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Vorwort zur ersten Auflage

Warum ein neues Buch über Wärmeübertragung? Meine Tätigkeit bei Asea Brown

Boveri bis 1991 war eng mit der Entwicklung von Wärmeübertragern für Dampf-

kraftwerke verbunden. Dabei mussten stets die neuesten Forschungsergebnisse auf

dem Gebiet der Wärmeübertragung berücksichtigt oder neue Berechnungsverfah-

ren für unsere Apparate entwickelt werden. Bei den jungen Ingenieuren, die nach

Abschluss ihres Studiums bei uns anfingen, stellten wir fest, dass sie auf dem Gebiet der Wärmeübertragung mit theoretischem Wissen über Grenzschichten, Ähnlich-keitstheoreme und einer Vielzahl von Berechnungsverfahren vollgestopft waren. 

Sie konnten jedoch kaum einen Wärmeübertrager berechnen bzw. auslegen. 

Als ich dann mit dem Unterricht an der Fachhochschule beider Basel begann, 

sah ich, dass die meisten Lehrbücher nicht auf dem neuesten Stand der Technik

waren. Insbesondere die didaktisch ausgezeichneten amerikanischen Lehrbücher

weisen große Mängel bezüglich Aktualität auf. In meiner nun 12jährigen Unter-

richtstätigkeit arbeitete ich ein Skript aus, in dem ich versuchte, die neuesten Erkenntnisse zu berücksichtigen und die Studierenden so auszubilden, dass sie in

der Lage sind, Wärmeübertrager zu berechnen und auszulegen. Vom Umfang her

musste der Stoff für den Unterricht an Fachhochschulen und Universitäten für

Maschinen- und Verfahrensingenieure geeignet sein. Der VDI-Wärmeatlas ist

dem Stand der Technik am besten angepasst, für den Unterricht jedoch viel zu

umfangreich. Sowohl in meinem Skript als auch im vorliegenden Buch wurde der

VDI-Wärmeatlas, 9. Ausgabe (2002) oft als Quelle verwendet. 

Das Buch setzt grundlegende Kenntnisse der Thermodynamik und Fluidmecha-

nik wie z. B. den ersten Hauptsatz und die Gesetze der Strömungswiderstände

voraus. Die Studierenden werden zunächst in die Grundlagen der Wärmeüber-

tragung eingeführt. Durch Beispiele werden die Berechnung und Auslegung von

Apparaten aufgezeigt und das theoretische Wissen vertieft. An unserer Fach-

hochschule sind die Studierenden nach 34 zweistündigen Lektionen in der Lage, 

selbstständig Apparate auszulegen oder nachzurechnen. Das Buch kann später im

Beruf als Nachschlagewerk benutzt werden. Auf zu viele theoretische Herleitungen

wurde absichtlich verzichtet, da sie eher in der Forschung benötigt werden. 

Die im Buch behandelten Beispiele können als  Mathcad-Programme unter

www.fhbb.ch/maschinenbau oder www.springer.com/de/3-540-31432-6 aus dem

Internet heruntergeladen werden. 

Professor   Dr.    Holger Martin, Professor  Dr. Kurt Heiniger und  Dr. Hartwig Wolf danke ich für die wertvollen Hinweise, die zur Verbesserung des Buches führten. Sie hatten im Auftrag des Springer-Verlags das Manuskript zu begutachten. 

Insbesondere danke ich Herrn Prof.  Holger Martin für den Hinweis, dass es nur zwei Arten der Wärmeübertragung gibt. In meiner Vorlesung lehrte ich mit fast

allen Lehrbüchern übereinstimmend die vier Arten der Wärmeübertragung, erwähn-

te aber, dass bei Konvektion Wärme durch Wärmeleitung transferiert wird. Mir
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Vorwort

war der Aufsatz von  Nußelt (Kapitel 1), in dem er darauf hinweist, dass es nur zwei Arten der Wärmeübertragung gibt, nämlich Wärmeleitung und Strahlung, 

nicht bekannt. Ich möchte die Leser bitten, diese Erkenntnis weiter zu verbreiten, damit mit der Zeit die irrigen vier Arten der Wärmeübertragung verschwinden. 

Meiner Frau Brigitte, die viel zum Gelingen dieses Buches beigetragen hat, 

danke ich sehr. Sie las mein Manuskript kritisch durch und trug bezüglich der

sprachlichen Formulierungen wesentlich zum Stil und zur Lesbarkeit des Buches

bei. 

Ich möchte nicht versäumen, dem Springer-Verlag für die ausgezeichnete Zu-

sammenarbeit und Unterstützung zu danken. 

Muttenz, Frühjahr 2003

Vorwort zur zweiten Auflage

In der zweiten Auflage wurden Fehler, die ich im Unterricht mit den Studenten

entdeckte, eliminiert. Zumeist waren dies Tippfehler und falsch abgeschriebene

Zahlen in den Beispielen. Bei den Studenten bedanke ich mich für die Hinweise

betreffend der Fehler. 

Die Stoffwerte von Frigen R134a waren aus einer nicht ganz exakten Quelle ent-

nommen und wurden aktualisiert. 

Neu im Anhang sind einfache Formeln zur Berechnung der Stoffwerte von

Wasser, Wasserdampf, Frigen R134a und für Luft angegeben. Sie können leicht

in Berechnungsprogramme implementiert werden. Diese Formeln sind im Internet

als  Mathcad-Programme abrufbar. 

Wiederum bedanke ich mich bei meiner Frau Brigitte, die nochmals Korrektur

las. 

Muttenz, Januar 2006   Peter von Böckh

Vorwort zur dritten Auflage

Eine wesentliche Änderung bei dieser dritten Auflage ist der Koautor Prof. Dr.-Ing. 

Thomas Wetzel. Da ich seit 2006 im Ruhestand bin, bat mich der Springer-Verlag, 

einen Koautor, der noch doziert, beizuziehen. Ich konnte Herrn Prof. Wetzel, der

Stoff- und Wärmeübertragung an der Karlsruher Universität liest, als Koautor ge-

winnen, da er das Buch bereits in seinen Vorlesungen verwendet. Ich freue mich

sehr auf eine erfolgreiche Zusammenarbeit. 

Die Mathcad-Programme sind jetzt in meiner Homepage waermeuebertragung-

online.de abrufbar. 

Karlsruhe, Mai 2009

Peter von Böckh mit Thomas Wetzel
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Was ist neu in der vierten Auflage? 

Sie wurde neu überarbeitet, was kleinere textliche Änderungen, Fehlerbehebung

und Ergänzungen beinhaltet. Neu ist:

•

Die englischen Termini in Klammern wurden weggelassen, da sie im Deutsch-

Englisch-Glossar bereits vorhanden sind

•

Wichtige Aussagen sind mit einem Rahmen versehen und grau unterlegt

•

In Kapitel 2 wurde ein neuer Absatz mit einer nummerischen Berechnungs-

methode für transiente Wärmeleitung angefügt

•

In Kapitel 3 ist die Herleitung der Kennzahlen  Nu,  Re und  Pr beschrieben

•

Kapitel 8 behandelt neu u.a. Rohrvibrationen mit Hinweisen auf weiterführende

Literatur

•

Im Anhang ist eine Formelsammlung zusammengestellt

•

Die   Mathcad-Programme sind jetzt in  Mathcad 14 im Internet unter

abrufbar. 

www.waermeuebertragung-online.de

Karlsruhe, Januar 2011

Peter von Böckh und Thomas Wetzel
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1

Einleitung und Definitionen

Die Wärmeübertragung ist ein Teilgebiet der Wärmelehre. Sie beschreibt die Ge-

setzmäßigkeiten, nach denen der Transport von Wärme zwischen Systemen unter-

schiedlicher Temperatur erfolgt. In der Thermodynamik werden Wärmeströme und

Wärme, die von einem System zum anderen zu- oder abgeführt werden, als gegebe-

ne Prozessgrößen angenommen. Dabei bleibt unberücksichtigt, wie die Wärme

übertragen wird und auf Grund welcher Gesetzmäßigkeiten die Quantität der trans-

ferierten Wärme entsteht. Die Wärmeübertragung behandelt die Mechanismen, die

die Größe des Wärmestromes bzw. der übertragenen Wärme bei den vorhandenen

Temperaturdifferenzen und sonstigen physikalischen Bedingungen bestimmen. Bei

der Behandlung der Wärmeübertragung werden die in der Thermodynamik ver-

wendeten Begriffe System und Kontrollraum [1.1] benutzt. Ein System kann ein

Stoff, ein Körper oder eine Kombination mehrerer Stoffe und Körper sein, das zu

einem anderen System Wärme transferiert oder von dort Wärme erhält. 

Hier stellen sich folgende Fragen:

•

Was ist Wärmeübertragung? 

•

Wozu benötigt man Wärmeübertragung? 

 Wärmeübertragung ist der Transfer der Energieform Wärme auf  Grund einer

 Temperaturdifferenz. 

Besteht innerhalb eines Systems oder zwischen zwei Systemen, die miteinander

in thermischem Kontakt sind, eine Temperaturdifferenz, findet Wärmeübertragung

statt. 

Wozu man Wärmeübertragung benötigt, kann man am Beispiel eines Heizkörpers

erklären. Um eine bestimmte Raumtemperatur zu erreichen, werden Heizkörper

verwendet, in denen warmes Wasser strömt und sie damit einen Raum beheizen

(Bild 1.1). In der Ausschreibung für die Heizkörper gibt der Architekt die Heiz-

leistung (Wärmestrom), den Heizwassermassenstrom, die Eintrittstemperatur des

warmen Heizwassers und die gewünschte Raumtemperatur an. Auf Grund dieser

Daten werden entsprechende Heizkörper angeboten. Ist der gewählte Heizkörper zu

klein, wird die gewünschte Raumtemperatur nicht erreicht. Der Käufer ist unzufrie-

den, der Heizkörper muss ausgetauscht werden. Ist er überdimensioniert, wird der

Raum zu warm. In diesem Fall kann man zwar durch Drosseln des Heizwassers die

gewünschte Raumtemperatur eingestellen, aber der ausgewählte Heizkörper ist zu

groß und damit zu teuer. Der Konkurrent mit der passenden Heizkörpergröße bot

billiger und damit erfolgreich an. Durch Versuche könnte man zwar für jeden Raum

P. von Böckh, T. Wetzel  Wärmeübertragung, 
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den richtigen Heizkörper ermitteln, dies wäre jedoch sehr aufwändig und unwirt-

schaftlich. Daher benötigt man Rechenmethoden, mit denen das optimale System

ausgelegt werden kann. Für das behandelte Beispiel ist es die Aufgabe der Wärme-

übertragung, mit den vorgegebenen Größen Wärmestrom, Raumtemperatur, Heiz-

wassertemperatur und -massenstrom die richtige Dimension des Heizkörpers zu be-

stimmen. 

Heizwasser

Raumtemperatur

ϑ

Eintrittstemperatur ϑ

 R

.  ein

Massenstrom

 m

. 

Wärmestrom  Q

Heizfläche  A

Bild 1.1: Auslegung des Heizkörpers

Zur Auslegung von Apparaten und Anlagen, in denen Wärme transferiert wird, ist

in der Praxis neben anderen technischen Wissenschaften (Thermodynamik, Fluid-

mechanik, Mechanik, Werkstoffkunde usw.) die Wärmeübertragung notwendig. 

Dabei ist man stets bestrebt, die Produkte zu optimieren und zu verbessern. Wesentlich dafür ist:

•

Die Erhöhung des Wirkungsgrades

•

der optimale Einsatz der Energieressourcen

•

das Erreichen minimaler Umweltbelastungen

•

die Optimierung der totalen Kosten. 

Um diese Ziele zu erreichen, müssen die Wärmeübertragungsvorgänge möglichst

genau bekannt sein. 

 Um einen Wärmeübertrager oder eine komplette Anlage, in der Wärmetrans-

 fer stattfindet, so auszulegen, dass bei günstigsten Gesamtkosten ein mög-

 lichst hoher Wirkungsgrad erreicht wird, benötigt man genaue Kenntnisse der

 Wärmeübertragung. 

Tabelle 1.1 listet die Anwendungsgebiete der Wärmeübertragung auf. 
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 Tabelle 1.1: Anwendungsgebiete der Wärmeübertragung

• Heizungs-, Lüftungs- und Klimaanlagen

• thermische Kraftwerke

• Kältemaschinen und Wärmepumpen

• Gastrennung und -verflüssigung

• Kühlung von Maschinen

• Prozesse, die Kühlung oder Heizung benötigen

• Erwärmung von Werkstücken

• Rektifikations- und Destillationsanlagen

• Wärme- und Kälteisolation

• solarthermische Systeme

• Verbrennungsanlagen


1.1

Arten der Wärmeübertragung

In den meisten Lehrbüchern wird trotz gegenteilig gesicherter Erkenntnisse von

vier  Arten der Wärmeübertragung berichtet: Wärmeleitung, freie Konvektion, erzwungene Konvektion und Strahlung. In [1.2] wird auf die von  Nußelt [1.3] in 1915

postulierte Tatsache, dass es nur zwei Arten der Wärmeübertragung gibt, hingewie-

sen. In dem Aufsatz von  Nußelt heißt es:

“Es wird vielfach in der Literatur behauptet, die Wärmeabgabe eines Körpers habe

drei Ursachen: die Strahlung, die Wärmeleitung und die Konvektion. 

Diese Teilung der Wärmeabgabe in Leitung und Konvektion erweckt den Anschein, 

als hätte man es mit zwei unabhängigen Erscheinungen zu tun. Man muss daraus

schließen, dass Wärme auch durch Konvektion ohne Mitwirkung der Leitung übertra-

gen werden könnte. Dem ist aber nicht so.” 

 Die Wärmeübertragung kann durch Wärmeleitung und Strahlung erfolgen. 

Bild 1.2 demonstriert die zwei Arten der Wärmeübertragung. 

ϑ > ϑ

1

2

bewegtes Fluid

ϑ

ϑ ϑ

> 2

1

ϑ1

1

. 

. 

ϑ

. 

ϑ

2

 Q

. 

2

 Q

1

 Q  2

ϑ

. 

2

 Q

ϑ1

ϑ > ϑ2

1

Wärmeleitung in einem Fest-

Wärmeleitung von einer Oberfläche

Wärmeaustausch durch Strahlung           

körper oder ruhenden Fluid

zu einem bewegten Fluid (Konvektion)

zwischen zwei Oberflächen

Bild 1.2: Arten der Wärmeübertragung
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1.  Wärmeleitung entsteht in Stoffen, wenn in ihnen ein Temperaturgradient

vorhanden ist. Bezüglich der Berechnung wird zwischen ruhenden Stoffen

(feste Stoffe oder ruhende Fluide) und strömenden Fluiden unterschieden. 

Bei der Wärmeleitung in ruhenden Stoffen ist die Wärmeübertragung nur

vom Temperaturgradienten und den Stoffeigenschaften abhängig. 

Bei der Wärmeübertragung zwischen einer festen Wand und einem strömen-

den Fluid erfolgt durch Wärmeleitung ein Wärmetransport zwischen Wand

und Fluid. Außerdem transportiert das bewegte Fluid in der Strömung En-

thalpie. Bestimmend für die Wärmeübertragung sind Wärmeleitung und

Temperaturgrenzschicht des Fluids, wobei Letztere von der Strömung beein-

flusst wird. Zur Unterscheidung der Berechnung nennt man die Wärmeüber-

tragung zwischen einer Wand und einem strömenden Fluid Wärmeübertra-

gung bei  Konvektion oder kurz nur Konvektion. Hier wird zwischen  freier Konvektion  und  erzwungener Konvektion  unterschieden. Bei freier Konvektion entsteht die Strömung durch Temperatur- und damit verbundene Dichte-

unterschiede im Fluid, bei erzwungener Konvektion durch einen äußeren

Druckunterschied. 

2.  Strahlung erfolgt ohne stoffliche Träger. Die Wärme wird durch elektromagnetische Wellen von einer Oberfläche zu einer anderen Oberfläche transfe-

riert. 

Bei den in Bild 1.2 aufgeführten Beispielen ist die Temperatur ϑ  größer als ϑ , 

1

2

somit fließt der Wärmestrom in Richtung der Temperatur ϑ . Bei der Strahlung

2

emittieren beide Oberflächen einen Wärmestrom, wobei jener von der Oberfläche

mit höherer Temperatur ϑ  größer ist. 

1

Wärmeübertragung erfolgt oft durch eine Kombination von Wärmeleitung mit

oder ohne Konvektion und Strahlung. In vielen Fällen können einzelne Mechanis-

men als vernachlässigbar von der Betrachtung ausgeschlossen werden. Im Beispiel

des Heizkörpers erfolgt die Wärmeübertragung zwischen dem warmen Wasser und

der Innenwand durch Wärmeleitung an einem bewegten Fluid, d.h. durch  Konvek-

tion. Je nach Bauart des Heizkörpers kann dabei die Wärmeleitung bei freier bzw. 

erzwungener Konvektion oder der Kombination beider auftreten. Wärmeübertra-

gung durch die Wand des Heizkörpers erfolgt durch Wärmeleitung. Die Wände des

Heizkörpers geben durch Wärmeleitung bei freier Konvektion und Strahlung Wär-

me an den Raum ab. 

Die Übertragungsmechanismen der verschiedenen Wärmeübertragungsarten un-

terliegen unterschiedlichen physikalischen Gesetzmäßigkeiten und werden daher

getrennt behandelt. 
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1.2

Definitionen


Die zur Beschreibung der Wärmeübertragung notwendigen Größen werden hier

erklärt. 

 Bei der Temperatur wird für die Celsius-Temperatur das Symbol ϑ , für die Absoluttemperatur das Symbol T verwendet. 

1.2.1

Wärmestrom und Wärmestromdichte

Die Bestimmung des  Wärmestromes   Q ist eine der Aufgaben der Wärmeübertragung. 

 Der Wärmestrom  gibt an, wie viel Wärme pro Zeiteinheit übertragen wird. 

Die Einheit des Wärmestromes ist Watt W. 



Eine weitere wichtige Größe ist die  Wärmestromdichte q =  Q/  A ,  die angibt, welcher Wärmestrom pro Flächeneinheit übertragen wird. Ihre Einheit ist W/m2. 

1.2.2

Wärmeübergangszahl und Wärmedurchgangszahl

Die Definition der Größen, die wir für die Bestimmung des Wärmestromes aus vor-

handener Temperaturdifferenz und Geometrie benötigen, wird am Beispiel eines

Wärmeübertragers (Bild 1.3) vorgenommen. Der Wärmeübertrager besteht aus ei-

nem Rohr, das von einem zweiten, konzentrisch angeordneten Rohr umhüllt ist. In

das innere Rohr strömt ein Fluid mit der Temperatur ϑ  '  ein und wird dort auf die 1

Temperatur ϑ  ''  erwärmt. Im äußeren Ringraum strömt ein zweites wärmeres Fluid 1

mit der Temperatur ϑ  '  ein und wird dort auf die Temperatur ϑ  ''  abgekühlt. Ohne 2

2

dass hier auf die Wärmeübertragungsmechanismen eingegangen wird, sind im Fol-

genden die Größen für die Wärmeübertragung definiert. 

Bild 1.3 zeigt den Temperaturverlauf in den Fluiden und in der Wand eines Wär-

meübertragers. 

Die Größe des übertragenen Wärmestromes wird durch die  Wärmeübergangszahl

α, die Übertragungsfläche  dA und die Temperaturdifferenz bestimmt. 

 Die Wärmeübergangszahl gibt an, welcher Wärmestrom pro Flächeneinheit

 und pro Grad Temperaturdifferenz übertragen wird. 

Die Einheit der Wärmeübergangszahl ist W/(m2 K). 
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Bild 1.3: Temperaturverlauf in einem Wärmeübertrager

Mit der Definition der Wärmeübergangszahl ist der Wärmestrom durch ein Flä-

chenelement  dA gleich:

 Q

δ  = α ⋅(ϑ −ϑ )⋅ dA

(1.1)

2

2

2

 W  2

2

δ Q = α ⋅(ϑ −ϑ )⋅ dA

(1.2)

1

1

 W 1

1

1

δ Q = α ⋅(ϑ

ϑ

(1.3)

2 −

)

1 ⋅  dA

 W

 W

 W

 W

 W

Dabei ist  Q

δ  ein inexaktes Differential, weil die Integration je nach Art der Wär-

meübertragung unterschiedliche Werte annehmen kann. 

 Das Integral von  Q

δ   ist  Q   und nicht  Q −  Q  . 

12

2

1

Die Temperaturdifferenzen wurden hier so gewählt, dass der Wärmestrom stets

positiv ist. Ist der Wärmeübertrager der Umgebung gegenüber thermisch vollstän-

dig isoliert, muss der Wärmestrom, den Fluid 2 abgibt, gleich groß wie der Wärme-

strom sein, der vom Fluid 1 aufgenommen wird; er muss jedoch auch gleich wie der

Wärmestrom sein, der die Wand des Rohres passiert. 

δ Q

(1.4)

1 =

 Q

δ 2 = δ Q =  Q

δ

 W

In den meisten Fällen kennt man die Wandtemperaturen nicht. Es ist von Interes-

se, den Wärmestrom, der vom Fluid 2 auf Fluid 1 übertragen wird, zu bestimmen. 

Dieses kann mit Hilfe der  Wärmedurchgangszahl k erfolgen. Sie hat die gleiche Dimension wie die Wärmeübergangszahl. 
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δ Q =  k ⋅(ϑ ϑ

(1.5)

2 −

)

1 ⋅  dA

Mit Hilfe der Gleichungen (1.1) bis (1.5) kann der Zusammenhang zwischen den

Wärmeübergangszahlen und der Wärmedurchgangszahl bestimmt werden. Dabei

muss man aber berücksichtigen, dass die Flächen bei gewölbten Wänden auf der In-

nen- und Außenseite unterschiedlich groß sein können. Die Bestimmung der Wär-

medurchgangszahlen erfolgt in den nächsten Kapiteln. 

 Es ist Aufgabe der Wärmeübertragung, die Wärmeübergangszahlen in Ab-

 hängigkeit von Stoffeigenschaften, Temperaturen und Strömungsbedingun-

 gen zu bestimmen. 

1.2.3

Kinetische Kopplungsgleichungen

Die Gleichungen (1.1) bis (1.3) und (1.5) geben den Wärmestrom als eine Funktion

der Wärmeübergangszahl oder Wärmedurchgangszahl, der Austauschfläche und

der Temperaturdifferenz an. Sie werden  kinetische Kopplungsgleichungen genannt. 

 Kinetische Kopplungsgleichungen definieren den Wärmestrom, der bei einer

 Wärmeübergangs- bzw. Wärmedurchgangszahl über die Übertragungsfläche

 pro Kelvin Temperaturdifferenz transferiert werden kann. 

1.2.4

Mittlere Temperaturdifferenz

Sind die Wärmeübergangszahlen bekannt, kann an jeder Stelle des in Bild 1.3 ge-

zeigten Wärmeübertragers der transferierte Wärmestrom bestimmt werden. In der

Technik ist aber nicht der lokale, sondern der insgesamt im Wärmeübertrager trans-

ferierte Wärmestrom von Interesse. Um den gesamten Wärmestrom zu bestimmen, 

muss über der Fläche des Wärmeübertragers integriert werden und man erhält:

 A

 Q =  k ⋅(ϑ

ϑ

2 −

1 ⋅  dA

³

)

(1.6)

0

Die Änderung der Temperaturen über das Flächenelement  dA des Wärmeübertra-

gers kann aus den Energiebilanzgleichungen (s. Kap. 1.2.5) bestimmt werden. 

δ Q =  m ⋅  dh =  m ⋅ c ⋅  dϑ

(1.7)

1

1

1

1

 p

1

δ Q = − m ⋅  dh = −  m ⋅ c ⋅  dϑ

(1.8)

2

2

2

 p  2

2

Die Temperaturdifferenz ϑ  – ϑ  wird durch Δϑ ersetzt. Die Änderung der Tem-

2

1

peraturdifferenz berechnet man aus der Änderung der Fluidtemperaturen. 
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§
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 ¨
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Gl. (1.9) in Gl. (1.5) eingesetzt, ergibt:

 d

§

·

ϑ

Δ = −

1

1

 k ¨

¸

⋅

+

⋅ dA

¨

ϑ

Δ

 m





(1.10)

1 ⋅  c

 m

1

2 ⋅  c

¸

 p

 p

©

2 ¹

Unter der Voraussetzung, dass die Wärmedurchgangszahl, die Flächen und die

spezifischen Wärmekapazitäten konstant sind, kann Gl. (1.10) integriert werden. 

Diese Voraussetzung wird jedoch nie exakt erfüllt. In der Praxis bewährte sich, für die erwähnten Größen mittlere Werte einzusetzen. Aus der Integration erhalten wir:

§ ϑ′ ϑ

1

1

2 −

′ ·

§

·

1

¨

¸

ln

=  k ⋅  A⋅

¨¨

¸¸

¨

+

ϑ ϑ





¸

© ′

 m c

 m

 c

(1.11)

2 −

′1¹

© 1 ⋅ 1 p

2 ⋅

 p  2 ¹

Für die gewählten Voraussetzungen können die Gleichungen (1.7) und (1.8)

ebenfalls integriert werden. 

 Q =  m ⋅  c

(1.12)

 p ⋅ (ϑ −

′ ϑ′)

1

1

1

1

 Q =  m ⋅  c

(1.13)

 p

⋅(ϑ′ −ϑ )′

2

2

2

2

In Gl. (1.11) können die Massenströme und spezifischen Wärmekapazitäten

durch den Wärmestrom und die Fluidtemperaturen am Ein- und Austritt des Wär-

meübertragers ersetzt werden. Nach Umformung erhält man:



ϑ′ −ϑ′ −ϑ′ +ϑ′

2

1

2

1

 Q =  k ⋅  A⋅

=  k ⋅  A⋅ Δϑ m

ϑ′ −ϑ′

2

1

ln

(1.14)

ϑ′′−ϑ′′

2

1

 Die Temperaturdifferenz Δϑ   ist für die Bestimmung des Wärmestromes in m

 einem Wärmeübertrager maßgebend. Sie heißt mittlere logarithmische Tem-

 peraturdifferenz oder mittlere Temperaturdifferenz und ist die integrierte

 mittlere Temperaturdifferenz des Wärmeübertragers. 

Die hier hergeleitete mittlere Temperaturdifferenz gilt für den in Bild 1.3 darge-

stellten Spezialfall. Für Wärmeübertrager, in denen die Fluide in gleicher oder entgegengesetzter Richtung parallel strömen, kann die mittlere Temperaturdifferenz

als allgemein gültig angegeben werden. Dazu benötigt man die Temperaturdifferen-

zen am Ein- und Austritt des Wärmeübertragers. Die größere Temperaturdifferenz

wird mit Δϑ , die kleinere mit Δϑ  bezeichnet. 

 gr

 kl
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ϑ

Δ

ϑ

Δ

 gr −

ϑ

Δ

ϑ

Δ

ϑ

Δ

 m =

 kl

für

 gr −

 kl ≠ 0

(1.15)

ln( ϑ

Δ

/ ϑ

Δ )

 gr

 kl

Sind die Temperaturdifferenzen am Ein- und Austritt gleich groß, ist Gl. (1.15)

unbestimmt. Für diesen Fall gilt:

Δϑ

Δϑ

Δϑ

Δϑ

Δϑ

(1.16)

 m = (

 gr +

) / 2 für

 kl

 gr −

 kl = 0

Die mittleren Temperaturdifferenzen für Wärmeübertrager, in denen die Fluide

senkrecht zueinander strömen, werden später behandelt. 

1.2.5

Energiebilanzgleichung

Bei der Wärmeübertragung gilt der erste Hauptsatz der Thermodynamik uneinge-

schränkt. In den meisten praktischen Fällen der Wärmeübertragung sind die mecha-

nische Arbeit und die Änderung der kinetischen und potentiellen Energie vernach-

lässigbar, daher werden sie bei den hier behandelten Problemen nicht berücksich-

tigt. Damit vereinfacht sich die Energiebilanzgleichung [1.1] zu:

 dEKV =  Q

 m

  h

 m



 h

 KV + ¦

 e ⋅

 e − ¦

 a ⋅

 a

(1.17)

 dt

 e

 a

Meist ist bei Wärmeübertragungsproblemen nur ein Massenstrom, welcher in den

Kontrollraum hinein- und herausströmt, vorhanden. Die Änderung der Enthalpie

und Energie des Kontrollraumes kann als eine Funktion der Temperatur angegeben

werden. Der Wärmestrom wird über die Systemgrenze dem Kontrollraum zu- bzw. 

abgeführt oder er stammt aus einer Wärmequelle (z. B. elektrische Heizung, chemi-

sche Reaktion usw.) innerhalb des Kontrollraumes. Gl. (1.17) wird in einer für die Wärmeübertragung gebräuchlichen Form angegeben:

 dϑ

 V

⋅ ρ ⋅ c

=  Q +  Q

+  m ⋅( h −  h )

 KV

 p

12

 Quelle

2

1

(1.18)

 dt

Dabei ist   Q der Wärmestrom, der bei der Zustandsänderung über die System-12

grenzen dem System zu- oder abgeführt wird und   Q

der Wärmestrom aus einer

 Quelle

Wärmequelle. Für stationäre Vorgänge wird die linke Seite der Gleichung zu null, 

und es gilt:

 Q +  Q

=  m ⋅( h −  h ) =  m ⋅ c ⋅(ϑ −ϑ )

(1.19)

12

 Quelle

2

1

 p

2

1

Die Gleichungen (1.18) und (1.19) werden  Energiebilanzgleichungen oder kurz auch  Bilanzgleichungen genannt. 

10

1 Einleitung und Definitionen

1 000

800

400

Silber

400

Kupfer

Gold

200

Aluminium

100

80

60

ferritische Stähle

40

20

austenitische Stähle

108

K)m

6

( /

4

Eis

t in  W

gkei

2

Steine

tfähieiel

Quarzglas

mär 1

W

0,8

Wasser

0,6

0,4

Wasserstoff

0,2

or

Helium

ganische Flüssigkeiten

0,1

0,08

0,06

Wärmedämmung (Mineralfaser)

Luft

0,04

Kältedämmung

Kork, Schaumstoff

Wasserdampf bei 1 bar

0,02

0,01

-80 -60

-40

-20

20

40

60

80

200

400

600 800

-100

0

100

1 000

Temperatur in °C

Bild 1.4: Wärmeleitfähigkeit verschiedener Stoffe in Abhängigkeit der Temperatur [1.5]
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1.2.6

Wärmeleitfähigkeit

Die  Wärmeleitfähigkeit λ ist eine Stoffeigenschaft, die angibt, welcher Wärmestrom pro Längeneinheit des Materials in Richtung des Wärmestromes und pro Grad Temperaturdifferenz übertragen werden kann. 

Sie hat die Dimension W/(m K). Die Wärmeleitfähigkeit eines Stoffes hängt von

der Temperatur und dem Druck ab. 

Gute elektrische Leiter sind auch gute Wärmeleiter. Damit haben Metalle eine

sehr hohe Wärmeleitfähigkeit, Flüssigkeiten eine kleinere. Gase sind "schlechte" 

Wärmeleiter, wobei der Ausdruck "schlecht" ungünstig gewählt ist, weil bei thermischen Isolationen eine möglichst niedrige Wärmeleitung erwünscht, also "gut" ist. 

In Bild 1.4 sind die Wärmeleitfähigkeiten verschiedener Materialien über der

Temperatur aufgetragen. 

Die Wärmeleitfähigkeit fester und flüssiger Stoffe hat bei mittleren und hohen

Temperaturen eine relativ schwache Temperaturabhängigkeit, so dass bei nicht zu

großen Temperaturänderungen mit einer konstanten mittleren Wärmeleitfähigkeit

gerechnet werden darf. 


1.3

Problemlösungsmethodik

Dieses Kapitel wurde mit kleinen Änderungen [1.5] entnommen. Zur Lösung von

Problemen der Wärmeübertragung sind meist, direkt oder indirekt, folgende Grund-

gesetze erforderlich:

• Gesetz von  Fourier

• Wärmeübertragungsgesetze

• Massenerhaltungssatz

• Energieerhaltungssatz,  erster Hauptsatz der Thermodynamik

• Zweiter Hauptsatz der Thermodynamik

• Zweites  Newton’ sches Gesetz

• Impulssatz

• Ähnlichkeitsgesetze

• Reibungsgesetze

Für den Ingenieur in der Praxis geht es neben der Beherrschung der Grundlagen

auch um die Frage der  Methodik, wie diese Grundlagen und insbesondere die oben genannten Grundgesetze bei konkreten Problemstellungen angewendet werden. Es

ist wichtig, dass man sich eine systematische Arbeitsweise aneignet. Diese besteht im Wesentlichen stets aus den nachfolgend angegebenen 6 Schritten, die sich in der Praxis bewährt haben und deshalb sehr empfohlen werden. 
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Schritt 1: Was ist gegeben? 

Analysieren Sie, was über die Problemstellung bekannt ist. Legen Sie alle Grö-

ßen, die gegeben oder die für weitere Überlegungen notwendig sind, fest. 

Schritt 2: Was wird gesucht? 

Zusammen mit Schritt 1 überlegen Sie, welche Größen zu bestimmen und welche

Fragen zu beantworten sind. 

Schritt 3: Wie ist das System definiert? 

Zeichnen Sie das System in Form eines Schemas auf und entscheiden Sie, welche

Systemgrenze für die Analyse geeignet ist. 

•  Systemgrenze(n) klar festlegen! 

Identifizieren Sie die  Wechselwirkungen zwischen Systemen und Umgebung. 

Stellen Sie fest, welche  Zustandsänderungen oder  Prozesse das System durchläuft bzw. in ihm ablaufen. 

•   Erstellen Sie klare Systemschemata und Zustandsdiagramme! 

Schritt 4: Annahmen

Überlegen Sie, wie das System möglichst einfach modelliert werden kann; ma-

chen Sie  vereinfachende Annahmen. Stellen Sie die Randbedingungen und Vor-

aussetzungen fest. 

Überlegen Sie, ob  Idealisierungen  zulässig sind: z.B. ideales Gas statt reales Gas, vollständige Wärmeisolierung statt Wärmeverluste und reibungsfrei statt rei-bungsbehaftet. 

Schritt 5: Analyse

Beschaffen Sie die erforderlichen  Stoffdaten. Die Stoffwerte finden Sie im Anhang. Falls dort nicht vorhanden, muss in der Literatur gesucht werden (z.B. VDI-

Wärmeatlas [1.7]). 

Unter Berücksichtigung der Idealisierungen und Vereinfachungen formulieren

Sie die  Bilanz-  und  kinetischen Kopplungsgleichungen. 

Empfehlung: Arbeiten Sie so lange wie möglich mit funktionalen Größen, bevor Sie Zahlenwerte einsetzen. 

Prüfen Sie die Beziehungen und Daten auf  Dimensionsrichtigkeit, bevor Sie

nummerische Berechnungen durchführen. 

Prüfen Sie die Richtigkeit der Ergebnisse bzw. Größenordnung und Vorzeichen. 

1 Einleitung und Definitionen
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Schritt 6: Diskussion

Diskutieren Sie die Resultate/Schlüsselaspekte, halten Sie Hauptergebnisse und

Zusammenhänge fest. 

Von besonderer Bedeutung sind die Schritte 3 und 4. Schritt 3 trägt grundlegend

zur Klarheit des Vorgehens insgesamt bei, Schritt 4 legt weitgehend die Qualität

und den Gültigkeitsbereich der Ergebnisse fest. 

Die Lösung der behandelten Musterbeispiele erfolgt nach obiger Methodik. Die

Aufgabenstellungen sind jeweils derart formuliert, dass die Punkte 1 und 2 eindeu-

tig gegeben sind und daher sofort mit Punkt 3 begonnen werden kann. 

BEISPIEL 1.1: Bestimmung des Wärmestromes, der Temperatur und Über-

tragungsfläche

In einem Wärmeübertrager, bestehend aus einem Rohr, das in einem zweiten Rohr

konzentrisch angeordnet ist, strömt auf beiden Seiten Wasser. Im inneren Rohr ist

der Massenstrom 1 kg/s, die Eintrittstemperatur beträgt 10 °C. In dem um das Rohr

gebildeten Ringspalt ist der Massenstrom 2 kg/s. Das dort strömende Wasser wird

von 90 °C auf 60 °C abgekühlt. Die Strömung im Ringspalt ist entgegengesetzt zur

Strömung im Rohr. Die Wärmedurchgangszahl des Wärmeübertragers wurde mit

4000 W/(m2 K) ermittelt. Die spezifische Wärmekapazität des Wassers im Rohr ist

4,182 kJ/(kg K), im Ringspalt 4,192 kJ/(kg K). 

Bestimmen Sie den Wärmestrom, die Austrittstemperatur des Wassers aus dem

Rohr und die notwendige Austauschfläche. 

ϑ '' = 60 °C

2

Lösung

. 

 m  = 1

1

kg/s

 Schema

Siehe Skizze

ϑ '' 

ϑ

1

 ' = 10 °C

1

 Annahmen

. 

 m  = 2 kg/s

2

ϑ '  2 = 90 °C

 •

Der Wärmeübertrager gibt nach außen keine Wärme ab. 

•

Der Vorgang ist stationär. 

 Analyse

Der Wärmestrom des im Ringspalt strömenden Wassers kann mit Gl. (1.19) be-

stimmt werden. 

 Q =  m ⋅  c ⋅ (ϑ′ −ϑ′)

′ =

2

 p  2

2

2

= 2⋅kg/s ⋅ 4192 J/

⋅ (kg ⋅K) ⋅(90 − 60) ⋅K = 251,52  kW
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Die Austrittstemperatur des Wassers aus dem Rohr ist ebenfalls mit Gl. (1.19) zu

berechnen. 

 Q

251,520  kW

ϑ′′= ϑ′+

= 10 C

° +

= 70,1° C

1

1

 m

 ⋅ c

1⋅ kg/s ⋅ 4,182 ⋅ kJ/(kg ⋅ K)

1

1

 p

Die notwendige Austauschfläche kann mit den Gln. (1.14) und (1.15) ermittelt

werden. Zuerst wird mit Gl. (1.15) die mittlere Temperaturdifferenz Δϑ  bestimmt. 

 m

Am Eintritt des Rohres beträgt die große Temperaturdifferenz 50 K, die kleine am

Austritt 19,9 K. 

ϑ

Δ

ϑ

Δ

 gr −

 kl

(50 −19,9) ⋅ K

 ǻϑ m =

=

=

K



32,6

ln( ϑ

Δ

/ ϑ

Δ )

)

ln(50/19,9

 gr

 kl

Nach Gl. (1.14) ist die notwendige Austauschfläche:

 Q

251 520 W

 A =

=

=

2

1, 93 m

2

 k ⋅ Δϑ

4 000   ⋅ W/(m ⋅ K) ⋅32,6 ⋅ K

 m

 Diskussion

Bei bekanntem Wärmestrom kann die Berechnung der Temperaturänderung mit

der Energiebilanzgleichung erfolgen. Zur Bestimmung der Austauschfläche benö-

tigt man die kinetische Kopplung, wobei die Wärmedurchgangszahl bekannt sein

muss. Aus dem Beispiel ist ersichtlich, dass mit Wasser über eine relativ kleine Flä-

che ein sehr großer Wärmestrom übertragen werden kann. 

BEISPIEL 1.2: Bestimmung der Austrittstemperaturen

Bei dem in Beispiel 1.1 behandelten Wärmeübertrager hat sich die Eintrittstempe-

ratur des Wassers im Rohr von 10 °C auf 25 °C verändert. Die Massenströme, 

Stoffwerte und Wärmeübergangszahl sind unverändert. 

Zu bestimmen sind die Austrittstemperaturen und der Wärmestrom. 

Lösung

 Annahmen

•

Im gesamten Wärmeübertrager ist die Wärmeübergangszahl konstant. 

•

Der Vorgang ist stationär. 

1 Einleitung und Definitionen
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 Analyse

Die Gln. (1.2) bis (1.4) liefern drei unabhängige Gleichungen, mit denen die drei

unbekannten, gesuchten Größen   Q

 , ϑ ′  und ϑ ′  bestimmt werden können. Die Bi-

1

2

lanzgleichungen beider Massenströme sind:

 Q =  m ⋅  c

und       Q =  m ⋅  cp ⋅ (ϑ′ −ϑ )′

 p ⋅ (ϑ −

′ ϑ′)

1

1

1

1

2

2

2

2

Die kinetische Kopplung ist:



ϑ ′

(

)

2 − ϑ ′

1 − ϑ ′

2 − ϑ ′

 Q =  k ⋅  A⋅

1

=  k ⋅  A⋅ ϑ

Δ  m

ϑ ′2 −ϑ′1

ln ϑ′2 −ϑ ′1

Hier können die Temperaturdifferenzen im Zähler mit den Werten aus den Bi-

lanzgleichungen eingesetzt werden. Nach Umformung erhält man:

§

1

1

·

W §

1

1

· K

 k ⋅ A ¨

⋅

−

¸

4 000 1,93 

ϑ′′−ϑ′

¨ 



¸

⋅

⋅

⋅¨

−

¸⋅

2

1

 m ⋅ c

 m ⋅ c

© 1  p 1

2

 p  2

K

1 4

¹

© ⋅ 182 2 ⋅4192 W

=  e

=  e

¹

= 2,518

ϑ′ −ϑ′

2

1

Die Temperaturϑ ′  kann mit den Bilanzgleichungen als eine Funktion der Tem-

2

peraturϑ ′ eingesetzt und die Gleichung nachϑ ′ aufgelöst werden. 

1

1

 m

 ⋅ c

1

1

ϑ ′= ϑ′ −

 p

⋅(ϑ −

′ ϑ )′ =  

90 C

° − , 

0 4988⋅ (ϑ −

′



25 C)

° =

2

2

1

1

1

 m

 ⋅ c

2

 p  2

=



102,47 C

° − , 

0 4988⋅ϑ ′

1

522

, 

2

⋅ϑ′ ϑ

2 +

′1 −

° 

102,47 C

2,522 ⋅

° 

90 C +

° 

25 C −

°

ϑ1′=

=



102,47 C =

 

73,9 C

°

0232

, 

2

2,0232

Für die Temperatur  ϑ ′ erhält man:

1

ϑ ′



102,47 C

, 

0 4988 ϑ

2 =

° −

⋅ 1′=

 

65,6 C

°

Der Wärmestrom wird aus der Bilanzgleichung bestimmt. 

kg

J

 Q =  m ⋅  c ⋅ (ϑ′′−ϑ )

′ = 1⋅

⋅ 4182⋅

⋅(73,9 − 25)⋅ K = 204,5 kW

1

1

 p

1

1

s

kg ⋅ K
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 Diskussion

Mit den Energiebilanzgleichungen und der kinetischen Kopplung können die

Austrittstemperaturen berechnet werden. Durch den Anstieg der Eintrittstemperatur

des Wassers im Rohr steigt zwar auch die Austrittstemperatur an, der Wärmestrom

sinkt jedoch, da Aufwärmung und mittlere Temperaturdifferenz kleiner werden. 

2

Wärmeleitung in ruhenden Stoffen

Die  Wärmeleitung ist ein Wärmetransportmechanismus, der in festen, flüssigen und gasförmigen Stoffen auftritt. Träger des Energietransports sind dabei je nach Medium Atome, Moleküle, Elektronen oder Phononen. Letztere sind Energiequanten

elastischer Wellen, die in Nichtmetallen und – neben Elektronen – auch in Metallen für den Transport thermischer Energie sorgen. 

 Ist in einem Stoff ein Temperaturgradient vorhanden, tritt Wärmeleitung auf. 

Dieses Kapitel behandelt nur die Wärmeleitung in ruhenden Stoffen. Zur Unter-

scheidung wird sie bei bewegten Fluiden Konvektion genannt und in den Kapiteln 3

und 4 besprochen. Bei technischen Problemen kommt Wärmeleitung in ruhenden

Fluiden relativ selten vor, weil im Fluid durch die Temperaturdifferenz Dichteun-

terschiede verursacht werden und dadurch eine Strömung entsteht. 

Erfolgt der Wärmetransport unter ständiger Aufrechterhaltung eines konstanten

Wärmestromes, sind, zeitlich gesehen, die Temperaturen an jedem Ort jeweils

konstant. In diesem Fall spricht man von  stationärer Wärmeleitung. Erwärmt sich ein Körper oder kühlt er ab, da sich der Wärmestrom zeitlich ändert, verändern

sich mit der Zeit die lokalen Temperaturen. Hierbei handelt es sich um  instationäre Wärmeleitung. 


2.1

Stationäre Wärmeleitung

Die Wärmestromdichte, die bei der Wärmeleitung in einem Körper durch Tempera-

turdifferenzen entsteht, wird nach dem Gesetz von  Fourier folgendermaßen definiert:

 dϑ

 q = −λ ⋅∇ϑ = −λ ⋅

(2.1)

 dr

Die Ortskoordinate ist dabei  r. Die Wärmestromdichte ist proportional zur Wärmeleitfähigkeit des Stoffes und zum  Temperaturgradienten, zu dem sie stets entgegengesetzt gerichtet ist. Nach Gl. (2.1) ist der Vektor Wärmestromdichte senkrecht zur isothermen Fläche. Alternativ kann das Gesetz von  Fourier daher auch in folgender Form angegeben werden:

 dϑ

 q = −λ ⋅

 n

(2.2)

 dn

P. von Böckh, T. Wetzel  Wärmeübertragung, 

DOI 10.1007/978-3-642-15959-6_2, © Springer-Verlag Berlin Heidelberg 2011
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Dabei ist   q die auf die Austauschfläche senkrecht auftreffende Komponente der n

Wärmestromdichte,  n die Normalkomponente des Ortsvektors. 

Der Wärmestrom, der durch die Querschnittsfläche eines Körpers fließt, ist:

 Q = ³  q  dA

 n ⋅

(2.3)

 A

Da die Wärmeleitfähigkeit eine Funktion der Temperatur und die Querschnitts-

fläche  A je nach Form des Körpers eine mehr oder minder komplizierte Funktion der Ortskoordinate ist, kann die Lösung des Integrals sehr kompliziert oder gar unmöglich sein. Für viele technische Anwendungen wird die Wärmeleitfähigkeit mit ei-

nem Mittelwert als konstant angenommen. In Körpern mit einfachen geometrischen

Formen kann der Wärmestrom mit Gl. (2.3) bestimmt werden. 

2.1.1

Wärmeleitung in einer ebenen Wand

Bild 2.1 zeigt eine ebene Wand der Dicke  s mit der Wärmeleitfähigkeit λ. An den Seiten ist sie thermisch isoliert. Da Wärme nur in die  x-Richtung transportiert werden kann, handelt es sich hier um ein eindimensionales Problem. Die Querschnitts-

fläche  A der Wand, durch die der Wärmestrom fließt, ist konstant, dadurch auch die Wärmestromdichte. Somit gilt:

 d



ϑ

 Q = −λ ⋅  A⋅

(2.4)

 dx

 s

 A

ϑ1

. 

 Q

ϑ2

 x

 x

 x

1

2

Bild 2.1: Wärmeleitung in einer ebenen Wand

2 Wärmeleitung in ruhenden Stoffen
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Sind die Wände an den Schmalseiten infolge der idealen thermischen Isolation

adiabat, kann hier kein Wärmestrom entweichen. Ist zudem die Wärmeleitfähigkeit

von Ort und Temperatur unabhängig, fließt der Wärmestrom nur in  x-Richtung. 

Damit kann Gl. (2.4) integriert werden. 

 x

θ

2

2

³ Q⋅ dx = ³−λ ⋅  A⋅ ϑ

 d

(2.5)

 x

θ

1

1



λ

λ

 Q =

⋅  A⋅(ϑ −ϑ ) = ⋅  A⋅(ϑ −ϑ )

1

2

1

2

(2.6)

 x −  x

 s

2

1

In einer ebenen Wand mit konstanter Wärmeleitfähigkeit ist der Temperatur-

gradient linear. Aus der Definition der Wärmeübergangszahl folgt:

α = λ /  s

(2.7)

 Die Wärmeübergangszahl in einer ebenen Wand ist Wärmeleitfähigkeit ge-

 teilt durch die Wanddicke. 

Soll, wie in Bild 2.1 dargestellt, die Temperatur an beiden Seiten der Wand auf-

rechterhalten werden, muss aus irgendeiner Quelle der konstante Wärmestrom er-

zeugt und von einer anderen Quelle aufgenommen werden. Dieses könnte z.B. auf

der einen Seite ein wärmeres, strömendes Fluid, das den Wärmestrom liefert, auf

der anderen Seite ein kälteres, strömendes Fluid, das den Wärmestrom aufnimmt, 

sein. Das ist bei einem Wärmeübertrager der Fall, in dem durch eine feste Wand von einem Fluid 1 zu einem anderen Fluid 2 Wärme transferiert wird. Bild 2.2 zeigt die Wand eines Wärmeübertragers, in dem ein Wärmestrom von einem strömenden

Fluid mit der Temperatur ϑ  und Wärmeübergangszahl α  zu einem anderen strö-

 f 1

 f 1

menden Fluid mit der Temperatur ϑ  und Wärmeübergangszahl α  transferiert

 f 2

 f 2

wird. 

 s

ϑf1

 A

αf1 ϑ1

Fluid 2

. 

 Q

ϑ2

Fluid 1

αf2

ϑf2

 x

 x

 x

1

2

Bild 2.2: Zur Bestimmung der Wärmedurchgangszahl
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Wie aus der Definition der Wärmeübergangszahl bekannt ist, bestimmt sie den

bei einer Temperaturdifferenz transferierten Wärmestrom. Für die Beschreibung

der Wärmeströme (vom Fluid 1 zur Wand, durch die Wand und von der Wand zum

Fluid 2) gelten die kinetischen Kopplungsgleichungen. 

 Q =  A⋅α ⋅(ϑ −ϑ )

 f  1

 f  1

1

 Q =  A⋅α ⋅ (ϑ −ϑ )

 w

1

2

(2.8)

 Q =  A⋅α

⋅(ϑ −ϑ )

 f  2

2

 f  2

Mit der Wärmedurchgangszahl kann der Wärmestrom vom Fluid 1 zum Fluid 2

direkt bestimmt werden. 

 Q =  A⋅  k ⋅ (ϑ −ϑ )

(2.9)

 f  1

 f  2

Zur Berechnung der Wärmedurchgangszahl werden die Wandtemperaturen ϑ1

und ϑ  aus Gl. (2.8) bestimmt. 

2

 Q

 Q

ϑ = ϑ −

ϑ = ϑ +

1

 f  1

2

 f  2

(2.10)

 A ⋅α

 A ⋅α

 f  1

 f  2

Damit erhalten wir:

§ 1

1

1 ·

 Q ¨

¸

⋅

+

+

=  A⋅(ϑ −ϑ )

 f  1

 f  2

¨ α

α

α ¸

(2.11)

 f  1

 W

 f  2

©

¹

Der Kehrwert der Wärmedurchgangszahl ergibt sich zu:

1

1

1

1

=

+

+

 k

α

α

α

(2.12)

 f  1

 W

 f  2

 Der Kehrwert der Wärmedurchgangszahl ist die Summe der Kehrwerte der

 Wärmeübergangszahlen. 

Die Kehrwerte der Wärmeübergangszahlen multipliziert mit der Übertragsflä-

che sind  Wärmewiderstände, d.h., die Wärmewiderstände addieren sich wie in Serie geschaltete elektrische Widerstände. 

Die Temperaturdifferenzen in den Fluiden und in der Wand können aus den

Gln. (2.8) und (2.9) bestimmt werden. 

ϑ −ϑ

ϑ −ϑ

ϑ −ϑ

 f  1

1

 k

 k

2

 f  2

 k

1

2

=

=

=

ϑ −ϑ

α

ϑ −ϑ

α

ϑ −ϑ

α

(2.13)

 f  1

 f  2

 f  1

 f  1

 f  2

 W

 f  1

 f  2

 f  2

 Die Temperaturdifferenzen sind umgekehrt proportional zu den Wärmeüber-

 gangszahlen bzw. proportional zum Wärmewiderstand. 
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BEISPIEL 2.1: Bestimmung der Wärmeübergangszahl, Wärmedurchgangs-

zahl und Wandtemperaturen

Auf der Innenseite einer Wand hat die Luft eine Temperatur von 22 °C. Die Außen-

temperatur beträgt 0 °C. Die Wand hat eine Dicke von 400 mm und die Wärme-

leitfähigkeit von 1 W/(m K). Die Wärmeübergangszahl beträgt innen und außen

5 W/(m2 K). Bestimmen Sie die Wärmeübergangszahl in der Wand, die Wärme-

durchgangszahl, die Wärmestromdichte und die Wandtemperatur innen und außen. 

Lösung

400

 Schema

Siehe Skizze

ϑf1

 A

αf1 ϑ

 Annahmen

1

Fluid 2

. 

 Q

•

Die Wärmeleitfähigkeit in der Wand ist konstant. 

ϑ2

Fluid 1

•

Aus der Wand tritt seitlich keine Wärme aus. 

αf2

•

Die Temperaturen innen und außen an der Wand sind je-

ϑf2

weils konstant. 

 Analyse

Mit Gl. (2.7) kann die Wärmeübergangszahl in der Wand bestimmt werden. 

λ 1⋅ W/(m ⋅ K)

W

α W = =

=

 

2,5

 s

0,4 ⋅ m

m 2 ⋅ K

Die Wärmedurchgangszahl wird mit Gl. (2.12) berechnet. 

§

·−1

1

1

1

1

§ 1

1

1 ·−

W

W

¨

¸

 k =

+

+

=

¨

¸

¨¨ +

+ ¸¸ ⋅

=

 

1,25

©  Į

 Į

 Į

 f  1

 W

 f  2 ¹

© 5

5

, 

2

5 ¹

m2 ⋅ K

m2 ⋅ K

Die Wärmestromdichte kann man mit Gl. (2.9) ermitteln. 



2

2

 q =  Q /  A =  k ⋅ (ϑ

ϑ

 f  1 −

)

 f  2

= , 

1 25 ⋅ W/(m ⋅ K) ⋅ (22 − 0) ⋅ K =

 W/m

27,5

Die Wandtemperaturen können mit Gl. (2.13) oder mit Gl. (2.8) bestimmt wer-

den. Die Wandtemperatur innen wird mit Gl. (2.13), außen mit Gl. (2.8) berechnet. 

 k

ϑ ϑ

ϑ

ϑ

1 =

 f  1 − (

 f  1 −

)

 f  2

= 2 ° 

2 C − (22 − 0) ⋅ ⋅ 1,25

K

=

 

16,5 C

°

α

5

 f  1

ϑ

 q α

ϑ

2 =

/

 f  2 +

 f  2 = 27,5/5 ⋅ K +

° 

0 C = 5, 

5 C

°
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2 Wärmeleitung in ruhenden Stoffen

 Diskussion

Die Berechnungen zeigen, dass die kleinste Wärmeübergangszahl die Wärme-

durchgangszahl wesentlich bestimmt. Das größte Temperaturgefälle findet im Me-

dium mit der kleinsten Wärmeübergangszahl statt, hier in der Wand mit 11 K. 

2.1.2

Wärmeübergang durch mehrere ebene Wände

In der Praxis hat man oft ebene Wände, die aus mehreren Schichten bestehen

(Hauswand, Isolation eines Kühlschranks etc.). In Bild 2.3 ist eine ebene Wand aus n Schichten unterschiedlicher Dicke und unterschiedlicher Wärmeleitfähigkeit dargestellt. 

 s

 s

 s

 sn

1

2

3

 si

ϑ f 1
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Bild 2.3: Wärmeleitung durch mehrere ebene Wände

Für die Wärmeübergangszahlen durch die einzelnen Wände gilt:

α = λ /  s

(2.14)

 i

 i

 i

Für die Wärmedurchgangszahl erhält man nach gleicher Umformung wie im vor-

hergehenden Kapitel:
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Für die Temperaturdifferenzen gilt:
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BEISPIEL 2.2: Bestimmung der Isolationsschicht einer Hauswand

Die Wand eines Hauses besteht außen aus einer Ziegelmauer von 240 mm und einer

Innenmauer von 120 mm Dicke. Zwischen beiden Mauern befindet sich eine Iso-

lationsschicht aus Steinwolle. Die Wärmeleitfähigkeit der Mauern ist 1 W/(m K), 

die der Isolation 0,035 W/(m K). Die Hauswand soll eine Wärmedurchgangszahl

von 0,3 W/(m2 K) haben. 

Bestimmen Sie die notwendige Dicke der Isolation. 

Lösung

240

? 

120

 Schema

Siehe Skizze

 Annahmen

•

Die Wärmeleitfähigkeit ist in der Wand konstant. 

•

Aus der Wand tritt seitlich keine Wärme aus. 

Außenmauer

Isolation

Innenmauer

 Analyse

Die Wärmedurchgangszahl kann mit Gl. (2.15) berechnet werden. 
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In diesem Beispiel ist die Wärmedurchgangszahl gegeben, die Dicke der Isola-

tionsschicht  s  wird gesucht. Die Gleichung löst man daher nach  s  auf. 
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 Diskussion

Die Isolationsschicht stellt den hauptsächlichen Wärmewiderstand dar. Er be-

trägt  s / l  = 2,97 (m2 .  K)/W und ist damit fast gleich groß wie der Kehrwert der 2

2

Wärmedurchgangszahl mit 3,33 (m2 .  K)/W. 
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BEISPIEL 2.3: Bestimmung der Isolationsschicht und Wandtemperatur

Die Wand eines Kühlhauses besteht aus einer äußeren Mauer von 200 mm Dicke

und einer Isolationsschicht mit einer inneren Kunststoffverkleidung von 5 mm

Dicke. Die Wärmeleitfähigkeit der Mauer beträgt 1 W/(m K), die des Kunststoffes

1,5 W/(m K) und die der Isolation 0,04 W/(m K). Im Kühlhaus herrscht eine Tempe-

ratur von –22 °C. Die Wärmeübergangszahl innen ist 8 W/(m2 K). Bei einer hohen

Außentemperatur von 35 °C muss vermieden werden, dass zwischen Außenmauer

und Isolationsschicht Taubildung stattfindet. Um dieses zu gewährleisten, darf bei einer äußeren Wärmeübergangszahl von 5 W/(m2 K) die Temperatur an der Innenseite der Außenmauer den Wert von 32 °C nicht unterschreiten. Wie dick muss die

Isolation gewählt werden? 

200

? 

5

Lösung
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 Annahmen

3

4 ϑf2

•

Die Wärmeleitfähigkeit in der Wand ist konstant. 

•

Aus der Wand tritt seitlich keine Wärme aus. 

Außenmauer

Isolation

Innenwand

 Analyse

Für die Wärmedurchgangszahl  k erhält man nach Umformungen aus Gl. (2.16):
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Jetzt kann mit Gl. (2.15) die notwendige Dicke der Isolation bestimmt werden. 
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 Diskussion

Der Hauptwärmewiderstand und damit auch das größte Temperaturgefälle befin-

den sich in der Isolierung. Durch die Wahl der Isolierschichtdicke können Wärme-

durchgangszahl und Temperatur in und an den Wänden beeinflusst werden. 
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2.1.3

Wärmeleitung in einem Hohlzylinder

In einer ebenen Wand ist die Querschnittsfläche  A für den Wärmestrom konstant. 

Bei einem Hohlzylinder (Rohrwand) verändert sich die Querschnittsfläche mit dem

Radius, so dass  A eine Funktion von  r ist. Bild 2.4 zeigt die Wärmeleitung in einem Hohlzylinder. 
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ϑ f 1

ϑ

α

1

 f 1
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Bild 2.4: Wärmeleitung in einem Hohlzylinder

Der Wärmestrom durch die Wand des Zylinders ist konstant. Da sich die Zylin-

derfläche mit dem Radius verändert, ändert sich auch die Wärmestromdichte. Setzt

man für die Fläche  A die Fläche des Zylinders als eine Funktion des Radius’ ein, ergibt sich für den Wärmestrom:

 d



ϑ

 dϑ

 Q = −λ ⋅  A( r) ⋅

= −λ ⋅π ⋅2⋅ r ⋅ l ⋅

(2.17)

 dr

 dr

Nach Separation der Variablen erhalten wir:

 dr

2 ⋅π

= −λ

⋅ l

⋅

⋅ ϑ

 d

(2.18)

 r

 Q

Unter der Voraussetzung, dass die Wärmeleitfähigkeit in der Wand konstant und

der Wärmestrom zur Mittelachse des Hohlzylinders punktsymmetrisch ist, kann Gl. 

(2.18) integriert werden. Wir bekommen für den Wärmestrom:

2 ⋅π

= λ

⋅

⋅

 l

 Q

⋅(ϑ −ϑ )

(2.19)

ln( r /  r )

1

2

 a

 i

Um die Wärmeübergangszahl zu erhalten, muss der Wärmestrom auf eine Aus-

tauschfläche bezogen werden. In Europa ist es üblich, die Wärmeübergangszahlen

auf die Außenfläche zu beziehen, sie könnten aber auch ohne Weiteres auf die In-

nenfläche bezogen werden. Gl. (2.19) wird so umgeformt, dass der Wärmestrom auf

26

2 Wärmeleitung in ruhenden Stoffen

die Außenfläche bezogen ist. Weiterhin ersetzen wir die Radien durch die in der

Technik üblicherweise verwendeten Durchmesser. 
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Die auf die Außenfläche bezogene Wärmeübergangszahl in der Wand beträgt:

2 ⋅

=

λ

α Wa
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 i

 Sehr wichtig ist es, immer zu beachten, auf welche Übertragungsfläche die

 Wärmeübergangszahl bezogen ist. 

Die unterschiedlichen Übertragungsflächen sind bei der Berechnung der Wär-

medurchgangszahl zu berücksichtigen. Für den Wärmestrom in den Fluiden und in

der Wand gilt:
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 l d

(2.22)
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Nach Umformungen erhält man:
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Damit ist die auf die Außenfläche bezogene Wärmedurchgangszahl:
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Es ist unbedingt zu beachten, dass die Wärmedurchgangszahl auf die Außen-

fläche, d.h. auf den Durchmesser  d  bezogen ist. Bezieht man die Wärmeübergangs-2

zahl auf die Innenfläche, also auf den Durchmesser  d , erhält man:
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Bei der Berechnung des Wärmestromes liefern beide Gleichungen den selben

Wert, weil der Wärmestrom mit dem Produkt aus Wärmedurchgangszahl und Aus-

tauschfläche gebildet wird. Verwendet man die falsche Bezugsfläche, können große
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Differenzen entstehen. In Europa ist es gebräuchlich, die Wärmedurchgangszahlen

auf die Außenfläche zu beziehen. In den USA können beide Flächen als Bezug ver-

wendet werden. 

 Es ist wichtig, dass man bei der Angabe der Wärmedurchgangs- und Wärme-

 übergangszahlen auch die Fläche angibt, auf die diese Größen bezogen sind. 

Für die Temperaturdifferenzen erhält man:
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Bei dünnwandigen Rohren oder für überschlägige Berechnungen kann die Wand

als ebene Wand behandelt werden. Für die Wärmeübergangszahl der Wand erhält

man dann näherungsweise:
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(2.30)

 d ⋅ ln( d /  d )

 s

 d −  d

 a

 a

 i

 a

 i

BEISPIEL 2.4: Bestimmung der Wärmedurchgangszahl im durchströmten

Rohr

In dem Rohr eines Hochdruckvorwärmers strömt Wasser, außen am Rohr konden-

siert Dampf. Die Wärmeübergangszahl innen im Rohr ist 15 000 W/(m2 K) und



außen 13 000 W/(m2 K). Der Außendurchmesser des Rohres beträgt 15 mm, die



Wandstärke 2,3 mm. Die Wärmeleitfähigkeit des Rohrmaterials ist 40 W/(m K). 

Bestimmen Sie die Wärmeübergangszahl, bezogen auf den Außen- und Innen-

durchmesser und prüfen Sie, welchen Fehler man macht, wenn die Wärmeüber-

gangszahl der Rohrwand mit Gl. (2.30) bestimmt wird. 

Lösung

 Schema

Siehe Bild 2.4

 Annahmen

•

Die Wärmeleitfähigkeit in der Wand ist konstant. 

•

Die Temperaturen innen und außen an der Wand sind jeweils konstant. 

 Analyse

Die auf den Außendurchmesser bezogene Wärmedurchgangszahl kann mit Gl. 

(2.27) berechnet werden. 
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Die auf den Innendurchmesser bezogene Wärmedurchgangszahl wird mit Gl. 

(2.28) bestimmt. 

1

−

§ 1

 d

§  d ·  d

1 ·

1

2

1

 k = ¨

+

⋅ln¨ ¸ +

⋅

¸ =

1

¨©α 2 λ

 d

 d

©

¹

α ¸

⋅

 f  1

1

2

 f  2 ¹

1

−

§

1

0 ,  0104

§ 15 · 10 ,  4

1

·

=

W

¨

+

⋅ln¨

¸ +

⋅

¸ = 5 966  

©15 000

2⋅ 40

©10 ,  4 ¹

15

13 000 ¹

2

m ⋅ K

Die Wärmeübergangszahl in der Rohrwand ist nach Gl. (2.21):
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Der Näherungswert nach Gl. (2.30) beträgt:
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Die mit Gl. (2.30) berechnete Wärmeübergangszahl ist 19 % zu groß. Ursache:

Die Rohrwandstärke ist im Verhältnis zum Durchmesser relativ groß. 

 Diskussion

Es ist äußerst wichtig, anzugeben, auf welche Fläche die Wärmeübergangs- bzw. 

Wärmedurchgangszahlen bezogen sind. In diesem Beispiel ist die auf die Innenflä-

che bezogene Wärmedurchgangszahl um 44 % größer als die auf die Außenfläche

bezogene. Verwendet man bei der auf den Innendurchmesser bezogenen Wärme-

durchgangszahl die mit dem Außendurchmesser gebildete Fläche, bekommt man

einen 44 % zu großen Wärmestrom. Das ist bei der Auslegung eines Apparates eine

40 % zu kleine Fläche. 

Die Berechnung der Wärmeübergangszahl mit der Näherungsgleichung liefert

zu hohe Werte. Wenn der Außendurchmesser 10 % größer als der Innendurchmes-

ser ist, beträgt der Fehler 5 %. Die Abweichung kann mit der Reihenentwicklung

von Gl. (2.21) aufgezeigt werden. 
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In Gl. (2.30) wird die Reihe im Nenner nach dem ersten Term abgebrochen. 

2.1.4

Hohlzylinder mit mehreren Schichten

In der Technik verwendet man oft Rohre (Hohlzylinder), die aus mehreren Schich-

ten bestehen. Beispiele für solche Rohre sind: Wärmeübertragerrohre mit einem

korrosionsbeständigen Innenrohr, Rohre mit einer Isolation und Schutzhülle, Rohre

mit Verschmutzungen und Oxydschichten innen und außen. 
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Bild 2.5: Wärmeleitung in einem Hohlzylinder mit mehreren Schichten

Bild 2.5 zeigt einen Hohlzylinder, dessen Wand aus  n Schichten unterschiedlicher Dicke mit unterschiedlichen Wärmeleitfähigkeiten besteht. Hier erhalten wir

für die Wärmeübergangszahlen der einzelnen Schichten, die auf die Fläche der äu-

ßersten Schicht bezogen sind:
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Für die Wärmedurchgangszahl gilt:
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Bei den Temperaturdifferenzen ist jeweils die Fläche zu berücksichtigen. 
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BEISPIEL 2.5: Kondensatorrohr mit Verschmutzung

In einem Kondensatorrohr aus Titan mit 24 mm Außendurchmesser und 0,7 mm

Wandstärke wird nach einer gewissen Betriebszeit innen eine Schmutzschicht von

0,05 mm Dicke festgestellt. Die Wärmeleitfähigkeit des Rohres ist 15 W/(m K), die

der Schmutzschicht 0,8 W/(m K). Im Rohr beträgt die Wärmeübergangszahl mit

und ohne Verschmutzung 18 000 W/(m2 K), außen 13 000 W/(m2 K).  Berechnen Sie





die durch Verschmutzung bedingte verringerte Wärmedurchgangszahl. 

Lösung

0,7

0,05

 Schema

Siehe Skizze

ø24

 Annahmen

•

In den Wänden ist die Wärmeleitfähigkeit konstant. 

•

An den Wänden sind die Temperaturen innen und außen jeweils konstant. 

 Analyse

Die auf den Außendurchmesser bezogene Wärmedurchgangszahl kann mit Gl. 

(2.32) bestimmt werden. Für das saubere Rohr erhalten wir:
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Für das verschmutzte Rohr liefert Gl. (2.32):
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Man kann hier zeigen, dass eine einfachere Berechnung fast zum selben Ergebnis

führt. Dazu addiert man den Verschmutzungswiderstand zum Kehrwert der saube-

ren Wärmedurchgangszahl und bildet aus der Summe den Kehrwert. 
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Der Unterschied von 0,11 % ist sehr gering. 

 Diskussion

Es wurde deutlich, dass auch schon eine sehr dünne Schmutzschicht die Wärme-

durchgangszahl wesentlich reduziert. Im Beispiel beträgt die Reduktion 27 %, was

durchaus auftreten kann. Auch bei sauberen Titanrohren muss man gegenüber me-

tallisch blanken Rohren mit 6 bis 8 % Reduktion rechnen, weil Titan eine korro-

sionsfeste Oxidschicht bildet, die die Wärmeübergangszahl verringert. 

In der Praxis kann man die Dicke von Schmutzschichten nicht genau messen. 

Daher ist die Bestimmung der Wärmeleitfähigkeit schwierig, weil die Schicht tro-

cken oder nass unterschiedliche Werte haben kann. Aus Messungen der Wärme-

durchgangszahlen sammelt man Erfahrungswerte für die Verschmutzungswider-

stände  R , die bei der Auslegung der Wärmedurchgangszahl  k  des Kondensators zu V

 V

berücksichtigen sind. 

Die Wärmedurchgangszahl des Kondensators ist dann:  k  = (1/ k

+  R )–1. 

 V

 sauber

 V

BEISPIEL 2.6: Isolierung einer Dampfleitung

In einer Dampfleitung aus Stahl mit 100 mm Innendurchmesser und 5 mm Wand-

stärke strömt Wasserdampf mit der Temperatur von 400 °C. Im Rohr beträgt die

Wärmeübergangszahl 1 000 W/(m2 K). Das Rohr muss mit einer Isolation, die



außen mit einem Aluminiumblech von 0,5 mm Wandstärke geschützt wird, ver-

sehen werden. Die Wärmeleitfähigkeit des Rohres ist 47 W/(m K), des Aluminiums

220 W/(m K) und des Isolators 0,08 W/(m K). Die Sicherheitsvorschriften ver-

langen, dass bei einer Raumtemperatur von 32 °C und einer äußeren Wärmeüber-

gangszahl von 15 W/(m2 K) die Außenwand der Aluminiumhülle nicht wärmer als

45 °C werden darf. 
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Berechnen Sie die notwendige Dicke der Isolation unter der Berücksichtigung, 

dass die Außendurchmesser der handelsüblichen Isolierschalen in 10 mm-Abstu-

fungen erhältlich sind. 

Prüfen Sie, welche Vereinfachungen gemacht werden können. 

Lösung

5

0,5

 Schema

Siehe Skizze

? 

100

 Annahmen

•

In den Wänden ist die Wärmeleitfähigkeit konstant. 

•

An den Wänden innen und außen sind die Temperaturen jeweils konstant. 

 Analyse

Die Temperaturdifferenz zwischen der Außenwand und dem Raum kann mit Gl. 

(2.32) berechnet und daraus die Wärmedurchgangszahl, die notwendig ist, um die

vorgeschriebene Außenwandtemperatur zu erreichen, ermittelt werden. 
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Mit Gl. (2.32) kann man den Durchmesser der Isolation berechnen. 
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Dabei ist  d  =  d  + 2 s . Diese Gleichung ist analytisch unlösbar. Man ermittelt den 4

3

3  

Durchmesser entweder per Iteration oder mit einem Gleichungslöser.  Mathcad errechnete den Wert von 294 mm. Ausgewählt wurde ein Außendurchmesser von 300

mm und damit die Wärmedurchgangszahl von 0,511 W/(m2 K) bestimmt. 

Die möglichen Vereinfachungen können mit den Temperaturen an den Wänden

einzelner Hohlzylinder demonstriert werden. Die Temperaturen sind mit Gl. (2.33)

zu ermitteln:
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Die berechneten Temperaturen zeigen, dass innen im Rohr und in der Rohrwand

nur 1 K Temperaturgefälle, in der äußeren Aluminiumhülle praktisch keines vor-

handen ist. Damit hätte die Berechnung für eine Temperatur von 400 °C auf der

Innen- und 45 °C auf der Außenseite der Isolation durchgeführt werden können. 

 Diskussion

Hat eine Schicht in einer aus mehreren Schichten bestehenden Wand einen im

Vergleich zu anderen Schichten sehr großen Wärmewiderstand (sehr kleine Wär-

meübergangszahl), tritt in dieser Schicht praktisch das gesamte Temperaturgefälle

auf. Die Wärmedurchgangszahl ist fast gleich groß wie die Wärmeübergangszahl

der Schicht mit hohem Wärmewiderstand. 

2.1.5

Wärmeleitung in einer Hohlkugel

Bei der Berechnung des Wärmestromes in einer Hohlkugel (Bild 2.6) wird wie beim

Hohlzylinder vorgegangen. Die Querschnittsfläche  A für den Wärmestrom ändert sich mit dem Radius und wird entsprechend der Kugeloberfläche  A = 4 .   π  .    r 2

eingesetzt. 

 r 2

. 

 Q

 r 1  r

ϑ f  1 ϑ1

α f 2

α

ϑ

 f  1

2

ϑ f 2

Bild 2.6: Wärmeleitung in einer Hohlkugel

 d



2

ϑ

 Q = −λ ⋅ 4 ⋅π ⋅  r ⋅

(2.34)

 dr

Wenn der Wärmestrom auf die Außenfläche der Kugel bezogen wird, lautet die

Lösung dieser Differentialgleichung:
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Damit ist die Wärmeübergangszahl der Hohlkugel:
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Die Wärmedurchgangszahl der Hohlkugel, deren Wand aus  n Schichten unter-

schiedlicher Dicke und Wärmeleitfähigkeit besteht, erhält man als:
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Für die Temperaturdifferenzen gilt:
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Es ist bemerkenswert, dass der Wärmestrom bei der Hohlkugel mit zunehmender

Wandstärke nicht gegen null geht. Bei der ebenen Platte und beim Hohlzylinder

werden, wenn die Wandstärke gegen unendlich strebt, die Wärmeübergangszahl

und der Wärmestrom zu null. Bei der Hohlkugel sieht man in Gl. (2.35), dass der

Wärmestrom bei zunehmendem Außenradius einem Wert, der größer als null ist, 

zustrebt. 
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(2.39)

 d →∞
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 d ⋅ (1 /  d −1 /  d )

2

1

2

Die Wärmeübergangszahl strebt zwar gegen null, aber die Fläche  A = π  .   d  ge-a

gen unendlich und der Wärmestrom nimmt den in Gl. (2.39) angegebenen Wert an. 

Dieses bedeutet, dass von einer Kugeloberfläche an eine unendliche Umgebung

auch dann Wärme transferiert wird, wenn eine Temperaturdifferenz zur unendlich

fernen Umgebung besteht. 

BEISPIEL 2.7: Isolierung eines Kugelbehälters

Ein kugelförmiger Behälter aus Stahl für flüssiges Kohlendioxid hat den Außen-

durchmesser von 1,5 m und die Wandstärke von 20 mm. Er soll mit einer Isolation

versehen werden. Die Temperatur im Behälter beträgt –15 °C. Die Isolation muss so

ausgelegt werden, dass bei einer Außentemperatur von 30 °C der Wärmestrom zum

Kohlendioxid kleiner als 300 W ist. Die Wärmeübergangszahlen im Behälter und

2 Wärmeleitung in ruhenden Stoffen
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außen an der Isolation können vernachlässigt werden. Die Wärmeleitfähigkeit des

Isolationsmaterials beträgt 0,05 W/(m K), die des Stahls 47 W/(m K). Bestimmen

Sie die notwendige Dicke der Isolation. 

Lösung

 Annahmen

•

In der Behälterwand und Isolation ist die Wärmeleitfähigkeit konstant. 

•

An den Wänden sind die Temperaturen innen und außen jeweils konstant. 

 Analyse

Damit der gegebene Wärmestrom nicht überschritten wird, muss die Wärme-

durchgangszahl entsprechend klein sein. In diesem speziellen Fall ist es sinnvoll, die Wärmeübergangszahlen und die Wärmedurchgangszahl auf die Innenfläche zu

beziehen, da die Außenfläche erst nach Bestimmung der Isolationsdicke bekannt ist. 

