
Arduino für Fortgeschrittene Behandelt

Arduino 1.0

O’REILLY

Arduino
Kochbuch

Michael Magolis
Übersetzung von Peter Klicman

Arduino Kochbuch

Michael Margolis

Deutsche Übersetzung von Peter Klicman

Beijing � Cambridge � Farnham � Köln � Sebastopol � Tokyo

Die Informationen in diesem Buch wurden mit größter Sorgfalt erarbeitet. Dennoch können
Fehler nicht vollständig ausgeschlossen werden. Verlag, Autoren und Übersetzer übernehmen
keine juristische Verantwortung oder irgendeine Haftung für eventuell verbliebene Fehler und
deren Folgen.
Alle Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt und sind
möglicherweise eingetragene Warenzeichen. Der Verlag richtet sich im Wesentlichen nach den
Schreibweisen der Hersteller. Das Werk einschließlich aller seiner Teile ist urheberrechtlich
geschützt. Alle Rechte vorbehalten einschließlich der Vervielfältigung, Übersetzung,
Mikroverfilmung sowie Einspeicherung und Verarbeitung in elektronischen Systemen.

Kommentare und Fragen können Sie gerne an uns richten:
O’Reilly Verlag
Balthasarstr. 81
50670 Köln
Tel.: 0221/9731600
Fax: 0221/9731608
E-Mail: kommentar@oreilly.de

Copyright:
� 2012 by O’Reilly Verlag GmbH & Co. KG
1. Auflage 2012

Die Originalausgabe erschien 2011 unter dem Titel
Arduino Cookbook, Second Edition, im Verlag O’Reilly Media, Inc.

Die Darstellung eines mechanischens Hasens im Zusammenhang mit dem
Thema Arduino ist ein Warenzeichen von O’Reilly Media, Inc.

Bibliografische Information Der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten
sind im Internet über http://dnb.ddb.de abrufbar.

Lektorat: Volker Bombien
Fachliche Unterstützung: Markus Ulsaß, Hamburg
Korrektorat: Dr. Dorothée Leidig
Satz: Reemers Publishing Services GmbH, Krefeld, www.reemers.de
Umschlaggestaltung: Michael Oreal, Köln
Produktion: Karin Driesen, Köln
Belichtung, Druck und buchbinderische Verarbeitung:
Druckerei Kösel, Krugzell; www.koeselbuch.de

ISBN-13 978-3-86899-353-0

Dieses Buch ist auf 100% chlorfrei gebleichtem Papier gedruckt.

Inhalt

Vorwort. XI

1 Erste Schritte . 1
1.0 Einführung. 1

1.1 Installation der integrierten Entwicklungsumgebung (IDE) 4

1.2 Das Arduino-Board einrichten . 8

1.3 Einen Arduino-Sketch mit der integrierten Entwicklungsumgebung (IDE)
bearbeiten . 10

1.4 Den Blink-Sketch hochladen und ausführen . 13

1.5 Einen Sketch erstellen und speichern . 15

1.6 Arduino verwenden . 17

2 Den Sketch machen lassen, was Sie wollen . 23
2.0 Einführung. 23

2.1 Strukturierung eines Arduino-Programms. 24

2.2 Einfache primitive Typen (Variablen) nutzen . 25

2.3 Fließkommazahlen verwenden. 27

2.4 Mit Gruppen von Werten arbeiten . 29

2.5 Arduino-Stringfunktionen nutzen . 32

2.6 C-Zeichenketten nutzen . 37

2.7 Durch Komma getrennten Text in Gruppen aufteilen 38

2.8 Eine Zahl in einen String umwandeln . 41

2.9 Einen String in eine Zahl umwandeln . 43

2.10 Ihren Code in Funktionsblöcken strukturieren 45

2.11 Mehr als einen Wert in einer Funktion zurückliefern 49

2.12 Aktionen basierend auf Bedingungen ausführen 52

2.13 Eine Folge von Anweisungen wiederholt ausführen 54

| III

2.14 Anweisungen über einen Zähler wiederholen . 56

2.15 Aus Schleifen ausbrechen . 58

2.16 Basierend auf einem Variablenwert verschiedene Aktionen durchführen . 59

2.17 Zeichen und Zahlen vergleichen. 61

2.18 Strings vergleichen . 63

2.19 Logische Vergleiche durchführen . 64

2.20 Bitweise Operationen durchführen. 65

2.21 Operationen und Zuweisungen kombinieren . 68

3 Mathematische Operatoren nutzen . 69
3.0 Einführung. 69

3.1 Addieren, subtrahieren, multiplizieren und dividieren 69

3.2 Werte inkrementieren und dekrementieren. 70

3.3 Den Rest einer Division bestimmen . 71

3.4 Den Absolutwert ermitteln . 72

3.5 Zahlen auf einen Wertebereich beschränken . 73

3.6 Das Minimum oder Maximum bestimmen . 74

3.7 Eine Zahl potenzieren . 75

3.8 Die Quadratwurzel berechnen . 76

3.9 Fließkommazahlen auf- und abrunden . 76

3.10 Trigonometrische Funktionen nutzen. 77

3.11 Zufallszahlen erzeugen . 78

3.12 Bits setzen und lesen . 80

3.13 Bits verschieben (Shifting) . 84

3.14 Höher- und niederwertige Bytes aus int oder long extrahieren 85

3.15 int- oder long-Werte aus höher- und niederwertigen Bytes bilden 87

4 Serielle Kommunikation . 89
4.0 Einführung. 89

4.1 Debugging-Informationen vom Arduino an Ihren Computer senden. . . . 94

4.2 Formatierten Text und numerische Daten vom Arduino senden 98

4.3 Serielle Daten mit Arduino empfangen . 101

4.4 Mehrere Textfelder vom Arduino in einer einzelnen Nachricht senden . . 106

4.5 Mit dem Arduino mehrere Textfelder in einer Nachricht empfangen. . . . 111

4.6 Binäre Daten vom Arduino senden. 115

4.7 Binärdaten vom Arduino auf einem Computer empfangen. 119

4.8 Binäre Werte aus Processing an den Arduino senden 121

4.9 Den Wert mehrerer Arduino-Pins senden . 123

4.10 Den Mauszeiger eines PCs oder Macs bewegen 127

IV | Inhalt

4.11 Google Earth per Arduino steuern . 131

4.12 Arduino-Daten in einer Datei auf dem Computer festhalten. 136

4.13 Daten an zwei serielle Geräte gleichzeitig senden. 139

4.14 Serielle Daten von zwei Geräten gleichzeitig empfangen. 143

4.15 Serielle Daten mit Processing Senden und Empfangen 147

5 Einfacher digitaler und analoger Input . 149
5.0 Einführung. 149

5.1 Einen Schalter verwenden . 152

5.2 Taster ohne externen Widerstand verwenden . 156

5.3 Das Schließen eines Schalters zuverlässig erkennen 158

5.4 Ermitteln, wie lange eine Taste gedrückt wird . 160

5.5 Von einer Tastatur lesen . 165

5.6 Analogwerte einlesen . 168

5.7 Wertebereiche ändern . 170

5.8 Mehr als sechs analoge Eingänge einlesen . 172

5.9 Spannungen von bis zu 5V messen. 175

5.10 Auf Spannungsänderungen reagieren . 177

5.11 Spannungen über 5V messen (Spannungsteiler) 179

6 Werte von Sensoren einlesen . 183
6.0 Einführung. 183

6.1 Movement erkennen . 185

6.2 Licht messen . 188

6.3 Motion erkennen (Passive Infrarot-Detektoren integrieren) 190

6.4 Abstände messen . 192

6.5 Abstände genauer messen . 196

6.6 Vibration messen . 199

6.7 Geräusche erkennen . 200

6.8 Temperatur messen . 204

6.9 RFID-Tags lesen . 207

6.10 Drehbewegungen messen . 210

6.11 Mehrere Drehbewegungen messen . 213

6.12 Drehbewegungen in einem viel beschäftigten Sketch messen 215

6.13 Eine Maus nutzen . 217

6.14 Die Position per GPS bestimmen . 221

6.15 Bewegungen mit einem Gyroskop erkennen . 226

6.16 Richtung bestimmen. 231

Inhalt | V

6.17 Daten von einem Spiele-Controller (PlayStation) einlesen 236

6.18 Beschleunigung messen. 239

7 Visuelle Ausgabe. 241
7.0 Einführung. 241

7.1 LEDs anschließen und nutzen . 245

7.2 Helligkeit einer LED regeln . 248

7.3 Hochleistungs-LEDs ansteuern . 249

7.4 Die Farbe einer LED steuern . 252

7.5 Mehrere LEDs aneinanderreihen: LED-Balkenanzeige 255

7.6 Mehrere LEDs aneinanderreihen: Knight Rider-Lauflicht 258

7.7 Eine LED-Matrix per Multiplexing steuern . 259

7.8 Bilder (Images) auf einer LED-Matrix darstellen 262

7.9 Eine LED-Matrix ansteuern: Charlieplexing . 265

7.10 Eine 7-Segment-LED-Anzeige ansteuern . 271

7.11 Mehrstellige 7-Segment-LED-Anzeigen ansteuern: Multiplexing. 274

7.12 Mehrstellige 7-Segment-LED-Anzeigen mit MAX7221-Schieberegistern
ansteuern . 276

7.13 Eine LED-Matrix mit MAX72xx-Schieberegistern ansteuern 279

7.14 Die Anzahl analoger Ausgänge mit PWM-Extender-Chips (TLC5940)
erhöhen . 281

7.15 Ein analoges Anzeigeinstrument nutzen . 285

8 Physische Ausgabe . 289
8.0 Einführung. 289

8.1 Die Position eines Servos kontrollieren . 292

8.2 Ein oder zwei Servos mit einem Potentiometer oder Sensor steuern. 294

8.3 Die Geschwindigkeit dauerrotierender Servos steuern 296

8.4 Servos über Computerbefehle steuern . 298

8.5 Einen bürstenlosen Motor (per Fahrtregler) steuern. 299

8.6 Hubmagnete und Relais steuern. 301

8.7 Ein Objekt vibrieren lassen . 302

8.8 Einen Bürstenmotor über einen Transistor ansteuern. 305

8.9 Die Drehrichtung eines Bürstenmotors über eine H-Brücke steuern 306

8.10 Drehrichtung und Geschwindigkeit eines Bürstenmotors mit einer
H-Brücke steuern . 309

8.11 Richtung und Geschwindigkeit von Bürstenmotoren über Sensoren
steuern (L293 H-Brücke) . 311

8.12 Einen bipolaren Schrittmotor ansteuern . 317

VI | Inhalt

8.13 Einen bipolaren Schrittmotor ansteuern (mit EasyDriver-Board). 320

8.14 Einen unipolaren Schrittmotor ansteuern (ULN2003A) 323

9 Audio-Ausgabe . 327
9.0 Einführung. 327

9.1 Töne ausgeben . 329

9.2 Eine einfache Melodie spielen . 331

9.3 Mehr als einen Ton gleichzeitig erzeugen . 333

9.4 Einen Ton erzeugen und eine LED ansteuern . 335

9.5 Eine WAV-Datei abspielen . 338

9.6 MIDI steuern . 341

9.7 Audio-Synthesizer. 344

10 Externe Geräte fernsteuern . 347
10.0 Einführung. 347

10.1 Auf eine Infrarot-Fernbedienung reagieren . 348

10.2 IR-Signale einer Fernbedienung dekodieren . 350

10.3 IR-Signale imitieren . 354

10.4 Eine Digitalkamera steuern . 356

10.5 Wechselstromgeräte über eine gehackte Fernbedienung steuern 359

11 Displays nutzen. 363
11.0 Einführung. 363

11.1 Ein Text-LCD anschließen und nutzen. 364

11.2 Text formatieren. 367

11.3 Cursor und Display ein- und ausschalten . 370

11.4 Text scrollen . 371

11.5 Sonderzeichen darstellen . 375

11.6 Eigene Zeichen definieren . 377

11.7 Große Symbole darstellen . 379

11.8 Kleine Pixel darstellen . 382

11.9 Ein graphisches LC-Display anschließen und nutzen 385

11.10 Bitmaps für graphische Displays . 389

11.11 Text auf dem Fernseher ausgeben . 390

12 Datum und Uhrzeit . 397
12.0 Einführung. 397

12.1 Zeitverzögerungen . 397

12.2 Laufzeiten messen mit millis . 398

Inhalt | VII

12.3 Die Dauer eines Impulses präziser messen . 402

12.4 Arduino als Uhr verwenden. 404

12.5 Einen Alarm einrichten, um regelmäßig eine Funktion aufzurufen 412

12.6 Eine Echtzeituhr nutzen . 415

13 Kommunikation per I2C und SPI . 421
13.0 Einführung. 421

13.1 Steuerung einer RGB-LED mit dem BlinkM-Modul 425

13.2 Den Wii Nunchuck-Beschleunigungsmesser nutzen 429

13.3 Anbindung einer externen Echtzeituhr . 435

13.4 Externen EEPROM-Speicher anbinden. 436

13.5 Temperatur per Digital-Thermometer messen. 440

13.6 Vier 7-Segment-LEDs mit nur zwei Leitungen steuern 445

13.7 Einen I2C-Port-Expander integrieren . 448

13.8 Mehrstellige 7-Segment-Anzeigen über SPI ansteuern 451

13.9 Kommunikation zwischen zwei oder mehr Arduino-Boards 454

14 Drahtlose Kommunikation . 457
14.0 Einführung. 457

14.1 Nachrichten über Low-Cost-Drahtlos-Module senden. 457

14.2 Den Arduino mit einem ZigBee- oder 802.15.4-Netzwerk verbinden. . . . 463

14.3 Eine Nachricht an einen bestimmten XBee senden. 470

14.4 Sensordaten zwischen XBees senden . 473

14.5 Einen mit dem XBee verbundenen Aktuator aktivieren 478

14.6 Nachrichten über Low-Cost-Transceiver senden 483

14.7 Mit Bluetooth-Geräten kommunizieren . 489

15 Ethernet und Netzwerke . 493
15.0 Einführung. 493

15.1 Ein Ethernet-Shield einrichten . 496

15.2 Die IP-Adresse automatisch beziehen . 498

15.3 Hostnamen in IP-Adressen umwandeln (DNS) 500

15.4 Daten von einem Webserver abrufen . 502

15.5 XML-Daten von einem Webserver abrufen . 506

15.6 Den Arduino als Webserver einrichten . 509

15.7 Eingehende Web-Requests verarbeiten . 512

15.8 Das Anfordern bestimmter Seiten verarbeiten . 515

15.9 Antworten des Webservers mit HTML aufbereiten 519

15.10 Formulare (POST) verarbeiten . 523

VIII | Inhalt

15.11 Webseiten mit großen Datenmengen zurückgeben 527

15.12 Twitter-Nachrichten senden . 533

15.13 Einfache Nachrichten (UDP) senden und empfangen 537

15.14 Die Zeit von einem Internet-Zeitserver abrufen 543

15.15 Pachube-Feeds überwachen. 548

15.16 Informationen an Pachube senden . 554

16 Bibliotheken nutzen, ändern und aufbauen . 559
16.0 Einführung. 559

16.1 Mitgelieferte Bibliotheken nutzen. 559

16.2 Bibliotheken von Drittanbietern installieren . 562

16.3 Eine Bibliothek anpassen. 563

16.4 Eine eigene Bibliothek entwickeln . 567

16.5 Eine Bibliothek entwickeln, die andere Bibliotheken nutzt 572

16.6 Bibliotheken von Drittanbietern an Arduino 1.0 anpassen 578

Index. 581

Inhalt | IX

Vorwort

Dieses Buch wurde von Michael Margolis, zusammen mit Nick Weldin, geschrieben, um
Sie die erstaunlichen Dinge entdecken zu lassen, die man mit Arduino machen kann.

Arduino ist eine Familie von Mikrocontrollern (kleinen Computern) und eine Umgebung
zur Software-Entwicklung, die es Ihnen leicht macht, Programme (sog. Sketches) zu
entwickeln, die mit der physikalischen Welt interagieren. Mit Arduino entwickelte Dinge
können auf Berührungen, Töne, Wärme und Licht reagieren. Diese Technik, auch
physical computing genannt, wird in den unterschiedlichsten Dingen, vom iPhone bis zur
Automobilelektronik verwendet. Arduino ermöglicht es jedermann – auch Menschen
ohne Programmier- oder Elektronikkenntnisse –, diese mächtige und komplexe Technik
zu nutzen.

Leserkreis
Im Gegensatz zu den meisten technischen Kochbüchern wird keinerlei Erfahrung mit
Soft- und Hardware vorausgesetzt. Dieses Buch richtet sich an Leser, die Computer-
technik nutzen wollen, um mit ihrer Umgebung zu interagieren. Es ist für Leute gedacht,
die eine schnelle Lösung für ihre Hard- und Softwareprobleme suchen. Die Rezepte bieten
die Informationen, die Sie benötigen, um eine große Bandbreite von Aufgaben zu
erledigen. Sie enthalten auch Details, die Ihnen dabei helfen, Lösungen an Ihre Bedürf-
nisse anzupassen. Ein auf 600 Seiten beschränktes Buch kann nicht den allgemeinen
theoretischen Hintergrund vermitteln. Daher finden Sie überall im Buch Links auf externe
Referenzen. Im Abschnitt »Was ausgelassen wurde« auf Seite XIV finden sich einige
allgemeine Referenzen für diejenigen ohne Programmier- und Elektronikkenntnisse.

Wenn Sie keine Programmiererfahrung haben – vielleicht haben Sie eine gute Idee für ein
interaktives Projekt, verfügen aber nicht über das notwendige Wissen, um es bauen zu
können –, hilft Ihnen dieses Buch, das zu lernen, was Sie zum Schreiben funktionierender
Programme brauchen. Dazu verwenden wir Beispiele, die über 200 gängige Aufgaben
behandeln.

| XI

Wenn Sie über Programmiererfahrung verfügen, aber nicht mit Arduino vertraut sind,
sorgt das Buch für ein schnelleres produktives Arbeiten, indem es demonstriert, wie man
Arduino-spezifische Fähigkeiten in ein Projekt integriert.

Wenn Sie bereits mit Arduino vertraut sind, werden Sie den Inhalt nützlich finden, der
Ihnen neue Techniken anhand praktischer Beispiele vermittelt. Das hilft Ihnen bei
komplexeren Projekten, indem es zeigt, wie man Probleme mit Hilfe Ihnen möglicher-
weise noch nicht bekannter Techniken löst.

Erfahrene C/C++-Programmierer finden Beispiele für den Einsatz der auf niedriger Ebene
angesiedelten AVR-Ressourcen (Interrupts, Timer, I2C, Ethernet etc.), die bei der Ent-
wicklung von Anwendungen mit der Arduino-Umgebung helfen.

Organisation
Das Buch enthält Informationen, die ein breites Spektrum der Arduino-Fähigkeiten abdecken.
Sie reichen von grundlegenden Konzepten und gängigen Aufgaben bis hin zu fortgeschritte-
nen Techniken. Jede Technik wird in einem Rezept erläutert, das zeigt, wie man eine
bestimmte Fähigkeit implementiert. Sie müssen den Inhalt nicht der Reihe nach lesen. Nutzt
ein Rezept eine Technik, die in einem anderen Rezept behandelt wird, finden Sie eine Referenz
auf das andere Rezept, d.h., die Details werden nicht an mehreren Stellen wiederholt.

Kapitel 1 führt in die Arduino-Umgebung ein und erläutert die Arduino-Installation.

Die nächsten Kapitel führen in die Arduino-Software-Entwicklung ein. Kapitel 2, behan-
delt grundlegende Softwarekonzepte und Aufgaben. Kapitel 3 zeigt, wie man die gängigs-
ten mathematischen Funktionen verwendet.

Kapitel 4 beschreibt, wie man den Arduino mit Ihrem Computer und anderen Geräten
verbindet und mit ihnen kommuniziert. Seriell ist die für Arduino gängigste Methode der
Ein- und Ausgabe, die im gesamten Buch von vielen Rezepten genutzt wird.

Kapitel 5 führt eine Reihe grundlegender Techniken zum Lesen digitaler und analoger
Signale ein. Darauf aufbauend zeigt Kapitel 6, wie man Bauelemente nutzt, die es Arduino
ermöglichen, Berührungen, Töne, Positionen, Wärme und Licht wahrzunehmen.

Kapitel 7 behandelt die Steuerung von Licht. Die Rezepte zeigen, wie man ein oder
mehrere LEDs einschaltet und Helligkeit und Farbe kontrolliert. Dieses Kapitel erläutert,
wie man Strichskalen und numerische LED-Displays ansteuert und wie man Muster und
Animationen mit LED-Arrays erzeugt. Für Einsteiger enthält das Kapitel zusätzlich eine
allgemeine Einführung in die digitale und analoge Ausgabe.

Kapitel 8 erklärt, wie man mit dem Arduino Dinge mittels Motoren bewegen kann. Es
werden unterschiedlichste Motortypen behandelt: Spulen, Servomotoren, Gleichstrom-
und Schrittmotoren.

Kapitel 9 zeigt, wie man mit de Arduino Töne über ein Ausgabegerät wie einen Laut-
sprecher erzeugt. Es behandelt einfache Töne und Melodien und das Abspeichern von
WAV-Dateien und MIDI.

XII | Vorwort

Kapitel 10 beschreibt Techniken, mit denen Sie mit nahezu jedem Gerät interagieren
können, das irgendeine Form von Fernbedienung nutzt: Fernseher, Audiogeräte, Kame-
ras, Garagentore, Haushaltsgeräte und Spielzeug. Es baut auf den Techniken zur Ver-
bindung des Arduino mit anderen Bauelementen und Modulen auf.

Kapitel 11 behandelt die Verbindung mit Text- und LC-Displays. Es zeigt, wie man diese
Geräte anbindet, um Text auszugeben, Wörter scrollt und hervorhebt und spezielle
Symbole und Zeichen erzeugt.

Kapitel 12 behandelt die in Arduino fest integrierten zeitbezogenen Funktionen und stellt
zusätzliche Techniken für Zeitverzögerungen, zur Zeitmessung und reale Zeit- und
Datumsangaben vor.

Kapitel 13 behandelt die I2C-(Inter-Integrated Circuit-) und SPI-(Serial Peripheral Inter-
face-)Standards. Diese Standards bieten eine einfache Möglichkeit, Informationen digital
zwischen Sensoren und dem Arduino zu übertragen. Das Kapitel zeigt, wie man I2C und
SPI nutzt, um gängige Bauelemente anzubinden. Es zeigt auch, wie man zwei oder mehr
Arduino-Boards für Multiboard-Anwendungen über I2C miteinander verbindet.

Kapitel 14 behandelt die drahtlose Kommunikation mittels XBee und anderen Wireless-
Modulen. Die Beispiele reichen vom einfachen Drahtlos-Ersatz für serielle Ports bis hin zu
Mesh-Netzwerken, die mehrere Boards mit mehreren Sensoren verbinden.

Kapitel 15 beschreibt die vielen Möglichkeiten, wie Sie Arduino fürs Internet benutzen
können. Es enthält Beispiele, die zeigen, wie man Web-Clients und -Server erstellt und
nutzt und erläutert die gebräuchlichen Internet-Protokolle.

Arduino Softwarebibliotheken sind der übliche Ansatz, um die Arduino-Umgebung um
zusätzliche Funktionen zu erweitern. Kapitel 16 erläutert, wie man Softwarebibliotheken
nutzt und modifiziert. Es enthält auch eine Anleitung zur Entwicklung eigener Bibliotheken.

Kapitel 16 behandelt die fortgeschrittenen Programmiertechniken, und die Inhalte sind
etwas technischer als die Rezepte in den vorherigen Kapiteln, weil sie Dinge abdecken, die
ansonsten von freundlichen Arduino-Kumpels erledigt werden.

Die Rezepte aus diesem Kapitel können dazu eingesetzt werden, um einen Sketch effi-
zienter zu schreiben, sie können Ihnen dabei helfen, die Performance zu verbessern und
den Code schlanker zu schreiben.

Die Anhänge sowie Kapitel 17 und 18 wurden nicht übersetzt. Sie stehen in Englisch als
Download auf unserer Webseite zur Verfügung.

Anhang A enthält eine Übersicht der im Buch verwendeten Komponenten.

Anhang B erklärt, wie man Schaltpläne und Datenblätter verwendet.

Anhang C bietet eine kurze Einführung in die Verwendung von Steckbrettern, den
Anschluss und Einsatz externer Stromversorgungen und Batterien sowie der Nutzung
von Kondensatoren zur Entstörung.

Anhang D enthält Tipps zur Behebung von Compiler- und Laufzeitproblemen.

Vorwort | XIII

Anhang E behandelt Probleme mit elektronischen Schaltungen.

Anhang F enthält Tabellen mit den Funktionen der einzelnen Pins bei Standard-Arduino-
Boards.

Anhang G enthält Tabellen mit den ASCII-Zeichen.

Anhang H erklärt, wie man Code für ältere Releases anpasst, damit er unter Arduino 1.0
korrekt läuft.

Was ausgelassen wurde
Das Buch bietet nicht genug Platz, um Elektronik in Theorie und Praxis zu erläutern, auch
wenn Anleitungen für den Bau der in den Rezepten verwendeten Schaltungen gegeben
werden. Für genauere Informationen sei der Leser auf das im Internet zahlreich vorhan-
dene Material oder auf die folgenden Bücher verwiesen:

• Make: Elektronik (ISBN 978-3-89721-601-3) von Charles Platt

• Arduino für Einsteiger (ISBN 978-3-86899-232-8) von Massimo Banzi

• Die elektronische Welt mit Arduino entdecken (ISBN 978-3-89721-319-7) von Erik
Bartmann

• Making Things Talk (ISBN 978-3-86899-162-8) von Tom Igoe

Dieses Kochbuch erklärt, wie man Code schreibt, der bestimmte Arbeiten erledigt, es ist
jedoch keine Einführung in die Programmierung. Wichtige Programmierkonzepte werden
kurz erklärt, doch der Platz reicht nicht aus, um auf die Details einzugehen. Wenn Sie
mehr über die Programmierung lernen wollen, sei auf das Internet verwiesen.

Nicht in die deutsche Übersetzung aufgenommen wurden die Kurzkapitel »Advanced
Coding and Memory Handling«, »Using the Controller Chip Hardware« sowie die
Anhänge, um einen akzeptablen Verkaufspreis für das Buch zu gewährleisten.

Diese Kapitel sind als Originalkapitel in PDF-Form von unserer Webseite www.oreilly.de
downloadbar.

Code-Stil (Über den Code)
Für das gesamte Buch wurde der Code maßgeschneidert, um das Thema des jeweiligen
Rezepts ganz deutlich zu machen. Infolgedessen wurden gängige Kürzel vermieden,
insbesondere in den frühen Kapiteln. Erfahrene C-Programmierer verwenden häufig
mächtige, aber sehr knappe Ausdrücke, die für Anfänger etwas schwer verständlich sind.
Zum Beispiel werden in den frühen Kapiteln Variablen mit expliziten Ausdrücken in-
krementiert, die für Nichtprogrammierer leicht verständlich sind:

result = result + 1; // Zähler inkrementieren

XIV | Vorwort

und nicht in der von erfahrenen Programmierern üblicherweise genutzten Kurzform, die
das Gleiche macht:

result++; // Inkrement mittels Postinkrement-Operator

Es steht Ihnen natürlich frei, den von Ihnen bevorzugte Stil zu verwenden. Anfängern sei
versichert, dass die Kurzform keinerlei Vorteil bei Performance oder Codegröße bringt.

Einige Programmierausdrücke sind so gängig, dass wir ihre Kurzform verwenden. Zum
Beispiel werden Schleifen immer wie folgt geschrieben:

for(int i=0; i < 4; i++)

was mit folgendem identisch ist:

int i;
for(i=0; i < 4; i = i+1)

Weitere Details zu diesen und anderen im Buch verwendeten Ausdrücken finden Sie in
Kapitel 2.

Gute Programmierpraxis verlangt, dass die verwendeten Werte gültig sind, d.h., dass man
sie prüft, bevor man sie in Berechnungen nutzt. Damit sich der Code aber auf das
eigentliche Rezept konzentriert, haben wir nur sehr wenige Fehlerprüfungen eingefügt.

Arduino-Version
Diese Ausgabe wurde für Arduino 1.0 aktualisiert. Der gesamte Code wurde mit dem
neuesten Arduino 1.0 Release Candidate getestet, der zur Drucklegung verfügbar war
(RC2). Der Download-Code für diese Ausgabe wird bei Bedarf online aktualisiert, um die
finale Release 1.0 zu unterstützen. Besuchen Sie also die Buch-Website (http://shop.oreilly
.com/product/0636920022244.do), um den neuesten Code zu erhalten. Der Download
enthält eine Datei namens changelog.txt, die den Code beschreibt, der sich von der
gedruckten Version unterscheidet.

Obwohl viele Sketches mit früheren Arduino-Releases laufen, müssen Sie die Endung von
.ino in .pde ändern, um den Sketch in eine Pre-1.0-IDE zu laden. Wenn Sie nicht auf
Arduino 1.0 migriert sind und gute Gründe haben, bei einer älteren Release zu bleiben,
können Sie den Beispielcode der ersten Ausgabe nutzen (verfügbar unter http://shop.oreilly
.com/product/9780596802486.do), der mit den Releases 0018 bis 0022 getestet wurde.
Beachten Sie, dass viele Rezepte der zweiten Ausgabe erweitert wurden, weshalb wir ein
Upgrade auf Arduino 1.0 empfehlen. Hilfe zur Migration älteren Codes finden Sie in
Anhang H (steht als Download bereit).

Dort finden Sie auch einen Link zum Fehlerverzeichnis. Das Fehlerverzeichnis gibt Ihnen
die Möglichkeit, uns über (Druck-)Fehler und andere Probleme mit dem Buch zu in-
formieren. Fehler sind auf der Seite sofort sichtbar und werden von uns bestätigt, sobald
wir sie überprüft haben. O’Reilly kann die Fehler in zukünftigen Auflagen und auf Safari
korrigieren.

Vorwort | XV

Wenn Sie Probleme haben, Beispiele ans Laufen zu bekommen, überprüfen Sie in der
Datei changelog.txt des aktuellsten Downloads, ob der Sketch aktualisiert wurde. Falls das
Ihr Problem nicht löst, sehen Sie sich Anhang D (steht als Download bereit) an, das die
Behebung von Softwareproblemen behandelt. Falls Sie mehr Hilfe benötigen, ist das
Arduino-Forum ein guter Ort, um Fragen zu stellen: http://www.arduino.cc.

Wenn Sie dieses Buch mögen – oder auch nicht –, sollten es die Leute unbedingt erfahren.
Amazon-Rezensionen sind eine beliebte Möglichkeit, Ihre Zufriedenheit und andere
Kommentare mit anderen zu teilen. Sie können auch auf der O’Reilly-Site zu diesem
Buch einen Kommentar hinterlassen.

Verwendete Konventionen
In diesem Buch werden die folgenden typographischen Konventionen verwendet:

Kursivschrift
wird für Pfad-, Datei- und Programmnamen, Internetadressen, Domainnamen und
URLs verwendet, sowie für neue Begriffe, wenn sie zum ersten Mal im Text auf-
tauchen.

Nichtproportionalschrift
wird für Kommandozeilen und Optionen verwendet, die Sie wortwörtlich eingeben
müssen. Ebenso bei Namen und Schlüsselwörtern in Programmen, einschließlich
Methoden-, Variablen- und Klassennamen sowie HTML-Tags.

Nichtproportionalschrift fett
wird für Hervorhebungen im Programmcode verwendet.

Nichtproportionalschrift kursiv
wird für Text verwendet, der durch Benutzereingaben ersetzt werden muss.

Zeigt einen Tipp, eine Empfehlung oder einen allgemeinen Hinweis an.

Zeigt eine Warnung an.

Verwendung der Codebeispiele
Dieses Buch soll Ihnen bei der Arbeit mit Arduino helfen. Den Code, den wir hier zeigen,
dürfen Sie generell in Ihren Programmen und Dokumentationen verwenden. Sie brauchen
uns nicht um Genehmigung zu bitten, sofern Sie nicht große Teile des Codes repro-
duzieren. Wenn Sie zum Beispiel ein Programm schreiben, das mehrere Codeabschnitte
aus diesem Buch verwendet, brauchen Sie unser Einverständnis nicht. Doch wenn Sie eine
CD-ROM mit Codebeispielen aus O'Reilly-Büchern verkaufen wollen, müssen Sie sehr

XVI | Vorwort

wohl eine Erlaubnis einholen. Eine Frage mit einem Zitat und einem Codebeispiel aus
diesem Buch zu beantworten, erfordert keine Erlaubnis, aber es ist nicht ohne Weiteres
gestattet, große Teile unseres Textes oder Codes in eine eigene Produktdokumentation
aufzunehmen.

Wir freuen uns über eine Quellenangabe, verlangen sie aber nicht zwingend. Zu einer
Quellenangabe gehören normalerweise der Titel, der Autor, der Verlag und die ISBN, zum
Beispiel: »Arduino Kochbuch, von Michael Margolis mit Nick Weldin (O’Reilly). Copy-
right 2012 Michael Margolis, Nicholas Weldin, 978-86899-353-0.«

Wenn Sie das Gefühl haben, dass Ihr Einsatz unserer Codebeispiele über die Grenzen des
Erlaubten hinausgeht, schreiben Sie uns bitte eine E-Mail an permissions@oreilly.com.

Danksagungen
Nick Weldins Beitrag war für die Fertigstellung dieses Buches von unschätzbarem Wert.
Das Buch war zu 90 Prozent fertig, als Nick an Bord kam – und ohne sein Können und
seinen Enthusiasmus wären es wohl immer noch nur 90 Prozent. Seine Erfahrung mit
Arduino-Workshops für die unterschiedlichsten Anwender macht die Ratschläge in
diesem Buch für unseren breiten Leserkreis nutzbar. Danke, Nick, für dein Wissen und
dein geniales, kollaboratives Wesen.

Simon St. Laurent war der Lektor bei O’Reilly, der als Erster Interesse an diesem Buch
bekundet hat. Und letztlich war er auch derjenige, der es zusammengehalten hat. Seine
Unterstützung und Aufmunterung hielten uns bei der Stange, während wir die Unmengen
an Material durchgingen, die nötig waren, um dem Thema Genüge zu tun.

Brian Jepson half mir dabei, mit dem Schreiben dieses Buches anzufangen. Sein umfas-
sendes Wissen in Bezug auf Arduino und sein Bemühen, Technik mit einfachen Worten
zu vermitteln, setzten einen hohen Standard. Er war die ideale führende Hand, um dieses
Buch zu formen und Technik für die Leser wirklich zugänglich zu machen. Wir sind Brian
auch für den XBee-Inhalt in Kapitel 14 dankbar.

Brian Jepson und Shawn Wallace waren die Betreuer für diese zweite Ausgabe und
lieferten wertvolle Hinweise zur Verbesserung der Genauigkeit und Klarheit des Inhalts.

Audrey Doyle arbeitete unermüdlich daran, Schreibfehler und grammatikalische Fehler
aus dem ursprünglichen Manuskript zu tilgen und die allzu verwickelten Ausdrücke zu
entwirren.

Philip Lindsay arbeitete in der ersten Auflage am Inhalt von Kapitel 15 mit. Adrian
McEwen, der führende Entwickler von zahlreichen Ethernet-Erweiterungen für Arduino
1.0, steuerte wertvolle Hinweise für dieses Kapitel bei, um alle Release-Neuerungen zu
erfassen.

Mikal Hart schrieb die Rezepte zu GPS und der seriellen (Software-)Schnittstelle. Mikal war
dafür die natürliche Wahl – nicht nur, weil er die Bibliotheken geschrieben hat, sondern
auch weil er ein Arduino-Enthusiast ist, mit dem die Zusammenarbeit ein Vergnügen ist.

Vorwort | XVII

Arduino wird durch die Kreativität des Arduino-Kernentwicklerteams möglich: Massimo
Banzi, David Cuartielles, Tom Igoe, Gianluca Martino und David Mellis. Im Namen aller
Arduino-Nutzer möchte ich unseren Dank für ihre Bemühungen ausdrücken, diese
faszinierende Technik einfach nutzbar zu machen, aber auch für ihren Großmut, sie frei
zugänglich zu machen.

Ein besonderer Dank geht an Alexandra Deschamps-Sonsino, deren Tinker London
Workshops wichtige Erkenntnisse über die Bedürfnisse der Benutzer lieferten. Dank
auch an Peter Knight, der alle Arten cleverer Arduino-Lösungen sowie die Basis für eine
Reihe von Rezepten in diesem Buch bereitgestellt hat .

Im Namen aller, die von Benutzern beigesteuerte Arduino-Bibliotheken heruntergeladen
haben, möchte ich den Autoren danken, die großzügig ihr Wissen geteilt haben.

Die Verfügbarkeit eines großen Spektrums an Hardware macht Arduino so spannend –
Dank dafür gebührt den Anbietern, die eine große Menge toller Bauelemente vorhalten
und unterstützen. Die nachfolgenden Firmen haben die in diesem Buch verwendete
Hardware bereitgestellt: SparkFun, Maker Shed, Gravitech und NKC Electronics. Weitere
hilfreiche Anbieter waren Modern Device, Liquidware, Adafruit, MakerBot Industries,
Mindkits, Oomlout und SK Pang.

Nick möchte allen danken, die in Tinker London involviert waren, insbesondere Alexan-
dra, Peter, Brock Craft, Daniel Soltis und all den Leuten, die über Jahre bei den Work-
shops geholfen haben.

Nicks abschließender Dank gilt seiner Familie: Jeanie, Emily und Finn, die es ihm er-
laubten, diese Sache während der Sommerferien durchzuziehen (und natürlich viel länger
dauerte, als sie ursprünglich dachten), sowie an seine Eltern Frank und Eva, die ihn dazu
erzogen, Dinge auseinanderzunehmen.

Zu guter Letzt möchte ich folgenden Leuten danken:

Joshua Noble, der mich O’Reilly vorstellte. Sein Buch Programming Interactivity (http://
oreilly.com/catalog/9780596154158/) sei all denen wärmstens empfohlen, die ihr Wissen
um Interaktivität erweitern wollen.

Robert Lacy-Thompson, der mir sehr früh bei der ersten Auflage seine Hilfe anbot.

Mark Margolis für seine Unterstützung und Hilfe als Diskussionspartner bei der Kon-
zeption und Entwicklung dieses Buches.

Ich danke meinen Eltern, die mir halfen zu erkennen, dass die kreativen Künste und
Technik keine distinktiven Entitäten sind und dass sie zu außergewöhnlichen Ergebnissen
führen können, wenn man sie miteinander kombiniert.

Und schließlich wäre dieses Buch ohne die Unterstützung meiner Frau, Barbara Faden,
weder begonnen noch fertiggestellt worden. Mein aufrichtiger Dank gilt ihrer Motivation,
ihrem sorgfältigen Lesen des Manuskripts und ihre Beiträge dazu.

XVIII | Vorwort

Hinweise zur Neuauflage
Die Neuauflage dieses Buchs folgt recht schnell auf die erste (die Erstauflage wurde nicht
ins Deutsche übersetzt). Das wurde durch die Veröffentlichung von Arduino 1.0 nötig.
Das genannte Ziel von 1.0 besteht darin, signifikante Änderungen einzuführen, die den
Weg für zukünftige Verbesserungen ebnen. Leider funktioniert damit einiger Code nicht
nicht mehr, der für ältere Software geschrieben wurde. Das hat dazu geführt, dass Code in
vielen Kapiteln des Buches geändert werden musste. Die meisten Änderungen finden sich
in Kapitel 15 und Kapitel 13, doch alle Rezepte dieser Ausgabe wurden auf 1.0 migriert
und viele wurden dahingehend aktualisiert, dass sie neue Features dieser Release nutzen.
Wenn Sie eine Release vor Arduino 1.0 nutzen, können Sie den Code der ersten Auflage
des Buches herunterladen.

Anhang H (steht als Download bereit) wurde hinzugefügt, um die Änderungen zu be-
schreiben, die mit Arduino Release 1.0 eingeführt wurden. Er erläutert, wie man älteren
Code an Arduino 1.0 anpasst.

Rezepte für nicht mehr weit verbreitete Bauelemente wurden für aktuelle Bauteile
aktualisiert, und einige neue Sensoren und Drahtlosgeräte wurden hinzugefügt.

An die O’Reilly-Site gepostete Fehler wurden behoben. Wir danken den Lesern, die sich
die Zeit genommen haben, uns darüber zu informieren.

Wir denken, dass Ihnen die Verbesserungen an Arduino 1.0 und an dieser Auflage des
Arduino Kochbuchs gefallen werden. Die erste Auflage ist gut angekommen. Die kons-
truktive Kritik teilte sich zwischen Leuten auf, die es technischer haben wollten, und
Leuten, die es sich weniger technisch wünschten. Bei einem Buch, bei dem wir auf nur
ca. 600 Seiten beschränkt sind (damit es bezahl- und tragbar bleibt), scheint das für ein
gutes Gleichgewicht zu sprechen.

Vorwort | XIX

KAPITEL 1

Erste Schritte

1.0 Einführung
Die Arduino-Umgebung wurde entworfen, um von Anfängern einfach genutzt werden zu
können, die mit Software oder Elektronik keine Erfahrung haben. Mit Arduino können
Sie Objekte entwickeln, die auf Licht, Töne und Bewegung reagieren oder sie kontrollie-
ren. Arduino wurde für den Bau einer Vielzahl faszinierender Dinge verwendet, darunter
Musikinstrumente, Roboter, Lichtskulpturen, Spiele, interaktive Möbel und sogar inter-
aktive Kleidung.

Wenn Sie kein Einsteiger sind, können Sie gleich mit den Rezepten
weitermachen, die Sie interessieren.

Arduino wird auf der ganzen Welt in vielen Bildungsprogrammen genutzt, insbesondere
von Designern und Künstlern, die auf einfache Weise Prototypen herstellen wollen, ohne
allzu tief in die technischen Details ihrer Schöpfungen einsteigen zu müssen. Da sie
entworfen wurde, um von nicht technisch versierten Menschen genutzt zu werden,
enthält die Software viele Codebeispiele, die demonstrieren, wie man die verschiedenen
Fähigkeiten der Arduino-Boards nutzt.

Obwohl sie einfach zu nutzen ist, arbeitet die Arduino zugrunde liegende Hardware mit
der gleichen »Perfektion«, die Ingenieure für den Aufbau eingebetteter Systeme nutzen.
Für Leute, die bereits mit Mikrocontrollern gearbeitet haben, ist Arduino aufgrund der
agilen Entwicklungsmöglichkeiten und der Möglichkeit zur schnellen Implementierung
von Ideen ebenfalls interessant.

Arduino ist für seine Hardware bekannt, doch man benötigt auch Software, um diese
Hardware programmieren zu können. Sowohl die Hardware als auch die Software wird
»Arduino« genannt. Diese Kombination ermöglicht die Entwicklung von Projekten, die
die physikalische Welt wahrnehmen und steuern können. Die Software ist frei, Open
Source und plattformübergreifend. Die Boards kann man kostengünstig kaufen oder
selbst zusammenbauen (die Hardware-Designs sind ebenfalls Open Source). Darüber
hinaus gibt es eine aktive und unterstützende Arduino-Community, die weltweit über

–

| 1

die Arduino-Foren und das Wiki (bekannt als Arduino Playground) zugänglich ist. Die
Foren und das Wiki bieten Beispiele für Projekte und Problemlösungen. Sie bieten Hilfe
und Inspiration, wenn Sie Ihr eigenes Projekt vorantreiben wollen.

Die Rezepte in diesem Kapitel ermöglichen Ihnen den Einstieg. Sie zeigen Ihnen, wie man
die Entwicklungsumgebung einrichtet und wie man einen Beispiel-Sketch kompiliert und
ausführt.

Der Quellcode mit den Computer-Instruktionen zur Steuerung von Ardui-
no-Funktionen wird in der Arduino-Community üblicherweise als Sketch
bezeichnet. Das Wort Sketch wird im gesamten Buch für Arduino-Pro-
grammcode verwendet.

Der mit Arduino mitgelieferte Blink-Sketch ist ein Beispiel für die Rezepte in diesem
Kapitel, auch wenn das letzte Rezept des Kapitels etwas weitergeht. Es lässt nicht nur die
auf dem Board vorhandene LED blinken, sondern fügt noch Sound hinzu und liest
Eingaben über zusätzliche Hardware ein. Kapitel 2 zeigt, wie man einen Sketch für
Arduino strukturiert und führt in die Programmierung ein.

Wenn Sie mit den Arduino-Grundlagen bereits vertraut sind, können Sie
mit den nachfolgenden Kapiteln weitermachen. Als Arduino-Einsteiger
macht sich das Durcharbeiten dieser frühen Rezepte später mit besseren
Ergebnissen bezahlt.

Arduino-Software
Software- Programme, sog. Sketches, werden auf einem Computer mit Hilfe der Arduino-
Entwicklungsumgebung (Integrated Development Environment, kurz IDE) geschrieben.
Die IDE ermöglicht es Ihnen, Code zu schreiben und zu bearbeiten und diesen Code dann
in Instruktionen umzuwandeln, die die Arduino-Hardware versteht. Die IDE überträgt
diese Instruktionen auch auf das Arduino-Board. Diesen Prozess bezeichnet man als
Hochladen (engl. Uploading).

Arduino-Hardware
Auf dem Arduino-Board wird der von Ihnen geschriebene Code ausgeführt. Das Board
selbst kann nur auf Strom reagieren und ihn steuern, weshalb spezielle Komponenten
angeschlossen sind, die die Interaktion mit der realen Welt ermöglichen. Diese Kom-
ponenten können Sensoren sein, die bestimmte Aspekte der physikalischen Welt in Strom
umwandeln, die das Board verarbeiten kann. Es können aber auch sog. Aktuatoren sein,
die Strom vom Board erhalten und ihn in etwas umwandeln, was die Welt verändert.
Beispiele für Sensoren sind Schalter, Beschleunigungsmesser und Ultraschall-Abstands-
sensoren. Aktuatoren sind Dinge wie Lampen und LEDs, Lautsprecher, Motoren und
Displays.

A

A
A

S
Sk
–
ID

E
In

r
H

A
Bo

2 | Kapitel 1: Erste Schritte

Es gibt eine Vielzahl offizieller Boards, die mit der Arduino-Software verwendet werden
können, sowie ein breites Spektrum an Arduino-kompatiblen Boards, die von Mitgliedern
der Community hergestellt werden.

Die beliebtesten Boards enthalten einen USB-Stecker, der die Stromversorgung über-
nimmt und die Upload-Verbindung für ihre Software herstellt. Abbildung 1-1 zeigt ein
einfaches Board, mit dem viele Leute anfangen: das Arduino Uno.

Abbildung 1-1: Einfaches Board: das Arduino Uno. Photo mit freundlicher Genehmigung von todo.to.it.

Das Arduino Uno besitzt einen zweiten Mikrocontroller, der die gesamte USB-Kommuni-
kation übernimmt. Der kleine SMD-Chip (ein ATmega8U2) ist nahe des USB-Steckers zu
finden. Dieser Chip kann separat programmiert werden, so dass das Board unterschied-
liche USB-Geräte emulieren kann (ein Beispiel finden Sie in Rezept 17.14). Das Arduino
Leonardo ersetzt die ATmega8U2- und ATmega328-Controller durch einen einzelnen
ATmega32u4-Chip, der das USB-Protokoll softwaremäßig emuliert. Die Arduino-kom-
patiblen Teensy- und Teensy+-Boards von PJRC (http://www.pjrc.com/teensy/) können
ebenfalls USB-Geräte emulieren. Ältere Boards (und die meisten Arduino-kompatiblen
Boards) verwenden einen Chip von FTDI, der eine Hardware-USB-Lösung bietet, mit der
man die Verbindung mit dem seriellen Port des Computers herstellen kann.

Sie können Boards kaufen, die so klein wie eine Briefmarke sind, etwa das Arduino Mini
und das Pro Mini. Größere Boards (wie das Arduino Mega) bieten mehr Anschlüsse und
leistungsfähigere Prozessoren. Es gibt auch Boards für spezielle Anwendungen, etwa das

–

–

1.0 Einführung | 3

LilyPad, das man in Kleidung integrieren kann (»Wearable«-Anwendungen), das Fio für
Wireless-Projekte, oder das Arduino Pro für Embedded-Anwendungen (eigenständige,
häufig batteriebetriebene Projekte).

Jüngstes Mitglied ist das Arduino ADK, das über einen USB-Host-Sockel verfügt und mit
dem Android Open Accessory Development Kit kompatibel ist (der offiziellen Methode,
Hardware an Android-Geräte anzuschließen). Das Leonardo-Board verwendet einen
Controller-Chip (den ATmega32u4), der unterschiedliche HID-Geräte repräsentieren
kann. Das Ethernet-Board enthält eine Ethernet-Schnittstelle und eine Power-Over-Ether-
net-Option, d.h., man kann das Board über ein einziges Kabel anbinden und mit Strom
versorgen.

Es gibt noch weitere Arduino-kompatible Boards, einschließlich der folgenden:

• Arduino Nano, ein kleines, USB-fähiges Board von Gravitech (http://store.gravitech
.us/arna30wiatn.html)

• Bare Bones Board, ein preiswertes Board mit oder ohne USB von Modern Device
(http://www.moderndevice.com/products/bbb-kit)

• Boarduino, ein preiswertes, für Steckbretter geeignetes Board von Adafruit Industries
(http://www.adafruit.com/)

• Seeeduino, eine flexible Variante des Standard-USB-Boards von Seeed Studio Bazaar
(http://www.seeedstudio.com/)

• Teensy und Teensy++, kleine, aber extrem vielseitige Boards von PJRC (http://www.
pjrc.com/teensy/)

Eine Liste Arduino-kompatibler Boards finden Sie unter http://www.freeduino.org/.

Siehe auch
Übersicht der Arduino-Boards: http://www.arduino.cc/en/Main/Hardware.

Online-Leitfäden für den Arduino-Einstieg finden Sie unter http://arduino.cc/en/Guide/
Windows für Windows, http://arduino.cc/en/Guide/MacOSX für Mac OS X und http://
www.arduino.cc/playground/Learning/Linux für Linux.

Eine Liste von über einhundert Boards, die mit der Arduino-Entwicklungsumgebung
genutzt werden können, finden Sie unter http://jmsarduino.blogspot.com/2009/03/
comprehensive-arduino-compatible.html

1.1 Installation der integrierten Entwicklungsumgebung
(IDE)

Problem
Sie möchten die Arduino-Entwicklungsumgebung auf Ihrem Computer installieren.

Ad
–

Se

PJ
–

A
–

ID
E

–

4 | Kapitel 1: Erste Schritte

Lösung
Die Arduino-Software für Windows, Mac und Linux kann von http://arduino.cc/en/Main/
Software heruntergeladen werden.

Der Windows-Download ist eine ZIP-Datei. Entpacken Sie die Datei in ein geeignetes
Verzeichnis – Programme/Arduino ist eine gute Wahl.

Ein freies Utility zum Entpacken von Dateien namens 7-Zip kann von
http://www.7-zip.org/ heruntergeladen werden.

Das Entpacken der Datei erzeugt einen Ordner namens Arduino-00<nn> (dabei ist <nn>
die Versionsnummer der heruntergeladenen Arduino-Release). Das Verzeichnis enthält
neben verschiedenen Dateien und Ordnern auch eine ausführbare Datei namens Ardui-
no.exe. Klicken Sie Arduino.exe doppelt an und der »Splash Screen« (siehe Abbildung 1-2)
sollte erscheinen, gefolgt vom Haupt-Programmfenster (siehe Abbildung 1-3). Haben Sie
Geduld: Es kann einige Zeit dauern, bis die Software geladen ist.

Abbildung 1-2: Arduino Splash Screen (Version 1.0 unter Windows 7)

–

–

1.1 Installation der integrierten Entwicklungsumgebung (IDE) | 5

Abbildung 1-3: IDE-Hauptfenster (Arduino 1.0 auf einem Mac)

Der Arduino-Download für den Mac ist ein Disk-Image (.dmg). Klicken Sie die Datei
doppelt an, nachdem der Download abgeschlossen ist. Das Image wird gemountet (und
erscheint wie ein Speicherstick auf dem Desktop). Innerhalb des Disk-Images befindet
sich die Arduino-Anwendung. Kopieren Sie sie an einen geeigneten Ort – der Ordner
Programme ist eine gute Wahl. Sobald Sie die Datei kopiert haben, klicken Sie sie doppelt
an (sie aus dem Disk-Image auszuführen, ist keine gute Idee). Der Splash Screen erscheint,
gefolgt vom Haupt-Programmfenster.

Die Linux- Installation ist von der verwendeten Linux-Distribution abhängig. Informatio-
nen finden Sie im Arduino-Wiki (http://www.arduino.cc/playground/Learning/Linux).

Damit die Arduino-Entwicklungsumgebung mit dem Board kommunizieren kann, müs-
sen Sie Treiber installieren.

Unter Windows, verbinden Sie Ihren PC und das Arduino-Board über ein USB-Kabel und
warten, dass der »Neue Hardware«-Assistent erscheint. Wenn Sie ein Uno-Board ver-

M
– A

Li
– A
A
–

W
– A

6 | Kapitel 1: Erste Schritte

wenden, lassen Sie den Assistenten versuchen, die Treiber zu suchen und installieren. Der
Versuch schlägt fehl (keine Sorge, das ist das erwartete Verhalten). Um das zu beheben,
wechseln Sie nun nach Startmenü→Systemsteuerung→System und Sicherheit. Klicken Sie
auf System und öffnen Sie den Gerätemanager. In der dargestellten Liste wählen Sie dann
den Eintrag in COM und LPT namens Arduino UNO (COM nn). nn ist die Nummer, die
Windows dem für das Board erzeugten Port zugewiesen hat. Daneben sehen Sie eine
Warnung, da die richtigen Treiber noch nicht zugewiesen wurden. Klicken Sie den Eintrag
mit der rechten Maustaste an und wählen Sie Treibersoftware aktualisieren. Wählen Sie
dann die Option »Browse my computer for driver software« und bewegen Sie sich in den
Drivers-Ordner im eben entpackten Arduino-Ordner. Wählen Sie die Datei Arduino-
UNO.inf, und Windows sollte den Installationsprozess abschließen.

Wenn Sie ein älteres Board (das FTDI-Treiber verwendet) mit Windows Vista oder
Windows 7 nutzen und online sind, können Sie den Assistenten nach Treibern suchen
lassen, und sie sollten automatisch installiert werden. Unter Windows XP (oder wenn Sie
keinen Internetzugang haben) müssen Sie die Lage des Treibers angeben. Bewegen Sie sich
in der Dateiauswahl ins Verzeichnis FTDI USB Drivers. Sie finden es in dem Verzeichnis,
in dem Sie die Arduino-Dateien entpackt haben. Sobald der Treiber installiert ist,
erscheint wieder der »Neue Hardware«-Assistent mit der Meldung, eine neue serielle
Schnittstelle sei gefunden worden. Folgen Sie nun den Anweisungen von vorhin.

Es ist wichtig, dass Sie diese Schritte zur Installation des Treibers zweimal
durchgehen, da die Software anderenfalls nicht mit dem Board kommuni-
zieren kann.

Auf dem Mac sollten neuere Arduino-Boards wie das Uno ohne zusätzliche Treiber
genutzt werden können. Wenn Sie das Board zum ersten Mal anschließen, erscheint ein
Hinweis, dass eine neue Netzwerkschnittstelle gefunden wurde. Bei älteren Boards (die
FTDI-Treiber benötigen), müssen Sie Treibersoftware installieren. Im Disk-Image finden
Sie ein Paket namens FTDIUSBSerialDriver mit einer Reihe von Zahlen dahinter. Klicken
Sie das Paket an und der Installer führt Sie durch den Prozess. Sie müssen das Adminis-
trationspasswort kennen, um den Vorgang abschließen zu können.

Unter Linux ist der Treiber bei den meisten Distributionen bereits installiert. Informatio-
nen zu Ihrer Distribution finden Sie unter dem Linux-Link, der in der Kapiteleinführung
genannt wurde.

Diskussion
Falls die Software nicht startet, besuchen Sie den Fehlersuche-Bereich der Arduino-Web-
site unter http://arduino.cc/en/Guide/Troubleshooting. Hier finden Sie Hinweise zur Lö-
sung von Installationsproblemen.

–

–

–

1.1 Installation der integrierten Entwicklungsumgebung (IDE) | 7

Siehe auch
Online-Leitfäden für den Arduino-Einstieg finden Sie unter http://arduino.cc/en/Guide/
Windows für Windows, http://arduino.cc/en/Guide/MacOSX für Mac OS X und http://
www.arduino.cc/playground/Learning/Linux für Linux.

1.2 Das Arduino-Board einrichten

Problem
Sie möchten ein Arduino-Board einschalten und sicherstellen, dass es funktioniert.

Lösung
Verbinden Sie das Board mit einem USB-Port Ihres Computers und stellen Sie sicher, dass
die grüne Betriebs-LED leuchtet. Standard Arduino-Boards (Uno, Duemilanove und
Mega) haben eine grüne Betriebs-LED in der Nähe des Reset-Tasters.

Eine orange LED nahe der Mitte der Platine (»Pin 13 LED« in Abbildung 1-4) sollte an-
und ausgehen, sobald das Board eingeschaltet ist. Boards werden werksseitig mit vor-
installierter Software ausgeliefert, die die LED ein- und ausschaltet. Auf diese Weise lässt
sich einfach prüfen, ob das Board funktioniert.

TX
 1

RX
 02346 579 8101112

GN
D 13

AR
EF

SD
A

SC
L

Gn
d

Vi
n

5V3V
3

RE
SE

T
IO

RE
F

Gn
d

Arduino

DIGITAL

4 5210 3

ANALOG

Pin 13-
LED

Duplicate I2C-
Pins (Uno
Rev. 3)

Serielle
LEDs

Betriebs-
 LED

Reset-
Taster

USB-
Anschluss

Externe
Spannungs-
versorgung

Zusätzliche Pins
(Uno Rev. 3)

Abbildung 1-4: Einfache Arduino-Board (Duemilanove und Uno)

A
–
A
– A

A
–

8 | Kapitel 1: Erste Schritte

Bei neuen Boards wie dem Leonardo befinden sich die LEDs in der Nähe des USB-
Anschlusses (siehe Abbildung 1-5). Neue Boards haben auch doppelte Pins für I2C (SCL
und SDA). Diese Boards besitzen auch einen Pin namens IOREF, mit dessen Hilfe die
Betriebsspannung des Chips bestimmt werden kann.

TX
 1

RX
 02346 57

1

9 8101112

GN
D 13

AR
EF

SD
A

SC
LA

Vi
n

5V3V
3

RE
SE

T
IO

RE
F

- - - - - -

Gn
d

DIGITAL (PWM -)

Reset-Taster

USB-Anschluss

Serielle LEDs

ICSP-
Programmier-
anschluss

Pin 13 LED
Betriebs-LED

Externe
Spannungs-
versorgung

LEONARDO

4 5210 3

ANALOG INPower

Gn
d

Abbildung 1-5: Leonardo-Board

Der neue Standard der aktuellen Boards verfügt über drei zusätzliche
Anschlüsse im Anschlusslayout. Das hat keinen Einfluss auf ältere Shields,
die in den neuen Boards genauso laufen wie in den alten. Die neuen
Anschlüsse bestehen aus dem Pin IOREF, mit dem die analoge Referenz-
spannung ermittelt werden kann (so dass die analogen Eingangswerte mit
der Stromversorgung abgeglichen werden können), sowie aus den Pins
SCL and SDA, die eine konsistenteVerbindung für I2C-Geräte ermögli-
chen. Die Lage der I2C-Pins ist bei älteren Boards eine andere, da die Chips
unterschiedlich konfiguriert sind. Für das neue Layout entwickelte Shields
sollten mit jedem Board laufen, das die neue Lage der Pins nutzt. Ein
weiterer Pin (neben dem IOREF-Pin) wird momentan nicht genutzt,
ermöglicht aber die zukünftige Implementierung neuer Features, ohne
das Pin-Layout erneut ändern zu müssen.

Diskussion
Leuchtet die Betriebs-LED nicht, wenn das Board mit dem Computer verbunden ist,
erhält das Board wahrscheinlich keinen Strom.

Die blinkende LED (die mit dem digitalen Ausgang an Pin 13 verbunden ist) wird durch
Code gesteuert, der auf dem Board läuft (bei neuen Boards ist der Blink-Sketch vor-
installiert). Wenn die LED an Pin 13 blinkt, wird der Sketch korrekt ausgeführt, was
wiederum bedeutet, dass der Chip auf dem Board funktioniert. Wenn die grüne Betriebs-
LED leuchtet, die LED an Pin 13 aber nicht blinkt, kann es sein, dass der Code werksseitig
nicht auf dem Chip installiert wurde. Folgen Sie den Anweisungen in Rezept 1.3, um den
Blink-Sketch auf das Board zu laden und die Funktionstüchtigkeit des Boards zu über-

–

–

–

–

–

1.2 Das Arduino-Board einrichten | 9

prüfen. Wenn Sie kein Standard-Board verwenden, gibt es möglicherweise keine feste
LED an Pin 13. Dann müssen Sie die Details des Boards in der Dokumentation nachlesen.
Beim Leonardo-Board sieht es so aus, als würde die LED »atmen«, wenn das Board
funktioniert.

Siehe auch
Online-Leitfäden für den Arduino-Einstieg finden Sie unter http://arduino.cc/en/Guide/
Windows für Windows, http://arduino.cc/en/Guide/MacOSX für Mac OS X und http://
www.arduino.cc/playground/Learning/Linux für Linux.

Hilfe bei der Fehlersuche finden Sie unter http://arduino.cc/en/Guide/Troubleshooting.

1.3 Einen Arduino-Sketch mit der integrierten
Entwicklungsumgebung (IDE) bearbeiten

Problem
Sie wollen einen Sketch bearbeiten und für den Upload auf das Board vorbereiten.

Lösung
Verwenden Sie die Arduino-IDE, um Sketches anzulegen, zu öffnen und zu ändern.
(Sketches legen fest, was das Board machen soll.) Sie können diese Aktionen über die
Buttons am oberen Rand durchführen (siehe Abbildung 1-6) oder die Menüs und
Tastaturkürzel (siehe Abbildung 1-7) nutzen.

Im Sketcheditor betrachten und editieren Sie den Code eines Sketches. Er unterstützt
gängige Textbearbeitungs-Tasten wie Ctrl-F (z+F auf dem Mac) für die Suche, Ctrl-Z
(z+Z auf dem Mac) für Undo, Ctrl-C (z+C auf dem Mac) für das Kopieren markierten
Textes und Ctrl-V (z+V auf dem Mac) für das Einfügen von Text.

Abbildung 1-7 zeigt, wie man den Blink-Sketch lädt (der Sketch ist auf neuen Arduino-
Boards vorinstalliert).

Nachdem Sie die IDE gestartet haben, wechseln Sie in das Menü File → Examples und
wählen 1. Basics→Blink (siehe Abbildung 1-7). Der Code, der die eingebaute LED blinken
lässt, erscheint im Sketch-Editor (siehe Abbildung 1-6).

Bevor der Code auf das Board übertragen werden kann, muss er in Instruktionen umge-
wandelt werden, die vom Arduino-Controller-Chip gelesen und ausgeführt werden
können. Diesen Vorgang bezeichnet man als Kompilierung. Dazu klicken Sie den Compi-
ler-Button (den oben links mit dem Häkchen) an, oder wählen Sketch→Verify/Compile
(Ctrl-R;z+R auf dem Mac).

Sk
–

Sk
–

Bl
–

Ko
–

10 | Kapitel 1: Erste Schritte

Im Nachrichtenbereich unter dem Editor sollte die Meldung »Compiling sketch...« und
eine Fortschrittsanzeige erscheinen. Nach ein oder zwei Sekunden erscheint die Meldung
»Done Compiling«. Der schwarze Konsolenbereich enthält zusätzlich die folgende Mel-
dung:

Binary sketch size: 1026 bytes (of a 32256 byte maximum)

Die genaue Meldung hängt von Ihrem Board und der Arduino-Version ab. Sie gibt an, wie
groß der Sketch ist und welche Größe Ihr Board maximal akzeptiert.

Serieller Monitor
Kompi-
lieren

Hochladen

Neuer Sketch

Sketch öffnen

Sketch speichern

Text-Konsole
(Status und
Fehlermeldung)

Tab-Button

Sketch-Editor

Abbildung 1-6: Arduino-IDE

1.3 Einen Arduino-Sketch mit der integrierten Entwicklungsumgebung (IDE) bearbeiten | 11

Diskussion
Der Quellcode für Arduino wird Sketch genannt. Der Prozess, der einen solchen Sketch in
eine Form umwandelt, die auf dem Board funktioniert, nennt man Kompilierung. Die IDE
nutzt hinter den Kulissen eine Reihe von Kommandozeilen-Werkzeugen, um einen Sketch
zu kompilieren. Weitere Informationen hierzu finden Sie im Rezept 17.1.

Abbildung 1-7: IDE-Menü (Auswahl des Blink-Beispiel-Sketches)

Die abschließende Meldung, die die Größe des Sketches angibt, sagt Ihnen, wie viel Pro-
grammspeicher benötigt wird, um die Controller-Instruktionen auf dem Board zu spei-
chern. Ist der kompilierte Sketch größer als der auf dem Board verfügbare Speicher,
erscheint die folgende Fehlermeldung:

Sketch too big; see http://www.arduino.cc/en/Guide/Troubleshooting#size
for tips on reducing it.

In diesem Fall müssen Sie den Sketch kürzen, damit er auf das Board passt, oder Sie
müssen sich ein Board mit einer höheren Kapazität besorgen.

Wenn der Code selbst fehlerhaft ist, gibt der Compiler ein oder mehrere Fehlermeldungen
im Konsolenfenster aus. Diese Meldungen helfen bei der Identifikation des Fehlers. Tipps
zur Behebung von Softwarefehlern finden Sie im Anhang D (steht als Download bereit).

Um das versehentliche Überschreiben der Beispiele zu verhindern, erlaubt
es die Arduino-IDE nicht, Änderungen an den Beispiel-Sketches zu spei-
chern. Sie müssen sie zuerst mit der Menüoption Save As umbenennen.
Selbst geschriebene Sketches können mit dem Save-Button gespeichert
werden (siehe Rezept 1.5).

Sk
–
Ko
–

Ko
–

Sk
–

Fe
–

12 | Kapitel 1: Erste Schritte

Während Sie einen Sketch entwickeln und verändern, sollten Sie die Menüoption File →
Save regelmäßig nutzen und verschiedene Namen oder Versionsnummern verwenden, so
dass Sie bei der Implementierung bei Bedarf auf eine ältere Version zurückgreifen können.

Auf das Board hochgeladener Code kann nicht wieder auf den Computer
heruntergeladen werden. Stellen Sie also sicher, dass Ihr Sketch-Code auf
dem Computer gespeichert ist. Sie können Änderungen an den Beispielda-
teien auch nicht speichern, sondern müssen Save As nutzen und der
geänderten Datei einen anderen Namen geben.

Siehe auch
Rezept 1.5 zeigt einen Beispiel-Sketch. Anhang D (steht als Download bereit) gibt Hin-
weise zur Fehlersuche bei Software-Problemen.

1.4 Den Blink-Sketch hochladen und ausführen

Problem
Sie wollen Ihren kompilierten Sketch an das Arduino-Board senden und ausführen.

Lösung
Verbinden Sie Ihr Arduino-Board über ein USB-Kabel mit Ihrem Computer. Laden Sie den
Blink-Sketch wie in Rezept 1.3 beschrieben in die IDE.

Als nächstes wählen Sie Tools→Board aus dem Dropdown-Menü und wählen den Namen
des angeschlossenen Boards (falls Sie ein Standard-Uno-Board verwenden, ist es wahr-
scheinlich der erste Eintrag in der Board-Liste).

Nun wählen Sie Tools→Serial Port. Es erscheint eine Dropdown-Liste der auf Ihrem
Computer verfügbaren seriellen Ports. Jeder Rechner hat eine andere Kombination
serieller Ports, je nachdem welche anderen Geräte auf dem Computer verwendet werden.

Unter Windows wird eine Liste durchnummerierter COM-Einträge ausgegeben. Gibt es
nur einen Eintrag, dann wählen Sie ihn aus. Bei mehreren Einträgen ist Ihr Board
wahrscheinlich der letzte Eintrag.

Bei einem Mac wird Ihr Board zweimal aufgeführt, wenn es sich um ein Uno-Board
handelt:

/dev/tty.usbmodem-XXXXXXX
/dev/cu.usbmodem-XXXXXXX

–

–

–

–

–

–

1.4 Den Blink-Sketch hochladen und ausführen | 13

Ein älteres Board wird wie folgt aufgeführt:

/dev/tty.usbserial-XXXXXXX
/dev/cu.usbserial-XXXXXXX

Jedes Board besitzt einen anderen Wert für XXXXXXX. Wählen Sie einen beliebigen Eintrag.

Klicken Sie den Upload-Button an (in Abbildung 1-6 der zweite Button von links), oder
wählen Sie File→Upload to I/O board (Ctrl-U,z+U auf einem Mac).

Die Software kompiliert den Code wie in Rezept 1.3 beschrieben. Nachdem die Software
kompiliert wurde, wird sie auf das Board hochgeladen. Wenn Sie auf das Board schauen,
sehen Sie, dass die LED aufhört zu blinken und zwei LEDs (die »Seriell«-LEDs in
Abbildung 1-4) direkt unter der eben noch blinkenden LED für einige Sekunden flackern,
während der Code hochgeladen wird. Die ursprüngliche LED fängt dann wieder an zu
blinken, sobald der Code ausgeführt wird.

Diskussion
Damit die IDE kompilierten Code an das Board senden kann, muss das Board mit dem
Computer verbunden sein und Sie müssen der IDE mitteilen, welches Board und welchen
seriellen Port Sie verwenden.

Wenn ein Upload beginnt, wird ein auf dem Board laufender Sketch angehalten (wenn der
Blick-Sketch läuft, hört die LED auf zu blinken). Der neue Sketch wird auf das Board
hochgeladen und ersetzt den vorhandenen Sketch. Der neue Sketch wird ausgeführt,
sobald das Hochladen erfolgreich abgeschlossen wurde.

Ältere Arduino-Boards (und einige kompatible) unterbrechen einen laufen-
den Sketch zur Initiierung des Uploads nicht. In diesem Fall müssen Sie die
Reset-Taste auf dem Board drücken, sobald die Kompilierung abgeschlossen
ist (d.h., wenn Sie die Meldung zur Größe des Sketches sehen). Möglicher-
weise brauchen Sie einige Versuche, bis Sie das richtige Timing zwischen
dem Ende der Kompilierung und dem Drücken des Reset-Tasters hinbe-
kommen.

Die IDE gibt eine Fehlermeldung aus, wenn der Upload nicht erfolgreich war. Die
typischen Probleme sind falsch gewählte Boards oder serielle Ports, oder nicht korrekt
angeschlossene Boards. Das gewählte Board und der serielle Port werden in der Status-
leiste am unteren Rand des Arduino-Fensters angezeigt.

Wenn Sie Schwierigkeiten haben, den richtigen Port unter Windows zu bestimmen,
trennen Sie das Board vom Computer, wählen Tools→Serial Port und sehen nach, welcher
COM-Port nicht mehr in der Liste steht. Ein anderer Ansatz besteht darin, die Ports
nacheinander auszuwählen, bis die LEDs des Boards zu flackern beginnen (was bedeutet,
dass der Code hochgeladen wird).

Fe
–
Sk
–

14 | Kapitel 1: Erste Schritte

Siehe auch
Die Arduino-Seite zur Fehlersuche: http://www.arduino.cc/en/Guide/Troubleshooting.

1.5 Einen Sketch erstellen und speichern

Problem
Sie möchten einen Sketch erstellen und auf dem Computer speichern.

Lösung
Um ein Editor-Fenster zu öffnen, in das Sie einen neuen Sketch eingeben können, starten
Sie die IDE (siehe Rezept 1.3), wechseln ins File-Menü und wählen New. Geben Sie den
folgenden Code im Sketch-Editor ein (es ähnelt dem Blink-Sketch, aber die Blinkdauer ist
doppelt so lang):

const int ledPin = 13; // Mit Pin 13 verbundene LED

void setup()
{
pinMode(ledPin, OUTPUT);
}

void loop()
{
digitalWrite(ledPin, HIGH); // LED einschalten
delay(2000); // Zwei Sekunden warten
digitalWrite(ledPin, LOW); // LED ausschalten
delay(2000); // Zwei Sekunden warten
}

Kompilieren Sie den Code durch Anklicken des Compiler-Buttons (oben links mit dem
Häkchen), oder wählen Sie Sketch→Verify/Compile (siehe Rezept 1.3).

Laden Sie den Code über den Upload-Button oder über File→Upload to I/O board (siehe
Rezept 1.4) hoch. Nach dem Hochladen sollte die LED in einem Intervall von zwei Se-
kunden blinken.

Sie können den Sketch auf dem Computer sichern, indem Sie den Save-Button anklicken
oder File→Save auswählen.

Sie können den Sketch unter einem neuen Namen sichern, indem Sie die Menüoption
Save As wählen. Es erscheint eine Dialogbox, in die Sie den neuen Dateinamen eintragen
können.

Diskussion
Wenn Sie eine Datei mit der IDE sichern, erscheint eine Standard-Dialogbox des Betriebs-
systems. Per Voreinstellung wird der Sketch in einem Ordner namens Arduino unter

–

–

–

–

–

–

1.5 Einen Sketch erstellen und speichern | 15

Eigene Dateien (bzw. dem Dokumenten-Ordner auf einem Mac) gespeichert. Sie können
den voreingestellten Sketch-Namen durch einen sinnvollen Namen ersetzen, der den
Zweck des Sketches widerspiegelt.

Der Standardname besteht aus dem Wort Sketch, gefolgt vom aktuellen
Datum. Bei a beginnende Zeichenfolgen werden verwendet, um am glei-
chen Tag angelegte Sketches zu unterscheiden. Den Standardnamen durch
etwas Sinnvolles zu ersetzen, hilft Ihnen dabei, den Zweck des Sketches zu
erkennen, wenn Sie ihn später wieder bearbeiten.

Wenn Sie von der IDE nicht erlaubte Zeichen verwenden (z.B. ein Leerzeichen), ersetzt die
IDE sie automatisch durch gültige Zeichen.

Arduino-Sketches werden als reine Textdateien mit der Erweiterung .ino gespeichert.
Ältere Versionen der IDE verwenden die Erweiterung .pde, die auch von Processing
genutzt wird. Sie werden automatisch in einem Ordner gesichert, der den gleichen Namen
hat wie der Sketch.

Sie können Ihre Sketches in jedem beliebigen Ordner Ihres Computers sichern, doch
wenn Sie den Standardordner nutzen (den Arduino-Ordner unterhalb Ihrer Dokumente),
erscheinen die Sketches automatisch im Sketchbook-Menü der Arduino-Software und
sind leichter zu finden.

Wenn Sie eines der Beispiele des Arduino-Downloads bearbeitet haben,
können Sie die Änderungen nicht unter dem gleichen Dateinamen sichern.
Auf diese Weise bleiben die Standard-Beispiele unangetastet. Wenn Sie das
modifizierte Beispiel sichern wollen, müssen Sie einen anderen Ort für den
Sketch wählen.

Wenn Sie Änderungen vorgenommen haben und einen Sketch schließen, erscheint eine
Dialogbox, die Sie fragt, ob Sie die Änderungen sichern wollen.

Das Symbol § hinter dem Namen des Sketches in der oberen Leiste des
IDE-Fensters zeigt an, dass der Sketch-Code geändert, aber noch nicht auf
dem Computer gesichert wurde. Das Symbol wird entfernt, wenn der
Sketch gesichert wird.

Die Arduino-Software bietet keinerlei Versionskontrolle. Wenn Sie also zu einer älteren
Version Ihres Sketches zurückkehren wollen, müssen Sie Save As regelmäßig verwenden
und jeder Version des Sketches einen etwas anderen Namen geben.

Die häufige Kompilierung während der Bearbeitung ist eine gute Möglichkeit, den von
Ihnen geschriebenen Code auf Fehler zu überprüfen. Fehler aufzuspüren und zu kor-
rigieren, wird auf diese Weise einfacher, weil sie direkt mit Ihren aktuellen Eingaben
zusammenhängen.

.in

A
– V
Ve

16 | Kapitel 1: Erste Schritte

Sobald ein Sketch auf ein Board hochgeladen wurde, gibt es keine Mög-
lichkeit, ihn wieder auf den Rechner herunterzuladen. Sichern Sie also alle
Änderungen an Ihren Sketches, die Sie behalten wollen.

Wenn Sie versuchen, einen Sketch zu sichern, der nicht in einem Ordner liegt, der den
gleichen Namen wie der Sketch hat, informiert Sie die IDE darüber, dass das so nicht geht,
und empfiehlt, OK anzuklicken, um einen Ordner mit dem gleichen Namen für den
Sketch anzulegen.

Sketches müssen in einem Ordner liegen, der den gleichen Namen hat wie
der Sketch. Die IDE legt den Ordner automatisch an, wenn Sie einen
neuen Sketch sichern.

Mit älterer Arduino-Software entwickelte Sketches verwenden eine andere
Dateierweiterng (.pde). Die IDE öffnet sie und erzeugt eine Datei mit einer
neuen Erweiterung (.ino), wenn Sie sie sichern. Für ältere Versionen der
IDE enwickelter Code kompiliert unter der Version 1.0 möglicherweise
nicht. Die meisten Änderungen, die notwendig sind, um älteren Code ans
Laufen zu kriegen, sind aber einfach vorzunehmen. Details finden Sie in
Anhang H (steht als Download bereit).

Siehe auch
Der Code in diesem Rezept (und im Rest des Buches) verwendet den Ausdruck const int,
um für Konstanten sinnvolle Namen (ledPin) anstelle von Zahlen (13) zu nutzen. Mehr
zur Verwendung von Konstanten finden Sie in Rezept 17.5 (steht als Download bereit).

1.6 Arduino verwenden

Problem
Sie möchten ein Projekt beginnen, das einfach zu bauen ist und gleichzeitig Spaß macht.

Lösung
Dieses Rezept bietet einen Vorgeschmack auf einige der Techniken, die in späteren
Kapiteln detailliert behandelt werden.

Der Sketch basiert auf dem Code für die blinkende LED aus dem vorherigen Rezept.
Anstelle eines festen Zeitintervalls wird die Dauer aber über einen Sensor, einen licht-
empfindlichen Widerstand, bestimmt (siehe Rezept 6.2). Verdrahten Sie den lichtemp-
findlichen Widerstand wie in Abbildung 1-8 gezeigt.

–

–

–

1.6 Arduino verwenden | 17

TX
 1

RX
 02346 579 8101112

GN
D 13

AR
EF

Vi
n

5V3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

4 5210 3

ANALOG

* L

 D

 R4.7K

Gn
d

*LDR = Lichtempfindlicher Widerstand

Abbildung 1-8: Arduino mit lichtempfindlichem Widerstand

Wenn Sie nicht damit vertraut sind, einen Schaltkreis nach einem Schalt-
plan aufzubauen, sehen Sie sich Anhang B (steht als Download bereit) an.
Hier wird Schritt für Schitt gezeigt, wie man eine Schaltung auf einem
Steckbrett aufbaut.

Der folgende Sketch liest die Lichtintensität des lichtempfindlichen Widerstands ein, der
mit dem analogen Pin 0 verbunden ist. Diese Lichtintensität verändert die Blinkgeschwin-
digkeit der internen LED an Pin 13:

const int ledPin = 13; // Mit Pin 13 verbundene LED
const int sensorPin = 0; // Mit Analogeingang 0 verbundener Sensor

void setup()
{
pinMode(ledPin, OUTPUT); // LED-Pin als Ausgang aktivieren
}

void loop()
{
int rate = analogRead(sensorPin); // Analogen Eingang einlesen
digitalWrite(ledPin, HIGH); // LED einschalten
delay(rate); // Wartezeit abhängig von Lichtintensität
digitalWrite(ledPin, LOW); // LED ausschalten
delay(rate);
}

Diskussion
Der Wert des 4,7K-Widerstands ist unkritisch. Sie können alles zwischen 1K und 10K
verwenden. Die Lichtintensität am lichtempfindlichen Widerstand ändert die Spannung
an Analogpin 0. Der Befehl analogRead (siehe Kapitel 6) liefert einen Wert zwischen 200

an
–

18 | Kapitel 1: Erste Schritte

(dunkel) und 800 (hell) zurück. Dieser Wert bestimmt, wie lange die LED an und aus
bleibt. Das Blinkintervall wird also mit zunehmender Lichtstärke länger.

Sie können das Blinkintervall mit Hilfe der Arduino-Funktion map wie folgt skalieren:

const int ledPin = 13; // Mit Pin 13 verbundene LED
const int sensorPin = 0; // Mit Analogeingang 0 verbundener Sensor

// die nächsten beiden Zeilen legen das minimale und maximale Zeitintervall fest
const int minDuration = 100; // Minimale Dauer
const int maxDuration = 1000; // Maximale Dauer

void setup()
{
pinMode(ledPin, OUTPUT); // LED-Pin als Ausgang aktivieren
}

void loop()
{
int rate = analogRead(sensorPin); // Analogen Eingang einlesen
// Die nächste Zeile skaliert das Blinkintervall auf die Minimal- und Maximalwerte
rate = map(rate, 200,800,minDuration, maxDuration); // In Blinkintervall umwandeln
rate = constrain(rate, minDuration,maxDuration); // und Wert beschränken

digitalWrite(ledPin, HIGH); // LED einschalten
delay(rate); // Wartezeit abhängig von Lichtintensität
digitalWrite(ledPin, LOW); // LED ausschalten
delay(rate);
}

In Rezept 5.7 wird detailliert beschrieben, wie man die map-Funktion zur Skalierung von
Werten nutzt. Rezept 3.5 zeigt im Detail, wie man die constrain-Funktion verwendet,
damit ein Wert einen bestimmten Wertebereich nicht über- oder unterschreitet.

