaml:

{Application.Resources>
<SolidColorBrush x:Key="fgbrush">White</SolidColorBrush>
<SolidColorBrush x:Key="bgbrush">Red</SolidColorBrush>
</Application.Resources>

Die Ressourcen werden in der Auflistung Resources des App1ication-Objekts defini-
ert. Es wird ein weiller Pinsel mit dem Schliissel fgbrush und ein roter Pinsel mit dem
Namen bgbrush definiert. Damit ist noch nichts dartiber ausgesagt, ob, wann, bei
welchem Steuerelement und fiir welche Eigenschaft Sie die Ressourcen nutzen.

Es folgen die fensterweiten Ressourcen, die in der Datei MainWindow.xaml defi-
niert sind:

<Window ... Background="{DynamicResource winbrush}">
<Window.Resources>
<SolidColorBrush x:Key="winbrush">LightGray</SolidColorBrush>
<SolidColorBrush x:Key="bgbrush">Gray</SolidColorBrush>
</Window.Resources>

</Window>
Die Ressourcen werden in der Auflistung Resources des Window-Objekts definiert.

Innerhalb des Fensters hat der graue Pinsel mit dem Schliissel bgbrush Vorrang
gegentiber dem roten Pinsel mit dem gleichnamigen Schliissel aus App.xaml.

Der hellgraue Pinsel mit dem Schliissel winbrush kommt als Hintergrundfarbe fiir
das Fenster zum Einsatz. Dieser Einsatz findet vor der Definition statt, daher
kann er nur dynamisch, also tiber DynamicResource, erfolgen.

Der Aufbau der Steuerelemente innerhalb des Fensters:

<StackPanel>
<Button x:Name="b" Background="{StaticResource bgbrush}"
Foreground="{StaticResource fgbrush}" Width="120"
Margin="5">Button 1</Button>
<RadioButton IsChecked="True" Click="rbl_Click">
Schrift weiB</RadioButton>
<RadioButton Click="rb2_Click">Schrift hellgrau</RadioButton>
</StackPanel>

Beim Button kommen zwei statische Ressourcen, und zwar iiber StaticResource,
zum Einsatz: zum einen der graue Pinsel aus den Fensterressourcen fiir die Hin-
tergrundfarbe, zum anderen der weie Pinsel aus den Anwendungsressourcen
fur die Schriftfarbe.

168

Fenster | 6.3

Die Betitigung der RadioButtons fiihrt zu folgenden Ereignismethoden:

private void rbl_Click(...)
{ b.Foreground = FindResource("fgbrush") as Brush; }
private void rb2_Click(...)
{ b.Foreground = FindResource("winbrush") as Brush; }

Die Methode FindResource() sucht nach einer Ressource mit dem genannten
Schliissel. Nach einer Typkonvertierung konnen Sie diesen Schlissel fur die
Schriftfarbe des Buttons nutzen.

Logische Ressourcen organisieren Sie in Ressourcen-Worterbtichern (Resource
Dictionaries). Diese stellen eine Sammlung von WPF-Ressourcen dar. In
Abschnitt 7.4, »Skins«, finden Sie eine Anwendung zu diesem Thema.

6.3 Fenster

Die meisten Desktop-Anwendungen, auch in diesem Buch, werden in Fenstern
dargestellt. Die Klasse Window stellt Fenster mit einer Vielzahl an Eigenschaften
und Ereignissen zur Verfiigung. Einige werden hier erldutert.

Auferdem verdeutliche ich den Aufruf von Unterfenstern, also eigenen Dialog-
feldern, und den Austausch von Daten zwischen Haupt- und Unterfenstern.

In der WPF gibt es nur wenige Moglichkeiten, auf Standard-Dialogfelder zuzu-
greifen. Das Standard-Dialogfeld zum Drucken wird mithilfe der Klasse
PrintDialog aufgerufen (siche Abschnitt 13.3, »Drucken«).

In Windows Forms gibt es die Standard-Dialogfelder zur Auswahl einer Datei,
eines Verzeichnisses, einer Farbe oder einer Schrift. Die Integration derselben in
eine WPF-Anwendung und die Umsetzung der Ergebnisse stelle ich in Abschnitt
14.1.2, »Windows Forms-Standard-Dialogfelder in WPF, dar.

6.3.1 Eigenschaften und Ereignisse von Fenstern

Bereits hiufig benutzt wurden die Eigenschaften Title, Height und Width. Einige
Fensterereignisse und ihre Ablaufreihenfolge wurden in Abschnitt 6.1.3, »Rei-
henfolge der Ereignisse«, erldutert.

In diesem Abschnitt stelle ich im Projekt FensterMember ein Fenster mit einer
Reihe von Bedienungsmdglichkeiten und Informationen vor, die weitere Eigen-
schaften und Ereignisse verdeutlichen (siehe Abbildung 6.14).

169

6 | Anwendungen

[®7 FensterMember u

[l ShowInTaskbar [_] CanResize Topmost

[SizeToCo ntent] [On’ginaigrbBe] [Grc'iﬂer]

Location: Top 188 / Left 396,8

Size: Height 200 / Width 300

Abbildung 6.14 Nach dem Start

Zundchst der Aufbau des Fensters. Der Aufbau der Steuerelemente wird nicht
gesondert wiedergegeben, sondern es werden hier nur die Auswirkungen der
Bedienung gezeigt.

<MWindow ... WindowStartuplLocation="CenterScreen"
ShowInTaskbar="False" ResizeMode="NoResize"
Topmost="True" LocationChanged="Window_LocationChanged"
StateChanged="Window_StateChanged"
SizeChanged="Window_SizeChanged">

</Window>
Die Eigenschaft WindowStartupLocation legt fest, an welcher Position das betref-

fende Fenster zum Start auf dem Bildschirm erscheint. Als Eigenschaftswerte sind
Elemente der gleichnamigen Enumeration zugelassen:

» Der Standardwert Manua tiberldsst den Eigenschaften Top und Left die Anord-
nung. Falls diese nicht vorhanden sind, so wird eine Standard-Einstellung
genommen.

» Der Wert CenterOwner legt fest, dass ein Unterfenster im Zentrum des besit-
zenden, also aufrufenden Fensters liegt. Ein Beispiel sehen Sie im nichsten
Abschnitt.

» Hier wurde der Wert CenterScreen gewdhlt, der das Fenster in der Mitte des
Bildschirms platziert. Dies ergibt beim hier benutzten Laptop die angezeigten
Werte fur Top und Left.

Die Eigenschaft ShowInTaskbar steht normalerweise auf True. Dies fihrt dazu,
dass das Fenster in der Taskbar angezeigt wird. Hier wurde der Wert False
gewdhlt. Den Wert kann der Benutzer auch zur Laufzeit dndern.

Mithilfe der Eigenschaft ResizeMode wird festgelegt, ob der Benutzer die GroRe
des Fensters verdndern kann. Als Eigenschaftswerte sind Elemente der gleichna-
migen Enumeration zugelassen:

170

Fenster | 6.3

» Der Standardwert CanResize erlaubt die GréBendnderung, das Minimieren
und das Maximieren.

» Der Wert CanResizeWithGrip zeigt zusdtzlich noch einen Ziehpunkt unten
rechts an.

» Der Wert CanMinimize erlaubt nur die Minimierung und Wiederherstellung.
» Hier wurde der Wert NoResize gewdhlt, der gar keine Grofenidnderung

erlaubt.

Die Einstellungen gelten nur fiir Benutzeraktionen. Per Programmcode kénnen
Sie Groendnderungen jederzeit durchfithren.

Die Eigenschaft Topmost steht normalerweise auf False. Dies fithrt dazu, dass das
Fenster von einem anderen Fenster der gleichen Anwendung oder einer anderen
Anwendung verdeckt werden kann. Hier wurde der Wert True gewahlt; das Fens-
ter ist damit immer das oberste. Der Wert kann auch zur Laufzeit gedindert werden.

Die Ereignisse LocationChanged, StateChanged und SizeChanged werden bei
Anderung des Ortes, des Fensterstatus und der GroRe ausgeldst und fithren zu
den nachfolgenden Ereignismethoden:

private void Window_LocationChanged(...)

{ Tbl.Content = "Location: Top " + (int)Top
+ "/ Left " + (int)Left; }

private void Window_StateChanged(...)

{ 1b2.Content = "State: " + WindowState; }

private void Window_SizeChanged(..., SizeChangedEventArgs e)
{ 1b3.Content = "Size: Height " + (int)e.NewSize.Height
+ "/ Width " + (int)e.NewSize.Width; }

Es gibt insgesamt drei Label zur Anzeige. Das erste Label zeigt die Werte von Top
und Left nach einer Anderung des Ortes an. Im zweiten Label wird tiber den
Wert von WindowState der Fensterstatus nach einer Anderung angezeigt. Dies ist
einer der Werte aus der gleichnamigen Enumeration: entweder Maximized,
Minimized oder Normal. Der Start der Anwendung fuhrt tibrigens nicht zu einer
Anderung des Fensterstatus.

Nach einer Anderung der GroBe bietet die Instanz der Klasse SizeChangedEventArgs
eine Reihe von Informationen. Dies sind zum Beispiel die vorherige Grofe
(PreviousSize) und die neue GroBe (NewSize).

Die Bedienung der drei Checkboxen (siehe Abbildung 6.14) fithrt zu den nachfol-
genden Ereignismethoden:

171

6 | Anwendungen

private void cbl_Click(...)

{ ShowInTaskbar = (bool)chl.IsChecked; }
private void cb3_Click()

{ Topmost = (bool)cb3.IsChecked; }

private void cb2_Checked(...)

{ ResizeMode = ResizeMode.CanResize; }
private void cb2_Unchecked(...)

{ ResizeMode = ResizeMode.NoResize; }

Die Werte der Eigenschaften ShowInTaskbar und Topmost richten sich jeweils
nach dem Wert der zugehorigen CheckBox. Aullerdem kann der Benutzer zwei
der vier moglichen Werte der Eigenschaft ResizeMode einstellen.

Zu guter Letzt kann der Benutzer tiber insgesamt vier Buttons Anderungen der
Grofle und des Orts durchfiihren (siehe Abbildung 6.14).

private void bl1_Click(...)
{ SizeToContent = SizeToContent.WidthAndHeight; }
private void b2_Click(...)
{ SizeToContent = SizeToContent.Manual;
Height = 200; Width = 300; }

private void b3_Click(...)

{ Height = Height + 20; Width = Width + 20; }
private void b4_Click(...)

{ Top = Top + 50; Left = Left + 50; }

Eine besondere Moglichkeit zur Einstellung der Grofe bietet die Eigenschaft
SizeToContent: eine Anpassung der Grofe an den Inhalt. Als Werte sind Ele-
mente der gleichnamigen Enumeration zugelassen:

» Der Standardwert Manual gibt an, dass die Grofe nicht dem Inhalt angepasst
wird.

» Mitden Werten Height beziehungsweise Width wird festgelegt, dass die Gro8e
an die Hohe beziehungsweise an die Breite des Inhalts angepasst wird.

» Der Wert WidthAndHeight bedeutet: Die Anpassung erfolgt sowohl an die
Breite als auch an die Hohe des Inhalts.

Falls im Beispiel zuerst b1_C1ick () durchlaufen wurde, so muss fiir die Anderung
von Width und Height in b2_C1ick() zundchst wieder der Wert Manual eingestellt
werden. Der Benutzer kann Gréendnderungen jedoch unabhingig vom aktuel-
len Wert der Eigenschaft SizeToContent durchfiihren (vorausgesetzt, der Wert
der Eigenschaft ResizeMode ldsst dies zu).

172

Fenster | 6.3

Rufen Sie zur Verdeutlichung die Anwendung FensterMember auf, fiihren Sie die
moglichen Aktionen durch, und beachten Sie die Auswirkungen.

6.3.2 Eigene Dialogfelder

Vom Hauptfenster einer Anwendung aus kann der Benutzer Unterfenster aufru-
fen, also eigene Dialogfelder. Diese dienen haufig zur Einstellung von Werten fiir
das Hauptfenster. Daher ist der Austausch von Daten zwischen Haupt- und Unter-
fenster zu betrachten.

Im Projekt FensterUnter ist zunichst das Hauptfenster mit einem eingegebenen
Text zu sehen (siehe Abbildung 6.15).

[®° FensterUnter E@u

[Neues Fenster]

Hallo

Abbildung 6.15 Nach Start und Eingabe

Nach dem Aufruf des neuen Fensters erscheint dieses mit dem tibermittelten Text
(siehe Abbildung 6.16).

[87] FensterUnter =]=] %]
G'IEI FensterUnter Unter g@u
He [Ok]
(Abbrechen J

Abbildung 6.16 Unterfenster mit Gbermittelten Daten

Im neuen Fenster kann der Benutzer den Text dndern. Nach dem Schliefen
erscheint das Hauptfenster mit dem gednderten Text (siehe Abbildung 6.17).

Sie erzeugen ein neues Fenster in einer Anwendung tiber den Meniipunkt Pro-
JEKT » FENSTER HINZUFUGEN. Nachdem Sie dem Fenster einen Namen gegeben
haben (hier: Unterfenster), erscheinen die beiden Dateien Unterfenster.xaml
und Unterfenster.xaml.cs zur weiteren Bearbeitung.

173

6 | Anwendungen

[®7 FensterUnter @M

[Neues Fenster]

Test

Beendet mit Ok

Abbildung 6.17 Hauptfenster mit tibermittelten Daten

Hier sehen Sie zunichst die Ereignismethode fiir den Button im Hauptfenster:

private void b_Click(...)

{
Unterfenster uf = new Unterfenster(tb.Text);
uf.Owner = this;

if (uf.ShowDialog() == true)

{
1b.Content = "Beendet mit Ok";
tb.Text = uf.Eingabetext;

}

else
1b.Content = "Beendet mit Abbrechen";

}

Es wird eine Instanz der Klasse des Unterfensters erzeugt. Die Klasse ist weiter
unten definiert. Der Konstruktor dient zur Ubermittlung der Daten an das Unter-
fenster. Das Hauptfenster wird zum Owner (Besitzer) des Unterfensters erklart.
Dies ist nur fiir die Platzierung des Unterfensters, nicht unbedingt fiir das logi-
sche Zusammenspiel der beiden Fenster notwendig.

Mithilfe der Methode ShowDialog() wird das Unterfenster modal geéffnet. Dies
bedeutet, dass es erst geschlossen werden muss, bevor man das Hauptfenster wie-
der bedienen kann. Aus der Unterfensterklasse kann in diesem Fall ein Wert vom
Typ boo1? zurtckgeliefert werden. Damit teilen Sie dem Hauptfenster mit, ob die
Bedienung des Unterfensters ordnungsgemall beendet oder abgebrochen wurde.
Ein Aufruf mit der Methode Show() hitte zu einem nicht-modalen Aufruf gefiihrt.

Nur im ersten Fall erscheinen die Daten, die im Unterfenster eingegeben wur-
den, auch im Hauptfenster. Diese Daten werden tber eine Property des Unter-
fensters weitergegeben. Das Unterfenster ist so aufgebaut:

MWindow ... WindowStartuplLocation="CenterOwner"> ... </Window>

174

Navigation mit Seiten | 6.4

Die Platzierung wurde tiber die Eigenschaft WindowStartupLocation festgelegt.
Da das Hauptfenster als Owner festgelegt wurde, kann sich der Eigenschaftswert
CenterOwner auswirken.

Es folgt der Programmcode fiir das Unterfenster:

public partial class Unterfenster : Window
{ string eingabetext;

public Unterfenster(string et)
{ InitializeComponent(); tb.Text = et; }

private void ok_Click(...)
{ eingabetext = tb.Text; DialogResult = true; }

private void abbr_Click(...)
{ DialogResult = false; }

public string Eingabetext
{ get{return eingabetext;} }
}

Der Konstruktor wurde erweitert. Auf diese Weise kénnen der Unterfenster-
Instanz bei der Erzeugung Daten aus dem Hauptfenster iibermittelt werden.

Abhingig vom betitigten Button wird der Eigenschaft DialogResult einer der
Werte true oder false gegeben. Dies fithrt dazu, dass der Programmcode im
Hauptfenster an der Stelle des Aufrufs durch ShowDialog() weitergefithrt wird.
Aulerdem wird tibermittelt, auf welche Weise das Unterfenster beendet wurde.

Im Falle der ordnungsgemafen Beendigung wurden vorher die Daten, die an das
Hauptfenster tibergeben werden sollen, einer Property des Unterfensters zuge-
wiesen. Damit stehen sie im Hauptfenster zur Verfiigung.

6.4 Navigation mit Seiten

Die Navigation mit Seiten bietet eine Alternative zur klassischen Fenstertechnik.
In diesem Abschnitt stelle ich zwei Méglichkeiten vor:

» eine Reihe von Seiten, die der Benutzer nacheinander aufruft, dhnlich einer MS
Power Point-Prisentation

» ein Frame mit Unterseiten, die der Benutzer in beliebiger Reihenfolge aufruft,
dhnlich einer Anwendung mit Frames in einem Browser

175

6 | Anwendungen

Seiten sind Instanzen der Klasse Page. Sie dhneln Fenstern, haben aber eine ein-
geschrinkte Funktionalitit. Sie konnen nicht einzeln auftreten, sondern nur
innerhalb einer Steuerseite der Klasse NavigationWindow.

6.4.1 Eine Reihe von Seiten

Im Projekt NavigationReihe werden insgesamt drei verschiedene Seiten ange-
zeigt, die der Benutzer der Reihe nach durchlaufen kann.

Ablauf

Nach dem Start erscheint Seite 1 (sieche Abbildung 6.18).

[®"] NavigationReihe, Seite 1 @‘Eu

>,

Hierist Seite 1 Vorwarts zur Seite 2

Zur Seite 2, mit Daten:| Hallo

Abbildung 6.18 Nach dem Start, auf Seite 1

Von Seite 1 aus kann der Benutzer auf verschiedene Arten zur Seite 2 gelangen.

Dabei koénnen auch Daten zwischen den Seiten transportiert werden, wie es in
Abbildung 6.19 zu sehen ist.

[®"] NavigationReihe, Seite 2 E‘Eu

Hier ist Seite 2 Daten von Seite 1: Hallo

Ruckwarts zur Seite 1 Vorwarts zur Seite 3

Journal, Back

Abbildung 6.19 Inhalt der Seite 2

Von Seite 2 aus sind die Seiten 1 und 3 erreichbar. Die Seite 3 sieht so aus wie in
Abbildung 6.20.

176

Navigation mit Seiten | 6.4

[®] NavigationReihe, Seite 3 @‘Eu

Hier ist Seite 3 Rickwarts zur Seite 2

Abbildung 6.20 Inhalt der Seite 3

Die Klasse NavigationWindow stellt automatisch eine browserdhnliche Navigation
mit Vorwdrts- und Rickwirts-Buttons und einer History zur Verfiigung, wie sie in
Abbildung 6.18 bis Abbildung 6.20 zu sehen sind. Fur die Anwendung benétigen
Sie die vier Dateien MainWindow.xaml, Seite1.xaml, Seite2.xaml und Seite3.xaml,
jeweils mit zugehoriger Codedatei (siehe Abbildung 6.21). Weiter unten wird
erldutert, wie Sie die Dateien hinzufiigen.

Projektmappen-Explorer
|3

[zd Projektmappe "NavigationReihe”
- ‘@ Na\rigationReihe|
(=4 Properties

=1 Verweise

o] App.xaml

5 MainWindow.xaml
15 Seitelxaml

o] SeiteZ.xaml

k| Seite3.xaml

v T T T T v W

Abbildung 6.21 Projektdateien

Navigationsdatei

Hier sehen Sie zundchst den Aufbau der Navigation in der Datei MainWin-
dow.xaml:

<NavigationWindow x:Class="NavigationReihe.MainWindow"
xmlns="http://..." xmlns:x="http://..."
Height="200" Width="300" Source="Seitel.xaml" />

Als Grundlage zur Erstellung dient eine klassische WPF-Anwendung. Statt eines
Window wird ein NavigationWindow verwendet; die Klasse muss also gedndert
werden. Ein Inhalt wird nicht benotigt. Ebenso wenig wird ein Titel gebraucht,
da dieser jeweils auf den Seiten steht. Die Eigenschaft Source verweist auf den
URI der ersten Page, die nach dem Start im NavigationWindow angezeigt wird.

Im Programmcode miissen Sie die Basisklasse ebenfalls dndern:

177

6 | Anwendungen

public partial class MainWindow : NavigationWindow { ... }

Nun fiigen Sie die Seiten hinzu, jeweils tiber den Mentipunkt PROJEKT + SEITE HIN-
ZUFUGEN.

Seite 1

Im Folgenden sehen Sie die wichtigen Teile des Page-Objekts in der Datei
Seite1.xaml (siehe Abbildung 6.18):

<Page x:Class="NavigationReihe.Seitel"
xmlns="http://..." xmlns:x="http://..."
WindowTitle="NavigationReihe, Seite 1">

<TextBlock ...>
<Hyperlink NavigateUri="Seite2.xaml">
Vorwdrts zur Seite 2</Hyperlink>
</TextBlock>

</Page>
Einige Eigenschaften aus einer Standard-Page benétigen Sie hier nicht mehr; Sie

konnen sie loschen. Sichtbar ist nicht der Anwendungstitel, sondern der jewei-
lige Seitentitel. Dieser wird tber die Eigenschaft WindowTit1e festgelegt.

Hyperlinks sind Inline-Elemente eines Dokuments (siehe auch Abschnitt 13.1.7,
»Inlines«). Sie mssen sie innerhalb eines Steuerelements, zum Beispiel in einem
TextBlock-Objekt, platzieren. Die Eigenschaft NavigateUri verweist auf den URI
der Page, die bei Betitigung des Hyperlinks aufgerufen wird.

Es folgt der Programmcode der Klasse Seitel:

public partial class Seitel : Page
{ public Seitel() { InitializeComponent(); }

private void vorwaerts_Click(...)
{ NavigationService.Navigate(new Uri("Seite2.xaml",
UriKind.Relative)); }

private void daten_Click(...)
{ NavigationService.Navigate(new Seite2(tb.Text)); }
}

Uber die Eigenschaft NavigationService konnen Sie auf den Navigationsdienst
des tibergeordneten NavigationWindow zugreifen. Die Methode Navigate() kann
das gewtnschte Ziel iber einen URI oder ein Objekt erreichen.

178

Navigation mit Seiten

» Beim Zugriff per URI konnen Sie die Zeichenfolge des URI mithilfe der Enu-
meration UriKind absolut oder relativ angeben. Bei Pages innerhalb eines Pro-
jekts eignet sich der Wert Relative.

» Beim Zugriff per Objekt wird eine neue Instanz der Klasse fiir Seite 2 erzeugt.
Der Konstruktor dient zur Ubermittlung der Daten aus der Textbox an das
Unterfenster.

Seite 2

Die zweite Page in Seite2.xaml sehen Sie in Abbildung 6.19. Zwei Elemente der
Klasse Hyperlink, jeweils in einem Textblock, fiihren zu den Seiten 1 und 3, dhn-
lich wie in Seite1.xaml. Der Programmcode in Seite2.xaml.cs:

public partial class Seite?2 : Page
{ public Seite2() { InitializeComponent(); }

public Seite2(string s)
{
InitializeComponent();
1b.Content = "Daten von Seite 1: " + s;

private void journal_Click(...)
{
if (NavigationService.CanGoBack)
NavigationService.GoBack();

}

Der Benutzer kann die zweite Seite auf verschiedene Arten aufrufen. Daher wird
neben dem Standard-Konstruktor noch ein weiterer Konstruktor benétigt, dem
bei der Erzeugung der Instanz Daten von der aufrufenden Seite 1 tibergeben wer-
den kénnen.

Die Funktionalitit der Vorwirts- und Riickwirts-Buttons des NavigationWindow
koénnen Sie auch per Programmcode nutzen. Die Methoden GoForward() und
GoBack () des Navigationsdienstes dienen dazu. Vor der Ausfithrung sollten Sie zur
Sicherheit die Eigenschaften CanGoForward beziehungsweise CanGoBack abfragen.

Seite 3

Die dritte Page in Seite3.xaml sehen Sie in Abbildung 6.20. Ein Element der
Klasse Hyperlink, das in einem Textblock steht, fithrt zur Seite 2, dhnlich wie in
Seitel.xaml.

179

6 | Anwendungen

6.4.2 Frame mit Unterseiten

Im Projekt NavigationFrame kann sich der Benutzer zwei verschiedene Seiten in
beliebiger Reihenfolge anzeigen lassen.

Ablauf
Nach dem Start erscheint nur die Steuerung (siehe Abbildung 6.22).

[®] NavigationFrame lglgg

e

Zur Seite 1

Zur Seite 2

Abbildung 6.22 Steuerung

Von hier aus kann der Benutzer die beiden Seiten tiber Hyperlinks erreichen. Als
Beispiel sehen Sie in Abbildung 6.23 die Seite 1.

[®7] NavigationFrame lEIEu

.

Zur Seite 1 Seite 1

Zur Seite 2

Abbildung 6.23 Anzeige der Seite 1

Auch hier stellt die Klasse NavigationWindow eine browserdhnliche Navigation
mit Vorwdrts- und Rickwirts-Buttons und einer History zur Verfiigung. Fiir die
Anwendung benotigen Sie die fiinf XAML-Dateien MainWindow.xaml, Auf-
bau.xaml, Steuerung.xaml, Seitel.xaml und Seite2.xaml, jeweils mit einer Pro-
grammcodedatei (siche Abbildung 6.24).

Projekimappen-Explorer
|2
[-d Projektmappe "NavigationFrame”
- \@ Na\rigationFrame|
> = Properties
= Verweise
= Appxam|
= Aufbauxaml
) MainWindow.xaml
| Seitelxaml
) Seite2 xaml
= Steuerung.xamil

v v YT VW

Abbildung 6.24 Projektdateien

180

Navigation mit Seiten | 6.4

Navigationsdatei

Hier ist zunichst der Aufbau der Navigation in der Datei MainWindow.xaml:

<NavigationWindow x:Class="NavigationFrame.MainWindow"
xmlins="http://..." xmlns:x="http://..."
Title="NavigationFrame" Height="200" Width="300"
Source="Aufbau.xaml" />

Wie im vorherigen Projekt wird eine klassische WPF-Anwendung mit einem
NavigationWindow verwendet. Die Eigenschaft Source verweist auf den URI der
ersten Page, die nach dem Start im NavigationWindow angezeigt wird. In dieser
Page ordnen Sie zwei Bereiche an, in denen wiederum jeweils eine Page
erscheint. Der Titel der Anwendung wird hier mithilfe der Eigenschaft Tit1e fest-
gelegt. Die Klasse wird im Programmcode wie folgt gedndert:

public partial class MainWindow : NavigationWindow { ... }

Nun fiigen Sie die Seiten hinzu, und zwar jeweils tiber den Mentipunkt PROJEKT
« SEITE HINZUFUGEN.

Aufbauseite

Es folgt das Layout der Aufbauseite in der Datei Aufbau.xaml:

<Page x:Class="NavigationFrame.Aufbau"
xmlns="http://..." xmlns:x="http://...">
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="90" />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Frame Grid.Row="0" Grid.Column="0"
Source="Steuerung.xaml" />
<Frame x:Name="fr" Grid.Row="0" Grid.Column="1" />
</Grid>
</Page>

Das Grid-Layout der Aufbauseite umfasst zwei Spalten. Eine davon hat eine feste
Breite. In beiden Spalten wird ein Steuerelement der Klasse Frame erzeugt. Die
Eigenschaft Source des linken Frames verweist auf den URI der Page, die links
angezeigt wird.

Der rechte Frame bekommt einen Namen, damit er spiter als Ziel fur die Naviga-
tion dienen kann. Zunichst wird im rechten Frame noch keine Seite angezeigt.

181

6 | Anwendungen

Steuerungsseite

Es folgt der Code der Steuerungsseite, der in der Datei Steuerung.xaml steht:

<Page x:Class="NavigationFrame.Steuerung"
xmins="http://..." xmlns:x="http://..."
Background="LightGray">

<Hyperlink NavigateUri="Seitel.xaml" TargetName="fr">
Zur Seite 1</Hyperlink>

<Hyperlink NavigateUri="SeiteZ.xaml" TargetName="fr">
Zur Seite 2</Hyperlink>

</Page>

Die Eigenschaft NavigateUri der beiden Hyperlink-Objekte verweist auf die URI
der Seiten, die nach der Betitigung angezeigt werden sollen. Mithilfe der Eigen-
schaft TargetName wird festgelegt, dass die Seiten im rechten Frame erscheinen.

In Seite1.xaml und Seite2.xaml steht jeweils eine einfache Page ohne besondere
Elemente.

6.5 Gadgets

Die visuellen Mittel der WPF bieten auch die Méglichkeit, »technische Spiele-
reien« (Gadgets) herzustellen. Nachfolgend wird Ihnen eine Anwendung vorge-
stellt, deren Oberfliche aus drei halbtransparenten Elementen besteht. Dabei
handelt es sich um zwei Kreise und einen Button, die scheinbar nicht miteinan-
der verbunden sind. In Abbildung 6.25 sehen Sie die Anwendung mit dem
Namen Gadget. Sie »schwebt« gerade vor dem Hintergrund einer anderen
Anwendung: in einem Browser wird der Wikipedia-Artikel tiber Gadgets gezeigt.

Gadget (englisch fur Apparat, technische Spielerei
bisher so nicht bekannter Funktionalitdt und/oder b

konzipiert. Eine grofRe Rolle spielt der Spalifaktor ei
sinnvoller Funktionalitét L>1<nd Verspieltheit. Der Dude

Beispiele sind elektronische Mobil- und Handgerate
oder Tablet-PCs, aber auch elektrische oder mecha
Funktionen, welche bislang so in keiner technische

Abbildung 6.25 Gadget-Anwendung

182

Gadgets

Sobald sich die Maus tber dem linken Kreis befindet, wird ein Hilfstext einge-
blendet. Dieser informiert den Benutzer dariiber, dass er die Oberfliche mithilfe
der Maus auf dem rechten Kreis verschieben kann. Der Button dient zum Been-
den. Zunichst die Fenstereigenschaften:

<Window ... Height="200" Width="300"
AlTowsTransparency="True"
WindowStyle="None" Background="Transparent">

</Window>

Die Eigenschaft AllowsTransparency legt fest, ob der Clientbereich des Fensters
Transparenz unterstiitzt. Der Wert True ist hier die Voraussetzung fiir die weite-
ren Einstellungen. Die verschiedenen Werte der Enumeration WindowStyle ste-
hen fiir die Art des Rahmens um den Clientbereich des Fensters. Es gibt die fol-
genden Werte:

» None: ohne Rahmen und Titelleiste. Dieser Wert wird hier genutzt.
» SingleBorderWindow: einfacher Rahmen; der Standardwert
» ThreeDBorderWindow: 3D-Rahmen

» ToolWindow: Verankertes Toolfenster

Mithilfe des Werts Transparent wird der Hintergrund des Fensters (Eigenschaft
Background) durchsichtig. Es folgen das Layout und die Steuerelemente:

<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="110" />
<ColumnDefinition Width="*" />
<ColumnDefinition Width="110" />
</Grid.ColumnDefinitions>
<ETlipse Fill="LightGray" Opacity="0.5" Width="100"
Height="100" Grid.Column="0" MouseEnter="Tinks_ein"
Mouseleave="1links_aus"/>
{TextBlock x:Name="tb" Visibility="Hidden"
HorizontalAlignment="Center" VerticalAlignment="Center"
Grid.Column="0" MouseMove="Tlinks_ein">
Verschieben:<LineBreak />rechte Seite</TextBlock>
<Button Width="23" Height="23" Opacity="0.5"
Grid.Column="1" Click="ende">X</Button>
<ET1lipse Fill="Gray" Opacity="0.5" Width="100" Height="100"
Grid.Column="2" MouselLeftButtonDown="rechts" />
</Grid>

183

6 | Anwendungen

Das Layout beinhaltet drei Spalten. Die Elemente darin ordnen Sie mithilfe der
Attached Property Grid.Column an. Der Wert 0.5 fiir die Eigenschaft Opacity
sorgt dafiir, dass die beiden Kreise und der Button halbtransparent dargestellt
werden. Die Ereignisse MouseEnter und Mouseleave auf dem linken Kreis,
MouseMove auf dem Textblock, C1ick auf dem Button und MouseleftButtonDown
auf dem rechten Kreis fithren zu den Ereignismethoden:

private void links_ein(object sender, MouseEventArgs e)
{ tb.Visibility = Visibility.Visible; }

private void links_aus(object sender, MouseEventArgs e)
{ tb.Visibility = Visibility.Hidden; }

private void rechts(object sender, MouseButtonEventArgs e)
{ DragMove(); }

private void ende (...) { Close(); !}

Der Textblock wird sichtbar, sobald die Maus im linken Kreis steht. Nach dem
Verlassen wird der Textblock wieder ausgeblendet. Die Sichtbarkeit wird tiber die
Werte aus der Enumeration Visibility verindert.

Auch die Bewegung der Maus liber dem eingeblendeten Textblock fithrt zur
Sichtbarkeit. Andernfalls wiirden sich unschone Flackereffekte ergeben, weil die
Maus den Kreis verlisst, sobald sie iiber dem Textblock schwebt.

Die Methode DragMove () ermoglicht das Ziehen mithilfe der linken Maustaste.

6.6 Browseranwendung

Die Vorteile der WPF bieten sich auch in einer WPF-Browseranwendung. Sie
wird XBAP genannt, fiir XAML Browser Application. Die Dateiendung ist eben-
falls .xbap. Der Browser arbeitet in diesem Falle als Navigationshost, wie ein
Fenster der Klasse NavigationWindow, in dem einzelne Seiten der Klasse Page
abgerufen werden. Diese Technik haben Sie bereits in Abschnitt 6.4, »Navigation
mit Seiten«, kennengelernt. Sie konnen in XBAPs viele komfortable Features der
WPF einsetzen. Allerdings gibt es einige Sicherheitseinschrankungen.

Den Aufruf einer XBAP-Anwendung ermoglicht ein lokaler Server des Visual Stu-
dio: der Windows Presentation Foundation-Host. Falls der Internet Explorer Ihr
Standard-Browser ist, so fithrt der Aufruf direkt zur Darstellung im IE (siehe
Abbildung 6.26).

184

Browseranwendung | 6.6

- -

@@E wendung\Browseranwendung\bin\Debug\Browseranwendung.xbap ,0 - 0 X |

Hier ist Seite 1~ Zur Seite 2 {ZU{ Seite 2] [Datei—Auswahi] [Datei éffnen]

Abbildung 6.26 Anwendung im Internet Explorer 9

Zur Erstellung einer XBAP wihlen Sie in Visual Studio 2010 die Vorlage WPF-
BROWSERANWENDUNG. Es wird automatisch eine Seite mit dem Namen
Pagel.xaml erstellt. Dies ist die erste Seite Ihrer neuen Anwendung.

Im nachfolgenden Projekt Browseranwendung werden zwei Seiten angezeigt, die
miteinander verlinkt sind. Auf der ersten Seite wird versucht, eine Datei auszu-
wihlen und eine Datei zum Lesen zu 6ffnen (siehe Abbildung 6.26).

Der Aufbau von Pagel.xaml:

<Page x:Class="Browseranwendung.Pagel" xmlIns="..." xmlns:x="...">
<MWrapPanel>
<Label Margin="5">Hier ist Seite 1</Label>
{TextBlock Margin="5" VerticalAlignment="Center">
<Hyperlink NavigateUri="Seite2.xaml">
Zur Seite 2</Hyperlink>
</TextBlock>
<Button Margin="5" Click="seite2">Zur Seite 2</Button>
<Button Margin="5" Click="auswahl">Datei-Auswahl1</Button>
<Button Margin="5" Click="oeffnen">Datei &ffnen</Button>
</WrapPanel>
</Page>

Sie koénnen in bekannter Form auf die Navigationsdienste des Navigationshosts
zugreifen: Uber Hyperlinks, iiber NavigationService (siehe Programmcode) und
tiber die Browser-Buttons kénnen Sie zwischen den Seiten navigieren. Viele andere
Maoglichkeiten und Steuerelemente der WPF stehen ebenfalls zur Verfiigung.

Kommen wir zu einigen Sicherheitseinschrinkungen. Zunichst sehen wir uns die
Voraussetzungen fiir den nachfolgenden Programmcode an.

In der WPF steht kein Standard-Dialogfeld zur Dateiauswahl zur Verfiigung, daher
wird er hier aus Windows Forms tibernommen. Dazu ist es notwendig, einen Ver-
weis auf die .NET-Komponente System.Windows.Forms und den gleichnamigen
Namespace zum Projekt hinzuzufiigen. Mehr zur Interaktion zwischen Windows
Forms und WPF finden Sie in Abschnitt 14.1. Zum Offnen einer Datei wird die
Klasse FileStream aus dem Namespace System. 10 bendtigt.

185

6 | Anwendungen

Der Programmcode in der Datei Pagel.xaml.cs:

public partial class Pagel : Page
{

private void seite2(...)
{ NavigationService.Navigate(new Uri("Seite2.xaml",
UriKind.Relative)); }

private void auswahl(...)
{
OpenFileDialog ofd = new OpenFileDialog();
// ofd.InitialDirectory = "C:\\Temp";
// ofd.Title = "Datei zum Offnen auswdhlen";
ofd.Filter = "Tabellen (*.x1s)|*.xIs| Texte
(*.txt;*.doc)|*.txt;*.doc| Alle Dateien (*.*)|*.*";

DialogResult dr = ofd.ShowDialog();

System.Windows.MessageBox.Show(dr.ToString());

// System.Windows.MessageBox.Show("Auswahl: " +
ofd.FileName);

private void oeffnen(...)
{ FileStream fs = new FileStream("test.txt", FileMode.Open); }
}

Bei der Benutzung werden Sie feststellen, dass es moglich ist, den Dialog zur
Dateiauswahl zu 6ffnen. Allerdings tritt eine SecurityException auf, falls Sie ein
Startverzeichnis oder einen Titel festlegen mochten oder den Namen der ausge-
wihlten Datei ermitteln méchten. Auch das Offnen einer Datei zum Lesen fiihrt
Zu einer SecurityException.

6.7 Ribbonanwendung

Ribbonanwendungen sind seit der Einfiihrung von MS Office 2007 bekannt. Bei
dem Ribbon handelt es sich um das Meniiband, das in den MS Office-Anwendun-
gen das Meni und die Symbolleisten abgelost hat.

Sie kénnen Ribbonanwendungen mithilfe der WPF und Visual Studio erzeugen,
nachdem Sie die Datei Microsoft Ribbon for WPF.msi (ca. 3,5 MB) installiert
haben. Diese Datei kénnen Sie bei Microsoft herunterladen, sie befindet sich
aber auch auf dem Datentrager zu diesem Buch. Die Installation sorgt daftir, dass
die .NET-Komponente RibbonControlsLibrary hinzugefugt wird.

186

Ribbonanwendung

Bei der Erzeugung eines neuen Projekts wihlen Sie die neu hinzugekommene
Vorlage WPF RIBBON APPLICATION. Anschliefend haben Sie bereits das Grundge-
riist einer Ribbonanwendung vor sich, die Sie sofort starten konnen (siehe Abbil-
dung 6.27).

» © MainWindow
| e
Ry Home

H ﬂBuﬂonE
Button3
Buttonl ﬂ e
ﬂBunon-'l

Groupl

Abbildung 6.27 Grundgeriist einer Ribbonanwendung

Eine Ribbonanwendung ist wie folgt aufgebaut: Innerhalb eines RibbonWindow-
Objekts gibt es ein Ribbon-Objekt fiir das gesamte Meniiband. Darin befindet sich
ein RibbonApplicationMenu-Objekt fiir das einzige Anwendungsmenii. Bei MS
Word 2010 finden sich im Anwendungsment unter anderem die zentralen
Befehle SPEICHERN, OFFNEN, SCHLIESSEN, NEU und DRUCKEN.

Die Registerkarten des Ribbons stehen in RibbonTab-Objekten. Die einzelnen
Registerkarten kann man per Mausklick oder auch mithilfe des Mausrads aus-
wahlen. Jede Registerkarte ist in Gruppen unterteilt, und diese stehen in
RibbonGroup-Objekten. Die Gruppen bilden die Container fiir die speziellen Rib-
bon-Steuerelemente, von denen es zahlreiche Typen gibt.

Nachfolgend wird das Projekt RibbonAnwendung dargestellt (sieche Abbildung
6.28). Darin wurden einige Anderungen und Erginzungen zum Grundgeriist vor-
genommen. Alle verwendeten Bilder wurden dem Projekt als Ressourcen hinzu-
gefiigt, und zwar per Drag&Drop im Projektmappenexplorer.

' ™
7 RibbonAnwendung b =) [

Registerkarte 1 Registerkarte 2

” @Button 2 CheckBox
=" Eintrag 2 -
Button
1
Gruppe la Gruppe 1b

Abbildung 6.28 Eigene Ribbonanwendung

187

6 | Anwendungen

Der XAML-Code:

<mband:RibbonWindow x:Class="RibbonAnwendung.MainWindow"
xmlns="http://..." xmlns:x="http://..."
xmIns:mb="clr-namespace:Microsoft.Windows.Controls.Ribbon;
assembly=RibbonControlsLibrary"
Title="RibbonAnwendung" Width="400" Height="250">
<mb:Ribbon>
<mb:Ribbon.ApplicationMenu>
<mb:RibbonApplicationMenu SmallImageSource="work.gif"
mb:RibbonApplicationMenultem.Click="rami_Click">
<mb:RibbonApplicationMenultem Header="Menlpunkt 1"
ImageSource="computer.gif" />
<mb:RibbonApplicationMenultem Header="Menlpunkt 2"
ImageSource="ms.gif" />
<mb:RibbonApplicationMenultem Header="Menlpunkt 3"
ImageSource="paint.gif" />
</mb:RibbonApplicationMenu>
</mb:Ribbon.ApplicationMenu>

<mb:RibbonTab Header="Registerkarte 1">
<mb:RibbonGroup Header="Gruppe la">
<mb:RibbonButton LargelmageSource="blume.jpg"
Label="Button 1" Click="rbl_Click" />
<mb:RibbonButton SmallImageSource="work.gif"
Label="Button 2" Click="rb2_Click" />
<mb:RibbonComboBox>
<mb:RibbonGallery x:Name="rgc"
SelectedValue="Eintrag 2"
SelectedValuePath="Content"
SelectionChanged="rgc_SelectionChanged">
<mb:RibbonGalleryCategory>
<mb:RibbonGalleryItem Content="Eintrag 1" />
<mb:RibbonGallerylItem Content="Eintrag 2" />
</mb:RibbonGalleryCategory>
</mb:RibbonGallery>
</mb:RibbonComboBox>
</mb:RibbonGroup>
<mb:RibbonGroup Header="Gruppe 1b">
<mb:RibbonToggleButton LargelmageSource="computer.gif"
Label="TB" Click="rtb_Click" />
<mb:RibbonCheckBox
Label="CheckBox" Click="rcb_Click" />
</mb:RibbonGroup>
</mb:RibbonTab>

188

Ribbonanwendung | 6.7

<mb:RibbonTab Header="Registerkarte 2">
<mb:RibbonGroup Header="Gruppe 2a"
mb:RibbonRadioButton.Click="rrb_Click">
<mb:RibbonRadioButton SmalllImageSource="paint.gif"
Label="RB1" />
<{mb:RibbonRadioButton SmallImageSource="ms.gif"
Label="RB2" />
<{mb:RibbonRadioButton SmalllmageSource="work.gif"
Label="RB3" />
</mb:RibbonGroup>

<mb:RibbonGroup Header="Gruppe 2b">
<mb:RibbonMenuButton Label="Meni"
mb:RibbonMenultem.CTick="rmi_Click">
<mb:RibbonMenultem Header="Menlpunkt 1" />
<mb:RibbonMenultem Header="Menlpunkt 2">
<mb:RibbonMenultem Header="Menilipunkt 2a"
ImageSource="work.gif" />
<mb:RibbonMenultem Header="Menilipunkt 2b"
ImageSource="ms.gif" />
</mb:RibbonMenultem>
<mb:RibbonMenultem Header="Menlpunkt 3" />
</mb:RibbonMenuButton>
</mb:RibbonGroup>
</mb:RibbonTab>
</mb:Ribbon>
</mb:RibbonWindow>

Es wird der Namespace Microsoft.Windows.Controls.Ribbon aus der .NET-
Komponente RibbonControlsLibrary eingebunden. Er bekommt hier den loka-
len Namen mb. Als Fenster wird ein RibbonWindow-Objekt verwendet. Dieses bein-
haltet ein Ribbon-Objekt (das Mentiband) mit einem RibbonApplicationMenu-
Objekt fir das Anwendungsmentii (siehe Abbildung 6.29). Innerhalb des Meniis
stehen die einzelnen RibbonApplicationMenulten-Objekte. Das Ereignis Klick auf
Meniieintrag wurde hier an das tbergeordnete Anwendungsment weitergeleitet.

Viele Ribbonelemente haben die Eigenschaften LargeImageSource und Small-
ImageSource. Diese verweisen auf die Bilder zur Darstellung des Elements, in gro-
Ber oder kleiner Ausfiihrung. Beim Element RibbonMenuItem (fiir Menteintrige)
steht das Bild in der Eigenschaft ImageSource, der Text in der Eigenschaft Header.

Es folgt die Registerkarte 1 (Typ RibbonTab), die in zwei Gruppen (Typ
RibbonGroup) unterteilt ist (siche Abbildung 6.28). In Gruppe 1a sehen Sie zwei
RibbonButton-Objekte, einmal mit einem grofen, einmal mit einem kleinen Bild.

189

6 | Anwendungen

§ ° RibbonAnwendung
B v

[x]

Mentpunkt 1

=
o

Q Mentpunkt 2
g Mendpunkt 3

Abbildung 6.29 Das Anwendungsmentii der eigenen Ribbonanwendung

Weiter steht in Gruppe 1a ein RibbonComboBox-Objekt. Eine ComboBox konnen Sie
in mehrere Galerien (Typ RibbonGallery) unterteilen und eine Galerie wiederum
in mehrere Kategorien (Typ RibbonGalleryCategory). Dies gibt Thnen eine Mog-
lichkeit zur unterschiedlichen Gestaltung der Eintrige (Typ RibbonGalleryItem).
Ein RibbonGallery-Objekt verweist mithilfe der Eigenschaften SelectedValue und
SelectedValuePath auf den aktuellen Eintragswert und die zugehorige Eigenschaft.
Das Ereignis SelectionChanged tritt beim Wechsel der Auswahl ein.

In der Gruppe 1b stehen ein ToggleButton (Typ RibbonToggleButton) und eine
CheckBox (Typ RibbonCheckBox).

Die Registerkarte 2 ist ebenfalls in zwei Gruppen unterteilt (siehe Abbildung
6.30). In Gruppe 2a sehen Sie drei RadioButtons (Typ RibbonRadioButton). Das
Ereignis Klick auf RadioButton wurde hier an die tibergeordnete Gruppe weiter-
geleitet. In Gruppe 2b steht ein Menti (Typ RibbonMenuButton) mit Eintrigen und
Untereintrigen (Typ RibbonMenuItem). Das Ereignis Klick auf Eintrag wurde hier
an das tibergeordnete Ment weitergeleitet.

m * RibbonAnwendung E@u

Registerkarte 1 Registerkarte 2
& Rp1 [Mena |
QRBZ Mentpunkt1 |

€>RE3 Mentpunkt2 » | &> Mendpunkt 2a
Gruppe 2a ! { Menipunkt 3 Q Mentpunkt 2b

Abbildung 6.30 Zweite Registerkarte der eigenen Ribbonanwendung

190

Ribbonanwendung | 6.7

Es folgen die Ereignismethoden:

private void rami_Click(object sender, RoutedEventArgs e)
{
MessageBox.Show(
(e.Source as RibbonApplicationMenultem).Header + "");

private void rbl_Click(...) { MessageBox.Show("Button 1"); }
private void rb2_Click(...) { MessageBox.Show("Button 2"); }

private void rgc_SelectionChanged(object sender,
RoutedPropertyChangedEventArgs<object> e)

if(IslLoaded)
MessageBox.Show(
(rgc.SelectedItem as RibbonGalleryItem).Content + "");

private void rtb_Click(...)
{
if ((sender as RibbonToggleButton).IsChecked == true)
MessageBox.Show("Ein");
else
MessageBox.Show("Aus");
}
private void rcb_Click(...)
{
if ((sender as RibbonCheckBox).IsChecked == true)
MessageBox.Show("Ein");
else
MessageBox.Show("Aus");

private void rrb_Click(...)

{ MessageBox.Show((e.Source as RibbonRadioButton).Label); }
private void rmi_Click(...)

{ MessageBox.Show((e.Source as RibbonMenultem).Header + ""); }

Der Verweis auf das auslosende Objekt wird jeweils umgewandelt. AnschlieBend
wird die passende Ausgabe gemacht.

191

Vorlagen bieten die Méglichkeit, das Erscheinungsbild einer Anwendung
mit geringem Aufwand anzupassen und die Arbeit von Entwickler und
Designer zu trennen.

7 Vorlagen

Die WPF bietet verschiedene Arten von Vorlagen, mit denen Sie einer Anwen-
dung ein individuelles und einheitliches Aussehen geben kénnen: Styles, Trigger,
Templates und Skins.

Vorlagen bieten im Idealfall die Méglichkeit, die Programmierung durch den Ent-
wickler und die Gestaltung durch den Designer voneinander zu trennen. Dies
vereinfacht auch die Wartung einer Anwendung.

Sie nutzen Styles, um den Steuerelementen IThrer Benutzeroberflichen ein ein-
heitliches Aussehen zu geben. Trigger helfen Thnen, auf Ereignisse innerhalb der
Anwendung zu reagieren. Mithilfe von Templates konnen Sie eigene Steuerele-
mente gestalten, und die Benutzer Ihrer Anwendung kénnen Skins dazu nutzen,
um »mal eben« das Aussehen der Benutzeroberfliche auszutauschen.

In diesem Kapitel erldutere ich Vorlagen anhand einfacher Beispiele, damit Sie die
Techniken schnell umsetzen kénnen. Sie konnen anschliefend sehr bunte, fanta-
sievolle Vorlagen entwerfen. Denken Sie aber daran: Der Benutzer soll die
Anwendungen nicht nur schon finden, sondern auch leicht und intuitiv bedienen
kénnen.

7.1 Styles

Sie mochten den Steuerelementen einer Oberfliche ein einheitliches Aussehen
geben? Dann gibt es zwei Moglichkeiten:

» Sie legen die Eigenschaftswerte mehrmals fest, und zwar bei jedem Steuerele-
ment.

» Sie legen die Eigenschaftswerte einmalig innerhalb eines selbst definierten
Styles fest. Anschliefend ordnen Sie diesen Style jedem Steuerelement zu.

Die zweite Variante ist iibersichtlicher und benétigt weniger Programmcode.

193

7 | Vorlagen

Styles haben in der WPF viele Parallelen zu den Cascading Style Sheets (CSS), wie
Sie sie aus der Gestaltung von Webseiten kennen. Sie konnen Eigenschaften zen-
tral definieren und direkt bei einem Steuerelement individuell ergidnzen oder
tiberschreiben. Sie kénnen Styles an Steuerelement-Typen binden, aber auch all-
gemein definieren. Sowohl typgebundene als auch allgemeine Styles kénnen ver-
erbt werden.

In XAML definieren Sie Styles als Ressourcen, siehe auch Abschnitt 6.2. Demzu-
folge unterscheiden sie sich:
» nach dem Zeitpunkt der Nutzung: statisch oder dynamisch

» nach dem Giiltigkeitsbereich: fensterweit oder anwendungsweit

7-1.1 Benannte Styles

In diesem Abschnitt zeige ich Thnen zunichst die benannten Styles. Wir verwen-
den dazu das Projekt StylesBenannt. Benannte Styles werden auch explizite Styles
genannt, da Sie sie einem Steuerelement explizit zuweisen mussen.

In Abbildung 7.1 sehen Sie eine Oberfliche, in der vier verschiedene Steuerele-
mente (Button, CheckBox, TextBox und Separator) denselben Style nutzen. Zum
Vergleich sehen Sie am oberen Rand einen Button ohne Style.

~

.
("7 StylesBenannt ==l

ohne Style

[meinStylel]
|:| meinStylel (iberschrieben)

meinStylel

Style umschalten
@ meinStylel
© meinStyle2

"

Abbildung 7.1 Nach dem Start

Nach der Auswahl des zweiten Styles dndert sich das Aussehen der vier Steuer-
elemente (siehe Abbildung 7.2).

194

Styles | 74

[R7 StylesBenannt E@u

ohne Style
[meinStyle2]
[] meinStyle2 (iiberschrieben)
meinStyle2

Style umschalten
© meinStylel
@ meinStyle2

8

Abbildung 7.2 Nach der Auswahl des zweiten Styles

Im Folgenden sehen Sie zunichst die Definition des ersten Styles als Ressource
fur das Fenster:

<Window.Resources>
{Style x:Key="meinStylel">
<Setter Property="Control.FontSize" Value="16" />
(Setter Property="Control.FontFamily" Value="Courier New" />
{Setter Property="TextBox.TextAlignment" Value="Right" />
<{Setter Property="Control.Margin" Value="1" />
<(Setter Property="Control.Width">
<Setter.Value>190</Setter.Value>
</Setter>
</Style>
</Window.Resources>

Einen benannten Style kennzeichnen Sie mit einem Schliissel (x: Key). Der Schlis-
sel muss im betreffenden Gtiltigkeitsbereich eindeutig sein. Jede Eigenschaft
wird innerhalb des Styles mit einem Setter gesetzt. Der Name der Eigenschaft
steht im Attribut Property, der Eigenschaftswert im Attribut Value. Statt Attribu-
ten kénnen Sie auch Property Elements verwenden, wie beim letzten Setter fiir
die Eigenschaft Width. Setter kénnen Sie nur fiir Dependency Properties verwen-
den.

Fur das Attribut Property miissen Sie vor der Eigenschaft immer einen Steuerele-
ment-Typ angeben. Bei vielen Eigenschaften wird dafiir der ibergeordnete Steu-
erelement-Typ Control verwendet, um deutlich zu machen, dass Sie die betref-
fende Eigenschaft bei verschiedenen Steuerelement-Typen nutzen kénnen. Die
Eigenschaft muss fir den betreffenden Steuerelement-Typ existieren, daher kén-
nen Sie zum Beispiel die Eigenschaft TextAlignment nicht fur den Typ Control
angeben.

195

7 | Vorlagen

Der zweite Style wird auf die gleiche Art, nur mit anderen Eigenschaftswerten,
aufgebaut. Auf eine Darstellung wird hier verzichtet.

Es folgt der Aufbau der Oberfliche. Sie ordnen den definierten Style den einzel-
nen Steuerelementen als Ressource zu, und zwar iiber das Attribut Style:

{StackPanel>

<Button>ohne Style</Button>

<Button x:Name="bu" Style="{StaticResource meinStylel}">
meinStylel</Button>

<CheckBox x:Name="cb" Style="{StaticResource meinStylel}"
FontSize="10" FontWeight="Bold">
meinStylel (Uberschrieben)</CheckBox>

{TextBox x:Name="tb" Style="{StaticResource meinStylel}">
meinStylel</TextBox>

{Separator x:Name="sp" Style="{StaticResource meinStylel}" />

<{/StackPanel>

Bei CheckBox konnen Sie die Ahnlichkeit von Styles und CSS erkennen:

» Die Eigenschaft FontWeight wird zu den vorhandenen Style-Eigenschaften
individuell hinzugefugt.

» Der Eigenschaftswert fiir FontSize wird individuell tiberschrieben, da der
Wert, der niher am Steuerelement steht, Vorrang hat.

Nicht vorhandene Eigenschaften werden ignoriert. Im vorliegenden Beispiel

» wird die Eigenschaft TextAlignment von Button, CheckBox und Separator
ignoriert und nur von TextBox genutzt.

» werden aullerdem die Eigenschaften FontSize und FontFamily von Separator
ignoriert. Er nutzt nur die Eigenschaften Margin und Width.

Es folgt die dynamische Zuordnung eines Styles tiber Programmcode:

private void rb2_Checked(...)
{
Style st = FindResource("meinStyle2") as Style;
bu.Style = st;
cb.Style = st;
th.Style = st;
sp.Style = st;

}

Zundchst wird die Ressource, also der Style meinStyle2, mithilfe der Methode
FindResource() gesucht. Sie wird dem Style st nach der expliziten Typkonvertie-

196

Styles | 74

rung zugewiesen. Anschliefend konnen Sie diesen Style st der Eigenschaft Style
der gewtinschten Steuerelemente zuweisen.

7.1.2 Typ-Styles

Typ-Styles dienen zur Definition von Eigenschaften, die nur fiir einen bestimmten
Steuerelement-Typ gelten. Sie werden auch implizite Styles genannt, da sie implizit
gelten, also ohne gesonderte Zuweisung. Dabei sind einige Besonderheiten zu
beachten, wie Sie im Projekt StylesType sehen konnen (sieche Abbildung 7.3).

[B7] StylesType E@M

mein Button-Style
mein anderer Style
:| ohne CheckBox-Style
I”] mit CheckBox-Style

Abbildung 7.3 Typ-Styles

Zunichst die Style-Definition:

<Window.Resources>
<Style TargetType="{x:Type Button}">
<Setter Property="FontSize" Value="16" />
</Style>
{Style x:Key="meinAndererStyle">
<Setter Property="Control.FontFamily" Value="Courier New" />
</Style>
{Style x:Key="meinCheckBoxStyle"
TargetType="{x:Type CheckBox}">
<Setter Property="FontSize" Value="16" />
<{/Style>
</Window.Resources>

» Der erste Style ist ein Typ-Style. Sie geben den Steuerelement-Typ Button {iber
das Attribut TargetType und x:Type an. Alle Buttons bekommen automatisch
den Typ-Style, auller Sie weisen einem Button explizit einen anderen, benann-
ten Style zu.

» Der zweite Style ist ein benannter Style. Er gilt nur fir die Steuerelemente,
denen Sie ihn explizit zuweisen.

» Der dritte Style ist eine Kombination aus Typ-Style und benanntem Style. Er
gilt fiir CheckBoxen und auch nur, wenn Sie ihn explizit zuweisen.

197

7 | Vorlagen

In Typ-Styles wird beim Attribut Property der Name des Steuerelement-Typs
nicht angegeben. Dieser ist bereits tiber TargetType festgelegt.

Innerhalb eines Gtiltigkeitsbereichs (Application.Resources oder Window
.Resources) konnen Sie fiir einen Steuerelement-Typ nur einen Typ-Style definie-
ren.

Die Zuweisung der genannten Styles fiir das gezeigte Beispiel:

<{StackPanel>
<Button>mein Button-Style</Button>
<Button Style="{StaticResource meinAndererStyle}">
mein anderer Style</Button>
<CheckBox>ohne CheckBox-Style</CheckBox>
{CheckBox Style="{StaticResource meinCheckBoxStyle}">
mit CheckBox-Style</CheckBox>
</StackPanel>

» Dem ersten Button wird automatisch der Typ-Style fiir Buttons zugewiesen.

» Dem zweiten Button wird der benannte Style explizit zugewiesen, daher gilt
der Typ-Style nicht.

» Der ersten CheckBox wird gar kein Style zugewiesen, da der Typ-Style fur
CheckBoxen gleichzeitig ein benannter Style ist und hier nicht explizit zuge-
wiesen wurde.

» Im Gegensatz dazu wird der zweiten CheckBox der benannte Typ-Style expli-
zit zugewiesen.

7-1.3 Vererbung benannter Styles

Styles konnen vererbt werden. Neben Standard-Styles fiir das allgemeine Ausse-
hen konnen Sie auch davon abgeleitete Styles fiir bestimmte Sonderfille definie-
ren. Im Projekt StylesVererbungBenannt werden zunichst benannte Styles vererbt
(siche Abbildung 7.4).

(87 StylesVererbungBenannt é‘m

mein Basis-Style

mein abgeleiteter Style

Abbildung 7.4 Vererbung benannter Styles

198

Styles | 74

Die Style-Definition:

<Window.Resources>
<Style x:Key="meinBasisStyle">
<Setter Property="Control.FontSize" Value="16" />
</Style>
{Style x:Key="meinAbgeleiteterStyle"
BasedOn="{StaticResource meinBasisStyle}">
(Setter Property="Control.FontFamily" Value="Courier New" />
</Style>
</Window.Resources>

Der erste Style ist ein benannter Style. Er dient als Basis fiir die Vererbung. Der
zweite Style ist ebenfalls benannt. Das Attribut BasedOn gibt an, auf welchem
Style er basiert. Damit iibernimmt er alle Eigenschaften des ersten Styles. Sie kon-
nen die Eigenschaften in diesem abgeleiteten Style sowohl erginzen als auch
tiberschreiben. Es gibt keine Mehrfachvererbung.

Die Zuweisung der Styles erfolgt in der gewohnten Weise:

{StackPanel>
<Button Style="{StaticResource meinBasisStyle}">
mein Basis-Style</Button>
{Button Style="{StaticResource meinAbgeleiteterStyle}">
mein abgeleiteter Style</Button>
</StackPanel>

Der zweite Button hat sowohl SchriftgroRe als auch Schriftart tbernommen, da
ihm der abgeleitete Style zugewiesen wurde.

7-1.4 Vererbung von Typ-Styles

Typ-Styles konnen ebenfalls vererbt werden. Damit ist es Thnen méglich, sowohl
einen Standard-Style als auch davon abgeleitete Styles fiir einen einzelnen Steuer-
element-Typ zu definieren. Ein Beispiel finden Sie im Projekt StylesVererbungType
(siehe Abbildung 7.5).

[E°7] StylesVererbungType E@u

Button-Style, Basis
Button-Style, abgeleitet

Abbildung 7.5 Vererbung von Typ-Styles

199

7 | Vorlagen

Zunichst die Style-Definition:

<Window.Resources>
{Style TargetType="{x:Type Button}">
<{Setter Property="FontSize" Value="16" />
</Style>
<Style x:Key="abgButtonStyle" TargetType="{x:Type Button}"
BasedOn="{StaticResource {x:Type Button}}">
{Setter Property="FontFamily" Value="Courier New" />
</Style>
</Window.Resources>

Beide Styles gelten fiir den Steuerelement-Typ Button (siehe TargetType). Das
Attribut BasedOn des abgeleiteten Styles verweist auf den Basis-Typ-Style.

Falls Sie den abgeleiteten Style im gleichen Giltigkeitsbereich wie den Basis-Style
definieren, dann miissen Sie ihn benennen, denn es gilt weiterhin: Fiir einen
Steuerelement-Typ diirfen Sie nur einen einzigen reinen Typ-Style definieren.

Selbst wenn Sie den Basis-Style in den Anwendungsressourcen und den abgelei-
teten Style in den Fensterressourcen definieren, ist eine Benennung sinnvoll.
Ansonsten wiirden Sie automatisch immer nur auf den abgeleiteten Style zugrei-
fen, da er niher am Steuerelement liegt.

Es folgt die Zuweisung der Styles:

<{StackPanel>
<Button>Button-Style, Basis</Button>
{Button Style="{StaticResource abgButtonStyle}">
Button-Style, abgeleitet</Button>
</StackPanel>

Dem ersten Button wird automatisch der einzig vorhandene reine Typ-Style zuge-
wiesen, also der Basis-Typ-Style. Dem zweiten Button wird der benannte Style —
hier also der abgeleitete Typ-Style — zugewiesen.

7-1.5 Verwandte Steuerelement-Typen

Weitere Flexibilitdt bei der Style-Definition gewinnen Sie, indem Sie einen Basis-
Style definieren, der fiir einen Basis-Typ gilt. AnschlieBend kénnen Sie abgelei-
tete Styles fiir diesen Steuerelement-Typ oder fiir unterschiedliche abgeleitete
Steuerelement-Typen definieren. Ein Beispiel finden Sie im Projekt StylesTypHie-
rarchie (siche Abbildung 7.6).

200

Styles | 74

[R77 StylesTypHierarchie E@u

ITlmein CheckBox-Style
© mein RadioButton-Style
ohne Style

Abbildung 7.6 Verwandte Steuerelement-Typen

Zunichst die Style-Definition:

<Window.Resources>
<Style TargetType="{x:Type ButtonBase}">
<Setter Property="FontSize" Value="16" />
</Style>
<Style TargetType="{x:Type CheckBox}"
BasedOn="{StaticResource {x:Type ButtonBase}}">
(Setter Property="FontFamily" Value="Courier New" />
</Style>
<Style TargetType="{x:Type RadioButton}"
BasedOn="{StaticResource {x:Type ButtonBase}}">
(Setter Property="FontFamily" Value="Verdana" />
</Style>
</Window.Resources>

Als Erstes wird ein Style fiir den Steuerelement-Typ ButtonBase definiert. Dies ist
unter anderem der Basis-Typ fiir CheckBoxen, RadioButtons und Buttons. Dieser
Style wird anschliefend von zwei weiteren Styles geerbt: einem fiir den Steuer-
element-Typ CheckBox und einem fiir den Steuerelement-Typ RadioButton.

Es folgt die Zuweisung der Styles:

<{StackPanel>
<CheckBox>mein CheckBox-Style</CheckBox>
<RadioButton>mein RadioButton-Style</RadioButton>
<Button>ohne Style</Button>

</StackPanel>

Der CheckBox und dem RadioButton wird der jeweilige abgeleitete Typ-Style
automatisch zugewiesen. Dem Button wird kein Style zugewiesen. Zwar erbt der
Steuerelement-Typ Button vom Steuerelement-Typ ButtonBase, jedoch gibt es
keinen Style fiir den Steuerelement-Typ Button selbst.

201

7 | Vorlagen

7.1.6 EventSetter

Innerhalb eines Styles konnen Sie EventSetter definieren. Diese dienen zur Reak-
tion auf Ereignisse. Alle Steuerelemente, denen ein Style mit einem EventSetter
zugewiesen wird, reagieren dann auf das entsprechende Ereignis. Sie miissen die-
ses Ereignis also nicht mehr fiir jedes Steuerelement einzeln registrieren.

Falls ein Steuerelement-Typ nicht tiber das betreffende Ereignis verfiigt, so wird
das Ereignis ignoriert, wie dies auch bei einer nicht existierenden Eigenschaft der
Fall ist. Beispiel: Einem Separator kénnen Sie {iber einen Style weder die Eigen-
schaft Schriftgré8e noch das Ereignis Click zuordnen.

Wird ein Style vererbt, so wird auch der EventSetter vererbt. Dasselbe Ereignis
konnen Sie an mehreren Stellen registrieren. Dabei richtet sich die Bearbeitungs-
reihenfolge nach dem Bubbling-Prinzip der Routed Events (siehe auch Abschnitt 2.6,
»Routed Events«:

» Zuerst wird die Ereignismethode durchlaufen, die direkt im Steuerelement
selbst registriert wurde.

» Dann wird die Ereignismethode durchlaufen, die im abgeleiteten Style regis-
triert wurde.

» Danach wird die Ereignismethode durchlaufen, die im Basis-Style registriert

wurde.

In Abbildung 7.7 sehen Sie das Projekt StylesEventSetter — ein Beispiel mit drei
Buttons, einem Separator und einer CheckBox, das einige Moglichkeiten verdeut-

licht.

[R7 StylesEventSetter @m
Button 1
Button 2
Button 3

"] CheckBox

Abbildung 7.7 Styles mit Event Settern

Zunichst die Style-Definition:

<Window.Resources>
{Style x:Key="basStyle">
<Setter Property="Control.FontSize" Value="16" />
<EventSetter Event="Button.Click" Handler="bas_Click" />
</Style>

202

Styles | 74

<Style x:Key="abgStyle" BasedOn="{StaticResource basStyle}">
<Setter Property="Control.FontFamily" Value="Courier New" />
<EventSetter Event="Button.Click" Handler="abg_Click" />
<{/Style>
</Window.Resources>

Es werden zwei benannte Styles definiert. Der zweite Style erbt vom ersten Style.
In beiden Styles wird jeweils ein EventSetter eingefiihrt. Das Attribut Event dient
dazu, das Ereignis C11ick des Steuerelement-Typs Button zu registrieren. Das Attri-
but Handler verweist auf die jeweilige Ereignismethode.

Es folgt die Zuweisung der Styles:

<{StackPanel>
<Button Style="{StaticResource abgStyle}">Button 1</Button>
{Separator Style="{StaticResource abgStyle}" />
<Button Style="{StaticResource abgStyle}"
Click="b2_Click">Button 2</Button>
{CheckBox Style="{StaticResource abgStyle}"
Click="cb_CTick">CheckBox</CheckBox>
<Button Style="{StaticResource abgStyle}"
Click="b3_CTlick">Button 3</Button>
</StackPanel>

Allen Steuerelementen wird der abgeleitete Style zugewiesen. Die Reaktionen auf
einen Click sind jedoch unterschiedlich:

» Ein Click auf den ersten Button ruft die beiden Ereignismethoden abg_C1ick()
und bas_Click() auf, und zwar in dieser Reihenfolge.

» Ein Click auf den Separator fiihrt zu keiner Reaktion, da dieser Steuerelement-
Typ nicht tiber das Ereignis Click verfiigt. Die EventSetter werden also igno-
riert.

Bei den restlichen Steuerelementen ist zusitzlich das Click-Ereignis direkt regis-
triert, und zwar mit den folgenden Ereignismethoden:

private void b2_Click(...) { MessageBox.Show("b2_Click"); 1}
private void cb_Click(...) { MessageBox.Show("cb_Click"); 1}
private void b3_Click(object sender, RoutedEventArgs e)
{ MessageBox.Show("b3_Click");

e.Handled = true; }

Die Reaktion hingt davon ab, ob das Event-Routing vollstindig durchgefiihrt
wird oder nicht:

203

7 | Vorlagen

» Beim zweiten Button und bei der CheckBox wird die jeweilige Ereignisme-
thode fiir das direkt registrierte Click-Ereignis als erste durchlaufen. Anschlie-
Bend folgen die beiden anderen Methoden in der gleichen Reihenfolge wie
beim ersten Button.

» Beim dritten Button wird nur die Ereignismethode fir das direkt registrierte
Click-Ereignis durchlaufen. Innerhalb dieser Methode wird die Eigenschaft
Handled auf true gestellt. Damit erkldren Sie das Event-Routing fiir beendet.

7.2 Property Trigger

Trigger reagieren auf Anderungen innerhalb einer Anwendung. In der WPF gibt
es mehrere Arten von Triggern:

» Property Trigger reagieren auf die Anderung einer Eigenschaft. Diese Trigger
behandle ich im vorliegenden Abschnitt.

» Data Trigger dienen dazu, auf Anderung bei Dateninhalten zu reagieren (siehe
Abschnitt 8.6).

» Event Trigger werden zur Steuerung von Animationen eingesetzt (siehe
Abschnitt 11.3).

7.2.1 Einfache Property Trigger

Ein Property Trigger kontrolliert permanent den Wert einer Eigenschaft. Ein ein-
facher Property Trigger arbeitet mit einer Bedingung: Falls die kontrollierte
Eigenschaft einen bestimmten Wert annimmt, so wird eine Anderung durchge-
fithrt. Falls die kontrollierte Eigenschaft diesen Wert wieder verliert, so wird die
Anderung riickgingig gemacht. Ein Property Trigger entspricht in seiner Wirkung
also gleich zwei Ereignismethoden.

Das nachfolgende Beispiel im Projekt TriggerProperty zeigt, wie die Eigenschaft
IsChecked eines RadioButtons zur Triggerung genutzt wird (siehe Abbildung 7.8).

[®°7 TriggerProperty EIM

© Auswahl 1
© Auswahl 2

Abbildung 7.8 Nach dem Start

Beiden RadioButtons wurde der gleiche Style zugewiesen. In diesem Style sorgt
ein Property Trigger dafiir, dass die ausgewahlte Option automatisch fett darge-

204

Property Trigger | 7.2

stellt wird. Nach Auswahl des zweiten RadioButtons dndert sich also das Bild (siehe
Abbildung 7.9).

&) TriggerProperty e B P

© Auswahl 1
© Auswahl 2

Abbildung 7.9 Nach einem Wechsel der Auswahl

Hier sehen Sie zunichst die Definition des Property Trigger. Sie wird meist in
einem Style untergebracht:

<Window.Resources>
<Style TargetType="{x:Type RadioButton}">
<Setter Property="FontSize" Value="16" />
{Style.Triggers>
<Trigger Property="IsChecked" Value="True">
{Setter Property="FontWeight" Value="Bold" />
</Trigger>
</Style.Triggers>
</Style>
</Window.Resources>

Innerhalb eines Styles konnen Sie in der Auflistung Triggers mehrere Property
Trigger anlegen. Ein Trigger verweist iiber das Attribut Property auf die perma-
nent kontrollierte Eigenschaft und tiber das Attribut vValue auf den Wert, der zu
der Anderung fithrt. Hier ist dies die Eigenschaft IsChecked des RadioButtons.
Falls sich diese auf True dndert, so werden der oder die zugehorigen Setter akti-
viert. Hier gibt es nur einen Setter, der den Schriftschnitt auf Bo1d stellt.

Das Besondere daran ist: Sobald die Eigenschaft IsChecked des RadioButtons wie-
der auf False steht, wird die Anderung riickgingig gemacht.

Der Typ-Style wird den beiden RadioButtons automatisch zugeordnet.

7.2.2 Multi-Trigger

Ein Multi-Trigger ist ein Property Trigger, der mit mehreren Bedingungen arbei-
tet: Falls mehrere Eigenschaften jeweils einen bestimmten Wert annehmen, so
wird eine Anderung durchgefiihrt. Falls eine dieser Eigenschaften diesen Wert
wieder verliert, so wird die Anderung riickgingig gemacht. Sie verkniipfen also
mehrere Bedingungen tiber ein logisches »Und« miteinander.