Die auf die Innenfläche bezogene Wärmedurchgangszahl erhält man als:
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Die Vernachlässigung der Wärmeübergangszahlen innen im Behälter und außen

an der Isolation bedeutet, dass sie in Gl. (2.36) als unendlich groß eingesetzt werden. Unter Berücksichtigung, dass die Übergangszahlen auf die Innenfläche bezo-

gen sind, ergeben sich mit Gl. (2.35) folgende Beziehungen:
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Beide Gleichungen nach ϑ  aufgelöst und gleichgesetzt, ergeben:
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Für die auf die Innenfläche bezogene Wärmedurchgangszahl gilt:

2

 Q =  k ⋅π ⋅  d ⋅ (ϑ −ϑ )
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Damit ist die Wärmedurchgangszahl in der oberen Gleichung der Ausdruck in

den Klammern. Sie ist bekannt, der Klammerausdruck kann nach dem Durchmesser

 d  aufgelöst werden. 
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 Diskussion

Bei einigen Problemen ist es von Vorteil, die Wärmeübergangszahlen nicht auf

die Außenfläche zu beziehen. Stehen hier keine fertigen Gleichungen zur Verfü-

gung, kann mit den Kopplungsgleichungen nach dem hier gezeigten Schema vorge-

gangen werden. 

2.1.6

Wärmeleitung mit seitlichem Wärmetransfer (Rippen)

In der Technik werden zur Vergrößerung der Fläche auf der Übertragungsfläche

 Rippen angebracht. Ebenso wird Behältern durch Stützen, Streben und Füße Wärme zu- oder abgeführt. Eine Rippe oder eine Stütze kann ein Stab konstanten Querschnitts sein. Wären die Seitenflächen eines Stabes thermisch vollkommen isoliert, hätte man eine stationäre Wärmeleitung in einer ebenen Wand. Bei konstanter Wärmeleitfähigkeit stellte sich nach Gl. (2.5) ein linearer Temperaturgradient im Stab ein. Bei der technischen Anwendung von Rippen, Streben etc. sind die Seitenwände

nicht isoliert. Von ihnen wird Wärme von oder zur Umgebung transferiert. Der

Wärmestrom im Stab ist nicht mehr konstant. Er wird entsprechend der seitlich ab-

oder zugeführten Wärme verändert. Dieses ist ein zweidimensionales Problem. 

Eine ebene Wand konstanten Querschnitts, die durch einen Wärmestrom auf der

einen Seite auf einer Temperatur von ϑ  gehalten und aus der seitlich durch den

0

Wärmeübergang Wärme transferiert wird, kann als eindimensionales Problem be-

handelt werden, wenn die Temperatur am Querschnitt an jeder beliebigen Stelle  x als konstant angenommen werden kann. Bild 2.7 zeigt eine viereckige Rippe konstanten Querschnitts, die an einem Körper angebracht ist und dort durch einen

Wärmestrom auf der konstanten Temperatur ϑ  gehalten wird. 

0
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Bild 2.7: Wärmeleitung in einer Rippe

Die Rippe ist außen von dem Fluid tieferer Temperatur ϑ  umgeben, zu dem

 u

Wärme aus der Rippe abgeführt wird. Die Wärmeübergangszahl des Fluids ist α . 

 u

In den folgenden Kapiteln werden die Temperatur und der Wärmestrom in der Rip-

pe berechnet. 

 2.1.6.1

 Temperaturverlauf in der Rippe

Der in das Volumenelement  b .   s .   dx über die Querschnittsfläche  A = s .   b eintretende Wärmestrom an der Stelle  x ist:

 d
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 Q = −λ ⋅  A ⋅

 x

(2.40)

 dx

An Stelle  x +  dx tritt folgender Wärmestrom aus dem Volumenelement:
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Die Änderung des Wärmestromes im Volumenelement ist:

 d  2







ϑ

δ Q =  Q

λ
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−  Q = − ⋅  A⋅

⋅ dx

 x

 x dx

 x

(2.42)

 dx 2

Mit umgekehrtem Vorzeichen entspricht diese Änderung aber dem Wärmestrom, 

der an der äußeren Oberfläche des Volumenelementes  U .  dx abgeführt wird. Der abgeführte Wärmestrom wird mit der Temperaturdifferenz der äußeren Wärme-

übergangszahl bestimmt. 

−δ Q = α ⋅ U ⋅(ϑ −ϑ )⋅  dx

(2.43)

 x

 U

 U

Der Umfang der Rippe ist  U. Die Gln. (2.42) und (2.43) gleichgesetzt, ergeben die Differentialgleichung:

2

 d ϑ

α ⋅ U

 U

=

⋅(ϑ −ϑ )

(2.44)

2

 U

 dx

λ ⋅  A

Eine konstante Außentemperatur ϑ , Wärmeübergangszahl α  und Wärmeleitfä-

 u

 u

higkeit λ vorausgesetzt, kann ϑ  – ϑ  durch Δϑ substituiert und der erste Term auf U
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der rechten Seite der Gleichung als die Konstante  m 2 eingesetzt werden. Damit erhalten wir die Differentialgleichung:

2

 d

ϑ

Δ = 2

 m ⋅ ϑ

Δ

(2.45)

2

 dx

α ⋅ U

mit    m

 U

=

und  Δϑ = (ϑ  – ϑ ). 

λ ⋅  A

 U

Die Lösung der Differentialgleichung lautet:

− m⋅ x

 m⋅ x

ϑ
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(2.46)

1 ⋅  e
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Die Konstanten  C  und  C  werden mit den Randbedingungen bestimmt. Sie kön-1

2

nen an beiden Enden der Rippe ermittelt werden. Bei  x = 0 ist die Temperaturdifferenz gleich Δϑ . Der Wärmestrom am Ende des Stabes wird vernachlässigt. 

0

Dadurch ist bei  x =  h der Wärmestrom gleich null, was aber bedeutet, dass der Temperaturgradient ( dϑ/ dx) = 0 ist. Damit gilt:

ϑ

Δ =  C +  C

(2.47)
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 dx ¹ x= h

Aus Gl. (2.48) folgt für  C :
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Gl. (2.49) in Gl. (2.47) eingesetzt, ergibt für  C :
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Gl. (2.50) in Gl. (2.49) eingesetzt, ergibt für  C :

1

+ m⋅ h

 e

 C

ϑ

Δ

1 =

0 ⋅

(2.51)

 m⋅ h

− m⋅ h

 e

+  e

Damit ist die Temperaturdifferenz Δϑ:
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Für eine  unendlich lange Rippe werden die negativen Exponentialfunktionen

gleich null und aus Gleichung (2.51) erhält man:

− m⋅ x

ϑ

Δ ( x) = ϑ

Δ

(2.53)

0 ⋅  e
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Für die  endlich lange Rippe können in Gl. (2.52) die Exponentialfunktionen durch Hyperbelfunktionen ersetzt werden. 

ϑ

Δ ( x) cosh[ m⋅( h −  x)] cosh[ m⋅ h⋅ 1

( −  x /  h)]

=

=

ϑ

Δ

(2.54)

cosh( m ⋅  h)

cosh( m ⋅  h)

0

Bild 2.8 zeigt den normierten Temperaturverlauf Δϑ/Δϑ  über die normierte Län-

0

ge  x/ h mit der für die Rippen charakteristischen Größe  m .   h als Parameter. 

Bei großen Werten von  m .   h ändert sich die Temperatur stark. Dieses bedeutet, dass bei langen Rippen bzw. Rippen mit kleiner Wärmeleitfähigkeit und großen

äußeren Wärmeübergangszahlen erhebliche Temperaturänderungen vorkommen. 
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Bild 2.8: Normierter Temperaturverlauf der Rippe

 2.1.6.2

 Temperatur am Ende der Rippe

Die Temperatur am Stabende beträgt:

1

ϑ( h) = ϑ + ϑ

Δ ( h) = ϑ + ϑ

Δ ⋅

 U

 U

0

(2.55)

cosh( m ⋅  h)

 2.1.6.3

 Wärmestrom am Anfang der Rippe

Von Interesse ist, wie groß der Wärmestrom am Stabanfang ist, denn er ist gleich

dem Wärmestrom, der insgesamt von der Rippe abgegeben wird. Man ermittelt ihn

aus Gl. (2.40), indem dort der Temperaturgradient bei  x = 0 eingesetzt wird. 
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=

⋅  h)

 x  0

(2.56)

= λ ⋅  A⋅ ϑ

Δ ⋅ m⋅ tanh( m⋅ h)

0

Da der Wärmestrom am Anfang der Rippe gleich dem Wärmestrom ist, der durch

den äußeren Wärmeübergang abgeführt wird, erhält man das gleiche Ergebnis, 

wenn in Gl. (2.43) die Temperaturdifferenz aus Gl. (2.54) einsetzt und von 0 bis  h integriert wird. 

 2.1.6.4

 Rippenwirkungsgrad

Um die Austauschfläche zu vergrößern, werden bei kleinen Wärmeübergangszah-

len an den Oberflächen der Wärmeübertrager Rippen angebracht. Damit die Ober-

flächenvergrößerung möglichst effektiv ist, sollte sich die Temperatur in der Rippe nur wenig ändern. In einer idealen Rippe bliebe die Temperatur konstant, d.h., für den Wärmeaustausch wäre immer die Temperaturdifferenz Δϑ  vorhanden. Das er-0

gäbe dort den Wärmestrom:

 Q

 U h

(2.57)

 ideal =

⋅ ⋅α U ⋅ ϑ

Δ 0

Das Verhältnis vom wirklich ausgetauschten zum idealen Wärmestrom nennt

man  Rippenwirkungsgrad η . Den tatsächlich übertragenen Wärmestrom erhalten Ri

wir aus Gl. (2.56). Damit ist der Rippenwirkungsgrad:

 Q

λ

0

⋅  A⋅  m

tanh( m ⋅  h)

 x

η =

=

=

⋅ tanh( m ⋅  h) =

 Ri

(2.58)

 Q

 U ⋅α ⋅  h

 m ⋅  h

 ideal

 U

Bild 2.9 zeigt den Rippenwirkungsgrad als eine Funktion der charakteristischen

Rippengröße  m .   h. 

1,0
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grad 0,6
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0,4
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 . 

Bild 2.9: Rippenwirkungsgrad als eine Funktion von  m .   h Wie in Bild 2.8 schon gezeigt, ändern sich die Rippentemperaturen mit zunehmendem Wert der Größe  m .  h stärker. Damit sinkt der Rippenwirkungsgrad. 
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 Der Rippenwirkungsgrad nimmt mit zunehmender Rippenhöhe h, Wärme-

 übergangszahl  α   und Umfang zum Querschnittsverhältnis U/A ab, mit zu-U

 nehmender Wärmeleitfähigkeit der Rippe nimmt er zu. 

Rippen sind dann wirtschaftlich, wenn die Mehrkosten für die Berippung zu ei-

ner insgesamt kostengünstigeren Lösung führen. Als Faustregel gilt: Der Rippen-

wirkungsgrad sollte größer als 0,8 sein. Deshalb wählt man Rippen mit großer Wär-

meleitfähigkeit und einem möglichst günstigen Verhältnis des Umfangs zum Quer-

schnitt. Berippte Oberflächen kommen hauptsächlich bei Gasen zur Anwendung. 

 2.1.6.5

 Anwendbarkeit für andere Geometrien

Die hier angegebenen Beziehungen wurden für eine rechteckige Rippe hergeleitet. 

Da der Umfang der Rippe  U und die Querschnittsfläche  A nicht aus den geometrischen Abmessungen der Rippe angegeben wurden, gelten die Beziehungen ganz

allgemein für alle Rippen, die eine konstante Querschnittsfläche  A haben, wie z.B. 

Rundstäbe. Die in der Praxis oft verwendeten Rippenrohre werden in Kapitel 3 be-

handelt. 

BEISPIEL 2.8: Erhöhung der Austauschfläche durch Rippen

Ein Heizkessel hat als Wände ebene Stahlplatten. Um die Austauschfläche zu ver-

größern, werden zylindrische Rippen des gleichen Materials mit 8 mm Durchmesser

und 25 mm Höhe angebracht. Die Rippen sind angeschweißt und quadratisch ange-

ordnet, der Abstand zwischen ihnen beträgt 8 mm. Die Wärmeübergangszahl außen

ist 50 W/(m2 K), die Wärmeleitfähigkeit der Rippen 17 W/( m K). Die Temperatur

der Wand beträgt 100 °C, die der Umgebung 1000 °C. Zu bestimmen sind:

a) die Vergrößerung der Austauschfläche

b) die Wärmestromdichte mit und ohne Rippen

c) die Temperatur an den Rippenenden. 

8

ø8

Lösung

8

52

 Schema

Siehe Skizze

a

 Annahmen

•

Die Wärmeleitfähigkeit ist in der Wand und in den Rippen konstant. 

•

An den Enden der Rippen wird keine Wärme transferiert. 

•

Die Temperatur in der Rippe ändert sich nur in axiale Richtung. 

•

Die Rippen haben mit der Platte metallischen Kontakt. 
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 Analyse

a)

Pro Rippe wird die Fläche des Quadrates, das von den Rippenmitten gebildet

wird, benötigt. Da der Abstand  a der Rippenmitten 16 mm ist, wird pro Rippe eine Fläche von 256 mm2 benötigt oder pro Quadratmeter Fläche können 3 906 Rippen



angebracht werden. Die totale Austauschfläche ist die Fläche  A der Platte, verringert um die Grundfläche  A  der Rippen und vergrößert durch die Fläche  A  der 0

 Ri

Rippen. Die spezifische Vergrößerung der Fläche beträgt:

 A

 A

π

 tot

−  A +

2

 A

 d

 d

 h

0

 Ri

 Ri

 Ri ⋅

=

= 1− ⋅

+π ⋅

= 3,258

2

2

 A

 A

4  a

 a

b)

Die Wärmestromdichte der unberippten Platte ist:

W

kW

 q

= α ⋅(ϑ −ϑ ) = 50⋅

⋅(1000 −100)⋅K = 45  

 ohne

 U

 U

0

2

m ⋅ K

2

m

Bei der berippten Platte reduziert sich wegen Verringerung der Plattenfläche ei-

nerseits der Wärmestrom zur Platte, andererseits wird durch die Rippen ein zusätz-

licher Wärmestrom zugeführt. Bei den Rippen kann entweder der Wärmestrom pro

Rippe mit Gl. (2.56) berechnet oder die Verringerung des Wärmestromes pro Rippe

durch die Erwärmung der Rippe mit dem Rippenwirkungsgrad berücksichtigt wer-

den. Hier folgen beide Methoden:

 A −  A

1

0

 q

=

α ⋅(ϑ −ϑ ) +

⋅ Q



=

 mit

 U

 U

0

2

0

 A

 a

2

π  d

λ ⋅  A ⋅ ϑ

Δ ⋅ m

= 1

(

 Ri

− ⋅

) ⋅α ⋅ (ϑ −ϑ )

 QRi

0

+

⋅ tanh( m ⋅ h)

4

2

 U

 U

0

2

 a

 a

2

 A −  A +  A

 d

 d

 h

 Ri ⋅η

§

 Ri

π

 Ri

 Ri ⋅

·

0

 q mit =

⋅α U ⋅(ϑ U −ϑ ) = 1− ⋅

+π ⋅

⋅η Ri ⋅α U ⋅(ϑ U −ϑ )

0

¨¨

¸¸

 A

4

2

2

0

©

 a

 a

¹

Für beide Gleichungen ist zunächst die Größe  m zu bestimmen. 

α  U

α

π  d

α

 U ⋅

 U ⋅ 4 ⋅

⋅  Ri

 U ⋅ 4

50 ⋅ 4

1

 m =

=

=

=

m



38,35

−

=

2

2

λ ⋅  A

λ π  d

λ  d

 QRi

⋅ ⋅  Ri

⋅

17

 Ri

⋅0,008⋅ m

Der Rippenwirkungsgrad ist:  η = tanh( m ⋅  h) /  m ⋅  h = 0, 776

 Ri

Aus der oberen Gleichung erhalten wir für die Wärmestromdichte:

2

2

 q

= [α − 0,25⋅π ⋅ d /  a ⋅(1− λ ⋅ m⋅ tanh( m⋅ h))]⋅(ϑ −ϑ ) =

 mit

 U

 Ri

 U

0

kW

2

= [50 − 3 906⋅π / 4⋅0,008 ⋅(50 −17⋅38,35⋅ tanh(38,35⋅0,025))]⋅900 = 121,8   2

m
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Die untere Gleichung ergibt:

 q

= −  n⋅π ⋅ d ⋅  d

−  h η

⋅

⋅ ⋅

=

 mit

(

 Ri

 Ri

 Ri )

kW

1

(

/ 4

45

2

m

= ( −

⋅π ⋅

⋅

−

⋅

)

kW

kW

1 3 906

0,008 (0,002 0,025 0,776 ⋅ 45⋅

= 121,8  

2

m

2

m

Durch das Anbringen der Rippen beträgt die Vergrößerung der Wärmestrom-

dichte:

 q

/  q

 mit

 ohne = 2,708

c)

Mit Gl. (2.51) kann die Temperatur am Ende der Rippe berechnet werden. 

1

900 K

ϑ( h) ϑ

(ϑ

ϑ

⋅

=

+

− )⋅

= 1000  C

° −

= 398 °

   C

 U

0

 U

cosh( m ⋅  h)

cosh(38,35 ⋅0,025)

 Diskussion

Durch das Anbringen der Rippen vergrößert sich die Fläche auf das 3,258fache, 

die Wärmestromdichte auf das 2,7fache. Die geringere Erhöhung der Wärmestrom-

dichte wird durch die Erwärmung der Rippen verursacht. Dadurch nimmt der Wär-

metransfer zum Rippenende hin ab. Zur Bestimmung der Wärmestromdichte wur-

den zwei verschiedene Lösungen gewählt, die jedoch das gleiche Ergebnis liefern. 

Durch Umformung könnte man zeigen, dass beide Gleichungen identisch sind. 

BEISPIEL 2.9: Wärmetransfer durch eine Halterung

Ein Behälter für heißen Dampf wurde zur Befestigung mit Stahlstäben von 400 mm

Länge, 20 mm Dicke und 40 mm Breite versehen. Der Behälter hat eine Isolati-

onsschicht von 100 mm Dicke, so dass sich die ersten 100 mm des Stabes in dieser

Schicht befinden. Die Isolation kann als ideal angenommen werden. Die Wärme-

übergangszahl außen am Stab ist 10 W/(m2 K). An der Behälterwand herrscht eine

Temperatur von 150 °C, außen in der Umgebung die von 20 °C. Das Material des

Stabes hat die Wärmeleitfähigkeit von 47 W/(m K). Zu berechnen sind:

a) der Temperaturverlauf im Stab

b) die Dicke der Isolation, damit die Stab-

400

temperatur außerhalb der Isolation 90 °C nicht

100

überschreitet. 

ϑ0

Lösung

20

ϑ W

 Schema

Siehe Skizze
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 Annahmen

•

Im Stab ist die Wärmeleitfähigkeit konstant. 

•

An den Enden der Rippen wird keine Wärme transferiert. 

•

Im Stab ändert sich die Temperatur nur entlang der Stabachse. 

•

Zwischen Behälter und Stab besteht metallischer Kontakt. 

 Analyse

a)

Aus dem Teil des Stabes (den ersten 100 mm), der von der Isolierung umge-

ben ist, tritt seitlich keine Wärme aus. Daher kann dieser Teil als ebene Wand mit der Dicke  s, der übrige Teil des Stabes als Rippe mit der Höhe  h behandelt werden. 

Nach Gl. (2.6) ist der Wärmestrom in einer ebenen Wand:

λ

 Q =

⋅  A⋅ (ϑ W −ϑ )

0

 s

Dieser Wärmestrom ist gleich jenem am Eintritt der Rippe nach Gl. (2.56). 

 Q = λ ⋅  A⋅ ϑ

Δ ⋅ m⋅ tanh( m⋅ h) = λ ⋅  A⋅(ϑ −ϑ )⋅ m⋅ tanh( m⋅ h) 0

0

 U

Die Temperatur des Stabes am Ende der Isolation ist unbekannt. Beide Gleichun-

gen werden gleichgesetzt und nach ϑ  aufgelöst. 

0

ϑ

ϑ

 W +

⋅  s

 U

⋅  m⋅ tanh( m ⋅ h)

ϑ =

0

 s ⋅  m ⋅ tanh( m ⋅  h) +1

Zunächst muss noch die Größe  m bestimmt werden. 

α

α

 U ⋅ U

 U ⋅ 2 ⋅ ( a +  b)

0

1 ⋅ 2 ⋅( 02
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)
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,649

5

−

=

2

λ ⋅  A

λ ⋅ a ⋅ b

47 ⋅0,02 ⋅0,04 ⋅ m

Für die Temperatur ϑ  erhalten wir damit:

0

150 ⋅ C

° + 20⋅ C

° ⋅0,1⋅m ⋅5,649⋅m−1 ⋅ tanh(5,649 ⋅0,3)

ϑ =

=



105,07 C

°

0

0,1⋅ m ⋅5,649 ⋅ m 1

− ⋅ tanh(5,649⋅0,3) +1

In den ersten 100 mm des Stabes fällt die Temperatur linear von 150 °C auf

105,07 °C. Außerhalb der Isolation kann der Temperaturverlauf mit Gl. (2.54) be-

rechnet werden:

cosh[ m ⋅( h −  x)]

ϑ( x) = ϑ + (ϑ −ϑ )⋅

 U

0

 U

cosh( m ⋅  h)

Für die Temperaturen wurden folgende Werte ermittelt:
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 x

ϑ( x)

ϑ W

140

m

°C

0,00

150,00

120

0,10

105,07

ϑ 0

0,13

92,76

100

C

0,16

82,53

°

r intu 80

0,19

74,11

ra

Isolation

ep

0,22

67,25

meT 60

0,25

61,74

0,28

57,44

40

0,31

54,22

Umgebungstemperatur

ϑ U

20

0,34

51,98

0,37

50,66

0.0

0.1

0.2

0.3


0.4

Stablänge in m

0,40

50,23

Das Diagramm zeigt den Temperaturverlauf im Stab. 

b)

Zur Berechnung der Isolationsdicke, die zum Erreichen einer Stabtempera-

tur von 90 °C notwendig ist, kann man die Gleichung, die zur Bestimmung der Tem-

peratur verwendet wurde, einsetzen. Die unbekannte Größe ist die Länge  s. Für die Höhe  h der Rippe wird  h =  l –  s eingesetzt. 

ϑ

ϑ

 W +

⋅  s

 U

⋅ m⋅ tanh[ m ⋅( l −  s)]

ϑ =

0

 s ⋅  m ⋅ tanh[ m ⋅ ( l −  s)] +1

Diese Gleichung kann nicht nach  s aufgelöst werden. Sie ist iterativ oder mit einem Gleichungslöser zu berechnen. Man erhält 0,179 m. 

 Diskussion

Der Wärmestrom, der außen vom nicht isolierten Stab abgegeben wird, bestimmt

die Temperaturänderung des Stabes im isolierten Teil. Außerhalb der Isolation

nimmt die Temperatur im Stab relativ langsam ab. Am Stabende beträgt sie immer

noch 55,2 °C, d.h., sie ist um 35 °C höher als die der Umgebung. 


2.2

Instationäre Wärmeleitung

2.2.1

Eindimensionale instationäre Wärmeleitung

 2.2.1.1

 Bestimmung der zeitlichen Temperaturänderung

Bringt man einen Körper mit der Anfangstemperatur ϑ  mit einem anderen Körper

 A

unterschiedlicher Temperatur in Kontakt, verändert sich die Temperatur im Körper

sowohl örtlich als auch zeitlich. Im Körper findet  instationäre Wärmeleitung statt. 
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Als Beispiel betrachten wir eine unendlich große, ebene Platte der Dicke 2  s, die die Anfangstemperatur ϑ  hat und zur Zeit  t = 0 mit einem Fluid tieferer Temperatur A

von ϑ  in Kontakt gebracht wird (Bild 2.10). An der Oberfläche der Platte führt das

∞

Fluid Wärme ab. 

2  s

§ ϑ

 d ·

 q x s = − ⋅¨

¸
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©  dx ¹ x= s
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∞
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 t = t  3

 t = t  4

 x
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ϑ  - ϑ
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ϑ

 t =  oo

oo

λ / α

ϑ

 x

Bild 2.10: Temperaturverlauf in einer Platte während der Abkühlung

Bestimmend für den Wärmestrom von der Oberfläche zum Fluid sind die Wär-

meübergangszahl α des Fluids und die Temperaturdifferenz zwischen der Oberflä-

che und dem Fluid. Durch Abkühlen der Oberfläche entsteht in der Platte ein Tem-

peraturgradient und dementsprechend ein Wärmestrom. Die Temperaturverteilung

in der Platte kennen wir noch nicht. Der dargestellte Temperaturverlauf zeigt nur, dass die Temperatur von der Plattenmitte zur Oberfläche hin abnimmt, mit der Zeit

immer niedriger wird und nach unendlich langer Zeit den Wert von ϑ  erreicht. Die

∞

Änderung des Wärmestromes im betrachteten Volumenelement der Platte wird nur

durch die Änderung des Temperaturgradienten bewirkt. Durch den Wärmestrom

sinkt mit der Zeit die Enthalpie (Wärmeinhalt) und damit die Temperatur des Volu-

menelementes. Die Tangenten der Temperaturgradienten an der Oberfläche der

Platte schneiden die mit der Temperatur ϑ  gebildeten Achse in einer Entfernung, 

∞

die dem Quotienten λ /α entspricht. 

Da die seitliche Ausdehnung der Platte als unendlich angenommen wurde, er-

folgt der Wärmetransfer nur in  x-Richtung. Der Wärmestrom zum Volumenelement
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in   x-Richtung an der Stelle  x wird durch folgende partielle Differentialgleichung beschrieben:



∂ϑ

 Q = −λ ⋅  A ⋅

 x

∂

(2.59)

 x

An Stelle  x +  dx ist der Wärmestrom:

 Q

2



∂ 



∂ϑ

∂ ϑ

 Q

λ

λ

+

=  Q

 x

+

⋅ dx = − ⋅  A⋅

− ⋅  A⋅

⋅ dx

 x dx

 x

(2.60)

 x

∂

∂ x

∂ x 2

Die Änderung des Wärmestromes beträgt:

2







∂ ϑ

 Q

 d

=  Q

λ

+

−  Q = − ⋅  A⋅

⋅ dx

 x

 x dx

 x

∂

(2.61)

 x 2

Da seitlich keine Wärme transferiert wird, entspricht die Änderung des Wärme-

stromes der zeitlichen Änderung der Enthalpie des Materials im Volumenelement. 

Den Wärmestrom aus dem Volumenelement bestimmt man folgendermaßen:



∂ϑ

δ Q = −ρ ⋅  A⋅ dx ⋅ c ⋅

 x

 p

(2.62)

 t

∂

Aus den Gln. (2.61) und (2.62) erhalten wir die Differentialgleichung für die

zeitliche und örtliche Temperaturverteilung in der Platte. 

∂ϑ

∂ ϑ

2

λ

=  a ⋅

mit

 a =

∂  t

∂

(2.63)

 x 2

ρ ⋅ cp

Die Größe  a ist die  Temperaturleitfähigkeit  des Materials. Sie hat die Dimension m2/s. Wie die Differentialgleichung zeigt, ist die Temperaturleitfähigkeit die einzi-ge Stoffeigenschaft, die den zeitlichen Verlauf einer Abkühlung oder Erwärmung

bestimmt. Die instationäre Wärmeleitung in einem Stoff wird nur durch Tempera-

turunterschiede und die Temperaturleitfähigkeit des Stoffes bestimmt. Metalle und

Gase haben die größten Temperaturleitfähigkeiten. Dieses bedeutet, dass der Tem-

peraturausgleich in Metallen und Gasen in etwa gleich schnell erfolgt. Flüssigkeiten und nicht metallische Stoffe haben kleinere Temperaturleitfähigkeiten, der Temperaturausgleich läuft dadurch dort langsamer ab. 

Die allgemein gültige dreidimensionale Differentialgleichung für instationäre

Wärmeleitung lautet:

∂ϑ

∂ ϑ

2

=  a ⋅

=  a ⋅∇ ϑ

2

∂

(2.64)

 t

∂ 2

 r

Die Lösung für ein dreidimensionales Temperaturfeld ist bis auf einige Ausnah-

men nur nummerisch bestimmbar. Sie können für ein eindimensionales Tempera-

turfeld auch nur bei einfachen Geometrien angegeben werden, die Lösungen sind

 Fourierreihen. Für die eindimensionale Platte ist eine allgemeine Lösung der Differentialgleichung:
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∞

ϑ( x,  t) = ¦[ C  cos(

)

sin(

)

1 ⋅

 B ⋅  x +  C 2 ⋅

 B ⋅  x ] − a⋅ C 3⋅ t

⋅ e

(2.65)

 n=1

Für entsprechende Randbedingungen können die Konstanten  B und  C bestimmt werden. Falls die Wärmeübergangszahl außen unendlich groß ist (d.h., die äußere

Wandtemperatur ist gleich der Temperatur des umgebenden Fluids), lautet die Lö-

sung bei der unendlichen Platte:

2

2

2

2

ϑ −

 n ⋅π ⋅ a⋅

∞

 t

∞

 n ⋅π ⋅

ϑ

4

1

−

 Fo

∞

 n π

 s

⋅ ⋅  x

−

2

4

1

4

= ⋅¦ ⋅

⋅

 e

⋅sin

4

= ⋅¦ ⋅ e

⋅

ϑ ϑ

π

π

 A −

 n

2

∞

 n=

⋅  s

 n

1

 n  1

=

 n ⋅π ⋅

(2.66)

⋅

 x

sin

mit  n = , 

1 , 

3 ... 

5

2 ⋅  s

 Fourier reihen konvergieren zwar sehr schnell, die Berechnung der Reihen ist aber sehr zeitaufwändig. In den Bildern 2.11 bis 2.13 sind spezielle Lösungen für

eine ebene Platte, einen Kreiszylinder und eine Kugel angegeben. Mit den Diagram-

men können die Temperaturen in der Mitte und an der Oberfläche, außerdem die

mittlere (kalorische) Temperatur des Körpers bestimmt werden. 

In den Diagrammen werden folgende dimensionslose Kennzahlen verwendet:

ϑ −ϑ

 Dimensionslose Temperatur Θ  :

∞

Θ =

(2.67)

ϑ A − ∞

ϑ

 Fourierzahl Fo:

2

 Fo =  a ⋅  t /  s

(2.68)

 Biotzahl Bi:

 Bi = α ⋅  s / λ

(2.69)

Die dimensionslose Temperatur gibt an, wie sich die Temperatur, bezogen auf

die Außentemperatur ϑ  von der Anfangstemperatur ϑ  beginnend zeitlich verän-

∞

 A

dert. 

Die  Fourier zahl ist eine  dimensionslose Zeit. Sie ist das Verhältnis des Wärmestromes zur zeitlichen Änderung des Wärmeinhaltes des Körpers. 

Die  Biot zahl ist eine  dimensionslose Wärmeübergangszahl. Sie ist das Verhältnis der Wärmeübergangszahl außen am Körper zu derjenigen im Körper. 

In den Diagrammen 2.11 bis 2.13 ist die dimensionslose Temperatur als eine

Funktion der  Fourier- und  Biot zahl angegeben. Der Index  O steht für die Temperatur an der Oberfläche und  m für die Mitte des Körpers. Die dimensionslose mittlere Temperatur Θ  ist der integrierte Mittelwert der Temperatur im Körper. In

den Diagrammen steht für die halbe Plattendicke die Größe  X, für den Radius die Größe  R. 

Die nach einer gewissen Zeit entstandene Temperaturänderung kann aus dem

Diagramm mit der  Fourier- und  Biot zahl bestimmt werden. 

Die Zeit, in der eine bestimmte Temperaturänderung eintritt, kann man aus der

 Fourier zahl berechnen, die mit der dimensionslosen Temperatur und  Biot zahl aus dem Diagramm ermittelt wird. 
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Die Wärmeübergangszahl, bei der eine Temperaturänderung in einer bestimmten

Zeit erreicht wird, kann man aus der  Biot zahl bestimmen, die mit der dimensionslosen Temperatur und  Fourier zahl aus dem Diagramm ermittelt wird. 

 2.2.1.2

 Bestimmung der transferierten Wärme

Mit der mittleren Temperatur ist die in einer bestimmten Zeit zu- oder abgeführte

Wärme berechenbar. Mit der Anfangs- und mittleren Temperatur wird die Ände-

rung der Enthalpie bestimmt. Sie ist:

 Q =  H −  H =  m ⋅ ( h −  h ) =  m ⋅  c ⋅ (ϑ −ϑ ) (2.70)

 A

 p

 A
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Bild 2.11: Temperaturverlauf der instationären Wärmeleitung in einer Platte [2.1]
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Bild 2.12: Temperaturverlauf der instationären Wärmeleitung in einem Kreiszylinder [2.1]
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Bild 2.13: Temperaturverlauf der instationären Wärmeleitung in einer Kugel [2.1]
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BEISPIEL 2.10: Kühlen einer Kunststoffplatte

Aus einer Walze kommt mit 150 °C eine 1 m breite und 4 mm dicke Kunststoffplat-

te. Sie wird mit Luft angeblasen und gekühlt. Danach werden mit einer Schlagsche-

re, die 5 m von der Walze entfernt ist, Stücke von 2 m Länge abgeschnitten. Damit

beim Schneiden keine unerwünschten plastischen Verformungen auftreten, muss

die Temperatur bei der Schlagschere in der Plattenmitte niedriger als 50 °C sein. Die Temperatur der Luft ist 25 °C und die Wärmeübergangszahl 50 W/(m2 K). Die

Stoffwerte des Kunststoffes sind:

ρ = 2 400 kg/m3, λ = 0,8 W/(m K)  c  = 800 J/(kg K). 



 p

a) Bestimmen Sie die Geschwindigkeit der Platte. 

b) Bestimmen Sie, welcher Wärmestrom abgeführt wird. 

Lösung

 Schema

Siehe Skizze

Walze

5 m

Schlagschere

ϑ = 150 °C

 A

 Annahmen

•

In der Platte sind die Stoffwerte konstant. 

•

Randeffekte dürfen vernachlässigt werden. 

•

Die Geschwindigkeit der Platte ist konstant. 

 Analyse

a)

Die Geschwindigkeit der Platte kann ermittelt werden, wenn die Zeit, die für

die Abkühlung der Plattenmitte von 150 °C auf 50 °C benötigt wird, bestimmt ist. 

Dazu müssen zunächst die dimensionslose Temperatur und  Biot zahl berechnet werden. Die dimensionslose Temperatur ist nach Gl. (2.67):

ϑ m −ϑ

50

∞

− 25

Θ m =

=

= , 

0 2

ϑ A −ϑ

150

∞

− 25

Die  Biot zahl wird mit Gl. (2.69) bestimmt:

α ⋅  s  50⋅W⋅0,002⋅m⋅m⋅K

 Bi =

=

= 125

, 

0

λ

m2 ⋅ K ⋅ 0,8⋅ W
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Aus dem mittleren Diagramm in Bild 2.11 erhält man die  Fourier zahl als  Fo =

15. Um aus ihr die Zeit bestimmen zu können, muss zunächst die Temperatur-

leitfähigkeit berechnet werden. 

3

2

λ

0,8 ⋅ W ⋅ m ⋅ kg ⋅ K

m

−7

 a =

=

= 4,17⋅10

ρ ⋅ c

m ⋅ K ⋅ 2 400 ⋅ kg ⋅800⋅ J

s

 p

Aus der  Fourier zahl nach Gl. (2.68) erhalten wir für die Zeit:

2

 Fo ⋅  s

15 ⋅ 0,0022 ⋅ m2 ⋅s

 t =

=

=

s
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 a

4,17 ⋅10−7 ⋅ m2

Diese Zeit wird für die Abkühlung benötigt, wobei die Platte den Weg von 5 m

zurücklegt, d.h., die Geschwindigkeit beträgt 0,0347 m/s. 

b)

Um den Wärmestrom zu ermitteln, ist zunächst die spezifische Wärme, die

pro kg der Platte abgeführt wird, zu bestimmen. Dieses kann mit Gl. (2.70) erfolgen. 

Dazu muss zunächst aus dem unteren Diagramm in Bild 2.11 die dimensionslose

mittlere Temperatur Θ  berechnet werden. Mit der  Fourier zahl 15 und  Biot zahl 0,125 erhalten wir: Θ = 0,17. Die mittlere Temperatur der Platte ist damit nach 5 m: ϑ =ϑ∞ + (ϑ A −ϑ )

∞ ⋅Θ =



25 C

° + (150 − 25)⋅ K ⋅0,17 = , 
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25 C

°

Dividiert man beide Seiten der Gl. (2.70) durch die Masse, erhält man die auf ein

kg Masse bezogene spezifische Wärme  q. Der Wärmestrom ist die spezifische Enthalpie, multipliziert mit dem Massenstrom. Dieser kann mit der aus der Strömungs-

lehre bekannten Kontinuitätsgleichung berechnet werden. 

3

 m

 =  c ⋅ ρ ⋅ 2⋅  s ⋅ b = 0,0347 ⋅ m/s ⋅ 2 400⋅ kg/m ⋅ 2⋅0,002⋅ m ⋅1⋅ m = 0,333 kg/s Der Wärmestrom ist damit:

 Q =  m ⋅  q =  m ⋅  cp ⋅ (ϑ A −ϑ ) =

= 0,417⋅ kg/s ⋅800⋅ J/(kg ⋅ K)⋅(150 − 46,25)⋅ K =

kW

  

27,67

 Diskussion

Technische Probleme können einfach mit Hilfe der Diagramme berechnet wer-

den. In der Wirklichkeit sind allerdings noch andere Effekte zu berücksichtigen. 

Üblicherweise wird ein Luftstrom parallel zur Platte geführt. Damit erwärmt sich

die Luft, die Umgebungstemperatur ist nicht mehr konstant. Unter Berücksichti-

gung der Lufterwärmung ist eine schrittweise Berechnung durchzuführen. Wegen

der Vielzahl der Rechenschritte sind entsprechende Computerprogramme notwen-

dig. 
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BEISPIEL 2.11: Kühlen einer Bierdose

Für ein Fest sollen im Kühlschrank Bierdosen von 30 °C auf 4 °C mittlere Tempera-

tur abgekühlt werden. Die Dose hat einen Durchmesser von 65 mm. Die Tempe-

ratur im Kühlschrank beträgt 1 °C, die Wärmeübergangszahl 10 W/(m2 K). Das Ma-

terial der Dose kann vernachlässigt werden. Die Stoffwerte des Bieres sind:

ρ = 1 020 kg/m3, λ = 0,64 W/(m K)  c  = 4 000 J/(kg K). 



 p

Bestimmen Sie die Abkühlzeit. 

Lösung

 Annahmen

•

Die Stoffwerte des Bieres sind konstant. 

•

Die Dose wird als unendlich lang angenommen. 

•

Die Temperatur und Wärmeübergangszahl im Kühlschrank sind konstant. 

 Analyse

Zur Berechnung der Abkühlzeit ist die dimensionslose mittlere Temperatur und

 Biot zahl zu ermitteln. 

ϑ −ϑ

4

∞

−1

α ⋅  R  10⋅ W ⋅ m⋅ K ⋅ , 

0 0325⋅ m

Θ =

=

= 103

, 

0

 Bi =

=

= 51

, 

0

ϑ A −ϑ

30

∞

−1

λ

m2 ⋅ K ⋅ 64

, 

0

⋅ W

Für die  Fourier zahl erhalten wir aus dem untersten Diagramm in Bild 2.12  Fo =

2,5. Um aus ihr die Zeit zu bestimmen, muss zunächst die Temperaturleitfähigkeit

berechnet werden. 

3

2

λ

0,64 ⋅ W ⋅ m ⋅ kg ⋅ K

m

7

 a =

=

= 1,57⋅10−

ρ ⋅ c

m ⋅ K ⋅1 020⋅ kg ⋅ 4 000⋅ J

s

 p

Aus der  Fourier zahl nach Gl. (2.68) erhalten wir für die Zeit:

2

2

2

 Fo ⋅  r

2, 5 ⋅ 0,0325 ⋅ m ⋅s

 t =

=

= 16 834  s = 4,7  h

7

−

2

 a

1, 57 ⋅10 ⋅ m

 Diskussion

Diese Berechnung erfolgte mit sehr vielen Annahmen. In Wirklichkeit ändern

sich während des Abkühlprozesses im Kühlschrank die Wärmeübergangszahl und

Temperatur. Die Annahme der unendlich langen Bierdose ist ebenfalls fraglich. Das

Material der Dose beeinflusst die Berechnung praktisch nicht. Trotz der gemachten

Annahmen stimmt die berechnete Zeit recht gut mit der Wirklichkeit überein. Ein

von mir zu Hause durchgeführter Versuch ergab eine Zeit von ca. 5 h. 
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BEISPIEL 2.12: Kühlen eines Drahtes im Ölbad

Ein Draht wird aus einer heißen Stahlmasse auf einen Durchmesser von 4 mm ge-

zogen und anschließend in einem Ölbad, das eine Temperatur von 30 °C hat, abge-

kühlt. Die Temperatur des Drahtes vor dem Bad ist 600 °C. Die Wärmeübergangs-

zahl im Bad beträgt 1 600 W/(m2 K). Der Draht hält sich im Bad 5 Sekunden auf. 



Die Stoffwerte des Drahtes sind:

ρ = 8 000 kg/m3, λ = 40 W/(m K),  c  = 800 J/(kg K). 



 p

Berechnen Sie die Temperaturen in der Mitte und an der Oberfläche des Drahtes

beim Verlassen des Bades. 

ϑ

Lösung

 A

 Schema

Siehe Skizze

Ölbad

 Annahmen

•

Die Stoffwerte des Drahtes sind konstant. 

•

Die Temperatur und Wärmeübergangszahl im Ölbad sind konstant. 

 Analyse

Zur Bestimmung der Temperaturen sind die  Fourier- und  Biot zahl zu berechnen. 

Für die  Fourier zahl muss zunächst die Temperaturleitfähigkeit des Drahtes ermittelt werden. 

3

2

λ

40 ⋅ W ⋅ m ⋅ kg ⋅ K

m

−6

 a =

=

= 6,25⋅10

ρ ⋅ c

m ⋅ K ⋅8 000 ⋅ kg ⋅800 ⋅ J

s

 p

 Fourier zahl:                

 t ⋅  a

5 ⋅s ⋅ 6,25⋅10 6

− ⋅m2

 Fo =

=

= 8

, 

7

2

 r

s ⋅ 0 0022

 , 

⋅m2

α ⋅ r  1 600⋅ W ⋅0,002⋅ m ⋅ m ⋅ K

 Biot zahl:                  Bi =

=

= 0,08

2

λ

m ⋅ K ⋅ 40 ⋅ W

Die dimensionslose Oberflächentemperatur erhalten wir aus dem oberen Dia-

gramm, die Temperatur in der Mitte aus dem mittleren Diagramm in Bild 2.11 mit

Θ  = 0,26 und Θ  = 0,27. Daraus errechnen sich folgende Temperaturen:

 O

 m

ϑ

ϑ

ϑ ϑ Θ

 O =

∞ + (  A − ∞ ) ⋅

 O =

°



30 C + (600 − 30) ⋅ K ⋅ 0,26 =

  

178,2 C

°

ϑ

ϑ

ϑ ϑ Θ

 m =

∞ + (  A − ∞ ) ⋅

 m =

°



30 C + (600 − 30) ⋅ K ⋅ 0,26 =

  

183,9 C

°
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 Diskussion

In diesem Bereich der Diagramme ist die Ablesegenauigkeit nicht mehr sehr gut. 

Die beiden Temperaturen sind schon fast gleich groß. Das Verfahren eignet sich

jedoch für die Bestimmung der Endtemperatur auf  ± 20 °C genau sehr gut. 

BEISPIEL 2.13: Eier kochen

In einem Eierkocher werden Eier mit kondensierendem Dampf  bei 100 °C erwärmt. 

Zu Beginn der Erwärmung beträgt die Temperatur der Eier 20 °C. Die Wärme-

übergangszahl außen ist 13 000 W/(m2 K). Die Eier werden als Kugeln homogener



Zusammensetzung mit 50 mm Durchmesser behandelt. Die Stoffwerte der Eier

sind:  ρ = 1 050 kg/m3, λ = 0,5 W/(m K)  c  = 3,20 kJ/(kg K). 



 p

Zu berechnen sind:

a) die Temperatur, die nach 5 Minuten in der Mitte der Eier erreicht wird

b) die Zeit, die bis zum Erreichen der gleichen Temperatur in einer Höhe von ca. 

2 500 m, auf der die Kondensationstemperatur auf 80 °C sinkt, benötigt wird. 



Lösung

ϑ = 100 °C

oo

 Schema

Siehe Skizze

α

2

= 13 000 W / (m   K)    

ϑ = 20 °C

 A

Kugel

 Annahmen

•

Die Stoffwerte der Eier sind konstant. 

•

Die Eier sind näherungsweise als Kugeln homogener Zusammensetzung zu be-

trachten. 

•

Auf der Außenseite sind die Temperatur und Wärmeübergangszahl konstant. 

 Analyse

a)

Zur Bestimmung der Temperatur  müssen die  Fourier- und  Biot zahl ermittelt und die Temperaturleitfähigkeit der Eier berechnet werden. 

3

2

λ

0, 5 ⋅ W ⋅ m ⋅ kg ⋅ K

m

7

 a =

=

= 1,49⋅10−

ρ ⋅ c

m ⋅ K ⋅1 050 ⋅ kg ⋅ 3 200⋅ J

s

 p

 t ⋅  a

300 ⋅ s ⋅ , 

1 49 ⋅10 7

− ⋅ m2

 Fourier zahl:                  Fo =

=

= 071

, 

0

2

 r

s ⋅ 0,0252 ⋅ m2

α ⋅ r  13 000⋅ W ⋅0,025⋅m⋅m⋅K

 Biot zahl:               Bi =

=

= 650

2

λ

m ⋅ K ⋅ 0,5⋅ W
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Für die dimensionslose Temperatur in der Mitte erhalten wir aus dem mittleren

Diagramm in Bild 2.13 mit Θ = 0,75. Daraus errechnet sich folgende Temperatur:

 m

ϑ

ϑ

ϑ ϑ Θ

 m =

∞ + (  A − ∞ ) ⋅

 m = 1

° 

00 C + (20 −100) ⋅ K ⋅ 0,75 = 4  

0 C

°

b)

Zur Bestimmung der Kochzeit muss die neue dimensionslose Mittentempe-

ratur berechnet und aus dem Diagramm die  Fourier zahl ermittelt werden. 

ϑ m −ϑ

40

∞

−80

Θ m =

=

= 67

, 

0

ϑ A −ϑ

20

∞

−80

Aus dem mittleren Diagramm in Bild 2.13 erhalten wir für die  Fourier zahl

 Fo = 0,115. Die Kochzeit ist proportional zur  Fourier zahl und damit: t = 0 115

 , 

/0 071

 , 

⋅ mi



5

n =

mi

  

8,1

n

 Diskussion

Obwohl sehr stark vereinfachende Annahmen wie z. B. die Kugelform und Ho-

mogenität der Eier gemacht wurden, sind die Ergebnisse recht gut. Eiweiß fängt bei 42 °C an zu gerinnen. Die Eier wären also in der Mitte noch flüssig, aber nach außen hin hart, also so, wie ein gut gekochtes Ei sein sollte! 

BEISPIEL 2.14: Erwärmen einer Spanplatte

Eine Spanplatte von 20 mm Dicke soll auf einer Seite mit einem Furnier versehen

werden. Dazu muss die Seite, die furniert wird, eine Temperatur von 150 °C haben. 

Die Platte wird auf einer Seite mit 200 °C heißer Luft angeblasen. Die andere Seite liegt auf einer thermisch isolierenden Auflage, die als vollkommener Isolator ange-sehen werden darf, auf. Zu Beginn des Aufwärmvorganges ist die Temperatur der

Spanplatte 20 °C. Die Wärmeübergangszahl des Luftstromes beträgt 50 W/(m2 K). 

Die Stoffwerte der Spanplatte sind:

ρ = 1 500 kg/m3, λ = 1,0 W/(m K)  c  = 1 200 J/(kg K). 



 p



Zu berechnen sind:

a) die für die Aufwärmung notwendige Zeit

b) wie viel Heizenergie mehr benötigt wird beim beidseitigen Beheizen der Platte. 

Lösung

Spanplatte

 Schema

Siehe Skizze

Isolator
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 Annahmen

•

Die Stoffwerte der Spanplatte sind konstant. 

•

Auf der unbeheizten Seite der Platte wird keine Wärme transferiert. 

•

In der Luft sind Temperatur und Wärmeübergangszahl konstant. 

 Analyse

a)

Auf der thermisch isolierten Seite der Platte wird keine Wärme transferiert. 

Damit muss der Temperaturgradient dort gleich null sein. Der Temperaturverlauf in

der Platte entspricht demjenigen in einer von beiden Seiten beheizten, doppelt so

dicken Platte. Zur Ermittlung der Aufwärmzeit sind die dimensionslose Oberflä-

chentemperatur und  Biot zahl zu bestimmen. 

Die dimensionslose Oberflächentemperatur ist:

ϑ O −ϑ

150

∞

− 200

Θ O =

=

= , 

0 28

ϑ A −ϑ

20

∞

− 200

α ⋅2⋅  s

0

5 ⋅ W ⋅ 0,02 ⋅ m ⋅ m ⋅ K

 Biot zahl:

 Bi =

=

= 1

λ

m2 ⋅ K ⋅1⋅ W

Die aus dem obersten Diagramm in Bild 2.11 ermittelte  Fourier zahl ist  Fo  =

1,25. Um aus ihr die Zeit zu bestimmen, muss zunächst die Temperaturleitfähigkeit

berechnet werden. 

3

2

λ

1⋅ W ⋅ m ⋅ kg ⋅ K

m

7

 a =

=

= 5,56⋅10−

ρ ⋅ c

m ⋅ K ⋅1 500 ⋅ kg ⋅1 200 ⋅ J

s

 p

Aus der  Fourier zahl nach Gl. (2.68) erhalten wir für die Zeit:

 Fo ⋅ (2 ⋅ 2

 s)

1,25⋅

2



0,02 ⋅ 2

m ⋅

 t =

=

s =

s

  

900

=

mi

  

15

n

 a

⋅ −7



5,56 10

⋅ 2

m

b)

Die von der Platte pro Quadratmeter aufgenommene Wärme ist:

 Q

 m ⋅  c ⋅ (ϑ −ϑ )

 p

 A

=

=  s ⋅ ρ ⋅ c ⋅(ϑ −ϑ )

 p

 A

 A

 A

Aus dem unteren Diagramm in Bild 2.11 beträgt die dimensionslose mittlere

Temperatur für  Bi = 1 und  Fo = 1,25 : Θ = , 

0 41 . Damit ist die mittlere Temperatur:

ϑ = ϑ∞ + (ϑ A −ϑ )

∞ ⋅Θ =



200 C

° + (20 − 200)⋅K ⋅0,41 =



126,2 C

°

Für die pro Quadratmeter aufgenommene Wärme erhält man:
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 Q /  A =  s ⋅ ρ ⋅  c ⋅ (ϑ −ϑ ) =

 p

 A

3

= 0,02⋅ m⋅1500⋅ kg/m ⋅1 200⋅ J/(kg ⋅ K)⋅(126,2 − 20)⋅ K =

2

3 823, 2    kJ / m

Beheizte man die Platte von beiden Seiten, müsste zur Bildung der  Fourier- und Biot zahl die halbe Plattendicke verwendet werden. Die  Biot zahl wäre damit  Bi =

0,5, die  Fourier zahl  Fo = 2,6. Die Aufwärmzeit wird, da die Plattendicke quadratisch in die Gleichung eingeht, auf 468 s verkürzt. Die dimensionslose mittlere

Temperatur ist: Θ = 31

, 

0

. Die mittlere Temperatur und die pro Quadratmeter zuge-

führte Wärme ergeben sich als:  ϑ  = 144,2 °C und  Q/ A = 4 471,2 kJ/m2. 

 

 Diskussion

Platten, die auf einer Seite thermisch ideal isoliert sind, können bezüglich der

Temperatur als Platte mit doppelter Dicke behandelt werden. 

 2.2.1.3

 Spezielle Lösungen für kurze Zeiten

In Bild 2.10 erkennt man, dass bei der Zeit  t =  t  die Temperatur in der Plattenmitte 1

von der Temperaturänderung noch nicht betroffen ist. In den Diagrammen 2.11 bis

2.13 sieht man ebenfalls, dass bei  Fourier zahlen, die kleiner als 0,01 sind, in der Körpermitte keine Änderung der Temperatur auftritt. Für die kurzen Zeiten gilt

folgende spezielle Lösung der Differentialgleichung (2.63):

* 2

*

*

Θ =  erf ( *

2

 x )

−( x )

(  x +  Bi )

+  e

⋅ e

⋅[1−  erf ( *

*

 x −  Bi )]

(2.71)

Das   Gauß'sche Fehlerintegral ist  erf  (error  function),  x* ein dimensionsloser Wandabstand, der auf ( a  .    t)0,5 bezogen ist, und  Bi* die  Biotz ahl, die mit diesem Wandabstand gebildet wird. 

Der dimensionslose Wandabstand  x* und die dimensionslose  Biot zahl  Bi* sind folgendermaßen definiert:

*

 x

*

α ⋅  a ⋅ t

 x =

 Bi =

(2.72)

2 ⋅  a ⋅ t

λ

Das  Gauß'sche Fehlerintegral ist definiert als:

 z

2

2

 erf ( z) =

⋅ ³ − x

 e

⋅  dx

π

(2.73)

0

Es ist nur nummerisch lösbar. Das Ergebnis ist in Bild 2.14 dargestellt. 
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Bild 2.14: Das  Gauß'sche Fehlerintegral

Bei kurzen Zeiten ist die Temperatur ϑ  in der Mitte des Körpers gleich der An-

 m

fangstemperatur ϑ . Die Temperatur ϑ  der Oberfläche erhält man bei  x = 0. Sie A

 O

beträgt:

2

*

Θ =  eBi ⋅ −

(2.74)

 O

[1  erf( *

 Bi )]

Wenn  Bi* größer als 2 ist, kann Gl. (2.74) näherungsweise als

1

Θ =

 O

*

π ⋅

(2.75)

 Bi

angegeben werden. Die Fehler sind kleiner als 1 %. 

Bei unendlich großer  Bi* ist der Grenzwert der Gl. (2.71):

§

 x

·

( *

Θ

)

 O =  erf

 x

=  erf ¨¨

¸¸

©

(2.76)

2 ⋅  a ⋅ t ¹

An der Oberfläche des Körpers beträgt die momentane Wärmestromdichte:

λ

λ ⋅ ρ ⋅ cp

 q ( t) =

⋅(ϑ −ϑ ) =

⋅(ϑ −ϑ )

 O

 A

 O

 A

 O

π

(2.77)

⋅  a ⋅ t

π ⋅ t

Die in der Zeit  t durch die Oberfläche  A abgeführte Wärme erhält man durch Integration von Gl. (2.77) über die Zeit von null bis  t. 

 t

2 ⋅  A⋅ λ ⋅ t

 Q ( t) =  A⋅  q ( t) ⋅  dt =

⋅(

³ 

ϑ −ϑ )

 O

 O

 A

 O

π ⋅

(2.78)

 a ⋅ t

0
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Mit der Energiebilanzgleichung lässt sich die in der Zeit  t abgeführte Wärme mit Gl. (2.70) bestimmen. 

 Q =  V ⋅ ρ ⋅  c

(2.79)

 p ⋅ (ϑ  A − ϑ )

Für die mittlere Temperatur erhält man somit:

2 ⋅  A ⋅ λ ⋅ t

2 ⋅  A ⋅  a ⋅ t

(ϑ −ϑ ) =

⋅(ϑ −ϑ ) =

⋅(ϑ −ϑ )

 A

 A

 O

 A

 O

(2.80)

 V ⋅ ρ ⋅  c ⋅ π ⋅  a ⋅ t

 V ⋅ π

 p

Das Verhältnis der Oberfläche zum Volumen ist bei einer Platte 1 /s (wobei zu beachten ist, dass  s die halbe Plattendicke ist), beim Kreiszylinder 4/ d und bei der Kugel 6/ d. Damit kann mit der aus Gl. (2.76) berechneten Oberflächentemperatur die mittlere Temperatur bestimmt werden. 

Die Gleichungen (2.76) bis (2.80) gelten nur, wenn die  Biot zahl sehr groß ist, d.h. wenn die Wärmeübergangszahl außen gegen unendlich geht. 

2.2.2

Gekoppelte Systeme

Bringt man zwei Körper (Bild 2.15) unterschiedlicher Temperatur miteinander in

Kontakt, stellt sich nach einer beliebig kurzen Zeit an der Oberfläche beider Körper die  Kontakttemperatur ϑ  ein. 

 K

Die beiden Körper können unterschiedliche Stoffeigenschaften haben. Da sie die

gleiche Fläche für den Wärmetransfer aufweisen, muss der Wärmestrom in beiden

Körpern gleich groß sein. Aus Gl. (2.77) erhalten wir:

λ ⋅ ρ ⋅ c ⋅(ϑ −ϑ ) = λ ⋅ ρ ⋅ c ⋅(ϑ −ϑ )

(2.81)

1

1

1

 p

1

 A

 K

2

2

 p 2

 K

 A 2

ϑ

λ  ,ρ  ,  c

 A 1

2

2

 p 2

ϑ K

ρ  ,  c

λ  ,1 1  p 1

ϑ A 2

Bild 2.15: Berührung zweier Körper unterschiedlicher Temperatur

Die Kontakttemperatur ϑ  ist:

 K

1

−

§

λ ρ  c

· §

λ ρ  c ·

⋅

⋅  p

⋅

⋅

2

2

2

2

2

 p  2

¨

¸ ¨

¸

ϑ

ϑ

ϑ

 K =

 A +

⋅  A ⋅ 1+

1

2

¨

λ ρ

(2.82)

 c

¸ ¨

λ ρ  c ¸

⋅ ⋅  p

⋅ ⋅

1

1

1

1

1

1

©

¹ ©

 p

¹
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Mit Gl. (2.82) kann man erklären, warum sich verschiedene Körper unterschied-

lich warm anfühlen. Die Kontakttemperaturen werden vom Verhältnis der Größen

(λ .  ρ .   c )0.5 in beiden Körpern, die als  Wärmeeindringkoeffizienten bezeichnet wer-p

den, bestimmt. Eine Kupferplatte hat einen wesentlich größeren Wärmeeindring-

koeffizienten als die menschliche Hand. Deshalb fühlt man in etwa die Temperatur

der Kupferplatte. Bei einer Styroporplatte ist es umgekehrt, hier empfindet man eher die Temperatur der Hand. 

Solange die Temperaturänderung keine tieferen Schichten des Körpers erreicht, 

bleibt die Kontakttemperatur konstant. Werden größere Schichten erfasst, kommt

es zu einem allmählichen Temperaturausgleich, der vom Wärmeinhalt beider

Körper bestimmt wird. Dieses kann beispielsweise an einer Aluminiumfolie

demonstriert werden. Fasst man eine sehr dünne, heiße Alufolie an, entsteht im

ersten Moment eine Kontakttemperatur, die etwa der Temperatur der Alufolie

entspricht. Da die Folie sehr dünn ist und so nur wenig Masse zum Speichern der

Wärme hat, kühlt sie sehr schnell ab. Sie ist nicht in der Lage, die Haut so zu

erwärmen, dass die Temperaturerhöhung zu den Nerven, mit denen die Temperatur

registriert wird, gelangt. Die Folie fühlt sich nur mäßig warm an. Fasst man eine

Aluminiumplatte gleicher Temperatur an, verbrennt man sich die Finger. 

BEISPIEL 2.15: Berechnung der Kontakttemperatur

Ein Körper aus Styropor und einer aus Kupfer haben beide die Temperatur von

0 °C. Sie werden mit der Hand berührt. Die Stoffwerte sind:

Styropor:

ρ = 15 kg/m3

λ = 0,029 W/(m K)

 c   = 1 250

J/(kg K)

 p



Kupfer:

ρ = 8 300 kg/m3

λ = 372 W/(m K)

 c  =

419

J/(kg K)



 p

Hand:

ρ = 1 020 kg/m3

λ = 0,5 W/(m K)

 c   = 2 400

J/(kg K)



 p



Berechnen Sie die Kontakttemperatur. 

Lösung

 Analyse

Die Kontakttemperatur kann mit Gl. (2.82) bestimmt werden. Zur Vereinfachung

der Berechnung werden zuerst die Wärmeeindringkoeffizienten berechnet, die wir

mit ξ bezeichnen. 

Styropor:

ξ

= ρ ⋅ c ⋅λ = 15⋅1 250⋅0,029 = 23,3

 Styropor

 p

Kupfer:

ξ

= ρ ⋅ c ⋅λ = 8 300⋅ 419⋅372 = 35 968

 Kupfer

 p

Hand:

ξ

= ρ ⋅ c ⋅λ = 1 020 ⋅2 400⋅0 ,  5 = 1106

 Hand

 p

Die Kontakttemperatur zwischen Styropor und Hand ist:
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ϑ

+ (ξ

/ ξ

) ⋅ϑ

 A,  Hand

 Styropor

 Hand

 A,  Styropor

=

=

 K ,  Styropor −  Hand

1+ (ξ

/ ξ

)

 Styropor

 Hand

36 °C + (23 ,  3  /  1106) ⋅ 0 °C

=

= 35,26 °C

1+ 23 ,  3  /  1106

Die Kontakttemperatur zwischen Kupfer und Hand ist:

ϑ

+ (ξ

/ ξ

) ⋅ϑ

 A,  Hand

 Kupfer

 Hand

 A,  Styropor

ϑ

=

=

 K ,  Kupfer − Hand

1 + ξ

/ ξ

 Kupfer

 Hand

36   C

° + (35 968  /  1106) ⋅0   C

°

=

= 1,07 °C

1 + 35 968  /  1106

 Diskussion

Wegen des sehr kleinen Wärmeeindringkoeffizienten fühlt sich die Temperatur

des 0 °C kalten Styropors handwarm an, bei Kupfer ist es umgekehrt. 

2.2.3

Sonderfälle bei  Bi = 0 und  Bi =  ∞

Geht die  Biot zahl gegen null, d.h., die äußere Wärmeübergangszahl ist sehr klein bzw. die Wärmeleitfähigkeit des Material sehr groß, dann ist die Temperatur im

Körper unabhängig vom Ort und daher nur noch von der Zeit abhängig. 

ϑ

ϑ

 A

 A

ϑ A

 t =  0

 t =  0

 t =  0

 t = t

 t = t

 t = t

1

1

1

 t = t  2

 t = t  2

 t = t  2

 t = t

 t = t

3

3

 t = t  3

 t = t  4

 t = t

 t = t

4

4

ϑ

ϑ

ϑ

 t =

 t =

 t =

ϑ

ϑ

ϑ

 x

 x

 x

 Bi =

ϑ   =

 Bi =  0

ϑ   =

 O

ϑ   =

 m

ϑ

 O

ϑ

ϑ = ϑ(  t,x

)

Bild 2.16: Temperaturverlauf bei Extremfällen
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Bei sehr großen  Biot zahlen, d.h., bei sehr großen äußeren Wärmeübergangs-

zahlen oder sehr kleiner Wärmeleitfähigkeit der Körpers nähert sich die Oberflä-

chentemperatur ϑ der Außentemperatur ϑ an. 

 O 

∞ 

Dieses Verhalten ist in Bild 2.16 dargestellt. Links ist der Temperaturverlauf bei Bi = ∞. Die Oberflächentemperatur ist gleich groß wie die Außentemperatur. 

Rechts im Bild bei  Bi = 0 ist die Temperatur im Körper vom Ort unabhängig. Das Bild in der Mitte zeigt den Temperaturverlauf  bei endlichen  Biot zahlen. Die Temperatur ist von Ort und Zeit abhängig. 

2.2.4

Temperaturänderung bei kleinen  Biotzahlen

Bei vielen technischen Prozessen interessiert während der Abkühlung oder Erwär-

mung nicht die Temperaturverteilung im Körper, sondern die mittlere Temperatur-

änderung. Wie die Diagramme in den Bildern 2.11 bis 2.13 zeigen, ist bei kleinen

 Biot zahlen – d.h., die äußere Wärmeübergangszahl ist kleiner als die im Körper –

zwischen den Oberflächen, der mittleren und der Temperatur in der Körpermitte nur

ein kleiner Temperaturunterschied. Sind die  Biot zahlen kleiner als 0,5, kann man mit recht guter Genauigkeit die Berechnungen so durchführen, dass die Temperatur

im ganzen Körper als mittlere Temperatur angenommen wird. Bei  Biot zahlen, die kleiner als 1 sind, ist für Abschätzungen eine so durchgeführte Berechnung immer

noch zulässig. 

 2.2.4.1

 Ein kleiner Körper taucht in ein Fluid großer Masse

Ein kleiner Körper mit der Masse  m , der Wärmekapazität  c  und Temperatur ϑ

1

 p 1

 A 1

wird in ein Fluid mit der Temperatur ϑ  eingetaucht (Bild 2.17). 

 A 2

 m 1

 c p 1

ϑ A 1

ϑ A 2

α

Bild 2.17: Ein Körper kleiner Masse taucht in ein Fluid großer Masse ein

Die Masse (Wärmekapazität) des Fluids wird als so groß angenommen, dass

durch das Eintauchen des Körpers keine Temperaturänderung im Fluid auftritt. An

der Oberfläche des Körpers ist die Wärmeübergangszahl α. Die Wände des Behäl-

ters sind nach außen isoliert. Der Wärmestrom, der vom Körper zum Fluid geht, ist

die zeitliche Änderung der Enthalpie des Körpers. 
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 d



ϑ

 Q = − m ⋅  c

1

⋅

1

 p 1

(2.83)

 dt

Der Wärmestrom wird aber von der Wärmeübergangszahl und Temperaturdiffe-

renz zwischen dem Fluid und Körper bestimmt. Beachtet man, dass bei einer Ab-

kühlung des Körpers seine Temperaturänderung negativ und die Temperaturdif-

ferenz positiv ist, gilt:

 Q = α ⋅  A⋅(ϑ −ϑ )

(2.84)

1

 A 2

Beide Gleichungen gleichgesetzt, ergeben folgende Differentialgleichung:

 dϑ

α ⋅  A

1 = −

⋅(ϑ −ϑ )

1

 A 2

 dt

 m ⋅  c

(2.85)

1

 p 1

Wird die Temperatur ϑ  durch die Temperaturdifferenz ϑ  – ϑ  substituiert, er-

1

1

 A 2

halten wir nach Separation der Variablen:

 d (ϑ

ϑ )

α

1 −

2

⋅  A

 A

= −

⋅  dt

ϑ ϑ

(2.86)

1 −

 m

2

1 ⋅  c

 A

 p 1

Konstante Wärmeübergangszahl und konstante Stoffwerte vorausgesetzt, kann

diese Gleichung integriert werden. 

α⋅ A

−

⋅ t

 m ⋅ c

1

1

(ϑ −ϑ ) = (ϑ −ϑ )

 p

⋅ e

(2.87)

1

 A 2

1

 A

 A 2

Bild 2.18 zeigt den zeitlichen Verlauf der Abkühlung des Körpers. Die Tempera-

tur des Körpers nähert sich mit zunehmender Zeit der Fluidtemperatur

asymptotisch. 

ϑ

ϑ A 1

ϑ1

ϑ A 2

 t

Bild 2.18: Temperaturverlauf bei der Abkühlung des Körpers

Für die dimensionslose Darstellung müssen die dimensionslose Temperatur Θ

und dimensionslose Zeit τ  folgendermaßen gebildet werden:

ϑ

α ⋅

 A 1 − ϑ1

τ

Θ

−

=

=

 A

 t

1−  e

ϑ

mit:        t =

τ =

0

⋅

 A 1 − ϑ A 2

 m c

 t

1

 p 1

0
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Die Zeit  t  ist die Zeit, in der der eingetauchte Körper bei 1 K Temperaturdif-0

ferenz zum umgebenden Fluid um 1 K erwärmt wird. Bild 2.19 zeigt den dimensi-

onslosen Temperaturverlauf. 

1,0

Θur 0,8

perat

em 0,6

e T

los

ions 0,4

ens

dim 0,2

0 0

1

2

3

4

dimensionslose Zeit τ

Bild 2.19: Dimensionslose Darstellung des zeitlichen Temperaturverlaufs

BEISPIEL 2.16: Härten von Stahlwerkstücken

Zylinderförmige Stahlwerkstücke mit einer Masse von 1,2 kg, einer Oberfläche von

300 cm2 und einem Durchmesser von 20 mm sollen zum Härten in einem Ölbad von

800 °C auf 300 °C abgekühlt werden. Das Ölbad hat eine Temperatur von 50 °C, die

Wärmeübergangszahl beträgt 600 W/(m2 K). 

Die Stoffwerte des Stahls sind: λ  = 47 W/(m K),  c  = 550 J/(kg K). 

 p

Welche Zeit wird für die Abkühlung benötigt? 

Lösung

 Annahme

•

Die Temperatur und Wärmeübergangszahl des Ölbades sind konstant. 

 Analyse

Zunächst muss geprüft werden, wie groß die  Biot zahl ist. 

 Bi = α ⋅  r / λ = 600⋅ 01

, 

0

/ 47 = 128

, 

0

Damit ist die Bedingung erfüllt, dass  Bi < 0,5 ist. Die Auskühlzeit kann mit Gl. 

(2.87) berechnet werden. 

 m c

ϑ

ϑ

1 ⋅

1

 p

§ 1 A −

·

1,2

 A 2

⋅ kg ⋅550⋅J ⋅ m2 ⋅ K

§ 800 − 50 ·

 t =

ln

=

⋅ln¨

¸ =

s

  

40,2

¨¨

¸¸

α ⋅  A

© ϑ ϑ

1 −

 A 2 ¹

kg ⋅ K ⋅ 600⋅ W ⋅ 0,03⋅ m2

© 300 − 50 ¹

68

2 Wärmeleitung in ruhenden Stoffen

 Diskussion

Die Berechnung ist relativ einfach. Aus den Diagrammen in Bild 2.12 erhält  man

einen Wert von 46,8 s, also beträgt der Fehler 14 %. Es wäre hier zu prüfen, ob

dieser Fehler mit dem Härteverfahren vereinbar ist. 

 2.2.4.2

 Ein Körper taucht in ein Fluid mit vergleichbarer Masse

Bild 2.20 zeigt das Eintauchen eines Körpers in ein isoliertes, mit einem Fluid ge-fülltes Becken mit einer relativ kleinen Wärmekapazität  m  .   c . Beim Eintauchen 2

 p 2

hat der Körper die Temperatur ϑ , das Fluid ϑ . 

 A 1

 A 2

Die Masse und die spezifische Wärmekapazität des Körpers haben den Index 1, 

die des Fluids den Index 2. Da die Wärmekapazität des Fluids nicht mehr sehr groß

ist, wird durch das Eintauchen des Körpers dessen Temperatur verändert. 

Der vom Körper abgegebene Wärmestrom ist die zeitliche Änderung der Enthal-

pie des Körpers. 

 d



ϑ

−  Q =  m ⋅ c

1

⋅

1

 p 1

(2.88)

 dt

Der vom Fluid aufgenommene Wärmestrom ist entgegengesetzt gleich groß wie

die zeitliche Änderung der Enthalpie des Fluids. 

 m 1

 cp 1

ϑ A 1

ϑ A 2

 m 2

 c p  2

α

Bild 2.20: Ein Körper kleiner Masse taucht in ein Fluid vergleichbarer Masse ein d



ϑ

 Q =  m ⋅  c

2

⋅

2

 p  2

(2.89)

 dt

Der Wärmestrom wird von der Wärmeübergangszahl und Temperaturdifferenz

zwischen Fluid und Körper bestimmt. 

 Q = α ⋅  A⋅ (ϑ −ϑ )

(2.90)

1

2
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Für die Änderung der Temperaturdifferenz zwischen Fluid und Körper erhält

man aus den Gln. (2.88) und (2.89):

ª

º

1

1

 d (ϑ

)



ϑ

1 −

2

=  Q

− ⋅ «

+

» ⋅  dt

 m

(2.91)

1 ⋅  c

 m

1

2 ⋅  c

«

 p

 p

¬

2 »

¼

Aus Gl. (2.90) kann der Wärmestrom in Gl. (2.91) eingesetzt werden. 

 d

ª

º

(ϑ

ϑ )

1

1

1 −

2

= α ⋅  A⋅ «

+

» ⋅  dt

(ϑ

ϑ )

(2.92)

1 −

 m

2

1 ⋅  c

 m

1

2 ⋅  c

«

 p

 p

¬

2 »

¼

Unter der Voraussetzung, dass die Massen, die Wärmeübergangszahl und spezi-

fischen Wärmekapazitäten konstant sind, kann Gl. (2.92) integriert werden. Die In-

tegration erfolgt von der Zeit  t = 0 bis  t und von den Anfangstemperaturen ϑ  und A 1

ϑ  bis zu den Temperaturen ϑ  und ϑ . 

 A 2

1

2

ª

º

(ϑ

ϑ )

1

1

1 −

2

ln

= −α ⋅  A⋅ «

+

» ⋅ t

(ϑ

ϑ )

(2.93)

1 −

 m

2

1 ⋅  c

 m

1

2 ⋅  c

 A

 A

«

 p

 p

¬

2 »

¼

Für die Temperaturdifferenz zwischen dem Körper und Fluid erhält man:

ª

§

· º

1

1

ϑ ϑ

(ϑ

ϑ ) exp α

1 −

2 =

 A 1 −

 A 2

⋅

«

¨

¸

− ⋅  A ⋅

+

⋅ t»

«

¨

¸

(2.94)

©  m 1 ⋅  c

 m

 p 1

2 ⋅  c p  2 ¹

»

¬

¼

Mit Gl. (2.94) kann die Temperaturdifferenz zwischen dem Fluid und Körper, 

nicht aber die Temperatur des Körpers oder Fluids bestimmt werden. Die Tempera-

tur des Körpers und Fluids können aus den Gleichungen (2.88) und (2.89) für jede

beliebige Zeit ermittelt werden. Da in den Gleichungen die Massen und spezifi-

schen Wärmekapazitäten konstant sind, kann die in der Zeit  t ab- und zugeführte Wärme berechnet werden. 

 Q( t) =  m ⋅  c ⋅ (ϑ −ϑ )

1

1

 p

1

 A

1

(2.95)

 Q( t) =  m ⋅  c ⋅ (ϑ −ϑ )

2

 p  2

2

 A 2

Gl. (2.95) gilt auch für eine unendlich lange Zeit, bei der ein Temperaturaus-

gleich zwischen dem Körper und Fluid erreicht wird. Die Temperatur nach dem

Ausgleich ist:

 m ⋅  c ⋅ϑ +  m ⋅ c ⋅ϑ

1

1

 p

1

 A

2

 p  2

 A 2

ϑ∞ =

 m ⋅  c +  m ⋅  c

(2.96)

1

1

 p

2

 p  2

Für die Temperaturänderungen erhält man aus den Gln. (2.95) und (2.96):
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 m

ϑ −ϑ

ϑ −ϑ

⋅ c

2

 p  2

1

 A

1

1

 A

=

∞ =

ϑ −ϑ

(2.97)

∞

ϑ −ϑ

 m ⋅  c

2

 A 2

 A 2

1

1

 p

Gl. (2.97) kann nach ϑ  oder ϑ  aufgelöst und in Gl. (2.94) eingesetzt werden. 

1

2

Damit erhält man die Temperatur des Körpers und Fluids. 

ª

§

· º

1

1

ϑ ϑ

(ϑ

ϑ ) exp α

1 −

∞ =

 A 1 −

∞ ⋅

«

¨

¸

− ⋅  A⋅

+

⋅ t»

«

¨

¸

(2.98)

©  m 1 ⋅  c

 m

 p 1

2 ⋅  c p  2 ¹

»

¬
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ª

§

· º

1

1

ϑ ϑ

(ϑ

ϑ ) exp α

2 −

∞ =

 A 2 −

∞ ⋅

«

¨

¸

− ⋅  A⋅

+

⋅ t»

«

¨

¸

(2.99)

©  m 1 ⋅ c

 m

 p 1

2 ⋅  c p  2 ¹

»

¬

¼

Der Temperaturverlauf ist in Bild 2.21 dargestellt. 

ϑ

ϑ A 1

ϑ1

o

ϑ o

ϑ2

ϑ A 2

 t

Bild 2.21: Temperaturverlauf bei der Abkühlung des Körpers mit Änderung der Fluidtemperatur

 2.2.4.3

 Wärmetransfer durch einen strömenden Wärmeträger

Bild 2.22 zeigt einen nach außen isolierten Behälter mit einem Fluid, das durch einen strömenden Wärmeträger aufgeheizt oder abgekühlt wird. 