Wenn Sie sich den Wert der rate-Variablen auf Ihrem Computer ansehen wollen, können
Sie ihn über den seriellen Monitor ausgeben. Wie das geht, zeigt der nachfolgende,
überarbeitete Code in der loop()-Funktion. Der Sketch gibt die Blinkrate über den
seriellen Monitor aus. Sie öffnen den seriellen Monitor in der Arduino IDE, indem Sie
das Icon rechts in der oberen Leiste anklicken (mehr zur Verwendung des seriellen
Monitors finden Sie in Kapitel 4):

const int ledPin = 13; // Mit Pin 13 verbundene LED
const int sensorPin = 0; // Mit Analogeingang 0 verbundener Sensor

// die nächsten beiden Zeilen legen das minimale und maximale Zeitintervall fest
const int minDuration = 100; // Minimale Dauer
const int maxDuration = 1000; // Maximale Dauer

void setup()
{
pinMode(ledPin, OUTPUT); // LED-Pin als Ausgang aktivieren
Serial.begin(9600); // Seriellen Port initialisieren
}

–

–

1.6 Arduino verwenden | 19

void loop()
{
int rate = analogRead(sensorPin); // Analogen Eingang einlesen
// Die nächste Zeile skaliert das Blinkintervall auf die Minimal- und Maximalwerte
rate = map(rate, 200,800,minDuration, maxDuration); // In Blinkintervall umwandeln
rate = constrain(rate, minDuration,maxDuration); // und Wert beschränken

Serial.println(rate); // Intervall über seriellen Monitor ausgeben
digitalWrite(ledPin, HIGH); // LED einschalten
delay(rate); // Wartezeit abhängig von Lichtintensität
digitalWrite(ledPin, LOW); // LED ausschalten
delay(rate);
}

Sie können mit dem lichtempfindlichen Widerstand auch die Tonlage eines Lautspechers
steuern, wenn Sie ihn wie in Abbildung 1-9 anschließen.

Lautsprecher
oder Piezo-
Element

TX

 1
RX

 02346 579 8101112

GN
D 13

AR
EF

Gn
d

Vi
n

5V3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

4 5210 3

ANALOG

Widerstand

(fest oder variabel)

4.7K

Lichtempfindlicher
Widerstand

Abbildung 1-9: Verbinden eines Lautsprechers mit dem lichtempfindlichen Widerstand

Sie müssen das Ein/Aus-Intervall des Pins auf eine Frequenz im Audiospektrum erhöhen.
Das wird im nachfolgenden Code erreicht, indem die minimale und maximale Dauer
reduziert wird:

const int outputPin = 9; // Mit digitalem Pin 9 verbundener Lautsprecher
const int sensorPin = 0; // Mit Analogeingang 0 verbundener Sensor

const int minDuration = 1; // 1ms an, 1ms aus (500 Hz)
const int maxDuration = 10; // 10ms an, 10ms aus (50 hz)

void setup()
{
pinMode(outputPin, OUTPUT); // LED-Pin als Ausgang aktivieren
}

void loop()
{

20 | Kapitel 1: Erste Schritte

int sensorReading = analogRead(sensorPin); // Analogeingang einlesen
int rate = map(sensorReading, 200,800,minDuration, maxDuration);
rate = constrain(rate, minDuration,maxDuration); // Wert beschränken

digitalWrite(outputPin, HIGH); // LED einschalten
delay(rate); // Wartezeit abhängig von Lichtintensität
digitalWrite(outputPin, LOW); // LED ausschalten
delay(rate);
}

Siehe auch
In Rezept 3.5 finden Sie Details zur Verwendung der constrain-Funktion.

Rezept 5.7 beschreibt die map-Funktion.

Wenn Sie Töne erzeugen wollen, finden Sie in Kapitel 9 eine umfassende Diskussion zur
Audioausgabe mit dem Arduino.

1.6 Arduino verwenden | 21

KAPITEL 2

Den Sketch machen lassen, was Sie wollen

2.0 Einführung
Auch wenn es bei einem Arduino-Projekte zu einem großen Teil darum geht, das
Arduino-Board mit der passenden Hardware zu verbinden, müssen Sie dem Board sagen
können, was es denn genau damit anfangen soll. Dieses Kapitel führt in die Kernelemente
der Arduino-Programmierung ein, zeigt Nicht-Programmierern, wie man gängige Sprach-
konstrukte nutzt, und enhält eine Sprachübersicht für diejenigen Leser, die nicht mit C
oder C++ (der von Arduino verwendeten Sprache) vertraut sind.

Damit die Beispiele interessant bleiben, müssen wir Arduino etwas machen lassen. Die
Rezepte nutzen daher physikalische Fähigkeiten des Boards, die erst in späteren Kapiteln
im Detail erläutert werden. Falls Ihnen der Code in diesem Kapitel nicht klar ist, sollten
Sie zu den nachfolgenden Kapiteln springen, insbesondere zu Kapitel 4 für die serielle
Ausgabe und Kapitel 5 zum Einsatz der digitalen und analogen Pins. Sie müssen aber nicht
alle Codebeispiele begreifen, um zu verstehen, wie die speziellen Fähigkeiten genutzt
werden, die im Fokus des jeweiligen Rezepts stehen. Hier einige gängige Funktionen, die
in den nächsten paar Kapiteln behandelt werden:

Serial.println(wert);
Gibt den Wert über den seriellen Monitor der Arduino-IDE aus, so dass Sie die
Arduino-Ausgabe am Computer verfolgen können; siehe Rezept 4.1.

pinMode(pin, modus);
Konfiguriert einen digitalen Pin als Eingang (lesen) oder Ausgang (schreiben). Siehe
hierzu die Einführung zu Kapitel 5.

digitalRead(pin);
Liest einen digitalen Wert (HIGH oder LOW) über einen als Eingang festgelegten Pin ein;
siehe Rezept 5.1.

digitalWrite(pin, wert);
Schreibt einen digitalen Wert (HIGH oder LOW) an einen als Ausgang festgelegten Pin;
siehe Rezept 5.1.

–

–

–

–

–

–

| 23

2.1 Strukturierung eines Arduino-Programms

Problem
Sie sind Programmiereinsteiger und wollen die Bausteine eines Arduino-Programms
verstehen.

Lösung
Programme für den Arduino werden üblicherweise als Sketches bezeichnet. Die ersten
Nutzer waren Künstler und Designer, und der Begriff Sketch (Skizze/Entwurf) hebt die
schnelle und einfache Möglichkeit hervor, Ideen realisieren zu können. Die Begriffe Sketch
und Programm sind austauschbar. Sketches enthalten Code, also die Instruktionen, die
das Board ausführen soll. Nur einmal auszuführender Code (etwa die Initialisierung des
Boards für die Anwendung), muss in der setup-Funktion stehen. Code, der kontinuierlich
ausgeführt werden soll, nachdem das Setup abgeschlossen wurde, kommt in die loop-
Funktion. Hier ein typischer Sketch:

const int ledPin = 13; // Mit Pin 13 verbundene LED

// Die setup()-Methode wird beim Start des Sketches einmal ausgeführt
void setup()
{
pinMode(ledPin, OUTPUT); // Digitalen Pin als Ausgang festlegen
}

// Die loop()-Methode wird immer und immer wieder ausgeführt
void loop()
{
digitalWrite(ledPin, HIGH); // LED einschalten
delay(1000); // Eine Sekunde warten
digitalWrite(ledPin, LOW); // LED ausschalten
delay(1000); // Eine Sekunde warten
}

Sobald die Arduino-IDE den Code hochgeladen hat (und bei jedem Einschalten des
Boards), beginnt es am Anfang des Sketches und geht die Instruktionen nacheinander
durch. Es führt den Code in setup einmal aus und geht dann den Code in loop (engl.
Schleife) durch. Am Ende von loop (den die schließende geschweifte Klammer } markiert),
wird zum Anfang von loop zurückgesprungen.

Diskussion
Dieses Beispiel lässt die LED fortlaufend blinken, indem es die Werte HIGH und LOW an den
Pin schreibt. Mehr zur Verwendung der Arduino-Pins finden Sie in Kapitel 5. Beim Start
des Sketches legt der Code in setup den Modus des Pins fest (damit er die LED ein- und
ausschalten kann). Nachdem der Code in setup ausgeführt wurde, wird der Code in loop,
der die LED blinken lässt, in einer Endlosschleife ausgeführt, solange das Arduino-Board
eingeschaltet ist.

Pr
Sk
–

24 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Sie müssen Folgendes nicht wissen, um Arduino-Sketches zu schreiben, doch erfahrene
C/C++-Programmierer werden sich fragen, wohin der Einsprungpunkt main() ver-
schwunden ist. Er ist da, wird aber durch die Arduino-Build-Umgebung versteckt. Der
Build-Prozess erzeugt eine Zwischendatei, die den Sketch-Code und die folgenden
zusätzlichen Anweisungen enthält:

int main(void)
{
init();

setup();

for (;;)
loop();

return 0;
}

Zuerst wird die Funktion init() aufgerufen, die die Arduino-Hardware initialisiert.
Danach wird die setup()-Funktion des Sketches aufgerufen. Zum Schluss wird Ihre
loop()-Funktion immer und immer wieder ausgeführt. Da die for-Schleife niemals endet,
wird die return-Anweisung nie ausgeführt.

Siehe auch
Rezept 1.4 erklärt, wie man einen Sketch auf ein Arduino-Board hochlädt.

Kapitel 17 (steht als Download bereit) und http://www.arduino.cc/en/Hacking/BuildPro-
cess enthalten weitere Informationen zum Build-Prozess.

2.2 Einfache primitive Typen (Variablen) nutzen

Problem
Arduino kennt verschiedene Variablentypen, um Werte effizient repräsentieren zu kön-
nen. Sie wollen wissen, wie man diese Arduino-Datentypen wählt und nutzt.

Lösung
Der Datentyp int (kurz für Integer, bei Arduino ein 16-Bit-Wert) ist in Arduino-Anwen-
dungen die gängige Wahl für numerische Werte. Sie können aber Tabelle 2-1 nutzen, um
den Datentyp zu bestimmen, der für Ihre Anwendung den geeigneten Wertebereich
aufweist.

Tabelle 2-1: Arduino-Datentypen

Numerische Typen Bytes Wertebereich Verwendung

int 2 –32768 bis 32767 Repräsentiert positive und negative ganze Zahlen.

unsigned int 2 0 bis 65535 Repräsentiert nur positive ganze Zahlen. Ansonsten wie int.

–

–

–

–

2.2 Einfache primitive Typen (Variablen) nutzen | 25

Tabelle 2-1: Arduino-Datentypen (Fortsetzung)

Numerische Typen Bytes Wertebereich Verwendung

long 4 –2147483648 bis
2147483647

Repräsentiert sehr große positive und negative ganze Zahlen.

unsigned long 4 4294967295 Repräsentiert sehr große positive ganze Zahlen.

float 4 3.4028235E+38 bis
–3.4028235E+38

Repräsentiert Fließkommazahlen. Wird für Messwerte genutzt
um Werte von Messungen an reale Werte anzunähern.

double 4 Wie float Bei Arduino ist double nur ein anderer Name für float.

boolean 1 false (0) oder true (1) Repräsentiert boolesch Wahr/Falsch-Werte.

char 1 –128 bis 127 Repräsentiert ein einzelnes Zeichen. Kann auch einen vorzei-
chenbehafteten Wert zwischen –128 und 127 repräsentieren.

byte 1 0 bis 255 Wie char, aber für vorzeichenlose Werte.

Weitere Typen Verwendung

String Repräsentiert Arrays von chars (Zeichen). Wird üblicherweise für Text verwendet.

void Wird nur bei Funktionsdeklarationen verwendet, die keinen Wert zurückliefern.

Diskussion
Solange man keine maximale Performance oder Speichereffizienz braucht, eignen sich als
int deklarierte Variablen für numerische Werte, wenn sie den Wertebereich (in der ersten
Spalte in Tabelle 2-1) nicht überschreiten und man keine Brüche (Fließkommazahlen)
braucht. Die meisten offiziellen Arduino-Codebeispiele deklarieren numerische Variablen
als int. Doch manchmal müssen Sie einen Typ wählen, der die speziellen Anforderungen
Ihrer Anwendung erfüllt.

Manchmal braucht man negative Zahlen und manchmal nicht, weshalb es zwei Varianten
numerischer Variablen gibt: signed (mit Vorzeichen) und unsigned (ohne Vorzeichen).
unsigned-Werte sind immer positiv. Variablen, denen nicht das Schlüsselwort unsigned
vorangestellt wird, arbeiten mit Vorzeichen, d.h., sie können negative und positive Werte
repräsentieren. Ein Grund für die Verwendung von unsigned-Werten ist, dass die Werte
möglicherweise nicht in signed-Variablen passen (der vorzeichenlose, maximale Wert
einer unsigned-Variable ist doppelt so hoch wie der einer signed-Variablen). Ein weiterer
Grund, warum Programmierer unsigned-Typen verwenden, liegt darin, möglichen Lesern
des Codes klar anzuzeigen, dass der Wert einer Variablen niemals negativ wird.

Boolesche Typen besitzen nur zwei mögliche Werte: wahr (true) oder falsch (false). Sie
werden üblicherweise verwendet, um solche Dinge zu prüfen wie den Status eines
Schalters (Wurde er gedrückt oder nicht?). An den Stellen, an denen es sinnvoll ist,
können Sie auch HIGH und LOW als Äquivalent zu true und false nutzen. digitalWrite(pin,
HIGH) ist für das Einschalten aussagekräftiger als digitalWrite(pin, true) oder digital-
Write(pin,1), auch wenn alle Varianten, was die Ausführung des Sketches betrifft,
identisch sind. Bei im Web gepostetem Code werden Ihnen sehr wahrscheinlich alle Va-
rianten begegnen.

lo
–

do

bo

ch
Ze
–
by
–

St
–
St
–
vo

un
sig

26 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Siehe auch
Details zu den Datentypen finden Sie in der Arduino-Referenz an http://www.arduino.cc/
en/Reference/HomePage .

2.3 Fließkommazahlen verwenden

Problem
Fließkommazahlen werden für Werte mit Nachkommastellen (also Brüche) verwendet.
Sie möchten solche Werte in Ihren Sketches nutzen.

Lösung
Der folgende Code zeigt, wie man Fließkomma-Variablen deklariert, illustriert mögliche
Probleme beim Vergleich von Fließkomma-Werten und zeigt, wie man sie vermeiden kann.
Beachten Sie bitte, dass das Komma im Amerikanischen als Punkt (.) dargestellt wird:

/*
* Fließkomma-Beispiel
* Der Sketch initialisiert eine Variable mit
* dem Fließkommawert 1,1 und verringert ihn
* fortlaufend um 0,1, bis der Wert 0 erreicht ist.
*/

float value = 1.1;

void setup()
{
Serial.begin(9600);
}

void loop()
{
value = value - 0.1; // Reduziere value bei jedem Durchlauf um 0,1.
if(value == 0)
Serial.println("Der Wert ist genau 0");

else if(almostEqual(value, 0))
{
Serial.print("Der Wert ");
Serial.print(value,7); // 7 Dezimalstellen ausgeben
Serial.println(" ist fast 0");
}
else
Serial.println(value);

delay(100);
}

// Gibt wahr zurück, wenn die Differenz zwischen a und b klein ist.
// Der Wert von DELTA gibt die max. Differenz an, die noch als "gleich" betrachtet wird.
boolean almostEqual(float a, float b)

–

–

2.3 Fließkommazahlen verwenden | 27

{
const float DELTA = .00001; // Max. Differenz, die noch "gleich" ist
if (a == 0) return fabs(b) <= DELTA;
if (b == 0) return fabs(a) <= DELTA;
return fabs((a - b) / max(fabs(a), fabs(b))) <= DELTA ;
}

Diskussion
Fließkommazahlen sind nicht genau, und die zurückgelieferten Werte können kleine
Rundungsfehler enthalten. Diese Fehler treten auf, weil Fließkommazahlen einen großen
Wertebereich abdecken, weshalb die interne Repräsentation des Wertes nur eine Nähe-
rung sein kann. Aus diesem Grund dürfen Sie nicht auf exakte Übereinstimmung testen,
sondern ob die Werte innerhalb eines Tolerlanzbereichs liegen.

Der Sketch gibt auf dem seriellen Monitor folgendes aus:

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
Der Wert -0.0000001 ist fast 0
-0.10
-0.20

Der serielle Monitor setzt die Ausgabe negativer Zahlen fort.

Sie würden wohl erwarten, dass der Code "Der Wert ist genau 0" ausgibt, nachdem value
0,1 enthält und dann erneut 0,1 subtrahiert wird. Doch value ist nie genau Null. Der Wert
ist nah dran, aber nie nah genug, um den Test if (value == 0) zu bestehen. Das liegt daran,
dass der einzige speichereffiziente Weg zur Speicherung von Fließkommazahlen (die einen
riesigen Wertebereich abdecken) darin besteht, eine Näherung der Zahl zu speichern.

Die Lösung besteht (wie in diesem Rezept zu sehen) darin, zu prüfen, ob die Variable nah
genug am gewünschten Wert liegt.

Die Funktion almostEqual prüft, ob die Variable value im Bereich von 0,00001 des
gewünschten Zielwertes liegt und gibt wahr zurück, wenn das so ist. Der akzeptable
Wertebereich wird in der Konstanten DELTA festgelegt, damit Sie ganz nach Bedarf größere
oder kleinere Werte einstellen können. Die Funktion fabs (eine Abkürzung für Fließ-
komma-Absolutwert) gibt den Absolutwert einer Fließkommazahl zurück, der dann
genutzt wird, um die Differenz der angegebenen Parameter zu überprüfen.

fa
do
Fl
–

28 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Fließkommazahlen sind nur Näherungen, weil nur 32 Bit zur Verfügung
stehen, um alle Werte eines riesigen Wertebereichs aufzunehmen. Acht Bit
werden für den dezimalen Multiplikator (den Exponenten) verwendet,
bleiben 24 Bit für das Vorzeichen und den eigentlichen Wert – gerade
genug für sieben signifikate Nachkommastellen.

Zwar sind float und double bei Arduino identisch, doch bei vielen anderen
Plattformen bietet double eine höhere Genauigkeit. Wenn Sie Code von
anderen Plattfomen importieren, der float und double mischt, müssen Sie
sicherstellen, dass die Genauigkeit für Ihre Anwendung ausreicht.

Siehe auch
Die Arduino-Referenz zu float: http://www.arduino.cc/en/Reference/Float.

2.4 Mit Gruppen von Werten arbeiten

Problem
Sie wollen eine Gruppe von Werten (ein sog. Array) anlegen und nutzen. Arrays können
einfache Listen sein, aber auch zwei oder mehr Dimensionen aufweisen. Sie wollen
wissen, wie man die Größe des Arrays bestimmt und auf die Elemente des Arrays zugreift.

Lösung
Dieser Sketch verwendet zwei Arrays. Ein Array mit Pins, an denen Schalter angeschlossen
sind, und ein zweites Array mit Pins, die mit LEDs verbunden sind (siehe Abbildung 2-1):

/*
array-Sketch
Ein Array von Schaltern steuert ein Array von LEDs
in Kapitel 5 erfahren Sie mehr über Schalter
Informationen zu LEDs finden Sie in Kapitel 7
*/

int inputPins[] = {2,3,4,5}; // Array mit Pins für die Schalter anlegen (Eingänge)

int ledPins[] = {10,11,12,13}; // Array mit Pins für die LEDs anlegen (Ausgänge)

void setup()
{
for(int index = 0; index < 4; index++)
{
pinMode(ledPins[index], OUTPUT); // LED als Ausgang deklarieren
pinMode(inputPins[index], INPUT); // Schalter als Eingang deklarieren

digitalWrite(inputPins[index],HIGH); // Pullup-Widerstände aktivieren
// (siehe Rezept 5.2)
}

–

–

2.4 Mit Gruppen von Werten arbeiten | 29

}

void loop(){
for(int index = 0; index < 4; index++)
{
int val = digitalRead(inputPins[index]); // Eingabe einlesen
if (val == LOW) // Prüfen, ob Schalter auf Ein steht
{
digitalWrite(ledPins[index], HIGH); // LED einschalten, wenn Schalter auf Ein steht,
}
else
{
digitalWrite(ledPins[index], LOW); // sonst LED ausschalten
}
}
}

TX
 1

RX
 02346 579 8101112

G
N

D 13

A
RE

F

5V3V
3

RE
SE

T

Gn
d

Gn
d

Vi
n

Arduino

DIGITAL

4 5210 3

ANALOG

Abbildung 2-1: Verbindungen für LEDs und Schalter

30 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Diskussion
Arrays sind Gruppen aufeinanderfolgender Variablen des gleichen Typs. Jede Variable
innerhalb der Gruppe wird als Element bezeichnet. Die Anzahl der Elemente nennt man
die Größe des Arrays.

Die Lösung zeigt ein typisches Einsatzgebiet von Arrays im Arduino-Code: die Speiche-
rung einer Gruppe von Pins. Die Pins sind hier mit Schaltern und LEDs verbunden (ein
Thema, dem wir uns in Kapitel 5 ausführlicher widmen). Die wichtigen Teile dieses
Beispiels sind die Deklaration des Arrays und der Zugriff auf die Array-Elemente.

Die folgende Codezeile deklariert (erzeugt) ein Array aus vier Integer-Elementen und
initialisiert jedes Element. Das erste Element wird auf 2 gesetzt, das zweite auf 3 und so
weiter:

int inputPins[] = {2,3,4,5};

Wenn Sie die Werte bei der Deklaration des Arrays nicht initialisieren (z.B. weil sie erst im
laufenden Sketch verfügbar sind), müssen Sie jedes Element einzeln ändern. Sie deklarie-
ren das Array wie folgt:

int inputPins[4];

Das deklariert ein Array mit vier Elementen und setzt den Wert jedes Elements auf Null.
Die Zahl innerhalb der eckigen Klammern ([]) ist die Größe, legt also die Anzahl der
Elemente fest. Dieses Array hat die Größe 4 und kann daher höchstens vier Integerwerte
aufnehmen. Sie können die Größe weglassen, wenn die Array-Deklaration die Werte
initialisiert (wie im ersten Beispiel). Der Compiler weiß dann, wie groß das Array werden
muss, indem er die Zahl der Initialisierungen mitzählt.

Das erste Element des Arrays ist element[0]:

int firstElement = inputPins[0]; // Das erste Element

inputPins[0] = 2; // Setzt den Wert dieses Elements auf 2

Das letzte Element ist 1 kleiner als die Größe des Arrays. Im obigen Beispiel mit der Größe
4 ist Element 3 das letzte Element:

int lastElement = inputPins[3]; // Das letzte Element

Sie wundern sich vielleicht, warum bei einem Array der Größe 4 das letzte Element über
array[3] angesprochen wird, doch da array[0] das erste Element ist, heißen die vier
Elemente:

inputPins[0],inputPins[1],inputPins[2],inputPins[3]

Im obigen Sketch erfolgt der Zugriff auf die vier Elemente in einer for-Schleife:

for(int index = 0; index < 4; index++)
{
//Pin durch Zugriff auf jedes Element des Pin-Arrays ermitteln
pinMode(ledPins[index], OUTPUT); // LED als Ausgang deklarieren
pinMode(inputPins[index], INPUT); // Schalter als Eingang deklarieren

}

–

2.4 Mit Gruppen von Werten arbeiten | 31

Dieses Schleife durchläuft die Variable index von 0 bis 3. Ein typischer Fehler besteht
darin, versehentlich auf ein Element zuzugreifen, das außerhalb der Größe des Arrays
liegt. Solche Fehler können verschiedene Symptome aufweisen, und Sie müssen darauf
achten, sie zu vermeiden. Eine Möglichkeit, solche Schleifen zu kontrollieren, besteht
darin, die Größe des Arrays in einer Konstanten festzuhalten:

const int PIN_COUNT = 4; // Konstante für Anzahl der Elemente definieren
int inputPins[PIN_COUNT] = {2,3,4,5};

for(int index = 0; index < PIN_COUNT; index++)
pinMode(inputPins[index], INPUT);

Der Compiler meldet keinen Fehler, wenn Sie versehentlich einen Wert
außerhalb der Grenzen des Arrays lesen oder schreiben. Sie müssen daher
sorgfältig darauf achten, dass Sie nur auf Elemente innerhalb der von
Ihnen gesetzten Grenzen zugreifen. Die Verwendung einer Konstanten für
die Größe des Arrays und im Code hilft Ihnen dabei, sich innerhalb der
Array-Grenzen zu bewegen.

Ein weiteres Einsatzgebiet für Arrays ist das Vorhalten einzelner Textzeichen. Im Arduino-
Code werden sie als Zeichenketten (oder Strings) bezeichnet. Eine Zeichenkette besteht
aus einem oder mehreren Zeichen, die mit einem Nullzeichen (dem Wert 0) abgeschlossen
werden.

Die Null am Ende des Strings ist nicht mit dem Zeichen 0 identisch. Die
Null hat den ASCII-Wert 0, während 0 den ASCII-Wert 48 hat.

Methoden zur Verwendung von Strings werden in 2.5 und 2.6 behandelt.

Siehe auch
Rezept 5.2; Rezept 7.1

2.5 Arduino-Stringfunktionen nutzen

Problem
Sie wollen Text bearbeiten. Sie wollen ihn kopieren, verketten oder die Anzahl der Zei-
chen bestimmen.

Lösung
Das vorige Kapitel hat kurz angedeutet, wie man Arrays von Zeichen nutzt, um Text zu
speichern. Solche Zeichen-Arrays werden üblicherweise als Strings bezeichnet. Arduino
besitzt eine String-Bibliothek, die eine Vielzahl von Funktionen zur Speicherung und
Bearbeitung von Text zur Verfügung stellt.

St
– A
A
–
ch
St
–
St
–
AS
–
N
N
– A

St
–
Sk
–
St
–
A
–
St
– A

32 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Der Ausdruck String mit einem S als Großbuchstabe bezieht sich auf die
Arduino-Text-Funktion, die von der Arduino-String-Bibliothek geliefert
wird. Das Wort string mit dem Kleinbuchstaben s bezieht sich eher auf
Zeichengruppen als auf die Arduino-String-Funktionalität.

Dieses Rezept zeigt, wie man mit Arduino-Strings arbeitet.

Die String-Bibliothek wurde mit der Version 0019 alpha (älter als 1.0) von
Arduino eingeführt. Wenn Sie eine ältere Version nutzen, können Sie die
TextString-Bibliothek verwenden. Beachten Sie hierzu den Link am Ende
des Rezepts.

Laden Sie den folgenden Sketch auf Ihr Board und öffnen Sie den seriellen Monitor, um
sich die Ergebnisse anzusehen:

/*
Basic_Strings-Sketch
*/

String text1 = "Dieser String";
String text2 = "hat mehr Text";
String text3; // Wird im Sketch zugewiesen

void setup()
{
Serial.begin(9600);

Serial.print(text1);
Serial.print(" ist ");
Serial.print(text1.length());
Serial.println(" Zeichen lang. ");

Serial.print("text2 ist ");
Serial.print(text2.length());
Serial.println(" Zeichen lang. ");

text1.concat(text2);
Serial.println("text1 enthaelt nun: ");
Serial.println(text1);
}

void loop()
{
}

Diskussion
Dieser Sketch erzeugt drei Variablen namens text1, text2 und text3 vom Typ String.
Variablen vom Typ String besitzen Fähigkeiten zur Bearbeitung von Text. Die Anweisung
text1.length() gibt die Länge (Anzahl der Zeichen) des Strings text1 zurück.

2.5 Arduino-Stringfunktionen nutzen | 33

text1.concat(text2)kombiniert die Inhalte von Strings. In unserem Beispiel wird der
Inhalt von text2 an das Ende von text1 angehangen (concat ist die Abkürzung von
concatenate, zu deutsch verketten).

Der serielle Monitor gibt Folgendes aus:

Dieser String ist 13 Zeichen lang.
text2 ist 14 Zeichen lang.
text1 enhält nun:
Dieser String hat mehr Text

Eine weitere Möglichkeit zur Verkettung von Strings bietet der Additionsoperator.
Hängen Sie die folgenden beiden Zeilen an das Ende des setup-Codes an:

text3 = text1 + " und mehr";
Serial.println(text3);

Der neue Code gibt im seriellen Monitor zusätzlich noch die folgende Zeile aus:

Dieser String hat mehr Text und mehr

Sie können die Funktionen indexOf und lastIndexOf nutzen, um das Vorkommen eines
bestimmten Zeichens in einem String zu finden.

Da die String-Klasse eine recht junge Arduino-Erweiterung ist, werden Sie
viel Code sehen, der statt des String-Typs mit Zeichenketten arbeitet.
Weitere Informationen zur Verwendung von Zeichenketten anstelle von
Arduino-Strings finden Sie in Rezept 2.6.

Wenn Sie eine Zeile wie die folgende sehen:

char oldString[] = "Dies ist eine Zeichenkette";

dann verwendet der Code Zeichenketten im C-Stil (siehe Rezept 2.6). Sieht die Deklara-
tion hingegen so aus:

String newString = "Dies ist ein String-Objekt";

verwendet der Code Arduino-Strings. Um eine Zeichenkette im C-Stil einem Arduino-
String zuzuweisen, weisen Sie einfach den Inhalt des Arrays einem String-Objekt zu:

char oldString[] = "Diese Zeichenkette soll ein String-Objekt sein";
String newString = oldString;

Um die in der Tabelle 2-2 aufgeführten Funktionen verwenden zu können, müssen Sie sie
auf ein existierendes String-Objekt anwenden, wie im folgenden Beispiel gezeigt wird:

int len = myString.length();

Tabelle 2-2: Kurze Übersicht der Arduino String-Funktionen

charAt(n) Gibt das n-te Zeichen des Strings zurück.

compareTo(S2) Vergleicht den String mit dem angegebenen String S2

concat(S2) Gibt einen neuen String zurück, bei dem der String und S2 verkettet sind.

endsWith(S2) Gibt wahr zurück, wenn der String mit den Zeichen in S2 endet.

in
la

St
ch
co

co

en

34 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Tabelle 2-2: Kurze Übersicht der Arduino String-Funktionen (Fortsetzung)

equals(S2) Gibt wahr zurück, wenn der String genau mit S2 übereinstimmt (Groß-/Kleinschreibung
wird beachtet).

equalsIgnoreCase(S2) Wie equals, ignoriert aber die Groß-/Kleinschreibung.

getBytes(buffer,len) Kopiert len Zeichen in den angegebenen Bytepuffer.

indexOf(S) Gibt den Index des angegebenen Strings (oder Zeichens) zurück bzw. –1, wenn er nicht
gefunden wird.

lastIndexOf(S) Wie indexOf, beginnt aber mit dem Ende des Strings.

length() Gibt die Anzahl der Zeichen im String zurück.

replace(A,B) Ersetzt alle Instanzen von String (oder Zeichen) A durch B.

setCharAt(index,c) Speichert das Zeichen c am angegebenen Index im String.

startsWith(S2) Gibt wahr zurück, wenn der String mit den Zeichen in S2 beginnt.

substring(index) Gibt einen String mit den Zeichen beginnend bei Index bis zum Ende des Strings zurück.

substring(index,to) Wie oben, aber der Substring endet vor der Zeichenposition \9to\9.

toCharArray(buffer,len) Kopiert bis zu len Zeichen des Strings in den angegebenen Puffer.

toInt() Gibt den Integerwert der im String stehenen Ziffern zurück.

toLowerCase() Gibt einen String zurück, bei dem alle Zeichen in Kleinbuchstaben umgewandelt wurden.

toUpperCase() Gibt einen String zurück, bei dem alle Zeichen in Großbuchstaben umgewandelt wurden.

trim() Gibt einen String zurück, bei dem alle führenden und anhängenden Whitespaces entfernt
wurden.

Weitere Hinweise zur Nutzung und den Varianten dieser Funktionen finden Sie auf den
Arduino-Referenzseiten.

Zwischen Arduino-Strings und C-Zeichenketten wählen

Arduinos fest eingebauter Datentyp String ist einfacher zu nutzen als C-Zeichenketten,
was aber durch komplexen Code in der String-Bibliothek erreicht wird, die größere
Anforderungen an Ihren Arduino stellt und naturgemäß problematischer ist.

Der String-Datentyp ist so flexibel, weil er die dynamische Speicherallozierung nutzt. Wenn
Sie also einen String anlegen oder modifizieren, fordert Arduino einen neuen Speicher-
bereich von der C-Bibliothek an. Benötigen Sie den String nicht länger, muss Arduino den
Speicher wieder freigeben. Das läuft üblicherweise sauber, doch in der Praxis gibt es viele
Stellen, an denen der Speicher ein »Leck« haben kann. Fehler in der String-Bibliothek
können dazu führen, dass ein Teil oder der gesamte Speicher nicht freigegeben wird. Wenn
das passiert, steht dem Arduino (bis zum Neustart) mit der Zeit immer weniger Speicher zur
Verfügung. Und selbst wenn es kein Speicherleck gibt, ist es schwierig, Code zu schreiben,
der prüft, ob ein String aufgrund unzureichenden Speichers nicht angefordert werden
konnte (die String-Funktionen imitieren die von Processing, doch im Gegensatz zu dieser
Plattform verfügt Arduino nicht über eine Ausnahmebehandlung von Laufzeitfehlern.
Fehler mit dynamischem Speicher lassen sich nur schwer finden, da der Sketch Tage oder
Wochen problemlos laufen kann, bevor es zu einem Fehlverhalten kommt.

–

–

–

–

2.5 Arduino-Stringfunktionen nutzen | 35

Wenn Sie C-Zeichenketten nutzen, haben Sie die Kontrolle über die Speichernutzung: Sie
allozieren eine feste (statische) Speichermenge während der Kompilierung, so dass es
nicht zu einem Speicherleck kommen kann. Ihrem Arduino-Sketch steht bei jedem Lauf
die gleiche Speichermenge zur Verfügung. Und wenn Sie versuchen mehr Speicher zu
allozieren, als Ihnen zur Verfügung steht, ist der Fehler leichter zu ermitteln, da es Tools
gibt, die Ihnen sagen, wie viel statischen Speicher Sie alloziert haben (siehe hierzu die
Referenz zu avr-objdump in Rezept 17.1, als Download).

Allerdings kann es bei C-Zeichenketten leicht zu einem anderen Problem kommen: C
hindert Sie nicht daran, Speicher zu ändern, der außerhalb der Grenzen des Arrays liegt.
Wenn Sie also ein Array mit myString[4] allozieren und myString[4] = 'A' zuweisen
(denken Sie daran, dass myString[3] das Ende des Arrays ist), wird Sie niemand daran
hindern. Doch wer weiß, auf welche Speicherstelle myString[4] verweist? Und wer weiß
schon, zu welchem Problem die Zuweisung von 'A' an diese Speicherstelle führt? Sehr
wahrscheinlich wird es ein Fehlverhalten des Sketches verursachen.

Bei Arduinos fest eingebauter String-Bibliothek laufen Sie also durch die Nutzung dyna-
mischen Speichers Gefahr, den verfügbaren Speicher aufzufressen. Bei C-Zeichenketten
müssen Sie darauf achten, die Grenzen des verwendeten Arrays nicht zu überschreiten.
Nutzen Sie Arduinos fest eingebaute String-Bibliothek dann, wenn Sie die umfassende
Möglichkeiten zur Textbearbeitung brauchen und Strings nicht immer wieder neu
erzeugen. Werden sie in einer Schleife wiederholt erzeugt und modifiziert, allozieren Sie
besser ein großes C-Zeichen-Array und entwickeln den Code sorgfältig, damit Sie die
Grenzen des Arrays nicht verlassen.

Ein weiterer Fall, bei dem man C-Zeichenketten gegenüber Arduino-Strings vorzieht, sind
große Sketches, die einen Großteil des verfügbaren Speichers oder Flashspeichers nutzen.
Der Arduino StringToInt-Beispielcode benötigt fast 2 KB mehr Flash als das Äquivalent
mit C-Zeichenketten und der atoi-Funktion zur Umwandlung in einen int-Wert. Die
Arduino String-Version benötigt außerdem etwas mehr RAM, um zusätzlich zum String
noch Allozierungsinformationen zu speichern.

Wenn Sie den Verdacht haben, dass die String-Bibliothek oder jede andere Bibliothek, die
dynamisch Speicher alloziert, ein Speicherleck hat, können Sie jederzeit den freien
Speicher ermitteln. Siehe Rezept 17.2. Prüfen Sie den freien Speicher beim Start des
Sketches und überwachen Sie, ob er mit der Zeit abnimmt. Wenn Sie ein Problem mit
der String-Bibliothek vermuten, suchen Sie in der Liste offener Bugs (http://code.google
.com/p/arduino/issues/list) nach »String«.

Siehe auch
Die Arduino-Distribution enthält String-Beispielsketches (File→Examples→Strings).

Die String-Referenzseite finden Sie unter http://arduino.cc/en/Reference/StringObject.

Einführungen zur neuen String-Bibliothek finden Sie unter http://arduino.cc/en/Tutorial/
HomePage. Eine Einführung in die Original-String-Bibliothek (die Sie nur benötigen,

St
–

St
–

36 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

wenn Sie mit einer Arduino-Version älter als 0019 alpha arbeiten) finden Sie unter
http://www.arduino.cc/en/Tutorial/TextString.

2.6 C-Zeichenketten nutzen

Problem
Sie wollen verstehen, wie man mit Zeichenketten arbeitet. Sie wollen wissen, wie man
einen solchen String erzeugt, seine Länge bestimmt, ihn vergleicht, kopiert und anhängt.
Der Sprachkern von C unterstützt die String-Fähigkeiten von Arduino nicht, weshalb Sie
den für andere Plattformen entwickelten Code verstehen wollen, der mit primitiven
Zeichenketten arbeitet.

Lösung
Arrays von Zeichen, werden auch Zeichenketten (oder einfach Strings) genannt. Rezept 2.4
beschreibt Arduino-Arrays im Allgemeinen. Dieses Rezept beschreibt Funktionen, die mit
Zeichenketten arbeiten.

Sie deklarieren Strings wie folgt:

char stringA[8]; // Deklariere einen String mit bis zu 7 Zeichen plus abschließender Null
char stringB[8] = "Arduino"; // Wie oben, init(inialisiert) den String aber gleich mit "Arduino"
char stringC[16] = "Arduino"; // Wie oben, aber der String kann wachsen
char stringD[] = "Arduino"; // Der Compiler initialisiert den String und errechnet seine Größe

Verwenden Sie strlen (eine Abkürzung für string length, also Stringlänge), um die Anzahl
der Zeichen vor der abschließenden Null zu bestimmen:

int length = strlen(string); // Gibt die Anzahl der Zeichen im String zurück

length ist im obigen Beispiel 0 für stringA und 7 für die anderen Strings. Die Null, die das
Ende des Strings festlegt, wird von strlen nicht mitgezählt.

Verwenden Sie strcpy (string copy), um einen String in einen anderen zu kopieren:

strcpy(destination, source); // Kopiert den String von der Quelle (source) an das Ziel
(destination)

Verwenden Sie strncpy, um die Zahl der zu kopierenden Zeichen zu beschränken.
(Nützlich, um nicht mehr Zeichen zu kopieren, als der Zielstring aufnehmen kann.) Sie
können sie in Rezept 2.7 im Einsatz sehen:

// Kopiere bis zu 6 Zeichen von der Quelle (source) zum Ziel(destination)
strncpy(destination, source, 6);

Verwenden Sie strcat (string concatenate), um einen String an das Ende eines anderen
anzuhängen:

// Quellstring an das Ende des Zielstrings anhängen
strcat(destination, source);

–

–

–

–

–

–

–

–

–

2.6 C-Zeichenketten nutzen | 37

Achten Sie beim Kopieren oder Verketten immer darauf, dass das Ziel
ausreichend Platz hat. Denken Sie auch an den Platz für die abschließende
Null.

Verwenden Sie strcmp (string compare), um zwei Strings zu vergleichen. Ein Anwendungs-
beispiel finden Sie in Rezept 2.7:

if(strcmp(str "Arduino") == 0)
// Mach etwas, wenn die Variable str den String "Arduino" enthält

Diskussion
Text wird in der Arduino-Umgebung durch ein Array von Zeichen, sog. Strings, reprä-
sentiert. Ein String besteht aus einer Folge von Zeichen, die mit einer Null (dem Wert 0)
abgeschlossen wird. Die Null wird nicht ausgegeben, wird aber benötigt, um der Software
das Ende des Strings anzuzeigen.

Siehe auch
Eine der vielen Online verfügbaren C/C++-Referenzseiten, etwa http://www.cplusplus.com/
reference/clibrary/cstring/ und http://www.cppreference.com/wiki/string/c/start.

2.7 Durch Komma getrennten Text in Gruppen aufteilen

Problem
Ein String enthält zwei oder mehr Datenelemente, die durch Kommata (oder ein anderes
Trennzeichen) voneinander getrennt sind. Sie wollen den String so zerlegen, dass Sie die
einzelnen Elemente nutzen können.

Lösung
Dieser Sketch gibt den Text zwischen den Kommata aus:

/*
* SplitSplit-Sketch
* Kommaseparierten String zerlegen
*/

String text = "Peter,Paul,Mary"; // Beispiel-String
String message = text; // Enthält noch nicht zerlegten Text
int commaPosition; // Position des nächsten Kommas im String

void setup()
{
Serial.begin(9600);

Serial.println(message); // Quellstring ausgeben,
do

st
St
– v

St
–

ko
p

Sp

38 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

{
commaPosition = message.indexOf(',');
if(commaPosition != -1)
{

Serial.println(message.substring(0,commaPosition));
message = message.substring(commaPosition+1, message.length());

}
else
{ // nachdem das letzte Komma gefunden wurde
if(message.length() > 0)
Serial.println(message); // Wenn Text auf das letzte Komma folgt,

// ausgeben
}

}
while(commaPosition >=0);

}

void loop()
{
}

Im seriellen Monitor wird Folgendes ausgegeben:

Peter,Paul,Mary
Peter
Paul
Mary

Diskussion
Dieser Sketch nutzt String-Funktionen, um den Text zwischen den Kommata zu extra-
hieren. Der Code:

commaPosition = message.indexOf(',');

legt in der Variablen commaPosition die Position des ersten Kommas im String namens
message ab (der Wert ist –1, wenn kein Komma gefunden wurde). Gibt es ein Komma,
wird die Funktion substring genutzt, um den Text vom Anfang des Strings bis zum
Komma auszugeben. Der ausgegebene Text samt Komma wird dann in der folgenden
Zeile aus message entfernt:

message = message.substring(commaPosition+1, message.length());

substring liefert einen String zurück, der bei commaPosition+1 (der Position gleich hinter
dem Komma) beginnt und sich bis zum Ende des Strings erstreckt. Message enthält dann
nur noch den Text, der auf das erste Komma folgt. Das wird so lange wiederholt, bis kein
Komma mehr gefunden wird (commaPosition enthält dann –1).

Als erfahrener Programmierer können Sie auch die Low-Level-Funktionen nutzen, die Teil
der Standard-C-Bibliothek sind. Der folgende Sketch bietet die gleiche Funktionalität wie
oben mit Arduino-Strings:

/*
* SplitSplit Sketch
* Komma separieren, String zerlegen

2.7 Durch Komma getrennten Text in Gruppen aufteilen | 39

*/

const int MAX_STRING_LEN = 20; // Längsten String festlegen,
// den Sie verarbeiten wollen

char stringList[] = "Peter,Paul,Mary"; // Beispiel-String

char stringBuffer[MAX_STRING_LEN+1]; // Statischer Puffer für Berechnung und Ausgabe

void setup()
{
Serial.begin(9600);
}

void loop()
{
char *str;
char *p;
strncpy(stringBuffer, stringList, MAX_STRING_LEN); // Quellstring kopieren
Serial.println(stringBuffer); // Quellstring ausgeben

for(str = strtok_r(stringBuffer, ",", &p); // An Komma zerlegen,
str; // solange str nicht Null ist,
str = strtok_r(NULL, ",", &p) // nächstes Token ermitteln

)
{
Serial.println(str);
}
delay(5000);

}

Die Kernfunktionalität liefert eine Funktion namens strtok_r (der Name der strtok-Ver-
sion, die der Arduino-Compiler bereitstellt). Beim ersten Aufruf von strtok_r übergeben
Sie den String, den Sie in Token (einzelne Werte) zerlegen wollen. Doch strtok_r über-
schreibt die Zeichen in diesem String jedes Mal, wenn es ein neues Token findet, weshalb
man (wie in diesem Beispiel gezeigt) am besten eine Kopie des Strings übergibt. Alle
nachfolgenden Aufrufe übergeben eine NULL, um die Funktion anzuweisen, sich zum
nächsten Token zu bewegen. Im obigen Beispiel wird jedes Token über den seriellen
Port ausgegeben.

Wenn Ihre Token nur aus Zahlen bestehen, sehen Sie sich Rezept 4.5 an. Es zeigt, wie
man numerische Werte, die durch Kommata voneinander getrennt sind, aus einem
Stream serieller Zeichen extrahiert.

Siehe auch
Unter http://www.nongnu.org/avr-libc/user-manual/group__avr__string.html erfahren Sie
mehr über C-Stringfunktionen wie strtok_r und strcmp.

Rezept 2.5; Online- Referenzen zu den C/C++-Funktionen strtok_r und strcmp.

st

40 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

2.8 Eine Zahl in einen String umwandeln

Problem
Sie müssen eine Zahl in einen String umwandeln, etwa um sie auf einem LCD- oder einem
anderen Display auszugeben.

Lösung
Die String-Variable wandelt Zahlen automatisch in Strings um. Sie können Literale oder
den Inhalt einer Variablen verwenden. So funktioniert der folgende Code:

String myNumber = 1234;

Ebenso wie dieser:

int value = 127;
String myReadout = "Der Messwert ist ";
myReadout.concat(value);

Und auch dieser:

int value = 127;
String myReadout = "Der Messwert ist ";
myReadout += value;

Diskussion
Wenn Sie eine Zahl in Text umwandeln wollen, um sie auf einem LC-Display oder über
eine serielle Schnittstelle auszugeben, besteht die einfachste Lösung darin, die Konver-
tierungsfähigkeiten zu nutzen, die in die LCD- oder Serial-Bibliotheken integriert sind
(siehe Rezept 4.2). Doch vielleicht arbeiten Sie mit einem Gerät, in das die entsprechende
Unterstützung nicht integriert ist (siehe Kapitel 13), oder Sie wollen die Zahl in Form eines
Strings in Ihrem Sketch weiterverarbeiten.

Die Arduino-Klasse String wandelt numerische Werte automatisch um, wenn sie einer
String-Variablen zugewiesen werden. Sie können numerische Werte verketten, indem Sie
die Funktion concat, oder den Stringoperator + nutzen.

Der Operator + wird sowohl bei Zahlen als auch bei Strings verwendet,
verhält sich aber leicht unterschiedlich.

Im folgenden Code erhält number den Wert 13:

int number = 12;
number += 1;

Bei einem String

String textNumber = "12";
textNumber += 1;

enthält textNumber den Textstring "121".

–

–

–

–

2.8 Eine Zahl in einen String umwandeln | 41

Vor der Einführung der String-Klasse hat Arduino-Code üblichereise die Funktionen itoa
oder ltoa verwendet. Die Namen stehen für »integer to ASCII« (itoa) und »long to ASCII«
(ltoa). Die vorhin beschriebene String-Version ist einfacher zu nutzen, doch wenn Sie
lieber mit C-Zeichenketten arbeiten (siehe Rezept 2.6), können Sie den folgenden Code
verwenden.

itoa und ltoa verlangen drei Parameter: den umzuwandelnden Wert, einen Puffer, der
den Ausgabestring aufnimmt und die Basis (10 für Dezimal-, 16 für Hexadezimal und 2
für Binärzahlen).

Der folgende Sketch zeigt, wie man numerische Werte mit ltoa konvertiert:

/*
* NumberToString
* Erzeugt einen String aus einer Zahl
*/

void setup()
{
Serial.begin(9600);
}

char buffer[12]; // Datentyp long hat 11 Zeichen (inklusive
// Minuszeichen) und ein abschließendes Null-Zeichen

void loop()
{
long value = 12345;
ltoa(value, buffer, 10);
Serial.print(value);
Serial.print(" hat ");
Serial.print(strlen(buffer));
Serial.println(" Ziffern");
value = 123456789;
ltoa(value, buffer, 10);
Serial.print(value);
Serial.print(" hat ");
Serial.print(strlen(buffer));
Serial.println(" Ziffern");
delay(1000);
}

Der Puffer muss so groß sein, dass er die maximale Anzahl von Zeichen im String auf-
nehmen kann. Bei 16-Bit-Integerwerten zur Basis 10 (dezimal) sind das sieben Zeichen
(fünf Ziffern, ein mögliches Minuszeichen und die abschließende 0, die immer das Ende
des Strings anzeigt); 32-Bit-Integerwerte benötigen 12 Zeichen (10 Ziffern, Minuszeichen
und die abschließende 0). Sie erhalten keine Warnung, wenn die Puffergröße über-
schritten wird, doch dieser Fehler kann zu seltsamen Symptomen führen, weil der Über-
lauf einen anderen Teil des Speichers überschreibt, der von Ihrem Programm genutzt
werden kann. Die einfachste Möglichkeit, das zu vermeiden, besteht darin, immer einen
12-Zeichen-Puffer zu verwenden und immer mit ltoa zu arbeiten, da es mit 16-Bit- und
32-Bit-Werten umgehen kann.

ito
lto

N

42 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

2.9 Einen String in eine Zahl umwandeln

Problem
Sie wollen einen String in eine Zahl umwandeln. Zum Beispiel könnten Sie einen Wert als
String über einen Kommunikationslink empfangen haben und müssen ihn nun in einen
Integer- oder einen Fließkommawert umwandeln.

Lösung
Das kann auf unterschiedliche Weise gelöst werden. Kommt der String in Form serieller
Daten an, kann er während des Empfangs umgewandelt werden. Wie man das bei der
seriellen Schnittstelle macht, zeigt Rezept 4.3.

Eine weitere Möglichkeit zur Umwandlung von Textstrings in Zahlen bieten die C-Kon-
vertierungsfunktionen atoi (für int-Variablen) und atol (für long-Variablen).

Das folgende Code-Fragment terminiert die eingehenden Ziffern, sobald ein Zeichen
keine Ziffer ist (oder wenn der Puffer voll ist). Damit das funktionieren kann, müssen Sie
aber die Newline-Option im seriellen Monitor aktivieren oder ein anderes terminierendes
Zeichen eingeben:

/*
* StringToNumber
* Erzeugt eine Zahl aus einem String
*/

const int ledPin = 13; // Mit Pin 13 verbundene LED

int blinkDelay; // Blinkrate wird durch diese Variable bestimmt
char strValue[6]; // Muss groß genug sein, um alle Ziffern und die den

// String abschließende 0 aufzunehmen
int index = 0; // Index auf das die empfangenen Ziffern speichernde Array

void setup()
{
Serial.begin(9600);
pinMode(ledPin,OUTPUT); // LED-Pin als Ausgang aktivieren
}

void loop()
{
if(Serial.available())
{
char ch = Serial.read();
if(index < 5 && isDigit(ch)){
strValue[index++] = ch; // ASCII-Zeichen an String anhängen;
}
else
{
// Bei vollem Puffer oder erster Nicht-Ziffer
strValue[index] = 0; // String mit einer 0 abschließen
blinkDelay = atoi(strValue); // String mit atoi in einen int-Wert umwandeln

–

–

–

–

–

2.9 Einen String in eine Zahl umwandeln | 43

index = 0;
}
}
blink();
}

void blink()
{
digitalWrite(ledPin, HIGH);
delay(blinkDelay/2); // Hälfte der Blinkperiode warten
digitalWrite(ledPin, LOW);
delay(blinkDelay/2); // Die andere Hälfe warten

}

Diskussion
Die etwas seltsam benannten Funktionen atoi (für ASCII nach int) und atol (für ASCII
nach long) wandeln einen String in Integer- oder Long-Integer-Werte um. Um Sie ver-
wenden zu können, müssen Sie den gesamten String zuerst in einem Zeichen-Array ablegen,
bevor Sie die Konvertierungsfunktion aufrufen können. Der Code erzeugt ein Zeichen-
Array namens strValue, das bis zu fünf Ziffern aufnehmen kann (die Deklaration mit char
strValue[6] berücksichtigt noch die abschließende Null). Er füllt das Array über Serial.
read, bis das erste Zeichen empfangen wird, das keine Ziffer ist. Das Array wird mit einer
Null abgeschlossen und dann wird die atoi-Funktion aufgerufen, um das Zeichen-Array
umzuwandeln. Das Ergebnis der Umwandlung wird in blinkRate gespeichert.

Eine Funktion namens blink wird aufgerufen, die den in blinkDelay gespeicherten Wert
nutzt.

Wie in der Warnung in Rezept 2.4 erwähnt, müssen Sie darauf achten, innerhalb der
Grenzen des Arrays zu bleiben. Falls Sie nicht wissen, wie Sie das anstellen sollen, sehen
Sie sich die Diskussion dieses Rezepts an.

Die Arduino-Release 22 hat die Methode toInt eingeführt, die einen String in einen Inte-
gerwert umwandelt:

String aNumber = "1234";
int value = aNumber.toInt();

Arduino 1.0 verfügt über die Methode parseInt, mit deren Hilfe Sie Integerwerte über serielle
Ports oder Ethernet (oder jedem aus der Stream-Klasse abgeleiteten Objekt) einlesen können.
Das folgende Code-Fragment wandelt Ziffernfolgen in Zahlen um. Es ähnelt unserer Lösung,
benötigt aber keinen Puffer (und ist nicht auf Zahlen mit fünf Ziffern beschränkt):

int blinkDelay; // Blinkrate wird durch diese Variable bestimmt
void loop()
{
if(Serial.available())
{
blinkRate = Serial.parseInt();
}
blink();
}

Se
–

bl

Se
–

44 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Stream-Parsing-Methoden wie parseInt nutzen ein Timeout, um die Kon-
trolle wieder an den Sketch zurückzugeben, falls innerhalb der gewünsch-
ten Zeitspanne keine Daten eintreffen. Das Standard-Timeout beträgt eine
Sekunde, kann aber über die Methode setTimeout geändert werden:

Serial.setTimeout(1000 * 60); // Warte bis zu einer Minute

parseInt (und alle anderen Stream-Methoden) geben den Wert zurück, der
bis zum Timeout eingelesen werden konnte (wenn kein Trennzeichen
empfangen wurde). Der Rückgabewert besteht aus dem eingesammelten
Wert. Wurden keine Ziffern empfangen, wird Null zurückgegeben. Ar-
duino 1.0 hat keine Möglichkeit zu erkennen, ob es in der Parse-Methode
zu einem Timeout kam, aber die Möglichkeit ist für eine zukünftige
Release geplant.

Siehe auch
Dokumentation zu atoi finden Sie unter: http://www.nongnu.org/avr-libc/user-manual/
group__avr__stdlib.html.

Viele Online-C/C++-Referenzseiten behandeln diese Low-Level-Funktionen, z.B. http://
www.cplusplus.com/reference/clibrary/cstdlib/atoi/ und http://www.cppreference.com/wiki/
string/c/atoi.

In Rezept 4.3 und Rezept 4.5 erfahren Sie mehr über den Einsatz von parseInt mit Serial.

2.10 Ihren Code in Funktionsblöcken strukturieren

Problem
Sie möchten wissen, wie man einen Sketch um Funktionen erweitert und welche Funk-
tionalität in eine Funktion gehört. Sie wollen außerdem verstehen, wie man die Gesamt-
struktur des Sketches plant.

Lösung
Funktionen werden genutzt, um die von Ihrem Sketch durchgeführten Aktionen in funk-
tionale Blöcke zu packen. Funktionen fassen Funktionalität zu wohldefinierten Eingaben
(an eine Funktion übergebene Informationen) und Ausgaben (von der Funktion gelieferte
Informationen) zusammen. Das erleichtert die Strukturierung, Pflege und Wiederverwen-
dung Ihres Codes. Sie kennen bereits zwei Funktionen, die Teil jedes Arduino-Sketches
sind: setup und loop. Sie legen eine Funktion an, indem Sie ihren Rückgabetyp (also die
von ihr bereitgestellte Information) deklarieren, sowie ihren Namen und optionale Pa-
rameter (Werte), die die Funktion beim Aufruf verarbeitet.

–

–

–

–

2.10 Ihren Code in Funktionsblöcken strukturieren | 45

Die Begriffe Funktion und Methode werden für wohldefinierte Code-Blö-
cke verwendet, die von anderen Teilen eines Programms als einzelne En-
tität aufgerufen werden können. Die Sprache C bezeichnet sie als Funk-
tionen. Objektorientierte Sprachen wie C++, die Funktionalitäten über
Klassen bereitstellen, neigen eher zum Begriff Methode. Arduino verwen-
det einen Stilmix (die Beispiel-Sketches verwenden eher einen C-Stil,
während Bibliotheken eher so geschrieben werden, dass Sie C++-Metho-
den zur Verfügung stellen). In diesem Buch verwenden wir üblicherweise
den Begriff Funktion, solange der Code nicht durch eine Klasse bereit-
gestellt wird. Doch keine Sorge, wenn Ihnen die Unterscheidung nicht klar
ist, können Sie beide Begriffe gleichsetzen.

Hier eine einfache Funktion, die nur eine LED blinken lässt. Es gibt keine Parameter und
sie gibt auch nichts zurück (was durch das vor der Funktion stehende void festgelegt
wird):

// LED einmal blinken lassen
void blink1()
{
digitalWrite(13,HIGH); // LED einschalten
delay(500); // 500 Millisekunden warten
digitalWrite(13,LOW); // LED ausschalten
delay(500); // 500 Millisekunden warten

}

Die folgende Version verwendet einen Parameter (ein Integer namens count), der be-
stimmt, wie oft die LED blinken soll:

// LED count mal blinken lassen
void blink2(int count)
{
while(count > 0) // Solange Zähler größer 0
{
digitalWrite(13,HIGH);
delay(500);
digitalWrite(13,LOW);
delay(500);
count = count -1; // Zähler dekrementieren
}
}

Erfahrene Programmierer werden bemerken, dass beide Funktionen blink
heißen können, da der Compiler sie anhand der als Parameter verwende-
ten Werte unterscheiden kann. Dieses Verhalten wird als Überladen von
Funktionen bezeichnet. Das Arduino-print, das in Rezept 4.2 diskutiert
wird, ist hierfür ein typisches Beispiel. Ein anderes Beispiel für das Über-
laden finden Sie in der Diskussion von Rezept 4.6.

Diese Version überprüft, ob der Wert von count 0 ist. Ist das nicht der Fall, lässt sie die
LED einmal blinken und reduziert den Wert von count um 1. Das wird solange wieder-
holt, bis count nicht mehr größer als 0 ist.

Fu

Pa
–

46 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Ein Parameter wird manchmal auch als Argument bezeichnet. Aus prakti-
schen Erwägungen betrachten wir beide Begriffe als gleichwertig.

Hier ein Beispiel-Sketch mit einer Funktion, die einen Parameter erwartet und einen Wert
zurückgibt. Der Parameter legt fest, wie lange die LED an- und ausgeschaltet bleibt (in
Millisekunden). Die Funktion lässt die LED blinken, bis eine Taste gedrückt wird und gibt
zurück, wie oft die LED geblinkt hat:

/*
blink3 Sketch
Demonstriert den Aufruf einer Funktion mit einem Parameter und die Rückgabe eines Wertes.
Verwendet die gleiche Verschaltung wie im Sketch aus
Rezept 5.2

Die LED blinkt, sobald das Programm startet und hört auf zu blinken, sobald der mit dem digitalen
Pin 2 verbundene Taster gedrückt wird.
Das Programm gibt dann aus, wie oft die LED geblinkt hat.
*/

const int ledPin = 13; // Ausgangspin für LED
const int inputPin = 2; // Eingangspin für Taster

void setup() {
pinMode(ledPin, OUTPUT);
pinMode(inputPin, INPUT);
digitalWrite(inputPin,HIGH); // Internen Pullup nutzen (Rezept 5.2)
Serial.begin(9600);
}

void loop(){
Serial.println("Taster druecken und halten, damit die LED nicht mehr blinkt");
int count = blink3(250); // LED 250ms ein und 250ms ausschalten
Serial.print("Die LED hat ");
Serial.println(count);
Serial.println(" mal geblinkt");
}

// LED mit der übergebenen Zeitspanne blinken lassen
// Gibt zurück, wie oft die LED geblinkt hat
int blink3(int period)
{
int result = 0;
int switchVal = HIGH; //Mit Pullups high, wenn der Schalter nicht gedrückt ist

while(switchVal == HIGH) // Wiederholen, bis Taster gedrückt wurde
// (Wert wird dann LOW)

{
digitalWrite(13,HIGH);
delay(period);
digitalWrite(13,LOW);
delay(period);
result = result + 1; // Zähler erhöhen
switchVal = digitalRead(inputPin); // Tasterwert einlesen
}

–

2.10 Ihren Code in Funktionsblöcken strukturieren | 47

// switchVal ist nicht länger HIGH, weil der Taster gedrückt wurde
return result; // Dieser Wert wird zurückgegeben
}

Diskussion
Der Code in der Lösung dieses Rezepts illustriert die drei Arten von Funktionsaufrufen,
denen Sie begegnen werden. blink1 hat keine Parameter und keinen Rückgabewert. Die
Form ist:

void blink1()
{
// Implementierung steht hier...

}

blink2 erwartet einen einzelnen Parameter, gibt aber keinen Wert zurück:

void blink2(int count)
{
// Implementierung steht hier...

}

blink3 erwartet einen einzelnen Parameter und liefert einen Wert zurück:

int blink3(int period)
{
// Implementierung steht hier...

}

Der vor dem Funktionsnamen stehende Datentyp legt den Typ des Rückgabewerts fest
(bzw. keinen Rückgabewert bei void). Wenn Sie die Funktion deklarieren (den Code
schreiben, der die Funktion und ihre Aktionen definiert), hängen Sie kein Semikolon an
die schließende geschweifte Klammer an. Wenn Sie die Funktion nutzen (aufrufen), müs-
sen Sie hinter dem Funktionsaufruf ein Semikolon anhängen.

Die meisten Funktionen, die Ihnen unterkommen werden, sind Variationen dieser Formen.
Hier zum Beispiel eine Funktion, die einen Parameter erwartet und einen Wert zurückgibt:

int sensorPercent(int pin)
{
int percent;

int val = analogRead(pin); // Sensorwert einlesen (im Bereich von 0 bis 1023)
percent = map(val,0,1023,0,100); // percent liegt im Bereich von 0 bis 100.
return percent;
}

Der Name der Funktion ist sensorPercent. Sie übergeben ihr die Nummer eines Analog-
pins und erhalten einen Wert in Prozent zurück (in Rezept 5.7 erfahren Sie mehr über
analogRead und map). Das int vor der Deklaration teilt dem Compiler (und dem Pro-
grammierer) mit, dass die Funktion einen Integerwert zurückgibt. Bei der Entwicklung
von Funktionen müssen Sie den für die Funktion geeigneten Rückgabetyp wählen. Diese
Funktion gibt einen Integerwert zwischen 0 und 100 zurück, weshalb der Rückgabetyp
int geeignet ist.

; (
–
Se
–
Fu
–

N
t

48 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Es ist empfehlenswert, den Funktionen sinnvolle Namen zu geben. Es ist
gängige Praxis, dafür Worte miteinander zu verbinden und dabei den
ersten Buchstaben jedes Wortes großzuschreiben (mit Ausnahme des
ersten Wortes). Sie können den von Ihnen bevorzugte Stil nutzen, es hilft
aber anderen, wenn Sie eine konsistente Namensgebung nutzen.

sensorPercent nutzt einen Parameter namens pin (beim Aufruf der Funktion wird pin der
Wert zugewiesen, der an die Funktion übergeben wurde).

Der Funktionsrumpf (der Code zwischen den geschweiften Klammern) führt die ge-
wünschten Aktionen durch – im obigen Beispiel wird ein Wert von einem analogen
Eingangspin eingelesen und auf einem Prozentwert abgebildet. Dieser Prozentwert wird
temporär in einer Variablen namens percent festgehalten. Die nachfolgende Anweisung
sorgt dafür, dass der in der Variablen percent gespeicherte Wert an die aufrufende An-
wendung zurückgegeben wird:

return percent;

Sie können den gleichen Effekt aber auch ohne die percent-Variable erreichen:

int sensorPercent(int pin)
{
int val = analogRead(pin); // Sensorwert einlesen (im Bereich von 0 bis 1023)
return map(val,0,1023,0,100); // Prozentwert liegt zwischen 0 und 100.
}

Aufgerufen wird die Funktion wie folgt:

// Prozentwerte von 6 Analogpins ausgeben
for(int sensorPin = 0; sensorPin < 6; sensorPin++)
{
Serial.print("Sensor an Pin ");
Serial.print(sensorPin);
Serial.print(" steht bei ");
int val = sensorPercent(sensorPin);
Serial.print(val);
Serial.print(" Prozent.");
}

Siehe auch
Die Arduino-Funktionsreferenz unter: http://www.arduino.cc/en/Reference/FunctionDe-
claration

2.11 Mehr als einen Wert in einer Funktion zurückliefern

Problem
Sie möchten zwei oder mehr Werte in einer Funktion zurückgeben. Rezept 2.10 enthält
Beispiele für die gängigste Form einer Funktion, die nur einen (oder keinen) Wert zu-
rückgibt. Doch manchmal muss man mehr als einen Wert modifizieren oder zurückgeben.

–

–

–

2.11 Mehr als einen Wert in einer Funktion zurückliefern | 49

Lösung
Für dieses Problem gibt es verschiedene Lösungen. Die einfachste besteht darin, die
Funktion einige globale Variablen verändern zu lassen und gar nichts zurückzugeben:

/*
swap Sketch
Änderung zweier Werte über globale Variablen
*/

int x; // x und y sind globale Variablen
int y;

void setup() {
Serial.begin(9600);
}

void loop(){
x = random(10); // Zufällige Zahlen wählen
y = random(10);

Serial.print("Die Werte von x und y vor dem Tausch: ");
Serial.print(x); Serial.print(","); Serial.println(y);
swap();

Serial.print("Die Werte von x und y nach dem Tausch: ");
Serial.print(x); Serial.print(","); Serial.println(y);Serial.println();

delay(1000);
}

// Zwei globale Variablen vertauschen
void swap()
{
int temp;
temp = x;
x = y;
y = temp;
}

Die swap-Funktion vertauscht die Werte in zwei globalen Variablen. Globale Variablen
sind leicht zu verstehen (sie sind überall im Programm zugänglich und können von jedem
geändert werden), werden von erfahrenen Programmierern aber gemieden, da es sehr
leicht ist, sie versehentlich zu überschreiben. Darüber hinaus können Funktionen plötz-
lich nicht mehr laufen, weil Sie den Namen oder den Typ einer globalen Variablen an einer
anderen Stelle im Sketch geändert haben.

Eine sichere und elegante Lösung besteht darin, Referenzen an die zu ändernden Werte zu
übergeben. In der Funktion werden dann die Referenzen genutzt, um die Werte zu mo-
difizieren. Das geht wie folgt:

–

sw

sw

gl
Va
–

fu

50 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

/*
functionReferences Sketch
Rückgabe mehrerer Werte mittels Referenz
*/

void setup() {
Serial.begin(9600);
}

void loop(){
int x = random(10); // Zufällige Zahlen wählen
int y = random(10);

Serial.print("Die Werte von x und y vor dem Tausch: ");
Serial.print(x); Serial.print(","); Serial.println(y);
swap(x,y);

Serial.print("Die Werte von x und y nach dem Tausch: ");
Serial.print(x); Serial.print(","); Serial.println(y);Serial.println();

delay(1000);
}

// Zwei Werte vertauschen
void swap(int &value1, int &value2)
{
int temp;
temp = value1;
value1 = value2;
value2 = temp;
}

Diskussion
Die swap-Funktion ähnelt den in Rezept 2.10 beschriebenen Funktionen mit Parametern,
doch das kaufmännische UND (Ampersand, &) zeigt an, dass die Parameter Referenzen
sind. Das bedeutet, dass Werteänderungen innerhalb der Funktion auch die Werte der
Variablen ändern, die beim Aufruf der Funktion übergeben wurden. Sie können verfolgen,
wie das funktioniert, indem Sie zuerst den Lösungscode ausführen und sich vergewissern,
dass die Werte vertauscht wurden. Dann entfernen Sie die beiden &-Zeichen aus der
Funktionsdefinition:

void swap(int value1, int value2)

Wenn Sie diesen Code ausführen, sehen Sie, dass die Werte nicht vertauscht wurden –
Änderungen innerhalb der Funktion erfolgen nur lokal zur Funktion und gehen verloren,
wenn die Funktion beendet wird.

Wenn Sie die Arduino-Release 21 (oder älter) nutzen, müssen Sie die
Funktion zuerst deklarieren, um den Compiler darüber zu informieren,
dass die Funktion Referenzen nutzt. Der Sketch zu diesem Rezept im

–

–

–

–

–

2.11 Mehr als einen Wert in einer Funktion zurückliefern | 51

Downloadbereich zur ersten Auflage des Buches zeigt, wie man eine
Funktion deklariert:

// Funktionen mit Referenzen müssen vor der Verwendung deklariert werden
// Die Deklaration steht am Anfang vor dem setup- und loop-Code
// Beachten Sie das Semikolon am Ende der Deklaration
void swap(int &value1, int &value2);

Eine Funktionsdeklaration ist ein Prototyp – sie legt den Namen, die Typen
der an die Funktion übergebenen Werte und den Rückgabetyp fest. Der
Arduino-Build-Prozess erzeugt die Deklarationen üblicherweise hinter den
Kulissen für Sie. Doch wenn Sie eine vom Standard abweichende Syntax
verwenden (zumindest was Arduino 21 und älter betrifft), dann erzeugt
der Build-Prozess die Deklaration nicht. Sie müssen die Zeile dann vor
setup selbst einfügen.

Eine Funktionsdefinition besteht aus einem Funktionskopf und einem
Funktionsrumpf. Der Funktionskopf ähnelt der Deklaration, endet aber
nicht mit einem Semikolon. Der Funktionsrumpf ist der Code innerhalb
der geschweiften Klammern, der ausgeführt wird, wenn Sie die Funktion
aufrufen.

2.12 Aktionen basierend auf Bedingungen ausführen

Problem
Sie möchten einen Code-Block nur dann ausführen, wenn eine bestimmte Bedingung
erfüllt ist. Zum Beispiel könnten Sie eine LED nur dann einschalten wollen, wenn ein
Taster gedrückt wird oder wenn ein Analogwert einen bestimmten Schwellwert über-
schritten hat.

Lösung
Der folgende Code verwendet die Verschaltung aus Rezept 5.1:

/*
Pushbutton Sketch
Ein mit dem digitalen Pin 2 verbundender Taster schaltet die LED an Pin 13

*/

const int ledPin = 13; // Pin für die LED
const int inputPin = 2; // Pin für den Taster

void setup() {
pinMode(ledPin, OUTPUT); // LED-Pin als Ausgang deklarieren
pinMode(inputPin, INPUT); // Taster-Pin als Eingang delarieren
}

void loop(){
int val = digitalRead(inputPin); // Eingangswert einlesen
if (val == HIGH) // Prüfen, ob Eingang HIGH ist
{

; (
–

Sk
– A

Be
– A
Ak
–

Pu

52 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

digitalWrite(ledPin, HIGH); // LED einschalten, wenn Taster gedrückt ist
}
}

Diskussion
Die if-Anweisung wird verwendet, um den Wert von digitalRead zu testen. Eine if-
Anweisung muss innerhalb der Klammern einen Test durchführen, dessen Ergebnis nur
wahr oder falsch sein kann. Im obigen Beispiel ist das val == HIGH, und der Code-Block, der
auf die if-Anweisung folgt, wird nur ausgeführt, wenn der Ausdruck wahr ist. Ein
Code-Block besteht aus dem gesamten Code innerhalb der geschweiften Klammern.
(Wenn Sie keine Klammern verwenden, ist der Block einfach die nächste ausführbare
Anweisung, die mit einem Semikolon abgeschlossen ist).

Soll eine Aktion ausgeführt werden, wenn die Bedingung erfüllt ist, und eine andere, wenn
nicht, können Sie die if...else-Anweisung verwenden:

/*
Pushbutton Sketch
Ein mit dem digitalen Pin 2 verbundender Taster schaltet die LED an Pin 13

*/

const int ledPin = 13; // Pin für die LED
const int inputPin = 2; // Pin für den Taster

void setup() {
pinMode(ledPin, OUTPUT); // LED-Pin als Ausgang deklarieren
pinMode(inputPin, INPUT); // Taster als Eingang deklarieren
}

void loop(){
int val = digitalRead(inputPin); // Eingangswert einlesen
if (val == HIGH) // Prüfen, ob Eingang HIGH ist
{
// Dieser Teil wird ausgeführt, wenn val HIGH ist
digitalWrite(ledPin, HIGH); // LED einschalten, wenn Taster gedrückt ist
}
else
{
// Dieser Teil wird ausgeführt, wenn val nicht HIGH ist
digitalWrite(ledPin, LOW); // LED ausschalten
}
}

Siehe auch
Die Diskussion zu Booleschen Typen in Rezept 2.2.

2.12 Aktionen basierend auf Bedingungen ausführen | 53

2.13 Eine Folge von Anweisungen wiederholt ausführen

Problem
Sie wollen einen Block mit Anweisungen ausführen, solange ein Ausdruck wahr ist.

Lösung
Eine while-Schleife führt eine oder mehrere Anweisungen aus, solange ein Ausdruck wahr ist:

/*
* Repeat
* Blinken, solange eine Bedingung wahr ist
*/

const int ledPin = 13; // Digitaler Pin, mit dem die LED verbunden ist
const int sensorPin = 0; // Analoger Eingang 0

void setup()
{
Serial.begin(9600);
pinMode(ledPin,OUTPUT); // LED-Pin als Ausgang aktivieren
}

void loop()
{
while(analogRead(sensorPin) > 100)
{
blink(); // Funktion aufrufen, die die LED ein- und ausschaltet
Serial.print(".");
}
Serial.println(analogRead(sensorPin)); // Wird erst ausgeführt,

// wenn die while-Schleife beendet wurde!!!
}

void blink()
{
digitalWrite(ledPin, HIGH);
delay(100);
digitalWrite(ledPin, LOW);
delay(100);

}

Dieser Code führt die Anweisungen im Block zwischen den geschweiften Klammern {}
aus, solange der Wert von analogRead größer als 100 ist. Damit könnten Sie eine LED als
Alarm blinken lassen, solange ein bestimmter Schwellwert überschritten ist. Die LED ist
aus, wenn der Sensorwert bei 100 (oder kleiner) liegt. Sie blinkt kontinuierlich, wenn der
Wert größer als 100 ist.

Sk
–

An
–

w

ge
{}

54 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Diskussion
Geschweifte Klammern legen den Code-Block fest, der innerhalb einer Schleife ausgeführt
wird. Ohne geschweifte Klammern wird nur eine Codezeile in der Schleife wiederholt:

while(analogRead(sensorPin) > 100)
blink(); // Die dem Schleifenausdruck unmittelbar folgende Zeile wird wiederholt ausgeführt
Serial.print("."); // Wird erst ausgeführt, wenn die Schleife beendet wurde!!!

Schleifen ohne geschweifte Klammern können unerwartete Ergebnisse
liefern, wenn es mehr als eine Codezeile gibt.

Das do...while ähnelt der while-Schleife, doch die Anweisungen innerhalb des Code-
Blocks werden ausgeführt, bevor die Bedingung überprüft wird. Verwenden Sie diese
Form, wenn der Code mindestens einmal ausgeführt werden muss, auch wenn der
Ausdruck falsch ist:

do
{
blink(); // Funktion zum Ein- und Ausschalten der LED aufrufen

}
while (analogRead(sensorPin) > 100);

Der obige Code lässt die LED mindestens einmal blinken, und dann so lange, wie der
Sensorwert über 100 liegt. Ist der Wert kleiner als 100, blinkt die LED nur einmal auf.
Dieser Code könnte bei batteriebetriebenen Schaltungen genutzt werden. Ein einzelnes
Blinken zeigt, dass die Schaltung aktiv ist, während ein kontinuierliches Blinken anzeigt,
dass die Batterie geladen wird.

Nur der Code innerhalb der while- oder do-Schleife wird ausgeführt, bis
die Schleife beendet wird. Muss ein Sketch als Reaktion auf eine andere
Bedingung (z.B. Timeout, Zustand eines Sensors oder eine andere Ein-
gabe) die Schleife beenden, können Sie break nutzen:

while(analogRead(sensorPin) > 100)
{
blink();
if(Serial.available())
break; // Jede serielle Eingabe beendet die while-Schleife

}

Siehe auch
Kapitel 4 and Kapitel 5

2.13 Eine Folge von Anweisungen wiederholt ausführen | 55

2.14 Anweisungen über einen Zähler wiederholen

Problem
Sie wollen eine oder mehrere Anweisungen n-mal wiederholen. Die for-Schleife ähnelt der
while-Schleife, bietet aber eine genauere Kontrolle der Start- und Endbedingungen.

Lösung
Dieser Sketch zählt von 0 bis 3 und gibt den Wert der Variablen i in einer for-Schleife aus:

/*
ForLoop Sketch
Demonstration der for-Schleife

*/

void setup() {
Serial.begin(9600);}

void loop(){
Serial.println("for(int i=0; i < 4; i++)");
for(int i=0; i < 4; i++)
{
Serial.println(i);
}
}

Die Ausgabe am seriellen Monitor sieht wie folgt aus und wird fortlaufend wiederholt.

for(int i=0; i < 4; i++)
0
1
2
3

Diskussion
Eine for-Schleife besteht aus drei Teilen: Initialisierung, Bedingung und Iteration (eine
Anweisung, die am Ende jedes Schleifendurchlaufs ausgeführt wird). Die Teile werden
durch ein Semikolon getrennt. Im obigen Code initialisiert int i=0; die Variable i mit 0;
i < 4; prüft, ob die Variable kleiner 4 ist und i++ inkrementiert i.

Eine for-Schleife kann eine existierende Variable verwenden oder eine Variable erzeugen,
die nur innerhalb der Schleife genutzt wird. Die nachfolgende Version verwendet den
Wert der Variablen j, die an anderer Stelle des Sketches angelegt wurde:

int j;

Serial.println("for(j=0; j < 4; j++)");
for(j=0; j < 4; j++)
{
Serial.println(j);
}

W
–
Zä
– A
An
–
Sk
– A

fo
– A

Fo

56 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Das ist nahezu identisch mit dem ersten Beispiel, lässt aber das Schlüsselwort int bei der
Initialisierung weg, da die Variable j bereits definiert ist. Die Ausgabe dieser Version ist
mit der aus der erste Version identisch:

for(j=0; i < 4; i++)
0
1
2
3

Sie können die Initialisierung auch ganz weglassen, wenn die Schleife den Wert einer bereits
früher definierten Variablen verwenden soll. Der folgende Code beginnt die Schleife mit j = 1:

int j = 1;

Serial.println("for(; j < 4; j++)");
for(; j < 4; j++)
{
Serial.println(j);
}

und liefert die folgende Ausgabe:

for(; j < 4; j++)
1
2
3

Sie kontrollieren im Bedingungsteil, wann die Schleife beendet wird. Im obigen Beispiel
wird überprüft, ob die Schleifenvariable kleiner als 4 ist und die Schleife endet, sobald
diese Bedingung nicht länger erfüllt ist.

Wenn Ihre Schleifenvariable bei 0 beginnt und viermal durchlaufen wer-
den soll, muss die Bedingung auf einen Wert kleiner 4 testen. Die Schleife
wird durchlaufen, solange die Bedingung erfüllt ist, und wenn die Schleife
bei 0 beginnt, gibt es vier Werte, die kleiner als 4 sind.

Der folgende Code prüft, ob der Wert der Schleifenvariablen kleiner oder gleich 4 ist. Die
Schleife gibt also die Ziffern 0 bis 4 aus:

Serial.println("for(int i=0; i <= 4; i++)");
for(int i=0; i <= 4; i++)
{
Serial.println(i);
}

Der dritte Teil einer for-Schleife ist die Iterator-Anweisung, die am Ende jedes Schleifen-
durchgangs ausgeführt wird. Sie kann jede gültige C/C++-Anweisung enthalten. Das
folgende Beispiel erhöht den Wert von i bei jedem Durchgang um 2:

Serial.println("for(int i=0; i < 4; i+= 2)");
for(int i=0; i < 4; i+=2)
{
Serial.println(i);
}

2.14 Anweisungen über einen Zähler wiederholen | 57

Der Sketch gibt nur die Werte 0 und 2 aus.

Der Iterator-Ausdruck kann auch herunterzählen, im folgenden Beispiel von 3 bis 0:

Serial.println("for(int i=3; i > = 0 ; i--)");
for(int i=3; i >= 0 ; i--)
{
Serial.println(i);
}

Wie alle anderen Teil einer for-Schleife kann auch der Iterator-Ausdruck leer bleiben. (Die
Teile müssen aber immer durch Semikolon getrennt werden, auch wenn sie leer sind.)

Die folgende Version inkrementiert i nur dann, wenn ein Eingangspin aktiv ist. Die
for-Schleife ändert den Wert von i nicht. Er wird nur in der if-Anweisung hinter
Serial.print geändert – Sie müssen inPin definieren und mit pinMode()als INPUT fest-
legen:

Serial.println("for(int i=0; i < 4;)");
for(int i=0; i < 4;)
{
Serial.println(i);
if(digitalRead(inPin) == HIGH) {
i++; // Wert wird nur inkrementiert, wenn Eingang HIGH ist
}
}

Siehe auch
Arduino-Referenz zur for- Anweisung: http://www.arduino.cc/en/Reference/For

2.15 Aus Schleifen ausbrechen

Problem
Sie wollen eine Schleife basierend auf einer anderen Bedingung vorzeitig beenden.

