Arduino fiir Fortgeschrittene

Michael Magolis

Ubersetzung von Peter Klicman

O'REILLY"

Arduino Kochbuch

Michael Margolis

Deutsche Ubersetzung von Peter Klicman

O’REILLY"

Beijing - Cambridge - Farnham - Kéln - Sebastopol - Tokyo

Die Informationen in diesem Buch wurden mit grofiter Sorgfalt erarbeitet. Dennoch kénnen
Fehler nicht vollstindig ausgeschlossen werden. Verlag, Autoren und Ubersetzer iibernehmen
keine juristische Verantwortung oder irgendeine Haftung fiir eventuell verbliebene Fehler und
deren Folgen.

Alle Warennamen werden ohne Gewihrleistung der freien Verwendbarkeit benutzt und sind
moglicherweise eingetragene Warenzeichen. Der Verlag richtet sich im Wesentlichen nach den
Schreibweisen der Hersteller. Das Werk einschlieflich aller seiner Teile ist urheberrechtlich
geschiitzt. Alle Rechte vorbehalten einschlieRlich der Vervielfiltigung, Ubersetzung,
Mikroverfilmung sowie Einspeicherung und Verarbeitung in elektronischen Systemen.

Kommentare und Fragen koénnen Sie gerne an uns richten:
O’Reilly Verlag

Balthasarstr. 81

50670 Koln

Tel.: 0221/9731600

Fax: 0221/9731608

E-Mail: kommentar@oreilly.de

Copyright:
© 2012 by O’Reilly Verlag GmbH & Co. KG
1. Auflage 2012

Die Originalausgabe erschien 2011 unter dem Titel
Arduino Cookbook, Second Edition, im Verlag O’Reilly Media, Inc.

Die Darstellung eines mechanischens Hasens im Zusammenhang mit dem
Thema Arduino ist ein Warenzeichen von O’Reilly Media, Inc.

Bibliografische Information Der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten
sind im Internet tiber http://dnb.ddb.de abrufbar.

Lektorat: Volker Bombien

Fachliche Unterstiitzung: Markus Ulsafk, Hamburg

Korrektorat: Dr. Dorothée Leidig

Satz: Reemers Publishing Services GmbH, Krefeld, www.reemers.de
Umschlaggestaltung: Michael Oreal, K6ln

Produktion: Karin Driesen, K6ln

Belichtung, Druck und buchbinderische Verarbeitung:

Druckerei Kosel, Krugzell; www.koeselbuch.de

ISBN-13 978-3-86899-353-0

Dieses Buch ist auf 100% chlorfrei gebleichtem Papier gedruckt.

Inhalt

Vorwort. XI
1 ErsteSchritte 1
1.0 Einfihrung. 1
1.1 Installation der integrierten Entwicklungsumgebung (IDE) 4
1.2 Das Arduino-Board einrichten. L. 8
1.3 Einen Arduino-Sketch mit der integrierten Entwicklungsumgebung (IDE)
bearbeiten 10
1.4 Den Blink-Sketch hochladen und ausfithren 13
1.5 Einen Sketch erstellen und speichern 15
1.6 Arduinoverwenden 17
2 Den Sketch machen lassen, was Siewollen. 23
2.0 Einfuhrung. 23
2.1 Strukturierung eines Arduino-Programms. 24
2.2 Einfache primitive Typen (Variablen) nutzen 25
2.3 FlieRkommazahlen verwenden. 27
2.4 Mit Gruppen von Werten arbeiten. 29
2.5 Arduino-Stringfunktionen nutzen 32
2.6 C-Zeichenkettennutzen 37
2.7 Durch Komma getrennten Text in Gruppen aufteilen 38
2.8 Eine Zahlin einen Stringumwandeln. 41
2.9 Einen String in eine Zahl umwandeln. 43
2.10 Thren Code in Funktionsblocken strukturieren 45
2.11 Mehr als einen Wert in einer Funktion zurtickliefern. 49
2.12 Aktionen basierend auf Bedingungen ausfithren 52
2.13 Eine Folge von Anweisungen wiederholt ausfithren. 54

2.14 Anweisungen tiber einen Zihler wiederholen 56
2.15 AusSchleifen ausbrechen L 58
2.16 Basierend auf einem Variablenwert verschiedene Aktionen durchfithren. 59
2.17 Zeichen und Zahlen vergleichen. 61
2.18 Strings vergleichen 63
2.19 Logische Vergleiche durchfihren. 64
2.20 Bitweise Operationen durchfithren. 65
2.21 Operationen und Zuweisungen kombinieren 68
3 Mathematische Operatoren nutzen 69
3.0 Einfihrung. 69
3.1 Addieren, subtrahieren, multiplizieren und dividieren 69
3.2 Werte inkrementieren und dekrementieren. 70
3.3 Den Rest einer Division bestimmen 71
3.4 Den Absolutwertermitteln 72
3.5 Zahlen auf einen Wertebereich beschranken. 73
3.6 Das Minimum oder Maximum bestimmen 74
3.7 EineZahlpotenzieren. 75
3.8 Die Quadratwurzel berechnen. 76
3.9 FlieRkommazahlen auf-und abrunden. 76
3.10 Trigonometrische Funktionen nutzen. 77
3.11 Zufallszahlenerzeugen 78
3.12 Bitssetzenundlesen. 80
3.13 Bits verschieben (Shifting) 84
3.14 Hoher- und niederwertige Bytes aus int oder long extrahieren 85
3.15 int- oder long-Werte aus hoher- und niederwertigen Bytes bilden. 87
4 Serielle Kommunikation. 89
4.0 Einfihrung. 89
4.1 Debugging-Informationen vom Arduino an Thren Computer senden. . .. 94
4.2 Formatierten Text und numerische Daten vom Arduino senden. 98
4.3 Serielle Daten mit Arduino empfangen. 101
4.4 Mehrere Textfelder vom Arduino in einer einzelnen Nachricht senden . . 106
4.5 Mit dem Arduino mehrere Textfelder in einer Nachricht empfangen. . .. 111
4.6 Binidre Daten vom Arduinosenden. 115
4.7 Bindrdaten vom Arduino auf einem Computer empfangen. 119
4.8 Bindre Werte aus Processing an den Arduino senden. 121
4.9 Den Wert mehrerer Arduino-Pinssenden. 123
4.10 Den Mauszeiger eines PCs oder Macs bewegen 127
IV | Inhalt

4.11 Google Earth per Arduino steuern 131
4.12 Arduino-Daten in einer Datei auf dem Computer festhalten. 136
4.13 Daten an zwei serielle Gerite gleichzeitigsenden. 139
4.14 Serielle Daten von zwei Geriten gleichzeitig empfangen. 143
4.15 Serielle Daten mit Processing Senden und Empfangen 147
5 Einfacher digitaler und analoger Input 149
5.0 Einfuhrung. 149
5.1 Einen Schalterverwenden 152
5.2 Taster ohne externen Widerstand verwenden 156
5.3 Das SchlieRen eines Schalters zuverlissig erkennen 158
5.4 Ermitteln, wie lange eine Taste gedriickt wird. 160
5.5 Voneiner Tastaturlesen 165
5.6 Analogwerteeinlesen 168
5.7 Wertebereichedndern. 170
5.8 Mehr als sechs analoge Einginge einlesen. 172
5.9 Spannungen von biszu 5V messen. 175
5.10 Auf Spannungsinderungen reagieren 177
5.11 Spannungen iiber 5V messen (Spannungsteiler) 179
6 Werte von Sensoren einlesen. 183
6.0 Einfihrung. 183
6.1 Movementerkennen. 185
6.2 Lichtmessen 188
6.3 Motion erkennen (Passive Infrarot-Detektoren integrieren) 190
6.4 Abstindemessen 192
6.5 Abstinde genauermessen 196
6.6 Vibration meSSenttt 199
6.7 Gerduscheerkennen 200
6.8 Temperatur messent 204
6.9 RFID-Tagslesen.......... 207
6.10 Drehbewegungen messen 210
6.11 Mehrere Drehbewegungen messen. 213
6.12 Drehbewegungen in einem viel beschiftigten Sketch messen 215
6.13 EineMausnutzen. 217
6.14 Die Position per GPS bestimmen 221
6.15 Bewegungen mit einem Gyroskop erkennen 226
6.16 Richtungbestimmen. 231

Inhalt | V

6.17 Daten von einem Spiele-Controller (PlayStation) einlesen 236

6.18 Beschleunigung messen. 239
7 Visuelle Ausgabe. 241
7.0 Einfohrung. 241
7.1 LEDsanschliefRenundnutzen 245
7.2 Helligkeiteiner LED regeln 248
7.3 Hochleistungs-LEDs ansteuern 249
7.4 DieFarbeeiner LEDsteuern 252
7.5 Mehrere LEDs aneinanderreihen: LED-Balkenanzeige 255
7.6 Mehrere LEDs aneinanderreihen: Knight Rider-Laufliche. 258
7.7 Eine LED-Matrix per Multiplexing steuern. 259
7.8 Bilder (Images) auf einer LED-Matrix darstellen 262
7.9 Eine LED-Matrix ansteuern: Charlieplexing 265
7.10 Eine 7-Segment-LED-Anzeige ansteuern. 271
7.11 Mebhrstellige 7-Segment-LED-Anzeigen ansteuern: Multiplexing. 274
7.12 Mebhrstellige 7-Segment-LED-Anzeigen mit MAX7221-Schieberegistern
ANSTEUETIL. ottt et 276
7.13 Eine LED-Matrix mit MAX72xx-Schieberegistern ansteuern 279
7.14 Die Anzahl analoger Ausginge mit PWM-Extender-Chips (TLC5940)
erhohen. 281
7.15 Ein analoges Anzeigeinstrument NULZeNo.nu. .. 285
8 Physische Ausgabe 289
8.0 Einfohrung. 289
8.1 Die Position eines Servos kontrollieren. 292
8.2 Ein oder zwei Servos mit einem Potentiometer oder Sensor steuern. 294
8.3 Die Geschwindigkeit dauerrotierender Servos steuern 296
8.4 Servos iiber Computerbefehle steuern 298
8.5 Einen biirstenlosen Motor (per Fahrtregler) steuern. 299
8.6 Hubmagnete und Relais steuern. 301
8.7 Ein Objektvibrierenlassen 302
8.8 Einen Biirstenmotor iiber einen Transistor ansteuern. 305
8.9 Die Drehrichtung eines Biirstenmotors tiber eine H-Briicke steuern 306
8.10 Drehrichtung und Geschwindigkeit eines Biirstenmotors mit einer
H-Briticke steuern 309
8.11 Richtung und Geschwindigkeit von Biirstenmotoren tiber Sensoren
steuern (L293 H-Briicke). 311
8.12 Einen bipolaren Schrittmotor ansteuern 317

VI | Inhalt

8.13 Einen bipolaren Schrittmotor ansteuern (mit EasyDriver-Board). 320

8.14 Einen unipolaren Schrittmotor ansteuern (ULN2003A) 323

9 Audio-Ausgabe 327
9.0 Einfthrung. 327

9.1 Toneausgeben...... 329

9.2 Eine einfache Melodiespielen 331

9.3 Mehr als einen Ton gleichzeitig erzeugen 333

9.4 Einen Ton erzeugen und eine LED ansteuern 335

9.5 Eine WAV-Dateiabspielen 338

9.6 MIDISteuern 341

9.7 Audio-Synthesizer. 344

10 Externe Gerate fernsteuern 347
10.0 Einfihrung. 347

10.1 Auf eine Infrarot-Fernbedienung reagieren 348

10.2 IR-Signale einer Fernbedienung dekodieren 350

10.3 IR-Signale imitieren 354

10.4 Eine Digitalkamerasteuern 356

10.5 Wechselstromgerite Qiber eine gehackte Fernbedienung steuern. 359

11 Displays nutzen. 363
11.0 Einfihrung. 363

11.1 Ein Text-LCD anschlieRenund nutzen. 364

11.2 Textformatieren.ttt 367

11.3 Cursor und Display ein- und ausschalten 370

11.4 Textscrollen 371

11.5 Sonderzeichendarstellen. 375

11.6 Eigene Zeichen definieren 377

11.7 GroRle Symbole darstellen 379

11.8 Kleine Pixel darstellen. 382

11.9 Ein graphisches LC-Display anschlieRen und nutzen. 385
11.10 Bitmaps fur graphische Displays 389
11.11 Text auf dem Fernseher ausgeben 390

12 Datum und Uhrzeit. 397
12.0 Einfuhrung. 397

12,1 ZeltverzOZETUNZEN o vt vttt e e e e e e e e e e e e 397

12.2 Laufzeiten messen mitmillis, 398

Inhalt | VI

12.3 Die Dauer eines Impulses priziser messen 402
12.4 Arduino als Uhrverwenden. 404
12.5 Einen Alarm einrichten, um regelmiflig eine Funktion aufzurufen 412
12.6 Eine Echtzeituhrnutzen 415
13 Kommunikation per 2Cund SPI 421
13.0 Einfilhrung. 421
13.1 Steuerung einer RGB-LED mit dem BlinkM-Modul. 425
13.2 Den Wii Nunchuck-Beschleunigungsmesser nutzen 429
13.3 Anbindung einer externen Echtzeituhr oo oo 0 435
13.4 Externen EEPROM-Speicher anbinden. 436
13.5 Temperatur per Digital-Thermometer messen. 440
13.6 Vier 7-Segment-LEDs mit nur zwei Leitungen steuern 445
13.7 Einen I2C-Port-Expander integrieren 448
13.8 Mehrstellige 7-Segment-Anzeigen tiber SPI ansteuern 451
13.9 Kommunikation zwischen zwei oder mehr Arduino-Boards 454
14 Drahtlose Kommunikation 457
14.0 Einfuhrung. 457
14.1 Nachrichten tiber Low-Cost-Drahtlos-Module senden. 457
14.2 Den Arduino mit einem ZigBee- oder 802.15.4-Netzwerk verbinden. . . . 463
14.3 Eine Nachricht an einen bestimmten XBee senden. 470
14.4 Sensordaten zwischen XBeessenden 473
14.5 Einen mit dem XBee verbundenen Aktuator aktivieren 478
14.6 Nachrichten tiber Low-Cost-Transceiver senden 483
14.7 Mit Bluetooth-Geriten kommunizieren 489
15 Ethernet und Netzwerke 493
15.0 Einfihrung. 493
15.1 Ein Ethernet-Shield einrichten 496
15.2 Die IP-Adresse automatisch beziehen. 498
15.3 Hostnamen in IP-Adressen umwandeln (DNS) 500
15.4 Daten von einem Webserver abrufen 502
15.5 XML-Daten von einem Webserver abrufen. 506
15.6 Den Arduino als Webserver einrichten. 509
15.7 Eingehende Web-Requests verarbeiten. 512
15.8 Das Anfordern bestimmter Seiten verarbeiten. 515
15.9 Antworten des Webservers mit HTML aufbereiten 519
15.10 Formulare (POST) verarbeiten. 523
Vil | Inhalt

15.11 Webseiten mit groRen Datenmengen zuriickgeben 527
15.12 Twitter-Nachrichtensenden 533
15.13 Einfache Nachrichten (UDP) senden und empfangen 537
15.14 Die Zeit von einem Internet-Zeitserver abrufen 543
15.15 Pachube-Feeds tiberwachen. 548
15.16 Informationen an Pachubesenden. 554

16 Bibliotheken nutzen, andern und aufbaven 559
16.0 Einfuhrung. 559

16.1 Mitgelieferte Bibliotheken nutzen. 559

16.2 Bibliotheken von Drittanbietern installieren 562

16.3 Eine Bibliothek anpassen. 563

16.4 Eine eigene Bibliothek entwickeln 567

16.5 Eine Bibliothek entwickeln, die andere Bibliotheken nutze. 572

16.6 Bibliotheken von Drittanbietern an Arduino 1.0 anpassen 578
Index. 581

Inhalt | IX

Vorwort

Dieses Buch wurde von Michael Margolis, zusammen mit Nick Weldin, geschrieben, um
Sie die erstaunlichen Dinge entdecken zu lassen, die man mit Arduino machen kann.

Arduino ist eine Familie von Mikrocontrollern (kleinen Computern) und eine Umgebung
zur Software-Entwicklung, die es Thnen leicht macht, Programme (sog. Sketches) zu
entwickeln, die mit der physikalischen Welt interagieren. Mit Arduino entwickelte Dinge
konnen auf Berithrungen, Toéne, Wirme und Licht reagieren. Diese Technik, auch
physical computing genannt, wird in den unterschiedlichsten Dingen, vom iPhone bis zur
Automobilelektronik verwendet. Arduino erméglicht es jedermann — auch Menschen
ohne Programmier- oder Elektronikkenntnisse —, diese michtige und komplexe Technik
zu nutzen.

Leserkreis

Im Gegensatz zu den meisten technischen Kochbiichern wird keinerlei Erfahrung mit
Soft- und Hardware vorausgesetzt. Dieses Buch richtet sich an Leser, die Computer-
technik nutzen wollen, um mit ithrer Umgebung zu interagieren. Es ist fiir Leute gedacht,
die eine schnelle Lésung fiir ihre Hard- und Softwareprobleme suchen. Die Rezepte bieten
die Informationen, die Sie benétigen, um eine grofle Bandbreite von Aufgaben zu
erledigen. Sie enthalten auch Details, die Thnen dabei helfen, Losungen an Thre Bediirf-
nisse anzupassen. Ein auf 600 Seiten beschrinktes Buch kann nicht den allgemeinen
theoretischen Hintergrund vermitteln. Daher finden Sie iiberall im Buch Links auf externe
Referenzen. Im Abschnitt »Was ausgelassen wurde« auf Seite XIV finden sich einige
allgemeine Referenzen fiir diejenigen ohne Programmier- und Elektronikkenntnisse.

Wenn Sie keine Programmiererfahrung haben — vielleicht haben Sie eine gute Idee fiir ein
interaktives Projekt, verfiigen aber nicht tiber das notwendige Wissen, um es bauen zu
konnen —, hilft Thnen dieses Buch, das zu lernen, was Sie zum Schreiben funktionierender
Programme brauchen. Dazu verwenden wir Beispiele, die iiber 200 gingige Aufgaben
behandeln.

| X

Wenn Sie tiber Programmiererfahrung verfiigen, aber nicht mit Arduino vertraut sind,
sorgt das Buch fiir ein schnelleres produktives Arbeiten, indem es demonstriert, wie man
Arduino-spezifische Fahigkeiten in ein Projekt integriert.

Wenn Sie bereits mit Arduino vertraut sind, werden Sie den Inhalt niitzlich finden, der
Ihnen neue Techniken anhand praktischer Beispiele vermittelt. Das hilft Thnen bei
komplexeren Projekten, indem es zeigt, wie man Probleme mit Hilfe Thnen méglicher-
weise noch nicht bekannter Techniken 16st.

Erfahrene C/C++-Programmierer finden Beispiele fiir den Einsatz der auf niedriger Ebene
angesiedelten AVR-Ressourcen (Interrupts, Timer, 12C, Ethernet etc.), die bei der Ent-
wicklung von Anwendungen mit der Arduino-Umgebung helfen.

Organisation

Das Buch enthilt Informationen, die ein breites Spektrum der Arduino-Fahigkeiten abdecken.
Sie reichen von grundlegenden Konzepten und gingigen Aufgaben bis hin zu fortgeschritte-
nen Techniken. Jede Technik wird in einem Rezept erldutert, das zeigt, wie man eine
bestimmte Fihigkeit implementiert. Sie miissen den Inhalt nicht der Reihe nach lesen. Nutzt
ein Rezept eine Technik, die in einem anderen Rezept behandelt wird, finden Sie eine Referenz
auf das andere Rezept, d.h., die Details werden nicht an mehreren Stellen wiederholt.

Kapitel 1 fithrt in die Arduino-Umgebung ein und erliutert die Arduino-Installation.

Die nichsten Kapitel fiihren in die Arduino-Software-Entwicklung ein. Kapitel 2, behan-
delt grundlegende Softwarekonzepte und Aufgaben. Kapitel 3 zeigt, wie man die gingigs-
ten mathematischen Funktionen verwendet.

Kapitel 4 beschreibt, wie man den Arduino mit Threm Computer und anderen Geriten
verbindet und mit ihnen kommuniziert. Seriell ist die firr Arduino gingigste Methode der
Ein- und Ausgabe, die im gesamten Buch von vielen Rezepten genutzt wird.

Kapitel 5 fihrt eine Reihe grundlegender Techniken zum Lesen digitaler und analoger
Signale ein. Darauf aufbauend zeigt Kapitel 6, wie man Bauelemente nutzt, die es Arduino
ermoglichen, Berithrungen, Téne, Positionen, Wirme und Licht wahrzunehmen.

Kapitel 7 behandelt die Steuerung von Licht. Die Rezepte zeigen, wie man ein oder
mehrere LEDs einschaltet und Helligkeit und Farbe kontrolliert. Dieses Kapitel erldutert,
wie man Strichskalen und numerische LED-Displays ansteuert und wie man Muster und
Animationen mit LED-Arrays erzeugt. Fur Einsteiger enthilt das Kapitel zusitzlich eine
allgemeine Einfithrung in die digitale und analoge Ausgabe.

Kapitel 8 erklirt, wie man mit dem Arduino Dinge mittels Motoren bewegen kann. Es
werden unterschiedlichste Motortypen behandelt: Spulen, Servomotoren, Gleichstrom-
und Schrittmotoren.

Kapitel 9 zeigt, wie man mit de Arduino Téne tiber ein Ausgabegerit wie einen Laut-
sprecher erzeugt. Es behandelt einfache Téne und Melodien und das Abspeichern von
WAV-Dateien und MIDI.

Xil | Vorwort

Kapitel 10 beschreibt Techniken, mit denen Sie mit nahezu jedem Gerit interagieren
konnen, das irgendeine Form von Fernbedienung nutzt: Fernseher, Audiogerite, Kame-
ras, Garagentore, Haushaltsgeridte und Spielzeug. Es baut auf den Techniken zur Ver-
bindung des Arduino mit anderen Bauelementen und Modulen auf.

Kapitel 11 behandelt die Verbindung mit Text- und LC-Displays. Es zeigt, wie man diese
Gerite anbindet, um Text auszugeben, Worter scrollt und hervorhebt und spezielle
Symbole und Zeichen erzeugt.

Kapitel 12 behandelt die in Arduino fest integrierten zeitbezogenen Funktionen und stellt
zusitzliche Techniken fur Zeitverzégerungen, zur Zeitmessung und reale Zeit- und
Datumsangaben vor.

Kapitel 13 behandelt die 12C-(Inter-Integrated Circuit-) und SPI-(Serial Peripheral Inter-
face-)Standards. Diese Standards bieten eine einfache Moglichkeit, Informationen digital
zwischen Sensoren und dem Arduino zu tibertragen. Das Kapitel zeigt, wie man I2C und
SPI nutzt, um gingige Bauelemente anzubinden. Es zeigt auch, wie man zwei oder mehr
Arduino-Boards fiir Multiboard-Anwendungen tiber 12C miteinander verbindet.

Kapitel 14 behandelt die drahtlose Kommunikation mittels XBee und anderen Wireless-
Modulen. Die Beispiele reichen vom einfachen Drahtlos-Ersatz fiir serielle Ports bis hin zu
Mesh-Netzwerken, die mehrere Boards mit mehreren Sensoren verbinden.

Kapitel 15 beschreibt die vielen Moglichkeiten, wie Sie Arduino firs Internet benutzen
konnen. Es enthilt Beispiele, die zeigen, wie man Web-Clients und -Server erstellt und
nutzt und erldutert die gebrauchlichen Internet-Protokolle.

Arduino Softwarebibliotheken sind der tibliche Ansatz, um die Arduino-Umgebung um
zusitzliche Funktionen zu erweitern. Kapitel 16 erliutert, wie man Softwarebibliotheken
nutzt und modifiziert. Es enthilt auch eine Anleitung zur Entwicklung eigener Bibliotheken.

Kapitel 16 behandelt die fortgeschrittenen Programmiertechniken, und die Inhalte sind
etwas technischer als die Rezepte in den vorherigen Kapiteln, weil sie Dinge abdecken, die
ansonsten von freundlichen Arduino-Kumpels erledigt werden.

Die Rezepte aus diesem Kapitel konnen dazu eingesetzt werden, um einen Sketch effi-
zienter zu schreiben, sie konnen Thnen dabei helfen, die Performance zu verbessern und
den Code schlanker zu schreiben.

Die Anhinge sowie Kapitel 17 und 18 wurden nicht iibersetzt. Sie stehen in Englisch als
Download auf unserer Webseite zur Verfligung.

Anhang A enthilt eine Ubersicht der im Buch verwendeten Komponenten.
Anhang B erklirt, wie man Schaltpldne und Datenblitter verwendet.

Anhang C bietet eine kurze Einfithrung in die Verwendung von Steckbrettern, den
Anschluss und Einsatz externer Stromversorgungen und Batterien sowie der Nutzung
von Kondensatoren zur Entstérung.

Anhang D enthilt Tipps zur Behebung von Compiler- und Laufzeitproblemen.

Vorwort | Xl

Anhang E behandelt Probleme mit elektronischen Schaltungen.

Anhang F enthilt Tabellen mit den Funktionen der einzelnen Pins bei Standard-Arduino-
Boards.

Anhang G enthilt Tabellen mit den ASCII-Zeichen.

Anhang H erklirt, wie man Code fiir dltere Releases anpasst, damit er unter Arduino 1.0
korrekt lduft.

Was ausgelassen wurde

Das Buch bietet nicht genug Platz, um Elektronik in Theorie und Praxis zu erldutern, auch
wenn Anleitungen fiir den Bau der in den Rezepten verwendeten Schaltungen gegeben
werden. Fiir genauere Informationen sei der Leser auf das im Internet zahlreich vorhan-
dene Material oder auf die folgenden Biicher verwiesen:

* Make: Elektronik (ISBN 978-3-89721-601-3) von Charles Platt
* Arduino fiir Einsteiger (ISBN 978-3-86899-232-8) von Massimo Banzi

e Die elektronische Welt mit Arduino entdecken (ISBN 978-3-89721-319-7) von Erik
Bartmann

* Making Things Talk (ISBN 978-3-86899-162-8) von Tom Igoe

Dieses Kochbuch erklirt, wie man Code schreibt, der bestimmte Arbeiten erledigt, es ist
jedoch keine Einfithrung in die Programmierung. Wichtige Programmierkonzepte werden
kurz erklirt, doch der Platz reicht nicht aus, um auf die Details einzugehen. Wenn Sie
mehr tiber die Programmierung lernen wollen, sei auf das Internet verwiesen.

Nicht in die deutsche Ubersetzung aufgenommen wurden die Kurzkapitel »Advanced
Coding and Memory Handling«, »Using the Controller Chip Hardware« sowie die
Anhinge, um einen akzeptablen Verkaufspreis fiir das Buch zu gewihrleisten.

Diese Kapitel sind als Originalkapitel in PDF-Form von unserer Webseite www.oreilly.de
downloadbar.

Code-Stil (Uber den Code)

Fiir das gesamte Buch wurde der Code maRgeschneidert, um das Thema des jeweiligen
Rezepts ganz deutlich zu machen. Infolgedessen wurden gingige Kiirzel vermieden,
insbesondere in den frithen Kapiteln. Erfahrene C-Programmierer verwenden hiufig
michtige, aber sehr knappe Ausdriicke, die fiir Anfinger etwas schwer verstindlich sind.
Zum Beispiel werden in den frithen Kapiteln Variablen mit expliziten Ausdriicken in-
krementiert, die fiir Nichtprogrammierer leicht verstandlich sind:

result = result + 1; // Zahler inkrementieren

XIV | Vorwort

und nicht in der von erfahrenen Programmierern tiblicherweise genutzten Kurzform, die
das Gleiche macht:

result++; // Inkrement mittels Postinkrement-Operator

Es steht Thnen natiirlich frei, den von Thnen bevorzugte Stil zu verwenden. Anfiangern sei
versichert, dass die Kurzform keinerlei Vorteil bei Performance oder Codegrofe bringt.

Einige Programmierausdriicke sind so gingig, dass wir ihre Kurzform verwenden. Zum
Beispiel werden Schleifen immer wie folgt geschrieben:

for(int i=0; i< 4; i++)
was mit folgendem identisch ist:

int i;

for(i=0; i< 4; i=1i+1)
Weitere Details zu diesen und anderen im Buch verwendeten Ausdriicken finden Sie in
Kapitel 2.

Gute Programmierpraxis verlangt, dass die verwendeten Werte giiltig sind, d.h., dass man
sie priift, bevor man sie in Berechnungen nutzt. Damit sich der Code aber auf das
eigentliche Rezept konzentriert, haben wir nur sehr wenige Fehlerpriifungen eingefiigt.

Arduino-Version

Diese Ausgabe wurde fiir Arduino 1.0 aktualisiert. Der gesamte Code wurde mit dem
neuesten Arduino 1.0 Release Candidate getestet, der zur Drucklegung verfiigbar war
(RC2). Der Download-Code fiir diese Ausgabe wird bei Bedarf online aktualisiert, um die
finale Release 1.0 zu unterstiitzen. Besuchen Sie also die Buch-Website (http://shop.oreilly
.com/product/0636920022244.do), um den neuesten Code zu erhalten. Der Download
enthilt eine Datei namens changelog.txt, die den Code beschreibt, der sich von der
gedruckten Version unterscheidet.

Obwohl viele Sketches mit fritheren Arduino-Releases laufen, miissen Sie die Endung von
.ino in .pde dndern, um den Sketch in eine Pre-1.0-IDE zu laden. Wenn Sie nicht auf
Arduino 1.0 migriert sind und gute Griinde haben, bei einer ilteren Release zu bleiben,
konnen Sie den Beispielcode der ersten Ausgabe nutzen (verfiigbar unter http://shop.oreilly
.com/product/9780596802486.do), der mit den Releases 0018 bis 0022 getestet wurde.
Beachten Sie, dass viele Rezepte der zweiten Ausgabe erweitert wurden, weshalb wir ein
Upgrade auf Arduino 1.0 empfehlen. Hilfe zur Migration dlteren Codes finden Sie in
Anhang H (steht als Download bereit).

Dort finden Sie auch einen Link zum Fehlerverzeichnis. Das Fehlerverzeichnis gibt Thnen
die Moglichkeit, uns tiber (Druck-)Fehler und andere Probleme mit dem Buch zu in-
formieren. Fehler sind auf der Seite sofort sichtbar und werden von uns bestitigt, sobald
wir sie tiberpriift haben. O’Reilly kann die Fehler in zukiinftigen Auflagen und auf Safari
korrigieren.

Vorwort | XV

Wenn Sie Probleme haben, Beispiele ans Laufen zu bekommen, tiberpriifen Sie in der
Datei changelog.txt des aktuellsten Downloads, ob der Sketch aktualisiert wurde. Falls das
Thr Problem nicht 16st, sehen Sie sich Anhang D (steht als Download bereit) an, das die
Behebung von Softwareproblemen behandelt. Falls Sie mehr Hilfe benotigen, ist das
Arduino-Forum ein guter Ort, um Fragen zu stellen: http://www.arduino.cc.

Wenn Sie dieses Buch mégen — oder auch nicht —, sollten es die Leute unbedingt erfahren.
Amazon-Rezensionen sind eine beliebte Moglichkeit, Thre Zufriedenheit und andere
Kommentare mit anderen zu teilen. Sie konnen auch auf der O’Reilly-Site zu diesem
Buch einen Kommentar hinterlassen.

Verwendete Konventionen

In diesem Buch werden die folgenden typographischen Konventionen verwendet:

Kursivschrift
wird fiir Pfad-, Datei- und Programmnamen, Internetadressen, Domainnamen und
URLs verwendet, sowie fiir neue Begriffe, wenn sie zum ersten Mal im Text auf-
tauchen.

Nichtproportionalschrift
wird fir Kommandozeilen und Optionen verwendet, die Sie wortwortlich eingeben
miissen. Ebenso bei Namen und Schlisselwoértern in Programmen, einschlieRlich
Methoden-, Variablen- und Klassennamen sowie HTML-Tags.

Nichtproportionalschrift fett
wird fiir Hervorhebungen im Programmcode verwendet.

Nichtproportionalschrift kursiv
wird fiir Text verwendet, der durch Benutzereingaben ersetzt werden muss.
N

Zeigt einen Tipp, eine Empfehlung oder einen allgemeinen Hinweis an.

Zeigt eine Warnung an.

Verwendung der Codebeispiele

Dieses Buch soll Thnen bei der Arbeit mit Arduino helfen. Den Code, den wir hier zeigen,
diirfen Sie generell in Thren Programmen und Dokumentationen verwenden. Sie brauchen
uns nicht um Genehmigung zu bitten, sofern Sie nicht grofle Teile des Codes repro-
duzieren. Wenn Sie zum Beispiel ein Programm schreiben, das mehrere Codeabschnitte
aus diesem Buch verwendet, brauchen Sie unser Einverstindnis nicht. Doch wenn Sie eine
CD-ROM mit Codebeispielen aus O'Reilly-Biichern verkaufen wollen, miissen Sie sehr

XVi | Vorwort

wohl eine Erlaubnis einholen. Eine Frage mit einem Zitat und einem Codebeispiel aus
diesem Buch zu beantworten, erfordert keine Erlaubnis, aber es ist nicht ohne Weiteres
gestattet, grofRe Teile unseres Textes oder Codes in eine eigene Produktdokumentation
aufzunehmen.

Wir freuen uns iiber eine Quellenangabe, verlangen sie aber nicht zwingend. Zu einer
Quellenangabe gehoren normalerweise der Titel, der Autor, der Verlag und die ISBN, zum
Beispiel: »Arduino Kochbuch, von Michael Margolis mit Nick Weldin (O’Reilly). Copy-
right 2012 Michael Margolis, Nicholas Weldin, 978-86899-353-0.«

Wenn Sie das Gefiihl haben, dass Thr Einsatz unserer Codebeispiele tiber die Grenzen des
Erlaubten hinausgeht, schreiben Sie uns bitte eine E-Mail an permissions@oreilly.com.

Danksagungen

Nick Weldins Beitrag war fiir die Fertigstellung dieses Buches von unschitzbarem Wert.
Das Buch war zu 90 Prozent fertig, als Nick an Bord kam — und ohne sein Kénnen und
seinen Enthusiasmus wiren es wohl immer noch nur 90 Prozent. Seine Erfahrung mit
Arduino-Workshops fiir die unterschiedlichsten Anwender macht die Ratschlige in
diesem Buch fiir unseren breiten Leserkreis nutzbar. Danke, Nick, fiir dein Wissen und
dein geniales, kollaboratives Wesen.

Simon St. Laurent war der Lektor bei O’Reilly, der als Erster Interesse an diesem Buch
bekundet hat. Und letztlich war er auch derjenige, der es zusammengehalten hat. Seine
Unterstiitzung und Aufmunterung hielten uns bei der Stange, wihrend wir die Unmengen
an Material durchgingen, die notig waren, um dem Thema Gentige zu tun.

Brian Jepson half mir dabei, mit dem Schreiben dieses Buches anzufangen. Sein umfas-
sendes Wissen in Bezug auf Arduino und sein Bemithen, Technik mit einfachen Worten
zu vermitteln, setzten einen hohen Standard. Er war die ideale fithrende Hand, um dieses
Buch zu formen und Technik fiir die Leser wirklich zuginglich zu machen. Wir sind Brian
auch fiir den XBee-Inhalt in Kapitel 14 dankbar.

Brian Jepson und Shawn Wallace waren die Betreuer fiir diese zweite Ausgabe und
lieferten wertvolle Hinweise zur Verbesserung der Genauigkeit und Klarheit des Inhalts.

Audrey Doyle arbeitete unermiidlich daran, Schreibfehler und grammatikalische Fehler
aus dem urspriinglichen Manuskript zu tilgen und die allzu verwickelten Ausdriicke zu
entwirren.

Philip Lindsay arbeitete in der ersten Auflage am Inhalt von Kapitel 15 mit. Adrian
McEwen, der fithrende Entwickler von zahlreichen Ethernet-Erweiterungen fiir Arduino
1.0, steuerte wertvolle Hinweise fiir dieses Kapitel bei, um alle Release-Neuerungen zu
erfassen.

Mikal Hart schrieb die Rezepte zu GPS und der seriellen (Software-)Schnittstelle. Mikal war
dafiir die natiirliche Wahl — nicht nur, weil er die Bibliotheken geschrieben hat, sondern
auch weil er ein Arduino-Enthusiast ist, mit dem die Zusammenarbeit ein Vergniigen ist.

Vorwort | Xvil

Arduino wird durch die Kreativitit des Arduino-Kernentwicklerteams moglich: Massimo
Banzi, David Cuartielles, Tom Igoe, Gianluca Martino und David Mellis. Im Namen aller
Arduino-Nutzer mochte ich unseren Dank fiir ihre Bemithungen ausdriicken, diese
faszinierende Technik einfach nutzbar zu machen, aber auch fiir ihren GrofRmut, sie frei
zuginglich zu machen.

Ein besonderer Dank geht an Alexandra Deschamps-Sonsino, deren Tinker London
Workshops wichtige Erkenntnisse tiber die Bediirfnisse der Benutzer lieferten. Dank
auch an Peter Knight, der alle Arten cleverer Arduino-Losungen sowie die Basis fir eine
Reihe von Rezepten in diesem Buch bereitgestellt hat .

Im Namen aller, die von Benutzern beigesteuerte Arduino-Bibliotheken heruntergeladen
haben, moéchte ich den Autoren danken, die groRziigig ihr Wissen geteilt haben.

Die Verfiigbarkeit eines groffen Spektrums an Hardware macht Arduino so spannend —
Dank dafiir gebiihrt den Anbietern, die eine grofe Menge toller Bauelemente vorhalten
und unterstiitzen. Die nachfolgenden Firmen haben die in diesem Buch verwendete
Hardware bereitgestellt: SparkFun, Maker Shed, Gravitech und NKC Electronics. Weitere
hilfreiche Anbieter waren Modern Device, Liquidware, Adafruit, MakerBot Industries,
Mindkits, Oomlout und SK Pang.

Nick mochte allen danken, die in Tinker London involviert waren, insbesondere Alexan-
dra, Peter, Brock Craft, Daniel Soltis und all den Leuten, die iiber Jahre bei den Work-
shops geholfen haben.

Nicks abschlieRender Dank gilt seiner Familie: Jeanie, Emily und Finn, die es ihm er-
laubten, diese Sache withrend der Sommerferien durchzuziehen (und nattirlich viel linger
dauerte, als sie urspriinglich dachten), sowie an seine Eltern Frank und Eva, die ihn dazu
erzogen, Dinge auseinanderzunehmen.

Zu guter Letzt mochte ich folgenden Leuten danken:

Joshua Noble, der mich O’Reilly vorstellte. Sein Buch Programming Interactivity (http://
oreilly.com/catalog/9780596154158/) sei all denen wirmstens empfohlen, die ihr Wissen
um Interaktivitit erweitern wollen.

Robert Lacy-Thompson, der mir sehr frith bei der ersten Auflage seine Hilfe anbot.

Mark Margolis fur seine Unterstiitzung und Hilfe als Diskussionspartner bei der Kon-
zeption und Entwicklung dieses Buches.

Ich danke meinen Eltern, die mir halfen zu erkennen, dass die kreativen Kiinste und
Technik keine distinktiven Entititen sind und dass sie zu auflergewohnlichen Ergebnissen
fithren kénnen, wenn man sie miteinander kombiniert.

Und schliefllich wire dieses Buch ohne die Unterstiitzung meiner Frau, Barbara Faden,
weder begonnen noch fertiggestellt worden. Mein aufrichtiger Dank gilt ihrer Motivation,
ihrem sorgfiltigen Lesen des Manuskripts und ihre Beitrige dazu.

Xvil | Vorwort

Hinweise zur Neuauflage

Die Neuauflage dieses Buchs folgt recht schnell auf die erste (die Erstauflage wurde nicht
ins Deutsche tibersetzt). Das wurde durch die Veroffentlichung von Arduino 1.0 nétig.
Das genannte Ziel von 1.0 besteht darin, signifikante Anderungen einzufiihren, die den
Weg fiir zukiinftige Verbesserungen ebnen. Leider funktioniert damit einiger Code nicht
nicht mehr, der fiir dltere Software geschrieben wurde. Das hat dazu gefiihrt, dass Code in
vielen Kapiteln des Buches geindert werden musste. Die meisten Anderungen finden sich
in Kapitel 15 und Kapitel 13, doch alle Rezepte dieser Ausgabe wurden auf 1.0 migriert
und viele wurden dahingehend aktualisiert, dass sie neue Features dieser Release nutzen.
Wenn Sie eine Release vor Arduino 1.0 nutzen, kénnen Sie den Code der ersten Auflage
des Buches herunterladen.

Anhang H (steht als Download bereit) wurde hinzugefiigt, um die Anderungen zu be-
schreiben, die mit Arduino Release 1.0 eingefithrt wurden. Er erliutert, wie man élteren
Code an Arduino 1.0 anpasst.

Rezepte fiir nicht mehr weit verbreitete Bauelemente wurden fiir aktuelle Bauteile
aktualisiert, und einige neue Sensoren und Drahtlosgerite wurden hinzugefiigt.

An die O’Reilly-Site gepostete Fehler wurden behoben. Wir danken den Lesern, die sich
die Zeit genommen haben, uns dariiber zu informieren.

Wir denken, dass Thnen die Verbesserungen an Arduino 1.0 und an dieser Auflage des
Arduino Kochbuchs gefallen werden. Die erste Auflage ist gut angekommen. Die kons-
truktive Kritik teilte sich zwischen Leuten auf, die es technischer haben wollten, und
Leuten, die es sich weniger technisch wiinschten. Bei einem Buch, bei dem wir auf nur
ca. 600 Seiten beschrinkt sind (damit es bezahl- und tragbar bleibt), scheint das fiir ein
gutes Gleichgewicht zu sprechen.

Vorwort | XIX

KAPITEL 1
Erste Schritte

1.0 Einfiihrung

Die Arduino-Umgebung wurde entworfen, um von Anfingern einfach genutzt werden zu
konnen, die mit Software oder Elektronik keine Erfahrung haben. Mit Arduino kénnen
Sie Objekte entwickeln, die auf Licht, Téne und Bewegung reagieren oder sie kontrollie-
ren. Arduino wurde fiir den Bau einer Vielzahl faszinierender Dinge verwendet, darunter
Musikinstrumente, Roboter, Lichtskulpturen, Spiele, interaktive Mébel und sogar inter-
aktive Kleidung.

W8
Y
N Wenn Sie kein Einsteiger sind, konnen Sie gleich mit den Rezepten
:‘:\ weitermachen, die Sie interessieren.
)

Arduino wird auf der ganzen Welt in vielen Bildungsprogrammen genutzt, insbesondere
von Designern und Kiinstlern, die auf einfache Weise Prototypen herstellen wollen, ohne
allzu tief in die technischen Details ihrer Schopfungen einsteigen zu miissen. Da sie
entworfen wurde, um von nicht technisch versierten Menschen genutzt zu werden,
enthilt die Software viele Codebeispiele, die demonstrieren, wie man die verschiedenen
Fihigkeiten der Arduino-Boards nutzt.

Obwohl sie einfach zu nutzen ist, arbeitet die Arduino zugrunde liegende Hardware mit
der gleichen »Perfektion, die Ingenieure fiir den Aufbau eingebetteter Systeme nutzen.
Fiir Leute, die bereits mit Mikrocontrollern gearbeitet haben, ist Arduino aufgrund der
agilen Entwicklungsmoglichkeiten und der Moglichkeit zur schnellen Implementierung
von Ideen ebenfalls interessant.

Arduino ist fiir seine Hardware bekannt, doch man benétigt auch Software, um diese
Hardware programmieren zu kénnen. Sowohl die Hardware als auch die Software wird
»Arduino« genannt. Diese Kombination erméglicht die Entwicklung von Projekten, die
die physikalische Welt wahrnehmen und steuern konnen. Die Software ist frei, Open
Source und plattformiibergreifend. Die Boards kann man kostengiinstig kaufen oder
selbst zusammenbauen (die Hardware-Designs sind ebenfalls Open Source). Dariiber
hinaus gibt es eine aktive und unterstiitzende Arduino-Community, die weltweit iiber

die Arduino-Foren und das Wiki (bekannt als Arduino Playground) zugiinglich ist. Die
Foren und das Wiki bieten Beispiele fiir Projekte und Problemlésungen. Sie bieten Hilfe
und Inspiration, wenn Sie Thr eigenes Projekt vorantreiben wollen.

Die Rezepte in diesem Kapitel ermoglichen Thnen den Einstieg. Sie zeigen Thnen, wie man
die Entwicklungsumgebung einrichtet und wie man einen Beispiel-Sketch kompiliert und
ausfihrt.

N

Der Quellcode mit den Computer-Instruktionen zur Steuerung von Ardui-
no-Funktionen wird in der Arduino-Community iiblicherweise als Sketch
5+ bezeichnet. Das Wort Sketch wird im gesamten Buch fiir Arduino-Pro-
grammcode verwendet.

Der mit Arduino mitgelieferte Blink-Sketch ist ein Beispiel fiir die Rezepte in diesem
Kapitel, auch wenn das letzte Rezept des Kapitels etwas weitergeht. Es ldsst nicht nur die
auf dem Board vorhandene LED blinken, sondern fiigt noch Sound hinzu und liest
Eingaben iiber zusitzliche Hardware ein. Kapitel 2 zeigt, wie man einen Sketch fiir
Arduino strukturiert und fiihrt in die Programmierung ein.

N

Wenn Sie mit den Arduino-Grundlagen bereits vertraut sind, kénnen Sie
mit den nachfolgenden Kapiteln weitermachen. Als Arduino-Einsteiger
s macht sich das Durcharbeiten dieser frithen Rezepte spiter mit besseren
Ergebnissen bezahlt.

Arduino-Software

Software- Programme, sog. Sketches, werden auf einem Computer mit Hilfe der Arduino-
Entwicklungsumgebung (Integrated Development Environment, kurz IDE) geschrieben.
Die IDE ermdglicht es Thnen, Code zu schreiben und zu bearbeiten und diesen Code dann
in Instruktionen umzuwandeln, die die Arduino-Hardware versteht. Die IDE iibertragt
diese Instruktionen auch auf das Arduino-Board. Diesen Prozess bezeichnet man als
Hochladen (engl. Uploading).

Arduino-Hardware

Auf dem Arduino-Board wird der von Thnen geschriebene Code ausgefiithrt. Das Board
selbst kann nur auf Strom reagieren und ihn steuern, weshalb spezielle Komponenten
angeschlossen sind, die die Interaktion mit der realen Welt ermdglichen. Diese Kom-
ponenten konnen Sensoren sein, die bestimmte Aspekte der physikalischen Welt in Strom
umwandeln, die das Board verarbeiten kann. Es kénnen aber auch sog. Aktuatoren sein,
die Strom vom Board erhalten und ihn in etwas umwandeln, was die Welt verindert.
Beispiele fiir Sensoren sind Schalter, Beschleunigungsmesser und Ultraschall-Abstands-
sensoren. Aktuatoren sind Dinge wie Lampen und LEDs, Lautsprecher, Motoren und
Displays.

2 | Kapitel 1: Erste Schritte

Es gibt eine Vielzahl offizieller Boards, die mit der Arduino-Software verwendet werden
konnen, sowie ein breites Spektrum an Arduino-kompatiblen Boards, die von Mitgliedern
der Community hergestellt werden.

Die beliebtesten Boards enthalten einen USB-Stecker, der die Stromversorgung iiber-
nimmt und die Upload-Verbindung fiir ihre Software herstellt. Abbildung 1-1 zeigt ein
einfaches Board, mit dem viele Leute anfangen: das Arduino Uno.

Abbildung 1-1: Einfaches Board: das Arduino Uno. Photo mit freundlicher Genehmigung von todo.to.it.

Das Arduino Uno besitzt einen zweiten Mikrocontroller, der die gesamte USB-Kommuni-
kation iibernimmt. Der kleine SMD-Chip (ein ATmega8U2) ist nahe des USB-Steckers zu
finden. Dieser Chip kann separat programmiert werden, so dass das Board unterschied-
liche USB-Gerite emulieren kann (ein Beispiel finden Sie in Rezept 17.14). Das Arduino
Leonardo ersetzt die ATmega8U2- und ATmega328-Controller durch einen einzelnen
ATmega32u4-Chip, der das USB-Protokoll softwaremiflig emuliert. Die Arduino-kom-
patiblen Teensy- und Teensy+-Boards von PJRC (http://www.pjrc.com/teensy/) kénnen
ebenfalls USB-Gerite emulieren. Altere Boards (und die meisten Arduino-kompatiblen
Boards) verwenden einen Chip von FTDI, der eine Hardware-USB-Losung bietet, mit der
man die Verbindung mit dem seriellen Port des Computers herstellen kann.

Sie kénnen Boards kaufen, die so klein wie eine Briefmarke sind, etwa das Arduino Mini
und das Pro Mini. Groflere Boards (wie das Arduino Mega) bieten mehr Anschliisse und
leistungsfahigere Prozessoren. Es gibt auch Boards fiir spezielle Anwendungen, etwa das

1.0 Einfilhrung | 3

LilyPad, das man in Kleidung integrieren kann (»Wearable«-Anwendungen), das Fio fiir
Wireless-Projekte, oder das Arduino Pro fiir Embedded-Anwendungen (eigenstiandige,
hiufig batteriebetriebene Projekte).

Jiingstes Mitglied ist das Arduino ADK, das iiber einen USB-Host-Sockel verfiigt und mit
dem Android Open Accessory Development Kit kompatibel ist (der offiziellen Methode,
Hardware an Android-Gerite anzuschlieRen). Das Leonardo-Board verwendet einen
Controller-Chip (den ATmega32u4), der unterschiedliche HID-Geriite reprisentieren
kann. Das Ethernet-Board enthilt eine Ethernet-Schnittstelle und eine Power-Over-Ether-
net-Option, d.h., man kann das Board tiber ein einziges Kabel anbinden und mit Strom
versorgen.

Es gibt noch weitere Arduino-kompatible Boards, einschlieRlich der folgenden:
* Arduino Nano, ein kleines, USB-fihiges Board von Gravitech (http://store.gravitech
.us/arna30wiatn.html)

* Bare Bones Board, ein preiswertes Board mit oder ohne USB von Modern Device
(http:/lwww.moderndevice.com/products/bbb-kit)

* Boarduino, ein preiswertes, fiir Steckbretter geeignetes Board von Adafruit Industries
(http://www.adafruit.com/)

* Seeeduino, eine flexible Variante des Standard-USB-Boards von Seeed Studio Bazaar
(http://www.seeedstudio.com/)

* Teensy und Teensy++, kleine, aber extrem vielseitige Boards von PJRC (http://www.
pjrc.com/teensy/)

Eine Liste Arduino-kompatibler Boards finden Sie unter http://www.freeduino.org/.

Siehe auch
Ubersicht der Arduino-Boards: http://www.arduino.cc/en/Main/Hardware.

Online-Leitfiden fiir den Arduino-Einstieg finden Sie unter http://arduino.cc/en/Guide/
Windows fiir Windows, http://arduino.cc/en/Guide/MacOSX fiir Mac OS X und http:/
www.arduino.cc/playground/Learning/Linux fiir Linux.

Eine Liste von iiber einhundert Boards, die mit der Arduino-Entwicklungsumgebung
genutzt werden konnen, finden Sie unter hitp://jmsarduino.blogspot.com/2009/03/
comprehensive-arduino-compatible.html

1.1 Installation der integrierten Entwicklungsumgebung
(IDE)

Problem

Sie mochten die Arduino-Entwicklungsumgebung auf Threm Computer installieren.

4 | Kapitel 1: Erste Schritte

Losung

Die Arduino-Software fiir Windows, Mac und Linux kann von http://arduino.cc/en/Main/
Software heruntergeladen werden.

Der Windows-Download ist eine ZIP-Datei. Entpacken Sie die Datei in ein geeignetes

Verzeichnis — Programme/Arduino ist eine gute Wahl.

Ein freies Utility zum Entpacken von Dateien namens 7-Zip kann von
http://www.7-zip.org/ heruntergeladen werden.

Das Entpacken der Datei erzeugt einen Ordner namens Arduino-00<nn> (dabei ist <nn>
die Versionsnummer der heruntergeladenen Arduino-Release). Das Verzeichnis enthilt
neben verschiedenen Dateien und Ordnern auch eine ausfithrbare Datei namens Ardui-
no.exe. Klicken Sie Arduino.exe doppelt an und der »Splash Screen« (siehe Abbildung 1-2)
sollte erscheinen, gefolgt vom Haupt-Programmfenster (siche Abbildung 1-3). Haben Sie
Geduld: Es kann einige Zeit dauern, bis die Software geladen ist.

| arduino-1.0 & Name
| drivers

examples

. hardware
J java
W lib

1 libraries

. reference
i src
| tools

e @ arduing.exe
%] cygiconv-2.dIl
%) cygwinl.dil
%/ libusb0.dIl

| revisions.bd

m

%] nebxSerial.dll

©,0,

ARDUINO

AN OPEN PROJECT WRITTEN, DEBUGGED AND SUPPORTED
[670) arduino.exe BY MASSIMO BANZL, DAVID CUARTIEL ToM IGOE,
Application CIANLUCA MARTINO AND DAVID MELLIS

BASED ON PROCESSING BY CASEY REAS AND BEM FRY

Abbildung 1-2: Arduino Splash Screen (Version 1.0 unter Windows 7)

1.1 Installation der integrierten Entwicklungsumgebung (IDE) | 5

fsNe sketch_oct05a | Arduino 1.0

sketch_oct05a

Arduino Uno on /dev/tty.usbmodemfal3l

Abbildung 1-3: IDE-Hauptfenster (Arduino 1.0 auf einem Mac)

Der Arduino-Download fiir den Mac ist ein Disk-Image (.dmg). Klicken Sie die Datei
doppelt an, nachdem der Download abgeschlossen ist. Das Image wird gemountet (und
erscheint wie ein Speicherstick auf dem Desktop). Innerhalb des Disk-Images befindet
sich die Arduino-Anwendung. Kopieren Sie sie an einen geeigneten Ort — der Ordner
Programme ist eine gute Wahl. Sobald Sie die Datei kopiert haben, klicken Sie sie doppelt
an (sie aus dem Disk-Image auszufiihren, ist keine gute Idee). Der Splash Screen erscheint,
gefolgt vom Haupt-Programmfenster.

Die Linux- Installation ist von der verwendeten Linux-Distribution abhingig. Informatio-
nen finden Sie im Arduino-Wiki (http://www.arduino.cc/playground/Learning/Linux).

Damit die Arduino-Entwicklungsumgebung mit dem Board kommunizieren kann, mis-
sen Sie Treiber installieren.

Unter Windows, verbinden Sie Thren PC und das Arduino-Board iiber ein USB-Kabel und
warten, dass der »Neue Hardware«-Assistent erscheint. Wenn Sie ein Uno-Board ver-

6 | Kapitel 1: Erste Schritte

wenden, lassen Sie den Assistenten versuchen, die Treiber zu suchen und installieren. Der
Versuch schligt fehl (keine Sorge, das ist das erwartete Verhalten). Um das zu beheben,
wechseln Sie nun nach Startmenii—>Systemsteuerung—>System und Sicherheit. Klicken Sie
auf System und 6ffnen Sie den Geritemanager. In der dargestellten Liste wihlen Sie dann
den Eintrag in COM und LPT namens Arduino UNO (COM nn). nn ist die Nummer, die
Windows dem fiir das Board erzeugten Port zugewiesen hat. Daneben sehen Sie eine
Warnung, da die richtigen Treiber noch nicht zugewiesen wurden. Klicken Sie den Eintrag
mit der rechten Maustaste an und wihlen Sie Treibersoftware aktualisieren. Wihlen Sie
dann die Option »Browse my computer for driver software« und bewegen Sie sich in den
Drivers-Ordner im eben entpackten Arduino-Ordner. Wihlen Sie die Datei Arduino-
UNO. inf, und Windows sollte den Installationsprozess abschlieRen.

Wenn Sie ein ilteres Board (das FTDI-Treiber verwendet) mit Windows Vista oder
Windows 7 nutzen und online sind, kénnen Sie den Assistenten nach Treibern suchen
lassen, und sie sollten automatisch installiert werden. Unter Windows XP (oder wenn Sie
keinen Internetzugang haben) miissen Sie die Lage des Treibers angeben. Bewegen Sie sich
in der Dateiauswahl ins Verzeichnis FTDI USB Drivers. Sie finden es in dem Verzeichnis,
in dem Sie die Arduino-Dateien entpackt haben. Sobald der Treiber installiert ist,
erscheint wieder der »Neue Hardware«-Assistent mit der Meldung, eine neue serielle
Schnittstelle sei gefunden worden. Folgen Sie nun den Anweisungen von vorhin.

W N
)
AN Es ist wichtig, dass Sie diese Schritte zur Installation des Treibers zweimal
ﬁ:‘ durchgehen, da die Software anderenfalls nicht mit dem Board kommuni-
T Qlay zieren kann.

Auf dem Mac sollten neuere Arduino-Boards wie das Uno ohne zusitzliche Treiber
genutzt werden kénnen. Wenn Sie das Board zum ersten Mal anschlieRen, erscheint ein
Hinweis, dass eine neue Netzwerkschnittstelle gefunden wurde. Bei #lteren Boards (die
FTDI-Treiber benétigen), miissen Sie Treibersoftware installieren. Im Disk-Image finden
Sie ein Paket namens FTDIUSBSerialDriver mit einer Reihe von Zahlen dahinter. Klicken
Sie das Paket an und der Installer fithrt Sie durch den Prozess. Sie miissen das Adminis-
trationspasswort kennen, um den Vorgang abschlieflen zu kénnen.

Unter Linux ist der Treiber bei den meisten Distributionen bereits installiert. Informatio-
nen zu Threr Distribution finden Sie unter dem Linux-Link, der in der Kapiteleinfithrung
genannt wurde.

Diskussion

Falls die Software nicht startet, besuchen Sie den Fehlersuche-Bereich der Arduino-Web-
site unter http://arduino.cc/en/Guide/Troubleshooting. Hier finden Sie Hinweise zur Lo-
sung von Installationsproblemen.

1.1 Installation der integrierten Entwicklungsumgebung (IDE) | 7

Siehe auch

Online-Leitfiden fiir den Arduino-Einstieg finden Sie unter http://arduino.cc/en/Guide/
Windows fiir Windows, http://arduino.cc/en/Guide/MacOSX fiir Mac OS X und http:/
www.arduino.cc/playground/Learning/Linux fir Linux.

1.2 Das Arduino-Board einrichten

Problem

Sie méchten ein Arduino-Board einschalten und sicherstellen, dass es funktioniert.

Losung

Verbinden Sie das Board mit einem USB-Port Thres Computers und stellen Sie sicher, dass
die griine Betriebs-LED leuchtet. Standard Arduino-Boards (Uno, Duemilanove und
Mega) haben eine griine Betriebs-LED in der Nihe des Reset-Tasters.

Eine orange LED nahe der Mitte der Platine (»Pin 13 LED« in Abbildung 1-4) sollte an-
und ausgehen, sobald das Board eingeschaltet ist. Boards werden werksseitig mit vor-
installierter Software ausgeliefert, die die LED ein- und ausschaltet. Auf diese Weise lisst
sich einfach priifen, ob das Board funktioniert.

Duplicate 12(-
Pin 13- Pins (Uno

USB- —

l:l .
Anschluss] A rd U | n 0

0O = Betriebs-
/ oo LED
[e)e]
Serielle ._

LEDs

Reset-

‘ q Taster
ANALOG

Externe
Spannungs- e
versorgung S o — nen < in

cocccclecssce
Zusdtzliche Pins)D

(Uno Rev. 3)

Abbildung 1-4: Einfache Arduino-Board (Duemilanove und Uno)

8 | Kapitel 1: Erste Schritte

Bei neuen Boards wie dem Leonardo befinden sich die LEDs in der Nihe des USB-
Anschlusses (siehe Abbildung 1-5). Neue Boards haben auch doppelte Pins fiir 12C (SCL
und SDA). Diese Boards besitzen auch einen Pin namens IOREF, mit dessen Hilfe die
Betriebsspannung des Chips bestimmt werden kann.

Reset—Taster—-@ ggggggg
Foxs

-1003

R
DIGTAL(PWM) — =
LEONARDO

USB-Anschluss-

1 ICSP-
) o or=+—Programmier-
Serielle LEDS—{% 295 | anschluss

Pin 13 LED——1
Betriebs-LED——1

Externe Power _ ANALOGIN
wt
versorgung [—]66 Ei[k.']? O—ANeN <t

O Godood

Abbildung 1-5: Leonardo-Board

N

Der neue Standard der aktuellen Boards verfiigt iiber drei zusitzliche
Anschliisse im Anschlusslayout. Das hat keinen Einfluss auf 4ltere Shields,
4+ die in den neuen Boards genauso laufen wie in den alten. Die neuen
Anschliisse bestehen aus dem Pin IOREF, mit dem die analoge Referenz-
spannung ermittelt werden kann (so dass die analogen Eingangswerte mit
der Stromversorgung abgeglichen werden konnen), sowie aus den Pins
SCL and SDA, die eine konsistenteVerbindung fiir 12C-Gerite ermogli-
chen. Die Lage der I2C-Pins ist bei élteren Boards eine andere, da die Chips
unterschiedlich konfiguriert sind. Fiir das neue Layout entwickelte Shields
sollten mit jedem Board laufen, das die neue Lage der Pins nutzt. Ein
weiterer Pin (neben dem IOREF-Pin) wird momentan nicht genutzt,
ermoglicht aber die zukiinftige Implementierung neuer Features, ohne
das Pin-Layout erneut dndern zu miissen.

Diskussion

Leuchtet die Betriebs-LED nicht, wenn das Board mit dem Computer verbunden ist,
erhilt das Board wahrscheinlich keinen Strom.

Die blinkende LED (die mit dem digitalen Ausgang an Pin 13 verbunden ist) wird durch
Code gesteuert, der auf dem Board liuft (bei neuen Boards ist der Blink-Sketch vor-
installiert). Wenn die LED an Pin 13 blinkt, wird der Sketch korrekt ausgefiihrt, was
wiederum bedeutet, dass der Chip auf dem Board funktioniert. Wenn die griine Betriebs-
LED leuchtet, die LED an Pin 13 aber nicht blinkt, kann es sein, dass der Code werksseitig
nicht auf dem Chip installiert wurde. Folgen Sie den Anweisungen in Rezept 1.3, um den
Blink-Sketch auf das Board zu laden und die Funktionstiichtigkeit des Boards zu tiber-

1.2 Das Arduino-Board einrichten | 9

priffen. Wenn Sie kein Standard-Board verwenden, gibt es méoglicherweise keine feste
LED an Pin 13. Dann miissen Sie die Details des Boards in der Dokumentation nachlesen.
Beim Leonardo-Board sieht es so aus, als wiirde die LED »atmen«, wenn das Board
funktioniert.

Siehe auch

Online-Leitfiden fir den Arduino-Einstieg finden Sie unter http://arduino.cc/en/Guide/
Windows fiir Windows, http://arduino.cc/en/Guide/MacOSX fir Mac OS X und http://
www.arduino.cc/playground/Learning/Linux fiir Linux.

Hilfe bei der Fehlersuche finden Sie unter http://arduino.cc/en/Guide/Troubleshooting.

1.3 Einen Arduino-Sketch mit der integrierten
Entwicklungsumgebung (IDE) bearbeiten

Problem

Sie wollen einen Sketch bearbeiten und fiir den Upload auf das Board vorbereiten.

Losung

Verwenden Sie die Arduino-IDE, um Sketches anzulegen, zu 6ffnen und zu dndern.
(Sketches legen fest, was das Board machen soll.) Sie konnen diese Aktionen iiber die
Buttons am oberen Rand durchfithren (siche Abbildung 1-6) oder die Meniis und
Tastaturkiirzel (siehe Abbildung 1-7) nutzen.

Im Sketcheditor betrachten und editieren Sie den Code eines Sketches. Er unterstiitzt
gingige Textbearbeitungs-Tasten wie Ctrl-F (¥$+F auf dem Mac) fur die Suche, Ctrl-Z
(¥+Z auf dem Mac) fiir Undo, Ctrl-C (38+C auf dem Mac) fiir das Kopieren markierten
Textes und Ctrl-V (38+V auf dem Mac) fiir das Einfiigen von Text.

Abbildung 1-7 zeigt, wie man den Blink-Sketch lddt (der Sketch ist auf neuen Arduino-
Boards vorinstalliert).

Nachdem Sie die IDE gestartet haben, wechseln Sie in das Menii File > Examples und
wihlen 1. Basics—Blink (siehe Abbildung 1-7). Der Code, der die eingebaute LED blinken
lisst, erscheint im Sketch-Editor (siehe Abbildung 1-6).

Bevor der Code auf das Board tibertragen werden kann, muss er in Instruktionen umge-
wandelt werden, die vom Arduino-Controller-Chip gelesen und ausgefithrt werden
konnen. Diesen Vorgang bezeichnet man als Kompilierung. Dazu klicken Sie den Compi-
ler-Button (den oben links mit dem Hiakchen) an, oder wihlen Sketch—Verify/Compile
(Ctrl-R; 8+R auf dem Mac).

10 | Kapitel 1: Erste Schritte

Im Nachrichtenbereich unter dem Editor sollte die Meldung »Compiling sketch...« und
eine Fortschrittsanzeige erscheinen. Nach ein oder zwei Sekunden erscheint die Meldung
»Done Compiling«. Der schwarze Konsolenbereich enthilt zusétzlich die folgende Mel-
dung:

Binary sketch size: 1026 bytes (of a 32256 byte maximum)

Die genaue Meldung hingt von Threm Board und der Arduino-Version ab. Sie gibt an, wie
grof$ der Sketch ist und welche Gréfle Thr Board maximal akzeptiert.

Neuer Sketch
Hochladen Sketch dffnen
Kompi-
lieren Sketch speichern Serieller Monitor

sketch_oct05a | Arduino 1.0

0
00 BEK

sketch_oct05a Tab-Button

Sketch-Editor

Text-Konsole
(Status und
Fehlermeldung)

Arduino Uno on /dev/tty.usbmodemfal31

Abbildung 1-6: Arduino-IDE

1.3 Einen Arduino-Sketch mit der integrierten Entwicklungsumgebung (IDE) bearbeiten | 11

Diskussion

Der Quellcode fiir Arduino wird Sketch genannt. Der Prozess, der einen solchen Sketch in
eine Form umwandelt, die auf dem Board funktioniert, nennt man Kompilierung. Die IDE
nutzt hinter den Kulissen eine Reihe von Kommandozeilen-Werkzeugen, um einen Sketch
zu kompilieren. Weitere Informationen hierzu finden Sie im Rezept 17.1.

® Arduino G Edit Sketch Tools Help
New #EN
Open... #*0
Sketchbook »

1.Basics
Close EW 2.Digital
Save S 3.Analog
Save As... 43S 4.Communication
Upload #®U 5.Control
Upload Using Programmer {+3U 6.5ensors

AnalogReadSerial
BareMinimum

DigitalReadSerial
Fade

7.Display
8.5trings
ArduinolSP

YVYVYVYVYY VYRS

Page Setup
Print

EEPROM

Ethernet

Firmata

LiquidCrystal

Mouse

SD

Servo

SoftwareSerial
sketch_oct05a Sl

Stepper

Wire

VYV VYVVVYVYVYYY

Abbildung 1-7: IDE-Menii (Auswahl des Blink-Beispiel-Sketches)

Die abschlieRende Meldung, die die GroRe des Sketches angibt, sagt Thnen, wie viel Pro-
grammspeicher benotigt wird, um die Controller-Instruktionen auf dem Board zu spei-
chern. Ist der kompilierte Sketch groRer als der auf dem Board verfiigbare Speicher,
erscheint die folgende Fehlermeldung;:

Sketch too big; see http://www.arduino.cc/en/Guide/Troubleshootingi#size
for tips on reducing it.

In diesem Fall miissen Sie den Sketch kiirzen, damit er auf das Board passt, oder Sie
miissen sich ein Board mit einer hoheren Kapazitit besorgen.

Wenn der Code selbst fehlerhaft ist, gibt der Compiler ein oder mehrere Fehlermeldungen
im Konsolenfenster aus. Diese Meldungen helfen bei der Identifikation des Fehlers. Tipps
zur Behebung von Softwarefehlern finden Sie im Anhang D (steht als Download bereit).

Um das versehentliche Uberschreiben der Beispiele zu verhindern, erlaubt
es die Arduino-IDE nicht, Anderungen an den Beispiel-Sketches zu spei-
chern. Sie miissen sie zuerst mit der Mentioption Save As umbenennen.
Selbst geschriebene Sketches kénnen mit dem Save-Button gespeichert
werden (siehe Rezept 1.5).

12 | Kapitel 1: Erste Schritte

Wihrend Sie einen Sketch entwickeln und veriandern, sollten Sie die Mentioption File —
Save regelmiRig nutzen und verschiedene Namen oder Versionsnummern verwenden, so
dass Sie bei der Implementierung bei Bedarf auf eine iltere Version zuriickgreifen konnen.
N

Auf das Board hochgeladener Code kann nicht wieder auf den Computer
heruntergeladen werden. Stellen Sie also sicher, dass Thr Sketch-Code auf

dem Computer gespeichert ist. Sie kénnen Anderungen an den Beispielda-

teien auch nicht speichern, sondern miissen Save As nutzen und der
geidnderten Datei einen anderen Namen geben.

Siehe auch

Rezept 1.5 zeigt einen Beispiel-Sketch. Anhang D (steht als Download bereit) gibt Hin-
weise zur Fehlersuche bei Software-Problemen.

1.4 Den Blink-Sketch hochladen und ausfiihren

Problem

Sie wollen Thren kompilierten Sketch an das Arduino-Board senden und ausfiihren.

Losung

Verbinden Sie Thr Arduino-Board iiber ein USB-Kabel mit Threm Computer. Laden Sie den
Blink-Sketch wie in Rezept 1.3 beschrieben in die IDE.

Als niichstes withlen Sie Tools—>Board aus dem Dropdown-Menii und wihlen den Namen
des angeschlossenen Boards (falls Sie ein Standard-Uno-Board verwenden, ist es wahr-
scheinlich der erste Eintrag in der Board-Liste).

Nun wihlen Sie Tools—Serial Port. Es erscheint eine Dropdown-Liste der auf Threm
Computer verfiigbaren seriellen Ports. Jeder Rechner hat eine andere Kombination
serieller Ports, je nachdem welche anderen Gerite auf dem Computer verwendet werden.

Unter Windows wird eine Liste durchnummerierter COM-Eintrige ausgegeben. Gibt es
nur einen Eintrag, dann wihlen Sie ihn aus. Bei mehreren Eintrdgen ist Thr Board
wahrscheinlich der letzte Eintrag.

Bei einem Mac wird Thr Board zweimal aufgefithrt, wenn es sich um ein Uno-Board

handelt:

/dev/tty.usbmodem-XXXXXXX
/dev/cu.usbmodem-XXXXXXX

1.4 Den Blink-Sketch hochladen und ausfiihren | 13

Ein ilteres Board wird wie folgt aufgefiihrt:

/dev/tty.usbserial-XXXXXXX
/dev/cu.usbserial-XXXXXXX

Jedes Board besitzt einen anderen Wert fir XXXxXxX. Wihlen Sie einen beliebigen Eintrag.

Klicken Sie den Upload-Button an (in Abbildung 1-6 der zweite Button von links), oder
withlen Sie File>Upload to I/O board (Ctrl-U, 3$+U auf einem Mac).

Die Software kompiliert den Code wie in Rezept 1.3 beschrieben. Nachdem die Software
kompiliert wurde, wird sie auf das Board hochgeladen. Wenn Sie auf das Board schauen,
sehen Sie, dass die LED aufhort zu blinken und zwei LEDs (die »Seriell«-LEDs in
Abbildung 1-4) direkt unter der eben noch blinkenden LED fiir einige Sekunden flackern,
wihrend der Code hochgeladen wird. Die urspriingliche LED fangt dann wieder an zu
blinken, sobald der Code ausgefiihrt wird.

Diskussion

Damit die IDE kompilierten Code an das Board senden kann, muss das Board mit dem
Computer verbunden sein und Sie miissen der IDE mitteilen, welches Board und welchen
seriellen Port Sie verwenden.

Wenn ein Upload beginnt, wird ein auf dem Board laufender Sketch angehalten (wenn der
Blick-Sketch lduft, hort die LED auf zu blinken). Der neue Sketch wird auf das Board
hochgeladen und ersetzt den vorhandenen Sketch. Der neue Sketch wird ausgefiihrt,
sobald das Hochladen erfolgreich abgeschlossen wurde.

W N
‘ Altere Arduino-Boards (und einige kompatible) unterbrechen einen laufen-
den Sketch zur Initiierung des Uploads nicht. In diesem Fall miissen Sie die
Reset-Taste auf dem Board driicken, sobald die Kompilierung abgeschlossen
ist (d.h., wenn Sie die Meldung zur GroRe des Sketches sehen). Moglicher-
weise brauchen Sie einige Versuche, bis Sie das richtige Timing zwischen
dem Ende der Kompilierung und dem Driicken des Reset-Tasters hinbe-
kommen.

' 4 I‘
‘\Q‘\
<

Die IDE gibt eine Fehlermeldung aus, wenn der Upload nicht erfolgreich war. Die
typischen Probleme sind falsch gewiihlte Boards oder serielle Ports, oder nicht korrekt
angeschlossene Boards. Das gewihlte Board und der serielle Port werden in der Status-
leiste am unteren Rand des Arduino-Fensters angezeigt.

Wenn Sie Schwierigkeiten haben, den richtigen Port unter Windows zu bestimmen,
trennen Sie das Board vom Computer, wihlen Tools—Serial Port und sehen nach, welcher
COM-Port nicht mehr in der Liste steht. Ein anderer Ansatz besteht darin, die Ports
nacheinander auszuwihlen, bis die LEDs des Boards zu flackern beginnen (was bedeutet,
dass der Code hochgeladen wird).

14 | Kapitel 1: Erste Schritte

Siehe auch

Die Arduino-Seite zur Fehlersuche: http://www.arduino.cc/en/Guide/Troubleshooting.

1.5 Einen Sketch erstellen und speichern

Problem

Sie mochten einen Sketch erstellen und auf dem Computer speichern.

Losung

Um ein Editor-Fenster zu 6ffnen, in das Sie einen neuen Sketch eingeben kénnen, starten
Sie die IDE (siehe Rezept 1.3), wechseln ins File-Menii und wihlen New. Geben Sie den
folgenden Code im Sketch-Editor ein (es dhnelt dem Blink-Sketch, aber die Blinkdauer ist
doppelt so lang):

const int ledPin = 13; //Mit Pin 13 verbundene LED
void setup()

pinMode(ledPin, OUTPUT);
}

void loop()
{

digitalWrite(ledPin, HIGH); // LED einschalten

delay(2000); // Zwei Sekunden warten
digitalWrite(ledPin, LOW); // LED ausschalten
delay(2000); // Zwei Sekunden warten

Kompilieren Sie den Code durch Anklicken des Compiler-Buttons (oben links mit dem
Hikchen), oder wihlen Sie Sketch—Verify/Compile (siehe Rezept 1.3).

Laden Sie den Code tiber den Upload-Button oder iiber File=>Upload to I/O board (siehe
Rezept 1.4) hoch. Nach dem Hochladen sollte die LED in einem Intervall von zwei Se-
kunden blinken.

Sie konnen den Sketch auf dem Computer sichern, indem Sie den Save-Button anklicken
oder File~>Save auswihlen.

Sie konnen den Sketch unter einem neuen Namen sichern, indem Sie die Mentiioption
Save As wihlen. Es erscheint eine Dialogbox, in die Sie den neuen Dateinamen eintragen
koénnen.

Diskussion

Wenn Sie eine Datei mit der IDE sichern, erscheint eine Standard-Dialogbox des Betriebs-
systems. Per Voreinstellung wird der Sketch in einem Ordner namens Arduino unter

1.5 Einen Sketch erstellen und speichern | 15

Eigene Dateien (bzw. dem Dokumenten-Ordner auf einem Mac) gespeichert. Sie konnen
den voreingestellten Sketch-Namen durch einen sinnvollen Namen ersetzen, der den
Zweck des Sketches widerspiegelt.

W N

Der Standardname besteht aus dem Wort Sketch, gefolgt vom aktuellen
Datum. Bei a beginnende Zeichenfolgen werden verwendet, um am glei-
.5 chen Tag angelegte Sketches zu unterscheiden. Den Standardnamen durch
etwas Sinnvolles zu ersetzen, hilft Thnen dabei, den Zweck des Sketches zu
erkennen, wenn Sie ihn spiter wieder bearbeiten.

Wenn Sie von der IDE nicht erlaubte Zeichen verwenden (z.B. ein Leerzeichen), ersetzt die
IDE sie automatisch durch giiltige Zeichen.

Arduino-Sketches werden als reine Textdateien mit der Erweiterung .ino gespeichert.
Altere Versionen der IDE verwenden die Erweiterung .pde, die auch von Processing
genutzt wird. Sie werden automatisch in einem Ordner gesichert, der den gleichen Namen
hat wie der Sketch.

Sie konnen Thre Sketches in jedem beliebigen Ordner Thres Computers sichern, doch
wenn Sie den Standardordner nutzen (den Arduino-Ordner unterhalb Threr Dokumente),
erscheinen die Sketches automatisch im Sketchbook-Menii der Arduino-Software und
sind leichter zu finden.

N

A
. Wenn Sie eines der Beispiele des Arduino-Downloads bearbeitet haben,
ﬁ:‘ kénnen Sie die Anderungen nicht unter dem gleichen Dateinamen sichern.
- Auf diese Weise bleiben die Standard-Beispiele unangetastet. Wenn Sie das

modifizierte Beispiel sichern wollen, miissen Sie einen anderen Ort fiir den
Sketch wihlen.

Wenn Sie Anderungen vorgenommen haben und einen Sketch schlieRen, erscheint eine
Dialogbox, die Sie fragt, ob Sie die Anderungen sichern wollen.

N
AN Das Symbol § hinter dem Namen des Sketches in der oberen Leiste des
L) IDE-Fensters zeigt an, dass der Sketch-Code geindert, aber noch nicht auf
0w . .
. dem Computer gesichert wurde. Das Symbol wird entfernt, wenn der

Sketch gesichert wird.

Die Arduino-Software bietet keinerlei Versionskontrolle. Wenn Sie also zu einer <eren
Version Thres Sketches zuriickkehren wollen, miissen Sie Save As regelmifig verwenden
und jeder Version des Sketches einen etwas anderen Namen geben.

Die hiufige Kompilierung wihrend der Bearbeitung ist eine gute Moglichkeit, den von
Thnen geschriebenen Code auf Fehler zu tiberpriifen. Fehler aufzuspiiren und zu kor-
rigieren, wird auf diese Weise einfacher, weil sie direkt mit Thren aktuellen Eingaben
zusammenhingen.

16 | Kapitel 1: Erste Schritte

Sobald ein Sketch auf ein Board hochgeladen wurde, gibt es keine Mog-
lichkeit, ihn wieder auf den Rechner herunterzuladen. Sichern Sie also alle
Anderungen an Thren Sketches, die Sie behalten wollen.

Wenn Sie versuchen, einen Sketch zu sichern, der nicht in einem Ordner liegt, der den
gleichen Namen wie der Sketch hat, informiert Sie die IDE dartiber, dass das so nicht geht,
und empfiehlt, OK anzuklicken, um einen Ordner mit dem gleichen Namen fiir den
Sketch anzulegen.

7

Sketches miissen in einem Ordner liegen, der den gleichen Namen hat wie
der Sketch. Die IDE legt den Ordner automatisch an, wenn Sie einen
&' neuen Sketch sichern.

Mit dlterer Arduino-Software entwickelte Sketches verwenden eine andere
Dateierweiterng (.pde). Die IDE 6ffnet sie und erzeugt eine Datei mit einer
neuen Erweiterung (.ino), wenn Sie sie sichern. Fiir dltere Versionen der
IDE enwickelter Code kompiliert unter der Version 1.0 méglicherweise
nicht. Die meisten Anderungen, die notwendig sind, um ilteren Code ans
Laufen zu kriegen, sind aber einfach vorzunehmen. Details finden Sie in
Anhang H (steht als Download bereit).

Siehe auch

Der Code in diesem Rezept (und im Rest des Buches) verwendet den Ausdruck const int,
um fiir Konstanten sinnvolle Namen (ledPin) anstelle von Zahlen (13) zu nutzen. Mehr
zur Verwendung von Konstanten finden Sie in Rezept 17.5 (steht als Download bereit).

1.6 Arduino verwenden

Problem

Sie méchten ein Projekt beginnen, das einfach zu bauen ist und gleichzeitig Spal macht.

Losung

Dieses Rezept bietet einen Vorgeschmack auf einige der Techniken, die in spiteren
Kapiteln detailliert behandelt werden.

Der Sketch basiert auf dem Code fiir die blinkende LED aus dem vorherigen Rezept.
Anstelle eines festen Zeitintervalls wird die Dauer aber iiber einen Sensor, einen licht-
empfindlichen Widerstand, bestimmt (siehe Rezept 6.2). Verdrahten Sie den lichtemp-
findlichen Widerstand wie in Abbildung 1-8 gezeigt.

1.6 Arduino verwenden | 17

gggggggg ggggggg[o] *LDR = Lichtempfindlicher Widerstand
£33 e ==
. L 4
Arduino o

s @

| QO &
(@@

Abbildung 1-8: Arduino mit lichtempfindlichem Widerstand

N N

A
o Wenn Sie nicht damit vertraut sind, einen Schaltkreis nach einem Schalt-
“‘:‘ plan aufzubauen, sehen Sie sich Anhang B (steht als Download bereit) an.
h Hier wird Schritt fiir Schitt gezeigt, wie man eine Schaltung auf einem

Steckbrett aufbaut.

Der folgende Sketch liest die Lichtintensitit des lichtempfindlichen Widerstands ein, der
mit dem analogen Pin 0 verbunden ist. Diese Lichtintensitit verdndert die Blinkgeschwin-
digkeit der internen LED an Pin 13:

const int ledPin= 13; //Mit Pin 13 verbundene LED
const int sensorPin=0; //Mit Analogeingang 0 verbundener Sensor

void setup()

pinMode(ledPin, OUTPUT); // LED-Pin als Ausgang aktivieren
}

void loop()
{

int rate = analogRead(sensorPin); // Analogen Eingang einlesen
digitalwrite(ledPin, HIGH); // LED einschalten

delay(rate); // Wartezeit abhéngig von Lichtintensitat
digitalWrite(ledPin, LOW); // LED ausschalten
delay(rate);

Diskussion

Der Wert des 4,7K-Widerstands ist unkritisch. Sie kénnen alles zwischen 1K und 10K
verwenden. Die Lichtintensitit am lichtempfindlichen Widerstand dndert die Spannung
an Analogpin 0. Der Befehl analogRead (siehe Kapitel 6) liefert einen Wert zwischen 200

18 | Kapitel 1: Erste Schritte

(dunkel) und 800 (hell) zuriick. Dieser Wert bestimmt, wie lange die LED an und aus
bleibt. Das Blinkintervall wird also mit zunehmender Lichtstirke linger.

Sie konnen das Blinkintervall mit Hilfe der Arduino-Funktion map wie folgt skalieren:

const int ledPin= 13; //Mit Pin 13 verbundene LED
const int sensorPin=0; //Mit Analogeingang 0 verbundener Sensor

// die ndchsten beiden Zeilen legen das minimale und maximale Zeitintervall fest

const int minDuration = 100; // Minimale Dauer
const int maxDuration = 1000; // Maximale Dauer

void setup()

pinMode(ledPin, OUTPUT); // LED-Pin als Ausgang aktivieren
}

void loop()

{
int rate = analogRead(sensorPin); // Analogen Eingang einlesen
// Die ndchste Zeile skaliert das Blinkintervall auf die Minimal- und Maximalwerte
rate = map(rate, 200,800,minDuration, maxDuration); // InBlinkintervall umwandeln

rate = constrain(rate, minDuration,maxDuration); // undWert beschranken

digitalWrite(ledPin, HIGH); // LED einschalten

delay(rate); // Wartezeit abhdngig von Lichtintensitat
digitalWrite(ledPin, LOW); // LED ausschalten
delay(rate);

In Rezept 5.7 wird detailliert beschrieben, wie man die map-Funktion zur Skalierung von
Werten nutzt. Rezept 3.5 zeigt im Detail, wie man die constrain-Funktion verwendet,
damit ein Wert einen bestimmten Wertebereich nicht tiber- oder unterschreitet.

Wenn Sie sich den Wert der rate-Variablen auf Threm Computer ansehen wollen, konnen
Sie ihn tiber den seriellen Monitor ausgeben. Wie das geht, zeigt der nachfolgende,
iiberarbeitete Code in der loop()-Funktion. Der Sketch gibt die Blinkrate iiber den
seriellen Monitor aus. Sie 6ffnen den seriellen Monitor in der Arduino IDE, indem Sie
das Icon rechts in der oberen Leiste anklicken (mehr zur Verwendung des seriellen
Monitors finden Sie in Kapitel 4):

const int ledPin = 13; //Mit Pin 13 verbundene LED
const int sensorPin=0; //Mit Analogeingang 0 verbundener Sensor

// die ndchsten beiden Zeilen legen das minimale und maximale Zeitintervall fest
const int minDuration = 100; // Minimale Dauer
const int maxDuration = 1000; // Maximale Dauer

void setup()

pinMode(ledPin, OUTPUT); // LED-Pin als Ausgang aktivieren
Serial.begin(9600); // Seriellen Port initialisieren

1.6 Arduino verwenden | 19

void loop()

{
int rate = analogRead(sensorPin); // Analogen Eingang einlesen
// Die ndchste Zeile skaliert das Blinkintervall auf die Minimal- und Maximalwerte
rate = map(rate, 200,800,minDuration, maxDuration); // In Blinkintervall umwandeln
rate = constrain(rate, minDuration,maxDuration); //undWert beschrdnken

Serial.println(rate); // Intervall tber seriellen Monitor ausgeben
digitalwrite(ledPin, HIGH); // LED einschalten

delay(rate); // Wartezeit abhdngig von Lichtintensitat
digitalWrite(ledPin, LOW); // LED ausschalten

delay(rate);

}

Sie konnen mit dem lichtempfindlichen Widerstand auch die Tonlage eines Lautspechers
steuern, wenn Sie ihn wie in Abbildung 1-9 anschliefRen.

Lautsprecher
IL oder Piezo-
eueeoeLoliccecceconel Element
=3 DIGITAL ==
Widerstand
(fest oder variabel)
Arduino s
S oo ANALOG
- OO E5228E o renvn 4-”‘; §
[elene0e] TDDDDD
Lichtempfindlicher
Widerstand

Abbildung 1-9: Verbinden eines Lautsprechers mit dem lichtempfindlichen Widerstand

Sie miissen das Ein/Aus-Intervall des Pins auf eine Frequenz im Audiospektrum erhshen.
Das wird im nachfolgenden Code erreicht, indem die minimale und maximale Dauer
reduziert wird:

const int outputPin=9; //Mit digitalemPin 9 verbundener Lautsprecher
const int sensorPin=0; //Mit Analogeingang 0 verbundener Sensor

const int minDuration =1; // 1ms an, 1ms aus (500 Hz)
const int maxDuration = 10; // 10ms an, 10ms aus (50 hz)

void setup()
pinMode(outputPin, OUTPUT); // LED-Pin als Ausgang aktivieren

void loop()
{

20 | Kapitel 1: Erste Schritte

int sensorReading = analogRead(sensorPin); // Analogeingang einlesen
int rate = map(sensorReading, 200,800,minDuration, maxDuration);
rate = constrain(rate, minDuration,maxDuration); //Wert beschrénken

digitalWrite(outputPin, HIGH); // LED einschalten

delay(rate); // Wartezeit abhdngig von Lichtintensitat
digitalWrite(outputPin, LOW); // LED ausschalten
delay(rate);

Siehe auch
In Rezept 3.5 finden Sie Details zur Verwendung der constrain-Funktion.
Rezept 5.7 beschreibt die map-Funktion.

Wenn Sie Tone erzeugen wollen, finden Sie in Kapitel 9 eine umfassende Diskussion zur
Audioausgabe mit dem Arduino.

1.6 Arduino verwenden | 21

KAPITEL 2
Den Sketch machen lassen, was Sie wollen

2.0 Einfiihrung

Auch wenn es bei einem Arduino-Projekte zu einem groflen Teil darum geht, das
Arduino-Board mit der passenden Hardware zu verbinden, missen Sie dem Board sagen
konnen, was es denn genau damit anfangen soll. Dieses Kapitel fithrt in die Kernelemente
der Arduino-Programmierung ein, zeigt Nicht-Programmierern, wie man gingige Sprach-
konstrukte nutzt, und enhilt eine Sprachiibersicht fiir diejenigen Leser, die nicht mit C
oder C++ (der von Arduino verwendeten Sprache) vertraut sind.

Damit die Beispiele interessant bleiben, miissen wir Arduino etwas machen lassen. Die
Rezepte nutzen daher physikalische Fihigkeiten des Boards, die erst in spiteren Kapiteln
im Detail erldutert werden. Falls Thnen der Code in diesem Kapitel nicht klar ist, sollten
Sie zu den nachfolgenden Kapiteln springen, insbesondere zu Kapitel 4 fir die serielle
Ausgabe und Kapitel 5 zum Einsatz der digitalen und analogen Pins. Sie miissen aber nicht
alle Codebeispiele begreifen, um zu verstehen, wie die speziellen Fihigkeiten genutzt
werden, die im Fokus des jeweiligen Rezepts stehen. Hier einige gingige Funktionen, die
in den nichsten paar Kapiteln behandelt werden:

Serial.println(wert);
Gibt den Wert iiber den seriellen Monitor der Arduino-IDE aus, so dass Sie die
Arduino-Ausgabe am Computer verfolgen kénnen; siehe Rezept 4.1.

pinMode(pin, modus);
Konfiguriert einen digitalen Pin als Eingang (lesen) oder Ausgang (schreiben). Siehe
hierzu die Einfithrung zu Kapitel 5.

digitalRead(pin);
Liest einen digitalen Wert (HIGH oder LOW) tiber einen als Eingang festgelegten Pin ein;
siehe Rezept 5.1.

digitalWrite(pin, wert);
Schreibt einen digitalen Wert (HICH oder LOW) an einen als Ausgang festgelegten Pin;
siche Rezept 5.1.

| 23

2.1 Strukturierung eines Arduino-Programms

Problem

Sie sind Programmiereinsteiger und wollen die Bausteine eines Arduino-Programms
verstehen.

Losung

Programme fuir den Arduino werden iiblicherweise als Sketches bezeichnet. Die ersten
Nutzer waren Kiinstler und Designer, und der Begriff Sketch (Skizze/Entwurf) hebt die
schnelle und einfache Moglichkeit hervor, Ideen realisieren zu kénnen. Die Begriffe Sketch
und Programm sind austauschbar. Sketches enthalten Code, also die Instruktionen, die
das Board ausfiihren soll. Nur einmal auszufithrender Code (etwa die Initialisierung des
Boards fiir die Anwendung), muss in der setup-Funktion stehen. Code, der kontinuierlich
ausgefithrt werden soll, nachdem das Setup abgeschlossen wurde, kommt in die loop-
Funktion. Hier ein typischer Sketch:

const int ledPin = 13; //Mit Pin 13 verbundene LED

// Die setup()-Methode wird beim Start des Sketches einmal ausgefihrt
void setup()

pinMode(ledPin, OUTPUT); //Digitalen Pin als Ausgang festlegen
}

// Die loop()-Methode wird immer und immer wieder ausgefiihrt
void loop()
{

digitalWrite(ledPin, HICH); // LED einschalten

delay(1000); // Eine Sekunde warten
digitalWrite(ledPin, LOW); // LED ausschalten
delay(1000); // Eine Sekunde warten

Sobald die Arduino-IDE den Code hochgeladen hat (und bei jedem Einschalten des
Boards), beginnt es am Anfang des Sketches und geht die Instruktionen nacheinander
durch. Es fithrt den Code in setup einmal aus und geht dann den Code in loop (engl.
Schleife) durch. Am Ende von loop (den die schliefende geschweifte Klammer } markiert),
wird zum Anfang von loop zuriickgesprungen.

Diskussion

Dieses Beispiel ldsst die LED fortlaufend blinken, indem es die Werte HIGH und LOW an den
Pin schreibt. Mehr zur Verwendung der Arduino-Pins finden Sie in Kapitel 5. Beim Start
des Sketches legt der Code in setup den Modus des Pins fest (damit er die LED ein- und
ausschalten kann). Nachdem der Code in setup ausgefithrt wurde, wird der Code in loop,
der die LED blinken lisst, in einer Endlosschleife ausgefiihrt, solange das Arduino-Board
eingeschaltet ist.

24 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Sie miissen Folgendes nicht wissen, um Arduino-Sketches zu schreiben, doch erfahrene
C/C++-Programmierer werden sich fragen, wohin der Einsprungpunkt main() ver-
schwunden ist. Er ist da, wird aber durch die Arduino-Build-Umgebung versteckt. Der
Build-Prozess erzeugt eine Zwischendatei, die den Sketch-Code und die folgenden
zusitzlichen Anweisungen enthilt:

int main(void)
init();
setup();

for ;)
Loop();

return 0;

}

Zuerst wird die Funktion init() aufgerufen, die die Arduino-Hardware initialisiert.
Danach wird die setup()-Funktion des Sketches aufgerufen. Zum Schluss wird Thre
loop()-Funktion immer und immer wieder ausgefiihrt. Da die for-Schleife niemals endet,
wird die return-Anweisung nie ausgefiihrt.

Siehe auch
Rezept 1.4 erklirt, wie man einen Sketch auf ein Arduino-Board hochladt.

Kapitel 17 (steht als Download bereit) und http://www.arduino.cc/en/Hacking/BuildPro-
cess enthalten weitere Informationen zum Build-Prozess.

2.2 Einfache primitive Typen (Variablen) nutzen

Problem

Arduino kennt verschiedene Variablentypen, um Werte effizient reprisentieren zu kon-
nen. Sie wollen wissen, wie man diese Arduino-Datentypen wihlt und nutzt.

Losung

Der Datentyp int (kurz fiir Integer, bei Arduino ein 16-Bit-Wert) ist in Arduino-Anwen-
dungen die gingige Wahl fiir numerische Werte. Sie konnen aber Tabelle 2-1 nutzen, um
den Datentyp zu bestimmen, der fiir Thre Anwendung den geeigneten Wertebereich
aufweist.

Tabelle 2-1: Arduino-Datentypen

Numerische Typen Bytes Wertebereich Verwendung
int 2 —32768 bis 32767 Reprasentiert positive und negative ganze Zahlen.
unsigned int 2 0 bis 65535 Représentiert nur positive ganze Zahlen. Ansonsten wie int.

2.2 Einfache primitive Typen (Variablen) nutzen | 25

Tabelle 2-1: Arduino-Datentypen (Fortsetzung)

Numerische Typen Bytes Wertebereich Verwendung

long 4 —2147483648 bis Reprasentiert sehr groBe positive und negative ganze Zahlen.
2147483647

unsigned long 4 4294967295 Reprasentiert sehr groBe positive ganze Zahlen.

float 4 3.4028235E+38 bis Reprasentiert FlieBkommazahlen. Wird fiir Messwerte genutzt
—3.4028235E+38 um Werte von Messungen an reale Werte anzunahern.

double 4 Wie float Bei Arduino ist double nur ein anderer Name fiir f1oat.

boolean 1 false (0) oder true (1) Reprdsentiert boolesch Wahr/Falsch-Werte.

char 1 —128 bis 127 Reprasentiert ein einzelnes Zeichen. Kann auch einen vorzei-

chenbehafteten Wert zwischen —128 und 127 reprasentieren.
byte 1 0 bis 255 Wie char, aber fiir vorzeichenlose Werte.

Weitere Typen Verwendung

String Représentiert Arrays von chars (Zeichen). Wird iiblicherweise fiir Text verwendet.
void Wird nur bei Funktionsdeklarationen verwendet, die keinen Wert zuriickliefern.
Diskussion

Solange man keine maximale Performance oder Speichereffizienz braucht, eignen sich als
int deklarierte Variablen fiir numerische Werte, wenn sie den Wertebereich (in der ersten
Spalte in Tabelle 2-1) nicht tiberschreiten und man keine Briiche (Fliefkommazahlen)
braucht. Die meisten offiziellen Arduino-Codebeispiele deklarieren numerische Variablen
als int. Doch manchmal miissen Sie einen Typ wihlen, der die speziellen Anforderungen
Threr Anwendung erfiillt.

Manchmal braucht man negative Zahlen und manchmal nicht, weshalb es zwei Varianten
numerischer Variablen gibt: signed (mit Vorzeichen) und unsigned (ohne Vorzeichen).
unsigned-Werte sind immer positiv. Variablen, denen nicht das Schliisselwort unsigned
vorangestellt wird, arbeiten mit Vorzeichen, d.h., sie konnen negative und positive Werte
reprasentieren. Ein Grund fir die Verwendung von unsigned-Werten ist, dass die Werte
moglicherweise nicht in signed-Variablen passen (der vorzeichenlose, maximale Wert
einer unsigned-Variable ist doppelt so hoch wie der einer signed-Variablen). Ein weiterer
Grund, warum Programmierer unsigned-Typen verwenden, liegt darin, moglichen Lesern
des Codes klar anzuzeigen, dass der Wert einer Variablen niemals negativ wird.

Boolesche Typen besitzen nur zwei mogliche Werte: wahr (true) oder falsch (false). Sie
werden iiblicherweise verwendet, um solche Dinge zu priiffen wie den Status eines
Schalters (Wurde er gedrickt oder nicht?). An den Stellen, an denen es sinnvoll ist,
kénnen Sie auch HIGH und LOW als Aquivalent zu true und false nutzen. digitalWrite(pin,
HICH) ist fiir das Einschalten aussagekriftiger als digitalWrite(pin, true) oder digital-
Write(pin,1), auch wenn alle Varianten, was die Ausfithrung des Sketches betrifft,
identisch sind. Bei im Web gepostetem Code werden Thnen sehr wahrscheinlich alle Va-
rianten begegnen.

26 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Siehe auch

Details zu den Datentypen finden Sie in der Arduino-Referenz an http://www.arduino.cc/
en/Reference/HomePage .

2.3 FlieBkommazahlen verwenden

Problem

FlieRkommazahlen werden fiir Werte mit Nachkommastellen (also Briiche) verwendet.
Sie mochten solche Werte in Thren Sketches nutzen.

Losung

Der folgende Code zeigt, wie man FlieRkomma-Variablen deklariert, illustriert mogliche
Probleme beim Vergleich von FlieRkomma-Werten und zeigt, wie man sie vermeiden kann.
Beachten Sie bitte, dass das Komma im Amerikanischen als Punkt (.) dargestellt wird:

/*

* FlieRkomma-Beispiel

* Der Sketch initialisiert eine Variable mit

* dem FlieRkommawert 1,1 und verringert ihn

* fortlaufend um 0,1, bis der Wert 0 erreicht ist.
*/

float value=1.1;

void setup()

Serial.begin(9600);

void loop()
{

value = value - 0.1; //Reduziere value bei jedemDurchlauf umo,1.
if(value ==0)

Serial.println("Der Wert ist genau0");
else if(almostEqual(value, 0))

Serial.print("Der Wert ");
Serial.print(value,7); // 7 Dezimalstellen ausgeben
Serial.println(" ist fast0");

else
Serial.println(value);

delay(100);
}

// Gibt wahr zurlick, wenn die Differenz zwischen a und b klein ist.
// Der Wert von DELTA gibt die max. Differenz an, die noch als "gleich" betrachtet wird.
boolean almostEqual(float a, float b)

2.3 FlieBkommazahlen verwenden | 27

{
const float DELTA = .00001; // Max. Differenz, die noch "gleich" ist
if (a==0) return fabs(b) <= DELTA;
if (b ==0) return fabs(a) <= DELTA;
return fabs((a - b) / max(fabs(a), fabs(b))) <=DELTA ;

Diskussion

FlieRkommazahlen sind nicht genau, und die zuriickgelieferten Werte konnen kleine
Rundungsfehler enthalten. Diese Fehler treten auf, weil FlieRkommazahlen einen groflen
Wertebereich abdecken, weshalb die interne Reprisentation des Wertes nur eine Nihe-
rung sein kann. Aus diesem Grund diirfen Sie nicht auf exakte Ubereinstimmung testen,
sondern ob die Werte innerhalb eines Tolerlanzbereichs liegen.

Der Sketch gibt auf dem seriellen Monitor folgendes aus:

.00
.90
80
.70
.60
.50
.40
.30
.20
0.10
Der Wert -0.0000001 ist fast 0
-0.10
-0.20

[eNeNeNeNeo oo o R

Der serielle Monitor setzt die Ausgabe negativer Zahlen fort.

Sie wiirden wohl erwarten, dass der Code "Der Wert ist genau 0" ausgibt, nachdem value
0,1 enthilt und dann erneut 0,1 subtrahiert wird. Doch value ist nie genau Null. Der Wert
ist nah dran, aber nie nah genug, um den Test if (value == 0) zu bestehen. Das liegt daran,
dass der einzige speichereffiziente Weg zur Speicherung von Fliefkommazahlen (die einen
riesigen Wertebereich abdecken) darin besteht, eine Niherung der Zahl zu speichern.

Die Losung besteht (wie in diesem Rezept zu sehen) darin, zu priifen, ob die Variable nah
genug am gewiinschten Wert liegt.

Die Funktion almostEqual priift, ob die Variable value im Bereich von 0,00001 des
gewiinschten Zielwertes liegt und gibt wahr zuriick, wenn das so ist. Der akzeptable
Wertebereich wird in der Konstanten DELTA festgelegt, damit Sie ganz nach Bedarf grofere
oder kleinere Werte einstellen konnen. Die Funktion fabs (eine Abkiirzung fiir Fliefs-
komma-Absolutwert) gibt den Absolutwert einer FlieRkommazahl zuriick, der dann
genutzt wird, um die Differenz der angegebenen Parameter zu tiberpriifen.

28 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

FlieRkommazahlen sind nur Niherungen, weil nur 32 Bit zur Verfiigung
stehen, um alle Werte eines riesigen Wertebereichs aufzunehmen. Acht Bit
werden fiir den dezimalen Multiplikator (den Exponenten) verwendet,
bleiben 24 Bit fiir das Vorzeichen und den eigentlichen Wert — gerade
genug fiir sieben signifikate Nachkommastellen.

Zwar sind float und double bei Arduino identisch, doch bei vielen anderen
Plattformen bietet double eine hohere Genauigkeit. Wenn Sie Code von
anderen Plattfomen importieren, der float und double mischt, miissen Sie
sicherstellen, dass die Genauigkeit fiir Thre Anwendung ausreicht.

Siehe auch

Die Arduino-Referenz zu float: http://'www.arduino.cc/en/Reference/Float.

2.4 Mit Gruppen von Werten arbeiten

Problem

Sie wollen eine Gruppe von Werten (ein sog. Array) anlegen und nutzen. Arrays konnen
einfache Listen sein, aber auch zwei oder mehr Dimensionen aufweisen. Sie wollen
wissen, wie man die GroRRe des Arrays bestimmt und auf die Elemente des Arrays zugreift.

Losung

Dieser Sketch verwendet zwei Arrays. Ein Array mit Pins, an denen Schalter angeschlossen
sind, und ein zweites Array mit Pins, die mit LEDs verbunden sind (siehe Abbildung 2-1):
/*
array-Sketch
Ein Array von Schaltern steuert ein Array von LEDs
inKapitel 5 erfahren Sie mehr Uber Schalter

Informationen zu LEDs finden Sie in Kapitel 7
*/

int inputPins[] ={2,3,4,5}; // Arraymit Pins fir die Schalter anlegen (Eingdnge)
int ledPins[] = {10,11,12,13}; // Array mit Pins flr die LEDs anlegen (Ausgénge)
void setup()

for(int index = 0; index < 4; index++)

pinMode(ledPins[index], OUTPUT); // LED als Ausgang deklarieren
pinMode(inputPins[index], INPUT); // Schalter als Eingang deklarieren

digitalWrite(inputPins[index],HIGH); // Pullup-Widerstdnde aktivieren
// (siehe Rezept 5.2)
}

2.4 Mit Gruppen von Werten arbeiten | 29

}

void loop(){
for(int index = 0; index < 4; index++)

{
int val = digitalRead(inputPins[index]); // Eingabe einlesen
if (val == LOW) // Priifen, ob Schalter auf Ein steht
{
digitalWrite(ledPins[index], HIGH); // LED einschalten, wenn Schalter auf Ein steht,
}
else
{
digitalWrite(ledPins[index], LOW); // sonst LED ausschalten
}
}
}
7
2
A \ \ \ \
7

Arduino

ANALOG

— N N < N

0000 oll000e0e)

Y

Abbildung 2-1: Verbindungen fiir LEDs und Schalter

30 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Diskussion

Arrays sind Gruppen aufeinanderfolgender Variablen des gleichen Typs. Jede Variable
innerhalb der Gruppe wird als Element bezeichnet. Die Anzahl der Elemente nennt man
die GréfSe des Arrays.

Die Losung zeigt ein typisches Einsatzgebiet von Arrays im Arduino-Code: die Speiche-
rung einer Gruppe von Pins. Die Pins sind hier mit Schaltern und LEDs verbunden (ein
Thema, dem wir uns in Kapitel 5 ausfiihrlicher widmen). Die wichtigen Teile dieses
Beispiels sind die Deklaration des Arrays und der Zugriff auf die Array-Elemente.

Die folgende Codezeile deklariert (erzeugt) ein Array aus vier Integer-Elementen und
initialisiert jedes Element. Das erste Element wird auf 2 gesetzt, das zweite auf 3 und so
weiter:

int inputPins[]=1{2,3,4,5};

Wenn Sie die Werte bei der Deklaration des Arrays nicht initialisieren (z.B. weil sie erst im
laufenden Sketch verfiigbar sind), miissen Sie jedes Element einzeln dndern. Sie deklarie-
ren das Array wie folgt:

int inputPins[4];

Das deklariert ein Array mit vier Elementen und setzt den Wert jedes Elements auf Null.
Die Zahl innerhalb der eckigen Klammern ([]) ist die GroRe, legt also die Anzahl der
Elemente fest. Dieses Array hat die Grofe 4 und kann daher héchstens vier Integerwerte
aufnehmen. Sie kénnen die Grofle weglassen, wenn die Array-Deklaration die Werte
initialisiert (wie im ersten Beispiel). Der Compiler weifl dann, wie groRR das Array werden
muss, indem er die Zahl der Initialisierungen mitzihlt.

Das erste Element des Arrays ist element[0]:

int firstElement = inputPins[0]; // Das erste Element

inputPins[0] = 2; // Setzt den Wert dieses Elements auf 2

Das letzte Element ist 1 kleiner als die GroRe des Arrays. Im obigen Beispiel mit der Grofle
4 ist Element 3 das letzte Element:

int lastElement = inputPins[3]; // Das letzte Element

Sie wundern sich vielleicht, warum bei einem Array der Grofle 4 das letzte Element iiber
array[3] angesprochen wird, doch da array[0] das erste Element ist, heiflen die vier
Elemente:

inputPins[0],inputPins[1],inputPins[2],inputPins(3]
Im obigen Sketch erfolgt der Zugriff auf die vier Elemente in einer for-Schleife:

for(int index = 0; index < 4; index++)

{
//Pin durch Zugriff auf jedes Element des Pin-Arrays ermitteln
pinMode(ledPins[index], OUTPUT); // LED als Ausgang deklarieren
pinMode(inputPins[index], INPUT); // Schalter als Eingang deklarieren

}

2.4 Mit Gruppen von Werten arbeiten | 31

Dieses Schleife durchliuft die Variable index von 0 bis 3. Ein typischer Fehler besteht
darin, versehentlich auf ein Element zuzugreifen, das auRerhalb der GroRe des Arrays
liegt. Solche Fehler kénnen verschiedene Symptome aufweisen, und Sie miissen darauf
achten, sie zu vermeiden. Eine Moglichkeit, solche Schleifen zu kontrollieren, besteht
darin, die Grofle des Arrays in einer Konstanten festzuhalten:

const int PIN_COUNT = 4; // Konstante fiir Anzahl der Elemente definieren
int inputPins[PIN_COUNT] ={2,3,4,5};

for(int index = 0; index < PIN_COUNT; index++)
pinMode(inputPins[index], INPUT);

Der Compiler meldet keinen Fehler, wenn Sie versehentlich einen Wert
“5“@ auflerhalb der Grenzen des Arrays lesen oder schreiben. Sie miissen daher
sorgfiltig darauf achten, dass Sie nur auf Elemente innerhalb der von
Thnen gesetzten Grenzen zugreifen. Die Verwendung einer Konstanten fir
die Grofle des Arrays und im Code hilft Thnen dabei, sich innerhalb der
Array-Grenzen zu bewegen.

Ein weiteres Einsatzgebiet fiir Arrays ist das Vorhalten einzelner Textzeichen. Im Arduino-
Code werden sie als Zeichenketten (oder Strings) bezeichnet. Eine Zeichenkette besteht
aus einem oder mehreren Zeichen, die mit einem Nullzeichen (dem Wert 0) abgeschlossen
werden.

WS

Die Null am Ende des Strings ist nicht mit dem Zeichen 0 identisch. Die
Null hat den ASCII-Wert 0, wihrend 0 den ASCII-Wert 48 hat.

Methoden zur Verwendung von Strings werden in 2.5 und 2.6 behandelt.

Siehe auch
Rezept 5.2; Rezept 7.1

2.5 Arduino-Stringfunktionen nutzen

Problem

Sie wollen Text bearbeiten. Sie wollen ihn kopieren, verketten oder die Anzahl der Zei-
chen bestimmen.

Losung

Das vorige Kapitel hat kurz angedeutet, wie man Arrays von Zeichen nutzt, um Text zu
speichern. Solche Zeichen-Arrays werden tiblicherweise als Strings bezeichnet. Arduino
besitzt eine String-Bibliothek, die eine Vielzahl von Funktionen zur Speicherung und
Bearbeitung von Text zur Verfiigung stellt.

32 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Der Ausdruck String mit einem S als Grofbuchstabe bezieht sich auf die
Arduino-Text-Funktion, die von der Arduino-String-Bibliothek geliefert
wird. Das Wort string mit dem Kleinbuchstaben s bezieht sich eher auf
Zeichengruppen als auf die Arduino-String-Funktionalitit.

Dieses Rezept zeigt, wie man mit Arduino-Strings arbeitet.

W N
AN Die String-Bibliothek wurde mit der Version 0019 alpha (ilter als 1.0) von
ﬁ:\ Arduino eingefithrt. Wenn Sie eine iltere Version nutzen, konnen Sie die
i TextString-Bibliothek verwenden. Beachten Sie hierzu den Link am Ende

des Rezepts.

Laden Sie den folgenden Sketch auf Thr Board und éffnen Sie den seriellen Monitor, um
sich die Ergebnisse anzusehen:
/*
Basic_Strings-Sketch
*/

String text1 = "Dieser String";
String text2 = "hat mehr Text";
String text3; //Wird im Sketch zugewiesen

void setup()

{
Serial.begin(9600);

Serial.print(text1);
Serial.print(" ist");
Serial.print(texti.length());
Serial.println(" Zeichen lang. ");

Serial.print("text2 ist");
Serial.print(text2.length());
Serial.println(" Zeichen lang. ");

text1.concat(text2);
Serial.println("text1 enthaelt nun: ");
Serial.println(text1);

}
void loop()
{

}

Diskussion

Dieser Sketch erzeugt drei Variablen namens text1, text2 und text3 vom Typ String.
Variablen vom Typ String besitzen Fihigkeiten zur Bearbeitung von Text. Die Anweisung
text1.length() gibt die Lange (Anzahl der Zeichen) des Strings text1 zuriick.

2.5 Arduino-Stringfunktionen nutzen | 33

text1.concat(text2)kombiniert die Inhalte von Strings. In unserem Beispiel wird der
Inhalt von text2 an das Ende von texti angehangen (concat ist die Abkiirzung von
concatenate, zu deutsch verketten).

Der serielle Monitor gibt Folgendes aus:

Dieser String ist 13 Zeichen lang.
text2 ist 14 Zeichen lang.

text1 enhdlt nun:

Dieser String hat mehr Text

Eine weitere Moglichkeit zur Verkettung von Strings bietet der Additionsoperator.
Hingen Sie die folgenden beiden Zeilen an das Ende des setup-Codes an:

text3 = text1+ " und mehr";
Serial.println(text3);

Der neue Code gibt im seriellen Monitor zusitzlich noch die folgende Zeile aus:
Dieser String hat mehr Text und mehr

Sie kénnen die Funktionen indexOf und lastIndexOf nutzen, um das Vorkommen eines
bestimmten Zeichens in einem String zu finden.

WS

‘
o Da die String-Klasse eine recht junge Arduino-Erweiterung ist, werden Sie
.“:\ viel Code sehen, der statt des String-Typs mit Zeichenketten arbeitet.
i Weitere Informationen zur Verwendung von Zeichenketten anstelle von

Arduino-Strings finden Sie in Rezept 2.6.

Wenn Sie eine Zeile wie die folgende sehen:
char oldString[] = "Dies ist eine Zeichenkette";

dann verwendet der Code Zeichenketten im C-Stil (siehe Rezept 2.6). Sieht die Deklara-
tion hingegen so aus:

String newString = "Dies ist ein String-Objekt";

verwendet der Code Arduino-Strings. Um eine Zeichenkette im C-Stil einem Arduino-
String zuzuweisen, weisen Sie einfach den Inhalt des Arrays einem String-Objekt zu:

char oldString[] = "Diese Zeichenkette soll ein String-Objekt sein";
String newString = oldString;

Um die in der Tabelle 2-2 aufgefiithrten Funktionen verwenden zu kénnen, miissen Sie sie
auf ein existierendes String-Objekt anwenden, wie im folgenden Beispiel gezeigt wird:

int len = myString.length();
Tabelle 2-2: Kurze Ubersicht der Arduino String-Funktionen

charAt(n) Gibt das n-te Zeichen des Strings zuriick.

compareTo(S2) Vergleicht den String mit dem angegebenen String S2

concat(S2) Gibt einen neuen String zuriick, bei dem der String und S2 verkettet sind.
endsWith(S2) Gibt wahr zuriick, wenn der String mit den Zeichen in S2 endet.

34 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Tabelle 2-2: Kurze Ubersicht der Arduino String-Funktionen (Fortsetzung)

equals(S2) Gibt wahr zuriick, wenn der String genau mit S2 iibereinstimmt (GroB-/Kleinschreibung
wird beachtet).

equalsIgnoreCase(S2) Wie equals, ignoriert aber die GroB-/Kleinschreibung.

getBytes(buffer,len) Kopiert 1en Zeichen in den angegebenen Bytepuffer.

index0f(S) Gibt den Index des angegebenen Strings (oder Zeichens) zuriick bzw. —1, wenn er nicht
gefunden wird.

lastIndex0f(S) Wie indexOf, beginnt aber mit dem Ende des Strings.

length() Gibt die Anzahl der Zeichen im String zuriick.

replace(A,B) Ersetzt alle Instanzen von String (oder Zeichen) A durch B.

setCharAt(index,c) Speichert das Zeichen ¢ am angegebenen Index im String.

startsWith(S2) Gibt wahr zuriick, wenn der String mit den Zeichen in S2 beginnt.

substring(index) Gibt einen String mit den Zeichen beginnend bei Index bis zum Ende des Strings zuriick.

substring(index,to) Wie oben, aber der Substring endet vor der Zeichenposition \9to\9.

toCharArray (buffer,len) Kopiert bis zu len Zeichen des Strings in den angegebenen Puffer.

toInt() Gibt den Integerwert der im String stehenen Ziffern zuriick.

toLowerCase() Gibt einen String zuriick, bei dem alle Zeichen in Kleinbuchstaben umgewandelt wurden.

toUpperCase() Gibt einen String zuriick, bei dem alle Zeichen in GroBbuchstaben umgewandelt wurden.

trim() Gibt einen String zuriick, bei dem alle fiihrenden und anhé@ngenden Whitespaces entfernt
wurden.

Weitere Hinweise zur Nutzung und den Varianten dieser Funktionen finden Sie auf den
Arduino-Referenzseiten.

Zwischen Arduino-Strings und (-Zeichenketten wahlen

Arduinos fest eingebauter Datentyp String ist einfacher zu nutzen als C-Zeichenketten,
was aber durch komplexen Code in der String-Bibliothek erreicht wird, die groRRere
Anforderungen an Thren Arduino stellt und naturgemif problematischer ist.

Der String-Datentyp ist so flexibel, weil er die dynamische Speicherallozierung nutzt. Wenn
Sie also einen String anlegen oder modifizieren, fordert Arduino einen neuen Speicher-
bereich von der C-Bibliothek an. Benétigen Sie den String nicht linger, muss Arduino den
Speicher wieder freigeben. Das lauft tiblicherweise sauber, doch in der Praxis gibt es viele
Stellen, an denen der Speicher ein »Leck« haben kann. Fehler in der String-Bibliothek
konnen dazu fithren, dass ein Teil oder der gesamte Speicher nicht freigegeben wird. Wenn
das passiert, steht dem Arduino (bis zum Neustart) mit der Zeit immer weniger Speicher zur
Vertiigung. Und selbst wenn es kein Speicherleck gibt, ist es schwierig, Code zu schreiben,
der priift, ob ein String aufgrund unzureichenden Speichers nicht angefordert werden
konnte (die String-Funktionen imitieren die von Processing, doch im Gegensatz zu dieser
Plattform verfiigt Arduino nicht iiber eine Ausnahmebehandlung von Laufzeitfehlern.
Fehler mit dynamischem Speicher lassen sich nur schwer finden, da der Sketch Tage oder
Wochen problemlos laufen kann, bevor es zu einem Fehlverhalten kommt.

2.5 Arduino-Stringfunktionen nutzen | 35

Wenn Sie C-Zeichenketten nutzen, haben Sie die Kontrolle tiber die Speichernutzung: Sie
allozieren eine feste (statische) Speichermenge wiihrend der Kompilierung, so dass es
nicht zu einem Speicherleck kommen kann. Threm Arduino-Sketch steht bei jedem Lauf
die gleiche Speichermenge zur Verfiigung. Und wenn Sie versuchen mehr Speicher zu
allozieren, als Thnen zur Verfiigung steht, ist der Fehler leichter zu ermitteln, da es Tools
gibt, die Thnen sagen, wie viel statischen Speicher Sie alloziert haben (siehe hierzu die
Referenz zu avr-objdump in Rezept 17.1, als Download).

Allerdings kann es bei C-Zeichenketten leicht zu einem anderen Problem kommen: C
hindert Sie nicht daran, Speicher zu édndern, der auflerhalb der Grenzen des Arrays liegt.
Wenn Sie also ein Array mit myString[4] allozieren und myString[4] = 'A' zuweisen
(denken Sie daran, dass myString[3] das Ende des Arrays ist), wird Sie niemand daran
hindern. Doch wer weif}, auf welche Speicherstelle myString[4] verweist? Und wer weif$
schon, zu welchem Problem die Zuweisung von 'A' an diese Speicherstelle fiihrt? Sehr
wahrscheinlich wird es ein Fehlverhalten des Sketches verursachen.

Bei Arduinos fest eingebauter String-Bibliothek laufen Sie also durch die Nutzung dyna-
mischen Speichers Gefahr, den verfiigbaren Speicher aufzufressen. Bei C-Zeichenketten
miissen Sie darauf achten, die Grenzen des verwendeten Arrays nicht zu iiberschreiten.
Nutzen Sie Arduinos fest eingebaute String-Bibliothek dann, wenn Sie die umfassende
Moglichkeiten zur Textbearbeitung brauchen und Strings nicht immer wieder neu
erzeugen. Werden sie in einer Schleife wiederholt erzeugt und modifiziert, allozieren Sie
besser ein grofes C-Zeichen-Array und entwickeln den Code sorgfiltig, damit Sie die
Grenzen des Arrays nicht verlassen.

Ein weiterer Fall, bei dem man C-Zeichenketten gegeniiber Arduino-Strings vorzieht, sind
grofle Sketches, die einen Grofiteil des verfiigbaren Speichers oder Flashspeichers nutzen.
Der Arduino StringToInt-Beispielcode benotigt fast 2 KB mehr Flash als das Aquivalent
mit C-Zeichenketten und der atoi-Funktion zur Umwandlung in einen int-Wert. Die
Arduino String-Version benotigt auflerdem etwas mehr RAM, um zusitzlich zum String
noch Allozierungsinformationen zu speichern.

Wenn Sie den Verdacht haben, dass die String-Bibliothek oder jede andere Bibliothek, die
dynamisch Speicher alloziert, ein Speicherleck hat, kénnen Sie jederzeit den freien
Speicher ermitteln. Siehe Rezept 17.2. Priifen Sie den freien Speicher beim Start des
Sketches und iberwachen Sie, ob er mit der Zeit abnimmt. Wenn Sie ein Problem mit
der String-Bibliothek vermuten, suchen Sie in der Liste offener Bugs (http://code.google
.com/plarduino/issues/list) nach »String«.

Siehe auch
Die Arduino-Distribution enthilt String-Beispielsketches (File>Examples—Strings).
Die String-Referenzseite finden Sie unter http://arduino.cc/en/Reference/StringObject.

Einfithrungen zur neuen String-Bibliothek finden Sie unter http://arduino.cc/en/Tutorial/
HomePage. Eine Einfithrung in die Original-String-Bibliothek (die Sie nur benétigen,

36 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

wenn Sie mit einer Arduino-Version dlter als 0019 alpha arbeiten) finden Sie unter
http://www.arduino.cc/en/Tutorial/TextString.

2.6 (-Zeichenketten nutzen

Problem

Sie wollen verstehen, wie man mit Zeichenketten arbeitet. Sie wollen wissen, wie man
einen solchen String erzeugt, seine Linge bestimmt, ihn vergleicht, kopiert und anhingt.
Der Sprachkern von C unterstiitzt die String-Fihigkeiten von Arduino nicht, weshalb Sie
den fur andere Plattformen entwickelten Code verstehen wollen, der mit primitiven
Zeichenketten arbeitet.

Losung

Arrays von Zeichen, werden auch Zeichenketten (oder einfach Strings) genannt. Rezept 2.4
beschreibt Arduino-Arrays im Allgemeinen. Dieses Rezept beschreibt Funktionen, die mit
Zeichenketten arbeiten.

Sie deklarieren Strings wie folgt:

char stringA
char stringB
char stringC
char stringD

8]; // Deklariere einen String mit bis zu 7 Zeichen plus abschlieRender Null

8] ="Arduino"; // Wie oben, init(inialisiert) den String aber gleichmit "Arduino”
16] = "Arduino"; // Wie oben, aber der String kann wachsen

] ="Arduino"; // Der Compiler initialisiert den String und errechnet seine GréRe

—_———

Verwenden Sie strlen (eine Abkiirzung fur string length, also Stringliange), um die Anzahl
der Zeichen vor der abschlieRenden Null zu bestimmen:

int length = strlen(string); // Gibt die Anzahl der Zeichen im String zuriick

length ist im obigen Beispiel O fiir stringA und 7 fiir die anderen Strings. Die Null, die das
Ende des Strings festlegt, wird von strlen nicht mitgezihlt.

Verwenden Sie strcpy (string copy), um einen String in einen anderen zu kopieren:

strcpy(destination, source); // Kopiert den String von der Quelle (source) an das Ziel
(destination)

Verwenden Sie strncpy, um die Zahl der zu kopierenden Zeichen zu beschrinken.
(Niitzlich, um nicht mehr Zeichen zu kopieren, als der Zielstring aufnehmen kann.) Sie
konnen sie in Rezept 2.7 im Einsatz sehen:

// Kopiere bis zu 6 Zeichen von der Quelle (source) zum Ziel(destination)
strncpy(destination, source, 6);

Verwenden Sie strcat (string concatenate), um einen String an das Ende eines anderen
anzuhidngen:

// Quellstring an das Ende des Zielstrings anhdngen
strcat(destination, source);

2.6 C-Zeichenketten nutzen | 37

Achten Sie beim Kopieren oder Verketten immer darauf, dass das Ziel
ausreichend Platz hat. Denken Sie auch an den Platz fiir die abschlieRende
Null.

Verwenden Sie strcmp (string compare), um zwei Strings zu vergleichen. Ein Anwendungs-
beispiel finden Sie in Rezept 2.7:

if(stremp(str "Arduino™) ==0)
// Mach etwas, wenn die Variable str den String "Arduino” enthdlt

Diskussion

Text wird in der Arduino-Umgebung durch ein Array von Zeichen, sog. Strings, repri-
sentiert. Ein String besteht aus einer Folge von Zeichen, die mit einer Null (dem Wert 0)
abgeschlossen wird. Die Null wird nicht ausgegeben, wird aber benétigt, um der Software
das Ende des Strings anzuzeigen.

Siehe auch

Eine der vielen Online verfigbaren C/C++-Referenzseiten, etwa http://www.cplusplus.com/
reference/clibrary/cstring/ und http://lwww.cppreference.com/wiki/string/c/start.

2.7 Durch Komma getrennten Text in Gruppen aufteilen

Problem

Ein String enthilt zwei oder mehr Datenelemente, die durch Kommata (oder ein anderes
Trennzeichen) voneinander getrennt sind. Sie wollen den String so zerlegen, dass Sie die
einzelnen Elemente nutzen kénnen.

Losung

Dieser Sketch gibt den Text zwischen den Kommata aus:

/*

* SplitSplit-Sketch

* Kommaseparierten String zerlegen
*/

String text = "Peter,Paul,Mary"; //Beispiel-String
String message = text; // Enthdlt noch nicht zerlegten Text
int commaPosition; // Position des ndchsten Kommas im String
void setup()

Serial.begin(9600);

Serial.println(message); // Quellstring ausgeben,
do

38 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

commaPosition = message.indexOf(",");
if(commaPosition !=-1)

{

Serial.println(message.substring(0,commaPosition));
message = message. substring(commaPosition+1, message.length());

}

else
{ // nachdem das letzte Komma gefunden wurde
if(message.length() > 0)
Serial.println(message); //Wenn Text auf das letzte Komma folgt,
// ausgeben
}

while(commaPosition »=0);

}

void loop()
}

Im seriellen Monitor wird Folgendes ausgegeben:

Peter,Paul,Mary
Peter

Paul

Mary

Diskussion

Dieser Sketch nutzt String-Funktionen, um den Text zwischen den Kommata zu extra-
hieren. Der Code:

commaPosition = message.index0f(",");

legt in der Variablen commaPosition die Position des ersten Kommas im String namens
message ab (der Wert ist —1, wenn kein Komma gefunden wurde). Gibt es ein Komma,
wird die Funktion substring genutzt, um den Text vom Anfang des Strings bis zum
Komma auszugeben. Der ausgegebene Text samt Komma wird dann in der folgenden
Zeile aus message entfernt:

message = message.substring(commaPosition+1, message.length());

substring liefert einen String zuriick, der bei commaPosition+1 (der Position gleich hinter
dem Komma) beginnt und sich bis zum Ende des Strings erstreckt. Message enthélt dann
nur noch den Text, der auf das erste Komma folgt. Das wird so lange wiederholt, bis kein
Komma mehr gefunden wird (commaPosition enthilt dann —1).

Als erfahrener Programmierer konnen Sie auch die Low-Level-Funktionen nutzen, die Teil
der Standard-C-Bibliothek sind. Der folgende Sketch bietet die gleiche Funktionalitit wie
oben mit Arduino-Strings:

/*

* SplitSplit Sketch

* Komma separieren, String zerlegen

2.7 Durch Komma getrennten Text in Gruppen aufteilen | 39

*/

const int MAX_STRING_LEN = 20; // Léngsten String festlegen,
// den Sie verarbeitenwollen

char stringlist[] = "Peter,Paul,Mary"; // Beispiel-String

char stringBuffer[MAX_STRING_LEN+1]; // Statischer Puffer fiir Berechnung und Ausgabe
void setup()

{

Serial.begin(9600);
}

void loop()

char *str;
char *p;
strncpy(stringBuffer, stringlist, MAX_STRING LEN); // Quellstring kopieren
Serial.println(stringBuffer); // Quellstring ausgeben
for(str =strtok r(stringBuffer, ",", 8p); // An Komma zerlegen,

str; // solange str nicht Null ist,

str = strtok _r(NULL, ",", 8p) // nachstes Token ermitteln

)

{
Serial.println(str);

delay(5000);

Die Kernfunktionalitit liefert eine Funktion namens strtok_r (der Name der strtok-Ver-
sion, die der Arduino-Compiler bereitstellt). Beim ersten Aufruf von strtok_r {ibergeben
Sie den String, den Sie in Token (einzelne Werte) zerlegen wollen. Doch strtok_r uiber-
schreibt die Zeichen in diesem String jedes Mal, wenn es ein neues Token findet, weshalb
man (wie in diesem Beispiel gezeigt) am besten eine Kopie des Strings iibergibt. Alle
nachfolgenden Aufrufe tibergeben eine NULL, um die Funktion anzuweisen, sich zum
nichsten Token zu bewegen. Im obigen Beispiel wird jedes Token tiber den seriellen
Port ausgegeben.

Wenn Thre Token nur aus Zahlen bestehen, sehen Sie sich Rezept 4.5 an. Es zeigt, wie
man numerische Werte, die durch Kommata voneinander getrennt sind, aus einem
Stream serieller Zeichen extrahiert.

Siehe auch

Unter http://'www.nongnu.org/avr-libc/user-manual/group__avr__string.html erfahren Sie
mehr tiber C-Stringfunktionen wie strtok_r und strcmp.

Rezept 2.5; Online- Referenzen zu den C/C++-Funktionen strtok_r und strcmp.

40 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

2.8 Eine Zahl in einen String umwandeln

Problem

Sie miissen eine Zahl in einen String umwandeln, etwa um sie auf einem LCD- oder einem
anderen Display auszugeben.

Losung

Die String-Variable wandelt Zahlen automatisch in Strings um. Sie kénnen Literale oder
den Inhalt einer Variablen verwenden. So funktioniert der folgende Code:

String myNumber = 1234;
Ebenso wie dieser:

int value = 127;
String myReadout = "Der Messwert ist ";
myReadout.concat(value);

Und auch dieser:

int value = 127;
String myReadout = "Der Messwert ist ";
myReadout += value;

Diskussion

Wenn Sie eine Zahl in Text umwandeln wollen, um sie auf einem LC-Display oder tiber
eine serielle Schnittstelle auszugeben, besteht die einfachste Losung darin, die Konver-
tierungsfihigkeiten zu nutzen, die in die LCD- oder Serial-Bibliotheken integriert sind
(siehe Rezept 4.2). Doch vielleicht arbeiten Sie mit einem Gerit, in das die entsprechende
Unterstiitzung nicht integriert ist (siehe Kapitel 13), oder Sie wollen die Zahl in Form eines
Strings in Threm Sketch weiterverarbeiten.

Die Arduino-Klasse String wandelt numerische Werte automatisch um, wenn sie einer
String-Variablen zugewiesen werden. Sie kénnen numerische Werte verketten, indem Sie
die Funktion concat, oder den Stringoperator + nutzen.

¥
N

Der Operator + wird sowohl bei Zahlen als auch bei Strings verwendet,
verhilt sich aber leicht unterschiedlich.

Im folgenden Code erhilt number den Wert 13:

int number = 12;
number +=1;

Bei einem String

String textNumber = "12";
textNumber +=1;

enthilt textNumber den Textstring "121".

2.8 Eine Zahl in einen String umwandeln | 41

Vor der Einfithrung der String-Klasse hat Arduino-Code iiblichereise die Funktionen itoa
oder 1toa verwendet. Die Namen stehen fiir »integer to ASClI« (itoa) und »long to ASCII«
(1toa). Die vorhin beschriebene String-Version ist einfacher zu nutzen, doch wenn Sie
lieber mit C-Zeichenketten arbeiten (siehe Rezept 2.6), kénnen Sie den folgenden Code
verwenden.

itoa und ltoa verlangen drei Parameter: den umzuwandelnden Wert, einen Puffer, der
den Ausgabestring aufnimmt und die Basis (10 fiir Dezimal-, 16 fiir Hexadezimal und 2
fiir Bindrzahlen).

Der folgende Sketch zeigt, wie man numerische Werte mit 1toa konvertiert:

/*

* NumberToString

* Erzeugt einen String aus einer Zahl
*/

void setup()

Serial.begin(9600);
}

char buffer[12]; //Datentyp longhat 11 Zeichen (inklusive
// Minuszeichen) und ein abschlieRendes Null-Zeichen
void loop()

long value = 12345;

1toa(value, buffer, 10);
Serial.print(value);
Serial.print(" hat ");
Serial.print(strlen(buffer));
Serial.println(" Ziffern");
value = 123456789;

1toa(value, buffer, 10);
Serial.print(value);
Serial.print(" hat ");
Serial.print(strlen(buffer));
Serial.println(" Ziffern");
delay(1000);

Der Puffer muss so grof sein, dass er die maximale Anzahl von Zeichen im String auf-
nehmen kann. Bei 16-Bit-Integerwerten zur Basis 10 (dezimal) sind das sieben Zeichen
(finf Ziffern, ein mogliches Minuszeichen und die abschlieRende 0, die immer das Ende
des Strings anzeigt); 32-Bit-Integerwerte benotigen 12 Zeichen (10 Ziffern, Minuszeichen
und die abschlieRende 0). Sie erhalten keine Warnung, wenn die Puffergrofle iiber-
schritten wird, doch dieser Fehler kann zu seltsamen Symptomen fithren, weil der Uber-
lauf einen anderen Teil des Speichers tiberschreibt, der von Threm Programm genutzt
werden kann. Die einfachste Moglichkeit, das zu vermeiden, besteht darin, immer einen
12-Zeichen-Puffer zu verwenden und immer mit 1toa zu arbeiten, da es mit 16-Bit- und
32-Bit-Werten umgehen kann.

42 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

2.9 Einen String in eine Zahl umwandeln

Problem

Sie wollen einen String in eine Zahl umwandeln. Zum Beispiel konnten Sie einen Wert als
String tiber einen Kommunikationslink empfangen haben und missen ihn nun in einen
Integer- oder einen FlieRkommawert umwandeln.

Losung

Das kann auf unterschiedliche Weise gelost werden. Kommt der String in Form serieller
Daten an, kann er wihrend des Empfangs umgewandelt werden. Wie man das bei der
seriellen Schnittstelle macht, zeigt Rezept 4.3.

Eine weitere Moglichkeit zur Umwandlung von Textstrings in Zahlen bieten die C-Kon-
vertierungsfunktionen atoi (fiir int-Variablen) und atol (fiir long-Variablen).

Das folgende Code-Fragment terminiert die eingehenden Ziffern, sobald ein Zeichen
keine Ziffer ist (oder wenn der Puffer voll ist). Damit das funktionieren kann, miissen Sie
aber die Newline-Option im seriellen Monitor aktivieren oder ein anderes terminierendes
Zeichen eingeben:

/%

* StringToNumber

* Erzeugt eine Zahl aus einem String
*/

const int ledPin = 13; // Mit Pin 13 verbundene LED

int blinkDelay; //Blinkratewird durch diese Variable bestimmt
char strValue[6]; //Muss groR genug sein, umalle Ziffern und die den
// String abschlieRende 0 aufzunehmen
int index = 0; // Index auf das die empfangenen Ziffern speichernde Array

void setup()

{

Serial.begin(9600);

pinMode(ledPin,OUTPUT); // LED-Pin als Ausgang aktivieren
}

void loop()

if(Serial.available())
{

char ch = Serial.read();
if(index < 588 isDigit(ch)){
strValue[index++] = ch; // ASCII-Zeichen an String anhidngen;

}

else

{
// Bei vollem Puffer oder erster Nicht-Ziffer
strValue[index] = 0; // String mit einer 0 abschlieBen

blinkDelay = atoi(strValue); // Stringmit atoi in einen int-Wert umwandeln

2.9 Einen String in eine Zahl umwandeln | 43

index = 0;

}

}
blink();
}

void blink()
{

digitalWrite(ledPin, HIGH);

delay(blinkDelay/2); //Halfte der Blinkperiode warten
digitalWrite(ledPin, LOW);

delay(blinkDelay/2); // Die andere Hilfe warten

Diskussion

Die etwas seltsam benannten Funktionen atoi (fiir ASCII nach int) und atol (fiir ASCII
nach long) wandeln einen String in Integer- oder Long-Integer-Werte um. Um Sie ver-
wenden zu kénnen, miissen Sie den gesamten String zuerst in einem Zeichen-Array ablegen,
bevor Sie die Konvertierungsfunktion aufrufen kénnen. Der Code erzeugt ein Zeichen-
Array namens strValue, das bis zu funf Ziffern aufnehmen kann (die Deklaration mit char
strValue[6] berticksichtigt noch die abschliefende Null). Er fiillt das Array tiber Serial.
read, bis das erste Zeichen empfangen wird, das keine Ziffer ist. Das Array wird mit einer
Null abgeschlossen und dann wird die atoi-Funktion aufgerufen, um das Zeichen-Array
umzuwandeln. Das Ergebnis der Umwandlung wird in blinkRate gespeichert.

Eine Funktion namens blink wird aufgerufen, die den in blinkDelay gespeicherten Wert
nutzt.

Wie in der Warnung in Rezept 2.4 erwihnt, miissen Sie darauf achten, innerhalb der
Grenzen des Arrays zu bleiben. Falls Sie nicht wissen, wie Sie das anstellen sollen, sehen
Sie sich die Diskussion dieses Rezepts an.

Die Arduino-Release 22 hat die Methode toInt eingefiihrt, die einen String in einen Inte-
gerwert umwandelt:

String aNumber = "1234";
int value = aNumber.toInt();

Arduino 1.0 verftigt tiber die Methode parseInt, mit deren Hilfe Sie Integerwerte tiber serielle
Ports oder Ethernet (oder jedem aus der Stream-Klasse abgeleiteten Objekt) einlesen konnen.
Das folgende Code-Fragment wandelt Ziffernfolgen in Zahlen um. Es dhnelt unserer Losung,
benotigt aber keinen Puffer (und ist nicht auf Zahlen mit fiinf Ziffern beschrinke):

int blinkDelay; //Blinkratewird durch diese Variable bestimmt
void loop()

if(Serial.available())
{
blinkRate = Serial.parseInt();

}
blink();
}

44 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Stream-Parsing-Methoden wie parseInt nutzen ein Timeout, um die Kon-
trolle wieder an den Sketch zuritickzugeben, falls innerhalb der gewiinsch-
ten Zeitspanne keine Daten eintreffen. Das Standard-Timeout betrigt eine
Sekunde, kann aber tiber die Methode setTimeout geindert werden:

Serial.setTimeout (1000 * 60); // Warte bis zu einer Minute

parselnt (und alle anderen Stream-Methoden) geben den Wert zuriick, der
bis zum Timeout eingelesen werden konnte (wenn kein Trennzeichen
empfangen wurde). Der Riickgabewert besteht aus dem eingesammelten
Wert. Wurden keine Ziffern empfangen, wird Null zuriickgegeben. Ar-
duino 1.0 hat keine Méglichkeit zu erkennen, ob es in der Parse-Methode
zu einem Timeout kam, aber die Moglichkeit ist fir eine zukiinftige
Release geplant.

Siehe auch

Dokumentation zu atoi finden Sie unter: http://www.nongnu.org/avr-libc/user-manual/
group__avr__stdlib.html.

Viele Online-C/C++-Referenzseiten behandeln diese Low-Level-Funktionen, z.B. hitp://
www.cplusplus.com/reference/clibrary/cstdlib/atoi/ und http://www.cppreference.com/wiki/
string/c/atoi.

In Rezept 4.3 und Rezept 4.5 erfahren Sie mehr tiber den Einsatz von parseInt mit Serial.

2.10 lhren Code in Funktionsbhlocken strukturieren

Problem

Sie mochten wissen, wie man einen Sketch um Funktionen erweitert und welche Funk-
tionalitit in eine Funktion gehort. Sie wollen auflerdem verstehen, wie man die Gesamt-
struktur des Sketches plant.

Losung

Funktionen werden genutzt, um die von Threm Sketch durchgefiithrten Aktionen in funk-
tionale Blocke zu packen. Funktionen fassen Funktionalitdt zu wohldefinierten Eingaben
(an eine Funktion iibergebene Informationen) und Ausgaben (von der Funktion gelieferte
Informationen) zusammen. Das erleichtert die Strukturierung, Pflege und Wiederverwen-
dung Thres Codes. Sie kennen bereits zwei Funktionen, die Teil jedes Arduino-Sketches
sind: setup und loop. Sie legen eine Funktion an, indem Sie ihren Riickgabetyp (also die
von ihr bereitgestellte Information) deklarieren, sowie ithren Namen und optionale Pa-
rameter (Werte), die die Funktion beim Aufruf verarbeitet.

2.10 Ihren Code in Funktionsbldcken strukturieren | 45

Die Begriffe Funktion und Methode werden fiir wohldefinierte Code-Blo-
cke verwendet, die von anderen Teilen eines Programms als einzelne En-
titidt aufgerufen werden koénnen. Die Sprache C bezeichnet sie als Funk-
tionen. Objektorientierte Sprachen wie C++, die Funktionalititen tiber
Klassen bereitstellen, neigen eher zum Begriff Methode. Arduino verwen-
det einen Stilmix (die Beispiel-Sketches verwenden eher einen C-Stil,
wihrend Bibliotheken eher so geschrieben werden, dass Sie C++-Metho-
den zur Verfigung stellen). In diesem Buch verwenden wir iiblicherweise
den Begriff Funktion, solange der Code nicht durch eine Klasse bereit-
gestellt wird. Doch keine Sorge, wenn Thnen die Unterscheidung nicht klar
ist, konnen Sie beide Begriffe gleichsetzen.

Hier eine einfache Funktion, die nur eine LED blinken lisst. Es gibt keine Parameter und
sie gibt auch nichts zuriick (was durch das vor der Funktion stehende void festgelegt
wird):

// LED einmal blinken lassen
void blink1()

{
digitalWrite(13,HIGH); // LEDeinschalten
delay(500); // 500 Millisekunden warten
digitalWrite(13,LOW); // LEDausschalten
delay(500); // 500 Millisekunden warten

Die folgende Version verwendet einen Parameter (ein Integer namens count), der be-
stimmt, wie oft die LED blinken soll:

// LED count mal blinken lassen
void blink2(int count)

while(count >0) // Solange Zshler groRer O

digitalWrite(13,HIGH);

delay(500);

digitalWrite(13,L0W);

delay(500);

count = count -1; // Zahler dekrementieren

Erfahrene Programmierer werden bemerken, dass beide Funktionen blink
heifen konnen, da der Compiler sie anhand der als Parameter verwende-
ten Werte unterscheiden kann. Dieses Verhalten wird als Uberladen von
Funktionen bezeichnet. Das Arduino-print, das in Rezept 4.2 diskutiert
wird, ist hierfiir ein typisches Beispiel. Ein anderes Beispiel fiir das Uber-
laden finden Sie in der Diskussion von Rezept 4.6.

Diese Version tiberpriift, ob der Wert von count 0 ist. Ist das nicht der Fall, ldsst sie die
LED einmal blinken und reduziert den Wert von count um 1. Das wird solange wieder-
holt, bis count nicht mehr grofer als 0 ist.

46 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Ein Parameter wird manchmal auch als Argument bezeichnet. Aus prakti-
schen Erwigungen betrachten wir beide Begriffe als gleichwertig.

Hier ein Beispiel-Sketch mit einer Funktion, die einen Parameter erwartet und einen Wert
zuriickgibt. Der Parameter legt fest, wie lange die LED an- und ausgeschaltet bleibt (in
Millisekunden). Die Funktion lisst die LED blinken, bis eine Taste gedriickt wird und gibt
zuriick, wie oft die LED geblinkt hat:

/*
blink3 Sketch
Demonstriert den Aufruf einer Funktion mit einem Parameter und die Riickgabe eines Wertes.
Verwendet die gleiche Verschaltung wie im Sketch aus
Rezept 5.2

Die LED blinkt, sobald das Programm startet und hdrt auf zu blinken, sobald der mit demdigitalen
Pin 2 verbundene Taster gedriickt wird.

Das Programm gibt dann aus, wie oft die LED geblinkt hat.

*/

const int ledPin = 13; // Ausgangspin flr LED
const int inputPin = 2; // Eingangspin fiir Taster

void setup() {
pinMode(ledPin, OUTPUT);
pinMode(inputPin, INPUT);
digitalWrite(inputPin,HIGH); // Internen Pullup nutzen (Rezept 5.2)
Serial.begin(9600);
}

void loop(){
Serial.println("Taster druecken und halten, damit die LED nicht mehr blinkt");
int count = blink3(250); // LED 250ms ein und 250ms ausschalten
Serial.print("Die LED hat ");
Serial.println(count);
Serial.println(" mal geblinkt");

}

// LED mit der iibergebenen Zeitspanne blinken lassen
// Gibt zuriick, wie oft die LED geblinkt hat
int blink3(int period)

int result =0;
int switchval = HIGH; //Mit Pullups high, wenn der Schalter nicht gedriickt ist

while(switchval == HICH) // Wiederholen, bis Taster gedriickt wurde
// (Wert wird dann LOW)
{

digitalWrite(13,HIGH);

delay(period);

digitalWrite(13,LOW);

delay(period);

result = result + 1; // Zahler erhdhen

switchVal = digitalRead(inputPin); // Tasterwert einlesen

2.10 Ihren Code in Funktionsbldcken strukturieren | 47

// switchVal ist nicht langer HIGH, weil der Taster gedriickt wurde
return result; //Dieser Wert wird zuriickgegeben

}

Diskussion

Der Code in der Losung dieses Rezepts illustriert die drei Arten von Funktionsaufrufen,
denen Sie begegnen werden. blink1 hat keine Parameter und keinen Riickgabewert. Die
Form ist:

void blink1()
{

// Implementierung steht hier...

}
blink2 erwartet einen einzelnen Parameter, gibt aber keinen Wert zuriick:

void blink2(int count)

// Implementierung steht hier...

}
blink3 erwartet einen einzelnen Parameter und liefert einen Wert zuriick:

int blink3(int period)

// Implementierung steht hier...

}

Der vor dem Funktionsnamen stehende Datentyp legt den Typ des Riickgabewerts fest
(bzw. keinen Riickgabewert bei void). Wenn Sie die Funktion deklarieren (den Code
schreiben, der die Funktion und ihre Aktionen definiert), hingen Sie kein Semikolon an
die schliefende geschweifte Klammer an. Wenn Sie die Funktion nutzen (aufrufen), miis-
sen Sie hinter dem Funktionsaufruf ein Semikolon anhingen.

Die meisten Funktionen, die lhnen unterkommen werden, sind Variationen dieser Formen.
Hier zum Beispiel eine Funktion, die einen Parameter erwartet und einen Wert zuriickgibt:

int sensorPercent(int pin)

{

int percent;

int val = analogRead(pin); // Sensorwert einlesen (imBereich von 0bis 1023)
percent = map(val,0,1023,0,100); // percent liegt im Bereich von 0 bis 100.
return percent;

}

Der Name der Funktion ist sensorPercent. Sie iibergeben ihr die Nummer eines Analog-
pins und erhalten einen Wert in Prozent zuriick (in Rezept 5.7 erfahren Sie mehr tiber
analogRead und map). Das int vor der Deklaration teilt dem Compiler (und dem Pro-
grammierer) mit, dass die Funktion einen Integerwert zuriickgibt. Bei der Entwicklung
von Funktionen miissen Sie den fiir die Funktion geeigneten Riickgabetyp wihlen. Diese
Funktion gibt einen Integerwert zwischen 0 und 100 zuriick, weshalb der Riickgabetyp
int geeignet ist.

48 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Es ist empfehlenswert, den Funktionen sinnvolle Namen zu geben. Es ist
gingige Praxis, dafiir Worte miteinander zu verbinden und dabei den
ersten Buchstaben jedes Wortes groRzuschreiben (mit Ausnahme des
ersten Wortes). Sie kénnen den von Thnen bevorzugte Stil nutzen, es hilft
aber anderen, wenn Sie eine konsistente Namensgebung nutzen.

sensorPercent nutzt einen Parameter namens pin (beim Aufruf der Funktion wird pin der
Wert zugewiesen, der an die Funktion tibergeben wurde).

Der Funktionsrumpf (der Code zwischen den geschweiften Klammern) fithrt die ge-
wiinschten Aktionen durch — im obigen Beispiel wird ein Wert von einem analogen
Eingangspin eingelesen und auf einem Prozentwert abgebildet. Dieser Prozentwert wird
temporir in einer Variablen namens percent festgehalten. Die nachfolgende Anweisung
sorgt dafiir, dass der in der Variablen percent gespeicherte Wert an die aufrufende An-
wendung zuriickgegeben wird:

return percent;
Sie konnen den gleichen Effekt aber auch ohne die percent-Variable erreichen:

int sensorPercent(int pin)

{

int val = analogRead(pin); // Sensorwert einlesen (imBereich von 0 bis 1023)
return map(val,0,1023,0,100); // Prozentwert liegt zwischen 0 und 100.

Aufgerufen wird die Funktion wie folgt:

// Prozentwerte von 6 Analogpins ausgeben
for(int sensorPin = 0; sensorPin < 6; sensorPin++)

{

Serial.print("Sensor anPin");
Serial.print(sensorPin);
Serial.print(" steht bei");

int val = sensorPercent(sensorPin);
Serial.print(val);

Serial.print(" Prozent.");

Siehe auch

Die Arduino-Funktionsreferenz unter: http://www.arduino.cc/en/Reference/FunctionDe-
claration

2.11 Mehr als einen Wert in einer Funktion zuriickliefern

Problem

Sie mochten zwei oder mehr Werte in einer Funktion zuriickgeben. Rezept 2.10 enthiilt
Beispiele fiir die gingigste Form einer Funktion, die nur einen (oder keinen) Wert zu-
riickgibt. Doch manchmal muss man mehr als einen Wert modifizieren oder zuriickgeben.

2.11 Mehr als einen Wert in einer Funktion zuriickliefern | 49

Losung

Fiir dieses Problem gibt es verschiedene Losungen. Die einfachste besteht darin, die
Funktion einige globale Variablen verindern zu lassen und gar nichts zuriickzugeben:
/*
swap Sketch

Anderung zweier Werte Uber globale Variablen
*/

int x; // xundy sind globale Variablen
inty;

void setup() {
Serial.begin(9600);
}

void loop(){
x = random(10); // Zufallige Zahlen wahlen
y = random(10);

Serial.print("Die Werte von x undy vor dem Tausch: ");

Serial.print(x); Serial.print(","); Serial.println(y);
swap();

Serial.print("Die Werte von x undy nach dem Tausch: ");

Serial.print(x); Serial.print(","); Serial.println(y);Serial.println();
delay(1000);

// Zwei globale Variablen vertauschen
void swap()

int temp;
temp = x;

X=Y;
y = temp;

Die swap-Funktion vertauscht die Werte in zwei globalen Variablen. Globale Variablen
sind leicht zu verstehen (sie sind tiberall im Programm zuginglich und kénnen von jedem
gedndert werden), werden von erfahrenen Programmierern aber gemieden, da es sehr
leicht ist, sie versehentlich zu tiberschreiben. Dartiber hinaus kénnen Funktionen plotz-
lich nicht mehr laufen, weil Sie den Namen oder den Typ einer globalen Variablen an einer
anderen Stelle im Sketch geidndert haben.

Eine sichere und elegante Losung besteht darin, Referenzen an die zu indernden Werte zu
iibergeben. In der Funktion werden dann die Referenzen genutzt, um die Werte zu mo-
difizieren. Das geht wie folgt:

50 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

/*

functionReferences Sketch

Riickgabe mehrerer Werte mittels Referenz
*/

void setup() {
Serial.begin(9600);
}

void loop(){
int x = random(20); // Zufdllige Zahlen wihlen
int y = random(10);

Serial.print("Die Werte von x undy vor dem Tausch: ");

Serial.print(x); Serial.print(","); Serial.println(y);
swap(x,y);
Serial.print("Die Werte von x und y nach dem Tausch: ");

Serial.print(x); Serial.print(","); Serial.println(y);Serial.println();

delay(1000);
}

// Iwei Werte vertauschen
void swap(int &value1, int &value2)

int temp;

temp = valuel;
valuel = value2;
value2 = temp;

}

Diskussion

Die swap-Funktion dhnelt den in Rezept 2.10 beschriebenen Funktionen mit Parametern,
doch das kaufminnische UND (Ampersand, &) zeigt an, dass die Parameter Referenzen
sind. Das bedeutet, dass Werteinderungen innerhalb der Funktion auch die Werte der
Variablen dndern, die beim Aufruf der Funktion tibergeben wurden. Sie kénnen verfolgen,
wie das funktioniert, indem Sie zuerst den Losungscode ausfiihren und sich vergewissern,
dass die Werte vertauscht wurden. Dann entfernen Sie die beiden &-Zeichen aus der
Funktionsdefinition:

void swap(int valuel, int value2)

Wenn Sie diesen Code ausfiithren, sehen Sie, dass die Werte nicht vertauscht wurden —
Anderungen innerhalb der Funktion erfolgen nur lokal zur Funktion und gehen verloren,
wenn die Funktion beendet wird.
W N
Wenn Sie die Arduino-Release 21 (oder ilter) nutzen, miissen Sie die
:‘:‘ . Funktion zuerst deklarieren, um den Compiler dariiber zu informieren,
* 9lav dass die Funktion Referenzen nutzt. Der Sketch zu diesem Rezept im

2.11 Mehr als einen Wert in einer Funktion zuriickliefern | 51

Downloadbereich zur ersten Auflage des Buches zeigt, wie man eine
Funktion deklariert:

// Funktionen mit Referenzen miissen vor der Verwendung deklariert werden
// Die Deklaration steht am Anfang vor dem setup- und loop-Code
// Beachten Sie das Semikolon am Ende der Deklaration

void swap(int 8value1, int 8value2);

Eine Funktionsdeklaration ist ein Prototyp — sie legt den Namen, die Typen
der an die Funktion itibergebenen Werte und den Riickgabetyp fest. Der
Arduino-Build-Prozess erzeugt die Deklarationen iiblicherweise hinter den
Kulissen fiir Sie. Doch wenn Sie eine vom Standard abweichende Syntax
verwenden (zumindest was Arduino 21 und ilter betrifft), dann erzeugt
der Build-Prozess die Deklaration nicht. Sie miissen die Zeile dann vor
setup selbst einfiigen.

Eine Funktionsdefinition besteht aus einem Funktionskopf und einem
Funktionsrumpf. Der Funktionskopf dhnelt der Deklaration, endet aber
nicht mit einem Semikolon. Der Funktionsrumpf ist der Code innerhalb
der geschweiften Klammern, der ausgefithrt wird, wenn Sie die Funktion
aufrufen.

2.12 Aktionen basierend auf Bedingungen ausfiihren

Problem

Sie méchten einen Code-Block nur dann ausfithren, wenn eine bestimmte Bedingung
erfiillt ist. Zum Beispiel konnten Sie eine LED nur dann einschalten wollen, wenn ein
Taster gedriickt wird oder wenn ein Analogwert einen bestimmten Schwellwert tiber-
schritten hat.

Losung
Der folgende Code verwendet die Verschaltung aus Rezept 5.1:
/*

Pushbutton Sketch
Einmit dem digitalen Pin 2 verbundender Taster schaltet die LED an Pin 13

*/
const int ledPin = 13; // Pin fir die LED
const int inputPin = 2; // Pin fiir den Taster

void setup() {
pinMode(ledPin, OUTPUT); // LED-Pin als Ausgang deklarieren
pinMode(inputPin, INPUT); // Taster-Pin als Eingang delarieren

void loop(){
int val = digitalRead(inputPin); // Eingangswert einlesen
if (val == HIGH) // Priifen, ob Eingang HIGH ist
{

52 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

digitalWrite(ledPin, HICH); // LED einschalten, wenn Taster gedriickt ist

}
}

Diskussion

Die if-Anweisung wird verwendet, um den Wert von digitalRead zu testen. Eine if-
Anweisung muss innerhalb der Klammern einen Test durchfiithren, dessen Ergebnis nur
wahr oder falsch sein kann. Im obigen Beispiel ist das val == HIGH, und der Code-Block, der
auf die if-Anweisung folgt, wird nur ausgefithrt, wenn der Ausdruck wahr ist. Ein
Code-Block besteht aus dem gesamten Code innerhalb der geschweiften Klammern.
(Wenn Sie keine Klammern verwenden, ist der Block einfach die nichste ausfithrbare

Anweisung, die mit einem Semikolon abgeschlossen ist).

Soll eine Aktion ausgefiihrt werden, wenn die Bedingung erfiillt ist, und eine andere, wenn

nicht, konnen Sie die if...else-Anweisung verwenden:

/*
Pushbutton Sketch
Einmit demdigitalen Pin 2 verbundender Taster schaltet die LED an Pin 13

*/
const int ledPin = 13; // Pin fur die LED
const int inputPin = 2; // Pin fur den Taster

void setup() {
pinMode(ledPin, OUTPUT); // LED-Pin als Ausgang deklarieren
pinMode (inputPin, INPUT); // Taster als Eingang deklarieren

}

void loop(){
int val = digitalRead(inputPin); // Eingangswert einlesen
if (val == HICH) // Priifen, ob Eingang HICH ist

// Dieser Teil wird ausgefiihrt, wenn val HIGH ist
digitalWrite(ledPin, HICH); // LED einschalten, wenn Taster gedriickt ist

else

{

// Dieser Teil wird ausgefiihrt, wenn val nicht HIGH ist
digitalWrite(ledPin, LOW); // LED ausschalten

Siehe auch

Die Diskussion zu Booleschen Typen in Rezept 2.2.

2.12 Aktionen basierend auf Bedingungen ausfiihren

53

2.13 Eine Folge von Anweisungen wiederholt ausfiihren

Problem

Sie wollen einen Block mit Anweisungen ausfiihren, solange ein Ausdruck wahr ist.

Losung
Eine while-Schleife fiihrt eine oder mehrere Anweisungen aus, solange ein Ausdruck wahr ist:

/*

* Repeat

*Blinken, solange eine Bedingung wahr ist
*/

const int ledPin =13; //Digitaler Pin, mit demdie LED verbunden ist
const int sensorPin = 0; // Analoger Eingang 0

void setup()
{

Serial.begin(9600);
pinMode(ledPin,OUTPUT); // LED-Pin als Ausgang aktivieren

void loop()
while(analogRead(sensorPin) > 100)

blink(); // Funktion aufrufen, die die LED ein- und ausschaltet
Serial.print(".");
}

Serial.println(analogRead(sensorPin)); // Wird erst ausgefiihrt,
// wenn die while-Schleife beendet wurde!!!
}

void blink()
{

digitalWrite(ledPin, HIGH);
delay(100);
digitalWrite(ledPin, LOW);
delay(100);

Dieser Code fithrt die Anweisungen im Block zwischen den geschweiften Klammern {}
aus, solange der Wert von analogRead groRer als 100 ist. Damit kénnten Sie eine LED als
Alarm blinken lassen, solange ein bestimmter Schwellwert iiberschritten ist. Die LED ist
aus, wenn der Sensorwert bei 100 (oder kleiner) liegt. Sie blinkt kontinuierlich, wenn der
Wert grofier als 100 ist.

54 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Diskussion

Geschweifte Klammern legen den Code-Block fest, der innerhalb einer Schleife ausgefiihrt
wird. Ohne geschweifte Klammern wird nur eine Codezeile in der Schleife wiederholt:

while(analogRead(sensorPin) > 100)
blink(); //Die dem Schleifenausdruck unmittelbar folgende Zeile wird wiederholt ausgefiihrt

Serial.print("."); // Wird erst ausgefiihrt, wenn die Schleife beendet wurde!!!

Schleifen ohne geschweifte Klammern konnen unerwartete Ergebnisse
liefern, wenn es mehr als eine Codezeile gibt.

Das do...while dhnelt der while-Schleife, doch die Anweisungen innerhalb des Code-
Blocks werden ausgefiihrt, bevor die Bedingung iiberpriift wird. Verwenden Sie diese
Form, wenn der Code mindestens einmal ausgefithrt werden muss, auch wenn der
Ausdruck falsch ist:

do
blink(); // Funktion zum Ein- und Ausschalten der LED aufrufen

while (analogRead(sensorPin) > 100);

Der obige Code lisst die LED mindestens einmal blinken, und dann so lange, wie der
Sensorwert iiber 100 liegt. Ist der Wert kleiner als 100, blinkt die LED nur einmal auf.
Dieser Code konnte bei batteriebetriebenen Schaltungen genutzt werden. Ein einzelnes
Blinken zeigt, dass die Schaltung aktiv ist, wiahrend ein kontinuierliches Blinken anzeigt,
dass die Batterie geladen wird.

Nur der Code innerhalb der while- oder do-Schleife wird ausgefiihrt, bis
= die Schleife beendet wird. Muss ein Sketch als Reaktion auf eine andere

Bedingung (z.B. Timeout, Zustand eines Sensors oder eine andere Ein-
gabe) die Schleife beenden, konnen Sie break nutzen:

while(analogRead(sensorPin) > 100)
blink();

if(Serial.available())
break; // Jede serielle Eingabe beendet die while-Schleife
}

Siehe auch
Kapitel 4 and Kapitel 5

2.13 Eine Folge von Anweisungen wiederholt ausfiilhren | 55

2.14 Anweisungen iiber einen Zahler wiederholen

Problem

Sie wollen eine oder mehrere Anweisungen n-mal wiederholen. Die for-Schleife dhnelt der
while-Schleife, bietet aber eine genauere Kontrolle der Start- und Endbedingungen.