. 

 m 1

 c

 m

 p 1

2

ϑ 1

 A

 cp 2

ϑ2

 A

 k

Bild 2.22: Erwärmung oder Abkühlung eines Fluids

ϑ1

durch einen strömenden Wärmeträger
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Das Fluid ist durch eine Wand vom Wärmeträger getrennt. Die Temperatur des

Fluids ist zu Beginn der Erwärmung oder Abkühlung gleich ϑ . Der Wärmeträger

 A 2

hat am Eintritt die Temperatur ϑ , am Austritt ϑ . Er wird durch das Fluid gekühlt A 1

1

oder erwärmt. Die Wärmeübertragung erfolgt mit einer konstanten Wärmedurch-

gangszahl. Nach unendlich langer Zeit nimmt das Fluid die Eintrittstemperatur des

Wärmeträgers an, die Wärmeträgertemperatur verändert sich nicht mehr. Unter der

Voraussetzung, dass der Massenstrom des Wärmeträgers, die Wärmedurchgangs-

zahl, die spezifischen Wärmekapazitäten und örtlichen Fluidtemperaturen konstant

sind, können die Temperaturänderung des Fluids und die des Wärmeträgers am

Austritt berechnet werden. Ohne auf die Herleitung einzugehen, sind hier die Er-

gebnisse dargestellt. 

°­ª  m  c

§

1 ⋅

§

·
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°½
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BEISPIEL 2.17: Kühlen eines Drahtes im Wasserbad

Ein Draht mit 2 mm Durchmesser und einer Temperatur von 300 °C wird durch ein

Wasserbad geführt, um ihn dort abzukühlen. Er bewegt sich mit einer Geschwin-

digkeit von 0,5 m/s durch das Bad und befindet sich auf 5 m Länge im Wasser. Das

Wasser hat eine Masse von 5 kg und zu Beginn des Prozesses eine Temperatur von

20 °C. Stoffwerte des Drahtes: ρ = 8 000 kg/m3, λ = 47 W/(m K),  c  = 550 J/(kg K). 

 p

Die Wärmeübergangszahl im Bad ist 1 200 W/(m2 K) und die spezifische Wär-



mekapazität des Wassers beträgt  c  = 4 192 (J/kg K). Nach welcher Zeit muss das p 2



Wasser ausgewechselt werden, wenn die Temperatur des Drahtes nach Verlassen

des Wasserbades nicht über 100 °C sein darf? 

Lösung

 Annahmen

•

Die Stoffwerte sind konstant. 

•

Die Eintrittstemperatur des Drahtes ist konstant. 

•

Die Temperatur und Wärmeübergangszahl des Wasserbades sind konstant. 

 Analyse

Hier müssen wir mit Gl. (2.87) bestimmen, bei welcher Wassertemperatur die

Temperatur des Drahtes am Austritt aus dem Bad 100 °C überschreitet. Zunächst

wird die Zeit, die bis zur Erwärmung des Bades auf diese Temperatur vergeht, be-

rechnet. Der Draht wird als strömender Wärmeträger behandelt. Jetzt muss geprüft

werden, wie groß die  Biot zahl ist.  Bi = ρ .   r/λ = 1 200 .  0,001/47 = 0,026. Damit ist die Bedingung erfüllt, dass  Bi < 0,5 ist. Die Temperatur des Bades kann mit Gl. 
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(2.87) berechnet werden. Der Draht befindet sich 10 Sekunden lang im Bad. Aus Gl. 

(2.87) ist ersichtlich, dass die Länge des Drahtes für die Abkühlung keine Rolle

spielt. Im Exponent steht der Ausdruck  A/ m . Berechnet man die Oberfläche des 1

Drahtes und seine Masse, fällt die Länge weg. Dieses ist gültig, solange die Stirn-fläche keine Rolle spielt, was bei diesem Beispiel zutrifft. 
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Mit Gl. (2.100) kann die Zeit berechnet werden, in der sich das Wasser von 20 °C

auf 99,14 °C erwärmt. In der Gleichung benötigt man den Massenstrom und die

Oberfläche. 
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 Diskussion

Dieses Beispiel zeigt, dass auch bewegte feste Körper einen Massenstrom haben

können. Die Kombination des bewegten Wärmeträgers und die Abkühlung des fes-

ten Körpers erlauben die Berechnung des Problems. 
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2.2.5

Nummerische Lösung der instationären Wärmeleitungsgleichung

In Kapitel 2.2.1.1 wurde die instationäre Wärmeleitungsgleichung (2.64) hergelei-

tet. Anschließend wurde eine Reihe von Lösungen für vergleichsweise einfache

Geometrien angegeben, für die eindimensionale Wärmeleitung angenommen wer-

den darf. Für die Bestimmung einer Temperaturverteilung in komplizierteren Geo-

metrien mit mehrdimensionaler Wärmeleitung werden nummerische Lösungsme-

thoden benutzt, die in Form von Computerprogrammen implementiert sind. Nach-

folgend sollen einige wesentliche Grundlagen der nummerischen Lösungsverfahren

anhand der Methode der finiten Differenzen beleuchtet werden. 

 2.2.5.1

 Diskretisierung

Für die Betrachtungen nutzen wir das Beispiel eines zylindrischen Stabes mit der

Anfangstemperatur ϑ , der an der gesamten Mantelfläche und an einem Ende adia-

 A

bat ist. An seinem anderen Ende wird er zum Zeitpunkt  t  = 0 mit einem Körper  der 0

Temperatur ϑ  in Kontakt gebracht. In Bild 2.23 ist der Temperaturverlauf im Stab

∞

zu verschiedenen Zeitpunkten  t ≥  0 skizziert. 

ϑ∞

ϑ

ϑ∞

ϑ

 t, j

∞

 tj

Δ x

Δ t

 …

ϑ

 t1

Α

 t0

 x

 x

 0

 1

 x2  

 …        xi

 x, i

Bild 2.23: Zeitliche Entwicklung des Temperaturverlaufs in einem adiabten Stab Statt des kontinuierlichen Temperaturverlaufs ϑ (x,t) können auch Temperaturen ϑ (x ,t ) an einer begrenzten Anzahl von Punkten in Raum und Zeit bestimmt wer-i

 j

den.  Solche Punkte und die zugehörigen Temperaturwerte sind in Bild 2.23 eben-
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falls eingezeichnet. Die Ermittlung der Temperatur in solchen diskreten Punkten

ist mathematisch erheblich einfacher als die analytische Lösung der Wärmeleitungs-

gleichung, wie nachfolgend gezeigt wird. 

Hierfür muss zunächst die Wärmeleitungsgleichung in eine diskretisierte Form

überführt werden. Die mathematische Basis für diese Überführung ist die  Taylorreihe für eine beliebige Funktion  f:

 n

 n

∞ ∂  f

Δξ

¦

 f (ξ + Δξ )

( )

=

 n

(2.101)

=

ξ

∂

 n

 n

! 

0

ξ

Schreibt man diese Reihe bis zum vierten Reihenglied für den linken und rechten

Nachbarpunkt von ξ aus, so erhält man:

2

3

Δξ

Δξ

 f (ξ + Δξ )

( )

( )

=  f (ξ) +  f (′ξ)Δξ +  f ′

+  f ′

+... 

2

6

2

3

Δξ

Δξ

(2.102)

 f (ξ − Δξ )

( )

( )

=  f (ξ ) −  f (′ξ)Δξ +  f ′

−  f ′

+

2

6

Eine Addition dieser Gleichungen liefert einen Ausdruck für die zweite Ablei-

tung, der nur von den Werten der Funktion bei ξ und in den unmittelbaren Nachbar-

punkten abhängt:

ξ + Δξ −

ξ + ξ − Δξ

 f ′′(ξ )

 f (

) 2  f ( )

 f (

)

=

(Δξ )2

(2.103)

Neben der Addition wurden die Reihen hierfür auch nach dem jeweils dritten

Glied abgebrochen. Das führt zu einer sehr einfachen Approximation für die

zweite Ableitung, bringt aber zugleich einen Fehler durch den Abbruch ein. Da

der vernachlässigte Term proportional (Δξ)² ist, wird dieser Fehler quadratisch

mit kleiner werdendem Δξ  abnehmen. Man spricht daher im Hinblick auf die Ge-

nauigkeit der o.g. Approximation von einem Ansatz zweiter Ordnung. 

Bricht man die erste Gleichung aus (2.102) nach nach dem zweiten Glied ab und

löst nach der ersten Ableitung von  f auf, hängt der entstehdende Ausdruck wiederum nur vom Funktionswert von  f in ξ und in einem Nachbarpunkt ab:

ξ + Δξ − ξ

 f ′(ξ )

 f (

)

 f ( )

=

Δξ

(2.104)

Da hier der Abbruch nach dem zweiten Glied der Reihe erfolgt, nimmt der Fehler

proportional mit dem Abstand zwischen den Punkten ab. Man spricht daher in die-

sem Fall von einer Approximation erster Ordnung. 
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 Bei der Überführung von Differentialen in Differenzenquotienten entsteht ein

 Fehler, der Diskretisierungsfehler genannt wird. Er wird umso kleiner, je kleiner die Abstände zwischen den diskreten Punkten gewählt werden. 

Da bei dem Ausdruck in Gl. (2.104) nur der in positiver ξ-Richtung gelegene

Funktionswert und der Funktionswert bei ξ selbst in die Berechnung eingehen, 

spricht man auch von einem Vorwärts-Differenzenquotienten (engl. Downwind). 

Ebenso kann man einen Rückwärts-Quotienten angeben (engl. Upwind). Der Aus-

druck in Gleichung (2.103) wird dagegen zentraler Differenzenquotient (engl. 

Central Difference) genannt, da in ihn der Funktionswert bei ξ sowie beide Nach-

barwerte eingehen. 

Nunmehr läßt sich die für den betrachteten Zylinder gültige Form der Wärmelei-

tungsgleichung nach Gl. (2.63)

2

ϑ

∂

∂ ϑ



=  a  2

 t

∂

 x

∂

durch Einsetzen der Approximationen nach Gleichung (2.103) und (2.104) als

diskrete Differenzengleichung angeben:

ϑ ( t +  t

Δ ) −ϑ ( t)

ϑ ( x + Δ x) − 2ϑ ( x) +ϑ ( x − Δ x)

= ⋅



 a

 t

Δ

Δ

(2.105)

 x

 x

( )2

 t

Dazu wurde in Gl. (2.103) und (2.104) die allgemeine Koordinate ξ jeweils

durch die Raumkoordinate  x und die Zeit  t ersetzt. Weiterhin geht man von einem jeweils gleichen Abstand zwischen allen Raumpunkten sowie allen Zeitpunkten

aus, man spricht von einem äquidistanten Netz. Die Angabe der Indizes  x auf der linken Seite der Gleichung sowie  t auf der rechten Seite bedeutet, dass die zeitliche Differenzenbildung am Ort  x erfolgt und die räumliche Differenzenbildung zum Zeitpunkt  t. 

 2.2.5.2

 Nummerische Lösung

Um die Differenzengleichung (2.105) für eine große Zahl an diskreten Punkten

 i,j effizient anschreiben und nummerisch lösen zu können, führt man noch eine Indexschreibweise ein. Die äquidistanten Raumpunkte werden mit dem Index  i

versehen, die äquidistanten Zeitpunkte mit dem Index  j. Die Indexschreibweise für die räumliche Verteilung sieht dann so aus:

ϑ (  x + Δ x = ϑ  x

=

′′

= ′

+

ϑ +

ϑ  x

ϑ                  (2.106)

 i

)

(  i  1)  i  1

(  i )

Für die Zeitebene wird lediglich  x durch  t sowie  i durch  j ersetzt, ansonsten gilt das gleiche Vorgehen. Danach stellt sich (2.105) in Indexschreibweise so dar:
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 x)2

Diese Gleichung läßt sich explizit nach ϑ

auflösen:
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 x)2

 i,  j

Bei genauerem Hinsehen stellt man fest, dass auf der rechten Seite dieser Glei-

chung nur Terme stehen, die in der Zeitebene  j liegen. Kennt man also die räumliche Verteilung der Temperatur in der Ebene  j, so kann man daraus die Temperaturwerte in der Ebene  j+1 auf einfachste Weise ermitteln. Von der bekannten An-fangsverteilung der Temperatur bei  j=0 kann man so sukzessive durch "Vorwärts-bewegung" für eine Zeitebene nach der anderen die räumliche Temperaturvertei-

lung in den Ebenen  j > 0 bestimmen. Da hierbei im Raum jeweils zentrale Differenzen gebildet werden, spricht man in der englischen Literatur auch vom FTCS-

Verfahren (Forward Time Center Space). 

In Bild 2.24 ist eine Projektion der Darstellung aus Bild 2.23 auf die  t-x- Ebene bzw. eine Draufsicht auf das dortige Diagramm dargestellt. Hier ist das Vorgehen

zur Ermittlung eines Temperaturwertes in der nächsten Zeitebene nochmals gra-

phisch veranschaulicht. Aus dieser Darstellung wird auch ersichtlich, warum von

einem "Berechnungsgitter" gesprochen wird, wenn es um die nummerische Lösung einer Differentialgleichung geht. 

 Durch Diskretisierung lässt sich eine Differentialgleichung in eine Differen-

 zengleichung überführen, die mit vergleichsweise einfachen mathematischen

 Mitteln gelöst werden kann. Die Lösung der Differenzengleichung ist dann in

 einer Vielzahl von Punkten in Raum und Zeit zu ermitteln, wofür durchweg

 Computerprogramme eingesetzt werden. 

Die Übertragung der Methode auf mehrdimensionale Gebiete bzw. Geometrien

ist einfach möglich. Es muss auf der rechten Seite der Gleichung (2.63) lediglich die räumliche Ableitung in den zusätzlichen Dimensionen  y und  z addiert werden. Damit kommen in den Gleichungen (2.107) und (2.108) Terme mit den Indizes  k und  l hinzu, am prinzipiellen Vorgehen zur Ermittlung des Temperaturwertes in der

nächsten Zeitebene ändert sich aber nichts. 

 Im Gegensatz zu den analytischen Methoden zur Lösung der instationären

 Wärmeleitungsgleichung lassen sich die nummerischen Methoden einfach auf

 komplizierte mehrdimensionale Geometrien erweitern. 
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Bild 2.24: Graphische Veranschaulichung des FTCS-Schemas

 2.2.5.3

 Wahl der Gitterweite und des Zeitschritts

Oben wurde dargelegt, dass durch die Diskretisierung ein Approximationsfehler in

die Wärmeleitungsgleichung und damit ihre nummerische Lösung eingebracht

wird. Durch Verkleinerung der räumlichen Gitterweite sowie des Zeitschrittes lässt sich dieser Fehler klein halten. Dabei besteht ein wichtiger Zusammenhang zwischen der  Gitterweite und dem Zeitschritt, der  Stabilitätsbedingung des nummerischen Verfahrens genannt wird:

(Δ x)2

 t

Δ ≤

(2.109)

2 a

Überschreitet die gewählte Zeitschrittweite diesen Wert, so wird das Verfahren

nicht zu sinnvollen Ergebnissen führen, die Lösung divergiert. Somit erzwingt die

Wahl einer kleinen räumlichen Gitterweite auch einen kleinen Zeitschritt. Dieser

Zusammenhang gilt streng für das hier vorgestellte explizite Finite-Differenzen-

Verfahren. Er läßt sich aber z.B. durch Einsetzen der Rückwärtsdifferenz zur Ap-

proximation der Zeitableitung auflösen. Allerdings ergibt sich dabei eine Glei-

chung, die nur implizit, d.h. durch die Lösung eines Gleichungssystems für die

räumliche Temperaturverteilung in jeweils folgenden Zeitschritt, gelöst werden

kann. 

Das ist mathematisch möglich, aber etwas aufwändiger als die oben vorgestellte

Methode. Gleichwohl ist die implizite Methode wegen ihrer besseren Stabilität und

der damit verbundenen Möglichkeit, den Zeitschritt erheblich größer zu wählen, in
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kommerziellen nummerischen Programmen stets implementiert. Für große Gebiete

mit einer Vielzahl von räumlichen Gitterpunkten ist so eine effizientere nummeri-

sche Lösung möglich. 

Es gibt eine Vielzahl anderer Methoden der räumlichen und zeitlichen Diskreti-

sierung sowie der Lösung der entstehenden Gleichungssysteme, z.B. die Methode

der finiten Elemente (FEM) und die Methode der finiten Volumen (FVM), auf die

hier aber nicht eingegangen werden soll. Mit diesen Verfahren lassen sich auch weitere Nachteile der hier vorgestellten Finite-Differenzen-Methode, wie das äquidis-

tante Gitter, vermeiden. 

3

Erzwungene Konvektion

Bei  erzwungener Konvektion wird der Wärmeübergang durch die Temperaturunterschiede und die Strömung, die durch eine äußere Druckdifferenz aufrechterhalten

wird, bestimmt. Die Druckdifferenz kann z.B. durch eine Pumpe oder einen Höhen-

unterschied erzeugt werden. Erzwungene Konvektion ist die in der Technik am häu-

figsten vorkommende Wärmeübergangsart. In Wärmeübertragern wird zwischen

zwei Fluiden, die durch eine Wand getrennt sind, Wärme übertragen. Unsere Auf-

gabe wird sein, die Wärmeübergangszahlen in Abhängigkeit von den Strömungs-

bedingungen, den Temperaturen und der Geometrie des Wärmeübertragers zu be-

stimmen. 

Betrachtet man ein Fluid mit der Temperatur ϑ , das in einem Rohr, dessen

 F

Wandtemperatur ϑ  ist, entlangströmt, ist die Wärmestromdichte an einem beliebi-

 W

gen Ort gemäß der Definition in Kapitel 1.1.2 gegeben als:

 q = α ⋅ (ϑ −ϑ )

(3.1)

 F

 W

Bei dieser Definition wird das Fluid mit einer konstanten Temperatur im gesam-

ten Raum angenommen. Die Erfahrung zeigt, dass im Fluid in Wandnähe ein Tem-

peraturprofil, analog dem Geschwindigkeitsprofil, entsteht. Bei einer turbulenten

Strömung, auf deren Behandlung sich dieses Kapitel hier zunächst beschränkt, ist in der Wandnähe eine  Temperaturgrenzschicht vorhanden [3.1], in der sich die Temperatur von der Wandtemperatur zur Fluidtemperatur ändert (Bild 3.1). 

ϑ

 r

 F

 c(r)

Temperatur-

profil

ϑ  (r)

Modell-

vorstellung

ϑ w

δϑ

Bild 3.1: Temperaturverlauf in einer turbulenten Rohrströmung

P. von Böckh, T. Wetzel  Wärmeübertragung, 

DOI 10.1007/978-3-642-15959-6_3, © Springer-Verlag Berlin Heidelberg 2011
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In der Grenzschicht wird die Wärme durch Wärmeleitung übertragen. Erweitert

man (3.1), indem man eine Bilanz an der Oberfläche der Wand bildet, so kann man

schreiben:

§ ϑ

∂ ·

 q = α ⋅(ϑ −ϑ

= −λ

 F

 W )

¨

¸

© ∂ r ¹ rW

§ ϑ

∂ ·

¨

¸

© ∂

(3.2)

 r ¹ rW

α = −λ ϑ −ϑ

 F

 W

Die Wärmeübergangszahl hängt demnach von der Temperaturverteilung im Flu-

id sowie von der Wärmeleitfähigkeit des Fluids ab. Die Temperaturverteilung im

Fluid ist ihrerseits in komplizierter Weise mit dem Geschwindigkeitsfeld im Fluid

verknüpft. Durch Linearisierung des Temperaturverlaufs im Fluid kann man jedoch

zunächst eine Näherung für den Temperaturanstieg in der Grenzschicht und damit

eine Abschätzung für den Zusammenhang zwischen Dicke δ   der Grenzschicht, 

ϑ

Wärmeübergangszahl und Wärmeleitfähigkeit angeben:

§ ϑ

∂ ·

ϑ −ϑ

 F

 W

¨

¸ ≈

©  r

∂ ¹ r

δϑ

 W

λ

λ

α

(3.3)

≈

bzw. δϑ =

δ

α

ϑ

In den meisten für die Praxis relevanten Fällen kann die Temperaturgrenzschicht

wegen ihrer geringen Dicke nicht vermessen werden. Bei der Messung würde man

durch den Messfühler die Grenzschicht stören. Ähnlich wie bei der Bestimmung der

Rohrreibungszahlen turbulenter Strömung kann die Wärmeübergangszahl auch

nicht analytisch hergeleitet werden. Sie muss vielmehr aus Messungen empirisch

ermittelt werden. Da die Anzahl der unabhängigen Einflussgrößen größer ist als bei der Bestimmung der Reibung [3.2], müsste eine noch größere Zahl von Versuchen

durchgeführt werden. Um den Messaufwand in einem vernünftigen Rahmen zu hal-

ten, nutzt man  Modellvorstellungen und physikalische Ähnlichkeitsprinzipien, nach denen sich Unterschiede beim Wärmeübergang für verschiedene Geometrien, Stoffe und Fluidzustände letztlich auf wenige charakteristische  Kennzahlen zurückführen lassen. 

Bei der laminaren Strömung entsteht ein ganz anders verlaufendes Temperatur-

profil, das für einfache Geometrien mit einigem mathematischen Aufwand analy-

tisch berechenbar ist. Wegen ihrer geringeren technischen Bedeutung werden die

Beziehungen für die laminare Rohrströmung in diesem Kapitel zwar angegeben, die

Herleitung wird jedoch nicht behandelt. 
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3.1

Kennzahlen


Die beim konvektiven Wärmeübergang auftretenden Transportvorgänge lassen sich

durch Differentialgleichungen beschreiben. Grundsätzlich müssen Geschwindig-

keit (mit drei Komponenten), Druck und Temperatur des Mediums bestimmt wer-

den. Hierfür werden fünf unabhängige Gleichungen benötigt, die aus Erhaltungs-

sätzen bzw. Bilanzen hergeleitet werden können:

•

Erhaltung der Masse - Massenbilanz - Kontinuitätsgleichung

•

Erhaltung des Impulses - Impulsbilanz - Bewegungsgleichung

•

Erhaltung der Energie - Energiebilanz - Energiegleichung

In den nachfolgenden Abschnitten wird vereinfacht aufgezeigt, wie aus diesen

Gleichungen die wichtigsten charakteristischen Kennzahlen und damit die Grundla-

ge für die empirische Bestimmung der Wärmeübergangszahlen abgeleitet werden

können. 

3.1.1

Kontinuitätsgleichung

Wir betrachten zunächst einen ortsfesten Quader mit den Kantenlängen  dx,  dy,  dz in einem kartesischen Koordinatensystem (s. Bild 3.2). 
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Bild 3.2: Zur Herleitung der Kontinuitätsgleichung

Die in den Quader über die Fläche  dy·dz einfließende Masse ist

 m

 = ρ ⋅ c ⋅  dy ⋅  dz

 x

 x

und die an der gegenüberliegenden Fläche ausfließende Masse kann mit

∂(ρ ⋅ cx )

 m



= ⋅ ⋅ ⋅ +

⋅ ⋅

+

ρ  c dy dz

 dx dy dz

 x dx

 x

 x

∂

angegeben werden. Betrachtet man ein inkompressibles Fluid mit der Dichte  r, 

so ist die Differenz beider Massenströme:

 c

∂  x

 dm

 = −

ρ ⋅  dx ⋅ dy ⋅  dz

 x

∂ x
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Führt man diese Berechnung auch für die anderen Raumrichtungen durch, so

erhält man nach Summieren, Umordnen und Teilen durch ρ  · dx · dy · dz c

∂

∂ c

 c

∂

0

 y

 x

 z

=

+

+

∂ x

 y

∂

 z

∂

Dies ist die Kontinuitätsgleichung für ein inkompressibles Medium in kartesi-

schen Koordinaten. Aus ihr läßt sich keine charakteristische Kennzahl ermitteln, da diese Gleichung ohnehin keine spezifischen Größen eines bestimmten Fluids oder

einer bestimmten geometrischen Anordnung enthält. Die Kontinuitätsgleichung ist

aber die erste der fünf benötigten unabhängigen Gleichungen. 

3.1.2

Bewegungsgleichung

Diese Gleichung folgt aus einer Kräftebilanz an einem Massenelement im strömen-

den Fluid, wobei  s zunächst eine allgemeine Ortskoordinate ist:

 dc

 dc

 x

 x

¦ dF

=  dm ⋅

= ρ ⋅ dV ⋅

 äußere

 dt

 dt

Diese Bilanz besagt, daß die zeitliche Änderung der Geschwindigkeit bzw. des

Impulses des Fluides durch äußere Kräfte bewirkt wird. Wenn wir hier Kraftwir-

kungen aufgrund von elektrischen, magnetischen und Gravitationsfeldern aus-

schließen, lassen sich die äußeren Kräfte auf Druck- und Zähigkeitskräfte, letztere ausgedrückt mittels der Spannung τ ,  reduzieren:

¦ dF

= − dp ⋅ dA + ¦ dτ ⋅ dA

 äußere

Wenn wir weiterhin beachten, daß  dV = dA·ds gilt und  c = f( s,t), d.h. die Ge-x

schwindigkeit allgemein eine Funktion von Ort und Zeit ist, so können wir zusam-

menfassend schreiben:

 dc

§  c

 c

 s ·

 p

τ

 x

 x

 x

ρ ⋅

= ρ ∂

∂ ∂

∂

∂

⋅¨

+

¸ = −

+ ¦

 dt

©  t

∂

 s

∂

 t

∂ ¹

 s

∂

∂ s

Für die Schubspannung können wir den  Newton'  schen Schubspannungsansatz

τ  = η   . dc /ds einführen und erhalten dann für eine stationäre Strömung allgemein x

2

§  c

∂

·

∂ p

∂  c

 x

 x

ρ ⋅

 c

¨

¸ = −

+η ⋅ ¦

 x

2

© ∂ s

¹

∂ s

∂ s

bzw. speziell für die Raumrichtung  x mit der Geschwindigkeit  c  = f( x,y) : x

2

 c

∂

 p

∂

∂  c

 x

 x

ρ ⋅

 c = −

+η ⋅¦

 x

2

∂ x

∂ x

 y

∂
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Durch geschicktes Umschreiben dieser Gleichung kann man nun versuchen, 

möglichst viele der fluid-, zustands- oder geometrispezifischen Größen in der Gleichung zusammenzufassen. Der übliche Weg hierfür ist die Überführung in eine di-

mensionslose Gleichung. Diese erhalten wir, indem alle Variablen auf charakteristische Maße bezogen werden:

•

Bezugslänge  L:

 x = x*·L

•

Bezugsgeschwindigkeit  c:

 c  = c * · c

 x

 x

•

Bezugsdruck ρ  ·c²:

 p = p* · ρ  · c²

Die mit Stern versehenen Größen  x*,  c * und  p* sind demnach die dimensions-x

lose Ortskoordinate, die dimensionslose Geschwindigkeitskomponente sowie der

dimensionslose Druck. Wir werden später sehen, welche Größen in praktischen

Einsatzfällen als Bezugsgrößen dienen. Einsetzen der genannten Größen in die her-

geleitete Bewegungsgleichung und Umordnen führt zu:

2

 c

∂ *

 p

∂ *

η

∂  c *

 c *

 x

 x

= −

+

⋅ ¦

 x

2

 x

∂ *

∂ x* ρ ⋅ c ⋅  L

 y

∂ *

Der Kehrwert des Faktors vor dem Differential im dritten Term wird  Reynolds-

 zahl genannt. Sie ist das Verhältnis der Trägheits- zu den Reibungskräften. 

 c ⋅  L

 c ⋅  L ⋅ ρ

 m

 ⋅  L

 Re =

=

=

 L

ν

η

(3.4)

 A ⋅η

Die mittlere Geschwindigkeit der Strömung ist  c, die charakteristische Länge  L, die kinematische Viskosität des Fluids  n und h die dynamische Viskosität. Es ist üblich, die  Reynolds zahl mit einem Index zu versehen, der die charakteristische Länge  L repräsentiert. Da in der dimensionslosen Bewegungsgleichung außer  Re nur dimensionslose Lösungsvariablen und unabhängige Variablen stehen, ist die

Lösung der Gleichung für alle Strömungen mit gleicher  Reynolds zahl    identisch. 

Umgekehrt gilt: Die Unterschiede in den Lösungen der Diffenentialgleichung für

unterschiedliche Fluide, Zustände oder Geometrien lassen sich auf die Unterschiede in der Reynoldszahl zurückführen. Mit je einer Bewegungsgleichung für jede

Raumrichtung gewinnen wir drei weitere Gleichungen für die fünf unbekannten

Variablen. 

3.1.3

Energiegleichung

Die  Reynolds zahl enthält die Geschwindigkeit, die Zähigkeit sowie eine charakteristische Länge. Aus den vorangegangenen Kapiteln wissen wir aber, dass für die

Wärmeübertragung auch Eigenschaften wie Wärmeleitfähigkeit oder Wärmekapa-

zität relevant sind. Wir werden daher eine Energiegleichung für das strömende Flu-

id ableiten und analog der Bewegungsgleichung entdimensionieren, um zu einer

weiteren charakteristischen Kennzahl zu kommen. 
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 c

∂  x

 dm

 = −

ρ ⋅ dx ⋅ dy ⋅ dz

 x

 x

∂

Wir gehen hierfür von der Temperaturfeldgleichung in einem ruhenden Medium

aus, die bereits in Kapitel 2.2.1 aus  einer Energiebilanz bestimmt wurde:

2

2

2

ϑ

∂

§ ∂ ϑ ∂ ϑ ∂ ϑ ·

=  a ⋅¨

+

+

¸

2

2

2

∂ t

 x

© ∂

 y

∂

∂ z ¹

Für ein strömendes Fluid muß auf der linken Seite der Gleichung noch die Tem-

peraturänderung aufgrund des Enthalpietransports hinzugefügt werden. Hierzu er-

setzen wir das partielle Differential durch das totale Differential der Temperatur und beachten, dass  dx/dt = c ,   dy/dt = c  und  dz/dt = c  gilt. Damit ergibt sich: x

 y

 z

 dϑ

∂ϑ

ϑ

∂  dx

ϑ

∂  dy ∂ϑ  dz

=

+

+

+

=

 dt

 t

∂

 x

∂  dt

 y

∂  dt

 z

∂  dt



2

2

2

ϑ

∂

ϑ

∂

ϑ

∂

ϑ

∂

§ ∂ ϑ ∂ ϑ ∂ ϑ ·

+

 c +

 c +

 c =  a ⋅ ¨

+

+

¸

 x

 y

 z

2

2

2

∂ t

∂ x

 y

∂

 z

∂

© ∂ x

 y

∂

 z

∂ ¹

Die Variablen dieser Gleichung können analog denen der Impulsgleichung ent-

dimensioniert werden. Hier kommen aber noch folgende Größen hinzu:

•

Bezugstemperaturdifferenz (ϑ –ϑ ): ϑ  = ϑ * .  (ϑ –ϑ ) +ϑ

 F

 W

 F

 W

 F

•

Bezugszeit  L / c:

 t = t*·L/c

Durch Einsetzen der dimensionslosen Variablen und Umordnen gewinnen wir

folgende dimensionslose Form der Temperaturfeldgleichung:

2

2

2

ϑ

∂ * ∂ϑ *

ϑ

∂ *

ϑ

∂ *

 a

§ ∂ ϑ * ∂ ϑ * ∂ ϑ *·

+

 c * +

 c * +

 c * =

⋅¨

+

+

¸

 x

 y

 z

2

2

2

 t

∂ * ∂ x*

 y

∂ *

 z

∂ *

 c ⋅  L

 x

© ∂ *

 y

∂ *

∂ z * ¹

Den Vorfaktor vor dem rechten Term können wir etwas umschreiben:

 a

ν  a

1

1



=

⋅ =

⋅

 c ⋅  L

 c ⋅  L ν

 Re Pr

Die neue, neben der  Reynolds zahl auftretende Kennzahl wird  Prandtlzahl Pr genannt:

ν ν ⋅ ρ ⋅ cp

 Pr =

=

(3.5)

 a

λ
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Sie kann auch als das Verhältnis der Dicken der laminaren Strömungs- und Tem-

peraturgrenzschicht aufgefasst werden. Gase haben eine  Prandtl zahl   von etwa 0,7, die der Flüssigkeiten variiert in einem weiten Bereich. Sie ist temperaturabhängig. 

Wir haben nun fünf Gleichungen für fünf abhängige Variable hergeleitet, ent-

dimensioniert und auf diese Weise zwei für die konvektive Wärmeübertragung we-

sentliche charakteristische Kennzahlen gewonnen. Nun wenden wir die Methodik

der Entdimensionierung abschließend auf die Gleichung (3.2) an und erhalten

α ⋅  L

§ ϑ

∂ *·

= −¨

¸

=  Nu

λ

©  r

∂ *

 L

¹

(3.6)

 r* 1

=

Die dimensionslose Wärmeübergangszahl wird  Nußeltzahl genannt. Sie ist das Verhältnis der für die Strömung charakteristischen Länge  d und der Dicke der Temperaturgrenzschicht δ . 

ϑ  

Zugleich stellen wir fest, daß diese dimensionslose Wärmeübergangszahl offen-

bar nur vom dimensionslosen Temperaturfeld abhängig ist! Dieses wiederum erhal-

ten wir aber als eine Lösung des eben hergeleiteten Gleichungssystems, die durch

 Reynolds- bzw. Prandtlzahl und die durchströmte Geometrie charakterisiert ist. 

Trotz der sehr vereinfachten Herleitung des o.g. Gleichungssystems findet man

diesen Zusammenhang auch empirisch bestätigt und gibt die  Nußelt zahlen daher in folgender Form an:

 Nu =  f ( Re ,  Pr, Geometrie,ϑ / ϑ )

(3.7)

 L

 L

 W

Der letzte Term berücksichtigt die Abhängigkeit der  Nußelt zahl von der Richtung des Wärmestroms. Näheres dazu wird später ausgeführt.  Nußelt zahlen wurden in der o.g. Form für verschiedenste Geometrien, Stoffe und Strömungen experimentell  bestimmt und in Form sogenannter Korrelationen, d.h. Funktionen, die die er-

haltenen Meßwerte bestmöglich wiedergeben, von zahlreichen Autoren veröffent-

licht. Eine der umfangreichsten Darstellungen von  Nußelt funktionen findet sich im VDI-Wärmeatlas [3.4]. 

 Die Ermittlung von Wärmeübergangszahlen wird also auf die Ermittlung der

 für das jeweils vorliegende Problem passenden Nußeltzahl zurückgeführt. Aus

 dieser Nußeltzahl wird dann die Wärmeübergangszahl nach der o.g. Definiti-

 on bestimmt. 

In den nachfolgenden Kapiteln wird dies für einige technisch wichtige Fälle nä-

her erläutert. 
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3.2

Bestimmung der Wärmeübergangszahlen

Wie erwähnt, hängt die Wärmeübergangszahl von der  Reynolds zahl, den Stoffeigenschaften, der Geometrie und Richtung des Wärmestromes ab. Die Stoffeigen-

schaften werden durch die  Prandtl zahl berücksichtigt. Die Wärmeübergangszahl wird aus der  Nußelt zahl bestimmt. Man gibt die  Nußelt zahlen in folgender Form an: Nu =  f ( Re ,  Pr, Geometrie,ϑ / ϑ )

(3.7)

 L

 d

 W

3.2.1

Rohrströmung

Bei der Strömung von Fluiden in zylindrischen Rohren ist die charakteristische

Länge der Innendurchmesser  d  des Rohres. Zur Bestimmung der Wärmeüber-

 i

gangszahlen muss zwischen der turbulenten und laminaren Strömung unterschieden

werden. 

 3.2.1.1

 Turbulente Rohrströmung

Das Temperaturprofil einer turbulenten Rohrströmung ist in Bild 3.1 dargestellt. 

Die Temperatur des Fluids ist die Temperatur in der Rohrmitte. Die Beziehung für

die  Nußelt zahl, die nach heutigen Kenntnissen die Messergebnisse am besten wie-dergibt, lautet [3.3]:

(ξ / )

8 ⋅  Re ⋅  Pr

 d

 Nu

 i

=

⋅  f ⋅  f

 d ,  turb

1

2

 i

2 / 3

(3.8)

1+

, 

12 7 ⋅ ξ / 8 ⋅ ( Pr

− )

1

Die  Rohrreibungszahl  ist dabei ξ. Sie ist folgendermaßen gegeben:

−2

ξ = 8

, 

1

[

⋅log( Re )

(3.9)

 d

− ]

5

, 

1

 i

Die Stoffwerte werden mit der Temperatur des Fluids in der Rohrmitte bestimmt. 

Die Gleichungen (3.8) und (3.9) geben die Wärmeübergangszahl mit der besten

Genauigkeit bei der Strömung durch Rohre wieder. 

Gleichung (3.8) zeigt auch, dass zwischen der Reibung und dem Wärmeüber-

gang ein grundsätzlicher Zusammenhang besteht. Je größer die Reibungszahl ξ der

turbulenten Strömung im Rohr ist, desto größer ist auch die  Nußelt- und damit die Wärmeübergangszahl. Dieses verlangt vom Ingenieur, Wärmeübertrager so zu optimieren, dass er bezüglich Reibung und Wärmeübertragung die günstigste Lösung

findet. 

Die Funktion  f  gibt den Einfluss der Rohrlänge und  f  den der Richtung des 1

2

Wärmestromes an. Die Rohrlänge beeinflusst die Wärmeübergangszahl, weil das

Temperaturprofil am Eintritt des Rohres nicht ausgebildet und damit die Dicke der

Temperaturgrenzschicht dort gleich null ist. Die Wärmeübergangszahl ist unend-

lich. Bild 3.1 zeigt das Strömungs- und Temperaturprofil. 
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Die Dicke der Temperaturgrenzschicht nimmt mit steigender Lauflänge zu und

die lokale Wärmeübergangszahl wird kleiner, bis sie bei ausgebildeter Tempe-

raturgrenzschicht konstant bleibt. In der Regel ist bei der Berechnung von Wärme-

übertragern nicht die lokale Wärmeübergangszahl von Interesse, sondern deren

mittlerer Wert für die gesamte Rohrlänge. Die höheren Wärmeübergangszahlen am

Eintritt des Rohres beeinflussen die mittlere Wärmeübergangszahl. Die Funktion  f 1

zur Berücksichtigung der Rohrlänge lautet:

2 / 3

 f = 1+ ( d /  l)

(3.10)

1

 i

ϑ  (x = 0)

ϑ  (x)

 F

 F

 c

δϑ

ϑ w

ϑ w

α

α x

α

0

 x

 l

Bild 3.2: Einfluss der Rohrlänge auf die Wärmeübergangszahl

Die Richtung des Wärmestromes beeinflusst die Wärmeübergangszahl, weil die

 Reynolds- und  Prandtl zahl mit den temperaturabhängigen Stoffwerten des Fluids gebildet werden und in der Temperaturgrenzschicht eine andere Temperatur

herrscht. Für die Funktion  f  hat man für Flüssigkeiten und Gase zwei unterschiedli-2

che Beziehungen gefunden:

 f = ( Pr /  Pr )0 11

, 

für Flüssigkeiten

2

 W

(3.11)

 f = ( T /  T )0,45

für Gase

2

 W

Die angegebenen Gleichungen gelten für:

104 <  Red < 106

 i

 l /  di > 1

In Wärmeübertragerrohren sind die Temperatur des Fluids und die Temperatur

der Wand nicht konstant. Die Stoffwerte für das Fluid werden mit der mittleren

Temperatur ϑ  = (ϑ  + ϑ ) / 2 bestimmt. Zur Berechnung des Wärmestromes wird

 m

 ein

 aus
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die mittlere Temperaturdifferenz nach Gl. (1.15) verwendet. Sie wird mit den Tem-

peraturdifferenzen am Ein- und Austritt des Rohres gebildet. 

 Q = α ⋅  A⋅ ϑ

Δ

(3.12)

 m

Strömt außen am Rohr ebenfalls ein Fluid, wird zur Bestimmung des Wärme-

stromes die Wärmedurchgangszahl eingesetzt und mit den Fluidtemperaturen die

mittlere Temperaturdifferenz gebildet. Die Wandtemperatur ist:

 k ⋅  d

 k

 i

ϑ = ϑ +

⋅ ϑ

Δ

ϑ = ϑ −

⋅ ϑ

Δ

 Wi

 mi

 m

 Wa

 ma

 m

α ⋅

(3.13)

 d

α

 i

 a

 a

Für überschlägige Berechnungen kann an Stelle von Gl. (3.8) eine vereinfachte

Potenzgleichung verwendet werden, die die Wärmeübergangszahl mit etwa 5 %

Genauigkeit angibt:

0,8

0,48

 Nu

= , 

0 0235 ⋅ ( Re

− 230) ⋅  Pr

⋅  f ⋅  f

(3.14)

 d

 d

1

2

 i

 i

Zur Berücksichtigung der Richtung des Wärmestromes bei Gasen sind im VDI-

Wärmeatlas [3.4] weitere Funktionen angegeben. 

 3.2.1.2

 Laminare Rohrströmung bei konstanter Wandtemperatur

Hier wird nur die Strömung bei konstanter Wandtemperatur behandelt. In [3.4]

findet man Beziehungen für konstante Wärmestromdichte. Bei laminarer Rohr-

strömung ist in sehr langen Rohren (thermisch und hydraulisch ausgebildeter Strö-

mung) die Wärmeübergangszahl von der  Reynolds- und  Prandtl zahl unabhängig. 

Die  Nußelt zahl hat einen konstanten Wert. 

 Nud lam = 66

, 

3

, 

(3.15)

 i

Bei kürzeren Rohren, in denen die Temperatur- und Strömungsgrenzschicht

nicht ausgebildet sind, ist die  Nußelt zahl:

 Nu

= , 

0 644 3

⋅  Pr ⋅  Re ⋅ d /  l

 d ,  lam

 d

 i

(3.16)

 i

 i

Da der Übergang asymptotisch erfolgt, gilt folgende Ausgleichsgleichung:

3

3

3

3 / 2

 Nu

=

, 

3 66 + , 

0 644 ⋅  Pr ⋅ ( Re ⋅  d /  l)

(3.17)

 d ,  lam

 d

 i

 i

 i

Bis zu  Reynolds zahlen von 2 300 ist Gl. (3.17) gültig. Bild 3.3 zeigt die  Nußelt-zahlen für  Pr = 1 in Abhängigkeit von der  Reynolds zahl für verschiedene Rohrlängen. 
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Bild 3.3:  Nußelt zahl bei  Pr = 1; Sprünge beim Übergang von laminar zu turbulent

 3.2.1.3

 Gleichungen für den Übergangsbereich

Aus dem Diagramm ist ersichtlich, dass es beim Übergang von der laminaren zur

turbulenten Strömung sprunghafte Übergänge gibt. Gl. (3.8) ist wie angegeben nur

ab   Re > 104 gültig. Für den Übergangsbereich 2 300 <  Re  < 104 wird folgende di

Interpolationsgleichung vorgeschlagen:

 Nu

= −γ ⋅  Nu

 Re =

+ γ ⋅  Nu

 Re =

 di

(1 )

4

(

2 300)

(

10 )

 d ,  lam

 d , 

 i

 i turb

 Re − 2 300

mit      γ =

(3.18)

7 700

Bild 3.4 zeigt die mit der Ausgleichsgleichung berechneten  Nußelt zahlen. 

3
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Bild 3.4:   Nußelt zahl als Funktion der  Reynolds zahl und  d   /  l  bei  Pr = 1

 i
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BEISPIEL 3.1: Wärmeübergangszahl in einem Rohr

Zur Demonstration ihrer Größe werden die Wärmeübergangszahlen für verschie-

dene Stoffe in einem Rohr mit 25 mm Innendurchmesser berechnet. Die Rohrwand

hat eine Temperatur von 90 °C, das Fluid die von 50 °C. Die Geschwindigkeiten

und Stoffwerte sind:

Geschwindigkeit

kin. Viskosität Wärmeleitfähigkeit  Pr

 PrWi

m/s

10-6 m2/s

W/(m K)

Wasser

2

0,554

0,6410

3,570

1,96

Luft

1 bar

20

18,250

0,0279

0,711

Luft

10 bar

20

1,833

0,0283

0,712

R134a

10 bar

2

0,146

0,0751

3,130

3,13

Berechnen Sie die Wärmeübergangszahlen. 

Lösung

 Annahmen

•

Die Rohrwandtemperatur ist konstant. 

•

Der Einfluss der Anlaufströmung bleibt unberücksichtigt. 

 Analyse

Wie man später sieht, ist die  Reynolds zahl in allen Fällen größer als 104, so dass mit Gl. (3.8) gerechnet werden kann. Die ermittelten Werte sind:

 Re

ξ

 f

 Nu

α

 di

2

 di,turb

W/(m2 K)

Wasser

90 253

0,0182

1,068

432,1

11 079,5

Luft    1 bar

27 397

0,0238

0,949

63,9

71,3

Luft  10 bar 272 777

0,0146

0,949

377,0

426,8

R134a

34 2 466

0,0140

1,000

1 166,0

3 502,6

 Diskussion

Die Berechnungen zeigen, dass Flüssigkeiten wesentlich größere Wärmeüber-

gangszahlen als Gase haben, obwohl die Gasgeschwindigkeiten sehr viel höher als

die der Flüssigkeiten sind. Die kleineren Wärmeübergangszahlen werden durch

größere kinematische Viskosität und kleinere Wärmeleitfähigkeit der Gase verur-

sacht, wobei Wasser auf Grund seiner hohen Wärmeleitfähigkeit eine Sonderstel-

lung einnimmt. Bei Gasen steigen wegen Verringerung der kinematischen Viskosi-

tät mit dem Druck die  Reynolds zahl und Wärmeübergangszahl an. Der Einfluss der Rohrlänge bleibt unberücksichtigt, da er in diesem Beispiel keine Rolle spielt. 
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BEISPIEL 3.2: Wärmeübergangszahl in einem Wärmeübertrager

In einem Wärmeübertrager mit 1 m langen Rohren, 15 mm Außendurchmesser und

1 mm Wandstärke strömt Wasser mit der Geschwindigkeit von 1 m/s. Außen an den

Rohren kondensiert Frigen R134a bei 50 °C. Die Wärmeübergangszahl des Fri-

gens ist 5 500 W/(m2 K). Wärmeleitfähigkeit des Rohrmaterials: 230 W/(m K). Am

Rohreintritt hat das Wasser eine Temperatur von 20 °C. 

Stoffwerte des Wassers:

ρ

 c

λ

ν

 Pr

 p

kg/m3

J/(kg K)

W/(m K)

m2/s

-

20 °C:

998,2

4 184

0,598

1,003  .  10-6

7,00

30 °C:

995,7

4 180

0,616

0,801  .  10-6

5,41

40 °C:

992,3

4 178

0,631

0,658  .  10-6

4,32

Berechnen Sie die Wärmeübergangszahl, die Austrittstemperatur des Wassers

und den pro Rohr transferierten Wärmestrom. 
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Die mittlere Wärmeübergangszahl ist konstant. 

 Analyse

Die Austrittstemperatur des Wassers ist nicht bekannt, d.h., zur Bestimung der

Stoffwerte muss eine mittlere Temperatur angenommen und damit die Wärmeüber-

gangszahl, Wärmedurchgangszahl und der Wärmestrom bestimmt werden. Dann

können die Austrittstemperatur des Wassers und die mittlere Temperatur berechnet

werden. Zunächst wird angenommen, dass die Austrittstemperatur des Wassers

30 °C ist. Die mittlere Temperaur beträgt 25 °C. Die Stoffwerte des Wassers sind:

ρ = 997,0 kg/m3,  c  4 182 J/(kg K), λ = 0,607 W/(m K),  Pr = 6,21, 

 p

ν = 0,902  .  10-6 m2/s. 

 c ⋅  d

1⋅ m ⋅ 0,013⋅ m ⋅s

Die  Reynolds zahl ist: 

 i

 Re =

=

= 14 412

−6

2

ν

s ⋅ 0,902 ⋅10 ⋅ m

Widerstandszahl nach Gl. (3.9): ξ =

8

, 

1

[

⋅ log( Re )

 d

− ]

5

, 

1

2

− = , 

0 0279

 i

Die  Nußelt zahl kann jetzt mit den Gln. (3.8), (3.10) und (3.11) berechnet werden. 

Der Einfluss der Richtung des Wärmestromes nach Gl. (3.11) benötigt die

 Prandtl zahl, gebildet mit der Wandtemperatur. Da diese erst nach Berechnung der Wärmeübergangs- und Wärmedurchgangszahl möglich ist, muss hier iteriert werden. Die Größe  f  wird zunächst als 1 angenommen. Die Größe  f  ist: 2

1

92

3 Erzwungene Konvektion

 f = 1+ ( d /  l)2/3

 i

= 1+ ( 013

, 

0

/ )

1 2/3 = 055

, 

1

1

Die  Nußelt zahl nach (Gl. 3.8) berechnet sich als:

(ξ / 8) ⋅  Re ⋅  Pr

 di

 Nu

=

⋅  f ⋅  f =

 d ,  turb

1

2

 i

2/3

1+12, 7 ⋅ ξ / 8 ⋅ ( Pr

−1)

0, 0035 ⋅14 412 ⋅ 6, 21

=

⋅1,055 =118,3

2/ 3

1 +12, 7 ⋅ 0, 0035 ⋅ (6, 21

−1)

Damit ist die Wärmeübergangszahl:

2

α =  Nu ⋅λ /  d = 118,3⋅0,607 ⋅ W/(m ⋅K)/(0,013⋅m) = 5524  W/(m ⋅K)

 d i

 i

Die Wärmedurchgangszahl ist nach Gl. (2.27):

−1

§ 1

 d

 d

 d

·

 a

 k = ¨

+

⋅ ln  a

 a

+

¸ =

© α

2 ⋅ λ

 d

 d ⋅α

 a

 R

 i

 i

 i ¹

−1

§ 1

0 ,  015

15

15

·

W

= ¨

+

⋅ ln

+

¸ = 2529   2

© 5500 2 ⋅ 230

13

13⋅ 5524 ¹

m ⋅ K

Mit der Wärmedurchgangszahl und der mittleren Temperaturdifferenz kann die

Wandtemperatur ermittelt werden. Die mittlere Temperaturdifferenz beträgt:

ϑ ′−ϑ′

30

(

− 20)⋅ K

1

1

Δϑ m =

=

=

K



24,66

§ϑ −ϑ′ ·

§ 50 − 20 ·

ln

2

1

ln¨

¸

¨¨

¸¸

ϑ −ϑ ′

© 50 − 30 ¹

© 2

1 ¹

Die Wandtemperatur ist nach (Gl. 3.13):

 k ⋅  d

2 529 ⋅13

 i

ϑ = ϑ + Δϑ ⋅

= 25 C

° + 24,66⋅K ⋅

34

= ,8 C

°

 W

 m

 m

α ⋅ d

5524 ⋅15

 i

 a

Die linear interpolierte  Prandtl zahl bei 34,8 °C beträgt 4,89. 

Nach Gl. (3.11) ist die Größe  f :   f = ( Pr /  Pr )0 11

, 

 W

= , 

6

( 21/

)

89

, 

4

0 11

, 

= 027

, 

1

2

2

Die  Nußelt- und auch die Wärmeübergangszahl werden um 3,0 % größer. Für α ,  i k und ϑ  erhält man die folgenden Werte: α  = 5 671 W/(m2 K),  k = 2 565 W/(m2 K), W

 i

ϑ =  34,7 °C.  Pr  wird damit zu 4,901 und die Größe  f  zu 1,0263. Mit diesen W

 W

2

Werten kann man α  und  k bestimmen:

 i

α  = 5 670 W/(m2 K)           k = 2 564 W/(m2 K)

 i

Mit der kinetischen Kopplung berechnen wir die transferierte Wärme. 
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 Q =  k ⋅  A⋅ Δϑ =  k ⋅π ⋅  d ⋅ l ⋅ Δϑ =

 m

 a

 m

2

= 2564⋅ W/(m ⋅K) ⋅ ʌ ⋅0,015⋅ m ⋅1⋅ m ⋅24,66⋅ K = 2980 W

Aus der Energiebilanzgleichung des Wassers kann die Austrittstemperatur be-

stimmt werden. Der Massenstrom im Rohr ist:

 m

 =  c⋅ , 

0 25

2

⋅π ⋅ d ρ

 i ⋅

=1⋅ m/s⋅0,25⋅ ʌ ⋅0,0132 ⋅ m2 ⋅997⋅ kg/s = 0,132 kg



/s

 Q

2 980 W

ϑ = ϑ

⋅

′′

′ +

= 20 C

° +

= 25,4 C

°

1

1

 m

 ⋅ c

0,132 ⋅ kg/s ⋅ 4182 ⋅ J/(kg ⋅ K)

 p

Die mittlere Temperatur des Wassers ist nicht wie angenommen 25 °C, sondern

22,7 °C. Die Berechnung muss mit folgenden neuen Stoffwerten wiederholt wer-

den: ρ = 997,5 kg/m3,  c  4 182 J/(kg K), λ = 0,607 W/(m K), ν = 0,948  .   10-6 m2/s, p

 Pr = 6,53. 

Die Berechnungsschritte sind nicht mehr im Detail gezeigt, sondern nur die

Ergebnisse. 

 Re

α

 k

Δϑ

ϑ

 f

 Q

ϑ   

 di

 i

 m

 W

 2

 1

W/(m2 K)

W/(m2 K)

K

°C

W

°C

13 706

5 525

2 530

27,22

33,49 1,0297

5 544

2 534

27,22

33,47 1,0298

5 543

2 534

3 251

25,87

13 778

5 559

2 538

26,96

33,60 1,0295

5 557

2 537

26,96

33,60 1,0295

5 557

2 537

3 223

25,82

Hier kann die Iteration abgebrochen werden, weil die letzten Änderungen kleiner

als 0,2 % sind. 

 Diskussion

Zur Berechnung der Wärmeübergangszahlen und Temperaturen in Wärmeüber-

tragern sind in der Regel Iterationen erforderlich, die stark konvergent sind. Bei diesem Beispiel hätte man bereits nach der ersten Iteration aufhören können. Der Wär-

mestrom war schon mit 1 % Genauigkeit berechnet. Will man aufwändige Berech-

nungen vermeiden, muss man Computerprogramme erstellen, in denen die Stoff-

werte und Formeln programmiert sind. Oft genügt es, nur die Stoffwerte bei zwei

Temperaturen anzugeben und zwischen diesen Stützstellen linear zu interpolieren. 

Jedenfalls sollte geprüft werden, ob dann die erforderliche Genauigkeit erreicht

wird. 
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BEISPIEL 3.3: Auslegung eines Kraftwerkkondensators

In einem Kraftwerkkondensator soll ein Wärmestrom von 2  000 MW abgeführt

werden. Der Kondensator hat Titanrohre mit 24 mm Außendurchmesser und

0,5 mm Wandstärke. Die Kühlwassergeschwindigkeit in den Rohren beträgt 2 m/s. 

Titan hat eine Wärmeleitfähigkeit von 16 W/(m K). Der Dampf kondensiert bei

einer Sättigungstemperatur von 35 °C, die Wärmeübergangszahl bei der Kondensa-

tion ist 13 500 W/(m2 K). Das Kühlwasser wird von 20 auf 30 °C erwärmt. Bei 25 °C

sind die Stoffwerte des Wassers:

ρ = 997,0 kg/m3,  c  = 4 182 J/(kg K),  Pr = 6,2,   λ = 0,607 W/(m K), p

ν  = 0,902  .  10-6 m2/s. 

Der Einfluss der Richtung des Wärmestromes kann vernachlässigt werden. Zu

berechnen sind:

a) die Anzahl der Rohre

b) die Rohrlänge

c) die Kondensationstemperatur, wenn sich die Wärmedurchgangszahl wegen

Verschmutzung um 10 % verringert. 
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•

Die mittlere Wärmeübergangszahl ist konstant. 

•

Der Einfluss der Richtung des Wärmestromes kann vernachlässigt werden, d. h., 

 f  = 1. 

2

 Analyse

a)

Mit der Energiebilanzgleichung kann der Massenstrom des Kühlwassers be-

stimmt werden. 

6

 Q

2 000 ⋅10 ⋅ W ⋅ kg ⋅ K

kg

 m

 =

=

= 47824  

 c ⋅ (ϑ′′−ϑ )

′

4182 ⋅ J ⋅ (30 − 20) ⋅ K

s

 p

1

1

Mit der gegebenen Geschwindigkeit des Kühlwassers kann der Massenstrom pro

Rohr berechnet werden. 

 m



π

ρ

 Rohr =  c ⋅

, 

0 25

2

⋅ ⋅  di ⋅ = 2⋅ m/s ⋅0,25⋅ ʌ ⋅0,0232 ⋅ m2 ⋅997⋅ kg/s =

kg/



0,828

s

1

Man benötigt 57 727 Rohre, um den Massenstrom von 47 824 kg/s zu erreichen. 

3 Erzwungene Konvektion

95

b)

Zur Berechnung der  Nußelt zahl mit Gl. (3.8) benötigt man die Funktion  f . 

1

Sie berücksichtigt den Einfluss der Rohrlänge, die jetzt noch unbekannt ist. Für die erste Berechnung wird daher  f  = 1 gesetzt. 

1

 c ⋅  d

2 ⋅ m ⋅ 0,023⋅ m ⋅s

 Reynolds zahl:  

 i

 Re =

=

= 50998

6

−

2

ν

s ⋅ 0,902 ⋅10 ⋅ m

Widerstandszahl nach Gl. (3.9): ξ =

8

, 

1

[

⋅ log( Re )

 d

− ]

5

, 

1

2

− = , 

0 0206

 i

(ξ / 8) ⋅  Re ⋅  Pr

 d

0,00257 ⋅50 998⋅6, 2

 i

 Nu

=

=

= 321,3

 d ,  turb

 i

2/3

2/3

1+12,7 ⋅ ξ / 8 ⋅( Pr

−1) 1+12,7⋅ 0,00257 ⋅(6,2 −1)

Damit ist die Wärmeübergangszahl:

2

α =  Nu ⋅λ /  d = 321,3⋅0,607 ⋅ W/(m ⋅K)/(0,023⋅m) = 8481 W/(m ⋅K)

 i

 d i

 i

und die Wärmedurchgangszahl nach Gl. (2.27):

−1

1

−

§ 1

 d

 d

 d

·

§ 1

0 ,  024

24

24

·

 a

 k = ¨

+

⋅ln  a

 a

+

¸ = ¨

+

⋅ln

+

¸ =

© α

2 ⋅ λ

 d

 d ⋅α ¹

©13500

2 ⋅16

23

23⋅8 481 ¹

 a

 R

 i

 i

 i

2

= 4366 W/(m ⋅ K)

Mit der Wärmedurchgangszahl und mittleren Temperaturdifferenz kann die not-

wendige Austauschfläche ermittelt werden. Die mittlere Temperaturdifferenz ist:

ϑ ′−ϑ′

30

(

− 20)⋅ K

1

1

Δϑ m =

=

=

K



9,102

§ ϑ −ϑ′ ·

§ 35 − 20 ·

ln

2

1

ln¨

¸

¨¨

¸¸

ϑ −ϑ ′

© 35 − 30 ¹

© 2

1 ¹

Die für den Wärmestrom benötige Austauschfläche wird mit der kinetischen

Kopplungsgleichung berechnet. 

6

2

 Q

2 000 ⋅10 ⋅ W ⋅ m ⋅ K

2

 A =

=

= 50325  m

 k ⋅ Δϑ

4 366 ⋅ W ⋅ 9,102 ⋅ K

 m

Daraus errechnet sich die Rohrlänge zu:

2

 A

50 325 ⋅ m

 l =

=

= 11,562  m

 n ⋅π ⋅  d

57 727 ⋅π ⋅ 0, 024 ⋅ m

 a
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Mit der Rohrlänge erhält man für die Funktion  f  = 1,016. Damit wird die Wär-1

meübergangszahl um 1,6 % größer, die Wärmedurchgangszahl um 1,43 % größer, 

die Rohrlänge entsprechend kleiner. Sie beträgt 11,460 m. Eine weitere Iteration

ergibt 11,465 m. 

c)

Der Dampfzufluss bleibt durch die Verschmutzung unbeeinflusst, so dass

sich der Wärmestrom und die Erwärmung des Kühlwassers nicht verändern. Damit

der Wärmestrom entsprechend der kinetischen Kopplungsgleichung abgeführt wer-

den kann, ändert sich die mittlere Temperaturdifferenz. Da sich das Produkt aus  k und   A unter Berücksichtigung der Rohrlänge nicht verändert, können die zuvor berechneten Werte verwendet werden. 

9

2

 Q

2 10

W m

K

Δϑ

⋅

⋅ ⋅

⋅

=

=

= 10,114 K

 m

2

 A ⋅  k

49 901⋅ m ⋅ 4 403⋅ 0,9 ⋅ W

 v

Daraus kann man mit (Gl. 1.15) die Kondensationstemperatur ermitteln. 

ϑ′′ ϑ

− ′

1

1

ϑ

Δ  m

ϑ′ −ϑ′⋅ e

1

1

ϑ =

= 35,93 °C

2

ϑ′′ ϑ

− ′

1

1

1

ϑ

Δ  m

−  e

 Diskussion

Bei der Auslegung des Kondensators muss die Rohrlänge bestimmt werden, die

Funktion  f  ist daher nicht bekannt, eine Iteration ist notwendig. Durch Verschmut-1

zung erhöht sich die Kondensationstemperatur. Damit bei verringerter Wärme-

durchgangszahl der Wärmestrom abgeführt werden kann, muss sich die mittlere

Temperaturdifferenz erhöhen. Weil sich die Aufwärmung des Kühlwassers nicht

ändert, erhöht sich die Kondensationstemperatur, damit der Wärmestrom abgeführt

werden kann. 

 3.2.1.3

 Rohre und Kanäle nicht kreisförmigen Querschnitts

Bei Rohren und Kanälen nicht kreisförmigen Querschnitts kann die  Nußelt zahl bei der turbulenten Strömung mit den zuvor angegebenen Gleichungen berechnet werden. An Stelle des Rohrinnendurchmessers wird dafür der  hydraulische Durch-

 messer des Kanals eingesetzt. Mit ihm werden die  Reynolds- und  Nußelt zahl bestimmt. 

Der hydraulische Durchmesser ist definiert als:

4 ⋅  A

4 ⋅ Austauschfläche

 dh =

=

 U

Umfang

(3.19)
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Bei laminarer Strömung ist die Berechnung nicht kreisförmiger Querschnitte mit

dem hydraulischen Durchmesser undurchführbar. 

 D

 d

Ringspalt

. 

 Q

Isolation

Bild 3.5: Ringspalt

 Ringspalte (Bild 3.5) benötigen eine zusätzliche Korrektur. Hier ist das Verhältnis beider Ringspaltdurchmesser zu berücksichtigen. Bei Ringspalten, in denen die

Wärmeübertragung nur vom oder zum Innenrohr erfolgt, kann z.B. folgende Kor-

rektur durchgeführt werden [3.4, 3.5]:

0 16

, 

 Nu

/  Nu

= 0 86

, 

⋅( D /  d)

(3.20)

 Ringspalt

 d h

BEISPIEL 3.4: Auslegung eines Gegenstrom-Wärmeübertragers

Der Wärmeübertrager einer Fernheizung besteht aus einem Innenrohr mit 18 mm

Außendurchmesser und 1 mm Wandstärke. Das Rohr ist von einem konzentrisch

angeordneten Außenrohr mit 24 mm Innendurchmesser ummantelt. Die mittlere

Geschwindigkeit im Rohr und im Ringspalt beträgt 1 m/s. In den Ringspalt  strömt

das Heizwasser mit der Temperatur von 90 °C hinein. Im Rohr fließt das Brauch-

wasser und soll von 40 °C auf 60 °C erwärmt werden. Die Wärmeleitfähigkeit des

Rohrmaterials ist 17 W/(m K). Das Außenrohr ist thermisch ideal isoliert. Zur Ver-

einfachung können die Funktionen  f  und  f  zu eins gesetzt werden. Die Stoffwerte 1

2

sind:

Dichte kin. Viskosität Wärmeleitfähigkeit  Pr

 cp

kg/m3

10-6 m2/s

W/(m K)

J/(kg K)

Brauchwasser

998,1

0,553

0,6437

3,55

4 179

Heizwasser

971,8

0,365

0,6701

2,22

4 195

Berechnen Sie, wie lang der Apparat werden muss. 
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•

Nach außen erfolgt kein Wärmetransport. 

•

Die senkrechte Einströmung des Wassers in den Ringraum wird vernachlässigt. 

•

Der Einfluss der Rohrlänge und der der Richtung des Wärmestromes werden

vernachlässigt. 

 Analyse

Um die notwendige Übertragungsfläche zu bestimmen, sind die Wärmeüber-

gangszahlen innen und außen und die mittlere Temperaturdifferenz zu berechnen. 

Für Letztere benötigen wir die Austrittstemperatur des Heizwassers, die mit Hilfe

der Energiebilanzgleichungen berechnet werden kann. Wir bestimmen zuerst die

Massenströme im Rohr und Ringspalt. 

 m

 =  c ⋅ , 

0 25

2

⋅π ⋅  d ⋅ ρ = 1⋅m/s⋅0,25⋅ ʌ ⋅0,0162 m2 ⋅998,1⋅ kg/m3 = 0,2007 kg



/s

1

1

1

1

 m

 =  c ⋅ , 

0 25⋅π ⋅ ( 2

2

 D −  d ) ⋅ ρ = 1⋅ 0,25⋅ ʌ ⋅ ( 024

, 

0

2 − 0 ,  18

0

2 ) ⋅971,8 = 0,1923 kg



/s

2

2

2

1

Aus der Bilanzgleichung kann mit den gegebenen Werten  der Wärmestrom zum

Brauchwasser berechnet werden. 

 Q =  m ⋅  c ⋅ (ϑ′′−ϑ )

′ = 0,2007⋅ kg/s ⋅4179⋅J/(kg ⋅K) ⋅(60 − 40)⋅K = 16,773  kW

1

1

 p

1

1

Dieser Wärmestrom wird vom Heizwasser abgegeben. Damit ist die Austritts-

temperatur des Heizwassers:

 Q

16 773 W

ϑ = ϑ

⋅

′′

′ −

= 90 C

° −

= 69,21 C

°

2

2

 m

 ⋅ c

0,1923 ⋅ kg/s ⋅ 4195⋅ J/(kg ⋅ K)

2

 p  2

Mittlere Temperaturdifferenz:

ϑ

Δ

ϑ

Δ

 gr −

 kl

30

(

− , 

29

)

21 ⋅ K

 ǻϑ m =

=

=

K



29,60

ln( ϑ

Δ

/ ϑ

Δ )

30

ln(

/

, 

29

)

21

 gr

 kl

Die Wärmeübergangszahl im Rohr wird mit  f  = 1 und  f  = 1 berechnet. 

1

2

 c ⋅  d

1⋅ m/s ⋅ 0,016 ⋅ m

1

1

 Re =

=

= 28 933

 d 1

−6

2

 v

0,553⋅10 ⋅ m /s

1
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Widerstandszahl nach Gl. (3.9): ξ =

8

, 

1

[

⋅ log( Re )

 d

− ]

5

, 

1

2

− = , 

0 0234

 i

(ξ / 8) ⋅  Re ⋅  Pr

 d

0 ,  00293⋅ 28933⋅3 ,  55

 i

 Nu

=

=

=157,4

 d ,  turb

 i

2/3

2  /  3

1+12,7⋅ ξ / 8 ⋅ ( Pr

−1) 1+12 ,  7⋅ 0 ,  00293 ⋅ ( 3 ,  55 −1 )

Damit ist die Wärmeübergangszahl:

2

α =  Nu ⋅λ /  d = 157,4⋅0,6437 ⋅ W/(m ⋅K)/(0,016 ⋅m) = 6333  W/(m ⋅K) i

 d i

 i

Zur Berechnung der Wärmedurchgangszahl im Ringspalt muss zuerst mit Gl. 

(3.19) der hydraulische Durchmesser ermittelt werden. 

4 ⋅  A

π ⋅( 2

2

 D −  d )

2

 d h =

=

=  D −  d = mm



6

 U

π ⋅( D +  d )

2

2

Die Wärmeübergangszahl kann mit den Gln. (3.8) und (3.20) bestimmt werden. 

 c ⋅  d

1⋅ m/s ⋅ 0,006 ⋅ m

2

 h

 Re

=

=

= 16 438

 dh

−6

2

 v

0,365 ⋅10 ⋅ m /s

1

Widerstandszahl nach Gl. (3.9):   ξ = 8

, 

1

[

⋅log( Re )

 d

− ]

5

, 

1

2

− = , 

0 0270

 h

0,16

(ξ / 8) ⋅  Re ⋅  Pr

§

·

 d

 D

 h

 Nu

=

⋅0,86⋅¨ ¸ =

 d ,  turb

 h

2/3

1+12,7 ⋅ ξ / 8 ⋅( Pr

−1)

 d

© 2 ¹

0,16

0 ,  00337 16

⋅ 438⋅2 ,  22

§ 24 ·

=

⋅0,86⋅¨ ¸ = 73,0

2  /  3

1+12 ,  7 ⋅ 0 ,  00337 ⋅(2 ,  22

−1)

© 18 ¹

Damit ist die Wärmeübergangszahl im Ringspalt:

2

α =  Nu ⋅λ /  d = 73⋅0,6701⋅W/(m⋅K)/(0,006⋅m) = 8155  W/(m ⋅K)

 a

 d

2

 h

 h

Wärmedurchgangszahl nach Gl. (2.27):

−1

§ 1

 d

 d

 d

·

2

2

2

 k = ¨

+

⋅ln

+

¸ =

© α

2 ⋅ λ

 d

 d ⋅α

 a

 R

1

1

 i ¹

−1

§ 1

0 ,  018

18

18

·

W

= ¨

+

⋅ln

+

¸ = 2 758    2

© 8155

2 ⋅17

16

16 ⋅ 6 332 ¹

m ⋅ K
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Die benötigte Austauschfläche beträgt:

2

 Q

16 773 ⋅ W ⋅ m ⋅ K

2

 A =

=

= 0,205 m

 k ⋅ Δϑ

2 758 ⋅ W ⋅ 29,6 ⋅ K

 m

 A

Die Rohrlänge errechnet sich zu:    l =

=

m

  

3,63

π ⋅ d 2

 Diskussion

Bei der Strömung von Wasser entsteht eine sehr große Wärmeübergangszahl. 

Dadurch kann ein großer Wärmestrom über eine kleine Übertragungsfläche fließen. 

Ohne die gemachten Vereinfachungen wäre unter Berücksichtigung der Rohr-

länge und Richtung des Wärmestromes der Rechenaufwand etwa dreimal größer. 

Der Fehler hier ist kleiner als 5 %. 

3.2.2

Ebene Wand

In technischen Apparaten kommt Wärmeübertragung durch erzwungene Konvekti-

on an einer ebenen Wand selten vor. Die Berechnung der Wärmeübergangszahlen

ist einfacher als bei anderen Körpern und wird deshalb in fast allen Lehrbüchern

ausführlich behandelt, um den Zusammenhang zwischen der Wärmeübergangs-

zahl und dem Reibungskoeffizienten aufzuzeigen. Hier werden nur die entspre-

chenden Gleichungen angegeben. Die charakteristische Länge ist die Länge  l der Wand in Strömungsrichtung. 

Für die laminare Strömung gilt:

3

5

 Nu

= 0,644⋅  Pr ⋅  Re

für  Re < 10

(3.21)

 l,  lam

 l

 l

Für die turbulente Strömung gilt:

0,8

0, 037 ⋅  Re ⋅  Pr

 l

5

7

 Nu

=

⋅  f

für 5 ⋅10 <  Re < 10

 l ,  turb

0, 

− 1

2/ 3

3

1 + 2, 443⋅  Re

⋅( Pr −

(3.22)

1)

 l

 l

Da die  Reynolds zahl mit der Plattenlänge gebildet wird, ist für die Geometrie keine weitere Korrektur notwendig. Funktion  f  ist die Korrekturfunktion für die 3

Richtung des Wärmestromes. Sie ist gegeben als:

0,25

 Pr PrW

 f 3 = (

/

)

für Flüssigke



iten

®

(3.23)

¯1

für Gase



Der Bereich zwischen den  Reynolds zahlen von 105 und 5 .  105 wird durch die beiden Gleichungen nicht abgedeckt. Der Übergang zwischen laminarer und turbu-
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lenter Strömung erfolgt asymptotisch. Beide Bereiche und der Übergangsbereich

werden durch folgende Gleichung erfasst:

2

2

7

 Nu =  Nu

+  Nu

für 10 <  Re < 10

(3.24)

 l

 l ,  lam

 l ,  turb

 l

3.2.3

Quer angeströmte Einzelkörper

Oft wird an ein vom Fluid quer angeströmten Körper Wärme übertragen. Zu den

technischen Anwendungen gehören z.B. quer angeströmte Rohre von Rohrbündeln

in Wärmeübertragern oder quer angeströmte Temperaturfühler. Rohrbündel werden

im Kapitel 3.2.4 behandelt. Ihre Berechnung basiert auf den Gesetzmäßigkeiten

quer angeströmter Einzelkörper. Wie wir in der Strömungslehre gesehen haben, 

bildet sich am Staupunkt der Strömung zunächst eine laminare Grenzschicht, die je

nach Strömungsgeschwindigkeit und Geometrie des Körpers nach einer gewissen

Strömungslänge in eine turbulente Strömung übergeht, es entstehen Strömungsab-

lösungen. Strömungsvorgänge und damit auch die Wärmeübergangseffekte sind

komplex. Wie bei der Rohrströmung ist es jedoch gelungen, Beziehungen herzu-

leiten, die die  Nußelt zahl als eine Funktion der  Reynolds zahl,  Prandtl zahl und Geometrie angeben. 

Für die Bildung der  Reynolds- und  Nußelt zahl ist die charakteristische Länge die Überströmlänge  L , die als die am Austausch beteiligte Fläche  A,  geteilt durch den projizierten Umfang des Körpers definiert ist. 

 L′ =  A / U

(3.25)

 proj

Der  projizierte Umfang ist der Umfang  U

der in Strömungsrichtung projizier-

 proj

ten Fläche des Körpers. Bei quer angeströmten Zylindern oder länglichen Körpern

hat der projizierte Umfang die doppelte Länge, bei einer Platte die Breite der Platte, bei einer Kugel den Umfang der Kugel. 

Bild 3.6 zeigt die Übertragungsflächen und die projizierten Umfänge einiger

Körper. 

 d

 d

 L

 b

 A = L  b

. 

 U   = b

 proj

ebene Platte

 A =    d

π 2

 U    =    d

π

 proj

Kugel

 d

 L

 L

 a

 b

 A =    d L

π

 U   = 2 L

 A = 2 (a + b) L

 proj

 U   = 2 L

 proj

Rohr (Zylinder)

viereckiger Stab

Bild 3.6: Übertragungsflächen und projizierter Umfang angeströmter Einzelkörper
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Bei einer Kugel und einem Zylinder findet selbst dann, wenn die  Reynolds zahl gegen null strebt, noch eine Wärmeübertragung durch Wärmeleitung im umgebenden Fluid statt. Für eine Kugelschale mit dem Innendurchmesser  d, deren Außendurchmesser gegen unendlich strebt (ruhende Umgebung), beträgt die Wärmeüber-

gangszahl nach Gl. (2.36):

λ

α

⋅

= 2

0

(3.26)

 d

Damit ist die minimale  Nußelt zahl einer Kugel:

 Nu

 Re

(3.27)

 L′

= 2

für

 L′ < 

1

, 

0

,0

Für einen Zylinder ist die Herleitung nicht mehr so einfach. Hier wird nur der

Wert angegeben. 

 Nu

 Re

(3.28)

 L′

= 3

, 

0

für  

 L′ < 

1

, 

0

,0

Für eine Platte ist die  Nußelt zahl  Nu

gleich null. 

 L' ,0

Bei sehr kleinen Abmessungen von Kugeln und Zylindern ist bei  Reynolds zahlen, die kleiner als 1 sind, die Grenzschichtdicke gegenüber den Körperabmessun-

gen nicht mehr vernachlässigbar und die  Nußelt zahlen für Kugel und Zylinder sind dann:

Kugel :

 Nu

 Re

 Pr

 Re

 L′

= ,1001 3

⋅

 L′ ⋅

für

1

, 

0 < 

 L′ < 1

,0

(3.29)

Zylinder :

 Nu

 Re

 Pr

 Re

 L′

= , 

0 75 3

⋅

 L′ ⋅

für

1

, 

0 < 

 L′ < 1

,0

Bei  Reynolds zahlen zwischen 1 und 1 000 gilt die gleiche Beziehung wie für eine ebene Wand oder ein Rohr. 