Ein Beispiel sehen Sie im Projekt TriggerMulti (siehe Abbildung 7.10).

205

7 | Vorlagen

8] TriggerMulti o] .

@ Auswahl 1
© Auswahl 2

Abbildung 7.10 Nach dem Start

Auch hier soll die Auswahl eines RadioButtons dazu fithren, dass die jeweilige
Auswahl fett dargestellt wird — allerdings nur, wenn sich gleichzeitig die Maus
dartiber befindet. Es miissen also zwei Bedingungen zutreffen (sieche Abbil-

dung 7.11).
[®7] TriggerMulti @M
© Auswahl 1

© Auswahl 2

Abbildung 7.11 Mauszeiger iber Auswahl

Es folgt die Style-Definition mit dem Multi-Trigger:

<Window.Resources>
{Style TargetType="{x:Type RadioButton}">
<(Setter Property="FontSize" Value="16" />
{Style.Triggers>
<MultiTrigger>
<MultiTrigger.Conditions>
<Condition Property="IsChecked" Value="True" />
<Condition Property="IsMouseOver" Value="True" />
</MultiTrigger.Conditions>
<{Setter Property="FontWeight" Value="Bold" />
</MultiTrigger>
</Style.Triggers>
</Style>
</Window.Resources>

In einem Style konnen Sie mehrere Multi-Trigger anlegen. Innerhalb eines
MultiTrigger legen Sie die Bedingungen in der Auflistung Conditions an. Hier
sind dies zwei Bedingungen:

» IsChecked muss auf True stehen, und

» IsMouseOver muss auf True stehen.

Falls beides zutrifft, so wird der Schriftschnitt auf Bo1d gestellt. Falls eine der bei-
den Bedingungen nicht mehr zutrifft, so wird dies wieder riickgdngig gemacht.

206

Control Templates | 7.3

Wie im vorherigen Beispiel wird der Typ-Style den beiden RadioButtons automa-
tisch zugeordnet.

7.3 Control Templates

In der WPF gibt es Data Templates und Control Templates. Data Templates legen
das Verhalten von Datenobjekten fest; ich erldutere sie in Abschnitt 8.5.

In diesem Abschnitt geht es um Control Templates. Sie legen das Aussehen der
Steuerelemente einer Anwendung fest. In der WPF gibt es fiir jedes Steuerele-
ment ein vorgefertigtes Control Template. Sie haben dartiber hinaus die Moglich-
keit, eigene Control Templates zu definieren, also das Aussehen der Steuerele-
mente selbst zu gestalten. Dies geht tiber den Einsatz von Styles weit hinaus.

7-3.1 Ein erstes Control Template

Control Templates definieren Sie in XAML meist zentral als Anwendungs-Res-
source (Datei App.xaml), weil sie im gesamten Projekt benotigt werden. Im Projekt
TemplatesErstes sehen Sie einen selbst definierten Button (siehe Abbildung 7.12).

[87] TemplatesErstes

O

Abbildung 7.12 Selbst gestalteter Button

Hier sehen Sie zunichst die Definition des Control Templates in der Datei
App.xaml:

<{Application.Resources>
<ControlTemplate x:Key="meinTemplate"
TargetType="{x:Type Button}">
<Grid>
<ETTipse Width="50" Height="50" Fill="DarkGray" />
<ETTipse Width="40" Height="40" Fill="LightGray" />
</Grid>
</ControlTemplate>
</Application.Resources>

Ein einzeln definiertes Control Template muss immer tiber einen Schliissel iden-
tifizierbar sein (x:Key). Control Templates ordnen Sie meist einem Steuerelement-

207

7 | Vorlagen

Typ zu, hier dem Steuerelement-Typ Button. Dies geschieht mithilfe der Eigen-
schaft TargetType. Innerhalb des Control Templates wird der geometrische Auf-
bau angegeben. Dies sind hier zwei konzentrische Kreise unterschiedlicher Grof3e
und Farbe.

Die Zuweisung des Control Templates erfolgt so:

<WrapPanel>
{Button Template="{StaticResource meinTemplate}"
Click="b1_Click" />
</WrapPanel>

Das Control Template wird tiber das Attribut Template zugewiesen. Der Button
behilt seine sonstige Funktionalitit. Daher fithrt der Click zum gewohnten Ergebnis.

7.3.2 Control Template mit Trigger

Property Trigger haben Sie bereits in Abschnitt 7.2 kennengelernt. Dort wurden
sie innerhalb von Styles definiert. Alle Steuerelemente, denen dieser Style zuge-
wiesen wurde, reagierten auf den Trigger.

Einen Schritt weiter gehen Sie, indem Sie Property Trigger innerhalb eines Control
Templates definieren. Damit reagieren alle Steuerelemente, die gemifl diesem
Control Template aufgebaut sind, auf den Trigger. Ein Beispiel mit zwei selbst
gestalteten RadioButtons folgt im Projekt TemplatesTrigger (siehe Abbildung 7.13).

[87] TemplatesTrigger

Abbildung 7.13 Erste Option ausgewdhlt

Nach der Auswahl der zweiten Option sieht es so aus wie in Abbildung 7.14.

[87] TemplatesTrigger

Abbildung 7.14 Zweite Option ausgewdhlt

Hier sehen Sie zundchst die Definition des Control Templates:

208

Control Templates

{Application.Resources>
<ControlTemplate x:Key="meinTemplate"
TargetType="{x:Type RadioButton}">
<Grid>
<Rectangle x:Name="aussen" Width="50" Height="50"
Fill1="DarkGray" />
<ETTipse Width="40" Height="40" Fill="LightGray" />
</Grid>
<ControlTemplate.Triggers>
<Trigger Property="IsChecked" Value="True">
{Setter TargetName="aussen"
Property="Fill" Value="Black" />
</Trigger>
</ControlTemplate.Triggers>
</ControlTemplate>
</Application.Resources>

Der RadioButton wird mithilfe eines Quadrats und eines Kreises unterschiedli-
cher Grofe und Farbe gestaltet. Das Quadrat bekommt einen Namen, damit es als
Ziel fiir den Trigger dienen kann.

Der Trigger wird innerhalb des Control Templates in der Auflistung Triggers
definiert. Innerhalb des Triggers wird der Eigenschaft Fi11 der Wert Black zuge-
wiesen, falls der betreffende RadioButton ausgewahlt ist. Da es sich bei Fi11
nicht um eine Eigenschaft des RadioButtons selbst handelt, wird mithilfe des
Attributs TargetName das Ziel ausgewdhlt, das die gewiinschte Farbe annehmen
soll. Sie miissen das Ziel definieren, bevor Sie es auswihlen.

Die Zuweisung des Control Templates erfolgt in gewohnter Weise:

<WrapPanel>
<RadioButton Template="{StaticResource meinTemplate}"
IsChecked="True" />
<RadioButton Template="{StaticResource meinTemplate}" />
</WrapPanel>

7.3.3 Control Template mit Bindung

Steuerelemente, die nach einem Control Template aufgebaut wurden, miissen
nicht immer identisch aussehen. Sie kénnen individuelle Werte direkt im Steuer-
element vereinbaren. Sie mussen nur vorher definieren, an welche Eigenschaft
des Control Templates Sie den Wert weiter reichenmochten. Dies wird Thnen
durch das TemplateBinding ermoglicht.

209

7 | Vorlagen

Im nachfolgenden Projekt TemplatesBindung werden die Eigenschaften
BorderBrush, Background und Content eines Buttons mit Werten belegt, um sie
an das Control Template weiterzureichen (siehe Abbildung 7.15).

[®7] TemplatesBindung

Abbildung 7.15 Individuelle Eigenschaften

Hier sehen Sie zunichst die Definition des Control Templates:

<{Application.Resources>
<ControlTemplate x:Key="meinTemplate"
TargetType="{x:Type Button}">
<Grid>
<E11ipse Width="50" Height="50"
Fill1="{TemplateBinding BorderBrush}" />
<E11ipse Width="40" Height="40"
Fill="{TemplateBinding Background}" />
<ContentControl HorizontalAlignment="Center"
VerticalAlignment="Center"
Content="{TemplateBinding Content}" />
</Grid>
</ControlTemplate>
</Application.Resources>

Die beiden konzentrischen Kreise werden nicht mit einer festgelegten Farbe
geftllt, sondern individuell mithilfe eines TemplateBinding. Der duflere Kreis
dient zur Ubernahme der Eigenschaft BorderBrush, der innere Kreis zur Uber-
nahme der Eigenschaft Background des Buttons.

Zur Ubernahme der Eigenschaft Content des Buttons konnen Sie ein Steuerele-
ment vom Typ ContentControl nutzen. Dessen Eigenschaft Content wiederum
iibernimmt den individuellen Content des Buttons iiber ein TemplateBinding.
Das ContentControl wurde horizontal und vertikal zentriert, damit der Content
geometrisch an der richtigen Stelle landet.

Die Zuweisung des Control Templates mit der Angabe der individuellen Eigen-
schaften sieht so aus:

<WrapPanel>
<Button Template="{StaticResource meinTemplate}"
BorderBrush="Black" Background="White">B 1</Button>

210

Control Templates | 7.3

<Button Template="{StaticResource meinTemplate}">B 2</Button>
</WrapPanel>

Beim ersten Button wird die Randfarbe (B1ack) als Fiillfarbe an den dufleren Kreis
und der Hintergrund (White) als Fullfarbe an den inneren Kreis tiber das
TemplateBinding weitergereicht. Der Content (B 1) wird tiber das TemplateBinding
im ContentControl weitergegeben.

Der zweite Button verfiigt tiber keine individuelle Farbgebung, also werden die
Standardfarben eines Buttons verwendet.

7-3.4 Control Template in Typ-Style

Control Templates konnen Sie auch innerhalb eines Typ-Styles anwenden. Damit
entféllt die explizite Zuweisung. Nachfolgend sehen Sie dazu zwei Varianten:

» Im Projekt TemplatesStylesintern wird das gesamte Control Template inner-
halb des Styles definiert.

» Im Projekt TemplatesStylesExtern wird das Control Template auferhalb des
Styles definiert und im Style zugewiesen.

In beiden Projekten wird das gleiche Control Template verwendet, das Sie bereits
im Projekt TemplatesBindung im vorherigen Abschnitt kennengelernt haben. Zur
Darstellung kann weiterhin Abbildung 7.15 dienen.

Es folgen Template und Style fir das Projekt TemplatesStylesIntern:

<Window.Resources>
<Style TargetType="{x:Type Button}">
<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="{x:Type Button}">
<Grid> ... </Grid>
</ControlTemplate>
</Setter.Value>
</Setter>
</Style>
</Window.Resources>

Im Style wird ein Setter definiert. Das Attribut Property hat den Wert Template.
Das Attribut Value hat als »Wert« die Definition des Control Templates. Ein
Schliissel ist fur das Control Template nicht mehr notwendig, da es innerhalb des
Styles definiert wurde.

Es folgen Template und Style fiir das Projekt TemplatesStylesExtern:

211

7 | Vorlagen

<Window.Resources>
<ControlTemplate x:Key="meinTemplate"
TargetType="{x:Type Button}">
<Grid> ... </Grid>
</ControlTemplate>
<Style TargetType="{x:Type Button}">
<Setter Property="Template"
Value="{StaticResource meinTemplate}" />
</Style>
</Window.Resources>

Das Control Template hat diesmal einen eindeutigen Schliissel. Dieser Schliissel
wird als Ressource dem Attribut Value des Setters zugewiesen.

Fur beide Projekte gilt:

» Den inneren Aufbau des Control Templates kénnen Sie dem vorherigen
Abschnitt entnehmen.

» Die Anwendung des Control Templates ist jetzt einfacher, da es innerhalb
eines Typ-Styles definiert wurde. Die explizite Zuweisung entfillt:

<WrapPanel>
<Button BorderBrush="Black" Background="White">B 1</Button>
<Button>B 2</Button>

</WrapPanel>

7.4 Skins

Viele Anwendungen bieten dem Benutzer die Moglichkeit, das Aussehen der
Benutzeroberfliche schnell zu wechseln, um sie dem personlichen Geschmack
anzupassen.

Eine einfache Losung dazu konnten Sie bereits in Abschnitt 7.1.1, »Benannte Sty-
les«, sehen, namlich im Projekt StylesBenannt. Dort wurden Styles per Pro-
grammcode dynamisch zugewiesen.

Zum schnellen Austausch ganzer Style-Sammlungen, also zum Wechsel eines Skins,
bieten sich in der WPF Ressourcen-Worterbticher an. Der Entwickler legt fiir jeden
Skin eine Sammlung von Styles fiir die verschiedenen Steuerelemente an. Jede
Style-Sammlung wird in einem eigenen Worterbuch fiir dynamische Ressourcen
gespeichert, die gemeinsam mit der Anwendung ausgeliefert werden. Dem Benut-
zer wird die Moglichkeit gegeben, das Ressourcen-Worterbuch zu wechseln.

Ein Beispiel mit zwei Skins bietet das Projekt SkinsRessourcen (siehe Abbildung 7.16).

212

Skins | 7.4

[®7 SkinsRessourcen E@u

mein Button-Style

© mein RadioButton-Style

Skin wechseln
@ Skin 1
© Skin 2

Abbildung 7.16 Nach dem Start

Nach Auswahl des zweiten Skins sieht es so aus wie in Abbildung 7.17.

' ™
[®7 SkinsRessourcen @m

mein Button-Style
|0) mein RadicButton-Style

Skin wechseln
© skin 1
@ Skin 2

Abbildung 7.17 Nach Auswahl des zweiten Skins

Ein neues Ressourcen-Worterbuch fiigen Sie dem Projekt Giber den Meniipunkt
PROJEKT + RESSOURCEN-WORTERBUCH HINZUFUGEN hinzu. Darin wird die Style-
Sammlung angelegt, was hier am Beispiel der Datei redirl.xaml gezeigt ist:

<ResourceDictionary ...>
<Style x:Key="meinButtonStyle" TargetType="{x:Type Button}">
{Setter Property="FontFamily" Value="Courier New" />
<(Setter Property="Background" Value="LightGray" />
</Style>
{Style x:Key="meinRadioButtonStyle"
TargetType="{x:Type RadioButton}">
<Setter Property="FontFamily" Value="Tahoma" />
{Setter Property="FontSize" Value="16" />
</Style>
</ResourceDictionary>

Es handelt sich um benannte Styles fiir jeden Steuerelement-Typ. Das zweite Res-
sourcen-Worterbuch wird auf die gleiche Art in der Datei redir2.xaml angelegt,
nur mit anderen Eigenschaftswerten. In allen Ressourcen-Worterbtichern sollten
Sie dieselben Style-Namen verwenden. Es folgt der Aufbau des Teils der Oberfl-
che, dessen Aussehen der Benutzer austauschen kann:

213

7 | Vorlagen

MWindow ... Initialized="Window_Initialized">
<StackPanel>
<Button Style="{DynamicResource meinButtonStyle}">
mein Button-Style</Button>
<RadioButton Style="{DynamicResource meinRadioButtonStyle}">
mein RadioButton-Style</RadioButton>

</StackPanel>
</Window>

Beachten Sie, dass das Initialized-Ereignis des Fensters, das noch vor dem
Loaded-Ereignis liegt, zum Durchlauf einer Methode fiithrt. Die Styles weisen Sie
als dynamische Ressourcen zu. Diese dynamischen Ressourcen liegen im jeweili-
gen Ressourcen-Worterbuch.

Der Programmcode fiir die Zuweisung der Ressourcen:

private void Window_Initialized(object sender, EventArgs e)
{ rd_laden("redirl.xaml"); }
private void rbl_Checked(object sender, RoutedEventArgs e)
{ rd_laden("redirl.xaml"); }
private void rb2_Checked(object sender, RoutedEventArgs e)
{ rd_laden("redir2.xaml"); }

private void rd_laden(string rd_datei)
{
FileStream fs = new FileStream("..\\..\\" + rd_datei,
FileMode.Open);
ResourceDictionary rd = XamlReader.Load(fs)
as ResourceDictionary;
Application.Current.Resources = rd;
}

Sowohl die Initialisierung des Fensters als auch die Auswahl eines Skins durch
den Benutzer fithrt jeweils zum Aufruf der Methode rd_laden(). Darin wird ein
Objekt der Klasse FileStream angelegt, das zum Offnen der jeweiligen Projekt-
Datei mit dem Ressourcen-Worterbuch dient. Fiir die Klasse FileStream wird der
Namespace System. 10 benotigt.

Die Methode Load() der Klasse Xam1Reader liefert das Stammelement der XAML-
Struktur aus dem gelesenen Filestream. Das gelieferte Stammelement wird nach
einer Typkonvertierung der Auflistung Application.Current.Resources als
neuer Wert zugewiesen. Damit ist gleichzeitig auch der Giiltigkeitsbereich der
Ressourcen aus dem geladenen Worterbuch festgelegt: Sie gelten fur die gesamte

214

Skins | 7.4

aktuelle Anwendung. Fur die Klasse XamlReader wird der Namespace System
.Windows.Markup benotigt.

Styles innerhalb eines Ressourcen-Worterbuchs kdnnen keine EventSetter enthal-
ten, da der Handler des EventSetters Programmcode benotigt.

215

Die Verbindung zwischen einer Anwendung und den zugrunde liegenden
Daten wird in der WPF mit einer neuen Technologie direkt unterstiitzt.

8 Daten

Die WPF bietet eine Technologie zur direkten Datenbindung zwischen Anwen-
dungsdaten und der Benutzeroberfliche beziehungsweise zwischen den Elemen-
ten der Benutzeroberfliche. Die Quelle einer Datenbindung kénnen zum Beispiel
Objekte oder Inhalte von Datenbanken sein. Es gibt die Moglichkeit, die Quell-
daten vor der Weitergabe zu validieren.

Bei groBeren Datenmengen bietet sich das Steuerelement DataGrid zur Darstel-
lung und Bearbeitung an. Die Form der Darstellung kann mithilfe eines DataTem-
plate einheitlich gestaltet werden. DataTrigger kontrollieren bestimmte Daten-
werte und reagieren auf Anderungen.

8.1 Datenbindung

Es wird zunichst die Datenbindung zwischen zwei Elementen der Benutzerober-
fliche erliutert. Eine Anderung der Daten der Quelle fithrt dabei zu einer Aktua-
lisierung der Daten des Ziels. Dies wird intern mithilfe von Dependency Proper-
ties realisiert.

8.1.1 Setzen und Ldsen einer Bindung

Sie konnen eine Datenbindung zur Entwurfszeit in XAML erstellen. Zusitzlich
konnen Sie eine Datenbindung auch zur Laufzeit per Programmcode erzeugen,
indern oder entfernen. Im nachfolgenden Projekt DatenBindung wird die Bin-
dung einer TextBox an verschiedene Label dargestellt (siehe Abbildung 8.1).

217

8 | Daten

[®7] DatenBindung EIEM

Quelle: Hallo
Ziel 1: Hallo
Ziel 2: [T] Bindung

Abbildung 8.1 TextBox, gebunden an Label

Zunichst der Code in XAML:

{StackPanel>
MWrapPanel>
<Label Margin="3" Width="60">Quelle:</Label>
{TextBox x:Name="tb" Margin="3" Width="200">Hallo</TextBox>
</WrapPanel>
MWrapPanel>
<Label Margin="3" Width="60">Ziel 1:</Label>
<Label Margin="3" Width="200" Background="LightGray"
Content="{Binding ElementName=tb, Path=Text}" />
</WrapPanel>
MWrapPanel>
<Label Margin="3" Width="60">Ziel 2:</Label>
<Label x:Name="1b" Margin="3" Width="120"
Background="LightGray" Height="25" />
{CheckBox x:Name="cb" Margin="3" VerticalAlignment="Center"
Checked="cb_Checked" Unchecked="cb_Unchecked">
Bindung</CheckBox>
</WrapPanel>
</StackPanel>

Die TextBox hat den Namen tb. Die Eigenschaft Text der TextBox ist an die Eigen-
schaft Content des Labels nach ZIEL 1 gebunden. Zur verkiirzten Schreibweise der
Bindung wurde eine Markup Extension verwendet (sieche Abschnitt 2.5). Natiir-
lich wire auch die lingere Schreibweise tiber Property Elements moglich gewesen
(siehe Abschnitt 2.2). Die Bindung hat Eigenschaften: E1ementName und Path. Als
Werte fiir diese Eigenschaften werden der Name und die verbindende Eigen-
schaft des Quellelements benétigt.

Das Label nach Z1EL 2 wird erst zur Laufzeit an die Textbox gebunden, und zwar
nachdem die Markierung der CheckBox gesetzt wurde. Diese Bindung wird
durch ein Lschen der Markierung wieder gelost. Die zugehorigen Ereignisme-
thoden sehen so aus:

218

Datenbindung | 82

private void cb_Checked(...)

{
Binding bi = new Binding();
bi.ElementName = "tb";
bi.Path = new PropertyPath("Text");

// 1b.SetBinding(Label.ContentProperty, bi);
BindingOperations.SetBinding(1b, Label.ContentProperty, bi);

private void cb_Unchecked(...)

{
BindingOperations.ClearBinding(1b, Label.ContentProperty);
// BindingOperations.ClearAl1Bindings(1b);

}

Um eine neue Datenbindung zu erstellen, wird zunichst ein neues Objekt der
Klasse Binding erzeugt. Anschliefend werden die Eigenschaften ElementName
und Path fur die Quelle gesetzt. Fiir die Eigenschaft Path wird ein Objekt der
Klasse PropertyPath benotigt. Der Konstruktor-Parameter ist der Name der
Eigenschaft als String. Das Ziel konnen Sie auf zwei Arten definieren:

» Beider ersten Variante wird fiir das Zielobjekt die Methode SetBinding() auf-
gerufen. Diese verlangt als ersten Parameter die Dependency Property des
Ziels, als zweiten Parameter die vorher erstellte Bindung inklusive Quelldaten.

» Die zweite Variante bedient sich einer der vielen statischen Methoden der
Klasse BindingOperations. Die Methode SetBinding() dieser Klasse verlangt
zundchst den Namen des Ziels, anschliefend wie ihr Namensvetter die Depen-
dency Property des Ziels und die vorher erstellte Bindung.

Auch zum Losen der Datenbindung gibt es zwei Moglichkeiten:

» Die statische Methode ClearBinding() der Klasse BindingOperations lost die
Bindung an eine bestimmte Dependency Property des Ziels. Hier ist dies
ContentProperty.

» Die statische Methode ClearAl1Bindings() 16st die Bindung an alle Depen-
dency Properties des Ziels.

8.1.2 Richtung und Zeitpunkt einer Bindung

Es gibt verschiedene Moglichkeiten, die Richtung einer Datenbindung festzule-
gen. Dazu dient die Eigenschaft Mode der Bindung. Sie kann Werte aus der gleich-
namigen Enumeration enthalten:

219

8 | Daten

TwoWay: Anderungen sind in beide Richtungen méglich, also von der Quelle
zum Ziel und umgekehrt.

OneWay: Eine Anderung ist nur von der Quelle zum Ziel moglich.

OneTime: Es wird nur eine einmalige Anderung von der Quelle zum Ziel durch-
geftihrt, und zwar in dem Moment, in dem die Bindung giiltig wird.

OneWayToSource: Es ist nur eine Anderung vom Ziel zur Quelle moglich.

Default (Standardwert): TwolWay, falls der Benutzer den Inhalt der beteiligten
Steuerelemente verindern kann, andernfalls OneWay.

Die Eigenschaft UpdateSourceTrigger der Bindung beeinflusst den Zeitpunkt der
Anderung bei einer Datenbindung. Die Werte aus der gleichnamigen Enumera-

tion:

>

PropertyChanged: Die Anderung wird durchgefithrt, sobald sich die Quell-
eigenschaft dndert.

LostFocus: Die Anderung wird durchgefiihrt, wenn die Quelle den Fokus ver-
liert.

Explicit: Die Anderung wird nur bei explizitem Aufruf der Methode
UpdateSource() der Klasse BindingExpression durchgefiihrt.

Default (Standardwert): PropertyChanged; eine Ausnahme ist die Eigenschaft
Text, hier gilt LostFocus.

Nachfolgend sehen Sie ein Beispiel im Projekt DatenRichtung (sieche Abbildung 8.2).

r: ™y
[8'] DatenRichtung li‘m

1: Hallo

2t Hallo Welt

Richtung

© TwoWay

@ OneWay

© OneTime

© OneWayToSource

Abbildung 8.2 Zwei verbundene TextBoxen

Ohne besondere Einstellung gelten fiir die zwei verbundenen TextBoxen die
Werte TwolWay und LostFocus. Im XAML-Code des Projekts wurden allerdings die
Einstellungen OneWay und PropertyChanged gewihlt:

220

Datenbindung | 84

<{StackPanel>
MWrapPanel>
<Label Margin="3" Width="30">1:</Label>
{TextBox x:Name="tbl" Margin="3" Width="230">Hallo</TextBox>
</WrapPanel>
MWrapPanel>
<Label Margin="3" Width="30">2:</Label>
{TextBox x:Name="tb2" Margin="3" Width="230">
<Binding ElementName="tbl" Path="Text" Mode="OneWay"
UpdateSourceTrigger="PropertyChanged" />
</TextBox>
</WrapPanel>
<GroupBox Header="Richtung">
<StackPanel RadioButton.Checked="richtung">
<RadioButton>TwoWay</RadioButton>
<RadioButton IsChecked="True">OneWay</RadioButton>
<RadioButton>OneTime</RadioButton>
<RadioButton>0OneWayToSource</RadioButton>
</StackPanel>
</GroupBox>
</StackPanel>

Die Quelle der Bindung ist die erste TextBox tbl, das Ziel ist die zweite TextBox
tb2. Die RadioButtons im unteren Teil bieten Thnen die Méglichkeit, die Richtung
zu verindern, um das unterschiedliche Verhalten zu testen. Dazu wurde im Stack-
Panel das Attached Event RadioButton.Checked notiert. Die zugehorige Ereignis-
methode sieht so aus:

private void richtung(object sender, RoutedEventArgs e)

{
if (!IslLoaded) return;

Binding bi = new Binding();

bi.ElementName = "tbl";

bi.Path = new PropertyPath("Text");

bi.UpdateSourceTrigger = UpdateSourceTrigger.PropertyChanged;

switch ((e.Source as RadioButton).Content.ToString())

{
case "TwoWay":
bi.Mode = BindingMode.TwoWay; break;
case "OneWay":
bi.Mode = BindingMode.OneWay; break;
case "OneTime":

221

8 | Daten

bi.Mode = BindingMode.OneTime; break;
case "OneWayToSource":
bi.Mode = BindingMode.OneWayToSource; break;

}
BindingOperations.SetBinding(th2, TextBox.TextProperty, bi);
}

Es wird eine neue Bindung zur Eigenschaft Text der TextBox tbl erzeugt. Der
Wert der Eigenschaft UpdateSourceTrigger bleibt unverdndert. Die Eigenschaft
Content des auslosenden RadioButtons wird dazu genutzt, die Eigenschaft Mode
auf den gewtinschten Wert einzustellen. Zu guter Letzt wird die neue Bindung
mithilfe der statischen Methode SetBinding() der TextBox tb2 zugeordnet. Die-
ser Vorgang ersetzt die alte Bindung.

Die Eigenschaften einer bereits genutzten Bindung kénnen nicht gedndert wer-
den. Daher ist es zwar moglich, einen Verweis auf die bereits vorhandene Bin-
dung mithilfe der statischen Methode GetBinding() zu ermitteln, aber anschlie-
Bend kann die Eigenschaft Mode nicht geindert werden.

8.2 Validierung

Es kann wichtig sein, die Daten bei einer Datenbindung zu validieren, sodass nur
gepriifte Daten zum gewiinschten Empfinger gelangen. Eine Datenbindung
besitzt dazu die Eigenschaft ValidationRules. Dieser Auflistung missen Sie ein-
zelne Validierungsregeln hinzuftigen. Eigene Validierungsregeln koénnen Sie
erzeugen, indem Sie von der abstrakten Klasse ValidationRule ableiten und
darin die Methode Validate() vom Typ ValidationResult tiberschreiben.

Nachfolgend sehen Sie ein Beispiel im Projekt DatenValidierung (siehe Abbil-
dung 8.3). Darin werden zwei TextBoxen liber eine Datenbindung gekoppelt.
Solange falsche Daten eingegeben werden, ist die TextBox rot umrandet. Nur die
richtigen Daten, in diesem Fall der Text »Hallo«, werden zum Empfinger geleitet

(siehe Abbildung 8.4).
[87] DatenValidierung E@u
Quelle:
Ziel: Falsche Daten |

Abbildung 8.3 Eingabe der falschen Daten

222

Validierung | 8.2

[E7] DatenValidierung él@u

Quelle: Hallo

Ziel: Hallo

Abbildung 8.4 Weiterleitung der richtigen Daten

Zunichst der XAML-Code:

<Window ... Loaded="Window_Loaded">
<StackPanel>
<WrapPanel>
<Label Margin="3" Width="60">Quelle:</Label>
{(TextBox x:Name="tbl" Margin="3" Width="200" />
</WrapPanel>
<WrapPanel>
<Label Margin="3" Width="60">Ziel:</Label>
{TextBox Margin="3" Width="200">
<Binding x:Name="bg" ElementName="tbl"
Path="Text" Mode="OneWayToSource"
UpdateSourceTrigger="PropertyChanged" />
</TextBox>
</WrapPanel>
</StackPanel>
</Window>

Die zweite TextBox ist im Modus OneWayToSource an die erste TextBox gebunden.
Sobald in der zweiten TextBox eine Anderung erfolgt, wird ihr Inhalt validiert
und gegebenenfalls in die erste TextBox kopiert. Nach dem Laden des Fensters
wird die Ereignismethode Window_Loaded() aufgerufen:

private void Window_Loaded(...)
{ bg.ValidationRules.Add(new meineValidierungsregel()); }

Darin wird der Auflistung ValidationRules der Datenbindung eine neue Instanz
der Klasse meineValidierungsregel hinzugefiigt. Diese Klasse wurde in der Datei
meineValidierungsregel.cs innerhalb des aktuellen Projekts wie folgt definiert:

using System.Windows.Controls;
namespace DatenValidierung
{
class meineValidierungsregel : ValidationRule
{
public override ValidationResult Validate(object eingabe,
System.Globalization.CultureInfo culturelnfo)

223

8 | Daten

if (eingabe as string == "Hallo")
return ValidationResult.ValidResult;
else

return new ValidationResult(false, "Fehler");

}

Die Klasse wird von der abstrakten Klasse ValidationRule aus dem Namespace
System.Windows.Controls abgeleitet. Darin wird die Methode Validate() iiber-
schrieben. Im ersten Parameter vom Typ object steht der Wert, der zu validieren
ist. Falls dieser den Regeln entspricht, so wird mithilfe der statischen Eigenschaft
ValidResult eine Instanz der Klasse ValidationResult mit einem giiltigen Ergeb-
nis zuriickgeliefert. Ansonsten wird eine neue Instanz zurtickgeliefert, die einen
Fehler anzeigt.

8.3 Datenquellen

Die Quellen einer Datenbindung kénnen unterschiedlich sein. Es ist moglich, die
Steuerelemente einer Anwendung mit anderen Elementen zu verbinden, wie in
den vorherigen Abschnitten gezeigt wurde. Die Datenquelle kann aber auch ein
Objekt, eine Liste von Objekten oder eine Datenbank sein. Diese Moglichkeiten
werden nachfolgend dargestellt.

8.3.1 Ein Objekt als Datenquelle

In diesem Abschnitt wird ein Objekt einem Projekt als Ressource zur Verfiigung
gestellt. Dieses Objekt wird im Projekt QuelleObjekt innerhalb von drei Text-
Boxen zur Ansicht gebracht (siehe Abbildung 8.5).

(9 QuelleObjekt [EE)

Stadt; Berlin

Lage: Osten

Einwohner: 3500000

Abbildung 8.5 Ein Objekt als Datenquelle

224

Datenquellen | 8.3

Schauen wir uns zunichst den Datentyp des Objekts an. Er soll einige Daten {iber
eine Stadt beinhalten und wird in der Klassendatei stadt.cs des aktuellen Projekts
definiert:

namespace QuelleObjekt
{
class stadt
{
public string name { get; set; }
public string lage { get; set; }
public int einwohner { get; set; }
public override string ToString()
{ return name + ", " + lage + ",

+ einwohner; }

}

Es werden die drei Properties name, 1age und einwohner definiert, auferdem eine
Ausgabemethode fiir die Daten eines Objekts.

Der XAML-Code:

<Window ... xmlns:local="clr-namespace:QuelleObjekt" ... >
<Window.Resources>
{local:stadt x:Key="st" name="Berlin" lage="Osten"
einwohner="3500000" />
</Window.Resources>
<StackPanel>
<WrapPanel>
<Label Margin="3" Width="70">Stadt:</Label>
{TextBox Margin="3" Width="190">
<Binding Source="{StaticResource st}" Path="name" />
</TextBox>
</WrapPanel>
{WrapPanel>
<Label Margin="3" Width="70">Lage:</Label>
{TextBox Margin="3" Width="190">
<Binding Source="{StaticResource st}" Path="lage" />
</TextBox>
</WrapPanel>
<WrapPanel>
<Label Margin="3" Width="70">Einwohner:</Label>
{TextBox Margin="3" Width="190">
<Binding Source="{StaticResource st}" Path="einwohner" />
</TextBox>
</WrapPanel>

225

8 | Daten

<Button Margin="3" Width="80" Click="aus">Ausgabe</Button>
</StackPanel>
</Window>

Der lokale Namespace QuelleObjekt wird innerhalb der Fensterdefinition
bekannt gemacht, ansonsten konnte der Typ stadt nicht gefunden werden.
Anschliefend wird eine Instanz dieses lokalen Typs erzeugt und als Ressource zur
Verfiigung gestellt. Die Eigenschaft Source der Datenbindung greift auf die
Instanz zu, die als Bindungsquelle dient. In diesem Falle ist dies eine Ressource,
die tiber ihren Schlissel erreicht wird. Die jeweilige Property der Instanz dient als
Wert fiir Path.

In der Ausgabemethode aus() wird mithilfe von FindResource() ebenfalls tiber
die Ressource auf die Instanz zugegriffen:

private void aus(...)
{ MessageBox.Show((FindResource("st") as stadt).ToString()); }

8.3.2 Kontext einer Datenbindung

Falls mehrere Elemente bei einer Datenbindung auf die gleiche Quelle zugreifen,
so bietet sich eine Vereinfachung an. Anstatt bei jedem Element tiber die Eigen-
schaft Source auf die Ressource zu verweisen, kénnen Sie dies iber die Eigen-
schaft DataContext eines Uibergeordneten Elements vornehmen.

Das Beispiel aus dem vorherigen Abschnitt wurde fir das nachfolgende Projekt
QuelleKontext entsprechend gedndert. Klassendefinition, Ressource und Ausgabe
bleiben gleich. Der gednderte XAML-Code sieht so aus:

<Window ... xmlns:local="clr-namespace:QuelleKontext" ...>
<Window.Resources>
<local:stadt x:Key="st" name="Berlin" lage="0Osten"
einwohner="3500000" />
</Window.Resources>
<{StackPanel DataContext="{StaticResource st}">
{WrapPanel>
<Label Margin="3" Width="70">Stadt:</Label>
{TextBox Margin="3" Width="190">
<Binding Path="name" />
</TextBox>
</WrapPanel>

<{/StackPanel>
</Window>

226

Datenquellen

Beim Ubergeordneten StackPanel entspricht der Wert der Eigenschaft
DataContext der statischen Ressource. Inhalt der statischen Ressource ist die
Instanz, die als Bindungsquelle dient. Bei den Datenbindungen der TextBoxen
reicht nunmehr der Pfad zur Property.

8.3.3 Auflistung von Objekten

In diesem Abschnitt wird die Datenquelle von einem Objekt auf mehrere Objekte
des gleichen Typs erweitert. Diese Objekte werden in einer Auflistung zusam-
mengefasst. Diese Auflistung wiederum dient als Ressource fiir die Datenbin-
dung. Zur Darstellung ist zum Beispiel eine ListBox geeignet, wie Sie sie im nach-
folgenden Projekt QuelleCollection finden (siehe Abbildung 8.6). Darin wird der
aktuell ausgewdhlte Eintrag der ListBox liber eine weitere Datenbindung mit
TextBoxen gekoppelt.

([E7 QuelleCollection é@u1

Berlin, Osten, 3500000

Hamburg, Norden, 1800000

Minchen, Saden, 1100000

Hamburg MNorden 1800000

Abbildung 8.6 Auflistung von Objekten

Der Datentyp des Objekts in der Projektdatei stadt.cs wurde um einen Konstruk-
tor erweitert. Dieser wird zum Hinzuftigen einzelner Objekte zu der Auflistung
benotigt:

namespace QuelleCollection
{
class stadt
{
public stadt(string n, string 1, int e)
{ name = n; lage = 1; einwohner = e; }

public string name { get; set; }

public string lage { get; set; }

public int einwohner { get; set; }

public override string ToString()

{ return name + ", " + lage + ", " + einwohner; }

227

8 | Daten

In der Projektdatei stadtauflistung.cs wird der Auflistungstyp definiert:

using System.Collections.ObjectModel;
namespace QuelleCollection
{
class stadtauflistung : ObservableCollection<stadt> {}
}

Der Typ ObservableCollection<> aus dem Namespace System.Collections
.ObjectModel bietet die Moglichkeit, die Auflistung eines bestimmten Datentyps
zu erzeugen. Bei diesem Typ von Auflistung werden Benachrichtigungen gesandt,
falls sie verandert wird.

Der XAML-Code:

<Window ... xmlIns:local="clr-namespace:QuelleCollection”
Loaded="Window_Loaded">
<Window.Resources>
{local:stadtauflistung x:Key="stadtressource" />
</Window.Resources>
<StackPanel>
<ListBox x:Name="1b" Height="60" Margin="3">
<ListBox.ItemsSource>
<Binding Source="{StaticResource stadtressource}" />
</ListBox.ItemsSource>
</ListBox>
<WrapPanel>
<Label Margin="3" Width="85" Background="LightGray">
<Binding ElementName="1b" Path="SelectedItem.name" />
</Label>
<Label Margin="3" Width="85" Background="LightGray">
<Binding ElementName="1b" Path="SelectedItem.lage" />
</Label>
<Label Margin="3" Width="85" Background="LightGray">
<Binding ElementName="1b"
Path="SelectedItem.einwohner" />
</Label>
</WrapPanel>
</StackPanel>
</Window>

Zu Beginn muss die Auflistung mit Objekten gefiillt werden. Dies wird nach dem
Laden des Fensters (Ereignis Loaded) durchgefiihrt.

Die erste Datenbindung besteht zwischen der Auflistung und der ListBox. Es
wird eine Instanz des lokalen Typs stadtauflistung erzeugt und als Ressource
zur Verfigung gestellt. Die Eigenschaft Source der Datenbindung eines einzelnen

228

Datenquellen

ListBox-Eintrags greift tiber die Ressource auf die Instanz zu. Jeder ListBox-Ein-
trag stellt anschliefend mithilfe der Methode ToString() des Typs stadt ein
Objekt der Auflistung dar.

Die zweite Datenbindung besteht zwischen der ListBox und den einzelnen
Labels. Die jeweilige Property des aktuell ausgewdhlten Eintrags (SelectedItem)
dient als Wert fiir Path.

Es folgt der Code zum Fillen der Auflistung:

private void Window_Loaded(...)

{
stadtauflistung sa =

FindResource("stadtressource") as stadtauflistung;

sa.Add(new stadt("Berlin", "Osten", 3500000));
sa.Add(new stadt("Hamburg", "Norden", 1800000));
sa.Add(new stadt("Minchen", "Stden", 1100000));

}

Uber die Ressource wird die Auflistung zur Verfiigung gestellt. Mithilfe der
Methode Add() wird Element fiir Element hinzugefiigt.

8.3.4 Object Data Provider

Ein Object Data Provider umfasst ein Objekt und kann als Ressource fiir eine
Datenbindung dienen. Nachfolgend wird im Projekt QuelleProvider ein Object
Data Provider genutzt. Dieser ist zundchst leer, das Objekt wird erst zur Laufzeit
erzeugt. Die Klasse stadt mit ihren Properties name, Tage und einwohner ist
bereits aus den vorherigen Projekten bekannt.

Zunichst der XAML-Code:

<Window ... xmIns:local="clr-namespace:QuelleProvider" ...>
<Window.Resources>
<ObjectDataProvider x:Key="odp_resource" />
</Window.Resources>
<{StackPanel DataContext="{StaticResource odp_resource}">
{WrapPanel>
<Label Margin="3" Width="70">Stadt:</Label>
{TextBox Margin="3" Width="190">
<Binding Path="name" />
</TextBox>

<Button Margin="3" Width="80" Click="neu">Erzeugen</Button>
<Button Margin="3" Width="80" Click="aus">Ausgabe</Button>
</StackPanel>
</Window>

229

8 | Daten

Die Instanz der Klasse ObjectDataProvider wird als Ressource erzeugt. Uber die
Eigenschaft DataContext des tibergeordneten StackPanels wird sie den insgesamt
drei ausgebenden TextBoxen zur Verfiigung gestellt. Bei einer TextBox muss nur
noch der Name der jeweiligen Property angegeben werden. Es folgt der Code in
den beiden Ereignismethoden zur Erzeugung des Objekts fiir den Object Data
Provider und fiir die Ausgabe:

private void neu(...)
{
ObjectDataProvider odp =
FindResource("odp_resource") as ObjectDataProvider;
odp.ObjectInstance = new stadt("Berlin", "Osten", 3500000);

private void aus(...)
{
ObjectDataProvider odp =
FindResource("odp_resource") as ObjectDataProvider;
if (odp.ObjectInstance != null)
MessageBox.Show((odp.0ObjectInstance as stadt).ToString());
else
MessageBox.Show("Es gibt noch keine Instanz im Provider");
}

Mithilfe der Methode FindResource() wird auf die Ressource vom Typ
ObjectDataProvider zugegriffen. Die Eigenschaft ObjectInstance verweist auf
das umfasste Objekt, falls es bereits vorhanden ist.

8.3.5 Datenbank

Eine Datenbank ist die klassische Quelle fiir eine Datenbindung. Im nachfolgen-
den Projekt QuelleAccess wird auf die MS Access-Datenbank firma.mdb zugegrif-
fen. Diese beinhaltet die Tabelle personen mit den Feldern Name, Vorname,
Personalnummer und Gehalt. Sie wird in einem Steuerelement vom Typ ListView
dargestellt (siehe Abbildung 8.7).

(W7 QuelleAccess éﬁu

PNr Name Vomame Gehalt
6714 Maier Hans 3500
81343 Schmitz Peter 3750
2297 Mertens Julia 36215

Abbildung 8.7 Access-Datenbank in einem ListView

230

Datenquellen | 8.3

Die Datenbank firma.mdb wird dem Projekt per Drag&Drop im Projektmappen-
explorer hinzugefiigt (siehe Abbildung 8.8). Wihrend dieses Vorgangs startet
automatisch ein Assistent zur Erstellung eines DataSets. Da aber im Projekt eine
DataTable (ein untergeordnetes Element eines DataSets) per Code erstellt wird,
wird der Assistent nicht benotigt und abgebrochen.

Projektmappen-Explorer

i | 3 EE

[-9 Projektmappe "QuelleAccess” (1 Projekt)
4 [QuelleAccess
i E Properties
r = Verweise
v = Appxaml
[firma.mdb
v 8 MainWindow.xaml

Abbildung 8.8 Die Datenbank »firma.mdb« im Projekt

Es folgt der XAML-Code:

<Window ... Loaded="Window_Loaded">
<{StackPanel>
{ListView x:Name="1v" ItemsSource="{Binding}">
<ListView.View>
<GridView>
<GridViewColumn Header="PNr"
DisplayMemberBinding=
"{Binding Path=personalnummer}" />
<GridViewColumn Header="Name"
DisplayMemberBinding="{Binding Path=name}" />
<GridViewColumn Header="Vorname"
DisplayMemberBinding="{Binding Path=vorname}" />
<GridViewColumn Header="Gehalt"
DisplayMemberBinding="{Binding Path=gehalt}" />
</GridView>
</ListView.View>
</ListView>
</StackPanel>
</Window>

Auf die MS Access-Datenbank wird nach dem Laden des Fensters zugegriffen, und
zwar in der Ereignismethode Window_Loaded (). Die Eigenschaft ItemsSource ver-
weist auf die Auflistung, die als Inhalt fiir den ListView dienen soll. Die Auflistung
wird in diesem Falle tiber eine Datenbindung ermittelt. Die Eigenschaft View ist
fir die Darstellung und Organisation der Daten des ListView verantwortlich.

231

8 | Daten

Ein GridView stellt die Daten in Spalten dar. Jede Spalte ist eine Instanz der Klasse
GridViewColumn. Die Eigenschaft Header steht fiir den Spaltenkopf. Die Eigen-
schaft DisplayMemberBinding nutzt die vorhandene Datenbindung. Die Eigen-
schaft Path beinhaltet dabei den Namen des Feldes aus der Datenbanktabelle,
dessen Werte in dieser Spalte angezeigt werden.

In der Ereignismethode zum Laden der Daten werden die beiden Namespaces
System.Data und System.Data.0leDb zum Zugrift auf die MS Access-Datenbank
bendtigt:

private void Window_Loaded(...)
{
OleDbConnection con =
new OleDbConnection(@"Provider=Microsoft.Jet.OLEDB.4.0;
Data Source=firma.mdb");
OleDbDataAdapter da =
new OleDbDataAdapter("select * from personen", con);
DataTable dt = new DataTable();
da.Fil1(dt);
lv.DataContext = dt;
}

Die Instanz der Klasse O1eDbConnection erzeugt eine Verbindung zur Datenbank.
Die Instanz der Klasse 01eDbAdapter soll die Befehle beinhalten, die zum Fillen
eines DataSets aus einer Datenquelle und zur Aktualisierung der Datenquelle aus
dem DataSet benotigt werden. Im vorliegenden Fall werden zum Fiillen alle
Daten der Tabelle personen per SQL-Anweisung {iber die existierende Verbin-
dung zur Datenbank firma.mdb angefordert.

Ein DataTable-Objekt steht fiir eine einzelne Tabelle eines DataSets. Die Data-
Table wird tiber den Adapter gefiillt. Die Eigenschaft DataContext der ListView
verweist auf die gefiillte DataTable.

8.4 DataGrid

Das DataGrid ist ein Steuerelement, das viel Komfort durch eine grofe Anzahl an
Einstellmoglichkeiten bietet. Es ist editierbar und somit nicht nur zur Darstellung
von groflen Datenmengen (zum Beispiel aus Datenbanken), sondern auch zur
Verinderung derselben geeignet.

8.4.1 Einfacher Aufbau

Ein erstes Beispiel im Projekt DataGridAccess soll zeigen, wie einfach die Verbin-
dung zu einer Datenbank hergestellt werden kann (siehe Abbildung 8.9). Es wird

232

DataGrid | 8.4

die gleiche Datenbank firma.mdb mit der Tabelle personen verwendet wie im
vorherigen Abschnitt. Sie wird dem Projekt per Drag&Drop im Projektmappen-
explorer hinzugefiigt. Auch hier wird die Erstellung des DataSets abgebrochen.

Zu Beginn wird der Inhalt der Tabelle geladen und dargestellt. Der Benutzer kann
Daten dndern, neu hinzufiigen oder I6schen. Beim Schliefen des Fensters wird
die Datenbank mit den gednderten Daten aktualisiert.

[DataGridAccess @m

name vormname personalnummer gehalt

Maier |Hans 6714 3500
Schmitz | Peter 81343 3750
Mertens [Julia 2297 3621.5

Abbildung 8.9 Access-Datenbank in einem DataGrid

Der Aufbau in XAML ist einfach:

<MWindow ... Loaded="Window_Loaded" Closing="Window_Closing">
<StackPanel>
<DataGrid x:Name="dg" ItemsSource="{Binding}" />
</StackPanel>
</Window>

Die Eigenschaft ItemsSource verweist auf die Auflistung, die als Inhalt fir das
DataGrid dienen soll. Die Auflistung wird in diesem Falle iiber eine Datenbin-
dung ermittelt.

Es folgt der Code der Fensterklasse:

public partial class MainWindow : Window
{

OleDbDataAdapter da;

DataTable dt;

public MainWindow()
{
InitializeComponent();
OleDbConnection con =
new OleDbConnection(@"Provider=Microsoft.Jet.OLEDB.4.0;
Data Source=firma.mdb");
da = new OleDbDataAdapter("select * from personen", con);
OleDbCommandBuilder cb = new OleDbCommandBuilder(da);
dt = new DataTable();

233

8 | Daten

private void Window_lLoaded(...)
{

da.Fil1(dt);

dg.DataContext = dt;
}

private void Window_Closing(object sender,
System.ComponentModel.CancelEventArgs e)
{
da.Update(dt);
}
}

Sie sehen Parallelen zum ListView-Beispiel aus dem letzten Abschnitt. Es werden
die beiden Namespaces System.Data und System.Data.0leDb benétigt. Die
Instanzen der Klassen OleDbAdapter und DataTable werden sowohl beim Laden
als auch beim Aktualisieren der Daten genutzt, daher werden sie zu Eigenschaf-
ten der Fensterklasse.

Im Konstruktor der Fensterklasse wird tiber die Instanz der Klasse O1eDbConnection
die Verbindung zur Datenbank hergestellt. Die Instanz der Klasse OleDbAdapter
beinhaltet nach ihrer Erzeugung den Inhalt des SQL-Kommandos select zur Aus-
wahl der Daten. Die Instanz der Klasse 01eDbCommandBuilder erzeugt passend fiir
diesen Adapter die Inhalte der SQL-Kommandos insert, update und delete. Es
wird eine Instanz einer DataTable erzeugt.

Beim Laden des Fensters wird die DataTable tiber den Adapter gefiillt. Die Eigen-
schaft DataContext des DataGrid verweist auf die gefiillte DataTable.

Beim Schliefen des Fensters (Ereignis Window_Closing()) wird die Datenbank aus
der DataTable tiber den Adapter durch Aufruf der Methode Update () aktualisiert.
Dabei kommen die SQL-Kommandos zum Einsatz, die iiber die Instanz der Klasse
OleDbCommandBuilder erzeugt wurden.

8.4.2 Standard-Einstellungen

Der XAML-Code des Beispielprojekts DataGridAccess aus dem vorherigen
Abschnitt 8.4.1 ist sehr kurz. Dies liegt daran, dass ein DataGrid in seinen Stan-
dard-Einstellungen bereits viel Funktionalitit bietet. Diese Standard-Einstellun-
gen konnen Sie mithilfe der nachfolgenden Beschreibung testen. Aulerdem kon-
nen Sie die genannten Alternativen ausprobieren.

Sie konnen Daten dndern, hinzufiigen oder l6schen, weil die boolesche Eigen-
schaft IsReadOnly den Wert False hat. Auch wenn sie den Wert True hat, kdnnen

234

DataGrid

Sie das Hinzufligen neuer Datensitze verhindern, indem Sie CanUserAddRows auf
False setzen. Das Entsprechende gilt fiir das Loschen von Datensitzen und
CanUserDeleteRows.

Sie kénnen mehrere Datensitze, ob zusammenhidngend oder nicht, auswéhlen,
weil die Eigenschaft SelectionMode den Wert Extended hat. Die Enumeration
DataGridSelectionMode bietet noch den Wert Single.

Falls Sie auf eine beliebige Zelle in einer Zeile klicken, so wird die gesamte Zeile
ausgewdhlt, weil die Eigenschaft SelectionUnit den Wert FullRow hat. Der Wert
Cell aus der Enumeration DataGridSelectionUnit ermdglicht die Auswahl einer
einzelnen Zelle. Der Wert Cel10rRowHeader ermdglicht beides, dabei muss zur
Auswabhl einer ganzen Zeile auf den Zeilenkopf geklickt werden.

Die Spalten lassen sich nach Wert sortieren, weil CanUserSortColumns den Wert
True hat. Derselbe Wert fiir CanUserReorderColumns erméglicht den Tausch von
Spalten. Spaltenbreite und Zeilenhdhe lassen sich verandern, weil
CanUserResizeColumns und CanUserResizeRows den Wert True haben.

Es sind alle Gitternetzlinien sichtbar, weil die Eigenschaft GridLinesVisibility den
Wert A11 hat. Weitere Werte aus der Enumeration DataGridGridLinesVisibility
sind None, Horizontal und Vertical. Alle Zeilen- und Spaltenkopfe sind sichtbar,
weil die Eigenschaft HeadersVisibiTlity ebenfalls den Wert A11 hat. Die Enumera-
tion DataGridHeadersVisibility bietet noch die Werte None, Column und Row.

Sie konnen eine ganze Zeile ohne Header in Form einer Tabellenzeile in die Zwi-
schenablage kopieren, zum Beispiel mit (Strg]+(c]. Dafiir sorgt der Wert
ExcludeHeader flir die Eigenschaft C11pboardCopyMode. Weitere Werte in der Enu-
meration DataGridClipboardCopyMode sind IncludeHeader und None. Anschlie-
Bend konnen Sie die Tabellenzeile(n) zum Beispiel in MS Word oder MS Excel
einfigen.

8.4.3 Weitere Spaltentypen

Das Beispielprojekt DataGridAccess aus Abschnitt 8.4.1 wird in diesem Abschnitt
zum Projekt DataGridFormat ausgebaut, um Ihnen einige weitere Moglichkeiten
des DataGrid zu zeigen. Die Darstellung sehen Sie in Abbildung 8.10.

Es wird wiederum eine Datenbank mit dem Namen firma.mdb mit der Tabelle
personen verwendet. In der Tabelle personen sind gegentiber dem letzten Bei-
spiel zwei Felder hinzugekommen: das Ja/Nein-Feld urlaub und das Textfeld
email. Die Datenbank wird dem Projekt per Drag&Drop im Projektmappenexplo-
rer hinzugefiigt. Auch hier wird die Erstellung des DataSets abgebrochen.

235

8 | Daten

[8'] DataGridFormat ==l

PNr Mame Vorname Gehalt In Urlaub E-Mail
6714 |Maier |Hans 3500
2297 |Mertens | Julia 36215
81343 | Schmitz | Peter 3750

h.maier@firma.de
J-mertens@firma.de

p.schmitz@firma.de

OOoOo=

Abbildung 8.10 Formatiertes DataGrid

Zunichst der XAML-Code:

<MWindow ... Loaded="Window_Loaded" Closing="Window_Closing">
<{StackPanel>
<DataGrid x:Name="dg" SelectionChanged="zeilenauswahl"
ItemsSource="{Binding}" AutoGenerateColumns="False">
<DataGrid.Columns>
<DataGridTextColumn Header="PNr"
Binding="{Binding Path=personalnummer}" />
<DataGridTextColumn Header="Name"
Binding="{Binding Path=name}" />
<DataGridTextColumn Header="Vorname"
Binding="{Binding Path=vorname}" />
<DataGridTextColumn Header="Gehalt"
Binding="{Binding Path=gehalt}" />
<DataGridCheckBoxColumn Header="In Urlaub"
Binding="{Binding Path=urlaub}" />
<DataGridHyperlinkColumn Header="E-Mail"
Binding="{Binding Path=email}" />
</DataGrid.Columns>
</DataGrid>
</StackPanel>
</Window>

Falls der Benutzer eine oder mehrere Zeilen auswihlt, so tritt das Ereignis
SelectionChanged ein. Im vorliegenden Projekt werden dann die Daten der Zei-
len angezeigt. Die Eigenschaft AutoGenerateColumns zur automatischen Uber-
nahme und Darstellung der Felder der Datenquelle muss auf False gestellt wer-
den, da die Darstellung der Spalten hier selbst gewéhlt wird. Ansonsten wiirden
alle Spalten doppelt angezeigt werden.

In der Auflistungseigenschaft Columns des DataGrid stehen die einzelnen Spal-
ten, die angezeigt werden sollen, mit ihren Typen. Neben dem Standardtyp
DataGridTextColumn zur Darstellung von Text und Zahlen wird hier noch der
Typ DataGridCheckBoxColumn fiir das Ja/Nein-Feld urlaub und der Typ

236

DataTemplates | 8.5

DataGridHyperlinkColumn fur das Feld email verwendet. Es gibt noch den Typ
DataGridComboBoxColumn fiir Werte aus Enumerationen. Aullerdem konnen Sie
den Typ DataGridTemplateColumn wihlen, dessen Inhalte Sie mithilfe eines
DataTemplate selber gestalten konnen (siehe dazu den nichsten Abschnitt).

Die Methoden Window_Loaded und Window_Closing entsprechen denen aus dem
zugrunde liegenden Projekt DataGridAccess. Es folgt die Methode zeilenaus-
wah1():

private void zeilenauswahl(object sender,
SelectionChangedEventArgs e)
string s = "";
for (int i = 0; i < dg.SelectedItems.Count; i++)
if (dg.SelectedItems[i] is DataRowView)
{
DataRowView drv = dg.Selectedltems[i] as DataRowView;
s += drv.Row["name"] + ", " + drv.Row["vorname"] + "\n";
}
if(s !="") MessageBox.Show(s);
}

In der Auflistung SelectedItems stehen die ausgewdhlten Zeilen. Sie sind vom
Typ DataRowView, auBer der Zeile fiir einen neuen Eintrag. Diese ist vom Typ
MS.Internal.NamedObject. Uber die Eigenschaft Row des DataRowView-Objekts
und den Namen des Feldes konnen Sie die aktuellen Werte ermitteln.

8.5 DataTemplates

Ein DataTemplate ist eine Vorlage fir die Darstellung eines bestimmten Daten-
typs. Zuordnung und Gdltigkeitsbereich dieser Vorlagen entsprechen denen von
Templates (siehe Abschnitt 7.3, »Control Templates«). Das nachfolgende Projekt
DatenVorlage wurde auf Basis des Beispielprojekts QuelleCollection erzeugt (siehe
Abschnitt 8.3.3, »Auflistung von Objekten«. Es wird ein DataTemplate fiir den
lokalen Datentyp stadt entworfen. Jeder Eintrag in der Listbox ist eine Instanz
dieses Datentyps (siehe Abbildung 8.11).

[®7] DatenVorlage E@u

& Berlin , Osten , 3500000
& Hamburg , Norden , 1800000
& Munchen , Suden , 1100000

Abbildung 8.11 DataTemplate fir Datentyp »stadt«

237

8 | Daten

Der XAML-Code:

<MWindow ... xmlIns:local="clr-namespace:DatenVorlage"
Loaded="Window_Loaded">
<Window.Resources>
{local:stadtauflistung x:Key="stadtressource" />
<DataTemplate DataType="{x:Type local:stadt}">
<StackPanel x:Name="sp" Height="25"
Orientation="Horizontal">
<Image Source="ms.gif" Width="16" />
<Label Content="{Binding Path=name}" />

<Label Content="," />
<Label Content="{Binding Path=lage}" />
<Label Content="," />

<Label Content="{Binding Path=einwohner}" />
</StackPanel>
</DataTemplate>
</Window.Resources>
<{StackPanel>
<ListBox x:Name="1b">
<ListBox.ItemsSource>
<Binding Source="{StaticResource stadtressource}" />
</ListBox.ItemsSource>
</ListBox>
</StackPanel>
</Window>

Den Aufbau der beiden Klassen stadt und stadtauflistung und das Fiillen der
Auflistung entnehmen Sie bitte Abschnitt 8.3.3. Es gibt zwei Ressourcen:

» die Ressource fiir die Daten selbst: die Auflistung der Stidte

» das DataTemplate fur die Darstellung der Daten einer einzelnen Stadt als Ein-

trag fiir die Listbox

Die Eigenschaft DataType des DataTemplate dhnelt der Eigenschaft TargetType
eines Style. Sie binden das DataTemplate iiber x:Type an einen Datentyp. Das
DataTemplate beinhaltet im vorliegenden Fall ein StackPanel mit einem Bild und
mehreren Labels.

8.6 DataTrigger

Ein DataTrigger dhnelt einem Property Trigger (siehe Abschnitt 7.2.1, »Einfache
Property Trigger«), bezogen auf Daten. Falls eine kontrollierte Eigenschaft eines

238

DataTrigger

Datenobjekts einen bestimmten Wert hat, so wird die Darstellung des Datenob-
jekts gedndert.

Das DataTemplate im Beispielprojekt DatenVorlage aus dem vorherigen
Abschnitt 8.5, »DataTemplates«, wird im nachfolgenden Projekt DatenTrigger um
einen DataTrigger erweitert. Falls die Eigenschaft 1age den Wert Norden hat, so
wird das Datenobjekt in Hellgrau dargestellt. Falls sie den Wert Siiden hat, so wird
das Datenobjekt in Hellblau und mit einer Hohe 35 angezeigt, in geriteunabhin-
gigen Pixeln (sieche Abbildung 8.12).

[R] DatenTrigger @m

& Berlin , Osten , 3500000

& Hamburg , Norden , 1800000
aMUnchen , SOden , 1100000

Abbildung 8.12 DateTemplate mit DataTrigger

Es folgt der gednderte XAML-Code des DataTemplate:

<DataTemplate DataType="{x:Type local:stadt}">
{StackPanel x:Name="sp" ...> ... </StackPanel>
<DataTemplate.Triggers>
<DataTrigger Binding="{Binding Path=lage}" Value="Norden">
{Setter Property="Background" TargetName="sp"
Value="Lightgray" />
</DataTrigger>
<DataTrigger Binding="{Binding Path=lage}" Value="Suden">
{Setter Property="Background" TargetName="sp"
Value="Lightblue" />
{Setter Property="Height" TargetName="sp" Value="35" />
</DataTrigger>
<{/DataTemplate.Triggers>
</DataTemplate>

Ein DataTemplate kann in der Eigenschaft Triggers eine Auflistung von Triggern
enthalten. Einen DataTrigger verbinden Sie tiber die Eigenschaft Binding mit der
kontrollierten Eigenschaft. Die Eigenschaft Value setzen Sie auf den Wert, auf
den reagiert werden soll.

Falls dieser Wert bei der kontrollierten Eigenschaft auftritt, so kénnen Sie einen
oder mehrere Setter einsetzen. Innerhalb eines Setters bezeichnen Sie tiber die
Eigenschaft TargetName das Zielelement, das verdndert werden soll. Mit der

239

8 | Daten

Eigenschaft Property kennzeichnen Sie die zu verdndernde Eigenschaft des Ziel-
elements, und tiber die Eigenschaft Value kennzeichnen Sie den einzustellenden
Wert.

240

Die Elemente der zweidimensionalen Grafik dienen sowohl fiir das
Erstellen von Zeichnungen in einer Anwendung als auch fiir die Gestal-
tung von Steuerelementen.

9 2D-Grafik

Zweidimensionale Grafiken sind Zeichnungen in der Ebene. In diesem Kapitel
werden unterschiedliche Typen erldutert:

» Shapes (Formen) sind eigenstindige grafische Objekte. Sie sind von der Basis-
klasse Shape abgeleitet.

» Geometrien sind keine eigenstindigen Grafiken, sondern stellen die grafische
Form eines umgebenden Elements dar. Sie sind von der Basisklasse Geometry
abgeleitet.

» Drawings (Zeichnungen) dienen dazu, Bilder zu erstellen. Sie sind von der
Basisklasse Drawing abgeleitet.

Es gibt Pinsel, um zweidimensionale Fliachen zu fiillen. Transformationen ermog-
lichen die Drehung, Skalierung, Neigung oder Verschiebung eines Elements in
der Ebene. Elemente oder Teile von Elementen konnen transparent gestaltet wer-
den. Bitmapeffekte und Verzierungen fithren zu weiteren Verinderungen.

In zweidimensionalen Grafiken werden die Positionsangaben von der oberen lin-
ken Ecke des umgebenden Elements aus berechnet: die X-Koordinate nach rechts
und die Y-Koordinate nach unten. Dies entspricht der Denkweise fiir die Eigen-
schaften Left und Top in einem Canvas.

Wenn Sie mit zweidimensionalen Grafiken umgehen konnen, werden Sie es
leichter haben, dreidimensionale Grafiken zu erstellen, nicht zuletzt aufgrund der
vielen Parallelen.

9.1 Shapes

Shapes (Formen) sind eigenstindige grafische Objekte. Sie dienen zum Erstellen
von einfachen Grafiken, die fiir Zeichnungen oder Hintergriinde geeignet sind.

241

9 | 2D-Grafik

Sie konnen nur einfache Ereignisse fiir Shapes registrieren; sie sind nicht primér
als Bedienungselemente fiir eine Anwendung gedacht. Die verschiedenen Klas-
sen fur Shapes (Rectangle, E11ipse, Line, Polygon, Polyline und Path) werden
von der abstrakten Basisklasse Shape abgeleitet, die bereits zahlreiche Eigenschaf-
ten zur Verfiigung stellt.

Das Aussehen eines Shapes kann auf einfache Weise gestaltet werden, wie Sie in
diesem Abschnitt sehen werden. Eine Ausnahme bildet die Klasse Path: Hier wird
eine Geometrie benotigt. Beispiele dazu finden Sie in Abschnitt 9.3, »Drawings.

9.1.1 Rechtecke und Ellipsen

Rechtecke und Ellipsen sind Instanzen der Klassen Rectangle und E11ipse und
werden durch ihre Breite und ihre Hohe gekennzeichnet. Bei der Ellipse bezieht
man sich dabei auf die Mae des umgebenden Rechtecks. Sie konnen eine Fiil-
lung und einen Umriss haben.

Im nachfolgenden Projekt ShapeRectEllipse werden einige dieser Objekte mithilfe
von XAML beziehungsweise durch Programmiercode erstellt und verdndert
(siehe Abbildung 9.1).

' ™
[ShapeReciEllipse =

[

Abbildung 9.1 Rechtecke und Ellipsen

Zunichst der XAML-Code:

<{StackPanel>
<MWrapPanel>
<Rectangle Width="80" Height="30" Fill="LightGray"
Margin="3" />
<Rectangle Width="80" Height="30" Fill="LightGray"
Stroke="Gray" StrokeThickness="3" Margin="3" />
<E11ipse Width="80" Height="30" Fill="LightGray"
Stroke="Gray" StrokeThickness="3" Margin="3" />
</WrapPanel>

242

Shapes | 94

<MWrapPanel x:Name="wp">
<Rectangle Width="80" Height="30" Fill="LightGray"
Margin="3" MouseDown="rcl_MouseDown" />
</WrapPanel>
<Canvas>
<Rectangle x:Name="rc2" Width="100" Height="30"
Fill="LightGray" Margin="3" />
<ETTlipse x:Name="el" Width="100" Height="30"
Fil1="Gray" Margin="3" MouseDown="el_MouseDown" />
<{/Canvas>
<{/StackPanel>
Alle Rechtecke und Ellipsen besitzen spezifische Werte fiir die Eigenschaften
Width, Height und Margin zur Angabe der GroBe und des Abstands. Die Eigen-
schaften Fi11 und Stroke sind vom Typ Brush und dienen zur Festlegung der Fil-
lung und des Umrisses. Die Dicke der Umrisslinie wird tiber die double-Eigen-
schaft StrokeThickness gewdhlt. Am unteren Rand wurden ein Rechteck und
eine Ellipse innerhalb eines Canvas an derselben Stelle angeordnet, also tiberein-
andergelegt.

Die Ereignismethoden sehen so aus:

private void neu(object sender, RoutedEventArgs e)

{
Rectangle r = new Rectangle();

r.Height = 30;

r.Width = 30;

r.Fi1l = new SolidColorBrush(Colors.LightGray);
r.Stroke = new SolidColorBrush(Colors.Gray);
r.StrokeThickness = 3;

r.Margin = new Thickness(3);

wp.Children.Add(r);
}

Es wird ein neues Rechteck erzeugt, mit den gewiinschten Eigenschaftswerten
versehen und als weiteres Element dem umgebenden WrapPanel hinzugefiigt.

private void aendern(object sender, RoutedEventArgs e)
{

el.Width = el.Width + 20;

rc2.Width = rc2.Width + 20;
}

Die Breite von Rechteck und Ellipse wird jedes Mal um 20 vergroRert.

243

9 | 2D-Grafik

9.1.2 Linie

Linien sind Instanzen der Klasse Line und durch die Koordinaten ihrer Anfangs-
und Endpunkte gekennzeichnet. Die Koordinatenwerte beziehen sich auf das
jeweils direkt tibergeordnete Element. Das nachfolgende Projekt ShapeLine bein-
haltet innerhalb eines Canvas einige Linien, die per XAML beziehungsweise Pro-
grammiercode erstellt und verandert werden (siehe Abbildung 9.2).

rlEl Shapeline @@uj
~—

S~

Abbildung 9.2 Linien

Der XAML-Code:

<Canvas>
<Line x:Name="T11" X1="10" Y1="20" X2="50" Y2="35"
Stroke="Gray" StrokeThickness="3" />
{Line X1="50" Y1="20" X2="90" Y2="35"
Stroke="Gray" StrokeThickness="3" />
<Canvas x:Name="cv" Width="150" Height="40" Canvas.lLeft="30"
Canvas.Top="50" Background="LightGray">
<Line XI="10" Y1="20" X2="50" Y2="35"
Stroke="Gray" StrokeThickness="3" />
</Canvas>

<{/Canvas>

Die double-Eigenschaften X1, Y1, X2 und Y2 stehen fiir die X- und Y-Koordinaten
von Anfangs- und Endpunkt der Linie. Die Eigenschaften Stroke und
StrokeThickness sind bereits aus dem vorherigen Abschnitt bekannt. Innerhalb
des umgebenden Canvas liegt ein innerer Canvas. Die Koordinaten beziehen sich

immer auf das direkt umgebende Element, bei der unteren Linie also auf den
inneren Canvas.

Die Fensterklasse mit den Ereignismethoden sieht so aus:

public partial class MainWindow : Window
{
doubTe obenlinks;

244

Shapes | 94

public MainWindow()

{
InitializeComponent();
obenlinks = 30;

private void aendern(...)
{

11.X1 = 11.X1 + 20;
11.X2 = 11.X2 + 20;
}
private void neu(...)

{
Line 11 = new Line();
1i.X1 = obenlinks;
1i.Y1 = 20;
1i.X2 obenlinks + 40;
1i.Y2 = 35;
1i.Stroke = new SolidColorBrush(Colors.Gray);
1i.StrokeThickness = 3;
cv.Children.Add(11);
obenlinks += 20;

}

In der Methode neu() wird eine neue Linie erzeugt, mit den gewtinschten Eigen-
schaftswerten versehen und als weiteres Element dem umgebenden Canvas hin-
zugefiigt. Jede neue Linie wird weiter rechts erzeugt.

Die Methode aendern() fuhrt dazu, dass die X-Koordinaten von Anfangs- und
Endpunkt der Linie jedes Mal um 20 vergrofert werden.

9.1.3 Polygon und Polylinie

Polygone und Polylinien sind Instanzen der Klassen Polygon und Polyline. Sie
basieren auf einer Auflistung von Punkten, die mithilfe ihrer Koordinaten ange-
geben werden. Die Punkte werden in der angegebenen Reihenfolge miteinander
verbunden. Die Koordinatenwerte beziehen sich auf das jeweils direkt tiberge-
ordnete Element. Sie konnen eine Fiillung und einen Umriss haben.

Ein Polygon ist immer geschlossen. Falls bei einer Polylinie der letzte Punkt dem
ersten Punkt entspricht, dann ist die Polylinie geschlossen, ansonsten ist sie
offen.

245

9 | 2D-Grafik

Das nachfolgende Projekt ShapePoly beinhaltet innerhalb eines Canvas einige
Polygone und Polylinien, die mithilfe von XAML beziehungsweise Programmier-
code erstellt und verdndert werden (sieche Abbildung 9.3).

[®7] ShapePoly E@u

VAR 4

Abbildung 9.3 Polygone und Polylinien

Der XAML-Code:

<Canvas x:Name="cv">
<Polygon Points="10,10 50,10 30,50" Fill="LightGray" />
<Polygon Points="60,50 80,10 120,10 140,50" Fill="LightGray" />
<Polyline Points="60,50 80,10 120,10 140,50"
Stroke="Gray" StrokeThickness="4" />
<Polyline x:Name="pl1" Points="150,10 190,10 170,50"
Fill="Gray" />

<{/Canvas>

Polygon und Polylinie beinhalten in der Eigenschaft Points vom Auflistungstyp
PointCollection eine Reihe von X- und Y-Koordinaten. Diese werden zur besse-
ren Ubersicht am besten paarweise, durch ein Komma getrennt, angegeben.
Jedes Paar ist eine Instanz der Struktur Point. Die Eigenschaften Fill, Stroke

und StrokeThickness sind bereits aus dem ersten Abschnitt bekannt. Die Ereig-
nismethoden:

private void aendern(...)
{

pl.Points[2] = new Point(pl.Points[2].X + 10, pl.Points[2].Y);
}

Die Eigenschaften X und Y eines Punktes innerhalb der Auflistung kénnen nicht
direkt iberschrieben werden. Daher wird der gesamte Punkt durch einen neuen
Punkt ersetzt.

private void neu(object sender, RoutedEventArgs e)
{
PointCollection pc = new PointCollection();
pc.Add(new Point(10, 110));

246

Shapes | 94

pc.Add(new Point(50, 110));
pc.Add(new Point(30, 150));

Polygon pg = new Polygon();

pg.Fill = new SolidColorBrush(Colors.LightGray);
pg.Points = pc;

cv.Children.Add(pg);

Polyline pl = new Polyline();
pl.Stroke = new SolidColorBrush(Colors.Gray);
pl.Points = pc;
cv.Children.Add(pl1);
}

Es wird eine neue Instanz der Klasse PointCollection erstellt, der mithilfe der
Methode Add() einzelne Punkte hinzugefiigt werden. Diese PointCollection
kennzeichnet anschlieBend sowohl ein neues, gefiilltes Polygon als auch eine
neue, ungefiillte, nicht geschlossene Polylinie. Beide Shapes werden dem umge-
benden Canvas hinzugefiigt.