Losung
Dieser Sketch zihlt von 0 bis 3 und gibt den Wert der Variablen i in einer for-Schleife aus:

/*

ForLoop Sketch

Demonstration der for-Schleife
*/

void setup() {
Serial.begin(9600);}

void loop(){
Serial.println("for(int i=0; i< 4; i++)");
for(int i=0; i< 4; i++)
{

Serial.println(i);

}
Die Ausgabe am seriellen Monitor sieht wie folgt aus und wird fortlaufend wiederholt.
for(int i=0; i< 4; i++)

0

1
2
3

Diskussion

Eine for-Schleife besteht aus drei Teilen: Initialisierung, Bedingung und Iteration (eine
Anweisung, die am Ende jedes Schleifendurchlaufs ausgefithrt wird). Die Teile werden
durch ein Semikolon getrennt. Im obigen Code initialisiert int i=0; die Variable i mit 0;
i< 4; priift, ob die Variable kleiner 4 ist und i++ inkrementiert i.

Eine for-Schleife kann eine existierende Variable verwenden oder eine Variable erzeugen,
die nur innerhalb der Schleife genutzt wird. Die nachfolgende Version verwendet den
Wert der Variablen j, die an anderer Stelle des Sketches angelegt wurde:

int j;

Serial.println("for(j=0; j<4; j++)");

for(j=0; j<4; j++)

{

Serial.println(j);

56 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Das ist nahezu identisch mit dem ersten Beispiel, lidsst aber das Schliisselwort int bei der
Initialisierung weg, da die Variable j bereits definiert ist. Die Ausgabe dieser Version ist
mit der aus der erste Version identisch:

for(j=0; i< 4; i++)

0

1

2
3

Sie kénnen die Initialisierung auch ganz weglassen, wenn die Schleife den Wert einer bereits
frither definierten Variablen verwenden soll. Der folgende Code beginnt die Schleife mit j = 1:

intj=1;
Serial.println("for(; j<4; j++)");
for(; j<4; j++)
{
Serial.println(j);
}
und liefert die folgende Ausgabe:

for(; j<4; j++)

1

2

3

Sie kontrollieren im Bedingungsteil, wann die Schleife beendet wird. Im obigen Beispiel
wird iiberpriift, ob die Schleifenvariable kleiner als 4 ist und die Schleife endet, sobald
diese Bedingung nicht langer erfallt ist.

W N
o Wenn Thre Schleifenvariable bei 0 beginnt und viermal durchlaufen wer-
{s‘ den soll, muss die Bedingung auf einen Wert kleiner 4 testen. Die Schleife
. wird durchlaufen, solange die Bedingung erfiillt ist, und wenn die Schleife

bei 0 beginnt, gibt es vier Werte, die kleiner als 4 sind.

Der folgende Code priift, ob der Wert der Schleifenvariablen kleiner oder gleich 4 ist. Die
Schleife gibt also die Ziffern 0 bis 4 aus:

Serial.println("for(int i=0; i<=4; i++)");

for(int 1=0; i <=4; i++)

{

Serial.println(i);

}
Der dritte Teil einer for-Schleife ist die Iterator-Anweisung, die am Ende jedes Schleifen-
durchgangs ausgefithrt wird. Sie kann jede giiltige C/C++-Anweisung enthalten. Das
folgende Beispiel erhoht den Wert von i bei jedem Durchgang um 2:

Serial.println("for(int i=0; i< 4; i+=2)");

for(int i=0; i < 4; i+=2)

{
Serial.println(i);

}

2.14 Anweisungen iiber einen Zahler wiederholen | 57

Der Sketch gibt nur die Werte 0 und 2 aus.

Der Iterator-Ausdruck kann auch herunterzihlen, im folgenden Beispiel von 3 bis 0:

Serial.println("for(inti=3;i>=0; i--)");
for(inti=3; i»>=0; i--)

Serial.println(i);

Wie alle anderen Teil einer for-Schleife kann auch der Iterator-Ausdruck leer bleiben. (Die
Teile miissen aber immer durch Semikolon getrennt werden, auch wenn sie leer sind.)

Die folgende Version inkrementiert i nur dann, wenn ein Eingangspin aktiv ist. Die
for-Schleife dndert den Wert von i nicht. Er wird nur in der if-Anweisung hinter
Serial.print geindert — Sie miissen inPin definieren und mit pinMode()als INPUT fest-
legen:

Serial.println("for(int i=0; i< 4;)");
for(int i=0; i< 4;)
Serial.println(i);
if(digitalRead(inPin) == HIGH) {
i++; //Wert wird nur inkrementiert, wenn Eingang HICH ist

}
}

Siehe auch

Arduino-Referenz zur for- Anweisung: http://www.arduino.cc/en/Reference/For

2.15 Aus Schleifen ausbrechen

Problem

Sie wollen eine Schleife basierend auf einer anderen Bedingung vorzeitig beenden.

Losung
Nutzen Sie den folgenden Code:

while(analogRead(sensorPin) > 100)
if(digitalRead(switchPin) == HIGH)
{
break; //Schleife beenden, wenn Taster gedriickt

flashLED(); // LED ein- und ausschalten

58 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Diskussion

Der Code dhnelt den anderen while-Beispielen, nutzt aber die break-Anweisung, um die
Schleife zu verlassen, wenn ein digitaler Pin HIGH ist. Ist beispielsweise wie in Rezept 5.1
ein Taster mit dem Pin verbunden, wird die Schleife beendet (und die LED hort auf zu
blinken), selbst wenn die Bedingung der while-Schleife wahr ist.

Siehe auch

Arduino-Referenz zur break-Anweisung: http://www.arduino.cc/en/Reference/Break

2.16 Basierend auf einem Variablenwert verschiedene
Aktionen durchfiihren

Problem

Sie missen in Abhingigkeit von einem Wert unterschiedliche Aktionen ausfiithren. Sie
konnten dazu mehrere if- und else if-Anweisungen verwenden, aber dadurch wird der
Code schnell kompliziert, unverstindlich und schwer zu modifizieren. Dartiber hinaus
konnten Sie auf einen Wertebereich hin priifen wollen.

Losung

Die switch-Anweisung ermoglicht die Wahl zwischen einer Reihe von Alternativen. Die
Funktionalitit dhnelt der mehrerer if/else if-Anweisungen, ist aber kompakter:

/*
* SwitchCase Sketch

* Beispiel flir switch-Anweisung liber Zeichen am seriellen Port
*

*Das Zeichen 1 18sst die LED einmal blinken, 2 1dsst sie zweimal blinken.
* + schaltet die LED ein, - schaltet sie aus

* jedes andere Zeichen gibt eine Nachricht Uber den seriellen Monitor aus
*/

const int ledPin =13; // Mit Pin 13 verbundene LED

void setup()
Serial.begin(9600); // Initialisiert seriellen Port zum Senden

// und Empfangen mit 9600 Baud
pinMode(ledPin, OUTPUT);

void loop()

if (Serial.available()) // Priife, ob ein Zeichen
// vorhanden ist
{

char ch = Serial.read();

2.16 Basierend auf einem Variablenwert verschiedene Aktionen durchfilhren | 59

switch(ch)

case '1':

blink();

break;

case '2':

blink();

blink();

break;

case '+':
digitalWrite(ledPin,HICH);
break;

case '-":
digitalWrite(ledPin, LOW);
break;

default :

Serial.print(ch);
Serial.printIn(" wurde empfangen, hat aber keine Funktion");
break;

}

}

}

void blink()

digitalWrite(ledPin,HIGH);
delay(500);
digitalwrite(ledPin,LOW);
delay(500);

Diskussion

Die switch-Anweisung evaluiert den Wert der Variablen ch, der iiber die serielle Schnitt-
stelle empfangen wurde, und verzweigt bei dem zum Wert passenden Label. Die Label
miissen numerische Konstanten sein (Sie diirfen keine Strings in einer case-Anweisung
verwenden), und ein Wert darf nur einmal vorkommen. Wenn auf die Anweisungen keine
break-Anweisung folgt, rutscht die Ausfiihrung zum nichsten Fall durch:
case '1':
blink(); // Keine break-Anweisung vor demndchsten Label
case '2':
blink(); //Fall '1' wird hier fortgesetzt

blink();
break; // break-Anweisung beendet den switch-Ausdruck

Lisst man die break-Anweisung am Ende von case '1': weg (wie im obigen Code zu
sehen), dann wird die blink-Funktion dreimal aufgerufen, wenn ch eine 1 enthilt. Das
break zu vergessen, ist ein typischer Fehler. Das break bewusst wegzulassen, ist manchmal
aber auch ganz praktisch. Da das andere Leser des Codes verwirren kann, verdeutlicht
man seine Absichten mit einem Kommentar.

60 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Wenn sich eine switch-Anweisung nicht verhilt wie gewiinscht, sollten Sie
sicherstellen, dass Sie keine break-Anweisungen vergessen haben.

Das Label default: wird genutzt, um Werte abzufangen, die von den case-Labeln nicht
abgedeckt werden. Gibt es kein default-Label, macht der switch-Ausdruck nichts weiter,
wenn es keinen Treffer gibt.

Siehe auch

Arduino-Referenz zu den switch- und case-Anweisungen: http:// www.arduino.cc/en/
Reference/SwitchCase

2.17 Zeichen und Zahlen vergleichen

Problem

Sie wollen die Beziehung zwischen Werten ermitteln.

Losung
Vergleichen Sie Integerwerte mit den relationalen Operatoren in Tabelle 2-3.

Tabelle 2-3: Relationale Operatoren und Gleichheitsoperatoren

Operator Test auf Beispiel

== Gleich 2==3//Evaluiert zu falsch
I= Ungleich 2 1=3// Evaluiert zuwahr

> GroBer als 2>3//Evaluiert zu falsch
< Kleiner als 2<3// Evaluiert zuwahr

>= GroBer oder gleich 2>=3// Evaluiert zu falsch
<= Kleiner oder gleich 2<=3// Evaluiert zu wahr

Der folgende Sketch demonstriert die Ergebnisse der Vergleichsoperatoren:

/*
* RelationalExpressions Sketch
* demonstriert Wertevergleiche
*/

inti=1; //Unsere Ausgangswerte
intj=2;

void setup() {
Serial.begin(9600);

void loop(){

2.17 Zeichen und Zahlen vergleichen | 61

Serial.print("i=");
Serial.print(i);
Serial.print("undj=");
Serial.println(j);

if(i<)

Serial.println(" iist kleiner als j");
if(i<=7)

Serial.println(" iist kleiner oder gleich j");
if(i1=7)

Serial.println(" iistungleichj");
i (i ==)

Serial.println(" iist gleich j");
if(i>=9)

Serial.println(" iist groesser der gleich j");
if(i>j)

Serial.println(" iist groesser als j");

Serial.println();
i=i+1;
if(i>q+1)
delay(10000); // Lange Verzogerung, wenn i nicht mehr nahan j liegt

}
Hier die Ausgabe:

i=1undj=2

iistkleiner als j

i ist kleiner oder gleich j
iistungleich j

i=2undj=2

iist kleiner oder gleich j
iistgleichj

iist groesser oder gleich j
i=3undj=2
iistungleichj

iist groesser oder gleich j
iist groesser als j

Diskussion

Beachten Sie, dass der Gleichheitsoperator aus zwei Gleichheitszeichen (==) besteht. Einer
der hiufigsten Programmierfehler besteht darin, ihn mit dem Zuweisungsoperator zu
verwechseln, der aus nur einem Gleichheitszeichen besteht.

Der folgende Ausdruck vergleicht i mit 3. Der Programmierer wollte Folgendes ausdrii-
cken:

if(i==3) //Priife, obigleich3ist
hat im Sketch aber Folgendes geschrieben:

if(i=3) //Versehentlich nur ein Gleichheitszeichen verwendet!!!!

62 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Das gibt immer true zuriick, weil i auf 3 gesetzt wird und der Vergleich somit immer
zutrifft.

Eine Moglichkeit, diesen Fehler beim Vergleich mit Konstanten (festen Werten) zu
vermeiden, besteht darin, die Konstante auf die linke Seite des Ausdrucks zu stellen:

if(3=1) // Versehentlich nur ein Gleichheitszeichen verwendet!!!!

Der Compiler erkennt das als Fehler, weil er weiff, dass man einer Konstanten keinen
Wert zuweisen kann.

N
: Die Fehlermeldung klingt allerdings etwas unfreundlich: »value required
.'s‘ as left operand of assignment®. Wenn Sie diese Meldung sehen, versuchen
T Q8 Sie, etwas einen Wert zuzuweisen, das nicht geiindert werden kann.

Siehe auch

Arduino-Referenz zu Bedingungs- und Vergleichsoperatoren: http://www.arduino.cc/en/
Reference/lf

2,18 Strings vergleichen

Problem

Sie wollen wissen, ob zwei Strings gleich sind.

Losung

Es gibt eine Funktion zum Stringvergleich namens strcmp (string compare). Hier ein Frag-
ment, das seine Nutzung verdeutlicht:

char string1[] = "links";
char string2[] = "rechts";

if(stremp(stringl, string2) ==0)
Serial.print("Strings sind gleich")

Diskussion

stremp gibt 0 zuriick, wenn die Strings gleich sind, und einen Wert groRer 0, wenn das
erste nicht tibereinstimmende Zeichen im ersten String grofRer ist als im zweiten String.
Ein Wert kleiner 0 wird zuriickgegeben, wenn das erste nicht tibereinstimmende Zeichen
im ersten String kleiner ist als im zweite String. Ublicherweise méchte man nur wissen, ob
die Strings gleich sind, und auch wenn der Test auf O nicht gerade intuitiv ist, gewohnt
man sich doch schnell daran.

2.18 Strings vergleichen | 63

Beachten Sie, dass unterschiedlich lange Strings nicht gleich sind, auch wenn der kiirzere
String im langeren enthalten ist:

stremp("links", "linksmitte") == 0) // Evaluiert zu falsch

Sie kénnen mit der strncmp-Funktion eine bestimmte Zahl von Zeichen vergleichen. Sie
tibergeben strncmp die maximale Anzahl zu vergleichender Zeichen, und die Funktion
bricht den Vergleich nach dieser Anzahl von Zeichen ab:

strnemp("links", "linksmitte", 4) ==0) // Evaluiert zuwahr
Im Gegensatz zur Zeichenkette kénnen Arduino-Strings direkt verglichen werden:

String stringOne = String("dies");

if (stringOne == "dies")

Serial.println("dies ist wahr");

if (stringOne == "das")
Serial.println("dies ist falsch");

Eine Einfithrung zum Arduino String-Vergleich finden Sie unter http://arduino.cc/en/
Tutorial/StringComparisonOperators.

Siehe auch

Weitere Informationen zu strcmp finde Sie unter http://www.cplusplus.com/reference/
clibrary/cstring/stremp/.

In Rezept 2.5 finden Sie eine Einfithrung in Arduino-Strings.

2.19 Logische Vergleiche durchfiihren

Problem

Sie wollen logische Beziehungen zwischen zwei oder mehr Ausdriicken vergleichen. Zum
Beispiel wollen Sie basierend auf den Bedingungen einer if-Anweisung unterschiedliche
Aktionen durchfiihren.

Losung
Nutzen Sie die logischen Operatoren aus Tabelle 2-4.
Tabelle 2-4: Logische Operatoren

Symbol Funktion Kommentar
88 Logisches UND Evaluiert zu true, wenn die Bedingungen auf beide Seiten des &&-Operators wahr sind
| Logisches ODER Evaluiert zu true, wenn die Bedingung auf zumindest einer Seite des | | -Operators wahr ist

| NICHT Evaluiert zu true, wenn der Ausdruck falsch ist und zu false, wenn der Ausdruck wahr ist

64 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Diskussion

Logische Operatoren liefern Wahr/Falsch-Werte basierend auf logischen Beziehungen
zuriick. Die nachfolgenden Beispiele setzen Sensoren an den digitalen Pins 2 und 3 voraus,
wie in Kapitel 5 beschrieben.

Der logische UND-Operator 8& gibt true zuriick, wenn beide Operanden wahr sind,
anderenfalls false:

if(digitalRead(2) 8& digitalRead(3))
blink(); // Blinken, wenn beide Pins HICH sind

Der logische ODER-Operator | | gibt true zuriick, wenn einer der beiden Operanden wahr
ist, und false, wenn beide Operanden falsch sind:

if(digitalRead(2) || digitalRead(3))
blink(); // Blinken, wenn einer der beiden Pins HICH ist

Der NICHT-Operator ! besitzt nur einen Operanden, dessen Wert invertiert wird — er
liefert also false zuriick, wenn der Operand wahr ist, und true, wenn er falsch ist:

if(!digitalRead(2))
blink(); // Blinken, wenn der Pin nicht HIGH ist

2.20 Bitweise Operationen durchfiihren

Problem

Sie méchten bestimmte Bits in einem Wert setzen oder loschen.

Losung
Verwenden Sie die Bit-Operatoren aus Tabelle 2-5.

Tabelle 2-5: Bit-Operatoren

Symbol Funktion Ergebnis Beispiel

& Bitweises UND Setzt die Bits an den jeweiligen Stellen auf 1, wenn beide Bits 1 3 & 1 ergibt 1(12 8 01
sind. Anderenfalls werden die Bits auf 0 gesetzt. ergibt 01)

| Bitweises ODER Setzt die Bits an den jeweiligen Stellen auf 1, wenn eines der 3 | 1 ergibt 3(11 | 01
Bits 1 ist. ergibt 11)

n Bitweises EXKLUSIV- Setzt die Bits an den jeweiligen Stellen auf 1, wenn nur eines der 3 ~ 1 ergibt 2(11 » 01

ODER beiden Bits 1 ist. ergibt 10)

~ Bitweise Negation Invertiert den Wert jedes Bits. Das Ergebnis ist von der Anzahl ~ ~1 ergibt

der Bits und dem Datentyp abhéngig. 254(~00000001

ergibt 11111110)

2.20 Bitweise Operationen durchfiihren | 65

Der folgende Sketch geht die Beispiele aus Tabelle 2-5 noch mal durch:

/*

*bits Sketch

* Bitweise Operatoren
*/

void setup() {
Serial.begin(9600);

void loop(){
Serial.print("3 & 1 ergibt dezimal "); // Bitweises UND von 3 und 1
Serial.print(3&1); // Exgebnis ausgeben
Serial.print(" und binaer ");
Serial.println(3 &1, BIN); //Ergebnis bindr ausgeben

Serial.print("3 | 1 ergibt dezimal "); // Bitweises ODER von 3 und 1
Serial.print(3] 1);

Serial.print(" und binaer ");

Serial.printIn(3 | 1, BIN); //Ergebnis bindr ausgeben

Serial.print("3 " 1 ergibt dezimal"); // Bitweises EXKLUSIV-ODER von 3 und 1
Serial.print(3 "~ 1); Serial.print(" undbinaer");
Serial.println(3 ~ 1, BIN); //Ergebnis bindr ausgeben

byte byteVal = 1;
int intval = 1;

byteVal = ~byteval; // Bitweise Negation
intval = ~intval;

Serial.print("~byteval (1) ergibt "); // 8-Bit-Wert bitweise negieren
Serial.println(byteval, BIN); // Ergebnis bindr ausgeben
Serial.print("~intval (1) ergibt "); // 16-Bit-Wert negieren
Serial.println(intval, BIN); // Ergebnis bindr augeben

delay(10000);

}
Hier die Ausgabe tiber den seriellen Monitor:

381 ergibt dezimal 1 und binaer 1

3 | 1 ergibt dezimal 3 und binaer 11

3 " 1ergibt dezimal 2 und binaer 10

~byteval (1) ergibt 11111110

~intval (1) ergibt 11111111111111111111111111111110

Diskussion

Bitweise Operatoren werden genutzt, um Bits zu setzen oder zu testen. Wenn Sie zwei
Werte tiber »UND« oder »ODER« verkniipfen, arbeiten die Operatoren mit den einzelnen
Bits. Wie das funktioniert, ist einfacher zu erkennen, wenn man sich die Binirdarstellung
der Werte ansieht.

66 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Die dezimale 3 entspricht der binidren 00000011 und die dezimale 1 ist binidr 00000001.
Bitweise Operatoren arbeiten mit jedem Bit. Die ganz rechts stehenden Bits sind beide 1,
und die UND-Verkniipfung dieser beiden ist ebenfalls 1. Bewegt man sich nach links, sind
die nichsten Bits 1 und 0, und die UND-Verkniipfung ergibt eine 0. Die restlichen Bits
sind alle 0, und damit ist auch das Ergebnis fiir alle Bits 0. Mit anderen Worten ergibt jede
Bitposition, an der beide Bits 1 sind, ebenfalls eine 1, anderenfalls eine 0. Also ergibt 11 &
01 eine 1.

Die Tabellen 2-6, 2-7 und 2-8 verdeutlichen diese Verkniipfungen.
Tabelle 2-6: Bitweises UND

Bit 1 Bit 2 Bit 1 and Bit 2
0 0 0

0 1 0
1 0 0
1 1 1

Tabelle 2-7: Bitweises ODER
Bit 1 Bit 2 Bit 1 or Bit 2
0 0 0

0 1 1
1 0 1
1 1 1

Tabelle 2-8: Bitweises EXKLUSIV-ODER
Bit 1 Bit 2 Bit 1 A Bit 2
0 0 0

0 1 1
1 0 1
1 1 0

Alle bitweisen Ausdriicke arbeiten mit zwei Werten. Die Ausnahme bildet der Negations-
operator, der einfach jedes Bit umkehrt, d.h., aus einer 0 wird eine 1, und aus der 1 wird
eine 0. Im obigen Beispiel wird der byte-Wert (8 Bit) 00000001 zu 11111110. Der
int-Wert hat 16 Bits und seine Invertierung ergibt 15 Einsen und eine Null.

Siehe auch

Arduino-Referenz zu den bitweisen UND-, ODER und EXKLUSIV-ODER-Operatoren:
http://www.arduino.cc/en/Reference/Bitwise

2.20 Bitweise Operationen durchfiihren | 67

2.21 Operationen und Zuweisungen kombinieren

Problem

Sie wollen die zusammengesetzten Operatoren (compound operators) verstehen und
nutzen. Es ist nicht ungewohnlich, in verdffentlichtem Code Ausdriicke zu finden, die
mit einer Anweisung mehr als eine Aufgabe erledigen. Sie wollen a +=b, a>>=bund a8=b
verstehen.

Losung

Tabelle 2-9 zeigt die zusammengesetzten Zuweisungsoperatoren und die dazugehorigen
vollstandigen Ausdriicke.

Tabelle 2-9: Zusammengesetzte Operatoren

Operator Beispiel Vollstandiger Ausdruck
+= value +=5; value = value +5; // Addiert 5 zu value hinzu
-= value -=4; value = value - 4; // Subtrahiert 4 von value
*= value *=3; value = value * 3; // Multipliziert value mit 3
/= value /=2; value = value / 2; // Dividiert value durch 2
>>= value >>=2; value = value >> 2; // Schiebt value um zwei Stellen (Bits) nach rechts
K= value <<= 2; value = value << 2; // Schiebt value um zwei Stellen (Bits) nach links
&= mask &= 2; mask =mask & 2; // Bindre UND-Maske mit 2
|= mask |=2; mask =mask | 2; // Binidre ODER-Maske mit 2
Diskussion

Diese zusammengesetzten Anweisungen sind zur Laufzeit nicht effektiver als die voll-
standigen Ausdriicke, und fiir Programmier-Neulinge sind die vollstindigen Ausdriicke
verstiandlicher. Erfahrene Programmierer nutzen aber hiufig diese Kurzformen, weshalb
es hilfreich ist, diese Ausdriicke zu kennen.

Siehe auch

Einen Index mit Referenzseiten zu den zusammengesetzten Operatoren finden Sie unter
http://www.arduino.cc/en/Reference/HomePage.

68 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

KAPITEL 3
Mathematische Operatoren nutzen

3.0 Einfiihrung

Nahezu jeder Sketch nutzt mathematische Operatoren, um Variablenwerte zu verarbei-
ten. Dieses Kapitel enthilt eine kurze Ubersicht der wichtigsten mathematischen Opera-
toren. Wie das vorige Kapitel richtet sich auch dieses an Nichtprogrammierer bzw.
Programmierer, die mit C oder C++ nicht vertraut sind. Weitere Details finden Sie in
einem der C-Referenzwerke, die im Vorwort erwihnt werden.

3.1 Addieren, subtrahieren, multiplizieren und dividieren

Problem

Sie wollen mit den Werten Threr Sketches einfache mathematische Operationen durch-
fithren. Sie wollen die Reihenfolge kontrollieren, in der die Operationen ausgefiihrt
werden, und missen moglicherweise auch mit unterschiedlichen Variablentypen arbei-
ten.

Losung
Verwenden Sie den folgenden Code:

int myValue;

myValue =1+2; //Addition

myValue = 3 - 2; // Subtraktion

myValue =3 *2; //Multiplikation

myValue =3 /2; //Division (das Ergebnis ist 1)

Diskussion

Addition, Subtraktion und Multiplikation von Integerwerten funktionieren, wie Sie es
erwarten.

| 69

Stellen Sie sicher, dass die maximale GrofRe der Zielvariablen nicht tiber-
schritten wird. Siehe Rezept 2.2.

Bei der Integer-Division wird ein méglicher Rest einfach ignoriert. Im obigen Beispiel hat
myValue nach der Division den Wert 1 (siehe Rezept 2.3, wenn Thre Anwendung FlieR3-
kommazahlen verarbeiten muss):

intvalue= 1+2%*3+4;

Zusammengesetzte Anweisungen wie oben erscheinen einem vielleicht nicht ganz ein-
deutig, doch der Vorrang (die Reihenfolge) jedes Operators ist genau definiert. Multi-
plikation und Division haben einen hoheren Vorrang als Addition und Subtraktion. Das
Ergebnis ist daher 11. Es ist durchaus ratsam, Klammern zu verwenden, um den Vorrang
der Berechnung deutlich zu machen. int value = 1 + (2 * 3) + 4; fithrt zum gleichen
Ergebnis und ist einfacher zu lesen.

Nutzen Sie Klammern auch, um den Vorrang zu dndern, wie im folgenden Beispiel:
intvalue= ((1+2)*3)+4;

Das Ergebnis ist nun 13. Der Ausdruck in den inneren Klammern wird zuerst berechnet,
d.h., 1 und 2 werden addiert und dann mit 3 multipliziert. Zum Schluss wird die 4 hin-
zuaddiert.

Siehe auch
Rezept 2.2; Rezept 2.3

3.2 Werte inkrementieren und dekrementieren

Problem

Sie mochten den Wert einer Variablen erhthen oder verkleinern.

Losung
Verwenden Sie den folgenden Code:
int myValue = 0;

myValue = myvalue + 1; // Inkrementiert myValue um1
myValue +=1; // dito

myValue = myvalue - 1; // Dekrementiert myValue um1
myValue -=1; // dito

myValue = myvalue +5; // Addiert 5 zumyValue hinzu
myValue +=5; // dito

70 | Kapitel 3: Mathematische Operatoren nutzen

Diskussion

Das Erhohen und Verkleinern von Variablenwerten ist eine der gingigsten Programmier-
aufgaben, und das Arduino-Board kennt Operatoren, die das einfach machen. Einen Wert
um 1 erhohen, nennt man inkrementieren, thn um 1 verkleinern, dekrementieren. Die
lange Schreibweise sieht wie folgt aus:

myValue =myValue + 1; // Addiert eine 1 zumyValue

Doch Sie kénnen Inkrement- und Dekrement-Operatoren auch mit einem Zuweisungs-
operator kombinieren:

myValue +=1; // Wie oben

Siehe auch
Rezept 3.1

3.3 Den Rest einer Division bestimmen

Problem

Sie wollen den Rest der Division zweier Werte ermitteln.

Losung
Verwenden Sie das Symbol % (den Modulo-Operator), um den Rest zu ermitteln:

int myValueo = 20% 10; // Liefert den Rest von 20 durch 10
int myValuel = 21%10; // Liefert den Rest von 21 durch 10

myValueo hat den Wert 0 (20 durch 10 ergibt den Rest 0). myValue1 hat den Wert 1 (21
durch 10 ergibt einen Rest von 1).

Diskussion

Der Modulo-Operator ist tiberraschend niitzlich, insbesondere wenn man priifen will, ob
ein Wert ein Vielfaches einer Zahl ist. Zum Beispiel kann der Code aus diesem Rezept so
angepasst werden, dass er erkennt, ob der Wert ein Vielfaches von 10 ist:

int myValue;

//...DermyValue setzende Code steht hier
if (myValue % 10 ==0)

Serial.printIn("Der Wert ist ein Vielfaches von 10");

}

Der obige Code berechnet den Rest der myValue-Variablen und vergleicht das Ergebnis mit
0 (siche Rezept 2.17). Ist das Ergebnis 0, wird eine Meldung ausgegeben, die besagt, dass
der Wert ein Vielfaches von 10 ist.

3.3 Den Rest einer Division bestimmen | 71

Hier ein weiteres Beispiel, bei dem aber eine 2 fiir den Modulo-Operator verwendet wird.
Wir nutzen das Ergebnis, um zu priifen, ob ein Wert gerade oder ungerade ist:
int myValue;

//...denWert von myValue setzender Code steht hier
if (myvalue %2 ==0)

Serial.println("Der Wert ist gerade");

}

else

{

Serial.println("Der Wert ist ungerade");

}

Das folgende Beispiel berechnet aus einer Stundenangabe den Stundenwert fiir eine
24-Stunden-Uhr:

void printOffsetHour(int hourNow, int offsetHours)

{
Serial.println((hourNow + offsetHours) % 24);

Siehe auch

Arduino-Referenz zum %- (Modulo-) Operator: http://www.arduino.cc/en/Reference/Modulo

3.4 Den Absolutwert ermitteln

Problem

Sie wollen den Absolutwert einer Zahl bestimmen.

Losung

abs(x) berechnet den Absolutwert von x. Das folgende Beispiel ermittelt den Absolutwert
der Differenz zweier analoger Einginge (in Kapitel 5 erfahren Sie mehr iiber analogRead()):

int x = analogRead(0);
inty = analogRead(1);

if (abs(x-y) > 10)
{

Serial.println("Die Analogwerte unterscheiden sich ummehr als 10");

72 | Kapitel 3: Mathematische Operatoren nutzen

Diskussion

abs(x-y); gibt den Absolutwert der Differenz zwischen x und y zuriick. Sie wird fiir
Integerwerte (und long) verwendet. Wie man den Absolutwert von FlieRkommazahlen
bestimmt, erldutert Rezept 2.3.

Siehe auch

Arduino-Referenz zu abs: http://www.arduino.cc/en/Reference/Abs

3.5 Zahlen auf einen Wertebereich beschranken

Problem

Sie wollen sicherstellen, dass sich ein Wert immer innerhalb einer unteren und oberen
Grenze bewegt.

Losung

constrain(x, min, max) liefert einen Wert zuriick, der innerhalb der Grenzen von min und
max liegt:

myConstrainedValue = constrain(myValue, 100, 200);

Diskussion

myConstrainedvalue wird auf einen Wert gesetzt, der immer grofer oder gleich 100 und
kleiner oder gleich 200 ist. Ist myValue kleiner 100, ist das Ergebnis 100; liegt er iiber 200,
wird er auf 200 gesetzt.

Tabelle 3-1 zeigt beispielhaft einige Ausgabewerte fiir ein min von 100 und ein max von
200.

Tabelle 3-1: constrain-Ausgabe mit min = 100 und max = 200

myValue (Eingangswert) constrain(myValue, 100, 200)
99 100
100 100
150 150
200 200
201 200

Siehe auch
Rezept 3.6

3.5 Zahlen auf einen Wertebereich beschranken | 73

3.6 Das Minimum oder Maximum bestimmen

Problem

Sie wollen das Minimum oder Maximum bei zwei oder mehr Werten bestimmen.

Losung
min(x,y) gibt die kleinere und max(x,y) gibt die gréflere der beiden Zahlen zuriick:

myValue = analogRead(0);
myMinValue = min(myValue, 200); // myMinValue enthdlt denkleineren Wert
// von myValue oder 200

myMaxValue = max(myValue, 100); // myMaxValue enthdlt den gréReren Wert
// von myValue oder 100

Diskussion

Tabelle 3-2 zeigt einige Beispielergebnisse fiir ein min von 200. Die Tabelle zeigt, dass das
Ergebnis der Eingabe (myValue) entspricht, bis der Wert die 200 tibersteigt.

Tabelle 3-2: Ergebnisse fiir min(myValue, 200)

myValue (Eingangswert) min(myValue, 200)

99 99

100 100
150 150
200 200
201 200

Tabelle 3-3 zeigt das Ergebnis fiir ein max von 100. Die Tabelle zeigt, dass das Ergebnis der
Eingabe (myValue) entspricht, solange der Wert grofler oder gleich 100 ist.

Tabelle 3-3: Ergebnisse fiir max(myValue, 100)

myValue (Eingangswert) max(myValue, 100)

99 100
100 100
150 150
200 200
201 201

Nutzen Sie min, um eine Obergrenze festzulegen. Das klingt nicht gerade intuitiv, aber da
sich min beim Eingangswert und dem Minimum immer fiir den kleineren entscheidet, ist
das Ergebnis nie hoher als das Minimum (200 in unserem Beispiel).

74 | Kapitel 3: Mathematische Operatoren nutzen

In gleicher Weise konnen Sie max nutzen, um eine untere Grenze festzulegen. Das Ergebnis
von max ist niemals kleiner als der Maximalwert (100 in unserem Beispiel).

Wenn Sie die min- oder max-Werte fiir mehr als zwei Werte bestimmen miissen, konnen Sie
die Funktionsaufrufe wie folgt kaskadieren:

// myMinValue enthdlt den kleinsten der drei Analogwerte:
int myMinvalue = min(analogRead(0), min(analogRead(1), analogRead(2)));

Bei diesem Beispiel wird zuerst der Minimalwert fiir die Analogports 1 und 2 bestimmt.
Das Ergebnis wird dann wiederum fiir die Berechnung des Minimums mit Port 0 genutzt.
Das ldsst sich auf so viele Werte wie notig ausweiten, allerdings miissen Sie dabei auf die
korrekte Klammerung achten. Das folgende Beispiel ermittelt das Minimum von vier
Werten:

int myMaxValue = max(analogRead(0), max(analogRead(1), max(analogRead(2),
analogRead(3))));

Siehe auch
Rezept 3.5

3.7 Eine Zahl potenzieren

Problem

Sie wollen eine Zahl potenzieren.

Losung
pow(x, y) gibt den Wert von x hoch y zuriick:

myValue = pow(3,2);

Der obige Code berechnet 3%, myValue ist also 9.

Diskussion

Die pow-Funktion kann mit Integer- und FlieRkommawerten arbeiten und liefert das
Ergebnis als FlieRkommazahl zuriick:

Serial.print(pow(3,2)); // gibt 9.00 aus

int z = pow(3,2);

Serial.println(z); //gibt9aus
Im ersten Fall wird 9.00 ausgegeben und im zweiten 9. Die Werte sind nicht gleich, weil
das erste print eine FlieRkommazahl ausgibt, wihrend die Zahl bei der zweiten Ausgabe
als Integerwert betrachtet wird, weshalb keine Nachkommastellen ausgegeben werden.
Wenn Sie die pow-Funktion nutzen, sollten Sie auch Rezept 2.3 lesen, um den Unterschied
zwischen FlieRkomma- und Integerwerten zu verstehen.

3.7 Eine Zahl potenzieren | 75

Hier ein Beispiel fiir eine Bruchpotenz:

float s = pow(2, 1.0/ 12); // Die zwolfte Wurzel von 2

Die zwolfte Wurzel von zwei entspricht 2 hoch 0,083333. Der resultierende Wert fiir s ist
1,05946 (das entspricht der Frequenz, die den Unterschied zwischen zwei nebeneinander-
liegenden Tone auf dem Klavier ausmacht).

3.8 Die Quadratwurzel berechnen

Problem

Sie wollen die Quadratwurzel einer Zahl berechnen.

Losung

Die Funktion sqrt(x) gibt die Quadratwurzel von x zuriick:

Serial.print(sqrt(9)); // gibt 3.00 aus

Diskussion

Die sqrt-Funktion gibt eine FlieRkommazahl zuriick (siehe auch die Diskussion der
pow-Funktion in Rezept 3.7).

3.9 FlieBkommazahlen auf- und abrunden

Problem

Sie wollen eine FlieRkommazahl auf den nichsten kleineren oder gréReren Integerwert ab-
bzw. aufrunden (floor oder ceil).

Losung

floor(x) gibt den groRten ganzzahligen Wert zuriick, der nicht grofler als x ist. ceil(x)
gibt den kleinsten ganzzahligen Wert zuriick, der nicht kleiner als x ist.

Diskussion

Diese Funktionen werden zum Runden von FlieRkommazahlen genutzt. Nutzen Sie
floor(x), um den grofiten Integerwert zu bestimmen, der nicht grofer als x ist. Ver-
wenden Sie ceil, um den kleinsten Integerwert zu ermitteln, der grofRer ist als x.

Hier einige Beispiele fiir floor:

Serial.println(floor(1)); //Gibt 1.00 aus
Serial.println(floor(1.1)); //Gibt 1.00 aus
Serial.println(floor(0)); //Gibt 0.00 aus

76 | Kapitel 3: Mathematische Operatoren nutzen

Serial.println(floor(.1)); //Gibt 0.00 aus
Serial.println(floor(-1)); //Gibt -1.00 aus
Serial.println(floor(-1.1)); // Gibt -2.00 aus

Hier einige Beispiele fiir ceil:

Serial.println(ceil(1)); //Gibt 1.00aus
Serial.println(ceil(1.1)); //Gibt 2.00 aus
Serial.println(ceil(0)); //Gibt 0.00 aus
Serial.println(ceil(.1)); //Gibt 1.00 aus
Serial.println(ceil(-1)); //Gibt -1.00 aus
Serial.println(ceil(-1.1)); // Gibt -1.00 aus

Auf den nichstgelegenen Integerwert konnen Sie wie folgt runden:

if (floatValue > 0.0)

result = floor(floatValue +0.5);
else

result = ceil(floatValue - 0.5);

N
o Sie konnen Nachkommastellen auch »abschneiden, indem Sie ein Casting
:t“‘ (keine Konvertierung) nach int vornehmen, aber dabei wird nicht korrekt
© sy gerundet. Negative Zahlen wie —1,9 sollten auf —2 abgerundet werden,

doch beim int-Casting wird auf —1 aufgerundet. Das gleiche Problem
haben Sie auch bei positiven Zahlen: 1,9 sollte auf 2 aufgerundet werden,
wird aber auf 1 abgerundet. Fiir korrekte Ergebnisse miissen Sie floor und
ceil verwenden.

3.10 Trigonometrische Funktionen nutzen

Problem

Sie wollen den den Sinus, Kosinus oder Tangens fiir einen in Grad oder Bogenmaf? an-
gegebenen Winkel bestimmen.

Losung

sin(x) gibt den Sinus, cos(x) den Kosinus und tan(x) den Tangens des Winkels x zuriick.

Diskussion

Winkel werden im Bogenmaf$ angegeben, und das Ergebnis ist eine FlieRkommazahl
(siehe Rezept 2.3). Das folgende Beispiel veranschaulicht den Einsatz der trigonometri-
schen Funktionen:

float deg = 30; // Winkel in Grad
float rad =deg*PI/ 180; // inBogenmal umwandeln
Serial.println(rad); // BogenmaR ausgeben

Serial.println (sin(rad)); // Sinus ausgeben
Serial.println (cos(rad)); //Kosinus ausgeben

3.10 Trigonometrische Funktionen nutzen | 77

Das obige Beispiel wandelt den Winkel in Bogenmaf um und gibt den Sinus und Kosinus
aus. Hier die Ausgabe (mit zusitzlichen Anmerkungen versehen):
0.52 30 Grad entspricht dem Bogenmaf 0,5235988 ausgegeben werden nur die ersten beiden
Nachkommastellen

0.50 Der Sinus von 30 ist 0,5000000, hier auf 2 Nachkommastellen genau
0.87 Der Kosinus ist 0,8660254, was auf 0,87 aufgerundet wird

Zwar berechnet der Sketch die Werte mit der Genauigkeit von FlieRkommazahlen, doch
die Routine Serial.print gibt hier nur die ersten beiden Nachkommastellen aus.

Die Umwandlung von Bogenmaf$ in Grad und wieder zuriick ist Trigonometrie aus dem
Lehrbuch. PI ist die vertraute Konstante m (3,14159265...). PI und 180 sind beides
Konstanten, und Arduino stellt einige vorberechnete Konstanten zur Verfiigung, mit
denen Sie Umwandlungen nach Grad und Bogenmaf? durchfithren konnen:

rad = deg * DEG_TO_RAD; // Grad in BogenmaR
deg = rad * RAD_TO DEG; // BogenmaR in Grad

Die Nutzung von deg * DEG_TO_RAD mag effizienter aussehen als deg * PI / 180, ist sie aber
nicht, weil der Arduino-Compiler clever genug ist, um zu erkennen, dass PI / 180 eine
Konstante ist (deren Wert sich nie dndert). Er fiigt daher das Ergebnis der Division von PI
durch 180 ein, was genau dem Wert der Konstanten DEG_TO RAD (0,017453292519...)
entspricht. Sie kénnen also den von Thnen bevorzugten Ansatz verwenden.

Siehe auch

Arduino-Referenzen zu sin (hitp://www.arduino.cc/en/Reference/Sin), cos (http://ardui-
no.cc/en/Reference/Cos) und tan (http://arduino.cc/en/Reference/Tan)

3.11 Zufallszahlen erzeugen

Problem

Sie benotigen Zufallszahlen zwischen Null und einem festgelegten Maximum, oder zwi-
schen einem vorgegebenen Minimum und Maximum.

Losung

Verwenden Sie die Funktion random. Beim Aufruf von random mit einem einzelnen Para-
meter wird die Obergrenze festgelegt. Die zuriickgelieferten Werte liegen zwischen Null
und 1 unter dieser Obergrenze:

random(max); // Gibt eine Zufallszahl zwischen 0 und max-1 zuriick

Beim Aufruf von random mit zwei Parametern wird die Unter- und Obergrenze festgelegt.
Die zuriickgelieferten Werte reichen von der Untergrenze (einschlieRlich) bis zu eins unter
der Obergrenze:

random(min, max); // Gibt eine Zufallszahl zwischen min und max-1 zuriick

78 | Kapitel 3: Mathematische Operatoren nutzen

Diskussion

Auch wenn man bei den zuriickgelieferten Zahlen kein offensichtliches Muster erkennen
kann, sind die Werte nicht zufillig. Bei jedem Start des Sketches wird die gleiche Folge
erzeugt. Bei vielen Anwendungen spielt das aber keine Rolle. Wenn Sie bei jedem Start des
Sketches unterschiedliche Folgen bendétigen, verwenden Sie die Funktion random-
Seed(seed) mit einem anderen seed-Wert. (Wenn Sie den gleichen seed-Wert verwenden,
erhalten Sie auch die gleiche Folge). Diese Funktion initialisiert den Zufallszahlengenera-
tor mit einem Startwert, der auf dem tibergebenen seed-Parameter basiert :

randomSeed(1234); // Startfolge der Zufallszahlen dndern.

Hier ein Beispiel, das die unterschiedlichen Formen der Zufallszahlengenerierung nutzt,
die bei Arduino zur Verfiigung stehen:

// Random
// Generierung von Zufallszahlen

int randNumber;
void setup()
Serial.begin(9600);

// Zufallszahlen ohne seed-Wert ausgeben
Serial.println("20 Zufallszahlen zwischenound 9");
for(int i=0; i < 20; i++)
{

randNumber = random(10);

Serial.print(randNumber);

Serial.print("");
}
Serial.println();
Serial.println("20 Zufallszahlen zwischen0und 9");
for(int i=0; i< 20; i++)

randNumber = random(2,10);
Serial.print(randNumber);
Serial.print("");

}

// Zufallszahl mit immer gleichem seed-Wert ausgeben

randomSeed(1234);

Serial.println();

Serial.println("20 Zufallszahlen zwischen 0 und 9 mit konstantem seed");
for(int i=0; 1 < 20; i++)

randNumber = random(10);
Serial.print(randNumber);
Serial.print("");

}

// Zufallszahlen mit unterschiedlichem seed-Wert ausgeben
randomSeed (analogRead(0)); // Nicht angeschlossenen Analogport auslesen
Serial.println();

3.11 Zufallszahlen erzeugen | 79

Serial.println("20 Zufallszahlen zwischen 0 und 9 mit unterschiedlichem seed");
for(int i=0; i < 20; i++)
{

randNumber = random(10);
Serial.print(randNumber);
Serial.print("");

}
Serial.println();

)5
Serial.println();
}

void loop()
{
}

Hier die Ausgabe des Codes:

20 Zufallszahlen zwischen 0 und 9
7938024839052273790

20 Zufallszahlen zwischen 0 und 9
93772758293425435757

20 Zufallszahlen zwischen 0 und 9 mit konstantem seed
82871803659034312394

20 Zufallszahlen zwischen 0 und 9 mit unterschiedlichem seed
09744774491602315911

Wenn Sie den Reset-Button des Arduino driicken, um den Sketch neu zu starten, bleiben
die Zufallszahlen der ersten drei Zeilen unveriandert. Nur die letzte Zeile dndert sich bei
jedem Start des Sketches, weil der seed-Wert auf einen neuen Wert gesetzt wird, indem
ein ungenutzter Analogport ausgelesen und als Parameter an randomSeed iibergeben wird.
Wenn Sie den Analogport O fur etwas anderes nutzen, miissen Sie einen ungenutzten
Analogport als Argument an analogRead tibergeben.

Siehe auch

Arduino-Referenz fiir random (http://www.arduino.cc/en/Reference/Random) und random Seed
(http://arduino.cc/en/Reference/RandomSeed)

3.12 Bits setzen und lesen

Problem

Sie mochten ein bestimmtes Bit in einer numerischen Variablen auslesen oder setzen.

Losung
Nutzen Sie die folgenden Funktionen:

bitSet(x, bitPosition)
Setzt (schreibt eine 1 an) die gegebene bitPosition der Variablen x

80 | Kapitel 3: Mathematische Operatoren nutzen

bitClear(x, bitPosition)
Loscht (schreibt eine 0 an) die gegebene bitPosition der Variablen x
bitRead(x, bitPosition)
Gibt den Wert (0 oder 1) des Bits an der gegebenen bitPosition der Variablen x
zuriick
bitWrite(x, bitPosition, value)
Setzt den angegebenen Wert (0 oder 1) des Bits an bitPosition der Variablen x
bit(bitPosition)
Gibt den Wert der gegebenen Bitposition zuriick: bit(0) ist 1, bit(1) ist 2, bit(2) ist 4
und so weiter

Bei dieser Funktion ist bitPosition 0 das niederwertigste (ganz rechts stehende) Bit.

Der folgende Sketch nutzt diese Funktionen, um die Bits einer 8-Bit-Variablen namens
flags zu bearbeiten:

// bitFunctions
// Verwendung der Bitfunktionen

byte flags =0; // Diese Beispiele setzen, 16schen oder lesen die Bits in der Variablen flags.

// bitSet-Beispiel
void setFlag(int flagNumber)

bitSet(flags, flagNumber);
}

// bitClear-Beispiel
void clearFlag(int flagNumber)

{
bitClear(flags, flagNumber);

}
// bitPosition-Beispiel
int getFlag(int flagNumber)

return bitRead(flags, flagNumber);
}

void setup()

Serial.begin(9600);
}

void loop()
{

)

// Ein paar Flags setzen;

showFlags()
setFlag(2);
setFlag(5);
showFlags();
clearFlag(2);

3.12 Bits setzen und lesen | 81

showFlags();

delay(10000); // sehr lange warten

}

// Gibt Status des Flags aus
void showFlags()
{

for(int flag=0; flag < 8; flag++)

if (getFlag(flag) == true)
Serial.print("* Bit gesetzt fuer Flag"); else
Serial.print("Bit geloescht fuer Flag");

Serial.println(flag);

}
Serial.println();

Der Code gibt Folgendes aus:

Bit geloescht fuer Flag o
Bit geloescht fuer Flag 1
Bit geloescht fuer Flag 2
Bit geloescht fuer Flag 3
Bit geloescht fuer Flag 4
Bit geloescht fuer Flag s
Bit geloescht fuer Flag 6
Bit geloescht fuer Flag 7

Bit geloescht fuer Flag 0
Bit geloescht fuer Flag1
* Bit gesetzt fuer Flag 2
Bit geloescht fuer Flag 3
Bit geloescht fuer Flag 4
*Bit gesetzt fuer Flags
Bit geloescht fuer Flag 6
Bit geloescht fuer Flag 7

Bit geloescht fuer Flag o
Bit geloescht fuer Flag 1
Bit geloescht fuer Flag 2
Bit geloescht fuer Flag 3
Bit geloescht fuer Flag 4
*Bit gesetzt fuer Flags
Bit geloescht fuer Flag 6
Bit geloescht fuer Flag 7

Diskussion

Das Auslesen und Setzen von Bits ist eine typische Aufgabe, und viele Arduino-Biblio-
theken nutzen diese Funktionalitit. Ein typisches Einsatzgebiet fiir Bitoperationen ist das
effiziente Speichern und Lesen von Bindrwerten (Ein/Aus, Wahr/Falsch, 1/0, high/low,
etc.).

82 | Kapitel 3: Mathematische Operatoren nutzen

als 0.

Den Zustand von acht Schaltern kénnen Sie in einem einzigen 8-Bit-Wert speichern, statt
acht Byte oder Integerwerte zu benotigen. Das Beispiel in diesem Rezept zeigt, wie man
acht Werte in einem Byte einzeln setzen und léschen kann.

Der Begriff Flag wird in der Programmierung fir Werte verwendet, die den Status eines
bestimmten Aspekts des Programms festhalten. Im obigen Sketch werden die Flag-Bits
mit bitRead ausgelesen und mit bitSet oder bitClear gesetzt bzw. geloscht. Die Funk-
tionen bendtigen zwei Parameter: Der erste ist der zu lesende oder zu schreibende Wert
(in diesem Beispiel also flags), und der zweite gibt die Bitposition an, die gelesen oder

Arduino definiert die Konstanten true und HICH als 1 und false und LOW

geschrieben werden soll. Die Bitposition O ist das niederwertigste (ganz rechts stehende)

Bit, Position 1 die zweite Position von rechts und so weiter.

bitRead(2, 1); // Ergibt 1; 2 ist bindr 10 und das Bit an Position 1 ist 1
bitRead(4, 1); // Ergibt 0; 4 ist bindr 100 und das Bit an Position 1 ist 0

Es gibt auch eine Funktion namens bit, die die Wertigkeit jeder Bitposition zuriickgibt:

bit(0) ist1;
bit(1) ist2;
bit(2) ist4;

bit(7) ist 128

Siehe auch

Arduino-Referenz zu den Bit- und Byte-Funktionen:

lowByte
http://www.arduino.cc/en/Reference/LowByte
highByte
http://arduino.cc/en/Reference/HighByte

bitRead
http://'www.arduino.cc/en/Reference/BitRead

bitWrite
http://arduino.cc/en/Reference/Bit Write

bitSet
http://arduino.cc/en/Reference/BitSet

bitClear
http://arduino.cc/en/Reference/BitClear
bit
http://arduino.cc/en/Reference/Bit

3.12 Bits setzen und lesen

83

3.13 Bits verschieben (Shifting)

Problem

Sie miissen Bitoperationen durchfiihren, die die Bits in einem byte, int oder long nach
links oder rechts verschieben.

Losung

Nutzen Sie die Operatoren << (Bitshift links) und >> (Bitshift rechts), um die Bits in einem
Wert zu verschieben.

Diskussion

Das folgende Code-Fragment setzt die Variable x auf 6, verschiebt die Bits dann um eine
Stelle nach links und gibt anschlieRend den neuen aus (12). Dieser Wert wird dann um
zwei Stellen nach rechts verschoben (und das Ergebnis ist 3):

int x=6;

int result =x << 1; // 6 um1nach links verschoben ergibt 12

Serial.println(result);

int result =x>>2; //12um2 nach rechts verschoben ergibt 3;
Serial.println(result);

Das funktioniert wie folgt: Schiebt man 6 um eine Stelle nach links, dann ergibt das 12,
weil die Dezimalzahl 6 als Binidrzahl 0110 ist, und wenn man die Ziffern um eine Stelle
nach links verschiebt, erhilt man 1100 (dezimal 12). Verschiebt man 1100 um zwei
Stellen nach rechts, erhilt man 0011 (dezimal 3). Sie werden bemerken, dass die Ver-
schiebung um n Stellen nach links einer Multiplikation des Wertes mal 2 hoch n
entspricht. Die Verschiebung um 7 nach rechts entspricht hingegen der Division durch 2
hoch n. Mit anderen Worten sind die folgenden Ausdriicke gleich:

x << 1ist gleich x * 2.
x << 2 ist gleich x * 4.
x << 3 ist gleich x * 8.
x >> 1ist gleich x / 2.
x >> 2 ist gleich x / 4.
x >> 3 ist gleich x / 8.

Der Arduino-Controllerchip kann Bits effizienter verschieben als multiplizieren und
dividieren, und gelegenlich werden Sie auch Code sehen, der Bits verschiebt, um zu
multiplizieren oder zu dividieren:

intc=(a<<1)+(b>>2); //entspicht (a*2)+(b/4)

Der Ausdruck (a << 1) + (b >> 2); hat keine groRe Ahnlichkeit mit (a * 2) + (b / 4);, doch
beide Ausdriicke machen genau das gleiche. Allerdings ist der Arduino-Compiler clever
genug, die Multiplikation eines Integerwertes mit einer Konstanten, die ein Vielfaches
einer Zweierpotenz ist, zu erkennen und daraus Maschinencode zu erzeugen, der mit

84 | Kapitel 3: Mathematische Operatoren nutzen

Shiftoperationen arbeitet. Der mit arithmetischen Operatoren arbeitende Quellcode ist
fiir Menschen einfacher zu lesen, weshalb man diese Variante bevorzugt, wenn man
multiplizieren und dividieren will.

Siehe auch

Arduino-Referenz zu Bit- und Bytefunktionen: lowByte, highByte, bitRead, bitWrite, bitSet,
bitClear und bit (siehe Rezept 3.12)

3.14 Hoher- und niederwertige Bytes aus int oder long
extrahieren

Problem

Sie wollen das hoher- oder niederwertige Byte aus einem Integerwert extrahieren, z.B.
wenn Sie Integerwerte als Bytes Giber einen seriellen Port oder einen anderen Kommuni-
kationskanal senden wollen.

Losung

Verwenden Sie lowByte(i), um das niederwertige Byte aus einem Integerwert zu extrahie-
ren. Verwenden Sie highByte(i), um das hoherwertige Byte des Integerwerts zu bestimmen.

Der folgende Sketch wandelt einen Integerwert in sein hoher- und niederwertiges Byte um:

//ByteOperators

int intValue = 258; // 258 ist hexadezimal 0x102

void setup()

Serial.begin(9600);

void loop()
{

int loWord, hiWord;
byte loByte, hiByte;

hiByte = highByte(intValue);
loByte = lowByte(intValue);

Serial.println(intVvalue,DEC);
Serial.println(intValue,HEX);
Serial.println(loByte,DEC);
Serial.println(hiByte,DEC);

delay(10000); // Sehr lange warten

3.14 Hoher- und niederwertige Bytes aus int oder long extrahieren | 85

Diskussion

Der Beispiel-Sketch gibt intValue aus, gefolgt von dessen nieder- und hoherwertigem
Byte:

258 // der umzuwandelnde Integerwert

102 // in hexadezimaler Notation

2 //das niederwertige Byte
1 //das hoherwertige Byte

Um die Bytes eines long-Werts zu extrahieren, muss der 32-Bit-long-Wert zuerst in zwei
16-Bit-Worter zerlegt werden, die dann wie im obigen Code konvertiert werden konnen.
Wihrend diese Zeilen geschrieben werden, kennt die Standard-Arduino-Bibliothek diese
Operation fiir longs nicht, aber Sie kénnen dazu die folgenden Zeilen in Thre Sketches
aufnehmen:

t#tdefine highWord(w) ((w) >> 16)
#tdefine lowWord(w) ((w) & oxffff)

Das sind sog. Makros: hilWord fithrt eine 16-Bit-Shiftoperation durch, um einen 16-Bit-
Wert zu erzeugen und lowWord maskiert die niederwertigen 16 Bits mit Hilfe des bit-
orientierten UND-Operators (siehe Rezept 2.20).

N

Die Anzahl der Bits in einem int variiert je nach Plattfom. Bei Arduino sind
es 16 Bit, bei anderen Umgebungen hingegen 32 Bit. Der Begriff Word wird
s hier fiir einen 16-Bit-Wert verwendet.

Der folgende Code wandelt den 32-Bit-Hexwert 0x1020304 in seine beiden hoher- und
niederwertigen 16-Bit-Werte um:

loword = lowhord(longValue);

hiword = highWord(longValue);

Serial.println(loword,DEC);
Serial.println(hiword,DEC);

Ausgegeben werden die folgenden Werte:

772 // 772 entspricht 0x0304 hexadezimal
258 // 258 entspricht 0x0102 hexadezimal

772 dezimal ist 0x0304 hexadezimal, was dem niederwertigen Wort (16 Bit) des long-
Value-Werts 0x1020304 entspricht. Vielleicht erkennen Sie 258 aus dem ersten Teil des
Rezepts wieder. Er ist die Kombination aus einer 1 im hoher- und einer 2 im niederwertige
Byte (hexadezimal 0x0102).

Siehe auch

Arduino-Referenz zu den Bit- und Bytefunktionen: lowByte, highByte, bitRead, bitWrite,
bitSet, bitClear und bit (siehe Rezept 3.12).

86 | Kapitel 3: Mathematische Operatoren nutzen

3.15 int- oder long-Werte aus hoher- und niederwertigen
Bytes bilden

Problem

Sie wollen einen16-Bit- (int) oder 32-Bit- (long) Integerwert aus einzelnen Bytes bilden,
z.B. wenn Sie Integerwerte in einzelnen Bytes Giber eine serielle Kommunikationsleitung
empfangen. Das ist die Umkehroperation zu Rezept 3.14.

Losung

Nutzen Sie die Funktion word(h,1), um zwei Bytes zu einem Arduino-Integerwert zusam-
menzufassen. Nachfolgend wird der Code aus Rezept 3.14 dahingehend erweitert, dass er
die jeweiligen hoher- und niederwertigen Bytes wieder zu einem Integerwert zusammensetzt:

//ByteOperators

int intValue = 0x102; // 258

void setup()

Serial.begin(9600);
}

void loop()
{

int loWord, hiWord;
byte loByte, hiByte;

hiByte = highByte(intValue);
loByte = lowByte(intValue);

Serial.println(intvalue,DEC);
Serial.println(loByte,DEC);
Serial.println(hiByte,DEC);

loWord = word(hiByte, loByte); //Byteswieder zu einemWort zusammenfassen
Serial.println(loWord,DEC);
delay(10000); // Sehr lange warten

Diskussion

Der Ausdruck word(high,low) fasst ein hoher- und ein niederwertiges Byte zu einem
16-Bit-Wert zusammen. Der Code nimmt die in Rezept 3.14 erzeugten hoher- und nie-
derwertigen Bytes und setzt sie wieder zu einem Wort zusammen. Die Ausgabe zeigt den
Integerwert, das niederwertige und das hoherwertige Byte und dann den wieder zusam-
mengesetzten Integerwert:

3.15 int- oder long-Werte aus hoher- und niederwertigen Bytes bilden | 87

258
2
1
258

Arduino besitzt (wihrend dies geschrieben wird) keine Funktion, die einen 32-Bit-long-
Wert aus zwei 16-Bit-Worten erzeugt, aber Sie konnen dazu ein eigenes makeLong()-Makro
nutzen. Fiigen Sie einfach die folgende Zeile in Thren Sketch ein:

#tdefine makelong(hi, low) ((hi) << 16 & (low))

Das definiert ein Makro, das den hoherwertigen Teil um 16 Bits nach links verschiebt und
dann den niederwertigen Teil hinzufugt:

t#tdefine makeLong(hi, low) (((long) hi) << 16 | (low))
t#tdefine highWord(w) ((w) >> 16)
#tdefine lowWord(w) ((w) & oxffff)

// Testwert deklarieren
long longValue = 0x1020304; // Dezimal 16909060
// Bindr 00000001 00000010 00000011 00000100

void setup()
{

Serial.begin(9600);
}

void loop()
int loWord,hiWord;

Serial.println(longValue,DEC); // Gibt 16909060 aus

loWord = lowhord(longValue); // Wandelt long in zwei Worter um

hiWord = highWord(longValue);

Serial.println(loWord,DEC); //Gibt 772 aus

Serial.println(hiWord,DEC); // Gibt 258 aus

longValue = makeLong(hiWord, loWord); //Wandelt die Worter wieder in long um
Serial.println(longValue,DEC); // Gibt wieder 16909060 aus

delay(10000); // Sehr lange warten

Hier die Ausgabe:

16909060
772
258
16909060

Siehe auch

Arduino-Referenz zu Bit- und Bytefunktionen: lowByte, highByte, bitRead, bitWrite, bitSet,
bitClear und bit (siche Rezept 3.12)

88 | Kapitel 3: Mathematische Operatoren nutzen

KAPITEL 4
Serielle Kommunikation

4.0 Einfiihrung

Die serielle Kommunikation bietet eine einfache und flexible Moglichkeit, Thr Arduino-
Board mit Threm Computer und anderen Geriten interagieren zu lassen. Dieses Kapitel
erldutert, wie man auf diese Weise Informationen senden und empfangen kann.

In Kapitel 1 wurde beschrieben, wie man den seriellen Port des Arduino mit dem
Computer verbindet, um Sketches hochzuladen. Der Upload-Prozess sendet Daten von
Threm Computer an den Arduino, und der Arduino sendet Statusmeldungen zuriick an
den Computer, um zu bestitigen, dass der Transfer funktioniert. Die hier vorgestellten
Rezepte zeigen, wie Sie diesen Kommunikationslink nutzen kénnen, um beliebige Infor-
mationen zwischen dem Arduino und Threm Computer (oder einem anderen seriellen
Gerit) zu senden und zu empfangen.

N
o Die serielle Kommunikation ist auch ein praktisches Tool zur Fehlersuche
.'s (Debugging). Sie senden Debugging-Nachrichten vom Arduino an den

Computer und geben sie auf dem Bildschirm oder einem externen LC-
Display aus.

Die Arduino-IDE (beschrieben in Rezept 1.3) stellt einen seriellen Monitor zur Verfiigung
(siehe Abbildung 4-1), der vom Arduino gesendete serielle Daten ausgibt.

Sie kénnen Daten iiber den seriellen Monitor an den Arduino senden, indem Sie Text in
das Textfeld links neben dem Send-Button eingeben. Die Baudrate (die Geschwindigkeit,
mit der die Daten tbertragen werden, gemessen in Bits pro Sekunde) wird iiber eine
Dropdown-Box am unteren rechten Rand ausgewihlt. Sie kénnen die Dropdown-Box
namens »No line ending« nutzen, um automatisch ein Carriage Return (Wagenriicklauf)
oder eine Kombination aus Carriage Return und Linefeed (Zeilenvorschub) an das Ende
jeder Nachricht anzuhingen, sobald der Send-Button angeklickt wird. Andern Sie dazu
einfach »No line ending« in die gewiinschte Option.

Nolineending « | 9600baud «

Abbildung 4-1: Serieller Monitor des Arduino

Ihr Arduino-Sketch kann den seriellen Port nutzen, um indirekt (iiblicherweise {iber ein
Proxy-Programm in einer Sprache wie Processing) auf alle Ressourcen (Speicher, Bild-
schirm, Tastatur, Maus, Netzwerk etc.) Thres Computers zugreifen zu koénnen. Thr
Computer kann wiederum die serielle Schnittstelle nutzen, um mit Sensoren oder
anderen, mit dem Arduino verbundenen Gerdten zu interagieren.

Die Implementierung einer seriellen Kommunikation verlangt Hard- und Software. Die
Hardware sorgt fiir die elektrischen Signale zwischen dem Arduino und dem Gerit, mit
dem er sich unterhilt. Die Software nutzt die Hardware, um Bytes oder Bits zu senden, die
von der angeschlossenen Hardware verstanden werden. Arduinos serielle Bibliotheken
verstecken einen Grofiteil der Hardware-Komplexitit vor Thnen, es ist aber hilfreich, die
Grundlagen zu verstehen, besonders wenn Sie bei Thren Projekten Probleme mit der
seriellen Kommunikation untersuchen miissen.

Serielle Hardware

Die serielle Hardware sendet und empfingt Daten in Form elektrischer Impulse, die eine
sequentielle Folge von Bits darstellen. Die Nullen und Einsen, die die Informationen
enthalten, aus denen ein Byte besteht, kénnen auf verschiedene Art reprisentiert werden.
Das von Arduino verwendete Schema ist 0 Volt fiir den Bitwert 0 und 5 (oder 3,3) Volt fiir
den Bitwert 1.

Die Verwendung von 0 Volt (fur 0) und 5 Volt (fiir 1) ist weit verbreitet.
Man spricht hier vom TTL-Level (Pegel), weil Signale in einer der ersten
Implementierungen digitaler Logik, der sog. Transistor-Transistor Logik
(TTL), in dieser Form reprisentiert wurden.

90 | Kapitel 4: Serielle Kommunikation

Boards wie das Uno, Duemilanove, Diecimila, Nano und Mega besitzen einen Chip, der
den seriellen Hardware-Port des Arduino-Chips in Universal Serial Bus (USB) umwandelt,
um die Verbindung mit dem seriellen Port herzustellen. Andere Boards wie das Mini, Pro,
Pro Mini, Boarduino, Sanguino und Modern Device Bare Bones Board unterstiitzen USB
nicht und benétigen fiir die Verbindung zum Computer einen Adapter, der TTL in USB
umwandelt. Weitere Details zu diesen Boards finden Sie unter http://www.arduino.cc/en/
Main/Hardware.

Einige beliebte USB-Adapter sind:

* Mini USB Adapter (http://arduino.cc/en/Main/MiniUSB)

* USB Serial Light Adapter (http://arduino.cc/en/Main/USBSerial)

* FTDI USB TTL Adapter (http://www.ftdichip.com/Products/FT232R.htm)

* Modern Device USB BUB-Board (hitp://shop.moderndevice.com/products/usb-bub)
* Seeedstudio UartSBee (http://www.seeedstudio.com/depot/uartsbee-v31-p-688.html)

Einige serielle Gerite verwenden den RS-232-Standard fir die serielle Verbindung. Sie
haben tiblicherweise einen Neun-Pin-Stecker, und ein Adapter wird benétigt, um sie mit
dem Arduino verwenden zu kénnen. RS-232 ist ein altehrwiirdiges Kommunikations-
protokoll, dessen Spannungspegel mit den Digitalpins des Arduino nicht kompatibel sind.

Sie konnen Arduino-Boards kaufen, die fiir die RS-232-Signalpegel gebaut sind, etwa das
Freeduino Serial v2.0 (http://www.nkcelectronics.com/freeduino-serial-v20-board-kit-ar-
duino-diecimila-compatib20.html).

Hier einige RS-232-Adapter, die RS-232-Signale mit den 5 (oder 3,3) Volt der Arduino-
Pins verbinden:

* RS-232 nach TTL 3V-5.5V Adapter (http://www.nkcelectronics.com/rs232-to-ttl-
converter-board-33v232335.html)

* P4 RS232 nach TTL Serial Adapter Kits (http://shop.moderndevice.com/products/p4)

* RS232 Shifter SMD (http://www.sparkfun.com/commerce/product_info.php?products_
id=449)

Ein Standard-Arduino verfiigt tiber einen einzigen seriellen Hardware-Port, doch die se-
rielle Kommunikation ist auch tiber Software-Bibliotheken moglich, die zusitzliche Ports
(Kommunikationskanile) emulieren, um mehr als ein Gerit anschlieflen zu kénnen.
Serielle Software-Ports benotigen sehr viel Hilfe vom Arduino-Controller, um Daten
senden und empfangen zu kénnen, weshalb sie nicht so schnell und effizient sind wie
serielle Hardware-Ports.

Das Arduino Mega besitzt vier serielle Hardware-Ports, die mit bis zu vier verschiedenen
seriellen Gerdten kommunizieren konnen. Nur bei einem ist ein USB-Adapter integriert
(alle anderen seriellen Ports kénnen mit einem USB/TTL-Adapter verbunden werden).
Tabelle 4-1 zeigt die Portnamen und -Pins aller seriellen Ports des Mega.

4.0 Einfiihrung | 91

Tabelle 4-1: Serielle Ports des Arduino Mega

Portname Sendepin Empfangspin
Serial 1 (auch USB) 0 (auch USB)
Seriall 18 19

Serial2 16 17

Serial3 14 15

Serielle Software

Sie werden ublicherweise die in Arduino integrierte Serial-Bibliothek verwenden, um mit
den seriellen Hardware-Ports zu kommunizieren. Serielle Bibliotheken vereinfachen die
Verwendung serieller Ports, indem sie die Komplexitit der Hardware vor Thnen verbergen.

Manchmal benétigen Sie mehr serielle Ports, als Hardware-Ports zur Verfiigung stehen. In
diesem Fall konnen Sie eine zusitzliche Bibliothek nutzen, die serielle Hardware in
Software emuliert. Die Rezepte 4.13 und 4.14 zeigen, wie man eine serielle Bibliothek
nutzt, um mit mehreren Geriten zu kommunizieren.

Serielles Protokoll

Die Hardware- und Software-Bibliotheken iibernehmen das Senden und Empfangen von
Informationen. Diese Informationen bestehen hiufig aus Gruppen von Variablen, die
zusammen gesendet werden miissen. Damit diese Informationen korrekt interpretiert
werden konnen, muss die Empfangsseite erkennen, wo eine Nachricht beginnt und endet.
Eine sinnvolle serielle Kommunikation bzw. jede Art der Maschine/Maschine-Kommuni-
kation kann nur erreicht werden, wenn die sendende und die empfangende Seite genau
darin tibereinstimmen, wie die Informationen in den Nachrichten organisiert sind. Die
formale Organisation einer Nachricht und die Menge korrekter Antworten auf Anfragen
wird Kommunikationsprotokoll genannt.

Nachrichten konnen ein oder mehr spezielle Zeichen enthalten, die den Anfang einer
Nachricht markieren — das bezeichnet man als Header (Kopf). Ein oder mehr Zeichen
konnen auch genutzt werden, um das Ende der Nachricht zu kennzeichnen — das
bezeichnet man als Footer (Fuff). Die Rezepte dieses Kapitels zeigen beispielhafte Nach-
richten, bei denen die Werte des Rumpfs (Body, also die eigentlichen Nutzdaten) im Text-
oder Binirformat gesendet werden.

Das Senden und Empfangen von Nachrichten im Textformat verlangt das Senden von
Befehlen und numerischen Werten in Form von fiir Menschen lesbaren Buchstaben und
Wortern. Zahlen werden als Strings von Ziffern gesendet, die den Wert reprisentieren. Ist
der Wert beispielsweise 1234, dann werden die Zeichen 1, 2, 3 und 4 als einzelne Zeichen
gesendet.

Binidre Nachrichten bestehen aus den Bytes, die der Computer zur Reprisentation der
Werte verwendet. Binidrdaten sind effizienter (weil weniger Bytes gesendet werden miis-

92 | Kapitel 4: Serielle Kommunikation

sen), doch die Daten sind fiir uns Menschen nicht so einfach zu lesen, was die Fehlersuche
erschwert. Arduino stellt die Zahl 1234 beispielsweise mit den Bytes 4 und 210 (4 * 256 +
210 = 1234) dar. Wenn das verbundene Gerit nur Binirdaten sendet oder empfingt,
bleibt Thnen keine andere Wahl, als mit diesem Format zu arbeiten, doch wenn Sie die
Wahl haben, sind Textnachrichten einfacher zu implementieren und zu debuggen.

Es gibt viele Moglichkeiten, Softwareprobleme anzugehen, und einige Rezepte dieses
Kapitels bieten zwei oder drei unterschiedliche Losungen fiir das gleiche Ergebnis an. Die
Unterschiede (z.B. das Senden von Text anstelle reiner Bindrdaten) liegen im Verhiltnis
von Einfachheit und Effizienz. Wo eine Auswahl angeboten wird, sollten Sie die Lésung
wihlen, die Sie am besten verstehen und adaptieren koénnen (iiblicherweise die erste
Losung). Die Alternativen sind moglicherweise etwas effizienter, oder fiir ein bestimmtes
Protokoll besser geeignet, aber die »richtige Losung« ist diejenige, die in Threm Projekt am
einfachsten eingesetzt werden kann.

Die Processing-Entwicklungsumgebung

Einige Beispiele in diesem Kapitel verwenden die Sprache Processing, um serielle Meldun-
gen auf einem Computer zu senden und zu empfangen.

Processing ist ein freies Open-Source-Tool, das eine dhnliche Entwicklungsumgebung
nutzt wie Arduino. Statt aber Sketches auf dem Mikrocontroller auszufithren, laufen
Processing-Sketches auf Threm Computer. Alle Informationen zu Processing und zum
Download finden Sie auf der Processing-Website (http://processing.org/).

Processing basiert auf Java, doch die Processing-Codebeispiele in diesem Buch sollten sich
recht einfach in anderen Umgebungen nutzen lassen, die die serielle Kommunikation
unterstiitzen. Processing wird mit einigen Beispiel-Sketches ausgeliefert, die die Kom-
munikation zwischen Arduino und Processing illustrieren. SimpleRead ist ein Arduino-
Code enthaltendes Processing-Beispiel. In Processing wihlen Sie File>Examples—Libra-
ries—~>Serial>SimpleRead. Das Beispiel liest Daten iiber den seriellen Port ein und dndert
die Farbe eines Rechtecks, wenn ein am Arduino angeschlossener Taster gedriickt oder
losgelassen wird.

Neues in Arduino 1.0

Arduino 1.0 fithrt eine Reihe von Verbesserungen und Anderungen bei der Serial-Biblio-
thek ein:

* Serial.flush wartet nun, bis alle ausgehenden Daten gesendet wurden, statt emp-
fangene Daten einfach auszusortieren. Mit der folgenden Anweisung koénnen Sie alle
Daten aus dem Empfangspuffer 16schen: while(Serial.read() »>= 0) ; // Empfangs-
puffer leeren

* Serial.write und Serial.print »blockieren« nicht. Der alte Code hat gewartet, bis
alle Zeichen gesendet waren, bevor er zuriickkehrte. Seit 1.0 werden von Serial.write
gesendete Daten im Hintergrund tibertragen (iiber einen Interrupthandler), d.h., der

4.0 Einfihrung | 93

Sketch kann seine Arbeit direkt wieder aufnehmen. Ublicherweise ist das eine gute
Sache (der Sketch reagiert schneller), doch manchmal muss man warten, bis alle
Zeichen gesendet wurden. Sie erreichen das, indem Sie Serial.flush() gleich nach
Serial.write() aufrufen.

Die print-Funktionen von Serial geben die Anzahl der ausgegebenen Zeichen zuriick.
Das ist niitzlich, wenn die Textausgaben ausgerichtet werden miissen, oder wenn die
iibertragenen Daten die Gesamtzahl der gesendeten Zeichen enthalten.

Ein Parsing ist fur Streams wie Serial fest integriert, um Zahlen extrahieren und Text
aufspiiren zu kénnen. Mehr zu diesen Moglichkeiten bei Serial zeigt Rezept 4.5.

Die bei Arduino mitgelieferte SoftwareSerial-Bibliothek wurde stark verbessert. Siehe
4.13 und 4.14.

Die Funktion Serial.peek wurde hinzugefiigt, mit der Sie sich das nichste Zeichen im
Empfangspuffer ansehen konnen. Im Gegensatz zu Serial.read wird das Zeichen mit
Serial.peek nicht aus dem Puffer entfernt.

Siehe auch

Eine Arduino-Einfithrung zu RS-232 finden Sie unter http://www.arduino.cc/en/Tutorial/
ArduinoSoftwareRS232. Sehr viele Informationen und Links sind auch auf der Serial Port
Central-Website http://www.lvr.com/serport.htm zu finden.

Dariiber hinaus gibt eine Reihe von Biichern zu Processing:

Processing (ISBN 978-3-89721-997-7) von Erik Bartmann, erschienen bei O’Reilly.
Getting Started with Processing: A Quick, Hands-on Tutorial von Casey Reas und Ben
Fry (Make).

Processing: A Programming Handbook for Visual Designers and Artists von Casey Reas
und Ben Fry (MIT Press).

Visualizing Data von Ben Fry (O’Reilly; suchen Sie bei oreilly.de) danach.
Processing: Creative Coding and Computational Art von Ira Greenberg (Apress).

Making Things Talk (ISBN 978-3-86899-162-8) von Tom Igoe (Make). Dieses Buch
behandelt Processing und Arduino und enthilt viele Beispiele fiir Kommunkations-
code. Bei O’Reilly erschienen.

4.1 Debugging-Informationen vom Arduino an lhren

Computer senden

Problem

Sie wollen Texte und Daten senden, die auf IThrem PC oder Mac in der Arduino-IDE oder
einem Terminalprogramm Threr Wahl ausgegeben werden sollen.

94

| Kapitel 4: Serielle Kommunikation

Losung
Dieser Sketch gibt eine Folge von Zahlen tiber den seriellen Monitor aus:

/*

* SerialOutput Sketch

* Gibt Zahlen am seriellen Port aus
*/

void setup()

Serial.begin(9600); // Senden und Empfangen mit 9600 Baud
}

int number = 0;
void loop()
{

Serial.print("Die Zahl ist ");
Serial.println(number); // Zahl ausgeben

delay(500); // Halbe Sekunde warten
numbexr++; // Nachste Zahl

}

Verbinden Sie den Arduino wie in Kapitel 1 beschrieben mit dem Computer und laden Sie
den Sketch hoch. Klicken Sie das Icon fiir den seriellen Monitor in der IDE an, und die
folgende Ausgabe sollte erscheinen:

Die Zahl ist 0

Die Zahl ist 1
Die Zahl ist 2

Diskussion

Um Texte oder Zahlen von Threm Sketch auf einem PC oder Mac tiber den seriellen Link
auszugeben, figen Sie die Anweisung Serial.begin(9600) in setup() ein und verwenden
dann Serial.print()-Anweisungen, um die gewinschten Texte oder Werte auszugeben.

Der serielle Monitor kann vom Arduino gesendete serielle Daten ausgeben. Um den
seriellen Monitor zu starten, klicken Sie das Icon in der Werkzeugleiste an (siche
Abbildung 4-2). Ein neues Fenster wird geoffnet, das die Ausgaben des Arduino enthilt.

4.1 Debugging-Informationen vom Arduino an lhren Computer senden | 95

Jdev/tty.usbmodemfd121 SerialOutput | Arduino 1.0

The number is @
The number is 1
The number is 2
The number is 3
The number is 4
The number is 5
The number is &
The number is 7
The number is 8

SerialOutput

I
* SerialOutput sketch

* Print numbers to the serial port
b

void setup()

Serial.begin(9saa); // send ond receive ot 9688 baud

int number = 8;
void loop()
i

Serial.print("The number is ");
Serial.printinfnunber); /¢ print the nunber

gAutcscmll = 1 "9600 baud =] delay(56a); // deloy half second between numbers

nunbers+; /¢ to the next number

No line ending

+

Binary sketch size: 2644 bytes (of a 32256 byte maximum)

Arduina Uno on /dev/tty.usbmodemfd121

Abbildung 4-2: Serieller Monitor des Arduino

Thr Sketch muss Serial.begin() aufrufen, bevor er die serielle Ein- und Ausgabe nutzen
kann. Die Funktion verlangt einen einzelnen Parameter: die gewiinschte Kommunikati-
onsgeschwindigkeit. Sie miissen auf Sende- und Empfangsseite die gleiche Geschwindig-
keit einstellen, sonst erscheint auf dem Bildschirm nur Zeichensalat (oder gar nichts).
Diese Beispiele (und die meisten anderen in diesem Buch) verwenden eine Geschwindig-
keit von 9600 Baud (Baud ist das MaR fiir die Zahl der pro Sekunde tibertragenen Bits).
Eine Baudrate von 9600 entspricht ungefihr 1000 Zeichen pro Sekunde. Sie konnen
kleinere und hohere Geschwindigkeiten (von 300 bis 115200) einstellen, miissen aber
sicherstellen, das auf beiden Seiten die gleiche Geschwindigkeit verwendet wird. Der
serielle Monitor legt die Geschwindigkeit tiber die Baudraten-Dropdown-Box (am unte-
ren rechten Rand des Seriellen-Monitor-Fensters in Abbildung 4-2) fest. Wenn Thre Aus-
gabe eher so aussieht:

“322F<IxI0000 32 2F¢

sollten Sie uberpriifen, ob die im seriellen Monitor gewihlte Baudrate der Baudrate
entspricht, die Sie im Sketch bei Serial.begin() angegeben haben.

Wenn Sende- und Empfangsgeschwindigkeit tibereinstimmen und trotz-
dem unleserlicher Text erscheint, iiberpriifen Sie, ob das korrekte Board
im Menii Tools—Board ausgewihlt wurde. Bei einigen Boards gibt es
Unterschiede bei den Chip-Geschwindigkeiten, und wenn Sie den falschen
gewihlt haben, miissen Sie das korrigieren und das Programm noch ein-
mal hochladen.

96 | Kapitel 4: Serielle Kommunikation

Sie konnen Text mit der Funktion Serial.print()ausgeben. Strings (zwischen Anfiih-
rungszeichen stehender Text) wird unverindert (aber ohne die Anfithrungszeichen)
ausgegeben. Der folgende Code:

Serial.print("Die Zahlist");
gibt also Folgendes aus:
Die Zahl ist

Die ausgegebenen Werte (Zahlen) hiangen vom Variablentyp ab. Mehr zu diesem Thema
finden Sie in Rezept 4.2. Fur ein Integer wird zum Beispiel der numerische Wert aus-
gegeben. Ist die Variable number auf 1 gesetzt, dann gibt der Code:

Serial.println(number);

Folgendes aus:

1

Im Beispiel-Sketch wird beim Start der Schleife zuerst der Wert 0 ausgegeben und dann bei
jedem Schleifendurchlauf erhéht. Das 1n am Ende von println sorgt dafir, dass die
nichste Ausgabe in der nichsten Zeile beginnt.

Sie sind nun soweit, Texte und Integerwerte ausgeben zu koénnen. Details zu Format-
optionen finden Sie in Rezept 4.2.

Sie kénnten auch mit einem Terminalprogramm von einem Drittanbieter liebdugeln, das
iber mehr Features verfiigt als der serielle Monitor. Die Darstellung von Daten im Text-
oder Binirformat (oder beides), Darstellung von Steuerzeichen und das Logging in eine
Datei sind nur einige zusitzliche Fihigkeiten vieler Terminalprogramme. Hier einige
Programme, die von Arduino-Benutzern empfohlen wurden:

CoolTerm (http://freeware.the-meiers.org/)
Ein einfach zu nutzendes Freeware-Terminal-Programm fiir Windows, Mac und Linux

CuteCom (http://cutecom.sourceforge.net/)
Ein Open-Source-Terminal-Programm fiir Linux

Bray Terminal (https://sites.google.com/site/terminalbpp/)
Ein freies Programm fiir den PC

GNU screen (http://www.gnu.org/software/screen/)
Ein Open-Source-Programm zur Verwaltung virtueller Bildschirme, das die serielle
Kommunikation unterstiitzt. Bei Linux und Mac OS X enthalten

moserial (http://live.gnome.org/moserial)
Ein weiteres Open-Source-Terminal-Programm fir Linux

PuTTY (http://www.chiark.greenend.org.uk/~sgtatham/putty/)
Ein Open-Source- SSH-Programm fiir Windows und Linux, das die serielle Kom-
munikation unterstiitzt

4.1 Debugging-Informationen vom Arduino an lhren Computer senden | 97

RealTerm (http://realterm.sourceforge.net/)
Ein Open- Source-Terminal-Programm fiir den PC

ZTerm (http://homepage.mac.com/dalverson/zterm/)
Ein Shareware- Programm fiir den Mac

Ein Artikel im Arduino-Wiki erliutert auflerdem, wie man Linux konfiguriert, um mit dem
Arduino per TTY zu kommunizieren (siehe http://www.arduino.cc/playground/Interfacing/
LinuxTTY).

Sie konnen ein LC-Display fiir die serielle Ausgabe verwenden, auch wenn die Funk-
tionalitdt stark eingeschriankt ist. Schauen Sie in der Dokumentation nach, wie das
Display Carriage-Returns handhabt, da einige Displays bei println-Anweisungen nicht
automatisch zur nichsten Zeile springen.

Siehe auch

Die Arduino-Bibliothek LiquidCrystal fiir Text-LCDs besitzt eine print-Funktionalitit, die
derjenigen der Serial-Bibliothek dhnelt. Viele der in diesem Kapitel gegebenen Vorschlige
konnen auch mit dieser Bibliothek umgesetzt werden (siehe Kapitel 11).

4.2 Formatierten Text und numerische Daten vom Arduino
senden

Problem

Sie wollen vom Arduino serielle Daten senden, die als Text, als Dezimalwert, als Hexa-
dezimalwert oder als Bindrwert ausgegeben werden sollen.

Losung

Sie konnen Daten in vielen verschiedenen Formaten iiber den seriellen Port ausgeben.
Hier ein Sketch, der alle Formatoptionen vorstellt:

/*

* SerialFormatting

* Gibt Werte in verschiedenen Formaten tiber den seriellen Port aus

*/

char chrValue = 65; // Startwert fir die Ausgabe

byte byteValue = 65;

int intvalue =65;

float floatValue = 65.0;

void setup()

Serial.begin(9600);
}

void loop()

98 | Kapitel 4: Serielle Kommunikation

Serial.println("chrvalue: ");
Serial.println(chrVvalue);
Serial.write(chrValue);
Serial.println();
Serial.println(chrValue,DEC);

Serial.println("bytevalue: ");
Serial.println(bytevalue);
Serial.write(bytevValue);
Serial.println();
Serial.println(bytevalue,DEC);

Serial.println("intValue: ");
Serial.println(intvalue);

Serial.println(intvalue,DEC);
Serial.println(intvalue,HEX);
Serial.println(intValue,OCT);
Serial.println(intValue,BIN);

Serial.println("floatValue: ");
Serial.println(floatValue);

delay(1000); // Eine Sekunde Warten
chrValue++; // Nachster Wert
byteValue++;

intValue++;

floatValue +=1;

}

Die Ausgabe (hier auf wenige Zeilen gekiirzt) sieht wie folgt aus:

chrvalue: A A 65
byteValue: 65A 65
intValue: 6565 41 101 1000001
floatValue: 65.00
chrvalue: B B 66
byteValue: 66 B 66
intValue: 66 66 42 102 1000010
floatValue: 66.00

Diskussion

Die Ausgabe eines Textstrings ist einfach: Serial.print("Hallo, Welt"); sendet den Text-
string »Hallo, Welt« an das Gerdt am Ende des seriellen Ports. Soll nach jeder Zeile ein
Zeilenvorschub (Newline) ausgegeben werden, verwenden Sie Serial.println()statt Se-
rial.print().

Die Ausgabe numerischer Werte kann etwas schwieriger sein. Wie Byte- und Integerwerte
ausgegeben werden, hiingt vom Variablentyp und einem optionalen Formatparameter ab.
Die Arduino-Sprache ist recht locker, wenn es um die Ubergabe von Werten an unter-
schiedliche Datentypen geht (mehr zu Datentypen finden Sie in Rezept 2.2). Doch diese
Flexibilitdt kann verwirrend sein, weil die numerischen Werte, selbst wenn sie gleich sind,
vom Compiler als verschiedene Typen mit unterschiedlichen Charakteristika betrachtet

4.2 Formatierten Text und numerische Daten vom Arduino senden | 99

werden. Zum Beispiel liefert die Ausgabe eines char, byte und int mit dem gleichen Wert
nicht unbedingt die gleiche Ausgabe.

Hier einige Beispiele, die alle Variablen mit gleichen Werten erzeugen:

char asciiValue = 'A'; //Das ASCII 'A' hat den Wert 65

char chrvValue =65; //8-Bit-Zeichenmit Vorzeichen, ebenfalls das ASCII ‘A’
byte byteValue =65; //8-Bit-Zeichen ohne Vorzeichen, ebenfalls das ASCII 'A’
int intValue =65; //16-Bit-Integer mit Vorzeichenmit demWert 65

float floatValue = 65.0; // FlieRBkommazahl mit dem Wert 65

Tabelle 4-2 zeigt das Ergebnis der Variablenausgabe mit Arduino-Routinen.

Tabelle 4-2: Ausgabeformate bei Serial.print

Datentyp print (val) print write (val) print print print
(val,DEC) (val,HEX) (val,OCT) (val,BIN)

char A 65 A M 101 1000001

byte 65 65 A 41 101 1000001

int 65 65 A 4 101 1000001

long long-Format entspricht dem int-Format

float 65.00 Wird fiir FlieBkommazahlen nicht unterstiitzt

double 65.00 double ist mit float identisch

N

Der Ausdruck Serial.print(val,BYTE); wird bei Arduino 1.0 nicht linger
unterstitzt.

~ Wenn Thr Code erwartet, dass sich Byte-Variablen wie char-Variablen ver-
halten (d.h., dass sie als ASCII ausgegeben werden), miissen Sie Serial.
write(val); verwenden.

Der Sketch des Rezepts verwendet im Quelltext eine separate Zeile fur jede print-Anwei-
sung. Das macht komplexe print-Anweisungen etwas sperrig. Um beispielsweise die Zeile

Bei 5 Sekunden: Geschwindigkeit = 17, Strecke = 120

auszugeben, wiirden Sie typischerweise den folgenden Code verwenden:
Serial.print("Bei");
Serial.print(t);
Serial.print(" Sekunden: Geschwindigkeit=");
Serial.print(s);
Serial.print(", Strecke=");
Serial.println(d);

Viel Code fiir eine einzige Ausgabezeile. Sie konnten ihn wie folgt zusammenfassen:

Serial.print("Bei"); Serial.print(t); Serial.print(" Sekunden, Geschwindigkeit=");
Serial.print(s); Serial.print(", Strecke=");Serial.println(d);
Oder Sie koénnen die insertion-style-Fdhigkeit des Arduino-Compilers nutzen, um Thre
print-Anweisungen zu formatieren. Sie koénnen die Vorteile einiger fortgeschrittener
C++-Fihigkeiten (streaming insertion-Syntax und Templates) nutzen, wenn Sie ein

100 | Kapitel 4: Serielle Kommunikation

Streaming-Template in Threm Sketch verwenden. Sie erreichen das am einfachsten, indem
Sie die Streaming-Bibliothek einbinden, die von Mikal Hart entwickelt wurde. Auf Mikals
website (http://arduiniana.org/libraries/streaming/) erfahren Sie mehr iiber diese Biblio-
thek und zum Download.

Wenn Sie die Streaming-Bibliothek nutzen, liefert die folgende Zeile das gleiche Ergebnis
wie der obige Code:

Serial << "Bei " << t << " Sekunden, Geschwindigkeit="<<s<<", Strecke =" <<d << endl;

Siehe auch

Kapitel 2 enthilt Informationen zu den von Arduino verwendeten Datentypen. Die
Arduino-Web-Referenz unter http://arduino.cc/en/Reference/HomePage behandelt die se-
riellen Befehle und die Arduino-Web-Referenz unter http://'www.arduino.cc/playground/
Main/StreamingOutput behandelt das Streaming (insertion-Style).

4.3 Serielle Daten mit Arduino empfangen

Problem

Sie wollen mit dem Arduino serielle Daten von einem Computer oder einem anderen
seriellen Geriit empfangen, damit er z.B. auf Befehle oder Daten reagiert, die von Threm
Computer gesendet werden.

Losung

Der Empfang von 8-Bit-Werten (Zeichen und Bytes) ist einfach, weil die Serial-Funk-
tionen mit 8-Bit-Werten arbeiten. Der folgende Sketch empfingt eine Ziffer (ein einzelnes
Zeichen zwischen 0 und 9) und ldsst die LED an Pin 13 mit einer Rate proportional zur
empfangenen Ziffer blinken:

/*

* SerialReceive Sketch

* LEDmit einer Rate proportional zur empfangenen Ziffer blinken lassen

*/

const int ledPin = 13; // Mit Pin 13 verbundene LED

int blinkRate=0; //Blinkrate steht in dieser Variable

void setup()
Serial.begin(9600); // Serieller Port sendet und empfangt mit 9600 Baud

pinMode(ledPin, OUTPUT); // Diesen Pin als Ausgang verwenden
}

void loop()
{
if (Serial.available()) // Prifen, ob mindestens ein Zeichen vorhanden ist

char ch = Serial.read();

4.3 Serielle Daten mit Arduino empfangen | 101

if(isbigit(ch)) // ASCII-Zeichen zwischen 0 und 9?
{

blinkRate = (ch-"'0"); //ASCII-Wert in numerischen Wert umwandeln
blinkRate = blinkRate * 100; // Rate ist 100ms mal empfangene Ziffer
}

}
blink();
}

// LEDmit ermittelter blinkRate ein- und ausschalten
void blink()

digitalWrite(ledPin,HIGH);

delay(blinkRate); // Wartezeit abhdngig von blinkRate-Wert
digitalWrite(ledPin,LOW);

delay(blinkRate);

Laden Sie den Sketch hoch und senden Sie Nachrichten tiber den seriellen Monitor.
Offnen Sie den seriellen Monitor durch Anklicken des Monitor-Icons (siehe Rezept 4.1)
und geben Sie eine Ziffer im Textfeld des seriellen Monitors ein. Sobald Sie den Send-
Button anklicken, wird das im Textfeld eingegebene Zeichen gesendet und Sie sehen, wie
sich die Blinkgeschwindigkeit dndert.

Diskussion

Die Umwandlung der empfangenen ASCII-Zeichen in numerische Werte ist nicht gleich
ersichtlich, wenn man nicht damit vertraut ist, wie Zeichen bei ASCII reprisentiert
werden. Die folgende Zeile wandelt das Zeichen ch in seinen numerischen Wert um:

blinkRate = (ch - '0'); //ASCII-Wert in numerischen Wert umwandeln

Den ASCII-Zeichen ’0’ bis ’9” sind die Werte 48 bis 57 zugeordnet (siehe Anhang G —steht
als Download bereit). Die Umwandlung der ’1’ in den numerischen Wert erfolgt durch
Subtraktion von ’0’, weil 1’ den ASCII-Wert 49 hat, d.h., 48 (ASCII ’0’) muss abgezogen
werden, um diese Ziffer in die entsprechende Zahl umzuwandeln. Wenn ch das Zeichen
'1" enthilt, ist der ASCII-Wert 49. Der Ausdruck 49- '0" entspricht 49-48. Das ergibt
wiederum 1, was dem numerischen Wert des Zeichens '1' entspricht.

Mit anderen Worten, der Ausdruck (ch - '0") ist mit dem Ausdruck (ch - 48) identisch
und wandelt des ASCII-Wert der Variablen ch in den entsprechenden numerischen Wert
um.

Der Empfang von Zahlen mit mehr als einer Ziffer verlangt die Akkumulation der Zei-
chen, bis ein Zeichen erkannt wird, das keine Ziffer ist. Der folgende Code verwendet die
gleichen setup()- and blink()-Funktionen wie oben, liest aber Ziffern ein, bis ein New-
line-Zeichen empfangen wird. Es verwendet den akkumulierten Wert, um die Blink-
geschwindigkeit festzulegen.

102 | Kapitel 4: Serielle Kommunikation

Das Newline-Zeichen (ASCII-Wert 10) kann bei jedem Klick auf Send auto-
matisch angehangen werden. Der serielle Monitor besitzt am unteren Rand
des Fensters eine entsprechende Dropdown-Box (siehe Abbildung 4-1).
Andern Sie die Option von »No line ending« in »Newline«.

Andern Sie den Code wie folgt:

int value;
void loop()
if(Serial.available())

char ch = Serial.read();
if(isDigit(ch))// ASCII-Zeichen zwischen 0 bis 9?
{

value = (value * 10) + (ch - '0"); // Ja, Wert akkumulieren

}

else if (ch==10) // Newline-Zeichen?

blinkRate = value; // blinkRate auf akkumulierten Wert setzen
Serial.println(blinkRate);
value = 0; // Wert fiir die ndchste Ziffernfolge auf 0 zuriicksetzen

}

}
blink();

}
Geben Sie einen Wert wie 123 in das Monitor-Textfeld ein und klicken Sie auf Send. Die
Blinkgeschwindigkeit wird auf 123 Millisekunden gesetzt. Jede Ziffer wird von ihrem
ASCII-Wert in ihren numerischen Wert umgewandelt. Da es sich bei den Zahlen um
Dezimalzahlen handelt (Basis 10), wird der akkumulierte Wert mit 10 multipliziert. Zum
Beispiel setzt sich der Wert der Zahl 234 aus 2 * 100 + 3 * 10 + 4 zusammen. Das wird mit
dem folgenden Code erreicht:

if(isDigit(ch)) // ASCII-Zeichen zwischen O und 9?

value = (value * 10) + (ch - '0"); // Ja, Wert akkumulieren

}

Wenn Sie negative Zahlen verarbeiten wollen, muss Thr Code ein fithrendes Minuszeichen
("-") erkennen konnen. Im folgenden Beispiel muss jeder numerische Wert durch ein
Zeichen getrennt werden, das keine Ziffer und kein Minuszeichen ist:

int value = 0;
int sign=1;

void loop()
{
if(Serial.available())
char ch = Serial.read();

if(isbigit(ch)) // ASCII-Zeichen zwischen 0 und 9?
value = (value * 10) + (ch - '0"); // Ja, Wert akkumulieren

4.3 Serielle Daten mit Arduino empfangen | 103

elseif(ch=="-")
sign=-1;

else // Wert komplett, wenn keine Ziffer und kein Minuszeichen

{
value = value * sign ; //Vorzeichen beriicksichtigen
Serial.println(value);
value = 0; // Wert flr die ndchste Ziffernfolge auf 0 zuriicksetzen
sign=1;

}

}
}

Eine weitere Moglichkeit zur Umwandlung von Strings in Zahlen bieten die C-Konver-
tierungsfunktionen atoi (fiir int-Variablen) oder atol (fiir long-Variablen). Diese seltsam
klingenden Funktionen wandeln einen String in Integer- oder long-Integerwerte um. Um
sie verwenden zu koénnen, miissen Sie zuerst den gesamten String empfangen und in
einem Zeichen-Array abspeichern, bevor Sie die Konvertierungsfunktion aufrufen diirfen.

Das folgende Code-Fragment beendet das Einlesen der Ziffern bei jedem Zeichen, das
keine Ziffer ist (oder bei vollem Puffer):

const int MaxChars = 5; // Ein int-String besteht aus bis zu 5 Ziffern und wird

// mit einer 0 abgeschlossen, die das Ende des Strings anzeigt
char strValue[MaxChars+1]; // Muss groR genug fiir die Ziffern und die abschlieRende Null sein
int index = 0; // Array-Index zum Speichern der empfangenen Ziffern

void loop()

{
if(Serial.available())

{

char ch = Serial.read();
if(index < MaxChars 8& isDigit(ch)){
strValue[index++] = ch; // ASCII-Zeichen zum String hinzufiigen;

}

else

// Puffer voll oder erste Nicht-Ziffer

strValue[index] = 0; // String mit einer 0 abschlieRen
blinkRate = atoi(strValue); // Stringmit atoi in int-Wert umwandeln
index = 0;
}
}
blink();

}

strValue enthilt den numerischen String, der aus den iiber den seriellen Port empfange-
nen Zeichen besteht.

N

Weitere Informationen zu Zeichenketten finden Sie in Rezept 2.6.

atoi (eine Abkiirzung fiir »ASCII-nach-Integer«) ist eine Funktion, die eine Zeichenkette
in einen Integerwert umwandelt (atol wandelt in long-Integer um).

104 | Kapitel 4: Serielle Kommunikation

Mit Arduino 1.0 wurde die Funktion serialtvent eingefiihrt, die Sie zur Verarbeitung
eingehender serieller Zeichen nutzen koénnen. Wenn es eine serialEvent-Funktion in
Threm Sketch gibt, wird sie bei jedem Durchlauf innerhalb der loop-Funktion einmal
aufgerufen. Der folgende Sketch bietet die gleiche Funktionalitit wie der erste Sketch,
nutzt aber serialEvent zur Verarbeitung eingehender Zeichen:

/*

* SerialReceive Sketch

* LED mit einer Rate proportional zur empfangenen Ziffer blinken lassen
*/

const int ledPin = 13; // Mit Pin 13 verbundene LED

int blinkRate=0; //Blinkrate steht in dieser Variable

void setup()

Serial.begin(9600); // Serieller Port sendet und empfangt mit 9600 Baud
pinMode(ledPin, OUTPUT); // Diesen Pin als Ausgang verwenden

void loop()
{

blink();
}

void serialEvent()
while(Serial.available())

char ch = Serial.read();
Serial.write(ch);
if(isDigit(ch)) // ASCII-Zeichen zwischen O und 9?

blinkRate = (ch- '0"); // ASCII-Wert in numerischen Wert umwandeln
blinkRate = blinkRate * 100; // Rate ist 100mS mal empfangener Ziffer

}
}
}

// LEDmit ermittelter blinkRate ein- und ausschalten
void blink()
{

digitalWrite(ledPin,HIGH);

delay(blinkRate); // Wartezeit abhdngig von blinkRate-Wert value
digitalWrite(ledPin, LOW);

delay(blinkRate);

Mit Arduino 1.0 wurden auRerdem die Methoden parseInt und parseFloat eingefiihre, die
das Extrahieren von Zahlenwerten aus Serial vereinfachen. (Das funktioniert auch bei
Ethernet und anderen Objekten, die aus der Stream-Klasse abgeleitet wurden. Weitere
Informationen zum Stream-Parsing mit Netzwerkobjekten finden Sie in der Einfithrung zu
Kapitel 15).

4.3 Serielle Daten mit Arduino empfangen | 105

Serial.parseInt() und Serial.parseFloat() lesen Zeichen {iber Serial ein und liefern
deren numerische Werte zuriick. Nicht-numerische Zeichen vor der Zahl werden ignoriert
und die Konvertierung endet mit dem ersten nicht-numerischen Zeichen (oder ’.” bei
parseFloat.)

In der Diskussion zu Rezept 4.5 finden Sie ein Beispiel dafiir, wie parseInt zum Aufspiiren
und Extrahieren von Zahlen aus seriellen Daten genutzt wird.

Siehe auch

Eine Websuche nach »atoi« oder »atol« liefert viele Referenzen fiir diese Funktionen zu-
riick. Beachten Sie auch den Wikipedia-Eintrag unter http://en.wikipedia.org/wiki/Atoi.

4.4 Mehrere Textfelder vom Arduino in einer einzelnen
Nachricht senden

Problem

Sie wollen eine Nachricht senden, die mehr als eine Information (ein Feld) enthilt. Zum
Beispiel konnte die Nachricht Werte von zwei oder mehr Sensoren enthalten. Sie wollen
diese Werte in einem Programm wie Processing nutzen, das auf Threm PC oder Mac lduft.

Losung

Die einfachste Losung besteht darin, einen Textstring zu senden, der alle Felder enthilt
und sie durch Trennzeichen, beispielsweise durch ein Komma, voneinander abgrenzt:

// CommaDelimitedOutput Sketch
void setup()

Serial.begin(9600);
}

void loop()

{
int valuel=10; //Einige fest kodierte Werte, die wir sendenwollen
int value2 = 100;
int value3 = 1000;

Serial.print('H"); // Eindeutiger Kopf (Header), um den Anfang der Nachricht identifizieren zu
// kbnnen

Serial.print(",");

Serial.print(value1,DEC);

Serial.print(",");

Serial.print(value2,DEC);

Serial.print(",");

Serial.print(value3,DEC);

nwon

Serial.print(","); //Beachten Sie, dass ein Komma nach dem letzten Feld gesendet wird

106 | Kapitel 4: Serielle Kommunikation

Serial.println(); // CR/LF senden
delay(100);

Hier ein Processing-Sketch, der diese Daten iiber den seriellen Port einliest:

// Processing-Sketch zum Einlesen kommaseparierter Daten
// Uber den seriellen Port.
// Das erwartete Format ist: H,1,2,3,

import processing.serial.*;

Serial myPort; // Objekt der Serial-Klasse
char HEADER = 'H"; // Zeichen zur Identifikation des Anfangs einer Nachricht
short LF = 10; // ASCII-Linefeed

// WARNUNG!
// Falls notig, in der nachfolgenden Definition den korrekten Port eintragen
short portIndex =1; // com-Portwdhlen, 0 ist der erste Port

void setup() {
size(200, 200);
println(Serial.list());
println(" Verbinde mit -> " + Serial.list()[portIndex]);
myPort = new Serial(this,Serial.list()[portIndex], 9600);
}

void draw() {
}

void serialkvent(Serial p)

{

String message = myPort.readStringUntil(LF); // Serielle Daten einlesen
if(message !=null)
print(message);

String [] data = message.split(","); // Kommaseparierte Nachricht zerlegen
if(data[0].charAt(0) == HEADER &8 data.length > 3) // check validity

for(inti=1; i< data.length-1; i++) // Kopf und Zeilenende iiberspringen
println("Wert "+ i+"="+data[i]); // Felder ausgeben

}
println();

Diskussion

Der Arduino-Code dieser Losung sendet den folgenden Textstring an den seriellen Port
(\r steht fur das Carriage Return und \nn)”"Linefeed (\n)",4>n (Linefeed)”™\n (Line-
feed)",4> fiir das Linefeed):

H,10,100,1000,\1\n

4.4 Mehrere Textfelder vom Arduino in einer einzelnen Nachricht senden | 107

Sie miissen ein Trennzeichen wihlen, das in den eigentlichen Daten niemals vorkommt.
Wenn die Daten nur aus numerischen Werten bestehen, ist das Komma als Trennzeichen
eine gute Wahl. Sie miissen auflerdem sicherstellen, dass der Empfanger den Anfang der
Nachricht erkennen kann, damit auch wirklich die Daten aller Felder eingelesen werden.
Sie erreichen dies, indem Sie ein Header-Zeichen senden, das den Beginn der Nachricht
kennzeichnet. Das Header-Zeichen muss ebenfalls eindeutig sein, d.h., es sollte nicht in
den Datenfeldern vorkommen und sich auch vom Trennzeichen unterscheiden. Unser
Beispiel verwendet das grofRe H, um den Anfang der Nachricht anzuzeigen. Die Nachricht
besteht aus dem Header, drei kommaseparierten numerischen Werten in Form von
ASCII-Strings sowie einem Carriage Return und einem Linefeed.

Die Carriage Return- und Linefeed-Zeichen werden immer dann gesendet, wenn Arduino
etwas liber die Funktion print1n()ausgibt. Das hilft der Empfangsseite zu erkennen, wann
der Nachrichten-String vollstindig empfangen wurde. Ein Komma wird auch nach dem
letzten numerischen Wert gesendet, um der Empfangsseite dabei zu helfen, das Ende der
Werte zu erkennen.

Der Processing-Code liest die Nachricht als String ein und nutzt die Java-Methode
split(), um ein Array kommaseparierter Felder zu erzeugen.

In den meisten Fillen werden Sie bei einem Mac den ersten seriellen Port
nutzen wollen, wihrend Sie beim PC den letzten nutzen. Der Processing-
Sketch enthilt Code, der die verfiigbaren und den gerade ausgewihlten
Port anzeigt. Stellen Sie sicher, dass das auch der Port ist, an dem der
Arduino hingt.

Die Verwendung von Processing zur Darstellung von Sensordaten kann einem viele
Stunden beim Debugging ersparen, da es Thnen hilft, die Sensordaten zu visualisieren.
Der folgende Processing-Sketch visualisiert bis zu 12 vom Arduino gesendete Werte in
Echtzeit. Diese Version stellt 8-Bit-Werte im Bereich von =127 bis +127 dar und wurde als
Demonstration fiir den Nunchuck-Sketch in Rezept 13.2 entwickelt:

/*

* ShowSensorData.
*

* Erzeugt ein Balkendiagramm aus CSV-Sensordaten im Bereich von -127 bis 127

* Das erwartete Format ist: "Data,s1,s2,...512\n" (unterstiitzt bis zu 12 Sensoren)
* Label konnen wie folgt gesendet werden: "Labels,label1, label2,...label12\n");
*/

import processing.serial.*;

Serial myPort; // Objekt der Serial-Klasse erzeugen

String message = null;

PFont fontA; // Font zur Darstellung der Servo-Pin-Nummexr
int fontSize = 12;

int maxNumberOflLabels = 12;

int rectMargin = 40;
int windowWidth = 600;

108 | Kapitel 4: Serielle Kommunikation

int windowHeight = rectMargin + (maxNumberOfLabels + 1) * (fontSize *2);
int rectWidth = windowWidth - rectMargin*2;
int rectHeight = windowHeight - rectMargin;
int rectCenter = rectMargin + rectWidth / 2;

int origin = rectCenter;
int minvalue = -127;
int maxValue = 127;

float scale = float (rectWidth) / (maxValue - minvalue);

String [] sensorLabels = {"s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9",
"s10", "s11", "s12"};

// Wird auf die Anzahl tatsdchlich empfangener Label gedndert

int labelCount = maxNumberOflLabels;

void setup() {
size(windowWidth, windowHeight);
short portIndex =1; // com-Portwdhlen, 0 ist der erste Port
String portName = Serial.list()[portIndex];
println(Serial.list());
println(" Verbinde mit -> " + portName) ;
myPort = new Serial(this, portName, 57600);
fontA = createFont("Arial.normal", fontSize);
textFont(fontA);
labelCount = sensorlLabels.length;

}

void drawGrid() {

£i11(0);

text(minValue, xPos(minValue), rectMargin-fontSize);
line(xPos(minValue), rectMargin, xPos(minValue), rectHeight + fontSize);
text((minvalue+maxValue)/2, rectCenter, rectMargin-fontSize);
line(rectCenter, rectMargin, rectCenter, rectHeight + fontSize);
text(maxValue, xPos(maxValue), rectMargin-fontSize);

line(xPos(maxValue), rectMargin, xPos(maxValue), rectHeight + fontSize);

for (int i=0; i < labelCount; i++) {
text(sensorLabels[i], fontSize, yPos(i));
text(sensorLabels[i], xPos(maxValue) + fontSize, yPos(i));
}

}

int yPos(int index) {
return rectMargin + fontSize + (index * fontSize*2);

}

int xPos(int value) {
return origin +int(scale * value);

}

void drawBar(int yIndex, int value) {
rect(origin, yPos(yIndex)-fontSize, value * scale, fontSize); //Wert zeichnen

}

void draw() {

4.4 Mehrere Textfelder vom Arduino in einer einzelnen Nachricht senden

109

while (myPort.available () > 0) {
try {
message = myPort.readStringUntil(10);
if (message !=null) {
print(message);
String [] data =message.split(","); // CSV-Nachricht zerlegen
if (data[0].equals("Labels")) { // Auf Label-Header Uberpriifen
labelCount =min(data.length-1, maxNumberOfLabels) ;
arrayCopy(data, 1, sensorLabels, 0, labelCount);

else if (data[o0].equals("Data"))// Auf Daten-Header prifen

background(255);

drawGrid();

fi11(204);

println(data.length);

for (int i=1; i<=1labelCount 88 i < data.length-1; i++)
{

drawBar(i-1, Integer.parselnt(data[i]));
}
}
}

catch (Exceptione) {
e.printStackTrace(); // Mogliche Fehler ausgeben

}
}
}

Abbildung 4-3 zeigt, wie die Nunchuck-Beschleunigungswerte (aX,Ay,az) und die Joy-
stick-Werte (jX,Jy) dargestellt werden. Die Balken erscheinen, wenn die Nunchuck-But-
tons (bC und bz) gedriickt werden.

Abbildung 4-3: Processing-Bildschirm mit Nunchuck-Sensordaten

110 | Kapitel 4: Serielle Kommunikation

Wertebereich und Ursprung des Diagramms kénnen bei Bedarf einfach angepasst wer-
den. Um zum Beispiel Diagramme darzustellen, die von der Z-Achse ausgehen und einen
Wertebereich von 0 bis 1024 umfassen, verwenden Sie Folgendes:

int origin = rectMargin; // rectMargin ist die linke Ecke des Grafikbereichs

int minvValue = 0;
int maxValue = 1024;

Wenn Sie keinen Nunchuck besitzen, kénnen Sie mit dem folgenden einfachen Sketch
Analogwerte generieren. Sind keine Sensoren angeschlossen, konnen Sie mit den Fingern
unten an den Analogpins vorbeistreichen. Damit erzeugen Sie Signalpegel, die mit dem
Processing-Sketch dargestellt werden konnen. Die Werte liegen im Bereich von 0 bis 1023,
d.h., Sie miissen den Ursprung und den Minimal-/Maximalwert im Processing-Sketch wie
oben beschrieben dndern:

void setup() {
Serial.begin(57600);
delay(1000);
Serial.println("Labels,A0,A1,A2,A3,A4,A5");

void loop() {
Serial.print("Data,");
for(int i=0; 1< 6; i++)
{
Serial.print(analogRead(i));

Serial.print(",");
}

Serial.print('\n"); // Newline-Zeichen
delay(100);

Siehe auch

Die Processing-Website enthilt weitere Informationen zur Installation und Verwendung
der Programmierumgebung. Siehe http://processing.org/.

4.5 Mit dem Arduino mehrere Textfelder in einer Nachricht
empfangen

Problem

Sie wollen eine Nachricht empfangen, die mehr als ein Feld enthilt. Zum Beispiel konnte
eine Nachricht den Bezeichner (Identifier) fiir ein bestimmtes Bauelement (etwa einen
Motor der Aktuator) und den fiir ihn gedachten Wert (z.B. die Geschwindigkeit) ent-
halten.

4.5 Mit dem Arduino mehrere Textfelder in einer Nachricht empfangen | 111

Losung

Arduino kennt keine split()-Funktion, wie wir sie im Processing-Code in Rezept 4.4
nutzen, aber man kann (wie in diesem Rezept gezeigt) eine vergleichbare Funktionalitit
implementieren. Der folgende Code empfingt eine Nachricht mit drei numerischen
Feldern, die durch Kommata voneinander getrennt sind. Er nutzt die in Rezept 4.4 be-
schriebene Technik zum Empfang von Ziffern und wurde um Code erweitert, der
kommaseparierte Felder erkennt und die Werte in einem Array speichert:

/*

* SerialReceiveMultipleFields Sketch

* Der Code erwartet eine Nachricht im Format 12,345,678

* Der Code erwartet ein Newline-Zeichen, der das Ende der Daten anzeigt

* Richten Sie den seriellen Monitor so ein, dass er Newline-Zeichen sendet
*/

const int NUMBER OF FIELDS =3; // Wie viele kommaseparierte Felder erwarten wir?
int fieldIndex = 0; // Das aktuell empfangene Feld
int values[NUMBER_OF FIELDS]; // Array mit denWertenaller Felder

void setup()
{

Serial.begin(9600); // Serieller Port sendet und empféngt mit 9600 Baud
}

void loop()
{
if(Serial.available())
{
char ch = Serial.read();
if(ch>="0"8&8 ch<="9") // ASCII-Zeichen zwischen 0 und 9?
{
// Ja, Wert akkumulieren, solange fieldIndex giiltig ist
// Uberzéhlige Felder werden nicht gespeichert
if(fieldIndex < NUMBER OF FIELDS) {
values[fieldIndex] = (values[fieldIndex] * 10) + (ch- '0');

}

elseif (ch==",") //Komma ist unser Trennzeichen, also weiter zum nichsten Feld

fieldIndex++; // Feldindex inkrementieren

}
else
{
// Jedes Zeichen auRer Ziffern und Komma beendet das Einlesen der Felder.
// IndiesemBeispiel ist dies das vom seriellen Monitor gesendete Newline-Zeichen

// Alle gespeicheren Felder ausgeben
for(int i=0; i < min(NUMBER_OF FIELDS, fieldIndex+1); i++)
{
Serial.println(values[i]);
values[i] = 0; // Werte fiir ndchste Nachricht auf 0 zuriicksetzen

}

112 | Kapitel 4: Serielle Kommunikation

fieldIndex = 0; // Index fiir Neustart vorbereiten

}
}
}

Diskussion

Der Sketch akkumuliert die Werte (wie in Rezept 4.3beschrieben), hilt aber jeden Wert in
einem Array fest (das groR genug sein muss, um alle Felder aufnehmen zu kénnen), wenn
ein Komma empfangen wird. Jedes Zeichen, das keine Ziffer und kein Komma ist (etwa
das Newline-Zeichen, sieche Rezept 4.3) st6ft die Ausgabe aller im Array gespeicherten
Werte an. Sie kénnen also ein Zeichen eingeben, das keine Ziffer und kein Komma ist,
oder das »No line ending«-Menti am unteren rechten Rand im seriellen Monitor auf einen
anderen Wert setzen.

Arduino 1.0 hat die Methode parselnt eingefiihrt, die es einem leicht macht, Informatio-
nen aus seriellen und Web-Streams zu extrahieren. Hier ein Beispiel fuir ihren Einsatz
(Kapitel 15 enthilt weitere Beispiele zum Stream-Parsing).

Der folgende Sketch bietet die gleiche Funktionalitit wie oben, nutzt aber parseInt:

// Mehrere numerische Felder mittels Arduino 1.0-Stream-Parsing verarbeiten

const int NUMBER _OF FIELDS =3; //Wie viele kommaseparierte Felder erwarten wir?
int fieldIndex = 0; // Das aktuell empfangene Feld
int values[NUMBER_OF_FIELDS]; // Array mit denWerte aller Felder

void setup()

Serial.begin(9600); // Serieller Port sendet und empféngt mit 9600 Baud
}

void loop()
{

if(Serial.available()) {
for(fieldIndex = 0; fieldIndex < 3; fieldIndex ++)

values[fieldIndex] = Serial.parseInt(); // Numerischen Wert einlesen

}

Serial.print(fieldIndex);
Serial.println(" Felder empfangen:");
for(int i=0; i < fieldIndex; i++)

{

Serial.println(values[i]);

fieldIndex = 0; // undvon vorn anfangen

}
}

Die Stream-Parsing-Funktionen nutzen ein Timeout, wihrend sie auf ein Zeichen
warten. Voreingestellt ist eine Sekunde. Werden innerhalb dieser Zeit keine Zeichen

4.5 Mit dem Arduino mehrere Textfelder in einer Nachricht empfangen | 113

von parselnt empfangen, gibt sie 0 zuriick. Sie kénnen den Timeout mit Stream.
setTimeout (timeoutPeriod) dndern. Der Timeout-Parameter ist ein long-Wert, der den
Timeout in Millisekunden angibt. Der Wertebereich fiir den Timeout reicht also von
1 Millisekunde bis zu 2.147.483.647 Millisekunden.

Stream.setTimeout(2147483647); dndert das Timeout-Interval auf etwas unter 25 Tage.

Hier eine Zusammenfassung der von Arduino 1.0 unterstiitzten Stream-Parsing-Metho-
den (nicht alle werden im obigen Beispiel verwendet):

boolean find(char *target);
Liest aus dem Stream, bis das angegebene Ziel (»target«) gefunden wurde. Gibt true
zuriick, wenn der Zielstring gefunden wurde. Der Riickgabewert false bedeutet, dass
die Daten im Stream nicht gefunden wurden und keine weiteren Daten verfiigbar
sind. Beachten Sie, dass der Stream beim Parsing nur einmal verarbeitet wird, d.h., Sie
koénnen nicht zuriickgehen, um etwas anderes zu suchen (siehe hierzu finduntil).

boolean findUntil(char *target, char *terminate);
Ahnelt der find-Methode, aber die Suche endet erst, wenn der Terminierungsstring
gefunden wird. Gibt nur dann true zuriick, wenn das Ziel gefunden wurde. Niitzlich,
um die Suche bei einem Schlisselwort oder einem Terminator zu beenden. Zum
Beispiel sucht

finder.finduntil("target", "\n");

nach dem String "target", bricht aber bei einem Newline-Zeichen ab. Der Sketch
kann also etwas anderes machen, wenn das Ziel nicht gefunden wird.

long parseInt();
Gibt den ersten giiltigen (langen) Integerwert zuriick. Fithrende Zeichen, die keine
Ziffern und kein Minuszeichen sind, werden iibersprungen. Der Integerwert wird bei
der ersten auf die Zahl folgenden Nicht-Ziffer abgeschlossen. Werden keine Ziffern
gefunden, gibt die Funktion 0 zuriick.

long parseInt(char skipChar);
Wie parselnt, aber der angegebene skipChar wird innerhalb des numerischen Wertes
ignoriert. Kann recht niitzlich sein, wenn Sie einen einzelnen numerischen Wert
einlesen wollen, der durch Punkte (oder Kommata) getrennt ist (wie das bei groflen
Zahlen der Fall ist). Denken Sie aber daran, dass mit Kommata formatierte Zahlen
nicht in kommaseparierten Strings verarbeitet werden konnen (32,767 wiirde dann
als 32767 erkannt werden).

float parseFloat();
Die float-Version von parselnt.

size t readBytes(char *buffer, size t length);
Liest die eingehenden Zeichen in den angegebenen Puffer ein, bis es zum Timeout
kommt oder die angegebene Anzahl Zeichen eingelesen wurde. Gibt die Anzahl der
im Puffer abgelegten Zeichen zuriick.

114 | Kapitel 4: Serielle Kommunikation

size t readBytesUntil(char terminator,char *buf,size t length);
Liest die eingehenden Zeichen in den angegebenen Puffer ein, bis das terminator-Zei-
chen erkannt wird. Strings, die die angegebene Linge (length) iiberschreiten, werden
abgeschnitten. Die Funktion gibt die Anzahl der im Puffer abgelegten Zeichen zuriick.

Siehe auch

Kapitel 15 enthilt weitere Stream-Parsing-Beispiele, die Daten in einem Stream finden und
extrahieren.

4.6 Binare Daten vom Arduino senden

Problem

Sie miissen Daten binir {ibertragen, weil Sie Informationen mit so wenig Daten wie mog-
lich senden wollen, oder weil die Anwendung nur Binidrdaten verarbeiten kann.

Losung

Dieser Sketch sendet einen Header und dann zwei Integerwerte (16 Bit) im Bindrformat.
Die Werte werden mit der Arduino-Funktion random erzeugt (siehe Rezept 3.11):

/*

* SendBinary Sketch

* Sendet einen Header gefolgt von zwei zufdlligen Integerwerten im Bindrformat.
*/

int intvalue; // Ein Integerwert (16 Bit)
void setup()

Serial.begin(9600);
}

void loop()
{
Serial.print('H'); // Header-Zeichen senden

// Zufallszahl senden

intValue = random(599); // Zufallszahl zwischen 0 und 598 erzeugen
// Sende die beiden Bytes, aus denen der Integerwert besteht
Serial.write(lowByte(intValue)); //Niederwertiges Byte senden
Serial.write(highByte(intValue)); // Hoherwertiges Byte senden

// Weitere Zufallszahl senden

intValue = random(599); // Zufallszahl zwischen 0 und 598 erzeugen
// Sende die beiden Bytes, aus denen der Integerwert besteht
Serial.write(lowByte(intvalue)); // Niederwertiges Byte senden
Serial.write(highByte(intValue)); // Hoherwertiges Byte senden

delay(1000);

4.6 Bindre Daten vom Arduino senden | 115

Diskussion

Das Senden binirer Daten verlangt sorgfiltige Planung, weil nur Wortsalat herauskommt,
solange sich Sender und Empfinger nicht genau dariiber verstandigt haben, wie die Daten
gesendet werden miissen. Im Gegensatz zu Textdaten, bei denen das Textende durch das
abschlieRende Carriage Return (oder ein anderes von Thnen festgelegtes Zeichen) be-
stimmt wird, kann man bei Bindrdaten moglicherweise nicht sagen, wo eine Nachricht
beginnt, wenn man sich die Daten einfach nur ansieht. Wenn Daten jeden Wert enthalten
diirfen, kénnen sie auch den Wert eines Header- oder Terminierungszeichen enthalten.

Sie konnen das verhindern, indem Sie die Nachrichten so entwerfen, dass Sender und
Empfinger genau wissen, wie viele Bytes zu erwarten sind. Das Ende der Nachricht wird
durch die Zahl der gesendeten Bytes bestimmt, nicht durch die Erkennung eines be-
stimmten Zeichens. Sie konnen das implementieren, indem Sie einen Startwert senden,
der angibt, wie viele Bytes folgen. Oder Sie kénnen die GroRe der Nachricht so festlegen,
dass Sie grofl genug ist, um die Daten aufnehmen zu kénnen, die Sie senden wollen.
Beides ist nicht immer leicht, weil unterschiedliche Plattformen und Sprachen verschie-
dene Grofen fir Thre bindren Datentypen verwenden kénnen — sowohl die Anzahl der
Bytes als auch ihre Reihenfolge konnen sich vom Arduino unterscheiden. Zum Beispiel
definiert Arduino ein int als zwei Bytes, wihrend Processing (Java) ein int als vier Bytes
definiert (wihrend short der Java-Typ fiir ein 16-Bit-Integer ist). Das Senden eines int-
Werts als Text (wie in den fritheren Text-Rezepten) vereinfacht die Sache, weil jede Zahl
als Folge von Ziffern gesendet wird. Die Gegenseite erkennt das Ende des Empfangs tiber
ein Carriage Return oder ein andere Nicht-Ziffer. Biniriibertragungen wissen nur etwas
iiber den Aufbau der Nachricht, wenn er im Vorfeld definiert wurde oder in der Nachricht
spezifiziert wird.

Die Losung verlangt die Kenntnis der Datentypen der sendenden und empfangenden
Plattform und sorgfiltige Planung. Rezept 4.7 zeigt ein Beispiel, bei dem Processing diese
Nachrichten empfingt.

Das Senden einzelner Bytes ist einfach. Verwenden Sie Serial.write(byteval). Um einen
Integerwert vom Arduino zu senden, miissen Sie das nieder- und das hoherwertige Byte
tibertragen, aus denen der Integerwert besteht (Rezept 2.2 enthilt weiterfiihrende Infor-
mationen zu Datentypen). Das geschieht mit Hilfe der Funktionen lowByte und highByte
(siehe Rezept 3.14):

Serial.write(lowByte(intValue), BYTE);
Serial.write(highByte(intValue), BYTE);

Bei long-Werten brechen Sie die vier Bytes, aus denen ein long besteht, in zwei Schritten
auf. Der long-Wert wird zuerst in zwei 16-Bit-Werte zerlegt, die dann jeweils mit den eben
beschriebenen Methoden zum Senden von Integerwerten tibertragen werden:

int longValue = 1000;
int intValue;

116 | Kapitel 4: Serielle Kommunikation

Zuerst senden Sie den niederwertigen 16-Bit-Wert:

intValue = longValue & OxFFFF; // Wert der niederwertigen 16 Bit ermitteln
Serial.write(lowByte(intval));
Serial.write(highByte(intval));

Dann senden Sie den hoherwertigen 16-Bit-Wert:

intValue = longValue >> 16; // Wert der hoherwertigen 16 Bit ermitteln
Serial.write(lowByte(intval));
Serial.write(highByte(intval));

Sie konnten es bequemer finden, zum Senden der Daten eine Funktion anzulegen. Die
folgende Funktion nutzt den oben vorgestellte Code, um einen 16-Bit-Integerwert iiber
den seriellen Port auszugeben:

// Sendet den angegebene Integerwert iiber den seriellen Port

void sendBinary(int value)

{
// Sende die beiden Bytes, aus denen ein 16-Bit-Integer besteht
Serial.write(lowByte(value)); // Niederwertiges Byte senden
Serial.write(highByte(value)); // Hoherwertiges Byte senden

}

Die folgende Funktion sendet einen long-Wert (4 Byte), indem sie zuerst die beiden
niederwertigen (rechts stehenden) Bytes und dann die beiden hoherwertigen (links
stehenden) Bytes tibertrigt:

// Funktion zum Senden eines long-Werts iiber den seriellen Port
void sendBinary(long value)

// Zuerst wird der niederwertige 16-Bit-Wert gesendet
int temp = value & OXFFFF; // Wert der niederwertigen 16 Bits ermitteln
sendBinary(temp);
// Dannwird der hoherwertige 16-Bit-Wert gesendet
temp = value >> 16; // Wert der héherwertigen 16 Bit ermitteln
sendBinary(temp);

}

Diese Funktionen zum Senden binirer int- und long-Werte haben den gleichen Namen:
sendBinary. Der Compiler unterscheidet sie anhand des Typs, der fiir den Parameter
verwendet wird. Ruft Thr Code sendBinary mit einem 2-Byte-Wert auf, wird die als void
sendBinary(int value) deklarierte Version aufgerufen. Ist der Parameter ein long-Wert,
wird die als void sendBinary(long value) deklarierte Version genutzt. Dieses Verhalten
wird Funktionsiiberladung genannt. Rezept 4.2 zeigt hierfiir ein weiteres Beispiel. Die
unterschiedliche Funktionalitdt von Serial.print wird erreicht, indem der Compiler die
verschiedenen Variablentypen unterscheidet.

Sie konnen Bindrdaten auch mit Hilfe von Strukturen senden. Strukturen sind ein Mecha-
nismus zur Organisation von Daten. Wenn Sie mit ihrem Einsatz nicht vertraut sind,
sollten Sie besser bei der eben beschriebenen Losung bleiben. Fiir diejenigen, die mit dem
Konzept von Zeigern auf Strukturen vertraut sind, zeigt das folgende Beispiel eine Funk-
tion, die die Bytes innerhalb einer Struktur als Binidrdaten an den seriellen Port sendet:

4.6 Bindre Daten vom Arduino senden | 117

void sendStructure(char *structurePointer, int structurelength)

{

int i;

for (1=0; i<structurelength ; i++)
serial.write(structurePointer[i]);

}

sendStructure((char *)8myStruct, sizeof(myStruct));

Daten in Form binirer Bytes zu senden, ist effizienter als das Senden der Daten in
Textform, funktioniert aber nur dann zuverléssig, wenn sich Sender und Empfianger im
Bezug auf den Aufbau der Daten einig sind. Hier eine Ubersicht der Dinge, auf die Sie
beim Schreiben Thres Codes achten miissen:

VariablengrifSe

Stellen Sie sicher, dass die Grofle der gesendeten Daten auf beiden Seiten gleich ist.
Ein Integerwert ist bei Arduino 2 Byte groR, auf den meisten anderen Plattformen
aber 4 Byte. Priifen Sie in der Dokumentation immer die Grofle des Datentyps, damit
sie iibereinstimmen. Es ist fiir Processing kein Problem, ein 2-Byte-Arduino-Integer
als 4-Byte-Integer in Processing einzulesen, solange es weifS, dass es nur zwei Bytes zu
erwarten hat. Stellen Sie aber sicher, dass die Sendeseite den auf der Empfangsseite
verwendeten Typ nicht iiberlaufen ldsst.

Byteordnung

Stellen Sie sicher, dass die Bytes innerhalb eines int oder long in der Reihenfolge
gesendet werden, die der Empfanger erwartet.

Synchronisation

Stellen Sie sicher, dass der Empfinger den Anfang und das Ende einer Nachricht er-
kennt. Wenn Sie mitten im Stream mit der Verarbeitung anfangen, erhalten Sie keine
giiltigen Daten. Sie erreichen das, indem Sie eine Bytefolge senden, die in den
Nutzdaten selbst nicht vorkommt. Wenn Sie zum Beispiel Bindrwerte von analogRead
senden wollen, liegen sie im Bereich von 0 bis 1023, d.h., das hoherwertige Byte muss
kleiner als 4 sein (der int-Wert 1023 wird in den Bytes 3 und 255 gespeichert). Es
kann daher keine Daten geben, bei denen zwei aufeinanderfolgende Bytes groRer als 3
sind. Zwei Bytes mit dem Wert 4 (oder jeder Wert hoher als 3) kénnen daher keine
giiltigen Daten sein und kénnen genutzt werden, um den Anfang oder das Ende einer
Nachricht anzuzeigen.

Strukturversatz

Wenn Sie Daten als Strukturen senden oder empfangen, miissen Sie darauf achten,
dass der Versatz auf beiden Seiten der gleiche ist (Informationen hierzu finden Sie in
der Compiler-Dokumentation). Der Versatz beschreibt das vom Compiler verwen-
dete Auffiillen (engl. padding) zum Ausrichten der Datenelemente unterschiedlicher
Grofen in einer Struktur.

118

| Kapitel 4: Serielle Kommunikation

Fluss-Steuerung
Nutzen Sie entweder eine Ubertragungsgeschwindigkeit, die sicherstellt, dass der
Empfinger mit dem Sender mithalten kann, oder verwenden Sie irgendeine Form
der Fluss-Steuerung. Die Fluss-Steuerung verwendet ein Signal (engl. Handshake), der
dem Sender mitteilt, dass der Empfinger bereit ist, weitere Daten zu empfangen.

Siehe auch

In Kapitel 2 finden Sie weiterfithrende Informationen zu den in Arduino-Sketches ver-
wendeten Variablentypen.

Sehen Sie sich auch die Arduino- Referenzen fiir lowByte unter http://www.arduino.cc/en/
Reference/LowByte und highByte unter http://www.arduino.cc/en/Reference/HighByte an.

Der Arduino-Compiler packt Strukturen an Bytegrenzen. Sehen Sie in der Dokumentation
des auf Threm Computer verwendeten Compilers nach, wie Sie den gleichen Versatz
hinbekommen. Wenn Thnen nicht klar ist, wie Sie das machen kénnen, sollten Sie Daten
nicht iiber Strukturen versenden.

Weiterfithrende Informationen zur Fluss-Steuerung finden Sie unter http://en.wikipe-
dia.org/wiki/Flow_control.

4.7 Binardaten vom Arduino auf einem Computer
empfangen

Problem

Sie wollen mit einer Programmiersprache wie Processing vom Arduino gesendete Binir-
daten verarbeiten. Zum Beispiel wollen Sie auf Arduino-Nachrichten reagieren, die in
Rezept 4.6 gesendet wurden.

Losung

Die Losung hingt von der Programmierumgebung ab, die Sie auf Threm PC oder Mac
verwenden. Wenn Sie noch kein Programmierwerkzeug bevorzugen und eines suchen,
das leicht zu lernen ist und gut mit Arduino zusammenarbeitet, dann ist Processing eine
ausgezeichnete Wahl.

Hier zwei Zeilen Processing-Code, die ein Byte einlesen. Es stammt aus dem SimpleRead-
Beispiel (aus der Einfithrung zu diesem Kapitel):

if (myPort.available() > 0) { // Wenn Daten verfigbar sind,
val = myPort.read(); // einlesen und in val speichern

Wie Sie sehen kénnen, dhnelt das stark dem Arduino-Code, den Sie schon in fritheren
Rezepten gesehen haben.

4.7 Binardaten vom Arduino auf einem Computer empfangen | 119

Nachfolgend ein Processing-Sketch, der die GroRe eines Rechtecks proportional zu den
Integerwerten festlegt, die vom Arduino-Sketch in Rezept 4.6 gesendet werden:
/*

* ReceiveBinaryData P
*

* portIndex muss auf den Port gesetzt werden, mit dem der Arduino verbunden ist
*/
import processing.serial.*;

Serial myPort; // Serial-Objekt erzeugen
short portIndex =1; // com-Port wdhlen, 0 ist der erste Port

char HEADER = 'H';
int value1, value2; // Vom seriellen Port empfangene Daten

void setup()

size(600, 600);

// Seriellen Port 6ffnen, mit dem der Arduino verbunden ist.
String portName = Serial.list()[portIndex];
println(Serial.list());

println(" Verbinde mit -> " + Serial.list()[portIndex]);
myPort = new Serial(this, portName, 9600);

}
void draw()

// Header und zwei bindre Integerwerte (16 Bit) einlesen:
if (myPort.available() >=5) // Sobald 5 Bytes verfiigbar sind,

if('myPort.read() == HEADER) // Header-Zeichen?
{

valuel = myPort.read(); // Lese niederwertiges Byte ein
valuel = myPort.read() * 256 + valuel; // Fige hoherwertiges Byte hinzu

value2 = myPort.read(); // Lese niederwertiges Byte ein
value2 = myPort.read() * 256 + value2; // Flige das hoherwertige Byte hinzu

println("Empfangene Nachricht: " +value1 +"," + value2);

background(255); // Hintergrundfarbe ist weiff
£i11(0); // Fullfarbe ist schwarz

// Zeichne Rechteck mit den Koordinaten, die vom Arduino empfangen wurden
rect(0, 0, valuel,value2);

}

Diskussion

Processing hat Arduino beeinflusst, und die beiden sind sich bewusst sehr dhnlich. Die
setup-Funktion wird bei Processing zur Einmal-Initialisierung genutzt, genauso wie bei
Arduino. Processing besitzt ein Ausgabefenster, und setup legt dessen GrofRe auf 600 x
600 Pixel fest, indem es size(600,600) aufruft.

120 | Kapitel 4: Serielle Kommunikation

Die Zeile String portName = Serial.list()[portIndex]; wihlt den seriellen Port aus — bei
Processing sind alle verfiigbaren seriellen Ports im Objekt Serial.list enthalten, und
dieses Beispiel nutzt den Wert einer Variablen namens portIndex. println(Serial.list())
gibt alle verfiigbaren Ports aus und die Zeile myPort = new Serial(this, portName, 9600);
Offnet den mit portName angegebenen Port. Sie miissen sicherstellen, dass portIndex auf
den seriellen Port gesetzt ist, mit dem Thr Arduino verbunden ist (iiblicherweise mit dem
ersten Port bei einem Mac; unter Windows ist es iiblicherweise der letzte Port, wenn der
Arduino als letztes serielles Gerit installiert wurde).

Die draw-Funktion funktioniert bei Processing wie der loop in Arduino, d.h., sie wird
wiederholt aufgerufen. Der Code in draw priift, ob Daten am seriellen Port verfiigbar sind.
Ist dass der Fall, werden die Bytes gelesen und in die Integerwerte umgewandelt, die diese
Bytes reprisentieren. Ein Rechteck wird dann basierend auf den empfangenen Integer-
werten gezeichnet.

Siehe auch

Weiterfithrende Informationen zu Processing erhalten Sie auf der Processing-Website
(http://processing.org/).

4.8 Binare Werte aus Processing an den Arduino senden

Problem

Sie wollen binire Bytes, Integer- oder long-Werte von Processing an den Arduino senden.
Zum Beispiel wollen Sie eine Nachricht senden, die aus einem Identifier-»Tag« und zwei
16-Bit-Werten besteht.

Losung

Verwenden Sie den folgenden Code:

// Processing Sketch

/* SendingBinaryToArduino

* Sprache: Processing

*/

import processing.serial.*;

Serial myPort; // Serial-Objekt erzeugen
public static final char HEADER ='H';
public static final char MOUSE_TAG = 'M';

void setup()
{
size(512, 512);
String portName = Serial.list()[1];
myPort = new Serial(this, portName, 9600);
}

4.8 Bindre Werte aus Processing an den Arduino senden | 121

void draw(){
}

void serialkvent(Serial p) {
// handle incoming serial data
String inString = myPort.readStringUntil('\n");
if(inString !=null) {
print(inString); // Textstring vomArduino ausgeben

}

void mousePressed() {
sendMessage (MOUSE_TAG, mouseX, mouseY);

}

void sendMessage(char tag, int x, int y){
// Sende gegebenen Tag und Wert an seriellen Port
myPort.write(HEADER);
myPort.write(tag);
myPort.write((char)(x /256)); // MSB
myPort.write(x & oxff); //LSB
myPort.write((char)(y /256)); // MSB
myPort.write(y & oxff); //LSB

Wird die Maus im Processing-Fenster angeklickt, wird sendMessage mit einem 8-Bit-Tag
aufgerufen, der anzeigt, dass es sich um eine Maus-Nachricht handelt, sowie die x- und
y-Koordinaten der Maus in zwei 16-Bit-Werten. Die sendMessage-Funktion sendet die
16-Bit x- und y-Werte in zwei Bytes, wobei das hoherwertige Byte (most significant byte,
MSB) zuerst tibertragen wird.

Hier der Arduino-Code, der diese Nachricht empfingt und das Ergebnis wieder an
Processing zuriickgibt:

// BinaryDataFromProcessing

// Diese Definitionen miissen denen des Senders entsprechen:
const char HEADER = 'H';

const char MOUSE_TAG ='M';

const int TOTAL BYTES =6 ; // GesamtgroRe der Nachricht

void setup()
{

Serial.begin(9600);
}

void loop(){
if (Serial.available() >= TOTAL BYTES)
{
if(Serial.read() == HEADER)
{
char tag = Serial.read();
if(tag == MOUSE_TAG)

int x = Serial.read() * 256;
x = x + Serial.read();

122 | Kapitel 4: Serielle Kommunikation

inty=Serial.read() * 256;

y =y +Serial.read();
Serial.print("Maus-Nachricht empfangen, x=");
Serial.print(x);

Serial.print(",y=");
Serial.println(y);

else

{

Serial.print("Unbekannter Tag in Nachricht: ");
Serial.write(tag);
}
}
}
}

Diskussion

Der Processing-Code sendet ein Header-Byte, das den Beginn einer giiltigen Nachricht
anzeigt. Das ist notwendig, damit sich Arduino synchronisieren kann, falls es in der Mitte
einer Nachricht einsteigt oder falls bei der seriellen Verbindung Daten verloren gehen
konnen (etwa bei einer Drahtlosverbindung). Der Tag bietet eine weitere Moglichkeit, die
Giltigkeit einer Nachricht zu tiberpriifen und ermoglicht es dariiber hinaus, zusitzliche
Nachrichtentypen individuell zu verarbeiten. In diesem Beispiel wird die Funktion mit
drei Parametern aufgerufen: einem Tag und den 16-Bit x- und y-Koordinaten der Maus.

Der Arduino-Code stellt sicher, dass mindestens MESSAGE_BYTES empfangen wurden, damit
die Nachricht nicht verarbeitet wird, bevor alle benétigten Daten verfiigbar sind. Nach-
dem Header und Tag tiberpriift wurden, werden die 16-Bit-Werte in zwei Bytes einge-
lesen. Das erste Byte wird mit 256 multipliziert, um den urspriinglichen Wert des hoher-
wertigen Bytes wiederherzustellen.

Sender und Empfinger miissen die gleiche NachrichtengréfRe nutzen,

“3’@ damit Bindrnachrichten korrekt verarbeitet werden konnen. Soll die An-
zahl der zu sendenden Bytes erhoht oder verringert werden, miissen Sie
TOTAL_BYTES im Arduino-Code entsprechend anpassen.

4.9 Den Wert mehrerer Arduino-Pins senden

Problem

Sie wollen Gruppen binirer Byte-, Integer- oder long-Werte vom Arduino senden. Zum
Beispiel kénnten Sie die Werte der digitalen oder analogen Pins an Processing senden
wollen.

4.9 Den Wert mehrerer Arduino-Pins senden | 123

Losung

Das Rezept sendet einen Header gefolgt von einem Integerwert mit den Bitwerten der
Digitalpins 2 bis 13. Darauf folgen sechs Integerzahlen mit den Werten der Analogpins 0
bis 5. Kapitel 5 enthilt viele Rezepte, die die Werte der Analog- und Digitalpins setzen.
Diese konnen Sie nutzen, um diesen Sketch zu testen:

/*

* SendBinaryFields

* Sendet Werte der Digital- und Analogpins als Bindrdaten
*/

const char HEADER = 'H'; // Headerzeichen leitet den
// Beginn der Nachricht ein

void setup()
{

Serial.begin(9600);
for(int i=2; i<=13; i++)

pinMode(i, INPUT); //Pins 2 bis 13 sind Eingdnge
digitalWrite(i, HIGH); //Pullups einschalten
}
}

void loop()

Serial.write(HEADER); // Header senden
// Bitwerte der Pins in Integer ablegen
int values = 0;

int bit=0;

for(int i=2; i <=13; i++)

bitwWrite(values, bit, digitalRead(i)); // Bit abhdngig vomWert des Pins
// auf 0 oder 1 setzen
bit=bit+1; // Nachstes Bit

sendBinary(values); // Integer senden

for(int i=0; 1 < 6; i++)

{
values = analogRead(1);
sendBinary(values); // Integer senden

delay(1000); // Einmal pro Sekunde senden

}

// Funktion zum Senden des gegebenen Integerwertes iiber den seriellen Port
void sendBinary(int value)

// Sende die zwei Bytes, aus denen ein Integer besteht
Serial.write(lowByte(value)); //Niederwertiges Bytes senden
Serial.write(highByte(value)); // Héherwertiges Byte senden

}

124 | Kapitel 4: Serielle Kommunikation

Diskussion

Der Code sendet einen Header (das Zeichen H), gefolgt von einem Integerwert, der die
Werte der Digitalpins enthilt. Er nutzt die bitRead-Funktion, um ein einzelnes Bit im
Integerwert zu setzen, das dem Wert des Pins entspricht (siche Kapitel 3). Er sendet dann
sechs Integerwerte, die von den Analogports eingelesen wurden (weitere Informationen
finden Sie in Kapitel 5). Alle Integerwerte werden mit sendBinary tibertragen, das wir in
Rezept 4.6 vorgestellt haben. Die Nachricht ist 15 Byte lang — 1 Byte fiir den Header,
2 Bytes fiir die Werte der Digitalpins und 12 Bytes fiir die sechs Werte der Analogpins. Der
Code fur die Digital- und Analogeinginge wird in Kapitel 5 erldutert.

Wenn wir annehmen, dass analog 0 an Pin 0, 100 an Pin 1 und 200 an Pin 2 bis 500 an
Pin 5 anliegen, wihrend die Digitalpins 2 bis 7 HIGH und die Pins 8 bis 13 LOW sind,
dann sehen die Dezimalwerte der gesendeten Bytes wie folgt aus:

72 //Das Zeichen "H' - das ist der Header

// Zwei Bytes (niederwertig/hdherwertig) enthalten die Bits fiir die Pins 2-13
63 //Bindr 00111111 : die Pins 2-7 sind angeschaltet
0 //DiePins 8-13 sind ausgeschaltet

// Zwei Bytes fiir jeden Analogpin
0 //Pinohat den Integerwert 0, der in zwei Bytes gesendet wird
0

100 // Pin 1 hat den Wert 100, was als ein Byte mit 100 und ein Byte mit 0 gesendet wird
0

// Pin 5 hat den Wert 500
244 // Rest der Division von 500 durch 256
1 // Sooft kann 500 durch 256 geteilt werden

Der nachfolgende Processing-Code liest die Nachricht ein und gibt die Werte in der
Processing-Konsole aus:

// Processing Sketch

/*
* ReceiveMultipleFieldsBinary P
*

* portIndex muss auf den Port gesetzt sein, mit dem der Arduino verbunden ist
*/

import processing.serial.*;

Serial myPort; // Serial-Objekt erzeugen
short portIndex = 1; // com-Port wihlen, 0 ist der erste Port

char HEADER = 'H';

void setup()

{
size(200, 200);
// Verbindung mit dem Arduino herstellen.
String portName = Serial.list()[portIndex];
println(Serial.list());

4.9 Den Wert mehrerer Arduino-Pins senden | 125

println(" Verbinde mit -> " + Serial.list()[portIndex]);
myPort = new Serial(this, portName, 9600);
}

void draw()

{

int val;
if (myPort.available() >=15) // Warten, bis gesamte Nachricht verfigbar ist
if(myPort.read() == HEADER) // Header-Zeichen?
{

println("Nachricht empfangen:");
// Header gefunden
// Integer mit Bitwerten einlesen
val = readArduinoInt();
// Wert jedes Pins ausgeben
for(int pin=2, bit=1; pin<=13; pint++){
print("Digitalpin" +pin+"=");
int isSet = (val & bit);
if(isSet==0) {
println("0");

else{
println("1");
}

bit =bit *2; //Bit zur ndchsten Bindrstelle schieben

println();

// Die sechs Analogwerte ausgeben

for(int i=0; 1< 6; 1++){
val = readArduinoInt();
println("Analogport " +1i+"="+val);

println("----");

}

}
}

// Integerwert aus seriellen Bytes erzeugen (niederwertig/hoherwertig)
int readArduinoInt()
{

intval; // Uber seriellen Port empfangene Daten

val = myPort.read(); // Niederwertiges Byte einlesen
val = myPort.read() * 256 + val; // Héherwertiges Byte hinzufligen
returnval;

}

Der Processing-Code wartet, bis 15 Zeichen eingegangen sind. Ist das erste Zeichen der
Header, ruft er eine Funktion namens readArduinoInt auf, um zwei Bytes einzulesen und
wieder in einen Integerwert umzuwandeln. Mit Hilfe einer mathematischen Umkehr-
operation (als Gegenstiick zu den durchgefithrten Arduino-Operationen) gelangen wir
dann an die einzelnen Bits der Digitalpins. Die folgenden sechs Integerwerte reprisentie-
ren die Analogwerte.

126 | Kapitel 4: Serielle Kommunikation

Siehe auch

Um Arduino-Werte an den Computer zu senden, oder die Pins iiber den Computer zu setzen,
ohne sich um das Board Gedanken machen zu miissen, konnen Sie Firmata (http://www.
firmata.org nutzen. Die Firmata-Bibliothek und Beispiel-Sketches (File>Examples—Firmata)
sind in der Arduino-Software-Distribution enthalten, und es gibt auch eine Bibliothek fiir
Processing. Sie laden den Firmata-Code auf den Arduino hoch, legen mit dem Computer fest,
welche Pins Ein- und Ausginge sind, und setzen oder lesen dann diese Pins.

4,10 Den Mauszeiger eines PCs oder Macs bewegen

Problem

Sie wollen Arduino durch Bewegen des Mauszeigers mit einer Anwendung auf Threm
Computer interagieren lassen, etwa durch die Positionierung der Maus basierend auf
Informationen vom Arduino. Stellen Sie sich beispielsweise vor, Sie hitten einen Wii
Nunchuck (siehe Rezept 13.2) an Thren Arduino angeschlossen und méchten, dass Thre
Handbewegungen die Position des Mauszeigers in einem PC-Programm steuern.

Losung

Sie konnen serielle Befehle senden, die einem auf dem Zielrechner laufenden Programm
die Position des Mauszeigers angeben. Hier ein Sketch, der den Mauszeiger basierend auf
der Position zweier Potentiometer steuert:

// SerialMouse Sketch
const int buttonPin =2; //LOWamDigitalpin aktiviert Maus

const int potXPin =4; // Analogpins fiir Potis
const int potYPin = 5;

void setup()

Serial.begin(9600);
pinMode(buttonPin, INPUT);
digitalWrite(buttonPin, HIGH); // Pullups einschalten

void loop()
{

int x = (512 - analogRead(potXPin)) / 4; // Bereich ist -127 bis +127
inty = (512 - analogRead(potYPin)) / 4;
Serial.print("Data,");
Serial.print(x,DEC);
Serial.print(",");
Serial.print(y,DEC);
Serial.print(",");
if(digitalRead(buttonPin) == LOW)
Serial.print(1); // Sende 1, wenn Button gedriickt ist
else

4.10 Den Mauszeiger eines PCs oder Macs bewegen | 127

Serial.print(0);
Serial.println(",");

1)

delay(50); // Sende Position 20-mal pro Sekunde

Abbildung 4-4 zeigt den Anschluss zweier Potentiometer (Details finden Sie in Kapitel 5
for more details). Der Schalter wurde einbezogen, damit Sie die Arduino-Maussteuerung
durch SchlieRen oder Offnen des Kontakts kontrollieren konnen.

Schalter schlieBen,

/. um Maussteuerung
gdm]gggggg gggurﬂluu zu aktivieren.

<t NN
o>
=z

Arduino

ANALOG
O «— N M T

5256 ¢
CXpoRa . ooog

A\

10K 10K
<« ls

Poti Poti

Abbildung 4-4: Anschluss zweier Potentiometer zur Maussteuerung

Der Processing-Code basiert auf dem Code aus Rezept 4.4, wurde aber um Code zur
Maussteuerung erginzt:

// Processing Sketch

/*
* ArduinoMouse.pde (Processing Sketch)
*/

/* WARNING: Der Sketch iibernimmt die Maus
Driicken Sie Escape, um den laufenden Sketch zu schlieen */

import java.awt.AWTException;
import java.awt.Robot;
import processing.serial.*;

128 | Kapitel 4: Serielle Kommunikation

Serial myPort; // Serial-Objekt erzeugen
arduMouse myMouse; // Arduino-kontrollierte Maus erzeugen

public static final short LF = 10; // ASCII-Linefeed
public static final short portIndex = 1; // com-Port wahlen,
// 0 ist der erste Port

int posX, posY, btn; // Daten der Nachricht werden hier abgelegt

void setup() {
size(200, 200);
println(Serial.list());
println(" Verbinde mit -> " + Serial.list()[portIndex]);
myPort = new Serial(this,Serial.list()[portIndex], 9600);
myMouse = new arduMouse();
btn=0; // Maus ausschalten, bis von Arduino angefordert

}

void draw() {
if (btn !=0)
myMouse.move(posX, posY); // Maus an empfangene x- und y-Position bewegen
}

void serialkvent(Serial p) {
String message = myPort.readStringUntil(LF); // Serielle Daten einlesen
if(message !=null)

//print(message);
String [] data =message.split(","); // Kommaseparierte Nachricht zerlegen
if (data[0].equals("Data"))// Auf Header prifen

if(data.length>3)

try {
posX = Integer.parselnt(datal1]);
posY = Integer.parselnt(data[2]);
btn = Integer.parseInt(data[3]);

}
catch (Throwable t) {

println("."); // Parsing-Fehler
print(message);

}
}
}
}

class arduMouse {
Robot myRobot; // Objekt der Robot-Klasse erzeugen
static final short rate = 4; // Multiplikator zur Korrektur der Bewegungsgeschwindigkeit
int centerX, centery;
arduMouse() {
try {
myRobot = new Robot();

catch (AWTExceptione) {
e.printStackTrace();

4.10 Den Mauszeiger eines PCs oder Macs bewegen

129

}

Dimension screen = java.awt.Toolkit.getDefaultToolkit().getScreenSize();
centerY = (int)screen.getHeight() /2 ;

centerX = (int)screen.getWidth() / 2;

}

// Methode bewegt die Maus von der Mitte des Bildschirms um den angegebenen Offset
void move(int offsetX, int offsetY) {
myRobot .mouseMove (centerX + (rate* offsetX), centerY - (rate * offsetY));

}
}

Der Processing-Code zerlegt die Nachricht mit den x- und y-Koordinaten und sendet die
Daten an die mouseMove-Methode der Java-Klasse Robot. Im Beispiel nutzt die Robot-Klasse
einen Wrapper namens arduMouse, der eine move-Methode zur Verfiigung stellt, die eine
Skalierung auf die BildschirmgroRe vornimmit.

Diskussion

Diese Technik zur Steuerung von auf dem Computer laufenden Anwendungen ist einfach
zu implementieren und sollte mit allen Betriebssystemen funktionieren, die Processing
ausfithren konnen. Muss die Bewegungsrichtung der x- oder y-Achse umgekehrt werden,
andern Sie einfach das Vorzeichen der Achse im Processing-Sketch:

posX = -Integer.parseInt(data[1]); // Minuszeichen invertiert Achse
W8

Einige Plattformen verlangen besondere Privilegien oder Erweiterungen,
um auf unterster Ebene auf Eingaben zugreifen zu kénnen. Wenn Sie keine
* Qs Kontrolle tiber die Maus erlangen, sehen Sie in der Dokumentation Thres
Betriebssystems nach.

Ein aufer Kontrolle geratenes Robot-Objekt kann Thnen die Kontrolle iiber
die Maus und die Tastatur entziehen, wenn es in einer Endlosschleife lduft.
In diesem Rezept senden wir den Pegel von Digitalpin 2 an Processing, um
die Kontrolle zu aktivieren bzw. zu deaktivieren.

W N
- Boards mit dem ATmeg32U4-Controller kénnen eine USB-Maus direkt
l.s‘.‘ emulieren. Das Arduino Leonardo und das PJRC Teensy liefern Beispiele

mit, die zeigen, wie man eine USB-Maus emuliert.

Leonardo-Board:
http://blog.makezine.com/archive/2011/09/arduino-leonardo-
opens-doors-to-product-development.html

Teensy-Beispiel fiir USB-Maus:
http://'www.pjrc.com/teensy/usb_mouse.html

Siehe auch

Unter http://java.sun.com/j2se/1.3/docs/apiljavalawt/Robot.html finden Sie weiterfithrende
Informationen zur Java Robot-Klasse.

130 | Kapitel 4: Serielle Kommunikation

Einen Artikel zum Einsatz der Robot-Klasse finden Sie unter http://www.developer.com/
javalother/article.php/10936_2212401_1.

Wenn Sie eine Windows-Programmiersprache bevorzugen, konnen Sie die Low-Level-
Funktion SendInput der Windows-API nutzen, um Tastatur- und Maus-Events in den
Eingabestream einzufiigen. Weitere Informationen finden Sie unter http://msdn.micro-
soft.com/en-us/library/ms646310(VS.85).aspx.

Rezept 4.11 zeigt, wie man diese Technik nutzt, um Google Earth zu steuern.

4.11 Google Earth per Arduino steuern

Problem

Sie wollen tiber mit dem Arduino verbundene Sensoren die Bewegungen in einer Anwen-
dung wie Google Earth steuern. Zum Beispiel sollen Sensoren, die Thre Handbewegungen
erkennen, zur Steuerung des Flugsimulators in Google Earth verwendet werden. Die
Sensoren kénnten einen Joystick (siehe Rezept 6.17) oder einen Wii Nunchuck (siehe
Rezept 13.2) nutzen.

Losung

Google Earth erlaubt einen »Flug« iiber die Erde, wobei man sich Satellitenbilder, Land-
und Gelinderkarten sowie Gebidude in 3D ansehen kann (siehe Abbildung 4-5). Es verfiigt
iiber einen Flugsimulator, der tiber eine Maus gesteuert werden kann. Dieses Rezept
verwendet die Techniken, die in Rezept 4.10 genutzt werden und kombiniert sie mit
einem Joystick, der an den Arduino angeschlossen ist.

Abbildung 4-5: Google Earth-Flugsimulator

4.11 Google Earth per Arduino steuern | 131

Der Arduino-Code sendet die horizontale und vertikale Position, die durch das Lesen
eines Eingabegerites wie etwa eines Joysticks bestimmt wird. Dazu gibt es die unter-
schiedlichsten Moglichkeiten, etwa die Schaltung aus Rezept 4.10, die ausgezeichnet
funktioniert, wenn Sie einen alten, mit Potentiometern arbeitenden Joystick finden, den
Sie dazu nutzen kénnen.

Diskussion

Google Earth steht als kostenloser Download zur Verfiigung. Sie kénnen es von der
Google-Website http://earth.google.com/download-earth.html herunterladen. Laden Sie
die Version fiir Thr Betriebssystem herunter und installieren Sie sie auf Threm Computer.
Starten Sie Google Earth und wihlen Sie aus dem Tools-Menti den Flight Simulator.
Wihlen Sie ein Flugzeug (die SR22 ist einfacher zu fliegen als die F16) und einen
Flughafen. Die Joystick-Unterstiitzung muss deaktiviert bleiben — Sie werden die Ardui-
no-kontrollierte Maus verwenden, um das Flugzeug zu fliegen. Klicken Sie den Start
Flight-Button an (fliegt das Flugzeug beim Start bereits, kénnen Sie die Leertaste driicken,
um den Simulator anzuhalten, damit Sie den Processing-Sketch starten konnen).

Laden Sie den Arduino-Sketch aus Rezept 4.10 hoch und fuhren Sie den Processing-
Sketch aus diesem Rezept auf Threm Computer aus. Machen Sie Google Earth zum ak-
tiven Fenster, indem Sie es anklicken. Aktivieren Sie die Arduino-Maussteuerung, indem
Sie Pin 2 mit Masse verbinden.

Sie sind nun startklar. Driicken Sie ein paarmal die Seite-hoch-Taste, um Gas zu geben
(und driicken Sie dann die Leeraste, falls Sie den Simulator angehalten haben). Wenn die
SR22 eine Geschwindigkeit von etwas tiber 100 Knoten erreicht, kénnen Sie den Stick
»hochziehen« und fliegen. Informationen zur Simulatorsteuerung finden Sie im Google-
Hilfemenii.

Sobald Sie Thren Flug beendet haben, kénnen Sie die Arduino-Maussteuerung ausschal-
ten, indem Sie Pin 2 von Masse trennen, und die Kontrolle wieder an die Computermaus
uibergeben.

Hier eine weitere Variante, die Nachrichten an den Processing-Sketch sendet. Sie kom-
biniert den Wii Nunchuck-Code aus Rezept 13.2 mit einer in Rezept 16.5 diskutierten
Bibliothek. Die Verschaltung ist in Rezept 13.2 zu sehen:

/*

*WiichuckSerial

*

* Verwendet die Nunchuck-Bibliothek aus Rezep 16.5
* Sendet Daten in kommaseparierten Feldern

* Kommagetrennte Label-Strings kénnen vom Empfanger
* genutzt werden, umdie Felder zu identifizieren

*/

#include <Wire.h>
#include "Nunchuck.h"

132 | Kapitel 4: Serielle Kommunikation

// Werte, die zum Sensor hinzuaddiert werden, um
// bei zentriertem Cursor Nullwerte zu erreichen
int offsetX, offsetY, offsetZz;

#include <Wire.h>
#include "Nunchuck.h"
void setup()

{

Serial.begin(57600);

nunchuckSetPowerpins();

nunchuckInit(); // Initialisierungs-Handshake senden
nunchuckRead(); // Erstes Mal ignorieren

delay(50);

}
void loop()
{

nunchuckRead();

delay(6);

nunchuck get data();

boolean btnC = nunchuckGetValue(wii btnC);
boolean btnZ = nunchuckGetValue(wii btnZ);

if(btnC) {

offsetX = 127 - nunchuckGetValue(wii accelX) ;
offsetY =127 - nunchuckCetValue(wii accelY) ;

}

Serial.print("Data,");
printAccel(nunchuckGetValue(wii_accelX),offsetX) ;
printAccel(nunchuckCetValue(wii_accelY),offsetY) ;
printButton(nunchuckGetvValue(wii btnZz));

Serial.println();
}

void printAccel(int value, int offset)

Serial.print(adjReading(value, 127-50, 127+50, offset));
Serial.print(",");

}
void printJoy(int value)

Serial.print(adjReading(value,0, 255, 0));

Serial.print(",");
}

void printButton(int value)

if(value !=0)

value = 127;
Serial.print(value,DEC);
Serial.print(",");

}
int adjReading(int value, int min, int max, int offset)

value = constrain(value + offset, min, max);

4.11 Google Earth per Arduino steuern

133

value = map(value, min, max, -127, 127);
return value;

Diese Sketches nutzen eine serielle Geschwindigkeit von 57600 Baud, um
die Latenz zu minimieren. Wenn Sie die Arduino-Ausgaben tiber den
seriellen Monitor beobachten wollen, miissen Sie die Baudrate entspre-
chend anpassen. Fiir die meisten anderen Sketches in diesem Buch miissen
Sie die Baudrate aber wieder auf 9600 Baud zuriicksetzen. Wenn Sie
keinen Wii Nunchuck besitzen, kénnen Sie den Arduino-Sketch aus
Rezept 4.10 verwenden, miissen dann aber die Baudrate des Sketches auf
57600 erhohen und den Sketch auf den Arduino hochladen.