3

 Nu

= 0,664⋅  Pr ⋅  Re

für 1 <  Re < 1000

(3.30)

 L′,  lam

 L′

 L′

Bei  Reynolds zahlen von 105 bis 107 gilt nach [3.4]:

0,8

, 

0 037 ⋅  Re

 Pr

 L′ ⋅

5

7

 Nu

 f

 Re

 L′  turb =

⋅

für 10 < 

−

 L′ < 10

, 

0 1

, 

2 / 3

4

(3.31)

1+ , 

2 443⋅  Re

 Pr

 L′

⋅(

− )

1

In diesem Bereich kann die  Nußelt zahl mit etwas geringerer Genauigkeit auch durch eine vereinfachte Potenzgleichung angegeben werden. 

0,8

0,48

5

7

 Nu

 Re

 Pr

 f

 Re

(3.32)

 L′  turb =

, 

0 037 ⋅

 L′ ⋅

⋅

für 10 < 

 L′ < 10

, 

4

Der Bereich zwischen den  Reynolds zahlen von 103 und 105 ist nicht abgedeckt. 

Da sich die  Nußelt zahl hier asymptotisch den Werten der Gln. (3.25) bis (3.29) nähert, kann folgende Ausgleichsfunktion angegeben werden:
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2

2

7

 Nu

 Nu

 Nu

 Nu

 Re

(3.33)

 L′ =

 L′

+

 L′  lam +

für 10

 L′  turb

<  L′ <10

,0

, 

, 

Bild 3.7 zeigt die  Nußelt zahlen für quer angeströmte Zylinder. 

Der Korrekturfaktor  f  gibt den Einfluss der Richtung des Wärmestromes an und 4

ist:



0,25

 f = ( Pr /  Pr )

für Flüssigkeiten und 

0 121

, 

 f = ( T /  T )

für Gase. (3.34)

4

 W

4

 W

Wird ein Körper schräg angeströmt, verringern sich die Wärmeübergangszahlen. 

Bild 3.8 zeigt das Verhältnis der  Nußelt zahlen von schrägen zu quer angeströmten Zylindern. 

4

10

3

10

 Pr = 1

2

10

 ' 

 u LN

lh

Gl. (3.33)

az

1

 lt

10

 eß

Gl. (3.31)

 uN

Gl. (3.30)

0

10

-1

10

100

101

102

103

104

105

106

107

 Reynolds  zahl

 Re L' 

Bild 3.7:  Nußelt zahlen für quer angeströmte Zylinder

Bei längs angeströmten Zylindern kann die Wärmeübergangszahl wie für ebene

Wände berechnet werden. Ist jedoch die Abmessung des Zylinders wie z.B. bei

längs angeströmten dünnen Drähten gegenüber der Grenzschichtdicke klein, ist die-

ses zu berücksichtigen. Für längs angeströmte dünne Zylinder kann nachstehende

Gleichung verwendet werden. 

 Nu

(3.35)

, 

= 1

( + 3

, 

2 ⋅ ( L /  d ) ⋅  Re−0,5 ) ⋅  Nu

 L Zyl

 L

 L

 L ist dabei die Länge des Zylinders und  Nu  die  Nußelt zahl der ebenen Wand. 

 L
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Bild 3.8: Verhältnis der  Nußelt zahlen von schrägen zu quer angeströmten Zylindern BEISPIEL 3.5: Temperaturmessung mit einem Platinwiderstand

Mit einem zylinderförmigen Platinwiderstand, der einen Außendurchmesser von

4 mm hat, wird die Temperatur von 100 °C warmer Luft gemessen. Der Widerstand

hat folgende Temperaturabhängigkeit:  R (ϑ) = 100 Ω + 0,04 Ω/K .  ϑ.  Für die Messung fließt ein konstanter Strom von 1 mA durch den Widerstand. Dadurch wird der

Widerstand aufgeheizt und die Messung verfälscht. Die beheizte Länge des Fühlers

ist 10 mm. Die Stoffwerte der Luft sind: λ = 0,0314 W/(m K), ν = 23,06 .  10-6 m2/s, Pr = 0,701. 

Berechnen Sie, welche Temperatur bei 0,01, 0,1, 1, 10 und 100 m/s Strömungs-

geschwindigkeit senkrecht zum Widerstand gemessen wird. 

beheizte Länge

Lösung

10 mm

 c

 Schema

Siehe Skizze

oo

 Annahmen

4 mm

•

Die Temperatur im Messfühler ist konstant. 

•

Die Lufttemperatur ist konstant. 

•

Die Effekte am Ende des Fühlers sind vernachlässigbar. 

 Analyse

Der durch den Widerstand fließende Strom erzeugt folgenden Wärmestrom:

2

2

 Q =  i ⋅  R =  i ⋅

ȍ



0

10

(

+ 0,04ȍ

/K ⋅ϑ)
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Die Temperatur ϑ ist jene, welche vom Messfühler wahrgenommen und hier be-

rechnet werden muss. Sie ist höher als die Lufttemperatur. Dadurch kann der zuge-

führte Wärmestrom abgeführt werden. Dieser ist:

 Q = α ⋅  A⋅ (ϑ −ϑ )

∞

Da der zu- und abgeführte Wärmestrom gleich groß sind, kann die Temperatur ϑ

bestimmt werden. 

2

 i ⋅

ȍ



0

10

+α ⋅  A⋅ϑ

ϑ =

∞

2

α ⋅  A − i ⋅0 04

 , 

⋅ȍ/K

Für die verschiedenen Strömungsgeschwindigkeiten wird die Wärmeübergangs-

zahl mit Gl. (3.44) berechnet. Die zur Bestimmung der  Reynolds- und  Nußelt zahl benötigte charakteristische Länge ist:

 A

π ⋅ d ⋅ l π ⋅

 L′ =

=

=

 d =

mm



6,28

 U

2

 proj

⋅ l

2

Die Ergebnisse folgen tabelliert:

 c

 Re

 Nu

 Nu

 Nu

α

ϑ

 L

 L ,lam

 L ,turb

 L

m/s

W/(m2 K)

°C

0,01

2,66

0,962

0,068

1,265

6,320

100,131

0,10

26,60

3,044

0,431

3,374

16,860

100,050

1,00

266,00

9,624

2,719

10,301

51,480

100,016

10,00

2 662,00

30,435

17,154

35,236 176,092

100,005

100,00 26 624,00

96,244

108,233 145,136 725,311

100,001

 Diskussion

Der durch den Widerstand fließende Strom heizt den Temperaturfühler auf. Der

Fehler in der Temperaturmessung ist ab Strömungsgeschwindigkeit von 0,1 m/s

kleiner als 0,05 K. Bei den heutigen genauen Messinstrumenten kann der Mess-

strom wesentlich kleiner als 1 mA gewählt werden. 

Auch bei ruhender Luft mit  Nu

= 0,3 ist die Wärmeübergangszahl bereits ca. 

 L ,0

1,5, der Fehler würde bei ungefähr 0,5 K liegen. Schon bei einer Stromstärke von

0,1 mA sinkt der Fehler um den Faktor 100. 

3.2.4

Quer angeströmte Rohrbündel

In der Technik werden vielfach quer angeströmte  Rohrbündel eingesetzt. Bereits bei einer einzelnen Rohrreihe, die senkrecht zur Anströmung angeordnet ist, steigt die Geschwindigkeit zwischen den Rohren an, so dass die Beziehungen für einzeln
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angeströmte Körper die Wärmeübergangszahlen nicht mehr richtig beschreiben. 

Sind die Rohre in Strömungsrichtung hintereinander angeordnet, wird an den Roh-

ren die Strömung abgelöst und beeinflusst die Wärmeübergangszahlen zusätzlich. 

Die Berechnung ist so aufgebaut, dass von den Gesetzmäßigkeiten der quer an-

geströmten Einzelkörper ausgegangen wird und für die Rohrbündel, je nach geo-

metrischer Anordnung der Rohre, Korrekturfaktoren eingeführt werden. Bild 3.9

zeigt verschiedene Möglichkeiten der Rohranordnungen in einem Rohrbündel. 

Der Abstand der Rohre senkrecht zur Strömungsrichtung ist  s , der Abstand der 1

Rohrreihen  s . Die Anordnung eines Rohrbündels wird durch den  dimensionslosen 2

 Rohrabstand  a =  s / d und den dimensionslosen Rohrreihenabstand  b =  s / d charak-1

2

terisiert. 

1

 s

2. 

3. 

4. 

5. 



6. 

2


 c  0

fluchtend

 s 1

2. 

4. 

6. 



8. 

V


 s >d

 fest

2

 c

 V

0

 frei

versetzt

 s 1

 Vfrei

 c

 s <d

0

versetzt

2

 s 1

 Vfest

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.11.12.13. 

Bild 3.9: Verschiedene Anordnung der Rohre in Rohrbündeln

 a =  s /d

(3.36)

1

 b =  s /d

(3.37)

2

Die  Reynolds zahl wird mit der mittleren Geschwindigkeit  c  im Hohlraumanteil ψ

ψ gebildet. Der Hohlraumanteil ist das Verhältnis des Volumens zwischen den Roh-

ren (Hohlraum  V ) zum Gesamtvolumen  V des Bündels. Der Hohlraumanteil ist frei

andererseits das Gesamtvolumen minus Volumen der Rohre ( V ). Je nachdem, ob fest

sich die Rohre zweier Rohrreihen senkrecht zur Strömungsrichtung überdecken

( b < 1), sind zwei verschiedene Definitionen für den  Hohlraumanteil gegeben:
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2

 V

π

π

 fest

⋅ d ⋅

Ψ =

 l

1−

= 1−

= 1−

für  b > 1

(3.38)

 V

4 ⋅  s ⋅  d ⋅ l

4 ⋅  a

1

2

 V

π

π

 fest

⋅  d ⋅

Ψ =

 l

1 −

= 1−

= 1−

für  b < 1

(3.39)

 V

4 ⋅  s ⋅  s ⋅ l

4 ⋅  a ⋅ b

1

2

Die Geschwindigkeit, mit der die  Reynolds zahl gebildet wird, ist:

Ψ

 c =  c Ψ

/

(3.40)

0

Die  Reynolds zahl wird damit:

⋅ ′

Ψ

 c

 L

Ψ

 Re , ′ =

 L

ν

(3.41)

Mit dieser  Reynolds zahl wird die  Nußelt zahl für einzeln angeströmte Rohre gebildet und für die Bündelanordnung zusätzlich noch mit zwei Geometriefaktoren

multipliziert. Der erste Faktor  f  berücksichtigt die  Anordnung der Rohre im Bün-A

 del, der zweite  f  die Anzahl der Rohrreihen. 

 n

, 

0 7 ⋅ ( b /  a −

)

3

, 

0

 f A = 1+

fluchtende Anordnung

(3.42)

, 

1 5

2

Ψ ⋅( b /  a + , 

0 7)

2

 f = 1 +

 A

3 ⋅                versetzte Anordnung

(3.43)

 b

In der ersten Rohrreihe vergrößert sich die Wärmeübergangszahl durch die er-

höhte Geschwindigkeit. Sie ist zwar größer als bei einem angeströmten Einzel-

körper, jedoch kleiner als im Inneren des Bündels. Durch die Ablösung der Strö-

mung an den Rohren erhöht sich der Turbulenzgrad der Strömung und damit auch

die Wärmeübergangszahl. Diesen so genannten "  first row effect" muss man zusätzlich berücksichtigen. Will man ein Rohrbündel Rohrreihe für Rohrreihe berechnen, 

muss der Einfluss der Rohrreihenzahl für jede Rohrreihe lokal bekannt sein. In Bild 3.10 ist links der lokale der Korrekturfaktor  f  für die  j-te Rohrreihe und rechts  f  für j

 n

ein Bündel mit  n Rohrreihen dargestellt. Gl. (3.44) ist die Formel zur Berechnung des Korrekturfaktors der einzelnen Rohrreihe und Gl. (3.45) die für das gesamte

Bündel mit  n Rohren. Mit Gl. (3.46) kann die  Nußelt zahl  Nu  der  j-ten Rohrreihe und j

mit Gl. (3.47) die des Bündels  Nu

bestimmt werden. 

 Bündel
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1,1

1,1

 f j  1,0

 f n  1,0

or

or

fakt

fakt

ur

ur

rekt

rekt

Kor

Kor

0,9

0,9

0,8

0,8

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10 11 12 13 14 15

Nummer der Rohrreihe

Anzahl der Rohrreihen

Bild 3.10: Korrekturfaktor für den Einfluss der Rohrreihen (links lokal, rechts integral) 2

0, 6475 + 0, 2 ⋅  j − 0, 0215⋅  j

wenn  j ≤ 4

 f =

 j

2

4

3

2

1+1/ (  j +  j) + 3⋅ (2 ⋅  j −1) / (  j − 2  j +  j ) wenn  j ≥

(3.44)

5

2

074423 + 0,8⋅  n − 0, 006 ⋅  n

wenn  n ≤ 5

 f =

 n

0, 018 + exp[0,0004⋅( n − 6) − ]

1

wenn  n ≥

(3.45)

6

 N u = α ⋅  L ′ / λ =  N u ⋅  f ⋅  f

(3.46)

 j

 L ′

 A

 j

 Nu

= α ⋅  L′ / λ =  Nu ⋅  f ⋅  f

(3.47)

 Bündel

 L′

 A

 n

BEISPIEL 3.6: Auslegung eines Zwischenüberhitzerbündels

Für eine Nuklearanlage ist ein Zwischenüberhitzerbündel mit U-Rohren auszule-

gen. Zwischen den Rohren des Bündels strömen 300 kg/s Dampf bei 8 bar Druck, 

der von 170,4 °C auf 280 °C erhitzt werden soll. In den Rohren kondensiert Heiz-

dampf bei 295 °C. Die Wärmeübergangszahl in den Rohren ist 12 000 W/(m2 K). 

Die Rohre haben einen Außendurchmesser von 15 mm, eine Wandstärke von 1 mm

und die Wärmeleitfähigkeit von 26 W/(m K). Die Anströmgeschwindigkeit am

Bündeleintritt soll 6 m/s nicht überschreiten. Der Heizdampf strömt aus einer halb-kugelförmigen Dampfkammer zu den Rohren. Da der Rohrboden kreisförmig ist, 

soll die Höhe des Bündels etwa gleich groß wie seine Breite sein. Die Rohrbögen

sind von der äußeren Dampfströmung abgetrennt, so dass nur die gerade Länge der

Rohre als Heizfläche zur Verfügung steht. Die Rohre sind in gleichseitigen Drei-

ecken angeordnet und haben einen Abstand von 20 mm. Die Skizze zeigt die An-

ordnung des Rohrbündels und die der Rohre. Am Bündeleintritt beträgt die Dampf-

dichte 4,161 kg/m3. 
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Die übrigen Dampfdaten bei der mittleren Temperatur von 225,2 °C sind:

ρ = 3,581 kg/m3, λ = 0,038 W/(m K), ν = 4,76 . 10-6 m2/s,  Pr = 0,99, c  = 2 206 J/(kg K). 

 p

Berechnen Sie die Anzahl und Länge der Rohre. 

Lösung

 Schema

Siehe Skizze

 B

1,5  s

 c

1

0

 c 0

 c 0

 H

 s 0

 l

 s 1

 s

 s  0

2

 Annahmen

•

Die Effekte am Rande des Bündels können vernachlässigt werden. 

•

Die Wärmeübergangszahlen sind inner- und außerhalb der Rohre des Bündels

jeweils konstant. 

•

Die Temperatur in den Rohren ist konstant. 

 Analyse

Um Anzahl und Länge der Rohre zu bestimmen, müssen die Anzahl der Rohr-

reihen  n, die der Rohre pro Reihe  i und die Heizfläche  A berechnet werden. Das sind drei Unbekannte, d.h., zur Bestimmung sind drei Gleichungen notwendig. 

Die Bedingung, dass die Höhe des Bündels etwa gleich groß sein soll wie seine

Breite, gibt den Zusammenhang zwischen der Anzahl Rohrreihen und der Anzahl

der Rohre pro Reihe an. 

 B =  n ⋅  s H = ( i +1,5) ⋅  s

aus  B =  H  folgt:  n ⋅  s = ( i +1,5) ⋅  s 2

1

2

1

Die vorgegebene Anströmgeschwindigkeit bestimmt den Anströmquerschnitt

des Rohrbündels. 





=

 m

 c

=

 m

0

 H ⋅  l ⋅ ρ

( i +

)

5

, 

1

⋅  s ⋅ l ⋅ ρ

0

1

0
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Die Fläche des Bündels wird mit der kinetischen Kopplungsgleichung bestimmt. 

 Q

 A =  i ⋅  n ⋅π ⋅  d ⋅  l =

 a

 k ⋅ Δϑ m

Aus der Energiebilanzgleichung kann der Wärmestrom direkt berechnet werden. 

 Q =  m ⋅  c ⋅ (ϑ′′−ϑ )

′ = 300⋅kg/s ⋅2 206⋅J/(kg ⋅K) ⋅(280 −170,4)⋅K = 72533  kW

 p

1

1

Die mittlere Temperaturdifferenz berechnet sich mit den gegebenen Temperatu-

ren als:

ϑ ′−ϑ′

(280 −170,4) ⋅ K

1

1

Δϑ m =

=

=

K



51,77

§ ϑ −ϑ′ ·

§ 295 −170,4 ·

ln

2

1

ln¨

¸

¨¨

¸¸

ϑ −ϑ ′

© 295 − 280 ¹

© 2

1 ¹

Zur Berechnung der Wärmeübergangszahlen werden zuerst die geometrischen

Daten des Bündels bestimmt. Die dimensionslosen Rohrabstände  a und  b sind: s = 3 ⋅  s = 3 ⋅

mm



20

=

mm



34,64

 a =  s /  da =

, 

34 64 /15 = 309

, 

2

1

0

1

 s =  s / 2 =

mm



0

1

 b =  s /  da = 10 /15 = , 

0 67

2

0

2

Da  b < 1 ist, wird mit Gl. (3.39) der Hohlraumanteil des Bündels bestimmt. 

π

π

π

Ψ = 1−

= 1−

= 1−

= , 

0 490

4 ⋅  a ⋅ b

4 ⋅  a ⋅ b

4 ⋅ 309

, 

2

⋅ , 

0 67

Die Anströmlänge des Rohres ist:   L′ = π ⋅  d / 2

 a

=

mm



23,562

Bei der Berechnung der Geschwindigkeit im Bündel muss berücksichtigt wer-

den, dass die Dichte kleiner ist als am Eintritt. So erhalten wir mit Gl. (3.40):

 c ⋅ ρ

6 ⋅ 161

, 

4

m

m

0

0

Ψ

 c =

=

⋅

= 1



,23

4

ρ ⋅Ψ

581

, 

3

⋅ , 

0 490 s

s

 c ⋅  L′

14,23⋅ m ⋅ 0,02356 ⋅ m ⋅s

Ψ

 Reynolds zahl nach Gl. (3.41):    Re

=

=

= 70 448

 L′,Ψ

6

−

2

ν

4, 76 ⋅10 ⋅ m ⋅s

Die  Nußelt zahl wird mit den Gln. (3.31) bis (3.33) berechnet, wobei angenommen wird, dass die dampfseitige Wärmeübergangszahl eher klein ist und die mitt-

lere Wandtemperatur somit ca. 270 °C beträgt. 

3

3

 Nu

= 0,664⋅  Pr ⋅  Re = 0,664⋅ 0,99 ⋅ 70 448 = 175,7

 L′,  lam

 L′

0,8

0 8

0, 037 ⋅  Re ⋅  Pr

0 ,  037 ⋅ 70 448  , ⋅ 0 ,  99

 L

 Nu

′

=

=

= 278,3

 L′,  turb

−0,1

2/ 3

−0 1 , 

2/3

1+ 2, 443⋅  Re

⋅( Pr −1) 1+ 2 ,  443⋅70 448 ⋅(0,99 −1)

 L′
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2

2

 Nu

 Nu

 Nu

 Nu

 T T

 L′ =

 L′

+

 L′  lam +

 L′  turb ⋅ (

/

)0 121

, 

 W

=

9

, 

325

,0

, 

, 

Der Anordnungsfaktor  f  wird mit Gl. (3.43) bestimmt. 

 A

2

2

 f = 1+

= 1+

= 2

 A

3⋅ b

3⋅ 0, 67

Für den Faktor  f  wird angenommen, dass mehr als 15 Rohrreihen notwendig

 n

werden, so dass  f  = 1,03 ist. Die  Nußelt zahl des Bündels ist nach Gl. (3.47): n

 Nu

=  Nu ⋅  f ⋅  f = 325,9⋅2⋅1,03 = 671,2

 Bündel

 L′

 A

 n

Für die Wärmeübergangszahl außen am Bündel erhalten wir:

 Nu

λ

671,2 0,038 W

W

 Bündel

α

⋅

⋅

⋅

=

=

= 1 082,6

 a

2

 L′

0,02356 ⋅ m ⋅ m ⋅ K

m ⋅ K

Die Wärmedurchgangszahl ist:

1

−

§ 1

 d

 d

 d

·

W

 a

 k = ¨

+

⋅ln  a

 a

+

¸ = 942,4   2

© α

2 ⋅ λ

 d

 d ⋅α

m

¹

⋅ K

 a

 R

 i

 i

 i

Die Wandtemperatur kann berechnet, die gemachte Annahme geprüft werden. 

ϑ = ϑ + Δϑ ⋅ k /α = 225,2 C

° + 51,77⋅ K ⋅942,4/1 082,6 = 270,3 C

°

 W

 m

 m

 a

Eine weitere Korrektur erübrigt sich, weil der Unterschied kleiner als 0,05 % ist. 

Die benötigte Austauschfläche beträgt:

6

2

 Q

72,533⋅10 ⋅ W ⋅ m ⋅ K

2

 A =  i ⋅  n ⋅π ⋅  d ⋅ l =

=

= 1486,7 m

 a

 k ⋅ Δϑ

942, 4 ⋅ W ⋅51,77 ⋅ K

 m

Aus der Gleichung für die Anströmgeschwindigkeit erhalten wir:

 m



300 ⋅ kg ⋅ s ⋅ m3

( i +

)

5

, 

1

⋅ l =

=

=

m



,88

346

 s ⋅  c ⋅ ρ

0,03464 ⋅ m ⋅ 6 ⋅ m ⋅ 4,161⋅ kg ⋅s

1

0

0

Aus der Bedingung für das Verhältnis der Höhe zur Länge ergibt sich folgende

Beziehung:

( i +

)

5

, 

1

=  n⋅  s /  s

2

1

Beide Gleichungen kombiniert, ergeben:

 n ⋅ l =  s / s ⋅346,88  m = 34, 64 /10 ⋅346,89  m = 1 201 ,  63  m 1

2
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Aus der Austauschfläche kann jetzt die Anzahl der Rohre pro Rohrreihe be-

stimmt werden. 

2

 A

1386 ,  7  m

 i =

=

= 26

 n ⋅ l ⋅π ⋅  d

1201 ,  63 ⋅ m ⋅π ⋅ 0, 015 ⋅ m

 a

Für die Anzahl Rohrreihen erhalten wir:   n = ( i +1,5) ⋅  s /  s = 96

1

2

Die Rohrlänge ist:   l = 1201 ,  67  m  / n = 12, 498  m

 Diskussion

Die Wärmeübergangszahl ist in den Rohrbündeln höher als bei einzelnen Roh-

ren. Dieses wird durch die größere Geschwindigkeit, die eine höhere  Reynolds zahl liefert und die Turbulenzen bei Strömungsablösung, die durch die Faktoren  f  und  f A

 n

berücksichtigt werden, bewirkt. 

3.2.5

Rohrbündel mit Umlenkblechen

Oft wird ein Rohrbündel weder nur senkrecht noch nur in einem bestimmten Winkel

angeströmt. Wie in Bild 3.11 dargestellt, wird die Strömung im Bündel durch Schi-

kanen (Umlenkbleche) umgelenkt, so dass ein Teil der Rohre senkrecht, andere pa-

rallel angeströmt werden. In diesem Fall werden die Wärmeübergangszahlen für die

senkrecht angeströmten Rohre wie im vorigen Kapitel, die der parallel angeström-

ten Rohre wie in Kapitel 3.2.13 beschrieben, berechnet. Dieses ist aber nur eine Nä-

herung, weil die Rohre im Bereich der Umlenkung weder genau senkrecht noch

parallel angeströmt werden. Ferner entstehen an den Umlenkblechen Bypass- und

Leckageströmungen. Diese Effekte sind durch weitere Korrekturfaktoren zu be-

rücksichtigen, deren Beschreibung jedoch den Rahmen dieses Buches sprengen

würde. Daher muss hier auf einschlägige Literatur verwiesen werden (z. B. VDI-

Wärmeatlas [3.4] und [3.6]). 

Bild 3.11: Rohrbündelwärmeübertrager mit Umlenkblechen
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3.3

Rippenrohre


Die Übertragungsfläche eines Wärmeübertragers kann man durch das Anbringen

von Rippen vergrößern. Dieses ist relativ kostengünstig, da für die zusätzliche

Fläche keine drucktragenden Rohre oder Kanäle notwendig sind. Rippen werden

fast immer auf der Seite der tieferen Wärmeübergangszahlen angeordnet. Die Wirk-

samkeit der Berippung ist desto besser, je kleiner die Wärmeübergangszahlen sind. 

Wesentliche Voraussetzung für die nachfolgenden Berechnungen ist ein voll-

kommener Kontakt der Rippe mit der Wand der Wärmeübertragungsfläche. Die

angegebenen Berechnungsmethoden sind nur eine Näherung, da bei konkreten Bei-

spielen die Anordnung der Rohre, Rippen etc. eine zusätzliche Rolle spielt. Für

genaue Berechnungen müssen entweder Versuche durchgeführt oder auf Ergebnis-

se von Versuchen, die unter ähnlichen Bedingungen erfolgten, zurückgegriffen

werden. 

Hier wird die Berechnung für Rippenrohre durchgeführt. Bei berippten ebenen

Platten, die in der Technik eine eher untergeordnete Bedeutung haben, sind die

Wärmedurchgangszahlen entsprechend den Gleichungen in Kap. 3.2.2 zu bestim-

men. Die Wärmeübergangszahlen werden auf die Fläche  A des unberippten Rohres bezogen. Damit ist der an einem berippten Rohr übertragene Wärmestrom:

 Q =  k ⋅  A⋅ ϑ

Δ

(3.48)

 m

Bild 3.12: Typische, berippte Oberflächen [3.4]
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Die auf die Oberfläche des unberippten Rohres  A bezogene Wärmedurchgangs-

zahl wird folgendermaßen bestimmt: Die Wärmeübergangszahl an der Oberfläche

 A  der Rippen und an der Oberfläche  A  des Rohres zwischen den Rippen ist α . Die Ri

0

 a

Bezugstemperatur für die Wärmeübertragung ist die Temperatur an der Rohrober-

fläche. Die veränderten Temperaturen an den Rippen berücksichtigt der Rippenwir-

kungsgrad  η . Die Fläche der Rippen ist  A , wobei die Flächen an den Rippen-Ri

 Ri

schneiden vernachlässigt werden. Damit ist die Wärmedurchgangszahl:

1

 A

1

 d

 d

 d

1

 a

 a

 a

=

⋅

+

⋅ln

+

⋅

(3.49)

 k

 A +  A ⋅

⋅

0

η α

2 λ

 d

 d

α

 Ri

 Ri

 a

 R

 i

 i

 i

Der in Kap. 2.1.6.4 hergeleitete Rippenwirkungsgrad gilt nur für Rippen mit

konstantem Rippenquerschnitt. Der Querschnitt für den Wärmestrom in der Rippe

verändert sich bei Rippenrohren und der Wirkungsgrad muss entsprechend be-

stimmt werden. Für die verschiedenen Geometrien sind Korrekturfunktionen ange-

geben. Der  Rippenwirkungsgrad ist:

tanh  X

η =

 Ri

(3.50)

 X

Rechengröße  X:

 d

2 ⋅α

 X

 a

 a

= ϕ ⋅

⋅

(3.51)

2

λ ⋅  s

Die Korrekturfunktion für die verschiedenen Geometrien ist dabei ϕ. Bei koni-

schen Rippen wird für die Rippendicke  s der Mittelwert der Dicke am Rippenfuß  s und an der Rippenschneide  s  eingesetzt:

 s = ( s ′ +  s )

′ / 2

(3.52)

Die Korrekturfunktion für häufig vorkommende Rippenformen sind nachste-

hend zusammengestellt. 

Kreisrippen:

ϕ = ( D /  d − )

1 ⋅ +

⋅  D d

(3.53)

 a

[1 35

, 

0

ln(

/

)

 a ]

Rechteckrippen:

ϕ = (ϕ′ − )

1 ⋅ [1+ 35

, 

0

⋅lnϕ′] mit ϕ′ = ,128⋅( b /  d )  l b

(3.54)

 R

 a

⋅

/

 R

 R −

, 

0 2
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Zusammenhängende Rippen: Bei Rippen mit fluchtender Rohranordnung ist

Gl. (3.54) zu verwenden. Bei versetzter Anordnung weist man einer Rippe eine

Sechseckfläche zu und die Funktion ϕ   wird durch nachstehende Funktion in Gl. 

(3.54) eingesetzt:

ϕ′ = ,127 ⋅( b /  d )  l b

(3.55)

 R

 a

⋅

/

 R

 R −

3

, 

0

Gerade Rippen auf ebener Grundfläche:

ϕ = 2⋅ h /  d

(3.56)

 a

Bei trapezförmigen Rippen ist die Rippendicke  s folgendermaßen zu bestimmen: s = 75

, 

0

⋅  s ′ + , 

0 25⋅  s′

(3.57)

Nadelrippen auf ebener Grundfläche:

ϕ = 2⋅ h /  d

(3.58)

 a

Für die Rippendicke werden folgende Beziehungen eingesetzt:

 s =  d / 2



bei stumpfen,  s = 125

, 

1

⋅  d



bei spitzen Rippen. 

(3.59)

 N

 N

3.3.1

Kreisrippenrohre

Nachstehend ist die Berechnung der Flächen für Kreisrippen mit konstanter Rip-

pendicke aufgeführt. Für rechteckige, zusammenhängende und Nadelrippen erfolgt

die Berechnung nach den gleichen Überlegungen. Bild 3.13 zeigt ein Rippenrohr

mit Kreisrippen. 

 t

 s

 R

 d

 d a

 D

Bild 3.13: Kreisrippenrohr

Fläche  A des unberippten Rohres:

 A = π ⋅  d ⋅ l

(3.60)

 a

Fläche  A  des Rohres zwischen den Rippen:

0

 A = π ⋅  d ⋅ l ⋅ 1

( −  s /  t )

(3.61)

0

 a

 R
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Fläche der Rippen  A :

 Ri

π

 l

 A = 2 ⋅

⋅( D 2 −  d  2)⋅

 Ri

 a

(3.62)

4

 tR

Damit ist das Verhältnis der Rippenfläche zur Fläche des unberippten Rohres:

 A

 d

⋅  h ⋅  d +  h

⋅  h

 Ri = [( D /  d )2 − ⋅

=

=

⋅ +  h d

 a

]

2

(

)

2

1

 a

 a

1

(

/

)

(3.63)

 A

2

 a

⋅ t

 t ⋅  d

 t

 R

 R

 a

 R

Die Wärmeübergangszahlen, die für Rohrbündel mit unberippten Rohren im vor-

gehenden Kapitel angegebenen sind, zeigen gegenüber den Messungen relativ gro-

ße Abweichungen. Deshalb werden hier neue Beziehungen gegeben, die die Mes-

sungen mit einer Streubreite von 10 bis 25 % genau wiedergeben [3.6]. 

 Nu

=  C ⋅  Re 0,6 ⋅ ( A +  A ) /  A −0 15

, 

(3.64)

0

⋅  Pr 1/3 ⋅  f 4 ⋅  f

 d

 d

 a

 a

[  Ri

]

 n

Die Konstante  C ist für fluchtend angeordnete Rohre  C = 0,22 und für versetzt angeordnete Rohre  C = 0,38. Die charakteristische Länge für die  Nußelt- und  Reynolds zahl ist der Außendurchmesser des Rohres. 

Die  Reynolds zahl wird mit der Geschwindigkeit an der engsten Stelle zwischen den Rohren und mit dem Außendurchmesser des Rohres gebildet. 

Die engste Stelle hängt von der Anordnung der Rohre ab. Bild 3.14 zeigt die

engsten Stellen für verschiedene Rohranordnungen. Bei der Berechnung der Ge-

schwindigkeit am engsten Querschnitt muss auch die Versperrung durch die Rippen

berücksichtigt werden. 

s2

engste

s

s

engste

2

engste

2

Stelle

Stelle

Stelle

s 1

s 1

s 1

Bild 3.14: Bestimmung der engsten Stelle

Für beide Anordnungen links im Bild 3.14 ist die Geschwindigkeit an der eng-

sten Stelle:

1

−

ª

1

2 ⋅  s ⋅  h º

 c

 c

 e =

⋅ « 1

( − ) −

0

»

(3.65)

¬

 a

 s ⋅ t

1

 R ¼
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Bei der Anordnung rechts gilt:

1

−

ª

2

4 ⋅  s ⋅  h º

2

 c

 c

 b a

 e =

⋅ « 1+ (2⋅ / ) − −

0

»

(3.67)

¬

 a

 s ⋅ t

1

 R ¼

Für genauere Berechnungen bei Niedrigrippenrohren kann das von  Briggs und

 Young [3.7] vorgeschlagene Berechnungsverfahren, das auf zahlreichen Messungen basiert, verwendet werden. 

BEISPIEL 3.7: Zwischenüberhitzerbündel mit Rippenrohren

Ein Zwischenüberhitzerbündel mit Rippenrohren ist mit den gleichen thermischen

Daten und dem Verhältnis der Höhe zur Breite wie in Beispiel 3.6 auszulegen. Die

Rippen haben einen Außendurchmesser von 5/8". Die Rippenhöhe ist 1,27 mm, die Dicke 0,3 mm und der Abstand 1 mm. Die Wärmeleitfähigkeit des Rohrmaterials

beträgt 27 W/(m K), die Rohrwandstärke 1 mm, der Abstand zwischen den Rohren

13/16". 

Berechnen Sie die Anzahl der Rohre und deren Länge. 

13/16" 

1,27 mm

1 mm

Lösung

 Schema

Siehe Skizze

 c 0

5/8" 

5/8" 

 Annahmen

0,3 mm

•

Die Effekte am Rande des Bündels können vernachlässigt werden. 

•

Inner- und außerhalb der Rohre des Bündels sind die Wärmeübergangszahlen

jeweils konstant. 

•

In den Rohren ist die Temperatur konstant. 

 Analyse

Die Lösung erfolgt wie beim Bündel mit unberippten Rohren. Zunächst rechnen

wir die US-Maße in metrische Einheiten um. 

 D = 5 / " 

8 ⋅ 25 4

 , ⋅ mm =

mm



15,875

 s = 13 / " 

16 ⋅

, 

25 4 ⋅ mm =

mm



20,6375

0

Die benötigten anderen geometrischen Größen sind:

 d

 D

 s

 d

 a =

− 2⋅ =

875

, 

15

(

− 2⋅ , 

1 27) ⋅ mm =

mm



13,335

 i =

mm



11,335

 s =  s ⋅ 3 =

mm



35,7452

 s =  s / 2 =

mm



10,31875

1

0

2

0

 a =  s /  d

 b

 s

 d

 a =

681

, 

2

= /  a = , 

0 77381

1

2
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Zur Berechnung der Geschwindigkeit an der engsten Stelle mit Gl. (3.66) muss

zusätzlich die Änderung der Dichte berücksichtigt werden. 

1

ρ ª

⋅  s ⋅ hº−

0

2

2

4

 c

 c

 b a

 e =

⋅

⋅ « 1+ (2⋅ / ) − −

» =

0

ρ ¬

 a

 s ⋅ t

1

 R ¼

1

−

m

161

, 

4

ª

⋅

⋅

º

2

2

4

3

, 

0

, 

1 27

m

= 6⋅ ⋅

⋅ 1+ (2⋅ , 

0 7738 / , 

2

)

681

«

−

−

» = 1 , 

9 0   

5

s

581

, 

3

¬

, 

2 681

, 

35 7452 ⋅1 ¼

s

Mit dieser Geschwindigkeit und dem Außendurchmesser wird die  Reynolds zahl gebildet. 

 c ⋅  d

19, 05 ⋅ 0, 013335

 e

 a

 Re

=

=

= 53 371

 da

6

ν

4, 76 ⋅10−

Bevor die  Nußelt zahl mit Gl. (3.63) berechnet werden kann, sind die Flächen und Korrekturfunktionen zu bestimmen. Für  f  und  f  verwenden wir die Werte aus Bei-4

 n

spiel 3.6. 

 A

2  h

 Ri

⋅

2 ⋅ , 

1 27

=

⋅ 1

( +  h /  d )

 a

=

⋅ 1

( + , 

1 27 /

)

335

, 

13

= , 

2 7819

 A

 t

1

 R

 A 0 =1−  s / tR = ,07

 A

0,6

0, 

− 15

1/ 3

 Nu

= 0,38⋅  Re ⋅[( A +  A ) / ]

 A

⋅  Pr ⋅  f ⋅  f =

 d

 d

 Ri

0

4

 a

 a

 n

0,6

−0,15

1/ 3

= 0,38⋅53 371 ⋅3,4819

⋅0,99 ⋅0,99⋅1,03 = 219,7

Die Wärmeübergangszahl außen am Bündel ist:

α

 Nu

λ  d

 a =

 d

⋅ /  a = 626   W/(

,2

m 2 ⋅ K)

 a

Zur Bestimmung der Wärmedurchgangszahl muss der Rippenwirkungsgrad mit

den Gln. (3.50), (3.51) und (3.53) berechnet werden. 

 D

ª

§  D ·º §15,875

· ª

§15,875 ·º

ϕ = ( −1)⋅ 1

« + 0,35⋅ln ¨

¸» = ¨

−1¸⋅ 1

« + 0,35⋅ln ¨

¸» = 0, 2021

 d

«

 d

¬

©

¹»¼ ©13,335

¹ ¬

©13,335 ¹¼

 a

 a

 d

2 α

 a

⋅

013335

, 

0

 a

⋅ m

2 ⋅

, 

626 2 ⋅ W ⋅ m ⋅ K

 X = ϕ ⋅

⋅

= , 

0 2021⋅

⋅

= 540

, 

0

2

λ ⋅  s

2

27 ⋅ W ⋅ 0,0003⋅ m ⋅ m2 ⋅ K

tanh  X

tanh 540

, 

0

η Ri =

=

= 913

, 

0

 X

540

, 

0
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1

−

§

1

1

0 ,  013335

13 ,  335

13 ,  335

1

·

 k = ¨

⋅

+

⋅ln

+

⋅

¸ =

© 0 ,  7 + 2 ,  7819⋅0 ,  913 626 ,  2

2 ⋅ 27

11 ,  335

11 ,  335 12 000 ¹

W

= 1 580 ,  7    2

m ⋅ K

Die notwendige Heizfläche ist:

6

2

 Q

72,533⋅10 ⋅ W ⋅ m ⋅ K

 A =  i ⋅  n ⋅π ⋅  d ⋅ l =

=

= 886,37 m

 a

 k ⋅ Δϑ

1 580, 7 ⋅ W ⋅51,77 ⋅ K

 m

Aus der Gleichung für die Anströmgeschwindigkeit erhalten wir:

3

 m



300 ⋅ kg ⋅ s ⋅ m

( i +1,5) ⋅ l =

=

= 336,17 m

 s ⋅  c ⋅ ρ

0,0357452 ⋅ m ⋅ 6 ⋅ m ⋅ 4,161⋅ kg ⋅s

1

0

0

Aus der Bedingung für das Verhältnis der Höhe zur Breite ergibt sich folgende

Beziehung:

( i +

)

5

, 

1

=  n⋅  s /  s

2

1

Beide Gleichungen kombiniert, ergeben:

 n ⋅ l = 336,17  m ⋅  s / s = 336,17  m ⋅35, 7452 /10,31875 = 1164 ,  52 m 1

2

Aus der Übertragungsfläche kann jetzt die Anzahl der Rohre pro Rohrreihe be-

stimmt werden. 

2

 A

886,37  m

 i =

=

= 18

 n ⋅  l ⋅π ⋅  d

1164, 52 ⋅ m ⋅π ⋅ 0, 013335⋅ m

 a

Für die Anzahl Rohrreihen erhalten wir:   n = ( i +

)

5

, 

1

⋅  s /  s

1

2 = 68

 l = 1164 ,  52 m /  n = 17,125 m

 Diskussion

Es scheint so, dass mit den Rippenrohren eine um 67 % kleinere Fläche benötigt

wird, nämlich die Fläche der Rohre ohne Berippung. Die wirkliche Fläche besteht

aus den Flächen der Rohre zwischen den Rippen und der der Rippen. Sie ist um das

3,4782fache größer, also 3 080 m2. Das Wesentliche dabei ist, dass das Bündel viel kleiner wird. Es werden nur noch 612 an Stelle von 1262 U-Rohren benötigt. Breite

und Höhe des Bündels verringern sich von 1 m auf  0,7 m. Zwar werden die Rohre

wesentlich länger, nämlich 17,125 m statt 12,498 m, aber ein langes, schlankes
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Bündel ist in der Herstellung preisgünstiger, weil bei der gleichen Fläche weniger Rohre benötigt werden. Damit reduziert sich die Arbeit, die zum Bohren des dicken

Rohrbodens und zum Biegen und Anschweißen der Rohre benötigt wird. 

Es erscheint zunächst paradox, dass die Wärmedurchgangszahl größer als die

Wärmeübergangszahl außen am Bündel ist. Der Wärmeübergang erfolgt an der

Fläche der Rippen und an der Fläche der Rohre zwischen den Rippen. Die Wärme-

durchgangszahl ist jedoch auf die Fläche des unberippten Rohres bezogen und

daher größer. 

4

Freie Konvektion

Im Gegensatz zur erzwungenen Konvektion entsteht die Strömung nicht durch eine

Druckdifferenz, sondern durch Temperaturunterschiede im Fluid. Kommt ein ru-

hendes Fluid mit einer Oberfläche (Wand) unterschiedlicher Temperatur in Kon-

takt, entstehen im Fluid Temperaturdifferenzen, die Dichteunterschiede verursa-

chen. Fluidschichten mit kleinerer Dichte steigen auf, solche mit größerer Dichte

sinken ab. Die Temperatur- und Strömungsgrenzschicht der Strömung werden

durch die Temperaturdifferenz selbst erzeugt. 

Die  Nußelt zahl gibt man als eine Funktion der  Grashof zahl,  Prandtl zahl und Geometrie an. 

 Nu = α ⋅  L / λ =  f ( Gr,  Pr, Geometrie)

 L

Die  Grashofzahl ist das Verhältnis der Auftriebskräfte zu den Reibungskräften. Sie beschreibt damit für die freie Konvektion die gleichen Zusammenhänge wie die  Reynolds zahl für die erzwungene Konvektion. Als Funktion der Temperaturdifferenz lautet die Definition der  Grashofzahl:

3

 g ⋅  L ⋅ β ⋅ (ϑ −ϑ )

 W

0

 Gr =

(4.1)

2

ν

Bei idealen Gasen hängt der räumliche Wärmeausdehnungskoeffizient nur von der

Absoluttemperatur des Fluids ab und ist:

β = 1/ T

(4.2)

0

Für sehr kleine Werte von β(ϑ -ϑ ) <<1 kann die  Grashofzahl als Funktion einer W

0

Dichtedifferenz angegeben werden:

3

 g ⋅  L ⋅ (ρ − ρ )

 W

0

 Gr =

2

ν ⋅ ρ

(4.3)

 W

Der Index  W bezeichnet den Zustand an der Wand, 0 den im ruhenden Fluid. 

(ρ W − ρ )

0

= β ⋅(ϑ W −ϑ )

0

ρ

(4.4)

 w

Die Stoffwerte λ, ν und  Pr werden bei der mittleren Temperatur (ϑ   – ϑ )/2 er-W

0

mittelt. 

P. von Böckh, T. Wetzel  Wärmeübertragung, 

DOI 10.1007/978-3-642-15959-6_4, © Springer-Verlag Berlin Heidelberg 2011
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Die charakteristische Länge  L in der  Grashof- und  Nußelt zahl ist: L =  A /  U

(4.5)

 proj

Die Austauschfläche des umströmten Körpers ist  A,  U

der in Strömungsrichtung

 proj

projizierte Umfang der am Wärmetransfer beteiligten Fläche. Eine weitere Kennzahl

ist die  Rayleighzahl. Sie ist das Produkt aus  Grashof- und  Prandtl zahl. 

 Ra =  Gr ⋅  Pr

(4.6)

Die in der Literatur [4.1] angegebenen Gleichungen für die  Nußelt zahl gelten für konstante Oberflächentemperaturen. Die Abweichung zu Werten mit gemittelten

Wandtemperaturen sind vernachlässigbar. 


4.1

Freie Konvektion an vertikalen, ebenen Wänden

Grenzschicht

 c

ϑ W

 l

 c = 0

ρ

ρ0

 W

ϑ0

Bild 4.1: Freie Konvektion an einer senkrechten Wand

An einer beheizten, senkrechten Wand (Bild 4.1) mit der Höhe  l wird die Dichte der wandnahen Fluidschichten kleiner, sie erfahren einen Auftrieb und es entsteht eine aufwärts gerichtete Strömung. Wird die Wand gekühlt, ist die Strömung abwärts gerichtet. In stationärem Zustand sind die Auftriebskräfte im Gleichgewicht mit den

Reibungskräften. Die Strömung ist zunächst laminar und wird nach einer gewissen

Länge turbulent. In der Temperaturgrenzschicht ändern sich die Temperatur und

damit die Dichte des Fluids, so dass die Auftriebskräfte in den einzelnen Fluid-

schichten unterschiedlich groß sind. Deshalb ist es nicht einmal für die laminare

Strömung gelungen, die Wärmeübergangszahl analytisch herzuleiten. 

Die charakteristische Länge der vertikalen Wand ist:

 b ⋅ l

 L =

=  l

 b

Für ebene, senkrechte Flächen fand man folgende empirische Gleichung:

4 Freie Konvektion
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 Nu = { 0,825 + 0,387⋅( Gr ⋅  Pr) ⋅  f ( Pr }2

1/ 6

)

(4.7)

 l

1

−

 f ( Pr) = 1+ , 

0 671

−

⋅  Pr

(4.8)

1

(

9 /16 ) 8/27

Der Gültigkeitsbereich dieser Gleichungen ist:

0,001 <  Pr < ∞

0,1 <  Gr .  Pr < 1012

Gl. (4.7) gilt sowohl für den laminaren als auch turbulenten Bereich. Aus der Gleichung ist ersichtlich, dass die  Nußelt zahl, wenn der Term 0,825 vernachlässigbar ist, proportional zur dritten Wurzel der Temperaturdifferenz ist. 

BEISPIEL 4.1: Erwärmung einer Wand

Durch Sonneneinstrahlung wird einer 3 m hohen Hauswand pro Quadratmeter ein

Wärmestrom von 100 W zugeführt. Die Umgebungstemperatur beträgt 0 °C. Die

Stoffwerte der Luft sind: λ = 0,0245 W/(m K), ν = 14 .  10-6

m2/s,  Pr = 0,711. 

Bestimmen Sie die Temperatur der Wand. 

Lösung

. 

 q Sonne

 Schema

Siehe Skizze

3 m

 Annahmen

•

Die Erwärmung der Wand von der Innenseite her wird

vernachlässigt. 

•

Strahlungsbedingte Effekte bleiben unberücksichtigt. 

•

Nur der stationäre Zustand, d.h., der Zustand, bei dem die Wand ihre Endtem-

peratur erreicht hat, wird behandelt. 

 Analyse

In stationärem Zustand ist der durch die Sonne zugeführte Wärmestrom gleich

dem, der durch freie Konvektion abgeführt wird. 

 q Sonne = α ⋅ (ϑ W −ϑ )

0

Die Wärmeübergangszahl wird mit der  Nußelt zahl aus Gl. (4.7) berechnet. 

α =  Nu ⋅λ /  l = {0,825+ 0,387⋅( Gr ⋅ Pr) ⋅  f ( Pr }2

1/ 6

)

⋅λ /  l

 l

1
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Die  Rayleigh zahl wird mit der  Grashof zahl aus Gl. (4.1) bestimmt, wobei für den räumlichen Wärmeausdehnungskoeffizient derjenige aus Gl. (4.2) verwendet wird. 

3

 g ⋅ l ⋅ (ϑ W −ϑ )

0

 Gr =

2

 T ν

⋅

0

Die  Grashof zahl und die Wärmeübergangszahl sind von der Temperaturdifferenz abhängig. Für die Berechnung stehen zwei Möglichkeiten offen: Die eine ist, eine

Wandtemperatur anzunehmen, um die Wärmeübergangszahl und damit die Wand-

temperatur zu berechnen. Die Berechnung ist zu wiederholen, bis die gewünschte

Genauigkeit erreicht ist. Die andere Möglichkeit besteht darin, die Temperaturdifferenz als  Quotient aus Wärmestromdichte und Wärmeübergangszahl in die  Grashof-

zahl einzusetzen und so die Wärmeübergangszahl zu berechnen. Diese Lösung ist:

1/ 6

3

½2

°

§  g ⋅ l ⋅ q ·

1/ 6

° λ

α = ® 825

, 

0

+ 387

, 

0

⋅

⋅  Pr ⋅  f ( Pr)

1

2

¾ ⋅

¨¨

¸¸

°

© α ⋅ T 0 ⋅ν

 l

¹

°

¯

¿

Die exakte Lösung muss mit einem Gleichungslöser ermittelt werden. Wenn im

Klammerausdruck der rechte Term sehr viel größer als 0,825 ist, kann die Wärme-

übergangszahl direkt berechnet werden. Die Funktion  f ( Pr) wird mit Gl. (4.7) er-1

mittelt. 

−8/ 27

8

− / 27

 f ( Pr) = +

⋅ −

 Pr

= +

⋅

−

=

1

(1 ,0671 9/16)

(1 ,0671 ,0711 9/16)

8384

, 

0

Die Zahlenwerte eingesetzt, liefert der Gleichungslöser von  Mathcad:

2

1/ 6

­

½

°

§

9,81⋅ 33 ⋅100

·

°

1/ 6

0,0245

α = ® 825

, 

0

+ 387

, 

0

⋅

⋅ , 

0 711

⋅ 8384

, 

0

¾ ⋅

=

¨¨

−

¸¸

 Į ⋅ 273,15⋅ K ⋅142 ⋅10 12

3

°

©

¹

°

¯

¿

2

1/ 6

°­

§ W ·

−

°½

1/ 6

W

W

= ® 825

, 

0

+ , 

27 259 ⋅¨

¸ ⋅α

¾ ⋅ , 

0 008167 ⋅

=



4,1

°

© m2 ⋅ K ¹

°

m2 ⋅ K

m2 ⋅ K

¯

¿

Für die Wandtemperatur erhalten wir:

ϑ



 W = ϑ

+  q /

0

α =

  

24,4 C

°

 Diskussion

Freie Konvektion bildet sich sich meist auf Grund äußerer Einflüsse, hier durch

Sonneneinstrahlung. Die Wandtemperatur ist unbekannt, sie muss iterativ ermittelt

werden. Ist die Wärmestromdichte gegeben, kann man die Temperaturdifferenz durch

die Wärmeübergangszahl ersetzen. 

4 Freie Konvektion
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BEISPIEL 4.2: Heizkörper

In einem Raum soll mit Heizkörpern von je 1,2 m Länge, 0,45 m Höhe und 0,02 m Breite eine Heizleistung von 3 kW erreicht werden. Die Wandtemperatur der Heizkörper

beträgt 48 °C, die Raumtemperatur 22 °C. Stoffwerte der Luft:

λ = 0,0268 W/(m K), ν = 16,05 .  10-6 m2/s,  Pr = 0,711. 

Wie viele Heizkörper sind notwendig? 

1,2 m

Lösung

 Schema

Siehe Skizze

0,45 m

 Annahmen

0,02 m

•

Die obere und untere Seite mit je 20 mm  kann man vernachlässigen. 

•

Strahlungbedingte Effekte bleiben unberücksichtigt. 

•

Die Wandtemperatur der Heizfläche wird als konstant angenommen. 

 Analyse

Die für freie Konvektion maßgebliche Übertragungsfläche ist:

2

2

 A = 2⋅ ( H ⋅  L +  H ⋅  B) = 2 ⋅ ( , 

0 45 ⋅ , 

1 2 + , 

0 45⋅ , 

0

m



)

02

=

m



1,098

Die  Rayleigh zahl wird mit der  Grashof zahl aus Gl. (4.1) bestimmt. Zur Berechnung des räumlichen Wärmeausdehnungskoeffizienten verwendet man Gl. (4.2). 

3

3

3

2

 g ⋅  H ⋅ (ϑ

ϑ

 W −

)

9,81⋅ m ⋅ 0,45 ⋅ m ⋅ (48− 22)⋅ K ⋅s

0

8

 Ra =

⋅  Pr =

⋅ 711

, 

0

= 173

, 

2

⋅10

2

2

12

−

4

2

 T ⋅ν

295,15⋅ K ⋅16,05 ⋅10

⋅m ⋅s

0

Die Funktion  f ( Pr) erhält man mit Gl. (4.8). 

1

−8/ 27

8

− / 27

 f ( Pr) =

+

⋅

−

 Pr

= +

⋅

−

=

1

(1 ,0671 9/16)

(1 ,0671 ,0711 9/16)

8384

, 

0

 NuH = {

2

825

, 

0

+ 387

, 

0

1/ 6

⋅  Ra ⋅  f ( Pr

=

1

})

= {

2

825

, 

0

+ 387

, 

0

⋅( 173

, 

2

⋅108)1/6 ⋅

}

8384

, 

0

= 77 10

, 

λ

0,0268 ⋅ W

W

α =  NuL ⋅

=

10

, 

77

⋅

=



4,59

 H

0,45 ⋅ m ⋅ m ⋅ K

m2 ⋅ K

Der pro Heizkörper übertragene Wärmestrom ist:

 Q

α  A ϑ W ϑ

1 =

⋅ ⋅(

− ) = 4,59⋅ W/(m2

0

⋅K)⋅1,098⋅m2 ⋅(48− )

22 ⋅ K = 131,   W

1
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Um 3 kW Wärmestrom zu liefern, sind 23 Heizkörper notwendig. 

 Diskussion

Bei bekannter Wandtemperatur ist die Berechnung einfach. Der errechnete Wert

ist jedoch nicht realistisch. Später wird gezeigt, dass durch Wärmestrahlung ein

etwa gleich großer Wärmestrom zusätzlich transferiert wird. 

BEISPIEL 4.3: Wandtemperaturen eines Raumes

In einem Raum, dessen Wände innen und außen die gleiche Höhe von 2,8 m haben, 

herrscht eine Raumtemperatur von 22 °C. Die Außentemperatur ist 0 °C. Die Wand

hat die Wärmeübergangszahl von 0,3 W/(m2 K). Die Stoffwerte der Luft sind

innen:

λ = 0,0257 W/(m K), ν = 15,11 .  10-6 m2/s,  Pr = 0,713

außen:

λ = 0,0243 W/(m K), ν = 13,30 .  10-6 m2/s,  Pr = 0,711. 

Berechnen Sie die Temperatur an der Innen- und Außenwand. 

Lösung

ϑ i

 Schema

Siehe Skizze

ϑ Wi

 Annahmen

•

Stahlungsbedingte Effekte bleien un berücksichtigt. 

ϑ Wa ϑ

•

Die Wandtemperaturen innen und außen nimmt man

 a

als konstant an. 

 Analyse

Bei dieser Berechnung müssen die Wandtemperaturen angenommen, die Wärme-

übergangszahlen und die Wärmedurchgangszahl berechnet und so die Wandtempe-

raturen bestimmt werden, bis die erforderliche Genauigkeit erreicht ist. Nachste-

hend sind die Berechnungen tabellarisch aufgeführt. Hier folgen die verwendeten

Gleichungen:

 g ⋅ l  3 ⋅ (ϑ −ϑ )

 Ra

 W

=

0

⋅  Pr

 T ⋅ 2

ν

0

−

 f ( Pr) = 1+ , 

0 671

−

⋅  Pr

1

(

9 /16 ) 8/27

λ

 Nu = { 0,825 + 0,387⋅( Gr ⋅  Pr) ⋅  f ( Pr }2

1/ 6

)



 l

1

α =  Nu ⋅

 L

 L
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§ 1

1

1 ·

 k = ¨¨

+

+

¸¸

ϑ = ϑ − ϑ

(

−ϑ )⋅ k /α ϑ = ϑ + ϑ

(

−ϑ )⋅ k /α

© α

α

α

 W

 i

 i

 a

 i

 W

 a

 i

 a

 a

 i

 a

 a

 W

 i ¹

Die Funktion  f ( Pr) hat innen den Wert von 0,8386, außen den von 0,8384. 

1

ϑ

ϑ

 Ra

 Ra

α

α

 k

ϑ

ϑ

 Wi

 Wa

 i

 a

 i

 a

 Wi

 Wa

°C

°C

.  10-9

.  10-9

W/(m2 K)

°C

°C

20,00

2,00

5,880

4,909

1,960

1,750

0,227

19,46

2,85

19,46

2,85

7,467

6,995

2,113

1,956

0,232

19,59

2,60

19,59

2,60

7,085

6,381

2,078

1,901

0,230

19,56

2,67

19,56

2,67

7,173

6,553

2,086

1,917

0,231

19,57

2,65

19,57

2,65

7,144

6,504

2,084

1,912

0,231

19,57

2,65

 Diskussion

Die Größe der Wärmeübergangszahlen und Wärmedurchgangszahl wird durch

die Temperaturunterschiede bestimmt. Daher können die Wandtemperaturen nicht

direkt berechnet werden, man muss sie iterativ ermitteln. Allerdings liefert in diesem Beispiel die erste Berechnung schon fast den richtigen Wert. 

4.1.1

Geneigte, ebene Flächen

Bei geneigten, ebenen Flächen treten je nachdem, ob beheizt oder gekühlt wird und

ob der Wärmetransfer auf der oberen oder unteren Seite stattfindet, unterschiedliche Strömungen auf. Bei einer beheizten, geneigten Platte entsteht z. B. bei der Wärmeabgabe auf der unteren Seite der Fläche eine stabile Grenzschicht, die sich nicht ablöst. Erfolgt die Wärmeabgabe auf der oberen Seite, löst sich die Grenzschicht

nach einer bestimmten Plattenlänge ab. Folgende Fälle werden unterschieden:

1. Beheizte Fläche mit Wärmeabgabe nach unten: keine Grenzschichtablösung

2. gekühlte Fläche mit Wärmeaufnahme von oben: keine Grenzschichtablösung

3. beheizte Fläche mit Wärmeabgabe nach oben: Grenzschichtablösung möglich

4. gekühlte Fläche mit Wärmeaufnahme von unten: Grenzschichtablösung mög-

lich. 

Wenn sich die Grenzschicht nicht ablöst (1. und 2.) kann Gl. 4.7 verwendet wer-

den, nur muss die  Rayleigh zahl mit cosα multipliziert werden. Dabei ist α der Neigungswinkel zur Horizontalen. 



α

 Ra =  Ra ⋅ cosα

(4.9)
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Bei dem 3. und 4. Fall entscheidet die  Rayleigh zahl, ob eine Grenzschichtablösung stattfindet oder nicht. Zur Unterscheidung wird die kritische  Rayleigh zahl  Ra  ver-c

wendet (Bild 4.2). Ist die  Rayleigh zahl größer als  Ra , muss die Ablösung der Grenz-c

schicht berücksichtigt werden. Für die  Nußelt zahl gilt dann folgende Gleichung: 1/ 4

1/ 3

1/ 3

 Nu = 0,56 ⋅ ( Ra ⋅ cosα )

+ 0,13⋅( Ra −  Ra )

(4.10)

 l

 c

α

 c

9

10

6

4

2

8

10

 a c  6

 R l 4

h

 h

2

 ig

 yle

7

 a  10
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Neigungswinkel zur Senkrechten

Bild 4.2: Kritische  Rayleigh zahl

BEISPIEL 4.4: Solarkollektor

Ein Solarkollektor, der auf einem Dach mit 45° Neigung zur Vertikalen installiert

ist, hat eine Länge von 2 m  und eine Breite von 1 m. Die Temperatur des Kollektors ist 30 °C, die der Luft 10 °C. Stoffwerte der Luft:

λ = 0,0257 W/(m K), ν  = 15,11 .  10-6 m2/s,  Pr = 0,713. 

Wie groß sind die durch Konvektion verursachten Wärmeverluste auf der oberen

Seite des Kollektors? 
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Lösung

45°

 Schema

Siehe Skizze

2 m

 Annahmen

•

Strahlungsbedingte Effekte werden nicht berücksichtigt. 

•

Die Wandtemperatur des Kollektors nimmt man als konstant an. 

 Analyse

Die charakteristische Länge ist die Länge  l = 2 m der Platte. 

3

3

3

2

 g ⋅  l ⋅ (ϑ

ϑ

 W −

)

9,81⋅ m ⋅ 2 ⋅ m ⋅ (30 −10) ⋅ K ⋅ s

0

10

 Ra =

⋅  Pr =

⋅ 713

, 

0

= , 

1 731⋅10

2

2

12

−

4

2

 T ⋅ν

283,15⋅ K ⋅15,11 ⋅10

⋅ m ⋅s

0

In Bild 4.2 ist bei 45° die kritische  Rayleigh zahl  Ra  = 1,2 . 107. Sie ist kleiner als die c

 Rayleigh zahl. Damit muss die  Nußelt zahl mit Gl. (4.10) berechnet werden. 

 Nu

 Ra

α

 Ra

 Ra

 l =

56

, 

0

⋅(  c ⋅cos )1/4 + 13

, 

0

⋅( 1/3

1/ 3

−

)

 c

=

= 56

, 

0

⋅ 3

, 

1

(

⋅107 ⋅ , 

0 707)1/ 4 + 13

, 

0

⋅ , 

1

[( 731⋅1010 )1/3 −

3

, 

1

(

⋅107)1/3] =

6

, 

336

 Nu λ

 l ⋅

336,6 ⋅ 0,0257 ⋅ W

W

Wärmeübergangszahl: α =

=

=



4,32

 l

2 ⋅ m ⋅ m ⋅ K

m2 ⋅ K

Der an der oberen Seite durch freie Konvektion abgeführte Wärmestrom beträgt:

 Q = α ⋅  A⋅ (ϑ W −ϑ ) = 4,32⋅ W ⋅ −

m 2

0

⋅ −

K 1 ⋅ 2 ⋅ m2 ⋅ (30 −10)⋅ K =

  W
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 Diskussion

Ohne Berücksichtigung der Strömungsablösung wäre die Wärmedurchgangszahl

3,28 W/(m2 K), also kleiner. Auch an einer vertikalen Platte gleicher Länge ist sie mit 3,45 W/(m2 K) kleiner. Die Strömungsablösung erhöht die Wärmeübergangszahlen. 


4.2

Horizontale, ebene Flächen

Für beheizte horizontale, ebene Flächen, die Wärme nach oben abgeben oder ge-

kühlte Flächen, die Wärme von unten erhalten, wurden folgende Beziehungen ge-

funden:
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1/ 5

4

 Nul = 766

, 

0

⋅[ Ra ⋅  f ( Pr)]

für

 Ra ⋅  f ( Pr) ≤ 7 ⋅10

2

2

1/ 3

4

(4.11)

 Nul = 15

, 

0

⋅[ Ra ⋅  f ( Pr)]

für

 Ra ⋅  f ( Pr) > 7 ⋅10

2

2

−

 f ( Pr ) = 1+ 536

, 

0

−

⋅  Pr

(4.12)

2

(

11/ 20 ) 20/11

Die Beziehungen gelten für Flächen, die Teil einer unendlichen horizontalen Ebene

sind, d.h., die Grenzschicht wird nicht von Randeffekten gestört. 

Die charakteristische Länge  l wird mit Gl. (4.5) gebildet. Für eine Rechteckfläche mit den Abmessungen  a und  b ist sie  l =  a .   b/2 ( a +  b) und für eine Kreisfläche l =  d/4. 

Für Flächen, die seitliche Begrenzungen haben wie z. B. eine Fußbodenheizung, 

gelten die hier angegebenen Beziehungen nicht, weil der an den Wänden verursach-

te Wärmeaustausch die Strömung wesentlich beeinflussen kann. 


4.3

Freie Konvektion an gekrümmten Flächen

In diesem Abschnitt werden die Gleichungen für freie Konvektion an der Oberflä-

che waagerechter Rohre und Kugeln behandelt. Berechnungsverfahren für Würfel, 

berippte Rohre und Heizkörper findet man im VDI-Wärmeatlas [4.1]. 

4.3.1

Horizontaler Zylinder

Die  Nußelt- und  Rayleigh zahl werden hier mit der Anströmlänge  L'  = π .  d/2 des Zylinders gebildet. Für den horizontalen Zylinder gilt:

 Nu

= , 

0 752 + 387

, 

0

⋅  Ra ⋅  f ( Pr)

(4.13)

 L' 

[

1/ 6

 L' 

]2

3

9

− /16 −8/ 27

 f ( Pr) = 1

( + 721

, 

0

⋅  Pr

)

(4.14)

3

BEISPIEL 4.5: Isolierung einer Dampfleitung

In einer Stahlleitung mit 100 mm Außendurchmesser strömt Dampf bei einer Tem-

peratur von 400 °C. Die Berufsgenossenschaft verlangt, dass bei einer Außentem-

peratur von 30 °C die Temperatur auf der äußeren Oberfläche nicht höher als 40 °C

werden darf. Man kann annehmen, dass die Wandtemperatur des Stahlrohres fast

gleich wie die Dampftemperatur ist. Das Isolationsmaterial hat eine Wärmeleitfähigkeit von 0,03 W/(m K). Stoffwerte der Luft:

λ = 0,0265 W/(m K), ν = 16,5 .  10-6 m2/s,  Pr = 0,711

Wie dick muss die Isolation sein? 
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 Lösung

? 

Isolation

ϑ1

 Schema

Siehe Skizze

ϑ W

ϑ

 Annahmen

0

100 mm

•

Die Rohrwand- und Dampftemperatur sind gleich groß. 

•

Die Außenwandtemperatur der Isolation wird als konstant angenommen. 

 Analyse

Die charakteristische Länge ist die Anströmlänge π .   D/2. Die Außenwandtemperatur kann mit Gl. (2.29) berechnet werden. 

ϑ = ϑ +

−

⋅ k

 W

0

ϑ

( 1 ϑ )

/

0

α

Bei freier Konvektion wird die Wärmeübergangszahl α mit Gl. (4.14) bestimmt, die

Wärmedurchgangszahl, bezogen auf die Außenfläche, mit Gl. (2.27):

1

−

§ 1

 D

 D ·

 k =

+

⋅ln

¨¨

¸¸

α 2

©

⋅λ

 d

 I

¹

2

λ

1/ 6

α = ª0,752 + 0,387 ⋅  Ra ⋅  f ( Pr)º ⋅

=

¬

 L' 

3

¼  L' 

2

1/ 6

ª

3

3

º

§  g ⋅π ⋅  D ⋅(ϑ −ϑ ) ·

2 ⋅ λ

 W

0

= «0,752 + 0,387 ⋅¨

¸ ⋅  f ( Pr)» ⋅

3

2

3

«

2

©

⋅ T ν

⋅

¹

» π ⋅  D

0

¬

¼

Beide Gleichungen in die Gleichung für die Außenwandtemperatur eingesetzt, 

erhält man:

1

ϑ = ϑ + (ϑ −ϑ )⋅

 W

0

1

0

 D

 D ⋅α

1+

⋅ln

2 ⋅ λ

 d

 I

Für die Funktion  f ( Pr) bekommt man 0,83026. Die Gleichung kann nur mit dem 3

Gleichungslöser oder durch Iteration berechnet werden. Er liefert  D = 461 mm. Die Isolation ist damit 180,5 mm dick. 

 Diskussion

Die Berechnung an sich ist einfach, die Lösung ist jedoch nur mit einem Glei-

chungslöser oder iterativ durchführbar. 
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4.3.2

Kugel

Bei der Kugel wird die  Nußelt- und  Rayleigh zahl mit dem Durchmesser der Kugel gebildet. Die  Nußelt zahl ist:

 Nu

(4.15)

 d =

56

, 

0

⋅[ Pr /( 864

, 

0

+  Pr)⋅  Ra]0,25 + 2


4.4

Überlagerung freier und erzwungener Konvektion

In der Technik ist die freie Konvektion oft durch erzwungene Konvektion überlagert. 

In diesem Fall wird eine kombinierte  Nußelt zahl mit den  Nußelt zahlen der freien und erzwungenen Konvektion gebildet [4.2]. Je nachdem, ob die Strömung der erzwungenen Konvektion gegen die Strömung der freien Konvektion gerichtet ist oder pa-

rallel dazu verläuft, sind zwei Gleichungen gegeben. Für die mitgerichtete erzwun-

gene Konvektion gilt:

3

3

3

 Nu =  Nu

+  Nu

(4.16)

 L

 L,  erzwungen

 L,  frei

Die entgegengerichtete erzwungene Konvektion liefert:

3

3

3

 Nu =  Nu

−  Nu

(4.17)

 L

 L,  erzwungen

 L,  frei

5

Kondensation reiner Stoffe

Kommt Dampf mit einer Wand, deren Temperatur kleiner als die Sättigungstempe-

ratur des Dampfes ist, in Kontakt, kondensiert er an der Wand und schlägt sich als Flüssigkeit nieder. 

 Kommt Dampf mit einem Körper, dessen Temperatur tiefer als die Sättigungs-

 temperatur des Dampfes ist, in Kontakt, kondensiert der Dampf, unabhänig

 davon, ob er gesättigt, überhitzt oder nass ist. 

Der Niederschlag kann in Form eines geschlossenen Flüssigkeitsfilms oder in  Form

einzelner Tröpfchen erfolgen. Man spricht daher von  Film- oder  Tropfenkondensation. Die Tropfenkondensation, die höhere Wärmeübergangszahlen liefert, lässt sich nur durch besondere Vorkehrungen (z.B. Entnetzungsmittel, spezielle Oberflächenbeschichtungen) über längere Zeit aufrechterhalten. Die Anwendung der

Tropfenkondensation beschränkt sich bis heute auf Demonstrationsmodelle und

Laborapparate. 

Die Kondensation kann wie bei der Taubildung mit reinen, gesättigten, nassen

oder überhitzten Dämpfen bzw. mit Gasgemischen erfolgen. Hier wird nur die Kon-

densation reiner Dämpfe behandelt. Bei der Filmkondensation hängt die Wärme-

übergangszahl von der Geometrie, den Stoffwerten und der Differenz zwischen

Wand- und Kondensationstemperatur ab. Bei hohen Dampfgeschwindigkeiten wer-

den Schubspannung und Wärmeübergangszahl von der Strömung stark beeinflusst. 


5.1

Filmkondensation reiner, ruhender Dämpfe

Bei der Filmkondensation reiner, gesättigter, ruhender Dämpfe entsteht an einer

kälteren Wand ein Kondensatfilm, der durch Einwirkung der Schwerkraft nach un-

ten strömt und mit zunehmender Wandlänge auf Grund zusätzlich kondensierender

Dampfmasse immer dicker wird. Zunächst ist die Strömung laminar und wird dann

ab einer bestimmten Filmdicke turbulent. Für den laminaren und turbulenten Be-

reich müssen die Wärmeübergangszahlen getrennt behandelt werden. 

Bei der Kondensation ruhender Dämpfe erfolgt vom ruhenden Dampf zwar eine

Strömung zur kalten Wand, die aber die Kondensation nicht beeinflusst. 

P. von Böckh, T. Wetzel  Wärmeübertragung, 

DOI 10.1007/978-3-642-15959-6_5, © Springer-Verlag Berlin Heidelberg 2011
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5.1.1

Laminare Filmkondensation

 5.1.1.1

 Kondensation gesättigten Dampfes an einer senkrechten Wand

 Nußelt [5.1] leitete bereits 1916 die Wärmeübergangszahlen für laminare Filmkondensation bei konstanter Wandtemperatur her. Er berechnete die Dicke eines durch

die Schwerkraft nach unten bewegten und von der Kondensation gespeisten lamina-

ren Kondensatfilms (Wasserhauttheorie). Die lokale Wärmeübergangszahl α  an

 x

der Stelle  x der Wand wird durch die Wärmeleitung im Film bestimmt. 

λ l

α =

 x

δ

(5.1)

 x

Dabei ist λ  die Wärmeleitfähigkeit der Flüssigkeit (Kondensat) und δ  die Dicke

 l

 x

des Films an der Stelle  x. Für die Herleitung der Wärmeübergangszahl wird zu-nächst angenommen, dass die Temperatur der Wand konstant ϑ  ist. Die Tempera-

 w

tur des Dampfes ist die Sättigungstemperatur ϑ .  s

 b

 y

Dampf

δ x

ϑ s

 dm

ϑ w

 x

 dx

 y

Dampf

 c (y)

 x

 x

Bild 5.1: Laminare Kondensation an einer senkrechten Wand

Bild 5.1 zeigt die laminare Filmkondensation an einer senkrechten Wand. In dem

Film wirken zwei Kräfte: die Schwerkraft  F , die eine Strömung nach unten verurs

sacht und die Reibungskraft  F , die dagegen wirkt. Die Strömung ist stationär. Die-

τ

ses bedeutet, dass sich das Geschwindigkeitsprofil des Films und der Temperatur-

verlauf im Film an der Stelle  x zeitlich nicht verändern. 

An der Stelle  x wirkt in der Entfernung  y von der Wand folgende Schwerkraft  dFS

auf das Massenelement  dm:

 dF =  g ⋅  dm = (ρ − ρ ) ⋅  b ⋅ (δ −  y) ⋅  g ⋅  dx s

 l

 g

 x

(5.2)

Die Reibungskraft  dF  an der Stelle  y, die auf das Massenelement wirkt, ist: τ
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 dFτ = τ ⋅  A = τ ⋅ b ⋅  dx

(5.3)

Da beide Kräfte entgegengesetzt gleich groß sind, erhält man:

τ = −(ρ − ρ )⋅(δ −  y) ⋅  g

(5.4)

 l

 g

 x

In einer laminaren Strömung ist die Schubspannung τ : 

 dcx

τ = −η ⋅

 l

(5.5)

 dy

Damit erhalten wir für den Geschwindigkeitsverlauf an der Stelle  x folgende Differentialgleichung:

 g ⋅ (ρ − ρ )

 dc

 l

 g

=

⋅(δ −  y) ⋅  dy

 x

 x

η

(5.6)

 l

Da an der Wand bei  y = 0 die Geschwindigkeit null ist, erhält man:

 g ⋅(ρ − ρ )

 l

 g

1

 c (  y) =

⋅(

2

δ ⋅  y −  y )

 x

 x

η

(5.7)

2

 l

Man bekommt den Massenstrom an der Stelle  x, wenn  die Geschwindigkeit über der Querschnittsfläche des Films integriert und mit der Dichte der Flüssigkeit multipliziert wird. 

 y =δ  x

 g ⋅ (ρ − ρ )

3

⋅ b δ

 l

 g

 x

 m

 = ρ ⋅ b⋅  c ⋅ dy =

⋅

³

 x

 l

 x

ν

3

(5.8)

 y = 0

 l

Andererseits verändert sich der Massenstrom auf dem Strömungsweg  dx um den Massenstrom des Dampfes, der auf der Fläche  b .   dx an der Wand kondensiert. Aus der Wärmebilanz- und kinetischen Kopplungsgleichung erhalten wir:



λ l

δ Q = α ⋅ b ⋅(ϑ −ϑ )⋅ dx =

⋅ b ⋅(ϑ −ϑ )⋅ dx =  r ⋅ dm

 x

 s

 W

 s

 W

 x

δ

(5.9)

 x

Damit ist die Änderung des Massenstromes:

λ ⋅ b⋅ ϑ

(

−ϑ )

 dm

 l

 s

 W

 =

⋅  dx

 x

δ ⋅

(5.10)

 r

 x

Durch Ableiten der Gl. (5.8) nach  dδ  kann ebenfalls die Änderung des Massen-x

stromes bestimmt werden. 

 b ⋅  g ⋅ (ρ − ρ )

 l

 g

 dm

 =

δ 2 ⋅ dδ

 x

 x

 x

ν

(5.11)

 l
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Setzt man die Gln. (5.10) und (5.11) gleich, erhält man für die Filmdicke folgende Differentialgleichung:

λ ⋅ ϑ

(

−ϑ ) ν

⋅

 l

 s

 W

 l ⋅  dx = δ 3 ⋅  dδ

 x

 x

 r ⋅  g ⋅ (ρ − ρ )

(5.12)

 l

 g

Nach Integration von 0 bis  x bekommt man die Dicke δ  der Grenzschicht an der x

Stelle  x:

0,25

§ 4⋅λ ϑ ϑ ν

 l ⋅ (

 s −

)

·

¨

 W

⋅  l

¸

δ  x = ¨

⋅  x

(5.13)

 r ⋅  g ⋅ (ρ

ρ

 l −

)

¸

©

 g

¹

Die lokale Wärmeübergangszahl α    an der Stelle  x ist damit:

 x

0,25

0,25

3

3

§

λ

λ

ρ ρ

λ

ρ ρ

 l ⋅  r ⋅  g ⋅ (

 l −

) ·

§

 g

 l ⋅  r ⋅  g ⋅ (

 l −

) ·

 l

¨

¸

α x =

=

= , 

0 707 ¨

 g

¸

⋅

¨

δ

(5.14)

4 ϑ

ϑ

ν

ϑ ϑ

ν

 x

⋅(  s −

)

¸

¨

 W

⋅  l ⋅  x

(  s −

)

¸

©

¹

©

 W

⋅  l ⋅  x ¹

Die lokale Wärmeübergangszahl ist in der Regel nicht von Interesse. Die mittlere

Wärmeübergangszahl, die an einer Platte der Länge  l vorherrscht, erhält man als: 0,25

 x = l

3

1

§ λ

ρ ρ

 l ⋅  r ⋅  g ⋅ (

 l −

) ·

α = ⋅ α x ⋅  dx = 943

, 

0

¨

 g

¸

⋅

³

¨

(5.15)

 l

(ϑ

ϑ

ν

 s −

)

¸

 W

⋅  l ⋅ l

 x = 0

©

¹

Die Verdampfungswärme  r wird bei der Sättigungstemperatur des Dampfes be-

stimmt. Die übrigen Stoffwerte sind mit der mittleren Temperatur des Kondensat-

filmes (ϑ   + ϑ )/2 zu berechnen. 