9.1.4 Linienende

Linien koénnen sich nicht nur durch ihre Pinsel (Stroke) oder ihre Dicke
(StrokeThickness) unterscheiden, sondern auch durch die Linienenden. Dafiir
sind die Eigenschaften StrokeStartLineCap und StrokeEndLineCap zustindig. Bei
Polylinien und Umrisslinien kann es auch einen Unterschied in der Verbindung
zweier Linienstticke geben. Dies wird mithilfe der Eigenschaft StrokelLineJoin
festgelegt.

Im nachfolgenden Projekt ShapeStroke werden einige Moglichkeiten dargestellt
(siehe Abbildung 9.4).

' '
[®77] ShapeStroke @Eu

rrzrz
1

Abbildung 9.4 Linienarten

Der XAML-Code:

247

9 | 2D-Grafik

<Canvas>
<Polyline StrokelLinedoin="Bevel"
Stroke="Black" StrokeThickness="10" ... />
<Polyline StrokelLinedoin="Miter" ... />
<Polyline StrokelLinedoin="Round" ... />

<Line StrokeStartlLineCap="Flat" StrokeEndLineCap="Flat"
Stroke="Black" StrokeThickness="10" ... />

<Line StrokeStartLineCap="Round"
StrokeEndLineCap="Round" ... />

<{Line StrokeStartlLineCap="Square"
StrokeEndLineCap="Square" ... />

<Line StrokeStartlLineCap="Triangle"
StrokeEndLineCap="Triangle" ... />

</Canvas>

Der Wert fiir die Eigenschaft StrokelLineJoin stammt aus der Enumeration
PenLineJoin. Der StandardwertistMiter; dabei werden die Ecken ausgepragt. Beim
Wert Bevel sind die Ecken abgeschnitten, beim Wert Round sind sie abgerundet.

Ein Wert fiir eine der Eigenschaften StrokeStartLineCap oder StrikeEndLineCap
stammt aus der Enumeration PenlLineCap. Nur fiir den Standardwert Flat endet
die Linie genau am angegebenen Koordinatenpunkt. Der Halbkreis bei Round, das
Rechteck bei Square und das Dreieck bei Triangle enden erst eine halbe Linien-
dicke spater.

9.2 Geometrien

Geometrien sind keine eigenstindigen Grafiken, sondern stellen die grafische
Form eines umgebenden Elements dar. Sie konnen zum Beispiel die Form eines
Bildausschnitts oder den Pfad einer Animation mithilfe einer Geometrie bilden.
Geometrien haben nur wenige Eigenschaften. Zum Beispiel gibt es keine Infor-
mationen dartiber, wie die Fillung oder der Umriss aussehen. Diese hingen vom
umgebenden Element ab. Auflerdem kénnen Sie keine Ereignisse fiir Geometrien
registrieren.

Alle Klassen fiir Geometrien sind von der abstrakten Basisklasse Geometry abge-
leitet. Es gibt folgende Geometrien:

» einfache geometrische Formen: RectangleGeometry, E11ipseGeometry und
LineGeometry

» kombinierte Geometrien, die die Filllung und den Umriss gemeinsam haben:
CombinedGeometry

248

Geometrien | 9.2

» zusammengesetzte Geometrien, die die Fullung und den Umriss getrennt
haben: GeometryGroup

» Pfadgeometrien fiir komplexe Formen, die zum Beispiel aus Linien und Bégen
bestehen kénnen: PathGeometry

» Geometrien fiir einfache Formen, als Alternative zu PathGeometry: StreamGeo-
metry

9.2.1 Einfache geometrische Formen

Klassen fiir einfache geometrische Formen sind RectangleGeometry, E1TipseGeo-
metry und LineGeometry. Das nachfolgende Projekt GeometrieEinfach beinhaltet
Instanzen dieser Klassen, die mithilfe von XAML beziehungsweise von Program-
miercode erstellt und verindert werden (siehe Abbildung 9.5).

' ™
[®°] GeometrieEinfach é@u

)
a>

Andern: [Rechteck} [Ellipse] [Linie]

Meu: [Rechteck} [Ellipse] [Linie]

"

Abbildung 9.5 Einfache geometrische Formen

Der XAML-Code:

<Canvas x:Name="cv">
<Path x:Name="prg" Fill="LightGray" Stroke="Gray"
StrokeThickness="2">
<Path.Data>
<RectangleGeometry x:Name="rg" Rect="10,10 100,30"
RadiusX="10" RadiusY="10" />
</Path.Data>
</Path>
<Path Fil1="LightGray" Stroke="Gray" StrokeThickness="2">
<Path.Data>
<ETTipseGeometry x:Name="eg" Center="60,70" RadiusX="50"
RadiusY="15" />
</Path.Data>
</Path>
<Path Stroke="Gray" StrokeThickness="2">
<Path.Data>

249

9 | 2D-Grafik

<LineGeometry x:Name="1g" StartPoint="10,100"
EndPoint="110,100" />
</Path.Data>
</Path>

</Canvas>

Das umgebende Element in diesem Beispiel ist jeweils ein Path. Die Klasse Path
ist von der abstrakten Klasse Shape abgeleitet. Die geometrische Form eines Path
wird tiber den Inhalt der Eigenschaft Data bestimmt. Diese ist vom Typ Geometry.

Ein Path kann eine Fillung und einen Umriss haben, die mithilfe der bereits
bekannten Eigenschaften Fi11, Stroke und StrokeThickness definiert werden.

Bei einer RectangleGeometry werden Lage und GroBe tiber die Eigenschaft Rect
festgelegt. Diese ist vom Typ Rect. Einer der moglichen Konstruktoren der Struk-
tur Rect verlangt zur Festlegung double-Werte fiir die X- und Y-Koordinaten der
oberen linken Ecke sowie fiir die Breite und Hohe des Rechtecks. Die Koordina-
ten beziehen sich auf den tbergeordneten Canvas. Die double-Eigenschaften
Radiusx und RadiusY bestimmen die GroRe der Ellipse, die zur Abrundung der
Ecken dient. Der Standardwert O bedeutet: keine Abrundung.

Die Eigenschaft Center fiir das Zentrum einer El1ipseGeometry ist vom Typ
Point. Einer der moglichen Konstruktoren der Struktur Point verlangt zur Festle-
gung double-Werte fiir die X- und Y-Koordinaten innerhalb des Canvas. Die
double-Eigenschaften RadiusX und RadiusY bestimmen die Grof8e der Ellipse.

Bei einer LineGeometry dienen die Eigenschaften StartPoint und EndPoint zur
Ortsbestimmung. Sie sind ebenfalls vom Typ Point.

Es folgen die Ereignismethoden, zunichst fiir die RectangleGeometry:

private void aendern_r(...)
{
prg.StrokeThickness = 3;
RectangleGeometry rg = prg.Data as RectangleGeometry;
rg.Rect = new Rect(rg.Rect.Left, rg.Rect.Top,
rg.Rect.Width + 10, rg.Rect.Height);
}
private void neu_r(...)
{
Path p = new Path();
p.Fill = new SolidColorBrush(Colors.LightGray);
p.Data = new RectangleGeometry/(
new Rect(180, 10, 100, 30), 10, 10);
cv.Children.Add(p);
}

250

Geometrien | 9.2

Die Eigenschaften des umgebenden Path-Elements, wie zum Beispiel Fill,
Stroke oder StrokeThickness kénnen direkt festgelegt werden. Dartiber hinaus
kann die vorhandene Geometrie mithilfe eines Verweises vom Typ
RectangleGeometry gedndert werden. Eine neue Geometrie wird mithilfe einer
neuen Instanz von RectangleGeometry erstellt. Das neue Path-Element wird
dem Canvas hinzugefiigt.

Die Methoden fiir die E11ipseGeometry sehen so aus:

private void aendern_e(...)

{
peg.Fi11 = new SolidColorBrush(Colors.Gray);
E11ipseGeometry eg = peg.Data as EllipseGeometry;
eg.Center = new Point(eg.Center.X + 10, eg.Center.Y);

}

private void neu_e(...)

{
Path p = new Path();
p.Fill = new SolidColorBrush(Colors.LightGray);
p.Data = new EllipseGeometry(new Point(230, 70), 50, 15);
cv.Children.Add(p);

}

Die Methoden fiir die LineGeometry sehen so aus:

private void aendern_1(...)
{
plg.Stroke = new SolidColorBrush(Colors.LightGray);
LineGeometry 1g = plg.Data as LineGeometry;
1g.EndPoint = new Point(1g.EndPoint.X + 10, Tg.EndPoint.Y);
}
private void neu_1(...)
{
Path p = new Path();
p.Stroke = new SolidColorBrush(Colors.Gray);
p.StrokeThickness = 2;
p.Data = new LineGeometry(new Point(180, 100),
new Point(280, 100));
cv.Children.Add(p);

9.2.2 Kombinierte Geometrien

Zwei einzelne Grundgeometrien lassen sich mithilfe einer CombinedGeometry ver-
binden. Diese kombinierte Geometrie wird wie eine einzige Geometrie betrach-

251

9 | 2D-Grafik

tet, mit einer gemeinsamen Fillung und einem gemeinsamen Umriss. Die Eigen-
schaft GeometryCombineMode bestimmt dabei tiber die Art der Verbindung.

Die beiden einzelnen Grundgeometrien konnen einfache Geometrien sein, wie
zum Beispiel eine RectangleGeometry. Sie konnen aber auch wiederum aus einer
CombinedGeometry bestehen. So lassen sich beliebig viele Geometrien kombinieren.

Das nachfolgende Projekt GeometrieKombiniert beinhaltet eine Ellipse, die mit
einem Rechteck kombiniert wurde. Sie konnen den Wert der Eigenschaft
GeometryCombineMode mithilfe von RadioButtons einstellen (siehe Abbildung 9.6).

[m7] GeometrieKombiniert E@M

GeometryCombineMode
@ Exclude

© Intersect

© Union

© Xor

Abbildung 9.6 Ellipse und Rechteck kombiniert

Der XAML-Code:

<Canvas>
<Path Fill="LightGray" Stroke="Gray" StrokeThickness="2">
<Path.Data>
<CombinedGeometry GeometryCombineMode="Exclude"
x:Name="cg">
<CombinedGeometry.Geometryl>
<ETT1ipseGeometry Center="190,40"
RadiusX="30" RadiusY="30" />
</CombinedGeometry.Geometryl>
<CombinedGeometry.Geometry2>
{RectangleGeometry Rect="200,25 50,30" />
</CombinedGeometry.Geometry2>
</CombinedGeometry>
</Path.Data>

</Path>
<GroupBox Header="GeometryCombineMode">
<StackPanel RadioButton.Checked="cm"> ... </StackPanel>
</GroupBox>
</Canvas>

Der Wert der Eigenschaft Data des Path-Elements ist eine CombinedGeometry.
Diese hat die beiden Eigenschaften Geometryl und Geometry2 fiir die beiden
beteiligten Grundgeometrien; sie werden in Property Elements definiert. Die vier

252

Geometrien

maoglichen Werte fiir die Eigenschaft GeometryCombineMode der CombinedGeometry
aus der gleichnamigen Enumeration sind folgende:

» Bei Exclude wird die Differenzmenge gebildet. Die Fliche umfasst nur den Teil
der Ellipse, der nicht im Rechteck liegt.

» Der Wert Intersect bezeichnet die Schnittmenge. Die Fliche umfasst nur den
Teil der Ellipse, der auch im Rechteck liegt.

» Der Standardwert ist Union. In diesem Fall umfasst die kombinierte Geometrie
die Vereinigungsmenge beider Grundgeometrien.

» Es gibt noch den Wert Xor (Exklusives Oder), das auch als symmetrische Dif-
ferenz bezeichnet wird. Dies ist der Teil, der entweder im Rechteck oder in der
Ellipse liegt.

Die Methode zum Umstellen des GeometryCombineMode, die iiber das Attached
Event im StackPanel aufgerufen wird, sieht so aus:

private void cm(...)
{
if (!IslLoaded) return;
switch ((e.Source as RadioButton).Content.ToString())
{
case "Exclude":
cg.GeometryCombineMode = GeometryCombineMode.Exclude;
break;
case "Intersect":
cg.GeometryCombineMode = GeometryCombineMode.Intersect;
break;
case "Union":
cg.GeometryCombineMode = GeometryCombineMode.Union;
break;
case "Xor":
cg.GeometryCombineMode = GeometryCombineMode.Xor;
break;

}

Der Text des RadioButtons, der als Ereignisquelle dient, bestimmt tiber den Wert
der Eigenschaft GeometryCombineMode.

9.2.3 Pfadgeometrien fiir komplexe Formen

Eine Pfadgeometrie fiir komplexe Formen wird mithilfe der Klasse PathGeometry
aufgebaut. Eine solche Geometrie besteht aus einer einzelnen Figur (Typ
PathFigure) oder aus einer Auflistung von Figuren (Typ PathFigureCollection).

253

9 | 2D-Grafik

Eine Figur wiederum besteht aus einem einzelnen Segment oder aus einer Auflis-
tung von Segmenten (Typ PathSegmentCollection). Es gibt verschiedene Arten
von Segmenten:

» cinfache Segmente wie Linie (Typ LineSegment), Bogen (Typ ArcSegment) und
Gruppen von Linien (Typ PolyLineSegment)

» quadratische oder kubische Bézier-Kurven der Typen QuadraticBezierSegment
und BezierSegment

» Gruppen von quadratischen oder kubischen Bézier-Kurven der Typen
PolyQuadraticBezierSegment und PolyBezierSegment

Bézier-Kurven werden im CAD-Bereich verwendet. Sie lassen sich mithilfe weni-
ger Parameter aus (relativ) einfachen mathematischen Formeln erstellen.

Nachfolgend wird im Projekt GeometriePfad ein Beispiel fiir eine Pfadgeometrie
dargestellt (siehe Abbildung 9.7). Sie besteht aus zwei Figuren mit jeweils zwei
Segmenten.

IEI GeometriePfad

/\ Segment 1 Segment 2

andern Figur 1 Figur 2

Abbildung 9.7 Pfadgeometrie

Der XAML-Code:

<Canvas x:Name="cv">
<Path x:Name="pt" Fill="LightGray"
Stroke="Black" StrokeThickness="2">
<Path.Data>
<PathGeometry>
<PathFigureCollection>
<PathFigure IsFilled="True" StartPoint="10,60">
<PathSegmentCollection>
<LineSegment Point="60,10" />
<ArcSegment Point="110,60" Size="120,120" />
</PathSegmentCollection>
</PathFigure>
{PathFigure IsFilled="True" StartPoint="160,60">
<PathSegmentCollection>
<ArcSegment Point="210,10" Size="40,40" />
{LineSegment Point="260,60" />

254

Geometrien | 9.2

<{/PathSegmentCollection>
</PathFigure>
</PathFigureCollection>
</PathGeometry>
<{/Path.Data>
</Path>

<{/Canvas>
Fullung und Umriss sind weiterhin Eigenschaften des umgebenden Elements
Path. Die Eigenschaft Data beinhaltet eine Instanz der Klasse PathGeometry, diese

wiederum enthdlt in der Eigenschaft Figures (vom Typ PathFigureCollection)
die Auflistung der Figuren.

Die Umrisslinie einer Figur startet bei den Koordinaten, die durch die Eigenschaft
StartPoint vom Typ Point gegeben werden. Sie durchliuft die einzelnen Seg-
mente in der Auflistung Segments (vom Typ PathSegmentCollection). Sie wird
geschlossen, falls die boolesche Eigenschaft IsClosed den Wert True hat. Die im
umgebenden Element definierte Fullung wird dargestellt, falls die boolesche
Eigenschaft IsFilled den Wert True hat. Dies ist der Standard.

Die Segmente sind im vorliegenden Fall vom Typ LineSegment und ArcSegment.
Diese haben gemeinsame Eigenschaften: Die Umrisslinie lduft in jedem Segment
zu den Koordinaten, die durch die Eigenschaft Point vom Typ Point gegeben
werden. Der im umgebenden Element definierte Umriss wird dargestellt, falls die
boolesche Eigenschaft IsStroked den Wert True hat. Dies ist der Standard. Size
vom Typ Size ist dagegen eine Eigenschaft eines ArcSegment. Damit wird die
Grofe der Ellipse bestimmt, die den Bogenradius festlegt: Je grofer der Radius
ist, desto flacher ist die Kurve (siehe Abbildung 9.7).

Die Methode zum Andern einer Pfadgeometrie:

private void aendern(...)
{
PathGeometry pg = pt.Data as PathGeometry;
ArcSegment asg = pg.Figures[1].Segments[0] as ArcSegment;
asg.Size = new Size(asg.Size.Width + 5, asg.Size.Height + 5);
}

Es wird der Bogenradius des ersten Segments der zweiten Figur vergroBert.
Die Methode zum Erstellen einer neuen Pfadgeometrie sieht so aus:

private void neu(...)
{
PathSegmentCollection pscl = new PathSegmentCollection();

255

9 | 2D-Grafik

pscl.Add(new LineSegment(new Point(60, 110), true));
pscl.Add(new ArcSegment(new Point(110, 160), new Size(120,
120), 0, false, SweepDirection.Counterclockwise, true));

PathSegmentCollection psc2 = new PathSegmentCollection();

psc2.Add(new ArcSegment(new Point(210, 110), new Size(40,40),
0, false, SweepDirection.Counterclockwise, true));

psc2.Add(new LineSegment(new Point(260, 160), true));

PathFigureCollection pfc = new PathFigureCollection();
pfc.Add(new PathFigure(new Point(10, 160), pscl, false));
pfc.Add(new PathFigure(new Point(160, 160), psc2, false));

PathGeometry pg = new PathGeometry(pfc);

Path p = new Path();

p.Data pg;

p.Fi11 = new SolidColorBrush(Colors.LightGray);
p.Stroke = new SolidColorBrush(Colors.Black);
p.StrokeThickness = 2;

cv.Children.Add(p);
}

Die Pfadgeometrie wird von innen nach auflen entworfen. Zunichst werden
Instanzen von PathSegmentCollection erzeugt. Diese werden mithilfe der
Methode Add() mit Segmenten gefiillt.

Ein LineSegment benétigt den Zielpunkt und einen Wert fiir IsStroked. Ein
ArcSegment benotigt den Zielpunkt, die GroBe der Ellipse fur den Bogenradius, die
double-Eigenschaft RotationAngle, die boolesche Eigenschaft IsLargeArc, die
Eigenschaft SweepDirection vom gleichnamigen Typ und einen Wert fiir IsStroked.

Der RotationAngle bestimmt den Wert in Grad, um den die Ellipse fiir den
Bogenradius um die x-Achse gedreht wird. Da die Ellipse in unserem Fall ein
Kreis ist (Hohe = Breite), hat eine Anderung des Wertes keine Auswirkung. Mit
IsLargeArc legt man fest, ob der Bogen grofer als 180 Grad werden soll. Die
SweepDirection gibt die Drehrichtung des Bogens an: gegen den Uhrzeigersinn
(dies ist Standard) oder mit dem Uhrzeigersinn.

Es wird eine neue Instanz vom Typ PathFigureCollection erzeugt. Dieser wer-
den neue Instanzen der Klasse PathFigure hinzugefiigt. Der Konstruktor der
Klasse PathFigure benétigt den Startpunkt der Figur vom Typ Point, die zuvor
definierte PathSegmentCollection und eine boolesche Variable fiir die Eigen-
schaft IsClosed.

256

Geometrien

Mit der PathFigureCollection wird wiederum eine neue Instanz des Typs
PathGeometry erzeugt. Diese wird der Eigenschaft Data der neuen Path-Instanz
zugewiesen. Als Letztes wird der Path dem Canvas hinzugeftigt.

Sie sehen: Bereits die einfachen Segmenttypen bieten zahlreiche Parameter. Eine
Darstellung und Erlduterung der komplexen Typen wiirde den Rahmen dieses
Buchs tiberschreiten.

9.2.4 Pfadgeometrie in Pfadmarkupsyntax

Bisher wurde eine Pfadgeometrie Element fiir Element erzeugt. Es gibt eine kom-
paktere Schreibweise: die Pfadmarkupsyntax. Im nachfolgenden Projekt Geome-
triePfadMarkup wird dargestellt, wie Sie die Pfadgeometrie mit den beiden Figu-
ren aus dem vorherigen Abschnitt (siehe Abbildung 9.7) alternativ definieren
konnen:

<Canvas>
<Path Fill="LightGray" Stroke="Black"
Data="M10,60 150,-50 a120,120 0 0 0 50,50
m50,0 a40,40 0 0 0 50,-50 150,50" />
</Canvas>

Es wird eine Zeichenkette fiir die Eigenschaft Data zusammengesetzt. Mit grolen
Buchstaben wird ein Punkt mit absoluten Koordinaten angesteuert. Kleine Buch-
staben bedeutet: es handelt sich nur um einen Offset zum vorherigen Punkt. In
diesem Falle ist es fiir Sie einfacher, eine Pfadgeometrie zu versetzen, da Sie nur
den Startpunkt dndern miissen. Die Buchstaben haben folgende Bedeutung:

» M (oder m) Punkt: Bewege den Zeichenstift zu dem Punkt, ohne eine Linie zu
ziehen.

» L (oder 1) Punkt: Ziehe mit dem Zeichenstift eine gerade Linie zu dem Punkt
(LineSegment).

» H (oder h) X: Ziehe eine horizontale Linie zur x-Koordinate.
» V(oder v) Y: Ziehe einen vertikale Linie zur y-Koordinate.

» A (oder a) [mit sechs Parametern]: Ziehe einen Bogen. Die Parameter sind die
gleichen wie fiir den Konstruktor der Klasse ArcSegment, der im vorherigen
Abschnitt erliutert wurde. Ausnahme: Der Endpunkt ist jetzt der letzte Para-
meter.

» 7:SchlieBe die Figur mit einer geraden Linie; entspricht PathFigure.IsClosed
= True.

Es gibt weitere Buchstaben, zum Beispiel fiir die Bézier-Kurven.

257

9 | 2D-Grafik

9.2.5 Geometriegruppe

Mebhrere einzelne Pfadgeometrien lassen sich mithilfe einer GeometryGroup grup-
pieren. Die einzelnen Pfadgeometrien haben dieselben Eigenschaften fur Fiillung
und Umriss. Allerdings wird der Umriss fiir jede Pfadgeometrie einzeln gezeich-
net. Fiir den tGberlappenden Teil der Fullung gibt es eine Fllregel. Die Eigen-
schaft Fil1Rule bietet dazu eine Einstellmoglichkeit.

Nachfolgend sehen Sie im Projekt GeometrieGruppe ein Beispiel mit einer
Gruppe, die drei Pfadgeometrien mit jeweils einer Figur beinhaltet. Innerhalb
jeder Figur steht ein PolyLineSegment. Sie konnen den Wert der Eigenschaft
Fi11Rule mithilfe von RadioButtons einstellen (siehe Abbildung 9.8).

-

[8] GeometrieGruppe = =]

FillRule
@ EvenOdd
© NonZero

Abbildung 9.8 Gruppe von Pfadgeometrien, »FillRule="EvenOdd"«

Der XAML-Code:

<Canvas>
<Path Fill="LightGray" Stroke="Black">
<Path.Data>
<GeometryGroup x:Name="gg" FillRule="EvenOdd">
<PathGeometry>
<PathFigure StartPoint="100,60" IsClosed="True">
<PolyLineSegment Points="150,10 200,60" />
</PathFigure>
</PathGeometry>
<PathGeometry>
<PathFigure StartPoint="100,80" IsClosed="True">
{PolyLineSegment Points="150,30 200,80" />
</PathFigure>
</PathGeometry>
<PathGeometry>
<PathFigure StartPoint="100,115" IsClosed="True">
<PolyLineSegment Points="200,115 150,65" />
</PathFigure>
</PathGeometry>
</GeometryGroup>

258

Drawings

<{/Path.Data>
</Path>

{/Canvas>

Zum Verstdndnis der Fullregel (Eigenschaft Fi11Rule): Innerhalb der Geome-
triegruppe gibt es verschiedene eingeschlossene Flichen. Falls Sie eine gerade
Linie von einem Punkt innerhalb einer dieser Flichen bis zu einem Punkt auB8er-

halb der Geometriegruppe ziehen, so tiberschreiten Sie jeweils mehrere Umriss-
linien.

Fir den Wert Even0dd (dt. gerade, ungerade) gilt folgende Regel: Falls Sie auf der
Linie eine gerade Anzahl an Umrisslinien tiberschreiten, so wird die eingeschlos-
sene Flache nicht geftllt (siehe die weillen Dreiecke 1 und 2 in Abbildung 9.8).
Ansonsten wird sie geftllt (siehe die grauen Flichen in Abbildung 9.8).

Fiir den Wert NonZero (etwa: »nicht bei 0«) mussen Sie zusitzlich die Verlaufsrich-
tung der jeweiligen Umrisslinien betrachten, und zwar ausgehend vom Start-
punkt. Diese ist fiir die oberen beiden Instanzen des Typs PolyLineSegment im
Uhrzeigersinn, fur die dritte Instanz gegen den Uhrzeigersinn. Sie priifen nun, ob
die tiberschrittene Linie von links nach rechts oder von rechts nach links verlauft.
Im ersten Falle addieren Sie den Wert 1, im zweiten Falle subtrahieren Sie den
Wert 1. Falls die Summe der Werte anschlieend O betrigt, wird die Fliche nicht
geftllt (sieche das weille Dreieck 2 in Abbildung 9.9). Ansonsten wird sie gefillt
(siehe das graue Dreieck 1 und die restlichen grauen Flichen in Abbildung 9.9).

81 GeometrieGruppe b=

FillRule
© EvenOdd
@ NonZero

Abbildung 9.9 Gruppe von Pfadgeometrien, FillRule="NonZero"

9.3 Drawings

Bilder, also Image-Objekte, konnen vorgefertigt aus einer Datei geladen oder mit-
hilfe von Drawing-Objekten (Zeichnungen) selbst erstellt werden. Es gibt ver-
schiedene Drawing-Typen, die alle von der abstrakten Basisklasse Drawing abgelei-
tet sind:

259

2D-Grafik

» GeometryDrawing: zum Zeichnen einer Geometrie

» GlyphRunDrawing: zum Gestalten mithilfe von Zeichen einer Schriftart

» ImageDrawing: zum Laden einer Bilddatei

» VideoDrawing: zum Laden einer Videodatei

» DrawingGroup: zum Gruppieren mehrerer Drawing-Objekte

Im nachfolgenden Projekt DrawingBild wird ein Bild dargestellt, das mithilfe
einer GeometryDrawing aufgebaut wurde. Nach dem Betitigen der Taste [n] wird

ein weiteres Bild erzeugt. Nach dem Betdtigen der Taste (A) wird das GroBenver-
hiltnis im vorhandenen Bild gedndert (sieche Abbildung 9.10).

r: ™y
8] DrawingBild B

L

Abbildung 9.10 Bild aus GeometryDrawing

Der XAML-Code:

<MWindow ... KeyDown="Window_KeyDown">
<StackPanel x:Name="sp">
<{Image Width="200" Height="50" Margin="1">
<Image.Source>
<Drawinglmage>
<DrawingImage.Drawing>
<GeometryDrawing Brush="LightGray">
<GeometryDrawing.Pen>
<Pen Thickness="2" Brush="Gray" />
</GeometryDrawing.Pen>
<GeometryDrawing.Geometry>
{RectangleGeometry Rect="0,0 200,50"
RadiusX="10" RadiusY="10" />
</GeometryDrawing.Geometry>
</GeometryDrawing>
</Drawinglmage.Drawing>
</DrawingImage>
</Image.Source>
</Image>
</StackPanel>
</Window>

260

Drawings | 9.3

Das Image-Objekt hat eine Gréfe von 200 mal 50, in gerdteunabhingigen Pixeln.
Die Eigenschaft Source wird nicht mit Pfad und Name einer Bilddatei gefiillt, son-
dern mit einem DrawingImage-Objekt. Die Eigenschaft Drawing dieses Objekts ist
eine GeometryDrawing, also eine Zeichnung.

Dieses Drawing-Objekt hat die Eigenschaften Brush (Fiillung), Pen (Randlinie) und
Geometry (Form). Die Form wird durch ein RectangleGeometry-Objekt erzeugt. In
der Eigenschaft Rect wird unter anderem das Verhiltnis zwischen Breite und
Hohe des Rechtecks innerhalb des Bildes festgelegt. Da es in diesem Falle dem
Verhiltnis zwischen Breite und Hohe des umgebenden Image-Objekts entspricht,
wird dieses ganz ausgefiillt.

Die Ereignismethode:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
if (e.Key == Key.N)
{
GeometryDrawing gd = new GeometryDrawing(
new SolidColorBrush(Colors.LightGray),
new Pen(new SolidColorBrush(Colors.Gray), 2),
new RectangleGeometry(new Rect(0, 0, 200, 50), 10, 10));
Image im = new Image();
im.Source = new DrawingImage(gd);
im.Width = 200;
im.Height 50
im.Margin = new Thickness(1);
sp.Children.Add(im);
}
else if (e.Key == Key.A)
{
Image im = sp.Children[0] as Image;
DrawingImage di = im.Source as Drawinglmage;
GeometryDrawing gd = di.Drawing as GeometryDrawing;
RectangleGeometry rg = gd.Geometry as RectangleGeometry;
double wi = rg.Rect.Width - 20;
if(wi > 0)
rg.Rect = new Rect(0, 0, wi, 50);

}

Eine neue GeometryDrawing fligen Sie hier wie folgt hinzu: Erzeugen Sie ein
neues GeometryDrawing-Objekt mit Werten fiir die Eigenschaften Brush, Pen und
Geometry. Dieses Objekt nutzen Sie als die Eigenschaft Drawing bei der Erzeugung
eines neuen DrawingImage-Objekts. Dieses Objekt stellt den Wert der Eigenschaft
Source eines neuen Image-Objekts dar, das dem StackPanel hinzugefiigt wird.

261

9 | 2D-Grafik

Eine vorhandene GeometryDrawing dndern Sie hier folgendermaBen: Uber Stack-
Panel, Image, DrawingImage gelangen,Sie zum vorhandenen GeometryDrawing-
Objekt. Die Eigenschaft Geometry dieses Objekts ist eine RectangleGeometry.
Deren Eigenschaft Rect missen Sie nun dndern.

9.4 Pinsel

Pinsel dienen zum Einfirben beziehungsweise Fiillen einer Fliche oder einer
Linie. Alle Pinsel erben von der abstrakten Basisklasse Brush. Ein SolidColor-
Brush fiarbt einheitlich ein, und ein LinearGradientBrush oder ein Radial-
GradientBrush erzeugt einen Farbverlauf. Ein ImageBrush fillt eine Fliche mit
einem Bild. Die Transparenz eines Pinsels wird auch in Abschnitt 9.6.2, »Maskie-
rung mit OpacityMaske, behandelt.

9.4.1 SolidColorBrush

Ein Pinsel der Klasse SolidColorBrush firbt die Fliche oder Linie in einer einheit-
lichen Farbe. Im nachfolgenden Projekt BrushSolid werden die Werte fiir die
Eigenschaften Fi11 und Stroke mit einem solchen Pinsel bestimmt (siche Abbil-
dung 9.11). Sie haben die Moglichkeit, den Alphakanal und die RGB-Komponen-
ten der Fullung mithilfe von Slidern zu verdndern. Der Alphakanal steht fur die
Undurchsichtigkeit. Je hoher der Wert ist, desto undurchsichtiger ist die Fliche
oder Linie. RGB steht fiir die drei Farbkomponenten Rot, Griin und Blau. Je hoher
der Wert ist, desto hoher ist der Anteil dieser Komponente an der gesamten Farbe.

] BrushSolid = [

I I
0— 90— 0 0

A 127 R127 G127 B 127

Abbildung 9.11 Einheitliche Fiillung mit SolidColorBrush

Der XAML-Code:

<Window ... Loaded="Window_Loaded">
<StackPanel>
{Rectangle x:Name="rc" Width="280" Height="30" Margin="5"
Stroke="Gray" StrokeThickness="3">
<Rectangle.Fill1>
<SolidColorBrush x:Name="sch" />

262

Pinsel | 9.4

<{/Rectangle.Fill>
<{/Rectangle>
<WrapPanel>
<Slider x:Name="sla" Width="70" Minimum="0" Maximum="255"
Value="127" TickFrequency="32" Margin="2"
TickPTacement="BottomRight" ValueChanged="s1" />

</Window>

Die Werte fiir den Alphakanal und die RGB-Komponenten sind vom Typ Byte.
Der Alphawert O bedeutet: volle Transparenz der Farbe, und der Alphawert 255
bedeutet: keine Transparenz. Die Ereignismethoden sehen so aus:

private void Window_Loaded(...)

{ scb.Color = Color.FromArgb(127, 127, 127, 127); }

private void sl(object sender,
RoutedPropertyChangedEventArgs<double> e)

if(IslLoaded)
scb.Color = Color.FromArgb((byte)sla.Value,
(byte)sir.Value, (byte)slg.Value, (byte)slb.Value);
}

Der Eigenschaft Color eines Pinsels vom Typ SolidColorBrush kann eine Farbe
mithilfe der Struktur Color zugeordnet werden. Die statische Methode
FromArgb () verlangt vier Byte-Werte, die jeweils von 0 bis 255 reichen.

9.4.2 LinearGradientBrush

Ein LinearGradientBrush erzeugt einen linearen Farbverlauf von einer Startfarbe
zu einer Endfarbe. Alle Punkte auf der Fliche, die eingefirbt werden sollen, wer-
den mit relativen Koordinaten vom Typ Point bezeichnet. Die Werte gehen
sowohl horizontal als auch vertikal von O bis 1 (sieche Abbildung 9.12).

Im nachfolgenden Projekt BrushLinear wird zunachst ein horizontaler Farbverlauf
von 0,0 nach 1,0 dargestellt. Sie konnen die Endpunkte verdndern, dann ergibt sich
ein vertikaler Farbverlauf (nach 0,1) oder ein diagonaler Farbverlauf (nach 1,1).

Der XAML-Code:

<Canvas>
{Rectangle Width="100" Height="100"
Canvas.Top="20" Canvas.lLeft="20">
<Rectangle.Fill>
<LinearGradientBrush x:Name="1gbh"
StartPoint="0,0" EndPoint="1,0">

263

9 | 2D-Grafik

<GradientStop Offset="0.0" Color="Black" />
<GradientStop Offset="1.0" Color="White" />
</LinearGradientBrush>
</Rectangle.Fill>
<{/Rectangle>

<RadioButton Checked="rechts_oben"
IsChecked="True">1,0</RadioButton>

<RadioButton Checked="1links_unten">0,1</RadioButton>

<RadioButton Checked="rechts_unten">1,1</RadioButton>

</Canvas>

r ™
[®7 BrushLinear @Eﬂ
0,0 1.0

StartPoint: 0,0
EndPoint
@ 1,0
©o1
©11
01 11

Abbildung 9.12 Linearer Farbverlauf mit LinearGradientBrush

Die Eigenschaften StartPoint und EndPoint bestimmen den Anfangspunkt und
den Endpunkt einer Linie, auf der der Farbverlauf stattfindet. Mithilfe der Klasse
GradientStop werden Ubergangspunkte auf dieser Linie festgelegt. Jeder Uber-
gangspunkt hat die Eigenschaft Offset vom Typ double und die Eigenschaft
Color vom Typ Color. Offset legt die relative Position auf der Linie fest. Zwi-
schen den Ubergangspunkten wird linear interpoliert.

Die Ereignismethoden fiir die RadioButtons sehen wie folgt aus:

private void rechts_oben(.. {1gb.EndPoint = new Point(1, 0);}
private void links_unten(.. {1gb.EndPoint = new Point(0, 1);}
private void rechts_unten(...) {1gb.EndPoint = new Point(1l, 1);}

)
)

Die Eigenschaft EndPoint vom Typ Point bekommt jeweils einen neuen Wert. Im
nachfolgenden Projekt BrushGradient folgt ein weiteres Beispiel mit einem ein-
stellbaren Ubergangspunkt (siehe Abbildung 9.13).

Der XAML-Code:

{StackPanel>
{Rectangle Width="200" Height="30" Margin="5">
<Rectangle.Fill>

264

Pinsel | 9.4

<LinearGradientBrush x:Name="1gb"
StartPoint="0,0" EndPoint="1,0">
<GradientStop Offset="0.0" Color="Black" />
<GradientStop Offset="0.5" Color="White" />
<GradientStop Offset="1.0" Color="Black" />
<{/LinearGradientBrush>
</Rectangle.Fill>
</Rectangle>
<STider x:Name="s1" Width="200" Minimum="0" Maximum="1"
Value="0.5" TickFrequency="0.1" TickPlacement="BottomRight"
Margin="5" ValueChanged="vc" />
<Label x:Name="1b" HorizontalAlignment="Center">0.5</Label>
</StackPanel>

[® BrushGradient E@u

05

Abbildung 9.13 Einstellbarer Ubergangspunkt

Die Farbe verliuft von Schwarz zu Weil8 und anschliefend wieder zu Schwarz. Zu
Beginn liegt Weil in der Mitte. Die Ereignismethode sieht so aus:

private void vc(object sender,
RoutedPropertyChangedEventArgs<double> e)

1gb.GradientStops[1].0ffset = sl.Value;
if(IslLoaded)
1b.Content = Math.Round(s1.Value,2);
}

Auf die Ubergangspunkte kann mithilfe der Auflistungseigenschaft GradientStops
vom Typ GradientStopCollection zugegriffen werden. Die relative Position des
zweiten Ubergangspunkts (fiir die Farbe Weif3) wird tiber den Slider festgelegt.

9.4.3 RadialGradientBrush

Mithilfe eines RadialGradientBrush erzeugen Sie einen radialen Farbverlauf. Die
Linie fiir den Farbverlauf geht von innen nach aullen von einer Startfarbe zu
einer Endfarbe. Auf der Linie gelten die gleichen Regeln fiir die Ubergangspunkte
wie beim linearen Farbverlauf.

265

9 | 2D-Grafik

Die Eigenschaft GradientOrigin bestimmt die Strahlquelle, wahrend die Eigen-
schaft Center die Strahlrichtung festlegt. Beide sind vom Typ Point und haben
den Standardwert 0.5, 0.5, also den Mittelpunkt der Flache.

Im nachfolgenden Projekt BrushRadial wurden die Strahlquelle nach rechts und
die Strahlrichtung nach links verschoben (siehe Abbildung 9.14). Beide Werte
sind tiber Slider einstellbar.

' ™
&7 BrushRadial SN

GO:0,7

C:03

L

Abbildung 9.14 Radialer Farbverlauf mit RadialGradientBrush

Der XAML-Code:

<StackPanel>
{Rectangle Width="80" Height="80" Margin="5">
<Rectangle.Fill>
<RadialGradientBrush x:Name="radgb"
GradientOrigin="0.7, 0.5" Center="0.3, 0.5">
<GradientStop Offset="0.1" Color="White" />
<GradientStop Offset="1.0" Color="Black" />
</RadialGradientBrush>
</Rectangle.Fill>
<{/Rectangle>

<MWrapPanel>
<Label x:Name="1bl" Width="60">GO: 0,7</Label>
<STider x:Name="s11" Width="160" Minimum="0" Maximum="1"
Value="0.7" TickFrequency="0.1" TickPlacement="BottomRight"
Margin="5" ValueChanged="s11_ValueChanged" />
</WrapPanel>
MWrapPanel>
<Label x:Name="1b2" Width="60">C: 0,3</Label>
<STider x:Name="s12" Width="160" Minimum="0" Maximum="1"
Value="0.3" TickFrequency="0.1" TickPlacement="BottomRight"

266

Pinsel

Margin="5" ValueChanged="s12_ValueChanged" />
</WrapPanel>
</StackPanel>

Die Farbe verlduft von Weif nach Schwarz. Allerdings hat der erste Ubergangs-
punkt den Wert 0.1, sodass innen ein weiller Kreis erscheint. Die Strahlquelle
(Eigenschaft GradientOrigin) liegt bei 0.7, 0.5, also nach rechts verschoben. Die
Strahlrichtung (Eigenschaft Center) liegt bei 0.3, 0.5, also nach links verschoben.
Dieser Punkt bezeichnet die Mitte des dulleren Kreises, daher der Eigenschafts-
name Center.

Es folgen die Ereignismethoden:

private void sl11_ValueChanged(object sender,
RoutedPropertyChangedEventArgs<double> e)

radgb.GradientOrigin = new Point(sl1l.Value, 0.5);
1bl.Content = "GO: " + Math.Round(sl1l.Value, 2);

private void s12_ValueChanged(object sender,
RoutedPropertyChangedEventArgs<double> e)

radgb.Center = new Point(sl2.Value, 0.5);
1b2.Content = "C: " + Math.Round(s12.Value, 2);
}

In beiden Fillen bestimmt der Wert des Sliders die x-Koordinate des neuen
Punkts. Die y-Koordinate bleibt bei 0.5, also vertikal in der Mitte.

9.4.4 ImageBrush

Ein ImageBrush fiillt eine Fliche mit einer oder mehreren Kacheln (engl. Tile). Auf
jeder Kachel ist ein Bild. Die Eigenschaft ImageSource vom Typ ImageSource ver-
weist auf die Bildquelle (siehe auch Abschnitt 4.9.1, »Image«). Ort und GroRe
einer Kachel innerhalb der Fliche werden mithilfe der Eigenschaft Viewport
angegeben. Die Eigenschaft Viewbox dient zur Auswahl des dargestellten Aus-
schnitts einer Kachel. Die beiden letztgenannten Eigenschaften sind vom Typ
Rect (siehe auch Abschnitt 9.2.1, »Einfache geometrische Formenc).

Die Eigenschaft TileMode bestimmt die Anordnung der Kacheln. Im Projekt
BrushTile werden die verschiedenen Werte aus der Enumeration TileMode inner-
halb eines Grids dargestellt (siehe Abbildung 9.15).

267

9 | 2D-Grafik

[87] BrushTile E‘m
Ty
iglv
None Tile FlipX Flip¥ FlipXY

<

Abbildung 9.15 Kacheln mit ImageBrush, verschiedene TileModes

Der XAML-Code:

<Grid ... >

<Rectangle Stroke="Black">
{Rectangle.Fill>
<ImageBrush ImageSource="work.gif" Viewbox="0.2 0.2 0.6 0.6"
Viewport="0.1 0.1 0.5 0.5" TileMode="None" />
<{/Rectangle.Fill1>
</Rectangle>
<Rectangle Grid.Column="1" Stroke="Black">
<Rectangle.Fill>
<{ImageBrush ImageSource="work.gif"
Viewport="0.1 0.1 0.5 0.5" TileMode="Tile" />
</Rectangle.Fill>
</Rectangle>
<Rectangle Grid.Column="2" Stroke="Black">
<Rectangle.Fill>
<{ImageBrush ImageSource="work.gif"
Viewport="0.1 0.1 0.5 0.5" TileMode="FlipX" />
</Rectangle.Fill>
<{/Rectangle>
{Rectangle Grid.Column="3" Stroke="Black">
<Rectangle.Fill>
<ImageBrush ImageSource="work.gif"
Viewport="0.1 0.1 0.5 0.5" TileMode="FlipY" />
</Rectangle.Fill>
<{/Rectangle>
{Rectangle Grid.Column="4" Stroke="Black">
<Rectangle.Fill>
<ImageBrush ImageSource="work.gif"
Viewport="0.1 0.1 0.5 0.5" TileMode="FlipXY" />
<{/Rectangle.Fill>
<{/Rectangle>

</Grid>

268

Pinsel

Betrachten wir zundchst die Eigenschaftswerte, die fiir die Darstellungen in allen
Grid-Zellen tibereinstimmen: Es wird das Bild aus der Datei work.gif als Fullung
einer rechteckigen, schwarz umrandeten Fliche verwendet. Der Viewport inner-
halb des Rechtecks beginnt an der relativen Position 0.1, 0.1. Die erste Kachel liegt
also leicht nach rechts unten gertickt, ausgehend von der linken oberen Ecke. Der
Viewport hat die relative GroBe 0.5, 0.5, nimmt also die Hilfte der Breite des Recht-
ecks und die Hilfte der Hohe des Rechtecks ein. Daher ist Platz fiir vier Kacheln.

Fiir das Bild in der Grid-Zelle ganz links wird mithilfe der Eigenschaft Viewbox ein
Ausschnitt bestimmt. Dieser beginnt innerhalb des Bildes an der relativen Position
0.2, 0.2 und hat die relative Groéfle 0.6, 0.6. Es werden also die mittleren 60 % des
Bildes dargestellt. Fiir die Bilder in den restlichen Grid-Zellen wird die Eigenschaft
Viewbox nicht festgelegt, daher gelten die Standardwerte 0,0 und 1,1. Der Ausschnitt
beginnt also an der linken oberen Ecke des Bildes und umfasst das gesamte Bild.

Die verschiedenen Werte fiir die Eigenschaft Ti1eMode:

» None: Es wird nur eine Kachel abgebildet. Dies ist der Standardwert.
» Tile: Die Fliche wird mit Kacheln gefiillt. Jede Kachel sieht gleich aus.

» FlipX: Wie Tile, zusitzlich wird jede zweite Kachel in horizontaler Richtung
horizontal gespiegelt.

» FlipY: Wie Tile, zusitzlich wird jede zweite Kachel in vertikaler Richtung ver-
tikal gespiegelt.

» FlipXY: Eine Kombination aus F1ipX und F1ipY.

Die Werte fiir Viewbox und Viewport wurden im Beispiel relativ festgelegt, also zwi-
schen O und 1. Sie konnen auch absolute Werte verwenden. Dazu miissen Sie die
Eigenschaften ViewboxUnits beziehungsweise ViewportUnits entsprechend dndern.

Es folgt im Projekt BrushViewbox ein weiteres Beispiel fiir einen ImageBrush. Die
Viewbox, also der dargestellte Bildausschnitt, ldsst sich tiber Slider einstellen
(siehe Abbildung 9.16). Zum Vergleich ist links das gesamte Bild dargestellt.

.
[57] BrushViewbox E=n=n

-

Abbildung 9.16 Viewbox, einstellbar

269

9 | 2D-Grafik

Der XAML-Code:

<WrapPanel>
{Rectangle Width="160" Height="120" Margin="3">
<Rectangle.Fill>
<ImageBrush ImageSource="blume.jpg" />
<{/Rectangle.Fil1>
<{/Rectangle>
<Rectangle Width="160" Height="120" Margin="3">
<Rectangle.Fill>
<ImageBrush x:Name="ib" ImageSource="blume.jpg"
Viewbox="0 0 0.5 0.5" />
<{/Rectangle.Fil1>
<{/Rectangle>
<Slider x:Name="s11" Height="120" Minimum="0" Maximum="0.5"
Value="0" TickFrequency="0.1" TickPlacement="BottomRight"
Margin="5" ValueChanged="vc" Orientation="Vertical" />
<STider x:Name="s12" Width="160" Minimum="0" Maximum="0.5"
Value="0" TickFrequency="0.1" TickPTlacement="BottomRight
Margin="170,5,5,5" ValueChanged="vc" />
</WrapPanel>

Die relativen Werte fiir die Eigenschaft Viewbox sind zunichst 0,0 und 0.5,0.5.
Der Ausschnitt beginnt also links oben im Bild, und es wird die halbe Breite und
die halbe Hohe dargestellt. Die Ereignismethode sieht so aus:

private void vc(object sender,
RoutedPropertyChangedEventArgs<double> e)
{ ib.Viewbox = new Rect(sl2.Value, s1l.Value, 0.5, 0.5); }

Uber die beiden Slider kann jeweils ein relativer Wert zwischen 0 und 0.5 fiir die
linke obere Ecke des Ausschnitts eingestellt werden. Die GroBe des Ausschnitts
bleibt fest bei den relativen Werten 0.5, 0.5.

9.5 Transformationen

Ein Element kann in der zweidimensionalen Ebene auf mehrere Arten transfor-
miert werden. Dazu dienen die folgenden Klassen, die alle von der Klasse
Transform abgeleitet sind:

» RotateTransform: Drehung

» ScaleTransform: Grolendnderung, gegebenenfalls mit Verzerrung

» SkewTransform: Abschrigung beziehungsweise Neigung

270

Transformationen

» TranslateTransform: Verschiebung
» TransformGroup: Zusammenfassung mehrerer Transformationen
Die Auswirkungen auf die Nachbarn eines transformierten Elements kénnen

unterschiedlich sein. Dies legen Sie durch die Auswahl einer der beiden folgen-
den Eigenschaften des transformierten Elements fest:

» RenderTransform: Die Nachbarelemente werden durch die Transformation
nicht beeinflusst, es konnen also mehrere Elemente tibereinander liegen.

» LayoutTransform: Die Nachbarelemente werden durch die Transformation
verschoben.

9.5.1 RotateTransform mit RenderTransform

Sie konnen ein Element mithilfe eines Objekts des Typs RotateTransform drehen.
Die double-Eigenschaft Angle bestimmt den Winkel der Drehung; der Standard-
wert ist O.

Im ersten Beispielprojekt TransRender wird die Drehung von zwei Buttons
jeweils durch Auswahl der Eigenschaft RenderTransform ausgefiihrt. Die Nach-
barelemente werden also nicht verschoben (siehe Abbildung 9.17).

[®7 TransRender @m
Button 1

Abbildung 9.17 Drehung mit RotateTransform, Render

Der Ursprung der Transformation kann mithilfe der Eigenschaft RenderTrans-
formOrigin des transformierten Elements festgelegt werden. Diese Eigenschaft ist
vom Typ Point und legt bei einer Rotation den Drehpunkt mit relativen Werten
fest. Der Standardwert ist 0,0. Die Drehung wird damit um die linke obere Ecke
des Elements ausgeftihrt.

Durch wiederholtes Betdtigen des ersten Buttons konnen Sie den Winkel verin-
dern, den Button also weiter drehen. Die Betitigung des zweiten Buttons fithrt
zur wiederholten Verdnderung des Drehpunkts.

271

9 | 2D-Grafik

Der XAML-Code:

<StackPanel>
<Button Width="120">Button 1</Button>
<Button Width="120" x:Name="b2" Panel.ZIndex="1"
Click="b2_Click">Angle 15
<Button.RenderTransform>
<RotateTransform x:Name="rt" Angle="15" />
</Button.RenderTransform>
</Button>
<Button Width="120">Button 3</Button>
<Button Width="120">Button 4</Button>
<Button Width="120" x:Name="b5" Panel.ZIndex="1"
RenderTransformOrigin="0.5 0.5" Click="b5_Click">Mitte
<Button.RenderTransform>
<RotateTransform Angle="15" />
</Button.RenderTransform>
</Button>
<Button Width="120">Button 6</Button>
</StackPanel>

Bei beiden gedrehten Buttons wurde die Attached Property Panel.ZIndex auf 1
gesetzt, sodass sie in z-Richtung tiber den anderen Buttons stehen. Die Eigen-
schaft RenderTransform der Buttons wird mit einem Objekt des Typs
RotateTransform besetzt. Der Startwinkel (Eigenschaft Angle) wurde jeweils mit
15 Grad festgelegt.

Beim zweiten gedrehten Button wird zusatzlich der Drehpunkt auf 0.5, 0.5 fest-
gelegt. Die Drehung wird damit um die Mitte des Elements ausgefiihrt.

Es folgt die Fensterklasse mit Eigenschaften und Ereignismethoden:

public partial class MainWindow : Window
{

Point[] p;

stringl] s;

int rto_index;

public MainWindow()
{
InitializeComponent();

p = new Point[5];

p[0] = new Point(0, 0);
p[1] = new Point(1l, 0);
p[2] = new Point(0, 1);
p[3] = new Point(1l, 1);
p[4] = new Point(0.5, 0.5);

272

Transformationen | 9.5

s = new stringl[b5];
s[0] = "Links oben";
s[1] = "Rechts oben";
s[2] = "Links unten";
s[3] = "Rechts unten";
s[4] = "Mitte";

rto_index = 4;
}

private void b2_Click(...)
{

rt.Angle = rt.Angle + 15;

b2.Content = "Angle " + rt.Angle % 360;
}

private void b5_Click(...)

{
rto_index++;
rto_index = rto_index % 5;
b5.RenderTransformOrigin = plrto_index];
b5.Content = s[rto_index];

}

Beim ersten gedrehten Button wird der Wert der Eigenschaft Ang1e jeweils um 15
(Grad) erhoht. Der Button wird mit dem Wert des aktuellen Winkels, der von O
bis 360 Grad reichen kann, beschriftet.

Fiir den zweiten gedrehten Button werden fiinf bestimmte Moglichkeiten fiir den
Drehpunkt festgelegt und in einem Feld gespeichert. Parallel dazu wird ein Feld
mit den finf entsprechenden Beschriftungen gefullt. Bei jedem Click auf den But-
ton werden seine Eigenschaft RenderTransformOrigin und seine Beschriftung
geindert. Der Modulo-Operator % liefert bekanntlich den Rest einer Division.
Dies sorgt im vorliegenden Fall dafiir, dass rto_index nur einen der Werte von 0
bis 4 bekommen kann.

9.5.2 RotateTransform mit LayoutTransform

Es folgt das Beispielprojekt TransLayout, in dem die Drehung eines Buttons durch
Auswahl der Eigenschaft LayoutTransform ausgefiihrt wird. Die Nachbarele-
mente werden also verschoben (siehe Abbildung 9.18). Durch wiederholtes Beti-
tigen des Buttons konnen Sie auch hier den Button weiter drehen.

273

9 | 2D-Grafik

[®7 TransLayout @I@u
Button 1

Abbildung 9.18 Drehung mit RotateTransform, Layout

Der XAML-Code:

<{StackPanel>
<Button Width="120">Button 1</Button>
<Button Width="120" Height="23" x:Name="b2"
Click="b2_Click">Angle 15
<Button.LayoutTransform>
<RotateTransform x:Name="rt" Angle="15" />
</Button.lLayoutTransform>
</Button>
<Button Width="120">Button 3</Button>
</StackPanel>

Die Eigenschaft LayoutTransform der Buttons wird mit einem Objekt des Typs
RotateTransform besetzt. Der Winkel (Eigenschaft Angle) wird mit 15 Grad fest-
gelegt und kann durch folgende Ereignismethode geandert werden:

private void b2_Click(...)
{
rt.Angle = rt.Angle + 15;
b2.Content = "Angle " + rt.Angle % 360;

9.5.3 ScaleTransform

Die GroBeninderung (Skalierung) eines Elements konnen Sie mithilfe eines
Objekts des Typs ScaleTransform durchfithren. Falls Sie die beiden doub1e-Eigen-
schaften ScaleX und ScaleY als Skalierungsfaktoren fiir die x- und y-Richtung
unterschiedlich wiahlen, wird das Element verzerrt. Der Standardwert fiir beide
Faktoren ist 1.

Im nachfolgenden Projekt TransScale werden zwei Skalierungen durchgefiihrt: ein-
mal innerhalb einer RenderTransformund einmal innerhalb einer LayoutTransform.
Entsprechend verschieben sich im zweiten Fall die Nachbarelemente (sieche Abbil-
dung 9.19). Durch wiederholtes Betitigen der beiden Buttons wird die Skalierung in
x-Richtung verkleinert und in y-Richtung vergrofert.

274

Transformationen | 9.5

rIEI TransScale Elﬂuj
[Button 1]
[x25viae |
[Button 3]

[x25vii6 |

Button 5

Abbildung 9.19 GroéRenédnderung mit ScaleTransform

Der XAML-Code:

<StackPanel>
<Button Width="100">Button 1</Button>
<Button x:Name="b2" RenderTransformOrigin="0.5 0.5"
Width="100" Panel.ZIndex="1" Click="b2_Click">X:2,5 Y:1,6
<Button.RenderTransform>
{ScaleTransform x:Name="st2" ScaleX="2.5" ScaleY="1.6" />
</Button.RenderTransform>
</Button>
<Button Width="100">Button 3</Button>
<Button x:Name="b4" Width="100" Click="b4_Click">X:2,5 Y:1,6
<Button.LayoutTransform>
{ScaleTransform x:Name="st4" ScaleX="2.5" ScaleY="1.6" />
</Button.LayoutTransform>
</Button>
{Button Width="100">Button 5</Button>
</StackPanel>

In beiden Fillen wird der Button in x-Richtung um den Faktor 2.5, in y-Richtung
um den Faktor 1.6 vergroRert. Damit ergibt sich eine Verzerrung. Durch die Werte
0.5, 0.5 fiir die Eigenschaft RenderTransformOrigin wird die Mitte des Elements
als Ursprung fur den RenderTransform gewdhlt. Somit tiberlappt das Element die
Nachbarelemente gleichmaRig. Falls kein Wert fiir RenderTransformOrigin festge-
legt wiirde, dann wiirde das Element wegen des Standardwerts 0,0 nur nach rechts
und unten tberlappen.

Die Ereignismethoden sehen so aus:

private void b2_Click(...)
{
st2.ScaleX = st2.ScaleX - 0.1;
st2.ScaleY st2.ScaleY + 0.1;
b2.Content "X:" 4+ Math.Round(st2.ScaleX,1)
+ " Y:" 4+ Math.Round(st2.ScaleY,1);

275

9 | 2D-Grafik

private void b4_Click(...)
{

st4.ScaleX = st4.ScaleX - 0.1;
st4.ScaleY = st4.ScaleY + 0.1;
b4 .Content = "X:" + Math.Round(st4.ScaleX, 1)

+ " Y:" + Math.Round(st4.ScaleY, 1);
}

Bei jedem Betitigen der beiden Buttons wird der Skalierungsfaktor in x-Richtung
um 0.1 verkleinert und in y-Richtung um 0.1 vergroQert.

9.5.4 SkewTransform

Mithilfe eines Objekts des Typs SkewTransform konnen Sie ein Element abschra-
gen beziehungsweise neigen. Die double-Eigenschaft AngleX legt den Neigungs-
winkel fest, den der vertikale Rand des Elements gegeniiber der y-Achse hat. Ent-
sprechend bestimmt AngleY den Neigungswinkel fir den horizontalen Rand
gegentiber der x-Achse. Der Standardwert fir beide Winkel ist O.

Im nachfolgenden Projekt TransSkew werden zwei Elemente geneigt: einmal
innerhalb einer RenderTransform und einmal innerhalb einer LayoutTransform.
Entsprechend verschieben sich im zweiten Fall die Nachbarelemente (siehe
Abbildung 9.20). Durch wiederholtes Betitigen der beiden Buttons wird die Nei-
gung fiir den horizontalen Rand (AngleY) vergroflert.

[®7] TransSkew lil@g
; Button 1

\Coene

Y

Abbildung 9.20 Neigung mit SkewTransform

Der XAML-Code:

<StackPanel>
<Button Width="100">Button 1</Button>
<Button x:Name="b2" RenderTransformOrigin="0.5 0.5"
Width="100" Panel.ZIndex="1" Click="b2_Click">X:30 Y:5
<Button.RenderTransform>
<SkewTransform x:Name="st2" AngleX="30" AngleY="5" />
</Button.RenderTransform>
</Button>

276

Transformationen | 9.5

<Button Width="100">Button 3</Button>

{Button x:Name="b4" Width="100" Click="b4_Click">X:30 Y:5
<Button.LayoutTransform>

<SkewTransform x:Name="st4" AngleX="30" AngleY="5" />

</Button.lLayoutTransform>

</Button>

<Button Width="100">Button 5</Button>

</StackPanel>

In beiden Fillen wird der Button relativ zur y-Achse um 30 Grad und relativ zur
x-Achse um 5 Grad geneigt. Auch hier wird die Mitte des Elements als Ursprung
fir den RenderTransform gewdhlt. Die Ereignismethoden sehen wie folgt aus:

private void b2_Click(...)

{
st2.AngleY = st2.AngleY + 5;
b2.Content = "X:30 Y:" + stZ2.AngleVY;

private void b4_Click(...)
{
std.AngleY = std.AngleY + 5;
b4.Content "X:30 Y:" + std.AngleVY;
}

Bei jedem Betitigen der beiden Buttons erhoht sich die Neigung um weitere 5
Grad relativ zur x-Achse.

9.5.5 TranslateTransform

Die Verschiebung eines Elements fiihren Sie mithilfe eines Objekts des Typs
TranslateTransform durch. Die beiden double-Eigenschaften X und Y legen die
Werte fur die Verschiebung in x- und y-Richtung einzeln fest. Der Standardwert
fiir beide Eigenschaften ist 0.

Im nachfolgenden Projekt TransTranslate wird eine Verschiebung innerhalb einer
RenderTransform durchgefiihrt (siehe Abbildung 9.21). Durch wiederholtes Beta-
tigen des Buttons wird die Verschiebung gedndert.

(87 TransTranslate é@u

{ X30Y:-10

Abbildung 9.21 Verschiebung mit TranslateTransform

277

9 | 2D-Grafik

Der XAML-Code:

<{StackPanel>
<Button Width="100">Button 1</Button>
<Button x:Name="b2" Width="100" Panel.ZIndex="1"
Click="b2_Click">X:30 Y:-10
<Button.RenderTransform>
{TranslateTransform x:Name="tt2" X="30" Y="-10" />
</Button.RenderTransform>
</Button>
<Button Width="100">Button 3</Button>
</StackPanel>

Der Button wird um den Wert 30 in x-Richtung und um den Wert -10 in y-Rich-
tung verschoben. Die Ereignismethode sieht wie folgt aus:

private void b2_Click(...)
{

tte. X tt2. X + 10;

tte.y tt2.y + 10;

p2.Content = "X:" + tt2.X + " Y:" + tt2.Y;
}

Bei jedem Betdtigen des Buttons wird er um den Wert 10 nach rechts und nach
unten verschoben.

9.5.6 TransformGroup

Innerhalb eines Objekts des Typs TransformGroup haben Sie die Moglichkeit,
mehrere Transformationen auf ein Element anzuwenden. Ein Element kann also
gleichzeitig gedreht, skaliert, geneigt und verschoben werden. Die einzelnen
Transformationen sind untergeordnete Elemente des TransformGroup-Objekts.

Im nachfolgenden Projekt TransGroup wird dies mit einem Button durchgefiihrt
(siehe Abbildung 9.22). Durch wiederholtes Betdtigen des Buttons wird er wei-
tergedreht.

Der XAML-Code:

<StackPanel Margin="3">
<Button Width="100">Button 1</Button>
<Button x:Name="b2" Width="100" Panel.ZIndex="1"
Click="b2_Click">Rot.Angle:20
<Button.RenderTransform>
<TransformGroup x:Name="tg2">

278

Transformationen | 9.5

<RotateTransform Angle="20" />
{ScaleTransform ScaleX="1.5" ScaleY="0.8" />
{SkewTransform AngleX="0" AngleY="20" />
{TranslateTransform X="50" Y="-10" />
</TransformGroup>
</Button.RenderTransform>
</Button>
<Button Width="100">Button 3</Button>
</StackPanel>

[®°] TransGroup &I@u

Abbildung 9.22 Mehrere Transformationen mit TransformGroup

Mit dem Button werden, bezogen auf seine linke obere Ecke als Ursprung der
RenderTransform, folgende Transformationen durchgefiihrt:

» Er wird um 20 Grad gedreht.

» Er wird verzerrt, da er um den Faktor 1.5 in x-Richtung vergrofert und um
den Faktor 0.8 in y-Richtung verkleinert wird.

» Seine obere und untere Seite werden um weitere 20 Grad gegentiber der
x-Achse geneigt.

» Erwird um den Wert 50 nach rechts und um den Wert 10 nach oben verschoben.
Die Ereignismethode sieht so aus:

private void b2_Click(...)

{
RotateTransform rt = tg2.Children[0] as RotateTransform;
rt.Angle = rt.Angle + 10;
b2.Content = "Rot.Angle: " + rt.Angle;

}

Das erste untergeordnete Element der TransformGroup ist das Objekt des Typs
RotateTransform. Dessen Eigenschaft Angle wird bei jedem Betdtigen des But-
tons um den Wert 10 (Grad) gedndert.

279

9 | 2D-Grafik

9.6 Transparenz

Die Eigenschaften Opacity und Background dienen dazu, die Transparenz ganzer
Elemente oder des Hintergrunds eines Elements einzustellen. GleichmaBige
Uberginge zur Transparenz konnen Sie mit Maskierungen erreichen. Auferdem
kénnen Teile von Elementen mithilfe der Eigenschaft C11p ausgestanzt werden.

9.6.1 Transparenz mit Opacity und Background

Die Opazitit oder Undurchsichtigkeit eines Elements konnen Sie {iber die
doubTle-Eigenschaft Opacity festlegen. Der Standardwert ist 1.0. Das Element ist
damit vollkommen undurchsichtig. Sie kénnen Werte zwischen 0.0 und 1.0 ver-
wenden. Ein Beispiel haben Sie schon in Abschnitt 6.5, »Gadgets«, gesehen.

Ein Pinsel, zum Beispiel fiir die Eigenschaft Background vom Typ Brush, wird aus
dem Alphakanal und den drei RGB-Komponenten zusammengesetzt (sieche auch
Abschnitt 9.4.1, »SolidColorBrush«). Der Alphakanal steht fiir die Undurchsich-
tigkeit. Je hoher der Wert ist, desto undurchsichtiger ist die Farbe.

Im nachfolgenden Projekt Transparenz wird ein halb undurchsichtiges Bild als
Hintergrund genutzt. Auf diesem Bild wurden Buttons mit unterschiedlicher
Undurchsichtigkeit und TextBlocke mit unterschiedlich undurchsichtigem Hin-
tergrund platziert (sieche Abbildung 9.23).

' ™
[®77] Transparenz @@u

b= U

Abbildung 9.23 Transparenz mit Opacity und Background

Der XAML-Code:

<Canvas>
<Image Opacity="0.5" Source="blume.jpg" ... />
<Button Opacity="0.25" ...>Button 1</Button>
<Button Opacity="0.5" ...>Button 2</Button>
<Button Opacity="1.0" ...>Button 3</Button>

280

Transparenz | 9.6

{TextBlock Background="#40FFFFFF" ...>TextBlock 1</TextBlock>
{TextBlock Background="#80FFFFFF" ...>TextBlock 2</TextBlock>
{TextBlock Background="#FFFFFFFF" ...>TextBlock 3</TextBlock>

<TextBlock ...>TextBlock 4
{TextBlock.Background>
{LinearGradientBrush StartPoint="0,0" EndPoint="1,0">
<GradientStop Offset="0.0" Color="#00FFFFFF" />
<GradientStop Offset="0.3" Color="#FFFFFFFF" />
<GradientStop Offset="0.7" Color="#FFFFFFFF" />
<GradientStop Offset="1.0" Color="#00FFFFFF" />
</LinearGradientBrush>
<{/TextBlock.Background>
</TextBlock>
</Canvas>

Das Bild ist wegen des Werts 0.5 fiir die Eigenschaft Opacity halb undurchsichtig.
Die drei Buttons sind, einschlieflich der Aufschrift, unterschiedlich undurchsich-
tig, abhdngig von den Opacity-Werten.

Die drei Textblocke auf der rechten Seite haben einen weillen Hintergrund. Daftir
stehen die drei hinteren Blocke von hexadezimalen Ziffern fiir die RGB-Anteile.
Es sind Werte von 00 bis FF (= 255) moglich. Dieser weifle Hintergrund ist unter-
schiedlich undurchsichtig, abhingig von dem ersten Block von hexadezimalen
Ziffern ftir den Alphakanal.

Der untere Textblock hat mithilfe eines LinearGradientBrush einen verdnderli-
chen Hintergrund erhalten. Am linken Rand ist er vollkommen durchsichtig; zum
mittleren Bereich hin wird er immer undurchsichtiger, und zum rechten Rand hin
wird er wieder vollkommen durchsichtig. Der Wert #00FFFFFF steht fiir einen
vollkommen durchsichtigen Hintergrund. Das Gleiche erreicht man mit
Background="Transparent". Die Werte 0.0 und 1.0 fiir StartPoint und EndPoint
sind der Standard, sie dienen hier nur zur Verdeutlichung.

9.6.2 Maskierung mit OpacityMask

Die Eigenschaft OpacityMask vom Typ Brush dient zum Erzeugen unterschiedlich
geformter Masken fiir Transparenzeffekte. Im vorherigen Abschnitt wurde ein
teil-transparenter Pinsel fiir den Hintergrund eines Elements genutzt. Das Gleiche
kénnen Sie mit OpacityMask fiir das gesamte Element erreichen.

Im nachfolgenden Projekt Maskierung werden mithilfe eines RadialGradientBrush
und eines LinearGradientBrush zwei verschiedene Masken erzeugt (siehe Abbil-
dung 9.24).

281

9 | 2D-Grafik

[E7 Maskierung ==y

e

Abbildung 9.24 Maskierung mit OpacityMask

Der XAML-Code:

<WrapPanel>
<Image Source="blume.jpg" Width="200" Height="150" Margin="5">
<Image.OpacityMask>
<RadialGradientBrush GradientOrigin="0.5 0.3">
<GradientStop Offset="0.0" Color="#FFFFFFFF" />
<GradientStop Offset="0.2" Color="#FFFFFFFF" />
<GradientStop Offset="1.0" Color="#00FFFFFF" />
</RadialGradientBrush>
</Image.OpacityMask>
</Image>
<Image Source="blume.jpg" Width="200" Height="150" Margin="5">
<Image.OpacityMask>
<LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
<GradientStop Offset="0.0" Color="#00FFFFFF" />
<GradientStop Offset="0.3" Color="#FFFFFFFF" />
<GradientStop Offset="0.4" Color="#FFFFFFFF" />
<GradientStop Offset="0.9" Color="#00FFFFFF" />
</LinearGradientBrush>
</Image.OpacityMask>
</Image>
</WrapPanel>

Im linken Bild wurde zur Maskierung ein RadialGradientBrush genutzt, mit dem
Ursprung (0.5 0.3) oberhalb der Bildmitte. Nur die inneren 20 % sind vollkom-
men undurchsichtig, danach wird das Bild zum Rand hin immer durchsichtiger.

Die Maskierung im rechten Bild verlduft mithilfe eines LinearGradientBrush ver-
tikal. Nur in dem schmalen Bereich mit den blauen Bliiten, von 0.3 bis 0.4, ist das
Bild vollkommen undurchsichtig. Zum Rand hin wird es immer durchsichtiger.

282

Transparenz | 9.6

9.6.3 Ausstanzung mit Clip

Die Eigenschaft C1ip vom Typ Geometry dient zum Ausstanzen einer Geometrie
aus einem Element. Der Aufbau von Geometrien wurde in Abschnitt 9.2
beschrieben.

Im nachfolgenden Projekt Ausstanzung werden Teile eines Bildes ausgestanzt:
einmal mithilfe einer Pfadgeometrie in Pfadmarkupsyntax und einmal mithilfe
einer elliptischen Geometrie (sieche Abbildung 9.25).

.
[®7] Ausstanzung

e

Abbildung 9.25 Ausstanzung mit Clip

Der XAML-Code:

<WrapPanel>
<Image Source="blume.jpg" Width="200" Height="150" Margin="5"
Clip="M0,50 L50,0 L150,0 L200,50 L200,100 L150,150
L50,150 LO,100" />
<Image Source="blume.jpg" Width="200" Height="150" Margin="5">
<Image.Clip>
<E1lipseGeometry Center="100,75"
RadiusX="80" RadiusY="60" />
</Image.Clip>
</Image>
</WrapPanel>

Die Pfadgeometrie fiir die linke Ausstanzung folgt den Regeln fuir die Pfadmarkup-
syntax, wie sie in Abschnitt 9.2.4 beschrieben werden. Zur Erinnerung:

» M steht fir Move, also fiir Bewegung zum angegebenen Punkt.

» L steht fur Line, also fir eine Linie zum angegebenen Punkt.

Die Ellipse fiir die rechte Ausstanzung hat ihren Mittelpunkt in der Mitte des Bil-
des und ist in x-Richtung weiter ausgedehnt als in y-Richtung.

283

9 | 2D-Grafik

9.7 Effekte

Die Eigenschaft Effect (vom Typ Effect) eines Elements kénnen Sie nutzen, um
einen Bitmapeffekt auf das Element anzuwenden. Ein Objekt des Typs
BlurEffect verwischt das Element, sodass es unscharf wird wie bei einem Weich-
zeichner. Mit einem Objekt des Typs DropShadowEffect wirft es einen Schlag-
schatten in die gewiinschte Richtung.

Im nachfolgenden Projekt Bitmapeffekt werden Objekte dieser beiden Typen ein-
gesetzt (siehe Abbildung 9.26). Zwei Slider ermoglichen es, den jeweiligen Effekt
zu verdndern.

r: ™y
&7 Bitmapeffekt (B

Blurkffect

—

3 U

DropShadowEffect

s Y

Abbildung 9.26 BlurEffect und DropShadowEffect

Der XAML-Code:

<StackPanel>
<Button Width="120" Margin="3">BlurEffect
<Button.Effect>
<BlurEffect x:Name="be" Radius="0" />
</Button.Effect>
</Button>
<WrapPanel Margin="3">
<Label x:Name="1b1" Width="40">3</Label>
<STider x:Name="s11" Width="200" Minimum="0" Maximum="5"
Value="3" TickFrequency="1" IsSnapToTickEnabled="True"
TickPTacement="BottomRight" ValueChanged="vc_blur" />
</WrapPanel>

<Button Width="120" Margin="3">DropShadowEffect
<Button.Effect>
<DropShadowEffect x:Name="dse" BlurRadius="8" Color="Gray"
Direction="45" Opacity="0.8" ShadowDepth="8" />
</Button.Effect>
</Button>

284

Effekte | 9.7

<WrapPanel Margin="3">
<Label x:Name="1b2" Width="40">315</Label>
<STider x:Name="s12" Width="200" Minimum="0" Maximum="360"
Value="45" TickFrequency="45" TickPlacement="BottomRight"
ValueChanged="vc_drop" />
</WrapPanel>
</StackPanel>

Die double-Eigenschaft Radius des Objekts des Typs BlurEffect gibt den Grad
des Weichzeichners an. Der Standardwert ist 5, der Wert O steht fiir »kein Weich-
zeichnereffekt«.