Sie kénnen statt der Werte des Beschleunigungsmessers auch die Werte des Nunchuck-
Joysticks zuriickliefern, indem Sie die beiden mit printAccel beginnenden Zeilen wie folgt
andern:

printJoy(nunchuckGetValue(wii joyX));
printJoy(nunchuckGetValue(wii joyY));

Sie konnen den Processing-Sketch aus Rezept 4.10 verwenden, doch die nachfolgende
verbesserte Version gibt die Steuerposition im Processing-Fenster aus und aktiviert den
Flugsimulator mit dem Nunchuck-Button ’z’:

/**
* GoogleEarth FS.pde
*

* Steuert Google-Flugsimulator iiber CSV-Sensordaten
*/

import java.awt.AWTException;

import java.awt.Robot;

import java.awt.event.InputEvent;
import processing.serial.*;

Serial myPort; // Serial-Objekt erzeugen

arduMouse myMouse;

String message = null;

int maxDataFields = 7; // 3 Achsen Beschleunigung, 2 Buttons, 2 Joystick-Achsen
boolean isStarted = false;

int accelX, accelY, btnZ; // Daten der Nachrichtenfelder werden hier abgelegt

void setup() {
size(260, 260);
PFont fontA = createFont("Arial.normal", 12);
textFont(fontA);

short portIndex =1; // com-Port wdhlen, 0 ist der erste Port
String portName = Serial.list()[portIndex];
println(Serial.list());

println(" Verbinde mit -> " + portName) ;

myPort = new Serial(this, portName, 57600);

134 | Kapitel 4: Serielle Kommunikation

myMouse = new arduMouse();

£i11(0);

text("Starte Google FS in der Mitte des Bildschirms", 5, 40);
text("Richte den Mauszeiger in Google Earth mittigaus", 10, 60);
text("Zum Spielen Nunchuck Z-Button driicken und loslassen", 10, 80);
text("Z-Button erneut driicken, umMaus anzuhalten", 20, 100);

}

void draw() {
processMessages();
if (isStarted == false) {
if (btnz 1=0) {
println("Button loslassen, umzu starten");
do{ processMessages();}
while(btnz I=0);
myMouse .mousePress (InputEvent.BUTTON1_MASK); // SIM starten
isStarted = true;
}
}

else

if (btnz 1=0) {

isStarted = false;

background(204);

text("Zum Spielen Z-Button loslassen", 20, 100);
print("Angehalten, ");

else{
myMouse.move (accelX, accelY); // Maus an empfangene x- und y-Position bewegen
fi11(0);
stroke(255, 0, 0);
background (#8CE7FC);
ellipse(127+accelX, 127+accely, 4, 4);

}
}

void processMessages() {
while (myPort.available () > 0) {
message = myPort.readStringUntil(10);
if (message !=null) {
//print(message);
String [] data =message.split(","); // CSV-Nachricht zerlegen
if (data[0].equals("Data"))// Header?

try {
accelX = Integer.parselnt(data[1])
accelY = Integer.parselnt(data[2])
btnZ = Integer.parselnt(data[3]);

bl
bl

}
catch (Throwable t) {

println("."); // Parsing-Fehler

4.11 Google Earth per Arduino steuern

135

}

class arduMouse {
Robot myRobot; // Robot-Objekt erzeugen;
static final short rate = 4; // Zurilickzulegende Pixel
int centerX, centerY;
arduMouse() {

try {
myRobot = new Robot () ;

catch (AWTExceptione) {
e.printStackTrace();

}

Dimension screen = java.awt.Toolkit.getDefaultToolkit().getScreenSize();
centerY = (int)screen.getHeight() /2 ;
centerX = (int)screen.getWidth() / 2;

}

// Maus von der Mitte des Bildschirms zum angegeben Offset bewegen
void move(int offsetX, int offsetY) {
myRobot.mouseMove(centerX + (rate* offsetX), centerY - (rate * offsetY));

}

// Driicken der Maustaste simulieren
void mousePress(int button) {
myRobot .mousePress (button) ;

}
}

Siehe auch

Die Google-Earth-Website enthilt den Code zum Herunterladen und Instruktionen, um
ihn auf dem Computer ans Laufen zu bringen: http://earth.google.com/.

4.12 Arduino-Daten in einer Datei auf dem Computer
festhalten

Problem

Sie wollen eine Datei anlegen, die vom Arduino tiber den seriellen Port empfangene In-
formationen aufnimmt. Zum Beispiel wollen Sie die Werte der digitalen und analogen
Pins in regelmiRigen Zeitabstinden in einer Logdatei speichern.

Losung

Wir haben in fritheren Rezepten erldutert, wie man Informationen vom Arduino an den
Computer schickt. Diese Losung verwendet den gleichen Arduino-Code wie in Rezept 4.9.
Der Processing-Sketch, der das Logging iibernimmt, basiert ebenfalls auf dem in diesem
Rezept beschriebenen Processing-Sketch.

Der Processing-Sketch erzeugt eine Datei (mit dem aktuellen Datum und der Uhrzeit als
Dateiname) im gleichen Verzeichnis, in dem auch der Processing-Sketch liegt. Vom Ar-

136 | Kapitel 4: Serielle Kommunikation

duino empfangene Nachrichten werden der Datei hinzugefiigt. Das Driicken einer be-
liebigen Taste speichert die Datei und beendet das Programm:

/*

* ReceiveMultipleFieldsBinaryToFile P

*

* portIndex muss den Port angeben, mit dem der Arduino verbunden ist

*Diese Version basiert auf ReceiveMultipleFieldsBinary und speichert die Daten in einer Datei
* Driicken Sie eine beliebige Taste, umdas Logging zu beenden und die Datei zu speichern

*/

import processing.serial.*;

PrintWriter output;

DateFormat fnameFormat= new SimpleDateFormat("yyMMdd_HHmm");
DateFormat timeFormat = new SimpleDateFormat("hh:mm:ss");
String fileName;

Serial myPort; // Serial-Objekt erzeugen
short portIndex =0; // com-Port wihlen, 0 ist der erste Port
char HEADER = "H';

void setup()
{
size(200, 200);
// Verbindung zum Arduino herstellen.
String portName = Serial.list()[portIndex];
println(Serial.list());
println(" Verbinde mit -> " + Serial.list()[portIndex]);
myPort = new Serial(this, portName, 9600);
Date now = new Date();
fileName = fnameFormat.format(now);
output = createWriter(fileName + ".txt"); // Datei im Sketch-Ordner speichern

}

void draw()

{
int val;
String time;

if (myPort.available() >=15) // Auf vollstandige Nachricht warten
if(myPort.read() == HEADER) // Header-Zeichen?
{

String timeString = timeFormat.format(newDate());
println("Nachricht empfangen am " + timeString);
output.println(timeString);
// Header gefunden
// Integer mit Bitwerten einlesen
val = readArduinoInt();
// Wert jedes Bits ausgeben
for(int pin=2, bit=1; pin<=13; pin++){
print("Digitalpin " +pin+"=");
output.print("Digitalpin " +pin+"=");
int isSet = (val & bit);
if(isSet ==0){

4.12 Arduino-Daten in einer Datei auf dem Computer festhalten | 137

println("0");
output.println("o");

else {
println("1");
output.println("0");

bit =bit * 2; // Bit verschieben

// Sechs Analogwerte ausgeben

for(int i=0; 1< 6; 1++){
val = readArduinoInt();
println("Analogport " +1i+"="+val);
output.println("Analogport " +i+"="+val);

println("----");
output.println("----");

}
}

void keyPressed() {
output.flush(); // Restliche Daten in Datei schreiben
output.close(); // Datei schlieRen
exit(); // Programm beenden

}

// Integerwert aus Bytes zusammensetzen
int readArduinoInt()

intval; //Vomseriellen Port empfangene Daten

val = myPort.read(); // Niederwertiges Byte einlesen
val = myPort.read() * 256 + val; // Hoherwertiges Byte hinzuaddieren
returnval;

}

Denken Sie daran, portIndex auf den seriellen Port einzustellen, mit dem der Arduino
verbunden ist.

Diskussion

Der Basisname fiir die Logdatei wird mit Hilfe der DateFormat-Funktion von Processing
erzeugt:

DateFormat fnameFormat= new SimpleDateFormat("yyMMdd_HHmm");

Den vollstindigen Dateinamen erzeugt dann Code, der auRerdem ein Verzeichnis und
eine Dateiendung hinzufiigt:

output = createWriter(fileName + ".txt");

Die Datei wird im gleichen Verzeichnis erzeugt, in dem auch der Processing-Sketch liegt
(der Sketch muss mindestens einmal abgespeichert werden, damit das Verzeichnis auch
wirklich existiert). Um das Verzeichnis zu 6ffnen, wihlen Sie Sketch—>Show Sketch Folder

138 | Kapitel 4: Serielle Kommunikation

im Processing-Menii. createWriter ist die Processing-Funktion, die die Datei dffnet. Sie
erzeugt ein Objekt namens output, das fiir die eigentliche Dateiausgabe sorgt. Der in die
Datei geschriebene Text entspricht genau dem, was auf der Konsole in Rezept 4.9 aus-
gegeben wird, doch Sie kénnen den Datei-Inhalt mit den normalen Processing-Fihig-
keiten zur Stringverarbeitung ganz an Thre Bediirfnisse anpassen. Zum Beispiel erzeugt die
folgende Variante der draw-Routine eine kommaseparierte Datei, die von einer Tabellen-
kalkulation oder einer Datenbank gelesen werden kann. Der Rest des Processing-Sketches
kann gleichbleiben, auch wenn Sie die Dateiendung vielleicht von .txt in .csv dndern
sollten:

void draw()

int val;
String time;

if (myPort.available() >=15) // Auf die gesamte Message warten
if('myPort.read() == HEADER) // Header-Zeichen?
{
String timeString = timeFormat.format(new Date());
output.print(timeString);
val = readArduinoInt(); // Digitalwerte einlesen, aber nicht ausgeben
// Sechs Analogswerte durch Kommata getrennt ausgeben

for(int i=0; 1< 6; 1 ++){
val = readArduinoInt();

output.print("," +val);

output.println();

Siehe auch

Weiterfithrende Informationen zu createlriter finden Sie unter http://processing.org/
reference/createWriter_.html.

4.13 Daten an zwei serielle Gerate gleichzeitig senden

Problem

Sie wollen Daten an ein serielles Geriit, z.B. an ein serielles LCD, senden, verwenden den
eingebauten seriellen Port aber schon zur Kommunikation mit Threm Computer.

Losung

Bei einem Mega ist das kein Problem, da er vier serielle Hardware-Ports besitzt. Erzeugen
Sie einfach zwei serielle Objekte und nutzen Sie einen fiir das LCD und den anderen fiir
den Computer:

4.13 Daten an zwei serielle Gerte gleichzeitig senden | 139

void setup() {
// Zwei serielle Ports beimMega initialisieren
Serial.begin(9600); //Primdrer serieller Port
Seriall.begin(9600); // Mega kann Serialil bis Serial3 nutzen

}

Bei einem Standard-Arduino-Board (wie dem Uno oder dem Duemilanove) gibt es nur
einen seriellen Hardware-Port, und Sie miissen einen zusitzlichen seriellen Port per
Software emulieren.

Sie konnen die mitgelieferte SoftwareSerial-Bibliothek verwenden, um Daten an mehrere
Gerite zu senden.

W N

Arduino nutzt seit der Release 1.0 eine verbesserte SoftwareSerial-Biblio-

thek, die auf Mikal Harts NewSoftSerial-Bibliothek basiert. Falls Sie eine
v Arduino-Release vor 1.0 verwenden, koénnen Sie NewSoftSerial von

http://arduiniana.org/libraries/newsoftserial herunterladen.

oy

Wihlen Sie zwei freie Digitalpin, jeweils einen fiir das Senden und das Empfangen, und
schliefRen Sie das serielle Gerit daran an. Es ist praktisch, den seriellen Hardware-Port fiir
die Kommunikation mit dem Computer zu verwenden, weil er einen USB-Adapter auf
dem Board integriert hat. Verbinden Sie die Sendeleitung des Gerits mit dem Empfangs-
pin und die Empfangsleitung mit dem Sendepin. In Abbildung 4-6 haben wir Pin 2 als
Empfangs- und Pin 3 als Sendepin gewihlt.

gessssssfiesesisss
23 DiGiTAL m&
Arduino .

ZZ B Rx

£] Gnd

‘ q E] Vin

B ooo ANALOG .
- (O () EfzdEs oo Serielles LCD

DDDDTD goooad

Abbildung 4-6: Serielles Gerdt mit seriellem »Soft-Port« verbinden

In Threm Sketch erzeugen Sie ein SoftwareSerial-Objekt, und teilen ihm mit, welche Pins
Sie fiir den emulierten seriellen Port verwenden. In unserem Beispiel haben wir ein Objekt
namens serial lcd erzeugt, das die Pins 2 und 3 nutzt:

/*
* SoftwareSerialOutput Sketch

140 | Kapitel 4: Serielle Kommunikation

* Daten Uber seriellen "Software-Port" ausgeben
*/

#include <SoftwareSerial.h>

const int rxpin = 2; // Zum Empfang verwendeter Pin (wird in dieser Version nicht genutzt)
const int txpin =3; // Zum Senden an das LCD verwendeter Pin
SoftwareSerial serial lcd(rxpin, txpin); // Neuer serieller Port an den Pins 2 und 3

void setup()

Serial.begin(9600); // 9600 Baud fiir den fest eingebauten seriellen Port
serial lcd.begin(9600); // Software-Port ebenfalls mit 9600 initialisieren

}

int number = 0;
void loop()

{

serial lcd.print("Die Zahlist"); // Text an LCD senden
serial lcd.println(number); // Zahl auf LCD ausgeben
Serial.print("Die Zahl ist ");

Serial.println(number); // Zahl auf Konsole ausgeben

delay(500); // Halbe Sekunde zwischen den Zahlen warten
number++; // Zur nachsten Zahl

Wenn Sie Arduino-Versionen vor 1.0 verwenden, laden Sie die NewSoft-
Serial-Bibliothek herunter und ersetzen Sie die Referenzen auf Software-
Serial durch NewSoftSerial:

// NewSoftSerial-Version
#include <NewSoftSerial.h>

const int rxpin = 2; // Zum Empfang verwendeter Pin
const int txpin =3; // Zum Senden verwendeter Pin
NewSoftSerial serial lcd(rxpin, txpin); // Neuer serieller Port an den Pins 2 +3

Der Sketch setzt voraus, dass das serielle LCD mit Pin 3 (siehe Abbildung 4-6) und die
serielle Konsole mit dem eingebauten Port verbunden ist. Die Schleife gibt bei jedem
Durchlauf die gleiche Meldung aus:

Die Zahl ist 0
Die Zahl ist 1

Diskussion

Jeder Arduino-Mikrocontroller verfiigt iber mindestens eine eingebaute serielle Schnitt-
stelle. Diese spezielle Hardware ist fiir die Generierung einer Folge zeitlich genau fest-
gelegter Impulse verantwortlich, die die Gegenstelle als Daten interpretiert, ebenso wie

4.13 Daten an zwei serielle Gerate gleichzeitig senden | 141

den Datenstrom, der im Gegenzug empfangen wird. Zwar besitzt der Mega vier dieser
Ports, aber die meisten Arduino-Varianten besitzen nur einen. Wenn Sie bei einem Projekt
zwei oder mehr serielle Gerite anschlieffen miissen, benotigen Sie eine Software-Biblio-
thek, die diese zusitzlichen Ports emuliert. Eine solche Bibliothek fiir einen »seriellen
Software-Port« macht aus einem beliebigen Paar digitaler E/A-Pins einen neuen seriellen
Port.

Um einen solchen seriellen Software-Port aufzubauen, wihlen Sie ein Paar Pins aus, die als
Sende- und Empfangsleitungen fungieren (genau wie die Pins 1 und 0 von Arduinos
eingebautem Port). In Abbildung 4-6 werden die Pins 3 und 2 genutzt, aber Sie kénnen
alle verfiigbaren Digitalpins verwenden. Die Pins O und 1 sollten Sie aber meiden, da sie
bereits vom eingebauten Port genutzt werden.

Die Syntax beim Schreiben an den Soft-Port ist mit der beim Hardware-Port identisch. Im
Beispiel-Sketch werden Daten sowohl an den »echten« als auch an den emulierten Port
mit print() und println() gesendet:

serial lcd.print("Die Zahlist"); // Text an LCD senden
serial lcd.println(number); // Zahl an LCD senden

Serial.print("Die Zahl ist"); // Text anHardware-Port senden
Serial.println(number); // und liber seriellen Monitor ausgeben

Wenn Sie ein unidirektionales serielles Gerdt verwenden — das nur sendet oder nur
empfingt —, konnen Sie Ressourcen sparen, indem Sie fiir die nicht benétigte Leitung
einen nicht existierenden Pin im SoftwareSerial-Konstruktor angeben. Beispielsweise ist
ein serielles LCD grundsitzlich ein reines Ausgabegeridt. Wenn Sie keine Daten von ihm
erwarten (oder empfangen wollen), kénnen Sie das SoftwareSerial mit folgender Syntax
mitteilen:

#include <SoftwareSerial.h>
const int no_such_pin = 255;

const int txpin = 3;
SoftwareSerial serial lcd(no_such pin, txpin); // Nur TXan Pin3

In diesem Fall wiirden Sie physikalisch nur einen einzelnen Pin (3) mit der »Eingangs-«
oder »RX«-Leitung verbinden.

Siehe auch

SoftwareSerial fiir Arduino 1.0 (und hoher) basiert auf NewSoftSerial. Mehr tiber
NewSoftSerial erfahren Sie auf Mikal Harts Website (http://arduiniana.org/libraries/
newsoftserial/)

142 | Kapitel 4: Serielle Kommunikation

4.14 Serielle Daten von zwei Geraten gleichzeitig
empfangen

Problem

Sie wollen Daten von einem seriellen Gerit, etwa einem GPS-Modul, empfangen, nutzen
den eingebauten seriellen Port aber bereits zur Kommunikation mit Threm Computer.

Losung

Dieses Problem dhnelt dem aus Rezept 4.13, und natiirlich ist auch die Losung sehr
dhnlich. Ist der serielle Port des Arduino bereits mit der Konsole verbunden, wenn Sie ein
zweites serielles Gerit anschlieRen wollen, dann miissen Sie mit einer Software-Bibliothek
einen seriellen Port emulieren. In diesem Fall empfangen wir Daten tiber den emulierten
Port, statt sie zu schreiben, doch die grundlegende Losung ist fast gleich.

N
Beachten Sie die Hinweise zur NewSoftSerial-Bibliothek im vorstehenden

as Rezept, wenn Sie eine Arduino-Release vor 1.0 verwenden.

\
(TN

Wiihlen Sie zwei Pins fuir die Sende- und Empfangsleitungen.

Verbinden Sie Thr GPS wie in Abbildung 4-7 zu sehen. Rx (die Empfangsleitung) wird in
diesem Beispiel nicht verwendet, d.h., Sie konnen die Rx-Verbindung mit Pin 3 igno-
rieren, wenn Thr GPS keinen Empfangspin besitzt.

R E . QQQQQIENQQ
£377 77 DAL | =
=
. n
Arduino i
3Rx
2Vin
16Gnd
i

o ANALOG
OO0 B8 s

22%2s _
oo collececee

Abbildung 4-7: Serielles GPS-Gerdt mit seriellem »Soft-Port« verbinden

Wie in Rezept 4.13 erzeugen Sie ein SoftwareSerial-Objekt in Threm Sketch und teilen
ihm mit, welche Pins verwendet werden. Im folgenden Beispiel definieren wir einen

4.14 Serielle Daten von zwei Geraten gleichzeitig empfangen | 143

seriellen Software-Port namens serial gps und verwenden die Pins 2 und 3 zum Emp-
fangen und Senden:

/*

* SoftwareSerialInput Sketch

* Daten Uber seriellen Soft-Port einlesen
*/

#include <SoftwareSerial.h>

const int rxpin = 2; // GPS-Empfangspin

const int txpin = 3; // GPS-Sendepin

SoftwareSerial serial gps(rxpin, txpin); // Neuer serieller Port anPins 2 und 3

void setup()
{

Serial.begin(9600); // 9600 Baud fiir eingebauten seriellen Port
serial gps.begin(4800); // Port initialisieren; die meisten GPS-Gerdte
// verwenden 4800 Baud
}

void loop()
{

if (serial_gps.available() » 0) // Zeichen eingegangen?

char c = serial gps.read(); //DannvomGPSeinlesen
Serial.write(c); // und Uber die serielle Konsole ausgeben
}
}

Wenn Sie Arduino-Versionen vor 1.0 verwenden, laden Sie die NewSoftSerial-Bibliothek
herunter und ersetzen Sie die Aufrufe von SoftwareSerial durchNewSoftSerial:

// NewSoftSerial-Version

#include <NewSoftSerial.h>

const int rxpin = 2; // GPS-Empfangspin

const int txpin = 3; // GPS-Sendepin

NewSoftSerial serial gps(rxpin, txpin); // neuer serieller Port an Pins 2 und 3

Dieser kurze Sketch leitet einfach alle vom GPS eingehenden Daten an den seriellen

Monitor des Arduino weiter. Wenn Thr GPS funktioniert und richtig verdrahtet ist, sollten
GPS-Daten auf dem seriellen Monitor erscheinen.

Diskussion

Sie initialisieren den emulierten SoftwareSerial-Port, indem Sie die Sende- und Empfangs-
pins iibergeben. Der folgende Code richtet den Port so ein, dass an Pin 2 empfangen und
an Pin 3 gesendet wird:

const int rxpin = 2; // GPS-Empfangspin

const int txpin = 3; // GPS-Sendepin

SoftwareSerial serial gps(rxpin, txpin); // Neuer serieller Port an Pins 2 und 3
Der txpin wird in diesem Beispiel nicht verwendet und kann (wie im vorigen Rezept
erldutert) auf 255 gesetzt werden, um Pin 3 frei zu lassen.

144 | Kapitel 4: Serielle Kommunikation

Die Syntax zum Lesen des emulierten Ports dhnelt stark dem des Lesens vom eingebauten
Port. Zuerst wird mit available() gepriift, ob ein Zeichen vom GPS eingegangen ist, und
dann wird es mit read() eingelesen.

Es ist wichtig, daran zu denken, dass serielle Software-Ports Zeit und Ressourcen ver-
brauchen. Ein emulierter serieller Port muss all das machen, was auch ein Hardware-Port
macht, muss dabei aber den gleichen Prozessor nutzen, mit dem Thr Sketch seine
eigentliche Arbeit erledigen will. Geht ein neues Zeichen ein, unterbricht der Prozessor
seine aktuelle Arbeit, um es zu verarbeiten. Das kann recht zeitaufwendig sein. Bei
4800 Baud braucht Arduino zum Beispiel etwa zwei Millisekunden, um ein einzelnes
Zeichen zu verarbeiten. Nun horen sich zwei Millisekunden nicht nach viel an, doch
stellen Sie sich vor, dass die Gegenstelle (z.B. das oben erwihnte GPS-Gerit) 200 bis 250
Zeichen pro Sekunde sendet. Dann verbringt Thr Sketch 40 bis 50 Prozent seiner Zeit
damit, die seriellen Daten zu empfangen. Da bleibt nur sehr wenig Zeit, diese Daten auch
tatsichlich zu verarbeiten. Das Fazit lautet, dass bei zwei seriellen Geriten das mit der
hoheren Bandbreitennutzung den eingebauten (Hardware-) Port nutzen sollte. Muss ein
viel Bandbreite benétigendes Gerit mit einem seriellen Software-Port verbunden werden,
muss der Rest des Sketches sehr effizient sein.

Daten von mehreren SoftwareSerial-Ports empfangen

Mit der SoftwareSerial-Bibliothek, die bei Arduino 1.0 mitgeliefert wird, konnen Sie
mehrere serielle »Soft-Ports« aufbauen. Das ist praktisch, wenn man beispielsweise
mehrere XBee-Radios oder serielle Displays im gleichen Projekt steuern will. Der Haken
ist, dass zu jedem Zeitpunkt nur einer dieser Ports aktiv Daten empfangen kann. Die
zuverldssige Kommunikation iiber einen Software-Port verlangt die ungeteilte Aufmerk-
samkeit des Prozessors, weshalb SoftwareSerial nur mit jeweils einem Port aktiv kom-
munizieren kann.

Es ist moglich, in einem Sketch etwas von zwei verschiedenen SoftwareSerial-Ports
gleichzeitig zu empfangen. Es gibt viele erfolgreiche Designs, die beispielsweise ein se-
rielles GPS tiiberwachen und dann spiter Daten von einem XBee verarbeiten. Die Losung
besteht darin, langsam zwischen ihnen zu wechseln und das zweite Gerit nur zu nutzen,
wenn die Ubertragung beim ersten abgeschlossen ist.

Nehmen wir zum Beispiel an, dass im folgenden Sketch ein entferntes XBee-Modul
Befehle sendet. Der Sketch verarbeitet den Befehls-Stream vom »xbee«-Port, bis er ein
Signal erhilt, dass er Daten des mit dem zweiten SoftwareSerial-Port verbundenen GPS-
Gerites verarbeiten soll. Der Sketch tiberwacht das GPS dann fiir 10 Sekunden — gerade
lang genug, um eine Ortung vornehmen zu kénnen —, bevor er sich wieder dem XBee
widmet.

Bei einem System mit mehreren »Soft-Ports« kann nur jeweils einer aktiv Daten emp-
fangen. Standardmiflig ist der »aktive« Port derjenige, fiir den begin() zuletzt aufgerufen
wurde. Sie kénnen den aktiven Port dndern, indem Sie dessen listen()-Methode auf-
rufen. listen() weist das SoftwareSerial-System an, den Datenempfang auf einem Port zu
unterbrechen und mit einem anderen Port fortzufahren.

4.14 Serielle Daten von zwei Geraten gleichzeitig empfangen | 145

Das folgende Code-Fragment zeigt, wie Sie einen Sketch entwerfen kénnen, der Daten
zuerst von einem und dann von einem anderen Port einliest:

/*

* MultiRX Sketch

* Daten von zwei seriellen Software-Ports empfangen

*/

#include <SoftwareSerial.h>

const int rxpinl = 2;

const int txpini = 3;

const int rxpin2 = 4;

const int txpin2 = 5;

SoftwareSerial gps(rxpini, txpin1); // GPSanPin2und3
SoftwareSerial xbee(rxpin2, txpin2); // xbee an Pin 4 und 5

void setup()

xbee.begin(9600);
gps.begin(4800);
xbee.listen(); // »xbee« ist aktives Gerat

void loop()
{

if (xbee.available() > 0) // xbee ist aktiv. Daten vorhanden?
if (xbee.read() =="y"') // xbee hat 'y'-Zeichen empfangen
gps.listen(); // Jetzt GPS verarbeiten

unsigned long start =millis(); // GPS-Abfrage beginnt
while (start + 100000 > millis())
// 10 Sekunden abfragen

if (gps.available() » 0) // Jetzt ist GPS aktiv
{

char c = gps.read();
// *** GPS-Daten hier verarbeiten

}
}

xbee.listen(); // Nach 10 Sekunden wieder xbee verarbeiten
}
}
}

Der Sketch ist so entworfen, dass er das XBee-Radio als aktiven Port behandelt, bis ein
y-Zeichen empfangen wird. An diesem Punkt wird das GPS zum aktiven Gerit. Nachdem
die GPS-Daten fiir 10 Sekunden verarbeitet wurden, wendet sich der Sketch wieder dem
XBee-Port zu. An einem inaktiven Port eingehende Daten werden einfach verworfen.

Beachten Sie, dass diese »aktiver Port«-Beschrinkung nur fiir mehrere Soft-Ports gilt.
Muss Thr Design wirklich Daten von mehr als einem seriellen Gerit simultan empfangen,
sollten Sie es an einen der eingebauten Hardware-Ports anschliefRen. Alternativ kénnen Sie
Thre Projekte tiber externe Chips, sog. UARTs, um zusitzliche Hardware-Ports erweitern.

146 | Kapitel 4: Serielle Kommunikation

4.15 Serielle Daten mit Processing Senden und Empfangen

Problem

Sie wollen die Processing-Entwicklungsumgebung nutzen, um serielle Daten zu senden
und zu empfangen.

Losung

Sie konnen Processing vom Download-Bereich der Processing-Website http://processing
.org herunterladen. Dateien stehen fir alle wichtigen Betriebssysteme zur Verfugung.
Laden Sie die Datei fiir Thr Betriebssystem herunter und entpacken Sie sie an dem Ort, an
dem Sie Anwendungen tblicherweise speichern. Bei einem Windows-Computer konnte
das ein Ort wie C:\Programme\Processing\ sein, bei einem Mac vielleicht /Programme/
Processing.app.

Wenn Sie Processing auf dem gleichen Computer installiert haben, auf dem auch die
Arduino-IDE liuft, dann miissen Sie in Processing nur noch den seriellen Port festlegen.
Der folgende Processing-Sketch gibt die verfiigbaren seriellen Ports aus:

/**

* GettingStarted

*

* Listet die verfligharen seriellen Ports auf
*und gibt empfangene Zeichen aus

*/

import processing.serial.*;

Serial myPort; // Serial-Objekt erzeugen
int portIndex =0; // Arduino-Port
int val; // Vom seriellen Port empfangene Daten

void setup()
{
size(200, 200);
println(Serial.list()); // Liste aller Ports ausgeben
println(" Verbindemit -> " + Serial.list()[portIndex]);
myPort = new Serial(this, Serial.list()[portIndex], 9600);
}

void draw()

if (myPort.available() > 0) // Wenn Daten verfiigbar sind,
{
val = myPort.read(); // einlesen und in val speichern
print(val);

4.15 Serielle Daten mit Processing Senden und Empfangen | 147

Falls Processing auf einem Computer lduft, auf dem die Arduino-Entwicklungsumgebung
nicht installiert ist, miissen Sie moglicherweise die Arduino-USB-Treiber installieren (was
in Kapitel 1 beschrieben wird).

Die Variable portIndex muss den Port angeben, der vom Arduino genutzt wird. Sie kénnen
die Portnummern im Processing-Textfenster (dem Bereich unter dem Quellcode, nicht
dem separaten Ausgabefenster, sehen. Siehe http://processing.org/reference/environment).
Rezept 1.4 zeigt, wie Sie den seriellen Port ermitteln kénnen, den Thr Arduino-Board nutzt.

148 | Kapitel 4: Serielle Kommunikation

KAPITEL 5
Einfacher digitaler und analoger Input

5.0 Einfiihrung

Die Fihigkeit des Arduino, digitale und analoge Eingiinge abzufragen, erlaubt es ihm, auf
Sie und die Welt um Sie herum zu reagieren. Dieses Kapitel stellt Techniken vor, die es
Thnen erlauben, niitzliche Dinge mit diesen Eingéingen anzustellen. Dies ist das erste vieler
noch folgender Kapitel, die elektrische Verbindungen zum Arduino behandeln. Wenn
Thnen ein Elektronik-Hintergrund fehlt, sollten Sie sich Anhang A zu elektronischen
Komponenten, Anhang B zu Schaltpldnen und Datenbléttern, Anhang C zum Schaltungs-
aufbau und Anhang E zur Hardware-Fehlersuche ansehen (alle Anhinge stehen auf
unserer Webseite als downloadbare PDF-Texte zur Verfiigung). Dariiber hinaus stehen
viele gute Einfithrungen zur Verfliigung. Drei fiir Arduino besonders relevante sind
Arduino fiir Einsteiger (ISBN 978-3-86899-232-8) von Massimo Banzi, Making Things
Talk ISBN 978-3-86899-162-8 von Tom Igoe und Die elektronische Welt mit Arduino
entdecken (ISBN 978-3-89721-319-7) von Erik Bartmann (beide O’Reilly; suchen Sie auf
oreilly.de). Andere Biicher, die Hintergrundwissen zu den in diesem und den nichsten
Kapiteln behandelten Themen bieten, sind Getting Started in Electronics von Forrest Mims
(Master Publishing) und Physical Computing von Tom Igoe (Cengage).

Wenn die Verdrahtung von Komponenten mit dem Arduino Neuland fiir
% Sie ist, miissen Sie sorgfiltig darauf achten, wie Sie Dinge anschlieRen und
mit Strom versorgen. Arduino verwendet einen recht robusten Controller-
Chip, der einiges vertrigt, doch Sie kénnen den Chip beschidigen, wenn Sie
die falsche Spannung anlegen oder Ausgabepins kurzschlieRen. Die meisten
Arduino-Controller-Chips werden mit 5 Volt betrieben, und Sie diirfen
keine externe Spannung an die Arduino-Pins anlegen, die iber dieser Grenze
liegt (bzw. 3,3 Volt, wenn der Arduino mit dieser Spannung betrieben wird).

Die meisten Arduino-Boards haben einen Sockel fiir den Haupt-Chip,
damit dieser entfernt und ersetzt werde kann. Falls der Chip beschidigt
wird, miissen Sie nicht gleich das ganze Board ersetzen.

| 149

Abbildung 5-1 zeigt die Anordnung der Pins bei einem Standard- Arduino-Board. Unter
http://www.arduino.cc/en/Main/Hardware finden Sie eine Liste aller offiziellen Boards,
zusammen mit Links zu Anschlussinformationen. Wenn Thr Board hier nicht aufgefihrt
ist, miissen Sie auf der Website des Herstellers nach Anschlussinformationen suchen.

0O000000 - 0On00aa0
=TT DIGITAL o=
I LED
Arduino
(]
[

- OO0 S22z WS,
(000000000000

Abbildung 5-1: Digital- und Analogpins bei einem Standard-Arduino-Board

Dieses Kapitel behandelt die Arduino-Pins, die als digitale und analoge Einginge dienen
konnen. Digitale Eingangspins erkennen das Vorhandensein oder Fehlen einer Spannung
am Pin. Analoge Eingangspins messen einen Spannungspegel an einem Pin.

Die Arduino-Funktion, die einen digitalen Eingang abfragt, ist digitalRead. Sie teilt dem
Sketch mit, ob an dem Pin eine Spannung anliegt (HIGH, 5 Volt) oder nicht (LOW, O Volt).
Die Arduino-Funktion, die einen Pin als Eingang konfiguriert, ist pinMode (pin, INPUT).

Bei einem typischen Board gibt es 14 Digitalpins (von 0 bis 13), die am oberen Rand von
Abbildung 5-1 zu sehen sind. Die Pins 0 und 1 (RX und TX) werden fir die USB-Ver-
bindung verwendet und sollten fiir nichts anderes genutzt werden. Sollten Sie bei einem
Standard-Board weitere Digitalpins benotigen, konnen Sie Analogpins als Digitalpins
nutzen (die Analogpins 0 bis 5 konnen als Digitalpins 14 bis 19 verwendet werden).

Arduino 1.0 hat fiir viele der Pins logische Namen eingefiihrt. Die Konstanten in Tabelle 5-1
konnen in allen Funktionen genutzt werden, die eine Pin-Nummer erwarten.

Tabelle 5-1: Bei Arduino 1.0 eingefiihrte Pin-Konstanten

Konstante Pin-Nummer Konstante Pin-Nummer

Ao Analoger Eingang 0 (Digital 14) LED BUILTIN Onboard-LED (Digital 13)
A1 Analoger Eingang 1 (Digital 15) SDA 12C Data (Digital 18)

A2 Analoger Eingang 2 (Digital 16) SCL 12C Clock (Digital 19)

A3 Analoger Eingang 3 (Digital 17) SS SPI Select (Digital 10)

150 | Kapitel 5: Einfacher digitaler und analoger Input

Tabelle 5-1: Bei Arduino 1.0 eingefiihrte Pin-Konstanten (Fortsetzung)

Konstante Pin-Nummer Konstante Pin-Nummer

A4 Analoger Eingang 4 (Digital 18) MOSI SPI Input (Digital 11)

A5 Analoger Eingang 5 (Digital 19) MISO SPI Output (Digital 12)
SCL SPI Clock (Digital 13)

Das Mega-Board verfiigt iiber wesentlich mehr digitale und analoge Pins. Die Digitalpins 0
bis 13 und die Analogpins 0 bis 5 befinden sich an der gleichen Stelle wie beim Standard-
Board, so dass fur das Standard-Board entwickelte Hardware- Shields auch auf den Mega
passen. Wie beim Standard-Board konnen Sie die Analogpins als Digitalpins nutzen, doch
beim Mega sind die Analogpins 0 bis 15 die Digitalpins 54 bis 69. Abbildung 5-2 zeigt die
Anschlussbelegung des Mega.

mva\—o

dhle

20 ey

AREFOY

2000
N PWM nd DIGITAL = 5288
\— Kommunikation — 2300
=
S
(=Y

CILED

[e)e]
[e)e]

oo 4004

Arduino Mega ool

52000353
/— ANALOG IN — and[QQ6nd

=i Kaalh s

— — — — — —

060000006000 0000000000)

O3RESET

Abbildung 5-2: Arduino Mega Board

Bei den meisten Boards ist die LED mit Pin 13 verbunden, und einige Rezepte nutzen sie als
Ausgabeanzeige. Wenn Thr Board keine LED an Pin 13 besitzt, sehen Sie sich Rezept 7.1 an,
um zu erfahren, wie man eine LED an einen digitalen Pin anschliefit.

Digitale Eingéinge nutzende Rezepte verwenden manchmal externe Widerstinde, um die
Spannung bereitzustellen, die digitalRead verlangt. Diese Widerstinde werden Pullup-
Widerstinde (weil sie die Spannung auf die 5V »hochziehen«, engl. »pull up«, mit denen
der Widerstand verbunden ist) oder Pulldown-Widerstinde (weil die Spannung auf 0 Volt
»heruntergezogen«, engl. »pull down«, wird) genannt. 10 K-Ohm (und mehr) funk-
tioniert. Informationen zu den in diesem Kapitel verwendeten Bauteilen finden Sie in
Anhang A.

Im Gegensatz zu Digitalwerten, die nur an oder aus sind, sind Analogwerte variabel. Der
Lautstirkeregler eines Gerits ist dafiir ein gutes Beispiel. Die Lautstirke ist nicht einfach
nur an oder aus, sonder variiert von laut bis leise. Viele Sensoren variieren die Spannung

5.0 Einfiihrung | 151

so, dass sie der Sensormessung entspricht. Arduino-Code verwendet eine Funktion
namens analogRead, um einen Wert zuriickzuliefern, der proportional zur Spannung ist,
die an den Analogpins anliegt. Der Wert liegt bei 0 fiir 0 Volt und 1023 fiir 5 Volt. Die
Werte entsprechen proportional der Spannung am Pin, d.h., 2,5 Volt (die Hilfte von
5 Volt) liefert einen Wert von etwa 511 (der Hilfte von 1023) zuriick. Sie erkennen sechs
analoge Eingangspins (mit 0 bis 5 gekennzeichnet) am unteren Ende von Abbildung 5-1.
Diese Pins konnen auch als Digitalpins 14 bis 19 genutzt werden, wenn sie fiir analoge
Aufgaben nicht gebraucht werden. Einige Analog-Rezepte nutzen ein Potentiometer (kurz
Poti, ein variabler Widerstand), um die Spannung an einem Pin zu variieren. Ein Wert von
10K ist die beste Wahl fiir ein Potentiometer, das an einen Analogpin angeschlossen
werden soll.

Die meisten Schaltungen in diesem Kapitel lassen sich recht einfach verdrahten, doch Sie
sollten die Anschaffung eines lotfreien Steckbretts in Erwigung ziehen, um die Verdrah-
tung externer Komponenten zu vereinfachen. Verschiedene Modelle wie das Jameco
20723 (zwei Busreihen pro Seite), das RadioShack 276-174 (eine Busreihe pro Seite), das
Digi-Key 438-1045-ND und das SparkFun PRT-00137 stehen zur Wahl.

Ein weiteres niitzliches Gerit ist ein einfaches Multimeter. Sie konnen nahezu jedes
verwenden, solange es die Spannung und den Widerstand messen kann. Durchgangs-
priifung und Strommessung sind nette zusitzliche Optionen. (Jameco 220812, Radio-
Shack 22-810 und SparkFun TOL-00078 bieten diese Features an.)

5.1 Einen Schalter verwenden

Problem

Thr Sketch soll auf das Schlieflen eines elektrischen Kontakts reagieren, etwa auf einen
Taster oder einen Schalter, oder ein anderes externes Bauelement, das eine elektrische
Verbindung herstellt.

Losung

Verwenden Sie digitalRead, um die Stellung eines Schalters zu ermitteln, der mit einem als
Eingang eingestellten Digitalpin des Arduino verbunden ist. Der folgende Code schaltet
eine LED ein, wenn eine Taste gedriickt wird (Abbildung 5-3 zeigt, wie das verschaltet
werden muss):
/*
Pushbutton Sketch
Schalter an Pin 2 steuert die LED an Pin 13

*/
const int ledPin = 13; // LED-Pin
const int inputPin = 2; // Eingangspin fiir Taster

void setup() {

152 | Kapitel 5: Einfacher digitaler und analoger Input

pinMode(ledPin, OUTPUT); // LED als Ausgang deklarieren
pinMode(inputPin, INPUT); // Taster als Eingang deklarieren

void loop(){
int val = digitalRead(inputPin); // Eingangswert einlesen

if (val == HIGH) // Eingang HICH?
{
digitalWrite(ledPin, HIGH); // LED einschalten, wenn Taster gedriickt
}
else
{
digitalWrite(ledPin, LOW); // LED ausschalten
}
}

00 /7

1
S=
=
VWA

- E o_zee ANALOG
OO 25588 e

Abbildung 5-3: Uber Pulldown-Widerstand angeschlossener Schalter
W N
- Bei Standard-Arduino-Boards ist eine LED integriert und fest mit Pin 13
s verschaltet. Ist das bei Ihrem Board nicht der Fall, zeigt Rezept 7.1, wie
%" man eine LED an einen Arduino-Pin anschliet.

Diskussion

Die setup-Funktion konfiguriert den LED-Pin als Ausgang (OUTPUT) und den Schalter-Pin
als Eingang (INPUT).

5.1 Einen Schalter verwenden | 153

Ein Pin muss im OUTPUT-Modus betrieben werden, damit digitalWrite die
Ausgangsspannung des Pins kontrollieren kann. Er muss den INPUT-Modus
nutzen, um den Digitaleingang lesen zu kénnen.

Die Funktion digitalRead iiberwacht die Spannung am Eingangspin (inputPin) und gibt
HIGH zuriick, wenn eine Spannung (5 Volt) anliegt, und LOW, wenn nicht (0 Volt). Genau
genommen wird jede Spannung iiber 2,5 Volt (der Hilfte der Versorgungsspannung) als
HIGH betrachtet und jede Spannung darunter als LOW. Ist der Pin nicht angeschlossen
(potentialfrei), kann der von digitalRead zuriickgelieferte Wert nicht eindeutig vorherge-
sagt werden (er kann HIGH oder LOW sein). Der Widerstand in Abbildung 5-3 stellt sicher,
dass die Spannung am Pin auf 0 sinkt, wenn der Taster nicht gedriickt ist, da er die
Spannung auf Masse (0 Volt) »runterzieht« (engl »pull down«). Wird der Taster gedriicke,
entsteht eine Verbindung zwischen dem Pin und +5 Volt, und der von digitalRead
gelesene Wert wechselt von LOW zu HIGH.

SchlieRen Sie nicht mehr als 5 Volt (bzw. 3,3 Volt bei 3,3-Volt-Boards) an
) die Digital- oder Analogpins an. Das konnte den Pin beschidigen und
moglicherweise den ganzen Chip zerstoren. Stellen Sie auch sicher, dass Sie
die 5 Volt nicht direkt (also ohne Widerstand) mit Masse verbinden. Das

beschidigt zwar den Arduino-Chip nicht, tut der Spannungsversorgung
aber nicht gut.

Im obigen Beispiel wird der Wert von digitalRead in der Variablen val gespeichert. Der ist
HIGH, wenn der Taster gedriickt wird, anderenfalls LOW.

Der in diesem Beispiel (und nahezu allen Beispielen in diesem Buch)
verwendete Taster stellt einen elektrischen Kontakt her, wenn man ihn
driickt. Anderenfalls ist der Kontakt unterbrochen. Diese Taster nennt
man Schliefer. Artikelnummern finden Sie auf der Website zum Buch
(http://shop.oreilly.com/product/0636920022244.do). Die andere Art Tas-
ter nennt sich Offner.

Der Ausgangspin, mit dem die LED verbunden ist, wird eingeschaltet, wenn val auf HICH
gesetzt wird. Die LED leuchtet dann.

Zwar sind beim Arduino alle Digitalpins standardmiRig als Eingiinge geschaltet, doch es
hat sich in der Praxis bewihrt, sie im Sketch explizit zu setzen, um sich bewusst zu
machen, welche Pins man verwendet.

Manchmal werden Sie dhnlichen Code sehen, der true statt HIGH verwendet. Beide Werte
sind austauschbar (und manchmal wird auch einfach die 1 verwendet). Ebenso ist false
mit LOW und 0 identisch. Verwenden Sie die Form, die die Logik Threr Anwendung am
besten ausdriickt.

Sie konnen nahezu jeden Schalter verwenden, aber die sog. taktilen Taster sind besonders
beliebt, weil sie giinstig sind und direkt auf ein Steckbrett aufgesteckt werden konnen.

154 | Kapitel 5: Einfacher digitaler und analoger Input

Einige Artikelnummern finden Sie auf der Website zu diesem Buch (http://shop.
oreilly.com/product/0636920022244.do).

Hier eine andere Moglichkeit, die Logik des obigen Sketches zu implementieren:

void loop()
{

digitalWrite(ledPin, digitalRead(inputPin)); // LED einschalten, wenn Eingangspin
// HIGH, sonst ausschalten
}

Hier wird der Zustand des Tasters gar nicht erst in einer Variablen gespeichert. Statt-
dessen wird die LED direkt tiber den Wert ein- und ausgeschaltet, der von digitalRead
eingelesen wird. Das ist eine praktische Kurzform, doch wenn Thnen das zu knapp ist,
konnen Sie auch die andere Variante nutzen. Einen praktischen Performance-Unterschied
gibt es nicht.

Der nachfolgende Pullup-Code entspricht dem der Pulldown-Version, kehrt aber die
Logik um: Der Wert des Pins sinkt auf LOW, wenn der Taster gedriickt wird (die dazu-
gehorige Schaltung sehen Sie in Abbildung 5-4). Stellen Sie sich das so vor, dass die
Spannung »runtergeht«, wenn Sie den Taster driicken:

void loop()
{

int val = digitalRead(inputPin); // Eingangswert einlesen
if (val == HIGH) // Eingang HICH?

digitalWrite(ledPin, LOW); // LED ausschalten
else

digitalWrite(ledPin, HIGH); // LED einschalten

}
}
B QQQQQLENQQ
=377 DiaAL =
Arduino s
O 0 \'
i S 10k
Ohm

ANALOG

O — NN LN

=555
oeoslesesss

oo

Abbildung 5-4: Uber Pullup-Widerstand angeschlossener Taster

5.1 Einen Schalter verwenden | 155

Siehe auch

Die Arduino-Referenz zu digitalRead: http://arduino.cc/en/Reference/DigitalRead
Die Arduino-Referenz zu digitalWrite: http://arduino.cc/en/Reference/DigitalWrite
Die Arduino-Referenz zu pinMode: http://arduino.cc/en/Reference/PinMode

Die Arduino-Referenzen zu Konstanten (HIGH, LOW, etc.): http://arduino.cc/en/Reference/
Constants

Arduino-Tutorial zu Digitalpins: http://arduino.cc/en/Tutorial/DigitalPins

5.2 Taster ohne externen Widerstand verwenden

Problem

Sie wollen eine Schaltung vereinfachen, indem Sie Schalter ohne externe Pullup-Wider-
stande anschlielen.

Losung

Wie in Rezept 5.1, erldutert, bendtigen digitale Eingiinge einen Widerstand, um den Pin
auf einem bekannten Pegel zu halten, wenn der Taster nicht gedriickt wird. Arduino
besitzt interne Pullup-Widerstinde, die aktiviert werden konnen, indem man HICH an
einen Pin im INPUT-Modus schreibt (den dazugehorigen Code sehen Sie in Rezept 5.1).

Fiir dieses Beispiel wird der Taster wie in Abbildung 5-5 zu sehen verschaltet. Das ent-
spricht eigentlich genau der Schaltung aus Abbildung 5-4, aber ohne den externen
Widerstand.

e QQQQQIENQQ
£33 e ==
OLed
Arduino o

__NSIo8 -

Abbildung 5-5: Verschaltung des Tasters mit internem Pullup-Widerstand

= ANALOG
o) 000000

156 | Kapitel 5: Einfacher digitaler und analoger Input

Der Taster ist einfach mit Pin 2 und »Gnd« verbunden. Gnd steht fiir Ground, also Masse,
und ist per Definition mit 0 Volt definiert:
/*
Pullup Sketch
Taster an Pin 2 steuert die LED an Pin 13

*/
const int ledPin = 13; // Ausgangspin flr LED
const int inputPin = 2; // Eingangspin fir Taster

void setup() {
pinMode(ledPin, OUTPUT);
pinMode(inputPin, INPUT);
digitalWrite(inputPin,HICH); // Internen Pullup fur inputPin einschalten

}
void loop(){
int val = digitalRead(inputPin); // Einganswert einlesen

if (val == HIGH) // Eingang HICH?
{
digitalWrite(ledPin, HICH); // LED einschalten
}
else

digitalWrite(ledPin, LOW); // LED ausschalten

Auf dem Arduino-Board gibt es mehr als einen Masse-Anschluss. Sie sind
alle untereinander verbunden, d.h., Sie kénnen sich den aussuchen, der am
besten passt.

Diskussion

Sie aktivieren den internen Pullup-Widerstand, indem Sie ein HIGH an den Pin im
Eingangsmodus senden. Ein digitalWrite(pin, HICH) fiir einen Pin im Eingangsmodus ist
vielleicht nicht besonders intuitiv, aber man gewshnt sich daran. Sie kénnen den Pullup
deaktivieren, indem Sie ein LOW an den Pin senden.

Wenn Sie in Threr Anwendung den Pinmodus zwischen Ein- und Ausgang wechseln,
miissen Sie daran denken, dass der Zustand des Pins bei HIGH oder LOW bleibt, wenn Sie den
Zustand dndern. Ist also ein Ausgangspin auf HIGH gesetzt, wenn Sie in den Eingangs-
modus wechseln, bleibt der Pullup aktiv und der Pin erzeugt beim Lesen ein HICH. Ist der
Pin mit digitalWrite(pin, LOW) auf LOW gesetzt worden und wechseln Sie dann mit
pinMode(pin, INPUT) in den Eingabemodus, bleibt der Pullup aus. Schalten Sie einen
Pullup ein, setzt das Wechsel in den Ausgangsmodus den Pin auf HIGH, was beispielsweise
ungewollt eine angeschlossene LED aufleuchten lassen konnte.

Die internen Pullup-Widerstinde sind 20 K-Ohm grof$ (zwischen 20K und 50K). Das ist
fiur die meisten Anwendungen geeignet, doch einige Bauelemente verlangen kleinere
Widerstinde. Sehen Sie auf dem Datenblatt des Bauelements nach, welche internen
Pullups geeignet sind und welche nicht.

5.2 Taster ohne externen Widerstand verwenden | 157

5.3 Das SchlieBen eines Schalters zuverlassig erkennen

Problem

Sie wollen falsche Eingabewerte aufgrund prellender Kontakte vermeiden (das Prellen
erzeugt falsche Signale, wenn die Kontakte des Schalters schlieRen oder 6ffnen). Diese
falschen Signale zu eliminieren, bezeichnet mal als Entprellen.

Losung

Es gibt viele Moglichkeiten, dieses Problem zu losen. Hier verwenden wir die Schaltung
aus Abbildung 5-3 from Rezept 5.1:

/*

* Debounce Sketch

* Taster an Pin 2 steuert die LED an Pin 13

* Entprell-Logik verhindert Fehlablesung des Taster-Zustands

*/

const int inputPin = 2; // Eingangspin
const int ledPin = 13; // Ausgangspin
const int debounceDelay = 10; // Wartezeit zur Stabilisierng in Millisekunden

// debounce gibt wahr zuriick, wenn der Schalter am angegebenen Pin geschlossen und stabil ist
boolean debounce(int pin)

boolean state;
boolean previousState;

previousState = digitalRead(pin); // Zustand des Schalters speichern
for(int counter=0; counter < debounceDelay; counter++)

delay(1); // 1 Millisekunde warten
state = digitalRead(pin); //Pineinlesen
if(state !=previousState)

counter =0; // Zahler zurlicksetzen, wenn sich der Zustand dndert
previousState = state; // und aktuellen Zustand speichern

}

// Zustand des Schalters war Uber die Entprell-Periode hinaus stabil
return state;

}

void setup()

pinMode(inputPin, INPUT);
pinMode(ledPin, OUTPUT);
}

void loop()

if (debounce(inputPin))
{

158 | Kapitel 5: Einfacher digitaler und analoger Input

digitalWrite(ledPin, HICH);
}
}

Die debounce-Funktion wird mit der Nummer des Pins aufgerufen, der entprellt werden
soll. Die Funktion liefert true zuriick, wenn der Schalter gedriickt wurde und stabil ist. Sie
gibt false zuriick, wenn nichts gedriickt wurde oder der Zustand nicht stabil ist.

Diskussion

Die debounce-Funktion priift, ob der Schalter nach einer gewissen Zeitspanne noch den
gleichen Wert zuritickliefert. Diese Zeitspanne muss so lang sein, dass der Schalter nicht
mehr prellt. Moglicherweise miissen Sie eine lingere Zeitspanne festlegen (manche
Schalter brauchen 50 ms und mehr). Die Funktion priift iiber die in debounce definierte
Dauer wiederholt den Zustand des Schalters. Bleibt der Schalterwert fiir diese Zeitspanne
gleich, wird dieser Wert zuriickgegeben (true, wenn er geschlossen ist, anderenfalls
false). Andert sich der Zustand innerhalb der Entprellperiode, wird der Zihler zuriick-
gesetzt und die Prifung wird innerhalb der Entprellzeit wiederholt.

Wenn Sie mit Pullup- anstelle von Pulldown-Widerstinden arbeiten (siehe Rezept 5.2),
miissen Sie den von der debounce-Funktion zuriickgelieferten Wert umkehren, da der
Zustand auf LOW fillt, wenn der Schalter bei Pullups gedriickt wird. Die Funktion sollte
aber true (true ist das Gleiche wie HIGH) zuriickgeben, wenn der Taster gedriickt wird. Der
debounce-Code fiir Pullups ist nachfolgend zu sehen. Nur die letzten vier (hervorgeho-
benen) Zeilen wurden gedndert:

boolean debounce(int pin)

{
boolean state;
boolean previousState;

previousState = digitalRead(pin); // Zustand des Schalters speichern
for(int counter=0; counter < debounceDelay; counter++)
{

delay(1); // 1 Millisekunde warten

state = digitalRead(pin); //Pineinlesen
if(state !=previousState)

counter = 0; // Zéhler zuriicksetzen, wenn sich der Zustand dndert
previousState = state; // und aktuellen Zustand speichern
}
}

// Zustand des Schalters war tiber die Entprell-Periode hinaus stabil
if(state == LOW) // LOW heiBt gedriickt (da Pullups verwendet werden)
return true;
else
return false;

}

Zu Testzwecken konnen Sie eine count-Variable einbinden, um die Zahl der Tastendrucke
auszugeben. Wenn Sie das im seriellen Monitor verfolgen (siehe Kapitel 4), erkennen Sie,
ob der Zihler bei jedem Tastendruck um 1 erhoht wird. Erhéhen Sie den Wert fiir

5.3 Das SchlieBlen eines Schalters zuverlassig erkennen | 159

debounceDelay, bis Zihler und Tastendrucke iibereinstimmen. Das folgende Code-Frag-
ment gibt einen count-Wert bei Nutzung der debounce-Funktion aus:

int count; // Enthalt die Zahl der Tastendrucke
void setup()

pinMode(inPin, INPUT);
pinMode(outPin, OUTPUT);
Serial.begin(9600); // Diese Zeile in setup-Funktion einfiigen

void loop()
{

if(debounce(inPin))

digitalWrite(outPin, HICH);
count++; // increment count
Serial.println(count); // Zdhler im seriellen Monitor ausgeben
}
}

Diese debounce()-Funktion funktioniert mit einer beliebigen Zahl von Schaltern, doch Sie
miissen sicherstellen, dass die genutzten Pins im Eingangsmodus sind.

Ein potentieller Nachteil dieser Methode liegt bei einigen Anwendungen darin, dass beim
Aufruf der debounce-Funktion alles warten muss, bis der Schalter stabil ist. In den meisten
Fillen spielt das keine Rolle, doch Thr Sketch konnte sich um andere Dinge kiimmern
miissen, statt darauf zu warten, dass sich der Schalter stabilisiert. Sie kénnen den Code in
Rezept 5.4 nutzen, um dieses Problem zu umgehen.

Siehe auch

Der bei Arduino mitgelieferte Debounce-Beispiel-Sketch. Aus dem File-Menii wihlen Sie
Examples—Digital>Debounce

5.4 Ermitteln, wie lange eine Taste gedriickt wird

Problem

Thre Anwendung muss bestimmen, wie lange ein Schalter seinen aktuellen Zustand bei-
behalten hat. Oder Sie wollen einen Wert inkrementieren, wihrend ein Taster gedriickt
wird, und die Inkrementierungsrate soll sich erhthen, je linger die Taste gedriickt wird
(viele elektronische Uhren arbeiten so). Oder Sie wollen wissen, ob eine Taste lange genug
gedriickt wurde, um einen stabilen Zustand erreicht zu haben (siehe Rezept 5.3).

Losung

Der folgende Sketch demonstriert die Nutzung eines Countdown-Timers. Die Verschal-
tung entspricht der aus Abbildung 5-5 aus dem Rezept Rezept 5.2. Beim Driicken des

160 | Kapitel 5: Einfacher digitaler und analoger Input

Tasters wird ein Timer durch das Erhéhen eines Timer-Zihlers gesetzt. Das Loslassen des
Tasters startet den Countdown. Der Code entprellt die Taste und erhoht die Zihlerrate, je
langer der Taster gedriickt bleibt. Der Zihler wird am Anfang um 1 inkrementiert, wenn
der Taster (nach dem Entprellen) gedriickt wird. Wird der Taster langer als eine Sekunde
gehalten, erhoht sich die Inkrement-Rate um das Vierfache. Wird er linger als vier
Sekunden gedriickt, erhoht sie sich um das Zehnfache. Wird der Taster losgelassen,
startet der Countdown. Sobald der Zihler bei 0 ankommt, wird ein Pin auf HIGH gesetzt
(in diesem Beispiel wird die LED eingeschaltet):

/*

SwitchTime Sketch

Countdown-Timer mit einem Dekrement von 1/10 Sekunde.

Schaltet bei 0 die LED ein

Taster driicken erhht den Zahler
Léngeres Driicken erhoht die Inkrement-Rate

*/

const int ledPin = 13; // Ausgangspin

const int inPin = 2; // Eingangspin

const int debounceTime = 20; // Zeit in Millisekunden

// bis sich der Schalter stabilisiert
const int fastIncrement = 1000; // Nach dieser Zeitspanne (in Millisekunden)
// schneller erhohen
const int veryFastIncrement = 4000; //Und nach dieser Zeitspanne
// noch schneller erhdhen
int count = 0; // Zahler wird jede zehntel Sekunde dekrementiert,
// bis die 0 erreicht ist

void setup()
{
pinMode(inPin, INPUT);
digitalWrite(inPin, HICH); // Pullup-Widerstand aktivieren
pinMode(ledPin, OUTPUT);
Serial.begin(9600);

void loop()
{

int duration = switchTime();

if(duration > veryFastIncrement)
count = count + 10;

else if (duration > fastIncrement)
count = count + 4;

else if (duration > debounceTime)
count = count +1;

else

{

// Taster nicht gedriickt, also Timer bedienen
if(count == 0)

digitalWrite(ledPin, HIGH); // LED einschalten, wenn Zdhler auf 0
else

5.4 Ermitteln, wie lange eine Taste gedriickt wird | 161

{
digitalWrite(ledPin, LOW); // LED ausschalten, wenn Z&hler nicht o,
count = count - 1; // und Zahler dekrementieren

}
}

Serial.println(count);
delay(100);

// Zeit inMillisekunden zurlickgeben, die der Taster gedriickt (LOW) wurde
long switchTime()

// Statische Variablen - eine Erkldrung finden Sie in der Diskussion
static unsigned long startTime =0; // Zeit, bei der die erste Zustandsanderung erkannt wurde
static boolean state; // Aktueller Zustand des Tasters

if(digitalRead(inPin) !=state) // Prifen, ob sich der Zustand des Tasters gedndert hat
{

state = | state; // Ja, Zustand invertieren
startTime =millis(); // Zeit speichern

if(state == LOW)

returnmillis() - startTime; // Taster gedriickt, Zeit in Millisekunden zuriickgeben
else

return 0; // Wir geben 0 zuriick, wenn der Taster nicht gedriickt wurde (HIGH ist);

}

Diskussion

Das Herzstiick dieses Rezepts bildet die switchTime-Funktion. Sie gibt die Zeit in Milli-
sekunden zuriick, wihrend der der Taster gedriickt war. Da das Rezept die internen
Pullup-Widerstinde nutzt (siehe Rezept 5.2), gibt digitalRead beim Taster-Pin LOW zu-
riick, wenn der Taster gedriickt wurde.

Im loop wird der Riickgabewert von switchTime untersucht und dann entschieden, was
weiter passieren soll. Wurde der Taster lange genug fiir das héchste Inkrement gedriicke,
wird der Zihler um diesen Wert erhoht. Ist das nicht der Fall, wird gepriift, ob der
fast-Wert verwendet werden soll. Ist auch das nicht der Fall, wird tiberpriift, ob die Taste
lange genug gedriickt wurde, um ein Prellen zu verhindern, und der Zihler wird um den
Minimalwert erhoht. Jeweils einer dieser Fille kann eintreten, und wenn keiner true ist,
wurde der Taster nicht gedriickt, oder nicht lange genug, um entprellt zu sein. Der
Zidhlerwert wird dann untersucht und die LED bei O eingeschaltet. Ist der Zihler noch
nicht bei 0 angekommen, bleibt die LED aus, und der Zihler wird dekrementiert.

Sie konnen die switchTime-Funktion auch nur zum Entprellen eines Tasters nutzen. Der
folgende Code nutzt die switchTime-Funktion zum Entprellen:

// Zeit inMillisekunden, die der Taster zur Stabilisierung braucht
const int debounceTime = 20;

if(switchTime() > debounceTime);
Serial.print("Taster ist entprellt");

162 | Kapitel 5: Einfacher digitaler und analoger Input

Dieser Entprell-Ansatz ist bei mehr als einem Taster recht praktisch, weil Sie einfach
schauen konnen, ob ein Taster schon entprellt ist, und sich dann anderen Aufgaben zu-
wenden konnen, wihrend sich sein Zustand stabilisiert. Um das zu implementieren,
miissen Sie den aktuellen Zustand des Tasters (gedriickt oder nicht) und den Zeitpunkt
der letzten Zustandsinderung speichern. Auch das lisst sich auf unterschiedliche Art
losen — in diesem Beispiel verwenden Sie eine separate Funktion fiir jeden Taster. Sie
konnen die Variablen fiir alle Taster zu Beginn des Sketches als globale Variablen de-
finieren (»global«, weil sie von iiberall zuginglich sind). Doch es ist praktischer, die
Variablen fiir jeden Taster innerhalb der Funktion vorzuhalten.

Um die Werte von Variablen zu erhalten, die in Funktionen definiert sind, arbeitet man
mit statischen Variablen. Statische Variablen innerhalb einer Funktion behalten die Werte
auch zwischen den Funktionsaufrufen bei. Der zuletzt gesetzte Wert steht also auch noch
zur Verfagung, wenn die Funktion beim nachsten Mal aufgerufen wird. In dieser Hinsicht
dhnelt eine statische Variable einer globalen Variablen (die tiblicherweise am Anfang des
Sketches, auRerhalb einer Funktion deklariert wurde), die Sie aus anderen Rezepten
kennen. Doch im Gegensatz zu globalen Variablen sind statische Variablen nur innerhalb
dieser Funktion erreichbar. Der Vorteil statischer Variablen besteht darin, dass sie von
anderen Funktion nicht versehentlich geindert werden kénnen.

Der folgende Sketch zeigt beispielhaft, wie man separate Funktionen fir verschiedene
Taster hinzufiigen kann. Die Verschaltung entspricht der aus Rezept 5.2. Der zweite
Taster ist verschaltet wie der erste (siehe Abbildung 5-5), ist aber mit Pin 3 und Masse
verbunden:

/*

SwitchTimeMultiple Sketch

Gibt aus, wie lange mehrere Taster gedriickt wurden

*/
const int switchAPin =2; // Pin fir Taster A
const int switchBPin = 3; // Pin fiir Taster B

// Funktionen mit Referenzen miissen explizit deklariert werden
unsigned long switchTime(int pin, boolean &state, unsigned long 8startTime);

void setup()

pinMode(switchAPin, INPUT);
digitalWrite(switchAPin, HICH); // Pullup aktivieren
pinMode(switchBPin, INPUT);
digitalWrite(switchBPin, HICH); // Pullup aktivieren
Serial.begin(9600);

}

void loop()

{

unsigned long time;
Serial.print("Zeit fir Taster A=");

time = switchATime();
Serial.print(time);

5.4 Ermitteln, wie lange eine Taste gedriickt wird | 163

Serial.print(", Zeit fir Taster B=");
time = switchBTime();
Serial.println(time);

delay(1000);

unsigned long switchTime(int pin, boolean 8state, unsigned long &startTime)

if(digitalRead(pin) !=state) // Zustandsdnderung des Tasters uberpriifen
{

state = | state; //Ja, Status invertieren
startTime =millis(); // Zeit speichern

if(state == LOW)

returnmillis() - startTime; // Zeit inMillisekunden zuriickgeben
else

return 0; // 0 zuriickgeben, wenn Taster nicht gedrickt wurde (HICH ist);

}

long switchATime()

// Diese Variablen sind statisch - Erlduterung im Text

// Zeitpunkt der ersten erkannten Zustandsanderung des Tasters
static unsigned long startTime = 0;

static boolean state; // Aktueller Zustand des Tasters
return switchTime(switchAPin, state, startTime);

}

long switchBTime()

// Diese Variablen sind statisch - Erlduterung im Text

// Zeitpunkt der ersten erkannten Zustandsanderung des Tasters
static unsigned long startTime = 0;

static boolean state; // Aktueller Zustand des Tasters
return switchTime(switchBPin, state, startTime);

}

Die Zeitberechnung erfolgt in der Funktion switchTime(). Diese Funktion untersucht und
aktualisiert Zustand und Dauer des Tasters. Die Funktion verwendet Referenzen zur Ver-
waltung der Parameter. Referenzen wurden in Rezept 2.11 erklirt. Eine separate Funktion
fur jeden Taster (switchATime() und switchBTime()) wird genutzt, um Startzeit und Zu-
stand jedes Tasters festzuhalten. Da die Variablen, die diese Werte enthalten, als statisch
deklariert sind, bleiben die Werte auch erhalten, wenn die Funktion verlassen wird. Die
Variablen innerhalb einer Funktion vorzuhalten, stellt sicher, dass die richtige Variable
verwendet wird. Die von den Tastern verwendeten Pins sind in globalen Variablen de-
klariert, da die Werte von setup zur Konfiguration der Pins benétigt werden. Da diese
Variablen als const deklariert sind, erlaubt der Compiler keine Anderung ihrer Werte,
d.h., es gibt keine Moglichkeit, sie im Sketch-Code versehentlich zu dndern.

Die Sichtbarkeit von Variablen zu beschrianken, wird wichtiger, je komplexer die Projekte
werden. Die Arduino-Umgebung bietet hierfiir aber eine elegantere Losung. In Rezept 16.4
wird beschrieben, wie man so etwas tiber Klassen implementiert.

164 | Kapitel 5: Einfacher digitaler und analoger Input

5.5 Von einer Tastatur lesen

Problem

Sie besitzen eine Matrix-Tastatur und wollen sie in Threm Sketch abfragen. Sie kénnten
beispielsweise eine telefonartige Tastatur wie die SparkFun COM-08653 mit 12 Tasten
nutzen wollen.

Losung
Verschalten Sie die Zeilen und Spalten der Tastatur wie in Abbildung 5-6 zu sehen.
—1 1 2 3
RESETY
o] 4 5 6
A sy
GndQ
GndQ
R vinQ 7 8 9
AREF
DB Sl L
i
U 8 L
100 NN
I o
83 Col 1 —
y. 45
N e Row 0 [0]0/00000]
63 Row3
503 Col0
O 413 (ol 2
3[3—— Row2
2[F——Row1
pde |
R0 O —I

Abbildung 5-6: Verschaltung der SparkFun-Tastatur

Wenn Sie den Arduino wie in Abbildung 5-6 mit der Tastatur verschaltet haben, kénnen
Sie mit dem folgenden Sketch {iber den seriellen Monitor verfolgen, welche Tasten ge-
driickt worden sind:

/*

Keypad Sketch

gibt gedriickte Tasten Uber den seriellen Port aus
*/

const int numRows = 4; // Zeilen der Tastatur
const int numCols = 3; // Spalten der Tastatur
const int debounceTime = 20; // Zeit in Millisekunden, bis sich die Taste stabilisiert

5.5 Von einer Tastatur lesen | 165

// keymap definiert die Zeichen, die zurilickgegeben werden, wenn die entsprechende Taste gedriickt
wird
const char keymap[numRows] [numCols] = {

// Diese Arrays bestimmen die Pins, die fiir die Zeilen und Spalten verwendet werden
const int rowPins[numRows] ={ 7, 2, 3, 6 }; // Zeilen 0 bis 3
const int colPins[numCols] ={ 5, 8, 4}; //Spaltenobis2

void setup()
{

Serial.begin(9600);

for (int row = 0; TOW < NUMROWS ; TOW++)

{
pinMode(rowPins[row], INPUT); // Pins fir Zeilen als Eingdnge schalten
digitalWrite(rowPins[row],HIGH); // Pullups aktivieren

for (int column = 0; column < numCols; column++)

pinMode(colPins[column],OUTPUT); // Pins flr Spalten als Ausgédnge schalten
digitalWrite(colPins[column],HIGH); // Alle Spalten sind inaktiv

}
}

void loop()
{
char key = getKey();
if(key!=0){ //IstdasZeichennichto,
// wurde eine gliltige Taste gedriickt
Serial.print("Taste: ");
Serial.println(key);

}
}
// gibt gedriickte Taste zuriick bzw. 0, wenn keine Taste gedriickt wurde
char getKey()
{
char key = 0; // 0 bedeutet, es wurde keine Taste gedriickt

for(int column = 0; column < numCols; column++)
digitalWrite(colPins[column],LOW); // Aktuelle Spalte aktivieren.
for(int row = 0; row < numRows; row++) //Alle Zeilen auf
// Tastendruck untersuchen.

if(digitalRead(rowPins[row]) == LOW) // Taste gedriickt?

delay(debounceTime); // Entprellen while(digitalRead(rowPins[row]) == LOW)
5 // Auf Tastenfreigabe warten
key = keymap[row][column]; // Festhalten, welche
// Taste gedriickt wurde.
}
}

166 | Kapitel 5: Einfacher digitaler und analoger Input

digitalWrite(colPins[column],HIGH); // Aktuelle Spalte deaktivieren.

return key; // gedriickte Taste (oder 0) zuriickgeben

}

Dieser Sketch funktioniert nur dann, wenn die Verschaltung mit dem Code iiberein-
stimmt. Tabelle 5-2 zeigt, welche Zeilen und Spalten mit welchen Arduino-Pins verbun-
den sein miissen. Wenn Sie eine andere Tastatur verwenden, miissen Sie die Verbindun-
gen fuir die Zeilen und Spalten auf dem Datenblatt nachsehen. Achten Sie auf die richtige
Verschaltung, da es anderenfalls zu Kurzschliisssen kommen kann, die den Controller
beschidigen konnen.

Tabelle 5-2: Zuordnung der Arduino-Pins zum SparkFun-Anschluss und den Tastatur-Zeilen/-Spalten

Arduino-Pin Tastatur-Anschluss Tastatur-Zeile/-Spalte
2 7 Zeile 1

3 6 Zeile 2

4 5 Spalte 2

5 4 Spalte 0

6 3 Zeile 3

7 2 Zeile 0

8 1 Spalte 1

Diskussion

Matrix-Tastaturen bestehen tblicherweise aus (normal offenen) Tastern, die eine Zeile
mit einer Spalte verbinden, wenn man sie driickt. (Ein »normal offener« Taster stellt die
elektrische Verbindung her, wenn er gedriickt wird.) Abbildung 5-6 zeigt, wie die internen
Leitungen die Zeilen und Spalten der Tastatur mit dem Tastaturanschluss verbinden. Jede
der vier Zeilen ist mit einem Eingangspin und jede der Spalten mit einem Ausgangspin
verbunden. Die setup-Funktion setzt die Pin-Modi und aktiviert die Pullup-Widerstinde
fiir die Eingangspings (siehe hierzu die Pullup-Rezepte zu Beginn des Kapitels).

Die Funktion getkey setzt nacheinander die Pins fiir jede Spalte auf LOW und priift dann, ob
einer der Zeilen-Pins LOW ist. Da Pullup-Widerstinde genutzt werden, sind die Spalten
HIGH, bis eine Taste gedriickt wird (das Driicken einer Taste erzeugt ein LOW-Signal am
Eingangspin). Ein LOW zeigt an, dass die Taste fur die Zeile und Spalte gedriickt wird. Eine
Zeitverzogerung stellt sicher, dass die Taste nicht prellt (siche Rezept 5.3). Der Code
wartet dann, bis die Taste losgelassen wird, und das mit der Taste verkniipfte Zeichen
wird aus dem keymap-Array herausgesucht und zuriickgegeben. Eine 0 wird zuriickgege-
ben, wenn keine Taste gedriickt wurde.

Eine Bibliothek im Arduino Playground arbeitet dhnlich wie das obige Beispiel, bietet aber
eine groflere Funktionalitit. Die Bibliothek vereinfacht die Arbeit mit einer unterschied-
lichen Anzahl von Tasten und kann sich einige Pins auch mit einem LCD teilen. Sie finden
die Bibliothek unter http://www.arduino.cc/playground/Main/KeypadTutorial.

5.5 Von einer Tastatur lesen | 167

Siehe auch

Weitere Informationen zur SparkFun 12-Tasten-Tastatur finden Sie unter hitp://www.
sparkfun.com/commerce/product_info.php?products_id=8653.

5.6 Analogwerte einlesen

Problem

Sie wollen die Spannung an einem Analogpin einlesen. Vielleicht wollen Sie den Wert
eines Potentiometers (Potis) abfragen, oder eines Bauelements oder Sensors, der eine
Spannung zwischen 0 und 5 Volt zuriickgibt.

Losung

Der folgende Sketch liest die Spannung an einem Analogpin ein und lisst eine LED mit
einer Geschwindigkeit blinken, die proportional zu dem Wert ist, den analogRead zuriick-
gibt. Die Spannung wird mit einem Potentiometer geregelt, der wie in Abbildung 5-7
angeschlossen ist:

/%

Pot Sketch

LED mit einer Geschwindigkeit blinken lassen, die durch die Position eines Potentiometers

bestimmt wird
*/

const int potPin=0; // Eingangspin fiir Potentiometer
const int ledPin=13; // Pin fir LED
intval = 0; // Diese Variable enthdlt den Wert vom Sensor

void setup()
{

pinMode(ledPin, OUTPUT); // ledPin als Ausgang deklarieren
}

void loop() {
val = analogRead(potPin); // Spannung am Poti einlesen
digitalWrite(ledPin, HIGH); // ledPin einschalten

delay(val); // Blinkgeschwindigkeit (in Millisekunden) wird durch Poti-Wert bestimmt
digitalwrite(ledPin, LOW); // ledPin ausschalten
delay(val); // LED bleibt die gleiche Zeitspanne aus

168 | Kapitel 5: Einfacher digitaler und analoger Input

A

R Analog In 03
13

D 1o

U He

|

R wk
6ndQ Pot

0 s

Abbildung 5-7: Ein Potentiometer mit dem Arduino verbinden

Diskussion

Dieser Sketch nutzt die Funktion analogRead, um die Spannung am Schleifer (dem
mittleren Pin) des Potentiometers einzulesen. Ein Poti besitzt drei Pins, von denen zwei
mit einem resistiven Material verbunden sind, wihrend der dritte Pin (iiblicherweise der
mittlere) mit einem Schleifer verbunden ist, den man drehen kann, um den Widerstand
beliebig einzustellen. Wihrend das Poti gedreht wird, erhoht sich der Widerstand zwi-
schen dem Schleifer und einem der Pins, wihrend er zwischen Schleifer und dem anderen
Pin sinkt. Das Schaltschema in Abbildung 5-7 verbildlicht, wie ein Potentiometer funk-
tioniert. Bewegt man den Schleifer (die Linie mit dem Pfeil) nach unten, verringert sich der
Widerstand zur Masse hin, wihrend er sich zu 5V hin erhéht. Wihrend sich der Schleifer
nach unten bewegt, nimmt die Spannung am Analogpin ab (bis zu einem Minimum von
0 Volt). Bewegt man den Schleifer nach oben, tritt das Gegenteil ein, d.h., die Spannung
am Pin steigt (bis auf ein Maximum von 5 Volt).

W w
o Wenn die Spannung am Pin sinkt (und nicht steigt), wenn Sie den Poti
.'s\ »hochdrehen«, vertauschen Sie einfach die Anschliisse von +5 Volt und

N
&0 Masse.

Die Spannung wird mit analogRead gemessen. Der zuriickgelieferte Wert ist proportional
zur tatsdchlichen Spannung am Analogpin. Der Wert 0 wird zuriickgegeben, wenn 0 Volt
am Pin anliegen, und 1023 bei 5 Volt. Jeder Wert dazwischen ist proportional zum Ver-
héltnis der Spannung am Pin und 5 Volt.

Potentiometer mit einem Wert von 10K-Ohm sind fiir den Anschluss an Analogpins die
beste Wahl. Empfohlene Artikelnummern finden Sie auf der Website zu diesem Buch
(http://shop.oreilly.com/product/0636920022244.do).

5.6 Analogwerte einlesen | 169

potPin muss nicht als Eingang geschaltet werden. (Das geschieht bei jedem
Aufruf von analogRead automatisch.)

Siehe auch
Tipps zum Lesen von Schaltplinen finden Sie in Anhang B.
Arduino-Referenz zu analogRead: http://www.arduino.cc/en/Reference/AnalogRead

Arduino fiir Einsteiger (ISBN 978-3-86899-233-5) von Massimo Banzi

5.7 Wertebereiche andern

Problem

Sie wollen einen Wertebereich dndern, etwa fiir einen Wert, den Sie mit analogRead von
einem Potentiometer (oder einem anderen Bauelement mit variabler Spannung) einge-
lesen haben. Stellen Sie sich beispielsweise vor, dass Sie die Position eines Potentiometers
als Wert zwischen 0 und 100 Prozent darstellen wollen.

Losung

Verwenden Sie die Arduino-Funktion map, um Werte innerhalb des von Thnen gewiinsch-
ten Bereichs zu skalieren. Der folgende Sketch liest die Spannung am Poti in die Variable
val ein und skaliert sie (je nach Position des Potis) auf Werte zwischen 0 und 100. Er lisst
die LED mit einer Geschwindigkeit blinken, die zur Spannung am Pin proportional ist,
und gibt den skalierten Bereich tiber den seriellen Port aus (Instruktionen zum Monitoring
tiber den seriellen Port finden Sie in Rezept 4.2). Rezept 5.6 zeigt, wie das Poti anzuschlie-
Ren ist (siehe Abbildung 5-7):

/*

* Map Sketch

* Skaliert den Wertebereich des Analogwertes eines Potis auf Werte zwischen 0 und 100

*Die Blinkgeschwindigkeit der LED reicht von 0 bis 100 Millisekunden
*und die prozentuale Drehung des Potis wird liber den seriellen Port ausgegeben

*/
const int potPin = 0; // Eingangspin fiir Potentiometer
int ledPin = 13; // Pin fir LED

void setup()
{

pinMode(ledPin, OUTPUT); // ledPin als Ausgang deklarieren
Serial.begin(9600);

void loop() {

170 | Kapitel 5: Einfacher digitaler und analoger Input

int val; // Der Wert vom Sensor
int percent; // Der abgebildete Wert

val = analogRead(potPin); // Spannung vom Poti einlesen (val liegt

// zwischen 0 und 1023)
percent = map(val,0,1023,0,100); // Prozentwert liegt zwischen 0 und 100.
digitalWrite(ledPin, HICH); // ledPineinschalten
delay(percent); // Prozentwert bestimmt Dauer
digitalWrite(ledPin, LOW); // ledPin ausschalten
delay(100 - percent); // FUr 100 - Prozentwert aus bleiben
Serial.println(percent); // Prozentwert des Potis ausgeben

Diskussion

Rezept 5.6 beschreibt, wie die Stellung eines Potis in einen Wert umgewandelt wird. Hier
nutzen wir diesen Wert mit der map-Funktion, um ihn auf den von Thnen gewiinschten
Bereich zu skalieren. In diesem Beispiel wird der von analogRead gelieferte Wert (0 bis
1023) auf eine Prozentzahl (0 bis 100) abgebildet. Die von analogRead zuriickgelieferten
Werte reichen von 0 bis 1023, wenn die Spannung zwischen 0 und 5 Volt liegt, aber Sie
konnen alle geeigneten Werte fiir die Quell- und Zielbereiche verwenden. Zum Beispiel
dreht sich ein typischer Poti von einem Ende zum anderen um 270 Grad. Wenn Sie also
die Stellung des Potis in Grad angeben wollen, kénnen Sie folgenden Code verwenden:

angle =map(val,0,1023,0,270); // Aus analogRead-Wert abgeleitete Position des Potis

Die Wertebereiche konnen auch negativ sein. Wenn Sie zum Beispiel 0 ausgeben wollen,
wenn der Poti in der Mitte steht, und negative Werte, wenn er nach links bzw. positive
Werte, wenn er nach recht gedreht wird, kénnen Sie folgenden Code verwenden:

// Winkel eines 270-Grad-Potis mit 0 in der Mitte ausgeben
angle = map(val,0,1023,-135,135);

Die map-Funktion ist sehr praktisch, wenn der betrachtete Wertebereich nicht bei 0
beginnt. Wenn Sie zum Beispiel mit einer Batterie arbeiten, bei der die verfiigbare
Kapazitit proportional zu einer Spannung zwischen 1,1 Volt (1100 Millivolt) und 1,5
Volt (1500 Millivolt) liegt, kénnen Sie den folgenden Code nutzen:

const int empty = 5000 / 1100; // Leer bei 1,1 Volt (1100mV)
const int full =5000 / 1500; // Voll bei 1,5 Volt (1500mV)

int val = analogRead(potPin); // Spannung einlesen
int percent =map(val, empty, full, 0,100); // Aktuelle Spannung in Prozent umrechnen
Serial.println(percent);

Wenn Sie Sensorwerte mit map bearbeiten, miissen Sie die Minimal- und Maximalwerte
der Sensoren kennen. Sie konnen die Werte tiber die serielle Schnittstelle verfolgen, um
die kleinsten und grofiten Werte des Sensors zu bestimmen. Verwenden Sie diese dann als
Unter- und Obergrenze der map-Funktion.

Lisst sich der Wertebereich nicht im Vorfeld ermitteln, konnen Sie die Werte bestimmen,
indem Sie den Sensor kalibrieren. Rezept 8.11 zeigt eine Technik zur Kalibrierung. Eine

5.7 Wertebereiche andem | 171

weitere finden Sie im Calibration-Beispiel-Sketch, das mit dem Arduino geliefert wird
(Examples—>Analog—Calibration).

Wenn Sie map mit Werten fiittern, die aulerhalb der unteren und oberen Grenzen liegen,
liegt auch das Ergebnis aufRerhalb des festgelegten Bereichs. Sie konnen das mit Hilfe der
constrain-Funktion unterbinden (siehe Rezept 3.5).

W8
N map arbeitet mit ganzen Zahlen, d.h., es werden innerhalb des festgelegten
ﬁ - Wertebereichs nur ganze Zahlen zuriickgegeben. Alle Nachkommastellen
T Qs werden abgeschnitten, nicht gerundet.

(In Rezept 5.9 finden Sie Details dazu, in welcher Beziehung analogRead-Werte zur tat-
sachlichen Spannung stehen.)

Siehe auch

Die Arduino-Referenz zu map: http://www.arduino.cc/en/Reference/Map

5.8 Mehr als sechs analoge Eingange einlesen

Problem

Sie miissen mehr Analogeinginge verarbeiten, als Analogpins zur Verfiigung stehen. Ein
Standard-Arduino-Board besitzt sechs Analogeinginge (das Mega hat 16) und die Analog-
einginge reichen fiir Thre Anwendung nicht aus. Sie konnten beispielsweise acht Parame-
ter in Threr Anwendung einstellen wollen, indem Sie acht Potentiometer entsprechend
justieren.

Losung

Nutzen Sie einen Multiplexer-Chip, um mehrere Spannungsquellen auszuwihlen und mit
einem analogen Eingang zu verbinden. Indem Sie die Quellen nacheinander auswihlen,
konnen jede nacheinander einlesen. Dieses Rezept nutzt den beliebten 4051-Chip, der wie
in Abbildung 5-8 mit dem Arduino verbunden wird. Die Analogeinginge werden mit den
4051-Pins namens Ch 0 bis Ch 7 verbunden. Stellen Sie sicher, dass die Spannung an den
Kanal-Eingangspins die 5 Volt niemals iibersteigen:

/*

*Multiplexer Sketch

* Lese 1 von 8 Analogwerten mit Hilfe des 4051-Multiplexers iiber einen einzelnen Analogpin ein
*/

// Array von Pins, die zur Wahl eines der 8 Eingdnge des Multiplexers genutzt werden
const int select[] ={2,3,4}; // Mit Select-Leitungen des 4051 verbundene Pins
const int analogPin=0; //Mit Multiplexer-Ausgang verbundener Analogpin

// Diese Funktion liefert den Analogwert fiir den angegebenen Kanal zuriick
int getValue(int channel)

172 | Kapitel 5: Einfacher digitaler und analoger Input

{
// Setzt die Auswahlpins auf HIGH und LOW, damit sie dem Bindrwert des Kanals entsprechen
for(int bit = 0; bit < 3; bit++)
{
int pin = select[bit]; // Mit Multiplexer-Select-Bit verbundener Pin
int isBitSet = bitRead(channel, bit); // Wahr, wenn Bit imKanal gesetzt
digitalWrite(pin, isBitSet);

return analogRead(analogPin);

}
void setup()

for(int bit =0; bit < 3; bit++)
pinMode(select[bit], OUTPUT); // Die drei Select-Bits als Ausgénge schalten
Serial.begin(9600);

void loop () {
// Die Werte aller Kandle einmal pro Sekunde ausgeben
for(int channel = 0; channel < 8; channel++)
{
int value = getValue(channel);
Serial.print("Kanal");
Serial.print(channel);
Serial.print("=");
Serial.println(value);

delay (1000);

Pin1 [] Pini6 I—E] Analog In 0 A
Ch4 Vee a1
a:
thé h2 8 ; R
. 1 as
Ch7 ho oy
Q6 D
Ch5 h3 5 Z U
E S0 \ [% %
M a X1
Vee st ofill
Gnd 52 M
[RESET N
]33
S tnd
n
Gnd O
[JVin

Abbildung 5-8: An Arduino angeschlossener 4051-Multiplexer

5.8 Mehr als sechs analoge Eingénge einlesen | 173

Diskussion

Analogmultiplexer sind digital gesteuerte Analogschalter. Der 4051 wihlt tber drei
Selektorpins (SO, S1 und S2) einen von acht Eingéngen aus. Fiir die drei Selektorpins
gibt es acht verschiedene Wertekombinationen. Der Sketch wihlt nacheinander jedes
mogliche Bitmuster aus (siehe Tabelle 5-3).

Tabelle 5-3: Wahrheitstabelle fiir 4051-Multiplexer

Selektorpins Eingang
S2 S1 S0

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

Vielleicht erkennen Sie das Muster in Tabelle 5-3 als Binirdarstellung der Dezimalwerte 0
bis 7.

Im obigen Sketch ist getvalue() die Funktion, die die richtigen Selektor-Bits fir den
gewihlten Kanal mit digitalWrite(pin, isBitSet) setzt und den analogen Wert des
gewihlten 4051-Eingangs mittels analogRead(analogPin) einliest. Der das Bitmuster er-
zeugende Code nutzt die fest eingebaute Funktion bitRead (siche Rezept 3.12).

WS
- Denken Sie daran, die Masse der abzufragenden Bauelemente mit der
l.s‘.‘ Masse des 4051 und des Arduino zu verbinden (siehe Abbildung 5-8).
N -
0

Beachten Sie, dass diese Technik die acht Einginge nacheinander auswihlt und abfragt,
d.h., das Lesen eines Eingangs braucht im Vergleich zum direkten Einlesen tiber analog-
Read mehr Zeit. Wenn Sie acht Einginge einlesen, brauchen Sie achtmal mehr Zeit, um
jeden Eingang einzulesen. Diese Methode ist daher fir Einginge, deren Werte sich sehr
schnell dindern, moglicherweise ungeeignet.

Siehe auch
Arduino Playground-Tutorial zum 4051: http://'www.arduino.cc/playground/Learning/4051
CDA4051-Datenblatt: http://www.fairchildsemi.com/ds/CD%2FCD4052BC.pdf

Datenblatt zum Analog/Digital-MUX-Breakout-Board: hitp://www.nkcelectronics.com/
analogdigital-mux-breakout.html

174 | Kapitel 5: Einfacher digitaler und analoger Input

5.9 Spannungen von bis zu 5V messen

Problem

Sie wollen eine Spannung zwischen 0 und 5 Volt messen und ausgeben. Beispielsweise
wollen Sie die Spannung einer einzelnen 1,5-V-Zelle tiber den seriellen Monitor ausgeben.

Losung

Verwenden Sie AnalogRead, um die Spannung an einem Analogpin zu messen. Sie konnen
den Messwert in eine Spannung umwandeln, indem Sie das Verhiltnis des Wertes zur
Referenzspannung (5 Volt) ermitteln, wie in Abbildung 5-9 zu sehen.

AnalogIn0

SchlieBen Sie nicht mehr

als 5 Volt direkt an einen
Arduino-Pin an.

000000

RESETY (3,3 Volt bei einem 3,3-Volt-Board)

Abbildung 5-9: Spannungsmessung bis 5 Volt mit 5V-Board

Die einfachste Losung nutzt eine FlieRkomma-Berechnung zur Ausgabe der Spannung.
Der folgende Beispiel-Sketch berechnet und gibt das Verhiltnis als Spannung aus:

/*

* Display5vOrless Sketch

* 0ibt die Spannung am Analogpin iiber den seriellen Port aus

*Warnung - schlieBen Sie nicht mehr als 5V direkt an den Arduino-Pinan.
*/

const float referenceVolts =5.0; // Referenzspannung eines 5-Volt-Boards
const int batteryPin = 0; // Batterie ist mit Analogpin 0 verbunden

void setup()

Serial.begin(9600);

void loop()

5.9 Spannungen von bis zu 5V messen | 175

int val = analogRead(batteryPin); // Wert vom Sensor einlesen
float volts = (val / 1023.0) * referenceVolts; // Verhdltnis berechnen
Serial.println(volts); //undWert inVolt ausgeben

Die Formel lautet: Volt = (analoger Messwert / analoge Schritte) x Referenzspannung

Die Ausgabe eines FlieRkommawerts iiber den seriellen Port mit println formatiert den
Wert auf zwei Dezimalstellen genau.

N
" Bei einem 3,3-V-Board nehmen Sie die folgende Anderung vor:

- const int referenceVolts = 3.3;

FliefRkommazahlen bendtigen sehr viel Speicher. Wenn Thr Sketch nicht auch an anderer
Stelle FlieRkommazahlen nutzt, ist es daher effizienter, mit ganzen Zahlen zu arbeiten.
Der folgende Code sieht auf den ersten Blick vielleicht etwas seltsam aus, aber da
analogRead den Wert 1023 fuir 5 Volt zuriickgibt, werden die 5 Volt durch 1023 geteilt. In
Millivolt entspricht das 5000 durch 1023.

Der folgende Code gibt den Wert in Millivolt aus:

const int batteryPin =0;
void setup()

Serial.begin(9600);
}

void loop()
{

long val = analogRead(batteryPin); // Wert vom Sensor einlesen -
// Hinweis: val ist ein long int
Serial.println((val * (500000/1023)) / 100); //Wert inMillivolt ausgeben

Der folgende Code gibt den Wert mit einem Dezimalkomma aus, d.h., er gibt 1,5 aus,
wenn die Spannung 1,5 Volt betrigt:

const int batteryPin =o0;
void setup()
{

Serial.begin(9600);
}

void loop()

{
int val = analogRead(batteryPin); // Wert von Sensor einlesen
longmv = (val * (500000/1023L)) / 100; // Wert in Millivolt berechnen
Serial.print(mv/1000); // Integerwert der Spanung ausgeben
Serial.print(',");
int fraction = (mv % 1000); // Nachkommastelle(n) berechnen
if (fraction ==0)

176 | Kapitel 5: Einfacher digitaler und analoger Input

Serial.print("000"); //DreiNullen ausgeben
else if (fraction<10) //Bruch< 10
Serial.print("00"); // ZweiNullen ausgeben
else if (fraction < 100)
Serial.print("0");
Serial.println(fraction); // Nachkommastelle(n) ausgeben

Bei einem 3,3-V-Board miissen Sie (1023/5) in (int)(1023/3.3) dndern.

Diskussion

Die analogRead()-Funktion gibt einen Wert zuriick, der proportional zum Verhiltnis der
gemessenen Spannung zur Referenzspannung (5 Volt) ist. Um FlieRkommazahlen zu
vermeiden, gleichzeitig aber die Genauigkeit beizubehalten, arbeitet der Code nicht mit
Volt, sondern mit Millivolt (1000 Millivolt sind 1 Volt). Da der Wert 1023 fiir 5000
Millivolt steht, reprisentiert jeder Schritt 5000 durch 1023 Millivolt (also 4,89 Millivolt).

WA

Sie werden neben 1023 auch 1024 bei der Umwandlung von analogRead-
Werten in Millivolt sehen. 1024 wird hiufig von Ingenieuren verwendet,
3 da es 1024 mogliche Werte zwischen 0 und 1023 gibt. Andererseits
empfinden einige die 1023 als intuitiver, weil dass der hochstmogliche
Wert ist. In der Praxis ist die Hardware-Ungenauigkeit aber grofer als der
Unterschied in den Berechnungen. Verwenden Sie also einfach den Wert,
der Thnen angenehmer ist.

Um das Dezimalkomma zu eliminieren, wird der Wert mit 100 multipliziert. Mit anderen
Worten liefert 5000 Millivolt mal 100 durch1023 den Wert in Millivolt mal 100. Eine
Division durch 100 ergibt den Wert in Millivolt. Durch die Multiplikation der Nach-
kommastellen mit 100 konnen wir den Compiler die Berechnung mit ganzen Zahlen
durchfihren lassen. Wenn Thnen das zu umstandlich ist, konnen Sie aber bei der lang-
sameren und speicherhungrigeren FlieRkomma-Methode bleiben.

Diese Losung geht davon aus, dass Sie einen Standard-Arduino mit 5 Volt verwenden.
Wenn Sie ein 3,3-V-Board nutzen, liegt die maximale Spannung, die Sie ohne Spannungs-
teiler messen konnen, bei 3,3 Volt — siche Rezept 5.11.

5.10 Auf Spannungsanderungen reagieren

Problem

Sie wollen eine oder mehrere Spannungen {iberwachen und reagieren, wenn sie einen
bestimmten Schwellwert tibersteigen oder unterschreiten. Zum Beispiel kénnten Sie eine
LED blinken lassen, wenn die Batterie leer wird. Sie konnte etwa langsam anfangen zu
blinken, wenn ein Schwellwert unterschritten wird, und immer schneller blinken, wih-
rend die Spannung weiter fillt.

5.10 Auf Spannungsénderungen reagieren | 177

Losung

Sie konnen die Verschaltung aus Abbildung 5-7 in Rezept 5.9 verwenden, doch hier
iiberpriifen wir, ob der Wert von analogRead unter einen Schwellwert fillt. In diesem
Beispiel beginnt die LED bei 1,2 Volt zu blinken und die Blinkgeschwindigkeit erhoht
sich, wihrend die Spannung weiter unter den Schwellwert sinkt. Fallt die Spannung unter
einen zweiten Schwellwert, bleibt die LED an:

/*

RespondingToChanges Sketch

Bei niedriger Spannung LED blinken lassen
*/

long warningThreshold =1200; // Warn-Schwellwert - LED blinkt
long criticalThreshold = 1000; // Kritischer Spannungspegel - LED bleibt an

const int batteryPin=0;
const int ledPin = 13;

void setup()

pinMode(ledPin, OUTPUT);
}

void loop()
{

int val = analogRead(batteryPin); //Wert vom Sensor einlesen
if(val < (warningThreshold * 1023L)/5000) {
// Das auf die Zahl folgende L macht sie zu einem 32-Bit-Wert
flash(val) ;

}
}

// Diese Funktion 148t die LED blinken
// Die Ein/Aus-Dauer wird durch den Uibergebenn Prozentwert bestimmt
void flash(int percent)

{
digitalWrite(ledPin, HIGH);
delay(percent +1);
digitalWrite(ledPin, LOW);
delay(100 - percent); //Dauer ==0?

Diskussion

Die im Sketch hervorgehobene Zeile berechnet das Verhiltnis der tiber den Analogport
eingelesenen Spannung zum Schwellwert. Bei einem Warn-Schwellwert von 1 Volt und
einer Referenzspannung von 5 Volt wollen Sie beispielsweise wissen, wann der Messwert
ein Funftel der Referenzspannung erreicht. Der Ausdruck 1023L weist den Compiler an,
mit long-Werten (32-Bit-Integer; siehe Rezept 2.2) zu arbeiten. Der Compiler macht daher
alle Variablen dieses Ausdrucks zu long-Werten, um den Uberlauf eines int (ein normaler
16-Bit-Integer) zu verhindern.

178 | Kapitel 5: Einfacher digitaler und analoger Input

Sie konnen direkt mit den von analogRead gelieferten Werten (zwischen 0 und 1023)
arbeiten, Sie kénnen aber auch mit den tatsichlichen Spannungen arbeiten, fur die sie
stehen (siehe Rezept 5.7). Wenn Sie (wie bei diesem Rezept) keine Spannungen ausgeben
miissen, ist es einfacher und effektiver, direkt die Werte von analogRead zu verwenden.

5.11 Spannungen iiber 5V messen (Spannungsteiler)

Problem

Sie wollen Spannungen tiber 5 Volt messen. Zum Beispiel konnten Sie die Spannung einer
9-V-Batterie ausgeben wollen und eine Warn-LED blinken lassen, wenn die Spannung
unter eine kritische Grenze fallt.

Losung

Die Losung dhnelt der in Rezept 5.9, die Spannung wird hier aber iiber einen Spannungs-
teiler abgegriffen (siehe Abbildung 5-10). Bei Spannungen bis zu 10 Volt kénnen Sie zwei
4,7-K-Ohm-Widerstinde verwenden. Fiir hohere Spannungen kénnen Sie die benotigten
Widerstinde aus Tabelle 5-4 ablesen.

Tabelle 5-4: Widerstandswerte

Max. Spannung R1 R2 Berechnung Wert von
R2/(R1 + R2) resistorFactor
5 Ohne (+V an Analogpin) Ohne (Masse an Masse) None 1023
10 1K 1K 1M1+ 51
15 2K 1K 102+ 341
20 3K 1K 13+1) 255
30 4K (3,9K) 1K 14+ 1) 170
A Zu messende Spannung
R Analog In (1)%— +V
D :Q
30
40
U 50 R1
RESET
N vsg R
v
gﬂﬂ o Gnd
O vinOQ

Abbildung 5-10: Spannungsteiler fiir Spannungsmessungen iiber 5 Volt

5.11 Spannungen iiber 5V messen (Spannungsteiler) | 179

Wihlen Sie die Zeile mit der hochsten Spannung, die Sie messen miissen, und suchen Sie
sich die beiden Widerstandswerte heraus:
/*
DisplayMoreThan5V Sketch
Gibt die Spannung am Analogpin liber den seriellen Port aus

SchlieRen Sie nicht mehr als 5 Volt direkt an einen Arduino-Pinan.
*/

const float referenceVolts = 5; // Standard-Referenzspannung eines 5-V-Boards
//const float referenceVolts =3.3; // Nutzen Sie diesen Wert bei einem 3,3-V-Board

const float R1 = 1000; // Wert fiir max. Spannung von 10 Volt

const float R2 = 1000;

// Wird durch Spannungsteiler-Widerstdnde bestimmt, siehe Text

const float resistorFactor = 1023.0 / (R2/(R1+R2));

const int batteryPin = 0; // +V der Battere ist mit Analogpin 0 verbunden

void setup()
{

Serial.begin(9600);
}

void loop()
{

int val = analogRead(batteryPin); // Wert vom Sensor einlesen
float volts = (val / resistorFactor) * referenceVolts ; // Verhdltnis berechnen
Serial.println(volts); //Wert inVolt ausgeben

Diskussion

Wie bei den vorangegangenen Analog-Rezepten nutzt dieses die Tatsache, dass der
gemessene analogRead-Wert im Verhiltnis zur Referenzspannung steht. Da die tatsich-
liche Spannung aber durch die beiden Widerstinde geteilt wurde, muss der Wert von
analogRead multipliziert werden, um die tatsichliche Spannung zu ermitteln. Der Code
dhnelt dem aus Rezept 5.7, doch der Wert fur resistorfFactor wird basierend auf den
Spannungsteiler-Widerstdnden aus Tabelle 5-4 gewihlt:

const int resistorfFactor = 511; // Durch Spannungsteiler-Widerstdnde bestimmt, siehe Tabelle
5-3
Der vom Analogpin eingelesene Wert wird nicht durch 1023 dividiert, sondern durch die
Werte der Vorschaltwiderstidnde:

float volts = (val / resistorFactor) * referenceVolts ; // Verhiltnis berechnen

Die zum Aufbau der Tabelle genutzte Berechnung basiert auf der folgenden Formel: Die
Ausgangsspannung entspricht der Eingangsspannung mal R2 geteilt durch die Summe
von R1 und R2. Im Beispiel mit zwei gleichen Widerstandswerten, bei dem die Spannung
einer 9-V-Batterie halbiert wird, hat resistorFactor den Wert 511 (die Hilfte von 1023),
d.h., der Wert der volts-Variablen ist doppelt so hoch wie die am Eingangspin anliegende

180 | Kapitel 5: Einfacher digitaler und analoger Input

Spannung. Mit den Widerstinden fiir 10 Volt liegt der Analogwert der 9-V-Batterie bei
ungefihr 920.

Liegen mehr als 5 Volt an einem Pin an, kann das den Pin beschidigen
% oder sogar den Chip zerstoren. Priifen Sie also genau, ob Sie die richtigen

Widerstandswerte gewihlt und sie richtig angeschlossen haben. Wenn Sie
ein Multimeter besitzen, messen Sie die Spannung, bevor Sie etwas mit
dem Arduino-Pin verbinden.

5.11 Spannungen iiber 5V messen (Spannungsteiler) | 181

KAPITEL 6
Werte von Sensoren einlesen

6.0 Einfiihrung

Werte iiber Sensoren einzulesen und zu verarbeiten, erméglicht es dem Arduino, auf die
Welt um ihn herum zu reagieren oder iiber sie zu informieren. Dieses Kapitel enthilt
einfache und praktische Beispiele, wie man die beliebtesten Eingabegeriite und Sensoren
nutzt. Die Schaltdiagramme zeigen, wie man die Bauelemente anbindet und mit Strom
versorgt, wihrend die Code-Beispiele zeigen, wie man die Sensordaten verarbeitet.

Sensoren reagieren auf Ereignisse der physikalischen Welt und wandeln sie in ein elek-
trisches Signal um, dass der Arduino tiber einen Eingangspin einlesen kann. Die Natur des
elektrischen Signals, die der Sensor zur Verfiigung stellt, hingt von der Art des Sensors ab
und davon, wie viele Daten er tibertragen muss. Einige Sensoren (wie Photowiderstande
und piezoelektrische Sensoren) bestehen aus einem Material, das seine elektrischen
Eigenschaften als Reaktion auf physikalische Anderungen verindert. Andere sind aus-
gefeilte elektronische Module mit eigenem Mikrocontroller, die Informationen verarbei-
ten, bevor sie Daten an den Arduino tibergeben.

Sensoren nutzen die folgenden Methoden, um Informationen bereitzustellen:

Digital AN/AUS
Einige Bauelemente, wie der Tilt-Sensor in Rezept 6.1 und der Bewegungssensor in
Rezept 6.3, schalten einfach eine Spannung ein oder aus. Sie kénnen diese Sensoren
so verarbeiten, wie in den Taster-Rezepten in Kapitel 5.

Analog
Andere Sensoren liefern ein Analogsignal zuriick (eine Spannung proportional zum
abgerufenen Wert, wie etwa Temperatur oder Lichtstirke). Die Beispiele zur Bestim-
mung von Lichtstiarke (Rezept 6.2), Bewegung (Rezepte 6.1 und 6.3), Vibration
(Rezept 6.6), Sound (Rezept 6.7) und Beschleunigung (Rezept 6.18) zeigen, wie
Analogsensoren verwendet werden koénnen. Alle nutzen die Funktion analogRead,
die in Kapitel 5 erldutert wurde.

| 183

Impulsbreite
Abstandssensoren wie der PING in Rezept 6.4 stellen die Daten in Form eines Im-
pulses zur Verfuigung, dessen Liange proportional zum Abstand ist. Solche Sensoren
nutzende Anwendungen messen die Dauer des Impulses mit Hilfe der pulseIn-Funk-
tion.

Seriell
Einige Sensoren liefern Werte iiber ein serielles Protokoll zuriick. Der RFID-Leser in
Rezept 6.9 und das GPS in Rezept 6.14, kommunizieren beispielsweise tiber den
seriellen Port mit dem Arduino (mehr tiber den seriellen Port erfahren Sie in Kapitel
4). Die meisten Arduinos besitzen nur einen seriellen Hardware-Port. Rezept 6.14 zeigt,
wie Sie zusitzliche Software-Ports einrichten kénnen, wenn Sie mit mehreren seriellen
Sensoren arbeiten oder der Hardware-Port fiir eine andere Aufgabe genutzt wird.

Synchrone Protokolle: 12C und SPI
Die digitalen Standards 12C und SPI wurden fiir Mikrocontroller wie den Arduino
entwickelt, um sich mit externen Sensoren und Modulen unterhalten zu koénnen.
Rezept 6.16 zeigt, wie man ein Kompass-Modul iiber synchrone Digitalsignale an-
bindet. Diese Protokolle werden ausgiebig von Sensoren, Aktuatoren und Peripheri-
geriten genutzt und werden detailliert in Kapitel 13 behandelt.

Es gibt andere Eingabegerite, die Sie nutzen konnen. Dabei handelt es sich um Sensoren
enthaltende Konsumartikel, die als eigenstindige Gerite verkauft werden. Zu den Bei-
spielen aus diesem Kapitel gehort eine PS/2-Maus und ein Playstation-Controller. Diese
Gerite konnen sehr praktisch sein. Sie integrieren Sensoren in einem robusten und
ergonomischen Gehiuse. Dartiber hinaus sind sie billig (oft billiger, als die Kosten fur
die darin enthaltenen Sensoren), weil es sich um Massenprodukte handelt. Wahrschein-
lich liegen einige dieser Gerite bei Thnen herum.

Wenn Sie mit einem Gerit arbeiten, das von keinem Rezept behandelt wird, konnen Sie
moglicherweise ein anderes Rezept wiederverwerten, das dhnliche Daten verarbeitet.
Informationen zu den Ausgangssignalen des Sensors erhalten Sie tiblicherweise von dem
Unternehmen, bei dem Sie ihn gekauft haben, oder alternativ auf dem Datenblatt
(googeln Sie einfach nach der Artikelnummer oder Beschreibung).

Datenblitter richten sich an Ingenieure, die Produkte entwickeln, die spiter auch pro-
duziert werden sollen. Ublicherweise enthalten Sie viel mehr Informationen, als Sie
brauchen, um Thr Projekt ans Laufen zu bekommen. Die Informationen zu den Ausgangs-
signalen finden Sie iiblicherweise in einem Abschnitt iiber Datenformate, Interfaces,
Ausgangssignale oder so dhnlich. Vergessen Sie die maximale Spannung nicht (iiblicher-
weise in einem Abschnitt namens »Absolute Maximum Ratings« oder »Absolute Grenz-
daten«), um die Komponenten nicht zu beschadigen.

Fiir maximale Spannungen von 3,3V gedachte Sensoren kénnen zerstort
3 werden, wenn man sie mit 5 Volt verbindet. Uberpriifen Sie also die

maximale Spannung, bevor Sie das Bauelement anschliefen.

184 | Kapitel 6: Werte von Sensoren einlesen

Das Einlesen von Sensordaten in einer chaotischen, analogen Welt ist eine Mischung aus
Wissenschaft, Kunst und Beharrlichkeit. Moglicherweise brauchen Sie einigen Einfalls-
reichtum und viele Fehlversuche, bis Sie ein korrektes Ergebnis erhalten. Ein typisches
Problem besteht darin, dass der Sensor Thnen nur mitteilt, dass eine physikalische
Bedingung eingetreten ist, aber nicht, wer sie verursacht hat. Den Sensor in den richtigen
Kontext zu bringen (Lage, Distanz, Orientierung) und sich dabei auf die Dinge zu
beschrinken, die man wirklich braucht, kommt erst mit der Erfahrung.

Ein weiterer Aspekt ist die Trennung des gewiinschten Signals von Hintergrundgeriu-
schen ; Rezept 6.6 zeigt, wie man einen Schwellwert nutzt, um zu erkennen, ob ein Signal
einen bestimmten Pegel iiberschritten hat. Rezept 6.7 zeigt, wie Sie den Durchschnitt
einer Messwertreihe nutzen konnen, um Geriuschspitzen herauszufiltern.

Siehe auch

Informationen zum Anschluss elektrischer Komponenten finden Sie in Make: Electronics
von Charles Platt (Make).

Weiterfithrende Informationen zum Einlesen von Analogwerten tiber Sensoren finden Sie
in der Einfithrung zu Kapitel 5 und Rezept 5.6.

6.1 Movement erkennen

Problem

Sie wollen erkennen, ob etwas bewegt, geneigt oder geschiittelt wird.

Losung

Der nachfolgende Sketch nutzt einen Schalter, der einen Kreis schlieRt, wenn er gekippt
wird. Einen solchen Schalter bezeichnet man als Neigungssensor (engl. tilt sensor). Die
Schalter-Rezepte in Kapitel 5 (Die Rezepte 5.1 und 5.2) funktionieren auch, wenn man
den Schalter/Taster durch einen Neigungssensor ersetzt.

Der Sketch (die Schaltung sehen Sie in Abbildung 6-1) schaltet eine LED an Pin 11 ein,
wenn der Neigungssensor in die eine Richtung, und die LED an Pin 12, wenn er in die
andere Richtung gekippt wird:

/*
tilt Sketch

Ein Neigungssensor an Pin 2 schaltet eine der
LEDs an den Pins 11 und 12 ein, je nachdem,
inwelche Richtung der Sensor geneigt wird.

*/

const int tiltSensorPin = 2; //Pin fiir Neigungssensor
const int firstLEDPin =11; //Pin flr erste LED

const int secondLEDPin = 12; //Pin flr zweite LED

6.1 Movement erkennen | 185

void setup()
{

pinMode (tiltSensorPin, INPUT); //Der Code liest diesen Pin
digitalWrite (tiltSensorPin, HIGH); //und nutzt einen Pullup-Widerstand

pinMode (firstLEDPin, OUTPUT); //Der Code schreibt an diesen
pinMode (secondLEDPin, OUTPUT); //und diesen Pin
}

void loop()

if (digitalRead(tiltSensorPin)){ //Ist der Pin "HIGH",
digitalWrite(firstLEDPin, HIGH); //erste LED ein-
digitalWrite(secondLEDPin, LOW); //und zweite ausschalten

else{ //Wenn nicht, kehren
digitalWrite(firstLEDPin, LOW); //wir die Sache um
digitalWrite(secondLEDPin, HIGH);

}

}

Suvieee] DDDDD[I;DD

~olnsreN—O

S DIGITAL =
Tilt-Sensor /\

a a
. o) ” 4
Arduino \ q
Ohm Ohm
- Bo_we. ANALOG langer +
O O ERRAEEE o—cimzin Anschluss

Seseroleceee

o
=

abgeflacht

Abbildung 6-1: Neigungssensor und LEDs

Diskussion

Die am weitesten verbreiteten Neigungssensoren bestehen aus einer Kugel in einem
Gehiuse und Kontakten auf einer Seite. Wird das Gehiuse geneigt, rollt die Kugel von
den Kontakten weg, und die Verbindung wird unterbrochen. Wird es in die andere Rich-
tung geneigt, beriithrt die Kugel die Kontakte, und der Kreis wird geschlossen. Markierun-
gen zeigen, wie der Sensor auszurichten ist. Neigungssensoren kénnen kleine Bewegun-
gen von 5 bis 10 Grad erkennen. Wenn Sie den Sensor so ausrichten, dass die Kugel direkt
iiber (oder unter) den Kontakten liegt, andert sich der LED-Zustand nur dann, wenn man
ithn umdreht. Auf diese Weise konnen Sie erkennen, ob etwas auf der Ober- oder
Unterseite liegt.

186 | Kapitel 6: Werte von Sensoren einlesen

Wenn Sie wissen wollen, ob etwas geschiittelt wird, miissen Sie priifen, wann sich der
Zustand des Sensors zuletzt gedndert hat (in unserem Beispiel priifen wir nur, ob der
Schalter offen oder geschlossen war). Andert sich der Zustand innerhalb einer von Thnen
als signifikant festgelegten Zeitspanne nicht, wird das Objekt auch nicht geschiittelt. Die
Veridnderung der Ausrichtung des Neigungssensors bestimmt auch, wie heftig Sie ihn
schiitteln miissen, um ihn auszulésen. Der folgende Code schaltet eine LED ein, wenn der
Sensor geschiittelt wird:
/%
shaken Sketch
Neigungssensor an Pin 2

LED an Pin 13
*/

const int tiltSensorPin =2;
const int ledPin =13;

int tiltSensorPreviousValue = 0;
int tiltSensorCurrentValue = 0;
long lastTimeMoved = 0;

int shakeTime=50;

void setup()

pinMode (tiltSensorPin, INPUT);
digitalWrite (tiltSensorPin, HIGH);
pinMode (ledPin, OUTPUT);

void loop()
{

tiltSensorCurrentValue=digitalRead(tiltSensorPin);

if (tiltSensorPreviousValue !=tiltSensorCurrentValue){
lastTimeMoved =millis();
tiltSensorPreviousValue = tiltSensorCurrentValue;

}

if (millis() - lastTimeMoved < shakeTime){
digitalWrite(ledPin, HICH);

else{
digitalWrite(ledPin, LOW);
}

}

Viele mechanische Sensorschalter konnen auf dhnliche Weise genutzt werden. Ein
Schwimmerschalter schaltet sich ein, wenn der Wasserpegel in einem Behilter eine
gewisse Hohe erreicht (dhnlich dem Schwimmerhahn in einer Wassersptilung). Mit einer
Druckleiste, wie man sie an den Eingingen von Geschiften findet, konnen Sie erkennen,
ob jemand auf ihr steht. Wenn Thr Sensor ein digitales Signal ein- oder ausschaltet, sollte
eine Losung wie in diesen Sketches geeignet sein.

6.1 Movement erkennen | 187

Siehe auch

Hintergrundinformationen zur Verwendung von Schaltern mit dem Arduino finden Sie in
Kapitel 5.

Rezept 12.2 enthilt weitere Informationen zur Verwendung von millis zur Bestimmung
von Laufzeiten.

6.2 Licht messen

Problem

Sie wollen Veranderungen der Lichtstirke messen. Sie konnten erkennen wollen, ob etwas
vor einem Lichtsensor vorbeigeht oder ob ein Raum zu dunkel ist.

Losung

Die einfachste Moglichkeit, die Lichtstirke zu bestimmen, bieten lichtempfindliche Wi-
derstinde. Ein solcher Widerstand verindert seinen Widerstandswert, wenn sich die
Lichtstiarke dndert. SchlieRt man ihn wie in Abbildung 6-2 zu sehen an, erzeugt er eine
verinderliche Spannung, die der Arduino tiber einen Analogpin abgreifen kann.

== *LDR = Lichtempfindlicher Widerstand

><><

0OaaQ000 . 0OOO000q
37777 DG ==

Arduino _

ANALOG

3k
D

0 [?D[ff]a

___WYeR

Abbildung 6-2: Anschluss eines lichtempfindlichen Widerstands

Der Sketch fur dieses Rezept ist einfach:

const int ledPin= 13; //Mit Pin 13 verbundene LED
const int sensorPin=0; //Mit Analogeingang 0 verbundener Sensor

void setup()

188 | Kapitel 6: Werte von Sensoren einlesen

pinMode(ledPin, OUTPUT); // LED-Pin als Ausgang schalten

void loop()
{

int rate = analogRead(sensorPin); // Analogeingang einlesen
digitalWrite(ledPin, HIGH); // LED einschalten

delay(rate); // Dauer abhdngig von Lichtstdrke
digitalWrite(ledPin, LOW); // LED ausschalten?
delay(rate);

Diskussion

Die Schaltung dieses Rezepts entspricht der Standard-Losung fir jeden Sensor, der seinen
Widerstand basierend auf irgendeiner physikalischen Grofte verindert (Hintergrund-
informationen zur Handhabung von Analogsignalen finden Sie in Kapitel 5). Bei der
Schaltung in Abbildung 6-2 verandert sich die Spannung an Analogpin 0, wenn sich der
Widerstand des lichtempfindlichen Widerstands aufgrund variierender Lichtstirke dn-
dert.

Eine Schaltung wie diese nutzt nicht den gesamten moglichen Wertebereich des Analog-
eingangs (0 bis 1023), da die Spannungswerte nicht zwischen den vollen 0 bis 5 Volt
liegen. Das liegt daran, dass es bei jedem Widerstand einen Spannungsabfall gibt, so dass
die Spannung an dieser Stelle nie die Grenzen der Spannungsversorgung erreicht. Wenn
Sie solche Sensoren nutzen, miissen Sie also die tatsichlichen Werte ermitteln, die der
Sensor in Threm Fall zuriickliefert. Dann miissen Sie bestimmen, wie Sie diese Werte in die
Werte umwandeln, die Sie fiir Thre Steuerung benétigen (was auch immer Sie steuern).
Details zur Anpassung von Wertebereichen finden Sie in Rezept 5.7.

Ein lichtempfindlicher Widerstand ist ein einfacher sog. ohmscher Sensor. Eine Reihe
ohmscher Sensoren reagieren auf Anderungen verschiedener physikalischer Eigenschaf-
ten. Ahnliche Schaltungen werden auch mit anderen Arten einfacher ohmscher Sensoren
funktionieren, auch wenn Sie moglicherweise den Widerstand an den jeweiligen Sensor
anpassen miissen.

Die Wahl des besten Widerstandswerts hingt vom verwendeten lichtempfindlichen
Widerstand ab und davon, mit welchen Lichtstirken gearbeitet wird. Ingenieure wiirden
ein Lichtmessgerit verwenden und das Datenblatt des lichtempfindlichen Widerstands
konsultieren, doch wenn Sie ein Multimeter besitzen, kénnen Sie den Widerstand des
lichtempfindlichen Widerstands bei einer Lichtstirke messen, die ungefihr in der Mitte
des Helligkeitsbereichs liegt, mit dem Sie arbeiten wollen. Notieren Sie den Wert und
wihlen Sie den fur diesen Wert am besten geeigneten Widerstand.

Siehe auch

Dieser Sketch wurde in Rezept 1.6 vorgestellt. Dort finden Sie weitere Informationen und
Variationen dieses Sketches.

6.2 Licht messen | 189

6.3 Motion erkennen (Passive Infrarot-Detektoren
integrieren)

Problem

Sie wollen erkennen, wenn sich jemand in der Nihe eines Sensors bewegt.

Losung

Nutzen Sie einen Bewegungssensor, z.B. einen passiven Infrarot-Sensor (PIR), der Werte
an einem Digitalpin dndert, wenn sich jemand in der Nihe bewegt.

Sensoren wie der SparkFun PIR Motion Sensor (SEN-08630) und der Parallax PIR Sensor
(555-28027) konnen einfach an Arduino-Pins angeschlossen werden, wie in Abbildung 6-3
zu sehen.

00000000 QQQQQ‘ENQE PIR-Sensor

£3 DIGITAL =
Arduino %

X} DOut

£ Gnd

‘ q —E] 5V

- B ge. ANALOG

OO 55555 soraas

Abbildung 6-3: Anschluss eines PIR-Bewegungssensors

Suchen Sie sich die richtigen Pins aus dem Datenblatt fiir Thren Sensor heraus. Beim
Parallax-Sensor sind die Pins mit »OUT« »-« und »+« (fir Ausgang, Masse und +5V)
gekennzeichnet. Der SparkFun-Sensor verwendet die Bezeichnungen »Alarm«, »GND«
und »DC« (fiir Ausgang, Masse und +5V).

Der folgende Sketch schaltet die LED an Arduino-Pin 13 ein, wenn der Sensor eine
Bewegung erkennt:

/*
PIR Sketch
Passiver Infrarot-Bewegungssensor an Pin 2
schaltet die LED an Pin 13 ein

*/

190 | Kapitel 6: Werte von Sensoren einlesen

const int ledPin = 13; // Pin fir LED
const int inputPin = 2; // Pin fur PIR-Sensor

void setup() {
pinMode(ledPin, OUTPUT); // LED ist Ausgang
pinMode(inputPin, INPUT); // Sensor ist Eingang

void loop(){
int val = digitalRead(inputPin); // Eingangswert einlesen

if (val == HICH) // Ist der Eingang HIGH

{
digitalWrite(ledPin, HICH); // Bewegung erkannt, LED einschalten
delay(500);
digitalWrite(ledPin, LOW); // LED ausschalten

}

}

Diskussion

Der Code dhnelt den Taster-Beispielen aus Kapitel 5. Das liegt daran, dass sich der Sensor
wie ein Schalter verhilt, wenn eine Bewegung erkannt wird. Es gibt verschiedene Arten
von PIR-Sensoren, und Sie sollten sich die Daten zu dem von Thnen angeschlossenen
ansehen.

Einige Sensoren, wie der Parallax, besitzen Steckbriicken (Jumper), die bestimmen, wie
sich der Ausgang verhiilt, wenn eine Bewegung erkannt wird. In einem Modus bleibt der
Ausgang HIGH, wenn Bewegung erkannt wird, oder er kann so gesetzt werden, dass er
beim Auslosen kurz auf HIGH und dann wieder auf LOW geht. Der Beispiel-Sketch in diesem
Rezept funktioniert mit beiden Modi.

Andere Sensoren konnen LOW zuriickliefern, wenn sie eine Bewegung erkennen. Geht der
Ausgangspin Thres Sensors auf LOW, wenn eine Bewegung erkannt wird, dndern Sie die
Zeile, die den Eingangswert tiberpriift, wie folgt ab:

if (val == LOW) // Bewegung, wenn Eingang LOW

PIR-Sensoren gibt es in unterschiedlichen Arten und fiir verschiedene Distanzen und
Winkel. Durch sorgfiltige Auswahl und Positionierung kénnen Sie die Bewegungserken-
nung auf einen Teil des Raums einschrinken.

B
)
o PIR-Sensoren reagieren auf Wirme und kénnen nicht nur auf Menschen,
.'s‘ sondern auch auf Tiere (Katzen, Hunde etc.) und andere Wirmequellen
) Al .
. reagieren.

6.3 Motion erkennen (Passive Infrarot-Detektoren integrieren) | 191

6.4 Abstande messen

Problem

Sie mochten einen Abstand ermitteln, etwa zu einer Wand oder zu jemandem, der sich
zum Arduino hin bewegt.

Losung

Dieses Rezept nutzt den beliebten Parallax PING))) Ultraschall-Sensor. Er kann den Ab-
stand eines Objekts in einem Bereich von 2 Zentimetern bis zu 3 Metern messen. Der
Sketch gibt den Abstand iiber den seriellen Monitor aus und lisst eine LED schneller
blinken, je ndher das Objekt kommt. In Abbildung 6-4 sehen Sie das Schaltdiagramm:

/*Ping))) Sensor

* Gibt den Abstand eines Ping)))-Sensors aus und dndert
* die Blinkgeschwindigkeit einer LED in Abhdngigkeit vom
* Abstand.

*/

const int pingPin = 5;
const int ledPin =13; // LED-Pin

void setup()
{

Serial.begin(9600);
pinMode(ledPin, OUTPUT);
}

void loop()
{
int cm = ping(pingPin) ;
Serial.println(cm);
digitalWrite(ledPin, HIGH);
delay(cm* 10); // Fur jeden Zentimeter 10 Millisekunden hinzufiigen
digitalWrite(ledPin, LOW);
delay(cm* 10);

// Folgender Code basiert auf http://www.arduino.cc/en/Tutorial/Ping
// Gibt den Abstand in cm zuriick
int ping(int pingPin)

// Variablen fiir ping-Dauer,
// und Abstand in cm:
long duration, cm;

// Der PING))) wird durch einen HIGH-Impuls von 2 oder mehr Mikrosekunden angestoRen.

// Wir setzen vorher einen kurzen LOW-Impuls an, umeinen sauberen HIGH-Impuls sicherzustellen:
pinMode(pingPin, OUTPUT);

digitalWrite(pingPin, LOW);

delayMicroseconds(2);

digitalWrite(pingPin, HICH);

192 | Kapitel 6: Werte von Sensoren einlesen

delayMicroseconds(5);
digitalwrite(pingPin, LOW);

pinMode(pingPin, INPUT);
duration = pulseIn(pingPin, HIGH);

// Zeit in Abstand umwandeln
cm =microsecondsToCentimeters(duration);
returncm;

}

long microsecondsToCentimeters(long microseconds)

// Die Schallgeschwindigkeit liegt bei 340 m/s oder 29 Mikrosekunden pro Zentimeter.
// Der Ping 1duft hin und zuriick, d.h., um den Abstand des Objekts zu

// ermitteln, verwenden wir die Halfte der zuriickgelegten Strecke.

return microseconds / 29 / 2;

}
00000000 QQELQQQQQ
=577 DIGITAL =
Arduino
00 NN C r—
E] Gnd
i 5V F—
- 00 Fo_zze ANALOG
eenenelleceeee

Abbildung 6-4: Anschluss des Ping)))-Sensors

Diskussion

Ultraschallsensoren messen die Zeit, die der Schall braucht, um von einem Objekt ab-
zuprallen und zum Sensor zuriickzukehren.

Der »ping«-Impuls wird erzeugt, wenn der pingPin fiir zwei Mikrosekunden auf HIGH geht.
Der Sensor generiert dann einen Puls, der endet, wenn der Schall zuriickkehrt. Die Liange
dieses Impulses ist proportional zur Strecke, die der Schall zuriickgelegt hat, und der
Sketch verwendet die pulseIn-Funktion, um diese Dauer zu messen. Die Schallgeschwin-
digkeit betrdgt 340 Meter pro Sekunde oder 29 Mikrosekunden pro Zentimeter. Die
Formel fiir den Hin- und Riickweg lautet: Hin-und Riickweg = Mikrosekunden / 29

6.4 Abstande messen | 193

Die Formel fiir den eigentlichen Abstand in Zentimetern lautet also: Mikrosekunden /29 /2

Der MaxBotix EZ1 ist ein weiterer Ultraschallsensor, der zur Abstandsmessung genutzt
werden kann. Er ist einfacher zu integrieren als der Ping))), weil er nicht »angepingt«
werden muss. Er kann kontinuierlich Abstandsdaten liefern, entweder in Form einer
Analogspannung oder proportional als Impulsbreite. Abbildung 6-5 zeigt, wie man ihn
anschliefit.

00000000 DDJJDDDDD

LOMN—ON®® NOINSFMN—O
=2 =

£5 DIGITAL =

E

Arduino 59 MAXSonar- EZ1 O

00
oo

Q)

Gnd 5V AN PW

- goaogo
T ANALOG |
- QO 22858E o i

22=82s -
DDDDTD 00000

Abbildung 6-5: Anschluss des EZ1 PW-Ausgangs mit digitalem Eingangspin

Der nachfolgende Sketch nutzt den EZ1-PW-Ausgang (Impulsbreite), um eine dhnliche
Ausgabe zu erzeugen wie im obigen Sketch:

/*

* EZ1Rangefinder Distance Sensor

* Gibt den Abstand eines EZ1-Sensors aus und dndert die
*Blinkgeschwindigkeit einer LED in Abhdngigkeit vom
* Abstand.

*/

const int sensorPin =5;
const int ledPin =13; // LED-Pin

long value = 0;
int cm=0;
int inches = 0;

void setup()

Serial.begin(9600);
pinMode(ledPin, OUTPUT);
}

void loop()
{

value = pulseIn(sensorPin, HIGH) ;

194 | Kapitel 6: Werte von Sensoren einlesen

cm=value / 58; // Impulsbreite ist 58 Mikrosekunden pro Zentimeter
inches =value / 147; // oder 147 Mikrosekunden pro Zoll
Serial.print(cm);

Serial.print(',");

Serial.println(inches);

digitalWrite(ledPin, HICH);

delay(cm* 10); // Fur jeden Zentimeter 10 Millisekunden hinzufiigen
digitalWrite(ledPin, LOW);

delay(cm* 10);

delay(20);
}

Der EZ1 wird iiber die entsprechenden Arduino-Pins mit +5V und Masse versorgt.
Verbinden Sie den EZ1 PW-Pin mit dem Arduino-Digitalpin 5. Der Sketch misst die
Breite des Impulses mit der pulseIn-Funktion. Die Breite des Impulses liegt bei 58
Mikrosekunden pro Zentimeter bzw. bei 147 Mikrosekunden pro Zoll.

Bei langen Anschlussleitungen miissen Sie am Sensor moglicherweise
einen Kondensator zwischen +5V und Masse schalten, um die Spannungs-
versorgung zu stabilisieren. Bei fehlerhaften Messwerten verbinden Sie
einfach einen 10-uF-Kondensator mit dem Sensor (weitere Informationen
zu Entstorkondensatoren finden Sie in Anhang C).

Sie kénnen den Abstand vom EZ1 auch iiber dessen Analogausgang messen. Verbinden
Sie den AN-Pin mit einem Analogeingang und lesen Sie den Wert mit analogRead ein. Der
folgende Code gibt den Wert des Analogeingangs, umgewandelt in Zoll, aus:

value = analogRead(0);

inches =value / 2; // jede Einheit von analogRead liegt bei etwa 5mv
Serial.println(inches);

Der Analogausgang liefert etwa 9,8mV pro Zoll zuriick. Der Wert von analogRead liegt bei
etwa 4,8mV pro Einheit (in Rezept 5.6 erfahren Sie mehr iiber analogRead). Der obige
Code fasst jeweils zwei Einheiten zu einem Zoll zusammen. Der Rundungsfehler ist im
Vergleich zur Genauigkeit des Sensors gering, doch wenn Sie eine genauere Berechnung
wiinschen, konnen Sie mit FlieRkommazahlen arbeiten:

value = analogRead(0);

float mv = (value /1024.0) * 5000 ;

float inches = mv /9.8; //9,8mv pro Zoll
Serial.println(inches) ;

Siehe auch
Rezept 5.6 erldutert, wie man Werte von analogInput in Spannungswerte umwandelt.

Die Arduino-Referenz zu pulselIn: http://www.arduino.cc/en/Reference/Pulseln

6.4 Abstande messen | 195

6.5 Abstande genauer messen

Problem

Sie wollen messen, wie weit Objekte vom Arduino entfernt sind. Die Werte sollen aber
genauer sein als in Rezept 6.4.

Losung

Infrarotsensoren (IR) besitzen tiblicherweise einen Analogausgang, der mit analogRead.
eingelesen werden kann. Sie sind genauer als Ultraschallsensoren, haben aber eine ge-
ringere Reichweite (typischerweise zwischen 10 Zentimetern und 1 oder 2 Metern). Der
folgende Sketch bietet die gleiche Funktionalitit wie in Rezept 6.4, verwendet aber den
Infrarotsensor Sharp GP2YOA02YKOF (in Abbildung 6-6 sehen Sie die Verschaltung):

/* ir-distance Sketch

* Gibt den Abstand eines IR-Sensors aus und dndert die
*Blinkgeschwindigkeit einer LED in Abhdngigkeit vom
* Abstand.

*/

const int ledPin =13; // LED-Pin
const int sensorPin = 0; // analoger Sensor-Pin

const long referenceMv = 5000; // long int, um Uberlauf bei Multiplikation zu verhindern

void setup()

Serial.begin(9600);
pinMode(ledPin, OUTPUT);
}

void loop()

{
int val = analogRead(sensorPin);
intmV = (val * referenceMv) / 1023;

Serial.print(mv);
Serial.print(",");

int cm = getDistance(mV);
Serial.println(cm);

digitalWrite(ledPin, HIGH);

delay(cm* 10); // Fur jeden Zentimeter 10 Millisekunden hinzufiigen
digitalWrite(ledPin, LOW);

delay(cm* 10);

delay(100);
// Der Abstand wird aus einer Tabelle interpoliert

// Tabelleneintrage sind Abstdnde in Schritten von 250 Millivolt
const int TABLE ENTRIES = 12;

196 | Kapitel 6: Werte von Sensoren einlesen

const int firstElement = 250; // Erster Eintrag ist 250 mV
const int INTERVAL =250; //Millivolt zwischen den Elementen

static int distance[TABLE_ENTRIES] = {150,140,130,100,60,50,40,35,30,25,20,15};

int getDistance(int mv)

if('mV > INTERVAL * TABLE ENTRIES-1)
return distance[TABLE _ENTRIES-1];
else

{
int index =mV / INTERVAL;

float frac = (mV % 250) / (float)INTERVAL;
return distance[index] - ((distance[index] - distance[index+1]) * frac);

}
}

AREFO

Arduino

0000000 00000000
s DIGITAL

>< ><
—oc

00
oo
oo

5v

Qand

TS

CIRESET
(J3v3

Gnd

QOvin

ANALOG

— NN <L

00000

—F] Output
—F] Gnd
—E] 5V

Abbildung 6-6: Anschluss des Sharp IR-Abstandssensors

Diskussion

Die vom IR-Sensor gelieferten Werte sind nicht linear, d.h., der von analogRead gelesene
Wert ist nicht proportional zum Abstand. Die Berechnung ist daher etwas komplizierter
als in Rezept 6.4. Der Sketch in diesem Rezept nutzt eine Tabelle, um den Abstand zu
bestimmen. Dazu sucht er sich den nichstgelegenen Eintrag in der Tabelle, basierend
auf dem Verhiltnis von gemessenem Wert zum nichstgelegenen Tabelleneintrag (diese
Technik nennt man Interpolation). Die Werte der Tabelle miissen fiir Thren Sensor
angepasst werden — nutzen Sie dazu das entsprechende Datenblatt oder probieren Sie es

einfach aus.

6.5 Abstande genauer messen

Da die Werte fiir die Tabelle durch Ausprobieren ermittelt werden kénnen
(man misst die Spannung, bis sie sich um die notige Menge erhoht hat,
und misst dann den Abstand), kénnen Sie diese Technik auch nutzen,
wenn lhnen keine Gleichung zur Interpretation der Werte zur Verfiigung
steht, z.B. wenn Sie kein Datenblatt besitzen.

Die Umwandlung der Spannung in den Abstand erfolgt in der Funktion:
int getDistance(int mv)

Die Funktion iiberpriift zuerst, ob der Wert innerhalb des Bereichs der Tabelle liegt. Der
kleinste giiltige Abstand wird zuriickgeliefert, wenn der Wert nicht im Wertebereich liegt:

if(mv > INTERVAL * TABLE ENTRIES)
return distance[TABLE ENTRIES-1]; //TABLE ENTRIES-1 ist letzter giltiger Eintrag

Liegt der Wert innerhalb des Tabellenbereichs, ermittelt eine ganzzahlige Division,
welcher Eintrag am nichsten liegt, aber kleiner als der Messwert ist:

int index =mV / INTERVAL ;

Der Modulo-Operator (siehe Kapitel 3) wird verwendet, um den Rest zu ermitteln, wenn
ein Messwert zwischen zwei Eintragen liegt:

float frac = (mV % 250) / (float)INTERVAL;

return distance[index] + (distance[index]* (frac / interval));

Die letzte Zeile der getDistance-Funktion nutzt den Index und den Rest, um den Abstand
zu berechnen und zuriickzugeben. Sie liest den Wert aus der Tabelle und fiigt, basierend
auf dem frac-Wert, noch einen proportionalen Anteil hinzu. Das letzte Element ist eine
Niherung, doch da es nur einen kleinen Teil des Ergebnisses ausmacht, ist es akzeptabel.
Wenn Thnen das Ergebnis nicht genau genug ist, miissen Sie eine Tabelle aufbauen, in der
mehr Werte enger beieinander liegen.

Eine Tabelle kann auch die Performance verbessern, wenn die Berechnung lange dauert
oder wenn immer wieder mit einer beschrinkten Anzahl von Werten gerechnet wird.
Berechnungen, insbesondere FlieRkommaberechnungen, konnen sehr langsam sein. Die-
se Berechnungen durch Tabellen zu ersetzen, kann die Dinge deutlich beschleunigen.

Die Werte konnen (wie bei diesem Sketch) fest kodiert sein, oder in setup() berechnet wer-
den. Der Sketch braucht dann zwar etwas linger zum Starten, aber da das nur einmal beim
Einschalten des Arduino passiert, profitieren Sie danach beim jedem loop() vom Geschwin-
digkeitszuwachs. Den Geschwindigkeitszuwachs erkaufen Sie sich allerdings durch einen
erhohten Speicherbedarf — je groRer die Tabelle, desto mehr RAM wird benotigt. Kapitel 17
zeigt, wie Sie Progmem nutzen kénnen, um Daten im Programmspeicher abzulegen.

N

o Bei langen Anschlussleitungen miissen Sie am Sensor mdoglicherweise
einen Kondensator zwischen +5V und Masse schalten, um die Spannungs-
s+ versorgung zu stabilisieren. Bei fehlerhaften Messwerten verbinden Sie
einfach einen 10-uF-Kondensator mit dem Sensor (weitere Informationen
zu Entstorkondensatoren finden Sie in Anhang C).

198 | Kapitel 6: Werte von Sensoren einlesen

Siehe auch

Eine detaillierte Beschreibung des Sharp IR-Sensors finden Sie unter http://www.societyo-
frobots.com/sensors_sharpirrange.shtml.

6.6 Vibration messen

Problem

Sie wollen auf Vibration reagieren, z.B. wenn an eine Tiir geklopft wird.

Losung

Ein Piezo-Sensor reagiert auf Vibration. Er funktioniert am besten, wenn er mit einer gro-
Reren vibrierenden Oberfliche verbunden ist. Den Anschluss sehen Sie in Abbildung 6-7:
/* piezo Sketch

* Schaltet eine LED ein, wenn geklopft wird
*/

const int sensorPin =0; // Analogpin fir Sensor
const int ledPin =13; // Pin flr LED
const int THRESHOLD = 100;

void setup()

pinMode(ledPin, OUTPUT);
}

void loop()
{

int val = analogRead(sensorPin);
if (val >= THRESHOLD)

digitalWrite(ledPin, HIGH);
delay(100); //Damit man die LED sieht

else
digitalWrite(ledPin, LOW);
}

Diskussion

Ein Piezo-Sensor, auch Klopfsensor genannt, erzeugt eine Spannung als Reaktion auf eine
physikalische Belastung. Je hoher die Belastung, desto hoher die Spannung. Das Piezo-
Element ist gepolt, und die positive Seite (iiblicherweise mit einem roten Draht oder mit
»+« gekennzeichnet) wird mit dem analogen Eingang verbunden. Die negative Seite

6.6 Vibration messen | 199

(schwarz oder mit »—« gekennzeichnet) wird mit Masse verbunden. Ein hochohmiger
Widerstand (1 Megaohm) wird parallel zum Sensor geschaltet.

00000000 00000

R0

Piezo-

oo Klopfsensor

oo

___YS

Abbildung 6-7: Anschluss eines Klopfsensors

Die Spannung wird tiber Arduinos analogRead eingelesen, um eine LED einzuschalten (in
Kapitel 5 erfahren Sie mehr tber die analogRead-Funktion). THRESHOLD definiert den
Schwellwert, bei dem die LED eingeschaltet wird. Sie kénnen diesen Wert erhéhen oder
verkleinern und so die Empfindlichkeit des Sketches regeln.

Piezo-Sensoren kann man in Kunststoffgehdusen kaufen oder als einfache Metallplittchen
mit zwei Kabeln dran. Die Komponenten selbst sind gleich, d.h., Sie kénnen die Variante
nutzen, die fiir Thr Projekt am besten geeignet ist.

Manche Sensoren, wie das Piezo-Element, kénnen auch vom Arduino angesteuert werden,
um das zu erzeugen, was sie auch messen. Kapitel 9 zeigt, wie man mit einem Piezo-Element
Tone erzeugen kann.

6.7 Gerausche erkennen

Problem

Sie wollen Gerdusche wie Klatschen, Sprechen oder Schreien erkennen.

Losung

Dieses Rezept verwendet das Breakout-Board BOB-08669 fiir das Electret-Mikrofon
(SparkFun). Verbinden Sie das Board wie in Abbildung 6-8 zu sehen und laden Sie den
Code auf den Arduino hoch.

200 | Kapitel 6: Werte von Sensoren einlesen

00000000 00000000 Mikrofon-

LM ON— O OO ~NonsFeNNT— O

=35 piGiTAL = Breakout-
Board

Arduino
oo — A Aud
—F&] Gnd
i —E1 V(C

—
BeoT2 e ANALOG

[EDDDDD

Abbildung 6-8: Anschluss des Mikrofon-Boards

Die eingebaute LED an Arduino-Pin 13 geht an, wenn Sie in der Nihe des Mikrofons
klatschen, schreien oder laute Musik spielen. Méglicherweise miissen Sie den Schwellwert
korrigieren — verwenden Sie den seriellen Monitor, um sich die hohen und niedrigen
Werte anzusehen, und dndern Sie den Schwellwert so ab, dass er zwischen den hohen
Werten (wenn Geriusche vorhanden sind) und den niedrigen Werten (wenn keine oder
nur wenige Gerdusche zu horen sind) liegt. Laden Sie den angepassten Code auf den
Arduino hoch und probieren Sie es erneut:

/*

microphone Sketch

SparkFun Breakout-Board fiir Electret-Mikrofon an Analogpin 0
*/

const int ledPin = 13; //LED an Pin 13
const int middlevalue = 512; //Mitte des analogen Wertebereichs
const int numberOfSamples = 128; //Messwerte pro Durchgang

int sample; //Vom Mikro gelieferter Wert

long signal; //Messwert ohne DC-Offset

long averageReading; //Durchschnitt des Messdurchgangs

long runningAverage=0; //Laufender Durchschnitt der berechneten Werte

const int averagedOver=16; //Wie schnell wirken sich neue Werte auf den laufenden Durchschnitt
aus?

//GroBere Zahlen bedeuten langsamer

const int threshold=400; //Bei welchem Schwellwert schaltet sich die LED ein?
void setup() {

pinMode(ledPin, OUTPUT);

Serial.begin(9600);
}

6.7 Gerausche erkennen | 201

void loop() {
long sumOfSquares = 0;
for (int i=0; i<numberOfSamples; i++) { //Viele Messwerte einlesen und Durchschnitt bilden

sample = analogRead(0); //Wert einlesen
signal = (sample - middleValue); //Offset von der Mitte abziehen
signal *= signal; //Quadrieren, damit alle Werte positiv sind
sumOfSquares += signal; //Zum Gesamtwert hinzuaddieren

}

averageReading = sumOfSquares/numberOfSamples; //Laufenden Durchschnitt berechnen
runningAverage=(((averagedOver-1)*runningAverage)+averageReading)/averagedOver;

if (runningAverage>threshold){ //Durchschnitt tiber Schwellwert?
digitalWrite(ledPin, HICH); //Ja, LED einschalten

telse{
digitalWrite(ledPin, LOW); //Nein, LED ausschalten
}
Serial.println(runningAverage); //Wert zu Testzwecken ausgeben
}
Diskussion

Ein Mikrofon erzeugt sehr schwache elektrische Signale. Wiirden Sie es direkt mit einem
Pin des Arduino verbinden, wire keine Anderung messbar. Das Signal muss zuerst ver-
starkt werden, damit es vom Arduino genutzt werden kann. Das SparkFun-Board besitzt
ein Mikrofon und eine integrierte Verstirkerschaltung, die das Signal so aufbereitet, dass
es vom Arduino verarbeitet werden kann.

Abbildung 6-9: Messung eines Audiosignals an drei Stellen

Da wir in diesem Rezept ein Audiosignal messen, miissen wir einige zusitzliche Berech-
nungen vornehmen, um an niitzliche Informationen zu gelangen. Ein Audiosignal ver-
andert sich recht schnell, und der von analogRead zuriickgelieferte Wert hiangt davon ab,
an welchem Punkt des wellenformigen Signals Sie einen Messwert einlesen. Wenn Sie mit
analogRead nicht vertraut sind, sehen Sie sich Kapitel 5 und Rezept 6.2 an. Ein Beispiel fur
die Wellenform eines Audiosignals ist in Abbildung 6-9 zu sehen. Mit der Zeit steigt und
sinkt die Spannung in einem regelmifigen Muster. Wenn Sie zu drei verschiedenen

202 | Kapitel 6: Werte von Sensoren einlesen

Zeitpunkten messen, erhalten Sie auch drei unterschiedliche Messwerte. Wiirden Sie das

nutzen, um eine Entscheidung zu treffen, konnten Sie falschlicherweise schlieflen, dass
das Signal in der Mitte lauter wird.

Eine genaue Messung verlangt daher mehrere, zeitlich nah beeinanderliegende, Messun-
gen. Die Spitzen und Téler nehmen zu, wenn das Signal grofer wird. Die Differenz zwi-

schen dem Tiefpunkt eines Tals und dem obersten Punkt einer Spitze nennt man
Amplitude, und sie steigt an, wenn das Signal lauter wird.

Um die GrofSe der Spitzen und Tiler zu bestimmen, messen Sie die Differenz zwischen
Spannungsmitte und den Grofen der Spitzen und Tiler. Sie konnen sich diesen Mittel-
punkt als Linie vorstellen, die genau in der Mitte zwischen der hoéchsten Spitze und dem
tiefsten Tal verlduft (siehe Abbildung 6-10). Die Linie reprisentiert den Spannungs-Offset
des Signals (die Spannung ohne Spitzen oder Tiler). Wenn Sie diesen Offset von den

analogRead-Werten abziehen, erhalten Sie den korrekten Wert der Signalamplitude.

Abbildung 6-10: Audiosignal mit Offset (Signal-Mittelpunkt)

Wird das Signal lauter, steigt die Durchschnittsgrofle dieser Werte an, doch da einige
Werte negativ sind (wenn das Signal unter den Offset fillt), heben sie sich gegenseitig auf,
und der Durchschnitt tendiert gegen 0. Um das zu korrigieren, quadrieren wir jeden Wert
(nehmen ihn mit sich selbst mal). Das macht alle Werte positiv und erhoht den Un-

terschied bei kleinen Anderungen, was fiir die Untersuchung ebenfalls hilfreich ist. Der
Durchschnittswert steigt und sinkt nun mit der Signalamplitude.

Fiir diese Berechnung miissen wir den Wert des Offsets kennen. Um ein sauberes Signal
zu erhalten, wird der Mikrofonverstirker einen Offset verwenden, der so mittig wie
moglich im erlaubten Spannungbereich liegt, damit das Signal so grof wie moglich
werden kann, ohne zu verzerren. Unser Code geht genau davon aus und verwendet den
Wert 512 (genau in der Mitte des analogen Wertebereichs von 0 bis 1023).

Die Variablenwerte am Anfang des Sketches konnen angepasst werden, wenn der Sketch
auf die von Thnen benétigten Tonlagen nicht gut reagiert.

6.7 Gerdusche erkennen | 203

numberOfSamples ist auf 128 gesetzt — setzt man diesen Wert zu klein an, deckt der
Durchschnitt die kompletten Zyklen der Wellenform mdoglicherweise nicht adaquat ab,
und Sie erhalten falsche Ergebnisse. Setzen Sie den Wert hingegen zu hoch an, bilden Sie
den Durchschnitt tiber einen zu langen Zeitraum und sehr kurze Téne koénnen in der
groflen Datenmenge verloren gehen. Es kann auch zu einer deutlichen Verzégerung
zwischen Ton und aufleuchtendes LED kommen. Fiir die Berechnung verwendete Kon-
stanten wie numberOfSamples und averagedOver verwenden Zweierpotenzen (128 bzw. 16).
Versuchen Sie, Werte zu benutzen, die durch 2 teilbar sind, um die grofRtmogliche
Performance zu erreichen (mehr zu mathematischen Funktionen erfahren Sie in Kapitel 3).

6.8 Temperatur messen

Problem

Sie wollen die Temperatur ausgeben, oder den Wert zur Steuerung eines Gerites nutzen,
etwa um etwas zu schalten, wenn die Temperatur einen Schwellwert erreicht.

Losung

Das Rezept gibt die Temperatur in Fahrenheit und Celsius aus. Es verwendet den be-
liebten Temperatursensor LM35. Der Sensor sieht aus wie ein Transistor, und die Ver-
schaltung ist in Abbildung 6-11 zu sehen:

/*

1m35 Sketch

Gibt die Temperatur liber den seriellen Monitor aus
*/

const int inPin =0; // Analogpin

void setup()

Serial.begin(9600);
}

void loop()
{
int value = analogRead(inPin);
Serial.print(value); Serial.print(">");
float millivolts = (value / 1024.0) * 5000;
float celsius =millivolts / 10; // 10mV pro Grad Celsius
Serial.print(celsius);
Serial.print(" Grad Celsius, ");

Serial.print((celsius *9)/5+32); // Umwandlung in Fahrenheit
Serial.println(" Grad Fahrenheit");

delay(1000); // Eine Sekunde warten

204 | Kapitel 6: Werte von Sensoren einlesen

000000 O00a00aa

N—Qo®® ~oinTPN—O

DIGITAL =&

aa
pref=3
=

LM35

Arduino -

X}

| #
- 00 %{% ANALOG

+5 Out Gnd

o—ANMm< i

00 Pocao0

Abbildung 6-11: Anschluss des Temperatursensors LM35

Diskussion

Der Temperatursensor LM35 erzeugt eine Analogspannung, die zur Temperatur direkt
proportional ist. Sie betrdgt am Ausgang 1 Millivolt je 0,1°C (10mV pro Grad).

Der Sketch wandelt die analogRead-Werte in Millivolt um (siehe Kapitel 5) und teilt sie
dann durch 10, um die Temperatur in Grad zu ermitteln.

Die Genauigkeit des Sensors liegt bei etwa 0,5°C, und in vielen Fillen konnen Sie auf
FlieRkommazahlen verzichten und mit ganzen Zahlen arbeiten.

Der folgende Sketch aktiviert Pin 13, wenn die Temperatur einen Schwellwert tiber-
schreitet:

const int inPin =0; // Analogpin fiir Senso
const int outPin = 13; //Digitalpin fur LED

const int threshold = 25; // Schwellwert, der den Ausgangspin anstoRt

void setup()

Serial.begin(9600);
pinMode(outPin, OUTPUT);

void loop()
{

int value = analogRead(inPin);

long celsius = (value * 500L) /1024; //10mV je Grad C, siehe Text
Serial.print(celsius);

Serial.print(" Grad Celsius: ");

if(celsius > threshold)

{

6.8 Temperatur messen | 205

digitalWrite(outPin, HICH);
Serial.println("Pin istan");

else

{
digitalWrite(outPin, LOW);
Serial.println("Pin ist aus");

}
delay(1000); // Eine Sekunde warten

Der Sketch nutzt nur long-Werte (32-Bit) zur Berechnung. Der Buchstabe L hinter einer
Zahl sorgt dafiir, dass die Berechnung in long-Arithmetik erfolgt, damit die Multiplikation
der Maximaltemperatur (500 bei einem 5-V-Arduino) mit dem eingelesenen Analogwert
nicht zu einem Uberlauf fithrt. Weitere Informationen zur Umwandlung von Analog-
pegeln in Spannungen finden Sie in Kapitel 5.

Wenn Sie Werte in Fahrenheit benotigen, konnen Sie den LM34-Sensor verwenden, der
Ausgaben in Fahrenheit erzeugt, oder Sie kénnen die Werte mit der folgenden Formel
umrechnen:

float f=(celsius *9)/5+32);

Eine Alternative zur Temperaturmessung ist der LM335. Er sieht aus wie der LM35, wird
aber anders verschaltet und genutzt.

Die LM335-Ausgabe entspricht 10mV pro Grad Kelvin, also 2,731 Volt bei 0 Grad Celsius.
Ein Vorwiderstand wird fiir die Betriebsspannung benoétigt. Oft wird ein 2K-Ohm-Wider-
stand verwendet, es konnen aber auch 2,2K-Ohm sein. Hier ein Sketch, der die Temperatur
mit Hilfe des LM335 ausgibt (die Verschaltung sehen Sie in Abbildung 6-12):

/*

1m335 Sketch

Gibt die Temperatur lber den seriellen Monitor aus
*/

const int inPin =0; // Analogpin

void setup()
{

Serial.begin(9600);
}

void loop()

{
int value = analogRead(inPin);
Serial.print(value); Serial.print(">");
float millivolts = (value / 1024.0) * 5000;
// 10mV pro Grad Kelvin, 0 Grad Celsius ist 273,15
float celsius = (millivolts / 10) - 273.15;

Serial.print(celsius);
Serial.print(" Grad Celsius, ");

206 | Kapitel 6: Werte von Sensoren einlesen

Serial.print((celsius *9)/5+32); // InFahrenheit umwandeln
Serial.println(" Grad Fahrenheit");

delay(1000); // Eine Sekunde warten

}
00000000 0000000a
== DIGITAL =E
Oled
H LM335
Arduino -
Adj Out Gnd
g nicht verbundeln Adj%
siehe Text Outag LM335
= |
OO #ggses Mo, | gxom
(000000 [FDDDD siehe Text

Abbildung 6-12: Anschluss des Temperatursensors LM335

Sie konnen die Genauigkeit verbessern, indem Sie den nicht angeschlossenen adj-Pin mit
dem Schleifer eines 10-K-Potis (und die beiden anderen Anschliisse mit +5V und Masse)
verbinden. Gleichen Sie die Einstellung dann mit dem Poti iiber ein bekanntermafien
genaues Thermometer ab.

Siehe auch
LM35-Datenblatt: http://www.national.com/ds/LM/LM35.pdf
LM335-Datenblatt: hitp://www.national.com/ds/LM/LM135.pdf

6.9 RFID-Tags lesen

Problem

Sie wollen einen RFID-Tag lesen und auf bestimmte IDs reagieren.

Losung

Abbildung 6-13 zeigt die Anbindung eines Parallax RFID- (Radio Frequency Identifica-
tion)Lesers an den seriellen Port des Arduino. (Moglicherweise miissen Sie den Leser
abklemmen, um den Sketch hochladen zu kénnen)

6.9 RFID-Tags lesen | 207

Dieser Leser arbeitet mit 125-kHz-Tags. Wenn Sie einen anderen Leser
nutzen, missen Sie den korrekten Anschluss und die richtige Nutzung in
der Dokumentation nachschlagen.

soessssepioseseies

25 77 DIGITAL ==
Enable
ouT RFID-
. Leser
Arduino o 5
o0 —{ Gnd

ANALOG

oO—<tLin

5=
TD 000000

Y

Abbildung 6-13: Serieller RFID-Leser am Arduino

Der Sketch liest den Wert eines RFID-Tags ein und gibt ihn aus:
/*
RFID Sketch

Gibt den von einem RFID-Tag eingelesenen Wert aus
*/

const int startByte =10; // ASCII-Linefeed vor jedem Tag

const int endByte =13; // ASCII Carriage Return schliet jeden Tag ab
const int taglength =10; // Anzahl der Ziffern im Tag

const int totallength = taglength + 2; //Tag-Lange + Start- und End-Byte

char tag[taglength +1]; // Enthalt den Tag und eine abschlieRende 0

int bytesread = 0;

void setup()

{Serial.begin(2400); // Baudrate Ihres RFID-Lesers verwenden
pinMode(2,0UTPUT); // Mit RFID ENABLE-Pin verbunden

digitalWrite(2, LOW); // RFID-Leser aktivieren
}

void loop()
{
if(Serial.available() »>=totallLength) // Ausreichend Daten da?

if(Serial.read() == startByte)

208 | Kapitel 6: Werte von Sensoren einlesen

bytesread = 0; // Am Anfang des Tags setzen wir den Zdhler auf 0 zuriick
while(bytesread < taglength) // 10-Ziffern-Code einlesen

int val = Serial.read();

if((val == startByte)||(val == endByte)) // Auf Code-Ende priifen
break;

tag[bytesread] = val;

bytesread = bytesread + 1; // Bereit fiir ndchste Ziffer

}
if(Serial.read() ==endByte) // Auf korrektes End-Zeichen priifen

{
tag[bytesread] = 0; // String abschlieRen

Serial.print("RFID-Tag ist: ");
Serial.println(tag);
}
}
}
}

Diskussion

Ein Tag besteht aus einem Startzeichen, gefolgt vom eigentlichen 10-Ziffern-Code und
einem End-Zeichen. Der Sketch wartet, bis ein vollstindiger Tag verfligbar ist, und gibt
ihn dann aus, wenn er giltig ist. Der Tag wird in Form von ASCII-Ziffern empfangen
(mehr zum Empfang von ASCII-Ziffern finden Sie in Rezept 4.4). Sie konnen den
empfangenen String auch in eine Zahl umwandeln, wenn Sie ihn speichern oder mit
anderen Werten vergleichen wollen. Dazu dndern Sie die letzten Codezeilen wie folgt ab:

if(Serial.read() ==endByte) // Auf korrektes End-Zeichen priifen

tag[bytesread] = 0; // String abschlieRen

long tagValue = atol(tag); // ASCII-Tag in long-Wert umwandeln
Serial.print("RFID-Tag ist: ");

Serial.println(tagvalue);

RFID steht fur »Radio Frequency Identification«, und wie es der Name andeutet, reagiert
es auf Radiofrequenzen empfindlich und ist entsprechend storanfillig. Der Code in
diesem Rezept verwendet nur Codes mit der richtigen Linge und den richtigen Start-
und Stop-Bits, was die meisten Fehler eliminieren sollte. Doch Sie kénnen den Code auch
stabiler machen, indem Sie den Tag wiederholt einlesen und die Daten nur nutzen, wenn
sie tibereinstimmen. (RFID-Leser wiederholen den Code, solange sich ein giiltiger Tag in
der Nihe befindet.) Zu diesem Zweck erweitern Sie die letzten Zeilen im obigen Code-
Fragment wie folgt:

if(Serial.read() ==endByte) // Auf korrektes End-Zeichen prifen
tag[bytesread] = 0; // String abschlieRen

long tagValue = atol(tag); // ASCII-Tag in long-Wert umwandeln
if (tagValue == lastTagValue)

Serial.print("RFID-Tag ist: ");
Serial.println(tagvalue);

6.9 RFID-Tags lesen | 209

lastTagValue = tagValue;
}
}

Sie miissen zu Beginn des Sketches noch eine Deklaration fiir lastTagValue einfiigen:
long lastTagValue=0;

Dieser Ansatz dhnelt dem Code aus Rezept 5.3. Eine Bestitigung erhalten Sie nur, wenn
der Tag lange genug verfiigbar ist, um zweimal gelesen zu werden, doch Fehler nehmen
auf diese Weise deutlich ab. Sie kénnen ein versehentliches Einlesen verhindern, indem
Sie dafiir sorgen, dass der Tag eine gewisse Zeit verfiigbar sein muss, bevor die Nummer
ausgegeben wird.

6.10 Drehbewegungen messen

Problem

Sie wollen die Drehbewegung eines Objekts messen und ausgeben, um seine Geschwin-
digkeit und/oder Richtung verfolgen zu kénnen.