Lösung
Nutzen Sie den folgenden Code:

while(analogRead(sensorPin) > 100)
{
if(digitalRead(switchPin) == HIGH)
{
break; //Schleife beenden, wenn Taster gedrückt

}
flashLED(); // LED ein- und ausschalten

}

Sk
–
Be
–

58 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Diskussion
Der Code ähnelt den anderen while-Beispielen, nutzt aber die break-Anweisung, um die
Schleife zu verlassen, wenn ein digitaler Pin HIGH ist. Ist beispielsweise wie in Rezept 5.1
ein Taster mit dem Pin verbunden, wird die Schleife beendet (und die LED hört auf zu
blinken), selbst wenn die Bedingung der while-Schleife wahr ist.

Siehe auch
Arduino-Referenz zur break-Anweisung: http://www.arduino.cc/en/Reference/Break

2.16 Basierend auf einem Variablenwert verschiedene
Aktionen durchführen

Problem
Sie müssen in Abhängigkeit von einem Wert unterschiedliche Aktionen ausführen. Sie
könnten dazu mehrere if- und else if-Anweisungen verwenden, aber dadurch wird der
Code schnell kompliziert, unverständlich und schwer zu modifizieren. Darüber hinaus
könnten Sie auf einen Wertebereich hin prüfen wollen.

Lösung
Die switch-Anweisung ermöglicht die Wahl zwischen einer Reihe von Alternativen. Die
Funktionalität ähnelt der mehrerer if/else if-Anweisungen, ist aber kompakter:

/*
* SwitchCase Sketch
* Beispiel für switch-Anweisung über Zeichen am seriellen Port
*
* Das Zeichen 1 lässt die LED einmal blinken, 2 lässt sie zweimal blinken.
* + schaltet die LED ein, - schaltet sie aus
* jedes andere Zeichen gibt eine Nachricht über den seriellen Monitor aus
*/
const int ledPin = 13; // Mit Pin 13 verbundene LED

void setup()
{
Serial.begin(9600); // Initialisiert seriellen Port zum Senden

// und Empfangen mit 9600 Baud
pinMode(ledPin, OUTPUT);
}

void loop()
{
if (Serial.available()) // Prüfe, ob ein Zeichen

// vorhanden ist
{
char ch = Serial.read();

–

–

–

2.16 Basierend auf einem Variablenwert verschiedene Aktionen durchführen | 59

switch(ch)
{
case '1':
blink();
break;
case '2':
blink();
blink();
break;
case '+':
digitalWrite(ledPin,HIGH);
break;
case '-':
digitalWrite(ledPin,LOW);
break;
default :
Serial.print(ch);
Serial.println(" wurde empfangen, hat aber keine Funktion");
break;
}
}
}

void blink()
{
digitalWrite(ledPin,HIGH);
delay(500);
digitalWrite(ledPin,LOW);
delay(500);
}

Diskussion
Die switch-Anweisung evaluiert den Wert der Variablen ch, der über die serielle Schnitt-
stelle empfangen wurde, und verzweigt bei dem zum Wert passenden Label. Die Label
müssen numerische Konstanten sein (Sie dürfen keine Strings in einer case-Anweisung
verwenden), und ein Wert darf nur einmal vorkommen. Wenn auf die Anweisungen keine
break-Anweisung folgt, rutscht die Ausführung zum nächsten Fall durch:

case '1':
blink(); // Keine break-Anweisung vor dem nächsten Label
case '2':
blink(); // Fall '1' wird hier fortgesetzt
blink();
break; // break-Anweisung beendet den switch-Ausdruck

Lässt man die break-Anweisung am Ende von case '1': weg (wie im obigen Code zu
sehen), dann wird die blink-Funktion dreimal aufgerufen, wenn ch eine 1 enthält. Das
break zu vergessen, ist ein typischer Fehler. Das break bewusst wegzulassen, ist manchmal
aber auch ganz praktisch. Da das andere Leser des Codes verwirren kann, verdeutlicht
man seine Absichten mit einem Kommentar.

br

60 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Wenn sich eine switch-Anweisung nicht verhält wie gewünscht, sollten Sie
sicherstellen, dass Sie keine break-Anweisungen vergessen haben.

Das Label default: wird genutzt, um Werte abzufangen, die von den case-Labeln nicht
abgedeckt werden. Gibt es kein default-Label, macht der switch-Ausdruck nichts weiter,
wenn es keinen Treffer gibt.

Siehe auch
Arduino-Referenz zu den switch- und case-Anweisungen: http://www.arduino.cc/en/
Reference/SwitchCase

2.17 Zeichen und Zahlen vergleichen

Problem
Sie wollen die Beziehung zwischen Werten ermitteln.

Lösung
Vergleichen Sie Integerwerte mit den relationalen Operatoren in Tabelle 2-3.

Tabelle 2-3: Relationale Operatoren und Gleichheitsoperatoren

Operator Test auf Beispiel

== Gleich 2 == 3 // Evaluiert zu falsch

!= Ungleich 2 != 3 // Evaluiert zu wahr

> Größer als 2 > 3 // Evaluiert zu falsch

< Kleiner als 2 < 3 // Evaluiert zu wahr

>= Größer oder gleich 2 >= 3 // Evaluiert zu falsch

<= Kleiner oder gleich 2 <= 3 // Evaluiert zu wahr

Der folgende Sketch demonstriert die Ergebnisse der Vergleichsoperatoren:

/*
* RelationalExpressions Sketch
* demonstriert Wertevergleiche
*/

int i = 1; // Unsere Ausgangswerte
int j = 2;

void setup() {
Serial.begin(9600);
}

void loop(){

–

–

–

2.17 Zeichen und Zahlen vergleichen | 61

Serial.print("i = ");
Serial.print(i);
Serial.print(" und j = ");
Serial.println(j);

if(i < j)
Serial.println(" i ist kleiner als j");
if(i <= j)
Serial.println(" i ist kleiner oder gleich j");
if(i != j)
Serial.println(" i ist ungleich j");
if(i == j)
Serial.println(" i ist gleich j");
if(i >= j)
Serial.println(" i ist groesser der gleich j");
if(i > j)
Serial.println(" i ist groesser als j");

Serial.println();
i = i + 1;
if(i > j + 1)
delay(10000); // Lange Verzögerung, wenn i nicht mehr nah an j liegt

}

Hier die Ausgabe:

i = 1 und j = 2
i ist kleiner als j
i ist kleiner oder gleich j
i ist ungleich j

i = 2 und j = 2
i ist kleiner oder gleich j
i ist gleich j
i ist groesser oder gleich j

i = 3 und j = 2
i ist ungleich j
i ist groesser oder gleich j
i ist groesser als j

Diskussion
Beachten Sie, dass der Gleichheitsoperator aus zwei Gleichheitszeichen (==) besteht. Einer
der häufigsten Programmierfehler besteht darin, ihn mit dem Zuweisungsoperator zu
verwechseln, der aus nur einem Gleichheitszeichen besteht.

Der folgende Ausdruck vergleicht i mit 3. Der Programmierer wollte Folgendes ausdrü-
cken:

if(i == 3) // Prüfe, ob i gleich 3 ist

hat im Sketch aber Folgendes geschrieben:

if(i = 3) // Versehentlich nur ein Gleichheitszeichen verwendet!!!!

=,
Zu

62 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Das gibt immer true zurück, weil i auf 3 gesetzt wird und der Vergleich somit immer
zutrifft.

Eine Möglichkeit, diesen Fehler beim Vergleich mit Konstanten (festen Werten) zu
vermeiden, besteht darin, die Konstante auf die linke Seite des Ausdrucks zu stellen:

if(3 = i) // Versehentlich nur ein Gleichheitszeichen verwendet!!!!

Der Compiler erkennt das als Fehler, weil er weiß, dass man einer Konstanten keinen
Wert zuweisen kann.

Die Fehlermeldung klingt allerdings etwas unfreundlich: »value required
as left operand of assignment“. Wenn Sie diese Meldung sehen, versuchen
Sie, etwas einen Wert zuzuweisen, das nicht geändert werden kann.

Siehe auch
Arduino-Referenz zu Bedingungs- und Vergleichsoperatoren: http://www.arduino.cc/en/
Reference/If

2.18 Strings vergleichen

Problem
Sie wollen wissen, ob zwei Strings gleich sind.

Lösung
Es gibt eine Funktion zum Stringvergleich namens strcmp (string compare). Hier ein Frag-
ment, das seine Nutzung verdeutlicht:

char string1[] = "links";
char string2[] = "rechts";

if(strcmp(string1, string2) == 0)
Serial.print("Strings sind gleich")

Diskussion
strcmp gibt 0 zurück, wenn die Strings gleich sind, und einen Wert größer 0, wenn das
erste nicht übereinstimmende Zeichen im ersten String größer ist als im zweiten String.
Ein Wert kleiner 0 wird zurückgegeben, wenn das erste nicht übereinstimmende Zeichen
im ersten String kleiner ist als im zweite String. Üblicherweise möchte man nur wissen, ob
die Strings gleich sind, und auch wenn der Test auf 0 nicht gerade intuitiv ist, gewöhnt
man sich doch schnell daran.

–

–

–

–

2.18 Strings vergleichen | 63

Beachten Sie, dass unterschiedlich lange Strings nicht gleich sind, auch wenn der kürzere
String im längeren enthalten ist:

strcmp("links", "linksmitte") == 0) // Evaluiert zu falsch

Sie können mit der strncmp-Funktion eine bestimmte Zahl von Zeichen vergleichen. Sie
übergeben strncmp die maximale Anzahl zu vergleichender Zeichen, und die Funktion
bricht den Vergleich nach dieser Anzahl von Zeichen ab:

strncmp("links", "linksmitte", 4) == 0) // Evaluiert zu wahr

Im Gegensatz zur Zeichenkette können Arduino-Strings direkt verglichen werden:

String stringOne = String("dies");
if (stringOne == "dies")
Serial.println("dies ist wahr");
if (stringOne == "das")
Serial.println("dies ist falsch");

Eine Einführung zum Arduino String-Vergleich finden Sie unter http://arduino.cc/en/
Tutorial/StringComparisonOperators.

Siehe auch
Weitere Informationen zu strcmp finde Sie unter http://www.cplusplus.com/reference/
clibrary/cstring/strcmp/.

In Rezept 2.5 finden Sie eine Einführung in Arduino-Strings.

2.19 Logische Vergleiche durchführen

Problem
Sie wollen logische Beziehungen zwischen zwei oder mehr Ausdrücken vergleichen. Zum
Beispiel wollen Sie basierend auf den Bedingungen einer if-Anweisung unterschiedliche
Aktionen durchführen.

Lösung
Nutzen Sie die logischen Operatoren aus Tabelle 2-4.

Tabelle 2-4: Logische Operatoren

Symbol Funktion Kommentar

&& Logisches UND Evaluiert zu true, wenn die Bedingungen auf beide Seiten des &&-Operators wahr sind

|| Logisches ODER Evaluiert zu true, wenn die Bedingung auf zumindest einer Seite des ||-Operators wahr ist

! NICHT Evaluiert zu true, wenn der Ausdruck falsch ist und zu false, wenn der Ausdruck wahr ist

st

Sk
–
lo

&

||

! (
N

64 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Diskussion
Logische Operatoren liefern Wahr/Falsch-Werte basierend auf logischen Beziehungen
zurück. Die nachfolgenden Beispiele setzen Sensoren an den digitalen Pins 2 und 3 voraus,
wie in Kapitel 5 beschrieben.

Der logische UND-Operator && gibt true zurück, wenn beide Operanden wahr sind,
anderenfalls false:

if(digitalRead(2) && digitalRead(3))
blink(); // Blinken, wenn beide Pins HIGH sind

Der logische ODER-Operator || gibt true zurück, wenn einer der beiden Operanden wahr
ist, und false, wenn beide Operanden falsch sind:

if(digitalRead(2) || digitalRead(3))
blink(); // Blinken, wenn einer der beiden Pins HIGH ist

Der NICHT-Operator ! besitzt nur einen Operanden, dessen Wert invertiert wird – er
liefert also false zurück, wenn der Operand wahr ist, und true, wenn er falsch ist:

if(!digitalRead(2))
blink(); // Blinken, wenn der Pin nicht HIGH ist

2.20 Bitweise Operationen durchführen

Problem
Sie möchten bestimmte Bits in einem Wert setzen oder löschen.

Lösung
Verwenden Sie die Bit-Operatoren aus Tabelle 2-5.

Tabelle 2-5: Bit-Operatoren

Symbol Funktion Ergebnis Beispiel

& Bitweises UND Setzt die Bits an den jeweiligen Stellen auf 1, wenn beide Bits 1
sind. Anderenfalls werden die Bits auf 0 gesetzt.

3 & 1 ergibt 1(11 & 01
ergibt 01)

| Bitweises ODER Setzt die Bits an den jeweiligen Stellen auf 1, wenn eines der
Bits 1 ist.

3 | 1 ergibt 3(11 | 01
ergibt 11)

^ Bitweises EXKLUSIV-
ODER

Setzt die Bits an den jeweiligen Stellen auf 1, wenn nur eines der
beiden Bits 1 ist.

3 ^ 1 ergibt 2(11 ^ 01
ergibt 10)

~ Bitweise Negation Invertiert den Wert jedes Bits. Das Ergebnis ist von der Anzahl
der Bits und dem Datentyp abhängig.

~1 ergibt
254(~00000001
ergibt 11111110)

–

2.20 Bitweise Operationen durchführen | 65

Der folgende Sketch geht die Beispiele aus Tabelle 2-5 noch mal durch:

/*
* bits Sketch
* Bitweise Operatoren
*/

void setup() {
Serial.begin(9600);
}

void loop(){
Serial.print("3 & 1 ergibt dezimal "); // Bitweises UND von 3 und 1
Serial.print(3 & 1); // Ergebnis ausgeben
Serial.print(" und binaer ");
Serial.println(3 & 1 , BIN); // Ergebnis binär ausgeben

Serial.print("3 | 1 ergibt dezimal "); // Bitweises ODER von 3 und 1
Serial.print(3 | 1);
Serial.print(" und binaer ");
Serial.println(3 | 1 , BIN); // Ergebnis binär ausgeben

Serial.print("3 ^ 1 ergibt dezimal "); // Bitweises EXKLUSIV-ODER von 3 und 1
Serial.print(3 ^ 1); Serial.print(" und binaer ");
Serial.println(3 ^ 1 , BIN); // Ergebnis binär ausgeben

byte byteVal = 1;
int intVal = 1;

byteVal = ~byteVal; // Bitweise Negation
intVal = ~intVal;

Serial.print("~byteVal (1) ergibt "); // 8-Bit-Wert bitweise negieren
Serial.println(byteVal, BIN); // Ergebnis binär ausgeben
Serial.print("~intVal (1) ergibt "); // 16-Bit-Wert negieren
Serial.println(intVal, BIN); // Ergebnis binär augeben

delay(10000);
}

Hier die Ausgabe über den seriellen Monitor:

3 & 1 ergibt dezimal 1 und binaer 1
3 | 1 ergibt dezimal 3 und binaer 11
3 ^ 1 ergibt dezimal 2 und binaer 10
~byteVal (1) ergibt 11111110
~intVal (1) ergibt 11111111111111111111111111111110

Diskussion
Bitweise Operatoren werden genutzt, um Bits zu setzen oder zu testen. Wenn Sie zwei
Werte über »UND« oder »ODER« verknüpfen, arbeiten die Operatoren mit den einzelnen
Bits. Wie das funktioniert, ist einfacher zu erkennen, wenn man sich die Binärdarstellung
der Werte ansieht.

bi

66 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

Die dezimale 3 entspricht der binären 00000011 und die dezimale 1 ist binär 00000001.
Bitweise Operatoren arbeiten mit jedem Bit. Die ganz rechts stehenden Bits sind beide 1,
und die UND-Verknüpfung dieser beiden ist ebenfalls 1. Bewegt man sich nach links, sind
die nächsten Bits 1 und 0, und die UND-Verknüpfung ergibt eine 0. Die restlichen Bits
sind alle 0, und damit ist auch das Ergebnis für alle Bits 0. Mit anderen Worten ergibt jede
Bitposition, an der beide Bits 1 sind, ebenfalls eine 1, anderenfalls eine 0. Also ergibt 11 &
01 eine 1.

Die Tabellen 2-6, 2-7 und 2-8 verdeutlichen diese Verknüpfungen.

Tabelle 2-6: Bitweises UND

Bit 1 Bit 2 Bit 1 and Bit 2

0 0 0

0 1 0

1 0 0

1 1 1

Tabelle 2-7: Bitweises ODER

Bit 1 Bit 2 Bit 1 or Bit 2

0 0 0

0 1 1

1 0 1

1 1 1

Tabelle 2-8: Bitweises EXKLUSIV-ODER

Bit 1 Bit 2 Bit 1 ^ Bit 2

0 0 0

0 1 1

1 0 1

1 1 0

Alle bitweisen Ausdrücke arbeiten mit zwei Werten. Die Ausnahme bildet der Negations-
operator, der einfach jedes Bit umkehrt, d.h., aus einer 0 wird eine 1, und aus der 1 wird
eine 0. Im obigen Beispiel wird der byte-Wert (8 Bit) 00000001 zu 11111110. Der
int-Wert hat 16 Bits und seine Invertierung ergibt 15 Einsen und eine Null.

Siehe auch
Arduino-Referenz zu den bitweisen UND-, ODER und EXKLUSIV-ODER-Operatoren:
http://www.arduino.cc/en/Reference/Bitwise

2.20 Bitweise Operationen durchführen | 67

2.21 Operationen und Zuweisungen kombinieren

Problem
Sie wollen die zusammengesetzten Operatoren (compound operators) verstehen und
nutzen. Es ist nicht ungewöhnlich, in veröffentlichtem Code Ausdrücke zu finden, die
mit einer Anweisung mehr als eine Aufgabe erledigen. Sie wollen a += b, a >>= b und a &= b
verstehen.

Lösung
Tabelle 2-9 zeigt die zusammengesetzten Zuweisungsoperatoren und die dazugehörigen
vollständigen Ausdrücke.

Tabelle 2-9: Zusammengesetzte Operatoren

Operator Beispiel Vollständiger Ausdruck

+= value += 5; value = value + 5; // Addiert 5 zu value hinzu

-= value -= 4; value = value - 4; // Subtrahiert 4 von value

*= value *= 3; value = value * 3; // Multipliziert value mit 3

/= value /= 2; value = value / 2; // Dividiert value durch 2

>>= value >>= 2; value = value >> 2; // Schiebt value um zwei Stellen (Bits) nach rechts

<<= value <<= 2; value = value << 2; // Schiebt value um zwei Stellen (Bits) nach links

&= mask &= 2; mask = mask & 2; // Binäre UND-Maske mit 2

|= mask |= 2; mask = mask | 2; // Binäre ODER-Maske mit 2

Diskussion
Diese zusammengesetzten Anweisungen sind zur Laufzeit nicht effektiver als die voll-
ständigen Ausdrücke, und für Programmier-Neulinge sind die vollständigen Ausdrücke
verständlicher. Erfahrene Programmierer nutzen aber häufig diese Kurzformen, weshalb
es hilfreich ist, diese Ausdrücke zu kennen.

Siehe auch
Einen Index mit Referenzseiten zu den zusammengesetzten Operatoren finden Sie unter
http://www.arduino.cc/en/Reference/HomePage.

zu
Sk
–

+=
-=
*=
/=
>>
<<
&

t
|=

t

68 | Kapitel 2: Den Sketch machen lassen, was Sie wollen

KAPITEL 3

Mathematische Operatoren nutzen

3.0 Einführung
Nahezu jeder Sketch nutzt mathematische Operatoren, um Variablenwerte zu verarbei-
ten. Dieses Kapitel enthält eine kurze Übersicht der wichtigsten mathematischen Opera-
toren. Wie das vorige Kapitel richtet sich auch dieses an Nichtprogrammierer bzw.
Programmierer, die mit C oder C++ nicht vertraut sind. Weitere Details finden Sie in
einem der C-Referenzwerke, die im Vorwort erwähnt werden.

3.1 Addieren, subtrahieren, multiplizieren und dividieren

Problem
Sie wollen mit den Werten Ihrer Sketches einfache mathematische Operationen durch-
führen. Sie wollen die Reihenfolge kontrollieren, in der die Operationen ausgeführt
werden, und müssen möglicherweise auch mit unterschiedlichen Variablentypen arbei-
ten.

Lösung
Verwenden Sie den folgenden Code:

int myValue;
myValue = 1 + 2; // Addition
myValue = 3 - 2; // Subtraktion
myValue = 3 * 2; // Multiplikation
myValue = 3 / 2; // Division (das Ergebnis ist 1)

Diskussion
Addition, Subtraktion und Multiplikation von Integerwerten funktionieren, wie Sie es
erwarten.

–

| 69

Stellen Sie sicher, dass die maximale Größe der Zielvariablen nicht über-
schritten wird. Siehe Rezept 2.2.

Bei der Integer-Division wird ein möglicher Rest einfach ignoriert. Im obigen Beispiel hat
myValue nach der Division den Wert 1 (siehe Rezept 2.3, wenn Ihre Anwendung Fließ-
kommazahlen verarbeiten muss):

int value = 1 + 2 * 3 + 4;

Zusammengesetzte Anweisungen wie oben erscheinen einem vielleicht nicht ganz ein-
deutig, doch der Vorrang (die Reihenfolge) jedes Operators ist genau definiert. Multi-
plikation und Division haben einen höheren Vorrang als Addition und Subtraktion. Das
Ergebnis ist daher 11. Es ist durchaus ratsam, Klammern zu verwenden, um den Vorrang
der Berechnung deutlich zu machen. int value = 1 + (2 * 3) + 4; führt zum gleichen
Ergebnis und ist einfacher zu lesen.

Nutzen Sie Klammern auch, um den Vorrang zu ändern, wie im folgenden Beispiel:

int value = ((1 + 2) * 3) + 4;

Das Ergebnis ist nun 13. Der Ausdruck in den inneren Klammern wird zuerst berechnet,
d.h., 1 und 2 werden addiert und dann mit 3 multipliziert. Zum Schluss wird die 4 hin-
zuaddiert.

Siehe auch
Rezept 2.2; Rezept 2.3

3.2 Werte inkrementieren und dekrementieren

Problem
Sie möchten den Wert einer Variablen erhöhen oder verkleinern.

Lösung
Verwenden Sie den folgenden Code:

int myValue = 0;

myValue = myvalue + 1; // Inkrementiert myValue um 1
myValue += 1; // dito

myValue = myvalue - 1; // Dekrementiert myValue um 1
myValue -= 1; // dito

myValue = myvalue + 5; // Addiert 5 zu myValue hinzu
myValue += 5; // dito

m
– V
Vo

m
– W

70 | Kapitel 3: Mathematische Operatoren nutzen

Diskussion
Das Erhöhen und Verkleinern von Variablenwerten ist eine der gängigsten Programmier-
aufgaben, und das Arduino-Board kennt Operatoren, die das einfach machen. Einen Wert
um 1 erhöhen, nennt man inkrementieren, ihn um 1 verkleinern, dekrementieren. Die
lange Schreibweise sieht wie folgt aus:

myValue = myValue + 1; // Addiert eine 1 zu myValue

Doch Sie können Inkrement- und Dekrement-Operatoren auch mit einem Zuweisungs-
operator kombinieren:

myValue += 1; // Wie oben

Siehe auch
Rezept 3.1

3.3 Den Rest einer Division bestimmen

Problem
Sie wollen den Rest der Division zweier Werte ermitteln.

Lösung
Verwenden Sie das Symbol % (den Modulo-Operator), um den Rest zu ermitteln:

int myValue0 = 20 % 10; // Liefert den Rest von 20 durch 10
int myValue1 = 21 % 10; // Liefert den Rest von 21 durch 10

myValue0 hat den Wert 0 (20 durch 10 ergibt den Rest 0). myValue1 hat den Wert 1 (21
durch 10 ergibt einen Rest von 1).

Diskussion
Der Modulo-Operator ist überraschend nützlich, insbesondere wenn man prüfen will, ob
ein Wert ein Vielfaches einer Zahl ist. Zum Beispiel kann der Code aus diesem Rezept so
angepasst werden, dass er erkennt, ob der Wert ein Vielfaches von 10 ist:

int myValue;
//... Der myValue setzende Code steht hier
if (myValue % 10 == 0)
{
Serial.println("Der Wert ist ein Vielfaches von 10");
}

Der obige Code berechnet den Rest der myValue-Variablen und vergleicht das Ergebnis mit
0 (siehe Rezept 2.17). Ist das Ergebnis 0, wird eine Meldung ausgegeben, die besagt, dass
der Wert ein Vielfaches von 10 ist.

–

3.3 Den Rest einer Division bestimmen | 71

Hier ein weiteres Beispiel, bei dem aber eine 2 für den Modulo-Operator verwendet wird.
Wir nutzen das Ergebnis, um zu prüfen, ob ein Wert gerade oder ungerade ist:

int myValue;
//... den Wert von myValue setzender Code steht hier
if (myValue % 2 == 0)
{
Serial.println("Der Wert ist gerade");
}
else
{
Serial.println("Der Wert ist ungerade");
}

Das folgende Beispiel berechnet aus einer Stundenangabe den Stundenwert für eine
24-Stunden-Uhr:

void printOffsetHour(int hourNow, int offsetHours)
{
Serial.println((hourNow + offsetHours) % 24);

}

Siehe auch
Arduino-Referenz zum %- (Modulo-) Operator: http://www.arduino.cc/en/Reference/Modulo

3.4 Den Absolutwert ermitteln

Problem
Sie wollen den Absolutwert einer Zahl bestimmen.

Lösung
abs(x) berechnet den Absolutwert von x. Das folgende Beispiel ermittelt den Absolutwert
der Differenz zweier analoger Eingänge (in Kapitel 5 erfahren Sie mehr über analogRead()):

int x = analogRead(0);
int y = analogRead(1);

if (abs(x-y) > 10)
{
Serial.println("Die Analogwerte unterscheiden sich um mehr als 10");
}

%
M

Za
– A
Ab
m
– A

ab

72 | Kapitel 3: Mathematische Operatoren nutzen

Diskussion
abs(x-y); gibt den Absolutwert der Differenz zwischen x und y zurück. Sie wird für
Integerwerte (und long) verwendet. Wie man den Absolutwert von Fließkommazahlen
bestimmt, erläutert Rezept 2.3.

Siehe auch
Arduino-Referenz zu abs: http://www.arduino.cc/en/Reference/Abs

3.5 Zahlen auf einen Wertebereich beschränken

Problem
Sie wollen sicherstellen, dass sich ein Wert immer innerhalb einer unteren und oberen
Grenze bewegt.

Lösung
constrain(x, min, max) liefert einen Wert zurück, der innerhalb der Grenzen von min und
max liegt:

myConstrainedValue = constrain(myValue, 100, 200);

Diskussion
myConstrainedValue wird auf einen Wert gesetzt, der immer größer oder gleich 100 und
kleiner oder gleich 200 ist. Ist myValue kleiner 100, ist das Ergebnis 100; liegt er über 200,
wird er auf 200 gesetzt.

Tabelle 3-1 zeigt beispielhaft einige Ausgabewerte für ein min von 100 und ein max von
200.

Tabelle 3-1: constrain-Ausgabe mit min = 100 und max = 200

myValue (Eingangswert) constrain(myValue, 100, 200)

99 100

100 100

150 150

200 200

201 200

Siehe auch
Rezept 3.6

–

–

3.5 Zahlen auf einen Wertebereich beschränken | 73

3.6 Das Minimum oder Maximum bestimmen

Problem
Sie wollen das Minimum oder Maximum bei zwei oder mehr Werten bestimmen.

Lösung
min(x,y) gibt die kleinere und max(x,y) gibt die größere der beiden Zahlen zurück:

myValue = analogRead(0);
myMinValue = min(myValue, 200); // myMinValue enthält den kleineren Wert

// von myValue oder 200

myMaxValue = max(myValue, 100); // myMaxValue enthält den größeren Wert
// von myValue oder 100

Diskussion
Tabelle 3-2 zeigt einige Beispielergebnisse für ein min von 200. Die Tabelle zeigt, dass das
Ergebnis der Eingabe (myValue) entspricht, bis der Wert die 200 übersteigt.

Tabelle 3-2: Ergebnisse für min(myValue, 200)

myValue (Eingangswert) min(myValue, 200)

99 99

100 100

150 150

200 200

201 200

Tabelle 3-3 zeigt das Ergebnis für ein max von 100. Die Tabelle zeigt, dass das Ergebnis der
Eingabe (myValue) entspricht, solange der Wert größer oder gleich 100 ist.

Tabelle 3-3: Ergebnisse für max(myValue, 100)

myValue (Eingangswert) max(myValue, 100)

99 100

100 100

150 150

200 200

201 201

Nutzen Sie min, um eine Obergrenze festzulegen. Das klingt nicht gerade intuitiv, aber da
sich min beim Eingangswert und dem Minimum immer für den kleineren entscheidet, ist
das Ergebnis nie höher als das Minimum (200 in unserem Beispiel).

m
–

m
m

74 | Kapitel 3: Mathematische Operatoren nutzen

In gleicher Weise können Sie max nutzen, um eine untere Grenze festzulegen. Das Ergebnis
von max ist niemals kleiner als der Maximalwert (100 in unserem Beispiel).

Wenn Sie die min- oder max-Werte für mehr als zwei Werte bestimmen müssen, können Sie
die Funktionsaufrufe wie folgt kaskadieren:

// myMinValue enthält den kleinsten der drei Analogwerte:
int myMinValue = min(analogRead(0), min(analogRead(1), analogRead(2)));

Bei diesem Beispiel wird zuerst der Minimalwert für die Analogports 1 und 2 bestimmt.
Das Ergebnis wird dann wiederum für die Berechnung des Minimums mit Port 0 genutzt.
Das lässt sich auf so viele Werte wie nötig ausweiten, allerdings müssen Sie dabei auf die
korrekte Klammerung achten. Das folgende Beispiel ermittelt das Minimum von vier
Werten:

int myMaxValue = max(analogRead(0), max(analogRead(1), max(analogRead(2),
analogRead(3))));

Siehe auch
Rezept 3.5

3.7 Eine Zahl potenzieren

Problem
Sie wollen eine Zahl potenzieren.

Lösung
pow(x, y) gibt den Wert von x hoch y zurück:

myValue = pow(3,2);

Der obige Code berechnet 32, myValue ist also 9.

Diskussion
Die pow-Funktion kann mit Integer- und Fließkommawerten arbeiten und liefert das
Ergebnis als Fließkommazahl zurück:

Serial.print(pow(3,2)); // gibt 9.00 aus
int z = pow(3,2);
Serial.println(z); // gibt 9 aus

Im ersten Fall wird 9.00 ausgegeben und im zweiten 9. Die Werte sind nicht gleich, weil
das erste print eine Fließkommazahl ausgibt, während die Zahl bei der zweiten Ausgabe
als Integerwert betrachtet wird, weshalb keine Nachkommastellen ausgegeben werden.
Wenn Sie die pow-Funktion nutzen, sollten Sie auch Rezept 2.3 lesen, um den Unterschied
zwischen Fließkomma- und Integerwerten zu verstehen.

–

–

3.7 Eine Zahl potenzieren | 75

Hier ein Beispiel für eine Bruchpotenz:

float s = pow(2, 1.0 / 12); // Die zwölfte Wurzel von 2

Die zwölfte Wurzel von zwei entspricht 2 hoch 0,083333. Der resultierende Wert für s ist
1,05946 (das entspricht der Frequenz, die den Unterschied zwischen zwei nebeneinander-
liegenden Töne auf dem Klavier ausmacht).

3.8 Die Quadratwurzel berechnen

Problem
Sie wollen die Quadratwurzel einer Zahl berechnen.

Lösung
Die Funktion sqrt(x) gibt die Quadratwurzel von x zurück:

Serial.print(sqrt(9)); // gibt 3.00 aus

Diskussion
Die sqrt-Funktion gibt eine Fließkommazahl zurück (siehe auch die Diskussion der
pow-Funktion in Rezept 3.7).

3.9 Fließkommazahlen auf- und abrunden

Problem
Sie wollen eine Fließkommazahl auf den nächsten kleineren oder größeren Integerwert ab-
bzw. aufrunden (floor oder ceil).

Lösung
floor(x) gibt den größten ganzzahligen Wert zurück, der nicht größer als x ist. ceil(x)
gibt den kleinsten ganzzahligen Wert zurück, der nicht kleiner als x ist.

Diskussion
Diese Funktionen werden zum Runden von Fließkommazahlen genutzt. Nutzen Sie
floor(x), um den größten Integerwert zu bestimmen, der nicht größer als x ist. Ver-
wenden Sie ceil, um den kleinsten Integerwert zu ermitteln, der größer ist als x.

Hier einige Beispiele für floor:

Serial.println(floor(1)); // Gibt 1.00 aus
Serial.println(floor(1.1)); // Gibt 1.00 aus
Serial.println(floor(0)); // Gibt 0.00 aus

Za
–
Q
m
–

sq

Fl
–
m
–

Fl
r

flo
ce

76 | Kapitel 3: Mathematische Operatoren nutzen

Serial.println(floor(.1)); // Gibt 0.00 aus
Serial.println(floor(-1)); // Gibt -1.00 aus
Serial.println(floor(-1.1)); // Gibt -2.00 aus

Hier einige Beispiele für ceil:

Serial.println(ceil(1)); // Gibt 1.00 aus
Serial.println(ceil(1.1)); // Gibt 2.00 aus
Serial.println(ceil(0)); // Gibt 0.00 aus
Serial.println(ceil(.1)); // Gibt 1.00 aus
Serial.println(ceil(-1)); // Gibt -1.00 aus
Serial.println(ceil(-1.1)); // Gibt -1.00 aus

Auf den nächstgelegenen Integerwert können Sie wie folgt runden:

if (floatValue > 0.0)
result = floor(floatValue + 0.5);
else
result = ceil(floatValue - 0.5);

Sie können Nachkommastellen auch »abschneiden«, indem Sie ein Casting
(keine Konvertierung) nach int vornehmen, aber dabei wird nicht korrekt
gerundet. Negative Zahlen wie –1,9 sollten auf –2 abgerundet werden,
doch beim int-Casting wird auf –1 aufgerundet. Das gleiche Problem
haben Sie auch bei positiven Zahlen: 1,9 sollte auf 2 aufgerundet werden,
wird aber auf 1 abgerundet. Für korrekte Ergebnisse müssen Sie floor und
ceil verwenden.

3.10 Trigonometrische Funktionen nutzen

Problem
Sie wollen den den Sinus, Kosinus oder Tangens für einen in Grad oder Bogenmaß an-
gegebenen Winkel bestimmen.

Lösung
sin(x) gibt den Sinus, cos(x) den Kosinus und tan(x) den Tangens des Winkels x zurück.

Diskussion
Winkel werden im Bogenmaß angegeben, und das Ergebnis ist eine Fließkommazahl
(siehe Rezept 2.3). Das folgende Beispiel veranschaulicht den Einsatz der trigonometri-
schen Funktionen:

float deg = 30; // Winkel in Grad
float rad = deg * PI / 180; // in Bogenmaß umwandeln
Serial.println(rad); // Bogenmaß ausgeben
Serial.println (sin(rad)); // Sinus ausgeben
Serial.println (cos(rad)); // Kosinus ausgeben

–

–

3.10 Trigonometrische Funktionen nutzen | 77

Das obige Beispiel wandelt den Winkel in Bogenmaß um und gibt den Sinus und Kosinus
aus. Hier die Ausgabe (mit zusätzlichen Anmerkungen versehen):

0.52 30 Grad entspricht dem Bogenmaß 0,5235988 ausgegeben werden nur die ersten beiden
Nachkommastellen
0.50 Der Sinus von 30 ist 0,5000000, hier auf 2 Nachkommastellen genau
0.87 Der Kosinus ist 0,8660254, was auf 0,87 aufgerundet wird

Zwar berechnet der Sketch die Werte mit der Genauigkeit von Fließkommazahlen, doch
die Routine Serial.print gibt hier nur die ersten beiden Nachkommastellen aus.

Die Umwandlung von Bogenmaß in Grad und wieder zurück ist Trigonometrie aus dem
Lehrbuch. PI ist die vertraute Konstante p (3,14159265...). PI und 180 sind beides
Konstanten, und Arduino stellt einige vorberechnete Konstanten zur Verfügung, mit
denen Sie Umwandlungen nach Grad und Bogenmaß durchführen können:

rad = deg * DEG_TO_RAD; // Grad in Bogenmaß
deg = rad * RAD_TO_DEG; // Bogenmaß in Grad

Die Nutzung von deg * DEG_TO_RAD mag effizienter aussehen als deg * PI / 180, ist sie aber
nicht, weil der Arduino-Compiler clever genug ist, um zu erkennen, dass PI / 180 eine
Konstante ist (deren Wert sich nie ändert). Er fügt daher das Ergebnis der Division von PI
durch 180 ein, was genau dem Wert der Konstanten DEG_TO_RAD (0,017453292519...)
entspricht. Sie können also den von Ihnen bevorzugten Ansatz verwenden.

Siehe auch
Arduino-Referenzen zu sin (http://www.arduino.cc/en/Reference/Sin), cos (http://ardui-
no.cc/en/Reference/Cos) und tan (http://arduino.cc/en/Reference/Tan)

3.11 Zufallszahlen erzeugen

Problem
Sie benötigen Zufallszahlen zwischen Null und einem festgelegten Maximum, oder zwi-
schen einem vorgegebenen Minimum und Maximum.

Lösung
Verwenden Sie die Funktion random. Beim Aufruf von random mit einem einzelnen Para-
meter wird die Obergrenze festgelegt. Die zurückgelieferten Werte liegen zwischen Null
und 1 unter dieser Obergrenze:

random(max); // Gibt eine Zufallszahl zwischen 0 und max-1 zurück

Beim Aufruf von random mit zwei Parametern wird die Unter- und Obergrenze festgelegt.
Die zurückgelieferten Werte reichen von der Untergrenze (einschließlich) bis zu eins unter
der Obergrenze:

random(min, max); // Gibt eine Zufallszahl zwischen min und max-1 zurück

PI

D
RA

Zu
m
–

ra

78 | Kapitel 3: Mathematische Operatoren nutzen

Diskussion
Auch wenn man bei den zurückgelieferten Zahlen kein offensichtliches Muster erkennen
kann, sind die Werte nicht zufällig. Bei jedem Start des Sketches wird die gleiche Folge
erzeugt. Bei vielen Anwendungen spielt das aber keine Rolle. Wenn Sie bei jedem Start des
Sketches unterschiedliche Folgen benötigen, verwenden Sie die Funktion random-
Seed(seed) mit einem anderen seed-Wert. (Wenn Sie den gleichen seed-Wert verwenden,
erhalten Sie auch die gleiche Folge). Diese Funktion initialisiert den Zufallszahlengenera-
tor mit einem Startwert, der auf dem übergebenen seed-Parameter basiert :

randomSeed(1234); // Startfolge der Zufallszahlen ändern.

Hier ein Beispiel, das die unterschiedlichen Formen der Zufallszahlengenerierung nutzt,
die bei Arduino zur Verfügung stehen:

// Random
// Generierung von Zufallszahlen

int randNumber;

void setup()
{
Serial.begin(9600);

// Zufallszahlen ohne seed-Wert ausgeben
Serial.println("20 Zufallszahlen zwischen 0 und 9");
for(int i=0; i < 20; i++)
{
randNumber = random(10);
Serial.print(randNumber);
Serial.print(" ");
}
Serial.println();
Serial.println("20 Zufallszahlen zwischen 0 und 9");
for(int i=0; i < 20; i++)
{
randNumber = random(2,10);
Serial.print(randNumber);
Serial.print(" ");
}

// Zufallszahl mit immer gleichem seed-Wert ausgeben
randomSeed(1234);
Serial.println();
Serial.println("20 Zufallszahlen zwischen 0 und 9 mit konstantem seed");
for(int i=0; i < 20; i++)
{
randNumber = random(10);
Serial.print(randNumber);
Serial.print(" ");
}

// Zufallszahlen mit unterschiedlichem seed-Wert ausgeben
randomSeed(analogRead(0)); // Nicht angeschlossenen Analogport auslesen
Serial.println();

3.11 Zufallszahlen erzeugen | 79

Serial.println("20 Zufallszahlen zwischen 0 und 9 mit unterschiedlichem seed");
for(int i=0; i < 20; i++)
{
randNumber = random(10);
Serial.print(randNumber);
Serial.print(" ");
}
Serial.println();
Serial.println();
}

void loop()
{
}

Hier die Ausgabe des Codes:

20 Zufallszahlen zwischen 0 und 9
7 9 3 8 0 2 4 8 3 9 0 5 2 2 7 3 7 9 0
20 Zufallszahlen zwischen 0 und 9
9 3 7 7 2 7 5 8 2 9 3 4 2 5 4 3 5 7 5 7
20 Zufallszahlen zwischen 0 und 9 mit konstantem seed
8 2 8 7 1 8 0 3 6 5 9 0 3 4 3 1 2 3 9 4
20 Zufallszahlen zwischen 0 und 9 mit unterschiedlichem seed
0 9 7 4 4 7 7 4 4 9 1 6 0 2 3 1 5 9 1 1

Wenn Sie den Reset-Button des Arduino drücken, um den Sketch neu zu starten, bleiben
die Zufallszahlen der ersten drei Zeilen unverändert. Nur die letzte Zeile ändert sich bei
jedem Start des Sketches, weil der seed-Wert auf einen neuen Wert gesetzt wird, indem
ein ungenutzter Analogport ausgelesen und als Parameter an randomSeed übergeben wird.
Wenn Sie den Analogport 0 für etwas anderes nutzen, müssen Sie einen ungenutzten
Analogport als Argument an analogRead übergeben.

Siehe auch
Arduino-Referenz für random (http://www.arduino.cc/en/Reference/Random) und random Seed
(http://arduino.cc/en/Reference/RandomSeed)

3.12 Bits setzen und lesen

Problem
Sie möchten ein bestimmtes Bit in einer numerischen Variablen auslesen oder setzen.

Lösung
Nutzen Sie die folgenden Funktionen:

bitSet(x, bitPosition)
Setzt (schreibt eine 1 an) die gegebene bitPosition der Variablen x

m
–
Bi
–

bi

80 | Kapitel 3: Mathematische Operatoren nutzen

bitClear(x, bitPosition)
Löscht (schreibt eine 0 an) die gegebene bitPosition der Variablen x

bitRead(x, bitPosition)
Gibt den Wert (0 oder 1) des Bits an der gegebenen bitPosition der Variablen x
zurück

bitWrite(x, bitPosition, value)
Setzt den angegebenen Wert (0 oder 1) des Bits an bitPosition der Variablen x

bit(bitPosition)
Gibt den Wert der gegebenen Bitposition zurück: bit(0) ist 1, bit(1) ist 2, bit(2) ist 4
und so weiter

Bei dieser Funktion ist bitPosition 0 das niederwertigste (ganz rechts stehende) Bit.

Der folgende Sketch nutzt diese Funktionen, um die Bits einer 8-Bit-Variablen namens
flags zu bearbeiten:

// bitFunctions
// Verwendung der Bitfunktionen

byte flags = 0; // Diese Beispiele setzen, löschen oder lesen die Bits in der Variablen flags.

// bitSet-Beispiel
void setFlag(int flagNumber)
{
bitSet(flags, flagNumber);

}

// bitClear-Beispiel
void clearFlag(int flagNumber)
{
bitClear(flags, flagNumber);

}

// bitPosition-Beispiel

int getFlag(int flagNumber)
{
return bitRead(flags, flagNumber);

}

void setup()
{
Serial.begin(9600);
}

void loop()
{
showFlags();
setFlag(2); // Ein paar Flags setzen;
setFlag(5);
showFlags();
clearFlag(2);

–

3.12 Bits setzen und lesen | 81

showFlags();

delay(10000); // sehr lange warten
}

// Gibt Status des Flags aus
void showFlags()
{
for(int flag=0; flag < 8; flag++)
{
if (getFlag(flag) == true)
Serial.print("* Bit gesetzt fuer Flag "); else
Serial.print("Bit geloescht fuer Flag ");

Serial.println(flag);
}
Serial.println();

}

Der Code gibt Folgendes aus:

Bit geloescht fuer Flag 0
Bit geloescht fuer Flag 1
Bit geloescht fuer Flag 2
Bit geloescht fuer Flag 3
Bit geloescht fuer Flag 4
Bit geloescht fuer Flag 5
Bit geloescht fuer Flag 6
Bit geloescht fuer Flag 7

Bit geloescht fuer Flag 0
Bit geloescht fuer Flag 1
* Bit gesetzt fuer Flag 2
Bit geloescht fuer Flag 3
Bit geloescht fuer Flag 4
* Bit gesetzt fuer Flag 5
Bit geloescht fuer Flag 6
Bit geloescht fuer Flag 7

Bit geloescht fuer Flag 0
Bit geloescht fuer Flag 1
Bit geloescht fuer Flag 2
Bit geloescht fuer Flag 3
Bit geloescht fuer Flag 4
* Bit gesetzt fuer Flag 5
Bit geloescht fuer Flag 6
Bit geloescht fuer Flag 7

Diskussion
Das Auslesen und Setzen von Bits ist eine typische Aufgabe, und viele Arduino-Biblio-
theken nutzen diese Funktionalität. Ein typisches Einsatzgebiet für Bitoperationen ist das
effiziente Speichern und Lesen von Binärwerten (Ein/Aus, Wahr/Falsch, 1/0, high/low,
etc.).

82 | Kapitel 3: Mathematische Operatoren nutzen

Arduino definiert die Konstanten true und HIGH als 1 und false und LOW
als 0.

Den Zustand von acht Schaltern können Sie in einem einzigen 8-Bit-Wert speichern, statt
acht Byte oder Integerwerte zu benötigen. Das Beispiel in diesem Rezept zeigt, wie man
acht Werte in einem Byte einzeln setzen und löschen kann.

Der Begriff Flag wird in der Programmierung für Werte verwendet, die den Status eines
bestimmten Aspekts des Programms festhalten. Im obigen Sketch werden die Flag-Bits
mit bitRead ausgelesen und mit bitSet oder bitClear gesetzt bzw. gelöscht. Die Funk-
tionen benötigen zwei Parameter: Der erste ist der zu lesende oder zu schreibende Wert
(in diesem Beispiel also flags), und der zweite gibt die Bitposition an, die gelesen oder
geschrieben werden soll. Die Bitposition 0 ist das niederwertigste (ganz rechts stehende)
Bit, Position 1 die zweite Position von rechts und so weiter.

bitRead(2, 1); // Ergibt 1; 2 ist binär 10 und das Bit an Position 1 ist 1
bitRead(4, 1); // Ergibt 0; 4 ist binär 100 und das Bit an Position 1 ist 0

Es gibt auch eine Funktion namens bit, die die Wertigkeit jeder Bitposition zurückgibt:

bit(0) ist 1;
bit(1) ist 2;
bit(2) ist 4;
...
bit(7) ist 128

Siehe auch
Arduino-Referenz zu den Bit- und Byte-Funktionen:

lowByte
http://www.arduino.cc/en/Reference/LowByte

highByte
http://arduino.cc/en/Reference/HighByte

bitRead
http://www.arduino.cc/en/Reference/BitRead

bitWrite
http://arduino.cc/en/Reference/BitWrite

bitSet
http://arduino.cc/en/Reference/BitSet

bitClear
http://arduino.cc/en/Reference/BitClear

bit
http://arduino.cc/en/Reference/Bit

–

–

3.12 Bits setzen und lesen | 83

3.13 Bits verschieben (Shifting)

Problem
Sie müssen Bitoperationen durchführen, die die Bits in einem byte, int oder long nach
links oder rechts verschieben.

Lösung
Nutzen Sie die Operatoren << (Bitshift links) und >> (Bitshift rechts), um die Bits in einem
Wert zu verschieben.

Diskussion
Das folgende Code-Fragment setzt die Variable x auf 6, verschiebt die Bits dann um eine
Stelle nach links und gibt anschließend den neuen aus (12). Dieser Wert wird dann um
zwei Stellen nach rechts verschoben (und das Ergebnis ist 3):

int x = 6;
int result = x << 1; // 6 um 1 nach links verschoben ergibt 12
Serial.println(result);
int result = x >> 2; // 12 um 2 nach rechts verschoben ergibt 3;
Serial.println(result);

Das funktioniert wie folgt: Schiebt man 6 um eine Stelle nach links, dann ergibt das 12,
weil die Dezimalzahl 6 als Binärzahl 0110 ist, und wenn man die Ziffern um eine Stelle
nach links verschiebt, erhält man 1100 (dezimal 12). Verschiebt man 1100 um zwei
Stellen nach rechts, erhält man 0011 (dezimal 3). Sie werden bemerken, dass die Ver-
schiebung um n Stellen nach links einer Multiplikation des Wertes mal 2 hoch n
entspricht. Die Verschiebung um n nach rechts entspricht hingegen der Division durch 2
hoch n. Mit anderen Worten sind die folgenden Ausdrücke gleich:

x << 1 ist gleich x * 2.
x << 2 ist gleich x * 4.
x << 3 ist gleich x * 8.
x >> 1 ist gleich x / 2.
x >> 2 ist gleich x / 4.
x >> 3 ist gleich x / 8.

Der Arduino-Controllerchip kann Bits effizienter verschieben als multiplizieren und
dividieren, und gelegenlich werden Sie auch Code sehen, der Bits verschiebt, um zu
multiplizieren oder zu dividieren:

int c = (a << 1) + (b >> 2); //entspicht (a * 2) + (b / 4)

Der Ausdruck (a << 1) + (b >> 2); hat keine große Ähnlichkeit mit (a * 2) + (b / 4);, doch
beide Ausdrücke machen genau das gleiche. Allerdings ist der Arduino-Compiler clever
genug, die Multiplikation eines Integerwertes mit einer Konstanten, die ein Vielfaches
einer Zweierpotenz ist, zu erkennen und daraus Maschinencode zu erzeugen, der mit

Bi
– v
m
– v
by
– v
in
– v
lo
– v
<<
>>

84 | Kapitel 3: Mathematische Operatoren nutzen

Shiftoperationen arbeitet. Der mit arithmetischen Operatoren arbeitende Quellcode ist
für Menschen einfacher zu lesen, weshalb man diese Variante bevorzugt, wenn man
multiplizieren und dividieren will.

Siehe auch
Arduino-Referenz zu Bit- und Bytefunktionen: lowByte, highByte, bitRead, bitWrite, bitSet,
bitClear und bit (siehe Rezept 3.12)

3.14 Höher- und niederwertige Bytes aus int oder long
extrahieren

Problem
Sie wollen das höher- oder niederwertige Byte aus einem Integerwert extrahieren, z.B.
wenn Sie Integerwerte als Bytes über einen seriellen Port oder einen anderen Kommuni-
kationskanal senden wollen.

Lösung
Verwenden Sie lowByte(i), um das niederwertige Byte aus einem Integerwert zu extrahie-
ren. Verwenden Sie highByte(i), um das höherwertige Byte des Integerwerts zu bestimmen.

Der folgende Sketch wandelt einen Integerwert in sein höher- und niederwertiges Byte um:

//ByteOperators

int intValue = 258; // 258 ist hexadezimal 0x102

void setup()
{
Serial.begin(9600);
}

void loop()
{
int loWord,hiWord;
byte loByte, hiByte;

hiByte = highByte(intValue);
loByte = lowByte(intValue);

Serial.println(intValue,DEC);
Serial.println(intValue,HEX);
Serial.println(loByte,DEC);
Serial.println(hiByte,DEC);

delay(10000); // Sehr lange warten
}

–

–

–

–

3.14 Höher- und niederwertige Bytes aus int oder long extrahieren | 85

Diskussion
Der Beispiel-Sketch gibt intValue aus, gefolgt von dessen nieder- und höherwertigem
Byte:

258 // der umzuwandelnde Integerwert
102 // in hexadezimaler Notation
2 // das niederwertige Byte
1 // das höherwertige Byte

Um die Bytes eines long-Werts zu extrahieren, muss der 32-Bit-long-Wert zuerst in zwei
16-Bit-Wörter zerlegt werden, die dann wie im obigen Code konvertiert werden können.
Während diese Zeilen geschrieben werden, kennt die Standard-Arduino-Bibliothek diese
Operation für longs nicht, aber Sie können dazu die folgenden Zeilen in Ihre Sketches
aufnehmen:

#define highWord(w) ((w) >> 16)
#define lowWord(w) ((w) & 0xffff)

Das sind sog. Makros: hiWord führt eine 16-Bit-Shiftoperation durch, um einen 16-Bit-
Wert zu erzeugen und lowWord maskiert die niederwertigen 16 Bits mit Hilfe des bit-
orientierten UND-Operators (siehe Rezept 2.20).

Die Anzahl der Bits in einem int variiert je nach Plattfom. Bei Arduino sind
es 16 Bit, bei anderen Umgebungen hingegen 32 Bit. Der Begriff Word wird
hier für einen 16-Bit-Wert verwendet.

Der folgende Code wandelt den 32-Bit-Hexwert 0x1020304 in seine beiden höher- und
niederwertigen 16-Bit-Werte um:

loword = lowWord(longValue);
hiword = highWord(longValue);
Serial.println(loword,DEC);
Serial.println(hiword,DEC);

Ausgegeben werden die folgenden Werte:

772 // 772 entspricht 0x0304 hexadezimal
258 // 258 entspricht 0x0102 hexadezimal

772 dezimal ist 0x0304 hexadezimal, was dem niederwertigen Wort (16 Bit) des long-
Value-Werts 0x1020304 entspricht. Vielleicht erkennen Sie 258 aus dem ersten Teil des
Rezepts wieder. Er ist die Kombination aus einer 1 im höher- und einer 2 im niederwertige
Byte (hexadezimal 0x0102).

Siehe auch
Arduino-Referenz zu den Bit- und Bytefunktionen: lowByte, highByte, bitRead, bitWrite,
bitSet, bitClear und bit (siehe Rezept 3.12).

M
hi
lo

86 | Kapitel 3: Mathematische Operatoren nutzen

3.15 int- oder long-Werte aus höher- und niederwertigen
Bytes bilden

Problem
Sie wollen einen16-Bit- (int) oder 32-Bit- (long) Integerwert aus einzelnen Bytes bilden,
z.B. wenn Sie Integerwerte in einzelnen Bytes über eine serielle Kommunikationsleitung
empfangen. Das ist die Umkehroperation zu Rezept 3.14.

Lösung
Nutzen Sie die Funktion word(h,l), um zwei Bytes zu einem Arduino-Integerwert zusam-
menzufassen. Nachfolgend wird der Code aus Rezept 3.14 dahingehend erweitert, dass er
die jeweiligen höher- und niederwertigen Bytes wieder zu einem Integerwert zusammensetzt:

//ByteOperators

int intValue = 0x102; // 258

void setup()
{
Serial.begin(9600);
}

void loop()
{
int loWord,hiWord;
byte loByte, hiByte;

hiByte = highByte(intValue);
loByte = lowByte(intValue);

Serial.println(intValue,DEC);
Serial.println(loByte,DEC);
Serial.println(hiByte,DEC);

loWord = word(hiByte, loByte); // Bytes wieder zu einem Wort zusammenfassen
Serial.println(loWord,DEC);
delay(10000); // Sehr lange warten
}

Diskussion
Der Ausdruck word(high,low) fasst ein höher- und ein niederwertiges Byte zu einem
16-Bit-Wert zusammen. Der Code nimmt die in Rezept 3.14 erzeugten höher- und nie-
derwertigen Bytes und setzt sie wieder zu einem Wort zusammen. Die Ausgabe zeigt den
Integerwert, das niederwertige und das höherwertige Byte und dann den wieder zusam-
mengesetzten Integerwert:

–

–

–

3.15 int- oder long-Werte aus höher- und niederwertigen Bytes bilden | 87

258
2
1
258

Arduino besitzt (während dies geschrieben wird) keine Funktion, die einen 32-Bit-long-
Wert aus zwei 16-Bit-Worten erzeugt, aber Sie können dazu ein eigenes makeLong()-Makro
nutzen. Fügen Sie einfach die folgende Zeile in Ihren Sketch ein:

#define makeLong(hi, low) ((hi) << 16 & (low))

Das definiert ein Makro, das den höherwertigen Teil um 16 Bits nach links verschiebt und
dann den niederwertigen Teil hinzufügt:

#define makeLong(hi, low) (((long) hi) << 16 | (low))
#define highWord(w) ((w) >> 16)
#define lowWord(w) ((w) & 0xffff)

// Testwert deklarieren
long longValue = 0x1020304; // Dezimal 16909060

// Binär 00000001 00000010 00000011 00000100

void setup()
{
Serial.begin(9600);
}

void loop()
{
int loWord,hiWord;

Serial.println(longValue,DEC); // Gibt 16909060 aus
loWord = lowWord(longValue); // Wandelt long in zwei Wörter um
hiWord = highWord(longValue);
Serial.println(loWord,DEC); // Gibt 772 aus
Serial.println(hiWord,DEC); // Gibt 258 aus
longValue = makeLong(hiWord, loWord); // Wandelt die Wörter wieder in long um
Serial.println(longValue,DEC); // Gibt wieder 16909060 aus

delay(10000); // Sehr lange warten
}

Hier die Ausgabe:

16909060
772
258
16909060

Siehe auch
Arduino-Referenz zu Bit- und Bytefunktionen: lowByte, highByte, bitRead, bitWrite, bitSet,
bitClear und bit (siehe Rezept 3.12)

m

88 | Kapitel 3: Mathematische Operatoren nutzen

KAPITEL 4

Serielle Kommunikation

4.0 Einführung
Die serielle Kommunikation bietet eine einfache und flexible Möglichkeit, Ihr Arduino-
Board mit Ihrem Computer und anderen Geräten interagieren zu lassen. Dieses Kapitel
erläutert, wie man auf diese Weise Informationen senden und empfangen kann.

In Kapitel 1 wurde beschrieben, wie man den seriellen Port des Arduino mit dem
Computer verbindet, um Sketches hochzuladen. Der Upload-Prozess sendet Daten von
Ihrem Computer an den Arduino, und der Arduino sendet Statusmeldungen zurück an
den Computer, um zu bestätigen, dass der Transfer funktioniert. Die hier vorgestellten
Rezepte zeigen, wie Sie diesen Kommunikationslink nutzen können, um beliebige Infor-
mationen zwischen dem Arduino und Ihrem Computer (oder einem anderen seriellen
Gerät) zu senden und zu empfangen.

Die serielle Kommunikation ist auch ein praktisches Tool zur Fehlersuche
(Debugging). Sie senden Debugging-Nachrichten vom Arduino an den
Computer und geben sie auf dem Bildschirm oder einem externen LC-
Display aus.

Die Arduino-IDE (beschrieben in Rezept 1.3) stellt einen seriellen Monitor zur Verfügung
(siehe Abbildung 4-1), der vom Arduino gesendete serielle Daten ausgibt.

Sie können Daten über den seriellen Monitor an den Arduino senden, indem Sie Text in
das Textfeld links neben dem Send-Button eingeben. Die Baudrate (die Geschwindigkeit,
mit der die Daten übertragen werden, gemessen in Bits pro Sekunde) wird über eine
Dropdown-Box am unteren rechten Rand ausgewählt. Sie können die Dropdown-Box
namens »No line ending« nutzen, um automatisch ein Carriage Return (Wagenrücklauf)
oder eine Kombination aus Carriage Return und Linefeed (Zeilenvorschub) an das Ende
jeder Nachricht anzuhängen, sobald der Send-Button angeklickt wird. Ändern Sie dazu
einfach »No line ending« in die gewünschte Option.

–

| 89

Abbildung 4-1: Serieller Monitor des Arduino

Ihr Arduino-Sketch kann den seriellen Port nutzen, um indirekt (üblicherweise über ein
Proxy-Programm in einer Sprache wie Processing) auf alle Ressourcen (Speicher, Bild-
schirm, Tastatur, Maus, Netzwerk etc.) Ihres Computers zugreifen zu können. Ihr
Computer kann wiederum die serielle Schnittstelle nutzen, um mit Sensoren oder
anderen, mit dem Arduino verbundenen Geräten zu interagieren.

Die Implementierung einer seriellen Kommunikation verlangt Hard- und Software. Die
Hardware sorgt für die elektrischen Signale zwischen dem Arduino und dem Gerät, mit
dem er sich unterhält. Die Software nutzt die Hardware, um Bytes oder Bits zu senden, die
von der angeschlossenen Hardware verstanden werden. Arduinos serielle Bibliotheken
verstecken einen Großteil der Hardware-Komplexität vor Ihnen, es ist aber hilfreich, die
Grundlagen zu verstehen, besonders wenn Sie bei Ihren Projekten Probleme mit der
seriellen Kommunikation untersuchen müssen.

Serielle Hardware
Die serielle Hardware sendet und empfängt Daten in Form elektrischer Impulse, die eine
sequentielle Folge von Bits darstellen. Die Nullen und Einsen, die die Informationen
enthalten, aus denen ein Byte besteht, können auf verschiedene Art repräsentiert werden.
Das von Arduino verwendete Schema ist 0 Volt für den Bitwert 0 und 5 (oder 3,3) Volt für
den Bitwert 1.

Die Verwendung von 0 Volt (für 0) und 5 Volt (für 1) ist weit verbreitet.
Man spricht hier vom TTL-Level (Pegel), weil Signale in einer der ersten
Implementierungen digitaler Logik, der sog. Transistor-Transistor Logik
(TTL), in dieser Form repräsentiert wurden.

se
–
A
–

TT
g

Tr
(

TT

90 | Kapitel 4: Serielle Kommunikation

Boards wie das Uno, Duemilanove, Diecimila, Nano und Mega besitzen einen Chip, der
den seriellen Hardware-Port des Arduino-Chips in Universal Serial Bus (USB) umwandelt,
um die Verbindung mit dem seriellen Port herzustellen. Andere Boards wie das Mini, Pro,
Pro Mini, Boarduino, Sanguino und Modern Device Bare Bones Board unterstützen USB
nicht und benötigen für die Verbindung zum Computer einen Adapter, der TTL in USB
umwandelt. Weitere Details zu diesen Boards finden Sie unter http://www.arduino.cc/en/
Main/Hardware.

Einige beliebte USB-Adapter sind:

• Mini USB Adapter (http://arduino.cc/en/Main/MiniUSB)

• USB Serial Light Adapter (http://arduino.cc/en/Main/USBSerial)

• FTDI USB TTL Adapter (http://www.ftdichip.com/Products/FT232R.htm)

• Modern Device USB BUB-Board (http://shop.moderndevice.com/products/usb-bub)

• Seeedstudio UartSBee (http://www.seeedstudio.com/depot/uartsbee-v31-p-688.html)

Einige serielle Geräte verwenden den RS-232-Standard für die serielle Verbindung. Sie
haben üblicherweise einen Neun-Pin-Stecker, und ein Adapter wird benötigt, um sie mit
dem Arduino verwenden zu können. RS-232 ist ein altehrwürdiges Kommunikations-
protokoll, dessen Spannungspegel mit den Digitalpins des Arduino nicht kompatibel sind.

Sie können Arduino-Boards kaufen, die für die RS-232-Signalpegel gebaut sind, etwa das
Freeduino Serial v2.0 (http://www.nkcelectronics.com/freeduino-serial-v20-board-kit-ar-
duino-diecimila-compatib20.html).

Hier einige RS-232-Adapter, die RS-232-Signale mit den 5 (oder 3,3) Volt der Arduino-
Pins verbinden:

• RS-232 nach TTL 3V–5.5V Adapter (http://www.nkcelectronics.com/rs232-to-ttl-
converter-board-33v232335.html)

• P4 RS232 nach TTL Serial Adapter Kits (http://shop.moderndevice.com/products/p4)

• RS232 Shifter SMD (http://www.sparkfun.com/commerce/product_info.php?products_
id=449)

Ein Standard-Arduino verfügt über einen einzigen seriellen Hardware-Port, doch die se-
rielle Kommunikation ist auch über Software-Bibliotheken möglich, die zusätzliche Ports
(Kommunikationskanäle) emulieren, um mehr als ein Gerät anschließen zu können.
Serielle Software-Ports benötigen sehr viel Hilfe vom Arduino-Controller, um Daten
senden und empfangen zu können, weshalb sie nicht so schnell und effizient sind wie
serielle Hardware-Ports.

Das Arduino Mega besitzt vier serielle Hardware-Ports, die mit bis zu vier verschiedenen
seriellen Geräten kommunizieren können. Nur bei einem ist ein USB-Adapter integriert
(alle anderen seriellen Ports können mit einem USB/TTL-Adapter verbunden werden).
Tabelle 4-1 zeigt die Portnamen und -Pins aller seriellen Ports des Mega.

–

–

4.0 Einführung | 91

Tabelle 4-1: Serielle Ports des Arduino Mega

Portname Sendepin Empfangspin

Serial 1 (auch USB) 0 (auch USB)

Serial1 18 19

Serial2 16 17

Serial3 14 15

Serielle Software
Sie werden üblicherweise die in Arduino integrierte Serial-Bibliothek verwenden, um mit
den seriellen Hardware-Ports zu kommunizieren. Serielle Bibliotheken vereinfachen die
Verwendung serieller Ports, indem sie die Komplexität der Hardware vor Ihnen verbergen.

Manchmal benötigen Sie mehr serielle Ports, als Hardware-Ports zur Verfügung stehen. In
diesem Fall können Sie eine zusätzliche Bibliothek nutzen, die serielle Hardware in
Software emuliert. Die Rezepte 4.13 und 4.14 zeigen, wie man eine serielle Bibliothek
nutzt, um mit mehreren Geräten zu kommunizieren.

Serielles Protokoll
Die Hardware- und Software-Bibliotheken übernehmen das Senden und Empfangen von
Informationen. Diese Informationen bestehen häufig aus Gruppen von Variablen, die
zusammen gesendet werden müssen. Damit diese Informationen korrekt interpretiert
werden können, muss die Empfangsseite erkennen, wo eine Nachricht beginnt und endet.
Eine sinnvolle serielle Kommunikation bzw. jede Art der Maschine/Maschine-Kommuni-
kation kann nur erreicht werden, wenn die sendende und die empfangende Seite genau
darin übereinstimmen, wie die Informationen in den Nachrichten organisiert sind. Die
formale Organisation einer Nachricht und die Menge korrekter Antworten auf Anfragen
wird Kommunikationsprotokoll genannt.

Nachrichten können ein oder mehr spezielle Zeichen enthalten, die den Anfang einer
Nachricht markieren – das bezeichnet man als Header (Kopf). Ein oder mehr Zeichen
können auch genutzt werden, um das Ende der Nachricht zu kennzeichnen – das
bezeichnet man als Footer (Fuß). Die Rezepte dieses Kapitels zeigen beispielhafte Nach-
richten, bei denen die Werte des Rumpfs (Body, also die eigentlichen Nutzdaten) im Text-
oder Binärformat gesendet werden.

Das Senden und Empfangen von Nachrichten im Textformat verlangt das Senden von
Befehlen und numerischen Werten in Form von für Menschen lesbaren Buchstaben und
Wörtern. Zahlen werden als Strings von Ziffern gesendet, die den Wert repräsentieren. Ist
der Wert beispielsweise 1234, dann werden die Zeichen 1, 2, 3 und 4 als einzelne Zeichen
gesendet.

Binäre Nachrichten bestehen aus den Bytes, die der Computer zur Repräsentation der
Werte verwendet. Binärdaten sind effizienter (weil weniger Bytes gesendet werden müs-

se
–

se
–

N
–
Ko
–
Ko

(
k
o

92 | Kapitel 4: Serielle Kommunikation

sen), doch die Daten sind für uns Menschen nicht so einfach zu lesen, was die Fehlersuche
erschwert. Arduino stellt die Zahl 1234 beispielsweise mit den Bytes 4 und 210 (4 * 256 +
210 = 1234) dar. Wenn das verbundene Gerät nur Binärdaten sendet oder empfängt,
bleibt Ihnen keine andere Wahl, als mit diesem Format zu arbeiten, doch wenn Sie die
Wahl haben, sind Textnachrichten einfacher zu implementieren und zu debuggen.

Es gibt viele Möglichkeiten, Softwareprobleme anzugehen, und einige Rezepte dieses
Kapitels bieten zwei oder drei unterschiedliche Lösungen für das gleiche Ergebnis an. Die
Unterschiede (z.B. das Senden von Text anstelle reiner Binärdaten) liegen im Verhältnis
von Einfachheit und Effizienz. Wo eine Auswahl angeboten wird, sollten Sie die Lösung
wählen, die Sie am besten verstehen und adaptieren können (üblicherweise die erste
Lösung). Die Alternativen sind möglicherweise etwas effizienter, oder für ein bestimmtes
Protokoll besser geeignet, aber die »richtige Lösung« ist diejenige, die in Ihrem Projekt am
einfachsten eingesetzt werden kann.

Die Processing-Entwicklungsumgebung
Einige Beispiele in diesem Kapitel verwenden die Sprache Processing, um serielle Meldun-
gen auf einem Computer zu senden und zu empfangen.

Processing ist ein freies Open-Source-Tool, das eine ähnliche Entwicklungsumgebung
nutzt wie Arduino. Statt aber Sketches auf dem Mikrocontroller auszuführen, laufen
Processing-Sketches auf Ihrem Computer. Alle Informationen zu Processing und zum
Download finden Sie auf der Processing-Website (http://processing.org/).

Processing basiert auf Java, doch die Processing-Codebeispiele in diesem Buch sollten sich
recht einfach in anderen Umgebungen nutzen lassen, die die serielle Kommunikation
unterstützen. Processing wird mit einigen Beispiel-Sketches ausgeliefert, die die Kom-
munikation zwischen Arduino und Processing illustrieren. SimpleRead ist ein Arduino-
Code enthaltendes Processing-Beispiel. In Processing wählen Sie File→Examples→Libra-
ries→Serial→SimpleRead. Das Beispiel liest Daten über den seriellen Port ein und ändert
die Farbe eines Rechtecks, wenn ein am Arduino angeschlossener Taster gedrückt oder
losgelassen wird.

Neues in Arduino 1.0
Arduino 1.0 führt eine Reihe von Verbesserungen und Änderungen bei der Serial-Biblio-
thek ein:

• Serial.flush wartet nun, bis alle ausgehenden Daten gesendet wurden, statt emp-
fangene Daten einfach auszusortieren. Mit der folgenden Anweisung können Sie alle
Daten aus dem Empfangspuffer löschen: while(Serial.read() >= 0) ; // Empfangs-
puffer leeren

• Serial.write und Serial.print »blockieren« nicht. Der alte Code hat gewartet, bis
alle Zeichen gesendet waren, bevor er zurückkehrte. Seit 1.0 werden von Serial.write
gesendete Daten im Hintergrund übertragen (über einen Interrupthandler), d.h., der

–

–

–

4.0 Einführung | 93

Sketch kann seine Arbeit direkt wieder aufnehmen. Üblicherweise ist das eine gute
Sache (der Sketch reagiert schneller), doch manchmal muss man warten, bis alle
Zeichen gesendet wurden. Sie erreichen das, indem Sie Serial.flush() gleich nach
Serial.write() aufrufen.

• Die print-Funktionen von Serial geben die Anzahl der ausgegebenen Zeichen zurück.
Das ist nützlich, wenn die Textausgaben ausgerichtet werden müssen, oder wenn die
übertragenen Daten die Gesamtzahl der gesendeten Zeichen enthalten.

• Ein Parsing ist für Streams wie Serial fest integriert, um Zahlen extrahieren und Text
aufspüren zu können. Mehr zu diesen Möglichkeiten bei Serial zeigt Rezept 4.5.

• Die bei Arduino mitgelieferte SoftwareSerial-Bibliothek wurde stark verbessert. Siehe
4.13 und 4.14.

• Die Funktion Serial.peek wurde hinzugefügt, mit der Sie sich das nächste Zeichen im
Empfangspuffer ansehen können. Im Gegensatz zu Serial.read wird das Zeichen mit
Serial.peek nicht aus dem Puffer entfernt.

Siehe auch
Eine Arduino-Einführung zu RS-232 finden Sie unter http://www.arduino.cc/en/Tutorial/
ArduinoSoftwareRS232. Sehr viele Informationen und Links sind auch auf der Serial Port
Central-Website http://www.lvr.com/serport.htm zu finden.

Darüber hinaus gibt eine Reihe von Büchern zu Processing:

• Processing (ISBN 978-3-89721-997-7) von Erik Bartmann, erschienen bei O’Reilly.

• Getting Started with Processing: A Quick, Hands-on Tutorial von Casey Reas und Ben
Fry (Make).

• Processing: A Programming Handbook for Visual Designers and Artists von Casey Reas
und Ben Fry (MIT Press).

• Visualizing Data von Ben Fry (O’Reilly; suchen Sie bei oreilly.de) danach.

• Processing: Creative Coding and Computational Art von Ira Greenberg (Apress).

• Making Things Talk (ISBN 978-3-86899-162-8) von Tom Igoe (Make). Dieses Buch
behandelt Processing und Arduino und enthält viele Beispiele für Kommunkations-
code. Bei O’Reilly erschienen.

4.1 Debugging-Informationen vom Arduino an Ihren
Computer senden

Problem
Sie wollen Texte und Daten senden, die auf Ihrem PC oder Mac in der Arduino-IDE oder
einem Terminalprogramm Ihrer Wahl ausgegeben werden sollen.

Se
–

Pr
–

se
–

D

94 | Kapitel 4: Serielle Kommunikation

Lösung
Dieser Sketch gibt eine Folge von Zahlen über den seriellen Monitor aus:

/*
* SerialOutput Sketch
* Gibt Zahlen am seriellen Port aus
*/
void setup()
{
Serial.begin(9600); // Senden und Empfangen mit 9600 Baud
}

int number = 0;

void loop()
{
Serial.print("Die Zahl ist ");
Serial.println(number); // Zahl ausgeben

delay(500); // Halbe Sekunde warten
number++; // Nächste Zahl
}

Verbinden Sie den Arduino wie in Kapitel 1 beschrieben mit dem Computer und laden Sie
den Sketch hoch. Klicken Sie das Icon für den seriellen Monitor in der IDE an, und die
folgende Ausgabe sollte erscheinen:

Die Zahl ist 0
Die Zahl ist 1
Die Zahl ist 2

Diskussion
Um Texte oder Zahlen von Ihrem Sketch auf einem PC oder Mac über den seriellen Link
auszugeben, fügen Sie die Anweisung Serial.begin(9600) in setup() ein und verwenden
dann Serial.print()-Anweisungen, um die gewünschten Texte oder Werte auszugeben.

Der serielle Monitor kann vom Arduino gesendete serielle Daten ausgeben. Um den
seriellen Monitor zu starten, klicken Sie das Icon in der Werkzeugleiste an (siehe
Abbildung 4-2). Ein neues Fenster wird geöffnet, das die Ausgaben des Arduino enthält.

–

–

–

–

–

4.1 Debugging-Informationen vom Arduino an Ihren Computer senden | 95

Abbildung 4-2: Serieller Monitor des Arduino

Ihr Sketch muss Serial.begin() aufrufen, bevor er die serielle Ein- und Ausgabe nutzen
kann. Die Funktion verlangt einen einzelnen Parameter: die gewünschte Kommunikati-
onsgeschwindigkeit. Sie müssen auf Sende- und Empfangsseite die gleiche Geschwindig-
keit einstellen, sonst erscheint auf dem Bildschirm nur Zeichensalat (oder gar nichts).
Diese Beispiele (und die meisten anderen in diesem Buch) verwenden eine Geschwindig-
keit von 9600 Baud (Baud ist das Maß für die Zahl der pro Sekunde übertragenen Bits).
Eine Baudrate von 9600 entspricht ungefähr 1000 Zeichen pro Sekunde. Sie können
kleinere und höhere Geschwindigkeiten (von 300 bis 115200) einstellen, müssen aber
sicherstellen, das auf beiden Seiten die gleiche Geschwindigkeit verwendet wird. Der
serielle Monitor legt die Geschwindigkeit über die Baudraten-Dropdown-Box (am unte-
ren rechten Rand des Seriellen-Monitor-Fensters in Abbildung 4-2) fest. Wenn Ihre Aus-
gabe eher so aussieht:

`3??f<ÌxÌ///ü`3??f<

sollten Sie überprüfen, ob die im seriellen Monitor gewählte Baudrate der Baudrate
entspricht, die Sie im Sketch bei Serial.begin() angegeben haben.

Wenn Sende- und Empfangsgeschwindigkeit übereinstimmen und trotz-
dem unleserlicher Text erscheint, überprüfen Sie, ob das korrekte Board
im Menü Tools→Board ausgewählt wurde. Bei einigen Boards gibt es
Unterschiede bei den Chip-Geschwindigkeiten, und wenn Sie den falschen
gewählt haben, müssen Sie das korrigieren und das Programm noch ein-
mal hochladen.

Ba
–

96 | Kapitel 4: Serielle Kommunikation

Sie können Text mit der Funktion Serial.print()ausgeben. Strings (zwischen Anfüh-
rungszeichen stehender Text) wird unverändert (aber ohne die Anführungszeichen)
ausgegeben. Der folgende Code:

Serial.print("Die Zahl ist ");

gibt also Folgendes aus:

Die Zahl ist

Die ausgegebenen Werte (Zahlen) hängen vom Variablentyp ab. Mehr zu diesem Thema
finden Sie in Rezept 4.2. Für ein Integer wird zum Beispiel der numerische Wert aus-
gegeben. Ist die Variable number auf 1 gesetzt, dann gibt der Code:

Serial.println(number);

Folgendes aus:

1

Im Beispiel-Sketch wird beim Start der Schleife zuerst der Wert 0 ausgegeben und dann bei
jedem Schleifendurchlauf erhöht. Das ln am Ende von println sorgt dafür, dass die
nächste Ausgabe in der nächsten Zeile beginnt.

Sie sind nun soweit, Texte und Integerwerte ausgeben zu können. Details zu Format-
optionen finden Sie in Rezept 4.2.

Sie könnten auch mit einem Terminalprogramm von einem Drittanbieter liebäugeln, das
über mehr Features verfügt als der serielle Monitor. Die Darstellung von Daten im Text-
oder Binärformat (oder beides), Darstellung von Steuerzeichen und das Logging in eine
Datei sind nur einige zusätzliche Fähigkeiten vieler Terminalprogramme. Hier einige
Programme, die von Arduino-Benutzern empfohlen wurden:

CoolTerm (http://freeware.the-meiers.org/)
Ein einfach zu nutzendes Freeware-Terminal-Programm für Windows, Mac und Linux

CuteCom (http://cutecom.sourceforge.net/)
Ein Open-Source-Terminal-Programm für Linux

Bray Terminal (https://sites.google.com/site/terminalbpp/)
Ein freies Programm für den PC

GNU screen (http://www.gnu.org/software/screen/)
Ein Open-Source-Programm zur Verwaltung virtueller Bildschirme, das die serielle
Kommunikation unterstützt. Bei Linux und Mac OS X enthalten

moserial (http://live.gnome.org/moserial)
Ein weiteres Open-Source-Terminal-Programm für Linux

PuTTY (http://www.chiark.greenend.org.uk/~sgtatham/putty/)
Ein Open-Source- SSH-Programm für Windows und Linux, das die serielle Kom-
munikation unterstützt

–

–

4.1 Debugging-Informationen vom Arduino an Ihren Computer senden | 97

RealTerm (http://realterm.sourceforge.net/)
Ein Open- Source-Terminal-Programm für den PC

ZTerm (http://homepage.mac.com/dalverson/zterm/)
Ein Shareware- Programm für den Mac

Ein Artikel im Arduino-Wiki erläutert außerdem, wie man Linux konfiguriert, um mit dem
Arduino per TTY zu kommunizieren (siehe http://www.arduino.cc/playground/Interfacing/
LinuxTTY).

Sie können ein LC-Display für die serielle Ausgabe verwenden, auch wenn die Funk-
tionalität stark eingeschränkt ist. Schauen Sie in der Dokumentation nach, wie das
Display Carriage-Returns handhabt, da einige Displays bei println-Anweisungen nicht
automatisch zur nächsten Zeile springen.

Siehe auch
Die Arduino-Bibliothek LiquidCrystal für Text-LCDs besitzt eine print-Funktionalität, die
derjenigen der Serial-Bibliothek ähnelt. Viele der in diesem Kapitel gegebenen Vorschläge
können auch mit dieser Bibliothek umgesetzt werden (siehe Kapitel 11).

4.2 Formatierten Text und numerische Daten vom Arduino
senden

Problem
Sie wollen vom Arduino serielle Daten senden, die als Text, als Dezimalwert, als Hexa-
dezimalwert oder als Binärwert ausgegeben werden sollen.

Lösung
Sie können Daten in vielen verschiedenen Formaten über den seriellen Port ausgeben.
Hier ein Sketch, der alle Formatoptionen vorstellt:

/*
* SerialFormatting
* Gibt Werte in verschiedenen Formaten über den seriellen Port aus
*/
char chrValue = 65; // Startwert für die Ausgabe
byte byteValue = 65;
int intValue = 65;
float floatValue = 65.0;

void setup()
{
Serial.begin(9600);
}

void loop()

Re

ZT

Li

se
–
se
–
fo
–
Za
– v
D
–
H
–
Bi
–
Te
–
Se

98 | Kapitel 4: Serielle Kommunikation

{
Serial.println("chrValue: ");
Serial.println(chrValue);
Serial.write(chrValue);
Serial.println();
Serial.println(chrValue,DEC);

Serial.println("byteValue: ");
Serial.println(byteValue);
Serial.write(byteValue);
Serial.println();
Serial.println(byteValue,DEC);

Serial.println("intValue: ");
Serial.println(intValue);
Serial.println(intValue,DEC);
Serial.println(intValue,HEX);
Serial.println(intValue,OCT);
Serial.println(intValue,BIN);

Serial.println("floatValue: ");
Serial.println(floatValue);

delay(1000); // Eine Sekunde Warten
chrValue++; // Nächster Wert
byteValue++;
intValue++;
floatValue +=1;
}

Die Ausgabe (hier auf wenige Zeilen gekürzt) sieht wie folgt aus:

chrValue: A A 65
byteValue: 65 A 65
intValue: 65 65 41 101 1000001
floatValue: 65.00
chrValue: B B 66
byteValue: 66 B 66
intValue: 66 66 42 102 1000010
floatValue: 66.00

Diskussion
Die Ausgabe eines Textstrings ist einfach: Serial.print("Hallo, Welt"); sendet den Text-
string »Hallo, Welt« an das Gerät am Ende des seriellen Ports. Soll nach jeder Zeile ein
Zeilenvorschub (Newline) ausgegeben werden, verwenden Sie Serial.println()statt Se-
rial.print().