 S

 W

Die Wärmeübergangszahlen mit dem Index  x sind lokale, ohne Index mittlere

Wärmeübergangszahlen. 

BEISPIEL 5.1: Berechnung der Filmdicke und Wärmeübergangszahl

Berechnen Sie die Filmdicke und die Wärmeübergangszahl von Wasser und Frigen

R134a an einer vertikalen Wand bei  x = 0,1 und 1,0 m. Für beide Fluide beträgt die Differenz zwischen Wand- und Sättigungstemperatur 10 K. Die Stoffwerte sind:

λ

ρ

ρ

ν

 r

 l

 g

 l

W/(m K)

kg/m3

kg/m3

106 m2/s

kJ/kg

Wasser:

0,682

958,4

0,60

0,295

2 257,9

Frigen R134a:

0,094

1 295,2

14,43

0,205

198,6
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Lösung

 Annahmen

•

Die Wandtemperatur ist konstant. 

•

Im Film ist die Strömung laminar. 

 Analyse

Die Filmdicke wird mit Gl. (5.13), die Wärmeübergangszahl mit (Gl. 5.14) be-

rechnet. 

0,25

§ 4⋅λ ϑ ϑ ν

λ

 l ⋅ (

 s −

)

·

¨

 W

⋅  l

¸

 l

δ

α =

 x = ¨

⋅  x

 x

 r ⋅  g ⋅ (ρ

ρ

δ

 l −

)

¸

©

 g

¹

 x

Die gegebenen Zahlenwerte eingesetzt, ergeben:

δ

α

δ

α

 x = 0,1 m

 x  = 0,1 m

 x  = 1 m

 x  = 1 m

mm

W/(m2 K)

mm

W/(m2 K)

Wasser:

0,078

8 690

0,140

4 887

Frigen R134a:

0,075

1 261

0,133

709

 Diskussion

Für beide Fluide erhalten wir sehr dünne Kondensatfilme. Die Wärmeübergangs-

zahl des Frigens ist wegen der wesentlich kleineren Wärmeleitfähigkeit viel gerin-

ger als die des Wassers. 

Es ist zu beachten, dass Verdampfungswärme  r in J/kg und nicht in kJ/kg eingesetzt werden muss. 

 5.1.1.2

 Einfluss der veränderlichen Wandtemperatur

Die konstante Wandtemperatur ist eine Annahme, die praktisch nie erfüllt wird. 

Meist wird die bei der Kondensation abgegebene Wärme von einem Fluid, das sich

erwärmt, aufgenommen. Ist die Temperatur des Fluids am Eintritt ϑ ' , am Austritt 1

ϑ ''  und die Wärmedurchgangszahl  k, gilt für den übertragenen Wärmestrom: 1

ϑ ′−ϑ′

1

1

 Q =  k ⋅  A⋅ ϑ

Δ

 k A

 m =

⋅ ⋅

(5.16)

ln[(ϑ s −ϑ′) / (ϑ s −ϑ )′

1

1 ]

Der vom kondensierenden Dampf an die Wand abgegebene Wärmestrom, ermit-

telt mit einer mittleren Wandtemperatur ϑ , ist:

 W
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 Q /  A =  q = α ⋅ (ϑ −ϑ )

(5.17)

 S

 W

Aus den Gln. (5.16) und (5.17) erhält man für die mittlere Temperaturdifferenz

zwischen der Sättigungstemperatur und der mittleren Temperatur der Wand:

ϑ

(

−

=

⋅

(5.18)

 S

ϑ )

 W

ϑ

Δ

 k /

 m

α

Messungen zeigen, dass die mittleren Wärmeübergangszahlen mit den nach Gl. 

(5.18) berechneten Temperaturdifferenzen sehr genau bestimmbar sind. Die Tem-

peraturdifferenzen können durch die Wärmestromdichte   q  aus Gl. (5.17) ersetzt werden. Durch das Ersetzen erhält man:

1/ 4

1/ 3

3

3

§ λ

ρ ρ α

λ

ρ ρ

 l ⋅  r ⋅  g ⋅ (
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)
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§  l ⋅ r ⋅  g ⋅(  l − ) ·

α = 943
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0

¨

¸

⋅
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0
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¸

⋅
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¸
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¸ (5.19)
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©
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¹

Bei bekannten Abmessungen des Apparates ist die Fläche  A das Produkt aus Län-ge  l und Breite  b. Besteht die senkrechte Fläche z. B. aus  n senkrechten Rohren, ist die Breite  b =  n .  π .   d . 

 a

1/ 4

1/3

3

3

§ λ ⋅ r⋅ g⋅(ρ − ρ )⋅ b⋅α ·

§ λ ⋅ r⋅ g⋅(ρ − ρ )⋅ n⋅π ⋅ d ·

α = 0,943  l

 l
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(5.20)

 Q

©

 ν

¸

¨

 Q

¹

©

 ν

¸

⋅

⋅

 l

 l

¹

Ist der Wärmestrom unbekannt, wird zunächst die Wärmeübergangszahl bei der

Kondensation mit einer angenommenen Temperaturdifferenz ermittelt. Entspre-

chend der Strömungsbedingungen und Stoffeigenschaften an der Wand werden

dann die Wärmeübergangs- und Wärmedurchgangszahl berechnet und die Tempe-

raturdifferenz aus Gl. (5.17) bestimmt. Die Berechnung wird wiederholt, bis die erforderliche Genauigkeit erreicht ist. 

 5.1.1.3

 Kondensation nassen oder überhitzten Dampfes

Bei der Kondensation ruhender Dämpfe hat der Zustand des Dampfes keinen Ein-

fluss auf die Wärmeübergangszahl. Entsprechend der Enthalpie  h  = h ( p,ϑ,   x) des g

Dampfes verändert sich nur der Massenstrom des produzierten Kondensats. Ganz

allgemein gilt für den Kondensatmassenstrom:

 m =  Q



/( h − h )

(5.21)

 l

 g

 l

Bei der Berechnung des Wärmestromes ist zu beachten, dass bei bekanntem

Dampfmassenstrom als Enthalpieänderung nicht die Verdampfungsenthalpie  r, 

sondern die Differenz  h –  h  einzusetzen ist. 

 g

 l
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 5.1.1.4

 Kondensation an geneigten Wänden

Tritt die Kondensation an geneigten Wänden auf, verringert sich die Wirkung der

Schwerkraft entsprechend des Neigungswinkels ϕ gegenüber der Horizontalen. 

0,25

α = α

⋅(cosϕ)

(5.22)

 senkr

 5.1.1.5

 Kondensation an waagerechten Rohren

In Wärmeübertragern kondensiert der Dampf häufig an waagerechten Rohren. In

diesem Fall wird an Stelle der Wandlänge der Durchmesser des Rohres in Gl. (5.15)

eingesetzt. Die Wärmeübergangszahl ist dann:

0,25
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§ λ  r g ρ ρ
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) ·
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¸
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Ähnlich wie bei der senkrechten Wand kann die Temperaturdifferenz hier durch

den Wärmestrom und die Fläche  A =  n .  π  .   d  .   l ersetzt werden. 

 a
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3

§ λ  r g ρ ρ  n l

 l ⋅

⋅ ⋅(  l −

)

 g

⋅ ⋅ ·

α = 959

, 

0

¨

¸

⋅¨



¸

(5.24)

©

 Q ⋅ν  l

¹

5.1.2

Turbulente Filmkondensation

Ist eine senkrechte Wand relativ lang, wächst die Dicke des Kondensatfilms an und

die laminare Strömung geht in eine turbulente über. Die Wärmeübergangszahl kann

nicht mehr analytisch hergeleitet werden. Die Berechnung der turbulenten Konden-

sation und des Übergangsgebietes wird bei der Behandlung der Kondensation mit

dimensionslosen Kennzahlen gezeigt. 


5.2

Dimensionslose Darstellung


Ähnlich wie bei der konvektiven Wärmeübertragung können die Wärmeübergangs-

zahlen bei der Kondensation auch als  Nußelt zahl angegeben und als Funktion dimensionsloser Kennzahlen dargestellt werden [5.2]. Für die Bildung der  Nußeltzahl wird die dimensionslose Länge  L'  folgendermaßen definiert:

2

ν

3

 L

 l

′ =

(5.25)

 g

α ⋅  L′

Damit ist die  Nußelt zahl:   Nu ′ =

(5.26)

 L

λ l
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Die zweite dimensionslose Kennzahl ist die  Reynolds zahl  Re , sie ist definiert als: l

Γ

 Re =

 l

η

(5.27)

 l

Die Größe Γ wird  Berieselungsdichte genannt. Sie ist der Massenstrom des Kondensats pro Meter Ablaufbreite  b. 

 m



 m



 l

 l

Γ =

=

(5.28)

 b

 n ⋅π ⋅  d

Die  Ablaufbreite  b wird wie folgt bestimmt:

bei senkrechten Wänden die Breite der Wand:

 b = b

bei senkrechten Rohren die Summe der Rohrumfänge:

 b =  n .  π .   d

bei waagerechten Rohren die Summe der Rohrlängen:

 b =  n .   l

Der Massenstrom des Kondensats, multipliziert mit der Verdampfungsenthalpie, 

ergibt den Wärmestrom. Damit kann die Berieselungsdichte auch als Funktion des

Wärmestromes angegeben werden. 

 m



 Q

 l

Γ =

=

(5.29)

 b

 r ⋅ b

Mit diesen Kennzahlen lassen sich die lokalen und mittleren Wärmeübergangs-

zahlen berechnen. 

5.2.1

Lokale Wärmeübergangszahlen

Die lokalen laminaren Wärmeübergangszahlen können mit den dimensionslosen

Kennzahlen in die Gln. (5.14), (5.17) und (5.29) eingesetzt, wie folgt angegeben

werden:

α ⋅

1/ 3

 L′

§1− ρ / ρ ·

 g

 l

 x

 Nu

, 

0 693

', 

, 

=

=

⋅

⋅  f

 L lam x

 well

¨¨

¸¸

λ

(5.30)

 Re

 l

©

 l

¹

Dabei ist  f

ein Korrekturfaktor, der die Welligkeit der Filmströmung bei größe-

 well

ren  Reynolds zahlen berücksichtigt. Er ist gegeben als:

­1

für

 Rel < 1

 f well = ®

(5.31)

¯  0,04

 Re

für

 Re

 l

 l ≥ 1

Die lokale  Nußelt zahl des turbulenten Kondensatfilms ist:
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7 / 24

1/ 3

α  L

 Re

 Pr

 x ⋅

′

, 

0 0283⋅

 l

⋅

 Nu L' turb x =

=

 l

, 

, 

−3/8

1

− / 6

λ

(5.32)

1

 Re

 Pr

 l

+ , 

9 66 ⋅

 l

 l

Eine Formel der lokalen Wärmeübergangszahlen, die für den gesamten Bereich

der Kondensation ruhender Dämpfe an senkrechten Wänden gültig ist, lautet:

α ⋅  L′

 Nu

 x

, 

=

=  Nu

2

2

′, 

+  Nu ′, 

⋅  f

 L' x

 L lam

 L turb

η

λ

(5.33)

 l

Dabei ist  f  der Korrekturfaktor zur Berücksichtigung der Temperaturabhängig-

η

keit der Viskosität. 

0,25

 f

(

η = η /η

)

(5.34)

 ls

 lW

5.2.2

Mittlere Wärmeübergangszahlen

Die mittleren Wärmeübergangs- bzw.  Nußelt zahlen erhält man durch Integration der lokalen Werte über die Länge der Kühlfläche. Die mittlere laminare  Nußelt zahl ist:

α ⋅

1/ 3

 L′

§ 1

( − ρ / ρ ) ·

 g

 l

 Nu

925

, 

0

, 

=

=

⋅

⋅  f

 L' lam

 well

¨¨

¸¸

λ

(5.35)

 Re

 l

©

 l

¹

Mittlere  Nußelt zahl des turbulenten Kondensatfilms:

7 / 24

1/ 3

α ⋅  L′

, 

0 020 ⋅  Re

 Pr

 l

⋅

 NuL' turb =

=

 l

, 

−3/8

1

− / 6

λ

(5.36)

1

 Re

 Pr

 l

+

52

, 

20

⋅  l

 l

 Pr =  1

1,0

 L

 Nu

ahlz t

 Nußel

Gl. (5.37)
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Bild 5.2: Mittlere  Nußelt zahl bei der Kondensation ruhender Dämpfe
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Eine Formel, die für den gesamten Bereich der Kondensation ruhender Dämpfe

an senkrechten Wänden gültig ist, lautet:

α ⋅  L′

 Nu

=

= ,12  Nu

, 

1 2

, 

1 2

′, 

+  Nu ′, 

⋅  f

 L' 

 L lam

 L turb

η

λ

(5.37)

 l

5.2.3

Kondensation an waagerechten Rohren

Bei der Kondensation ruhender Dämpfe an waagerechten Rohren erhalten wir mit

den Kennzahlen aus Gl. (5.24) für die  Nußelt zahl:

1/ 3

§1− ρ / ρ

 g

 l ·

 NuL′ = 959

, 

0

⋅¨¨

¸¸

(5.38)

©

 Rel

¹

Es ist zu beachten, dass die Ablaufbreite  b mit der Rohrlänge gebildet wird, d.h., b =  n .   l. 

5.2.4

Vorgehen bei der Berechnung der Wärmeübergangszahlen

Meist bestehen die Übertragungsflächen der Apparate, in denen Kondensation statt-

findet, aus Rohren. Daher beschränkt sich dieser Abschnitt auf die Behandlung von

Apparaten, bei denen der Dampf außen an waagerechten oder senkrechten Rohren

kondensiert. Hier unterscheiden wir zwischen Auslegung und Nachrechnung. 

Bei der Auslegung sind die thermischen Daten (Wärmestrom, mittlere Tempera-

turdifferenz und Wärmeübergangszahl des Fluids, auf das die Wärme transferiert

wird) gegeben. Für diese Daten muss ein Apparat ausgelegt werden, d.h., die An-

zahl und Länge der Rohre werden bestimmt. Unbekannt sind dabei Anzahl, Außen-

durchmesser und Länge der Rohre, die Differenz zwischen Wand- und Sättigungs-

temperatur und die Temperatur zur Bestimmung der Stoffwerte. Diese Größen müs-

sen zum Teil angenommen werden. Der Rohrdurchmesser ist entweder vorgegeben

oder er wird optimiert. Bei Letzterem sind Berechnungen für verschiedene Rohr-

durchmesser durchzuführen. Die Anzahl der Rohre wird von äußeren Größen wie

z.B. Strömungsgeschwindigkeit in den Rohren bestimmt, die die Kondensation

nicht beeinflussen. Deshalb werden hier die Anzahl der Rohre und der Rohrdurch-

messer als gegeben vorausgesetzt. Bei senkrechten Rohren ist damit die Ablauf-

breite  b bekannt, bei waagerechten Rohren muss eine Rohrlänge angenommen werden. Zur Ermittlung der Stoffwerte rechnet man mit einer angenommenen mittleren

Temperatur. Damit können Wärmeübergangs-, Wärmedurchgangszahl und Tempe-

raturdifferenz bestimmt werden. Aus der erforderlichen Austauschfläche errechnet

sich die Rohrlänge. Nun müssen die Stoffwerte und bei waagerechten Rohren die

Ablaufbreite  b neu ermittelt werden. Dieser Vorgang wird so lange wiederholt, bis die erforderliche Genauigkeit erreicht ist. Bild 5.3 zeigt das Flussdiagramm der Berechnung. 
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Die Nachrechnung erfasst Apparate, die bereits ausgelegt sind, d.h., Anzahl und

Abmessung der Rohre sind bekannt. Die Daten des Fluids im Rohr und/oder des

Dampfes ändern sich gegenüber der Auslegung. Nachstehend wird der Fall erklärt, 

bei dem mit den gegebenen Größen Wärmestrom, Eintrittstemperatur und Massen-

strom des Kühlmediums in den Rohren die Kondensationstemperatur bestimmt

werden muss. 

gegeben:

. 

 . 

 Q  oder  m

 d , d , 

 kond

 i

 a

ϑ  , ϑ  , ϑ  , α

 ' 

 ' 

2

1

1

 i

Δϑ m

Annahme: ϑ   =

 W

ϑ W 0

ja

waagerecht ? 

 l = l  0

 b = n  l

. 0
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 b = n  d

. . π

Γ , Re  , Nu  ,L α  , α  ,  k

 l

 i

 a

 A, l, ϑ W

nein

 l - l   <   l

Δ

0

 l   = l

0

ja

nein

ϑ   −

Δ

< 

 W

ϑ W 0

ϑ     =

 W  0

ϑ W

ja

Ende

Bild 5.3: Flussdiagramm der Berechnung bei einer Auslegung

Mit dem gegebenen Wärmestrom kann die Austrittstemperatur des Kühlmediums

berechnet werden. Zur Ermittlung der Stoffwerte des Kondensats nimmt man eine

Sättigungstemperatur an. Damit können die Wärmeübergangszahl innen und außen

und die Wärmedurchgangszahl berechnet werden. Mit Letzterer bestimmt man die

mittlere Temperaturdifferenz, die zur Abfuhr des Wärmestromes notwendig ist, fer-

ner die mittlere Wandtemperatur. Die Berechnung wird so lange wiederholt, bis die

erforderliche Genauigkeit erreicht ist. 
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BEISPIEL 5.2: Auslegung eines Kraftwerkkondensators

Für den im Beispiel 3.3 berechneten Kraftwerkkondensator ist die Wärmeüber-

gangszahl bei der Kondensation zu berechnen. Jetzt wird auf der Kühlwasserseite

auch der Einfluss der Richtung des Wärmestromes berücksichtigt. Wir verwenden

die im Beispiel 3.3 vorgegebenen Daten. 

Zu bestimmen sind die notwendige Länge der Rohre und die durch Verschmut-

zung bedingte Änderung der Kondensationstemperatur. 

ϑ

α

2

 a

Lösung

ϑ ' 

 c

ϑ '' 

1

1

 Schema

Siehe Skizze

ϑ

ϑ2

ϑ ''1

 Annahmen

ϑ '1

 x

0

 l

•

Die mittlere Wärmeübergangszahl ist konstant. 

•

Die Einflüsse der Dampfströmung sind vernachlässigbar. 

 Analyse

Die Anzahl der Rohre wird durch die vorgegebene Strömungsgeschwindigkeit

und den Wärmestrom berechnet und kann daher wie die mittlere Temperatur über-

nommen werden. Die Stoffwerte des Kondensats bestimmt man mit einer angenom-

menen mittleren Wandtemperatur, mit den im Beispiel 3.3 berechneten Werten sind

sie:

ϑ = ϑ − Δϑ ⋅  k /α = 35 C

° − 9,102⋅ K ⋅4 403  /  13 500 = 32,0 C

°

 W

2

 m

 a

Die für die Stoffwerte maßgebliche Temperatur beträgt 33,5 °C. Aus der Dampf-

tafel erhält man folgende Werte:

ρ  = 995,5 kg/m3, ρ  = 0,040 kg/m3, λ  = 0,616 W/(m K), 

 l 

 g

 l

η  = 792,2 .  10-6 kg/(m s),  r = 2 417,9 kJ/kg, ν  = 0,796 .  10-6 m2/s. 

 l



 l

Die Berieselungsdichte wird mit Gl. (5.29) berechnet. 

6

 Q

2 000 ⋅10 ⋅ W ⋅ kg

kg

3

Γ =

=

= 1,239⋅10−

 r ⋅  n ⋅ l

2 417 900 J

⋅ ⋅57 727⋅11,562⋅ m

m ⋅ s

 Reynolds zahl nach Gl. (5.27):   Re

Γ η

 l =

/  l = , 

1 250 ⋅10 3

−

, 

/792 2 ⋅10−6 = 564

, 

1

Die  Nußelt zahl wird mit Gl. (5.38) berechnet. 
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1/ 3
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¹

Zur Bestimmung der Wärmeübergangszahl muss noch die charakteristische Län-

ge  L'  mit Gl. (5.25) berechnet werden. 

 L′ = ν /

3

 g

 l

= ( , 

0 796 ⋅10 6

3

2

− )2 ⋅m4 ⋅s2/(9,806⋅m⋅s2) = 0,04013⋅10 3− m



Die Wärmeübergangszahl ist:

−3

2

α =  Nu ⋅λ /  L′ = 0,8238⋅0,616⋅ W/(0 ,  04013⋅10 ⋅m ⋅K ⋅m) =12 682  W/(m ⋅K) L' 

Sie ist etwas kleiner als im Beispiel 3.3 mit 13 500 W/(m2 K) angegeben. 

Die Wärmeübergangszahl im Rohr aus Beispiel 3.3 ist 8 481 W/(m2 K). Für die



Wärmedurchgangszahl erhält man:

1

−

§ 1

 d

 d

 d

·

 a

 k = ¨

+

⋅ln  a

 a

+

¸ =

© α

2 ⋅ λ

 d

 d ⋅α

 a

 R

 i

 i

 i ¹

1

−

§

1

0, 024

24

24

·

W

= ¨

+

⋅ln

+

¸ = 4 273   2

©12 682

2 ⋅17

23

23⋅8 481¹

m ⋅ K

Die Rohrlänge wird somit zur Verkleinerung der Wärmedurchgangszahl propor-

tional größer, d.h. 11,803 m. Mit der neuen Rohrlänge wird die Berieselungsdichte

kleiner, die Wärmeübergangszahl nimmt etwas zu. Hier ist es zweckmäßig, nicht

nur mit der geänderten Rohrlänge, sondern neu auch mit den Korrekturfunktionen

für die Wärmeübergangszahl im Rohr zu rechnen. Die Wärmedurchgangszahl er-

gibt sich damit zu:

§ 1

 d

 d

 d

·

 k = ¨¨

+

 a

⋅ln  a +

 a

¸¸

©α

2 λ

α

 a

⋅

 d

 d

 R

 i

 i ⋅

 i ⋅  f

 f

1 ⋅

2 ¹

Die  Prandtl zahl des Kühlwassers hat bei 30 °C den Wert von 5,414. Innen im Rohr beträgt die Wandtemperatur:

ϑ = ϑ + ϑ

Δ ⋅ k /α

 Wi

 m

 m

 i

Aus der Iteration erhält man nach fünf Berechnungen die Rohrlänge auf 1 mm

genau. Folgende Werte wurden ermittelt:

 f  = 1,016,  f  = 1,015, α  = 12 700 W/(m2 K),  k = 4 348 W/(m2 K), 1

2

 a



 l = 11,611 m
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Dabei wurden auch die Änderungen der Stoffwerte des Kondensats berücksich-

tigt. 

 Diskussion

Die Korrekturfunktionen  f  und  f  bewirken nur eine geringfügige Änderung der 1

2

Rohrlänge von 0,5 %. Bei der Auslegung von Großkondensatoren müssen die Be-

rechnungen sehr genau sein, weil einerseits die Fläche den Preis und damit die

Konkurrenzfähigkeit bestimmt, andererseits sehr hohe Geldstrafen bei Nichter-

reichen der garantierten Werte zu bezahlen sind. 

BEISPIEL 5.3: Auslegung und Nachrechnung eines Kondensators für Frigen

R134a

An den senkrechten Rohren eines Kondensators sollen 0,5 kg/s Frigen R134a bei

50 °C kondensiert werden. In den Rohren strömt Wasser mit einer Geschwindigkeit

von 1 m/s. Das Kühlwasser wird dabei von 40 auf 45 °C erwärmt. Die Rohre sind

aus Kupfer, haben den Außendurchmesser von 12 mm und eine Wandstärke von

1 mm; die Wärmeleitfähigkeit ist 372 W/(m2 K). 

Stoffwerte des Kühlwassers bei 42,5 °C: ρ = 991,3 kg/m3,  c  = 4,178 kJ/(kg K), p

λ = 0,634 W/(m K), ν = 0,629  .   10-6 m2/s,  Pr = 4,1. 

Stoffwerte des Frigens: ρ = 1 102,3 kg/m3, ρ = 66,3 kg/m3, λ = 0,071 W/(m K), 

 l 

 g

η  = 142,7 . 10-6 kg/(m s),  r = 151,8 kJ/kg, ν  = 0,132 . 10-6 m2/s,  Pr  = 3,14. 

 l

 l

 l

Sie können annehmen, dass der Einfluss der Rohrlänge und der der Richtung des

Wärmestromes vernachlässigbar sind. Bei Teilaufgabe b) kann die Änderung der

Stoffwerte vernachlässigt werden. 

Zu berechnen sind:

a) die Anzahl und Länge der Rohre

b) der Wärmestrom und die Wärmeübergangszahl, wenn der Dampfmassenstrom

auf 0,65 kg/s ansteigt. 

Lösung

 Schema

Temperaturverlauf wie im Beispiel 5.2

 Annahmen

•

Die mittlere Wärmeübergangszahl ist konstant. 

•

Die Einflüsse der Dampfströmung sind vernachlässigbar. 
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 Analyse

a)

Der Massenstrom des Kühlwassers wird aus der Kombination der Wärme-

bilanzgleichungen für Frigen und Kühlwasser berechnet. 

 Q =  m

 r

 Q



 m



 c

 R

 a ⋅

=  KW ⋅  p ⋅(ϑ ′−ϑ′)

134

1

1
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 c ⋅ (ϑ′′−ϑ )

′

4 178 ⋅5 ⋅ K ⋅ J ⋅s ⋅ kg

s

 p

1

1

Aus der Kontinuitätsgleichung erhalten wir aufgerundet die Anzahl der Rohre. 

4 ⋅  m

4

 KW

⋅ , 

3 633⋅ kg ⋅s ⋅ m3

 n =

=

= 47

2

 c

 d

 KW ⋅ ρ  KW ⋅π ⋅

1

 i

⋅ m ⋅991,3⋅ kg ⋅π ⋅ 01

, 

0

2 ⋅ m2 ⋅s

Die Berieselungsdichte wird mit Gl. (5.29) berechnet. 
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Γ =

=

= , 

0 2822
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47
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0 012 ⋅ m ⋅s
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 Reynolds zahl nach Gl. (5.27): 

−6

 Re = Γ /η = 0, 2822 /142, 7 ⋅10 = 1 978

 l

 l

Die  Nußelt zahl wird mit den Gln. (5.31) bis (5.37) berechnet. 
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= 0, 2079

 L' 

 L′,  lam
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Zur Bestimmung der Wärmeübergangszahl muss noch die charakteristische Län-

ge  L'  mit Gl. (5.25) berechnet werden. 

 L′ = ν /

3

 g

 l

=

132

, 

0

(

⋅10 6

3

2

− )2 ⋅m4 ⋅s2/(9,806⋅m⋅s2) = 0,01211⋅10 3− m



Die Wärmeübergangszahl ist:

3

−

2

α =  Nu ⋅λ /  L′ = 0,2079⋅0,071⋅ W/(0,01211⋅10 ⋅m ⋅K ⋅ m) = 1219  W/(m ⋅ K) L' 

Die Wärmeübergangszahl in den Rohren wird mit Gl. (3.8) berechnet. 
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Für die Wärmedurchgangszahl erhält man:
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Die mittlere Temperaturdifferenz ist:
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Die Rohrlänge berechnet sich als:

2

 Q

75 900   ⋅ W ⋅ m ⋅ K

 l =

=

= 5,983  m

 k ⋅ Δϑ ⋅  n ⋅π ⋅  d

992, 6 ⋅ W ⋅7,123 K

⋅ ⋅47 ⋅ ʌ ⋅0,012⋅m

 m
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b)

Durch die Vorgabe, dass die Änderung der Stoffwerte vernachlässigt werden

kann, bleibt die Wärmeübergangszahl im Rohr gleich. Die Temperatur des Kühl-

wassers steigt um 6,5 K, d.h., die Austrittstemperatur des Kühlwassers beträgt

46,5 °C. Mit dem erhöhten Kondensatmassenstrom erhalten wir für die Wärme-

übergangs- und Wärmedurchgangszahl:
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Damit bei dieser Wärmedurchgangszahl der höhere Wärmestrom abgeführt wer-

den kann, steigt die mittlere Temperaturdifferenz. Sie kann mit Gl. (5.16) berech-

net werden. 

2

 Q

 Q

98 670 W

⋅ ⋅ m ⋅ K

Δϑ =

=

=

= 9,048  K

 m

 k ⋅  A

 k ⋅  n ⋅π ⋅  d ⋅  l

1 032 W

⋅ ⋅ 47 ⋅ ʌ ⋅0,012⋅ m ⋅5,983⋅ m

 a

Aus der mittleren Temperaturdifferenz erhält man die Kondensationstemperatur:

ϑ ′1−ϑ′

 ǻϑ m 1

ϑ2 −ϑ′1

ϑ′1 −Θ ⋅ϑ ′

Θ =  e

= 0564

, 

2

= Θ

ϑ2 =

1 =

  

52,65 C

°

ϑ2 −ϑ ′

1

1

−Θ

 Diskussion

Die Auslegung erfolgte mit vorgegebenen Stoffwerten und benötigte daher keine

Iteration, ebenso wenig bei der vereinfachten Nachrechnung. Unter Berücksichti-

gung der Rohrlänge, Richtung des Wärmestromes und der Stoffwerte ist jedoch in

beiden Fällen eine Iteration notwendig. 

5.2.5

Druckverlust in Rohrbündeln mit waagerechten Rohren

 Nußelt hat für senkrecht übereinander angeordnete, waagerechte Rohre theoretisch Gleichungen für den Einfluss des Kondensats, das auf die unteren Rohre auftrifft, 
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hergeleitet. Danach vermindert sich die mittlere Wärmeübergangszahl proportional

zur vierten Wurzel aus der Anzahl der Rohre ( n–1/4). Diese Gesetzmäßigkeit über-nahm man früher auch für Rohrbündel, wobei die Anzahl der übereinander ange-

ordneten Rohre eingesetzt wurde. Messungen, vor allem an größeren Rohrbündeln, 

zeigen, dass durch die Strömungsgeschwindigkeit des Dampfes die Verminderung

der Wärmeübergangszahlen kompensiert wird. 

Bei sehr großen Rohrbündeln spielt der Druckverlust des Dampfes und die An-

sammlung nicht kondensierbarer Gase eine wesentliche Rolle. Dieses stellte man

bei großen Kraftwerkkondensatoren fest. In Dampfkraftwerken mit der elektrischen

Leistung von bis zu etwa 100 MW wurden Kondensatoren mit runden Rohrbündeln

verwendet. Als um 1970 die Leistung der Dampfkraftwerke auf über 1 000 MW



anstiegen, machte man die Erfahrung, dass bei Verwendung großer runder Rohr-

bündel die Wärmedurchgangszahlen nicht die erwarteten Werte erreichten. Der

Grund dafür war, dass die Oberfläche der Rohre mit dem Durchmesser des Bündels

quadratisch, der Umfang jedoch nur proportional anstieg. Damit stieg die Ge-

schwindigkeit des Dampfes, der in das Bündel strömte, zwischen den Rohren am

Umfang des Bündels an. Dort entstand ein großer Druckverlust und im Bündel

selbst waren der Druck und damit die Temperatur tiefer. Um dieses zu vermeiden, 

wurden zur Vergrößerung des Umfangs Dampfgassen in das Bündel gelegt, was

jedoch bewirkte, dass Stagnationszonen entstanden, in denen sich nicht kondensier-

bare Gase ansammelten und die Fläche in dieser Zone für die Kondensation sperr-

ten. 

Bei der Strömung des Dampfes in das Bündel nehmen der Massenstrom und die

Geschwindigkeit des Dampfes von Rohrreihre zu Rohrreihe ab. Am Umfang des

Bündels in der ersten Rohrreihe kann die Strömungsgeschwindigkeit sehr groß sein

und einen entsprechenden Druckverlust verursachen. Dieses bedeutet, dass die

Rohre im Bündel von einem tieferen Druck umgeben sind und somit dort eine tiefe-

re Kondensationstemperatur herrscht, was die mittlere Temperatur und damit den

Wärmestrom verringert. Um den gewünschten Druck zu erhalten, muss eine ent-

sprechend größere Fläche installiert werden. Für die genaue Berechnung dieses Ef-

fektes werden in der Literatur praktisch keine Hinweise gegeben, sie ist das Know-

how der Hersteller. Beispiel 5.4 demonstriert mit einem sehr einfachen Modell den

Einfluss des Druckverlustes. 

Die Formen moderner Großkondensatoren werden in Versuchen oder mit Be-

rechnungen ermittelt. Der Umfang der Bündel ist so ausgelegt, dass der Dampf kei-

ne zu hohen Geschwindigkeiten hat und dadurch große Druckverluste verursacht. 

Die Strömung in den Bündeln ist derart gestaltet, dass die Bildung von Stagnationszonen verhindert wird. 
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BEISPIEL 5.4: Einfluss des Druckverlustes auf die Wärmestromdichte

Mit einem einfachen Modell soll hier der Einfluss des Druckverlustes auf die Wär-

mestromdichte in Abhängigkeit von der Bündelgröße demonstriert werden. Das

Rohrbündel ist ein rundes Bündel mit  n Rohren, die auf gleichseitigen Dreiecken angeordnet sind. Die Rohre haben einen Außendurchmesser von 24 mm und den

Abstand von 32 mm, sie sind möglichst genau in eine Kreisfläche einzupassen. Die

Wärmedurchgangszahl im Bündel wird unabhängig von der Strömung, der Tempe-

ratur und dem Druck als konstant mit 3 500 W/(m2 K) angenommen. Die Eintritts-



temperatur des Kühlwassers beträgt 20 °C, jene am Austritt 30 °C. Die Sättigungs-

temperatur außerhalb des Bündels ist 35 °C. In der Modellvorstellung wird ange-

nommen, dass an der Rohrreihe am Umfang des Bündels ein Druckverlust entsteht

und der so entstandene Druck maßgebend für die restlichen Rohre des Bündels ist. 

Die Reibungszahl für den Druckverlust zwischen den Rohren der ersten Rohrreihe

ist 1,5, bezogen auf die Geschwindigkeit im engsten Querschnitt, d.h. zwischen den Rohren. 

Die notwendige zusätzliche Fläche, die benötigt wird, um die 35 °C Sättigungs-

temperatur außen am Bündel zu erhalten, ist in Abhängigkeit der Rohrzahl zu be-

rechnen. 

Bündelradius

Lösung

32

 Schema

Siehe Skizze

mm

 Annahmen

ø24mm

•

Die Wärmedurchgangszahl ist konstant. 

•

Der Druckverlust entsteht nur am Umfang der Rohrreihe. 

•

Die Rohre werden möglichst genau in die Kreisfläche eingepasst. 

 Analyse

Um die Kreisfläche, die von  n  Rohren beansprucht wird, zu berechnen, muss zu-nächst die Fläche, die von einem Rohr eingenommen wird, bestimmt werden. Ein

Rohr benötigt die Fläche von zwei gleichseitigen Dreiecken mit der Seitenlänge des Rohrabstandes  s . 

1

3

3

2

2

2

−3

2

 A =

⋅  s =

⋅32 ⋅ mm = 0,887⋅10 m



1

1

2

2

Der Bündelradius mit  n Rohren ist damit:

 n

 n

3

3

 R =

⋅  A =

⋅

⋅  s =  n ⋅

⋅  s =  n ⋅

mm



16,801

1

π

π 2

1

2

1

⋅π
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Der Dampf strömt am Bündelumfang zwischen den Rohren in das Bündel hinein. 

Die Fläche für die Strömung zwischen den Rohren ist:

 U ⋅

 A =

 l ⋅( s −  d) = 2⋅π ⋅ R⋅ l ⋅ 1(−  d /  s ) =  n ⋅ l ⋅

m



0,026391

0

1

1

 s 1

Um den Dampfvolumenstrom, die Strömungsgeschwindigkeit, den Druckverlust

und die Sättigungstemperatur zu berechnen, benötigt man die Stoffwerte des Damp-

fes:

ϑ  = 35 °C,  p  = 56,36 mbar,  r = 2 418 kJ/kg, ρ = 0,03961 kg/m3

 s

 s

Der für die Auslegung maßgebende Dampfvolumenstrom wird durch die Wärme-

durchgangszahl und mittlere logarithmische Temperaturdifferenz mit 35 °C Sätti-

gungstemperatur bestimmt. 

ϑ −ϑ

30 − 20

2

1

Δϑ m =

=

K =

K



9,102

§ ϑ s −ϑ ·
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ln(

/ )

5
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1

¨¨

¸¸

©ϑ s −ϑ2 ¹
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 Q

 k ⋅  A⋅ Δϑ

 k ⋅  n ⋅  l ⋅π ⋅  d ⋅ Δϑ

 D

 m

 m

 V =

=

=

=

=

 D

ρ

 r ⋅ ρ

 r ⋅ ρ

 r ⋅ ρ

2

 n ⋅  l ⋅π ⋅3,5⋅ 0,024 ⋅ 9,102 ⋅ m

2

=

=  n⋅ l ⋅0,02508  m /s 

2 418 ⋅ 0,03961⋅ s

Ein Teil des Volumenstromes kondensiert an der äußeren Seite der Randrohre, 

der Rest strömt in das Bündel. Dieser einströmende Anteil ist:

 V

=  V ⋅ 1

[ − U /(2 ⋅  s ⋅  n)] =  V ⋅ 1

[ − 2 ⋅π ⋅  n ⋅

mm



16,801

/(2 ⋅  s ⋅  n)] =

 D ein

 D

1

 D

1

=  n ⋅ l ⋅0,02508⋅ 1

[ − , 

1 6494 /  n  m



]

2 /s

Die Geschwindigkeit zwischen den Rohren beträgt:

 V

 n

 Dein

⋅ l ⋅ 0,02508 ⋅ 1

[ − , 

1 237 /  n  m



]

2 /s

 c =

=

= , 

0 950 ⋅[  n − , 

1 237   

] m/s

 A 0

 n ⋅ l ⋅ 0,019794 m



Der Druckverlust ist damit:

2

 ǻp = ζ ⋅ c ⋅ ρ / 2 = , 

0 75⋅ 9025

, 

0

⋅[  n −

]

6494

, 

1

2 ⋅



0,03961 Pa =

= 0,04769⋅[  n − , 

1

]

649 2 Pa ≈ 0,02681⋅  n  Pa
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Mit dem errechneten Druckverlust kann man Druck und Sättigungstemperatur im

Bündel bestimmen. Mit der Abnahme des Druckverlustes ändern sich im Bündel die

mittlere logarithmische Temperaturdifferenz und die Wärmestromdichte. 

 q( n) =  k ⋅ Δϑ ( n)

 m

Da der abzuführende Wärmestrom konstant bleibt, muss die Fläche im Inneren

des Bündels umgekehrt proportional zur Änderung der Wärmestromdichte erhöht

werden. Die prozentuale Änderung der Fläche ist:

§  A

·

§  q

·

§ ϑ

Δ

·

−1 ⋅100 %

0

=
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Die errechneten Werte sind in nachstehender Tabelle zusammengestellt. 

 n

Δ p

 p

ϑ

Δϑ

Δ A/A .  100

 s

 s

 m

-

Pa

mbar

°C

K

%

0

0,0

56,29

35,00

9,10

0,0

2 000

49,8

55,79

34,84

8,93

2,0

4 000

101,8

55,27

34,67

8,74

4,2

6 000

154,2

54,75

34,50

8,55

6,5

8 000

206,8

54,22

34,33

8,35

9,0

10 000

259,5

53,70

34,15

8,15

11,6

12 000

312,3

53,17

33,97

7,95

14,5

14 000

365,2

52,64

33,79

7,75

17,5

16 000

418,1

52,11

33,61

7,54

20,7

18 000

471,1

51,58

33,43

7,33

24,2

20 000

524,1

51,05

33,25

7,11

28,0

Bei der einfachen Modellrechnung wurde nicht berücksichtigt, dass durch die

Abnahme der Sättigungstemperatur die Aufwärmung des Kühlwassers verringert

und damit die mittlere logarithmische Temperaturdifferenz erhöht wird. Dieser Feh-

ler wird aber durch die Annahme, dass nur in der ersten Rohrreihe am Umfang ein

Druckverlust stattfindet, mehr als kompensiert. 

 Diskussion

Aus den Berechnungen ist zu ersehen, dass bei großen Rohrbündeln der Druck-

verlust der Dampfströmung beträchtliche Mehrflächen notwendig macht. Bei klei-

neren Bündeln kann der Druckverlust vernachlässigt werden. Da die Stoffwerte in

die Berechnung eingehen, ist von Fall zu Fall zu prüfen, ob ihre Änderung durch

den Druckverlust berücksichtigt werden muss. Hersteller großer Kondensatoren

rechnen bei der Auslegung ihrer Apparate den Druckverlust im Bündel zwiebel-

schalenartig aus. 
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5.3

Kondensation strömender, reiner Dämpfe

Je nach Strömungsrichtung, Dampfgeschwindigkeit und Lage des Rohres wird

durch die Strömung die Wärmeübergangszahl bei der Kondensation beeinflusst. 

Kondensiert z.B. in einem horizontalen Rohr reiner Dampf, nimmt mit zuneh-

mender Rohrlänge die Strömungsgeschwindigkeit des eintretenden Dampfes zu, 

weil sich im Rohr immer mehr Kondensat bildet. Durch die Dampfströmung wird

an der Phasentrennfläche eine zusätzliche Schubspannung auf den Kondensatfilm

ausgeübt. Bei sehr hohen Dampfgeschwindigkeiten kann der Einfluss der Schwer-

kraft im Vergleich zu den Schubspannungskräften der Dampfströmung vernachläs-

sigt werden. In senkrechten Rohren ändert sich die Beeinflussung durch die Dampf-

strömung je nachdem, ob sie nach unten oder oben verläuft. Für die Berechnung der

Wärmeübergangszahlen muss zwischen den verschiedenen Strömungsformen und

der Ausrichtung der Wärmeübertragungsflächen differenziert werden. 
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unterkühltes
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a)

b)

Bild 5.4: Kondensation bei abwärts gerichteter Strömung

a) separierte Strömung b) Entrainment und Fluten

Bei der Kondensation reinen Dampfes in senkrechten Rohren kann bei kleinen

Dampfgeschwindigkeiten über die gesamte Rohrlänge ein Kondensatfilm gebildet

werden (separierte Strömung); bei hohen Dampfgeschwindigkeiten werden Trop-

fen (Entrainment) vom Kondensatfilm abgerissen. Die Dampf/Kondensatströmung

geht ab einer gewissen Rohrlänge in reine Kondensatströmung über (Bild 5.4). Bei

aufwärts gerichteter Dampfströmung bildet sich wiederum ein reiner Kondensat-

film, der entgegengesetzt zur Dampfströmung verläuft. Mit zunehmender Rohrlän-

ge nimmt die Dampfströmung zu und führt zum Fluten des Rohres. Bei großen

Dampfgeschwindigkeiten kann die Strömungsrichtung des Kondensatfilms umge-

kehrt werden. Hier muss dann aber sichergestellt sein, dass am Austritt des Rohres
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noch immer genügend viel Dampf vorhanden ist, um den Kondensatfilm mitzu-

schleppen. Nachfolgend werden einige der wichtigsten Formen der Kondensation

strömender Dämpfe behandelt. 

5.3.1

Kondensation innerhalb senkrechter Rohre

Durch die Dampfströmung wirkt eine Schubspannung noch zusätzlich auf den Kon-

densatfilm [5.3, 5.4]. Als Folge entsteht eine Wechselwirkung zwischen Gas- und

Flüssigphase. Bei der Berechnung muss zwischen Gleich- und Gegenstrom unter-

schieden werden. 

 5.3.1.1

 Gleichstrom (abwärts gerichtete Dampfströmung)

Der Dampf strömt oben in das senkrechte Rohr ein und erhöht somit die Geschwin-

digkeit der ebenfalls nach unten gerichteten Kondensatströmung. Die von der

Dampfströmung ausgeübte Schubspannung verändert die wandnahe Unterschicht

und an der Oberfläche des Kondensatfilms wird die Bildung von Turbulenzen

angeregt. 

Bei der Kondensation mit Dampfströmung wird die lokale  Nußelt zahl mit dem Exponent * angegeben. 

*

*

1/ 3

2

2

 Nu

= 1

( +τ )

⋅ ( C ⋅  Nu

) + ( C

 Nu

)

(5.39)

 L′

⋅

,  x

 ZP

 lam

 L′,  lam,  x

 turb

 L′,  turb,  x

In der Zweiphasenströmung ist τ ∗ die dimensionslose Schubspannung des

 ZP

Dampfes.  Die Korrekturfaktoren  C  und  C

berücksichtigen den unterschiedli-

 lam

 turb

chen Einfluss der Schubspannung auf die laminare und turbulente Strömung. Die

 Nußelt zahlen werden mit den Gln. (5.30) und (5.32) berechnet. Die dimensionslose Schubspannung τ ∗ wird mit Hilfe der Schubspannung τ ∗ der reinen Gasphase in

 ZP

 g

einem leeren Rohr bestimmt. 

2

τ

ζ ⋅ ρ ⋅ c

*

 g

τ =

mit

 g

 g

 g

τ =

 g

 g

(5.40)

 g ⋅ ρ ⋅ +

δ

8

 l

Dabei ist τ  die Schubspannung der Dampfphase im leeren Rohr, ζ  die Wider-

 g

 g

standszahl des Dampfes, δ + die Filmdicke und   c  die mittlere Geschwindigkeit, die g

der Dampf im leeren Rohr hätte. 

4 ⋅  m



 g

4 ⋅  m ⋅  x

 c =

=

 g

2

2

ρ ⋅

(5.41)

 n ⋅π ⋅  d

ρ ⋅  n ⋅π ⋅  d

 g

 i

 g

 i

Die Widerstandszahl wird mit der  Reynolds zahl der Dampfphase berechnet. 

 c ⋅  d

0,2

 g

ζ = 184

, 

0

⋅  Re−

mit

 Re =

 g

 g

 g

ν

(5.42)

 g
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Die dimensionslose Schubspannung ist gegeben als:

*

*

*

τ =τ ⋅[1+550⋅  F ⋅(τ ) a]

(5.43)

 ZP

 g

 ZP

Der Strömungsparameter  F ist eine Funktion der  Reynolds zahl des Kondensats Gl. (5.27), des Verhältnisses der Dichte und der kinematischen Viskosität. 

0,5

0 9

max ª(2 ⋅  Re ) ; 0,132
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¬

¼ η

ρ

 l

 l

 g

 l

 F =

⋅

⋅

0 9

 , 

(5.44)

 Re

η

ρ

 g

 g

 l

Der Exponent  a berücksichtigt das Verhältnis zwischen der Schubspannung und Schwerkraft. 

°­ 30

, 

0

für

*

τ  g ≤1

 a = ®°

(5.45)

¯ 85

, 

0

für

*

τ  g >1

Die Korrekturfaktoren  C  und  C

sind definiert als:

 lam

 turb

 C

= 1+ ( 0,56

 Pr

− )

1 ⋅ tanh( *

τ )

 C

= 1+ ( 0,08

 Pr

− )

1 ⋅ tanh( *

τ ) (5.46)

 lam

 l

 ZP

 turb

 l

 ZP

Die Filmdicke δ + wird ebenfalls mit dem Strömungsparameter  F berechnet. 

δ +

6, 59 ⋅  F

=

 d

1+1 400 ⋅

(5.47)

 F

Die dimensionslose Schubspannung muss aus Gl. (5.43) iterativ ermittelt werden. 

Je nachdem, ob ein Apparat bereits bekannt oder neu auszulegen ist, erfolgt die

Berechnung unterschiedlich. In beiden Fällen muss aber abschnittweise gerechnet

werden. 

Beim Auslegen des Apparates müssen der Rohrdurchmesser, der zu kondensie-

rende Dampfmassenstrom und die Wärmeübergangszahl außen am Rohr bekannt

sein. Man wählt Stützstellen, an denen die lokalen Wärmeübergangszahlen und

Wärmedurchgangszahlen berechnet werden. Mit diesen beiden Werten wird eine

mittlere Wärmedurchgangszahl gebildet und die für die Kondensation notwendige

Rohrlänge berechnet. Die Stützpunkte werden als Kondensatmassenströme ge-

wählt. Zu Beginn der Kondensation ist der Kondensatmassenstrom gleich null und

damit die Wärmeübergangszahl gleich unendlich. Der erste Stützpunkt muss daher

mit einem Massenstrom, der ein wenig größer als null ist, gewählt werden, z.B. 1 %

des Kondensatmassenstromes. 

Bei der Nachrechnung fertig konstruierter Apparate nimmt man zunächst einen

Kondensatmassenstrom an und rechnet damit wie bei der Auslegung. Der Massen-

strom wird geändet, bis die vorhandene Rohrlänge erreicht ist. 
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 5.2.1.2

 Gegenstrom (Dampfströmung nach oben)

Die Berechnung erfolgt wie beim Gleichstrom, die dimensionslose Schubspannung

wird jedoch wesentlich größer, sie berechnet sich folgendermaßen:

*

*

*

τ =τ ⋅[1+1 400⋅(τ ) a ]

(5.48)

 ZP

 g

 ZP

Beim Gegenstrom kann das Kondensat bei zu hohen Dampfgeschwindigkeiten

aufgestaut werden, dadurch "verstopfen" die Rohre. Dieses führt zu Fluktuationen. 

Um sicherzustellen, dass kein Kondensatstau erfolgt, sind die Apparate so auszule-

gen, dass die kritische  Weberzahl  We  = 0,01 nicht überschritten wird. Die  Weber-c

zahl ist definiert als:

τ ⋅δ + τ * ⋅ ρ ⋅  g ⋅ δ 2

( + )

 ZP

 ZP

 l

 We =

=

σ

σ

(5.49)

 l

 l

Die Größe τ ∗  wird mit Gl. (5.43), δ + mit Gl. (5.47) bestimmt, σ  ist die Oberflä-

 ZP

 l

chenspannung. 

BEISPIEL 5.5: Berechnung des Kondensators aus Beispiel 5.3 mit Kondensa-

tion in den Rohren

Ein Kondensator, in dem Dampf innen in den vertikalen Rohren kondensiert, ist mit

den im Beispiel 5.3 gegebenen Daten auszulegen. Die Anzahl der Rohre beträgt, 

wie im Beispiel 5.3 berechnet, 47. Die Wärmeübergangszahl außen an den Rohren

ist 6 500 W/(m2 K). Die Stoffwerte des Kühlwassers und des Frigens werden eben-



falls aus Beispiel 5.3 übernommen. Die dynamische Viskosität der Gasphase ist

η = 14,2 .  10-6 kg/(m s). 

 g

Bestimmen Sie die Länge der Rohre. 

Lösung

 Schema

Temperaturverlauf wie im Beispiel 5.3

 Annahme

•

Die mittlere Wärmeübergangszahl ist konstant. 

 Analyse

Mit den lokalen Werten nach Gl. (5.39) wird die Wärmeübergangszahl im Rohr

berechnet. Dazu nimmt man fünf Stützpunkte an. Sie sind anhand der Konden-

satbildung, d.h. mit dem Dampfgehalt  x gewählt. Folgende Stützpunkte wurden
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ausgewählt:  x = 0,99, 0,75, 0,5, 0,25, 0,0. Die Wärmeübergangszahlen werden mit den Mittelwerten des Dampfgehaltes zwischen den Stützstellen berechnet. Die

Rechnungsgrößen sind als Funktion des Dampfgehaltes gegeben. In den nachste-

henden Formeln werden die errechneten Werte zwischen den ersten beiden Stütz-

stellen  x  = 1 und  x  = 0,99, d.h.,  x = 0,995, angegeben. Anschließend werden sie für 0

1

alle Stützstellen tabelliert aufgeführt. 

Γ

 m

  R a ⋅ 1

( −  x)

5

, 

0 ⋅ 1

( −  x)

 Re ( x)
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 g
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ξ( x) = 184
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0

⋅  Re ( x) 0−,2
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= 019
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0
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2

2
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=

=
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0
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2
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, 

0
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η

ρ
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⋅
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−4

 F ( x) =

⋅

⋅

= 197

, 

4

⋅10

0,9

 Re ( x)

η

ρ

 g

 g

 l

6, 59 ⋅  d ⋅  F ( x)

 i

5

δ ( x) =

= 2,195⋅10− m

1 +1 400 ⋅  F ( x)

τ ( x)

*

τ ( x) =

 g

 g

= 140

, 

2

 g ⋅ ρ δ

 l ⋅

( x)

Die dimensionslose Schubspannung der Zweiphasenströmung wird iterativ aus

Gl. (5.43) bestimmt. 

*

τ ( x)

*

τ  x

 F x

τ

 x

 ZP

= ( )

 g

⋅ 1

[ + 550 ⋅ ( ) ⋅ ( * ( )) a ]

 ZP

= , 

3 612

 C

( x)

τ

 lam

=1+ ( 0,56

 Prl

− )

1 ⋅ tanh( * ( x)

 ZP

= 897

, 

1

 C

( x)

τ

 turb

= 1+ ( 0,08

 Prl

− )

1 ⋅ tanh( * ( x)

 ZP

= 096

, 

1

Die lokalen  Nußelt zahlen des laminaren und turbulenten Kondensatfilms werden mit den Gln. (5.30) und (5.34) errechnet. 

1/ 3

α  L

ρ ρ

 x ⋅

′

§1−

/

 g

 l ·

 Nu

 f

 L' lam x =
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0 693⋅
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0
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¹
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 Pr
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7 / 24

1/ 3
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0 0191
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, 

λ

1
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 Pr

 l
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9
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1
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Der Index  x bedeutet hier die Länge. Die  Nußelt zahlen sind natürlich vom Dampfgehalt  x abhängig. Die  Nußelt zahl ist damit:

*

 Nu

τ

 C

 Nu

 C

 Nu

 L′  x = 1

(

*

+

)1/3

 ZP

⋅ (  lam ⋅

)2

 L′  lam x

+ (  turb ⋅

)2

 L′  turb x

= , 

1 075

, 

, 

, 

, 

, 

In diesem Abschnitt sind die Wärmeübergangs- und -durchgangszahl:

*

 Nu

⋅λ

 L' ,  x

 l

W

*

2

3

α =

=  Nu

⋅λ ⋅  g /ν = 6 302  

 x

 L' ,  x

 l

2

 L′

m ⋅ K
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 d

§  d ·

 d

·

W

 a

 k = ¨

+
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¨

¸ +

¸ = 2 880   2

¨©α 2 λ

 d

 d

©

¹

α ¸

⋅

⋅

m

¹

⋅K

 a

 R

 i

 i

 x

Im ersten Abschnitt wird von  x = 1 auf  x = 0,99 kondensiert, d.h., 1 % des Dampfes wird kondensiert. In diesem Abschnitt ist der Wärmestrom:

 Q =  m R a ⋅ ( x −  x ) ⋅  r =

W

95

7

134

0

1

Die Temperatur des Kühlmediums kann als eine Funktion des Dampfgehaltes

angegeben werden. 

 m



(1  x)

134

ϑ ( x)

 R

 a

= ϑ

⋅ −

′+

1

1

 m



⋅ c

 KW

 pKW

Damit ist die mittlere logarithmische Temperaturdifferenz in dem Abschnitt, in

dem sich der Dampfgehalt von  x  auf  x  ändert:

1

2

ϑ ( x ) −ϑ ( x )

Δϑ ( x ,  x )

1

1

1

2

=

 m

1

2

ϑ −ϑ ( x )

ln 2

1

2

ϑ −ϑ ( x )

2

1

2

Im ersten Abschnitt ändert sich der Dampfgehalt von 1 auf 0,99. Die mittlere

logarithmische Temperaturdifferenz beträgt hier 5,025 K. Die Fläche bzw. Rohrlän-

ge, die notwendig ist, um die Wärme zu transferieren, kann aus dem Wärmestrom

mit der mittleren logarithmischen Temperaturdifferenz und der Wärmedurchgangs-

zahl bestimmt werden. 

Δ (

 A Δ x)

 Q(  x

Δ )

Δ l(Δ x) =

=

=

m



0,026

π ⋅ n⋅ d

 k( x) Δϑ π  n d

 a

⋅

 m ⋅

⋅ ⋅  a

Nachfolgend sind die berechneten Werte für die anderen Stützpunkte tabellarisch

zusammengestellt:
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 x

 x

 Re

 Re

τ  *

τ∗

 Nu

 Nu

 Nu

 Q

Δϑ

 k

Δ l

 l

 m

 l

 g

 g

 ZP

 L', lam

 L', turb

 L' 

 m

10-3

W

°C

W/m2  K m

m

1,00

0

0,995

11 88 531

2,140

3,612 0,340 0,019 1,075

759 5,025 2 880 0,026

0,99

0,026

0,870 274 77 409

0,466

1,157 0,131 0,108 0,330 18 216 5,629 1 286 1,259

0,75

1,285

0,625 789 55 610

0,126

0,688 0,096 0,175 0,282 18 975 6,856 1 133 1,223



0,50

2,508

0,375 1 315 33 366

0,031

0,302 0,083 0,219 0,271 18 975 8,109 1 095 1,070



0,25

3,578

0,125 1 841 11 122

0,002

0,041 0,075 0,252 0,268 18 975 9,361 1 085 0,935



0,00

4,513

 Diskussion

Die Wärmeübergangszahl im Rohr wird durch die Strömung des Dampfes erhöht

und die notwendige Rohrlänge verkürzt. In dem hier berechneten Beispiel ist die

Verkürzung mit ca. 1,5 m recht groß. Bei noch höheren Geschwindigkeiten kann die

Wärmeübergangszahl mehr als verdoppelt werden. 

5.3.2

Kondensation in durchströmten, waagerechten Rohren

In sehr kurzen waagerechten Rohren, in denen die Dampfgeschwindigkeit vernach-

lässigbar ist, kann die  Nußelt zahl bei der Kondensation wie in Kapitel 5.1.1.5 mit Gl. (5.23) berechnet werden, wobei der Innendurchmesser eingesetzt wird. Bei längeren Rohren nimmt der Massenstrom des Kondensats und damit der einströmende

Massenstrom des Dampfes zu. Mit steigender Dampfgeschwindigkeit bestimmt sie

und nicht mehr die Schwerkraft die Ausbildung des Kondensatfilms. Zur Berech-

nung der Wärmeübergangszahl wird die in Gl. (5.39) gegebene  Nußelt zahl modifi-ziert. 

1/ 3

*

*

2

2

 Nu

= τ

⋅ ( C ⋅  Nu

) + ( C

 Nu

)

(5.50)

 L′

⋅

,  x

 g

 lam

 L′,  lam,  x

 turb

 L′,  turb,  x

Die dimensionslose Schubspannung wird mit der Dampfgeschwindigkeit  c , die g

man mit dem Dampfvolumenanteil ε ermittelt, bestimmt. Der Dampfvolumenanteil

ist als eine Funktion des Strömungsparameters  F nach Gl. (5.44) gegeben. 

ε = −

1

1

+

1

1

(5.51)

, 

8 48 ⋅  F

Mit dem Dampfvolumenanteil kann die Dicke δ des Kondensatfilms berechnet

werden. 

δ = , 

0 25 ⋅ 1

( − ε ) ⋅  d

(5.52)
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Die Dampfgeschwindigkeit  c  wird als Geschwindigkeit des Dampfes innerhalb g

des Kondensatfilms berechnet. 

4 ⋅  m ⋅  x

 cg =

2

ρ

 d

(5.53)

 g ⋅π ⋅ (

 i − 2 ⋅ δ )

Die Schubspannung berechnet sich mit den Gln. (5.40) bis (5.42):

184

, 

0

⋅  Re−0,2

 g

τ =

⋅ c 2 ⋅ ρ

 g

 g

 g

(5.54)

8

Die dimensionslose Schubspannung wird mit der Filmdicke bestimmt. 

τ

*

 g

τ =

⋅(1+ 850⋅  F)

 g

(5.55)

 g ⋅ ρ ⋅δ

 l

Die Berechnung der  Nußelt zahlen erfolgt wie in Kapitel 5.3.1.1. 

BEISPIEL 5.6: Auslegung eines Kühlschrankkondensators

Im Kondensator eines Kühlschranks soll 1,0 kW Wärmestrom abgeführt werden. 

Als Kältemittel wird Frigen R134a verwendet. Die Kondensationstemperatur ist

50 °C. Die auf den Außendurchmesser bezogene mittlere äußere Wärmedurch-

gangszahl wurde unter Berücksichtigung der Rippen mit 400 W/(m2 K) bestimmt. 

Die Temperatur der Außenluft beträgt 22 °C. Das Rohr des Kondensators hat einen

Außendurchmesser von 8 mm, die Wärmeleitfähigkeit 372 W/(m2 K) und die

Wandstärke von 1 mm. Nachfolgende Skizze zeigt die Anordnung des Kondensa-

tors. Die Rohrbögen können vernachlässigt werden. Stoffwerte des Frigens:

ρ = 1 102 kg/m3, ρ = 66,3 kg/m3, λ  = 0,071 W/(m K), η  = 142,7 .  10-6 kg/(m s), l 



 g

 l

 l

η  = 13,5 .  10-6 kg/(m s),  Pr  = 3,14,   r = 151,8 kJ/kg. 

 g

 l

Bestimmen Sie die notwendige Länge des Kondensatorrohres. 

Lösung

 Schema

Siehe Skizze

 Annahmen

•

Die mittlere Wärmeübergangszahl ist konstant. 

•

Die Rohrbögen bleiben unberücksichtigt. 

•

Die Änderung des Druckes ist vernachlässigbar. 

•

Die Temperaturänderung der Luft wird vernachlässigt. 
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 Analyse

Wie beim senkrechten Rohr wird hier in verschiedenen Abschnitten gerechnet. 

Die Stützstellen sind  x = 1, 0,75, 0,5, 0,25 und 0,0. Für die Berechnung sind die mittleren Dampfgehalte damit 0,875, 0,625, 0,375 und 0,125. Die nachfolgenden

Gleichungen zeigen die Werte zwischen den ersten beiden Stützstellen, d.h. bei

einem mittleren Dampfgehalt von  x = 0,875. Die  anderen Werte werden in einer Tabelle dargestellt. 

Der Massenstrom des Frigens, der kondensiert wird, berechnet sich aus dem ge-

gebenen Wärmestrom. 

 Q

kW



1,0

 m

 =

=

= 6,588⋅10-3 kg/s



 r

kJ



151,8

/kg

Die Berechnung der  Nußelt zahlen erfolgt im Weiteren ohne Kommentare. 
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Die lokalen  Nußelt zahlen des laminaren und turbulenten Kondensatfilms werden mit den Gln. (5.30) und (5.34) bestimmt. 
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Der Index  x bedeutet hier, dass die lokalen  Nußelt zahlen für die Lauflänge  x berechnet werden. Die  Nußelt zahlen sind natürlich vom Dampfgehalt  x abhängig:

*
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Die charakteristische Länge  L'  ist:
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Damit sind in diesem Abschnitt die Wärmeübergangs- und -durchgangszahl:
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In jedem Abschnitt werden 25 % des Dampfes kondensiert, d.h., der Wärme-

strom ist in allen Abschnitten gleich groß. 

 Q

Δ =  m⋅( x −  x )⋅ r =

W

250

0

1

Damit dieser Wärmestrom abgeführt werden kann, benötigt man eine Austausch-

fläche bzw. eine bestimmte Rohrlänge, die aus der notwendigen Fläche Δ A zu berechnen ist. 

Δ A

 Q

Δ 

 l

Δ =

=

=

π ⋅  d

π ⋅  d ⋅ k ⋅(ϑ −ϑ )

 a

 a

 F

 L

2

250 ⋅ W ⋅ m ⋅ K

=

= 1,055 m

π ⋅0,008⋅m ⋅328⋅ W ⋅(50 − 22)⋅K

Die berechneten Werte der anderen Abschnitte sind tabellarisch zusammenge-

stellt. 
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 x

τ

τ *

α

 k

Δ L

 g

 ZP

 i

-

Pa

-

W/(m2 K) W/(m2 K)

m

0,875

1,593

12,722

2 857

336,7

1,055

0,625

1,064

8,099

2 443

328,8

1,083

0,375

0,604

5,419

2 350

325,7

1,091

0,125

0,200

3,350

2 185

321,2

1,106

Zusammengezählt ergeben die Längen der Abschnitte 4,335 m. 

 Diskussion

Abgesehen vom letzten Abschnitt ist die äußere Wärmeübergangszahl in diesem

Beispiel sehr viel kleiner als die innere. Da eine mittlere äußere Wärmedurchgangszahl angegeben wurde, konnte mit einer konstanten Lufttemperatur gerechnet wer-

den. Unter Berücksichtigung der Lufterwärmung in der Strömung benötigt man

Kenntnisse des Kreuzstromwärmeübertragers. Dieser wird jedoch erst später be-

sprochen. 

BEISPIEL 5.7: Kondensatorretrofit

Der Kondensator eines US-Kraftwerkbesitzers weist unzureichende Leistung auf. 

Es sollen neue, moderne, modular vorgefertigte Rohrbündel in den Kondensator

eingesetzt werden. In der Ausschreibung sind folgende Daten gegeben:

Die drei Niederdruckturbinen A, B und C haben jeweils einen Kondensator, die

kühlwasserseitig in Serie geschaltet sind (s. Skizze). Der Wärmestrom zu den ein-

zelnen Kondensatoren ist jeweils 733 MW. 

Daten der vorhandenen Kondensatoren:

Berohrung je Kondensator:

27 000 Rohre mit 1'' aD und 1,2 mm Wandstärke

Abstand der Rohre:

1 5/16'' 

Rohrlängen:

 l  = 35' 

 l  = 45' 

 l  = 55' 

 A

 B

 C

Kühlwasservolumenstrom:

381 500 GPM bei 86 ft Förderhöhe

Im Pflichtenheft wird verlangt, dass im neuen Kondensator C bei einer Kühlwas-

sereintrittstemperatur von 35 °C der Druck von 5 inHg-Säule nicht überschritten

wird. Die Rohrlängen und äußeren Abmessungen der Kondensatoren sind für die

neuen Module beizubehalten. 

Für die Rohrbündel des Anbieters steht in den neuen Kondensatormodulen zur

Berohrung eine Fläche von 27,28 m2 zur Verfügung. Die Rohraußendurchmesser

werden nach US-Normen in 1/8''-Abstufungen gewählt. Das Pflichtenheft verlangt

Titanrohre mit 0,7 mm Wandstärke und 15 W/(m K) Wärmeleitfähigkeit. Der Ab-

stand zwischen den Rohren ist: Rohraußendurchmesser plus 5/16''. 
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Lager

Welle

Turbine A

Turbine B

Turbine C

Kondensatorhals

Kühlwasserleitung

2

2

13,64 m

13,64 m

Kühlwasser-

Für die Berohrung vorhandene

eintritt

Fläche von 27,28 m 2

Kühlwasseraustritt

d + 5/16" 

d + 5/16" 

Anordnung der Rohre

Links in der obigen Skizze sieht man die Anordnung der Kondensatoren in der

Anlage, rechts die für die Berohrung der neuen Kondensatoren vorhandene Fläche

und die Anordnung der Rohre. 

Für das Kühlwasser können folgende konstante Stoffwerte verwendet werden:

 c  = 4,174 kJ/(kg K),  ρ = 990,2 kg/m3,  ν = 0,6 .  10-6 m2/s, λ = 0,6368 W/(m K), p

 Pr = 3,946. 

Umrechnungsfaktoren: 1 GPM (gallon per minute) = 0,063083 l/s, 

1'' = 0,0254 m, 1' = 0,3048 m, 1 inHg = 3 386,39 Pa. 
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Die Änderung des Kühlwasservolumenstromes ist als eine Funktion des Druck-

verlustes entsprechend der Charakteristik der Kühlwasserpumpe zu berücksichti-

gen. Der Druckverlust in den Kondensatorrohren wird nach  Blasius berechnet: Δ p  = 0,3164 .   Re-0,25 .   l /  d .  ( c 2 .  ρ / 2) v

Die drei Kondensatoren sind auszulegen. Bestimmen Sie den Druck in den einzel-

nen Kondensatoren. 

Hinweis: Prüfen Sie zunächst die Endtemperatur des Kühlwassers. 

120

System Head
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ftn

80

ead i H
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Volume Flow Rate in 1 000 GPM

Kennlinie der Kühlwasserpumpe und des Systems

Lösung

 Schema

Siehe Skizzen in der Aufgabenstellung

 Annahmen

•

In den Zu- und Abflüssen zu den Kondensatorrohren nimmt der Druckverlust

quadratisch mit dem Volumenstrom zu. 

•

Der statische Druckverlust von 34' Wassersäule ist immer vorhanden (Höhen-

differenz des Wasserniveaus in der Kühlturmtasse zu den Einspritzdüsen). 

•

Der Druckverlust der Dampfströmung in das Bündel bleibt unberücksichtigt. 

•

Um die Berechnung zu vereinfachen, werden die Einflüsse der Richtung des

Wärmestromes und der Rohrlänge vernachlässigt. 

•

Die Wärmeübergangszahlen in den Rohren sind mit den oben angebenen Stoff-

werten zu berechnen und in allen drei Kondensatoren als konstant anzunehmen. 
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 Analyse

Zunächst rechnen wir die amerikanischen Einheiten in SI-Einheiten um:

3

 V = 381 500 GPM = 24,066 m /s

0

 l = 35' = 10,668 m

 l = 13,716 m

 l = 16,764 m

 d = 1" = 25, 4 mm

 A

 B

 C

 a

 d =  d − 2 ⋅  s = 23 mm

5 inHg = 16 932 Pa = 169,32 mbar

 i

 a

Mit einer ersten Berechnung kann gezeigt werden, dass der gewünschte Konden-

satordruck nicht mit dem gegebenen Kühlwasservolumenstrom erreicht werden

kann. Die Austrittstemperatur des Kühlwassers berechnet sich mit der Bilanz-

gleichung zu:



6

3

 Q

3⋅ 733⋅10 ⋅ W ⋅s ⋅ m ⋅ kg ⋅ K

 tot

ϑ′′= ϑ′+

= 35 C

° +

= 57,11 C

°

1

1

3

 V ⋅ ρ ⋅ c

24,066 m ⋅990, 2 ⋅ kg ⋅ 4 174 ⋅ J

0

1

1

 p

Nach der Dampftafel beträgt die Sättigungstemperatur bei 169,31 mbar 56,50 °C, 

d.h., die Temperatur des Kühlwassers ist höher als die Sättigungstemperatur des

Dampfes, der das Kühlwasser aufheizen soll. Dieses ist unmöglich. Um den ge-

wünschten Druck von 5 inHg zu erreichen, muss das Kühlwasser 2 bis 3 K kälter als

die Dampftemperatur sein. Das kann durch Erhöhung des Kühlwassermassenstro-

mes erreicht werden. Die kostengünstigste Lösung ist, den Druckverlust des Kühl-

wassers in den Kondensatorrohren so zu senken, dass der Volumenstrom entspre-

chend der Kühlwasserpumpencharakteristik erhöht wird. Die Förderhöhe der Pum-

pe entspricht dem konstanten statischen Druck von Δ p  plus dem Reibungsdruck-st

verlust Δ p  in den Zu- und Ableitungen zu den Kondensatoren plus dem Reibungsva

druckverlust Δ p  in den Kondensatorrohren. Letzteren können wir durch die Dimen-v

sionierung der Kondensatorrohre beeinflussen. Der Druckverlust der Zu- und Ab-

leitungen Δ p  ist mit den Daten des alten Kondensators zu bestimmen. Der Druck-va

verlust in den Rohren des alten Kondensators beträgt:

2

 l

−

 ges

 c

ρ

Δ

⋅

 pv = 3164

, 

0


0.25

0


1

⋅  Red

⋅

⋅

0

 i

 d

2

 i

Die Geschwindigkeit in den Rohren berechnet sich zu:

3

4 ⋅ V

4 ⋅ 24,066 m

m

0

 c =

=

= 2,143 

0

2

2

2

 n ⋅π ⋅  d

27 000 ⋅π ⋅ 0,023 ⋅ m ⋅s

s

 i

 c ⋅  d

2,145 ⋅ 0,023

0

 i

Für die  Reynolds zahl erhalten wir:   Re =

=

= 82 239

 di

-6

ν

0,6 ⋅10

1

Der Reibungsdruckverlust in den Rohren ist:
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2

2

41,148 m 2,145

m

990, 2 kg

−

⋅

⋅

⋅

⋅

0,25

Δ  p = 0,3164⋅82239

⋅

⋅

=

 v  0

2

3

0, 023⋅ m

2 ⋅s ⋅ m

= 76 169 Pa = 25,735 ft H O

2

Von der Förderhöhe von 86 ft bei 381 500 GPM Volumenstrom werden für den

statischen Druck 34 ft, für den Druckverlust in den Rohren 25,74 ft Wassersäule

benötigt. Für den Druckverlust in den Zu- und Ableitungen verbleiben 26,27 ft. Die Kennlinie des Systems kann mit der neuen Kondensatorberohrung berechnet werden. Damit ändern sich Anzahl und Durchmesser der Rohre. Der Reibungsdruck-

verlust Δ p  beträgt im Verhältnis zu dem im alten Kondensator Δ p : v

 v 0

0

− ,25

2

 p

Δ

§  Re ·

 d

 c

 v

 i 0

=

⋅

⋅

¨¨

¸¸

2

 p

Δ

 Re

 d

 c

 v 0

©

0 ¹

 i

0

Die Geschwindigkeit kann aus dem Volumenstrom bestimmt und in die Glei-

chung eingesetzt werden:
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Die Systemkennlinie setzt sich aus dem statischen Druck und den volumenstrom-

abhängigen Reibungsdruckverlusten zusammen:

2

1,75

4,75

ª
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Mit dieser Gleichung kann die Systemkennlinie mit der neuen Berohrung berech-

net und der Volumenstrom aus der Kennlinie der Pumpe bestimmt werden. Für den

neuen Kondensator sind zunächst die Anzahl der Rohre, die in die gegebene Fläche

von 27,28 m2 hineinpassen, zu berechnen. Für ein Rohr mit der Anordnung in

gleichseitigen Dreiecken wird die folgende Fläche, die vom Außendurchmesser ab-

hängt, benötigt:

3

2

 A ( d ) =

⋅( d +  s )

0

 a

 a

0

2

2

, 

27 28⋅ m

Die Anzahl der Rohre ist damit:   n( d )

 a

=

2

3 ⋅ ( da +

m



5

007937

, 

0

)

Für die Rohre mit 1'' Rohrdurchmesser erhält man 28 343, für 1 1/8'' 23 628 und

für 1 1/4'' 20 000 Rohre. 

5 Kondensation

169

Die durch die Änderung der Systemkennlinie verursachte Volumenstromzunah-

me kann entweder iterativ mit der Kurve der Pumpenkennlinie oder grafisch aus

dem Diagramm bestimmt werden. Dazu wird der geänderte, berechnete Verlauf der

Systemkennlinie in das Diagramm eingetragen. Der Schnittpunkt mit der Pumpen-

kennlinie ergibt den Volumenstrom. Hier wurde mit dem Programm  Origin der

Kurvenverlauf in das Diagramm eingetragen. Nachstehend ist ein Ausschnitt dieses

Diagramms mit dem uns interessierenden Bereich. 