Losung

Um eine Drehbewegung zu messen, konnen Sie einen Drehwinkelgeber nutzen, der mit
dem Objekt verbunden ist, das Sie nachhalten wollen. Schlieflen Sie den Drehwinkelgeber
wie in Abbildung 6-14 an:

/*

Drehwinkelgeber einlesen

Diese einfache Version fragt nur die Encoder-Pins ab
Die Positionwird liber den seriellen Monitor ausgegeben
*/

const int encoderPinA = 4;

const int encoderPinB = 2;

const int encoderStepsPerRevolution=16;
int angle = 0;

int val;

int encoderPos = 0;
boolean encoderAlLast = LOW; // Vorigen Pin-Zustand merken

void setup()
{

pinMode(encoderPinA, INPUT);
pinMode(encoderPinB, INPUT);
digitalWrite(encoderPinA, HICH);
digitalWrite(encoderPinB, HICH);
Serial.begin (9600);

210 | Kapitel 6: Werte von Sensoren einlesen

void loop()

{boolean encoderA = digitalRead(encoderPinA);
if ((encoderAlast == HIGH) && (encoderA == LOW))
{if (digitalRead(encoderPinB) == LOW)

encoderPos--;

}

else

{

encoderPos++;

angle=(encoderPos % encoderStepsPerRevolution)*360/encoderStepsPerRevolution;
Serial.print (encoderPos);

Serial.print (" ");

Serial.println (angle);

encoderAlast = encoderA;

}

RESET
3]
e
Gnd[F——
andQ
vinQ

ONINQYY
O

Abbildung 6-14: Drehwinkelgeber

Diskussion

Ein Drehwinkelgeber erzeugt zwei Signale, wihrend er bewegt wird. Beide Signale
wechseln zwischen HICH und LOW, wihrend sich die Achse dreht, doch die Signale sind
zueinander leicht verschoben. Wenn Sie den Punkt erkennen, an dem eines der Signale

6.10 Drehbewegungen messen | 211

von HIGH zu LOW wechselt, sagt Thnen der Zustand des anderen Pins (HIGH oder LOW), in
welche Richtung sich die Achse dreht.

Die erste Zeile des Codes in der loop-Funktion liest also einen der Encoder-Pins ein:

int encoderA = digitalRead(encoderPinA);

Dann wird dieser Wert mit dem vorigen verglichen, um zu sehen, ob er gerade auf LOW
gegangen ist:

if ((encoderAlast == HIGH) && (encoderA == LOW))

Ist das nicht der Fall, wird der nachfolgende Code-Block nicht ausgefiihrt, sondern zum
Ende von loop gesprungen, wo der gerade gelesene Wert in encoderALast gespeichert wird.
Dann geht es mit einem neuen Messwert wieder von vorne los.

Gibt der folgende Ausdruck
if ((encoderAlast == HIGH) && (encoderA == LOW))

true zurick, liest der Code den anderen Encoder-Pin ein und inkrementiert bzw.
dekrementiert encoderPos in Abhingigkeit vom zuriickgelieferten Wert. Er berechnet den
Winkel der Achse (0 ist dabei der Punkt, an dem sich die Achse befand, als der Code
gestartet wurde). Der Wert wird dann tiber den seriellen Port gesendet, und Sie konnen
ihn auf dem seriellen Monitor sehen.

Drehwinkelgeber gibt es mit verschiedenen Auflésungen (Schritten pro Umdrehung). Sie
gibt an, wie oft das Signal bei einer Umdrehung der Achse zwischen HIGH und LOW
wechselt. Die Werte reichen dabei von 16 bis 1000. Bei hoheren Werten konnen kleinere
Bewegungen erkannt werden, aber dafiir kosten die Encoder auch deutlich mehr Geld.
Die Auflésung des Encoders ist im Code fest eingetragen:

const int encoderStepsPerRevolution=16;
Bei einem anderen Encoder miissen Sie den Wert entsprechend korrigieren.

Wenn Sie keine auf- und absteigenden Werte erhalten, egal in welcher Richtung Sie den
Geber drehen, sollten Sie den Test umkehren und nach einer steigenden statt einer
fallenden Flanke Ausschau halten. Vertauschen Sie die LOW- und HIGH-Werte in der Zeile,
in der die Werte tiberpriift werden, wie folgt:

if ((encoderALast == LOW) && (encoderA == HICH))

Drehwinkelgeber erzeugen nur ein Inkrement bzw. Dekrement. Sie konnen Thnen nicht
direkt sagen, in welchem Winkel sich die Achse gerade befindet. Der Code berechnet das,
doch immer relativ zur Achsstellung beim Programmstart. Der Code {iberwacht die Pins,
indem er sie kontinuierlich abfragt (engl. Polling). Es gibt keine Garantie, dass sich die
Pinwerte nicht gedndert haben, seit sie zuletzt abgefragt wurden, d.h., wenn sich der Code
um viele andere Dinge kiilmmern muss und der Encoder sehr schnell gedreht wird, dann
ist es moglich, dass einige Schritte verloren gehen. Das ist bei hochauflésenden Encodern
wahrscheinlicher, da sie beim Drehen viel mehr Signale senden.

212 | Kapitel 6: Werte von Sensoren einlesen

Um die Geschwindigkeit herauszufinden, miissen Sie zihlen, wie viele Schritte in eine
Richtung in einer festgelegten Zeit registriert werden.

6.11 Mehrere Drehbewegungen messen

Problem

Sie arbeiten mit zwei oder mehr Drehwinkelgebern und wollen deren Drehbewegungen
messen und ausgeben.

Losung

Die Schaltung arbeitet mit zwei Encodern, die wie in Abbildung 6-15 angeschlossen sind.
Weitere Informationen zu Drehwinkelgebern finden Sie in Rezept 6.10:

/*

RotaryEncoderMultiPoll

Der Sketch verwendet zwei Encoder.
Einer ist mit den Pins 2 und 3,

der andere mit den Pins 4 und 5 verbunden
*/

const int ENCODERS =2; // Anzahl Encoder

const int encoderPinA[ENCODERS] = {2,4}; // encoderA, Pins an2und 4

const int encoderPinB[ENCODERS] = {3,5}; // encoderB, Pinsan3und5

int encoderPos[ENCODERS] = { 0,0}; // Positionen auf 0 setzen

boolean encoderALast[ENCODERS] = { LOW,LOW}; // Letzter Zustand des encoderA-Pins

void setup()

for (int i=2; i<6; i++){
pinMode(i, HICH);
digitalWrite(i, HIGH);

Serial.begin (9600);

int updatePosition(int encoderIndex)

{

boolean encoderA = digitalRead(encoderPinA[encoderIndex]);
if ((encoderAlast[encoderIndex] == HIGH) && (encoderA == LOW))

if (digitalRead(encoderPinB[encoderIndex]) == LOW)
{

encoderPos[encoderIndex]--;

}

else

{

encoderPos[encoderIndex]++;

6.11 Mehrere Drehbewegungen messen | 213

}

Serial.print("Encoder ");
Serial.print(encoderIndex,DEC);
Serial.print("=");

Serial.print (encoderPos[encoderIndex]);
Serial.println ("/");

encoderAlast[encoderIndex] = encoderA;
}
void loop()

for(int i=0; i < ENCODERS;i++)

{
updatePosition(i);
}
}
on U <C [aa
200099 S
ARDUINO

Abbildung 6-15: Anschluss zwei Drehwinkelgeber

Diskussion

Dieses Rezept nutzt die gleiche Logik wie Rezept 6.10, in dem ein Encoder gelesen wurde.
Hier wird aber ein Array fur alle Variablen verwendet, die fiir jeden Encoder separat
vorgehalten werden miissen. Wir kénnen dann eine for-Schleife nutzen, um alle Encoder
einzulesen und ihre Rotation zu berechnen. Um mehr Encoder zu nutzen, miissen Sie den
ENCODERS-Wert entsprechend erhohen, die Arrays erweitern und definieren, an welchen
Pins sie angeschlossen sind.

214 | Kapitel 6: Werte von Sensoren einlesen

Wenn Sie keine auf- und absteigenden Werte erhalten, egal in welcher Richtung Sie den
Geber drehen, sollten Sie den Test umkehren und nach einer steigenden statt einer
fallenden Flanke Ausschau halten. Vertauschen Sie die LOW- und HIGH-Werte in der Zeile

if ((encoderALast[encoderIndex] == HIGH) 88 (encoderA == LOW))
wie folgt:
if ((encoderALast[encoderIndex] == LOW) && (encoderA == HIGH))

Wenn ein Encoder funktioniert, der andere aber nur hochzihlt, tauschen Sie einfach die
A- und B-Verbindungen des betreffenden Encoders.

6.12 Drehbewegungen in einem viel beschaftigten Sketch
messen

Problem

Nachdem Thr Code gewachsen ist und neben dem Einlesen der Encoderwerte noch andere
Dinge erledigen muss, wird der Encoder immer unzuverlissiger. Das Problem ist beson-
ders grof§, wenn sich die Achse schnell dreht.

Losung

Die Schaltung entspricht der aus Rezept 6.11. Wir verwenden einen Interrupt, um si-
cherzustellen, dass der Code auf jeden Schritt reagiert:

/*
RotaryEncoderInterrupt Sketch
*/

const int encoderPinA = 2;

const int encoderPinB = 4;

int Pos, oldPos;

volatile int encoderPos = 0; // Bei Interrupts gednderte Variablen sind volatil

void setup()

{
pinMode(encoderPinA, INPUT);

pinMode(encoderPinB, INPUT);
digitalWrite(encoderPinA, HIGH);
digitalWrite(encoderPinB, HIGH);
Serial.begin(9600);

attachInterrupt(0, doEncoder, FALLING); // Encoder-Pin an Interrupt 0 (Pin 2)
}

void loop()
{

uint8_t 0l1dSREG = SREG;

6.12 Drehbewegungen in einem viel beschaftigten Sketch messen | 215

cli();

Pos = encoderPos;
SREG = 01dSREG;
if(Pos !=0ldPos)

{
Serial.println(Pos,DEC);
oldPos = Pos;

}
delay(1000);

}

void doEncoder ()

if (digitalRead(encoderPinA) == digitalRead(encoderPinB))
encoderPos++; //Hochzdhlen, wenn Encoder-Pins gleich sind
else
encoderPos--; // Runterzdhlen, wenn Pins nicht gleich sind

}

Der Code gibt den Pos-Wert hochstens einmal in der Sekunde iiber den seriellen Port aus
(aufgrund der Pause). Der ausgegebene Wert beriicksichtigt aber alle Bewegungen, die
wihrend dieser Pause ausgefithrt wurden.

Diskussion

Wenn Thr Code mehr Aufgaben erledigen muss, werden die Encoder-Pins seltener abge-
fragt. Durchlaufen die Pins eine Schrittinderung, bevor die Daten gelesen werden, kann
der Arduino den Schritt nicht erkennen. Wird die Achse schnell bewegt, passiert das ofter,
weil die Schritte schneller kommen.

Um sicherzustellen, dass der Code bei jedem Schritt reagiert, miissen Sie Interrupts (»Un-
terbrechungen«) verwenden. Tritt ein Interrupt ein, unterbricht der Code, was er gerade
macht, fithrt den Interrupt-Code aus und macht dann da weiter, wo er unterbrochen
wurde.

Bei einem Standard-Arduino-Board kénnen die beiden Pins 2 und 3 als Interrupts ver-
wendet werden. Der Interrupt wird durch die folgende Zeile aktiviert:

attachInterrupt(0, doEncoder, FALLING);

Die drei benotigten Parameter sind die Interrupt-Pin-ID (0 fiir Pin 2, 1 fur Pin 3), die
Funktion, die bei einem Interrupt ausgefithrt werden soll (in diesem Fall doEncoder) und
schliefRlich das Verhalten des Pins, bei dem der Interrupt ausgelost wird (in diesem Fall
das Abfallen der Spannung von 5 auf 0 Volt). Die anderen Optionen sind RISING (die
Spannung steigt von 0 auf 5 Volt) und CHANGE (Spannung steigt oder fillt).

Die Funktion doEncoder priift die Encoder-Pins, um zu sehen, in welche Richtung sich die
Achse gedreht hat, und setzt encoderPos entsprechend.

216 | Kapitel 6: Werte von Sensoren einlesen

Wenn sich der Wert unabhiingig von der Drehrichtung nur erhoht, dndern Sie den
Interrupt so ab, dass er auf die ansteigende Flanke (RISING) statt auf die fallende (FALLING)
reagiert.

Da encoderPos in der Funktion geindert wird, die beim Interrupt ausgefithrt wird, muss
sie als volatile deklariert werden. Das teilt dem Compiler mit, dass sie jederzeit verindert
werden kann. Optimieren Sie den Code nicht aufgrund der Annahme, dass er sich nicht
verandert hat, da der Interrupt jederzeit eintreten kann.

N

o Der Arduino Build-Prozess optimiert den Code, indem er Code und
.'s‘ Variablen entfernt, die von Threm Sketch nicht genutzt werden. Nur in
i Interrupt-Handlern veridnderte Variablen miissen daher als volatile dekla-

riert werden, damit der Compiler weil3, dass er diese Variablen nicht ent-
fernen soll.

Um diese Variable in der Hauptschleife zu lesen, miissen Sie besondere Vorkehrungen
treffen, um sicherzustellen, dass der Interrupt nicht eintritt, wenn Sie sie gerade lesen.
Diese Aufgabe iibernimmt das folgende Code-Fragment:

uint8_t 0l1dSREG = SREG;

cli();
Pos = encoderPos;
SREG = 01dSREG;

Zuerst sichern Sie den aktuellen Status von SREG (den Interrupt-Registern) und schalten
die Interrupts dann mit cli aus. Der Wert wird gelesen und das Wiederherstellen von SREG
schaltet die Interrupts wieder ein und alles ist so, wie es war. Tritt ein Interrupt ein,
wihrend die Interrupts ausgeschaltet sind, dann wartet er, bis sie wieder eingeschaltet
werden. Dieser Zeitraum ist so kurz, dass kein Interrupt verloren geht (solange Sie den
Code im Interrupt-Handler so kurz wie moglich halten).

6.13 Eine Maus nutzen

Problem

Sie wollen die Bewegungen einer PS/2-kompatiblen Maus verarbeiten und auf Anderun-
gen der x- und y-Koordinaten reagieren.

Losung

Diese Losung nutzt LEDs, um Mausbewegungen anzuzeigen. Die Helligkeit der LEDs
andert sich in Reaktion auf die Mausbewegung in x- (links und rechts) und y- (vor und
zuriick) Richtung. Das Anklicken der Maustasten legt die aktuelle Position als Referenz-
punkt fest (Abbildung 6-16 zeigt den Anschlussplan):

6.13 Eine Maus nutzen | 217

/*

Mouse

Dieser Arduino-Sketch nutzt die PS2-Maus-Bibliothek

siehe: http://www.arduino.cc/playground/ComponentlLib/Ps2mouse
*/

// PS2-Maus-Bibliothek von: http://www.arduino.cc/playground/ComponentLib/Ps2mouse
#define WProgram.h Arduino.h
#include <ps2.h>

const int dataPin = 5;
const int clockPin = 6;

const int xLedPin =9;
const int yLedPin =11;

const int mouseRange = 255; // Maximaler Bereich der x/y-Werte

char x; // Von der Maus eingelesene Werte
chary;
byte status;

int xPosition=0; //BeiMausbewegung inkrementierte/dekrementierte Werte
int yPosition = 0;

int xBrightness = 128; // Basierend auf Mausposition erhdhte/verringerte Werte
int yBrightness = 128;

const byte REQUEST DATA = Oxeb; // Befehl zum Abruf der Mausdaten
PS2 mouse(clockPin, dataPin);

void setup()

{

mouseBegin();

void loop()

// Daten von Maus einlesen

mouse.write(REQUEST DATA); // Daten von Maus anfordern

mouse.read(); //Ack ignorieren

status = mouse.read(); // Mausbuttons einlesen

if(status 8 1) // Dieses Bit ist gesetzt, wenn die linke Maustaste gedriickt ist
xPosition =0; // x-Position neu ausrichten

if(status & 2) // Dieses Bit ist gesetzt, wenn die rechte Maustaste gedriickt ist
yPosition =0; // y-Position neu ausrichten

x =mouse.read();
y =mouse.read();
if(x!=0]|y!=0)

// Wenn die Maus bewegt wurde

xPosition = xPosition + x; // Position akkumulieren
xPosition = constrain(xPosition,-mouseRange,mouseRange);

xBrightness = map(xPosition, -mouseRange, mouseRange, 0,255);

218 | Kapitel 6: Werte von Sensoren einlesen

analogWrite(xLedPin, xBrightness);
yPosition = constrain(yPosition +y, -mouseRange,mouseRange);
yBrightness = map(yPosition, -mouseRange, mouseRange, 0,255);
analogWrite(ylLedPin, yBrightness);

}

void mouseBegin()

// Maus zuriicksetzen und initialisieren

mouse.write(oxff); // Reset
delayMicroseconds(100);
mouse.read(); // Ack-Byte
mouse.read(); // Blank
mouse.read(); // Blank
mouse.write(0xfo); // Modus
mouse.read(); // Ack
delayMicroseconds(100);

}

oO="TcCco>X>x>

1 Daten (Arduino Pin 5)
2 Nicht verbunden
Q 3 3 Masse
& 445 Volt
RE;&; 5 Takt (Arduino Pin 6)
5V 6 Nicht verbunden
Gnd
Gnd
Vin

Abbildung 6-16: Anschluss einer Maus und zweier LEDs

Abbildung 6-16 zeigt den weiblichen PS/2-Anschluss von vorne. Wenn Sie keinen solchen
Stecker besitzen und sich nicht scheuen, das Ende des Mauskabel abzuschneiden, kénnen
Sie sich notieren, welche Kabel mit welchen Pins verbunden sind, und die Kabel mit
Steckern verloten, die Sie direkt auf die richtigen Arduino-Pins aufstecken kénnen.

6.13 Eine Maus nutzen | 219

Diskussion

Verbinden Sie das Maussignal (clock und data) und die Versorgungsanschliisse mit dem
Arduino (siehe Abbildung 6-16). Diese Losung funktioniert nur mit PS/2-kompatiblen
Geriten, d.h., Sie miissen moglicherweise eine iltere Maus auftreiben. Die meisten Miuse
mit dem runden PS/2-Anschluss sollten funktionieren.

Die Funktion mouseBegin initialisiert die Maus, damit sie auf Anforderungen von Bewe-
gungsdaten und Button-Status reagiert. Die PS/2-Bibliothek von http://www.arduino.cc/
playground/ComponentLib/Ps2mouse iibernimmt die Low-Level-Kommunikation. Der
Befehl mouse.write teilt der Maus mit, dass Daten angefordert werden. Der erste Aufruf
von mouse.read enthilt eine Bestdtigung (engl. Acknowledgment, kurz Ack), die in diesem
Beispiel ignoriert wird. Der nichste Aufruf von mouse.read liest den Status der Maustasten
ein, und die beiden letzten mouse . read-Aufrufe lesen die x- und y-Bewegung seit der letzten
Abfrage ein.

Der Sketch priift, welche Bits im status-Wert gesetzt sind, um zu bestimmen, ob die linke
oder rechte Maustaste gedriickt wurde. Die beiden niederwertigsten (rechten) Bits sind
HICH, wenn die linke und die rechte Taste gedriickt werden, und das wird mit den
folgenden Zeilen tiberpriift:
status = mouse.read(); // Mausbuttons einlesen
if(status &1) // Dieses Bit ist gesetzt, wenn die linke Maustaste gedriickt ist
xPosition =0; // x-Position neu ausrichten

if(status &2) // Dieses Bit ist gesetzt, wenn die rechte Maustaste gedriickt ist
yPosition =0; // y-Position neu ausrichten

Die von der Maus eingelesenen x- und y-Werte enthalten die Bewegung seit der letzten
Abfrage und werden zu den Variablen xPosition und yPosition aufaddiert.

Die Werte von x und y sind positiv, wenn die Maus nach rechts oder nach vorne bewegt
wird. Sie sind negativ, wenn sie nach links oder zuriick bewegt wird.

Der Sketch stellt sicher, dass die akkumulierten Werte den definierten Wertebereich
(mouseRange) nicht tiberschreiten. Das geschieht mit Hilfe der constrain-Funktion:

xPosition = xPosition + x; // Position akkumulieren
xPosition = constrain(xPosition,-mouseRange,mouseRange);

Die Berechnung der yPosition ist eine Kurzform dieser Berechnung. Die Berechnung des
y-Werts erfolgt hier innerhalb des constrain-Aufrufs:

yPosition = constrain(yPosition +y,-mouseRange,mouseRange);

Die Variablen xPosition und yPosition werden auf O zuriickgesetzt, wenn die linke bzw.
die rechte Maustaste gedriickt wird.

Die LEDs leuchten entsprechend der Mausposition. Die Helligkeit wird mit analogWrite
festgelegt — mittlere Helligkeit in der Mitte und zu- oder abnehmende Helligkeit, wenn
sich die Mausposition erhoht bzw. verringert.

220 | Kapitel 6: Werte von Sensoren einlesen

Die Position kann iiber den seriellen Monitor ausgegeben werden, indem Sie die folgende
Zeile hinter den zweiten Aufruf von analoghirite() anhingen:

printValues(); // Tasten und x/y-Werte lber seriellen Monitor ausgeben
Sie miissen auferdem die folgende Zeile in setup() einfuigen:
Serial.begin(9600);

Zum Schluss miissen Sie den Sketch um die folgende Funktion erginzen, die die von der
Maus empfangenen Werte ausgibt:

void printValues()

{
Serial.println(status, BIN);

n) .
X DEC),

Serial.print
Serial.print
Serial.print(", Position=");
Serial.print xP051t10n)
Serial.print(", Helligkeit=");
Serial.println(xBrlghtness)

N~~~

Serial.print
Serial.print(y
Serial.print . , Position=");
Serial.print yPosition);
Serial.print(", Helligkeit=");
Serial.println(yBrightness);
Serial.println();

"Y=");
,DEC);

A/\/\A

Siehe auch

Geeignete PS/2-Stecker und Breakout-Boards sind http://www.sparkfun.com/products/
8509 und http://www.sparkfun.com/products/8651.

6.14 Die Position per GPS bestimmen

Problem

Sie wollen Thre Position mit Hilfe eines GPS-Moduls bestimmen.

Losung

Heutzutage stehen eine ganze Reihe Arduino-kompatibler GPS-Module zur Verfigung.
Sie nutzen ein vertrautes serielles Interface zur Kommunikation mit dem Host-Mikrocon-
troller und verwenden ein Protokoll namens NMEA 0183. Dieser Industriestandard liefert
die GPS-Daten an »Listener«-Einheiten wie den Arduino in fiir Menschen lesbaren
ASCII-»Sitzen« aus. Hier ein Beispiel fiir einen solchen NMEA-Satz:

$GPGLL,4916.45,N,12311.12,W,225444,A,*1D

6.14 Die Position per GPS bestimmen | 221

Er beschreibt, unter anderem, eine Position an 49 16.45' nérdlicher Breite und 123 11.12'
westlicher Liange.

Um die Position zu bestimmen, muss Thr Arduino-Sketch diese Strings verarbeiten und die
relevanten Textstellen in eine numerische Form umwandeln. Code zu entwickeln, der
Daten aus NMEA-Sitzen extrahiert, wird (mit Arduinos beschrinktem Adressraum) sehr
schnell kniffelig und sperrig. Gliicklicherweise gibt es eine niitzliche Bibliothek, die uns
diese Arbeit abnimmt: Mikal Harts TinyGPS. Laden Sie sie von http://arduiniana.org/
herunter und installieren Sie sie. (Wie man Bibliotheken von Drittanbietern installiert,
beschreibt .)

Die allgemeine Strategie fiir den Einsatz von GPS sieht wie folgt aus:

1. Verbinden Sie das GPS-Gerit physikalisch mit dem Arduino.
2. Lesen Sie die seriellen NMEA-Daten vom GPS-Gerit aus.
3. Verarbeiten Sie die Daten, um die Position zu ermitteln.

Mit TinyGPS machen Sie Folgendes:

1. Verbinden Sie das GPS-Gerit physikalisch mit dem Arduino.
2. Erzeugen Sie ein TinyGPS-Objekt.

3. Lesen Sie die seriellen NMEA-Daten vom GPS-Geriit ein.

4. Verarbeiten Sie jedes Byte mit der TinyGPS-Methode encode().

5. Rufen Sie periodisch die TinyGPS-Methode get position() auf, um die Position zu
bestimmen.

Der folgende Sketch zeigt, wie man Daten von einem GPS-Gerit erfasst, das mit der
seriellen Schnittstelle des Arduino verbunden ist. Er schaltet die LED an Pin 13 ein, sobald
sich das Gerit in der stidlichen Hemisphire befindet:

// Einfacher Sketch erkennt die siidliche Hemisphdre

// Annahmen: LED an Pin 13, GPS an seriellen Hardware-Pins 0/1
#include "TinyGPS.h"

TinyGPS gps; // TinyGPS-Objekt erzeugen
#define HEMISPHERE PIN 13
void setup()
Serial.begin(4800); // GPS-Geradte arbeiten oft mit 4800 Baud
pinMode (HEMISPHERE PIN, OUTPUT);
digitalWrite(HEMISPHERE PIN, LOW); // LED zu Beginn ausschalten
void loop()
while (Serial.available())
{int c =Serial.read();

// encode() Fiir jedes Byte aurufen
// Neue Position bestimmen, wenn encode() "wahr" zuriickgibt

222 | Kapitel 6: Werte von Sensoren einlesen

if (gps.encode(c))
{

long lat, lon;
gps.get_position(8lat, &lon);
if (lat < 0) // Sudliche Hemisphdre?
digitalWrite(HEMISPHERE PIN, HICH);
else
digitalWrite(HEMISPHERE PIN, LOW);
}
}
}

Wir starten die serielle Kommunikation, indem wir die vom GPS benétigte Geschwindig-
keit einstellen. Weitere Informationen zur seriellen Kommunikation mit dem Arduino
finden Sie in Kapitel 4.

Eine 4800-Baud-Verbindung wird mit dem GPS hergestellt. Sobald die Bytes eingehen,
werden sie von encode() verarbeitet, die die NMEA-Daten verarbeitet. Ein true von
encode() zeigt an, dass TinyGPS einen vollstindigen »Satz« erfolgreich verarbeitet hat
und neue Positionsdaten zur Verfiigung stehen kénnten. Das ist ein guter Zeitpunkt, um
die aktuelle Position mit get_position() zu bestimmen.

get position() gibt den zuletzt erkannten Breiten- und Lingengrad zuriick. Das Beispiel
untersucht den Breitengrad. Ist er kleiner als 0, also siidlich des Aquators, wird die LED
eingeschaltet.

Diskussion

Der Anschluss einer GPS-Einheit an einen Arduino ist in der Regel ganz einfach. Dazu
miissen {iblicherweise nur zwei oder drei Leitungen vom GPS mit den Eingangspins des
Arduino verbunden werden. Das beliebte GPS-Modul USGlobalSat EM-406A kénnen Sie
zum Beispiel so anschliefRen, wie in Tabelle 6-1 zu sehen.

Tabelle 6-1: Anschluss eines EM-406A-GPS

EM-406A-Anschluss Arduino-Pin
GND Gnd

VIN +Vee

RX TX (Pin 1)

X RX (Pin 0)
GND Gnd

Einige GPS-Module arbeiten mit RS-232-Spannungspegeln, die mit der
h TTL-Logik des Arduino nicht kompatibel sind und das Board ernsthaft
beschidigen konnen. Wenn Thr GPS mit RS-232-Pegeln arbeitet, miissen

Sie eine Umwandlungslogik zwischenschalten, z.B. einen Chip wie den
MAX232.

6.14 Die Position per GPS bestimmen | 223

Der Code in diesem Rezept geht davon aus, dass das GPS direkt mit dem fest eingebauten
seriellen Port des Arduino verbunden ist, doch das ist iiblicherweise nicht das beste
Design. Bei vielen Projekten wird der serielle Hardware-Port zur Kommunikation mit
einem PC oder anderen Peripheriegeriten genutzt und kann vom GPS nicht verwendet
werden. In solchen Fillen wihlen Sie in anderes Paar Digitalpins und nutzen einen
seriellen »Software«-Port, um mit dem GPS zu kommunizieren.

SoftwareSerial ist eine Bibliothek, die eine serielle Schnittstelle emuliert und mit der
Arduino-IDE mitgeliefert wird. Wenn Sie mit einer Arduino-Version vor 1.0 arbeiten,
miissen Sie eine Bibliothek namens NewSoftSerial verwenden, die ebenfalls auf http://
arduiniana.org/ zu finden ist. Detaillierte Informationen zu seriellen Software-Schnittstel-
len finden Sie in 4.13 und 4.14.

Sie konnen die TX-Leitung des GPS mit Arduino-Pin 2 und die RX-Leitung mit Pin 3
verbinden und so den seriellen Hardware-Port fiir Debugging-Zwecke freimachen (siehe
Abbildung 4-7). Wenn wir den obigen Sketch so modifizieren, dass er SoftwareSerial
nutzt, um das GPS abzufragen, kénnen wir iber den seriellen Monitor TinyGPS in Aktion
beobachten:

// Einfacher Sketch erkennt die stidliche Hemisphdre
// Annahmen: LED an Pin 13, GPS an Pins 2/3
// (Optional) Serielle Debugging-Konsole an Hardware-Port 0/1

#include "TinyGPS.h"
#include "SoftwareSerial.h"

#define HEMISPHERE PIN 13
#tdefine GPS_RX_PIN2
#define GPS_TX PIN3

TinyGPS gps; // create a TinyGPS object
SoftwareSerial ss(GPS_RX_PIN, GPS_TX PIN); // SoftSerial-Objekt erzeugen

void setup()

Serial.begin(9600); // Flr Debugging

ss.begin(4800); // SoftSerial-Objekt spricht mit GPS

pinMode (HEMISPHERE PIN, OUTPUT);

digitalWrite(HEMISPHERE PIN, LOW); // LED zu Beginn ausschalten

void loop()

while (ss.available())

{
int c = ss.read();
Serial.write(c); // NMEA-Daten zu Debug-Zwecken ausgeben
// Jedes Byte mit encode() verarbeiten
// Neue Position bestimmen, wenn encode() "wahr" zuriickgibt
if (gps.encode(c))
{

long lat, lon;
unsigned long fix_age;
gps.get position(8lat, &lon, 8fix _age);

224 | Kapitel 6: Werte von Sensoren einlesen

if (fix_age == TinyGPS::GPS_INVALID AGE)
Serial.println("Noch keine Daten erkannt!");

else if (fix_age > 2000)
Serial.println("Daten sind veraltet!");

else
Serial.println("Breiten- und Langengrad gliltig!");

Serial.print("Breite: ");
Serial.print(lat);
Serial.print(" Lange: ");
Serial.println(lon);
if (lat < 0) // Sudliche Hemisphdre?
digitalWrite(HEMISPHERE PIN, HICH);
else
digitalWrite(HEMISPHERE PIN, LOW);
}
}
}

Beachten Sie, dass der serielle Monitor und das GPS verschiedene Baudraten verwenden
koénnen.

Dieser Sketch entspricht genau unserem fritheren Beispiel, ist aber deutlich einfacher zu
debuggen. Sie kénnen jederzeit einen Monitor an den eingebauten seriellen Port anschlie-
Ren und sich die NMEA- und TinyGPS-Daten ansehen.

Sobald es eingeschaltet wird, beginnt die GPS-Einheit mit der Ubertragung von NMEA-
Sitzen. Giltige Positionsdaten enthaltende Datensitze werden aber nur {ibertragen,
nachdem das GPS eine Verbindung hergestellt hat. Dazu muss das Gerit den Himmel
»sehen« konnen, und die ganze Sache kann bis zu zwei Minuten dauern. Schlechtes
Wetter, Gebdude und andere Hindernisse konnen das GPS bei der Positionsbestimmung
behindern. Woher wei der Sketch also, ob TinyGPS giiltige Positionsdaten liefert? Die
Antwort ist der dritte Parameter von get_position(), der optionale fix_age.

Wenn Sie einen Zeiger auf eine unsigned long-Variable als dritten Parameter an get po-
sition() ibergeben, fiillt TinyGPS sie mit der Zeit in Millisekunden, zu der die letzte
giltige Position bestimmt wurde. Siehe auch Rezept 2.11. Der Wert 0xFFFFFFFF (sym-
bolisch GPS_INVALID AGE) bedeutet, dass TinyGPS noch keine giiltigen Positionsdaten
erfasst hat. In diesem Fall ist auch der zuriickgelieferte Breiten- und Liangengrad ungiiltig
(GPS_INVALID_ANGLE).

Im normalen Betrieb konnen Sie recht kleine Werte fiir fix_age erwarten. Moderne
GPS-Gerite liefern Positionsdaten ein- bis funfmal pro Sekunde, d.h., ein fix_age-Wert
von iiber 2000 ms deutet auf ein Problem hin. Vielleicht befinden Sie sich gerade in einem
Tunnel oder ein defektes Kabel verfilscht den NMEA-Datenstrom, wodurch die Priif-
summe nicht mehr stimmt. (Eine Prifsummenberechnung stellt sicher, dass die Daten
nicht beschidigt sind.) So oder so gibt ein hoher fix_age-Wert an, dass die von get_po-
sition() zuriickgelieferten Koordinaten veraltet sind. Das nachfolgende Code-Beispiel
zeigt, wie Sie mit fix_age sicherstellen konnen, dass die Positionsdaten aktuell sind:

long lat, lon;
unsigned long fix_age;

6.14 Die Position per GPS bestimmen | 225

gps.get position(&lat, &lon, &fix_age);

if (fix_age == TinyGPS::GPS_INVALID_ AGE)
Serial.println("Noch keine Daten erkannt!");

else if (fix_age > 2000)
Serial.println("Daten sind veraltet!");

else
Serial.println("Breiten- und Langengrad giltig!");

Siehe auch
TinyGPS konnen Sie unter http://arduiniana.org/libraries/tinygps herunterladen.

Weiterfithrende Informationen zum NMEA finden Sie im Wikipedia-Artikel unter http:/
en.wikipedia.de/wiki/NMEA.

Verschiedene Unternehmen verkaufen GPS-Module, die sich gut fiir TinyGPS und Ar-
duino eignen. Sie unterscheiden sich hauptsichlich im Stromverbrauch, in der Spannung,
der Genauigkeit, der physikalischen Schnittstelle und darin, ob sie serielles NMEA
unterstiitzen. SparkFun (http://www.sparkfun.com) bietet eine grofle Auswahl an GPS-
Modulen und einen ausgezeichneten Leitfaden fiir Kdufer an.

GPS-Technik hat eine Vielzahl kreativer Arduino-Projekte inspiriert. Ein sehr populires
Beispiel ist der GPS-Datenlogger, bei dem ein bewegliches Geriit seine Positionsdaten in
regelmifligen Intervallen in das Arduino-EEPROM oder anderen Onboard-Speicher
schreibt. Ein Beispiel ist das Breadcrumbs-Projekt unter hitp://code.google.com/p/bread-
crumbs/wiki/UserDocument. Ladyada stellt ein beliebtes GPS-Datenlogger-Shield her.
Siehe http://www.ladyada.net/make/gpsshield/.

Zu den weiteren interessanten GPS-Projekten gehdren Modellflugzeuge und Helikopter,
die sich unter der Kontrolle von Arduino-Software selbst zu vorprogrammierten Zielen
bewegen. Mikal Hart hat eine GPS-basierte »Schatztruhe« mit einem internen Schloss
entwickelt, die sich erst 6ffnen lidsst, wenn sich die Kiste an einem bestimmten Ort
befindet. Siehe hitp://arduiniana.org.

6.15 Bewegungen mit einem Gyroskop erkennen

Problem

Sie wollen auf einen Rotationswinkel reagieren. Auf diese Weise kénnen Sie ein Fahrzeug
oder einen Roboter auf gerader Linie halten oder um einen gewtinschten Winkel drehen.

Losung

Gyroskope liefern Daten zum Rotationswinkel (im Gegensatz zu Beschleunigungsmes-
sern, die Anderungen an der Geschwindigkeit messen). Die meisten giinstigen Gyroskope
verwenden eine Analogspannung proportional zum Rotationswinkel, auch wenn einige
ihre Werte tiber I2C anbieten (mehr {iber den Einsatz von 12C zur Geritekommunikation
finden Sie in Kapitel 13). Dieses Rezept arbeitet mit einem Gyroskop, dessen Analog-

226 | Kapitel 6: Werte von Sensoren einlesen

ausgang proportional zum Rotationswinkel ist. Abbildung 6-17 zeigt die Verschaltung
eines LY530AL-Breakout-Boards von SparkFun. Viele kostengiinstige Gyroskope (wie das
hier verwendete) sind 3,3-V-Elemente und diirfen nicht direkt mit der 5-V-Spannung
verbunden werden.

000aa00a . QOOACOOa
2377 pama ==
Oled o) o)
. a ouTEH
Arduino = | o] o
= a nd3
| a 33VEH
V53081
&= k-] Gyro
- Q Q B2=55<S oﬁbﬂgim Breakout
o0 eeonel Tuuuuu

Abbildung 6-17: LY530AL-Gyroskop an 3,3-V-Pin

Uberpriifen Sie die maximale Spannung Thres Gyroskops, bevor Sie es mit
h Spannung versorgen. Ein 3,3-V-Gyroskop an 5V anzuschliefen, kann das

Bauteil beschidigen.

Der 0UT-Anschluss des Gyroskops ist ein analoger Ausgang und wird mit dem analogen
Eingang 0 des Arduino verbunden:
/*

gyro Sketch
Gibt den Rotationswinkel tiber den seriellen Monitor aus

*/

const int inputPin = 0; // Analoger Eingang O
int rotationRate = 0;

void setup()

Serial.begin(9600); // Setzt seriellen Port auf 9600 Baud

void loop()
{

rotationRate = analogRead(inputPin); // Gyroskop einlesen
Serial.print("Gyroskopwert ist ");
Serial.println(rotationRate);

delay(100); // 100ms warten

6.15 Bewegungen mit einem Gyroskop erkennen | 227

Diskussion

Der loop-Code liest den Gyroskopwert iiber den Analogpin O ein und gibt ihn tiber den
seriellen Monitor aus.

Verwendung des alteren LISY300AL-Gyroskops

Die alte Auflage hat das LISY300AL-Gyroskop genutzt, das nur noch schwer zu bekom-
men ist. Sollten Sie noch eins besitzen, kénnen Sie den gleichen Sketch wie oben
verwenden, wenn Sie den Power Down-Pin (PD) mit Masse verbinden. Oder, noch besser,
Sie schlieffen den PD-Pin an einen Arduino-Pin an, damit Sie das Gyroskop aus dem
Sketch heraus ein- und ausschalten konnen. Abbildung 6-18 zeigt den Anschluss des
LISY3000AL.

Die PD-Verbindung erlaubt es, das Gyroskop in den Stromsparmodus zu schalten, und ist
mit Analogpin 1 verbunden (in diesem Sketch wird er als digitaler Ausgang verwendet).
Sie kénnen PD an jeden Digitalpin anschliefen. Der Pin wurde hier wegen der sauberen
Verschaltung gewihlt. Der obige Code kann wie folgt modifiziert werden, um den PD-Pin
zu kontrollieren:

const int inputPin=0; // Analoger Eingang 0
const int powerDownPin = 15; // Analoger Eingang 1 ist digitaler Eingang 15

int rotationRate = 0;
void setup()
{
Serial.begin(9600); // Serieller Port auf 9600 Baud

pinMode(powerDownPin, OUTPUT);
digitalWrite(powerDownPin, LOW); // Gyroskop nicht im Stromsparmodus

}

// loop-Code wie oben

CJRESET
33— b A
LISY300AL e 85'2"3 g
Gyro 0T L 0Analog In l|j
PDEH 3} N
sia o 0
of

Abbildung 6-18: Anschluss des LISY3000AL-Gyroskops

Wenn Sie das Gyroskop nicht in den Stromsparmodus schalten miissen, verbinden Sie PD
einfach mit Masse (PD LOW ist an, PD HIGH ist Stromsparmodus).

228 | Kapitel 6: Werte von Sensoren einlesen

Analoge Eingangspins konnen auch als Digitalpins verwendet werden
(aber nicht andersherum). Der analoge Eingang 0 ist der Digitalpin 14,
der analoge Eingang 1 ist der Digitalpin 15 und so weiter. Mit Arduino 1.0
wurden neue Definitionen eingefiihrt, die es Thnen erlauben, den analogen
Eingang 0 als A0 anzusprechen, den analogen Eingang 1 als A1 etc.

Rotation mit dem ITG-3200 in drei Dimensionen messen

Der ITG-3200 ist ein 3-Achs-Gyroskop mit ausgezeichnetem Preis-Leistungs-Verhiltnis.
Selbst wenn Sie nur zwei Achsen messen miissen, ist er hiufig eine bessere Wahl als der
LY530ALH, wenn Sie eine hohe Messgenauigkeit benotigen oder es mit hohen Rotations-
geschwindigkeiten (bis zu 2000° pro Sekunde) zu tun haben. Es handelt sich um ein
3,3-V-Bauelement mit I2C-Anschluss. Wenn Sie nicht mit einem 3,3-V-Arduino arbeiten,
brauchen Sie einen Pegelwandler, um die SCL- und SDA-Pins des Gyroskops zu schiitzen.
Mehr iiber I2C und die Verwendung von 3,3-V-Geriten finden Sie in der Einfiihrung von
Kapitel 13.

Das Breakout-Board von SparkFun (SEN-09801) macht den Anschluss einfach (siehe
Abbildung 6-19), doch Sie diirfen nicht vergessen, den CLK-Jumper auf der Unterseite des
Boards zu iiberbriicken, der das interne Clock-Signal aktiviert.

Pegelwandler an

a
8 3,3V-Arduino

HE SCL
o ——f{eo
SCL5 QK

INT
RESET O3 EGND

Sl
[yvop| 63200

vin Q3 (LK auf Unterseite
briicken

Abbildung 6-19: Anschluss des ITG-3200 an ein 3,3V-Board

Analog In

o “w
225
000
|I_I I

Der nachfolgende Sketch gibt die Werte der x-, y- und z-Achsen durch Kommata getrennt
aus:

/*

ITG-3200 Beipiel-Sketch

Basiert auf SparkFun Quick Start Guide: http://www.sparkfun.com/tutorials/265
*/

#include <Wire.h>

const int itgAddress = 0x69;

// ITG-3200-Konstanten - siehe Datenblatt
const byte SMPLRT_DIV= 0x15;

const byte DLPF_FS =0x16;

const byte INT CFG =0x17;

6.15 Bewegungen mit einem Gyroskop erkennen | 229

const byte PWR_MGM = OX3E;

const byte GYRO_X_ADDRESS = 0x1D; // GYRO_XOUT H
const byte GYRO Y ADDRESS = Ox1F; // GYRO_YOUT H
const byte GYRO_Z ADDRESS = 0x21; // GYRO_ZOUT H

// Konfigurationseinstellungen; Details auf demDatenblatt
const byte DLPF_CFG 0 =0x1;

const byte DLPF_CFG 1 =0x2;

const byte DLPF_CFG_2 = 0x4;

const byte DLPF_FS_SEL_0 = 0x8;

const byte DLPF_FS_SEL_1 = 0x10;

void setup()
{

Serial.begin(9600);
Wire.begin();

//Gyroskop konfigurieren
//Gyroskop-Bereich der Ausgdnge auf +/-2000 Grad pro Sekunde einstellen
itgWrite(DLPF_FS, (DLPF_FS_SEL O|DLPF_FS SEL 1|DLPF_CFG 0));
//Sample-Rate ist 100 hz
itgWrite(SMPLRT DIV, 9);

}

//x-,y-und z-Werte einlesen und Uber seriellen Monitor ausgeben
void loop()
{

//Variablen fiir die Ausgdnge.
int xRate, yRate, zRate;

//x-,y- und z-Werte vom Gyroskop einlesen.
xRate = readAxis(GYRO_X_ADDRESS);
yRate = readAxis(GYRO_Y_ADDRESS);
zRate = readAxis(GYRO_Z ADDRESS);

//Werte liber seriellen Monitor ausgeben
int temperature = 22;

Serial. print(temperature);
Serial.print(',");
Serial.prlnt(xRate),
Serial.print(',");
Serial.print(y Rate)
Serial.print(',");
Serial.pnntln(zRate);

//10ms warten, bevor die ndchsten Werte gelesen werden.
delay(10);

//Die libergebenen Daten in die angegebenen itg-3200-Register schreiben
void itghrite(char registerAddress, char data)

Wire.beginTransmission(itgAddress); // Sendesequenz initiieren

Wire.write(registerAddress); // Zu schreibende Registeradresse
Wire.write(data); // Zu schreibende Daten
Wire.endTransmission(); // Hier werden die Daten dann gesendet

230

| Kapitel 6: Werte von Sensoren einlesen

}

//Daten aus dem angegebnen ITG-3200-Register einlesen und Wert zuriickgeben.
unsigned char itgRead(char registerAddress)

{
//Diese Variable enthdlt die vom I2C-Gerdt eingelesenen Daten.
unsigned char data=0;

Wire.beginTransmission(itgAddress);
Wire.write(registerAddress); //Registeradresse senden
Wire.endTransmission(); //Ende der Kommunikationssequenz.

Wire.beginTransmission(itgAddress);
Wire.requestFrom(itgAddress, 1); //Ceradtedaten abrufen

if(Wire.available()){ // Auf Antwort des Gerdts warten
data = Wire.read(); //Dateneinlesen

}

Wire.endTransmission(); //Ende der Kommunikationssequenz
return data; //Daten zuriickgeben

}

// x-,y- oder z-Wert des Gyroskops einlesen.
// axisRegAddress wahlt einzulesende Achse.
int readAxis(byte axisRegAddress)

int data=0;

data = itgRead(axisRegAddress)<<8;

data |= itgRead(axisRegAddress +1);

return data;

}

Siehe auch
Mehr tiber I12C erfahren Sie in Kapitel 13.
In Rezept 13.1 erfahren Sie mehr zu diesem Thema.

Eine SparkFun-Einfithrung zum ITG-3200 finden Sie unter hitp://'www.sparkfun.com/
tutorials/265.

6.16 Richtung bestimmen

Problem

Thr Sketch soll die Richtung mit Hilfe eines elektronischen Kompasses bestimmen.

Losung

Dieses Rezept nutzt das HM55B-Kompassmodul von Parallax (#29123); Abbildung 6-20
zeigt die Anschliisse:

6.16 Richtung bestimmen | 231

/*
HM55bCompass Sketch
Implementiert serielles 'Software-SPI' mit Arduinos Bit-Operatoren
(siehe Rezept 3.13)
Gibt Kompass-Winkel tber seriellen Monitor aus

*/

const int enablePin = 2;
const int clockPin =3;
const int dataPin =4;

// Befehlscodes (aus HM55B-Datenblatt)

const byte COMMAND_LENGTH = 4; // Anzahl der Bits in einem Befehl

const byte RESET_COMMAND = B0000; // Chip zuriicksetzen

const byte MEASURE_COMMAND = B1000; // Messung starten

const byte READ_DATA COMMAND = B1100; // Daten und Ende-Flag einlesen

const byte MEASUREMENT READY =B1100; // Wert, der nach Abschluss der Messung zurlickgegeben wird

int angle;
void setup()

Serial.begin(9600);

pinMode(enablePin, OUTPUT);
pinMode(clockPin, OUTPUT);
pinMode(dataPin, INPUT);

reset(); // Kompass-Modul zuriicksetzen

}
void loop()

startMeasurement();
delay(40); // Warten, bis Daten bereit
if (readStatus()==MEASUREMENT READY); // Priifen, ob Daten bereit

angle = readMeasurement(); //Messwert lesen und Winkel berechnen
Serial.print("Winkel =");
Serial.println(angle); // Winkel ausgeben

}
delay(100);

void reset()

pinMode(dataPin, OUTPUT);
digitalWrite(enablePin, LOW);
serialOut(RESET_COMMAND, COMMAND_LENGTH),’
digitalWrite(enablePin, HIGH);

}

void startMeasurement()

{
pinMode(dataPin, OUTPUT);
digitalwWrite(enablePin, LOW);
SeIialOut(MEASURE_COMM/—\ND, COMMAND_LENGTH);
digitalWrite(enablePin, HIGH);

232 | Kapitel 6: Werte von Sensoren einlesen

}

int readStatus()

{
int result =0;
pinMode(dataPin, OUTPUT);
digitalWrite(enablePin, LOW);
SEIiaIOut(READ_DATA_COMMAND, COMMAND_LENGTH);
result = serialIn(4);
return result; // Status zuriickgeben

}

int readMeasurement ()
{
int X Data = 0;
int Y _Data=0;
int calcAngle = 0;
X Data = serialln(11); // Feldstarke in X
Y Data = serialIn(11); // und Richtung inY
digitalWrite(enablePin, HIGH); // Chip deaktivieren
calcAngle = atan2(-Y Data, X Data) /M _PI * 180; // Winkel ist atan(-y/x)
if(calcAngle < 0)
calcAngle = calcAngle +360; // Winkel von 0 bis 359 statt +/- 180
return calcAngle;

}

void serialOut(int value, int numberOfBits)

{

for(int i = numberOfBits; i > 0; i--) // MSB zuerst schreiben

digitalWrite(clockPin, LOW);
if(bitRead(value, i-1) ==1)
digitalWrite(dataPin, HICH);
else
digitalWrite(dataPin, LOW);
digitalWrite(clockPin, HIGH);
}
}

int serialIn(int numberOfBits)
int result =0;

pinMode(dataPin, INPUT);
for(int i = number0OfBits; i > 0; i--) // MSB zuerst lesen

digitalWrite(clockPin, HIGH);
if (digitalRead(dataPin) == HICH)
result = (result << 1) +1;
else
result = (result << 1) +0;
digitalWrite(clockPin, LOW);

// Wandelt das Ergebnis in ein negative Zweierkomplement um,
// wenn das hochstwertige Bit in den 11-Bit-Daten 1 ist
if(bitRead(result, 11) ==1)

6.16 Richtung bestimmen

233

result = (B11111000 << 8) | result; // Zweierkomplement-Negation

return result;

}

Diskussion

Das Kompass-Modul misst die Magnetfeld-Intensitit an zwei lotrechten Achsen (x und y).
Diese Werte variieren, wenn sich die Richtung im Bezug auf das Erdmagnetfeld (mag-
netische Nordrichtung) dndert.

Das Datenblatt des Bauelements sagt Thnen, welche Werte gesendet werden miissen, um
den Kompass zuriickzusetzen, und wie Sie priifen konnen, ob giiltige Daten vorliegen (ist
dass der Fall, werden sie gesendet).

Der Sketch verwendet die Funktionen serialIn() und serialOut(), um die Pin-Operatio-
nen durchzuftihren, die Nachrichten senden und empfangen.

Das Kompass-Modul wird in der reset()-Funktion (die von setup() aufgerufen wird) in
einen definierten Anfangszustand gebracht. Die Funktion startMeasurement() leitet die
Messung ein, und nach einer kurzen Verzogerung zeigt die Funktion readStatus() an, ob
die Daten verfiigbar sind. Der Wert 0 wird zuriickgegeben, wenn die Messung noch nicht
bereit ist, bzw. 12 (binidr 1100), wenn der Kompass bereit ist, Daten zu iibertragen.

90000000 QQQQQLLQQ
€577 e | FE
6 4
p N D
H 5V EN Clk
Arduino
i]
Data Gnd

E i
o o

Abbildung 6-20: Anschluss eines HM55B-Kompasses

Elf Datenbits werden in die Variablen X_Data und Y_Data eingelesen. Wenn Sie ein anderes
Bauelement verwenden, miissen Sie auf dem Datenblatt nachsehen, wie viele Bits gesen-

234 | Kapitel 6: Werte von Sensoren einlesen

det und in welchem Format sie iibertragen werden. X Data und Y Data speichern die
Magnetfeld-Messwerte, und der Winkel zum magnetischen Nordpol wird wie folgt be-
rechnet: BogenmafS = arctan(—y/x)

Der Sketch implementiert die Berechnung in der folgenden Zeile:

calcAngle = atan2(-Y Data , X Data) /M_PI *180; // Winkel ist atan(-y/x)
Damit ein Servo-Motor der Richtung des Kompasses iiber die ersten 180 Grad folgt, fiigen
Sie Folgendes hinzu:

#include <Servo.h>
Servo myservo;

In setup:

myservo.attach(8);

Und in loop nach der Berechnung des Winkels:

// Servo wird auf 180 Grad beschrdnkt
angle = constrain(angle, 0,180);

myservo.write(angle);
Richtungssensoren werden verstirkt in Smartphones genutzt. Folgerichtig stehen immer
leistungsfahigere und kostengiinstigere Bauelemente zur Verfiigung. Der folgende Sketch
nutzt einen solchen Chip: den 3,3-V-HMC5883L-12C-Magnetometer. Breakout-Boards
sind fiir dieses Bauteil verfiigbar, etwa das SEN-10530 von SparkFun. Verbinden Sie die
GND- und VCC-Pins mit Masse und dem 3,3-V-Pin. Die SDA- und SCL- Pins werden mit
den Arduino-Pins 4 und 5 verbunden (wie man I2C-Gerite mit dem Arduino nutzt,
erfahren Sie in Kapitel 13). Wenn Sie den HMC5883L mit einem 5-V-Arduino nutzen
wollen, dann konnen Sie in Rezept 13.1 nachschauen, wie man einen Pegelwandler nutzt.

Wenn Sie den HMC5883L direkt mit den Arduino-Pins eines normalen
h 5-V-Boards verbinden, konnen Sie den HMC5883L-Chip ernsthaft be-

schidigen.

/*

Verwendet den HMC5883L, um das Erdmagnetfeld an den x-, y- und z-Achsen zu messen
Gibt die Richtung als Winkel zwischen 0 und 359 Grad an

*/

#include <Wire.h> //I2C-Arduino-Bibliothek

const int hmc5883Address = Ox1E; //0011110b, I2C-7Bit-Adresse des HMC5883
const byte hmc5883ModeRegister = 0x02;

const byte hmcContinuousMode = 0x00;

const byte hmcDataOutputXMSBAddress = 0x03;

void setup(){
//Serielle Schnittstelle und I2C-Kommunikation initialisieren
Serial.begin(9600);
Wire.begin();

6.16 Richtung bestimmen | 235

//HMC5883 in den richtigen Betriebsmodus schalten
Wire.beginTransmission(hmc5883Address); //Kommunikation mit HMC5883 starten
Wire.write(hmc5883ModeRegister); //Modusregister wahlen
Wire.write(hmcContinuousMode); //Fortlaufende Messung
Wire.endTransmission();

}
void loop(){
int x,y,z; //Daten der drei Achsen

//HMC5883 anweisen, mit dem Einlesen der Daten zu beginnen
Wire.beginTransmission(hmc5883Address);
Wire.write(hmcDataOutputXMSBAddress); //Wahle Register 3, X-MSB-Register
Wire.endTransmission();

//Daten aller Achsen einlesen, 2 Register pro Achse
Wire.requestFrom(hmc5883Address, 6);
if(6<=Wire.available()){

x =Wire.read()<<8; //X-msb

X |=Wire.read(); //X-1sb

z =Wire.read()<<8; //Z-msb

z |=Wire.read(); //Z-1sb

y =Wire.read()<<8; //Y-msb

y |=Wire.read(); //Y-1sb

//Werte aller Achsen ausgeben
Serial.print("x: ");

Serial.print(x);
Serial.print(" y:");
Serial.print(y);
Serial.print(" z: ");

Serial.print(z);
int angle = atan2(-y , x) / M_PI * 180; // Winkel ist atan(-y/x)
if(angle < 0)

angle = angle +360; // Winkel von 0 bis 359 statt +/- 180
Serial.print(" Richtung=");
Serial.println(angle);

delay(250);

6.17 Daten von einem Spiele-Controller (PlayStation)
einlesen

Problem

Sie wollen auf Joystick-Position und Tastendriicke eines Spiele-Controllers reagieren.

236 | Kapitel 6: Werte von Sensoren einlesen

Losung

Das Rezept nutzt einen Controller der Sony PlayStation 2 und die PSX-Bibliothek von
http://www.arduino.cc/playground/Main/PSXLibrary. Das Schaltdiagramm ist in Abbil-
dung 6-21 zu sehen.

Controller-Pins
(Draufsicht)
—o© Data
e
A EE © Command
R 4[3 o
e
2 Gnd G
D 10 !
U e +5Volt G
I © Att
RESET)
N 3303 o Clock
svc
Gnd
0 6nd O
vin(J
@) Ack
N~

Abbildung 6-21: Anschluss eines PlayStation-Controllers an den Arduino

Der Sketch verwendet den seriellen Monitor, um die gedriickte Tasten auszugeben:

/*

* PSX Sketch

*

* Joystick- und Tastenwerte ausgeben.

* Nutzt die PSX-Bibliothek von Kevin Ahrendt
*http://www.arduino.cc/playground/Main/PSXLibrary

*/
#include <Psx.h> // PSX-Bibliothek einbinden
Psx Psx; // Instanz der PSX-Bibliothek erzeugen

const int dataPin =5;

const int cmndPin = 4;

const int attPin =3;

const int clockPin =2;

const int psxDelay = 50; // Verzdgerung in Mikrosekunden

6.17 Daten von einem Spiele-Controller (PlayStation) einlesen | 237

unsigned int data = 0; // Vom Controller zuriickgelieferte Daten
void setup()
{

// PSX-Bibliothek initialisieren
Psx.setupPins(dataPin, cmndPin, attPin, clockPin, psxDelay);
Serial.begin(9600); // Exgebnisse erscheinen auf dem seriellen Monitor

}

void loop()
{

data =Psx.read(); // Tasten-Daten des PSX-Controllers einlesen

// Tastenbits prifen, um Tastendruck zu erkennen
if(data & psxLeft)
Serial.println("Links-Taste");
if(data & psxDown)
Serial.println("Ab-Taste");
if(data & psxRight)
Serial.println("Rechts-Taste");
if(data & psxUp)
Serial.println("Auf-Taste");
if(data & psxStrt)
Serial.println("Start-Taste");
if(data & psxSlct)
Serial.println("Select-Taste");

delay(100);
}

Diskussion

Spiele-Controller stellen Informationen auf unterschiedliche Art und Weise zur Ver-
fugung. Die neuesten Controller enthalten Chips, die die Taster- und Joystick-Werte des
Controllers einlesen und diese Informationen tiber ein Protokoll weitergeben, das je nach
Spieleplattform unterschiedlich ist. Altere Controller greifen eher direkt auf Taster und
Joystick zu, und die Stecker haben entsprechend viele Anschliisse. Die neueste Generation
der Spieleplattformen nutzt USB-Verbindungen, und die benétigen eine entsprechende
Hardware-Unterstiitzung, wie etwa ein USB-Host-Shield.

Siehe auch
Rezept 4.1; Rezept 4.11

PlayStation-Controller- Protokoll: http://www.gamesx.com/controldata/psxcont/psxcont.htm

238 | Kapitel 6: Werte von Sensoren einlesen

6.18 Beschleunigung messen

Problem

Sie wollen auf Beschleunigung reagieren, z.B. um den Anfang oder das Ende einer Be-
wegung zu erkennen. Oder Sie wollen bestimmen, wie etwas im Bezug auf die Erdober-
fliche ausgerichtet ist (Beschleunigungsmessung infolge der Gravitation).

Losung

Wie bei vielen der in diesem Kapitel behandelten Sensoren haben Sie die Wahl zwischen
zahlreichen Geriiten und Anschlussarten. Rezept 4.11 zeigt ein Beispiel fiir einen virtuel-
len Joystick, bei dem der Beschleunigungsmesser eines Wii Nunchucks genutzt wird, um
Handbewegungen zu verfolgen. Rezept 13.2 enthilt weitere Informationen zur Verwen-
dung des Beschleunigungsmessers des Wii Nunchucks. Dieses Rezept verwendet analoge
Ausgangswerte, die proportional zur Beschleunigung sind. Geeignete Bauelemente sind
der ADXL203CE (SF SEN-00844), der ADXL320 (SF SEN 00847) und der MMA7260Q
(SF SEN00252) — weitere Information finden Sie in der SparkFun Beschleunigungsmesser-
Auswabhlhilfe unter (http://'www.sparkfun.com/tutorials/167) auf der SparkFun-Website.

Abbildung 6-22 zeigt den Anschluss der x- und y-Achsen an den analogen Beschleuni-
gungsmesser.

00000000 00000000
L= ><><

=@ DIGITAL = Beschleunigungs-
messer

A

Arduino H ol

98 sl ’|‘

| # ot v

ANALOG £ voo

— N

ﬁTDDUU

N
Gnd
Gnd

9|
Qvin

Y6

CIRESET
03V3

Abbildung 6-22: Anschluss der x- und y-Achsen eines analogen Beschleunigungsmessers

Stellen Sie mit Hilfe des Datenblatts sicher, dass das Bauelement die ma-
ximal erlaubte Spannung nicht iiberschreitet. Viele Beschleunigungsmes-
ser sind fir den 3,3-V-Betrieb ausgelegt und kénnen beschidigt werden,
wenn Sie mit der 5-V-Spannung eines Arduino-Boards verbunden werden.

6.18 Beschleunigung messen | 239

Der nachfolgende einfache Sketch verwendet den ADXL320, um die Beschleunigung der
x- und y-Achsen auszugeben:
/*
accel Sketch

Einfacher Sketch zur Ausgabe der Werte fiir die x- und y-Achsen
*/

const int xPin = 0; // Analoge Eingangspins
const int yPin =1;

void setup()
{

Serial.begin(9600); // Beachten Sie die hohere Geschwindigkeit

void loop()

int xvalue; // Werte des Beschleunigungsmessers
int yValue;

xValue = analogRead(xPin);
yValue = analogRead(yPin);

Serial.print("X=");
Serial.println(xValue);

Serial.print("Y=");
Serial.println(yvalue);
delay(100);

Diskussion

Sie konnen Techniken aus den vorangegangenen Rezepten verwenden, um Informationen
aus den Messwerten des Beschleunigungsmessers zu extrahieren. Sie kénnten auf einen
Schwellwert priifen wollen, um eine Bewegung zu erkennen (ein Beispiel fur eine Schwell-
werterkennung finden Sie in Rezept 6.6). Sie konnten Durchschnittswerte wie in Rezept 6.7
verwenden miissen, um niitzliche Werte zu erhalten. Liefert der Beschleunigungsmesser
horizontale Werte zuriick, konnen Sie sie direkt in Bewegung umrechnen. Bei vertikalen
Werten miissen Sie die Auswirkungen der Gravitation beriicksichtigen. Das dhnelt dem
Gleichspannungs-Offset aus Rezept 6.7, kann aber kompliziert werden, da der Beschleuni-
gungsmesser seine Richtung dndern kann, so dass der Einfluss der Gravitation bei der
Messung keine Konstante ist.

Siehe auch

SparkFun Auswabhlhilfe: hitp://www.sparkfun.com/commerce/tutorial_info.php?tutorials_
id=167

240 | Kapitel 6: Werte von Sensoren einlesen

KAPITEL 7
Visuelle Ausgabe

7.0 Einfiihrung

Mit der visuellen Ausgabe kann der Arduino protzen, und entsprechend viele LED-Geriit-
schaften werden unterstiitzt. Bevor wir uns den Rezepten dieses Kapitels zuwenden,
wollen wir uns aber die digitalen und analogen Ausginge des Arduino ansehen. Diese
Einfithrung bietet einen guten Einstieg, wenn Sie mit der Verwendung digitaler und
analoger Ausginge (digitallirite und analogWrite) nicht vertraut sind.

Digitale Ausgange

Alle Pins, die als digitale Eingiinge genutzt werden kénnen, kénnen auch als digitale
Ausginge verwendet werden. Kapitel 5 enthilt eine Ubersicht aller Anschliisse des Ar-
duino. Sie sollten sich die Einfiihrung dieses Kapitels ansehen, wenn Sie nicht wissen, wie
man etwas an diese Arduino-Pins anschliefit.

Digitale Ausginge sorgen dafiir, dass die Spannung an einem Pin entweder an (HIGH,
5 Volt) oder aus (LOW, 0 Volt) ist. Mit der Funktion digitalWrite(outputPin, value)
kénnen Sie etwas ein- und ausschalten. Die Funktion verwendet zwei Parameter: output-
Pin ist der zu steuernde Pin und value ist entweder HICH (5 Volt) oder LOW (0 Volt).

Damit die Spannung am Pin auf diesen Befehl reagiert, muss sich der Pin im Ausgangs-
modus befinden, der mit pinMode (outputPin, OUTPUT) gesetzt wird. Der Sketch in Rezept 7.1
zeigt beispielhaft, wie man einen digitalen Ausgang nutzt.

Analoge Ausgange

Analog bezieht sich auf die Spannungspegel, die schrittweise bis zum Maximum verindert
werden konnen (denken Sie an Helligkeits- und Lautstirkeregler). Arduino besitzt die
Funktion analoghirite, mit deren Hilfe Sie beispielsweise die Helligkeit einer mit dem
Arduino verbundenen LED steuern kénnen.

Die analoghrite-Funktion arbeitet in Wahrheit gar nicht analog, auch wenn sie sich so
verhilt (wie Sie gleich noch sehen werden). analoghirite verwendet eine Technik, die man

| 241

als Pulsweitenmodulation (Pulse Width Modulation, kurz PWM) bezeichnet. Sie emuliert
ein analoges Signal mit Hilfe digitaler Impulse.

PWM veridndert dabei die Dauer der An/Aus-Zeiten der Impulse (siehe Abbildung 7-1).
Niedrige Ausgangswerte werde dabei durch Impulse erzeugt, die nur fur eine kurze Zeit-
spanne an sind. Bei hoheren Ausgangswerten werden diese An-Perioden immer ldnger.
Werden diese Impulse schnell genug wiederholt (beim Arduino etwa 500 mal pro Sekunde),
konnen wir Menschen dieses Pulsieren nicht mehr erkennen, und LEDs sehen so aus, als
wiirde sich ihre Helligkeit sanft verandern, wenn die Impulsbreite verdndert wird.

HIGH LED aus: analogWrite(pin, 0) [0% Einschaltdauer]
(5 Volt)

Low
(0 Volt)

LED triib: analogWrite(pin, 63) [25% Einschaltdauer]

HIGH

Low

LED halbe Helligkeit: analogWrite(pin, 127) [50% Einschaltdauer]

HIGH

Low

LED 3 Helligkeit: analogWrite(pin, 191) [75% Einschaltdauer]

HIGH

LOW

LED volle Helligkeit: analogWrite(pin, 255) [100% Einschaltdauer]

HIGH

Low

Abbildung 7-1: PWM-Ausgabe fiir verschiedene analogWrite-Werte

Der Arduino besitzt nur eine beschriankte Anzahl von Pins, die fiir die analoge Ausgabe
verwendet werden kénnen. Bei einem Standard-Board stehen die Pins 3, 5, 6,9, 10 und 11
zur Verfugung. Bei einem Arduino Mega koénnen Sie die Pins 2 bis 13 fur analoge Aus-
gaben nutzen. Viele der nachfolgenden Rezepte nutzen Pins, die sowohl digital als auch
analog genutzt werden konnen. Sie miissen dann nicht alles neu verdrahten, wenn Sie
andere Rezepte ausprobieren wollen. Wenn Sie andere Pins fiir die analoge Ausgabe
wihlen, miissen Sie sich fiir einen der anderen Pins entscheiden, die von analogWrite un-
terstiitzt werden (alle anderen Pins erzeugen keinen Ausgabewert).

242 | Kapitel 7: Visuelle Ausgabe

Licht steuern

Die Steuerung der Helligkeit tiber digitale oder analoge Ausginge ist eine vielseitige,
effektive und weitverbreitete Methode der Interaktion mit dem Benutzer. Einzelne LEDs,
Arrays und numerische Displays werden in den Rezepten dieses Kapitels umfassend
behandelt. LCD-Text- und -Grafik-Displays verlangen andere Techniken und werden in
Kapitel 11 behandelt.

Technische Daten von LEDs

Eine LED ist ein Halbleiter-Bauelement (eine Diode) mit zwei Anschliissen: einer Anode
und einer Kathode. Ist die Spannung an der Anode »positiver« als an der Kathode (den
Unterschied nennt man Fluss-Spannung), emittiert das Bauelement Licht (Photonen). Der
Anschluss der Anode ist tiblicherweise linger, und hiufig ist die Seite des Gehduses mit
der Kathode auch abgeflacht (siehe Abbildung 7-2). Die Farbe der LED und der genaue
Wert der Fluss-Spannung hingt von der Bauart der Diode ab.

Eine typische rote LED hat eine Fluss-Spannung von etwa 1,8 Volt. Ist die Spannung an
der Anode nicht um 1,8 Volt »positiver« als an der Kathode, flieRt kein Strom durch die
LED, und es wird kein Licht erzeugt. Wird die Spannung an der Anode um 1,8 Volt
positiver als an der Kathode, »schaltet« sich die LED ein (sie leitet), und es kommt quasi
zu einem Kurzschluss. Sie miissen den Strom mit einem Widerstand beschrinken, oder
die LED brennt (frither oder spiter) durch. Rezept 7.1 zeigt, wie man die Werte fiir die
strombeschrinkenden Widerstinde berechnet.

Moglicherweise miissen Sie ein LED-Datenblatt konsultieren, um die fiir Thre Anwendung
geeignete LED zu ermitteln, insbesondere um die Werte fiir die Fluss-Spannung und den
Maximalstrom herauszufinden. 7-1 und 7-2 fiihren die wichtigsten Daten auf, die Sie sich
in einem LED-Datenblatt ansehen sollten.

Tabelle 7-1: LED-Schliisseldaten: absolute Grenzdaten (absolute maximum ratings)

Parameter Symbol Nennwert Einheit Kommentar

Fluss-Strom If 25 mA Maximaler Dauerstrom fiir diese LED
Spitzen-Fluss-Strom (1/10 duty If 160 mA Maximaler Impulsstrom (hier fiir einen Impuls von
@ 1 kHz) 1/10 an und 9/10 aus)

Tabelle 7-2: LED-Schliisseldaten: elektro-optische Eigenschaften

Parameter Symbol Nennwert Einheit Kommentar
Lichtstérke Iv 2 mcd If = 2 mA — Helligkeit bei 2 mA Strom

Iv 40 mcd If = 20 mA — Helligkeit bei 20 mA Strom
Abstrahlwinkel 120 Grad Abstrahlwinkel des Lichtstrahls
Wellenlénge 620 nm Dominante oder Spitzen-Wellenldnge (Farbe)
Fluss-Spannung Vf 18 Volt LED-Spannung, wenn an

7.0 Einfiihrung | 243

Arduino-Pins koénnen bis zu 40 mA Strom liefern. Das ist fiir eine typische LED mittlerer
Helligkeit mehr als genug, reicht aber nicht aus, um LEDs mit hoherer Helligkeit oder
mehrere an einem Pin angeschlossene LEDs zu betreiben. Rezept 7.3 zeigt, wie man einen
Transistor nutzt, um den Strom fiir die LED zu erhdhen.

Mehrfarbige LEDs bestehen aus zwei oder mehr LEDs in einem physikalischen Gehiuse.
Sie konnen mehr als zwei Anschliisse aufweisen, um die verschiedenen Farben separat
steuern zu konnen. Da es so viele Verpackungsvarianten gibt, sollten Sie auf dem Daten-
blatt der LED nachsehen, wie die Anschliisse zu verschalten sind.

W N
. Die Farben sich selbst dndernder mehrfarbiger LEDs mit einem integrier-
“‘:‘ ten Chip koénnen nicht angesteuert werden. Da PWM die Spannung sehr

schnell ein- und ausschaltet, starten Sie den Chip unter dem Strich immer
wieder neu, was diese LEDs fiir PWM-Anwendungen ungeeignet macht.

Multiplexing

Anwendungen, die viele LEDs ansteuern miissen, konnen eine als Multiplexing bezeich-
nete Technik verwenden. Multiplexing funktioniert, indem es Gruppen von LEDs (die
iiblicherweise in Zeilen und Spalten angeordnet sind) nacheinander ein- und ausschaltet.
Rezept 7.11 zeigt, wie vier Ziffern aus 32 einzelnen LEDs (acht LEDs pro Ziffer samt
Dezimalpunkt) mit nur 12 Pins angesteuert werden koénnen. Acht Pins steuern die
Ziffern-Segmente fiir alle Ziffern an und vier Pins entscheiden, welche Ziffer gerade aktiv
ist. Werden die Ziffern sehr schnell durchlaufen (mindestens 25-mal pro Sekunde) ver-
schwindet der Eindruck eines pulsierenden Lichts, d.h., die Anzeige-Elemente sind
scheinbar alle gleichzeitig an. Dieses Phinomen nennt man Phi-Effekt.

Charlieplexing arbeitet ebenfalls mit Multiplexing, nutzt zusitzlich aber noch die Tatsa-
che aus, dass die LEDs eine Polaritit besitzen (d.h., sie leuchten nur, wenn die Anode
positiver geladen ist als die Kathode). Dabei wird durch Umschalten der Polaritit zwi-
schen zwei LEDs hin- und hergeschaltet.

Maximaler Pin-Strom

LEDs konnen mehr Strom verbrauchen, als der Arduino-Chip liefern kann. Das Daten-
blatt gibt den Maximalwert fir den Arduino-Chip (ATmega328P) mit 40 mA pro Pin an.
Der Chip kann insgesamt 200 mA verarbeiten und weitergeben, z.B. fiinf Pins HIGH und
funf Pins LOW mit jeweils 40 mA pro Pin. Damit die Zuverlissigkeit nicht leidet, entwirft
man die Anwendungen in der Praxis so, dass sie sich innerhalb der absoluten Grenzwerte
bewegen. Also hilt man den Strom bei 30 mA (oder weniger), um noch ausreichend Luft
zu haben. Bei Hobby-Anwendungen, bei denen ein hoherer Strom benétigt wird und eine
eingeschrinkte Zuverlissigkeit akzeptabel ist, konnen Sie einen Pin mit bis zu 40 mA
betreiben, solange die Gesamt-Obergrenze von 200 mA nicht tiberschritten wird.

In der Diskussion von Rezept 7.3 finden Sie einen Tipp, wie Sie den Strom ohne externe
Transistoren erhohen konnen.

244 | Kapitel 7: Visuelle Ausgabe

Das Datenblatt bezeichnet die 40 mA als absoluten Maximalwert, und
einige Ingenieure werden zdgern, in der Nihe dieses Wertes zu arbeiten.
Allerdings wurde dieser 40 mA-Wert von Atmel noch einmal bekriftigt: Die
Pins konnen diesen Strom ohne Weiteres verarbeiten. Die folgenden Re-

zepte orientieren sich an diesem 40 mA-Maximum. Wenn Sie allerdings
etwas bauen, bei dem es mehr auf Zuverlissigkeit ankommt, ist es verniinf-
tig, diesen Wert auf 30 mA zu senken, damit Sie auf der sicheren Seite sind.

7.1 LEDs anschlieBen und nutzen

Problem

Sie wollen ein oder mehrere LEDs ansteuern und den richtigen strombegrenzenden
Widerstand auswihlen, um die LEDs nicht zu beschidigen.

Losung

Das Ein- und Ausschalten einer LED ist mit dem Arduino eine einfache Sache, und einige
Rezepte in den vorangegangenen Kapiteln haben sich diese Fihigkeit auch zunutze
gemacht (Rezept 5.1 zeigt beispielsweise, wie man die fest eingebaute LED an Pin 13
ansteuern kann). Dieses Rezept hilft bei der Auswahl und Verwendung externer LEDs.
Abbildung 7-2 zeigt den Anschluss von drei LEDs, Sie konnen den Sketch aber auch mit

nur einer oder zwei verwenden.

00000a O

aql
HooaCee®
=o

DIGITAL

Arduino

Q000

~NounSMmN—O

><><
—ec

50
0o

X3

#

—
a -z
o
i) cc.=
O O ERRGES

ANALOG
8003004

a a
24 2
k k
220 220 220
Ohm Ohm 0Ohm a k
langer +
Anschluss
abgeflacht

Das schematische Symbol fiir die Kathode (der negative Pin) ist k, nicht c.
Das c steht fiir einen Kondensator!

7.1 LEDs anschlieBen und nutzen

245

Der folgende Sketch schaltet nacheinander die drei LEDs an den Pins 3, 5 und 6 fiir jeweils
eine Sekunde ein:

/*

LEDs Sketch

Drei LEDs an unterschiedlichen Digitalpins blinken lassen
*/

const int firstLedPin =3; // Pins fiir die jeweiligen LEDs wéhlen
const int secondlLedPin = 5;
const int thirdLedPin =6;

void setup()

pinMode(firstLedPin, OUTPUT); // LED-Pin als Ausgang deklarieren
pinMode(secondLedPin, OUTPUT); // LED-Pin als Ausgang deklarieren
pinMode(thirdLedPin, OUTPUT); // LED-Pin als Ausgang deklarieren

}
void loop()

// Jede LED fiir 1000 Millisekunden (1 Sekunde) blinken lassen
blinkLED(firstLedPin, 1000);
blinkLED(secondLedPin, 1000);
blinkLED(thirdLedPin, 1000);

}

// LED am angegebenen Pin fir die angegebene Dauer in Millisekunden blinken lassen
void blinkLED(int pin, int duration)

digitalWrite(pin, HIGH); // LED einschalten
delay(duration);
digitalWrite(pin, LOW); // LED ausschalten
delay(duration);

Der Sketch legt die mit den LEDs verbundenen Pins in der setup-Funktion als Ausginge
fest. Die loop-Funktion ruft blinkLED auf, um die LED an jedem der drei Pins blinken zu
lassen. blinkLED schaltet den angegebenen Pin fur eine Sekunde (1000 Millisekunden) auf
HIGH.

Diskussion

Da die Anoden mit den Arduino-Pins und die Kathoden mit Masse verbunden sind,
leuchten die LEDs, wenn der Pin auf HICH gesetzt wird, und gehen wieder aus, wenn er LOW
ist. Sie konnen die LED auch leuchten lassen, wenn der Pin LOW ist und die Kathoden mit
den Pins und die Anoden mit Masse verbunden sind (die Widerstinde koénnen an
beliebiger Stelle dazwischengeschaltet werden).

246 | Kapitel 7: Visuelle Ausgabe

000000 00lNoVVeVee e
b%mg:oc\w ~NonstNT O
=G DIGITAL
. K K 2
Arduino PR SN
a a
220 220 220
Ohm Ohm Ohm /
a k
E -
- OO 8233 i fnger
DDIFDDD (000000 nschluss
abgeflacht

Abbildung 7-3: Anschluss externer LEDs mit Kathode am Pin

Wird eine LED mit der Anode mit +5V verbunden (wie in Abbildung 7-3 zu sehen),
leuchtet sie, wenn der Pin auf LOW gesetzt wird (der visuelle Effekt kehrt sich um — eine
LED geht fiir eine Sekunde aus, wihrend die beiden anderen an bleiben).

N

LEDs benétigen einen Vorwiderstand, um den Strom zu kontrollieren,
sonst konnen sie sehr schnell durchbrennen. Fiir die eingebaute LED an
.a+ Pin 13 gibt es einen solchen Vorwiderstand auf der Platine. Bei externen
° LEDs muss ein Vorwiderstand mit der Anode oder Kathode verbunden
werden.

Ein bei einer LED in Reihe geschalteter Vorwiderstand kontrolliert den Strom, der flief3t,
wenn die LED schaltet. Zur Berechnung des Widerstandwerts miissen Sie die Eingang-
spannung kennen (Vs, iiblicherweise 5 Volt), die Fluss-Spannung der LED (Vf) und den
Strom (I), der durch die LED flieRRen soll.

Die Formel fiir den Widerstand in Ohm (bekannt als Ohmsches Gesetz) lautet
R=(Vs—Vi) /I

Wenn Sie zum Beispiel eine LED bei einer Versorgungsspannung von 5 Volt mit einer
Fluss-Spannung von 1,8 Volt und einem Strom von 15 mA ansteuern wollen, setzen Sie
die folgenden Werte ein:

Vs =5 (fiir ein 5V-Arduino-Board)
Vf = 1,8 (die Fluss-Spannung der LED)
[=0,015 (1 Milliampere [mA] ist ein tausendstel Ampere d.h., 15 mA sind 0,015 A)

Die Spannung bei eingeschalteter LED ist (Vs — V) also 5 — 1,8, also 3,2 Volt.
Die Berechnung des Vorwiderstands ergibt also 3,2 / 0,015 oder 213 Ohm.

7.1 LEDs anschlieBen und nutzen | 247

Der Wert von 213 Ohm entspricht keinem Standard-Widerstandswert, weshalb wir ihn
auf 220 Ohm aufrunden.

Der Widerstand in Abbildung 7-2 liegt zwischen Kathode und Masse, kann aber ebenso
gut auf der anderen Seite der LED (zwischen +5V und Anode) angeschlossen werden.

Arduino-Pins kénnen maximal 40 mA Strom liefern. Wenn Thre LED mehr
A Strom bendtigt, sehen Sie sich Rezept 7.3 an.

Siehe auch
Rezept 7.3

7.2 Helligkeit einer LED regeln

Problem

Sie wollen die Helligkeit einer oder mehrerer LEDs aus Threm Sketch heraus regeln.

Losung

Verbinden Sie jede LED mit einem PWM-fihigen Analogausgang. Verwenden Sie die
Verschaltung aus Abbildung 7-2. Der Sketch ldsst die LED langsam (iiber einen Zeitraum
von etwa 5 Sekunden) immer heller werden und dann wieder dunkel.

/*

* LedBrightness Sketch

* Steuert die Helligkeit von LEDs an analogen Ausgangsports
*/

const int firstled =3; // Pins fur die LEDs festlegen
const int secondled =5;
const int thirdled =6;

int brightness = 0;
int increment = 1;

void setup()

// Mit analoghrite angesteuerte Pins miissen nicht als Ausgdnge deklariert werden

}

void loop()

{
if(brightness > 255)

{

increment = -1; // Beim Erreichen von 255 herunterzdhlen

else if(brightness < 1)

248 | Kapitel 7: Visuelle Ausgabe

increment = 1; // Beim Erreichen von 0 wieder hochzdhlen

}

brightness = brightness + increment; // Inkrementieren (oder bei negativem Vorzeichen
// dekrementieren)

// Helligkeitswert an die LEDs schreiben
analogWrite(firstled, brightness);
analoghrite(secondlLed, brightness);
analoghrite(thirdlLed, brightness);

delay(10); // 10ms pro Schritt bedeutet 2,55 Sekunden fir auf- und abblenden

Diskussion

Wir verwenden die gleiche Verschaltung wie im vorigen Sketch, steuern die Pins aber iiber
analoghrite anstelle von digitalWrite an. analoghrite nutzt PWM, um die Spannung an
der LED zu kontrollieren. In der Einfithrung zu diesem Kapitel erfahren Sie mehr iiber
analoge Ausginge.

Der Sketch regelt die Helligkeit, indem er den Wert der brightness-Variable bei jedem
Schleifendurchlauf erhoht (heller) oder verringert (dunkler). Dieser Wert wird dann tiber
die analoghrite-Funktion an die drei angeschlossenen LEDs tibergeben. Der Minimalwert
firr analogWrite ist 0 — das entspricht einer Spannung von 0 Volt am Pin. Der Maximalwert
ist 255 und hilt die Spannung am Pin bei 5 Volt.

Erreicht die brightness-Variable ihren Maximalwert, wird sie wieder kleiner, weil sich das
Vorzeichen von increment von +1 auf —1 dndert (=1 zu einem Wert zu addieren ist das
gleiche, wie eine 1 zu subtrahieren).

Siehe auch

Die Einfithrung zu diesem Kapitel erliutert, wie die Analogausginge des Arduino funk-
tionieren.

7.3 Hochleistungs-LEDs ansteuern

Problem

Sie miissen LEDs schalten oder ansteuern, die mehr Strom benétigen, als die Arduino-Pins
zur Verfiigung stellen. Arduino-Chips kénnen nur einen Strom von bis zu 40 mA pro Pin
liefern.

Losung

Verwenden Sie einen Transistor, um den Stromfluss durch die LEDs zu steuern. SchlieRen
Sie die LED wie in Abbildung 7-4 zu sehen an. Sie kénnen den gleichen Code wie in den

7.3 Hochleistungs-LEDs ansteuern | 249

obigen Rezepten nutzen, miissen aber sicherstellen, dass die Basis des Transistors mit dem
im Sketch verwendeten Pin verbunden ist.

7a

Je
53 Lusatzliche LEDs
«Q werden wie folgt

F— angeschlossen: +V der
:Q "~ T > Spannungs-

uelle
w1 g
R0

RESETY
330
o)
Gnd
Gnd(}

ving

oO=Z=—C O X0 >

Masse der
_ Spannungs-
"~ quelle

TIP102

Abbildung 7-4: Transistoren zur Steuerung von Hochleistungs-LEDs nutzen

Diskussion

In Abbildung 7-4 verweist ein Pfeil auf den Pluspol (+V) der Stromversorgung. Das kann
der +5V-Pin des Arduino sein, der bis zu 400 mA liefern kann, wenn er iiber USB versorgt
wird. Die bei einer externen Stromversorgung zur Verfiigung stehenden Strom- und
Spannungswerte hingen vom verwendeten Netzteil ab (der Laderegler leitet iiberschiis-
sige Spannung als Wirme ab — stellen Sie sicher, dass der Laderegler, ein 3-Pin-Chip in der
Nihe des Eingangssteckers, nicht zu heiff wird). Wenn Sie mehr Strom benétigen, als der
+5V-Pin des Arduino liefern kann, miissen Sie eine vom Arduino unabhingige Strom-
quelle verwenden, die die LEDs antreiben kann. Informationen zur Verwendung externer
Stromquellen finden Sie in Anhang C.

Wenn Sie eine externe Stromversorgung verwenden, miissen Sie darauf
achten, thre Masse mit der Arduino-Masse zu verbinden.

Wird der Transistor eingeschaltet, flieit Strom vom Kollektor zum Emitter. Ist der
Transistor ausgeschaltet, flieSt kein signifikanter Strom. Der Arduino kann einen Tran-
sistor einschalten, indem er die Spannung an einem Pin mittels digitalWrite auf HIGH
setzt. Ein Widerstand zwischen Pin und Transistor ist notig, damit nicht zu viel Strom

250 | Kapitel 7: Visuelle Ausgabe

flieRt — 1K-Ohm ist ein typischer Wert (der 5 mA an die Basis des Transistors liefert).
Anhang B zeigt, wie man Datenblitter liest und einen Transistor auswihlt und einsetzt.
Sie konnen auch spezialisierte ICs wie den ULN2003A verwenden, um mehrere Ausginge
anzutreiben. Er verfiigt iiber sieben hochstromige (0,5 amp) Ausgangstreiber.

Der Widerstand zur Begrenzung des Stromflusses durch die LED wird mit der Technik
berechnet, die in Rezept 7.1 beschrieben wurde. Eventuell miissen Sie aber beriick-
sichtigen, dass die Quellspannung durch den kleinen Spannungsverlust am Transistor
ein wenig sinkt. Er liegt Giblicherweise unter drei Viertel eines Volts (den tatsdchlichen
Wert koénnen Sie unter der Kollektor/Emitter-Sittigungsspannung nachsehen; siehe An-
hang B). Hochleistungs-LEDs (1 Watt oder mehr) werden am besten tiber eine konstante
Stromquelle (einer Schaltung, die den Strom aktiv kontrolliert) angetrieben, um den
Stromfluss durch die LED zu steuern.

Wie man die 40 mA pro Pin umgeht

Sie konnen auch mehrere Pins parallel schalten, um die Grenze von 40 mA pro Pin zu
umgehen (siehe Rezept 7.1).

Abbildung 7-5 zeigt, wie man eine LED mit 60 mA tiber zwei Pins ansteuern kann. Wie Sie
sehen, verbindet die LED die Widerstinde an den Pins 2 und 7 mit Masse. Beide Pins
miissen LOW sein, damit die vollen 60 mA durch die LED flieffen kénnen. Die separaten
Widerstinde werden benétigt, versuchen Sie nicht, nur einen Widerstand mit den beiden
Pins zu verbinden.

Q
e
o] 60 mA
A @ 4
R a ﬁ
D
f e AAASOMA |
I 603
N 50
0 Ho
e 30mA
10
00

Abbildung 7-5: 40 mA pro Pin umgehen

Diese Technik kann auch genutzt werden, um Strom zu liefern. Wenn Sie die LED
beispielsweise umdrehen — also den Anschluss auf Widerstandsseite (Kathode) mit Masse
verbinden und den anderen (Anode) mit den Widerstinden —, dann schalten Sie die LED
ein, indem Sie beide Pins auf HICH setzen.

Es ist am besten, wenn Sie keine benachbarten Pins verwenden, um die Belastung fiir den
Chip zu minimieren. Diese Technik funktioniert fur jeden Pin, der digitalWrite nutzen
kann, funktioniert aber nicht mit analoghrite. Wenn Sie far Analogausginge (PWM)
mehr Strom benotigen, miissen Sie wie oben beschrieben mit Transistoren arbeiten.

7.3 Hochleistungs-LEDs ansteuern | 251

Siehe auch

Web-Referenz fiir Konstantstrom-Treiber http://blog.makezine.com/archive/2009/08/
constant_current_led_driver.html

7.4 Die Farbe einer LED steuern

Problem

Sie wollen die Farbe einer RGB-LED aus einem Programm heraus steuern.

Losung

Bei RGB-LEDs sind rote, griine und blaue Elemente in einem einzelnen Gehiuse unterge-
bracht. Dabei sind entweder die Anoden miteinander verbunden (die sog. gemeinsame
Anode) oder die Kathoden (gemeinsame Kathode). Verwenden Sie die Schaltung aus
Abbildung 7-6 bei gemeinsamer Anode (die Anoden sind mit +5 V verbunden und die
Kathoden mit den Pins.) Nutzen Sie Abbildung 7-2, wenn Thre RGB-LEDs mit gemein-
samer Kathode arbeiten.

G B
r
ssessess N
€377 DieITAL 0)
. 20 £ 20
Arduino o o
k k
e n
a a

ANALOG

—
jaw}
v
e}

eneceollececee

Abbildung 7-6: Anschluss einer RGB-LED (gemeinsame Anode)

Der Sketch bewegt sich kontinuierlich durch das Farbspektrum der LED, indem er die
Intensitit der roten, grinen und blauen Elemente verindert:

/*

* RGB_LEDs Sketch

* RGB-LEDs liber analoge Ausgangsports ansteuern

252 | Kapitel 7: Visuelle Ausgabe

*/

const int redPin =3; // Pins fiir die LEDs

const int greenPin = 5;

const int bluePin =6;

const boolean invert = true; // true bei gemeinsamer Anode, false bei gemeinsamer Kathode

int color = 0; // Ein Wert zwischen 0 und 255 reprdsentiert den Farbton
intR, G, B; // Die Farbkomponenten fiir Rot, Griin und Blau

void setup()
{
// Mit analoghrite angesteuerte Pins miissen nicht als Ausgdnge deklariert werden

}
void loop()
{

int brightness = 255; // 255 ist maximale Helligkeit

hueToRGB(color, brightness); // Funktion zur Unwandlung von Farbton in RGB
// RGB-Werte an die Pins schreiben

analogWrite(redPin, R);

analoghrite(greenPin, G);

analoghrite(bluePin, B);

color++; // Farbe erhdhen
if(color » 255) //
color =0;
delay(10);

// Funktion zur Umwandlung einer Farbe in ihre Rot-, Griin- und Blau-Komponenten.

void hueToRGB(int hue, int brightness)
{
unsigned int scaledHue = (hue * 6);
// Segment 0 bis 5 umden Farbkreis
unsigned int segment = scaledHue / 256;
// Position innerhalb des Segments
unsigned int segmentOffset = scaledHue - (segment * 256);

unsigned int complement = 0;

unsigned int prev = (brightness * (255 - segmentOffset)) / 256;
unsigned int next = (brightness * segmentOffset) / 256;
if(invert)

brightness = 255-brightness;
complement = 255;
prev = 255-prev;
next = 255-next;

}

switch(segment) {
case0: //Rot
R = brightness;

G = next;
B = complement;
break;

7.4 Die Farbe einer LED steuern

253

casel: //Gelb
R =prev;
G=brightness;
B = complement;
break;
case2: //Grin
R = complement;
G =brightness;
B = next;
break;
case3: //Tirkis (Cyan)
R = complement;
G = prev;
B = brightness;
break;
case4: //Blau
R = next;
G = complement;
B =brightness;
break;
case5: //Violett (Magenta)
default:
R = brightness;
G = complement;
B =prev;
break;
}

}

Diskussion

Die Farbe einer RGB-LED wird durch die relative Helligkeit ihrer Rot-, Griin- und
Blau-Komponenten bestimmt. Die Kernfunktion des Sketches (hueToRGB) tibernimmt die
Umwandlung eines Farbtons zwischen 0 und 255 in die entsprechende Farbe zwischen
Rot und Blau. Das Spektrum sichtbarer Farben wird hiufig in einem Farbkreis dargestellt,
der aus den Primir- und Sekundirfarben sowie allen Zwischentonen besteht. Die sechs
Segmente fiir die Primdr- und Sekundirfarben werden von sechs case-Anweisungen
verarbeitet. Der Code in einer case-Anweisung wird ausgefiihrt, wenn die segment-Varia-
ble der case-Nummer entspricht. Die RGB-Werte werden dann auf die jeweils passenden
Werte gesetzt. Segment 0 ist Rot, Segment 1 ist Gelb, Segment 2 ist Griin und so weiter.

Wenn Sie die Helligkeit anpassen wollen, kénnen Sie den Wert der brightness-Variable
andern. Das nachfolgende Beispiel zeigt, wie man die Helligkeit mit einem variablen
Widerstand oder Sensor korrigiert, der wie in Abbildung 7-13 oder Abbildung 7-17
angeschlossen ist:

int brightness = map(analogRead(0),0,1023, 0, 255); //Helligkeit iiber Sensor bestimmen
Die Variable brightness bewegt sich im Wertebereich von 0 bis 255. Da der analoge

Eingangsbereich zwischen 0 und 1023 liegt, erhoht sich die Helligkeit der LED, wenn
dieser Wert steigt.

254 | Kapitel 7: Visuelle Ausgabe

Siehe auch
Rezept 2.16; Rezept 13.1

1.5 Mehrere LEDs aneinanderreihen: LED-Balkenanzeige

Problem

Sie wiinschen sich eine LED-Balkenanzeige, die LEDs proportional zu einem Wert in
Threm Sketch (oder von einem Sensor) ansteuert.

Losung

Sie kénnen die LEDs so anschlieRen wie in Abbildung 7-2. (Verwenden Sie weitere Pins,
wenn Sie zusitzliche LEDs anschlieffen wollen.) Abbildung 7-7 zeigt sechs LEDs, die an
benachbarten Pins angeschlossen sind.

ReseT

33
SV [F—— 2 7 < 7 < o

M K K K K K K

vinQ

220 220 220 220 220 220

Ohm Ohm Ohm Ohm Ohm Ohm

3
63
He,
43
33
3
x1Q
RX0Q

oO=—C O > >

Abbildung 7-7: Sechs LEDs, die mit den Kathoden an den Arduino-Pins angeschlossen sind

Der folgende Sketch schaltet eine Reihe von LEDs ein. Die Anzahl eingeschalteter LEDs ist
proportional zum Wert eines Sensors, der mit einem analogen Eingangsport verbunden
ist. (Abbildung 7-13 und Abbildung 7-17 zeigen, wie man einen Sensor anschliefit.)

/*
Bargraph Sketch

Schaltet eine Reihe von LEDs proportional zum Wert eines analogen Sensors ein.
Sechs LEDs werden angesteuert, aber die Zahl der LEDs kann gedndert werden,
indem man den Wert von NbrLEDs anpasst und die Pins in das ledPins-Array eintrdgt
*/

7.5 Mehrere LEDs aneinanderreihen: LED-Balkenanzeige | 255

const int NbrLEDs = 6;

const int ledPins[]={2, 3, 4, 5, 6, 7};

const int analogInPin = 0; // Analoger Eingangspin ist mit variablem Widerstand verbunden
const int wait = 30;

// Vertauschen Sie die beiden folgenden Konstanten, wenn die Kathoden mit Masse verbunden sind
const boolean LED_ON = LOW;
const boolean LED_OFF = HICH;

int sensorValue = 0; // Vom Sensor eingelesener Wert
int ledLevel = 0; // In 'LED-Balken' umgewandelter Wert

void setup() {
for (int led = 0; led < NbrLEDs; led++)

pinMode(ledPins[led], OUTPUT); // Alle LED-Pins sind Ausgénge
}
}

void loop() {
sensorValue = analogRead(analogInPin); // Sensorwert einlesen
ledLevel = map(sensorValue, 0, 1023, 0, NbrLEDs); // und auf LEDs abbilden
for (int led = 0; led < NbrLEDs; led++)

if (led < ledlevel) {
digitalWrite(ledPins[led], LED ON); // Pins unter Wert einschalten

else{
digitalWrite(ledPins[led], LED OFF); // Pins Uber Wert ausschalten
}
}
}

Diskussion

Die mit den LEDs verbundenen Pins werden im Array ledPins vorgehalten. Um die Zahl
der LEDs zu dndern, kénnen Sie Elemente in dieses Array einfiigen oder entfernen. Dabei
miissen Sie aber sicherstellen, dass die Variable NbrLEDs der Anzahl der Elemente (also der
Anzahl der verwendeten Pins) entspricht. Sie konnen den Compiler den Wert fiir NbrLEDs
berechnen lassen, indem Sie die Zeile:

const int NbrLEDs = 6;

durch die folgende Zeile ersetzen:
const int NbrLEDs = sizeof(ledPins) / sizeof(ledPins[0]).

Die Funktion sizeof gibt die Grofle einer Variablen (in Bytes) zuriick — in diesem Fall die
Zahl der Bytes im ledPins-Array. Da es sich um ein Array von Integerwerten handelt (mit
zwei Bytes pro Element), wird die GesamtgrofRe des Arrays in Bytes durch die GrofRe eines
Elements (sizeof(ledPins[0])) dividiert, um die Zahl der Elemente zu berechnen.

Die Arduino-Funktion map berechnet die Anzahl der LEDs, die proportional zum Sensor-
wert eingeschaltet werden sollen. Der Code geht alle LEDs durch und schaltet sie ein,

256 | Kapitel 7: Visuelle Ausgabe

solange der proportionale Sensorwert grofer ist als die LED-Nummer. Ist der Sensorwert
beispielsweise 0, wird keine LED eingeschaltet. Liegt der Sensorwert in der Mitte, wird die
Hailfte der LEDs eingeschaltet, und wenn der Sensor den Maximalwert zurickgibrt,
werden alle LEDs eingeschaltet.

Abbildung 7-7 zeigt, dass alle Anoden miteinander verbunden sind (die sog. gemeinsame
Anode) und die Kathoden mit den jeweiligen Pins. Die Pins miissen auf LOW gesetzt
werden, damit die LED leuchtet. Sind die LEDs mit den Anoden an die Pins angeschlossen
(wie in Abbildung 7-2 zu sehen), wihrend die Kathoden miteinander verbunden sind
(gemeinsame Kathode), dann leuchtet die LED, wenn der Pin auf HIGH gesetzt wird. Der
Sketch in diesem Rezept nutzt die Konstanten LED ON und LED OFF, um einfach zwischen
gemeinsamer Anode und gemeinsamer Kathode wechseln zu kénnen. Bei gemeinsamer
Kathode vertauschen Sie die Werte der Konstanten wie folgt:

const boolean LED_ON = HIGH; // HIGH schaltet die LED bei gemeinsamer Kathode ein
const boolean LED OFF = LOW;

Sie konnen auch das Abschwellen der LEDs verlangsamen, z.B. um die Bewegung der
Anzeige eines Lautstirkereglers zu emulieren. Hier eine Variante des Sketches, die den
LED-Balken langsam »abschwellen« ldsst, wenn der Pegel sinkt:

/*
Abschwellende LED-Balkenanzeige
*/

const int ledPins[]1=9{2, 3, 4,5, 6, 7};

const int NbrLEDs = sizeof(ledPins) / sizeof(ledPins[0]);

const int analogInPin = 0; // Analoger Eingangspin ist mit variablem Widerstand verbunden

const int decay = 10; // Erhohung dieses Wertes verringert die "Abschwellgeschwindigkeit" fiir
storedValue

int sensorValue = 0; // Vom Sensor eingelesener Wert
int storedVvalue = 0; // Gespeicherter (abschwellender) Sensorwert
int ledLevel = 0; // In 'LED-Balken' umgewandelter Wert

void setup() {
for (int led = 0; led < NbrLEDs; led++)

pinMode(ledPins[led], OUTPUT); // Alle LED-Pins sind Ausgange
}
}

void loop() {
sensorValue = analogRead(analogInPin); // Sensorwert einlesen
storedValue = max(sensorValue, storedvalue); // Sensorwert nutzen, wenn gréfer
ledLevel = map(storedvalue, 0, 1023, 0, NbrLEDs); // Auf Anzahl LEDs abbilden
for (int led = 0; led < NbrLEDs; led++)

{
if (led < ledlevel) {
digitalWrite(ledPins[led], HIGH); // Pins unter Wert einschalten

else{
digitalWrite(ledPins[led], LOW); // Pins iiber Wert ausschalten

7.5 Mehrere LEDs aneinanderreihen: LED-Balkenanzeige | 257

}

storedValue = storedValue - decay; //Wert "abschwellen" lassen
delay(10); // 10 ms warten

Das Abschwellen wird in der Zeile verarbeitet, die die max-Funktion nutzt. Sie gibt je
nachdem, welcher groRer ist, den Sensorwert oder den gespeicherten Wert zuriick. Ist der
Sensorwert hoher als der abschwellende Wert, wird er in storedvalue gespeichert.
Anderenfalls wird der Wert von storedvalue bei jedem Schleifendurchlauf um die Kon-
stante decay verkleinert. (Die Schleife selbst wird mit Hilfe der delay-Funktion alle 10
Millisekunden durchlaufen.) Erhéht man den Wert von decay, reduziert sich die Zeit-
spanne, in der alle LEDs ausgehen.

Siehe auch

Rezept 3.6 erklart die max-Funktion.

Rezept 5.6 erldutert ausfiihrlicher, wie man einen Sensorwert mit analogRead einliest.
Rezept 5.7 beschreibt die map- Funktion.

Wenn Sie eine groflere Genauigkeit fiir die »Abschwellzeiten« benotigen, sehen Sie sich
12.1 und 12.2 an. Die Gesamtzeit fur einen Schleifendurchgang liegt tatsiachlich iiber
10 Millisekunden, da es eine weitere Millisekunde (oder so) dauert, bis der Rest der
Schleife ausgefithrt wurde.

7.6 Mehrere LEDs aneinanderreihen: Knight Rider-Lauflicht

Problem

Sie wollen LEDs in einem Lauflicht (wie in der Fernsehserie Knight Rider) aufleuchten
lassen.

Losung
Sie konnen die gleichen Anschliisse wie in Abbildung 7-7 verwenden:

/*KnightRider

*/

const int NbrLEDs = 6;

const int ledPins[] =12, 3, 4, 5, 6, 7};
const intwait = 30;

void setup(){
for (int led = 0; led < NbrLEDs; led++)

pinMode(ledPins[led], OUTPUT);

258 | Kapitel 7: Visuelle Ausgabe

void loop() {
for (int led = 0; led < NbrLEDs-1; led++)

{
digitalWrite(ledPins[led], HIGH);

delay(wait);
digitalWrite(ledPins[led + 1], HIGH);
delay(wait);
digitalWrite(ledPins[led], LOW);
delay(wait*2);

}
for (int led = NbrLEDs-1; led > 0; led--) {

digitalWrite(ledPins[led], HIGH);
delay(wait);
digitalWrite(ledPins[led - 1], HICH);
delay(wait);
digitalWrite(ledPins[led], LOW);
delay(wait*2);

}

Diskussion

Dieser Code dhnelt dem aus Rezept 7.5, nur dass die Pins hier nicht von einem Sensorwert
abhingen, sondern in einer festen Reihenfolge ein- und ausgeschaltet werden. Es gibt zwei
for-Schleifen. Die erste erzeugt das Links-nach-rechts-Muster, indem sie die LEDs von
links nach rechts einschaltet. Die Schleife beginnt mit der ersten (linken) LED und geht
dann alle nachfolgenden LEDs durch, bis auch die letzte (rechte) LED leuchtet. Die zweite
for-Schleife schaltet die LEDs von rechts nach links ein. Sie beginnt bei der rechten LED
und dekrementiert die LED, bis die erste (linke) LED erreicht ist. Die Zeitverzogerng kann
in der wait-Variablen festgelegt werden. Wihlen Sie den Wert, der fiir den besten
visuellen Effekt sorgt.

7.7 Eine LED-Matrix per Multiplexing steuern

Problem

Sie besitzen eine LED-Matrix und wollen die Anzahl der Arduino-Pins minimieren, die zu
ihrer Ansteuerung benotigt werden.

Losung

Dieser Sketch verwendet eine LED-Matrix mit 64 LEDs, bei der die Anoden mit den Zeilen
und die Kathoden mit den Spalten verbunden sind (wie bei der Jameco 2132349). Zwei-
farbige LED-Displays sind moglicherweise leichter zu beschaffen, und Sie kénnen einfach
nur eine der Farben ansteuern, wenn Sie die andere nicht brauchen (Abbildung 7-8 zeigt
den Anschluss):
/*
matrixMpx Sketch

7.7 Eine LED-Matrix per Multiplexing steuern | 259

Schaltet die LEDs, von der ersten Zeile und Spalte ausgehend, nacheinander ein, bis alle LEDs
leuchten

Das Multiplexing wird verwendet, um 64 LEDs mit 16 Pins anzusteuern

*/

const int columnPins[]={2, 3, 4,5, 6,7, 8, 9};
const int rowPins[] ={10,11,12,15,16,17,18,19};

int pixel =0; // 0bis 63 LEDs in der Matrix
int columnlLevel = 0; // In LED-Spalte umgewandelter Pixelwert
int rowLevel =0; // In LED-Zeile umgewandelter Pixelwert

void setup() {
for (inti=0;1<8;i++)

pinMode(columnPins[i], OUTPUT); // Alle LED-Pins sind Ausgange
pinMode(rowPins[i], OUTPUT);

}

}

void loop() {
pixel = pixel +1;
if(pixel > 63)

pixel = 0;
columnLevel = pixel / 8; // Auf Anzahl Spalten abbilden
rowlevel = pixel % 8; // Rest bestimmen

for (int column = 0; column < 8; column++)

digitalWrite(columnPins[column], LOW); // Diese Spalte an Masse
for(int row = 0; Tow < 8; row++)

{

if (columnLevel > column)
digitalWrite(rowPins[row], HIGH); // Alle LEDs in der Zeile an +5 Volt

else if (columnLevel == column 8& rowlLevel >= row)

{
digitalWrite(rowPins[row], HIGH);

}

else

digitalWrite(columnPins[column], LOW); // Alle LEDs in der Zeile ausschalten
delayMicroseconds(300); // Verzogerung liefert eine Framedauer von 20ms fir 64 LEDs

digitalWrite(rowPins[row], LOW); // LED ausschalten

// Die Spalte von Masse trennen
digitalWrite(columnPins[column], HICH);

260 | Kapitel 7: Visuelle Ausgabe

Analog 5 (19 D

)
Analog 4 (18)E—|
Analog 3 (17)!3—I
)
)
)

Analog 2 (16, €,
G— |
a
a

Analog 1(15
Analog 0

™[5][R =] [=]]

a

33

)
nE—
10[F—-

wvi

© ©
>
T‘
>
<SS

w

F-

-

s

-

v

-

(-}

oO=—cCc o =>
TP
<>
<

Abbildung 7-8: LED-Matrix an 16 Digitalpins

LED-Matrixanzeigen haben keine Standard-Anschlussbelegung, d.h., Sie
miissen sie auf dem Datenblatt der Anzeige nachsehen. Verbinden Sie die
Zeilen mit den Anoden und die Spalten mit den Kathoden, wie in
Abbildung 7-15 oder Abbildung 7-16 dargestellt, verwenden Sie aber die
LED-Pin-Nummern aus Ihrem Datenblatt.

Diskussion

Die Widerstandswerte miissen so gewiahlt werden, dass der Maximalstrom von 40 mA pro
Pin nicht iiberschritten wird. Da der Strom fiir bis zu acht LEDs durch jeden Spaltenpin
flieRen kann, darf der maximale Strom fiir jede LED nur ein Achtel von 40 mA, also 5 mA,
betragen. Jede LED in einer typischen kleinen roten Matrix hat eine Fluss-Spannung von
etwa 1,8 Volt. Die Berechnung des Widerstands, der zu einem Strom von 5mA bei einer
Fluss-Spannung von 1,8V fiihrt, ergibt einen Wert von 680 Ohm. Suchen Sie sich aus dem
Datenblatt die Fluss-Spannung fiir Thre Matrix heraus. Jede Spalte der Matrix ist durch
einen Vorwiderstand mit einem Digitalpin verbunden. Geht die Spannung am Spaltenpin
herunter und die am Zeilenpin hoch, leuchtet die dazugehorige LED. Bei allen LEDs, bei
denen die Spannung am Spaltenpin hoch oder am Zeilenpin unten ist, flieRt kein Strom
durch die LED, und sie leuchtet nicht.

7.7 Eine LED-Matrix per Multiplexing steuern | 261

The for-Schleife geht alle Zeilen und Spalten durch und schaltet nacheinander die LEDs
ein, bis alle leuchten. Die Schleife beginnt in der ersten Spalte und Zeile und inkrementiert
die Zeilenzihler, bis alle LEDs in dieser Zeile leuchten. Sie macht dann mit der nichsten
Spalte weiter, und so weiter, bis nacheinander alle LEDs an sind.

Sie konnen die LEDs auch proportional zu einem Sensorwert leuchten lassen (Rezept 5.6
zeigt, wie man einen Sensor an einen Analogport anschlieRt), indem Sie die folgenden
Anderungen am Sketch vornehmen.

Kommentieren Sie die drei folgenden Zeilen am Anfang der Schleife aus:

pixel = pixel + 1;
if(pixel > 63)
pixel = 0;
Ersetzen Sie das durch die folgenden Zeilen, die den Sensorwert an Pin 0 einlesen und auf
die Zahl der Pixel zwischen 0 und 63 abbilden:

int sensorValue = analogRead(0); // Sensorwert einlesen
pixel = map(sensorValue, 0, 1023, 0, 63); //undauf Pixel (LED) abbilden

Sie kénnen das mit einem variablen Widerstand ausprobieren, der wie in Abbildung 5-7
aus Kapitel 5 mit dem Analogpin 0 verbunden ist. Die Anzahl eingeschalteter LEDs ist
dann proportional zum Sensorwert.

7.8 Bilder (Images) auf einer LED-Matrix darstellen

Problem

Sie wollen ein oder mehrere Bilder (Images) auf einer LED-Matrix ausgeben, etwa fiir eine
Animation, bei der mehrere Images schnell hintereinander dargestellt werden.

Losung

Diese Losung kann die gleiche Verschaltung nutzen wie in Rezept 7.7. Der Sketch erzeugt
den Effekt eines schlagenden Herzens, indem er die LEDs in Form eines Herzens
aufleuchten ldsst. Fiir jeden Herzschlag wird ein kleines Herz, gefolgt von einem groflen
Herzen, ausgegeben (die Images sind in Abbildung 7-9 zu sehen):

/*

*matrixMpxAnimation Sketch

* Animiert die Images zweier Herzen zu einem Herzschlag
*/

// Die Herzen werden als Bitmaps gespeichert - jedes Bit entspricht einer LED
// Beieiner 0 ist die LED aus, bei einer 1 ist siean
byte bigHeart[] ={

Bo1100110,

B11111111,

262 | Kapitel 7: Visuelle Ausgabe

B11111111,
B11111111,
Bo1111110,
B00111100,
800011000,
BO0000000};

byte smallHeart[] = {
B00000000,
B00000000,
B00010100,
BoO111110,
B00111110,
B00011100,
B00001000,
B00000000};

{ 2) 3) 4) 5) 6) 7) 8) 9};

const int columnPins[] =
={10,11,12,15,16,17,18,19};

const int rowPins|[]

void setup() {
for (inti=0;1<8; i++)

pinMode(rowPins[i], OUTPUT); // Alle LED-Pins sind Ausgédnge

pinMode(columnPins[i], OUTPUT);
digitalWrite(columnPins[i], HIGH); // Spaltenpins von Masse trennen

}
void loop() {

int pulseDelay = 800 ; // Wartezeit zwischen Herzschldgen in Millisekunden
show(smallHeart, 80); // Zeige kleines Herz fiir 100 ms

show(bigHeart, 160); // Gefolgt vom groBen Herz fiir 200ms
delay(pulseDelay); // Dazwischen passiert nichts

// Zeigt einen Frame des Images, das im Array abgelegt ist,

// auf das der image-Parameter zeigt.

// Der Frame wird fiir die angegebene Dauer in Millisekunden wiederholt
void show(byte * image, unsigned long duration)

unsigned long start =millis(); // Timing der Animation starten
while (start + duration > millis()) // Ausgabe flir die gewlinschte Dauer
{
for(int row = 0; TOW < 8; TOW++)
digitalWrite(rowPins[row], HIGH); // Zeile mit +5 Volt verbinden
for(int column = 0; column < 8; column++)
{

boolean pixel = bitRead(image[row],column);
if(pixel ==1)
{

digitalWrite(columnPins[column], LOW); // Spalte mit Masse verbinden
}

7.8 Bilder (Images) auf einer LED-Matrix darstellen

263

delayMicroseconds(300);

// Kleine Verzégerung fiir jede LED

digitalWrite(columnPins[column], HIGH); // Spalte von Masse trennen

digitalWrite(rowPins[row], LOW);
}

}

}

// LEDs trennen

00000000
90000000
900 O OO
00000000
oe [[1@
900, [[00
0000, OO
00000000,

o [OO [@
00000000
00000000
00000000
00000000
o [[[00
900 | OO
OO0000000

Kleines Herz GroBRes Herz

Abbildung 7-9: Die zwei Herzen, die bei jedem Herzschlag ausgegeben werden

Diskussion

Das Multiplexen (Schalten) der Spalten und Zeilen dhnelt Rezept 7.7, doch der an die
LEDs geschriebene Wert basiert auf den Images, die in den Arrays bigHeart und small-
Heart abgelegt sind. Jedes Element des Arrays reprisentiert ein Pixel (eine einzelne LED),
und jede Array-Zeile reprisentiert eine Zeile der Matrix. Eine Zeile besteht aus acht Bits,
die im Bindrformat (das durch das groffe B am Anfang jeder Zeile festgelegt wird)
angegeben werden. Ein Bit mit dem Wert 1 legt fest, dass die entsprechende LED an ist,
die 0 bedeutet, sie ist aus. Der Animationseffekt entsteht, indem man zwischen den Arrays
schnell hin und her wechselt.

Die loop-Funktion wartet kurz (800 Millisekunden) zwischen den Schligen und ruft dann
die show-Funktion zuerst mit dem smallHeart-Array und dann mit dem bigHeart-Array
auf. Die show-Funktion geht jedes Element in allen Zeilen und Spalten durch und schaltet
die LED ein, wenn das entsprechende Bit 1 ist. Die bitRead-Funktion (siehe Rezept 2.20)
wird genutzt, um den Wert jedes Bits zu ermitteln.

Eine kurze Verzogerung von 300 Mikrosekunden zwischen den Pixeln gibt dem Auge
genug Zeit, die LED wahrzunehmen. Das Timing wurde so gewihlt, dass jedes Image oft
genug wiederholt wird (50 mal pro Sekunde), damit man das Blinken nicht bemerkt.

264 | Kapitel 7: Visuelle Ausgabe

Hier eine Variante, die die Geschwindigkeit des Herzschlags basierend auf dem Wert eines
Sensors dndert. Sie kénnen das mit einem variablen Widerstand am analogen Eingangspin
0 ausprobieren (siche Rezept 5.6). Verwenden Sie die gleiche Verschaltung und den
gleichen Code wie oben, ersetzen Sie nur die loop-Funktion durch den folgenden Code:

void loop() {
sensorValue = analogRead(analogInPin); // Sensorwert einlesen
int pulseRate = map(sensorValue,0,1023,40,240); // In Schlége pro Minute umwandeln
int pulseDelay = (60000 / pulseRate); // Wartezeit zwischen Herzschldgen in Millisekunden

show(smallHeart, 80); // Kleines Herz flir 100 ms zeigen
show(bigHeart, 160); // Gefolgt vom groRen Herzen fiir 200ms
delay(pulseDelay); // Dazwischen passiert nichts

Diese Version berechnet die Pause zwischen den Herzschligen iiber die map-Funktion
(siehe Rezept 5.7), die den Sensorwert in Schlige pro Minute umwandelt. Die Berechnung
beriicksichtigt die Zeit nicht, die es dauert, das Herz darzustellen, doch Sie kénnen 240
Millisekunden (80 ms plus 160 ms fiir die beiden Images) abziehen, wenn Sie ein
genaueres Timing wiinschen.

Siehe auch

In 7.12 und 7.13 finden Sie Informationen, wie man Schieberegister zur Ansteuerung von
LEDs nutzt, wenn man die Anzahl der Arduino-Pins reduzieren will, die zum Ansteuern
einer LED-Matrix benotigt werden.

In 12.1 and 12.2 erfahren Sie mehr dariiber, wie man die Zeit mit der millis -Funktion
verwaltet.

7.9 Eine LED-Matrix ansteuern: Charlieplexing

Problem

Sie besitzen eine LED-Matrix und mochten die Anzahl der Pins minimieren, die benotigt
werden, um sie ein- und auszuschalten.

Losung

Charlieplexing ist eine spezielle Form des Multiplexings, die die Zahl der LEDs erhoht, die
von einer Gruppe von Pins angesteuert werden konnen. Der folgende Sketch steuert sechs
LEDs mit nur drei Pins (Abbildung 7-10 zeigt den Anschluss):

/*

* Charlieplexing Sketch

* Sechs LEDs nacheinander einschalten, die iiber die Pins 2, 3 und 4 angeschlossen sind
*/

byte pins[] ={2,3,4}; //Mit den LEDs verbundene Pins

7.9 Eine LED-Matrix ansteuern: Charlieplexing | 265

// Die ndchsten beiden Zeilen ermitteln die Anzahl der Pins und der LEDs aus dem obigen Array
const int NUMBER OF PINS = sizeof(pins)/ sizeof(pins[0]);
const int NUMBER_OF LEDS = NUMBER _OF PINS * (NUMBER OF PINS-1);

byte pairs[NUMBER OF LEDS/2][2]={{0,1}, {1,2}, {0,2} }; // Pins auf LEDs abbbilden

void setup()

// Hier gibt es nichts zu tun

}

void loop(){
for(int i=0; i < NUMBER_OF LEDS; i++)

lightled(i); // Alle LEDs nacheinander einschalten
delay(1000);

// Diese Funktion schaltet die angegebene LED ein; die erste LED ist 0
void lightLed(int led)

// Die nachfolgenden vier Zeilen wandeln die LED-Nummer in Pin-Nummexrn um
int indexA = pairs[led/2][0];

int indexB = pairs[led/2][1];

int pinA = pins[indexA];

int pinB = pins[indexB];

// Schaltet alle Pins aus, die nicht mit der LED verbunden sind
for(int i=0; i < NUMBER_OF PINS; i++)
if(pins[i] !=pinA &8 pins[i] !=pinB)
{ // Ist dieser Pin nicht einer unserer Pins,
pinMode(pins[i], INPUT); // als Eingang festlegen
digitalWrite(pins[i],LOW); // und Pullup ausschalten

// Nun die Pins fiir die angegebene LED einschalten
pinMode(pinA, OUTPUT);

pinMode(pinB, OUTPUT);

if(led%2==0)

{

digitalWrite(pinA,LOW);
digitalWrite(pinB,HICH);

else
{
digitalWrite(pinB,LOW);
digitalWrite(pinA,HICH);
}
}

266 | Kapitel 7: Visuelle Ausgabe

reseT [
wi[J
sv [
Gnd D
Gnd D
Vin D

'a

g

F—w—
2[3—\/V\/‘—|

oO=Z=—C O X0 >

X Ny
A4 X
1% S%z . LAVARRVAN
- 5 6
» o
3 4

1
o)

Abbildung 7-10: Ansteuerung von sechs LEDs mit nur drei Pins per Charlieplexing

Diskussion

Der Begriff Charlieplexing stammt von Charlie Allen (von Microchip Technology, Inc.), der
diese Methode verdffentlicht hat. Die Technik nutzt die Tatsache aus, dass LEDs nur
leuchten, wenn sie »richtig herum« angeschlossen sind (d.h., wenn die Anode »positiver«
ist als die Kathode). Die nachfolgende Tabelle zeigt die LED-Nummer (siehe Abbildung 7-8),

die bei giiltigen Kombinationen der drei Pins le

uchtet. L steht fiir LOW, H fiir HIGH und 1 fiir den

INPUT-Modus. Schaltet man einen Pin in den INPUT-Modus, trennt man ihn von der Schal-

tung:

Pins LEDs

432 123456
LLL 000000O
LHi 1200000
HLi 010000
ilH 001000
iHL 000100
LiH 000010
Hil 000001

Sie konnen die Anzahl der LEDs mit nur einem zusitzlichen Pin auf 12 verdoppeln. Die
ersten sechs LEDs werden dabei wie im obigen Beispiel angeschlossen. Den Anschluss der
sechs zusitzlichen LEDs sehen Sie in Abbildung 7-11.

7.9 Eine LED-Matrix ansteuern: Charlieplexing | 267

\EF—vW\
ZG—\/\/\/‘—l
1

1@

Abbildung 7-11: Charlieplexing mit vier Pins steuert 12 LEDs

Tragen Sie den zusitzlichen Pin im obigen Sketch in das pins-Array ein:

byte pins[]=1{2,3,4,5}; //Mit den LEDs verbundene Pins

Tragen Sie die zusitzlichen Eintriige in das pairs-Array ein:

Alles andere kann unverindert bleiben und die Schleife geht alle 12 LEDs durch, weil der

byte pairs[NUMBER_OF_LEDS/2][2] ={ {0,1}, {1,2}, {0,2}, {2,3}, {1,3}, {0,3} };

Code die Anzahl der LEDs aus der Anzahl der Eintrige im pins-Array bestimmt.

Da das Charlieplexing die Arduino-Pins so ansteuert, dass nur jeweils eine LED einge-
schaltet ist, ist es schwieriger, mehrere LEDs quasi gleichzeitig leuchten zu lassen. Man
kann das aber erreichen, indem man eine fiir das Charlieplexing modifizierte Multiple-

xing-Technik nutzt.

Der folgende Sketch erzeugt eine Balkenanzeige, indem es eine Reihe von LEDs ansteuert.

Welche LEDs das sind, hingt vom Sensorwert am Analogpin O ab:

byte Plns[] = {2)314};
const int NUMBER OF PINS = sizeof(pins)/ sizeof(pins[0]);
const int NUMBER_OF LEDS = NUMBER_OF PINS * (NUMBER OF PINS-1);

byte pairs[NUMBER OF LEDS/2][2]={{0,1}, {1,2}, {0,2} };

int ledStates = 0; //Enthalt Zustand von bis zu 15 LEDs
int refreshedled; // "Aufzufrischende" LED

void setup()

// Hier ist nichts zu tun

}

void loop()
{

const int analogInPin = 0; // Analoger Eingangspin ist mit variablemWiderstand verbunden

// Hier folgt der Code aus dem bargraph-Rezept

int sensorValue = analogRead(analogInPin); // Analogwert einlesen
// Auf Anzahl der LEDs abbilden

int ledLevel = map(sensorValue, 0, 1023, 0, NUMBER_OF LEDS);

268

| Kapitel 7: Visuelle Ausgabe

for (int led = 0; led < NUMBER _OF LEDS; led++)

if (led < ledLevel) {
setState(led, HIGH); //Pins unter Wert einschalten

}
else {
setState(led, LOW); // Pins liber Wert ausschalten
}
}
ledRefresh();
}
void setState(int led, boolean state)
{
bitWrite(ledStates,led, state);
}

void ledRefresh()

// Bei jedem Aufruf eine andere LED auffrischen.
if(refreshedLed++ > NUMBER_OF_LEDS) // Zur nachsten LED wechseln
refreshedled = 0; // Wieder bei der ersten LED anfangen, wenn alle aufgefrischt wurden

if(bitRead(ledStates, refreshedled) == HIGH)
lightled(refreshedled);

// Diese Funktion entspricht der aus dem obigen Sketch
// Sie schaltet die angebene LED ein; die erste LED ist 0
void lightled(int led)

// Die folgenden vier Zeilen wandeln die LED-Nummer in die Pin-Nummern um
int indexA = pairs[led/2][0];

int indexB = pairs[led/2][1];

int pinA = pins[indexA];

int pinB = pins[indexB];

// Alle Pins ausschalten, die nicht mit der angegebenen LED verbunden sind
for(int i=0; i < NUMBER_OF PINS; i++)
if(pins[i] !=pinA&& pins[i] !=pinB)
{ //Istder Pin nicht einer unserer Pins,
pinMode(pins[i], INPUT); // als Eingang festlegen
digitalWrite(pins[i],LOW); // und Pullup ausschalten

// Nun die Pins fiir die angegebene LED einschalten

pinMode(pinA, OUTPUT);

pinMode(pinB, OUTPUT);

if(led%2==0)

{
digitalWrite(pinA,LOW);
digitalWrite(pinB,HICH);

}

else

7.9 Eine LED-Matrix ansteuern: Charlieplexing

269

{
digitalWrite(pinB,LOW);
digitalWrite(pinA,HIGH);
}
}
Der Sketch nutzt die Bitwerte der Variablen ledStates fiir den Zustand der LEDs (O fiir aus
und 1 fiir an). Die refresh-Funktion tiberpriift jedes Bit und schaltet die LEDs ein, wenn
es auf 1 gesetzt ist. Die refresh-Funktion muss immer wieder schnell aufgerufen werden,
da die LEDs sonst flackern wiirden.

Verzogerungsschleifen im Code konnen den Phi-Effekt (Trigheit des Auges)
) behindern, der dafiir verantwortlich ist, dass wir das Flackern der LEDs

nicht sehen.

Sie konnen einen Interrupt nutzen, um die refresh-Funktion im Hintergrund abzuar-
beiten (ohne die Funktion in loop explizit aufrufen zu miissen). Timer-Interrupts werden
in Kapitel 18 behandelt, aber hier gibt es schon mal einen Vorgeschmack darauf, wie man
einen Interrupt nutzt, um das Auffrischen der LEDs zu erledigen. Wir verwenden eine
Bibliothek namens FrequencyTimer2 (die im Arduino Playground verfiigbar ist), um den
Interrupt einzurichten:

#include <FrequencyTimer2.h> // Einbinden dieser Bibliothek, um refresh zu ermdglichen

byte pins[] ={2,3,4};
const int NUMBER OF PINS = sizeof(pins)/ sizeof(pins[0]);
const int NUMBER_OF LEDS = NUMBER_OF PINS * (NUMBER_OF PINS-1);

byte pairs[NUMBER OF LEDS/2][2]={{0,1}, {1,2}, {0,2} };

int ledStates = 0; // Enthdlt Zustédnde von bis zu 15 LEDs
int refreshedled; // Die aufzufrischende LED
void setup()

FrequencyTimer2: :setPeriod(20000/ NUMBER OF LEDS); // Zeitintervall festlegen

// Die ndchste Zeile legt fest, welche Funktion FrequencyTimer2 aufrufen soll (ledRefresh)
FrequencyTimer2::setOnOverflow(ledRefresh);

FrequencyTimer2::enable();

void loop()
{

const int analogInPin = 0; // Analoger Eingangspin ist mit variablemWiderstand verbunden

270 | Kapitel 7: Visuelle Ausgabe

// Hier folgt der Code aus dem bargraph-Rezept

int sensorValue = analogRead(analogInPin); // Analogwert einlesen
// Auf Anzahl der LEDs abbbilden

int ledLevel = map(sensorValue, 0, 1023, 0, NUMBER OF LEDS);

for (int led = 0; led < NUMBER _OF LEDS; led++)

if (led < ledlevel) {
setState(led, HIGH); // Pins unter Wert einschalten

}
else{
setState(led, LOW); // Pins Uber Wert ausschalten
}
// Die LEDs werden nicht mehr in der Schleife aufgefrischt. Das wird von FrequencyTimer2
ibernommen
}

// Der restliche Code entspricht demaus dem vorigen Beispiel

Der Timer fir die FrequencyTimer2-Bibliothek wird auf 1,666 Mikrosekunden gesetzt
(20 ms durch 12, also die Anzahl der LEDs). Die Methode FrequencyTimer2setOnOverflow
legt die Funktion fest (ledRefresh), die aufgerufen soll, wenn der Timer »auslost«.

Siehe auch

Das LOL-Board ist ein Arduino-Shield, das eine 9x14-Matrix (126 LEDs) per Charlie-
plexing ansteuert. Es ist ein schones Beispiel dafiir, was mit dieser Technik moglich ist,
wenn man bei der Hard- und Software tiber die iiblichen Design-Beschrinkungen hinaus-
geht: http://iimmieprodgers.com/kits/lolshield/makelolshield/.

Kapitel 18 enthilt weitere Informationen zu Timer-Interrupts.

7.10 Eine 7-Segment-LED-Anzeige ansteuern

Problem

Sie wollen Zahlen auf einer 7-Segment-Anzeige darstellen.

Losung

Der folgende Sketch gibt Ziffern zwischen 0 bis 9 auf einer einstelligen 7-Segment-Anzeige
aus. Den Anschluss sehen Sie in Abbildung 7-12. Die Ausgabe wird durch das Einschalten
einer Kombination von Segmenten erreicht, die die Ziffern reprisentieren:

/*

* SevenSegment Sketch

* Zeigt Ziffern zwischen 0 bis 9 auf einer einstelligen Anzeige an
* Das Beispiel zdhlt die Sekunden von 0 bis 9

*/

7.10 Eine 7-Segment-LED-Anzeige ansteuern | 271

// Die Bits reprasentieren die Segmente A bis G (und den Dezimalpunkt) fir die Ziffern 0-9
const byte numeral[10] = {
//ABCDEFG /dp
B11111100, // 0
B01100000, // 1
B11011010, // 2
B11110010, //3
B01100110, // 4
B10110110, // 5
B00111110, // 6
B11100000, // 7
B11111110, // 8
B11100110, // 9

b

// Pins fiir Dezimalpunkt und alle Segmente
// dp,G,F,E,D,C,B,A
const int segmentPins[8]=1{5,8,9,7,6,4,3,2};

void setup()
{

for(int i=0; i < 8; i++)
{
pinMode (segmentPins[i], OUTPUT); // Segment- und DP-Pins als Ausgang festlegen

void loop()
{
for(int i=0; i <=10; i++)
{
showDigit(i);
delay(1000);

// Der letzte Wert wurde erreicht und das Display wird ausgeschaltet
delay(2000); // Zwei Sekunden Pause mit ausgeschaltetemDisplay

// Gibt eine Ziffer zwischen 0 und 9 auf einer 7-Segment-Anzeige aus
// Alle Werte auBerhalb von 0-9 schalten die Anzeige aus
void showDigit(int number)

boolean isBitSet;
for(int segment = 1; segment < 8; segment++)

if(number < 0 | | number > 9){
isBitSet =0; // Alle Segmente ausschalten

}

else{
// isBitSet ist "wahr", wenn das angegebene Bit 1 ist
isBitSet = bitRead(numeral[number], segment);

}

272 | Kapitel 7: Visuelle Ausgabe

isBitSet = | isBitSet; // Diese Zeile bei gemeinsamer Kathode entfernen
digitalWrite(segmentPins[segment], isBitSet);

ResET .
: A
A o) 7
R vinQ 5 ‘
A
D (G
U (M
|
| In!
N
0
4
roQ I | |
Widerstandswerte
im Text

Abbildung 7-12: Anschluss einer 7-Segment-Anzeige

Diskussion

Die fur jede Ziffer zu aktivierenden Segmente werden im Array numeral vorgehalten. Fiir
jede Ziffer wird ein Byte genutzt, bei dem jedes Bit eines der sieben Segmente (oder den
Dezimalpunkt) reprisentiert.

Das Array namens segmentPins enthilt die Pins, die jedem Segment zugeordnet sind. Die
Funktion showDigit priift, ob die Zahl im Bereich von 0 bis 9 liegt. Handelt es sich um eine
giiltige Zahl, wird dann jedes Segment-Bit untersucht und eingeschaltet, wenn es gesetzt
(1) ist. In Rezept 3.12 erfahren Sie mehr tiber die bitRead-Funktion.

Wie in Rezept 7.4 erwihnt, ist ein Pin HIGH, wenn man ein Segment bei einer Anzeige mit
gemeinsamer Kathode einschaltet. Bei einer Anzeige mit gemeinsamer Anode ist er LOW.
Unser Code ist fiir eine Anzeige mit gemeinsamer Anode gedacht, weshalb er den Wert
wir folgt invertiert (d.h. 0 auf 1 und 1 auf 0 setzt):

isBitSet = | isBitSet; // Diese Zeile bei gemeinsamer Kathode entfernen

7.10 Eine 7-Segment-LED-Anzeige ansteuern | 273

Das ! ist der Negationsoperator — siche Rezept 2.20. Wenn Thre Anzeige eine gemeinsame
Kathode nutzt (d.h., alle Kathoden sind miteinander verbunden; sehen Sie auf dem
Datenblatt nach, wenn Sie sich nicht sicher sind), konnen Sie diese Zeile entfernen.

7.11 Mehrstellige 7-Segment-LED-Anzeigen ansteuern:
Multiplexing

Problem

Sie wollen Zahlen auf einer 7-Segment-Anzeige mit zwei oder mehr Ziffern darstellen.

Losung

Mehrstellige 7-Segment-Anzeigen arbeiten iiblicherweise mit Multiplexing. In fritheren
Rezepten haben wir Zeilen und Spalten von LEDs zur einem Array verschaltet. Hier
werden die entsprechenden Segmente fur alle Ziffern miteinander verbunden (siehe
Abbildung 7-13):

/*

* SevenSegmentMpx Sketch

* Stellt Zahlen zwischen 0 bis 9999 auf einer vierstelligen Anzeige dar

*Das Beispiel gibt den Wert eines Sensors aus, der mit einem Analogeingang verbunden ist
*/

// Die Bits reprasentieren die Segmente A bis G (und den Dezimalpunkt) fiir die Ziffern 0-9
const int numeral[10] = {
//ABCDEFG /dp
Bi1111100, //0
B01100000, // 1
B11011010, // 2
B11110010, // 3
B01100110, // 4
B10110110, // 5
Boo111110, // 6
B11100000, // 7
Bi1111110, // 8
B11100110, //9
1
// Pins fiir Dezimalpunkt und alle Segmente
// dp,G,F,E,D,C,B,A
const int segmentPins[]=1{4,7,8,6,5,3,2,9};
const int nbrDigits=4; // Anzahl der Ziffern der LED-Anzeige

//dig 1 2 3 4
const int digitPins[nbrDigits] = { 10,11,12,13};

274 | Kapitel 7: Visuelle Ausgabe

void setup()

for(int i=0; i< 8; i++)
pinMode(segmentPins[i], OUTPUT); // Segment- und DP-Pins als Ausgang festlegen

for(int i=0; i < nbrDigits; i++)
pinMode(digitPins[i], OUTPUT);

void loop()
{

int value = analogRead(0);
showNumber (value);

}

void showNumber (int number)
{
if(number == 0)
showDigit(0, nbrDigits-1) ; // 0 in der rechten Ziffer ausgeben
else
{
// Wert fur jede Ziffer ausgeben
// Linke Ziffer ist 0, rechte ist 1 kleiner als Anzahl der Stellen
for(int digit = nbrDigits-1; digit >=0; digit--)

if(number > 0)

showDigit(number % 10, digit) ;
number = number / 10;
}
}
}
}

// Angegebene Ziffer in der 7-Segment-Anzeige an der angegebenen Stelle ausgeben
void showDigit(int number, int digit)

digitalWrite(digitPins[digit], HICH);
for(int segment = 1; segment < 8; segment++)

boolean isBitSet = bitRead(numeral[number], segment);

// isBitSet ist "wahr", wenn angegebenes Bit 1 ist

isBitSet = | isBitSet; // Diese Zeile bei gemeinsamer Kathode entfernen
digitalWrite(segmentPins[segment], isBitSet);

}
delay(5);
digitalWrite(digitPins[digit], LOW);

7.11 Mehrstellige 7-Segment-LED-Anzeigen ansteuern: Multiplexing

275

[8]
Digit 2 Digit 3

Digit 1

)
I L]

=l

=]

Dcﬁ-uu
o= —|lco=>=

U
@

5
nalog In 0 4]

©ia
(/o]

Widerstandswerte
im Text

Abbildung 7-13: Anschluss einer mehrstelligen 7-Segment-Anzeige (LTC-2623)

o000
Etv I

Diskussion

Dieser Sketch nutzt eine showDigit-Funktion, die der aus Rezept 7.10 dhnelt. Hier wird
der Funktion neben der Ziffer auch die Position in der Anzeige tibergeben. Die Logik zur
Ansteuerung ist die gleiche, der Code setzt aber zusitzlich den Pin fir die richtige Position
in der Anzeige auf HICH, so dass nur diese Ziffer dargestellt wird (beachten Sie hierzu die
fritheren Erklirungen zum Multiplexing).

7.12 Mehrstellige 7-Segment-LED-Anzeigen mit
MAX7221-Schieberegistern ansteuern

Problem

Sie wollen mehrstellige 7-Segment-Anzeigen ansteuern, aber die Zahl der benétigten Ar-
duino-Pins reduzieren.

Losung

Diese Losung verwendet den beliebten MAX7221 LED-Treiber zur Ansteuerung vierstel-
liger Displays mit gemeinsamer Kathode, wie etwa das Lite-On LTC-4727JR (Digi-Key
160-1551-5-ND). Der MAX7221 bietet eine einfachere Losung als Rezept 7.11, weil er das
gesamte Multiplexing und die Dekodierung der Ziffern in Hardware erledigt.

276 | Kapitel 7: Visuelle Ausgabe

Der Sketch gibt Zahlen zwischen 0 und 9999 aus (Abbildung 7-14 zeigt den Anschluss):

/*
Max7221_digits
*/

#include <SPI.h> // Arduino SPI-Bibliothek. Eingefiihrt mit Arduino Version 0019
const int slaveSelect = 10; // Pin zur Aktivierung des aktiven Slaves

const int numberOfDigits = 4; // An die Anzahl der Ziffern anpassen

const int maxCount =9999;

int number = 0;

void setup()

Serial.begin(9600);
SPI.begin(); //initialize SPI
pinMode(slaveSelect, OUTPUT);
digitalWrite(slaveSelect,LOW); //Slave wdhlen
// 7221 zur Anzeige von 7-Segment-Daten vorbereiten - siehe Datenblatt
sendCommand(12,1); // Normaler Modus (Voreinstellung ist Shutdown-Modus);
sendCommand(15,0); //Display-Test aus
sendCommand(10,8); // Mittlere Helligkeit (Wertebereich zwischen 0-15)
sendCommand (11, numberOfDigits); // 7221 digit scan limit command
sendCommand(9,255); // Dekodierbefehl, verwende Standard-7-Segment-Ziffern
digitalWrite(slaveSelect,HIGH); //Slave deaktivieren

}

void loop()
{

// Ausgabe einer Zahl vom seriellen Port
// Zahl wird mit Zeilenende-Zeichen abgeschlossen
if(Serial.available())

char ch =Serial.read();
if(ch=="\n")
{

displayNumber (number);
number = 0;
}
else
number = (number * 10) + ch - '0"; // Details in Kapitel 4
}
}

//Anzeige von bis zu vier Ziffern in einem 7-Segment-Display
void displayNumber (int number)

for(int i =0; i< numberOfDigits; i++)
{
byte character = number % 10; // Wert der duBersten rechten Ziffer bestimmen
if(number == 08&1 > 0)
character = 0xf; // 7221 16scht die Segmente beim Empfang des Wertes

7.12 Mehrstellige 7-Segment-LED-Anzeigen mit MAX7221-Schieberegistern ansteuern

277

// Ziffer der Zahl als Befehl senden, erste Ziffer ist Befehl 1
sendCommand (numberOfDigits-i, character);
number = number / 10;
}
}

void sendCommand(int command, int value)

digitalWrite(slaveSelect,LOW); //Chip-Select ist bei LOW aktiv
//2-Byte-Datentransfer zum 7221

SPI.transfer(command);

SPI.transfer(value);

digitalWrite(slaveSelect,HIGH); //Chip freigeben, Ubertragungsende signalisieren

i Iy

e ().

(o] (o] (o] (o]
T uF
itte T eI ImIT 2 (68
A 3‘5’3[: [nslne] 2] 4lAs]RolR3]RT ARG 6 713 M0 1E]

T

= =

RGndc T T = +* O << 0 U O W W o — N o< tn o~
Gnd S S h 329 oo o0 o0 9 o000 oD oD D o
D D) VYt - 22222 s 2855884585856 a
v
=5 - o
U §OE‘;
AREF S e a =2
| GNDE o3z < MAX7221
3 S =2 4
20 .
N 5 @
0 "3
0

Abbildung 7-14: Ansteuerung einer mehrstelligen 7-Segment-Anzeige (gemeinsame Kathode) mit
MAX7221

Losung

Dieses Rezept nutzt die Arduino SPI-Kommunikation, um mit dem MAX7221-Chip zu
kommunizieren. Kapitel 13 behandelt SPI im Detail, und Rezept 13.8 erldutert den ver-
wendeten SPI-spezifischen Code.

Der Sketch zeigt die Zahl an, wenn bis zu vier Ziffern tiber den seriellen Port empfangen
wurden — eine Erlduterung des Codes fiir die serielle Schnittstelle in loop finden Sie in
Kapitel 4. Die Funktion displayNumber extrahiert (von rechts nach links) den Wert jeder
Ziffer und sendet sie tiber die sendCommand-Funktion an den MAX7221.

Die Verschaltung nutzt eine vierstellige 7-Segment-Anzeige, aber Sie kénnen ein- oder
zweistellige Anzeigen mit bis zu insgesamt acht Ziffern zusammenschalten. Wenn Sie

278 | Kapitel 7: Visuelle Ausgabe

mehrere Anzeigen kombinieren, miissen die Pins fiir die jeweiligen Segmente miteinander

verbunden sein. (Rezept 13.8 zeigt den Anschluss einer gingigen zweistelligen Anzeige.)
N

Die MAX72xx-Chips sind fiir Anzeigen mit gemeinsamer Kathode kon-

zipiert. Die Anode jedes Segments ist an einem separaten Pin verfiigbar

und die Kathoden aller Segmente jeder Ziffer sind miteinander verbunden.

7.13 Eine LED-Matrix mit MAX72xx-Schieberegistern
ansteuern

Problem

Sie miissen eine 8x8-LED-Matrix ansteuern und wollen die Anzahl der dazu benotigten
Arduino-Pins minimieren.

Losung

Wie in Rezept 7.12 kann man ein Schieberegister auch nutzen, um die Anzahl der Pins zu
reduzieren, die zur Ansteuerung einer LED-Matrix benotigt werden. Diese Losung nutzt
die beliebten LED-Treiber MAX7219 oder MAX7221. Schlieflen Sie den Arduino, die
Matrix und den MAX72xx wie in Abbildung 7-15 an.

ittt ItIEIEIEIE]
EItIEIEIEIEIEIES
=t IEIEIEIETEIED
et ItItIEIEIEIED
SEICIEIEIEIEIEIED
SEJEIEIEIEIEIEIE]
RI =EJEJEIEIEIEIEIE]
EJEIEIEIEIRIESE]
RestT T 3N |_I 2421 1s|1|5_| L‘I'IUI'"llo'
A TE [A1[1p9Nps) 2y e ol 3]s A2 AT e T 100l s s
g e EE%2Cs333553525355z5z2z2z2
U 7Q 5
| Je| 5.3 MAX7219/ MAX7221
| = fee
0
1S |

Abbildung 7-15: Ansteuerung einer 8x8-LED-Matrix mit einem MAX72xx

7.13 Eine LED-Matrix mit MAX72xx-Schieberegistern ansteuern | 279

Der Sketch basiert auf der Arduino-Bibliothek hello_matrix von Nicholas Zambetti. Die
Pin-Nummern wurden so angepasst, dass sie mit der an anderen Stellen dieses Kapitels
genutzten Verschaltung tibereinstimmen. Sie nutzt die Sprite- und Matrix-Bibliotheken,
die mit Arduino-Releases vor 1.0 ausgeliefert wurden. Wenn Sie Arduino 1.0 verwenden
und diese Bibliotheken im Arduino Playground nicht finden, kénnen Sie die Bibliotheken
aus der Release 0022 nutzen http://arduino.cc/en/Main/Software.

#include <Sprite.h>
#include <Matrix.h>

// HelloMatrix
// von Nicholas Zambetti <http://www.zambetti.com>

// Demonstriert die Verwendung der Matrix-Bibliothek
// fur MAX7219 LED-Matrix-Controller
// Zeichnet ein Gesicht auf der Matrix

const int loadPin =2;
const int clockPin = 3;
const int dataPin =4;

Matrix myMatrix = Matrix(dataPin, clockPin, loadPin); // create a new Matrix
void setup()

}

void loop()
myMatrix.clear(); // clear display
delay(1000);

// turn some pixels on

myMatrix.write(1, 5, HIGH);
myMatrix.write(2, 2, HIGH);
myMatrix.write(2, 6, HIGH);
myMatrix.write(3, 6, HIGH);
myMatrix.write(4, 6, HIGH);
myMatrix.write(5, 2, HIGH);
myMatrix.write(s, 6, HIGH);
myMatrix.write(6, 5, HIGH);

delay(1000);

Diskussion

Sie erzeugen eine Matrix, indem Sie die Pin-Nummern fiir die Daten-, Lade- und Clock-
Pins iibergeben. loop verwendet die Methode write, um die Pixel einzuschalten. Die
clear-Methode schaltet die Pixel aus. write verwendet drei Parameter: Die ersten beiden
bestimmen die Spalte und Zeile (x und y) der LED, und der dritte (HIGH oder LOW) schaltet
die LED ein oder aus.

280 | Kapitel 7: Visuelle Ausgabe

Die hier verwendeten Pin-Nummern steuern die griinen LEDs der zweifarbigen 8x8-Ma-
trix an, die es von folgenden Anbietern gibt:

SparkFun COM-00681
NKC Electronics COM-0006

Der Widerstand (mit der Bezeichnung R1 in Abbildung 7-15) wird verwendet, um den
Maximalstrom zu kontrollieren, der die LED antreibt. Das MAX72xx-Datenblatt enthilt
eine Tabelle, die eine Reithe von Werten auffithrt (siehe Tabelle 7-3).

Tabelle 7-3: Tabelle mit Widerstandswerten (aus MAX72xx-Datenblatt)
LED-Fluss-Spannung

Strom 1.5V 2.0V 2.5V 3.0V 3.5V

40 mA 12 kQ 12 kQ 11 kQ 10 k€2 10 k€2
30 mA 18 kQ 17 kQ 16 kQ 15 kQ 14 kQ
20 mA 30 k2 28 kQ 26 kQ2 24 kQ 22 kQ
10 mA 68 kQ2 64 kQ2 60 kQ2 56 kQ2 51kQ

Die griine LED in der LED-Matrix aus Abbildung 7-15 hat eine Fluss-Spannung von 2,0
Volt und einen Durchlass-Strom von 20 mA. Tabelle 7-3 gibt 28K Ohm an, doch als kleine
zusitzliche Sicherheit ist ein Widerstand von 30K oder 33K eine gute Wahl. Die Kon-
densatoren (0.1 pf und 10 pf) (DL) 0.1 uf werden bendétigt, um Spannungsspitzen zu
vermeiden, die beim Ein- und Ausschalten der LEDs auftreten — sehen Sie sich Rezept 17.2
in Anhang C an, wenn Sie mit dem Anschluss von Entstérkondensatoren nicht vertraut
sind.

Siehe auch

Dokumentation der Matrix-Bibliothek: http://wiring.org.co/reference/libraries/Matrix/index
.html

Dokumentation der Sprite-Bibliothek: http://wiring.org.co/reference/libraries/Sprite/index
html

MAX72xx-Datenblatt: http://pdfserv.maxim-ic.com/en/dssMAX7219-MAX7221.pdf

7.14 Die Anzahl analoger Ausgange mit
PWM-Extender-Chips (TL(5940) erhohen

Problem

Sie wollen individuell die Helligkeit von mehr LEDs regeln, als vom Arduino unterstiitzt
werden (6 bei einem Standard-Board und 12 beim Mega).

7.14 Die Anzahl analoger Ausgénge mit PWM-Extender-Chips (TLC5940) erhdhen | 281

Losung

Der TLC5940-Chip steuert bis zu 16 LEDs iiber nur 5 Datenpins an. Abbildung 7-16 zeigt
den Anschluss. Der Sketch basiert auf der exzellenten Tlc5940-Bibliothek von Alex Leone
(acleone@gmail.com). Sie konnen die Bibliothek von http://code.google.com/p/tlc5940ar-
duino/ herunterladen:

/*

*TLC Sketch

* Erzeugt einen "Knight Rider"-Effekt mit LEDs an allen TLC-Ausgdngen
*Diese Version setzt einen TLC mit 16 LEDs voraus

*/

#include "T1c5940.h"
void setup()
{

Tlc.init(); // TLC-Bibliothek initialisieren
}

void loop()
{
int direction =1;
int intensity = 4095; // Die mdgliche Helligkeit liegt zwischen 0 und 4095, volle Helligkeit bei
4095
int dim=intensity / 4; // 1/4 des Werts dimmt die LED
for (int channel = 0; channel < 16; channel += direction) {
// Die folgenden TLC-Befehle legen Werte fest, die von der update-Methode geschrieben werden
Tlc.clear(); // Alle LEDs ausschalten
if (channel ==0) {
direction=1;
}
else {
Tlc.set(channel - 1, dim); //Helligkeit der vorigen LED

Tlc.set(channel, intensity); // Max. Helligkeit dieser LED
if (channel < 16){
Tlc.set(channel + 1, dim); // Nachste LED dimmen

}
else{
direction=-1;

}

Tlc.update(); // Diese Methode sendet Daten an den TLC-Chip, um die LEDs anzusteuern
delay(75);

Diskussion

Der Sketch geht jeden Kanal (jede LED) durch. Er dimmt die vorherige LED, setzt den
aktuellen Kanal auf die volle Helligkeit und dimmt den nichsten Kanal. Die LEDs werden
tiber einige wenige Kern-Methoden angesteuert.

282 | Kapitel 7: Visuelle Ausgabe

Die Methode Tlc.init initialisiert die Tlc-Funktionen, bevor alle anderen Funktionen
aufgerufen werden kénnen.

°
oO=—co>m>

AW Ao~

000 Vo000

Abbildung 7-16: Sechzehn LEDs mit externem PWM ansteuern

Die folgenden Funktionen greifen nur nach dem Aufruf der update()-Methode:

Tlc.clear
Schaltet alle Kaniile aus.

Tlc.set
Setzt die Helligkeit des angegebenen Kanals auf den angegebenen Wert.

Tlc.setAll
Setzt alle Kanile auf den angegebenen Wert.

Tlc.update
Sendet die Anderungen der vorangegangenen Befehle an den TLC-Chip.

Weitere Funktionen stehen in der Bibliothek zur Verfugung. Beachten Sie den Link auf die
Referenz am Ende des Rezepts.

Der 2K-Widerstand zwischen TLC-Pin 20 (Iref) und Masse lisst etwa 20 mA durch jede
LED flieRen. Sie konnen den Widerstandswert fiir andere Strome (in Milliampere) mit der
Formel R = 40.000 / mA berechnen. R ist 1 Ohm, und die Berechnung ist nicht von der
Steuerspannung der LED abhingig.

Sollen die LEDs ausgehen, wenn der Arduino zuriickgesetz wird, verbinden Sie einen
Pullup-Widerstand (10K) mit +5V und BLANK (Pin 23 des TLC und Arduino-Pin 10).

7.14 Die Anzahl analoger Ausgénge mit PWM-Extender-Chips (TLC5940) erhéhen | 283

Hier eine Variante, die einen Sensorwert nutzt, um die maximale LED-Helligkeit festzu-
legen. Sie kénnen das mit einem variablen Widerstand testen, der wie in Abbildung 7-13
oder Abbildung 7-17 angeschlossen ist:

#include "Tlc5940.h"

const int sensorPin =0; // Mit Analogeingang 0 verbundener Sensor
void setup()

{

Tlc.init(); // TLC-Bibliothek initialisieren
}

void loop()

int direction =1;
int sensorValue = analogRead(0); // Sensorwert einlesen
int intensity = map(sensorValue, 0,1023, 0, 4095); // Auf TLC-Wertebereich abbilden
int dim = intensity / 4; // 1/4 des Werts dimmt die LED
for (int channel = 0; channel < NUM_TLCS * 16; channel += direction) {
// Die folgenden TLC-Befehle legen Werte fest, die von der update-Methode geschrieben werden
Tlc.clear(); // Alle LEDs ausschalten
if (channel == 0) {
direction=1;
}
else {
Tlc.set(channel - 1, dim); //Helligkeit der vorigen LED
}
Tlc.set(channel, intensity); // Max. Helligkeit dieser LED
if (channel !=NUM TLCS * 16 - 1) {
Tlc.set(channel + 1, dim); // Nachste LED dimmen

}
else{
direction=-1;
}
Tlc.update(); // Diese Methode sendet die Daten an den TLC-Chip, umdie LEDs anzusteuern
delay(75);
}
}

Diese Version erlaubt auch mehrere TLC-Chips, wenn Sie mehr als 16 LEDs ansteuern
wollen. Dazu werden die TLC-Chips miteinander »verkettet« (»daisy-chaining«), d.h.,
man verbindet Sout (Pin 17) des ersten TLC mit Sin (Pin 26) des nichsten. Sin (Pin 26) des
ersten TLC-Chips wird mit Arduino-Pin 11 verbunden (siehe Abbildung 7-16).

Die folgenden Pins miissen miteinander verbunden werden, wenn man mehrere TLC-
Chips verkettet:

* Arduino-Pin 9 mit XLAT (Pin 24) jedes TLCs
* Arduino-Pin 10 mit BLANK (Pin 23) jedes TLCs
* Arduino-Pin 13 mit SCLK (Pin 25) jedes TLCs

Jeder TLC benotigt einen eigenen Widerstand zwischen Iref (Pin 20) und Masse.

284 | Kapitel 7: Visuelle Ausgabe

Sie miissen den Wert der Konstanten NUM_TLCS in der Tlc5940-Bibliothek an die Anzahl
der von Thnen genutzten Chips anpassen.

Siehe auch

Unter hitp://code.google.com/p/tlc5940arduino/ kénnen Sie diese Bibliothek herunter-
laden. Dort finden Sie auch die Dokumentation.

7.15 Ein analoges Anzeigeinstrument nutzen

Problem

Sie wollen den Zeiger einer Analoganzeige aus dem Sketch heraus steuern. Schwankende
Messwerte lassen sich auf einer Analoganzeige leichter Interpretieren und verleihen Threm
Projekt einen coolen Retro-Look.

Losung

Verbinden Sie die Anzeige tiber einen Vorwiderstand (5K-Ohm sind fiir ein 1 mA-Meter
tiblich) mit einem analogen (PWM) Ausgang (siehe Abbildung 7-17).

VWA
Vorwiderstand
Siehe Text
QOOOOND CO000000 peheten
=577 DAL =F=
Arduino N N

o
S

YR

> 10K Pot

2

Abbildung 7-17: Eine analoge Anzeige ansteuern

7.15 Ein analoges Anzeigeinstrument nutzen | 285

Die Bewegung der Anzeige entspricht der Position eines Potentiometers (variablen Wider-
stands):

/*

* AnalogMeter Sketch

* Steuert eine Analoganzeige Uber einen Arduino-PWM-Pin

* Der Pegel der Anzeige wird dabei durch den variablen Widerstand am Analogeingang bestimmt

*/

const int analogInPin = 0; // Analoger Eingang fiir Poti
const int analogMeterPin = 9; // Analoger Ausgang fiir Anzeige

int sensorValue = 0; // Vom Poti eingelesener Wert
int outputValue = 0; // PWM-Ausgabewert

void setup()

// Hier ist nichts zu tun

}
void loop()
{
sensorValue = analogRead(analogInPin); // Analogwert einlesen
outputValue = map(sensorValue, 0, 1023, 0, 255); // Fir analoge Ausgabe skalieren
analoghrite(analogMeterPin, outputValue); // Wert an analogen Ausgang schreiben
Diskussion

Bei dieser Variante von Rezept 7.2 steuert der Arduino mit analoghrite eine Analog-
anzeige. Solche Anzeigen sind iiblicherweise viel empfindlicher als LEDs . Ein Widerstand
muss zwischen den Arduino-Ausgang und die Anzeige geschaltet werden, um den Strom
entsprechend zu begrenzen.

Der Wert des Vorwiderstands hingt von der Empfindlichkeit der Anzeige ab. 5K-Ohm
sorgen bei einer 1 mA-Anzeige fiir einen Vollausschlag. Sie kénnen einen 4,7K-Wider-
stand verwenden, da sie leichter zu beschaffen sind als 5K, allerdings miissen Sie dann den
Maximalwert fiir analoghrite auf etwa 240 beschrinken. Nachfolgend sehen Sie, wie Sie
den Wertebereich der map-Funktion anpassen miissen, wenn Sie einen 4,7K-Widerstand
far eine 1 mA-Anzeige verwenden:

outputValue = map(sensorValue, 0, 1023, 0, 240); // Auf Anzeigebereich abbilden

Arbeitet Thre Anzeige nicht mit 1 mA, miissen Sie einen anderen Vorwiderstand ver-
wenden. Die Formel fiir den Widerstand in Ohm lautet

Widerstand = 5000 / mA

Bei einer 500 Mikroampere-Anzeige (0,5 mA) ist das also 5000 / 0,5, d.h. 10000 (10 K)
Ohm. Eine 10 mA-Anzeige benétigt 500 Ohm, bei 20 mA 250 Ohm.

286 | Kapitel 7: Visuelle Ausgabe

Bei einigen Anzeigen sind bereits interne Vorwiderstinde integriert — Sie miissen mogli-
cherweise experimentieren, um den korrekten Wert des Vorwiderstands zu ermitteln,
achten Sie aber darauf, die Anzeige nicht mit zu viel Strom zu versorgen.

Siehe auch
Rezept 7.2

7.15 Ein analoges Anzeigeinstrument nutzen | 287

KAPITEL 8
Physische Ausgabe

8.0 Einfiihrung

Sie konnen Dinge bewegen, indem Sie Motoren mit dem Arduino steuern. Verschiedene
Arten von Motoren sind fiir unterschiedliche Anwendungen geeignet, und dieses Kapitel
zeigt Thnen, wie der Arduino die unterschiedlichen Motoren ansteuern kann.

Bewegungssteuerung mit Servomotoren

Servomotoren ermoglichen die exakte Steuerung physischer Bewegungen, da sie sich
nicht kontinuierlich drehen, sondern sich zu einer bestimmten Position bewegen. Sie
sind ideal, wenn sich etwas in einem Bereich von 0 bis 180 Grad bewegen soll. Servos
lassen sich einfach anschliefen und steuern, da die Motorsteuerung in die Servos in-
tegriert ist.

Servos enthalten einen kleinen Motor, der iiber Zahnrider mit der Ausgangswelle ver-
bunden ist. Die Ausgangswelle steuert einen Servoarm an und ist auferdem mit einem
Potentiometer verbunden, der Positionsdaten an den internen Steuerungskreis zuriick-
liefert (siche Abbildung 8-1).

Sie kénnen auch 360°-Servos kaufen, bei denen das Positions-Feedback abgeschaltet ist.
Diese Servos konnen kontinuierlich im oder gegen den Uhrzeigersinn laufen, und Sie
haben eine gewisse Kontrolle tiber die Drehgeschwindigkeit. Sie dhneln in der Funktion
den Biirstenmotoren, die in Rezept 8.9 behandelt werden, nutzen aber die Servo-Biblio-
thek anstelle von analoghirite und benétigen kein Motor-Shield.

Dauerrotierende Servos lassen sich einfach nutzen, da sie kein Motor-Shield benétigen —
die Motorsteuerung sitzt in den Servos. Die Nachteile sind, dass die Auswahlmoglich-
keiten im Bezug auf Geschwindigkeit und Leistung im Vergleich zu externen Motoren
beschrinkt sind und dass die Geschwindigkeitssteuerung nicht so gut ist wie bei einem
Motor-Shield (die Elektronik ist auf eine genaue Positionierung ausgelegt, nicht auf eine
lineare Geschwindigkeitsregelung). In Rezept 8.3 erfahren Sie mehr zum Einsatz dauer-
rotierender Servos.

| 289

Untersetzungsgetriebe

/W\ —— Welle

X |
M T T T1 \ﬂ\ mmmmin R

Motor Impuls-in- um. .
Spannung /Sirr?umo
.. +V
H-Briicke
Masse

Abbildung 8-1: Bestandteile eines Servomotors

Servos reagieren auf Anderungen der Impulsdauer. Ein kurzer Impuls von einer 1 ms oder
weniger lasst den Servo zu einem Extrem rotieren, eine Impulsdauer von um die 2 ms zum
anderen Extrem (siche Abbildung 8-2). Impulse zwischen diesen beiden Extremen bewegen
den Servo zu einer Position proportional zur Impulsbreite. Es gibt keinen Standard fur die
Beziehung zwischen Impuls und Position, d.h., Sie miissen moglicherweise ein wenig mit
den Befehlen im Sketch experimentieren, um den Bereich Threr Servos anzupassen.

Tms 1.5ms 2ms

— =

Typischerweise
20 ms zwischen
den Impulsen

0Grad 90 Grad 180 Grad
Fﬁ:ﬁiﬁ:ﬁ] i::ii::q
® ® ®
O O O

Abbildung 8-2: Beziehung zwischen Impulsbreite und Servo-Winkel; der Servo-Arm bewegt sich zwi-
schen 1 ms und 2 ms proportional zur Impulsbreite

290 | Kapitel 8: Physische Ausgabe

Zwar ist die Dauer des Impulses moduliert, doch Servos benotigen andere
Impulse, als sie die Pulsweitenmodulation (PWM) von analoghrite liefert.
Sie konnen den Servo beschidigen, wenn Sie ihn mit einem analogWrite-
Ausgang verbinden. Arbeiten Sie stattdessen mit der Servo-Bibliothek.