Die Ausgabe numerischer Werte kann etwas schwieriger sein. Wie Byte- und Integerwerte
ausgegeben werden, hängt vom Variablentyp und einem optionalen Formatparameter ab.
Die Arduino-Sprache ist recht locker, wenn es um die Übergabe von Werten an unter-
schiedliche Datentypen geht (mehr zu Datentypen finden Sie in Rezept 2.2). Doch diese
Flexibilität kann verwirrend sein, weil die numerischen Werte, selbst wenn sie gleich sind,
vom Compiler als verschiedene Typen mit unterschiedlichen Charakteristika betrachtet

–

–

4.2 Formatierten Text und numerische Daten vom Arduino senden | 99

werden. Zum Beispiel liefert die Ausgabe eines char, byte und int mit dem gleichen Wert
nicht unbedingt die gleiche Ausgabe.

Hier einige Beispiele, die alle Variablen mit gleichen Werten erzeugen:

char asciiValue = 'A'; // Das ASCII 'A' hat den Wert 65
char chrValue = 65; // 8-Bit-Zeichen mit Vorzeichen, ebenfalls das ASCII 'A'
byte byteValue = 65; // 8-Bit-Zeichen ohne Vorzeichen, ebenfalls das ASCII 'A'
int intValue = 65; // 16-Bit-Integer mit Vorzeichen mit dem Wert 65
float floatValue = 65.0; // Fließkommazahl mit dem Wert 65

Tabelle 4-2 zeigt das Ergebnis der Variablenausgabe mit Arduino-Routinen.

Tabelle 4-2: Ausgabeformate bei Serial.print

Datentyp print (val) print
(val,DEC)

write (val) print
(val,HEX)

print
(val,OCT)

print
(val,BIN)

char A 65 A 41 101 1000001

byte 65 65 A 41 101 1000001

int 65 65 A 41 101 1000001

long long-Format entspricht dem int-Format

float 65.00 Wird für Fließkommazahlen nicht unterstützt

double 65.00 double ist mit float identisch

Der Ausdruck Serial.print(val,BYTE); wird bei Arduino 1.0 nicht länger
unterstützt.

Wenn Ihr Code erwartet, dass sich Byte-Variablen wie char-Variablen ver-
halten (d.h., dass sie als ASCII ausgegeben werden), müssen Sie Serial.
write(val); verwenden.

Der Sketch des Rezepts verwendet im Quelltext eine separate Zeile für jede print-Anwei-
sung. Das macht komplexe print-Anweisungen etwas sperrig. Um beispielsweise die Zeile

Bei 5 Sekunden: Geschwindigkeit = 17, Strecke = 120

auszugeben, würden Sie typischerweise den folgenden Code verwenden:

Serial.print("Bei ");
Serial.print(t);
Serial.print(" Sekunden: Geschwindigkeit= ");
Serial.print(s);
Serial.print(", Strecke= ");
Serial.println(d);

Viel Code für eine einzige Ausgabezeile. Sie könnten ihn wie folgt zusammenfassen:

Serial.print("Bei "); Serial.print(t); Serial.print(" Sekunden, Geschwindigkeit= ");
Serial.print(s); Serial.print(", Strecke= ");Serial.println(d);

Oder Sie können die insertion-style-Fähigkeit des Arduino-Compilers nutzen, um Ihre
print-Anweisungen zu formatieren. Sie können die Vorteile einiger fortgeschrittener
C++-Fähigkeiten (streaming insertion-Syntax und Templates) nutzen, wenn Sie ein

Se
–

100 | Kapitel 4: Serielle Kommunikation

Streaming-Template in Ihrem Sketch verwenden. Sie erreichen das am einfachsten, indem
Sie die Streaming-Bibliothek einbinden, die von Mikal Hart entwickelt wurde. Auf Mikals
website (http://arduiniana.org/libraries/streaming/) erfahren Sie mehr über diese Biblio-
thek und zum Download.

Wenn Sie die Streaming-Bibliothek nutzen, liefert die folgende Zeile das gleiche Ergebnis
wie der obige Code:

Serial << "Bei " << t << " Sekunden, Geschwindigkeit= " << s << ", Strecke = " << d << endl;

Siehe auch
Kapitel 2 enthält Informationen zu den von Arduino verwendeten Datentypen. Die
Arduino-Web-Referenz unter http://arduino.cc/en/Reference/HomePage behandelt die se-
riellen Befehle und die Arduino-Web-Referenz unter http://www.arduino.cc/playground/
Main/StreamingOutput behandelt das Streaming (insertion-Style).

4.3 Serielle Daten mit Arduino empfangen

Problem
Sie wollen mit dem Arduino serielle Daten von einem Computer oder einem anderen
seriellen Gerät empfangen, damit er z.B. auf Befehle oder Daten reagiert, die von Ihrem
Computer gesendet werden.

Lösung
Der Empfang von 8-Bit-Werten (Zeichen und Bytes) ist einfach, weil die Serial-Funk-
tionen mit 8-Bit-Werten arbeiten. Der folgende Sketch empfängt eine Ziffer (ein einzelnes
Zeichen zwischen 0 und 9) und lässt die LED an Pin 13 mit einer Rate proportional zur
empfangenen Ziffer blinken:

/*
* SerialReceive Sketch
* LED mit einer Rate proportional zur empfangenen Ziffer blinken lassen
*/
const int ledPin = 13; // Mit Pin 13 verbundene LED
int blinkRate=0; // Blinkrate steht in dieser Variable

void setup()
{
Serial.begin(9600); // Serieller Port sendet und empfängt mit 9600 Baud
pinMode(ledPin, OUTPUT); // Diesen Pin als Ausgang verwenden
}

void loop()
{
if (Serial.available()) // Prüfen, ob mindestens ein Zeichen vorhanden ist
{
char ch = Serial.read();

–

–

–

4.3 Serielle Daten mit Arduino empfangen | 101

if(isDigit(ch)) // ASCII-Zeichen zwischen 0 und 9?
{
blinkRate = (ch - '0'); // ASCII-Wert in numerischen Wert umwandeln
blinkRate = blinkRate * 100; // Rate ist 100ms mal empfangene Ziffer

}
}
blink();
}

// LED mit ermittelter blinkRate ein- und ausschalten
void blink()
{
digitalWrite(ledPin,HIGH);
delay(blinkRate); // Wartezeit abhängig von blinkRate-Wert
digitalWrite(ledPin,LOW);
delay(blinkRate);
}

Laden Sie den Sketch hoch und senden Sie Nachrichten über den seriellen Monitor.
Öffnen Sie den seriellen Monitor durch Anklicken des Monitor-Icons (siehe Rezept 4.1)
und geben Sie eine Ziffer im Textfeld des seriellen Monitors ein. Sobald Sie den Send-
Button anklicken, wird das im Textfeld eingegebene Zeichen gesendet und Sie sehen, wie
sich die Blinkgeschwindigkeit ändert.

Diskussion
Die Umwandlung der empfangenen ASCII-Zeichen in numerische Werte ist nicht gleich
ersichtlich, wenn man nicht damit vertraut ist, wie Zeichen bei ASCII repräsentiert
werden. Die folgende Zeile wandelt das Zeichen ch in seinen numerischen Wert um:

blinkRate = (ch - '0'); // ASCII-Wert in numerischen Wert umwandeln

Den ASCII-Zeichen ’0’ bis ’9’ sind die Werte 48 bis 57 zugeordnet (siehe Anhang G – steht
als Download bereit). Die Umwandlung der ’1’ in den numerischen Wert erfolgt durch
Subtraktion von ’0’, weil ’1’ den ASCII-Wert 49 hat, d.h., 48 (ASCII ’0’) muss abgezogen
werden, um diese Ziffer in die entsprechende Zahl umzuwandeln. Wenn ch das Zeichen
'1' enthält, ist der ASCII-Wert 49. Der Ausdruck 49- '0' entspricht 49-48. Das ergibt
wiederum 1, was dem numerischen Wert des Zeichens '1' entspricht.

Mit anderen Worten, der Ausdruck (ch - '0') ist mit dem Ausdruck (ch - 48) identisch
und wandelt des ASCII-Wert der Variablen ch in den entsprechenden numerischen Wert
um.

Der Empfang von Zahlen mit mehr als einer Ziffer verlangt die Akkumulation der Zei-
chen, bis ein Zeichen erkannt wird, das keine Ziffer ist. Der folgende Code verwendet die
gleichen setup()- and blink()-Funktionen wie oben, liest aber Ziffern ein, bis ein New-
line-Zeichen empfangen wird. Es verwendet den akkumulierten Wert, um die Blink-
geschwindigkeit festzulegen.

AS
–

Ko
– A

W
Za
– A
Ze
–

102 | Kapitel 4: Serielle Kommunikation

Das Newline-Zeichen (ASCII-Wert 10) kann bei jedem Klick auf Send auto-
matisch angehangen werden. Der serielle Monitor besitzt am unteren Rand
des Fensters eine entsprechende Dropdown-Box (siehe Abbildung 4-1).
Ändern Sie die Option von »No line ending« in »Newline«.

Ändern Sie den Code wie folgt:

int value;

void loop()
{
if(Serial.available())
{
char ch = Serial.read();
if(isDigit(ch))// ASCII-Zeichen zwischen 0 bis 9?
{
value = (value * 10) + (ch - '0'); // Ja, Wert akkumulieren

}
else if (ch == 10) // Newline-Zeichen?
{
blinkRate = value; // blinkRate auf akkumulierten Wert setzen
Serial.println(blinkRate);
value = 0; // Wert für die nächste Ziffernfolge auf 0 zurücksetzen

}
}
blink();
}

Geben Sie einen Wert wie 123 in das Monitor-Textfeld ein und klicken Sie auf Send. Die
Blinkgeschwindigkeit wird auf 123 Millisekunden gesetzt. Jede Ziffer wird von ihrem
ASCII-Wert in ihren numerischen Wert umgewandelt. Da es sich bei den Zahlen um
Dezimalzahlen handelt (Basis 10), wird der akkumulierte Wert mit 10 multipliziert. Zum
Beispiel setzt sich der Wert der Zahl 234 aus 2 * 100 + 3 * 10 + 4 zusammen. Das wird mit
dem folgenden Code erreicht:

if(isDigit(ch)) // ASCII-Zeichen zwischen 0 und 9?
{
value = (value * 10) + (ch - '0'); // Ja, Wert akkumulieren

}

Wenn Sie negative Zahlen verarbeiten wollen, muss Ihr Code ein führendes Minuszeichen
('-') erkennen können. Im folgenden Beispiel muss jeder numerische Wert durch ein
Zeichen getrennt werden, das keine Ziffer und kein Minuszeichen ist:

int value = 0;
int sign = 1;

void loop()
{
if(Serial.available())
{
char ch = Serial.read();
if(isDigit(ch)) // ASCII-Zeichen zwischen 0 und 9?
value = (value * 10) + (ch - '0'); // Ja, Wert akkumulieren

–

4.3 Serielle Daten mit Arduino empfangen | 103

else if(ch == '-')
sign = -1;

else // Wert komplett, wenn keine Ziffer und kein Minuszeichen
{
value = value * sign ; // Vorzeichen berücksichtigen
Serial.println(value);
value = 0; // Wert für die nächste Ziffernfolge auf 0 zurücksetzen
sign = 1;

}
}
}

Eine weitere Möglichkeit zur Umwandlung von Strings in Zahlen bieten die C-Konver-
tierungsfunktionen atoi (für int-Variablen) oder atol (für long-Variablen). Diese seltsam
klingenden Funktionen wandeln einen String in Integer- oder long-Integerwerte um. Um
sie verwenden zu können, müssen Sie zuerst den gesamten String empfangen und in
einem Zeichen-Array abspeichern, bevor Sie die Konvertierungsfunktion aufrufen dürfen.

Das folgende Code-Fragment beendet das Einlesen der Ziffern bei jedem Zeichen, das
keine Ziffer ist (oder bei vollem Puffer):

const int MaxChars = 5; // Ein int-String besteht aus bis zu 5 Ziffern und wird
// mit einer 0 abgeschlossen, die das Ende des Strings anzeigt

char strValue[MaxChars+1]; // Muss groß genug für die Ziffern und die abschließende Null sein
int index = 0; // Array-Index zum Speichern der empfangenen Ziffern

void loop()
{
if(Serial.available())
{
char ch = Serial.read();
if(index < MaxChars && isDigit(ch)){
strValue[index++] = ch; // ASCII-Zeichen zum String hinzufügen;
}
else
{
// Puffer voll oder erste Nicht-Ziffer
strValue[index] = 0; // String mit einer 0 abschließen
blinkRate = atoi(strValue); // String mit atoi in int-Wert umwandeln
index = 0;
}
}
blink();
}

strValue enthält den numerischen String, der aus den über den seriellen Port empfange-
nen Zeichen besteht.

Weitere Informationen zu Zeichenketten finden Sie in Rezept 2.6.

atoi (eine Abkürzung für »ASCII-nach-Integer«) ist eine Funktion, die eine Zeichenkette
in einen Integerwert umwandelt (atol wandelt in long-Integer um).

at
at
Ko
–
St
–
Za
–

104 | Kapitel 4: Serielle Kommunikation

Mit Arduino 1.0 wurde die Funktion serialEvent eingeführt, die Sie zur Verarbeitung
eingehender serieller Zeichen nutzen können. Wenn es eine serialEvent-Funktion in
Ihrem Sketch gibt, wird sie bei jedem Durchlauf innerhalb der loop-Funktion einmal
aufgerufen. Der folgende Sketch bietet die gleiche Funktionalität wie der erste Sketch,
nutzt aber serialEvent zur Verarbeitung eingehender Zeichen:

/*
* SerialReceive Sketch
* LED mit einer Rate proportional zur empfangenen Ziffer blinken lassen
*/
const int ledPin = 13; // Mit Pin 13 verbundene LED
int blinkRate=0; // Blinkrate steht in dieser Variable

void setup()
{
Serial.begin(9600); // Serieller Port sendet und empfängt mit 9600 Baud
pinMode(ledPin, OUTPUT); // Diesen Pin als Ausgang verwenden
}

void loop()
{
blink();
}

void serialEvent()
{
while(Serial.available())
{
char ch = Serial.read();
Serial.write(ch);
if(isDigit(ch)) // ASCII-Zeichen zwischen 0 und 9?
{
blinkRate = (ch - '0'); // ASCII-Wert in numerischen Wert umwandeln
blinkRate = blinkRate * 100; // Rate ist 100mS mal empfangener Ziffer
}
}
}

// LED mit ermittelter blinkRate ein- und ausschalten
void blink()
{
digitalWrite(ledPin,HIGH);
delay(blinkRate); // Wartezeit abhängig von blinkRate-Wert value
digitalWrite(ledPin,LOW);
delay(blinkRate);
}

Mit Arduino 1.0 wurden außerdem die Methoden parseInt und parseFloat eingeführt, die
das Extrahieren von Zahlenwerten aus Serial vereinfachen. (Das funktioniert auch bei
Ethernet und anderen Objekten, die aus der Stream-Klasse abgeleitet wurden. Weitere
Informationen zum Stream-Parsing mit Netzwerkobjekten finden Sie in der Einführung zu
Kapitel 15).

4.3 Serielle Daten mit Arduino empfangen | 105

Serial.parseInt() und Serial.parseFloat() lesen Zeichen über Serial ein und liefern
deren numerische Werte zurück. Nicht-numerische Zeichen vor der Zahl werden ignoriert
und die Konvertierung endet mit dem ersten nicht-numerischen Zeichen (oder ’.’ bei
parseFloat.)

In der Diskussion zu Rezept 4.5 finden Sie ein Beispiel dafür, wie parseInt zum Aufspüren
und Extrahieren von Zahlen aus seriellen Daten genutzt wird.

Siehe auch
Eine Websuche nach »atoi« oder »atol« liefert viele Referenzen für diese Funktionen zu-
rück. Beachten Sie auch den Wikipedia-Eintrag unter http://en.wikipedia.org/wiki/Atoi.

4.4 Mehrere Textfelder vom Arduino in einer einzelnen
Nachricht senden

Problem
Sie wollen eine Nachricht senden, die mehr als eine Information (ein Feld) enthält. Zum
Beispiel könnte die Nachricht Werte von zwei oder mehr Sensoren enthalten. Sie wollen
diese Werte in einem Programm wie Processing nutzen, das auf Ihrem PC oder Mac läuft.

Lösung
Die einfachste Lösung besteht darin, einen Textstring zu senden, der alle Felder enthält
und sie durch Trennzeichen, beispielsweise durch ein Komma, voneinander abgrenzt:

// CommaDelimitedOutput Sketch

void setup()
{
Serial.begin(9600);
}

void loop()
{
int value1 = 10; // Einige fest kodierte Werte, die wir senden wollen
int value2 = 100;
int value3 = 1000;

Serial.print('H'); // Eindeutiger Kopf (Header), um den Anfang der Nachricht identifizieren zu
// können

Serial.print(",");
Serial.print(value1,DEC);
Serial.print(",");
Serial.print(value2,DEC);
Serial.print(",");
Serial.print(value3,DEC);
Serial.print(","); // Beachten Sie, dass ein Komma nach dem letzten Feld gesendet wird

Se
–
Se
–

se
–

N
–
Pr
–

Te
–
St
–
Tr
C

106 | Kapitel 4: Serielle Kommunikation

Serial.println(); // CR/LF senden
delay(100);
}

Hier ein Processing-Sketch, der diese Daten über den seriellen Port einliest:

// Processing-Sketch zum Einlesen kommaseparierter Daten
// über den seriellen Port.
// Das erwartete Format ist: H,1,2,3,

import processing.serial.*;

Serial myPort; // Objekt der Serial-Klasse
char HEADER = 'H'; // Zeichen zur Identifikation des Anfangs einer Nachricht
short LF = 10; // ASCII-Linefeed

// WARNUNG!
// Falls nötig, in der nachfolgenden Definition den korrekten Port eintragen
short portIndex = 1; // com-Port wählen, 0 ist der erste Port

void setup() {
size(200, 200);
println(Serial.list());
println(" Verbinde mit -> " + Serial.list()[portIndex]);
myPort = new Serial(this,Serial.list()[portIndex], 9600);
}

void draw() {
}

void serialEvent(Serial p)
{
String message = myPort.readStringUntil(LF); // Serielle Daten einlesen

if(message != null)
{
print(message);
String [] data = message.split(","); // Kommaseparierte Nachricht zerlegen
if(data[0].charAt(0) == HEADER && data.length > 3) // check validity
{
for(int i = 1; i < data.length-1; i++) // Kopf und Zeilenende überspringen
{
println("Wert " + i + " = " + data[i]); // Felder ausgeben

}
println();
}
}
}

Diskussion
Der Arduino-Code dieser Lösung sendet den folgenden Textstring an den seriellen Port
(\r steht für das Carriage Return und \nn)^Linefeed (\n)",4>n (Linefeed)^\n (Line-
feed)",4> für das Linefeed):

H,10,100,1000,\r\n

4.4 Mehrere Textfelder vom Arduino in einer einzelnen Nachricht senden | 107

Sie müssen ein Trennzeichen wählen, das in den eigentlichen Daten niemals vorkommt.
Wenn die Daten nur aus numerischen Werten bestehen, ist das Komma als Trennzeichen
eine gute Wahl. Sie müssen außerdem sicherstellen, dass der Empfänger den Anfang der
Nachricht erkennen kann, damit auch wirklich die Daten aller Felder eingelesen werden.
Sie erreichen dies, indem Sie ein Header-Zeichen senden, das den Beginn der Nachricht
kennzeichnet. Das Header-Zeichen muss ebenfalls eindeutig sein, d.h., es sollte nicht in
den Datenfeldern vorkommen und sich auch vom Trennzeichen unterscheiden. Unser
Beispiel verwendet das große H, um den Anfang der Nachricht anzuzeigen. Die Nachricht
besteht aus dem Header, drei kommaseparierten numerischen Werten in Form von
ASCII-Strings sowie einem Carriage Return und einem Linefeed.

Die Carriage Return- und Linefeed-Zeichen werden immer dann gesendet, wenn Arduino
etwas über die Funktion println()ausgibt. Das hilft der Empfangsseite zu erkennen, wann
der Nachrichten-String vollständig empfangen wurde. Ein Komma wird auch nach dem
letzten numerischen Wert gesendet, um der Empfangsseite dabei zu helfen, das Ende der
Werte zu erkennen.

Der Processing-Code liest die Nachricht als String ein und nutzt die Java-Methode
split(), um ein Array kommaseparierter Felder zu erzeugen.

In den meisten Fällen werden Sie bei einem Mac den ersten seriellen Port
nutzen wollen, während Sie beim PC den letzten nutzen. Der Processing-
Sketch enthält Code, der die verfügbaren und den gerade ausgewählten
Port anzeigt. Stellen Sie sicher, dass das auch der Port ist, an dem der
Arduino hängt.

Die Verwendung von Processing zur Darstellung von Sensordaten kann einem viele
Stunden beim Debugging ersparen, da es Ihnen hilft, die Sensordaten zu visualisieren.
Der folgende Processing-Sketch visualisiert bis zu 12 vom Arduino gesendete Werte in
Echtzeit. Diese Version stellt 8-Bit-Werte im Bereich von –127 bis +127 dar und wurde als
Demonstration für den Nunchuck-Sketch in Rezept 13.2 entwickelt:

/*
* ShowSensorData.
*
* Erzeugt ein Balkendiagramm aus CSV-Sensordaten im Bereich von -127 bis 127
* Das erwartete Format ist: "Data,s1,s2,...s12\n" (unterstützt bis zu 12 Sensoren)
* Label können wie folgt gesendet werden: "Labels,label1, label2,...label12\n");
*/

import processing.serial.*;

Serial myPort; // Objekt der Serial-Klasse erzeugen
String message = null;
PFont fontA; // Font zur Darstellung der Servo-Pin-Nummer
int fontSize = 12;

int maxNumberOfLabels = 12;

int rectMargin = 40;
int windowWidth = 600;

Se
–

Ja
–
sp

Sh

108 | Kapitel 4: Serielle Kommunikation

int windowHeight = rectMargin + (maxNumberOfLabels + 1) * (fontSize *2);
int rectWidth = windowWidth - rectMargin*2;
int rectHeight = windowHeight - rectMargin;
int rectCenter = rectMargin + rectWidth / 2;

int origin = rectCenter;
int minValue = -127;
int maxValue = 127;

float scale = float(rectWidth) / (maxValue - minValue);

String [] sensorLabels = {"s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9",
"s10", "s11", "s12"};

// Wird auf die Anzahl tatsächlich empfangener Label geändert
int labelCount = maxNumberOfLabels;

void setup() {
size(windowWidth, windowHeight);
short portIndex = 1; // com-Port wählen, 0 ist der erste Port
String portName = Serial.list()[portIndex];
println(Serial.list());
println(" Verbinde mit -> " + portName) ;
myPort = new Serial(this, portName, 57600);
fontA = createFont("Arial.normal", fontSize);
textFont(fontA);
labelCount = sensorLabels.length;
}

void drawGrid() {
fill(0);
text(minValue, xPos(minValue), rectMargin-fontSize);
line(xPos(minValue), rectMargin, xPos(minValue), rectHeight + fontSize);
text((minValue+maxValue)/2, rectCenter, rectMargin-fontSize);
line(rectCenter, rectMargin, rectCenter, rectHeight + fontSize);
text(maxValue, xPos(maxValue), rectMargin-fontSize);
line(xPos(maxValue), rectMargin, xPos(maxValue), rectHeight + fontSize);

for (int i=0; i < labelCount; i++) {
text(sensorLabels[i], fontSize, yPos(i));
text(sensorLabels[i], xPos(maxValue) + fontSize, yPos(i));
}
}

int yPos(int index) {
return rectMargin + fontSize + (index * fontSize*2);
}

int xPos(int value) {
return origin + int(scale * value);
}

void drawBar(int yIndex, int value) {
rect(origin, yPos(yIndex)-fontSize, value * scale, fontSize); // Wert zeichnen
}

void draw() {

4.4 Mehrere Textfelder vom Arduino in einer einzelnen Nachricht senden | 109

while (myPort.available () > 0) {
try {
message = myPort.readStringUntil(10);
if (message != null) {
print(message);
String [] data = message.split(","); // CSV-Nachricht zerlegen
if (data[0].equals("Labels")) { // Auf Label-Header überprüfen
labelCount = min(data.length-1, maxNumberOfLabels) ;
arrayCopy(data, 1, sensorLabels, 0, labelCount);
}
else if (data[0].equals("Data"))// Auf Daten-Header prüfen
{
background(255);
drawGrid();
fill(204);
println(data.length);
for (int i=1; i <= labelCount && i < data.length-1; i++)
{

drawBar(i-1, Integer.parseInt(data[i]));
}
}

}
}
catch (Exception e) {
e.printStackTrace(); // Mögliche Fehler ausgeben
}
}
}

Abbildung 4-3 zeigt, wie die Nunchuck-Beschleunigungswerte (aX,Ay,aZ) und die Joy-
stick-Werte (jX,Jy) dargestellt werden. Die Balken erscheinen, wenn die Nunchuck-But-
tons (bC und bZ) gedrückt werden.

Abbildung 4-3: Processing-Bildschirm mit Nunchuck-Sensordaten

110 | Kapitel 4: Serielle Kommunikation

Wertebereich und Ursprung des Diagramms können bei Bedarf einfach angepasst wer-
den. Um zum Beispiel Diagramme darzustellen, die von der Z-Achse ausgehen und einen
Wertebereich von 0 bis 1024 umfassen, verwenden Sie Folgendes:

int origin = rectMargin; // rectMargin ist die linke Ecke des Grafikbereichs
int minValue = 0;
int maxValue = 1024;

Wenn Sie keinen Nunchuck besitzen, können Sie mit dem folgenden einfachen Sketch
Analogwerte generieren. Sind keine Sensoren angeschlossen, können Sie mit den Fingern
unten an den Analogpins vorbeistreichen. Damit erzeugen Sie Signalpegel, die mit dem
Processing-Sketch dargestellt werden können. Die Werte liegen im Bereich von 0 bis 1023,
d.h., Sie müssen den Ursprung und den Minimal-/Maximalwert im Processing-Sketch wie
oben beschrieben ändern:

void setup() {
Serial.begin(57600);
delay(1000);
Serial.println("Labels,A0,A1,A2,A3,A4,A5");
}

void loop() {
Serial.print("Data,");
for(int i=0; i < 6; i++)
{
Serial.print(analogRead(i));
Serial.print(",");
}
Serial.print('\n'); // Newline-Zeichen
delay(100);
}

Siehe auch
Die Processing-Website enthält weitere Informationen zur Installation und Verwendung
der Programmierumgebung. Siehe http://processing.org/.

4.5 Mit dem Arduino mehrere Textfelder in einer Nachricht
empfangen

Problem
Sie wollen eine Nachricht empfangen, die mehr als ein Feld enthält. Zum Beispiel könnte
eine Nachricht den Bezeichner (Identifier) für ein bestimmtes Bauelement (etwa einen
Motor der Aktuator) und den für ihn gedachten Wert (z.B. die Geschwindigkeit) ent-
halten.

–

–

–

–

4.5 Mit dem Arduino mehrere Textfelder in einer Nachricht empfangen | 111

Lösung
Arduino kennt keine split()-Funktion, wie wir sie im Processing-Code in Rezept 4.4
nutzen, aber man kann (wie in diesem Rezept gezeigt) eine vergleichbare Funktionalität
implementieren. Der folgende Code empfängt eine Nachricht mit drei numerischen
Feldern, die durch Kommata voneinander getrennt sind. Er nutzt die in Rezept 4.4 be-
schriebene Technik zum Empfang von Ziffern und wurde um Code erweitert, der
kommaseparierte Felder erkennt und die Werte in einem Array speichert:

/*
* SerialReceiveMultipleFields Sketch
* Der Code erwartet eine Nachricht im Format 12,345,678
* Der Code erwartet ein Newline-Zeichen, der das Ende der Daten anzeigt
* Richten Sie den seriellen Monitor so ein, dass er Newline-Zeichen sendet
*/

const int NUMBER_OF_FIELDS = 3; // Wie viele kommaseparierte Felder erwarten wir?
int fieldIndex = 0; // Das aktuell empfangene Feld
int values[NUMBER_OF_FIELDS]; // Array mit den Werten aller Felder

void setup()
{
Serial.begin(9600); // Serieller Port sendet und empfängt mit 9600 Baud
}

void loop()
{
if(Serial.available())
{
char ch = Serial.read();
if(ch >= '0' && ch <= '9') // ASCII-Zeichen zwischen 0 und 9?
{
// Ja, Wert akkumulieren, solange fieldIndex gültig ist
// Überzählige Felder werden nicht gespeichert
if(fieldIndex < NUMBER_OF_FIELDS) {
values[fieldIndex] = (values[fieldIndex] * 10) + (ch - '0');

}
}
else if (ch == ',') // Komma ist unser Trennzeichen, also weiter zum nächsten Feld
{

fieldIndex++; // Feldindex inkrementieren
}
else
{
// Jedes Zeichen außer Ziffern und Komma beendet das Einlesen der Felder.
// In diesem Beispiel ist dies das vom seriellen Monitor gesendete Newline-Zeichen

// Alle gespeicheren Felder ausgeben
for(int i=0; i < min(NUMBER_OF_FIELDS, fieldIndex+1); i++)
{
Serial.println(values[i]);
values[i] = 0; // Werte für nächste Nachricht auf 0 zurücksetzen

}

Se
S

112 | Kapitel 4: Serielle Kommunikation

fieldIndex = 0; // Index für Neustart vorbereiten
}
}
}

Diskussion
Der Sketch akkumuliert die Werte (wie in Rezept 4.3beschrieben), hält aber jeden Wert in
einem Array fest (das groß genug sein muss, um alle Felder aufnehmen zu können), wenn
ein Komma empfangen wird. Jedes Zeichen, das keine Ziffer und kein Komma ist (etwa
das Newline-Zeichen, siehe Rezept 4.3) stößt die Ausgabe aller im Array gespeicherten
Werte an. Sie können also ein Zeichen eingeben, das keine Ziffer und kein Komma ist,
oder das »No line ending«-Menü am unteren rechten Rand im seriellen Monitor auf einen
anderen Wert setzen.

Arduino 1.0 hat die Methode parseInt eingeführt, die es einem leicht macht, Informatio-
nen aus seriellen und Web-Streams zu extrahieren. Hier ein Beispiel für ihren Einsatz
(Kapitel 15 enthält weitere Beispiele zum Stream-Parsing).

Der folgende Sketch bietet die gleiche Funktionalität wie oben, nutzt aber parseInt:

// Mehrere numerische Felder mittels Arduino 1.0-Stream-Parsing verarbeiten

const int NUMBER_OF_FIELDS = 3; // Wie viele kommaseparierte Felder erwarten wir?
int fieldIndex = 0; // Das aktuell empfangene Feld
int values[NUMBER_OF_FIELDS]; // Array mit den Werte aller Felder

void setup()
{
Serial.begin(9600); // Serieller Port sendet und empfängt mit 9600 Baud
}

void loop()
{

if(Serial.available()) {
for(fieldIndex = 0; fieldIndex < 3; fieldIndex ++)
{
values[fieldIndex] = Serial.parseInt(); // Numerischen Wert einlesen

}
Serial.print(fieldIndex);
Serial.println(" Felder empfangen:");
for(int i=0; i < fieldIndex; i++)
{
Serial.println(values[i]);

}
fieldIndex = 0; // und von vorn anfangen
}
}

Die Stream-Parsing-Funktionen nutzen ein Timeout, während sie auf ein Zeichen
warten. Voreingestellt ist eine Sekunde. Werden innerhalb dieser Zeit keine Zeichen

4.5 Mit dem Arduino mehrere Textfelder in einer Nachricht empfangen | 113

von parseInt empfangen, gibt sie 0 zurück. Sie können den Timeout mit Stream.
setTimeout(timeoutPeriod) ändern. Der Timeout-Parameter ist ein long-Wert, der den
Timeout in Millisekunden angibt. Der Wertebereich für den Timeout reicht also von
1 Millisekunde bis zu 2.147.483.647 Millisekunden.

Stream.setTimeout(2147483647); ändert das Timeout-Interval auf etwas unter 25 Tage.

Hier eine Zusammenfassung der von Arduino 1.0 unterstützten Stream-Parsing-Metho-
den (nicht alle werden im obigen Beispiel verwendet):

boolean find(char *target);
Liest aus dem Stream, bis das angegebene Ziel (»target«) gefunden wurde. Gibt true
zurück, wenn der Zielstring gefunden wurde. Der Rückgabewert false bedeutet, dass
die Daten im Stream nicht gefunden wurden und keine weiteren Daten verfügbar
sind. Beachten Sie, dass der Stream beim Parsing nur einmal verarbeitet wird, d.h., Sie
können nicht zurückgehen, um etwas anderes zu suchen (siehe hierzu findUntil).

boolean findUntil(char *target, char *terminate);
Ähnelt der find-Methode, aber die Suche endet erst, wenn der Terminierungsstring
gefunden wird. Gibt nur dann true zurück, wenn das Ziel gefunden wurde. Nützlich,
um die Suche bei einem Schlüsselwort oder einem Terminator zu beenden. Zum
Beispiel sucht

finder.findUntil("target", "\n");

nach dem String "target", bricht aber bei einem Newline-Zeichen ab. Der Sketch
kann also etwas anderes machen, wenn das Ziel nicht gefunden wird.

long parseInt();
Gibt den ersten gültigen (langen) Integerwert zurück. Führende Zeichen, die keine
Ziffern und kein Minuszeichen sind, werden übersprungen. Der Integerwert wird bei
der ersten auf die Zahl folgenden Nicht-Ziffer abgeschlossen. Werden keine Ziffern
gefunden, gibt die Funktion 0 zurück.

long parseInt(char skipChar);
Wie parseInt, aber der angegebene skipChar wird innerhalb des numerischen Wertes
ignoriert. Kann recht nützlich sein, wenn Sie einen einzelnen numerischen Wert
einlesen wollen, der durch Punkte (oder Kommata) getrennt ist (wie das bei großen
Zahlen der Fall ist). Denken Sie aber daran, dass mit Kommata formatierte Zahlen
nicht in kommaseparierten Strings verarbeitet werden können (32,767 würde dann
als 32767 erkannt werden).

float parseFloat();
Die float-Version von parseInt.

size_t readBytes(char *buffer, size_t length);
Liest die eingehenden Zeichen in den angegebenen Puffer ein, bis es zum Timeout
kommt oder die angegebene Anzahl Zeichen eingelesen wurde. Gibt die Anzahl der
im Puffer abgelegten Zeichen zurück.

St
–

St
–

St
–

St
–
pa

St
–

St
–

114 | Kapitel 4: Serielle Kommunikation

size_t readBytesUntil(char terminator,char *buf,size_t length);
Liest die eingehenden Zeichen in den angegebenen Puffer ein, bis das terminator-Zei-
chen erkannt wird. Strings, die die angegebene Länge (length) überschreiten, werden
abgeschnitten. Die Funktion gibt die Anzahl der im Puffer abgelegten Zeichen zurück.

Siehe auch
Kapitel 15 enthält weitere Stream-Parsing-Beispiele, die Daten in einem Stream finden und
extrahieren.

4.6 Binäre Daten vom Arduino senden

Problem
Sie müssen Daten binär übertragen, weil Sie Informationen mit so wenig Daten wie mög-
lich senden wollen, oder weil die Anwendung nur Binärdaten verarbeiten kann.

Lösung
Dieser Sketch sendet einen Header und dann zwei Integerwerte (16 Bit) im Binärformat.
Die Werte werden mit der Arduino-Funktion random erzeugt (siehe Rezept 3.11):

/*
* SendBinary Sketch
* Sendet einen Header gefolgt von zwei zufälligen Integerwerten im Binärformat.
*/

int intValue; // Ein Integerwert (16 Bit)

void setup()
{
Serial.begin(9600);
}

void loop()
{
Serial.print('H'); // Header-Zeichen senden

// Zufallszahl senden
intValue = random(599); // Zufallszahl zwischen 0 und 598 erzeugen
// Sende die beiden Bytes, aus denen der Integerwert besteht
Serial.write(lowByte(intValue)); // Niederwertiges Byte senden
Serial.write(highByte(intValue)); // Höherwertiges Byte senden

// Weitere Zufallszahl senden
intValue = random(599); // Zufallszahl zwischen 0 und 598 erzeugen
// Sende die beiden Bytes, aus denen der Integerwert besteht
Serial.write(lowByte(intValue)); // Niederwertiges Byte senden
Serial.write(highByte(intValue)); // Höherwertiges Byte senden

delay(1000);
}

–

–

–

–

4.6 Binäre Daten vom Arduino senden | 115

Diskussion
Das Senden binärer Daten verlangt sorgfältige Planung, weil nur Wortsalat herauskommt,
solange sich Sender und Empfänger nicht genau darüber verständigt haben, wie die Daten
gesendet werden müssen. Im Gegensatz zu Textdaten, bei denen das Textende durch das
abschließende Carriage Return (oder ein anderes von Ihnen festgelegtes Zeichen) be-
stimmt wird, kann man bei Binärdaten möglicherweise nicht sagen, wo eine Nachricht
beginnt, wenn man sich die Daten einfach nur ansieht. Wenn Daten jeden Wert enthalten
dürfen, können sie auch den Wert eines Header- oder Terminierungszeichen enthalten.

Sie können das verhindern, indem Sie die Nachrichten so entwerfen, dass Sender und
Empfänger genau wissen, wie viele Bytes zu erwarten sind. Das Ende der Nachricht wird
durch die Zahl der gesendeten Bytes bestimmt, nicht durch die Erkennung eines be-
stimmten Zeichens. Sie können das implementieren, indem Sie einen Startwert senden,
der angibt, wie viele Bytes folgen. Oder Sie können die Größe der Nachricht so festlegen,
dass Sie groß genug ist, um die Daten aufnehmen zu können, die Sie senden wollen.
Beides ist nicht immer leicht, weil unterschiedliche Plattformen und Sprachen verschie-
dene Größen für Ihre binären Datentypen verwenden können – sowohl die Anzahl der
Bytes als auch ihre Reihenfolge können sich vom Arduino unterscheiden. Zum Beispiel
definiert Arduino ein int als zwei Bytes, während Processing (Java) ein int als vier Bytes
definiert (während short der Java-Typ für ein 16-Bit-Integer ist). Das Senden eines int-
Werts als Text (wie in den früheren Text-Rezepten) vereinfacht die Sache, weil jede Zahl
als Folge von Ziffern gesendet wird. Die Gegenseite erkennt das Ende des Empfangs über
ein Carriage Return oder ein andere Nicht-Ziffer. Binärübertragungen wissen nur etwas
über den Aufbau der Nachricht, wenn er im Vorfeld definiert wurde oder in der Nachricht
spezifiziert wird.

Die Lösung verlangt die Kenntnis der Datentypen der sendenden und empfangenden
Plattform und sorgfältige Planung. Rezept 4.7 zeigt ein Beispiel, bei dem Processing diese
Nachrichten empfängt.

Das Senden einzelner Bytes ist einfach. Verwenden Sie Serial.write(byteVal). Um einen
Integerwert vom Arduino zu senden, müssen Sie das nieder- und das höherwertige Byte
übertragen, aus denen der Integerwert besteht (Rezept 2.2 enthält weiterführende Infor-
mationen zu Datentypen). Das geschieht mit Hilfe der Funktionen lowByte und highByte
(siehe Rezept 3.14):

Serial.write(lowByte(intValue), BYTE);
Serial.write(highByte(intValue), BYTE);

Bei long-Werten brechen Sie die vier Bytes, aus denen ein long besteht, in zwei Schritten
auf. Der long-Wert wird zuerst in zwei 16-Bit-Werte zerlegt, die dann jeweils mit den eben
beschriebenen Methoden zum Senden von Integerwerten übertragen werden:

int longValue = 1000;
int intValue;

lo
–
hi
–
Se
–

116 | Kapitel 4: Serielle Kommunikation

Zuerst senden Sie den niederwertigen 16-Bit-Wert:

intValue = longValue & 0xFFFF; // Wert der niederwertigen 16 Bit ermitteln
Serial.write(lowByte(intVal));
Serial.write(highByte(intVal));

Dann senden Sie den höherwertigen 16-Bit-Wert:

intValue = longValue >> 16; // Wert der höherwertigen 16 Bit ermitteln
Serial.write(lowByte(intVal));
Serial.write(highByte(intVal));

Sie könnten es bequemer finden, zum Senden der Daten eine Funktion anzulegen. Die
folgende Funktion nutzt den oben vorgestellte Code, um einen 16-Bit-Integerwert über
den seriellen Port auszugeben:

// Sendet den angegebene Integerwert über den seriellen Port
void sendBinary(int value)
{
// Sende die beiden Bytes, aus denen ein 16-Bit-Integer besteht
Serial.write(lowByte(value)); // Niederwertiges Byte senden
Serial.write(highByte(value)); // Höherwertiges Byte senden
}

Die folgende Funktion sendet einen long-Wert (4 Byte), indem sie zuerst die beiden
niederwertigen (rechts stehenden) Bytes und dann die beiden höherwertigen (links
stehenden) Bytes überträgt:

// Funktion zum Senden eines long-Werts über den seriellen Port
void sendBinary(long value)
{
// Zuerst wird der niederwertige 16-Bit-Wert gesendet
int temp = value & 0xFFFF; // Wert der niederwertigen 16 Bits ermitteln
sendBinary(temp);
// Dann wird der höherwertige 16-Bit-Wert gesendet
temp = value >> 16; // Wert der höherwertigen 16 Bit ermitteln
sendBinary(temp);
}

Diese Funktionen zum Senden binärer int- und long-Werte haben den gleichen Namen:
sendBinary. Der Compiler unterscheidet sie anhand des Typs, der für den Parameter
verwendet wird. Ruft Ihr Code sendBinary mit einem 2-Byte-Wert auf, wird die als void
sendBinary(int value) deklarierte Version aufgerufen. Ist der Parameter ein long-Wert,
wird die als void sendBinary(long value) deklarierte Version genutzt. Dieses Verhalten
wird Funktionsüberladung genannt. Rezept 4.2 zeigt hierfür ein weiteres Beispiel. Die
unterschiedliche Funktionalität von Serial.print wird erreicht, indem der Compiler die
verschiedenen Variablentypen unterscheidet.

Sie können Binärdaten auch mit Hilfe von Strukturen senden. Strukturen sind ein Mecha-
nismus zur Organisation von Daten. Wenn Sie mit ihrem Einsatz nicht vertraut sind,
sollten Sie besser bei der eben beschriebenen Lösung bleiben. Für diejenigen, die mit dem
Konzept von Zeigern auf Strukturen vertraut sind, zeigt das folgende Beispiel eine Funk-
tion, die die Bytes innerhalb einer Struktur als Binärdaten an den seriellen Port sendet:

–

4.6 Binäre Daten vom Arduino senden | 117

void sendStructure(char *structurePointer, int structureLength)
{
int i;

for (i = 0 ; i < structureLength ; i++)
serial.write(structurePointer[i]);
}

sendStructure((char *)&myStruct, sizeof(myStruct));

Daten in Form binärer Bytes zu senden, ist effizienter als das Senden der Daten in
Textform, funktioniert aber nur dann zuverlässig, wenn sich Sender und Empfänger im
Bezug auf den Aufbau der Daten einig sind. Hier eine Übersicht der Dinge, auf die Sie
beim Schreiben Ihres Codes achten müssen:

Variablengröße
Stellen Sie sicher, dass die Größe der gesendeten Daten auf beiden Seiten gleich ist.
Ein Integerwert ist bei Arduino 2 Byte groß, auf den meisten anderen Plattformen
aber 4 Byte. Prüfen Sie in der Dokumentation immer die Größe des Datentyps, damit
sie übereinstimmen. Es ist für Processing kein Problem, ein 2-Byte-Arduino-Integer
als 4-Byte-Integer in Processing einzulesen, solange es weiß, dass es nur zwei Bytes zu
erwarten hat. Stellen Sie aber sicher, dass die Sendeseite den auf der Empfangsseite
verwendeten Typ nicht überlaufen lässt.

Byteordnung
Stellen Sie sicher, dass die Bytes innerhalb eines int oder long in der Reihenfolge
gesendet werden, die der Empfänger erwartet.

Synchronisation
Stellen Sie sicher, dass der Empfänger den Anfang und das Ende einer Nachricht er-
kennt. Wenn Sie mitten im Stream mit der Verarbeitung anfangen, erhalten Sie keine
gültigen Daten. Sie erreichen das, indem Sie eine Bytefolge senden, die in den
Nutzdaten selbst nicht vorkommt. Wenn Sie zum Beispiel Binärwerte von analogRead
senden wollen, liegen sie im Bereich von 0 bis 1023, d.h., das höherwertige Byte muss
kleiner als 4 sein (der int-Wert 1023 wird in den Bytes 3 und 255 gespeichert). Es
kann daher keine Daten geben, bei denen zwei aufeinanderfolgende Bytes größer als 3
sind. Zwei Bytes mit dem Wert 4 (oder jeder Wert höher als 3) können daher keine
gültigen Daten sein und können genutzt werden, um den Anfang oder das Ende einer
Nachricht anzuzeigen.

Strukturversatz
Wenn Sie Daten als Strukturen senden oder empfangen, müssen Sie darauf achten,
dass der Versatz auf beiden Seiten der gleiche ist (Informationen hierzu finden Sie in
der Compiler-Dokumentation). Der Versatz beschreibt das vom Compiler verwen-
dete Auffüllen (engl. padding) zum Ausrichten der Datenelemente unterschiedlicher
Größen in einer Struktur.

D
–

Sy
–

St
–

St
– V
au

118 | Kapitel 4: Serielle Kommunikation

Fluss-Steuerung
Nutzen Sie entweder eine Übertragungsgeschwindigkeit, die sicherstellt, dass der
Empfänger mit dem Sender mithalten kann, oder verwenden Sie irgendeine Form
der Fluss-Steuerung. Die Fluss-Steuerung verwendet ein Signal (engl. Handshake), der
dem Sender mitteilt, dass der Empfänger bereit ist, weitere Daten zu empfangen.

Siehe auch
In Kapitel 2 finden Sie weiterführende Informationen zu den in Arduino-Sketches ver-
wendeten Variablentypen.

Sehen Sie sich auch die Arduino- Referenzen für lowByte unter http://www.arduino.cc/en/
Reference/LowByte und highByte unter http://www.arduino.cc/en/Reference/HighByte an.

Der Arduino-Compiler packt Strukturen an Bytegrenzen. Sehen Sie in der Dokumentation
des auf Ihrem Computer verwendeten Compilers nach, wie Sie den gleichen Versatz
hinbekommen. Wenn Ihnen nicht klar ist, wie Sie das machen können, sollten Sie Daten
nicht über Strukturen versenden.

Weiterführende Informationen zur Fluss-Steuerung finden Sie unter http://en.wikipe-
dia.org/wiki/Flow_control.

4.7 Binärdaten vom Arduino auf einem Computer
empfangen

Problem
Sie wollen mit einer Programmiersprache wie Processing vom Arduino gesendete Binär-
daten verarbeiten. Zum Beispiel wollen Sie auf Arduino-Nachrichten reagieren, die in
Rezept 4.6 gesendet wurden.

Lösung
Die Lösung hängt von der Programmierumgebung ab, die Sie auf Ihrem PC oder Mac
verwenden. Wenn Sie noch kein Programmierwerkzeug bevorzugen und eines suchen,
das leicht zu lernen ist und gut mit Arduino zusammenarbeitet, dann ist Processing eine
ausgezeichnete Wahl.

Hier zwei Zeilen Processing-Code, die ein Byte einlesen. Es stammt aus dem SimpleRead-
Beispiel (aus der Einführung zu diesem Kapitel):

if (myPort.available() > 0) { // Wenn Daten verfügbar sind,
val = myPort.read(); // einlesen und in val speichern

Wie Sie sehen können, ähnelt das stark dem Arduino-Code, den Sie schon in früheren
Rezepten gesehen haben.

–

–

–

–

–

–

–

–

–

–

4.7 Binärdaten vom Arduino auf einem Computer empfangen | 119

Nachfolgend ein Processing-Sketch, der die Größe eines Rechtecks proportional zu den
Integerwerten festlegt, die vom Arduino-Sketch in Rezept 4.6 gesendet werden:

/*
* ReceiveBinaryData_P
*
* portIndex muss auf den Port gesetzt werden, mit dem der Arduino verbunden ist
*/
import processing.serial.*;

Serial myPort; // Serial-Objekt erzeugen
short portIndex = 1; // com-Port wählen, 0 ist der erste Port

char HEADER = 'H';
int value1, value2; // Vom seriellen Port empfangene Daten

void setup()
{
size(600, 600);
// Seriellen Port öffnen, mit dem der Arduino verbunden ist.
String portName = Serial.list()[portIndex];
println(Serial.list());
println(" Verbinde mit -> " + Serial.list()[portIndex]);
myPort = new Serial(this, portName, 9600);
}

void draw()
{
// Header und zwei binäre Integerwerte (16 Bit) einlesen:
if (myPort.available() >= 5) // Sobald 5 Bytes verfügbar sind,
{
if(myPort.read() == HEADER) // Header-Zeichen?
{
value1 = myPort.read(); // Lese niederwertiges Byte ein
value1 = myPort.read() * 256 + value1; // Füge höherwertiges Byte hinzu

value2 = myPort.read(); // Lese niederwertiges Byte ein
value2 = myPort.read() * 256 + value2; // Füge das höherwertige Byte hinzu

println("Empfangene Nachricht: " + value1 + "," + value2);
}
}
background(255); // Hintergrundfarbe ist weiß
fill(0); // Füllfarbe ist schwarz

// Zeichne Rechteck mit den Koordinaten, die vom Arduino empfangen wurden
rect(0, 0, value1,value2);
}

Diskussion
Processing hat Arduino beeinflusst, und die beiden sind sich bewusst sehr ähnlich. Die
setup-Funktion wird bei Processing zur Einmal-Initialisierung genutzt, genauso wie bei
Arduino. Processing besitzt ein Ausgabefenster, und setup legt dessen Größe auf 600 ×
600 Pixel fest, indem es size(600,600) aufruft.

Re

se
Pr
–

120 | Kapitel 4: Serielle Kommunikation

Die Zeile String portName = Serial.list()[portIndex]; wählt den seriellen Port aus – bei
Processing sind alle verfügbaren seriellen Ports im Objekt Serial.list enthalten, und
dieses Beispiel nutzt den Wert einer Variablen namens portIndex. println(Serial.list())
gibt alle verfügbaren Ports aus und die Zeile myPort = new Serial(this, portName, 9600);
öffnet den mit portName angegebenen Port. Sie müssen sicherstellen, dass portIndex auf
den seriellen Port gesetzt ist, mit dem Ihr Arduino verbunden ist (üblicherweise mit dem
ersten Port bei einem Mac; unter Windows ist es üblicherweise der letzte Port, wenn der
Arduino als letztes serielles Gerät installiert wurde).

Die draw-Funktion funktioniert bei Processing wie der loop in Arduino, d.h., sie wird
wiederholt aufgerufen. Der Code in draw prüft, ob Daten am seriellen Port verfügbar sind.
Ist dass der Fall, werden die Bytes gelesen und in die Integerwerte umgewandelt, die diese
Bytes repräsentieren. Ein Rechteck wird dann basierend auf den empfangenen Integer-
werten gezeichnet.

Siehe auch
Weiterführende Informationen zu Processing erhalten Sie auf der Processing-Website
(http://processing.org/).

4.8 Binäre Werte aus Processing an den Arduino senden

Problem
Sie wollen binäre Bytes, Integer- oder long-Werte von Processing an den Arduino senden.
Zum Beispiel wollen Sie eine Nachricht senden, die aus einem Identifier-»Tag« und zwei
16-Bit-Werten besteht.

Lösung
Verwenden Sie den folgenden Code:

// Processing Sketch

/* SendingBinaryToArduino
* Sprache: Processing
*/
import processing.serial.*;

Serial myPort; // Serial-Objekt erzeugen
public static final char HEADER = 'H';
public static final char MOUSE_TAG = 'M';

void setup()
{
size(512, 512);
String portName = Serial.list()[1];
myPort = new Serial(this, portName, 9600);
}

–

–

–

–

–

–

4.8 Binäre Werte aus Processing an den Arduino senden | 121

void draw(){
}

void serialEvent(Serial p) {
// handle incoming serial data
String inString = myPort.readStringUntil('\n');
if(inString != null) {
print(inString); // Textstring vom Arduino ausgeben
}
}

void mousePressed() {
sendMessage(MOUSE_TAG, mouseX, mouseY);
}

void sendMessage(char tag, int x, int y){
// Sende gegebenen Tag und Wert an seriellen Port
myPort.write(HEADER);
myPort.write(tag);
myPort.write((char)(x / 256)); // MSB
myPort.write(x & 0xff); //LSB
myPort.write((char)(y / 256)); // MSB
myPort.write(y & 0xff); //LSB
}

Wird die Maus im Processing-Fenster angeklickt, wird sendMessage mit einem 8-Bit-Tag
aufgerufen, der anzeigt, dass es sich um eine Maus-Nachricht handelt, sowie die x- und
y-Koordinaten der Maus in zwei 16-Bit-Werten. Die sendMessage-Funktion sendet die
16-Bit x- und y-Werte in zwei Bytes, wobei das höherwertige Byte (most significant byte,
MSB) zuerst übertragen wird.

Hier der Arduino-Code, der diese Nachricht empfängt und das Ergebnis wieder an
Processing zurückgibt:

// BinaryDataFromProcessing
// Diese Definitionen müssen denen des Senders entsprechen:
const char HEADER = 'H';
const char MOUSE_TAG = 'M';
const int TOTAL_BYTES = 6 ; // Gesamtgröße der Nachricht

void setup()
{
Serial.begin(9600);
}

void loop(){
if (Serial.available() >= TOTAL_BYTES)
{
if(Serial.read() == HEADER)
{
char tag = Serial.read();
if(tag == MOUSE_TAG)
{
int x = Serial.read() * 256;
x = x + Serial.read();

Bi
S

122 | Kapitel 4: Serielle Kommunikation

int y = Serial.read() * 256;
y = y + Serial.read();
Serial.print("Maus-Nachricht empfangen, x = ");
Serial.print(x);
Serial.print(", y = ");
Serial.println(y);

}
else
{
Serial.print("Unbekannter Tag in Nachricht: ");
Serial.write(tag);

}
}
}
}

Diskussion
Der Processing-Code sendet ein Header-Byte, das den Beginn einer gültigen Nachricht
anzeigt. Das ist notwendig, damit sich Arduino synchronisieren kann, falls es in der Mitte
einer Nachricht einsteigt oder falls bei der seriellen Verbindung Daten verloren gehen
können (etwa bei einer Drahtlosverbindung). Der Tag bietet eine weitere Möglichkeit, die
Gültigkeit einer Nachricht zu überprüfen und ermöglicht es darüber hinaus, zusätzliche
Nachrichtentypen individuell zu verarbeiten. In diesem Beispiel wird die Funktion mit
drei Parametern aufgerufen: einem Tag und den 16-Bit x- und y-Koordinaten der Maus.

Der Arduino-Code stellt sicher, dass mindestens MESSAGE_BYTES empfangen wurden, damit
die Nachricht nicht verarbeitet wird, bevor alle benötigten Daten verfügbar sind. Nach-
dem Header und Tag überprüft wurden, werden die 16-Bit-Werte in zwei Bytes einge-
lesen. Das erste Byte wird mit 256 multipliziert, um den ursprünglichen Wert des höher-
wertigen Bytes wiederherzustellen.

Sender und Empfänger müssen die gleiche Nachrichtengröße nutzen,
damit Binärnachrichten korrekt verarbeitet werden können. Soll die An-
zahl der zu sendenden Bytes erhöht oder verringert werden, müssen Sie
TOTAL_BYTES im Arduino-Code entsprechend anpassen.

4.9 Den Wert mehrerer Arduino-Pins senden

Problem
Sie wollen Gruppen binärer Byte-, Integer- oder long-Werte vom Arduino senden. Zum
Beispiel könnten Sie die Werte der digitalen oder analogen Pins an Processing senden
wollen.

–

–

–

–

4.9 Den Wert mehrerer Arduino-Pins senden | 123

Lösung
Das Rezept sendet einen Header gefolgt von einem Integerwert mit den Bitwerten der
Digitalpins 2 bis 13. Darauf folgen sechs Integerzahlen mit den Werten der Analogpins 0
bis 5. Kapitel 5 enthält viele Rezepte, die die Werte der Analog- und Digitalpins setzen.
Diese können Sie nutzen, um diesen Sketch zu testen:

/*
* SendBinaryFields
* Sendet Werte der Digital- und Analogpins als Binärdaten
*/

const char HEADER = 'H'; // Headerzeichen leitet den
// Beginn der Nachricht ein

void setup()
{
Serial.begin(9600);
for(int i=2; i <= 13; i++)
{
pinMode(i, INPUT); // Pins 2 bis 13 sind Eingänge
digitalWrite(i, HIGH); // Pullups einschalten
}
}

void loop()
{
Serial.write(HEADER); // Header senden
// Bitwerte der Pins in Integer ablegen
int values = 0;
int bit = 0;

for(int i=2; i <= 13; i++)
{
bitWrite(values, bit, digitalRead(i)); // Bit abhängig vom Wert des Pins

// auf 0 oder 1 setzen
bit = bit + 1; // Nächstes Bit
}
sendBinary(values); // Integer senden

for(int i=0; i < 6; i++)
{
values = analogRead(i);
sendBinary(values); // Integer senden
}
delay(1000); // Einmal pro Sekunde senden
}

// Funktion zum Senden des gegebenen Integerwertes über den seriellen Port
void sendBinary(int value)
{
// Sende die zwei Bytes, aus denen ein Integer besteht
Serial.write(lowByte(value)); // Niederwertiges Bytes senden
Serial.write(highByte(value)); // Höherwertiges Byte senden
}

–

Se

124 | Kapitel 4: Serielle Kommunikation

Diskussion
Der Code sendet einen Header (das Zeichen H), gefolgt von einem Integerwert, der die
Werte der Digitalpins enthält. Er nutzt die bitRead-Funktion, um ein einzelnes Bit im
Integerwert zu setzen, das dem Wert des Pins entspricht (siehe Kapitel 3). Er sendet dann
sechs Integerwerte, die von den Analogports eingelesen wurden (weitere Informationen
finden Sie in Kapitel 5). Alle Integerwerte werden mit sendBinary übertragen, das wir in
Rezept 4.6 vorgestellt haben. Die Nachricht ist 15 Byte lang – 1 Byte für den Header,
2 Bytes für die Werte der Digitalpins und 12 Bytes für die sechs Werte der Analogpins. Der
Code für die Digital- und Analogeingänge wird in Kapitel 5 erläutert.

Wenn wir annehmen, dass analog 0 an Pin 0, 100 an Pin 1 und 200 an Pin 2 bis 500 an
Pin 5 anliegen, während die Digitalpins 2 bis 7 HIGH und die Pins 8 bis 13 LOW sind,
dann sehen die Dezimalwerte der gesendeten Bytes wie folgt aus:

72 // Das Zeichen 'H' - das ist der Header
// Zwei Bytes (niederwertig/höherwertig) enthalten die Bits für die Pins 2-13

63 // Binär 00111111 : die Pins 2-7 sind angeschaltet
0 // Die Pins 8-13 sind ausgeschaltet

// Zwei Bytes für jeden Analogpin
0 // Pin 0 hat den Integerwert 0, der in zwei Bytes gesendet wird
0

100 // Pin 1 hat den Wert 100, was als ein Byte mit 100 und ein Byte mit 0 gesendet wird
0
...

// Pin 5 hat den Wert 500
244 // Rest der Division von 500 durch 256
1 // So oft kann 500 durch 256 geteilt werden

Der nachfolgende Processing-Code liest die Nachricht ein und gibt die Werte in der
Processing-Konsole aus:

// Processing Sketch

/*
* ReceiveMultipleFieldsBinary_P
*
* portIndex muss auf den Port gesetzt sein, mit dem der Arduino verbunden ist
*/

import processing.serial.*;

Serial myPort; // Serial-Objekt erzeugen
short portIndex = 1; // com-Port wählen, 0 ist der erste Port

char HEADER = 'H';

void setup()
{
size(200, 200);
// Verbindung mit dem Arduino herstellen.
String portName = Serial.list()[portIndex];
println(Serial.list());

–

4.9 Den Wert mehrerer Arduino-Pins senden | 125

println(" Verbinde mit -> " + Serial.list()[portIndex]);
myPort = new Serial(this, portName, 9600);
}

void draw()
{
int val;

if (myPort.available() >= 15) // Warten, bis gesamte Nachricht verfügbar ist
{
if(myPort.read() == HEADER) // Header-Zeichen?
{
println("Nachricht empfangen:");
// Header gefunden
// Integer mit Bitwerten einlesen
val = readArduinoInt();
// Wert jedes Pins ausgeben
for(int pin=2, bit=1; pin <= 13; pin++){
print("Digitalpin " + pin + " = ");
int isSet = (val & bit);
if(isSet == 0) {
println("0");
}
else{
println("1");
}
bit = bit * 2; //Bit zur nächsten Binärstelle schieben

}
println();
// Die sechs Analogwerte ausgeben
for(int i=0; i < 6; i ++){
val = readArduinoInt();
println("Analogport " + i + "= " + val);

}
println("----");
}
}
}

// Integerwert aus seriellen Bytes erzeugen (niederwertig/höherwertig)
int readArduinoInt()
{
int val; // Über seriellen Port empfangene Daten

val = myPort.read(); // Niederwertiges Byte einlesen
val = myPort.read() * 256 + val; // Höherwertiges Byte hinzufügen
return val;
}

Der Processing-Code wartet, bis 15 Zeichen eingegangen sind. Ist das erste Zeichen der
Header, ruft er eine Funktion namens readArduinoInt auf, um zwei Bytes einzulesen und
wieder in einen Integerwert umzuwandeln. Mit Hilfe einer mathematischen Umkehr-
operation (als Gegenstück zu den durchgeführten Arduino-Operationen) gelangen wir
dann an die einzelnen Bits der Digitalpins. Die folgenden sechs Integerwerte repräsentie-
ren die Analogwerte.

re

126 | Kapitel 4: Serielle Kommunikation

Siehe auch
Um Arduino-Werte an den Computer zu senden, oder die Pins über den Computer zu setzen,
ohne sich um das Board Gedanken machen zu müssen, können Sie Firmata (http://www.
firmata.org nutzen. Die Firmata-Bibliothek und Beispiel-Sketches (File→Examples→Firmata)
sind in der Arduino-Software-Distribution enthalten, und es gibt auch eine Bibliothek für
Processing. Sie laden den Firmata-Code auf den Arduino hoch, legen mit dem Computer fest,
welche Pins Ein- und Ausgänge sind, und setzen oder lesen dann diese Pins.

4.10 Den Mauszeiger eines PCs oder Macs bewegen

Problem
Sie wollen Arduino durch Bewegen des Mauszeigers mit einer Anwendung auf Ihrem
Computer interagieren lassen, etwa durch die Positionierung der Maus basierend auf
Informationen vom Arduino. Stellen Sie sich beispielsweise vor, Sie hätten einen Wii
Nunchuck (siehe Rezept 13.2) an Ihren Arduino angeschlossen und möchten, dass Ihre
Handbewegungen die Position des Mauszeigers in einem PC-Programm steuern.

Lösung
Sie können serielle Befehle senden, die einem auf dem Zielrechner laufenden Programm
die Position des Mauszeigers angeben. Hier ein Sketch, der den Mauszeiger basierend auf
der Position zweier Potentiometer steuert:

// SerialMouse Sketch
const int buttonPin = 2; //LOW am Digitalpin aktiviert Maus

const int potXPin = 4; // Analogpins für Potis
const int potYPin = 5;

void setup()
{
Serial.begin(9600);
pinMode(buttonPin, INPUT);
digitalWrite(buttonPin, HIGH); // Pullups einschalten
}

void loop()
{
int x = (512 - analogRead(potXPin)) / 4; // Bereich ist -127 bis +127
int y = (512 - analogRead(potYPin)) / 4;
Serial.print("Data,");
Serial.print(x,DEC);
Serial.print(",");
Serial.print(y,DEC);
Serial.print(",");
if(digitalRead(buttonPin) == LOW)
Serial.print(1); // Sende 1, wenn Button gedrückt ist

else

–

–

–

–

–

4.10 Den Mauszeiger eines PCs oder Macs bewegen | 127

Serial.print(0);
Serial.println(",");
delay(50); // Sende Position 20-mal pro Sekunde
}

Abbildung 4-4 zeigt den Anschluss zweier Potentiometer (Details finden Sie in Kapitel 5
for more details). Der Schalter wurde einbezogen, damit Sie die Arduino-Maussteuerung
durch Schließen oder Öffnen des Kontakts kontrollieren können.

 T
K1

RX
O2346 579 8101112

GN
D 13

AR
EF

R
E

S
E

T
Arduino

DIGITAL

4 5210 3
ANALOG

V
in

5V3V
3

G
nd

G
nd

10K

Poti

10K

Schalter schließen,
um Maussteuerung

zu aktivieren.

Poti

Abbildung 4-4: Anschluss zweier Potentiometer zur Maussteuerung

Der Processing-Code basiert auf dem Code aus Rezept 4.4, wurde aber um Code zur
Maussteuerung ergänzt:

// Processing Sketch

/*
* ArduinoMouse.pde (Processing Sketch)
*/

/* WARNING: Der Sketch übernimmt die Maus
Drücken Sie Escape, um den laufenden Sketch zu schließen */

import java.awt.AWTException;
import java.awt.Robot;
import processing.serial.*;

A

128 | Kapitel 4: Serielle Kommunikation

Serial myPort; // Serial-Objekt erzeugen
arduMouse myMouse; // Arduino-kontrollierte Maus erzeugen

public static final short LF = 10; // ASCII-Linefeed
public static final short portIndex = 1; // com-Port wählen,

// 0 ist der erste Port

int posX, posY, btn; // Daten der Nachricht werden hier abgelegt

void setup() {
size(200, 200);
println(Serial.list());
println(" Verbinde mit -> " + Serial.list()[portIndex]);
myPort = new Serial(this,Serial.list()[portIndex], 9600);
myMouse = new arduMouse();
btn = 0; // Maus ausschalten, bis von Arduino angefordert
}

void draw() {
if (btn != 0)
myMouse.move(posX, posY); // Maus an empfangene x- und y-Position bewegen

}

void serialEvent(Serial p) {
String message = myPort.readStringUntil(LF); // Serielle Daten einlesen
if(message != null)
{
//print(message);
String [] data = message.split(","); // Kommaseparierte Nachricht zerlegen
if (data[0].equals("Data"))// Auf Header prüfen
{
if(data.length > 3)
{
try {
posX = Integer.parseInt(data[1]);
posY = Integer.parseInt(data[2]);
btn = Integer.parseInt(data[3]);
}
catch (Throwable t) {
println("."); // Parsing-Fehler
print(message);
}

}
}
}
}

class arduMouse {
Robot myRobot; // Objekt der Robot-Klasse erzeugen
static final short rate = 4; // Multiplikator zur Korrektur der Bewegungsgeschwindigkeit
int centerX, centerY;
arduMouse() {
try {
myRobot = new Robot();
}
catch (AWTException e) {
e.printStackTrace();

4.10 Den Mauszeiger eines PCs oder Macs bewegen | 129

}
Dimension screen = java.awt.Toolkit.getDefaultToolkit().getScreenSize();
centerY = (int)screen.getHeight() / 2 ;
centerX = (int)screen.getWidth() / 2;
}
// Methode bewegt die Maus von der Mitte des Bildschirms um den angegebenen Offset
void move(int offsetX, int offsetY) {
myRobot.mouseMove(centerX + (rate* offsetX), centerY - (rate * offsetY));
}
}

Der Processing-Code zerlegt die Nachricht mit den x- und y-Koordinaten und sendet die
Daten an die mouseMove-Methode der Java-Klasse Robot. Im Beispiel nutzt die Robot-Klasse
einen Wrapper namens arduMouse, der eine move-Methode zur Verfügung stellt, die eine
Skalierung auf die Bildschirmgröße vornimmt.

Diskussion
Diese Technik zur Steuerung von auf dem Computer laufenden Anwendungen ist einfach
zu implementieren und sollte mit allen Betriebssystemen funktionieren, die Processing
ausführen können. Muss die Bewegungsrichtung der x- oder y-Achse umgekehrt werden,
ändern Sie einfach das Vorzeichen der Achse im Processing-Sketch:

posX = -Integer.parseInt(data[1]); // Minuszeichen invertiert Achse

Einige Plattformen verlangen besondere Privilegien oder Erweiterungen,
um auf unterster Ebene auf Eingaben zugreifen zu können. Wenn Sie keine
Kontrolle über die Maus erlangen, sehen Sie in der Dokumentation Ihres
Betriebssystems nach.

Ein außer Kontrolle geratenes Robot-Objekt kann Ihnen die Kontrolle über
die Maus und die Tastatur entziehen, wenn es in einer Endlosschleife läuft.
In diesem Rezept senden wir den Pegel von Digitalpin 2 an Processing, um
die Kontrolle zu aktivieren bzw. zu deaktivieren.

Boards mit dem ATmeg32U4-Controller können eine USB-Maus direkt
emulieren. Das Arduino Leonardo und das PJRC Teensy liefern Beispiele
mit, die zeigen, wie man eine USB-Maus emuliert.

Leonardo-Board:
http://blog.makezine.com/archive/2011/09/arduino-leonardo-
opens-doors-to-product-development.html

Teensy-Beispiel für USB-Maus:
http://www.pjrc.com/teensy/usb_mouse.html

Siehe auch
Unter http://java.sun.com/j2se/1.3/docs/api/java/awt/Robot.html finden Sie weiterführende
Informationen zur Java Robot-Klasse.

Ja
–
Ja

c

A
ä

Ro
–

Ro
–

130 | Kapitel 4: Serielle Kommunikation

Einen Artikel zum Einsatz der Robot-Klasse finden Sie unter http://www.developer.com/
java/other/article.php/10936_2212401_1.

Wenn Sie eine Windows-Programmiersprache bevorzugen, können Sie die Low-Level-
Funktion SendInput der Windows-API nutzen, um Tastatur- und Maus-Events in den
Eingabestream einzufügen. Weitere Informationen finden Sie unter http://msdn.micro-
soft.com/en-us/library/ms646310(VS.85).aspx.

Rezept 4.11 zeigt, wie man diese Technik nutzt, um Google Earth zu steuern.

4.11 Google Earth per Arduino steuern

Problem
Sie wollen über mit dem Arduino verbundene Sensoren die Bewegungen in einer Anwen-
dung wie Google Earth steuern. Zum Beispiel sollen Sensoren, die Ihre Handbewegungen
erkennen, zur Steuerung des Flugsimulators in Google Earth verwendet werden. Die
Sensoren könnten einen Joystick (siehe Rezept 6.17) oder einen Wii Nunchuck (siehe
Rezept 13.2) nutzen.

Lösung
Google Earth erlaubt einen »Flug« über die Erde, wobei man sich Satellitenbilder, Land-
und Geländerkarten sowie Gebäude in 3D ansehen kann (siehe Abbildung 4-5). Es verfügt
über einen Flugsimulator, der über eine Maus gesteuert werden kann. Dieses Rezept
verwendet die Techniken, die in Rezept 4.10 genutzt werden und kombiniert sie mit
einem Joystick, der an den Arduino angeschlossen ist.

Abbildung 4-5: Google Earth-Flugsimulator

J
–

–

–

–

–

–

–

–

–
J
–

–

4.11 Google Earth per Arduino steuern | 131

Der Arduino-Code sendet die horizontale und vertikale Position, die durch das Lesen
eines Eingabegerätes wie etwa eines Joysticks bestimmt wird. Dazu gibt es die unter-
schiedlichsten Möglichkeiten, etwa die Schaltung aus Rezept 4.10, die ausgezeichnet
funktioniert, wenn Sie einen alten, mit Potentiometern arbeitenden Joystick finden, den
Sie dazu nutzen können.

Diskussion
Google Earth steht als kostenloser Download zur Verfügung. Sie können es von der
Google-Website http://earth.google.com/download-earth.html herunterladen. Laden Sie
die Version für Ihr Betriebssystem herunter und installieren Sie sie auf Ihrem Computer.
Starten Sie Google Earth und wählen Sie aus dem Tools-Menü den Flight Simulator.
Wählen Sie ein Flugzeug (die SR22 ist einfacher zu fliegen als die F16) und einen
Flughafen. Die Joystick-Unterstützung muss deaktiviert bleiben – Sie werden die Ardui-
no-kontrollierte Maus verwenden, um das Flugzeug zu fliegen. Klicken Sie den Start
Flight-Button an (fliegt das Flugzeug beim Start bereits, können Sie die Leertaste drücken,
um den Simulator anzuhalten, damit Sie den Processing-Sketch starten können).

Laden Sie den Arduino-Sketch aus Rezept 4.10 hoch und führen Sie den Processing-
Sketch aus diesem Rezept auf Ihrem Computer aus. Machen Sie Google Earth zum ak-
tiven Fenster, indem Sie es anklicken. Aktivieren Sie die Arduino-Maussteuerung, indem
Sie Pin 2 mit Masse verbinden.

Sie sind nun startklar. Drücken Sie ein paarmal die Seite-hoch-Taste, um Gas zu geben
(und drücken Sie dann die Leeraste, falls Sie den Simulator angehalten haben). Wenn die
SR22 eine Geschwindigkeit von etwas über 100 Knoten erreicht, können Sie den Stick
»hochziehen« und fliegen. Informationen zur Simulatorsteuerung finden Sie im Google-
Hilfemenü.

Sobald Sie Ihren Flug beendet haben, können Sie die Arduino-Maussteuerung ausschal-
ten, indem Sie Pin 2 von Masse trennen, und die Kontrolle wieder an die Computermaus
übergeben.

Hier eine weitere Variante, die Nachrichten an den Processing-Sketch sendet. Sie kom-
biniert den Wii Nunchuck-Code aus Rezept 13.2 mit einer in Rezept 16.5 diskutierten
Bibliothek. Die Verschaltung ist in Rezept 13.2 zu sehen:

/*
* WiichuckSerial
*
* Verwendet die Nunchuck-Bibliothek aus Rezep 16.5
* Sendet Daten in kommaseparierten Feldern
* Kommagetrennte Label-Strings können vom Empfänger
* genutzt werden, um die Felder zu identifizieren
*/

#include <Wire.h>
#include "Nunchuck.h"

G
–

W
–
W

132 | Kapitel 4: Serielle Kommunikation

// Werte, die zum Sensor hinzuaddiert werden, um
// bei zentriertem Cursor Nullwerte zu erreichen
int offsetX, offsetY, offsetZ;

#include <Wire.h>
#include "Nunchuck.h"
void setup()
{
Serial.begin(57600);
nunchuckSetPowerpins();
nunchuckInit(); // Initialisierungs-Handshake senden
nunchuckRead(); // Erstes Mal ignorieren
delay(50);

}
void loop()
{
nunchuckRead();
delay(6);
nunchuck_get_data();
boolean btnC = nunchuckGetValue(wii_btnC);
boolean btnZ = nunchuckGetValue(wii_btnZ);

if(btnC) {
offsetX = 127 - nunchuckGetValue(wii_accelX) ;
offsetY = 127 - nunchuckGetValue(wii_accelY) ;
}
Serial.print("Data,");
printAccel(nunchuckGetValue(wii_accelX),offsetX) ;
printAccel(nunchuckGetValue(wii_accelY),offsetY) ;
printButton(nunchuckGetValue(wii_btnZ));

Serial.println();
}

void printAccel(int value, int offset)
{
Serial.print(adjReading(value, 127-50, 127+50, offset));
Serial.print(",");
}

void printJoy(int value)
{
Serial.print(adjReading(value,0, 255, 0));
Serial.print(",");
}

void printButton(int value)
{
if(value != 0)
value = 127;

Serial.print(value,DEC);
Serial.print(",");
}

int adjReading(int value, int min, int max, int offset)
{
value = constrain(value + offset, min, max);

4.11 Google Earth per Arduino steuern | 133

value = map(value, min, max, -127, 127);
return value;

}

Diese Sketches nutzen eine serielle Geschwindigkeit von 57600 Baud, um
die Latenz zu minimieren. Wenn Sie die Arduino-Ausgaben über den
seriellen Monitor beobachten wollen, müssen Sie die Baudrate entspre-
chend anpassen. Für die meisten anderen Sketches in diesem Buch müssen
Sie die Baudrate aber wieder auf 9600 Baud zurücksetzen. Wenn Sie
keinen Wii Nunchuck besitzen, können Sie den Arduino-Sketch aus
Rezept 4.10 verwenden, müssen dann aber die Baudrate des Sketches auf
57600 erhöhen und den Sketch auf den Arduino hochladen.

Sie können statt der Werte des Beschleunigungsmessers auch die Werte des Nunchuck-
Joysticks zurückliefern, indem Sie die beiden mit printAccel beginnenden Zeilen wie folgt
ändern:

printJoy(nunchuckGetValue(wii_joyX));
printJoy(nunchuckGetValue(wii_joyY));

Sie können den Processing-Sketch aus Rezept 4.10 verwenden, doch die nachfolgende
verbesserte Version gibt die Steuerposition im Processing-Fenster aus und aktiviert den
Flugsimulator mit dem Nunchuck-Button ’z’:

/**
* GoogleEarth_FS.pde
*
* Steuert Google-Flugsimulator über CSV-Sensordaten
*/

import java.awt.AWTException;
import java.awt.Robot;
import java.awt.event.InputEvent;
import processing.serial.*;
Serial myPort; // Serial-Objekt erzeugen

arduMouse myMouse;

String message = null;
int maxDataFields = 7; // 3 Achsen Beschleunigung, 2 Buttons, 2 Joystick-Achsen
boolean isStarted = false;
int accelX, accelY, btnZ; // Daten der Nachrichtenfelder werden hier abgelegt

void setup() {
size(260, 260);
PFont fontA = createFont("Arial.normal", 12);
textFont(fontA);

short portIndex = 1; // com-Port wählen, 0 ist der erste Port
String portName = Serial.list()[portIndex];
println(Serial.list());
println(" Verbinde mit -> " + portName) ;
myPort = new Serial(this, portName, 57600);

G
–
C

134 | Kapitel 4: Serielle Kommunikation

myMouse = new arduMouse();

fill(0);
text("Starte Google FS in der Mitte des Bildschirms", 5, 40);
text("Richte den Mauszeiger in Google Earth mittig aus", 10, 60);
text("Zum Spielen Nunchuck Z-Button drücken und loslassen", 10, 80);
text("Z-Button erneut drücken, um Maus anzuhalten", 20, 100);
}

void draw() {
processMessages();
if (isStarted == false) {
if (btnZ != 0) {
println("Button loslassen, um zu starten");
do{ processMessages();}
while(btnZ != 0);

myMouse.mousePress(InputEvent.BUTTON1_MASK); // SIM starten
isStarted = true;
}
}
else
{
if (btnZ != 0) {
isStarted = false;
background(204);
text("Zum Spielen Z-Button loslassen", 20, 100);
print("Angehalten, ");
}
else{
myMouse.move(accelX, accelY); // Maus an empfangene x- und y-Position bewegen
fill(0);
stroke(255, 0, 0);
background(#8CE7FC);
ellipse(127+accelX, 127+accelY, 4, 4);
}
}
}

void processMessages() {
while (myPort.available () > 0) {
message = myPort.readStringUntil(10);
if (message != null) {
//print(message);
String [] data = message.split(","); // CSV-Nachricht zerlegen
if (data[0].equals("Data"))// Header?
{
try {
accelX = Integer.parseInt(data[1]);
accelY = Integer.parseInt(data[2]);
btnZ = Integer.parseInt(data[3]);
}
catch (Throwable t) {
println("."); // Parsing-Fehler
}

}
}
}

4.11 Google Earth per Arduino steuern | 135

}

class arduMouse {
Robot myRobot; // Robot-Objekt erzeugen;
static final short rate = 4; // Zurückzulegende Pixel
int centerX, centerY;
arduMouse() {
try {
myRobot = new Robot();
}
catch (AWTException e) {
e.printStackTrace();
}
Dimension screen = java.awt.Toolkit.getDefaultToolkit().getScreenSize();
centerY = (int)screen.getHeight() / 2 ;
centerX = (int)screen.getWidth() / 2;
}
// Maus von der Mitte des Bildschirms zum angegeben Offset bewegen
void move(int offsetX, int offsetY) {
myRobot.mouseMove(centerX + (rate* offsetX), centerY - (rate * offsetY));
}
// Drücken der Maustaste simulieren
void mousePress(int button) {
myRobot.mousePress(button) ;
}
}

Siehe auch
Die Google-Earth-Website enthält den Code zum Herunterladen und Instruktionen, um
ihn auf dem Computer ans Laufen zu bringen: http://earth.google.com/.

4.12 Arduino-Daten in einer Datei auf dem Computer
festhalten

Problem
Sie wollen eine Datei anlegen, die vom Arduino über den seriellen Port empfangene In-
formationen aufnimmt. Zum Beispiel wollen Sie die Werte der digitalen und analogen
Pins in regelmäßigen Zeitabständen in einer Logdatei speichern.

Lösung
Wir haben in früheren Rezepten erläutert, wie man Informationen vom Arduino an den
Computer schickt. Diese Lösung verwendet den gleichen Arduino-Code wie in Rezept 4.9.
Der Processing-Sketch, der das Logging übernimmt, basiert ebenfalls auf dem in diesem
Rezept beschriebenen Processing-Sketch.