87

alt

ft

1" 

1 1/8" 

1 1/4" 

inie 86

in

kennl

ystem

und S

85

pen-muP

84

380

390

400

410

420

430

440

450

Volumenstrom in 1 000 GPM

Für die drei untersuchten Rohrdurchmesser sind die Volumenströme:

1" 

406 800 GPM

25,662 m3/s

1/8" 

428 500 GPM

27,031 m3/s

1 1/4" 

443 900 GPM

28,002 m3/s

Mit dem so ermittelten Volumenstrom erhalten wir für das 1"-Rohr folgende

Kühlwasseraustrittstemperatur:

6

3

 Q

3⋅ 733⋅10 ⋅ W ⋅s ⋅ m ⋅ kg ⋅ K

 tot

ϑ′′= ϑ′+

= 35 C

° +

= 55,73 C

°

1

1

3

 V ⋅ ρ ⋅  c

25,662 m ⋅990, 2 ⋅ kg ⋅ 4 174 ⋅ J

0

1

1

 p

Damit liegt die Kühlwassertemperatur 1,9 K unter der Sättigungstemperatur, was

aber noch zu wenig ist. 

Die Temperatur für die Rohre mit 1 1/8'' Durchmesser beträgt 54,68 °C, für die

1 1/4"-Rohre 54,00 °C. Bei der letzten Variante ist die Kühlwasseraustrittstemperatur 2,5 K tiefer als die Sättigungstemperatur. Damit kann wahrscheinlich ein Kondensator ausgelegt werden. 

Mit den Beziehungen aus Kapitel 3 wird zunächst der Wärmeübergang in den

Rohren bestimmt. In den Rohren beträgt die Geschwindigkeit:
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3

4 ⋅ V

4 ⋅ 28, 002 ⋅ m / s

m

 c =

=

= 1,935 

2

2

2

 n ⋅π ⋅  d

20 000 ⋅π ⋅ 0, 03035 ⋅ m

s

 i

Die  Reynolds zahl berechnet sich zu:

−6

 Re =  c ⋅  d /ν = 1,935⋅ 0, 03035 / 0, 6 ⋅10 = 97 897

 d

 i

 i

Die für die Berechnung der  Nußelt zahl notwendige Reibungszahl ist:

ξ = 8

, 

1

[

⋅lg( Re )

 d

− ]

5

, 

1

−2 = , 

0 0180

 i

Für die  Nußelt zahl erhalten wir:

(ξ / 8) ⋅  Re ⋅  Pr

 d

1

(0, 018 / 8) ⋅97 897 ⋅3,946

 i

 Nu =

=

= 454,2

 di

2/ 3

2/ 3

1+12, 7 ⋅ ξ / 8 ⋅ ( Pr

−1) 1+12,7⋅ 0,018 / 8 ⋅(3,946 −1)

Die Wärmeübergangszahl ist:

2

α =  Nu ⋅λ /  d = 9 530,7  W / (m ⋅K)

 i

 d

1

 i

 i

Der für die Berechnung der Wärmedurchgangszahlen notwendige Wärmewider-

stand, der in den Rohren und in der Rohrwand entsteht, wird hier bestimmt. 

2

 d

 d
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Bei der Kondensation erfolgt die Berechnung der Wärmeübergangszahl für die

drei Kondensatoren getrennt. Da die Sättigungstemperatur zunächst unbekannt ist, 

muss sie zur Bestimmung der Stoffwerte angenommen und iterativ ermittelt wer-

den. 

Kondensator A:

Für die Sättigungstemperatur wird angenommen, dass sie 4 K höher als die Tem-

peratur am Austritt des Kondensators A ist. Da für alle drei Kondensatoren der

Wärmestrom und die Stoffwerte des Kühlwassers als gleich vorgegeben wurden, 

sind die Temperaturänderungen in den einzelnen Kondensatoren auch gleich

6,33 K, d.h., die Austrittstemperatur ist 41,33 °C. Die Sättigungstemperatur wird

also mit 45,33 °C angenommen. Im Kondensator A ist der Druck damit 97,60 mbar. 

Die mittlere Temperatur des Kondensats beträgt schätzungsweise 43 °C. Aus den

Dampftafeln erhalten wir folgende Werte:

ρ  = 991 kg/m3, ρ  = 0,0666 kg/m3, η  = 617,8 .  10-6 kg/(m s), ν  = 0,623 .  10-6 m2/s, l

 g

 l

 l

λ  = 0,6347 W/(m K),  r = 2 393,2 kJ/kg. 

 l

Die Berieselungsdichte kann mit Gl. (5.28) bestimmt werden. 
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 Q

733000 ⋅ kW ⋅ kg

kg

3

Γ =

=

= 1,436⋅10−

 r ⋅  n ⋅ l

2 393, 2 ⋅ kJ ⋅ 20 000 ⋅10, 668⋅ m

m ⋅ s

 A

 Reynolds zahl:   Re

Γ η

 l =

/  l = , 

1 436 ⋅10 3

− / 6178

, 

0

⋅10 3− = 325

, 

2

Damit kann die  Nußelt zahl bestimmt werden:

1/ 3

§1− ρ / ρ
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 l ·
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¸¸

©
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Die für die  Nußelt zahl charakteristische Länge ist:

 L = ν /

3

 g

 l

= ( , 

0 623⋅10−6

3

2

)2 / 806

, 

9

= , 

3 408 ⋅10 5

− m

Die Wärmeübergangszahl ist damit:

5

−

2

 Į =  Nu ⋅λ /  L = 0,724⋅0,6374 / 3, 408⋅10 = 13 483  W/(m ⋅ K) L

 l

Jetzt können die Wärmedurchgangszahl, die mittlere Temperaturdifferenz und

daraus im Kondensator A die Sättigungstemperatur des Dampfes ermittelt werden. 
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Die berechnete Sättigungstemperatur ist um 1,2 K größer als der angenommene

Wert. Mit den gerechneten Werten erhält man für die mittlere Temperatur des Kon-

densats:

ϑ m = ϑ sA − 5

, 

0 ⋅ (ϑ WA −ϑ )

 sA

= ϑ sA − 5

, 

0 ⋅ Δϑ m ⋅  k /α =



45,28 C

°

Der Druck im Kondensator ist 103,91 mbar. Die Stoffwerte des Kondensats sind:

ρ  = 990,1 kg/m3, ρ  = 0,0707 kg/m3, η  = 593,1 .  10-6 kg/(m s),  r = 2 390,2 kJ/kg, l

 g

 l

ν  = 0,599 .  10-6 m2/s, λ  = 0,6377 W/(m K). 

 l

 l
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Mit diesen Stoffwerten erhält man einen Sättigungsdruck von 103,70 mbar und die Sättigungstemperatur von 46,52 °C, welche nur um 0,04 K vom zuvor berechneten Wert abweicht. Damit kann die Iteration abgeschlossen werden. 

Kondensator B:

Die Berechnung läuft wie bei Kondensator A ab. Hier werden nur noch die Stoff-

werte und Ergebnisse angegeben. 

ρ  = 987,9 kg/m3, ρ  = 0,0889 kg/m3, η  = 545,0 .  10-6 kg/(m s),  r = 2 378,5 kJ/kg, l

 g

 l

ν  = 0,552 .  10-6 m2/s, λ  = 0,6438 W/(m K). 

 l

 l

Die Sättigungstemperatur beträgt jetzt 51,14 °C und der Druck 130,67 mbar. 

Kondensator C:

Analog erhalten wir hier:

ρ  = 985,6 kg/m3, ρ  = 0,1115 kg/m3, η  = 502,8 .  10-6 kg/(m s),  r = 2 366,4 kJ/kg, l

 g

 l

ν  = 0,510 .  10-6 m2/s, λ  = 0,6494 W/(m K). 

 l

 l

Die Sättigungstemperatur beträgt 56,44 °C, der Druck ist 168,80 mbar. 

Der Druck von 168,8 mbar entspricht 4,985 inHg und liegt somit unterhalb der

geforderten 5 inHg. 

 Diskussion

Dieses Beispiel demonstriert, dass die Berechnung und Auslegung von Wärme-

übertragern nicht nur Kenntnisse der Wärmeübertragung benötigt. Hier wurden zur

Berechnung der Druckverluste und für die Interpretation der Pumpenkennlinie auch

Kenntnisse der Fluidmechanik und Verfahrenstechnik verlangt. 

Gemäß Aufgabenstellung blieben in dieser Berechnung der Einfluss der Rohr-

länge und der Einfluss der Richtung des Wärmestromes unberücksichtigt. Diese

beiden Größen hätten etwa eine 3 bis 5 % höhere Wärmeübergangszahl geliefert. 

Der Druckverlust des Dampfes im Bündel wurde nicht berücksichtigt, was etwa die

gleiche Verminderung bewirkt hätte. Bei solch großen Apparaten ist eine genaue

Berechnung notwendig. 

Die hier behandelten Kondensatoren lieferte die Firma Brown Boveri & Cie, 

Schweiz. Je die Hälfte der einzelnen Kondensatoren wurde in Modulen in einer

Fabrik vorgefertigt, auf die Baustelle transportiert, die alten Bündel innerhalb von vier Wochen entfernt und die neuen Module installiert. Die Kosten des Projektes

betrugen 18 Mio. US$. Die Garantiebedingungen lauteten, dass beim Überschreiten

des garantierten Druckes um mehr als 0,3 inHg pro 0,1 inHg 1,8 Mio. US$ Konven-

tionalstrafe gezahlt werden muss. Das bedeutet: Eine zu klein berechnete Fläche, 

die einen größeren Druck verursacht, wird bestraft. Eine zu große Fläche bedeutet

größere Kosten und ist damit nicht konkurrenzfähig. Zur exakten Berechung großer

Kondensatoren besitzen die Hersteller entsprechend genaue Berechnungsunterla-

gen. Beim oben angeführten Kondensator wurden die Garantiebedingungen erfüllt. 

6

Verdampfung

Für die Berechnung von Apparaten, in denen Dampf erzeugt wird, benötigt man  die

in diesem Kapitel behandelten Grundlagen der Wärmeübertragung bei Verdamp-

fung. Dampferzeuger kommen in Wärmepumpen, Kälteanlagen, Dampfkesseln, 

Destillier- und Rektifizierkolonnen vor. Verdampfung kann in ruhenden oder strö-

menden Fluiden auftreten. 

 Verdampfung tritt auf, wenn man eine Flüssigkeit auf Siedetemperatur ϑ  erhitzt S

und ihr dann weiter Wärme zuführt. Wird einer Flüssigkeit, die Siedetemperatur

hat, ein kleiner Wärmestrom zugeführt, entsteht an der Oberfläche eine Dampf-

produktion, deren Massenstrom vom zugeführten Wärmestrom bestimmt wird. Er-

höht man den Wärmestrom, entstehen an der Oberfläche der Heizfläche Dampf-

blasen, man spricht vom  Blasensieden. 

Bei der Kondensation fängt der Dampf, egal, ob überhitzt, gesättigt oder nass, 

immer dann an zu kondensieren, wenn er mit einem Stoff in Berührung kommt, 

dessen Temperatur tiefer als die Sättigungstemperatur des Dampfes ist. Bei der Verdampfung stellte man fest, dass an einer Heizfläche, deren Temperatur größer als

die Sättigungstemperatur ist, zunächst keine Dampfbildung stattfindet. Bei unter-

kühlten Flüssigkeiten kann die Wärme durch Konvektion abgeführt werden. Eine

Flüssigkeit kann sogar überhitzt sein, ohne dass es zur Verdampfung kommt. In

extremen Fällen können sehr hohe Überhitzungen, auch  Siedeverzug  genannt, von über 100 K auftreten, wobei es dann zu einer plötzlichen, explosionsartigen Dampfproduktion kommen kann. Ursache hierfür ist die Tatsache, dass an einer Wand, 

deren Temperatur höher als die Sättigungstemperatur der Flüssigkeit ist, bei der

Verdampfung Dampfblasen entstehen. Wegen der Oberflächenspannung ist der

Druck und damit die Sättigungstemperatur des Dampfes in den Blasen höher als in

der Flüssigkeit. Die Blase kondensiert wieder. Damit Blasen existieren können, 

muss die Flüssigkeit überhitzt sein. Je nach  Übertemperatur der Wand Δϑ = ϑ   – ϑ

 W

 S

und Geschwindigkeit der Flüssigkeit entstehen verschiedene Formen der Wärme-

übertragung. 

 Flüssigkeiten können überhitzt werden, auch wenn dabei keine Verdampfung

 stattfindet. Man spricht dann von einem Siedeverzug. 


6.1

Behältersieden

Führt man einer ruhenden Flüssigkeit in einem Behälter (z.B. Kochtopf mit Wasser)

Wärme zu, so dass an der beheizten Fläche unter Blasenbildung in der Flüssigkeit

P. von Böckh, T. Wetzel  Wärmeübertragung, 

DOI 10.1007/978-3-642-15959-6_6, © Springer-Verlag Berlin Heidelberg 2011
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Dampf produziert wird, spricht man vom  Behältersieden. In Bild 6.1 sind die Wärmeübergangszahl und Wärmestromdichte beim Behältersieden von Wasser

über der Übertemperatur der Wand aufgetragen. Bei kleinen Übertemperaturen bis

zum Punkt B wird die Wärme durch freie Konvektion übertragen. An der Wand

bilden sich noch keine Blasen. 

Mit zunehmender Übertemperatur setzt am Punkt B die Bildung von Blasen ein. 

In diesem Bereich spricht man vom Blasensieden. An der Wand des Behälters ent-

stehen in kleinen Oberflächenvertiefungen an immer gleicher Stelle, der so genann-

ten Keimstelle, Blasen. Mit steigender Übertemperatur nimmt die Intensität der Blasenbildung zu und es entstehen immer mehr Stellen, an denen sich Blasen bilden. 

Diese Blasenbildung verwirbelt die Flüssigkeit, die Konvektion wird intensiviert, 

die Blasen steigen nach oben. Wie in Bild 6.1 zu sehen ist, steigen Wärmestrom-

dichte und Wärmeübergangszahl mit der Übertemperatur der Wand sehr stark an. 

kritische Wärmestromdichte

6

10

C

2

2

W / m

W / (m   K

 . )

E

e

chtdi

B' 

trom

5

es 10

mär

D

 . 

(Leidenfrostpunkt)

 q

und  W

freie

zahl

Konvektion

Filmsieden

gangs

B

α

4

10

eübermärW

B

Blasen-

A

sieden

3

10

Δϑ

Δϑ

1

 B

10

 krit

100

1 000 K

Δϑ = ϑ  − ϑ

 W

 S

Bild 6.1: Wärmeübertragung bei der Verdampfung des Wassers bei 1 bar Druck

Schließlich entstehen an der Oberfläche so viel Blasen, dass sie einen zusammen-

hängenden Dampffilm bilden ( Leidenfrost-Phänomen - ab Punkt C). Man spricht hier vom  Filmsieden. Die Wärmeübertragung erfolgt im Wesentlichen durch Strahlung und Wärmeleitung im Dampffilm. Technische Dampferzeuger werden durch

Verbrennung, nukleare Spaltung, elektrischen Strom etc. beheizt. Dabei ist die

Wärmestromdichte konstant. Da die Wärmeübergangszahlen im Dampffilm we-

sentlich kleiner als beim Blasensieden sind, steigt die Wandtemperatur sprunghaft

an, damit der entsprechende Wärmestrom übertragen werden kann. Vom Punkt C

erfolgt ein spontaner Sprung zum Punkt E. Diese Temperatursprünge sind sehr

groß. Am Beispiel von Wasser in Bild 6.1 beträgt die Änderung der Übertemperatur

770 K. Die Wandtemperatur erhöht sich sprunghaft von 100 °C auf 900 °C. In tech-
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nischen Verdampfern hat man in der Regel höhere Drücke und damit auch höhere

Sättigungstemperaturen. Die meisten Werkstoffe können eine so hohe Änderung

der Temperatur nicht aushalten, es kommt zur Zerstörung des Werkstoffes, d.h., der Übergang vom Blasen- zum Filmsieden sollte auf alle Fälle vermieden werden. Bei

der Auslegung der Apparate und der Regelung der Verdampfungsanlagen ist darauf

zu achten, dass die  kritische Wärmestromdichte nicht erreicht wird. 

Beim Senken der Wärmestromdichte kommt man zunächst zum Punkt D, wo eine

sprunghafte Verringerung der Wandtemperatur stattfindet und es wieder zum Bla-

sensieden am Punkt B' kommt. Die Zustände zwischen den Punkten C und D sind

praktisch nicht bzw. nur unter Laborbedingungen mit einigen speziellen Stoffen er-

reichbar. 

Die Wärmeübertragung beim Filmsieden ist bei technischen Vorgängen nur sel-

ten von Bedeutung, sie wird hier nicht behandelt. 

Bei der Verdampfung ist der produzierte Massenstrom des Dampfes von Wichtig-

keit. Er berechnet sich als:

 m

 Q

 = /  r

(6.1)

 g

Diese Beziehung ist bei allen Verdampfungsvorgängen gültig. 

6.1.1

Sieden bei freier Konvektion

Solange in ruhenden, unterkühlten Flüssigkeiten an der Heizfläche keine Blasen

entstehen, berechnet man die Wärmeübergangs- bzw.  Nußelt zahlen wie in Kapitel 4

beschrieben. Zur Ermittlung der Wärmeübergangszahlen für horizontale, ebene

Heizflächen und horizontale Rohre werden etwas vereinfachte Formeln vorge-

schlagen [6.1]. 

Die  Nußelt zahl ist:

1/ 3

 Nu = 0,15 ⋅ ( Gr ⋅  Pr)

(6.2)

 L

 L

Die für die  Grashof- bzw.  Nußelt zahl charakteristische Länge  L wird folgendermaßen gebildet: Rechteckfläche  L =  a .   b/2 ( a +  b), Kreisfläche  L =  d/4, horizontaler Zylinder  L =  d. 

6.1.2

Blasensieden

Wie schon erwähnt, bilden sich die Blasen an besonderen Stellen (Keimstellen). Die Anzahl der Keimstellen erhöht sich mit dem zugeführten Wärmestrom. Die Blasen

wachsen aus mikroskopischen Vertiefungen (Rauigkeiten) der Oberfläche. Der

Wärmestrom geht zunächst in die Flüssigkeitsgrenzschicht und von dort in die Bla-

se. Der Druck  p  in den Blasen ist auf Grund der Oberflächenspannung größer als g

der Druck  p  in der Flüssigkeit. 

 l

Bild 6.2 zeigt die Entstehung einer Dampfblase. 
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Bild 6.2: Entstehung einer Dampfblase

Der Überdruck in der Blase steht im Gleichgewicht mit der von der Oberflächen-

spannung σ erzeugten Kraft. 

 p −  p = 4 ⋅σ /  d

(6.3)

 g

 l

Damit eine Blase mit dem Durchmesser  d entstehen kann, muss eine minimale

Übertemperatur vorhanden sein. Der Durchmesser der Keimstelle  d  ist der kleinste K

Blasendurchmesser. Nach der  Laplace-Kelvin- Ableitung gilt für die minimale Übertemperatur:

 p −  p

ρ ⋅ r

 g

 l

 g

=

(6.4)

 T −  T

 T

 g

 S

 s

Mit Gl. (6.3) erhält man für die notwendige Übertemperatur:

4 ⋅σ ⋅ Ts

ϑ −ϑ =

 W

 S

 d ⋅ ρ ⋅  r

(6.5)

 K

 g

Erreicht eine Blase eine bestimmte Größe, löst sie sich von der Oberfläche und

steigt nach oben. Sie transportiert von der Heizfläche Wärme in Form von Ver-

dampfungswärme weg. Im Nachlauf der Blase erfolgt eine Driftströmung, die die

konvektive Wärmeübertragung vergrößert. Gl. (6.5) zeigt auch, dass mit zuneh-

mender Übertemperatur die mögliche Blasengröße und damit die Anzahl geeigneter

Keimstellen wachsen. 

Zur Berechnung der Wärmeübergangskoeffizienten lassen sich aus der Betrach-

tung der Entstehung und Ablösung der Blasen physikalische Modelle aufstellen. 

Aus den auf die Blase wirkenden Kräften kann ein Modell für den Abreißdurch-

messer   d  der Blase erstellt werden. Hat man eine Vielzahl von Keimstellen, ist A

gemäß Häufigkeitsverteilung der Abreißdurchmesser der Blase der wahrschein-

lichste Durchmesser. Anhand des Modells und durch Experimente hat man für den

Blasenabreißdurchmesser folgende Beziehung gefunden:
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⋅σ

0

2

 d = , 

0 0149 ⋅ β ⋅

 A

 g ⋅ (ρ − ρ )

(6.6)

 l

 g

Dabei ist β 0 der  Randwinkel der Blase. Er hat für verschiedene Stoffe unterschiedliche Werte. Nachstehend die Randwinkel einiger wichtiger Stoffe:

Wasser:

β 0 = 45°

Kältemittel:

β 0 = 35°

Benzol:

β 0 = 40°

Die Wärmeübergangszahl beim Blasensieden ist:

 q

 q

α =

=

 B

ϑ −ϑ

Δϑ

(6.7)

 W

 s

Die  Nußelt zahl beim Blasensieden wird mit dem Abreißdurchmesser der Blase gebildet. 

α ⋅ d

 B

 A

 Nu

=

 d

(6.8)

 A

λ l

Die zu berechnenden Wärmeübergangszahlen sind auf Vergleichswerte, die ent-

weder experimentell ermittelt oder mit empirischen Gleichungen berechnet werden, 

bezogen. 

Für die Wärmeübergangszahl beim Blasensieden wurde folgende Beziehung ge-

funden [6.2]:

0 , 25

0 ,133

0 ,9 − 0 ,3 ⋅  p*

§ λ ⋅ ρ ⋅  c

·

§  R ·

§  q ·

α = α ⋅  f (  p*)

 l

 l

 pl

 a

⋅ ¨

¸

⋅ ¨

¸

⋅ ¨

¸

 B

0

¨© λ ρ  c ¸

⋅

⋅

 R

 q

(6.9)

 l  0

 l  0

 pl  0 ¹

©  a 0 ¹

© 0 ¹

Index 0 wird für die Vergleichsgrößen verwendet, deren Stoffwerte man bei Refe-

renzdruck  p* =  p /  p  = 0,1 bestimmt. Die Druckkorrekturfunktion  f( p*) ermittelt

    

 krit

man mit Gl. (6.11) und die Wärmübergangszahl α  wird mit Gl. (6.12) berechnet. 

0

 R  ist der arithmetische  Mittenrauwert nach DIN 4762/01.89, der den Einfluss der a

Oberflächenbeschaffenheit bezüglich der Anzahl der Keimstellen berücksichtigt. 

Er ersetzt die früher verwendete  Glättungstiefe  R  nach DIN 4672/08.60. Zwischen p

den beiden Werten besteht folgende Beziehung:

 R = 0, 4 ⋅  R

(6.10)

 a

 p

Der früher verwendete Bezugswert  R  = 1 μm entspricht damit  R  = 0,4 μm. 

 p 0

 a 0

Funktion  f ( p*) gibt die Abhängigkeit vom Druck, bezogen auf  p* = 0,1, an. 
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§

0, 68 ·

0,27

2

1, 73⋅  p*

+¨6,1+

¸⋅  p*

für Wasser

©

1−  p*¹

 f ( *

 p ) =

§

1

·

(6.11)

0,27

 f ( *

 p ) = 1, 2⋅  p*

+¨2,5+

¸⋅  p*

für andere reine Stoffe

©

1−  p*¹

 Stephan und  Preußer [6.2] fanden anhand zahlreicher Messungen bei einem Druck von  p = 0,03 .   p , einer Wärmestromdichte von  q  = 20 000 W/m2 und einem krit

0

arithmetischen Mittenrauwert von  R  = 0,4 μm für die Vergleichs- Nußelt zahl  Nu a

 dA 0

folgende Beziehung (Achtung, mit Stoffwerten bei  p* = 0,03 rechnen!):

0,674

0 156

, 

0,371

0,35

2

2

§  q ⋅ d ·

§ ρ

ρ

 g ·

§  r d

 a

 A

⋅

·

§

 A

 l ⋅

·

0

 l

0 16

, 

 Nu

 Pr

 d

= 1

, 

0

−

⋅

⋅

⋅

⋅

⋅

0

(6.12)

 A

¨¨

¸¸

¨¨

¸¸

¨¨

2

¸¸

¨¨

¸¸

© λ  T

ρ

 a

σ  d

 l ⋅

 s ¹

©  l ¹

©

 l

¹

© ⋅

¹

 l

 A

Dabei ist  a  = λ /(ρ   c ) die Temperaturleitfähigkeit der Flüssigkeit. 

 l

 l 

 l

 pl

 f (0,1)

λ

1

λ

 l

 l

α =

⋅  Nu ⋅

=

⋅  Nu ⋅

0

 d  0

 d  0

(6.13)

 f (0, 03)

 A

 d

 f (0, 03)

 A

 d

 A

 A

Für die Vergleichswärmeübergangszahl α  liefert der mit den Gln. (6.12) und

0

(6.13) ermittelte Wert für Wasser bei  p* = 0,1 den Wert von 6 398 W/(m2 K). Der experimentelle Wert beträgt 5 600 W/(m2 K). Bei einigen Kältemitteln ist die Über-einstimmung besser. 

In Tabelle 6.1 sind die Bezugswerte für Wasser, Frigen R134a und Propan bei

 p* = 0,1 angegeben. Weitere Werte findet man im VDI-Wärmeatlas [1.7]. 

Tabelle 6.1: Bezugswerte für bei p* = 0,1

 p

λ

ρ

 c

λ .  ρ  .   c

α

α

 krit

 l 0

 l 0

 pl 0

 l 0 

 l 0

 pl 0

0

0 exp

bar

W/(m K)

kg/m3

J/(kg K) kg2/(s5 K2)

W/(m2 K)

Wasser 220,64

0,650

843,5

4594

2,519 .  106

6 398

5 600

R134a

40,60

0,088

1263,1

1368

0,154 .  106

3 635

4 500

Propan

42,40

0,108

533,5

2476

0,143 .  106

3 975

4 000

Die Übertemperatur zu Beginn des Blasensiedens in Bild 6.1 ermittelt man, indem

der Wert bestimmt wird, bei dem die Wärmeübergangszahl beim Blasensieden grö-

ßer als die bei freier Konvektion ist. 

Bild 6.3 zeigt den Übergang von freier Konvektion zum Blasensieden im Wasser

beim Druck von 6,62 bar an einem waagerechten Rohr mit 15 mm Durchmesser. 

Aus dem Diagramm ist ersichtlich, dass freie Konvektion bei etwa 1,5 K Über-

temperatur in Blasensieden übergeht. 
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Bild 6.3: Übergang von freier Konvektion zum Blasensieden

BEISPIEL 6.1: Wassersieden im Kochtopf

Auf einer Heizplatte mit 2,5 kW Heizleistung wird Wasser in einem Kochtopf mit

dem Durchmesser von 25 cm zum Sieden gebracht. Der Druck beträgt 0,98 bar. Die

Rauigkeit des Kochtopfes ist 0,5 μm. 

Die Stoffwerte des Wassers sind bei  p = 0,03 .   p  = 6,6192 bar: krit

ρ  = 904,8 kg/m3, ρ  = 3,477 kg/m3,   c  = 4,346 kJ/(kg K), σ   = 0,046 N/m, l 0

 g 0

 p 0

0

 Pr  = 1,07, λ  = 0,679 W/(m K), ν  = 0,185  .   10-6 m2/s,  T  = 435,85 K, β ° = 45°, l 0

 l 0

 l 0

 s

 r = 2 073 kJ/kg ,   a  = 1,727 .  10-7 m2/s. 



 l

Stoffwerte bei  p* = 0,1:

ρ = 843,5 kg/m3, λ  = 0,650 W/(m K),  c  = 4,594 kJ/(kg K)

 l 

 l

 p

Stoffwerte bei  p* = 0,004444:

ρ = 959,0 kg/m3, λ  = 0,678 W/(m K),  c  = 4,215 kJ/(kg K). 

 l 

 l

 p

Bestimmen Sie die Wärmeübergangszahl und Übertemperatur. 

Lösung

 Annahme

•

Die Wandtemperatur ist konstant. 

 Analyse

Der Referenzwert für die Wärmeübergangszahl kann aus Tabelle 6.1 entnommen

werden. Zur Kontrolle bestimmen wir die Wärmeübergangszahl. 

Bei  p* = 0,03 ist der Blasenabreißdurchmesser  d  nach Gl. (6.6):

 A 0
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⋅σ

0

2

 d

β

 A

= , 

0 0149 ⋅

⋅

=

0

 g ⋅ (ρ

ρ

 l −

)

 g

2 ⋅ 0,046 ⋅ N/m

= , 

0 0149 ⋅ 45 ⋅

=

mm



2,163

9,806 ⋅ m/s2 ⋅ (904,8 − 3,477) ⋅ kg/m3

Die Berechnung der  Nußelt zahl  Nu

, die zur Bestimmung von α  benötigt wird, 

 dA 0

0

erfolgt mit Gl. (6.12). 

0,674

0,156

0,371

0,35

2

2

§  q ⋅ d ·

§ ρ ·

§ ⋅

·

§

⋅ ρ ·

 g  0

 r d

 a

0

 A 0

 A 0

 l  0

 l  0

0, 

− 16

 Nu

= 0,1⋅¨

¸

⋅¨

¸

⋅¨

¸

⋅¨

¸

⋅  Pr

= 13,85

 d  0

 l

 A

2

0

© λ ⋅ T ¹

© ρ

 a

¹

©

¹

© σ ⋅  d

 l  0

 s  0

 l  0

 l  0

0

 A 0 ¹

In die Gleichung wurden die Stoffwerte bei 6,6192 bar eingesetzt. Die Wärme-

stromdichte ist 20 000 W/m2. 



Die Funktion für die Korrektur des Druckes erfolgt mit Gl. (6.11). 

§

68

, 

0

·

 f ( , 

0

)

03 = , 

1 73⋅ , 

0 030,27 +

1

, 

6

¨¨

+

¸¸ ⋅ , 

0 032 = , 

0 677

©

1 − , 

0 03 ¹

Für die Wärmeübergangszahl α  erhalten wir:

0

 Nu

⋅λ

 d

 l

13,85 ⋅ 0,679 ⋅ W/(m ⋅ K)

W

 A  0

0

α =

=

= 6398

0

2

 f (0, 03) ⋅  d

0,677 ⋅ 0,002163⋅ m

m  K

 A 0

Das Ergbnis stimmt mit dem Wert in Tabelle 6.1 überein. Die Wärmeübergangs-

zahl α  wird mit Gl. (6.9) bestimmt. Dazu muss zunächst die Wärmestromdichte

 B

berechnet werden:

 Q

4 ⋅ Q

4 ⋅ 2 500 ⋅ W

W

 q =

=

=

= 50 930 

2

2

2

2

 A

π ⋅ d

 ʌ ⋅ 0,25 ⋅ m

m

Für die Stoffwerte erhalten wir: λ .  ρ  .   c  = 0,650 .  843,5 .  4 594 = 2,519 .  106

 l 0 

 l 0

 pl 0



λ .  ρ  .   c  = 0,679 .  958,6 .  4 216  = 2,744 .  106

 l 

 l

 pl



Die Druckkorrekturfunktion ist:

§

0,68

·

0,27

2

 f (0, 00444) = 1,735⋅0,00444

+ 6,1

¨

+

¸⋅0,00444 = 0,402

©

1− 0,00444 ¹

Damit wird die Wärmeübergangszahl nach Gl. (6.12):
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0.25


0.133

0.9−0.3⋅  p*

§ λ ⋅ ρ ⋅ c ·

§  R ·

§  q ·

α = α ⋅

W

 f ( *

 p )

 l

 l

 pl

 a

⋅¨

¸

⋅¨

¸

⋅¨ ¸

= 6 271 

 B

0

¨© λ ρ  c ¸

⋅

⋅

 R

 q

¹

©

¹

©  ¹

2

m ⋅ K

 l  0

 l  0

 pl  0

 a  0

0

Die Übertemperatur kann aus der Wärmestromdichte bestimmt werden:

2

 q

50 930 ⋅ W/m

Δϑ = ϑ −ϑ =

=

= 8,12 K

 W

 s

2

α

6 271⋅ W/(m ⋅ K)

 B

 Diskussion

Um die zugeführte Wärmestromdichte abführen zu können, entsteht beim Ko-

chen des Wassers eine Übertemperatur von 13,4 K. Mit den etwas kleineren, expe-

rimentell ermittelten Bezugswerten wird die Wärmeübergangszahl ca. 14 % kleiner, 

die Übertemperatur erhöht sich auf etwa 10 K. 

BEISPIEL 6.2: Berechnung eines elektrisch beheizten Verdampfers

Mit einer elektrischen Heizung von 6 kW Leistung soll bei 2 bar Druck Dampf

erzeugt werden. Die Heizung hat einen Stahlmantel von 12 mm Durchmesser, sie ist

1 m lang. Die Rauigkeit des Heizstabes beträgt 1,5 μm. 

Die Bezugswerte bei  p* = 0,03 können aus Aufgabe 6.1 entnommen werden. 

Stoffwerte bei  p* = 0,00906:  r = 2 201,6 kJ/kg, ρ = 942,9 kg/m3, 



 l 

λ  = 0,683 W/(m K),  c  = 4,247 kJ/(kg K). 

 l

 p

Bestimmen Sie den Dampfmassenstrom, die Wärmeübergangszahl und Übertem-

peratur. 

Lösung

 Annahmen

•

Die Wandtemperatur ist konstant. 

•

Es wird angenommen, dass dem Verdampfer immer Wasser mit Siedetempera-

tur zugeliefert wird. 

 Analyse

Den Dampfmassenstrom bestimmen wir mit Gl. (6.1). 

 Q

6 ⋅ kW

 m

 =

=

= 0,00273  kg/s = 9,81  kg / h

 r

2 201,6 ⋅ kJ/kg

Der Referenzwert für die Wärmeübergangszahl ist jener aus Aufgabe 6.1. 
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Für die Stoffwerte erhalten wir: λ .  ρ  .   c  = 0,683 .  942,9 .  4 247 = 2,735 .  106

 l 

 l

 pl



Die Druckkorrekturfunktion ist:   f ( , 

0

)

00906 = , 

0 486

Die Wärmestromdichte beträgt:

 Q

6 ⋅ kW

2

 q =

=

=159 155  W/m

π ⋅ d ⋅ l π ⋅0,012⋅m ⋅1⋅m

0,25

0,133

0,9−0,3⋅  p*

§ λ ⋅ ρ ⋅ c ·

§  R ·

§  q ·

α =  f ( *

 p )

 l

 l

 pl

 a

⋅¨

¸

⋅¨

¸

⋅¨ ¸

⋅α =

 B

0

¨© λ ρ  c ¸

⋅

⋅

 R

 q

 l  0

 l  0

 pl  0 ¹

©  a 0 ¹

© 0 ¹


0.25

0,133

0,9027

§ 2,735 ·

§ 1,5 ·

§159155 ·

W

=

W

0, 486 ⋅¨

¸

⋅¨

¸

⋅¨

¸

⋅6 398 

= 24 428  

2

© 2,519 ¹

© 0,4 ¹

© 20 000 ¹

m ⋅ K

2

m ⋅ K

2

 q

159 155 ⋅ W/m

Δϑ = ϑ −ϑ =

=

= 6,52  K

 W

 s

2

α

24 428 ⋅ W/(m ⋅ K)

 B

 Diskussion

Durch die hohe Wärmestromdichte entsteht eine kräftige Blasenbildung mit sehr

hoher Wärmeübergangszahl, somit ist die Übertemperatur nicht sehr groß. 

BEISPIEL 6.3: Auslegung eines elektrisch beheizten Verdampfers

Zum Anfahren eines Dampfkraftwerkes wird das Wasser im Speisewasserbehälter

so aufgeheizt, dass der Druck auf 10 bar ansteigt. Anschließend muss bei diesem

Druck für die Hilfsdampfschiene 1,5 kg/s Dampf produziert werden. Die Beheizung

erfolgt mit 6 elektrischen Heizstäben von je 100 mm Durchmesser. Die Rauigkeit

des Heizstabes ist 3 μm. Die Heizstablänge soll so ausgelegt werden, dass die

Dampfproduktion bei 5 K Übertemperatur erfolgt. Die Bezugswerte bei  p* = 0,03

können Aufgabe 6.1 entnommen werden. 

Stoffwerte bei  p = 10 bar:  r = 2 014,4 kJ/kg, ρ = 887,1 kg/m3, λ  = 0,673 W/(m K), l 

 l

 c  = 4,405 kJ/(kg K). 

 p

Bestimmen Sie die notwendige Heizleistung und Länge der Heizstäbe. 

Lösung

 Annahmen

•

Die Wandtemperatur ist konstant. 

•

Es wird angenommen, dass den Heizstäben immer Wasser mit Siedetemperatur

zugeliefert wird. 
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 Analyse

Die Heizleistung errechnet sich mit Gl. (6.1):

kg

kJ

 Q =  m ⋅  r = 1,5⋅

⋅ 2 014,4⋅

= 3,022  MW

s

kg

Pro Heizstab werden also 504 kW Heizleistung benötigt. Für die Stoffwerte erhal-

ten wir: λ  . ρ  .   c  = 0,673 . 887,1 . 4 405 = 2,669 . 106. 

 l

 l

 pl

Der normierte Druck  p* ist 0,0452. Die Korrekturfunktion für die Dichte errechnet sich als:

§

0,68

·

0,27

2

 f (0, 0453) = 1,735⋅0,0453

+ 6,1

¨

+

¸⋅0,0453 = 0,764

©

1− 0,0453 ¹

Da die Heizstablänge unbekannt ist, wird in Gl. (6.9) die Wärmestromdichte

durch die Wärmeübergangszahl ersetzt. Zunächst formen wir Gl. (6.9) um. 

0,25

0,133

0,9−0,3⋅  p*

0,8864

α

§ λ ⋅ ρ ⋅ c ·

§  R ·

§  q ·

§  q ·

 B =  f ( *

 p )
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 l
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⋅¨

¸

⋅¨

¸

⋅¨ ¸

= 1,0229⋅

α

© λ ρ

¨

¸

¨

 c

¸

⋅

⋅

 R

 q

 q

0

 l  0

 l  0

 pl  0 ¹
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Für die Wärmestromdichte wird α  .  Δϑ  eingesetzt. Nach Umformungen erhält B

man:

0,1−0.3⋅  p*

0,8846

7,8028

§ α ·

§ Δϑ ·
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 B

¨

¸

= 1,0229
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⋅¨

¸

=1,0229⋅

α ¹

© Δϑ ¹

α

¨©Δϑ ¸

© 0

0

0

0 ¹

Mit den Vergleichswerten kann die Übertemperatur für die Wärmeübergangs-

zahl und Wärmestromdichte berechnet werden. 

2

20 000 W m

K

Δϑ

 q / α

⋅ ⋅

⋅

=

=

= 3,126 K

0

0

0

2

6 398 ⋅ W ⋅ m

Wärmedurchgangszahl, notwendige Heizfläche und Stablänge können jetzt be-

stimmt werden. 

7 803

 , 

7,803

2

2

 Į = ( ǻϑ  / ǻϑ )

⋅ Į = (5 / 3,126)

⋅6 398⋅ W/(m ⋅ K) = 249,935 kW/(m ⋅ K)

 B

0

0

2

 A =  Q /  q =  Q



/ (α ⋅ Δϑ) = 504 ⋅ kW / (249,935⋅5⋅ kW/m ) =

2

0, 403 m

 B

2

 l =  A / (π ⋅  d) = 0, 403⋅ m /( ʌ ⋅ 0,1⋅ m) = 1, 283 m
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 Diskussion

Durch die sehr hohe Wärmestromdichte erhöhen sich Blasenproduktion und Wär-

meübergangszahl. Die Wärmeübertragung erfolgt bei einer sehr kleinen Übertem-

peratur von 5 K. Bei einer größeren Heizfläche wird die Wärmestromdichte ver-

ringert, was die Verminderung der Wärmeübergangszahlen und die Erhöhung der

Übertemperatur bewirkt. Die Wärmeübergangszahl steigt bei diesem Druck fast mit

der 8. Potenz der Übertemperatur. Schon eine kleine Verringerung der Übertempe-

ratur hat eine wesentliche Erhöhung der Heizfläche zur Folge. In diesem Beispiel

würde man bei einer Übertemperatur von 4 K eine fast 7mal so große Heizfläche

von 6,56 m2 benötigen. Beim Blasensieden wird die Heizfläche mit abnehmender

Temperaturdifferenz extrem stark erhöht. 


6.2

Sieden bei erzwungener Konvektion


Die Verdampfung kann in durchströmten Rohren oder angeströmten Körpern

(Rohrbündeln) erfolgen. Das eintretende Fluid ist dabei unterkühlte Flüssigkeit, 

gesättigte Flüssigkeit oder ein Dampf/Flüssigkeitsgemisch. Im Verdampfer wird

die Flüssigkeit teilweise oder vollständig verdampft, so dass entweder ein Dampf/

Flüssigkeitsgemisch bzw. gesättigter oder überhitzter Dampf den Verdampfer ver-

lassen. Die Wärmeübertragungsvorgänge können bei einphasiger Flüssigkeits- oder

Dampfströmung oder bei zweiphasiger Dampfströmung stattfinden [6.3]. 

In der strömenden, unterkühlten Flüssigkeit erfolgt die Wärmeübertragung zu-

nächst wie in Kapitel 3 beschrieben. Bereits in der unterkühlten Flüssigkeit können Dampfblasen entstehen, die dann in der Flüssigkeit wieder kondensieren. Die

Dampfblasen beeinflussen die Wärmeübergangszahlen in der unterkühlten Flüssig-

keit. Im weiteren Verlauf der Strömung tritt zunächst Blasensieden auf, bis in der Zweiphasenströmung schließlich der konvektive Wärmeübergang überwiegt. 

6.2.1

Unterkühltes Sieden

Für die Wärmeübergangszahlen in der unterkühlten, strömenden Flüssigkeit gilt

folgende asymptotische Näherung:

, 

1 2

, 

1 2

, 

1 2

α = α +α

(6.14)

 k

 B

Dabei ist α  die Wärmeübergangszahl bei erzwungener Konvektion nach Kapitel

 k

3 und α  die Wärmeübergangszahl beim Blasensieden nach Gl. (6.8). 

 B

Bild 6.4 zeigt die Wärmeübergangszahl bei der Verdampfung unterkühlter Flüs-

sigkeiten mit erzwungener Konvektion. 
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Bild 6.4: Wärmeübergangszahl bei der Verdampfung unterkühlter Flüssigkeiten mit erzwungener Konvektion

6.2.2

Konvektives Strömungssieden

Ist der Wärmewiderstand in der Strömung kleiner als beim Blasensieden, tritt kon-

vektives  Strömungssieden auf, das auch  stilles Sieden genannt wird. Durch die intensive Konvektion reicht die Übertemperatur an der Wand nicht mehr aus, um die

Keimstellen zu aktivieren und Blasen zu bilden. Die Verdampfung findet an der

freien Oberfläche der Flüssigkeit statt. Für horizontale bzw. vertikale Rohre und

Kanäle fand man unterschiedliche Beziehungen [6.1, 6.2]. Sie gelten für Dampf-

gehalte von  x = 0 bis  x = 1. 

Die lokale, auf die Flüssigkeit bezogene Wärmeübergangszahl ist in vertikalen

Rohren:

−
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°
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Dabei ist  R = ρ /ρ  das Dichteverhältnis der Flüssigkeit zum Dampf. α  und α

 l 

 g

 l 0

 g 0

sind die Wärmeübergangszahlen der flüssigen bzw. gasförmigen Phase. Sie werden



als Wärmeübergangszahl der Phase nach Kapitel 3 berechnet. Dabei wird angenom-

men, dass die Phasen jeweils allein im Rohr strömen. Die  Reynolds zahlen sind:
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 c 0 ⋅  d

 m

 ⋅ d

 c 0 ⋅  d
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 g

 h

 m d

 l

 h

 h

 h

 Re =

=

 Re =

=

 l

 g

ν

 A ⋅η

ν

 A ⋅η

(6.16)

 l

 l

 l

 g

Dabei ist  A der Strömungsquerschnitt des Kanals und  d  der hydraulische Durch-h

messer. Die Berechnung für horizontale Rohre erfolgt ähnlich:
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Gleichung (6.17) berücksichtigt die Verteilung der Phasen im horizontalen Rohr. 

Die angegebenen Beziehungen wurden anhand von Messungen in Rohren kreis-

förmigen und rechteckigen Querschnitts und in Ringspalten abgeleitet. Bild 6.5

zeigt den Verlauf der Wärmeübergangszahlen bei verschiedenen Dichteverhältnis-

sen als eine Funktion des Dampfgehaltes. 
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Bild 6.5: Lokale Wärmeübergangszahlen in vertikalen Rohren bei α /α  = 0,3

 g 0

 l 0

Mittlere Wärmeübergangszahlen können durch Integration der Gln. (6.15) und

(6.17) angegeben werden. 

 x 2

α =

1

⋅ ³α( x) dx

(6.18)

 x

 x

2 −

1

 x 1

In Bild 6.6 sind die mittleren Wärmeübergangszahlen bei vollständiger Verdamp-

fung von  x = 0 bis 1 in vertikalen und in Bild 6.7 in horizontalen Rohren als eine Funktion  des Dichteverhältnisses dargestellt. 
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Bild 6.6: Mittlere Wärmeübergangszahlen in vertikalen Rohren bei vollständiger Verdampfung
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Bild 6.7: Mittlere Wärmeübergangszahlen in horizontalen Rohren bei vollständiger Verdampfung

In Verdampfern von Wärmepumpen und Kälteanlagen tritt ein Zweiphasenge-

misch ein und der Flüssigkeitsanteil wird vollständig verdampft. Bei den Dampfer-

zeugern von Kraftwerken, in Naturumlaufverdampfern und in Verdampfern von

Entsalzungsanlagen wird die eintretende Flüssigkeit nicht vollständig verdampft, 

um die Ablagerung der in Flüssigkeit gelösten Salze zu vermeiden. Bei solchen Ap-

paraten müssen die Gln. (6.15) und (6.17) integriert oder abschnittweise lokal be-

rechnet werden. Eine analytische Integration der Gln. (6.15) und (6.17) ist nicht

möglich. Die Berechnung kann jedoch leicht mit Programmen wie  Mathcad oder Maple durchgeführt werden. 

Die mit dem mittleren Dampfgehalt bestimmte mittlere Wärmeübergangszahl lie-

fert oft Ergebnisse ausreichender Genauigkeit. 
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BEISPIEL 6.4: Auslegung eines Kühlschrankverdampfers

Das Rohr eines Kühlschrankverdampfers hat einen Innendurchmesser von 6 mm. 

Das Kältemittel Frigen R134a verdampft in den Rohren bei 2 bar. Der äußere, auf

den Innendurchmesser bezogene Wärmewiderstand ist 0,9 .  10-3 (m2 K)/W. Das eintretende Kältemittel hat den Dampfgehalt von 0,4 und wird vollständig verdampft. 

Der Wärmestrom, der vom Verdampfer aufgenommen wird, soll 700 W betragen. 

Das Verdampferrohr verläuft horizontal. Das Frigen verdampft bei –10,07 °C, die

Temperatur außen am Rohr beträgt 4 °C. Die Verdampfungsenthalpie des Frigens

ist:  r = 205,88 kJ/kg. 

Stoffwerte Kondensat: ρ = 1327,7 kg/m3, λ  = 0,0971 W/(m K),  Pr  = 4,23, 

 l 

 l

 l

η  = 0,3143 .  10-3 kg/(m s). 

 l

Stoffwerte Dampf:  ρ = 10,02 kg/m3, λ  = 0,0111 W/(m K),  Pr  = 0,609, 

 g 

 g

 g

η  = 0,0112 .  10-3 kg/(m s). 

 g

a) Bestimmen Sie die notwendige Länge des Verdampferrohres mit einem mitt-

leren Dampfgehalt von 0,7. 

b) Bestimmen Sie durch Integration von Gl. (6.17) die notwendige Länge des Verdampferrohres. 

Lösung

 Annahmen

•

Die Wandtemperatur ist konstant. 

•

Die Einflüsse der Rohrbögen werden vernachlässigt. 

 Analyse

Aus der gegebenen Heizleistung von 700 W kann der Massenstrom des Kältemit-

tels bestimmt werden. 

 Q

 Q

kW
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 h ′ −  x ⋅  r −  h′

( x − )
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/kg

s

1

1

Zunächst werden die Wärmeübergangszahlen der reinen Flüssigkeits- und Gas-

strömung berechnet. 
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a)

Die Erhöhung der Wärmeübergangszahl gegenüber der Wärmeübergangs-

zahl der Flüssigkeit wird mit Gl. (6.17) berechnet. Dabei wird  x = 0,7 eingesetzt. 
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Die mittlere Wärmeübergangszahl ist damit:

W

W

α = α ⋅ϕ(0,7) = 7,815⋅542,1

= 4 236,7

 l
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Die für den Wärmetransfer notwendige Fläche beträgt:

2

 Q

700 ⋅ W ⋅ m ⋅ K

2

 A =

=

= 0,057  m

 k ⋅ (ϑ −ϑ )

880,2 ⋅ W ⋅ (4 +10,07) ⋅ K

 a

 i

Damit berechnet sich die notwendige Länge der Verdampferrohres zu:

 l =  A / (π ⋅  d ) = 2, 998  m

 i

b)

Das Integral in Gl. (6.16) kann zur Bestimmung der mittleren Wärme-

übergangszahl z.B. mit dem Programm  Mathcad berechnet werden. Man erhält:

2

 x

1

1

1

ϕ ( x) =

⋅ ³ϕ( x)⋅ dx =

⋅ ³ ϕ( x)⋅ dx = 7,486

 x −  x

1− 0, 4

2

1

 x

0,4

1
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Die mittlere Wärmeübergangszahl ist 4,4 % kleiner als die mit dem mittleren  x-

Wert berechnete und benötigt damit eine 0,9 % größere Länge. 

 Diskussion

Bei Verdampfung in der Strömung vergrößert sich im Vergleich zur Flüssigkeit

die Wärmeübergangszahl um das 2,2fache. Für einfachere Berechnungen kann bei

sehr guter Genauigkeit die mittlere Wärmeübergangszahl mit dem mittleren

Dampfgehalt bestimmt werden. 

7

Strahlung

Wärmeübertragung durch  Strahlung erfolgt durch elektromagnetische Wellen. Im Gegensatz zur Wärmeleitung, bei der die Wärmeübertragung an Bewegungen von

Molekülen, Atomen oder Elektronen gebunden ist, also ein Trägermedium erfor-

dert, benötigt die Wärmeübertragung bei Strahlung keine Materie, d.h. sie kann

auch im Vakuum erfolgen. Bei der Strahlung wird von einem wärmeren Körper

durch elektromagnetische Wellen Wärme an einen kälteren Körper übertragen. Der

Wärmetransfer durch Strahlung erfolgt entweder im Vakuum oder durch Stoffe

(meistens Gase), die die elektromagnetischen Wellen durchlassen. Im zweiten Fall

wird neben der Strahlung durch Wärmeleitung oder Konvektion zusätzlich Wärme

übertragen. 

 Strahlung erfolgt von der Oberfläche fester und flüssiger Körper und auch

 von Gasen, deren Moleküle aus mehr als zwei Atomen bestehen. 

Die Länge der elektromagnetischen Wellen, durch die die Wärme übertragen

wird, liegt zwischen 0,8 bis 400 μm. Dieser Wellenlängenbereich wird auch als

ultraroter Bereich bezeichnet. Zum Vergleich: Licht liegt im sichtbaren Wellenlän-

genbereich zwischen 0,35 und 0,75 μm. Bei tiefen Temperaturen ist der Anteil an

sichtbarer Strahlung so gering, dass er vom Auge nicht wahrgenommen wird. Bei

hohen Temperaturen erhöht sich der Anteil der sichtbaren Strahlen, er wird vom

Auge registriert (z. B. Glühfaden einer Glühbirne). 

Mit zunehmender Temperatur steigt die Intensität der Wärmestrahlung. Auch bei

kleinen Temperaturen kann der Anteil der durch Strahlung übertragenen Wärme, 

z.B. Isolationsprobleme bei sehr tiefen Temperaturen, von Bedeutung sein. 

Elektromagnetische Wellen, die auf einen Körper auftreffen, werden von diesem

je nach seinen Eigenschaften teilweise reflektiert, durchgelassen oder absorbiert. 

Bezeichnet man den absorbierten Anteil ( Absorptionsverhältnis) mit α, den durch-gelassenen Anteil mit τ und den reflektierten Anteil mit ρ, gilt immer:

α + ρ +τ =1

(7.1)

Feste Stoffe und Flüssigkeiten verhindern einen Durchlass bereits bei sehr klei-

nen Dicken, Metalle bei etwa 1 μm, Flüssigkeiten bei 1 mm. Bei den meisten Kör-

pern sind die Eigenschaften bezüglich Reflexion, Durchlass und Absorption zusätz-

lich von der Wellenlänge der Strahlung abhängig. 

 Jeder Körper, dessen Temperatur über dem absoluten Nullpunkt liegt, sendet

 Strahlen aus. 

P. von Böckh, T. Wetzel  Wärmeübertragung, 

DOI 10.1007/978-3-642-15959-6_7, © Springer-Verlag Berlin Heidelberg 2011
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Das Vermögen, Strahlen auszusenden, hängt von den Eigenschaften des Körpers

ab. Ein so genannter  schwarzer Körper ist in der Lage, bei einer bestimmten Temperatur Strahlen mit maximaler Intensität auszusenden. Die Fähigkeit anderer Körper, bei der gleichen Temperatur Strahlen auszusenden, wird durch das  Emissionsverhältnis ε angegeben. Das Emissionsverhältnis ist das Verhältnis der Strahlungsintensität eines Körpers bei einer bestimmten Temperatur, verglichen mit der Strahlungsintensität eines schwarzen Körpers bei gleicher Temperatur. 

Das  Kirchhoff'sche Gesetz sagt aus, dass das Emissionsverhältnis ε eines Körpers bei stationären Verhältnissen gleich seines Absorptionsverhältnisses α ist. 

ε = α

(7.2)

Körper ordnet man nach ihrem Verhalten bezüglich Reflexion, Durchlass und

Absorption folgende Eigenschaften bzw. Benennungen zu:

schwarz:

alle auftreffenden Strahlen werden absorbiert (α  = ε  = 1)

weiß:

alle Strahlen werden reflektiert (ρ = 1)

grau:

alle auftreffenden Strahlen werden im gesamten Wellenlängenbe-

reich zum gleichen Anteil absorbiert (ε < 1)

farbig:

von den auftreffenden Strahlen werden bestimmte Wellenlängen

(die der entsprechenden Farbe) bevorzugt reflektiert

spiegelnd: alle auftreffenden Strahlen werden, bezogen auf die Flächennorma-

le, unter dem gleichen Winkel reflektiert

matt:

auftreffende Strahlen werden diffus in alle Richtungen gestreut. 


7.1

Grundgesetz der Temperaturstrahlung


Ein schwarzer Körper lässt sich durch die Öffnung eines Hohlraums, dessen wär-

meundurchlässige (adiabate) Wände innen überall die gleiche Temperatur haben, 

annähernd verwirklichen. Die Wärme wird ausschließlich per Strahlung durch die

Öffnung abgegeben, man spricht von  schwarzer Strahlung. 

Die   spektralspezifische Intensität der schwarzen Strahlung  i  wird durch das λ ,s

 Planck'sche Strahlungsgesetz beschrieben. 

 C 1

 iλ  s =

, 

5

λ ⋅

(7.3)

(  C / (λ⋅ T )

2

 e

− )

1

Die Konstanten  C  und  C  haben folgende Bedeutung:

1

2

 C = 2

2

⋅π ⋅ c ⋅  h = 3,7418⋅10−16 W ⋅ m2

1

(7.4)

 C =  c ⋅  h /  k = 1,438⋅10−2 K ⋅ m

2

Die Konstanten enthalten nur physikalische Konstanten: Lichtgeschwindigkeit  c, Planck'  sches Wirkungsquantum  h und  Boltzmann konstante  k, die keine empirisch ermittelten Größen sind. Die Werte dieser physikalischen Konstanten sind:
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 c = 299 792 458 m/s,  h = 6,6260755 .  10-34 J .  s,  k = 1,380641 .  10-23 J/K. 





Die Größe  i  ist die Strahlungsintensität eines schwarzen Strahlers (der Index  s λ ,s

steht für schwarze Strahlung) geteilt durch die Wellenlänge, bei der die Strahlung stattfindet. Da die Intensität pro Meter Wellenlänge angegeben ist, ist ihre Einheit W/m3. 

Bild 7.1 zeigt die Verteilung der Intensität über die Wellenlänge bei verschiede-

nen Temperaturen. Wie aus dem Diagramm zu ersehen ist, hat die Strahlung für jede

Temperatur bei einer bestimmten Wellenlänge ein Maximum. Leitet man Gl. (7.3)

nach der Wellenlänge ab und setzt die Ableitung gleich null, erhält man die Stelle des Maximums. 

λ

= 2 898 ȝm ⋅ K/ T

(7.5)

 i =  max

Mit steigender Temperatur verschiebt sich das Maximum zu immer kleineren

Wellenlängen ( Wien'sches Verschiebungsgesetz). 

Die Temperatur der Sonnenoberfläche beträgt etwa 6 000 K. Das Maximum liegt



bei einer Wellenlänge von 0,48 μm, also im sichtbaren Bereich. 
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Bild 7.1: Intensität der schwarzen Strahlung in Abhängigkeit der Wellenlänge
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7.2

Bestimmung der Wärmestromdichte der Strahlung

Die Intensität der Strahlung eines schwarzen Körpers pro Meter Wellenlänge kann

mit Gl. (7.3) bestimmt werden. Für die technischen Berechnungen benötigt man den

Wärmestrom, der vom schwarzen Körper ausgesandt wird. Wir erhalten ihn, wenn

Gl. (7.3) im gesamten Wellenlängenbereich, also von der Wellenlänge null bis un-

endlich, integriert wird. 

λ =∞

5

4

2 ⋅π ⋅  k

4

4

 q =

 iλ ⋅  dλ =

⋅ T = σ ⋅ T

³

 s

,  s

4

2

(7.6)

15⋅  h ⋅  c

λ =0

Die   Stefan-Boltzmann-Konstante ist σ, mit den physikalischen Konstanten berechnet, folgenden Wert aufweist [7.1, 7.2]:

−8

2

−

−4

σ = 6696

, 

5

(

±

)

0075

, 

0

⋅10 W ⋅ m ⋅ K

(7.7)

Dieses ist zur Zeit der genaueste Wert, basierend auf den Messwerten der physi-

kalischen Konstanten. In der Praxis wird der Wert 5,67 .  10-8 W .  m-2 .  K-4 verwendet. 

Für eine leichtere Berechnung führte man folgende Vereinfachung ein:

4

§  T ·

 q s =  Cs ⋅¨

¸

©

(7.8)

100 ¹

Dabei ist  C  die  Strahlungskonstante des schwarzen Körpers. 

 s

8

2

−

4

 C

(7.9)

 s = 10

⋅σ =



5,67 W ⋅ m ⋅ K−

Für Körper, die nicht schwarz sind, gilt:

4

§  T ·

 q = ε ⋅ Cs ⋅¨

¸

©

(7.10)

100 ¹

 Die von einem nicht schwarzen Körper abgestrahlte Wärmestromdichte ist

 die eines schwarzen Körpers, multipliziert mit dem Emissionsverhältnis. 

7.2.1

Intensität und Richtungsverteilung der Strahlung

Die Abstrahlung ist je nach Beschaffenheit der Oberfläche unterschiedlich. Im Fol-

genden behandeln wir die grauen Körper, da man mit ihnen technische Oberflächen

gut beschreiben kann. 

Die Intensität einer punktförmigen Strahlungsquelle nimmt mit der Entfernung

quadratisch ab. Das Richtungsgesetz von  Lambert besagt, dass die Intensität einer von einem Flächenelement  dA ausgesandten diffusen Strahlung in jede Richtung
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des Raumes gleich groß ist. Die Dichte der Strahlung nimmt jedoch proportional

zum Cosinus des Winkels  ß zum Normalen ab. 

 q



β =  q

(7.11)

 n ⋅ cos β

Aus der Integration über einer Halbkugel erhält man die Gesamtstrahlung in den

Raum:

 q =  q

(7.12)

 n ⋅ π

Bei einem grauen Strahler ist die in einen Halbraum abgestrahlte gesamte Wärme-

stromdichte gleich dem π-fachen der Wärmestromdichte, die senkrecht abgestrahlt

wird. Das Richtungsgesetz ist bei vielen Stoffen, da sie keine grauen Strahler sind, nur annähernd gültig. Bei Metallen nimmt das Emissionsverhältnis mit dem Winkel

β zu, bei Nichtmetallen ab. 

7.2.2

Emissionsverhältnisse technischer Oberflächen

Das Emissionsverhältnis einer Oberfläche ist von der Temperatur und Beschaffen-

heit der Oberfläche abhängig. Alterung, Verschmutzung, Oxidation und Korrosion

können starke Änderungen des Emissionsverhältnisses bewirken. Der Zustand ei-

ner technischen Oberfläche kann bezüglich seines Emissionsverhältnisses nur

durch Messung der Oberflächentemperatur und Strahlungsintensität exakt bestimmt

werden. Folgerungen betreffend des Emissionsverhältnises aus optischen oder an-

deren Beurteilungen der Oberfläche können zu total falschen Ergebnissen führen. 

Die Normalkomponente des Emissionsverhältnisses kann relativ einfach zwi-

schen zwei großen ebenen Platten gemessen werden. Deshalb sind in der Literatur

die Emissionsverhältnisse meistens für die Normalkomponente der Strahlung ε n

angegeben. Mit dem Diagramm in Bild 7.2 kann das Emissionsverhältnis ε der Ge-

samtstrahlung bestimmt werden. 

In der Praxis können die angegebenen Emissionsverhältnisse je nach Oberflä-

chenzustand recht große Abweichungen aufweisen. 

1,4

1,3

elektrische Leiter

1,2

 n

ε / ε 1,1

Nichtleiter

1,0

0,9 0

0,1

0,2

0,3

0,4


0.5

0,6

0,7

0,8

0,9

1,0

Emissionsverhältnis der Normalkomponente ε n

Bild 7.2: Diagramm zur Bestimmung des Emissionsverhältnisses der Gesamtstrahlung
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 Tabelle 7.1: Emissionsverhältnis technischer Oberflächen (Quelle: [ 7.2] ) Material

Zustand

Temperatur

ε

ε

 n

°C

Aluminium

walzblank

170

0,039

0,049

900

0,060

stark oxidiert

90

0,020

504

0,310

Aluminiumoxid

277

0,630

830

0,260

Kupfer

poliert

20

0,030

leicht angelaufen

20

0,037

schwarz oxidiert

20

0,780

Eisen, Stahl

poliert

430

0,144

Gusshaut

100

0,800

Stahl

oxidiert

200

0,790

Wolfram

25

0,024

1 000

0,150



3 000

0,450



Glas

20

0,940

Gips

20

0,850

Ziegelstein, Mörtel

20

0,930

Holz, Eiche

20

0,900

Lack

schwarz, matt

80

0,920

Lack

weiß

100

0,940

Heizkörperlack (nach VDI-74)

100

0,925

Wasser

0

0,950

100

0,960

Eis

0

0,966

Weitere Daten sind im VDI-Wärmeatlas [7.2], bei W. Wagner: "Wärmeübertra-

gung" [7.4], bei [7.5, 7.6] oder im Anhang A11 zu finden. 

7.2.3

Wärmetransfer zwischen Flächen

Bei vielen der technisch interessanten Fälle findet der Wärmeaustausch zwischen

zwei oder mehreren Flächen statt. Das Verhalten der Strahlung lässt sich am Bei-

spiel zweier Flächen gut beschreiben. Von Fläche 1 werden entsprechend der Tem-

peratur  T  und den Eigenschaften der Fläche Strahlen emittiert. Gemäß Richtungs-1

verteilung trifft ein Teil der emittierten Strahlen auf die zweite Fläche auf. Von dieser werden sie teilweise absorbiert, durchgelassen oder reflektiert. Diese zweite Flä-

che emittiert wiederum ihrerseits die Strahlen entsprechend der Temperatur  T  und 2 
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Oberflächenbeschaffenheit. Die emittierten und reflektierten Strahlen der zweiten

Fläche treffen entsprechend der Richtungsverteilung auf der ersten Fläche auf. 

Zwischen den Flächen besteht eine Wechselwirkung. 

 dA  2

2

 T

β2

β 1

 s

 T 1

 dA  1

Bild 7.3: Strahlungsaustausch zwischen zwei Flächenelementen

Bild 7.3 veranschaulicht den Strahlungsaustausch zwischen zwei Flächenelemen-

ten  dA  und  dA  der Fläche 1 und 2.  dA  und  dA  sind beliebige, im Raum liegende 1

2

1

2

Flächenelemente zweier Körper. Die Temperatur der Fläche 1 ist  T  und die der 1

Fläche 2  T . Das Emissionsverhältnis der Fläche ist ε  und ε . Mit der Richtungs-2

1

2

verteilung nach  Lambert erhalten wir ohne Berücksichtigung der Reflexion für den zwischen den Flächen ausgetauschten Wärmestrom:

ª

4

4 º

§  T ·

§  T ·

cos



β cos β

 Q

ε ε  C

 dA dA

12 =

1 ⋅

2 ⋅

 s ⋅ «¨

1 ¸ − ¨ 2 ¸ » ³ ³

1 ⋅

⋅

2 ⋅

2

1 ⋅

«©100 ¹

©100 ¹ »

π ⋅

2

(7.13)

¬

¼

 s

 A A

1

2

Der rein geometrische Anteil wird zur Einstrahlungszahl (auch Sichtfaktor ge-

nannt) ϕ  zusammengefasst. 

12

1

cos β cos β

ϕ

 dA dA

12 =

³ ³

1 ⋅

⋅

2 ⋅

2

1 ⋅

 A

π  s

(7.14)

1

⋅

2

 A A

1

2

Wird die Richtung des Wärmeaustausches umgekehrt, gilt:

 A ⋅ϕ =  A ⋅ϕ

(7.15)

1

12

2

21

Damit kann der Wärmestrom in folgender Form angegeben werden:

ª

4

4 º

§  T

 T



1 ·

§ 2 ·

 Q

ϕ ε ε  C A

12 =

12 ⋅

1 ⋅

2 ⋅

 s ⋅

1 ⋅ «¨

¸ − ¨

¸ »

«©100 ¹

©100 ¹ »

(7.16)

¬

¼
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Handelt es sich um die Flächenpaare  i und  k, die miteinander im Strahlungsaustausch stehen, gilt folgende  Reziprozitätsbeziehung:

 A ⋅ϕ =  A ⋅ϕ

(7.17)

 i

 ik

 k

 ki

Bei der Betrachtung des Strahlungsaustausches der Fläche  i mit den anderen Flä-

chen des  i umschließenden Raumes führt der Energieerhaltungssatz zu folgender Summationsbeziehung:

¦ nϕ 1

 ik =

(7.18)

 k = 1

Bei der Berechnung der Wärmestrahlung zwischen Flächen liegt das Problem in

der Ermittlung der Einstrahlzahlen. Bei technischen Oberflächen, die nicht als graue Körper reagieren, sind die Probleme noch komplizierter, weil die Strahlen teilweise reflektiert oder durchgelassen werden. 

Für geometrisch einfache Formen, bei denen die lineare Ausdehnung der Flächen

wesentlich größer als ihr Abstand ist, können die Einstrahlzahlen berechnet werden. 

Die Angabe des Wärmestromes erfolgt in folgender Form:

ª

4

4 º

§  T

 T

1

·

§ 2 ·

 Q

 C

 A

12 =

12 ⋅

⋅ «¨

¸ − ¨

¸ »

«©100 ¹

©100 ¹ »

(7.19)

¬

¼

Dabei ist  C  die  Strahlungsaustauschzahl. 

12

 7.2.3.1

 Gleich große, parallele graue Platten

Bei zwei gleich großen, parallelen grauen Platten mit den Temperaturen  T  und   T

1

2

(Bild 7.4) ist die Strahlungsaustauschzahl gegeben als:

 T

 T

1

2

 A

 A

ε

ε

1

2

Bild 7.4: Strahlung zwischen zwei gleich großen, parallelen grauen Platten

 C

=

 Cs

12

(7.20)

1/ ε +1/ ε −1

1

2
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1
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12
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Bild 7.5: Strahlung zwischen mehreren gleich großen, parallelen grauen Platten Befinden sich, wie in Bild 7.5 dargestellt, zwischen den zwei Platten noch  n weitere parallele graue Platten, erhält man für die Strahlungsaustauschzahl:

 Cs

 C =

12

 n

1 / ε +1/ ε −1+ ¦(1/ ε +1/ ε −1)

(7.21)

1

2

1

 i

 i  2

 i = 1

Dabei ist ε  das Emissionsverhältnis der  i-ten Platte auf der  T  zugewandten und i 1

1

ε  das auf der  T  zugewandten Seite. Haben alle  n zwischenliegenden parallelen i 2

2

Platten das gleiche Emissionsverhältnis, vereinfacht sich Gl. (7.21) zu:

 C

=

 Cs

12

(7.22)

1/ ε +1/ ε −1+  n ⋅ (2 / ε i − )

1

1

2

Haben auch die äußeren Flächen das gleiche Emissionsverhältnis, vereinfacht

sich Gl. (7.22) weiter. 

=

 C

 C

 s

12

(7.23)

( n + )

1 ⋅ (2 / ε − )

1

Da die Größe und damit die Fläche der Platten gleich groß ist, muss in Gl. (7.19)

die Oberfläche  A einer der Platten eingesetzt werden. 

Durch die zusätzlichen Platten wird der Nenner immer größer, d.h. der Wärme-

strom immer kleiner. Die zusätzlichen Platten bedeuten eine Isolation der Wärme-

strahlung. Bei der Isolation sehr kalter Fluide wie z.B. bei flüssigem Helium, werden solche Isolatoren angebracht. Der Behälter ist von einem Außenmantel umge-

ben. Der Zwischenraum ist evakuiert und zwischen diesen Wänden befinden sich

polierte dünne Aluminiumfolien (Superisolation). 
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 7.2.3.2

 Umschlossene Körper

Für umschlossene Körper wie z. B. eine Kugel in einer Hohlkugel oder ein Zylinder

in einem Hohlzylinder (Bild 7.6) gilt:

 T 2

ε2

 A

ε1

2

 A

1

 T

1

Bid 7.6: Strahlung eines umschlossenen Körpers

 C

 C

 s

12 =

1

 A § 1

·

+ 1 ⋅¨¨ − ¸¸

1

(7.24)

ε

 A

ε

1

2

© 2

¹

Hier ist zu beachten, dass in Gl. (7.24) für  A  immer die Oberfläche des umschlos-1

senen Körpers eingesetzt wird, d.h.,  A  ist kleiner als  A . Bei diesem Sonderfall 1 

2

kann, wenn die Temperatur  T  des umschlossenen Körpers tiefer als die des umge-1

benden Körpers ist, der Wärmestrom nach Gl. (7.19) negativ werden. Dieses ist bei

den Berechnungen zu berücksichtigen. 

Ist die Fläche  A  sehr viel kleiner als  A , vereinfacht sich Gl. (7.24) zu: 1

2

 C

ε

(7.25)

12 =

1 ⋅  Cs

Auch für relativ komplexe Körper, die von einer wesentlich größeren Fläche um-

schlossen werden, liefert Gl. (7.25) recht genaue Ergebnisse (z. B. Heizkörper in

einem Raum). 

Für viele ausgesuchte Geometrien sind die Einstrahlzahlen beispielsweise im

VDI-Wärmeatlas zu finden. 

BEISPIEL 7.1: Berechnung eines Wärmedämmglases

Die Glasscheiben der Fenster eines Bürohauses werden durch Wärmedämmglas er-

setzt. Die Daten des Normal- und Wärmedämmglases sind:

normal

dämmend

Absorptionsverhältnis α

0,80

0,40

Reflexionsverhältnis ρ

0,05

0,50

Durchlassverhältnis τ

0,15

0,10

Das Normalglas wird auf der Innenseite auf 35 °C, das Wärmedämmglas auf

28 °C erwärmt. Die Temperatur der Wände und der Luft im Raum beträgt 22 °C. 
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Die Wärmeübergangszahl der freien Konvektion ist 5 W/(m2 K). Die Sonnenstrah-

lung hat eine Intensität von 700 W/m2. 

Bestimmen Sie die Verringerung der Wärmestromdichte, die in den Raum ge-

langt. 

 . 

Lösung

 q dir

 . 

 . 

 q

 q

 Sonne

 konv

 Schema

Siehe Skizze

 .qStr

ϑ

 Annahmen

 Gl

22 °C

•

Bei freier Konvektion ist die Wärmeübergangszahl konstant. 

•

Die Temperatur des Glases ist konstant. 

 Analyse

Die Wärmezufuhr zum Raum kann in drei Komponente aufgeteilt werden: Der

Anteil der Sonnenstrahlung, der direkt durchgelassen wird, der konvektive Wärme-

transfer und die Strahlung von der Scheibe. Jetzt berechnet man die einzelnen

Wärmestromdichten für die normale und die wärmedämmende Scheibe. 

Der Anteil der Sonnenstrahlen, der direkt durchgelassen wird, ist mit dem Durch-

lassverhältnis gegeben. 

normal

gedämmt

 q

=  q

⋅τ

105 W/m2

70 W/m2

 dir

 Sonne

Die Wärmestromdichte durch freie Konvektion:

 q

= α

⋅(ϑ −ϑ )

65 W/m2

30 W/m2

 konv

 konv

 Gl

 R

Durch Strahlung von der Scheibe transferierte Wärmestromdichte nach Gl. (7.25):
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¼

Für das Normalglas erhält man 235 W/m2, für das Wärmedämmglas 114 W/m2. 

 Diskussion

Die wärmedämmende Glasscheibe reflektiert 50 % der einfallenden Sonnenstrah-

len; was mehr als 45 % bei normalem Glas ist. Das Absorptionsverhältnis ist damit

50 % kleiner, die Scheibe wird weniger aufgeheizt und gibt sowohl durch Kon-

vektion als auch durch Strahlung weniger Wärme an den Raum ab. Der größere Teil

des Wärmetransfers zum Raum wird durch Erwärmung der Scheibe verursacht. 
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BEISPIEL 7.2: Berechnung einer Glühbirne

Der Glühfaden einer 240 Volt-Glühbirne soll bei 3 100 °C Temperatur 100 W elek-

trische Leistung haben. Der Wolframglühfaden hat einen spezifischen elektrischen

Widerstand von ρ  = 73 .  10-9 Ω m. Die Glaskörpertemperatur der Glühbirne beträgt el

90 °C. 

a) Bestimmen Sie den Durchmesser und die Länge des Glühfadens. 

b) Bestimmen Sie den Wirkungsgrad der Glühbirne. 

Glühfaden

Lösung

3 100 °C

Glas

90 °C

 Schema

Siehe Skizze

 Annahmen

•

Die Fläche des Glases ist sehr viel größer als die des Glühfadens und daher ver-

nachlässigbar. 

•

Der Einfluss der Halterung und der des konvektiven Wärmetransfers in der Bir-

ne können vernachlässigt werden. 

•

Die Temperatur des Glühfadens ist konstant. 

 Analyse

a)

Der durch Strahlung transferierte Wärmestrom entspricht der elektrischen

Leistung. Zur Berechnung der Strahlung wird das Emissionsverhältnis des Wolf-

rams benötigt. Aus Tabelle 7.1 erhalten wir 0,45. Die Fläche, die für die Strah-

lungsleistung von 100 W notwendig ist, kann mit Gl. (7.19) berechnet werden. Die

Strahlungsaustauschzahl ist nach Gl. (7.25)  C  = ε  .    C . Die für die Strahlungs-12

 s

leistung notwendige Fläche beträgt:

 Q

-5

2

 A =

=



3,028 ⋅10



m



4

4

°­§  T ·

§  T · °½

1

2

 C ε

 s ⋅

⋅ ®¨

¸ − ¨

¸ ¾

°©100 ¹

©100 ¹ °

¯

¿

Der für 100 W elektrische Leistung benötigte elektrische Widerstand ist:

2

 U

2402 ⋅ V2

 R =

=

=

ȍ



576

 P

100

 el

⋅ W

Die Fläche  A und der elektrische Widerstand  R hängen von den Abmessungen des Drahtes ab. Folgende Abhängigkeiten bestehen:
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4 ⋅ ρ ⋅ l

 A = π ⋅  d ⋅ l

 R

 el

=

2

π ⋅  d

Nach Umformung erhalten wir für den Durchmesser  d:

4 ⋅ ρ ⋅  A

4 ⋅ 73⋅

−9

10

⋅ȍ ⋅m⋅3,021⋅ −5

10 ⋅ 2

 d =

m

3

= 3

=

mm

  

0,0116

2

π ⋅

2

 R

 ʌ ⋅576⋅ȍ

Die notwendige Fadenlänge ist:

 A

, 

3 021⋅

−5

2

 l =

=

0

1

m =

m

  

0,832

π ⋅ d

π ⋅12⋅ −

10 6 m

b)

Der Zweck der Glühbirne ist, Licht im sichtbaren Bereich zu erzeugen, der

zwischen den Wellenlängen von 0,35 und 0,75 μm liegt. Integriert man Gl. (7.3)

zwischen diesen Wellenlängen und multipliziert das Ergebnis mit dem Emissions-

verhältnis, erhält man die Wärmestromdichte der Strahlung im sichtbaren Bereich. 