Hubmagnete und Relais

Wiihrend die meisten Motoren eine Drehbewegung erzeugen, sorgt ein Hubmagnet fiir
eine lineare Bewegung. Ein Hubmagnet besteht aus einem Metallkern, der durch ein
Magnetfeld bewegt wird, wenn Strom durch eine Spule flief3t. Ein mechanisches Relais ist
eine Art Hubmagnet, der elektrische Kontakte schlief$t oder trennt (d.h. ein Hubmagnet,
der einen Schalter steuert). Relais werden wie Hubmagnete gesteuert. Relais und Hub-
magnete benotigen (wie die meisten Motoren) mehr Strom, als ein Arduino-Pin liefern
kann. Die Rezepte zeigen, wie man einen Transistor oder eine externe Schaltung nutzt,
um diese Gerite anzusteuern.

Biirsten- und biirstenlose Motoren

Die meisten billigen Gleichstrommotoren sind einfache Einheiten mit zwei Anschliissen, die
mit Biirsten (Kontakten) verbunden sind, die das Magnetfeld der Spulen steuern, die einen
Magnetkern (Anker) antreiben. Die Drehrichtung kann man umkehren, indem man die
Polaritdt an den Kontakten vertauscht. Gleichstrommotoren gibt es in vielen verschiedenen
Groflen, doch selbst die kleinsten (wie die in Mobiltelefonen verwendeten Vibrationsmo-
toren) benétigen einen Transistor oder eine andere externe Steuereinheit, um den benotig-
ten Strom bereitzustellen. Die folgenden Rezepte zeigen, wie man Motoren iiber einen
Transistor oder eine externe Steuerungsschaltung (eine sog. H-Briicke) ansteuert.

Das wesentliche Merkmal bei der Wahl eines Motors ist das Drehmoment. Das Drehmo-
ment gibt an, wie viel Arbeit ein Motor leisten kann. Ublicherweise sind Motoren mit
hoherem Drehmoment grofler und schwerer und ziehen mehr Strom als Motoren mit
kleinerem Drehmoment.

Burstenlose Motoren sind bei gleicher Grofe tiblicherweise leistungsfihiger und effektiver
als Burstenmotoren, bendtigen aber eine aufwendigere Steuerungselektronik. Wo der
Leistungsvorteil biirstenloser Motoren wiinschenswert ist, kénnen elektronische Ge-
schwindigkeitsregelungen aus dem Fernsteuerungsbereich sehr einfach vom Arduino
angesteuert werden, da man sie ansteuert wie Servomotoren.

Schrittmotoren

Schrittmotoren bewegen sich bei Steuerimpulsen um einen gewissen Winkel. Die Grofle
des Winkels bei jedem Schritt ist motorabhingig und reicht von ein oder zwei Grad pro
Schritt bis zu 30 Grad und mehr.

8.0 Einfiihrung | 291

Ublicherweise werden zwei Arten von Schrittmotoren mit dem Arduino genutzt: bipolar
(iblicherweise vier Anschliisse an zwei Spulen) und unipolar (fiinf oder sechs Anschliisse
an zwei Spulen). Die zusitzlichen Anschliisse eines unipolaren Schrittmotors sind intern
mit der Mitte der Spule verbunden (bei fiinf Anschliissen besitzt jede Spule einen An-
schluss in der Mitte, die beide miteinander verbunden sind). Die bipolare und unipolare
Schrittmotoren behandelnden Rezepte beinhalten entsprechende Anschlussdiagramme.

Fehlersuche

Die hiufigste Ursache fiir Probleme beim Anschluss von Bauelementen, die eine externe
Stromversorgung bendtigen, sind fehlende Masseanschliisse. Die Masse des Arduino
muss mit der Masse der externen Stromversorgung sowie mit allen externen Bauelemen-
ten verbunden sein.

8.1 Die Position eines Servos kontrollieren

Problem

Sie wollen einen Servo auf einen Winkel einstellen, der im Sketch berechnet wurde. Bei-
spielsweise soll sich der Sensor eines Roboters vor und zuriick oder zu einer von Thnen
gewihlten Position bewegen.

Losung

Nutzen Sie die mit dem Arduino mitgelieferte Servo-Bibliothek. Schliefen Sie die Strom-
und Masseleitung des Servos an eine geeignete Stromquelle an (ein einzelner Servo kann
normalereise Uiber die 5V-Leitung des Arduino versorgt werden). Neue Versionen der
Bibliothek erlauben es Thnen, die Signalleitungen des Servos an jeden Digitalpin des Ar-
duino anzuschlieflen.

Hier der Sweep-Sketch, der mit dem Arduino mitgeliefert wird. In Abbildung 8-3 sehen
Sie die Verschaltung:

#include <Servo.h>
Servo myservo; // Servo-Objekt zur Steuerung des Servos erzeugen
int angle=0; //DieseVariable enthdlt die Position des Servos
void setup()
myservo.attach(9); // Verbindet den Servo anPin 9 mit dem Servo-Objekt
}
void loop()

for(angle = 0; angle < 180; angle += 1) // In ler-Schritten
// von 0 bis 180 Grad

292 | Kapitel 8: Physische Ausgabe

myservo.write(angle); // Servoanweisen, die Position in der Variablen 'angle' einzunehmen
delay(20); // Iwischen den Servo-Befehlen 20ms warten

for(angle = 180; angle >=1; angle -=1) // Von 180 bis 0 Grad

{
myservo.write(angle); // Servo in Gegenrichtung bewegen
delay(20); // Zwischen den Servo-Befehlen 20ms warten
}
}
/ Signal (weiss)
Servo-
Eggggggg EEEQQEEE | Anschluss ~+5V (rot)
=2 DIGITAL s Masse/
(schwarz)
Arduino o o
- B oec ANALG
Q Q EREEEE on e
DD[FDE]D 000000 e
Servo

Abbildung 8-3: Anschluss eines Servos zum Testen mit dem Sweep Beispiel-Sketch

Diskussion

Dieses Beispiel bewegt den Servo zwischen 0 und 180 Grad hin und her. Moglicherweise
miissen Sie die Minimal- und Maximalpositionen anpassen, um den gewiinschten Bewe-
gungsbereich einzustellen. Der Aufruf von Servo.attach mit optionalen Argumenten fiir
die Minimal- und Maximalposition passen die Bewegung an:

myservo.attach(9,1000,2000); //Pin9, min ist 1000us, max ist 2000us

Da typische Servos auf Impulse reagieren, die in Mikrosekunden gemessen werden (und
nicht in Grad), teilen die auf die Pin-Nummer folgenden Argumente der Servo-Bibliothek
mit, wie viele Mikrosekunden fiir 0 bzw. 180 Grad benétigt werden. Nicht alle Servos
bewegen sich iiber die gesamten 180 Grad, weshalb Sie mit Thren Servos moglicherweise
ein wenig experimentieren miissen, um den gewiinschten Bereich zu abzudecken.

Die Parameter fur servo.attach(pin, min, max) sind wie folgt:

pin
Die Nummer des Pins, an den der Servo angeschlossen ist (Sie koénnen einen
beliebigen Digitalpin wihlen)

8.1 Die Position eines Servos kontrollieren | 293

min (optional)
Die Impulsbreite in Mikrosekunden fiir den Minimalwinkel (0 Grad) des Servos (vor-
eingestellt ist 544)

max (optional)
Die Impulsbreite in Mikrosekunde fiir den Maximalwinkel (180 Grad) des Servos
(voreingestellt ist 2400)

W8
. Die Servo-Bibliothek unterstiitzt bei den meisten Arduino-Boards bis zu 12
ﬁ:‘ Servos und beim Arduino Mega sogar bis zu 48. Bei Standard-Boards wie

dem Uno deaktiviert die Bibliothek die analogWrite()-Funktionalitit
(PWM) an den Pins 9 und 10, und zwar unabhingig davon, ob ein Servo
angeschlossen ist oder nicht. Weitere Informationen finden Sie in der
Referenz zur Servo-Bibliothek: http://arduino.cc/en/Reference/Servo.

Die Energiebedarf hingt vom Servo ab und davon, wie viel Drehmoment benétigt wird,
um die Welle zu drehen.

W8
- Sie benotigen eventuell eine externe Stromquelle von 5 oder 6 Volt, wenn
Sie mehrere Servos anschlieRen wollen. Vier AA-Zellen funktionieren gut,
wenn Sie mit Batterien arbeiten wollen. Denken Sie daran, dass die Masse
der externen Stromversorgung mit der Masse des Arduino verbunden sein
muss.

8.2 Ein oder zwei Servos mit einem Potentiometer oder
Sensor steuern

Problem

Sie wollen die Drehrichtung und die Geschwindigkeit von ein oder zwei Servos mit einem
Potentiometer steuern. Beispielsweise konnten Sie eine mit den Servos verbundene Ka-
mera oder einen Sensor schwenken und neigen. Das Rezept kann mit einer variablen
Spannung von einem Sensor arbeiten, der {iber einen analogen Eingang eingelesen wurde.

Losung

Sie konnen die gleiche Bibliothek wie in Rezept 8.1 verwenden und um Code erginzen,
der die Spannung vom Potentiometer einliest. Dieser Wert wird so skaliert, dass die
Position des Potentiometers (0 bis 1023) auf einen Winkel von 0 bis 180 Grad abgebildet

wird. Der einzige Unterschied in der Verschaltung ist der zusitzliche Potentiometer; siehe
Abbildung 8-4:

#include <Servo.h>
Servo myservo; // Servo-Objekt zur Steuerung des Servos erzeugen

int potpin =0; // Analogpin des Potentiometers

294 | Kapitel 8: Physische Ausgabe

intval; //Variable flr den Wert des Analogpins
void setup()

myservo.attach(9); // ServoanPin 9mit dem Servo-Objekt verbinden

void loop()
{

val = analogRead(potpin); // Wert des Potentiometers einlesen
val =map(val, 0, 1023, 0, 180); // Wert fir Servo skalieren
myservo.write(val); // Position setzen
delay(15); // Auf Servo warten
/ Signal (weiss)
00000000 0Oo0aaaaa — Sevo
HODNESO® ~onTmN—S Anschluss —-+5V (rot)
oc o«
= DIGITAL = Masse/
(schwarz)

Arduino o0 5

eXe)

A TT
Q Q ERREEE o merin

O0gow0 Qo000 5
Servo

d ok

S Pot

Abbildung 8-4: Servo mit Potentiometer steuern

W8
S0 Hobby-Servos besitzen ein Kabel mit einem weiblichen 3-Pin-Stecker, der
.'s‘ direkt in den »Servo«-Anschluss einiger Shields (wie dem Adafruit Motor
N Shield) eingesteckt werden kann. Der physische Anschluss ist kompatibel
mit den Arduino-Anschliissen, d.h., Sie konnen die gleichen Drahtbriicken
verwenden wie fiir die Arduino-Pins. Denken Sie daran, dass die Farben
der Signalanschliisse nicht standardisiert sind. Manchmal wird Gelb an-
stelle von, Weif§ verwendet. Rot befindet sich immer in der Mitte und der
Masse-Anschluss ist tiblicherweise schwarz oder braun.
Diskussion

Sie konnen alles verwenden, was tiber analogRead (siehe Kapitel 5 und Kapitel 6) einge-
lesen werden kann. So konnen etwa die Gyroskop- und Beschleunigungsmesser-Rezepte

8.2 Ein oder zwei Servos mit einem Potentiometer oder Sensor steuern | 295

aus Kapitel 6 genutzt werden, um den Winkel des Servos tiber die Gierung des Gyroskops
oder den Winkel des Beschleunigungsmessers festzulegen.

WS
! Nicht alle Servos konnen sich iiber den gesamten Wertebereich der Servo-
l.s‘.‘ Bibliothek bewegen. Wenn Thr Servo brummt, weil er vorzeitig ein Ende
b erreicht, sollten Sie den Ausgabebereich der map-Funktion so lange redu-

zieren, bis das Brummen aufhort. Ein Beispiel:

val=map(val,0,1023,10,170); // Die meisten Servos funktionieren in diesem
Bereich

8.3 Die Geschwindigkeit dauerrotierender Servos steuern

Problem

Sie wollen die Drehrichtung und Geschwindigkeit dauerrotierender Servos steuern. Bei-
spielsweise konnten Sie einen Roboter tiber zwei solche Servos antreiben und die
Geschwindigkeit und Richtung tiber Thren Sketch regeln wollen.

Losung

Dauerrotierende Servos sind eine Art Getriebemotor mit Vorwirts/Riickwirts-Geschwin-
digkeitsregelung. Die Steuerung dauerrotierender Servos dhnelt derjenigen normaler Servos.
Der Servo dreht sich in eine Richtung, wihrend der Winkel iiber 90 Grad hinaus erhoht
wird, und in die andere Richtung, wenn er unter 90 Grad sinkt. Wann es vorwirts oder
rickwiirts geht, hingt von der Verschaltung der Servos ab. Abbildung 8-5 zeigt die
Verschaltung zur Steuerung zweier Servos.

/Signal (weiss)
Servo- £_~+5V (rot)
gggggggg Egggrgggg N Anschluss Masse
£5 DIGITAL == (schwarz)
Arduino 5
e vom Arduino o]
o oder externer |
‘ # 5 gsquell %
] OO Zs=22s MR 1
Qopomra_0000aa [Masse +5v 1 @) O
| exteme | S
1Spannungsquelle! €rvos
™ et Bedar) | +5vvom
””””” Arduino

Abbildung 8-5: Steuerung zweier Servos

296 | Kapitel 8: Physische Ausgabe

Servos werden Ublicherweise tiber eine 4,8V bis 6V-Quelle gespeist. GroRere Servos
benotigen moglicherweise mehr Strom, als das Arduino-Board tiber seinen +5V-Pin
liefern kann, und bendétigen eine externe Stromversorgung. Vier 1,2V-Akkus kénnen
genutzt werden, um den Arduino und die Servos anzutreiben. Denken Sie daran, dass
frische Alkali-Batterien eine Spannung iiber 1,5V liefern konnen. Uberpriifen Sie mit
Threm Multimeter, ob die Gesamtspannung die 6 Volt auch nicht tiberschreitet — das
absolute Maximum fiir Arduino-Chips.

Der Sketch lisst die Servos zwischen 90 und 180 Grad hin und her laufen. Wiren die
Servos mit Ridern verbunden, wiirde sich das Fahrzeug immer schneller nach vorne be-
wegen und dann wieder langsamer werden. Da der Code zur Servo-Steuerung in loop
liegt, wiirde sich das wiederholen, bis kein Saft mehr da ist:

#include <Servo.h>

Servo myservoleft; // Servo-Objekt zur Steuerung des ersten Servos
Servo myservoRight; // Servo-Objekt zur Steuerung des zweite Servos

int angle=0; // Variable enthdlt die Position der Servos

void setup()
myservolLeft.attach(9); // Linker ServoanPin9
myservoRight.attach(10); // Rechter Servo an Pin 10

void loop()

{
for(angle = 90; angle < 180; angle += 1) // In Einerschritten von

// 90 bis 180 Grad

// Halt bei 90 Grad

myservolLeft.write(angle); // Servomit Geschwindigkeit in 'angle' drehen
myservoRight.write(180-angle); // Zweiter Servo in Gegenrichtung

delay(20); // 20ms warten zwischen Servo-Befehlen

for(angle = 180; angle >= 90; angle -=1) // Von 180 bis 90 Grad

myservolLeft.write(angle); // Servomit Geschwindigkeit in 'angle' drehen
myservoRight.write(180-angle); // Zweiter Servo in Gegenrichtung
}
}
Diskussion

Sie konnen fiir dauerrotierende und normale Servos dhnlichen Code nutzen, miissen aber
daran denken, dass dauerrotierende Servos nicht unbedingt bei genau 90 Grad aufhéren
zu rotieren. Einige Servos besitzen kleine Potentiometer, mit denen man das justieren
kann. Alternativ konnen Sie ein paar Grad hinzufiigen oder abziehen, um den Servo

8.3 Die Geschwindigkeit dauerrotierender Servos steuern | 297

anzuhalten. Hilt der linke Servo beispielsweise bei 92 Grad an, passen Sie die entspre-
chende Servo-Steuerungszeile im Code wie folgt an:

myservoLeft.write(angle+TRIM); // int TRIM=2; zu beginn des Sketches deklarieren

8.4 Servos iiber Computerbefehle steuern

Problem

Sie wollen Befehle zur Verfiigung stellen, mit denen sich Servos tiber den seriellen Port
steuern lassen. Beispielsweise konnten Sie die Servos tiber ein Programm steuern wollen,
das auf Threm Computer lduft.

Losung

Sie konnen Software nutzen, um die Servos zu steuern. Das hat den Vorteil, dass eine
beliebige Zahl von Servos unterstiitzt werden kann. Allerdings muss der Sketch die
Servo-Position fortlaufend aktualisieren, d.h., die Logik wird komplizierter, wenn sich
die Anzahl der Servos erhoht und viele andere Aufgaben erledigt werden miissen.

Das folgende Rezept steuert vier Servos iiber Befehle an, die tiber den seriellen Port
eingehen. Die Befehle haben die folgende Form:

* 180a schreibt 180 an Servo a
¢ 90b schreibt 90 an Servo b
¢ 0c schreibt 0 an Servo ¢
e 17d schreibt 17 an Servo d
Nachfolgend der Sketch, der vier Servos an den Pins 7 bis 10 ansteuert:

#include <Servo.h> // Servo-Bibliothek

#define SERVOS 4 // Anzahl der Servos
int servoPins[SERVOS] ={7,8,9,10}; // Servos an Pins 7 bis 10

Servo myservo[SERVOS];
void setup()
{
Serial.begin(9600);
for(int i=0; i < SERVOS; i++)
myservo[i].attach(servoPins[i]);

void loop()

serviceSerial();

}

// serviceSerial iiberwacht den seriellen Port und aktualisiert die Position entsprechend der
empfangenen Daten

298 | Kapitel 8: Physische Ausgabe

// Die Servo-Daten werden im folgenden Format erwartet:
//

// "180a" schreibt 180 an Servo a

// "90b schreibt 90 an Servo b

//

void serviceSerial()

{

static int pos = 0;

if (Serial.available()) {
char ch = Serial.read();

if(isbigit(ch)) // Wenn ch eine Ziffer ist:
pos =pos *10+ch - '0"; // Wert akkumulieren

else if(ch>="a' & ch <= "a'+ SERVOS) // Wenn ch ein Buchstabe fiir die Servos ist:
myservo[ch - "a'].write(pos); // Servo positionieren

Diskussion

Der Anschluss der Servos entspricht dem vorigen Rezept. Jeder Servo-Anschluss wird mit
einem Digitalpin verbunden. Alle Servo-Masseanschliisse werden mit der Arduino-Masse
verbunden. Die Servo-Stromanschliisse werden miteinander verbunden. Méglicherweise
miissen Sie eine externe 5V- oder 6V-Spannungsquelle nutzen, wenn die Servos mehr
Strom ziehen, als die Arduino-Stromversorgung liefern kann.

Ein Array namens myservo (siehe Rezept 2.4) wird zur Referenzierung der vier Servos
verwendet. Eine for-Schleife in setup verkniipft jeden Servo im Array mit den im servo-
Pins-Array definierten Pins.

Ist das tiber den seriellen Port empfangene Zeichen eine Ziffer (ein Zeichen grofler oder
gleich 0 und kleiner oder gleich 9), wird deren Wert in der Variablen pos aufsummiert. Ist
das Zeichen der Buchstabe a, wird die Position an den ersten Servo im Array (den Servo an
Pin 7) geschrieben. Die Buchstaben b, ¢ und d steuern die anderen Servos.

Siehe auch

Wie man iiber den seriellen Port empfangene Daten verarbeitet, erliutert Kapitel 4.

8.5 Einen biirstenlosen Motor (per Fahrtregler) steuern

Problem

Sie wollen die Geschwindigkeit eines biirstenlosen Motors regeln.

Losung

Der Sketch verwendet den gleichen Code wie in Rezept 8.2. Bis auf den Fahrtregler und
den Motor ist der Aufbau identisch. Ein elektronischer Fahrtregler ist ein Gerit, mit dem

8.5 Einen biirstenlosen Motor (per Fahrtregler) steuern | 299

biirstenlose Motoren in ferngesteuerten Fahrzeugen kontrolliert werden. Da sie in Massen
gefertigt werden, sind sie eine kosteneffektive Méglichkeit zur Steuerung birstenloser
Motoren. Sie finden eine Auswahl, wenn Sie bei Threm bevorzugten Elektronik-Handler
oder bei Google »Fahrtregler« eingeben.

Biirstenlose Motoren haben drei Spulen, die entsprechend der Dokumentation mit den
Fahrtregler verbunden werden miissen (sieche Abbildung 8-6).

Signal (weiss)
Roter S
ggoorens BORS imas (s o)
e DIGITAL PE | s
verbunden (schwarz)

Arduino)
oo Elektronischer
Fahrtregler Motor-
Spannungs-
‘ q .|- quelle

- Sen_=o_ ANALOG > Masse
OO v CICT RN

[eenerefoee oo mm

10K- < AANA

Poti € @

Abbildung 8-6: Anschluss eines Fahrtreglers

Diskussion

Stellen Sie anhand der Dokumentation sicher, dass Thr Fahrtregler fiir Ihren biirstenlosen
Motor geeignet ist, und iiberpriifen Sie die Verschaltung. Biirstenlose Motoren haben drei
Anschliisse fiir die einzelnen Spulen und zwei Anschliisse fiir die Stromversorgung. Viele
Fahrtregler stellen Strom am mittleren Pin des Servo-Anschlusses bereit. Wenn Sie das
Arduino-Board nicht iiber den Fahrtregler versorgen wollen, missen Sie den Anschluss
abklemmen oder abschneiden.

Wenn Thr Fahrtregler 5V fiir die Servos und andere Einheiten bereitstellt
(man nennt das Battery Eliminator Circuit, kurz BEC), miissen Sie dieses
Kabel abklemmen, wenn Sie den Arduino mit dem Fahrtregler verbinden
(sieche Abbildung 8-6).

300 | Kapitel 8: Physische Ausgabe

8.6 Hubmagnete und Relais steuern

Problem

Sie wollen einen Hubmagneten oder ein Relais aus einem Programm heraus steuern. Hub-
magneten sind Elektromagnete, die elektrische Energie in mechanische Bewegung um-
wandeln. Ein elektromagnetisches Relais ist ein Schalter, der durch einen Hubmagneten
aktiviert wird.

Losung

Die meisten Hubmagnete benétigen mehr Strom, als ein Arduino-Pin liefern kann, wes-
halb ein Transistor verwendet wird, um den Strom zu schalten, der zur Aktivierung des
Hubmagneten benétigt wird. Sie aktivieren den Hubmagneten, indem Sie mit digital-
Write den entsprechenden Pin auf HIGH setzen.

A Diode | =
N4001 g +V
R R £
50 = Hubmagnet-
D ‘318 b Stromver-
U TX%E W sorgung
rRxoO i e ;
I Widerstand N2 Gn
oder
N RESETO TIP102
wQ
v
0 6nd [

wdQ)
vinOQ
TIP102
b . 2N2222
C
e b
C

Abbildung 8-7: Hubmagneten mit einem Transistor ansteuern

Der Sketch schaltet einen Transistor, der wie in Abbildung 8-7 angeschlossen ist. Der
Hubmagnet wird einmal pro Stunde fiir eine Sekunde aktiviert:

int solenoidPin = 2; // Hubmagnet an Pin 2

void setup()

{
pinMode(solenoidPin, OUTPUT);

8.6 Hubmagnete und Relais steuern | 301

void loop()
{

long interval = 1000 * 60 * 60 ; // Interval = 60 Minuten

digitalWrite(solenoidPin, HIGH); // Aktiviert den Hubmagneten

delay(1000); // Wartet eine Sekunde
digitalWrite(solenoidPin, LOW); // Deaktiviert den Hubmagneten
delay(interval); // Wartet eine Stunde

Diskussion

Die Wahl des Transistors hingt von der Strommenge ab, die zur Aktivierung des Hub-
magneten oder Relais benotigt wird. Das Datenblatt kann das in Milliampere (mA)
angeben oder in Form des Widerstands der Spule. Um den vom Hubmagneten oder Re-
lais benotigten Strom zu berechnen, teilen Sie die Spannung an der Spule durch ihren
Widerstand (in Ohm). Ein 12V-Relais mit einem Spulenwiderstand von 185 Ohm be-
notigt 65 mA: 12 (Volt) / 185 (Ohm) = 0,065 Ampere, also 65 mA.

Kleine Transistoren wie der 2N2222 reichen fiir Hubmagnete, die mehrere hundert
Milliampere benotigen. GroRere Hubmagnete benotigen leistungsfihigere Transistoren
wie den TIP102/TTP120. Es gibt eine Vielzahl geeigneter Transistoren. Anhang B zeigt,
wie man Datenblitter liest und Transistoren auswihlt.

Die Aufgabe der Freilaufdiode besteht darin, zu verhindern, dass die Gegen-EMK (elek-
tromagnetische Kraft) der Spule den Transistor beschidigen kann (die Gegen-EMK ist
eine Spannung, die erzeugt wird, wenn der Strom durch eine Spule abgeschaltet wird). Die
Polaritit der Diode ist dabei wichtig. Eine farbige Markierung kennzeichnet die Kathode —
sie muss mit dem Pluspol des Hubmagneten verbunden sein.

Elektromagnetische Relais verhalten sich genau wie Hubmagnete. Ein spezielles Relais,
das sog. Solid-State- (SSR) oder Halbleiterrelais verfiigt tiber eine interne Elektronik, die
ohne Transistor direkt iiber einen Arduino-Pin angesteuert werden kann. Auf dem
Datenblatt zu Threm Relais steht, welche Spannung und welchen Strom es benotigt. Alles
tiber 40 mA bei 5 Volt verlangt eine Schaltung wie in Abbildung 8-7.

8.7 Ein Objekt vibrieren lassen

Problem

Thr Arduino soll etwas vibrieren lassen. Zum Beispiel soll Thr Projekt jede Minute eine
Sekunde lang wackeln.

Losung

SchliefRen Sie einen Vibrationsmotor wie in Abbildung 8-8 an.

302 | Kapitel 8: Physische Ausgabe

Der folgende Sketch schaltet den Vibrationsmotor jede Minute fiir eine Sekunde an:

/*
*Vibrate Sketch

*Vibriert jede Minute fiir eine Sekunde
*

*/
const int motorPin =3; // Transistor fiir Vibrationsmotor an Pin 3

void setup()

{
pinMode(motorPin, OUTPUT);

void loop()
{

digitalWrite(motorPin, HICH); // Vibration einschalten
delay(1000); // Eine Sekunde warten
digitalWrite(motorPin, LOW); //Vibration ausschalten
delay(59000); // 59 Sekunden warten

0000000 0lN0 000 L0 J-(n
£° DIGITAL =k Piode J
Widerstand 14001 .|-
. c
b . &
Arduino s 30 %
oo e Widerstand <
2N2222

—
- Q Q A== ANALOG 2N2222
eMNUOU=S O—cNon <t e

DDD[FDD 000000 b

Abbildung 8-8: Anschluss eines Vibrationsmotors

Diskussion

Das Rezept nutzt einen speziellen Vibrationsmotor wie den SparkFun ROB-08449. Wenn
Sie ein altes Mobiltelefon besitzen, das Sie nicht mehr benétigen, kénnte es kleine geeignete
Vibrationsmotoren enthalten. Vibrationsmotoren benotigen eine hohere Leistung, als ein
Arduino-Pin liefern kann, weshalb ein Transistor genutzt wird, um den Motor ein- und
auszuschalten. Nahezu jeder NPN-Transistor kann verwendet werden. Abbildung 8-3 zeigt
den gingigen 2N2222. Auf der Website zu diesem Buch (http://shop.oreilly.com/product/
0636920022244.do) finden Sie Anbieterinformationen zu diesen und anderen verwendeten
Komponenten. Ein 1K-Widerstand verbindet den Ausgangspin mit der Basis des Tran-

8.7 Ein Objekt vibrieren lassen | 303

sistors. Der Widerstandswert ist unkritisch und kann bis zu 4,7K betragen (er verhindert,
dass zu viel Strom durch den Ausgangspin flieft). Die Diode absorbiert (oder entkoppelt —
man nennt sie manchmal auch Freilaufdiode) die Spannungen, die von den Motorspulen
erzeugt werden, wihrend sich der Motor dreht. Der Kondensator absorbiert die Spannungs-
spitzen, die erzeugt werden, wenn die Biirsten (die Kontakte, die den Strom mit den
Windungen verbinden) 6ffnen und schlieRen. Der 33 Ohm Widerstand wird benétigt, um
den Strom zu beschrinken, der durch den Motor flief3t.

Der Sketch setzt den Ausgangspin fiir eine Sekunde (1000 Millisekunden) auf HICH und
wartet dann 59 Sekunden. Der Transistor schaltet (leitet), wenn der Pin HIGH ist und lisst
Strom durch den Motor flieRen.

Hier eine Variante des Sketches, der einen Sensor nutzt, um den Motor vibrieren zu lassen.
Die Schaltung dhnelt der aus Abbildung 8-8, nur dass hier zusitzlich noch eine Photozelle
an Analogpin 0 angeschlossen ist (siche Rezept 6.2):

/*

*Vibrate Photocell Sketch

*Vibriert, wenn der Photosensor ein Licht erkennt, das heller ist als die Umgebung
*

*/

const int motorPin =3; // Transistor fiir Vibrationsmotor an Pin 3

const int sensorPin =0; // Photozelle an Analogeingang O

int sensorAmbient = 0; // Umgebungslicht (im setup kalibriert)

const int thresholdMargin = 100; // Vibrations-Schwellwert iiber Umgebungslicht

void setup()

pinMode(motorPin, OUTPUT);
sensorAmbient = analogRead(sensorPin); // Zu Beginn Umgebungslicht messen;

}

void loop()
{

int sensorValue = analogRead(sensorPin);
if(sensorValue > sensorAmbient + thresholdMargin)

digitalWrite(motorPin, HICH); //Vibration starten
else

digitalWrite(motorPin, LOW); //Vibrationanhalten
}
}
Hier wird der Ausgangspin eingeschaltet, wenn Licht auf die Photozelle trifft. Beim Start
des Sketches wird das Umgebungslicht am Sensor gemessen und in der Variablen sensor-
Ambient gespeichert. Wird in loop eine Helligkeit gemessen, die tiber diesem Wert plus
einem Schwellwert liegt, wird der Vibrationsmotor eingeschaltet.

304 | Kapitel 8: Physische Ausgabe

8.8 Einen Biirstenmotor iiber einen Transistor ansteuern

Problem

Sie wollen einen Motor ein- und ausschalten. Sie wollen seine Geschwindigkeit kontrol-
lieren. Der Motor muss sich nur in eine Richtung drehen.

Losung
o000 00) DDDD[EDDD 0.1
£5 DIGITAL FE K-, Diode Juf
< H +
Widerstand < 1N4001
d . Motor-
Spannungs-
Arduino - nnun
2N2222 Masse
‘ # oder
TIP102
- Se_z2c. ANALOG
OO & G600
[r TIP102
2N2222
b % G
C

Abbildung 8-9: Anschluss eines Biirstenmotors

Der folgende Sketch schaltet den Motor ein und aus und kontrolliert dessen Geschwindig-
keit iiber Befehle, die vom seriellen Port eingehen (Abbildung 8-9 zeigt die Verschaltung):
/*
* SimpleBrushed Sketch
* Befehle vom seriellen Port steuern die Motorgeschwindigkeit
*Die Ziffern '0' bis '9" sind giiltig. '0' bedeutet aus, '9"' die max. Geschwindigkeit
*/

const int motorPin =3; // Motortreiber an Pin 3
void setup()

Serial.begin(9600);
}

void loop()
{

if (Serial.available()) {
char ch = Serial.read();

if(isDigit(ch)) // Ist ch eine Ziffer?
{

8.8 Einen Biirstenmotor iiber einen Transistor ansteuern | 305

int speed =map(ch, '0", '9', 0, 255);
analogWrite(motorPin, speed);
Serial.println(speed);

else

Serial.print("Unbekanntes Zeichen ");
Serial.println(ch);

}
}
}

Diskussion
Das Rezept dhnelt Rezept 8.7. Der Unterschied besteht darin, dass analoghrite genutzt

wird, um die Geschwindigkeit des Motors zu regeln. In Rezept 7.1 erfahren Sie mehr iiber
analoghirite und die Pulsweitenmodulation (PWM).

8.9 Die Drehrichtung eines Biirstenmotors liber eine
H-Briicke steuern

Problem

Sie wollen die Drehrichtung eines Biirstenmotors steuern. Zum Beispiel kénnten Sie den
Motor iiber Befehle vom seriellen Port in die eine oder in die andere Richtung drehen lassen.

Losung

Eine H-Briicke kann zwei Biirstenmotoren steuern. Abbildung 8-10 zeigt den Anschluss
des Motortreiber-ICs 1.293D. Sie kénnen auch den SN754410 verwenden, der das gleiche
Pin-Layout besitzt:

/*

*Brushed H Bridge simple Sketch

* Befehle vom seriellen Port steuern die Drehrichtung des Motors

*+und - legen die Drehrichtung fest, alle anderen Tasten halten den Motor an

*/

const int in1Pin=5; // H-Briicken-Eingangspins
const int in2Pin =4;

void setup()

Serial.begin(9600);

pinMode(in1Pin, OUTPUT);

pinMode(in2Pin, OUTPUT);

Serial.println("+ - dndern die Drehrichtung, alle anderen Tasten halten den Motor an");

void loop()
{

306 | Kapitel 8: Physische Ausgabe

if (Serial.available()) {
char ch = Serial.read();
if (ch=="4")
{
Serial.println("CW");
digitalWrite(iniPin,LOW);
digitalWrite(in2Pin,HIGH);

}
else if (ch=="-")

Serial.printIn("CCW");
digitalWrite(in1Pin,HIGH);
digitalWrite(in2Pin,LOW);

else

Serial.print("Motor angehalten");
digitalWrite(iniPin,LOW);
digitalWrite(in2Pin,LOW);
}
}
}

RESETD
33

A @
5V
wd@ 6
R i oUT oUz U3 ouT4
+—16- vss VS L84y
D o ENB
L—q- ENA 1293 Motor-
U _ GND H-Briicke Spannungs-
g GND quelle
| e
134 o0 N1 IN2 IN3 N4 Masse
7C - T T T T =
N 'H % 7 10 15
e |
0 e
38
blc
™i1Q
RX0 O3

Abbildung 8-10: Anschluss zweier Biirstenmotoren mit H-Briicke L293D

Diskussion

Tabelle 8-1 zeigt, wie die Werte am H-Briicken-Eingang den Motor steuern. Im obigen
Sketch wird ein einzelner Motor iiber die Pins IN1 und IN2 angesteuert. Der EN-Pin ist
immer HIGH, da er direkt mit +5V verbunden ist.

8.9 Die Drehrichtung eines Biirstenmotors iiber eine H-Briicke steuern | 307

Tabelle 8-1: Logiktabelle fiir H-Briicke

EN IN1 IN2 Funktion?

HIGH LOW HIGH Im Uhrzeigersinn drehen

HIGH HICH LOW Gegen den Uhrzeigersinn drehen
HIGH LOW LOW Motor anhalten

HIGH HIGH HIGH Motor anhalten

LOW Ignoriert Ignoriert Motor anhalten

Abbildung 8-10 zeigt, wie man einen zweiten Motor anschlieRt. Der folgende Sketch
steuert beide Motoren:

/*

*Brushed H Bridge simple2 Sketch

* Befehle vom seriellen Port steuern die Drehrichtung des Motors

*+und - legen die Drehrichtung fest, alle anderen Tasten halten die Motoren an
*/

const int in1Pin =5; // H-Briicken-Eingangspins
const int in2Pin = 4;

const int in3Pin =3; // H-Briicken-Pins fiir zweiten Motor
const int in4Pin =2;

void setup()

Serial.begin(9600);

pinMode(in1Pin, OUTPUT);

pinMode(in2Pin, OUTPUT);

pinMode(in3Pin, OUTPUT);

pinMode(in4Pin, OUTPUT);

Serial.println("+ - dndern die Drehrichtung, alle anderen Tasten halten die Motorenan");

}
void loop()

if (Serial.available()) {
char ch = Serial.read();
if (ch=="4+")
{

Serial.printIn("CW");
// first motor
digitalWrite(in1Pin,LOW);
digitalWrite(in2Pin,HICH);
//second motor
digitalWrite(in3Pin, LOW);
digitalWrite(in4Pin,HIGH);

else if (ch=="-")
Serial.println("CCW");

digitalWrite(iniPin,HIGH);
digitalWrite(in2Pin, LOW);

308 | Kapitel 8: Physische Ausgabe

digitalWrite(in3Pin,HIGH);
digitalWrite(in4Pin,LOW);

else

{

Serial.print("Motoren angehalten");
digitalWrite(in1Pin,LOW);
digitalWrite(in2Pin, LOW);
digitalWrite(in3Pin, LOW);
digitalWrite(in4Pin, LOW);

8.10 Drehrichtung und Geschwindigkeit eines
Biirstenmotors mit einer H-Briicke steuern

Problem

Sie wollen die Drehrichtung und die Geschwindigkeit eines Blirstenmotors steuern. Das
erweitert die Funktionalitdt von Rezept 8.9, indem es neben der Drehrichtung auch die
Geschwindigkeit tiber Befehle steuert, die vom seriellen Port eingehen.

Losung

Verbinden Sie den Biirstenmotor wie in Abbildung 8-11 zu sehen mit den Ausgangspins

der H-Briicke.

RESETQ
A w0
5V
andQ
Gnd
R VinO
—16= VSS
D 4~ GND
——5— GND
—12- GND
U — 13 GND
| T 9l
1= ENA
N 7 A
60
5
O 2
30
20
X 10
Rx 08

+V

Motor-
Spannungs-
quelle

Masse

Abbildung 8-11: Anschluss eines Biirstenmotors. Nutzt analogWrite zur Geschwindigkeitsregelung

8.10 Drehrichtung und Geschwindigkeit eines Biirstenmotors mit einer H-Briicke steuern

Der Sketch verarbeitet Befehle vom seriellen Monitor, um die Geschwindigkeit und die
Drehrichtung des Motors zu steuern. Eine 0 hilt den Motor an und die Ziffern 1 bis 9
steuern die Geschwindigkeit. Mit »+« und »-« wird die Drehrichtung des Motors fest-
gelegt:

/*

* Brushed H Bridge Sketch

* Befehle vom seriellen Port steuern Drehrichtung und Geschwindigkeit des Motors

*Die Ziffer '0' bis '9' regeln die Geschwindigkeit; '0"' steht flir Motor aus und '9" ist die
Maximalgeschwindigkeit

*+und - legen die Drehrichtung fest, alle anderen Tasten halten die Motoren an

const int enPin =5; // H-Briicken Enable-Pin
const int in1Pin=7; // H-Briicken-Eingangspins
const int in2Pin = 4;

void setup()

Serial.begin(9600);

pinMode(in1Pin, OUTPUT);

pinMode(in2Pin, OUTPUT);

Serial.println("Geschwindigkeit (0-9) oder + - fuer Drehrichtung");

}
void loop()

{
if (Serial.available()) {
char ch = Serial.read();
if(isbigit(ch)) // Ist ch eine Ziffer?

int speed =map(ch, '0', '9', 0, 255);
analogWrite(enPin, speed);
Serial.println(speed);

elseif (ch=="+")

{
Serial.printIn("CW");
digitalWrite(iniPin, LOW);
digitalWrite(in2Pin,HIGH);

}
elseif (ch=="-")

Serial.printIn("CCW");
digitalWrite(iniPin,HIGH);
digitalWrite(in2Pin, LOW);

else

Serial.print("Unbekanntes Zeichen");
Serial.println(ch);
}
}
}

310 | Kapitel 8: Physische Ausgabe

Diskussion

Das Rezept dhnelt Rezept 8.9, bei dem die Drehrichtung tiber die Pegel an den Pins IN1
und IN2 gesteuert wird. Zusitzlich wird aber die Geschwindigkeit tiber den analogWrite-
Wert am EN-Pin geregelt (mehr itber PWM erfahren Sie in Kapitel 7). Der Wert 0 hilt den
Motor an. Bei 255 lduft der Motor mit Hochstgeschwindigkeit. Die Geschwindigkeit
verhilt sich proportional zum Wert innerhalb dieses Wertebereichs.

8.11 Richtung und Geschwindigkeit von Biirstenmotoren
uber Sensoren steuern (L293 H-Briicke)

Problem

Sie wollen die Drehrichtung und Geschwindigkeit von Biirstenmotoren iiber das Feed-
back von Sensoren steuern. Zum Beispiel konnten Sie zwei Photozellen nutzen, die die
Geschwindigkeit und Richtung eines Roboters kontrollieren, so dass er einem Lichtstrahl
folgt.

Losung

Die Losung verwendet die gleichen Motor-Anschliisse wie in Abbildung 8-10, nutzt aber
zusitzlich noch zwei lichtempfindliche Widerstinde (siehe Abbildung 8-12).

RESETD |"'| |"'|
330
5V4e3
o —— 1T 6 mTow
o(s] £ Wintl oUTI OUT2 OUT3 oUT4
RY) S 16= VSS Vs +8
20 f——4~ GND +
fo}1 5= GND 1293 ur
02 —12= GND .
L(S oF — 13 GND H-Briicke Motorstrom-
D[S Qs = versorgung
R Analog In 9-| ENB Cnd
—1= ENA IN1 IN2 IN3 IN4
e 1T) 7 10 15 =
6[3
43
33
203
X100
Rx003

Abbildung 8-12: Zwei iiber Sensoren gesteuerte Motoren

8.11 Richtung und Geschwindigkeit von Biirstenmotoren iiber Sensoren steuern (L293 H-Briicke) | 311

Der Sketch tiberwacht die Helligkeit der Sensoren und steuert die Motoren in die Rich-

tung, in der es heller ist:

/*

* Brushed H Bridge Direction Sketch

* Nutzt Photosensoren zur Steuerung der Richtung

* Roboter bewegt sich zum Licht hin

*/

int leftPins[] ={5,7,4}; //EinPin flr PWM, zwei Pins fiir die Richtung
int rightPins[] = {6,3,2};

const int MIN_PWM =64; //Kann zwischen 0 und MAX PWM liegen;
const int MAX_PWM =128; // Kann zwischen ca. 50 und 255 liegen;
const int leftSensorPin = 0; // Analogpins fiir Sensoren

const int rightSensorPin = 1;

int sensorThreshold =0; // Schwellwert fiir Bewegung

void setup()
for(int i=1; i< 3; i++)

pinMode(leftPins[i], OUTPUT);
pinMode(rightPins[i], OUTPUT);

}
void loop()

int leftval = analogRead(leftSensorPin);
int rightVal = analogRead(rightSensorPin);

if(sensorThreshold == 0){ // Wurden die Sensoren kalibriert?
// Wennnicht, leicht Uber dem Durchschnitt liegenden Wert verwenden
sensorThreshold = ((leftval + rightval) / 2) + 100 ;

}
if(leftval > sensorThreshold || rightVal > sensorThreshold)

// Dem Licht folgen
setSpeed(rightPins, map(rightval,0,1023, MIN_PWM, MAX PWM));
setSpeed(leftPins, map(leftval,0,1023, MIN PWM, MAX PWM));

}
}

void setSpeed(int pins[], int speed)
if(speed < 0)
{
digitalWrite(pins[1],HICH);
digitalWrite(pins[2],LOW);
speed = -speed;

else

digitalWrite(pins[1],LOW);

312 | Kapitel 8: Physische Ausgabe

digitalWrite(pins[2],HIGH);

analoghrite(pins[0], speed);
}

Diskussion

Der Sketch regelt die Geschwindigkeit zweier Motoren als Reaktion auf die von zwei
Photozellen gemessene Lichtmenge. Die Photozellen sind so angeordnet, dass die Erho-
hung der Helligkeit auf einer Seite die Geschwindigkeit des Motors auf der anderen Seite
erhoht. Das lisst den Roboter in die Richtung des Lichts fahren. Fillt das Licht gleich-
miflig auf beide Zellen, fihrt der Roboter in einer geraden Linie vorwirts. Ist nicht genug
Licht vorhanden, hilt der Roboter an.

Das Licht wird tiber die Analogeinginge O und 1 per analogRead (siehe Rezept 6.2) ge-
messen. Beim Programmstart wird das Umgebungslicht gemessen und als Schwellwert fur
die minimale Lichtstirke verwendet, die zur Bewegung des Roboters benotigt wird. Dieser
Durchschnittswert wird noch um 100 erhoht, damit sich der Roboter bei kleinen
Anderungen des Umgebungslichts nicht bewegt. Die Lichtstirke wird mit analogRead
gemessen und iiber die map-Funktion in einen PWM-Wert umgewandelt. Legen Sie
MIN PWM auf einen Wert fest, der ausreicht, um den Roboter zu bewegen (zu niedrige
Werte liefern nicht genug Drehmoment; Sie werden es einfach ausprobieren miissen).
Setzen Sie MAX_PWM auf einen Wert (bis zu 255), der die Hochstgeschwindigkeit festlegt, mit
der sich der Roboter bewegen soll.

Motor- @ @
Spannungs-
quelle
RESET O3 Masse +V
333 A
5V
gngg I\
n 1
vin O GNSIMOT AO1 AO2 BO1 BO2
GND
GND Pololu
vee FB6612FNG
STRY H-Briicke
PWMB
PWMA AINT AIN2 BINT BIN2
7C M\ M I
62
53
4[3
33
1C
10
Rx 003

Abbildung 8-13: Anschluss der H-Briicke beim Pololu-Breakout-Board

8.11 Richtung und Geschwindigkeit von Biirstenmotoren iiber Sensoren steuern (L293 H-Briicke) | 313

Die Geschwindigkeit des Motors wird tiber die Funktion setSpeed gesteuert. Zwei Pins
kontrollieren die Richtung eines Motors und ein weiterer Pin die Geschwindigkeit. Die
Pin-Nummern werden in den Arrays leftPins und rightPins vorgehalten. Der erste Pin
jedes Arrays ist der Geschwindigkeitspin, die beiden anderen sind fiir die Richtung ver-
antwortlich.

Eine Alternative zum 1293 ist der Toshiba FB6612FNG. Er kann in allen Rezepten ein-
gesetzt werden, die den 1.293D verwenden. Abbildung 8-13 zeigt die Verschaltung des
FB6612, wie sie beim Pololu-Breakout-Board (SparkFun ROB-09402) verwendet wird.

Sie konnen die Zahl der benotigten Pins reduzieren, indem Sie die Richtungspins tiber
zusitzliche Hardware steuern. Dabei verwenden Sie fuir die Richtung nur jeweils einen Pin
je Motor und einen Transistor oder ein Logik-Gatter, das den Pegel des anderen H-Brii-
cken-Eingangs invertiert. Entsprechende Schaltungen finden Sie im Arduino-Wiki, aber
wenn Sie etwas Fertiges wiinschen, konnen Sie ein H-Briicken-Shield wie das Freeduino
Motor Control Shield (NKC Electronics ARD-0015) oder das Ardumoto von SparkFun
(DEV-09213) verwenden. Diese Shields passen direkt auf den Arduino. Sie miissen nur
noch den Strom und die Spulen anschlief3en.

Der folgende Sketch wurde fiir das Ardumoto-Shield angepasst:

/*

* Brushed H Bridge Direction Sketch fiir Ardumotor-Shield
* Nutzt Photosensoren zur Steuerung der Richtung

* Roboter bewegt sich in Richtung eines Lichts

*/

int leftPins[] ={10,12}; // EinPin fiir PWM, ein Pin fiir die Richtung
int rightPins[] = {11,13};

const int MIN_PWM =64; //Kann zwischen 0 und MAX_PWM liegen;
const int MAX_PWM =128; // Kann zwischen ca. 50 und 255 liegen;
const int leftSensorPin = 0; // Analogpins fiir Sensoren

const int rightSensorPin = 1;

int sensorThreshold =0; // Schwellwert fiir Bewegung
void setup()

pinMode(leftPins[1], OUTPUT);
pinMode(rightPins[1], OUTPUT);

void loop()

int leftval = analogRead(leftSensorPin);

int rightVal = analogRead(rightSensorPin);

if(sensorThreshold == 0){ // Wurden die Sensoren kalibriert?
// Wenn nicht, leicht Uber dem Durchschnitt liegenden Wert verwenden
sensorThreshold = ((leftVal + rightval) / 2) + 100 ;

}

if(leftval > sensorThreshold || rightval > sensorThreshold)
{

314 | Kapitel 8: Physische Ausgabe

// Dem Licht folgen
setSpeed(rightPins, map(rightval,0,1023, MIN_PWM, MAX PWM));
setSpeed(leftPins, map(leftval, 0,1023, MIN_PWM, MAX PWM));
}
}

void setSpeed(int pins[], int speed)
if(speed<0)

digitalWrite(pins[1],HIGH);
speed = -speed;

else

{
digitalWrite(pins[1],LOW);

analoghrite(pins[0], speed);
}
Die loop-Funktion entspricht der aus dem obigen Sketch. setSpeed umfasst weniger Code,
weil die Hardware des Shields es erlaubt, die Richtung des Motors mit einem einzigen Pin
zu steuern.

Die Zuordnung der Pins fiir das Freeduino-Shield ist wie folgt:

int leftPins[] ={10,13}; // PWM, Richtung

int rightPins[] ={9,12}; //PWM, Richtung
Nachfolgend implementieren wir die gleiche Funktionalitit mit dem Adafruit Motor Shield
(http://www.ladyada.net/make/mshield/); sieche Abbildung 8-14. Wir nutzen eine Bibliothek
namens AFMotor, die von der Adafruit-Website heruntergeladen werden kann.

Motor-
Spannungs- + H
quelle Masse

ORESET Adafruit
H33 Motor
4 Hond Shield
nd
OVin

o
AA
vy
Wy

0 @ @
E1
L Q2
D 3
R (34
05

Analog In

Abbildung 8-14: Verwendung des Adafruit Motor Shields

8.11 Richtung und Geschwindigkeit von Biirstenmotoren iiber Sensoren steuern (L293 H-Briicke) | 315

Das Adafruit-Shield unterstiitzt vier Anschliisse fir Motoren. Im folgenden Sketch sind
die Motoren mit den Anschliissen 3 und 4 verbunden:

/*
* Brushed H Bridge Direction Sketch fiir Adafruit Motor Shield
* Nutzt Photosensoren zur Steuerung der Richtung

* Roboter bewegt sich in Richtung eines Lichts
*/

#include "AFMotor.h" // Adafruit Motor Shield-Bibliothek

AF_DCMotor leftMotor(3, MOTOR12 1KHZ); // Motor #3, 1 KHz PWM nutzt Pin 5
AF_DCMotor rightMotor (4, MOTOR12 1KHZ); // Motor #4, 1 KHz PWM nutzt Pin 6

const int MIN_PWM =64; //Kann zwischen 0 und MAX_PWM liegen;
const int MAX_PWM =128; // Kann zwischen ca. 50 und 255 liegen;
const int leftSensorPin =0; // Analogpins fiir Sensoren

const int rightSensorPin = 1;

int sensorThreshold = 0; // Schwellwert fiir Bewegung
void setup()

}

void loop()

int leftVal =analogRead(leftSensorPin);
int rightval = analogRead(rightSensorPin);

if(sensorThreshold == 0){ // Wurden die Sensoren kalibriert?

// Wenn nicht, leicht tber dem Durchschnitt liegenden Wert verwenden
sensorThreshold = ((leftVal + rightval) / 2) + 100 ;

}

if(leftval > sensorThreshold || rightval > sensorThreshold)

{
// Dem Licht folgen

setSpeed(rightMotor, map(rightVal,0,1023, MIN_PWM, MAX PWM));
setSpeed(leftMotor, map(leftVal,0,1023, MIN PWM, MAX PWM));
}
}

void setSpeed(AF _DCMotor 8motor, int speed)
if(speed<0)
{

motor.run(BACKWARD);
speed = -speed;

else

{
motor.run(FORWARD);

}
motor.setSpeed(speed);

}

316 | Kapitel 8: Physische Ausgabe

Wenn Sie keines der obigen Shields nutzen, miissen Sie auf dem Datenblatt nachsehen,
welche Pins fir PWM und Richtung verwendet werden miissen und das im Sketch
entsprechend korrigieren.

Siehe auch
Das Datenblatt zum Pololu-Board: http://www.pololu.com/file/0]86/TB6612FNG.pdf

Die Produktseite des Freeduino-Shields: http://www.nkcelectronics.com/freeduino-arduino-
motor-control-shield-kit.html

Die Produktseite des Ardumoto-Shields: http://www.sparkfun.com/commerce/product_
info.php?products_id=9213

Die Dokumentation und die Bibliothek zum Adafruit Motor Shield finden Sie unter
http:/flwww.ladyada.net/make/mshield/

8.12 Einen bipolaren Schrittmotor ansteuern

Problem

Sie besitzen einen bipolaren (vieradrigen) Schrittmotor und wollen ihn aus einem Pro-
gramm heraus iiber eine H-Briicke steuern.

Losung

Der Sketch steuert den Motor ber serielle Befehle. Ein numerischer Wert gefolgt von
einem + bewegt ihn schrittweise in die eine Richtung, bei einem - in die andere. Beispiels-
weise vollzieht ein 24-Schritt-Motor mit »24+« eine vollstindige Umdrehung in einer
Richtung und mit »12-« eine halbe Umdrehung in der anderen Richtung (Abbildung 8-15
zeigt den Anschluss eines vierpoligen bipolaren Schrittmotors iiber einel.293-H-Briicke):

/*

* Stepper_bipolar Sketch

*

* Schrittmotor wird iiber den seriellen Port gesteuert.

* Ein numerischer Wert gefolgt von '+' oder '-' bewegt den Motor schrittweise
*

*
*http://www.arduino.cc/en/Reference/Stepper
*/

#include <Stepper.h>

// Tragen Sie hier die Zahl der Schritte Ihres Motors ein
#define STEPS 24

// Instanz der stepper-Klasse erzeugen. Wir geben die
// Zahl der Motorschritte an und die Pins, mit denen
// er verbunden ist.

8.12 Einen bipolaren Schrittmotor ansteuern | 317

Stepper stepper (STEPS, 2, 3, 4, 5);

int steps =0;

void setup()
{

// Geschwindigkeit des Motors auf 30 U/min setzen
stepper.setSpeed(30);
Serial.begin(9600);

}

void loop()

if (Serial.available()) {
char ch = Serial.read();

if(isbigit(ch)){ // Ist cheine Ziffer?
steps =steps *10+ch- '0'; //Ja, Wert akkumulieren

else if(ch=="+"){
stepper.step(steps);

steps =0;

}

else if(ch=="-"){
stepper.step(steps * -1);
steps =0;

}

}
}

RESET O3

4-adrige Verschaltung mit L293 H-Briicke o

O,

A 33
5V
e 3 ¢ i
R Q) oUT1 OUTZ OUT3 ouT4
D —716- yss Vs
t+——9- ENB
1= ENa ' LBZ?3k
U 4= GND -Drucke
| —1§-GND
—12- GND
L 134GND INT N2 N3 IN4
7 3 L T L] T
N e 27 w1
503 |
O 43
fic
blc
™10
RX 003

8 +V
Schrittmotor-

Spannungs-
quelle

Masse

Abbildung 8-15: Vieradriger bipolarer Schrittmotor an L293-H-Briicke

318 | Kapitel 8: Physische Ausgabe

Diskussion

Wenn Thr Schrittmotor einen hoheren Strom benétigt, als der 1293 liefern kann (600 mA
beim L293D), kénnen Sie ersatzweise den SN754410 verwenden. Code und Verschaltung
sind mit dem 1293 identisch. Bei Strom von bis zu 2 Ampere konnen Sie den 1.298
verwenden. Sie konnen den obigen Sketch nutzen und missen ihn entsprechend Abbil-

dung 8-16 verschalten.

Arduino mit L298 H-Briicke Motor-
Spannungs-
quelle
RESETY
A 330
5V [
andQ
R Gnd [S———y
vinQ —i— 2 = 3 13 = 14
D 0.1uf 0UTT OUT2 OUT3 oUT4
9.4Vss
U L_64ena VS 14—
—114ENB
1298
I 1+ Sense A
N 154Sense B
7
5§ 8{GND INT IN2 N3 IN4
5
0 < | 5 7 10 12
303 | |
2[5
xiQ
e

Abbildung 8-16: Unipolarer Schrittmotor an L298

Eine einfache Moglichkeit, einen L298 an den Arduino anzuschlieRen, bietet das Spark-
Fun Ardumoto-Shield (DEV-09213). Es wird einfach auf das Arduino-Board aufgesteckt
und benétigt nur die Verbindung zu den Motor-Spulen. Die Stromversorgung des Motors
erfolgt tiber den Arduino-Pin Vin. In1/2 wird durch Pin 12 gesteuert und ENA liegt an Pin
10. In3/4 ist mit Pin 13 verbunden und ENB liegt an Pin 11. Nehmen Sie die folgenden
Anderungen am obigen Code vor, um den Sketch mit dem Ardumoto nutzen zu kénnen:

Stepper stepper (STEPS, 12,13);

Ersetzen Sie den Code in setup() durch

pinMode(10, OUTPUT);
digitalWrite(10, LOW); //Aaktivieren

pinMode(11, OUTPUT);
digitalWrite(11, LOW); //Baktivieren

8.12 Einen bipolaren Schrittmotor ansteuern |

319

stepper.setSpeed(30); // Geschwindigkeit auf 30U/min setzen
Serial.begin(9600);

Der Code in loop ist mit dem obigen Sketch identisch.

Siehe auch

Weitere Informationen zur Verschaltung von Schrittmotoren finden Sie in Tom Igoes
Schrittmotor-Notizen: http://www.tigoe.net/pcomp/code/circuits/motors.

8.13 Einen bipolaren Schrittmotor ansteuern (mit
EasyDriver-Board)

Problem

Sie besitzen einen bipolaren (vieradrigen) Schrittmotor und wollen ihn aus einem Pro-
gramm heraus tiber ein EasyDriver-Board steuern.

Losung

Die Losung dhnelt der aus Rezept 8.12 und verwendet auch die gleichen seriellen Befehle,
nutzt aber das beliebte EasyDriver-Board. Abbildung 8-17 zeigt die Verschaltung.

Schrittmotor-
Spannungs-
quelle
| | Masse +V

RESET ﬁAé 686 o0 00 é é

33 PFD Rst Enable MS2 Gnd M+
svQ M‘g’ Pwrln

endQ
- p— — 3 O

Gnd +5v APWR Slp MS1 EasyDriver Gnd Step Dir
00 [©0O0 Verd.2 000

oO=Z——C O XX >

>
RX

eenneeeel

Abbildung 8-17: Anschluss des EasyDriver-Boards

320 | Kapitel 8: Physische Ausgabe

Der folgende Sketch steuert die Schrittrichtung und die Anzahl der Schritte tiber den
seriellen Port. Im Gegensatz zum Code in Rezept 8.12 wird die Stepper-Bibliothek nicht
benotigt, da das EasyDriver-Board die Spulen des Motors per Hardware steuert:

/*
* Stepper_Easystepper Sketch
*

* Schrittmotor wird Uber den seriellen Port gesteuert.
* Ein numerischer Wert gefolgt von '+' oder '-' bewegt den Motor schrittweise
*

*/

const int dirPin =2;
const int stepPin = 3;

int speed = 100; // Gewiinschte Geschwindigkeit in Schritten pro Sekunde
int steps=0; // Anzahl der Schritte

void setup()

pinMode(dirPin, OUTPUT);
pinMode(stepPin, OUTPUT);
Serial.begin(9600);

}

void loop()
{

if (Serial.available()) {
char ch = Serial.read();

if(isbigit(ch)){ // Ist ch eine Ziffer?
steps =steps *10+ch- '0"; // Ja, Wert akkumulieren

else if(ch=="+"){
step(steps);
steps =0;

}

else if(ch=="-"){
step(-steps);
steps =0;

}

else if(ch=="s"){

speed = steps;

Serial.print("Setze Geschwindigkeit auf ");

Serial.println(steps);

steps =0;
}
}
}

void step(int steps)

int stepDelay = 1000 / speed; //Verzdgerung inms flr Geschwindigkeit in Schritten pro Sekunde
int stepsLeft;

// Vorzeichen von steps bestimmt Richtung

8.13 Einen bipolaren Schrittmotor ansteuern (mit EasyDriver-Board) | 321

if (steps > 0)
{

digitalWrite(dirPin, HIGH);
stepsLeft = steps;

}
if (steps<0)
{

digitalWrite(dirPin, LOW);
stepsLeft = -steps;

// Schritte bei jedem Durchlauf dekrementieren
while(stepsLeft > 0)

digitalWrite(stepPin,HIGH);
delayMicroseconds(1);
digitalwrite(stepPin,LOW);

delay(stepDelay);
stepsLeft--; //Verbliebene Schritte dekrementieren
}
}
Diskussion

Das EasyDriver-Board wird iiber die Pins M+ und Gnd (in der oberen rechten Ecke in
Abbildung 8-17) mit Strom versorgt. Das Board arbeitet mit Spannungen zwischen 8 und
30 Volt. Die richtige Betriebsspannung Thres Schrittmotors entnehmen Sie dem Daten-
blatt. Wenn Sie einen 5V-Schrittmotor nutzen, miissen Sie 5V an die mit Gnd und +5V
gekennzeichneten Pins (unten links auf dem EasyDriver-Board) anlegen und den mit
APWR gekennzeichneten Jumper entfernen (damit wird der boardeigene Regler abge-
trennt und der Motor und das EasyDriver-Board werden tiber eine externe 5V-Quelle
versorgt).

Sie kénnen den Stromverbrauch bei nicht laufendem Motor reduzieren, indem Sie den
Enable-Pin mit einem digitalen Ausgang verbinden und ihn auf HIGH setzen, um den
Ausgang zu deaktivieren (ein LOW aktiviert ihn).

Die Schrittoptionen legen Sie fest, indem Sie MS1 und MS2 mit +5V (HIGH) oder Masse
(Low) verbinden (siehe Tabelle 8-2). Die Standardoptionen fiir das wie in Abbildung 8-17
verschaltete Board verwendet Achtel-Schritte (MS1 und MS2 sind HIGH, Reset ist HIGH und
Enable ist LOW).

Tabelle 8-2: Mikroschritt-Optionen
Auflosung Ms1 Ms2
Voller Schritt LOW LOW
Halber Schritt HIGH LOW
Viertel Schritt LOW HIGH
Achtel Schritt HIGH HIGH

322 | Kapitel 8: Physische Ausgabe

Sie kénnen den Code auch so modifizieren, dass die Umdrehungen pro Sekunde iiber die
Geschwindigkeit bestimmt werden:
// Fir Geschwindigkeit in U/min

int speed = 100; // Gewiinschte Geschwindigkeit in U/min
int stepsPerRevolution = 200; // Schritte fir eine Undrehung

Andern Sie die erste Zeile der step-Funktion wie folgt:
int stepDelay = 60L * 1000L / stepsPerRevolution / speed; // Geschwindigkeit in U/min

Alles andere bleibt unverindert, aber der gesendete Geschwindigkeitsbefehl gibt nun die
Umdrehungen pro Minute an.

8.14 Einen unipolaren Schrittmotor ansteuern (ULN2003A)

Problem

Sie verfiigen iiber einen unipolaren (fiinf- oder sechsadrigen) Schrittmotor und wollen ihn
iber einen ULN2003A Darlington-Treiber steuern..

Losung

SchlieRen Sie den unipolaren Schrittmotor wie in Abbildung 8-18 zu sehen an. Der +V-An-
schluss wird mit einer Stromquelle verbunden, die die vom Motor benétigte Spannung und
den entsprechenden Strom liefert.

Der folgende Sketch bewegt den Motor tiber Befehle vom seriellen Port. Ein numerischer
Wert gefolgt von einem + bewegt ihn in eine Richtung, ein - in die andere:

/*
* Stepper Sketch
*

* Schrittmotor wird iiber den seriellen Port gesteuert

* Ein numerischer Wert gefolgt von '+' oder '-' bewegt den Motor schrittweise
*

*

*http://www.arduino.cc/en/Reference/Stepper
*/

#include <Stepper.h>

// Tragen Sie hier die Zahl der Schritte Ihres Motors ein
#define STEPS 24

// Instanz der stepper-Klasse erzeugen. Wir geben die
// Zahl der Motorschritte an und die Pins, mit denen
// er verbunden ist

Stepper stepper(STEPS, 2, 3, 4, 5);

int steps =0;

8.14 Einen unipolaren Schrittmotor ansteuern (ULN2003A) | 323

void setup()

stepper.setSpeed(30); // Geschwindigkeit auf 30 U/min setzen
Serial.begin(9600);
}

void loop()

if (Serial.available()) {
char ch = Serial.read();

if(isDigit(ch)){ // Ist ch eine Ziffer?
steps = steps *10+ch- '0"; // Ja, Wert akkumulieren

else if(ch=="+"){
stepper.step(steps);

steps = 0;

else if(ch=="-"){
stepper.step(steps * -1);
steps =0;

}
else if(ch=="s"){
stepper.setSpeed(steps);
Serial.print("Setze Ceschwindigkeit auf ");
Serial.println(steps);
steps =0;
}
}
}

Diskussion

Dieser Motortyp besitzt zwei Spulenpaare und jede Spule hat in der Mitte einen An-
schluss. Bei Motoren mit funf Anschliissen sind die beiden mittleren Anschliisse aiber
einen einzelnen Draht nach auffen gefithrt. Wenn die Anschliisse nicht gekennzeichnet
sind, kénnen Sie die Verschaltung mit einem Multimeter bestimmen. Messen Sie den
Widerstand der Anschlusspaare und finden Sie die beiden Paare mit dem maximalen
Widerstand. Der mittlere Anschluss hat einen halb so groRen Widerstand wie die ganze
Spule. Eine Schritt-fiir-Schritt-Anweisung finden Sie unter http://techref.massmind.org/
techreflio/stepper/wires.asp.

324 | Kapitel 8: Physische Ausgabe

Unipolarer Schrittmotor 4-Draht

Schrittmotor-
Spannungs-
Masse quelle +V

1 2 3 4

A
A RESETD
33
sv@3Q
R GndQ
Gnd [F——9p 16 15 14 13
VinOQ
[) N 0UT4
—91 +V
U T o loo ULN2003
| IN1 IN2 IN3 IN4

090000 0e)

= —
> ><

Abbildung 8-18: Anschluss eines unipolaren Schrittmotors tiber ULN2003-Treiber

8.14 Einen unipolaren Schrittmotor ansteuern (ULN2003A) | 325

KAPITEL 9
Audio-Ausgabe

9.0 Einfiihrung

Der Arduino wurde nicht als Synthesizer konzipiert, aber natiirlich kann er tiber ein Aus-
gabegerit wie einen Lautsprecher Tone erzeugen.

Tone werden durch Schwingung der Luft erzeugt. Ein Ton hat eine bestimmte Hohe,
wenn man ihn stindig wiederholt. Der Arduino kann Téne erzeugen, indem er einen
Lautsprecher oder ein Piezo-Element (ein kleiner keramischer Signalgeber, der bei Impul-
sen Tone erzeugt) ansteuert. Dabei werden elektronische Impulse in Schwingung am
Lautsprecher umgewandelt, die die Luft vibrieren lassen. Die Hohe des Tons (die
Frequenz) wird durch die Zeit bestimmt, die es braucht, um den Lautsprecher ein- und
auszuschalten. Je kiirzer diese Zeitspanne ist, desto hoher ist die Frequenz.

Frequenzen werden in der Einheit Hertz gemessen. Sie gibt an, wie oft pro Sekunde das
Signal seinen wiederkehrenden Zyklus durchliuft. Das menschliche Gehér nimmt Téne
von etwa 20 Hertz (Hz) bis zu 20000 Hertz wahr (wenngleich das von Mensch zu Mensch
variiert und sich mit dem Alter verindert).

Die Arduino-Software enthilt eine tone-Funktion, mit der Sie Tone erzeugen koénnen.
Rezepte 9.1 und 9.2 zeigen, wie man die Funktion nutzt, um Téne zu erzeugen und
Melodien abzuspielen. Die tone-Funktion arbeitet mit Hardware-Timern. Bei einem
Standard-Arduino-Board kann nur jeweils ein Ton erzeugt werden. Sketches, bei denen
der Timer (timer2) fiir andere Aufgaben benétigt wird, etwa analogWirite fir Pin 9 oder 10,
konnen die tone-Funktion nicht nutzen. Rezept 9.3 zeigt, wie man diese Einschrankung
mithilfe einer Bibliothek umgehen und mehrere Tone erzeugen kann. Rezept 9.4 zeigt, wie
man To6ne ohne die tone-Funktion oder Hardware-Timer erzeugen kann.

Der Sound, den man erzeugen kann, indem man Impulse an einen Lautsprecher sendet,
ist beschrankt und klingt nicht besonders gut. Ausgegeben wird eine Rechteckwelle (siehe
Abbildung 9-1), die recht herb klingt und eher an ein antikes Computerspiel erinnert als
an ein Musikinstrument.

| 327

Frequenz ist die Anzahl der Zyklen pro Sekunde
Periode ist die Dauer eines Zyklus
Periode = 1/Frequenz

1)

Lautsprechermembran
driickt die Luft, wenn Pin
an geht
halbe Periode

Impuls ist—yp ‘

<4— Periode (ein Zyklus) ——»

Abbildung 9-1: Téne mit digitalen Impulsen erzeugen

Es ist fiir den Arduino schwierig, musikalisch komplexere Sounds ohne externe Hardware
zu erzeugen. Sie konnen ein Shield nutzen, um die Fihigkeiten des Arduino in dieser
Hinsicht zu erweitern. Rezept 9.5 zeigt, wie man das Adafruit Wave Shield nutzt, um
Audiodateien wiederzugeben, die auf einer Speicherkarte auf dem Shield gespeichert sind.

Sie konnen den Arduino auch nutzen, um ein externes Gerit anzusteuern, das Sound
erzeugen kann. Rezept 9.6 zeigt, wie man MIDI-Nachrichten (Musical Instrument Digital
Interface) an ein MIDI-Geriit sendet. Solche Gerite erzeugen qualitativ hochwertige
Sounds fiir eine Vielzahl unterschiedlicher Instrumente und kénnen viele Instrumente
gleichzeitig spielen. Der Sketch in Rezept 9.6 zeigt, wie man MIDI-Nachrichten erzeugt,
die eine Tonleiter spielen.

Rezept 9.7 enthilt einen Uberblick iiber eine Anwendung namens Arduino, die eine
komplexe Software-Verarbeitung zu Synthetisierung von Sound verwendet.

Dieses Kapitel behandelt die vielen Moglichkeiten, mit denen Sie Sound elektronisch
erzeugen konnen. Wenn Sie den Arduino akustische Instrumente (wie Glockenspiele,
Trommeln und Klaviere) spielen lassen wollen, konnen Sie Aktuatoren wie Hubmagneten
oder Servomotoren einsetzen, die in Kapitel 8 behandelt werden.

Viele Rezepte in diesem Kapitel steuern einen kleinen Lautsprecher oder ein Piezo-Ele-
ment an. Wie man ihn mit einem Arduino-Pin verbindet, zeigt Abbildung 9-2.

Lautsprecher oder
Piezoelement

Lautstarke-
regler

100 uF

Abbildung 9-2: Anschluss eines Audio-Transducers

328 | Kapitel 9: Audio-Ausgabe

Der Lautstirkeregler ist ein variabler Widerstand, dessen Wert unkritisch ist. Alles zwi-
schen 200 und 500 Ohm wird funktionieren. Der Kondensator ist ein 100 Mikrofarad-
Elektrolyt, dessen positives Ende mit dem Arduino-Pin verbunden ist. Ein Lautsprecher
funktioniert unabhingig davon, welcher Anschluss mit Masse verbunden ist, doch bei
Piezo-Elementen spielt die Polung eine Rolle, d.h., Sie miissen den Masseanschluss
(iiblicherweise schwarz) mit dem Masse-Pin verbinden.

Alternativ konnen Sie den Ausgang mit einem externen Audioverstirker verbinden.
Rezept 9.7 zeigt, wie ein Ausgangspin mit einem Klinkenstecker verbunden werden kann.

W N
N Der Spannungspegel (5 Volt) ist hoher, als Audioverstirker es erwarten,
:‘:‘ weshalb Sie einen variablen 4,7K-Widerstand benétigen kénnten, um die
. Spannung zu reduzieren. (Verbinden Sie ein Ende mit Pin 9 und das andere

Ende mit Masse. Verbinden Sie dann den Schieber mit dem Klinkenste-
cker. Das Gehiuse des Klinkensteckers verbinden Sie mit Masse.)

9.1 Tone ausgeben

Problem

Sie wollen Tone tber einen Lautsprecher oder einen anderen Audio-Transducer aus-
geben. Sie wollen dabei die Frequenz und die Dauer des Tons festlegen.

Losung

Verwenden Sie die Arduino-Funktion tone. Der folgende Sketch gibt einen Ton aus, des-
sen Frequenz tiber einen variablen Widerstand (oder anderen Sensor) am Analogeingang
0 festgelegt wird (siehe Abbildung 9-3):

/*

* Tone Sketch
P

* Gibt Tone Uber einen Lautsprecher an Digitalpin 9 aus.
* Die Frequenz wird durch den Wert bestimmt, der vom Analogport eingelesen wird.
*/

const int speakerPin=9; // Lautsprecher anPin9
const int pitchPin=0; // Poti bestimmt Frequenz des Tons

void setup()

}
void loop()
{

int sensoroReading = analogRead(pitchPin); // Poti-Wert fur Frequenz einlesen
// Analogwert auf geeigneten Wertebereich abbilden

int frequency =map(sensorOReading, 0, 1023, 100,5000); // 100Hz bis 5kHz

int duration = 250; // Dauer des Tons

9.1 Tone ausgeben | 329

tone(speakerPin, frequency, duration); // Ton ausgeben
delay(1000); // Eine Sekunde warten

J] < Lz_iutsprecher oder
ovooo0volNoc000000) Lautstirke. Piezoelement
bggg:gc\w r\\omva;: + autstarke:
£S5 DIGITAL == regler
100 uF
Arduino o
0 O,
[
oooRn 00000 oti fur Zweiter Poti
T Tonlage fiir Dauer ist
optional

Abbildung 9-3: Anschluss fiir den Tone-Sketch

Die tone-Funktion verarbeitet bis zu drei Parameter: den Pin, an dem der Lautsprecher
angeschlossen ist, die zu spielende Frequenz (in Hertz) und die Dauer des Tons (in
Millisekunden). Der dritte Parameter ist optional. Lisst man ihn weg, wird der Ton so
lange gespielt, bis tone erneut aufgerufen wird (oder noTone). Der Wert fir die Frequenz
wird in der folgenden Zeile auf geeignete Werte abgebildet:

int frequency =map(sensorOReading, 0, 1023, 100,5000); //100Hz bis 5kHz

Die nachfolgende Variante nutzt einen zweiten variablen Widerstand (der untere rechte
Poti in Abbildung 9-3), um die Dauer des Tons festzulegen:

const int speakerPin=9; // Lautsprecher anPin9
const int pitchPin=0; //1. Potibestimmt Frequenz des Tons
const int durationPin=1; // 2. Poti bestimmt Dauer des Tons

void setup()

}

void loop()

{
int sensoroReading = analogRead(pitchPin); // Poti-Wert fir Frequenz einlesen
int sensoriReading = analogRead(durationPin); // Poti-Wert fir Dauer einlesen

// Analogwerte auf geeignete Wertebereiche abbilden
int frequency =map(sensorOReading, 0, 1023, 100,5000); // 100Hz bis 5kHz
int duration = map(sensoriReading, 0, 1023, 100,1000); //0,1-1 Sekunde

330 | Kapitel 9: Audio-Ausgabe

tone(speakerPin, frequency, duration); // Ton flr
delay(duration); // gewtinschte Dauer ausgeben

Eine weitere Variante nutzt einen zusitzlichen Taster, so dass die Téne nur erzeugt
werden, wenn der Taster gedriickt wird.

Aktivieren Sie mit der folgenden Zeile in setup die Pullup-Widerstinde (ein Anschluss-
diagramm und eine Erlduterung finden Sie in Rezept 5.2):

digitalwrite(inputPin,HIGH); // Internen Pullup am Eingangspin aktivieren

Modifizieren Sie den loop-Code so, dass die tone- und delay-Funktionen nur dann
aufgerufen werden, wenn der Taster gedriickt wird:

if(digitalRead(inputPin) = LOW) // Tasterwert einlesen
{

tone(speakerPin, frequency, duration); // Ton fiir
delay(duration); // gewlinschte Dauer ausgeben

Sie kénnen nahezu jeden Audio-Transducer (Wandler) nutzen, um Toéne mit dem Ar-
duino zu erzeugen. Kleine Lautsprecher funktionieren sehr gut. Piezo-Elemente funk-
tionieren ebenfalls und sind kostengiinstig, robust und kénnen aus alten Grufkarten
wiederverwendet werden. Piezo-Elemente ziehen nur wenig Strom (sie sind hochohmige
Elemente), d.h., sie konnen direkt an einen Pin angeschlossen werden. Lautsprecher
haben tiblicherweise einen deutlich kleineren Widerstand und miissen den Strom iiber
einen Widerstand beschrinken. Die Komponenten, die zum Aufbau der Schaltung in
Abbildung 9-3 benoétigt werden, sollten sich einfach auftreiben lassen. Hinweise zur
Beschaffung dieser Teile finden Sie auf der Website zum Buch (http://shop.oreilly.com/
product/0636920022244.do).

Siehe auch

Eine grofRere Funktionalitit bietet die Tone-Bibliothek von Brett Hagman, die in Rezept 9.3
beschrieben wird.

9.2 Eine einfache Melodie spielen

Problem

Sie wollen den Arduino eine einfache Melodie spielen lassen.

Losung

Nutzen Sie die tone-Funktion aus Rezept 9.1, um Tone auszugeben, die den Noten eines
Musikinstruments entsprechen. Der folgende Sketch verwendet tone, um einen String von
Noten auszugeben, und zwar das »Hallo, Welt« des Klavierunterrichts: »Morgen kommt
der Weihnachtsmann«

9.2 Eine einfache Melodie spielen | 331

/*
* Twinkle Sketch
*

* Spielt "Morgen kommt der Weihnachtsmann"
*

* Lautsprecher an Digitalpin 9
*/

const int speakerPin =9; // Lautsprecher an Pin 9
char noteNames[]= {'C','D','E','F','G','a','b"};

unsigned int frequencies|] = {262,294,330,349,392,440,494};
const byte noteCount = sizeof(noteNames); // Anzahl der Noten (hier 7)

//Noten, Leerzeichen steht fiir eine Pause
char score[] = "CCGGaaGFFEEDDC GGFFEEDGGFFEED CCGGaaGFFEEDDC “;
const byte scorelen = sizeof(score); // Anzahl der Noten

void setup()

}
void loop()

for (inti=0; i< scorelen; i++)

{

int duration =333; // Jede Note fiir eine drittel Sekunde spielen
playNote(score[i], duration); // Note ausgeben

delay(4000); // Vier Sekunden warten, bevor die Melodie wiederholt wird

void playNote(char note, int duration)

// Den Ton ausgeben, der dem Notennamen entspricht
for (int i =0; i< noteCount; i++)

// Passeden noteNamen finden, um den Index der Note zu ermitteln
if (noteNames[i] == note) // Notenname gefunden
tone(speakerPin, frequencies[i], duration); // Note ausgeben

// Gibt es keinen Treffer, ist die Note eine Pause
delay(duration);

noteNames ist ein Array von Zeichen, die fiir die Noten einer Partitur stehen. Jeder Eintrag
in diesem Array ist mit einer Frequenz verkniipft, die im notes-Array definiert ist. So hat
die Note C (der erste Eintrag im noteNames-Array) eine Frequenz von 262 Hz (der erste
Eintrag im notes-Array).

score ist ein Array, das die Noten des zu spielenden Stiicks enthalt:

// Leerzeichen steht fiir eine Pause
char score[] = "CCGGaaGFFEEDDC GGFFEEDGGFFEED CCGGaaGFFEEDDC “;

332 | Kapitel 9: Audio-Ausgabe

Bei jedem Zeichen in score, das einem Zeichen im noteNames-Array entspricht, wird die
entsprechende Note gespielt. Das Leerzeichen wird als Pause genutzt, aber jedes Zeichen,
das nicht in noteNames definiert ist, erzeugt ebenfalls eine Pause (d.h., es wird keine Note
gespielt).

Der Sketch ruft playNote fiir jedes Zeichen in score fur eine drittel Sekunde auf.

Die playNote-Funktion sucht das noteNames-Array nach einem passenden Zeichen ab und
verwendet bei einem Treffer den entsprechenden Eintrag im frequencies-Array, um einen
Ton mit der gewiinschten Frequenz auszugeben.

Jede Note wird fir die gleiche Dauer ausgegeben. Wollen Sie auch die Dauer fiir jede Note
festlegen, konnen Sie den Sketch um den folgenden Code erweitern:

byte beats[scorelen] ={1,1,1,1,1,1,2, 1,1,1,1,1,1,2,1,
1,1,1,1,1,1,2, 1,1,1,1,1,1,2,1,
1,1,1,1,1,1,2, 1,1,1,1,1,1,2};

byte beat = 180; // Takte pro Minute fiir Achtelnoten

unsigned int speed = 60000 / beat; // Zeit inms flr einen Takt

beats ist ein Array mit der Dauer jeder Note: 1 ist eine Achtelnote,2 eine Viertelnote und so
weiter.

beat ist die Anzahl der Takte pro Minute.
Die speed-Zeile wandelt die Takte pro Minute in eine Dauer in Millisekunden um.

Die einzige Anderung am loop-Code besteht darin, die Spieldauer aus dem beats-Array zu
ermitteln. Andern Sie

int duration =333; // Jede Note fiir eine drittel Sekunde spielen
in

int duration = beats[i] * speed; // Dauer Uber beats-Array bestimmen

9.3 Mehr als einen Ton gleichzeitig erzeugen

Problem

Sie wollen zwei Tone gleichzeitig ausgeben. Die Arduino Tone-Bibliothek kann bei einem
Standard-Board nur einen einzelnen Ton erzeugen, aber Sie brauchen zwei Toéne gleich-
zeitig. Beachten Sie, dass das Mega-Board mehr Timer besitzt und bis zu sechs Téne er-
zeugen kann.

Losung

Die Arduino Tone-Bibliothek ist auf einen einzelnen Ton beschrinkt, da fur jeden Ton ein
eigener Timer bendtigt wird. Zwar besitzt ein Standard- Arduino-Board drei Timer, aber
einer wird von der millis-Funktion und ein weiterer fiir Servos genutzt. Das folgende
Rezept nutzt eine von Brett Hagman (dem Autor der Arduino tone-Funktion) entwickelte
Bibliothek. Diese Bibliothek ermoglicht es, mehrere Tone gleichzeitig zu erzeugen. Sie

9.3 Mehr als einen Ton gleichzeitig erzeugen | 333

kénnen sie von http://code.google.com/p/rogue-code/wiki/ToneLibraryDocumentation he-
runterladen.

Hier ein Beispiel-Sketch aus dem Download, der zwei Tone ausgibt, die man tiber den
seriellen Port eingeben kann:

/*

*Dual Tones - Simultane Tonerzeugung

* Spielt die Noten 'a' bis 'g', die Uber den seriellen Monitor gesendet werden
* Kleinbuchstaben fiir den ersten, GroRbuchstaben fiir den zweite Ton

*'s' beendet den gerade gespielten Ton

*/

#include <Tone.h>

int notes[] = { NOTE_A3,
NOTE_B3,
NOTE C4,
NOTE D4,
NOTE E4,
NOTE_F4,
NOTE G4 };

// Sie kdnnen die Tone als Array deklarieren
Tone notePlayer[2];

void setup(void)

Serial.begin(9600);
notePlayer[0].begin(11);
notePlayer[1].begin(12);

void loop(void)

{

charc;
if(Serial.available())
c=Serial.read();

switch(c)

{

case 'a'...'g":
notePlayer[0].play(notes[c- 'a']);
Serial.println(notes[c- 'a']);

break;

case 's':
notePlayer[0].stop();
break;

case 'A'...'G":

notePlayer[1].play(notes[c - 'A']);
Serial.println(notes[c - 'A']);
break;

case 'S":
notePlayer[1].stop();

334 | Kapitel 9: Audio-Ausgabe

break;

default:
notePlayer[1].stop();
notePlayer[0].play(NOTE B2);
delay(300);
notePlayer[0].stop();
delay(100);
notePlayer[1].play(NOTE_B2);
delay(300);
notePlayer[1].stop();

break;

Diskussion

Um die Ausgabe zweier Tone an einem einzelnen Lautsprecher zu mischen, verwenden Sie
einen 500 Ohm-Widerstand an jedem Ausgangspin und verbinden sie am Lautsprecher.
Der andere Anschluss des Lautsprechers wird mit Masse verbunden (wie bei den voran-
gegangenen Sketches gezeigt).

Bei einem Standard-Arduino-Board nutzt der erste Ton Timer 2 (d.h., PWM ist an den
Pins 9 und 10 nicht verfiigbar). Der zweite Ton verwendet Timer 1 (d.h., die Servo-Biblio-
thek und PWM an den Pins 11 und 12 funktionieren nicht). Bei einem Mega-Board
verwendet jeder simultane Ton die Timer in der folgenden Reihenfolge: 2, 3, 4, 5, 1, 0.

Es ist moglich, auf einem Standard-Arduino-Board mehr als drei Noten

5@@ simultan auszugeben (und mehr als sechs bei einem Mega), aber millis
und delay funktionieren dann nicht mehr richtig. Wenn Sie auf der si-
cheren Seite sein wollen, verwenden Sie simultan nicht mehr als zwei Téne
(bzw. funf beim Mega).

9.4 Einen Ton erzeugen und eine LED ansteuern

Problem

Sie wollen Tone tber einen Lautsprecher oder einen anderen Audio-Transducer aus-
geben, miissen sie aber per Software erzeugen, da Sie den Timer brauchen, z.B. weil Sie
analoghrite fiir Pin 9 oder 10 bendtigen.

Losung

Die in den vorangegangenen Rezepten behandelte tone-Funktion ist einfach zu nutzen,
benotigt aber einen Hardware-Timer, den Sie fiir andere Aufgaben wie analoghrite be-
notigen konnten. Der folgende Code nutzt keinen Timer, macht aber nichts anderes,
wihrend eine Note gespielt wird. Im Gegensatz zur Arduino tone-Funktion »blockiert«

9.4 Einen Ton erzeugen und eine LED ansteuern | 335

die hier beschriebene playTone-Funktion, d.h., sie kehrt erst zuriick, wenn die Note
gespielt wurde.

Der Sketch spielt sechs Noten, jede mit der doppelten Frequenz der vorangegangenen
(also eine Oktave hoher). Die playTone-Funktion erzeugt einen Ton der angegebenen
Dauer an einem Lautsprecher oder Piezo-Element, das mit einem digitalen Ausgangspin
und Masse verbunden ist (siehe Abbildung 9-4):

byte speakerPin =9;
byte ledPin = 10;

void setup()
{

pinMode(speakerPin, OUTPUT);

void playTone(int period, int duration)

// period ist ein Takt
// duration ist die Dauer in Millisekunden
int pulse = period / 2;
for (long i=0; i< duration* 1000L; i += period)

digitalWrite(speakerPin, HICH);
delayMicroseconds(pulse);
digitalWrite(speakerPin, LOW);
delayMicroseconds(pulse);
}
}

void fadeLED(){
for (int brightness = 0; brightness < 255; brightness++)

analogWrite(ledPin, brightness);
delay(2);

}
for (int brightness = 255; brightness >=0; brightness--) {

analoghrite(ledPin, brightness);
delay(2);

}
void loop()

{

// Eine Note mit einer Dauer von 15289 ist ein tiefes C (das zweitniedrigste C auf einemKlavier)
for(int period=15289; period »>=477; period=period /2) // 6 Oktaven spielen

playTone(period, 200); // Ton fiir 200 ms spielen

fadelED();
}

336 | Kapitel 9: Audio-Ausgabe

Lautsprecher oder
Piezoelement

Lautstdrke-
regler

220
V4 Ohm

+
100 uF

Abbildung 9-4: Anschluss von Lautsprecher und LED

Diskussion

Die beiden von playTone verwendeten Werte sind period und duration. Die Variable
period reprisentiert die Zeit eines Taktes des zu spielenden Tons. Der Lautsprecher wird
fiir die in period angegebene Dauer (in Mikrosekunden) ein- und ausgeschaltet. Die
for-Schleife wiederholt dieses Pulsieren fur die im duration-Argument festgelegte Zeit in
Millisekunden.

Wenn Sie lieber mit Frequenzen arbeiten als mit Takten, konnen Sie die reziproke Be-
ziehung zwischen Frequenz und Zeit nutzen. Die Schwingungsdauer ist 1 durch die
Frequenz. Sie benétigen die Schwingungsdauer in Mikrosekunden. Da eine Sekunde einer
Million Mikrosekunden entspricht, wird die Schwingungsdauer als 1000000L / Frequenz
berechnet (das »L« am Ende der Zahl weist den Compiler an, mit langen Integerwerten zu
rechnen, damit der Wertebereich normaler Integerzahlen nicht tiberschritten wird. Be-
achten Sie hierzu die Erlduterungen in Rezept 2.2):

void playFrequency(int frequency, int duration)

int period = 1000000L / frequency;
int pulse = period / 2;

Der Rest des Codes ist mit playTone identisch:

for (long i=0; i< duration* 1000L; i += period)

digitalWrite(speakerPin, HICH);
delayMicroseconds (pulse);
digitalWrite(speakerPin, LOW);
delayMicroseconds (pulse);

}
}

Der Code dieses Rezepts wartet, bis der Ton vollstindig gespielt wurde, bevor er sich
anderen Dingen zuwenden kann. Es ist méglich, den Ton im Hintergrund zu erzeugen
(ohne darauf warten zu missen, dass er vollstindig ausgegeben wurde), indem man den
Code zur Tongenerierung in einen Interrupthandler packt. Der Quellcode der tone-Funk-
tion, der mit der Arduino-Distribution geliefert wird, zeigt, wie das geht.

9.4 Einen Ton erzeugen und eine LED ansteuern | 337

Siehe auch
Rezept 9.7

Hier einige Beispiel fur etwas komplexere Audio-Synthesen, die mit dem Arduino erreicht
werden konnen:

Pulse-Code Modulation
PCM erlaubt die Approximierung analoger Audiosignale mit digitalen Signalen. Ein
Arduino-Wiki-Artikel erklirt, wie man 8-Bit-PCM mit Hilfe eines Timers erzeugt.
Den Artikel finden Sie unter hitp://www.arduino.cc/playground/Code/PCMAudio.

Pocket Piano-Shield
Critter and Guitaris Pocket Piano-Shield bietet Thnen eine klavierihnliche Tastatur,
Wavetable-Synthese, FM-Synthese und mehr. Siehe http://www.critterandguitari.com/
home/store/arduino-piano.php.

9.5 Eine WAV-Datei abspielen

Problem

Der Arduino soll aus einem Programm heraus das Abspielen einer WAV-Datei anstofRen.

Losung

Dieser Sketch nutzt das Adafruit Wave Shield und basiert auf einem Beispiel-Sketch von

der Produktseite (http://www.adafruit.com/index.php?main_page=product_info&products_id
=94).

Der Sketch spielt eine von neun Dateien ab. Welche Datei das ist, hingt davon ab, in
welcher Stellung sich der variable Widerstand an Analogeingang O befindet, wenn die
Taste an Pin 15 gedriickt wird:

/*

*WaveShieldPlaySelection Sketch

*

* Ausgewdhlte WAV-Datei abspielen
*

* Position des variablen Widerstands beim Driicken des Tasters wahlt die Datei aus
*

*/

#include <FatReader.h>
#include <SdReader.h>

#include "WaveHC.h"
#include "WaveUtil.h"

SdReader card; //Dieses Objekt enthdlt Informationen zur Karte
FatVolume vol; // Enthdlt Informationen zur Partition der Karte
FatReader root; // Enthalt Informationen zum Root-Verzeichnis des Volumes

338 | Kapitel 9: Audio-Ausgabe

FatReader file; //Dieses Objekt reprasentiert die WAV-Datei
WaveHCwave; //Wave- (Audio) Objekt - es wird nur jeweils eine Datei abgespielt

const int buttonPin = 15;
const int potPin = 0; // Analogeingang an Pin 0

char *wavFiles[] = {
"1 WAV, M2 WAV, 3L WAV, AL WAV, S LAV 6L WAV, 7 WAV, 8 WAV, "9 WAV" };

void setup()

Serial.begin(9600);
pinMode(buttonPin, INPUT);
digitalWrite(buttonPin, HIGH); // Pullup-Widerstand einschalten

if (lcard.init())

{
// Etwas ist schiefgegangen, sdErrorCheck gibt einen Fehlercode aus
putstring nl("Initialisierung der Karte fehlgeschlagen!");
sdErrorCheck();
while(1); // 'Anhalten’ - wir machen nichts!

}

// Optimiertes Lesen aktivieren - bei manchen Karten kann es zum Timeout kommen
card.partialBlockRead(true);

// FAT-Partition finden!
uint8 tpart;
for (part = 0; part < 5; part++) //Wirmissen bis zu 5 Slots untersuchen

if (vol.init(card, part))

break; // Wir haben eine gefunden, also Schleife abbrechen
if (part==75) // Gultige Partitionen sind 0 bis 4; andere sind nicht giiltig
{
putstring nl("Keine gltige FAT-Partition!");
sdErrorCheck(); // Etwas ist schiefgegangen. Fehler ausgeben
while(1); // und "anhalten' - nichts tun!

// Dem Benutzer mitteilen, was wir gefunden haben
putstring("Verwende Partition ");

Serial.print(part, DEC);

putstring(", Typ ist FAT");
Serial.println(vol.fatType(),DEC); // FAT16 oder FAT32?

// Versuche, Stammverzeichnis zu 6ffnen
if (1root.openRoot(vol))

putstring nl("Kann Stammvereichnis nicht oeffnen!"); // Etwas ist schiefgegangen, Fehler
ausgeben
while(1); // Dann 'anhalten' - nichts tun!

}

// An diesem Punkt waren alle Vorbereitungen erfolgreich.

9.5 Eine WAV-Datei abspielen | 339

putstring nl("Bereit!");

void loop()
if(digitalRead(buttonPin) == LOW)
{

int value = analogRead(potPin);
int index = map(value,0,1023,0,8); // Index auf eine der 9 Dateien
playcomplete(wavFiles[index]);
Serial.println(value);
}
}

// Datei ohne Pause von Anfang bis Ende komplett abspielen.
void playcomplete(char *name)

// playfile findet die Datei und spielt sie ab
playfile(name);
while (wave.isplaying) {
// Wir warten, solange sie abgespielt wird
}
// Fertigmit Abspielen
}

void playfile(char *name) {
// Priifen, ob das Wave-Objekt gerade etwas macht
if (wave.isplaying) {
// Es wird bereits atwas abgespielt,
wave.stop(); // also anhalten

// Im Stammverzeichis nachsehen und Datei 6ffnen
if (Ifile.open(root, name)) {
putstring("Kann Datei nicht oeffnen: ");
Serial.print(name);
return;

// Datei einlesen und in wave-Objekt umwandeln
if (lwave.create(file)) {
putstring nl("Keine gueltige WAV-Datei");
return;
}
// start playback
wave.play();
}

void sdErrorCheck(void)

if (!card.errorCode()) return;
putstring("\n\rSD E/A-Fehler: "); Serial.print(card.errorCode(), HEX);
putstring(", ");
Serial.println(card.errorData(), HEX);
while(1)
; // Bei Fehler anhalten
}

340 | Kapitel 9: Audio-Ausgabe

Diskussion

Das Wave-Shield liest Daten von einer SD-Karte ein. Es nutzt eine eigene Bibliothek, die
von der Ladyada-Website (http://www.ladyada.net/make/waveshield/) heruntergeladen
werden kann. Die abzuspielenden WAV-Dateien miuissen iiber einen Computer auf der
Speicherkarte abgelegt werden. Sie miissen als 22 kHz, 12-Bit unkomprimierte Mono-
dateien vorliegen und die Dateinamen miissen das 8.3-Format verwenden. Sie kénnen das
Open Source Audio-Utility Audacity verwenden, um Audiodateien zu editieren und in das
richtige Format umzuwandeln. Das Wave-Shield liest die Audiodatei von der SD-Karte ein
d.h., die Lange der Audiodatei wird nur durch die GroRe der Speicherkarte beschrinkt.

Siehe auch

Die Bibliothek und Dokumentation zum Ladyada Wave-Shield: http:/www.ladyada.net/
make/waveshield/

Audacity Audiobearbeitungs- und Konvertierungssoftware: http://audacity.sourceforge
.net/

SparkFun bietet verschiedene Audiomodule an, darunter ein Audio-Sound-Modul (http://
www.sparkfun.com/products/9534) und ein MP3-Breakout-Board (http://www.sparkfun
.com/products/8954).

9.6 MIDI steuern

Problem

Sie wollen mit dem Arduino Musik iiber einen MIDI-Synthesizer abspielen lassen.

Losung

Um die Verbindung mit einem MIDI-Gerit herzustellen, benétigen Sie eine(n) fiinf-
poligen DIN-Stecker/-Buchse. Bei einer Buchse benotigen Sie aufferdem ein Verldnge-
rungskabel, um die Verbindung mit dem Gerit herzustellen. Verbinden Sie den MIDI-
Anschluss mit dem Arduino tiber einen 220 Ohm-Widerstand, wie in Abbildung 9-5 zu
sehen.

9.6 MIDI steuern | 341

MIDI-
Anschluss
9000000000000 e
=v DIGITAL T
Arduino
o
o0
< 0
{ 5» Ohm
- OO 2a58%s

Abbildung 9-5: MIDI-Anschliisse

Beim Upload des Codes auf den Arduino sollten Sie das MIDI-Gerit abklemmen, da es
den Upload stoéren konnte. Nachdem der Sketch hochgeladen wurde, verbinden Sie das
MIDI-Gerit mit dem Arduino-Ausgang. Ein Musikstiick wird gespielt, sobald Sie den mit
Pin 2 verbundenen Taster driicken:

/*

midiOut Sketch

Sendet MIDI-Nachrichten an ein MIDI-Instrument, die ein Musikstiick abspielen, sobald der Taster
an Pin 2 gedriickt wird

*/

//Diese Zahlen spezifizieren die Noten

const byte notes[8] = {60, 62, 64, 65, 67, 69, 71, 72};
//Sie sind Teil der MIDI-Spezifikation

const int length = 8;

const int switchPin=2;

const int ledPin =13;

void setup() {
Serial.begin(31250);
pinMode(switchPin, INPUT);
digitalWrite(switchPin, HIGH);
pinMode(ledPin, OUTPUT);

void loop() {
if (digitalRead(switchPin == LOW))

for (byte noteNumber = 0; noteNumber < 8; noteNumber++)

{

342 | Kapitel 9: Audio-Ausgabe

playMidiNote(1, notes[noteNumber], 127);
digitalWrite(ledPin, HIGH);

delay(70);

playMidiNote(1, notes[noteNumber], 0);
digitalWrite(ledPin, HICH);

delay(30);

}

}
}

void playMidiNote(byte channel, byte note, byte velocity)

byte midiMessage= 0x90 + (channel - 1);
Serial.write(midiMessage);
Serial.write(note);
Serial.write(velocity);

}

Diskussion

Der Sketch nutzt den seriellen Port, um die MIDI-Daten zu senden. Die Schaltung an Pin 1
kann also den Upload des Codes auf das Board storen. Entfernen Sie den Draht von Pin 1
wihrend des Uploads und schliefen Sie ihn danach wieder an.

MIDI wurde urspriinglich genutzt, um digitale Musikinstrumente miteinander zu ver-
binden, so dass sie sich gegenseitig steuern konnen. Die MIDI-Spezifikation beschreibt die
elektrischen Anschliisse und die Nachrichten, die Sie senden miissen.

MIDI ist genau genommen eine serielle Verbindung (mit einer ungewohnlichen Ge-
schwindigkeit von 31250 Baud), d.h., der Arduino kann MIDI-Nachrichen tiber seinen
seriellen Hardware-Port an den Pins 0 und 1 senden. Da der serielle Port fiir die MIDI-
Nachrichten benétigt wird, konnen wir keine Meldungen an den seriellen Monitor
ausgeben, weshalb der Sketch die LED an Pin 13 aufblinken ldsst, wenn er eine Note
sendet.

Jede MIDI-Nachricht besteht aus zumindest einem Byte. Dieses Byte legt fest, was zu tun
ist. Einige Befehle benotigen keine weiteren Informationen, andere brauchen zusitzliche
Daten. Die Nachricht in diesem Sketch ist note on, die zwei zusitzliche Informationen
benotigt: eine Note und ihre Lautstarke. Beide Informationen werden als Bytes im Bereich
von 0 bis 127 tibertragen.

Der Sketch initialisiert den seriellen Port auf eine Geschwindigkeit von 31250 Baud. Der
restliche MIDI-spezifische Code befindet sich in der Funktion playMidiNote:

void playMidiNote(byte channel, byte note, byte velocity)

byte midiMessage= 0x90 + (channel - 1);
Serial.write(midiMessage);
Serial.write(note);
Serial.write(velocity);

}

9.6 MIDI steuern | 343

Die Funktion verlangt drei Parameter und berechnet das erste zu sendende Byte tiber die
Kanal-Information.

MIDI-Informationen werden tiber verschiedene Kanile (1 bis 16) gesendet. Jeder Kanal
kann mit einem anderen Instrument belegt werden, so dass Mehrkanal-Musik gespielt
werden kann. Der Befehl fiir note on (zum Spielen eines Sounds) ist eine Kombination aus
0x90 (die hoherwertigen vier Bits sind b1001) und dem gewtiinschten MIDI-Kanal in den
unteren vier Bits (mit Werten zwischen b0000 und b1111). Das Byte verwendet O bis 15
fiir die Kanile 1 bis 16, weshalb wir noch eine 1 abziehen.

Dann wird die Note gesendet und die Lautstirke (die bei MIDI Geschwindigkeit, engl.
velocity, genannt wird, da sie urspriinglich angab, wie schnell die Taste einer Tastatur
bedient wird).

Die seriellen write-Anweisungen geben an, dass die Daten als Bytes (und nicht als ASCII-
Werte) gesendet werden sollen. println wird nicht verwendet, weil ein Zeilenvorschub-
Zeichen zusitzliche Bytes im Signal erzeugen wiirde, die wir dort nicht gebrauchen kénnen.

Der Sound wird mit der gleichen Nachricht ausgeschaltet, nur dass die Lautstirke auf 0
gesetzt wird.

Dieses Rezept funktioniert mit MIDI-Geriiten, die einen fiinfpoligen MIDI-In-Anschluss
haben. Wenn Thr MIDI-Gerit einen USB-Anschluss besitzt, funktioniert es nicht. Der
Arduino kann MIDI-Musikprogramme auf IThrem Computer nicht ohne zusitzliche Hard-
ware (einen MIDI-nach-USB-Adapter) steuern. Zwar besitzt der Arduino einen USB-An-
schluss, doch Thr Computer erkennt ihn als serielles Gerit und nicht als MIDI-Gerit.

Siehe auch

Um MIDI zu senden und zu empfangen, sehen Sie sich die MIDI-Bibliothek auf http:/
www.arduino.cc/playground/Main/MIDILibrary an.

MIDI-Nachrichten werden detailliert in http://www.midi.org/techspecs/midimessages.php
beschrieben.

Weitere Informationen zum SparkFun MIDI Breakout-Shield (BOB-09598), finden Sie
auf http://www.sparkfun.com/products/9598.

Um den Arduino Uno als natives USB-MIDI-Geriit einzurichten, sehen Sie sich Rezept 18.14
an.

9.7 Audio-Synthesizer

Problem

Sie wollen komplexe Sounds erzeugen, wie sie bei der Produktion elektronischer Musik
verwendet werden.

344 | Kapitel 9: Audio-Ausgabe

Losung

Die Simulation von Audio-Oszillatoren, wie sie in Sound-Synthesizern verwendet werden,
ist kompliziert, aber Peter Knight hat einen Sketch namens Auduino entwickelt, der es
dem Arduino erméglicht, komplexere und interessantere Sounds zu erzeugen.

Laden Sie den Sketch von http://code.google.com/p/tinkerit/wiki/Auduino herunter.

Verbinden Sie fiinf lineare 4,7 KOhm-Potentiometer mit den Analogpins 0 bis 4 (siehe
Abbildung 9-6). Potentiometer mit langem Stift sind besser, da man sie besser einstellen
kann. Pin 3 wird als Audio-Ausgang verwendet und wird tiber einen Klinkenstecker mit
dem Verstarker verbunden.

Diskussion

Der Sketch-Code ist komplex, da er direkt die Hardware-Timer manipuliert, um die ge-
winschten Frequenzen zu erzeugen, die per Software transformiert werden, um die
gewiinschten Audio-Effekte zu erzeugen. Der Code ist hier nicht enthalten, weil Sie ihn
nicht verstehen miissen, um Auduino nutzen zu kénnen.

Auduino verwendet eine als Granularsynthese bezeichnete Technik zur Sound-Generierung.
Sie verwendet zwei elektronisch erzeugte Soundquellen (sog. Grains). Die variablen Wider-
stinde steuern die Frequenz und das Abschwellen der Grains (Einginge O und 2 fiir den
einen Grain sowie 3 und 1 fiirr den anderen). Eingang 4 regelt die Synchronisation zwischen
den beiden Grains.

00000000 DDDD[LDDD

LOMAN—O0 ~NOoInTtmN—O

£5 DIGITAL =

Arduino -

oo
oo

‘ # Audiostecker

- B oo ANALOG
Q Q ERREEE o rinsrin
e@ne0e]

GGEO

Variable
Widerstinde
4,7K
/
< S S <
s P2 3 B3 b3

Abbildung 9-6: Auduino

9.7 Audio-Synthesizer | 345

Wenn Sie den Code anpassen wollen, kénnen Sie die Skala verindern, die zur Berechnung
der Frequenzen verwendet wird. Voreingestellt ist die pentatonische Skala, doch Sie
konnen das Auskommentieren und eine andere Option aktivieren, die eine andere Skala
verwendet.

Seien Sie vorsichtig, wenn Sie zusitzlichen Code in die Hauptschleife einfiigen. Der Sketch
ist stark optimiert und zusitzlicher Code kénnte ihn so stark verlangsamen, dass die
Audio-Synthese nicht mehr gut funktioniert.

Sie konnen jeden der Potis durch Sensoren ersetzen, die ein analoges Signal erzeugen (siehe
Kapitel 6). Beispielsweise konnte ein lichtempfindlicher Widerstand (siehe Rezept 6.2) oder
ein Entfernungsmesser (der gegen Ende von Rezept 6.4 beschrieben wurde) an einem der
Frequenzeinginge (Pin 0 oder 3) die Tonlage steuern, je nachdem, wie weit Thre Hand vom
Sensor entfernt ist (schauen Sie bei Wikipedia oder Google nach »Theremin«, wenn Sie
etwas iiber das Musikinstrument erfahren wollen, das tiber Handbewegungen gespielt
wird).

Siehe auch

Video-Demonstration des Auduino: http://www.vimeo.com/2266458
Wikipedia-Artikel zur Granularsynthese: hitp://de.wikipedia.org/wiki/Granularsynthese
Wikipedia-Artikel zum Theremin: http://de.wikipedia.org/wiki/Theremin

346 | Kapitel 9: Audio-Ausgabe

KAPITEL 10
Externe Gerate fernsteuern

10.0 Einfiihrung

Der Arduino kann mit nahezu jedem Gerit interagieren, das irgendeine Form von Fern-
bedienung verwendet. Dazu gehoren Fernseher, Audioanlagen, Kameras, Garagentore,
Haushaltsgerite und Spielzeug. Die meisten Fernbedienungen senden digitale Daten
mittels Infrarot oder Funk von einem Sender (Transmitter) an einen Empfinger (Recei-
ver). Unterschiedliche Protokolle (Signalmuster) werden genutzt, um einen Tastendruck
in ein digitales Signal umzuwandeln. Die Rezepte in diesem Kapitel zeigen, wie man
weitverbreitete Fernbedienungen und deren Protokolle nutzt.

Eine IR-Fernbedienung schaltet eine LED in bestimmten Mustern an und aus, um ein-
deutige Codes zu erzeugen. Diese Codes umfassen typischerweise 12 bis 32 Bit. Jede Taste
auf der Fernbedienung ist mit einem bestimmten Code verkniipft, der gesendet wird, wenn
man diese Taste driickt. Wird die Taste gedriickt, sendet die Fernbedienung iiblicherweise
wiederholt den gleichen Code, auch wenn einige Fernbedienungen (z.B. NEC) einen spe-
ziellen Wiederholungscode senden. Bei RC-5- oder RC-6-Fernbedienungen von Philips
wird bei jedem Tastendruck ein Bit im Code umgeschaltet. Der Empfinger nutzt dieses
Bit, um zu erkennen, ob eine Taste ein zweites Mal gedriickt wurde. Mehr tiber die Technik
von IR-Fernbedienungen erfahren Sie auf http://www.sbprojects.com/knowledge/ir/ir.htm.

Die hier vorgestellten Rezepte verwenden ein kostengiinstiges IR-Empfingermodul zur
Erkennung des Signals, das eine digitale Ausgabe erzeugt, die der Arduino lesen kann.
Diese digitale Ausgabe wird dann von einer Bibliothek namens IRremote verarbeitet. Sie
wurde von Ken Shirriff entwickelt und kann von http://www.arcfn.com/2009/08/multi-
protocol-infrared-remote-library.html heruntergeladen werden.

Die gleiche Bibliothek wird auch in den Rezepten genutzt, bei denen der Arduino als
Fernbedienung fungiert und Befehle sendet.

Installieren Sie die Bibliothek im libraries-Ordner in Threm Arduino-Sketch-Ordner. Hilfe
bei der Installation von Bibliotheken finden Sie in .

Funktechnik nutzende Fernbedienungen sind schwieriger zu emulieren als IR-Fernbedie-
nungen. Die Kontakte dieser Fernbedienungen lassen sich aber iiber den Arduino akti-

| 347

vieren. Die Rezepte fiir Funk-Fernbedienungen simulieren Tastendriicke, indem Sie die
entsprechenden Kontakte in der Fernbedienung schliefen. Bei Funk-Fernbedienungen
miissen Sie die Fernbedienung moglicherweise auseinandernehmen und Drihte von den
Kontakten mit dem Arduino verbinden, um sie nutzen zu konnen. Als Optokoppler
bezeichnete Bauelemente werden genutzt, um eine elektrische Trennung zwischen dem
Arduino und der Fernbedienung zu erreichen. Diese Trennung verhindert, dass Strom
vom Arduino die Fernbedienung beschidigt (und umgekehrt).

Optokoppler ermoglichen dem Arduino die sichere Steuerung eines anderen Schaltkrei-
ses, der mit anderen Spannungen betrieben wird. Wie es der Name andeutet, erméglichen
Optokoppler eine elektrische Trennung. Diese Bauelemente enthalten eine LED, die tiber
einen Arduino-Digitalpin angesteuert werden kann. Das Licht der LED im Optokoppler
ist auf einen lichtempfindlichen Transistor gerichtet. Wird die LED eingeschaltet, leitet
der Transistor und schliefRt den Kreis zwischen seinen beiden Anschliissen — so, als wiirde
man eine Taste driicken.

10.1 Auf eine Infrarot-Fernbedienung reagieren

Problem

Sie wollen auf Tasten reagieren, die an einer Fernbedienung gedriickt wurden.

Losung

Arduino kann die IR-Signale einer Fernbedienung iiber ein IR-Empfangsmodul (IR-Recei-
ver) verarbeiten. Gingige Bauteile sind das TSOP4838, PNA4602 und TSOP2438. Die
ersten beiden haben identische Anschlisse, d.h., die Schaltung ist gleich. Beim TSOP2438
sind die +5V- und Masseanschliisse vertauscht. Stellen Sie mit Hilfe des Datenblattes
sicher, dass Sie ihr Bauelement richtig anschliefen.

Dieses Rezept nutzt die IRremote-Bibliothek von http://www.arcfn.com/2009/08/multi-
protocol-infrared-remote-library.html. SchlieRen Sie den IR-Empfinger Threm Datenblatt
entsprechend an. Die Anschliisse in Abbildung 10-1 sind fiir den TSOP4838/PNA4602
gedacht.

Der folgende Sketch schaltet eine LED um, wenn eine Taste an der Infrarot-Fernbedie-
nung gedrickt wird:
/*
IR remote detector Sketch

Ein IR-Empfdnger ist mit Pin 2 verbunden.
Die LED an Pin 13 wird bei jedem Tastendruck an der Fernbedienung ein- und ausgeschaltet.

*/
#include <IRremote.h> //Bibliothek einbinden
const int irReceiverPin = 2; // Pin fur Empfanger

const int ledPin = 13;

348 | Kapitel 10: Externe Gerate fernsteuern

IRrecv irrecv(irReceiverPin); // IRrecv-Objekt erzeugen

decode results decodedSignal; // Dekodierte Daten vom IR-Detektor
void setup()

{

pinMode(ledPin, OUTPUT);
irrecv.enableIRIn(); // Receiver-Objekt starten

}

boolean lightState = false; // Zustand der LED nachhalten
unsigned long last =millis(); // Festhalten, wann die letzte IR-Nachricht empfangen wurde

void loop()

if (irrecv.decode(8decodedSignal) == true) // Wahr, wenn eine Nachricht
// empfangen wurde

if (millis() - last > 250) { // Ist seit der letzten Nachricht 1/4 Sekunde vergangen?
lightState = I1ightState; //Ja: LED umschalten
digitalWrite(ledPin, lightState);

}
last =millis();

irrecv.resume(); // Auf nichste Nachricht warten
}
}
A O Korrekte Spannungs- und
g Masse-Anschliisse im
R g 8 Datenblatt nachsehen
40
D o
2
®1Q 1
U je
TSOP4838 | TSOP2438
I oder O
PNA4602
RESET O3
N W E TAusgang = 1Ausgang
and O 2 Masse 2+5V
O Gnd E 345v 3 Masse 123

Abbildung 10-1: Anschluss eine IR-Empfangsmoduls

Diskussion

Der IR-Receiver wandelt das IR-Signal in digitale Impulse um, die eine Folge von Einsen
und Nullen bilden, die fiir die Tasten der Fernbedienung stehen. Die [Rremote-Bibliothek
dekodiert diese Impulse und liefert einen numerischen Wert fiir jede Taste zuriick. (Die
Werte selbst hingen von der verwendeten Fernbedienung ab).

Das #include <IRremote.h> zu Beginn des Sketches stellt den Bibliothekscode innerhalb
des Sketches zur Verfiigung und die Zeile IRrecv irrecv(irReceiverPin); erzeugt ein

10.1 Auf eine Infrarot-Fernbedienung reagieren | 349

IRrecv-Objekt namens irrecv, um die Signale vom IR-Receiver am irReceiverPin (hier
Pin 2) zu empfangen. In erfahren Sie mehr tiber die Verwendung von Bibliotheken.

Sie kénnen das irrecv-Objekt nutzen, um auf das Signal des IR-Empfingers zuzugreifen.
Sie kénnen ihm Befehle geben, die nach Signalen Ausschau halten und sie dekodieren. Die
dekodierten Antworten der Bibliothek werden in einer Variablen namens decode_results
gespeichert. Das receiver-Objekt wird im setup mit der Zeile irrecv.enableIRIn();
gestartet. Die Ergebnisse werden in loop mit Hilfe der Funktion irrecv.decode(8decoded-
Signal) tiberprift.

Die decode-Funktion gibt true zuriick, wenn Daten vorhanden sind, die dann in der
Variablen decodedSignal gespeichert werden. Rezept 2.11 erklirt, wie das &-Symbol bei
Funktionsaufrufen verwendet wird, bei denen die Parameter so modifiziert werden, dass
Informationen zuriickgegeben werden kénnen.

Wurde eine Nachricht von der Fernbedienung empfangen, schaltet der Code die LED um,
wenn seit dem letzten Wechsel mehr als eine viertel Sekunde vergangen ist. Anderenfalls
wiirde die LED sehr schnell ein- und ausgeschaltet werden, wenn die Fernbedienung die
Codes bei einem Tastendruck wiederholt sendet, und das Ganze wiirde eher willkiirlich
wirken.

Die Variable decodedSignal enthilt einen Wert, der mit einer Taste verkniipft ist. Dieser
Wert wird in diesem Rezept ignoriert (im nichsten aber verwendet), aber Sie kénnen den
Wert ausgeben, indem Sie die im folgenden Code hervorgehobene Serial.println-Zeile in
Thren Code einfiigen:

if (irrecv.decode(8decodedSignal) == true) // Wahr, wenn eine Nachricht
// empfangen wurde
{

Serial.println(results.value); // Dekodiertes Ergebnis ausgeben

Die Bibliothek muss angewiesen werden, weiterhin auf Signale zu warten, was mit der
Zeile irrecv.resume(); erreicht wird.

Dieser Sketch schaltet eine LED ein und aus, wenn eine Taste an der Fernbedienung
gedriickt wird, aber Sie konnen andere Dinge steuern — zum Beispiel konnen Sie einen
Servomotor nutzen, um eine Lampe zu dimmen (mehr zur Steuerung physischer Gerite
finden Sie in Kapitel 8).

10.2 IR-Signale einer Fernbedienung dekodieren

Problem

Sie wollen eine bestimmte Taste erkennen, die auf einer Fernbedienung gedriickt wurde.

Losung

Der folgende Sketch kontrolliert die Helligkeit einer LED tiber die Tasten einer Fernbe-
dienung. Der Code fordert beim Start die Tasten O bis 4 der Fernbedienung an. Die ent-

350 | Kapitel 10: Externe Gerate fernsteuern

sprechenden Codes werden im Arduino-Speicher (RAM) festgehalten. Der Sketch reagiert
auf diese Tasten, indem er die Helligkeit der LED in Abhiingigkeit von der gedriickten
Taste einstellt. Die Taste 0 schaltet die LED aus und 1 bis 4 erhohen die Helligkeit:

/*
RemoteDecode Sketch
IR-Signale werden dekodiert, um die Helligkeit einer LED zu steuern
Die Werte der Tasten 0 bis 4 werden zu Beginn des Sketches abgefragt und gespeichert
Die Taste 0 schaltet die LED aus, die Helligkeit wird mit den Tasten 1 bis 4 schrittweise erhoht
*/

#include <IRremote.h> // Bibliothek einbinden

const int irReceivePin=2; //Pin fiir IR-Empfanger
const int ledPin =9; //LEDanPWM-Pin

const int numberOfKeys =5; // 5Tasten werden gelernt(0 bis 4)
long irKeyCodes[numberOfKeys]; // Codes fiir die jeweiligen Tasten

IRrecv irrecv(irReceivePin); // IR-Objekt erzeugen
decode_results results; // IR-Daten stehen hier

void setup()
Serial.begin(9600);

pinMode(irReceivePin, INPUT);
pinMode(ledPin, OUTPUT);

irrecv.enableIRIn(); // IR-Empfanger starten
learnKeycodes(); // Tastencodes der Fernbedienung lernen
Serial.println("Druecken Sie eine Taste der Fernbedienung");

}

void loop()
{

long key;
int brightness;

if (irrecv.decode(8results))

{
// Daten wurden empfangen
irrecv.resume();
key = convertCodeToKey(results.value);
if(key »=0)

Serial.print("Taste empfangen: ");
Serial.println(key);
brightness = map(key, 0,numberOfKeys-1, 0, 255);
analogWrite(ledPin, brightness);
}
}
}

/*

* Codes der Fernbedienung lernen
*/

void learnKeycodes()

10.2 IR-Signale einer Fernbedienung dekodieren | 351

{
while(irrecv.decode(8results)) // Puffer leeren
irrecv.resume();

Serial.println("IR-Codes lernen...");
long prevValue = -1;

int i=0;

while(i< numberOfKeys)

Serial.print("Folgende Taste auf der Fernbedienung druecken: ");
Serial.print(i);
while(true)

if(irrecv.decode(&results))
if(results.value != -1 88 results.value !=prevvalue)

showReceivedData();

irKeyCodes[i] = results.value;

i=i+1;

prevValue = results.value;
irrecv.resume(); // Nachsten Wert empfangen

break;
}
irrecv.resume(); // Nachsten Wert empfangen
}
}

}

Serial.println("Lernen abgeschlossen...");
}
/*

* IR-Code in logischen Tastencode umwandeln

* (oder -1, wenn keine Ziffer empfangen wurde)
*/

int convertCodeToKey(long code)

for(int i=0; i < numberOfKeys; i++)
if(code == irKeyCodes[i])

return i; // Gefundene Taste zuriickgeben
}
}

return -1;
}
/*
* Protokoll-Typ und Wert ausgeben
*/
void showReceivedData()
if (results.decode type == UNKNOWN)

Serial.println("- Nachricht konnte nicht dekodiert werden");

else

352 | Kapitel 10: Externe Gerate fernsteuern

{
if (results.decode type == NEC) {
Serial.print("- NEC dekodiert: ");

}
else if (results.decode_type == SONY) {
Serial.print("- SONY dekodiert: ");

else if (results.decode_type ==RC5) {
Serial.print("- RCS dekodiert: ");

else if (results.decode type ==RC6) {
Serial.print("- RC6 dekodiert: ");

Serial.print("Hexwert =");
Serial.println(results.value, HEX);

}
}

Diskussion

Die Losung basiert auf der IRremote-Bibliothek. Details finden Sie in der Einfithrung zu
diesem Kapitel.

Der Sketch startet die IR-Bibliothek mit dem folgenden Code:
irrecv.enableIRIn(); // IR-Empfénger starten

Er ruft dann die Funktion learnkeyCodes auf, um den Benutzer aufzufordern, die Tasten O
bis 4 der Fernbedienung zu driicken. Der Code jeder Taste wird im Array irKeyCodes
festgehalten. Nachdem alle Taste erkannt und gespeichert wurden, wartet der loop-Code
auf einen Tastendruck und tberpriift, ob es sich dabei um eine der Ziffern aus dem
irKeyCodes-Array handelt. Ist das der Fall, wird der Wert zur Steuerung der Helligkeit der
LED mittels analoghrite genutzt.

In Rezept 5.7 erfahren Sie mehr iiber die Verwendung von map und
analogWrite zur Steuerung der Helligkeit einer LED.

Die Bibliothek sollte mit den meisten IR-Fernbedienungen zurechtkommen. Sie kann die
Timings erkennen und speichern und bei Bedarf wiedergeben.

Sie konnen die Tastencodes auch fest vorgeben, damit sie im Sketch nicht immer wieder
neu erlernt werden miissen. Ersetzen Sie die Deklaration von irKeyCodes durch die fol-
genden Zeilen, um die Werte fiir die jeweiligen Tasten festzulegen. Andern Sie die Werte
so ab, dass sie zu Threr Fernbedienung passen. Die Codes erscheinen im seriellen Monitor,
wenn die Tasten in der learnKeyCodes-Funktion gedriickt werden):
long irKeyCodes[numberOfKeys] = {

0x18E758A7, //0-Taste

Ox18E708F7, //1-Taste

0x18E78877, //2-Taste

Ox18E748B7, //3-Taste
0x18E7C837, //4-Taste

|5

10.2 IR-Signale einer Fernbedienung dekodieren | 353

Siehe auch

Rezept 18.1 erklirt, wie man erlernte Daten im EEPROM (nichtfliichtiger Speicher) spei-
chern kann.

10.3 IR-Signale imitieren

Problem

Sie wollen mit dem Arduino einen Fernseher oder ein anderes fernbedientes Gerit steuern,
indem Sie entsprechende IR-Signale emulieren. Das ist das Gegenstiick zu Rezept 10.2 — wir
senden Befehle, statt sie zu empfangen.

Losung

Der Sketch verwendet die Fernbedienungs-Codes aus Rezept 10.2, um das Gerit zu steuern.
Funf Taster wihlen und senden einen von fiinf Codes. Die Verschaltung ist in Abbil-
dung 10-2 zu sehen:

/*
irSend Sketch
Der Code bendtigt eine IR-LED an Pin 3
und 5 Taster an den Pins 4-8

*/

#include <IRremote.h> // IR-Bibliothek

const int numberOfKeys = 5;
const int firstKey = 4; // Der erste Pinder 5 hintereinander
// angeschlossenen Taster
boolean buttonState[numberOfKeys];
boolean lastButtonState[numberOfKeys];
long irKeyCodes[numberOfKeys] = {
0x18E758A7, //0 key
0x18E708F7, //1key
0x18E78877, //2 key
0x18E748B7, //3 key
0x18E7C837, //4 key
b

IRsend irsend;
void setup()
{

for (int i=0; i< numberOfKeys; i++){
buttonState[i]=true;
lastButtonState[i]=true;
int physicalPin=1i + firstKey;
pinMode(physicalPin, INPUT);
digitalWrite(physicalPin, HIGH); // Pullups einschalten

354 | Kapitel 10: Externe Gerate fernsteuern

Serial.begin(9600);

void loop() {
for (int keyNumber=0; keyNumber<numberOfKeys; keyNumber++)

int physicalPinToRead=keyNumber+4;
buttonState[keyNumber] = digitalRead(physicalPinToRead);
if (buttonState[keyNumber] !=lastButtonState[keyNumber])

if (buttonState[keyNumber] == LOW)

{

irsend.sendSony(irKeyCodes[keyNumber], 32);
Serial.println("Sending");

}
lastButtonState[keyNumber] = buttonState[keyNumber];

Man kann nichts sehen, wenn die Codes gesendet werden, da das Licht
einer Infrarot-LED mit blofem Auge nicht zu erkennen ist.

Sie konnen aber mit einer Digitalkamera priifen, ob die Infrarot-LED funk-
tioniert — Sie sollten sie in der LCD-Anzeige der Kamera aufleuchten sehen.

220 Ohm
Widerstand

W

o= —cCc O >™>
Q

Abbildung 10-2: Taster und LED fiir IR-Sender

Diskussion

Hier steuert der Arduino ein Gerit, indem er eine IR-LED so blinken lisst, dass sie die
Signale einer Fernbedienung imitiert. Dazu wird eine IR-LED benotigt, deren genaue

10.3 IR-Signale imitieren | 355

Spezifikation aber nicht weiter wichtig ist. Geeignete Komponenten finden Sie in
Anhang A.

Die IR-Bibliothek tibernimmt die Umwandlung numerischer Codes in das Blinken der
IR-LED. Sie miissen ein Objekt zum Senden von IR-Nachrichten erzeugen. Die folgende
Zeile erzeugt ein IRsend-Objekt, das die LED an Pin 3 steuert (Sie kénnen den Pin nicht
angeben, er ist in der Bibliothek fest vorgegeben):

IRsend irsend;

Der Code verwendet ein Array (siehe Rezept 2.4) namens irKeyCodes, um die Werte zu
speichern, die gesendet werden sollen. Er priift, ob einer von fiinf Tastern gedriickt wurde
und sendet den entsprechenden Code mit der folgenden Zeile:

irsend.sendSony(irKeyCodes[keyNumber], 32);

Das irSend-Objekt besitzt unterschiedliche Funktionen fiir verschiedene weitverbreitete
Infrarot-Codeformate. Sehen Sie sich also die Dokumentation der Bibliothek an, wenn Sie
ein anderes Format bendtigen. Sie konnen Rezept 10.2 verwenden, wenn Sie sich das von
Threr Fernbedienung verwendete Format ansehen wollen.

Der Sketch tibergibt den Code aus dem Array und die darauffolgende Zahl gibt an, wie
viele Bits der Wert besitzt. Das Ox vor den Zahlen der irKeyCodes bedeutet, dass es sich um
hexadezimale Codes handelt (Details zu Hexadezimalzahlen finden Sie in Kapitel 2). Jedes
Hex-Zeichen steht fiir einen 4-Bit-Wert. Die Codes nutzen acht Zeichen, sind also 32 Bit
lang.

Die LED ist mit einem strombegrenzenden Widerstand verbunden (siehe die Einfithrung
zu Kapitel 7).

Wenn Sie den Sendebereich erhohen wollen, kénnen Sie mehrere LEDs (oder eine
stirkere) verwenden.

Siehe auch
Kapitel 7 enthilt weiterfithrende Informationen zur Steuerung von LEDs.

Mitch Altmans TV-B-Gone ist eine clevere Fernbedienungs-Anwendung. Eine Bauanlei-
tung finden Sie auf http://www.ladyada.net/make/tvbgone/.

10.4 Eine Digitalkamera steuern

Problem

Sie wollen mit dem Arduino eine Digitalkamera steuern und aus einem Programm heraus
Fotos aufnehmen. Sie kénnten beispielsweise Zeitraffer-Aufnahmen iiber den Arduino
steuern.

356 | Kapitel 10: Externe Gerate fernsteuern

Losung

Es gibt verschiedene Losungen. Wenn Thre Kamera eine Infrarot-Fernbedienung besitzt,
konnen Sie Rezept 10.2 verwenden, um die relevanten IR-Codes zu lernen und Rezept 10.3,
um den Arduino diese Codes an die Kamera senden zu lassen.

Wenn lhre Kamera keine Infrarot-Fernbedienung besitzt, aber einen Anschluss fir eine
kabelgebundene Fernbedienung hat, kénnen Sie dieses Rezept nutzen, um die Kamera zu

steuern.

Der Klinkenstecker (engl. TRS) fiir die Kamera ist typischerweise 2,5 mm
= oder 3,5 mm groR, Linge und Form entsprechen aber moglicherweise
keinem Standard. Die sicherste Méglichkeit, sich den richtigen Stecker zu
beschaffen, ist der Kauf eines einfachen Kabels fiir Thre Kamera, das Sie

dann modifizieren, oder der Erwerb eines Adapterkabels von einem spe-
zialisierten Anbieter (googeln Sie nach »Kamera TRS«).

Sie verbinden den Arduino tiber Optokoppler mit einem geeigneten Kabel, wie in Abbil-
dung 10-3 zu sehen.

Der folgende Sketch nimmt 20 Bilder auf:

/*
camera Sketch
Nimmt 20 Bilder mit einer Digitalkamera auf
Pin 4 steuert den Fokus
Pin 3 steuert den Verschluss

*/

int focus = 4; // Optokoppler fiir Fokus

int shutter = 3; // Optokoppler fiir Verschluss

long exposure = 250; // Belichtungsdauer in Millisekunden

long interval = 10000; // Zeit in Millisekunden zwischen den Aufnahmen

void setup()

pinMode(focus, OUTPUT);

pinMode(shutter, OUTPUT);

for (int i=0; 1<20; i++) // Kamera nimmt 20 Bilder auf

{
takePicture(exposure); // Bild schieRen
delay(interval); // Bis zum ndchsten Bild warten

void loop()
{

// Nach 20 Bildern sind wir fertig,

// weshalb die Schleife leer ist.

// loop muss hier aber trotzdem stehen,

// da der Sketch sonst nicht kompiliert wird

10.4 Eine Digitalkamera steuern | 357

void takePicture(long exposureTime)
{
int wakeup =10; // Kamera braucht etwas Zeit, um aufzuwachen und zur Fokussierung
// Passen Sie das an Ihre Kamera an

digitalWrite(focus, HIGH); // Kamera und Fokus aufwachen lassen
delay(wakeup); // Aufwachen und Fokussierung abwarten
digitalWrite(shutter, HIGH); // Verschluss 6ffnen
delay(exposureTime); // Belichtungsdauer abwarten
digitalWrite(shutter, LOW); // Verschluss freigeben
digitalWrite(focus, LOW); // Fokus freigeben
}
Optokoppler
A WA :
R 0 220 Ohm ,;;AK
6 H I
H Widerstand ; Dj
4
D 3
20
10
U RX00 ; A
220 Ohm _SIZ{'E‘}
| Widerstand
RESETOQ
N v3g
svQ
Gnd[«}
Gnd(Q
O vinQ

~

PS2501 [
Optokoppler) # K

Abbildung 10-3: Optokoppler an Kamera-Klinkenstecker

w

Diskussion

Es ist nicht ratsam, die Arduino-Pins direkt mit der Kamera zu verbinden — die Spannun-
gen sind moglicherweise nicht kompatibel und Sie riskieren die Beschiddigung Thres
Arduino oder der Kamera. Optokoppler werden genutzt, um Arduino und Kamera zu
trennen. Mehr iiber diese Bauelemente erfahren Sie in der Einfithrung zu diesem Kapitel.

Sie missen im Benutzerhandbuch der Kamera den richtigen Klinkenstecker heraussu-
chen.

Sie miissen moglicherweise die Reihenfolge dndern, in der die Pins in der takePicture-
Funktion ein- und ausgeschaltet werden, um das gewiinschte Verhalten zu erzielen. Fiir
Langzeitbelichtungen mit einer Canon-Kamera miissen Sie den Fokus einschalten, dann
den Verschluss 6ffnen, ohne den Fokus freizugeben, dann den Verschluss und zum
Schluss den Verschluss wieder freigeben (wie im Sketch). Um ein Bild aufzunehmen und
die Kamera die Belichtungsdauer berechnen zu lassen, driicken Sie die Fokus-Taste, geben
sie wieder frei und driicken dann den Verschluss.

358 | Kapitel 10: Externe Gerate fernsteuern

Siehe auch

Wenn Sie Aspekte des Kamerabetriebs steuern wollen, sollten Sie sich das Canon Hack
Development Kit auf http://chdk.wikia.com/wiki/CHDK ansehen.

Siehe auch The Canon Camera Hackers Manual: Teach Your Camera New Tricks von
Berthold Daum (Rocky Nook).

Auf dhnliche Weise lassen sich auch Videokameras iiber LANC steuern. Die Suche nach
»LANC« im Arduino Playground liefert die entsprechenden Details.

10.5 Wechselstromgerate iiber eine gehackte
Fernbedienung steuern

Problem

Sie wollen auf sichere Weise Wechselstrom ein- und ausschalten, um Lichter und Gerite
iiber eine Fernbedienung steuern zu kénnen.

Losung

Arduino kann die Tasten einer Fernbedienung tiber einen Optokoppler ansteuern. Das
kann bei Fernbedienungen notwendig sein, die mit Funk- statt mit Infrarot-Technik
arbeiten. Diese Technik kann fiir nahezu jede Fernsteuerung verwendet werden. Ein
Hack der Fernbedienung ist besonders niitzlich, um potentiell gefihrlichen Wechselstrom
von Thnen und dem Arduino fernzuhalten, da nur die batteriebetriebene Fernbedienung
modifiziert wird.

Mit dem Offnen der Fernbedienung erlischt die Garantie und der Gerit
"‘5’@ kann dabei beschidigt werden. Die Infrarot-Rezepte in diesem Kapitel sind
vorzuziehen, weil eine Modifikation der Fernbedienung unnétig ist.

Wenn Sie dieses Rezept nutzen, die Fernbedienung aber weiterhin nutzen
wollen, sollten Sie sich eine Ersatz-Fernbedienung zum Hacken besorgen.
Die meisten Hersteller werden Thnen mit Vergniigen eine Ersatz-Fernbe-
dienung verkaufen (doch Sie miissen auf die richtige Frequenz fiir das zu
steuernde Gerit achten). Sobald Sie diese Fernbedienung haben, miissen
Sie moglicherweise noch den von ihr verwendeten Kanal einstellen.

Offnen Sie die Fernbedienung und schlieRen Sie den Optokoppler so an, dass der
Photo-Emitter (Pins 1 und 2 in Abbildung 10-4) mit dem Arduino und der Photo-Tran-
sistor (Pins 3 und 4) mit den Kontakten der Fernbedienung verbunden ist.

10.5 Wechselstromgerite iiber eine gehackte Fernbedienung stewern | 359

Fernbedienung
OPTOKOPPLER
An
VVV i
220 0hm —SIZ ,:w - @
A
A ' Widerstand 1
5(3 i
R 1
5
2 pr—
D M hs
U 220 0hm _SIZ" '« @
Widerstand 'w‘
I RESETY |
v
N sv@Q
Gnd [
O qu O
vinld Ein- Aus- 1 4
Kontakt- Kontakt- 2 PS2501
schalter schalter 2 3 Fotokoppler

Abbildung 10-4: Anschluss eines Optokoppler an die Kontakte einer Fernbedienung

Der Sketch verwendet Kontaktschalter, um die Tasten der Fernbedienung ein- und aus-
zuschalten:

/*
OptoRemote Sketch
Taster an den Pins 2 und 3 schalten ferngesteuertes Gerat liber Optokoppler ein und aus.

Die Ausgdnge werde bei einem Tastendruck fiir mindestens eine halbe Sekunde gepulst
*/

const int onSwitchPin = 2; // Eingangspin fiir Ein-Schalter

const int offSwitchPin = 3; // Eingangspin fiir Aus-Schalter

const int remoteOnPin =4; // Ausgangspin zum Einschalten der Fernbedienung
const int remoteOffPin = 5; // Ausgangspin zum Ausschalten der Fernbedienung
const int PUSHED = LOW; // Wert bei gedriickter Taste

void setup() {
Serial.begin(9600);
pinMode(remoteOnPin, OUTPUT);
pinMode(remoteOffPin, OUTPUT);
pinMode(onSwitchPin, INPUT);
pinMode (offSwitchPin, INPUT);
digitalWrite(onSwitchPin,HIGH); // Internen Pullup fir inputPins aktivieren
digitalWrite(offSwitchPin,HICH);
}

void loop(){
int val = digitalRead(onSwitchPin); // Eingabewert einlesen
// Einschalten, wenn Taster gedriickt

360

| Kapitel 10: Externe Geréte fernsteuern

if(val == PUSHED)
pulseRemote(remoteOnPin);

}

val = digitalRead(offSwitchPin); // Eingabewert einlesen
// Ausschalten, wenn Taster gedriickt

1f(val == PUSHED)

{
pulseRemote(remoteOffPin);

}

// Optokoppler fir eine halbe Sekunde einschalten, um das Signal an die Fernbedienung zu
ibergeben
void pulseRemote(int pin)

digitalWrite(pin, HIGH); // Optokoppler einschalten
delay(500); // Halbe Sekunde warten
digitalWrite(pin, LOW); // Optokopller ausschalten

Diskussion

Die Taster der meisten Fernbedienungen bestehen aus einfachen Leiterbahnen und einem
leitenden Taster, der den Kontakt schlieft, wenn er gedriickt wird. Weniger weit verbreitet
sind Fernbedienungen mit konventionellen Drucktastenschaltern. Sie sind einfacher zu
nutzen, weil die Beinchen der Schalter eine einfache Anschlussmoglichkeit bieten.

N

Sg Zwar konnen die Fernbedienungstaste und der Optokoppler gemeinsam
verwendet werden — der Schaltvorgang erfolgt unabhingig von der ver-
v wendeten Methode (Tastendruck oder Optokoppler) —, aber die mit dem
Arduino verbundenen Kabel kénnen das schwierig machen.

Der Transistor des Optokopplers ldsst den Strom nur in einer Richtung flieRen. Wenn die
Sache beim ersten Versuch nicht funktioniert, vertauschen Sie einfach die beiden An-
schliisse und schauen Sie, ob dies das Problem behebt.

Bei einigen Fernbedienungen sind alle Tasten auf einer Seite miteinander verbunden
(iblicherweise mit der Masse der Schaltung). Sie kénnen die Leitungen auf dem Board
verfolgen, um das zu tiberpriifen, oder Sie konnen ein Multimeter nutzen, um den Wi-
derstand der Anschliisse verschiedener Tasten zu messen. Bei einem gemeinsamen An-
schluss muss nur eine Ader fiir jede Gruppe verwendet werden. Weniger Anschliisse
machen es einfacher, da die Verdrahtung der Adern recht fummelig sein kann, wenn die
Fernbedienung klein ist.

Optokoppler werden in Rezept 10.4 erlidutert. Sehen Sie sich dieses Rezept an, wenn Sie
mit Optokopplern nicht vertraut sind.

Die Fernbedienung kann mehrere Kontakte fiir jede Taste verwenden. Sie konnten meh-
rere Optokoppler fiir jede Taste benstigen, um die Kontakte herzustellen. Abbildung 10-5
zeigt drei Optokoppler, die tiber einen einzelnen Arduino-Pin angesteuert werden.

10.5 Wechselstromgerite iiber eine gehackte Fernbedienung steuern | 361

A REMOTE
OPTOCOUPLERS
70
He —/\VV— |
R ZE 220 0hm - Ill_-lll_
D fic Widerstand A
2[3 i
10 '
U Rx 003 A
\ 220 0hm N
| Widerstand ‘
N ResET f
i
5 P, N
6nd [F—— AAA |
0 enold 220 0hm -
vinQ Widerstand 3\

Abbildung 10-5: Mehrere Optokoppler an einer einzelnen Taste der Fernbedienung

Siehe auch

Ein anderer Ansatz zur Steuerung von Wechselstrémen ist ein isoliertes Relais wie der
PowerTailSwitch, der iiber Arduino-Pins direkt ein- und ausgeschaltet werden kann. Siehe
http://powerswitchtail.com/default.aspx.

362 | Kapitel 10: Externe Gerate fernsteuern

KAPITEL 11
Displays nutzen

11.0 Einfiihrung

Eine Flussigkristallanzeige (engl. Liquid Crystal Display, kurz LCD) ist eine einfache und
kostengiinstige Moglichkeit, Thr Projekt mit einem Benutzerinterface auszustatten. Dieses
Kapitel erklirt, wie man text- und grafikbasierte LCD-Panels mit dem Arduino verbindet
und betreibt. Das mit Abstand populdrste LCD ist das auf dem Hitachi HD44780
basierende Text-Panel. Es gibt zwei bis vier Zeilen Text mit 16 oder 20 Zeichen pro Zeile
aus (es gibt auch Versionen mit 32 und 40 Zeichen, allerdings zu einem wesentlich
hoheren Preis). Eine Bibliothek zur Ansteuerung textbasierter LC-Displays wird mit dem
Arduino mitgeliefert und Sie konnen Texte auf dem LCD ebenso einfach ausgeben wie
iiber den seriellen Monitor (siehe Kapitel 4), da LCD und serieller Monitor die gleichen
zugrundeliegenden print-Funktionen verwenden.

LCDs konnen mehr, als einfach nur Text darstellen. Worter kénnen gescrollt und
hervorgehoben werden und Sie konnen spezielle Symbole und nicht-englische Zeichen
ausgeben.

Sie kénnen eigene Symbole und Blockgrafiken fiir das Text-LCD entwerfen, doch wenn
Sie feine grafische Details benotigen, miissen Sie ein Grafikdisplay verwenden. Grafische
LC-Displays (GLCD) kosten nur wenig mehr als Text-Displays und viele beliebte GLCD-
Panel konnen neben Grafik auch bis zu acht Textzeilen mit 20 Zeichen darstellen.

LCDs benotigen mehr Arduino-Anschliisse als die meisten anderen Rezepte in diesem
Buch. Falsche Verbindungen sind das Hauptproblem bei LCDs, also nehmen Sie sich die
Zeit fur die richtige Verschaltung und iiberpriifen Sie alles sorgfiltig. Ein kostengiinstiges
Multimeter, das Spannungen und Widerstinde messen kann, ist eine grofRe Hilfe, um den
korrekten Anschluss zu iiberpriifen. Es kann einem einige Kopfschmerzen ersparen, wenn
nichts auf dem Display erscheint. Sie brauchen nichts besonderes, selbst das einfachste
Multimeter hilft Thnen sicherzustellen, dass die richtigen Pins verbunden und die Span-
nungen korrekt sind.

Es gibt sogar ein Video-Tutorial und ein PDF, das die Verwendung eines Multimeters be-
schreibt (siehe http://blog.makezine.com/archive/2007/01/multimeter_tutorial_make_1.html).

| 363

Fiir Projekte, die eine groflere Anzeige bendtigen, als sie giinstige LCD-Panels bieten,
beschreibt Rezept 11.11, wie man einen Fernseher als Anzeige fiir den Arduino nutzen
kann.

11.1 Ein Text-L(D anschlieBen und nutzen

Problem

Sie besitzen ein Text-LCD, das auf dem Industriestandard HD44780 (oder einem kom-
patiblen Controller) basiert, und wollen Text und Zahlen ausgeben.

Losung

Die Arduino-Software umfasst die LiquidCrystal-Bibliothek zur Steuerung von LC-Dis-
plays mit HD44780-Chip.

W N

Die meisten fiir den Arduino gedachten Text-LCDs sind mit dem Hitachi
HD44780-Controller kompatibel. Wenn Sie sich nicht sicher sind, iiber-
4+ priifen Sie anhand des Datenblatts, ob er 44780-kompatibel ist.

Um die Anzeige ans Laufen zu bekommen, miissen Sie die Strom-, Daten- und Steuerpins
anschliefen. Verbinden Sie die Daten- und Steuerpins mit digitalen Ausgingen, schliefen
Sie ein Potentiometer fiir den Kontrast an und schliefen Sie die Stromleitungen an. Wenn
Thr Display eine Hintergrundbeleuchtung hat, muss sie ebenfalls angeschlossen werden,
iiblicherweise iiber einen Widerstand.

Text LCD

123456 ——11——16
s (MU ©
Vﬁdersrand giir
< 220 intergrund-
063, " % o
Poti T Viderstnde Hintergrundbeleuchtung — (Masse)
Hintergrundbeleuchtung + (5V)
eeveve QQQEEJE_QO eleccuvvee
N a DIGITAL PINS o
Arduino

Abbildung 11-1: Anschluss eines Text-LCDs

364 | Kapitel 11: Displays nutzen

Abbildung 11-1 zeigt die gingigsten LCD-Anschliisse. Stellen Sie mit Hilfe des Daten-
blatts sicher, das Sie die richtigen Pins verwenden. Tabelle 11-1 zeigt die wichtigsten
Anschliisse, doch wenn Thr LCD andere Pins verwendet, miissen Sie auf Kompatibilitit
mit dem Hitachi HD44780 achten — dieses Rezept funktioniert nur mit LCDs, die mit
diesem Chip kompatibel sind. Das LCD verfiigt tiber 16 Pins (bzw. 14 Pins ohne Hin-
tergrundbeleuchtung) — identifizieren Sie Pin 1 auf dem Panel, da es an einer anderen
Stelle liegen konnte, als in der Abbildung zu sehen.

N

Vielleicht fragen Sie sich, warum die LCD-Pins 7 bis 10 nicht angeschlos-
sen sind. Der Datentransfer des LCDs kann entweder iiber vier oder {iber
.+ acht Pins erfolgen. Dieses Rezept arbeitet mit vier Pins, damit die anderen
vier Arduino-Pins firr andere Aufgaben frei bleiben. Theoretisch steigt bei
acht Pins die Performance, ist aber nicht so hoch, dass sie den Verlust von
vier Arduino-Pins wert wire.

Tabelle 11-1: LCD-Anschliisse

LCD-Pin Funktion Arduino-Pin
1 Masse: Gnd oder OV oder Vss Gnd
2 +5V oder Vdd 5v
3 Vo oder Kontrast

4 RS 12
5 R/W Gnd
6 E 1
7 Do

8 D1

9 D2

10 D3

1 D4 5
12 D5 4
13 D6 3
14 D7 2
15 A oder Anode

16 K oder Kathode

Sie miissen ein 10K-Potentiometer fiir den Kontrast an LCD-Pin 3 anschlieRen. Ohne die
richtige Spannung an diesem Pin sehen Sie auf dem Display moglicherweise gar nichts. In
Abbildung 11-1 ist eine Seite des Potis mit Gnd (Masse) verbunden, die andere Seite mit
+5V vom Arduino und der Schieber mit LCD-Pin 3. Das LCD wird itber Gnd und +5V
vom Arduino an den LCD-Pins 1 und 2 mit Strom versorgt.

Viele LCD-Panels besitzen eine interne Lampe, die sog. Hintergrundbeleuchtung, um das
Display zu erhellen. Auf dem Datenblatt sollte stehen, ob es eine Hintergrundbeleuchtung
gibt und ob sie einen externen Widerstand benétigt — was hiufig der Fall ist, damit die

11.1 Ein Text-LCD anschlieBen und nutzen | 365

Hintergrund-LEDs nicht durchbrennen. Falls Sie sich nicht sicher sind, schliefen Sie
einfach einen 220 Ohm-Widerstand an. Die Hintergrundbeleuchtung ist gepolt, also
achten Sie darauf, dass Pin 15 mit +5V und Pin 16 mit Masse verbunden ist. (Der
abgebildete Widerstand ist zwischen Pin 16 und Masse angeschlossen, Sie kénnen ihn
aber ebenso gut auch zwischen Pin 15 und +5V hingen.)

Uberpriifen Sie die Verschaltung noch einmal, bevor Sie die Spannung einschalten, da Sie
das LCD beschidigen konnen, wenn die Spannungsversorgung falsch angeschlossen ist.
Um den mit Arduino gelieferten HelloWorld-Sketch auszufiihren, klicken Sie in der IDE
das Files-Menti an und navigieren zu Examples—Library—LiquidCrystal>HelloWorld.

Der folgende Code wurde etwas modifiziert, um neben »Hallo, Welt« auch Zahlen
auszugeben. Passen Sie numRows und numCols an die Zeilen und Spalten Thres LC-Displays
an:

/*
LiquidCrystal Library - Hallo, Welt

Demonstriert die Verwendung eines 16 x 2 LC-Displays.
http://www.arduino.cc/en/Tutorial/LiquidCrystal
*/

#include <LiquidCrystal.h> // Bibliothek einbinden

//Konstanten fiir die Zeilen und Spalten des LCDs
const int numRows = 2;
const int numCols = 16;

// Bibliothek mit den Interface-Pins initialisieren
LiquidCrystal lcd(12, 11,5, 4, 3, 2);

void setup()
{

lcd.begin(numCols, numRows);
lcd.print("Hallo, Welt!"); //Meldung im LCD ausgeben.
}

void loop()

{
// Cursor an Spalte 0, Zeile 1 positionieren
// (Hinweis: Zeile 1 ist die zweite Zeile, da die Zahlung bei 0 beginnt):
lcd.setCursor(o, 1);
// Seit Reset verstrichene Sekunden ausgeben.
led.print(millis()/1000);

}

Fithren Sie den Sketch aus. In der ersten Zeile der Anzeige sollte »Hallo, Welt« erscheinen.
In der zweiten Zeile sollte eine Zahl erscheinen, die sich jede Sekunde erhoht.

366 | Kapitel 11: Displays nutzen

Diskussion

Wenn kein Text erscheint und Sie ganz sicher sind, dass alle Anschliisse korrekt sind,
miissen Sie moglicherweise den Kontrast mit dem Poti einstellen. Wenn Sie den Poti auf
eine Seite drehen (iiblicherweise die Seite, die mit Masse verbunden ist), ist der maximale
Kontrast eingestellt und Sie sollten kleine Blocke sehen. Drehen Sie den Poti in die andere
Richtung, sehen Sie wahrscheinlich gar nichts mehr. Die richtige Einstellung hingt von
vielen Faktoren ab, einschlieflich Blickwinkel und Temperatur — drehen Sie am Poti, bis
Sie ein gutes Ergebnis erzielen.

Wenn Sie bei keiner Poti-Stellung Pixelblocke sehen konnen, tiberpriifen Sie, ob die An-
zeige Uber die richtigen Pins angesteuert wird.

Sobald Sie Text auf dem Display sehen, ist der Einsatz des LCDs in einem Sketch eine
einfache Sache. Sie nutzen dhnliche Befehle wie bei der seriellen Ausgabe, die in Kapitel 4
behandelt wurde. Das nichste Rezept geht genauer auf die print-Befehle ein und erliutert,
wie man die Textposition kontrolliert.

Siehe auch
Die LiquidCrystal-Referenz: http://arduino.cc/en/Reference/LiquidCrystalPrint.
Kapitel 4 enthilt Details zu den print-Befehlen.

Das Datenblatt des Hitachi HD44780 LCD-Controllers ist die umfassende Referenz fiir
die Low-Level-Funktionalitit. Die Arduino-Bibliothek versteckt einen Grofiteil der Kom-
plexitit vor Thnen, doch wenn Sie alles tiber die Fihigkeiten des Chips nachlesen wollen,
koénnen Sie sich das Datenblatt von http://www.sparkfun.com/datasheets/LCD/HD44780
.pdf herunterladen.

Die LCD-Seite im Arduino Playground enthilt Tipps zu Soft- und Hardware sowie
weiterfithrende Links: http://www.arduino.cc/playground/Code/LCD.

11.2 Text formatieren

Problem

Sie wollen die Position des im LC-Display dargestellten Textes kontrollieren, z.B. um
Werte an festgelegten Positionen auszugeben.

Losung

Der folgende Sketch zihlt zuerst von 9 bis 0 herunter und gibt dann eine Ziffernfolge in
drei Spalten a vier Zeichen aus. Passen Sie numRows und numCols an die Anzahl der Zeilen
und Spalten Thres LCDs an:
/*
LiquidCrystal Library - FormatText
*/

11.2 Text formatieren | 367

#include <LiquidCrystal.h> // Bibliothek einbinden

//Konstanten fiir Zeilen und Spalten des LCDs
const int numRows = 2;
const int numCols = 16;

int count;

// Bibliothek mit Interface-Pins initialisieren
LiquidCrystal lcd(12, 11,5, 4, 3, 2);

void setup()
{

lcd.begin(numCols, numRows);
lcd.print("Beginne in "); // Dieser String ist 11 Zeichen lang
for(int i=9; i>0; i--) //Von 9 herunterzshlen
{
// Erste Zeile ist 0
lcd.setCursor(11,0); // Cursor an das Ende des Strings bewegen
led.print(i);
delay(1000);

}

void loop()

{
int columnWidth = 4; //Spaltenbreite
int displayColumns =3; //Anzahl der Spalten

lcd.clear();
for(int col=0; col < displayColumns; col++)

lcd. setCursor(col * columnWidth, 0);
count = count+ 1;
lcd.print(count);

delay(1000);

}

Diskussion

Die lcd.print- Funktionen sind Serial.print sehr dhnlich. Zusitzlich besitzt die LCD-
Bibliothek Befehle zur Steuerung der Cursorposition (Zeile und Spalte, an denen der Text
ausgegeben wird).

Die 1lcd.print-Anweisung gibt jedes neue Zeichen hinter dem vorigen aus. Uber das Ende
einer Zeile hinausgehender Text kann in der nichsten Zeile oder auch gar nicht aus-
gegeben werden. Mit dem Befehl 1cd.setCursor() kénnen Sie festlegen, an welcher Posi-
tion der nichste lcd.print-Aufruf mit der Ausgabe beginnt. Sie legen die Spalte und Zeile
fest (die obere linke Ecke ist 0,0). Sobald der Cursor positioniert ist, erfolgt die Ausgabe
beim nichsten lcd.print an diesem Punkt und vorhandener Text wird tiberschrieben. Der

368 | Kapitel 11: Displays nutzen

Sketch in diesem Rezept nutzt das, um eine Reihe von Zahlen an festen Positionen aus-
zugeben.

Zum Beispiel stellt in setup die Zeile

lcd.setCursor(12,0); // Cursor an die 12. Stelle bewegen

led.print(i);
lcd. setCursor(12,0) sicher, dass jede Ziffer an der gleichen Position (12. Spalte, 1. Zeile)
ausgegeben wird. Die Ziffern erscheinen also immer an der gleichen Stelle und werden
nicht hintereinander ausgegeben.

W N

N Zeilen und Spalten beginnen bei 0, d.h., setCursor(4,0) positioniert den
ﬁ:‘ Cursor in der funften Spalte der ersten Zeile. Das liegt daran, dass zwi-
h schen den Positionen 0 bis 4 fiinf Zeichen liegen. Wenn das nicht klar ist,

zihlen Sie es einfach (bei 0 beginnend) an den Fingern ab.

Die folgenden Zeilen nutzen setCursor, um die Spalten mit columnwidth Leerzeichen auf-
zufiillen:

lcd.setCursor(col * columnWidth, 0);

count = count+ 1;

lcd.print(count);
lcd.clear();

lcd. clear 1oscht den Bildschirm und bewegt den Cursor zuriick in die obere linke Ecke.

Nachfolgend eine loop-Variante, die fiir die Ausgabe alle Zeilen Thre LCDs nutzt. Ersetzen
Sie Thren loop-Code durch folgende Zeilen (und tragen Sie fiir numRows und numCols die
Zeilen und Spalten Thres LCDs ein):

void loop()
{

int columnWidth = 4;
int displayColumns = 3;

lcd.clear();
for(int row=0; Tow < NUMROWS; TOW++)

for(int col=0; col < displayColumns; col++)

lcd. setCursor(col * columnWidth, row);
count = count+ 1;
lcd.print(count);

}
delay(1000);

}

Die erste for-Schleife geht die vorhandenen Zeilen durch, wihrend die zweite die Spalten
verarbeitet.

11.2 Text formatieren | 369

Um die Zahl der in eine LCD-Zeile passenden Zahlen zu berechnen (statt sie einfach fest
einzutragen), dndern Sie die displayColumns-Zeile:

int displayColumns = 3;
wie folgt:

int displayColumns = numCols / columnWidth;

Siehe auch

Das Tutorial zur LiquidCrystal-Bibliothek: http://arduino.cc/en/Reference/LiquidCrystal
from=Tutorial. LCDLibrary

11.3 Cursor und Display ein- und ausschalten

Problem

Sie wollen den Cursor blinken lassen und das Display ein- oder ausschalten, z.B. um die
Aufmerksambkeit auf einen bestimmten Bereich der Anzeige zu lenken.

Losung

Dieser Sketch zeigt, wie Sie den Cursor (ein leuchtender Block an der Stelle, an der das
nichste Zeichen ausgegeben wird) blinken lassen konnen. Er zeigt auch, wie man die
Anzeige ein- und ausschalten kann, um Aufmerksamkeit zu erregen, indem man das
gesamte Display blinken lisst:

/*

blink

*/

// Bibliothek einbinden
#include <LiquidCrystal.h>

// Bibliothek mit den Interface-Pins initialsieren
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()
// Spalten und Zeilen des LCDs einstellen und
lcd.begin(16, 2);
// Eine Meldung auf dem LCD ausgeben.
lcd.print("Hallo, Welt!");

void loop()

lcd.setCursor(o, 1);

lcd.print("Cursor blinkt");
lcd.blink();

370 | Kapitel 11: Displays nutzen

delay(2000);

lcd.noBlink();
lcd.print(" noBlink");
delay(2000);

lcd.clear();

lcd.print("Display aus ...");
delay(1000);
lcd.noDisplay();
delay(2000);

lcd.display(); // Display wieder einschalten
lcd.setCursor(o, 0);
led.print(" Display-Flash 1");

displayBlink(2, 250); // Zweimal blinken lassen
displayBlink(2, 500); //Und nochmal, aber doppelt so lang

lcd.clear();
}

void displayBlink(int blinks, int duration)
while(blinks--)
lcd.noDisplay();
delay(duration);

lcd.display();
delay(duration);

Diskussion

Der Sketch ruft die Funktionen blink und noBlink auf, um das Blinken des Cursors ein-
und auszuschalten.

Der Code, der das ganze Display blinken lisst, steht in der Funktion displayBlink. Die
Funktion verwendet lcd.display() und lcd.noDisplay(), um die Anzeige ein- und aus-
zuschalten (ohne den Text im internen Speicher zu 16schen).

11.4 Text scrollen

Problem

Sie wollen Text scrollen. Zum Beispiel wollen Sie eine Laufschrift erzeugen, die mehr
Zeichen darstellt, als in eine Zeile des LC-Displays passen.

11.4 Text scrollen | 371

Losung
Dieser Sketch demonstriert 1cd.ScrollDisplayleft und lcd.ScrollDisplayRight.

Er scrollt eine Textzeile nach links, wenn das System geneigt ist, und nach rechts, wenn er
nicht geneigt ist. Verbinden Sie eine Seite eines Neigungssensors mit Pin 7 und den
anderen Pin mit Masse (wenn Sie mit Neigungssensoren nicht vertraut sind, sehen Sie sich
Rezept 6.1 an):

/*
Scroll

* Der Sketch scrollt Text nach links, wenn er geneigt ist,
*und nach rechts, wenn nicht.

*/

#include <LiquidCrystal.h>

// Bibliothek mit den Interface-Pins initialisieren
LiquidCrystal lcd(12, 11,5, 4, 3, 2);

const int numRows = 2;

const int numCols = 16;

const int tiltPin =7; // Pin fiir Neigungssensor

const char textString[] = "Zum Scrollen neigen”;
const int textlen = sizeof(textString) -1; // Zahl der Zeichen
boolean isTilted = false;

void setup()
{

// Spalten und Zeilen des LCDs festlegen

lcd.begin(numCols, numRows);

digitalWrite(tiltPin, HIGH); // Pullups fur Neigungssensor aktivieren
lcd.print(textString);

void loop()
{
if(digitalRead(tiltPin) == LOW 8& isTilted == false)
{
// Geneigt, also Text nach links scrollen
isTilted = true;
for (int position =0; position < textLen; position++)

lcd.scrollDisplayleft();
delay(150);
if(digitalRead(tiltPin) == HICH &8 isTilted == true)
// Nicht mehr geneigt, also Text nach rechts scrollen

isTilted = false;
for (int position =0; position < textlLen; position++)

372

| Kapitel 11: Displays nutzen

lcd.scrollDisplayRight();
delay(150);

Diskussion

Die erste Hilfte des 1loop-Codes behandelt den Ubergang vom nicht geneigten in den ge-
neigten Zustand. Der Code priift, ob der Neigungsschalter geschlossen (LOW) oder offen
(HICH) ist. Ist er LOW und der aktuelle Zustand (der in isTilted steht) nicht geneigt, dann
wird der Text nach links gescrollt. Die Verzégerung in der for-Schleife steuert die Ge-
schwindigkeit des Scrollens. Passen Sie den Wert entsprechend an, wenn sich der Text zu
schnell oder zu langsam bewegt.

Die zweite Hilfte des Codes verwendet die gleiche Logik, um den Ubergang vom ge-
neigten zum nicht geneigten Zustand zu verarbeiten.