Der Processing-Sketch erzeugt eine Datei (mit dem aktuellen Datum und der Uhrzeit als
Dateiname) im gleichen Verzeichnis, in dem auch der Processing-Sketch liegt. Vom Ar-

G
–

Lo
se
–
An
–
D
–

Pr
–

136 | Kapitel 4: Serielle Kommunikation

duino empfangene Nachrichten werden der Datei hinzugefügt. Das Drücken einer be-
liebigen Taste speichert die Datei und beendet das Programm:

/*
* ReceiveMultipleFieldsBinaryToFile_P
*
* portIndex muss den Port angeben, mit dem der Arduino verbunden ist
* Diese Version basiert auf ReceiveMultipleFieldsBinary und speichert die Daten in einer Datei
* Drücken Sie eine beliebige Taste, um das Logging zu beenden und die Datei zu speichern
*/

import processing.serial.*;

PrintWriter output;
DateFormat fnameFormat= new SimpleDateFormat("yyMMdd_HHmm");
DateFormat timeFormat = new SimpleDateFormat("hh:mm:ss");
String fileName;

Serial myPort; // Serial-Objekt erzeugen
short portIndex = 0; // com-Port wählen, 0 ist der erste Port
char HEADER = 'H';

void setup()
{
size(200, 200);
// Verbindung zum Arduino herstellen.
String portName = Serial.list()[portIndex];
println(Serial.list());
println(" Verbinde mit -> " + Serial.list()[portIndex]);
myPort = new Serial(this, portName, 9600);
Date now = new Date();
fileName = fnameFormat.format(now);
output = createWriter(fileName + ".txt"); // Datei im Sketch-Ordner speichern
}

void draw()
{
int val;
String time;

if (myPort.available() >= 15) // Auf vollständige Nachricht warten
{
if(myPort.read() == HEADER) // Header-Zeichen?
{
String timeString = timeFormat.format(new Date());
println("Nachricht empfangen am " + timeString);
output.println(timeString);
// Header gefunden
// Integer mit Bitwerten einlesen
val = readArduinoInt();
// Wert jedes Bits ausgeben
for(int pin=2, bit=1; pin <= 13; pin++){
print("Digitalpin " + pin + " = ");
output.print("Digitalpin " + pin + " = ");
int isSet = (val & bit);
if(isSet == 0){

4.12 Arduino-Daten in einer Datei auf dem Computer festhalten | 137

println("0");
output.println("0");

}
else {
println("1");
output.println("0");
}
bit = bit * 2; // Bit verschieben

}
// Sechs Analogwerte ausgeben
for(int i=0; i < 6; i ++){
val = readArduinoInt();
println("Analogport " + i + "= " + val);
output.println("Analogport " + i + "= " + val);

}
println("----");
output.println("----");
}
}
}

void keyPressed() {
output.flush(); // Restliche Daten in Datei schreiben
output.close(); // Datei schließen
exit(); // Programm beenden
}

// Integerwert aus Bytes zusammensetzen
int readArduinoInt()
{
int val; // Vom seriellen Port empfangene Daten

val = myPort.read(); // Niederwertiges Byte einlesen
val = myPort.read() * 256 + val; // Höherwertiges Byte hinzuaddieren
return val;
}

Denken Sie daran, portIndex auf den seriellen Port einzustellen, mit dem der Arduino
verbunden ist.

Diskussion
Der Basisname für die Logdatei wird mit Hilfe der DateFormat-Funktion von Processing
erzeugt:

DateFormat fnameFormat= new SimpleDateFormat("yyMMdd_HHmm");

Den vollständigen Dateinamen erzeugt dann Code, der außerdem ein Verzeichnis und
eine Dateiendung hinzufügt:

output = createWriter(fileName + ".txt");

Die Datei wird im gleichen Verzeichnis erzeugt, in dem auch der Processing-Sketch liegt
(der Sketch muss mindestens einmal abgespeichert werden, damit das Verzeichnis auch
wirklich existiert). Um das Verzeichnis zu öffnen, wählen Sie Sketch→Show Sketch Folder

Pr
–

138 | Kapitel 4: Serielle Kommunikation

im Processing-Menü. createWriter ist die Processing-Funktion, die die Datei öffnet. Sie
erzeugt ein Objekt namens output, das für die eigentliche Dateiausgabe sorgt. Der in die
Datei geschriebene Text entspricht genau dem, was auf der Konsole in Rezept 4.9 aus-
gegeben wird, doch Sie können den Datei-Inhalt mit den normalen Processing-Fähig-
keiten zur Stringverarbeitung ganz an Ihre Bedürfnisse anpassen. Zum Beispiel erzeugt die
folgende Variante der draw-Routine eine kommaseparierte Datei, die von einer Tabellen-
kalkulation oder einer Datenbank gelesen werden kann. Der Rest des Processing-Sketches
kann gleichbleiben, auch wenn Sie die Dateiendung vielleicht von .txt in .csv ändern
sollten:

void draw()
{
int val;
String time;

if (myPort.available() >= 15) // Auf die gesamte Message warten
{
if(myPort.read() == HEADER) // Header-Zeichen?
{
String timeString = timeFormat.format(new Date());
output.print(timeString);
val = readArduinoInt(); // Digitalwerte einlesen, aber nicht ausgeben

// Sechs Analogswerte durch Kommata getrennt ausgeben
for(int i=0; i < 6; i ++){
val = readArduinoInt();
output.print("," + val);

}
output.println();
}
}
}

Siehe auch
Weiterführende Informationen zu createWriter finden Sie unter http://processing.org/
reference/createWriter_.html.

4.13 Daten an zwei serielle Geräte gleichzeitig senden

Problem
Sie wollen Daten an ein serielles Gerät, z.B. an ein serielles LCD, senden, verwenden den
eingebauten seriellen Port aber schon zur Kommunikation mit Ihrem Computer.

Lösung
Bei einem Mega ist das kein Problem, da er vier serielle Hardware-Ports besitzt. Erzeugen
Sie einfach zwei serielle Objekte und nutzen Sie einen für das LCD und den anderen für
den Computer:

–

–

–

4.13 Daten an zwei serielle Geräte gleichzeitig senden | 139

void setup() {
// Zwei serielle Ports beim Mega initialisieren
Serial.begin(9600); // Primärer serieller Port
Serial1.begin(9600); // Mega kann Serial1 bis Serial3 nutzen
}

Bei einem Standard-Arduino-Board (wie dem Uno oder dem Duemilanove) gibt es nur
einen seriellen Hardware-Port, und Sie müssen einen zusätzlichen seriellen Port per
Software emulieren.

Sie können die mitgelieferte SoftwareSerial-Bibliothek verwenden, um Daten an mehrere
Geräte zu senden.

Arduino nutzt seit der Release 1.0 eine verbesserte SoftwareSerial-Biblio-
thek, die auf Mikal Harts NewSoftSerial-Bibliothek basiert. Falls Sie eine
Arduino-Release vor 1.0 verwenden, können Sie NewSoftSerial von
http://arduiniana.org/libraries/newsoftserial herunterladen.

Wählen Sie zwei freie Digitalpin, jeweils einen für das Senden und das Empfangen, und
schließen Sie das serielle Gerät daran an. Es ist praktisch, den seriellen Hardware-Port für
die Kommunikation mit dem Computer zu verwenden, weil er einen USB-Adapter auf
dem Board integriert hat. Verbinden Sie die Sendeleitung des Geräts mit dem Empfangs-
pin und die Empfangsleitung mit dem Sendepin. In Abbildung 4-6 haben wir Pin 2 als
Empfangs- und Pin 3 als Sendepin gewählt.

TX

1
RX

02346 579 8101112

GN
D 13

AR
EF

Vi
n

5V3V
3

RE
SE

T

Gn
d

Gn
d

Arduino

DIGITAL

4 5210 3

ANALOG

Vin

Gnd

Rx

Serielles LCD

Abbildung 4-6: Serielles Gerät mit seriellem »Soft-Port« verbinden

In Ihrem Sketch erzeugen Sie ein SoftwareSerial-Objekt, und teilen ihm mit, welche Pins
Sie für den emulierten seriellen Port verwenden. In unserem Beispiel haben wir ein Objekt
namens serial_lcd erzeugt, das die Pins 2 und 3 nutzt:

/*
* SoftwareSerialOutput Sketch

So
–

H
N
–

So

140 | Kapitel 4: Serielle Kommunikation

* Daten über seriellen "Software-Port" ausgeben
*/

#include <SoftwareSerial.h>

const int rxpin = 2; // Zum Empfang verwendeter Pin (wird in dieser Version nicht genutzt)
const int txpin = 3; // Zum Senden an das LCD verwendeter Pin
SoftwareSerial serial_lcd(rxpin, txpin); // Neuer serieller Port an den Pins 2 und 3

void setup()
{
Serial.begin(9600); // 9600 Baud für den fest eingebauten seriellen Port
serial_lcd.begin(9600); // Software-Port ebenfalls mit 9600 initialisieren
}

int number = 0;

void loop()
{
serial_lcd.print("Die Zahl ist "); // Text an LCD senden
serial_lcd.println(number); // Zahl auf LCD ausgeben
Serial.print("Die Zahl ist ");
Serial.println(number); // Zahl auf Konsole ausgeben

delay(500); // Halbe Sekunde zwischen den Zahlen warten
number++; // Zur nächsten Zahl
}

Wenn Sie Arduino-Versionen vor 1.0 verwenden, laden Sie die NewSoft-
Serial-Bibliothek herunter und ersetzen Sie die Referenzen auf Software-
Serial durch NewSoftSerial:

// NewSoftSerial-Version

#include <NewSoftSerial.h>

const int rxpin = 2; // Zum Empfang verwendeter Pin
const int txpin = 3; // Zum Senden verwendeter Pin
NewSoftSerial serial_lcd(rxpin, txpin); // Neuer serieller Port an den Pins 2 + 3

Der Sketch setzt voraus, dass das serielle LCD mit Pin 3 (siehe Abbildung 4-6) und die
serielle Konsole mit dem eingebauten Port verbunden ist. Die Schleife gibt bei jedem
Durchlauf die gleiche Meldung aus:

Die Zahl ist 0
Die Zahl ist 1
...

Diskussion
Jeder Arduino-Mikrocontroller verfügt über mindestens eine eingebaute serielle Schnitt-
stelle. Diese spezielle Hardware ist für die Generierung einer Folge zeitlich genau fest-
gelegter Impulse verantwortlich, die die Gegenstelle als Daten interpretiert, ebenso wie

4.13 Daten an zwei serielle Geräte gleichzeitig senden | 141

den Datenstrom, der im Gegenzug empfangen wird. Zwar besitzt der Mega vier dieser
Ports, aber die meisten Arduino-Varianten besitzen nur einen. Wenn Sie bei einem Projekt
zwei oder mehr serielle Geräte anschließen müssen, benötigen Sie eine Software-Biblio-
thek, die diese zusätzlichen Ports emuliert. Eine solche Bibliothek für einen »seriellen
Software-Port« macht aus einem beliebigen Paar digitaler E/A-Pins einen neuen seriellen
Port.

Um einen solchen seriellen Software-Port aufzubauen, wählen Sie ein Paar Pins aus, die als
Sende- und Empfangsleitungen fungieren (genau wie die Pins 1 und 0 von Arduinos
eingebautem Port). In Abbildung 4-6 werden die Pins 3 und 2 genutzt, aber Sie können
alle verfügbaren Digitalpins verwenden. Die Pins 0 und 1 sollten Sie aber meiden, da sie
bereits vom eingebauten Port genutzt werden.

Die Syntax beim Schreiben an den Soft-Port ist mit der beim Hardware-Port identisch. Im
Beispiel-Sketch werden Daten sowohl an den »echten« als auch an den emulierten Port
mit print() und println() gesendet:

serial_lcd.print("Die Zahl ist "); // Text an LCD senden
serial_lcd.println(number); // Zahl an LCD senden

Serial.print("Die Zahl ist "); // Text an Hardware-Port senden
Serial.println(number); // und über seriellen Monitor ausgeben

Wenn Sie ein unidirektionales serielles Gerät verwenden – das nur sendet oder nur
empfängt –, können Sie Ressourcen sparen, indem Sie für die nicht benötigte Leitung
einen nicht existierenden Pin im SoftwareSerial-Konstruktor angeben. Beispielsweise ist
ein serielles LCD grundsätzlich ein reines Ausgabegerät. Wenn Sie keine Daten von ihm
erwarten (oder empfangen wollen), können Sie das SoftwareSerial mit folgender Syntax
mitteilen:

#include <SoftwareSerial.h>
...
const int no_such_pin = 255;
const int txpin = 3;
SoftwareSerial serial_lcd(no_such_pin, txpin); // Nur TX an Pin 3

In diesem Fall würden Sie physikalisch nur einen einzelnen Pin (3) mit der »Eingangs-«
oder »RX«-Leitung verbinden.

Siehe auch
SoftwareSerial für Arduino 1.0 (und höher) basiert auf NewSoftSerial. Mehr über
NewSoftSerial erfahren Sie auf Mikal Harts Website (http://arduiniana.org/libraries/
newsoftserial/)

142 | Kapitel 4: Serielle Kommunikation

4.14 Serielle Daten von zwei Geräten gleichzeitig
empfangen

Problem
Sie wollen Daten von einem seriellen Gerät, etwa einem GPS-Modul, empfangen, nutzen
den eingebauten seriellen Port aber bereits zur Kommunikation mit Ihrem Computer.

Lösung
Dieses Problem ähnelt dem aus Rezept 4.13, und natürlich ist auch die Lösung sehr
ähnlich. Ist der serielle Port des Arduino bereits mit der Konsole verbunden, wenn Sie ein
zweites serielles Gerät anschließen wollen, dann müssen Sie mit einer Software-Bibliothek
einen seriellen Port emulieren. In diesem Fall empfangen wir Daten über den emulierten
Port, statt sie zu schreiben, doch die grundlegende Lösung ist fast gleich.

Beachten Sie die Hinweise zur NewSoftSerial-Bibliothek im vorstehenden
Rezept, wenn Sie eine Arduino-Release vor 1.0 verwenden.

Wählen Sie zwei Pins für die Sende- und Empfangsleitungen.

Verbinden Sie Ihr GPS wie in Abbildung 4-7 zu sehen. Rx (die Empfangsleitung) wird in
diesem Beispiel nicht verwendet, d.h., Sie können die Rx-Verbindung mit Pin 3 igno-
rieren, wenn Ihr GPS keinen Empfangspin besitzt.

Vi
n

3V
3

RE
SE

T

Gn
d

Gn
d

Arduino

DIGITAL

4 5210 3

ANALOG

1 Gnd
2 Vin
3 Rx
4 Tx
5 Gnd
6 PPS

EM-406A

TK
1

RX
O246 579 8101112

GN
D 13

AR
EF 3

5V

Abbildung 4-7: Serielles GPS-Gerät mit seriellem »Soft-Port« verbinden

Wie in Rezept 4.13 erzeugen Sie ein SoftwareSerial-Objekt in Ihrem Sketch und teilen
ihm mit, welche Pins verwendet werden. Im folgenden Beispiel definieren wir einen

–

–

–

–

4.14 Serielle Daten von zwei Geräten gleichzeitig empfangen | 143

seriellen Software-Port namens serial_gps und verwenden die Pins 2 und 3 zum Emp-
fangen und Senden:

/*
* SoftwareSerialInput Sketch
* Daten über seriellen Soft-Port einlesen
*/

#include <SoftwareSerial.h>
const int rxpin = 2; // GPS-Empfangspin
const int txpin = 3; // GPS-Sendepin
SoftwareSerial serial_gps(rxpin, txpin); // Neuer serieller Port an Pins 2 und 3

void setup()
{
Serial.begin(9600); // 9600 Baud für eingebauten seriellen Port
serial_gps.begin(4800); // Port initialisieren; die meisten GPS-Geräte

// verwenden 4800 Baud
}

void loop()
{
if (serial_gps.available() > 0) // Zeichen eingegangen?
{
char c = serial_gps.read(); // Dann vom GPS einlesen
Serial.write(c); // und über die serielle Konsole ausgeben
}
}

Wenn Sie Arduino-Versionen vor 1.0 verwenden, laden Sie die NewSoftSerial-Bibliothek
herunter und ersetzen Sie die Aufrufe von SoftwareSerial durchNewSoftSerial:

// NewSoftSerial-Version
#include <NewSoftSerial.h>
const int rxpin = 2; // GPS-Empfangspin
const int txpin = 3; // GPS-Sendepin
NewSoftSerial serial_gps(rxpin, txpin); // neuer serieller Port an Pins 2 und 3

Dieser kurze Sketch leitet einfach alle vom GPS eingehenden Daten an den seriellen
Monitor des Arduino weiter. Wenn Ihr GPS funktioniert und richtig verdrahtet ist, sollten
GPS-Daten auf dem seriellen Monitor erscheinen.

Diskussion
Sie initialisieren den emulierten SoftwareSerial-Port, indem Sie die Sende- und Empfangs-
pins übergeben. Der folgende Code richtet den Port so ein, dass an Pin 2 empfangen und
an Pin 3 gesendet wird:

const int rxpin = 2; // GPS-Empfangspin
const int txpin = 3; // GPS-Sendepin
SoftwareSerial serial_gps(rxpin, txpin); // Neuer serieller Port an Pins 2 und 3

Der txpin wird in diesem Beispiel nicht verwendet und kann (wie im vorigen Rezept
erläutert) auf 255 gesetzt werden, um Pin 3 frei zu lassen.

So

144 | Kapitel 4: Serielle Kommunikation

Die Syntax zum Lesen des emulierten Ports ähnelt stark dem des Lesens vom eingebauten
Port. Zuerst wird mit available() geprüft, ob ein Zeichen vom GPS eingegangen ist, und
dann wird es mit read() eingelesen.

Es ist wichtig, daran zu denken, dass serielle Software-Ports Zeit und Ressourcen ver-
brauchen. Ein emulierter serieller Port muss all das machen, was auch ein Hardware-Port
macht, muss dabei aber den gleichen Prozessor nutzen, mit dem Ihr Sketch seine
eigentliche Arbeit erledigen will. Geht ein neues Zeichen ein, unterbricht der Prozessor
seine aktuelle Arbeit, um es zu verarbeiten. Das kann recht zeitaufwendig sein. Bei
4800 Baud braucht Arduino zum Beispiel etwa zwei Millisekunden, um ein einzelnes
Zeichen zu verarbeiten. Nun hören sich zwei Millisekunden nicht nach viel an, doch
stellen Sie sich vor, dass die Gegenstelle (z.B. das oben erwähnte GPS-Gerät) 200 bis 250
Zeichen pro Sekunde sendet. Dann verbringt Ihr Sketch 40 bis 50 Prozent seiner Zeit
damit, die seriellen Daten zu empfangen. Da bleibt nur sehr wenig Zeit, diese Daten auch
tatsächlich zu verarbeiten. Das Fazit lautet, dass bei zwei seriellen Geräten das mit der
höheren Bandbreitennutzung den eingebauten (Hardware-) Port nutzen sollte. Muss ein
viel Bandbreite benötigendes Gerät mit einem seriellen Software-Port verbunden werden,
muss der Rest des Sketches sehr effizient sein.

Daten von mehreren SoftwareSerial-Ports empfangen

Mit der SoftwareSerial-Bibliothek, die bei Arduino 1.0 mitgeliefert wird, können Sie
mehrere serielle »Soft-Ports« aufbauen. Das ist praktisch, wenn man beispielsweise
mehrere XBee-Radios oder serielle Displays im gleichen Projekt steuern will. Der Haken
ist, dass zu jedem Zeitpunkt nur einer dieser Ports aktiv Daten empfangen kann. Die
zuverlässige Kommunikation über einen Software-Port verlangt die ungeteilte Aufmerk-
samkeit des Prozessors, weshalb SoftwareSerial nur mit jeweils einem Port aktiv kom-
munizieren kann.

Es ist möglich, in einem Sketch etwas von zwei verschiedenen SoftwareSerial-Ports
gleichzeitig zu empfangen. Es gibt viele erfolgreiche Designs, die beispielsweise ein se-
rielles GPS überwachen und dann später Daten von einem XBee verarbeiten. Die Lösung
besteht darin, langsam zwischen ihnen zu wechseln und das zweite Gerät nur zu nutzen,
wenn die Übertragung beim ersten abgeschlossen ist.

Nehmen wir zum Beispiel an, dass im folgenden Sketch ein entferntes XBee-Modul
Befehle sendet. Der Sketch verarbeitet den Befehls-Stream vom »xbee«-Port, bis er ein
Signal erhält, dass er Daten des mit dem zweiten SoftwareSerial-Port verbundenen GPS-
Gerätes verarbeiten soll. Der Sketch überwacht das GPS dann für 10 Sekunden – gerade
lang genug, um eine Ortung vornehmen zu können –, bevor er sich wieder dem XBee
widmet.

Bei einem System mit mehreren »Soft-Ports« kann nur jeweils einer aktiv Daten emp-
fangen. Standardmäßig ist der »aktive« Port derjenige, für den begin() zuletzt aufgerufen
wurde. Sie können den aktiven Port ändern, indem Sie dessen listen()-Methode auf-
rufen. listen() weist das SoftwareSerial-System an, den Datenempfang auf einem Port zu
unterbrechen und mit einem anderen Port fortzufahren.

4.14 Serielle Daten von zwei Geräten gleichzeitig empfangen | 145

Das folgende Code-Fragment zeigt, wie Sie einen Sketch entwerfen können, der Daten
zuerst von einem und dann von einem anderen Port einliest:

/*
* MultiRX Sketch
* Daten von zwei seriellen Software-Ports empfangen
*/
#include <SoftwareSerial.h>
const int rxpin1 = 2;
const int txpin1 = 3;
const int rxpin2 = 4;
const int txpin2 = 5;

SoftwareSerial gps(rxpin1, txpin1); // GPS an Pin 2 und 3
SoftwareSerial xbee(rxpin2, txpin2); // xbee an Pin 4 und 5

void setup()
{
xbee.begin(9600);
gps.begin(4800);
xbee.listen(); // »xbee« ist aktives Gerät
}

void loop()
{
if (xbee.available() > 0) // xbee ist aktiv. Daten vorhanden?
{
if (xbee.read() == 'y') // xbee hat 'y'-Zeichen empfangen
{
gps.listen(); // Jetzt GPS verarbeiten

unsigned long start = millis(); // GPS-Abfrage beginnt
while (start + 100000 > millis())
// 10 Sekunden abfragen
{
if (gps.available() > 0) // Jetzt ist GPS aktiv
{
char c = gps.read();
// *** GPS-Daten hier verarbeiten
}

}
xbee.listen(); // Nach 10 Sekunden wieder xbee verarbeiten
}
}
}

Der Sketch ist so entworfen, dass er das XBee-Radio als aktiven Port behandelt, bis ein
y-Zeichen empfangen wird. An diesem Punkt wird das GPS zum aktiven Gerät. Nachdem
die GPS-Daten für 10 Sekunden verarbeitet wurden, wendet sich der Sketch wieder dem
XBee-Port zu. An einem inaktiven Port eingehende Daten werden einfach verworfen.

Beachten Sie, dass diese »aktiver Port«-Beschränkung nur für mehrere Soft-Ports gilt.
Muss Ihr Design wirklich Daten von mehr als einem seriellen Gerät simultan empfangen,
sollten Sie es an einen der eingebauten Hardware-Ports anschließen. Alternativ können Sie
Ihre Projekte über externe Chips, sog. UARTs, um zusätzliche Hardware-Ports erweitern.

M

U

146 | Kapitel 4: Serielle Kommunikation

4.15 Serielle Daten mit Processing Senden und Empfangen

Problem
Sie wollen die Processing-Entwicklungsumgebung nutzen, um serielle Daten zu senden
und zu empfangen.

Lösung
Sie können Processing vom Download-Bereich der Processing-Website http://processing
.org herunterladen. Dateien stehen für alle wichtigen Betriebssysteme zur Verfügung.
Laden Sie die Datei für Ihr Betriebssystem herunter und entpacken Sie sie an dem Ort, an
dem Sie Anwendungen üblicherweise speichern. Bei einem Windows-Computer könnte
das ein Ort wie C:\Programme\Processing\ sein, bei einem Mac vielleicht /Programme/
Processing.app.

Wenn Sie Processing auf dem gleichen Computer installiert haben, auf dem auch die
Arduino-IDE läuft, dann müssen Sie in Processing nur noch den seriellen Port festlegen.
Der folgende Processing-Sketch gibt die verfügbaren seriellen Ports aus:

/**
* GettingStarted
*
* Listet die verfügbaren seriellen Ports auf
* und gibt empfangene Zeichen aus
*/

import processing.serial.*;

Serial myPort; // Serial-Objekt erzeugen
int portIndex = 0; // Arduino-Port
int val; // Vom seriellen Port empfangene Daten

void setup()
{
size(200, 200);
println(Serial.list()); // Liste aller Ports ausgeben
println(" Verbinde mit -> " + Serial.list()[portIndex]);
myPort = new Serial(this, Serial.list()[portIndex], 9600);
}

void draw()
{
if (myPort.available() > 0) // Wenn Daten verfügbar sind,
{
val = myPort.read(); // einlesen und in val speichern
print(val);
}
}

–

–

4.15 Serielle Daten mit Processing Senden und Empfangen | 147

Falls Processing auf einem Computer läuft, auf dem die Arduino-Entwicklungsumgebung
nicht installiert ist, müssen Sie möglicherweise die Arduino-USB-Treiber installieren (was
in Kapitel 1 beschrieben wird).

Die Variable portIndex muss den Port angeben, der vom Arduino genutzt wird. Sie können
die Portnummern im Processing-Textfenster (dem Bereich unter dem Quellcode, nicht
dem separaten Ausgabefenster, sehen. Siehe http://processing.org/reference/environment).
Rezept 1.4 zeigt, wie Sie den seriellen Port ermitteln können, den Ihr Arduino-Board nutzt.

148 | Kapitel 4: Serielle Kommunikation

KAPITEL 5

Einfacher digitaler und analoger Input

5.0 Einführung
Die Fähigkeit des Arduino, digitale und analoge Eingänge abzufragen, erlaubt es ihm, auf
Sie und die Welt um Sie herum zu reagieren. Dieses Kapitel stellt Techniken vor, die es
Ihnen erlauben, nützliche Dinge mit diesen Eingängen anzustellen. Dies ist das erste vieler
noch folgender Kapitel, die elektrische Verbindungen zum Arduino behandeln. Wenn
Ihnen ein Elektronik-Hintergrund fehlt, sollten Sie sich Anhang A zu elektronischen
Komponenten, Anhang B zu Schaltplänen und Datenblättern, Anhang C zum Schaltungs-
aufbau und Anhang E zur Hardware-Fehlersuche ansehen (alle Anhänge stehen auf
unserer Webseite als downloadbare PDF-Texte zur Verfügung). Darüber hinaus stehen
viele gute Einführungen zur Verfügung. Drei für Arduino besonders relevante sind
Arduino für Einsteiger (ISBN 978-3-86899-232-8) von Massimo Banzi, Making Things
Talk ISBN 978-3-86899-162-8 von Tom Igoe und Die elektronische Welt mit Arduino
entdecken (ISBN 978-3-89721-319-7) von Erik Bartmann (beide O’Reilly; suchen Sie auf
oreilly.de). Andere Bücher, die Hintergrundwissen zu den in diesem und den nächsten
Kapiteln behandelten Themen bieten, sind Getting Started in Electronics von Forrest Mims
(Master Publishing) und Physical Computing von Tom Igoe (Cengage).

Wenn die Verdrahtung von Komponenten mit dem Arduino Neuland für
Sie ist, müssen Sie sorgfältig darauf achten, wie Sie Dinge anschließen und
mit Strom versorgen. Arduino verwendet einen recht robusten Controller-
Chip, der einiges verträgt, doch Sie können den Chip beschädigen, wenn Sie
die falsche Spannung anlegen oder Ausgabepins kurzschließen. Die meisten
Arduino-Controller-Chips werden mit 5 Volt betrieben, und Sie dürfen
keine externe Spannung an die Arduino-Pins anlegen, die über dieser Grenze
liegt (bzw. 3,3 Volt, wenn der Arduino mit dieser Spannung betrieben wird).

Die meisten Arduino-Boards haben einen Sockel für den Haupt-Chip,
damit dieser entfernt und ersetzt werde kann. Falls der Chip beschädigt
wird, müssen Sie nicht gleich das ganze Board ersetzen.

–

| 149

Abbildung 5-1 zeigt die Anordnung der Pins bei einem Standard- Arduino-Board. Unter
http://www.arduino.cc/en/Main/Hardware finden Sie eine Liste aller offiziellen Boards,
zusammen mit Links zu Anschlussinformationen. Wenn Ihr Board hier nicht aufgeführt
ist, müssen Sie auf der Website des Herstellers nach Anschlussinformationen suchen.

 TX
1

RX
02346 579 8101112

GN
D 13

AR
EF

Arduino

DIGITAL

LED

Vi
n

5V3V
3

RE
SE

T

Gn
d

Gn
d

4 5210 3

ANALOG

Abbildung 5-1: Digital- und Analogpins bei einem Standard-Arduino-Board

Dieses Kapitel behandelt die Arduino-Pins, die als digitale und analoge Eingänge dienen
können. Digitale Eingangspins erkennen das Vorhandensein oder Fehlen einer Spannung
am Pin. Analoge Eingangspins messen einen Spannungspegel an einem Pin.

Die Arduino-Funktion, die einen digitalen Eingang abfragt, ist digitalRead. Sie teilt dem
Sketch mit, ob an dem Pin eine Spannung anliegt (HIGH, 5 Volt) oder nicht (LOW, 0 Volt).
Die Arduino-Funktion, die einen Pin als Eingang konfiguriert, ist pinMode(pin, INPUT).

Bei einem typischen Board gibt es 14 Digitalpins (von 0 bis 13), die am oberen Rand von
Abbildung 5-1 zu sehen sind. Die Pins 0 und 1 (RX und TX) werden für die USB-Ver-
bindung verwendet und sollten für nichts anderes genutzt werden. Sollten Sie bei einem
Standard-Board weitere Digitalpins benötigen, können Sie Analogpins als Digitalpins
nutzen (die Analogpins 0 bis 5 können als Digitalpins 14 bis 19 verwendet werden).

Arduino 1.0 hat für viele der Pins logische Namen eingeführt. Die Konstanten in Tabelle 5-1
können in allen Funktionen genutzt werden, die eine Pin-Nummer erwarten.

Tabelle 5-1: Bei Arduino 1.0 eingeführte Pin-Konstanten

Konstante Pin-Nummer Konstante Pin-Nummer

A0 Analoger Eingang 0 (Digital 14) LED_BUILTIN Onboard-LED (Digital 13)

A1 Analoger Eingang 1 (Digital 15) SDA I2C Data (Digital 18)

A2 Analoger Eingang 2 (Digital 16) SCL I2C Clock (Digital 19)

A3 Analoger Eingang 3 (Digital 17) SS SPI Select (Digital 10)

A
– A
An
– A
D
– A
Pi

p

D

An

di
–
D
–
pi
–
D
–
U
–

An
–
D
–

150 | Kapitel 5: Einfacher digitaler und analoger Input

Tabelle 5-1: Bei Arduino 1.0 eingeführte Pin-Konstanten (Fortsetzung)

Konstante Pin-Nummer Konstante Pin-Nummer

A4 Analoger Eingang 4 (Digital 18) MOSI SPI Input (Digital 11)

A5 Analoger Eingang 5 (Digital 19) MISO SPI Output (Digital 12)

SCL SPI Clock (Digital 13)

Das Mega-Board verfügt über wesentlich mehr digitale und analoge Pins. Die Digitalpins 0
bis 13 und die Analogpins 0 bis 5 befinden sich an der gleichen Stelle wie beim Standard-
Board, so dass für das Standard-Board entwickelte Hardware- Shields auch auf den Mega
passen. Wie beim Standard-Board können Sie die Analogpins als Digitalpins nutzen, doch
beim Mega sind die Analogpins 0 bis 15 die Digitalpins 54 bis 69. Abbildung 5-2 zeigt die
Anschlussbelegung des Mega.

TX
 1

R
X

02346 57

Arduino Mega

PWM und DIGITAL S
D

A
 2

0
S

C
L

21

R
x1

 1
9

Tx
1

18
R

x2
 1

7

R
x3

 1
5

Tx
2

16

Tx
3

14

4 5210 3 6 7 12 131098 11 14 15

Kommunikation

33
35

32
34

30
28
26

22
24

Gnd

49
51

47
45
43

39
41

37

48
50

46
44
42

38
40

36

5352
GndGndANALOG IN

DI
GI

TA
L

LED

Vi
n

5V3V
3

RE
SE

T

Gn
d

Gn
d

9 81112

GN
D 13

AR
EF 10

Abbildung 5-2: Arduino Mega Board

Bei den meisten Boards ist die LED mit Pin 13 verbunden, und einige Rezepte nutzen sie als
Ausgabeanzeige. Wenn Ihr Board keine LED an Pin 13 besitzt, sehen Sie sich Rezept 7.1 an,
um zu erfahren, wie man eine LED an einen digitalen Pin anschließt.

Digitale Eingänge nutzende Rezepte verwenden manchmal externe Widerstände, um die
Spannung bereitzustellen, die digitalRead verlangt. Diese Widerstände werden Pullup-
Widerstände (weil sie die Spannung auf die 5V »hochziehen«, engl. »pull up«, mit denen
der Widerstand verbunden ist) oder Pulldown-Widerstände (weil die Spannung auf 0 Volt
»heruntergezogen«, engl. »pull down«, wird) genannt. 10 K-Ohm (und mehr) funk-
tioniert. Informationen zu den in diesem Kapitel verwendeten Bauteilen finden Sie in
Anhang A.

Im Gegensatz zu Digitalwerten, die nur an oder aus sind, sind Analogwerte variabel. Der
Lautstärkeregler eines Geräts ist dafür ein gutes Beispiel. Die Lautstärke ist nicht einfach
nur an oder aus, sonder variiert von laut bis leise. Viele Sensoren variieren die Spannung

–

–

–

–

–

–

–

–

–

5.0 Einführung | 151

so, dass sie der Sensormessung entspricht. Arduino-Code verwendet eine Funktion
namens analogRead, um einen Wert zurückzuliefern, der proportional zur Spannung ist,
die an den Analogpins anliegt. Der Wert liegt bei 0 für 0 Volt und 1023 für 5 Volt. Die
Werte entsprechen proportional der Spannung am Pin, d.h., 2,5 Volt (die Hälfte von
5 Volt) liefert einen Wert von etwa 511 (der Hälfte von 1023) zurück. Sie erkennen sechs
analoge Eingangspins (mit 0 bis 5 gekennzeichnet) am unteren Ende von Abbildung 5-1.
Diese Pins können auch als Digitalpins 14 bis 19 genutzt werden, wenn sie für analoge
Aufgaben nicht gebraucht werden. Einige Analog-Rezepte nutzen ein Potentiometer (kurz
Poti, ein variabler Widerstand), um die Spannung an einem Pin zu variieren. Ein Wert von
10K ist die beste Wahl für ein Potentiometer, das an einen Analogpin angeschlossen
werden soll.

Die meisten Schaltungen in diesem Kapitel lassen sich recht einfach verdrahten, doch Sie
sollten die Anschaffung eines lötfreien Steckbretts in Erwägung ziehen, um die Verdrah-
tung externer Komponenten zu vereinfachen. Verschiedene Modelle wie das Jameco
20723 (zwei Busreihen pro Seite), das RadioShack 276-174 (eine Busreihe pro Seite), das
Digi-Key 438-1045-ND und das SparkFun PRT-00137 stehen zur Wahl.

Ein weiteres nützliches Gerät ist ein einfaches Multimeter. Sie können nahezu jedes
verwenden, solange es die Spannung und den Widerstand messen kann. Durchgangs-
prüfung und Strommessung sind nette zusätzliche Optionen. (Jameco 220812, Radio-
Shack 22-810 und SparkFun TOL-00078 bieten diese Features an.)

5.1 Einen Schalter verwenden

Problem
Ihr Sketch soll auf das Schließen eines elektrischen Kontakts reagieren, etwa auf einen
Taster oder einen Schalter, oder ein anderes externes Bauelement, das eine elektrische
Verbindung herstellt.

Lösung
Verwenden Sie digitalRead, um die Stellung eines Schalters zu ermitteln, der mit einem als
Eingang eingestellten Digitalpin des Arduino verbunden ist. Der folgende Code schaltet
eine LED ein, wenn eine Taste gedrückt wird (Abbildung 5-3 zeigt, wie das verschaltet
werden muss):

/*
Pushbutton Sketch
Schalter an Pin 2 steuert die LED an Pin 13

*/

const int ledPin = 13; // LED-Pin
const int inputPin = 2; // Eingangspin für Taster

void setup() {

An
–

Po

va
W
– v

lö
St
–
Ja
Ra
D
Sp
–
M

D
–
Sc
–

di
–

LE
–

W
–
Pu
–
Pu

152 | Kapitel 5: Einfacher digitaler und analoger Input

pinMode(ledPin, OUTPUT); // LED als Ausgang deklarieren
pinMode(inputPin, INPUT); // Taster als Eingang deklarieren
}

void loop(){
int val = digitalRead(inputPin); // Eingangswert einlesen
if (val == HIGH) // Eingang HIGH?
{
digitalWrite(ledPin, HIGH); // LED einschalten, wenn Taster gedrückt
}
else
{
digitalWrite(ledPin, LOW); // LED ausschalten
}
}

10K
Ohm

TX
 1

RX
 02346 57

RE
SE

T

Arduino

DIGITAL

4 5210 3

ANALOG

LED
Vi

n

5V3V
3

Gn
d

Gn
d

9 8101112

GN
D 13

AR
EF

Abbildung 5-3: Über Pulldown-Widerstand angeschlossener Schalter

Bei Standard-Arduino-Boards ist eine LED integriert und fest mit Pin 13
verschaltet. Ist das bei Ihrem Board nicht der Fall, zeigt Rezept 7.1, wie
man eine LED an einen Arduino-Pin anschließt.

Diskussion
Die setup-Funktion konfiguriert den LED-Pin als Ausgang (OUTPUT) und den Schalter-Pin
als Eingang (INPUT).

5.1 Einen Schalter verwenden | 153

Ein Pin muss im OUTPUT-Modus betrieben werden, damit digitalWrite die
Ausgangsspannung des Pins kontrollieren kann. Er muss den INPUT-Modus
nutzen, um den Digitaleingang lesen zu können.

Die Funktion digitalRead überwacht die Spannung am Eingangspin (inputPin) und gibt
HIGH zurück, wenn eine Spannung (5 Volt) anliegt, und LOW, wenn nicht (0 Volt). Genau
genommen wird jede Spannung über 2,5 Volt (der Hälfte der Versorgungsspannung) als
HIGH betrachtet und jede Spannung darunter als LOW. Ist der Pin nicht angeschlossen
(potentialfrei), kann der von digitalRead zurückgelieferte Wert nicht eindeutig vorherge-
sagt werden (er kann HIGH oder LOW sein). Der Widerstand in Abbildung 5-3 stellt sicher,
dass die Spannung am Pin auf 0 sinkt, wenn der Taster nicht gedrückt ist, da er die
Spannung auf Masse (0 Volt) »runterzieht« (engl »pull down«). Wird der Taster gedrückt,
entsteht eine Verbindung zwischen dem Pin und +5 Volt, und der von digitalRead
gelesene Wert wechselt von LOW zu HIGH.

Schließen Sie nicht mehr als 5 Volt (bzw. 3,3 Volt bei 3,3-Volt-Boards) an
die Digital- oder Analogpins an. Das könnte den Pin beschädigen und
möglicherweise den ganzen Chip zerstören. Stellen Sie auch sicher, dass Sie
die 5 Volt nicht direkt (also ohne Widerstand) mit Masse verbinden. Das
beschädigt zwar den Arduino-Chip nicht, tut der Spannungsversorgung
aber nicht gut.

Im obigen Beispiel wird der Wert von digitalRead in der Variablen val gespeichert. Der ist
HIGH, wenn der Taster gedrückt wird, anderenfalls LOW.

Der in diesem Beispiel (und nahezu allen Beispielen in diesem Buch)
verwendete Taster stellt einen elektrischen Kontakt her, wenn man ihn
drückt. Anderenfalls ist der Kontakt unterbrochen. Diese Taster nennt
man Schließer. Artikelnummern finden Sie auf der Website zum Buch
(http://shop.oreilly.com/product/0636920022244.do). Die andere Art Tas-
ter nennt sich Öffner.

Der Ausgangspin, mit dem die LED verbunden ist, wird eingeschaltet, wenn val auf HIGH
gesetzt wird. Die LED leuchtet dann.

Zwar sind beim Arduino alle Digitalpins standardmäßig als Eingänge geschaltet, doch es
hat sich in der Praxis bewährt, sie im Sketch explizit zu setzen, um sich bewusst zu
machen, welche Pins man verwendet.

Manchmal werden Sie ähnlichen Code sehen, der true statt HIGH verwendet. Beide Werte
sind austauschbar (und manchmal wird auch einfach die 1 verwendet). Ebenso ist false
mit LOW und 0 identisch. Verwenden Sie die Form, die die Logik Ihrer Anwendung am
besten ausdrückt.

Sie können nahezu jeden Schalter verwenden, aber die sog. taktilen Taster sind besonders
beliebt, weil sie günstig sind und direkt auf ein Steckbrett aufgesteckt werden können.

di
–
Sp
–

Sp
–

154 | Kapitel 5: Einfacher digitaler und analoger Input

Einige Artikelnummern finden Sie auf der Website zu diesem Buch (http://shop.
oreilly.com/product/0636920022244.do).

Hier eine andere Möglichkeit, die Logik des obigen Sketches zu implementieren:

void loop()
{
digitalWrite(ledPin, digitalRead(inputPin)); // LED einschalten, wenn Eingangspin

// HIGH, sonst ausschalten
}

Hier wird der Zustand des Tasters gar nicht erst in einer Variablen gespeichert. Statt-
dessen wird die LED direkt über den Wert ein- und ausgeschaltet, der von digitalRead
eingelesen wird. Das ist eine praktische Kurzform, doch wenn Ihnen das zu knapp ist,
können Sie auch die andere Variante nutzen. Einen praktischen Performance-Unterschied
gibt es nicht.

Der nachfolgende Pullup-Code entspricht dem der Pulldown-Version, kehrt aber die
Logik um: Der Wert des Pins sinkt auf LOW, wenn der Taster gedrückt wird (die dazu-
gehörige Schaltung sehen Sie in Abbildung 5-4). Stellen Sie sich das so vor, dass die
Spannung »runtergeht«, wenn Sie den Taster drücken:

void loop()
{
int val = digitalRead(inputPin); // Eingangswert einlesen
if (val == HIGH) // Eingang HIGH?
{
digitalWrite(ledPin, LOW); // LED ausschalten
}
else
{
digitalWrite(ledPin, HIGH); // LED einschalten
}
}

TX
 1

RX
 02346 579 8101112

GN
D 13

AR
EF

Vi
n

5V3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

10k
Ohm

4 5210 3

ANALOG

Gn
d

Abbildung 5-4: Über Pullup-Widerstand angeschlossener Taster

–

–

5.1 Einen Schalter verwenden | 155

Siehe auch
Die Arduino-Referenz zu digitalRead: http://arduino.cc/en/Reference/DigitalRead

Die Arduino-Referenz zu digitalWrite: http://arduino.cc/en/Reference/DigitalWrite

Die Arduino-Referenz zu pinMode: http://arduino.cc/en/Reference/PinMode

Die Arduino-Referenzen zu Konstanten (HIGH, LOW, etc.): http://arduino.cc/en/Reference/
Constants

Arduino-Tutorial zu Digitalpins: http://arduino.cc/en/Tutorial/DigitalPins

5.2 Taster ohne externen Widerstand verwenden

Problem
Sie wollen eine Schaltung vereinfachen, indem Sie Schalter ohne externe Pullup-Wider-
stände anschließen.

Lösung
Wie in Rezept 5.1, erläutert, benötigen digitale Eingänge einen Widerstand, um den Pin
auf einem bekannten Pegel zu halten, wenn der Taster nicht gedrückt wird. Arduino
besitzt interne Pullup-Widerstände, die aktiviert werden können, indem man HIGH an
einen Pin im INPUT-Modus schreibt (den dazugehörigen Code sehen Sie in Rezept 5.1).

Für dieses Beispiel wird der Taster wie in Abbildung 5-5 zu sehen verschaltet. Das ent-
spricht eigentlich genau der Schaltung aus Abbildung 5-4, aber ohne den externen
Widerstand.

TX
 1

RX
 02346 579 8101112

GN
D 13

AR
EF

Vi
n

5V3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

Led

4 5210 3

ANALOG

Gn
d

Abbildung 5-5: Verschaltung des Tasters mit internem Pullup-Widerstand

di
–
di
–
pi
–
co
–

D
–

Sc
–
W
–
Pu
–
D
–

156 | Kapitel 5: Einfacher digitaler und analoger Input

Der Taster ist einfach mit Pin 2 und »Gnd« verbunden. Gnd steht für Ground, also Masse,
und ist per Definition mit 0 Volt definiert:

/*
Pullup Sketch
Taster an Pin 2 steuert die LED an Pin 13
*/

const int ledPin = 13; // Ausgangspin für LED
const int inputPin = 2; // Eingangspin für Taster

void setup() {
pinMode(ledPin, OUTPUT);
pinMode(inputPin, INPUT);
digitalWrite(inputPin,HIGH); // Internen Pullup für inputPin einschalten
}
void loop(){
int val = digitalRead(inputPin); // Einganswert einlesen
if (val == HIGH) // Eingang HIGH?
{
digitalWrite(ledPin, HIGH); // LED einschalten
}
else
{
digitalWrite(ledPin, LOW); // LED ausschalten
}
}

Auf dem Arduino-Board gibt es mehr als einen Masse-Anschluss. Sie sind
alle untereinander verbunden, d.h., Sie können sich den aussuchen, der am
besten passt.

Diskussion
Sie aktivieren den internen Pullup-Widerstand, indem Sie ein HIGH an den Pin im
Eingangsmodus senden. Ein digitalWrite(pin, HIGH) für einen Pin im Eingangsmodus ist
vielleicht nicht besonders intuitiv, aber man gewöhnt sich daran. Sie können den Pullup
deaktivieren, indem Sie ein LOW an den Pin senden.

Wenn Sie in Ihrer Anwendung den Pinmodus zwischen Ein- und Ausgang wechseln,
müssen Sie daran denken, dass der Zustand des Pins bei HIGH oder LOW bleibt, wenn Sie den
Zustand ändern. Ist also ein Ausgangspin auf HIGH gesetzt, wenn Sie in den Eingangs-
modus wechseln, bleibt der Pullup aktiv und der Pin erzeugt beim Lesen ein HIGH. Ist der
Pin mit digitalWrite(pin, LOW) auf LOW gesetzt worden und wechseln Sie dann mit
pinMode(pin, INPUT) in den Eingabemodus, bleibt der Pullup aus. Schalten Sie einen
Pullup ein, setzt das Wechsel in den Ausgangsmodus den Pin auf HIGH, was beispielsweise
ungewollt eine angeschlossene LED aufleuchten lassen könnte.

Die internen Pullup-Widerstände sind 20 K-Ohm groß (zwischen 20K und 50K). Das ist
für die meisten Anwendungen geeignet, doch einige Bauelemente verlangen kleinere
Widerstände. Sehen Sie auf dem Datenblatt des Bauelements nach, welche internen
Pullups geeignet sind und welche nicht.

–

5.2 Taster ohne externen Widerstand verwenden | 157

5.3 Das Schließen eines Schalters zuverlässig erkennen

Problem
Sie wollen falsche Eingabewerte aufgrund prellender Kontakte vermeiden (das Prellen
erzeugt falsche Signale, wenn die Kontakte des Schalters schließen oder öffnen). Diese
falschen Signale zu eliminieren, bezeichnet mal als Entprellen.

Lösung
Es gibt viele Möglichkeiten, dieses Problem zu lösen. Hier verwenden wir die Schaltung
aus Abbildung 5-3 from Rezept 5.1:

/*
* Debounce Sketch
* Taster an Pin 2 steuert die LED an Pin 13
* Entprell-Logik verhindert Fehlablesung des Taster-Zustands
*/

const int inputPin = 2; // Eingangspin
const int ledPin = 13; // Ausgangspin
const int debounceDelay = 10; // Wartezeit zur Stabilisierng in Millisekunden

// debounce gibt wahr zurück, wenn der Schalter am angegebenen Pin geschlossen und stabil ist
boolean debounce(int pin)
{
boolean state;
boolean previousState;

previousState = digitalRead(pin); // Zustand des Schalters speichern
for(int counter=0; counter < debounceDelay; counter++)
{
delay(1); // 1 Millisekunde warten
state = digitalRead(pin); // Pin einlesen
if(state != previousState)
{
counter = 0; // Zähler zurücksetzen, wenn sich der Zustand ändert
previousState = state; // und aktuellen Zustand speichern

}
}
// Zustand des Schalters war über die Entprell-Periode hinaus stabil
return state;
}

void setup()
{
pinMode(inputPin, INPUT);
pinMode(ledPin, OUTPUT);
}

void loop()
{
if (debounce(inputPin))
{

Sc
–
Pr
En
D
–

D

158 | Kapitel 5: Einfacher digitaler und analoger Input

digitalWrite(ledPin, HIGH);
}
}

Die debounce-Funktion wird mit der Nummer des Pins aufgerufen, der entprellt werden
soll. Die Funktion liefert true zurück, wenn der Schalter gedrückt wurde und stabil ist. Sie
gibt false zurück, wenn nichts gedrückt wurde oder der Zustand nicht stabil ist.

Diskussion
Die debounce-Funktion prüft, ob der Schalter nach einer gewissen Zeitspanne noch den
gleichen Wert zurückliefert. Diese Zeitspanne muss so lang sein, dass der Schalter nicht
mehr prellt. Möglicherweise müssen Sie eine längere Zeitspanne festlegen (manche
Schalter brauchen 50 ms und mehr). Die Funktion prüft über die in debounce definierte
Dauer wiederholt den Zustand des Schalters. Bleibt der Schalterwert für diese Zeitspanne
gleich, wird dieser Wert zurückgegeben (true, wenn er geschlossen ist, anderenfalls
false). Ändert sich der Zustand innerhalb der Entprellperiode, wird der Zähler zurück-
gesetzt und die Prüfung wird innerhalb der Entprellzeit wiederholt.

Wenn Sie mit Pullup- anstelle von Pulldown-Widerständen arbeiten (siehe Rezept 5.2),
müssen Sie den von der debounce-Funktion zurückgelieferten Wert umkehren, da der
Zustand auf LOW fällt, wenn der Schalter bei Pullups gedrückt wird. Die Funktion sollte
aber true (true ist das Gleiche wie HIGH) zurückgeben, wenn der Taster gedrückt wird. Der
debounce-Code für Pullups ist nachfolgend zu sehen. Nur die letzten vier (hervorgeho-
benen) Zeilen wurden geändert:

boolean debounce(int pin)
{
boolean state;
boolean previousState;

previousState = digitalRead(pin); // Zustand des Schalters speichern
for(int counter=0; counter < debounceDelay; counter++)
{
delay(1); // 1 Millisekunde warten
state = digitalRead(pin); // Pin einlesen
if(state != previousState)
{
counter = 0; // Zähler zurücksetzen, wenn sich der Zustand ändert
previousState = state; // und aktuellen Zustand speichern

}
}
// Zustand des Schalters war über die Entprell-Periode hinaus stabil
if(state == LOW) // LOW heißt gedrückt (da Pullups verwendet werden)
return true;

else
return false;

}

Zu Testzwecken können Sie eine count-Variable einbinden, um die Zahl der Tastendrucke
auszugeben. Wenn Sie das im seriellen Monitor verfolgen (siehe Kapitel 4), erkennen Sie,
ob der Zähler bei jedem Tastendruck um 1 erhöht wird. Erhöhen Sie den Wert für

5.3 Das Schließen eines Schalters zuverlässig erkennen | 159

debounceDelay, bis Zähler und Tastendrucke übereinstimmen. Das folgende Code-Frag-
ment gibt einen count-Wert bei Nutzung der debounce-Funktion aus:

int count; // Enthält die Zahl der Tastendrucke

void setup()
{
pinMode(inPin, INPUT);
pinMode(outPin, OUTPUT);
Serial.begin(9600); // Diese Zeile in setup-Funktion einfügen
}

void loop()
{
if(debounce(inPin))
{
digitalWrite(outPin, HIGH);
count++; // increment count
Serial.println(count); // Zähler im seriellen Monitor ausgeben
}
}

Diese debounce()-Funktion funktioniert mit einer beliebigen Zahl von Schaltern, doch Sie
müssen sicherstellen, dass die genutzten Pins im Eingangsmodus sind.

Ein potentieller Nachteil dieser Methode liegt bei einigen Anwendungen darin, dass beim
Aufruf der debounce-Funktion alles warten muss, bis der Schalter stabil ist. In den meisten
Fällen spielt das keine Rolle, doch Ihr Sketch könnte sich um andere Dinge kümmern
müssen, statt darauf zu warten, dass sich der Schalter stabilisiert. Sie können den Code in
Rezept 5.4 nutzen, um dieses Problem zu umgehen.

Siehe auch
Der bei Arduino mitgelieferte Debounce-Beispiel-Sketch. Aus dem File-Menü wählen Sie
Examples→Digital→Debounce

5.4 Ermitteln, wie lange eine Taste gedrückt wird

Problem
Ihre Anwendung muss bestimmen, wie lange ein Schalter seinen aktuellen Zustand bei-
behalten hat. Oder Sie wollen einen Wert inkrementieren, während ein Taster gedrückt
wird, und die Inkrementierungsrate soll sich erhöhen, je länger die Taste gedrückt wird
(viele elektronische Uhren arbeiten so). Oder Sie wollen wissen, ob eine Taste lange genug
gedrückt wurde, um einen stabilen Zustand erreicht zu haben (siehe Rezept 5.3).

Lösung
Der folgende Sketch demonstriert die Nutzung eines Countdown-Timers. Die Verschal-
tung entspricht der aus Abbildung 5-5 aus dem Rezept Rezept 5.2. Beim Drücken des

Sc
–

D
–

Ze
–

C
Ti

160 | Kapitel 5: Einfacher digitaler und analoger Input

Tasters wird ein Timer durch das Erhöhen eines Timer-Zählers gesetzt. Das Loslassen des
Tasters startet den Countdown. Der Code entprellt die Taste und erhöht die Zählerrate, je
länger der Taster gedrückt bleibt. Der Zähler wird am Anfang um 1 inkrementiert, wenn
der Taster (nach dem Entprellen) gedrückt wird. Wird der Taster länger als eine Sekunde
gehalten, erhöht sich die Inkrement-Rate um das Vierfache. Wird er länger als vier
Sekunden gedrückt, erhöht sie sich um das Zehnfache. Wird der Taster losgelassen,
startet der Countdown. Sobald der Zähler bei 0 ankommt, wird ein Pin auf HIGH gesetzt
(in diesem Beispiel wird die LED eingeschaltet):

/*
SwitchTime Sketch
Countdown-Timer mit einem Dekrement von 1/10 Sekunde.
Schaltet bei 0 die LED ein
Taster drücken erhöht den Zähler
Längeres Drücken erhöht die Inkrement-Rate

*/
const int ledPin = 13; // Ausgangspin
const int inPin = 2; // Eingangspin

const int debounceTime = 20; // Zeit in Millisekunden
// bis sich der Schalter stabilisiert

const int fastIncrement = 1000; // Nach dieser Zeitspanne (in Millisekunden)
// schneller erhöhen

const int veryFastIncrement = 4000; // Und nach dieser Zeitspanne
// noch schneller erhöhen

int count = 0; // Zähler wird jede zehntel Sekunde dekrementiert,
// bis die 0 erreicht ist

void setup()
{
pinMode(inPin, INPUT);
digitalWrite(inPin, HIGH); // Pullup-Widerstand aktivieren
pinMode(ledPin, OUTPUT);
Serial.begin(9600);
}

void loop()
{
int duration = switchTime();
if(duration > veryFastIncrement)
count = count + 10;
else if (duration > fastIncrement)
count = count + 4;
else if (duration > debounceTime)
count = count + 1;

else
{
// Taster nicht gedrückt, also Timer bedienen
if(count == 0)
digitalWrite(ledPin, HIGH); // LED einschalten, wenn Zähler auf 0
else

–

5.4 Ermitteln, wie lange eine Taste gedrückt wird | 161

{
digitalWrite(ledPin, LOW); // LED ausschalten, wenn Zähler nicht 0,
count = count - 1; // und Zähler dekrementieren
}
}
Serial.println(count);
delay(100);
}

// Zeit in Millisekunden zurückgeben, die der Taster gedrückt (LOW) wurde
long switchTime()
{
// Statische Variablen - eine Erklärung finden Sie in der Diskussion
static unsigned long startTime = 0; // Zeit, bei der die erste Zustandsänderung erkannt wurde
static boolean state; // Aktueller Zustand des Tasters

if(digitalRead(inPin) != state) // Prüfen, ob sich der Zustand des Tasters geändert hat
{
state = ! state; // Ja, Zustand invertieren
startTime = millis(); // Zeit speichern
}
if(state == LOW)
return millis() - startTime; // Taster gedrückt, Zeit in Millisekunden zurückgeben
else
return 0; // Wir geben 0 zurück, wenn der Taster nicht gedrückt wurde (HIGH ist);

}

Diskussion
Das Herzstück dieses Rezepts bildet die switchTime-Funktion. Sie gibt die Zeit in Milli-
sekunden zurück, während der der Taster gedrückt war. Da das Rezept die internen
Pullup-Widerstände nutzt (siehe Rezept 5.2), gibt digitalRead beim Taster-Pin LOW zu-
rück, wenn der Taster gedrückt wurde.

Im loop wird der Rückgabewert von switchTime untersucht und dann entschieden, was
weiter passieren soll. Wurde der Taster lange genug für das höchste Inkrement gedrückt,
wird der Zähler um diesen Wert erhöht. Ist das nicht der Fall, wird geprüft, ob der
fast-Wert verwendet werden soll. Ist auch das nicht der Fall, wird überprüft, ob die Taste
lange genug gedrückt wurde, um ein Prellen zu verhindern, und der Zähler wird um den
Minimalwert erhöht. Jeweils einer dieser Fälle kann eintreten, und wenn keiner true ist,
wurde der Taster nicht gedrückt, oder nicht lange genug, um entprellt zu sein. Der
Zählerwert wird dann untersucht und die LED bei 0 eingeschaltet. Ist der Zähler noch
nicht bei 0 angekommen, bleibt die LED aus, und der Zähler wird dekrementiert.

Sie können die switchTime-Funktion auch nur zum Entprellen eines Tasters nutzen. Der
folgende Code nutzt die switchTime-Funktion zum Entprellen:

// Zeit in Millisekunden, die der Taster zur Stabilisierung braucht
const int debounceTime = 20;

if(switchTime() > debounceTime);
Serial.print("Taster ist entprellt");

sw

162 | Kapitel 5: Einfacher digitaler und analoger Input

Dieser Entprell-Ansatz ist bei mehr als einem Taster recht praktisch, weil Sie einfach
schauen können, ob ein Taster schon entprellt ist, und sich dann anderen Aufgaben zu-
wenden können, während sich sein Zustand stabilisiert. Um das zu implementieren,
müssen Sie den aktuellen Zustand des Tasters (gedrückt oder nicht) und den Zeitpunkt
der letzten Zustandsänderung speichern. Auch das lässt sich auf unterschiedliche Art
lösen – in diesem Beispiel verwenden Sie eine separate Funktion für jeden Taster. Sie
können die Variablen für alle Taster zu Beginn des Sketches als globale Variablen de-
finieren (»global«, weil sie von überall zugänglich sind). Doch es ist praktischer, die
Variablen für jeden Taster innerhalb der Funktion vorzuhalten.

Um die Werte von Variablen zu erhalten, die in Funktionen definiert sind, arbeitet man
mit statischen Variablen. Statische Variablen innerhalb einer Funktion behalten die Werte
auch zwischen den Funktionsaufrufen bei. Der zuletzt gesetzte Wert steht also auch noch
zur Verfügung, wenn die Funktion beim nächsten Mal aufgerufen wird. In dieser Hinsicht
ähnelt eine statische Variable einer globalen Variablen (die üblicherweise am Anfang des
Sketches, außerhalb einer Funktion deklariert wurde), die Sie aus anderen Rezepten
kennen. Doch im Gegensatz zu globalen Variablen sind statische Variablen nur innerhalb
dieser Funktion erreichbar. Der Vorteil statischer Variablen besteht darin, dass sie von
anderen Funktion nicht versehentlich geändert werden können.

Der folgende Sketch zeigt beispielhaft, wie man separate Funktionen für verschiedene
Taster hinzufügen kann. Die Verschaltung entspricht der aus Rezept 5.2. Der zweite
Taster ist verschaltet wie der erste (siehe Abbildung 5-5), ist aber mit Pin 3 und Masse
verbunden:

/*
SwitchTimeMultiple Sketch
Gibt aus, wie lange mehrere Taster gedrückt wurden
*/

const int switchAPin = 2; // Pin für Taster A
const int switchBPin = 3; // Pin für Taster B

// Funktionen mit Referenzen müssen explizit deklariert werden
unsigned long switchTime(int pin, boolean &state, unsigned long &startTime);

void setup()
{
pinMode(switchAPin, INPUT);
digitalWrite(switchAPin, HIGH); // Pullup aktivieren
pinMode(switchBPin, INPUT);
digitalWrite(switchBPin, HIGH); // Pullup aktivieren
Serial.begin(9600);
}

void loop()
{
unsigned long time;

Serial.print("Zeit für Taster A =");
time = switchATime();
Serial.print(time);

–

–

5.4 Ermitteln, wie lange eine Taste gedrückt wird | 163

Serial.print(", Zeit für Taster B=");
time = switchBTime();
Serial.println(time);
delay(1000);
}

unsigned long switchTime(int pin, boolean &state, unsigned long &startTime)
{
if(digitalRead(pin) != state) // Zustandsänderung des Tasters überprüfen
{
state = ! state; //Ja, Status invertieren
startTime = millis(); // Zeit speichern
}
if(state == LOW)
return millis() - startTime; // Zeit in Millisekunden zurückgeben
else
return 0; // 0 zurückgeben, wenn Taster nicht gedrückt wurde (HIGH ist);

}

long switchATime()
{
// Diese Variablen sind statisch - Erläuterung im Text
// Zeitpunkt der ersten erkannten Zustandsänderung des Tasters
static unsigned long startTime = 0;
static boolean state; // Aktueller Zustand des Tasters
return switchTime(switchAPin, state, startTime);
}

long switchBTime()
{
// Diese Variablen sind statisch - Erläuterung im Text
// Zeitpunkt der ersten erkannten Zustandsänderung des Tasters
static unsigned long startTime = 0;
static boolean state; // Aktueller Zustand des Tasters
return switchTime(switchBPin, state, startTime);
}

Die Zeitberechnung erfolgt in der Funktion switchTime(). Diese Funktion untersucht und
aktualisiert Zustand und Dauer des Tasters. Die Funktion verwendet Referenzen zur Ver-
waltung der Parameter. Referenzen wurden in Rezept 2.11 erklärt. Eine separate Funktion
für jeden Taster (switchATime() und switchBTime()) wird genutzt, um Startzeit und Zu-
stand jedes Tasters festzuhalten. Da die Variablen, die diese Werte enthalten, als statisch
deklariert sind, bleiben die Werte auch erhalten, wenn die Funktion verlassen wird. Die
Variablen innerhalb einer Funktion vorzuhalten, stellt sicher, dass die richtige Variable
verwendet wird. Die von den Tastern verwendeten Pins sind in globalen Variablen de-
klariert, da die Werte von setup zur Konfiguration der Pins benötigt werden. Da diese
Variablen als const deklariert sind, erlaubt der Compiler keine Änderung ihrer Werte,
d.h., es gibt keine Möglichkeit, sie im Sketch-Code versehentlich zu ändern.

Die Sichtbarkeit von Variablen zu beschränken, wird wichtiger, je komplexer die Projekte
werden. Die Arduino-Umgebung bietet hierfür aber eine elegantere Lösung. In Rezept 16.4
wird beschrieben, wie man so etwas über Klassen implementiert.

164 | Kapitel 5: Einfacher digitaler und analoger Input

5.5 Von einer Tastatur lesen

Problem
Sie besitzen eine Matrix-Tastatur und wollen sie in Ihrem Sketch abfragen. Sie könnten
beispielsweise eine telefonartige Tastatur wie die SparkFun COM-08653 mit 12 Tasten
nutzen wollen.

Lösung
Verschalten Sie die Zeilen und Spalten der Tastatur wie in Abbildung 5-6 zu sehen.

TX1
RX0

2
3
4

6
5

7

Gnd
Vin

5V
3V3

RESET

Gnd

9
8

10
11
12

GND
13

AREF

A
R
D
U
I
N
O

1

987

654

32

0 #*

1 2 3 4 5 6 7

Col 1

Row 0
Row 3
Col 0
Col 2
Row 2
Row 1

Abbildung 5-6: Verschaltung der SparkFun-Tastatur

Wenn Sie den Arduino wie in Abbildung 5-6 mit der Tastatur verschaltet haben, können
Sie mit dem folgenden Sketch über den seriellen Monitor verfolgen, welche Tasten ge-
drückt worden sind:

/*
Keypad Sketch
gibt gedrückte Tasten über den seriellen Port aus
*/

const int numRows = 4; // Zeilen der Tastatur
const int numCols = 3; // Spalten der Tastatur
const int debounceTime = 20; // Zeit in Millisekunden, bis sich die Taste stabilisiert

–

–

–

5.5 Von einer Tastatur lesen | 165

// keymap definiert die Zeichen, die zurückgegeben werden, wenn die entsprechende Taste gedrückt
wird
const char keymap[numRows][numCols] = {
{ '1', '2', '3' } ,
{ '4', '5', '6' } ,
{ '7', '8', '9' } ,
{ '*', '0', '#' }
};

// Diese Arrays bestimmen die Pins, die für die Zeilen und Spalten verwendet werden
const int rowPins[numRows] = { 7, 2, 3, 6 }; // Zeilen 0 bis 3
const int colPins[numCols] = { 5, 8, 4 }; // Spalten 0 bis 2

void setup()
{
Serial.begin(9600);
for (int row = 0; row < numRows; row++)
{
pinMode(rowPins[row],INPUT); // Pins für Zeilen als Eingänge schalten
digitalWrite(rowPins[row],HIGH); // Pullups aktivieren
}
for (int column = 0; column < numCols; column++)
{
pinMode(colPins[column],OUTPUT); // Pins für Spalten als Ausgänge schalten
digitalWrite(colPins[column],HIGH); // Alle Spalten sind inaktiv
}
}

void loop()
{
char key = getKey();
if(key != 0) { // Ist das Zeichen nicht 0,

// wurde eine gültige Taste gedrückt
Serial.print("Taste: ");
Serial.println(key);
}
}

// gibt gedrückte Taste zurück bzw. 0, wenn keine Taste gedrückt wurde
char getKey()
{
char key = 0; // 0 bedeutet, es wurde keine Taste gedrückt

for(int column = 0; column < numCols; column++)
{
digitalWrite(colPins[column],LOW); // Aktuelle Spalte aktivieren.
for(int row = 0; row < numRows; row++) // Alle Zeilen auf

// Tastendruck untersuchen.
{
if(digitalRead(rowPins[row]) == LOW) // Taste gedrückt?
{
delay(debounceTime); // Entprellen while(digitalRead(rowPins[row]) == LOW)
; // Auf Tastenfreigabe warten

key = keymap[row][column]; // Festhalten, welche
// Taste gedrückt wurde.

}
}

166 | Kapitel 5: Einfacher digitaler und analoger Input

digitalWrite(colPins[column],HIGH); // Aktuelle Spalte deaktivieren.
}
return key; // gedrückte Taste (oder 0) zurückgeben
}

Dieser Sketch funktioniert nur dann, wenn die Verschaltung mit dem Code überein-
stimmt. Tabelle 5-2 zeigt, welche Zeilen und Spalten mit welchen Arduino-Pins verbun-
den sein müssen. Wenn Sie eine andere Tastatur verwenden, müssen Sie die Verbindun-
gen für die Zeilen und Spalten auf dem Datenblatt nachsehen. Achten Sie auf die richtige
Verschaltung, da es anderenfalls zu Kurzschlüssen kommen kann, die den Controller
beschädigen können.

Tabelle 5-2: Zuordnung der Arduino-Pins zum SparkFun-Anschluss und den Tastatur-Zeilen/-Spalten

Arduino-Pin Tastatur-Anschluss Tastatur-Zeile/-Spalte

2 7 Zeile 1

3 6 Zeile 2

4 5 Spalte 2

5 4 Spalte 0

6 3 Zeile 3

7 2 Zeile 0

8 1 Spalte 1

Diskussion
Matrix-Tastaturen bestehen üblicherweise aus (normal offenen) Tastern, die eine Zeile
mit einer Spalte verbinden, wenn man sie drückt. (Ein »normal offener« Taster stellt die
elektrische Verbindung her, wenn er gedrückt wird.) Abbildung 5-6 zeigt, wie die internen
Leitungen die Zeilen und Spalten der Tastatur mit dem Tastaturanschluss verbinden. Jede
der vier Zeilen ist mit einem Eingangspin und jede der Spalten mit einem Ausgangspin
verbunden. Die setup-Funktion setzt die Pin-Modi und aktiviert die Pullup-Widerstände
für die Eingangspings (siehe hierzu die Pullup-Rezepte zu Beginn des Kapitels).

Die Funktion getkey setzt nacheinander die Pins für jede Spalte auf LOW und prüft dann, ob
einer der Zeilen-Pins LOW ist. Da Pullup-Widerstände genutzt werden, sind die Spalten
HIGH, bis eine Taste gedrückt wird (das Drücken einer Taste erzeugt ein LOW-Signal am
Eingangspin). Ein LOW zeigt an, dass die Taste für die Zeile und Spalte gedrückt wird. Eine
Zeitverzögerung stellt sicher, dass die Taste nicht prellt (siehe Rezept 5.3). Der Code
wartet dann, bis die Taste losgelassen wird, und das mit der Taste verknüpfte Zeichen
wird aus dem keymap-Array herausgesucht und zurückgegeben. Eine 0 wird zurückgege-
ben, wenn keine Taste gedrückt wurde.

Eine Bibliothek im Arduino Playground arbeitet ähnlich wie das obige Beispiel, bietet aber
eine größere Funktionalität. Die Bibliothek vereinfacht die Arbeit mit einer unterschied-
lichen Anzahl von Tasten und kann sich einige Pins auch mit einem LCD teilen. Sie finden
die Bibliothek unter http://www.arduino.cc/playground/Main/KeypadTutorial.

5.5 Von einer Tastatur lesen | 167

Siehe auch
Weitere Informationen zur SparkFun 12-Tasten-Tastatur finden Sie unter http://www.
sparkfun.com/commerce/product_info.php?products_id=8653.

5.6 Analogwerte einlesen

Problem
Sie wollen die Spannung an einem Analogpin einlesen. Vielleicht wollen Sie den Wert
eines Potentiometers (Potis) abfragen, oder eines Bauelements oder Sensors, der eine
Spannung zwischen 0 und 5 Volt zurückgibt.

Lösung
Der folgende Sketch liest die Spannung an einem Analogpin ein und lässt eine LED mit
einer Geschwindigkeit blinken, die proportional zu dem Wert ist, den analogRead zurück-
gibt. Die Spannung wird mit einem Potentiometer geregelt, der wie in Abbildung 5-7
angeschlossen ist:

/*
Pot Sketch
LED mit einer Geschwindigkeit blinken lassen, die durch die Position eines Potentiometers
bestimmt wird
*/

const int potPin = 0; // Eingangspin für Potentiometer
const int ledPin = 13; // Pin für LED
int val = 0; // Diese Variable enthält den Wert vom Sensor

void setup()
{
pinMode(ledPin, OUTPUT); // ledPin als Ausgang deklarieren
}

void loop() {
val = analogRead(potPin); // Spannung am Poti einlesen
digitalWrite(ledPin, HIGH); // ledPin einschalten
delay(val); // Blinkgeschwindigkeit (in Millisekunden) wird durch Poti-Wert bestimmt
digitalWrite(ledPin, LOW); // ledPin ausschalten
delay(val); // LED bleibt die gleiche Zeitspanne aus
}

An
–
Sp
–
Po
–
Se
–

an
–
Po

168 | Kapitel 5: Einfacher digitaler und analoger Input

Gnd
Vin

5V
3V3

RESET

Gnd

A
R
D
U
I
N
O

4
5

2
1

Analog In 0

3

10K
Pot

Abbildung 5-7: Ein Potentiometer mit dem Arduino verbinden

Diskussion
Dieser Sketch nutzt die Funktion analogRead, um die Spannung am Schleifer (dem
mittleren Pin) des Potentiometers einzulesen. Ein Poti besitzt drei Pins, von denen zwei
mit einem resistiven Material verbunden sind, während der dritte Pin (üblicherweise der
mittlere) mit einem Schleifer verbunden ist, den man drehen kann, um den Widerstand
beliebig einzustellen. Während das Poti gedreht wird, erhöht sich der Widerstand zwi-
schen dem Schleifer und einem der Pins, während er zwischen Schleifer und dem anderen
Pin sinkt. Das Schaltschema in Abbildung 5-7 verbildlicht, wie ein Potentiometer funk-
tioniert. Bewegt man den Schleifer (die Linie mit dem Pfeil) nach unten, verringert sich der
Widerstand zur Masse hin, während er sich zu 5V hin erhöht. Während sich der Schleifer
nach unten bewegt, nimmt die Spannung am Analogpin ab (bis zu einem Minimum von
0 Volt). Bewegt man den Schleifer nach oben, tritt das Gegenteil ein, d.h., die Spannung
am Pin steigt (bis auf ein Maximum von 5 Volt).

Wenn die Spannung am Pin sinkt (und nicht steigt), wenn Sie den Poti
»hochdrehen«, vertauschen Sie einfach die Anschlüsse von +5 Volt und
Masse.

Die Spannung wird mit analogRead gemessen. Der zurückgelieferte Wert ist proportional
zur tatsächlichen Spannung am Analogpin. Der Wert 0 wird zurückgegeben, wenn 0 Volt
am Pin anliegen, und 1023 bei 5 Volt. Jeder Wert dazwischen ist proportional zum Ver-
hältnis der Spannung am Pin und 5 Volt.

Potentiometer mit einem Wert von 10K-Ohm sind für den Anschluss an Analogpins die
beste Wahl. Empfohlene Artikelnummern finden Sie auf der Website zu diesem Buch
(http://shop.oreilly.com/product/0636920022244.do).

–

5.6 Analogwerte einlesen | 169

potPin muss nicht als Eingang geschaltet werden. (Das geschieht bei jedem
Aufruf von analogRead automatisch.)

Siehe auch
Tipps zum Lesen von Schaltplänen finden Sie in Anhang B.

Arduino-Referenz zu analogRead: http://www.arduino.cc/en/Reference/AnalogRead

Arduino für Einsteiger (ISBN 978-3-86899-233-5) von Massimo Banzi

5.7 Wertebereiche ändern

Problem
Sie wollen einen Wertebereich ändern, etwa für einen Wert, den Sie mit analogRead von
einem Potentiometer (oder einem anderen Bauelement mit variabler Spannung) einge-
lesen haben. Stellen Sie sich beispielsweise vor, dass Sie die Position eines Potentiometers
als Wert zwischen 0 und 100 Prozent darstellen wollen.

Lösung
Verwenden Sie die Arduino-Funktion map, um Werte innerhalb des von Ihnen gewünsch-
ten Bereichs zu skalieren. Der folgende Sketch liest die Spannung am Poti in die Variable
val ein und skaliert sie (je nach Position des Potis) auf Werte zwischen 0 und 100. Er lässt
die LED mit einer Geschwindigkeit blinken, die zur Spannung am Pin proportional ist,
und gibt den skalierten Bereich über den seriellen Port aus (Instruktionen zum Monitoring
über den seriellen Port finden Sie in Rezept 4.2). Rezept 5.6 zeigt, wie das Poti anzuschlie-
ßen ist (siehe Abbildung 5-7):

/*
* Map Sketch
* Skaliert den Wertebereich des Analogwertes eines Potis auf Werte zwischen 0 und 100
* Die Blinkgeschwindigkeit der LED reicht von 0 bis 100 Millisekunden
* und die prozentuale Drehung des Potis wird über den seriellen Port ausgegeben
*/

const int potPin = 0; // Eingangspin für Potentiometer
int ledPin = 13; // Pin für LED

void setup()
{
pinMode(ledPin, OUTPUT); // ledPin als Ausgang deklarieren
Serial.begin(9600);
}

void loop() {

an
–

an
– W
Po
– W
An
– W
Sp
– W

m
– W

M

170 | Kapitel 5: Einfacher digitaler und analoger Input

int val; // Der Wert vom Sensor
int percent; // Der abgebildete Wert

val = analogRead(potPin); // Spannung vom Poti einlesen (val liegt
// zwischen 0 und 1023)

percent = map(val,0,1023,0,100); // Prozentwert liegt zwischen 0 und 100.
digitalWrite(ledPin, HIGH); // ledPin einschalten
delay(percent); // Prozentwert bestimmt Dauer
digitalWrite(ledPin, LOW); // ledPin ausschalten
delay(100 - percent); // Für 100 - Prozentwert aus bleiben
Serial.println(percent); // Prozentwert des Potis ausgeben
}

Diskussion
Rezept 5.6 beschreibt, wie die Stellung eines Potis in einen Wert umgewandelt wird. Hier
nutzen wir diesen Wert mit der map-Funktion, um ihn auf den von Ihnen gewünschten
Bereich zu skalieren. In diesem Beispiel wird der von analogRead gelieferte Wert (0 bis
1023) auf eine Prozentzahl (0 bis 100) abgebildet. Die von analogRead zurückgelieferten
Werte reichen von 0 bis 1023, wenn die Spannung zwischen 0 und 5 Volt liegt, aber Sie
können alle geeigneten Werte für die Quell- und Zielbereiche verwenden. Zum Beispiel
dreht sich ein typischer Poti von einem Ende zum anderen um 270 Grad. Wenn Sie also
die Stellung des Potis in Grad angeben wollen, können Sie folgenden Code verwenden:

angle = map(val,0,1023,0,270); // Aus analogRead-Wert abgeleitete Position des Potis

Die Wertebereiche können auch negativ sein. Wenn Sie zum Beispiel 0 ausgeben wollen,
wenn der Poti in der Mitte steht, und negative Werte, wenn er nach links bzw. positive
Werte, wenn er nach recht gedreht wird, können Sie folgenden Code verwenden:

// Winkel eines 270-Grad-Potis mit 0 in der Mitte ausgeben
angle = map(val,0,1023,-135,135);

Die map-Funktion ist sehr praktisch, wenn der betrachtete Wertebereich nicht bei 0
beginnt. Wenn Sie zum Beispiel mit einer Batterie arbeiten, bei der die verfügbare
Kapazität proportional zu einer Spannung zwischen 1,1 Volt (1100 Millivolt) und 1,5
Volt (1500 Millivolt) liegt, können Sie den folgenden Code nutzen:

const int empty = 5000 / 1100; // Leer bei 1,1 Volt (1100mV)
const int full = 5000 / 1500; // Voll bei 1,5 Volt (1500mV)

int val = analogRead(potPin); // Spannung einlesen
int percent = map(val, empty, full, 0,100); // Aktuelle Spannung in Prozent umrechnen
Serial.println(percent);

Wenn Sie Sensorwerte mit map bearbeiten, müssen Sie die Minimal- und Maximalwerte
der Sensoren kennen. Sie können die Werte über die serielle Schnittstelle verfolgen, um
die kleinsten und größten Werte des Sensors zu bestimmen. Verwenden Sie diese dann als
Unter- und Obergrenze der map-Funktion.

Lässt sich der Wertebereich nicht im Vorfeld ermitteln, können Sie die Werte bestimmen,
indem Sie den Sensor kalibrieren. Rezept 8.11 zeigt eine Technik zur Kalibrierung. Eine

5.7 Wertebereiche ändern | 171

weitere finden Sie im Calibration-Beispiel-Sketch, das mit dem Arduino geliefert wird
(Examples→Analog→Calibration).

Wenn Sie map mit Werten füttern, die außerhalb der unteren und oberen Grenzen liegen,
liegt auch das Ergebnis außerhalb des festgelegten Bereichs. Sie können das mit Hilfe der
constrain-Funktion unterbinden (siehe Rezept 3.5).

map arbeitet mit ganzen Zahlen, d.h., es werden innerhalb des festgelegten
Wertebereichs nur ganze Zahlen zurückgegeben. Alle Nachkommastellen
werden abgeschnitten, nicht gerundet.

(In Rezept 5.9 finden Sie Details dazu, in welcher Beziehung analogRead-Werte zur tat-
sächlichen Spannung stehen.)

Siehe auch
Die Arduino-Referenz zu map: http://www.arduino.cc/en/Reference/Map

5.8 Mehr als sechs analoge Eingänge einlesen

Problem
Sie müssen mehr Analogeingänge verarbeiten, als Analogpins zur Verfügung stehen. Ein
Standard-Arduino-Board besitzt sechs Analogeingänge (das Mega hat 16) und die Analog-
eingänge reichen für Ihre Anwendung nicht aus. Sie könnten beispielsweise acht Parame-
ter in Ihrer Anwendung einstellen wollen, indem Sie acht Potentiometer entsprechend
justieren.