λ2

ε ⋅ C 1

 q

=

 d

³

λ =

 sichtbar

5

 C / (λ ⋅ T )

2

λ ⋅( e

−1)

λ1

λ = 0,75ȝm

16

−

2

0 ,  45 ⋅3 ,  7418 ⋅10

⋅ W ⋅m

MW
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 d

³

λ = 0,5504 

5

0,01438 ⋅ K ⋅ m / (λ ⋅ 3 373 ⋅ K)

2

⋅

−

=

λ ( e

1)

m

λ 0,35ȝm

Die gesamte, durch Strahlung abgegebene Wärmestromdichte beträgt:

 P

W

100

MW

 q

=  el

 tot

=

=



3,303

−5

2

2

 A

7185

, 

2

⋅10 ⋅m

m

Damit ist der Wirkungsgrad der Glühbirne:

η

 q

/  q

 G =

 sichtbar

 tot = 0,167

 Diskussion

Die Temperatur des Glühfadens bestimmt die Fläche, die für die Abgabe des

100 W-Wärmestromes durch Strahlung benötigt wird, d.h., die errechnete Fläche

strahlt bei 3 100 °C Temperatur 100 W ab. Der Faden wird so gewählt, dass der Wi-



derstand 100 W elektrische Leistung bewirkt und die für die Strahlung notwendige

Fläche vorhanden ist. Die relativ lange Fadenlänge einer Glühbirne wird so reali-

siert, dass der Faden als Wendel ausgebildet und über eine oder mehrere Stützen

umgelenkt wird. Fast die gesamte elektrische Leistung einer Glühbirne wird als

Wärme an das Glas und von dort an die Umgebung abgegeben. Der errechnete Wir-

kungsgrad von 17 % ist in der Realität unerreicht. Im sichtbaren Bereich werden nur etwa 8 bis 12 % der Strahlung genutzt. 
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BEISPIEL 7.3: Berechnung eines Heizkörpers

Ein Heizkörper mit 1,2 m Länge, 0,45 m Höhe und 0,02 m Dicke hat eine Oberflä-

chentemperatur von 60 °C. Er ist mit Heizkörperlack überzogen. Die Wände des

Raumes haben eine Temperatur von 20 °C, die der Luft beträgt 22 °C. 

Bestimmen Sie den durch Strahlung und freie Konvektion transferierten Wärme-

strom des Heizkörpers. 

Die Stoffwerte der Luft sind: λ = 0,0245 W/(m K), ν = 14 .  10-6 m2/s,  Pr = 0,711. 

m

Lösung

0,02 

m

 Schema

Siehe Skizze

5,40

 Annahmen

1,2 m

•

Da die Flächen der Wände sehr viel größer als die des Heizköpers sind, können

sie vernachlässigt werden. 

•

Die Kantenflächen des Heizkörpers werden vernachlässigt. 

•

Die Temperatur des Heizkörpers ist konstant. 

 Analyse

Der durch Strahlung bedingte Wärmestrom kann mit den Gln. (7.19) und (7.25)

bestimmt werden. Das Emissionsverhältnis des Heizköpers berechnet man mit Ta-

belle 7.1 und dem Diagramm in Bild 7.2:

 İ = ε n ⋅ 96

, 

0

= 925

, 

0

⋅ 96

, 

0

= 89

, 

0

Die Fläche des Heizkörpers beträgt: 

2

2

 A = 2 ⋅ l ⋅  h = 2 ⋅1,2 ⋅ 0,45 m



= 1,08 m



Der Wärmestrom der Strahlung ist:

 Q

ε

 Str =

⋅ Cs ⋅  A⋅[

4

( T /100)

( T /100)

1

−

4

2

]=

= 0,89 ⋅5,67 ⋅

2

W/(m ⋅ 4

K ) ⋅ , 

1 08 ⋅ 2

m ⋅

4

(3,332 −

4

2,993 ) ⋅ 4

K =

 W

257

Der Wärmestrom, der durch freie Konvektion abgegeben wird, kann, wie in Kapi-

tel 4 beschrieben, bestimmt werden. Die  Rayleigh zahl berechnet sich mit den Gln. 

(4.3) und (4.6). 

3

 g ⋅  h ⋅ (ϑ

ϑ

 W −

)

0

 Ra =  Gr ⋅  Pr =

⋅  Pr =

2

 T ⋅ν

0

−2

3

3

9,806 ⋅ m ⋅s ⋅ 0,45 ⋅ m ⋅ (60 − 22) ⋅ K

6

=

⋅ , 

0 711 =

, 

417 4 ⋅10

2

12

−

4

−2

295,15 ⋅ K ⋅14 ⋅10

⋅m ⋅s
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Nach den Gln. (4.7) und (4.8) ist die  Nußelt zahl:

8

− / 27

8

− / 27

 f ( Pr) = +

⋅ −

 Pr

= +

⋅

−

=

1

(1 ,0671 9/16)

(1 ,0671 711

, 

0

9 /16 )

838

, 

0

 Nuh = {

2

852

, 

0

+ 387

, 

0

1/ 6

⋅  Ra ⋅  f ( Pr

=

1

})

51

, 

94

Damit ist die Wärmeübergangszahl:

94,51⋅ 0,0245⋅ W

W

α =  Nu λ

 h ⋅

/  h =

= 5,146

0,45 ⋅ m ⋅ m ⋅ K

m2 ⋅ K

Die durch freie Konvektion transferierte Wärme ergibt sich zu:

 Q konv =  A⋅α ⋅(ϑ

ϑ

1 −

) = ,0

1 8⋅ m2

0

⋅5,146 ⋅ W ⋅ −

m 2 ⋅ −

K 1 ⋅ (60 − 22)⋅ K =

  W
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 Diskussion

In diesem Besipiel werden die durch Strahlung und freie Konvektion transferier-

ten Wärmströme verglichen. Der Wärmestrom durch Strahlung ist größer. Der An-

teil des Wärmetransfers durch Strahlung steigt mit zunehmender Temperatur stär-

ker an als der der freien Konvektion. Daher ist es nicht erstaunlich, dass früher, als die Heizköper bei Temperaturen von 80 °C arbeiteten, sie Radiatoren, also Strahler, genannt wurden. 

Wichtig! Hier ist zu beachten, dass für die Berechnung der Strahlung die Temperatur der Wände und für freie Konvektion die der Luft zu verwenden ist. 

BEISPIEL 7.4: Verfälschung der Temperaturmessung durch Strahlung

Mit einer kugelförmigen Sonde von 2 mm Durchmesser wird die Temperatur des

Autoabgases gemessen. Die ermittelten Temperaturen sind im Vergleich zu den

erwarteten Werten zu tief. Da man vermutet, dass dieses durch Strahlung verursacht wird, misst man auch die Wandtemperatur des Auspuffrohres. Bei einer gemes-senen Gastemperatur von 880 °C beträgt die Wandtemperatur des Auspuffrohres

250 °C.  Das Emissionsverhältnis der Sonde ist 0,4, die Geschwindigkeit des Abga-

ses 25 m/s. Die Stoffwerte des Abgases sind:

λ = 0,076 W/(m K), ν = 162 .  10-6 m2/s,  Pr = 0,74. 

a) Bestimmen Sie die wirkliche Temperatur des Auspuffgases. 

b) Zeigen Sie Maßnahmen auf, um die Messung zu verbessern. 
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Lösung

250 °C

25 m/s

 Schema

Siehe Skizze

880 °C

 Annahmen

•

Da die Fläche des Auspuffrohres sehr viel größer als die der Sonde ist, kann Gl. 

(7.25) vewendet werden. 

•

Die Messung wird von der Halterung der Sonde nicht beeinflusst. 

 Analyse

a)

Die vom Gas aufgeheizte Sonde transferiert durch Strahlung Wärme an die

Wand des Auspuffrohres und kühlt deshalb ab. Da die Temperatur der Sonde klei-

ner als die des Gases ist, wird der Sonde vom Gas ein Wärmestrom zugeführt. Den

gleichen Wärmestrom gibt die Sonde durch Strahlung an die Wand ab. Damit gilt:

 Q

=  Q

 Str

 konv

Der Wärmetransfer durch Strahlung kann mit den Gln. (7.19) und (7.25) be-

stimmt werden. 

4

4

 Q

= ε ⋅  A⋅ C ⋅ ª( T /100) − ( T /100) º

 Str

 s

¬  S

 W

¼

Die Temperatur der Sonde ist  T , die des Auspuffrohres  T . Die WärmeüberS

 W

gangszahl des angeströmten Körpers wird, wie in Kapitel 3.2.3 besprochen, be-

stimmt. Damit wir wissen, welche Gleichungen Anwendung finden, muss zunächst

die  Reynolds zahl berechnet werden. 

 ReL' =  c ⋅  d / = 25⋅ 002

, 

0

/162 ⋅10 6

−

ν

= 309

Nach Gl. (3.30) ist die  Nusselt zahl:

 Nu

 Pr

 Re

 L′  lam =

, 

0 664 3

⋅

⋅

 L′ =

, 

0 664 3

⋅ , 

0 74 ⋅ 309 =

55

, 

10

, 

Damit erhält man bei erzwungener Konvektion für die Wärmeübergangszahl:

 Nu

λ

 L lam ⋅

⋅

⋅

, 

10,55 0,076 W

W

α =

′

=

=



401

 d

0,002 ⋅ m ⋅ m ⋅ K

m2 ⋅ K

Der durch erzwungene Konvektion transferierte Wärmestrom beträgt:

 Q

= α ⋅  A⋅( T − T )

 konv

0

 S

Beide Wärmeströme gleichgesetzt und nach der Gastemperatur  T  aufgelöst, 

0

ergeben:
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ε ⋅ Cs

4

4

 T =

⋅ ª( T / 100) − ( T / 100) º + T =

0

¬  S

 W

¼

 S

α

0,4 ⋅5,67

4

4

4

=

⋅(11,532 − 5,232 ) ⋅ K +1153,2 K = 975,8 °

   C

3

401⋅ K

Die Gastemperatur ist damit um 92,8 K höher als die Sondentemperatur. 

b)

Die Messung kann verbessert werden, indem außen um das Auspuffrohr

eine Isolierschicht installiert wird. Damit verhindert man, dass die Temperatur des Auspuffrohres durch den Fahrtwind abkühlt. Ist das nicht möglich, kann um die

Sonde ein Schutzschild angebracht werden. Dieser kann z.B. ein  poliertes Stahl-

röhrchen mit einem Durchmesser von 10 mm, einer Länge von 20 mm und einem

Emissionsverhältnis von 0,06 sein. Der Temperaturfühler der Sonde hat dann prak-

tisch nur mit dem Schutzschild Strahlungsaustauch, der an das Auspuffrohr durch

Strahlung Wärme abgibt und durch Konvektion Wärme vom Abgas aufnimmt. Das

Röhrchen können wir in guter Näherung als ebene Platte berechnen. Die Länge des

Röhrchens ist seine charakteristische Länge. Die  Reynolds zahl errechnet sich zu: 6

 Re

 c l /ν

25 0, 02 / 162 10−

= ⋅

=

⋅

⋅

= 3 086

 l

Die  Nußelt zahl wird mit Gl. (3.21) berechnet. 

3

3

 Nu

= 0,664⋅  Pr ⋅  Re = 0,664⋅ 0,74 ⋅ 3 086 = 33,42

 l ,  lam

 l

Bei erzwungener Konvektion ist die Wärmeübergangszahl damit:

 Nu

λ

 L lam ⋅

⋅

⋅

, 

3 , 

3 42 0,076 W

W

α =

′

=

= 1 7

2 , 

0

 d

0,02 ⋅ m ⋅ m ⋅ K

m2 ⋅ K

Da das Röhrchen durch die erzwungene Konvektion sowohl innen als auch außen

Wärme vom Gas aufnimmt, Wärme jedoch durch Strahlung nur nach außen an das

Auspuffrohr abgibt, muss für den konvektiv transferierten Wärmestrom die doppel-

te Fläche eingesetzt werden. 

 Q

= α ⋅ 2⋅  A⋅( T − T

)

 konv

0

 Rohr

Beide Wärmeströme gleichgesetzt und nach der Temperatur  T

aufgelöst, erge-

 Rohr

ben:

ε

⋅ C

 Rohr

 s

4

4

 T

=  T −

⋅ ª( T

/ 100) − ( T / 100) º =

 Rohr

0

¬

¼

2

 Rohr

 W

⋅α

0,06 ⋅5,67

4

4

4

= 1 249 K −

⋅ ª( T

/ 100) − 5,232 ⋅ K º = 947,1 °

   C

3

¬

¼

2 ⋅130,9 ⋅ K

 Rohr

208

7 Strahlung

Die Gastemperatur ist damit um 27,6 K höher als die Temperatur des Röhrchens. 

Die Abweichung der Temperatur an der Sonde kann wie zuvor wie die Temperatur

des Röhrchens berechnet werden. Für die Berechnung der Temperatur der Sonde

setzt man die Wärmeübergangszahl an der Sonde und die Wandtemperatur des

Röhrchens ein. 

ε ⋅ Cs

4

4

 T −  T =

⋅ ª( T /100) − ( T

/100) º =

0

 S

¬  S

 Rohr

α

¼

0,4 ⋅5,67

4

4

4

=

⋅ ª( T /100) −12,202 ⋅ K º = 8,51  K

3

¬

¼

401⋅ K

 S

 Diskussion

Dieses Beispiel zeigt, dass durch Strahlung bei der Temperaturmessung von

Gasen gravierende Fehler auftreten können. Insbesondere bei hohen Temperaturen

sind die Fehler erheblich, da die Differenz  4

4

 T − T  schon bei kleineren Tempera-

1

2

turunterschieden groß wird. In unserem Beispiel verursacht ein Temperaturunter-

schied von 27 K bei 950 °C zwischen Sonde und Röhrchen einen Fehler von 8,51 K. 

Bei Temperaturen unterhalb von 100 °C wäre dieser Fehler kleiner als 0,28 K. 

Um die Fehler zu verringern, ist bei Glasthermometern zur Messung der Raum-

temperatur ein metallischer Strahlungsschild um den Temperaturfühler angebracht. 


7.3

Gasstrahlung


Wie Feststoffe oder Flüssigkeiten können auch einige Gase Strahlung emittieren

und absorbieren. Die elementaren Gase wie z.B. O , N , H , zweiatomige Gase und

2

2

2

Edelgase sind diatherm, d.h. sie sind für Wärmestrahlen durchlässig. Andere Gase

und Dämpfe wie z.B. H O, CO , SO , NH  und CH  sind wirksame Strahler, die in-

2

2

2

3

4

nerhalb enger Wellenlängenbereiche (Banden) Strahlen emittieren und absorbieren

(Selektivstrahler, Bandenstrahler). Die Strahlungsintensität von Kohlenwasserstof-

fen nimmt mit der Zahl der Atome pro Molekül zu. Bezüglich der technischen

Belange kann die trockene Luft als diatherm betrachtet werden, da sie nur geringe

Anteile an CO  enthält. Mit der Zunahme des CO -Anteils in der Luft nimmt auch

2

2

die Strahlungsfähigkeit der Luft zu. Die von der Erdoberfläche emittierten Wärme-

strahlen werden vom CO  absorbiert und wieder an die Erde zurückgestrahlt,was

2

zum Treibhauseffekt führt. 

Die von einem Gas durch Absorption aus einer Wärmestrahlung aufgenommene

Wärme ist vom Weg  s der Strahlung durch das Gas abhängig. Die Abnahme der

Strahlungsintensität durch eine Gasschicht der Dicke  s ist im gesamten Wellenlängenbereich:

 a⋅ s

 i =  i

(7.26)

0 ⋅  e
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Dabei ist  a die  Absorptionskonstante des Gases. Die vom Gas absorbierte Intensität beträgt damit:

 iα =  i −  i =  i ⋅ 1

(

 a⋅ s

−  e )

(7.27)

0

0

Das Absorptionsverhältnis eines Gases wird definiert als:

 a s

α = 1  e ⋅

−

(7.28)

 g

Die Absorptionskonstante eines Gases hängt von der Temperatur und dem Druck

des Gases ab. Der Raum, der vom Gas eingenommen wird, kann recht komplex

sein. An Stelle der Schichtdicke kann ähnlich wie beim hydraulischen Durchmesser

eine  gleichwertige Schichtdicke  s  mit dem Volumen  V  und der Oberfläche  A  des gl

 g

 g

Gasraumes berechnet werden. 

4 ⋅ Vg

 s

=  f ⋅

 gl

 A

(7.29)

 g

Der Korrekturfaktor   f  berücksichtigt die Geometrie und den Druck, der den ungefähren Wert von 0,9 hat. 

7.3.1

Emissionsverhältnisse von Rauchgasen

Insbesondere in Brennräumen ist die Gasstrahlung für technische Berechnungen

von Wichtigkeit. Die dabei auftretenden strahlungsfähigen Gase sind Wasserdampf

und Kohlendioxid. Das Brenngas im Brennraum besteht im Wesentlichen aus Stick-

stoff, unverbranntem Sauerstoff und je nach Zusammensetzung des Brennstoffes

aus unterschiedlich großen Anteilen von Wasserdampf und Kohlendioxid. Bei den

folgenden Berechnungen wird angenommen, dass das Brenngas eine Mischung aus

nicht strahlungsfähigen Gasen (Stickstoff und Sauerstoff), aus Wasserdampf und

Kohlendioxid ist. Hier wird nur die Strahlung staubfreier Gase bei 1 bar Druck be-

handelt. Korrekturen für höhere Drücke und der Einfluss von Feststoffpartikeln im

Gas können dem VDI-Wärmeatlas [7.1] entnommen werden. 

Das  Emissionsverhältnis des Gemisches ist:

ε = ε

+ ε

− (Δε )

(7.30)

 g

 H O

 CO

 g

2

2

Das Absorptionsverhältnis wird ähnlich angegeben:

α = α

+α

− (Δε)

(7.31)

 g

 H O

 CO

 g

2

2

Die Korrekturen Δε ist den Diagrammen in Bild 7.10 zu entnehmen. 
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 7.3.1.1

 Emissionsverhältnisse des Wasserdampfes

In Bild 7.7 und 7.8 sind die Emissionsverhältnisse des Wasserdampfes und der Kor-

rekturfaktor  f in Abhängigkeit vom Partialdruck des Wasserdampfes, des Druckes und der Temperatur angegeben. Das Emissionsverhältnis bei Gasen ist nicht immer

wie bei festen Körpern gleich dem Absorptionsverhältnis. Ist die Temperatur der

Wand  T  nicht gleich wie die Temperatur des Gases  T , gilt folgende Beziehung: W

 g

0,45

α = ε ⋅( T / T )

(7.32)

 gW

 gW

 g

 W

Dabei ist α  das Absorptionsverhältnis des Wasserdampfes an der Wand. Aus

 gW

dem Diagramm in Bild 7.7 kann ε  entnommen werden. Es ist zu berücksichtigen, 

 gW

dass der Partialdruck auf die Wandtemperatur umzurechnen ist. 

 p

=  p

⋅( T / T )

(7.33)

 H O,  W

 H O

 W

 g

2

2

 7.3.1.2

 Emissionsverhältnisse des Kohlendioxids

In Bild 7.9 sind die Emissionsverhältnisse des Kohlendioxids in Abhängigkeit vom

Partialdruck des Kohlendioxids und der Temperatur angegeben. Wie beim Wasser-

dampf muss hier der Einfluss der Wandtemperatur berücksichtigt werden. 

0,65

α

= ε

= ( T / T )

(7.34)

 gW

 gW

 g

 W

Das Absorptionsverhältnis des Gases an der Wand ist α , aus dem Diagramm in

 gW

Bild 7.9 entnimmt man ε . Ferner ist zu beachten, dass der Partialdruck auf die

 gW

Wandtemperatur umgerechnet werden muss. 

 p

=  p

⋅( T / T )

(7.35)

 CO ,  W

 CO

 W

 g

2

2

7.3.2

Wärmeaustausch zwischen Gas und Wand

Für den Wärmestrom zwischen dem Gasvolumen und der dieses Volumen um-

schließenden Wand gilt:

ª

4

4 º



ε  C A

 T

 T

 W ⋅

 s ⋅

§  g ·

 Q

ε

α

 gW =

⋅ «

§  W ·

 g ⋅

−  gW ⋅¨

¸ »

1− 1

( − ε )

α

(7.36)

 W

⋅ 1

( −

)

 gW

«

¨¨

¸¸

©100 ¹

©100 ¹ »

¬

¼

In den meisten Fällen ist die Wandtemperatur wesentlich kleiner als die Gas-

temperatur. Der Einfluss des zweiten Temperaturterms wird relativ gering. Daher

kann in vielen Fällen mit folgender vereinfachter Gleichung gerechnet werden:

4

ε ε  C A

 T

 g ⋅

 W ⋅

 s ⋅

§  g ·

 Q gW ≈

⋅¨¨

¸¸

(7.37)

1− 1

( − ε )

α

 W

⋅ 1

( −

)

100

 gW

©

¹
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Bild 7.7: Emissionsverhältnis des Wasserdampfes (Quelle: VDI-Wärmeatlas)

Bild 7.8: Korrekturfaktor für den Wasserdampf (Quelle: VDI-Wärmeatlas)
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Bild 7.9: Emissionsverhältnisse des Kohlendioxids (Quelle: VDI-Wärmeatlas)

BEISPIEL 7.5: Heizleistung eines Feuerraumes

Der würfelförmige Feuerraum eines Kessels hat eine Kantenlänge von 0,5 m. Die

Wandtemperatur beträgt 600 °C, die Gastemperatur 1 400 °C. Das Emissionsver-



hältnis der Wand ist 0,9. Das Brenngas enthält 12 Vol% Wasserdampf und 10 Vol%

CO . Der Gesamtdruck beträgt 1 bar. 

2

Bestimmen Sie den durch Gasstrahlung an die Wand abgegebenen Wärmestrom. 

Lösung

 Annahmen

•

Das Brenngas ist homogen. 

•

Die Temperatur im Feuerraum ist konstant. 
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Bild 7.10: Korrektur Δε für Gasmischungen mit Kohlendioxid und Wasserdampf bei a) 130 °C, b) 540 °C, c) 920 °C und darüber (Quelle: VDI-Wärmeatlas)

 Analyse

Der Wärmestrom wird mit Gl. (7.38) berechnet. Dazu müssen die Emissions- und

Absorptionsverhältnisse bestimmt werden. Die gleichwertige Schichtdicke nach Gl. 

(7.29) ist:

4 ⋅ Vg

4

2

⋅

 sgl =  f ⋅

=

 a

9

, 

0 ⋅

= 6

, 

0 ⋅  a =



0,3 m

 A

6

 g

⋅  a

Für die Bestimmung des Emissionsverhältnisses von Wasserdampf und CO  muss

2

das Produkt aus Partialdruck und gleichwertiger Schichtdicke gebildet werden. Der

Partialdruck ist gleich dem Volumenanteil des Gases. 

 p

 s

 p

 s

 H O ⋅

 gl = 0 12

, 

⋅0,3 = 0,036 ba



r ⋅ m

 CO

⋅  gl = 1

, 

0 ⋅ 0,3 = 0,03 ba



r ⋅ m

2

2
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Aus den Diagrammen in den Bildern 7.7 bis 7.9 erhält man für die Emissionsver-

hältnisse:

 f = , 

1 06

 İ

ε

 H O = 0,025

 CO

= , 

0 04

2

2

Die Korrektur Δε kann aus dem Diagramm 7.10 c) abgelesen werden und ist Δε =

0,002. 

Das Emissionsverhältnis des Gases berechnet sich mit Gl. (7.31):

ε

ε

ε

ε

Δ

 g =

 H O +

 CO

− ( ) g = 06

, 

1

⋅ 025

, 

0

+ 04

, 

0

− 002

, 

0

= , 

0 0645

2

2

Die Emissions- und Absorptionskoeffizienten an der Wand werden aus den Dia-

grammen in den Bildern 7.8 und 7.9 abgelesen und mit den Gln. (7.34) bis (7.37) bestimmt. Das Produkt aus der Schichtdicke und dem Partialdruck an der Wand ist:

 s ⋅  p

=  s ⋅  p

⋅ T / T = 873/1 673⋅0,036 bar ⋅ m = 0,019 bar ⋅ m

 gl

 H 2 O,  W

 gl

 H 2 O

 W

 g

 s

 p

 s

 p

 T

 T

 gl ⋅

 CO W =

 gl ⋅

 CO

⋅

/

 W

 g = 0,016 ba



r ⋅ m

, 

2

2

Aus den Diagrammen in den Bildern 7.7 bis 7.9 erhält man für die Emissionsver-

hältnisse an der Wand:

 f = , 

1 06

 İ

ε

 H O W =

, 

0 047

 CO W =

, 

0 066

, 

, 

2

2

Das Emissionsverhältnis des Brenngases an der Wand ist:

ε

 f ε

ε

Δε

 gW =

⋅  H O W +  CO W − ( ) gW = , 

1 06 ⋅ 0,067 + 0,058 − 0,002 = 0 114

, 

, 

, 

2

2

Die Absorptionsverhältnisse von Kohlendioxid und Wasserdampf an der Wand

sind:

α

ε

 T

 T

α

ε

 T

 T

 H O W =

 H O W ⋅ (

/

)0,45

 g

 W

= , 

0 063

 CO W =

 CO W ⋅ (

/

)0,65

 g

 W

= 101

, 

0

, 

, 

, 

, 

2

2

2

2

Das Absorptionsverhältnis des Brenngases an der Wand ist:

α

α

α

ε

Δ

 gW =

 H O W +

 CO

− ( ) gW = 063

, 

0

+ 101

, 

0

− , 

0 002 = 161

, 

0

, 

2

2 ,  W

Diese Werte in Gl. (7.36) eingesetzt, ergeben den Wärmestrom. 

ª

4

4 º



ε  C A

 T

 T

 W ⋅

 s ⋅

§  g ·

 Q

ε

α

 gW =

⋅ «

§  W ·

 g ⋅

−  gW ⋅¨

¸ » =

1− 1

( − ε )

α

 W

⋅ 1

( −

)

 gW

«

¨¨

¸¸

©100 ¹

©100 ¹ »

¬

¼

9

, 

0 ⋅ 67

, 

5

⋅ W ⋅6⋅

2

5

, 

0

⋅ 2

=

m

⋅ , 

0 0645

73

, 

16

162

, 

0

73

, 

8

K

2

4

[

⋅

4 −

⋅

4 ]⋅ 4 = 4

3

kW

  

,38

1− 1

( −

)

9

, 

0

⋅ 1

( −

)

162

, 

0

⋅m ⋅ K

7 Strahlung

215

 Diskussion

Bei dieser Berechnung wird davon ausgegangen, dass das Brenngas eine konstan-

te Temperatur hat. In den Brennraum eines Kessels wird Luft eingeblasen und zu-

sammen mit dem Brennstoff entsteht unter Flammenbildung das Brenngas. Durch

Strahlung, aber auch durch erzwungene Konvektion wird die Temperatur des

Brenngases abgekühlt. Im Bereich der Flammen erfolgt der Wärmetransfer haupt-

sächlich durch Strahlung. Die Strahlung der im Brenngas enthaltenen, noch nicht

verbrannten Rußpartikel liefern einen zusätzlichen Anteil zur Strahlung, der hier

unberücksichtigt blieb. 


8

Wärmeübertrager

Bei der Berechnung von Wärmeübertragern sind ganz unterschiedliche Aufgaben

zu behandeln:

•

Auslegung von Wärmeübertragern: Massenströme und Temperaturen der

Fluide sind vorgegeben, die Abmessungen des Wärmeübertragers müssen

berechnet werden. 

•

Nachrechnung von Wärmeübertragern: Die Temperaturänderungen der Flu-

ide werden in einem Wärmeübertrager bekannter Geometrie berechnet. 

•

Optimierung von Wärmeübertragern und Systemen. 

•

Festigkeitsrechnungen und Konstruktion von Wärmeübertragern. 

In der industriellen Praxis geht die Auslegung von Wärmeübertragern Hand in

Hand mit der Optimierung und Konstruktion der Apparate. Hier wird nur die ther-

mische Berechnung von Wärmeübertragern beschrieben. 

Bei den bisher behandelten  Wärmeübertragern handelte es sich um Gleich- und Gegenstromapparate oder Fälle, in denen ein Fluidstrom seine Temperatur konstant

hielt (Kondensation oder Verdampfung). Für die Berechnung von Wärmeübertra-

gern, in denen die beiden Fluide kreuzweise strömen, genügen die bisherigen

Kenntnisse nicht. 


8.1

Definitionen und grundlegende Gleichungen


Bild 8.1 zeigt das Schema eines Wärmeübertragers mit den wichtigsten Bezeich-

nungen der Stoffströme [8.1]. 

Wärmeübertrager

. 

 m

ϑ ' 

ϑ  '' 

1

1

2

 k  A

. 

ϑ

. 

 '' 

 m

 ' 

ϑ

1

2

2

Bild 8.1: Schematische Darstellung eines Wärmeübertragers

Der Stoffstrom 1 strömt in den Wärmeübertrager mit der Temperatur ϑ  '  und ver-1

lässt ihn mit Temperatur ϑ  '' . Der Stoffstrom 2 strömt in den Wärmeübertrager mit 1
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der Temperatur ϑ  '  und verlässt ihn mit Temperatur ϑ  '' . Die Aufwärmung und 2

2

Abkühlung der Fluide hängt von deren Massenströmen, Eintrittstemperaturen, spe-

zifischen Wärmekapazitäten und der Wärmedurchgangszahl bzw. der Fläche des

Wärmeübertragers ab. Der im Wärmeübertrager ausgetauschte Wärmestrom ist:

 Q

(8.1)

12 =  k ⋅  A ⋅

ϑ

Δ  m

In Gl. (8.1) wird davon ausgegangen, dass der Wärmeübertrager eine mittlere

konstante Wärmeübergangszahl hat. Dieses ist in den meisten Fällen durchaus rea-

listisch, da fast immer die mittleren Wärmedurchgangszahlen bestimmt werden. 

Ändert sich in einem Apparat die Art der Wärmeübertragung wie beispielsweise

dann, wenn der Dampf bei der Kondensation in einem Rohr vollständig kondensiert

und als Flüssigkeit weiterströmt, muss abschnittweise mit lokalen Wärmedurch-

gangszahlen gerechnet werden. 

Die mittlere logarithmische Temperaturdifferenz Δϑ  ist:

 m

1

Δϑ

(ϑ

ϑ )  dA

 m =

⋅ ³ 1 − 2 ⋅

 A

(8.2)

 A

Die lokale Temperaturdifferenz der Fluide 1 und 2 ist ϑ  – ϑ . Für den Gegen-

1

2

strom- und Gleichstrom-Wärmeübertrager und in Apparaten, in denen zumindest

ein Fluid eine konstante Temperatur hat, ist die mittlere logarithmische Temperaturdifferenz (Kapitel 1):

ϑ

Δ

ϑ

Δ

 gr −

ϑ

Δ

ϑ

Δ

ϑ

Δ

 m =

 kl

für  

 gr −

 kl ≠ 0

ln( ϑ

Δ

/ ϑ

Δ )

(8.3)

 gr

 kl

Δϑ = (Δϑ + Δϑ ) / 2

für   ϑ

Δ

≈ ϑ

Δ

(8.4)

 m

 gr

 kl

 gr

 kl

Die Temperaturdifferenzen zwischen den Fluidströmen am Ein- bzw. am Austritt

des Wärmeübertragers sind Δϑ     und  Δϑ , wobei Δϑ  die größere und Δϑ  die gr

 kl

 gr

 kl

kleinere Differenz ist. Früher wurde in Gl. (8.4) der Grenzwert für Δϑ   –  Δϑ  < 1 K

 gr

 kl

angegeben. Bei Wärmeübertragern mit kleinen Temperaturdifferenzen kann dieses

falsche Ergebnisse liefern. Mit den heutigen Taschenrechnern und Computern wird

bei sehr kleinen Differenzen (z. B. 0,0001 K) die mittlere logarithmische Tempera-

turdifferenz mit Gl. (8.4) richtig berechnet. 

In der Energiebilanzgleichung erhält man aus der Enthalpieänderung der Fluid-

ströme den Wärmestrom. 

 Q =  m ⋅ ( h −  h )

1

11

12

(8.5)

 Q = − m ⋅ ( h −  h )

2

21

22

Die Enthalpie  h  ist die des Fluids 1 am Eintritt,  h  die am Austritt. Entsprechend 11

12

ist die Enthalpie  h  die des Fluids 2 am Eintritt und  h  die am Austritt. Gl. (8.5) gilt 21

22
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allgemein, also auch bei der Strömung mit Phasenübergang. Bei Fluiden ohne Pha-

senübergang können die Enthalpien mit der Temperatur berechnet werden. 

 Q =  m ⋅  cp ⋅ (ϑ′ −ϑ )′

1

1

1

1

(8.6)

 Q = − m ⋅  cp ⋅ (ϑ′ −ϑ )

′

2

2

2

2

Bei einphasigen Fluiden wird hier der  Wärmekapazitätsstrom eingeführt. 

 W =  m ⋅ ( h −  h ) / (ϑ′ −ϑ )

′ =  m ⋅ c

1

1

11

12

1

1

1

1

 p

(8.7)

 W =  m ⋅ ( h −  h ) / (ϑ′ −ϑ ′ ) =  m ⋅  c 2

2

21

22

2

2

2

 p  2

Um allgemein gültige Beziehungen für Wärmeübertrager einfacher anzugeben, 

führen wir die folgenden dimensionslosen Größen ein:

Tabelle 8.1: Dimensionslose Größen zur Berechnung von Wärmeübertragern

 Dimensionslose mittlere Temperaturdifferenz:

mittlere log. Temperaturdifferenz

Δϑ m

Θ =

=

(8.8)

größte Temperaturdifferenz im System

ϑ′−ϑ′

1

2

 Dimensionslose Temperaturänderungen der Fluidströme:

Änderung der Temperaturdifferenz des Fluids 1

ϑ′−ϑ′

1

1

 P =

=

1

größte Temperaturdifferenz im System

ϑ′−ϑ′

1

2

Änderung der Temperaturdifferenz des Fluids 2

ϑ′′−ϑ′

(8.9)

2

2

 P =

=

2

größte Temperaturdifferenz im System

ϑ′−ϑ′

1

2

 Anzahl der Übertragungseinheiten  NTU der Fluidströme:

Temperaturänderung des Fluids 1

ϑ′−ϑ′  k ⋅  A

1

1

 NTU =

=

=

1

mittlere log.Temperaturdifferenz

Δϑ

 W

 m

1

Temperaturänderung des Fluids 2

ϑ′ −ϑ′  k ⋅  A

(8.10)

2

2

 NTU =

=

=

2

mittlere log.Temperaturdifferenz

Δϑ

 W

 m

2

 Wärmekapazitätsstromverhältnisse der beiden Fluidströme:

 W

1

1

 R =

=

1

 W

(8.11)

 R

2

2

220

8 Wärmeübertrager

Zwischen diesen dimensionslosen Größen ergeben sich folgende Zusammenhän-

ge:

 P

 NTU

1

1

1

=

=

=  R 2

(8.12)

 P

 NTU

 R

2

2

1

 P

 P

1

2

Θ =

=

(8.13)

 NTU

 NTU

1

2


8.2

Berechnungskonzepte


Es gibt eine große Reihe von Berechnungsverfahren für Wärmeübertrager, die sich

durch das Anwendungsgebiet sowie durch den Rechenaufwand und die Genauig-

keit unterscheiden. Am genauesten, aber auch am rechenaufwändigsten sind das

Differenzenverfahren und die schrittweise Berechnung. Bei diesen Methoden wird

ein Wärmeübertrager abschnittweise berechnet, wobei die Strömungsverhältnisse, 

die Wärmeübergangszahlen und Temperaturen lokal berücksichtigt werden kön-

nen. Auf diese Verfahren wird hier jedoch nicht eingegangen. 

8.2.1

Zellenmethode

Bei der  Zellenmethode wird die Wärmeübertragerfläche in Teilbereiche unterteilt, die nacheinander in gleicher oder unterschiedlicher Reihenfolge von beiden Fluidströmen oder Anteilen der Fluidströme überströmt werden. Jede Teilfläche wird als

Fläche eines Einzelapparates mit individuellen Ein- und Austrittstemperaturen auf-

gefasst. Jedem Apparat wird eine möglichst realistische Stromführung zugeordnet. 

So entsteht an Stelle eines Gesamtapparates ein System aus zusammengeschalteten

Einzelapparaten [8.2, 8.3]. 

Mit den für die jeweilige Stromführung gültigen Gleichungen können an Hand

der gegebenen Eintrittstemperaturen jeder Zelle die Austrittstemperaturen berech-

net werden, wenn der Wert von  k .   A bekannt ist. Die Berechnung von  k .   A erfolgt mit den entsprechenden Beziehungen für Wärmeübergangszahlen. 

Beginnend mit den gegebenen Eintrittstemperaturen der Fluidströme erhält man

bei  n Zellen 2 n Gleichungen mit 2 n unbekannten Austrittstemperaturen. Das Gleichungssystem liefert alle Zwischentemperaturen und die Austrittstemperaturen bei-

der Fluidströme. Die individuellen Temperaturen in den Zellen und damit die Stoff-

werte und Wärmeübergangszahlen berechnet man mit den Zwischentemperaturen. 

Unterschiedliche Wärmeübergangszahlen und Flächen können für die einzelnen

Zellen eingesetzt werden. Sind die Temperaturänderungen nicht allzu groß und ist

die Stromführung nicht unterschiedlich (z.B. Strömung in den Rohren und außen

Querströmung), kann für den gesamten Apparat eine Wärmedurchgangszahl ge-

nommen werden. Vielfach sind die Wärmeübertrager so konzipiert, dass die Flä-

chen der Zellen und die mittleren Wärmedurchgangszahlen in allen Zellen gleich
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groß sind. In einem solchen Fall kann man für alle Zellen mit dem gleichen Wert für k .   A rechnen. Der  NTU-Wert ist dann auch für die einzelnen Fluidströme jeweils konstant. Die Zahl der inneren Flüsse wird mit  n, die der äußeren mit  z bezeichnet. 

Die Zahl der Flüsse ist die Anzahl der Umlenkungen plus 1. 

 . 

 W  1

ϑ ' 

ϑ

1

 '' 

2

 f

 e

 d

 . 

 a

 b

 c

 W

ϑ  ' 

2

2

ϑ ''  1

Bild 8.2: Links Wärmeübertrager mit zwei inneren und drei äußeren Flüssen im Längsschnitt, rechts das Zellenmodell

Die Zellenmethode wird an einem Rohrbündelwärmeübertrager mit zwei inneren

Flüssen ( n = 2)  und mit zwei äußeren Umlenkblechen, d.h. drei Flüssen ( z = 3), wie in Bild 8.2 dargestellt, veranschaulicht. Vereinfachend kann man annehmen, dass

die Werte von  k .   A im gesamten Apparat konstant und die Flächen in den Zellen gleich groß sind. Der Apparat hat sechs Zellen, die unterschiedlich durchströmt und mit Buchstabenindizes gekennzeichnet sind. Für den Gesamtapparat gilt:

 k ⋅  A

 k ⋅  A

 NTU

=

 NTU

=

=  R ⋅  NTU

1 ges

2  ges

1

1 ges

 c

⋅  m

(8.14)

 c

⋅  m

 p 1

1

 p  2

2

Da der Wert von  k .   A konstant ist und die Flächen der Zellen gleich groß sind, gilt für die einzelnen Zellen:

 k ⋅  A

 NTU 1 ges

 i

 NTU =

=

1

 c ⋅  m

 n ⋅  z

1

 p

1

 k ⋅  A

 NTU

(8.15)

2  ges

 i

 NTU =

=

=  R ⋅  NTU

2

1

1

 c

⋅  m

 n ⋅  z

 p  2

2

Die Stromführung der Zelle (z.B. reiner Kreuzstrom oder Kreuzstrom mit quer

vermischtem Mantelstrom und unvermischtem Rohrstrom etc.) bestimmt die di-

mensionslosen Temperaturen der Zelle. Für eine beliebige Zelle  j werden sie folgendermaßen definiert:

ϑ  j −ϑ′

ϑ  j −ϑ′

1

2

2

2

 T

 T

 j =

und

 j =

1

2

ϑ′ −ϑ′

ϑ′ −ϑ′

(8.16)

1

2

1

2

Die Zelle  j wird mit dem Fluidstrom 1 aus der Zelle  p und mit dem Fluidstrom 2

aus der Zelle  q angeströmt (Bild 8.3). 
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Zelle

 p

ϑ  ' =  '' 

1 j

ϑ 1 p

ϑ  ' =

2 j

ϑ  ''  2 q

Zelle

Zelle

 q

 j

ϑ  ''  2 j

ϑ  ''  1 j

Bild 8.3: Temperaturen der Zelle  j

Für die Temperaturen erhalten wir folgende Beziehungen:

(1−  P ) ⋅ T ′′ −  T ′ +  P ⋅ T ′′ = 0

1  j

1  p

1  j

1  j

2 q

(1−  P ) ⋅ T ′ −  T ′′ +  P ⋅ T ′′ =

(8.17)

0

2  j

2 q

2  j

2  j

1  p

Bei  P  und  P  sind die Ein- beziehungsweise Austrittstemperaturen der Zelle in 1 j

2 j

Gl. (8.7) einzusetzen. 

ϑ′ −ϑ′

ϑ′ −ϑ′

1  j

1  j

2  j

2  j

 P =

und

 P =

1  j

2  j

ϑ′ −ϑ′

ϑ′ −ϑ′

(8.18)

1  j

2  j

1  j

2  j

Ist die Zelle  j die Eintrittszelle des Fluidstromes 1 oder 2, gilt:

 T ′

 T

 T

 T

(8.19)

 p =

′ j = 1

und

′ q = ′ j = 0

1

1

2

2

Entsprechend gilt, wenn Zelle  j die Austrittszelle des Fluidstromes 1 oder 2 ist: P

= 1− T ′′

und

 P

=  T ′

(8.20)

1 ges

1  j

2  ges

2  j

Für unser Beispiel erhalten wir folgende Gleichungen:

 T ′ =  P ⋅ T ′

 T

1

(

)

1

1′ =

−  P 1 ⋅ T 1′ +  P 1 ⋅ T ′2 = −  P

2 a

2 a

1  f

 a

 a

 f

 a

 a

1 ges

 T ′ = 1

( −  P ) ⋅ T ′ +  P ⋅ T ′

 T

1

(

)

1′ =

−  P 1 ⋅ T 1′ +  P 1 ⋅ T ′

2 b

2 b

2 a

2 b

 c

1

 b

 b

 c

 b

2 a

 T ′ = 1

( −  P ) ⋅ T ′ +  P ⋅ T ′

 T

1

(

)

1′ =

−  P 1 ⋅ T 1′ +  P 1 ⋅ T ′

2 c

2 c

2 b

2 c

 d

1

 c

 c

 d

 c

2 b

 T ′ = 1

( −  P ) ⋅ T ′ +  P

 T

1

(

)

1′ =

−  P 1 +  P 1 ⋅ T ′

2 d

2 d

2 c

2 d

 d

 d

 d

2 c

 T ′ = 1

( −  P ) ⋅ T ′ +  P ⋅ T ′

 T

1

(

)

1′ =

−  P 1 ⋅ T 1′ +  P 1 ⋅ T ′

2 e

2 e

2 d

2 e

 b

1

 e

 e

 b

 e

2 d

 T ′ = 1

( −  P ) ⋅ T ′ +  P ⋅ T ′ =  P

 T

1

(

)

1′ =

−  P 1 ⋅ T 1′ +  P 1 ⋅ T ′

2  f

2  f

2 e

2  f

 e

1

2  ges

 f

 f

 e

 f
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Damit haben wir 12 Gleichungen mit 12 unbekannten Temperaturen, die nach

bekannten mathematischen Methoden gelöst werden können. Solange  k bzw.  k .   A für alle Zellen gleich angenommen werden kann und die Größen  P  und  P  jeweils 1

2

gleich groß sind, ist die Lösung relativ einfach. In realistischen Fällen ist für jede Zelle der Wert von  k .   A unterschiedlich und muss sogar einzeln berechnet werden. 

Nachstehend sind Lösungen für einige Strömungsführungen angegeben. 

1 − exp[( Ri − )

1 ⋅  NTU i ]

 Pi =

 R ≠

1 −  Ri ⋅ex [

p ( Ri − )

1 ⋅  NTU i ] für

1

1

reiner Gegenstrom                

(8.21)

 P =

=  NTU

 P

für  R = 1

1

2

1

1

+  NTU

1− ex [

p − ( R + )

1 ⋅  NTU

 i

 i ]

reiner Gleichstrom                 P =

 i

(8.22)

1+  Ri

­ª

 m

 NTU

1

º ½

° 1

« − −

 e

 i ⋅ ¦ ⋅  NTU ji » ⋅ °

°«

! 

¬

 j =

 j

»¼ °

0

reiner Kreuzstrom                    ®

¾ i = , 

1 2

(8.23)

° ª

 m

 R NTU

1

º

−  i ⋅

 j

°

⋅ 1

° « −  e

 i ⋅ ¦ ⋅  NTUi »°

«

! 

¬

 j =

 j

»

0

¯

¼¿

Kreuzstrom mit einer Rohrreihe           P = 1− exp[( − R ⋅ NTU

1

1

 e

− )

1 /  R ]

(8.24)

1

1

Die Berechnungen nach der Zellenmethode sind in der Regel nur mit Computern

möglich. Einfacher können Wärmeübertrager mit der mittleren Temperaturdiffe-

renz berechnet werden. 

BEISPIEL 8.1: Berechnung eines Wärmeübertragers mit der Zellenmethode

Die Stromführung des Wärmeübertragers besteht aus zwei inneren und zwei äuße-

ren Durchgängen mit einer mantelseitigen Umlenkung. Die für die Wärmeüber-

tragung maßgebende Größe  k .   A ist für alle Zellen gleich und beträgt 4 000 W/K. 



Der Strom im Außenraum hat den Index 1. Um die Berechnung zu vereinfachen, 

werden die beiden Wärmekapazitätsströme   W  und  W  mit 3 500 W/K gleich groß 1

2



gewählt. Die Eintrittstemperatur des Stromes 1 ist ϑ  '  = 100 °C und die des Stromes 1

2 ϑ  '  =  20 °C. 

2

Zu bestimmen sind die Austrittstemperaturen ϑ  ''  und ϑ  '' . 

1

2
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Lösung

 Schema

Siehe Skizze

 . 

 W

ϑ  ' 

2

2

 a

1

 T b b

 T

 T

 T' = 0

1 a

2  a

 T 2 b

2

 T 1

ϑ

 c

 ''  2

 d

 T 2  c

 c

 T  =  P

2 d

2  ges

ϑ '' 

 T

1

1 = 1

 T

 . 

1 d = 1 -

1

 P ges

 W  1

ϑ '  1

 Annahme

•

Die Wärmedurchgangszahlen und die Austauschflächen der Zellen sind gleich

groß. 

 Analyse

Die für das Gesamtsystem benötigten dimensionslosen Größen sind:

 R =  R =  W / W = 1

1

2

1

2

 NTU

=  k ⋅  A/ W = 4 000 / 3 500 =1,1429 =  NTU

1  ges

1

2  ges

Für die einzelne Zellen erhalten wir:

 NTU

= 0,25 ⋅  NTU ges = , 

0 2857

, 

1 2

1

Da es sich um einen Wärmeübertrager mit einer Rohrreihe im Kreuzstrom han-

delt, können  P  und  P  mit Gl. (8.24) berechnet werden. 

1

2

 P =  P = 1− exp[( − R ⋅ NTU

−

1

1

 e

− )

1 /  R ] = 1− exp[( 0,2857

 e

− )]

1 = , 

0 220

1

2

1

Die Temperaturänderungen werden den Gln. (8.17) bis (8.20) entsprechend be-

rechnet. Wir erhalten für die acht Unbekannten acht Gleichungen. Da die Größen  P 1

und  P  für alle Zellen gleich groß sind, vereinfachen sich die Gleichungen. Weil bei-2

de Wärmekapazitätsströme gleich groß sind, wird  P

auch gleich groß wie  P

1  ges

2  ges

sein. Mit Gl. (8.20) gilt ferner, dass  P

+  P

= 1 ist und damit  P

  = P

= 0,5. 

1  ges



2  ges 

1  ges

2  ges

 T

=  P ⋅ T

 T = 1

( −  P ) ⋅ T

2 a

1

 b

1

1 a

1

 b

1

 T

= 1

( −  P ) ⋅ T +  P ⋅ T

 T = 1

( −  P ) ⋅ T +  P ⋅ T

2 b

2

2 a

1

 c

1

 b

1

1

 c

1

1

2 a

 T

= 1

( −  P ) ⋅ T +  P

 T = 1

( −  P ) ⋅1+  P ⋅ T

2 c

2

2 b

1

 c

1

1

1

2 b

 T

=  P

 T

= 1−  P

2 d

2  ges

1 d

1 ges

8 Wärmeübertrager

225

Diese acht linearen Gleichungen können mit bekannten mathematischen Metho-

den nach den dimensionslosen Temperaturen  T  aufgelöst und in Celsiustempera-ix

turen umgewandelt werden. Die Ergebnisse folgen tabellarisch:

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

 j −

′

 j − 20

C

°

 j −

′

 j − 20 °C

1

2

1

 T

 T

 j =

=

und

2

2

2

 j =

=

1

ϑ′ −ϑ′

80 K

2

ϑ′ −ϑ′

80 K

1

2

1
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 T

 T

 T

 T

 T

 T

 T

 T

2 a

2 b

2 c

2 d

1 a

1 b

1 c

1 d

0,153

0,306

0,458

0,5

0,542

0,694

0,847

0,5

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

2 a

2 b

2 c

2 d

1 a

1 b

1 c

1 d

32,2

44,5

56,6

60

63,4

75,5

87,8

60,0

°C

Die gesamten Temperaturänderungen  P

und  P

sind mit 0,5 jeweils gleich

1  ges

2  ges

groß, d.h., die Austrittstemperaturen sind ebenfalls mit je 60 °C gleich groß. 

 Diskussion

Die Zellenmethode ist nur mit Computerprogrammen ökonomisch berechenbar. 

Das o. a. einfache Beispiel erfordert bereits einen großen Rechenaufwand. 

Es zeigt, dass die Stromführung ungünstig ist, weil beide Fluidströme auf dem

Weg zur Zelle  d bereits fast die gleiche Temperatur von 60 °C haben und somit in dieser Zelle nur wenig Wärme transferiert wird. Ein etwas günstigeres Ergebnis

erzielt man, wenn der Eintritt des Fluidstromes 1 in Zelle  d erfolgt. 

8.2.2

Berechnung mit der mittleren Temperatur

Die Berechnung des Wärmestromes mit der mittleren Temperatur ist in Gl. (8.1) ge-

geben. Die mittlere Temperatur kann nur für Gleich- und Gegenstromwärmeüber-

trager berechnet werden. Mit der Zellenmethode kann man die mittleren Tempera-

turen für komplexe Stromführungen bestimmen. In den Bildern 8.5 bis 8.12 sind die

berechneten mittleren Temperaturen für einige Stromführungen dargestellt. Aus

den Diagrammen lassen sich mit Hilfe der dimensionslosen Temperaturen  P  und  P

1

2

die Kenngrößen  NTU  und  NTU  bestimmen. Daraus kann mit Gl. (8.13) die dimen-1

2

sionslose Temperaturdifferenz Θ ermittelt und mit Gl. (8.8) die mittlere Tempera-

turdifferenz Δϑ  berechnet werden. 

 m

Anhand von Bild 8.4 wird die Benutzung der Diagramme erläutert. Auf den Ko-

ordinatenachsen sind die dimensionslosen Temperaturdifferenzen  P  und  P  der 1

2

Stoffströme 1 und 2 aufgetragen. Am Randmaßstab oben ist das Verhältnis des

Wärmekapazitätsstromes  R  eingezeichnet, rechts das Verhältnis des Wärmekapa-1

zitätsstromes  R . Hier ist darauf zu achten, dass nur die kleinere der beiden Größen, 2

d.h. die, die kleiner als 1 ist, verwendet werden kann. 
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Im Diagramm sind zwei Kurvenscharen eingetragen. Die durchgezogenen Kur-

ven oberhalb der Diagonale sind für  NTU  = konst., die unterhalb für  NTU  = konst. 

1

2

Die gestrichelte Kurve gilt für den Korrekturfaktor  F, der definiert ist als: ϑ

Δ

ϑ

Δ ⋅( ϑ

Δ

− ϑ

Δ )

 m

 gr

 kl

 NTU

 m

 iG

 F =

=

=

ϑ

Δ

(8.25)

ln( ϑ

Δ

/ ϑ

Δ )

 NTU

 mG

 gr

 kl

 i

Der Index  G steht für einen reinen Gegenstromwärmeübertrager. 

 R

1

1

1

1

 NTU 1 = konst. 

konst. 

=1

 P

 R

 N

 R 2

1

 TU

2 = ko

 F

n

=

s



t

k

. 

onst. 

0

0

 P

1

2

Bild 8.4: Zur Benutzung des Diagramms



8 Wärmeübertrager

227

Bild 8.5: Reiner Gleichstrom (Quelle: VDI-Wärmeatlas, 9. Aufl.)
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Bild 8.6: Reiner Gegenstrom (Quelle: VDI-Wärmeatlas, 9. Aufl.)
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Bild 8.7: Rohrbündelwärmeübertrager mit einem äußeren und zwei inneren Durchgängen (Quelle: VDI-Wärmeatlas, 9. Aufl.)
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Bild 8.8: Rohrbündelwärmeübertrager mit einem äußeren und vier inneren Durchgängen (Quelle: VDI-Wärmeatlas, 9. Aufl.)
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Bild 8.9: Reiner Kreuzstrom (Quelle: VDI-Wärmeatlas, 9. Aufl.)
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Bild 8.10: Kreuzstrom mit einer Rohrreihe und einseitig quer vermischtem Kreuzstrom (Quelle: VDI-Wärmeatlas, 9. Aufl.)
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Bild 8.11: Beidseitig quer vermischter Kreuzstrom (Quelle: VDI-Wärmeatlas, 9. Aufl.)
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Bild 8.12: Kreuzstrom mit zwei Rohrreihen und zwei Durchgängen (Quelle: VDI-Wärmeatlas, 9. Aufl.)
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BEISPIEL 8.2: Auslegung eines Autokühlers

Ein Autokühler soll bei 45 °C Außentemperatur 50 kW Wärme abführen. Dabei

wird das Kühlwasser von 94 °C auf 91 °C abgekühlt. Die Luft strömt im Kühler mit

einer Geschwindigkeit von 20 m/s. Die rechteckigen Wasserkanäle des Kühlers ha-

ben eine Wandstärke von 1 mm und äußere Kantenlängen von 50 und 6 mm. An den

Kanälen sind in 1 mm Abstand Rippen mit 0,3 mm Dicke angelötet. Die Länge der

Kühlwasserkanäle ist 550 mm. Der Abstand der Kühlkanäle beträgt 60 mm. Die

Kanalwände und Rippen haben eine Wärmeleitfähigkeit von 120 W/(m K). Die

Stoffwerte des Kühlwassers und der Luft sind:

Wasser: ρ = 963,6 kg/m3, λ = 0,676 W/( m K), ν = 0,317 .  10-6  m2/s,   Pr = 1,901, c  = 4,208 kJ/(kg K). 

 p

Luft: ρ = 1,078 kg/m3, λ = 0,028 W/( m K), ν = 18,25 .  10-6  m2/s,  Pr = 0,711, c  = 1,008 kJ/(kg K). 

 p

Bestimmen Sie, wie viele Kanäle benötigt werden. 

Lösung

 Schema

Siehe Skizze

C = 6

c = 4

2 h   = 60

Ri

= 50

Wasser

B

Angaben in mm

3

Wasserkanal

b = 48

Wasser

0, 

s  = Ri

t    = 1 Ri

Rippen

Luft

 Annahmen

•

Im gesamten Kühler sind die Wärmedurchgangszahlen gleich groß. 

•

Der Einfluss der Richtung des Wärmestromes wird nicht berücksichtigt. 

 Analyse

Im Folgenden hat das Kühlwasser den Index 1, die Luft den von 2. Der Massen-

strom des Kühlwassers kann mit der Energiebilanzgleichung berechnet werden:

 Q

50 ⋅ kW ⋅ kg ⋅ K

 m

 =

=

=

kg/



961

, 

3

s

1

 c p ⋅(ϑ′ −ϑ )

′

4,208⋅ kJ ⋅ (94 − )

91 ⋅ K

1

1

1
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Der Massenstrom der Luft hängt von der Anzahl der Kühlkanäle ab. Jeweils die

Hälfte der Rippe, d.h. 30 mm, gehören zu einem Kühlwasserkanal. Pro Kühlkanal

ist der Strömungsquerschnitt für die Luft:

 A = 2 ⋅  hRi ⋅ ( tRi −  s )

 Ri

⋅  n = 2⋅  hRi ⋅( tRi −  s )

 Ri

⋅  H /  tRi = 2⋅  hRi ⋅ 1

( −  s /  t )

 Ri

 Ri

⋅  H =

2

2

2

= 2 ⋅ 03

, 

0

⋅ , 

0 7 ⋅ 55

, 

0

⋅ m =

m



0,0231

Der Luftmassenstrom durch den Kühler ist damit:

2

3

 m

 =  z ⋅  A ⋅ ρ ⋅ c =  z ⋅0,0231⋅ m ⋅1,078⋅ kg/m ⋅ 20⋅ m/s =  z ⋅0,498 kg/s 2

2

2

2

Mit ansteigender Zahl der Kanäle nimmt der Massenstrom der Luft zu, der Mas-

senstrom des Kühlwassers pro Kanal jedoch ab. 

Jetzt sind die Wärmeübergangszahlen zu bestimmen. 

Die Luftkanäle zwischen den Rippen haben den hydraulischen Durchmesser von:

 d

 h

 t

 s

 t

 s

 h

 h

= 4⋅  Ri ⋅(  Ri − )/[2

 Ri

⋅(  Ri −  Ri + )]

 Ri

= 2⋅30⋅0,7⋅mm2/(30,7⋅mm)=1,368 mm



2

Die  Reynolds zahl für die Luft ist:

6

 Re

 c

 d

/  v

20 0, 001368 / (18, 25 10−

= ⋅

=

⋅

⋅

) = 1 499

2

2

 h  2

2

Die Strömung ist laminar; die  Nußelt zahl kann mit Gl. (3.17) und daraus wiederum die Wärmeübergangszahl berechnet werden. 

3

3

3/ 2

3

 Nu

= 3,66 + 0,644 ⋅  Pr ⋅( Re ⋅  d /  l) =

 d , 

 i lam

 dh 2

 h  2

3

3

3/ 2

3

= 3,66 + 0,644 ⋅0,711⋅(1 499⋅1,37 / 50) = 4,698

 Nu

λ

 d lam ⋅

⋅

⋅

, 

2

4,698 0,028 W

W

α =

=

=



96,2

2

 d

0,001368

 h

⋅ m ⋅ m ⋅ K

m2 ⋅ K

2

Mit der Anzahl der Kanäle ändert sich die Wärmeübergangszahl in der Luft nicht, 

d.h., sie bleibt konstant. 

Im Kühlwasserkanal ist der hydraulische Durchmesser:

2

 d = 4⋅ b⋅ c / [2⋅( b + )

 c ] = 2⋅ 48⋅ 4⋅ mm /(52⋅ mm) = 7,385  mm

1

 h

Der Massenstrom des Kühlwassers teilt sich auf die Kanäle auf, damit ist seine

Geschwindigkeit umgekehrt proportional zur Anzahl der Kanäle. 

3

 m



 m



3, 961⋅ kg ⋅ m

21,421 m

1

1

 c =

=

=

=

1

 z ⋅  A ⋅ ρ

 z ⋅ b ⋅  c ⋅ ρ

 z ⋅ 0,048 ⋅ m ⋅ 0,004 ⋅ m ⋅963,6 ⋅ kg ⋅s

 z

s

1

1

1
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 Reynolds zahl:

 c ⋅  d

21, 421 ⋅ 0, 00738

499 015

1

1

 h

 Re =

=

=

1

−6

ν

 z ⋅ 0,317 ⋅10

 z

1

Für brauchbare Werte von  z bleibt die Strömung in den Kanälen turbulent. Wegen der besseren Übersicht verwenden wir die vereinfachte Gleichung (3.14) und vernachlässigen die Korrektur der  Reynolds zahl. 

0,8

0,48

2/3

0,8

 Nu

0, 0235 ( Re

230)  Pr

[1 ( d /  l )

] 1 222, 7  z−

=

⋅

−

⋅

⋅ +

=

⋅

− 7,773

 d

 d

1

 h

1

 h 1

 h 1

Die von  z abhängige Wärmeübergangszahl ist:

0, 

− 8

α =  Nu ⋅λ /  d = (111932⋅  z

− 711,5) ⋅ W / (

⋅K)

1

 d

1

1

 h

 h 1

Um die Wärmedurchgangszahl mit Gl. (3.46) zu berechnen, müssen der Rippen-

wirkungsgrad und die Flächen  A,  A  und  A  bestimmt werden. Gl. (2.58) gibt den 0

 Ri

Rippenwirkungsgrad an. 

tanh(  m ⋅  h )

α  U

α

 B

 s
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⋅  Ri

⋅ 2 ⋅( +

)

31

, 
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2

2

=

=
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=
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λ  A

λ  B s
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 Ri ⋅
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⋅

m
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2

2

 A = 2 ⋅ ( C +  B) ⋅  H = 0,0616 m



 A = 2⋅  B ⋅  H ⋅ 1

( −  s /  t )

 Ri

 Ri

= 0,0385m



0

2

 A

 h

 B H t

 Ri = 2 ⋅

 Ri ⋅

⋅ /  Ri =

m



1,65

Die Wärmedurchgangszahl beträgt:

1

 A

1

 s
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1
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=

⋅

+

+

⋅

=
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 A +  A ⋅η

α

λ

 A α
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=
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©
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¹

Die Austrittstemperatur der Luft und damit die dimensionslose Temperatur, das

Verhältnis des Wärmekapazitätsstromes und die mittlere Temperaturdifferenz des

reinen Gegenstromübertragers sind auch von  z abhängig. Damit die mittlere Temperaturdifferenz des Kühlers bestimmt werden kann, tragen wir die Werte der erwähn-

ten Größen tabellarisch auf. Der Korrekturfaktor  F kann dem Diagramm in Bild 8.9

entnommen werden. 

Die Austrittstemperatur der Luft ist:

 Q

75 ⋅ kW ⋅ kg ⋅ K ⋅s

ϑ ′ = ϑ′ +

=  

45 C

° +

=  

5

4

C

° +

K



6

, 

9

9

/  z

2

2

 c

⋅  m

 z ⋅1,008⋅ kJ ⋅ 0,498⋅ kg

 p 2

2
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Das Verhältnis der Wärmekapazitätsströme berechnet sich zu:

 m

 ⋅ c

⋅

⋅

2

 p 2

 z  0, 498 1008

 R =

=

= 0,03012⋅  z

2

 m

 ⋅ c

3, 961⋅ 4 208

1

1

 p

Solange  z kleiner als 37 ist, bleibt  R  kleiner als 1 und wir müssen unterhalb der 2

Diagonale die Werte für  F ermitteln. Die dimensionslose Temperatur  P  können wir 2

mit Gl. (8.9) bestimmen. 

ϑ ′ −ϑ′

K



99,6

033

, 

2

 P

2

2

=

=

=

2

ϑ′ −ϑ′

 z ⋅

K



9

4

 z

1

2

Mit einer angenommen Anzahl  z der Kühlkanäle ermittelt man  R ,  P ,  F,  die 2

2

mittlere Temperaturdifferenz, die Wärmedurchgangszahl  k( z) und berechnet damit die notwendige Fläche  A . Daraus bestimmt  man die notwendige Anzahl der Kühl-tot

kanäle  z  =  A / A. 

 soll

 tot

 Q

 Q

 A

=

=

 tot

 k ⋅ Δϑ

 k ⋅  F ⋅ Δϑ

 m

 mG

 z

ϑ  '' 

 R

 P

 F

Δϑ

Δϑ

 k

 A

 z

2

2

2

 mG

 m

 tot

 soll

-

°C

-

-

-

K

K

W/(m2 K)

m2

-

6

61,6

0,18

0,34

0,992

38,4

38,1

1 135

1,158

19



19 50,2

0,57

0,11

0,996

44,8

44,6

1 054

1,064

17



17 50,9

0,51

0,12

0,996

44,4

44,2

1 065

1,061

17



 Diskussion

Die Berechnung der mittleren Temperaturdifferenz ist mit Hilfe der Diagramme

einfach durchführbar. Wie im o.a. Beispiel könnte man bei kleinen Temperaturän-

derungen der Stoffströme auch mit der mittleren Temperaturdifferenz eines Gegen-

stromwärmeübertragers rechnen. 


8.3

Verschmutzungswiderstand


Bisher haben wir bei Wärmeübertragern den Wärmewiderstand in den Trennwän-

den berücksichtigt. Die Wärmeübertragerwände bestehen aus einem Feststoff

(meistens Metall, seltener Kunststoff, Glas, Graphit etc.). Die Metalloberflächen

sind in der Regel von einer Oxidschicht, deren Wärmeleitung kleiner als die des

Metalls ist, überzogen. Weiterhin können sich durch die verwendeten Fluide und

die in ihnen enthaltenen festen Bestandteile Ablagerungen auf der Oberfläche bil-

den. Ferner ist die Bildung dicker Oxidationsschichten (Rost) möglich. Auch die
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gewollte Bildung sogenannter Schutzschichten gegen Korrosion (Kraftwerkkon-

densatoren mit Messingrohren) stellen einen Widerstand dar. 

Eine Rohrwand mit verschiedenen zusätzlichen Schichten hat einen größeren

Wärmewiderstand als solche, die wir bisher berechneten. Der durch die Schichten

verursachte zusätzliche Wärmewiderstand wird als  Verschmutzungswiderstand

oder  Fouling (vom engl. fouling resistance) bezeichnet. Nachfolgend ist der Einfluss des Verschmutzungswiderstandes auf die Wärmedurchgangszahl für ein Rohr

dargestellt. Für andere Geometrien wie z.B. für ebene Wände erfolgen die Berech-

nungen analog. 

Unter Berücksichtigung der Schmutzschichten geht die exakte Berechnung der

Wärmedurchgangszahl davon aus, dass sowohl an der Außen- als auch Innenwand

des Rohres eine Verschmutzungsschicht entsteht. Dadurch wird der Innendurch-

messer verringert, der Außendurchmesser vergrößert. Bild 8.13 illustriert diese Modellvorstellung. 

 d a

Rohrwand

 si

 d i

innere

äußere

Schmutzschicht

Schmutzschicht

 sa

Bild 8.13: Verschmutzungswiderstand einer Rohrwand
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 d
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 d
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(8.26)
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 i
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+
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+

⋅

¨¨

¸¸
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 d − 2 ⋅  s
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©

¹

− 2⋅  s α

 si

 i
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Dabei sind  s  und  s  die Dicken und λ  und λ  die Wärmeleitfähigkeiten der äuße-a

 i

 sa

 si

ren und inneren Schmutzschicht. Meistens sind weder die exakte Dicke noch die

Wärmeleitfähigkeit der Schmutzschicht bekannt. Aus Messungen kennt man die

Verringerung der Wärmeübergangszahl und rechnet mit den aus Erfahrung bekann-

ten Schmutzschichtwiderständen. In einigen Fällen sind die inneren und äußeren

Verschmutzungswiderstände  R  und  R  bekannt. Meistens kennt man jedoch nur den i

 a

kumulierten Verschmutzungswiderstand  R . 

 F
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1
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 d

 d
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(8.27)
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Bedingt durch Verschmutzungswiderstände können die Wärmedurchgangszah-

len wesentlich verringert sein, was verstärkt bei Wärmeübertragern mit großen

Wärmedurchgangszahlen zum Tragen kommt. Für die Auslegung von Wärmeüber-

tragern müssen die Verschmutzungswiderstände berücksichtigt und mit entspre-

chend größerer Fläche versehen werden. 

Von einigen Herstellern, vor allem von solchen aus den USA, wird an Stelle des

Verschmutzungswiderstandes ein  Verschmutzungsfaktor ϕ (fouling factor) angegeben, der als multiplikativer Faktor die Verringerung der Wärmedurchgangszahl be-

rücksichtigt. 

§ 1

 d

 d

1 ·−1

 k =  ksauber ⋅ϕ =

+

 a

+  a ⋅

⋅ϕ

¨¨

(8.28)

©α

2

 d

 a

⋅λ R

 i

α ¸¸

 i ¹

Ändern sich wegen äußerer Einflüsse die Wärmeübergangszahlen, liefert der

Verschmutzungsfaktor bei kleineren Wärmedurchgangszahlen praktisch die glei-

chen Werte wie die, welche mit dem Verschmutzungswiderstand berechnet wurden. 

Bei großen Wärmedurchgangszahlen kann die Abweichung beträchtlich sein. 

BEISPIEL 8.3: Berücksichtigung des Verschmutzungswiderstandes

Ein Kraftwerkkondensator hat bei 10 °C Kühlwasserein- und 20 °C Kühlwasser-

austrittstemperatur die Wärmedurchgangszahl von 3 540 W/(m2 K) und die Sätti-



gungstemperatur von 25 °C. Bei 25 °C Kühlwassereintrittstemperatur ist die Aus-

trittstemperatur 35 °C. Die berechnete Sättigungstemperatur steigt auf 39 °C an. 

Der Verschmutzungswiderstand hat einen Wert von 0,0565 (m2 K)/kW. 

Bestimmen Sie die zu erwartende Sättigungstemperatur, wenn an Stelle des Ver-

schmutzungswiderstandes ein Foulingfaktor von 0,80 verwendet wird. 

 Annahme

•

Der dem Kondensator zugeführte Wärmestrom ist unabhängig von der Kühl-

wassertemperatur. 

 Analyse

Die Wärmestromdichte kann mit der kinetischen Kopplungsgleichung berechnet

werden. Dazu wird zunächst die mittlere Temperaturdifferenz bei 10 °C Kühlwas-

sereintrittstemperatur bestimmt. 

8 Wärmeübertrager

241

ϑ −ϑ
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ϑ
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=
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¸¸
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2

 q =  k ⋅ Δϑ = 3540 ⋅ W/(m ⋅ K) ⋅ 9102 K = 32 222  W/m

 m

Bei 25 °C Kühlwassertemperatur ist die mittlere Temperaturdifferenz:
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1

ϑ
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=

=

K



7,982

§ ϑ s −ϑ · ln 14

(

/ )

4
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1

¨¨

¸¸

©ϑ s −ϑ2 ¹

Das bedeutet, dass die Wärmedurchgangszahl bei der erhöhten Temperatur an-

steigt. 

2

32 225 W / m

W

 k =  q / Δϑ =

= 4,037 

 m

2

7, 982 K

m  K

Die mit dem Verschmutzungswiderstand gerechneten "sauberen" Wärmedurch-

gangszahlen sind:

1

−

3

−

1

−

2

 k

= (1/  k −  R ) = (1/ 3540 − 0,0565⋅10 ) = 4 425  W/(m  K)

 sauber ,10 °C

 v

1

−

3

−

1

−

2

 k

= (1/  k −  R ) = (1/ 4037 − 0,0565⋅10 ) = 5 230  W/(m  K)

 sauber , 25°C

 v

Rechnet man mit dem Foulingfaktor von 0,8, ist bei 10 °C Kühlwassereintritts-

temperatur die Wärmedurchgangszahl 3,540 W/(m2 K) und bei 25 °C beträgt sie

4184 W/(m2 K). Der Unterschied ist 3,51 %. Mit dieser Wärmedurchgangszahl

beträgt die mittlere Temperatur 7,702 K. Damit wird die berechnete Sättigungstem-

peratur:

ϑ −ϑ ⋅exp[(ϑ −ϑ ) / ϑ

Δ ] 25 −35⋅exp[10 / 7,702]

1

2

2

1

 m

ϑ =

=

= 38,8 °C

 s

1 − exp[(ϑ −ϑ ) / ϑ

Δ ]

1 − exp[10 / 7, 702]

2

1

 m

 Diskussion

Die mit dem Foulingfaktor berechnete Temperatur ist tiefer als die exakt berech-

nete. Sie lässt einen besseren Kondensatordruck erwarten. Physikalisch gesehen ist der Foulingfaktor nicht korrekt. Die mit dem Verschmutzungswiderstand berechneten Werte entsprechen der Wirklichkeit. Dieses bedeutet, dass der mit dem Fou-

lingfaktor ausgelegte Kondensator bei 25 °C Kühlwassertemperatur nicht die er-

wartete Sättigungstemperatur erreicht. Der Kondensator wäre mit einer um 3,5 % zu

kleinen Fläche ausgelegt. 
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8.4

Rohrschwingungen


Durch Strömungsinstabilitäten können Rohre in kritische Schwingungen versetzt

werden, so dass sie sich gegenseitg berühren oder dass hohe Schallpegel entstehen. 

Erstes führt zu Rohrleckagen und Rohrbrüchen, Zweites zu unzulässigen Schall-

pegeln. 

8.4.1

Kritische Rohrschwingungen

Die Rohrschwingungen werden durch Fluidinstabilitäten verursacht. Die Schwin-

gungen können sowohl durch senkrechte Anströmung verursachte Wirbelbildung, 

aber auch durch Resonanzen des Fluids im Mantelraum des Wärmeübertragers oder

auch bei der Längsströmung zwischen langen, nicht abgestützten Rohren auftreten. 

Die Schwingungen können so stark werden, dass sich die Rohre gegenseitig berüh-

ren, was zu deren Zerstörung führt. Die Dämpfung der Schwingungen ist durch

Stützplatten oder -gitter möglich. Die Länge eines Rohrabschnittes kann man so be-

stimmen, dass keine gefährlichen Schwingungen mehr auftreten. Diese Rohrlänge

hängt von der Strömung des Fluids, vom Trägheitsmoment des Rohres, der internen

Dämpfung (logarithmisches Dekrement) und der Befestigung der Rohre ab. Damit

keine schädlichen Schwingungen auftreten, ist immer eine genaue Analyse notwen-

dig. Die Stützplatten bzw. -gitter sind meist in gleichen Abständen angeordnet. Dies muss ebenfalls das Resultat einer genauen Untersuchung sein. Rohre, die von Fluid-strahlen getroffen werden, muss man gesondert untersuchen. Ausführliche Berech-

nungsverfahren und Literaturhinweise findet man im VDI-Wärmeatlas, Kapitel O

[8.4] und TEMA Standard Of The Tubular Heat Exhanger Manufacturers Associ-

ation, Section 6 [8.5]. Diese Literatur zu erläutern, würde den Rahmen dieses Bu-

ches sprengen, deshalb wird nur eine kurze und einfache Berechnungsmethode be-

schrieben. 

Die Berechnung erfolgt mit einer empirischen Gleichung. In ihr können mit den

Rohreigenschaften und der Strömungsgeschwindigkeit die ungestützte Rohrlänge

 l , bei der keine schädlichen Schwingungen mehr auftreten, bestimmt werden. 

0

2

6

 d

10

2

5

 a

 c ⋅ ρ ⋅ l ⋅

⋅

≤ 4,5

 Sp

0

4

4

3

( d −  d ) ⋅

(8.29)

 E  m

 a

 i

Die Spaltgeschwindigkeit  c  ist die Strömungsgeschwindigkeit zwischen den

 Sp

Rohren, ρ die Dichte des Fluids,  d  der Außen- ,  d  der Innendurchmesser und  E das a

 i

Elastizitätsmodul des Rohrmaterials. Der Term 106 / m3 ist eingesetzt, damit das

Ergebnis ohne Zehnerpotenzen und dimensionslos erscheint. 

Gl. (8.29) liefert für die maximale ungestützte Rohrlänge  l

:

0,  max

4

4

3

4,5 ⋅ ( d −  d ) ⋅  E  m

 a

 i

 l

= 5

⋅

0,  max

2

2

6

 d ⋅  c ⋅ ρ

10

(8.30)

 a

 Sp
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Die Spaltgeschwindigkeit kann durch die Anzahl der angeströmten Rohre, die

ungestützte Rohrlänge durch die Anzahl der Stützplatten verändert werden. Wird

ein Wert, der größer als 4,5 ist, ermittelt, kann durch Änderung der Spaltgeschwindigkeit oder der ungestützten Rohrlänge der gewünschte Wert erreicht werden. Bei

gleichen Stützplattenabständen kann anstelle von  l  die Gesamtlänge des Rohres, 0

geteilt durch die Anzahl der Stützplatten plus eins  l  =  l  / ( N+1) eingesetzt werden. 