Eine solche Scrolling-Fihigkeit ist besonders niitzlich, wenn Sie mehr Text ausgeben
miissen, als in eine LCD-Zeile passt.

Der folgende Sketch verwendet die Funktion marquee (engl. Laufschrift), die Text mit einer
Linge von bis zu 32 Zeichen scrollen kann:
/*
Marquee

*Scrollt eine sehr lange Textzeile
*/

#include <LiquidCrystal.h>
// Bibliothek mit den Interface-Pins initialisieren
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

const int numRows = 2;
const int numCols = 16;

void setup()

// Spalten und Zeilen des LCDs festlegen
lcd.begin(numCols, numRows);

void loop()
{

marquee("Eine viel zu lange Nachricht!");
delay(1000);
lcd.clear();

}

// Diese Version von marquee scrollt sehr lange Nachrichten von Hand
void marquee(char *text)

int length = strlen(text); // Anzahl der Zeichen im Text

11.4 Text scrollen | 373

if(length < numCols)
lcd.print(text);
else
{
int pos;
for(pos = 0; pos < numCols; pos++)
lcd.print(text[pos]);
delay(1000); // Vor dem Scrollen etwas Zeit zum Lesen lassen
pos=1;
while(pos <= length - numCols)

lcd.setCursor(0,0);

for(int i=0; i < numCols; i++)
led.print(text[pos+i]);

delay(300);

pos = pos +1;

}
}

Der LCD-Chip besitzt einen internen Speicher, der den Text aufnimmt. Dieser Speicher ist
begrenzt ((32 Byte bei den meisten vierzeiligen Displays). Wenn Sie lingere Meldungen
ausgeben wollen, kénnten die sich selbst tiberschreiben. Wenn Sie lingere Nachrichten
(z.B. einen Tweet) scrollen oder das Scrollen genauer steuern wollen, benétigen Sie eine
andere Technik. Die folgende Funktion speichert den Text im Arduino-RAM und schickt
nur Teile an die Anzeige, um den Scroll-Effek zu erzielen. Die Nachrichten kénnen eine
beliebige Linge haben, solange sie in den Arduino-Speicher passen:

void marquee(char *text)
{
int length = strlen(text); // Anzahl der Buchstaben im Text
if(length < numCols)
lcd.print(text);
else
{
int pos;
for(pos = 0; pos < numCols; pos++)
lcd.print(text[pos]);
delay(1000); // ermbglicht es, dass die erste Zeile vor dem Scrollen gelesen werden kann
pos=1;
while(pos <= length - numCols)

lcd.setCursor(0,0);

for(int i=0; i < numCols; i++)
led.print(text[pos+i]);

delay(300);

pos = pos +1;

374 | Kapitel 11: Displays nutzen

11.5 Sonderzeichen darstellen

Problem

Sie wollen Sonderzeichen des LCD-Zeichenspeichers wie ° (Grad), ¢, +, © (Pi) ausgeben.

Losung

Ermitteln Sie den Zeichencode des darzustellenden Zeichens in der Zeichenmuster-Ta-
belle des LCD-Datenblatts. Der folgende Sketch gibt einige gingige Symbole in setup aus.
Er gibt dann alle darstellbaren Symbole in loop aus:

/*
LiquidCrystal Library - Special Chars
*/

#include <LiquidCrystal.h>

//Zeilen und Spalten fir Ihr LCD anpassen
const int numRows = 2;
const int numCols = 16;

// Definition einiger niitzlicher Sonderzeichen

const byte degreeSymbol = B11011111;

const byte piSymbol =B11110111;

const byte centsSymbol =B11101100;

const byte sqrtSymbol =B11101000;

const byte omegaSymbol =B11110100; // Das Symbol flir Ohm

byte charCode = 32; // Exstes druckbares ASCII-Zeichen
int col;
int row;

// Bibliothek mit den Interface-Pins initialisieren
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()

lcd.begin(numRows, numCols);
showSymbol (degreeSymbol, "Grad");
showSymbol (piSymbol, "Pi");
showSymbol(centsSymbol, "Cent");
showSymbol(sqrtSymbol, "Quadrat");

showSymbol (omegaSymbol, "Ohm");
lcd.clear(

}

void loop()
{

1)

 ~~—~

lcd.print(charCode);
calculatePosition();
if(charCode == 255)

11.5 Sonderzeichen darstellen | 375

// Alle Zeichen ausgegeben, also ein wenig warten
// und wieder von vorne anfangen

delay(2000);

lcd.clear();

Tow = col = 0;

charCode = 32;

charCode = charCode + 1;

}

void calculatePosition()
{
col =col +1;
if(col == numCols)
{
col =0;
TOW = TOW + 1;
if(row == numRows)
{
T0W = 0;
delay(2000); // pause
lcd.clear();

lcd. setCursor(col, row);

}
}

// Sonderzeichen samt Beschreibung ausgeben
void showSymbol(byte symbol, char * description)

lcd.clear(

lcd.write(symbol);

led.print(' '); // Leerzeichen vor Beschreibung einfligen
lcd.print(description);

delay(3000);

)5
S

Diskussion

Eine Tabelle mit den verfiigbaren Zeichenmustern finden Sie auf dem Datenblatt des LCD-
Controller-Chips (auf S. 17 auf dem Datenblatt an http:/www.sparkfun.com/datasheets/
LCD/HD44780.pdf).

Ermitteln Sie das gewiinschte Zeichen in der Tabelle. Der Code jedes Zeichens wird durch
die Kombination der Bindrwerte der Spalte und Zeile bestimmt (siehe Abbildung 11-2).

376 | Kapitel 11: Displays nutzen

obere 4 Bit

Upper 4]
Lawsd sts| 0000 | ODO1 | 0010 | 001

jury
=]
-
=
=1

0101 | 0110 | 0111 (1000 | 1001|1010 | 1011 | 1100 {1101 | 1110|1111
=35 |up
ol F|F l:l
nt | pm
1ji I I

oxx 0000 it

I=||an
11

wox0001 | (2]

¥ 2
Q|3 |

wox1110 | (7) ™

w1111 | (8) -I"lla

i Il L
aQZE e

T4 2| T
w

nElels

untere 4 Bit Grad-Symbol

Abbildung 11-2: Zeichencode aus Datenblatt ermitteln

Zum Beispiel ist das Grad-Symbol (°) der drittletzte Eintrag in der unteren Zeile der
Tabelle in Abbildung 11-2. Seine Spalte gibt die oberen vier Bits mit 1101 und die Zeile die
unteren vier Bits mit 1111 an. Kombiniert man beide, erhilt man den Code fiir das
Symbol: B11011111. Sie kénnen diesen Bindrwert nutzen oder ihn in einen Hexwert
(0xDF) oder Dezimalwert (223) umwandeln. Beachten Sie, dass Abbildung 11-2 nur 4 der
insgesamt 16 Zeilen auf dem Datenblatt zeigt.

Die LCD-Anzeige kann natiirlich auch jedes druckbare ASCII-Zeichen darstellen. Dazu
nutzen Sie den entsprechenden ASCII-Wert in lcd.print.

Der Sketch nutzt eine Funktion namens showSymbol, um das Sonderzeichen und eine
Beschreibung auszugeben:

void showSymbol(byte symbol, char * description)

(Wenn Sie eine kleine Auffrischung brauchen, wie man Zeichenketten verwendet und an
Funktionen tibergibt, sehen Sie sich Rezept 2.6 an.)

Siehe auch

Datenblatt zum Hitachi HD44780: http://www.sparkfun.com/datasheets/LLCD/HD44780
pdf

11.6 Eigene Zeichen definieren

Problem

Sie wollen eigene Zeichen oder Symbole (Glyphen) definieren und anzeigen. Die ge-
wiinschten Symbole sind im LCD-Zeichenspeicher nicht vordefiniert.

11.6 Eigene Zeichen definieren | 377

Losung

Wenn Sie den folgenden Code hochladen, erscheint abwechselnd ein lichelnder und ein
schmollender Smiley:

/*

custom_char Sketch

Erzeugt ein animiertes Smiley mit selbstdefinierten Zeichen
*/

#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

byte happy[8] =
{

B00000,
B10001,
B00000,
B00000,
B10001,
B01110,
B00000,
B00000

};
byte saddy[8] =
{

B00000,
B10001,
B00000,
B00000,
B01110,
B10001,
B00000,
B00000

b

void setup() {
lcd.createChar (0, happy);
lcd.createChar(1, saddy);
lcd.begin(16, 2);

}

void loop() {
for (int i=0; i<2; i++)
{
lcd.setCursor(0,0);
lcd.write(i);
delay(500);
}
}

378 | Kapitel 11: Displays nutzen

Diskussion

Die LiquidCrystal-Bibliothek erméglicht die Definition von bis zu acht eigenen Zeichen,
die iiber die Zeichencodes 0 bis 7 ausgegeben werden konnen. Jedes Zeichen wird auf der
Anzeige in einem Raster aus 5x8 Pixeln dargestellt. Sie definieren ein Zeichen in einem
Array von acht Bytes. Jedes Byte definiert eine Zeile des Zeichens. Schreibt man sie als
Binirzahl, steht eine 1 fiir ein eingeschaltetes und die O fiir ein ausgeschaltetes Pixel (alle
Werte hinter dem fiinften Bit werden ignoriert). Der Sketch definiert zwei Zeichen
namens happy und saddy (siehe Abbildung 11-3).

B00000 B00000
B10001 | H BN | B10001
B00000 B00000
B00000 B00000
B10001 — +“—B01110
B01110 . . B10001
B00000 B00000
B00000 B00000
happy saddy

Abbildung 11-3: Definition eigener Zeichen

Die folgende Zeile in setup erzeugt das Zeichen aus den im happy-Array definierten Werten
und weist es dem Zeichen 0 zu:

lcd.createChar (0, happy);
Um das selbstdefinierte Zeichen auszugeben, nutzen Sie die folgende Zeile:

lcd.write(0);
N
8 Beachten Sie den Unterschied beim Schreiben eines Zeichens mit und ohne

s Hochkomma. Die folgende Zeile gibt eine 0 aus, nicht das Smiley-Symbol:
RO 3
0

(N

led.write('0"); // gibt eine 0 aus

Der Code in der for-Schleife schaltet zwischen den Zeichen 0 und 1 hin und her, um eine
Animation zu erzeugen.

11.7 GroBe Symbole darstellen

Problem

Sie wollen zwei oder mehr selbstdefinierte Zeichen kombinieren, um Symbole darzustel-
len, die groRer sind als ein einzelnes Zeichen, z.B. Zahlen doppelter Hohe.

11.7 GroBe Symbole darstellen | 379

Losung
Der folgende Sketch gibt Zahlen doppelter GrofRe tiber selbstdefinierte Zeichen aus:

/*

* customChars

*

* Dieser Sketch gibt groRe Ziffern aus

*Die bigDigit-Arrays wurden vom Arduino-Forum-Mitglied dcb inspiriert
*/

#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11,5, 4, 3, 2);

byte glyphs[5][8] = {
{B11111,B11111,B00000, B00000, BOO00O, BO0O00, BOO00O, BOOOOO },
{ B00000, B00000, B00000, BO0O00O, B0O0000, B00000,B11111,B11111 },
{B11111,B11111,B00000,B00000,B00000,B00000,B11111,B11111 },
{B11111,B11111,B11111,B11111,B11111,B11111,B11111,B11111 } ,
{ B00000, BO0000, BOODOO, BOOOOO, BO0000,B01110,B01110,B01110 } };

const int digitWidth = 3; // Breite in groRen Ziffer in Zeichen
// (Ohne Leerzeichen zwischen den Zeichen)

//Arrays zur Indexierung der selbstdefinierten Zeichen, aus denen die groRen Ziffern bestehen

// Ziffern 0-4 0o 1 2 3 4
const char bigDigitsTop[10][digitWidth]={ 3,0,3, 0,3,32, 2,2,3, 0,2,3, 3,1,3,
// Zifferns-9 5 6 7 8 9

3,2,2,3,2,2,0,0,3, 3,2,3,3,2,3};

const char bigDigitsBot[10][digitWidth]={ 3,1 ,1, 3,1,1, 1,1,3, 32,32,3,
1,1 »3,32,32,3, 3,1,3, 1,1,3};

char buffer[12]; // Puffer zur Unwandlung einer Zahl in einen String

void setup ()

lcd.begin(20,4);
// Selbstdefinierte Zeichen erzeugen
for(int i=0; 1 < 5; i++)
lcd.createChar(i, glyphs[i]); //5eigene Zeichen definieren
// Countdown ausgeben
for(int digit =9; digit >=0; digit--)

showDigit(digit, 2); // Ziffer ausgeben
delay(1000);

}
lcd.clear();
}

void loop ()

{
// Nun ausgeben, wie lange der Sketch lauft (in Sekunden)

int number = millis() / 1000;
showNumber (number, 0);
delay(1000);
}

380

| Kapitel 11: Displays nutzen

void showDigit(int digit, int position)

lcd.setCursor(position * (digitwidth + 1), 0);
for(int i=0; i < digitWidth; i++)
lcd.write(bigDigitsTop[digit][i]);
lcd.setCursor(position * (digitWidth +1), 1);
for(int i=0; i < digitWidth; i++)
lcd.write(bigDigitsBot[digit][i]);

void showNumber (int value, int position)

{

int index; // Index auf die auszugebende Ziffer, 0 ist die Ziffer ganz links
itoa(value, buffer, 10); // Mehr zu itoa finden Sie inRezept 2.8

// Alle Ziffern nacheinander ausgeben

for(index = 0; index < 10; index++) // Bis zu 10 Ziffern darstellen

char c = buffer[index];
if(c==0) // Auf Null prufen (nicht auf '0")
return; // Das String-Ende-Zeichen ist die Null, siehe Kapitel 2
C=cC-48; //ASCII-Wert in numerischen Wert umwandeln (siehe Rezept 2.9)
showDigit(c, position + index);
}
}

Diskussion

Die Zeichen eines LC-Displays haben eine feste Grofe, aber man kann durch die
Kombination von Zeichen groflere Symbole darstellen. Dieses Rezept erzeugt mit der in
Rezept 11.6 beschriebenen Technik fiinf selbstdefinierte Zeichen. Diese Symbole (siehe
Abbildung 11-4) kénnen so kombiniert werden, dass sich mit ihnen grofRe Ziffern (siehe
Abbildung 11-5) darstellen lassen. Der Sketch zihlt auf dem LCD in groRen Ziffern von 9
bis O herunter. Er gibt dann in Sekunden aus, wie lange der Sketch schon liuft.

0 1 2 3 4

Abbildung 11-4: Selbstdefinierte Zeichen fiir grofSe Ziffern

Abbildung 11-5: Aus selbstdefinierten Zeichen zusammengesetzte Ziffern

11.7 GroBe Symbole darstellen | 381

Das glyphs-Array definiert die Pixel fiir fiinf selbstdefinierte Zeichen. Die zwei Dimensio-
nen des Arrays stehen in den eckigen Klammern:

byte glyphs[5][8] = {

[5] ist die Zahl der Zeichen und [8] die Anzahl der Zeilen pro Zeichen. Jedes Element
enthilt Einsen und Nullen die festlegen, ob ein Pixel an dieser Stelle der Zeile an oder aus
ist. Wenn Sie die Werte in glyph[0] (dem ersten Zeichen) mit Abbildung 11-2 vergleichen,
konnen Sie sehen, dass die Einsen den dunklen Pixeln entsprechen:

{ B11111,B11111,B00000, B00000, B0O0000, BOO0O0O, BOOO0O, BO0000 } ,

Jede groRe Ziffer setzt sich aus sechs der selbstdefinierten Zeichen zusammen, drei fir die
obere und drei fiir die untere Hilfte. Die Arrays bigDigitsTop und bigDigitsBot definieren,
welches selbstdefinierte Zeichen fiir die oberen und unteren Zeilen auf der LCD-Anzeige
verwendet wird.

Siehe auch

Falls Sie wirklich grofle Ziffern benotigen, finden Sie in Kapitel 7 Informationen zu
7-Segment-LED-Anzeigen. 7-Segment-Anzeigen gibt es in GréfRen von etwa einem bis zu
5 Zentimetern und mehr. Sie benotigen wesentlich mehr Strom als LC-Displays und
konnen Buchstaben und Symbole nicht besonders gut darstellen, sind aber eine gute
Wahl, wenn Sie etwas grof§ darstellen wollen.

11.8 Kleine Pixel darstellen

Problem

Sie wollen Informationen mit einer feineren Auflosung als ein einzelnes Zeichen dar-
stellen, z.B. um ein Balkendiagramm auszugeben.

Losung

Rezept 11.7 beschreibt, wie man grofRe Symbole darstellen kann, die aus mehr als einem
Zeichen bestehen. Dieses Rezept macht das Gegenteil: Es definiert acht kleine Symbole,
jedes einen Pixel hoher als das vorherige (siehe Abbildung 11-6).

0 1 2

Abbildung 11-6: Acht selbstdefinierte Zeichen bilden vertikale Balken

382 | Kapitel 11: Displays nutzen

Diese Symbole werden genutzt, um Balkendiagramme zu zeichnen. Wie das geht, zeigt
der folgende Sketch:

/*
* customCharPixels
*/

#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

//Zeilen und Spalten fir ihr LCD anpassen
const int numRows = 2;
const int numCols = 16;

// Bitarray definiert Pixel fiir 8 selbstdefinierte Zeichen
// Einsen und Nullen geben an, ob ein Pixel an oder aus ist

byte glyphs[8][8] = {
{B00000, B00000, B0O0000, BO0000, BOO00O, BO0000, B0O0000,B11111}, // 0
{B00000, B0O0000, B0OOV0O, BO000D, BO0000, B00000,B11111,B11111}, //1
{B00000, B00000, B0O0000, B00000,B00000,B11111,B11111,B11111}, // 2
{B00000, B00000, B00000,B00000,B11111,B11111,B11111,B11111}, //3
{B00000,B00000,B00000,B11111,B11111,B11111,B11111,B11111}, // 4
{B00000,B00000,B11111,B11111,B11111,B11111,B11111,B11111}, //5
{Booooo,B11111,B11111,B11111,B11111,B11111,B11111,B11111}, //6
{B11111,B11111,B11111,B111141,B11111,B11111,B11111,B11111}}; //7

void setup ()

lcd.begin(numCols, numRows);
for(int i=0; i< 8; i++)

lcd.createChar (i, glyphs[i]); // Selbstdefinierte Zeichen erzeugen
lcd.clear();

void loop ()
{

for(byte i=0; i< 8; i++)
lcd.write(i); // Alle Balken darstellen
delay(2000);
lcd.clear();
}

Diskussion

Der Sketch erzeugt acht selbstdefinierte Zeichen, jedes ein Pixel hoher als das vorige (siehe
Abbildung 11-6). Sie werden nacheinander in der oberen Zeile des LCDs ausgegeben. Mit
diesen »Balkendiagramm«-Zeichen kénnen Sie Werte in Threm Sketch darstellen, die auf
einem Bereich von 0 bis 7 abgebildet werden kénnen. Das folgende Code-Fragment gibt
beispielsweise einen Wert aus, der tiber den Analogeingang 0 eingelesen wurde:

11.8 Kleine Pixel darstellen | 383

int value = analogRead(0);

byte glyph = map(value, 0, 1023,0,8);// Proportionalen Wert zwischen 0 und 7 zuriickgeben

lcd.print(glyph);
Fir eine hohere Auflosung konnen Sie die Balken auch stapeln. Die Funktion double-
HeightBars im nachfolgenden Code gibt einen Wert zwischen 0 und 15 mit einer
Auflsung von 16 Pixeln iiber zwei Zeilen der Anzeige aus:

void doubleHeightBars(int value, int column)

char upperGlyph;
char lowerGlyph;

if(value < 8)

upperGlyph =" "; //Kein Pixel an
lowerGlyph = value;

else

{
upperGlyph = value - 8;
lowerGlyph = 7; // Alle Pixel an

lcd.setCursor(column, 0); // Obere Hilfte ausgeben
lcd.write(upperGlyph);

lcd.setCursor(column, 1); // Untere Halfe ausgeben
lcd.write(lowerGlyph);

}

Die doubleHeightBars-Funktion kann wie folgt genutzt werden, um den Wert eines
Analogeingangs auszugeben:
for(int i=0; i< 16; i++)

{

int value = analogRead(0);

value = map(value, 0, 1023,0,16);

doubleHeightBars(value, i); // Wert zwischen 0 und 15 ausgeben
delay(1000); // Einmal pro Sekunde aktualisieren

Wenn Sie horizontale Balken brauchen, konnen Sie fiinf Zeichen definieren (jedes ein
Pixel breiter als das vorige) und eine dhnliche Logik wie bei den vertikalen Balken
verwenden, um die Zeichen zu bestimmen, die ausgegeben werden sollen.

Ein komplexeres Beispiel dieser Technik finden Sie in einem Sketch, das eine bekannte
Computersimulation, John Conways Spiel des Lebens (Game of Life) implementiert. Sie
konnen den Sketch auf der Website zu diesem Buch (http://shop.oreilly.com/product/
0636920022244.do) herunterladen.

384 | Kapitel 11: Displays nutzen

11.9 Ein graphisches LC-Display anschlieBen und nutzen

Problem

Sie wollen Grafik und Text auf einem LCD mit einem KS0108 (oder kompatiblen)
LCD-Treiber ausgeben.

Losung

Diese Losung verwendet die Arduino GLCD-Bibliothek zur Ansteuerung des Displays. Sie
konnen Sie von http://code.google.com/p/glcd-arduino/downloads/list herunterladen (Hilfe
bei der Installation von Bibliotheken finden Sie in).

WA
! Es gibt viele verschiedene GLCD-Controller. Stellen Sie sicher, dass Threr

s ein KS0108 oder ein kompatibler ist.

oy

Die Anschliisse von GLCDs sind nicht standardisiert, d.h., Sie miissen auf dem Datenblatt
nachsehen, wie es richtig anzuschliefRen ist. Der fehlerhafte Anschluss der Signalleitungen
ist die hiufigste Fehlerursache und besondere Sorgfalt ist bei den Versorgungsanschliissen
vonndten, da der falsche Anschluss das Panel beschidigen kann.

Die meisten GLCD-Panels benotigen einen externen variablen Widerstand, um die LCD-
Betriebsspannung (Kontrast) einzustellen und eventuell einen weiteren (festen) Widerstand,
um den Strom fiir die Hintergrundbeleuchtung zu beschrinken. Das Datenblatt des Panels
sollte alle Informationen zum Anschluss und die benétigten Komponenten enthalten.

Tabelle 11-2 zeigt den Standardanschluss eines KS0108-Panels an einen Arduino (oder
Mega). Sie missen auf dem Datenblatt Thres Panels nachsehen, wo bei Threm Display die
jeweiligen Funktionen liegen. Die Tabelle zeigt die drei gingigsten Panel-Layouts. Das erste
(in der Tabelle mit »Panel A« bezeichnet), ist in Abbildung 11-7 zu sehen. Die Dokumen-
tation der GLCD-Bibliothek enthilt farbige Anschlussdiagramme der gingigsten Displays.

Tabelle 11-2: Anschluss eines KSO108-Panels an einen Arduino oder Mega

Arduino-Pins Mega-Pins GLCD-Funktion = Panel A Panel B Panel C Kommentar

5V 5V +5 volts 1 2 13

Gnd Gnd Gnd 2 1 14

- - Contrast in 3 3 12 Schleifer des Kontrast-Potis
8 2 DO 4 7 1

9 23 D1 5 8 2

10 24 D2 6 9 3

1 25 D3 7 10 4

4 26 D4 8 n 5

5 27 D5 9 12 6

6 28 D6 10 13 7

11.9 Ein graphisches LC-Display anschlieBen und nutzen | 385

Tabelle 11-2: Anschluss eines KS0108-Panels an einen Arduino oder Mega (Fortsetzung)

Arduino-Pins
7

14 (Analog 0)
15 (Analog 1)
Reset

16 (Analog 2)
17 (Analog 3)
18 (Analog 4)

Gnd

Mega-Pins

29
33
34

35
36
37

Gnd

GLCD-Funktion ~ Panel A Panel B Panel C Kommentar

D7 1 14 8

CSEL 12 15 15 Chip-Select 1

(SEL2 13 16 16 Chip-Select 2

Reset 14 17 18 Mit Reset verbinden
R_W 15 5 10 Lesen/Schreiben (Read/Write)
DI 16 4 N Daten/Instruktionen (RS)
EN 17 6 9 Enable

Contrast out 18 18 17 10K oder 20K vorgegeben
Backlight +5 19 19 19 Siehe Datenblatt
Backlight Gnd 20 20 20 Siehe Datenblatt

Die Zahlen in den Arduino- und Mega-Spalten sind die Arduino- (oder Mega-) Pins, die in
der mit der Bibliothek mitgelieferten Konfigurationsdatei verwendet werden. Sie kénnen
auch andere Pins verwenden, wenn sie bereits belegt sind. Wenn Sie die Anschliisse
andern, miissen Sie auch die Zuweisungen in der Konfigurationsdatei anpassen und sich

in der Bibliotheks-Dokumentation ansehen, wie man die Konfigurationsdatei editiert.

W N

Der Anschluss des Panels entsprechend der Standardkonfiguration und die
Ausfithrung des Sketches in diesem Rezept erméglicht es Thnen, alles
auszutesten, bevor Sie die Konfiguration #ndern. Eine der Verschaltung
nicht entsprechende Konfiguration ist die hiufigste Fehlerursache, wes-
halb bei einem Test mit minimalen Anderungen die Wahrscheinlichkeit
steigt, dass es auf Anhieb funktioniert.

GLCD
KS0108

= 3 =
- - MN— O ~O ! < - =
£ £ c=css=m ssscs wow =
> o = = cmmm mmo o v | =
- > TTTT AFT T TN
N N A N i
V%iderstand;ﬂ/r
lintergrund-
220 __—beleuchtun,
Ohm (falls nétigg
Ot UL\;‘L’JE’JUUUU 0vUVe Hintergrundbeleuchtung — (Masse)
S@EEgRe mwnITmaT o Hintergrundbeleuchtung + (5V)
DIGITAL e ANALOG
Arduino

Abbildung 11-7: Anschluss eines GLCD:s fiir Panels vom Typ A; Ihre Pinbelegung finden Sie auf dem

Datenblatt

386 | Kapitel 11: Displays nutzen

Der folgende Sketch gibt etwas Text und einige graphische Objekte aus:

/*
glcd
*/

#include <glcd.h>
#include "fonts/allFonts.h" // Zugriff auf alle mitgelieferten Schriften
int count = 0;

void setup()

{
GLCD.Init(NON_INVERTED); // Bibliothek initialsieren
GLCD.ClearScreen();
GLCD.SelectFont(Systemsx7); // Systemfont in fester Breite wihlen
GLCD.print("Hallo, Welt"); // Text ausgeben
delay(3000);

void loop()
{

GLCD.ClearScreen();

GLCD.DrawRect(0, 0, 64, 61, BLACK); // Rechteck auf der linken Seite der Anzeige
// Abgerundetes Rechteck um den Textbereich

GLCD.DrawRoundRect (68, 0, 58, 61, 5, BLACK);

for(int i=0; i< 62; i+=4)

// Linien von oben links nach unten rechts zeichnen
GLCD.DrawlLine(1,1,63,1, BLACK);

GLCD.DrawCircle(32,31,30,BLACK); //Kreis in der Mitte der linken Seite
GLCD.FillRect(92,40,16,16, WHITE); // Textbereich 18schen

GLCD.CursorTo(5,5); // Textcursor positionieren
GLCD.PrintNumber(count); // und eine Zahl ausgeben
count = count +1;
delay(1000);
}
Diskussion

Die Bibliothek bietet eine Vielzahl grundlegender High-Level-Zeichenfunktionen, von
denen einige in diesem Sketch demonstriert werden. Alle Funktionen sind in der Doku-
mentation der Bibliothek beschrieben.

Die Bildschirmkoordinaten fir Text und Grafik beginnen in der linken oberen Ecke. Die
am weitesten verbreiteten GLCD-Panels haben 128 x 64 Pixel und die Bibliothek arbeitet
standardmifig mit dieser Auflésung. Hat ihr Panel eine andere Auflgsung, miissen Sie die
Konfigurationsdatei der Bibliothek entsprechend korrigieren (momentan werden Panels
mit bis zu 255 x 255 Punkten unterstiitzt).

11.9 Ein graphisches LC-Display anschlieBen und nutzen | 387

GLCD erlaubt die Ausgabe von Text auf dem Bildschirm mit Befehlen, die den Arduino
print-Befehlen fiir den seriellen Port dhneln. Dariiber hinaus kénnen Sie die Schriftart und
-groRe festlegen. Sie kénnen auch einen Bereich der Anzeige festlegen, die als Textfenster
verwendet werden soll. In diesem Bereich haben Sie dann ein »virtuelles Terminal«, in
dem Text innerhalb der definierten Grenzen ausgeben und gescrollt wird. Der nach-
folgende Code erzeugt zum Beispiel ein 32 Pixel grofles Quadrat in der Mitte des
Bildschirms:

gText myTextArea = gText(GLCD.CenterX-16, GLCD.CenterY -16, GLCD.CenterX +16,
GLCD.CenterY+16);

Mit Code wie dem folgenden kénnen Sie eine Schriftart auswihlen und im Textbereich
ausgeben:
myTextArea.SelectFont(System5x7); // Systemfont fiir Textbereich wahlen

name textTop
myTextArea.printIn("Los!"); // Eine Textzeile im Textbereich ausgeben.

Der mit der Bibliothek mitgelieferte Beispiel-Sketch zeigt, wie man mehrere Textbereiche
zusammen mit Grafikelementen nutzen kann.

Diese Grafikanzeigen haben wesentlich mehr Anschliisse als Text-LCDs und Sie miissen
darauf achten, dass Thr Panel korrekt angeschlossen ist.

Wenn keine Pixel auf dem Display erscheinen oder verstiimmelt sind, machen Sie Fol-
gendes:

¢ Uberpriifen Sie die +5V- und Masse-Anschliisse zwischen dem Arduino und dem
GLCD-Panel.

* Stellen Sie sicher, dass alle Daten- und Befehlspins dem Datenblatt entsprechend
verschaltet sind und mit der Konfiguration tibereinstimmen. Das ist die haufigste
Fehlerursache.

¢ Uberpriifen Sie mit Hilfe des Datenblatts, dass die richtigen Timing-Werte in der
Konfigurationsdatei eingestellt sind.

¢ Uberpriifen Sie die Kontrast-Spannung (typischerweise zwischen —3 und —4 Volt) am
Contrast-in-Pin des LCD-Panels. Gehen Sie den gesamten Wertebereich des Potis
langsam durch, wihrend der Sketch lduft. Manche Displays sind bei dieser Einstel-
lung sehr empfindlich.

* Stellen Sie sicher, dass der Sketch korrekt kompiliert und auf den Arduino hoch-
geladen wurde.

* Fihren Sie den GLCDdiags Diagnose-Sketch aus. Er steht im Menii iiber Exam-
ples>GLCD—>GLCDdiags zur Verfiigung.

Wenn die linke und rechte Seite des Bildes vertauscht ist, vertauschen Sie die CSEL1- und
CSEL2-Anschlisse (Sie konnen die Pins auch in der Konfigurationdatei vertauschen).

388 | Kapitel 11: Displays nutzen

11.10 Bitmaps fiir graphische Displays

Problem

Sie wollen eigene graphische Images (Bitmaps) entwerfen und mit dem GLC-Display aus
Rezept 11.9 einsetzen. Die Schriftdefinition und der Text soll im Programmspeicher
abgelegt werden, um die RAM-Nutzung zu minimieren.

Losung

Sie konnen die mit der Bibliothek mitgelieferten Bitmaps nutzen, oder eigene entwerfen.
Bitmaps werden in Header-Dateien mit der Endung .h definiert. Zum Beispiel findet sich
ein Arduino-Icon namens Arduinolcon.h im bitmap-Ordner des GLCD-Bibliotheksver-
zeichnisses. Der Ordner enthilt auch eine Datei namens allBitmaps.h, die Details zu allen
mitgelieferten Bitmaps enthilt. Sie konnen also die folgende Zeile einfiigen, um alle
mitgelieferten (oder neuen) Bitmaps verfligbar zu machen:

#include "bitmaps/allBitmaps.h" // Bindet alle mitgelieferten Bitmaps ein

Beachten Sie, dass das Einbinden aller Bitmaps keinen Speicher verbraucht, solange sie im
Sketch nicht explizit mit DrawBitmap referenziert werden.

Um das Hinzufiigen eigener Bitmaps zu ermdoglichen, enthilt die GLCD-Bibliothek ein
Utility namens glcdMakeBitmap, das Dateien vom .gif, .jpg, .bmp, .tga oder .png in eine
Header-Datei umwandelt, die von GLCD genutzt werden kann. Die Datei glcdMakeBit-
map.pde ist ein Processing-Sketch, der in der Processing-Umgebung ausgefithrt werden
kann. Der Sketch liegt im Verzeichnis bitmaps/utils/glcdMakeBitmap directory. Weitere
Informationen zu Processing finden Sie unter http://processing.org/.

Es gibt auch eine .java- (Java) Laufzeit-Datei (glcdMakeBitmap.jar) und eine .java-(Ja-
va-)Quelldatei (glcdMakeBitmap.java) im Verzeichnis bitmaps/utils/Java.

Fithren Sie den Sketch aus, indem Sie ihn in Processing laden (oder die .jar-Datei ankli-
cken). Ziehen Sie die umzuwandelnden Images dann einfach tiber das Fenster. Die Datei
wird im bitmaps-Verzeichnis gespeichert und es wird automatisch ein Eintrage in all-
BitMaps.h eingefigt, d.h., das neue Image kann direkt im Sketch verwendet werden.

Um das zu demonstrieren, benennen Sie ein Image auf Threm Computer in me.jpg um.
Starten Sie dann glcdMakeBitmap und ziehen Sie das Image in das erscheinende Fenster.
Kompilieren Sie den folgenden Sketch und laden Sie ihn hoch. Auf dem Display erscheint
das mitgelieferte Arduino-Icon gefolgt von dem von Thnen erzeugten Image:

/*

* GLCDImage

*Inme.h definiertes Image ausgeben
*/

#include <glcd.h>

#include "bitmaps/allBitmaps.h" // Alle Images im bitmap-Ordner einbinden

11.10 Bitmaps fiir graphische Displays | 389

void setup()
{

GLCD.Init(); //Bibliothek initialisieren

GLCD.ClearScreen();

GLCD.DrawBitmap(ArduinoIcon, 0,0); // Mitgelieferte Bitmap zeichnen
delay(5000);

GLCD.ClearScreen();

GLCD.DrawBitmap(me, 0,0); // Ihre Bitmap zeichnen

}

void loop()
{

}

Die folgende Zeile zeichnet das in Arduinolcon.h definierte Image, das mit der Bibliothek
mitgeliefert wird:

GLCD.DrawBitmap(ArduinoIcon, 0,0); // Mitgelieferte Bitmap zeichnen

Nach einer Pause zeichnet die folgende Zeile das von Thnen erzeugte Image aus der Datei
me.h:

GLCD.DrawBitmap(me, 0,0);

Siehe auch

Weitere Informationen zur Erzeugung und Nutzung graphischer Images finden Sie in der
Dokumentation der Bibliothek.

Die Dokumentation beschreibt auch, wie man eigene Schriften erzeugen kann.

11.11 Text auf dem Fernseher ausgeben

Problem

Sie wollen Text auf einem Fernseher oder einem Monitor mit Videoeingang ausgeben.

Losung

Dieses Rezept nutzt ein Shield namens TellyMate, um Texte und Blockgrafiken auf einem
Fernseher auszugeben. Das Shield wird am Arduino aufgesteckt und besitzt einen Aus-
gang, der mit dem Videoeingang eines Fernsehers verbunden werden kann.

Der folgende Sketch gibt alle Zeichen, die der TellyMate darstellen kann, auf einem Fern-
seher aus:

/*

TellyMate

Einfache Demo des TellyMate-Shield
*/

390 | Kapitel 11: Displays nutzen

const byte ESC = 0x1B; // In TellyMate-Befehlen verwendetes ASCII-Escape-Zeichen
void setup()

Serial.begin(57600); // 57k6 Baud ist die Standard-Geschwindigkeit des TellyMate
clear(); //Bildschirm 16schen

Serial.print(" TellyMate-Zeichensatz"); // Etwas Text ausgeben

delay(2000);

void loop()
{

byte charCode =32; //Die Zeichen 0 bis 31 sind Steuerzeichen
for(int row=0; row < 7; row++) // 7 Zeilen ausgeben

setCursor(2, row+8); // Display zentrieren
for(int col=0; col < 32; col++) // 32 Zeichen pro Zeile
{
Serial.print(charCode);
charCode = charCode + 1;
delay(20);
}
}
delay(5000);
clear();

}
// TellyMate-Hilfsfunktionen

void clear() //Bildschirm ldschen
{ /7 <ESC>E
Serial.print(ESC);
Serial.print('E');
}

void setCursor(int col, int row) // Cursor positionieren
{//<ESC>YrC
Serial.print(ESC);
Serial.print('Y');
Serial.print((unsigned char)(32 +row)) ;
Serial.print((unsigned char)(32 +col)) ;

}

Diskussion

Der Arduino steuert die TellyMate-Anzeige, indem er Befehle iiber den seriellen Port
sendet.

N
o TellyMate kommuniziert mit dem Arduino iiber den seriellen Port, d.h.,
ﬁ) Sie miissen das Shield abtrennen, um Sketches hochzuladen.

11.11 Text auf dem Fernseher ausgeben | 391

Abbildung 11-8 zeigt, welche Zeichen dargestellt werden konnen. Eine Tabelle mit den
Werten aller Zeichen finden Sie unter http://en.wikipedia.org/wiki/Code_page_437.

B89+ Qo IFAEF 4T ITRal Tl r e vay
PURGHE =+, — . /01234567891 ;<=7
EFIBCDEF(‘HIJHLHHI]PI]RSTUUHXYZ[\]
abcdei‘gh1Jk1mnupqr3tuuuxgz{|} a
R
AionfNe hraksien
L gy el o el

CRrMZoPTEoNdosEN=£24 f S LEY |

Die Zeichen 0 bis 31 werden als Steuerbefehle fiir den Bildschirm inter-
pretiert, d.h., nur die Zeichen 32 bis 255 konnen dargestellt werden.

Der Sketch verwendet nicht-druckbare Zeichen, sogenannte Escape-Codes, um druckbare
Zeichen von Befehlen zur Bildschirmsteuerung zu unterscheiden. Solche Steuercodes
bestehen aus dem ESC-Zeichen (die Abkiirzung fiir Escape, hex 0x1b), gefolgt von einem
oder mehreren Zeichen, die die eigentliche Funktion bestimmen. Details zu allen Steuer-
codes finden Sie in der TellyMate-Dokumentation.

Der Sketch nutzt einige Hilfsfunktionen, die die zur Steuerung benétigen Zeichenfolgen
senden, damit Sie sich auf die eigentlichen Aktivititen des Sketches konzentrieren
konnen.

Auf dem Bildschirm erscheint ein blinkender Cursor, den Sie mit einem Steuercode aus-
schalten kénnen. Die Funktion cursorHide schaltet den Cursor aus:

void cursorHide()

{// <ESC>F

Serial.write(ESC) ; //Das Escape-Zeichen

Serial.print('f'); //gefolgt vomBuchstaben f schaltet den Cursor aus.
}

Um einen Rahmen um die Grenzen des Bildschirms zu zeichnen, fiigen Sie die Funktionen
drawBox und showXY am Ende des obigen Sketches hinzu. Damit der Sketch Sie auch nutzt,
fiigen Sie die folgende Zeile innerhalb der 6ffnenden Klammer der Schleife ein:

drawBox(1,0, 38, 24); //Bildschirm ist 38 Zeichen breit und 25 hoch

Die drawBox-Funktion gibt die vier Ecken sowie die oberen, unteren und seitlichen Linien
mit Hilfe entsprechender Blockgrafik-Codes aus:

// Fir den Rahmen verwendete Zeichen

// siehe http://en.wikipedia.org/wiki/Code_page 437
const byte boxUL = 201;

const byte boxUR = 187;

const byte boxLL = 200;

const byte boxLR = 188;

392 | Kapitel 11: Displays nutzen

const byte HLINE = 205; //Horizontale Linie
const byte VLINE = 186; // Vertikale Linie

void drawBox(int startRow, int startCol, int width, int height)
{
// Zeichne obere Zeile
showXY(boxUL, startCol,startRow); // Obere linke Ecke
for(int col = startCol +1; col < startCol + width-1; col++)
Serial.print(HLINE); // Die Linie
Serial.print(boxUR); // Obere rechte Ecke

// Rahmen links und rechts

for(int row = startRow + 1; row < startRow + height -1; row++)

{
showXY(VLINE, startCol,row); // Linker Rand
showXY(VLINE, startCol +width-1,row); // Rechter Rand

}

// Zeichne untere Zeile

showXY (boxLL, 0, startRow+height-1); // Untere linke Ecke

for(int col = startCol +1; col < startCol + width-1; col++)
Serial.write(HLINE);

Serial.write(boxLR);

}

Eine von drawBox genutzte Hilfsfunktion namens showXY fasst die Cursor-Positionierung
und die Ausgabe zusammen:

void showXY(char ch, int x, int y){
// Zeichen an x- und y-Position ausgeben
setCursor(x,y);
Serial.write(ch);

}

Hier ein weiterer Sketch, der die Befehle zur Cursorsteuerung nutzt, um einen »Ball« {iber
den Bildschirm springen zu lassen:

/*
TellyBounce
*/

// Bildschirmgrenzen definieren

const int HEIGHT = 25; // Anzahl der Zeilen

const int WIDTH =38; // Zeichen pro Zeile

const int LEFT = 0; //Daraus abgeleitete niitzliche Konstanten
const int RIGHT = WIDTH -1;

const int TOP =0;

const int BOTTOM = HEIGHT-1;

const byte BALL = 'o"; // Zeichencode fiir den Ball
const byte ESC=0x1B; // Von TellyMate-Befehlen verwendetes ASCII-Escape-Zeichen

int ballX = WIDTH/2; // x-Position des Balls
int ballY = HEIGHT/2; //y-Position des Balls
int ballDirectionY=1; //x-Richtung des Balls
int ballDirectionX=1; //y-Richtung des Balls

11.11 Text auf dem Fernseher ausgeben | 393

// Dieses Intervall bewegt den Ball inweniger als 4 Sekunden liber den 38-Zeichen-Bildschirm
long interval = 100;

void setup()

Serial.begin(57600); // 57k6 Baud ist die TellyMate-Standardgeschwindigkeit

clear(); // Bildschirm 18schen
cursorHide(); // Cursor ausschalten
}
void loop()
moveBall();
delay(interval);
}

void moveBall() {
// Erreicht der Ball den oberen oder unteren Rand, kehren wir die y-Richtung um
if (ballY == BOTTOM || ballY == TOP)
ballDirectionY = -ballDirectionY;

// Exrreicht der Ball den linken oder rechten Rand, kehren wir die x-Richtung um
if ((ballX == LEFT) || (ballX == RIGHT))
ballDirectionX = -ballDirectionX;

// Alte Position des Balls 16schen
showXY("' ', ballX, ballY);

// Position des Balls in beiden Richtung erhdhen
ballX = ballX + ballDirectionX;
ballY = ballY + ballDirectionY;

// Ball an neuer Position ausgeben
showXY(BALL, ballX, ballY);
}

// TellyMate-Hilfsfunktionen

void clear() //Bildschirm 14schen
{ /7 <ESC>E
Serial.write(ESC);
Serial.write('E");

}

void setCursor(int col, int row) // Cursor positionieren
{ /7 <ESC>Yrc
Serial.write(ESC);
Serial.write('Y') ;
Serial.write((unsigned char)(32 + row)
Serial.write((unsigned char)(32 +col)

}

void cursorShow()
{// <ESC>e
Serial.write(ESC) ;
Serial.write('e') ;

}

)
)

394 | Kapitel 11: Displays nutzen

void cursorHide()
{7/ <ESC>f
Serial.write(ESC) ;
Serial.write('f');

}

void showXY(char ch, int x, int y){
// Zeichen an x- und y-Position ausgeben
setCursor(x,y);
Serial.write(ch);

}

Siehe auch

Detaillierte Informationen zum TellyMate-Shield finden Sie unter http://'www.batsocks
.co.uk/products/Shields/index_Shields.htm.

Weitere Informationen zur Codeseite 437, einschliefllich einer Zeichentabelle, finden Sie
unter http://en.wikipedia.org/wiki/Code_page_437.

11.11 Text auf dem Fernseher ausgeben | 395

KAPITEL 12
Datum und Uhrzeit

12.0 Einfiihrung

Die Arbeit mit Zeiten ist ein grundlegendes Element der Interaktivitit von Computern.
Dieses Kapitel behandelt die im Arduino fest eingebauten Funktionen und stellt zusitz-
liche Techniken zur Behandlung von Zeitverzogerungen, Zeitmessungen und Zeit- und
Datumsangaben vor.

12.1 Zeitverzogerungen

Problem

Thr Sketch soll eine bestimmte Zeitspanne pausieren. Dabei kann es sich um ein paar
Millisekunden handeln oder um Sekunden, Minuten, Stunden oder Tage.

Losung

Die Arduino-Funktion delay wird im gesamten Buch von vielen Sketches genutzt. delay
hilt den Sketch fiir die Zeit in Millisekunden an, die als Parameter tibergeben wird. (1000
Millisekunden sind eine Sekunde.) Der folgende Sketch zeigt, wie Sie mit delay nahezu
jede Pause hinbekommen:

/*

* delay Sketch

*/

const long oneSecond = 1000; // Eine Sekunde sind 1000 Millisekunden
const long oneMinute = oneSecond * 60; // Eine Minute

const long oneHour =oneMinute * 60; // Eine Stunde

const long oneDay =oneHour * 24; //EinTag

void setup()

Serial.begin(9600);
}

| 397

void loop()
{

Serial.println("Eine Millisekunde pausieren");
delay(1);

Serial.println("Eine Sekunde pausieren");
delay(oneSecond);

Serial.println("Eine Minute pausieren");
delay(oneMinute);

Serial.println("Eine Stunde pausieren");
delay(oneHour);

Serial.println("Einen Tag pausieren");
delay(oneDay);

Serial.println("Bereit flir den Neustart");

Diskussion

Der Wertebereich der delay-Funktion reicht von einer tausendstel Sekunde bis zu etwa 25
Tagen bzw. etwas unter 50 Tagen, wenn Sie mit unsigned long arbeiten (in Kapitel 2
erfahren Sie mehr tiber die Variablentypen).

Die delay-Funktion hilt die Ausfithrung des Sketches fiir die angegebene Zeitspanne an.
Wenn Sie wihrend dieser Zeit andere Aufgaben erledigen mussen, ist die millis-Funk-
tion, wie in Rezept 12.2 erlautert, die bessere Wahl.

Fiir sehr kurze Zeitverzogerungen kénnen Sie delayMicroseconds verwenden. Eine Milli-
sekunde dauert 1000 Mikrosekunden und eine Million Mikrosekunden ist eine Sekunde.
Die Zeitspannen von delayMicroseconds liegen zwischen einer Mikrosekunde und ca.
16 Millisekunden. Ist die Pause aber linger als ein paar tausend Mikrosekunden, sollten
Sie delay verwenden:

delayMicroseconds(10); // 10 Mikrosekunde warten
WS

delay und delayMicroseconds pausieren mindestens fiir die im Parameter
angegebene Dauer, doch die Verzogerung kann auch etwas linger sein,
s wenn es innerhalb dieser Zeitspanne zu Interrupts kommt.

Siehe auch

Die Arduino-Referenz zu delay: http://www.arduino.cc/en/Reference/Delay

12.2 Laufzeiten messen mit millis

Problem

Sie wollen wissen, wie viel Zeit seit einem Ereignis vergangen ist. Zum Beispiel wollen Sie
wissen, wie lange eine Taste gedriickt wurde.

398 | Kapitel 12: Datum und Uhrzeit

Losung

Arduino besitzt eine Funktion namens millis (fiir Millisekunden), die im folgenden Sketch
verwendet wird, um zu ermitteln, wie lange eine Taste gedriickt wurde (Rezept 5.2 be-
schreibt, wie der Taster anzuschliefRen ist):

/*

millisDuration Sketch
Gibt an, wie lange (in Millisekunden) eine Taste gedriickt wude

*/

const int switchPin = 2; // Eingangspin

long startTime; // millis-Wert beim ersten Driicken der Taste
long duration; //Variable fir die Dauer

void setup()

pinMode(switchPin, INPUT);
digitalWrite(switchPin, HIGH); // Pullup-Widerstand aktivieren
Serial.begin(9600);

}

void loop()

if(digitalRead(switchPin) == LOW)
{

// Sobald die Taste gedriickt wurde
startTime =millis();
while(digitalRead(switchPin) == LOW)

; // Warten, solange die Taste gedriickt wird
long duration =millis() - startTime;
Serial.println(duration);

Diskussion

Die millis-Funktion gibt in Millisekunden zuriick, wie lange der aktuelle Sketch schon

lauft.

=

Nach etwa 50 Tagen kommt es bei der mi1lis-Funktion zu einem Uberlauf
(d.h., der Wert springt wieder auf 0 zuriick). In 12.4 und 12.5 finden Sie
Informationen dariiber, wie Sie die Time-Bibliothek nutzen kénnen, um
Intervalle von Sekunden bis hin zu Jahren zu verarbeiten.

Indem Sie die Startzeit des Ereignisses festhalten, kénnen Sie dessen Dauer ermitteln,
wenn Sie die Startzeit von der aktuellen Zeit abziehen:

long duration =millis() - startTime;

12.2 Laufzeiten messen mit millis | 399

Sie konnen eine eigene Verzogerungsfunktion mit millis entwickeln, die sich anderen
Aufgaben widmet, wihrend sie fortlaufend priift, ob die festgelegte Zeitspanne abgelaufen
ist. Ein entsprechendes Beispiel finden Sie im Sketch BlinkWithoutDelay, das bei der
Arduino-Distribution mitgeliefert wird. Die folgenden Fragmente aus dem Sketch erliu-
tern den Schleifencode:

void loop()
{
// Hier steht der Code, der die ganze Zeit laufenmuss...

Die nichste Zeile priift, ob die gewiinschte Zeitspanne verstrichen ist:

if (millis() - previousMillis > interval)

{
// Festhalten, wann die LED zuletzt geblinkt hat

Ist die Zeitspanne verstrichen, wird der aktuelle millis-Wert in der Variablen previous-
Millis gespeichert:

previousMillis =millis();

// Ist die LED aus, schaltenwir sie an, und umgekehrt
if (ledState == LOW)

ledState = HIGH;
else

ledState = LOW;

// LED auf ledState setzen
digitalWrite(ledPin, ledState);
}
}

Hier nun eine Moglichkeit, diese Logik in eine Funktion namens myDelay zu packen, die
den Code in loop pausieren lisst, wihrend dieser Zeit aber eine andere Aufgabe erledigen
kann. Sie konnen die Funktionalitit fir Thre Anwendung anpassen, doch in diesem
Beispiel leuchtet die LED fiinfmal pro Sekunde auf, obwohl die print-Anweisung in loop
mit 4-Sekunden-Intervallen ausgebremst wird:

// LED fir festgelegte Dauer blinken lassen
const int ledPin = 13; // LED-Pin

int ledState = LOW; // ledState setzt LED
long previousMillis = 0; // Letzter Update der LED

void setup()
{
pinMode(ledPin, OUTPUT);
Serial.begin(9600);
void loop()
Serial.println(millis() / 1000); // Verstrichene Zeit alle vier Sekunden ausgeben

// Vier Sekunden warten (gleichzeitig aber eine LED schnell blinken lassen)
myDelay(4000);

400 | Kapitel 12: Datum und Uhrzeit

// duration ist Verzogerungszeit in Millisekunden
void myDelay(unsigned long duration)

unsigned long start =millis();
while (millis() - start <= duration)

blink(100); // LED innerhalb der while-Schleife blinken lassen

}
}

// interval gibt an, wie lange die LED an und aus sein soll
void blink(long interval)

if (millis() - previousMillis > interval)

// Letztes Blinken der LED
previousMillis =millis();
// Ist die LED aus, schaltenwir sie an, und umgekehrt
if (ledState == LOW)
ledState = HIGH; else
ledState = LOW;
digitalWrite(ledPin, ledState);

}

Sie konnen in der myDelay-Funktion Code fiir eine beliebige Aktion einfiigen, die wieder-
holt ausgefithrt werden soll, wihrend die Funktion darauf wartet, dass die festgelegte
Zeitspanne verstreicht.

Ein anderer Ansatz nutzt eine Bibliothek aus dem Arduino Playground namens Timed-
Action (http://www.arduino.cc/playground/Code/TimedAction):

#include <TimedAction.h>

//TimedAction-Klasse initialisieren, umden Status einer LED jede Sekunde zu dndern.
TimedAction timedAction = TimedAction(NO PREDELAY,1000,blink);

const int ledPin= 13; // LED-Pin
boolean ledState = LOW;

void setup()

pinMode(ledPin,OUTPUT);
digitalWrite(ledPin,ledState);
}

void loop()
{

timedAction.check();
}

void blink()

12.2 Laufzeiten messen mit millis | 401

{
if (ledState == LOW)
ledState = HIGH;
else
ledState = LOW;

digitalWrite(ledPin,ledState);
}

Siehe auch
Die Arduino-Referenz fur millis: http://www.arduino.cc/en/Reference/Millis

In 12.4 und 12.5 finden Sie Informationen dariiber, wie Sie die Time-Bibliothek nutzen
konnen, um Intervalle von Sekunden bis hin zu Jahren zu verarbeiten.

12.3 Die Dauer eines Impulses praziser messen

Problem

Sie wollen die Dauer eines Impulses im Mikrosekundenbereich genau bestimmen. Zum
Beispiel wollen Sie die genaue Dauer eines HICH- oder LOW-Impulses an einem Pin messen.

Losung

Die pulseIn-Funktion gibt die Dauer (in Mikrosekunden) eines sich dndernden Signals an
einem Digitalpin zuriick. Der folgende Sketch gibt die Dauer der HIGH- und LOW-Impulse in
Mikrosekunden aus, die von analoghrite erzeugt werden (beachten Sie den entsprechen-
den Abschnitt in Rezept 7.1 in Kapitel 7). Da die analogWrite-Impulse intern vom Arduino
erzeugt werden, ist keine externe Verschaltung notig:
/*
PulseIn Sketch

Dauer der HIGH- und LOW-Impulse von analogWrite ausgeben
*/

const int inputPin =3; // Analoger Ausgangspin
unsigned long val; // Enthdlt den Wert von pulseln
void setup()
{
Serial.begin(9600);
analoghirite(inputPin, 128);
Serial.print("Schreibe 128 anPin ");
Serial.print(inputPin);
printPulseWidth(inputPin);

analoghrite(inputPin, 254);
Serial.print("Schreibe 254 anPin");

402 | Kapitel 12: Datum und Uhrzeit

Serial.print(inputPin);
printPulseWidth(inputPin);

}
void loop()
{

}

void printPulseWidth(int pin)

{
val = pulseIn(pin, HICH);
Serial.print(": HICH-Impulsldnge=");
Serial.print(val);
val = pulseIn(pin, LOW);
Serial.print(", LOW-Impulslinge=");
Serial.println(val);

Diskussion

Auf dem seriellen Monitor erscheint:

Schreibe 128 an Pin 3: HIGH-Impulsldnge = 989, LOW-Impulslange = 997
Schreibe 254 an Pin 3: HIGH-Impulsldnge = 1977, LOW-Impulsldnge = 8

pulseIn misst, wie lange ein Impuls entweder HIGH oder LOW ist:

pulseIn(pin, HIGH); // Wie lange (in Mikrosekunden) ist Impuls HICH
pulseIn(pin, LOW) //Wie lange (inMikrosekunden) ist Impuls HIGH

Die pulseIn-Funktion wartet darauf, dass der Impuls beginnt (bzw. auf einen Timeout,
falls kein Impuls kommt). StandardmiRig liegt das Timeout bei einer Sekunde, aber Sie
konnen das dndern, indem Sie die gewiinschte Zeit in Mikrosekunden als dritten Para-
meter iibergeben (denken Sie daran, dass 1000 Mikrosekunden eine Millisekunde sind):

pulseIn(pin, HIGH, 5000); // 5Millisekunden auf Impuls warten

Der Timeout-Wert ist nur von Bedeutung, falls der Impuls nicht innerhalb
der festgelegten Zeitspanne startet. Sobald der Beginn des Impulses er-
kannt wurde, beginnt die Funktion mit der Zeitmessung und kehrt erst
zuriick, wenn der Impuls endet.

pulseIn kann Werte zwischen etwa 10 Mikrosekunden bis drei Minuten messen, doch der
Wert sehr langer Impulse ist nicht besonders genau.

Siehe auch
Die Arduino-Referenz zu pulselIn: http://www.arduino.cc/en/Reference/Pulseln
Rezept 6.4 zeigt, wie pulseIn die Impulsdauer eines Ultraschall-Abstandssensors misst.

Rezept 18.2 enthilt Informationen zur Verwendung von Hardware-Interrupts.

12.3 Die Dauer eines Impulses praziser messen | 403

12.4 Arduino als Uhr verwenden

Problem

Sie wollen die Uhrzeit (Stunden, Minuten und Sekunden) in einem Sketch ausgeben, ohne
externe Hardware anschlieRen zu miissen.

Losung

Der folgende Sketch verwendet die Time-Bibliothek zur Ausgabe der Uhrzeit. Sie kann
von hitp://www.arduino.cc/playground/Code/Time heruntergeladen werden.

/*
* Time Sketch
*

*/

#include <Time.h>

void setup()
{

Serial.begin(9600);
setTime(12,0,0,1,1,11); // Zeit ist 12 Uhr mittags am 1.1.2011

}

void loop()

digitalClockDisplay();
delay(1000);

void digitalClockDisplay(){
// Digitalanzeige der Zeit
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.print("");
Serial.print(day());
Serial.print("");
Serial.print(month());
Serial.print("");
Serial.print(year());
Serial.println();

}

void printDigits(int digits){
// Hilfsfunktion zur Uhrendarstellung: Gibt vorstehenden Doppelpunkt und fiihrende 0 aus
Serial.print(":");
if(digits < 10)
Serial.print('0');
Serial.print(digits);

404 | Kapitel 12: Datum und Uhrzeit

Diskussion

Die Time-Bibliothek ermoglicht es Thnen, Datum und Uhrzeit nachzuhalten. Viele
Arduino-Boards verwenden einen Quarzkristall fiir den Zeitgeber, der auf ein paar
Sekunden pro Tag genau ist. Es gibt aber keine Batterie, mit deren Hilfe die Zeit beim
Ausschalten erhalten bleibt. Aus diesem Grund beginnt die Zeitrechnung bei jedem Start
des Sketches bei 0, d.h., Sie miissen Datum und Uhrzeit mit der Funktion setTime setzen.
Der Sketch setzt Datum und Uhrzeit bei jedem Start auf den 1. Januar um 12 Uhr mittags.

N

Die Time-Bibliothek verwendet einen als Unix-Zeit (auch POSIX-Zeit)
bezeichneten Standard. Die Werte geben die Zeit in Sekunden an, die seit
v dem 1.1.1970 verstrichen ist. Erfahrene C-Programmierer werden erken-
nen, dass das dem time_t entspricht, das in der ISO-Standard-C-Bibliothek
zur Speicherung von Zeitwerten verwendet wird.

Natiirlich ist es sinnvoller, Datum und Uhrzeit auf die aktuelle lokale Zeit einzustellen,
statt einen festen Wert zu verwenden. Der folgende Sketch liest den numerischen Zeitwert
(die Zahl der seit dem 1.1.1970 verstrichenen Sekunden) iiber den seriellen Port ein, um
die Zeit zu setzen. Sie kénnen einen Wert iiber den seriellen Monitor eingeben (die
aktuelle Unix-Zeit findet sich auf vielen Webseiten, wenn man bei Google nach »Unix-
Zeit umrechnen« sucht):

/*
* TimeSerial Sketch

* Time-Bibliothek lUber seriellen Port setzen
*

*Nachrichten bestehen aus dem Buchstaben T, gefolgt vom 10-stelligen Zeitwert
* (in Sekunden seit dem1.1.1970)

* Geben Sie die folgende Zeile im seriellen Monitor ein,

*umden1.1.2011, 12 Uhr mittags einzustellen:

* 71293883200
*

* Ein Processing-Beispiel-Sketch, der diese Nachrichten automatisch sendet,
*ist in der Time-Bibliothek enthalten
*/

#include <Time.h>

#define TIME_MSG LEN 11 // Zeitsynchronisation besteht aus dem HEADER, gefolgt von
// zehn ASCII-Ziffern
#define TIME_HEADER 'T' //Header-Tag zur seriellen Zeitsynchronisation

void setup() {
Serial.begin(9600);
Serial.println("Warte auf Zeitsynchronisation");

void loop(){
if(Serial.available())

{

processSyncMessage();

if(timeStatus()!=timeNotSet)

12.4 Arduino als Uhr verwenden | 405

{
// Wenn Datum/Uhrzeit gesetzt wurde

digitalClockDisplay();
}

delay(1000);

void digitalClockDisplay(){
// Digitalanzeige von Datum/Uhrzeit
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.print("");
Serial.print(day());
Serial.print("");
Serial.print(month());
Serial.print("");
Serial.print(year());
Serial.println();

}

void printDigits(int digits){
// Hilfsfunktion zur Uhrendarstellung: Gibt vorstehenden Doppelpunkt und fiihrende 0 aus
Serial.print(":");
if(digits < 10)
Serial.print('0');
Serial.print(digits);

void processSyncMessage() {
// Wenn Zeitsynchronisation vom seriellen Port verfiigbar ist, Datum/Uhrzeit aktualisieren und
true zuriickgeben
// Die Nachricht besteht aus einem Header und 10 ASCII-Ziffern
while(Serial.available() >= TIME_MSG LEN){
char c = Serial.read() ;
Serial.print(c);
if(¢ == TIME_HEADER) {
time t pctime =0;
for(int i=0; 1 < TIME_MSG_LEN -1; i++){
c = Serial.read();
if(isbigit(c)) {
pctime = (10 * pctime) + (c - '0") ; // Ziffern in eine Zahl umwandeln

}

setTime(pctime); //Uhr auf empfangenen Wert einstellen
}
}
}

Der Code zur Ausgabe von Uhrzeit und Datum ist mit dem obigen Code identisch, doch
diesmal empfingt der Sketch Datum und Uhrzeit iiber den seriellen Port. Wenn Sie mit
dem Empfang numerischer Daten iiber den seriellen Port nicht vertraut sind, sehen Sie
sich die Diskussion in Rezept 4.3 an.

Ein Processing-Sketch namens SyncArduinoClock ist in den Beispielen der Time-Biblio-
thek enthalten (im Ordner Time/Examples/Processing/SyncArduinoClock). Dieser Proces-

406 | Kapitel 12: Datum und Uhrzeit

sing-Sketch sendet bei einem Mausklick die aktuelle Zeit an den Arduino. Fithren Sie
SyncArduinoClock in Processing aus und stellen Sie sicher, dass der serielle Port mit dem
Arduino verbunden ist (Kapitel 4 beschreibt, wie man einen Processing-Sketch ausfiihrt,
der mit dem Arduino kommuniziert). Die Nachricht Warte auf Zeitsynchronisation sollte
im Processing-Textbereich (der schwarze Bereich am unteren Rand der Processing-IDE)
erscheinen. Klicken Sie das Processing-Anwendungsfenster an (ein graues, 200 Pixel
grofles Quadrat), und im Textbereich sollten Datum und Uhrzeit erscheinen, wie sie
vom Arduino-Sketch ausgegeben werden.

Sie konnen die Uhr auch iiber den seriellen Monitor stellen, wenn Sie die aktuelle
Unix-Zeit kennen. http://'www.epochconverter.com/ ist eine der viele Webseiten, die die
aktuelle Zeit in diesem Format bereitstellt. Kopieren Sie die zehnstellige Zahl, die als
aktuelle Unix-Zeit angegeben wird, und fiigen Sie sie in das Sendefenster des seriellen
Monitors ein. Stellen Sie der Zahl den Buchstaben T voran und klicken Sie auf Send.
Wenn Sie beispielsweise Folgendes eingeben:

T1282041639
sollte der Arduino jede Sekunde Datum und Zeit ausgeben:

10:40:49 17 8 2010
10:40:50 17 8 2010
10:40:51 17 8 2010
10:40:52 17 8 2010
10:40:53 17 8 2010
10:40:54 17 8 2010

Sie konnen die Zeit auch tiber Tasten oder andere Eingabegeriite wie Neigungssensoren,
einen Joystick oder einen Drehgeber einstellen.

Der folgende Sketch verwendet zwei Taster, um die Zeiger der Uhr vor- und zuriick-
zubewegen. Abbildung 12-1 zeigt die Verschaltung (falls Sie Hilfe bei den Tastern brau-
chen, sehen Sie sich Rezept 5.2 an):

/*

AdjustClockTime Sketch

Taster an Pins 2 und 3 justieren die Zeit
*/

#include <Time.h>

const int btnForward = 2; // Taster fiir Zeit vor
const int btnBack =3; // Taster fur Zeit zuriick

unsigned long prevtime; //Wannwurde die Uhr zuletzt ausgegeben

void setup()

{
digitalWrite(btnForward, HICH); // Interne Pullup-Widersténde aktivieren
digitalWrite(btnBack, HICH);
setTime(12,0,0,1,1,11); // Wir beginnen mit dem1.1.2011, 12 Uhr mittags
Serial.begin(9600);
Serial.println("Bereit");

12.4 Arduino als Uhr verwenden | 407

}

void loop()
{
prevtime = now(); //Zeit festhalten
while(prevtime == now()) //Bis zur nichsten Sekunde warten

// Wurde Taste gedriickt?
if(checkSetTime())
prevtime =now(); //Zeitwurde gedndert, also Startzeit zuriicksetzen
}

digitalClockDisplay();
}

// Priift, ob Zeit korrigiert werden muss

// Gibt wahr zuriick, wenn die Zeit gedndert wurde

boolean checkSetTime()

{

int step; //Umwie viele Sekunden bewegen wir uns (zurtick, wenn negativ)

boolean isTimeAdjusted = false; //Wahr, wenn Zeit korrigiert wurde
step=1; //Vorwdrts
while(digitalRead(btnForward)== LOW)

adjustTime(step);
isTimeAdjusted = true; // Zeit wurde gedndert
step = step+1; // Nachster Schritt ist groBer
digitalClockDisplay(); // Uhr aktualisieren
delay(100);
}
step=-1; //Rickwdrts mit negativen Zahlen
while(digitalRead(btnBack)== LOW)

adjustTime(step);

isTimeAdjusted = true; // Zeit wurde gedndert
step = step - 1; // Nachster Schritt wird groer
digitalClockDisplay(); // Uhr aktualisieren
delay(100);

return isTimeAdjusted; // Zurlickgeben, ob Zeit korrigiert wurde

}

void digitalClockDisplay(){
// Digitalanzeige von Datum/Uhrzeit
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.print("");
Serial.print(day());
Serial.print("");
Serial.print(month());
Serial.print("");
Serial.print(year());
Serial.println();

}

void printDigits(int digits){
// Hilfsfunktion zur Uhrendarstellung: Gibt vorstehenden Doppelpunkt und fiihrende 0 aus

408 | Kapitel 12: Datum und Uhrzeit

Serial.print(":");
if(digits < 10)
Serial.print('0');
Serial.print(digits);

}

~NonS N — o
>< ><
—oac

esssssse ot

Arduino Zeit liuft Zeit liuft

co vorwdrts riickwairts

X} k/ \/
- 5 ANALOG
O Q é b O — N <0

eeenollececes

Abbildung 12-1: Zwei Taster zur Einstellung der Uhrzeit

Der Sketch nutzt die Funktionen digitalClockDisplay und printDigits aus Rezept 12.3,
d.h., Sie miissen sie kopieren, bevor Sie den Sketch ausfiihren kénnen.

Hier eine Variante des Sketches, der die Position eines variablen Widerstands nutzt, um

die Richtung und die Geschwindigkeit der Korrektur zu bestimmen, wenn eine Taste
gedriickt wird:

#include <Time.h>

const int potPin=0; //Poti flr Richtung und Geschwindigkeit
const int buttonPin=2; // Taster aktiviert Zeitkorrektur

unsigned long prevtime; //Wannwurde die Uhrzeit zuletzt ausgegeben?

void setup()

digitalWrite(buttonPin, HIGH); // Interne Pullup-Widerstdnde aktivieren
setTime(12,0,0,1,1,11); // Wir beginnen mit dem1.1.2011, 12 Uhr mittags
Serial.begin(9600);

}

void loop()
{

prevtime = now(); //Zeit festhalten
while(prevtime == now()) //Bis zur nichsten Sekunde warten

// Wurde Taste gedriickt?

12.4 Arduino als Uhr verwenden | 409

Der obige Sketch nutzt die Funktionen digitalClockDisplay und printDigits aus Re-
zept 12.3, d.h., Sie miissen sie kopieren, bevor Sie den Sketch ausfithren kénnen.

if(checkSetTime())
prevtime =now(); // Zeitwurde gedndert, also Startzeit zuriicksetzen
}

digitalClockDisplay();
}

// Priift, ob Zeit korrigiert werden muss
// Gibt wahr zuriick, wenn die Zeit gedndert wurde
boolean checkSetTime()

int value; //VomPoti eingelesener Wert
int step; //Umwie viele Sekunden bewegen wir uns (zuriick, wenn negativ)
boolean isTimeAdjusted = false; //Wahr, wenn Zeit korrigiert wurde

while(digitalRead(buttonPin)== LOW)

// here while button is pressed

value = analogRead(potPin); // Potiwert einlesen

step =map(value, 0,1023, 10, -10); // Wert auf gewiinschten Wertebereich abbilden
if(step !=0)

{

adjustTime(step);

isTimeAdjusted = true; // Zeit wurde gedndert
digitalClockDisplay(); // Uhr aktualsieren
delay(100);

}

return isTimeAdjusted;

}

Abbildung 12-2 zeigt, wie Poti und Taster angeschlossen sind.

Alle diese Beispiele geben die Uhrzeit tiber den seriellen Port aus, aber Sie kénnen auch
LEDs oder LCDs verwenden. Der Download fiir das Grafik-LCD aus Rezept 11.9 enthilt
Beispiel-Sketches, mit denen sich eine Analoguhr auf dem LCD anzeigen und einstellen

lisst.

Die Time-Bibliothek umfasst einige Hilfsfunktionen, die eine Konvertierung aus und in
verschiedene Zeitformate ermoglichen. So kénnen Sie zum Beispiel herausfinden, wie viel
Zeit seit Beginn dieses Tages schon vergangen ist und wie viel Zeit noch bis zum Ende

dieses Tages bleibt.

410

| Kapitel 12: Datum und Uhrzeit

—%
] T— ?rﬁcken, um”
eit einzustellen
vesscosfiscecec

DIGITAL

AREF)

Q
w1
rRxoQ

Arduino 55

I
- % C_E2e ANALOG
L0 eoen o

Poti drehen, um

Richtung und
/ Geschwindigkeit

festzulegen

Abbildung 12-2: Poti zur Zeitkorrektur

Eine vollstidndige Liste finden Sie in Time.h im Ordner libraries. Weitere Details finden Sie
in:

dayOfWeek(now()); // Wochentag (Sonntag ist Tag 1)

elapsedSecsToday(now()); //Verstrichene Sekunden seit
// Beginn des Tages

nextMidnight(now()); // Zeit bis zum Ende des Tages

elapsedSecsThisWeek(now()); // Verstrichene Zeit seit
// Beginn der Woche

Sie konnten Tage und Monate auch als Textstrings ausgeben. Hier eine Variante der Digi-
talanzeige, die Tag und Monat als Text ausgibt:

void digitalClockDisplay(){
// Digitalanzeige von Datum/Uhrzeit
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.print("");
Serial.print(dayStr(weekday())); // Wochentag ausgeben
Serial.print("");
Serial.print(day());
Serial.print("");
Serial.print(monthShortStr(month())); // Monat (abgekiirzt) ausgeben
Serial.print("");

12.4 Arduino als Uhr verwenden | 411

Serial.print(year());
Serial.println();

Siehe auch
Referenz der Arduino Time-Bibliothek: http://www.arduino.cc/playground/Code/Time
Wikipedia-Artikel zur Unix-Zeit: http://de.wikipedia.org/wiki/Unixzeit

http://www.epochconverter.com/ und http://www.onlineconversion.com/unix_time.htm sind
zwei beliebte Tools zur Konvertierung der Unix- Zeit.

12.5 Einen Alarm einrichten, um regelmaBig eine Funktion
aufzurufen

Problem

Sie wollen eine bestimmte Aktion an bestimmten Tagen und zu bestimmten Uhrzeiten
ausfthren.

Losung

TimeAlarms ist eine Bibliothek, die im Download der Time-Bibliothek aus Rezept 12.4
mit enthalten ist (d.h., die Installation der Time-Bibliothek installiert auch TimeAlarms).
TimeAlarms macht die Einrichtung zeit- und datumsgesteuerter Alarme einfach:

/*

* TimeAlarmsExample Sketch

*

* Dieses Beispiel ruft Alarmfunktionen um 8:30 und 17:45 Uhr auf.
* Simuliert das Einschalten von Lichtern am Abend und das Ausschalten amMorgen
*

* Ein Timer wird alle 15 Sekunden aufgerufen

* Ein weiterer nur einmal nach 10 Sekunden

*

* Beim Start setzenwir die Zeit auf den 1.1.2010, 8:30 Uhr

*/

#include <Time.h>
#include <TimeAlarms.h>

void setup()

Serial.begin(9600);

Serial.println("TimeAlarms-Beispiel");

Serial.println("Alarme werden taeglich um 8:30 und 17:45 Uhr ausgeloest");
Serial.println("Ein Timer wird alle 15 Sekunden ausgeloest");
Serial.println("Ein anderer nur einmal nach 10 Sekunden");
Serial.println();

==

412 | Kapitel 12: Datum und Uhrzeit

setTime(8,29,40,1,1,10); // 8:29:40 Uhr am1.1.2010

Alarm.alarmRepeat(8,30,0, MorningAlarm); // Jeden Tag um 8:30 Uhr
Alarm.alarmRepeat(17,45,0,EveningAlarm); // Jeden Tag um 17:45 Uhr

Alarm.timerRepeat(15, RepeatTask); // Timer alle 15 Sekunden
Alarm.timerOnce(10, OnceOnlyTask); // und einmal nach 10 Sekunden
}
void MorningAlarm()
{

Serial.println("Alarm: - schalte Licht aus");

void EveningAlarm()

Serial.println("Alarm: - schalte Licht ein");

void RepeatTask()

Serial.println("15-Sekunden-Timer");

}

void OnceOnlyTask()
{

Serial.println("Dieser Timer loest nur einmal aus");

void loop()

digitalClockDisplay();
Alarm.delay(1000); // Zwischen Uhrenanzeige eine Sekunde warten

void digitalClockDisplay()

// Digitalanzeige der Uhrzeit
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.println();

}

// Hilfsfunktion zur Uhrendarstellung: Gibt
// vorstehenden Doppelpunkt und fiihrende 0 aus
//
void printDigits(int digits)

Serial.print(":");

if(digits < 10)

Serial.print('0');

Serial.print(digits);

}

12.5 Einen Alarm einrichten, um regelmaBig eine Funktion aufzurufen

413

Diskussion

Sie konnen festlegen, dass Aufgaben zu einer bestimmten Tageszeit (wir nennen das
Alarme) oder in bestimmten Zeitintervallen (sog. Timer) ausgefithrt werden sollen. Jede
dieser Aufgaben kann kontinuierlich oder einmalig ausgeftihrt werden.

Um einen Alarm zu definieren, der regelmifig zu einer bestimmten Tageszeit ausgefiihrt
wird, verwenden Sie Folgendes:

Alarm.alarmRepeat(8,30,0, MorningAlarm);

Das ruft die Funktion MorningAlarm jeden Tag um 8:30 Uhr morgens auf.

Soll ein Alarm nur einmal angestoRen werden, verwenden Sie die Methode alarmOnce:
Alarm.alarmOnce(8,30,0, MorningAlarm);

Damit wird die Funktion MorningAlarm nur einmal ausgefithrt (wenn es wieder 8:30 Uhr
ist) und danach nicht wieder.

Timer stoflen Aufgaben nach einem festgelegten Zeitintervall an, nicht zu einer bestimm-
ten Tageszeit. Das Timer-Intervall kann in Sekunden oder in Stunden, Minuten und
Sekunden angegeben werden:

Alarm.timerRepeat (15, Repeats); // Timer-Job alle 15 Sekunden ausfiihren
Damit wird die Funktion Repeats in Threm Sketch alle 15 Sekunden ausgefiihrt.

Soll ein Timer nur einmal ausgefithrt werden, verwenden Sie die Methode timerOnce:
Alarm.timerOnce(10, OnceOnly); // Einmal nach 10 Sekunden

Das ruft die Funktion onceOnly im Sketch 10 Sekunden nach Erzeugung des Timers auf.

Ihr Code muss Alarm.delay regelmiRig aufrufen, da diese Funktion den
Status aller eingetragenen Ereignisse priift. Rufen Sie Alarm.delay nicht
regelmifig auf, wird auch kein Alarm ausgelost. Sie koénnen Alarm.
delay(0) aufrufen, wenn der Scheduler sofort aufgerufen werden soll. Ver-
wenden Sie immer Alarm.delay statt delay, wenn Sie in einem Sketch
TimeAlarms verwenden.

Die TimeAlarms-Bibliothek benétigt die Time-Bibliothek — siche Rezept 12.4. Es wird
keine interne oder externe Hardware fiir die TimeAlarms-Bibliothek benotigt. Der Sche-
duler nutzt keine Interrupts, die aufgerufenen Verarbeitungsfunktionen sind genau wie
alle anderen Funktion in Threm Sketch (Code in Interrupt-Handlern unterliegt Beschrin-
kungen, die in Kapitel 17 diskutiert werden, sie gelten fiir TimeAlarms-Funktionen aber
nicht).

Timer-Intervalle reichen von einer Sekunde bis zu mehreren Jahren. (Wenn Sie Timer-
Intervalle unter einer Sekunde brauchen, ist die TimedAction-Bibliothek von Alexander
Brevig die bessere Wahl; siehe http://www.arduino.cc/playground/Code/TimedAction.)

Die Ausfithrung von Aufgaben zu bestimmten Zeiten basiert auf der System-Uhr der
Time-Bibliothek (Details finden Sie in Rezept 12.4). Wenn Sie die Systemzeit dndern (z.B.

414 | Kapitel 12: Datum und Uhrzeit

iiber einen Aufruf von setTime), bleiben die Alarmzeiten unangetastet. Nutzen Sie bei-
spielsweise setTime, um die Uhr eine Stunde vorzustellen, werden alle Alarme und Timer
eine Stunde frither angestoflen. Ist es mit anderen Worten 13:00 Uhr und eine Aufgabe
soll in zwei Stunden (um 15:00 Uhr) ausgefiihrt werden, und Sie stellen die Zeit auf 14:00
Uhr vor, dann wird der Task in einer Stunde ausgefiihrt. Stellen Sie die Systemzeit zurtick
— zum Beispiel auf 12:00 Uhr —, wird der Task in drei Stunden angestoRen (wenn es laut
Systemuhr 15:00 Uhr ist). Wird die Zeit auf einen Wert gesetzt, der vor der Ausfithrungs-
zeit des Tasks liegt, wird diese Aufgabe sofort angestofRen (d.h. bei nichsten Aufruf von
Alarm.delay).

Das Verhalten von Alarmen ist offensichtlich: Aufgaben werden fiir einen bestimmten
Zeitpunkt festgelegt und zu eben diesem Zeitpunkt ausgefiihrt. Der Effekt von Timern ist
moglicherweise nicht ganz so offensichtlich. Wird ein Timer auf funf Minuten eingestellt
und die Uhr um eine Stunde zuriickgesetzt, wird dieser Timer erst in einer Stunde und
funf Minuten ausgeldst (selbst wenn es sich um einen periodischen Timer handelt — die
Wiederholung wird erst eingerichtet, nachdem er ausgelést wurde).

Bis zu sechs Alarme und Timer koénnen gleichzeitig ausgefithrt werden. Sie kénnen die
Bibliothek aber so modifizieren, dass zusitzliche Tasks ausgefithrt werden koénnen.
Rezept 16.3 zeigt, wie das geht.

onceOnly-Alarme und -Timer werden geloscht, sobald sie angestoflen wurden, kénnen
aber so oft Sie wollen wieder neu eingetragen werden, solange insgesamt nicht mehr als
sechs verwendet werden. Der folgende Code zeigt, wie ein timerOnce-Task erneut einge-
tragen wird:

Alarm.timerOnce(random(10), randomTimer); // Nach zufallig festgelegter
// Zeitspanne anstofRen

void randomTimer (){
int period = random(2,10); // Neue zufdllige Zeitspanne
Alarm.timerOnce(period, randomTimer); // Neuer zufalliger Timer

}

12.6 Eine Echtzeituhr nutzen

Problem

Sie wollen die von einer Echtzeituhr (real-time clock, RTC) bereitgestellte Zeit nutzen.
Externe Boards sind iiblicherweise batteriebetrieben, d.h., die Zeit ist auch dann korrekt,
wenn der Arduino zuriickgesetzt oder ausgeschaltet wird.

Losung

Die einfachste Moglichkeit zur Nutzung einer Echtzeituhr bietet eine Zusatzbibliothek der
Time-Bibliothek namens DS1307RTC.h. Dieses Rezept eignet sich fiir die weitverbreiteten
DS1307- und DS1337-RTC- ICs:

12.6 Eine Echtzeituhr nutzen | 415

/*

* TimeRTC Sketch

* Time-Bibliothek mit Echtzeituhr
*

*/

#include <Time.h>
#include <Wire.h>
#include <DS1307RTC.h> // Einfache DS1307-Bibliothek, die die Zeit als time t zurilickgibt

void setup() {
Serial.begin(9600);
setSyncProvider(RTC.get); //Diese Funktion liest die Zeit von der Echtzeituhr ein
if(timeStatus()!=timeSet)
Serial.println("Synchronisation mit Echtzeituhr fehlgeschlagen");
else
Serial.println("Systemzeit ueber Echtzeituhr gesetzt");

}

void loop()

digitalClockDisplay();
delay(1000);

void digitalClockDisplay(){
// Digitalanzeige von Datum/Uhrzeit
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.print("");
Serial.print(day());
Serial.print("");
Serial.print(month());
Serial.print("");
Serial.print(year());
Serial.println();

}

// Hilfsfunktion zur Unrendarstellung: Gibt
// vorstehenden Doppelpunkt und fiihrende 0 aus
//
void printDigits(int digits){

Serial.print(":");

if(digits < 10)

Serial.print('0');
Serial.print(digits);

Die meisten RTC-Boards fiir den Arduino nutzen das I2C-Protokoll zur Kommunikation
(mehr zu 12C erfahren Sie in Kapitel 13). Verbinden Sie den mit »SCL« (oder »Clock«)
gekennzeichneten Anschluss mit dem Arduino-Analogpin 5 und »SDA« (oder »Data«) mit
Analogpin 4, wie in Abbildung 12-3 zu sehen. (Die Analogpins 4 und 5 werden fiir 12C
genutzt; siehe Kapitel 13). Achten Sie darauf, die +5V- und Masse-Pins korrekt anzu-
schlieRen.

416 | Kapitel 12: Datum und Uhrzeit

000000 00000000

O
a
g DIGITAL

arer[]
A
RX0

Arduino

+ov (VCC)

- OO 2E3s ANALOS RT%
:

Abbildung 12-3: Anschluss einer Echtzeituhr

Diskussion

Der Code dhnelt den anderen Rezepten, die die Time-Bibliothek nutzen, erhilt seine Da-
ten aber tiber die Echtzeituhr und nicht iiber den seriellen Port oder einen fest kodierten
Wert. Nur eine zusitzliche Zeile ist notig:

setSyncProvider (RTC.get); //Diese Funktion liest die Zeit von der Echtzeituhr ein

Die Funktion setSyncProvider teilt der Time-Bibliothek mit, wie sie Informationen zum
Setzen (und Aktualisieren) der Zeit bekommt. RTC.get ist einer Methode der RTC-Biblio-
thek, die die aktuelle Zeit in dem Format (Unix-Zeit) zuriickliefert, die die Time-Biblio-
thek nutzt.

Jedes Mal, wenn der Arduino startet, ruft die setup-Funktion RTC.get auf, um die Zeit
itber die RTC-Hardware zu setzen.

Bevor Sie die korrekte Zeit vom Modul einlesen kénnen, miissen Sie sie aber erst einmal
setzen. Hier ein Sketch, der es Ihnen erlaubt, die Zeit der RTC-Hardware einzustellen. Das
ist nur notig, wenn Sie die RTC zum ersten Mal an eine Batterie anschliefen, die Batterie
wechseln oder die Zeit indern miissen:

/*

* TimeRTCSet Sketch

* Time-Bibliothek mit Echtzeituhr

*

*RTCwird entsprechend einer Nachricht vom seriellen Port gesetzt

* Ein beispielhafter Processing-Sketch zum Setzen der Zeit ist im Download enthalten

*/

#include <Time.h>
#include <Wire.h>

12.6 Eine Echtzeituhr nutzen | 417

#include <DS1307RTC.h> // Einfache DS1307-Bibliothek gibt Zeit als time t zuriick

void setup() {
Serial.begin(9600);
setSyncProvider(RTC.get); // Liest Zeit vonRTC ein
if(timeStatus()!=timeSet)
Serial.println("Synchronisation mit Echtzeituhr fehlgeschlagen");
else
Serial.println("Systemzeit Uber Echtzeituhr gesetzt");
}

void loop()
{
if(Serial.available())
{
time tt = processSyncMessage();
if(t>0)

RTC.set(t); //RTCund Systemzeit auf empfangenen Wert einstellen
setTime(t);
}

}
digitalClockDisplay();
delay(1000);

void digitalClockDisplay(){
// Digitalanzeige von Datum/Uhrzeit
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.print("");
Serial.print(day());
Serial.print("");
Serial.print(month());
Serial.print("");
Serial.print(year());
Serial.println();

}

// Hilfsfunktion zur Unrendarstellung: Gibt
// vorstehenden Doppelpunkt und fiihrende 0 aus
/!
void printDigits(int digits){

Serial.print(":");

if(digits < 10)

Serial.print('0');
Serial.print(digits);

/* Nachrichten zur Zeitsynchronisation vom seriellen Port verarbeiten */

#define TIME_MSG LEN 11 // Zeitsynchronisation vom PC ist ein HEADER gefolgt von Unix time_t
// als zehn ASCII-Ziffern

#define TIME HEADER 'T' //Header-Tag fir serielle Zeitsynchronisationsnachricht

time t processSyncMessage() {
// Gibt Zeit zuriick, wenn eine giiltige Sync-Nachricht Uber den seriellen Port empfangen wurde

418

| Kapitel 12: Datum und Uhrzeit

// Die Zeit-Nachricht besteht au einem Header und zehn ASCII-Ziffern
while(Serial.available() >= TIME MSG_LEN){
char c = Serial.read() ;
Serial.print(c);
1f(¢ == TIME_HEADER) {
time t pctime = 0;
for(int i=0; i < TIME_MSG_LEN -1; i++){
c=Serial.read();
if(c>="'0"8&&c<="9"){
pctime = (10 * pctime) + (c - '0") ; // Ziffer in Zahl umwandeln

}
¥

return pctime;
}
}

return 0;

}

Der Sketch ist nahezu identisch mit dem TimeSerial-Sketch in Rezept 12.4, der die Zeit
iber den seriellen Port setzt. Hier wird aber die folgende Funktion zum Setzen der RTC
aufgerufen, wenn eine Zeit-Nachricht vom Computer empfangen wurde:

RTC.set(t); //RTCund Systemzeit auf empfangenen Wert einstellen
setTime(t);

Der RTC-Chip nutzt 12C zur Kommunikation mit dem Arduino. 12C wird in Kapitel 13
erldutert; in Rezept 13.3 finden Sie weitere Details zur 12C-Kommunikation mit dem
RTC-Chip.

Siehe auch
Datenblatt zum SparkFun BOB-00099: http://store.gravitech.us/i2crecl.html

12.6 Eine Echtzeituhr nutzen | 419

KAPITEL 13
Kommunikation per 12C und SPI

13.0 Einfiihrung

Die I2C- (Inter-Integrated Circuit) und SPI- (Serial Peripheral Interface) Standards wurden
entwickelt, um auf einfache Weise digitale Informationen zwischen Sensoren und Mikro-
controllern wie dem Arduino auszutauschen. Arduino-Bibliotheken fiir I2C und SPI
machen es einfach, diese beiden Protokolle zu verwenden.

Die Wahl zwischen I12C und SPI wird tiblicherweise durch die Bauelemente bestimmt, die
Sie anschlieffen wollen. Manche Bauelemente unterstiitzen beide Standards, doch tibli-
cherweise unterstiitzt ein Bauelement oder Chip nur den einen oder den anderen.

12C hat den Vorteil, dass fiir den Anschluss mit dem Arduino nur zwei Leitungen benétigt
werden. Mehrere Bauelemente tiber die beiden Anschliisse zu betreiben, ist recht einfach
und Sie erhalten Bestitigungen, dass die Signale korrekt empfangen wurden. Die Nach-
teile sind, dass die Datenraten geringer sind als bei SPI und dass die Daten nur in jeweils
eine Richtung fliefen kénnen, was die Datenrate noch weiter senkt, wenn eine bidirek-
tionale Kommunikation notwendig ist. Dariiber hinaus werden Pullup-Widerstinde fiir
die Anschliisse benétigt, um eine zuverlissige Signaliibertragung zu gewihrleisten (mehr
iber Pullups erfahren Sie in der Einfithrung zu Kapitel 5).

Die Vorteile von SPI sind eine héhere Datenrate und separate Ein- und Ausgiinge, so dass
gleichzeitig gesendet und empfangen werden kann. Es benétigt nur eine zusitzliche
Leitung pro Bauelement (zur Geriteauswahl), d.h., Sie benétigen mehr Anschliisse,
wenn Sie viele Bauelemente anbinden.

Die meisten Arduino-Projekte nutzen SPI-Einheiten fiur Anwendungen mit hohen Daten-
raten (z.B. Ethernet und Speicherkarten) und nur einer angeschlossenen Einheit. I2C wird
eher fiir Sensoren verwendet, die nicht so viele Daten senden miissen.

Dieses Kapitel zeigt, wie man 12C und SPI nutzt, um gingige Bauelemente anzuschliefRen.
Es zeigt auch, wie man fur Multiboard-Anwendungen mehrere Arduino-Boards tiber 12C
miteinander koppelt.

| 4

12€

Die beide Anschliisse des I2C-Busses heifen SCL und SDA. Sie sind bei einem Standard-
Arduino-Board iiber Analogpin 5 fur SCL, der das Taktsignal (Clock) liefert, und
Analogpin 4 fur SDL, der den Datentransfer tibernimmt. Beim Mega verwenden Sie
Digitalpin 20 fiir SDA und Pin 21 fiir SCL. Uno-Boards der Revision 3 besitzen zusitzliche
Pins (siche Rezept 1.2), die die Pins 4 und 5 duplizieren. Wenn Sie ein solches Board
besitzen, kénnen Sie sich die Pins aussuchen. Ein Gerit auf dem 12C-Bus wird als Master
betrachtet. Seine Aufgabe besteht darin, den Informationsaustausch zwischen den ande-
ren angeschlossenen Geriten (Slaves) zu koordinieren. Es kann nur einen Master geben
und in den meisten Fillen ist der Arduino der Master, der die anderen Chips steuert.
Abbildung 13-1 zeigt einen I12C-Master mit mehreren I2C- Slaves.

W N
o Mit Arduino 1.0 eingefithrte Boards wie das Leonardo-Board duplizieren
ﬁ:‘ die SCL- und SDA-Anschliisse an Pins neben dem AREF-Pin. Die neue
T 98y Lage der Pins ermoglicht es zukiinftigen Boards, die 12C-Anschliisse
* immer an der gleichen Stelle zu belassen.
Pullup-
widerstdnde \ +V
Alog 5 Jw [j
12C T Data
Master Nog4 ; | Clock
SCL SDA HV SCL SDA +v
2C 4 2C &
Slave T N Slave T
Entkoppelungs-
Malsse kondensator MTSQ

Abbildung 13-1: Ein 12C-Master mit ein oder mehr 12C-Slaves

WS

[2C-Gerite bendtigen zur Kommunikation eine gemeinsame Masse. Der
Masse-Anschluss des Arduino muss mit der Masse jedes 12C-Gerites
%s' verbunden sein.

Slaves werden {iber ihre Adresse identifiziert. Jeder Slave muss eine eindeutige Adresse
besitzen. Einige 12C-Gerite haben feste Adressen (ein Beispiel ist der Nunchuck in
Rezept 13.2), wihrend Sie bei anderen die Adresse konfigurieren kénnen, indem Sie
bestimmte Pins auf HIGH oder LOW setzen (siehe Rezept 13.7) oder Initialisierungs-
befehle senden.

W8

- Arduino nutzt fiir 12C-Adressen 7-Bit-Werte. Die Datenblitter einiger
ﬁ:‘ Gerite verwenden 8-Bit-Adressen. Ist das bei Thnen der Fall, teilen Sie
o den Wert durch zwei, um den richtigen 7-Bit-Wert zu bestimmen.

422 | Kapitel 13: Kommunikation per 12C und SPI

12C und SPI definieren nur, wie die Kommunikation zwischen den Geriten zu erfolgen
hat. Die zu sendenden Nachrichten hingen vom jeweiligen Gerit (und was es macht) ab.
Sie miissen auf dem Datenblatt Thres Gerits nachsehen, welche Befehle fiir den Betrieb
benotigt werden und welche Daten benétigt oder zuriickgegeben werden.

Die Arduino Wire-Bibliothek versteckt die gesamte Low-Level-Funktionalitit von 12C vor
Thnen und erlaubt das Senden einfacher Befehle zur Initialisierung und Kommunikation von
Geriten. Rezept 13.1 ist eine einfache Einfithrung in diese Bibliothek und ihre Nutzung.

Wire-Code nach Arduino 1.0 migrieren

Die Arduino Wire-Bibliothek wurde in der Release 1.0 geidndert. Sie mussen fiir dltere
Releases geschriebene Sketches entsprechend modifizieren und unter 1.0 neu kompilie-
ren. Die Methoden send und receive wurden zugunsten der Konsistenz mit anderen
Bibliotheken umbenannt:

Andern Sie Wire.send() in Wire.write().
Andern Sie Wire.receive() in Wire.read().

Bei write miissen Sie nun den Variablentyp fiir literale Konstanten angeben. Ein Beispiel:

Andern Sie Wire.write(0x10) in Wire.write((byte)0x10).

3,3V-Gerate mit 5V-Boards nutzen

Viele 12C-Gerite sind fiir den 3,3V-Betrieb ausgelegt und kénnen beschidigt werden,
wenn man sie an ein 5V-Arduino-Board anschlieft. Sie konnen so etwas wie das
BOB-08745 Breakout-Board von SparkFun verwenden, das den Anschluss uber einen
Pegelwandler ermoglicht (siehe Abbildung 13-2). Das Pegelwandler-Board hat eine Seite
fiir 3,3V (low-voltage, LV) und eins fiir 5 Volt (high-voltage, HV).

QIRESET
o)
LV[HV E3Gnd
© T X0 6 gginnd
GND | O1—— O RXD RX1 0
victe oLV HV & [30 Analog In
SDA © GND GND & g}
agnetometer (L @ O RXD RX1 ©)3
HMC5883L L—tlom X0 &1 %512?{\

Abbildung 13-2: 3,3V-Gerdt mit Pegelwandler betreiben

Fiir ein 3,3V-12C-Geriit schliefRen Sie die LV-Seite wie folgt an:
* Oberen TXI-Pin mit I2C SDA-Pin
* Unteren TXI-Pin mit I2C SCL-Pin
* LV-Pin an I2C VCC und 3,3V-Spannungsversorgung
* GND-Pin an I2C-Masse

13.0 Einfiihrung | 423

Die HV-Seite schliefRen Sie wie folgt an:

¢ Oberen TX0-Pin mit [2C SDA-Pin
¢ Unteren TX0-Pin mit [2C SCL-Pin

* HV-Pin mit Arduino 5V-Spannungsversorgung

* CND-Pin mit Arduino-Masse

Sie konnen mehrere 12C-Gerdte mit einem einzelnen Pegelwandler anschlieflen, wie

Abbildung 13-3 zeigt.

3,3 V-12C-Element

Pegelwandler

Vi€ ¢ Vee-©
GND @ GND-e+
SDA & SDA-©
Sl e Sct-e-

—© TXI

TX0 G

Arduino 5-12C-Element
OJRESET
£33
- V(C-© Vo
GND-© GND-©
SDA-© SDA-©
- SCL-© Sct-©

Abbildung 13-3: Anschluss mehrerer 3,3V- und 5V-12C-Gerdte

Beispiele fiir die Verwendung eines Pegelwandlers finden Sie in der Diskussion zum
ITG-3200 in Rezept 6.15 und dem HMC5883 in Rezept 6.16.

SPI

Jingere Arduino-Releases (seit Release 0019) enthalten eine Bibliothek, die die Kom-
munikation mit SPI-Geriten erlaubt. SPI besitzt separate Eingangs- (»MOSI«) und Aus-
gangsleitungen (»MISO«) sowie einen Taktanschluss (Clock). Diese drei Leitungen
werden mit den entsprechenden Anschliissen von ein oder mehr Slaves verbunden. Slaves
werden Uber ein Signal an der Slave-Select-Leitung (SS) identifiziert. Abbildung 13-4 zeigt
die Verschaltung bei SPI.

SCLK
MOS|
MISO
551
)
S MM S S M M s
SPI Master cC 0 1 s c 0o 1 s
L s s L S s
K 1 0 K 1 0
SPI Slave SPI Slave

Abbildung 13-4: Signalanschliisse fiir SPI-Master und -Slaves

424 | Kapitel 13: Kommunikation per 12C und SPI

Die fiir die SPI-Pins zu verwendenden Pin-Nummern sehen Sie in Tabelle 13-1.

Tabelle 13-1: Arduino-Digitalpins fiir SPI

SPI-Signal Standard-Arduino-Board Arduino-Mega
SCLK (clock) 13 52
MISO (data out) 12 50
MOSI (data in) n 51
SS (slave select) 10 53

Siehe auch

I2C mit SPI vergleichende Application Note: hitp://www.maxim-ic.com/app-notes/index
.mvp/id/4024

Referenz der Arduino Wire-Bibliothek: http://www.arduino.cc/en/Reference/Wire
Referenz der Arduino SPI-Bibliothek: http://www.arduino.cc/playground/Code/Spi

13.1 Steuerung einer RGB-LED mit dem BlinkM-Modul

Problem
Sie wollen 12C-fihige LEDs wie das BlinkM-Modul steuern.

Losung

BlinkM ist ein vormontiertes Farb-LED-Modul, das einen einfachen Einstieg in 12C
ermoglicht.

Verbinden Sie die BlinkM-Pins wie in Abbildung 13-5 gezeigt mit den Analogpins 2 bis 5.

Der folgende Sketch basiert auf Rezept 7.4, steuert aber nicht die Spannung der roten,
griinen und blauen LED-Elemente, sondern sendet 12C-Befehle an das BlinkM-Modul.
Diese Anweisungen legen die Rot-, Griin- und Blauanteile der zu erzeugenden Farbe fest.
Die Funktion hueToRGB entspricht der aus Rezept 7.4 und ist an dieser Stelle nicht erneut
abgedruckt. Kopieren Sie die Funktion vor der Kompilierung an das Ende des Skripts.
(Auf der Website zu diesem Buch finden Sie den kompletten Sketch):

/*

* BlinkM Sketch

* Der Sketch geht kontinuierlich den Farbkreis durch
*/

#include <Wire.h>

const int address = 0; // Standard I2C-Adresse fiir BLinkM

13.1 Steuerung einer RGB-LED mit dem BlinkM-Modul | 425

int color = 0; // Wert zwischen 0 und 255 bestimmt den Farbton
byteR, G, B; //Rot-, Grin- und Blauanteil

void setup()
Wire.begin(); // I2C-Unterstitzung initialisieren
// Spannung flir BlinkM einschalten
pinMode(17, OUTPUT); // Pin 17 (Analogausgang 3) versorgt BlinkMmit +5V
digitalWrite(17, HIGH);

pinMode (16, OUTPUT); // Pin 16 (Analogausgang 2) ist Masse
digitalWrite(16, LOW);

void loop()
int brightness = 255; // 255 ist maximale Helligkeit
hueToRGB(color, brightness); // Farbton in RGB umwandeln
// RGB-Werte an BlinkM schreiben

Wire.beginTransmission(address);// I2C-Kommunikation mit BlinkM einleiten

Wire.write('c'); // 'c"' == Farbe wechseln
Wire.write(R); // Wert fiir Rot
Wire.write(B); // Wert fiir Blau
Wire.write(G); // Wert fiir Griin
Wire.endTransmission(); // I2C-Bus freigeben
color++; // Farbwert erhohen
if (color » 255)
color =0;
delay(10);
}
00 000000NN00000000
v DIGITAL =

Arduino

O
- Q Q : BlinkM

© 0 0 o

OJreser
Osvs
Osv
Ocnd
Ocnd
Ovin
o

Abbildung 13-5: An Analogpins aufgestecktes BlinkM-Modul

426 | Kapitel 13: Kommunikation per 12C und SPI

Diskussion

Die Wire-Bibliothek wird wie folgt in den Sketch eingebunden:
#include <Wire.h>

Weitere Details zur Nutzung von Bibliotheken finden Sie in .

Der Code in setup initialisiert die Wire-Bibliothek, die Hardware im Arduino zur
Ansteuerung von SCA und SDL an den Analogpins 4 und 5 und schaltet die Pins ein, die
zur Spannungsversorgung des BlinkM-Moduls genutzt werden.

Der loop-Code ruft die Funktion hueToRGB auf, um die Rot-, Griin- und Blauwerte der
Farbe zu berechnen.

Die R-, G- und B-Werte werden mit der folgenden Sequenz an BlinkM gesendet:

Wire.beginTransmission(address); // Beginn einer I2C-Nachricht fiir die BlinkM-Adresse

Wire.write('c'); // 'c' ist ein Befehl, der die nachfolgende Farbe einstellt
Wire.write(R); // Rotanteil

Wire.write(B); // Blauanteil

Wire.write(G); // Griinanteil

Wire.endTransmission(); // I2C-Nachricht abgeschlossen

Die gesamteDateniibertragung an 12C-Gerite folgt diesem Muster: beginTransmission,
eine Reihe von write-Nachrichten und endTransmission.

N N
Versionen vor Arduino 1.0 verwenden Wire.send statt Wire.write.

12C unterstiitzt bis zu 127 Gerite, die mit den Clock- und Datenpins verbunden sind. Die
Adresse bestimmt dabei, welches Gerit reagiert. Die Standard-Adresse fiir BlinkM ist 0,
kann aber geindert werden, indem man einen Befehl zur Adressinderung sendet — im
BlinkM-Benutzerhandbuch finden Sie Informationen zu allen Befehlen.

CO0000 - 00000000

N9 ~ounsTmN—O

DIGITAL =z

aal
=2
=o

Arduino

| : @ @
BlinkM BlinkM BlinkM

S . ANALOG

- OO %ra]ascé O in

Abbildung 13-6: Anschluss mehrerer BlinkM-Module

13.1 Steuerung einer RGB-LED mit dem BlinkM-Modul | 427

Um mehrere BlinkMs anzuschlieflen, verbinden Sie alle Clock-Pins (»c« am BlinkM,
Analogpin 5 am Arduino) und alle Datenpins (»d« am BlinkM, Analogpin 4 am Arduino)
wie in Abbildung 13-6 zu sehen. Die Versorgungsanschliisse sollten mit +5V und Masse
des Arduino oder einer externen Spannungsversorgung verbunden sein (da die Analog-
pins nur wenige Module mit Strom versorgen kénnen).

Jedes BlinkM zieht bis zu 60 mA, d.h., wenn Sie mehr als eine Handvoll
verwenden, miissen Sie eine externe Spannungsversorgung nutzen.

Sie miissen jedem BlinkM eine andere I2C-Adresse zuweisen und Sie koénnen den
BlinkMTester-Sketch nutzen, der mit den BlinkM-Beispielen geliefert wird, die von
http://code.google.com/p/blinkm-projects/ heruntergeladen werden konnen.

Kompilieren Sie den BlinkMTester-Sketch und laden Sie ihn hoch. Stecken Sie ein
BlinkM-Modul nach dem anderen auf den Arduino auf. (Schalten Sie die Spannung beim
Auf- und Abstecken der Module aus.) Verwenden Sie den BlinkMTester Scan-Befehl s,
um sich die aktuelle Adresse ausgeben zu lassen, und den Befehl A, um jedem Modul eine
andere Adresse zuzuweisen.

BlinkMTester kommuniziert mit 19.200 Baud, d.h., Sie miissen diese
Baudrate im seriellen Monitor einstellen, damit etwas Lesbares auf dem
Display erscheint.

Sobald alle BlinkMs eine eindeutige Adresse haben, konnen Sie die address-Variable im
obigen Sketch auf die Adresse des BlinkMs setzen, den Sie steuern wollen. Das nach-
folgende Beispiel geht von den Adressen 9 bis 11 aus:

#include <Wire.h>

int addressA=9; // I2C-Adresse fir B1inkM
int addressB = 10;
int addressC=11;

int color = 0; // Wert O und 255 bestimmt den Farbton
byteR, G, B; //Rot-, Grin- und Blauanteil

void setup()
{
Wire.begin(); // I2C-Unterstiitzug initialisieren

// Spannung fuir BlinkM einschalten

pinMode(17, OUTPUT); //Pin 17 (Analogausgang 4) versorgt BlinkMmit +5V
digitalWrite(17, HIGH);

pinMode (16, OUTPUT); // Pin 16 (Analogausgang 3) ist Masse
digitalWrite(16, LOW);

void loop()

{
int brightness = 255; // 255 ist maximale Helligkeit

428 | Kapitel 13: Kommunikation per 12C und SPI

hueToRGB(color, brightness); // Farbton in RGB umwandeln
// RGB-Werte an jedes BlinkM schreiben

setColor(addressA, R,G,B);

setColor(addressB, G,B,R);

setColor(addressC, B,R,G);

color++; // Farbwert erh6hen
if(color » 255) // Fir giltigen Wert sorgen
color =0;
delay(10);
}

void setColor(int address, byteR, byte G, byte B)
{

Wire.beginTransmission(address);// I2C-Kommunikation mit BlinkMeinleiten
Wire.write('c'); //'c' == Farbe dndern

Wire.write(R); // Rotanteil

Wire.write(B); // Blauanteil

Wire.write(G); // Griinanteil

Wire.endTransmission(); // 12C-Bus freigeben

}

// hueToRGB-Funktion aus obigem Sketch nutzen

Die Funktion setColor schreibt die tibergebenen RGB-Werte an das BlinkM-Modul mit
der angegebenen Adresse.

Der Code nutzt die bereits angesprochene hueToRGB-Funktion, um einen Integerwert in
seine Rot-, Griin- und Blauanteile umzuwandeln.

Siehe auch

Das BlinkM-Benutzerhandbuch: http://thingm.com/fileadmin/thingm/downloads/Blink M_
datasheet.pdf

Arduino-Beispielsketches: http://code.google.com/p/blinkm-projects/

13.2 Den Wii Nunchuck-Beschleunigungsmesser nutzen

Problem

Sie wollen einen Wii Nunchuck als einfachen und kostengiinstigen Beschleunigungs-
messer nutzen. Der Nunchuck ist ein weitverbreiteter, kostengtnstiger Spiele-Controller,
bei dem sich die Orientierung des Controllers mit Hilfe des Gravitationseffekts messen
l4sst.

Losung

Der Nunchuck verwendet einen proprietiren Stecker. Soll der Nunchuck nicht wieder an
die Wii angeschlossen werden, kénnen Sie den Abschluss einfach abschneiden. Alternativ
konnen Sie die Verbindungen (vorsichtig) tiber eine kleine Lochrasterplatte herstellen

13.2 Den Wii Nunchuck-Beschleunigungsmesser nutzen | 429

oder einen entsprechenden Adapter von Todbot kaufen (http://todbot.com/blog/2008/
Nunchuck-Anschliisse
00000000 00000000

02/18/wiichuck-wii-nunchuck-adapter-available/).

Z5 T DIGITAL == 1 (PWR) an Analogpin 3 (oder +5V)
2(SCL) an Analogpin 5
5(SDA) an Analogpin 4

ArdUInO 6 (GND) an Analogpin 2 (oder Masse)

Nunchuck-
I i b —%
] : ros
OO £a33s Mot T 3 5

000000 Og o 7
Nunchuck-Anschluss

Abbildung 13-7: Anschluss eines Nunchuck

/*

* nunchuck_lines Sketch

* Sendet Daten an Processing, um Linien zu zeichnen, die der Nunchuck-Bewegung folgen
*/

#include <Wire.h> // Wire initialisieren

const int vccPin =A3; //+V lUber Pin 17
const int gndPin =A2; //Masse liber Pin 16

const int datalength = 6; // Anzahl anzuforderner Bytes
static byte rawData[datalength]; // Array zur Speicherung der Nunchuck-Daten

enum nunchuckItems { joyX, joyY, accelX, accelY, accelZ, btnZ, btnC };

void setup() {
pinMode(gndPin, OUTPUT); // Spannungsversorgung initialisieren
pinMode(vccPin, OUTPUT);
digitalWrite(gndPin, LOW);
digitalWrite(vccPin, HIGH);
delay(100); // Auf Stabilisierungwarten

Serial.begin(9600);
nunchuckInit();

}

void loop(){
nunchuckRead();
int acceleration = getValue(accelX);
if((acceleration >=75) && (acceleration <= 185))

//map gibt Werte von 0 bis 63 flir Werte von 75 bis 185 zurlick

430 | Kapitel 13: Kommunikation per 12C und SPI

byte x =map(acceleration, 75, 185, 0, 63);
Serial.write(x);

delay(20); // Zeit zwischen Redraws in Millisekunden

}

void nunchuckInit(){
Wire.begin(); // Mit 12C-Bus als Master verbinden
Wire.beginTransmission(0x52);// Ubertragung an Gerdt 0x52
Wire.write((byte)ox40); // Speicheradresse senden
Wire.write((byte)ox00); // Eine Null senden
Wire.endTransmission(); // Ubertragung beenden

}

// Daten vom Nunchuck anfordern

static void nunchuckRequest(){
Wire.beginTransmission(0x52);// Ubertragung an Gerat ox52
Wire.write((byte)ox00); // Ein Byte senden
Wire.endTransmission(); // Ubertragung beenden

}

// Daten vom Nunchuck empfangen. Gibt bei Erfolg
// 'wahr' zuriick, anderenfalls 'falsch'
boolean nunchuckRead(){
int cnt=0;
Wire.requestFrom (0x52, datalength); // Daten vom Nunchuck anfordern
while (Wire.available ()) {
rawData[cnt] = nunchuckDecode (Wire.read());
cnt++;

nunchuckRequest(); // Nutzdaten anfordern
if (cnt >= datalength)

returntrue; //Erfolgreich, wenn alle 6 Bytes empfangen wurden,
else

return false; //anderenfalls Fehler

}

// Daten in ein Format umwandeln, das die meistenwiimote-Treiber akzeptieren
static char nunchuckDecode (byte x) {
return (x * 0x17) + 0x17;

int getvalue(int item){
if (item<=accelz)
return (int)rawData[item];
else if (item ==btnZ)
return bitRead(rawData[5], 0) ? 0: 1;
else if (item == btnC)
return bitRead(rawData[5], 1) ? 0: 1;
}

Diskussion

[2C wird bei kommerziellen Produkten wie dem Nunchuck hiufig zur Kommunikation
zwischen den Geriten genutzt. Es gibt kein offizielles Datenblatt fiir das Gerit, aber die

13.2 Den Wii Nunchuck-Beschleunigungsmesser nutzen | 431

Nunchuck-Signale wurden analysiert (Reverse Engineering), um die zur Kommunikation
benotigten Befehle zu ermitteln.

Sie konnen den folgenden Processing-Sketch nutzen, um eine Linie auf dem Bildschirm zu
zeichnen, die der Bewegung des Nunchuck folgt, wie in Abbildung 13-8 zu sehen (in
Kapitel 4 erfahren Sie mehr dariiber, wie Sie vom Arduino empfangene serielle Daten mit
Processing verarbeiten kénnen. Kapitel 4 zeigt auch, wie man Processing fiir den Arduino
einrichtet und nutzt):

// Processing-Sketch zeichnet Linie, die den Nunchuck-Daten folgt
import processing.serial.*;

Serial myPort; // Serial-Objekt erzeugen
public static final short portIndex = 1;

void setup()
size(200, 200);

// Verwendeten Port 6ffnen - siehe Kapitel 4
myPort = new Serial(this,Serial.list()[portIndex], 9600);

}
void draw()
{
if (myPort.available() > 0) { // Wenn Daten vorhanden sind,
inty =myPort.read(); // einlesen und speichern
background(255); // WeiRer Hintergrund
line(0,63-y,127,y); // Linie zeichnen
}
}

Xy

-
- -
- -
- -
- -
LI -

Abbildung 13-8: Nunchuck-Bewegung als geneigte Linie in Processing

432 | Kapitel 13: Kommunikation per 12C und SPI

Der Sketch bindet die Wire-Bibliothek fiir die 12C-Kommunikation ein und definiert die
Pins, die zur Spannungsversorgung des Nunchuck genutzt werden:

#include <Wire.h> // Wire initialisieren

const int vccPin = A3; //+V (vcc) an Pin 17
const int gndPin = A2; //Masse an Pin 16

Wire.h ist die 12C-Bibliothek, die mit der Arduino-Release mitgeliefert wird. A3 ist
Analogpin 3 (Digitalpin 17), A2 ist Analogpin 2 (Digitalpin 16). Diese Pins versorgen den
Nunchuck mit Spannung.

enum nunchuckItems { joyX, joyY, accelX, accelY, accelZ, btnZ, btnC };

enum ist ein Konstrukt zur Erzeugung enumerierter Listen mit Konstanten, in diesem Fall
einer Liste der vom Nunchuck zuriickgelieferter Sensorwerte. Diese Konstanten werden
genutzt, um Requests fiir einen der Nunchuck-Sensorwerte zu identifizieren.

setup initialisiert die zur Spannungsversorgung des Nunchuck verwendeten Pins, indem
es vcePin auf HICH und gndPin auf LOW setzt. Das ist nur notwendig, wenn der Nunchuck-
Adapter die Spannungsversorgung iibernimmt. Die Verwendung von Digitalpins als
Spannungsquelle ist iiblicherweise nicht zu empfehlen, solange man nicht sicher ist, dass
das versorgte Gerit (wie der Nunchuck) nicht mehr Strom zieht als erlaubt (40 mA; siehe
Kapitel 5).

Die Funktion nunchuckInit baut die I2C-Kommunikation mit dem Nunchuck auf.

Die 12C-Kommunikation beginnt mit Wire.begin(). In diesem Beispiel ist der Arduino als
Master fur die Initialisierung des Slaves verantwortlich, also des Nunchucks an Adresse
0x52.

Die folgende Zeile weist die Wire-Bibliothek an, das Senden einer Nachricht an das Gerit
mit der Hexadezimal-Adresse 52 (0x52) einzuleiten:

beginTransmission(0x52);

N
\
N Die 12C-Dokumentation gibt Adressen tiblicherweise hexadezimal an. Es
.'s‘ ist daher recht bequem, diese Notation auch in Threm Sketch zu verwen-
A
~ G den.

Wire.send legt die tibergebenen Werte in einem Puffer der Wire-Bibliothek ab, in dem die
Daten zwischengespeichert werden, bis Wire.endTransmission aufgerufen wird, um die
Daten tatsichlich zu senden.

nunchuckRequest und nunchuckRead werden genutzt, um Daten vom Nunchuck anzufor-
dern und einzulesen.

Die Wire-Funktion requestFrom wird genutzt, um sechs Datenbytes von Gerit 0x52 (dem
Nunchuck) einzulesen.

13.2 Den Wii Nunchuck-Beschleunigungsmesser nutzen | 433

Der Nunchuck gibt seine Daten in sechs Bytes zuriick:

Byte Nummer Beschreibung

Byte 1 Analog-Joystick, Wert der x-Achse

Byte 2 Analog-Joystick, Wert er y-Achse

Byte 3 Beschleunigung x-Achse

Byte 4 Beschleunigung y-Achse

Byte 5 Beschleunigung z-Achse

Byte 6 Button-Zustande und niederwertige Bits der Beschleunigung

Wire.available funktioniert wie Serial.available (siehe Kapitel 4), gibt also an, wie viele
Bytes tiber das 12C-Interface empfangen wurden. Sind Daten verfiigbar, werden sie mit
Wire.read eingelesen und mit nunchuckDecode dekodiert. Die Dekodierung ist nétig, um die
gesendeten Werte in Zahlen umzuwandeln, die vom Sketch genutzt werden konnen.
Diese Werte werden in einem Puffer namens rawData gespeichert. Ein Request fordert die
nichsten sechs Datenbytes an und ist dann fiir den nichsten Aufruf bereit:

int acceleration = getValue(accelX);

Der Funktion getvalue wird eine der Konstanten aus der enumerierten Sensorliste
tibergeben, in diesem Fall accelX fiir die Beschleunigung an der x-Achse.

Sie konnen zusitzliche Felder senden, indem Sie sie durch Kommata trennen (siehe
Rezept 4.4). Hier eine entsprechend iiberarbeitete loop-Funktion:
void loop(){
nunchuckRead();

Serial.print("H,"); // Header
for(int i=0; i< 3; i++)

Serial.print(getValue(accelX+ 1), DEC);

if(i>2)
Serial.write(',"');
else
Serial.write('\n') ;
}

delay(20); // Zeit zwischen Redraws in Millisekunden

Siehe auch

Rezept 16.5 fur eine Nunchuck-Bibliothek und die Diskussion in Rezept 4.4 fiir einen
Processing-Sketch, der ein Echtzeit-Diagramm aller Nunchuck-Werte darstellt.

434 | Kapitel 13: Kommunikation per 12C und SPI

13.3 Anbindung einer externen Echtzeituhr

Problem

Sie wollen Datum/Uhrzeit einer externen Echtzeituhr (Real-Time Clock, RTC) nutzen.

Losung

Die Losung nutzt die Wire-Bibliothek, um auf eine Echtzeituhr zuzugreifen. Sie verwendet
die gleiche Hardware wie in Rezept 12.6. Die Verschaltung finden Sie in Abbildung 12-3.

/*

* I2C_RTC Sketch

* Beispiel-Code fir den Zugriff auf eine Echtzeituhr lber die Wire-Bibliothek
*/

#include <Wire.h>

const byte DS1307_CTRL_ID = 0x68; // Adresse der DS1307-Echtzeituhr
const byte NumberOfFields = 7; // Zahl der Felder (Bytes), die
// von der Echtzeituhr angefordert werden
int Second ;
int Minute;
int Hour;
int Day;
int Wday;
int Month;
int Year;

void setup() {
Serial.begin(9600);
Wire.begin();

void loop()
{

Wire.beginTransmission(DS1307 CTRL ID);
Wire.write((byte)ox00);
Wire.endTransmission();

// 7 Datenfelder anfordern(Sek, Min, Std, WTag, Dat, Mon, Jhr)
Wire.requestFrom(DS1307_CTRL_ID, NumberOfFields);

Second = bcd2dec(Wire.read() & ox7f);

Minute = bcd2dec(Wire.read());

Hour =bcd2dec(Wire.read() & 0x3f); // Maske erwartet 24-Stunden-Format
Wday =bcd2dec(Wire.read());

Day =bcd2dec(Wire.read());

Month =bcd2dec(Wire.read());

Year =bcd2dec(Wire.read());

Year =Year +2000; // RTC-Jahr 0 ist Jahr 2000

digitalClockDisplay(); // Datum/Uhrzeit ausgeben
delay(1000);

13.3 Anbindung einer externen Echtzeituhr | 435

Die requestFrom-Methode der Wire-Bibliothek wird verwendet, um sieben Zeitfelder von
der Uhr anzufordern (DS1307_CTRL_ID ist die Adresse der Uhr):

Die Werte fiir Datum und Uhrzeit werden mit sieben Aufrufen der Wire.receive-Methode

// BCD (Binar kodierte Dezimalzahl) in Dezimal umwandeln
byte bcd2dec(byte num)

return ((num/16 * 10) + (num% 16));

}

void digitalClockDisplay(){
// Digitalanzeige von Datum/Uhrzeit
Serial.print(Hour);
printDigits(Minute);
printDigits(Second);
Serial.print("");
Serial.print(Day);
Serial.print("");
Serial.print(Month);
Serial.print("");
Serial.print(Year);
Serial.println();

}

// Hilfsfunktion zur Unhrendarstellung: Gibt
// vorstehenden Doppelpunkt und fiihrende 0 aus
//
void printDigits(int digits){

Serial.print(":");

if(digits < 10)

Serial.print('0');

Serial.print(digits);

}

Wire.requestFrom(DS1307 CTRL_ID, NumberOfFields);

abgerufen:

Die vom Modul zuriickgelieferten Werte sind binar kodierte Dezimalzahlen (BCD). Wir
nutzen daher die Funktion bcd2dec, um die Werte beim Empfang umzuwandeln. (BCD

speichert Dezimalwerte in vier Datenbits.)

Siehe auch

Rezept 12.6 zeigt, wie man die Uhr setzt.

13.4 Externen EEPROM-Speicher anbinden

Problem

Sie benotigen mehr Permanentspeicher, als der Arduino bereitstellt, und wollen einen
externen Speicherchip nutzen, um die Kapazitit zu erhghen.

436

| Kapitel 13: Kommunikation per 12C und SPI

Losung

Dieses Rezept nutzt das 12C-fihige serielle EEPROM 24L.C128 von Microchip Technolo-
gy. Abbildung 13-9 zeigt die Verschaltung.

S Sy
25 DiGmAL e
24LC128

Arduino |2 EEPROM

n v

Al Wp

: NS

- S me. ANALOG &—iGnd SDA I
 Gooooh oootor
:!' 0.1uf

Abbildung 13-9: Anschluss eines I2C-EEPROMs

Das Rezept stellt eine vergleichbare Funktionalitit bereit wie die Arduino EEPROM-
Bibliothek (siehe Rezept 17.1), verwendet aber ein iiber I2C angebundenes externes
EEPROM, um eine wesentlich hohere Speicherkapazitit zur Verfiigung zu stellen:

/*

* T2C EEPROM Sketch
*Version fir 24LC128
*/

#include <Wire.h>

const byte EEPROM_ID = 0x50; // I2C-Adresse fiir 24L.C128-EEPROM

// Erstes sichtbares ASCII-Zeichen ('!") hat den Wert 33
int thisByte =33;

void setup()

Serial.begin(9600);
Wire.begin();

Serial.println("Schreibe 1024 Byte an EEPROM");
for (int i=0; i < 1024; i++)
{

I2CEEPROM Write(i, thisByte);

// Weiter mit ndchstem Zeichen

thisByte++;

13.4 Externen EEPROM-Speicher anbinden | 437

if (thisByte ==126) // Sie kdnnten auch "if (thisByte=="~")" verwenden
thisByte =33; //Von vornanfangen
}

Serial.println("Lese 1024 Byte von EEPROM");
int thisByte = 33;

for (int i=0; i < 1024; i++)

{

char ¢ = T2CEEPROM Read(i);

if(¢ !=thisByte)

{
Serial.println("Lesefehler");
break;

}

else

{

Serial.print(c);

}

thisByte++;

if(thisByte == 126)

Serial.println();
thisByte =33; // Inneuer Zeile von vorn anfangen
}

}

Serial.println();

}

void loop()
{

}

// Diese Funktion entspricht EEPROM.write()
void I2CEEPROM Write(unsigned int address, byte data)

{

Wire.beginTransmission(EEPROM_ID);
Wire.write((int)highByte(address));
Wire.write((int)lowByte(address));

Wire.write(data);

Wire.endTransmission();

delay(5); // Warten, dass I2C-EEPROM den Schreibzyklus abschlieRt

// Diese Funktion entspricht EEPROM.read()
byte I2CEEPROM Read(unsigned int address)
{

byte data;

Wire.beginTransmission(EEPROM_ID);
Wire.write((int)highByte(address));
Wire.write((int)lowByte(address));
Wire.endTransmission();
Wire.requestFrom(EEPROM ID, (byte)1);
while(Wire.available() == 0) // Auf Daten warten

>

438 | Kapitel 13: Kommunikation per 12C und SPI

data = Wire.read();
return data;

}

Diskussion

Dieses Rezept verwendet den 241.C128, der 128K Bit Speicher hat. Es gibt aber vergleich-
bare Chips mit hoheren und niedrigeren Kapazititen (der Mikrochip-Link im Siehe-auch-
Abschnitt enthilt einen entsprechenden Querverweis). Die Adresse des Chips wird tiber
die drei mit AO bis A2 gekennzeichneten Pins festgelegt und liegt zwischen 0x50 und
0x57, wie in Tabelle 13-2 zu sehen.

Tabelle 13-2: Adressen fiir 24L.C128

A0 Al A2 Adresse
Gnd Gnd Gnd 0x50
+5V Gnd Gnd 0x51
Masse +5V Masse 0x52

+5V +5V Masse 0x53
Masse Masse +5V 0x54
+5V Masse +5V 0x55
+5V +5V Masse 0x56
+5V +5V +5V 0x57

Die Verwendung der Wire-Bibliothek entspricht 13.1 und 13.2. In diesen Rezepten kon-
nen Sie nachlesen, wie die Initialisierung und die Anforderung der Daten von einem
[2C-Geriit erfolgt.

Die EEPROM-spezifischen Lese- und Schreiboperationen finden sich in den Funktionen
12cEEPROM Write und i2cEEPROM Read. Die Operationen beginnen mit einem Wire.begin-
Transmission an die [2C-Adresse des Gerits. Dem folgt ein 2-Byte-Wert fiir die Speicher-
zelle der Lese-/Schreiboperation. Bei der Schreibfunktion folgt auf die Adresse der zu
schreibende Wert — in diesem Beispiel wird an die Speicherzelle ein Byte geschrieben.

Die Leseoperation sendet die Speicherzelle an das EEPROM und dann ein Wire.request-
From(EEPROM_ID, (byte)1);. Das liefert ein Datenbyte von der gerade gesetzten Speicher-
adresse zurtick.

Wenn Sie die Schreibgeschwindigkeit erhéhen wollen, konnen Sie die Verzégerung von
5ms durch eine Statuspriifung ersetzen, die ermittelt, wann das EEPROM bereit ist, ein
weiteres Byte zu schreiben. Siehe hierzu die »Acknowledge Polling«-Technik, die im
Abschnitt 7 des Datenblatts beschrieben wird. Daten kénnen nicht nur einzeln, sondern
auch in 64 Byte groflen »Seiten« geschrieben werden. Details finden Sie in Abschnitt 6 des
Datenblatts.

13.4 Externen EEPROM-Speicher anbinden | 439

Der Chip merkt sich die angegebene Adresse und bewegt sich bei jeder Lese- oder Schreib-
operation zur nichsten Speicherzelle. Wenn Sie mehr als ein Byte einlesen miissen, legen Sie
einfach die Startadresse fest und kénnen dann wiederholt Daten anfordern und empfangen.
A

A Die Wire-Bibliothek kann bis zu 32 Byte in einem einzigen Request lesen

l.s‘.‘ . oder schreiben. Wenn Sie versuchen, mehr einzulesen oder zu schreiben,

“ Glay konnen Bytes verloren gehen.

Mit dem Pin WP (Write Protect) konnen Sie den Schreibschutz aktivieren. Er ist hier mit
Masse verbunden, damit der Arduino in den Speicher schreiben kann. Wird er an 5V
angeschlossen, werden Schreiboperationen unterbunden. Auf diese Weise kénnen Sie
persistente Daten in den Speicher schreiben und dann vor versehentlichem Uberschreiben
schiitzen.

Siehe auch
Datenblatt zum 24LC128: http://ww1.microchip.com/downloads/en/devicedoc/21191n.pdf

Wenn Sie die Schreibgeschwindigkeit erhéhen wollen, kénnen Sie die Verzégerung von
5ms durch eine Statuspriifung ersetzen, die ermittelt, wann das EEPROM bereit ist, ein
weiteres Byte zu schreiben. Siehe hierzu die »Acknowledge Polling«-Technik, die im
Abschnitt 7 des Datenblatts erliutert wird.

Einen Querverweis auf vergleichbare I2C-EEPROMSs mit unterschiedlichen Kapazititen
finden Sie in http://ww1.microchip.com/downloads/en/DeviceDoc/21621d.pdf.

Es gibt ein Shield, das Temperatursensor, EEPROM und 7-Segment-Anzeige kombiniert:
http://store.gravitech.us/7segmentshield.html.

13.5 Temperatur per Digital-Thermometer messen

Problem

Sie wollen die Temperatur messen, vielleicht sogar mit mehr als einem Thermometer, um
die Werte an verschiedenen Stellen abgreifen zu kénnen.

Losung

Das Rezept verwendet den Temperatursensor TMP75 von Texas Instruments. Sie schlie-
3en einen einzelnen TMP75 wie in Abbildung 13-10 zu sehen an:

/*

* 12C_Temperature Sketch

* 12C access the TMP75 digital Thermometer
*/

440 | Kapitel 13: Kommunikation per 12C und SPI

#include <Wire.h>

const byte TMP75_ID = 0x49; // Adresse des TMP75
const byte NumberOfFields = 2; // Anzahl anzufordernder Felder (Bytes)

// Hoherwertiges Byte der Temperatur (vorzeichenbehafteter Wert in Grad Celsius)
char tempHighByte;

// Niederwertiges Byte der Temperatur (die Nachkommastellen)

char tempLowByte;

float temperature; // Temperatur im FlieBkomma-Format

void setup() {
Serial.begin(9600);
Wire.begin();

Wire.beginTransmission(TMP75_ID);

Wire.write(1); // 1 1ist das Konfigurationsregister

// Standardkonfiguration einstellen, Datenblatt beschreibt die Bedeutung der Konfig-Bits
Wire.write((byte)o);

Wire.endTransmission();

Wire.beginTransmission(TMP75_ID);
Wire.write((byte)o); // Zeigerregister auf 0 setzen (die 12-Bit-Temperatur)
Wire.endTransmission();

}
void loop()
{

Wire.requestFrom(TMP75 ID, NumberOfFields);
tempHighByte = Wire.read();

tempLowByte = Wire.read();
Serial.print("Integer-Temperatur ist");

Serial.print(tempHighByte, DEC);

Serial.print(",");

// Die unteren 4 Bit von LowByte enthalten die fractional-Temperatur
int t = word(tempHighByte, tempLowByte) / 16 ;

temperature =t /16.0; // In FlieBkommazahl umwandeln
Serial.println(temperature);

delay(1000);

13.5 Temperatur per Digital-Thermometer messen |

L

N en N

00000000 00000000

DIGITAL =
TMP75
Arduino Thermometer

SDA H Ve
SCL A0 =
] i====ART A1 j—
- Ao e, NALOG E —i Gnd A2

D0 oo somi g

Abbildung 13-10: TMP75 12C-Thermometer

Diskussion

Wie bei allen 12C-Bauelemente in diesem Kapitel erfolgt die Kommunikation tiber die
beiden SCL- und SDA-Pins. Auch Spannung und Masse miissen angeschlossen werden,
um das Bauelement mit Strom zu versorgen.

Setup sendet Daten zur Konfiguration des normalen Betriebs — es gibt eine Reihe von
Optionen fur spezialisierte Anwendungen (Interrupts, Energiesparmodus etc.), aber wir
verwenden hier den normalen Modus mit einer Auflésung von 0,5°C.

Um die Temperatur einzulesen, fordert der Arduino (als Master) im loop-Code vom Slave
(mit der Adresse TMP75_ID) zwei Datenbytes an:

Wire.requestFrom(TMP75 ID, NumberOfFields);

Wire.read ruft die beiden Bytes ab (auf dem Datenblatt wird detailliert beschrieben, wie
Daten vom Gerit angefordert werden konnen):

tempHighByte = Wire.read();

tempLowByte = Wire.read();

Das erste Byte ist der Integerwert der Temperatur in Grad Celsius. Das zweite Byte enthilt
vier signifikante Bits mit der Temperatur.

Die beiden Bytes werden in ein 16-Bit-Wort umgewandelt (siehe Kapitel 3) und dann
verschoben, um einen 12-Bit-Wert zu bilden. Da die ersten vier Bits die Temperatur
darstellen, wird der Wert erneut um vier Bit verschoben, um den FlieRkommawert zu
ermitteln.

442 | Kapitel 13: Kommunikation per 12C und SPI

Der TMP75 kann mit acht unterschiedlichen Adressen konfiguriert werden, wodurch sich
bis zu acht Gerite am gleichen Bus betreiben lassen (siehe Abbildung 13-11). Der Sketch
verwendet die 12C-Adresse 0x49 (der TMP75-Adress-Pin A ist mit +5V verbunden, Al
und A2 mit Masse). Tabelle 13-3 zeigt die Anschliisse fiir die acht Adressen.

C0000000 - 0500000

it e bt

A N— O

=2 DIGITAL m=
T™MP75
. Thermometer
Arduino
DA v DA 1 vee
scL AO»—I L Ao
L JR e W n
- B oo ANALOG boHed R od A
OO0 s soong :
:i '
' :
' L]
[:
= 0.1uF 0.1uf

Abbildung 13-11: Paralleler Anschluss mehrerer Gerdte mit verschiedenen Adressen iiber SDA und SCL

Tabelle 13-3: Address values for TMP75

A0 Al
Masse Masse
+5V Masse
Masse +5V
+5V +5V
Masse Masse
+5V Masse
+5V +5V
+5V +5V

A2
Masse
Masse
Masse
Masse
+5V
+5V
Masse
+5V

Adresse
0x48
0x49
0x4A
0x4B
0x4C
0x4D
Ox4E
Ox4F

Werden mehrere 12C-Gerite angeschlossen, verbindet man alle SDA- und alle SCL-Lei-
tungen miteinander. Jedes Gerit wird mit der Spannungsversorgung verbunden und nutzt
einen 0,1pF-Parallelkondensator. Die Masseleitungen miissen miteinander verbunden
sein, selbst wenn separate Spannungsversorgungen (z.B. Batterien) verwendet werden.

Der folgende Sketch gibt die Temperatur zweier Gerite aus, die benachbarte Adressen
(beginnend bei 0x49) verwenden:

#include <Wire.h>

const byte TMP75_ID = 0x49; // Adresse des ersten TMP75

const byte NumberOfFields =2; // Anzahl anzufordernder Felder (Bytes)
const byte NumberOfDevices = 2; // Anzahl TMP75s

13.5 Temperatur per Digital-Thermometer messen | 443

char tempHighByte; // Hoherwertiges Byte der Temperatur
// (vorzeichenbehafteter Wert in Grad
// Celsius)

char tempLowByte; // Niederwertiges Byte der Temperatur
// (die Nachkommastellen)

float temperature; // Temperatur im FlieRkomma-Format

void setup() {
Serial.begin(9600);
Wire.begin();

for (int i=0; i < NumberOfDevices; i++)
{
Wire.beginTransmission(TMP75_ID+i);
Wire.write(1);
// Standardkonfiguration einstellen, Datenblatt beschreibt die Bedeutung der Konfig-Bits
Wire.write((byte)o);
Wire.endTransmission();

Wire.beginTransmission(TMP75_ID+i);
Wire.write((byte)o); //Zeigerregister auf 0 setzen (die 12-Bit-Temperatur)
Wire.endTransmission();
}
}

void loop()
{

for (int i=0; 1 < NumberOfDevices; i++)

byte id = TMP75_ID +i; // Adressen liegen nebeneinander
Wire.requestFrom(id, NumberOfFields);

tempHighByte = Wire.read();

tempLowByte = Wire.read();

Serial.print(id,HEX); // Gerdteadresse ausgeben
Serial.print(": Integer-Temperatur ist ");
Serial.print(tempHighByte, DEC);

Serial.print(",");

// Die unteren 4 Bit von LowByte enthalten die fractional-Temperatur
int t =word(tempHighByte, tempLowByte) / 16 ;

temperature =t / 16.0; // In FlieBkomma umwandeln
Serial.println(temperature);

delay(1000);

Sie kénnen weitere Geriite hinzufiigen, wenn Sie die Zahl der Gerite in NumberOfDevices
anpassen und aufeinanderfolgende Adressen verwenden (die in diesem Beispiel bei 0x49
beginnen).

W 8

A}
Der Alert-Anschluss (Pin 3) kann so programmiert werden, dass er ein
Signal liefert, wenn die Temperatur einen Schwellwert erreicht. Details zu
%sr diesem Feature finden Sie auf dem Datenblatt.

444

| Kapitel 13: Kommunikation per 12C und SPI

Siehe auch
Das TMP75-Datenblatt: http://focus.ti.com/docs/prod/folders/print/tmp75.html

In Rezept 3.15 erfahren Sie mehr tiber die word-Funktion.

13.6 Vier 7-Segment-LEDs mit nur zwei Leitungen steuern

Problem

Sie wollen eine mehrstellige 7-Segment-Anzeige nutzen und miissen die Zahl der benétig-
ten Arduino-Pins minimieren.

Losung

Dieses Rezept nutzt das Gravitech 7-Segment-Display-Shield, das einen SAA1064 12C-
nach-7-Segment-Treiber von Philips verwendet (siehe Abbildung 13-12).

Der folgende einfache Sketch schaltet nacheinander jedes Segment aller Anzeigen ein:

/*
*12C 7Segment Sketch
*/

#include <Wire.h>
const byte LedDrive = 0x38; // I2C-Adresse der 7-Segment-Anzeige
int segment,decade;

void setup() {
Serial.begin(9600);
Wire.begin(); // An 12C-Bus anbinden

Wire.beginTransmission(LedDrive);

Wire.write((byte)o);

Wire.write(B01000111); // Ziffern 1 bis 4 mit maximalem Treiberstrom nutzen
Wire.endTransmission();

}
void loop()

for (segment = 0; segment < 8; segment++)
{
Wire.beginTransmission(LedDrive);
Wire.write(1);
for (decade = 0 ; decade < 4; decade++)

byte bitValue = bit(segment);
Wire.write(bitValue);

}

13.6 Vier 7-Segment-LEDs mit nur zwei Leitungen steuern | 445

Wire.endTransmission();
delay (250);

Abbildung 13-12: Gravitech 12C-Shield

Diskussion

Der SAA1064-Chip (an Adresse 0x38) wird in setup initialisiert. Der verwendete Wert
konfiguriert den Chip so, dass alle vier Anzeigen mit maximalem Strom angesteuert
werden (Details zur Konfiguration finden Sie im Datenblatt-Abschnitt zu den Steuerbits).

Der loop-Code aktiviert nacheinander jedes Segment aller Anzeigen. Der Befehl Wire.
send(1); teilt dem Chip mit, dass das nichste empfangene Byte die erste Anzeige und
nachfolgende Bytes die nachfolgenden Anzeigen ansteuern.

Zu Beginn wird der Wert 1 viermal gesendet und der Chip aktiviert das A-Segment (oben)
aller vier Anzeigen. (In Kapitel 2 erfahren Sie mehr iiber die bit-Funktion.)

Der Wert von segment wird in der for-Schleife inkrementiert, wodurch bitvalue so
verschoben wird, dass das nichste LED-Segment eingeschaltet wird.

Jede Bit-Position entspricht einem Segment der Anzeige. Die Werte dieser Bit-Positionen
lassen sich so kombinieren, dass mehr als ein Segment eingeschaltet wird.

Der folgende Sketch zihlt von 0 bis 9999. Im Array lookup[10] finden Sie die Werte, die
benotigt werden, um die Ziffern 0 bis 9 in einem Segment anzuzeigen:

#include <Wire.h>
const byte LedDrive = 0x38; // I2C-Adresse der 7-Segment-Anzeige

// Lookup-Array mit den fiir die jeweilige Ziffer zu aktivierenden Segmenten

446 | Kapitel 13: Kommunikation per 12C und SPI

const int lookup[10] = {0x3F,0x06,0x5B,0x4F,0x66,0X6D,0x7D,0x07,0x7F,0X6F };
int count;

void setup()

{
Wire.begin(); // Mit I2C-Bus verbinden (Adresse fiir Master optional)

}
void loop()
{

Wire.beginTransmission(LedDrive);

Wire.write((byte)o);

Wire.write(B01000111); // 7-Segment-Treiber initialisieren - siehe Datenblatt
Wire.endTransmission();

// Zahlen von 0 bis 9999 ausgeben
for (count = 0; count <=9999; count++)

displayNumber(count);
delay(10);

}

// Bis zu vier Ziffern auf einer 7-Segment-I2C-Anzeige ausgeben
void displayNumber(int number)

number = constrain(number, 0, 9999);
Wire.beginTransmission(LedDrive);
Wire.write(1);
for(int i =0; i< 4; i++)
{

byte digit = number % 10;

Wire.write(lookup[digit]);
}

number = number / 10;

}

Wire.endTransmission();

}

Der Funktion displayNumber wird die auszugebende Zahl iibergeben. Der fiir jedes
Segment zu sendende Wert in der for-Schleife wird in zwei Schritten verarbeitet. Zuerst
wird die Ziffer bestimmt, indem man den Rest ermittelt, nachdem die Zahl durch 10
dividiert wurde. Dieser Wert (eine Ziffer zwischen 0 und 9) wird genutzt, um das
Bitmuster aus dem lookup[]-Array abzurufen, in dem die zur Darstellung der Ziffer

benotigten Segmente stehen.

Jede nachfolgende Ziffer wird bestimmt, indem man die Zahl durch 10 teilt und dann den

Rest ermittelt. Sobald der Rest 0 ist, wurden alle Ziffern gesendet.

Sie konnen fiihrende Nullen (unnétige Nullen vor den Ziffern) unterdriicken, indem Sie

displayNumber wie folgt anpassen:

// Bis zu vier Ziffern auf einer 7-Segment-I2C-Anzeige ausgeben
void displayNumber(int number)

13.6 Vier 7-Segment-LEDs mit nur zwei Leitungen steuern

number = constrain(number, 0, 9999);
Wire.beginTransmission(LedDrive);
Wire.write(1);

for(inti=0; i<4; i++)

byte digit = number % 10;
// Hier wird auf fiihrende Nullen gepriift
if ((number ==0) && (i >0)) {
Wire.write((byte)o); // Alle Segmente ausschalten, um fiihrende Nullen zu unterdriicken

}
else{

Wire.write(lookup[digit]);
}

number = number / 10;

}

Wire.endTransmission();

}

Die folgende Anweisung priift, ob der Wert 0 ist, und stellt sicher, dass es sich nicht um
die erste (niederwertigste) Ziffer handelt:

if ((number ==0) && (i >0))
Wire.write((byte)o); // Alle Segmente ausschalten, um fiihrende Nullen zu unterdriicken

Ist das der Fall, wird eine 0 gesendet und alle Segmente fiir die Ziffer werden ausgeschal-
tet. Damit werden fithrende Nullen unterdriickt, aber eine einzelne Null ausgegeben,
wenn dieser Wert an die Funktion iibergeben wird.
W8
Der Ausdruck (byte)o wird in der Wire.write-Anweisung benétigt, damit
der Compiler weif}, dass die Null ein Bytewert sein soll. Lassen Sie das weg,
erhalten Sie die Fehlermeldung »call of overloaded ’write(int)’ is ambi-
guous«, was bedeutet, dass der Compiler sich nicht entscheiden kann,
welche write-Methode er aufrufen soll,

Siehe auch
SAA1064-Datenblatt: http://www.nxp.com/documents/data_sheet/SAA1064_CNV.pdf

Es gibt ein Shield, das Temperatursensor, EEPROM und 7-Segment-Anzeige kombiniert:
http://store.gravitech.us/7segmentshield. html.

13.7 Einen 12C-Port-Expander integrieren

Problem

Sie wollen mehr Ein-/Ausgabeports nutzen, als Thr Board zur Verfiigung stellt.

448 | Kapitel 13: Kommunikation per 12C und SPI

Losung

Sie kénnen einen externen Port-Expander wie den PCF8574A nutzen, der acht Ein-/Aus-
gangspins besitzt, die iber I2C angesteuert werden kénnen. Der folgende Sketch erzeugt

eine Balkenanzeige mit acht LEDs. Abbildung 13-13 zeigt die Verschaltung.

eeisnsseofosecenes PCF574A
5 DGITAL == 12C Port Expander
Arduino TRaRT
A SDA
— PO INT
- OO0 B2 e Moo

[e/e 0o n/ejgeee o] T P2 P
P3 P5

Gnd P4 |-[>._§

Abbildung 13-13: PCF8574A Port-Expander steuert acht LEDs

Der Sketch hat die gleiche Funktionalitidt wie in Rezept 7.5, verwendet aber zur Ansteue-

rung der LEDs einen 12C-Port-Expander, so dass nur zwei Pins benotigt werden:

/*

* I2C_7segment

*Nutzt I2C-Port zur Steuerung einer Balkenanzeige

* Aktiviert eine Reihe von LEDs proportional zum Wert eines Analog-Senors
* Siehe Rezept 7.5

*/

#include <Wire.h>
//Adresse fiir PCF8574. Anschluss wie in Abbildung 13-13
const int address = 0x38;

const int NbrLEDs = 8;

const int analogInPin = 0; // Analogeingang fiir
// variablen Widerstand

int sensorValue = 0; // Vom Sensor eingelesener Wert
int ledLevel = 0; // In LED-Balkenanzeige umgewandelter Wert

int ledBits = 0; // Bits flr jede LED werden auf 1 gesetzt, umdie LED einzuschalten

void setup()

Wire.begin(); // I2C initialisieren
Serial.begin(9600);
}

13.7 Einen 12C-Port-Expander integrieren

449

void loop() {

sensorValue = analogRead(analogInPin); // Analogwert einlesen
ledLevel = map(sensorValue, 0, 1023, 0, NbrLEDs); // Auf Anzahl LEDs abbilden
for (int led = 0; led < NbrLEDs; led++)

{
if (led < ledlevel) {
bitWrite(ledBits,led, HIGH); // LED unter Pegel einschalten

}
else{

}

bitWrite(ledBits,led, LOW);

// Wert an I2C senden
Wire.beginTransmission(address);
Wire.write(ledBits);

Wire.endTransmission();

}
delay(100);

Diskussion

// LED Uber Pegel ausschalten

Die Widerstinde miissen 220 Ohm oder mehr haben (in Kapitel 7 wird beschrieben, wie
man Widerstinde wihlt).

Der PCF8574A kann LEDs nur mit geringeren Stromen als der Arduino
treiben. Wenn Sie hohere Strome brauchen (Details finden Sie auf dem
Datenblatt), finden Sie in Rezept 13.8 ein geeigneteres Bauelement.

Sie konnen die Adresse tiber die Adresspins A0, Al und A2 indern (siehe Tabelle 13-4).
Tabelle 13-4: Address values for PCF8574A

A0 A
Masse Masse
+5V Masse
Masse +5V
+5V +5V
Masse Masse
+5V Masse
+5V +5V
+5V +5V

A2
Masse
Masse
Masse
Masse
+5V
+5V
Masse
+5V

Address
0x38
0x39
0x3A
0x3B
0x3C
0x3D
0x3E
0x3F

Sie konnen den Port-Expander auch als Eingang nutzen. Ein Byte lesen Sie wie folgt ein:

Wire.requestFrom(address, 1);

if(Wire.available())

{

data = Wire.receive();

Serial.println(data,BIN);

450 | Kapitel 13: Kommunikation per 12C und SPI

Siehe auch
PCF8574-Datenblatt: http://www.nxp.com/documents/data_sheet/PCF8574.pdf

13.8 Mehrstellige 7-Segment-Anzeigen tiber SPI ansteuern

Problem

Sie wollen 7-Segment-Anzeigen ansteuern, ohne zu viele Pins nutzen zu miissen.

Losung

Dieses Rezept bietet eine Funktionalitit wie Rezept 7.12, benotigt aber nur drei Ausgangs-
pins. Der Text beschreibt die SPI-Befehle, die zur Kommunikation mit dem MAX7221
genutzt werden (Abbildung 13-14 zeigt die Verschaltung):

/*
* SPI_Max7221_0019
*/

#include <SPI.h>
const int slaveSelect = 10; // Zur Aktivierung es aktiven Slaves verwendeter Pin

const int numberOfDigits = 2; // Anzahl angeschlossener Ziffern
const int maxCount = 99;

int count = 0;

void setup()

{
SPI.begin(); //SPIinitialisieren
pinMode(slaveSelect, OUTPUT);
digitalWrite(slaveSelect,LOW); // Slave wdhlen
// 7221 auf Anzeige von 7-Segment-Daten vorbereiten - siehe Datenblatt
sendCommand(12,1); // Normaler Modus (voreingestellt ist Shutdown-Modus);
sendCommand(15,0); //Display-Test aus
sendCommand(10,8); //Mittlere Helligkeit (Wertebereich ist 0-15)
sendCommand (11, number0fDigits); // Zahl der Anzeigen festlegen
sendCommand(9,255); // Dekodierungsart; wir verwenden Standard-7-Segment-Anzeigen
digitalWrite(slaveSelect,HIGH); // Slave deaktivieren

}

void loop()
{

displayNumber(count);

count = count + 1;

if (count > maxCount)
count = 0;

delay(100);

// Ausgabe von bis zu vier Ziffern auf 7-Segment-Anzeige

13.8 Mehrstellige 7-Segment-Anzeigen iiber SPl ansteuern | 451

void displayNumber(int number)

for (int i=0; i< number0fDigits; i++)

{
byte character = number % 10; // Wert der Ziffer ganz rechts ermitteln
// Segmentnummer als Befehl senden; erstes Segment ist Befehl1l
sendCommand(number0fDigits-1i, character);
number = number / 10;

}

}

void sendCommand(int command, int value)

digitalWrite(slaveSelect,LOW); // Chip-Select ist aktiv Low

// 2-Byte-Datentransfer zum 7221

SPI.transfer(command);

SPI.transfer(value);

digitalWrite(slaveSelect,HIGH); // Chip freigeben, Ubertragungsende

}
1 [
Digit 1 g:g) QZQ Digit 2
|3 5 HE 3 . Pins for Digit 1
A RESET) E‘E J—‘ |——pPins for Digit 2
ge 9 8] 22|04 6RO AT [FIE MG IE]
R w3 TET DB ST RS M0 S o N T o~
DGndc ce P2 22393383 TETEEEESE
Vin v
U R
| B Ss23 MAX7221
3 s = = 4
2
N Bl
103
0 -0
0

Abbildung 13-14: Anschluss eines MAX7221 mit Lite-On LTD-6440G

Diskussion

Der MAX7221 benétigt LEDs mit gemeinsamer Kathode. Das Pinout in Abbildung 13-14
ist fur die Lite-On LTD-6440G, eine zweistellige 7-Segment-LED. Die Segmente jeder
Ziffer miissen miteinander verbunden werden. Zum Beispiel liegt der Dezimalpunkt fiir
die erste Ziffer an Pin 4 und fiir die zweite Ziffer an Pin 9. Wie in der Abbildung zu sehen,
sind die Pins 4 und 9 miteinander verbunden und an den MAX7221-Pin 22 angeschlos-
sen.

452 | Kapitel 13: Kommunikation per 12C und SPI

Der MAX7221 kann bis zu acht Segmente ansteuern (oder eine 8 x 8-Matrix). Die
Steuerung erfolgt tiber Befehle, die festlegen, welches LED-Segment eingeschaltet werden
soll.

Nach der Initialisierung der Bibliothek wird der SPI-Code in der Funktion sendCommand
zusammengefasst. SPI verwendet den mit dem Chip verbundenen Select-Slave-Anschluss
und der Chip wird aktiviert, indem man diesen Pin auf LOW setzt. Alle SPI-Befehle werden
dann von diesem Chip empfangen, bis der Pin wieder auf HICH gesetzt wird. SPI.transfer
ist die Bibliotheksfunktion zum Senden einer SPI-Nachricht. Sie besteht aus zwei Teilen:
einem numerischen Code, der angibt, welches Register die Nachricht empfangen soll,
gefolgt von den eigentlichen Daten. Details zu jedem SPI-Gerit finden Sie auf dem
Datenblatt.

Setup initialisiert den 7221, indem er Befehle zum Aufwachen (der Chip startet in einem
Stromsparmodus) sendet, die Helligkeit anpasst, die Anzahl der Ziffern festlegt und die
Dekodierung fiir 7-Segment-Anzeigen aktiviert. Jeder Befehl besteht aus einer Befehls-ID
(die auf dem Datenblatt Register genannt wird) und einem Wert fiir diesen Befehl.

Zum Beispiel dient Befehl (Register) 10 der Helligkeit, d.h., der folgende Befehl stellt eine
mittlere Helligkeit ein (der Wertebereich liegt zwischen 0 und 15):

sendCommand(10,8); //Mittlere Helligkeit einstellen

Die Befehle 1 bis 8 werden zur Steuerung der Anzeigen verwendet. Der folgende Code
aktiviert die Segmente, die die Ziffer 5 in der ersten (ganz linken) Anzeige darstellen.
Beachten Sie, dass die Anzeigennummern auf dem Datenblatt (und in Abbildung 13-14)
bei 0 beginnen, d.h., Sie miissen daran denken, dass Sie die Anzeige 0 mit dem Befehl 1
steuern, Anzeigel mit dem Befehl 2 und so weiter:

sendCommand(1, 5); // 5 in der ersten Anzeige ausgeben

Sie konnen fiihrende Nullen unterdriicken, indem Sie zwei Codezeilen in displayNumber
einfigen und Oxf an den 7221 senden, um alle Segmente zu l6schen, wenn der Wert
tatsdchlich O ist:

void displayNumber(int number)

for (int i=0; 1< number0fDigits; i++)
{

byte character = number % 10;
Die beiden nichsten Zeilen unterdriicken fithrende Nullen:

if ((number ==0) && (i >0))
character = 0xf; // 7221-Segmente 18schen
sendCommand (numberOfDigits-1i, character);
number = number / 10;
}
}

13.8 Mehrstellige 7-Segment-Anzeigen iiber SPI ansteuern | 453

13.9 Kommunikation zwischen zwei oder mehr
Arduino-Boards

Problem

Sie wollen, dass zwei oder mehr Arduino-Boards zusammenarbeiten. Vielleicht wollen Sie
die E/A-Kapazitit erhéhen oder mehr Daten verarbeiten, als ein einzelnes Board bewilti-
gen kann. Sie kénnen 12C nutzen, um Daten zwischen den Boards zu iibergeben und so
die Last zu verteilen.

Losung

Die beiden Sketches in diesem Rezept zeigen, wie man 12C als Kommunikationskanal
zwischen zwei oder mehr Arduino-Boards verwenden kann. Die Verschaltung sehen Sie in
Abbildung 13-15.

NNNNNNNNNNNN 0oaa0000. 0a0a0aan
€% DIGITAL = €% DIGITAL =z
Arduino Arduino

[] OO0 Eazzs ML L] 00 %%aéé% _MNALOG

agoaaa DDDDTT 00000 []DQQE}{P

Abbildung 13-15: Arduino als I2C-Master und -Slave

Der Master sendet iiber den seriellen Port eingegangene Zeichen iiber 12C an einen
Arduino-Slave:

/*

*12C Master

* Serielle Daten an einen I2C-Slave weitergeben
*/

#include <Wire.h>

const int address = 4; // Zu nutzende Adresse
void setup()

{

Wire.begin();
}

454 | Kapitel 13: Kommunikation per 12C und SPI

void loop()
{

char c;
if(Serial.available() >0)

{
// Daten
Wire.beginTransmission(address); // An Gerdt senden
Wire.write(c);
Wire.endTransmission();
}
}

Der Slave gibt die iiber I2C empfangenen Zeichen tiber seinen seriellen Port aus:

/*

*12C_Slave

* Uberwacht T2C-Requests und gibt sie iiber den seriellen Port aus
*/

#include <Wire.h>
const int address = 4; // Zur Kommunikation verwendete Adresse
void setup()

Serial.begin(9600);
Wire.begin(address); // I2C-Bus Uber diese Adresse anbinden
Wire.onReceive(receiveEvent); // Event-Handler fiir Requests registrieren

}
void loop()

// Leer - die gesamte Verarbeitung erfolgt in receiveEvent

}

void receiveEvent(int howMany)

{

while(Wire.available() > 0)

{

char c =Wire.read(); // Byte als Zeichen empfangen
Serial.write(c); // und ausgeben

}
}

Diskussion

Dieses Kapitel konzentriert sich auf den Arduino als 12C-Master, der auf verschiedene
[2C-Slaves zugreift. Hier fungiert ein zweiter Arduino als 12C-Slave, der auf Requests von
einem anderen Arduino reagiert. In Kapitel 4 behandelte Techniken zum Senden von
Datenbytes kénnen auch hier angewandt werden. Arduino 1.0 hat eine print-Funktion in
die Wire-Biblothek integriert, d.h., Sie kénnen Daten nun auch mit der print-Methode
senden.

13.9 Kommunikation zwischen zwei oder mehr Arduino-Boards | 455

Der folgende Sketch sendet seine Ausgabe tiber 12C mit Wire.println. Mit dem oben
vorgestellten 12C-Slave-Sketch kann der Master Daten ausgeben, ohne den eigenen
seriellen Port nutzen zu miissen (der serielle Port des Slaves wird zur Ausgabe genutzt):
/*
*12C Master

* Sendet Uber print Sensordaten an einen I2C-Slave
*/

#include <Wire.h>

const int address =4; // Zur Kommunikation verwendete Adresse
const int sensorPin =0; // Analogpin fiir Sensor
int val; // Variable fiir Sensorwert

void setup()
{

Wire.begin();
}

void loop()

{
val = analogRead(sensorPin); // Spannung am Poti einlesen

// (Wert zwischen 0 und 1023)

Wire.beginTransmission(address); // An Slave senden
Wire.println(val);
Wire.endTransmission();
delay(1000);

Siehe auch

Kapitel 4 enthilt weitere Informationen zur Verwendung der Arduino print-Funktion.

456 | Kapitel 13: Kommunikation per 12C und SPI

KAPITEL 14
Drahtlose Kommunikation

14.0 Einfiihrung

Die Fihigkeit des Arduino zur Interaktion mit der Umgebung ist wundervoll, doch
manchmal méchte man mit dem Arduino aus der Ferne kommunizieren, ohne Drihte
und den Aufwand einer vollstindigen TCP/IP-Verbindung. Dieses Kapitel behandelt
verschiedene einfache Drahtlos-Module fiir Anwendungen, bei denen geringe Kosten die
Hauptforderung sind. Die meisten Rezepte konzentrieren sich auf die vielseitigen XBee-
Module.

XBee stellt eine flexible Drahtlos-Losung fiir den Arduino dar, doch diese Flexibilitat kann
auch verwirrend ein. Dieses Kapitel enthilt Beispiele, die vom einfachen »Drahtlos-Ersatz
fiir den seriellen Port« bis hin zu Mesh-Netzwerken reichen, die mehrere Boards mit
mehreren Sensoren verbinden.

Eine Reihe verschiedener XBee-Module stehen zur Verfiigung. Die beliebtesten sind das
XBee 802.15.4 (auch als XBee Serie 1 bekannt) und das XBee ZB Serie 2. Die Serie 1 ist
einfacher zu nutzen als die Serie 2, unterstiitzt aber keine Mesh-Netzwerke. Siehe http:/
www.digi.com/support/kbase/kbaseresultdetl.jsp?id=2213.

14.1 Nachrichten tiber Low-Cost-Drahtlos-Module senden

Problem

Sie wollen Daten zwischen zwei Arduino-Boards tiber einfache, kostengiinstige Drahtlos-
Module senden.

Losung

Dieses Rezept verwendet einfache Sende- und Empfangsmodule wie die SparkFun 315
MHz: WRL-10535 und WRL-10533, oder 434 MHz: WRL-10534 und WRL-10532.

| 457

SchlieRen Sie den Sender wie in Abbildung 14-1 und den Empfinger wie in Abbildung 14-2
an. Bei einigen Modulen heiflt der Spannungsanschluss VDD statt Vcc.

A\
—— of

Transmitter
' O

eeq

[} -
= ~
o ~

Ll| ©

oO="T C O XX >

vin

Abbildung 14-1: Einfacher Drahtlos-Sender mit Virtual Wire

1 D Receiver

=
pup
ereq
- 53|
M\
M\
pup
pup
uy

00
[
.

oO=—C O = >

Abbildung 14-2: Einfacher Drahtlos-Empfinger mit VirtualWire

458 | Kapitel 14: Drahtlose Kommunikation

Der Sender-Sketch iibertrigt eine einfache Textnachricht an den Empfinger-Sketch, der
diesen Text iiber den seriellen Monitor ausgibt. Sender- und Empfanger-Sketch verwen-
den die VirtualWire-Bibliothek von Mike McCauley, die eine Schnittstelle zur Drahtlos-
Hardware bereitstellt. Die Bibliothek kann von http://www.open.com.au/mikem/arduino/
VirtualWire-1.5.zip heruntergeladen werden:

/*

SimpleSend
Dieser Sketch sendet eine kurze Textnachricht mit Hilfe der VirtualWire-Bibliothek

Verbinden Sie den Transmitter-Datenpin mit Arduino-Pin 12
*/

#include <VirtualWire.h>
void setup()

// I0und ISR initialisieren
vw_setup(2000); // Bits pro Sekunde

void loop()
{

send("Hallo");
delay(1000);

void send (char *message)

{

vw_send((uint8 t *)message, strlen(message));
vw_wait_tx(); // Warten, bis gesamte Nachricht gesendet wurde

}
Der Empfianger-Sketch verwendet ebenfalls die VirtualWire-Bibliothek:

/*
SimpleReceive
Dieser Sketch gibt Textstrings aus, die Uber VirtualWire empfangen wurden
Verbinden Sie den Empfdnger-Datenpin mit dem Arduino-Pin 11

*/

#include <VirtualWire.h>

byte message[VW MAX MESSAGE LEN]; // Puffer fir eingehende Nachrichten
byte msglLength = VW_MAX_MESSAGE_LEN; // Lange der Nachricht

void setup()

Serial.begin(9600);
Serial.println("Bereit");

// I0und ISR initialisieren
vw_setup(2000); // Bits pro Sekunde
vw_rx_start(); // Empfanger starten

14.1 Nachrichten iiber Low-Cost-Drahtlos-Module senden | 459

void loop()
if (vw_get message(message, 8msglength)) // Non-blocking

Serial.print("Empfangen: ");
for (inti=0; i <msglength; i++)

Serial.write(message[i]);

}
Serial.println();

Diskussion

Die VirtualWire-Bibliothek verwendet standardmifRig Pin 12 zum Senden und Pin 11 zum
Empfangen. Wenn Sie andere Pins verwenden wollen, schauen Sie in die Dokumentation
(siehe Link am Ende des Rezepts). Setup initialisiert die Bibliothek. Der loop-Code ruft
einfach eine send-Funktion auf, die wiederum die Bibliotheksfunktion vw_send aufruft und
dann wartet, bis die Nachricht tibertragen wurde.