Lösung
Nutzen Sie einen Multiplexer-Chip, um mehrere Spannungsquellen auszuwählen und mit
einem analogen Eingang zu verbinden. Indem Sie die Quellen nacheinander auswählen,
können jede nacheinander einlesen. Dieses Rezept nutzt den beliebten 4051-Chip, der wie
in Abbildung 5-8 mit dem Arduino verbunden wird. Die Analogeingänge werden mit den
4051-Pins namens Ch 0 bis Ch 7 verbunden. Stellen Sie sicher, dass die Spannung an den
Kanal-Eingangspins die 5 Volt niemals übersteigen:

/*
* Multiplexer Sketch
* Lese 1 von 8 Analogwerten mit Hilfe des 4051-Multiplexers über einen einzelnen Analogpin ein
*/

// Array von Pins, die zur Wahl eines der 8 Eingänge des Multiplexers genutzt werden
const int select[] = {2,3,4}; // Mit Select-Leitungen des 4051 verbundene Pins
const int analogPin = 0; // Mit Multiplexer-Ausgang verbundener Analogpin

// Diese Funktion liefert den Analogwert für den angegebenen Kanal zurück
int getValue(int channel)

m
–

An
–

40
M

e

m

172 | Kapitel 5: Einfacher digitaler und analoger Input

{
// Setzt die Auswahlpins auf HIGH und LOW, damit sie dem Binärwert des Kanals entsprechen
for(int bit = 0; bit < 3; bit++)
{
int pin = select[bit]; // Mit Multiplexer-Select-Bit verbundener Pin
int isBitSet = bitRead(channel, bit); // Wahr, wenn Bit im Kanal gesetzt
digitalWrite(pin, isBitSet);

}
return analogRead(analogPin);

}

void setup()
{
for(int bit = 0; bit < 3; bit++)
pinMode(select[bit], OUTPUT); // Die drei Select-Bits als Ausgänge schalten
Serial.begin(9600);
}
void loop () {
// Die Werte aller Kanäle einmal pro Sekunde ausgeben
for(int channel = 0; channel < 8; channel++)
{
int value = getValue(channel);
Serial.print("Kanal ");
Serial.print(channel);
Serial.print(" = ");
Serial.println(value);

}
delay (1000);
}

Pin 1 Pin 16
Ch 4

Ch 6

S2

S1

S0

Ch 3

Ch 0

Ch 1

Ch 2

Vcc

Gnd

Vee

E

Ch 5

Ch 7

z

Gnd
Vin

5V
3V3
RESET

Gnd

A

R

D

U

I

N

O

4
5

2
1
Analog In 0

3

TX 1
RX 0

2
3
4

6
5

7

Abbildung 5-8: An Arduino angeschlossener 4051-Multiplexer

5.8 Mehr als sechs analoge Eingänge einlesen | 173

Diskussion
Analogmultiplexer sind digital gesteuerte Analogschalter. Der 4051 wählt über drei
Selektorpins (S0, S1 und S2) einen von acht Eingängen aus. Für die drei Selektorpins
gibt es acht verschiedene Wertekombinationen. Der Sketch wählt nacheinander jedes
mögliche Bitmuster aus (siehe Tabelle 5-3).

Tabelle 5-3: Wahrheitstabelle für 4051-Multiplexer

Selektorpins Eingang

S2 S1 S0

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

Vielleicht erkennen Sie das Muster in Tabelle 5-3 als Binärdarstellung der Dezimalwerte 0
bis 7.

Im obigen Sketch ist getValue() die Funktion, die die richtigen Selektor-Bits für den
gewählten Kanal mit digitalWrite(pin, isBitSet) setzt und den analogen Wert des
gewählten 4051-Eingangs mittels analogRead(analogPin) einliest. Der das Bitmuster er-
zeugende Code nutzt die fest eingebaute Funktion bitRead (siehe Rezept 3.12).

Denken Sie daran, die Masse der abzufragenden Bauelemente mit der
Masse des 4051 und des Arduino zu verbinden (siehe Abbildung 5-8).

Beachten Sie, dass diese Technik die acht Eingänge nacheinander auswählt und abfragt,
d.h., das Lesen eines Eingangs braucht im Vergleich zum direkten Einlesen über analog-
Read mehr Zeit. Wenn Sie acht Eingänge einlesen, brauchen Sie achtmal mehr Zeit, um
jeden Eingang einzulesen. Diese Methode ist daher für Eingänge, deren Werte sich sehr
schnell ändern, möglicherweise ungeeignet.

Siehe auch
Arduino Playground-Tutorial zum 4051: http://www.arduino.cc/playground/Learning/4051

CD4051-Datenblatt: http://www.fairchildsemi.com/ds/CD%2FCD4052BC.pdf

Datenblatt zum Analog/Digital-MUX-Breakout-Board: http://www.nkcelectronics.com/
analogdigital-mux-breakout.html

Sc
–

ge

bi
–

174 | Kapitel 5: Einfacher digitaler und analoger Input

5.9 Spannungen von bis zu 5V messen

Problem
Sie wollen eine Spannung zwischen 0 und 5 Volt messen und ausgeben. Beispielsweise
wollen Sie die Spannung einer einzelnen 1,5-V-Zelle über den seriellen Monitor ausgeben.

Lösung
Verwenden Sie AnalogRead, um die Spannung an einem Analogpin zu messen. Sie können
den Messwert in eine Spannung umwandeln, indem Sie das Verhältnis des Wertes zur
Referenzspannung (5 Volt) ermitteln, wie in Abbildung 5-9 zu sehen.

Gnd
Vin

5V
3V3

RESET

Gnd

A
R
D
U
I
N
O

Schließen Sie nicht mehr

als 5 Volt direkt an einen

Arduino-Pin an.

(3,3 Volt bei einem 3,3-Volt-Board)

4
5

2
1

Analog In 0

3
+

Abbildung 5-9: Spannungsmessung bis 5 Volt mit 5V-Board

Die einfachste Lösung nutzt eine Fließkomma-Berechnung zur Ausgabe der Spannung.
Der folgende Beispiel-Sketch berechnet und gibt das Verhältnis als Spannung aus:

/*
* Display5vOrless Sketch
* Gibt die Spannung am Analogpin über den seriellen Port aus
* Warnung - schließen Sie nicht mehr als 5V direkt an den Arduino-Pin an.
*/

const float referenceVolts = 5.0; // Referenzspannung eines 5-Volt-Boards
const int batteryPin = 0; // Batterie ist mit Analogpin 0 verbunden

void setup()
{
Serial.begin(9600);

}

void loop()
{

–

–

–

–

5.9 Spannungen von bis zu 5V messen | 175

int val = analogRead(batteryPin); // Wert vom Sensor einlesen
float volts = (val / 1023.0) * referenceVolts; // Verhältnis berechnen
Serial.println(volts); // und Wert in Volt ausgeben

}

Die Formel lautet: Volt = (analoger Messwert / analoge Schritte) × Referenzspannung

Die Ausgabe eines Fließkommawerts über den seriellen Port mit println formatiert den
Wert auf zwei Dezimalstellen genau.

Bei einem 3,3-V-Board nehmen Sie die folgende Änderung vor:

const int referenceVolts = 3.3;

Fließkommazahlen benötigen sehr viel Speicher. Wenn Ihr Sketch nicht auch an anderer
Stelle Fließkommazahlen nutzt, ist es daher effizienter, mit ganzen Zahlen zu arbeiten.
Der folgende Code sieht auf den ersten Blick vielleicht etwas seltsam aus, aber da
analogRead den Wert 1023 für 5 Volt zurückgibt, werden die 5 Volt durch 1023 geteilt. In
Millivolt entspricht das 5000 durch 1023.

Der folgende Code gibt den Wert in Millivolt aus:

const int batteryPin = 0;

void setup()
{
Serial.begin(9600);
}

void loop()
{
long val = analogRead(batteryPin); // Wert vom Sensor einlesen -

// Hinweis: val ist ein long int
Serial.println((val * (500000/1023)) / 100); // Wert in Millivolt ausgeben
}

Der folgende Code gibt den Wert mit einem Dezimalkomma aus, d.h., er gibt 1,5 aus,
wenn die Spannung 1,5 Volt beträgt:

const int batteryPin = 0;

void setup()
{
Serial.begin(9600);
}

void loop()
{
int val = analogRead(batteryPin); // Wert von Sensor einlesen
long mv = (val * (500000/1023L)) / 100; // Wert in Millivolt berechnen
Serial.print(mv/1000); // Integerwert der Spanung ausgeben
Serial.print(',');
int fraction = (mv % 1000); // Nachkommastelle(n) berechnen
if (fraction == 0)

Fl
–
Sp
–

176 | Kapitel 5: Einfacher digitaler und analoger Input

Serial.print("000"); // Drei Nullen ausgeben
else if (fraction < 10) // Bruch < 10
Serial.print("00"); // Zwei Nullen ausgeben

else if (fraction < 100)
Serial.print("0");

Serial.println(fraction); // Nachkommastelle(n) ausgeben
}

Bei einem 3,3-V-Board müssen Sie (1023/5) in (int)(1023/3.3) ändern.

Diskussion
Die analogRead()-Funktion gibt einen Wert zurück, der proportional zum Verhältnis der
gemessenen Spannung zur Referenzspannung (5 Volt) ist. Um Fließkommazahlen zu
vermeiden, gleichzeitig aber die Genauigkeit beizubehalten, arbeitet der Code nicht mit
Volt, sondern mit Millivolt (1000 Millivolt sind 1 Volt). Da der Wert 1023 für 5000
Millivolt steht, repräsentiert jeder Schritt 5000 durch 1023 Millivolt (also 4,89 Millivolt).

Sie werden neben 1023 auch 1024 bei der Umwandlung von analogRead-
Werten in Millivolt sehen. 1024 wird häufig von Ingenieuren verwendet,
da es 1024 mögliche Werte zwischen 0 und 1023 gibt. Andererseits
empfinden einige die 1023 als intuitiver, weil dass der höchstmögliche
Wert ist. In der Praxis ist die Hardware-Ungenauigkeit aber größer als der
Unterschied in den Berechnungen. Verwenden Sie also einfach den Wert,
der Ihnen angenehmer ist.

Um das Dezimalkomma zu eliminieren, wird der Wert mit 100 multipliziert. Mit anderen
Worten liefert 5000 Millivolt mal 100 durch1023 den Wert in Millivolt mal 100. Eine
Division durch 100 ergibt den Wert in Millivolt. Durch die Multiplikation der Nach-
kommastellen mit 100 können wir den Compiler die Berechnung mit ganzen Zahlen
durchführen lassen. Wenn Ihnen das zu umständlich ist, können Sie aber bei der lang-
sameren und speicherhungrigeren Fließkomma-Methode bleiben.

Diese Lösung geht davon aus, dass Sie einen Standard-Arduino mit 5 Volt verwenden.
Wenn Sie ein 3,3-V-Board nutzen, liegt die maximale Spannung, die Sie ohne Spannungs-
teiler messen können, bei 3,3 Volt – siehe Rezept 5.11.

5.10 Auf Spannungsänderungen reagieren

Problem
Sie wollen eine oder mehrere Spannungen überwachen und reagieren, wenn sie einen
bestimmten Schwellwert übersteigen oder unterschreiten. Zum Beispiel könnten Sie eine
LED blinken lassen, wenn die Batterie leer wird. Sie könnte etwa langsam anfangen zu
blinken, wenn ein Schwellwert unterschritten wird, und immer schneller blinken, wäh-
rend die Spannung weiter fällt.

–

–

5.10 Auf Spannungsänderungen reagieren | 177

Lösung
Sie können die Verschaltung aus Abbildung 5-7 in Rezept 5.9 verwenden, doch hier
überprüfen wir, ob der Wert von analogRead unter einen Schwellwert fällt. In diesem
Beispiel beginnt die LED bei 1,2 Volt zu blinken und die Blinkgeschwindigkeit erhöht
sich, während die Spannung weiter unter den Schwellwert sinkt. Fällt die Spannung unter
einen zweiten Schwellwert, bleibt die LED an:

/*
RespondingToChanges Sketch
Bei niedriger Spannung LED blinken lassen
*/

long warningThreshold = 1200; // Warn-Schwellwert - LED blinkt
long criticalThreshold = 1000; // Kritischer Spannungspegel - LED bleibt an

const int batteryPin = 0;
const int ledPin = 13;

void setup()
{
pinMode(ledPin, OUTPUT);

}

void loop()
{
int val = analogRead(batteryPin); // Wert vom Sensor einlesen
if(val < (warningThreshold * 1023L)/5000) {
// Das auf die Zahl folgende L macht sie zu einem 32-Bit-Wert
flash(val) ;
}
}

// Diese Funktion läßt die LED blinken
// Die Ein/Aus-Dauer wird durch den übergebenn Prozentwert bestimmt
void flash(int percent)
{
digitalWrite(ledPin, HIGH);
delay(percent + 1);
digitalWrite(ledPin, LOW);
delay(100 - percent); // Dauer == 0?
}

Diskussion
Die im Sketch hervorgehobene Zeile berechnet das Verhältnis der über den Analogport
eingelesenen Spannung zum Schwellwert. Bei einem Warn-Schwellwert von 1 Volt und
einer Referenzspannung von 5 Volt wollen Sie beispielsweise wissen, wann der Messwert
ein Fünftel der Referenzspannung erreicht. Der Ausdruck 1023L weist den Compiler an,
mit long-Werten (32-Bit-Integer; siehe Rezept 2.2) zu arbeiten. Der Compiler macht daher
alle Variablen dieses Ausdrucks zu long-Werten, um den Überlauf eines int (ein normaler
16-Bit-Integer) zu verhindern.

an
–

Re

178 | Kapitel 5: Einfacher digitaler und analoger Input

Sie können direkt mit den von analogRead gelieferten Werten (zwischen 0 und 1023)
arbeiten, Sie können aber auch mit den tatsächlichen Spannungen arbeiten, für die sie
stehen (siehe Rezept 5.7). Wenn Sie (wie bei diesem Rezept) keine Spannungen ausgeben
müssen, ist es einfacher und effektiver, direkt die Werte von analogRead zu verwenden.

5.11 Spannungen über 5V messen (Spannungsteiler)

Problem
Sie wollen Spannungen über 5 Volt messen. Zum Beispiel könnten Sie die Spannung einer
9-V-Batterie ausgeben wollen und eine Warn-LED blinken lassen, wenn die Spannung
unter eine kritische Grenze fällt.

Lösung
Die Lösung ähnelt der in Rezept 5.9, die Spannung wird hier aber über einen Spannungs-
teiler abgegriffen (siehe Abbildung 5-10). Bei Spannungen bis zu 10 Volt können Sie zwei
4,7-K-Ohm-Widerstände verwenden. Für höhere Spannungen können Sie die benötigten
Widerstände aus Tabelle 5-4 ablesen.

Tabelle 5-4: Widerstandswerte

Max. Spannung R1 R2 Berechnung
R2/(R1 + R2)

Wert von
resistorFactor

5 Ohne (+V an Analogpin) Ohne (Masse an Masse) None 1023

10 1K 1K 1(1 + 1) 511

15 2K 1K 1(2 + 1) 341

20 3K 1K 1(3 + 1) 255

30 4K (3,9K) 1K 1(4 + 1) 170

Gnd
Vin

5V
3V3

RESET

Gnd

A
R
D
U
I
N
O

R2

+V

Gnd

R1

4
5

2
1

Analog In 0

3

Zu messende Spannung

Abbildung 5-10: Spannungsteiler für Spannungsmessungen über 5 Volt

–

–

–

5.11 Spannungen über 5V messen (Spannungsteiler) | 179

Wählen Sie die Zeile mit der höchsten Spannung, die Sie messen müssen, und suchen Sie
sich die beiden Widerstandswerte heraus:

/*
DisplayMoreThan5V Sketch
Gibt die Spannung am Analogpin über den seriellen Port aus
Schließen Sie nicht mehr als 5 Volt direkt an einen Arduino-Pin an.
*/

const float referenceVolts = 5; // Standard-Referenzspannung eines 5-V-Boards
//const float referenceVolts = 3.3; // Nutzen Sie diesen Wert bei einem 3,3-V-Board

const float R1 = 1000; // Wert für max. Spannung von 10 Volt
const float R2 = 1000;
// Wird durch Spannungsteiler-Widerstände bestimmt, siehe Text
const float resistorFactor = 1023.0 / (R2/(R1 + R2));
const int batteryPin = 0; // +V der Battere ist mit Analogpin 0 verbunden

void setup()
{
Serial.begin(9600);

}

void loop()
{
int val = analogRead(batteryPin); // Wert vom Sensor einlesen
float volts = (val / resistorFactor) * referenceVolts ; // Verhältnis berechnen
Serial.println(volts); // Wert in Volt ausgeben

}

Diskussion
Wie bei den vorangegangenen Analog-Rezepten nutzt dieses die Tatsache, dass der
gemessene analogRead-Wert im Verhältnis zur Referenzspannung steht. Da die tatsäch-
liche Spannung aber durch die beiden Widerstände geteilt wurde, muss der Wert von
analogRead multipliziert werden, um die tatsächliche Spannung zu ermitteln. Der Code
ähnelt dem aus Rezept 5.7, doch der Wert für resistorFactor wird basierend auf den
Spannungsteiler-Widerständen aus Tabelle 5-4 gewählt:

const int resistorFactor = 511; // Durch Spannungsteiler-Widerstände bestimmt, siehe Tabelle
5-3

Der vom Analogpin eingelesene Wert wird nicht durch 1023 dividiert, sondern durch die
Werte der Vorschaltwiderstände:

float volts = (val / resistorFactor) * referenceVolts ; // Verhältnis berechnen

Die zum Aufbau der Tabelle genutzte Berechnung basiert auf der folgenden Formel: Die
Ausgangsspannung entspricht der Eingangsspannung mal R2 geteilt durch die Summe
von R1 und R2. Im Beispiel mit zwei gleichen Widerstandswerten, bei dem die Spannung
einer 9-V-Batterie halbiert wird, hat resistorFactor den Wert 511 (die Hälfte von 1023),
d.h., der Wert der volts-Variablen ist doppelt so hoch wie die am Eingangspin anliegende

D

an
–

180 | Kapitel 5: Einfacher digitaler und analoger Input

Spannung. Mit den Widerständen für 10 Volt liegt der Analogwert der 9-V-Batterie bei
ungefähr 920.

Liegen mehr als 5 Volt an einem Pin an, kann das den Pin beschädigen
oder sogar den Chip zerstören. Prüfen Sie also genau, ob Sie die richtigen
Widerstandswerte gewählt und sie richtig angeschlossen haben. Wenn Sie
ein Multimeter besitzen, messen Sie die Spannung, bevor Sie etwas mit
dem Arduino-Pin verbinden.

5.11 Spannungen über 5V messen (Spannungsteiler) | 181

KAPITEL 6

Werte von Sensoren einlesen

6.0 Einführung
Werte über Sensoren einzulesen und zu verarbeiten, ermöglicht es dem Arduino, auf die
Welt um ihn herum zu reagieren oder über sie zu informieren. Dieses Kapitel enthält
einfache und praktische Beispiele, wie man die beliebtesten Eingabegeräte und Sensoren
nutzt. Die Schaltdiagramme zeigen, wie man die Bauelemente anbindet und mit Strom
versorgt, während die Code-Beispiele zeigen, wie man die Sensordaten verarbeitet.

Sensoren reagieren auf Ereignisse der physikalischen Welt und wandeln sie in ein elek-
trisches Signal um, dass der Arduino über einen Eingangspin einlesen kann. Die Natur des
elektrischen Signals, die der Sensor zur Verfügung stellt, hängt von der Art des Sensors ab
und davon, wie viele Daten er übertragen muss. Einige Sensoren (wie Photowiderstände
und piezoelektrische Sensoren) bestehen aus einem Material, das seine elektrischen
Eigenschaften als Reaktion auf physikalische Änderungen verändert. Andere sind aus-
gefeilte elektronische Module mit eigenem Mikrocontroller, die Informationen verarbei-
ten, bevor sie Daten an den Arduino übergeben.

Sensoren nutzen die folgenden Methoden, um Informationen bereitzustellen:

Digital AN/AUS
Einige Bauelemente, wie der Tilt-Sensor in Rezept 6.1 und der Bewegungssensor in
Rezept 6.3, schalten einfach eine Spannung ein oder aus. Sie können diese Sensoren
so verarbeiten, wie in den Taster-Rezepten in Kapitel 5.

Analog
Andere Sensoren liefern ein Analogsignal zurück (eine Spannung proportional zum
abgerufenen Wert, wie etwa Temperatur oder Lichtstärke). Die Beispiele zur Bestim-
mung von Lichtstärke (Rezept 6.2), Bewegung (Rezepte 6.1 und 6.3), Vibration
(Rezept 6.6), Sound (Rezept 6.7) und Beschleunigung (Rezept 6.18) zeigen, wie
Analogsensoren verwendet werden können. Alle nutzen die Funktion analogRead,
die in Kapitel 5 erläutert wurde. –

| 183

Impulsbreite
Abstandssensoren wie der PING in Rezept 6.4 stellen die Daten in Form eines Im-
pulses zur Verfügung, dessen Länge proportional zum Abstand ist. Solche Sensoren
nutzende Anwendungen messen die Dauer des Impulses mit Hilfe der pulseIn-Funk-
tion.

Seriell
Einige Sensoren liefern Werte über ein serielles Protokoll zurück. Der RFID-Leser in
Rezept 6.9 und das GPS in Rezept 6.14, kommunizieren beispielsweise über den
seriellen Port mit dem Arduino (mehr über den seriellen Port erfahren Sie in Kapitel
4). Die meisten Arduinos besitzen nur einen seriellen Hardware-Port. Rezept 6.14 zeigt,
wie Sie zusätzliche Software-Ports einrichten können, wenn Sie mit mehreren seriellen
Sensoren arbeiten oder der Hardware-Port für eine andere Aufgabe genutzt wird.

Synchrone Protokolle: I2C und SPI
Die digitalen Standards I2C und SPI wurden für Mikrocontroller wie den Arduino
entwickelt, um sich mit externen Sensoren und Modulen unterhalten zu können.
Rezept 6.16 zeigt, wie man ein Kompass-Modul über synchrone Digitalsignale an-
bindet. Diese Protokolle werden ausgiebig von Sensoren, Aktuatoren und Peripheri-
geräten genutzt und werden detailliert in Kapitel 13 behandelt.

Es gibt andere Eingabegeräte, die Sie nutzen können. Dabei handelt es sich um Sensoren
enthaltende Konsumartikel, die als eigenständige Geräte verkauft werden. Zu den Bei-
spielen aus diesem Kapitel gehört eine PS/2-Maus und ein Playstation-Controller. Diese
Geräte können sehr praktisch sein. Sie integrieren Sensoren in einem robusten und
ergonomischen Gehäuse. Darüber hinaus sind sie billig (oft billiger, als die Kosten für
die darin enthaltenen Sensoren), weil es sich um Massenprodukte handelt. Wahrschein-
lich liegen einige dieser Geräte bei Ihnen herum.

Wenn Sie mit einem Gerät arbeiten, das von keinem Rezept behandelt wird, können Sie
möglicherweise ein anderes Rezept wiederverwerten, das ähnliche Daten verarbeitet.
Informationen zu den Ausgangssignalen des Sensors erhalten Sie üblicherweise von dem
Unternehmen, bei dem Sie ihn gekauft haben, oder alternativ auf dem Datenblatt
(googeln Sie einfach nach der Artikelnummer oder Beschreibung).

Datenblätter richten sich an Ingenieure, die Produkte entwickeln, die später auch pro-
duziert werden sollen. Üblicherweise enthalten Sie viel mehr Informationen, als Sie
brauchen, um Ihr Projekt ans Laufen zu bekommen. Die Informationen zu den Ausgangs-
signalen finden Sie üblicherweise in einem Abschnitt über Datenformate, Interfaces,
Ausgangssignale oder so ähnlich. Vergessen Sie die maximale Spannung nicht (üblicher-
weise in einem Abschnitt namens »Absolute Maximum Ratings« oder »Absolute Grenz-
daten«), um die Komponenten nicht zu beschädigen.

Für maximale Spannungen von 3,3V gedachte Sensoren können zerstört
werden, wenn man sie mit 5 Volt verbindet. Überprüfen Sie also die
maximale Spannung, bevor Sie das Bauelement anschließen.

pu

I2
SP

Pl
–

D

184 | Kapitel 6: Werte von Sensoren einlesen

Das Einlesen von Sensordaten in einer chaotischen, analogen Welt ist eine Mischung aus
Wissenschaft, Kunst und Beharrlichkeit. Möglicherweise brauchen Sie einigen Einfalls-
reichtum und viele Fehlversuche, bis Sie ein korrektes Ergebnis erhalten. Ein typisches
Problem besteht darin, dass der Sensor Ihnen nur mitteilt, dass eine physikalische
Bedingung eingetreten ist, aber nicht, wer sie verursacht hat. Den Sensor in den richtigen
Kontext zu bringen (Lage, Distanz, Orientierung) und sich dabei auf die Dinge zu
beschränken, die man wirklich braucht, kommt erst mit der Erfahrung.

Ein weiterer Aspekt ist die Trennung des gewünschten Signals von Hintergrundgeräu-
schen ; Rezept 6.6 zeigt, wie man einen Schwellwert nutzt, um zu erkennen, ob ein Signal
einen bestimmten Pegel überschritten hat. Rezept 6.7 zeigt, wie Sie den Durchschnitt
einer Messwertreihe nutzen können, um Geräuschspitzen herauszufiltern.

Siehe auch
Informationen zum Anschluss elektrischer Komponenten finden Sie in Make: Electronics
von Charles Platt (Make).

Weiterführende Informationen zum Einlesen von Analogwerten über Sensoren finden Sie
in der Einführung zu Kapitel 5 und Rezept 5.6.

6.1 Movement erkennen

Problem
Sie wollen erkennen, ob etwas bewegt, geneigt oder geschüttelt wird.

Lösung
Der nachfolgende Sketch nutzt einen Schalter, der einen Kreis schließt, wenn er gekippt
wird. Einen solchen Schalter bezeichnet man als Neigungssensor (engl. tilt sensor). Die
Schalter-Rezepte in Kapitel 5 (Die Rezepte 5.1 und 5.2) funktionieren auch, wenn man
den Schalter/Taster durch einen Neigungssensor ersetzt.

Der Sketch (die Schaltung sehen Sie in Abbildung 6-1) schaltet eine LED an Pin 11 ein,
wenn der Neigungssensor in die eine Richtung, und die LED an Pin 12, wenn er in die
andere Richtung gekippt wird:

/*
tilt Sketch

Ein Neigungssensor an Pin 2 schaltet eine der
LEDs an den Pins 11 und 12 ein, je nachdem,
in welche Richtung der Sensor geneigt wird.
*/

const int tiltSensorPin = 2; //Pin für Neigungssensor
const int firstLEDPin = 11; //Pin für erste LED
const int secondLEDPin = 12; //Pin für zweite LED

–

–

–

6.1 Movement erkennen | 185

void setup()
{
pinMode (tiltSensorPin, INPUT); //Der Code liest diesen Pin
digitalWrite (tiltSensorPin, HIGH); //und nutzt einen Pullup-Widerstand

pinMode (firstLEDPin, OUTPUT); //Der Code schreibt an diesen
pinMode (secondLEDPin, OUTPUT); //und diesen Pin
}

void loop()
{
if (digitalRead(tiltSensorPin)){ //Ist der Pin "HIGH",
digitalWrite(firstLEDPin, HIGH); //erste LED ein-
digitalWrite(secondLEDPin, LOW); //und zweite ausschalten
}
else{ //Wenn nicht, kehren
digitalWrite(firstLEDPin, LOW); //wir die Sache um
digitalWrite(secondLEDPin, HIGH);
}
}

T X
 1

RX
 02346 579 8101112

GN
D 13

AR
EF

Gn
d

Vi
n

5V3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

4 5210 3

ANALOG

220
Ohm

a

k

220
Ohm

a

k

a k
+ -

abgeflacht

langer
Anschluss

 Tilt-Sensor

Abbildung 6-1: Neigungssensor und LEDs

Diskussion
Die am weitesten verbreiteten Neigungssensoren bestehen aus einer Kugel in einem
Gehäuse und Kontakten auf einer Seite. Wird das Gehäuse geneigt, rollt die Kugel von
den Kontakten weg, und die Verbindung wird unterbrochen. Wird es in die andere Rich-
tung geneigt, berührt die Kugel die Kontakte, und der Kreis wird geschlossen. Markierun-
gen zeigen, wie der Sensor auszurichten ist. Neigungssensoren können kleine Bewegun-
gen von 5 bis 10 Grad erkennen. Wenn Sie den Sensor so ausrichten, dass die Kugel direkt
über (oder unter) den Kontakten liegt, ändert sich der LED-Zustand nur dann, wenn man
ihn umdreht. Auf diese Weise können Sie erkennen, ob etwas auf der Ober- oder
Unterseite liegt.

186 | Kapitel 6: Werte von Sensoren einlesen

Wenn Sie wissen wollen, ob etwas geschüttelt wird, müssen Sie prüfen, wann sich der
Zustand des Sensors zuletzt geändert hat (in unserem Beispiel prüfen wir nur, ob der
Schalter offen oder geschlossen war). Ändert sich der Zustand innerhalb einer von Ihnen
als signifikant festgelegten Zeitspanne nicht, wird das Objekt auch nicht geschüttelt. Die
Veränderung der Ausrichtung des Neigungssensors bestimmt auch, wie heftig Sie ihn
schütteln müssen, um ihn auszulösen. Der folgende Code schaltet eine LED ein, wenn der
Sensor geschüttelt wird:

/*
shaken Sketch
Neigungssensor an Pin 2
LED an Pin 13
*/

const int tiltSensorPin = 2;
const int ledPin = 13;
int tiltSensorPreviousValue = 0;
int tiltSensorCurrentValue = 0;
long lastTimeMoved = 0;
int shakeTime=50;

void setup()
{
pinMode (tiltSensorPin, INPUT);
digitalWrite (tiltSensorPin, HIGH);
pinMode (ledPin, OUTPUT);
}

void loop()
{
tiltSensorCurrentValue=digitalRead(tiltSensorPin);
if (tiltSensorPreviousValue != tiltSensorCurrentValue){
lastTimeMoved = millis();
tiltSensorPreviousValue = tiltSensorCurrentValue;
}

if (millis() - lastTimeMoved < shakeTime){
digitalWrite(ledPin, HIGH);
}
else{
digitalWrite(ledPin, LOW);
}
}

Viele mechanische Sensorschalter können auf ähnliche Weise genutzt werden. Ein
Schwimmerschalter schaltet sich ein, wenn der Wasserpegel in einem Behälter eine
gewisse Höhe erreicht (ähnlich dem Schwimmerhahn in einer Wasserspülung). Mit einer
Druckleiste, wie man sie an den Eingängen von Geschäften findet, können Sie erkennen,
ob jemand auf ihr steht. Wenn Ihr Sensor ein digitales Signal ein- oder ausschaltet, sollte
eine Lösung wie in diesen Sketches geeignet sein.

6.1 Movement erkennen | 187

Siehe auch
Hintergrundinformationen zur Verwendung von Schaltern mit dem Arduino finden Sie in
Kapitel 5.

Rezept 12.2 enthält weitere Informationen zur Verwendung von millis zur Bestimmung
von Laufzeiten.

6.2 Licht messen

Problem
Sie wollen Veränderungen der Lichtstärke messen. Sie könnten erkennen wollen, ob etwas
vor einem Lichtsensor vorbeigeht oder ob ein Raum zu dunkel ist.

Lösung
Die einfachste Möglichkeit, die Lichtstärke zu bestimmen, bieten lichtempfindliche Wi-
derstände. Ein solcher Widerstand verändert seinen Widerstandswert, wenn sich die
Lichtstärke ändert. Schließt man ihn wie in Abbildung 6-2 zu sehen an, erzeugt er eine
veränderliche Spannung, die der Arduino über einen Analogpin abgreifen kann.

TX
 1

R
X

 02346 579 8101112

G
N

D 13

A
R

E
F

G
nd

V
in

5V3V
3

RE
SE

T

G
nd

Arduino

DIGITAL

4 5210 3

ANALOG

10K

* L

 D

 R

*LDR = Lichtempfindlicher Widerstand

Abbildung 6-2: Anschluss eines lichtempfindlichen Widerstands

Der Sketch für dieses Rezept ist einfach:

const int ledPin = 13; // Mit Pin 13 verbundene LED
const int sensorPin = 0; // Mit Analogeingang 0 verbundener Sensor

void setup()
{

Se
–
Li
–

lic

188 | Kapitel 6: Werte von Sensoren einlesen

pinMode(ledPin, OUTPUT); // LED-Pin als Ausgang schalten
}

void loop()
{
int rate = analogRead(sensorPin); // Analogeingang einlesen
digitalWrite(ledPin, HIGH); // LED einschalten
delay(rate); // Dauer abhängig von Lichtstärke
digitalWrite(ledPin, LOW); // LED ausschalten?
delay(rate);
}

Diskussion
Die Schaltung dieses Rezepts entspricht der Standard-Lösung für jeden Sensor, der seinen
Widerstand basierend auf irgendeiner physikalischen Größe verändert (Hintergrund-
informationen zur Handhabung von Analogsignalen finden Sie in Kapitel 5). Bei der
Schaltung in Abbildung 6-2 verändert sich die Spannung an Analogpin 0, wenn sich der
Widerstand des lichtempfindlichen Widerstands aufgrund variierender Lichtstärke än-
dert.

Eine Schaltung wie diese nutzt nicht den gesamten möglichen Wertebereich des Analog-
eingangs (0 bis 1023), da die Spannungswerte nicht zwischen den vollen 0 bis 5 Volt
liegen. Das liegt daran, dass es bei jedem Widerstand einen Spannungsabfall gibt, so dass
die Spannung an dieser Stelle nie die Grenzen der Spannungsversorgung erreicht. Wenn
Sie solche Sensoren nutzen, müssen Sie also die tatsächlichen Werte ermitteln, die der
Sensor in Ihrem Fall zurückliefert. Dann müssen Sie bestimmen, wie Sie diese Werte in die
Werte umwandeln, die Sie für Ihre Steuerung benötigen (was auch immer Sie steuern).
Details zur Anpassung von Wertebereichen finden Sie in Rezept 5.7.

Ein lichtempfindlicher Widerstand ist ein einfacher sog. ohmscher Sensor. Eine Reihe
ohmscher Sensoren reagieren auf Änderungen verschiedener physikalischer Eigenschaf-
ten. Ähnliche Schaltungen werden auch mit anderen Arten einfacher ohmscher Sensoren
funktionieren, auch wenn Sie möglicherweise den Widerstand an den jeweiligen Sensor
anpassen müssen.

Die Wahl des besten Widerstandswerts hängt vom verwendeten lichtempfindlichen
Widerstand ab und davon, mit welchen Lichtstärken gearbeitet wird. Ingenieure würden
ein Lichtmessgerät verwenden und das Datenblatt des lichtempfindlichen Widerstands
konsultieren, doch wenn Sie ein Multimeter besitzen, können Sie den Widerstand des
lichtempfindlichen Widerstands bei einer Lichtstärke messen, die ungefähr in der Mitte
des Helligkeitsbereichs liegt, mit dem Sie arbeiten wollen. Notieren Sie den Wert und
wählen Sie den für diesen Wert am besten geeigneten Widerstand.

Siehe auch
Dieser Sketch wurde in Rezept 1.6 vorgestellt. Dort finden Sie weitere Informationen und
Variationen dieses Sketches.

6.2 Licht messen | 189

6.3 Motion erkennen (Passive Infrarot-Detektoren
integrieren)

Problem
Sie wollen erkennen, wenn sich jemand in der Nähe eines Sensors bewegt.

Lösung
Nutzen Sie einen Bewegungssensor, z.B. einen passiven Infrarot-Sensor (PIR), der Werte
an einem Digitalpin ändert, wenn sich jemand in der Nähe bewegt.

Sensoren wie der SparkFun PIR Motion Sensor (SEN-08630) und der Parallax PIR Sensor
(555-28027) können einfach an Arduino-Pins angeschlossen werden, wie in Abbildung 6-3
zu sehen.

TX
 1

R
X

02346 579 8101112

G
N

D 13

AR
EF

Gn
d

Vi
n

5V3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

4 5210 3

ANALOG

Out

5V

Gnd

PIR-Sensor

Abbildung 6-3: Anschluss eines PIR-Bewegungssensors

Suchen Sie sich die richtigen Pins aus dem Datenblatt für Ihren Sensor heraus. Beim
Parallax-Sensor sind die Pins mit »OUT« »-« und »+« (für Ausgang, Masse und +5V)
gekennzeichnet. Der SparkFun-Sensor verwendet die Bezeichnungen »Alarm«, »GND«
und »DC« (für Ausgang, Masse und +5V).

Der folgende Sketch schaltet die LED an Arduino-Pin 13 ein, wenn der Sensor eine
Bewegung erkennt:

/*
PIR Sketch
Passiver Infrarot-Bewegungssensor an Pin 2
schaltet die LED an Pin 13 ein

*/

Se
–
m
Pa
PI

Sp
–
Pa
–

LE
–
PI

190 | Kapitel 6: Werte von Sensoren einlesen

const int ledPin = 13; // Pin für LED
const int inputPin = 2; // Pin für PIR-Sensor

void setup() {
pinMode(ledPin, OUTPUT); // LED ist Ausgang
pinMode(inputPin, INPUT); // Sensor ist Eingang
}

void loop(){
int val = digitalRead(inputPin); // Eingangswert einlesen
if (val == HIGH) // Ist der Eingang HIGH
{
digitalWrite(ledPin, HIGH); // Bewegung erkannt, LED einschalten
delay(500);
digitalWrite(ledPin, LOW); // LED ausschalten
}
}

Diskussion
Der Code ähnelt den Taster-Beispielen aus Kapitel 5. Das liegt daran, dass sich der Sensor
wie ein Schalter verhält, wenn eine Bewegung erkannt wird. Es gibt verschiedene Arten
von PIR-Sensoren, und Sie sollten sich die Daten zu dem von Ihnen angeschlossenen
ansehen.

Einige Sensoren, wie der Parallax, besitzen Steckbrücken (Jumper), die bestimmen, wie
sich der Ausgang verhält, wenn eine Bewegung erkannt wird. In einem Modus bleibt der
Ausgang HIGH, wenn Bewegung erkannt wird, oder er kann so gesetzt werden, dass er
beim Auslösen kurz auf HIGH und dann wieder auf LOW geht. Der Beispiel-Sketch in diesem
Rezept funktioniert mit beiden Modi.

Andere Sensoren können LOW zurückliefern, wenn sie eine Bewegung erkennen. Geht der
Ausgangspin Ihres Sensors auf LOW, wenn eine Bewegung erkannt wird, ändern Sie die
Zeile, die den Eingangswert überprüft, wie folgt ab:

if (val == LOW) // Bewegung, wenn Eingang LOW

PIR-Sensoren gibt es in unterschiedlichen Arten und für verschiedene Distanzen und
Winkel. Durch sorgfältige Auswahl und Positionierung können Sie die Bewegungserken-
nung auf einen Teil des Raums einschränken.

PIR-Sensoren reagieren auf Wärme und können nicht nur auf Menschen,
sondern auch auf Tiere (Katzen, Hunde etc.) und andere Wärmequellen
reagieren.

6.3 Motion erkennen (Passive Infrarot-Detektoren integrieren) | 191

6.4 Abstände messen

Problem
Sie möchten einen Abstand ermitteln, etwa zu einer Wand oder zu jemandem, der sich
zum Arduino hin bewegt.

Lösung
Dieses Rezept nutzt den beliebten Parallax PING))) Ultraschall-Sensor. Er kann den Ab-
stand eines Objekts in einem Bereich von 2 Zentimetern bis zu 3 Metern messen. Der
Sketch gibt den Abstand über den seriellen Monitor aus und lässt eine LED schneller
blinken, je näher das Objekt kommt. In Abbildung 6-4 sehen Sie das Schaltdiagramm:

/* Ping))) Sensor
* Gibt den Abstand eines Ping)))-Sensors aus und ändert
* die Blinkgeschwindigkeit einer LED in Abhängigkeit vom
* Abstand.
*/

const int pingPin = 5;
const int ledPin = 13; // LED-Pin

void setup()
{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
}

void loop()
{
int cm = ping(pingPin) ;
Serial.println(cm);
digitalWrite(ledPin, HIGH);
delay(cm * 10); // Für jeden Zentimeter 10 Millisekunden hinzufügen
digitalWrite(ledPin, LOW);
delay(cm * 10);
}

// Folgender Code basiert auf http://www.arduino.cc/en/Tutorial/Ping
// Gibt den Abstand in cm zurück
int ping(int pingPin)
{
// Variablen für ping-Dauer,
// und Abstand in cm:
long duration, cm;

// Der PING))) wird durch einen HIGH-Impuls von 2 oder mehr Mikrosekunden angestoßen.
// Wir setzen vorher einen kurzen LOW-Impuls an, um einen sauberen HIGH-Impuls sicherzustellen:
pinMode(pingPin, OUTPUT);
digitalWrite(pingPin, LOW);
delayMicroseconds(2);
digitalWrite(pingPin, HIGH);

Se
– A
Ab

Pa
–

Se
– A
LE
– A
Pi

192 | Kapitel 6: Werte von Sensoren einlesen

delayMicroseconds(5);
digitalWrite(pingPin, LOW);

pinMode(pingPin, INPUT);
duration = pulseIn(pingPin, HIGH);

// Zeit in Abstand umwandeln
cm = microsecondsToCentimeters(duration);
return cm ;
}

long microsecondsToCentimeters(long microseconds)
{
// Die Schallgeschwindigkeit liegt bei 340 m/s oder 29 Mikrosekunden pro Zentimeter.
// Der Ping läuft hin und zurück, d.h., um den Abstand des Objekts zu
// ermitteln, verwenden wir die Hälfte der zurückgelegten Strecke.
return microseconds / 29 / 2;
}

TX
 1

R
X

02346 579 8101112

G
N

D 13

A
R

E
F

G
nd

Vi
n

5V3V
3

RE
SE

T

G
nd

Arduino

DIGITAL
4 5210 3

ANALOG

SIG

5V

Gnd

Abbildung 6-4: Anschluss des Ping)))-Sensors

Diskussion
Ultraschallsensoren messen die Zeit, die der Schall braucht, um von einem Objekt ab-
zuprallen und zum Sensor zurückzukehren.

Der »ping«-Impuls wird erzeugt, wenn der pingPin für zwei Mikrosekunden auf HIGH geht.
Der Sensor generiert dann einen Puls, der endet, wenn der Schall zurückkehrt. Die Länge
dieses Impulses ist proportional zur Strecke, die der Schall zurückgelegt hat, und der
Sketch verwendet die pulseIn-Funktion, um diese Dauer zu messen. Die Schallgeschwin-
digkeit beträgt 340 Meter pro Sekunde oder 29 Mikrosekunden pro Zentimeter. Die
Formel für den Hin- und Rückweg lautet: Hin-und Rückweg = Mikrosekunden / 29

6.4 Abstände messen | 193

Die Formel für den eigentlichen Abstand in Zentimetern lautet also: Mikrosekunden / 29 / 2

Der MaxBotix EZ1 ist ein weiterer Ultraschallsensor, der zur Abstandsmessung genutzt
werden kann. Er ist einfacher zu integrieren als der Ping))), weil er nicht »angepingt«
werden muss. Er kann kontinuierlich Abstandsdaten liefern, entweder in Form einer
Analogspannung oder proportional als Impulsbreite. Abbildung 6-5 zeigt, wie man ihn
anschließt.

TX
 1

RX
 02346 579 8101112

G
ND 13

AR
EF

G
nd

Vi
n

5V3V
3

RE
SE

T

G
nd

Arduino

DIGITAL

4 5210 3
ANALOG

AN PW5VGnd

MAXSonar- EZ1

Abbildung 6-5: Anschluss des EZ1 PW-Ausgangs mit digitalem Eingangspin

Der nachfolgende Sketch nutzt den EZ1-PW-Ausgang (Impulsbreite), um eine ähnliche
Ausgabe zu erzeugen wie im obigen Sketch:

/*
* EZ1Rangefinder Distance Sensor
* Gibt den Abstand eines EZ1-Sensors aus und ändert die
* Blinkgeschwindigkeit einer LED in Abhängigkeit vom
* Abstand.
*/

const int sensorPin = 5;
const int ledPin = 13; // LED-Pin

long value = 0;
int cm = 0;
int inches = 0;

void setup()
{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
}

void loop()
{
value = pulseIn(sensorPin, HIGH) ;

M

EZ
S

194 | Kapitel 6: Werte von Sensoren einlesen

cm = value / 58; // Impulsbreite ist 58 Mikrosekunden pro Zentimeter
inches = value / 147; // oder 147 Mikrosekunden pro Zoll
Serial.print(cm);
Serial.print(',');
Serial.println(inches);

digitalWrite(ledPin, HIGH);
delay(cm * 10); // Für jeden Zentimeter 10 Millisekunden hinzufügen
digitalWrite(ledPin, LOW);
delay(cm * 10);

delay(20);
}

Der EZ1 wird über die entsprechenden Arduino-Pins mit +5V und Masse versorgt.
Verbinden Sie den EZ1 PW-Pin mit dem Arduino-Digitalpin 5. Der Sketch misst die
Breite des Impulses mit der pulseIn-Funktion. Die Breite des Impulses liegt bei 58
Mikrosekunden pro Zentimeter bzw. bei 147 Mikrosekunden pro Zoll.

Bei langen Anschlussleitungen müssen Sie am Sensor möglicherweise
einen Kondensator zwischen +5V und Masse schalten, um die Spannungs-
versorgung zu stabilisieren. Bei fehlerhaften Messwerten verbinden Sie
einfach einen 10-uF-Kondensator mit dem Sensor (weitere Informationen
zu Entstörkondensatoren finden Sie in Anhang C).

Sie können den Abstand vom EZ1 auch über dessen Analogausgang messen. Verbinden
Sie den AN-Pin mit einem Analogeingang und lesen Sie den Wert mit analogRead ein. Der
folgende Code gibt den Wert des Analogeingangs, umgewandelt in Zoll, aus:

value = analogRead(0);
inches = value / 2; // jede Einheit von analogRead liegt bei etwa 5mv
Serial.println(inches);

Der Analogausgang liefert etwa 9,8mV pro Zoll zurück. Der Wert von analogRead liegt bei
etwa 4,8mV pro Einheit (in Rezept 5.6 erfahren Sie mehr über analogRead). Der obige
Code fasst jeweils zwei Einheiten zu einem Zoll zusammen. Der Rundungsfehler ist im
Vergleich zur Genauigkeit des Sensors gering, doch wenn Sie eine genauere Berechnung
wünschen, können Sie mit Fließkommazahlen arbeiten:

value = analogRead(0);
float mv = (value /1024.0) * 5000 ;
float inches = mv / 9.8; // 9,8mv pro Zoll
Serial.println(inches) ;

Siehe auch
Rezept 5.6 erläutert, wie man Werte von analogInput in Spannungswerte umwandelt.

Die Arduino-Referenz zu pulseIn: http://www.arduino.cc/en/Reference/PulseIn

–

–

6.4 Abstände messen | 195

6.5 Abstände genauer messen

Problem
Sie wollen messen, wie weit Objekte vom Arduino entfernt sind. Die Werte sollen aber
genauer sein als in Rezept 6.4.

Lösung
Infrarotsensoren (IR) besitzen üblicherweise einen Analogausgang, der mit analogRead.
eingelesen werden kann. Sie sind genauer als Ultraschallsensoren, haben aber eine ge-
ringere Reichweite (typischerweise zwischen 10 Zentimetern und 1 oder 2 Metern). Der
folgende Sketch bietet die gleiche Funktionalität wie in Rezept 6.4, verwendet aber den
Infrarotsensor Sharp GP2Y0A02YK0F (in Abbildung 6-6 sehen Sie die Verschaltung):

/* ir-distance Sketch
* Gibt den Abstand eines IR-Sensors aus und ändert die
* Blinkgeschwindigkeit einer LED in Abhängigkeit vom
* Abstand.
*/

const int ledPin = 13; // LED-Pin
const int sensorPin = 0; // analoger Sensor-Pin

const long referenceMv = 5000; // long int, um Überlauf bei Multiplikation zu verhindern

void setup()
{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
}

void loop()
{
int val = analogRead(sensorPin);
int mV = (val * referenceMv) / 1023;

Serial.print(mV);
Serial.print(",");
int cm = getDistance(mV);
Serial.println(cm);

digitalWrite(ledPin, HIGH);
delay(cm * 10); // Für jeden Zentimeter 10 Millisekunden hinzufügen
digitalWrite(ledPin, LOW);
delay(cm * 10);

delay(100);
}

// Der Abstand wird aus einer Tabelle interpoliert
// Tabelleneinträge sind Abstände in Schritten von 250 Millivolt
const int TABLE_ENTRIES = 12;

IR
–
In

(
an
–
ir-

196 | Kapitel 6: Werte von Sensoren einlesen

const int firstElement = 250; // Erster Eintrag ist 250 mV
const int INTERVAL = 250; // Millivolt zwischen den Elementen
static int distance[TABLE_ENTRIES] = {150,140,130,100,60,50,40,35,30,25,20,15};

int getDistance(int mV)
{
if(mV > INTERVAL * TABLE_ENTRIES-1)
return distance[TABLE_ENTRIES-1];

else
{
int index = mV / INTERVAL;
float frac = (mV % 250) / (float)INTERVAL;
return distance[index] - ((distance[index] - distance[index+1]) * frac);

}
}

TX
 1

R
X

02346 579 8101112

G
N

D 13

AR
EF

G
nd

Vi
n

5V3V
3

RE
SE

T

G
nd

Arduino

DIGITAL

4 5210 3

ANALOG

Output

5V

Gnd

Abbildung 6-6: Anschluss des Sharp IR-Abstandssensors

Diskussion
Die vom IR-Sensor gelieferten Werte sind nicht linear, d.h., der von analogRead gelesene
Wert ist nicht proportional zum Abstand. Die Berechnung ist daher etwas komplizierter
als in Rezept 6.4. Der Sketch in diesem Rezept nutzt eine Tabelle, um den Abstand zu
bestimmen. Dazu sucht er sich den nächstgelegenen Eintrag in der Tabelle, basierend
auf dem Verhältnis von gemessenem Wert zum nächstgelegenen Tabelleneintrag (diese
Technik nennt man Interpolation). Die Werte der Tabelle müssen für Ihren Sensor
angepasst werden – nutzen Sie dazu das entsprechende Datenblatt oder probieren Sie es
einfach aus.

6.5 Abstände genauer messen | 197

Da die Werte für die Tabelle durch Ausprobieren ermittelt werden können
(man misst die Spannung, bis sie sich um die nötige Menge erhöht hat,
und misst dann den Abstand), können Sie diese Technik auch nutzen,
wenn Ihnen keine Gleichung zur Interpretation der Werte zur Verfügung
steht, z.B. wenn Sie kein Datenblatt besitzen.

Die Umwandlung der Spannung in den Abstand erfolgt in der Funktion:

int getDistance(int mV)

Die Funktion überprüft zuerst, ob der Wert innerhalb des Bereichs der Tabelle liegt. Der
kleinste gültige Abstand wird zurückgeliefert, wenn der Wert nicht im Wertebereich liegt:

if(mV > INTERVAL * TABLE_ENTRIES)
return distance[TABLE_ENTRIES-1]; //TABLE_ENTRIES-1 ist letzter gültiger Eintrag

Liegt der Wert innerhalb des Tabellenbereichs, ermittelt eine ganzzahlige Division,
welcher Eintrag am nächsten liegt, aber kleiner als der Messwert ist:

int index = mV / INTERVAL ;

Der Modulo-Operator (siehe Kapitel 3) wird verwendet, um den Rest zu ermitteln, wenn
ein Messwert zwischen zwei Einträgen liegt:

float frac = (mV % 250) / (float)INTERVAL;

return distance[index] + (distance[index]* (frac / interval));

Die letzte Zeile der getDistance-Funktion nutzt den Index und den Rest, um den Abstand
zu berechnen und zurückzugeben. Sie liest den Wert aus der Tabelle und fügt, basierend
auf dem frac-Wert, noch einen proportionalen Anteil hinzu. Das letzte Element ist eine
Näherung, doch da es nur einen kleinen Teil des Ergebnisses ausmacht, ist es akzeptabel.
Wenn Ihnen das Ergebnis nicht genau genug ist, müssen Sie eine Tabelle aufbauen, in der
mehr Werte enger beieinander liegen.

Eine Tabelle kann auch die Performance verbessern, wenn die Berechnung lange dauert
oder wenn immer wieder mit einer beschränkten Anzahl von Werten gerechnet wird.
Berechnungen, insbesondere Fließkommaberechnungen, können sehr langsam sein. Die-
se Berechnungen durch Tabellen zu ersetzen, kann die Dinge deutlich beschleunigen.

Die Werte können (wie bei diesem Sketch) fest kodiert sein, oder in setup() berechnet wer-
den. Der Sketch braucht dann zwar etwas länger zum Starten, aber da das nur einmal beim
Einschalten des Arduino passiert, profitieren Sie danach beim jedem loop() vom Geschwin-
digkeitszuwachs. Den Geschwindigkeitszuwachs erkaufen Sie sich allerdings durch einen
erhöhten Speicherbedarf – je größer die Tabelle, desto mehr RAM wird benötigt. Kapitel 17
zeigt, wie Sie Progmem nutzen können, um Daten im Programmspeicher abzulegen.

Bei langen Anschlussleitungen müssen Sie am Sensor möglicherweise
einen Kondensator zwischen +5V und Masse schalten, um die Spannungs-
versorgung zu stabilisieren. Bei fehlerhaften Messwerten verbinden Sie
einfach einen 10-uF-Kondensator mit dem Sensor (weitere Informationen
zu Entstörkondensatoren finden Sie in Anhang C).

M
%

ge

Ko
–
Se
–

198 | Kapitel 6: Werte von Sensoren einlesen

Siehe auch
Eine detaillierte Beschreibung des Sharp IR-Sensors finden Sie unter http://www.societyo-
frobots.com/sensors_sharpirrange.shtml.

6.6 Vibration messen

Problem
Sie wollen auf Vibration reagieren, z.B. wenn an eine Tür geklopft wird.

Lösung
Ein Piezo-Sensor reagiert auf Vibration. Er funktioniert am besten, wenn er mit einer grö-
ßeren vibrierenden Oberfläche verbunden ist. Den Anschluss sehen Sie in Abbildung 6-7:

/* piezo Sketch
* Schaltet eine LED ein, wenn geklopft wird
*/

const int sensorPin = 0; // Analogpin für Sensor
const int ledPin = 13; // Pin für LED
const int THRESHOLD = 100;

void setup()
{
pinMode(ledPin, OUTPUT);

}

void loop()
{
int val = analogRead(sensorPin);
if (val >= THRESHOLD)
{
digitalWrite(ledPin, HIGH);
delay(100); // Damit man die LED sieht
}
else
digitalWrite(ledPin, LOW);

}

Diskussion
Ein Piezo-Sensor, auch Klopfsensor genannt, erzeugt eine Spannung als Reaktion auf eine
physikalische Belastung. Je höher die Belastung, desto höher die Spannung. Das Piezo-
Element ist gepolt, und die positive Seite (üblicherweise mit einem roten Draht oder mit
»+« gekennzeichnet) wird mit dem analogen Eingang verbunden. Die negative Seite

–

–

–

–

6.6 Vibration messen | 199

(schwarz oder mit »–« gekennzeichnet) wird mit Masse verbunden. Ein hochohmiger
Widerstand (1 Megaohm) wird parallel zum Sensor geschaltet.

TX
 1

R
X

02346 579 8101112

G
ND 13

A
RE

F

G
nd

V
in

5V3V
3

RE
SE

T

G
nd

Arduino

DIGITAL

4 5210 3

ANALOG

Piezo-

Klopfsensor

1
Megohm

+ -

Abbildung 6-7: Anschluss eines Klopfsensors

Die Spannung wird über Arduinos analogRead eingelesen, um eine LED einzuschalten (in
Kapitel 5 erfahren Sie mehr über die analogRead-Funktion). THRESHOLD definiert den
Schwellwert, bei dem die LED eingeschaltet wird. Sie können diesen Wert erhöhen oder
verkleinern und so die Empfindlichkeit des Sketches regeln.

Piezo-Sensoren kann man in Kunststoffgehäusen kaufen oder als einfache Metallplättchen
mit zwei Kabeln dran. Die Komponenten selbst sind gleich, d.h., Sie können die Variante
nutzen, die für Ihr Projekt am besten geeignet ist.

Manche Sensoren, wie das Piezo-Element, können auch vom Arduino angesteuert werden,
um das zu erzeugen, was sie auch messen. Kapitel 9 zeigt, wie man mit einem Piezo-Element
Töne erzeugen kann.

6.7 Geräusche erkennen

Problem
Sie wollen Geräusche wie Klatschen, Sprechen oder Schreien erkennen.

Lösung
Dieses Rezept verwendet das Breakout-Board BOB-08669 für das Electret-Mikrofon
(SparkFun). Verbinden Sie das Board wie in Abbildung 6-8 zu sehen und laden Sie den
Code auf den Arduino hoch.

an
–
LE
–

Se
–
Au
–

BO
Sp
–
M

200 | Kapitel 6: Werte von Sensoren einlesen

TX
 1

RX
 02346 579 8101112

GN
D 13

AR
EF

Gn
d

Vi
n

5V3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

4 5210 3

ANALOG

Aud

VCC

Gnd

Mikrofon-
Breakout-

Board

Abbildung 6-8: Anschluss des Mikrofon-Boards

Die eingebaute LED an Arduino-Pin 13 geht an, wenn Sie in der Nähe des Mikrofons
klatschen, schreien oder laute Musik spielen. Möglicherweise müssen Sie den Schwellwert
korrigieren – verwenden Sie den seriellen Monitor, um sich die hohen und niedrigen
Werte anzusehen, und ändern Sie den Schwellwert so ab, dass er zwischen den hohen
Werten (wenn Geräusche vorhanden sind) und den niedrigen Werten (wenn keine oder
nur wenige Geräusche zu hören sind) liegt. Laden Sie den angepassten Code auf den
Arduino hoch und probieren Sie es erneut:

/*
microphone Sketch

SparkFun Breakout-Board für Electret-Mikrofon an Analogpin 0
*/

const int ledPin = 13; //LED an Pin 13
const int middleValue = 512; //Mitte des analogen Wertebereichs
const int numberOfSamples = 128; //Messwerte pro Durchgang

int sample; //Vom Mikro gelieferter Wert
long signal; //Messwert ohne DC-Offset
long averageReading; //Durchschnitt des Messdurchgangs

long runningAverage=0; //Laufender Durchschnitt der berechneten Werte
const int averagedOver= 16; //Wie schnell wirken sich neue Werte auf den laufenden Durchschnitt
aus?

//Größere Zahlen bedeuten langsamer

const int threshold=400; //Bei welchem Schwellwert schaltet sich die LED ein?
void setup() {
pinMode(ledPin, OUTPUT);
Serial.begin(9600);
}

6.7 Geräusche erkennen | 201

void loop() {
long sumOfSquares = 0;
for (int i=0; i<numberOfSamples; i++) { //Viele Messwerte einlesen und Durchschnitt bilden
sample = analogRead(0); //Wert einlesen
signal = (sample - middleValue); //Offset von der Mitte abziehen
signal *= signal; //Quadrieren, damit alle Werte positiv sind
sumOfSquares += signal; //Zum Gesamtwert hinzuaddieren
}
averageReading = sumOfSquares/numberOfSamples; //Laufenden Durchschnitt berechnen
runningAverage=(((averagedOver-1)*runningAverage)+averageReading)/averagedOver;

if (runningAverage>threshold){ //Durchschnitt über Schwellwert?
digitalWrite(ledPin, HIGH); //Ja, LED einschalten
}else{
digitalWrite(ledPin, LOW); //Nein, LED ausschalten
}
Serial.println(runningAverage); //Wert zu Testzwecken ausgeben
}

Diskussion
Ein Mikrofon erzeugt sehr schwache elektrische Signale. Würden Sie es direkt mit einem
Pin des Arduino verbinden, wäre keine Änderung messbar. Das Signal muss zuerst ver-
stärkt werden, damit es vom Arduino genutzt werden kann. Das SparkFun-Board besitzt
ein Mikrofon und eine integrierte Verstärkerschaltung, die das Signal so aufbereitet, dass
es vom Arduino verarbeitet werden kann.

1 2 3

Abbildung 6-9: Messung eines Audiosignals an drei Stellen

Da wir in diesem Rezept ein Audiosignal messen, müssen wir einige zusätzliche Berech-
nungen vornehmen, um an nützliche Informationen zu gelangen. Ein Audiosignal ver-
ändert sich recht schnell, und der von analogRead zurückgelieferte Wert hängt davon ab,
an welchem Punkt des wellenförmigen Signals Sie einen Messwert einlesen. Wenn Sie mit
analogRead nicht vertraut sind, sehen Sie sich Kapitel 5 und Rezept 6.2 an. Ein Beispiel für
die Wellenform eines Audiosignals ist in Abbildung 6-9 zu sehen. Mit der Zeit steigt und
sinkt die Spannung in einem regelmäßigen Muster. Wenn Sie zu drei verschiedenen

an
–

202 | Kapitel 6: Werte von Sensoren einlesen

Zeitpunkten messen, erhalten Sie auch drei unterschiedliche Messwerte. Würden Sie das
nutzen, um eine Entscheidung zu treffen, könnten Sie fälschlicherweise schließen, dass
das Signal in der Mitte lauter wird.

Eine genaue Messung verlangt daher mehrere, zeitlich nah beeinanderliegende, Messun-
gen. Die Spitzen und Täler nehmen zu, wenn das Signal größer wird. Die Differenz zwi-
schen dem Tiefpunkt eines Tals und dem obersten Punkt einer Spitze nennt man
Amplitude, und sie steigt an, wenn das Signal lauter wird.

Um die Größe der Spitzen und Täler zu bestimmen, messen Sie die Differenz zwischen
Spannungsmitte und den Größen der Spitzen und Täler. Sie können sich diesen Mittel-
punkt als Linie vorstellen, die genau in der Mitte zwischen der höchsten Spitze und dem
tiefsten Tal verläuft (siehe Abbildung 6-10). Die Linie repräsentiert den Spannungs-Offset
des Signals (die Spannung ohne Spitzen oder Täler). Wenn Sie diesen Offset von den
analogRead-Werten abziehen, erhalten Sie den korrekten Wert der Signalamplitude.

Abbildung 6-10: Audiosignal mit Offset (Signal-Mittelpunkt)

Wird das Signal lauter, steigt die Durchschnittsgröße dieser Werte an, doch da einige
Werte negativ sind (wenn das Signal unter den Offset fällt), heben sie sich gegenseitig auf,
und der Durchschnitt tendiert gegen 0. Um das zu korrigieren, quadrieren wir jeden Wert
(nehmen ihn mit sich selbst mal). Das macht alle Werte positiv und erhöht den Un-
terschied bei kleinen Änderungen, was für die Untersuchung ebenfalls hilfreich ist. Der
Durchschnittswert steigt und sinkt nun mit der Signalamplitude.

Für diese Berechnung müssen wir den Wert des Offsets kennen. Um ein sauberes Signal
zu erhalten, wird der Mikrofonverstärker einen Offset verwenden, der so mittig wie
möglich im erlaubten Spannungbereich liegt, damit das Signal so groß wie möglich
werden kann, ohne zu verzerren. Unser Code geht genau davon aus und verwendet den
Wert 512 (genau in der Mitte des analogen Wertebereichs von 0 bis 1023).

Die Variablenwerte am Anfang des Sketches können angepasst werden, wenn der Sketch
auf die von Ihnen benötigten Tonlagen nicht gut reagiert.

6.7 Geräusche erkennen | 203

numberOfSamples ist auf 128 gesetzt – setzt man diesen Wert zu klein an, deckt der
Durchschnitt die kompletten Zyklen der Wellenform möglicherweise nicht adäquat ab,
und Sie erhalten falsche Ergebnisse. Setzen Sie den Wert hingegen zu hoch an, bilden Sie
den Durchschnitt über einen zu langen Zeitraum und sehr kurze Töne können in der
großen Datenmenge verloren gehen. Es kann auch zu einer deutlichen Verzögerung
zwischen Ton und aufleuchtendes LED kommen. Für die Berechnung verwendete Kon-
stanten wie numberOfSamples und averagedOver verwenden Zweierpotenzen (128 bzw. 16).
Versuchen Sie, Werte zu benutzen, die durch 2 teilbar sind, um die größtmögliche
Performance zu erreichen (mehr zu mathematischen Funktionen erfahren Sie in Kapitel 3).

6.8 Temperatur messen

Problem
Sie wollen die Temperatur ausgeben, oder den Wert zur Steuerung eines Gerätes nutzen,
etwa um etwas zu schalten, wenn die Temperatur einen Schwellwert erreicht.

Lösung
Das Rezept gibt die Temperatur in Fahrenheit und Celsius aus. Es verwendet den be-
liebten Temperatursensor LM35. Der Sensor sieht aus wie ein Transistor, und die Ver-
schaltung ist in Abbildung 6-11 zu sehen:

/*
lm35 Sketch
Gibt die Temperatur über den seriellen Monitor aus
*/

const int inPin = 0; // Analogpin

void setup()
{
Serial.begin(9600);
}

void loop()
{
int value = analogRead(inPin);
Serial.print(value); Serial.print(" > ");
float millivolts = (value / 1024.0) * 5000;
float celsius = millivolts / 10; // 10mV pro Grad Celsius
Serial.print(celsius);
Serial.print(" Grad Celsius, ");

Serial.print((celsius * 9)/ 5 + 32); // Umwandlung in Fahrenheit
Serial.println(" Grad Fahrenheit");

delay(1000); // Eine Sekunde warten

}

Se
–
Te

Fa
C
LM
lm

204 | Kapitel 6: Werte von Sensoren einlesen

TX
 1

RX
 02346 579 8101112

G
ND 13

AR
EF

Gn
d

Vi
n

3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

4 5210 3

ANALOG

+5
Out

Gnd

LM35

LM35

+5 Out Gnd

V5

Abbildung 6-11: Anschluss des Temperatursensors LM35

Diskussion
Der Temperatursensor LM35 erzeugt eine Analogspannung, die zur Temperatur direkt
proportional ist. Sie beträgt am Ausgang 1 Millivolt je 0,1�C (10mV pro Grad).

Der Sketch wandelt die analogRead-Werte in Millivolt um (siehe Kapitel 5) und teilt sie
dann durch 10, um die Temperatur in Grad zu ermitteln.

Die Genauigkeit des Sensors liegt bei etwa 0,5�C, und in vielen Fällen können Sie auf
Fließkommazahlen verzichten und mit ganzen Zahlen arbeiten.

Der folgende Sketch aktiviert Pin 13, wenn die Temperatur einen Schwellwert über-
schreitet:

const int inPin = 0; // Analogpin für Senso
const int outPin = 13; // Digitalpin für LED

const int threshold = 25; // Schwellwert, der den Ausgangspin anstößt

void setup()
{
Serial.begin(9600);
pinMode(outPin, OUTPUT);
}

void loop()
{
int value = analogRead(inPin);
long celsius = (value * 500L) /1024; // 10 mV je Grad C, siehe Text
Serial.print(celsius);
Serial.print(" Grad Celsius: ");
if(celsius > threshold)
{

–

–

6.8 Temperatur messen | 205

digitalWrite(outPin, HIGH);
Serial.println("Pin ist an");

}
else
{
digitalWrite(outPin, LOW);
Serial.println("Pin ist aus");

}
delay(1000); // Eine Sekunde warten
}

Der Sketch nutzt nur long-Werte (32-Bit) zur Berechnung. Der Buchstabe L hinter einer
Zahl sorgt dafür, dass die Berechnung in long-Arithmetik erfolgt, damit die Multiplikation
der Maximaltemperatur (500 bei einem 5-V-Arduino) mit dem eingelesenen Analogwert
nicht zu einem Überlauf führt. Weitere Informationen zur Umwandlung von Analog-
pegeln in Spannungen finden Sie in Kapitel 5.

Wenn Sie Werte in Fahrenheit benötigen, können Sie den LM34-Sensor verwenden, der
Ausgaben in Fahrenheit erzeugt, oder Sie können die Werte mit der folgenden Formel
umrechnen:

float f = (celsius * 9)/ 5 + 32);

Eine Alternative zur Temperaturmessung ist der LM335. Er sieht aus wie der LM35, wird
aber anders verschaltet und genutzt.

Die LM335-Ausgabe entspricht 10mV pro Grad Kelvin, also 2,731 Volt bei 0 Grad Celsius.
Ein Vorwiderstand wird für die Betriebsspannung benötigt. Oft wird ein 2K-Ohm-Wider-
stand verwendet, es können aber auch 2,2K-Ohm sein. Hier ein Sketch, der die Temperatur
mit Hilfe des LM335 ausgibt (die Verschaltung sehen Sie in Abbildung 6-12):

/*
lm335 Sketch
Gibt die Temperatur über den seriellen Monitor aus
*/

const int inPin = 0; // Analogpin

void setup()
{
Serial.begin(9600);
}

void loop()
{
int value = analogRead(inPin);
Serial.print(value); Serial.print(" > ");
float millivolts = (value / 1024.0) * 5000;
// 10mV pro Grad Kelvin, 0 Grad Celsius ist 273,15
float celsius = (millivolts / 10) - 273.15 ;

Serial.print(celsius);
Serial.print(" Grad Celsius, ");

LM

lm

206 | Kapitel 6: Werte von Sensoren einlesen

Serial.print((celsius * 9)/ 5 + 32); // In Fahrenheit umwandeln
Serial.println(" Grad Fahrenheit");

delay(1000); // Eine Sekunde warten
}

TX
 1

RX
 02346 579 8101112

GN
D 13

AR
EF

Vi
n

3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

2K-Ohm,
siehe Text

Adj

nicht verbunden
siehe Text

Out

LM335

Gnd

Led

4 5210 3

ANALOG
Gn

d

Adj
Out Gnd LM335

5V

Abbildung 6-12: Anschluss des Temperatursensors LM335

Sie können die Genauigkeit verbessern, indem Sie den nicht angeschlossenen adj-Pin mit
dem Schleifer eines 10-K-Potis (und die beiden anderen Anschlüsse mit +5V und Masse)
verbinden. Gleichen Sie die Einstellung dann mit dem Poti über ein bekanntermaßen
genaues Thermometer ab.

Siehe auch
LM35-Datenblatt: http://www.national.com/ds/LM/LM35.pdf

LM335-Datenblatt: http://www.national.com/ds/LM/LM135.pdf

6.9 RFID-Tags lesen

Problem
Sie wollen einen RFID-Tag lesen und auf bestimmte IDs reagieren.

Lösung
Abbildung 6-13 zeigt die Anbindung eines Parallax RFID- (Radio Frequency Identifica-
tion)Lesers an den seriellen Port des Arduino. (Möglicherweise müssen Sie den Leser
abklemmen, um den Sketch hochladen zu können)

–

–

6.9 RFID-Tags lesen | 207

Dieser Leser arbeitet mit 125-kHz-Tags. Wenn Sie einen anderen Leser
nutzen, müssen Sie den korrekten Anschluss und die richtige Nutzung in
der Dokumentation nachschlagen.

TX
 1

RX
 02346 579 8101112

G
ND 13

AR
EF

G
nd

Vi
n

5V3V
3

RE
SE

T

G
nd

Arduino

DIGITAL

4 5210 3
ANALOG

RFID-
Leser+5

Enable

OUT

Gnd

Abbildung 6-13: Serieller RFID-Leser am Arduino

Der Sketch liest den Wert eines RFID-Tags ein und gibt ihn aus:

/*
RFID Sketch
Gibt den von einem RFID-Tag eingelesenen Wert aus
*/

const int startByte = 10; // ASCII-Linefeed vor jedem Tag
const int endByte = 13; // ASCII Carriage Return schließt jeden Tag ab
const int tagLength = 10; // Anzahl der Ziffern im Tag
const int totalLength = tagLength + 2; //Tag-Länge + Start- und End-Byte

char tag[tagLength + 1]; // Enthält den Tag und eine abschließende 0

int bytesread = 0;

void setup()
{
Serial.begin(2400); // Baudrate Ihres RFID-Lesers verwenden
pinMode(2,OUTPUT); // Mit RFID ENABLE-Pin verbunden
digitalWrite(2, LOW); // RFID-Leser aktivieren
}

void loop()
{
if(Serial.available() >= totalLength) // Ausreichend Daten da?
{
if(Serial.read() == startByte)
{

RF

208 | Kapitel 6: Werte von Sensoren einlesen

bytesread = 0; // Am Anfang des Tags setzen wir den Zähler auf 0 zurück
while(bytesread < tagLength) // 10-Ziffern-Code einlesen
{
int val = Serial.read();
if((val == startByte)||(val == endByte)) // Auf Code-Ende prüfen
break;
tag[bytesread] = val;
bytesread = bytesread + 1; // Bereit für nächste Ziffer

}
if(Serial.read() == endByte) // Auf korrektes End-Zeichen prüfen
{
tag[bytesread] = 0; // String abschließen
Serial.print("RFID-Tag ist: ");
Serial.println(tag);

}
}
}
}

Diskussion
Ein Tag besteht aus einem Startzeichen, gefolgt vom eigentlichen 10-Ziffern-Code und
einem End-Zeichen. Der Sketch wartet, bis ein vollständiger Tag verfügbar ist, und gibt
ihn dann aus, wenn er gültig ist. Der Tag wird in Form von ASCII-Ziffern empfangen
(mehr zum Empfang von ASCII-Ziffern finden Sie in Rezept 4.4). Sie können den
empfangenen String auch in eine Zahl umwandeln, wenn Sie ihn speichern oder mit
anderen Werten vergleichen wollen. Dazu ändern Sie die letzten Codezeilen wie folgt ab:

if(Serial.read() == endByte) // Auf korrektes End-Zeichen prüfen
{
tag[bytesread] = 0; // String abschließen
long tagValue = atol(tag); // ASCII-Tag in long-Wert umwandeln
Serial.print("RFID-Tag ist: ");
Serial.println(tagValue);

}

RFID steht für »Radio Frequency Identification«, und wie es der Name andeutet, reagiert
es auf Radiofrequenzen empfindlich und ist entsprechend störanfällig. Der Code in
diesem Rezept verwendet nur Codes mit der richtigen Länge und den richtigen Start-
und Stop-Bits, was die meisten Fehler eliminieren sollte. Doch Sie können den Code auch
stabiler machen, indem Sie den Tag wiederholt einlesen und die Daten nur nutzen, wenn
sie übereinstimmen. (RFID-Leser wiederholen den Code, solange sich ein gültiger Tag in
der Nähe befindet.) Zu diesem Zweck erweitern Sie die letzten Zeilen im obigen Code-
Fragment wie folgt:

if(Serial.read() == endByte) // Auf korrektes End-Zeichen prüfen
{
tag[bytesread] = 0; // String abschließen
long tagValue = atol(tag); // ASCII-Tag in long-Wert umwandeln
if (tagValue == lastTagValue)
{
Serial.print("RFID-Tag ist: ");
Serial.println(tagValue);

6.9 RFID-Tags lesen | 209

lastTagValue = tagValue;
}
}

Sie müssen zu Beginn des Sketches noch eine Deklaration für lastTagValue einfügen:

long lastTagValue=0;

Dieser Ansatz ähnelt dem Code aus Rezept 5.3. Eine Bestätigung erhalten Sie nur, wenn
der Tag lange genug verfügbar ist, um zweimal gelesen zu werden, doch Fehler nehmen
auf diese Weise deutlich ab. Sie können ein versehentliches Einlesen verhindern, indem
Sie dafür sorgen, dass der Tag eine gewisse Zeit verfügbar sein muss, bevor die Nummer
ausgegeben wird.

6.10 Drehbewegungen messen

Problem
Sie wollen die Drehbewegung eines Objekts messen und ausgeben, um seine Geschwin-
digkeit und/oder Richtung verfolgen zu können.

Lösung
Um eine Drehbewegung zu messen, können Sie einen Drehwinkelgeber nutzen, der mit
dem Objekt verbunden ist, das Sie nachhalten wollen. Schließen Sie den Drehwinkelgeber
wie in Abbildung 6-14 an:

/*
Drehwinkelgeber einlesen
Diese einfache Version fragt nur die Encoder-Pins ab
Die Position wird über den seriellen Monitor ausgegeben
*/

const int encoderPinA = 4;
const int encoderPinB = 2;
const int encoderStepsPerRevolution=16;
int angle = 0;

int val;

int encoderPos = 0;
boolean encoderALast = LOW; // Vorigen Pin-Zustand merken

void setup()
{
pinMode(encoderPinA, INPUT);
pinMode(encoderPinB, INPUT);
digitalWrite(encoderPinA, HIGH);
digitalWrite(encoderPinB, HIGH);
Serial.begin (9600);
}

Se
–

v
D
–
Ri
–
G
–

v
D

g
D
D
–

v

210 | Kapitel 6: Werte von Sensoren einlesen

void loop()
{
boolean encoderA = digitalRead(encoderPinA);

if ((encoderALast == HIGH) && (encoderA == LOW))
{
if (digitalRead(encoderPinB) == LOW)
{
encoderPos--;
}
else
{
encoderPos++;
}
angle=(encoderPos % encoderStepsPerRevolution)*360/encoderStepsPerRevolution;
Serial.print (encoderPos);
Serial.print (" ");
Serial.println (angle);
}

encoderALast = encoderA;
}

TX 1
RX 0

2
3
4

6
5

7

Gnd
Vin

5V
3V3

RESET

Gnd

ARDU
IN

O C

A

B

Abbildung 6-14: Drehwinkelgeber

Diskussion
Ein Drehwinkelgeber erzeugt zwei Signale, während er bewegt wird. Beide Signale
wechseln zwischen HIGH und LOW, während sich die Achse dreht, doch die Signale sind
zueinander leicht verschoben. Wenn Sie den Punkt erkennen, an dem eines der Signale

6.10 Drehbewegungen messen | 211

von HIGH zu LOW wechselt, sagt Ihnen der Zustand des anderen Pins (HIGH oder LOW), in
welche Richtung sich die Achse dreht.

Die erste Zeile des Codes in der loop-Funktion liest also einen der Encoder-Pins ein:

int encoderA = digitalRead(encoderPinA);

Dann wird dieser Wert mit dem vorigen verglichen, um zu sehen, ob er gerade auf LOW
gegangen ist:

if ((encoderALast == HIGH) && (encoderA == LOW))

Ist das nicht der Fall, wird der nachfolgende Code-Block nicht ausgeführt, sondern zum
Ende von loop gesprungen, wo der gerade gelesene Wert in encoderALast gespeichert wird.
Dann geht es mit einem neuen Messwert wieder von vorne los.

Gibt der folgende Ausdruck

if ((encoderALast == HIGH) && (encoderA == LOW))

true zurück, liest der Code den anderen Encoder-Pin ein und inkrementiert bzw.
dekrementiert encoderPos in Abhängigkeit vom zurückgelieferten Wert. Er berechnet den
Winkel der Achse (0 ist dabei der Punkt, an dem sich die Achse befand, als der Code
gestartet wurde). Der Wert wird dann über den seriellen Port gesendet, und Sie können
ihn auf dem seriellen Monitor sehen.

Drehwinkelgeber gibt es mit verschiedenen Auflösungen (Schritten pro Umdrehung). Sie
gibt an, wie oft das Signal bei einer Umdrehung der Achse zwischen HIGH und LOW
wechselt. Die Werte reichen dabei von 16 bis 1000. Bei höheren Werten können kleinere
Bewegungen erkannt werden, aber dafür kosten die Encoder auch deutlich mehr Geld.
Die Auflösung des Encoders ist im Code fest eingetragen:

const int encoderStepsPerRevolution=16;

Bei einem anderen Encoder müssen Sie den Wert entsprechend korrigieren.

Wenn Sie keine auf- und absteigenden Werte erhalten, egal in welcher Richtung Sie den
Geber drehen, sollten Sie den Test umkehren und nach einer steigenden statt einer
fallenden Flanke Ausschau halten. Vertauschen Sie die LOW- und HIGH-Werte in der Zeile,
in der die Werte überprüft werden, wie folgt:

if ((encoderALast == LOW) && (encoderA == HIGH))

Drehwinkelgeber erzeugen nur ein Inkrement bzw. Dekrement. Sie können Ihnen nicht
direkt sagen, in welchem Winkel sich die Achse gerade befindet. Der Code berechnet das,
doch immer relativ zur Achsstellung beim Programmstart. Der Code überwacht die Pins,
indem er sie kontinuierlich abfragt (engl. Polling). Es gibt keine Garantie, dass sich die
Pinwerte nicht geändert haben, seit sie zuletzt abgefragt wurden, d.h., wenn sich der Code
um viele andere Dinge kümmern muss und der Encoder sehr schnell gedreht wird, dann
ist es möglich, dass einige Schritte verloren gehen. Das ist bei hochauflösenden Encodern
wahrscheinlicher, da sie beim Drehen viel mehr Signale senden.

D
–

Po

212 | Kapitel 6: Werte von Sensoren einlesen

Um die Geschwindigkeit herauszufinden, müssen Sie zählen, wie viele Schritte in eine
Richtung in einer festgelegten Zeit registriert werden.

6.11 Mehrere Drehbewegungen messen

Problem
Sie arbeiten mit zwei oder mehr Drehwinkelgebern und wollen deren Drehbewegungen
messen und ausgeben.

Lösung
Die Schaltung arbeitet mit zwei Encodern, die wie in Abbildung 6-15 angeschlossen sind.
Weitere Informationen zu Drehwinkelgebern finden Sie in Rezept 6.10:

/*
RotaryEncoderMultiPoll
Der Sketch verwendet zwei Encoder.
Einer ist mit den Pins 2 und 3,
der andere mit den Pins 4 und 5 verbunden
*/

const int ENCODERS = 2; // Anzahl Encoder

const int encoderPinA[ENCODERS] = {2,4}; // encoderA, Pins an 2 und 4
const int encoderPinB[ENCODERS] = {3,5}; // encoderB, Pins an 3 und 5
int encoderPos[ENCODERS] = { 0,0}; // Positionen auf 0 setzen
boolean encoderALast[ENCODERS] = { LOW,LOW}; // Letzter Zustand des encoderA-Pins

void setup()
{
for (int i=2; i<6; i++){
pinMode(i, HIGH);
digitalWrite(i, HIGH);
}
Serial.begin (9600);
}

int updatePosition(int encoderIndex)
{
boolean encoderA = digitalRead(encoderPinA[encoderIndex]);
if ((encoderALast[encoderIndex] == HIGH) && (encoderA == LOW))
{
if (digitalRead(encoderPinB[encoderIndex]) == LOW)
{
encoderPos[encoderIndex]--;
}
else
{
encoderPos[encoderIndex]++;

–

–

–

6.11 Mehrere Drehbewegungen messen | 213

}
Serial.print("Encoder ");
Serial.print(encoderIndex,DEC);
Serial.print("=");
Serial.print (encoderPos[encoderIndex]);
Serial.println ("/");
}
encoderALast[encoderIndex] = encoderA;
}

void loop()
{
for(int i=0; i < ENCODERS;i++)
{
updatePosition(i);
}
}

TX
 1

RX
 02346 57

Gn
d

Vi
n

5
V

3V
3

RE
SE

T

Gn
d

ARDUINO

C AB C AB

Abbildung 6-15: Anschluss zwei Drehwinkelgeber

Diskussion
Dieses Rezept nutzt die gleiche Logik wie Rezept 6.10, in dem ein Encoder gelesen wurde.
Hier wird aber ein Array für alle Variablen verwendet, die für jeden Encoder separat
vorgehalten werden müssen. Wir können dann eine for-Schleife nutzen, um alle Encoder
einzulesen und ihre Rotation zu berechnen. Um mehr Encoder zu nutzen, müssen Sie den
ENCODERS-Wert entsprechend erhöhen, die Arrays erweitern und definieren, an welchen
Pins sie angeschlossen sind.