0

 ges

BEISPIEL 8.4: Berechnung der notwendigen Anzahl der Stützplatten

Hier soll untersucht werden, wie bei dem in Beispiel 5.3 ausgelegten Kondensator

die Rohre abzustützen sind. 

 d  = 12 mm,  d  = 10 mm,  m

= 0,5 kg/s, ρ = 66,3 kg/m3,  l : 5,983 m,  n = 47. 

 a

 i

 R 134 a

 ges

Das Elastizitätsmodul des Kupfers ist 110 kN/mm2 = 1,1 . 1011 N/m2, der Rohrabstand  s = 17 mm. 

Lösung

 Schema

Siehe Skizze

 Annahme

•

Die Strömung im Bündel ist gleichmäßig. 

 Analyse

Zunächst ist die Anordnung der Rohre zu bestimmen.Die Skizze zeigt, dass man in

einem zylindrischen Mantel 48 statt der ausgelegten 47 Rohre anordnen kann. Mit

dem einen Rohr mehr wird die thermische Leistung erreicht und eine realistische

Rohranordnung verwirklicht. Die Einströmöffnungen (Schlitze) sind mit fetten

Linien gezeichnet. Am Umfang des Bündels sind 22 Spalte vorhanden. Der für die

Einströmung des Dampfes vorhandene Querschnitt ist:

2

 A = 22 ⋅ l ⋅  s = 22 ⋅ 5,983 m ⋅ 0,005 m = 0, 658 m

 in

Die Spaltgeschwindigkeit zwischen den Rohren erhalten wir zu:

3

 m



0, 5 ⋅ kg ⋅ m

m

 c

=

=

= 0,11

 Sp

2

ρ ⋅  A

s ⋅ 0.,8 ⋅ m ⋅ 66,3 ⋅ kg

s

 in

Jetzt kann das Vibrationskriterium angewendet werden. 

2

6

 d

10

2

5

 a

 c ⋅ ρ ⋅ l ⋅

⋅

≤ 4,5

 Sp

0

4

4

3

( d −  d ) ⋅  E  m

 a

 i
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Ohne eine Stützplatte erhält man 8,1, mit einer Stützplatte 0,25. Für die maximal

erlaubte Rohrlänge  l

erhalten wir mit Gl. (8.30):

0,  max

4

4

3

4, 5 ⋅ ( d −  d ) ⋅  E  m

 a

 i

 l

= 5

⋅

= 5,313 m

0,  max

2

2

6

 d ⋅  c ⋅ ρ

10

 a

 Sp

Diskussion

In diesem Beispiel wären die Rohre laut Vibrationskriterium ohne Stützplatte vi-

brationsgefährdet. Eine ungestützte Rohrlänge von 5,313 m ist die Grenze für die

Vibrationsgefährdung. Mit einer Stützplatte wird die ungestützte Rohrlänge 3,00 m. 

Die Anströmgeschwindigkeit ist hier sehr klein, weshalb die erlaubte ungestützte

Rohrlänge ungewöhnlich groß ausfällt. Bei einer größeren Anströmgeschwindig-

keit von 10 m/s müsste man eine ungestützte Rohrlänge, die kleiner als 0,5 m ist, 

vorsehen. 

8.4.2

Akustische Resonanz

Bei senkrechter Anströmung zylindrischer Körper entstehen bei  Reynolds zahlen, die oberhalb von 50 liegen,  Wirbelablösungen. Am Zylinder bilden sich Wirbel, die sich ablösen und in der Strömung erhalten bleiben. Bildung und Ablösung der

Wirbel erfolgen periodisch abwechselnd von der oberen und unteren Seite des Zy-

linders. Bild 8.14 zeigt den Wirbelbildungsvorgang. Bei der Ablösung entstehen

auf der Rückseite des Zylinders Druckänderungen, die auf den Zylinder periodisch

abwechselnde Kräfte ausüben. 

 c 0

Bild 8.14: Wirbelablösungen am Zylinder

Die Pfeifgeräusche von Drähten im Wind werden durch Wirbelablösungen her-

vorgerufen. Die Schwingungen der Rohre, verursacht durch diese Wirbel, wurden

bereits unter 8.4.1 besprochen. Hier wird die Entstehung großer Schallpegel besprochen. 

Versuche zeigen, dass die Frequenz der Wirbelablösungen durch die  Struhalzahl

 S angegeben werden kann, die wiederum von der  Reynolds zahl abhängt. Die  Struhal zahl  S ist definiert als:
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ν ⋅  d

 S =

(8.29)

 c 0

Dabei ist ν die Frequenz der Wirbelablösungen, die  Struhalfrequenz genannt wird,  d der Durchmesser des angeströmten Rohres und  c  die Anströmgeschwin-0

digkeit. Bei  Reynolds zahlen unterhalb von 105 hat die  Struhal zahl quer angeströmter zylindrischer Einzelkörper einen Wert von ca. 0,2. Bei höheren  Reynolds zahlen liegen die Werte zwischen 0,17 und 0,32. Die Geometrie, die Oberflächenbeschaffenheit und bei Rohrbündeln die Anordnung der Rohre sind weitere Einfluss-

größen. In Rohrbündeln bewirkt die Ablösung von einer Rohrreihe eine Änderung

der Ablösefrequenz nachfolgender Rohrreihen. Bei Rohrbündeln, wie dem in Bei-

spiel 3.6 behandelten Zwischenüberhitzer, hat man  Struhal zahlen von 1,0 bis zu 1,6

gemessen. 

Ist die  Struhal frequenz, die durch die  Struhal zahl gegeben ist, in der Nähe der Eigenfrequenz des angeströmten Körpers, kann dieser durch Resonanz in so starke

Schwingungen geraten, dass Schäden (Ermüdungsbruch, Kollosion) auftreten. Die

Tacuma-Narrows-Hängebrücke, eine große Brücke mit 840 m Spannweite im ame-

rikanischen Bundesstaat Washington, geriet 1940 bei Windgeschwindigkeiten von

ca. 70 km/h in so starke Schwingungen, dass sie einstürzte (YouTube dokumentiert

dieses spektakuläre Ereignis). 

Zu jeder  Struhal frequenz gehört auch eine akustische Wellenlänge. Sind die Strömungsbegrenzungen (z.B. Bündelhöhe) von gleicher Länge, können Resonanzen auftreten, die zwar keine Beschädigung von Bauteilen verursachen, jedoch un-

zulässige Lärmbelästigungen erzeugen können. Das Problematische dabei kann

sein, dass eine sogenannte  "lock in"-Resonanz entsteht, die sogar bei einer wesentli-chen Änderung der Strömungsgeschwindigkeit bestehen bleibt. Je nach Größe des

Bündels und des Massenstromes können die Schallpegel Werte von über 120 dB

erreichen. 

Bei der Konstruktion und Auslegung von Apparaten, Bauten usw., die von einem

Fluid angeströmt werden, muss der Ingenieur untersuchen, ob die Wirbelablösun-

gen nicht zu unzulässigen Resonanzen führen. 

BEISPIEL 10.4: Akustische Resonanz in einem Rohrbündel

In dem von Dampf angeströmten Überhitzerbündel aus Beispiel 3.6 wurde eine

 Struhal zahl von 1,04 ermittelt. Die Rohre des Rohrbündels haben den Durchmesser von 15 mm. Die Bündelhöhe von 1,4 m ist durch eine Strömungsbegrenzung in

zwei Teile mit der jeweiligen Höhe von 675 mm aufgeteilt. Die Schallgeschwindig-

keit des Dampfes beträgt 517 m/s. 

Untersuchen Sie, ob die "lock in"-Resonanz entstehen kann; falls nicht, bei welcher Geschwindigkeit sie zu befürchten ist. 
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Lösung

675 mm

 Schema

Siehe Skizze

 c  0

1400 mm

 Annahme

675 mm

•

Die   Struhal zahl ist auf den Außendurch-

messer der Rohre und die Anströmge-

schwindigkeit bezogen. 

 Analyse

Die Wellenlänge einer akustischen Schwingung beträgt:

 a

λ =

 a

ν

Die Frequenz ν, die zu einer Wellenlänge von 0,675 m gehört, beträgt:

ν =  a /  l  = (517 m/s) / 1,4 m = 765 Hz

 a

Mit Gl. (8.29) ist die  Struhal frequenz:

 S c

1, 04 6 m

0

ν

⋅

⋅ ⋅

=

=

= 416 Hz

 St

 d

0,015 ⋅ m ⋅s

Sie ist viel kleiner als die zur Wellenlänge 0,675 m gehörende Frequenz. Das

Entstehen eine "lock in"-Resonanz ist nicht zu befürchten. 

Die Dampfgeschwindigkeit, bei der eine "lock in"-Resonanz entstehen könnte, ermitteln wir zu:

1

ν  d  765 s−

⋅

⋅

⋅0,015⋅m

 St

 c =

=

= 11,0  m / s

0

 S

1,04

 Diskussion

Die Konstruktion des Zwischenüberhitzerbündels lässt keine "lock in"-Resonanz befürchten. Erst bei einer beinahe doppelt höheren Geschwindigkeit von 11 m/s

könnte sie eintreten. 

Anhang


A1:

Wichtige physikalische Konstanten


Kritische Zustandsgrößen

Stoff

chemische

Molmasse

 T

 p

 z

 krit

 krit

 krit

Formel

kg/kmol

K

bar

–

Acetylen

C H

26,0380

309,0

26,8

0,274

2

2

Ammoniak

NH

17,0305

406,0

112,8

0,284

3

Argon

Ar

39,9480

151,0

48,6

0,242

Butan

C H

58,1240

425,0

38,0

0,274

4

10

Ethan

C H

30,0700

305,0

48,8

0,285

2

6

Ethanol

C H OH

46,0690

516,0

63,8

0,249

2

5

Ethylen

C H

28,0540

283,0

51,2

0,270

2

4

Frigen 134a

CF CH F

102,0300

374,2

40,7

0,260

3

2

Helium

He

4,0026

5,2

2,3

0,300

Kohlendioxid

CO

44,0100

304,0

73,9

0,276

2

Kohlenmonoxid

CO

28,0100

133,0

35,0

0,294

Methan

CH

16,0430

191,0

46,4

0,290

4

Oktan

C H

114,2310

569,0

24,9

0,258

8

18

Propan

C H

44,0970

369,8

42,4

0,276

3

8

Sauerstoff

O

31,9988

154,0

50,5

0,290

2

Schwefeldioxid

SO

64,0650

431,0

78,7

0,268

2

Stickstoff

N

28,0134

126,0

33,9

0,291

2

Wasser

H O

18,0153

647,1

220,6

0,233

2

Wasserstoff

H

2,0159

33,2

13,0

0,304

2

Fundamentale Naturkonstanten

 Avogadro-Konstante

 N  = (6,0221367 ± 0,0000036) .  1023

mol-1

 A

universelle Gaskonstante

 R  = (8 314,41 ± 0,07)

J/(kmol . K)

 m

 Boltzmann-Konstante   R / N

 k = (1,380641 ± 0,000012) .  10-23

J/K

 m

 A

elektrische Elementarladung

 e = (1,60217733 ± 0,00000049) .  10-19

C

 Planck-Konstante

 h = (6,6260755 ± 0,000004) .  10-23

J s

Lichtgeschwindigkeit

 c = 299 792 458

m/s

 Stefan-Boltzmann-Konstante

σ  = (5,6696 ± 0,0075) .  10-8

W/(m2 . K4)

 s

P. von Böckh, T. Wetzel  Wärmeübertragung, 

DOI 10.1007/978-3-642-15959-6, © Springer-Verlag Berlin Heidelberg 2011
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A2:

Stoffwerte unterkühlten Wassers bei 1 bar Druck

ϑ

ρ

λ

η

ν

 c

 Pr

β

 p

°C

kg/m3

W/(m K) 10-6 kg/(m s) 10-6 m2/s

kJ/(kg K)

-

1/K

0

999,8

0,5611

1 791,5

1,7918

4,219

13,473

–0,068



2

999,9

0,5649

1 673,4

1,6735

4,213

12,480

–0,032



4

1 000,0

0,5687

1 567,2

1,5673

4,207

11,595

0,001



6

999,9

0,5725

1 471,4

1,4715

4,203

10,802

0,032



8

999,9

0,5763

1 384,7

1,3849

4,199

10,089

0,061



10

999,7

0,5800

1 305,9

1,3063

4,195

9,445

0,088



12

999,5

0,5838

1 234,0

1,2346

4,193

8,862

0,114



14

999,2

0,5875

1 168,3

1,1692

4,190

8,332

0,139



16

998,9

0,5912

1 108,1

1,1092

4,188

7,849

0,163



18

998,6

0,5949

1 052,7

1,0541

4,186

7,408

0,185



20

998,2

0,5985

1 001,6

1,0034

4,185

7,004

0,207



22

997,8

0,6020

954,4

0,9566

4,183

6,633

0,227

24

997,3

0,6055

910,7

0,9132

4,182

6,291

0,247

26

996,8

0,6089

870,2

0,8730

4,181

5,976

0,266

28

996,2

0,6122

832,5

0,8356

4,181

5,685

0,285

30

995,7

0,6155

797,3

0,8008

4,180

5,415

0,303

32

995,0

0,6187

764,6

0,7684

4,179

5,165

0,320

34

994,4

0,6218

733,9

0,7381

4,179

4,932

0,337

36

993,7

0,6248

705,2

0,7097

4,179

4,716

0,353

38

993,0

0,6278

678,3

0,6831

4,179

4,515

0,369

40

992,2

0,6306

653,0

0,6581

4,179

4,327

0,385

42

991,4

0,6334

629,2

0,6346

4,179

4,151

0,400

44

990,6

0,6361

606,8

0,6125

4,179

3,986

0,415

46

989,8

0,6387

585,7

0,5917

4,179

3,832

0,429

48

988,9

0,6412

565,7

0,5720

4,179

3,687

0,444

50

988,0

0,6436

546,9

0,5535

4,180

3,551

0,457

52

987,1

0,6459

529,0

0,5359

4,180

3,423

0,471

54

986,2

0,6482

512,1

0,5193

4,181

3,303

0,484

56

985,2

0,6503

496,1

0,5035

4,181

3,189

0,498

58

984,2

0,6524

480,9

0,4886

4,182

3,082

0,510

60

983,2

0,6544

466,4

0,4744

4,183

2,981

0,523

62

982,2

0,6563

452,7

0,4609

4,184

2,885

0,536

64

981,1

0,6581

439,6

0,4480

4,185

2,795

0,548

66

980,0

0,6599

427,1

0,4358

4,186

2,709

0,560

68

978,9

0,6616

415,2

0,4242

4,187

2,628

0,572

70

977,8

0,6631

403,9

0,4131

4,188

2,551

0,584

72

976,6

0,6647

393,1

0,4025

4,189

2,478

0,596

74

975,5

0,6661

382,7

0,3924

4,191

2,408

0,607

76

974,3

0,6675

372,9

0,3827

4,192

2,342

0,619

78

973,0

0,6688

363,4

0,3735

4,194

2,279

0,630

80

971,8

0,6700

354,4

0,3646

4,196

2,219

0,642

82

970,5

0,6712

345,7

0,3562

4,197

2,162

0,653

84

969,3

0,6723

337,4

0,3481

4,199

2,107

0,664

86

968,0

0,6734

329,4

0,3403

4,201

2,055

0,675

88

966,7

0,6744

321,8

0,3329

4,203

2,005

0,686

90

965,3

0,6753

314,4

0,3257

4,205

1,958

0,697

92

964,0

0,6762

307,4

0,3188

4,207

1,912

0,708

94

962,6

0,6770

300,6

0,3123

4,209

1,869

0,719

96

961,2

0,6777

294,1

0,3059

4,212

1,827

0,730

98

959,8

0,6784

287,8

0,2998

4,214

1,788

0,740

 Quelle [9.1]
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A2:

Stoffwerte unterkühlten Wassers bei 1 bar Druck (Forts.)

Näherungspolynome für den Bereich von 0 °C bis 100 °C. 

6

¦  Ci ⋅ϑ i  mit

 R

ϑ R = ϑ /ϑ krit = ϑ /10  

0 K

 i = 0

ρ

λ

η

 c' 

 Pr

β

 p

 C

999,8500

0,56112

1,79016

4,21895

13,460 –0,06755

0

 C

5,4395

0,18825

–6,11398

–0,32990

–51,371

1,82260

1

 C

–76,5850

0,03255

15,12250

1,15869

134,214 –3,11220

2

 C

43,9930

–0,23117

–26,76630

–2,35378

–244,081

5,36440

3

 C

–14,3860

0,15512

30,43500

2,88758

282,198 –6,22770

4

 C

0

–0,00988

–19,32300

–1,84461

–181,310

4,09430

5

 C

0

–0,01697

5,13960

0,47973

48,664 –1,12330

6

Ergebnis in kg/m3

W/(m K)

10-3 kg/(m s)

kJ/kg

-

1/K

Std.-Abw. % 0,225

0,003

0,004

0,084

0,006

0,130

Wichtig: Nicht für Temperaturen über 100 °C verwenden. 
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A3:

Stoffwerte gesättigten Wassers und Dampfes

,0

 r

0

kJ/kg

500,9

477,2

453,5

429,8

406,0

382,0

357,7

333,1

308,1

282,6

256,5

229,7

202,1

173,7

144,2

113,7

081,9

048,7

014,0

977,7

939,7

899,6

857,4

812,8

765,5

715,3

661,8

604,6

543,2

476,8

404,8

325,9

238,6

2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   1   1   1   1   1   1   1   1   1   1   1   1   1   1  

 Pr'' 

1,017

1,063

1,063

1,045

1,024

1,008

0,999

0,997

1,000

1,006

1,014

1,023

1,032

1,040

1,049

1,060

1,072

1,086

1,104

1,125

1,151

1,182

1,218

1,260

1,306

1,356

1,412

1,474

1,544

1,628

1,729

1,853

2,006

-

 Pr' 

9,533

7,053

5,427

4,320

3,540

2,972

2,546

2,218

1,960

1,753

1,583

1,444

1,328

1,231

1,150

1,082

1,025

0,979

0,940

0,908

0,883

0,863

0,847

0,837

0,830

0,829

0,833

0,845

0,865

0,896

0,943

1,009

13,472

ν '' 

4

3

8,915

6,951

5,485

4,376

3,529

2,875

2,365

1,964

1,645

1,389

1,181

1,010

0,8678

0,7482

0,6465

0,5592

0,4838

0,4185

0,3619

0,3132

0,1340

/s

9

2

82,89

56,10

39,12

27,99

20,48

15,28

11,59

2

8

0

571,2

331,9

201,0

126,7

1   1  

m-6

ν ' 

10

1,7914

1,3171

1,0096

0,8022

0,6570

0,5518

0,4731

0,4125

0,3648

0,3263

0,2947

0,2685

0,2465

0,2279

0,2120

0,1986

0,1871

0,1773

0,1689

0,1616

0,1553

0,1498

0,1449

0,1405

0,1366

0,1330

0,1297

0,1268

0,1242

0,1220

0,1201

0,1188

0,1177

0,1340

η '' 

9,20

9,62

9,89

10,09

10,30

10,53

10,81

11,13

11,49

11,87

12,25

12,63

13,00

13,34

13,67

13,97

14,26

14,55

14,83

15,13

15,44

15,77

16,13

16,51

16,91

17,33

17,74

18,15

18,55

18,93

19,32

19,74

20,24

43,16

kg/(m s)

η ' -6 01

97,30

93,17

89,26

85,56

82,02

78,53

43,16

791,0

316,7

007,8

798,7

651,9

545,2

465,1

403,3

354,5

314,9

282,4

255,3

232,4

213,0

196,4

182,1

169,8

159,1

149,8

141,6

134,3

127,7

121,8

116,3

111,1

106,3

101,7

1   1   1  

 p

 c'' 

K)

1,888

1,896

1,906

1,918

1,932

1,948

1,966

1,987

2,012

2,042

2,077

2,121

2,174

2,237

2,311

2,396

2,492

2,599

2,716

2,846

2,990

3,150

3,328

3,528

3,755

4,012

4,308

4,655

5,070

5,581

6,223

7,051

8,157

 ' pc  kJ/(kg  4,220 4,196 4,185 4,180 4,179 4,180 4,183 4,188 4,196 4,205 4,217 4,230 4,246 4,265 4,286 4,310 4,338 4,369 4,406 4,447 4,494 4,548 4,611 4,683 4,767 4,865 4,981 5,119 5,286 5,492 5,752 6,088 6,541

λ '' 

17,1

17,2

17,7

18,5

19,4

20,4

21,3

22,2

23,1

24,1

25,1

26,2

27,4

28,7

30,1

31,6

33,2

34,8

36,5

38,3

40,1

42,0

44,1

46,3

48,6

51,2

54,1

57,3

60,9

64,9

69,5

75,1

82,3

1'419,0

λ ' 

W/(m K)-3

10

561,0

579,5

598,0

615,2

630,6

643,7

654,7

663,5

670,4

675,7

679,6

682,2

683,7

684,3

683,9

682,8

680,8

677,9

674,3

669,7

664,3

658,0

650,7

642,4

633,0

622,5

610,8

597,7

583,0

566,9

549,1

529,8

509,3

1'419,0

ρ '' 

3

0,00485

0,00941

0,01731

0,03041

0,05124

0,08314

0,1304

0,1984

0,2937

0,4239

0,5981

0,8269

1,1220

1,4968

1,9665

2,5478

3,2593

4,1217

5,1583

6,3948

7,8603

9,5875

11,614

13,984

16,748

19,965

23,710

28,072

33,163

39,128

46,162

54,529

64,616

322,000

kg/m

ρ ' 

999,79

999,65

998,16

995,61

992,18

988,01

983,18

977,75

971,78

965,30

958,35

950,95

943,11

934,83

926,13

917,01

907,45

897,45

887,01

876,08

864,67

852,73

840,23

827,12

813,36

798,89

783,62

767,46

750,27

731,91

712,14

690,67

667,08

322,00

 p

arb 0,00612 0,01228 0,02339 0,04247 0,07384 0,1235 0,1995 0,3120 0,4741 0,7018 1,014 1,434 1,987 2,703 3,615 4,761 6,181 7,921 10,03 12,55 15,55 19,07 23,19 27,97 33,47 39,76 46,92 55,03 64,16 74,42 85,88 98,65 112,84 220,64

ϑ

°C

0,01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

373,95

 Quelle [9.1]
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A3:

Stoffwerte gesättigten Wassers und Dampfes (Forts.)

Näherungsformeln für den Sättigungsdruck und die Dichte des gesättigten Dampfes, 

gültig im gesamten Sättigungsbereich:

2

 p = exp(11, 6885 − 3 746/ T − 228 675  / T ) ⋅ bar ± 0,8 %

 s

2

3

ρ′′ = exp(11,41− 4194 /  T − 99183 /  T )⋅kg/m ± 6 %

Näherungspolynome für den Bereich von 0 °C bis 320 °C:

9

¦ Ci ⋅ϑ i

mit

 R

ϑ R = ϑ /ϑ krit = ϑ /



373,95 C

°

 i =0

ρ ' 

λ ' 

λ '' 

 c' 

 c'' 

 p

 p

 C

999,80

0,561

17,10

4,2196

1,888

0

 C

22,92

0,671

–7,55

–1,0880

0,341

1

 C

–1 161,00

1,283

455,10

10,4200

–2,500

2



 C

3 507,00

–20,700

–1 917,00

–46,5700

68,200

3





C

–9 975,00

79,630

20,50

98,8400

–571,000

4



C

19 710,00

–162,110

26 173,00

55,5340

2 525,000

5







 C

–25 039,00

185,110

–89 184,00

–709,9000

–6 074,000

6







 C

18 158,00

–109,560

13 5700,00

1 454,5000

8 195,000

7









 C

–6 014,00

22,520

–100 790,00

–1 303,6000

–5 864,000

8









 C

264,90

3,020

29 757,00

451,9000

1 748,000

9





Ergebnis in

kg/m3

W/(m K)

10-3 W/(m K)

kJ/(kg K)

kJ/(kg K)

Std.-Abw. in %

0,017

0,069

0,075

0,056

0,111

η ' 

η '' 

 Pr' 

 Pr' 

 r

 C

1,791

9,199

13,468

1,0173

2 500,9

0



 C

–21,595

20,400

–181,250

2,9730

–893,0

1

 C

170,010

–208,000

1 510,760

–58,9400

224,0

2

 C

–902,200

1 499,000

–8 269,400

443,3200

–2 484,0

3



 C

3 201,520

–4 926,000

29 914,800

–1 729,3000

1 1784,0

4







C

–7 522,950

8 326,800

–71 208,642

3 922,7000

–42 215,0

5











C

11 487,000

–7 286,300

109 707,190

–5 359,6000

87 847,0

6









 C

–10 916,000

3 077,800 –104 892,380

4 367,8000

–108 004,0

7









 C

5 849,410

–655,200

56 431,800

–1 971,3000

72 611,0

8







 C

–1 347,780

173,290

–13 032,700

385,4100

–20 870,0

9





Ergebnis in 10–3 kg/(m s)

10–6 kg/(m s)

-

-

kJ/kg K

Std.-Abw. in %

0,017

0,069

0,075

0,056

0,111

Wichtig: Nicht für Temperaturen über 320 °C verwenden. 
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A4:

Stoffwerte des Wassers und Dampfes


 p

ϑ

ρ

 c

η

ν

λ

 Pr

 P

bar

°C

kg/m3

kJ/(kg K) 10-6 kg/(m s)

m2/s

10-3 W/(m K)

-

1

 0

 999,844

 4,219

 1 791,53

 1,792

 561,08

 13,473

 50

 988,047

 4,180

 546,85

 0,553

 643,61

 3,551

100

0,590

2,074

12,27

20,810

25,08

1,015

150

0,516

1,986

14,18

27,469

28,86

0,976

200

0,460

1,976

16,18

35,144

33,28

0,960

250

0,416

1,989

18,22

43,841

38,17

0,949

300

0,379

2,012

20,29

53,543

43,42

0,940

350

0,348

2,040

22,37

64,226

48,97

0,932

400

0,322

2,070

24,45

75,864

54,76

0,924

2

 0

 999,894

 4,219

 1 791,28

 1,791

 561,13

 13,468

 50

 988,090

 4,179

 546,87

 0,553

 643,65

 3,551

 100

 958,400

 4,216

 281,77

 0,294

 679,15

 1,749

150

1,042

2,067

14,13

13,566

29,54

0,989

200

0,925

2,014

16,15

17,446

33,68

0,965

250

0,834

2,010

18,20

21,821

38,42

0,952

300

0,760

2,025

20,28

26,691

43,59

0,942

350

0,698

2,048

22,36

32,047

49,09

0,933

400

0,645

2,076

24,45

37,877

54,85

0,925

5

 0 1 000,047

 4,217

 1 790,53

 1,790

 561,30

 13,454

 50

 988,221

 4,179

 546,92

 0,553

 643,79

 3,550

 100

 958,541

 4,216

 281,85

 0,294

 679,32

 1,749

 150

 917,020

 4,310

 182,47

 0,199

 682,06

 1,153

200

2,353

2,145

16,05

6,822

34,93

0,986

250

2,108

2,078

18,14

8,607

39,18

0,962

300

1,913

2,066

20,24

10,579

44,09

0,948

350

1,754

2,075

22,34

12,739

49,45

0,938

400

1,620

2,095

24,44

15,086

55,14

0,929

10

 0 1 000,301

 4,215

 1 789,28

 1,789

 561,57

 13,430

 50

 988,438

 4,177

 547,01

 0,553

 644,02

 3,548

 100

 958,775

 4,215

 281,99

 0,294

 679,59

 1,749

 150

 917,304

 4,309

 182,59

 0,199

 682,40

 1,153

200

4,854

2,429

15,89

3,274

37,21

1,037

250

4,297

2,212

18,05

4,200

40,52

0,985

300

3,876

2,141

20,19

5,207

44,96

0,961

350

3,540

2,123

22,31

6,303

50,07

0,946

400

3,262

2,128

24,42

7,488

55,62

0,935

20

 100

 959,242

 4,212

 282,25

 0,294

 680,14

 1,748

 150

 917,871

 4,305

 182,85

 0,199

 683,07

 1,152

 200

 865,007

 4,491

 134,43

 0,155

 663,72

 0,910

250

8,970

2,560

17,86

1,991

43,49

1,051

300

7,968

2,320

20,08

2,519

46,82

0,995

350

7,215

2,230

22,25

3,084

51,37

0,966

400

6,613

2,200

24,40

3,689

56,62

0,948

450

6,115

2,196

26,52

4,336

62,32

0,935

500

5,692

2,207

28,60

5,025

68,34

0,924

 Quelle [9.1]
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A5:

Stoffwerte des Wassers und Dampfes (Fortsetzung)

 p

ϑ

ρ

 c

η

ν

λ

 Pr

 P

bar

°C

kg/m3

kJ/(kg K) 10-6 kg/(m s)

m2/s

10-3 W/(m K)

-

50

 200

 867,27

 4,474

 666,329

 135,181

 0,156

 0,908

 250

 800,08

 4,851

 622,501

 106,400

 0,133

 0,829

300

22,05

3,171

53,848

19,799

0,898

1,166

350

19,24

2,661

22,127

1,150

55,989

1,052

400

17,29

2,459

24,369

1,410

60,062

0,998

450

15,79

2,371

26,550

1,681

65,105

0,967

500

14,58

2,333

28,681

1,967

70,743

0,946

550

13,57

2,321

30,766

2,267

76,794

0,930

600

12,71

2,324

32,810

2,582

83,135

0,917

100

 300

 715,29

 5,682

 86,461

 0,121

 550,675

 0,892

350

44,56

4,012

22,151

0,497

68,088

1,305

400

37,82

3,096

24,487

0,647

67,881

1,117

450

33,57

2,747

26,735

0,796

70,987

1,035

500

30,48

2,583

28,911

0,949

75,607

0,988

550

28,05

2,501

31,027

1,106

81,106

0,957

600

26,06

2,460

33,089

1,270

87,139

0,934

650

24,38

2,442

35,103

1,440

93,478

0,917

700

22,94

2,438

37,071

1,616

99,978

0,904

200

 300

 734,71

 5,317

 90,050

 0,123

 571,259

 0,838

 350

 600,65

 8,106

 69,309

 0,115

 463,199

 1,213

400

100,51

6,360

26,034

0,259

105,458

1,570

450

78,62

4,007

27,812

0,354

91,029

1,224

500

67,60

3,284

29,849

0,442

89,846

1,091

550

60,35

2,955

31,901

0,529

92,785

1,016

600

54,99

2,781

33,923

0,617

97,553

0,967

650

50,78

2,682

35,903

0,707

103,158

0,934

700

47,32

2,625

37,841

0,800

109,109

0,910

500

300

776,46

4,782

98,477

0,127

618,323

0,762

350

693,27

5,370

83,236

0,120

541,491

0,825

400

577,74

6,778

67,983

0,118

451,173

1,021

450

402,02

9,567

50,477

0,126

315,361

1,531

500

257,11

7,309

40,499

0,158

202,982

1,458

550

195,37

5,103

38,690

0,198

163,650

1,206

600

163,70

4,097

39,121

0,239

151,983

1,055

650

143,73

3,587

40,249

0,280

149,724

0,964

700

129,57

3,288

41,648

0,321

150,918

0,907

1 000

300

823,18

4,400

109,110

0,133

675,330

0,711

350

762,34

4,605

95,741

0,126

616,955

0,715

400

692,92

4,892

84,758

0,122

548,157

0,756

450

614,19

5,258

74,911

0,122

476,087

0,827

500

528,20

5,576

66,062

0,125

394,700

0,933

550

444,48

5,549

59,116

0,133

319,247

1,028

600

374,22

5,171

54,690

0,146

272,029

1,040

650

321,08

4,628

52,429

0,163

248,026

0,978

700

282,00

4,191

51,587

0,183

236,000

0,916

 Quelle [9.1]
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A6:

Stoffwerte des Frigens 134a auf der Sättigungslinie

 r

kJ/kg

222,8

219,5

216,2

213,0

209,5

206,0

202,4

198,6

194,7

190,7

186,6

182,2

177,8

173,1

168,2

163,0

157,6

151,8

145,7

139,1

132,0

124,3

115,9

106,4

 Pr'' 

0,835

0,830

0,822

0,820

0,819

0,821

0,823

0,827

0,832

0,839

0,846

0,856

0,867

0,879

0,894

0,911

0,932

0,957

0,987

1,030

1,070

1,140

1,230

1,370

-

 Pr' 

4,71

4,54

4,39

4,26

4,13

4,01

3,90

3,80

3,70

3,61

3,53

3,46

3,39

3,33

3,27

3,22

3,18

3,14

3,12

3,10

3,10

3,12

3,16

3,24

ν '' 

/s

2,700

2,196

1,806

1,498

1,253

1,055

0,895

0,764

0,656

0,567

0,492

0,429

0,375

0,330

0,291

0,257

0,228

0,203

0,181

0,162

0,145

0,130

0,117

0,105

2

m-60

ν ' 

1

0,289

0,274

0,261

0,248

0,236

0,225

0,215

0,205

0,196

0,187

0,178

0,170

0,163

0,155

0,149

0,142

0,136

0,129

0,124

0,118

0,112

0,107

0,102

0,097

η '' 

9,507

9,719

9,946

10,160

10,380

10,590

10,810

11,020

11,240

11,460

11,680

11,910

12,140

12,380

12,630

12,890

13,170

13,470

13,790

14,150

14,560

15,040

15,600

16,310

kg/(m s)

η ' 

-6 01

98,1

89,7

405,6

381,1

358,4

337,2

317,4

298,9

281,6

265,3

249,9

235,4

221,7

208,7

196,3

184,6

173,4

162,7

152,5

142,7

133,2

124,1

115,2

106,6

 p

 c'' 

K)

0,765

0,781

0,798

0,816

0,835

0,854

0,875

0,897

0,921

0,946

0,972

1,001

1,032

1,065

1,103

1,145

1,192

1,246

1,310

1,387

1,482

1,605

1,771

2,012

 ' p

kJ/(kg 

 c

1,264

1,273

1,283

1,293

1,304

1,316

1,328

1,341

1,355

1,370

1,387

1,405

1,425

1,446

1,471

1,498

1,530

1,566

1,609

1,660

1,723

1,804

1,911

2,065

λ '' 

8,70

9,14

9,66

10,11

10,57

11,03

11,49

11,96

12,43

12,92

13,42

13,93

14,46

15,01

15,58

16,19

16,84

17,54

18,30

19,14

20,09

21,17

22,44

24,00

λ ' 

W/(m K)-3

10

108,9

106,8

104,6

102,4

100,2

98,06

95,87

93,67

91,46

89,25

87,02

84,78

82,53

80,27

77,98

75,69

73,37

71,05

68,71

66,36

64,02

61,69

59,39

57,15

ρ '' 

3,521

4,426

5,506

6,785

8,287

3

10,041

12,077

14,428

17,131

20,226

23,758

27,780

32,350

37,535

43,416

50,085

57,657

66,272

76,104

87,379

100,400

115,570

133,490

155,080

kg/m

ρ ' 

403,10

388,40

373,40

358,30

342,80

327,10

311,10

294,80

278,10

243,40

225,30

206,70

187,50

167,50

146,70

125,10

102,30

078,30

052,90

025,60

996,25

964,09

928,24

1   1   1   1   1   1   1   1   1   1261,00

1   1   1   1   1   1   1   1   1   1   1  

 p

arb

0,662

0,844

1,064

1,327

1,639

2,006

2,433

2,928

3,496

4,146

4,883

5,717

6,653

7,701

8,869

10,165

11,598

13,177

14,913

16,816

18,896

21,167

23,641

26,332

ϑ

0

5

°C

–5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

–35

–30

–25

–20

–15

–10

 Quelle [9.3]
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A6:

Stoffwerte des Frigens 134a auf der Sättigungslinie

(Fortsetzung)

Näherungsformel für den Sättigungsdruck und die Dichte des gesättigten Dampfes. 

Gültig von –35 bis +80 °C. 

Näherungspolynome für den Bereich von –35 °C bis +80 °C. 

6

¦ Ci ⋅ϑ i  mit

 R

ϑ R = ϑ /ϑ krit = ϑ /1



05

, 

01

C

°

 i = 0

ρ ' 

ρ '' 

λ ' 

λ '' 

 c' 

 c'' 

 p

 p

 C

1294,8000

14,432

93,6610

11,96200

1,3412

0,8975

0

 C

–333,1800

50,335

–44,4710

9,46000

0,2586

0,4325

1

 C

–74,8070

71,630

–1,3931

1,37592

0,1849

0,2574

2

 C

–2,0400

5,0382

0,6391

0,95450

–123,7600

2,0974

3

 C

–18,4720

14,333

–2,9691

–0,95880

–0,0769

–0,1909

4

 C

76,9178

–79,744

4,3914

–7,73060

–2,5225

–4,0597

5

 C

–159,0400

163,240

1,5307

16,07700

3,6497

5,9750

6

Ergebnis in

kg/m3

kg/m3

10-3 W/(m K)

10-3 W/(m K)

kJ/(kg K)

kJ/(kg K)

Std.-Abw. %

0,005

0,405

0,013

0,078

0,086

0,184

η ' 

η '' 

 Pr' 

 Pr' 

 r

10–6 kg/(m s)

10–6 kg/(m s)

-

-

kJ/kg

 C

265,2700

11,0235

3,7977

0,8271

198,6140

0

 C

–319,7300

4,3362

–2,0036

0,0735

–76,8680

1

 C

192,6100

0,2324

1,4628

0,2551

–26,1190

2

 C

–123,7600

2,0974

–0,2527

0,4615

–14,8650

3

 C

77,2810

0,1718

0,7457

0,1096

0,7774

4

 C

–42,575

–5,3073

–2,8296

–3,0793

–11,9400

5

 C

4,5818

9,1226

3,3467

4,0928

–16,9020

6

Ergebnis in 10–6 kg/(m s)

10–6 kg/(m s)

-

-

kJ/kg

Std.-Abw. in % 0,013

0,025

0,063

0,228

0,025

Wichtig: Nicht für Temperaturen, die unter –35 °C bzw. über +80 °C liegen, verwenden. 
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A7:

Stoffwerte der Luft bei 1 bar Druck

ϑ

ρ

λ

 c

η

ν

 Pr

 a

 p

°C

kg/m3

10-3 W/(m K)

J/(kg K) 10-6 kg/(m s) 10-6 m2 / s

-

10-9 m2/s

–8 0

1,807

17,74

1 009

12,94

7,16

0,7357

9,73

–6 0

1,636

19,41

1 007

14,07

8,60

0,7301

11,78

–4 0

1,495

21,04

1 007

15,16

10,14

0,7258

13,97

–3 0

1,433

21,84

1 007

15,70

10,95

0,7236

15,13

–2 0

1,377

22,63

1 007

16,22

11,78

0,7215

16,33

–1 0

1,324

23,41

1 006

16,74

12,64

0,7196

17,57

0

1,275

24,18

1 006

17,24

13,52

0,7179

18,83

1 0

1,230

24,94

1 007

17,74

14,42

0,7163

20,14

2 0

1,188

25,69

1 007

18,24

15,35

0,7148

21,47

3 0

1,149

26,43

1 007

18,72

16,30

0,7134

22,84

4 0

1,112

27,16

1 007

19,20

17,26

0,7122

24,24

6 0

1,045

28,60

1 009

20,14

19,27

0,7100

27,13

8 0

0,9859

30,01

1 010

21,05

21,35

0,7083

30,14

100

0,9329

31,39

1 012

21,94

23,51

0,7070

33,26

120

0,8854

32,75

1 014

22,80

25,75

0,7060

36,48

140

0,8425

34,08

1 016

23,65

28,07

0,7054

39,80

160

0,8036

35,39

1 019

24,48

30,46

0,7050

43,21

180

0,7681

36,68

1 022

25,29

32,93

0,7049

46,71

200

0,7356

37,95

1 026

26,09

35,47

0,7051

50,30

250

0,6653

41,06

1 035

28,02

42,11

0,7063

59,62

300

0,6072

44,09

1 046

29,86

49,18

0,7083

69,43

350

0,5585

47,05

1 057

31,64

56,65

0,7109

79,68

400

0,5170

49,96

1 069

33,35

64,51

0,7137

90,38

450

0,4813

52,82

1 081

35,01

72,74

0,7166

101,5 0

500

0,4502

55,64

1 093

36,62

81,35

0,7194

113,1 0

550

0,4228

58,41

1 105

38,19

90,31

0,7221

125,1 0

600

0,3986

61,14

1 116

39,17

99,63

0,7247

137,5 0

650

0,3770

63,83

1 126

41,20

109,30

0,7271

150,3 0

700

0,3576

66,46

1 137

42,66

119,30

0,7295

163,5 0

750

0,3402

69,03

1 146

44,08

129,60

0,7318

177,1 0

800

0,3243

71,54

1 155

45,48

140,20

0,7342

191,00

850

0,3099

73,98

1 163

46,85

151,20

0,7368

205,20

900

0,2967

76,33

1 171

48,19

162,40

0,7395

219,70

1 000

0,2734

80,77

1 185

50,82

185,90

0,7458

249,20

 Quelle: [9,3]

Formel für die oberen Stoffwerte von –80 °C bis 1 000 °C mit  ϑ = ϑ /1 000 ⋅ K



 R

1

3

 ȡ

 p /  R T

348 ,  68  T −

=

⋅ =

⋅

⋅ K ⋅ kg/m ± 0,066 %

5

 i

¦ C ⋅ϑ mit ϑ =ϑ /ϑ =ϑ /1000 K

 i

 R

 R

 krit

 i =0

λ

 c

η

ν

 Pr

 a

 p

 C

24,18

1006,3

17,23

13,53

0,718

18,84

0

 C

76,34

7,4

50,33

89,11

–0,166

128,72

1

 C

–48,26

525,6

–34,17

111,36

0,686

168,71

2

 C

62,81

–334,5

24,22

–48,80

–0,954

–160,40

3

 C

–45,68

–195,2

–4,11

28,60

0,581

155,62

4

 C

11,39

175,6

–2,67

–7,91

–0,117

–62,31

5

Ergebnis in

10-3 W/(m K)

J/(kg K) 10-6 kg/(m s) 10-6 m2/s

-

10-8 m2/s

Std.-Abw. in %

0,013

0,036

0,225

0,062

0,063

0,050
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A8:

Stoffwerte der Feststoffe


Metalle und Legierungen

ϑ

ρ

 c

λ

 a

 p

°C

kg/m3

J/(kg K)

W/(m K)

10-6 .  m2/s

Aluminium

20

2 700

945

238

93,4

Blei

20

11 340

131

35,3

23,8

Bronze (6 Sn, 9 Zn, 84 Cu, 1 Pb)

20

8 800

377

61,7

18,6

Eisen

Gusseisen 3 % C

20

7 870

450

58

14,7

Stahl ST 37.8

20

7 830

430

57

16,9

Cr-Ni-Stahl 1.4541

20

7 900

470

15

4,1

Cr-Stahl X8 Cr7

20

7 700

460

25,1

7,1

Gold (rein)

20

19 290

128

295

119

Kupfer (rein)

20

8 960

385

394

114

Baustoffe

Ziegelmauerwerk

20

1 400

840

0,79

0,49

1 800

840

0,81

0,54

Verputz

20

1 690

800

0,79

0,25

Tanne, radial

20

600

2 700

0,14

0,09

Sperrholz

20

800

2 000

0,15

0,09

Korkplatten

30

190

1 880

0,041

0,11

Mineralwolle

50

200

920

0,064

0,25

Glaswolle

0

200

660

0,037

0,28

Steine und Gläser

Erdreich

20

2 040

1 840

0,59

0,16

Schamottsteine

100

1 700

840

0,50

0,35

Quarz

20

2 100

780

1,40

0,72

Sandstein

20

2 150

710

1,60

1,00

Marmor

20

2 500

810

2,80

1,30

Granit

20

2 750

890

2,90

1,20

Fensterglas

20

2 480

700

1,16

0,50

Pyrexglas

20

2 240

774

1,06

0,61

Quarzglas

20

2 210

730

1,40

0,87

Kunststoffe

Polyamide

20

1 130

2 300

0,280

0,12

Polytetrafluoräthylen  (Teflon)

20

2 200

1 040

0,230

0,10

Gummi, weich

20

1 100

1 670

0,160

0,09

Styroporschaumstoff

20

15

1 250

0,029

0,36

Polyvinylchlorid (PVC)

20

1 380

960

0,150

0,11

 Quellen [9.1, 9.3]
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A9:

Stoffwerte technischer Wärmeträger auf Mineralölbasis

Stoff

Hersteller Anwendungs-

ρ

 c

ν

λ

 p

Bereich

°C

kg/m3

kJ/(kg K)

10-6 m2/s

W/(m K)

Farolin U

Aral

–10

886

1,80

15,8

0,135

325

682

3,10

0,60

0,113

Farolin S

Aral

–25

931

1,66

1 396

0,129



305

710

2,93

0,52

0,113

Farolin T

Aral

–30

914

1,74

91,9

0,132

300

695

2,84

0,56

0,111

Thermofluid A

AVIA

–25

947

1,70

804

0,133

250

751

2,68

0,52

0,114

Thermofluid B

AVIA

0

878

1,81

300

0,136

310

688

2,94

0,59

0,113

Transcal N

BP

0

889

1,95

310

0,135

320

680

3,04

0,56

0,115

Transcal LT

BP

–20

900

1,80

300

0,136

260

732

2,77

0,49

0,118

Deacal A 12

Shell & 

0

882

1,75

82,6

0,135

DEA

250

720

2,67

0,53

0,117

Deacal 32

Shell & 

0

887

1,78

310

0,135

DEA

270

711

2,78

0,68

0,115

Deacal 46

Shell & 

0

885

1,80

604

0,133

DEA

280

709

2,81

0,84

0,113

Thermalöl S

Esso

–10

893

1,80

47,3

0,134

240

731

2,67

0,52

0,116

Thermalöl T

Esso

0

877

1,81

285

0,135

320

670

3,01

0,6

0,112

Essotherm 650

Esso

0

909

1,77

15 803

0,130



320

702

2,92

1,34

0,108

Caloran 32

Fina

0

883

1,86

300

0,134

320

648

3,25

0,62

0,111

Mobiltherm 594

Mobil Oil

–44

914

1,64

300

0,135

250

724

2,70

0,42

0,116

Mobiltherm 603

Mobil Oil

–8

876

1,79

300

0,137

300

677

2,98

0,52

0,113

Thermia Öl A

Shell

–25

917

1,71

300

0,133

250

751

2,68

0,52

0,114

Thermia Öl B

Shell

–2

878

1,81

300

0,136

310

688

2,93

0,59

0,113

Mihatherm WU 10

SRS

–20

914

1,69

341

0,133

250

752

2,80

0,50

0,113

Mihatherm WU 46

SRS

0

883

1,81

529

0,135

320

678

2,97

0,60

0,112

 Quelle [9.3]
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A10:

Stoffwerte der Kraftstoffe bei 1,013 bar

Benzin

ϑ

ρ

 c

λ

η

 a

 Pr

 p

°C

kg/m3 J/(kg K)

W/(m K)

10-6 kg/(m s) 10-8 m/s

–50

775

2 051

0,142

0,981

8,89

14,20



–25

755

2 093

0,141

0,686

8,89

10,20



0

735

2 135

0,140

0,510

8,89

7,80

20

720

2 198

0,140

0,402

8,83

6,30

50

690

2 260

0,143

0,294

9,17

4,65

100

650

2 286

0,136

0,196

8,75

3,45



 Quelle [9.3]

Heizöl S

ϑ

ρ

 c

λ

η

 a

 Pr

 p

°C

kg/m3 J/(kg K) W/(m K)

10-3 kg/(m s)

10-8 m2/s

-

80

910

2 040

0,1190

67,34

6,41

1 155

90

904

2 080

0,1180

44,30

6,28

780

100

898

2 120

0,1170

30,53

6,15

553

110

892

2 160

0,1160

22,30

6,02

415

120

885

2 205

0,1155

16,46

5,92

314

130

879

2 250

0,1150

12,31

5,81

240

140

873

2 280

0,1143

9,34

5,74

186

150

867

2 310

0,1136

7,28

5,67

148

160

861

2 350

0,1129

5,94

5,58

124

170

855

2 390

0,1122

5,13

5,49

109

180

850

2 430

0,1115

4,68

5,40

102

 Quelle [9.1]
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A11:

Emissionskoeffizienten verschiedener Oberflächen


1. Metalle

Temperatur


ε

ε

 n

K

Aluminium, walzblank

443

0,039

0,049

773

0,050

-, hochglanzpoliert

500

0,039

850

0,057

-, oxidiert bei 872 K

472

0,110

872

0,190

-, stark oxidiert

366

0,200

777

0,310

Aluminiumoxid

550

0,630

1 100

0,260

Blei, grau oxidiert

297

0,280

Chrom, poliert

423

0,058

0,071

1 089

0,360



Gold, hochglanzpoliert

500

0,018

900

0,035

Kupfer, poliert

293

0,030

-, leicht angelaufen

293

0,037

-, schwarz oxidiert

293

0,780

-, oxidiert

403

0,760

-, geschabt

293

0,070

Inconel, gewalzt

1 089

0,690



-, sandgestrahlt

1 089

0,790



Gusseisen, poliert

473

0,210

Stahlguss, poliert

1 044

0,520



1 311

0,56



oxidierte Oberflächen:

Eisenblech

-, rot angerostet

293

0,612

-, stark verrostet

292

0,685

-, Walzhaut

294

0,657

Stahlblech, dicke raue Oxidschicht

297

0,800

Gusseisen, raue Oberfläche, stark oxidiert

311 bis 522

0,950

Magnesium, poliert

311

0,070

811

0,180

Magnesiumoxid

550

0,550

1 100

0,200



Messing, nicht oxidiert

298

0,035

373

0,035

-, oxidiert

473

0,610

873

0,590

Nickel, nicht oxidiert

298

0,045

373

0,060

-, oxidiert

473

0,370

873

0,478
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Emissionskoeffizienten verschiedener Oberflächen (Forts.)

Temperatur

ε

ε

 n

K

Platin

422

0,022

1 089

0,123



Quecksilber, nicht oxidiert

298

0,100

373

0,120

Silber, poliert

311

0,022

644

0,031

Titan, oxidiert

644

0,540

1 089

0,590



Uranoxid (U O )

1 300

0,790

3

8



1 600

0,780



Wolfram

298

0,024

773

0,071

1 273

0,150



1 773

0,230



verzinktes Eisenblech

-, blank

301

0,228

-, grau oxidiert

297

0,276


2. Nichtmetalle

Asbest, Pappe

296

0,960

-, Papier

311

0,930

644

0,940

Beton, rau

273 bis 366

Dachpappe

294

0,910

Gips

293

0,8 bis 0,9

Glas

293

0,940

Quarzglas (7 mm dick)

555

0,930

1 111

0,470

Gummi

293

0,920

Holz, Eiche, gehobelt

273 bis 366

0,900

-, Buche

343

0,940

0,910

Keramik, feuerfest, weißes Al O

366

0,900

2

3

Kohlenstoff, nicht oxidiert

298

0,810

773

0,790

-, Fasern

533

0,950

-, graphitisch

373

0,760

773

0,710

Korund, Schmirgel, rau

353

0,850

0,840
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Emissionskoeffizienten verschiedener Oberflächen (Forts.)


3. Lacke, Farben

Temperatur


ε

ε

 n

K

Ölfarbe, schwarz

366

0,920

-, grün

366

0,950

-, rot

366

0,970

-, weiß

366

0,940

Lack, weiß

373

0,925

-, matt, schwarz

353

0,970

Bakelitlack

353

0,935

Mennigeanstrich

373

0,930

Heizkörper (nach VDI-74)

373

0,925

Emaille, weiß auf Eisen

292

0,897

Marmor, hellgrau poliert

273 bis   366

0,900

Papier

273

0,920

366

0,940

Porzellan, weiß

295

0,924

Ton, glasiert

298

0,900

-, matt

298

0,930

Wasser

273

0,950

373

0,960

Eis, glatt mit Wasser

273

0,966

0,920

-, rauer Reifbelag

273

0,985

Ziegelstein, rot

273 bis 366

0,930

 Quelle [9.3]
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Energiebilanzgleichungen

 dϑ

 V

⋅ ρ ⋅ c

=  Q +  Q

+  m ⋅( h −  h )

 KV

 p

12

 Quelle

2

1

transient

 dt

 Q +  Q

=  m ⋅( h −  h ) =  m⋅ c ⋅(ϑ −ϑ )     stationär 12

 Quelle

2

1

 p

2

1

Kinetische Koppelungsgleichungen

ϑ2

δ Q =α ⋅(ϑ −ϑ )⋅ dA

ϑ

α

12

2

2

 W  2

2

 W  2

W

 . 

α

 Q

2

12

δ Q = α ⋅(ϑ −ϑ )⋅ dA

12

 W

 W  2

 W  1

 W

ϑ W  1 α

δ

1

 Q

 =α ⋅(ϑ ϑ

− )⋅ dA

12

1

1

 W

1

1

ϑ1

δ Q =  k ⋅(ϑ −ϑ )⋅ dA

12

2

1

1

Wärmeleitung in Festkörpern

 Ebene Wände

 s

α = λ /  s

ϑ

 i

 i

 i

f1

 A

αf1ϑ1

Fluid 2

1

1

 n

1

1

1

 n

 s

1

 i

=

+ ¦

+

=

+ ¦ +

. 

 Q

 k

α

ϑ

= α

α

α

= λ

α

2

 f  1

 i  1

 Wi

 f  2

 f  1

 i  1

 i

 f  2

Fluid 1

α f2

ϑ −ϑ

ϑ −ϑ

ϑf2

 f  1

1

 k

=

ϑ −ϑ

 k

 k

 i

 i +1

=

2

 f  2

=

ϑ −ϑ

α       ϑ

ϑ −ϑ

α

1 − ϑ 2

α

 f  1

 f  2

 f  1

 f

 f

 Wi

 f  1

 f  2

 f  2

 x

 x

 x

1

2

 Hohlzylinder

2 ⋅ λ i

α =

 . 

 i

 r

 r

 Q

 d

⋅ln( d /  d )

1

 r

 n  1

+

 i  1

+

 i

2

1

 d

1

 i= n d

1

ϑ

 n  1

+

 n  1

=

⋅

+

+

¦

⋅ln( d /  d )

 f 1

ϑ

+

+

1

 i  1

α

 k

 d

α

2

 i

 f 1

ϑ α

=

⋅λ

α

1

 f  1

 i  1

 i

 f  2

2

 f  2

ϑ f 2

ϑ −ϑ

+

ϑ −ϑ

ϑ

+

+

+ − ϑ

 f  1

1

 d

 k

 d

 k

 n  1

 f  2

 k

 n  1

 i

 i  1

 n  1

=

⋅

=

⋅

=

ϑ −ϑ

 d

α

ϑ −ϑ

 d

α

ϑ −ϑ

α

 f  1

 f  2

1

 f  1

 f  1

 f  2

 i

 Wa

 f  1

 f  2

 f  2
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 Hohlkugel

 r 2

. 

2 ⋅ λ

 Q

α

 r 1  r

 Wa =  d ⋅( d /  d − )

1

2

2

1

2

1

 d

1

 i n d

+

+ ⋅ ( d

/  d

+

−  d /  d )

1

 n  1

 n  1

 n  1

 i

 n  1

+

 i  1

=

⋅

+ ¦

=

+

+

ϑ

2

 f  1

 k

 d

α

2⋅

ϑ

=

λ

α

1

α

 f  1

 i  1

 i

2

1

 f

 f  2

α

ϑ

 f  1

2

ϑ

2

2

ϑ −ϑ

 f  2

+

ϑ −ϑ

ϑ

+

+

+ −ϑ

 f  1

1

 d

 k

 d

 k

 n  1

 f  2

 k

 n  1

 i

 i  1

 n  1

=

⋅

=

⋅

=

2

2

ϑ −ϑ

 d

α

ϑ −ϑ

 d

α

ϑ −ϑ

α

 f  1

 f  2

 f  1

 f  1

 f  2

 i

 Wa

 f  1

 f  2

2

1

 f

Instationäre Wärmeleitung

ϑ −ϑ

 Dimensionslose Temperatur Θ  :

∞

Θ = ϑ A −ϑ∞

 Biotzahl:

 Bi = α ⋅  s / λ

 Fourierzahl:

2

 Fo =  a ⋅  t /  s

Siehe Digramme S. 50 bis 52

 Kontakttemperatur:

1

−

§

· §

·

λ ⋅ ρ ⋅ c

λ ρ  c

 p

⋅

⋅

2

2

2

2

2

 p  2

¨

¸ ¨

¸

ϑ

ϑ

ϑ

 K =

 A +

⋅  A ⋅ 1+

1

2

¨

λ ρ  c

¸ ¨

λ ρ  c ¸

⋅ ⋅  p

⋅ ⋅

1

1

1

1

1

1

©

¹ ©

 p

¹

 Abkühlung eines kleinen Körpers in einem großen Bad

α ⋅ A

−

 t

⋅

⋅

1

 m c  1

(ϑ −ϑ ) = (ϑ −ϑ )

 p

⋅ e

1

 A  2

1

 A

 A 2
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Erzwungene Konvektion

 Kennzahlen

 d = 4 ⋅  A /  U

geschlossene Kanäle

 h

 c ⋅  L

 Re =

 L =  l

ebene Fläche  L = Strömungsweg

 L

ν

 L ' =  A /  U

angeströmter Einzelkörper

 proj

α ⋅  L

 Nu =

 L

λ

ν η ⋅ cp

 Pr =

=

 a

λ

 Geschlossene Kanäle

2/3

 Re ⋅  Pr

ξ

ª

º

§

·

⋅

 ⋅

 d

 d

 c d

 m d

 h

 Nu

 =

⋅

⋅ 1

 h

 h

 h

« + ¨ ¸ » ⋅  f

 Re =

=

 d ,  turb

2

 d

 h

2/3

8 1+12,7⋅ ξ / 8 ⋅ ( Pr −1)

 h

« ©  L ¹

¬

»

ν

 A⋅η

¼

0,11

2

( Pr /  Pr )

ξ

−

= 1

ª ,8⋅log( Re ) −1,5

 W

º

 f =

 d

2

¬

¼

 h

0,45

( T /  T )

 W

 Re − 2300

 d

3

3

1,5

 h

3

 Nu

= 3,66 + 0,664 ⋅  Pr ⋅ (Re ⋅  d /  L)       γ =

 d ,  lam

 d

 h

 h

 h

7 700

 Nu

wenn   Re

≤ 2300

 d , 

 h lam

 dh

 Nu

=  Nu

wenn   Re

≥10000

 d

 d ,  turb

 d

 h

 h

 h

(1− γ ) ⋅  Nu

( Re

= 2300) + γ ⋅  Nu

( Re

= 10000) sonst

 d ,  lam

 d

 d , 

 h

 h

 h turb

 dh

 Ebene Wand

3

 Nu

= 0,644⋅  Pr ⋅  Re

 l ,  lam

 L

0,8

0,25

0, 037 ⋅  Re ⋅  Pr

­°( Pr /  Pr )

für Flüssigkeiten

 L

 W

 Nu

=

⋅ ®

 l ,  turb

0, 

− 1

2/ 3

1 + 2, 443⋅  Re

⋅( Pr −1) 1

°¯



für Gase

 L

2

2

 Nu =  Nu

+  Nu

 l

 l ,  lam

 l ,  turb
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 Quer angeströmte Einzelkörper:

2

Kugel

 NuL′ =

,0

0, 3

Zylinder

3

 Nu

= 0,664⋅  Pr ⋅  Re

für 1 <  Re

< 1000

 L′,  lam

 L′

 L′

0,8

0,48

5

7

 Nu

= 0,037⋅  Re ⋅  Pr

⋅  f

für 10 <  Re < 10

 L′,  turb

 L′

4

 L′

2

2

 Nu =  Nu

+  Nu

+  Nu

 L′

 L′,0

 L′,  lam

 L′,  turb

0,25

 f = ( Pr /  Pr )

für Flüssigkeiten und 

0 121

, 

 f = ( T /  T )

für Gase

4

 W

4

 W

 Quer angeströmte Rohrbündel:

 a =  s  /  d ,  b =  s  /  d         s  Rohrteilung senkrecht zur Ströung,  s  parallel dazu 1

 a

2

 a

1

2

2

 V

π ⋅ d ⋅ l

π

1

 fest

−

= 1−

= 1−

für  b ≥ 1

 V

4 ⋅  s ⋅  d ⋅  l

4 ⋅  b

1

Ψ =

2

 V

π ⋅ d ⋅ l

π

1

 fest

−

= 1−

= 1−

für  b < 1

Ψ

 c =  c Ψ

/

0

 V

4 ⋅  s ⋅  s ⋅  l

4 ⋅  a ⋅ b

1

2

 c ⋅  L′

 Re

Ψ

=

 Nu

=  Nu ( Re

)

Ψ ,  L′

Ψ ,  L′

 L′

Ψ ,  L

ν

′

0, 7 ⋅ ( b /  a − 0,3)

1+

fluchtende 

Anordnung

1,5

2

Ψ ⋅( b /  a + 0,7)

 f =

 A

2

1+



versetzte Anordnung

3⋅ b

2

074423 + 0,8⋅  n − 0, 006 ⋅  n

wenn  n ≤ 5

 f =

 n

0, 018 + exp[0,0004⋅( n − 6) − ]

1

wenn  n ≥ 6

 Nu

= α ⋅  L′ / λ =  Nu ⋅  f ⋅  f

 Nu

= α ⋅  L′ / λ =  Nu ⋅  f ⋅  f

 Bündel

 L′

 A

 n

 Rohrreihe

 L′

 A

 j
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 t

 s

 R

Rippenrohr

 d

 d a

 D

 Q =  k ⋅  A⋅ ϑ

Δ  m

1

 A

1

 d

 d

 d

1

 a

 a

 a

=

⋅

+

⋅ln

+

⋅

 k

 A +  A ⋅

⋅

0

η α

2 λ

 d

 d

α

 Ri

 Ri

 a

 R

 i

 i

 i

tanh  X

2 ⋅α

η

 d

=

 X

 a

 a

= ϕ ⋅

⋅

 Ri

 X

2

λ ⋅  s

 Kreisrippen

ϕ = ( D /  d − )

1 ⋅ +

⋅  D d

 a

[1 35

, 

0

ln(

/

)

 a ]

 Rechteckrippen

ϕ = (ϕ′ − )

1 ⋅[1+ 35

, 

0

⋅lnϕ ]′ mit ϕ′ = ,128⋅( b /  d )  l b

 R

 a

⋅

/

 R

 R −

, 

0 2

 Zusammenhängende Rippen

ϕ = (ϕ′ −1)⋅[1+ 0,35⋅lnϕ′]

mit ϕ′ = 1, 27 ⋅ ( b /  d ) ⋅  l /  b − 0,3

 R

 a

 R

 R

 Gerade Rippen auf ebener Grundfläche     ϕ = 2 ⋅  h /  da

 Rohrbündel mit Kreisrippenrohren

 Nu

=  C ⋅  Re 0,6 ⋅ ( A +  A ) /  A −0 15

, 

0

⋅  Pr 1/3 ⋅  f 4 ⋅  f

 d

 d

 a

 a

[  Ri

]

 n

 C = 0,2  fluchtend,  C = 0,38 versetzt

 A = π ⋅  d ⋅ l             A = π ⋅  d ⋅ l ⋅ 1

( −  s /  t )

 a

0

 a

 R

π

 l

 A = 2 ⋅

⋅( D 2 −  d  2)⋅

 Ri

 a

4

 tR

 A

 d

 Ri

2

= ª( D /  d ) −1

 a

º ⋅

¬

 a

¼

 A

2 ⋅ tR

1

−

ª

1

 s ⋅ ( D −  d ) º

 c ⋅ (1

« − )

 a

−

wenn  b

»

≥ 1

0

 a

 s

¬

⋅ t

1

 R

¼

 c ⋅  d

 e

 a

 c =

 Re =

 e

1

−

ª

⋅ ⋅

−

º

ν

2

2  s ( D d )

2

 c ⋅

1

« + (2⋅ b /  a)

 a

− −

wenn  b

»

< 1

0

 a

 s

¬

⋅ t

1

 R

¼
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Freie Konvektion

 Vertikale Wände:

3

 g ⋅  L ⋅ β ⋅ (ϑ −ϑ )

1

 W

0

 Gr =

mit

β =

für ideale Gase

2

ν

 T 0

 L =  A /  U

 Ra =  Gr ⋅  Pr

 proj

−

 Nu

{

( Gr Pr) (

 Pr −

=

+

⋅

⋅

⋅ +

⋅

) }2

8/ 27

1/ 6

9/16

0,825 0,387

1 0, 671

 l

 Geneigte Wände

 Ra ⋅ cosα

wenn  Ra ≥  Rac

 Nu =

 l

1/ 4

1/3

1/ 3

0,56 ⋅ ( Ra ⋅ cosα )

+ 0,13⋅ ª( Ra ⋅cos

¬

α) −  Ra º

wenn  Ra >  Ra

 c

 c

¼

 c

 Horizontale Zylinder

2

1/ 6

9/16

8

− / 27

 Nu = ª 0, 752 + 0,387 ⋅  Ra ⋅ (1+ 0, 721⋅  Pr−

)

º

 L ' 

¬

 L ' 

¼

Kondensation

 Kondensation an senkrechten Flächen und waagerechten Rohren

2

ν

 m



Γ

 l

3

 L′ =

 l

Γ =

 Re =

 l

 g

 b

η l

bei senkrechten Wänden die Breite der Wand:

 b = b

bei senkrechten Rohren die Summe der Rohrumfänge:

 b =  n .  π .   d

bei waagerechten Rohren die Summe der Rohrlängen:

 b =  n .   l

 Lokale Wärmeübergangszahlen

1/ 3

§1− ρ / ρ ·

7 / 24

1/3

0, 0283⋅  Re

⋅  Pr

 Nu

= 0,693

 g

 l

⋅¨

¸ ⋅  f

 l

 l

 Nu

=

 L ',  lam,  x

 well             

 L' ,  turb,  x

 Re

©

−3/8

−1/6

1 + 9, 66 ⋅  Re

 Pr

 l

¹

 l

 l

­1

für

 Rel < 1

 f well = ®¯  0,04

 Re

für

 Re

 l

 l ≥ 1

α ⋅  L′

 x

2

2

0,25

 Nu

=

=  Nu

+  Nu

⋅(η /η )

 L' ,  x

 L ,  lam,  x

 L ,  turb,  x

 ls

 lW

λ

′

′

 l
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 Mittlere Wärmeübergangszahlen

1/ 3

§ (1− ρ / ρ ) ·

7 / 24

1/ 3

0, 020 ⋅  Re

⋅  Pr

 Nu

= 0,925

 g

 l

⋅¨

¸ ⋅  f

 l

 l

 Nu

=

 L' ,  lam

 well          

 L' ,  turb

 Re

©

3/

− 8

1

− /6

1 + 20,52 ⋅  Re

 Pr

 l

¹

 l

 l

α ⋅  L′

1,2

1,2

0,25

1,2

 Nu =

=  Nu

+  Nu

⋅(η /η )

 L' 

 L ,  lam

 L ,  turb

 ls

 lW

λ

′

′

 l

 Kondensation bei der Strömung in Rohren

 Lokale Wärmeübergangszahl bei abwärtsgerichteter Dampfströmung

*

*

1/ 3

2

2

 Nu

= 1

( +τ )

⋅ ( C ⋅  Nu

) + ( C

 Nu

)

 L′

⋅

,  x

 ZP

 lam

 L′,  lam,  x

 turb

 L′,  turb,  x

2

τ

ζ ⋅ ρ ⋅ c

 c ⋅  d

*

 g

 g

 g

 g

τ =

τ =

0, 

− 2

ζ = 0,184

 g

 i

⋅  Re

 Re =

 g

 g

          g

 g

 g

 g ⋅ ρ ⋅δ +

8

ν

 l

 g

°­ 30

, 

0

für

*

τ  g ≤1

*

*

*

τ = τ ⋅[1+ 550⋅  F ⋅(τ ) a ]       a = ®

 ZP

 g

 ZP

°¯ 85

, 

0

für

*

τ  g > 1

0,5

0 9

max ª(2 ⋅  Re ) ; 0,132

 , 

⋅  Re º

¬

¼ η

ρ

 l

 l

 g

 l

 F =

⋅

⋅

0 9

 , 

 Re

η

ρ

 g

 g

 l

 C

= 1+ ( 0,56

 Pr

− )

1 ⋅ tanh( *

τ )

 C

= 1+ ( 0,08

 Pr

− )

1 ⋅ tanh( *

τ )

 lam

 l

 ZP

 turb

 l

 ZP

δ +

6, 59 ⋅  F

=

 d

1+1 400⋅  F

 Lokale Wärmeübergangszahl bei aufwärtsgerichteter Dampfströmung

*

*

*

τ =τ ⋅[1+1 400⋅(τ ) a ]

 ZP

 g

 ZP

+

*

+ 2

τ ⋅δ

τ ⋅ ρ ⋅  g ⋅(δ )

 ZP

 ZP

 l

 We =

=

muss kleiner als 0,01 sein

σ

σ

 l

 l
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 Lokale Wärmeübergangszahl in waagerechten Rohren

1/ 3

*

*

2

2

 Nu

= τ

⋅ ( C ⋅  Nu

) + ( C

 Nu

)

 L , 

′

⋅

 x

 g

 lam

 L′,  lam,  x

 turb

 L , 

′  turb,  x

⋅  m ⋅

ε

4

 x

= −

1

1

δ = 0, 25⋅ (1− ε ) ⋅  d          cg =

 i

2

+

1

ρ

 d

 g ⋅ π ⋅ (

 i − 2 ⋅ δ )

1

, 

8 48 ⋅  F

184

, 

0

⋅  Re−0,2

τ

 g

τ =

⋅

*

 g

 c 2 ⋅ ρ

τ =

⋅(1+ 850⋅  F)

 g

 g

 g             

 g

8

 g ⋅ ρ ⋅δ

 l

Verdampfung

 Blasenssieden

2 ⋅σ

 q

 q

α ⋅  d

 d = , 

0 0149

0

⋅ β ⋅

α =

=

 B

 A

 Nu

=

 A

 B



 d

 g ⋅ (ρ − ρ )

ϑ −ϑ

Δϑ

 A

λ

 l

 g

 W

 s

 l

Wasser:

 b  0  = 45°

Kältemittel:

 b  0 = 35°

Benzol:

 b  0 = 40°

0 , 25

0 ,133

0 ,9 − 0 ,3 ⋅  p*

§ λ ⋅ ρ ⋅  c

·

§  R ·

§  q ·

α = α ⋅  f (  p*)
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¸
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¸

⋅ ¨

¸
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0

¨© λ ρ  c ¸

⋅

⋅
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©  a 0 ¹

© 0 ¹
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     krit

 a 0

0



0

§

0, 68 ·

0,27

2

1, 73⋅  p *

+¨6,1+

¸⋅  p *
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©

1−  p * ¹

 f ( *

 p ) =

§

1

·

0,27

 f ( *

 p ) = 1, 2 ⋅  p *

+¨2,5 +

¸⋅  p *

für andere reine Stoffe

©

1−  p * ¹
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0 156

, 

0,371

0,35

2

2
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A12:
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Berieselungsdichte

140
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Deutsch-Englisch-Glossar

A

Ablaufbreite

condensate film width

Absorptionskonstante

absorptivity

Ähnlichkeitsgesetze

similarity laws

Anzahl der Übertragungseinheiten

number of transfer units NTU

B

Behältersieden

pool boiling

Berieselungsdichte

mass flow per unit film width

Bilanzgleichung

energy balance equation

 Biot zahl

 Biot number

Blasensieden

nucleate boiling

C

charakteristische Länge

characteristic length

D

Dichte

density

dimensionslose Größen

dimensionless parameters

dimensionslose Temperatur

dimensionless temperature

Druck

pressure

E

ebene Wand

plain wall

elektromagnetische Wellen

electromagnetic waves

Emissionsverhältnis

emissivity

Energieerhaltungssatz

conservation of energy principle

erzwungene Konvektion

forced convection

F

Filmkondensation

film condensation

Filmsieden

film boiling

 Fourier zahl

 Fourier number

freie Konvektion

free convection
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G

Gasstrahlung

gaseous radiation

 Gauß'sches Fehlerintegral

error function

Glättungstiefe

mean surface roughness

Gegenstrom-Wärmeübertrager

counterflow heat exchanger

Gleichstrom-Wärmeübertrager

parallel-flow heat exchanger

gleichwertige Schichtdicke

equivalent gas radius

Grädigkeit

Terminal Temperature Difference TTD

 Grashof zahl

 Grashof number

I

Isolation

insulation

K

kinetische Kopplungsgleichung

rate equation

 Kirchhoff'sches Gesetz

 Kirchhoff's law

Kondensation

condensation

an senkrechten Wänden

on vertical walls

an waagerechten Rohren

on horizontal pipes

dimensionslose Gleichungen

dimensionless equations

nassen oder überhitzten Dampfes

of wet or superheated steam

strömenden Dampfes

forced convection condensation

Kondensator

condenser

Kontakttemperatur

contact temperature

Kontrollraum

control volume

Kreisrippen

annular fins

Kreuzstrom-Wärmeübertrager

cross flow heat exchanger

kritische Wärmestromdichte

critical heat flux

L

 Leidenfrost-Phänomen

 Leidenfrost phenomena

M

Massenerhaltungssatz

conservation of mass principle

Massenstrom

mass flow rate

mittlere Geschwindigkeit

mean velocity

mittlere logarithmische

Log Mean Temperature Difference

Temperaturdifferenz

LMTD

mittlere Temperatur

mean temperature

Modellvorstellungen

model approaches
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N

 Nußelt zahl

 Nusselt's number

O

Oberflächenspannung

surface tension

P

 Planck'sches Strahlungsgesetz

 Planck's law of radiation

 Prandtl zahl

 Prandtl number

projizierter Umfang

projected circumference

R

Randbedingung

boundary condition

 Rayleigh zahl

 Rayleigh number

 Reynolds zahl

 Reynolds number

Ringspalt

concentric tube annulus

Rippen

fins

Rippenrohre

finned tubes

mit Kreisrippen

annular finned tubes

Rippenwirkungsgrad

fin efficiency

Rohrbündel

tube bundle

Anordnung der Rohre

tube arrangement

mit Umlenkblechen

with guide vanes

-wärmeübertrager

tube and shell heat exchanger

Rohrreibungszahl

tube friction factor

S

Schubspannung

shear stress

schwarzer Körper

blackbody

Sieden

boiling

gesättigter Flüssigkeiten

saturated boiling

unterkühltes

subcooled boiling

bei erzwungener Konvektion

forced convection boiling

 Stefan-Boltzmann-Konstante

 Stefan-Boltzmann constant

Stegbreite

pitch

Strahlung

radiation

T

Temperatur

temperature

Temperaturgrenzschicht

thermal boundary layer
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Deutsch-Englisch-Glossar

Temperaturleitfähigkeit

thermal diffusivity

Thermodynamik

thermodynamics

erster Hauptsatz der

first law of

Trennung der Variablen

separation of variables

Tropfenkondensation

dropwise condensation

droplet condensation

U

Übertemperatur

excess temperature

Umgebung

surroundings

V

Verdampfung

evaporation

Verschmutzung

fouling

Verschmutzungsfaktor

fouling factor

Verschmutzungswiderstand

fouling resistance

Viskosität

viscosity

dynamische

dynamic

kinetische

kinematic

W

Wand aus mehreren Schichten

composite wall

 Weber zahl

 Weber number

Wirkungsgrad

efficiency, effectiveness

Wärmebilanzgleichungen

heat balance equations

Wärmekapazitätsstrom

heat capacity rate

Wärmedurchgangszahl

overall heat transfer coefficient

Wärmeleitfähigkeit

thermal conductivity

Wärmeleitung

conduction

in einem Hohlzylinder

in a cylinder

in einer ebenen Wand

in a plain wall

in einer Hohlkugel

in a sphere

instationäre

transient conduction

stationäre

steady state conduction

Wärmestrom

heat transfer rate

Wärmestromdichte

heat flux

Wärmeübergangszahl

heat transfer coefficient

Wärmeübertrager

heat exchanger

Wärmewiderstand

thermal resistance

 Wien'sches Verschiebungsgesetz

 Wien's displacement law

Z

Zellenmethode

cell method

Zustandsänderung

change of state

Zweiphasenströmung

two phase flow
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