Bei dem Objekt des Typs DropShadowEffect konnen Sie folgende Eigenschaften
des Schattens einstellen:

» BlurRadius: Grad des Weichzeichners; der Standard ist 5.

» Color: Farbe; der Standard ist Black.

» Opacity: Transparenz; der Standard ist 1, also ein undurchsichtiger Schatten.

» ShadowDepth: Abstand vom Element; der Standard ist 5.

Alle Eigenschaften sind vom Typ double, nur Color ist vom Typ Color. Die
double-Eigenschaft Direction gibt die Richtung des Schattens an. Der Standard
ist 315 Grad, also rechts unten. Die Gradzahl geht von 0 bis 360 gegen den Uhr-
zeigersinn; O Grad ist in positiver x-Richtung.

Die Ereignismethoden sehen so aus:

private void vc_blur(object sender,
RoutedPropertyChangedEventArgs<double> e)

1bl.Content = Math.Round(s11.Value);
be.Radius = s1l.Value;
}
private void vc_drop(object sender,
RoutedPropertyChangedEventArgs<double> e)

1b2.Content = Math.Round(s12.Value);
dse.Direction = s12.Value;
}

Der Radius des Objekts vom Typ BlurEffect und die Richtung des Schattens fiir
das Objekt vom Typ DropShadowEffect lassen sich per Slider einstellen.

285

9 | 2D-Grafik

9.8 Verzierungen

Sie konnen einem Element Verzierungen hinzufiigen. Eine solche Verzierung wird
in einem eigenen Layer (dt. Schicht) angezeigt. Diese Verzierungsschicht liegt in
z-Richtung oberhalb des Objekts, also vom Betrachter aus vor dem Objekt. Die Ver-
zierung wird in einer eigenen Klasse erzeugt, die von der abstrakten Klasse Adorner
abgeleitet ist.

Im nachfolgenden Projekt Verzierung wird ein Objekt mit zwei Ellipsen auf den
beiden oberen Ecken verziert (sieche Abbildung 9.27).

[R7] Verzierung E@g

TextBox

Abbildung 9.27 Verzierung durch zwei Ellipsen

Der XAML-Code:

<Window ... Loaded="Window_Loaded">
<{StackPanel>
<Button x:Name="bu" Width="80" Margin="10">Button</Button>
{TextBox x:Name="tx" Width="80" Margin="10">TextBox</TextBox>
</StackPanel>
</Window>

Als Beispiele werden ein Button und eine TextBox verziert. Die Ereignismethode
sieht so aus:

private void Window_Loaded(...)
{
AdornerlLayer al = AdornerlLayer.GetAdornerLayer(bu);
al.Add(new verzierung_ellipse(bu));
al = AdornerlLayer.GetAdornerLayer(tx);
al.Add(new verzierung_ellipse(tx));
}

Mithilfe der Methode GetAdornerlLayer() der Klasse AdornerLayer wird ein Ver-
weis auf die erste Verzierungsschicht oberhalb des Elements erzeugt, das verziert
werden soll. Dieser Schicht wird mithilfe der Methode Add() der Klasse
AdornerLayer eine Verzierung hinzugeftigt.

286

Verzierungen | 9.8

Diese Verzierung muss von einem Typ sein, der von der abstrakten Klasse
Adorner abgeleitet wurde. In diesem Falle ist es der nachfolgend beschriebene
Typ verzierung_ellipse. Als Parameter wird dem Konstruktor der Verweis auf
das Element mitgegeben, das verziert werden soll.

Die Datei verzierung_ellipse.cs mit der Klasse verzierung_el1ipse sieht so aus:

using System.Windows;
using System.Windows.Media;
using System.Windows.Documents;
namespace Verzierung
{

class verzierung_ellipse : Adorner

{

public verzierung_ellipse(UIElement ae) : base(ae) { }

protected override void OnRender(DrawingContext dc)

{
SolidColorBrush br = new SolidColorBrush(Colors.LightGray);
Pen pn = new Pen(new SolidColorBrush(Colors.Black), 1);
Rect rc = new Rect(this.AdornedElement.RenderSize);
dc.DrawEllipse(br, pn, rc.TopLeft, 10, 5);
dc.DrawEl1ipse(br, pn, rc.TopRight, 10, 5);

}

Die Basisklasse Adorner hat nur einen Konstruktor. Dieser verlangt einen Verweis
auf das geschmiickte Element. Der Konstruktor der hier abgeleiteten Klasse leitet
diesen Verweis zur Basisklasse Adorner weiter.

Zum Zeichnen der Verzierung im Layer eignet sich die Methode OnRender (). Der
Zeichnungskontext wird iber ein DrawingContext-Objekt bereitgestellt. Es wer-
den ein Pinsel fiir die Fullung der Ellipsen und ein Stift fiir den Rand der Ellipsen
erzeugt.

Die Eigenschaft AdornedETement der Klasse Adorner stellt einen Verweis auf das
Element zur Verfiigung, das verziert werden soll. Die Eigenschaft RendersSize lie-
fert die Grofe dieses Elements. Mit diesen Daten wird ein umgebendes Rechteck
gleicher GroéBe erzeugt. Das Zentrum der beiden Ellipsen liegt an der oberen lin-
ken Ecke beziehungsweise an der oberen rechten Ecke des umgebenden Recht-
ecks. Sie werden mithilfe der Methode DrawE111ipse() der Klasse DrawingContext
gezeichnet.

287

Gestalten Sie anschauliche Anwendungen, indem Sie die dritte Dimen-
sion nutzen. Erlernen Sie den Aufbau und die Darstellung dreidimensio-
naler Korper innerhalb einer WPF-Anwendung.

10 3D-Grafik

Objekte der realen Welt sind bekanntlich nicht auf die zwei Dimensionen eines
Bildschirms beschrinkt, sondern besitzen eine dritte Dimension. Eine Anwen-
dung wird fiir den Betrachter viel realistischer, wenn sie dies berticksichtigt. Der
Aufwand fur den Entwickler wird natiirlich héher.

In diesem Kapitel geht es zunachst um die Elemente, die fiir den Aufbau und das
Verstindnis einer dreidimensionalen Szene und der dreidimensionalen Koérper
(3D-Korper) darin wichtig sind. Es folgen Abschnitte {iber verschiedene Moglich-
keiten fiir Kamera und Licht. Sie lernen verschiedene 3D-Modelle kennen, inklu-
sive der Gestaltung der Oberflichen der 3D-Kdrper. Den Abschluss bilden die
dreidimensionalen Transformationen und eine dreidimensionale Landschaft als
ausbaufihige »Spielwiese« fiir den Entwickler.

Bei allen Projekten des Kapitels ist fiir die Steuerung per Programmcode der
Namespace System.Windows.Media.Media3D zusdtzlich notwendig.

10.1 Allgemeiner Aufbau

Zum Verstindnis von dreidimensionalen Grafiken in WPF-Anwendungen ist ein
wenig Theorie nicht zu umgehen. In diesem Abschnitt wird anhand eines ersten
Beispiels erldutert, wie ein 3D-Korper auf die zwei Dimensionen eines Bild-
schirms oder eines Buchs abgebildet wird, sodass die dritte Dimension fir den
Betrachter erkennbar wird.

10.1.1 Koordinatensystem

Punkte im dreidimensionalen Raum werden durch ihre drei Koordinatenwerte auf
der x-, y- und z-Achse beschrieben. Betrachten Sie das Modell in Abbildung 10.1:

289

3D-Grafik

» Die x-Achse verliuft in der Blattebene von links nach rechts.
» Die y-Achse verlduft in der Blattebene von unten nach oben.

» Die z-Achse startet »hinter« der Blattebene und kommt dem Betrachter genau
nach »vorne« entgegen. Der Betrachter sieht die z-Achse von »vorne, sie wire
also nur als Punkt erkennbar. Zur besseren Erkennbarkeit wird sie hier schrig
gezeichnet.

» Die drei Achsen treffen sich im Nullpunkt des Koordinatensystems.

0:-1,1,0

2110

Abbildung 10.1 Dreidimensionales Koordinatensystem mit Dreieck

3D-Korper werden durch ihre Eckpunkte in der Notation x,y,z gekennzeichnet.
In Abbildung 10.1 sehen Sie einen einfachen 3D-Kérper: ein Dreieck, das flach in
der Blattebene liegt. Die z-Koordinate aller drei Eckpunkte ist also 0. Die Eck-
punkte sind von 0 bis 2 nummeriert:

» Eckpunkt 0 (oben links) liegt bei -1,1,0.

» Eckpunkt 1 (unten links) liegt bei -1,-1,0.

» Eckpunkt 2 (unten rechts) liegt bei 1,-1,0.

Im Projekt DreiDDreieck wird dieses Dreieck in einer dreidimensionalen Szene

angezeigt (siehe Abbildung 10.2). Die Angaben in der Titelleiste werden spater
erldutert.

Alle 3D-Korper in WPF-Anwendungen werden aus Dreiecken aufgebaut. Ein Bei-
spiel: Mit zwei Dreiecken kann ein Rechteck gebildet werden. Bei geeigneter Sei-
tenlinge handelt es sich um ein Quadrat. Aus sechs Quadraten kann ein dreidi-
mensionaler Wiirfel gebildet werden.

290

Allgemeiner Aufbau

((871 P: 0/0/5, LD: 0/0/-5 ==

e

Abbildung 10.2 Dreieck im dreidimensionalen Raum

10.1.2 Kamera, Licht und Material

Es werden noch weitere Komponenten bendtigt, damit der Betrachter eine geeig-
nete Vorstellung bekommt.

Zundchst muss eine Kamera aufgestellt werden, mit deren Hilfe die 3D-Kérper
gesehen werden. Dabei sind die Position und die Blickrichtung wichtig. Im Pro-
jekt DreiDDreieck (siehe Abbildung 10.2) »schwebt« die Kamera an der Position
0,0,5, also vor der Blattebene, genau vor dem Nullpunkt. Die Blickrichtung (engl.
LookDirection) wird mit 0,0,-5 angegeben. Die Kamera blickt also zu einem Punkt
hinter der Blattebene, durch den Nullpunkt hindurch. Das Dreieck liegt am Null-
punkt, also kann der Betrachter es sehen.

Innerhalb des Projekts DreiDDreieck konnen Position und Blickrichtung per
Mausklick geindert werden. Die Angaben in der Titelleiste geben die jeweils
aktuellen Werte fiir Position (P) und LookDirection (LD) wieder.

Die Szene muss mit Licht ausgeleuchtet werden. Im Projekt DreiDDreieck wird dazu
ein gleichmiRiges, ungerichtetes Umgebungslicht genutzt. 3D-Kérper in der Szene
miissen aus einem geeigneten Material bestehen und eine Farbe besitzen. Im Pro-
jekt DreiDDreieck wird ein einfaches, diffuses Material in grauer Farbe gewahlt.

10.1.3 Dreieck in XAML

Das bereits angesprochene Projekt DreiDDreieck zeigt ein Dreieck im dreidimen-
sionalen Raum. Nachfolgend sehen Sie den XAML-Code:

<MWindow ... MouseDown="Window_MouseDown">
<Viewport3D>
<Viewport3D.Camera>
<OrthographicCamera x:Name="oc" Position="0,0,5"
LookDirection="0,0,-5" Width="6"/>

291

| 104

10

3D-Grafik

</Viewport3D.Camera>

<Viewport3D.Children>
<{ModelVisual3D>
{ModelVisual3D.Content>
<AmbientlLight />
<{/ModelVisual3D.Content>
</ModelVisual3D>

<{ModelVisual3D>
{ModelVisual3D.Content>
<GeometryModel3D>
<{GeometryModel3D.Material>
<DiffuseMaterial Brush="Gray" />
</GeometryModel3D.Material>

<GeometryModel3D.Geometry>
{MeshGeometry3D Positions="-1,1,0 -1,-1,0 1,-1,0"
Trianglelndices="0,1,2"/>
</GeometryModel3D.Geometry>
</GeometryModel3D>
</ModelVisual3D.Content>
</ModelVisual3D>
</Viewport3D.Children>
</Viewport3D>
</Window>

Falls innerhalb des Fensters eine Maustaste heruntergedriickt wird, dann reagiert
darauf die Ereignismethode Window_MouseDown. Dadurch dndern sich Position
und Blickrichtung der Kamera.

Das Objekt des Typs Viewport3D ist die zweidimensionale Leinwand fiir die drei-
dimensionale Szene.

Die Eigenschaft Camera des Viewport3D-Objekts beinhaltet hier eine orthographi-
sche Kamera. Damit werden gleich grofe 3D-Korper immer gleich grof8 darge-
stellt, unabhingig von ihrem Abstand zur Kamera. Wichtige Eigenschaften fur
OrthographicCamera sind:

» Position, vom Typ Point3D, fiir die Position der Kamera, wie oben erldutert.
Mit dem Typ Point3D werden Punkte im dreidimensionalen Raum beschrieben.

» LookDirection, vom Typ Vector3D, fir die Blickrichtung, ebenfalls wie oben
erldutert. Mit dem Typ Vector3D werden Richtungen im dreidimensionalen
Raum beschrieben.

292

Allgemeiner Aufbau

» Width, vom Typ double, fiir die Breite des Sichtfelds in x-Richtung. Das darge-
stellte Dreieck hat in x-Richtung die GréBe 2, und die Breite des Sichtfelds
betrigt 6.

Die Auflistungseigenschaft Children des Viewport3D-Objekts kann als unterge-
ordnete Elemente vom Typ Mode1Visual3D verschiedene Lichttypen, eine Geome-
trie oder eine Gruppe von Geometrien beinhalten. In diesem Projekt handelt es
sich um

» ein Objekt des Typs AmbientLight fiir ein gleichmiBiges Umgebungslicht und
um

» ein Objekt vom Typ GeometryModel3D mit den Eigenschaften Material und
Geometry (Form).

Auf das nicht selbstleuchtende Material vom Typ DiffuseMaterial kann ein Pin-
sel fur zweidimensionale Flichen, zum Beispiel ein SolidColorBrush angewandt
werden, um es gleichmiRig einzufirben. Die Eigenschaft Brush bestimmt die
Farbe (hier Grau).

Die Form wird tiber ein Objekt des Typs MeshGeometry3D bestimmt. Darin stehen
die Dreiecke, aus denen eine dreidimensionale Form aufgebaut wird. Wichtige
Eigenschaften sind:

» Positions, vom Typ Point3DCollection, beinhaltet eine Auflistung von
Point3D-Objekten, also Punkten im dreidimensionalen Raum. Jedes Point3D-
Objekt besteht aus einer Gruppe von drei double-Zahlen. Wie in einer Auflis-
tung tblich, sind die Elemente nummeriert, und zwar beginnend bei 0. Diese
Nummern werden fiir die nichste Eigenschaft benétigt.

» Trianglelndices, vom Typ Int32Collection, besteht aus Gruppen von drei
ganzen Zahlen. Eine Gruppe ergibt ein Dreieck. Die drei ganzen Zahlen geben
an, welche Point3D-Objekte der Auflistung Positions fiir das Dreieck verwen-
det werden.

Im XAML-Code und im Beispiel in Abbildung 10.1 betrigt der Wert von
Trianglelndices 0,1,2. Also werden die drei Punkte aus der Auflistung
Positions in der folgenden Reihenfolge verwendet:

» Eckpunkt O (oben links) liegt bei -1,1,0.

» Eckpunkt 1 (unten links) liegt bei -1,-1,0.

» Eckpunkt 2 (unten rechts) liegt bei 1,-1,0.

Im vorliegenden Fall wird das Dreieck mit der Reihenfolge 0,1,2 gegen den Uhr-
zeigersinn umlaufen. Bei diesem Umlaufsinn sieht der Betrachter die graue Vor-

293

| 104

10 | 3D-Grafik

derseite. Falls der Wert von Trianglelndices 0,2,1 betragen hitte, so wiirde das
gleiche Dreieck gebildet. Es wiirde aber im Uhrzeigersinn umlaufen. Bei diesem
Umlaufsinn sieht der Betrachter die Riickseite. Diese hat keine Farbe, also sieht
der Betrachter nichts.

Fur die Verinderungen in der nachfolgenden Ereignismethode werden neue
Objekte der Typen Point3D und Vector3D benoétigt. Beide Typen verfligen tiber
die double-Eigenschaften X, Y und Z.

private void Window_MouseDown(object sender,
MouseButtonEventArgs e)

oc.Position = new Point3D(
oc.Position.X + 0.5, 0, oc.Position.Z - 0.5);
oc.LookDirection = new Vector3D(
oc.LookDirection.X - 0.5, 0, oc.LookDirection.Z + 0.5);
Title = "P: " + oc.Position.X + "/0/" + oc.Position.Z
+ ", LD: " + oc.LookDirection.X + "/0/" + oc.lLookDirection.Z;
}

Mit jedem Mausklick wird die Position der Kamera um 0.5 nach rechts (in posi-
tive x-Richtung) und um 0.5 nach vorne (in negative z-Richtung), zur Blattebene
hin verschoben. Die Blickrichtung wird auch verindert, sodass der Betrachter
weiterhin durch den Nullpunkt schaut. Er sieht das Dreieck aber aus immer spit-
zerem Winkel, es wird fiir ihn also immer kleiner. Bei z=0 schaut er genau auf die
Seitenkante des Dreiecks, und bei z<0 schaut er auf die Riickseite des Dreiecks.
Diese hat keine Farbe; er sieht also nichts mehr.

10.1.4 Ein Dreieck in Programmcode erzeugen

Es kann vorkommen, dass Sie eine dreidimensionale Szene aus 3D-Korpern auf-
bauen, deren Daten aus einer externen Quelle stammen. Dazu ist es notwendig,
die Szene ganz oder teilweise mithilfe von Programmcode zu erstellen. Im nach-
folgenden Projekt DreiDExtern wird nur das Fenster mithilfe von XAML erzeugt,
der Rest in Programmecode. Es handelt sich um das einfache Dreieck aus dem vor-
herigen Abschnitt (siehe Abbildung 10.2).

Zunichst der kurze XAML-Code:
<MWindow ... Height="200" Width="300" Loaded="Window_Loaded" />
Die nachfolgende Ereignismethode wird beim Laden des Fensters durchlaufen:

private void Window_Loaded(...)
{

294

Aligemeiner Aufbau | 104

/* Positionen fir MeshGeometry */
Point3DCollection p3dc = new Point3DCollection();
p3dc.Add(new Point3D(-1, 1, 0));

p3dc.Add(new Point3D(-1, -1, 0));

p3dc.Add(new Point3D(1, -1, 0));

/* Indizes fir MeshGeometry */
Int32Collection i32c = new Int32Collection();
i32c.Add(0);

i32c.Add(1);

i32c.Add(2);

/* MeshGeometry, mit Eigenschaften */
MeshGeometry3D mg3d = new MeshGeometry3D();
mg3d.Positions = p3dc;

mg3d.Trianglelndices = i32c;

/* Geometrie-Modell mit MeshGeometry und Material */
GeometryModel3D gm3d = new GeometryModel3D(mg3d,
new DiffuseMaterial(new SolidColorBrush(Colors.Gray)));

/* ModelVisual3D-Element fir Geometrie */
ModelVisual3D mv3dg = new ModelVisual3D();
mv3dg.Content = gm3d;

/* ModelVisual3D-Element fir Licht */
ModelVisual3D mv3dl = new ModelVisual3D();
mv3dl.Content = new AmbientLight();

/* Viewport3D, mit Kamera, mit Licht, mit Geometrie */

Viewport3D vp3d = new Viewport3D();

vp3d.Camera = new OrthographicCamera(new Point3D(0, 0, 5),
new Vector3D(0, 0, -5), new Vector3D(0, 1, 0), 6);

vp3d.Children.Add(mv3d1);

vp3d.Children.Add(mv3dg);

/* Viewport3D wird Inhalt des Fensters */
Content = vp3d;
}

Die Szene wird von innen nach auflen aufgebaut. Zunichst werden die beiden
Collections fiir die Eigenschaften Positions und Trianglelndices erzeugt. Die
einzelnen Punkte und ihre Indizes werden mithilfe der Methode Add () hinzuge-
fiigt.

295

10 | 3D-Grafik

Der verwendete Konstruktor des Typs GeometryModel3D bendtigt ein Objekt des
Typs Geometry3D und ein Objekt des Typs Material. Dieses braucht wiederum ein
Objekt des Typs Brush.

Der verwendete Konstruktor des Typs OrthographicCamera bendtigt vier Parame-
ter der folgenden Typen:

» Point3D fiir die Eigenschaft Position (Kameraposition)

» Vector3D fir die Eigenschaft LookDirection (Blickrichtung)

» Vector3D fur die Eigenschaft UpDirection (Lage der Kamera)

» double fiir die Eigenschaft Width (Breite des Sichtfelds)

Die Kamera steht mit den Standardwerten 0,1,0 fiir die Eigenschaft UpDirection

genau aufrecht. Das heif8t, das obere Ende ist in positive y-Richtung ausgerichtet.
Mehr zum Thema Kameralage finden Sie in Abschnitt 10.2, »Kamerax.

10.1.5 Wiirfel

In diesem Abschnitt wird im Projekt DreiDWiirfel ein Wirfel dargestellt. Die
Kantenldnge ist 2, das Zentrum des Wiirfels ist der Nullpunkt des Koordinaten-
systems. Der Betrachter sieht die drei vorderen Seiten des Wiirfels wie in Abbil-
dung 10.3. Jede Seite ist aus zwei Dreiecken aufgebaut. Der Betrachter kann sich
den Wiirfel per Tastendruck auch von hinten anschauen ([v] = vorne, = hin-
ten).

' ™
[87] DreiDWairfel, von vorme E@u

"

Abbildung 10.3 Drei Seiten eines Wiirfels

Der Aufbau hat viele Ahnlichkeiten mit dem Aufbau des einzelnen Dreiecks aus
dem vorherigen Abschnitt. Nachfolgend sehen Sie nur die gednderten Teile des
XAML-Codes:

<Window ... KeyDown="Window_KeyDown">

296

Aligemeiner Aufbau | 101

<OrthographicCamera x:Name="oc" Position="1,3,5"
LookDirection="-1,-3,-5" Width="6"/>

<DirectionallLight x:Name="d1" Color="White"
Direction="-1,-3,-5" />

<GeometryModel3D.Material>
<DiffuseMaterial Brush="LightGray" />
<{/GeometryModel3D.Material>

<GeometryModel3D.BackMaterial>
<DiffuseMaterial Brush="Red" />
<{/GeometryModel3D.BackMaterial>

{MeshGeometry3D Positions="-1,1,1 -1,-1,11,-1,1 1,1,1 1,1,1

1
1,-1,171,-1,-11,1,-1 -1,1,-1 -1,1,1 1,1,1 1,1,-1"
Trianglelndices="0,1,2 2,3,0 4,5,6 6,7,4 8,9,10 10,11,8"/>

</Window>

Falls innerhalb des Fensters eine Taste heruntergedriickt wird, dann reagiert dar-
auf die Ereignismethode Window_KeyDown.

Die orthographische Kamera ist diesmal anders positioniert. Sie liegt (mit den
Position-Werten 1,3,5) wiederum ein Stiick vor der Blattebene, ist aber leicht
nach rechts und ein Sttick nach oben gertickt. Die LookDirection-Werte sind mit
-1,-3,-5 entsprechend angepasst, sodass der Betrachter nach wie vor durch den
Nullpunkt schaut. Dort liegt der Wiirfel.

Bei einem gleichmaRigen Umgebungslicht vom Typ AmbientLight hitten alle drei
sichtbaren Seiten des Wiirfels fiir den Betrachter die gleichen Farbtone. In diesem
Projekt wurde ein gerichtetes Licht vom Typ Directionallight verwendet. Die-
ses strahlt aus einer bestimmten Richtung, die mithilfe der Eigenschaft Direction
vom Typ Vector3D angegeben wird. Hier wurde die gleiche Richtung wie die
Blickrichtung genommen. Die drei sichtbaren Seiten des Wiirfels werden von
diesem Licht aus unterschiedlichen Winkeln beleuchtet, daher erscheinen sie fir
den Betrachter in verschiedenen Farbtonen. Die Farbe des Lichts ist Weill (Eigen-
schaft Color); dies ist das Licht mit der héchsten Intensitit.

Das Material fiir die Vorderseite ist diffus und hellgrau. Bei diesem 3D-Korper
wurde tber die Eigenschaft BackMaterial auch eine Farbe fiir die Rickseite
gewahlt: Rot. Der Betrachter kann den 3D-Kérper also auch von hinten sehen.

Die Auflistung der Point3D-Objekte fiir die Eigenschaft Positions umfasst dies-
mal insgesamt 12 Elemente. Aus diesen Elementen werden mithilfe der Eigen-

297

10 | 3D-Grafik

schaft TriangleIndices sechs Dreiecke gebildet. Der Umlaufsinn jedes Dreiecks
wurde so gewdhlt, dass der Betrachter alle Vorderseiten sieht. Jeweils zwei Drei-
ecke bilden eine der drei sichtbaren Seiten des Wiirfels. Im Einzelnen sind dies:

» die hellgraue vordere Seite: Indizes O (links oben), 1 (links unten), 2 (rechts
unten) und 2, 3 (rechts oben), 0

» die schwarze rechte Seite: Indizes 4 (vorne oben), 5 (vorne unten), 6 (hinten
unten) und 6, 7 ¢hinten oben), 4

» die dunkelgraue obere Seite: Indizes 8 (links hinten), 9 (links vorne), 10
(rechts vorne) und 10, 11 (rechts hinten), 8

Die Ereignismethode sieht so aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
if (e.Key == Key.V)
{
oc.Position = new Point3D(1, 3, 5);
oc.LookDirection = new Vector3D(-1, -3, -5);
d1.Direction = new Vector3D(-1, -3, -5);
Title = "DreiDWirfel, von vorne";
}
else if (e.Key == Key.H)
{
oc.Position = new Point3D(-1, -3, -5);
oc.LookDirection = new Vector3D(1, 3, 5);
d1.Direction = new Vector3D(1, 3, 5);
Title = "DreiDWirfel, von hinten";

}

Beziiglich der Auswertung der gedriickten Tasten verweise ich auf Abschnitt 10.2,
»Kamera«. Nach dem Betitigen einer der beiden Tasten oder werden die
Position und die Blickrichtung der orthographischen Kamera und die Richtung
des gerichteten Lichts gedndert.

10.1.6 Gemeinsame Punkte

Wenn Sie die Auflistung Positions im vorherigen Projekt DreiDWiirfel genauer
betrachten, so stellen Sie fest, dass einige Punkte mehrmals vorkommen. Theore-
tisch konnten die drei Seiten des Wiirfels also auch mit weniger Punkten auskom-
men. Allerdings gehen zwei Flichen, die gemeinsame Punkte einer Auflistung
nutzen, ineinander iiber. Damit werden die Kanten zwischen den Flichen schwer
oder gar nicht mehr erkennbar.

208

Kamera

Das nachfolgende Projekt DreiDGemeinsam zeigt dies (siehe Abbildung 10.4). Es
handelt sich um einen Wiirfel mit den gleichen Eckpunkten, allerdings wurde die
Auflistung Positions verkiirzt: Jeder Punkt kommt nur noch einmal vor. Das
direktionale Licht ermoglicht aber zumindest die grobe Erkennung der drei Seiten.

- N
[87] DreiDGemeinsam é‘@u

"

Abbildung 10.4 Mehrfache Nutzung der Punkte

Der entsprechende Ausschnitt des XAML-Codes sieht so aus:

<{MeshGeometry3D
Positions="-1,1,1 -1,-1,11,-1,11,1,11,-1,-11,1,-1 -1,1,-1"
Trianglelndices="0,1,2 2,3,0 3,2,4 4,5,3 6,0,3 3,5,6"/>

Insgesamt gibt es nur noch sieben Punkte, die teilweise zwei- oder dreifach ge-
nutzt werden.

10.2 Kamera

In diesem Abschnitt werden die Moglichkeiten einer perspektivischen Kamera
und einer Verdnderung der Kameralage erldutert.

10.2.1 Perspektivische Kamera

Eine Alternative zur orthographischen Kamera ist die perspektivische Kamera. Sie
bildet gleich grofe 3D-Kérper abhingig von ihrem Abstand zur Kamera unter-
schiedlich groB8 ab.

Im Projekt DreiDPerspektive werden drei gleich groBe Dreiecke dargestellt (siehe
Abbildung 10.5). Das mittlere Dreieck liegt genau in der Blattebene (z-Koordi-
nate 0). Das linke Dreieck liegt in der Ebene mit der z-Koordinate 1, also vom Be-
trachter aus vorne. Das rechte Dreieck liegt in der Ebene mit der z-Koordinate -1,
vom Betrachter aus hinten. Die Dreiecke werden unterschiedlich gro8 dargestellt.
Dies erhoht die Riumlichkeit der Szene. Der Betrachter kann mit den Tasten (0]

299

| 10.2

10 | 3D-Grafik

(orthographisch) und [P] (perpektivisch) zwischen den beiden Kameratypen hin
und her schalten.

[R7 PerspectiveCamera = i[=l|

Lo

Abbildung 10.5 Drei Dreiecke in unterschiedlicher Entfernung

Dies sind die wichtigen Teile des XAML-Codes fiir die perspektivische Kamera:

<Window ... KeyDown="Window_KeyDown">

<PerspectiveCamera Position="0,0,5" LookDirection="0,0,-5"
FieldOfView="80" />

{MeshGeometry3D Positions="-3,1,1 -3,-1,1 -1,-1,1 -1,1,0
-1,-1,01,-1,0 1,1,-11,-1,-1 3,-1,-1"
TriangleIndices="0,1,2 3,4,5 6,7,8"/>

</Window>
Das Objekt des Type PerspectiveCamera hat die bereits bekannten Eigenschaften

Position und LookDirection vom Typ Point3D beziehungsweise Vector3D. Die
Sichtweite wird mithilfe der double-Eigenschaft Fie1dOfView angegeben.

Die linke Kante des linken Dreiecks liegt bei -3, und die rechte Ecke des rechten
Dreiecks liegt bei 3. Nach der Umschaltung auf die orthographische Kamera mit-
hilfe der nachfolgenden Ereignismethode betrigt die Sichtweite 6. Daher fiillen
die Dreiecke dann das gesamte Fenster aus.

private void Window_KeyDown(object sender, KeyEventArgs e)
{
if (e.Key == Key.0)
{
v3d.Camera = new OrthographicCamera(new Point3D(0, 0, 5),
new Vector3D(0, 0, -5), new Vector3D(0, 1, 0), 6);
Title = "OrthographicCamera";

300

Kamera

else if (e.Key == Key.P)
{
v3d.Camera = new PerspectiveCamera(new Point3D(0, 0, 5),
new Vector3D(0, 0, -5), new Vector3D(0, 1, 0), 80);
Title = "PerspectiveCamera";
}
}

Die Parameter der Konstruktoren der beiden Kameratypen stehen fiir Position,
Blickrichtung, Lage der Kamera und Sichtweite.

10.2.2 Lage der Kamera

Die Eigenschaft UpDirection vom Typ Vector3D ist fiir die Lage der Kamera ver-
antwortlich, unabhingig von der Blickrichtung. Der Standardwert ist 0,1,0.
Damit steht die Kamera genau aufrecht, d.h., das obere Ende ist in positive
y-Richtung ausgerichtet.

Im nachfolgenden Projekt DreiDKameralage ist die Kamera mit den Werten
0.2,1,0 leicht nach rechts gekippt. Relativ dazu erscheint der bereits aus Abschnitt
10.1.5 bekannte Wiirfel leicht nach links gekippt (siehe Abbildung 10.6). Der
Betrachter kann die Kamera mit den Tasten (links) und (R] (rechts) weiter
nach links oder rechts kippen. Das direktionale Licht ldsst die drei Seiten unter-
schiedlich erscheinen.

(7 UpDirection:02 /1 /0 BT

L

Abbildung 10.6 Verdnderte Kameralage

Zundchst sehen Sie hier die wichtigen Teile des XAML-Codes:

<Window ... KeyDown="Window_KeyDown">

<OrthographicCamera x:Name="oc" Position="1,3,5"
LookDirection="-1,-3,-5" UpDirection="0.2,1,0" Width="6"/>

301

10.2

10

3D-Grafik

<DirectionallLight Color="White" Direction="-1,-3,-5" />
</Window>
Die Ereignismethode sieht so aus:

private void Window_KeyDown(...)
{
if (e.Key == Key.R)
oc.UpDirection = new Vector3D(oc.UpDirection.X + 0.1, 1, 0);
else if (e.Key == Key.L)
oc.UpDirection = new Vector3D(oc.UpDirection.X - 0.1, 1, 0);

Title = "UpDirection: " + Math.Round(oc.UpDirection.X, 1)
+" /1 /70"
}

Der aktuelle Wert der x-Komponente der Kameralage wird durch die Betitigung
der Tasten herauf- beziehungsweise herabgesetzt.

10.3 Licht

Es gibt vier verschiedene Arten von Licht, mit denen man eine dreidimensionale
Szene beleuchten kann:

» Ein AmbientLight erschafft ein gleichmiBiges Umgebungslicht.

» Ein Directionallight erzeugt ein Licht, das in eine bestimmte Richtung
strahlt.

» Ein SpotlLight dient zur Beleuchtung mithilfe eines Lichtkegels, der von einer
bestimmten Position aus in eine bestimmte Richtung strahlt.

» Ein PointLight ist eine Lichtquelle an einer bestimmten Position, die in alle
Richtungen strahlt.

Es kénnen auch mehrere Lichtarten kombiniert werden.

Die vier Lichtarten kénnen Sie im nachfolgenden Projekt DreiDLicht miteinander
vergleichen, und zwar mithilfe der Tasten (fiir AmbientLight), (D) (fir
Directionlight), (fur SpotLight) und (P) (fiir PointLight). Als 3D-Korper
wird eine halbe zylindrische Rohre dargestellt (siche Abbildung 10.7).

Die Rohre ist per Programmcode aus einzelnen, schmalen Rechtecken konstru-
iert. Thre Achse entspricht der y-Achse. Der Betrachter schaut von vorne rechts
(positive x- und z-Richtung) auf die Blattebene; die Wolbung der Rohre kommt

302

Licht | 10.3

ihm entgegen. Die Blickrichtung ist leicht von unten (negative y-Richtung), damit
er den Rand der Rohre besser erkennen kann.

17 Spotlight B

"

Abbildung 10.7 Halbe Réhre, Beleuchtung mit SpotLight

Der XAML-Code:

<Window ... Loaded="Window_Loaded" KeyDown="Window_KeyDown">
<Viewport3D>
<Viewport3D.Camera>
<OrthographicCamera
Position="5,-2,5" LookDirection="-5,2,-5" Width="6"/>
</Viewport3D.Camera>

<Viewport3D.Children>
<ModelVisual3D x:Name="mv3d1">
<ModelVisual3D.Content>
<{SpotlLight Color="White" Position="5,-2,5" Direction=
"-5,2,-5" InnerConeAngle="15" OuterConeAngle="30" />
</ModelVisual3D.Content>
</ModelVisual3D>

<ModelVisual3D>
<{ModelVisual3D.Content>
<GeometryModel3D>
<GeometryModel3D.Material>
<DiffuseMaterial Brush="LightGray" />
</GeometryModel3D.Material>

<GeometryModel3D.Geometry>
{MeshGeometry3D x:Name="mg3d" />
</GeometryModel3D.Geometry>

</GeometryModel3D>

303

10

3D-Grafik

<{/ModelVisual3D.Content>
</ModelVisual3D>
</Viewport3D.Children>
</Viewport3D>
</Window>

Nach dem Laden des Fensters wird in der Methode Window_Loaded() die Geome-
trie der halben Rohre erzeugt. Die Methode Window_KeyDown() dient zum
Umschalten zwischen den Lichtarten.

Die Position und die Strahlrichtung des SpotLight-Objekts entsprechen in diesem
Projekt der Position und der Blickrichtung der orthographischen Kamera. Sie sind
wie diese vom Typ Point3D beziehungsweise Vector3D. Die beiden doub1e-Eigen-
schaften InnerConeAngle und OuterConeAngle bezeichnen Winkel. Diese stehen
fur die innere und duflere Grenze des Lichtkegels. Innerhalb des Lichtkegels wer-
den die 3D-Koérper vollstindig vom SpotLight-Objekt ausgeleuchtet.

Das Material des 3D-Korpers ist diffus hellgrau, und die Geometrie wird per Pro-
grammcode erzeugt. Die Methode zum Umschalten der Lichtarten sieht so aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
if (e.Key == Key.A)
{
mv3dl.Content = new AmbientLight(Colors.White);
Title = "AmbientLight";
}
else if (e.Key == Key.D)
{
mv3dl.Content = new Directionallight(
Colors.White, new Vector3D(-5, 2, -5));
Title = "DirectionallLight";
}
else if (e.Key == Key.P)
{
mv3dl.Content = new PointLight(
Colors.White, new Point3D(5, -2, 5));
Title = "PointLight";
}
else if (e.Key == Key.S)
{
mv3dl.Content = new SpotlLight(Colors.White,
new Point3D(5, -2, 5), new Vector3D(-5, 2, -5), 30, 15);
Title = "SpotlLight";
}

304

Licht | 10.3

Das AmbientLight bendtigt nur eine Farbe. Weil ist am hellsten. Das
Directionallight bendtigt zusitzlich ein Objekt vom Typ Vector3D fiir die Rich-
tung des Lichts. Beim PointLight ist neben der Farbe die Position der Lichtquelle
wichtig. Sie wird mithilfe eines Point3D-Objekts angegeben.

Das SpotLight wird mithilfe der Farbe, der Position der Lichtquelle, der Richtung
fir den Lichtkegel und den beiden Angaben fiir den dufleren und den inneren
Winkel des Lichtkegels konstruiert.

Es folgt die Konstruktion der halben Rohre:

private void Window_Loaded(...)
{
/* Faktor flr BogenmaB */
double bf = Math.PI / 180;

/* Positionen und Dreiecks-Indizes fir MeshGeometry */
Point3DCollection p3dc = new Point3DCollection();
Int32Collection i32c = new Int32Collection();

/* Start flr Dreiecks-Index */
int ti = 0;

/* Alle 10 Grad ein Rechteck */
for (double w = 0; w <=170; w += 10)
{
doubTe wd w+ 10;
double wh w * bf; // BogenmaB
double wdb = wd * bf; // BogenmaB

/* Eckpunkte 0,1,2,3 eines Rechtecks */

p3dc.Add(new Point3D(-Math.Cos(wb), 1, Math.Sin(wb)));
p3dc.Add(new Point3D(-Math.Cos(wb), -1, Math.Sin(wb)));
p3dc.Add(new Point3D(-Math.Cos(wdb), -1, Math.Sin(wdb)));
p3dc.Add(new Point3D(-Math.Cos(wdb), 1, Math.Sin(wdb)));

/* Rechteck aus zwei Dreiecken: 0,1,2 und 2,3,0 */
i32c.Add(ti);

i32c.Add(ti + 1);
i32c.Add(ti + 2);
i32c.Add(ti + 2);
i32c.Add(ti + 3);

i32c.Add(ti);
ti += 4;

305

10 | 3D-Grafik

/* MeshGeometry-Eigenschaften */
mg3d.Positions = p3dc;
mg3d.Trianglelndices = i32c;

}

Die halbe Rohre ist aus 18 schmalen Rechtecken zusammengesetzt. Jedes Recht-
eck steht relativ zur Lichtquelle in einem anderen Winkel, daher ergeben sich die
Beleuchtungseftekte. Die Eckpunkte der Rechtecke werden mithilfe der trigono-
metrischen Funktionen Sinus und Cosinus ermittelt.

Die entsprechenden Methoden Math.Sin() und Math.Cos() bendtigen den Win-
kel im BogenmaB8. Daher wird vorher jeder Winkel von Grad in Bogenmall umge-
rechnet, und zwar mithilfe der mathematischen Konstante pi und der Formel wb
=w * pi / 180.

10.4 Modelle

3D-Korper konnen innerhalb von unterschiedlichen Modellen angeordnet wer-
den:

» Objekte des Typs ModelVisual3D haben Sie bereits kennengelernt. Diese kon-
nen ein einzelnes GeometryMode13D-Objekt beinhalten.

» Innerhalb eines ModelVisual3D-Objekts kann aber auch ein Model3DGroup-
Objekt stehen. Dieses kann eine Gruppe von mehreren GeometryModel3D-
Objekten beinhalten.

» Verwendet man ModelUIETlement3D statt Model1Visual3D, dann kénnen auf dem
3D-Korper Ereignisse ausgelost werden.

» Ein ContainerUIElement3D-Objekt kann eine Gruppe von ModeTUIETement3D-
Objekten enthalten, bei denen jeweils eigene Ereignisse ausgelost werden
kénnen.

» Verwendet man Viewport2DVisual3D statt ModelVisual3D, so wird die zwei-
dimensionale Gestaltung der Oberflichen der 3D-Korper erméglicht, zum Bei-
spiel mit Steuerelementen.

10.4.1 Gruppe von 3D-Kérpern

Innerhalb eines Objekts des Typs Mode13DGroup kénnen Sie mehrere Objekte des
Typs GeometryMode13D anordnen. Damit kann eine Szene aus 3D-Koérpern unter-
schiedlichen Materials bestehen.

306

Modelle | 10.4

Im nachfolgenden Projekt DreiDGruppe werden zwei Dreiecke unterschiedlicher
Farbe dargestellt, die ein Quadrat bilden (siehe Abbildung 10.8). Das Quadrat
liegt in der Blattebene, bei z = 0. Sein Zentrum ist der Nullpunkt. Der Betrachter
kann die Farben der Dreiecke per Mausklick umschalten.

' ™
[®7] DreiDGruppe é@u

ke

Abbildung 10.8 Gruppe von 3D-Kérpern

Der XAML-Code:

<MWindow ... MouseDown="Window_MouseDown">

<ModelVisual3D>
<ModelVisual3D.Content>
<Mode13DGroup x:Name="m3dg">

<GeometryModel3D>
<GeometryModel3D.Material>
<DiffuseMaterial Brush="Gray" />
</GeometryModel3D.Material>
<GeometryModel3D.Geometry>
{MeshGeometry3D Positions="-1,1,0 -1,-1,0 1,-1,0"
TriangleIndices="0,1,2"/>
</GeometryModel3D.Geometry>
</GeometryModel3D>

<GeometryModel3D>
<GeometryModel3D.Material>
<DiffuseMaterial Brush="LightGray" />
</GeometryModel3D.Material>
<GeometryModel3D.Geometry>
{MeshGeometry3D Positions="1,-1,0 1,1,0 -1,1,0"
Trianglelndices="0,1,2"/>
</GeometryModel3D.Geometry>
</GeometryModel3D>

307

10

3D-Grafik

</Model3DGroup>
</ModelVisual3D.Content>
</ModelVisual3D>

</Window>

Das erste Dreieck in der Gruppe ist grau, das zweite hellgrau. Die Eigenschaften
Positions und Trianglelndices sind unabhdngig voneinander. Es folgt die
Klasse mit der Ereignismethode zum Wechseln des Materials:

public parti

{

al class MainWindow : Window

bool unten_dunkel;

public Mai
{
Initiali

nWindow()

zeComponent();

unten_dunkel = true;

private void Window_MouseDown(object sender,
MouseButtonEventArgs e)

GeometryModel13D gm3dl
GeometryModel13D gm3d?2

m3dg.Children[0] as GeometryModel3D;
m3dg.Children[1] as GeometryModel3D;

if (unten_dunkel)

{
gm3dl.
new
gm3d?2
new
}
else
{
gm3d1
new
gm3d?2
new

}

Material = new DiffuseMaterial(
SolidColorBrush(Colors.LightGray));

.Material = new DiffuseMaterial(

SolidColorBrush(Colors.Gray));

.Material = new DiffuseMaterial(

SolidColorBrush(Colors.Gray));

.Material = new DiffuseMaterial(

SolidColorBrush(Colors.LightGray));

unten_dunkel = lunten_dunkel;

}

Die Auflistungseigenschaft Children des Model3DGroup-Objekts ist vom Typ
Model3DCollection. Sie beinhaltet die einzelnen Objekte vom Typ Geo-
metryModel3D

308

Modelle

10.4.2 3D-Koérper mit Ereignissen

Bisher konnten Ereignisse nur beziiglich des Fensters ausgelost werden. In die-
sem Abschnitt sollen Objekte des Typs ModelUIETement3D vorgestellt werden. Sie
bieten im Gegensatz zur Klasse Mode1Visual3D die Moglichkeit, Ereignisse direkt
auf dem 3D-Korper auszulosen.

ModeTUIE1ement3D-Objekte konnen wiederum entweder einzelne 3D-Korper
mithilfe von GeometryMode13D oder Gruppen von 3D-Korpern mithilfe von
Mode13DGroup beinhalten.

Im nachfolgenden Projekt DreiDModelUI wird jeweils ein Ereignis ausgelost,
wenn wir die Oberfliache des bereits aus Abschnitt 10.1.5 bekannten Wiirfel mit
der Maus betreten und wieder verlassen. In den zugehéorigen Ereignismethoden
wird die Farbe des Wiirfels gewechselt (siehe Abbildung 10.9).

i) DreiDModelUl (B

L

Abbildung 10.9 Betreten der Oberflache des Wiirfels mit der Maus

Der XAML-Code:

<MWindow ...>
<Viewport3D>

<Viewport3D.Children>

<ModelUIETement3D
MouseEnter="betreten" Mouseleave="verlassen">
<GeometryModel3D>
<GeometryModel3D.Material>
<DiffuseMaterial x:Name="dm" Brush="LightGray" />
</GeometryModel3D.Material>

</GeometryModel3D>
</ModelUIETement3D>

309

| 10.4

10

3D-Grafik

</Viewport3D.Children>
</Viewport3D>
</Window>

Es wird ein Objekt der Klasse ModelUIETement3D statt der Klasse Mode1Visual3D
genutzt. Darin stehen die beiden Ereignishandler, die zu den folgenden Metho-
den fithren:

private void betreten(object sender, MousetEventArgs e)
{ dm.Brush = new SolidColorBrush(Colors.Gray); }
private void verlassen(object sender, MouseEventArgs e)
{ dm.Brush = new SolidColorBrush(Colors.LightGray); }

Innerhalb der Methoden wird die Eigenschaft Brush des Materials des
GeometryMode13D-Objekts gedndert.

10.4.3 Gruppe von 3D-Kérpern mit Ereignissen

Ein Objekt der Klasse ContainerUIETement3D ermoglicht Gruppen von 3D-Kor-
pern unterschiedlichen Materials, bei denen jeweils Ereignisse ausgeldst werden
konnen. Es werden also die Moglichkeiten der Klassen Model3DGroup und
ModelUIETement3D kombiniert.

Im nachfolgenden Projekt DreiDContainerUl wird das bereits aus Abschnitt
10.4.1, »Gruppe von 3D-Kdrperng, bekannte Quadrat dargestellt. Auf den beiden
Dreiecken, aus denen es besteht, kénnen jeweils Ereignisse ausgelost werden.
Das Betreten und das Verlassen mit der Maus fithren zu einem Farbwechsel des
jeweiligen Dreiecks (sieche Abbildung 10.10).

[E7 DreiDContainerUI E@u

L

Abbildung 10.10 Betreten des ersten Dreiecks mit der Maus

Der XAML-Code:

<MWindow ...>
<Viewport3D>

310

Modelle

<Viewport3D.Children>
<ContainerUIElement3D>

<{ModelUIETement3D
MouseEnter="betretenl" Mouseleave="verlassenl">
<GeometryModel3D>
<GeometryModel3D.Material>
<DiffuseMaterial x:Name="dml" Brush="Gray" />
</GeometryModel3D.Material>

</GeometryModel3D>
<{/ModelUIETement3D>

<ModelUIETement3D
MouseEnter="betreten2" Mouseleave="verlassen2">
<GeometryModel3D>
<GeometryModel3D.Material>
<DiffuseMaterial x:Name="dm2" Brush="LightGray" />
</GeometryModel3D.Material>

</GeometryModel3D>
</ModelUIETement3D>

</ContainerUIETement3D>
</Viewport3D.Children>
</Viewport3D>
</Window>

Innerhalb des ContainerUIETement3D-Objekts sind zwei Objekte des Typs
ModelUIElement3D angeordnet. Jedes davon beschreibt ein Dreieck, auf dem
Ereignisse ausgelost werden konnen. Die vier Ereignismethoden entsprechen
denen aus Abschnitt 10.4.2, »3D-Korper mit Ereignissenc.

10.4.4 3D-Korper mit Oberflichengestaltung

Eine weitere Alternative bieten Objekte der Klasse Viewport2DVisual3D. Damit
koénnen die Oberflichen der 3D-Kdrper wie zweidimensionale Flichen gestaltet
werden. Sie konnen dort also auch bedienbare Steuerelemente anordnen.

Im nachfolgenden Projekt DreiDViewport2D werden auf den drei Seiten des
bereits aus Abschnitt 10.1.5 bekannten Wiirfels jeweils zwei Buttons abgebildet
(siehe Abbildung 10.11). Die Betdtigung der Buttons fiihrt jeweils zu einer Ereig-
nismethode.

311

| 10.4

10 | 3D-Grafik

[®7] DreiDViewport2D lglﬂu

<

Abbildung 10.11 Steuerelemente auf der Oberfliche des Wiirfels

Der XAML-Code:

<MWindow ...>
<Viewport3D>

<Viewport3D.Children>

<Viewport2DVisual3D>
<Viewport2DVisual3D.Material>
<DiffuseMaterial
Viewport2DVisual3D.IsVisualHostMaterial="True" />
</Viewport2DVisual3D.Material>

<Viewport2DVisual3D.Geometry>
{MeshGeometry3D Positions="-1,1,1 -1,-1,1 1,-1,1 1,1,1
1,17,171,-1,171,-1,-11,1,-1 -1,1,-1 -1,1,1 1,1,1 1,1,-1"
Trianglelndices="0,1,2 2,3,0 4,5,6 6,7,4 8,9,10 10,11,8"
TextureCoordinates="0,0 0,1 1,1 1,0
0,0 0,1 0.5,1 0.5,0
0,0 0,1 1,1 1,0" />
</Viewport2DVisual3D.Geometry>

B

<Viewport2DVisual3D.Visual>
<StackPanel>
<Button Click="a_Click">A</Button>
<Button Click="b_Click">B</Button>
</StackPanel>
</Viewport2DVisual3D.Visual>
</Viewport2DVisual3D>

</Viewport3D.Children>

</Viewport3D>
</Window>

312

Material und Textur | 10.5

Es wird ein Objekt der Klasse Viewport2DVisual3D statt der Klasse Mode1Visual3D
genutzt. Dies ermoglicht die Gestaltung der Oberflichen. Als Material wird ein
Objekt des Typs DiffuseMaterial verwendet. Die angefligte boolesche Eigen-
schaft IsVisualHostMaterial wird auf True gesetzt. Damit wird das Material
interaktiv.

Beim MeshGeometry3D-Objekt wurde die Eigenschaft TextureCoordinates vom
Typ PointCollection mit Werten gefiillt. Die Textur gibt an, wie die drei Seiten
des Wiirfels belegt werden. Die zweidimensionalen Punkte 0,0 0,1 1,1 und so
weiter stehen fiir die relativen Koordinaten des zweidimensionalen Elements, die
auf die dreidimensionalen Punkte des 3D-Korpers abgebildet werden.

Solche relativen Koordinaten haben Sie bereits in Abschnitt 9.4.2 {iber den linea-
ren Farbverlauf mithilfe eines LinearGradientBrush gesehen. Wie dort steht 0,0
fiir »links obeng, 0,1 fiir »links unteng, 1,1 fiir »rechts unten« und 1,0 fiir »rechts
oben« (siehe auch Abbildung 9.12).

Es folgt die Zuordnung der relativen Koordinaten:

» Die ersten vier Punkte in Positions stehen fiir die vordere Seite des Wiirfels.
Dort wird das vollstindige StackPanel mit den beiden Buttons abgebildet, da
die ersten vier Punkte aus TextureCoordinates einmal vollstindig gegen den
Uhrzeigersinn um das StackPanel herumlaufen.

» Die zweiten vier Punkte in Positions stehen fiir die rechte Seite des Wiirfels.
Dort wird nur die linke Hilfte des StackPanels abgebildet, da die zweiten vier
Punkte aus TextureCoordinates einmal um die linke Halfte um das StackPanel
herumlaufen. Die x-Koordinate geht nur von 0 bis 0.5.

» Die dritten vier Punkte in Positions stehen fiir die obere Seite des Wiirfels.
Dort wird wieder das vollstindige StackPanel abgebildet.

Im Viewport2DVisual3D-Objekt folgt nach den Eigenschaften Material und
Geometry die Eigenschaft Visual. Diese beinhaltet das zweidimensionale Ele-
ment, das abgebildet werden soll. Die Ereignismethoden beinhalten nur den Auf-
ruf der Methode MessageBox. Show().

10.5 Material und Textur

Die zweidimensionalen Oberflichen der 3D-Kérper konnen aus verschiedenen
Materialien bestehen und mit unterschiedlichen Texturen bedeckt sein.

313

10 | 3D-Grafik

10.5.1 Material

Kommen wir zunichst zu den Materialien:

» DiffuseMaterial ist nicht selbstleuchtend, ist aber zur Anwendung mit einem
zweidimensionalen Pinsel geeignet.

» SpecularMaterial glinzt zusitzlich in der angegebenen Farbe.

» EmissiveMaterial strahlt zusdtzlich Licht in der angegebenen Farbe aus und
kann sogar ohne Beleuchtung eingesetzt werden.

» Eine MaterialGroup beinhaltet eine Auflistung mehrerer Materialien.

Glinzendes beziehungsweise strahlendes Material wird zusammen mit einem
diffusen Material als Basis in einer MaterialGroup kombiniert.

Im nachfolgenden Projekt DreiDMaterial konnen Sie einzelne Material- und
Lichtkombinationen miteinander vergleichen (siehe Abbildung 10.12). Es gibt
folgende Tasten:

» die Taste (E] fiir EmissiveMaterial mit einem PointLight

» die Taste (5] fiir SpecularMaterial mit einem PointLight

» die Taste (0] fiir EmissiveMaterial ohne Licht

Als 3D-Kérper wird wiederum die halbe zylindrische Rohre aus Abschnitt 10.3,
»Licht«, genutzt.

[®° EmissiveMaterial mit Licht E@u

Lo

Abbildung 10.12 Licht emittierendes Material

Der XAML-Code:

<Window ... Loaded="Window_Loaded" KeyDown="Window_KeyDown">
<Viewport3D>

<Viewport3D.Children>
<ModelVisual3D x:Name="mv3dl">

314

Material und Textur | 10.5

<ModelVisual3D.Content>
<PointlLight Color="White" Position="5,-2,5" />
</ModelVisual3D.Content>
</ModelVisual3D>

<ModelVisual3D>
<ModelVisual3D.Content>
<GeometryModel3D>
<GeometryModel3D.Material>
<MaterialGroup x:Name="mg">
<DiffuseMaterial Brush="LightGray" />
{EmissiveMaterial Brush="DarkBlue" />
</MaterialGroup>
</GeometryModel3D.Material>

</Window>
Nach dem Laden des Fensters wird in der Methode Window_Loaded() die Geome-

trie der halben Rohre erzeugt. Die Methode Window_KeyDown() dient zum
Umschalten zwischen den Material- und Lichtkombinationen.

Anordnung, Positionen und Richtungen von Kamera und Licht und die Konstruk-
tion der halben Rohre kennen Sie bereits aus Abschnitt 10.3, »Licht«. Als Materi-
alien der Rohre werden innerhalb der MaterialGroup ein diffuses, hellgraues
Basismaterial und ein strahlendes, dunkelblaues Material genutzt.

Die Methode zum Umschalten sieht so aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
if (e.Key == Key.E)
{
mv3dl.Content = new PointLight(
Colors.White, new Point3D(5,-2,5));
mg.Children.Clear();
mg.Children.Add(new DiffuseMaterial(
new SolidColorBrush(Colors.LightGray)));
mg.Children.Add(new EmissiveMaterial(
new SolidColorBrush(Colors.DarkBlue)));
Title = "EmissiveMaterial mit Licht";
}
else if (e.Key == Key.$S)
{
mv3dl.Content = new PointLight(
Colors.White, new Point3D(5, -2, 5));
mg.Children.Clear();

315

10

3D-Grafik

mg.Children.Add(new DiffuseMaterial(
new SolidColorBrush(Colors.LightGray)));
mg.Children.Add(new SpecularMaterialf(
new SolidColorBrush(Colors.DarkBlue), 30));
Title = "SpecularMaterial mit Licht";
}
else if (e.Key == Key.0Q)
{
mv3dl.Content = null;
mg.Children.Clear();
mg.Children.Add(new DiffuseMaterial(
new SolidColorBrush(Colors.LightGray)));
mg.Children.Add(new EmissiveMaterial(
new SolidColorBrush(Colors.DarkBlue)));
Title = "EmissiveMaterial ohne Licht";

}

Das Licht wird durch ein neues PointLight-Objekt erzeugt. »Geldscht« wird es
mithilfe eines Null-Zeigers. Die Auflistung innerhalb der MaterialGroup wird
zundchst mit der Methode Clear () geldscht. Anschliefend werden Objekte fiir
die einzelnen Materialien mithilfe von Add() hinzugefiigt.

Als erster Konstruktor-Parameter wird jeweils die Farbe benoétigt: fiir
DiffuseMaterial die Farbe des Basismaterials, fiir SpecularMaterial zusitzlich
die Farbe des Glanzes und fiir EmissiveMaterial zusitzlich die strahlende Farbe.
Bei SpecularMaterial kommt noch ein Wert fiir die double-Eigenschaft
SpecularPower hinzu. Dieser Wert stellt einen Grad dar, bis zu dem das Material
als Glanz verwendet wird. Je niedriger der Grad ist, desto stirker sieht man die
glinzende Farbe relativ zur Farbe des Basismaterials.

10.5.2 Textur

Die Oberflichen eines 3D-Korpers konnen mit einer Textur gestaltet werden.
Dazu wird auf ein Material vom Typ DiffuseMaterial ein zweidimensionaler
Pinsel (Eigenschaft Brush) angewandt. Es kommen Texturkoordinaten zum Ein-
satz, wie sie bereits in Abschnitt 10.4.4, »3D-Kdrper mit Oberflichengestaltung,
erlautert wurden.

Im nachfolgenden Projekt DreiDTextur wird der dreiseitige Wiirfel aus Abschnitt
10.1.5 dargestellt (siche Abbildung 10.13). Diesmal werden die drei Seiten aller-
dings mit verschiedenen Materialien gestaltet: einem ImageBrush, einem
RadialGradientBrush und einem LinearGradientBrush. Dazu ist es notwendig,
drei GeometryMode13D-Objekte innerhalb einer Mode13DGroup anzuordnen.

316

Material und Textur | 10.5

("7 DreiDTextur

e

Abbildung 10.13 Drei verschiedene Texturen

Der XAML-Code:

<MWindow ...>
<Viewport3D>

<AmbientlLight />
<Directionallight Color="White" Direction="-3,-3,-5" />

<ModelVisual3D>
<{ModelVisual3D.Content>
<Mode13DGroup>

<GeometryModel3D>
<GeometryModel3D.Material>
<DiffuseMaterial>
<DiffuseMaterial.Brush>
<ImageBrush ImageSource="blume.jpg" />
</DiffuseMaterial.Brush>
</DiffuseMaterial>
</GeometryModel3D.Material>
<GeometryModel3D.Geometry>
<MeshGeometry3D
Positions="-1,1,1 -1,-1,1 1,-1,1 1,1,1"
Trianglelndices="0,1,2 2,3,0"
TextureCoordinates="0,0 0,1 1,1 1,0" />
</GeometryModel3D.Geometry>
</GeometryModel3D>

<GeometryModel3D>

<GeometryModel3D.Material>
<DiffuseMaterial>

317

10 3D-Grafik

<DiffuseMaterial.Brush>
<RadialGradientBrush>
<GradientStop Offset="0.1" Color="Black" />
<GradientStop
Offset="0.9" Color="LightGray" />
</RadialGradientBrush>
</DiffuseMaterial.Brush>
</DiffuseMaterial>
</GeometryModel3D.Material>
<GeometryModel3D.Geometry>
<{MeshGeometry3D
Positions="1,1,11,-1,1 1,-1,-1 1,1,-1"
Trianglelndices="0,1,2 2,3,0"
TextureCoordinates="0,0 0,1 1,1 1,0" />
</GeometryModel3D.Geometry>
</GeometryModel3D>

<GeometryModel3D>
<GeometryModel3D.Material>
<DiffuseMaterial>
<DiffuseMaterial.Brush>
{LinearGradientBrush
StartPoint="0,0" EndPoint="0,1">
<GradientStop Offset="0.1" Color="Black" />
<GradientStop
Offset="0.9" Color="LightGray" />
</LinearGradientBrush>
</DiffuseMaterial.Brush>
</DiffuseMaterial>
</GeometryModel3D.Material>
<GeometryModel3D.Geometry>
<{MeshGeometry3D
Positions="-1,1,-1 -1,1,1 1,1,1 1,1,-1"
Trianglelndices="0,1,2 2,3,0"
TextureCoordinates="0,0 0,1 1,1 1,0" />
</GeometryModel3D.Geometry>
</GeometryModel3D>

</Model13DGroup>
</ModelVisual3D.Content>
</ModelVisual3D>
</Viewport3D.Children>
</Viewport3D>
</Window>

318

Transformationen

Es werden sowohl ein Umgebungslicht als auch ein gerichtetes Licht eingesetzt,
ansonsten wird das Bild nicht hell genung. Die Mode13DGroup besteht aus drei
GeometryMode13D-Objekten. Jedes Objekt steht fiir eine Seite des Wiirfels:

» Die Eigenschaft Brush des DiffuseMaterial-Objekts beinhaltet fiir die Vorder-
seite des Wiirfels einen ImageBrush mit Zugriff auf eine Bilddatei.

» Fiir die rechte Seite des Wirfels ist die Eigenschaft Brush mit einem
RadialGradientBrush belegt, in dem die Farbe von innen nach auflen von
Schwarz zu Hellgrau tibergeht. Die ersten 10 % und die letzten 10 % sind noch
auBerhalb des Ubergangs, also in voller Farbe.

» Auf der Oberseite kommt ein LinearGradientBrush entlang eines Wegs von
oben nach unten zum Einsatz. Der Startpunkt 0,0 des Wegs bezeichnet die
(vom Betrachter aus) hintere linke Ecke der Oberseite, und der Endpunkt 0,1
bezeichnet die vordere linke Ecke. Die Farben und Uberginge sind wie beim
RadialGradientBrush gewdhlt.

10.6 Transformationen

Ein 3D-Ko6rper kann auf mehrere Arten transformiert werden. Sie werden sehen,
dass es Parallelen zu den Transformationen in der zweidimensionalen Ebene gibt.
Zur Transformation dienen die folgenden Klassen, die alle von der Klasse
Transform3D abgeleitet sind:

» RotateTransform3D: Drehung
» ScaleTransform3D: Grofendnderung, gegebenenfalls mit Verzerrung
» TranslateTransform3D: Verschiebung

» Transform3DGroup: Zusammenfassung mehrerer Transformationen

10.6.1 ScaleTransform3D

Die GroBeninderung (Skalierung) eines 3D-Korpers konnen Sie mithilfe eines
Objekts des Typs ScaleTransform3D durchfithren. Falls Sie die drei doub1e-Eigen-
schaften ScaleX, ScaleY und ScaleZ als Skalierungsfaktoren fur die x-, y- und z-
Richtung unterschiedlich wihlen, wird der 3D-Koérper verzerrt. Der Standardwert
fiir alle Faktoren ist 1. Der Mittelpunkt der Transformation wird mithilfe der drei
double-Eigenschaften CenterX, CenterY und CenterZ festgelegt. Der Standardwert
ist jeweils 0.

Im nachfolgenden Projekt DreiDTransScale wird der dreiseitige Wiirfel aus
Abschnitt 10.1.5 in alle drei Richtungen unterschiedlich skaliert. Dadurch wird er

319

| 10.6

10 3D-Grafik

zu einem Quader (siehe Abbildung 10.14). Mithilfe der Tasten [x], und
konnen Sie die Skalierung weiter vergréRern.

[®7 DreiDTransScale é‘@u

"

Abbildung 10.14 Skalierung

Der XAML-Code:

<Window ... KeyDown="Window_KeyDown">
<GeometryModel3D>

<GeometryModel3D.Transform>
<{ScaleTransform3D x:Name="st3d"
CenterX="0" CenterY="-1" CenterZ="1"
ScaleX="1.5" ScaleY="1.0" ScaleZ="0.5" />
</GeometryModel3D.Transform>

</GeometryModel3D>
</Window>
Die Methode Window_KeyDown() dient zum Vergrofern der Skalierung in der
jeweiligen Richtung. Das GeometryMode13D-Objekt hat neben den Eigenschaften

Material und Geometry fiir Material und Form die Eigenschaft Transform vom
Typ Transform3D fir die Art und Weise der Transformation.

Die Klasse ScaleTransform3D besitzt die oben erlduterten double-Eigenschaften
fur die Skalierungsfaktoren und den Transformationsmittelpunkt. Die Faktoren
sind 1.5, 1.0 und 0.5. Der Wiirfel ist also in x-Richtung gedehnt, in y-Richtung
unverdndert und in z-Richtung gestaucht. Der Mittelpunkt liegt bei 0,-1,1, mit
folgenden Auswirkungen:

» In x-Richtung liegt er in der Mitte des 3D-Korpers, dadurch verdndert sich der
3D-Korper gleichmilig zu beiden Seiten.

320

Transformationen | 10.6

» In y-Richtung liegt er am unteren Rand des 3D-Koérpers, dadurch verandert
sich der 3D-K6rper nur nach oben.

» In z-Richtung liegt er am vorderen Rand des 3D-Kérpers, dadurch verandert
sich der 3D-Korper nur nach hinten.

Die Ereignismethode zum weiteren Vergrofern der Skalierung sieht so aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
if (e.Key == Key.X)
st3d.ScaleX += 0.1;
else if (e.Key == Key.Y)
st3d.ScaleY += 0.1;
else if (e.Key == Key.Z)
st3d.ScaleZ += 0.1;

}

Die Faktoren ScaleX, ScaleY beziehungsweise ScaleZ werden jeweils um 0.1 ver-
grofert.

10.6.2 TranslateTransform3D

Die Verschiebung eines 3D-Korpers fithren Sie mithilfe eines Objekts des Typs
TranslateTransform3D durch. Die drei double-Eigenschaften OffsetX, OffsetY
und OffsetZ legen die Werte fiir die Verschiebung in x-, y- und z-Richtung ein-
zeln fest. Der Standardwert fuir alle Eigenschaften ist 0.

Im nachfolgenden Projekt DreiDTransTranslate wird der dreiseitige Wiirfel aus
Abschnitt 10.1.5 nach links oben und nach hinten, also weg vom Betrachter, ver-
schoben (siehe Abbildung 10.14). Mithilfe der Tasten (x], (v] und [z) kdnnen Sie
ihn weiter verschieben.

' ™
[®°] DreiDTransTranslate é@u

e

Abbildung 10.15 Verschiebung

321

10 | 3D-Grafik

Der XAML-Code:

<MWindow ... KeyDown="Window_KeyDown">
<GeometryModel3D>

<GeometryModel3D.Transform>
<TranslateTransform3D x:Name="tt3d"
OffsetX="-1.5" OffsetY="0.5" OffsetZ="-0.5" />
</GeometryModel3D.Transform>

</GeometryModel3D>
</Window>

Die Methode Window_KeyDown() dient zur Verschiebung. Die Klasse Trans-
TateTransform3D besitzt die oben erlduterten double-Eigenschaften fir die Ver-
schiebung. Die Offsets sind -1.5, 0.5 und -0.5. Der Wiirfel ist also nach links oben
und nach hinten, weg vom Betrachter, verschoben. Die Ereignismethode zur wei-
teren Verschiebung sieht so aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
if (e.Key == Key.X)
tt3d.0ffsetX += 0.2;
else if (e.Key == Key.Y)
tt3d.0ffsetY += 0.2;
else if (e.Key == Key.Z)
tt3d.0ffsetZ += 0.2;
}

Die Offset-Werte dienen jeweils zur Verschiebung in die positive Richtung, also
nach rechts, nach oben beziehungsweise nach vorne zum Betrachter.

10.6.3 RotateTransform3D

Sie konnen einen 3D-Korper mithilfe eines Objekts des Typs RotateTransform3D
drehen. Bei dieser komplexen Transformation werden zwei Arten angeboten: die
AxisAngleRotation3D und die QuaternionRotation3D

Nur die Axis-Angle-Rotation, die einfachere der beiden, wird im nachfolgenden
Projekt erldutert. Die Quaternion-Rotation basiert auf dem Zahlensystem der
Quaternionen. Dieses Zahlensystem dient zur Beschreibung des dreidimensiona-
len Raumes und kann zum Beispiel im Zusammenhang mit Drehungen in diesem
Raum genutzt werden.

322

Transformationen

Bei der AxisAngleRotation3D wird der 3D-Korper um einen bestimmten Winkel
um eine bestimmte Achse gedreht. Die double-Eigenschaft Angle bestimmt den
Winkel der Drehung. Der Standardwert ist 0. Die Eigenschaft Axis vom Typ
Vector3D legt die Richtung der Drehachse fest.

Auferdem konnen Sie tiber die double-Eigenschaften CenterX, CenterY und
CenterZ die Koordinaten des Drehpunkts bestimmen. Dieser liegt mit dem Stan-
dardwert 0,0,0 im Nullpunkt des Koordinatensystems.

Im nachfolgenden Projekt DreiDTransRotate wird der dreiseitige Wiirfel aus
Abschnitt 10.1.5 um die z-Achse, also die auf den Betrachter zuweisende Achse,
gedreht (siche Abbildung 10.16). Mithilfe der Tasten (x], und (7] konnen Sie
den Wiurfel um die x-Achse, die y-Achse beziehungsweise die z-Achse drehen,
jeweils ausgehend von der Normallage ohne Rotation.

Die Taste [s] setzt alles wieder auf Anfang: Der Drehpunkt liegt dann im Null-
punkt, und es erfolgt keine Rotation. Falls Sie abwechselnd die Tasten [x] und
oder die Tasten und oder die Tasten und betitigen, sehen Sie die
jeweilige Drehung deutlicher.

' ™
[®°] DreiDTransRotate é@u

ke

Abbildung 10.16 Rotation um die z-Achse

Sie haben eine weitere Moglichkeit: Die Taste [c] verschiebt den Drehpunkt zur
rechten oberen vorderen Ecke des Wiirfels. Der Wert fiir die Richtung der Dreh-
achse bleibt gleich. Durch die Anderung des Drehpunkts handelt es sich dabei
aber nicht mehr um die z-Achse, sondern um eine Parallele zur z-Achse. Neben
dem Drehpunkt bleibt auch die rechte obere hintere Ecke des Wiirfels an ihrem
Platz, da die Wirfelkante zwischen diesen beiden Punkten parallel zur z-Achse
verlduft (siche Abbildung 10.17). Falls Sie abwechselnd die Tasten und
betdtigen, sehen Sie die beschriebene Drehung um diese Wiurfelkante deutli-
cher.

323

| 10.6

10

3D-Grafik

[E7 DreiDTransRotate é@u

e

Abbildung 10.17 Rotation um eine Achse parallel zur z-Achse

Der XAML-Code:

<MWindow ... KeyDown="Window_KeyDown">
<GeometryModel3D>

<GeometryModel3D.Transform>
<RotateTransform3D x:Name="rt3d">
<RotateTransform3D.Rotation>
<AxisAngleRotation3D x:Name="aar3d"
Axis="0,0,1" Angle="10" />
</RotateTransform3D.Rotation>
</RotateTransform3D>
</GeometryModel3D.Transform>

</Window>

Die Methode Window_KeyDown () dient zur Durchfithrung der verschiedenen Rota-
tionsarten. Die Klasse RotateTransform3D besitzt die Eigenschaft Rotation vom
Typ Rotation3D. Diese beinhaltet mit einem Objekt des Typs AxisAngleRota-
tion3D die Art der Rotation. AxisAngleRotation3D wiederum hat die oben erliu-
terten Eigenschaften Axis fiir die Richtung der Drehachse und Angle fiir den

Drehwinkel. Die Werte 0,0,1 bedeuten: Die Drehachse verlduft parallel zur
z-Achse.

Es folgt die Ereignismethode inklusive einer Hilfsmethode:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
if (e.Key == Key.X)
{
drehpunkt(0, 0, 0);
aar3d.Axis = new Vector3D(1l, 0, 0);

324

aar3d.Angle = 10;

}

else if (e.Key == Key.Y)

{
drehpunkt(0, 0, 0);
aar3d.Axis = new Vector3D(0,
aar3d.Angle = -10;

}

else if (e.Key == Key.Z7Z)

{
drehpunkt(0, 0, 0);
aar3d.Axis = new Vector3D(O0,
aar3d.Angle = 10;

}

else if (e.Key == Key.C)

{
drehpunkt(l, 1, 1);
aar3d.Axis = new Vector3D(0,
aar3d.Angle = 30;

}

else if (e.Key == Key.S)

{
drehpunkt(0, 0, 0);
aar3d.Axis = new Vector3D(O0,
aar3d.Angle = 0;

private void drehpunkt(double X,

{

}

rt3d.CenterX = x
rt3d.CenterY
rt3d.Center?Z

Il
N <

Transformationen

1, 0);
0, 1);
0, 1);
0, 1);

double y, double z)

Die Tasten [x], (Y], und fithren dazu, dass der Drehpunkt im Nullpunkt
liegt und die Drehachse der x-, y- beziehungsweise z-Achse entspricht. Nur bei
der Taste [C] ist der Drehpunkt nicht im Nullpunkt und die Drehachse nur paral-
lel zur z-Achse.