214 | Kapitel 6: Werte von Sensoren einlesen

Wenn Sie keine auf- und absteigenden Werte erhalten, egal in welcher Richtung Sie den
Geber drehen, sollten Sie den Test umkehren und nach einer steigenden statt einer
fallenden Flanke Ausschau halten. Vertauschen Sie die LOW- und HIGH-Werte in der Zeile

if ((encoderALast[encoderIndex] == HIGH) && (encoderA == LOW))

wie folgt:

if ((encoderALast[encoderIndex] == LOW) && (encoderA == HIGH))

Wenn ein Encoder funktioniert, der andere aber nur hochzählt, tauschen Sie einfach die
A- und B-Verbindungen des betreffenden Encoders.

6.12 Drehbewegungen in einem viel beschäftigten Sketch
messen

Problem
Nachdem Ihr Code gewachsen ist und neben dem Einlesen der Encoderwerte noch andere
Dinge erledigen muss, wird der Encoder immer unzuverlässiger. Das Problem ist beson-
ders groß, wenn sich die Achse schnell dreht.

Lösung
Die Schaltung entspricht der aus Rezept 6.11. Wir verwenden einen Interrupt, um si-
cherzustellen, dass der Code auf jeden Schritt reagiert:

/*
RotaryEncoderInterrupt Sketch
*/

const int encoderPinA = 2;
const int encoderPinB = 4;
int Pos, oldPos;
volatile int encoderPos = 0; // Bei Interrupts geänderte Variablen sind volatil

void setup()
{
pinMode(encoderPinA, INPUT);
pinMode(encoderPinB, INPUT);
digitalWrite(encoderPinA, HIGH);
digitalWrite(encoderPinB, HIGH);
Serial.begin(9600);

attachInterrupt(0, doEncoder, FALLING); // Encoder-Pin an Interrupt 0 (Pin 2)
}

void loop()
{
uint8_t oldSREG = SREG;

–

–

6.12 Drehbewegungen in einem viel beschäftigten Sketch messen | 215

cli();
Pos = encoderPos;
SREG = oldSREG;
if(Pos != oldPos)
{
Serial.println(Pos,DEC);
oldPos = Pos;
}
delay(1000);

}

void doEncoder()
{
if (digitalRead(encoderPinA) == digitalRead(encoderPinB))
encoderPos++; // Hochzählen, wenn Encoder-Pins gleich sind
else
encoderPos--; // Runterzählen, wenn Pins nicht gleich sind

}

Der Code gibt den Pos-Wert höchstens einmal in der Sekunde über den seriellen Port aus
(aufgrund der Pause). Der ausgegebene Wert berücksichtigt aber alle Bewegungen, die
während dieser Pause ausgeführt wurden.

Diskussion
Wenn Ihr Code mehr Aufgaben erledigen muss, werden die Encoder-Pins seltener abge-
fragt. Durchlaufen die Pins eine Schrittänderung, bevor die Daten gelesen werden, kann
der Arduino den Schritt nicht erkennen. Wird die Achse schnell bewegt, passiert das öfter,
weil die Schritte schneller kommen.

Um sicherzustellen, dass der Code bei jedem Schritt reagiert, müssen Sie Interrupts (»Un-
terbrechungen«) verwenden. Tritt ein Interrupt ein, unterbricht der Code, was er gerade
macht, führt den Interrupt-Code aus und macht dann da weiter, wo er unterbrochen
wurde.

Bei einem Standard-Arduino-Board können die beiden Pins 2 und 3 als Interrupts ver-
wendet werden. Der Interrupt wird durch die folgende Zeile aktiviert:

attachInterrupt(0, doEncoder, FALLING);

Die drei benötigten Parameter sind die Interrupt-Pin-ID (0 für Pin 2, 1 für Pin 3), die
Funktion, die bei einem Interrupt ausgeführt werden soll (in diesem Fall doEncoder) und
schließlich das Verhalten des Pins, bei dem der Interrupt ausgelöst wird (in diesem Fall
das Abfallen der Spannung von 5 auf 0 Volt). Die anderen Optionen sind RISING (die
Spannung steigt von 0 auf 5 Volt) und CHANGE (Spannung steigt oder fällt).

Die Funktion doEncoder prüft die Encoder-Pins, um zu sehen, in welche Richtung sich die
Achse gedreht hat, und setzt encoderPos entsprechend.

do

216 | Kapitel 6: Werte von Sensoren einlesen

Wenn sich der Wert unabhängig von der Drehrichtung nur erhöht, ändern Sie den
Interrupt so ab, dass er auf die ansteigende Flanke (RISING) statt auf die fallende (FALLING)
reagiert.

Da encoderPos in der Funktion geändert wird, die beim Interrupt ausgeführt wird, muss
sie als volatile deklariert werden. Das teilt dem Compiler mit, dass sie jederzeit verändert
werden kann. Optimieren Sie den Code nicht aufgrund der Annahme, dass er sich nicht
verändert hat, da der Interrupt jederzeit eintreten kann.

Der Arduino Build-Prozess optimiert den Code, indem er Code und
Variablen entfernt, die von Ihrem Sketch nicht genutzt werden. Nur in
Interrupt-Handlern veränderte Variablen müssen daher als volatile dekla-
riert werden, damit der Compiler weiß, dass er diese Variablen nicht ent-
fernen soll.

Um diese Variable in der Hauptschleife zu lesen, müssen Sie besondere Vorkehrungen
treffen, um sicherzustellen, dass der Interrupt nicht eintritt, wenn Sie sie gerade lesen.
Diese Aufgabe übernimmt das folgende Code-Fragment:

uint8_t oldSREG = SREG;

cli();
Pos = encoderPos;
SREG = oldSREG;

Zuerst sichern Sie den aktuellen Status von SREG (den Interrupt-Registern) und schalten
die Interrupts dann mit cli aus. Der Wert wird gelesen und das Wiederherstellen von SREG
schaltet die Interrupts wieder ein und alles ist so, wie es war. Tritt ein Interrupt ein,
während die Interrupts ausgeschaltet sind, dann wartet er, bis sie wieder eingeschaltet
werden. Dieser Zeitraum ist so kurz, dass kein Interrupt verloren geht (solange Sie den
Code im Interrupt-Handler so kurz wie möglich halten).

6.13 Eine Maus nutzen

Problem
Sie wollen die Bewegungen einer PS/2-kompatiblen Maus verarbeiten und auf Änderun-
gen der x- und y-Koordinaten reagieren.

Lösung
Diese Lösung nutzt LEDs, um Mausbewegungen anzuzeigen. Die Helligkeit der LEDs
ändert sich in Reaktion auf die Mausbewegung in x- (links und rechts) und y- (vor und
zurück) Richtung. Das Anklicken der Maustasten legt die aktuelle Position als Referenz-
punkt fest (Abbildung 6-16 zeigt den Anschlussplan):

–

–

–

–

6.13 Eine Maus nutzen | 217

/*
Mouse
Dieser Arduino-Sketch nutzt die PS2-Maus-Bibliothek
siehe: http://www.arduino.cc/playground/ComponentLib/Ps2mouse
*/

// PS2-Maus-Bibliothek von: http://www.arduino.cc/playground/ComponentLib/Ps2mouse
#define WProgram.h Arduino.h
#include <ps2.h>

const int dataPin = 5;
const int clockPin = 6;

const int xLedPin = 9;
const int yLedPin = 11;

const int mouseRange = 255; // Maximaler Bereich der x/y-Werte

char x; // Von der Maus eingelesene Werte
char y;
byte status;

int xPosition = 0; // Bei Mausbewegung inkrementierte/dekrementierte Werte
int yPosition = 0;
int xBrightness = 128; // Basierend auf Mausposition erhöhte/verringerte Werte
int yBrightness = 128;

const byte REQUEST_DATA = 0xeb; // Befehl zum Abruf der Mausdaten

PS2 mouse(clockPin, dataPin);

void setup()
{
mouseBegin();
}

void loop()
{
// Daten von Maus einlesen
mouse.write(REQUEST_DATA); // Daten von Maus anfordern
mouse.read(); // Ack ignorieren
status = mouse.read(); // Mausbuttons einlesen
if(status & 1) // Dieses Bit ist gesetzt, wenn die linke Maustaste gedrückt ist
xPosition = 0; // x-Position neu ausrichten
if(status & 2) // Dieses Bit ist gesetzt, wenn die rechte Maustaste gedrückt ist
yPosition = 0; // y-Position neu ausrichten

x = mouse.read();
y = mouse.read();
if(x != 0 || y != 0)
{
// Wenn die Maus bewegt wurde

xPosition = xPosition + x; // Position akkumulieren
xPosition = constrain(xPosition,-mouseRange,mouseRange);

xBrightness = map(xPosition, -mouseRange, mouseRange, 0,255);

218 | Kapitel 6: Werte von Sensoren einlesen

analogWrite(xLedPin, xBrightness);

yPosition = constrain(yPosition + y, -mouseRange,mouseRange);
yBrightness = map(yPosition, -mouseRange, mouseRange, 0,255);
analogWrite(yLedPin, yBrightness);
}
}

void mouseBegin()
{
// Maus zurücksetzen und initialisieren
mouse.write(0xff); // Reset
delayMicroseconds(100);
mouse.read(); // Ack-Byte
mouse.read(); // Blank
mouse.read(); // Blank
mouse.write(0xf0); // Modus
mouse.read(); // Ack
delayMicroseconds(100);
}

RX 0

2TX 1
3
4

6
5

7

A

O
N
I
U
D
R

Gnd
Vin

5V
3V3

RESET

Gnd

9
8

10
11
12
13

1

3

56

4

2

Gnd

220
Ohm

1 Daten (Arduino Pin 5)

2 Nicht verbunden

3 Masse

4 +5 Volt

5 Takt (Arduino Pin 6)

6 Nicht verbunden

Abbildung 6-16: Anschluss einer Maus und zweier LEDs

Abbildung 6-16 zeigt den weiblichen PS/2-Anschluss von vorne. Wenn Sie keinen solchen
Stecker besitzen und sich nicht scheuen, das Ende des Mauskabel abzuschneiden, können
Sie sich notieren, welche Kabel mit welchen Pins verbunden sind, und die Kabel mit
Steckern verlöten, die Sie direkt auf die richtigen Arduino-Pins aufstecken können.

6.13 Eine Maus nutzen | 219

Diskussion
Verbinden Sie das Maussignal (clock und data) und die Versorgungsanschlüsse mit dem
Arduino (siehe Abbildung 6-16). Diese Lösung funktioniert nur mit PS/2-kompatiblen
Geräten, d.h., Sie müssen möglicherweise eine ältere Maus auftreiben. Die meisten Mäuse
mit dem runden PS/2-Anschluss sollten funktionieren.

Die Funktion mouseBegin initialisiert die Maus, damit sie auf Anforderungen von Bewe-
gungsdaten und Button-Status reagiert. Die PS/2-Bibliothek von http://www.arduino.cc/
playground/ComponentLib/Ps2mouse übernimmt die Low-Level-Kommunikation. Der
Befehl mouse.write teilt der Maus mit, dass Daten angefordert werden. Der erste Aufruf
von mouse.read enthält eine Bestätigung (engl. Acknowledgment, kurz Ack), die in diesem
Beispiel ignoriert wird. Der nächste Aufruf von mouse.read liest den Status der Maustasten
ein, und die beiden letzten mouse.read-Aufrufe lesen die x- und y-Bewegung seit der letzten
Abfrage ein.

Der Sketch prüft, welche Bits im status-Wert gesetzt sind, um zu bestimmen, ob die linke
oder rechte Maustaste gedrückt wurde. Die beiden niederwertigsten (rechten) Bits sind
HIGH, wenn die linke und die rechte Taste gedrückt werden, und das wird mit den
folgenden Zeilen überprüft:

status = mouse.read(); // Mausbuttons einlesen
if(status & 1) // Dieses Bit ist gesetzt, wenn die linke Maustaste gedrückt ist
xPosition = 0; // x-Position neu ausrichten
if(status & 2) // Dieses Bit ist gesetzt, wenn die rechte Maustaste gedrückt ist
yPosition = 0; // y-Position neu ausrichten

Die von der Maus eingelesenen x- und y-Werte enthalten die Bewegung seit der letzten
Abfrage und werden zu den Variablen xPosition und yPosition aufaddiert.

Die Werte von x und y sind positiv, wenn die Maus nach rechts oder nach vorne bewegt
wird. Sie sind negativ, wenn sie nach links oder zurück bewegt wird.

Der Sketch stellt sicher, dass die akkumulierten Werte den definierten Wertebereich
(mouseRange) nicht überschreiten. Das geschieht mit Hilfe der constrain-Funktion:

xPosition = xPosition + x; // Position akkumulieren
xPosition = constrain(xPosition,-mouseRange,mouseRange);

Die Berechnung der yPosition ist eine Kurzform dieser Berechnung. Die Berechnung des
y-Werts erfolgt hier innerhalb des constrain-Aufrufs:

yPosition = constrain(yPosition + y,-mouseRange,mouseRange);

Die Variablen xPosition und yPosition werden auf 0 zurückgesetzt, wenn die linke bzw.
die rechte Maustaste gedrückt wird.

Die LEDs leuchten entsprechend der Mausposition. Die Helligkeit wird mit analogWrite
festgelegt – mittlere Helligkeit in der Mitte und zu- oder abnehmende Helligkeit, wenn
sich die Mausposition erhöht bzw. verringert.

m

220 | Kapitel 6: Werte von Sensoren einlesen

Die Position kann über den seriellen Monitor ausgegeben werden, indem Sie die folgende
Zeile hinter den zweiten Aufruf von analogWrite() anhängen:

printValues(); // Tasten und x/y-Werte über seriellen Monitor ausgeben

Sie müssen außerdem die folgende Zeile in setup() einfügen:

Serial.begin(9600);

Zum Schluss müssen Sie den Sketch um die folgende Funktion ergänzen, die die von der
Maus empfangenen Werte ausgibt:

void printValues()
{
Serial.println(status, BIN);

Serial.print("X=");
Serial.print(x,DEC);
Serial.print(", Position= ");
Serial.print(xPosition);
Serial.print(", Helligkeit= ");
Serial.println(xBrightness);

Serial.print("Y=");
Serial.print(y,DEC);
Serial.print(", Position= ");
Serial.print(yPosition);
Serial.print(", Helligkeit= ");
Serial.println(yBrightness);
Serial.println();

}

Siehe auch
Geeignete PS/2-Stecker und Breakout-Boards sind http://www.sparkfun.com/products/
8509 und http://www.sparkfun.com/products/8651.

6.14 Die Position per GPS bestimmen

Problem
Sie wollen Ihre Position mit Hilfe eines GPS-Moduls bestimmen.

Lösung
Heutzutage stehen eine ganze Reihe Arduino-kompatibler GPS-Module zur Verfügung.
Sie nutzen ein vertrautes serielles Interface zur Kommunikation mit dem Host-Mikrocon-
troller und verwenden ein Protokoll namens NMEA 0183. Dieser Industriestandard liefert
die GPS-Daten an »Listener«-Einheiten wie den Arduino in für Menschen lesbaren
ASCII-»Sätzen« aus. Hier ein Beispiel für einen solchen NMEA-Satz:

$GPGLL,4916.45,N,12311.12,W,225444,A,*1D

–

–

6.14 Die Position per GPS bestimmen | 221

Er beschreibt, unter anderem, eine Position an 49 16.45' nördlicher Breite und 123 11.12'
westlicher Länge.

Um die Position zu bestimmen, muss Ihr Arduino-Sketch diese Strings verarbeiten und die
relevanten Textstellen in eine numerische Form umwandeln. Code zu entwickeln, der
Daten aus NMEA-Sätzen extrahiert, wird (mit Arduinos beschränktem Adressraum) sehr
schnell kniffelig und sperrig. Glücklicherweise gibt es eine nützliche Bibliothek, die uns
diese Arbeit abnimmt: Mikal Harts TinyGPS. Laden Sie sie von http://arduiniana.org/
herunter und installieren Sie sie. (Wie man Bibliotheken von Drittanbietern installiert,
beschreibt .)

Die allgemeine Strategie für den Einsatz von GPS sieht wie folgt aus:

1. Verbinden Sie das GPS-Gerät physikalisch mit dem Arduino.

2. Lesen Sie die seriellen NMEA-Daten vom GPS-Gerät aus.

3. Verarbeiten Sie die Daten, um die Position zu ermitteln.

Mit TinyGPS machen Sie Folgendes:

1. Verbinden Sie das GPS-Gerät physikalisch mit dem Arduino.

2. Erzeugen Sie ein TinyGPS-Objekt.

3. Lesen Sie die seriellen NMEA-Daten vom GPS-Gerät ein.

4. Verarbeiten Sie jedes Byte mit der TinyGPS-Methode encode().

5. Rufen Sie periodisch die TinyGPS-Methode get_position() auf, um die Position zu
bestimmen.

Der folgende Sketch zeigt, wie man Daten von einem GPS-Gerät erfasst, das mit der
seriellen Schnittstelle des Arduino verbunden ist. Er schaltet die LED an Pin 13 ein, sobald
sich das Gerät in der südlichen Hemisphäre befindet:

// Einfacher Sketch erkennt die südliche Hemisphäre
// Annahmen: LED an Pin 13, GPS an seriellen Hardware-Pins 0/1
#include "TinyGPS.h"

TinyGPS gps; // TinyGPS-Objekt erzeugen

#define HEMISPHERE_PIN 13

void setup()
{
Serial.begin(4800); // GPS-Geräte arbeiten oft mit 4800 Baud
pinMode(HEMISPHERE_PIN, OUTPUT);
digitalWrite(HEMISPHERE_PIN, LOW); // LED zu Beginn ausschalten
}
void loop()
{
while (Serial.available())
{
int c = Serial.read();
// encode() Für jedes Byte aurufen
// Neue Position bestimmen, wenn encode() "wahr" zurückgibt

H
Ti

So

222 | Kapitel 6: Werte von Sensoren einlesen

if (gps.encode(c))
{
long lat, lon;
gps.get_position(&lat, &lon);
if (lat < 0) // Südliche Hemisphäre?
digitalWrite(HEMISPHERE_PIN, HIGH);

else
digitalWrite(HEMISPHERE_PIN, LOW);

}
}
}

Wir starten die serielle Kommunikation, indem wir die vom GPS benötigte Geschwindig-
keit einstellen. Weitere Informationen zur seriellen Kommunikation mit dem Arduino
finden Sie in Kapitel 4.

Eine 4800-Baud-Verbindung wird mit dem GPS hergestellt. Sobald die Bytes eingehen,
werden sie von encode() verarbeitet, die die NMEA-Daten verarbeitet. Ein true von
encode() zeigt an, dass TinyGPS einen vollständigen »Satz« erfolgreich verarbeitet hat
und neue Positionsdaten zur Verfügung stehen könnten. Das ist ein guter Zeitpunkt, um
die aktuelle Position mit get_position() zu bestimmen.

get_position() gibt den zuletzt erkannten Breiten- und Längengrad zurück. Das Beispiel
untersucht den Breitengrad. Ist er kleiner als 0, also südlich des Äquators, wird die LED
eingeschaltet.

Diskussion
Der Anschluss einer GPS-Einheit an einen Arduino ist in der Regel ganz einfach. Dazu
müssen üblicherweise nur zwei oder drei Leitungen vom GPS mit den Eingangspins des
Arduino verbunden werden. Das beliebte GPS-Modul USGlobalSat EM-406A können Sie
zum Beispiel so anschließen, wie in Tabelle 6-1 zu sehen.

Tabelle 6-1: Anschluss eines EM-406A-GPS

EM-406A-Anschluss Arduino-Pin

GND Gnd

VIN +Vcc

RX TX (Pin 1)

TX RX (Pin 0)

GND Gnd

Einige GPS-Module arbeiten mit RS-232-Spannungspegeln, die mit der
TTL-Logik des Arduino nicht kompatibel sind und das Board ernsthaft
beschädigen können. Wenn Ihr GPS mit RS-232-Pegeln arbeitet, müssen
Sie eine Umwandlungslogik zwischenschalten, z.B. einen Chip wie den
MAX232.

–

6.14 Die Position per GPS bestimmen | 223

Der Code in diesem Rezept geht davon aus, dass das GPS direkt mit dem fest eingebauten
seriellen Port des Arduino verbunden ist, doch das ist üblicherweise nicht das beste
Design. Bei vielen Projekten wird der serielle Hardware-Port zur Kommunikation mit
einem PC oder anderen Peripheriegeräten genutzt und kann vom GPS nicht verwendet
werden. In solchen Fällen wählen Sie in anderes Paar Digitalpins und nutzen einen
seriellen »Software«-Port, um mit dem GPS zu kommunizieren.

SoftwareSerial ist eine Bibliothek, die eine serielle Schnittstelle emuliert und mit der
Arduino-IDE mitgeliefert wird. Wenn Sie mit einer Arduino-Version vor 1.0 arbeiten,
müssen Sie eine Bibliothek namens NewSoftSerial verwenden, die ebenfalls auf http://
arduiniana.org/ zu finden ist. Detaillierte Informationen zu seriellen Software-Schnittstel-
len finden Sie in 4.13 und 4.14.

Sie können die TX-Leitung des GPS mit Arduino-Pin 2 und die RX-Leitung mit Pin 3
verbinden und so den seriellen Hardware-Port für Debugging-Zwecke freimachen (siehe
Abbildung 4-7). Wenn wir den obigen Sketch so modifizieren, dass er SoftwareSerial
nutzt, um das GPS abzufragen, können wir über den seriellen Monitor TinyGPS in Aktion
beobachten:

// Einfacher Sketch erkennt die südliche Hemisphäre
// Annahmen: LED an Pin 13, GPS an Pins 2/3
// (Optional) Serielle Debugging-Konsole an Hardware-Port 0/1

#include "TinyGPS.h"
#include "SoftwareSerial.h"

#define HEMISPHERE_PIN 13
#define GPS_RX_PIN 2
#define GPS_TX_PIN 3

TinyGPS gps; // create a TinyGPS object
SoftwareSerial ss(GPS_RX_PIN, GPS_TX_PIN); // SoftSerial-Objekt erzeugen

void setup()
{
Serial.begin(9600); // Für Debugging
ss.begin(4800); // SoftSerial-Objekt spricht mit GPS
pinMode(HEMISPHERE_PIN, OUTPUT);
digitalWrite(HEMISPHERE_PIN, LOW); // LED zu Beginn ausschalten
}
void loop()
{
while (ss.available())
{
int c = ss.read();
Serial.write(c); // NMEA-Daten zu Debug-Zwecken ausgeben
// Jedes Byte mit encode() verarbeiten
// Neue Position bestimmen, wenn encode() "wahr" zurückgibt
if (gps.encode(c))
{
long lat, lon;
unsigned long fix_age;
gps.get_position(&lat, &lon, &fix_age);

So

Se
–
So

224 | Kapitel 6: Werte von Sensoren einlesen

if (fix_age == TinyGPS::GPS_INVALID_AGE)
Serial.println("Noch keine Daten erkannt!");
else if (fix_age > 2000)
Serial.println("Daten sind veraltet!");
else
Serial.println("Breiten- und Längengrad gültig!");

Serial.print("Breite: ");
Serial.print(lat);
Serial.print(" Länge: ");
Serial.println(lon);
if (lat < 0) // Südliche Hemisphäre?
digitalWrite(HEMISPHERE_PIN, HIGH);

else
digitalWrite(HEMISPHERE_PIN, LOW);

}
}
}

Beachten Sie, dass der serielle Monitor und das GPS verschiedene Baudraten verwenden
können.

Dieser Sketch entspricht genau unserem früheren Beispiel, ist aber deutlich einfacher zu
debuggen. Sie können jederzeit einen Monitor an den eingebauten seriellen Port anschlie-
ßen und sich die NMEA- und TinyGPS-Daten ansehen.

Sobald es eingeschaltet wird, beginnt die GPS-Einheit mit der Übertragung von NMEA-
Sätzen. Gültige Positionsdaten enthaltende Datensätze werden aber nur übertragen,
nachdem das GPS eine Verbindung hergestellt hat. Dazu muss das Gerät den Himmel
»sehen« können, und die ganze Sache kann bis zu zwei Minuten dauern. Schlechtes
Wetter, Gebäude und andere Hindernisse können das GPS bei der Positionsbestimmung
behindern. Woher weiß der Sketch also, ob TinyGPS gültige Positionsdaten liefert? Die
Antwort ist der dritte Parameter von get_position(), der optionale fix_age.

Wenn Sie einen Zeiger auf eine unsigned long-Variable als dritten Parameter an get_po-
sition() übergeben, füllt TinyGPS sie mit der Zeit in Millisekunden, zu der die letzte
gültige Position bestimmt wurde. Siehe auch Rezept 2.11. Der Wert 0xFFFFFFFF (sym-
bolisch GPS_INVALID_AGE) bedeutet, dass TinyGPS noch keine gültigen Positionsdaten
erfasst hat. In diesem Fall ist auch der zurückgelieferte Breiten- und Längengrad ungültig
(GPS_INVALID_ANGLE).

Im normalen Betrieb können Sie recht kleine Werte für fix_age erwarten. Moderne
GPS-Geräte liefern Positionsdaten ein- bis fünfmal pro Sekunde, d.h., ein fix_age-Wert
von über 2000 ms deutet auf ein Problem hin. Vielleicht befinden Sie sich gerade in einem
Tunnel oder ein defektes Kabel verfälscht den NMEA-Datenstrom, wodurch die Prüf-
summe nicht mehr stimmt. (Eine Prüfsummenberechnung stellt sicher, dass die Daten
nicht beschädigt sind.) So oder so gibt ein hoher fix_age-Wert an, dass die von get_po-
sition() zurückgelieferten Koordinaten veraltet sind. Das nachfolgende Code-Beispiel
zeigt, wie Sie mit fix_age sicherstellen können, dass die Positionsdaten aktuell sind:

long lat, lon;
unsigned long fix_age;

–

–

6.14 Die Position per GPS bestimmen | 225

gps.get_position(&lat, &lon, &fix_age);
if (fix_age == TinyGPS::GPS_INVALID_AGE)
Serial.println("Noch keine Daten erkannt!");
else if (fix_age > 2000)
Serial.println("Daten sind veraltet!");
else
Serial.println("Breiten- und Längengrad gültig!");

Siehe auch
TinyGPS können Sie unter http://arduiniana.org/libraries/tinygps herunterladen.

Weiterführende Informationen zum NMEA finden Sie im Wikipedia-Artikel unter http://
en.wikipedia.de/wiki/NMEA.

Verschiedene Unternehmen verkaufen GPS-Module, die sich gut für TinyGPS und Ar-
duino eignen. Sie unterscheiden sich hauptsächlich im Stromverbrauch, in der Spannung,
der Genauigkeit, der physikalischen Schnittstelle und darin, ob sie serielles NMEA
unterstützen. SparkFun (http://www.sparkfun.com) bietet eine große Auswahl an GPS-
Modulen und einen ausgezeichneten Leitfaden für Käufer an.

GPS-Technik hat eine Vielzahl kreativer Arduino-Projekte inspiriert. Ein sehr populäres
Beispiel ist der GPS-Datenlogger, bei dem ein bewegliches Gerät seine Positionsdaten in
regelmäßigen Intervallen in das Arduino-EEPROM oder anderen Onboard-Speicher
schreibt. Ein Beispiel ist das Breadcrumbs-Projekt unter http://code.google.com/p/bread-
crumbs/wiki/UserDocument. Ladyada stellt ein beliebtes GPS-Datenlogger-Shield her.
Siehe http://www.ladyada.net/make/gpsshield/.

Zu den weiteren interessanten GPS-Projekten gehören Modellflugzeuge und Helikopter,
die sich unter der Kontrolle von Arduino-Software selbst zu vorprogrammierten Zielen
bewegen. Mikal Hart hat eine GPS-basierte »Schatztruhe« mit einem internen Schloss
entwickelt, die sich erst öffnen lässt, wenn sich die Kiste an einem bestimmten Ort
befindet. Siehe http://arduiniana.org.

6.15 Bewegungen mit einem Gyroskop erkennen

Problem
Sie wollen auf einen Rotationswinkel reagieren. Auf diese Weise können Sie ein Fahrzeug
oder einen Roboter auf gerader Linie halten oder um einen gewünschten Winkel drehen.

Lösung
Gyroskope liefern Daten zum Rotationswinkel (im Gegensatz zu Beschleunigungsmes-
sern, die Änderungen an der Geschwindigkeit messen). Die meisten günstigen Gyroskope
verwenden eine Analogspannung proportional zum Rotationswinkel, auch wenn einige
ihre Werte über I2C anbieten (mehr über den Einsatz von I2C zur Gerätekommunikation
finden Sie in Kapitel 13). Dieses Rezept arbeitet mit einem Gyroskop, dessen Analog-

Sp
–

G
–

Br

La
Sh
–

H

Ro
–
Se
–

G

An
–

226 | Kapitel 6: Werte von Sensoren einlesen

ausgang proportional zum Rotationswinkel ist. Abbildung 6-17 zeigt die Verschaltung
eines LY530AL-Breakout-Boards von SparkFun. Viele kostengünstige Gyroskope (wie das
hier verwendete) sind 3,3-V-Elemente und dürfen nicht direkt mit der 5-V-Spannung
verbunden werden.

TX
 1

RX
 02346 579 8101112

GN
D 13

AR
EF

Vi
n

5V3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

Led

4 5210 3

ANALOG

OUT

Gnd

3.3V

LY530AL
Gyro

BreakoutGn
d

Abbildung 6-17: LY530AL-Gyroskop an 3,3-V-Pin

Überprüfen Sie die maximale Spannung Ihres Gyroskops, bevor Sie es mit
Spannung versorgen. Ein 3,3-V-Gyroskop an 5V anzuschließen, kann das
Bauteil beschädigen.

Der OUT-Anschluss des Gyroskops ist ein analoger Ausgang und wird mit dem analogen
Eingang 0 des Arduino verbunden:

/*
gyro Sketch
Gibt den Rotationswinkel über den seriellen Monitor aus
*/

const int inputPin = 0; // Analoger Eingang 0
int rotationRate = 0;

void setup()
{
Serial.begin(9600); // Setzt seriellen Port auf 9600 Baud
}

void loop()
{
rotationRate = analogRead(inputPin); // Gyroskop einlesen
Serial.print("Gyroskopwert ist ");
Serial.println(rotationRate);
delay(100); // 100ms warten
}

–

6.15 Bewegungen mit einem Gyroskop erkennen | 227

Diskussion
Der loop-Code liest den Gyroskopwert über den Analogpin 0 ein und gibt ihn über den
seriellen Monitor aus.

Verwendung des älteren LISY300AL-Gyroskops

Die alte Auflage hat das LISY300AL-Gyroskop genutzt, das nur noch schwer zu bekom-
men ist. Sollten Sie noch eins besitzen, können Sie den gleichen Sketch wie oben
verwenden, wenn Sie den Power Down-Pin (PD) mit Masse verbinden. Oder, noch besser,
Sie schließen den PD-Pin an einen Arduino-Pin an, damit Sie das Gyroskop aus dem
Sketch heraus ein- und ausschalten können. Abbildung 6-18 zeigt den Anschluss des
LISY3000AL.

Die PD-Verbindung erlaubt es, das Gyroskop in den Stromsparmodus zu schalten, und ist
mit Analogpin 1 verbunden (in diesem Sketch wird er als digitaler Ausgang verwendet).
Sie können PD an jeden Digitalpin anschließen. Der Pin wurde hier wegen der sauberen
Verschaltung gewählt. Der obige Code kann wie folgt modifiziert werden, um den PD-Pin
zu kontrollieren:

const int inputPin = 0; // Analoger Eingang 0
const int powerDownPin = 15; // Analoger Eingang 1 ist digitaler Eingang 15

int rotationRate = 0;

void setup()
{
Serial.begin(9600); // Serieller Port auf 9600 Baud
pinMode(powerDownPin, OUTPUT);
digitalWrite(powerDownPin, LOW); // Gyroskop nicht im Stromsparmodus
}

// loop-Code wie oben

Gnd

OUT

3.3V

PD

ST

LISY300AL
Gyro

Vin

5V
3V3
RESET

A
R
D
U
I
N
O

Gnd

4
5

2
1
0 Analog In

3

Gnd

Abbildung 6-18: Anschluss des LISY3000AL-Gyroskops

Wenn Sie das Gyroskop nicht in den Stromsparmodus schalten müssen, verbinden Sie PD
einfach mit Masse (PD LOW ist an, PD HIGH ist Stromsparmodus).

Sp
–

228 | Kapitel 6: Werte von Sensoren einlesen

Analoge Eingangspins können auch als Digitalpins verwendet werden
(aber nicht andersherum). Der analoge Eingang 0 ist der Digitalpin 14,
der analoge Eingang 1 ist der Digitalpin 15 und so weiter. Mit Arduino 1.0
wurden neue Definitionen eingeführt, die es Ihnen erlauben, den analogen
Eingang 0 als A0 anzusprechen, den analogen Eingang 1 als A1 etc.

Rotation mit dem ITG-3200 in drei Dimensionen messen

Der ITG-3200 ist ein 3-Achs-Gyroskop mit ausgezeichnetem Preis-Leistungs-Verhältnis.
Selbst wenn Sie nur zwei Achsen messen müssen, ist er häufig eine bessere Wahl als der
LY530ALH, wenn Sie eine hohe Messgenauigkeit benötigen oder es mit hohen Rotations-
geschwindigkeiten (bis zu 2000� pro Sekunde) zu tun haben. Es handelt sich um ein
3,3-V-Bauelement mit I2C-Anschluss. Wenn Sie nicht mit einem 3,3-V-Arduino arbeiten,
brauchen Sie einen Pegelwandler, um die SCL- und SDA-Pins des Gyroskops zu schützen.
Mehr über I2C und die Verwendung von 3,3-V-Geräten finden Sie in der Einführung von
Kapitel 13.

Das Breakout-Board von SparkFun (SEN-09801) macht den Anschluss einfach (siehe
Abbildung 6-19), doch Sie dürfen nicht vergessen, den CLK-Jumper auf der Unterseite des
Boards zu überbrücken, der das interne Clock-Signal aktiviert.

Vin

5V
3V3

RESET

SCL
SDA
CLK
INT
GND
VIO
VDD

ITG-3200

Pegelwandler an
3,3V-Arduino

CLK auf Unterseite
brücken

Gnd

SDA 4
SCL 5

2
1

Analog In 0

3

Gnd

Abbildung 6-19: Anschluss des ITG-3200 an ein 3,3V-Board

Der nachfolgende Sketch gibt die Werte der x-, y- und z-Achsen durch Kommata getrennt
aus:

/*
ITG-3200 Beipiel-Sketch
Basiert auf SparkFun Quick Start Guide: http://www.sparkfun.com/tutorials/265
*/
#include <Wire.h>

const int itgAddress = 0x69;

// ITG-3200-Konstanten - siehe Datenblatt
const byte SMPLRT_DIV= 0x15;
const byte DLPF_FS = 0x16;
const byte INT_CFG = 0x17;

–

6.15 Bewegungen mit einem Gyroskop erkennen | 229

const byte PWR_MGM = 0x3E;
const byte GYRO_X_ADDRESS = 0x1D; // GYRO_XOUT_H
const byte GYRO_Y_ADDRESS = 0x1F; // GYRO_YOUT_H
const byte GYRO_Z_ADDRESS = 0x21; // GYRO_ZOUT_H

// Konfigurationseinstellungen; Details auf dem Datenblatt
const byte DLPF_CFG_0 = 0x1;
const byte DLPF_CFG_1 = 0x2;
const byte DLPF_CFG_2 = 0x4;
const byte DLPF_FS_SEL_0 = 0x8;
const byte DLPF_FS_SEL_1 = 0x10;

void setup()
{
Serial.begin(9600);
Wire.begin();

//Gyroskop konfigurieren
//Gyroskop-Bereich der Ausgänge auf +/-2000 Grad pro Sekunde einstellen
itgWrite(DLPF_FS, (DLPF_FS_SEL_0|DLPF_FS_SEL_1|DLPF_CFG_0));
//Sample-Rate ist 100 hz
itgWrite(SMPLRT_DIV, 9);
}

//x-,y- und z-Werte einlesen und über seriellen Monitor ausgeben
void loop()
{
//Variablen für die Ausgänge.
int xRate, yRate, zRate;

//x-,y- und z-Werte vom Gyroskop einlesen.
xRate = readAxis(GYRO_X_ADDRESS);
yRate = readAxis(GYRO_Y_ADDRESS);
zRate = readAxis(GYRO_Z_ADDRESS);

//Werte über seriellen Monitor ausgeben
int temperature = 22;
Serial.print(temperature);
Serial.print(',');
Serial.print(xRate);
Serial.print(',');
Serial.print(yRate);
Serial.print(',');
Serial.println(zRate);

//10ms warten, bevor die nächsten Werte gelesen werden.
delay(10);
}

//Die übergebenen Daten in die angegebenen itg-3200-Register schreiben
void itgWrite(char registerAddress, char data)
{

Wire.beginTransmission(itgAddress); // Sendesequenz initiieren
Wire.write(registerAddress); // Zu schreibende Registeradresse
Wire.write(data); // Zu schreibende Daten
Wire.endTransmission(); // Hier werden die Daten dann gesendet

230 | Kapitel 6: Werte von Sensoren einlesen

}

//Daten aus dem angegebnen ITG-3200-Register einlesen und Wert zurückgeben.
unsigned char itgRead(char registerAddress)
{
//Diese Variable enthält die vom I2C-Gerät eingelesenen Daten.
unsigned char data=0;

Wire.beginTransmission(itgAddress);
Wire.write(registerAddress); //Registeradresse senden
Wire.endTransmission(); //Ende der Kommunikationssequenz.

Wire.beginTransmission(itgAddress);
Wire.requestFrom(itgAddress, 1); //Gerätedaten abrufen

if(Wire.available()){ // Auf Antwort des Geräts warten
data = Wire.read(); // Daten einlesen
}

Wire.endTransmission(); //Ende der Kommunikationssequenz
return data; //Daten zurückgeben
}

// x-,y- oder z-Wert des Gyroskops einlesen.
// axisRegAddress wählt einzulesende Achse.
int readAxis(byte axisRegAddress)
{
int data=0;
data = itgRead(axisRegAddress)<<8;
data |= itgRead(axisRegAddress + 1);
return data;
}

Siehe auch
Mehr über I2C erfahren Sie in Kapitel 13.

In Rezept 13.1 erfahren Sie mehr zu diesem Thema.

Eine SparkFun-Einführung zum ITG-3200 finden Sie unter http://www.sparkfun.com/
tutorials/265.

6.16 Richtung bestimmen

Problem
Ihr Sketch soll die Richtung mit Hilfe eines elektronischen Kompasses bestimmen.

Lösung
Dieses Rezept nutzt das HM55B-Kompassmodul von Parallax (#29123); Abbildung 6-20
zeigt die Anschlüsse:

–

–

–

6.16 Richtung bestimmen | 231

/*
HM55bCompass Sketch
Implementiert serielles 'Software-SPI' mit Arduinos Bit-Operatoren
(siehe Rezept 3.13)
Gibt Kompass-Winkel über seriellen Monitor aus
*/

const int enablePin = 2;
const int clockPin = 3;
const int dataPin = 4;

// Befehlscodes (aus HM55B-Datenblatt)
const byte COMMAND_LENGTH = 4; // Anzahl der Bits in einem Befehl
const byte RESET_COMMAND = B0000; // Chip zurücksetzen
const byte MEASURE_COMMAND = B1000; // Messung starten
const byte READ_DATA_COMMAND = B1100; // Daten und Ende-Flag einlesen
const byte MEASUREMENT_READY = B1100; // Wert, der nach Abschluss der Messung zurückgegeben wird

int angle;

void setup()
{
Serial.begin(9600);
pinMode(enablePin, OUTPUT);
pinMode(clockPin, OUTPUT);
pinMode(dataPin, INPUT);
reset(); // Kompass-Modul zurücksetzen
}

void loop()
{
startMeasurement();
delay(40); // Warten, bis Daten bereit
if (readStatus()==MEASUREMENT_READY); // Prüfen, ob Daten bereit
{
angle = readMeasurement(); //Messwert lesen und Winkel berechnen
Serial.print("Winkel = ");
Serial.println(angle); // Winkel ausgeben
}
delay(100);
}

void reset()
{
pinMode(dataPin, OUTPUT);
digitalWrite(enablePin, LOW);
serialOut(RESET_COMMAND, COMMAND_LENGTH);
digitalWrite(enablePin, HIGH);
}

void startMeasurement()
{
pinMode(dataPin, OUTPUT);
digitalWrite(enablePin, LOW);
serialOut(MEASURE_COMMAND, COMMAND_LENGTH);
digitalWrite(enablePin, HIGH);

232 | Kapitel 6: Werte von Sensoren einlesen

}

int readStatus()
{
int result = 0;
pinMode(dataPin, OUTPUT);
digitalWrite(enablePin, LOW);
serialOut(READ_DATA_COMMAND, COMMAND_LENGTH);
result = serialIn(4);
return result; // Status zurückgeben
}

int readMeasurement()
{
int X_Data = 0;
int Y_Data = 0;
int calcAngle = 0;
X_Data = serialIn(11); // Feldstärke in X
Y_Data = serialIn(11); // und Richtung in Y
digitalWrite(enablePin, HIGH); // Chip deaktivieren
calcAngle = atan2(-Y_Data , X_Data) / M_PI * 180; // Winkel ist atan(-y/x)
if(calcAngle < 0)
calcAngle = calcAngle + 360; // Winkel von 0 bis 359 statt +/- 180
return calcAngle;
}

void serialOut(int value, int numberOfBits)
{
for(int i = numberOfBits; i > 0; i--) // MSB zuerst schreiben
{
digitalWrite(clockPin, LOW);
if(bitRead(value, i-1) == 1)
digitalWrite(dataPin, HIGH);
else
digitalWrite(dataPin, LOW);
digitalWrite(clockPin, HIGH);
}
}

int serialIn(int numberOfBits)
{
int result = 0;

pinMode(dataPin, INPUT);
for(int i = numberOfBits; i > 0; i--) // MSB zuerst lesen
{
digitalWrite(clockPin, HIGH);
if (digitalRead(dataPin) == HIGH)
result = (result << 1) + 1;
else
result = (result << 1) + 0;
digitalWrite(clockPin, LOW);
}

// Wandelt das Ergebnis in ein negative Zweierkomplement um,
// wenn das höchstwertige Bit in den 11-Bit-Daten 1 ist
if(bitRead(result, 11) == 1)

6.16 Richtung bestimmen | 233

result = (B11111000 << 8) | result; // Zweierkomplement-Negation

return result;
}

Diskussion
Das Kompass-Modul misst die Magnetfeld-Intensität an zwei lotrechten Achsen (x und y).
Diese Werte variieren, wenn sich die Richtung im Bezug auf das Erdmagnetfeld (mag-
netische Nordrichtung) ändert.

Das Datenblatt des Bauelements sagt Ihnen, welche Werte gesendet werden müssen, um
den Kompass zurückzusetzen, und wie Sie prüfen können, ob gültige Daten vorliegen (ist
dass der Fall, werden sie gesendet).

Der Sketch verwendet die Funktionen serialIn() und serialOut(), um die Pin-Operatio-
nen durchzuführen, die Nachrichten senden und empfangen.

Das Kompass-Modul wird in der reset()-Funktion (die von setup() aufgerufen wird) in
einen definierten Anfangszustand gebracht. Die Funktion startMeasurement() leitet die
Messung ein, und nach einer kurzen Verzögerung zeigt die Funktion readStatus() an, ob
die Daten verfügbar sind. Der Wert 0 wird zurückgegeben, wenn die Messung noch nicht
bereit ist, bzw. 12 (binär 1100), wenn der Kompass bereit ist, Daten zu übertragen.

TX
 1

R
X

02346 579 8101112

G
N

D 13

AR
EF

G
nd

Vi
n

5V3V
3

RE
SE

T

G
nd

Arduino

DIGITAL

4 5210 3

ANALOG

Data

ClkEN5V

Gnd

1

46

3

Abbildung 6-20: Anschluss eines HM55B-Kompasses

Elf Datenbits werden in die Variablen X_Data und Y_Data eingelesen. Wenn Sie ein anderes
Bauelement verwenden, müssen Sie auf dem Datenblatt nachsehen, wie viele Bits gesen-

se
se

re

st

re

234 | Kapitel 6: Werte von Sensoren einlesen

det und in welchem Format sie übertragen werden. X_Data und Y_Data speichern die
Magnetfeld-Messwerte, und der Winkel zum magnetischen Nordpol wird wie folgt be-
rechnet: Bogenmaß = arctan(–y/x)

Der Sketch implementiert die Berechnung in der folgenden Zeile:

calcAngle = atan2(-Y_Data , X_Data) / M_PI * 180; // Winkel ist atan(-y/x)

Damit ein Servo-Motor der Richtung des Kompasses über die ersten 180 Grad folgt, fügen
Sie Folgendes hinzu:

#include <Servo.h>
Servo myservo;

In setup:

myservo.attach(8);

Und in loop nach der Berechnung des Winkels:

// Servo wird auf 180 Grad beschränkt
angle = constrain(angle, 0,180);

myservo.write(angle);

Richtungssensoren werden verstärkt in Smartphones genutzt. Folgerichtig stehen immer
leistungsfähigere und kostengünstigere Bauelemente zur Verfügung. Der folgende Sketch
nutzt einen solchen Chip: den 3,3-V-HMC5883L-I2C-Magnetometer. Breakout-Boards
sind für dieses Bauteil verfügbar, etwa das SEN-10530 von SparkFun. Verbinden Sie die
GND- und VCC-Pins mit Masse und dem 3,3-V-Pin. Die SDA- und SCL- Pins werden mit
den Arduino-Pins 4 und 5 verbunden (wie man I2C-Geräte mit dem Arduino nutzt,
erfahren Sie in Kapitel 13). Wenn Sie den HMC5883L mit einem 5-V-Arduino nutzen
wollen, dann können Sie in Rezept 13.1 nachschauen, wie man einen Pegelwandler nutzt.

Wenn Sie den HMC5883L direkt mit den Arduino-Pins eines normalen
5-V-Boards verbinden, können Sie den HMC5883L-Chip ernsthaft be-
schädigen.

/*
Verwendet den HMC5883L, um das Erdmagnetfeld an den x-, y- und z-Achsen zu messen
Gibt die Richtung als Winkel zwischen 0 und 359 Grad an
*/

#include <Wire.h> //I2C-Arduino-Bibliothek

const int hmc5883Address = 0x1E; //0011110b, I2C-7Bit-Adresse des HMC5883
const byte hmc5883ModeRegister = 0x02;
const byte hmcContinuousMode = 0x00;
const byte hmcDataOutputXMSBAddress = 0x03;

void setup(){
//Serielle Schnittstelle und I2C-Kommunikation initialisieren
Serial.begin(9600);
Wire.begin();

–

–

–

6.16 Richtung bestimmen | 235

//HMC5883 in den richtigen Betriebsmodus schalten
Wire.beginTransmission(hmc5883Address); //Kommunikation mit HMC5883 starten
Wire.write(hmc5883ModeRegister); //Modusregister wählen
Wire.write(hmcContinuousMode); //Fortlaufende Messung
Wire.endTransmission();
}

void loop(){

int x,y,z; //Daten der drei Achsen

//HMC5883 anweisen, mit dem Einlesen der Daten zu beginnen
Wire.beginTransmission(hmc5883Address);
Wire.write(hmcDataOutputXMSBAddress); //Wähle Register 3, X-MSB-Register
Wire.endTransmission();

//Daten aller Achsen einlesen, 2 Register pro Achse
Wire.requestFrom(hmc5883Address, 6);
if(6<=Wire.available()){
x = Wire.read()<<8; //X-msb
x |= Wire.read(); //X-lsb
z = Wire.read()<<8; //Z-msb
z |= Wire.read(); //Z-lsb
y = Wire.read()<<8; //Y-msb
y |= Wire.read(); //Y-lsb
}

//Werte aller Achsen ausgeben
Serial.print("x: ");
Serial.print(x);
Serial.print(" y: ");
Serial.print(y);
Serial.print(" z: ");
Serial.print(z);

int angle = atan2(-y , x) / M_PI * 180; // Winkel ist atan(-y/x)
if(angle < 0)
angle = angle + 360; // Winkel von 0 bis 359 statt +/- 180

Serial.print(" Richtung = ");
Serial.println(angle);

delay(250);
}

6.17 Daten von einem Spiele-Controller (PlayStation)
einlesen

Problem
Sie wollen auf Joystick-Position und Tastendrücke eines Spiele-Controllers reagieren. Pl

–
Se

236 | Kapitel 6: Werte von Sensoren einlesen

Lösung
Das Rezept nutzt einen Controller der Sony PlayStation 2 und die PSX-Bibliothek von
http://www.arduino.cc/playground/Main/PSXLibrary. Das Schaltdiagramm ist in Abbil-
dung 6-21 zu sehen.

TX 1
RX 0

2
3
4

6
5

7

Gnd
Vin

5V
3V3

RESET

Gnd

A
R
D
U
I
N
O

+5 Volt

Gnd

Command

Clock

Att

Ack

Data

Controller-Pins
(Draufsicht)

Abbildung 6-21: Anschluss eines PlayStation-Controllers an den Arduino

Der Sketch verwendet den seriellen Monitor, um die gedrückte Tasten auszugeben:

/*
* PSX Sketch
*
* Joystick- und Tastenwerte ausgeben.
* Nutzt die PSX-Bibliothek von Kevin Ahrendt
* http://www.arduino.cc/playground/Main/PSXLibrary
*/

#include <Psx.h> // PSX-Bibliothek einbinden

Psx Psx; // Instanz der PSX-Bibliothek erzeugen
const int dataPin = 5;
const int cmndPin = 4;
const int attPin = 3;
const int clockPin = 2;
const int psxDelay = 50; // Verzögerung in Mikrosekunden

–

J
–

6.17 Daten von einem Spiele-Controller (PlayStation) einlesen | 237

unsigned int data = 0; // Vom Controller zurückgelieferte Daten

void setup()
{
// PSX-Bibliothek initialisieren
Psx.setupPins(dataPin, cmndPin, attPin, clockPin, psxDelay);
Serial.begin(9600); // Ergebnisse erscheinen auf dem seriellen Monitor
}

void loop()
{
data = Psx.read(); // Tasten-Daten des PSX-Controllers einlesen

// Tastenbits prüfen, um Tastendruck zu erkennen
if(data & psxLeft)
Serial.println("Links-Taste");
if(data & psxDown)
Serial.println("Ab-Taste");
if(data & psxRight)
Serial.println("Rechts-Taste");
if(data & psxUp)
Serial.println("Auf-Taste");
if(data & psxStrt)
Serial.println("Start-Taste");
if(data & psxSlct)
Serial.println("Select-Taste");

delay(100);
}

Diskussion
Spiele-Controller stellen Informationen auf unterschiedliche Art und Weise zur Ver-
fügung. Die neuesten Controller enthalten Chips, die die Taster- und Joystick-Werte des
Controllers einlesen und diese Informationen über ein Protokoll weitergeben, das je nach
Spieleplattform unterschiedlich ist. Ältere Controller greifen eher direkt auf Taster und
Joystick zu, und die Stecker haben entsprechend viele Anschlüsse. Die neueste Generation
der Spieleplattformen nutzt USB-Verbindungen, und die benötigen eine entsprechende
Hardware-Unterstützung, wie etwa ein USB-Host-Shield.

Siehe auch
Rezept 4.1; Rezept 4.11

PlayStation-Controller- Protokoll: http://www.gamesx.com/controldata/psxcont/psxcont.htm

U
–
Sh
–

238 | Kapitel 6: Werte von Sensoren einlesen

6.18 Beschleunigung messen

Problem
Sie wollen auf Beschleunigung reagieren, z.B. um den Anfang oder das Ende einer Be-
wegung zu erkennen. Oder Sie wollen bestimmen, wie etwas im Bezug auf die Erdober-
fläche ausgerichtet ist (Beschleunigungsmessung infolge der Gravitation).

Lösung
Wie bei vielen der in diesem Kapitel behandelten Sensoren haben Sie die Wahl zwischen
zahlreichen Geräten und Anschlussarten. Rezept 4.11 zeigt ein Beispiel für einen virtuel-
len Joystick, bei dem der Beschleunigungsmesser eines Wii Nunchucks genutzt wird, um
Handbewegungen zu verfolgen. Rezept 13.2 enthält weitere Informationen zur Verwen-
dung des Beschleunigungsmessers des Wii Nunchucks. Dieses Rezept verwendet analoge
Ausgangswerte, die proportional zur Beschleunigung sind. Geeignete Bauelemente sind
der ADXL203CE (SF SEN-00844), der ADXL320 (SF SEN 00847) und der MMA7260Q
(SF SEN00252) – weitere Information finden Sie in der SparkFun Beschleunigungsmesser-
Auswahlhilfe unter (http://www.sparkfun.com/tutorials/167) auf der SparkFun-Website.

Abbildung 6-22 zeigt den Anschluss der x- und y-Achsen an den analogen Beschleuni-
gungsmesser.

TX
 1

RX
 02346 579 8101112

G
ND 13

AR
EF

G
nd

Vi
n

5V3V
3

RE
SE

T

G
nd

Arduino

DIGITAL

4 5210 3

ANALOG

Beschleunigungs-
messer

GND

VDD

Y

Z

ST

X

x

Y

Abbildung 6-22: Anschluss der x- und y-Achsen eines analogen Beschleunigungsmessers

Stellen Sie mit Hilfe des Datenblatts sicher, dass das Bauelement die ma-
ximal erlaubte Spannung nicht überschreitet. Viele Beschleunigungsmes-
ser sind für den 3,3-V-Betrieb ausgelegt und können beschädigt werden,
wenn Sie mit der 5-V-Spannung eines Arduino-Boards verbunden werden.

–

J
–

–

6.18 Beschleunigung messen | 239

Der nachfolgende einfache Sketch verwendet den ADXL320, um die Beschleunigung der
x- und y-Achsen auszugeben:

/*
accel Sketch
Einfacher Sketch zur Ausgabe der Werte für die x- und y-Achsen
*/

const int xPin = 0; // Analoge Eingangspins
const int yPin = 1;

void setup()
{
Serial.begin(9600); // Beachten Sie die höhere Geschwindigkeit
}

void loop()
{
int xValue; // Werte des Beschleunigungsmessers
int yValue;

xValue = analogRead(xPin);
yValue = analogRead(yPin);

Serial.print("X = ");
Serial.println(xValue);

Serial.print("Y = ");
Serial.println(yValue);
delay(100);

}

Diskussion
Sie können Techniken aus den vorangegangenen Rezepten verwenden, um Informationen
aus den Messwerten des Beschleunigungsmessers zu extrahieren. Sie könnten auf einen
Schwellwert prüfen wollen, um eine Bewegung zu erkennen (ein Beispiel für eine Schwell-
werterkennung finden Sie in Rezept 6.6). Sie könnten Durchschnittswerte wie in Rezept 6.7
verwenden müssen, um nützliche Werte zu erhalten. Liefert der Beschleunigungsmesser
horizontale Werte zurück, können Sie sie direkt in Bewegung umrechnen. Bei vertikalen
Werten müssen Sie die Auswirkungen der Gravitation berücksichtigen. Das ähnelt dem
Gleichspannungs-Offset aus Rezept 6.7, kann aber kompliziert werden, da der Beschleuni-
gungsmesser seine Richtung ändern kann, so dass der Einfluss der Gravitation bei der
Messung keine Konstante ist.

Siehe auch
SparkFun Auswahlhilfe: http://www.sparkfun.com/commerce/tutorial_info.php?tutorials_
id=167

240 | Kapitel 6: Werte von Sensoren einlesen

KAPITEL 7

Visuelle Ausgabe

7.0 Einführung
Mit der visuellen Ausgabe kann der Arduino protzen, und entsprechend viele LED-Gerät-
schaften werden unterstützt. Bevor wir uns den Rezepten dieses Kapitels zuwenden,
wollen wir uns aber die digitalen und analogen Ausgänge des Arduino ansehen. Diese
Einführung bietet einen guten Einstieg, wenn Sie mit der Verwendung digitaler und
analoger Ausgänge (digitalWrite und analogWrite) nicht vertraut sind.

Digitale Ausgänge
Alle Pins, die als digitale Eingänge genutzt werden können, können auch als digitale
Ausgänge verwendet werden. Kapitel 5 enthält eine Übersicht aller Anschlüsse des Ar-
duino. Sie sollten sich die Einführung dieses Kapitels ansehen, wenn Sie nicht wissen, wie
man etwas an diese Arduino-Pins anschließt.

Digitale Ausgänge sorgen dafür, dass die Spannung an einem Pin entweder an (HIGH,
5 Volt) oder aus (LOW, 0 Volt) ist. Mit der Funktion digitalWrite(outputPin, value)
können Sie etwas ein- und ausschalten. Die Funktion verwendet zwei Parameter: output-
Pin ist der zu steuernde Pin und value ist entweder HIGH (5 Volt) oder LOW (0 Volt).

Damit die Spannung am Pin auf diesen Befehl reagiert, muss sich der Pin im Ausgangs-
modus befinden, der mit pinMode(outputPin, OUTPUT) gesetzt wird. Der Sketch in Rezept 7.1
zeigt beispielhaft, wie man einen digitalen Ausgang nutzt.

Analoge Ausgänge
Analog bezieht sich auf die Spannungspegel, die schrittweise bis zum Maximum verändert
werden können (denken Sie an Helligkeits- und Lautstärkeregler). Arduino besitzt die
Funktion analogWrite, mit deren Hilfe Sie beispielsweise die Helligkeit einer mit dem
Arduino verbundenen LED steuern können.

Die analogWrite-Funktion arbeitet in Wahrheit gar nicht analog, auch wenn sie sich so
verhält (wie Sie gleich noch sehen werden). analogWrite verwendet eine Technik, die man

| 241

als Pulsweitenmodulation (Pulse Width Modulation, kurz PWM) bezeichnet. Sie emuliert
ein analoges Signal mit Hilfe digitaler Impulse.

PWM verändert dabei die Dauer der An/Aus-Zeiten der Impulse (siehe Abbildung 7-1).
Niedrige Ausgangswerte werde dabei durch Impulse erzeugt, die nur für eine kurze Zeit-
spanne an sind. Bei höheren Ausgangswerten werden diese An-Perioden immer länger.
Werden diese Impulse schnell genug wiederholt (beim Arduino etwa 500 mal pro Sekunde),
können wir Menschen dieses Pulsieren nicht mehr erkennen, und LEDs sehen so aus, als
würde sich ihre Helligkeit sanft verändern, wenn die Impulsbreite verändert wird.

HIGH

(5 Volt)

LOW

(0 Volt)

HIGH

LOW

LED trüb: analogWrite(pin, 63) [25% Einschaltdauer]

HIGH

LOW

LED halbe Helligkeit: analogWrite(pin, 127) [50% Einschaltdauer]

HIGH

LOW

LED ¾ Helligkeit: analogWrite(pin, 191) [75% Einschaltdauer]

HIGH

LOW

LED volle Helligkeit: analogWrite(pin, 255) [100% Einschaltdauer]

LED aus: analogWrite(pin, 0) [0% Einschaltdauer]

Abbildung 7-1: PWM-Ausgabe für verschiedene analogWrite-Werte

Der Arduino besitzt nur eine beschränkte Anzahl von Pins, die für die analoge Ausgabe
verwendet werden können. Bei einem Standard-Board stehen die Pins 3, 5, 6, 9, 10 und 11
zur Verfügung. Bei einem Arduino Mega können Sie die Pins 2 bis 13 für analoge Aus-
gaben nutzen. Viele der nachfolgenden Rezepte nutzen Pins, die sowohl digital als auch
analog genutzt werden können. Sie müssen dann nicht alles neu verdrahten, wenn Sie
andere Rezepte ausprobieren wollen. Wenn Sie andere Pins für die analoge Ausgabe
wählen, müssen Sie sich für einen der anderen Pins entscheiden, die von analogWrite un-
terstützt werden (alle anderen Pins erzeugen keinen Ausgabewert).

242 | Kapitel 7: Visuelle Ausgabe

Licht steuern
Die Steuerung der Helligkeit über digitale oder analoge Ausgänge ist eine vielseitige,
effektive und weitverbreitete Methode der Interaktion mit dem Benutzer. Einzelne LEDs,
Arrays und numerische Displays werden in den Rezepten dieses Kapitels umfassend
behandelt. LCD-Text- und -Grafik-Displays verlangen andere Techniken und werden in
Kapitel 11 behandelt.

Technische Daten von LEDs

Eine LED ist ein Halbleiter-Bauelement (eine Diode) mit zwei Anschlüssen: einer Anode
und einer Kathode. Ist die Spannung an der Anode »positiver« als an der Kathode (den
Unterschied nennt man Fluss-Spannung), emittiert das Bauelement Licht (Photonen). Der
Anschluss der Anode ist üblicherweise länger, und häufig ist die Seite des Gehäuses mit
der Kathode auch abgeflacht (siehe Abbildung 7-2). Die Farbe der LED und der genaue
Wert der Fluss-Spannung hängt von der Bauart der Diode ab.

Eine typische rote LED hat eine Fluss-Spannung von etwa 1,8 Volt. Ist die Spannung an
der Anode nicht um 1,8 Volt »positiver« als an der Kathode, fließt kein Strom durch die
LED, und es wird kein Licht erzeugt. Wird die Spannung an der Anode um 1,8 Volt
positiver als an der Kathode, »schaltet« sich die LED ein (sie leitet), und es kommt quasi
zu einem Kurzschluss. Sie müssen den Strom mit einem Widerstand beschränken, oder
die LED brennt (früher oder später) durch. Rezept 7.1 zeigt, wie man die Werte für die
strombeschränkenden Widerstände berechnet.

Möglicherweise müssen Sie ein LED-Datenblatt konsultieren, um die für Ihre Anwendung
geeignete LED zu ermitteln, insbesondere um die Werte für die Fluss-Spannung und den
Maximalstrom herauszufinden. 7-1 und 7-2 führen die wichtigsten Daten auf, die Sie sich
in einem LED-Datenblatt ansehen sollten.

Tabelle 7-1: LED-Schlüsseldaten: absolute Grenzdaten (absolute maximum ratings)

Parameter Symbol Nennwert Einheit Kommentar

Fluss-Strom If 25 mA Maximaler Dauerstrom für diese LED

Spitzen-Fluss-Strom (1/10 duty
@ 1 kHz)

If 160 mA Maximaler Impulsstrom (hier für einen Impuls von
1/10 an und 9/10 aus)

Tabelle 7-2: LED-Schlüsseldaten: elektro-optische Eigenschaften

Parameter Symbol Nennwert Einheit Kommentar

Lichtstärke Iv 2 mcd If = 2 mA – Helligkeit bei 2 mA Strom

Iv 40 mcd If = 20 mA – Helligkeit bei 20 mA Strom

Abstrahlwinkel 120 Grad Abstrahlwinkel des Lichtstrahls

Wellenlänge 620 nm Dominante oder Spitzen-Wellenlänge (Farbe)

Fluss-Spannung Vf 1.8 Volt LED-Spannung, wenn an

7.0 Einführung | 243

Arduino-Pins können bis zu 40 mA Strom liefern. Das ist für eine typische LED mittlerer
Helligkeit mehr als genug, reicht aber nicht aus, um LEDs mit höherer Helligkeit oder
mehrere an einem Pin angeschlossene LEDs zu betreiben. Rezept 7.3 zeigt, wie man einen
Transistor nutzt, um den Strom für die LED zu erhöhen.

Mehrfarbige LEDs bestehen aus zwei oder mehr LEDs in einem physikalischen Gehäuse.
Sie können mehr als zwei Anschlüsse aufweisen, um die verschiedenen Farben separat
steuern zu können. Da es so viele Verpackungsvarianten gibt, sollten Sie auf dem Daten-
blatt der LED nachsehen, wie die Anschlüsse zu verschalten sind.

Die Farben sich selbst ändernder mehrfarbiger LEDs mit einem integrier-
ten Chip können nicht angesteuert werden. Da PWM die Spannung sehr
schnell ein- und ausschaltet, starten Sie den Chip unter dem Strich immer
wieder neu, was diese LEDs für PWM-Anwendungen ungeeignet macht.

Multiplexing

Anwendungen, die viele LEDs ansteuern müssen, können eine als Multiplexing bezeich-
nete Technik verwenden. Multiplexing funktioniert, indem es Gruppen von LEDs (die
üblicherweise in Zeilen und Spalten angeordnet sind) nacheinander ein- und ausschaltet.
Rezept 7.11 zeigt, wie vier Ziffern aus 32 einzelnen LEDs (acht LEDs pro Ziffer samt
Dezimalpunkt) mit nur 12 Pins angesteuert werden können. Acht Pins steuern die
Ziffern-Segmente für alle Ziffern an und vier Pins entscheiden, welche Ziffer gerade aktiv
ist. Werden die Ziffern sehr schnell durchlaufen (mindestens 25-mal pro Sekunde) ver-
schwindet der Eindruck eines pulsierenden Lichts, d.h., die Anzeige-Elemente sind
scheinbar alle gleichzeitig an. Dieses Phänomen nennt man Phi-Effekt.

Charlieplexing arbeitet ebenfalls mit Multiplexing, nutzt zusätzlich aber noch die Tatsa-
che aus, dass die LEDs eine Polarität besitzen (d.h., sie leuchten nur, wenn die Anode
positiver geladen ist als die Kathode). Dabei wird durch Umschalten der Polarität zwi-
schen zwei LEDs hin- und hergeschaltet.

Maximaler Pin-Strom

LEDs können mehr Strom verbrauchen, als der Arduino-Chip liefern kann. Das Daten-
blatt gibt den Maximalwert für den Arduino-Chip (ATmega328P) mit 40 mA pro Pin an.
Der Chip kann insgesamt 200 mA verarbeiten und weitergeben, z.B. fünf Pins HIGH und
fünf Pins LOW mit jeweils 40 mA pro Pin. Damit die Zuverlässigkeit nicht leidet, entwirft
man die Anwendungen in der Praxis so, dass sie sich innerhalb der absoluten Grenzwerte
bewegen. Also hält man den Strom bei 30 mA (oder weniger), um noch ausreichend Luft
zu haben. Bei Hobby-Anwendungen, bei denen ein höherer Strom benötigt wird und eine
eingeschränkte Zuverlässigkeit akzeptabel ist, können Sie einen Pin mit bis zu 40 mA
betreiben, solange die Gesamt-Obergrenze von 200 mA nicht überschritten wird.

In der Diskussion von Rezept 7.3 finden Sie einen Tipp, wie Sie den Strom ohne externe
Transistoren erhöhen können.

244 | Kapitel 7: Visuelle Ausgabe

Das Datenblatt bezeichnet die 40 mA als absoluten Maximalwert, und
einige Ingenieure werden zögern, in der Nähe dieses Wertes zu arbeiten.
Allerdings wurde dieser 40 mA-Wert von Atmel noch einmal bekräftigt: Die
Pins können diesen Strom ohne Weiteres verarbeiten. Die folgenden Re-
zepte orientieren sich an diesem 40 mA-Maximum. Wenn Sie allerdings
etwas bauen, bei dem es mehr auf Zuverlässigkeit ankommt, ist es vernünf-
tig, diesen Wert auf 30 mA zu senken, damit Sie auf der sicheren Seite sind.

7.1 LEDs anschließen und nutzen

Problem
Sie wollen ein oder mehrere LEDs ansteuern und den richtigen strombegrenzenden
Widerstand auswählen, um die LEDs nicht zu beschädigen.

Lösung
Das Ein- und Ausschalten einer LED ist mit dem Arduino eine einfache Sache, und einige
Rezepte in den vorangegangenen Kapiteln haben sich diese Fähigkeit auch zunutze
gemacht (Rezept 5.1 zeigt beispielsweise, wie man die fest eingebaute LED an Pin 13
ansteuern kann). Dieses Rezept hilft bei der Auswahl und Verwendung externer LEDs.
Abbildung 7-2 zeigt den Anschluss von drei LEDs, Sie können den Sketch aber auch mit
nur einer oder zwei verwenden.

TX
 1

RX
 02346 579 8101112

G
ND 13

AR
EF

Gn
d

Vi
n

5V3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

4 5210 3

ANALOG

220

Ohm

a

k

220

Ohm

a

k

220

Ohm

a

k

a k
+ -

abgeflacht

langer
Anschluss

Abbildung 7-2: Anschluss externer LEDs

Das schematische Symbol für die Kathode (der negative Pin) ist k, nicht c.
Das c steht für einen Kondensator!

7.1 LEDs anschließen und nutzen | 245

Der folgende Sketch schaltet nacheinander die drei LEDs an den Pins 3, 5 und 6 für jeweils
eine Sekunde ein:

/*
LEDs Sketch
Drei LEDs an unterschiedlichen Digitalpins blinken lassen
*/

const int firstLedPin = 3; // Pins für die jeweiligen LEDs wählen
const int secondLedPin = 5;
const int thirdLedPin = 6;

void setup()
{
pinMode(firstLedPin, OUTPUT); // LED-Pin als Ausgang deklarieren
pinMode(secondLedPin, OUTPUT); // LED-Pin als Ausgang deklarieren
pinMode(thirdLedPin, OUTPUT); // LED-Pin als Ausgang deklarieren
}

void loop()
{
// Jede LED für 1000 Millisekunden (1 Sekunde) blinken lassen
blinkLED(firstLedPin, 1000);
blinkLED(secondLedPin, 1000);
blinkLED(thirdLedPin, 1000);
}

// LED am angegebenen Pin für die angegebene Dauer in Millisekunden blinken lassen
void blinkLED(int pin, int duration)
{
digitalWrite(pin, HIGH); // LED einschalten
delay(duration);
digitalWrite(pin, LOW); // LED ausschalten
delay(duration);
}

Der Sketch legt die mit den LEDs verbundenen Pins in der setup-Funktion als Ausgänge
fest. Die loop-Funktion ruft blinkLED auf, um die LED an jedem der drei Pins blinken zu
lassen. blinkLED schaltet den angegebenen Pin für eine Sekunde (1000 Millisekunden) auf
HIGH.

Diskussion
Da die Anoden mit den Arduino-Pins und die Kathoden mit Masse verbunden sind,
leuchten die LEDs, wenn der Pin auf HIGH gesetzt wird, und gehen wieder aus, wenn er LOW
ist. Sie können die LED auch leuchten lassen, wenn der Pin LOW ist und die Kathoden mit
den Pins und die Anoden mit Masse verbunden sind (die Widerstände können an
beliebiger Stelle dazwischengeschaltet werden).

246 | Kapitel 7: Visuelle Ausgabe

TX
 1

RX
 02346 579 8101112

GN
D 13

AR
EF

Vi
n

5V3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

220
Ohm

220
Ohm

220
Ohm

4 5210 3

ANALOG

Gn
d

k

a

k

a

k

a

a k
+ -

abgeflacht

langer
Anschluss

Abbildung 7-3: Anschluss externer LEDs mit Kathode am Pin

Wird eine LED mit der Anode mit +5V verbunden (wie in Abbildung 7-3 zu sehen),
leuchtet sie, wenn der Pin auf LOW gesetzt wird (der visuelle Effekt kehrt sich um – eine
LED geht für eine Sekunde aus, während die beiden anderen an bleiben).

LEDs benötigen einen Vorwiderstand, um den Strom zu kontrollieren,
sonst können sie sehr schnell durchbrennen. Für die eingebaute LED an
Pin 13 gibt es einen solchen Vorwiderstand auf der Platine. Bei externen
LEDs muss ein Vorwiderstand mit der Anode oder Kathode verbunden
werden.

Ein bei einer LED in Reihe geschalteter Vorwiderstand kontrolliert den Strom, der fließt,
wenn die LED schaltet. Zur Berechnung des Widerstandwerts müssen Sie die Eingang-
spannung kennen (Vs, üblicherweise 5 Volt), die Fluss-Spannung der LED (Vf) und den
Strom (I), der durch die LED fließen soll.

Die Formel für den Widerstand in Ohm (bekannt als Ohmsches Gesetz) lautet

R = (Vs – Vf) / I

Wenn Sie zum Beispiel eine LED bei einer Versorgungsspannung von 5 Volt mit einer
Fluss-Spannung von 1,8 Volt und einem Strom von 15 mA ansteuern wollen, setzen Sie
die folgenden Werte ein:

Vs = 5 (für ein 5V-Arduino-Board)
Vf = 1,8 (die Fluss-Spannung der LED)
I = 0,015 (1 Milliampere [mA] ist ein tausendstel Ampere d.h., 15 mA sind 0,015 A)

Die Spannung bei eingeschalteter LED ist (Vs – Vf) also 5 – 1,8, also 3,2 Volt.

Die Berechnung des Vorwiderstands ergibt also 3,2 / 0,015 oder 213 Ohm.

7.1 LEDs anschließen und nutzen | 247

Der Wert von 213 Ohm entspricht keinem Standard-Widerstandswert, weshalb wir ihn
auf 220 Ohm aufrunden.

Der Widerstand in Abbildung 7-2 liegt zwischen Kathode und Masse, kann aber ebenso
gut auf der anderen Seite der LED (zwischen +5V und Anode) angeschlossen werden.

Arduino-Pins können maximal 40 mA Strom liefern. Wenn Ihre LED mehr
Strom benötigt, sehen Sie sich Rezept 7.3 an.

Siehe auch
Rezept 7.3

7.2 Helligkeit einer LED regeln

Problem
Sie wollen die Helligkeit einer oder mehrerer LEDs aus Ihrem Sketch heraus regeln.

Lösung
Verbinden Sie jede LED mit einem PWM-fähigen Analogausgang. Verwenden Sie die
Verschaltung aus Abbildung 7-2. Der Sketch lässt die LED langsam (über einen Zeitraum
von etwa 5 Sekunden) immer heller werden und dann wieder dunkel.

/*
* LedBrightness Sketch
* Steuert die Helligkeit von LEDs an analogen Ausgangsports
*/

const int firstLed = 3; // Pins für die LEDs festlegen
const int secondLed = 5;
const int thirdLed = 6;

int brightness = 0;
int increment = 1;

void setup()
{
// Mit analogWrite angesteuerte Pins müssen nicht als Ausgänge deklariert werden
}

void loop()
{
if(brightness > 255)
{
increment = -1; // Beim Erreichen von 255 herunterzählen

}
else if(brightness < 1)
{

248 | Kapitel 7: Visuelle Ausgabe

increment = 1; // Beim Erreichen von 0 wieder hochzählen
}
brightness = brightness + increment; // Inkrementieren (oder bei negativem Vorzeichen

// dekrementieren)

// Helligkeitswert an die LEDs schreiben
analogWrite(firstLed, brightness);
analogWrite(secondLed, brightness);
analogWrite(thirdLed, brightness);

delay(10); // 10ms pro Schritt bedeutet 2,55 Sekunden für auf- und abblenden
}

Diskussion
Wir verwenden die gleiche Verschaltung wie im vorigen Sketch, steuern die Pins aber über
analogWrite anstelle von digitalWrite an. analogWrite nutzt PWM, um die Spannung an
der LED zu kontrollieren. In der Einführung zu diesem Kapitel erfahren Sie mehr über
analoge Ausgänge.

Der Sketch regelt die Helligkeit, indem er den Wert der brightness-Variable bei jedem
Schleifendurchlauf erhöht (heller) oder verringert (dunkler). Dieser Wert wird dann über
die analogWrite-Funktion an die drei angeschlossenen LEDs übergeben. Der Minimalwert
für analogWrite ist 0 – das entspricht einer Spannung von 0 Volt am Pin. Der Maximalwert
ist 255 und hält die Spannung am Pin bei 5 Volt.

Erreicht die brightness-Variable ihren Maximalwert, wird sie wieder kleiner, weil sich das
Vorzeichen von increment von +1 auf –1 ändert (–1 zu einem Wert zu addieren ist das
gleiche, wie eine 1 zu subtrahieren).

Siehe auch
Die Einführung zu diesem Kapitel erläutert, wie die Analogausgänge des Arduino funk-
tionieren.

7.3 Hochleistungs-LEDs ansteuern

Problem
Sie müssen LEDs schalten oder ansteuern, die mehr Strom benötigen, als die Arduino-Pins
zur Verfügung stellen. Arduino-Chips können nur einen Strom von bis zu 40 mA pro Pin
liefern.

Lösung
Verwenden Sie einen Transistor, um den Stromfluss durch die LEDs zu steuern. Schließen
Sie die LED wie in Abbildung 7-4 zu sehen an. Sie können den gleichen Code wie in den

7.3 Hochleistungs-LEDs ansteuern | 249

obigen Rezepten nutzen, müssen aber sicherstellen, dass die Basis des Transistors mit dem
im Sketch verwendeten Pin verbunden ist.

1K-

Widerstand

Siehe Text

e bb ec c

2N2222

TIP102

c

e

b

TX

 Vin

1
RX 0

2

3

4

6

5

7

A
R
D
U
I
N
O Gnd

5V
3V3

RESET

Gnd
1K-

Widerstand

Siehe Text

c

e

b

1K-

Widerstand

Siehe Text

c

e

b

+V der

Spannungs-

quelle

Masse der

Spannungs-

quelle

Zusätzliche LEDs

werden wie folgt

angeschlossen:

1K-

Widerstand

Siehe Text

c

e

b

1K-

Widerstand

Siehe Text

c

e

b

Zusätzliche LEDs

werden wie folgt

angeschlossen:

Abbildung 7-4: Transistoren zur Steuerung von Hochleistungs-LEDs nutzen

Diskussion
In Abbildung 7-4 verweist ein Pfeil auf den Pluspol (+V) der Stromversorgung. Das kann
der +5V-Pin des Arduino sein, der bis zu 400 mA liefern kann, wenn er über USB versorgt
wird. Die bei einer externen Stromversorgung zur Verfügung stehenden Strom- und
Spannungswerte hängen vom verwendeten Netzteil ab (der Laderegler leitet überschüs-
sige Spannung als Wärme ab – stellen Sie sicher, dass der Laderegler, ein 3-Pin-Chip in der
Nähe des Eingangssteckers, nicht zu heiß wird). Wenn Sie mehr Strom benötigen, als der
+5V-Pin des Arduino liefern kann, müssen Sie eine vom Arduino unabhängige Strom-
quelle verwenden, die die LEDs antreiben kann. Informationen zur Verwendung externer
Stromquellen finden Sie in Anhang C.

Wenn Sie eine externe Stromversorgung verwenden, müssen Sie darauf
achten, ihre Masse mit der Arduino-Masse zu verbinden.

Wird der Transistor eingeschaltet, fließt Strom vom Kollektor zum Emitter. Ist der
Transistor ausgeschaltet, fließt kein signifikanter Strom. Der Arduino kann einen Tran-
sistor einschalten, indem er die Spannung an einem Pin mittels digitalWrite auf HIGH
setzt. Ein Widerstand zwischen Pin und Transistor ist nötig, damit nicht zu viel Strom

250 | Kapitel 7: Visuelle Ausgabe

fließt – 1K-Ohm ist ein typischer Wert (der 5 mA an die Basis des Transistors liefert).
Anhang B zeigt, wie man Datenblätter liest und einen Transistor auswählt und einsetzt.
Sie können auch spezialisierte ICs wie den ULN2003A verwenden, um mehrere Ausgänge
anzutreiben. Er verfügt über sieben hochstromige (0,5 amp) Ausgangstreiber.

Der Widerstand zur Begrenzung des Stromflusses durch die LED wird mit der Technik
berechnet, die in Rezept 7.1 beschrieben wurde. Eventuell müssen Sie aber berück-
sichtigen, dass die Quellspannung durch den kleinen Spannungsverlust am Transistor
ein wenig sinkt. Er liegt üblicherweise unter drei Viertel eines Volts (den tatsächlichen
Wert können Sie unter der Kollektor/Emitter-Sättigungsspannung nachsehen; siehe An-
hang B). Hochleistungs-LEDs (1 Watt oder mehr) werden am besten über eine konstante
Stromquelle (einer Schaltung, die den Strom aktiv kontrolliert) angetrieben, um den
Stromfluss durch die LED zu steuern.

Wie man die 40 mA pro Pin umgeht

Sie können auch mehrere Pins parallel schalten, um die Grenze von 40 mA pro Pin zu
umgehen (siehe Rezept 7.1).

Abbildung 7-5 zeigt, wie man eine LED mit 60 mA über zwei Pins ansteuern kann. Wie Sie
sehen, verbindet die LED die Widerstände an den Pins 2 und 7 mit Masse. Beide Pins
müssen LOW sein, damit die vollen 60 mA durch die LED fließen können. Die separaten
Widerstände werden benötigt, versuchen Sie nicht, nur einen Widerstand mit den beiden
Pins zu verbinden.

 1
 0

2
3
4

6
5

7

Vin

5V

A
R
D
U
I
N
O

30 mA

60 mA

30 mA

Gnd
Gnd

Abbildung 7-5: 40 mA pro Pin umgehen

Diese Technik kann auch genutzt werden, um Strom zu liefern. Wenn Sie die LED
beispielsweise umdrehen – also den Anschluss auf Widerstandsseite (Kathode) mit Masse
verbinden und den anderen (Anode) mit den Widerständen –, dann schalten Sie die LED
ein, indem Sie beide Pins auf HIGH setzen.