Der Empfinger initialisiert die Empfangslogik der Bibliothek und wartet dann in loop auf
Nachrichten. vw_get message gibt true zuriick, wenn eine Nachricht vorhanden ist. Ist das
der Fall, wird jedes Zeichen der Nachricht tiber den seriellen Monitor ausgegeben.

Die VirtualWire-Bibliothek packt mehrere Bytes zu Paketen zusammen, d.h., zum Senden
bindrer Daten miissen Sie nur die Adresse der Daten und die Zahl zu sendender Bytes
iibergeben.

Der folgende Sender-Sketch dhnelt dem obigen Sender-Sketch, fiillt den Nachrichten-
Puffer aber mit Bindrwerten von Analogeingingen, die {iber analogRead eingelesen wur-
den. Die GrofRe des Puffers entspricht der Anzahl der zu sendenden Integerwerte mal der
Anzahl der Bytes in einem Integerwert (die sechs Analogwerte benttigen 12 Bytes, da
jedes int aus zwei Bytes besteht):
/*
SendBinary
Sendet digitale und analoge Pin-Werte als Bindrdaten per VirtualWire

Siehe SendBinary in Kapitel 4
*/

#include <VirtualWire.h>
const int numberOfAnalogPins = 6; // Anzahl einzulesender Analogpins
int data[numberOfAnalogPins]; // Der Datenpuffer

const int dataBytes = numberOfAnalogPins * sizeof(int); // Anzahl der Bytes
// imDatenpuffer

460 | Kapitel 14: Drahtlose Kommunikation

void setup()

// I0und ISR initialisieren
vw_setup(2000); // Bits pro Sekunde

void loop()
{
int values = 0;

for(int i=0; i <= numberOfAnalogPins; i++)
{
// Analogport einlesen
data[i] = analogRead(i); // Wert im Datenpuffer speichern

send((byte*)data, dataBytes);
delay(1000); // Einmal pro Sekunde senden

void send (byte *data, int nbrOfBytes)

vw_send(data, nbrOfBytes);
vw_wait_tx(); // Warten, bis gesamte Nachricht gesendet wurde

Mit dem Operator sizeof wird die Grofe eines int in Byte bestimmt.

Die Empfinger-Seite wartet auf eingehende Nachrichten, stellt sicher, dass sie die richtige
Linge haben und wandelt den Puffer wieder in sechs Integerwerte um, die iiber den
seriellen Monitor ausgegeben werden:

#include <VirtualWire.h>

const int numberOfAnalogPins = 6; // Anzahl zu empfangender Integerwerte
int data[numberOfAnalogPins]; // Der Datenpuffer

// Anzahl der Bytes im Datenpuffer
const int dataBytes = numberOfAnalogPins * sizeof(int);

byte msgLength = dataBytes;

void setup()

Serial.begin(9600);
Serial.println("Bereit");

14.1 Nachrichten iiber Low-Cost-Drahtlos-Module senden | 461

// I0und ISR initialisieren
vw_set_ptt_inverted(true); // Fir DR3100 erforderlich

vw_setup(2000); // Bits pro Sekunde

vw_rx_start(); // Empfanger starten

}

void loop()

{%’f (vw_get message((byte*)data, 8msglLength)) // Non-blocking

Serial.println("Empfangen: ");
if(msglength == dataBytes)
{

for (int i=0; i< numberOfAnalogPins; i++)

Serial.print("Pin");
Serial.print(i);
Serial.print("=");
Serial.println(data[i]);
}
}

else

Serial.print("Falsche Nachrichtldnge: ");
Serial.println(msglLength);

Serial.println();
}
}

Der serielle Monitor zeigt die Analogwerte des sendenden Arduinos an:

Empfangen:
Pin 0=1023
Pin 1=100
Pin 2=227
Pin3=303
Pin4=331
Pin 5=358

Beachten Sie, dass die maximale PuffergroRe fiir VirtualWire bei 30 Bytes liegt (die Kon-
stante VW_MAX_MESSAGE LEN ist in der Header-Datei der Bibliothek definiert).

Die Reichweite liegt, je nach Versorgungsspannung und Antenne, bei etwa 100 Metern.
Hindernisse zwischen Sender und Empfinger reduzieren die Reichweite.

Es gibt keine Garantie dafiir, dass die Nachrichten zugestellt werden. Wenn Sie auflerhalb
der Reichweite sind oder wenn es starke Interferenzen gibt, kénnen Nachrichten verloren
gehen. Wenn Sie einen Mechanismus benotigen, der die Zustellung garantiert, ist die
ZigBee-API (die in den noch folgenden Rezepten genutzt wird) die bessere Wahl. Doch
die giinstigen Module funktionieren gut, wenn es um Aufgaben wie die Ausgabe von
Sensorwerten geht — jede Nachricht enthilt den aktuellen Sensorwert und falls Nach-
richten verloren gehen, werden sie durch nachfolgende Nachrichten ersetzt.

462 | Kapitel 14: Drahtlose Kommunikation

Siehe auch

Ein technisches Dokument zur VirtualWire-Bibliothek kann von http://www.open.com.au/
mikem/arduino/VirtualWire.pdf heruntergeladen werden.

Datenblitter zu den Sende- und Empfangsmodulen finden Sie unter http://www.sparkfun
.com/datasheets/Wireless/General/MO-SAWR.pdf und http://www.sparkfun.com/datasheets/
Wireless/General/MO-RX3400.pdf.

14.2 Den Arduino mit einem ZigBee- oder
802.15.4-Netzwerk verbinden

Problem
Sie wollen Thren Arduino mit einem ZigBee- oder 802.15.4-Netzwerk verbinden.

802.15.4 ist ein IEEE-Funknetz-Standard, der in Produkten wie den preiswerten XBee-
Modulen von Digi International eingesetzt wird. ZigBee ist eine Unternehmens-Allianz
und auch der Name eines Standards, der von dieser Allianz gepflegt wird. ZigBee ist eine
Obermenge von IEEE 802.15.4 und in vielen Produkten implementiert, einschlieflich
einiger XBee-Module von Digi.

N
o Nur XBee-Module, die als ZigBee-kompatiblel gelistet sind, etwa die XBee
.'s ZB-Module, sind garantiert ZigBee-konform. Davon abgesehen konnen Sie

einen Teil der Features (IEEE 802.15.4) von ZigBee auch mit Modulen der
ilteren XBee Serie 1 verwenden. Tatsichlich funktionieren alle hier vor-
gestellten Rezepte mit Serie-1-Modulen.

Fehlersuche beim XBee

Wenn Sie Probleme haben, Thre XBees zum Sprechen zu bringen, tiberpriifen Sie, ob sie den
gleichen Firmware-Typ verwenden (z.B. XB24-ZB unter dem Modem: XBee-Einstellung wie
in Abbildung 14-5) und ob die aktuellste Firmware-Version genutzt wird (der Versions-Wert
in Abbildung 14-5). Umfassende Tipps zur XBee-Fehlersuche finden Sie in Robert Faludis
»Common XBee Mistakes« auf http://www.faludi.com/projects/common-xbee-mistakes/. Um-
fassende Informationen zum Umgang mit XBees finden Sie im Buch Building Wireless Sensor
Networks von O’Reilly (suchen Sie danach auf www.oreilly.de).

Losung

Besorgen Sie sich zwei oder mehr XBee-Module, konfigurieren Sie sie (wie in Rezept 14.3
beschrieben) fiir die Kommunikation und verbinden Sie sie mit (mindestens) einem
Arduino. Sie konnen weitere XBee-Module mit anderen Arduinos, einem Computer oder
einem Analog-Sensor verbinden (siehe Rezept 14.4).

14.2 Den Arduino mit einem ZigBee- oder 802.15.4-Netzwerk verbinden | 463

Wenn Sie den Arduino mit dem XBee verbinden und den nachfolgenden Sketch aus-
fithren, gibt der Arduino jede Nachricht aus, die er vom XBee empfingt:

/*

XBeeEcho

Alles ausgeben, was lber die seriellen Port eingeht
*/

void setup()

Serial.begin(9600);
}

void loop()

while (Serial.available()) {
Serial.write(Serial.read()); // Empfangene Daten ausgeben
}
}

Abbildung 14-3 zeigt den Anschluss eines Adafruit XBee-Adapters an den Arduino.
Beachten Sie, dass die RX-Leitung des Arduino mit dem TX-Anschluss des XBee ver-
bunden ist und umgekehrt.

~wOiun S e

DIGITAL

AReFQ

0000000 0000000

RX 0 [

RTS O
>

. RX 3=
Ard uino - Adafruit

+5V [Smm——
oo XBee

as Qg
Adapter

Gnd =
‘ [‘ RST O
o mE. ANALOG DTR O
Soscolleeces

_Io1e

OIReseT

Abbildung 14-3: Anschluss eines Arduino an einen XBee per Adafruit XBee-Adapter

Wenn Sie einen anderen Adapter ohne eigenen Spannungsregler verwenden,
“”@ wird die Spannung direkt an den XBee weitergegeben. In diesem Fall mis-
sen Sie den 3V3-Pin des Arduino mit der Spannungsversorgung des Adap-
ters verbinden. Anderenfalls riskieren Sie ein Durchbrennen Thres XBee.

464 | Kapitel 14: Drahtlose Kommunikation

Sind die XBees mit einem Computer und/oder einem Arduino verbunden und konfigu-
riert, konnen Sie Nachrichten hin und her senden.

Sie missen den Arduino vom XBee trennen, bevor Sie thn programmieren.
Das liegt daran, dass der Arduino die Pins 0 und 1 fiir die Programmierung

nutzt. Die Signale kommen sich dann mit allem in die Quere (z.B. dem
XBee), was an diese Pins angeschlossen ist.

Diskussion

Zur Konfiguration Threr XBees stecken Sie sie in einen XBee-Adapter wie dem Adafruit
XBee-Adapter-Kit und einen USB-nach-TTL-Seriell-Adapter wie den TTL-232R, um den
Adapter mit einem Computer zu verbinden.

W 8

A
AN Sie sollten mindestens zwei Adapter (und bei Bedarf zwei Kabel) kaufen,
o um zwei XBees gleichzeitig an den Computer anschliefen zu konnen. Die
i gleichen Adapter kénnen auch genutzt werden, um ein XBee mit dem

Arduino zu verbinden.

Sie konnen auch einen All-In-One- XBee-USB-Adapter wie den Parallax XBee USB-Adap-
ter oder den SparkFun XBee Explorer USB verwenden.

Abbildung 14-4 zeigt den Adafruit XBee-Adapter und den SparkFun XBee Explorer USB
mit aufgesteckten Series 2 XBee-Modulen.

Abbildung 14-4: Zwei XBees, einer am Adafruit-, und der andere am SparkFun-Adapter

14.2 Den Arduino mit einem ZigBee- oder 802.15.4-Netzwerk verbinden | 465

Series 2-Konfiguration

Zur Erstkonfiguration von Series 2 XBees miissen Sie Thre XBees mit einem Windows-
Computer verbinden (das Konfigurations-Utility ist fiur Mac und Linux nicht verfiigbar).
Schlieflen Sie erst einmal nur einen an einem USB-Port an. Der TTL-232R und der
Parallax XBee USB-Adapter verwenden beide den gleichen USB-nach-Seriell-Treiber wie
der Arduino auch. Sie miissen also keine zusitzlichen Treiber installieren.

1.

10.

Offnen Sie den Geritemanager (driicken Sie Windows-R, geben Sie devmgmt.msc ein
und driicken Sie Enter), 6ffnen Sie den Ports-Bereich (COM & LPT) und halten Sie
die Nummer des USB-Ports fest, mit dem der XBee verbunden ist. Wenn das nicht
ganz Klar ist, ziehen Sie den Stecker und stecken ihn wieder ein.) Beenden Sie den
Geritemanager.

Starten Sie die X-CTU-Anwendung (http://www.digi.com/support/productdetl.jsp
2pid=33526& 0svid=0&tp=5&tp2=0), wihlen Sie den oben ermittelten Port aus und
driicken Sie Test/Query, um sicherzustellen, dass X-CTU den XBee erkennt. (Wenn
nicht, sehen Sie sich das Support-Dokument unter http://www.digi.com/support/
kbase/kbaseresultdetl.jsp?id=2103 an.)

Wechseln Sie zum Reiter Modem Configuration und klicken Sie auf Read. X-CTU
ermittelt das verwendete XBee-Modell sowie dessen aktuelle Konfiguration.

Unter Function Set wihlen Sie ZIGBEE COORDINATOR AT (nicht API).

Klicken Sie das Versions-Menii an und wihlen Sie die hchste verfiigbare Firmware-
Version aus.

Klicken Sie auf Show Defaults.

Andern Sie die PAN ID-Einstellung von 0 auf 1234 (oder jeden anderen Hexa-
dezimalwert; die PAN ID muss aber fiir alle Gerite im gleichen Netzwerk identisch
sein), wie in Abbildung 14-5 zu sehen.

Klicken Sie auf Write.
Klicken Sie den Terminal-Reiter an.

Lassen Sie nun X-CTU laufen und den XBee eingesteckt. SchlieRen Sie den zweiten
XBee an einem anderen USB-Port an. Wiederholen Sie die obigen Schritte (im
zweiten Schritt starten Sie eine zweite Instanz von X-CTU), wihlen im vierten
Schritt aber statt ZIGBEE COORDINATOR AT die Option ZIGBEE ROUTER
AT. Bei diesem XBee miissen Sie Channel Verification (JV) auch auf 1 setzen. Damit
bestitigt er die Verwendung des richtigen Kanals, was die Verbindung mit dem Ko-
ordinator zuverldssiger macht.

466

Kapitel 14: Drahtlose Kommunikation

(88 comr x-cTU [ESREE)

Modem Parameter Profile Remote Configuration... Versions...

FC Settings] Fange Test] Temminal Modem Configuration l

Modem Parameter and Firmware Parameter View— — Profile Wersions

Read | write | Restare | Clear Screen Save Dermless rem
[~ Always Update Firmware Show Defaults Load VETSIONS...
Modem: XBEE Function Set Wersion
|xB24ZE | |ZIGEEE CODRDINATOR AT v fzme0 ~]
B3 Networking -

----- B (123410 - Pan 1D 1234

----- B (FFFF) 5C - Scan Channels

----- B (3150 - Scan Duration

----- B (0125 - ZigBee Stack Profils

----- B (FFI MJ - Node Jain Time

----- B 0P - Operating PAN 1D

----- B 01 - Operating 16-bit PAN 1D

----- B CH - Operating Channel

----- B MC - Mumber of Remaining Children

B3 Addressing

----- B 5H - Serial Mumber High

----- B 5L - Serial Mumber Low

----- Bt - 16-bit Network Address

----- B (0] DH - Destination Address High

----- B (FFFF) DL - Destination &ddress Lowe

----- B (1M - Mode Identifier

----- B (1EIMH - Masimum Hops

----- B (0] BH - Broadcast Radius

..... B (EE1 AR - b smiibadlne Bk Broadesst Tima
Set the PAM [Perzonal Area Metwork] 1D for the network, [ZigBee extended PAN 1D]. Valid
range iz 0 - OxFFFFFFFFFFFFFFFF. Alternatively, et 1D0=0 for the coordinator to choose a
random PAM 1D,

m

RANGE: 0-0XFFFFFFFFFFFFFFFF

COM7 [9600 8-N-1 FLOW:NONE #B24-7B Ver2270

Abbildung 14-5: Konfiguration des XBee

W N

Wenn Sie zwei Windows-Rechner haben, kénnen Sie jeden XBee an einen
separaten Rechner anschliefRen.

Beide XBees sind angeschlossen und in beiden X-CTU-Instanzen ist der Terminal-Reiter
aktiv. Geben Sie nun etwas in eines der Terminal-Fenster ein. Was Sie in einem XBee
eingeben, erscheint auf dem Terminal des anderen. Sie haben Thr erstes einfaches XBee
Personal Area Network (PAN) eingerichtet. Nun kénnen Sie die XBees mit zwei Arduino-
Boards verbinden und den Sketch aus Rezept 14.3 ausfithren.

Konfiguration der Serie 1

Fiir Serie-1-XBees konnen Sie einen Mac oder einen PC mit Linux oder Windows nutzen.
Wenn Sie die Firmware der XBees aktualisieren wollen, miissen Sie allerdings das
X-CTU-Utility aus Rezept 14.3 verwenden.

14.2 Den Arduino mit einem ZigBee- oder 802.15.4-Netzwerk verbinden | 467

Ermitteln Sie den seriellen Port Thres XBee, wie es in »Den seriellen Port ermitteln« auf
Seite 468 beschreiben wird. Verbinden Sie diesen Port mit dem Terminal-Programm. Die
Verbindung zum XBee stellen Sie mit CoolTerm (Windows oder Mac) wie folgt her:

1. Starten Sie CoolTerm.

Sie konnen CoolTerm fiir Windows und Mac von http://freeware.the-
meiers.org/ herunterladen. PuTTY ist fir Windows und Linux von
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html verfiig-
bar. PuTTY fur Linux kénnen Sie moglicherweise auch tiber den Paketma-
nager Thres Linux-Systems installieren. Bei Ubuntu ist PuTTY beispiels-
weise iiber das Universe-Repository mit apt-get install putty verfiigbar.

2. Klicken Sie den Options-Button in der Symbolleiste an.

3. Wihlen Sie den seriellen USB-Port aus (z.B. usbserial-A700eYw1 bei einem Mac oder
COMS bei eine PC). Stellen Sie sicher, das 9600 Baud, 8 Datenbits, keine Paritit und
1 Stop-Bit eingestellt sind (das entspricht der Voreinstellung).

4. Aktivieren Sie Local Echo.
5. Klicken Sie auf OK.

6. Klicken Sie den Save-Button in der Symbolleiste an und speichern Sie die Session-
Einstellungen.

7. Bei weiteren Sessions iiberspringen Sie die Schritte 2 bis 6, klicken stattdessen auf
Open und laden die gesicherten Einstellungen.

8. Klicken Sie den Connect-Button in der Symbolleiste an.

Den seriellen Port ermitteln

Um den seriellen Port zu ermitteln, der Threm XBee unter Windows zugewiesen wurde,
sehen Sie sich den ersten Schritt in Rezept 14.3 an. Um ihn unter Mac OS X zu ermitteln,
offnen Sie ein Mac OS X-Terminal-Fenster (in /Applications/Utilities) und geben den
folgenden Befehl ein: 1s /dev/tty.usbserial-*. Unter Linux offnen Sie ein xterm oder
ein vergleichbares Terminal-Fenster und geben 1s /dev/ttyUSB* ein.

Erscheint hier mehr als ein Eintrag, klemmen Sie alle seriellen USB-Gerite bis auf den
XBee ab und geben den Befehl erneut ein. Sie sollten jetzt nur noch einen Eintrag sehen.

Das Ergebnis sieht bei einem Mac etwa so aus:
/dev/tty.usbserial-A700eYw1

Und bei Linux etwa so:
/dev/ttyUSBo

Das ist der Dateiname fiir den seriellen USB-Port Thres XBee.

468 | Kapitel 14: Drahtlose Kommunikation

Um die Verbindung zu Threm XBee iiber PuTTY (Windows oder Linux) herzustellen,
machen Sie Folgendes:

1. Starten Sie PuTTY.

2. Klicken Sie unter Connection Type auf Serial.

3. Tragen Sie den Namen des seriellen Ports im Feld Serial Line ein (z.B. /dev/ttyUSBO
unter Linux oder COM7 unter Windows). Stellen Sie sicher, dass die Geschwindig-
keit (Speed) auf 9600 gesetzt ist (das ist die Voreinstellung).

. Auf der linken Seite des Fenster klicken Sie unter Category auf Terminal.
. Unter Local Echo wihlen Sie Force On.

. Unter »Set various terminal options« wihlen Sie Implicit LF in Every CR.
. Auf der linken Seite des Fensters klicken Sie unter Category auf Session.

. Geben Sie der Session einen Namen, z.B. »XBee 1«, und klicken Sie auf Save.

O o N O Ui B~

. Bei zukiinftigen Sessions iiberspringen Sie die Schritte 2 bis 8 und klicken die
gespeicherte Session doppelt an.

Nachdem Sie die Verbindung hergestellt haben, konfigurieren Sie den ersten XBee mit den
folgenden AT-Befehlen. Sie miissen +++ eingeben (kein Return oder Enter) und eine
Sekunde warten, um den XBee auf sich aufmerksam zu machen (er antwortet mit »OK«):

ATMY1234
ATDL5678
ATDHO
ATIDO
ATWR

Lassen Sie das Terminal-Fenster gedffnet, um weitere Befehle eingeben zu konnen.
Stecken Sie nun den zweiten XBee ein und stellen Sie wie oben beschrieben wieder eine
Verbindung mit PuTTY oder CoolTerm her (um ein neues PuTTY-Fenster zu éffnen,
starten Sie das Programm einfach noch einmal; ein neues CoolTerm-Fenster éffnen Sie
mit File>New). Dann konfigurieren Sie den zweiten XBee mit den folgenden Befehlen:

ATMY5678

ATDL1234

ATDHO

ATIDO
ATWR

Nun konnen Sie Befehle im Terminal-Fenster eines XBee eingeben und die Eingaben
erscheinen im Terminal-Fenster des anderen XBee (und umgekehrt).

Der Befehl ATMY legt den Identifier fiir einen XBee fest, ATDL und ATDH das untere und obere
Byte fiir den Ziel-XBee. ATID legt die Netzwerk-ID fest (die fiir alle XBees, die miteinander
kommunizieren sollen, gleich sein muss) und ATWR speichert die Einstellungen, damit der
XBee sie nicht vergisst, wenn er aus- und wieder eingeschaltet wird.

14.2 Den Arduino mit einem ZigBee- oder 802.15.4-Netzwerk verbinden | 469

Mit dem Arduino kommunizieren

Nachdem die XBee-Module konfiguriert sind, wihlen Sie einen der XBees aus, schlieRen
dessen Terminal-Fenster und trennen ihn vom Computer. Dann laden Sie den nach-
folgenden Code auf den Arduino hoch und verbinden den XBee wie in Abbildung 14-3 zu
sehen mit dem Arduino. Wenn Sie nun Zeichen tiber ein Terminal-Programm eingeben,
wird es zweimal ausgegeben (Echo), d.h., wenn Sie a eingeben, sehen Sie aa).

N

Wenn jedes Zeichen doppelt erscheint, liegt das am lokalen Echo, das Sie
im Terminal-Programm aktiviert haben. Wenn Sie wollen, kénnen Sie die
s+ Verbindung trennen und mit deaktiviertem lokalen Echo wieder herstellen
(folgen Sie dazu den obigen Anweisungen fiir CoolTerm oder PuTTY und
schalten Sie das lokale Echo aus).

Siehe auch
14.3, 14.4 und 14.5

14.3 Eine Nachricht an einen bestimmten XBee senden

Problem

Sie wollen festlegen, welcher Knoten die Nachrichten von Threm Arduino-Sketch erhilt.

Losung

Senden Sie die AT-Befehle direkt aus dem Arduino-Sketch:

/*

XBeeMessage

Sendet eine Nachricht liber die Adresse an einen XBee
*/

boolean configured;
boolean configureRadio() {

// Befehlsmodus aktivieren:
Serial.print("+++");

String ok_response = "OK\r"; // Die von uns erwartete Antwort

// Text der Antwort in response-Variable einlesen
String response = String("");
while (response.length() < ok response.length()) {
if (Serial.available() > 0) {
response += (char) Serial.read();

470 | Kapitel 14: Drahtlose Kommunikation

// Bei der richtigen Antwort konfigurieren wir den XBee und geben 'wahr' zuriick.
if (response.equals(ok response)) {
Serial.print("ATDH0013A200\1r"); // Hoherwertiges Bytes des Ziels-ERSETZEN
Serial.print("ATDL403B9E1IENT"); // Niederwertiges Byte des Ziels-ERSETZEN
Serial.print("ATCN\t"); // Zurlick zum Datenmodus
return true;
}else {
return false; // Die Antwort war falsch

}
}

void setup () {
Serial.begin(9600); // Seriellen Port starten
configured = configureRadio();

}

void loop () {
if (configured) {
Serial.print("Hallo!");
delay(3000);
}

else {
delay(30000); // 30 Sekunden warten
configured = configureRadio(); // Exrneut versuchen
¥
}

Diskussion

Zwar funktioniert die Konfiguration aus Rezept 14.2 fiir zwei XBees, ist aber nicht be-
sonders flexibel, wenn mehr als zwei genutzt werden.

Nehmen wir zum Beispiel ein Netzwerk aus drei Serie-2-XBee-Knoten, bei dem ein XBee
mit der COORDINATOR AT-Firmware ausgestattet ist und zwei andere mit der
ROUTER AT-Firmware. Vom Koordinator gesendete Nachrichten gehen an die beiden
Router. Nachrichten von den jeweiligen Routern landen beim Koordinator.

Die Serie-1-Konfiguration in diesem Rezept ist etwas flexibler, da es die Ziele explizit
angibt. Da die Gerite iiber AT-Befehle konfiguriert und die Konfiguration dann gespei-
chert wird, kodieren Sie die Zieladressen fest in die Firmware ein.

Diese Losung erlaubt es hingegen, AT-Befehle zur Konfiguration der XBees zu senden.
Das Herz der Losung bildet die Funktion configureRadio(). Sie sendet die Escape-Sequenz
+++, um den XBee in den Befehlsmodus zu schalten (so wie bei der Serie-1-Konfiguration
am Ende von Rezept 14.2). Nach dem Senden dieser Escape-Sequenz wartet der Arduino-
Sketch auf die OK-Antwort, bevor er die folgenden AT-Befehle sendet:

ATDHO013A200
ATDL403B9E1E
ATCN

N

In Threm Code miissen Sie 00134200 und 40389E1F durch die oberen und
unteren Adressbytes des Ziels ersetzen.

14.3 Eine Nachricht an einen bestimmten XBee senden | 471

Die ersten beiden Befehle entsprechen denen der Serie-1-Konfiguration am Ende von
Rezept 14.2, doch die Zahlen sind lidnger. Das liegt daran, dass in diesem Rezept
Serie-2—Adressen verwendet werden. Wie in Rezept 14.2 erklirt, kénnen Sie die Adresse
eines Serie-1-XBee mit dem Befehl ATMY festlegen, doch bei Serie-2-XBees hat jedes Modul
eine eindeutige Adresse, die in den Chip integriert ist. Sie konnen sich den hoherwertigen
(ATDH) und niederwertigen (ATDL) Teil der Seriennummer mit X-CTU ansehen (siehe
Abbildung 14-6). Dieser Wert steht auch auf dem Label unter dem XBee.

Der Befehl ATCN beendet den Befehlmodus und ist sozusagen die Umkehrung der +++-Se-

quenz.

BB [com7) X-CTU

= S |

Modem Parameter Profile Remote Configuration...
FC Settings] Fange Test] Temminal Modem Configuration l

Modem Parameter and Firmware

Parameter View— — Profile

Versions...

Wersions

Read | Write | Restare | Clear Screen Save Dermless rem
™ Always Update Firrmware Show Defaults Load wersions. .
Modem: XBEE Function Set Wersion
|xB24zE ~||ZIGEEE ROUTER AT v fzee0 ~]
B3 Networking -

----- B (123410 - PaN 1D

----- B (FFFFI5C - Sean Channels

----- B (3150 - Scan Duration

----- B (0125 - FigBes Stack Profile

----- B (FFIM - Nodse Join Time

----- B (0] M - Metwork \wWatchdog Timeout
----- B (010 - Channel Yerification

----- & (0)M - Join Matification

----- B (1234) OP - Dperating PaM 1D

----- B (FE700 01 - Operating 16-bit PAN (D
----- B (18] CH - Operating Channel

----- B [C)NC - Mumber of Remaining Children
E-23 Addressing

""" =] Mumber High

----- B (40525530 5L - Serial Mumnber Low
----- B [25EF) MY - 16-bit Metwork Address
----- B (01 0H - Destination Address High

----- B (01 0L - Destination Address Low
..... BI 0 1M1 Meads Idanbfiar

Fiead high 32 bitz of modems unique IEEE B4-bit Extended Address.

m

COM7 | 3600 8-N-1 FLOW:NONE XB24-ZB Wer2240

Abbildung 14-6: Héher- und niederwertige Bytes der Seriennummer mit X-CTU nachschauen

Siehe auch
Rezept 14.2

472

Kapitel 14: Drahtlose Kommunikation

14.4 Sensordaten zwischen XBees senden

Problem

Sie wollen den Status von Digital-, Analog- oder Steuerpins basierend auf vom XBee
empfangenen Befehlen senden.

Losung

Verbinden Sie einen der XBees (den sendenden XBee) mit einem Analogsensor und
konfigurieren Sie ihn so, dass er den Wert regelmiiflig sendet. Verbinden Sie den Arduino
mit einem XBee (dem empfangenden XBee), der fiir den API-Modus konfiguriert ist und
die API-Frames einliest, die vom anderen XBee empfangen werden.

Diskussion

XBees verfiigen iiber einen integrierten Analog/Digital-Wandler (analog-to-digital con-
verter, ADC), der regelmiRig abgefragt werden kann. Der XBee kann so konfiguriert
werden, dass er die Werte (zwischen 0 und 1023) an andere XBees im Netzwerk sendet.
Die Konfiguration und der Code unterscheiden sich zwischen Serie-2- und Serie-1-XBees
ein wenig.

Serie-2-XBees

Mit X-CTU (siehe Rezept 14.3 in Rezept 14.2), konfigurieren Sie den sendenden XBee als
ZIGBEE ROUTER AT (nicht API) und mit den folgenden Einstellungen (klicken Sie Write,
wenn Sie fertig sind):

PAN ID: 1234 (oder ein anderer von Thnen gewihlter Wert, der aber fiir alle XBees
gleich sein muss)

Channel Verification (JV): 1 (stellt sicher, dass der Router nach einer Stromunter-
brechung bzw. Neustart zunichst auf dem vorhandenen Kanal nach dem (bekannten)
Coordinator sucht und falls er keinen findet, den Kanal verldsst und versucht, einen
neuen Coordinator in einem neuen PAN zu finden. Bei JV=0 wiirde er das letztere
nicht tun, sondern auf dem Kanal verbleiben)

Destination Address High (DH): der hoherwertige Teil der Adresse (SH) des anderen
XBee, iiblicherweise 13A200

Destination Address Low (DL): der niederwertige Teil der Adresse (SL) des anderen
XBee

Unter I/O Settings, AD0/DIO0 Configuration (DO): 2

Unter I/O Settings—>Sampling Rate (IR): 64 (100 Millisekunden in hex)

N

Sie kénnen den hoher- (ATDH) und niederwertigen (ATDL) Teil der Serien-
nummer mit X-CTU ermitteln (sieche Abbildung 14-6). Die Werte stehen
v aber auch auf dem Label auf der Unterseite des XBee.

14.4 Sensordaten zwischen XBees senden | 473

Konfigurieren Sie den empfangenden XBee als ZIGBEE COORDINATOR API (nicht AT)
und den folgenden Einstellungen:

PAN ID: 1234 (oder ein anderer von Thnen gewihlter Wert, der aber fiir alle XBees
gleich sein muss)

Destination Address High (DH): der hoherwertige Teil der Adresse (SH) des anderen
XBee, iiblicherweise 13A200

Destination Address Low (DL): der niederwertige Teil der Adresse (SL) des anderen
XBee

Verbinden Sie den sendenden XBee mit dem Sensor, wie in Abbildung 14-7 zu sehen. Der
Wert von R1 muss doppelt so hoch sein wie der des Potis (bei einem 10K-Poti also ein
20K-Widerstand). Das liegt daran, dass der Analog/Digital-Wandler des Seri- 2-XBees im
Bereich von 0 bis 1,2 Volt arbeitet. R1 sorgt dafiir, dass die 3,3 Volt auf unter 1,2 Volt
sinken.

Uberpriifen Sie sorgfiltig das Pinout Ihres XBee-Breakout-Boards, da die
; Pins des Breakout-Boards nicht immer mit den Pins des XBee tiberein-

stimmen. Beispielsweise ist bei einigen Breakout-Boards der obere linke
Pin Masse und der darunter 3,3V.

+3.3V
< 3.3V powerin l u Analog In 0 or Digital 1/0 0
5 R1 el o) [Analogin1or Digital 1/0 1
> O [Analogin2or Digital 1102
Digital 1/0 12 D D Analog In 3 or Digital 1/0 3
Reset | [J OIS
PWMO D D Association Indicator
Digital 1/0 11 D XBees D VREF (not in Series 2 Xbees)
S 10K Reserved D D On/Sleep Indicator
R | O Ol as
Pot Ground O oigital 1104
Ground

Abbildung 14-7: Anschluss des empfangenden Serie 2-XBee an einen Analogsensor

Nun laden Sie den folgenden Sketch auf den Arduino hoch und schlieRen den sendenden
XBee wie in Rezept 14.2 an den Arduino an. Wenn Sie den Arduino neu programmieren,
miissen Sie den XBee zuerst abklemmen:

/*
XBeeAnalogReceive

474 | Kapitel 14: Drahtlose Kommunikation

Analogwert von einem XBee API-Frame einlesen und die Helligkeit einer LED entsprechend setzen
*/

#define LEDPIN 9

void setup() {
Serial.begin(9600);
pinMode(LEDPIN, OUTPUT);
}

void loop() {
if (Serial.available() >=21) { // Warten, bis ein paar Daten vorliegen
if (Serial.read() == Ox7E) { // Startzeichen eines Frames

// Uninteressante Bytes im API-Frame {iberspringen
for (inti=0; 1< 18; i++) {
Serial.read();

}

// Die ndchsten beiden Bytes sind der hdher- und der niederwertige Teil des Sensorwerts
int analogHigh = Serial.read();

int analoglow = Serial.read();

int analogValue = analoglow + (analogHigh * 256);

// Helligkeit auf PWM-Bereich abbilden
int brightness = map(analogvalue, 0, 1023, 0, 255);

// LED einschalten
analoghrite(LEDPIN, brightness);

Serie-1-XBees

Mit Hilfe eines Terminal-Programms (siehe Rezept 14.3 in Rezept 14.2) senden Sie die
folgenden Konfigurationsbefehle an den XBee:

ATRE
ATMY1234
ATDL5678
ATDHO
ATIDO
ATDO2
ATIR64
ATWR

Dann senden Sie die folgenden Konfigurationsbefehle an die XBees:

ATRE
ATMY5678
ATDL1234
ATDHO
ATIDO
ATWR

14.4 Sensordaten zwischen XBees senden | 475

Beide XBees
ATRE setzt den XBee auf die Werkseinstellung zuriick. Der ATMY-Befehl legt die ID des
XBee fest. ATDL und ATDH setzen das nieder- und das hoherwertige Byte des Ziel-XBee.
ATID legt die Netzwerk-ID fest (und muss bei allen miteinander kommunizierenden
XBees gleich sein). ATWR speichert die Einstellungen im XBee, damit sie auch erhalten
bleiben, wenn er aus- und wieder eingeschaltet wird.

Sendender XBee
ATD02 konfiguriert Pin 20 (Analog- oder Digitaleingang 0) als analogen Eingang;
ATIR64 weist den XBee an, den Sensor alle 100 Millisekunde (64 hex) abzufragen
und an den durch ATDL und ATDH festgelegten XBee zu senden.

SchliefRen Sie den sendenden XBee wie in Abbildung 14-8 zu sehen an den Sensor an.

Achten Sie auf das Pinout lhres XBee-Breakout-Boards, da dessen Pins
nicht mit den Pins des XBees iibereinstimmen miissen. Zum Beispiel liegt
bei manchen Breakout-Boards Masse (GND) am oberen linken Pin, und
darunter 3,3V. Auch kénnte der VREF-Pin (RES beim SparkFun XBee
Explorer USB) der fiinfte Pin unten rechts sein, wihrend er beim XBee
selbst der vierte von unten ist.

X

| 10K
- Pot
33V 3.3V power in u Analog In 0 or Digital /0 0
w0 [] | Analogin1or Digital 1/01
e 0 [| Analogn2 or Digital 1/0 2
Digital /0 12 D D Analog In 3 or Digital /0 3
Reset | [O rws
PWMO 8 ee D Association Indicator
Digital 1/0 11 XB ‘a—VREF
Reserved D D On/Sleep Indicator
o | [O as
Ground I | I D Digital /0 4

Abbildung 14-8: Anschluss des empfangenden Serie 1-XBee an einen Analogsensor

N

Im Gegensatz zur Serie 2 verwenden Seriel-XBees eine externe Referenz,
die mit 3,3V verbunden ist. Da die Spannung am Schleifer des Potis nie
5+ hoher sein kann als die Referenzspannung, wird der Widerstand aus
Abbildung 14-7 nicht benétigt.

476 | Kapitel 14: Drahtlose Kommunikation

Nun laden Sie den folgenden Sketch auf den Arduino hoch und schlieRen den sendenden
XBee wie in Rezept 14.2 beschrieben an den Arduino an. Muss der Arduino neu pro-

grammiert werden, klemmen Sie den XBee zuerst ab:

/*
XBeeAnalogReceiveSeries1

Analogwert von XBee API-Frame einlesen und Helligkeit einer LED entsprechend einstellen

*/
const int ledPin=9;
void setup() {

Serial.begin(9600);
pinMode(ledPin, OUTPUT);

configureRadio(); // Uberpriifen Sie den Riickgabewert, wenn eine Fehlerbehandlung notwendig ist

boolean configureRadio() {

// Befehlsmodus aktivieren
Serial.flush();
Serial.print("+++");
delay(100);

String ok response = "OK\r"; // Die von uns erwartete Antwort

// Text der Antwort in die response-Variable einlesen
String response = String("");
while (response.length() < ok response.length()) {
if (Serial.available() »0) {
response += (char) Serial.read();
}
}

// Bei der richtigen Antwort XBee konfigurieren und 'wahr' zuriickgeben
if (response.equals(ok response)) {
Serial.print("ATAP1\r"); // API-Modus aktivieren
delay(100);
Serial.print("ATCN\t"); // Zurlick zum Datenmodus
return true;
}else{
return false; // Die Antwort war falsch
}
}

void loop() {
if (Serial.available() »>=14) { // Auf ein paar Datenwarten
if (Serial.read() == Ox7E) { // Startzeichen eines Frames
// Uninteressante Bytes des API-Frames Uberspringen
for (inti=0; i< 10; i++) {

Serial.read();

}

14.4 Sensordaten zwischen XBees senden

477

// Die ndchsten beiden Bytes sind der hdher- und der niederwertige Teil des Sensorwerts
int analogHigh = Serial.read();

int analoglow = Serial.read();

int analogValue = analoglow + (analogHigh * 256);

// Helligkeit auf PWM-Bereich abbilden
int brightness = map(analogValue, 0, 1023, 0, 255);

// LED einschalten
analogWrite(ledPin, brightness);

Bei Serie-1-XBees muss der Arduino-Code den XBee mit einem AT-Befehl
(ATAP1) fiir den API-Modus konfigurieren. Bei Serie-2-XBees geschieht das,
indem man eine andere Firmware-Version in den Flash-Speicher schreibt.
Der Grund fiir die Riickkehr in den Datemodus (ATCN) ist, dass der
Befehlsmodus vorher mit +++ aktiviert wurde und die Riickkehr in den
Datenmodus notwendig ist,um Daten empfangen zu kénnen.

Siehe auch
Rezept 14.2

14.5 Einen mit dem XBee verbundenen Aktuator aktivieren

Problem

Sie wollen einen XBee einen Pin aktivieren lassen, iiber den ein daran angeschlossener
Aktuator (z.B. ein Relais oder eine LED) eingeschaltet werden kann.

Losung

Konfigurieren Sie den mit dem Aktuator verbundenen XBee so, dass er Anweisungen von
einem anderen XBee akzeptiert. Verbinden Sie den anderen XBee mit einem Arduino, der
die Befehle sendet, die zur Aktivierung des digitalen E/A-Pins notwendig sind.

Diskussion

Die digitalen/analogen E/A-Pins des XBee konnen als digitale Ausginge konfiguriert
werden. Dartiber hinaus kénnen XBees so konfiguriert werden, dass Sie Anweisungen
von anderen XBees akzeptieren, mit denen diese Pins ein- und ausgeschaltet werden
konnen. Bei Serie-2-XBees nutzen Sie das »Remote AT Command«-Feature. Bei Serie-
1-XBees konnen Sie die direkte Ein-/Ausgabe nutzen, was einen »virtuellen Draht« (virtual
wire) zwischen den XBees erzeugt.

478 | Kapitel 14: Drahtlose Kommunikation

Serie-2-XBees

Mittels X-CTU (siehe Rezept 14.3) konfigurieren Sie den empfangenden XBee als ZIGBEE
ROUTER AT (nicht API) und nehmen die folgenden Einstellungen vor:

PAN ID: 1234 (oder ein anderer von Thnen gewihlter Wert, der aber fiir alle XBees
gleich sein muss)

Channel Verification (JV): 1 (stellt sicher, dass der Router nach einer Stromunter-
brechung bzw. Neustart zunichst auf dem vorhandenen Kanal nach dem (bekannten)
Coordinator sucht und falls er keinen findet, den Kanal verlisst und versucht, einen
neuen Coordinator in einem neuen PAN zu finden. Bei JV=0 wiirde er das letztere
nicht tun, sondern auf dem Kanal verbleiben)

Destination Address High (DH): der hoherwertige Teil der Adresse (SH) des anderen
XBee, tiblicherweise 13A200

Destination Address Low (DL): der niederwertige Teil der Adresse (SL) des anderen XBee
Unter I/0 Settings, AD1/DIO1 Configuration (D1): 4 (digitaler Ausgang, low)

W N

’ Sie konnen den hoherwertigen (ATDH) und niederwertige (ATDL) Teil der
Seriennummer mit X-CTU ermitteln, wie in Abbildung 14-6 gezeigt. Die

Zahlen stehen auch auf dem Label auf der Unterseite des XBee.

Konfigurieren Sie den sendenden XBee mit der ZIGBEE COORDINATOR API (nicht AT)

und nehmen Sie die folgenden Einstellungen vor:

PAN ID: 1234 (stellt sicher, dass der Router nach einer Stromunterbrechung bzw.
Neustart zunichst auf dem vorhandenen Kanal nach dem (bekannten) Coordinator
sucht und falls er keinen findet, den Kanal verlisst und versucht, einen neuen
Coordinator in einem neuen PAN zu finden. Bei JV=0 wiirde er das letztere nicht
tun, sondern auf dem Kanal verbleiben)

Destination Address High (DH): der hoherwertige Teil der Adresse (SH) des anderen
XBee, tiblicherweise 13A200

Destination Address Low (DL): der niederwertige Teil der Adresse (SL) des anderen XBee

SchlieRen Sie eine LED an den empfangenden XBee an, wie in Abbildung 14-9 zu sehen.

+3.3V

[AnalogIn0or Digital 1/00
[3—Analog In1 or Digital 1/01

3.3V powerin J] |:|
Lo

a RX D D Analog In 2 or Digital 1/0 2
7 Digital /012 | [[Q | AnalogIn3or Digital 1/03
Reset | O3 g ris
k pwmo | [[| Association Indicator
Digital [/011 D XBee D VREF (not in Series 2 Xbees)
Reserved | [O onssleep Indicator
220 e g as
Ground O | pigital 1104
Ohm
Ground

Abbildung 14-9: Anschluss einer LED an XBees digitalen E/A-Pin 1 (Serie 1 und Serie 2)

14.5 Einen mit dem XBee verbundenen Aktuator aktivieren | 479

Nun laden Sie den folgenden Sketch auf den Arduino hoch und schlieRen den sendenden
XBee wie in Rezept 14.2 beschrieben an den Arduino an. Wenn Sie den Arduino neu
programmieren miissen, diirfen Sie nicht vergessen, den XBee zuerst abzuklemmen. Der
Sketch sendet einen Remote AT-Befehl (ATD14 oder ATD15), der Pin 1 (ATD1) abwechselnd
ein und ausschaltet:

/*

XBeeActuate

Sendet einen Remote AT-Befehl, um den Digitalpin eines anderen XBee zu aktivieren
*/

const byte frameStartByte = Ox7E;
const byte frameTypeRemoteAT = 0x17;
const byte remoteATOptionApplyChanges = 0x02;

void setup() {
Serial.begin(9600);
}

void loop()
{

toggleRemotePin(1);
delay(3000);
toggleRemotePin(0);
delay(2000);

byte sendByte(byte value) {
Serial.write(value);
return value;

}
void toggleRemotePin(int value) { // 0=aus, nicht-0=an

byte pin_state;

if (value) {
pin_state = 0x5;

}else{
pin_state = Ox4;

}

sendByte(frameStartByte); // Start des API-Frames

// Hoher- und niederwertiger Teil der Frame-Lénge (ohne Prifsumme)
sendByte(0x0);

sendByte(0x10);

long sum =0; // Prifsumme akkumulieren

sum += sendByte(frameTypeRemoteAT); // Dieser Frame enthdlt einen
// Remote AT-Befehl

sum += sendByte(0x0); // Frame-ID ist 0; wir erwarten keine Antwort

480 | Kapitel 14: Drahtlose Kommunikation

// Die folgenden 8 Bytes geben die ID des Empfangers an
// Broadcasting an alle Knoten mit OxFFFF

sum += sendByte(0x0);

sum += sendByte(0x0)
sum += sendByte(0x0)
sum += sendByte(0x0)
sum += sendByte(0x0)
sum += sendByte(0x0) ;
sum += sendByte (OxFF);
sum += sendByte (OxFF)

>
bl
b
>

)

// Die beiden folgenden Bytes enthalten die 16-Bit-Adresse des Empféangers
// Broadcasting an alle Knoten mit OxFFFE

sum += sendByte(0xFF);

sum += sendByte (OXFF);

sum += sendByte(remoteATOptionApplyChanges); // Remote AT-Optionen senden

// Text des AT-Befehls senden
sum += sendByte('D");
sum += sendByte('1");

// Der Wert (0x4 fiir aus, 0x5 fiir an)
sum += sendByte(pin_state);

// Priifsumme senden
sendByte(OXFF - (' sum & OXFF));

delay(10); // Pause, damit der Mikrocontroller zur Ruhe kommt

Serie 1-XBees

Mit Hilfe eines Terminal-Programms (siehe Rezept 14.3) senden Sie die folgenden Kon-
figurationsbefehle an den sendenden XBee (der mit dem Arduino verbunden ist):

ATRE
ATMY1234
ATDL5678
ATDHO
ATIDO
ATD13
ATICFF
ATWR

Dann senden Sie die folgenden Konfigurationsbefehle an den empfangenden XBee:

ATRE
ATMY5678
ATDL1234
ATDHO
ATIDO
ATD14
ATIUO
ATIA1234
ATWR

14.5 Einen mit dem XBee verbundenen Aktuator aktivieren | 481

Beide XBees
ATRE setzt den XBee auf die Werkseinstellung zuriick. Der ATMY-Befehl legt die
XBee-ID fest. ATDL und ATDH legen das niederwertige und hoherwertige Byte des
Ziel-XBee fest. ATID legt die Netzwerk-ID fest (die fur alle miteinander kommunizie-
renden XBees gleich sein muss). ATWR speichert die Einstellungen im XBee, damit sie
auch erhalten bleiben, wenn die Spannung aus- und wieder eingeschaltet wird.

Sendender XBee
ATICFF weist den XBee an, alle Digitaleingéinge abzufragen und deren Werte an den
XBee zu senden, der mit ATDL und ATDH festgelegt wurde. ATD13 konfiguriert Pin 19
(Analog- oder Digitaleingang 1) als digitalen Eingang. Der Zustand dieses Pins wird
vom sendenden zum empfangenden XBee weitergegeben.

Empfangender XBee
ATIU1 weist den XBee an, die empfangenen Frames nicht an den seriellen Port zu
schicken. ATIA1234 weist ithn an, Befehle vom anderen XBee (mit der MY-Adresse
1234) zu akzeptieren. ATD14 setzt Pin 19 (Analog- oder Digitaleingang 1) auf O (aus).

SchliefRen Sie den sendenden XBee wie in Abbildung 14-10 zu sehen an den Arduino an.

Schliefen Sie dann den empfangenden XBee wie in Rezept 14.2 beschrieben an den
Arduino an. Beachten Sie, dass wir jetzt keine AT-Befehle {iber den seriellen Port senden,
sondern eine elektrische Verbindung nutzen, um den XBee-Pin einzuschalten. Die beiden
10K-Widerstinde bilden einen Spannungsteiler, der die 5V-Spannung des Arduino auf
etwa 2,5V reduziert (hoch genug, damit der XBee sie erkennt, aber niedrig genug, um eine
Beschidigung der XBee-3,3V-Pins zu vermeiden).

+3.3V
. Analog In 0 or Digital 1/0 0
3.3V powerin [L O
Analog In 1 or Digital 1/0 1
wx g [
RO [Q | Analog In 2 or Digital 1/0 2
Digital /012 | a Analog In3 or Digital 1/0 3 10K
Reset |) (OB
PWMO | O O Assoclanon Indicator Ohm
Digital /011 | XBeeS [3 | VREF (not in Series 2 Xbees)
Reserved | [[O | 0n/Sleep Indicator Arduino Pin 2
om0 g as
Ground [F [| Digital 1/04 10K %
Ground Ohm

Abbildung 14-10: Anschluss des Arduino an E/A-Pin 1 des sendenden Serie 1-XBee

Nun laden Sie den folgenden Sketch auf den sendenden Arduino hoch. Der Sketch
schaltet den digitalen E/A-Pin des XBee abwechselnd ein (5) und aus (4). Da der sendende
XBee so eingestellt ist, dass er die Pin-Zustinde an den empfangenden XBee weitergibt,
indern sich die Zustinde auch auf dem empfangenden XBee:
/*
XBeeActuateSeries1

482 | Kapitel 14: Drahtlose Kommunikation

Digitalpin eines anderen XBees aktivieren.
*/

const int xbeePin = 2;

void setup() {
pinMode(xbeePin, OUTPUT);

}

void loop()
{

digitalWrite(xbeePin, HICH);
delay(3000);
digitalWrite(xbeePin, LOW);
delay(3000);

Siehe auch
Rezept 14.2

14.6 Nachrichten tiber Low-Cost-Transceiver senden

Problem

Sie wiinschen sich eine Low-Cost-Drahtlos-Losung, die mehr kann als die einfachen
Module in Rezept 14.1.

Losung

Verwenden Sie die zunehmend beliebter werdenden Hope REM12B-Module zum Senden
und Empfangen von Daten. Das Rezept verwendet zwei Arduino-Boards und Drahtlos-
Module. Ein Paar liest und sendet Werte, das andere gibt die empfangenen Werte aus. Die
Verschaltung ist bei beiden gleich.

Schlieflen Sie die Module wie in Abbildung 14-11 zu sehen an. Die Antenne ist nur ein
Stiick Draht, zugeschnitten auf die richtige Linge fiir die Frequenz Ihrer Module (78 mm
fiir 915 MHz, 82 mm fiir 868 MHz und 165 mm fiir 433 MHz).

14.6 Nachrichten iiber Low-Cost-Transceiver senden | 483

Antenna

3V3 (see text for details)

Gnd

Ant RFM-12B

+3.3v
Gnd

(000000

All resistors
10K Ohms

—
SISO

o0 neeoeolieennvoee

| N S - -

MOSI (Din)
SCK (Clock) IRQ

SS (Select) MISO (D Out)]—I

Connect module IRQ to digital pin 2

For 3.3V Arduino
See text

N

oO=Z—CO>0o>

Abbildung 14-11: Anschluss eines REM12B-Transceivers

Wenn Sie einen 3,3V-Arduino nutzen (wie den Fio oder den 3,3V-Arduino-Pro), lassen
Sie die Widerstinde weg und verbinden Sie die Arduino-Pins 10, 11 und 13 direkt mit den
entsprechenden RFM12B-Pins.

Der Sender-Sketch sendet einmal pro Sekunde die Werte der sechs Analogpins:
/*
* SimpleSend

* RFM12B Wireless-Demo - Sender - kein ACK

* Sendet die Werte der Analogeingédnge 0 bis 5
*

*/

#include <RF12.h> // Von jeelabs.org
#include <Ports.h>

// RF12B constants:
const byte network =100; // Netzwerk-Gruppe (imBereich von 1-255)
const byte myNodeID =1; // Eindeutige Knoten-ID des Empfangers (zwischen 1 und 30)

// Frequenz des RF12B kann RF12_433MHZ, RF12_868MHZ oder RF12_915MHZ sein.
const byte freq = RF12_868MHZ; // Frequenz an Modul anpassen

const byte RF12_NORMAL SENDWAIT = 0;
void setup()

rf12_initialize(myNodeID, freq, network); //RFM12 initialisieren

}
const int payloadCount = 6; // Zahl der Integerwerte in den Nutzdaten den gelesenen
// Analogeingdngen anpassen

int payload[payloadCount];

void loop()

484 | Kapitel 14: Drahtlose Kommunikation

for(int i=0; i < payloadCount; i++)
{
payload[i] = analogRead(1i);

while (1rf12_canSend()) // Treiber zum Senden bereit?
112 _recvDone(); //Nein, warten

1f12_sendStart(rf12_hdr, payload, payloadCount*sizeof(int));
rf12_sendWait(RF12_NORMAL_SENDWAIT); // Warten, bis Senden abgeschlossen ist

delay(1000); // Einmal pro Sekunde senden

Der Empfinger-Sketch gibt die sechs Analogwerte tiber den seriellen Monitor aus:

/*

* SimpleReceive

* RFM12B Wireless-Demo - Empfdnger - kein ACK
*

*/

#include <RF12.h> // Von jeelabs.org
#include <Ports.h>

// RFM12B constants:
const byte network =100; // Netzwerk-Gruppe (imBereich von 1-255)
const byte myNodeID =2; // Eindeutige Knoten-ID des Empféangers (1 bis 30)

// Frequenz des RFM12B kann RF12_433MHZ, RF12_868MHZ oder RF12_915MHZ sein
const byte freq = RF12 868MHZ; // Frequenz an Modul anpassen

void setup()
{

rf12_initialize(myNodeID,freq,network); //RFM12mit obigen Einstellungen initialisieren
Serial.begin(9600);

Serial.println("RFM12B-Empfaenger bereit");

Serial.println(network,DEC); // Netzwerk- und

Serial.println(myNodeID,DEC); // Knoten-ID ausgeben

}

const int payloadCount = 6; // Zahl der Integerwerte in den Nutzdaten den gelesenen
// Analogeingdngen anpassen

void loop()
{
if (rf12_recvDone() 8& rf12_crc == 088 (rf12_hdr & RF12_HDR CTL) ==0)

int *payload = (int*)rf12 data; // Zugriff auf rfi2-Datenpuffer tber Array von ints
for(int i=0; i < payloadCount; i++)

Serial.print(payload[i]);
Serial.print("");
}
Serial.println();
}
}

14.6 Nachrichten iiber Low-Cost-Transceiver senden | 485

Diskussion

Die RFM12B-Module sind fiir 3,3V konzipiert und die Widerstinde in Abbildung 14-11
werden benotigt, um die Spannung auf den richtigen Pegel zu bringen. Die JeeLabs-
Websitehttp://jeelabs.com/products/rfm12b-board enthilt Details zu Breakout-Boards und
Modulen fiir den RFM12B.

Die RF12-Bibliothek unterstiitzt unterschiedliche Gruppen von Modulen in der gleichen
Umgebung. Jede Gruppe wird iiber eine Netzwerk-ID identifiziert. Die Sender- und
Empfinger-Sketches miissen die gleiche Netzwerk-ID verwenden, um miteinander kom-
munizieren zu konnen. Jeder Knoten muss eine eindeutige ID innerhalb des Netzwerks
besitzen. In diesem Beispiel verwenden wird das Netzwerk 100 mit der Sender-ID 1 und
der Empfinger-1D 2.

Der loop-Code fiillt ein Array (siehe Rezept 2.4) namens payload mit sechs Integerwerten,
die von den Analogeingingen 0 bis 5 eingelesen wurden.

Das Senden erfolgt iiber den Aufruf von rfi2 sendStart. Das Argument rf12-hdr be-
stimmt den Zielknoten, der mit O voreingestellt ist. (Das Senden an Knoten 0 gibt die
Daten an alle Knoten im Netzwerk weiter); 8payload ist die Adresse des Nutzdaten-
Puffers. payloadCount * sizeof(int) ist die Anzahl der Bytes im Puffer. rf12_sendWait
wartet, bis das Senden abgeschlossen ist (Stromsparoptionen finden Sie in der RF12-Do-
kumentation).

Dieser Code bestitigt den Empfang der Nachrichten nicht. Bei Anwendungen wie diesen,
bei denen fortlaufend Informationen gesendet werden, ist der gelegentliche Verlust von
Informationen aber kein Problem, da sie beim nichsten Senden aktualisiert werden. Im
Beispiel-Code der Bibliothek finden Sie Sketches, die andere Techniken zum Senden und
Empfangen der Daten verwenden.

Alle Arten von Daten, die in einen 66-Byte-Puffer passen, kénnen gesendet werden. Der
folgende Sketch sendet zum Beispiel eine binidre Datenstruktur, die aus einem Integer-
und einem FlieRkommawert besteht:

/*

* RFM12B Wireless-Demo - struct-Sender - kein ACK

* Sendet einen FlieRkommawert in einer C-Struktur
*/

#include <RF12.h> // Von jeelabs.org
#include <Ports.h>

// RF12B constants:
const byte network =100; // Netzwerk-Gruppe (imBereich von 1-255)
const byte myNodeID =1; // Eindeutige Knoten-ID des Empfangers (1 bis 30)

// Frequenz des RF12B kann RF12_433MHZ, RF12_868MHZ oder RF12 915MHZ sein
const byte freq =RF12_868MHZ; // Frequenz an Modul anpassen

const byte RF12_NORMAL SENDWAIT = 0;

void setup()

486 | Kapitel 14: Drahtlose Kommunikation

{

rf12_initialize(myNodeID, freq, network); //RFM12 initialisieren

}

typedef struct { // Datenstruktur der Nachricht, muss Tx entsprechen
int pin; // Zur Messung verwendeter Pin
float value; // Messwert als FlieRkommazahl

}
Payload;

Payload sample; // Instanz vom Typ Payload deklarieren
void loop()
{

int inputPin = 0; // Der Eingangspin

float value = analogRead(inputPin) *0.01; // Ein FlieRkommawert
sample.pin = inputPin; // send demontx.ctl=emontx.ct1+1;
sample.value = value;

while (1rf12_canSend()) // Treiber zum Senden bereit?
rf12_recvDone(); //Nein, warten

1f12_sendStart(rfi2_hdr, &sample, sizeof sample);
r12_sendWait(RF12_NORMAL_SENDWAIT); //Warten, bis Senden abgeschlossen ist

Serial.print(sample.pin);
Serial.print("=");
Serial.println(sample.value);
delay(1000);

Hier der Sketch, der die struct-Daten empfingt und ausgibt:

/*
* RFM12B Wireless-Demo - struct-Empfanger - kein ACK
*

*/

#include <RF12.h> // Von jeelabs.org
#include <Ports.h>

// RF12B constants:
const byte network =100; // Netzwerk-Gruppe (zwischen 1-255)
const byte myNodeID =2; // Eindeutige Knoten-ID des Empféngers (1 bis 30)

// Frequenz des RF12B kann RF12_433MHZ, RF12_868MHZ oder RF12_915MHZ sein
const byte freq = RF12_868MHZ; // Frequenz an Modul anpassen

void setup()
rf12_initialize(myNodeID,freq,network); //RFM12mit obigen Einstellungen initialisieren
Serial.begin(9600);
Serial.print("RFM12B-Empfanger bereit");

}

typedef struct { // Datenstruktur der Nachricht, muss Tx entsprechen

14.6 Nachrichten iiber Low-Cost-Transceiver senden | 487

int pin; // Zur Messung verwendete Pin-Nummer
float value; //Messwert als FlieRkommazahl

}
Payload;

Payload sample; // Instanz vom Typ Payload deklarieren
void loop() {

if (rf12_recvDone() 8& rf12 crc == 088 (rf12_hdr & RF12 HDR CTL) ==0)

{
sample = *(Payload*)rf12_data; // Nutzdaten abrufen

Serial.print("Analogeingang ");
Serial.print(sample.pin);
Serial.print("=");
Serial.println(sample.value);

}

Dieser Code dhnelt den beiden vorigen Sketches, doch diesmal wurde der payload-Puffer
durch einen Zeiger namens sample ersetzt, der auf die Payload-Struktur verweist.

Siehe auch

Die in diesem Rezept verwendeten Bibliotheken wurden von Jean-Claude Wippler ent-
wickelt. Eine Fiille von Informationen finden Sie auf der Website http://www.jeelabs.com.

Alle Funktionen der RF12-Bibliothek sind hier dokumentiert: http://jeelabs.net/projects/
cafe/wiki/RF12.

Einen Beispiel-Sketch zum Senden von Strings mit dem RFM12 finden Sie hier: http:/
jeelabs.org/2010/09/29/sending-strings-in-packets.

Ein Beispiel firr den Ruhemodus (als Stromsparmodus) zwischen den Sendeoperationen
finden Sie hier: hitps://github.com/openenergymonitor/emonTxFirmware.

Ein Breakout-Board fiir den RFM12B finden Sie hier: http://jeelabs.com/products/rfm12b-
board.

Das JeeNode ist ein Board, das den RFM12B und einen Arduino-kompatiblen Chip
kombiniert: http://http://jeelabs.com/products/jeenode.

Eine 433 MHz-Version des REM12B, die auf der ganzen Welt funktionieren sollte, finden
Sie bei SparkFun: hitp://'www.sparkfun.com/products/9582.

488 | Kapitel 14: Drahtlose Kommunikation

14.7 Mit Bluetooth-Geraten kommunizieren

Problem

Sie wollen Informationen per Bluetooth an/von andere(n) Gerite(n) (wie Laptops oder
Mobiltelefone) senden oder empfangen.

Losung

Verbinden Sie den Arduino mit einem Bluetooth-Modul wie dem BlueSMiRF, dem
Bluetooth Mate oder dem Bluetooth Bee (siehe Abbildung 14-12).

e eeessclesaiics
23 e ==
asa J

i VCCCH

Arduino - RN-42 iley

. G

RX 3

‘ q RTSO

] O) Bonges s, BlueSMIRF
i

Abbildung 14-12: Anschluss eines BlueSMiRF Bluetooth-Moduls iiber SoftwareSerial-Pins

Dieser Sketch ist dem aus Rezept 4.13 dhnlich. Er tiberwacht, welche Zeichen iiber den
seriellen Hardware-Port und einen Software-Port (der mit Bluetooth verbunden ist)
eingehen und sendet alle empfangenen Zeichen an den jeweils anderen Port:

/*

* Per SoftwareSerial mit BlueSMiRF-Modul kommunizieren
* Pairing-ID ist 1234

*/

#include <SoftwareSerial.h>

const int rxpin = 2; // Empfanger-Pin
const int txpin = 3; // Sender-Pin
SoftwareSerial bluetooth(rxpin, txpin); // Neuer serieller Port an festgelegten Pins

void setup()

Serial.begin(9600);

bluetooth.begin(9600); // Seriellen Software-Port initialisieren
Serial.println("Seriell bereit");

bluetooth.println("Bluetooth bereit");

}

14.7 Mit Bluetooth-Geraten kommunizieren | 489

void loop()

{
if (bluetooth.available())

char c = (char)bluetooth.read();
Serial.write(c);

}
if (Serial.available())

char c = (char)Serial.read();
bluetooth.write(c);

}
}

Diskussion

Thr Computer (oder Telefon) muss Bluetooth-fihig sein, um mit diesem Sketch kom-
munizieren zu kénnen. Beide Seiten einer Bluetooth-Konversation miissen »gekoppelt«
werden (das sog. Pairing) — die ID des mit dem Arduino verbundenen Moduls muss der
anderen Seite bekannt sein. Die Standard-ID fiir das BlueSMIiRF ist 1234. In der Do-
kumentation Thres Computers/Telefons konnen Sie nachlesen, wie man die Pairing-1D
setzt und eine Verbindung herstellt.

Wenn lhr Board an ein FTDI-Kabel aufgesteckt werden kann, kénnen Sie es direkt mit
dem Bluetooth-Mate-Modul verbinden (siehe Abbildung 14-13).

EIGND
E1(TS
E3V(C
17X
EIRX
EIRTS

Arduino Pro Mini Bluetooth Mate

Abbildung 14-13: Bluetooth Mate verwendet die gleichen Anschliisse wie FTDI

Das Bluetooth Mate kann auch an ein Standard-Board angeschlossen werden, wie Abbil-
dung 14-14 zeigt.

490 | Kapitel 14: Drahtlose Kommunikation

coporn oo
£33 pemaL =
gGND
. [N
Arduino | | e
oo G TX -
ORX—
‘ q QORTS
_ Bluetooth Mate
- OO #8z33s Mo,
DDTD[ED 000000

Alle gingigen Bluetooth-Module fiir den Arduino implementieren das
Bluetooth Serial Port Profile (SPP). Sobald die Gerite gekoppelt sind,
betrachtet der Computer oder das Telefon das Modul als seriellen Port.
Diese Module kénnen nicht als andere Bluetooth-Gerite, etwa als Maus
oder Tastatur, auftreten.

Die Reichweite von Bluetooth liegt zwischen 5 und 100 Metern, je nachdem, ob Sie mit
Klasse-3-, -2- oder -1-Geriten arbeiten.

Siehe auch

Ein SparkFun-Tutorial behandelt die Installation und Verwendung von Bluetooth:
http://www.sparkfun.com/tutorials/67

Bluetooth Bee ist ein Bluetooth-Modul, das in einen XBee-Sockel passt, d.h., Sie kénnen
fiir XBee entwickelte Shields und Adapter verwenden: http://www.seeedstudio.com/depot/
bluetooth-bee-p-598.html.

14.7 Mit Bluetooth-Geraten kommunizieren | 491

KAPITEL 15
Ethernet und Netzwerke

15.0 Einfiihrung

Sie wollen Thre Sensordaten teilen? Die Aktionen Thres Arduino durch andere Leute
steuern lassen? Thr Arduino kann tber Ethernet und Netzwerke mit einem breiteren
Publikum kommunizieren. Dieses Kapitel beschreibt die vielen Moglichkeiten, mit denen
Sie den Arduino mit dem Internet nutzen kénnen. Die Beispiele demonstrieren, wie Sie
Web-Clients und -Server aufbauen und nutzen und wie man die gingigsten Internet-
Kommunikationsprotokolle mit dem Arduino verwendet.

Das Internet erlaubt es einem Client (z.B. Threm Web-Browser), Informationen von einem
Server (einem Web-Server oder einem anderen Internet-Serviceanbieter) abzurufen. Dieses
Kapitel enthilt Rezepte, die zeigen, wie man einen Internet-Client aufbaut, der Informationen
von Diensten wie Google oder Yahoo! abruft. Andere Rezepte zeigen, wie der Arduino als
Internet-Server fungieren kann, der Informationen tiber Internetprotokolle an Clients aus-
liefert, und wie man einen Web-Server aufbaut, der Webseiten an Web-Browser zuriickgibt.

Die Arduino Ethernet-Bibliothek unterstiitzt eine Reihe von Methoden (Protokollen), die
es Threm Sketch ermoglichen, als Internet-Client oder -Server zu fungieren. Die Ethernet-
Bibliothek verwendet eine Reihe von Standard-Internet-Protokollen und versteckt einen
Grofiteil der auf unterster Ebene angesiedelten Details. Clients und Server zum Laufen zu
bringen und niitzliche Dinge machen lassen, verlangt ein grundlegendes Verstindnis der
Netzwerkadressierung und -Protokolle. Sie kénnten sich eine der vielen Einfithrungen im
Netz ansehen oder eines der folgenden einfiithrenden Biicher:

* Netzwerke von Kopf bis Fufs (ISBN 978-3-89721-944-1) von Al Anderson und Ryan
Benedetti (O’Reilly)

* Network Know-How: An Essential Guide for the Accidental Admin von John Ross (No
Starch Press)

* Windows NT TCP/IP Network Administration von Craig Hunt und Robert Bruce
Thompson (O’Reilly)

* Making Things Talk (ISBN 978-3-86899-162-8) von Tom Igoe (O’Reilly)
(Suchen Sie nach O’Reilly-Titeln auf www.oreilly.de.)

| 493

Hier einige Schliisselkonzepte dieses Kapitels, mit denen Sie sich ausfiihrlicher auseinan-
dersetzen sollten, als das hier moglich ist:

Ethernet
Die auf unterster Ebene angesiedelte Signalisierungsschicht, die fiir die grundlegende
physikalische Nachrichteniibertragung sorgt. Die Quell- und Zieladressen dieser
Nachrichten werden iiber die MAC-Adresse (Media Access Control) festgelegt. Thr
Arduino-Sketch definiert eine MAC-Adresse, die innerhalb Thres Netzwerks eindeutig
sein muss.

TCP und IP
Transmission Control Protocol (TCP) und Internet Protocol (IP) sind die Kernpro-
tokolle des Internet, die direkt {iber Ethernet ansetzen. Sie stellen die Nachrichten-
tibertragung zur Verfiigung, die iiber das globale Internet lauft. TCP/IP-Nachrichten
werden zwischen eindeutigen IP-Adressen fir Sender und Empfanger ausgeliefert. Ein
Server im Internet verwendet einen numerischen Wert (eine Adresse), die kein
anderer Server besitzt, so dass er eindeutig identifiziert werden kann. Diese Adresse
besteht aus vier Bytes, die tiblicherweise durch Punkte voneinander getrennt sind
(z.B.ist 64.233.187.64 eine IP-Adresse, die von Google verwendet wird). Das Internet
verwendet das Domain Name System (DNS), um gingige Dienstnamen (hitp:/
www.google.com) in numerische IP-Adressen umzuwandeln. Diese Fihigkeit wurde
im Arduino 1.0 eingefiihrt. Rezept 15.3 zeigt, wie Sie das in Thren Sketches nutzen
konnen.

Lokale IP-Adressen

Ist in Threm Heimnetzwerk mehr als ein Computer iiber einen Breitband-Router oder
ein Gateway angeschlossen, verwendet jeder Rechner wahrscheinlich eine lokale
IP-Adresse, die von Threm Router zur Verfiigung gestellt wird. Diese lokale Adresse
wird mit Hilfe des DHCP-Dienstes (Dynamic Host Configuration Protocol) Thres
Routers erzeugt. Die Arduino Ethernet-Bibliothek enthilt nun (seit Release 1.0) einen
DHCP-Dienst. Die meisten Rezepte in diesem Kapitel verwenden eine vom Benutzer
festgelegte IP-Adresse, die Sie an Thr Netzwerk anpassen miissen. Rezept 15.2 zeigt,
wie die IP-Adresse automatisch iber DHCP bezogen werden kann.

Die Web-Requests eines Web-Browsers und die daraus resultierenden Antworten ver-
senden HTTP-Nachrichten (Hypertext Transfer Protocol). Damit ein Web-Client oder
-Server korrekt auf HTTP-Requests und -Responses reagieren kann, muss er das Protokoll
verstehen. Viele Rezepte in diesem Kapitel nutzen dieses Protokoll. Die oben aufgefiihrten
Referenzen enthalten weitere Details, die Thnen helfen zu verstehen, wie diese Rezepte im
Detail funktionieren.

Webseiten werden tblicherweise in HTML (Hypertext Markup Language) formatiert.
Zwar ist der Einsatz von HTML beim Aufbau eines Arduino-Webservers nicht zwingend
(wie Rezept 15.9 zeigt), aber die von Thnen ausgelieferten Webseiten konnen diese Fi-
higkeit nutzen.

Daten aus einer Webseite zu extrahieren, die man sich eigentlich mit einem Web-Browser
ansehen soll, ist wegen der ganzen zusitzlichen Texte, Bilder und Format-Tags einer

494 | Kapitel 15: Ethernet und Netzwerke

typischen Seite ein wenig wie die Suche nach der Stecknadel im Heuhaufen. Diese
Aufgabe kann durch die Stream-Parsing-Funktionalitit von Arduino 1.0 vereinfacht
werden, die bestimmte Zeichenfolgen aufspiiren und Strings oder numerische Daten aus
einem Datenstrom herausfiltern kann. Wenn Sie mit einer <eren Arduino-Release
arbeiten, konnen Sie eine Bibliothek namens TextFinder aus dem Arduino Playground
herunterladen. TextFinder extrahiert Informationen aus einem Datenstrom. Stream-Par-
sing und TextFinder bieten eine vergleichbare Funktionalitit (Stream-Parsing basiert auf
dem TextFinder-Code, den die erste Ausgabe dieses Buches nutzt). Allerdings wurden
einige Methoden umbenannt. In der TextFinder-Dokumentation im Playground finden
Sie Hilfe, wenn Sie Sketches von TextFinder nach Arduino 1.0 migrieren wollen.

Web-Austauschformate wurden entwickelt, um eine zuverlissige Extrahierung von Web-
Daten per Software zu ermoglichen. XML and JSON sind zwei der am weitesten
verbreiteten Formate und Rezept 15.5 zeigt, wie man sie mit dem Arduino nutzen kann.

Arduino 1.0 Enhancements

Die Arduino Ethernet-Bibliothek hat in der 1.0-Release einige Verbesserungen erfahren,
die ihre Nutzung vereinfachen. Dariiber hinaus wurden Dienste wie DHCP und DNS
hinzugefiigt, fiir die frither der Download zusitzlicher Bibliotheken notwendig war. Bei
einigen Klassen und Methoden hat sich der Name geindert, d.h., fiir dltere Releases
geschriebene Sketches miissen angepasst werden, um unter Arduino 1.0 zu funktionieren.
Hier eine Zusammenfassung der Anderungen, die fiir iltere Sketches notwendig sind:

* SPI.h muss (seit Arduino 0018) vor dem Ethernet-Include am Anfang des Sketches
stehen.

¢ (lient client(server, 80); wird zu EthernetClient client;.

e if(client.connect())wird zu if(client.connect(serverName, 80)>0).

* Server server(80) wird zu EthernetServer server(80).

* DHCP benotigt keine externe Bibliothek (siehe Rezept 15.2).

* DNS benotigt keine externe Bibliothek (siehe Rezept 15.3).

* Suche nach Wértern und Zahlen wird durch das neue Stream-Parsing vereinfacht
(siehe Rezept 15.4).

* F(text)-Konstrukt hinzugefiigt, um das Speichern von Text im Flash-Speicher zu
vereinfachen (Rezept 15.11).

Der Code dieses Kapitels ist fiir die Arduino Release 1.0 gedacht. Wenn Sie
eine iltere Version verwenden, laden Sie den Code der ersten Ausgabe tiber
http://oreilly.com/catalog/9780596802486 herunter.

Der Code fiir dieses Buch wurde mit den Release Candidates von Arduino
1.0 getestet. Mogliche Updates an Sketches sind in der Datei changelog.txt
http://shop.oreilly.com/product/0636920022244.do aufgefiihrt.

15.0 Einfiihrung | 495

Alternative Hardware fiir kostengiinstige Netzwerke

Wenn Sie ein kostengiinstiges und Eigenbau-freundliches Ethernet-Board brauchen, das
ohne SMD-Technik auskommt, kénnen Sie das Open-Source-Design nutzen, das fir das
Nanode-Projekt entwickelt wurde. Es nutzt den gleichen ATmega328-Controller wie der
Arduino, ersetzt aber den Wiznet-Chip durch den giinstigeren ENC28]60. Dieser Chip
bietet die gleiche Funktionalitit, die in diesem Kapitel beschrieben wird, verwendet aber
andere Bibliotheken, d.h., Sie miissen mit Sketches arbeiten, die speziell fir den
ENC28]60 entwickelt wurden.

Weitere Informationen finden Sie auf der Nanode-Homepage: http://www.nanode.eu/.

15.1 Ein Ethernet-Shield einrichten

Problem

Sie wollen ein Ethernet-Shield mit einer fest kodierten IP-Adresse einrichten.

Losung

Dieser Sketch basiert auf dem Ethernet-Client Beispiel-Sketch, das mit Arduino mitgelie-
fert wird. Stellen Sie sicher, dass Sie eine fiir [hr Netzwerk giiltige Arduino-IP-Adresse (der
Wert der ip-Variablen) verwenden:

/*

* Simple Web Client

* Arduino 1.0-Version
*/

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = { OxDE, 0xAD, OxBE, OXEF, OXFE, OXED };
byteip[]=1{192, 168, 1, 177 }; // Auf giiltige Adresse achten
byte server[] = { 209,85,229,104 }; // Google

// Mehrx zur IP-Adressierung erfahren Sie im Text

EthernetClient client;
void setup()

Serial.begin(9600); // Seriellen Port starten
Ethernet.begin(mac,ip);
delay(1000); // Der Ethernet-Hardware eine Sekunde zur Initialisierung geben

Serial.println("Verbinde...");

if (client.connect(server, 80)) {
Serial.println("Verbunden");
client.println("GET /search?q=arduino HTTP/1.0"); // Der HTTP-Request
client.println();

}

496 | Kapitel 15: Ethernet und Netzwerke

else {
Serial.println("Verbindung fehlgeschlagen");

}
}

void loop()
{

if (client.available()) {
char c = client.read();
Serial.print(c); // Alle empfangenen Daten iiber seriellen Monitor ausgeben

if (!client.connected()) {
Serial.println();
Serial.println("Trenne Verbindung...");
client.stop();
for(;;)

}
}

Diskussion

Der Sketch fiihrt eine Google-Suche nach dem Wort »arduino« durch. Sein Zweck besteht
darin, Sie mit funktionierendem Code zu versorgen, mit dem Sie priifen kénnen, ob Thre
Netzwerk-Konfiguration fiir das Arduino Ethernet-Shield funktioniert.

Bis zu vier Adressen miissen richtig konfiguriert werden, damit der Sketch eine Verbin-
dung herstellen und das Ergebnis der Suche tiber den seriellen Monitor ausgeben kann:

byte mac[] = { OxDE, OXAD, OXBE, OXEF, OXFE, OXED };

Die MAC-Adresse identifiziert Thr Ethernet-Shield eindeutig. Jedes Netzwerk-Gerit muss
eine andere MAC-Adresse verwenden und wenn es in Threm Netzwerk mehr als ein
Arduino-Shield gibt, muss jedes eine andere Adresse nutzen. Bei neueren Ethernet-Shields
ist die MAC-Adresse auf einem Aufkleber auf der Unterseite aufgedruckt. Bei nur einem
Ethernet-Shield miissen Sie sie nicht dndern.

byteip[]=1{192, 168, 1, 177 }; // Auf gliltige Adresse achten

Die IP-Adresse wird genutzt, um etwas zu identifizieren, was iiber das Internet kom-
muniziert. Sie muss innerhalb Thres Netzwerks ebenfalls eindeutig sein. Die Adresse
besteht aus vier Bytes und der Bereich giiltiger Werte hiingt von der Konfiguration Thres
Netzwerks ab. IP-Adressen werden iiblicherweise mit Punkten dargestellt, die die einzel-
nen Bytes trennen — zum Beispiel 192.168.1.177. In allen Arduino-Sketches werden
Kommata anstelle von Punkten verwendet, da die Bytes in einem Array abgelegt sind
(siehe Rezept 2.4).

Wenn ihr Netzwerk iiber einen Router oder ein Gateway mit dem Internet verbunden ist,
miissen Sie moglicherweise die IP-Adresse des Gateways beim Aufruf von ethernet.begin
iibergeben. Sie finden die Adresse des Gateways in der Dokumentation Thres Routers/

15.1 Ein Ethernet-Shield einrichten | 497

Gateways. Fiigen Sie zwei Zeilen hinter den IP- und Server-Adressen im Sketch ein. Eine
mit der Adresse Thres DNS-Servers, und die andere mit der Gateway-Adresse:
// falls von Router oder Gateway verlangt

byte dns_server[] ={ 192, 168, 1, 2 }; // Adresse des DNS-Servers
byte gateway[] = { 192, 168, 1, 254 }; // Adresse des Gateways

Passen Sie die erste Zeile in setup so an, dass die Gateway-Adresse in der Ethernet-Ini-
tialisierung enthalten ist:

Ethernet.begin(mac, ip, dns_server, gateway);

Die Server-Adresse besteht auf der 4-Byte-IP-Adresse des Servers, mit dem Sie die
Verbindung herstellen wollen — in diesem Fall also Google. Server-IP-Adressen dndern
sich gelegentlich, d.h., Sie miissen eventuell das ping-Utility Thres Betriebssystems nutzen,
um die aktuelle IP-Adresse des gewiinschten Servers zu ermitteln:

byte server[] ={ 64, 233, 187, 99 }; // Google

Die Zeile zu Beginn des Sketches, die <SPI.h> einbindet, wird seit Arduino-
Release 0019 verlangt.

Siehe auch

Die Web-Referenz zum Arduino Ethernet-Shield finden Sie unter http://arduino.cc/en/
Guide/ArduinoEthernetShield.

15.2 Die IP-Adresse automatisch beziehen

Problem

Die vom Ethernet-Shield verwendete IP-Adresse muss innerhalb Thres Netzwerks ein-
deutig sein und Sie wollen sie automatisch beziehen. Das Ethernet-Shield soll die IP-
Adresse von einem DHCP-Server abrufen.

Losung

Dieses Rezept dhnelt dem Sketch aus Rezept 15.1, iibergibt aber keine IP-Adresse an die
Ethernet.begin-Methode:

/*

* Einfacher Client zur Ausgabe der vom DHCP-Server zugewiesenen IP-Adresse

* Arduino-1.0-Version
*/

498 | Kapitel 15: Ethernet und Netzwerke

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = { OxDE, OxAD, OXBE, OXEF, OXFE, OXED };
byte server[] ={ 209,85,229,104 }; // Google

EthernetClient client;
void setup()

Serial.begin(9600);

if(Ethernet.begin(mac) == 0) { // Ethernet mit mac & DHCP starten
Serial.println("Ethernet-Konfiguration ueber DHCP fehlgeschlagen");
while(true) //Weitermachen zwecklos, in Endlosschleife warten

>

}

delay(1000); // Ethernet-Shield eine Sekunde zur Initialisierung geben

Serial.print("IP-Adresse: ");

IPAddress myIPAddress = Ethernet.localIP();

Serial.print(myIPAddress);

if(client.connect(server, 80)>0) {
Serial.printIn(" verbunden");
client.println("GET /search?q=arduino HTTP/1.0");
client.println();

}else {
Serial.println("Verbindung fehlgeschlagen");

}

}

void loop()
{

if (client.available()) {
char c = client.read();

// Kommentarzeichen der nachfolgenden Zeile entfernen, umalle empfangenen Zeichen auszugeben
// Serial.print(c);

}

if (!client.connected()) {
Serial.println();
Serial.println("Trenne Verbindung");
client.stop();
for(;;)

}
}

Diskussion

Die mit Arduino 1.0 mitgelieferte Bibliothek unterstiitzt nun DHCP (frithere Releases
benotigten die Bibliothek eines Drittanbieters von http://blog.jordanterrell.com/post/
Arduino-DHCP-Library-Version-04.aspx.

Der Hauptunterschied zum Sketch in Rezept 15.1 besteht darin, dass es keine Variable fiir
die TP-Adresse (oder das Gateway) gibt. Diese Werte werden vom DHCP-Server abge-

15.2 Die IP-Adresse automatisch beziehen | 499

rufen, wenn der Sketch startet. Zusitzlich wird tiberpriift, ob der Aufruf von ethernet.
begin erfolgreich war. Nur so kénnen Sie sicherstellen, dass eine giiltige IP-Adresse vom
DHCP-Server bereitgestellt wurde (ohne eine giiltige IP-Adresse ist kein Zugang zum
Internet moglich).

Der Code gibt die IP-Adresse im seriellen Monitor {iber die Methode IPAddress.printTo
aus, die bei Arduino 1.0 eingefiihrt wurde:
Serial.print("IP-Adresse: ");

IPAddress myIPAddress = Ethernet.locallIP();
Serial.print(myIPAddress);

W N

o Das an Serial.print tibergebene Argument mag etwas seltsam wirken,
“‘:\ doch die neue IPAddress-Klasse ist in der Lage, ihren Wert an Serial zu
o iibergeben, die von der Print-Klasse abgeleitet sind.

Wenn Sie mit der Ableitung von Klassen nicht vertraut sind, reicht es, zu
sagen, dass das IPAddress-Objekt clever genug ist, bei Bedarf seine Adresse
auszugeben.

15.3 Hostnamen in IP-Adressen umwandeln (DNS)

Problem

Sie wollen einen Servernamen wie yahoo.com anstelle einer festen IP-Adresse verwenden.
Web-Dienste nutzen hiufig mehrere IP-Adressen fiir ihre Server und die von Thnen
angegebene Adresse muss nicht aktiv sein, wenn Sie die Verbindung herstellen wollen.

Losung

Sie konnen DNS nutzen, um eine giltige IP-Adresse fiir den von Thnen angegebenen
Namen zu ermitteln:

/*

* Web Client DNS Sketch

* Arduino 1.0-Version
*/

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = {OXDE, OXAD, OXBE, OXEF, OXFE, OXED };
char serverName[] = "www.google.com";

EthernetClient client;
void setup()
{

Serial.begin(9600);

if (Ethernet.begin(mac) ==0) { // Ethernet starten
Serial.printIn("Ethernet-Konfiguration ueber DHCP fehlgeschlagen");

500 | Kapitel 15: Ethernet und Netzwerke

while(true) //Weitermachen zwecklos, in Endlosschleife warten

>

}

delay(1000); // Ethernet-Shield eine Sekunde zur Initialisierung geben

int ret = client. connect (serverName, 80);

if (ret==1) {
Serial.println("Verbunden"); // Erfolgreiche Verbindung melden
// Make an HTTP request:
client.println("GET /search?q=arduino HTTP/1.0");
client.println();

}
else{
Serial.println("Verbindung fehlgeschlagen: ");
Serial.print(ret,DEC);
}
}

void loop()

// Eingehende Bytes vom Server einlesen und ausgeben
if (client.available()) {

char c = client.read();

Serial.print(c);

// Client nach Trennung anhalten

if (!client.connected()) {
Serial.println();
Serial.println("Trenne Verbindung");
client.stop();

while(true) ; // Endlosschleife

}
}

Diskussion

Der Code entspricht dem aus Rezept 15.2, d.h., er fiihrt eine Google-Suche nach
»arduino« aus. Doch bei dieser Version ist es nicht nétig, eine Google-IP-Adresse
anzugeben — sie wird {iber eine Anfrage an den Internet DNS-Dienst ermittelt.

Der Request wird angestofien, indem wir »www.google.com« anstelle einer IP-Adresse an
die client.connect-Methode tibergeben:

char serverName[] = "www.google.com";

int ret = client.connect(serverName, 80);
if(ret==1){
Serial.println("Verbunden"); // Erfolgreiche Verbindung melden
Die Funktion gibt 1 zuriick, wenn der Hostname vom DNS-Server erfolgreich in eine
[P-Adresse aufgelost werden konnte und wenn die Verbindung vom Client erfolgreich
war. Hier die Werte, die von client.connect zuriickgegeben werden:

15.3 Hostnamen in IP-Adressen umwandeln (DNS) | 501

1=Erfolg

0 = Verbindung fehlgeschlagen
-1 = kein DNS-Server angegeben
-2 = keine DNS-Eintrdge gefunden
-3 = Timeout

Beim Fehlercode —1 miissen Sie den zu nutzenden DNS-Server von Hand festlegen. Die
Adresse des DNS-Servers liefert tiblicherweise der DHCP-Server, doch wenn Sie das

Shield von Hand konfigurieren, miissen Sie ihn angeben (anderenfalls gibt connect —1
zuriick).

15.4 Daten von einem Webserver abrufen

Problem

Sie wollen mit dem Arduino Daten von einem Webserver abrufen. Zum Beispiel kénnten
Sie von einem Webserver gelieferte Werte extrahieren und verarbeiten wollen.

Losung

Der folgende Sketch nutzt die Yahoo!-Suche, um 50 Kilometer in Meilen umzuwandeln.
Er sendet die Anfrage (Query) »50+km+in+mi« und gibt das Ergebnis {iber den seriellen
Monitor aus. Der Sketch funktioniert in dieser Form erst ab Arduino 1.0.1 IDE.
/*
Simple Client Parsing Sketch
Arduino 1.0-Version
*/
#include <SPI.h>
#include <Ethernet.h>

bytemac[] = { OXDE, 0xAD, OxBE, OXEF, OXFE, OXED };
char serverName[] = "search.yahoo.com";

EthernetClient client;

int result; // Das Ergebnis der Berechnung
void setup()

{

Serial.begin(9600);

if(Ethernet.begin(mac) ==0) { // Ethernet starten
Serial.println("Ethernet-Konfiguration ueber DHCP fehlgeschlagen");
while(true) //Weitermachen zwecklos, in Endlosschleife warten

>

}

delay(1000); // Ethernet-Shield eine Sekunde zur Initialisierung geben

Serial.println("Verbinde...");

}

void loop()

502 | Kapitel 15: Ethernet und Netzwerke

{

if (client.connect(serverName, 80)>0) {
Serial.print("Verbunden...");
client.println("GET /search?p=50+km+in+mi HTTP/1.0");
client.println();

}else {
Serial.println("Verbindung fehlgeschlagen");

}
if (client.connected()) {

if(client.find("50 Kilometers")){
if(client.find("=")){
result = client.parselnt();
Serial.print("s0kmsind ");
Serial.print(result);
Serial.println(" Meilen");

}
}

else

Serial.println("Ergebnis nicht gefunden");
client.stop();
delay(10000); // In 10 Sekunden erneut abfragen

else{
Serial.println();
Serial.println("Nicht verbunden");
client.stop();
delay(1000);

Diskussion

Der Sketch erwartet, dass das Ergebnis mit Fettdruck eingeleitet wird (mit Hilfe des
HTML-Tags -Tags). Dann folgen der in der Query angegebene Wert und das Wort
Kilometers.

Die Suche erfolgt tiber die Stream-Parsing-Funktionen, die in der Einfihrung zu diesem
Kapitel beschrieben wurden. Die find-Methode durchsucht die empfangenen Daten und
gibt true zuriick, wenn der gesuchte String gefunden wurde. Der Code sucht nach Text,
der mit der Antwort verkniipft ist. Im Beispiel wird in der folgenden Zeile versucht, den
Text »50 Kilometers« zu finden:

if (client.find("50 Kilometers")){

client.find wird erneut genutzt, um das Gleichheitszeichen zu finden, das vor dem
numerischen Ergebnis steht.

Das Ergebnis wird mit der Methode parseInt herausgefiltert und tiber den seriellen Mo-
nitor ausgegeben.

15.4 Daten von einem Webserver abrufen | 503

parselnt liefert einen Integerwert zuriick. Wenn Sie einen FlieRkomma-Wert einlesen
miissen, verwenden Sie stattdessen parsefloat:

float floatResult = client.parseInt();
Serial.println(floatResult);

Wenn Sie eine robuste Suche brauchen, miissen Sie nach einem eindeutigen Tag Aus-
schau halten, der nur vor den gewiinschten Daten auftaucht. Das ist bei Seiten mit
eindeutigen Tags fur jedes Feld einfacher zu erreichen. Das folgende Beispiel gibt den
Google-Aktienkurs von Google Finance zuriick und schreibt den Wert an den Analog-
ausgang 3 (siehe Kapitel 7) und an den seriellen Monitor:

/*

*Web Client Google Finance Sketch

* Google-Aktienkurs abrufen und an Analogpin 3 schreiben.
*/

#include <SPI.h> // Fir Arduino-Versionen ab 0018 Pflicht
#include <Ethernet.h>

bytemac[] = { OxDE, 0xAD, OxBE, OXEF, OXFE, OXED };
char serverName[] = "www.google.com";

EthernetClient client;
float value;

void setup()

Serial.begin(9600);

if(Ethernet.begin(mac) == 0) { // Ethernet starten
Serial.println("Ethernet-Konfiguration iber DHCP fehlgeschlagen");
while(true) //Weitermachen zwecklos, in Endlosschleife warten

bl

}

delay(1000); // Ethernet-Shield eine Sekunde zur Initialisierung geben

void loop()

Serial.print("Verbinde...");

if (client.connect(serverName, 80)>0) {
client.println("GET //finance?q=google HTTP/1.0");
client.println("User-Agent: Arduino 1.0");
client.println();

else

{
Serial.println("Verbindung fehlgeschlagen");

if (client.connected()) {
if(client.find(""))

client.find(">"); // Nichstes '>' suchen
value = client.parseFloat();
Serial.print("Google-Kurs steht bei ");
Serial.println(value); // Wert ausgeben

504 | Kapitel 15: Ethernet und Netzwerke

}

else
Serial.print("Konnte Feld nicht finden");

else{
Serial.println("Verbindung getrennt");

}
client.stop();

client.flush();
delay(5000); // 5 Sekunden warten

Diese Beispiele verwenden den GET-Befehl, um eine bestimmte Seite abzurufen. Manche
Web-Requests miissen Daten im »Rumpf« (Body) der Nachricht an den Server senden,
weil mehr Daten iibertragen werden, als der GET-Befehl verarbeiten kann. Diese Requests
werden tiber den POST-Befehl verarbeitet. Hier ein Beispiel fiir den POST-Befehl, der den
Babel-Fish-Ubersetzungsdienst nutzt, um Text vom Italienischen ins Englische zu tiber-
setzen:

/*

*Web Client Babel Fish Sketch

*Nutzt Post, umDaten von einem Webserver abzurufen
*/

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = { OxDE, OxAD, OXBE, OXEF, OXFE, OXED };
char serverName[] = "babelfish.yahoo.com";

EthernetClient client;

// zu libersetzender Text
char * transText = "trtext=Ciao+mondo+da+Arduino.&lp=it en";

const int MY BUFFER SIZE =30; // Grol genug fiir Exrgebnis
char buffer [MY_BUFFER_SIZE+1]; // AbschlieRende Null beriicksichtigen

void setup()

Serial.begin(9600);

if(Ethernet.begin(mac) ==0) { // Ethernet starten
Serial.println("Ethernet-Konfiguration ueber DHCP fehlgeschlagen");
while(true) //Weitermachen zwecklos, in Endlosschleife warten

)

}

delay(1000); // Ethernet-Shield eine Sekunde zur Initialisierung geben

}

void loop()

{
Serial.print("Verbinde...");

postPage("/translate txt", transText);
delay(5000);

15.4 Daten von einem Webserver abrufen | 505

void postPage(char *webPage, char *parameter){

if (client.connect(serverName,80)>0) {
client.print("POST");
client.print(webPage);
client.println(" HTTP/1.0");
client.println("Content-Type: application/x-www-form-urlencoded");
client.println("Host: babelfish.yahoo.com");
client.print("Content-Length: ");
client.println(strlen(parameter));
client.println();
client.println(parameter);

}

else {
Serial.println(" Verbindung fehlgeschlagen");

}

if (client.connected()) {
client.find("<div id=\"result\">");
client.find(">");
memset (buffer,0, sizeof(buffer)); // clear the buffer
client.readBytesUntil('<" ,buffer, MY BUFFER_SIZE);
Serial.println(buffer);

}

else {
Serial.println("Verbindung getrennt");

}

client.stop();

client.flush();

POST muss die Linge des Inhalts senden, damit der Server weif, wie viele
Daten er zu erwarten hat. Das Fehlen der Linge oder ein falscher Wert sind

hiufig die Ursachen fiir Probleme mit POST. In Rezept 15.12 finden Sie ein
weiteres Beispiel fiir einen POST-Request.

Sites wie Google Weather und Google Finance dndern die zur Identifizierung von Feldern
genutzten Tags tiblicherweise nicht. Doch wenn sich bei der Aktualisierung einer Site die
Tags dndern, nach denen Sie suchen, funktioniert der Sketch nicht mehr, bis Sie den
Such-Code korrigieren. Eine zuverldssigere Moglichkeit, Daten von einem Webserver zu
extrahieren, bietet die Verwendung eines formalen Protokolls wie XML oder JSON. Das
nichste Rezept zeigt, wie man Informationen von einer Site extrahiert, die mit XML
arbeitet.

15.5 XML-Daten von einem Webserver abrufen

Problem

Sie m6chten Daten von einer Site abrufen, die Informationen im XML-Format veroffent-
licht. Beispielsweise konnten Sie Werte bestimmter Felder aus einem der Google API-
Dienste nutzen wollen.

506 | Kapitel 15: Ethernet und Netzwerke

Losung

Der folgende Sketch ruft das Wetter in London itber Google Weather ab. Er verwendet die
Google XML-APL:

/*

* Simple Client Google Weather

* Ruft XML-Daten von http://www.google.com/ig/api?weather=london,uk
* Liest die Temperatur aus dem Feld <temp f data="66" />

* Schreibt die Temperatur an Analogausgang
*/

#include <SPI.h> // Fur Arduino-Versionen ab 0018 Pflicht
#include <Ethernet.h>

byte mac[] = { OxDE, OxAD, OXBE, OXEF, OXFE, OXED };
char serverName[] = "www.google.com";

const int temperatureOutPin = 3; // Analogausgang fiir Temperatur
const int humidityOutPin =5; // Analogausgang fir Luftfeuchtigkeit

EthernetClient client;
void setup()

Serial.begin(9600);

if(Ethernet.begin(mac) == 0) { // Ethernet starten
Serial.println("Ethernet-Konfiguration tiber DHCP fehlgeschlagen");
while(true) //Weitermachen zwecklos, in Endlosschleife warten

>

}

delay(1000); // Ethernet-Shield eine Sekunde zur Initialisierung geben

Serial.println("Verbinde...");

void loop()
{

if (client.connect(serverName,80)>0) {

// Google-Wetter fiir London abfragen
client.printIn("GET /ig/api?weather=london HTTP/1.0");
client.println();

else {
Serial.println(" Verbindung fehlgeschlagen");

if (client.connected()) {
// Temperatur in Fahrenheit ("<temp_c data=" fir Celsius)
if(client.find("<temp_f data="))

int temperature = client.parseInt();

analoghrite(temperatureQutPin, temperature); // Wert an Analogport schreiben
Serial.print("Temperatur: "); // und lber seriellen Port ausgeben
Serial.println(temperature);

}

else

15.5 XML-Daten von einem Webserver abrufen | 507

Serial.print("Konnte Temperatur-Feld nicht finden");
##! // Temperatur in Fahrenheit ("<temp _c data=" fiir Celsius) !##
if(client.find("<humidity data="))

{
int humidity = client.parseInt();

analoghrite(humidityOutPin, humidity); // Wert an Analogport schreiben
Serial.print("Luftfeuchtigkeit: "); // und uber seriellen Port ausgeben
Serial.println(humidity);

else
Serial.print("Konnte Luftfeuchtigkeits-Feld nicht finden");

else {
Serial.println("Verbindung getrennt");

client.stop();
client.flush();
delay(60000); // Eine Minute bis zum ndchsten Update warten

Vor jedem Feld steht ein Tag. Derjenige, der bei Google Weather die Temperatur in
Fahrenheit enthiilt, ist "<temp_f data=".

Wenn Sie die Temperatur in Grad Celsius brauchen, suchen Sie bei dieser Site nach dem
Tag "<temp cdata=".

Sie miissen sich die Dokumentation der Sie interessierenden Seite ansehen, um die Tags
fir die gewlinschten Daten zu ermitteln.

Sie wihlen die Seite iiber die Informationen aus, die in Threm GET-Befehl gesendet werden.
Das ist auch von der jeweiligen Site abhingig, d.h., im obigen Beispiel wird die Stadt in der
GET-Anweisung durch den Text hinter dem Gleichheitszeichen festgelegt. Wenn Sie also
die Stadt von London in Rom dndern wollen, indern Sie

client.println("GET /ig/api?weather=london HTTP/1.0"); // Wetter fiir London
in:
client.println("GET /ig/api?weather=Rome HTTP/1.0"); // Wetter fiir Rom

Sie kénnen eine Variable nutzen, wenn die Stadt vom Programm aus kontrolliert werden
soll:

char *cityString[4] = { "London", "New%20York", "Rome", "Tokyo"};
int city;

void loop()

city = random(4); // Stadt zuféllig auswédhlen

if (client.connect(serverName,80)>0) {
Serial.print("Wetter fuer ");
Serial.println(cityString[city]);

client.print("GET /ig/api?weather=");
client.print(cityString[city]); // Eine von 4 zuf&lligen St&dten ausgeben
client.println(" HTTP/1.0");

508 | Kapitel 15: Ethernet und Netzwerke

client.println();

else {
Serial.println(" Verbindung fehlgeschlagen");
}
if (client.connected()) {
// Temperatur in Fahrenheit ("<temp_c data=\
if(client.find("<temp_f data="))
{
int temperature = client.parseInt();
analoghrite(temperatureQutPin, temperature); // Wert an Analogausgang schreiben
Serial.print(cityString[city]);
Serial.print(" Temperatur: "); //und lber seriellen Port ausgeben
Serial.println(temperature);
}
else
Serial.println("Konnte Temperatur-Feld nicht finden");
// Temperatur in Fahrenheit ("<temp_c data=\"" fir Celsius)
if(client.find("<humidity data="))

flr Celsius)

int humidity = client.parseInt();

analoghrite(humidityOutPin, humidity); // Wert anAnalogausgang schreiben
Serial.print("Luftfeuchtigkeit: "); //und Uber seriellen Port ausgeben
Serial.println(humidity);

else
Serial.println("Konnte Luftfeuchtigkeits-Feld nicht finden");

}
else{
Serial.println("Verbindung getrennt");

client.stop();

client.flush();
delay(60000); // Eine Minute bis zum ndchsten Update warten

// Der restliche Code entspricht dem des obigen Sketchs

N

o In URLs gesendete Informationen diirfen keine Leerzeichen enthalten,
l‘s‘.‘ weshalb New York als »New%20York« geschrieben werden muss. Die
N Kodierung fiir das Leerzeichen ist %20. Thr Browser tibernimmt die

Kodierung vor dem Senden des Requests, doch beim Arduino miissen Sie
das Leerzeichen selbst durch %20 ersetzen.

15.6 Den Arduino als Webserver einrichten

Problem

Thr Arduino soll Webseiten ausliefern. Zum Beispiel konnten Sie sich mit Threm Web-
Browser die Werte der Sensoren ansehen wollen, die mit den Arduino-Analogpins ver-
bunden sind.

15.6 Den Arduino als Webserver einrichten | 509

Losung

Dieser Sketch wird mit dem Arduino als Standard-Beispiel fiir einen Webserver mitgelie-
fert. Er zeigt die Werte der analogen Eingangspins an. Dieses Rezept erlautert, wie der
Sketch funktioniert und wie man ihn erweitern kann:

/*

*Web Server

* Einfacher Webserver, der die Werte der analogen Eingangspins ausgibt.
*/

#include <SPI.h>
#include <Ethernet.h>

bytemac[] = { OxDE, 0xAD, OxBE, OXEF, OXFE, OXED };
byte ip[]=1{192, 168, 1, 177}; // IP-Adresse des Webservers

EthernetServer server(80);
void setup()

Ethernet.begin(mac, ip);
server.begin();

void loop()
{
EthernetClient client = server.available();
if (client) {
// Ein HTTP-Request endet mit einer Leerzeile
boolean current line is blank = true;
while (client.connected()) {
if (client.available()) {
char c = client.read();
// Haben wir das Zeilenende erreicht (ein Newline
// Zeichen empfangen) und ist die Zeile leer, dann ist der HTTP-Request beendet
// und wir kénnen eine Antwort senden
if (c=="\n" &8 current line is blank) {
// Standard HTTP-Response-Header senden
client.println("HTTP/1.1200 0K");
client.println("Content-Type: text/html");
client.println();

// Werte aller analogen Eingangspins ausgeben
for (inti=0; 1<6; i++) {
client.print("Analogeingang ");
client.print(i);
client.print(" ist");
client.print(analogRead(i));
client.printIn("
");

break;
}
if (c=="\n"){

// Wir beginnen eine neue Zeile
current line is blank = true;

510

| Kapitel 15: Ethernet und Netzwerke

Yelseif (c!="\r"){
// Es gibt Zeichen in der aktuellen Zeile
current_line_is_blank = false;

}
}

// Dem Web-Browser Zeit geben, die Daten zu empfangen
delay(1);
client.stop();

Diskussion

Wie in Rezept 15.1 diskutiert, benotigen alle Sketches, die die Ethernet-Bibliothek nutzen,
eine eindeutige MAC- und IP-Adresse. Die in diesem Sketch zugewiesene IP-Adresse
bestimmt die Adresse des Webservers. In diesem Beispiel liefert die Eingabe von
192.168.1.177 im Adressfeld des Browsers eine Seite zuriick, die die Werte der analogen
Eingangspins 0 bis 5 enthilt (in Kapitel 5 erfahren Sie mehr tiber Analogports).

Wie in der Einfuthrung dieses Kapitel erldutert, ist 192.168.1.177 eine lokale Adresse, die
nur innerhalb Thres lokalen Netzwerks sichtbar ist. Soll der Webserver im Internet
verfiigbar sein, miissen Sie Thren Router so konfigurieren, dass er eingehende Nachrichten
an den Arduino weitergibt. Diese Technik wird Port-Weiterleitung (port forwarding)
genannt und Sie miissen in der Dokumentation Thres Routers nachsehen, wie man sie
konfiguriert. Mehr zur Port-Weiterleitung im Allgemeinen erfahren Sie in SSH, The Secure
Shell: The Definitive Guide von Daniel J. Barrett, Richard E. Silverman und Robert G.
Byrnes. Suchen Sie bei www.oreilly.de danach.)

Wenn Sie das Arduino Ethernet-Board so konfigurieren, dass es im
h Internet sichtbar ist, ist es fiir jeden zuginglich, der diese spezielle IP-
Adresse hat. Die Arduino Ethernet-Bibliothek bietet keine sicheren Ver-

bindungen an, d.h., Sie miissen darauf achten, welche Informationen Sie
bereitstellen.

Die beiden Zeilen in setup initialisieren die Ethernet-Bibliothek und konfigurieren den
Webserver mit der von Thnen festgelegten IP-Adresse. Der loop wartet und verarbeitet alle
Requests, die am Webserver eingehen:

EthernetClient client = server.available();

Das client-Objekt ist der Webserver — es verarbeitet die Nachrichten fiir die IP-Adresse,
die Sie dem Server zugewiesen haben.

if (client) iiberpritft, ob der Client erfolgreich gestartet wurde.

while (client.connected()) iiberpriift, ob der Webserver mit einem Client verbunden ist,
der Daten anfordert.

client.available() und client.read() priifen, ob Daten verfiigbar sind und lesen ein Byte
ein, wenn dass der Fall ist. Das entspricht Serial.available(), das in Kapitel 4 diskutiert

15.6 Den Arduino als Webserver einrichten | 511

wurde, nur dass die Daten tiber das Internet kommen und nicht tiber den seriellen Port.
Der Code liest die Daten ein, bis er eine Zeile ohne Daten findet, was das Ende eines
Requests anzeigt. Ein HTTP-Header wird mit client.println ausgegeben, gefolgt von den
Werten der Analog-Ports.

15.7 Eingehende Web-Requests verarbeiten

Problem

Sie wollen digitale und analoge Ausginge mit einem Arduino steuern, der als Webserver
fungiert. Zum Beispiel wollen Sie die Werte bestimmter Pins steuern, indem Sie ent-
sprechende Parameter von Threm Web-Browser senden.

Losung

Dieser Sketch liest von einem Browser gesendete Requests ein und dndert die Werte
digitaler und analoger Ausgangs-Ports.

Der URL (der vom Browser-Request empfangene Text) besteht aus einem oder mehreren
Feldern, die mit dem Wort pin beginnen, gefolgt von einem D fiir digital oder A fiir analog
und der Pin-Nummer. Der Wert des Pins folgt auf ein Gleichheitszeichen.

Senden Sie zum Beispiel http://192.168.1.177/?pinD2=1 iber die Adresse Thres Web-
Browsers, wird der Digitalpin 2 eingeschaltet. Mit http://192.168.1.177/?pinD2=0 wird er
wieder ausgeschaltet. (In Kapitel 7 finden Sie Informationen zum Anschluss von LEDs an
Arduino-Pins.)

Abbildung 15-1 zeigt die Ausgabe des Web-Browsers, wenn Sie die Verbindung mit dem
hier entwickelten Webserver-Rezept herstellen.

Mozilla Firefox

c] (29~ GooQ) @ l

1 Digital-Pin(s) gesetzt
0 Analog-Pin(s) gesetzt

Analogeingang 0 ist 286
Analogeingang 1 ist 266

Analogeingang 2 ist 269
Analogeingang 3 ist 279
Analogeingang 4 ist 284
Analogeingang 5 ist 308

Abbildung 15-1: Browser-Ausgabe der in diesem Rezept entwickelten Losung

512 | Kapitel 15: Ethernet und Netzwerke

/*

* WebServerParsing

* Reagiert auf Requests in der URL zur Anderung digitaler und analoger Ausginge
* Gibt die Anzahl gednderter Ports und die Werte der analogen Eingdnge aus

* Beispiel:

* http://192.168.1.177/?pinD2=1 schaltet Digitalpin 2 an

* http://192.168.1.177/?pinD2=0 schaltet Pin 2 aus

* Der Sketch demonstriert das Text-Parsing der 1.0 Stream-Klasse

*/

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = { OxDE, OXAD, OXBE, OXEF, OXFE, OXED };
byteip[]=1{192,168,1,177 };

EthernetServer server(80);
void setup()

Serial.begin(9600);
Ethernet.begin(mac, ip);
server.begin();
Serial.println("Bereit");

void loop()
{

EthernetClient client = server.available();
if (client) {
while (client.connected()) {
if (client.available()) {
// Zéhler fir gednderte Pins
int digitalRequests = 0;
int analogRequests = 0;
if(client.find("GET /")) { // Nach 'GET" suchen
// Mit "pin" beginnende Tokens suchen und bei der ersten Leerzeile aufhdren
// Bis zum Zeilenende nach 'pin' suchen
while(client.findUntil("pin", "\n\r")){
char type = client.read(); // D oder A
// Der ndchste ASCII-Integerwert im Stream ist der Pin
int pin = client.parseInt();
int val = client.parseInt(); // Die folgende Zahl ist der Wert
1 (type == 'D") {
Serial.print("Digitalpin");
pinMode(pin, OUTPUT);
digitalWrite(pin, val);
digitalRequests++;

else if(type=="A"){
Serial.print("Analog-Pin");
analogWrite(pin, val);
analogRequests++;

else {
Serial.print("Unbekannter Typ ");
Serial.print(type);

15.7 Eingehende Web-Requests verarbeiten

513

}

Serial.print(pin);

Serial.print("=");

Serial.println(val);
}

}
Serial.println();

// finduntil hat Leerzeile entdeckt(1f gefolgt von cr),

// d.h., der HTTP-Request ist abgeschlossen und wir kénnen eine Antwort senden
// Standard HTTP-Response-Header senden

client.println("HTTP/1.1 200 0K");

client.println("Content-Type: text/html");

client.println();

// Anzahl der vom Request verarbeiteten Pins ausgeben
client.print(digitalRequests);

client.print(" Digitalpin(s) gesetzt");
client.println("
");
client.print(analogRequests);

client.print(" Analog-Pin(s) gesetzt");
client.println("
");

client.println("
");

// Werte aller analogen Eingangspins ausgeben

for (inti=0;1<6; i++) {
client.print("Analogeingang ");
client.print(i);
client.print(" ist");
client.print(analogRead(i));
client.println("
");

}

break;
}
}

// Web-Browser Zeit geben, die Daten zu empfangen
delay(1);
client.stop();

Diskussion

Folgendes wurde gesendet: http://192.168.1.177/?pinD2=1. Die Information wird dann
wie folgt heruntergebrochen: Alles vor dem Fragezeichen wird als Adresse des Webservers
betrachtet (in diesem Beispiel 192.168.1.177; diese Adresse ist die IP-Adresse, die Sie zu
Beginn des Sketches fiir das Arduino-Board festgelegt haben). Die restlichen Daten
bestehen aus einer Liste von Feldern, die mit dem Wort pin beginnen, gefolgt von einem
D fiir einen Digitalpin und einem A fiir einen Analogpin. Der numerische Wert, der auf
das D oder A folgt, ist die Pin-Nummer. Darauf folgt ein Gleichheitszeichen und schlief3-
lich der Wert, auf den der Pin gesetzt werden soll. pinD2=1 setzt also den Digitalpin 2 auf
HIGH. Es gibt fiir jeden Pin ein Feld und die einzelnen Felder sind durch &-Zeichen

514 | Kapitel 15: Ethernet und Netzwerke

(Ampersand) voneinander getrennt. Sie geben so viele Felder an, wie Arduino-Pins ge-
dndert werden sollen.

15.8 Das Anfordern bestimmter Seiten verarbeiten

Problem

Sie wollen auf Threm Webserver mehr als eine Seite anbieten, z.B. um den Status ver-
schiedener Sensoren auf unterschiedlichen Seiten darzustellen.

Losung

Der folgende Sketch untersucht Requests fiir Seiten namens »analog« und »digital« und
gibt die entsprechenden Pin-Werte aus:

/*

* WebServerMultiPage

* Verarbeitet Requests zur Darstellung digitaler und analoger Ausgangs-Ports
*http://192.168.1.177/analog/ Gibt analoge Pindaten aus
*http://192.168.1.177/digital/ Gibt digitale Pindaten aus

*/

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = { OxDE, OxAD, OXBE, OXEF, OXFE, OXED };
byte ip[] = { 192,168,1,177 };

const int MAX_PAGE_NAME_LEN = 8; //Max. Zeichen im Seitenamen
char buffer[MAX_PAGE_NAME_LEN+1]; // Seitenname + abschliefende Null

EthernetServer server(80);
EthernetClient client;

void setup()
Serial.begin(9600);
Ethernet.begin(mac, ip);
server.begin();

Serial.println("Bereit");

}
void loop()
{

client = server.available();

15.8 Das Anfordern bestimmter Seiten verarbeiten | 515

if (client) {
while (client.connected()) {
if (client.available()) {
if(client.find("GET ")) {
// Seitennamen suchen
memset (buffer,0, sizeof(buffer)); // Puffer 1léschen
if(client.find("/"))
if(client.readBytesUntil('/", buffer, MAX PAGE NAME LEN))

if(strcmp(buffer, "analog") ==0)
showAnalog();

else if(stremp(buffer, "digital") ==0)
showDigital();

else
unknownPage (buffer);

}

}
Serial.println();

break;
}
}

// Web-Browser Zeit geben, die Seite zu empfangen
delay(1);
client.stop();

}

void showAnalog()

{

Serial.println("analog");

sendHeader();

client.println("<h1>Analoge Pins</h1>");

// Werte aller analogen Eingangspins ausgeben

for (inti=0; i<6; i++) {
client.print("Analog-Pin");
client.print(i);
client.print("=");
client.print(analogRead(i));
client.println("
");

}

void showDigital()

{

Serial.println("digital");

sendHeader();

client.println("<h1>Digitale Pins</h1>");

// Werte der Digitalpins ausgeben

for (inti=2; i<8; i++){
pinMode(i, INPUT);
client.print("Digitalpin");
client.print(i);
client.print(" ist");
if(digitalRead(i) == LOW)
client.print("LOW");
else

516 | Kapitel 15: Ethernet und Netzwerke

client.print("HIGH");
client.printIn("
");

client.println("</body></html>");
}

void unknownPage(char *page)

sendHeader();
client.println("<hi>Unbekannte Seite</h1>");
client.print(page);
client.println("
");
client.println("Bekannte Seiten sind:
");
client.println("/analog/
");
client.println("/digital/
");
client.println("</body></html>");

}

void sendHeader ()

// Standard HTTP-Response-Header senden

client.println("HTTP/1.1 200 OK");

client.println("Content-Type: text/html");

client.println();

client.println("<html><head><title>Webserver Multipage-Beispiel</title>");
client.println("<body>");

Diskussion

Sie kénnen das mit Threm Web-Browser ausprobieren, indem Sie http://192.168.1.177/
analog/ oder http://192.168.1.177/digital/ eingeben (wenn Sie eine andere IP-Adresse fiir
Thren Webserver verwenden, miissen Sie den URL entsprechend anpassen).

Abbildung 15-2 zeigt die erwartete Ausgabe.

15.8 Das Anfordern bestimmter Seiten verarbeiten | 517

Digitale Pins

Digital-Pin 2 ist HIGH

Digital-Pin 3 ist HIGH
Digital-Pin 4 ist HIGH
Digital-Pin 5 ist LOW
Digital-Pin 6 ist LOW
Digital-Pin 7 ist LOW

Abbildung 15-2: Ausgabe der Digitalpin-Werte im Browser

Der Sketch sucht nach einem »/«-Zeichen, um das Ende des Seitennamen zu bestimmen.
Der Server meldet eine unbekannte Seite, wenn das »/«-Zeichen den Seitennamen nicht

abschliefit.

Sie konnen das ganz einfach um etwas Code aus Rezept 15.7 erweitern, der die Steuerung
der Arduino-Pins {iber eine weitere Seite namens update erlaubt. Hier der neue loop-Code:

void loop()
{
client = server.available();
if (client) {
while (client.connected()) {
if (client.available()) {
if(client.find("GET ")) {
// Seitennamen suchen
memset (buffer,0, sizeof(buffer)); // Puffer 1éschen
if(client.readBytesUntil('/", buffer, MAX_PAGE NAME LEN))

{
if(stremp(buffer, "analog") ==0)
showAnalog();
else if(stremp(buffer, "digital") ==0)
showDigital();
// Zusdtzlicher Code fiir neue update-Seite
else if(strcmp(buffer, "update") ==0)
doUpdate();
else
unknownPage (buffer);
}

}
Serial.println();

518 | Kapitel 15: Ethernet und Netzwerke

break;
}
}

// Web-Browser Zeit geben, die Daten zu empfangen
delay(1);
client.stop();

}
Hier die doUpdate-Funktion:

void doUpdate()
{
Serial.println("update");
sendHeader();
// Mit "pin" beginnende Tokens finden und bei der ersten Leerzeile authdren
while(client.findUntil("pin", "\n\r")){
char type = client.read(); //Dor A
int pin = client.parselnt();
int val = client.parselnt();
if(type=="D") {
Serial.print("Digitalpin");
pinMode(pin, OUTPUT);
digitalwrite(pin, val);

}

else if(type=="A"){
Serial.print("Analog-Pin");
analoghrite(pin, val);

}
else {
Serial.print("Unbekannter Typ ");
Serial.print(type);
}
Serial.print(pin);
Serial.print("=");
Serial.println(val);

}

Wenn Sie http://192.168.1.177 lupdate/?pinA5=128 tiber Thren Web-Browser senden, wird
der Wert 128 an den Analog-Pin 5 geschrieben.

15.9 Antworten des Webservers mit HTML aufbereiten

Problem

Sie wollen HTML-Elemente wie Tabellen und Bilder nutzen, um das Aussehen der vom
Arduino zuriickgelieferten Webseiten zu verbessern. Zum Beispiel wollen Sie die Ausgabe
aus Rezept 15.8 in einer HTML-Tabelle darstellen.

15.9 Antworten des Webservers mit HTML aufbereiten | 519

Losung

Abbildung 15-3 zeigt, wie dieses Rezept die Ausgabe der Pin-Werte aufbereitet (forma-
tiert). (Vergleichen Sie das mit den unformatierten Werten in Abbildung 15-2.)

800 Mozilla Firefox 800 Mozilla Firefox

< i ¢ (- oo) @ (4] " B ¢ 2§~ cooQ) @

Digitale Pins Analoge Pins

Digital-Pin 2 High \Analog-Pin 0 (308
Digital-Pin 3 High \Analog-Pin 1 284
Digital-Pin 4 High |Analog-Pin 2 277
Digital-Pin 5|High [Analog-Pin 3279
Digital-Pin 6 Low |Analog-Pin 4 [280
Digital-Pin 7 [Hi |Analog-Pin 5 (303

Abbildung 15-3: Seiten mit HTML-Formatierung

Der folgende Sketch bietet die gleiche Funktionalitit wie Rezept 15.8 und formatiert die
Ausgabe mit Hilfe von HTML:

/*

* WebServerMultiPageHTML

* Arduino 1.0 version

* Analoge und digitale Pin-Werte mit HTML ausgeben
*/

#include <SPI.h> // Seit Arduino-Version 0018 Pflicht
#include <Ethernet.h>

bytemac[] = { OXDE, 0xAD, OxBE, OXEF, OXFE, OXED };
byte ip[]= {192,168,1,177 };

// Puffer muss groR genug sein, die angeforderten Seitennamen und die abschlieRende Null auf
// zunehmen

const int MAX_PAGE_NAME_LEN = 8+1; //Max. Zeichen im Seitennamen + Null
char buffer[MAX PAGE NAME LEN];

EthernetServer server(80);
EthernetClient client;

void setup()

{
Serial.begin(9600);
Ethernet.begin(mac, ip);
server.begin();
pinMode(13,0UTPUT);

for(int i=0; i < 3; i++)

digitalWrite(13,HICH);

520 | Kapitel 15: Ethernet und Netzwerke

delay(500);
digitalWrite(13,LO0W);
delay(500);

}
void loop()
{

client = server.available();
if (client) {
while (client.connected()) {
if (client.available()) {
if(client.find("GET ")) {
// look for the page name
memset (buffer,0, sizeof(buffer)); // Puffer 1dschen
if(client.find("/"))
if(client.readBytesUntil('/", buffer, MAX_PAGE_NAME_LEN))
{
if(strcasecmp(buffer, "analog") ==0)
showAnalog();
else if(strcasecmp(buffer, "digital") ==0)
showDigital();
else
unknownPage (buffer);
}
}
break;
}
}

// Web-Browser Zeit geben, die Daten zu empfangen
delay(1);
client.stop();
}
}

void showAnalog()

sendHeader ("Multipage: Analog");
client.println("<h2>Analoge Pins</h25");
client.println("<table border="1">");
for (inti=0;1<6; i++) {
// Wert aller analogen Eingangspins ausgeben
client.print("<tr><td>Analogpin ");
client.print(i);
client.print(" </td><td>");
client.print(analogRead(i));
client.println("</td></tr>");

client.println("</table>");
client.println("</body></html>");
}

void showDigital()
sendHeader("Multi-page: Digital");

client.println("<h2>Digitale Pins</h2>");
client.println("<table border="1'>");

15.9 Antworten des Webservers mit HTML aufbereiten | 521

for (inti=2;1<8; i++){
// Wert der Digitalpins ausgeben
pinMode(i, INPUT);
digitalwrite(i, HIGH); // Pullups einschalten
client.print("<tr><td>Digitalpin");
client.print(i);
client.print(" </td><td>");
if(digitalRead(i) == LOW)
client.print("Low");
else
client.print("High");
client.println("</td></tr>");

client.println("</table>");
client.println("</body></html>");
}

void unknownPage(char *page)

sendHeader ("Unbekannte Seite");
client.println("<hi>Unbekannte Seite</h1>");
client.print(page);

client.printIn("
");
client.println("Bekannte Seiten sind:
");
client.println("/analog/
");
client.println("/digital/
");
client.println("</body></html>");

}

void sendHeader (char *title)

—~

// Standard HTTP-Response-Header senden
client.println("HTTP/1.1 200 0K");
client.println("Content-Type: text/html");
client.println();
client.print("<html><head><title>");
client.println(title);
client.printIn("</title><body>");

Diskussion

Die gleichen Informationen liefert auch Rezept 15.8, aber hier werden die Daten in einer
HTML-Tabelle aufbereitet. Der folgende Code weist den Web-Browser an, eine Tabelle
mit einer Rahmenbreite von 1 zu erzeugen:

client.println("<table border="1" >");

Die for-Schleife definiert die Datenzellen der Tabelle mit dem <td>- und die Zeilen mit
dem <tr>-Tag. Der folgende Code platziert den String "Analogpin " in einer Zelle, die in
einer neuen Zeile beginnt:

client.print("<tr><td>Analogpin ");

522 | Kapitel 15: Ethernet und Netzwerke

Dann wird der Wert der Variablen i ausgegeben:
client.print(i);

Die nichste Zeile enthilt die Tags, die die Zelle schlieRen und eine neue Zelle beginnen:
client.print(" </td><td>");

Nun wird der von analogRead zuriickgelieferte Wert in die Zelle geschrieben:
client.print(analogRead(i));

Die Tags, die eine Zelle und eine Zeile abschlieffen, sehen wie folgt aus:

client.println("</td></tr>");

Die for-Schleife wird durchlaufen, bis alle sechs Analogwerte ausgegeben wurden. Jedes
in Rezept 14.3 erwihnte Buch und eine der vielen HTML-Referenz-Sites liefert weitere
Details zu den HTML-Tags.

Siehe auch
Learning Web Design von Jennifer Niederst Robbins (O’Reilly)
Web Design in a Nutshell von Jennifer Niederst Robbins (O’Reilly)

HTML & XHTML: The Definitive Guide von Chuck Musciano und Bill Kennedy
(O’Reilly)

(Suchen Sie nach O’Reilly-Titeln auf www.oreilly.de.)

15.10 Formulare (POST) verarbeiten

Problem

Sie wollen Formular-Webseiten entwickeln, die es dem Benutzer erlauben, eine Aktion
auszuwihlen, die vom Arduino ausgefithrt wird. Abbildung 15-4 zeigt die Webseite, die in
diesem Rezept erzeugt wird.

15.10 Formulare (POST) verarbeiten | 523

Mozilla Firefox

(8- Goosle Deusc) () (B) [

Buttons anklicken, um Pin 8 ein- oder auszuschalten

Abbildung 15-4: Web-Formular mit Buttons

Losung

Der folgende Sketch erzeugt ein Formular mit Buttons. Der Benutzer kann die Buttons in
seinem Browser anklicken und der Arduino-Webserver reagiert darauf. In diesem Beispiel
schaltet der Sketch in Abhingigkeit vom gedriickten Button einen Pin an oder aus:

/*

* WebServerPost Sketch

* Schaltet Pin 8 liber HTML-Formular an oder aus
*/

#include <SPI.h>
#include <Ethernet.h>

bytemac[] = { OXDE, 0xAD, OxBE, OXEF, OXFE, OXED };
byte ip[] = {192,168,1,177 };

const int MAX_PAGENAME_LEN = 8; // Max. Zeichen im Seitennamen
char buffer[MAX PAGENAME LEN+1]; // Zus&tzliches Zeichen fir abschlieRfende Null

EthernetServer server(80);
void setup()

Serial.begin(9600);
Ethernet.begin(mac, ip);
server.begin();
delay(2000);

void loop()
{
EthernetClient client = server.available();
if (client) {
int type = 0;
while (client.connected()) {
if (client.available()) {
// GET, POST, or HEAD

524 | Kapitel 15: Ethernet und Netzwerke

memset (buffer,0, sizeof(buffer)); // Puffer 16schen
if(client.find("/"))
if(client.readBytesUntil('/", buffer,sizeof(buffer))){
Serial.println(buffer);
if(stremp(buffer,"POST ") ==0){
client.find("\n\r"); // Body liberspringen
// Mit "pin" beginnenden String finden, bei der ersten Leerzeile anhalten
// POST-Parameter werden in der Form pinDx=Y erwartet
// x ist dabei die Pin-Nummer und Y ist 0 fiir LOW und 1 fiir HICH
while(client.findUntil("pinD", "\n\r")){
int pin = client.parseInt(); //Die Pin-Nummer
int val = client.parselnt(); // 0oder 1
pinMode(pin, OUTPUT);
digitalWrite(pin, val);
}

sendHeader(client, "Post-Beispiel");

//HTML-Button, umPin 8 auszuschalten

client.println("<h2>Buttons anklicken, umPin 8 ein- oder auszuschalten</h2>");
client.print(

"<formaction="/" method="POST'><p><input type="hidden" name="pinD8'");
client.println(" value="'0"><input type="submit' value="'0ff"/></form>");
//HTML-Button, umPin 8 einzuschalten

client.print(

"<formaction="/" method="POST'><p><input type="hidden' name="'pinD8'");
client.print(" value="1"'><input type="submit"' value="'0n'/></form>");
client.println("</body></html>");

client.stop();

break;

}
¥
// Web-Browser Zeit geben, die Daten zu empfangen
delay(1);
client.stop();
}

void sendHeader (EthernetClient client, char *title)

{
// Standard HTTP-Response-Header senden
client.println("HTTP/1.1 200 0K");
client.println("Content-Type: text/html");
client.println();
client.print("<html><head><title>");
client.print(title);
client.println("</title><body>");

Diskussion

Eine Webseite mit einem Formular besteht aus HTML-Tags, die die Steuerelemente
(Buttons, Checkboxen, Label etc.) festlegen, aus denen die Benutzerschnittstelle auf-
gebaut ist. Dieses Rezept nutzt Buttons zur Interaktion mit dem Benutzer.

15.10 Formulare (POST) verarbeiten | 525

Die folgenden Zeilen erzeugen einen Button namens pinD8 mit dem Text »AUS«, der beim
Anklicken den Wert 0 (Null) sendet:

client.print("<formaction="/" method="POST'><p><input type="hidden' name='pinD8"'");
client.println(" value="'0"><input type="submit' value="AUS'/></form>");

Empfingt der Server einen Request von einem Browser, sucht er nach dem String "P0ST",
um den Anfang des gesendeten Formulars zu erkennen:

if (strcmp(buffer,"POST ") == 0) // Beginn des Formulars erkennen

client.find("\n\1"); // Weiter zum Body

// Mit "pin" beginnenden Parameter finden und Suche bei der erste Leerzeile beenden
// Die POST-Parameter werden in der Form pinDx=Y erwartet

// wobei x die Pin-Nummer ist. Y ist 0 fiir LOW und 1 flir HICH

Wird der AUS-Button gedriickt, enthilt die empfangene Seite den String pinD8=0. Sie

enthilt pinD8=1, wenn der AN-Button gedriickt wird.

Der Sketch durchsucht die empfangenen Daten, bis er den Button-Namen (pinD) findet:
while(client.findUntil("pinD", "\n\1"))

Die Methode finduntil im obigen Code sucht nach »pinD« und beendet seine Suche am
Zeilenende (\n\r ist die Kombination aus Newline und Carriage Return, die der Browser
am Ende des Formulars sendet).

Die auf pinD folgende Zahl ist die Pin-Nummer:

int pin = client.parseInt(); // die Pin-Nummer
Der auf die Pin-Nummer folgende Wert ist 0, wenn der Button AUS bedriickt wurde, bzw.
1, wenn der EIN-Button gedriickt wurde:

intval = client.parseInt(); //Ooder1

Der empfangene Wert wird an den Pin geschrieben, nachdem dieser als Ausgang
geschaltet wurde:

pinMode(pin, OUTPUT);

digitalWrite(pin, val);
Weitere Buttons konnen eingefiigt werden, indem man die entsprechenden Tags fiir
weitere Steuerelemente aufnimmt. Die folgenden Zeilen fiigen einen weiteren Button ein,
der den Digitalpin 9 einschaltet:

//HTML-Button schaltet Pin 9 ein

client.print("<formaction="/" method="POST'><p><input type="hidden" name="pinD9"'");
client.print(" value="1"><input type="submit' value="EIN'/></form>");

526 | Kapitel 15: Ethernet und Netzwerke

15.11 Webseiten mit groBen Datenmengen zuriickgeben

Problem

Thre Webseiten benotigen mehr Speicher, als Thnen zur Verfigung steht, weshalb Sie den
Programmspeicher (auch Flash-Speicher genannt) zur Speicherung von Daten nutzen
wollen (siehe Rezept 16.4).

Losung

Der folgende Sketch kombiniert den POST-Code aus Rezept 15.10 mit dem HTML-Code
aus Rezept 15.9 und fugt zusitzlichen Code ein, der auf Text zugreift, der im Programm-
speicher enthalten ist. Wie in Rezept 15.9 kann der Server den Status der analogen und
digitalen Pins ausgeben und die Digitalpins ein- und ausschalten (siehe Abbildung 15-5).

Mozilla Firefox

ONE e (- oo) [] E

‘Digitalcr Eingang 2 ’7‘
‘Digitalcr Eingang 3 ’7‘
‘Digitalcr Eingang 4 ’7‘
‘Digitalcr Eingang 5 ’7‘

‘Digitalcr Ausgang 6 |(an) |(CAus)
‘Digitalcr Ausgang 7 |(An) |CAus) |
‘Digitalcr Ausgang 8 |(an) |(CAus)

‘Digitalcr Ausgang 9 |(an) |CAus)

eeceeeee

Abbildung 15-5: Webseite mit LED-Images

/*

* WebServerMultiPageHTMLProgmem Sketch

*

* Verarbeitet Requests zur Anderung digitaler und analoger Ausgangs-Port

* Gibt die Zahl der gednderten Ports und die Werte der analogen Eingangspins aus.
*

*http://192.168.1.177/analog/ Gibt analoge Pindaten aus
*http://192.168.1.177/digital/ Gibt digitale Pindaten aus
*http://192.168.1.177/change/ Andert digitale Pindaten

*

*/

15.11 Webseiten mit groBen Datenmengen zuriickgeben | 527

#include <SPI.h> // Seit Arduino-Version 0018 Pflicht
#include <Ethernet.h>

#include <avr/pgmspace.h> // Fiir Programmspeicher
ftdefine P(name) static const prog_uchar name[] PROGMEM // Statischen String deklarieren

bytemac[] = { OxDE, 0xAD, OxBE, OXEF, OXFE, OXED };
byte ip[] = { 192,168,1,177 };

const int MAX_PAGENAME_LEN = 8; // Max. Zeichen im Seitenamen
char buffer[MAX_PAGENAME_LEN+1]; // Zusdtzliches Zeichen fiir abschlieRende Null

EthernetServer server(80);
EthernetClient client;

void setup()
{

Serial.begin(9600);
Ethernet.begin(mac, ip);
server.begin();

delay(1000);
Serial.println(F("Bereit"));
}

void loop()
{

client = server.available();
if (client) {
int type = 0;
while (client.connected()) {
if (client.available()) {
// GET, POST, or HEAD
memset (buffer,0, sizeof(buffer)); // Puffer 16schen
if(client.readBytesUntil('/", buffer,MAX PAGENAME LEN)){
if(stremp(buffer, "GET ") ==0)
type =1;
else if(strcmp(buffer,"POST ") ==0)
type = 2;
// Seitennamen suchen
memset (buffer,0, sizeof(buffer)); // Puffer 16schen
if(client.readBytesUntil('/', buffer,MAX PAGENAME LEN))

{
if(strcasecmp(buffer, "analog") ==0)
showAnalog();
else if(strcasecmp(buffer, "digital") ==0)
showDigital();

else if(strcmp(buffer, "change")==0)
showChange (type ==2);
else
unknownPage (buffer);
}
}
break;
}
}

// Web-Browser Zeit geben, die Daten zu empfangen

528

| Kapitel 15: Ethernet und Netzwerke

delay(1);
client.stop();

}

void showAnalog()

{
Serial.println(F("analog"));
sendHeader ("Multipage-Beispiel - Analog");
client.println("<hi>Analoge Pins</h1>");
// Werte der analogen Eingangspins ausgeben

client.println(F("<table border="1"'>"));
for (inti=0; i<6; i++) {

client.print(F("<tr><td>Analog-Pin"));

client.print(i);

client.print(F(" </td><td>"));

client.print(analogRead(i));

client.printIn(F("</td></tr>"));

client.println(F("</table>"));
client.println(F("</body></html>"));

}

// MIME-kodierte Daten fiir Images ein- und ausgeschalteter LED:

// siehe: http://www.motobit.com/util/base64-decoder-encoder.asp

P(led on) = "<img src=\"data:image/jpg;baseb4,"

"/97/4AAQSkZIRgABAgAAZABKAAD/ 7AARRHVja3kAAQAEAAAAHgAA/+4ADKFkb2J1IAGTAAAAAAT/b"
"ATQAEAs LCwwL EAWMEBCPDQ8XGXQQEBQObHXCXFxcXHx4XGhoaGhceHiM1IyUjHi8vMzMvLOBAQEBA"
"QEBAQEBAQEBAQAERDWSREXEVEhIVFBEUERQaFBYWFBomGhocGhomMCMeHh4eIzArLicny4rNTUw"
"MDU1QEA/QEBAQEBAQEBAQEBA/SAAEQgAGWAZAWE IAATRAQMRAT/EATTAAATCAWAAAAAAAAAAAAAA"
" AAUGAACCAWQBAAMBAAAAAAAAAAAAAAAAAAACBAUQAAE CBAQBCg CAAAAAAAAAAAE CAWARMRIhQQQF "
"UWFxkaHRMoITUWY1QnKSIxQ1EQAAAWYEBWAAAAAAAAAAAAAAARECEgMTBBOhQWE IMVGBMkIiJP/a"
"AAWDAQACEQMRAD8ACNZ3BGibKieOnhCov3A+teKIt8ImZEdHUZal0itgUoHNEpQEWL Sy LqgACWFI"
"nixWiaQhsUFFBiQSbiMvvrmeCBp27eLnG71FTDXxs+Kra8o0yium31tIUACDIy4EUMN/7Dng9cPMO"
"W9OE9kxeyF2d3HF0Q17501KudUm7Tql FKqDQEDOFR1sNgtC7k5ERYndNPFSATtVNT/nV+edgcol”
"ktd2BgozrSzZ0315jVEXRcwD2bbXNdqozT+BohTyjgPp5SYdPIZINP2jsilz7vhjLohtjngl/ouPK"
"co//2Q=="

"\"/>";

P(led off) = "<img src=\"data:image/jpg;base64,"
"/97/4AAQSkZIRgABAgAAZABKAAD/ 7AARRHV ja3kAAQAEAAAAHgAA/+4ADKFkb2J1IAGTAAAAAAT/b"
"ATQAEAs LCwwL EAWMEBCPDQ8XGXQQEBQObHXCXFxcXHx4XGhoaGhceHiM1IyUjHi8vMzMvLOBAQEBA"
"QEBAQEBAQEBAQAERDWSREXEVEhIVFBEUERQaFBYWFBomGhocGhomMCMeHh4eIzArLicny4rNTUw"
"MDU1QEA/QEBAQEBAQEBAQEBA/SAAEQEAHAAZAWE IAATRAQMRAT/EAHEAAQEAAWAAAAAAAAAAAAAA"
" AAYFAgQHAQEBAQAAAAAAAAAAAAAAAAACAQQQAAE CBQAHBOKAAAAAAAAAAAE CAWARERMEITFhoSTF"
"FUFROUIGgZHBM1IjM1MWEQABAWQDAQEAAAAAAAAAAAABABECIWE SATETIYIE/90ADAMBAAIRAXEA"
"PwBv15SWEkkylpIMGsj1XjXSE1kCQuI8Iy9WsDoxradFa6VDF8IIZAQ61oNtBooTIagp3DP50B1V”
"nWrTpEouQS/Cf4POOUKbgWHGXTS1ztSvuVFiZjmfLH3GUuMkzSoTMu8aiNsXet5/17hFyo6PR64V"
"ZnuqfqDDDYSFpNpYH3E6aF j2GBT2DKMUFBSFDsWki1UdLFtW13pWpcdhgnbBz1/16hVXKZ1ROUSE"
"L1KX5zvAPXESjdHs TFWpxLKOI54hIA1DZCj+Vx/3r96fCNrkvRaTO+V3zV/11plr9sVeHZui/ONk"
"H3dzt6cL/9k="

"\"/>";

>

15.11 Webseiten mit groBen Datenmengen zuriickgeben

529

void showDigital()

Serial.println(F("digital"));
sendHeader ("Multipage-Beispiel - Digital");
client.println(F("<h2>Digitale Pins</h2>"));
// Werte der Digitalpins ausgeben
client.println(F("<table border='1'>"));
for (inti=2;i<8; i++){
pinMode(i, INPUT);
digitalWrite(i, HIGH); // Pullups einschalten
client.print(F("<tr><td>Digitalpin"));
client.print(i);
client.print(F(" </td><td>"));
if(digitalRead(i) == LOW)
printP(led off);
else
printP(led_on);
client.println(F("</td></tr>"));

}
client.println(F("</table>"));

client.printIn(F("</body></html>"));
}

void showChange(boolean isPost)
{
Serial.println(F("change"));
if(isPost)

Serial.printIn("isPost");
client.find("\n\r"); // Body tiberspringen
// Nachmit "pin" beginnenden Parametern suchen und bei der ersten Leerzeile abbrechen
Serial.println(F("Suche nach Parametern"));
while(client.findUntil("pinD", "\n\r")){
int pin = client.parseInt(); // Pin-Nummer
int val = client.parseInt(); // 0oder 1
Serial.print(pin);
Serial.print("=");
Serial.println(val);
pinMode(pin, OUTPUT);
digitalWrite(pin, val);
}

sendHeader ("Multipage-Beispiel - Andern");

// Tabelle mit Buttons von 2 bis 9

//2bis 5sind Eingdnge, die anderen Buttons sind Ausgange
client.println(F("<table border="1'>"));

// Eingangspins ausgeben

for (inti=2;1<6; i++) { // Pins 2-5sind Eingédnge
pinMode(i, INPUT);
digitalWrite(i, HIGH); // Pullups einschalten
client.print(F("<tr><td>Digitaler Eingang "));
client.print(i);
client.print(F(" </td><td>"));

530

| Kapitel 15: Ethernet und Netzwerke

client.print(F("8nbsp </td><td>"));
client.print(F(" </td><td>"));
client.print(F("8nbsp </td><td>"));

if(digitalRead(i) == LOW)
//client.print("AUS");
printP(led off);

else

//client.print("EIN");
printP(led on);
client.println("</td></tr>");

}

// Ausgangspins 6-9 ausgeben

// Hinweis: Pins 10-13 werden vom Ethernet-Shield genutzt
for (inti=6; i< 10; i++) {
client.print(F("<tr><td>Digitaler Ausgang "));
client.print(i);

client.print(F(" </td><td>"));
htmlButton("EIN", "pinD", i, "1");
client.print(F(" </td><td>"));
client.print(F(" </td><td>"));
htmlButton("AUS", "pinD", i, "0");
client.print(F(" </td><td>"));

if(digitalRead(i) == LOW)
//client.print("AUS");
printP(led_off);

else

//client.print("EIN");
printP(led on);
client.println(F("</td></tr>"));

client.

}

printIn(F("</table>"));

// HTML-Button erzeugen
void htmlButton(char * label, char *name, int nameId, char *value)

{

client.
client.
client.
client.

client

}

print(F("<formaction="/change/" method="'POST'><p><input type="hidden' name=""));
print(name);

print(nameld);

print(F("' value=""));

.print(value);
client.
client.
client.

print (F("'><input type="submit' value=""));
print(label);
print(F("'/></form>"));

void unknownPage(char *page)

Serial.
Serial.

print(F("Unbekannt : "));
println(F("page"));

sendHeader ("Unbekannte Seite");

client.

println(F("<hi>Unbekannte Seite</h1>"));

15.11 Webseiten mit groBen Datenmengen zuriickgeben | 531

client.println(page);
client.printIn(F("</body></html>"));
}

void sendHeader (char *title)

// Standard HTTP-Response-Header senden
client.printIn(F("HTTP/1.12000K"));
client.printIn(F("Content-Type: text/html"));
client.println();
client.print(F("<html><head><title>"));
client.println(title);
client.printIn(F("</title><body>"));

}

void printP(const prog_uchar *str)

// Daten aus dem Programmspeicher in den lokalen Speicher kopieren

// 32-Byte-Segmente schreiben, um sehr kurze TCP/IP-Pakete zu vermeiden
// Aus der webduino-Bibliothek, Copyright 2009 Ben Combee, Ran Talbott
uint8 t buffer[32];

size_t bufferknd =0;

while (buffer[bufferEnd++] = pgm read byte(str++))
if (bufferknd == 32)

client.write(buffer, 32);
bufferknd = 0;
}

}

// Rest rausschreiben, bis auf die abschlieRende NUL
if (bufferknd > 1)
client.write(buffer, bufferknd - 1);

}

Diskussion

Die Logik beim Aufbau der Webseite dhnelt der aus den vorangegangenen Rezepten. Das
Formular basiert auf Rezept 15.10, enthilt aber mehr Elemente in der Tabelle und
verwendet eingebettete Grafik-Objekte fiir den Status der Pins. Wenn Sie schon einmal
eine Webseite entwickelt haben, sind Sie wahrscheinlich mit der Verwendung von JPEG-
Images innerhalb einer Seite vertraut. Die Arduino Ethernet-Bibliothek kann Images im
.jpg-Format nicht verarbeiten.

Images missen in einem Internet-Standard wie MIME (Multipurpose Internet Mail Exten-
sions) kodiert sein. Auf diese Weise lassen sich grafische (und andere) Medien in Textform
darstellen. Der Sketch zeigt, wie die LED-Images MIME-kodiert aussehen. Viele Web-
basierte Dienste ermdglichen die MIME-Kodierung Threr Images. Die hier genutzten Images
wurden mit dem Dienst von http://www.motobit.com/util/base64-decoder-encoder.asp um-
gewandelt.

532 | Kapitel 15: Ethernet und Netzwerke

Selbst die in diesem Beispiel verwendeten kleinen LED-Images sind zu grof§, um in das
Arduino-RAM zu passen. Daher nutzen wir Programmspeicher (Flash). In Rezept 16.3
finden Sie eine Erlduterung des P(name)-Ausdrucks.

Die Images der ein- und ausgeschalteten LEDs werden als eine Folge von Zeichen
gespeichert. Das Array fiir die eingeschaltete LED beginnt wie folgt:

P(led on) = "<img src=\"data:image/jpg;base64,"

P(led on) = definiert led on als Namen dieses Arrays. Die Zeichen sind die HTML-Tags
fiir ein Image gefolgt von den MIME-kodieren Daten, aus denen das Image besteht.

Dieses Beispiel basiert auf Code, der fiir den Webduino-Webserver geschrieben wurde.
Webduino wird zum Aufbau von Webseiten wirmstens empfohlen, wenn Thre Anwen-
dung komplizierter ist, als die hier vorgestellten Beispiele.

Siehe auch

In Rezept 16.4 erfahren Sie mehr iiber das F("text")-Konstrukt zur Speicherung von Text
im Flash-Speicher.

Webduino-Webseite: http://code.google.com/p/webduino/

15.12 Twitter-Nachrichten senden

Problem

Thr Arduino soll Nachrichten an Twitter senden, z.B. wenn ein Sensor eine Aktivitit
erkennt, die Sie per Twitter iberwachen wollen.

Losung

Der folgende Sketch sendet eine Twitter-Nachricht, wenn ein Schalter geschlossen wird.
Er nutzt einen Proxy auf http://www.thingspeak.com fiir die Autorisierung, d.h., Sie
miissen sich auf dieser Site registrieren, um einen (kostenlosen) API-Schliissel zu erhalten.
Klicken Sie den Sign-Up-Button auf der Homepage an und fiillen Sie das Formular aus
(die gewtinschte Benutzer-ID, E-Mail, Zeitzone und das Passwort). Wenn Sie den Create-
Account-Button anklicken, erhalten Sie einen ThingSpeak API-Schliissel. Um den Thing-
Speak-Dienst nutzen zu kénnen, miissen Sie Ihren Twitter-Account autorisieren, damit
ThingTweet Nachrichten an Thren Account posten kann. Nachdem Sie das eingerichtet
haben, ersetzen Sie "YourThingTweetAPIKey" durch Thren Schliissel und fithren den fol-
gende Sketch aus:

/*

* Sende Tweet, wenn Taster an Pin 2 gedriickt wird

*Nutzt api.thingspeak.com als Twitter-Proxy

* Siehe: http://community.thingspeak.com/documentation/apps/thingtweet/
*/

15.12 Twitter-Nachrichten senden | 533

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = { OXDE, 0xAD, OxBE, OXEF, OXFE, OXED };
byte server[] ={ 184, 106, 153, 149 }; // IP-Adresse fiir ThingSpeak-API

char *thingtweetAPIKey = "YourThingTweetAPIKey"; // Durch Ihren ThingTweet API-Schliissel
// ersetzen

EthernetClient client;

boolean MsgSent = false;
const int Sensor = 2;

void setup()

Serial.begin(9600);

if (Ethernet.begin(mac) ==0) { // Ethernet starten
Serial.println("Ethernet-Konfiguration tiber DHCP fehlgeschlagen");
while(true) //Weitermachen zwecklos, in Endlosschleife warten

>

}

pinMode(Sensor, INPUT);

digitalWrite(Sensor, HIGH); // Pullup-Widerstédnde einschalten
delay(1000);

Serial.println("Bereit");

}

void loop()

if(digitalRead(Sensor) == LOW)
{ // Briefkasten getffnet

if(MsgSent == false){ // Nachricht gesendet?
MsgSent = sendMessage("Post ist da");
if(MsgSent)
Serial.println("Tweet erfolgreich");
else
Serial.println("Tweet fehlgeschlagen");
}

else{
MsgSent = false; // Briefkasten geschlossen, Status zuriicksetzen

}
delay(100);

boolean sendMessage(char *message)

{

boolean result = false;

const int taglen = 16; // Anzahl Tag-Zeichen zum Framing der Nachricht
int msglen = strlen(message) + taglen + strlen(thingtweetAPIKey);
Serial.println("Verbinde ...");

534 | Kapitel 15: Ethernet und Netzwerke

if (client.connect(server, 80)) {

Serial.println("Fuehre POST-Request aus...");

client.print("POST /apps/thingtweet/1/statuses/update HTTP/1.1\r\n");

client.print("Host: api.thingspeak.com\r\n");

client.print("Connection: close\r\n");

client.print("Content-Type: application/x-www-form-urlencoded\r\n");

client.print("Content-Length: ");

client.print(msgLen);
(
(
(
(

client.print("\r\n\r\n");
client.print("api_key="); // msg-Tag
client.print(thingtweetAPIKey); //api-Schlissel

client.print("&status="); // msg-Tag

client.print(message); // Die Nachricht
client.println("\r\n");
}
else {
Serial.println("Verbindung fehlgeschlagen");
¥

// Response-String
if (client.connected()) {
Serial.println("Verbunden");
if(client.find("HTTP/1.1") && client.find("200 OK")){
result = true;

}

else
Serial.println("Trenne Verbindung - kein 200 OK");

else {
Serial.println("Verbindung getrennt");

client.stop();
client.flush();

return result;

}

Diskussion

Der Sketch wartet, bis ein Pin auf LOW geht, und sendet dann iiber die ThingTweet-API
eine Nachricht an Twitter.

/*
* Sende liber mehrere Sensoren ausgeldsten Tweet
*Nutzt api.thingspeak.comals Twitter-Proxy

Das Web-Interface tibernimmt die Funktion sendMessage();, die die iibergebene Nach-
richt sendet. Bei diesem Sketch versucht sie, die Nachricht »Post ist da« an Twitter zu
senden und gibt true zuriick, wenn die Verbindung hergestellt werden kann.

Weitere Details finden Sie in der Dokumentation auf der ThingTweet-Website: http://
community.thingspeak.com/documentation/apps/thingtweet/

Die folgende Version nutzt die gleiche sendMessage-Funktion, kann aber mehrere Sensoren
iiberwachen:

15.12 Twitter-Nachrichten senden

535

*Siehe: http://community.thingspeak.com/documentation/apps/thingtweet/
*/

#include <SPI.h>
#include <Ethernet.h>

bytemac[] = { OxDE, 0xAD, OxBE, OXEF, OXFE, OXED };
byte server[] ={ 184, 106, 153, 149 }; // IP-Adresse fiir ThingSpeak-API

char *thingtweetAPIKey = "YourThingTweetAPIKey"; // Ihr ThingTweet API-Schliissel

EthernetClient client;
boolean MsgSent = false;

char frontOpen[] = "Die Vordertuer wurde geoeffnet";
char backOpen[] = "Die Hintertuer wurde geoeffnet";

const int frontSensor = 2; // Sensor-Pins
const int backSensor =3;

boolean frontMsgSent = false;
boolean backMsgSent = false;

void setup()

// Ethernet.begin(mac,ip);
Serial.begin(9600);
if(Ethernet.begin(mac) ==0) { // Ethernet starten
Serial.println("Ethernet-Konfiguration ueber DHCP fehlgeschlagen");
while(true) //Weitermachen zwecklos, in Endlosschleife warten

bl

}

pinMode(frontSensor, INPUT);
pinMode(backSensor, INPUT);
digitalwrite(frontSensor, HIGH); // pull-ups
digitalWrite(backSensor, HICH);

delay(1000);

Serial.println("Bereit");

}

void loop()

if(digitalRead(frontSensor) == LOW)
{ 7/ Vordertiir offen
if (frontMsgSent == false) { // Nachricht gesendet?
frontMsgSent = sendMessage(frontOpen);
}

else{
frontMsgSent = false; // Tiir geschlossen, Status zuriicksetzen

}
if(digitalRead(backSensor) == LOW)
{

if(frontMsgSent == false) {
backMsgSent = sendMessage(backOpen);
}
}

536 | Kapitel 15: Ethernet und Netzwerke

else {
backMsgSent = false;

}
delay(100);

}

// sendMesage-Funktion aus obigem Sketch einfiigen

Der zur Kommunikation mit Twitter verwendete Code ist identisch, doch die gesendeten
Nachrichten werden aus den Sensorwerten konstruiert, die iiber zwei Arduino-Digitalpins
eingelesen werden.

Siehe auch

Ein ThingSpeak Arduino-Tutorial finden Sie auf http://community.thingspeak.com/tutori-
als/arduino/using-an-arduino-ethernet-shield-to-update-a-thingspeak-channel/

15.13 Einfache Nachrichten (UDP) senden und empfangen

Problem

Sie wollen einfache Nachrichten {iber das Internet senden und empfangen.

Losung

Der folgende Sketch nutzt die Arduino UDP-Bibliothek (User Datagram Protocol) zum
Senden und Empfangen von Strings. In diesem einfachen Beispiel gibt der Arduino den

empfangenen String iiber den seriellen Monitor aus und schickt dem Sender den String
»ACK« zurick:

/*

* UDPSendReceiveStrings

* Empfangt String in UDP-Nachrichten, gibt sie iiber den seriellen Port aus
*und schickt den String "ACK" an den Sender zuriick

* Benotigt Arduino 1.0
*

*/

#include <SPI.h> // Fiir Arduino-Versionen ab 0018 Pflicht
#include <Ethernet.h>
#include <EthernetUdp.h> // Arduino-1.0-UDP-Bibliothek

byte mac[] = { OxDE, OxAD, OXBE, OXEF, OXFE, OXED }; // MAC-Adresse
byte ip[]={192, 168, 1, 177 }; // IP-Adresse des Arduino

unsigned int localPort = 8388; // Lokaler Port
// Puffer zum Empfangen und Senden von Daten

char packetBuffer[UDP_TX PACKET MAX_SIZE]; //Puffer flr eingehende Pakete
char replyBuffer[] = "ACK"; // Zurlickgesendeter String

15.13 Einfache Nachrichten (UDP) senden und empfangen | 537

// UDP-Instanz zum Senden und Empfangen von Paketen per UDP
EthernetUDP Udp;

void setup() {

// Ethernet und UDP starten
Ethernet.begin(mac,ip);
Udp.begin(localPort);
Serial.begin(9600);

}

void loop() {
// Wenn Daten vorhanden sind, Paket einlesen
int packetSize = Udp.parsePacket();
if(packetSize)
{

Serial.print("Paket empfangen... Groesse: ");
Serial.println(packetSize);

// Paket in packetBuffer einlessen und IP-Adresse und Port-Nummer des Senders ermitteln
Udp.read(packetBuffer,UDP_TX PACKET MAX SIZE);

Serial.println("Inhalt:");

Serial.println(packetBuffer);

// String an Sender zuriickschicken
Udp.beginPacket(Udp.remoteIP(), Udp.remotePort());
Udp.write(replyBuffer);

Udp.endPacket();

}
delay(10);

Sie konnen das testen, indem Sie den folgenden Processing-Sketch auf Threm Computer
ausfithren (in Kapitel 4 finden Sie Hinweise zur Installation und Betrieb von Processing):

// Processing-UDP-Beispiel zum Senden und Empfangen von String-Daten vom Arduino
// Driicken Sie eine beliebige Taste, umdie Nachricht "Hallo, Arduino” zu senden

import hypermedia.net.*;
UDP udp; // UDP-Objekt definieren

void setup() {
udp = new UDP(this, 6000); // Datagramm-Verbindung an Port 6000 herstellen

//udp.log(true); // <-- Verbindungs-Aktivitdt ausgeben
udp.listen(true); // und auf eingehende Nachrichten warten

}

void draw()

{

}

void keyPressed() {

Stringip ="192.168.1.177"; //Entfernte IP-Adresse

int port =8888; //Ziel-Port

udp.send("Hallo, Arduino", ip, port); //Die zu sendende Nachricht

}

538

| Kapitel 15: Ethernet und Netzwerke

void receive(byte[] data) { // <-- Standard-Handler
//void receive(byte[] data, String ip, int port) { // Erweiterter Handler

for(int i=0; i < data.length; i++)
print(char(data[i]));

println();

}

Diskussion

Stecken Sie das Ethernet-Shield auf den Arduino und verbinden Sie das Ethernet-Kabel
mit dem Computer. Laden Sie den Sketch auf den Arduino hoch und fithren Sie den
Processing-Sketch auf dem Computer aus. Driicken Sie eine beliebige Taste, um die
Nachricht »Hallo, Arduino« zu senden. Arduino sendet »ACK« zuriick, was im Pro-
cessing-Textfenster erscheint. Die Linge des Strings ist durch eine Konstante in Ethernet-
Udp.h beschrinkt. Voreingestellt sind 24 Bytes, was Sie aber erhohen kénnen, indem Sie
die folgende Zeile in Udp.h entsprechend anpassen:

#define UDP_TX_PACKET MAX_ SIZE 24

UDP ist eine einfache und schnelle Moglichkeit, Nachrichten oiber Ethernet zu senden
und zu empfangen. Doch es gibt Einschrinkungen: Die Zustellung der Nachrichten wird
nicht garantiert und bei einem stark ausgelasteten Netzwerk konnen Nachrichten ver-
loren- oder in der falschen Reihenfolge eingehen. Aber UDP ist gut geeignet, wenn es um
solche Dinge wie die Status-Ausgabe von Arduino-Sensoren geht — jede Nachricht enthilt
den aktuellen Sensorwert und verlorene Nachrichten werden durch nachfolgende Nach-
richten ersetzt.

Der folgende Sketch demonstriert das Senden und Empfangen von Sensor-Nachrichten.
Er empfingt Nachrichten mit Werten, die an die analogen Ausgangsports geschrieben
werden sollen, und antwortet dem Sender mit den Werten der analogen Eingangspins:

/*

* UDPSendReceive Sketch:

*/

#include <SPI.h> // Ab Arduino-Version 0018 Pflicht
#include <Ethernet.h>
#include <EthernetUDP.h> // Arduino 1.0 UDP-Bibliothek

byte mac[] = { OxDE, OxAD, OXBE, OXEF, OXFE, OXED }; // MAC-Adresse
byte ip[]={192, 168, 1, 177 }; // IP-Adresse des Arduino

unsigned int localPort = 8888; // Lokaler Port

char packetBuffer[UDP_TX PACKET MAX SIZE]; //Puffer fir eingehende Pakete
int packetSize; // GroRe empfangener Pakete

const int analogOutPins[] ={ 3,5,6,9}; // Ethernet-Shield nutzt Pins 10 und 11

// UDP-Instanz zum Senden und Empfangen von UDP-Paketen
EthernetUDP Udp;

15.13 Einfache Nachrichten (UDP) senden und empfangen | 539

void setup() {
Ethernet.begin(mac,ip);
Udp.begin(localPort);

Serial.begin(9600);
Serial.println("Bereit");

}

void loop() {
// Wenn Daten vorhanden, Paket einlesen
packetSize = Udp.parsePacket();
if(packetSize>0)

Serial.print("Paket empfangen... Groesse: ");

Serial.print(packetSize);

Serial.println("Inhalt:");

// Paket in packetBuffer schreiben und IP-Adresse und Portnummer des Senders ermitteln
packetSize = min(packetSize,UDP_TX PACKET MAX SIZE);
Udp.read(packetBuffer,UDP_TX PACKET MAX SIZE);

for(int i=0; i < packetSize; i++)

byte value = packetBuffer[i];

if(i<4)

{
// Nur an die ersten vier analogen Ausgangspins schreiben
analogWrite(analogOutPins[i], value);

}
Serial.println(value, DEC);

Serial.println();
// Sender die Werte unserer analogen Ports mitteilen
sendAnalogValues(Udp.remoteIP(), Udp.remotePort());
}
//kurz warten
delay(10);

void sendAnalogValues(IPAddress targetIp, unsigned int targetPort)
{

int index = 0;

for(int i=0; i< 6; i++)

{

int value = analogRead(i);

packetBuffer[index++] = lowByte(value); // Niederwertiges Byte);
packetBuffer[index++] = highByte(value); // Hoherwertiges Byte); }
}
//Paket an Sender zuriickschicken
Udp.beginPacket(targetIp, targetPort);
Udp.write(packetBuffer);
Udp.endPacket();

540 | Kapitel 15: Ethernet und Netzwerke

Der Sketch sendet und empfingt die Werte der Analogports 0 bis 5 als Bindrdaten. Wenn
Sie nicht mit Binirdaten enthaltenden Nachrichten vertraut sind, sehen Sie sich die
Einfahrung zu Kapitel 4 sowie Rezepte 4.6 und 4.7 an.