Der Drehsinn des Winkels wird gemdf8 der Rechte-Hand-Regel interpretiert:

>

Der abgespreizte Daumen der rechten Hand hat die Richtung des Vector3D-

Objekts fiir die Drehachse.

Die restlichen Finger werden gekrimmt. Die Fingerspitzen gehen in Richtung

des positiven Drehwinkels.

325

| 10.6

10 | 3D-Grafik

10.6.4 Transform3DGroup

Innerhalb eines Objekts des Typs Transform3DGroup haben Sie die Moglichkeit,
mehrere Transformationen auf einen 3D-Kdrper anzuwenden. Er kann also
gleichzeitig gedreht, skaliert und verschoben werden. Die einzelnen Transforma-
tionen sind untergeordnete Elemente des Transform3DGroup-Objekts.

Im nachfolgenden Projekt DreiDTransGroup sehen Sie den dreiseitigen Wiirfel
aus Abschnitt 10.1.5. Er wurde in x-Richtung vergrofert und in negativer y-Rich-
tung verschoben, auBerdem um 5 Grad mit dem Drehsinn um die y-Achse
gedreht (siehe Abbildung 10.18). Bei jedem Tastendruck wird er weiter in x-Rich-
tung vergroRert, in die positive y-Richtung verschoben und gegen den Drehsinn
um die y-Achse gedreht.

[®7 DreiDTransGroup @‘M

"

Abbildung 10.18 VergroRert, verschoben und gedreht

Der XAML-Code:

<MWindow ... KeyDown="Window_KeyDown">
<GeometryModel3D>

<GeometryModel3D.Transform>
<Transform3DGroup x:Name="t3dg">
<ScaleTransform3D ScaleX="1.5" />
<TranslateTransform3D OffsetY="-0.5" />
<RotateTransform3D>
<RotateTransform3D.Rotation>
<{AxisAngleRotation3D Axis="0,1,0" Angle="5" />
</RotateTransform3D.Rotation>
</RotateTransform3D>
</Transform3DGroup>
</GeometryModel3D.Transform>

326

Transformationen | 10.6

</GeometryModel3D>
</Window>
Die Methode Window_KeyDown() dient zur Durchfithrung der weiteren Transfor-
mationen. Die Eigenschaft Transform des GeometryModelD-Objekts ist vom Typ
Transform3D und beinhaltet hier ein Objekt des Typs Transform3DGroup. Darin

steht eine Auflistung mehrerer Transformationen von unterschiedlichen Typen.
Die jeweils nicht genannten Eigenschaften haben ihre Standardwerte, also:

» ScaleY und ScaleZ haben den Wert 1.
» OffsetX und OffsetZ haben den Wert 0.
» CenterX, CenterY und Centerz haben den Wert O.

Der Drehpunkt ist der Nullpunkt des Koordinatensystems, und die Drehachse
liegt genau auf der y-Achse. Die Ereignismethode sieht so aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
(t3dg.Children[0] as ScaleTransform3D).ScaleX += 0.3;
(t3dg.Children[1] as TranslateTransform3D).0ffsetY += 0.5;
((t3dg.Children[2] as RotateTransform3D).Rotation as
AxisAngleRotation3D).Angle -= 10;
}

Die Auflistungselemente des Transform3DGroup-Objekts werden passend inter-
pretiert. Bei der Rotationstransformation geschieht dies in zwei Schritten, da es
zwei Rotationsarten gibt, die der Eigenschaft Rotation zugeordnet werden kon-
nen. Anschliefend wird die jeweils gewtiinschte Eigenschaft verindert.

10.6.5 Transform3DGroup aus Rotationen

In diesem Abschnitt sehen Sie im Projekt DreiDTransRotateAll ein weiteres Bei-
spiel fur eine Transform3DGroup. Sie beinhaltet drei Rotationen um drei verschie-
dene Achsen, die jeweils in positivem Drehsinn erfolgen. Die aktuellen Werte der
drei Drehwinkel werden in der Titelleiste angezeigt.

Im Projekt wird der dreiseitige Wiirfel aus Abschnitt 10.1.5 verwendet (siehe
Abbildung 10.19). Er kann dank eines Werts fir die Eigenschaft BackMaterial
auch von der Riickseite gesehen werden. Mithilfe der Tasten (x], (Y] und (2] wird
die Drehung um die jeweilige Achse vergrofert.

327

10 3D-Grafik

(W) x5 vs 25 (=5 e |

e

Abbildung 10.19 Rotation um drei Achsen

Der XAML-Code:

<MWindow ... KeyDown="Window_KeyDown">

<GeometryModel3D>
<GeometryModel3D.Material>
<DiffuseMaterial Brush="LightGray" />
</GeometryModel3D.Material>
<GeometryModel3D.BackMaterial>
<DiffuseMaterial Brush="Red" />
</GeometryModel3D.BackMaterial>

<GeometryModel3D.Transform>
<Transform3DGroup>
<RotateTransform3D>
<RotateTransform3D.Rotation>
<{AxisAngleRotation3D
x:Name="aar3dx" Axis="1,0,0" Angle="5" />
</RotateTransform3D.Rotation>
</RotateTransform3D>
<RotateTransform3D>
<RotateTransform3D.Rotation>
<AxisAngleRotation3D
x:Name="aar3dy" Axis="0,1,0" Angle="5" />
</RotateTransform3D.Rotation>
</RotateTransform3D>
<RotateTransform3D>
<RotateTransform3D.Rotation>
<{AxisAngleRotation3D
x:Name="aar3dz" Axis="0,0,1" Angle="5" />
</RotateTransform3D.Rotation>
</RotateTransform3D>

328

Eine 3D-Landschaft

</Transform3DGroup>
</GeometryModel3D.Transform>

</Window>

Die Methode Window_KeyDown() dient zur Durchfithrung der weiteren Rotatio-
nen. Die Auflistung in der Transform3DGroup besteht aus drei Rotationen des
Typs AxisAngleRotation3D. Jede bezieht sich auf eine der drei Achsen. Der 3D-
Korper ist zu Beginn jeweils um 5 Grad im positiven Drehsinn gedreht. Der Dreh-

punkt ist der Nullpunkt des Koordinatensystems. Die Ereignismethode sieht so
aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
if (e.Key == Key.X)
aar3dx.Angle = (aar3dx.Angle + 5) % 360;
else if (e.Key == Key.Y)
aar3dy.Angle = (aar3dy.Angle + 5) % 360;
else if (e.Key == Key.Z)
aar3dz.Angle = (aar3dz.Angle + 5) % 360;
Title = "X:" + aar3dx.Angle + " Y:"
+ aar3dy.Angle + " Z:" + aar3dz.Angle;

}

Diesmal wird nicht auf die untergeordneten Elemente der Transform3DGroup,
sondern direkt auf die AxisAngleRotation3D-Objekte zugegriffen. Nach Errei-
chen des Winkels 360 Grad wird der Winkel wieder auf 0 Grad gesetzt. Der aktu-
elle Winkel pro Drehachse wird in der Titelleiste angezeigt.

10.7 Eine 3D-Landschaft

Zum Abschluss des Kapitels tiber 3D-Grafik wird im Projekt DreiDLandschaft
eine komplexe Szene vorgestellt: eine dreidimensionale Landschaft mit Straen,
Biumen, Hiusern und Fahrzeugen. Diese Szene kann mithilfe von fiinf verschie-
denen Kameras betrachtet werden. Die Fahrzeuge kénnen durch Anklicken mit
der Maus bewegt werden. In Abbildung 10.20 sehen Sie die Landschaft durch
eine perspektivische Kamera von vorne.

Die Straflen sind graue Rechtecke, die Biume sind griine, regelmafige Tetraeder,
die Hauser sind groB8e blaue Quader, und die Fahrzeuge sind kleine gelbe Quader.
Aufgrund der Mehrfachnutzung vieler Elemente ist die Szene komplett in Pro-
grammcode aufgebaut. Der XAML-Code ist kurz:

329

| 10.7

10 | 3D-Grafik

<MWindow ... Title="DreiDLandschaft" Height="400" Width="600"
Loaded="Window_Loaded" KeyDown="Window_KeyDown" />

\l

N A

Abbildung 10.20 Landschaftsgestaltung

Die Methode Window_Loaded() fithrt zur Erzeugung und Anordnung der ver-
schiedenen 3D-Korper. Die Methode Window_KeyDown() dient zum Umschalten
zwischen den fiinf verschiedenen Kameras mithilfe der folgenden Tasten:
(vorne), (hinten), [R] (rechts), (links) und (0] (oben). Die Kameras sind

perspektivisch, nur die Kamera von oben ist orthographisch.

Es wird ein ContainerUIETement3D-Objekt verwendet, in dem die einzelnen 3D-
Korper als ModelUIETement3D-Objekte erzeugt werden (siehe auch Abschnitt
10.4.3, »Gruppe von 3D-Koérpern mit Ereignissen«). Damit ist es moglich, sie mit
einem MouseDown-EventHandler zu versehen. Sie sind nun per Maus auswihlbar.

Den gesamten Programmcode abzudrucken wiirde den Rahmen des Buchs spren-
gen. Es folgt nur eine Liste der weiteren Methoden mit ihren Aufgaben:

» szene(): Erzeugt den Viewport3D als Fensterinhalt, zwei Lichttypen und das
ContainerUIETement3D.

» mesh2container(): Erzeugt aus angelieferten Positionen und Dreiecks-Indizes
eine MeshGeometry3D, bettet diese in ein GeometryModel13D mit Transformatio-
nen ein, bettet dieses wiederum in ein ModelUIETement3D und dieses in das
ContainerUIETement3D.

» mui3d_MouseDown(): Bewegt ein angeklicktes Fahrzeug.
» strasse(): Erzeugt eine graue Stralle.

» baum(): Erzeugt einen griinen Baum.

330

Eine 3D-Landschaft

» pkw(): Erzeugt ein gelbes Fahrzeug aus einem Quader.

» haus(): Erzeugt ein blaues Haus aus einem Quader.

» quader(): Erzeugt einen Quader.

Alle Methoden sind mit Kommentaren versehen. Damit wird es Thnen ermog-

licht, den Aufbau zu verstehen und gegebenenfalls die Landschaft nach Threm
Geschmack zu verdndern und zu erweitern.

331

| 10.7

Bringen Sie die Dinge in Bewegung. Viele Zusammenhdnge werden den
Benutzern der Anwendungen durch zwei- oder dreidimensionale Anima-
tionen klarer.

11 Animation

Eine Animation innerhalb eines Computer-Programms entspricht wie ein Kino-
film einer Abfolge von Einzelbildern. Ist diese Abfolge schnell genug, so hat der
Betrachter den Eindruck eines kontinuierlichen Ablaufs. Hiufig handelt es sich
dabei um eine Bewegung in eine Richtung. Es kann aber auch die Anderung eines
Inhalts oder einer Form stattfinden, wie zum Beispiel ein Farbwechsel oder eine
GroBendnderung.

Innerhalb Threr Anwendungen konnen Sie Animationen dazu nutzen, Abldufe zu
visualisieren und sie damit fiir den Betrachter noch anschaulicher zu machen. Die
WPF bietet Moglichkeiten fiir zwei- und dreidimensionale Animationen, zum
Beispiel Bewegungen und Drehungen.

Es werden verschiedene Klassen vorgestellt, die von der abstrakten Klasse
AnimationTimeline abgeleitet sind. Die Auswahl der Klasse richtet sich nach dem
Datentyp der animierten Eigenschaft, zum Beispiel DoubleAnimation (siehe
Abschnitt 11.1.1 und 11.1.2). Entsprechende . ..Animation-Klassen gibt es auch
fiir die Datentypen: Byte, Color, Decimal, Intl6, Int32, Int64, Point, Point3D,
Quaternion, Rect, Rotation3D (siehe Abschnitt 11.4, »Animierte 3D-Rotation«),
Single, Size, Thickness, Vector3D, Vector.

Die Animationen konnen in Drehbiicher (Storyboards) eingebettet werden, um
komplexere Abldufe zu erzeugen. Event Trigger dienen zum Zuordnen und Star-
ten von Storyboards in XAML-Code.

Keyframes und Easing Functions bieten Ihnen die Moglichkeit, nicht-lineare Ani-
mationsverldufe zu nutzen. Bei Keyframes wird die Animation in Abschnitte
unterteilt und lduft gemdf unterschiedlichen Funktionen. Easing Functions bie-
ten zahlreiche Moglichkeiten, zum Beispiel einen Verlauf gemif einer Bounce-
Funktion (engl. to bounce = dt. springen, abprallen).

Bei allen Projekten des Kapitels ist fiir die Steuerung per Programmcode zusitz-
lich der Namespace System.Windows.Media.Animation notwendig.

333

1" | Animation

11.1 Allgemeiner Aufbau

Es gibt viele Arten von méglichen Animationen. Eine gute Vorstellung bekom-
men Sie, wenn Sie ein Element sehen, das sich tiber den Bildschirm bewegt. Dazu
wird eine Eigenschaft bendtigt, deren Wert sich im Laufe der Animation veran-
dert. Ist diese Eigenschaft vom Typ double, so wird ein Objekt des Typs
DoubleAnimation bendtigt.

11.1.1 Einfache DoubleAnimation

Im nachfolgenden Projekt AnimAufbauErstes werden verschiedene Buttons dar-
gestellt, die sich nach dem Anklicken in x-Richtung tiber den Bildschirm bewegen
(siehe Abbildung 11.1). Dies wird durch die dauernde Anderung des Werts der
Eigenschaft Canvas.Left im Laufe der Animation bewirkt. Andere Arten von Ani-
mationen funktionieren dhnlich, daher kann dies als anschauliches Beispiel die-
nen.

[E7 AnimAufbauErstes E@g

From

=

By
From / To

From / By

mehrere

&

Abbildung 11.1 Animation des zweiten Buttons

Fur die double-Eigenschaft Left wird ein Objekt der Klasse DoubleAnimation
genutzt. Damit wird die zur Eigenschaft Left gehorige Abhingigkeitseigenschaft
LeftProperty verdndert. Eigenschaften anderer Typen bendtigen andere Anima-
tionsklassen. Sie erben alle von der abstrakten Klasse AnimationTimeline.

Die Klasse DoubleAnimation bietet unter anderem die folgenden Eigenschaften
vom Typ double?:

» From: Die Animation beginnt bei diesem Wert.

» To: Die Animation endet bei diesem Wert.

» By: Die Animation verdndert den Wert der Abhingigkeitseigenschaft um die-
sen Wert.

334

Allgemeiner Aufbau

Eigenschaften des Typs double? konnen neben Werten des Typs double auch
den Wert nu11 annehmen. Dies bedeutet, dass die Eigenschaft keinen Wert hat.
Mithilfe der Eigenschaft HasValue konnen Sie priifen, ob eine Eigenschaft einen
Wert hat.

Zeitdauer und Geschwindigkeit der Animation wurden in den Beispielen dieses
Projekts (noch) nicht explizit festgelegt. Daher gilt: Die Animation lauft in gleich-
mailiger Geschwindigkeit innerhalb einer Sekunde ab. Am Ende einer Animation
passiert nichts mehr, es wird also zum Beispiel nicht automatisch wieder der
Zustand vor der Animation wiederhergestellt.

Die Animation, die animierte Eigenschaft und das animierte Element werden
getrennt betrachtet. Damit haben Sie viele Kombinationsméglichkeiten: Sie kon-
nen sowohl mehrere Animationen auf ein Element als auch eine Animation auf
mehrere Eigenschaften oder mehrere Elemente anwenden.

Der XAML-Code des Projekts AnimAufbauErstes dient zur Anordnung der But-
tons bl bis b6 von oben nach unten innerhalb des Canvas:

MWindow ...>
<Canvas>
<Button Canvas.Top="10" Canvas.Left="10" Width="60"
x:Name="b1" Click="bl_Click">From</Button>
<Button Canvas.Top="40" Canvas.Left="10" Width="60"
x:Name="b2" Click="b2_Click">To</Button>
</Canvas>
</Window>
Die Ereignismethoden sehen so aus:

private void bl_Click(...)

{
DoubleAnimation da = new DoubleAnimation();
da.From = 110;
bl.BeginAnimation(Canvas.LeftProperty, da);

}

Ein neues Objekt des Typs DoubleAnimation wird hier mithilfe eines parameter-
losen Konstruktors erzeugt. Nur die Eigenschaft From wird festgelegt. Dies bewirkt,
dass sich der Wert von 110 im Laufe der Animation zum vorher aktuellen Wert
indert. Erst die Methode BeginAnimation() bestimmt, auf welche Abhingigkeits-
eigenschaft vom Typ double von welchem Element sich die Wertinderung bezieht.
In diesem Falle ist es die Abhdngigkeitseigenschaft Canvas.LeftProperty des But-

335

| 114

1" | Animation

tons bl. Bei jedem Anklicken bewegt sich der Button vom Wert 110 zum Wert 10,
dem vorher aktuellen Wert.

private void b2_Click(...)

{
DoubleAnimation da = new DoubleAnimation();
da.To = 110;
b2.BeginAnimation(Canvas.LeftProperty, da);

}

Diesmal wird nur die Eigenschaft To festgelegt. Bei jedem Anklicken bewegt sich
der Button vom vorher aktuellen Wert zum Zielwert 110. Nach dem ersten Ankli-
cken steht der Button beim Wert 110. Ein weiteres Anklicken ergibt keine Bewe-
gung mehr, da der vorher aktuelle Wert und der Zielwert tibereinstimmen.

private void b3_Click(...)

{
DoubleAnimation da = new DoubleAnimation();
da.By = 50;
b3.BeginAnimation(Canvas.lLeftProperty, da);

}

Es wird nur die Eigenschaft By festgelegt. Bei jedem Anklicken bewegt sich der
Button um den Wert 50 weiter.

private void b4_Click(...)
{
DoubleAnimation da = new DoubleAnimation();
da.From = 60;
da.To = 110;
b4.BeginAnimation(Canvas.LeftProperty, da);
}

Die Eigenschaften From und To werden festgelegt. Bei jedem Anklicken bewegt
sich der Button vom Wert 60 zum Wert 110.

private void bb_Click(...)

{
DoubleAnimation da = new DoubleAnimation();
da.From = 110;
da.By = 50;
b5.BeginAnimation(Canvas.lLeftProperty, da);

if (da.By.HasValue) MessageBox.Show("By: " + da.By);
if (da.To.HasValue) MessageBox.Show("To: " + da.To);

336

Allgemeiner Aufbau | 111

Die Eigenschaften From und By werden festgelegt. Bei jedem Anklicken bewegt
sich der Button um den Wert 50 weiter. Da der Anfangspunkt immer bei 110
liegt, handelt es sich immer um die gleiche Bewegung.

Mithilfe der Eigenschaft HasValue werden die beiden Eigenschaften By und To
gepruft. Falls sie explizit festgelegt wurden, so wird der Wert ausgegeben. Dies
trifft im Beispiel auf By, aber nicht auf To zu.

private void b6_Click(...)
{
DoubleAnimation da = new DoubleAnimation();

da.By = 50;
DoubTeAnimation db = new DoubleAnimation();
db.By = -50;

b6.BeginAnimation(Canvas.LeftProperty, da);
b6.BeginAnimation(Button.WidthProperty, da);
b6.BeginAnimation(Canvas.TopProperty, db);

}

Hier werden mehrere Animationen gleichzeitig auf ein Element angewendet. Es
handelt sich jedes Mal um die Verinderung eines double-Werts: einmal um 50,
einmal um -50. Die Vergroerung bezieht sich auf die Eigenschaften Canvas. Left
und Button.Width, die Verkleinerung auf die Eigenschaft Canvas.Top. Bei jedem
Anklicken bewegt sich der Button also nach rechts oben und wird breiter.

11.1.2 DoubleAnimation, weitere Eigenschaften

Die abstrakte Klasse AnimationTimeline, von der die Klasse DoubleAnimation und
andere Animationsklassen erben, bietet weitere Eigenschaften zur Einstellung
des Animationsverhaltens:

» Duration: Diese Eigenschaft dient zur Einstellung der Zeitdauer und ist vom
Typ Duration. Mogliche Werte sind: Automatic (abhdngig von anderen Wer-
ten), Forever (unendliche Zeitdauer) oder eine Zeitangabe vom Typ TimeSpan.

» AutoReverse: Diese Eigenschaft ist vom Typ bool und bestimmt dartiber, ob
die Animation nach einem Durchgang noch einmal umgekehrt ablduft.

» RepeatBehavior: Diese Eigenschaft legt das Verhalten fiir eine Wiederholung
fest und ist vom Typ RepeatBehavior. Mogliche Werte sind: eine Anzahl vom
Typ double, Forever (unendlich oft) oder eine Zeitangabe vom Typ TimeSpan.

» AccelerationRatio und DecelerationRatio: Diese beiden Eigenschaften sind
vom Typ double und bestimmen den Anteil an der Dauer der Animation, der
fur die Beschleunigung zu Beginn und die Bremsung am Ende benotigt wird.

337

1"

Animation

» BeginTime: Diese Eigenschaft ist vom Typ TimeSpan? und bestimmt dartiber,
ob und wenn ja nach welcher Verzogerung die Animation beginnen soll. Mog-
liche Werte sind eine Zeitangabe vom Typ TimeSpan oder null.

Der Name der Klasse AnimationTimeline steht fiir »Zeitleiste der Animation«. Mit
den vorgestellten Eigenschaften gestalten Sie die Animationsabldufe entlang die-
ser Zeitleiste.

Im nachfolgenden Projekt AnimAufbauDauer werden verschiedene Buttons dar-
gestellt, bei deren Animation die genannten Eigenschaften veranschaulicht wer-
den (siehe Abbildung 11.2).

' ™
[87] AnimAufbauDauer é‘m

RepeatBehavior

RB Zeit

Begin, Acc, Dec

Lo

Abbildung 11.2 Animation mit Wiederholung

Der XAML-Code des Projekts AnimAufbauErstes dient dazu, die Buttons b1 bis b5
von oben nach unten innerhalb des Canvas anzuordnen:

<MWindow ...>
<Canvas>
<Button Canvas.Top="10" Canvas.Left="10" Width="100"
x:Name="b1" Click="b1l_Click">Duration</Button>
<Button Canvas.Top="40" Canvas.Left="10" Width="100"
x:Name="pb2" Click="b2_Click">AutoReverse</Button>
</Canvas>
</Window>
Die Ereignismethoden sehen so aus:

private void bl_Click(...)
{
DoubleAnimation da = new DoubleAnimation(10, 110,
new Duration(TimeSpan.Parse("0:0:3")));
bl.BeginAnimation(Canvas.LeftProperty, da);

338

Aligemeiner Aufbau | 114

Ein weiterer Konstruktor fiir das DoubleAnimation-Objekt benétigt double?-
Werte fiir From und To sowie einen TimeSpan-Wert fiir die Duration. Die Methode
Parse() erzeugt mithilfe einer Zeichenkette, die eine Zeitangabe in gut lesbarer
Form enthilt, den entsprechenden Wert fiir Duration. Eine Alternative wire new
Duration(new TimeSpan(0,0,3)). Der Button wird dadurch in drei Sekunden
vom Wert 10 zum Wert 110 bewegt.

private void b2_Click(...)
{
DoubTeAnimation da = new DoubleAnimation(110,
new Duration(TimeSpan.Parse("0:0:3")));
da.AutoReverse = true;
b2.BeginAnimation(Canvas.LeftProperty, da);
}

Der Wert true fiir die Eigenschaft AutoReverse bewirkt, dass die gesamte Anima-
tion, wiederum in drei Sekunden, riickwirts ablduft. Der Button steht dann wie-
der beim Wert 10.

private void b3_Click(...)
{
DoubleAnimation da = new DoubleAnimation(10, 110,
new Duration(TimeSpan.Parse("0:0:3")));
da.RepeatBehavior = new RepeatBehavior(2);
b3.BeginAnimation(Canvas.LeftProperty, da);
}

Der Wert 2 fiir die Eigenschaft RepeatBehavior bewirkt, dass die gesamte Anima-
tion, wiederum in drei Sekunden, noch einmal abliuft. Der Button wird zweimal
vom Wert 10 zum Wert 110 bewegt.

private void b4_Click(...)
{
DoubleAnimation da = new DoubleAnimation(10, 110,
new Duration(TimeSpan.Parse("0:0:3")));
da.RepeatBehavior =
new RepeatBehavior(TimeSpan.Parse("0:0:3.5"));
b4.BeginAnimation(Canvas.LeftProperty, da);
}

Diesmal bekommt die Eigenschaft RepeatBehavior eine Zeitdauer zugewiesen.
Der Button wird so lange vom Wert 10 zum Wert 110 bewegt, bis diese Zeitdauer
abgelaufen ist. In diesem Falle endet die Animation kurz nach Beginn des zweiten
Durchlaufs.

339

11 | Animation

private void b5_Click(...)

DoubTeAnimation da = new DoubleAnimation(10, 110,
new Duration(TimeSpan.Parse("0:0:3")));

da.BeginTime = TimeSpan.Parse("0:0:3");
da.AccelerationRatio = 0.4;
da.DecelerationRatio = 0.4;
b5.BeginAnimation(Canvas.LeftProperty, da);

}

Die Animation beginnt nach einer Verzogerung von drei Sekunden. Anschlie-
Bend dauert sie weitere drei Sekunden. Innerhalb der ersten 1,2 Sekunden (40 %
von drei Sekunden) wird der Button beschleunigt, innerhalb der letzten 1,2
Sekunden wird er abgebremst.

11.1.3 PointAnimation

Im nachfolgenden Projekt AnimAufbauPoint wird eine PointAnimation darge-
stellt (siehe Abbildung 11.3). Ein Kreis wird vom Punkt 30,30 zum Punkt
200,100 und wieder zurtick bewegt. Die Eigenschaft Center eines E111pseGeo-
metry-Objekts wird zur Animation verwendet. Sie ist vom Typ Point.

[87] AnimAufbauPoint b@g
®

Abbildung 11.3 Animierter Kreis

Der XAML-Code:

MWindow ...>
<Canvas>
<Path Fill="Gray">
<Path.Data>
<ETTipseGeometry x:Name="el" Center="30,30"
RadiusX="20" RadiusY="20" />
</Path.Data>
</Path>
<Button Canvas.Top="10" Canvas.Left="120"
Click="bewegen">PointAnimation</Button>
</Canvas>
</Window>

340

Storyboard | 11.2

RadiusX und RadiusY bestimmen die GroBe der Ellipse. Die Ereignismethode
sieht so aus:

private void bewegen(...)
{
PointAnimation pa = new PointAnimation();
pa.To = new Point(200,100);
pa.AutoReverse = true;
el.BeginAnimation(El1lipseGeometry.CenterProperty, pa);
}

Dadurch wird eine neue PointAnimation erzeugt und werden Werte fur die
Eigenschaften To vom Typ Point und AutoReverse vom Typ bool bestimmt. Die
Animation wird der Abhédngigkeitseigenschaft CenterProperty der E11ipseGeo-
metry zugeordnet.

11.2 Storyboard

Bisher haben Sie einfache, einzelne Animationen kennengelernt. Falls Sie kom-
plexere Ablidufe gestalten mochten, dann sollten Sie mit einem Storyboard-
Objekt arbeiten. In diesem Drehbuch legen Sie wie in einem Film fest, welche
Elemente zu welchem Zeitpunkt »in die Geschehnisse eingreifen.

11.2.1 Storyboard als Ressource

Ein Storyboard-Objekt kénnen Sie in einer Anwendung als Ressource bereitstel-
len. Verschiedene Elemente der Anwendung konnen dann auf diese Ressource
zugreifen. Ein Storyboard-Objekt kann mehrere Animationen beinhalten. Beim
Storyboard-Objekt werden Eigenschaften eingestellt, die allen Animationen
gemeinsam sind. Jede einzelne Animation definiert hingegen ihren eigenen
Ablauf und die bezogene Eigenschaft.

Normalerweise bezieht sich eine einzelne Animation auf das Element, das die
umgebende Storyboard-Ressource nutzt. Sie konnen allerdings auch ein anderes
Element als Ziel der Animation angeben.

Nachfolgend wird im Projekt AnimStoryErstes ein Drehbuch fiir drei Buttons vor-
gestellt. Falls Sie einen der ersten beiden Buttons betitigen, so wird der jeweilige
Button nach einer kurzen Verzogerung nach rechts bewegt, verschwindet fur eine
kurze Zeit, taucht wieder auf und kehrt zum Ausgangspunkt zurtick. Wihrend
der Zeit, in der er unsichtbar ist, bewegt sich der dritte Button nach unten und
wieder nach oben (siehe Abbildung 11.4).

341

1 Animation

[E7 AnimStoryErstes E@u

8

Abbildung 11.4 Drehbuch fir drei (zeitweise unsichtbare) Buttons

Der XAML-Code:

<MWindow ...>
<Window.Resources>
{Storyboard x:Key="sbres" AutoReverse="True"
BeginTime="0:0:1">
<DoubTleAnimation Storyboard.TargetProperty="(Canvas.Left)"
By="50" Duration="0:0:2" />
<DoubleAnimation Storyboard.TargetProperty="0Opacity"
To="0" Duration="0:0:2" BeginTime="0:0:2 "/>
<DoubleAnimation Storyboard.TargetProperty="(Canvas.Top)"
Storyboard.TargetName="bh3"
By="50" Duration="0:0:2" BeginTime="0:0:4" />
</Storyboard>
</Window.Resources>
<Canvas>
<Button Canvas.Top="10" Canvas.Left="10" Width="60"
Click="bewegen">Button 1</Button>
<Button Canvas.Top="40" Canvas.Left="10" Width="60"
Click="bewegen">Button 2</Button>
<Button x:Name="b3" Canvas.Top="70" Canvas.lLeft="10"
Width="60">Button 3</Button>
</Canvas>
</Window>

Es folgt unmittelbar der Code der Ereignismethoden, weil XAML- und Pro-
grammcode hier gemeinsam vorgestellt werden:

private void bewegen(object sender, RoutedEventArgs e)
{

Storyboard sb = FindResource("sbres") as Storyboard;
sb.Begin(sender as Button);

342

Storyboard

Die Storyboard-Ressource hat den eindeutigen Schliissel sbres. Es werden die
zentralen Eigenschaften AutoReverse und BeginTime eingestellt. Der gesamte
Ablauf wird also wieder riickgdngig gemacht und startet erst nach einer kurzen
Verzdgerung.

In den einzelnen Animationen wird {iber die Attached Property Storyboard
.TargetProperty vom Typ DependencyProperty die Abhdngigkeitseigenschaft
bestimmt, die animiert werden soll.

Die Nutzer der Storyboard-Ressource sind die Buttons. In der Ereignismethode
wird zundchst tiber die Methode FindResource() auf die Ressource zugegriffen.
Anschliefend wird die Animation mithilfe der Methode Begin() des Storyboard-
Objekts auf den auslésenden Button angewandt und gestartet.

Die dem Button angehidngten Eigenschaften Canvas.Left und Canvas.Top wer-
den in den einzelnen Animationen jeweils um 50 geriteunabhingige Pixel verin-
dert. Dies fiihrt zu einer Verschiebung nach links beziehungsweise nach unten.
Die Button-Eigenschaft Opacity wird auf den Wert O verandert, dies hat die
Durchsichtigkeit des Elements zur Folge. Beachten Sie, dass Canvas.Left und
Canvas.Top in Klammern notiert werden missen, da es sich um Attached Proper-
ties des Buttons handelt.

Die Animationseigenschaften Duration und BeginTime koordinieren den zeitli-
chen Ablauf der drei Animationen:

» Als Erstes kommt die Bewegung nach rechts innerhalb von zwei Sekunden,

» anschliefend die Durchsichtigkeit innerhalb von zwei Sekunden,

» anschliefend die Bewegung nach unten innerhalb von zwei Sekunden.

In der dritten Animation wird iiber die angehidngte Eigenschaft Storyboard
.TargetName das animierte Element bestimmt.

11.2.2 Storyboard per Programmcode

Ein Storyboard-Objekt kann mit seinen Animationen auch im Programmcode
erzeugt werden. Im nachfolgenden Projekt AnimStoryCode wird ein PathGeo-
metry-Objekt mit zwei ArcSegment-Objekten dargestellt. Deren Eigenschaft Size
wird mithilfe einer SizeAnimation gedndert (siche Abbildung 11.5).

Der XAML-Code:

{Window ... Loaded="Window_Loaded">
<Canvas>
<Path Fill="LightGray" Stroke="Black" StrokeThickness="2">
<Path.Data>

343

| 1.2

1 Animation

<PathGeometry>
<PathFigure StartPoint="10,60">
<PathSegmentCollection>
<ArcSegment x:Name="asl" Point="110,60"
Size="50,50" SweepDirection="Clockwise" />
<ArcSegment x:Name="as2" Point="210,60"
Size="50,50" />
<{/PathSegmentCollection>
</PathFigure>
</PathGeometry>
</Path.Data>
</Path>
</Canvas>
</Window>

' ™
[®] AnimStoryCode @I@u

Abbildung 11.5 PathGeometry mit SizeAnimation

Die Pfadgeometrie besteht aus zwei Bogen. Der erste Bogen verlduft im Uhrzei-
gersinn, der zweite Bogen gegen den Uhrzeigersinn.

Die Ereignismethode sieht so aus:

private void Window_Loaded(...)
{
SizeAnimation sal = new SizeAnimation();
sal.To = new Size(80, 80);
Storyboard.SetTargetName(sal, "asl");
Storyboard.SetTargetProperty(sal,
new PropertyPath(ArcSegment.SizeProperty));

SizeAnimation saZ2 = new SizeAnimation();
sa2.To = new Size(80, 80);
Storyboard.SetTargetName(saZ, "as2");
Storyboard.SetTargetProperty(saz,

new PropertyPath(ArcSegment.SizeProperty));

Storyboard sb = new Storyboard();

344

Storyboard | 11.2

sb.AutoReverse = true;
sb.RepeatBehavior = RepeatBehavior.Forever;
sb.Children.Add(sal);
sb.Children.Add(sa?2);
sb.Begin(this);
}

Die beiden neu erzeugten SizeAnimation-Objekte veraindern den Wert Size von
50,50 auf 80,80. Sie beziechen sich mithilfe der statischen Methode
SetTargetName() der Storyboard-Klasse auf die beiden Bogen asl und as2. Mit-
hilfe der statischen Methode SetTargetProperty() stellen sie den Bezug zur
Dependency Property SizeProperty der Klasse ArcSegment her.

Fur das neu erzeugte Storyboard-Objekt werden die Eigenschaften AutoReverse
und RepeatBehavior eingestellt. Die beiden SizeAnimation-Objekte werden ihm
als untergeordnete Elemente hinzugefiigt. Die Animation wird bezogen auf das
gesamte Fenster gestartet.

11.2.3 Storyboard steuern

Der Ablauf der Animation lisst sich mit weiteren Methoden des Storyboard-
Objekts steuern. Die Animation kann zum Beispiel anhalten, weiterlaufen, zu
einem bestimmten Punkt oder zum Endpunkt springen, ihre Geschwindigkeit
verindern oder beendet werden.

Im nachfolgenden Projekt AnimStorySteuerung wird auf diese Weise die Bewe-
gung eines Buttons gesteuert, der sich von links nach rechts bewegt (siche Abbil-
dung 11.6).

[E7 AnimStorySteuerung &m

Abbildung 11.6 Storyboard steuern

Der XAML-Code:

<MWindow ...>
<Window.Resources>
{Storyboard x:Key="sbres">
<DoubleAnimation Storyboard.TargetName="b_anim"
Storyboard.TargetProperty="(Canvas.Left)"
From="10" To="225" Duration="0:0:10" />

345

1"

Animation

</Storyboard>
</Window.Resources>
<Canvas>
<Button x:Name="b_anim"
Canvas.Top="10" Canvas.Left="10">Button</Button>
<StackPanel Orientation="Horizontal"
Canvas.Top="40" Canvas.Left="10">
<Button Margin="1" Click="starten">Start<{/Button>
<Button Margin="1" Click="anhalten">Pause</Button>

</StackPanel>
</Canvas>

</Window>

Das Storyboard ist als Ressource definiert. Das Zielelement fiir die
DoubleAnimation ist tiber die Attached Property Storyboard.TargetName festge-
legt. Der Button bewegt sich innerhalb von 10 Sekunden vom Wert 10 zum Wert
225. Die insgesamt sieben Steuerungsbuttons sind gleichartig aufgebaut und
rufen die Ereignismethoden in der nachfolgenden Klasse auf:

public partial class MainWindow : Window

{

}

Storyboard sb;
public MainWindow()
{
InitializeComponent();
sb = FindResource("sbres") as Storyboard;

private void starten(...) { sb.Begin(b_anim, true); }

private void anhalten(...) { sb.Pause(b_anim); }

private void weiter(...) { sb.Resume(b_anim); }

private void springen_auf(...) { sb.Seek(b_anim,
TimeSpan.Parse("0:0:5"), TimeSeekOrigin.BeginTime); }

private void springen_ende(...) { sb.SkipToFill(b_anim); }

private void schneller(...) { sb.SetSpeedRatio(b_anim, 5); }

private void beenden(...) { sb.Stop(b_anim); }

Es wird ein Verweis auf ein Storyboard-Objekt innerhalb der Fensterklasse defi-
niert. Im Konstruktor der Klasse wird ihm die Storyboard-Ressource zugeordnet.
Bei der hier verwendeten Uberladung der Methode Begin() wird als zweiter
Parameter ein boolescher Wert tibermittelt, der das Storyboard steuerbar macht.
Der erste Parameter stellt nach wie vor die Verbindung zwischen Storyboard und
animiertem Objekt her.

346

Storyboard | 11.2

Die Methode Pause () hilt die Animation an, die Methode Resume () setzt sie an
der Anhaltestelle wieder fort. Die Methode Seek() springt zu dem angegebenen
Punkt innerhalb der Animation. Dieser Punkt wird vom dritten Parameter aus
gemessen. Dieser Parameter stammt aus der Enumeration TimeSeekOrigin; mog-
liche Werte sind BeginTime und Duration. Die Methode SkipToFi11() springt ans
Ende der Animation. Die Methode SetSpeedRatio() dndert die Geschwindigkeit
der Animation um den angegebenen Faktor. Die Methode Stop() beendet die
Animation und setzt alles auf den Anfang zurtick.

11.2.4 Animierte Transformation

Interessante Effekte lassen sich auch mit animierten Transformationen erzielen.
Die Transformationen miissen bereits zusammen mit dem betroffenen Element
erzeugt werden. Nur dann konnen sie anschliefend animiert werden.

Im nachfolgenden Projekt AnimStoryTrans wird ein Storyboard verwendet, um eine
Vergroferung, eine Drehung und eine Neigung zu animieren. Zusitzlich wird
eine dynamische Anderung der SchriftgroBe durchgefiihrt (siche Abbildung 11.7).

[R7] AnimStoryTrans E@u

Buttc

Abbildung 11.7 Storyboard mit drei Transformationsanimationen

Der XAML-Code:

<MWindow ...>
<Window.Resources>
{Storyboard x:Key="sbres">

<DoubleAnimation Storyboard.TargetName="bl"
Storyboard.TargetProperty="RenderTransform.ScaleX"
To="2" Duration="0:0:4" />

<DoubleAnimation Storyboard.TargetName="b2"
Storyboard.TargetProperty="RenderTransform.Angle"
To="360" Duration="0:0:4" />

<DoubleAnimation Storyboard.TargetName="b2"
Storyboard.TargetProperty="FontSize"
To="24" Duration="0:0:4" />

<DoubleAnimation Storyboard.TargetName="b3"

347

1"

Animation

Storyboard.TargetProperty="RenderTransform.AngleX"
To="30" Duration="0:0:4" />
</Storyboard>
</Window.Resources>
<StackPanel>
<Button x:Name="bl" Width="60" Margin="3" Click="bewegen"
RenderTransformOrigin="0.5,0.5">Button 1
<Button.RenderTransform>
<{ScaleTransform />
</Button.RenderTransform>
</Button>
<Button x:Name="b2" Width="60" Margin="3" Panel.ZIndex="1"
RenderTransformOrigin="0.5,0.5">Button 2
<Button.RenderTransform>
<RotateTransform />
</Button.RenderTransform>
</Button>
<Button x:Name="b3" Width="60" Margin="3"
RenderTransformOrigin="0.5,0.5">Button 3
<Button.RenderTransform>
{SkewTransform />
</Button.RenderTransform>
</Button>
</StackPanel>
</Window>

Die Storyboard-Ressource hat den eindeutigen Schltssel sbres. Alle Animationen
betreffen double-Eigenschaften, daher sind es Objekte des Typs DoubleAnimation.
Bei den Transformationen handelt es sich um verschiedene Formen einer Render-
Transformation, also um eine Transformation ohne Verschiebung der Nachbar-
elemente. Mit RenderTransformOrigin = 0.5, 0.5 wird jeweils das Button-Zen-
trum als Ursprung der Transformation gewdahlt.

Uber Storyboard.TargetName werden die jeweils zugeordneten Buttons
bestimmt. Nur im ersten Fall ist dies nicht nétig, da das Storyboard dem ersten
Button zugeordnet ist. Mithilfe von Storyboard.TargetProperty wird die jeweils
animierte Eigenschaft eingestellt. Bei den Transformationen handelt es sich um
die Untereigenschaften der Button-Eigenschaft RenderTransform. Aullerdem ist
die Button-Eigenschaft FontSize betroffen.

Der erste Button wird tiber ScaleX = 2 auf das Doppelte vergroRert. Der zweite
Button wird mit Angle = 360 einmal vollstindig um 360 Grad gedreht. Da die
angehingte Eigenschaft Panel.ZIndex auf 1 steht, verdeckt dieser Button die
anderen bei seiner Drehung. Aulerdem wird bei diesem Button die Schrift auf 24

348

Storyboard | 11.2

vergroBert. Beim dritten Button wird mit AngleX = 30 eine Neigung um 30 Grad
erzeugt.

Die Ereignismethode dient zum Zuordnen des Storyboards zum ersten Button
und zum Start des Ablaufs:

private void bewegen(...)

{
Storyboard sb = FindResource("sbres") as Storyboard;
sb.Begin(bl);

11.2.5 ColorAnimation

Im letzten Beispiel dieses Abschnitts folgt das Projekt AnimStoryColor. Darin wird
eine ColorAnimation dargestellt (siehe Abbildung 11.8). Die Farbe eines Rechtecks
wechselt nach dem Start der Anwendung endlos zwischen Grau und Hellgrau.

[®°] AnimStoryColor &I@u

-

Abbildung 11.8 Animation einer Farbe

Der XAML-Code:

<Window ... Loaded="Window_Loaded">
<Window.Resources>
{Storyboard x:Key="shres">
<ColorAnimation Storyboard.TargetProperty="Fill.Color"
To="LightGray" RepeatBehavior="Forever"
AutoReverse="True"/>
</Storyboard>
</Window.Resources>
{Rectangle x:Name="rc" Width="80" Height="30"
VerticalAlignment="Top" Fill="Gray" />
</Window>

Die Ereignismethode:

private void Window_Loaded(...)

{
Storyboard sb = FindResource("sbres") as Storyboard;
sb.Begin(rc);

349

1" | Animation

Nach dem Laden des Fensters wird dem grauen Rechteck die Storyboard-Res-
source zugeordnet, und die Animation wird gestartet. Die Zieleigenschaft ist die
Untereigenschaft Color vom Typ Color der Eigenschaft Fi11. Fiir den Typ Color
ist die Klasse ColorAnimation geeignet. Die Zielfarbe ist Hellgrau (Eigenschaft To).
Die Einstellungen fiir AutoReverse und RepeatBehavior bewirken die Ruckkehr
zu Grau und die endlose Wiederholung.

11.3 Event Trigger

Event Trigger dienen dazu, ein Storyboard vollstindig innerhalb des XAML-
Codes eines Elements unterzubringen. Die Animation kann dann ohne den Ein-
satz von Programmcode gestartet und gesteuert werden. Die Aufgabe der ver-
schiedenen Methoden des Storyboard-Objekts wird von eigenen Objekten tiber-
nommen, wie zum Beispiel von BeginStoryboard oder StopStoryboard.

Event Trigger werden in XAML innerhalb der Triggers-Auflistung von Elemen-
ten oder Styles definiert. Der Zugrift auf Storyboards in Ressourcen ist weiterhin
moglich.

11.3.1 Event Trigger in Element

Im nachfolgenden Projekt AnimEventErstes wird gezeigt, wie Sie mithilfe eines
Event Triggers ein Storyboard innerhalb eines Buttons einbetten. Der Inhalt des
Storyboards ist nur eine einfache Animation zur Bewegung des Buttons um 50
geriteunabhingige Pixel nach rechts, nachdem er betitigt wurde (siehe Abbil-
dung 11.9).

[®] AnimEventErstes H@g

Abbildung 11.9 Storyboard in Event Trigger

Der XAML-Code:

<MWindow ...>
<Canvas>
<Button Canvas.Top="10" Canvas.Left="10" Width="60">Button 1
<Button.Triggers>
<EventTrigger RoutedEvent="Button.Click">
<BeginStoryboard>
<BeginStoryboard.Storyboard>

350

Event Trigger | 11.3

{Storyboard>
<DoubleAnimation By="50"
Storyboard.TargetProperty="(Canvas.Left)" />
</Storyboard>
{/BeginStoryboard.Storyboard>

</BeginStoryboard>
{/EventTrigger>
</Button.Triggers>

</Button>
</Canvas>
</Window>

Steuerelemente haben die Auflistungseigenschaft Triggers vom Typ TriggerCol-
Tection. In dieser Auflistung konnen mehrere Trigger stehen, unter anderem
vom Typ EventTrigger. Die Eigenschaft RoutedEvent des EventTrigger-Objekts
bestimmt das Ereignis, das die Animation ausldst, in diesem Falle die Betitigung
des Buttons.

Das EventTrigger-Objekt beinhaltet ein BeginStoryboard-Objekt. Dieses Objekt
dient zum Starten eines Storyboards. Es ist also kein Programmcode zum Starten
der Animation notwendig. Das BeginStoryboard-Objekt enthilt das Storyboard-
Objekt, wie Sie es bereits kennengelernt haben.

11.3.2 Event Trigger und Ressourcen

Soll ein Storyboard von mehreren Elementen genutzt werden, so wird es als Res-
source definiert. Diese Ressource kann auch innerhalb von Event Triggern
genutzt werden. Das nachfolgende Projekt AnimEventRessource zeigt, wie die
Animation aus dem vorherigen Abschnitt gleich fiir zwei Buttons verwendet wird
(siehe Abbildung 11.10).

[E7 AnimEventRessource E@u

Abbildung 11.10 Storyboard als Ressource flr mehrere Event Trigger

Der XAML-Code:

<MWindow ...>
<Window.Resources>
{Storyboard x:Key="sbres">
<DoubleAnimation By="50"

351

1"

Animation

Storyboard.TargetProperty="(Canvas.lLeft)" />
</Storyboard>
</Window.Resources>
<Canvas>
<Button Canvas.Top="10" Canvas.Left="10" Width="60">Button 1
<Button.Triggers>
<EventTrigger RoutedEvent="Button.Click">
<BeginStoryboard Storyboard="{StaticResource sbres}" />
{/EventTrigger>
</Button.Triggers>
</Button>
<Button Canvas.Top="40" Canvas.Left="10" Width="60">Button 2
<Button.Triggers>
<EventTrigger RoutedEvent="Button.Click">
<{BeginStoryboard Storyboard="{StaticResource sbres}" />
</EventTrigger>
</Button.Triggers>
</Button>
</Canvas>
</Window>

Das Storyboard wird als Ressource angelegt. Das EventTrigger-Objekt jedes But-
tons beinhaltet ein BeginStoryboard-Objekt zum Starten der Animation nach
Betitigung des Buttons. Die Eigenschaft Storyboard des BeginStoryboard-Objekts
bekommt die Ressource zugewiesen.

11.3.3 Event Trigger in Style

Styles verwenden Sie, um Elementen ein gleichartiges Aussehen zu geben. Styles
kénnen auch Event Trigger beinhalten. Dies fiihrt dazu, dass sich die Elemente
auch gleichartig verhalten. Dazu sehen Sie in diesem Abschnitt zwei Beispiele.

Im ersten Projekt, AnimEventStyle, werden ein Storyboard und ein Type-Style als
Ressourcen definiert. Der Style umfasst Angaben zum Aussehen und zum Verhal-
ten eines Buttons (siehe Abbildung 11.11). Anschliefend werden zwei Buttons
erzeugt, die diesen Type-Style nutzen.

(R AnimEventStyle E@u

Abbildung 11.11 Zwei Buttons mit gleichem Verhalten

352

Event Trigger | 11.3

Der XAML-Code:

<MWindow ...>
<Window.Resources>
{Storyboard x:Key="sbres">
<DoubTeAnimation Storyboard.TargetProperty="(Canvas.Left)"
By="50" Duration="0:0:2" />
</Storyboard>
<Style TargetType="{x:Type Button}">
{Setter Property="FontSize" Value="16" />
<Setter Property="Width" Value="80" />
{Style.Triggers>
<{EventTrigger RoutedEvent="Button.Click">
<BeginStoryboard Storyboard="{StaticResource sbres}" />
<{/EventTrigger>
</Style.Triggers>
</Style>
</Window.Resources>
<Canvas>
<Button Canvas.Top="10" Canvas.lLeft="10">Button 1</Button>
<Button Canvas.Top="50" Canvas.lLeft="10">Button 2</Button>
</Canvas>
</Window>

Als erste Ressource wird ein einfaches Storyboard definiert. Die zweite Ressource
ist ein Type-Style fur Buttons. Zwei Setter enthalten Angaben tiber das Aussehen
(FontSize, Width). Die Triggers-Auflistung beinhaltet eine Angabe zum Verhal-
ten des Buttons bei Betatigung. Dabei handelt es sich um einen Event Trigger fiir
das Ereignis C11ck.

Im zweiten Projekt, AnimEventQuake, wird ein Type-Style fiir Buttons definiert,
der zwei Event Trigger fiir die Ereignisse Button.MouseEnter und Button
.Mouseleave enthilt. Diese nutzen jeweils eine Storyboard-Ressource.

Zum Verhalten: Beim Betreten des Buttons mit der Maus wird der Button inner-
halb einer Zehntelsekunde um 10 geriteunabhingige Pixel verschoben. Diese
Vergroferung wird mithilfe der Eigenschaften AutoReverse und RepeatBehavior
wieder riickgdngig gemacht beziehungsweise endlos wiederholt. Man bekommt
den Eindruck, dass der Button von einem Erdbeben betroffen ist. Beim Verlassen
des Buttons mit der Maus »beruhigt« sich der Button wieder.

Der XAML-Code:

<MWindow ...>
<MWindow.Resources>
{Storyboard x:Key="sbresl">

353

1 Animation

<DoubTleAnimation Storyboard.TargetProperty="(Canvas.Left)"
To="20" Duration="0:0:0.1" AutoReverse="True"
RepeatBehavior="Forever" />
</Storyboard>
<Storyboard x:Key="sbres2">
<DoubTeAnimation Storyboard.TargetProperty="(Canvas.Left)"
To="10" Duration="0:0:0.1" />
</Storyboard>
<Style TargetType="{x:Type Button}">
<Setter Property="Width" Value="90" />
{Style.Triggers>
<EventTrigger RoutedEvent="Button.MouseEnter">
<{BeginStoryboard
Storyboard="{StaticResource sbresl}" />
</EventTrigger>
<EventTrigger RoutedEvent="Button.Mouseleave">
<BeginStoryboard
Storyboard="{StaticResource sbres2}" />
</EventTrigger>
</Style.Triggers>
</Style>
</Window.Resources>
<Canvas>
<Button Canvas.Top="10" Canvas.Left="10">Button 1</Button>
</Canvas>
</Window>

11.3.4 Event Trigger zur Steuerung

Auch mit Event Triggern ldsst sich der Ablauf der Animation steuern, also anhalten,
stoppen und so weiter. Im Projekt AnimEventSteuerung sehen Sie das Beispiel aus
Abschnitt 11.2.2, »Storyboard per Programmcode« (siehe Abbildung 11.6),
diesmal aber ohne Programmcode.

Der XAML-Code:

<MWindow ...>
<Window.Resources>
{Storyboard x:Key="shres">
<DoubleAnimation Storyboard.TargetName="b_anim"
Storyboard.TargetProperty="(Canvas.Left)"
From="10" To="225" Duration="0:0:10" />
</Storyboard>
</Window.Resources>
<Canvas>

354

Event Trigger | 11.3

<Canvas.Triggers>
<EventTrigger RoutedEvent="Button.Click" SourceName="bl">
<BeginStoryboard Name="sb"
Storyboard="{StaticResource sbres}" />
</EventTrigger>
<EventTrigger RoutedEvent="Button.Click" SourceName="b2">
<PauseStoryboard BeginStoryboardName="sb" />
</EventTrigger>
<EventTrigger RoutedEvent="Button.Click" SourceName="b3">
<{ResumeStoryboard BeginStoryboardName="sb" />
</EventTrigger>
<EventTrigger RoutedEvent="Button.Click" SourceName="b4">
<(SeekStoryboard Offset="0:0:5"
BeginStoryboardName="sb" />
<{/EventTrigger>
<EventTrigger RoutedEvent="Button.Click" SourceName="b5">
<SkipStoryboardToFill BeginStoryboardName="sb" />
</EventTrigger>
<EventTrigger RoutedEvent="Button.Click" SourceName="b6">
<SetStoryboardSpeedRatio SpeedRatio="5"
BeginStoryboardName="sb" />
</EventTrigger>
<EventTrigger RoutedEvent="Button.Click" SourceName="b7">
<StopStoryboard BeginStoryboardName="sb" />
</EventTrigger>
</Canvas.Triggers>

<Button x:Name="b_anim"
Canvas.Top="10" Canvas.Left="10">Button</Button>
<StackPanel Orientation="Horizontal"
Canvas.Top="40" Canvas.Left="10">
<Button x:Name="bl" Margin="1">Start</Button>
<Button x:Name="b2" Margin="1">Pause</Button>

</StackPanel>
</Canvas>
</Window>

Die Event Trigger sind diesmal zur besseren Ubersicht alle in der Triggers-Auf-
listung des tibergeordneten Canvas-Objekts definiert. Die Zuordnung zu den ein-
zelnen Buttons findet jeweils tiber die Eigenschaft SourceName statt.

Die Betidtigung des Buttons START fiihrt zum BeginStoryboard-Objekt. Dieses star-
tet die Animation aus der Storyboard-Ressource. Das animierte Objekt wird tiber
die Attached Property Storyboard.TargetName bestimmt.

355

11 | Animation

Die Betdtigung der anderen Buttons fiihrt zu den Objekten des Typs
PauseStoryboard, ResumeStoryboard, SeekStoryboard, SkipStoryboardToFilT,
SetStoryboardSpeedRatiound StopStoryboard und damit zu den jeweiligen Akti-
onen. In der Eigenschaft BeginStoryboardName dieser Objekte muss jeweils ange-
geben werden, auf welches Storyboard sich die Aktion bezieht. Falls die Animation
noch nicht gestartet wurde, so gibt es noch keinen Bezug, und es passiert nichts.

Beim Objekt des Typs SeekStoryboard wird tber die Eigenschaft Offset vom Typ
TimeSpan der Punkt eingestellt, zu dem gesprungen wird. Die Eigenschaft Origin
ist aus der Enumeration TimeSeekOrigin; mogliche Werte sind BeginTime und
Duration. Beim Objekt des Typs SetStoryboardSpeedRatio wird die Geschwindig-
keit der Animation um den Faktor aus der double-Eigenschaft SpeedRatio gedn-
dert.

11.4 Animierte 3D-Rotation

Das nachfolgende Projekt AnimDreiDRotation zeigt eine Kombination aus ver-
schiedenen Elementen: aus der Animation einer dreidimensionalen Rotations-
transformation, einem Storyboard als Ressource und einem Event Trigger.

Damit rotiert der bereits aus Abschnitt 10.1.5 bekannte Wiirfel nacheinander um
drei verschiedene Achsen, sobald das Fenster geladen wird: In den ersten zehn
Sekunden dreht er sich von 0 auf 180 Grad um die x-Achse und wieder zurtick auf
0 Grad, in den nichsten Sekunden dreht er sich ebenso um die y-Achse, dann
ebenso zehn Sekunden um die z-Achse (siche Abbildung 11.12). Dieser Ablauf
wird endlos fortgesetzt.

[®] AnimDreiDRotation @@u

Lo

Abbildung 11.12 Animierte Rotation, hier um die z-Achse

Zunichst betrachten wir den Wiirfel mit seiner Transformation und dem Event
Trigger in XAML:

356

Animierte 3D-Rotation

MWindow ...>
<Window.Resources>
{Storyboard x:Key="sbres" ...> ... </Storyboard>
</Window.Resources>
<MWindow.Triggers>
<EventTrigger RoutedEvent="Loaded">
<BeginStoryboard Storyboard="{StaticResource sbres}" />
</EventTrigger>
</Window.Triggers>

<Viewport3D>
<Viewport3D.Camera> ... [Kameral]
<Viewport3D.Children>
<{ModelVisual3D> ... [Licht]

<ModelVisual3D>
<ModelVisual3D.Content>
<GeometryModel3D>

<GeometryModel3D.Geometry ... [Geometrie] >
<GeometryModel3D.Material ... [Material vornel] >
<GeometryModel3D.BackMaterial ... [Material hinten]>

<GeometryModel3D.Transform>
<RotateTransform3D x:Name="rt3d" >
<RotateTransform3D.Rotation>
<AxisAngleRotation3D />
</RotateTransform3D.Rotation>
</RotateTransform3D>
</GeometryModel3D.Transform>
</GeometryModel3D>
</ModelVisual3D.Content>
</ModelVisual3D>
</Viewport3D.Children>
</Viewport3D>
</Window>

Die Ressource hat den Schliissel sbres. Der Event Trigger reagiert, sobald das
Ereignis Loaded des Fensters eingetreten ist, und startet das Storyboard aus der
Ressource sbres.

Es folgt der bekannte Aufbau von Szene und Wiirfel mit Kamera, Licht, Geome-
trie und Material. Als neues Element von GeometryMode13D folgt die Transforma-
tion. Die Art der Transformation (hier: RotateTransform3D) ist das Zielelement
der Animation (TargetName). Die Art der Rotation (hier: AxisAngleRotation) ist

357

| 1.4

11 | Animation

die Zieleigenschaft der Animation (TargetProperty). Es werden keine Werte fur
Axis oder Angle eingetragen, diese folgen erst im Storyboard.

Kommen wir nun zum Storyboard innerhalb der Ressource:

<Window.Resources>
<Storyboard x:Key="sbres" RepeatBehavior="Forever">
<Rotation3DAnimation Storyboard.TargetName="rt3d"
Storyboard.TargetProperty="Rotation"
Duration="0:0:5" AutoReverse="True">
<Rotation3DAnimation.From>
<AxisAngleRotation3D Axis="1,0,0" Angle="0" />
</Rotation3DAnimation.From>
<Rotation3DAnimation.To>
<AxisAngleRotation3D Axis="1,0,0" Angle="180" />
</Rotation3DAnimation.To>
</Rotation3DAnimation>

<Rotation3DAnimation Storyboard.TargetName="rt3d"
Storyboard.TargetProperty="Rotation"
Duration="0:0:5" BeginTime="0:0:10" AutoReverse="True">
<Rotation3DAnimation.From>
<AxisAngleRotation3D Axis="0,1,0" Angle="0" />
</Rotation3DAnimation.From>
<Rotation3DAnimation.To>
<AxisAngleRotation3D Axis="0,1,0" Angle="180" />
</Rotation3DAnimation.To>
</Rotation3DAnimation>

<Rotation3DAnimation Storyboard.TargetName="rt3d"
Storyboard.TargetProperty="Rotation"
Duration="0:0:5" BeginTime="0:0:20" AutoReverse="True">
<Rotation3DAnimation.From>
<AxisAngleRotation3D Axis="0,0,1" Angle="0" />
</Rotation3DAnimation.From>
<Rotation3DAnimation.To>
<AxisAngleRotation3D Axis="0,0,1" Angle="180" />
</Rotation3DAnimation.To>
</Rotation3DAnimation>
</Storyboard>
</Window.Resources>

Das gesamte Storyboard wird endlos wiederholt.

Jede der drei Animationen vom Typ Rotation3DAnimation hat als Zielelement
(TargetName) die Art der Transformation und als Zieleigenschaft (TargetProperty)

358

Keyframes | 11.5

die Art der Rotation. Jede dauert 5 Sekunden und wird dann wieder riickgidngig
gemacht; das macht zehn Sekunden. Jede verlduft vom Winkel O Grad bis zum
Winkel 180 Grad (Animationseigenschaften From und To).

Die drei Animationen unterscheiden sich in der Drehachse: Erst ist es die x-, dann
die y- und dann die z-Achse. AuBlerdem starten sie dank der unterschiedlichen
Werte der Eigenschaft BeginTime zeitversetzt, im Ergebnis also nacheinander.

11.5 Keyframes

Die bisherigen Animationen verliefen in gleichformiger Geschwindigkeit vom
Anfangs- zum Endpunkt. Keyframes ermoglichen die Unterteilung einer Anima-
tion in einzelne Abschnitte. Innerhalb dieser Keyframe-Abschnitte wiederum
kann sich die Geschwindigkeit nach unterschiedlichen Funktionen richten.

Die Eigenschaften KeyTime und Value bestimmen darfiber, wann der betreffende
Keyframe-Abschnitt endet und welchen Wert die Animation anschliefend hat.

Fur Keyframe-Animationen werden eigene Klassen verwendet, die vom Daten-
typ abhdngen, zum Beispiel DoubleAnimationUsingKeyFrames (siehe Abschnitt
11.5.1, »Keyframes fiir Double«). Entsprechende ...AnimationUsingKeyFrames-
Klassen gibt es auch fiir die Datentypen: Boolean, Byte, Color (siche Abschnitt
11.5.2, »Keyframes fiir Color«), Decimal, Intl6, Int32, Int64, Matrix, Object,
Point, Point3D, Quaternion, Rect, Rotation3D, Single, String (siche Abschnitt
11.5.3, »KeyFrames flr String«), Size, Thickness, Vector3D und Vector.

11.5.1 Keyframes fiir Double

Die Klasse DoubleAnimationUsingKeyFrames wird fiir double-Eigenschaften ver-
wendet. Dabei gibt es fiir die einzelnen Keyframes folgende Typen, mit dem
angegebenen Verlauf der Animation:

» LinearDoubleKeyFrame: Die Animation verlduft linear, also mit gleichformiger
Geschwindigkeit.
» DiscreteDoubleKeyFrame: Die Animation verlduft sprunghaft.

» EasingDoubleKeyFrame: Die Animation verlduft gemiR einer Easing-Funktion
(mehr dazu folgt in Abschnitt 11.6, »Easing Functions).

» SplineDoubleKeyFrame: Die Animation verliuft gemif einer kubischen
Bézier-Funktion.

Die Eigenschaft KeyTime bestimmt die zeitliche Linge eines Keyframes. Sie kann
einen der folgenden Werte haben:

359

1 Animation

» ein TimeSpan-Objekt mit einer Zeitangabe, oder

» ecinen double-Wert, gefolgt von einem Prozentzeichen fiir den prozentualen
Anteil an der Gesamtzeit, oder

» den Wert Uniform fiir eine zeitlich gleichmaBige Aufteilung, oder
» den Wert Paced fiir eine Interpolation mit konstanter Frequenz.
Im nachfolgenden Projekt AnimKeyDouble werden einige der genannten Mog-

lichkeiten anhand der Bewegung von vier Buttons verdeutlicht (siehe Abbildung
11.13). Jedem der Buttons ist eine eigene Storyboard-Ressource zugeordnet.

' ™
[®7 AnimKeyDouble b@u

Abbildung 11.13 Vier Keyframe-Animationen

Der XAML-Code:

<MWindow ...>
<Window.Resources>
<{Storyboard x:Key="sbresl">
<DoubleAnimationUsingKeyFrames
Storyboard.TargetProperty="(Canvas.Left)">
<LinearDoubleKeyFrame KeyTime="0:0:1" Value="60" />
<LinearDoubleKeyFrame KeyTime="0:0:4" Value="110" />
</DoubleAnimationUsingKeyFrames>
</Storyboard>
{Storyboard x:Key="sbres2">
<DoubleAnimationUsingKeyFrames Duration="0:0:4"
Storyboard.TargetProperty="(Canvas.Left)">
<LinearDoubleKeyFrame KeyTime="75%" Value="60" />
<LinearDoubleKeyFrame KeyTime="100%" Value="110" />
</DoubleAnimationUsingKeyFrames>
</Storyboard>
{Storyboard x:Key="sbres3">
<DoubleAnimationUsingKeyFrames Duration="0:0:4"
Storyboard.TargetProperty="(Canvas.lLeft)">
<LinearDoubleKeyFrame KeyTime="Uniform" Value="60" />

360

Keyframes | 11.5

{LinearDoubleKeyFrame KeyTime="Uniform" Value="80" />
<LinearDoubleKeyFrame KeyTime="Uniform" Value="140" />
<LinearDoubleKeyFrame KeyTime="Uniform" Value="160" />
</DoubleAnimationUsingKeyFrames>
</Storyboard>
<Storyboard x:Key="sbres4">
<DoubleAnimationUsingKeyFrames
Storyboard.TargetProperty="(Canvas.lLeft)">
<LinearDoubleKeyFrame KeyTime="0:0:1" Value="30" />
<DiscreteDoubleKeyFrame KeyTime="0:0:3" Value="50" />
<SplineDoubleKeyFrame KeyTime="0:0:8"
KeySpline="0,0.5 0.5,1" Value="90" />
<{SplineDoubleKeyFrame KeyTime="0:0:13"
KeySpline="0.5,0 0,0.5" Value="150" />
</DoubleAnimationUsingKeyFrames>
</Storyboard>
</Window.Resources>
<Canvas>
<Button x:Name="bl" Canvas.Top="10" Canvas.lLeft="10"
Width="60" Click="bl_Click">Button 1</Button>
<Button x:Name="b2" Canvas.Top="40" Canvas.lLeft="10"
Width="60" Click="b2_Click">Button 2</Button>
</Canvas>
</Window>

Bei der ersten Animation werden zwei LinearDoubleKeyFrame-Objekte genutzt.
Dies bedeutet fiir jeden Abschnitt eine gleichformige Geschwindigkeit. Zunachst
gelangt der Button innerhalb einer Sekunde vom Wert 10 zum Wert 60, anschlie-
Bend innerhalb von weiteren drei Sekunden vom Wert 60 bis zum Wert 110. Es
ist also die gleiche Strecke innerhalb der dreifachen Zeit zurtickzulegen. Daher ist
der Button auf dem zweiten Abschnitt deutlich langsamer.

Die zweite Animation verhilt sich umgekehrt. Es sind wiederum zwei Linear-
DoubleKeyFrame-Objekte, die Abschnitte sind auch gleich, allerdings ist die zeitli-
che Aufteilung andersherum. Fiir den ersten Abschnitt steht 75% der Zeit zur
Verfugung, fir den zweiten Abschnitt die restlichen 25%. Die Gesamtzeit, die
100 % entspricht, wird tiber die Eigenschaft Duration zentral fiir die gesamte Ani-
mation festgelegt.

Bei der dritten Animation wird die Zeit mithilfe des Werts Uniform fiir die Eigen-
schaft KeyTime gleichmidRig zwischen den linearen Abschnitten verteilt. Da die
Abschnitte verschieden lang sind (50, 20, 60, 20), resultieren unterschiedliche
Geschwindigkeiten.

361

1" | Animation

Die vierte Animation beginnt mit einem kurzen linearen Abschnitt. Es folgt eine
Pause von zwei Sekunden, anschlieSend — mithilfe eines DiscreteDoubleKeyFrame-
Objekts — ein Sprung auf den nachsten Wert. Fiir die ndchsten zwei Abschnitte von
jeweils 5 Sekunden folgt die Animation dank zweier SplineDoubleKeyFrame-
Objekte kubischen Funktionen. Dabei werden mithilfe der Eigenschaft KeySp1ine
jeweils zwei Kontrollpunkte definiert, die den Verlauf der Funktionskurve bestim-
men.

Die vier Ereignismethoden sind wie iiblich aufgebaut. Hier sehen Sie nur die
erste:

private void bl_Click(...)
{ (FindResource("sbresl") as Storyboard).Begin(bl); }

11.5.2 Keyframes fiir Color

Bei einer Animation mit einem Farbwechsel wird die Klasse ColorAnimation-
UsingKeyFrames verwendet. Im nachfolgenden Projekt AnimKeyColor wird ein
schwarzes Rechteck dargestellt, das zunichst in gleichformiger Geschwindigkeit
innerhalb von sechs Sekunden zu einem weillen Rechteck wird, und zwar mit-
hilfe eines LinearColorKeyFrame (siche Abbildung 11.14). Nach einer Pause von
zwei Sekunden springt die Farbe wieder auf Schwarz, wozu DiscreteColor-
KeyFrame verwendet wird.

[E7] AnimKeyColor @M

Abbildung 11.14 KeyFrame-Animation fiir Farbe

Der XAML-Code:

<Window ... Loaded="Window_Loaded">
<Window.Resources>
{Storyboard x:Key="sbres">
<ColorAnimationUsingKeyFrames
Storyboard.TargetProperty="Fill.Color">
<LinearColorKeyFrame KeyTime="0:0:6" Value="White" />
<DiscreteColorKeyFrame KeyTime="0:0:8" Value="Black" />
<{/ColorAnimationUsingKeyFrames>
</Storyboard>
</Window.Resources>

362

Keyframes | 11.5

{Rectangle x:Name="rc" Width="80" Height="30" Fill="Black"
VerticalAlignment="Top" />
</Window>

Die Ereignismethode:

private void Window_Loaded(...)
{ (FindResource("sbres") as Storyboard).Begin(rc); }

11.5.3 KeyFrames fiir String

Eine Zeichenkette ldsst sich ebenfalls animieren. Dabei wird die Klasse
StringAnimationUsingKeyFrames verwendet. Im nachfolgenden Projekt Anim-
KeyString wechselt der Inhalt eines Textblocks einmal pro Sekunde zwischen
dem Text »Hallo« und dem Text »Welt« hin und her. Das geschieht insgesamt
sechs Sekunden lang, und zwar mithilfe eines DiscreteStringKeyFrame (siche
Abbildung 11.15).

[®7] AnimKeyString é@u]

‘ Hallo ‘

Abbildung 11.15 KeyFrame-Animation fir Zeichenkette

Der XAML-Code:

{Window ... Loaded="Window_Loaded">
<Window.Resources>
<Storyboard x:Key="sbres" RepeatBehavior="0:0:6">
<StringAnimationUsingKeyFrames
Storyboard.TargetProperty="Text">
<DiscreteStringKeyFrame KeyTime="0:0:1" Value="Welt" />
<DiscreteStringKeyFrame KeyTime="0:0:2" Value="Hallo" />
</StringAnimationUsingKeyFrames>
</Storyboard>
</Window.Resources>
<TextBlock x:Name="tb" Width="80" Height="18"
VerticalAlignment="Top">Hallo</TextBlock>
</Window>

Die Ereignismethode:

private void Window_Loaded(...)
{ (FindResource("sbres") as Storyboard).Begin(tbh); }

363

1" | Animation

11.6 Easing Functions

Es gibt eine weitere Méoglichkeit zur Erzeugung eines nicht gleichférmigen Ani-
mationsverlaufs: Sie konnen eine Funktion aus der Gruppe der Easing Functions
verwenden. Diese Beschleunigungsfunktionen bieten zahlreiche Moglichkeiten,
zum Beispiel einen Verlauf gemaB einer quadratischen Funktion, einer Exponen-
tialfunktion oder einer Bounce-Funktion (engl. to bounce = dt. springen, abprallen).

Eine einfache, horizontale Animation kann diese Funktionsverliufe nicht geeig-
net verdeutlichen. Daher wurde im nachfolgenden Projekt AnimEasing eine wei-
tere, vertikale Animation hinzugefiigt. Ein grauer Kreis bewegt sich linear von
links nach rechts und gemal$ einer Easing Function von oben nach unten. Der
Betrachter kann zwischen den verschiedenen Easing Functions wéhlen (siehe
Abbildung 11.16).

: ™
[®7] AnimEasing @m

. EaselnOut +

Cubic
Quartic
Quintic
Power
Back

Bounce -_—
Circle
Elastic
Exponential
Sine

Abbildung 11.146 Animation mit ausgewdhlter Easing Function

Auferdem kann er den EasingMode wiahlen. Diese Eigenschaft bestimmt dartber,
an welcher Stelle des Animationsverlaufs die Funktion eingesetzt wird. Mogliche
Werte aus der gleichnamigen Enumeration sind:

» Easeln: am Anfang des Verlaufs

» EaseOut: am Ende des Verlaufs (dies ist der Standardwert)

» EaselnOut: an Anfang und Ende des Verlaufs

Die Klassen der verschiedenen Easing Functions sind von der abstrakten Klasse

EasingFunctionBase abgeleitet. Falls Sie eine Klasse fiir eine eigene Easing Func-
tion entwickeln, so muss sie ebenfalls von dieser Klasse erben.

364

Easing Functions | 11.6

Der XAML-Code:

<MWindow ...>
<Window.Resources>
{Storyboard x:Key="sbres">
<DoubTeAnimation From="10" To="255" Duration="0:0:3"
Storyboard.TargetProperty="(Canvas.lLeft)" />
<DoubTeAnimation From="10" To="135" Duration="0:0:3"
Storyboard.TargetProperty="(Canvas.Top)">
<DoubleAnimation.EasingFunction>
<CubicEase EasingMode="EaseInOut" />
</DoubleAnimation.EasingFunction>
</DoubleAnimation>
</Storyboard>
</Window.Resources>
<Canvas>
<ET1lipse x:Name="el" Canvas.Top="10" Canvas.lLeft="10"
Fill="Gray" Height="20" Width="20" />
<Button Canvas.Top="130" Canvas.Left="10"
Click="starten">Start</Button>

<ComboBox x:Name="cbmode" Canvas.Top="10" Canvas.Left="190">
<ComboBoxItem>EaseIn</ComboBoxItem>
<ComboBoxItem>EaseQut</ComboBoxItem>

<ComboBoxItem
Selector.IsSelected="True">EaselnOut</ComboBoxItem>

</ComboBox>

<ComboBox x:Name="cbfunc" Canvas.Top="40" Canvas.Left="190">
<ComboBoxItem>Quadratic</ComboBoxItem>
<ComboBoxItem
Selector.IsSelected="True">Cubic</ComboBoxItem>
<ComboBoxItem>Quartic</ComboBoxItem>

</ComboBox>
</Canvas>
</Window>

Der Kreis bewegt sich nach Betitigung des Buttons START innerhalb von drei
Sekunden mit gleichférmiger Geschwindigkeit vom Wert 10 zum Wert 255 von
links nach rechts. Gleichzeitig bewegt er sich gemil8 einer Easing Function vom
Wert 10 zum Wert 135 von oben nach unten.

Als Wert der Eigenschaft EasingFunction der Klasse DoubleAnimation wird der
Funktionstyp festgelegt. Hier ist dies CubicEase mit dem Wert EaseInOut fir die

365

11 | Animation

Eigenschaft EasingMode. Es handelt sich also um eine Beschleunigung gemaf
einer kubischen Funktion zu Anfang und zu Ende des Animationsverlaufs.

Der Betrachter kann mithilfe von zwei ComboBoxen den Funktionstyp und den
EasingMode einstellen. Die Ereignismethode sieht so aus:

private void starten(...)

{
Storyboard sb = FindResource("sbres") as Storyboard;
DoubleAnimation da = sb.Children[1] as DoubleAnimation;

switch (cbfunc.Text)
{
case "Quadratic":
da.EasingFunction
case "Cubic":
da.EasingFunction = new CubicEase(); break;
case "Quartic":
da.EasingFunction = new QuarticEase(); break;
case "Quintic":
da.EasingFunction
case "Power":
PowerEase px = new PowerEase();
px.Power = 10;
da.EasingFunction = px; break;
case "Back":
BackEase bk = new BackEase();
bk.AmpTitude = 2;
da.EasingFunction = bk; break;
case "Bounce":
BounceEase bc = new BounceEase();
bc.Bounces = 1;
bc.Bounciness 1;
da.EasingFunction = bc; break;
case "Circle":
da.EasingFunction = new CircleEase(); break;
case "Elastic":
ElasticEase et = new ElasticEase();
et.Oscillations = 1;
et.Springiness = 1;
da.EasingFunction = et; break;
case "Exponential":
ExponentialEase ep = new ExponentialEase();
ep.Exponent = 3;
da.EasingFunction = ep; break;

new QuadraticEase(); break;

new QuinticEase(); break;

366

Easing Functions | 11.6

case "Sine":
da.EasingFunction = new Sinektase(); break;

EasingFunctionBase efb =
da.EasingFunction as EasingFunctionBase;
switch (cbmode.Text)
{
case "Easeln":
efb.EasingMode = EasingMode.Easeln; break;
case "EaseQut":
efb.EasingMode = EasingMode.EaseOut; break;
case "EaselInQut":
efb.EasingMode = EasingMode.EaselInOut; break;

}
sb.Begin(el);
}

Zundchst wird ein Veweis auf die zweite Animation des Storyboards erzeugt.
AnschlieBend wird der Eigenschaft EasingFunction dieser Animation eine der
Easing Functions gemal der aktuellen Auswahl der ersten ComboBox zugewiesen.

Die Klassen QuadraticEase, CubicEase, QuarticEase, QuinticEase und PowerEase
arbeiten mit einer Funktion gemdl f(x) = x?, x3, x*, x°> beziehungsweise xP. Die
doubTe-Eigenschaft Power der Klasse PowerEase bestimmt den Exponenten p. Der
Standardwert ist 2.

Bei BackEase wird der Wert zunichst leicht zuriickgenommen. Der Grad der
Zurticknahme wird tiber die double-Eigenschaft Amplitude bestimmt. Der Stan-
dardwert ist 1.

Bei BounceEase sehen Sie einen sprunghaften Verlauf der Animation. Die
Integer-Eigenschaft Bounces bestimmt die Anzahl der Spriinge. Der Standard-
wert ist 3. Die double-Eigenschaft Bounciness legt fest, wie elastisch die Anima-
tion ist. Der Standardwert ist 2. Ein niedriger Wert steht fiir eine hohe Elastizitit,
damit ist der Hohenverlust zwischen den Spriingen geringer.

Die Klassen Circlefase und SineEase stehen fiir einen kreisformigen bezie-
hungsweise sinusférmigen Verlauf der Animation.

Bei ElasticEase federt die Animation iiber die Grenzwerte hinaus. Die Integer-
Eigenschaft Oscillations gibt an, wie oft dies geschieht. Der Standardwert ist 3.
Die double-Eigenschaft Springiness sagt etwas {iber die Harte der Feder aus. Der
Standardwert ist ebenfalls 3. Ein niedriger Wert steht fiir eine grofe Hirte und
damit fiir ein schnelleres Abklingen der Bewegung.

367

1" | Animation

Die Klasse ExponentialEase arbeitet mit einer Funktion gemil f(x) = e*. Die
double-Eigenschaft Exponent bestimmt den Exponenten x. Der Standardwert ist 2.

Die aktuelle Auswahl der zweiten ComboBox entscheidet iiber den EasingMode.
Zunichst muss noch ein Verweis auf die zuvor ausgewdhlte Easing Function
erstellt werden. Diese ist in jedem Fall von EasingFunctionBase abgeleitet. Als
Letztes wird die Animation gestartet.

11.7 Pfadanimationen

Eine weitere Gruppe von Klassen ermoglicht Thnen Pfadanimationen. Dabei
bewegt sich das animierte Element entlang einer PathGeometry. Dies wird im
nachfolgenden Projekt AnimPathPoint mithilfe eines Kreises verdeutlicht, dessen
Zentrum sich entlang einer Kurve bewegt, die aus vier Halbkreisen besteht (siche
Abbildung 11.17). Hier wird die Klasse PointAnimationUsingPath verwendet.
Entsprechende ...AnimationUsingPath-Klassen gibt es noch fiir die Datentypen
Double und Matrix.

7] AnimPathPoint B

VAV

Abbildung 11.17 Pfadanimation

Der XAML-Code:

<Window ... Loaded="Window_Loaded">
<Canvas>
<Path Stroke="Black" StrokeThickness="2">
<Path.Data>
<PathGeometry x:Name="pg" >
<PathFigure StartPoint="10,35">
<PathSegmentCollection>
<ArcSegment Point="60,35" Size="25,25"
SweepDirection="Clockwise" />
<ArcSegment Point="110,35" Size="25,25" />
<ArcSegment Point="160,35" Size="25,25"
SweepDirection="Clockwise" />
<ArcSegment Point="210,35" Size="25,25" />
</PathSegmentCollection>

368

Pfadanimationen | 11.7

</PathFigure>
</PathGeometry>
</Path.Data>
</Path>

<Path Fill="LightGray" Stroke="Black" StrokeThickness="2">
<Path.Data>
<ETTipseGeometry x:Name="eg" Center="10,35"
RadiusX="10" RadiusY="10" />
</Path.Data>
</Path>
</Canvas>
</Window>

Dank der Eigenschaftswerte fiir Stroke und StrokeThickness wird der Pfad sicht-
bar gezeichnet. Die Pfadgeometrie ist mit dem Namen pg gekennzeichnet. Das
Zentrum der Ellipsen-Geometrie, die mit dem Namen eg gekennzeichnet ist, liegt
auf dem Startpunkt der Pfadgeometrie.

Der Programmcode zur Erzeugung der Animation sieht so aus:

private void Window_Loaded(...)
{
PointAnimationUsingPath pa = new PointAnimationUsingPath();
pa.PathGeometry = pg;
pa.Duration = TimeSpan.Parse("0:0:5");
pa.RepeatBehavior = RepeatBehavior.Forever;
pa.AutoReverse = true;
pa.AccelerationRatio = 0.4;
pa.DecelerationRatio = 0.4;
eg.BeginAnimation(EllipseGeometry.CenterProperty, pa);

}

Es wird ein neues Objekt der Klasse PointAnimationUsingPath erzeugt. Neben
den bekannten Eigenschaften (Duration, RepeatBehavior, ...) wird der Eigen-
schaft PathGeometry ein Verweis auf die Pfadgeometrie zugewiesen. Die Methode
BeginAnimation() startet die Animation und ordnet sie der Dependency Property
der Eigenschaft Center zu.

369

Multimedia-Elemente sowie die Mdglichkeit zur Steuerung durch
Sprache und zur Ausgabe von Sprache erleichtern die Bedienung
Ihrer Anwendungen.

12 Audio und Video

In diesem Kapitel werden verschiedenen Klassen vorgestellt, mit deren Hilfe man
Audio- und Video-Ausgaben in WPF-Anwendungen steuern kann. Auferdem
bietet die WPF Klassen zur Ausgabe, zur Eingabe und zur Erkennung von Spra-
che. Dies bietet weitere Moglichkeiten fiir die vereinfachte Bedienung der
Anwendungen.

12.1 Audio

Die Klassen SoundPlayer und SoundPlayerAction dienen zum Steuern der Aus-
gabe von Audio-Dateien des Typs WAV. Systemténe konnen mit der Klasse
SystemSound wiedergegeben werden.

Die Wiedergabe von Mediendateien mit Audio- und Video-Komponenten wird
mithilfe der Klassen MediaPlayer und MediaElement gesteuert.

12.1.1 SoundPlayer in Programmcode
Die Klasse SoundPlayer gibt Ihnen eine einfache Moglichkeit, WAV-Dateien abzu-

spielen. Die Klasse bietet unter anderem folgende Eigenschaften und Methoden:

» Play(): Spielt eine WAV-Datei asynchron ab. Asynchron bedeutet, dass die
Aktion parallel zu anderen Aktionen erfolgen kann und unterbrochen werden
kann.

» PlaySync(): Spielt eine WAV-Datei synchron ab. Synchron bedeutet, dass die
Aktion erst nach Beendigung anderer Aktionen erfolgen kann und nicht
unterbrochen werden kann.

» PlaylLooping(): Spielt eine WAV-Datei unendlich oft asynchron ab.
» Stop(): Unterbricht das asynchrone Abspielen einer WAV-Datei.
» Load(): Lidt eine WAV-Datei synchron.

37N

12 | Audio und Video

» LoadAsync(): Lidt eine WAV-Datei asynchron.

» SoundLocation: Beinhaltet beziehungsweise setzt den Pfad und den Namen
der WAV-Datei.

Die drei Play-Methoden laden die WAV-Datei vorher, falls sie noch nicht geladen
ist, und spielen die Datei von Beginn an ab. Sie konnen Thre WPF-Anwendungen
zusammen mit den darin verwendeten WAV-Dateien installieren. Dazu missen
Sie die Dateien, wie andere Ressourcen auch, per Drag&Drop zu Threm Projekt
hinzufiigen. AnschlieBend miissen Sie deren Eigenschaft In Ausgabeverzeichnis
kopieren auf den Wert Immer kopieren setzen. Als Wert fur die Eigenschaft
SoundLocation gentigt dann die Angabe des Dateinamens.

Die Anwendung der Methoden Load() und LoadAsync() empfiehlt sich, falls Sie
beim Wechsel auf eine neue, umfangreiche WAV-Datei den Ladevorgang nicht
abwarten, sondern bereits vorher erledigen mochten.

Im ersten Teil des nachfolgenden Projekts AVSound konnen Sie die genannten
Maoglichkeiten der Klasse SoundPlayer nutzen (siche Abbildung 12.1).

7 AVSound (B

(Gitarrensound.wav -
| Asynchron || synchron || Dauemd |
(Asterisk -]

Lo

Abbildung 12.1 SoundPlayer und SystemSound

Der XAML-Code des ersten Teils:

<MWindow ...>
<{StackPanel>

<ComboBox x:Name="cbwav" Width="160" Margin="3">

<ComboBoxItem Selector.IsSelected="True">
Gitarrensound.wav</ComboBoxItem>

<ComboBoxItem>GAkkord.wav</ComboBoxItem>
<ComboBoxItem>tada.wav</ComboBoxItem>

</ComboBox>

<WrapPanel HorizontalAlignment="Center">
<Button Width="80" Margin="3" Click="async_spielen">

372

Audio | 124

Asynchron</Button>

<Button Width="80" Margin="3" Click="sync_spielen">
Synchron</Button>

<Button Width="80" Margin="3" Click="dauernd_spielen">
Dauernd</Button>

</WrapPanel>
<Button Width="80" Margin="3" Click="stoppen">Stop</Button>

</Window>
Die ComboBox bietet die Auswahl zwischen den drei projektinternen WAV-
Dateien. Die drei Buttons fithren zu den verschiedenen Play-Methoden in der

nachfolgenden Klasse. Es werden die Namespaces System.Media und System.IO
benotigt.

public partial class MainWindow : Window
{
SoundPlayer sp;
public MainWindow()
{
InitializeComponent();
sp = new SoundPlayer();

private void async_spielen(...)

{ wechseln(); sp.Play(); !}

private void sync_spielen(...)

{ wechseln(); sp.PlaySync(); 1}

private void dauernd_spielen(...)

{ wechseln(); sp.PlayLooping(); }

private void wechseln()

{
if (IFile.Exists(cbwav.Text)) return;
sp.SoundLocation = cbwav.Text;

}

private void stoppen(...) { sp.Stop(); 1}

}

Das SoundPlayer-Objekt wird als Member der Klasse erzeugt, ansonsten wire das
Anhalten nicht moglich. Vor dem Wechsel der WAV-Datei wird gepriift, ob die
Datei, deren Name in der ComboBox ausgewdhlt wurde, im Projekt existiert.

373

12 | Audio und Video

12.1.2 SystemSound

Die Klasse SystemSound dient zum Abspielen von Systemtonen, die mit bestimmten
Windows-Ereignissen verbunden sind. Im zweiten Teil des Projekts AVSound kon-
nen Sie sich die verschiedenen Systemtdne anhdren (siehe auch Abbildung 12.1).

Der XAML-Code des zweiten Teils:

<MWindow ...>

<ComboBox x:Name="cbsys" Width="160" Margin="3">
<ComboBoxItem Selector.IsSelected="True">
Asterisk</ComboBoxItem>
<ComboBoxItem>Beep</ComboBoxItem>
<ComboBoxItem>Exclamation</ComboBoxItem>
<ComboBoxItem>Hand</ComboBoxItem>
<ComboBoxItem>Question</ComboBoxItem>

</ComboBox>
<Button Width="80" Margin="3" Click="system_spielen">
Systemton</Button>
</StackPanel>
</Window>

Die ComboBox bietet die Auswahl zwischen finf Systemt6énen. Die Ereignisme-
thode sieht so aus:

private void system_spielen(...)
{
switch (cbsys.Text)
{
case "Asterisk":
SystemSounds.Asterisk.Play(); break;
case "Beep":
SystemSounds.Beep.Play(); break;
case "Exclamation":
SystemSounds.Exclamation.Play(); break;
case "Hand":
SystemSounds.Hand.Play(); break;
case "Question":
SystemSounds.Question.Play(); break;

}

Zunichst wird ein Systemton mithilfe der entsprechenden statischen Eigenschaft
der Klasse SystemSounds ausgewdhlt (Asterisk, Beep, Exclamation, Hand und
Question). Diese Eigenschaft liefert einen Verweis auf ein Objekt der Klasse

374

Audio

SystemSound. Anschliefend spielt die Methode P1ay() der Klasse SystemSound
den Systemton asynchron ab.

12.1.3 SoundPlayer in XAML

Die Klasse SoundPlayerAction dient zum asynchronen Abspielen einer WAV-
Datei aus dem XAML-Code heraus. Das SoundPlayerAction-Objekt wird dazu in
einen Event Trigger eingebettet. Im nachfolgenden Projekt AVSoundAction sehen
Sie ein Beispiel.

<MWindow ...>
<StackPanel>
<Rectangle Fill="Gray" Width="80" Height="30">
<Rectangle.Triggers>
<EventTrigger RoutedEvent="Rectangle.MouseEnter">
<SoundPTayerAction Source="Gitarrensound.wav" />
</EventTrigger>
<{/Rectangle.Triggers>
<{/Rectangle>
</StackPanel>
</Window>

Es wird ein graues Rechteck dargestellt. Beim Betreten des Rechtecks mit der
Maus wird die WAV-Datei abgespielt. Die Datei wurde dem Projekt per
Drag&Drop hinzugefiigt. Die Eigenschaft In Ausgabeverzeichnis kopieren
wurde auf den Wert Immer kopieren gesetzt. Die Eigenschaft Source vom Typ Uri
legt Pfad und Namen zur Datei fest.

12.1.4 MaediaPlayer fiir Audio

Die Klasse MediaPlayer dient zur Wiedergabe von Mediendateien, sowohl fur
Audio als auch flir Video. Es konnen zahlreiche Typen von Mediendateien abgespielt
werden. Sie bietet unter anderem die folgenden Eigenschaften und Methoden:

» Open(): zum Offnen einer Mediendatei mithilfe eines URI

» Play(): zur asynchronen Wiedergabe einer Mediendatei, ab der aktuellen
Position (siehe die Eigenschaft Position)

» Position: vom Typ TimeSpan, dient zur Einstellung der Position innerhalb der
Mediendatei, Standardwert O

» Pause(): zum Anhalten der Wiedergabe
» Stop(): zum Beenden der Wiedergabe

» IsMuted: vom Typ Bool, zum Stummschalten

375

| 124

12 | Audio und Video

» Balance: vom Typ double, zur Einstellung der Balance zwischen linkem und
rechtem Lautsprecher, Werte zwischen -1 (nur links) und +1 (nur rechts),

Standardwert O

» SpeedRatio: vom Typ double, zur Einstellung eines Faktors fiir die Wieder-
gabe-Geschwindigkeit. Der Standardwert 1 steht fiir die normale Geschwin-

digkeit.

» Volume: vom Typ double, zur Einstellung eines Faktors fur die Lautstirke zwi-
schen 0 und 1. Der Standardwert ist 0.5.

Im nachfolgenden Projekt AVMediaAudio werden die genannten Moglichkeiten
mithilfe einer MP3-Datei verdeutlicht (siehe Abbildung 12.2). Die Datei wurde
dem Projekt per Drag&Drop hinzugefiigt. Die Eigenschaft In Ausgabeverzeichnis
kopieren wurde auf den Wert Immer kopieren gesetzt.

[m°] AVMediaAudio

bl =1 |

D Stumm

Balance: D
-
SpeedRatio: @)
Position: D
—
Volume: U

o

Abbildung 12.2 Wiedergabe einer Mediendatei

Der XAML-Code:

<MWindow ...>

{StackPanel>
<WrapPanel

HorizontalAlignment="Center" Margin="3">

<Button Margin="3" Click="abspielen">Play</Button>
<Button Margin="3" Click="anhalten">Pause</Button>
<Button Margin="3" Click="beenden">Stop</Button>
<CheckBox x:Name="cbmute" VerticalAlignment="Center"
Click="stumm_schalten">Stumm</CheckBox>

</WrapPanel>
<WrapPanel>

<Label Width="75">Balance:</Label>

<Slider x:Name="slbal" Minimum="-1" Maximum="1" Value="0"
Width="200" TickPlacement="BottomRight"
TickFrequency="0.2" AutoToolTipPlacement="BottomRight"
AutoToolTipPrecision="1" ValueChanged="balance" />

</WrapPanel>

376

Audio | 124

<WrapPanel>
<Label Width="75">SpeedRatio:</Label>
<Slider x:Name="slgsw" Minimum="0" Maximum="2" Value="1"
Width="200" TickPlacement="BottomRight"
TickFrequency="0.2" AutoToolTipPlacement="BottomRight"
AutoToolTipPrecision="1" ValueChanged="geschwindigkeit"/>
</WrapPanel>
<WrapPanel>
<Label Width="75">Position:</Label>
<Slider x:Name="slpos" Minimum="0" Maximum="348"
Value="0" Width="200" TickPlacement="BottomRight"
TickFrequency="30" AutoToolTipPlacement="BottomRight"
ValueChanged="position" />
</WrapPanel>
<WrapPanel>
<Label Width="75">Volume:</Label>
<STider x:Name="slvol" Minimum="0" Maximum="1"
Value="0.5" Width="200" TickPlacement="BottomRight"
TickFrequency="0.1" AutoToolTipPlacement="BottomRight"
AutoToolTipPrecision="1" ValueChanged="lautstaerke" />
</WrapPanel>
</StackPanel>
</Window>

Die drei Buttons und die CheckBox dienen zum Abspielen, Anhalten, Beenden
und Stummschalten. Die vier Slider sind zum Einstellen der Eigenschaften
Balance, SpeedRatio, Position und Volume. Sie sind zu Beginn auf die jeweiligen
Standardwerte eingestellt und reichen iiber die gesamte Spanne der jeweiligen
Werte. Der aktuelle Wert wird mithilfe des AutoToolTip angezeigt.

Es folgen die Ereignismethoden innerhalb der Fensterklasse. Fiir die Priifung, ob
die Datei existiert, wird der Namespace System. 10 bendtigt.

public partial class MainWindow : Window
{
MediaPlayer mp = new MediaPlayer();
public MainWindow()
{
InitializeComponent();
if (File.Exists("Kalimba.mp3"))
mp.Open(new Uri("Kalimba.mp3", UriKind.Relative));

private void abspielen(...) { mp.Play(); }
private void anhalten(...) { mp.Pause(); }
private void beenden(...) { mp.Stop(); }

377

12 | Audio und Video

private void stumm_schalten(...)
{ mp.IsMuted = (bool)cbmute.IsChecked; }

private void balance(object sender,
RoutedPropertyChangedEventArgs<double> e)

{ mp.Balance = slbal.Value; }

private void geschwindigkeit(object sender,
RoutedPropertyChangedEventArgs<double> e)

{ mp.SpeedRatio = slgsw.Value; }

private void position(object sender,
RoutedPropertyChangedEventArgs<double> e)

{ mp.Position = new TimeSpan(0, 0, (int)slpos.Value); }

private void Tautstaerke(object sender,
RoutedPropertyChangedEventArgs<double> e)

{ mp.Volume = slvol.Value; }

}

Die Methode Open () benétigt einen URI als Parameter. Die Eigenschaft IsChecked
der CheckBox ist vom Typ bool? und muss fiir die Eigenschaft IsMuted des Media-
Player-Objekts umgewandelt werden. Die Sliderwerte konnen direkt fir die
Eigenschaften des MediaPlayer-Objekts genutzt werden. Eine Ausnahme ist der
Slider fur die Eigenschaft Position. Er liefert eine Anzahl in Sekunden. Diese
muss zundchst in ein TimeSpan-Objekt umgewandelt werden.

12.1.5 MoediaElement fiir Audio

Die Klasse MediaElement dient zur Verwendung des Media-Players in XAML. Dies
geschieht mithilfe eines Event Triggers, also ohne Programmcode. Ein Media-
Element-Objekt ist ein Steuerelement. Sie kénnen es sichtbar machen, zum Bei-
spiel mithilfe eines Rahmens und Werten fiir die Eigenschaften Height und
Width. Dies ist im Falle einer reinen Audio-Wiedergabe nicht unbedingt notig.

Im nachfolgenden Projekt AVMediaStory wird ein graues Rechteck zum Starten
und Beenden der Wiedergabe einer MP3-Datei verwendet (siehe Abbildung 12.3).
Die Datei wurde dem Projekt per Drag&Drop hinzugefiigt. Die Eigenschaft In
Ausgabeverzeichnis kopieren wurde auf den Wert Immer kopieren gesetzt.

8] AVMediaStory =

| N

Abbildung 12.3 Sichtbares MediaElement

378

Audio | 124

Der XAML-Code:

<MWindow ...>
<MWrapPanel>
<Border BorderBrush="Black" BorderThickness="1">
{MediaElement Width="80" Height="30" Margin="1"
MediaFailed="medienfehler" x:Name="me" />
</Border>
{Rectangle Fill="Gray" Width="80" Height="30" Margin="1">
<Rectangle.Triggers>
<EventTrigger RoutedEvent="Rectangle.MousekEnter">
<{BeginStoryboard Name="sb">
{Storyboard>
{MediaTimeline Source="Kalimba.mp3"
Storyboard.TargetName="me" />
</Storyboard>
</BeginStoryboard>
</EventTrigger>
<EventTrigger RoutedEvent="Rectangle.Mouseleave">
<StopStoryboard BeginStoryboardName="sb" />
<{/EventTrigger>
<{/Rectangle.Triggers>
<{/Rectangle>
</WrapPanel>
</Window>

Zundchst wird das Steuerelement des Typs MediaElement erzeugt. Das Ereignis
MediaFailed tritt nach einem Fehler beim Laden oder bei der Wiedergabe auf. Sie
kénnen das Ereignis mit Programmcode verbinden; ansonsten wiirden Sie keine
Fehlermeldung bekommen.

Das Betreten und das Verlassen des Rechtecks mit der Maus fithrt zum Starten
beziehungsweise Beenden der Wiedergabe. Das Objekt der Klasse MediaTimeline
greift auf das MediaElement-Objekt zu. Die Eigenschaft Source vom Typ Uri steht
fiir die Medienquelle, die vom MediaElement abgespielt wird.

Sie hitten der Eigenschaft Source bereits im MediaElement-Objekt ihren Wert
geben konnen. Dann wire das Medium unmittelbar nach dem Laden der Anwen-
dung abgespielt worden.

Die Ereignismethode zur Ausgabe eines Fehlers sieht so aus:

private void medienfehler(object sender,
ExceptionRoutedEventArgs e)
{ MessageBox.Show(e.ErrorException.Message); |}

379

12 | Audio und Video

12.2 Video

Die bereits im Audio-Abschnitt vorgestellten Klassen MediaPlayer und
MediaElement dienen auch zum Steuern der Ausgabe von Video-Dateien.

12.2.1 MaediaElement fiir Video

In diesem Abschnitt wird im Projekt AVMediaVideo ein MedaE1ement-Objekt zur
Wiedergabe eines Videos aus einer MPG-Datei eingesetzt. Das Video wird ver-
kleinert, wobei das Verhiltnis zwischen Hohe und Breite gleich bleibt. Auerdem
wird es ausgeschnitten, indem der Eigenschaft C11p eine Ellipsengeometrie zuge-
wiesen wird (siehe Abbildung 12.4). Es werden die bekannten Storyboard-
Objekte zur Steuerung der Wiedergabe verwendet.

(9 AVMediavideo e

L

Abbildung 12.4 MediaElement steuert Video.

Der XAML-Code:

<MWindow ...>
<StackPanel>
<WrapPanel HorizontalAlignment="Center" Margin="3">
<WrapPanel.Triggers>
<EventTrigger RoutedEvent="Button.Click"
SourceName="starten">
<BeginStoryboard Name="sb">
{Storyboard>
{MediaTimeline Source="SynChiralRotate.mpg"
Storyboard.TargetName="me" />
</Storyboard>
</BeginStoryboard>
</EventTrigger>

380

Sprachausgabe

<EventTrigger RoutedEvent="Button.Click"
SourceName="anhalten">
<PauseStoryboard BeginStoryboardName="sb" />
<{/EventTrigger>

</WrapPanel.Triggers>
<Button x:Name="starten" Margin="3">Play</Button>

</WrapPanel>
<WrapPanel HorizontalAlignment="Center">
<{MediaElement x:Name="me" Width="150" Height="168"
MediaFailed="medienfehler">
<MediaElement.Clip>
<ETlipseGeometry Center="75,84" RadiusXx="75"
RadiusY="96" />
</MediaElement.Clip>
</MediaElement>
</WrapPanel>
</StackPanel>
</Window>

Die Event Trigger der Buttons sind im tbergeordneten WrapPanel angeordnet.
Der jeweilige Button wird tiber die Eigenschaft SourceName ausgewdhlt. In der
Eigenschaft C11p des MediaElement-Objekts sorgt ein £111pseGeometry-Objekt fir
den passenden Bildausschnitt aus dem Video.

12.3 Sprachausgabe

Die Klasse SpeechSynthesizer aus dem Namespace System.Speech.Synthesis
der .NET-Komponente System.Speech dient dazu, geschriebenen Text in Sprache
umzusetzen. Damit haben Sie die Moglichkeit, Ihre Anwendung um ein Ausgabe-
medium zu erweitern.

Mithilfe der Klasse PromptBuilder werden Texte zusammengesetzt, die in Form
von Sprache ausgegeben werden sollen. Die Markierungssprache SSML dient
dabei als Basis zur Erzeugung der Textelemente.

12.3.1 Text ausgeben

Der Text fur ein SpeechSynthesizer-Objekt kann aus einer Zeichenkette, einem
Prompt-Objekt (zum Beispiel mit einer Text-Datei) oder einem PromptBuilder-
Objekt (siehe nidchster Abschnitt) stammen. Der gesprochene Text kann zum

381

| 12.3

12 | Audio und Video

Anhoren an einen Lautsprecher geleitet werden oder in einer WAV-Datei gespei-
chert werden.

Die Klasse SpeechSynthesizer bietet unter anderem folgende Eigenschaften,

Me

>
>

>

Im

thoden und Ereignisse:

Speak(): Der angegebene Text wird synchron gesprochen.
SpeakAsync(): Der angegebene Text wird asynchron gesprochen.
Pause(): Eine asynchrone Sprachausgabe wird angehalten.

Resume (): Eine asynchrone, angehaltene Sprachausgabe liuft weiter.

Das Ereignis SpeakCompleted tritt nach Beendigung einer asynchronen Aus-
gabe ein.

Volume: Dient zur Regelung der Ausgabe-Lautstirke und ist vom Typ Integer.

SetOutputToDefaultAudioDevice(): Es wird die Standard-Ausgabe genutzt.
Dies ist normalerweise der Lautsprecher.

SetOutputToWaveFile(): Es wird eine WAV-Datei zur Ausgabe genutzt. Falls
die Datei bereits existiert, wird die Ausgabe am Ende angehingt.
SelectVoice(): Wihlt die angegebene Stimme zur Sprachausgabe aus den
installierten Stimmen aus.

GetInstalledVoices: Eine Auflistung der installierten Stimmen. Ohne weitere
zugekaufte Stimmen gibt es nur ein Element in der Auflistung: MICROSOFT
ANNA.

nachfolgenden Projekt AVSynthesis wird eine Anwendung der genannten

Maoglichkeiten dargestellt (siehe Abbildung 12.5).

: ™
] AVSynthesis = (=)

Text Syn / Asy Lautstarke Ausgabe
@ kurz @ synchron = @ laut @ Lautsprecher
@ lang © asynchron © leise © WAV-Datei

Anhalten| | Weiter

[St[mme wechseln} [Anzahl Stimmen]

[WAV absp]elen] [T)(T abspielen] [TexlBUx abspielen]

This is Microsoft Anna speaking

8

Abbildung 12.5 Sprachausgabe, Einstellméglichkeiten

382

Sprachausgabe | 12.3

Der XAML-Code:

<MWindow ...>
<{StackPanel>
<WrapPanel HorizontalAlignment="Center">

<RadioButton IsChecked="True" Checked="rbkurz">
kurz</RadioButton>
<RadioButton Checked="rblang">lang</RadioButton>

<RadioButton x:Name="rbs" IsChecked="True"
Click="rbsyn">synchron</RadioButton>
<RadioButton Click="rbsyn">asynchron</RadioButton>

<RadioButton IsChecked="True" Checked="rblaut">
laut</RadioButton>
<RadioButton Checked="rbleise">leise</RadioButton>

<RadioButton IsChecked="True"
Checked="rblautsprecher">Lautsprecher</RadioButton>

<RadioButton Checked="rbwavdatei">
WAV-Datei</RadioButton>

</WrapPanel>

<WrapPanel HorizontalAlignment="Center">
<Button Margin="3" Click="sprechen">Sprechen</Button>
<Button Margin="3" x:Name="pause_button" Click="anhalten"

IsEnabled="False">Anhalten</Button>
<Button Margin="3" x:Name="resume_button" Click="weiter"
IsEnabled="False">Weiter</Button>

</WrapPanel>

<WrapPanel HorizontalAlignment="Center">
<Button Margin="3" Click="sw">Stimme wechseln</Button>
<Button Margin="3" Click="as">Anzahl Stimmen</Button>

</WrapPanel>

<WrapPanel HorizontalAlignment="Center">
<Button Margin="3" Click="wa">WAV abspielen</Button>
<Button Margin="3" Click="txa">TXT abspielen</Button>
<Button Margin="3" Click="tba">TextBox abspielen</Button>

</WrapPanel>

<TextBox x:Name="tb" TextWrapping="Wrap" Height="40"
Margin="3">This is Microsoft Anna speaking</TextBox>

</StackPanel>
</Window>

383

12 | Audio und Video

Die ersten beiden RadioButtons dienen zum Wechseln zwischen einer langen
und einer kurzen Zeichenkette, die jeweils gesprochen werden kann. Das nichste
Paar RadioButtons bestimmt dariiber, ob der Text mit SpeakSync() oder
SpeakAsync() gesprochen wird. Im zweiten Fall werden die beiden Buttons frei-
gegeben, die die Methoden Pause () und Resume () aufrufen. Uber das dritte Paar
RadioButtons wird der Wert der Eigenschaft Volume festgelegt. Das letzte Paar
RadioButtons dient zur Auswahl des Ausgabemediums mithilfe einer der
SetOutputTo...-Methoden.

Der Button SPRECHEN startet die Sprachausgabe. Nur im Falle einer asynchronen
Ausgabe tritt am Ende das Ereignis SpeakCompleted auf. Die nidchsten beiden But-
tons rufen die Methode SelectVoice() auf beziehungsweise den Wert der Eigen-
schaft Count der Auflistung GetInstalledVoices ab.

Der Button WAV ABSPIELEN fithrt zur Methode Play() eines SoundPlayer-
Objekts. Die WAV-Datei sollte nicht in dem Moment abgespielt werden, wih-
rend eine Ausgabe in dieselbe WAV-Datei erfolgt. Der Button TEXTBOX ABSPIELEN
dient dazu, den Inhalt der unten stehenden Textbox mithilfe der Methode
Speak() auszugeben.

Zur Ausgabe des Inhalts einer Textdatei tiber den Button TXT ABSPIELEN wird ein
neues FilePrompt-Objekt erzeugt. Der erste Konstruktor-Parameter ist die Datei
mit dem Pfad und Namen oder dem URI. Der zweite Konstruktor-Parameter ist
ein Element der Enumeration SynthesisMediaType. Mogliche Werte sind:

» Ssml: Die Datei beinhaltet Inhalt in SSML, der Speech Synthesis Markup Lan-
guage, einer Markierungssprache zur Steuerung von Sprachausgabe.

» Text: Die Datei beinhaltet lesbaren Text.

» WaveAudio: Die Datei ist vom Typ WAV.

Dem Projekt muss ein Verweis auf die .NET-Komponente System. Speech hinzuge-
fiigt werden. Die Fensterklasse benotigt die Namespaces System. Speech. Synthesis,
System.IO und System.Media.

public partial class MainWindow : Window
{
SpeechSynthesizer syn = new SpeechSynthesizer();
string Sprechtext;
public MainWindow()
{
InitializeComponent();
syn.SpeakCompleted += new
EventHandler<SpeakCompletedEventArgs>(sprechen_beendet);
File.Delete("ausgabe.wav");

384

Sprachausgabe | 12.3

private void rbkurz(...)

{ Sprechtext = "This is my first example"; }

private void rblang(...)

{ Sprechtext = "Berlin is the capital city of ..."; !

private void rbsyn(...)

{
pause_button.IsEnabled = !((bool)rbs.IsChecked);
resume_button.IsEnabled = !((bool)rbs.IsChecked);

private void rblaut(...) { syn.Volume = 100; }
private void rbleise(...) { syn.Volume = 50; }

private void rblautsprecher(...)

{ syn.SetOutputToDefaultAudioDevice(); }
private void rbwavdatei(...)

{ syn.SetOutputToWaveFile("ausgabe.wav"); }

private void sprechen(...)
{
if ((bool)rbs.IsChecked)
syn.Speak(Sprechtext);
else
syn.SpeakAsync(Sprechtext);

private void sprechen_beendet(object sender,
SpeakCompletedEventArgs e)
{ MessageBox.Show("Sprachausgabe beendet"); }

private void anhalten(...) { syn.Pause(); |
private void weiter(...) { syn.Resume(); }

private void sw(...) { syn.SelectVoice("Microsoft Anna");

private void av(...)

{ MessageBox.Show("Anzahl installierte Stimmen:
+ syn.GetInstalledVoices().Count); }

private void wa(...)

{
if(!File.Exists("ausgabe.wav")) return;
SoundPTlayer sp = new SoundPlayer("ausgabe.wav");

}

385

12 | Audio und Video

sp.Play();

private void txa(...)
{
FilePrompt fp = new FilePrompt(
"wpf.txt", SynthesisMediaType.Text);
if ((bool)rbs.IsChecked)
syn.Speak(fp);
else
syn.SpeakAsync(fp);

private void tba(...)
{
if ((bool)rbs.IsChecked)
syn.Speak(tb.Text);
else
syn.SpeakAsync(tb.Text);

}

Der Zugriff auf das neu erzeugte SpeechSynthesizer-Objekt ist innerhalb der
gesamten Klasse mdglich. Der hinzugefiigte EventHandler fir das Ereignis
SpeakCompleted verweist auf die Methode sprechen_beendet ().

12.3.2 Text zusammensetzen

Die Klasse PromptBuilder dient dazu, einen Text aus verschiedenen Elementen
zusammenzusetzen und fiir die Sprachausgabe vorzubereiten. Ein PromptBuilder-
Objekt kann anschliefend durch ein SpeechSynthesizer-Objekt ausgegeben wer-
den.

Die Klasse PromptBuilder basiert auf der SSML (Speech Synthesis Markup Langu-
age), einer Markierungssprache zur Steuerung von Sprachausgabe (siehe http://
www.w3.0rg/TR/speech-synthesis). Die Klasse bietet weniger Moglichkeiten als die
Sprache, ist aber einfacher zu handhaben. Im Folgenden sind einige Eigenschaf-
ten und Methoden aufgefiihrt:

» ClearContent(): Dient zum Ldschen des Textes, damit ein neuer Text zusam-
mengesetzt werden kann.

» StartStyle(): Dient zum Auswéhlen und Starten eines Sprechstils fiir einen
Teiltext. Ein Sprechstil ist vom Typ PromptStyle und besitzt unter anderem
seine eigene Geschwindigkeit und Lautstarke.

386

Sprachausgabe | 12.3

» EndStyle(): Dient zum Schliefen eines Sprechstils. Ein gestarteter Sprechstil
muss geschlossen werden.

» AppendText(): Dient zum Hinzufiigen von einfachem Text.

» AppendTextWithHint(): Dient zum Hinzufiigen von Text, der auf eine
bestimmte Weise gesprochen werden soll.

» AppendBreak(): Dient zum Hinzufiigen einer Pause.

» ToXml(): Dient zum Ausgeben in SSML-Form in eine XML-Datei.

Im nachfolgenden Projekt AVPromptBuilder konnen Sie sich zwei verschiedene
Texte anhoren (sieche Abbildung 12.6). Der erste Text gibt eine Rechenaufgabe
wieder, die Sie eingeben. Der zweite Text gibt einen Text aus, der einen Satz, eine

Uhrzeit und einzelne Buchstaben beinhaltet. Dem Projekt muss ein Verweis auf
die .NET-Komponente System. Speech hinzugefiigt werden.

(5] AVPromptBuilder e 5 S

28 + 93 =121

[Text, Buchstaben und Zeit]

Abbildung 12.6 Ausgabe eines PromptBuilder-Objekts

Der XAML-Code:

<MWindow ...>
<StackPanel>
<WrapPanel HorizontalAlignment="Center" Margin="3">
<{TextBox x:Name="tbl" Width="40" Margin="3"
TextChanged="kontrolle"></TextBox>
{TextBlock VerticalAlignment="Center"
Margin="3">+</TextBlock>
{TextBox x:Name="tb2" Width="40" Margin="3"
TextChanged="kontrolle"></TextBox>
{TextBlock VerticalAlignment="Center"
Margin="3">=</TextBlock>
{TextBlock x:Name="tb3" Width="40"
VerticalAlignment="Center" Margin="3"></TextBlock>
</WrapPanel>
<Button Width="80" Click="rechnen" Margin="3">
Rechnen</Button>
<Button Width="160" Click="text" Margin="3">
Text, Buchstaben und Zeit</Button>

387

12 | Audio und Video

</StackPanel>
</Window>

Eine Anderung in einer Textbox fithrt zur Methode kontrolle().

Es folgt die Fensterklasse, die hier in einzelne Stiicke zerlegt wurde, um sie besser
erldutern zu konnen. Sie benotigt die Namespaces System. Speech.Synthesis und
System.I0.

public partial class MainWindow : Window
{

SpeechSynthesizer syn;

PromptBuilder pb;

double tblwert, tb2wert;

public MainWindow()

{
InitializeComponent();
syn = new SpeechSynthesizer();
pb = new PromptBuilder();

private void rechnen(...)

{
pb.ClearContent();
PromptStyle ps = new PromptStyle();
ps.Rate = PromptRate.Slow;
ps.Volume = PromptVolume.Loud;
pb.StartStyle(ps);
pb.AppendText(tblwert + "+" + tb2wert + "=" + tb3.Text);
pb.EndStyle();
xml_ausgabe(pb);
syn.Speak(pb);

Die beiden double-Variablen tblwert und tb2wert dienen zur Speicherung der
eingegebenen Zahlenwerte.

In der Methode rechnen() erwartet die Methode StartStyle() ein Objekt des
Typs PromptStyle fiir den Sprachstil. Sie konnen fiir diesen Stil unter anderem
Folgendes einstellen:

» Die Eigenschaft Rate vom Typ PromptRate fiir die Geschwindigkeit. Sie
bekommt Werte aus der gleichnamigen Enumeration, von ExtraFast bis
ExtraSTow.

388

Sprachausgabe | 12.3

» Die Eigenschaft Volume vom Typ PromptVolume fiir die Lautstirke. Die Werte
aus der gleichnamigen Enumeration reichen von Extraloud bis ExtraSoft.

private void text(...)

{
pb.ClearContent();
pb.AppendText("Now it is");
pb.AppendTextWithHint(DateTime.Now.ToShortTimeString(),

SayAs.Timel2);

pb.AppendBreak(new TimeSpan(0, 0, 1));
pb.AppendText("This is the Windows Presentation Foundation");
pb.AppendBreak(new TimeSpan(0, 0, 0, 300));
pb.AppendTextWithHint("WPF", SayAs.SpellOut);
syn.Speak(pb);

Der zweite Parameter der Methode AppendTextWithHint() ist ein Objekt des
Typs SayAs. Damit wird festgelegt, auf welche Weise der Text ausgegeben werden
soll. Mégliche Werte kommen aus der gleichnamigen Enumeration.

Die Methode AppendBreak() zum Einfiigen einer Pause erwartet ein TimeSpan-
Objekt fur eine Zeitspanne oder ein PromptBreak-Objekt. Die gleichnamige Enu-
meration bietet Werte von Extralarge bis ExtraSmall.

private void xml_ausgabe(PromptBuilder pb)
{
FileStream fs = new FileStream("rechnen.xml",
FileMode.Create);
StreamWriter sw = new StreamWriter(fs);
sw.Write(pb.ToXm1());
sw.Close();

Die Methode Toxm1 () liefert ein SSML-Dokument in einer XML-Datei. Hier sehen
Sie ein Beispiel mit den oben genannten Werten fiir das PromptStyle-Objekt:

<?xml version="1.0"7>
{speak xml:Tang="de-DE"
xmlins="http://www.w3.0rg/2001/10/synthesis" version="1.0">
<prosody volume="Toud" rate="slow">
23+38=61
<{/prosody>
</speak>

389

12 | Audio und Video

Als Letztes folgt in der Fensterklasse die Methode kontrolle(). Darin findet eine
Kontrolle der eingegebenen Zahlen statt.

private void kontrolle(object sender, TextChangedEventArgs e)
{
bool korrekt = true;
if (!IsLoaded) return;
if (tbl.Text == "" || th2.Text == "")
{
th3.Text = "";
return;

try { tblwert = Convert.ToDouble(tbl.Text); }
catch { korrekt = false; }
try { tb2wert = Convert.ToDouble(tbh2.Text); }
catch { korrekt = false; }

if(korrekt)

tb3.Text = (tblwert + tb2wert).ToString();
else

th3.Text = "Fehler";

}

Eine Ausnahmebehandlung sorgt dafiir, dass als Ergebnis »Fehler« erscheint,
sobald in einer Textbox keine giiltige Zahl steht.

12.4 Spracheingabe

Die Klassen des Namespaces System.Speech.Recognition aus der .NET-Kompo-
nente System. Speech dienen dazu, gesprochene Worte zu verstehen. Diese Worte
koénnen entweder als Text in die Anwendung geschrieben werden oder als Befehl
in der Anwendung ausgefiithrt werden. Am einfachsten klappt es mit der Sprach-
steuerung, wenn Sie eine Anwendung entwickeln, die mit wenigen, leicht unter-
scheidbaren Befehlen auskommt. Ein Beispiel daftir sehen Sie in Abschnitt
12.4.3, »Steuerung per Spracherkennungx.

Als Voraussetzung fiir alle Projekte, die mit der Spracherkennung arbeiten, miis-
sen Sie zuerst die Windows-Spracherkennung konfigurieren und das zugehorige
Lernprogramm fiir den PC durchlaufen. Jeder Mensch hat einen anderen Sprach-
stil. Der PC muss daran gew6hnt werden, die Worte zu erkennen, die Sie in Ihr
Mikro sprechen. Sie finden die Windows-Spracherkennung tiber PROGRAMME «
ZUBEHOR « ERLEICHTERTE BEDIENUNG.

390

Spracheingabe

12.4.1 Externe Spracherkennung
In diesem Abschnitt wird zunichst mit der Klasse SpeechRecognizer gearbeitet. Im

nachfolgenden Projekt AVRecognition wird eine Textbox in der WPF-Anwendung
angezeigt sowie extern die Windows-Spracherkennung (siehe Abbildung 12.7).

Sie miissen die Spracherkennung noch einschalten. AnschlieBend sprechen Sie in
das Mikro und sehen den entsprechenden Text in der Textbox. Die Qualitit der
Erkennung richtet sich nach dem Erfolg im Lernprogramm. Dem Projekt muss
ein Verweis auf die .NET-Komponente System.Speech hinzugefiigt werden.

Nach Beendigung der WPE-Anwendung mussen Sie die externe Windows-Sprach-
erkennung noch beenden. Ansonsten landet weiterer gesprochener Text eventu-
ell in einer anderen Anwendung.

/4 A 52,
ol :
[E] AVRecognition E@u

Hallo Welt

Abbildung 12.7 WPF-Anwendung und die Windows-Spracherkennung

Der XAML-Code:

<Window ... Loaded="Window_Loaded">
<TextBox x:Name="tb" TextWrapping="Wrap" Margin="3" />
</Window>

Die Textbox zur Anzeige des gesprochenen Textes arbeitet mit automatischem
Zeilenumbruch. Die nachfolgende Fensterklasse fiir die Anwendung benotigt den
Namespace System.Speech.Recognition.

public partial class MainWindow : Window
{
SpeechRecognizer sr;
public MainWindow() { InitializeComponent(); }

private void Window_lLoaded(...)
{
sr = new SpeechRecognizer();
sr.lLoadGrammar(new DictationGrammar());
sr.SpeechRecognized += new
EventHandler<SpeechRecognizedEventArgs>(sprache_erkannt);

391

| 12.4

12 | Audio und Video

if (sr.State == RecognizerState.Stopped)
MessageBox.Show("Spracherkennung einschalten");

void sprache_erkannt(object sender,
SpeechRecognizedEventArgs e)

if (e.Result != null)
th.Text += e.Result.Text + " ";

}

Nach dem Erzeugen eines neuen SpeechRecognizer-Objekts muss zunichst eine
Grammatik geladen werden. Dies geschieht mithilfe der Methode LoadGrammar ().
Standard ist ein neues Objekt des Typs DictationGrammar. In Abschnitt 12.4.3,
»Steuerung per Spracherkennung, sehen Sie, wie man eine eigene Grammatik ein-
richtet.

Ein Gerdusch am Mikro 10st das Ereignis SpeechRecognized aus. Fiir dieses Ereig-
nis wurde ein neuer EventHandler angelegt, der auf die Methode sprache_
erkannt() verweist. In dieser Methode wird untersucht, ob es sich bei dem
Gerdusch um erkennbaren Text handelte. Diese Information bekommt man {iber
die Eigenschaft Result des Objekts SpeechRecognizedEventArgs. Sie ist vom Typ
RecognitionResult und liefert Informationen iiber das Gehorte. Falls es ein
Result gibt, so liefert die Untereigenschaft Text den gehorten Text. Dieser Text
wird in die Textbox geschrieben.

12.4.2 Interne Spracherkennung

Die Klasse SpeechRecognitionEngine bietet noch mehr Moglichkeiten. Die Win-
dows-Spracherkennung ist bereits integriert. Sie wird nicht extern angezeigt und
muss nicht separat ein- oder ausgeschaltet werden. Im nachfolgenden Projekt
AVEngine wird wiederum eine Textbox fiir den gesprochenen Text dargestellt
(siehe Abbildung 12.8). Voraussetzung ist nattirlich nach wie vor, dass die Win-
dows-Spracherkennung im Vorfeld richtig konfiguriert wurde.

[®7] AVEngine @m

Hallo Welt

Abbildung 12.8 Hier wurde Sprache erkannt.

392

Spracheingabe

Der XAML-Code:

<MWindow ... Loaded="Window_Loaded" Unloaded="Window_Unloaded">
<TextBox x:Name="tb" TextWrapping="Wrap" Margin="3" />
</Window>

Die Ereignisse Loaded und Unloaded fithren zu Methoden, in denen unter ande-
rem die Windows-Spracherkennung ein- beziehungsweise wieder ausgeschaltet
wird, ohne dass es zu einer externen Anzeige kommt.

Dem Projekt muss ein Verweis auf die .NET-Komponente System.Speech hinzu-
gefiigt werden. Die nachfolgende Fensterklasse fiir die Anwendung benétigt den
Namespace System.Speech.Recognition.

public partial class MainWindow : Window
{
SpeechRecognitionEngine sre;
public MainWindow() { InitializeComponent(); !}

private void Window_lLoaded(...)

{
sre = new SpeechRecognitionEngine();
sre.lLoadGrammar(new DictationGrammar());
sre.SetInputToDefaultAudioDevice();
sre.RecognizeAsync(RecognizeMode.Multiple);
sre.SpeechRecognized += new

EventHandler<SpeechRecognizedEventArgs>(sprache_erkannt);

void sprache_erkannt(object sender,
SpeechRecognizedEventArgs e)

if (e.Result != null)
th.Text += e.Result.Text + " ";

private void Window_Unloaded(...)
{ sre.RecognizeAsyncCancel(); }
}

Nach dem Erzeugen eines neuen SpeechRecognitionEngine-Objekts und dem
Laden der Grammatik wird das Standard-Audio-Eingabegerit auf die Engine
gesetzt. Dies geschieht mit der Methode SetInputToDefaultAudioDevice() des
Engine-Objekts.

393

| 12.4

12 | Audio und Video

Die Methode RecognizeAsync() des SpeechRecognitionEngine-Objekts startet
den Vorgang des Zuhérens. Der Modus Multiple der Enumeration RecognizeMode
legt dabei fest, dass der Vorgang nicht nach der ersten Erkennung wieder abge-
schaltet wird, wie dies beim Wert Single geschehen wiirde.

Wie vorher fuhrt das Ereignis SpeechRecognized zum Erkennen und zur Ausgabe
eines Textes. Die Methode RecognizeAsyncCancel () beendet den Vorgang des
Zuhorens und schaltet die Spracherkennung am Ende des Projekts wieder aus.

12.4.3 Steuerung per Spracherkennung

Sie konnen fur Thre Anwendung eine eigene Grammatik mithilfe der Klasse
GrammarBuilder einfithren. Dazu miissen Sie alle Befehle definieren, die erlaubt
sind, zusammen mit ihren jeweiligen Auswirkungen. Die wenigen moéglichen
Worte kénnen leichter voneinander unterschieden und damit besser erkannt
werden als die vielen méglichen Worte einer Standard-Grammatik.

Die Klasse GrammarBuilder basiert auf SRGS, der Speech Recognition Grammar
Specification (siehe http://www.w3.0rg/TR/speech-grammar).

Im nachfolgenden Projekt AVGrammar bewegen Sie ein graues Rechteck durch
Spracheingabe der Worte »oben«, »unteng, »rechts« und »links« {iber den Bild-
schirm (siehe Abbildung 12.9).

[®7] AVGrammar E@u

Abbildung 12.9 Sprache steuert ein Rechteck.

Der XAML-Code:

{Window ... Loaded="Window_Loaded" Unloaded="Window_Unloaded">
<Canvas>
<Rectangle x:Name="re" Canvas.Top="30" Canvas.Left="95"
Width="80" Height="30" Fill="Gray" />
</Canvas>
</Window>

Es wird wie im letzten Abschnitt mit einem SpeechRecognitionEngine-Objekt
gearbeitet. Die Ereignisse Loaded und Unloaded fiihren unter anderem zum Ein-
und Ausschalten der Windows-Spracherkennung.

394

Spracheingabe | 12.4

Dem Projekt muss ein Verweis auf die .NET-Komponente System.Speech hinzu-
gefiigt werden. Die nachfolgende Fensterklasse fiir die Anwendung benétigt die
beiden Namespaces System.Speech.Recognition und System.Speech.Recog-
nition.SrgsGrammar.

public partial class MainWindow : Window
{
SpeechRecognitionkEngine sre;
public MainWindow() { InitializeComponent(); !}
private void Window_Loaded(...)
{
sre = new SpeechRecognitionEngine();
GrammarBuilder gb = new GrammarBuilder/(
new Choices("oben", "unten", "rechts", "Tlinks"));
sre.LoadGrammar(new Grammar(gbh));
sre.SetInputToDefaultAudioDevice();
sre.RecognizeAsync(RecognizeMode.Multiple);
sre.SpeechRecognized += new
EventHandler<SpeechRecognizedEventArgs>(sprache_erkannt);

void sprache_erkannt(object sender,
SpeechRecognizedEventArgs e)

if (e.Result != null)
{
double Teft = (double)re.GetValue(Canvas.LeftProperty);
double top = (double)re.GetValue(Canvas.TopProperty);
switch (e.Result.Text)
{
case "oben":
re.SetValue(Canvas.TopProperty, top - 20); break;
case "unten":
re.SetValue(Canvas.TopProperty, top + 20); break;
case "Tinks":
re.SetValue(Canvas.LeftProperty, left - 20); break;
case "rechts":
re.SetValue(Canvas.LeftProperty, left + 20); break;

private void Window_Unloaded(...)
{ sre.RecognizeAsyncCancel(); }

395

12 | Audio und Video

Ein neues GrammarBuilder-Objekt kann unter anderem mithilfe eines neuen
Choices-Objekts erzeugt werden. Dieses enthdlt ein Params-Feld vom Typ Zei-
chenkette mit den erlaubten Worten. Das neu erzeugte GrammarBuilder-Objekt
kann anschlieBend mithilfe der Methode LoadGrammar() als Grammatik fiir die
SpeechRecognitionEngine geladen werden.

Nach dem Spracherkennungsereignis wird festgestellt, ob es sich um eines der
erlaubten Worte handelt. Daraufhin kommt es zu den entsprechenden Auswir-
kungen, also zur Anderung der Eigenschaft Canvas. Left beziehungsweise Canvas
.Top des Rechtecks.

396

Dokumente kénnen mithilfe der WPF dynamisch wie Internetseiten und
exakt wie Druckseiten gestaltet werden. Ein Ausdruck kann vorbereitet
und ausgefiihrt werden.

13 Dokumente und Drucken

Dokumente beinhalten Text, Bilder, Tabellen, Listen und weitere Elemente. Es
gibt zwei Arten von Dokumenten in der WPF:

| 4

Ein FlowDocument ist dynamisch, d.h., seine Inhalte werden der aktuellen
duBeren Form angepasst. Man kann es mit einer Internetseite vergleichen,
deren Aussehen sich nach dem benutzten Bildschirm und der aktuellen Auf-
16sung richtet.

Ein FixedDocument ist statisch, d.h., seine Inhalte sind fest positioniert. Es eig-
net sich besonders fiir eine Druckausgabe.

Die Klasse PrintDialog wird zur Vorbereitung und Durchfiihrung eines Druck-
vorgangs verwendet.

13.1 FlowDocument

Ein FlowDocument-Objekt wird innerhalb eines Steuerelements angezeigt. In die-
sem Abschnitt werden dazu vier Moglichkeiten vorgestellt. Davon dienen die ers-
ten drei nur zur Anzeige, wihrend das letzte Element zum Andern dient:

| 4

FlowDocumentReader: Dieses Element ist sehr vielseitig. Es bietet mehrere
Anzeigemodi: den Seitenmodus, den Zwei-Seiten-Modus und den Scrollmo-
dus. Man kann zwischen den Modi umschalten, den Inhalt zoomen und im
Inhalt suchen.

FlowDocumentScrollViewer: Bietet nur den Scrollmodus.

FlowDocumentPageViewer: Bietet nur den Seitenmodus und das Zoomen des
Inhalts.

RichTextBox: Dieses Element bietet die Mdoglichkeit, den Inhalt des
FlowDocument zu verandern, zu formatieren, zu erginzen oder zu ldschen.

397

13 | Dokumente und Drucken

Der Inhalt eines FlowDocument steht in der Auflistung Blocks vom Typ
BlockCollection. Ein einzelnes Element dieser Auflistung ist vom Typ Block.
Dies ist die abstrakte Basisklasse fiir die folgenden Klassen:

» Paragraph: Dient zum Erzeugen eines Absatzes, dhnlich wie in MS Word.

» Section: Entspricht einem Abschnitt, dient zum Gruppieren von Absitzen.

» List: Generiert Aufzdhlungen oder Listen mit oder ohne Nummerierung. Lis-
tenelemente kénnen wiederum Paragraph-Objekte sein.

» Table: Dient zum Erzeugen einer Tabelle. Innerhalb einer Tabellenzelle kén-
nen wiederum Paragraph-Objekte stehen.

» BlockUIContainer: Beinhaltet Steuerelemente.

Der Inhalt eines Paragraph-Objekts steht in der Auflistung Inlines vom Typ
InlineCollection. Ein einzelnes Element dieser Auflistung ist vom Typ Inline.
Dies ist ebenfalls eine abstrakte Basisklasse. Mehr dazu folgt in Abschnitt 13.1.7,
»Inlines«.

13.1.1 FlowDocumentReader

Im nachfolgenden Projekt FlowParagraph wird ein FlowDocument in einem
FlowDocumentReader dargestellt. Das Dokument besteht aus einzelnen Absitzen
(Paragraph-Objekten), von denen Sie zwei in Abbildung 13.1 sehen.

' ™
[®7 FlowParagraph é@u

-

Berlin

Berlin ist mit 3,4 Millionen Einwohnem die
bevolkerungsreichste und flachengrofte
Stadt Deutschlands, sowie nach Einwohnern
die zweitgroftte und nach Flache die
funftgroBte Stadt der Europaischen Union.

Berlin ist in zwolf Bezirke unterteilt.
Im Stadtgebiet befinden sich die Fliisse -

BB =--+

8

Abbildung 13.1 FlowDocumentReader im Scrollmodus

Der XAML-Code:

<MWindow ...>
{FlowDocumentReader ViewingMode="Scroll">
<FlowDocument ...>
<Paragraph ...> ... </Paragraph>

398

FlowDocument | 134

<Paragraph ...> ... </Paragraph>
<Paragraph ...> ... </Paragraph>
</FlowDocument>
</FlowDocumentReader>
</Window>

Ein FlowDocumentReader kann zwischen drei verschiedenen Darstellungsmodi
umgeschaltet werden. Das geschieht mithilfe der eingeblendeten Bedienungsele-
mente (sieche Abbildung 13.1) oder mithilfe der Eigenschaft ViewingMode. Die
Werte kommen aus der Enumeration FlowDocumentReaderViewingMode:

» Page: Seitenmodus; Sie sehen eine Seite und kénnen um eine Seite weiterblit-
tern. Dies ist der Standard (siehe Abbildung 13.2).

» TwoPage: Zwei-Seiten-Modus; Sie sehen zwei Seiten wie in einem Buch und
kénnen um zwei Seiten weiterblittern (siehe Abbildung 13.3).

» Scroll: Scrollmodus; Sie sehen den Text fortlaufend und kénnen scrollen.

[®] FlowParagraph @m

Berlin

Berlin i1st mit 3,4 Millionen Einwohnern die
bevdlkerungsreichste und flachengrofite Stadt
Deutschlands, sowie nach Einwohnern die
zweitgrélite und nach Flache die funftgrofbte
Stadt der Européischen Union.

| Berlin ist in zwolf Bezirke unterteilt. Im |

11von2D—+

L

Abbildung 13.2 FlowDocumentReader im Seitenmodus

[E] FlowParagraph é@u

Berlin Einwohnem die
zweitgrolte und
nach Flache die

Berlin ist mit 34 funftgrofite Stadt
Millionen der Europaischen
Einwohnern die Union.
bevoélkerungsreichst

e und flachengrofte

Stadt Deutschlands, _ Berin it
Sy - in zwdlf Bezirke
unterteilt. Im

41von3b—+

L

Abbildung 13.3 FlowDocumentReader im Zwei-Seiten-Modus

399

13 | Dokumente und Drucken

Sie konnen die booleschen Eigenschaften IsPageViewEnabled, IsTwoPageView-
Enabled, IsScrol1ViewEnabled des Readers auf False schalten, um einzelne Modi
zu unterbinden.

Zusitzlich konnen Sie den Dokumentinhalt zoomen. Die double-Eigenschaft Zoom
steht standardméRig auf 100 (fiir 100 %). Der Wert verdndert sich nach Betiti-
gung des Plus- oder Minuszeichens unten rechts standardmafBig um 10 %. Dieser
Anderungswert kann mithilfe der double-Eigenschaft ZoomIncrement eingestellt
werden. Die Grenzen werden tber die double-Eigenschaften MinZoom und
MaxZoom eingestellt. Der Standard ist 80 beziehungsweise 200. Je nach Grofe des
Fensters sehen Sie auch einen Zoom-Slider.

Nach Betdtigung der Lupe unten links sehen Sie ein Feld zur Eingabe eines Such-
begriffs.

13.1.2 Block-Typ Absatz

Ein Absatz entspricht einem Block-Objekt vom Typ Paragraph. Er kann dhnlich
wie in MS Word formatiert werden. Im bereits vorgestellten Projekt FlowPara-
graph stehen drei formatierte Absitze. Nach Betitigung der Taste wird ein
neuer Absatz hinzugefiigt. Die Betdtigung der Taste erganzt den zweiten
Absatz um weiteren Text.

Zunichst der XAML-Code:

<Window ... KeyDown="Window_KeyDown">
<FlowDocumentReader ViewingMode="Scroll">
<FTowDocument x:Name="fd" FontSize="12">
<Paragraph TextAlignment="Center" FontSize="14pt">
Berlin
</Paragraph>
<Paragraph FontFamily="Arial" Background="LightGray">
Berlin ist mit 3,4 Millionen Einwohnern die
</Paragraph>
<Paragraph BorderBrush="Black" BorderThickness="1"
FontFamily="Tahoma" TextIndent="40" Padding="5">
Berlin ist in zwd1f Bezirke unterteilt. Im ...
</Paragraph>
</FlowDocument>
</FlowDocumentReader>
</Window>

Im FlowDocument-Objekt konnen Sie zentrale Formatierungen vornehmen, die
fiir das gesamte Dokument gelten. Sie konnen sie in den Unterelementen ergin-
zen beziehungsweise iiberschreiben, wie in Styles oder bei CSS.

400

FlowDocument | 1341

In diesem Dokument gilt die zentrale Schriftgroe 12 wegen des Werts fiir die
Eigenschaft FontSize der Klasse FlowDocument. Werte konnen als einfache
double-Zahl oder als qualified double angegeben werden. Ein qualified double hat
einen der folgenden Einheitenbezeichner:

» px: Dies ist der Standardwert. Er steht fiir geriteunabhingige Pixel.
» in: steht fiir Inch, also Zoll. 1 Zoll entspricht 96 px.

» cm: steht fiir Zentimeter. 1 cm entspricht 96/2,54 px.

» pt: steht fiir Punkt. 1 pt entspricht 96/72 px.

Der erste Absatz wird mithilfe des Werts Center fir die Eigenschaft Text-
Alignment der Klasse Block zentriert dargestellt. Weitere Werte aus der gleichna-
migen Enumeration sind Left (Standard), Right und Justify.

Die Schriftart wird tiber die Eigenschaft FontFamily der Klasse TextElement ange-
geben. Die Eigenschaft TextIndent der Klasse Paragraph legt den Erstzeilenein-
zug eines Absatzes fest. Die Werte dazu konnen als einfache double-Zahl oder als
qualified double notiert werden.

Die boolesche Eigenschaft KeepTogether der Klasse Paragraph sorgt im (Zwei-)
Seiten-Modus dafiir, dass ein Absatz in einem Stiick dargestellt wird, falls dies
vom Platz her moglich ist. Dies kann einen Seitenumbruch vor dem Absatz
bewirken. Etwas Ahnliches bewirkt die boolesche Eigenschaft KeeplithNext der
Klasse Paragraph fir den aktuellen Absatz und seinen Nachfolger.

Die Ereignismethode sieht so aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
if (e.Key == Key.N)
fd.Blocks.Add(new Paragraph(new Run("Neuer Absatz")));
else if (e.Key == Key.A)
{
Paragraph p = fd.Blocks.ElementAt(1l) as Paragraph;
p.Inlines.Add(new Run(" neu"));
}
}

Die Elemente der obersten Ebene eines FlowDocument stehen in der Auflistung
Blocks vom Typ BlockCollection.

Einen neuen Absatz fiigen Sie wie folgt hinzu: Ein neues B1ock-Objekt fiigen Sie
mit der Methode Add () hinzu. Das B1ock-Objekt ist hier vom Typ Paragraph. Ein
neues Paragraph-Objekt konnen Sie direkt mit einem neuen In1ine-Objekt erzeu-
gen. Das Inline-Objektist hier vom Typ Run, was fiir unformatierten Lauftext sorgt.

401

13 | Dokumente und Drucken

Einen vorhandenen Absatz dndern Sie so: Die Methode ElementAt () liefert einen
Verweis auf ein Element der Auflistung Blocks. Die Elemente innerhalb eines
Paragraph-Objekts stehen in der Auflistung Inlines vom Typ InlineCollection.
Ein neues Inline-Objekt fiigen Sie ebenso mit der Methode Add () hinzu.

Einen Verweis auf den ersten beziehungsweise letzten Block eines FlowDocument
bekommen Sie auch tiber zwei besondere Eigenschaften: fd.Blocks.FirstBlock
und fd.Blocks.LastBlock.

13.1.3 Block-Typ Abschnitt

Ein Abschnitt steht in einem Block-Objekt vom Typ Section. Sie nutzen
Abschnitte zum Gruppieren von Blocken innerhalb eines Dokuments. Ein
Abschnitt enthdlt wiederum Block-Elemente. Sie kénnen Formatierungen vor-
nehmen, die fir den gesamten Abschnitt gelten.

Im nachfolgenden Projekt FlowSection besteht das FlowDocument aus einem
Absatz und einem Abschnitt, der zwei Absitze beinhaltet. Vor dem Abschnitt
wurde ein Seitenumbruch eingefiihrt. Auferdem gilt im Abschnitt eine gemein-
same Schriftart (siche Abbildung 13.4).

Nach Betdtigung der Taste (] wird ein neuer Abschnitt hinzugefiigt, mit einem
Seitenumbruch davor. Die Betitigung der Taste erginzt den vorhandenen
Abschnitt um einen weiteren Absatz.

[®7 FlowSection lil@g

Abschnitt, Absatz 1 von 2, mit
Seitenumbruch vor dem Abschnitt

Abschnitt, Absatz 2 von 2

42 von 2 —+

-

Abbildung 13.4 Inhalt des zweiten Abschnitts

Der XAML-Code:

<MWindow ... KeyDown="Window_KeyDown">
<FlowDocumentReader>
<FlowDocument x:Name="fd">
<Paragraph>Abschnitt 1 von 2, Absatz 1 von 1</Paragraph>
{Section BreakPageBefore="True" FontFamily="Arial">
<Paragraph>Abschnitt 2 von 2, Absatz 1 von 2, mit

402

FlowDocument | 13

Seitenumbruch vor dem Abschnitt</Paragraph>
<Paragraph>Abschnitt 2 von 2, Absatz 2 von 2</Paragraph>
</Section>
</FlowDocument>
</FlowDocumentReader>
</Window>

Die Schriftart wird tiber die Eigenschaft FontFamily der Klasse TextElement ange-
geben. Die boolesche Eigenschaft BreakPageBefore der Klasse Block regelt den
Seitenumbruch.

Es folgt die Ereignismethode:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
if (e.Key == Key.N)
{
Section s = new Section(new Paragraph(
new Run("Neuer Abschnitt")));
s.BreakPageBefore = true;
fd.Blocks.Add(s);
}
else if (e.Key == Key.A)
{
Section s = fd.Blocks.ETementAt(1l) as Section;
s.Blocks.Add(new Paragraph(
new Run("Abschnitt, neuer Absatz")));

}

Einen neuen Abschnitts fiigen Sie hier wie folgt hinzu: Erzeugen Sie ein neues
Section-Objekt, direkt mit einem neuen B1ock-Objekt. Das Block-Objekt ist hier
vom Typ Paragraph. Stellen Sie die Eigenschaft BreakPageBefore ein. Anschlie-
Bend fiigen Sie das Section-Objekt der Auflistung Blocks des FlowDocument hinzu.

Einen vorhandenen Abschnitt dndern Sie hier wie folgt: Erzeugen Sie zunichst
einen Verweis auf das Section-Objekt. Anschliefend fiigen Sie ein neues
Paragraph-Objekt der Auflistung Blocks des Section-Objekts hinzu.

13.1.4 Block-Typ Liste

Aufzahlungen oder Listen stehen in Block-Objekten vom Typ List. Listen kon-
nen sowohl nummeriert als auch nicht nummeriert sein. Eintrige in einer Liste
beinhalten wiederum B1ock-Elemente. Dies konnen Absitze, aber auch unterge-
ordnete Listen sein.

403

13 | Dokumente und Drucken

Im nachfolgenden Projekt FlowList wird eine nummerierte Liste dargestellt. Der
erste Eintrag beinhaltet nur einen Absatz. Der zweite Eintrag beinhaltet einen
Absatz und eine untergeordnete, nicht nummerierte Liste (siehe Abbildung 13.5).

[®7 FlowList @M

-

Linder:

3. Frankreich

4. Tialien
*Rom
* Turin

Abbildung 13.5 Liste mit untergeordneter Liste

Nach Betitigung der Taste [N] wird eine neue Liste hinzugeftigt, die zwei Eintrige
aufweist. Die Betdtigung der Taste [A] dndert einen Eintrag in der vorhandenen
Liste auf oberster Ebene und einen Eintrag in der untergeordneten Liste.

Der XAML-Code:

<MWindow ... KeyDown="Window_KeyDown">
{FTowDocumentReader ViewingMode="Scroll">
<FlowDocument x:Name="fd">
<Paragraph>Ldnder:</Paragraph>
<List MarkerStyle="Decimal" StartIndex="3">
<ListItem>
<Paragraph>Frankreich</Paragraph>
</Listltem>
<ListlItem>
<Paragraph>Italien</Paragraph>
<List Margin="0" MarkerOffset="2">
<ListItem>
<Paragraph>Rom</Paragraph>
</Listltem>
<ListItem>
<Paragraph>Turin</Paragraph>
</Listltem>
</List>
</Listltem>
</List>
</FlowDocument>
</FlowDocumentReader>
</Window>

404

FlowDocument | 13

Die Nummerierung der Liste wird mit dem Wert Decimal fir die Eigenschaft
MarkerStyle der Klasse List erzeugt. Die Eintrige konnen mit folgenden weite-
ren Werten aus der Enumeration TextMarkerStyle markiert werden:

» None: keine Markierung

» Circle, Disc: Kreis, leer oder ausgeftllt (Standard)

» Square, Box: Quadrat, leer oder ausgefiillt

» LowerRoman, UpperRoman: romische Zahl, klein oder grof3

» LowerLatin, UpperLatin: Buchstabe, klein oder grof3

Die Integer-Eigenschaft StartIndex der Klasse List bestimmt den Anfangswert
einer nummerierten Liste. Der Standardwert ist 1 beziehungsweise 1, I, a oder A.
Innerhalb eines List-Objekts gibt es eine ListItemCollection. Darin stehen
ListItem-Objekte. Ein ListItem-Objekt kann ein Block-Objekt enthalten, zum
Beispiel ein Paragraph-Objekt.