Der Unterschied besteht darin, dass die Daten mit Udp.write anstelle von Serial.write
gesendet werden.

Hier ein Processing-Sketch, den Sie mit dem obigen Sketch nutzen konnen. Es nutzt sechs
Rollbalken, die Sie mit der Maus bewegen konnen, um die sechs analogWrite-Werte
festzulegen. Er gibt die empfangenen Sensordaten im Processing-Textfenster aus:

// Processing UDPTest
// Demo Sketch senden + empfangen von Arduino-Daten durch Gebrauch von UDP

import hypermedia.net.*;
UDP udp; // Das UDP-Objekt definieren
HScrollbar[] scroll = newHScrollbar[6]; //Siehe: topics/gui/scrollbar
void setup() {

size(256, 200);

noStroke();

for(int i=0; i < 6; i++) // Rollbalken ausgeben

scroll[i] = newHScrollbar(0, 10 + (height / 6) * i, width, 10, 3*5+1);

udp = new UDP(this, 6000); // Datagramm-Verbindung anPort 6000 aufbauen

//udp.log(true); // Verbindungsaktivitédt ausgeben
udp.listen(true); // und auf eingehende Verbindung warten
}
void draw()
background(255);
£111(255);

for(int i=0; i < 6; i++) {
scroll[i].update();
scroll[i].display();

}

}

void keyPressed() {
Stringip ="192.168.1.177"; //Entfernte IP-Adresse
int port = 8888; // Ziel-Port

byte[] message = new byte[6] ;

for (int i=0; i < 6; i++){
message[i] = byte(scroll[i].getPos());
printIn(int(message[i]));

println();
udp.send(message, ip, port);

15.13 Einfache Nachrichten (UDP) senden und empfangen | 541

void receive(byte[] data) { // <-- Standard-Handler
//void receive(byte[] data, String ip, int port) { //<-- Erweiterter Handler

println("eingehende Daten:");

for(int i=0; 1 < 6; i++){
scroll[i].setPos(data[i]);
println((int)data[i]);

}

class HScrollbar

{
int swidth, sheight; // Breite und Hohe des Balkens
int xpos, ypos; // x-und y-Position des Balkens

float spos, newspos; // x-Position des Sliders

int sposMin, sposMax; // max- und min-Wert des Sliders
int loose; // wie locker/fest

boolean over; // Maus Uber Slider?

boolean locked;

float ratio;

HScrollbar (int xp, int yp, int sw, int sh, int 1) {
swidth = sw;
sheight = sh;
int widthtoheight = sw - sh;
ratio = (float)sw / (float)widthtoheight;
Xpos = Xp;
ypos = yp-sheight/2;
spos = xpos + swidth/2 - sheight/2;
Newspos = spos;
sposMin = xpos;
sposMax = xpos + swidth - sheight;
loose =1;

}

void update() {
if (over()) {

over = true;
}else{
over = false;

if (mousePressed && over) {
locked = true;

if (!mousePressed) {
locked = false;

}
if (locked) {
newspos = constrain(mouseX-sheight/2, sposMin, sposMax);

if(abs(newspos - spos) > 1) {
Spos = spos + (newspos-spos)/loose;

542 | Kapitel 15: Ethernet und Netzwerke

int constrain(int val, int minv, int maxv) {
return min(max(val, minv), maxv);

boolean over() {
if (mouseX > xpos && mouseX < xpos+swidth 8&
mouseY > ypos && mouseY < ypos+sheight) {
return true;
}else{
return false;

}
¥

void display() {
fi11(255);
rect(xpos, ypos, swidth, sheight);
if (over || locked) {
£i11(153, 102, 0);
}else{
fil11(102, 102, 102);
}
rect(spos, ypos, sheight, sheight);

float getPos() {
return spos * ratio;

}

void setPos(int value) {
spos = value / ratio;
}
}

15.14 Die Zeit von einem Internet-Zeitserver abrufen

Problem

Sie wollen die aktuelle Zeit von einem Internet-Zeitserver abrufen, z.B. um die auf dem
Arduino laufende Software-Uhr zu synchronisieren.

Losung

Der folgende Sketch ruft die Zeit von einem NTP-Server (Network Time Protocol) ab und

gibt das Ergebnis in Sekunden seit dem 1.1.1900 (NTP-Zeit) und in Sekunden seit dem
1.1.1970 aus:

/*

*UdpNtp Sketch

* Zeit von einem NTP-Zeitserver abrufen

* Demonstriert UDP-sendPacket und -ReceivePacket
*/

#include <SPI.h>

15.14 Die Zeit von einem Internet-Zeitserver abrufen | 543

#include <Ethernet.h>

#include <EthernetUDP.h>

bytemac[] = { OxDE, 0xAD, OxBE, OXEF, OXFE, OXED }; // MAC-Adresse
unsigned int localPort = 8888; // Lokaler Port

IPAddress timeServer(192, 43, 244, 18); // time.nist.gov NTP-Server
const int NTP_PACKET SIZE=48; // NTP-Zeitstempel steht in den ersten 48
// Bytes der NAchricht
byte packetBuffer[NTP_PACKET SIZE]; // Puffer fiir ein- und ausgehende Pakete

// UDP-Instanz zum Senden und Empfangen von UDP-Paketen
EthernetUDP Udp;

void setup()

Serial.begin(9600);

// start Ethernet and UDP

if (Ethernet.begin(mac) ==0) {
Serial.println("Ethernet-Konfiguration ueber DHCP fehlgeschlagen");
// Weitermachen zwecklos, in Endlosschleife warten
for(;;)

}
Udp.begin(localPort);

void loop()

sendNTPpacket (timeServer); // NTP-Paket an Zeitserver senden
// Antwort verfiigbar?
delay(1000);
if (Udp.parsePacket()) {
Udp.read(packetBuffer,NTP_PACKET SIZE); // Paket in Puffer einlesen

// Timestamp beginnt an Byte 40, vier Bytes in long-Wert umwandeln
unsigned long hi = word(packetBuffer[40], packetBuffer(41]);
unsigned long low = word(packetBuffer[42], packetBuffer[43]);
unsigned long secsSince1900 = hi << 16 | low; // NTP-Zeit

// (Sekunden seit dem 1.1.1900)

Serial.print("Sekunden seit dem1.1.1900="");
Serial.println(secsSince1900);

Serial.print("Unix-Zeit=");

// Unix-Zei beginnt am1.1.1970

const unsigned long seventyYears = 2208988800UL ;

unsigned long epoch = secsSince1900 - seventyYears; // 70 Jahre abziehen
Serial.println(epoch); // Unix-Zeit ausgeben

// Stunde, Minute und Sekunde ausgeben:

// UTC ist die Zeit am Greenwich-Meridian (GMT)
Serial.print("Die UTC-Zeit ist");

// Stunde ausgeben (86400 sind Sek./Tag)

544 | Kapitel 15: Ethernet und Netzwerke

Serial.print((epoch % 86400L) / 3600);

Serial.print(':');

if (((epoch %3600) / 60) < 10) {

// Fihrende Null fiir die ersten zehn Minuten
Serial.print('0');

// Minute ausgeben (3600 Sek sind 1 Std.)
Serial.print((epoch %3600) / 60);
Serial.print(':");
if ((epoch%60) < 10) {
// Fihrende Null fiir die erste zehn Sekunden
Serial.print('0");

Serial.println(epoch %60); // Sekunden ausgeben
}

// Zehn Sekunden bis zur ndchsten Abfrage warten
delay(10000);

// NTP-Request an den Zeitserver mit der angegebenen Adresse senden
unsigned long sendNTPpacket (IPAddress& address)
memset (packetBuffer, 0, NTP_PACKET SIZE); // AlleBytes im Puffer auf 0 setzen

// Fur NTP-Request bendtigte Werte setzen
packetBuffer[0] = B11100011; // LI, Version, Mode

packetBuffer[1] =0; // Stratum
packetBuffer[2] =6; //Max. Intervall zwischen Nachrichten in Sekunden
packetBuffer[3] = OXEC; // Genauigkeit der Uhr

// Bytes 4 - 11 sind Root Delay und wurden von memset auf 0 gesetzt
packetBuffer[12] =49; //Referenz-ID, vier Bytes

packetBuffer[13] = Ox4E;
packetBuffer[14] =49;
packetBuffer[15] =52;

// Alle NTP-Felder enthalten vorgegebene Werte, nun

// kann das anfordernde Paket gesendet werden
Udp.beginPacket(address, 123); //NTP-Requests gehen an Port 123
Udp.write(packetBuffer,NTP_PACKET SIZE);

Udp.endPacket();

Diskussion

NTP ist ein Protokoll zur Zeitsynchronisation tiber Internet-Nachrichten. NTP-Server
geben die Zeit als Wert der seit dem 1.1.1900 verstrichenen Sekunden zuriick. NTP gibt
die Zeit als koordinierte Weltzeit (UTC, Coordinated Universal Time, entspricht der
Greenwich Mean Time) zuriick und beriicksichtigt weder Zeitzonen noch die Sommer-
zeit.

NTP-Server verwenden UDP-Nachrichten. Eine Einfithrung in UDP finden Sie in Re-
zept 15.13. Die NTP-Nachricht wird in der Funktion sendNTPpacket erzeugt und Sie
miissen den Code dieser Funktion sehr wahrscheinlich nicht dndern. Die Funktion
erwartet die Adresse eines NTP-Servers. Sie konnen die Adresse aus dem obigen Beispiel

15.14 Die Zeit von einem Internet-Zeitserver abrufen | 545

verwenden, oder Sie suchen sich einen der vielen Server aus, die eine Suche nach »NTP
Adresse« ausspuckt. Wenn Sie mehr iiber die einzelnen NTP-Felder erfahren wollen,
sehen Sie sich die Dokumentation auf hitp://www.ntp.org/ an.

Die Antwort von NTP ist eine Nachricht in einem festen Format. Die Zeitinformation
besteht aus vier Bytes, die am 40. Byte beginnen. Diese vier Bytes bilden den 32-Bit-Wert
(ein Integerwert vom Typ unsigned long), mit der seit dem 1.1.1900 verstrichenen Zeit in
Sekunden. Dieser Wert (und die in Unix-Zeit umgewandelte Zeit) werden ausgegeben.
Soll die Zeit vom NTP-Server in ein freundlicheres Format mit Stunden, Minuten,
Sekunden sowie Tag, Monat, Jahr umgewandelt werden, kénnen Sie die Arduino Time-
Bibliothek nutzen (siehe Kapitel 12). Hier eine Variante des obigen Codes, die die Zeit im
Format 14:32:56 Monday 18 Jan 2010 ausgibt:

/*

* Time NTP Sketch

* Zeisynchronisation per NTP-Zeitserver

* Der Sketch nutzt die Time- und die

* Arduino Ethernet-Bibliothek
*/

#include <Time.h>

#include <SPI.h> // Seit Arduino-Version 0018 Pflicht
#include <Ethernet.h>

#include <EthernetUDP.h>

bytemac[] = { OXDE, 0xAD, OxBE, OXEF, OXFE, OXED };
byte ip[]=1{ 192, 168, 1, 44 }; // Gultige IP-Adresse (oder DHCP) verwenden

unsigned int localPort = 8888; // Lokaler Port
IPAddress timeServer (192, 43, 244, 18); // time.nist.gov NTP-Server

const int NTP_PACKET_SIZE=48; // NTP.Zeitstempel in den ersten 48 Bytes der Nachricht
byte packetBuffer[NTP_PACKET_SIZE]; // Puffer fiir ein- und ausgehende Pakete

time_t prevDisplay =0; //Wannwurde die Zeit zuletzt ausgegeben

// UDP-Instanz zum Senden und Empfangen von UDP-Paketen
EthernetUDP Udp;

void setup()

Serial.begin(9600);
Ethernet.begin(mac,ip);
Udp.begin(localPort);
Serial.println("Warte auf Synchronisation");
setSyncProvider(getNtpTime);
while(timeStatus()==timeNotSet)

; // Warten, bis die Zeit vom Sync-Provider gesetzt wurde

}

546 | Kapitel 15: Ethernet und Netzwerke

\

\

}

\

u

}

oid loop()

if(now() !=prevDisplay) // Ausgabe nur aktualisieren, wenn sich die Zeit gedndert hat

prevDisplay = now();
digitalClockDisplay();
}
}

oid digitalClockDisplay(){

// Digitalanzeige der Uhrzeit
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.print("");
Serial.print(dayStr(weekday()));
Serial.print("");
Serial.print(day());
Serial.print("");
Serial.print(monthShortStr(month()));
Serial.print("");
Serial.print(year());
Serial.println();

oid printDigits(int digits){
// Hilfsfunktion fiir Digitaluhr: Gibt
// vorstehenden Doppelpunkt und fiihrende 0 aus
Serial.print(":");
if(digits < 10)
Serial.print('0");
Serial.print(digits);

nsigned long getNtpTime()

sendNTPpacket (timeServer); // Sendet NTP-Paket an Zeitserver
delay(1000);
if (Udp.parsePacket()) {

Udp.read(packetBuffer,NTP_PACKET SIZE); // Paket in Puffer einlesen

//Zeitstempel beginnt an Byte 40, vier Bytes in long long integer umwandeln
unsigned long hi = word(packetBuffer[40], packetBuffer[41]);
unsigned long low = word(packetBuffer[42], packetBuffer[43]);
// NTP-Zeit (Sekunden seit dem1.1.1900)
unsigned long secsSince1900 = hi << 16 | low;
// Unix-Zeit beginnt am1.1.1970
const unsigned long seventyYears = 2208988800UL ;
unsigned long epoch = secsSince1900 - seventyYears; // 70 Jahre abziehen
return epoch;
}

return 0; // Bei Fehler 0 zuriickgeben

15.14 Die Zeit von einem Internet-Zeitserver abrufen

547

// NTP-Request an Zeitserver an Ubergebene Adresse senden
unsigned long sendNTPpacket (IPAddress address)

memset (packetBuffer, 0, NTP_PACKET_SIZE); // Alle Bytes im Puffer auf 0 setzen

// Werte fiir NTP-Request initialisieren

packetBuffer[0] = B11100011; // LI, Version, Mode

packetBuffer[1] =0; // Stratum

packetBuffer[2] =6; //Max. Intervall zwischen Nachrichten in Sekunden
packetBuffer[3] = OXEC; // Genauigkeit

// Bytes 4 - 11 sind fiir Root Delay und wurden von memset auf 0 gesetzt
packetBuffer[12] =49; // 4-Byte-Referenz-ID

packetBuffer[13] = Ox4E;
packetBuffer[14] = 49,
packetBuffer[15] =

// Zeitstempel anforderndes Paket senden
Udp.beginPacket(address, 123); //NTP-Requests gehen an Port 123
Udp.write(packetBuffer,NTP_PACKET SIZE);

Udp.endPacket();

Siehe auch
Kapitel 12 fuir weitere Informationen zur Arduino Time-Bibliothek.
Details zu NTP finden Sie auf http://www.ntp.org/.

NTP-Code von Jesse Jaggars (der den Sketch in diesem Rezept inspiriert hat), finden Sie
unter http://github.com/cynshard/arduino-ntp.

Wenn Sie eine Arduino-Release vor 1.0 verwenden, konnen Sie die UDP-Bibliothek von
https://bitbucket.org/bjoern/arduino_osc/src/tip/libraries/Ethernet/ herunterladen.

15.15 Pachube-Feeds iiberwachen

Problem

Arduino soll auf Informationen eines Webdienstes reagieren, der Sicherheit und Daten-
Backups bietet. Pachube ist ein Web-basierter Dienst, der Daten-Feeds in Echtzeit bietet.
Sie wollen basierend auf den Datenwerten eines Pachube-Feeds ein Gerit aktivieren oder
einen Alarm auslosen.

Losung

Der folgende Sketch liest die ersten vier Datenfelder aus Feed Nr. 504 ein und gibt sie tiber
den seriellen Monitor aus:

/*
* Monitor Pachube feed

548 | Kapitel 15: Ethernet und Netzwerke

* Lese Feed mit V2-APT im CSV-Format
*/

#include <SPI.h>
#include <Ethernet.h>

const int feedID = 504; // 1D des entfernten

// Pachube-Feeds, mit dem

// Sie die Verbindung herstellen
const int streamCount = 4; // Zahl der einzulesenden Daten-Streams
const long PACHUBE_REFRESH = 600000; // Alle 10 Minuten aktualisieren
const long PACHUBE_RETRY =10000; // Bei Verbindungsfehler/-reset

// 10 Sekunden warten

// Darf nicht unter 5 Sek. liegen

#define PACHUBE_API_KEY "your key here . . ." // Durch Ihren API-Schliissel ersetzen

// MAC-Adresse; muss innerhalb des Netzwerks eindeutig sein
byte mac[] = { 0xCC, OXAC, OXBE, OXEF, OXFE, 0x91 };
char serverName[] = "api.pachube.com";

int streamData[streamCount]; // Typ bei Bedarf an Ihre Daten anpassen
EthernetClient client;
void setup()

Serial.begin(9600);
if (Ethernet.begin(mac) ==0) {
Serial.println(F("Ethernet-Konfiguration ueber DHCP fehlgeschlagen"));
// Weitermachen zwecklos, in Endlosschleife warten
for(;;)
}
}

void loop()
{
if(getFeed(feedID, streamCount) == true)

for(int id = 0; id < streamCount; id++){
Serial.println(streamData[id]);

}

Serial.println("--");

delay(PACHUBE REFRESH);

else

Serial.println(F("Konnte Feed nicht empfangen"));
delay(PACHUBE_RETRY);
}
}

// Gibt wahr zuriick, wenn Verbindung hergestellt und alle angeforderten Streams eingelesen
// werden konnten
boolean getFeed(int feedld, int streamCount)

15.15 Pachube-Feeds iiberwachen |

549

boolean result = false;
if (client.connect(serverName, 80)>0) {

client.print(F("GET /v2/feeds/"));
client.print(feedId);
client.print(F(".csv HTTP/1.1\r\nHost: api.pachube.com\r\nX-PachubeApiKey: "));
client.print(PACHUBE_API KEY);
client.print("\r\nUser-Agent: Arduino 1.0");
client.printIn("\r\n");

else {
Serial.println("Verbindung fehlgeschlagen");

}
if (client.connected()) {
Serial.println("Verbunden");
if(client.find("HTTP/1.1") && client.find("200 OK"))
result = processCSVFeed(streamCount);
else
Serial.println("Trenne Verbindung - kein 200 OK");

}
else {
Serial.println("Verbindung getrennt");

client.stop();
client.flush();
return result;

}

int processCSVFeed(int streamCount)

{

int processed = 0;

client.find("\r\n\r\n"); // Leerzeile zeigt Anfang der Daten an

for(int id = 0; id < streamCount; id++)

{
int id = client.parseInt(); // Sie kénnen das zur Wahl einer bestimmten ID nutzen
client.find(","); // Letzten Zeitstempel tiberspringen
streamData[id] = client.parseInt();
processed++;

}

return(processed == streamCount); // Wahr zurlickgeben, wenn alle Daten empfangen wurden

}

Diskussion

Um Pachube nutzen zu kénnen, miissen Sie zuerst einen Account einrichten. Die Pachube
Quickstart-Seite erklirt wie: http://community.pachube.com/?q=node/4. Sobald Sie sich
angemeldet haben, erhalten Sie per E-Mail einen Benutzernamen und einen API-Schliissel.
Tragen Sie den Schliissel in die folgende Zeile des Sketches ein:

#define PACHUBE_API_KEY "your key here . . ." // Durch Ihren API-Schliissel ersetzen
Jeder Pachube-Feed (Datenquelle) wird tiber eine ID identifiziert. Unser Beispiel-Sketch
nutzt Feed 504 (Umgebungsdaten aus dem Pachube-Biiro). Im folgenden Sketch erfolgt

der Zugriff auf die Feeds tiber die Methode getFeed, der die Feed-ID und die Zahl der
Datenelemente iibergeben wird. Bei Erfolg gibt getFeed true zuriick und Sie kénnen die

550 | Kapitel 15: Ethernet und Netzwerke

Daten mit der processFeed-Methode verarbeiten. Sie liefert den Wert der Sie interes-
sierenden Daten zuriick (jedes Datenelement wird bei Pachube als Stream bezeichnet).

Pachube unterstiitzt eine Reihe von Datenformaten und der obige Sketch nutzt das
einfachste: CSV (unter http://api.pachube.com/v2/#data-formats erfahren Sie mehr tiber
die Pachube-Datenformate).

Sie kénnen zusitzliche Informationen aus einem Feed extrahieren, wenn Sie das XML-
Format nutzen. Hier ein Beispiel der Pachube XML-Daten des in diesem Rezept ver-
wendeten Streams:

<environment updated="2010-06-08T09:30:11Z" id="504"
creator="http://www.pachube.com/users/hdr">
<title>Pachube Office environment</title>
<feed>http://api.pachube.com/v2/feeds/504.xml</feed>
<status>live</status>
<website>http://www.haque.co.uk/</website>
<tag>Tagi</tag>
<tag>Tag2</tag>
<location domain="physical" exposure="indoor" disposition="fixed">
<name>office</name>
<lat>51.5235375648154</1at>
<lon>-0.0807666778564453</1on>
<ele>23.0</ele>
</location>
<data id="0">
<tag>humidity</tag>
<min_value>0.0</min_value>
<max_value>847.0</max_value>
<current_value at="2010-06-08T09:30:11.000000Z">311</current_value>
</data>
</environment>

Der Titel Pachube Office environment zeigt den Anfang der Daten an. Jeder Stream wird
durch den Tag data id= (gefolgt von der numerischen Stream-ID) eingeleitet. Die Funktion
processXMLFeed im folgenden Sketch nutzt diese Information, um die gewtinschte Feed-ID
zu finden und die minimalen, maximalen und aktuellen Werte aus dem gewiinschten
Feed zu extrahieren:

/*

* Monitor Pachube feed

*V2-API mit XML-Format

* Steuert Servo liber den Wert eines bestimmten Streams
*/

#include <SPI.h>
#include <Ethernet.h>

#include <Servo.h> // Dieser Sketch steuert einen Servo

const int feedID = 504; // Gewiinschter Pachube-Feed
const int streamToGet = 0; //Daten-ID des gewlinschten Streams

const long PACHUBE_REFRESH = 600000; // Alle 10 Minuten aktualisieren
const long PACHUBE_RETRY =10000; // Bei Verbindungsfehler/-reset

15.15 Pachube-Feeds iiberwachen | 551

#define PACHUBE_API_KEY "your key here . . ." // Ihren API-Schlissel eintragen

// MAC-Adresse, muss in Ihrem Netzwerk eindeutig sein
bytemac[] = { 0xCC, 0xAC, OxBE, OXEF, OXFE, 0x91 };
char serverName[] = "api.pachube.com";

EthernetClient client;

// Von Pachube zuriickgelieferte Stream-Werte
int currentValue; // Aktueller Wert des Streams
intminValue; //Minimaler Wert des Streams
int maxValue; // Maximaler Wert des Streams

Servo myservo; // Servo-Objekt
void setup()
{

Serial.begin(9600);
myservo.attach(9); // ServoanPin 9mit Servo-Objekt verbinden

if (Ethernet.begin(mac) ==0) {
Serial.println("Ethernet-Konfiguration ueber DHCP fehlgeschlagen");
// Weitermachen zwecklos, in Endlosschleife warten
for(;;)

}
}

>

void loop()
{
if(getFeed(feedID, streamToCet) == true)
{
Serial.print(F("Wert="));
Serial.println(currentValue);
// ImBereich von 0 bis 90 Grad proportional positionieren
int servoPos = map(currentValue, minvalue, maxValue, 0,90);
myservo.write(servoPos);
Serial.print(F("Pos="))

5
Serial.println(servoPos);
delay(PACHUBE REFRESH);

else

Serial.println(F("Konnte Feed nicht lesen"));
delay(PACHUBE_RETRY);

}

// Gibt wahr zuriick, wenn Verbindung mit angefordertem Stream hergestellt und alle angeforderte
Daten abgerufen werden konnten
boolean getFeed(int feedId, int streamld)

boolean result = false;
if (client.connect(serverName, 80)>0) {
Serial.print("Verbinde mit Feed ");

552 | Kapitel 15: Ethernet und Netzwerke

Serial.print
Serial.print
client.print
client.print
client.print(".xml HTTP/1.1\r\nHost: api.pachube.com\r\nX-PachubeApiKey: ");
client.print(PACHUBE _API KEY);

client.print("\r\nUser-Agent: Arduino 1.0");

client.printIn("\r\n");

feedId);
Y
"GET /v2/feeds/");
feedId);

S~ —~

else {
Serial.println("Verbindung fehlgeschlagen");

}
if (client.connected()) {
Serial.println("Verbunden");
if(client.find("HTTP/1.1") && client.find("200 OK"))
result = processXMLFeed(streamId);

else
Serial.printIn("Trenne Verbindung - kein 200 OK");
}
else {
Serial.println("Verbindung getrennt");
}

client.stop();
client.flush();
return result;

}

boolean processXMLFeed(int streamId)

client.find("<environment updated=");
for(int id = 0; id <= streamld; id++)

if(client.find("<data id=")){ // Finde nichstes Datenfeld
if(client.parselnt()==streamId){ // Ist das unser Stream?
if(client.find("<min_value>")){
minvalue = client.parseInt();
if(client.find("<max_value>")){
maxValue = client.parseInt();
if(client.find("<current value ")){
client.find(">"); // Bis zur spitzen Klammer suchen
currentValue = client.parseInt();
return true; // Alle bendtigten Daten gefunden
}
}
}
}
}

else {
Serial.print(F("KannDaten fur ID"));
Serial.println(id);
Serial.print(F(" nicht finden")); 1}

return false; // Parsing der Daten fehlgeschlagen

}

Das Stream-Parsing von Arduino 1.0 wird genutzt, um nach den gewiinschten Feldern zu
suchen. Eine Liste aller Felder finden Sie in der Dokumentation der Pachube-API.

15.15 Pachube-Feeds iiberwachen | 553

Siehe auch
Die Pachube API-Dokumentation: http://api.pachube.com/v2/.

Eine Arduino-Bibliothek, die den Zugriff auf Pachube vereinfacht, finden Sie hier: http://
code.google.com/p/pachubelibrary/.

15.16 Informationen an Pachube senden

Problem

Arduino soll Feeds auf Pachube aktualisieren. Zum Beispiel sollen die Werte der an den
Arduino angeschlossenen Sensoren in einem Pachube-Feed veroffentlicht werden.

Losung

Der folgende Sketch liest die Temperatur-Sensoren ein, die mit den analogen Eingangs-
pins (siehe Rezept 6.8) verbunden sind, und sendet die Daten an Pachube:

/*

* Update Pachube feed

* Sendet Temperatur von (bis zu) sechs LM35-Sensoren
*V2 API

*/

#include <SPI.h>
#include <Ethernet.h>

const int feedID = 2955; // ID des Feeds

const int streamCount = 6; //Anzahl der zu sendenden Daten-Streams (Sensoren)
const long REFRESH INTERVAL = 60000; // Jede Minute aktualisieren

// Bei Verbindungsfehler/-reset 10 Sekunden warten

// Darf nicht unter 5 Sekunden liegen

const long RETRY_INTERVAL = 10000;

#define PACHUBE_API_KEY "Your key here . . . " // Ihren API-Schliissel eintragen

// Muss fiir Ihr Netzwerk eindeutig sein
bytemac[] = { 0xCC, 0xAC, OxBE, OXEF, OXFE, 0x91 };
char serverName[] = "www.pachube.com";

EthernetClient client;
void setup()
{

Serial.begin(9600);

Serial.println("Bereit");

if (Ethernet.begin(mac) ==0) { // Ethernet starten
Serial.println("Ethernet-Konfiguration ueber DHCP fehlgeschlagen");
while(true) //Weitermachen zwecklos, in Endlosschleife warten

>

}
}

554 | Kapitel 15: Ethernet und Netzwerke

void loop()
{
String dataString="";
for (int id = 0; id < streamCount; id++)
{
int temperature = getTemperature(id);
dataString += String(id);
dataString +=",";
dataString += String(temperature);
dataString +="\n";

}
if (putFeed(feedID, dataString, dataString.length()) == true)
{
Serial.println("Feed aktualisiert");
delay(REFRESH_INTERVAL);

else
{
Serial.println("Konnte Feed nicht aktualisieren");
delay(RETRY_INTERVAL);
}
}

// true zuriickgeben, wenn Verbindung hergestellt und Daten gesendet werden konnten
boolean putFeed(int feedId, String feedData, int length)

boolean result = false;
if (client.connect(serverName, 80)>0) {

Serial.print("Verbinde Feed "); Serial.println(feedId);
client.print("PUT /v2/feeds/");
client.print(feedld);
client.print(".csvHTTP/1.1\r\nHost: api.pachube.com\r\nX-PachubeApiKey: ");
client.print(PACHUBE_API KEY);
client.print("\r\nUser-Agent: Arduino 1.0");
client.print("\r\nContent-Type: text/csv\r\nContent-Length: ");
client.println(length+2, DEC); // fiir cx/1f
client.println("Connection: close");
client.println("\r\n");
// jetzt Daten ausgeben
Serial.println(feedData); // Optional an seriellen Monitor ausgeben
client.print(feedData);
client.printIn("\r\n");

else {
Serial.println("Verbindung fehlgeschlagen");
}
// Response-String
if (client.connected()) {
Serial.println("Verbunden");
if(client.find("HTTP/1.1") && client.find("200 OK")){
result = true;
}
else
Serial.println("Verbindung getrennt - kein 200 0K");
}

else{

15.16 Informationen an Pachube senden

555

Serial.println("Verbindung getrennt");

client.stop();
client.flush();
return result;

}

// Temperatur (gerundet auf den ndchsten Grad-Wert) zuriickgeben
int getTemperature(int pin)

int value = analogRead(pin);
int celsius = (value * 500L) / 1024; // 10mv pro Grad
return celsius;

}

Diskussion

Das Rezept dhnelt Rezept 15.15, verwendet aber die putFeed-Methode, um Daten an
Pachube zu senden. Im Beispiel werden Informationen von Temperatursensoren gesen-
det. Fiir Code, der zu Threr Anwendung passt, sehen Sie sich das Kapitel an, in dem dieser
Sensor behandelt wird.

Pachube benotigt die Anzahl der Zeichen der Daten, bevor der eigentliche Inhalt gesendet
wird. Sie wird Uber die Stringverkettungs-Funktion (siehe Rezept 2.5) bestimmt. Zuerst
wird ein String erzeugt, der alle Felder enthilt, und dann wird String.length()genutzt,
um dessen Linge zu bestimmen.

Der folgende Sketch nutzt eine andere Technik, die kein RAM fiir Stringdaten benotigt. Er
nutzt eine neue, bei Arduino 1.0 eingefiihrte Fihigkeit, die die Zahl der ausgegebenen
Zeichen zuriickliefert. Die Funktion outputCSV zihlt die Anzahl der ausgegebenen Zeichen
und gibt sie zuriick. Sie wird zuerst aufgerufen, um die Gesamtzahl der tiber den seriellen
Port ausgegebenen Zeichen zu berechnen. Sie wird dann erneut aufgerufen, um die
Zeichen an den Ethernet-Client zu senden, der mit Pachube verbunden ist:

/*

* Update Pachube feed

* Sendet Temperatur im FlieRBkomma-Format von (bis zu) sechs LM35-Sensoren

*V2-API
*/

#include <SPI.h>
#include <Ethernet.h>

const int feedID = 2955; // ID des Feeds

const int streamCount = 6; //Zahl zu sendender Daten-Streams (Sensoren)
const long REFRESH_INTERVAL = 60000; // Jede Minute aktualisieren

// Bei Verbindungsfehler/-reset 10 Sekunden warten

// Darf nicht unter 5 Sekunden liegen

const long RETRY _INTERVAL =10000;

#define PACHUBE API KEY "Your key here . .. " // Ihren API-Schliissel eintragen

556 | Kapitel 15: Ethernet und Netzwerke

// Muss innerhalb des Netzwerks eindeutig sein
byte mac[] = { 0xCC, OXAC, OXBE, OXEF, OXFE, 0x91 };
char serverName[] = "www.pachube.com";

EthernetClient client;
void setup()

Serial.begin(9600);

Serial.println("Bereit");

if(Ethernet.begin(mac) ==0) { // Ethernet starten
Serial.println("Ethernet-Konfiguration ueber DHCP fehlgeschlagen");
while(true) //Weitermachen zwecklos, in Endlosschleife warten

)

}
}

void loop()
{

int contentlen = outputCSV(Serial); // Zahl der Zeichen ermitteln
if(putFeed(feedID, contentlen) == true){
Serial.println("Feed aktualisiert");
delay(REFRESH_INTERVAL);

else{
Serial.println("Konnte Feed nicht aktualisieren");
delay(RETRY_INTERVAL);

}

// true zurilickgeben, wenn Verbindung hergestellt und Daten gesendet werden konnten
boolean putFeed(int feedId, int length)
{
boolean result = false;
if (client.connect(serverName, 80)>0) {
Serial.print("Verbinde Feed "); Serial.println(feedId);
client.print("PUT /v2/feeds/");
client.print(feedld);
client.print(".csv HTTP/1.1\r\nHost: api.pachube.com\r\nX-PachubeApiKey: ");
client.print(PACHUBE_API KEY);
client.print("\r\nUser-Agent: Arduino 1.0");
client.print("\r\nContent-Type: text/csv\r\nContent-Length: ");
client.println(length+2, DEC); // allow for cr/1f
client.printIn("Connection: close");
client.println("\r\n");
outputCSV(client);
client.println("\r\n");

else {
Serial.println("Verbindung fehlgeschlagen");

}

// response string

if (client.connected()) {
Serial.println("Verbunden");
if(client.find("HTTP/1.1") && client.find("200 OK")){

result = true;

}

15.16 Informationen an Pachube senden

557

else
Serial.println("Trenne Verbindung - kein 200 0K");
}

else {
Serial.println("Verbindung getrent");

client.stop();
client.flush();
return result;

}
int outputCSV(Stream &stream)

int count = 0;
for(int id = 0; id < streamCount; id++) {
float temperature = getTemperature(id);
count += stream.print(id,DEC);
count += stream.print(',");
count += stream.print(temperature,1); // Eine Stelle hinterm Komma
count += stream.print("\n");
}

return count;

}

float getTemperature(int inPin)

int value = analogRead(inPin);
float millivolts = (value / 1024.0) * 5000; // Siehe Rezept 6.8
returnmillivolts / 10; // 10mV pro Grad Celsius

}

558 | Kapitel 15: Ethernet und Netzwerke

KAPITEL 16
Bibliotheken nutzen,
andern und aufbauen

16.0 Einfiihrung

Bibliotheken erweitern die Funktionalitdt der Arduino-Umgebung. Sie erweitern die zur
Vertiigung stehenden Befehle um Fihigkeiten, die im Arduino-Kern nicht zur Verfiigung
stehen. Mit Bibliotheken kénnen Sie zusitzliche Features hinzuftigen, die jedem Sketch
zur Verfiigung stehen, sobald die Bibliothek installiert ist.

Die Arduino-Software-Distribution enthilt fest integrierte Bibliotheken, die gingige Auf-
gaben tibernehmen. Diese Bibliotheken werden in Rezept 16.1 diskutiert.

Bibliotheken stellen auch eine gute Moglichkeit dar, Code zu teilen, der fiir andere
niitzlich sein konnte. Viele Bibliotheken von Drittanbietern stellen spezialisierte Fahig-
keiten zur Verfugung. Sie konnen im Arduino Playground und tiber andere Sites herunter-
geladen werden. Viele der in den fritheren Kapitel behandelten Bauelemente nutzen
Bibliotheken, um den Zugriff auf diese Geriite zu vereinfachen.

Bibliotheken konnen aber auch komplexen Code kapseln, um dessen Verwendung zu
vereinfachen. Ein Beispiel ist die bei Arduino mitgelieferte Wire-Bibliothek, die einen
GroRteil der Komplexitidt der Hardware-Kommunikation auf unterster Ebene vor uns
versteckt (siehe Kapitel 13).

Dieses Kapitel erldutert, wie man Bibliotheken nutzt und anpasst. Es zeigt auch, wie man
eigene Bibliotheken aufbaut.

16.1 Mitgelieferte Bibliotheken nutzen

Problem

Sie wollen Bibliotheken in Threm Sketch nutzen, die bei der Arduino-Distribution mit-
geliefert werden.

| 559

Losung

Dieses Rezept zeigt, wie Sie Funktionen einer Arduino-Bibliothek in Threm Sketch nutzen
konnen.

Eine Liste der verfugbaren Bibliotheken kénnen Sie sich im IDE-Ment iiber Sketch—Im-
port Library anzeigen lassen. Es erscheint eine Liste mit allen verfiigbaren Bibliotheken.
Etwa das erste Dutzend sind die Bibliotheken, die mit Arduino mitgeliefert werden. Eine
horizontale Linie trennt diese von den Bibliotheken, die Sie selbst heruntergeladen und
installiert haben.

Klicken Sie eine Bibliothek an, wird sie in den aktuellen Sketch eingebunden, indem die
folgende Zeile zu Beginn des Sketches eingeftigt wird:

#include <NamedergewdhIltenBibliothek.h>

Das sorgt dafiir, dass die Funktionen der Bibliothek in Threm Sketch zur Verfiigung
stehen.

R

og Die Arduino-IDE aktualisiert die Liste der verfiigbaren Bibliotheken nur

beim Start. Wenn Sie eine Bibliothek installieren, nachem die IDE bereits

4 lauft, miissen Sie die IDE beenden und neu starten, damit die neue Biblio-
thek erkannt wird.

Die Arduino-Bibliotheken sind in der Referenz auf http://arduino.cc/en/Reference/Libraries
dokumentiert und jede Bibliothek enthilt Beispiel-Sketches, die ihre Verwendung de-
monstrieren. Kapitel 1 zeigt, wie man in der IDE an die Beispiele gelangt.

Die bei Arduino Version 1.0 enthaltenen Bibliotheken sind:

EEPROM
Liest und schreibt Daten aus/in Speicher, dessen Inhalt auch erhalten bleibt, wenn
der Strom ausgeschaltet wird. Siehe Kapitel 17.

Ethernet
Wird zur Kommunikation mit dem Arduino Ethernet-Shield oder Arduino Ethernet-
Board genutzt. Siehe Kapitel 15.

Firmata
Ein Protokoll, das die serielle Kommunikation und die Steuerung des Boards verein-
facht.

LiquidCrystal
Zur Steuerung kompatibler LC-Displays; siehe Kapitel 11.

SD
Lesen und Schreiben von Dateien von/an SD-Karten iiber externe Hardware.

Servo
Steuerung von Servomotoren; sieche Kapitel 8.

560 | Kapitel 16: Bibliotheken nutzen, andern und aufbauen

SoftwareSerial
Stellt zusitzliche serielle Ports bereit.

SPI
Wird fiir Ethernet- und SPI-Hardware genutzt; siehe Kapitel 13.

Stepper
Steuerung von Schrittmotoren; siehe Kapitel 8.

Wire
Zur Steuerung von mit dem Arduino verbundenen 12C-Geriten; siehe Kapitel 13.

Die beiden folgenden Bibliotheken finden sich in Releases vor Arduino 1.0, sind aber nicht
langer Teil der Arduino-Distribution:

Matrix
Hilft bei der Steuerung einer LED-Matrix; siehe Kapitel 7.

Sprite
Sprites fiir eine LED-Matrix.

Diskussion

Mit einer bestimmten Hardware innerhalb des Arduino-Chips arbeitende Bibliotheken
funktionieren nur mit vordefinierten Pins. Beispiele fiir diese Art Bibliotheken sind Wire
und SPI. Bibliotheken, die dem Benutzer die Wahl der Pins erlauben, erledigen das
iiblicherweise in setup; Servo, LiquidCrystal und Stepper sind Beispiele fiir diese Art von
Bibliotheken. Informationen zur Konfiguration finden Sie in der Dokumentation der
jeweiligen Bibliothek.

Das #include einer Bibliothek fiigt den Bibliothekscode hinter den Kulissen in Thren
Sketch ein. Das bedeutet, dass sich die GroRe Thres Sketches (wie sie am Ende der Kom-
pilierung gemeldet wird) erhoht, aber der Arduino Build-Prozess ist clever genug, nur den
Teil der Bibliothek einzufiigen, den der Sketch tatsichlich verwendet. Sie miissen sich also
keine Gedanken um den Speicherbedarf von Methoden machen, die gar nicht verwendet
werden. Daher miissen Sie sich auch keine Gedanken darum machen, ob ungenutzte
Funktionen die Codemenge reduzieren, die Sie in den Sketch packen konnen.

Die bei Arduino mitgelieferten Bibliotheken (und viele Bibliotheken von Drittanbietern)
enthalten Beispiel-Sketches, die die Verwendung der Bibliothek demonstrieren. Diese sind
iiber das Menti File~>Examples zuginglich.

Siehe auch

Die Arduino-Referenz fiir Bibliotheken: http://arduino.cc/en/Reference/Libraries

16.1 Mitgelieferte Bibliotheken nutzen | 561

16.2 Bibliotheken von Drittanbietern installieren

Problem

Sie wollen eine Bibliothek fiir den Arduino nutzen, die nicht in der Standard-Distribution
enthalten ist.

Losung

Laden Sie die Bibliothek herunter, die hiufig in Form einer .zip-Datei vorliegt. Entpacken
Sie diese Datei und Sie erhalten einen Ordner, der der gleichen Namen hat wie die
Bibliothek. Dieser Ordner muss in einen Ordner namens libraries im Arduino-Dokumen-
tenordner kopiert werden. Um diesen Ordner zu finden, 6ffnen Sie Preferences (Ardui-
no—Preferences auf dem Mac; File>Preferences unter Windows) und notieren sich die
Position des Sketchbooks. Wechseln Sie mit einem Dateisystem-Browser (Windows
Explorer oder Mac OS X Finder) oder iiber das Terminal in dieses Verzeichnis. Gibt es
keinen libraries-Ordner, legen Sie einen an und kopieren den entpackten Ordner dort
hinein.

Wenn die Arduino IDE noch liduft, beenden und starten Sie sie neu. Die IDE durchsucht
diesen Ordner nur beim Start nach Bibliotheken. Wenn Sie sich nun das Meni
Sketch—Import Library ansehen, erscheint am unteren Rand (unter der grauen Linie und
dem Wort Contributed) die gerade hinzugefiigte Bibliothek.

Enthilt die Bibliothek Beispiel-Sketches, konnen Sie diese iiber das IDE-Menii ansehen.
Klicken Sie auf File>Examples und Sie finden die Beispiele unter dem Namen der
Bibliothek in einem Abschnitt zwischen den allgemeinen Beispielen und den Beispielen
zu den mit Arduino ausgelieferten Bibliotheken.

Diskussion

Eine grofle Zahl von Bibliotheken steht von Drittanbietern zur Verfiigung. Viele sind von
hoher Qualitit, werden aktiv gepflegt und umfassen eine gute Dokumentation sowie
Beispiel-Sketches. Der Arduino Playground ist ein guter Ort, um nach Bibliotheken zu
suchen: http://www.arduino.cc/playground/.

Achten Sie darauf, Bibliotheken mit einer guten Dokumentation und mit Beispielen zu
nutzen. Schauen Sie in den Arduino-Foren, ob es Threads (Diskussionen) gibt, die diese
Bibliothek behandeln. Bibliotheken, die fir frithe Arduino-Versionen entwickelt wurden,
koénnen Probleme bereiten, wenn man sie mit der neuesten Arduino-Version nutzt.
Moglicherweise miissen Sie sehr viel lesen (die Threads beliebter Bibliotheken enthalten
Hunderte Postings), um Informationen dariiber zu finden, wie man iltere Bibliotheken
mit der neuesten Arduino-Release nutzen kann.

Wenn die Bibliotheks-Beispiele nicht im Examples-Menti erscheinen, oder wenn Sie die
Meldung erhalten, dass die Bibliothek nicht gefunden werden konnte (»Library not
found«), dann priifen Sie, ob der Bibliotheksordner am richtigen Ort liegt und ob der

562 | Kapitel 16: Bibliotheken nutzen, andern und aufbauen

Name richtig geschrieben wurde. Ein Bibliotheksordner namens <BibliotheksName>
muss eine Datei namens <LibraryName>.h in genau der gleichen Schreibweise enthalten.
Stellen Sie sicher, dass auch alle weiteren Dateien im Ordner vorhanden sind, die von der
Bibliothek benotigt werden.

16.3 Eine Bibliothek anpassen

Problem

Sie mochten das Verhalten einer Bibliothek anpassen, etwa um deren Fihigkeiten zu
erweitern. So unterstiitzt die TimeAlarms-Bibliothek aus Kapitel 12 nur sechs Alarme, Sie
benotigen aber mehr (siche Rezept 12.5).

Losung

Die Time- und TimeAlarms-Bibliotheken werden in Kapitel 12 beschrieben. Sehen Sie
sich Rezept 12.5 an, um sich mit der Standard-Funktionalitdt vertraut zu machen. Die
Bibliotheken konnen von der Website zu diesem Buch (http://shop.oreilly.com/product/
0636920022244.do), oder von http://www.arduino.cc/playground/uploads/Code/Time.zip
(dieser Download umfasst beide Bibliotheken) heruntergeladen werden.

Wenn Sie die Time- und TimeAlarms-Bibliotheken installiert haben, kompilieren Sie den
folgenden Sketch und laden ihn auf den Arduino hoch. Der Sketch versucht, sieben
Alarme einzurichten — einen mehr, als die Bibliothek unterstiitzt. Jeder Alarm-Task gibt
einfach die Task-Nummer aus:

/*

multiple alarms Sketch

Verwendet mehr Timer, als die Bibliothek standardmdRig unterstiitzt -

Sie missen die Header-Datei editieren, ummehr als 6 Alarme zu unterstiitzen
*/

#include <Time.h>
#include <TimeAlarms.h>

int currentSeconds = 0;
void setup()
Serial.begin(9600);

// create 7 alarm tasks

Alarm.timerRepeat(1, repeatTaski);
Alarm.timerRepeat(2, repeatTask2);
Alarm.timerRepeat(3, repeatTask3);
Alarm.timerRepeat(4, repeatTask4);
Alarm.timerRepeat(5, repeatTasks);
Alarm.timerRepeat(6, repeatTask6);
Alarm.timerRepeat(7, repeatTask7); // 7ter Timer

16.3 Eine Bibliothek anpassen | 563

void repeatTask1()

Serial.print("Task1 ");
}

void repeatTask2()

Serial.print("Task2 ");

}
void repeatTask3()

{
Serial.print("Task3 ");

}
void repeatTask4()

Serial.print("Task4 ");
}

void repeatTask5()

Serial.print("Tasks ");
}

void repeatTask6()

Serial.print("Task6 ");
}

void repeatTask7()

Serial.print("Task7 ");
}

void loop()

if(second() != currentSeconds)
{
// Zeit jede Sekunde ausgeben
// Task-Nummer wird ausgegeben, wenn der Alarm fiir diesen Task angestoRen wird
Serial.println();
Serial.print(second());
Serial.print("->"
currentSeconds = second();
Alarm.delay(1); // Alarm.delay muss aufgerufen werden, um die Alarme zu verarbeiten

}

Offnen Sie den seriellen Monitor und sehen Sie sich die Ausgabe an. Nach neun Sekunden
sieht die Ausgabe so aus:

1->Task 1

2->Task 1 Task 2
3->Task 1 Task 3
4->Task 1 Task 2 Task 4
5->Task 1 Task 5

564 | Kapitel 16: Bibliotheken nutzen, andern und aufbauen

6->Task 1 Task 2 Task 3 Task 6
7->Task 1

8->Task 1 Task 2 Task 4
9->Task 1 Task 3

Der fur sieben Sekunden angesetzte Task wird nicht ausgefiihrt, weil die Bibliothek nur
sechs Timer-»Objekte« zur Verfugung stellt.

Sie konnen das erweitern, indem Sie die Bibliothek anpassen. Wechseln Sie in den
Bibliotheksordner in ihrem Arduino Documents-Ordner.

Sie konnen die Lage des Verzeichnisses mit dem Sketchbook-Ordner
ermitteln, indem Sie File—Preferences (unter Windows) oder Arduino
—Preferences (auf einem Mac) in der IDE auswihlen. Es erscheint eine
Dialogbox, die die Lage des Sketchbooks zeigt.

Wenn die Time- und TimeAlarms-Bibliotheken installiert sind (beide Bibliotheken befin-
den sich in der heruntergeladenen Datei), wechseln Sie in den Ordner Libraries\
TimeAlarms. Offnen Sie die Header-Datei TimeAlarms.h (weitere Details zu Header-Da-
teien finden Sie in Rezept 16.4). Sie kénnen die Datei mit einem beliebigen Texteditor
bearbeiten, z.B. mit Notepad unter Windows oder TextEdit auf einem Mac.

Am Anfang der TimeAlarms.h-Datei sehen Sie die folgenden Zeilen:

#ifndef TimeAlarms h
#tdefine TimeAlarms h

#include <inttypes.h>
#include "Time.h"
#define dtNBR_ALARMS 6

Die maximale Anzahl der Alarme wird durch dtNbr ALARMS definiert.

Andern Sie:

#define dtNBR_ALARMS 6
n:

#idefine dtNMBR_ALARMS 7

und speichern Sie die Datei.

Laden Sie den Sketch erneut auf den Arduino hoch, und diesmal sollte die Ausgabe wie
folgt aussehen:

1->Task 1

2->Task 1 Task 2

3->Task 1 Task 3

4->Task 1 Task 2 Task 4
5->Task 1 Task 5

6->Task 1 Task 2 Task 3 Task 6
7->Task 1 Task 7

8->Task 1 Task 2 Task 4
9->Task 1 Task 3

Wie Sie sehen, wird Task 7 jetzt nach sieben Sekunden aktiviert.

16.3 Eine Bibliothek anpassen | 565

Diskussion

Die von einer Bibliothek gebotenen Méglichkeiten sind haufig ein Kompromiss aus den
von der Bibliothek verwendeten Ressourcen und den fiir den Rest Thres Sketches zur
Verfigung stehenden Ressourcen. Hiufig ist es moglich, das an Thren Bedarf anzupassen.
Zum Beispiel konnten Sie die Speichernutzung der Serial-Bibliothek reduzieren miissen,
damit Threm Sketch mehr RAM zur Verfiigung steht. Oder Sie konnten den Speicherplatz
erhohen miissen, den eine Bibliothek in Threr Anwendung nutzt. Die Entwickler legen die
Bibliotheken tiblicherweise so an, dass sie typische Szenarieren abdecken. Benotigt Thre
Anwendung Fihigkeiten, die die Entwickler nicht beriicksichtigt haben, kénnen Sie die
Bibliothek méglicherweise so anpassen, dass sie Ihren Anforderungen gentigt.

In diesem Beispiel stellt die TimeAlarms-Bibliothek im RAM Platz fiir sechs Alarme bereit.
Jeder benotigt etwa ein Dutzend Bytes und der Platz wird auch dann reserviert, wenn
weniger genutzt werden. Die Anzahl der Alarme ist in der Header-Datei der Bibliothek
definiert (der Header ist eine Datei namens TimeAlarms.h im Ordner TimeAlarms). Hier
die ersten Zeilen aus TimeAlarms.h:

#ifndef TimeAlarms h
#define TimeAlarms h

#include <inttypes.h>
#include "Time.h"

#define dtNBR_ALARMS 6

Bei der TimeAlarms-Bibliothek wird die maximale Anzahl von Alarmen in einer #define-
Anweisung festgelegt. Da Sie diesen Wert erhoht und die Header-Datei gespeichert haben,
nutzt der Sketch die neue Obergrenze, wenn er neu kompiliert und hochgeladen wird.

Manchmal werden Konstanten genutzt, um Eigenschaften wie die Taktfrequenz eines
Boards zu definieren. Arbeitet das Board mit einer anderen Geschwindigkeit, kann es zu
unerwarteten Ergebnissen kommen. Sie kénnen das Problem dann iiblicherweise behe-
ben, indem Sie die Werte in der Header-Datei an ihr Board anpassen.

Wenn Sie die Header-Datei dndern und die Bibliothek dann gar nicht mehr funktioniert,
konnen Sie die Bibliothek erneut herunterladen und den Originalzustand wiederherstel-
len.

Siehe auch

Rezept 16.4 erliutert, wie man die Funktionalitit von Bibliotheken erweitern kann.

566 | Kapitel 16: Bibliotheken nutzen, andern und aufbauen

16.4 Eine eigene Bibliothek entwickeln

Problem

Sie wollen eine eigene Bibliothek entwickeln. Bibliotheken sind eine bequeme Méglich-
keit, Code wiederzuverwenden, und stellen eine gute Losung dar, um ihn mit anderen
Nutzern zu teilen.

Losung

Eine Bibliothek ist eine Sammlung von Methoden und Variablen, die in einem Format
kombiniert werden, die es Nutzern erméglicht, in standardisierter Form auf Funktionen
und Variablen zuzugreifen.

Die meisten Arduino-Bibliotheken sind als Klassen geschrieben. Wenn Sie mit C++ oder
Java vertraut sind, kennen Sie sich auch mit Klassen aus. Bibliotheken lassen sich aber
auch ohne Klassen entwickeln und dieses Rezept zeigt, wie das geht.

Das Rezept erldutert, wie Sie die BlinkLED-Funktion im Sketch aus Rezept 7.1 in eine
Bibliothek umwandeln.

In Rezept 7.1 finden Sie ein Schaltdiagramm und eine Erklidrung der Schaltung. Die
Bibliothek enthilt die blinkLED-Funktion aus diesem Rezept. Hier der Sketch, der zu
Testen der Bibliothek verwendet wird:

/*

*blinkLibTest

*/

#include "blinkLED.h"

const int firstledPin =3; // LED-Pins
const int secondLedPin = 5;
const int thirdLedPin =6;

void setup()

pinMode(firstlLedPin, OUTPUT); // LED-Pins aus Ausgang delarieren
pinMode(secondLedPin, OUTPUT);
pinMode(thirdLedPin, OUTPUT);

}

void loop()

// Jede LED flir 1000 Millisekunden (1 Sekunde) blinken lassen
blinkLED(firstLedPin, 1000);

blinkLED(secondlLedPin, 1000);

blinkLED(thirdLedPin, 1000);

}

16.4 Eine eigene Bibliothek entwickeln | 567

Die blinkLED-Funktion aus Rezept 7.1 muss aus dem Sketch entfernt und in eine separaten
Datei namens blinkLED.cpp verschoben werden (in der Diskussion werden Details zu den
.cpp-Dateien erldutert):

/* blinkLED.cpp

* einfache Bibliothek, die eine LED flr die angegebene Dauer in Millisekunden blinken l&dsst

*/

#include "Arduino.h" // Wprogram.h fiir Arduino-Versionen vor 1.0

#include "blinkLED.h"

// LED am angebenen Pin fiir die angegebene Dauer in Millisekunden blinken lassen
void blinkLED(int pin, int duration)

digitalwrite(pin, HIGH); // LED einschalten

delay(duration);

digitalWrite(pin, LOW); // LED ausschalten

delay(duration);

W N

o Die meisten Bibliotheksautoren sind Programmierer, die den von ihnen
“‘:‘ bevorzugten Programmier-Editor nutzen, doch Sie kénnen jeden beliebi-
b gen Texteditor verwenden, um diese Dateien anzulegen.

Legen Sie die Header-Datei blinkLED.h wie folgt an:

/*

* blinkLED.h

* Headerdatei fiir BlinkLED-Bibliothek
*/

#include "Arduino.h"

void blinkLED(int pin, int duration); // Funktions-Prototyp

Diskussion

Wir nennen die Bibliothek »blinkLED« und speichern sie im Bibliotheksordner (siehe
Rezept 16.2). Legen Sie ein Unterverzeichnis namens blinkLED im Bibliotheksordner an
und kopieren Sie blinkLED.h und blinkLED.cpp in dieses Verzeichnis.

Die Funktion blinkLED aus Rezept 7.1 wird aus dem Sketch entfernt und in eine Biblio-
theksdatei namens blink LED.cpp ausgelagert (Die Erweiterung .cpp steht fiir »C Plus Plus«
und enthilt den ausfiihrbaren Code).

W8
o Die Begriffe Funktion und Methode werden in der Dokumentation von
L) Arduino-Bibliotheken genutzt, um Codeblécke wie blinkLED zu referenzie-
Wwh . . " . " .
. ren. Der Begriff Methode wird fiir Funktionsblécke in Klassen verwendet.

Beide Begriffe stehen fiir die Funktionsblocke, die durch die Bibliothek
zugénglich gemacht werden.

Die Datei blinkLED.cpp enthilt die Funktion blinkLED, die mit dem Code aus Rezept 7.1
identisch ist. Zusitzlich wurden am Anfang die folgenden beiden Zeilen hinzugefiigt:

568 | Kapitel 16: Bibliotheken nutzen, andern und aufbauen

#include "Arduino.h" // Arduino include
#include "blinkLED.h"

Die Zeile #include "Arduino.h" wird von Bibliotheken benétigt, die Arduino-Funktionen
oder -Konstanten verwenden. Ohne diese Zeile meldet der Compiler Fehler fiir alle in
Threm Sketch genutzten Arduino-Funktionen.

W 8

A
AN Arduino.h wurde mit der Release 1.0 eingefithrt und ersetzt WProgram.h.
ﬁ:\ Wenn Sie Sketches mit #lteren Releases kompilieren, kénnen Sie die
i folgenden bedingten Includes nutzen, um die richtige Variante einzubin-

den:

#if ARDUINO >= 100

#include "Arduino.h // flr 1.0 und hther
#else

#include "WProgram.h" // fiir dltere Releases
#endif

Die nichste Zeile, #include "blinkLED.h", bindet die Funktonsdefinitionen (auch Proto-
typen genannt) in Thre Bibliothek ein. Der Arduino Build-Prozess erzeugt bei der Kom-
pilierung automatisch Prototypen fiir alle Funktionen — fiir Bibliotheken werden aber
keine Prototypen erzeugt, d.h. Sie miissen fur diese Prototypen eine Header-Datei
anlegen. Es ist eben diese Header-Datei, die in einen Sketch eingefiigt wird, wenn Sie
eine Bibliothek tiber die IDE importieren (siehe Rezept 16.1).

W N

AN Jede Bibliothek muss eine Datei besitzen, die die Namen der bereitgestell-
"‘:\ ten Funktionen deklariert. Diese Datei wird als Header-Datei (oder auch
N Include-Datei) bezeichnet und hat die Form <BibliotheksName>.h. In

unserem Beispiel heiRlt die Header-Datei blinkLED.h und liegt im gleichen
Ordner wie blinkLED.cpp.

Die Header-Datei fiir unsere Bibliothek ist simpel. Sie deklariert nur eine Funktion:
void blinkLED(int pin, int duration); // Funktions-Prototyp

Das sieht der Funktionsdefinition in blink LED.cpp sehr dhnlich:
void blinkLED(int pin, int duration)

Doch es gibt einen kleinen, aber feinen Unterschied. An den Prototypen in der Header-
Datei ist ein Semikolon angehangen. Das teilt dem Compiler mit, dass es sich nur um eine
Deklaration der Form der Funktion handelt, und nicht um den Code. Die Quelldatei
blinkLED.cpp enthilt dieses Semikolon nicht, und das informiert den Compiler dariiber,
dass es sich um den Quellcode der Funktion handelt.

N

Bibliotheken kénnen mehr als eine Header- und mehr als eine Implemen-
tierungsdatei verwenden. Es muss aber zumindest einen Header geben, der
.+ mit dem Namen der Bibliothek iibereinstimmt. Eben diese Datei wird am
Anfang Thres Sketches eingefiigt, wenn Sie eine Bibliothek importieren.

16.4 Eine eigene Bibliothek entwickeln | 569

Ein gutes Buch zu C++ wird beschreiben, wie man Header- und .cpp-Dateien zur Ent-
wicklung von Modulen einsetzt. Im Siehe auch-Abschnitt dieses Rezepts finden Sie eine
Auswahl.

Sind blink LED.cpp und blinkLED.h am richtigen Platz, schliefen Sie die IDE und starten
Sie sie erneut.

W8
. Die Arduino-IDE aktualisiert die verfiigbaren Bibliotheken nur beim Start.
ﬁ:‘ Wenn Sie eine Bibliothek anlegen, wihrend die IDE lduft, miissen Sie die
o IDE beenden und wieder neu starten, damit die Bibliothek erkannt wird.

Wenn Sie den blinkLibTest-Sketch hochladen, sollten die drei LEDs blinken.

Die Bibliothek um zusizliche Funktionen zu erweitern, ist einfach. Zum Beispiel kénnen
Sie einige Konstanten aufnehmen. Die Benutzer der Bibliothek kénnen dann diese selbst-
erklirenden Konstanten anstelle von Millisekunden-Angaben nutzen.

Fiigen Sie die drei folgenden Zeilen mit Konstanten hinzu, die traditionell vor dem ersten
Funktionsprototypen stehen:

// Konstanten fiir Blinkdauer
const int BLINK_SHORT = 250;
const int BLINK_MEDIUM = 500;
const int BLINK_LONG = 1000;

void blinkLED(int pin, int duration); // Funktions-Prototyp

Andern Sie den loop-Code wie folgt und laden Sie den Sketch hoch, um sich die
unterschiedlichen Blinkgeschwindigkeiten anzusehen:

void loop()

blinkLED(firstlLedPin, BLINK_SHORT);
blinkLED(secondLedPin, BLINK_MEDIUM);
blinkLED(thirdLedPin, BLINK_LONG);

Sie miissen die IDE nur schliefen und neu starten, wenn Sie den Biblio-
theksordner neu angelegt haben, nicht aber bei weiteren Anderungen an
der Bibliothek. Ab Arduino-Release 0017 (und hoher) eingebundene Bib-
liotheken werden jedesmal neu kompiliert, wenn der Sketch kompiliert
wird. Bei Arduino-Releases vor 0017 musste die Objektdatei der Biblio-
thek geloscht werden, damit die Bibliothek neu kompiliert und Anderun-
gen integriert wurden.

Neue Funktionen koénnen einfach hinzugefiigt werden. Das folgende Beispiel fiigt eine
Funktion hinzu, die eine LED n mal blinken lisst, wobei der entsprechende Wert an die
Funktion tibergeben wird. Hier der loop-Code:

void loop()

blinkLED(firstlLedPin,BLINK SHORT, 5); // blinke 5 mal

570 | Kapitel 16: Bibliotheken nutzen, andern und aufbauen

blinkLED(secondLedPin,BLINK MEDIUM, 3); // blinke 3 mal
blinkLED(thirdLedPin, BLINK_LONG); // blinke 1 mal

}
Um diese Funktionalitit in die Bibliothek aufzunehmen, fiigen wir den Prototyp wie folgt
in blinkLED.h ein:

/*

*plinkLED.h

* Header-Datei fiir BLinkLED-Bibliothek
*/

#include "Arduino.h"

// Konstanten fiir Blinkdauer
const int BLINK_SHORT = 250;
const int BLINK_MEDIUM = 500;
const int BLINK_LONG = 1000;

void blinkLED(int pin, int duration);

// Neue Funktionmit Zdhler
void blinkLED(int pin, int duration, int repeats);

Fiigen Sie die Funktion in blinkLED.cpp ein:

/*
*blinkLED.cpp
* einfache Bibliothek, die eine LED fir die angegebene Dauer in Millisekunden blinken l&sst

*/
#include "Arduino.h" // Wprogram.h fiir altere Arduino-Versionen
#include "blinkLED.h"

// LED am angebenen Pin fiir die angegebene Dauer in Millisekunden blinken lassen
void blinkLED(int pin, int duration)

digitalWrite(pin, HIGH); //LEDan
delay(duration);
digitalwrite(pin, LOW); // LED aus
delay(duration);

/* Funktion mit Zahler */
void blinkLED(int pin, int duration, int repeats)

while(repeats)

blinkLED(pin, duration);
repeats = repeats -1;

}

Sie konnen eine Datei namens keywords.txt anlegen, wenn Sie eine Syntaxhervorhebung
wiinschen (das Einfirben von Schliisselwortern beim Bearbeiten eines Sketches in der
IDE). Das ist eine Textdatei, die den Namen des Schliisselwortes und seinen Typ angibt —
jeder Typ verwendet eine andere Farbe. Schliisselwort und Typ miissen durch einen

16.4 Eine eigene Bibliothek entwickeln | 571

Tabulator (kein Leerzeichen) getrennt sein. Speichern Sie zum Beispiel folgende Datei als
keywords.txt im blink LED-Ordner:

ST S
Methoden und Funktionen (KEYWORD2)
HHEHHHHHHHH
blinkLED KEYWORD2
HHHHHEHH
Konstanten (LITERAL1)

SHHHHEHE AR
BLINK_SHORT LITERAL1

BLINK MEDIUM LITERAL1

BLINK LONG LITERAL1

R

Al
o Sie miissen die IDE beenden und neu starten, wenn Sie eine neue Biblio-
ﬁ:‘ thek anlegen oder die keywords.txi-Datei modifizieren. Sie miissen sie
o nicht neu starten, wenn Sie Code- (.c oder .cpp) oder Header-Dateien (.h)

bearbeiten.

Siehe auch

Weitere Beispiele zur Entwicklung einer Bibliothek finden Sie in Rezept 16.5.
»Writing a Library for Arduino«: http://www.arduino.cc/en/Hacking/LibraryTutorial
Beachten Sie auch folgende Biicher zu C++:

* Practical C++ Programming von Steve Oualline (O’Reilly; Suchen Sie danach auf
www.oreilly.de)

* C++ Primer Plus von Stephen Prata (Sams)

* C++ Primer von Stanley B. Lippman, Josée Lajoie und Barbara E. Moo (Addison-
Wesley Professional)

16.5 Eine Bibliothek entwickeln, die andere Bibliotheken
nutzt

Problem

Sie wollen eine Bibliothek entwickeln, die die Funktionalitit einer oder mehrerer existie-
render Bibliothek(en) nutzt. Zum Beispiel wollen Sie die Wire-Bibliothek verwenden, um
Daten von einem Wii Nunchuck-Controller abzurufen.

Losung

Dieses Rezept nutzt die in Rezept 13.2 beschriebenen Funktionen, um iiber die Wire-
Bibliothek mit einem Wii Nunchuck zu kommunizieren.

572 | Kapitel 16: Bibliotheken nutzen, andern und aufbauen

Legen Sie einen Ordner namens Nunchuck im Bibliotheksverzeichnis an (Details zur Da-
teistruktur einer Bibliothek finden Sie in Rezept 16.4). Legen Sie eine Datei namens
Nunchuck.h an, die den folgenden Code enthilt:

/*

* Nunchuck.h

* Arduino-Bibliothek fiir Wii Nunchuck
*/

#ifndef Nunchuck included
#define Nunchuck included

// Identitdten fur alle vom Wii Nunchuck zuriickgelieferten Felder
enum nunchuckItems { wii joyX, wii joyY, wii accelX, wii accelY, wii accelZ,
wii_btnC, wii_btnZ, wii_ItemCount };

// Pins neben I2C als Spannung und Masse flir Nunchuck verwenden
void nunchuckSetPowerpins();

// 12C-Interface fir Nunchuck initialisieren
void nunchuckInit();

// Daten vom Nunchuck anfordern
void nunchuckRequest();

// Daten vom Nunchuck abrufen,
// gibt true bei Erfolg zurlick, sonst false
bool nunchuckRead();

// Daten in ein Format umwandeln, das die meisten wiimote-Treiber erwarten
char nunchuckDecode (uint8 t x);

// angeforderten Wert zuriickliefern
int nunchuckGetvalue(int item);

#endif

Legen Sie eine Datei namens Nunchuck.cpp im Nunchuck-Ordner mit folgendem Inhalt an:
/*
* Nunchuck. cpp

* Arduino-Bibliothek fiir wii Nunchuck
*/

#include "Arduino.h" // Arduino

#include "Wire.h" // Wire (I2C)
#include "Nunchuck.h" // Defines dieser Bibliothek

// Definitionen fur Standard Arduino-Board (19 und 18 fiir Mega)
const int vccPin = 17; // +v und Masse liber diese Pins
const int gndPin = 16;

const int datalength = 6; // Anzahl anzufordernder Bytes
static byte rawData[datalength]; // Array flir Nunchuck-Daten

16.5 Eine Bibliothek entwickeln, die andere Bibliotheken nutzt | 573

// Pins neben I2C als Spannungsversorgung und Masse fiir Nunchuck verwenden
void nunchuckSetPowerpins()

pinMode(gndPin, OUTPUT); // Versorgungspins einstellen
pinMode(vccPin, OUTPUT);

digitalWrite(gndPin, LOW);

digitalWrite(vccPin, HIGH);

delay(100); // Warten, dass sich die Spannungsversorgung stabilisiert

// 12C-Interface fiir Nunchuck initialisieren

void nunchuckInit()

{
Wire.begin(); // 12C-Bus als Master betreten
Wire.beginTransmission(0x52);// Ubertragung an Gerdt 0x52
Wire.write((byte)ox40); // Speicheradresse senden
Wire.write((byte)ox00); //Null senden.
Wire.endTransmission(); // Ubertragung beenden

}

// Daten vom Nunchuck anfordern

void nunchuckRequest()

{
Wire.beginTransmission(0x52);// Ubertragung an Gerat 0x52
Wire.write((byte)ox00);// Ein Byte senden
Wire.endTransmission();// Ubertragung beenden

}

// Daten vom Nunchuck empfangen,
// gibt true bei Erfolg zuriick, anderenfalls false
bool nunchuckRead()
{
byte cnt=0;
Wire.requestFrom (0x52, datalLength);// Daten vom Nunchuck anfordern
while (Wire.available ()) {
byte x = Wire.read();
rawData[cnt] = nunchuckDecode(x);
cnt++;

nunchuckRequest(); // Nachste Nutzdaten anfordern
if (cnt >= datalength)

return true; // Erfolg, wennalle 6 Bytes empfangen wurden
else

return false; // Fehler

}

// Daten in ein Format umwandeln, das die meisten wiimote-Treiber erwarten
char nunchuckDecode (byte x)

{

return (x * 0x17) + 0x17;

}

// Angeforderten Wert abrufen
int nunchuckGetValue(int item)

if(item<=wii accelz)
return (int)rawData[item];

574

| Kapitel 16: Bibliotheken nutzen, dndern und aufbauen

else if(item ==wii btnZ)

return bitRead(rawData[5], 0) ? 0: 1;
else if(item ==wii btnC)

return bitRead(rawData[5], 1) ? 0: 1;

}

SchlieRen Sie den Nunchuck wie in Rezept 13.2 an, und nutzen Sie den folgenden Sketch,
um die Bibliothek zu testen (wenn die IDE bereits lduft, wihrend Sie diese beiden Dateien
anlegen, beenden und starten Sie die IDE neu, damit die neue Bibliothek auftaucht):

/*

*WiichuckSerial
*

* Nutzt Nunchuck-Bibliothek, um Sensorwerte an den seriellen Port zu senden
*/

#include <Wire.h>
#include "Nunchuck.h"

void setup()

Serial.begin(9600);

nunchuckSetPowerpins();

nunchuckInit(); // Initialisierungs-Handshake
nunchuckRead(); // Ersten Aufruf ignorieren
delay(50);

void loop()
{

nunchuckRead();
Serial.print("H,"); //Header
for(int i=0; i< 5; i++) // Werte des Beschleunigungsmessers und der Buttons ausgeben

{
Serial.print(nunchuckGetValue(wii accelX+ i), DEC);
Serial.write(',");

Serial.println();
delay(20); // Pause in Millisekunden

Diskussion

Um eine andere Bibliothek einzubinden, verwenden Sie wie in einem normalen Sketch die
include-Anweisung. Es ist sinnvoll, in Threr Dokumentation Informationen zu allen von
Thnen verwendeten zusitzlichen Bibliotheken aufzufithren, insbesondere dann, wenn eine
Bibliothek benétigt wird, die nicht in der Standard-Distribution enthalten ist.

Der Hauptunterschied zwischen den Bibliotheks-Code um dem Sketch in Rezept 13.2
besteht im Einbinden von Nunchuck.h, das die Funktions-Prototypen enthilt. (Arduino
Sketch-Code erzeugt diese Prototypen stillschweigend fiir Sie, wihrend Prototypen fiir
Arduino-Bibliotheken explizit angelegt werden miissen).

16.5 Eine Bibliothek entwickeln, die andere Bibliotheken nutzt | 575

Hier ein weiteres Beispiel fiir eine Bibliothek. Sie verwendet eine C++-Klasse, um die
Bibliotheksfunktionen zu kapseln. Eine Klasse ist eine Programmiertechnik zur Gruppie-
rung von Funktionen und Variablen, die von den meisten Arduino-Bibliotheken verwen-
det wird.

Die Bibliothek kann beim Debugging helfen, indem sie Daten tiber die Wire-Bibliothek an
einen zweiten Arduino sendet. Das ist besonders niitzlich, wenn der serielle Hardware-
Port nicht verfiigbar ist und ein Software-Port aufgrund der zeitlichen Ablidufe nicht in
Frage kommt. Hier wird die print-Funktionalitdt des Arduino-Kerns zum Aufbau einer
neuen Bibliothek genutzt, die Ausgaben an 12C sendet. Die Verbindungen und der Code
werden in Rezept 13.9 behandelt. Die folgende Beschreibung zeigt, wie man diesen Code
in eine Bibliothek umwandelt.

Legen Sie einen Ordner namens i2cDebug im Bibliotheksverzeichis an (Details zur Datei-
struktur einer Bibliothek finden Sie in Rezept 16.4). Legen Sie eine Datei namens
i2cDebug.h mit dem folgenden Code an:

/*

*i2cDebug.h

*/

#ifndef i2cDebug_included
t#define i2cDebug included

#include <Arduino.h>
#include <Print.h> // Arduino print-Klasse

class i2cDebugClass : public Print
{
private:
int i2cAddress;
byte count;
size twrite(bytec);
public:
i2cDebugClass();
boolean begin(int id);

bl

extern i2cDebugClass i2cDebug; // das I2C-Debug-Objekt
#endif

Erzeugen Sie die folgende Datei namens i2cDebug.cpp im i2cDebug-Ordner:
/*
* 12cDebug.cpp
*/

#include <i2cDebug.h>
#include <Wire.h> // Arduino I2C-Bibliothek
i2cDebugClass: :i2cDebugClass()

{
}

576 | Kapitel 16: Bibliotheken nutzen, andern und aufbauen

boolean i2cDebugClass: :begin(int id)

{
i2cAddress = id; // Slave-Adresse speichern
Wire.begin(); // mit I2C-Bus verbinden (Adresse fiir Master optional)
return true;

}
size t i2cDebugClass::write(byte c)

if(count ==0)

{
// Exstes Zeichen der Ubertragung?
Wire.beginTransmission(i2cAddress); // An Gerat senden

}

Wire.write(c);

// Daten senden, wenn I2C-Puffer voll oder Zeilenende erreicht
// BUFFER_LENGTH ist in der Wire-Bibliothek definiert
if(++count >= BUFFER_LENGTH || c == "\n")

// Sende Daten, wenn Puffer voll oder Newline
Wire.endTransmission();
count = 0;

return 1; // ein Zeichen geschrieben

}

i2cDebugClass i2cDebug; // I2C-Debug-Objekt erzeugen

Die write-methode liefert size t zuriick. Dieser Wert ermoglicht es der
print-Funktion, die Zahl der ausgegebnen Zeichen zuriickzugeben. Das
wurde it Arduino 1.0 eingefithrt-davor haben write und print keine Werte
zuriickgegeben. Wenn ihre Bibliothek auf Stream oder Print basiert, miis-
sen Sie den Riickgabetyp in size t dndern.

Laden Sie den Beispiel-Sketch in die IDE:

/*

* 12cDebug

* Beispiel-Sketch fiir i2cDebug-Bibliothek
*/

#include <Wire.h> // Arduino I2C-Bibliothek
#include <i2cDebug.h>

const int address = 4; // Adresse des Kommunikationsgerdtes
const int sensorPin = 0; // Analoger Eingangspin des Sensors
int val; // Variable fiir Sensorwert

void setup()

Serial.begin(9600);
i2cDebug.begin(address);

16.5 Eine Bibliothek entwickeln, die andere Bibliotheken nutzt | 577

void loop()

// Spannung am Poti einlesen (val liegt zwischen 0 und 1023)
val = analogRead(sensorPin);

Serial.println(val);

i2cDebug.println(val);

Vergessen Sie nicht, die IDE neu zu starten, nachdem Sie den Bibliotheksordner angelegt
haben. Weitere Details zur Entwicklung einer Bibliothek finden Sie in Rezept 16.4.

Laden Sie den 12C-Slave-Sketch auf ein anderes Arduino-Board hoch und verschalten Sie
die Boards wie in Rezept 13.9 beschrieben. Die Ausgabe des Arduino-Boards mit Ihrer
Bibliothek sollte auf dem zweiten Board zu sehen sein.

Falls Sie mit C++-Klassen nicht vertraut sind, bieten folgende Biicher eine gute Einfiih-
rung:
* Programming Interactivity von Joshua Noble (O’Reilly; suche Sie danach www.
oreilly.de)

* C++ Primer von Stanley B. Lippman, Josée Lajoie und Barbara E. Moo (Addison-
Wesley Professional)

16.6 Bibliotheken von Drittanbietern an Arduino 1.0
anpassen

Problem

Sie wollen die Bibliothek eines Drittanbieters nutzen, die fiir Arduino-Releases vor 1.0
entwickelt wurde.

Losung

Bei den meisten Bibliotheken miissen nur wenige Zeilen geindert werden, damit sie unter
Arduino 1.0 laufen. Zum Beispiel muss einer oder mehrere dieser Includes:

#include "wiring.h"
#include "WProgram.h"
#include "WConstants.h"
#include "pins_arduino.h"

durch ein einzelnes Include ersetzt werden:

#include "Arduino.h"

W 8
A}
o Die Dateinamen kénnen zwischen spitzen Klammern oder Anfithrungs-
:‘,‘\ zeichen stehen.
\

578 | Kapitel 16: Bibliotheken nutzen, andern und aufbauen

Diskussion

Altere Bibliotheken, die sich unter Arduino 1.0 nicht kompilieren lassen, erzeugen eine
oder mehrere der folgenden Fehlermeldungen:

source file: error: wiring.h: No such file or directory

source file: error: WProgram.h: No such file or directory

source file: error: WConstants.h: No such file or directory
source file: error: pins_arduino.h: No such file or directory

»Source file« (Quelldatei) ist der vollstindige Pfad auf die Bibliotheksdatei, die aktualisiert
werden muss. Es wird eine Reihe weiterer Fehler geben, die aber daher rithren, dass die
angegebenen Dateien in der 1.0-Release nicht enthalten sind. Diese Fehler sollten ver-
schwinden, sobald Sie die alten Header-Dateien durch Arduino.h ersetzt haben. Die
Definitionen in diesen Dateien sind nun in Arduino.h enthalten, d.h. die Lésung besteht
darin, alle obigen Dateien durch ein einzelnes Include von Arduino.h zu ersetzen.

Soll Arduino 1.0 neben fritheren Kompilaten genutzt werden, kénnen Sie ein bedingtes
include nutzen (siehe Rezept 16.6):

#1if ARDUINO >= 100

#include "Arduino.h"

#else

// Diese Dateinamen werden in der Originalversion der Bibliothek verwendet

#include "wiring.h"

#include "pins arduino.h"

#endif

Siehe auch

Bibliotheken von Drittanbietern, die Serial, Ethernet und andere Funktionalititen nutzen,
deren Syntax sich bei Arduino 1.0 gedndert hat, verlangen zusitzliche Anpassungen am
Code. Details finden Sie in Anhang H und in den Kapiteln dieses Buches, die diese Funk-
tionalitdt behandeln.

16.6 Bibliotheken von Drittanbietern an Arduino 1.0 anpassen | 579

Symbole
4051-Multiplexer 172
802.15.4-Standard 463
+ (Addition) Operator 69
+= (Addition) Operator 68
& (Ampersand) 51
=, Zuweisungsoperator 62
&= (bindre UND-Maske) Operator 68
|= (binire ODER-Maske) Operator 68
<< (Bitshift links) Operator 84
>> (Bitshift rechts) Operator 84
& (bitweises UND) Operator 65
~ (bitwise Exclusive Or) operator 65
~ (bitwise negation) operator 65
| (bitweises ODER) Operator 65
{} (geschweifte Klammern) 54
/ (Division) Operator 69, 71
/= (Division) Operator 68
==, Gleich-Operator 61
> GrofRer-als-Operator 61
>=, GroRer-oder-gleich-Operator 61
<, Kleiner-als-Operator 61
<=, Kleiner-oder-gleich-Operator 61
&&, (logisches UND) Operator 64
|| (logisches ODER) Operator 64
% (Modulo) Operator 72, 198
* (Multiplikation) Operator 69
*= (Multiplikation) Operator 68
1=, Ungleich-Operator 61
! (NICHT) Operator 64
; (Semikolon)
in Funktionen 48, 51
in Header-Dateien 569
<<= (Linksshift) Operator 68
>>= (Rechtsshift) Operator 68
+, Stringoperator 41
- (Subtraktion) Operator 69
-= (Subtraktion) Operator 68

Index

A
abs, Funktion 7273
Abschwellen (LED) 257
Absolutwert von Zahlen 72
Abstand, messen 192
accel Sketch 240
Achse, Vorzeichen in Processing dndern 130
Adafruit Industries
Adafruit Motor Shield 295
Adafruit Wave Shield 338
Boarduino-Board 4
XBee-Adapter 464
ADC (analog-to-digital converter), Analog/
Digital-Wandler
(siehe auch analogRead, Funktion)
Addition (+) Operator 69
AdjustClockTime Sketch 407
ADXL320-Beschleunigungsmesser 239
AFMotor-Bibliothek 315
Aktionen
basierend auf Bedingungen 52
basierend auf Variablen 59
Aktuatoren aktivieren 478
Alarm
Funktion aufrufen per 412
Alarme
erzeugen 563
Allen, Charlie 267
Altman, Mitch 356
Ampersand (&) 51
amplitude, Definition 203
Analog/Digital-Wandler (analog-to-digital
converter ADC) 473
(siehe auch analogRead, Funktion)
AnalogMeter Sketch 286
Analogpins
40 mA pro Pin umgehen 251
Abstandsmessung 195
Anschlussbelegung 150
Anzahl der Ausginge erhohen 281

Index |

581

auf Spannungsinderungen reagieren 177
Daten in Logdateien speichern 136
Eingang einlesen 152
Helligkeit einer LED regeln 248
logische Namen 150
maximaler Pin-Strom 244
Messtemperatur 205
Multiple Inputs lesen 172
Rotation mit Gyroskop erkennen 226
Spannung einlesen 168
Spannung messen 179
Spannungen messen 175
visuelle Ausgabe und 241
Werte senden 123
Wertebereich dndern 170
analogRead, Funktion
Abstandsmessung 195
auf Spannungsinderungen reagieren 177
blinkende LED. Codebeispiel 18
detecting sound 202
Messdistanz 196
Sensoren und 183, 200
Servos steuern 295
Spannung einlesen 168
Spannung messen 180
Spannungen messen 175
Temperatur messen 205
weiterfiihrende Informationen 170
Wertebereich dndern 170
analogWrite, Funktion
Geschwindigkeit eines Biirstenmotors regeln
311
Helligkeit einer LED regeln 249
visuelle Ausgabe und 241
Animation
Herzschlag 262
Animationseffekt
Smiley 378
Anode
gemeinsame 252, 257
Anoden
Definition 243
Anweisungen
Folgen von, wiederholt ausfithren 54
wiederholen mit Zihlern 56
Anzeige (Display) siehe LC-Display
Arduino Leonardo
Board 3
einrichten 9

Arduino Leonardo-Boards
SCL- und SDA-Leitungen 422
USB-Maus emulieren 130
Arduino Mega
Anschlussbelegung 151
Arduino Mega-Board
GLCDs und 385
12C und 422
mehrere Tone gleichzeitig ausgeben 333
Pin-Anordnung 425
serielle Ports 91, 139
Arduino Playground 2, 562
Arduino Uno
Board 3
IDE installieren 6
Arduino UNO-Board
einrichten 8
Arduino-Board 2
Anschlussbelegung 150
einrichten 8
hochladen/ausfiihren des Blink-Sketches 13
Kommunikation zwischen 454
Linux-Umgebung 6
Mac-Umgebung 7
maximaler Pin-Strom 244
mehrere Tone gleichzeitig ausgeben 333
Pin-Anordnung 425
serielle Kommunikation 90
Spannung, Erwigungen 423
weitere Informationen 4
Windows-Umgebung 6
Arduino-Shields siehe Shields
Arduino-Software 2
IDE installieren 5
Versionskontrolle 16
Arduino-Umgebung
Arduino-Boards einrichten 8
ein Projekt beginnen 17
Einfithrung 1
IDE installieren 4
Arduino.h-Datei 569, 579
ArduinoMouse Sketch 128
Argumente
Definition 46
als Referenzen 51
array-Sketch 29
Arrays
Definition 31
LED-Matrix 279

582 | Index

in Sketches 29
Strings und 32, 37

ASCII-Zeichensatz

in numerische Werte umwandeln 102
Null 32

ATCN-Befehl 472
ATD-Befehl 472
ATDO02-Befehl 476
ATD13-Befehl 482
ATD14-Befehl 482
ATDH-Befehl 469
ATDL-Befehl 469
ATIA1234-Befehl 482
ATICFF-Befehl 482
ATID-Befehl 469, 476, 482
ATIR64-Befehl 476
ATIU1-Befehl 482
Atmel

ATmeg32U4-Controller 130

ATMY-Befehl 469, 472, 482
atoi, Funktion 43, 104

atol, Funktion 43, 104
ATRE-Befehl 476, 482
ATWR-Befehl 469, 482
Audio-Ausgabe 327

einfache Melodien spielen 331

LED ansteuern 335

mehrere Tone gleichzeitig ausgeben 333
MIDI steuern 341

Synthesizer 344

Tone ausgeben 329

Tone erzeugen 335

Audio-Ausgabe output

WAV-Dateien abspielen 338

Audioausgabe

To6ne erkennen 200

Auduino Sketch 345
Aufbereitung von Webserver-Requests 519
auffiillen (padding), Strukturen 118

 tag 503
Babel-Fish-Ubersetzungsdienst 505
Balkenanzeige

LED-Matrix, Beispiel 268
mehrere LEDs aneinanderreihen 255

Balkendiagramme

aus selbstdefinierten Zeichen 383

Bargraph Sketch 255, 268
Basic_Strings Sketch 33

Battery Eliminator Circuit (BEC) 300
Baudrate

Definition 96

GPS 225

Serieller Monitor 225
BCD (binir kodierte Dezimalzahlen) 436
bed2dec, Funktion 436
BEC (Battery Eliminator Circuit) 300
Bedingungen

Aktionen basierend auf 52

aus Schleifen ausbrechen basierend auf 58

Kompilierung basierend auf 579
Beschleunigung, messen 239
Beschleunigungsmesser, Wii Nunchuck 239,

429

Bibliothek

andere Bibliotheken nutzen 572

entwickeln 572
Bibliotheken 559

anpassen 563

als Klassen 567

entwickeln 567

mitgelieferte 559

Sketches und 561

Speichernutzung 566

von Drittanbietern aktualisieren 578

von Drittanbietern installieren 562

weiterfithrende Informationen 560
Bilder (Images), auf LED-Matrix darstellen 262
binir kodierte Dezimalzahlen (BCD) 436
Binirformat

Daten empfangen im 119

Daten senden im 115

Sonderzeichen darstellen 377

Text senden im 98

Werte aus Processing 121
BinaryDataFromProcessing Sketch 122
bipolare Schrittmotoren 292

ansteuern 317

mit EasyDriver-Board ansteuern 320
bit, Funktion 81
bitClear, Funktion 81
bitFunctions Sketch 81
Bitmaps fiir GLC-Displays 389
bitRead, Funktion

Funktionalitit 81

mehrere Analogeinginge einlesen 174

mehrere Pinwerte senden 125
Bits

Pinwerte senden 123

Index | 583

setzen/lesen 80
verschieben (Shifting) 84
bits-Sketch 66
bitSet, Funktion 80
bitweise Operationen 65
bitWrite, Funktion 81
Blink Sketch
Cursor ein- und ausschalten 370
blink, Funktion 44, 371
Blink-Sketch
ausfithren 13
laden 10, 13
blink3 Sketch 47
BlinkLED, Funktion 567
blinkLibTest Sketch 567, 570
BlinkM Sketch 425
BlinkM-Modul 425
BlinkMTester Sketch 428
BlinkWithoutDelay Sketch 400
BlueSMiRF-Modul 489-490
Bluetooth Bee-Modul 489, 491
Bluetooth Mate-Modul 489
Bluetooth-Gerite, Kommunikation mit 489
Boards siehe Arduino-Boards
BOB-08669 Breakout-Board 200
boolean, Datentyp 26
Bray Terminal, Programm 97
Breadcrumbs-Projekt 226
break-Anweisung 59—60
Brushed_H_Bridge Sketch 310
Brushed_H_Bridge_Direction Sketch 312, 314
Brushed_H_Bridge_simple Sketch 306
Brushed_H_Bridge_simple2 Sketch 308
Biirsten- und biirstenlose Motoren 291
Drehrichtung mit H-Briicke steuern 306, 309
Drehrichtung steuern mit Sensoren 311
Geschwindigkeit mit H-Briicke steuern 309
Geschwindigkeit regeln mit Sensoren 311
per Fahrtregler steuern 299
iber Transistoren ansteuern 305
byte, Datentyp
Definition 26
verschieben (Shifting) von Bits 84
ByteOperators Sketch 85, 87

C

C, Sprache
Strings in Zahlen umwandeln 43
Strings und 37

C, Sprache, Strings und 35
camera Sketch 357
Canon Hack Development Kit 359
Carriage Return (\r) 107
case-Anweisung 254
ceil, Funktion 76
Celsius Temperaturskala 204, 442
char, Datentyp 26
character strings siehe strings
charAt, Funktion 34
Charlieplexing 244
about 265
LED-Matrix steuern iiber 265
Charlieplexing Sketch 265
client-Klasse (Webserver)
available-Methode 511
connect-Methode 495, 501
connected-Methode 511
find-Methode 503
findUntil-Methode 526
parseFloat-Methode 504
parselnt-Methode 503
println-Methode 512
read-Methode 511
CommaDelimitedInput Sketch 107
CommaDelimitedOutput Sketch 106
compareTo, Funktion 34
Computerbefehle, Servos steuern tiber 298
concat, Funktion 34, 41
configureRadio, Funktion 471
constants
weiterfithrende Informationen 156
constrain, Funktion 19
Conway, John 384
CoolTerm, Programm 97
CoolTerm-Programm 468
Coordinated Universal Time (UTC) 545
cos, Funktion 77
Countdown-Timer 160
CSV-Format, Beispiele 134, 551, 556
Cursor (LCD), ein- und ausschalten 370
cursorHide, Funktion 392
custom_char Sketch 378
customCharPixels Sketch 383
customChars Sketch 380
CuteCom, Programm 97

584 | Index

D

Datenblitter lesen 184
Datentypen
Erwigungen fiir Bindrformat 118
von Arduino unterstiitzte 25
Datum
Alarm basierend auf 412
ausgeben 406
Datum/Uhrzeit
Time-Bibliothek 405
Dauer
von Impulsen messen 402
Von Zeitverzogerungen bestimmen 398
dauerrotierende Servos 296
Dauerstrom-Treiber 252
Debounce Sketch 158
debounce, Funktion 159
Debugging
Bibliotheks-Unterstiitzung 576
Informationen an Computer senden 94
default (case-Anweisung) 61
DEG_TO_RAD Konstante 78
Dekodierung von IR-Signalen 350
delay Sketch 397
delay, Funktion
mehrere Tone gleichzeitig ausgeben 335
Tone ausgeben 331
Verzogerungen erzeugen 397
delayMicroseconds, Funktion 398
Dezimalformat
BCD und 436
Sonderzeichen darstellen 377
Text senden im 98

DHCP (Dynamic Host Configuration Protocol)

Drittanbieter-Bibliothek 499
IP-Adresse und 494, 498
Digi International 463
Digi-Key-Steckbrett 152
Digital-Thermometer 440
digitalClockDisplay, Funktion 409
digitale Pins
einlesen 23
Digitalkamera steuern 356
Digitalpins
40 mA pro Pin umgehen 251
als Eingang konfigurieren 150
Anschlussbelegung 150
Daten in Logdateien speichern 136
Einginge einlesen 150

ermittelt, wie lang ein Taster gedriickt
wurde 160
Input messen 151
interne Pullup-Widerstinde 156
LED-Matrix, Beispiel 259
logische Namen 150
maximaler Pin-Strom 244
Schlieflen eines Schalters erkennen 158
SPI-Gerite 425
Tastaturen einlesen 165
visuelle Ausgabe und 241
weiterfithrende Informationen 156
Werte senden 123
Zustand eines Schalters messen 152
digitalRead, Funktion
Funktionalitit 23, 150-151
Schalterstellung ermitteln 152
Spannung iiberwachen 154
weiterfithrende Informationen 156
digitalWrite, Funktion
digitale Ausgabe und 241
Funktionalitit 23
Hubmagnete und Relais steuern 301
interne Pullup-Widerstinde und 157
weiterfithrende Informationen 156
Diode
Entkopplungsdiode 304
Dioden
Definition 243
Display5vOrless Sketch 175
displayBlink, Funktion 371
DisplayMoreThan5V Sketch 180
displayNumber, Funktion 278, 447, 453
Division (/) Operator 69, 71
DNS (Domain Name System) 494
IP-Adressen auflosen 500
do...while-Schleife 55
doEncoder, Funktion 216
Domain Name System siche DNS
double, Datentyp 26, 28
doubleHeightBars, Funktion 384
doUpdate, Funktion 519
Drahtlose Kommunikation
802.15.4-Netzwerk 463
Aktuatoren aktivieren 478
Nachrichten senden 457
ZigBee-Netzwerk 463
drahtlose Kommunikation
mit Bluetooth-Geriiten 489
Fernbedienungen und 347

Index

585

Nachrichten senden an XBees 470
Nachrichten tiber Transceiver senden 483
Sensordaten zwischen XBees senden 473
draw, Funktion (Processing) 121
DrawBitmap, Funktion 389
drawBox, Funktion 392
Drehbewegung
messen 210, 213
messen mehrerer Drehbewegungen 213
Drehmoment, Motor 291
Drehrichtung
eines Biirstenmotors steuern 306
von Biirstenmotoren steuern 309, 311
Drehscheibe, Bewegung verfolgen 210, 215
Drehwinkelgeber
Bewegung einer Drehscheibe verfolgen 210,
215
Funktionalitit 212
Drehwinkelgeber einlesen 210
DS1307 RTC-Chip 415
DS1307RTC.h-Bibliothek 415
DS1337 RTC-Chip 415
Dual Tones Sketch 334
Dynamic Host Configuration Protocol siehe
DHCP
dynamische Speicherallozierung 35

E
EasyDriver-Board 320
Echtzeituhr (Real-Time Clock, RTC) 415, 435
EEPROM-Bibliothek 560
EEPROM-Speicher
anbinden 436
Elektronik
Einfithrungen 149
elektronische Fahrtregler
biirstenlose Motoren steuern 299
elektronische Geschwindigkeitsregelungen 291
elektronischer Fahrtregler 299
endsWith, Funktion 34
Entkopplungsdiode 304
Entprellen 158, 161
equals, Funktion 35
equalslgnoreCase, Funktion 35
Escape-Codes 392
Ethernet-Bibliothek 493, 560
begin, Funktion 497—-498
Sicherheit 511
Sketches und 511

Verbesserungen 495

von Drittanbietern, Erwigungen 579
Ethernet-Shield

einrichten 496

IP-Adresse und 498

MAC-Adresse und 497
EZ1Rangefinder Distance Sensor Sketch 194

F
fabs, Funktion 28
Fahrenheit Temperaturskala 204
Fahrtregler
biirstenlose Motoren steuern 299
Faludi, Robert 463
Farbe, von LEDs steuern 252
Fehlermeldungen
beim Hochladen von Sketches 14
Kompilierung 12, 579
Werte an Konstanten zuweisen 63
Fehlersuche
Geriteanschlisse 292
weiterfiihrende Informationen 15
XBee-Module 463
Fernbedienung 347
Digitalkamera steuern 356
Infrarot 347
IR-Signale dekodieren 350
Signale imitieren 354
Wechselstromgerite steuern 359
Fernbedienungen
drahtlose Kommunikation und 347
Fernseher, Text ausgeben iiber 390
Firmata-Bibliothek 127, 560
Flash-Speicher siehe Programmspeicher
FlieRkommazahlen
auf- und abrunden 76
Genauigkeit 28
in Sketches 27
Speicherverbrauch 176
FlieRkommazahlen auf- und abrunden 76
floor, Funktion 76
Fluss-Spannung 243
Fluss-Steuerung
Definition 119
Uberlegungen fiir Bindrformat 119
weiterfiihrende Informationen 119
for-Schleife
Anweisungen wiederholen mit Zihlern 56
LED-Matrix, Beispiel 262

586 | Index

ForLoop Sketch 56
formatierter Text

senden 98
Formulare, Webseiten und 523
Freeduino Motor Control Shield 314
FrequencyTimer2 library 270
FTDI-Treiber 7
FTDIUSBSerialDriver-Paket 7
functionReferences Sketch 50
Funktionen

Alarm zum Aufruf von 412

anlegen 45

Arduino-Referenz 49

mehrere Werte zuriickgeben 49

Namenskonventionen 48

Semikolon in 48, 51

trigonometrische 77

zu Sketches hinzufiigen 45
Funktionen, iberladen 46
Funktionsdeklaration, Definition 51
Funktionskopf 51
Funktionsrumpf 51
Funktionsiiberladung 117

G
Gegen-EMK 302
gemeinsame Anode 252, 257
gemeinsame Kathode 252, 257, 279
geschweifte Klammern {} 54
Geschwindigkeit
Bewegung einer Drehscheibe verfolgen 210
dauerrotierende Servos und 296
von Biirstenmotoren regeln 311
von Biirstenmotoren steuern 309
Geschwindigkeitsregelung 291
GET-Befehl 505, 508
getBytes, Funktion 35
getDistance, Funktion 198
getkey, Funktion 167
GettingStarted Sketch 147
getValue, Funktion 174, 434
GLC-Display (grafisches LCD) 363
GLC-Display (graphisches LCD)
Ausgabe an 410
Bitmaps entwerfen fiir 389
GLCD (graphisches LCD)
anschliefen 385
Anschliisse 385
GLCD Bibliothek 385
gled Sketch 387

GLCDdiags Diagnose-Sketch 388
GLCDImage Sketch 389
Gleich, (==) Operator 61
Gleichstrommotoren siche Biirsten- und biirs-
tenlose Motoren
globale Variablen 50, 163
GNU screen, Programm 97
Google Earth
Bewegung steuern in 131
GoogleEarth_FS Sketch 134
herunterladen 132
weiterfithrende Informationen 136
Google Finance 504, 506
Google Weather 506-507
Google XML API 507
GPS-Modul
Daten empfangen von 143
Position bestimmen per 221
GPS-Module
kreative Projekte 226
grafisches LC-Display siehe GLC-Display
Gravitech 7-Segment-Display-Shield 445
Greenwich Mean Time 545
GroRer-als, (>) Operator 61
GroRer-oder-gleich, (>=) Operator 61
Gyroskop, Rotation erkennen mit 226

H
.h Dateiendung 389
H-Briicke 291
bipolare Schrittmotoren ansteuern 317
Drehrichtung eines Biirstenmotors steuern
306
Drehrichtung von Biirstenmotoren steuern
309
Geschwindigkeit von Biirstenmotoren
steuern 309
Sensoren zur Steuerung der Drehrichtung
und Geschwindigkeit von
Biirstenmotoren 311
Hagman, Brett 331, 333
Hart, Mikal 101, 140, 222, 226
Header-Dateien 569
Helligkeit
steuern 243
Hello Matrix Sketch 280
Hexadezimalformat
Sonderzeichen darstellen 377
Text senden im 98
highByte, Funktion

Index | 587

Bindrdaten senden 116

weiterfithrende Informationen 83, 119
Hintergrundbeleuchtung (LCD) 365

Strom beschrinken 385
Hintergrundgeriusche 185
Hitachi HD44780 363364, 377
hiWord, Makro 86
HM55bCompass Sketch 231
HMC5883L Sketch 235
HMCS5883L-Magnetometer 235
Hochladen, Uploading 2
Hope REM12B-Module 483
Hostname, in IP-Adresse auflésen 500
HTML (HyperText Markup Language) 494

 tag 503

GET-Befehl 505, 508

POST-Befehl 505, 523, 527

Requests aufbereiten 519

<td>-Tag 522

<tr>-Tag 522
HTTP (Hypertext Transfer Protocol) 494
Hubmagnete und Relais 291

steuern 301
hueToRGB, Funktion 254, 425
HyperText Markup Language sieche HTML
Hypertext Transfer Protocol (HTTP) 494

|
12C (Inter-Integrated Circuit) 184, 421
7-Segment-Anzeigen steuern 445
EEPROM-Speicher anbinden 436
Kommunikation zwischen Arduino-Boards
454
Port-Expander integrieren 448
RGB-LEDs steuern 425
Richtungssensoren und 235
Temperatur messen 440
Verbindung mit Echtzeituhr 435
Wii Nunchuck-Beschleunigungsmesser 429
12C-7Segment Sketch 449
[2C_EEPROM Sketch 437
12C_Master Sketch 454, 456
[2C_RTC Sketch 435
[2C_Slave Sketch 455
[2C_Temperature Sketch 440
i2cEEPROM_Read, Funktion 439
i2cEEPROM_Write, Funktion 439
IDE (Integrated Development Environment) 2
installieren 4
Sketches bearbeiten mit 13

IEEE 802.15.4-Standard 463
if-Anweisung 53
if...else-Anweisung 53
Impuls
Impulsdauer messen 402
Include-Dateien 569
indexOf, Funktion 34
Infrarot-Technik technology siehe IR-Technik
(infrarot)
init, Funktion 25
.ino. Dateierweiterung 16—17
int, Datentyp
Definition 25
aus hoher-/niederwertigen Bytes bilden 87
hoher-/niederwertige Bytes extrahieren 85
verschieben (Shifting) von Bits 84
Integrated Development Environment siehe IDE
Inter-Integrated Circuit siehe 12C
Internet Protocol (IP) 494
Internet-Zeitserver 543
Interpolation, Technik 197
IOREF-Pin 9
IP (Internet Protocol) 494
IP-Adresse
automatisch beziehen 498
DNS und 500
eindeutig 511
fest kodiert 496
[P-Adressen
DNS und 494
lokal 494
IPAddress-Klasse
printTo-Methode 500
ir-distance Sketch 196
IR-Empfangsmodul 348
IR-Technik (Infrarot)
Fernbedienung und 347
IR-Technik (infrarot)
Fernbedienung und 348
Sensoren und 196
Signale dekodieren 350
Signale imitieren 354
IR_remote_detector Sketch 348
[Recv-Objekt
decode, Funktion 350
enableIRIn, Funktion 350
resume, Funktion 350
IRremote-Bibliothek 347—-348, 353
irSend Sketch 354
IRsend-Objekt 356

588 | Index

ITG-3200 Beispiel-Sketch 229
ITG-3200-Sensor 229
itoa, Funktion 42

J

Jaggars, Jesse 548
Jameco 2132349 Punktmatrixanzeige 259
Jameco-Steckbrett 152
Java
Bitmaps erzeugen 389
Robot-Klasse 130
split, Methode 108
Java language Processing open source tool
Java Sprache
Robot-Klasse 130
JeeLabs Website 486
JeeNode-Board 488
Joysticks
Beschleunigung und 239
Daten einlesen von 236
Google Earth steuern iiber 131
.jpg. Dateierweiterung 532
JSON-Format 495

K
Kathode
Definition 243
gemeinsam 252, 257, 279
Keypad Sketch 165
Klassen
Bibliotheken als 567
Definition 576
weiterfithrende Informationen 578
Kleiner-oder-gleich, (<=) Operator 61
Klinkenstecker 357
Klopfsensoren 199
Knight, Peter 345
KnightRider Sketch 258
Kodierungstechniken siehe Programmier-
techniken
kommaseparierter Text, in Gruppen
aufteilen 38
Kommunikationsprotokoll
Definition 92
Kommunikationsprotokolle
weiterfithrende Informationen 493
Kompass, Richtung bestimmen 231
Kompilierung
bedingte Kompilierung 579

Definition 10, 12

Fehlermeldungen 12, 579
Kondensator

an Sensoren anschlieflen 198
Konstanten

Werte zuweisen an 63
Konvertieren

Zahlen in Strings 41
Konvertierung

ASCII-Zeichen in numerische Werte 102

Spannungspegel 423

Strings in Zahlen 43, 104
KS0108-Panel 385
Kurzschluss 243

L
1.293 H-Briicke 311
L293D H-Briicke 306
Ladyada-Website 226, 341
LANC 359
lastIndexOf, Funktion 34-35
LC-Display 363
Anschliisse 365
Cursor ein- und ausschalten 370
Display ein- und ausschalten 370
Text formatieren 367
textbasiert 364
weiterfiihrende Informationen 367
LC-Displays 385
Ausgabe an 410
eigene Zeichen definieren 377
grofle Symbole darstellen 379
Pixel, kleiner als einzelnes Zeichen 382
Sonderzeichen darstellen 375
Text scrollen 371
leading Nullen 447
learnKeyCodes, Funktion 353
LED-Balkenanzeige, »abschwellend« 257
LED-Matrix
Bilder (Images) darstellen 262
mit Schieberegistern ansteuern 280
per Multiplexing steuern 259
iiber Charlieplexing steuern 265
LED_intensity Sketch 284
LED_state Sketch 270
LEDBrightness Sketch 248
LEDs
40 mA pro Pin umgehen 251
7-Segment-Anzeige ansteuern 274, 276

Index |

589

7-Segment-Anzeige steuern 445
7-Segment-Anzeigen ansteuern 451
Abstandsmessung 192
aneinanderreihen 255

anschliefen und nutzen 245
ansteuern 335

Anzahl der analogen Ausginge erhéhen 281

Ausgabe an 410
Balkenanzeige 255, 268
bei gedriickter Taste einschalten 152
blinkende, Codebeispiele 15, 17
detecting mouse movement 217
Digitalpins und 151
Erwigungen bei Widerstinden 261
Farbe steuern 252
Helligkeit regeln 248
Hochleistungs-LEDs ansteuern 249
IR-Fernbedienung und 348
IR-Signale imitieren 354
Klopfsensoren und 200
Lage bei neuen Boards 9
LED-Matrix ansteuern 279
maximaler Pin-Strom 244, 261
mehrfarbig 244
mit BlinkM-Modul steuern 425
motion erkennen 190
movement erkennen 185
Multiplexing und 244
technische Daten 243
Warnung bei niedriger Spannung 179
Widerstinde und 247, 251
LEDs Sketch 246
length, Funktion 35
Leone, Alex 282
less than (<) Operator 61
Licht
Lichtstirke messen 188
lichtempfindlicher Widerstand 17, 188
Linefeed (\n) 107
Linux-Umgebung
Arduino-IDE installieren 6
XBee Serie 1, Konfiguration 467
Liquid Crystal Display siehe LC-Display
LiquidCrystal-Bibliothek 98, 364, 560
clear, Funktion 369
display, Funktion 371
eigene Zeichen definieren 379
FormatText Sketch 367
Hello World Sketch 366
noDisplay Funktion 371

print, Funktion 368, 377
ScrollDisplayLeft, Funktion 372
ScrollDisplayRight, Funktion 372
setCursor, Funktion 368
Special Chars Sketch 375
weiterfithrende Informationen 367, 370
Lite-On LTC-4727]JR 276
Lite-On LTD-6440G 452
Im335 Sketch 206
LM335-Temperatursensor 206
Im35 Sketch 204
LM35 Temperatursensor 204
Logdateien, Daten speichern in 136
logische Operatoren 64
lokale IP-Adressen 494
LOL-Board 271
long, Datentyp
Definition 26
aus hoher-/niederwertigen Bytes bilden 87
hoher-/niederwertige Bytes extrahieren 85
verschieben (Shifting) von Bits 84
loop, Funktion 25
l6tfreie Steckbretter 152
lowByte, Funktion
Binirdaten senden 116
Funktionalitit 85
weiterfithrende Informationen 83, 119
lowWord, Makro 86
Itoa, Funktion 42

M
MAC-Adresse 494
eindeutig 497, 511
Mac-Umgebung
Arduino-IDE installieren 6
Mauszeiger bewegen 127
XBee Serie 1, Konfiguration 467
main, Funktion 25
makeLong, Makro 88
Makros 86
Map Sketch 170
map, Funktion
blinkende LED, Codebeipiel 19
Erwigungen bei Servos 296
mehrere LEDs aneinanderreihen 256
weiterfiihrende Informationen 172
Wertebereich dndern 170
Marquee Sketch 373
marquee, Funktion 373

590 | Index

Master (12C) 422
Kommunikation zwischen Arduino-Boards
454
Master (SPI) 424
mathematische Operatoren
Absolutwert bestimmen 72
Bits setzen/lesen 80
einfache Mathematik mittels 69
FlieRkommazahlen auf- und abrunden 76
hoher-/niederwertige Bytes extrahieren 85
int aus hoher-/niederwertigen Bytes bilden 87
Minimum/Maximum 74
Quadratwurzel 76
Rest einer Division ermitteln 71
trigonometrische Funktionen 77
verschieben (Shifting) von Bits 84
Vorrang 70
Werte inkrementieren/dekrementieren 70
Zahlen auf Wertebereich beschrinken 73
Zahlen potenzieren 75
Zufallszahlen generieren 78
Matrix-Bibliothek 280, 561
matrixMpx Sketch 259
matrixMpxAnimation Sketch 262
Maus
Bewegungen verarbeiten 217
Mauszeiger bewegen 127
max, Funktion 74, 258
Max7221_digits Sketch 277
MAX72xx devices
7-Segment-Anzeigen ansteuern 451
MAX72xx, Bauelemente
7-Segment-Anzeige ansteuern 276
MAX72xx-Bauelemente
LED-Matrix ansteuern 279
MaxBotix EZ1, Sensor 194
McCauley, Mike 459
Media Access Control-Adresse siehe MAC-
Adresse
Melodien, spielen 331
Mesh-Netzwerke, XBee und 457
Microchip 24L.C128 EEPROM 437, 440
microphone Sketch 201
MIDI (Musical Instrument Digital Interface)
328, 341
MIDI-Bibliothek 344
midiOut Sketch 342
Mikrophone, Tone erkennen 200
millis, Funktion
Dauer von Zeitverzogerungen 398

mehrere Tone gleichzeitig ausgeben 333, 335
Pausen erzeugen 398
Uberlauf 399
weiterfithrende Informationen 402
Zeit verwalten 265
millisDuration Sketch 399
MIME (Multipurpose Internet Mail Extensions)
532
min, Funktion 74
mitgelieferte Bibliotheken 559
MMA7260Q-Beschleunigungsmesser 239
Modulo (%) Operator 72
Modulo-Operator (%) 198
Monitor Pachube feed Sketch 551
MorningAlarm, Funktion 414
moserial, Programm 97
motion erkennen 190
Mouse Sketch 217
mouseBegin, Funktion 220
Multimeter 152, 363
multiple_alarms Sketch 563
multiplexer Sketch 172
Multiplexer, mehrere Eingiéinge einlesen 172
Multiplexing
7-Segment-LED-Anzeige ansteuern 274
Multiplexing-Technik 244
LED-Matrix steuern per 259
Multiplikation (*) Operator 69
Multipurpose Internet Mail Extensions (MIME)
532
MultiRX Sketch 146
Musical Instrument Digital Interface (MIDI)
328, 341
myDelay, Funktion 400

N

\n (Linefeed) 107

Nachrichten
Binirdaten empfangen 119
Binirdaten senden 115
Bindrwerte aus Processing senden 121
Kommunikationsprotokoll 92
mehrere Textfelder empfangen 111
mehrere Textfelder senden 106
MIDI 341
senden/empfangen mit UDP 537
Twitter 533
iiber Drahtlos-Module senden 457
iiber Transceiver senden 483

Index | 591

Namenskonventionen fiir Funktionen 48
Nanode-Projekt 496
negative Zahlen 103
Neigungssensor 185, 372
Network Time Protocol (NTP) 543
Neue Hardware gefunden-Assistent 6
NewSoftSerial-Bibliothek
Daten an mehrere Geriite senden 140
Daten von mehreren Geriten empfangen 143
NICHT, (!) Operator 64
NKC Electronics 281, 314
NMEA 0183-Protokoll 221
noBlink, Funktion 371
NTP (Network Time Protocol) 543
Null
ASCII-Wert 32
Null, Wert 32
Nullen
fithrende 447
NumberToString-Sketch 42
nunchuck_lines Sketch 430
nunchuckDecode, Funktion 434
nunchucklInit, Funktion 433

0
ohmsche Sensoren 189
Ohmsches Gesetz 247
onceOnly, Funktion 414
Optokoppler 348
Digitalkamera steuern 358
Fernbedienung ansteuern 359
OptoRemote Sketch 360
outputCSV, Funktion 556

P
Pachube-Feeds
aktualisieren 554
iitberwachen 548
Parallax
HM55B Compass Module 231
PING))) Ultraschall-Abstandssensor 192
PIR Sensor 190
RFID Reader 207
Parameter
Definition 46
als Referenzen 51
parse-Methoden (Stream-Klasse) 114
Passive Infrarot-Sensoren (PIR) 190
PC-Umgebung siehe Windows-Umgebung

PCF8574A port expander 449
PCM (Pulse-Code Modulation) 338
Pegelwandler 423
Phi-Effekt 244
Philips
RC-5 Fernbedienung 347
RC-6 Fernbedienung 347
physische Ausgabe siehe Biirsten- und biirsten-
lose Motoren; Servomotoren; Schritt-
motoren
PI, Konstante 78
piezo Sketch 199
Piezo-Element
Definition 327
Tone erzeugen 336
Piezo-Elemente
Vibration messen 199
Ping))) Sensor Sketch 192
pinMode, Funktion
digitale Ausgabe und 241
Funktionalitit 23, 150
weiterfithrende Informationen 156
Pins siehe Analogpins; Digitalpins
PIR (Passive Infrarot-Sensoren 190
PIR Sketch 190
Pixel
Definition 264
in GLC-Displays 387
kleiner als einzelnes Zeichen 382
PJRC
Teensy- und Teensy++-Boards 4
USB-Maus emulieren 130
playMidiNote, Funktion 343
playNote, Funktion 333
PlayStation Spiele-Controller
Daten einlesen von 236
PlayStation-Controller
Sensoren und 184
playTone, Funktion 336
Pocket Piano-Shield 338
Polaritit, Definition 244
Polling, Definition 212
Pololu-Breakout-Board 314
Port-Expander, integrieren 448
POSIX-Zeit 405
POST-Befehl 505, 523, 527
Pot Sketch 168
Potentiometer 152
Schleifer 169
Servos steuern mit 294

592 | Index

Spannung einlesen 168
Wertebereich dndern 170
pow, Funktion 75
PowerTailSwitch, Relais 362
Prellen von Kontakten 158
primitive Typen, einfache 25
printDigits, Funktion 409
Processing Open Source Tool 93
Binirdaten empfangen 119
Binire Werte senden 121
Bitmaps erzeuge 389
createWriter, Funktion 139
DateFormat, Funktion 138
Daten in Logdateien speichern 136
draw, Funktion 121
Google Earth steuern 131
Mauszeiger bewegen 127
mehrere Textfelder in Nachrichten senden
106
Nachrichten per UDP senden/empfangen 538
Pinwerte senden 123
setup, Funktion 120
SyncArduinoClock Sketch 406
Umgebung einrichten 147
weiterfiihrende Informationen 94
Wii Nunchuck Sketch 432
Processing UDP Test Sketch 541
Processing, Open Source-Tool
weiterfithrende Informationen 111
Programme siehe Sketches
Programmiertechniken 400
Ausfithrung von Code verzogern 400
bedingte Kompilierung 579
Programmspeicher
Webseiten und 527
Projekt, beginnen 17
Prototyp
Definition 51
Prototypen
Definition 569
PSX Sketch 237
Pulldown-Widerstinde
Definition 151
Schalter verbunden tiber 152
Pullup Sketch 157
Pullup-Widerstinde
aktivieren interner 156
Definition 151
Taster verbinden iiber 155
Pulse-Code Modulation (PCM) 338

Pulseln Sketch 402
pulseln, Funktion 184, 193, 402
Pulsweitenmodulationn sieche PWM
Pushbutton Sketch 52-53, 152
PuTTY, Programm 97, 469
PWM (Pulsweitenmodulation) 242
Extender-Chips 281
Helligkeit einer LED regeln 248

Q

Quadratwurzel 76

R

\r (Carriage Return) 107

RAD_TO_DEG Konstante 78

RadioShack-Steckbrett 152

Random Sketch 79

random, Funktion 78, 115

randomSeed, Funktion 79

readArduinolnt, Funktion 126

readStatus, Funktion 234

RealTerm, Programm 98

ReceiveBinaryData_P Sketch 120

ReceiveMultipleFieldsBinary_P Sketch 125

ReceiveMultipleFieldsBinary ToFile_P Sketch
137

Referenzen, Parameter als 51

Relais siehe Hubmagnete und Relais

relationale Operatoren 61

RelationalExpressions-Sketch 61

RemoteDecode Sketch 351

Repeats, Funktion 414

replace, Funktion 35

reset, Funktion 234

RespondingToChanges Sketch 178

Rest nach Division 71

RF12-Bibliothek 486

RFID Sketch 208

RFID-Tags, lesen 207

RFM12B wireless Demo (struct receiver) Sketch
487

RFM12B Wireless-Demo (struct sender) Sketch
486

RFM12B-Module 483

RGB-Farbskala 252, 425

RGB_LEDs Sketch 252

Richtung

bestimmen (Kompass) 231
nachhalten (GPS) 210

Index | 593

Robot -Klasse (Java)

Nutzungshinweise 130
Robot-Klasse (Java)

weiterfithrende Informationen 130
RotaryEncoderInterrupt Sketch 215
RotaryEncoderMultiPoll Sketch 213
Rotation

mit Gyroskop erkennen 226
RS-232-Standard 91
RTC (Real-Time Clock, Echtzeituhr) 415, 435

S
Schalter
Fernbedienung hacken 359
mehrere Analogeinginge einlesen 174
ohne externe Widerstinde 156
schliefen erkennen 158
Zeitspanne im aktuellen Zustand ermitteln
160
Zustand messen 152
Schieberegister
7-Segment-Anzeige ansteuern 276
LED-Matrix ansteuern 279
Schrittmotoren 291
bipolare Schrittmotoren ansteuern 317, 320
unipolare Schrittmotoren steuern 323
SCL-Anschluss (I12C) 422
Richtungssensoren und 235
Temperatur einlesen (Beispiel) 442
SCL-Verbindung (12C)
IOREF-Pin und 9
Scroll Sketch 372
SD-Bibliothek 560
SDA-Anschluss (I2C) 422
Richtungssensoren und 235
Temperatur einlesen (Beispiel) 442
SDA-Verbindung (12C)
IOREF-Pin und 9
Seeed Studio Bazaar 4
Semikolon (;)
in Funktionen 48, 51
in Header-Dateien 569
SendBinary Sketch 115, 460
sendBinary, Funktion 117, 125
sendCommand, Funktion 278, 453
SendingBinaryFields Sketch 124
SendingBinaryToArduino Sketch 121
SendInput API, Funktion 131
sendMessage, Funktion 535

Sensoren 183

Abstandsmessung 192

Beschleunigung messen 239

Bewegung einer Drehscheibe verfolgen 210,

215

Birstenmotoren steuern mit 311

Daten von Spiele-Controller einlesen 236

Daten zwischen XBees senden 473

Google Earth steuern iiber 131

Kondensator anschlieffen an 198

LED-Matrix steuern 259

Lichtstirke messen 188

Mausbewegungen verarbeiten 217

messen mehrerer Drehwinkelgeber 213

motion erkennen 190

movement erkennen 185

Position bestimmen per GPS 221

RFID-Tags lesen 207

Richtung bestimmen 231

Rotation mit Gyroskop erkennen 226

Servos steuern mit 294

Spannung einlesen 168

Temperatur 440

Temperatur messen 204, 554

Tone erkennen 200

Twitter-Nachrichten senden 533

Vibration messen 199

weiterfiihrende Informationen 185
Serial Peripheral Interface siehe SPI
Serial Port Profile (SPP) 490
Serial-Bibliothek

available, Funktion 434, 511

begin, Funktion 95

8-Bit-Werte 101

flush, Methode 93

list, Funktion, 121

parseFloat, Funktion 106

parselnt, Funktion 44, 106

peek, Funktion 94

print, Funktion 93, 97, 99

print. Funktion 95

println, Funktion 97, 99, 108

read, Funktion 44

setTimeout, Funktion 45

von Drittanbietern, Erwigungen 579

write, Funktion 93, 100, 116
serialEvent, Funktion 105
SerialFormatting Sketch 98
serialln, Funktion 234

594 | Index

SerialMouse Sketch 127
serialOut, Funktion 234
SerialOutput Sketch 95
SerialReceive Sketch 101, 105
SerialReceiveMultipleFields Sketch 112
serielle Befehle, Servos steuern tiber 298
Serielle Bibliothek
println, Funktion 23
serielle Kommunikation
Binirdaten empfangen 119
binire Daten senden 115
Binirwerte aus Processing senden 121
Daten an mehrere Geriite senden 139
Daten empfangen 101
Daten in Logdateien speichern 136

Daten von mehreren Geriten empfangen 143

Debugging-Informationen senden 94
formatierten Text senden 98

Google Earth steuern 131
Mauszeiger bewegen 127

mehrere Textfelder in Nachrichten empfan-

gen 111
mehrere Textfelder in Nachrichten senden
106
numerische Daten senden 98
Pinwerte senden 123
Position mit GPS bestimmen 223
Processing-Umgebung einrichten 147
serielle Bibliotheken 92
serielle Hardware 90
serielles Protokoll 92
Servos steuern 298
TellyMate-Shield und 391
weiterfithrende Informationen 101
Serielle Kommunikation 89
Serieller Monitor
Abbildung 89
Abstandsmessung 192
Biirstenmotoren steuern 310
Funktionalitit 19
Position per GPS bestimmen 224
Spannungen ausgeben 175
starten 95
Uhr stellen 407
Werte an Computer ausgeben 23
Zahlenfolge ausgeben 95
Servo-Bibliothek 294, 560
attach-Methode 293
Servomotor
Position kontrollieren 292

Servomotoren 289
Geschwindigkeit dauerrotierender Servos 296
map-Funktion und 296
steuern mehrerer 294
iiber seriellen Port steuern 298

setCharAt, Funktion 35

setColor, Funktion 429

setSpeed, Funktion 314

setSyncProvider, Funktion 417

setTime, Funktion 405, 415

setup, Funktion (Arduino) 25

setup, Funktion (Processing) 120

SevenSegment Sketch 271

SevenSegmentMpx Sketch 274

shaken Sketch 187

Shields
Adafruit Motor Shield 295
Adafruit Wave Shield 338
Anschlussbelegung und 151
Ardumoto 314, 319
Bluetooth Bee-Unterstiitzung 491
Ethernet 496
Freeduino Motor Control Shield 314
GPS-Datenlogger 226
H-Briicke 314
MIDI-Breakout 344
Pin-Verbindungen und 9
Pocket Piano 338
7-Segment 440, 445
Tellymate 390
USB-Host-Shield 238

Shirriff, Ken 347

show, Funktion 264

showDigit, Funktion 273, 276

ShowSensorData Sketch 108

showSymbol, Funktion 377

showXY, Funktion 392

Sicherheit, Ethernet-Bibliothek 511

signed, Schliisselwort 26

Simple Client Google Weather Sketch 507

Simple Client Parsing Sketch 502

Simple Client to display IP address Sketch 498

Simple Web Client Sketch 496

SimpleBrushed Sketch 305

SimpleRead Sketch 93, 119

SimpleReceive Sketch 459, 485

SimpleSend Sketch 459, 484

sin, Funktion 77

Sketch-Editor
6ffnen 15

Index | 595

Sketcheditor

Funktionalitit 10

Sketches 215

Aktionen basierend auf Bedingungen 52
Aktionen basierend auf Variablen 59
Anweisungen wiederholen mit Zihlern 56
Arrays in 29

aus Schleifen ausbrechen 58
Bibliotheken und 561

bitweise Operationen 65

blinkende LED, Codebeispiel 15, 17
Definition 2, 12

einfache primitive Typen 25

erstellen 15

Fehlermeldungen 12, 14
FlieRkommazahlen in 27

Folgen von Anweisungen wiederholt ausfith-

ren 54

funktionale Blocke in 45

logische Vergleiche 64

mehrere Werte in Funktionen zuriickliefern
49

mit IDE bearbeiten 10, 13

speichern 13, 15

Strings bearbeiten 32

Strings in Zahlen umwandeln 43

Strings vergleichen 63

Struktur 24

Zahlen in Strings umwandeln 41

Zeichen/numerische Werte vergleichen 61

zusammengesetzte Operatoren 68

Slave (12C) 422

Adresse und 422
Kommunikation zwischen Arduino-Boards
454

Slave (SPI)

SN

identifizieren 424
754410 H-Bricke 306

SoftwareSerial to talk to BlueSmiRF Modul

Sketch 489

SoftwareSerial-Bibliothek 224, 561

Daten an mehrere Gerite senden 140

Daten von mehreren Geriten empfangen 143

SoftwareSeriallnput Sketch 144
SoftwareSerialOutput Sketch 140

Sol

id-State-Relay (SSR) 302

Sonderzeichen

darstellen 375

Southern Hemisphere Sketch 222, 224

Spannung

3,3V-Board, Erwigungen 423
5V-Board, Erwigungen 423

an Analogpins einlesen 168

auf Spannungsinderungen reagieren 177
digital iiberwachen 154

digitale Ausgabe und 241
Erwigungen bei 3,3-Volt-Board 154
Fluss-Spannung 243

Gegen-EMK 302

Klopfsensor und 199

LC-Display und 365

LED, technische Daten 243

messen 175, 179

Pegelwandler 423

Wertebereich dndern 170

Spannungs-Offset 203
Spannungsteiler 179
SparkFun

344

12-Tasten-Tastatur 165
ADXIL203CE-Beschleunigungsmesser 239
Ardumoto Shield 314, 319
Audio-Sound-Modul 341
BOB-00099 Datenblatt 419
BOB-08745 Breakout-Board 423
Electret-Mikrofon 200
GPS-Module 226

griitne LEDs 281
LISY300AL-Gyroskop 228
LY530AL-Breakout-Board 227
MIDI Breakout-Shield 344

PIR Motion Sensor 190
PRT-00137-Steckbrett 152
ROB-08449 Vibrationsmotor 303
ROB-09402 Breakout-Board 314
SEN-09801-Breakout-Board 229
WRL-10532 457

WRL-10533 457

WRL-10534 457

WRL-10535 457

XBee Explorer USB 465, 476

Speicher-Management

FlieRkommazahlen und 176

Speicherverwaltung

Bibliotheken und 566

Bitmaps und 389

dynamische Speicherallozierung 35
externen Speicher anbinden 436
Webseiten und 527

596

| Index

SPI (Serial Peripheral Interface) 184, 421
7-Segment-Anzeigen ansteuern 451
SPI-Bibliothek 424, 561
transfer, Funktion 453
weiterfithrende Informationen 425
SPLh-Datei 495
SPI_MAX7221_0019 Sketch 451
split, Methode (Java) 108
SplitSplit Sketch 38-39
SPP (Serial Port Profile) 490
Sprite library 280
Sprite-Bibliothek 561
sqrt, Funktion 76
SREG (Interrupt-Register) 217
SSR (Solid-State-Relais) 302
startMeasurement, Funktion 234
startsWith, Funktion 35
statische Variablen 163
Steckbretter
16tfrei, 152
Stepper Sketch 323
Stepper-Bibliothek 561
Stepper_bipolar Sketch 317
Stepper_Easystepper Sketch 321
strcat, Funktion 37
strcmp, Funktion 38, 63
strepy, Funktion 37
Stream-Klasse
find, Methode 114
findUntil, Methode 114
parseFloat, Methode 114
parselnt, Methode 114
readBytes, Methode 114
readBytesUntil, Methode 115
setTimeout. Methode 114
Streaming-Bibliothek 101
String, Datentyp
26
C character arrays and 35
String-Bibliothek
C, Sprache, und 37
Speichernutzung 36
weiterfithrende Informationen 36
String-Bibliothk
Strings bearbeiten 32
String-Klasse 41
length-Methode 556
Stringfunktionen (Arduino) 34
Strings 32
Arrays und 32, 37

bearbeiten 32

C, Sprache, und 35, 37

Datentyp fiir 26, 35

Definition 32

deklarieren 37

in Zahlen umwandeln 43, 104

kommaseparierten Text in Gruppen

aufteilen 38

kopieren 37

Linge bestimmen 37

mehrere Felder in 106

Null in 32

vergleichen 38, 63

verketten 37

Zahlen umwandeln in 41
StringToNumber-Sketch 43
strlen, Funktion 37
strncmp Funktion 64
Stromversorgung

Hochleistungs-LEDs und 250
strtok_r, Funktion 40
Strukturen

Definition 117

Erwidgungen fiir Bindrformat 118

Versatz 118-119
Strukturen packen 119
substring, Funktion 35, 39
Subtraktion (-) Operator 69
swap, Funktion 50-51
swap-Sketch 50
Sweep Sketch 292
switch-Anweisung 59
SwitchCase Sketch 59
SwitchTime Sketch 161
switchTime, Funktion 162
SwitchTimeMultiple Sketch 163
Symbole

eigene definieren 377

grofRe 379
SyncArduinoClock Sketch 406
Synchronisation

Binirdaten und 118

Uhren-Software 543
Synthesizer

MIDI 341

T

takePicture, Funktion 358
tan, Funktion 77

Index

597

Tastatur
einlesen 165
TCP (Transmission Control Protocol) 494
<td>-Tag 522
TellyBounce Sketch 393
TellyMate Shield 390
TellyMate Sketch 390
Temperatur messen 204, 440, 554
Terminal-Fenster 469
Texas Instrument TMP75 440
Text formatieren
LC-Display und 367
Text scrollen 371
Textfelder/-Daten
LC-Displays und 364
Textfelder/-daten
fir LC-Displays formatieren 367
scrollen 371
iiber Fernseher ausgeben 390
Textfelder/Daten
formatiert senden 98
in Nachrichten empfangen 111
in Nachrichten senden 106
TextFinder Bibliothek 495
TextString Bibliothek 33
Theremin 346
Thermometer, digital 440
ThingSpeak API-Schliissel 533
ThingTweet Website 535
tilt Sketch 185
Time Sketch 404
Time-Bibliothek 404, 414, 563
Time_NTP Sketch 546
TimeAlarmExample Sketch 412
TimeAlarms Bibliothek 412, 563
TimedAction-Bibliothek 401
Timeout, festlegen 403
Timer 414
Countdown-Timer 160
TimeRTC Sketch 415
TimeRTCSet Sketch 417
TimeSerial Sketch 405
TinyGPS-Bibliothek 222
TLC Sketch 282
Tlc5940-Bibliothek 282
clear-Methode 283
init Method 283
NUM_TLCS-Konstante 285
set Method 283
setAll-Methode 283

update-Methode 283
weiterfithrende Informationen 285
TLC5940-Chip 281
toCharArray, Funktion 35
Todbot-Adapter 430
tolnt, Funktion 35
toLowerCase, Funktion 35
Tone siehe Audio-Ausgabe
Tone Sketch 329
tone, Funktion 327
mehrere Tone gleichzeitig ausgeben 333
playing simple melodies 331
Tone ausgeben 329
Tone-Bibliothek 331, 333
Toshiba FB6612FNG 314
toUpperCase, Funktion 35
<tr> tag 522
Transceiver, Nachrichten senden iiber 483
Transducer 331
Transistor
steuern von Hochleistungs-LEDs 249
Transistor-Transistor Logik (TTL) 90
Transistoren
Biirstenmotoren ansteuern 305
Hubmagnete und Relais steuern 302
Transmission Control Protocol (TCP) 494
Trennzeichen 106
trigonometrische Funktionen 77
trim, Funktion 35
TTL (Transistor-Transistor Logik) 90
TTL-Pegel 90
TV-B-Gone Fernbedienungs-Anwendung 356
Twinkle Sketch 331
Twitter-Nachrichten, senden 533

U
UARTs 146
UDP (User Datagram Protocol) 537, 545
UdpNtp Sketch 543
UDPSendReceive Sketch 539
UDPSendReceiveStrings Sketch 537
Uhr

Echtzeituhr 415

Uhrzeit ausgeben 404
Uhren

synchronisieren 543
ULN2003A Darlington-Treiber 323
Ungleich, (!=) Operator 61
unipolare Schrittmotoren 292

598 | Index

Unix-Zeit 405, 412
unpolare Schrittmotoren
steuern 323
unsigned, Schliisselwort 26
Update Pachube feed Sketch 554, 556
USB-Protokoll
Digitalpins und 150
MIDI-Gerite und 344
serielle Kommunikation und 91
Spiele-Controller und 238
USB-Maus emulieren 130
XBeeAdapter 465
User Datagram Protocol (UDP) 537, 545
USGlobalSat EM-406A GPS module 223
UTC (Coordinated Universal Time) 545

v
Variablen

Aktionen basierend auf 59

Definition 50

einfache primitive Typen 25

globale 163

statisch 163

volatile 217
variabler Widerstand 152
Vergleichsoperatoren 61
Versionskontrolle 16
Verzogerung, Zeitverzogerung siehe Zeitverzoge-

rung

Vibrate Sketch 303
Vibrate_Photocell Sketch 304
Vibration

messen 199

Objekte wackeln lassen 302
VirtualWire-Bibliothek 459
visuelle Ausgabe siehe LEDs
void, Datentyp 26
volatile Variablen 217
Vorrang von Operatoren 70
VW_MAX_MESSAGE_LEN, Konstante 462

w

WAV-Dateien, abspielen 338
WaveShieldPlaySelection Sketch 338
Web Client Babel Fish Sketch 505
Web Client DNS Sketch 500

Web Client Google Finance Sketch 504
Web Server Sketch 510

Webduino Webserver 533

Webseiten

Formulare 523

groRe Datenmengen und 527

Requests verarbeiten 515
Webserver

auf Arduino einrichten 509

Daten abrufen von 502

Requests aufbereiten 519

Requests bestimmter Seiten verarbeiten 515

Requests verarbeiten 512
WebServerMultiPage Sketch 515
WebServerMultiPageHTML Sketch 520
WebServerMultiPageHTMLProgmem Sketch

527

WebServerParsing Sketch 512
WebServerPost Sketch 524
Wechselstrom

Gerite steuern 359
while-Schleife 54
Widerstand

Erwigungen bei LEDs 261

Kurzschluss und 243

LEDs und 247, 251

Ohmsches Gesetz 247

variabel 152

Wert in Ohm berechnen 286
Widerstinde

Pulldown 151-152

Pullup 151, 155

Schalter ohne externe 156
Wiederholung von Anweisungen

mit Zihlern 56
Wii Nunchuck

Beschleunigungsmesser 429

Google Earth steuern per 132

Google Earth steuern tiber 131
WiichuckSerial Sketch 132
WiiNunchuck

Beschleunigungsmesser 239
Windows-Umgebung

Arduino-IDE installieren 6

Mauszeiger bewegen 127

XBee Serie 1, Konfiguration 467

XBee Series 2, Konfiguration 466
Wippler, Jean-Claude 488
Wire-Befehl

send, Funktion 446
Wire-Bibliothek 561

available, Funktion 434

begin, Funktion 433

Index | 599

beginTransmission, Funktion 439
Bibliotheken entwickeln 572
einbinden 427
endTransmission, Funktion 433
println, Funktion 456
read, Funktion 423, 434, 442
receive, Funktion 423, 436
requestFrom, Funktion 433, 436, 439
send, Funktion 423, 433
weiterfithrende Informationen 425
write, Funktion 423, 448
Zugriff auf Echtzeituhr 435

word, Funktion 87

X
X-CTU-Anwendung
XBee Serie 1, Konfiguration 467
XBee Series 2-Konfiguration 466
XBee Actuate Sketch 480
XBee-Module
Aktuatoren aktivieren 478
Fehlersuche 463
mit 802.15.4-Netzwerken verbinden 463
mit ZigBee-Netzwerken verbinden 463
Nachrichten senden an 470
»Remote AT Command«-Feature 478
Sensordaten senden zwischen 473
seriellen Port ermitteln 468
Series 1, Konfiguration 467
Series 2, -Konfiguration 466
ZigBee-Kompatibilitit 463
XBeeActuateSeries1 Sketch 482
XBeeAnalogReceive Sketch 474
XBeeAnalogReceiveSeries1 Sketch 477
XBeeEcho Sketch 464
XBeeMessage Sketch 470
XBeeModule 457
XML-Format 495, 506, 551

/4

Zahlen/numerische Daten 61
Absolutwert bestimmen 72

ASCII-Zeichen umwandeln in 102

auf Wertebereich beschrinken 73

LC-Displays und 364

mit Zeichen vergleichen 61

negative 103

potenzieren 75

Quadratwurzel 76

Strings umwandeln in 43, 104

umwandeln in Strings 41

vom Arduino senden 98
Zihler

Anweisungen wiederholen mit 56
Zambetti, Nicholas 280
Zeichen/Zeichenwert,

Datentyp 26
Zeichen/Zeichenwerte

eigene definieren 377

in numerische Werte umwandeln 102

mit Zahlen vergleichen 61

Sonderzeichen darstellen 375
Zeiger (Maus), bewegen 127
Zeitmessung 265

Alarm zum Aufruf von Funktionen 412

Dauer von Zeitverzogerungen 398

Echtzeituhr 415, 435

Impulsdauer 402

Konvertierungs-Tools 412

fir gedriickte Taster 160

Uhren-Software synchronisieren 543

Uhrzeit ausgeben 404
Zeitraffer-Aufnahmen 356
Zeitverzogerung 264

Animationeffekt und 264

einstellen 259

ZIGBEE COORDINATOR AT, Funktion 466,

479

ZIGBEE ROUTER AT, Funktion 466, 473, 479

ZigBee-Standard 463

ZTerm, Programm 98
Zufallszahlengenerator 78
zusammengesetzte Operatoren 68
Zuweisung, (=) Operator 62

600 | Index

Uber den Autor

Michael Margolis ist Technologieexperte im Bereich Echtzeitsysteme mit dem Schwer-
punkt Hardware- und Software-Entwicklung fiir die Umgebungs-Interaktion. Er hat iiber
30 Jahre Erfahrung auf Fithrungsebene bei Sony, Microsoft und Lucent/Bell Labs. Er hat
Bibliotheken und Kernsoftware geschrieben, die in der Arduino 1.0-Distribution enthal-
ten ist.

Kolophon

Das Tier auf dem Cover des Arduino Kochbuchs ist ein Spielzeug-Hase. Mechanisches
Spielzeug wie dieser Hase werden iiber Federn, Getriebe, Riemenrider, Hebel oder andere
einfache Maschinen bewegt, angetrieben durch mechanische Energie. Solche Spielsachen
haben eine lange Geschichte. Antike Beispiele sind aus Griechenland, China und der
arabischen Welt bekannt.

Die Herstellung mechanischen Spielzeugs florierte im frithen modernen Europa. Im
spiten 14. Jahrhundert demonstrierte der deutsche Erfinder Karel Grod fliegendes Auf-
zieh-Spielzeug. Prominente Wissenschaftler jener Tage, darunter Leonardo da Vinci,
Descartes und Galileo Galilei, waren fiir ihr mechanisches Spielzeug bertthmt. Da Vincis
bertthmter mechanischer Lowe, 1509 fiir Louis XII gebaut, ging zum Kénig hoch und
offnete seinen Brustkasten, um eine Fleur-de-Lis zu offenbaren.

Die Kunst der Herstellung mechanischen Spielzeugs erreichte ihren Hohepunkt im spiten
18. Jahrhundert mit den berithmten »Automaten« des Schweizer Uhrmachers Pierre
Jaquet-Droz und seines Sohnes Henri-Louis. Die menschlichen Figuren konnten so
lebensechte Dinge tun wie eine Feder in ein Tintenfass tauchen, ganze Sitze schreiben,
zeichnen und vom Papier Radiergummi-Reste wegblasen. Im 19. Jahrhundert brachten
europiische und amerikanische Unternehmen beliebtes Spielzeug zum Aufziehen heraus,
das zu Sammlerstiicken geworden ist.

Da die Herstellung dieses Originalspielzeuges mit seiner komplizierten Mechanik und
aufwendigen Dekoration sehr zeit- und kostenintensiv war, blieb es Kénigshausern oder
der Unterhaltung Erwachsener vorbehalten. Erst seit dem spiten 19. Jahrhundert, mit
dem Aufkommen der Massenproduktion und billiger Materialien (Blech und spiter
Kunststoff), wurde mechanisches Spielzeug auch zu Spielsachen fiir Kinder. Die giins-
tigen, sich bewegenden Neuheiten waren iiber ein Jahrhundert sehr beliebt, bis sie von
batteriebetriebenen Spielsachen abgelost wurden.

Die Abbildung auf dem Cover stammt vom Dover Pictorial Archive. Die Schriftart auf
dem Cover ist Adobe ITC Garamond. Als Textschrift wird Linotype Birka verwendet, als
Uberschriftenschrift Adobe Myriad Condensed und als Code-Schrift LucasFonts The-
SansMonoCondensed.

	Arduino Kochbuch
	Inhalt
	Vorwort
	Leserkreis
	Organisation
	Was ausgelassen wurde
	Code-Stil (Über den Code)
	Arduino-Version
	Verwendete Konventionen
	Verwendung der Codebeispiele
	Danksagungen
	Hinweise zur Neuauflage

	Kapitel 1 — Erste Schritte
	1.0 Einführung
	Arduino-Software
	Arduino-Hardware
	Siehe auch

	1.1 Installation der integrierten Entwicklungsumgebung (IDE)
	Problem
	Lösung
	Diskussion
	Siehe auch

	1.2 Das Arduino-Board einrichten
	Problem
	Lösung
	Diskussion
	Siehe auch

	1.3 Einen Arduino-Sketch mit der integrierten Entwicklungsumgebung (IDE) bearbeiten
	Problem
	Lösung
	Diskussion
	Siehe auch

	1.4 Den Blink-Sketch hochladen und ausführen
	Problem
	Lösung
	Diskussion
	Siehe auch

	1.5 Einen Sketch erstellen und speichern
	Problem
	Lösung
	Diskussion
	Siehe auch

	1.6 Arduino verwenden
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 2 — Den Sketch machen lassen, was Sie wollen
	2.0 Einführung
	2.1 Strukturierung eines Arduino-Programms
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.2 Einfache primitive Typen (Variablen) nutzen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.3 Fließkommazahlen verwenden
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.4 Mit Gruppen von Werten arbeiten
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.5 Arduino-Stringfunktionen nutzen
	Problem
	Lösung
	Diskussion
	Zwischen Arduino-Strings und C-Zeichenketten wählen

	Siehe auch

	2.6 C-Zeichenketten nutzen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.7 Durch Komma getrennten Text in Gruppen aufteilen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.8 Eine Zahl in einen String umwandeln
	Problem
	Lösung
	Diskussion

	2.9 Einen String in eine Zahl umwandeln
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.10 Ihren Code in Funktionsblöcken strukturieren
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.11 Mehr als einen Wert in einer Funktion zurückliefern
	Problem
	Lösung
	Diskussion

	2.12 Aktionen basierend auf Bedingungen ausführen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.13 Eine Folge von Anweisungen wiederholt ausführen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.14 Anweisungen über einen Zähler wiederholen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.15 Aus Schleifen ausbrechen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.16 Basierend auf einem Variablenwert verschiedene Aktionen durchführen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.17 Zeichen und Zahlen vergleichen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.18 Strings vergleichen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.19 Logische Vergleiche durchführen
	Problem
	Lösung
	Diskussion

	2.20 Bitweise Operationen durchführen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.21 Operationen und Zuweisungen kombinieren
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 3 — Mathematische Operatoren nutzen
	3.0 Einführung
	3.1 Addieren, subtrahieren, multiplizieren und dividieren
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.2 Werte inkrementieren und dekrementieren
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.3 Den Rest einer Division bestimmen
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.4 Den Absolutwert ermitteln
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.5 Zahlen auf einen Wertebereich beschränken
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.6 Das Minimum oder Maximum bestimmen
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.7 Eine Zahl potenzieren
	Problem
	Lösung
	Diskussion

	3.8 Die Quadratwurzel berechnen
	Problem
	Lösung
	Diskussion

	3.9 Fließkommazahlen auf- und abrunden
	Problem
	Lösung
	Diskussion

	3.10 Trigonometrische Funktionen nutzen
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.11 Zufallszahlen erzeugen
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.12 Bits setzen und lesen
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.13 Bits verschieben (Shifting)
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.14 Höher- und niederwertige Bytes aus int oder long extrahieren
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.15 int- oder long-Werte aus höher- und niederwertigen Bytes bilden
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 4 — Serielle Kommunikation
	4.0 Einführung
	Serielle Hardware
	Serielle Software
	Serielles Protokoll
	Neues in Arduino 1.0
	Siehe auch

	4.1 Debugging-Informationen vom Arduino an Ihren Computer senden
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.2 Formatierten Text und numerische Daten vom Arduino senden
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.3 Serielle Daten mit Arduino empfangen
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.4 Mehrere Textfelder vom Arduino in einer einzelnen Nachricht senden
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.5 Mit dem Arduino mehrere Textfelder in einer Nachricht empfangen
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.6 Binäre Daten vom Arduino senden
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.7 Binärdaten vom Arduino auf einem Computer empfangen
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.8 Binäre Werte aus Processing an den Arduino senden
	Problem
	Lösung
	Diskussion

	4.9 Den Wert mehrerer Arduino-Pins senden
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.10 Den Mauszeiger eines PCs oder Macs bewegen
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.11 Google Earth per Arduino steuern
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.12 Arduino-Daten in einer Datei auf dem Computer festhalten
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.13 Daten an zwei serielle Geräte gleichzeitig senden
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.14 Serielle Daten von zwei Geräten gleichzeitig empfangen
	Problem
	Lösung
	Diskussion
	Daten von mehreren SoftwareSerial-Ports empfangen

	4.15 Serielle Daten mit Processing Senden und Empfangen
	Problem
	Lösung

	Kapitel 5 — Einfacher digitaler und analoger Input
	5.0 Einführung
	5.1 Einen Schalter verwenden
	Problem
	Lösung
	Diskussion
	Siehe auch

	5.2 Taster ohne externen Widerstand verwenden
	Problem
	Lösung
	Diskussion

	5.3 Das Schließen eines Schalters zuverlässig erkennen
	Problem
	Lösung
	Diskussion
	Siehe auch

	5.4 Ermitteln, wie lange eine Taste gedrückt wird
	Problem
	Lösung
	Diskussion

	5.5 Von einer Tastatur lesen
	Problem
	Lösung
	Diskussion
	Siehe auch

	5.6 Analogwerte einlesen
	Problem
	Lösung
	Diskussion
	Siehe auch

	5.7 Wertebereiche ändern
	Problem
	Lösung
	Diskussion
	Siehe auch

	5.8 Mehr als sechs analoge Eingänge einlesen
	Problem
	Lösung
	Diskussion
	Siehe auch

	5.9 Spannungen von bis zu 5V messen
	Problem
	Lösung
	Diskussion

	5.10 Auf Spannungsänderungen reagieren
	Problem
	Lösung
	Diskussion

	5.11 Spannungen über 5V messen (Spannungsteiler)
	Problem
	Lösung
	Diskussion

	Kapitel 6 — Werte von Sensoren einlesen
	6.0 Einführung
	Siehe auch

	6.1 Movement erkennen
	Problem
	Lösung
	Diskussion
	Siehe auch

	6.2 Licht messen
	Problem
	Lösung
	Diskussion
	Siehe auch

	6.3 Motion erkennen (Passive Infrarot-Detektoren integrieren)
	Problem
	Lösung
	Diskussion

	6.4 Abstände messen
	Problem
	Lösung
	Diskussion
	Siehe auch

	6.5 Abstände genauer messen
	Problem
	Lösung
	Diskussion
	Siehe auch

	6.6 Vibration messen
	Problem
	Lösung
	Diskussion

	6.7 Geräusche erkennen
	Problem
	Lösung
	Diskussion

	6.8 Temperatur messen
	Problem
	Lösung
	Diskussion
	Siehe auch

	6.9 RFID-Tags lesen
	Problem
	Lösung
	Diskussion

	6.10 Drehbewegungen messen
	Problem
	Lösung
	Diskussion

	6.11 Mehrere Drehbewegungen messen
	Problem
	Lösung
	Diskussion

	6.12 Drehbewegungen in einem viel beschäftigten Sketch messen
	Problem
	Lösung
	Diskussion

	6.13 Eine Maus nutzen
	Problem
	Lösung
	Diskussion
	Siehe auch

	6.14 Die Position per GPS bestimmen
	Problem
	Lösung
	Diskussion
	Siehe auch

	6.15 Bewegungen mit einem Gyroskop erkennen
	Problem
	Lösung
	Diskussion
	Verwendung des älteren LISY300AL-Gyroskops
	Rotation mit dem ITG-3200 in drei Dimensionen messen

	Siehe auch

	6.16 Richtung bestimmen
	Problem
	Lösung
	Diskussion

	6.17 Daten von einem Spiele-Controller (PlayStation) einlesen
	Problem
	Lösung
	Diskussion
	Siehe auch

	6.18 Beschleunigung messen
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 7 — Visuelle Ausgabe
	7.0 Einführung
	Digitale Ausgänge
	Analoge Ausgänge
	Licht steuern
	Technische Daten von LEDs
	Multiplexing
	Maximaler Pin-Strom

	7.1 LEDs anschließen und nutzen
	Problem
	Lösung
	Diskussion
	Siehe auch

	7.2 Helligkeit einer LED regeln
	Problem
	Lösung
	Diskussion
	Siehe auch

	7.3 Hochleistungs-LEDs ansteuern
	Problem
	Lösung
	Diskussion
	Wie man die 40 mA pro Pin umgeht

	Siehe auch

	7.4 Die Farbe einer LED steuern
	Problem
	Lösung
	Diskussion
	Siehe auch

	7.5 Mehrere LEDs aneinanderreihen: LED-Balkenanzeige
	Problem
	Lösung
	Diskussion
	Siehe auch

	7.6 Mehrere LEDs aneinanderreihen: Knight Rider-Lauflicht
	Problem
	Lösung
	Diskussion

	7.7 Eine LED-Matrix per Multiplexing steuern
	Problem
	Lösung
	Diskussion

	7.8 Bilder (Images) auf einer LED-Matrix darstellen
	Problem
	Lösung
	Diskussion
	Siehe auch

	7.9 Eine LED-Matrix ansteuern: Charlieplexing
	Problem
	Lösung
	Diskussion
	Siehe auch

	7.10 Eine 7-Segment-LED-Anzeige ansteuern
	Problem
	Lösung
	Diskussion

	7.11 Mehrstellige 7-Segment-LED-Anzeigen ansteuern: Multiplexing
	Problem
	Lösung
	Diskussion

	7.12 Mehrstellige 7-Segment-LED-Anzeigen mit MAX7221-Schieberegistern ansteuern
	Problem
	Lösung
	Lösung

	7.13 Eine LED-Matrix mit MAX72xx-Schieberegistern ansteuern
	Problem
	Lösung
	Diskussion
	Siehe auch

	7.14 Die Anzahl analoger Ausgänge mit PWM-Extender-Chips (TLC5940) erhöhen
	Problem
	Lösung
	Diskussion
	Siehe auch

	7.15 Ein analoges Anzeigeinstrument nutzen
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 8 — Physische Ausgabe
	8.0 Einführung
	Bewegungssteuerung mit Servomotoren
	Hubmagnete und Relais
	Bürsten- und bürstenlose Motoren
	Schrittmotoren
	Fehlersuche

	8.1 Die Position eines Servos kontrollieren
	Problem
	Lösung
	Diskussion

	8.2 Ein oder zwei Servos mit einem Potentiometer oder Sensor steuern
	Problem
	Lösung
	Diskussion

	8.3 Die Geschwindigkeit dauerrotierender Servos steuern
	Problem
	Lösung
	Diskussion

	8.4 Servos über Computerbefehle steuern
	Problem
	Lösung
	Diskussion
	Siehe auch

	8.5 Einen bürstenlosen Motor (per Fahrtregler) steuern
	Problem
	Lösung
	Diskussion

	8.6 Hubmagnete und Relais steuern
	Problem
	Lösung
	Diskussion

	8.7 Ein Objekt vibrieren lassen
	Problem
	Lösung
	Diskussion

	8.8 Einen Bürstenmotor über einen Transistor ansteuern
	Problem
	Lösung
	Diskussion

	8.9 Die Drehrichtung eines Bürstenmotors über eine H-Brücke steuern
	Problem
	Lösung
	Diskussion

	8.10 Drehrichtung und Geschwindigkeit eines Bürstenmotors mit einer H-Brücke steuern
	Problem
	Lösung
	Diskussion

	8.11 Richtung und Geschwindigkeit von Bürstenmotoren über Sensoren steuern (L293 H-Brücke)
	Problem
	Lösung
	Diskussion
	Siehe auch

	8.12 Einen bipolaren Schrittmotor ansteuern
	Problem
	Lösung
	Diskussion
	Siehe auch

	8.13 Einen bipolaren Schrittmotor ansteuern (mit EasyDriver-Board)
	Problem
	Lösung
	Diskussion

	8.14 Einen unipolaren Schrittmotor ansteuern (ULN2003A)
	Problem
	Lösung
	Diskussion

	Kapitel 9 — Audio-Ausgabe
	9.0 Einführung
	9.1 Töne ausgeben
	Problem
	Lösung
	Siehe auch

	9.2 Eine einfache Melodie spielen
	Problem
	Lösung

	9.3 Mehr als einen Ton gleichzeitig erzeugen
	Problem
	Lösung
	Diskussion

	9.4 Einen Ton erzeugen und eine LED ansteuern
	Problem
	Lösung
	Diskussion
	Siehe auch

	9.5 Eine WAV-Datei abspielen
	Problem
	Lösung
	Diskussion
	Siehe auch

	9.6 MIDI steuern
	Problem
	Lösung
	Diskussion
	Siehe auch

	9.7 Audio-Synthesizer
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 10 — Externe Geräte fernsteuern
	10.0 Einführung
	10.1 Auf eine Infrarot-Fernbedienung reagieren
	Problem
	Lösung
	Diskussion

	10.2 IR-Signale einer Fernbedienung dekodieren
	Problem
	Lösung
	Diskussion
	Siehe auch

	10.3 IR-Signale imitieren
	Problem
	Lösung
	Diskussion
	Siehe auch

	10.4 Eine Digitalkamera steuern
	Problem
	Lösung
	Diskussion
	Siehe auch

	10.5 Wechselstromgeräte über eine gehackte Fernbedienung steuern
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 11 — Displays nutzen
	11.0 Einführung
	11.1 Ein Text-LCD anschließen und nutzen
	Problem
	Lösung
	Diskussion
	Siehe auch

	11.2 Text formatieren
	Problem
	Lösung
	Diskussion
	Siehe auch

	11.3 Cursor und Display ein- und ausschalten
	Problem
	Lösung
	Diskussion

	11.4 Text scrollen
	Problem
	Lösung
	Diskussion

	11.5 Sonderzeichen darstellen
	Problem
	Lösung
	Diskussion
	Siehe auch

	11.6 Eigene Zeichen definieren
	Problem
	Lösung
	Diskussion

	11.7 Große Symbole darstellen
	Problem
	Lösung
	Diskussion
	Siehe auch

	11.8 Kleine Pixel darstellen
	Problem
	Lösung
	Diskussion

	11.9 Ein graphisches LC-Display anschließen und nutzen
	Problem
	Lösung
	Diskussion

	11.10 Bitmaps für graphische Displays
	Problem
	Lösung
	Siehe auch

	11.11 Text auf dem Fernseher ausgeben
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 12 — Datum und Uhrzeit
	12.0 Einführung
	12.1 Zeitverzögerungen
	Problem
	Lösung
	Diskussion
	Siehe auch

	12.2 Laufzeiten messen mit millis
	Problem
	Lösung
	Diskussion
	Siehe auch

	12.3 Die Dauer eines Impulses präziser messen
	Problem
	Lösung
	Diskussion
	Siehe auch

	12.4 Arduino als Uhr verwenden
	Problem
	Lösung
	Diskussion
	Siehe auch

	12.5 Einen Alarm einrichten, um regelmäßig eine Funktion aufzurufen
	Problem
	Lösung
	Diskussion

	12.6 Eine Echtzeituhr nutzen
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 13 — Kommunikation per I2C und SPI
	13.0 Einführung
	I2C
	Wire-Code nach Arduino 1.0 migrieren

	3,3V-Geräte mit 5V-Boards nutzen
	SPI
	Siehe auch

	13.1 Steuerung einer RGB-LED mit dem BlinkM-Modul
	Problem
	Lösung
	Diskussion
	Siehe auch

	13.2 Den Wii Nunchuck-Beschleunigungsmesser nutzen
	Problem
	Lösung
	Diskussion
	Siehe auch

	13.3 Anbindung einer externen Echtzeituhr
	Problem
	Lösung
	Siehe auch

	13.4 Externen EEPROM-Speicher anbinden
	Problem
	Lösung
	Diskussion
	Siehe auch

	13.5 Temperatur per Digital-Thermometer messen
	Problem
	Lösung
	Diskussion
	Siehe auch

	13.6 Vier 7-Segment-LEDs mit nur zwei Leitungen steuern
	Problem
	Lösung
	Diskussion
	Siehe auch

	13.7 Einen I2C-Port-Expander integrieren
	Problem
	Lösung
	Diskussion
	Siehe auch

	13.8 Mehrstellige 7-Segment-Anzeigen über SPI ansteuern
	Problem
	Lösung
	Diskussion

	13.9 Kommunikation zwischen zwei oder mehr Arduino-Boards
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 14 — Drahtlose Kommunikation
	14.0 Einführung
	14.1 Nachrichten über Low-Cost-Drahtlos-Module senden
	Problem
	Lösung
	Diskussion
	Siehe auch

	14.2 Den Arduino mit einem ZigBee- oder 802.15.4-Netzwerk verbinden
	Problem
	Lösung
	Diskussion
	Series 2-Konfiguration
	Konfiguration der Serie 1
	Mit dem Arduino kommunizieren

	Siehe auch

	14.3 Eine Nachricht an einen bestimmten XBee senden
	Problem
	Lösung
	Diskussion
	Siehe auch

	14.4 Sensordaten zwischen XBees senden
	Problem
	Lösung
	Diskussion
	Serie-2-XBees
	Serie-1-XBees

	Siehe auch

	14.5 Einen mit dem XBee verbundenen Aktuator aktivieren
	Problem
	Lösung
	Diskussion
	Serie-2-XBees
	Serie 1-XBees

	Siehe auch

	14.6 Nachrichten über Low-Cost-Transceiver senden
	Problem
	Lösung
	Diskussion
	Siehe auch

	14.7 Mit Bluetooth-Geräten kommunizieren
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 15 — Ethernet und Netzwerke
	15.0 Einführung
	Arduino 1.0 Enhancements
	Alternative Hardware für kostengünstige Netzwerke

	15.1 Ein Ethernet-Shield einrichten
	Problem
	Lösung
	Diskussion
	Siehe auch

	15.2 Die IP-Adresse automatisch beziehen
	Problem
	Lösung
	Diskussion

	15.3 Hostnamen in IP-Adressen umwandeln (DNS)
	Problem
	Lösung
	Diskussion

	15.4 Daten von einem Webserver abrufen
	Problem
	Lösung
	Diskussion

	15.5 XML-Daten von einem Webserver abrufen
	Problem
	Lösung

	15.6 Den Arduino als Webserver einrichten
	Problem
	Lösung
	Diskussion

	15.7 Eingehende Web-Requests verarbeiten
	Problem
	Lösung
	Diskussion

	15.8 Das Anfordern bestimmter Seiten verarbeiten
	Problem
	Lösung
	Diskussion

	15.9 Antworten des Webservers mit HTML aufbereiten
	Problem
	Lösung
	Diskussion
	Siehe auch

	15.10 Formulare (POST) verarbeiten
	Problem
	Lösung
	Diskussion

	15.11 Webseiten mit großen Datenmengen zurückgeben
	Problem
	Lösung
	Diskussion
	Siehe auch

	15.12 Twitter-Nachrichten senden
	Problem
	Lösung
	Diskussion
	Siehe auch

	15.13 Einfache Nachrichten (UDP) senden und empfangen
	Problem
	Lösung
	Diskussion

	15.14 Die Zeit von einem Internet-Zeitserver abrufen
	Problem
	Lösung
	Diskussion
	Siehe auch

	15.15 Pachube-Feeds überwachen
	Problem
	Lösung
	Diskussion
	Siehe auch

	15.16 Informationen an Pachube senden
	Problem
	Lösung
	Diskussion

	Kapitel 16 — Bibliotheken nutzen, ändern und aufbauen
	16.0 Einführung
	16.1 Mitgelieferte Bibliotheken nutzen
	Problem
	Lösung
	Diskussion
	Siehe auch

	16.2 Bibliotheken von Drittanbietern installieren
	Problem
	Lösung
	Diskussion

	16.3 Eine Bibliothek anpassen
	Problem
	Lösung
	Diskussion
	Siehe auch

	16.4 Eine eigene Bibliothek entwickeln
	Problem
	Lösung
	Diskussion
	Siehe auch

	16.5 Eine Bibliothek entwickeln, die andere Bibliotheken nutzt
	Problem
	Lösung
	Diskussion

	16.6 Bibliotheken von Drittanbietern an Arduino 1.0 anpassen
	Problem
	Lösung
	Diskussion
	Siehe auch

	Index