Sie konnen den vertikalen Abstand einer untergeordneten Liste mit der Eigen-
schaft Margin beeinflussen. Die Eigenschaft MarkerOffset der Klasse List
bestimmt den horizontalen Abstand zwischen Eintrag und Markierung. Die
Werte dazu konnen als einfache double-Zahl oder als qualified double notiert
werden. Aullerdem ist der Wert Auto moglich. Dann ist der Abstand von der
Schriftart abhingig.

Es folgt die Ereignismethode:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
if (e.Key == Key.N)
{
ListItem 111 = new ListItem(
new Paragraph(new Run("Eintrag 1")));
ListItem 1i2 = new ListItem(
new Paragraph(new Run("Eintrag 2")));
List 1 = new List();
T.ListItems.Add(111);
T.ListItems.Add(112);

fd.Blocks.Add(new Paragraph(new Run("Neue Liste:")));
fd.Blocks.Add(1);

}

else if (e.Key == Key.A)

{
List 1T = fd.Blocks.ElementAt(1l) as List;

405

13 | Dokumente und Drucken

ListItem 1i1 = 1.ListItems.ElementAt(0);
1i1.Blocks.Clear();
111.Blocks.Add(new Paragraph(new Run("Spanien")));

ListItem 112 = 1.ListItems.ElementAt(1);
List Tu = Ti2.Blocks.ElementAt(1l) as List;
Tu.MarkerOffset = 10;

Tu.MarkerStyle = TextMarkerStyle.lLowerLatin;
lTu.StartIndex = 2;

ListItem 1i3 = lu.ListItems.ElementAt(0);
1i3.Blocks.Clear();
1i3.Blocks.Add(new Paragraph(new Run("Mailand")));

}

Eine neue Liste fiigen Sie hier wie folgt hinzu: Erzeugen Sie zwei neue ListItem-
Objekte, jeweils direkt mit einem neuen Paragraph-Objekt als Eintrag. Dann
erzeugen Sie ein neues List-Objekt. Zu dessen Auflistung ListItems fiigen Sie
die beiden neuen ListItem-Objekte hinzu. Anschliefend fiigen Sie einen neuen
Absatz als Listentiberschrift und die neue Liste selbst zur Auflistung Blocks des
FlowDocument hinzu.

Eine vorhandene Liste dndern Sie auf Ebene 1 hier wie folgt: Legen Sie einen Ver-
weis auf das vorhandene List-Objekt an. Legen Sie anschliefend einen Verweis
auf das erste ListItem-Objekt dieser Liste an. Loschen Sie dessen Inhalt, und
ersetzen Sie ihn durch einen neuen Absatz (sieche Abbildung 13.6).

Eine vorhandene Liste dndern Sie hier auf Ebene 2 wie folgt: Legen Sie einen Ver-
weis auf das zweite ListItem-Objekt der Liste an. Legen Sie anschliefend einen
Verweis auf die Unterliste an, der den zweiten Block dieses zweiten ListItem-
Objekts bildet. Bei dieser Unterliste dndern Sie die Art, die Nummer und den
Abstand der Markierung. Es folgt ein Verweis auf das erste ListItem-Objekt die-
ser Unterliste. Loschen Sie dessen Inhalt, und ersetzen Sie ihn durch einen neuen
Absatz (siehe Abbildung 13.6).

] FlowList [EEN

-

Lander:

3. Spanien

4. Italien
b. Mailand
¢. Turin

Abbildung 13.6 Anderungen auf zwei Listenebenen

406

FlowDocument

13.1.5 Block-Typ Tabelle

Tabellen kénnen Sie mit B1ock-Objekten vom Typ Table anlegen. Das Layout der
Spalten wird durch die Auflistung Columns vom Typ TableColumnCollection fest-
gelegt. In der Auflistung stehen einzelne TableColumn-Objekte. Der Inhalt einer
Tabelle ist hierarchisch aufgebaut:

» Die Tabellenzeilen sind in Gruppen zusammengefasst. Die Gruppen stehen in
der Auflistung RowGroups vom Typ TableRowGroupCollection. Die Auflistung
beinhaltet einzelne TableRowGroup-Objekte.

» Innerhalb einer Gruppe gibt es die Auflistung Rows vom Typ TableRowCol-
Tection. In der Auflistung bezeichnet ein TableRow-Objekt eine einzelne
Tabellenzeile.

» Innerhalb einer Tabellenzeile steht die Auflistung Ce11s vom Typ TableCel1Co] -
Tection. In der Auflistung ist ein TableCe11-Objekt eine einzelne Zelle.

» Eine Zelle beinhaltet Blocke in der Auflistung Blocks. Dies kénnen Absitze,
aber auch untergeordnete Tabellen sein.

Im nachfolgenden Projekt FlowTable wird eine Tabelle mit drei Zeilen und zwei
Spalten dargestellt. Die beiden Zellen der obersten Zeile sind als Uberschrift
zusammengefasst (siehe Abbildung 13.7).

' ™
i) FlowTable S

| Lander |
Frankreich Paris
Ttalien Rom

Abbildung 13.7 Table, TableRowGroup, TableRow und TableCell

Nach Betitigung der Taste wird eine neue Tabelle hinzugefiigt. Sie enthilt
einen Teil des kleinen Einmaleins (acht Zeilen, zehn Spalten). Die Betatigung der
Taste (4] dndert einen Eintrag in einer Zelle der vorhandenen Tabelle.

Der XAML-Code:

<MWindow ... KeyDown="Window_KeyDown">
<FTowDocumentReader>
<FTowDocument x:Name="fd">
<Table BorderBrush="Black" BorderThickness="1" Padding="5">

407

| 134

13 | Dokumente und Drucken

<Table.Columns>
<TableColumn Width="2*" />
<TableColumn Width="1*" />
</Table.Columns>

<TableRowGroup>
<TableRow>
<TableCell ColumnSpan="2" BorderBrush="Black"
BorderThickness="1">
<Paragraph TextAlignment="Center">
Lander</Paragraph>
</TableCell>
</TabTleRow>

<TableRow>
<TableCell>
<Paragraph>Frankreich</Paragraph>
</TableCell>
<TableCell>
<Paragraph>Paris</Paragraph>
</TableCell>
</TableRow>
{TableRow> ... </TableRow>

</TableRowGroup>
</Table>
</FlowDocument>
</FlowDocumentReader>
</Window>

Auf der Ebene der Tabelle oder einer Zelle kénnen Sie unter anderem Rahmen
oder Innenabstinde festlegen.

Die ganzzahlige Eigenschaft ColumnSpan einer Zelle legt fest, wie viele Spalten
diese Zelle tiberspannen soll. Entsprechend gibt es auch RowSpan fiir die Anzahl
der Zeilen, die diese Zelle tiberspannen soll.

Die Breite einer Spalte konnen Sie tber die Eigenschaft Width vom Typ
GridLength wihlen. Die Werte dazu konnen als einfache double-Zahl oder als
qualified double oder mithilfe der Enumeration GridUnitType notiert werden.
Diese bietet die Werte Auto, Pixel oder Star (Stern). Bei Auto bestimmen die Zell-
inhalte die Breite. Star wird zur Erstellung von Groenverhiltnissen genutzt -
wie in der vorliegenden Tabelle: Die erste Spalte hat die doppelte Breite der zwei-
ten Spalte.

408

FlowDocument | 134

Die Ereignismethode sieht so aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
if (e.Key == Key.N)
{
Table t = new Table();
t.FontSize = 9;
t.FontFamily = new FontFamily("Arial");

for(int s = 1; s <= 10; s++)

{
TableColumn tco = new TableColumn();
tco.Width = new GridlLength(1l, GridUnitType.Star);
t.Columns.Add(tco);

TabTeRowGroup trg = new TableRowGroup();
t.RowGroups.Add(trg);

for (int z = 1; z <= 8; z++)
{
TableRow trow = new TableRow();
for (int s = 1; s <= 10; s++)
trow.Cells.Add(new TableCell(
new Paragraph(new Run("" + z * s))));
trg.Rows.Add(trow);
}
fd.Blocks.Add(t);
}
else if (e.Key == Key.A)
{
Table t = fd.Blocks.ElementAt(0) as Table;
TableCell tce = t.RowGroups[0].Rows[2].Cells[1];
tce.Blocks.Clear();
tce.Blocks.Add(new Paragraph(new Run("Mailand")));

}

Eine neue Tabelle fiigen Sie hier wie folgt hinzu: Legen Sie ein neues Table-
Objekt an. Die Inhalte sollen in Arial 9 geschrieben werden. Anschliefend erzeu-
gen Sie zehn neue TableColumn-Objekte, alle mit gleicher Spaltenbreite. Dann
legen Sie ein neues TableRowGroup-Objekt an und fiigen es der Tabelle hinzu.
Erzeugen Sie acht neue TableRow-Objekte mit jeweils zehn TableCel1-Objekten,

409

13 | Dokumente und Drucken

und fiigen Sie sie dem TableRowGroup-Objekt hinzu. In jeder Zelle steht das Pro-
dukt aus Zeilen- und Spaltennummer, beginnend bei 1 mal 1. Figen Sie die neue
Tabelle der Auflistung Blocks des FlowDocument hinzu (siehe Abbildung 13.8).

Eine vorhandene Tabelle dndern Sie hier wie folgt: Legen Sie einen Verweis auf
das vorhandene Table-Objekt an. AnschlieBend erzeugen Sie einen Verweis auf
die zweite Zelle der dritten Zeile der ersten Zeilengruppe dieser Tabelle. Deren
Inhalt 16schen Sie mithilfe der Methode Clear () der Klasse Blocks und ersetzen
ihn durch einen neuen Absatz.

i FlowTable (B

L R
=}
o
X}
=]
%]
th
w
=}
%
&
.
=]
.
n
w
=

Abbildung 13.8 Die neu hinzugefiigte Tabelle

13.1.6 Block-Typ Steuerelement-Container

Ein FlowDocument kann auch Steuerelemente enthalten. Diese werden in einem
Block-Objekt vom Typ BlockUIContainer angeordnet. Die Eigenschaft Child vom
Typ UIElement enthilt das Steuerelement. Dies kann auch ein Container-Element
sein.

Im nachfolgenden Projekt FlowBlockUI werden innerhalb eines Dokuments ein
Absatz und ein WrapPanel mit zwei RadioButtons dargestellt (siehe Abbildung

13.9).
87 FlowBlockUI = |
Absatz mit Text
@RB1ORB2

Abbildung 13.9 Steuerelemente im BlockUIContainer-Objekt
Nach Betdtigung der Taste wird ein weiterer BlockUIContainer mit einem

Button hinzugefiigt. Die Betdtigung der Taste [A] dndert die Aufschrift des zwei-
ten RadioButtons im vorhandenen BlockUIContainer.

410

FlowDocument | 134

Der XAML-Code:

<MWindow ... KeyDown="Window_KeyDown">
<FlowDocumentReader>
<FlowDocument x:Name="fd">
<Paragraph>Absatz mit Text</Paragraph>
<BlockUIContainer>
<WrapPanel RadioButton.Checked="rb_Checked">
<RadioButton IsChecked="True" Margin="3">
RB 1</RadioButton>
<RadioButton Margin="3">RB 2</RadioButton>
</WrapPanel>
</BlockUIContainer>
</FlowDocument>
</FlowDocumentReader>
</Window>

Der BlockUIContainer enthilt als einzig mogliches Kind-Element ein WrapPanel.
Dieses kann natiirlich mehrere Elemente beinhalten. Das Checked-Ereignis der
RadioButtons wird an das WrapPanel weitergeleitet.

Die Ereignismethoden sehen so aus:

private void rb_Checked(object sender, RoutedEventArgs e)
{
if (IslLoaded) MessageBox.Show(
(e.Source as RadioButton).Content.ToString());
}

Es wird die Aufschrift des auslosenden RadioButtons ausgegeben.

private void Window_KeyDown(object sender, KeyEventArgs e)
{
if (e.Key == Key.N)
{
Button b = new Button();
b.Content = "Button";
b.Click += new RoutedEventHandler(b_Click);
BlockUIContainer bc = new BlockUIContainer(b);
fd.Blocks.Add(bc);
}
else if (e.Key == Key.A)
{
BlockUIContainer bc =
fd.Blocks.ETementAt(1l) as BlockUIContainer;
WrapPanel wp = bc.Child as WrapPanel;

411

13 | Dokumente und Drucken

(wp.Children[1] as RadioButton).Content = "Radio 2";

}
private void b_Click(object sender, RoutedEventArgs e)
{ MessageBox.Show("Button"); }

Einen neuen BlockUIContainer fiigen Sie hier wie folgt hinzu: Erzeugen Sie
einen neuen Button mit einer Aufschrift und einem C1ick-Ereignishandler.
Erzeugen Sie anschliefend ein neues BlockUIContainer-Objekt, direkt mit dem
Verweis auf den Button als Child-Eigenschaft. Fiigen Sie das neue BlockUICon-
tainer-Objekt zur Auflistung Blocks des FlowDocument hinzu (siehe Abbildung
13.10).

Einen vorhandenen BlockUIContainer dndern Sie hier wie folgt: Legen Sie einen
Verweis auf das vorhandene BlockUIContainer-Objekt an. Erzeugen Sie anschlie-
Bend einen Verweis auf das WrapPanel, das den Wert der Eigenschaft Child des
BlockUIContainer-Objekts darstellt. Andern Sie die Aufschrift des zweiten unter-
geordneten Elements des WrapPanel (siehe Abbildung 13.10).

r: ™y
57 FlowBlockUI [ERE

Absatz mit Text

@RB 1 © Radio 2
Button

Abbildung 13.10 Neuer und geédnderter BlockUIContainer

13.1.7 Inlines

Ein Absatz (Klasse Paragraph) beinhaltet die Eigenschaft Inlines vom Typ
InlineCollection. Aus den Elementen dieser Auflistung besteht der formatierte
Text eines Absatzes. Ein einzelnes Element muss von einem Typ sein, der von der
abstrakten Klasse Inline abgeleitet ist. Ein Steuerelement vom Typ TextBlock
(siehe Abschnitt 4.3.2) besteht ebenfalls aus Inlines.

Die verschiedenen abgeleiteten Inline-Typen bieten unterschiedliche Moglich-
keiten zur Formatierung. Viele Inline-Typen haben wiederum die Eigenschaft
Inlines. Es kann also In1ine-Objekte auf verschiedenen Ebenen geben. Damit ist
es moglich, Formatierungen zu verschachteln. Auf der untersten Ebene steht der
einfachste Inline-Typ: die Klasse Run. Die Eigenschaft Text eines Run-Objekts
beinhaltet den Text.

412

FlowDocument

Es gibt unter anderem folgende Inline-Typen:

>

Run: Enthilt fortlaufenden Text, mit oder ohne Formatierung; enthilt aber
keine weiteren Inlines.

Span: Enthalt fortlaufenden Text, mit oder ohne Formatierung; dient zur Grup-
pierung.
Bold: Enthilt fortlaufenden, fetten Text, mit oder ohne weitere Formatierung.

Italic: Enthilt fortlaufenden, kursiven Text, mit oder ohne weitere Formatie-
rung.

Underline: Enthilt fortlaufenden, unterstrichenen Text, mit oder ohne wei-
tere Formatierung.

LineBreak: Fithrt zu einem Zeilenumbruch.

InlineUIContainer: Enthilt ein Steuerelement, das im fortlaufenden Text ein-

gebettet wird. Dies kann auch ein Container-Element sein, wie zum Beispiel
ein WrapPanel.

Hyperlink: Enthilt einen Hyperlink zu einem internen oder externen Ziel
(siehe Abschnitt 6.4, »Navigation mit Seiten«).

Figure: Enthilt ein Bild oder einen Absatz und kann innerhalb eines Absatzes
fest positioniert werden (siehe Abschnitt 13.1.8, »Inline-Typ Figure«).

Im nachfolgenden Projekt Flowlnline werden viele der genannten Inline-Typen

d

argestellt (siehe Abbildung 13.11).

' ™
[®7 FlowInline EIEM

normal fett kursiv unterstrichen
fett, kursiv, unterstrichen

Es-folgt-eineFormet A

Ein Satz mit (Button) im Text

A

bbildung 13.11 Verschiedene Inline-Typen

Nach Betitigung der Taste (] werden weitere Inline-Objekte hinzugefiigt. Die

B
d

n

etitigung der Taste (o] dndert den Inhalt eines vorhandenen Inline-Objekts auf
er dritten Ebene und den Inhalt eines Steuerelements innerhalb eines vorhande-
en InlineUIContainer (siche Abbildung 13.12).

413

| 134

13 | Dokumente und Drucken

i Flowinline (B

normal fett kursiv unterstrichen

FKU
e Yo = X
Ein Satz mit im Text

normal fett tef, Groe 12

Abbildung 13.12 Zwei Inlines gedndert

Nach Betitigung der Taste [s] wird zur besseren Ubersicht eine Liste der Inline-
Objekte des vorhandenen Absatzes ausgegeben — mit laufender Nummer, Typ
und Text (siehe Abbildung 13.13).

Der XAML-Code:

<MWindow ... KeyDown="Window_KeyDown">
<FlowDocumentReader>
<FlowDocument x:Name="fd">
<Paragraph>

normal

<Bold>fett</Bold>

<Italic>kursiv</Italic>

<UnderTine>unterstrichen</Underline>

<LineBreak />

<Bold><Underline><Italic>
fett, kursiv, unterstrichen</Italic></Underline></Bold>

<LineBreak />

<Run Background="Black" FontFamily="Tahoma" FontSize="12"
Foreground="White" TextDecorations="Strikethrough">
Es folgt eine Formel:</Run>

y<Span BaselineAlignment="Subscript"
FontSize="12">0

= x<Span BaselineAlignment="Superscript"
FontSize="12">2

<LineBreak />

Ein Satz mit

<InlineUIContainer>
<Button Height="16" FontSize="11" Click="b_Click">

Button</Button>
</InlineUIContainer>
im Text
</Paragraph>
</FlowDocument>

414

FlowDocument

<{/FlowDocumentReader>
</Window>

Nach einem unformatierten Text folgen nacheinander ein fetter Text (Bold-
Objekt), ein kursiver Text (Italic-Objekt) und ein unterstrichener Text
(Underline-Objekt). Nach dem ersten Zeilenumbruch folgt ein Text, der gleichzei-
tig fett, kursiv und unterstrichen ist. Es handelt sich dabei um In1ine-Objekte auf
verschiedenen Ebenen.

Nach dem nichsten Zeilenumbruch folgt ein Run mit gednderter Vorder- und Hin-
tergrundfarbe, Schriftart und -gréRe. Die Auflistung TextDecorations kann ver-
schiedene Moglichkeiten der Schriftverzierung enthalten, wie zum Beispiel
durchgestrichenen Text, tiberstrichenen Text, Unter- und Uberstreichungsarten,
Animationen und so weiter.

Anschliefend wird in zwei Spans die Eigenschaft BaselineAlignment vorgestellt.
Sie dient zur Einstellung der vertikalen Schriftposition. Die Werte kommen aus
der gleichnamigen Enumeration. Der Wert Subscript (tiefgestellt) kann fiir einen
mathematischen Index genutzt werden, der Wert Superscript (hochgestellt) fur
einen mathematischen Exponenten.

Nach dem letzten Zeilenumbruch steht ein Satz, der ein bedienbares Steuerele-
ment innerhalb eines InlineUIContainer beinhaltet.

Die Ereignismethode sieht so aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
if (e.Key == Key.N)
{
Paragraph p = fd.Blocks.ElementAt(0) as Paragraph;

p.Inlines.Add(new LineBreak());
p.Inlines.Add(new Run("normal "));
p.Inlines.Add(new Bold(new Run("fett ")));

Span sp = new Span(new Run("tief, GroBe 12"));
sp.BaselineAlignment = BaselineAlignment.Subscript;
sp.FontSize = 12;

p.Inlines.Add(sp);

Neue Elemente fligen Sie hier wie folgt hinzu: Fligen Sie einen Zeilenumbruch,
einen einfachen Run und einen fett formatierten Text hinzu. Einzelne Inline-

415

| 134

13 | Dokumente und Drucken

Objekte werden nicht automatisch durch Leerzeichen getrennt, daher stehen am
Ende der Run-Objekte eigens Leerzeichen. Als Letztes folgt ein tiefgestellter Text
innerhalb eines Span.

else if (e.Key == Key.A)
{
Paragraph p = fd.Blocks.ETementAt(0) as Paragraph;

Bold bo = p.Inlines.ElementAt(7) as Bold;

Underline un = bo.Inlines.ElementAt(0) as Underline;
Italic it = un.Inlines.ElementAt(0) as Italic;

Run r = it.InlTines.ElementAt(0) as Run;

r.Text = "FKU";

InTineUIContainer ic =

p.InTines.ElementAt(16) as InlineUIContainer;
Button bu = ic.Child as Button;
bu.Content = "Click";

Vorhandene Elemente dndern Sie hier wie folgt: Das Element 7 ist ein Bold-
Objekt, das ein Underline-Objekt als erstes Element seiner Inlines-Auflistung
enthilt. Dieses enthilt wiederum ein Italic-Objekt als erstes Element seiner
InlTines-Auflistung. Dessen Inlines-Auflistung wiederum enthilt ein Run-
Objekt, das gedndert wird.

Das Element 16 ist ein InlineUIContainer-Objekt. Dessen Eigenschaft Child ist
ein Steuerelement vom Typ Button. Dessen Aufschrift dndern Sie.

else if (e.Key == Key.S)
{
Paragraph p = fd.Blocks.ElementAt(0) as Paragraph;
string ausgabe = "";
for (int i = 0; i < p.Inlines.Count; i++)
{
Inline inl = p.Inlines.ElementAt(i) as Inline;
ausgabe += 1 + ": " + inl.GetType().ToString()
+ " " + runtext(inl) + "|\n";

}
MessageBox.Show(ausgabe);

416

FlowDocument | 134

private string runtext(Inline i)
{
if (i is Run)
return (i as Run).Text;
else if(i is Bold)
return runtext((i as Bold).Inlines.ElementAt(0));
else if (i is Italic)
return runtext((i as Italic).Inlines.ElementAt(0));
else if (i is Underline)
return runtext((i as Underline).Inlines.ElementAt(0));
else if (i is Span)
return runtext((i as Span).Inlines.ElementAt(0));
else
return

}

Jedes Element der Inlines-Auflistung des vorhandenen Absatzes wird ausgegeben,
und zwar mit einer laufenden Nummer, mit einem Typ und meist mit Text (siehe
Abbildung 13.13). Es wird die rekursive Hilfsmethode runtext () genutzt, da meh-
rere Ebenen vorliegen konnen. Es wird vereinfacht davon ausgegangen, dass
Inlines-Auflistungen auf einer untergeordneten Ebene nur ein Element enthalten.

’ =

0: System.Windows.Documents.Run [normal |

1: System.Windows.Documents.Bold |fett|

2: System.Windows.Documents.Run | |

3: System.Windows.Documents.Italic |kursiv]

4: System.Windows.Documents.Run | |

5: System.Windows.Documents.Underline |unterstrichen|
6: System.Windows.Documents.LineBreak ||

7: System.Windows.Documents.Bold [FKU|

8: System.Windows.Documents.LineBreak ||

9: System.Windows.Documents.Run |Es folgt eine Formel:|

Abbildung 13.13 Liste der Inlines (Ausschnitt)

Die (leeren) Run-Objekte 2 und 4 der Liste entstehen, weil zwischen dem Bo1d-
und dem Italic-Objekt beziehungsweise zwischen dem Italic- und dem
Underline-Objekt im XAML-Code ein Zeilenumbruch eingegeben wurde.

13.1.8 Inline-Typ Figure

Ein Figure-Objekt gehort zu den Inline-Objekten. Es kann innerhalb eines
Absatzes fest positioniert werden und enthilt ein Element auf Block-Ebene, das

417

13 | Dokumente und Drucken

hervorgehoben werden soll. Dies kann zum Beispiel ein Bild in einem
BlockUIContainer oder ein Absatz mit wichtigem Inhalt sein.

Die Positionierung kann zum Beispiel mithilfe der Eigenschaft HorizontalAnchor
geschehen. Die Enumeration FigureHorizontalAnchor bietet Werte, um das
Figure-Objekt links, mittig oder rechts zu platzieren, bezogen auf die ganze Seite,
den Inhaltsbereich der Seite oder den Inhaltsbereich der Spalte.

Ahnlich sieht es mit der Eigenschaft VerticalAnchor aus. Die Enumeration
FigureVerticalAnchor bietet Werte, um das Figure-Objekt oben, mittig oder
unten zu platzieren — bezogen auf die ganze Seite, den Inhaltsbereich der Seite
oder einen Absatz.

Nachfolgend wird im Projekt FlowFigure ein Absatz mit einem Bild dargestellt,
das in einem Figure-Objekt eingebettet ist (siehe Abbildung 13.14). Nach Betiti-
gung einer beliebigen Taste wird die Positionierung des Figure-Objekts geandert.

' ™
[® FlowFigure @m

In diesem Absatz wurde
ein Bild @ eingebettet.
Das umgebende
Figure-Objekt ist horizontal

zentriert, vertikal am oberen Rand und
in der Breite begrenzt.

Abbildung 13.14 Inline-Typ Figure

Der XAML-Code:

<MWindow ... KeyDown="Window_KeyDown">
<FlowDocumentReader>
<FlowDocument x:Name="fd">
<Paragraph FontFamily="Arial" FontSize="14">
In diesem Absatz ...
<{Figure HorizontalAnchor="ContentCenter"
VerticalAnchor="ContentTop" BorderBrush="Black"
BorderThickness="1" Width="40">
<BlockUIContainer>
<{Image Source="work.gif" Height="20" Width="20" />
</BlockUIContainer>
</Figure>
</Paragraph>
</FlowDocument>
</FlowDocumentReader>
</Window>

418

FlowDocument | 134

Es wurde ein schwarzer Rahmen um das Figure-Objekte gelegt, damit es besser
zu erkennen ist. Die Breite wurde begrenzt. Ansonsten wiirde es die gesamte
Absatzbreite einnehmen und nicht mehr vom Text des Absatzes umflossen.

Die Ereignismethode zum Andern der Positionierung sieht so aus:

private void Window_KeyDown(object sender, KeyEventArgs e)
{
Paragraph p = fd.Blocks.ElementAt(0) as Paragraph;
Figure f = p.Inlines.ElementAt(1) as Figure;
f.VerticalAnchor = FigureVerticalAnchor.ContentBottom;
f.HorizontalAnchor = FigureHorizontalAnchor.ContentlLeft;
}

Das Figure-Objekt ist das zweite Element der Inlines-Auflistung des Absatzes.

13.1.9 FlowDocumentScrollViewer

Ein FlowDocumentScrollViewer dient zur Darstellung eines FlowDocument im
Scrollmodus. Der Text ist fortlaufend, die Anzeige kann gescrollt werden (siehe
Abbildung 13.15). Er dhnelt dem FlowDocumentReader im Scroll-Modus, besitzt
allerdings keine Umschalt-, Zoom- oder Suchmoglichkeiten. Nachfolgend sehen
Sie das Projekt FlowScroll mit den gleichen Absatz-Inhalten wie in Abschnitt
13.1.2, »Block-Typ Absatz«.

: ™
57 FlowsScroll [EE

-

Berlin

Berlin ist mit 3,4 Millionen Einwohnern die
bevolkerungsreichste und flachengrofite
Stadt Deutschlands, sowie nach Einwohnern
die zweitgréltte und nach Flache die
funftgroBte Stadt der Europaischen Union.

Berlin ist in zwolf Bezirke unterteilt.
Im Stadtgebiet befinden sich die Flisse -

e

Abbildung 13.15 FlowDocument im FlowDocumentScrollViewer

Der XAML-Code:

<MWindow ...>
<FTowDocumentScrollViewer>
<FTowDocument FontSize="12">
<Paragraph ...> ... </Paragraph>
<Paragraph ...> ... </Paragraph>

419

13 | Dokumente und Drucken

<Paragraph ...> ... </Paragraph>
</FlowDocument>
</FlowDocumentScrollViewer>
</Window>

13.1.10 FlowDocumentPageViewer

Ein FlowDocumentPageViewer dient zur Darstellung eines F1owDocument im Seiten-
modus. Sie sehen eine Seite und kénnen um eine Seite weiterblittern (siehe
Abbildung 13.16). Er dhnelt dem FlowDocumentReader im Seitenmodus, besitzt
auch die Zoom-Méoglichkeit, aber keine Umschalt- oder Suchmdglichkeiten.
Nachfolgend sehen Sie das Projekt FlowPage mit den gleichen Absatz-Inhalten
wie in Abschnitt 13.1.2, »Block-Typ Absatz«.

[®7 FlowPage E=NiE

Berlin

Berlin ist mit 34 Millionen Einwohnern die
bevolkerungsreichste und flachengrofte Stadt
Deutschlands, sowie nach Einwohnern die
zweitgroBte und nach Flache die funftgrofte
Stadt der Européischen Union.

Berlin ist in zwolf Bezirke unterteilt. Im |

1 von 2 p = —N—

8

Abbildung 13.16 FlowDocument im FlowDocumentPageViewer

Der XAML-Code:

<MWindow ...>
<{FlowDocumentPageViewer >
<FlowDocument FontSize="12">

<Paragraph ...> ... </Paragraph>
<Paragraph ...> ... </Paragraph>
<Paragraph ...> ... </Paragraph>

</FlowDocument>
</FlowDocumentPageViewer>
</Window>

13.1.11 RichTextBox

Eine RichTextBox dient zur Anzeige und zur Bearbeitung eines FlowDocument. Im
Unterschied zu den bisher vorgestellten Readern und Viewern konnen Sie Teile

420

FlowDocument

des Dokuments dandern, formatieren, erginzen oder loschen. Zur Unterstiitzung
konnen Sie eingebaute Kommandos aus der Gruppe der EditingCommands ver-
wenden (siehe auch Abschnitt 5.5, »Kommandos«).

Ein Dokument vom Typ FlowDocument kann gespeichert oder geladen werden.
Dies ist besonders dann sinnvoll, wenn das Dokument verindert werden kann,
wie z.B. in einer RichTextBox.

Nachfolgend wird im Projekt FlowRichTextBox ein FlowDocument dargestellt, das
aus zwei Absitzen besteht. Die Inhalte kénnen gedndert und mithilfe von einigen
vorgefertigten EditingCommands formatiert werden. Das gesamte Dokument
beziehungsweise der erste Absatz konnen in einer Datei gespeichert werden.
Ebenso kénnen ein Dokument oder ein Absatz aus einer Datei geladen werden
(siehe Abbildung 13.17).

(1 FlowRichTextBox BT
[Zentn'en] [Rechls] [Unterstrichen]

[Dokument speichern] [Dokument Iaden]

[1. Absatz speichem] [1. Absatz Iaden]

Das ist Absatz 1

Und das ist Absatz 2

=

Abbildung 13.17 FlowDocument in RichTextBox editieren

Der XAML-Code:

<MWindow ...>
<{StackPanel>
<WrapPanel HorizontalAlignment="Center">
<Button Command="EditingCommands.AlignLeft"
CommandTarget="{Binding ElementName=rtb}"
Margin="3">Links</Button>
<Button Command="EditingCommands.AlignCenter"
<Button Command="EditingCommands.AlignRight"
<Button Command="EditingCommands.ToggleBold"
<Button Command="EditingCommands.ToggleUnderline"
</WrapPanel>
<WrapPanel HorizontalAlignment="Center">
<Button ... Click="dspeichern">Dokument speichern</Button>
<Button ... Click="dladen">Dokument Taden</Button>

421

| 134

13 | Dokumente und Drucken

</WrapPanel>
<WrapPanel HorizontalAlignment="Center">
<Button ... Click="aspeichern">1. Absatz speichern</Button>
<Button ... Click="aladen">1. Absatz laden</Button>
</WrapPanel>
<RichTextBox Width="270" Height="70" Margin="3"
ScrollViewer.VerticalScrollBarVisibility="Auto">
<FlowDocument x:Name="fd" FontSize="12">
<Paragraph>
Das ist <Bold>Absatz</Bold> 1
</Paragraph>
<Paragraph TextAlignment="Center">
Und das ist Absatz 2
</Paragraph>
</FlowDocument>
</RichTextBox>
</StackPanel>
</Window>

Fur die Eigenschaft Conmand werden die EditingCommands AlignLeft, AlignCenter
und AlignRight zur Absatzformatierung sowie ToggleBold und ToggleUnderline
zur Schriftformatierung eingesetzt. Diese vorgefertigten Kommandos bendétigen
keinen weiteren Programmcode. Als Kommandoziel (Eigenschaft CommandTarget)
ist iber eine Datenbindung jeweils die RichTextBox angegeben.

Innerhalb der RichTextBox wird ein Scrol1Viewer-Objekt genutzt. Dies erleich-
tert die Erreichbarkeit aller Dokumentteile.

Es folgen die Methoden zum Speichern und Laden, zunichst fiir das gesamte
Dokument. Sie benétigen den Namespace System. I0.

void dspeichern(...)
{
TextRange tr = new TextRange(fd.ContentStart, fd.ContentEnd);
FileStream fs = new FileStream("dokument.xp", FileMode.Create);
tr.Save(fs, DataFormats.XamlPackage);
fs.Close();
}
void dladen(...)
{
if (File.Exists("dokument.xp"))
{
TextRange tr = new TextRange(fd.ContentStart, fd.ContentkEnd);
FileStream fs = new FileStream("dokument.xp", FileMode.Open);
tr.Load(fs, DataFormats.XamlPackage);

422

FlowDocument | 13

fs.Close();

}

Gespeichert beziehungsweise geladen wird ein TextRange-Objekt. Dies ist ein Text-
bereich, der zwischen zwei TextPointer-Objekten liegt. Ein TextPointer-Objekt
bezeichnet eine Position innerhalb eines FlowDocument oder eines TextBlock.

Das neu erzeugte TextRange-Objekt liegt zwischen den zwei Positionen, die hier
von den Eigenschaften ContentStart und ContentEnd des FlowDocument geliefert
werden. Der Textbereich umfasst also den gesamten Inhalt des Dokuments.

Zum Speichern wird ein neues FileStream-Objekt erzeugt. Zum Laden wird ein
vorhandenes FileStream-Objekt geoffnet. Als Speicherformat eignet sich das
XAML-Paketdatenformat. Dieses Format kann tiber das Element Xam1Package aus
der Enumeration DataFormats ausgewdhlt werden. Die Enumeration stellt eine
ganze Reihe von Datenformaten bereit.

Es folgen die Methoden zum Speichern und Laden eines Absatzes:

void aspeichern(...)
{
Paragraph p = fd.Blocks.ElementAt(0) as Paragraph;
TextRange tr = new TextRange(p.ContentStart, p.Contentknd);
FileStream fs = new FileStream("absatz.xp", FileMode.Create);
tr.Save(fs, DataFormats.XamlPackage);
fs.Close();
}
void aladen(...)
{
if (File.Exists("absatz.xp"))
{
Paragraph p = fd.Blocks.ElementAt(0) as Paragraph;
TextRange tr = new TextRange(p.ContentStart, p.ContentEnd);
FileStream fs = new FileStream("absatz.xp", FileMode.Open);
tr.Load(fs, DataFormats.XamlPackage);
fs.Close();

}

Das ermittelte TextRange-Objekt wird mithilfe der Methoden Save () und Load()
gespeichert beziehungsweise geladen. Ein Paragraph-Objekt besitzt ebenfalls die
Eigenschaften ContentStart und ContentEnd, um den Start und das Ende des
Inhalts zu markieren.

423

13 | Dokumente und Drucken

13.2 FixedDocument

Im Unterschied zu einem FlowDocument werden die Elemente bei einem
FixedDocument auf einzelnen Seiten fest positioniert. Damit ist es besonders zum
Ausdrucken geeignet.

Ein FixedDocument-Objekt besitzt die Eigenschaft Pages vom Typ PageContent-
Collection. Darin stehen die einzelnen Seiteninhalte des Dokuments vom Typ
PageContent. Die Eigenschaft Child eines PageContent-Objekts ist ein FixedPage-
Objekt. Es umfasst die eigentlichen Elemente einer einzelnen Seite.

Ein FixedPage-Objekt hat Format-Eigenschaften wie Hohe und Breite. Die Eigen-
schaft Children vom Typ UIETementCollection beinhaltet die einzelnen Oberfla-
chen-Elemente, die auf der Seite positioniert werden.

Wie ein FlowDocument bendtigt ein FixedDocument ein Steuerelement zur Darstel-
lung auf dem Bildschirm. Geeignet dazu ist ein DocumentViewer-Objekt. Dessen
Eigenschaft Document beinhaltet das FixedDocument. Ein DocumentViewer bietet die
Maoglichkeit, das Dokument auszudrucken, es zu zoomen, nach Begriffen zu suchen
und zwischen einem Seitenmodus und einem Zwei-Seiten-Modus zu wechseln.

Im nachfolgenden Projekt DruckDokument wird ein DocumentViewer mit einem
FixedDocument dargestellt, das aus zwei Seiten in der Grof8e DIN A8 im Querfor-
mat besteht (sieche Abbildung 13.18).

[®] DruckDokument &@u
<& ® 8 E &
) -
Text 1 (]
Seite 1
Text 2 I
hd
‘Suchtext eingeben... hLad

Abbildung 13.18 FixedDocument im DocumentViewer

424

FixedDocument | 13.2

Der XAML-Code ist kurz, da das eigentliche FixedDocument hier per Programm-
code erzeugt wird:

<MWindow ... Loaded="Window_Loaded">
<DocumentViewer x:Name="dv" />
</Window>

Es folgen die Ereignismethode Window_Loaded() und die Hilfsmethode seite()
zur Erzeugung einer einzelnen Seite. Dazu wird der Namespace System.Windows
.Markup benotigt.

private void Window_Loaded(...)
{
FixedDocument fx = new FixedDocument();
seite(fx, 1);
seite(fx, 2);
dv.Document = fx;
}

In der Methode Window_Loaded() wird das FixedDocument-Objekt erzeugt. Es
werden zwei Seiten hinzugefiigt. Anschliefend wird das FixedDocument dem
DocumentViewer hinzugefiigt.

private void seite(FixedDocument fx, int nr)
{

FixedPage fp = new FixedPage();

fp.Height = 198;

fp.Width = 281;

TextBlock thbt = new TextBlock(new Run("Text " + nr));
tbt.SetValue(FixedPage.lLeftProperty, 30.0);
tbt.SetValue(FixedPage.TopProperty, 10.0);
fp.Children.Add(tbt);

TextBlock tbs = new TextBlock(new Run("Seite " + nr));
tbs.SetValue(FixedPage.lLeftProperty, 130.0);
tbs.SetValue(FixedPage.TopProperty, 170.0);
fp.Children.Add(tbs);

PageContent pc = new PageContent();
((TAddChild)pc).AddChild(fp);
fx.Pages.Add(pc);

}

In der Hilfsmethode seite() wird ein einzelnes FixedPage-Objekt erzeugt. Die
Werte fiir die Eigenschaften Height und Width ergeben DIN A8 im Querformat.

425

13 | Dokumente und Drucken

Eine DIN-A4-Seite hat die Grofe 21,0 cm mal 29,7 cm. Teilt man beide Werte
durch vier, ergeben sich 5,25 cm (ca. 2,067 Inch) und 7,425 cm (ca. 2,923 Inch).
Bei 96 Punkten pro Inch als Standard-Druckwert fiir WPF-Dokumente ergeben
sich ca. 198 Punkte und ca. 281 Punkte.

Es werden zwei TextBlock-Objekte erzeugt: einmal fiir den Text oben links, ein-
mal fiir die Seitennummer unten in der Mitte. Diese werden tiber die Dependency
Properties LeftProperty und TopProperty des FixedDocument fest positioniert
und ihm als untergeordnete Elemente hinzugefiigt.

Es wird ein PageContent-Objekt fiir die einzelne Seite erzeugt. Das formatierte
und gefullte FixedPage-Objekt wird ihm mithilfe der Methode AddChild() und
des Interfaces 1AddChi1d untergeordnet. Das PageContent-Objekt wird der Auflis-
tung Pages des FixedDocument hinzugeftigt.

13.3 Drucken

Die Klasse PrintDialog wird zur Vorbereitung und Durchfiihrung eines Druck-
vorgangs verwendet. Sie konnen vor dem eigentlichen Druckvorgang die
Methode ShowDialog() dieser Klasse aufrufen. Damit wird der Windows-Druck-
dialog angezeigt, in dem Sie weitere Einstellungen vornehmen kénnen: Auswahl
des Druckers, Anzahl der Exemplare und so weiter. Der Riickgabewert der
Methode ist vom Typ boo17? und liefert die Information, ob der Druck ausgefiihrt
werden soll oder nicht.

Die Eigenschaft PrintQueue der Klasse PrintDialog liefert ein Objekt vom Typ
PrintQueue. Dieses konnen Sie zum Steuern des Druckers, des Druckauftrags und
der Druckerwarteschlange verwenden. Auflerdem werden zahlreiche Informatio-
nen bereitgestellt. Fiir den Zugriff auf die Klasse PrintQueue wird ein Verweis auf
die .NET-Komponente System.Printing bendtigt. Der gleichnamige Namespace
muss eingebunden werden.

Die Methode PrintVisual () der Klasse PrintDialog wird zum Drucken von visu-
ellen Objekten verwendet. Dies konnen die gesamte Anwendungsoberfliche
oder einzelne Teile davon sein.

Im nachfolgenden Projekt DruckenVisual (siehe Abbildung 13.19) werden drei
verschiedene Druckauftrige ausgefiihrt:
1. der Druck der gesamten Anwendungsoberfliche

2. der Druck der gesamten Anwendungsoberfldche, an verdnderter Position und
in veranderter GroRe

3. der Druck eines Elements der Anwendungsoberfliche, an verdnderter Position

426

Drucken

AuBerdem werden einige Drucker-Informationen ausgegeben.

[® DruckenVisual @m
Drucken 1 Hamburg Infos

Berlin
Muinchen
Frankfurt

Drucken 2 Drucken 3

Abbildung 13.19 Drucken mit PrintDialog

Der XAML-Code fiir die vier Buttons und die ListBox in einem Canvas:

<Window ... Height="120" Width="260">
<Canvas>
<Button Click="drl1">Drucken 1</Button>
<Button Canvas.Right="0" Click="infos">Infos</Button>
<Button Canvas.Bottom="0" Click="dr2">Drucken 2</Button>
<Button Canvas.Right="0" Canvas.Bottom="0"
Click="dr3">Drucken 3</Button>
<ListBox x:Name="1b" Canvas.Left="90"
Width="65" Height="80"> ... </ListBox>
</Canvas>
</Window>

Die Ereignismethoden sehen so aus:

private void drl(...)
{
PrintDialog pd = new PrintDialog();
if(pd.ShowDialog() == true)
pd.PrintVisual(this, "Drucken 1");
}

Es wird das gesamte Fensterobjekt (this) gedruckt, ohne Verinderung von Posi-
tion und GroBe. Vorher wird der Windows-Druckdialog aufgerufen, damit der
Benutzer noch Einstellungen vornehmen beziehungsweise den Druck abbrechen
kann.

private void infos(...)

{
PrintDialog pd = new PrintDialog();
PrintQueue pg = pd.PrintQueue;
string ausgabe = "Name des Druckers: " + pqg.Name + "\n";
ausgabe += "Drucker offline: " + pq.IsOffline + "\n";
ausgabe += "Anzahl Druckjobs: " + pg.NumberOfJobs + "\n";

427

| 13.3

13 | Dokumente und Drucken

double br = pd.PrintableAreaWidth / 96 * 2.54;
double ho = pd.PrintableAreaHeight / 96 * 2.54;
ausgabe += "Breite: " + Math.Round(br, 1)
+ " cm, Hohe: " + Math.Round(ho, 1) + " cm";
MessageBox.Show(ausgabe);
}

Mithilfe der Eigenschaften Name, IsOffline und NumberOfJobs der Klasse
PrintQueue werden Informationen iiber den druckbaren Bereich, den Namen des
Druckers, den Anschaltzustand und die Anzahl der Druckjobs ausgegeben. Die
Eigenschaften PrintableArealiidth und PrintableAreaHeight der Klasse
PrintDialog liefern einen Wert in Punkten. Bei 96 Punkten pro Inch als Stan-
dard-Druckwert fiir WPF-Dokumente ergeben sich nach der obigen Umrechnung
die Werte in Zentimeter.

private void dr2(...)

{
Size s = new Size(600, 100);
Point p = new Point(100, 15);
this.Measure(s);
this.Arrange(new Rect(p, s));

PrintDialog pd = new PrintDialog();
pd.PrintVisual(this, "Drucken 2");

s = new Size(this.Width, this.Height);
p = new Point(0, 0);
this.Measure(s);
this.Arrange(new Rect(p, s));
}

Die Methoden Measure() und Arrange() fithren eine Aktualisierung des Layouts
des visuellen Objekts (hier des Fensters) durch. Dies ist die Voraussetzung fiir
einen Ausdruck des Objekts in der gewiinschten Gréf8e an der gewtinschten Posi-
tion. Anschliefend wird wieder das Original-Layout hergestellt.

private void dr3(...)

{
Size s = new Size(1b.Width, 1b.Height);
Point p = new Point(20, 20);
1b.Measure(s);
1b.Arrange(new Rect(p, s));

PrintDialog pd = new PrintDialog();
pd.PrintVisual(1b, "Stadtauswahl");

428

Drucken | 13.3

s = new Size(Ib.Width, 1b.Height);
p = new Point(90, 0);
1b.Measure(s);
1b.Arrange(new Rect(p, s));

}

Es wird nur die ListBox mit ihren Inhalten ausgedruckt, und zwar an der
gewlnschten Position. Vorher wird das Layout der ListBox fir den Ausdruck
vorbereitet, und anschliefend wird wieder das Original-Layout hergestellt.

429

Die WPF kann mit Elementen aus Windows Forms und mit Dateien aus
MS Office arbeiten.

14 Interoperabilitat

Sie kénnen die Vorteile der WPF nutzen, ohne all Thre Windows Forms-Anwen-
dungen vollstindig neu zu programmieren. Es ist leicht moglich, WPF-Elemente
in eine Windows Forms-Anwendung einzubetten.

Anders herum gibt es in der WPF noch nicht alle Elemente, die Sie aus Windows
Forms kennen. Sie konnen aber eine WPF-Anwendung mit Elementen aus Win-
dows Forms erweitern.

AuBerdem konnen Sie Dateien fir MS Office-Anwendungen mithilfe einer WPF-
Anwendung erzeugen.

14.1 Windows Forms in WPF

In diesem Abschnitt werden Steuerelemente und Standard-Dialoge aus Windows
Forms in WPF-Anwendungen eingesetzt. Es wird wie bisher mit einem Projekt
vom Typ WPF-Anwendung gearbeitet. Zur Arbeit mit Windows Forms miissen
Sie dem jeweiligen WPF-Projekt einen Verweis auf die .NET-Komponente
System.Windows.Forms hinzufiigen.

14.1.1 Windows Forms-Steuerelemente in WPF

Zur Einbettung eines Windows Forms-Steuerelements in eine WPF-Anwendung
muss der Namespace System.Windows.Forms aus der gleichnamigen .NET-Kompo-
nente im XAML-Code zur Verfiigung gestellt werden. AuBerdem wird fiir die Nut-
zung im Programmcode die .NET-Komponente WindowsFormsIntegration benotigt.

Anschliefend konnen Sie im XAML-Code ein WPF-Element des Typs
WindowsFormsHost einsetzen. Dessen Eigenschaft Chi1d enthilt ein Steuerelement
aus Windows Forms.

Im nachfolgenden WPF-Projekt FormsInWPF werden zwei Buttons dargestellt:
ein WPF-Button und ein Windows Forms-Button (siehe Abbildung 14.1).

431

14 | |Interoperabilitat

("7 FormsInWPF @m

(Hallo WPF J

Hallo Windows Forms |

Abbildung 14.1 Windows Forms-Button in einer WPF-Anwendung

Der XAML-Code:

<MWindow x:Class=... xmIns="http://..." xmlns:x="http://..."
xmlns:wfalt="clr-namespace:System.Windows.Forms;
assembly=System.Windows.Forms" ...>
<Canvas>

<Button Width="150" Margin="3" Click="WPF_Click">
Hallo WPF</Button>
<MWindowsFormsHost x:Name="wfh" Canvas.Top="30"
Width="150" Height="23" Margin="3"
Background="LightGray" Foreground="Black">
<wfalt:Button Click="WFO_Click"
Text="Hallo Windows Forms" />
</WindowsFormsHost>
</Canvas>
</Window>

Der Namespace System.Windows.Forms aus der gleichnamigen .NET-Komponente
bekommt hier den lokalen Namen wfalt. Damit ist es moglich, einen Windows
Forms-Button mit seinen spezifischen Eigenschaften (zum Beispiel: Text) zu
erzeugen. Die C11ick-Ereignisse der beiden Buttons fithren zu folgenden Ereignis-
methoden:

private void WPF_Click(object sender, RoutedEventArgs e)
{ MessageBox.Show("Hallo WPF"); }

private void WFO_Click(object sender, EventArgs e)

{ MessageBox.Show(wfh.Child.Text); }

Die Eigenschaft Child des WindowsFormsHost beinhaltet den Windows Forms-
Button. Dessen Eigenschaft Text wird ausgegeben.

14.1.2 Windows Forms-Standard-Dialogfelder in WPF

Im nachfolgenden Projekt FormsDialogInWPF werden einige Standard-Dialogfel-
der aus Windows Forms innerhalb einer WPF-Anwendung aufgerufen. Die But-
tons in Abbildung 14.2 starten die nachfolgend genannten Dialogfelder: DATEI

432

Windows Forms in WPF | 141

OFFNEN, VERZEICHNIS AUSWAHLEN, FARBE AUSWAHLEN und SCHRIFT AUSWAHLEN.
In der WPF gibt es noch keine gleichwertigen Dialogfelder.

[®7 FormsDialogInWPF @@u

Datei

Verzeichnis

Farbe

Schrift

Abbildung 14.2 Standard-Dialogfelder aus Windows Forms

Es wird der Namespace System.Windows.Forms aus der gleichnamigen .NET-Kom-
ponente verwendet. Zusitzlich wird die .NET-Komponente System.Drawing zur
Bereitstellung der Klassen System.Drawing.Color und System.Drawing.Font aus
Windows Forms benotigt. Damit ist es moglich, die Ergebnisse der Standard-Dia-
logfelder fiir Farbe und Schrift fiir die entsprechenden Klassen des WPF-Name-
spaces System.Windows.Media zu »libersetzenc.

Der XAML-Code:

<MWindow ...>
<{StackPanel>
<Button Width="80" Margin="3" Click="datei">Datei</Button>
<Button Width="80" Margin="3" Click="verzeichnis">
Verzeichnis</Button>
<Button Width="80" Margin="3" Click="farbe">Farbe</Button>
<Button Width="80" Margin="3" Click="schrift">
Schrift</Button>
<{Label x:Name="1b" Margin="3" HorizontalAlignment="Center" />
</StackPanel>
</Window>

Das Ergebnis des jeweiligen Standard-Dialogfelds wird im Label angezeigt.
Die Ereignismethode zum Start des Dialogfelds DATEI OFFNEN sieht so aus:

private void datei(...)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.InitialDirectory = "C:\\Temp";
ofd.Filter = "Tabellen (*.x1s)|*.x1s| Texte
(*.txt;*.doc)|*.txt;*.doc| Alle Dateien (*.*)|*.*";
ofd.Title = "Datei zum Offnen auswdhlen";

433

14 | |Interoperabilitat

if (ofd.ShowDialog() == System.Windows.Forms.DialogResult.OK)
1b.Content = ofd.FileName;

else
1b.Content = "Datei-Auswahl abgebrochen";

}

Es wird ein neues OpenFileDialog-Objekt fiir das Standard-Dialogfeld DATET OFE-
NEN erzeugt. Mithilfe der Eigenschaften InitialDirectory, Filter und Title
werden einige Voreinstellungen vorgenommen: Dazu geben Sie Startverzeichnis,
eine Liste von Dateitypen mit Endungen und einen Fenstertitel an.

Die Methode ShowDialog() ruft das Dialogfeld auf und liefert einen Riickgabe-
wert vom Typ DialogResult. Falls der Benutzer im Dialogfeld DATEI OFFNEN den
Button OFFNEN betitigt hat, dann entspricht der Riickgabewert dem Wert OK aus
der Enumeration DialogResult. In diesem Falle wird der Name der ausgewéhlten
Datei im Label angezeigt (Eigenschaft FileName). Falls er das Dialogfeld abgebro-
chen hat, erscheint eine entsprechende Meldung.

Die Ereignismethode zum Start des Dialogfelds VERZEICHNIS AUSWAHLEN sieht so
aus:

private void verzeichnis(...)

{
FolderBrowserDialog fbd = new FolderBrowserDialog();
fbd.RootFolder = Environment.SpecialFolder.MyDocuments;
fbd.ShowNewFolderButton = false;
fbd.Description = "Verzeichnis auswdhlen";

if (fbd.ShowDialog() == System.Windows.Forms.DialogResult.0K)
1b.Content = fbd.SelectedPath;
else
1b.Content = "Verzeichnis-Auswahl abgebrochen";
}

Es wird ein neues FolderBrowserDialog-Objekt fiir das Standard-Dialogfeld VEr-
ZEICHNIS AUSWAHLEN erzeugt. Mithilfe der Eigenschaften RootFolder,
ShowNewFolderButton und Description werden einige Voreinstellungen vorge-
nommen: Startverzeichnis, mégliche Erzeugung eines neuen Verzeichnisses und
ein Fenstertitel.

Die Methode ShowDialog() fullt im Erfolgsfall die Eigenschaft SelectedPath. Der
Name des ausgewdhlten Verzeichnisses wird im Label angezeigt.

Die Ereignismethode zum Start des Dialogfelds FARBE AUSWAHLEN sieht so aus:

434

Windows Forms in WPF | 141

private void farbe(...)
{
ColorDialog cd = new ColorDialog();

if (cd.ShowDialog() == System.Windows.Forms.DialogResult.0K)
{
System.Windows.Media.Color c =
System.Windows.Media.Color.FromArgb(
cd.Color.A, cd.Color.R, cd.Color.G, cd.Color.B);
1b.Background = new SolidColorBrush(c);
1b.Content = "Farbe: " + c.ToString();
}
else
1b.Content = "Farb-Auswahl abgebrochen";
}

Es wird ein neues ColorDialog-Objekt fiir das Standard-Dialogfeld FARBE Aus-
WAHLEN erzeugt. Im Erfolgsfall ist in der Eigenschaft Color vom Typ System
.Drawing.Color aus Windows Forms der Farbwert gespeichert.

Dieser Typ entspricht nicht dem Typ System.Windows.Media.Color aus der WPF.
Daher werden die Farbkomponenten einzeln mithilfe der Methode FromArgb()
tbernommen. Der Hexadezimalwert der Farbe wird im Label ausgegeben.
AuBerdem wird der Hintergrund des Labels entsprechend eingefirbt.

Die Ereignismethode zum Start des Dialogfelds SCHRIFT AUSWAHLEN sieht so aus:

private void schrift(...)
{
FontDialog fd = new FontDialog();
fd.ShowColor = true;
fd.MinSize = 8;
fd.MaxSize = 20;
if (fd.ShowDialog() == System.Windows.Forms.DialogResult.0K)
{
1b.FontFamily =
new System.Windows.Media.FontFamily(fd.Font.Name);
1b.FontSize = fd.Font.Size;
1b.Content = "Schrift: " + Ib.FontFamily
+ ", GroBe: " + Tb.FontSize;

}
else
1b.Content = "Schrift-Auswahl abgebrochen";

435

14 | |Interoperabilitat

Es wird ein neues FontDialog-Objekt fiir das Standard-Dialogfeld ScHRIFT Aus-
WAHLEN erzeugt. Mithilfe der Eigenschaften ShowColor, MinSize und MaxSize
werden einige Voreinstellungen vorgenommen: Die Schriftfarbe wird auswihl-
bar gemacht, und es wird ein kleinster und ein grofSter Wert fiir die SchriftgrofSe
festgelegt.

Im Erfolgsfall sind in der Eigenschaft Font der Klasse System.Drawing.Font aus
Windows Forms Informationen {iber die ausgewihlte Schrift gespeichert.

Diese Klasse hat keine direkte Entsprechung in der WPF. Daher missen die Kom-
ponenten der Schrift einzeln tibernommen werden. Name und Grofe der Schrift
werden im Label ausgegeben. Aulerdem wird die Schrift des Labels entspre-
chend gesetzt.

14.2 WPF in Windows Forms

In diesem Abschnitt werden Steuerelemente aus der WPF in einem Projekt vom
Typ Windows Forms-Anwendung eingesetzt. Zur Arbeit mit der WPF miissen Sie
dem jeweiligen Windows Forms-Projekt folgende Verweise auf .NET-Komponen-
ten hinzufi’lgen: PresentationCore, PresentationFramework, WindowsBase, Win-
dowsFormsIntegration und System.Xaml.

In einer Windows Forms-Anwendung kann ein ElementHost ein WPF-Steuerele-
ment vom Typ UIETement enthalten. Dies kann auch ein Layout-Objekt sein.

14.2.1 WPF-Steuerelemente in Windows Forms

Im nachfolgenden Projekt WPFInForms werden ein Windows Forms-Button, ein
WPF-Button und ein WPF-Expander mit drei WPE-TextB1ock-Objekten eingesetzt
(sieche Abbildung 14.3). Expander- und TextBlock-Objekte stehen bekanntlich
unter Windows Forms ohne die WPF nicht zur Verfugung.

~

.
85! WPFInForms =1

Windows Forms Bution
WPF Button

;f:'] WPF Expander
Inhalt 1
Inhalt 2
Inhalt 3

-

Abbildung 14.3 Windows Forms-Anwendung mit WPF-Elementen

436

WPF in Windows Forms

Es wird ein neues Projekt vom Typ Windows Forms-Anwendung erzeugt. Das
Formular bekommt die Gré8e 350 mal 200 geriteunabhingige Pixel. Anschlie-
Bend werden aus der TooLBOX ein Button und zwei Steuerelemente vom Typ
ElementHost hinzugefiigt, und zwar aus der Kategorie WPF-INTEROPERABILITAT.
Der Button bekommt den Namen WFO_Button und die Gréfe 160 mal 23 geri-
teunabhingige Pixel. Die beiden ElementHost-Objekte bekommen die Namen
ehostl und ehost2 und die GréRen 160 mal 23 und 160 mal 80 gerdteunabhin-
gige Pixel. Das Ergebnis sehen Sie in Abbildung 14.4 im Entwurfsmodus.

g5l WPFInForms EI@

Abbildung 14.4 Windows Forms-Anwendung im Entwurf

Es folgt der Code zum Formular in der Datei Form1.cs:

using System;

using System.Windows;

using System.Windows.Forms;
using System.Windows.Controls;

namespace WPFInForms
{
public partial class Forml : Form
{
public Forml()
{
InitializeComponent();

System.Windows.Controls.Button nb =

new System.Windows.Controls.Button();
nb.Content = "WPF Button";
nb.Click += new RoutedEventHandler(nb_Click);
ehostl.Child = nb;

StackPanel sp = new StackPanel();
for (int i =1; 1 <= 3; i++)
{

TextBlock tb = new TextBlock();

437

| 14.2

14 | |Interoperabilitat

th.Text = "Inhalt " + i;
sp.Children.Add(tb);
}
Expander ep = new Expander();
ep.Header = "WPF Expander";
ep.Content = sp;
ehost2.Child = ep;

private void nb_Click(object sender,
System.Windows.RoutedEventArgs e)

System.Windows.Forms.MessageBox.Show((sender as
System.Windows.Controls.Button).Content + "");

private void WFO_Button_Click(object sender, EventArgs e)
{
System.Windows.Forms.MessageBox.Show(
"Windows Forms Button");

}

Einige Klassennamen miissen mit dem vollstindigen Namen des jeweiligen
Namespace angegeben werden. Ansonsten besteht ein Konflikt aufgrund der glei-
chen Klassennamen aus verschiedenen Namespaces.

Es wird ein WPF-Button erzeugt. Dem Button werden ein EventHandler und eine
Ereignismethode zugeordnet. Der Button wird der Eigenschaft Child des ersten
ElementHost-Objekts zugeordnet.

Auferdem wird ein StackPanel mit drei TextBlock-Objekten erzeugt. Dieses
StackPanel wird der Inhalt eines Expander-Objekts. Das Expander-Objekt wird
der Eigenschaft Child des zweiten ElementHost-Objekts zugeordnet.

14.3 MS Office in WPF

Sie konnen in einer WPF-Anwendung Dateien fiir MS Office-Anwendungen
erzeugen. Dazu muss die entsprechende COM-Komponente dem WPF-Projekt als
Verweis hinzugefiigt werden. Dies ist im Falle von MS Excel 2010 die Microsoft
Excel 14.0 Object Library und im Falle von MS Word 2010 die Microsoft Word
14.0 Object Library. Falls auf dem PC des Benutzers eine frithere Office-Version

438

MS Office in WPF

installiert ist, dann sind die entsprechenden dlteren Library-Versionen zu ver-
wenden.

Im nachfolgenden Projekt OfficeInWPF werden eine neue Excel-Mappe und ein
neues Word-Dokument erzeugt. Der XAML-Code beinhaltet nur zwei Buttons
zum Aufruf der beiden Vorgange. Nachfolgend sehen Sie zunichst die Vereinba-
rung der Namespaces, die in diesem Projekt benotigt werden. Auferdem sehen
Sie den Kopf der Fensterklasse.

using System;

using System.Windows;

using System.Windows.Controls;

using Microsoft.Office.Interop.Excel;
using Microsoft.Office.Interop.Word;

namespace OfficelnWPF

{
public partial class MainWindow : System.Windows.Window
{

Die beiden Namespaces aus Microsoft.Office.Interop stehen nach dem Hinzu-
fiigen der beiden eingangs genannten COM-Komponenten zur Verfiigung. Sie
beinhalten die Klassen, die fiir die jeweilige Interoperabilitit notwendig sind.

Die Klasse Window, von der die Klasse fiir das WPF-Hauptfenster erbt, muss inklu-
sive Namespace angegeben werden. Da es die Klasse Window auch in den Name-
spaces unter Microsoft.0ffice.Interop gibt, wiirde ansonsten eine Mehrdeutig-
keit auftreten.

14.3.1 Excel-Mappe

Im Projekt OfficelnWPF wird die MS Excel-Arbeitsmappe in Abbildung 14.5
erzeugt.

Der Programmcode sieht so aus:

private void excel_Click(...)
{
Microsoft.Office.Interop.Excel.Application anw =
new Microsoft.Office.Interop.Excel.Application();
anw.Visible = true;
anw.WindowState = XTWindowState.x1Normal;

Workbook wb = anw.Workbooks.Add(XTWBATemplate.xTWBATWorksheet);
Worksheet ws = wb.Worksheets[1];

439

| 14.3

14 | Interoperabilitit

ws.Range["Al:A3"].Value = 42;
ws.Range["A4"].Value = "Hallo Welt";
ws.Range["A5"].Value = new DateTime(2011, 10, 18);
ws.Range["A6"].FormulalLocal = "= Al + 1";
ws.Range["A7"].Formulalocal "=SUMME(A1:A3)";
for (int i =1; 1 <= 10; i++)

ws.Range["B" + i].Value = 1 * 10;

whb.SaveAs("C:\\Temp\\ExcelInWPF.xTsx");
// wb.Close();
// anw.Quit();

' ™
(@] & 9 - © -|= ExcellWPFxisx - Microsoft E.. @I@M
Star‘t Einfii | Sefte | Forr | Date | Uber | ansit | Entw | @ @ = &= =

Al (=] | » A R
> B - &
Einfigen Schriftart| Ausrichtung| Zahl | Formatvorlagen| Zellen 4
S T| e
Zwischena.. M | | | | Bearbeit
Al v (s £ 2 [
A B | B | D =
il 42 10
| 2 | 42 20
| 8 | 42 30 =
| 4 Hallo Welt 40
| 5 18.10.2011 50
| 6 | 43 60
L7 126 70
| 8 | 80
[90
10 100 v
4 4 » M| Tabellel /%37 [T« _m v]
| Berert| = | ||:_|] M%G—U—(BJ

Abbildung 14.5 MS Excel 2010-Arbeitsmappe, mit WPF erzeugt

Zundchst wird ein Excel-Anwendungsobjekt erzeugt. Der Wert true fiir die
Eigenschaft Visible sorgt dafiir, dass das Excel-Anwendungsfenster angezeigt
wird. Fiir die Erzeugung der Daten und die Speicherung der Datei wire dies nicht
notwendig. Der Fensterstatus wird mithilfe des Werts x1Normal aus der Enume-
ration X1WindowState auf normale GroBe gestellt. Es gibt noch die Werte
x1Maximized und x1Minimized. Elemente aus der Excel-Bibliothek sind meist am
Prifix X1 oder x1 erkennbar.

440

MS Office in WPF

Die Auflistung Workbooks enthdlt die aktuell geoffneten Excel-Dateien. Die
Methode Add() erzeugt eine neue, leere Arbeitsmappe und liefert einen Verweis
darauf. Man kann als Parameter den Typ des ersten Blatts der neuen Arbeits-
mappe Ubergeben. Dies ist ein Wert aus der Enumeration X1WBATemplate. Der
Wert x1WBATWorksheet erzeugt ein Tabellenblatt. Der Wert x1WBATChart wiirde
ein Diagrammblatt erzeugen.

Die Auflistung Worksheets enthilt die Blatter der Excel-Arbeitsmappe. Es wird ein
Verweis auf das erste Tabellenblatt angelegt. Es hat die Nummer 1. Die Eigenschaft
Range dient zur Angabe einer Zelle oder eines Zellbereichs auf dem Tabellenblatt.
Die Untereigenschaft Value steht fiir den Inhalt, und die Untereigenschaft
Formulalocal steht fiir die Formel in dieser Zelle oder in diesem Zellbereich. Als
Value kénnen Zahlen, Zeichenketten oder Datumsangaben geliefert werden.

Die Methode SaveAs() dient zum Speichern der Excel-Arbeitsmappe unter dem
angegebenen Namen. Die Methode Close() schlieft die Arbeitsmappe, und die
Methode Quit() beendet die Anwendung Excel.

14.3.2 Word-Dokument

Im Projekt OfficelnWPF wird das MS Word-Dokument in Abbildung 14.6
erzeugt.

Der Programmcode sieht so aus:

private void word_Click(...)
{
Microsoft.Office.Interop.Word.Application anw =
new Microsoft.Office.Interop.Word.Application();
anw.Visible = true;
anw.WindowState = WdWindowState.wdWindowStateNormal;

Microsoft.Office.Interop.Word.Document doc =
anw.Documents.Add();

Paragraph p = doc.Paragraphs.Add();
string s = "Hallo Welt";
p.Range.Text = s;

Table t = doc.Tables.Add(doc.Range(s.Length), 3, 5);
t.Borders.InsidelLineStyle = WdLineStyle.wdLineStyleSingle;
t.Borders.OutsidelLineStyle = WdLineStyle.wdLineStyleSingle;
for (int i =1; 1 <= 3; i++)
for (int k = 1; k <= 5; k++)
t.Cell(i, k).Range.Text =i + " / " + k;

441

| 14.3

14 | Interoperabilitit

doc.SaveAs("C:\\Temp\\WordInWPF.docx");
// doc.Close();
// anw.Quit();

r ™
W | 9 - v |+ WordinWPF.docx - Microsoft Word E@u
Start | Einfiige | Seitenle | Verweic | Sendun | Uberpr | Ansicht | Entwick | & @

% Calibri (Textkérper) - 11 - = A &
By F &£ U - abe x, x°
Einfligen) . » Absatz | Formatvorlagen | Bearbeiten
- F | BT - A A | AL - - -
Zwischena.. T Schriftart]
-|-1:-2-I-3-|:4-|-5I3-|‘5‘-|‘7‘I|-3-|:9-|-@
-

- =]
=

- | Hallo Welt

o 1/1 1/2 1/3]

: 2/1 2/2 2/3 at
. 3/1 3/2 3/3 E :
il

£ s
4 [i | >
Seite‘.l\ronl|Wbrier.47 | |@@ == 100%@—0—®J

-

Abbildung 14.6 MS Word 2010-Dokument, mit WPF erzeugt

Zundchst wird ein Word-Anwendungsobjekt erzeugt. Es werden wiederum Sicht-
barkeit und Fensterstatus eingestellt. Fiir den Fensterstatus ist es hier der Wert
wdWindowStateNormal aus der Enumeration WdWindowState. Es gibt noch die
Werte wdWindowStateMaximize und wdWindowStateMinimize. Elemente aus der
Word-Bibliothek sind meist am Prifix Wd oder wd erkennbar.

Die Auflistung Documents enthilt die aktuell geoffneten Word-Dateien. Die
Methode Add() erzeugt ein neues, leeres Dokument und liefert einen Verweis
darauf.

Die Auflistung Paragraphs enthdlt die Absitze des Word-Dokuments. Die
Methode Add () fugt einen neuen Absatz hinzu und liefert einen Verweis darauf.
Die Eigenschaft Range verschiedener Objekte liefert den Verweis auf eine Posi-
tion oder einen Textbereich. Die Eigenschaft Text beinhaltet den Text an dieser
Position oder in diesem Textbereich. Ohne weitere Angaben ist dies bei einem
Absatz der gesamte Text des Absatzes.

442

MS Office in WPF

Die Auflistung Tables enthilt die Tabellen des Word-Dokuments. Die Methode
Add() fiigt eine neue Tabelle hinzu und liefert einen Verweis darauf. Als Parame-
ter muss angegeben werden, an welcher Stelle des Dokuments die Tabelle notiert
werden soll. Dies ist hier der Bereich nach dem ersten Absatz, wie tiber die Eigen-
schaft Range des Dokuments angegeben wird. AuBerdem werden die gew{inschte
Anzahl der Zeilen und Spalten der Tabelle benoétigt.

Die Auflistung Borders beinhaltet den Aufbau der verschiedenen Rahmen einer
Tabelle. Die Eigenschaften InsidelLineStyle und OutsideLineStyle geben an,
welche Linienart fiir die inneren und dulleren Tabellenlinien verwendet werden
soll. Werte dafiir kommen aus der Enumeration WdlLineStyle. Der Wert
wdLineStyleSingle bezeichnet eine einfache Linie.

Uber die Eigenschaft Ce11 einer Tabelle kann man die einzelnen Zellen erreichen.
Die beiden Indizes fur Zeile und Spalte beginnen bei 1.

Die Methoden SaveAs(), Close() und Quit() haben die gleichen Aufgaben wie
bei MS Excel.

Zum Schluss

Nun haben Sie, auch mithilfe von vielen praktischen Beispielen, einen Uberblick
tber die zahlreichen Aspekte der WPF gewonnen. Ich wiinsche Thnen viel Erfolg
bei der Anwendung des neu gewonnenen Wissens.

443

| 14.3

Index

> 66

< 66

* Grolenangabe 408
< anzeigen 66

> anzeigen 66
2D-Grafik 241

Ende 423

erster / letzter 402
formatieren 422
hinzufiigen 401
Inhalt 412
zusammenhalten 401

fiir 3D-Oberfliche 311
3D-Grafik 289

aus externen Daten 294
Drehung 322

Form des Objekts 293
gemeinsame Punkte 298
Grundelement 290
Kamera 292,299
Kameralage 296, 301
Landschaft 329
Leinwand 292

Licht 293, 297, 302
Material 293, 313
mehrere Korper 306

mehrere Korper, mit Ereignis 310

mit 2D-Oberfliche 311
mit Ereignis 309

mit Steuerelementen 311
Modell 306
Rotationsgruppe 327
Riickseite 297
Skalierung 319

Textur 313, 316
Transformation 319
Transformationsgruppe 326
Verschiebung 321
Vorderseite 293
3D-Wiurfel 296

A

Abhingigkeitseigenschaft 21
Absatz 81, 398, 400
dndern 402

ausrichten 401

Beginn 423

einriicken 401

Abschnitt 398, 402
dndern 403
formatieren 402
hinzufiigen 403

AccelerationRatio
AnimationTimeline 337

AcceptsReturn
TextBox 78

Add(

AdornerLayer 286

Blocks 401

Children 33
ColumnDefinitions 44
eigene Auflistung 229
Inlines 75
InputGestureCollection 152
Int32Collection 295
Items 84, 95
PathSegmentCollection 256
Point3DCollection 295
PointCollection 247
ValidationRules 223

AddcChild()

IAddChild 426

AddedLength
TextChange 79

Adobe Flash 13

AdornedElement
Adorner 287
RenderSize 287

Adorner 286
AdornedElement 287
OnRender() 287

AdornerLayer
Add() 286
GetAdornerLayer() 286

445

Index

AlignCenter
EditingCommands 422
AlignLeft
EditingCommands 422
AlignRight
EditingCommands 422
AllowsTransparency
Window 183
Alphakanal 263, 280
Alt

ModifierKeys 150
AmbientLight 293, 302
Angehingte Eigenschaft 23
Angehingtes Ereignis 27
Angle
AxisAngleRotation3D 323
RotateTransform 271, 272, 274
AngleVelocity
ManipulationVelocities 145
AngleX

SkewTransform 276
Angley

SkewTransform 276
Animation 333

anhalten 347

beenden 347

Beginn 334
Beschleunigung 337

der 3D-Rotation 356
der Bewegung 334

der Farbe 349, 362

der Grifle 343

der Transformation 347
der Transparenz 343

der Zeichenkette 363
Ende 334

entlang Pfad 368
federt 367

fortsetzen 347
gemeinsame Eigenschaften 341
Geschwindigkeit 335

Geschwindigkeit dndern 347, 356

mit Event Trigger steuern 354
nach Funktion 364

nach Sinus 367

nach Spline 359

ohne Programmcode 350

446

per Programmcode 343

Riickkehr 337

springen 356

sprunghafte 359, 367

starten 335, 343, 346, 351

Startverzogerung 338

steuern 345

unterteilen 359

variable Geschwindigkeit 359

Verdnderung 334

Wiederholung 337

Zeitdauer 335, 337

Zieleigenschaft 343, 345

Zielelement 343, 345

zu Punkt springen 347

zum Ende springen 347

zuordnen 335, 343, 346, 356
AnimationTimeline 333, 334, 337
Anwendung

Anzahl Aufrufparameter 163

Aufbau 155

Aufruf von Kommandozeile 161

Aufrufkommando 163

Aufrufparameter 160, 163

Installation 164

Minimal-Aufbau 155

Ressource 164

Riickgabeparameter 160, 163

schlieflen 147

Startdatei 159

starten 157

wird beendet 159, 161

wird gestartet 159, 161
App.xaml 159, 161, 167
App.xaml.cs 159, 162
AppendBreak()

PromptBuilder 387, 389
AppendText()

PromptBuilder 387
AppendTextWithHint()

PromptBuilder 387, 389
Application 157

Current.Resources 214

Exit 159, 161

Resources 168, 207

Run() 157

Startup 159, 161

StartupUri 159

ApplicationCommands 145
Close 147
ApplicationExitCode
ExitEventArgs 163
ArcSegment 255, 343
IsLargeArc 256
IsStroked 255
Point 255
RotationAngle 256
Size 255
SweepDirection 256
Args
Count() 163
StartupEventArgs 163
Arrange() 428
Asterisk
SystemSounds 374
Attached Event 27, 221
Attached Property 23
Audio-Ausgabe 371, 375
Aufklappelement 108
Auflistung 81
Anzahl Eintrige 84
eigener Typ 228
Eintrag 81
Eintrag einfiigen 85
Eintrag hinzufiigen 84
Eintrag loschen 85, 88
leeren 85, 96
Nummer eines Eintrags 95
Auflistungstyp 81
Aufrufparameter 160
Aufzihlung
in Dokument 398, 403
Ausrichtung 401
horizontal 49, 63
vertikal 63
Ausrichtung des Inhalts
horizontal 63
vertikal 63
Ausstanzung 283, 380
Auswahl
einstellen 71
Auswahlelement 68, 81
AutoGenerateColumns
DataGrid 236

Index

AutoReverse
AnimationTimeline 337
AutoToolTipPlacement
BottomRight 102
Slider 102
TopLeft 102
Axis
AxisAngleRotation3D 323
AxisAngleRotation
animieren 357
AxisAngleRotation3D 322

BackEase 367
Background 34, 55, 280
BackgroundWorker 98

DoWork() 99

IsBusy 99

ProgressChanged 99

ReportProgress) 99

RunWorkerAsync() 99

WorkerReportsProgress 99
BackMaterial

GeometryModel3D 297
Balance

MediaPlayer 376
BasedOn

Style 199
BasedOnAlignment

GridResizeBehavior 49
BaselineAlignment

Inline 415
Batch-Datei 161
Baumstruktur 19
Bedienbarkeit 56
Beep

SystemSounds 374
Begin()

Storyboard 343, 346
BeginAnimation() 335
BeginStoryboard 351, 355
BeginStoryboardName 356
BeginTime

AnimationTimeline 338

TimeSeekOrigin 347

447

Index

Benannter Style 194
vererben 198
Benutzeroberfliche
wechseln 212
Bertihren

beenden 142
beginnen 142
Berithrung

Bildschirm 141
Punkt 142
Berithrungsempfindlich 139
Beschriftung 71
einfach 71
formatierte 73
Bevel

PenLineJoin 248
Bézier-Kurve 254
BezierSegment 254
Bild 128

als Farbpinsel 267
Datenquelle 128
Dehnung 128

Grofle 128

in Dokument 413, 418
neu laden 166
Bilddatei

in Geometrie 260
Bildlaufleiste 103
Binding 218
DataTrigger 239
ElementName 218
GetBinding() 222
Mode 219

Path 218

Source 226
UpdateSourceTrigger 220
ValidationRules 222
BindingExpression
UpdateSource() 220
BindingOperations 219
ClearAllBindings() 219
ClearBinding() 219
SetBinding() 219
Bindung

an Geste 150

an Maus 150

an Taste 150

448

Bitmapeffekt 284
Bitmaplmage 166
BitmapSource 166
BlackoutDates
Calendar 126
Blickrichtung 292
Block 81, 398
alle loschen 410
BreakPageBefore 403
gruppieren 402
TextAlignment 401
Verweis auf Element 402
BlockCollection 398
Blocks 398
Add() 401
Clear() 410
ElementAt() 402
FirstBlock 402
LastBlock 402
Blocksatz 401
BlockUIContainer 398, 410
dndern 412
hinzufiigen 412
BlurEffect 284
Radius 285
BlurRadius
DropShadowEffect 285
Bogensegment 255
Bogen sichtbar 255
Drehrichtung 256
Drehwinkel 256
mehr als 180 Grad 256
Radius 255
Zielpunkt 255
Bold 74
FontWeights 56
Inline-Typ 413
bool? 67

BooleanAnimationUsingKeyFrames 359

Border 104
BorderBrush 104
BorderThickness 104
CornerRadius 104

BorderBrush
Border 104
Tabelle 408

BorderThickness

Border 104

Tabelle 408
Both

TickPlacement 101
Bottom

Canvas 30
BottomRight
AutoToolTipPlacement 102
TickPlacement 101
BounceEase 367

Bounces 367

Bounciness 367
Bounces

BounceEase 367
Bounciness

BounceEase 367
Box

TextMarkerStyle 405
BreakPageBefore

Block 403
Browser 130

angezeigte Seite 130

darf sich in History bewegen 131
in History bewegen 131
navigieren zu HTML-Code 130
navigieren zu URI 130
Seite ganz geladen 130
Seite gewechselt 130
Browseranwendung 184
Brush 55, 104, 262
DiffuseMaterial 293, 316
GeometryDrawing 261
Brushes

Transparent 104
Button 64

Basistyp 201

dauernd betitigen 65
ButtonBase 201
ButtonState
MouseButtonEventArgs 138
By

AnimationTimeline 334
Byte 263
ByteAnimation 333
ByteAnimationUsingKeyFrames 359

Index

C

Calendar 122
BlackoutDates 126
DisplayDate 124
DisplayDateEnd 126
DisplayDateStart 126
FirstDayOfWeek 126
SelectedDate 125
SelectedDates 124
SelectedDatesChanged 124
SelectionMode 122

CalendarBlackoutDatesCollection 126

CalendarDateRange 126

CalendarSelectionMode 122

Camera 292

Cancel
CancelEventArgs 161

CancelEventArgs 161
Cancel 161

CanExecute
CommandBinding 147

CanGoBack
NavigationService 179

CanGoBack()
WebBrowser 131

CanGoForward
NavigationService 179

CanGoForward()
WebBrowser 131

CanMinimize
ResizeMode 171

CanResize
ResizeMode 171

CanResizeWithGrip
ResizeMode 171

CanUserAddRows
DataGrid 235

CanUserDeleteRows
DataGrid 235

CanUserReorderColumns
DataGrid 235

CanUserResizeColumns
DataGrid 235

CanUserResizeRows
DataGrid 235

449

Index

CanUserSortColumns
DataGrid 235
Canvas 30
Bottom 30
Left 30
LeftProperty 32
Right 30
Top 30
TopProperty 32
Cascading Style Sheets 194
Cell
DataGridSelectionUnit 235
CellOrRowHeader
DataGridSelectionUnit 235
Cells
TableRow 407
Center
EllipseGeometry 250
RadialGradientBrush 266
CenterOwner
WindowStartupLocation 170, 175
CenterScreen
WindowStartupLocation 170
CenterX/Y/Z
RotateTransform3D 323
ScaleTransform3D 319
ChangedButton
MouseButtonEventArgs 138
Changes
TextChangedEventArgs 79
CheckBox 66
Basistyp 201
Checked 67
IsChecked 67
IsThreeState 67
Unchecked 67
Zustand 67
Checked
CheckBox 67
RadioButton 68
ToggleButton 67
Child 19
BlockUIContainer 410
ElementHost 438
PageContent 424
WindowsFormsHost 431

450

Children 19
Add() 33
FixedPage 424
Remove() 34, 59
TransformGroup 279
Viewport3D 293
Choices 396
Circle
TextMarkerStyle 405
CircleEase 367
Clear()
Blocks 410
Items 85, 96
ClearAllBindings()
BindingOperations 219
ClearBinding()
BindingOperations 219
ClearContent()
PromptBuilder 386
ClickCount
MouseButtonEventArgs 138
Client-Bereich 29
Clip 283
MediaElement 380
ClipboardCopyMode
DataGrid 235
Close
ApplicationCommands 147
Closed
ContextMenu 116
Window 160
Closing
Window 160
CLR-Property 22
cm
Grofie 401
Code
mehrfach verwenden 166
Collapsed
Expander 109
TreeViewltem 92
Visibility 57
Color 56
DirectionalLight 297
DropShadowEffect 285
EmissiveMaterial 316
FromArgb() 263, 435

GradientStop 264
PointLight 305
SolidColorBrush 263
SpecularMaterial 316
ColorAnimation 333, 349
ColorAnimationUsingKeyFrames 359, 362
ColorDialog 435
Colors 56
Column

Grid 43
ColumnDefinitions
Count 45

Grid 43
ColumnProperty

Grid 44
Columns

DataGrid 236

Table 407
ColumnSpan

Grid 46

TableCell 408
CombinedGeometry 251
Geometryl 252
Geometry2 252
GeometryCombineMode 253
ComboBox 88
Auswahl gewechselt 90
editierbar 88

Eintrag 89

IsEditable 88
SelectionChanged 90
StaysOpenOnEdit 88
Text 88

Text der Auswahl 88
Vorauswahl 90
ComboBoxItem 89
ComboBoxStyleKey
ToolBar 120
COM-Komponente 438
Command 422
CommandBinding 147
KeyBinding 150
CommandBinding 147
CanExecute 147
Command 147
Executed 147

Index

CommandBindings 147
CommandLine
Environment 163
Commands 146
CommandTarget 422
KeyBinding 150
ComponentCommands 145
Condition
Property 206
Value 206
Conditions
MultiTrigger 206
ContainerUIElement3D 310
Content 54
ContentControl 210
Label 71
ContentControl 210
Content 210
ContentEnd
FlowDocument 423
Paragraph 423
ContentStart
FlowDocument 423
Paragraph 423
ContextMenu 116
Closed 116
HorizontalOffset 116
IsOpen 118
Opened 116
VerticalOffset 116
Control 166
ModifierKeys 150
Control Template 207
Definition 207
in Typ-Style 211
mit Property Trigger 208
Triggers 209
Zieleigenschaft 209
Zuordnung 208
ControlTemplate
TargetType 208
Zieltyp 208
Copy 77
CopyToOutputDirectory 164
CornerRadius
Border 104

451

Index

Count
Removedltems 84
SelectedDates 125

Count()

Args 163
CSS 74, 194, 400
CubicEase 367

SelectionMode 235
SelectionUnit 235
Spalte sortieren 235
Spalten 236
Spalten tauschen 235
Spaltenbreite 235
Spaltentypen 235

CurrentAndNext Zeilenhohe 235
GridResizeBehavior 49 Zelle auswdhlen 235
Cut 77 DataGridCheckBoxColumn 236
DataGridClipboardCopyMode 235
D DataGridComboBoxColumn 237
DataGridGridLinesVisibility 235
Data DataGridHeadersVisibility 235
Path 250, 257 DataGridHyperlinkColumn 237
DataContext 227, 230, 232 DataGridSelectionMode 235
DataFormats 423 DataGridSelectionUnit 235
DataGrid 232 DataGridTemplateColumn 237
ausgewdhlte Inhalte 237 DataGridTextColumn 236
Auswahl gewechselt 236 DataRowView 237
AutoGenerateColumns 236 Row 237
CanDeleteAddRows 235 DataTable 232
CanUserAddRows 235 DataTemplate 237
CanUserReorderColumns 235 DataType 238
CanUserResizeColumns 235

- Triggers 239
CanUserResizeRows 235 DataTrigger 238

CanUserSortColumns 235

Bedingung 239
CheckBox 236

. Binding 239
ClzlpboardczopyMode 235 Value 239
Columns 236 DataType

ComboBox 237

Daten dndern 234
Daten hinzufiigen 235
Daten léschen 235
Datenquelle 233

DataTemplate 238
Datei 6ffnen

Dialogfeld 434
Dateiauswahl 186

Datensitze auswihlen 235 Daten

eigenes Feld 237 externe 217
Felder iibernechmen 236 Datenbank 230
GridLinesVisibility 235 Adapter 232
HeadersVisibility 235 aktualisieren 234
Hyperlink 237 im DataGrid 232
IsReadOnly 234 Provider 232
ItemsSource 233 SQL-Befehle 234
Kdpfe sichtbar 235 Tabelle 232
Kopiermodus 235 Verbindung 232
Linien sichtbar 235 Datenbindung 217
SelectedItems 237 aktualisieren 220
SelectionChanged 236 alle auflosen 219

452

an Auflistung von Objekten 227
an Datenbank 230, 232
an ObjectDataProvider 229
an Objekt 224
eine auflosen 219
ermitteln 222
gebundene Eigenschaft 218
gebundenes Element 218
Kontext 226
Label 72
ListBox 228
mit Data Template 238
Quelle 224, 226
Richtung 219
setzen 219
Validierung 222
Zeitpunkt 220
Datenformat 423
Datenquelle
Auflistung von Objekten 227
Datenbank 230, 232
Object Data Provider 229
Objekt 224
DatePicker 126
SelectedDate 127
SelectedDateChanged 127
SelectedDateFormat 127
DatePickerFormat 127
DateTime 122, 124, 127
DateTime? 125
auf Wert priifen 127
HasValue 127
Datum 122
Datumsbereiche 122
Datumswiéhler 126
ausgewdhltes Datum 127
Format 127
Wechsel der Auswahl 127
Datumswerte 122
DayOfWeek 126
DecelerationRatio
AnimationTimeline 337
DecimalAnimation 333
DecimalAnimationUsingKeyFrames 359
Dehnung 128
Delegate 158
delete
SQL 234

Index

Delta
MouseWheelEventArgs 139
DeltaManipulation
ManipulationDeltaEventArgs 144
Dependency Property 21
Wert ermitteln 32
Wert setzen 32
Dialogfeld

eigenes 173
DialogResult 434
Window 175
Dicke 60, 62
DictationGrammar 392
DiffuseMaterial 293
Brush 293, 316
Digitalisiertablett 139
Direction

DirectionalLight 297
DropShadowEffect 285
SpotLight 304
DirectionalLight 297, 302
Color 297

Direction 297
DirectX 13
Disc

TextMarkerStyle 405
DiscreteDoubleKeyFrame 359
DisplayDate

Calendar 124
DisplayDateEnd

Calendar 126
DisplayDateStart
Calendar 126
DisplayMemberBinding
GridViewColumn 232
Dock

DockPanel 40
TabStripPlacement 111
DockPanel 39, 113, 118, 121
Dock 40

DockProperty 42
LastChildFill 42
DockProperty

DockPanel 42
Document
DocumentViewer 424
DocumentViewer 424

453

Index

Dokument Druck
Absatz 400 vorbereiten 426
dndern 397, 420 Warteschlange 426
anzeigen 397 Drucken
Beginn 423 visuelles Objekt 426
blattern 399, 420 Drucker
dynamisches 397 angeschaltet 428
Ende 423 Anzahl Jobs 428
formatieren 400, 420 Dokumentgrifle 428
mit Element 410 Druckbereich 428
Position 423 Name 428
scrollen 399, 419 Duration
Seite 424 AnimationTimeline 337
statisches 397 TimeSeekOrigin 347
zoomen 400 Durchsichtigkeit 183, 280
zum Drucken 424 DynamicResource 168
double? 335 Dynamische Ressource 167, 168
HasValue 337
DoubleAnimation 333, 334 E
DoubleAnimationUsingKeyFrames 359
DoubleAnimationUsingPath 368 Easeln
DoubleCollection 102 EasingMode 364
DoWork(EaseInOut
BackgroundWorker 99 EasingMode 364
Drag EaseOut
SystemGesture 141 EasingMode 364
Drag&Drop 164 Easing Function 364
ermoglichen 184 Modus 364
DragMove() EasingDoubleKeyFrame 359
Window 184 EasingFunctionBase 364
DrawEllipse EasingMode
DrawingContext 287 in Easing Function 364
Drawing 259 echo off 161
DrawingContext 287 Ecke abrunden 104
DrawEllipse 287 EditingCommands 146, 421
DrawingGroup 260 ToggleBold 148
Drawinglmage 261 Effect 284
Drehbuch 341 Eigenschaft

Drehung
2D-Grafik 271
3D-Grafik 322
Touchscreen 142

Dreidimensionale Grafik 289
Dreidimensionale Landschaft 329

Dreieck
in 3D-Grafik 290
DropShadowEffect 284

454

Abhdngigkeits- 21
zentral definieren 194
Eigenschaftselement 21
Eigenschaftswert
iiberschreiben 196
Eingabegeste 149
hinzufiigen 152
Sammlung 152
Eingabestift 139

ElasticEase 367
Oscillations 367
Springiness 367

Element
allgemeine Eigenschaften 53
andocken 39
Ausrichtung 62
AufSenabstand 36, 61
ausstanzen 283
bedienbares 56
binden 219
Breite 36, 54
Datenkontext 227, 230
drehen 271
Eigenschaft 20
einrahmen 104
entfernen 59
Fokus setzen 79
gestalten 30, 207
gruppieren 107
hervorheben 104
Hintergrund 280
Hintergrundfarbe 34, 55
Héhe 54
im Layout 56
in Dokument eingebettet 410
in Dokument verankern 418
in Raster anordnen 42
in Text eingebettet 413
Inhalt 54
Innenabstand 59
ist geladen 160
ist initialisiert 160
Kontext-Info 76
letztes zum Fiillen 42
mit Bild 64
mit Schatten 284
Name 19
neigen 276
neu erzeugen 32
positionieren 30
Schriftart 55
Schriftdehnung 55
Schriftgewicht 55
Schriftgrofie 55
Schriftstil 55
sichtbares 56

Index

skalieren 274
stapeln 35
stapeln mit Umbruch 37
Stil 193
Tastatursteuerung 64
Template 208
Transparenz 280
iibereinander 272
iibergeordnetes 25, 34, 94
verschieben 277
verwischen 284
Vordergrundfarbe 55
Zuordnung losen 34
zusammenfassen 104
ElementAt()
Blocks 402
Inlines 76
ElementHost 436
ElementName 73
Binding 218
Ellipse 242, 249
Grifle 250
Ort 250
EllipseGeometry 249
Center 250
RadiusX 250
EmissiveMaterial 314
Color 316
EndPoint
LinearGradientBrush 264
LineGeometry 250

EndStyle()
PromptBuilder 387
Environment
CommandLine 163
Ereignis

angehdngtes 23, 27
Ausldser 26
Bearbeitungsreihenfolge 202
Behandlung abbrechen 204
geroutetes 25,27

in 3D-Grafik 309
Registrierer 26

Style fiir Reaktion 202
wiederholen 65
Ereignishandler 25
Ereignismethode 203

455

Index

Ereignisreihenfolge 158
errorlevel 161
EvenOdd

FillRule 259

Event

EventSetter 203
Event Trigger 350

als Ressource 351

in Style 352

steuert Animation 354
zuordnen 355
EventArgs 26
Event-Bubbling 26
EventHandler

neu erzeugen 57
EventSetter
Bearbeitungsreihenfolge 202
Event 203

Handler 203

Style 202
EventTrigger
RoutedEvent 351
SourceName 355
Event-Tunneling 26
Exclamation
SystemSounds 374
Exclude
GeometryCombineMode 253
Executed
CommandBinding 147
Exit

Application 159, 161
ExitEventArgs 160
ApplicationExitCode 163
ExpandDirection
Expander 108
Expanded

Expander 109
TreeViewltem 92
Expander 108
Aufklapprichtung 108
Beschriftung 109
Collapsed 109
ExpandDirection 108
Expanded 109
Header 109

in Windows Forms 436

456

IsExpanded 109

ist aufgeklappt 109
klappt auf 109

klappt zu 109
ExpandSubtree()
TreeViewltem 96
ExpansionVelocity
ManipulationVelocities 145
Explicit

UpdateSourceTrigger 220
Expliziter Style 194
Exponent

ExponentialEase 368
ExponentialEase 368
Exponent 368
Extended
DataGridSelectionMode 235
SelectionMode 85

eXtensible Application Markup Language

15

F

Farbe 56
animieren 349, 362
Komponente 263, 280
konvertieren 435
linearer Verlauf 263
radialer Verlauf 265
Farbe auswiahlen
Dialogfeld 435
Farbverlauf
Ubergangspunkt 264
Fenster 169
Anderung der Grofle 170
Besitzer 174
darf transparent sein 183
eigenes Unterfenster 173
Eigenschaft 169
Ereignis 169
Grifie 169
Grdfle anpassen 172
GrofSe gedndert 122
GrofSe vorher, nachher 171
Grofie wurde gedndert 171
immer oben 171
in Taskbar anzeigen 170

ist entladen 160

ist geladen 70, 122, 160
ist geschlossen 160

ist initialisiert 160, 214
Layout-Aktualisierung 428
modal anzeigen 174
Navigation 175
nicht-modal anzeigen 174

Position wurde gedndert 171

Rahmenart 183

Riickgabewert 175

SchliefSen abbrechen 161

Startposition 170

Status 131

Status wurde gedndert 171

Titel 169

Unterfenster erzeugen 174

versehentlich geschlossen 16

wird geschlossen 160, 234
Fettschrift 56, 74, 148, 413
FieldOfView

PerspectiveCamera 300
Figure

Inline-Typ 413, 417
FigureHorizontalAnchor 418
Figures

PathGeometry 255
FigureVerticalAnchor 418
FilePrompt 384
FileStream 185, 214
Fill

Path 250

Shape 243

Stretch 128
Fill()

OleDbAdapter 232
FillRule

GeometryGroup 259
FindResource() 169, 196
Finger

Touch 141
FirstBlock

Blocks 402
FirstDayOfWeek

Calendar 126
FixedDocument 424
FixedPage 424

Index

Flat

PenLineCap 248
Flick

SystemGesture 141
FlipX

TileMode 269
FlipXY

TileMode 269
FlipY

TileMode 269
FlowDirection

StackPanel 36
WrapPanel 38, 110
FlowDocument 81, 397
FlowDocumentPageViewer 397, 420
FlowDocumentReader 397, 398
ViewingMode 399
FlowDocumentReaderViewingMode 399
FlowDocumentScrollViewer 397, 419
Focus() 79
FolderBrowserDialog 434
FontDialog 436
FontFamily 54
TextElement 401
FontSize 55, 401
FontStretch 55
FontStyle 55
FontWeight 55
Foreground 55
Forever

Duration 337
RepeatBehavior 337
Formatierung 400
kaskadierende 74
Fortschritt

ist eingetreten 100
Prozentsatz 100
Fortschrittsbalken 97
Frame 180

Aufbau 181

Datei 181

erste 181
Navigationsziel 181
Source 181

Titel 181
From

AnimationTimeline 334

457

Index

FromArgb()
Color 263, 435

FullRow
DataGridSelectionUnit 235

G

Gadget 182
Geometrie 248
Fiillregel 259
gruppieren 258
kombinierte 251
kompakte Schreibweise 257
komplexe 253
Mengenlehre 253
mit Bilddatei 260
mit Schriftartzeichen 260
mit Videodatei 260
Teilfigur 253
Teilsegment 254
Geometry 248, 283
GeometryDrawing 261
GeometryModel3D 293
Viewport2DVisual3D 313
Geometry1
CombinedGeometry 252
Geometry2
CombinedGeometry 252
GeometryCombineMode
CombinedGeometry 253
GeometryDrawing 261
GeometryGroup 258
FillRule 259
GeometryModel3D 293, 306
BackMaterial 297
Transform 320
Gerichtetes Licht 297, 302
Geste 149
Bindung 150
hinzufiigen 152
Sammlung 152
GetAdornerLayer()
AdornerLayer 286
GetBinding()
Binding 222
GetlnstalledVoices
SpeechSynthesizer 382

458

GetIntermediateTouchPoints()
TouchEventArgs 142
GetPosition()
MouseButtonEventArgs 138
MouseEventArgs 122,138
MouseWheelEventArgs 139
GetTouchPoint()
TouchEventArgs 142
GetType() 26
GetValue(Q) 22, 32,136
Glinzendes Material 314
GlyphRunDrawing 260
GoBack(

NavigationService 179
WebBrowser 131
GoForward()
NavigationService 179
WebBrowser 131
GradientOrigin
RadialGradientBrush 266
GradientStop 264

Color 264

Offset 264
GradientStopCollection 265
GradientStops
LinearGradientBrush 265
Grafik 241, 289
Grafik-Hardware 14
GrammarBuilder 394, 396
Grammatik

eigene 394

laden 392, 396
Grid 42

Anzahl der Spalten 45
Anzahl der Zeilen 45
Column 43
ColumnDefinitions 43
ColumnProperty 44
ColumnSpan 46

Row 43

RowDefinitions 43
RowProperty 44

RowSpan 46

Spalte hinzufiigen 44
Spalten 43

Zeile hinzufiigen 44
Zeilen 43

Zellen aufspannen 46
Zellgrifie 46
ZellgrifSe flexibel 47
GridLength 408
GridLinesVisibility
DataGrid 235
GridResizeBehavior 49
GridSplitter 47
HorizontalAlignment 49
ResizeBehavior 49
GridUnitType 408
Gridview 232
Datenbindung 232
Spaltenbeschriftung 232
GridViewColumn 232

DisplayMemberBinding 232

Header 232
GroBendnderung
2D-Grafik 274
3D-Grafik 319
Faktor 274
Verhalten 49
GroupBox 107
Beschriftung 108
Header 108
GroupName
RadioButton 69
Guid

StylusButton 141
Giiltigkeitsbereich 166
Style 198, 200

H

Hand

SystemSounds 374
Handled

RoutedEventArgs 204
Handler

EventSetter 203
HasValue

DateTime? 127

double? 337
Hauptelement 19
Hauptmeni 113
Header

Expander 109

GridViewColumn 232

GroupBox 108
Menultem 114
RibbonMenultem 189
TabItem 111
TreeViewltem 92
HeadersVisibility
DataGrid 235
Height 54

Image 128

ListBox 82
RowDefinition 46
SizeToContent 172
Window 169
Hidden

Visibility 57
Hierarchie 19, 25
darstellen 90

von Layouts 33
Hilfestellung 15
Hintergrund
durchsichtiger 280
Hintergrundvorgang 98
berichtet 99

darf berichten 99
ist titig 99

starten 99
Zustand gedndert 99
History

Navigation 177
HoldEnter
SystemGesture 141
Horizontal
Orientation 36
HorizontalAlignment 63
GridSplitter 49
Stretch 49
HorizontalAnchor
Figure 418

HorizontalContentAlignment 63

HorizontalOffset
ContextMenu 116
HoverEnter
SystemGesture 141
HoverLeave
SystemGesture 141
Hyperlink 178
Inline-Typ 413
NavigateUri 178, 182

Index

459

Index

TargetName 182
Ziel 178,182
Zielframe 182

IAddChild 426
Icon

Menultem 114
Image 65,128
Height 128

Source 65,128, 166, 261

Stretch 128

Width 128
ImageBrush 267
Sfiir 3D-Grafik 319

ImageSource 267

TileMode 267

Viewbox 267

ViewboxUnits 269

Viewport 267

ViewportUnits 269
ImageDrawing 260
ImageSource 128

ImageBrush 267

RibbonMenultem 189
Impliziter Style 197
in

Grifle 401
InAir

StylusEventArgs 140
Inch 401
IndexOf()

Items 95
Ingebretsen 17
Initialized

Element 160

Window 160, 214
InitialVelocities

ManipulationInertiaStartingEventArgs

145
Inline 398
BaselineAlignment 415
TextDecorations 415

InlineCollection 73, 398, 412

Inlines 73
Add() 75
ElementAt() 76

460

InsertAfter() 75
InsertBefore() 75
Paragraph 398, 412
InlineUIContainer
Inline-Typ 413
InnerConeAngle
SpotLight 304
InputBindings 150

InputGestureCollection 152

Add() 152
insert

SQL 234
Insert()

Items 85, 95
InsertAfter()
Inlines 75
InsertBefore()
Inlines 75
Installation 164
Int16Animation 333

Int16AnimationUsingKeyFrames 359

Int32Animation 333

Int32AnimationUsingKeyFrames

Int32Collection 293
Add() 295
Int64Animation 333

359

Int64AnimationUsingKeyFrames 359

IntelliSense 15
Interoperabilitit 431
Intersect

GeometryCombineMode 253

Inverted
StylusEventArgs 140
IsBusy
BackgroundWorker 99
IsCancel 65
IsCheckable
Menultem 114
IsChecked

CheckBox 67
Menultem 116
RadioButton 69
ToggleButton 67
IsClosed

PathFigure 255
IsDefault 65

IsEditable

ComboBox 88
IsEnabled 57
SpellCheck 78
IsEnabledProperty
SpellCheck 79
IsExpanded

Expander 109
TreeViewltem 92
IsFilled

PathFigure 255
IsIndeterminate
ProgressBar 98
IsLargeArc

ArcSegment 256
IsLoaded

Window 70
IsLocked

ToolBarTray 118
IsManipulationEnabled 142
IsMoveToPointEnabled
Slider 102
IsMuted

MediaPlayer 375
IsOpen

ContextMenu 118
IsPageViewEnabled
FlowDocumentReader 400
IsReadOnly

DataGrid 234
IsRepeat

KeyEventArgs 134
IsScrollViewEnabled
FlowDocumentReader 400
IsSelected

Selector 83, 87,90, 112
TreeViewltem 92
IsSelectionRangeEnabled
Slider 102
IsSnapToTickEnabled
Slider 102
IsStroked

ArcSegment 255
LineSegment 255
IsThreeState

CheckBox 67
ToggleButton 67

Index

IsTwoPageViewEnabled
FlowDocumentReader 400
IsVisualHostMaterial
Viewport2DVisual3D 313
Italic 74

FontStyles 56
Inline-Typ 413
ItemCollection 81
ItemHeight
WrapPanel 38
Items 81

Add() 84,95
Clear() 85, 96
Count 84

IndexOf() 95
Insert() 85, 95
Remove() 85, 88, 96
ItemsSource

DataGrid 233
ListView 231
ItemWidth

WrapPanel 38

J

Justify
TextAlignment 401

K

Kachel 267
Kalender 122
Anzahl ausgewdhlte Daten 125
Anzeigedatum 124
ausgeschlossene Daten 126
ausgewdhlte Daten 124
ausgewdhltes Datum 125
Auswahlmodus 122
Datumsbereich 126
erster Wochentag 126
Grenzwerte 126
Wechsel der Auswahl 124
Kamera
Blickrichtung 292
fiir 3D-Grafik 292, 299
perspektivische 299
Position 292
Sichtfeld 293

461

Index

Kameralage

fiir 3D-Grafik 296, 301
Kaskadierend 74
Kaxaml 17
KeepTogether

Paragraph 401
KeepWithNext
Paragraph 401
Key 133

KeyBinding 150
KeyBinding 150
Command 150
CommandTarget 150
Key 150

Modifiers 150
KeyDown 133
KeyEventArgs 133
IsRepeat 134
RoutedEvent 134
Keyframes 333, 359
KeyGesture 152
KeySpline
SplineDoubleKeyFrame 362
KeyTime

fiir KeyFrame 359
Paced 360

Uniform 360
KeyUp 133
Kombinierte Geometrie 251
Kommando 145, 422
ausfiihren 147
Bindung 147

darf ausgefiihrt werden 147
geroutetes 152
Sondertaste 150
Tastenbindung 150
Ziel 422

Zielelement 150
Kommandozeile 161
Komplexe Geometrie 253
Kontextmenii 116
Eintrag 116

ist offen 118

dffnet sich 116
Platzierung 116
schliefSt sich 116
synchron halten 116

462

Koordinatensystem 289
Kopieren

in Ausgabeverzeichnis 164
Kursivschrift 56, 74, 413

L

Label 71

Content 71
Datenbindung 72
Inhalt 71

Target 72
Landschaft

in 3D-Grafik 329
LargeChange
ScrollBar 103
Slider 100
LargelmageSource
Ribbon 189
LastBlock

Blocks 402
LastChildFill
DockPanel 42
Laufleiste 35
Laufzeit 167
Lautstirke
Mediendatei 376
Sprachausgabe 382
Sprache 389
Layer

Sfiir Verzierung 286
Layout 29
Basisklasse 29
Hierarchie 33
kombinieren 49
LayoutTransform 271, 273
Left

Canvas 30
LeftClick
MouseAction 150
LeftDoubleClick
MouseAction 150
LeftProperty
Canvas 32
LeftToRight
FlowDirection 36
Leinwand

Sfiir 3D-Grafik 292

Leiste 113
Lernprogramm
fiir Spracherkennung 390
Licht 293
fiir 3D-Grafik 297, 302
Lichtkegel 302
Line 244
Koordinaten 244
LinearDoubleKeyFrame 359
Linearer Farbverlauf 263
LinearGradientBrush 263
EndPoint 264
fiir 3D-Grafik 319
GradientStops 265
StartPoint 264
LinearVelocity
ManipulationVelocities 145
LineBreak 65, 74
Inline-Typ 413
LineGeometry 249
EndPoint 250
StartPoint 250
LineSegment 255
IsStroked 255
Point 255
Linie 244, 249
Endpunkt 250
Startpunkt 250
Linienende 247
Liniensegment 255
Linie sichtbar 255
Zielpunkt 255
List
Block-Typ 398, 403
MarkerOffset 405
MarkerStyle 405
StartIndex 405
ListBox 82
ausgewdhlte Eintrige 83, 87
Auswahl gewechselt 83
Datenbindung 228
Eintrag 82
Eintrag auswdhlen 84
Eintrag sichtbar machen 84
Mehrfachauswahl 85
nicht mehr ausgewdhlter Eintrag 83

Index

Nummer des ausgewdhlten Eintrags 83
raumsparende Variante 88
ScrollintoView() 84
Selectedindex 83
Selecteditem 83
SelectedItems 87
Selection_Changed 83
SelectionMode 85
Vorauswahl 83, 87
ListBoxItem 82

Selected 83

Unselected 83
Liste 82

dndern 406

hinzufiigen 406

in Dokument 403
markieren 405
Markierungsabstand 405
Listltem 405
ListItemCollection 405
ListView 230

Darstellung 231
Datenquelle 231

Sfiillen 232

ItemsSource 231

View 231
Load()

SoundPlayer 371
TextRange 423
XamlReader 214
LoadAsync()

SoundPlayer 372
LoadCompleted
WebBrowser 130
Loaded

Element 160

Window 122, 160
LoadGrammar() 392
SpeechRecognitionEngine 396
LocationChanged

Window 171
Logische Ressource 166
Long

DatePickerFormat 127
LookDirection
OrthographicCamera 292
PerspectiveCamera 300

463

Index

LostFocus
UpdateSourceTrigger 220

LowerLatin
TextMarkerStyle 405

LowerRoman
TextMarkerStyle 405

M

Magere Schrift 56
Main()

Window 157
MainWindow.xaml 167
Manipulation

Ereignis 141, 142

erlaubt 142

Trigheit 142
ManipulationBoundaryFeedback 143
ManipulationCompleted 143, 145
ManipulationCompletedEventArgs 145
ManipulationDelta 142, 144
ManipulationDeltaEventArgs 144
ManipulationInertiaStarting 142, 144
ManipulationInertiaStartingEventArgs 145
ManipulationOrigin 144
ManipulationStarted 142, 144
ManipulationStarting 142, 144
ManipulationVelocities 145
Manual

SizeToContent 172
WindowStartupLocation 170
Margin 36, 61
MarkerOffset

List 405
MarkerStyle

List 405
Markup Extension 24, 218
Maske 281
Material 293

fiir 3D-Grafik 313
GeometryModel3D 293
MaterialGroup 314
MatrixAnimationUsingKeyFrames 359
MatrixAnimationUsingPath 368
Maus 136

Anzahl Clicks 138

bewegt 122

464

Bindung 150

Buttonstatus 138

Click-Arten 150

Ereignis 138

erweiterte Taste 138

Position 122,138, 139

welcher Button 138
Mausaktion 149, 152
Mausrad

Anderung 139

Click 150

Ereignis 139

Info iiber 136
Maustaste

Ereignis 138

Info iiber 136
Maximized

WindowState 131, 171
Maximum

ProgressBar 98

ScrollBar 104

Slider 100
MaxLength

TextBox 80
Measure() 428
MediaCommands 146
MediaElement 378, 380
MediaFailed

MediaElement 379
MediaPlayer 375
MediaTimeline 379
Mediendatei

abspielen 375, 378, 380

Fehler anzeigen 379
Menu 113

Eintrag 113
Menii 113

Platzierung 113
Meniiband 186
Menultem 113, 116

Beschriftung 114

Bild 114

Header 114

Icon 114

IsCheckable 114

IsChecked 116

markierbares 114

markiertes 116

MeshGeometry3D 293
TextureCoordinates 313
Microsoft Excel 14.0 Object Library 438
Microsoft Ribbon for WPF.msi 186
Microsoft Word 14.0 Object Library 438
Microsoft.Jet. OLEDB.4.0 232
Microsoft.Office.Interop 439
Microsoft.Windows.Controls.Ribbon 189
MiddleClick

MouseAction 150
MiddleDoubleClick
MouseAction 150
Mikro 390

setzen 393
Minimized

WindowState 171
Minimum

ProgressBar 98

ScrollBar 104

Slider 100
Miter

PenLineJoin 248
Modales Fenster 174
Mode

Binding 219
Model3DCollection 308
Model3DGroup 306
Modell

fiir 3D-Grafik 306
ModelUIElement3D 309
MouseEnter 310
MouseLeave 310
ModelVisual3D 293
ModifierKeys 150
Modifiers

KeyBinding 150
MouseAction

MouseBinding 150
MouseBinding 150
MouseAction 150
MouseButton 138
MouseButtonEventArgs 136
ButtonState 138
ChangedButton 138
ClickCount 138
GetPosition() 138
RoutedEvent 138
MouseButtonState 138

Index

MouseDown 26, 137
MouseEnter 137
ModelUIElement3D 310
MouseEventArgs 122, 136
GetPosition() 122,138
RoutedEvent 138
MouseGesture 152
MouseLeave 137
ModelUIElement3D 310
MouseMove 138
Window 122
MouseUp 137
MouseWheel 137
MouseWheelEventArgs 136
Delta 139
GetPosition() 139
RoutedEvent 139
MP3-Datei
abspielen 376, 378
MPG-Datei
abspielen 380
MS Access 230
MS Excel
Mappe erzeugen 439
MS Excel 2010 438
MS Office
in WPF 438
MS Word
Dokument erzeugen 441
MS Word 2010 438
MS.Internal.NamedObject 237
Multiple
SelectionMode 85
MultipleRange
CalendarSelectionMode 123
Multitouch
Ereignis 141
Multi-Trigger 205
MultiTrigger 206
Conditions 206

N

Name 19
StylusButton 141

Namespace
einbinden 20, 153
lokaler 153, 226

465

Index

Navigate() (0)
NavigationService 178
WebBrowser 130 Oberfliche
Navigated gestalten 29
WebBrowser 130 object 71,81, 114
NavigateToString() ObjectAnimationUsingKeyFrames 359
WebBrowser 130 ObjectDataProvider 230
NavigateUri ObjectInstance
Hyperlink 178, 182 ObjectDataProvider 230
Navigation 175 Objekt
History 177 Ereignisausloser 27
Vorwiirts, Riickwirts 177 Oblique
NavigationCommands 146 FontStyles 56
Navigationsdienst 178 ObservableCollection 228
NavigationService 185 Offset
CanGoBack 179 GradientStop 264
CanGoForward 179 SeekStoryboard 356
GoBack() 179 TextChange 79
GoForward() 179 OffsetX/Y/Z
Navigate() 178 TranslateTransform3D 321
Page 178 OldValue
Navigationshost 184 RoutedPropertyChangedEventArgs 92, 103
NavigationWindow 176, 177, 181 OleDbAdapter 232
Source 177,181 Fill) 232
Title 181 Update() 234
Neigung OleDbCommandBuilder 234
2D-Grafik 276 OleDbConnection 232
Winkel 276 OneTime
new 33 Mode 220
NewSize OneWay
SizeChangedEventArgs 171 Mode 220
Nicht definiert 67, 68 OneWayToSource
None Mode 220
Stretch 128 OnRender()
NonZero Adorner 287
FillRule 259 Opacity 280
NoResize DropShadowEffect 285
ResizeMode 171 OpacityMask 281
Normal Opazitit 280
FontStyles 56 Open()
FontWeights 56 MediaPlayer 375
WindowState 171 Opened
NoWrap ContextMenu 116
TextWrapping 74 OpenFileDialog 434
null 68, 125, 335 Orientation

ProgressBar 97
ScrollBar 104

466

Slider 100

StackPanel 36

ToolBarTray 118

WrapPanel 38
OrthographicCamera 292

UpDirection 296, 301
Orthographische Kamera 292

Oscillations
ElasticEase 367
OuterConeAngle
SpotLight 304
Owner
Window 174
P
Paced
KeyTime 360
Padding 59

Page 176,178
FlowDocumentReaderViewingMode 399
NavigationService 178
WindowTitle 178

PageContent 424

PageContentCollection 424

Pages
FixedDocument 424

Panel 29
ZIndex 30, 272
ZIndexProperty 32

Paragraph 81, 398, 400
KeepTogether 401
KeepWithNext 401
TextIndent 401

Parent 34, 94

Parse()

TimeSpan 339

PasswordBox
PasswordChar 80

PasswordChar
PasswordBox 80

Paste 77

Path 250
Binding 218
Data 250, 257
Fill 250
Stroke 250
StrokeThickness 250

Index

PathFigure 253

IsClosed 255

IsFilled 255

StartPoint 255
PathFigureCollection 253
PathGeometry 253, 343
Figures 255
PointAnimationUsingPath 369
zur Animation 368
PathSegmentCollection 254
Add() 256
Pause()

MediaPlayer 375
SpeechSynthesizer 382
Storyboard 347
PauseStoryboard 356
Pen

GeometryDrawing 261
PenLineCap 248
PenLineJoin 248
PerspectiveCamera 300
Perspektivische Kamera 299
Pfadanimation 368
Pfadgeometrie 253, 283
Pfadmarkupsyntax 257, 283
Physische Ressource 164
Pinsel 262

einheitliche Farbe 262
linearer Farbverlauf 263
radialer Farbverlauf 265
Pinseltyp 56
Pixel 401

GridUnitType 408
Play()

MediaPlayer 375
SoundPlayer 166, 371
SystemSound 375
PlayLooping()
SoundPlayer 371
PlaySync(

SoundPlayer 371
Point 246, 250
ArcSegment 255
LineSegment 255
relative Koordinaten 263
Point3D 292, 293

467

Index

Point3DCollection 293
Add() 295
PointAnimation 333, 340
PointAnimationUsingKeyFrames
PointAnimationUsingPath 368
PathGeometry 369
PointCollection 246, 313
Add() 247
PointLight 302
Points
Polygon 246
PolyBezierSegment 254
Polygon 245
Points 246
Polyline 245
PolyLineSegment 254, 258
Polylinie 245
PolyQuadraticBezierSegment 254
Position
MediaPlayer 375
MeshGeometry3D 293
OrthographicCamera 292
PerspectiveCamera 300
PointLight 305
SpotLight 304
TouchPoint 142
Positionierung
fest 30
Power
PowerEase 367
PowerEase 367
Power 367
PresentationCore 436
PresentationFramework 436
Pressed
MouseButtonState 138
Preview-Ereignishandler 25
PreviewMouseDown 26
PreviousAndCurrent
GridResizeBehavior 49
PreviousAndNext
GridResizeBehavior 49
PreviousSize
SizeChangedEventArgs 171
Primitives 68
PrintDialog 426

468

PrintQueue
PrintDialog 426

PrintVisual()
PrintDialog 426

ProgressBar 97
Grenzwerte 98
IsIndeterminate 98

Lage 97
Maximum 98
Minimum 98

Orientation 97
undefinierter Zustand 98
Value 98
Werte 98
ProgressChanged
BackgroundWorker 99
ProgressChangedEventArgs 100
ProgressPercentage 100
ProgressPercentage
ProgressChangedEventArgs 100
Projekt
Datenbank hinzufiigen 231, 233, 235
Element hinzufiigen 164
Fenster hinzufiigen 173
neu erzeugen 16
Ressource 164
Ressourcen-Worterbuch hinzufiigen 213
Seite hinzufiigen 178
speichern 16
WAV-Datei hinzufiigen 372
Projektmappenexplorer 16, 164
PromptBreak 389
PromptBuilder 386
AppendBreak() 389
AppendTextWithHint() 389
ToXml() 389
PromptRate 388
PromptStyle 386
StartStyle() 388
PromptVolume 389
Property 22
Condition 206
Setter 195
Trigger 205
Property Element 21
Property Trigger 204, 238
in Control Template 208
mehrere Bedingungen 205

PropertyChanged

UpdateSourceTrigger 220
PropertyPath 219
Provider 232
pt

Grife 401
Punkt

Grifie 401

im 3D-Raum 292
Punktlicht 302
px

Grifie 401

Q

QuadraticBezierSegment 254
QuadraticEase 367
qualified double 401
QuarticEase 367
QuaternionAnimation 333
QuaternionAnimationUsingKeyFrames 359
QuaternionRotation3D 322
Question

SystemSounds 374
QuickInfo 76

QuinticEase 367

R

Radialer Farbverlauf 265

RadialGradientBrush 265
Center 266

fiir 3D-Grafik 319
GradientOrigin 266

RadioButton 69
Basistyp 201

Checked 68
GroupName 69
gruppieren 69, 107
IsChecked 69
Unchecked 68

Zustand 68
Radius

BlurEffect 285
RadiusX

EllipseGeometry 250
RectangleGeometry 250

Index

RadiusY
RectangleGeometry 250
Rahmen 104

Dicke 104
durchsichtig 104
Eckenradius 104
Farbe 104
Rate

PromptRate 388
Rechteck 242, 249
Eckenabrundung 250
Ort und Grofie 250
Rechtschreibung

priifen 79
RecognitionResult 392
RecognizeAsync()
SpeechRecognitionEngine 394
RecognizeAsyncCancel()
SpeechRecognitionEngine 394
RecognizeMode 394
Rect 250
RectangleGeometry 250
Rectangle 242
RectangleGeometry 249
RadiusX 250
RadiusY 250

Rect 250
RectAnimation 333
RectAnimationUsingKeyFrames 359
Registerkarte 111
Reiter

Registerkarte 111
Relative

UriKind 166, 179
Released
MouseButtonState 138
Remove()

Children 34, 59

Items 85, 88, 96
RemovedItems

Count 84
SelectionChangedEventArgs 83
RemovedLength
TextChange 79
RenderSize
AdornedElement 287

469

Index

RenderTransform 271
RenderTransformOrigin 271
RenderTransformOrigin
RenderTransform 271
RepeatBehavior
AnimationTimeline 337
RepeatButton 65, 103
ReportProgress()
BackgroundWorker 99
ResizeBehavior

GridSplitter 49
ResizeMode

Window 170
Resource Dictionaries 169
Resources

Application 168, 207
Window 168
Ressource 164

aktuell 214

Auflistung von Objekten 228
dynamische 167, 168
Event Trigger 351

fiir gesamte Anwendung 167, 207
logische 166

nur fiir Fenster 167
Objekt 226

physische 164

Schliissel 167

statische 167, 168
Storyboard 341

Style 195

suchen 169, 196
Worterbuch 169
Worterbuch hinzufiigen 213
zur Laufzeit tauschen 167
Result
SpeechRecognizedEventArgs 392
Resume()

SpeechSynthesizer 382
Storyboard 347
ResumeStoryboard 356
RGB-Komponente 263, 280
Ribbon 187
Anwendungsmenii 187
Registerkarte 187
Ribbonanwendung 186
RibbonApplicationMenu 187
RibbonApplicationMenultem 189

470

RibbonButton 189
RibbonCheckBox 190
RibbonComboBox 190
RibbonControlsLibrary 186
RibbonGallery 190
RibbonGalleryCategory 190
RibbonGalleryltem 190
RibbonGroup 187
RibbonMenuButton 190
RibbonMenultem 189, 190
RibbonRadioButton 190
RibbonTab 187
RibbonToggleButton 190
RibbonWindow 187, 189
RichTextBox 80, 397, 420
Richtung

im 3D-Raum 292
Right

Canvas 30
RightClick

MouseAction 150
RightDoubleClick
MouseAction 150
RightDrag

SystemGesture 141
RightTap

SystemGesture 141
RightToLeft

FlowDirection 36
RotateTransform 271
Angle 271,272,274
RotateTransform3D 322
Rotation

2D-Grafik 271
3D-Grafik 322
Drehpunkt 271
Drehwinkel 271

in 3D-Grafik animieren 356
ManipulationDelta 144
Rotation3DAnimation 333
Rotation3DAnimationUsingKeyFrames 359
RotationAngle

ArcSegment 256
Rotationsgruppe

3D-Grafik 327
Round

PenLineCap 248
PenLineJoin 248

Routed Events 25
RoutedCommand 152
RoutedEvent 26
EventTrigger 351
KeyEventArgs 134
MouseButtonEventArgs 138
MouseEventArgs 138
MouseWheelEventArgs 139
RoutedEventArgs 27
Handled 204
Source 113
RoutedEventHandler
neu erzeugen 58, 157
RoutedPropertyChangedEventArgs 92, 103
OldValue 92,103
Row
DataRowView 237
Grid 43
RowDefinitions
Count 45
Grid 43
RowGroups
Table 407
RowProperty
Grid 44
Rows
TableRowGroup 407
RowSpan
Grid 46
TableCell 408
Riickgabeparameter 160, 163
Riickwirts
Navigation 177
Run 74, 401
Inline-Typ 413
Run()
Application 157
RunWorkerAsync()
BackgroundWorker 99

S

Save()

TextRange 423
SayAs 389
Scale

ManipulationDelta 144

Index

ScaleTransform 274
ScaleX 274

ScaleY 274
ScaleTransform3D 319
ScaleX/Y
ScaleTransform 274
ScaleX/Y/Z
ScaleTransform3D 319
Schaltfliche 64
Schieber

Slider 100
Schiene

Slider 100
Schlagschatten 284
Schliissel

Control Template 207
Ressource 167
Style 195
Schrift

formatieren 422
hochgestellt 415
konvertieren 436
tiefgestellt 415
Schrift auswihlen
Dialogfeld 433, 436
Schriftart 401
Schriftartzeichen

in Geometrie 260
Schriftgrof8e 401
Schriftposition
vertikal 415
Schriftverzierung 415
Scroll
FlowDocumentReaderViewingMode 399
Scrollbalken

ListBox 82
ScrollBar 103
Grenzwerte 104
grofe Anderung 103
kleine Anderung 103
Lage 104
LargeChange 103
Maximum 104
Minimum 104
Orientation 104
SmallChange 103
ValueChanged 104
Wert gedndert 104

471

Index

ScrolllntoView() SelectedItems
ListBox 84 DataGrid 237
ScrollViewer 35 ListBox 87
Sichtbarkeit 36 SelectedText
Section 398, 402 TextBox 79
SecurityException 186 SelectedValue
Seek() RibbonGallery 190
Storyboard 347 SelectedValuePath
SeekStoryboard 356 RibbonGallery 190
Offset 356 Selection_Changed
SeekToFill() ListBox 83
Storyboard 347 TabControl 111
Seite 178 SelectionChanged
darf in History bewegen 179 ComboBox 90
Daten dibermitteln 179 DataGrid 236
der Reihe nach 176 RibbonGallery 190
erste 177 SelectionChangedEventArgs 83
in Frames 180 Removedltems 83
in History bewegen 179 SelectionEnd
Navigation 175 Slider 102
wechseln 178 SelectionLength
Seitenumbruch 403 TextBox 80
SelectAll() SelectionMode
TextBox 79 Calendar 122
Selected DataGrid 235
ListBoxItem 83 ListBox 85
TreeViewltem 92 SelectionStart
SelectedDate Slider 102
Calendar 125 TextBox 80
DatePicker 127 SelectionUnit
SelectedDateChanged DataGrid 235
DatePicker 127 Selector
SelectedDateFormat IsSelected 83, 87, 90, 112
DatePicker 127 SelectVoice()
SelectedDates SpeechSynthesizer 382
Calendar 124 sender 26
Count 125 Separator 62, 114
SelectedDatesChanged SetBinding() 219
Calendar 124 BindingOperations 219
SelectedDatesCollection 124 SetInputToDefaultAudioDevice()
SelectedIndex SpeechRecognitionEngine 393
ListBox 83 SetOutputToDefaultAudioDevice()
TabControl 111 SpeechSynthesizer 382
SelectedItem SetOutputToWaveFile()
ListBox 83 SpeechSynthesizer 382
SelectedItemChanged SetSpeedRatio()
TreeView 92 Storyboard 347

472

SetStoryboardSpeedRatio 356
SpeedRatio 356
SetTargetName()
Storyboard 345
SetTargetProperty()
Storyboard 345
Setter 195
Property 195
TargetName 209
Value 195
SetValue() 22, 32,136
ShadowDepth
DropShadowEffect 285
Shape 241
Fill 243
Fillfarbe 243
Liniendicke 243
Linienende 247
Linienfarbe 243
Stroke 243
StrokeEndLineCap 247
StrokeLineJoin 247
StrokeStartLineCap 247
StrokeThickness 243
Shift
ModifierKeys 150
Short
DatePickerFormat 127
Show()
Window 174
ShowDialog()
PrintDialog 426
Standard-Dialogfeld 434
Window 174
ShowlInTaskbar
Window 170
Sicherheitseinschrinkung 185
Sichtbarkeit 56, 108, 121, 122
Sichtfeld 293
SineEase 367
Single
DataGridSelectionMode 235
SelectionMode 85
SingleAnimation 333

SingleAnimationUsingKeyFrames 359

SingleBorderWindow
WindowStyle 183

Index

SingleDate
CalendarSelectionMode 123
SingleRange
CalendarSelectionMode 123
Single-Threaded Apartment Thread 156
Size 255

ArcSegment 255
SizeAnimation 333, 343
SizeAnimationUsingKeyFrames 359
SizeChanged

Window 122,171
SizeChangedEventArgs 171
SizeToContent

Window 172
Skalierung

2D-Grafik 274

3D-Grafik 319

Touchscreen 142
SkewTransform 276

AngleX 276

AngleY 276
Skin 212
SkipStoryboardToFill 356
Sleep(

Thread 98
Slider 100
AutoToolTipPlacement 102
Bereich markiert 102
Grenzwerte 100

grofSe Anderung 100
IsMoveToPointEnabled 102
IsSelectionRangeEnabled 102
IsSnapToTickEnabled 102
Lage 100

LargeChange 100
Markierungsgrenze 102
Maximum 100

Minimum 100

Orientation 100
SelectionEnd 102
SelectionStart 102

Skala 102

Skala, Platzierung 100
Skala, Strichdichte 101
springt nur zu Skalenstrich 102
springt zu Mausposition 102
TickFrequency 101

473

Index

TickPlacement 100
Ticks 102

ToolTip, Platzierung 102
Value 100
ValueChanged 100
Wert 100

Wert gedndert 100
SmallChange

ScrollBar 103
SmalllmageSource
Ribbon 189
SolidColorBrush 56, 262
Color 263
Sondertaste

Kommando 150
Sonderzeichen

anzeigen 66
SoundLocation
SoundPlayer 166, 372
SoundPlayer 166, 371
Play() 166
SoundLocation 166
SoundPlayerAction 375
Source

Binding 226

Frame 181

Image 65,128, 166, 261
MediaElement 379
MediaTimeline 379
NavigationWindow 177, 181
RoutedEventArgs 113
SoundPlayerAction 375
WebBrowser 130
SourceName
EventTrigger 355
Span

Inline-Typ 413
Speak(
SpeechSynthesizer 382
SpeakAsync()
SpeechSynthesizer 382
SpeakCompleted
EventHandler 386
SpeechSynthesizer 382
SpecularMaterial 314
Color 316
SpecularPower 316

474

SpecularPower
SpecularMaterial 316
Speech Recognition Grammar Specification
394
Speech Synthesis Markup Language 384,
386
SpeechRecognitionEngine 392
RecognizeAsync() 394
RecognizeAsyncCancel() 394
SetInputToDefaultAudioDevice() 393
SpeechRecognized
SpeechRecognizer 392
SpeechRecognizedEventArgs 392
SpeechRecognizer 392
SpeechSynthesizer 381
SpeedRatio

MediaPlayer 376
SetStoryboardSpeedRatio 356
SpellCheck 78

IsEnabled 78
IsEnabledProperty 79
Spielerei 182
SplineDoubleKeyFrame 359
KeySpline 362
SpotLight 302
Sprache

Art der Ausgabe 389

aus Datei 384

Ausgabe gemdf§ W3C 386
ausgeben 381

Eingabe gemdf§ W3C 394
Eingabegerdt 393

eingeben 390

erkennen 390

Pause 389

speichern in SSML 387, 389
speichern in WAV 382
steuert Anwendung 394
Zuhdren beenden 394
Zuhdren starten 394
zusammensetzen 381, 386
Spracherkennung

einschalten 391

integrierte 392

von Windows 390
Sprachgeschwindigkeit 388
Sprachlautstirke 389

Sprachstil 388
Springiness

ElasticEase 367
SQL-Befehl 234
Square

PenLineCap 248

TextMarkerStyle 405
SRGS 394
SSML 386
Ssml
SynthesisMediaType 384
StackPanel 35

Orientierung 36

Richtung 36
Standard-Dialogfeld 185, 432

Riickgabewert 434
Star

GridUnitType 408
StartIndex

List 405
StartPoint

LinearGradientBrush 264

LineGeometry 250

PathFigure 255
StartStyle()

PromptBuilder 386

PromptStyle 388
Startup

Application 159, 161
StartupEventArgs 160
Args 163
StartupUri

Application 159
StateChanged

Window 171
STAThread 156
StaticResource 168
Statische Ressource 167, 168
StatusBar 121
Statusleiste 121

Platzierung 121
StaysOpenOnEdit

ComboBox 88
Stern

Groflenangabe 408
Steuerelement

anordnen 29

Gruppen 53

Index

Stift
beriihrt 140
schwebt 140
Stop()
MediaPlayer 375
SoundPlayer 371
Storyboard 347
StopStoryboard 356
Storyboard 341
als Ressource 341
Begin() 343, 346
fiir Mediendatei 380
Pause() 347
Resume() 347
Seek() 347
SeekToFill) 347
SetSpeedRatio() 347
SetTargetName() 345
SetTargetProperty() 345
Stop() 347
TargetName 343
TargetProperty 343
Strahlendes Material 314
Stretch 128
HorizontalAlignment 49, 63
Image 128
VerticalAlignment 63
StringAnimationUsingKeyFrames 359, 363
Stroke
Path 250
Shape 243
StrokeEndLineCap
Shape 247
StrokeLineJoin
Shape 247
StrokeStartLineCap
Shape 247
StrokeThickness
Path 250
Shape 243
Style 193, 400
abgeleiteter Style 199
als Ressource 195
BasedOn 199
Basis-Style 199
benannter 194
Definition 195

475

Index

Eigenschaft 195
Eigenschaftswert 195
EventSetter 202
expliziter 194
Sfiir Typ 197
fiir verwandte Typen 200
Giiltigkeitsbereich 198, 200
impliziter 197
mit Event Trigger 352
Sammlung 212
Schliissel 195
TargetType 197
Triggers 205
vererben 198, 199
Ziel 197
Zuordnung 196, 197
Stylus 139
Anzahl der Tipps 141
Geste 141
Schaltfliche 140, 141
StylusButton
Guid 141
Name 141
StylusButtonState 141
StylusButtonDown 140
StylusButtonState
StylusButton 141
StylusButtonUp 140
StylusDevice
StylusEventArgs 140
StylusDown 140
StylusDownEventArgs
TapCount 141
StylusEnter 140
StylusEventArgs
InAir 140
Inverted 140
StylusDevice 140
StylusInAirMove 140
StylusInRange 140
StylusLeave 140
StylusMove 140
StylusOutOfRange 140
StylusSystemGesture 140
StylusSystemGestureEventArgs
SystemGesture 141

476

StylusUp 140
Subscript

BaselineAlignment 415
Superscript

BaselineAlignment 415
SweepDirection

ArcSegment 256
Symbolleiste 118

Platzierung 118

Styles 120
Symbolleistencontainer 118
ist gesperrt 118

Lage 118
SynthesisMediaType 384
System 124, 156
System.Collections.ObjectModel 228
System.Component.Model 98, 161
System.Data 232
System.Data.OleDb 232
System.Drawing 433
System.Drawing.Color 435
System.Drawing.Font 436
System.IO 185, 214, 377
System.Media 166, 384
System.Printing 426
System.Speech 390
System.Speech.Recognition 390
System.Speech.Synthesis 381
System.Threading 98
System.Windows 156
System.Windows.Controls 158, 224

System.Windows.Controls.Primitives 68

System.Windows.Forms 185, 431
System.Windows.Input 152
System.Windows.Markup 215, 425

System.Windows.Media.Animation 333

System.Windows.Media.Media3D 289
System.Xaml 436
SystemGesture
StylusSystemGestureEventArgs 141
SystemSound 374

Play) 375
SystemSounds 374
Systemton

abspielen 374

T

TabControl 111
Auswahl gewechselt 111
Nummer der ausgewdihlten Karte 111
Platzierung 111
SelectedIndex 111
Selection_Changed 111
TabStripPlacement 111

Tabelle 398, 407
dndern 410
hinzufiigen 409
Rahmen 408
Spalte 407
Zeile 407
Zeilengruppe 407
Zelle 407
Zellen tiberspannen 408

Tabltem 111
Beschriftung 111
Header 111

Table 398, 407
Columns 407
RowGroups 407

TableCell 407
ColumnSpan 408
RowSpan 408

TableCellCollection 407

TableColumnCollection 407

TableRow 407
Cells 407

TableRowCollection 407

TableRowGroup 407
Rows 407

TableRowGroupCollection 407

TabStripPlacement
Dock 111
TabControl 111

Tap
SystemGesture 141

TapCount
StylusDownEventArgs 141

Target
Label 72

TargetName
Hyperlink 182
Setter 209
Storyboard 343

Index

TargetProperty
Storyboard 343
TargetType
ControlTemplate 208
Style 197
Tastatur 133
Tastatursteuerung 55
Taste

Alt 55

bedienen 133
Bindung 150

Enter 64

Ereignis 134

ESC 64

F1 16

Info iiber 133

Return 64
wiederholt gedriickt 134
Tastenkombination 149, 152
Template 207, 237
TemplateBinding 209
Text

Anderung priifen 79
anhdngen 75
ComboBox 88

Ein- und Ausgabe 71
einfiigen 75
eingeben 77

ganz markieren 79
geschiitzter 80

Linge begrenzen 80
markierter Teil 79
Position 76
Spracherkennung 392
SynthesisMediaType 384
teilweise markieren 80
TextBlock 73
TextAlignment

Block 401
Textbereich 423
TextBlock 73

in FixedDocument 426
Inhalt 73

mit Inlines 412

Text 73
TextWrapping 74

477

Index

TextBox 77
AcceptsReturn 78
MaxLength 80
mehrzeilig 77
mit Scrollbalken 78
SelectAll) 79
SelectedText 79
SelectionLength 80
SelectionStart 80
TextChanged 77
TextWrapping 78
VerticalScrollBarVisibility 78

TextChange 79

TextChanged
TextBox 77

TextChangedEventArgs 79
Changes 79

TextDecorations
Inline 415

Text-Editor 80

Text-Eingabe 80

TextElement
FontFamily 401

TextIndent
Paragraph 401

TextMarkerStyle 405

TextPointer 423

TextRange 423

Textur
fiir 3D-Grafik 313, 316

TextureCoordinates
MeshGeometry3D 313

TextWrapping
TextBlock 74
TextBox 78

Thickness 60, 62, 104

ThicknessAnimation 333

ThicknessAnimationUsingKeyFrames 359

Thin
FontWeights 56

Thread
Sleep() 98

ThreeDBorderWindow
WindowStyle 183

Thumb 100, 103

TickFrequency
Slider 101

478

TickPlacement
Both 101
BottomRight 101
Slider 100
TopLeft 101
Ticks
Slider 102
Tile 267
TileMode 269
TileMode
ImageBrush 267
TimeSeekOrigin 347
TimeSpan 337
Parse() 339
Title
NavigationWindow 181
Window 169
To
AnimationTimeline 334
ToggleBold
EditingCommands 148, 422
ToggleButton 66
Checked 67
IsChecked 67
IsThreeState 67
Unchecked 67
Zustand 67
ToggleUnderline
EditingCommands 422
ToLongDateString()
DateTime 127
ToolBar 118
ComboBoxStyleKey 120
ToolBarTray 118
IsLocked 118
Orientation 118
ToolTip 76
ToolWindow
WindowStyle 183
Top
Canvas 30
TopLeft
AutoToolTipPlacement 102
TickPlacement 101
TopMost
Window 171

TopProperty

Canvas 32
ToShortDateString()
DateTime 127
TotalManipulation
ManipulationCompletedEventArgs 145
Touch

Ereignis 141, 142
TouchDevice 141
TouchDown 142, 143
TouchEnter 142
TouchEventArgs 141
TouchLeave 142
TouchMove 142, 143
TouchPoint 142
TouchPointCollection 142
Touchscreen 141
TouchUp 142, 143
ToXml()

PromptBuilder 387, 389
Track 100
Trigheit

bei Manipulation 142
Transform 270
GeometryModel3D 320
Transform3D 319
Transform3DGroup 326
Transformation 270
3D-Grafik 319
animieren 347

mit Verschiebung 271
ohne Verschiebung 271
Ursprung 271
Transformationsgruppe
2D-Grafik 278
3D-Grafik 326
TransformGroup 278
Children 279
TranslateTransform 277
X 277

Y 277
TranslateTransform3D 321
Translation
ManipulationDelta 144
Transparenz 183, 263, 280
animieren 343

Effekt 281

Index

gleitende 281

Maske 281
TreeView 90

alle iibergeordneten Elemente 94
alle untergeordneten Elemente 94
ausgewdhlter Eintrag 92
Auswahl gewechselt 92
Eintrag 90

Eintrag anhdngen 95
Eintrag einfiigen 95
SelectedItemChanged 92
vorher ausgewdhlter Eintrag 92
TreeViewltem 90
Beschriftung 92
Collapsed 92
Expanded 92
ExpandSubtree() 96
Header 92

IsExpanded 92
IsSelected 92

ist aufgeklappt 92

ist ausgewdhlt 92
klappt auf 92
klappt zu 92

Selected 92

Unselected 92
Untereintrdge aufklappen 96
wurde abgewdhlt 92
wurde ausgewdhlt 92
Triangle

PenLineCap 248
TriangleIndices
MeshGeometry3D 293
Trigger 204, 351
Bedingung 205, 206
Control Template 209
DataTemplate 239
fiir Daten 238

fiir Eigenschaft 204
fiir Ereignis 350

in Style 353

Property 205

Style 205

Value 205

Zielelement 209
TriggerCollection 351

479

Index

TwoFingerTap Update()
SystemGesture 141 OleDbAdapter 234
TwoPage UpdateSource()
FlowDocumentReaderViewingMode 399 BindingExpression 220
TwoWay UpdateSourceTrigger
Mode 220 Binding 220
Typ UpDirection
ermitteln 26 OrthographicCamera 296, 301
Umwandlung 19 UpperLatin
Type Converter 19 TextMarkerStyle 405
Typ-Style 197 UpperRoman
mit Control Template 211 TextMarkerStyle 405
vererben 199 Uri 166, 179
UriKind 179
U Relative 166
UlElement 410 Vv
Umgebungslicht 293, 302
Umschalter 66, 68 Validate()
einstellen 71 ValidationRule 224
Unchecked ValidationResult 224
CheckBox 67 ValidationRules 224
RadioButton 68 Add() 223
ToggleButton 67 Binding 222
Underline Validate() 224
Inline-Typ 413 Value
Undurchsichtigkeit 280 Condition 206
Uniform DataTrigger 239
KeyTime 360 ProgressBar 98
Stretch 128 Setter 195
UniformToFill Slider 100
Stretch 128 Trigger 205
Union ValueChanged
GeometryCombineMode 253 ScrollBar 104
Unloaded Slider 100
Window 160 Vector3D 292
Unselected Vector3DAnimation 333
ListBoxItem 83 Vector3DAnimationUsingKeyFrames 359
TreeViewltem 92 VectorAnimation 333
Unterelement 19 VectorAnimationUsingKeyFrames 359
Unterstreichung 413 Vektorgrafik 14
Art 415 Verschiebung
Unterstrich 2D-Grafik 277
Tastatursteuerung 55, 114 3D-Grafik 321
Unterteilung 62, 114 Touchscreen 142
update Wert 277
SQL 234

480

Vertical
Orientation 36
VerticalAlignment 63
VerticalAnchor 418
VerticalContentAlignment 63
Vertical Offset
ContextMenu 116
VerticalScrollBarVisibility
ScrollViewer 36
TextBox 78
Verzeichnis auswahlen
Dialogfeld 434
Verzierung 286
Video-Ausgabe 380
Videodatei
in Geometrie 260
VideoDrawing 260
View
ListView 231
Viewbox
ImageBrush 267
ViewboxUnits
ImageBrush 269
ViewingMode
FlowDocumentReader 399
Viewport
ImageBrush 267
Viewport2DVisual3D 311
Geometry 313
IsVisualHostMaterial 313
Visual 313
Viewport3D 292
Children 293
ViewportUnits
ImageBrush 269
Visibility 57, 108, 121, 122
Visible
Visibility 57
Visual
Viewport2DVisual3D 313
Visual Basic 15, 17
Visual C# 15, 17
Visual Studio 15
Volume
MediaPlayer 376
PromptVolume 389
SpeechSynthesizer 382

Index

Vorlage 193
WPF Ribbon Application 187
WPF-Anwendung 16
WPF-Browseranwendung 185
Vorwirts
Navigation 177

w

WAV-Datei 166
abspielen 166, 371, 375
Dateiname 166
laden 371

WaveAudio
SynthesisMediaType 384

WebBrowser 130
CanGoBack() 131
CanGoForward() 131
GoBack() 131
GoForward() 131
LoadCompleted 130
Navigate() 130
Navigated 130
NavigateToString) 130
Source 130

Weichzeichner 284

WheelClick
MouseAction 150

Width 36, 54
ColumnDefinition 47
Image 128
ListBox 82
OrthographicCamera 293
SizeToContent 172
Tabellenzelle 408
Window 169

WidthAndHeight
SizeToContent 172

Window 20, 169
AllowsTransparency 183
Closed 160
Closing 160
DialogResult 175
DragMove() 184
Height 169
Initialized 160, 214
IsLoaded 70

481

Index

Loaded 122,160
LocationChanged 171
Main() 157
MouseMove 122
Owner 174
ResizeMode 170
Resources 168
Show() 174
ShowDialog() 174
ShowInTaskbar 170
SizeChanged 122,171
SizeToContent 172
StateChanged 171
Title 169
Topmost 171
Unloaded 160
Width 169
Window_Closing() 234
WindowStartupLocation 170
WindowState 131
WindowStyle 183
Window_Closing()
Window 234
Windows
Druckdialog 426
ModifierKeys 150
Spracherkennung 390
Windows Forms
in WPF-Anwendung 431
mit WPF-Element 436

WindowTitle
Page 178
Wochentag 126
WorkerReportsProgress
BackgroundWorker 99
WPF 13
Eigenschaften 13
Vorteile 13
WPF-Anwendung
Minimal-Aufbau 155
WPF-Browseranwendung 184
WPEFE-Interoperabilitit
Toolbox-Kategorie 437
Wrap
TextWrapping 74
WrapPanel 37
einheitliche Grofle 38
FlowDirection 110
Orientierung 38
Richtung 38,110
WrapWithOverflow
TextWrapping 74
Wiirfel
in 3D-Grafik 296

X

X
Point 246
TranslateTransform 277
x:Class 20

Standard-Dialogfeld in WPF 432

Windows Presentation Foundation 13 x:Key 195, 207

Windows Presentation Foundation-Host x:Name 19
184 x:Null 67

WindowsBase 436 x:Type 197,238

WindowsFormsHost 431 X)
WindowsFormsIntegration 431, 436 Line 244

. X2
Windows-Spracherkennung)

integrierte 392 Line 244
WindowStartupLocation XAl &L.bﬁ

CenterOwner 175 ’;;ﬂ ut17]9

Window 170 a zto.r 4
WindowState rzv;zterung ercode 17

Window 131 mit Programmiercode

. Paketdatenformat 423
Windowstyle XAML Browser Application 184

Window 183 rowser Apphication

482

XamlPackage
DataFormats 423
XamlReader 214
Load() 214
XBAP 184
XML
Knoten 21
XML-Datei
mit SSML 387, 389
xmlns 20
xmlns:x 20
Xor
GeometryCombineMode 253

Y

Y
Point 246
TranslateTransform 277
Y1
Line 244
Y2
Line 244

Index

z

z-Achse 289
Zahlenbereich
darstellen 97
Wert darstellen 100
Zahlenwerte
darstellen 97
Zeichenkette

animieren 363
Zeilenumbruch 65, 74, 413

steuern 74,78
Zeitspanne 339
Zeitverzogerung 98
Zentimeter 401
ZIndex

Panel 30, 272
ZIndexProperty

Canvas 32
Zoom

FlowDocumentReader 400
ZoomlIncrement 400
Zweidimensionale Grafik 241
Zwischenablage 77

483