Es ist am besten, wenn Sie keine benachbarten Pins verwenden, um die Belastung für den
Chip zu minimieren. Diese Technik funktioniert für jeden Pin, der digitalWrite nutzen
kann, funktioniert aber nicht mit analogWrite. Wenn Sie für Analogausgänge (PWM)
mehr Strom benötigen, müssen Sie wie oben beschrieben mit Transistoren arbeiten.

7.3 Hochleistungs-LEDs ansteuern | 251

Siehe auch
Web-Referenz für Konstantstrom-Treiber http://blog.makezine.com/archive/2009/08/
constant_current_led_driver.html

7.4 Die Farbe einer LED steuern

Problem
Sie wollen die Farbe einer RGB-LED aus einem Programm heraus steuern.

Lösung
Bei RGB-LEDs sind rote, grüne und blaue Elemente in einem einzelnen Gehäuse unterge-
bracht. Dabei sind entweder die Anoden miteinander verbunden (die sog. gemeinsame
Anode) oder die Kathoden (gemeinsame Kathode). Verwenden Sie die Schaltung aus
Abbildung 7-6 bei gemeinsamer Anode (die Anoden sind mit +5 V verbunden und die
Kathoden mit den Pins.) Nutzen Sie Abbildung 7-2, wenn Ihre RGB-LEDs mit gemein-
samer Kathode arbeiten.

TX
 1

R
X

02346 579 8101112

G
N

D 13

AR
EF

G
nd

Vi
n

5V3V
3

RE
SE

T

G
nd

Arduino

DIGITAL

4 5210 3

ANALOG

220

Ohm

a

k

220

Ohm

a

k

220

Ohm

a

k

R

o

t

G

r

ü

n

B

l

a

u

Abbildung 7-6: Anschluss einer RGB-LED (gemeinsame Anode)

Der Sketch bewegt sich kontinuierlich durch das Farbspektrum der LED, indem er die
Intensität der roten, grünen und blauen Elemente verändert:

/*
* RGB_LEDs Sketch
* RGB-LEDs über analoge Ausgangsports ansteuern

252 | Kapitel 7: Visuelle Ausgabe

*/

const int redPin = 3; // Pins für die LEDs
const int greenPin = 5;
const int bluePin = 6;
const boolean invert = true; // true bei gemeinsamer Anode, false bei gemeinsamer Kathode

int color = 0; // Ein Wert zwischen 0 und 255 repräsentiert den Farbton
int R, G, B; // Die Farbkomponenten für Rot, Grün und Blau

void setup()
{
// Mit analogWrite angesteuerte Pins müssen nicht als Ausgänge deklariert werden
}

void loop()
{
int brightness = 255; // 255 ist maximale Helligkeit
hueToRGB(color, brightness); // Funktion zur Umwandlung von Farbton in RGB
// RGB-Werte an die Pins schreiben
analogWrite(redPin, R);
analogWrite(greenPin, G);
analogWrite(bluePin, B);

color++; // Farbe erhöhen
if(color > 255) //
color = 0;
delay(10);

}

// Funktion zur Umwandlung einer Farbe in ihre Rot-, Grün- und Blau-Komponenten.

void hueToRGB(int hue, int brightness)
{
unsigned int scaledHue = (hue * 6);
// Segment 0 bis 5 um den Farbkreis
unsigned int segment = scaledHue / 256;
// Position innerhalb des Segments
unsigned int segmentOffset = scaledHue - (segment * 256);

unsigned int complement = 0;
unsigned int prev = (brightness * (255 - segmentOffset)) / 256;
unsigned int next = (brightness * segmentOffset) / 256;
if(invert)
{
brightness = 255-brightness;
complement = 255;
prev = 255-prev;
next = 255-next;
}

switch(segment) {
case 0: // Rot
R = brightness;

G = next;
B = complement;
break;

7.4 Die Farbe einer LED steuern | 253

case 1: // Gelb
R = prev;
G = brightness;
B = complement;
break;
case 2: // Grün
R = complement;
G = brightness;
B = next;
break;
case 3: // Türkis (Cyan)
R = complement;
G = prev;
B = brightness;
break;
case 4: // Blau
R = next;
G = complement;
B = brightness;
break;
case 5: // Violett (Magenta)
default:
R = brightness;
G = complement;
B = prev;
break;
}

}

Diskussion
Die Farbe einer RGB-LED wird durch die relative Helligkeit ihrer Rot-, Grün- und
Blau-Komponenten bestimmt. Die Kernfunktion des Sketches (hueToRGB) übernimmt die
Umwandlung eines Farbtons zwischen 0 und 255 in die entsprechende Farbe zwischen
Rot und Blau. Das Spektrum sichtbarer Farben wird häufig in einem Farbkreis dargestellt,
der aus den Primär- und Sekundärfarben sowie allen Zwischentönen besteht. Die sechs
Segmente für die Primär- und Sekundärfarben werden von sechs case-Anweisungen
verarbeitet. Der Code in einer case-Anweisung wird ausgeführt, wenn die segment-Varia-
ble der case-Nummer entspricht. Die RGB-Werte werden dann auf die jeweils passenden
Werte gesetzt. Segment 0 ist Rot, Segment 1 ist Gelb, Segment 2 ist Grün und so weiter.

Wenn Sie die Helligkeit anpassen wollen, können Sie den Wert der brightness-Variable
ändern. Das nachfolgende Beispiel zeigt, wie man die Helligkeit mit einem variablen
Widerstand oder Sensor korrigiert, der wie in Abbildung 7-13 oder Abbildung 7-17
angeschlossen ist:

int brightness = map(analogRead(0),0,1023, 0, 255); // Helligkeit über Sensor bestimmen

Die Variable brightness bewegt sich im Wertebereich von 0 bis 255. Da der analoge
Eingangsbereich zwischen 0 und 1023 liegt, erhöht sich die Helligkeit der LED, wenn
dieser Wert steigt.

254 | Kapitel 7: Visuelle Ausgabe

Siehe auch
Rezept 2.16; Rezept 13.1

7.5 Mehrere LEDs aneinanderreihen: LED-Balkenanzeige

Problem
Sie wünschen sich eine LED-Balkenanzeige, die LEDs proportional zu einem Wert in
Ihrem Sketch (oder von einem Sensor) ansteuert.

Lösung
Sie können die LEDs so anschließen wie in Abbildung 7-2. (Verwenden Sie weitere Pins,
wenn Sie zusätzliche LEDs anschließen wollen.) Abbildung 7-7 zeigt sechs LEDs, die an
benachbarten Pins angeschlossen sind.

220

Ohm

a

k

220

Ohm

a

k

220

Ohm

a

k

TX 1

RX 0

2

3

4

6

5

7

A
R
D
U
I
N
O

Gnd
Vin

5V
3V3

RESET

Gnd

220

Ohm

a

k

220

Ohm

a

k

220

Ohm

a

k

Abbildung 7-7: Sechs LEDs, die mit den Kathoden an den Arduino-Pins angeschlossen sind

Der folgende Sketch schaltet eine Reihe von LEDs ein. Die Anzahl eingeschalteter LEDs ist
proportional zum Wert eines Sensors, der mit einem analogen Eingangsport verbunden
ist. (Abbildung 7-13 und Abbildung 7-17 zeigen, wie man einen Sensor anschließt.)

/*
Bargraph Sketch

Schaltet eine Reihe von LEDs proportional zum Wert eines analogen Sensors ein.
Sechs LEDs werden angesteuert, aber die Zahl der LEDs kann geändert werden,
indem man den Wert von NbrLEDs anpasst und die Pins in das ledPins-Array einträgt
*/

7.5 Mehrere LEDs aneinanderreihen: LED-Balkenanzeige | 255

const int NbrLEDs = 6;
const int ledPins[] = { 2, 3, 4, 5, 6, 7};
const int analogInPin = 0; // Analoger Eingangspin ist mit variablem Widerstand verbunden
const int wait = 30;

// Vertauschen Sie die beiden folgenden Konstanten, wenn die Kathoden mit Masse verbunden sind
const boolean LED_ON = LOW;
const boolean LED_OFF = HIGH;

int sensorValue = 0; // Vom Sensor eingelesener Wert
int ledLevel = 0; // In 'LED-Balken' umgewandelter Wert

void setup() {
for (int led = 0; led < NbrLEDs; led++)
{
pinMode(ledPins[led], OUTPUT); // Alle LED-Pins sind Ausgänge
}
}

void loop() {
sensorValue = analogRead(analogInPin); // Sensorwert einlesen
ledLevel = map(sensorValue, 0, 1023, 0, NbrLEDs); // und auf LEDs abbilden
for (int led = 0; led < NbrLEDs; led++)
{
if (led < ledLevel) {
digitalWrite(ledPins[led], LED_ON); // Pins unter Wert einschalten
}
else {
digitalWrite(ledPins[led], LED_OFF); // Pins über Wert ausschalten
}
}
}

Diskussion
Die mit den LEDs verbundenen Pins werden im Array ledPins vorgehalten. Um die Zahl
der LEDs zu ändern, können Sie Elemente in dieses Array einfügen oder entfernen. Dabei
müssen Sie aber sicherstellen, dass die Variable NbrLEDs der Anzahl der Elemente (also der
Anzahl der verwendeten Pins) entspricht. Sie können den Compiler den Wert für NbrLEDs
berechnen lassen, indem Sie die Zeile:

const int NbrLEDs = 6;

durch die folgende Zeile ersetzen:

const int NbrLEDs = sizeof(ledPins) / sizeof(ledPins[0]).

Die Funktion sizeof gibt die Größe einer Variablen (in Bytes) zurück – in diesem Fall die
Zahl der Bytes im ledPins-Array. Da es sich um ein Array von Integerwerten handelt (mit
zwei Bytes pro Element), wird die Gesamtgröße des Arrays in Bytes durch die Größe eines
Elements (sizeof(ledPins[0])) dividiert, um die Zahl der Elemente zu berechnen.

Die Arduino-Funktion map berechnet die Anzahl der LEDs, die proportional zum Sensor-
wert eingeschaltet werden sollen. Der Code geht alle LEDs durch und schaltet sie ein,

256 | Kapitel 7: Visuelle Ausgabe

solange der proportionale Sensorwert größer ist als die LED-Nummer. Ist der Sensorwert
beispielsweise 0, wird keine LED eingeschaltet. Liegt der Sensorwert in der Mitte, wird die
Hälfte der LEDs eingeschaltet, und wenn der Sensor den Maximalwert zurückgibt,
werden alle LEDs eingeschaltet.

Abbildung 7-7 zeigt, dass alle Anoden miteinander verbunden sind (die sog. gemeinsame
Anode) und die Kathoden mit den jeweiligen Pins. Die Pins müssen auf LOW gesetzt
werden, damit die LED leuchtet. Sind die LEDs mit den Anoden an die Pins angeschlossen
(wie in Abbildung 7-2 zu sehen), während die Kathoden miteinander verbunden sind
(gemeinsame Kathode), dann leuchtet die LED, wenn der Pin auf HIGH gesetzt wird. Der
Sketch in diesem Rezept nutzt die Konstanten LED_ON und LED_OFF, um einfach zwischen
gemeinsamer Anode und gemeinsamer Kathode wechseln zu können. Bei gemeinsamer
Kathode vertauschen Sie die Werte der Konstanten wie folgt:

const boolean LED_ON = HIGH; // HIGH schaltet die LED bei gemeinsamer Kathode ein
const boolean LED_OFF = LOW;

Sie können auch das Abschwellen der LEDs verlangsamen, z.B. um die Bewegung der
Anzeige eines Lautstärkereglers zu emulieren. Hier eine Variante des Sketches, die den
LED-Balken langsam »abschwellen« lässt, wenn der Pegel sinkt:

/*
Abschwellende LED-Balkenanzeige

*/

const int ledPins[] = { 2, 3, 4, 5, 6, 7};
const int NbrLEDs = sizeof(ledPins) / sizeof(ledPins[0]);
const int analogInPin = 0; // Analoger Eingangspin ist mit variablem Widerstand verbunden
const int decay = 10; // Erhöhung dieses Wertes verringert die "Abschwellgeschwindigkeit" für
storedValue

int sensorValue = 0; // Vom Sensor eingelesener Wert
int storedValue = 0; // Gespeicherter (abschwellender) Sensorwert
int ledLevel = 0; // In 'LED-Balken' umgewandelter Wert

void setup() {
for (int led = 0; led < NbrLEDs; led++)
{
pinMode(ledPins[led], OUTPUT); // Alle LED-Pins sind Ausgänge
}
}

void loop() {
sensorValue = analogRead(analogInPin); // Sensorwert einlesen
storedValue = max(sensorValue, storedValue); // Sensorwert nutzen, wenn größer
ledLevel = map(storedValue, 0, 1023, 0, NbrLEDs); // Auf Anzahl LEDs abbilden
for (int led = 0; led < NbrLEDs; led++)
{
if (led < ledLevel) {
digitalWrite(ledPins[led], HIGH); // Pins unter Wert einschalten
}
else {
digitalWrite(ledPins[led], LOW); // Pins über Wert ausschalten

7.5 Mehrere LEDs aneinanderreihen: LED-Balkenanzeige | 257

}
}
storedValue = storedValue - decay; // Wert "abschwellen" lassen
delay(10); // 10 ms warten
}

Das Abschwellen wird in der Zeile verarbeitet, die die max-Funktion nutzt. Sie gibt je
nachdem, welcher größer ist, den Sensorwert oder den gespeicherten Wert zurück. Ist der
Sensorwert höher als der abschwellende Wert, wird er in storedValue gespeichert.
Anderenfalls wird der Wert von storedValue bei jedem Schleifendurchlauf um die Kon-
stante decay verkleinert. (Die Schleife selbst wird mit Hilfe der delay-Funktion alle 10
Millisekunden durchlaufen.) Erhöht man den Wert von decay, reduziert sich die Zeit-
spanne, in der alle LEDs ausgehen.

Siehe auch
Rezept 3.6 erklärt die max-Funktion.

Rezept 5.6 erläutert ausführlicher, wie man einen Sensorwert mit analogRead einliest.

Rezept 5.7 beschreibt die map- Funktion.

Wenn Sie eine größere Genauigkeit für die »Abschwellzeiten« benötigen, sehen Sie sich
12.1 und 12.2 an. Die Gesamtzeit für einen Schleifendurchgang liegt tatsächlich über
10 Millisekunden, da es eine weitere Millisekunde (oder so) dauert, bis der Rest der
Schleife ausgeführt wurde.

7.6 Mehrere LEDs aneinanderreihen: Knight Rider-Lauflicht

Problem
Sie wollen LEDs in einem Lauflicht (wie in der Fernsehserie Knight Rider) aufleuchten
lassen.

Lösung
Sie können die gleichen Anschlüsse wie in Abbildung 7-7 verwenden:

/* KnightRider
*/

const int NbrLEDs = 6;
const int ledPins[] = {2, 3, 4, 5, 6, 7};
const int wait = 30;

void setup(){
for (int led = 0; led < NbrLEDs; led++)
{
pinMode(ledPins[led], OUTPUT);
}
}

258 | Kapitel 7: Visuelle Ausgabe

void loop() {
for (int led = 0; led < NbrLEDs-1; led++)
{
digitalWrite(ledPins[led], HIGH);

delay(wait);
digitalWrite(ledPins[led + 1], HIGH);
delay(wait);
digitalWrite(ledPins[led], LOW);
delay(wait*2);
}
for (int led = NbrLEDs-1; led > 0; led--) {
digitalWrite(ledPins[led], HIGH);
delay(wait);
digitalWrite(ledPins[led - 1], HIGH);
delay(wait);
digitalWrite(ledPins[led], LOW);
delay(wait*2);
}
}

Diskussion
Dieser Code ähnelt dem aus Rezept 7.5, nur dass die Pins hier nicht von einem Sensorwert
abhängen, sondern in einer festen Reihenfolge ein- und ausgeschaltet werden. Es gibt zwei
for-Schleifen. Die erste erzeugt das Links-nach-rechts-Muster, indem sie die LEDs von
links nach rechts einschaltet. Die Schleife beginnt mit der ersten (linken) LED und geht
dann alle nachfolgenden LEDs durch, bis auch die letzte (rechte) LED leuchtet. Die zweite
for-Schleife schaltet die LEDs von rechts nach links ein. Sie beginnt bei der rechten LED
und dekrementiert die LED, bis die erste (linke) LED erreicht ist. Die Zeitverzögerng kann
in der wait-Variablen festgelegt werden. Wählen Sie den Wert, der für den besten
visuellen Effekt sorgt.

7.7 Eine LED-Matrix per Multiplexing steuern

Problem
Sie besitzen eine LED-Matrix und wollen die Anzahl der Arduino-Pins minimieren, die zu
ihrer Ansteuerung benötigt werden.

Lösung
Dieser Sketch verwendet eine LED-Matrix mit 64 LEDs, bei der die Anoden mit den Zeilen
und die Kathoden mit den Spalten verbunden sind (wie bei der Jameco 2132349). Zwei-
farbige LED-Displays sind möglicherweise leichter zu beschaffen, und Sie können einfach
nur eine der Farben ansteuern, wenn Sie die andere nicht brauchen (Abbildung 7-8 zeigt
den Anschluss):

/*
matrixMpx Sketch

7.7 Eine LED-Matrix per Multiplexing steuern | 259

Schaltet die LEDs, von der ersten Zeile und Spalte ausgehend, nacheinander ein, bis alle LEDs
leuchten
Das Multiplexing wird verwendet, um 64 LEDs mit 16 Pins anzusteuern
*/

const int columnPins[] = { 2, 3, 4, 5, 6, 7, 8, 9};
const int rowPins[] = { 10,11,12,15,16,17,18,19};

int pixel = 0; // 0 bis 63 LEDs in der Matrix
int columnLevel = 0; // In LED-Spalte umgewandelter Pixelwert
int rowLevel = 0; // In LED-Zeile umgewandelter Pixelwert

void setup() {
for (int i = 0; i < 8; i++)
{
pinMode(columnPins[i], OUTPUT); // Alle LED-Pins sind Ausgänge
pinMode(rowPins[i], OUTPUT);
}
}

void loop() {
pixel = pixel + 1;
if(pixel > 63)
pixel = 0;

columnLevel = pixel / 8; // Auf Anzahl Spalten abbilden
rowLevel = pixel % 8; // Rest bestimmen
for (int column = 0; column < 8; column++)
{
digitalWrite(columnPins[column], LOW); // Diese Spalte an Masse
for(int row = 0; row < 8; row++)
{
if (columnLevel > column)
{
digitalWrite(rowPins[row], HIGH); // Alle LEDs in der Zeile an +5 Volt

}
else if (columnLevel == column && rowLevel >= row)
{

digitalWrite(rowPins[row], HIGH);
}
else
{
digitalWrite(columnPins[column], LOW); // Alle LEDs in der Zeile ausschalten

}
delayMicroseconds(300); // Verzögerung liefert eine Framedauer von 20ms für 64 LEDs
digitalWrite(rowPins[row], LOW); // LED ausschalten
}

// Die Spalte von Masse trennen
digitalWrite(columnPins[column], HIGH);
}
}

260 | Kapitel 7: Visuelle Ausgabe

TX 1

RX 0

2

3

4

6

5

7

A

R

D

U

I

N

O

9

8

10

11

12

13

Analog 4 (18)

Analog 5 (19)

Analog 0)

Analog 1 (15)

Analog 2 (16)

Analog 3 (17)

9

14

8

12

1

7

2

5
13 3 4 10 6 11 15 16

Abbildung 7-8: LED-Matrix an 16 Digitalpins

LED-Matrixanzeigen haben keine Standard-Anschlussbelegung, d.h., Sie
müssen sie auf dem Datenblatt der Anzeige nachsehen. Verbinden Sie die
Zeilen mit den Anoden und die Spalten mit den Kathoden, wie in
Abbildung 7-15 oder Abbildung 7-16 dargestellt, verwenden Sie aber die
LED-Pin-Nummern aus Ihrem Datenblatt.

Diskussion
Die Widerstandswerte müssen so gewählt werden, dass der Maximalstrom von 40 mA pro
Pin nicht überschritten wird. Da der Strom für bis zu acht LEDs durch jeden Spaltenpin
fließen kann, darf der maximale Strom für jede LED nur ein Achtel von 40 mA, also 5 mA,
betragen. Jede LED in einer typischen kleinen roten Matrix hat eine Fluss-Spannung von
etwa 1,8 Volt. Die Berechnung des Widerstands, der zu einem Strom von 5mA bei einer
Fluss-Spannung von 1,8V führt, ergibt einen Wert von 680 Ohm. Suchen Sie sich aus dem
Datenblatt die Fluss-Spannung für Ihre Matrix heraus. Jede Spalte der Matrix ist durch
einen Vorwiderstand mit einem Digitalpin verbunden. Geht die Spannung am Spaltenpin
herunter und die am Zeilenpin hoch, leuchtet die dazugehörige LED. Bei allen LEDs, bei
denen die Spannung am Spaltenpin hoch oder am Zeilenpin unten ist, fließt kein Strom
durch die LED, und sie leuchtet nicht.

7.7 Eine LED-Matrix per Multiplexing steuern | 261

The for-Schleife geht alle Zeilen und Spalten durch und schaltet nacheinander die LEDs
ein, bis alle leuchten. Die Schleife beginnt in der ersten Spalte und Zeile und inkrementiert
die Zeilenzähler, bis alle LEDs in dieser Zeile leuchten. Sie macht dann mit der nächsten
Spalte weiter, und so weiter, bis nacheinander alle LEDs an sind.

Sie können die LEDs auch proportional zu einem Sensorwert leuchten lassen (Rezept 5.6
zeigt, wie man einen Sensor an einen Analogport anschließt), indem Sie die folgenden
Änderungen am Sketch vornehmen.

Kommentieren Sie die drei folgenden Zeilen am Anfang der Schleife aus:

pixel = pixel + 1;
if(pixel > 63)
pixel = 0;

Ersetzen Sie das durch die folgenden Zeilen, die den Sensorwert an Pin 0 einlesen und auf
die Zahl der Pixel zwischen 0 und 63 abbilden:

int sensorValue = analogRead(0); // Sensorwert einlesen
pixel = map(sensorValue, 0, 1023, 0, 63); // und auf Pixel (LED) abbilden

Sie können das mit einem variablen Widerstand ausprobieren, der wie in Abbildung 5-7
aus Kapitel 5 mit dem Analogpin 0 verbunden ist. Die Anzahl eingeschalteter LEDs ist
dann proportional zum Sensorwert.

7.8 Bilder (Images) auf einer LED-Matrix darstellen

Problem
Sie wollen ein oder mehrere Bilder (Images) auf einer LED-Matrix ausgeben, etwa für eine
Animation, bei der mehrere Images schnell hintereinander dargestellt werden.

Lösung
Diese Lösung kann die gleiche Verschaltung nutzen wie in Rezept 7.7. Der Sketch erzeugt
den Effekt eines schlagenden Herzens, indem er die LEDs in Form eines Herzens
aufleuchten lässt. Für jeden Herzschlag wird ein kleines Herz, gefolgt von einem großen
Herzen, ausgegeben (die Images sind in Abbildung 7-9 zu sehen):

/*
* matrixMpxAnimation Sketch
* Animiert die Images zweier Herzen zu einem Herzschlag
*/

// Die Herzen werden als Bitmaps gespeichert - jedes Bit entspricht einer LED
// Bei einer 0 ist die LED aus, bei einer 1 ist sie an
byte bigHeart[] = {
B01100110,
B11111111,

262 | Kapitel 7: Visuelle Ausgabe

B11111111,
B11111111,
B01111110,
B00111100,
B00011000,
B00000000};

byte smallHeart[] = {
B00000000,
B00000000,
B00010100,
B00111110,
B00111110,
B00011100,
B00001000,
B00000000};

const int columnPins[] = { 2, 3, 4, 5, 6, 7, 8, 9};
const int rowPins[] = { 10,11,12,15,16,17,18,19};

void setup() {
for (int i = 0; i < 8; i++)
{
pinMode(rowPins[i], OUTPUT); // Alle LED-Pins sind Ausgänge
pinMode(columnPins[i], OUTPUT);
digitalWrite(columnPins[i], HIGH); // Spaltenpins von Masse trennen
}
}

void loop() {
int pulseDelay = 800 ; // Wartezeit zwischen Herzschlägen in Millisekunden

show(smallHeart, 80); // Zeige kleines Herz für 100 ms
show(bigHeart, 160); // Gefolgt vom großen Herz für 200ms
delay(pulseDelay); // Dazwischen passiert nichts
}

// Zeigt einen Frame des Images, das im Array abgelegt ist,
// auf das der image-Parameter zeigt.
// Der Frame wird für die angegebene Dauer in Millisekunden wiederholt
void show(byte * image, unsigned long duration)
{
unsigned long start = millis(); // Timing der Animation starten
while (start + duration > millis()) // Ausgabe für die gewünschte Dauer
{
for(int row = 0; row < 8; row++)
{
digitalWrite(rowPins[row], HIGH); // Zeile mit +5 Volt verbinden
for(int column = 0; column < 8; column++)
{
boolean pixel = bitRead(image[row],column);
if(pixel == 1)
{
digitalWrite(columnPins[column], LOW); // Spalte mit Masse verbinden
}

7.8 Bilder (Images) auf einer LED-Matrix darstellen | 263

delayMicroseconds(300); // Kleine Verzögerung für jede LED
digitalWrite(columnPins[column], HIGH); // Spalte von Masse trennen

}
digitalWrite(rowPins[row], LOW); // LEDs trennen
}
}
}

Kleines Herz Großes Herz

Abbildung 7-9: Die zwei Herzen, die bei jedem Herzschlag ausgegeben werden

Diskussion
Das Multiplexen (Schalten) der Spalten und Zeilen ähnelt Rezept 7.7, doch der an die
LEDs geschriebene Wert basiert auf den Images, die in den Arrays bigHeart und small-
Heart abgelegt sind. Jedes Element des Arrays repräsentiert ein Pixel (eine einzelne LED),
und jede Array-Zeile repräsentiert eine Zeile der Matrix. Eine Zeile besteht aus acht Bits,
die im Binärformat (das durch das große B am Anfang jeder Zeile festgelegt wird)
angegeben werden. Ein Bit mit dem Wert 1 legt fest, dass die entsprechende LED an ist,
die 0 bedeutet, sie ist aus. Der Animationseffekt entsteht, indem man zwischen den Arrays
schnell hin und her wechselt.

Die loop-Funktion wartet kurz (800 Millisekunden) zwischen den Schlägen und ruft dann
die show-Funktion zuerst mit dem smallHeart-Array und dann mit dem bigHeart-Array
auf. Die show-Funktion geht jedes Element in allen Zeilen und Spalten durch und schaltet
die LED ein, wenn das entsprechende Bit 1 ist. Die bitRead-Funktion (siehe Rezept 2.20)
wird genutzt, um den Wert jedes Bits zu ermitteln.

Eine kurze Verzögerung von 300 Mikrosekunden zwischen den Pixeln gibt dem Auge
genug Zeit, die LED wahrzunehmen. Das Timing wurde so gewählt, dass jedes Image oft
genug wiederholt wird (50 mal pro Sekunde), damit man das Blinken nicht bemerkt.

264 | Kapitel 7: Visuelle Ausgabe

Hier eine Variante, die die Geschwindigkeit des Herzschlags basierend auf dem Wert eines
Sensors ändert. Sie können das mit einem variablen Widerstand am analogen Eingangspin
0 ausprobieren (siehe Rezept 5.6). Verwenden Sie die gleiche Verschaltung und den
gleichen Code wie oben, ersetzen Sie nur die loop-Funktion durch den folgenden Code:

void loop() {
sensorValue = analogRead(analogInPin); // Sensorwert einlesen
int pulseRate = map(sensorValue,0,1023,40,240); // In Schläge pro Minute umwandeln
int pulseDelay = (60000 / pulseRate); // Wartezeit zwischen Herzschlägen in Millisekunden

show(smallHeart, 80); // Kleines Herz für 100 ms zeigen
show(bigHeart, 160); // Gefolgt vom großen Herzen für 200ms
delay(pulseDelay); // Dazwischen passiert nichts
}

Diese Version berechnet die Pause zwischen den Herzschlägen über die map-Funktion
(siehe Rezept 5.7), die den Sensorwert in Schläge pro Minute umwandelt. Die Berechnung
berücksichtigt die Zeit nicht, die es dauert, das Herz darzustellen, doch Sie können 240
Millisekunden (80 ms plus 160 ms für die beiden Images) abziehen, wenn Sie ein
genaueres Timing wünschen.

Siehe auch
In 7.12 und 7.13 finden Sie Informationen, wie man Schieberegister zur Ansteuerung von
LEDs nutzt, wenn man die Anzahl der Arduino-Pins reduzieren will, die zum Ansteuern
einer LED-Matrix benötigt werden.

In 12.1 and 12.2 erfahren Sie mehr darüber, wie man die Zeit mit der millis -Funktion
verwaltet.

7.9 Eine LED-Matrix ansteuern: Charlieplexing

Problem
Sie besitzen eine LED-Matrix und möchten die Anzahl der Pins minimieren, die benötigt
werden, um sie ein- und auszuschalten.

Lösung
Charlieplexing ist eine spezielle Form des Multiplexings, die die Zahl der LEDs erhöht, die
von einer Gruppe von Pins angesteuert werden können. Der folgende Sketch steuert sechs
LEDs mit nur drei Pins (Abbildung 7-10 zeigt den Anschluss):

/*
* Charlieplexing Sketch
* Sechs LEDs nacheinander einschalten, die über die Pins 2, 3 und 4 angeschlossen sind
*/

byte pins[] = {2,3,4}; // Mit den LEDs verbundene Pins

7.9 Eine LED-Matrix ansteuern: Charlieplexing | 265

// Die nächsten beiden Zeilen ermitteln die Anzahl der Pins und der LEDs aus dem obigen Array
const int NUMBER_OF_PINS = sizeof(pins)/ sizeof(pins[0]);
const int NUMBER_OF_LEDS = NUMBER_OF_PINS * (NUMBER_OF_PINS-1);

byte pairs[NUMBER_OF_LEDS/2][2] = { {0,1}, {1,2}, {0,2} }; // Pins auf LEDs abbbilden

void setup()
{
// Hier gibt es nichts zu tun

}

void loop(){
for(int i=0; i < NUMBER_OF_LEDS; i++)
{
lightLed(i); // Alle LEDs nacheinander einschalten
delay(1000);

}
}

// Diese Funktion schaltet die angegebene LED ein; die erste LED ist 0
void lightLed(int led)
{
// Die nachfolgenden vier Zeilen wandeln die LED-Nummer in Pin-Nummern um
int indexA = pairs[led/2][0];
int indexB = pairs[led/2][1];
int pinA = pins[indexA];
int pinB = pins[indexB];

// Schaltet alle Pins aus, die nicht mit der LED verbunden sind
for(int i=0; i < NUMBER_OF_PINS; i++)
if(pins[i] != pinA && pins[i] != pinB)
{ // Ist dieser Pin nicht einer unserer Pins,

pinMode(pins[i], INPUT); // als Eingang festlegen
digitalWrite(pins[i],LOW); // und Pullup ausschalten

}
// Nun die Pins für die angegebene LED einschalten
pinMode(pinA, OUTPUT);
pinMode(pinB, OUTPUT);
if(led % 2 == 0)
{
digitalWrite(pinA,LOW);
digitalWrite(pinB,HIGH);

}
else
{
digitalWrite(pinB,LOW);
digitalWrite(pinA,HIGH);

}
}

266 | Kapitel 7: Visuelle Ausgabe

TX 1

RX 0

2

3

4

6

5

7

A
R
D
U
I
N
O

Gnd

Vin

5V

3V3

RESET

Gnd

1 2

3 4

5 6

Abbildung 7-10: Ansteuerung von sechs LEDs mit nur drei Pins per Charlieplexing

Diskussion
Der Begriff Charlieplexing stammt von Charlie Allen (von Microchip Technology, Inc.), der
diese Methode veröffentlicht hat. Die Technik nutzt die Tatsache aus, dass LEDs nur
leuchten, wenn sie »richtig herum« angeschlossen sind (d.h., wenn die Anode »positiver«
ist als die Kathode). Die nachfolgende Tabelle zeigt die LED-Nummer (siehe Abbildung 7-8),
die bei gültigen Kombinationen der drei Pins leuchtet. L steht für LOW, H für HIGH und i für den
INPUT-Modus. Schaltet man einen Pin in den INPUT-Modus, trennt man ihn von der Schal-
tung:

Pins LEDs
4 3 2 1 2 3 4 5 6
L L L 0 0 0 0 0 0
L H i 1 0 0 0 0 0
H L i 0 1 0 0 0 0
i L H 0 0 1 0 0 0
i H L 0 0 0 1 0 0
L i H 0 0 0 0 1 0
H i L 0 0 0 0 0 1

Sie können die Anzahl der LEDs mit nur einem zusätzlichen Pin auf 12 verdoppeln. Die
ersten sechs LEDs werden dabei wie im obigen Beispiel angeschlossen. Den Anschluss der
sechs zusätzlichen LEDs sehen Sie in Abbildung 7-11.

7.9 Eine LED-Matrix ansteuern: Charlieplexing | 267

TX 1

RX 0

2

3

4

6

5

7

3 4

1 2
7 8

5 6

11 12
9 10

Abbildung 7-11: Charlieplexing mit vier Pins steuert 12 LEDs

Tragen Sie den zusätzlichen Pin im obigen Sketch in das pins-Array ein:

byte pins[] = {2,3,4,5}; // Mit den LEDs verbundene Pins

Tragen Sie die zusätzlichen Einträge in das pairs-Array ein:

byte pairs[NUMBER_OF_LEDS/2][2] = { {0,1}, {1,2}, {0,2}, {2,3}, {1,3}, {0,3} };

Alles andere kann unverändert bleiben und die Schleife geht alle 12 LEDs durch, weil der
Code die Anzahl der LEDs aus der Anzahl der Einträge im pins-Array bestimmt.

Da das Charlieplexing die Arduino-Pins so ansteuert, dass nur jeweils eine LED einge-
schaltet ist, ist es schwieriger, mehrere LEDs quasi gleichzeitig leuchten zu lassen. Man
kann das aber erreichen, indem man eine für das Charlieplexing modifizierte Multiple-
xing-Technik nutzt.

Der folgende Sketch erzeugt eine Balkenanzeige, indem es eine Reihe von LEDs ansteuert.
Welche LEDs das sind, hängt vom Sensorwert am Analogpin 0 ab:

byte pins[] = {2,3,4};
const int NUMBER_OF_PINS = sizeof(pins)/ sizeof(pins[0]);
const int NUMBER_OF_LEDS = NUMBER_OF_PINS * (NUMBER_OF_PINS-1);

byte pairs[NUMBER_OF_LEDS/2][2] = { {0,1}, {1,2}, {0,2} };

int ledStates = 0; //Enthält Zustand von bis zu 15 LEDs
int refreshedLed; // "Aufzufrischende" LED

void setup()
{
// Hier ist nichts zu tun

}

void loop()
{
const int analogInPin = 0; // Analoger Eingangspin ist mit variablem Widerstand verbunden

// Hier folgt der Code aus dem bargraph-Rezept
int sensorValue = analogRead(analogInPin); // Analogwert einlesen
// Auf Anzahl der LEDs abbilden
int ledLevel = map(sensorValue, 0, 1023, 0, NUMBER_OF_LEDS);

268 | Kapitel 7: Visuelle Ausgabe

for (int led = 0; led < NUMBER_OF_LEDS; led++)
{
if (led < ledLevel) {
setState(led, HIGH); // Pins unter Wert einschalten
}
else {
setState(led, LOW); // Pins über Wert ausschalten
}
}
ledRefresh();

}

void setState(int led, boolean state)
{
bitWrite(ledStates,led, state);

}

void ledRefresh()
{
// Bei jedem Aufruf eine andere LED auffrischen.
if(refreshedLed++ > NUMBER_OF_LEDS) // Zur nächsten LED wechseln
refreshedLed = 0; // Wieder bei der ersten LED anfangen, wenn alle aufgefrischt wurden

if(bitRead(ledStates, refreshedLed) == HIGH)
lightLed(refreshedLed);

}

// Diese Funktion entspricht der aus dem obigen Sketch
// Sie schaltet die angebene LED ein; die erste LED ist 0
void lightLed(int led)
{
// Die folgenden vier Zeilen wandeln die LED-Nummer in die Pin-Nummern um
int indexA = pairs[led/2][0];
int indexB = pairs[led/2][1];
int pinA = pins[indexA];
int pinB = pins[indexB];

// Alle Pins ausschalten, die nicht mit der angegebenen LED verbunden sind
for(int i=0; i < NUMBER_OF_PINS; i++)
if(pins[i] != pinA && pins[i] != pinB)
{ // Ist der Pin nicht einer unserer Pins,

pinMode(pins[i], INPUT); // als Eingang festlegen
digitalWrite(pins[i],LOW); // und Pullup ausschalten

}
// Nun die Pins für die angegebene LED einschalten
pinMode(pinA, OUTPUT);
pinMode(pinB, OUTPUT);
if(led % 2 == 0)
{
digitalWrite(pinA,LOW);
digitalWrite(pinB,HIGH);

}
else

7.9 Eine LED-Matrix ansteuern: Charlieplexing | 269

{
digitalWrite(pinB,LOW);
digitalWrite(pinA,HIGH);

}
}

Der Sketch nutzt die Bitwerte der Variablen ledStates für den Zustand der LEDs (0 für aus
und 1 für an). Die refresh-Funktion überprüft jedes Bit und schaltet die LEDs ein, wenn
es auf 1 gesetzt ist. Die refresh-Funktion muss immer wieder schnell aufgerufen werden,
da die LEDs sonst flackern würden.

Verzögerungsschleifen im Code können den Phi-Effekt (Trägheit des Auges)
behindern, der dafür verantwortlich ist, dass wir das Flackern der LEDs
nicht sehen.

Sie können einen Interrupt nutzen, um die refresh-Funktion im Hintergrund abzuar-
beiten (ohne die Funktion in loop explizit aufrufen zu müssen). Timer-Interrupts werden
in Kapitel 18 behandelt, aber hier gibt es schon mal einen Vorgeschmack darauf, wie man
einen Interrupt nutzt, um das Auffrischen der LEDs zu erledigen. Wir verwenden eine
Bibliothek namens FrequencyTimer2 (die im Arduino Playground verfügbar ist), um den
Interrupt einzurichten:

#include <FrequencyTimer2.h> // Einbinden dieser Bibliothek, um refresh zu ermöglichen

byte pins[] = {2,3,4};
const int NUMBER_OF_PINS = sizeof(pins)/ sizeof(pins[0]);
const int NUMBER_OF_LEDS = NUMBER_OF_PINS * (NUMBER_OF_PINS-1);

byte pairs[NUMBER_OF_LEDS/2][2] = { {0,1}, {1,2}, {0,2} };

int ledStates = 0; // Enthält Zustände von bis zu 15 LEDs
int refreshedLed; // Die aufzufrischende LED
void setup()
{
FrequencyTimer2::setPeriod(20000/ NUMBER_OF_LEDS); // Zeitintervall festlegen
// Die nächste Zeile legt fest, welche Funktion FrequencyTimer2 aufrufen soll (ledRefresh)
FrequencyTimer2::setOnOverflow(ledRefresh);
FrequencyTimer2::enable();
}

void loop()
{
const int analogInPin = 0; // Analoger Eingangspin ist mit variablem Widerstand verbunden

270 | Kapitel 7: Visuelle Ausgabe

// Hier folgt der Code aus dem bargraph-Rezept
int sensorValue = analogRead(analogInPin); // Analogwert einlesen
// Auf Anzahl der LEDs abbbilden
int ledLevel = map(sensorValue, 0, 1023, 0, NUMBER_OF_LEDS);
for (int led = 0; led < NUMBER_OF_LEDS; led++)
{
if (led < ledLevel) {
setState(led, HIGH); // Pins unter Wert einschalten
}
else {
setState(led, LOW); // Pins über Wert ausschalten
}
}
// Die LEDs werden nicht mehr in der Schleife aufgefrischt. Das wird von FrequencyTimer2

übernommen
}

// Der restliche Code entspricht dem aus dem vorigen Beispiel

Der Timer für die FrequencyTimer2-Bibliothek wird auf 1,666 Mikrosekunden gesetzt
(20 ms durch 12, also die Anzahl der LEDs). Die Methode FrequencyTimer2setOnOverflow
legt die Funktion fest (ledRefresh), die aufgerufen soll, wenn der Timer »auslöst«.

Siehe auch
Das LOL-Board ist ein Arduino-Shield, das eine 9×14-Matrix (126 LEDs) per Charlie-
plexing ansteuert. Es ist ein schönes Beispiel dafür, was mit dieser Technik möglich ist,
wenn man bei der Hard- und Software über die üblichen Design-Beschränkungen hinaus-
geht: http://jimmieprodgers.com/kits/lolshield/makelolshield/.

Kapitel 18 enthält weitere Informationen zu Timer-Interrupts.

7.10 Eine 7-Segment-LED-Anzeige ansteuern

Problem
Sie wollen Zahlen auf einer 7-Segment-Anzeige darstellen.

Lösung
Der folgende Sketch gibt Ziffern zwischen 0 bis 9 auf einer einstelligen 7-Segment-Anzeige
aus. Den Anschluss sehen Sie in Abbildung 7-12. Die Ausgabe wird durch das Einschalten
einer Kombination von Segmenten erreicht, die die Ziffern repräsentieren:

/*
* SevenSegment Sketch
* Zeigt Ziffern zwischen 0 bis 9 auf einer einstelligen Anzeige an
* Das Beispiel zählt die Sekunden von 0 bis 9
*/

7.10 Eine 7-Segment-LED-Anzeige ansteuern | 271

// Die Bits repräsentieren die Segmente A bis G (und den Dezimalpunkt) für die Ziffern 0-9
const byte numeral[10] = {
//ABCDEFG /dp
B11111100, // 0
B01100000, // 1
B11011010, // 2
B11110010, // 3
B01100110, // 4
B10110110, // 5
B00111110, // 6
B11100000, // 7
B11111110, // 8
B11100110, // 9
};

// Pins für Dezimalpunkt und alle Segmente
// dp,G,F,E,D,C,B,A
const int segmentPins[8] = { 5,8,9,7,6,4,3,2};

void setup()
{
for(int i=0; i < 8; i++)
{
pinMode(segmentPins[i], OUTPUT); // Segment- und DP-Pins als Ausgang festlegen
}
}

void loop()
{
for(int i=0; i <= 10; i++)
{
showDigit(i);
delay(1000);
}
// Der letzte Wert wurde erreicht und das Display wird ausgeschaltet
delay(2000); // Zwei Sekunden Pause mit ausgeschaltetem Display
}

// Gibt eine Ziffer zwischen 0 und 9 auf einer 7-Segment-Anzeige aus
// Alle Werte außerhalb von 0-9 schalten die Anzeige aus
void showDigit(int number)
{
boolean isBitSet;

for(int segment = 1; segment < 8; segment++)
{
if(number < 0 || number > 9){
isBitSet = 0; // Alle Segmente ausschalten
}
else{
// isBitSet ist "wahr", wenn das angegebene Bit 1 ist
isBitSet = bitRead(numeral[number], segment);
}

272 | Kapitel 7: Visuelle Ausgabe

isBitSet = ! isBitSet; // Diese Zeile bei gemeinsamer Kathode entfernen
digitalWrite(segmentPins[segment], isBitSet);
}
}

TX 1

RX 0

2

3

4

6

5

7

Gnd
Vin

5V
3V3

RESET

Gnd

9

8

10

11

12

13

A

R

D

U

I

N

O

Gemeinsame
Anode

G

F

A

C

D PD

E

B
9

7

42

3

6

1

5

8

Widerstandswerte

im Text

Abbildung 7-12: Anschluss einer 7-Segment-Anzeige

Diskussion
Die für jede Ziffer zu aktivierenden Segmente werden im Array numeral vorgehalten. Für
jede Ziffer wird ein Byte genutzt, bei dem jedes Bit eines der sieben Segmente (oder den
Dezimalpunkt) repräsentiert.

Das Array namens segmentPins enthält die Pins, die jedem Segment zugeordnet sind. Die
Funktion showDigit prüft, ob die Zahl im Bereich von 0 bis 9 liegt. Handelt es sich um eine
gültige Zahl, wird dann jedes Segment-Bit untersucht und eingeschaltet, wenn es gesetzt
(1) ist. In Rezept 3.12 erfahren Sie mehr über die bitRead-Funktion.

Wie in Rezept 7.4 erwähnt, ist ein Pin HIGH, wenn man ein Segment bei einer Anzeige mit
gemeinsamer Kathode einschaltet. Bei einer Anzeige mit gemeinsamer Anode ist er LOW.
Unser Code ist für eine Anzeige mit gemeinsamer Anode gedacht, weshalb er den Wert
wir folgt invertiert (d.h. 0 auf 1 und 1 auf 0 setzt):

isBitSet = ! isBitSet; // Diese Zeile bei gemeinsamer Kathode entfernen

7.10 Eine 7-Segment-LED-Anzeige ansteuern | 273

Das ! ist der Negationsoperator – siehe Rezept 2.20. Wenn Ihre Anzeige eine gemeinsame
Kathode nutzt (d.h., alle Kathoden sind miteinander verbunden; sehen Sie auf dem
Datenblatt nach, wenn Sie sich nicht sicher sind), können Sie diese Zeile entfernen.

7.11 Mehrstellige 7-Segment-LED-Anzeigen ansteuern:
Multiplexing

Problem
Sie wollen Zahlen auf einer 7-Segment-Anzeige mit zwei oder mehr Ziffern darstellen.

Lösung
Mehrstellige 7-Segment-Anzeigen arbeiten üblicherweise mit Multiplexing. In früheren
Rezepten haben wir Zeilen und Spalten von LEDs zur einem Array verschaltet. Hier
werden die entsprechenden Segmente für alle Ziffern miteinander verbunden (siehe
Abbildung 7-13):

/*
* SevenSegmentMpx Sketch
* Stellt Zahlen zwischen 0 bis 9999 auf einer vierstelligen Anzeige dar
* Das Beispiel gibt den Wert eines Sensors aus, der mit einem Analogeingang verbunden ist
*/

// Die Bits repräsentieren die Segmente A bis G (und den Dezimalpunkt) für die Ziffern 0-9
const int numeral[10] = {
//ABCDEFG /dp
B11111100, // 0
B01100000, // 1
B11011010, // 2
B11110010, // 3
B01100110, // 4
B10110110, // 5
B00111110, // 6
B11100000, // 7
B11111110, // 8
B11100110, // 9
};

// Pins für Dezimalpunkt und alle Segmente
// dp,G,F,E,D,C,B,A

const int segmentPins[] = { 4,7,8,6,5,3,2,9};

const int nbrDigits= 4; // Anzahl der Ziffern der LED-Anzeige

//dig 1 2 3 4
const int digitPins[nbrDigits] = { 10,11,12,13};

274 | Kapitel 7: Visuelle Ausgabe

void setup()
{
for(int i=0; i < 8; i++)
pinMode(segmentPins[i], OUTPUT); // Segment- und DP-Pins als Ausgang festlegen

for(int i=0; i < nbrDigits; i++)
pinMode(digitPins[i], OUTPUT);

}

void loop()
{
int value = analogRead(0);
showNumber(value);
}

void showNumber(int number)
{
if(number == 0)
showDigit(0, nbrDigits-1) ; // 0 in der rechten Ziffer ausgeben
else
{
// Wert für jede Ziffer ausgeben
// Linke Ziffer ist 0, rechte ist 1 kleiner als Anzahl der Stellen
for(int digit = nbrDigits-1; digit >= 0; digit--)
{
if(number > 0)
{
showDigit(number % 10, digit) ;
number = number / 10;

}
}
}
}

// Angegebene Ziffer in der 7-Segment-Anzeige an der angegebenen Stelle ausgeben
void showDigit(int number, int digit)
{
digitalWrite(digitPins[digit], HIGH);
for(int segment = 1; segment < 8; segment++)
{
boolean isBitSet = bitRead(numeral[number], segment);
// isBitSet ist "wahr", wenn angegebenes Bit 1 ist
isBitSet = ! isBitSet; // Diese Zeile bei gemeinsamer Kathode entfernen
digitalWrite(segmentPins[segment], isBitSet);
}
delay(5);
digitalWrite(digitPins[digit], LOW);
}

7.11 Mehrstellige 7-Segment-LED-Anzeigen ansteuern: Multiplexing | 275

TX 1
RX 0

2
3
4

6
5

7

9
8

10
11
12
13

A
R
D
U
I
N
O G

F

D

E

A

C
D P

Digit 0 Digit 3Digit 2Digit 1

B

1 K

1K

1K

1k

Widerstandswerte
im Text

4
5

2
1
Analog In 0

3

Gnd
Vin

3V3
RESET

Gnd
5V

10K-

Poti

1 1 814 1

13

16

7

5

6 3 2 15

Abbildung 7-13: Anschluss einer mehrstelligen 7-Segment-Anzeige (LTC-2623)

Diskussion
Dieser Sketch nutzt eine showDigit-Funktion, die der aus Rezept 7.10 ähnelt. Hier wird
der Funktion neben der Ziffer auch die Position in der Anzeige übergeben. Die Logik zur
Ansteuerung ist die gleiche, der Code setzt aber zusätzlich den Pin für die richtige Position
in der Anzeige auf HIGH, so dass nur diese Ziffer dargestellt wird (beachten Sie hierzu die
früheren Erklärungen zum Multiplexing).

7.12 Mehrstellige 7-Segment-LED-Anzeigen mit
MAX7221-Schieberegistern ansteuern

Problem
Sie wollen mehrstellige 7-Segment-Anzeigen ansteuern, aber die Zahl der benötigten Ar-
duino-Pins reduzieren.

Lösung
Diese Lösung verwendet den beliebten MAX7221 LED-Treiber zur Ansteuerung vierstel-
liger Displays mit gemeinsamer Kathode, wie etwa das Lite-On LTC-4727JR (Digi-Key
160-1551-5-ND). Der MAX7221 bietet eine einfachere Lösung als Rezept 7.11, weil er das
gesamte Multiplexing und die Dekodierung der Ziffern in Hardware erledigt.

276 | Kapitel 7: Visuelle Ausgabe

Der Sketch gibt Zahlen zwischen 0 und 9999 aus (Abbildung 7-14 zeigt den Anschluss):

/*
Max7221_digits
*/

#include <SPI.h> // Arduino SPI-Bibliothek. Eingeführt mit Arduino Version 0019

const int slaveSelect = 10; // Pin zur Aktivierung des aktiven Slaves

const int numberOfDigits = 4; // An die Anzahl der Ziffern anpassen

const int maxCount = 9999;

int number = 0;

void setup()
{
Serial.begin(9600);
SPI.begin(); // initialize SPI
pinMode(slaveSelect, OUTPUT);
digitalWrite(slaveSelect,LOW); //Slave wählen
// 7221 zur Anzeige von 7-Segment-Daten vorbereiten - siehe Datenblatt
sendCommand(12,1); // Normaler Modus (Voreinstellung ist Shutdown-Modus);
sendCommand(15,0); // Display-Test aus
sendCommand(10,8); // Mittlere Helligkeit (Wertebereich zwischen 0-15)
sendCommand(11,numberOfDigits); // 7221 digit scan limit command
sendCommand(9,255); // Dekodierbefehl, verwende Standard-7-Segment-Ziffern
digitalWrite(slaveSelect,HIGH); //Slave deaktivieren
}

void loop()
{
// Ausgabe einer Zahl vom seriellen Port
// Zahl wird mit Zeilenende-Zeichen abgeschlossen
if(Serial.available())
{
char ch = Serial.read();
if(ch == '\n')
{
displayNumber(number);
number = 0;

}
else
number = (number * 10) + ch - '0'; // Details in Kapitel 4

}
}

//Anzeige von bis zu vier Ziffern in einem 7-Segment-Display
void displayNumber(int number)
{
for(int i = 0; i < numberOfDigits; i++)
{
byte character = number % 10; // Wert der äußersten rechten Ziffer bestimmen
if(number == 0 && i > 0)
character = 0xf; // 7221 löscht die Segmente beim Empfang des Wertes

7.12 Mehrstellige 7-Segment-LED-Anzeigen mit MAX7221-Schieberegistern ansteuern | 277

// Ziffer der Zahl als Befehl senden, erste Ziffer ist Befehl 1
sendCommand(numberOfDigits-i, character);
number = number / 10;
}
}

void sendCommand(int command, int value)
{
digitalWrite(slaveSelect,LOW); //Chip-Select ist bei LOW aktiv
//2-Byte-Datentransfer zum 7221
SPI.transfer(command);
SPI.transfer(value);
digitalWrite(slaveSelect,HIGH); //Chip freigeben, Übertragungsende signalisieren
}

A

R

D

U

I

N

O
D

ig
 2

D
ig

 3

S
eg

 F

D
ig

 1

D
ig

 0

S
eg

 G

S
eg

 C

S
eg

 B

S
eg

 D
p

S
eg

 E

S
eg

 D

S
eg

 A

S
S

 (S
el

ec
t)

M
O

S
I (

D
 In

)

S
C

K
 (C

lo
ck

)

M
IS

O
 (D

 O
ut

)

Gnd

Vin

5V

3V3

RESET

Gnd

R1

G
nd

G
nd

I S
et

+
5

V

MAX7221

5 8

D
ig

 6

D
ig

 7

D
ig

 5

D
ig

 4

10
uF

9

8

10

11

12

GND

13

AREF

6 811 211513167 5314

6 715 112172016 21231418194 9 103

0.1
uF

22

24 1 1213

Abbildung 7-14: Ansteuerung einer mehrstelligen 7-Segment-Anzeige (gemeinsame Kathode) mit
MAX7221

Lösung
Dieses Rezept nutzt die Arduino SPI-Kommunikation, um mit dem MAX7221-Chip zu
kommunizieren. Kapitel 13 behandelt SPI im Detail, und Rezept 13.8 erläutert den ver-
wendeten SPI-spezifischen Code.

Der Sketch zeigt die Zahl an, wenn bis zu vier Ziffern über den seriellen Port empfangen
wurden – eine Erläuterung des Codes für die serielle Schnittstelle in loop finden Sie in
Kapitel 4. Die Funktion displayNumber extrahiert (von rechts nach links) den Wert jeder
Ziffer und sendet sie über die sendCommand-Funktion an den MAX7221.

Die Verschaltung nutzt eine vierstellige 7-Segment-Anzeige, aber Sie können ein- oder
zweistellige Anzeigen mit bis zu insgesamt acht Ziffern zusammenschalten. Wenn Sie

278 | Kapitel 7: Visuelle Ausgabe

mehrere Anzeigen kombinieren, müssen die Pins für die jeweiligen Segmente miteinander
verbunden sein. (Rezept 13.8 zeigt den Anschluss einer gängigen zweistelligen Anzeige.)

Die MAX72xx-Chips sind für Anzeigen mit gemeinsamer Kathode kon-
zipiert. Die Anode jedes Segments ist an einem separaten Pin verfügbar
und die Kathoden aller Segmente jeder Ziffer sind miteinander verbunden.

7.13 Eine LED-Matrix mit MAX72xx-Schieberegistern
ansteuern

Problem
Sie müssen eine 8×8-LED-Matrix ansteuern und wollen die Anzahl der dazu benötigten
Arduino-Pins minimieren.

Lösung
Wie in Rezept 7.12 kann man ein Schieberegister auch nutzen, um die Anzahl der Pins zu
reduzieren, die zur Ansteuerung einer LED-Matrix benötigt werden. Diese Lösung nutzt
die beliebten LED-Treiber MAX7219 oder MAX7221. Schließen Sie den Arduino, die
Matrix und den MAX72xx wie in Abbildung 7-15 an.

TX 1

RX 0

2

3

4

6

5

7

A
R
D
U
I
N
O

6 715 11217201622 212314

D
ig

 2

D
ig

 3

S
eg

 F

D
ig

 1

D
ig

 0

S
eg

 G

S
eg

 C

S
eg

 B

S
eg

 D
p

S
eg

 E

S
eg

 D

Se
g

A

Lo
ad

(c
s)

C
lk

D
 In

D
 O

ut

Gnd
Vin

5V
3V3

RESET

Gnd

R1

G
nd

G
nd

I S
et

+
5

V

MAX7219 / MAX7221

5 8103

D
ig

 6

D
ig

 7

D
ig

 5

D
ig

 4

0.1
uF

10
uF

22

19

16

13

3

6

9

12
24 21 18 15 1 4 7 10

18194 9

241 13 12

Abbildung 7-15: Ansteuerung einer 8×8-LED-Matrix mit einem MAX72xx

7.13 Eine LED-Matrix mit MAX72xx-Schieberegistern ansteuern | 279

Der Sketch basiert auf der Arduino-Bibliothek hello_matrix von Nicholas Zambetti. Die
Pin-Nummern wurden so angepasst, dass sie mit der an anderen Stellen dieses Kapitels
genutzten Verschaltung übereinstimmen. Sie nutzt die Sprite- und Matrix-Bibliotheken,
die mit Arduino-Releases vor 1.0 ausgeliefert wurden. Wenn Sie Arduino 1.0 verwenden
und diese Bibliotheken im Arduino Playground nicht finden, können Sie die Bibliotheken
aus der Release 0022 nutzen http://arduino.cc/en/Main/Software.

#include <Sprite.h>
#include <Matrix.h>

// Hello Matrix
// von Nicholas Zambetti <http://www.zambetti.com>

// Demonstriert die Verwendung der Matrix-Bibliothek
// für MAX7219 LED-Matrix-Controller
// Zeichnet ein Gesicht auf der Matrix

const int loadPin = 2;
const int clockPin = 3;
const int dataPin = 4;

Matrix myMatrix = Matrix(dataPin, clockPin, loadPin); // create a new Matrix

void setup()
{
}

void loop()
{
myMatrix.clear(); // clear display

delay(1000);

// turn some pixels on
myMatrix.write(1, 5, HIGH);
myMatrix.write(2, 2, HIGH);
myMatrix.write(2, 6, HIGH);
myMatrix.write(3, 6, HIGH);
myMatrix.write(4, 6, HIGH);
myMatrix.write(5, 2, HIGH);
myMatrix.write(5, 6, HIGH);
myMatrix.write(6, 5, HIGH);

delay(1000);
}

Diskussion
Sie erzeugen eine Matrix, indem Sie die Pin-Nummern für die Daten-, Lade- und Clock-
Pins übergeben. loop verwendet die Methode write, um die Pixel einzuschalten. Die
clear-Methode schaltet die Pixel aus. write verwendet drei Parameter: Die ersten beiden
bestimmen die Spalte und Zeile (x und y) der LED, und der dritte (HIGH oder LOW) schaltet
die LED ein oder aus.

280 | Kapitel 7: Visuelle Ausgabe

Die hier verwendeten Pin-Nummern steuern die grünen LEDs der zweifarbigen 8×8-Ma-
trix an, die es von folgenden Anbietern gibt:

SparkFun COM-00681
NKC Electronics COM-0006

Der Widerstand (mit der Bezeichnung R1 in Abbildung 7-15) wird verwendet, um den
Maximalstrom zu kontrollieren, der die LED antreibt. Das MAX72xx-Datenblatt enthält
eine Tabelle, die eine Reihe von Werten aufführt (siehe Tabelle 7-3).

Tabelle 7-3: Tabelle mit Widerstandswerten (aus MAX72xx-Datenblatt)

LED-Fluss-Spannung

Strom 1.5V 2.0V 2.5V 3.0V 3.5V

40 mA 12 kΩ 12 kΩ 11 kΩ 10 kΩ 10 kΩ
30 mA 18 kΩ 17 kΩ 16 kΩ 15 kΩ 14 kΩ
20 mA 30 kΩ 28 kΩ 26 kΩ 24 kΩ 22 kΩ
10 mA 68 kΩ 64 kΩ 60 kΩ 56 kΩ 51 kΩ

Die grüne LED in der LED-Matrix aus Abbildung 7-15 hat eine Fluss-Spannung von 2,0
Volt und einen Durchlass-Strom von 20 mA. Tabelle 7-3 gibt 28K Ohm an, doch als kleine
zusätzliche Sicherheit ist ein Widerstand von 30K oder 33K eine gute Wahl. Die Kon-
densatoren (0.1 mf und 10 mf) (DL) 0.1 uf werden benötigt, um Spannungsspitzen zu
vermeiden, die beim Ein- und Ausschalten der LEDs auftreten – sehen Sie sich Rezept 17.2
in Anhang C an, wenn Sie mit dem Anschluss von Entstörkondensatoren nicht vertraut
sind.

Siehe auch
Dokumentation der Matrix-Bibliothek: http://wiring.org.co/reference/libraries/Matrix/index
.html

Dokumentation der Sprite-Bibliothek: http://wiring.org.co/reference/libraries/Sprite/index
.html

MAX72xx-Datenblatt: http://pdfserv.maxim-ic.com/en/ds/MAX7219-MAX7221.pdf

7.14 Die Anzahl analoger Ausgänge mit
PWM-Extender-Chips (TLC5940) erhöhen

Problem
Sie wollen individuell die Helligkeit von mehr LEDs regeln, als vom Arduino unterstützt
werden (6 bei einem Standard-Board und 12 beim Mega).

7.14 Die Anzahl analoger Ausgänge mit PWM-Extender-Chips (TLC5940) erhöhen | 281

Lösung
Der TLC5940-Chip steuert bis zu 16 LEDs über nur 5 Datenpins an. Abbildung 7-16 zeigt
den Anschluss. Der Sketch basiert auf der exzellenten Tlc5940-Bibliothek von Alex Leone
(acleone@gmail.com). Sie können die Bibliothek von http://code.google.com/p/tlc5940ar-
duino/ herunterladen:

/*
* TLC Sketch
* Erzeugt einen "Knight Rider"-Effekt mit LEDs an allen TLC-Ausgängen
* Diese Version setzt einen TLC mit 16 LEDs voraus
*/

#include "Tlc5940.h"

void setup()
{
Tlc.init(); // TLC-Bibliothek initialisieren
}

void loop()
{
int direction = 1;
int intensity = 4095; // Die mögliche Helligkeit liegt zwischen 0 und 4095, volle Helligkeit bei
4095
int dim = intensity / 4; // 1/4 des Werts dimmt die LED
for (int channel = 0; channel < 16; channel += direction) {
// Die folgenden TLC-Befehle legen Werte fest, die von der update-Methode geschrieben werden
Tlc.clear(); // Alle LEDs ausschalten
if (channel == 0) {
direction = 1;
}
else {
Tlc.set(channel - 1, dim); // Helligkeit der vorigen LED
}
Tlc.set(channel, intensity); // Max. Helligkeit dieser LED
if (channel < 16){
Tlc.set(channel + 1, dim); // Nächste LED dimmen
}
else {
direction = -1;
}

Tlc.update(); // Diese Methode sendet Daten an den TLC-Chip, um die LEDs anzusteuern
delay(75);
}
}

Diskussion
Der Sketch geht jeden Kanal (jede LED) durch. Er dimmt die vorherige LED, setzt den
aktuellen Kanal auf die volle Helligkeit und dimmt den nächsten Kanal. Die LEDs werden
über einige wenige Kern-Methoden angesteuert.

282 | Kapitel 7: Visuelle Ausgabe

Die Methode Tlc.init initialisiert die Tlc-Funktionen, bevor alle anderen Funktionen
aufgerufen werden können.

\

TX 1
RX 0

2
3
4

6
5

7

Vin

3V3
RESET

Gnd

9
8

10
11
12

GND
13

AREF

A
R
D
U
I
N
O

2 8

2 7Vprg

O ut 0

2 4X lat

2 3B lank

2 2G nd

2 1Vc c

2 6S in

25S c lk

G S c lk

S out

X err

O ut 15

Iref

D C prg

1 8

1 7

1 6

15

2 0

1 9

1

2

O ut 1

5

6

7

8

3

4

1 1

1 2

1 3

1 4

9

1 0

O ut 2

O ut 3

O ut 4

O ut 5

O ut 6

O ut 8

O ut 7

O ut 9

O ut 10

O ut 11

O ut 12

O ut 13

O ut 14

TLC
5940

2 k

5V

Gnd

Abbildung 7-16: Sechzehn LEDs mit externem PWM ansteuern

Die folgenden Funktionen greifen nur nach dem Aufruf der update()-Methode:

Tlc.clear
Schaltet alle Kanäle aus.

Tlc.set
Setzt die Helligkeit des angegebenen Kanals auf den angegebenen Wert.

Tlc.setAll
Setzt alle Kanäle auf den angegebenen Wert.

Tlc.update
Sendet die Änderungen der vorangegangenen Befehle an den TLC-Chip.

Weitere Funktionen stehen in der Bibliothek zur Verfügung. Beachten Sie den Link auf die
Referenz am Ende des Rezepts.

Der 2K-Widerstand zwischen TLC-Pin 20 (Iref) und Masse lässt etwa 20 mA durch jede
LED fließen. Sie können den Widerstandswert für andere Ströme (in Milliampere) mit der
Formel R = 40.000 / mA berechnen. R ist 1 Ohm, und die Berechnung ist nicht von der
Steuerspannung der LED abhängig.

Sollen die LEDs ausgehen, wenn der Arduino zurückgesetz wird, verbinden Sie einen
Pullup-Widerstand (10K) mit +5V und BLANK (Pin 23 des TLC und Arduino-Pin 10).

7.14 Die Anzahl analoger Ausgänge mit PWM-Extender-Chips (TLC5940) erhöhen | 283

Hier eine Variante, die einen Sensorwert nutzt, um die maximale LED-Helligkeit festzu-
legen. Sie können das mit einem variablen Widerstand testen, der wie in Abbildung 7-13
oder Abbildung 7-17 angeschlossen ist:

#include "Tlc5940.h"

const int sensorPin = 0; // Mit Analogeingang 0 verbundener Sensor

void setup()
{
Tlc.init(); // TLC-Bibliothek initialisieren
}

void loop()
{
int direction = 1;
int sensorValue = analogRead(0); // Sensorwert einlesen
int intensity = map(sensorValue, 0,1023, 0, 4095); // Auf TLC-Wertebereich abbilden
int dim = intensity / 4; // 1/4 des Werts dimmt die LED
for (int channel = 0; channel < NUM_TLCS * 16; channel += direction) {
// Die folgenden TLC-Befehle legen Werte fest, die von der update-Methode geschrieben werden
Tlc.clear(); // Alle LEDs ausschalten
if (channel == 0) {
direction = 1;
}
else {
Tlc.set(channel - 1, dim); // Helligkeit der vorigen LED
}
Tlc.set(channel, intensity); // Max. Helligkeit dieser LED
if (channel != NUM_TLCS * 16 - 1) {
Tlc.set(channel + 1, dim); // Nächste LED dimmen
}
else {
direction = -1;
}

Tlc.update(); // Diese Methode sendet die Daten an den TLC-Chip, um die LEDs anzusteuern
delay(75);
}
}

Diese Version erlaubt auch mehrere TLC-Chips, wenn Sie mehr als 16 LEDs ansteuern
wollen. Dazu werden die TLC-Chips miteinander »verkettet« (»daisy-chaining«), d.h.,
man verbindet Sout (Pin 17) des ersten TLC mit Sin (Pin 26) des nächsten. Sin (Pin 26) des
ersten TLC-Chips wird mit Arduino-Pin 11 verbunden (siehe Abbildung 7-16).

Die folgenden Pins müssen miteinander verbunden werden, wenn man mehrere TLC-
Chips verkettet:

• Arduino-Pin 9 mit XLAT (Pin 24) jedes TLCs

• Arduino-Pin 10 mit BLANK (Pin 23) jedes TLCs

• Arduino-Pin 13 mit SCLK (Pin 25) jedes TLCs

Jeder TLC benötigt einen eigenen Widerstand zwischen Iref (Pin 20) und Masse.

284 | Kapitel 7: Visuelle Ausgabe

Sie müssen den Wert der Konstanten NUM_TLCS in der Tlc5940-Bibliothek an die Anzahl
der von Ihnen genutzten Chips anpassen.

Siehe auch
Unter http://code.google.com/p/tlc5940arduino/ können Sie diese Bibliothek herunter-
laden. Dort finden Sie auch die Dokumentation.

7.15 Ein analoges Anzeigeinstrument nutzen

Problem
Sie wollen den Zeiger einer Analoganzeige aus dem Sketch heraus steuern. Schwankende
Messwerte lassen sich auf einer Analoganzeige leichter Interpretieren und verleihen Ihrem
Projekt einen coolen Retro-Look.

Lösung
Verbinden Sie die Anzeige über einen Vorwiderstand (5K-Ohm sind für ein 1 mA-Meter
üblich) mit einem analogen (PWM) Ausgang (siehe Abbildung 7-17).

TX
 1

R
X

 02346 579 8101112

G
N

D 13

A
R

E
F

G
nd

V
in

3V
3

R
E

S
E

T

G
nd

Arduino

DIGITAL

4 5210 3

ANALOG

+

Vorwiderstand

(Siehe Text)

-

10K Pot

5 V

Abbildung 7-17: Eine analoge Anzeige ansteuern

7.15 Ein analoges Anzeigeinstrument nutzen | 285

Die Bewegung der Anzeige entspricht der Position eines Potentiometers (variablen Wider-
stands):

/*
* AnalogMeter Sketch
* Steuert eine Analoganzeige über einen Arduino-PWM-Pin
* Der Pegel der Anzeige wird dabei durch den variablen Widerstand am Analogeingang bestimmt
*/

const int analogInPin = 0; // Analoger Eingang für Poti
const int analogMeterPin = 9; // Analoger Ausgang für Anzeige

int sensorValue = 0; // Vom Poti eingelesener Wert
int outputValue = 0; // PWM-Ausgabewert

void setup()
{
// Hier ist nichts zu tun
}

void loop()
{
sensorValue = analogRead(analogInPin); // Analogwert einlesen
outputValue = map(sensorValue, 0, 1023, 0, 255); // Für analoge Ausgabe skalieren
analogWrite(analogMeterPin, outputValue); // Wert an analogen Ausgang schreiben
}

Diskussion
Bei dieser Variante von Rezept 7.2 steuert der Arduino mit analogWrite eine Analog-
anzeige. Solche Anzeigen sind üblicherweise viel empfindlicher als LEDs . Ein Widerstand
muss zwischen den Arduino-Ausgang und die Anzeige geschaltet werden, um den Strom
entsprechend zu begrenzen.

Der Wert des Vorwiderstands hängt von der Empfindlichkeit der Anzeige ab. 5K-Ohm
sorgen bei einer 1 mA-Anzeige für einen Vollausschlag. Sie können einen 4,7K-Wider-
stand verwenden, da sie leichter zu beschaffen sind als 5K, allerdings müssen Sie dann den
Maximalwert für analogWrite auf etwa 240 beschränken. Nachfolgend sehen Sie, wie Sie
den Wertebereich der map-Funktion anpassen müssen, wenn Sie einen 4,7K-Widerstand
für eine 1 mA-Anzeige verwenden:

outputValue = map(sensorValue, 0, 1023, 0, 240); // Auf Anzeigebereich abbilden

Arbeitet Ihre Anzeige nicht mit 1 mA, müssen Sie einen anderen Vorwiderstand ver-
wenden. Die Formel für den Widerstand in Ohm lautet

Widerstand = 5000 / mA

Bei einer 500 Mikroampere-Anzeige (0,5 mA) ist das also 5000 / 0,5, d.h. 10000 (10 K)
Ohm. Eine 10 mA-Anzeige benötigt 500 Ohm, bei 20 mA 250 Ohm.

286 | Kapitel 7: Visuelle Ausgabe

Bei einigen Anzeigen sind bereits interne Vorwiderstände integriert – Sie müssen mögli-
cherweise experimentieren, um den korrekten Wert des Vorwiderstands zu ermitteln,
achten Sie aber darauf, die Anzeige nicht mit zu viel Strom zu versorgen.

Siehe auch
Rezept 7.2

7.15 Ein analoges Anzeigeinstrument nutzen | 287

KAPITEL 8

Physische Ausgabe

8.0 Einführung
Sie können Dinge bewegen, indem Sie Motoren mit dem Arduino steuern. Verschiedene
Arten von Motoren sind für unterschiedliche Anwendungen geeignet, und dieses Kapitel
zeigt Ihnen, wie der Arduino die unterschiedlichen Motoren ansteuern kann.

Bewegungssteuerung mit Servomotoren
Servomotoren ermöglichen die exakte Steuerung physischer Bewegungen, da sie sich
nicht kontinuierlich drehen, sondern sich zu einer bestimmten Position bewegen. Sie
sind ideal, wenn sich etwas in einem Bereich von 0 bis 180 Grad bewegen soll. Servos
lassen sich einfach anschließen und steuern, da die Motorsteuerung in die Servos in-
tegriert ist.

Servos enthalten einen kleinen Motor, der über Zahnräder mit der Ausgangswelle ver-
bunden ist. Die Ausgangswelle steuert einen Servoarm an und ist außerdem mit einem
Potentiometer verbunden, der Positionsdaten an den internen Steuerungskreis zurück-
liefert (siehe Abbildung 8-1).

Sie können auch 360�-Servos kaufen, bei denen das Positions-Feedback abgeschaltet ist.
Diese Servos können kontinuierlich im oder gegen den Uhrzeigersinn laufen, und Sie
haben eine gewisse Kontrolle über die Drehgeschwindigkeit. Sie ähneln in der Funktion
den Bürstenmotoren, die in Rezept 8.9 behandelt werden, nutzen aber die Servo-Biblio-
thek anstelle von analogWrite und benötigen kein Motor-Shield.

Dauerrotierende Servos lassen sich einfach nutzen, da sie kein Motor-Shield benötigen –
die Motorsteuerung sitzt in den Servos. Die Nachteile sind, dass die Auswahlmöglich-
keiten im Bezug auf Geschwindigkeit und Leistung im Vergleich zu externen Motoren
beschränkt sind und dass die Geschwindigkeitssteuerung nicht so gut ist wie bei einem
Motor-Shield (die Elektronik ist auf eine genaue Positionierung ausgelegt, nicht auf eine
lineare Geschwindigkeitsregelung). In Rezept 8.3 erfahren Sie mehr zum Einsatz dauer-
rotierender Servos.

| 289

Motor

Poti

Impuls-in-

Spannung

 zum
Arduino-
Pin

Untersetzungsgetriebe

Fehler-

Verstärker
+

-

Welle

Masse

+V
H-Brücke

Abbildung 8-1: Bestandteile eines Servomotors

Servos reagieren auf Änderungen der Impulsdauer. Ein kurzer Impuls von einer 1 ms oder
weniger lässt den Servo zu einem Extrem rotieren, eine Impulsdauer von um die 2 ms zum
anderen Extrem (siehe Abbildung 8-2). Impulse zwischen diesen beiden Extremen bewegen
den Servo zu einer Position proportional zur Impulsbreite. Es gibt keinen Standard für die
Beziehung zwischen Impuls und Position, d.h., Sie müssen möglicherweise ein wenig mit
den Befehlen im Sketch experimentieren, um den Bereich Ihrer Servos anzupassen.

1 ms 1.5 ms 2 ms

0 Grad 90 Grad 180 Grad

Typischerweise
20 ms zwischen

den Impulsen

Abbildung 8-2: Beziehung zwischen Impulsbreite und Servo-Winkel; der Servo-Arm bewegt sich zwi-
schen 1 ms und 2 ms proportional zur Impulsbreite

290 | Kapitel 8: Physische Ausgabe

Zwar ist die Dauer des Impulses moduliert, doch Servos benötigen andere
Impulse, als sie die Pulsweitenmodulation (PWM) von analogWrite liefert.
Sie können den Servo beschädigen, wenn Sie ihn mit einem analogWrite-
Ausgang verbinden. Arbeiten Sie stattdessen mit der Servo-Bibliothek.

Hubmagnete und Relais
Während die meisten Motoren eine Drehbewegung erzeugen, sorgt ein Hubmagnet für
eine lineare Bewegung. Ein Hubmagnet besteht aus einem Metallkern, der durch ein
Magnetfeld bewegt wird, wenn Strom durch eine Spule fließt. Ein mechanisches Relais ist
eine Art Hubmagnet, der elektrische Kontakte schließt oder trennt (d.h. ein Hubmagnet,
der einen Schalter steuert). Relais werden wie Hubmagnete gesteuert. Relais und Hub-
magnete benötigen (wie die meisten Motoren) mehr Strom, als ein Arduino-Pin liefern
kann. Die Rezepte zeigen, wie man einen Transistor oder eine externe Schaltung nutzt,
um diese Geräte anzusteuern.

Bürsten- und bürstenlose Motoren
Die meisten billigen Gleichstrommotoren sind einfache Einheiten mit zwei Anschlüssen, die
mit Bürsten (Kontakten) verbunden sind, die das Magnetfeld der Spulen steuern, die einen
Magnetkern (Anker) antreiben. Die Drehrichtung kann man umkehren, indem man die
Polarität an den Kontakten vertauscht. Gleichstrommotoren gibt es in vielen verschiedenen
Größen, doch selbst die kleinsten (wie die in Mobiltelefonen verwendeten Vibrationsmo-
toren) benötigen einen Transistor oder eine andere externe Steuereinheit, um den benötig-
ten Strom bereitzustellen. Die folgenden Rezepte zeigen, wie man Motoren über einen
Transistor oder eine externe Steuerungsschaltung (eine sog. H-Brücke) ansteuert.

Das wesentliche Merkmal bei der Wahl eines Motors ist das Drehmoment. Das Drehmo-
ment gibt an, wie viel Arbeit ein Motor leisten kann. Üblicherweise sind Motoren mit
höherem Drehmoment größer und schwerer und ziehen mehr Strom als Motoren mit
kleinerem Drehmoment.

Bürstenlose Motoren sind bei gleicher Größe üblicherweise leistungsfähiger und effektiver
als Bürstenmotoren, benötigen aber eine aufwendigere Steuerungselektronik. Wo der
Leistungsvorteil bürstenloser Motoren wünschenswert ist, können elektronische Ge-
schwindigkeitsregelungen aus dem Fernsteuerungsbereich sehr einfach vom Arduino
angesteuert werden, da man sie ansteuert wie Servomotoren.

Schrittmotoren
Schrittmotoren bewegen sich bei Steuerimpulsen um einen gewissen Winkel. Die Größe
des Winkels bei jedem Schritt ist motorabhängig und reicht von ein oder zwei Grad pro
Schritt bis zu 30 Grad und mehr.

8.0 Einführung | 291

Üblicherweise werden zwei Arten von Schrittmotoren mit dem Arduino genutzt: bipolar
(üblicherweise vier Anschlüsse an zwei Spulen) und unipolar (fünf oder sechs Anschlüsse
an zwei Spulen). Die zusätzlichen Anschlüsse eines unipolaren Schrittmotors sind intern
mit der Mitte der Spule verbunden (bei fünf Anschlüssen besitzt jede Spule einen An-
schluss in der Mitte, die beide miteinander verbunden sind). Die bipolare und unipolare
Schrittmotoren behandelnden Rezepte beinhalten entsprechende Anschlussdiagramme.

Fehlersuche
Die häufigste Ursache für Probleme beim Anschluss von Bauelementen, die eine externe
Stromversorgung benötigen, sind fehlende Masseanschlüsse. Die Masse des Arduino
muss mit der Masse der externen Stromversorgung sowie mit allen externen Bauelemen-
ten verbunden sein.

8.1 Die Position eines Servos kontrollieren

Problem
Sie wollen einen Servo auf einen Winkel einstellen, der im Sketch berechnet wurde. Bei-
spielsweise soll sich der Sensor eines Roboters vor und zurück oder zu einer von Ihnen
gewählten Position bewegen.

Lösung
Nutzen Sie die mit dem Arduino mitgelieferte Servo-Bibliothek. Schließen Sie die Strom-
und Masseleitung des Servos an eine geeignete Stromquelle an (ein einzelner Servo kann
normalereise über die 5V-Leitung des Arduino versorgt werden). Neue Versionen der
Bibliothek erlauben es Ihnen, die Signalleitungen des Servos an jeden Digitalpin des Ar-
duino anzuschließen.

Hier der Sweep-Sketch, der mit dem Arduino mitgeliefert wird. In Abbildung 8-3 sehen
Sie die Verschaltung:

#include <Servo.h>

Servo myservo; // Servo-Objekt zur Steuerung des Servos erzeugen

int angle = 0; // Diese Variable enthält die Position des Servos

void setup()
{
myservo.attach(9); // Verbindet den Servo an Pin 9 mit dem Servo-Objekt
}

void loop()
{
for(angle = 0; angle < 180; angle += 1) // In 1er-Schritten
{ // von 0 bis 180 Grad

292 | Kapitel 8: Physische Ausgabe

myservo.write(angle); // Servo anweisen, die Position in der Variablen 'angle' einzunehmen
delay(20); // Zwischen den Servo-Befehlen 20ms warten
}
for(angle = 180; angle >= 1; angle -= 1) // Von 180 bis 0 Grad
{
myservo.write(angle); // Servo in Gegenrichtung bewegen
delay(20); // Zwischen den Servo-Befehlen 20ms warten
}
}

TX
 1

RX
 02346 579 8101112

GN
D 13

AR
EF

RE
SE

T

Arduino

DIGITAL

4 5210 3

ANALOG

+5V (rot)

Signal (weiss)

Masse
 (schwarz)

Servo

Vi
n

5V3V
3

Gn
d

Servo-

Anschluss

Gn
d

Abbildung 8-3: Anschluss eines Servos zum Testen mit dem Sweep Beispiel-Sketch

Diskussion
Dieses Beispiel bewegt den Servo zwischen 0 und 180 Grad hin und her. Möglicherweise
müssen Sie die Minimal- und Maximalpositionen anpassen, um den gewünschten Bewe-
gungsbereich einzustellen. Der Aufruf von Servo.attach mit optionalen Argumenten für
die Minimal- und Maximalposition passen die Bewegung an:

myservo.attach(9,1000,2000); // Pin 9, min ist 1000us, max ist 2000us

Da typische Servos auf Impulse reagieren, die in Mikrosekunden gemessen werden (und
nicht in Grad), teilen die auf die Pin-Nummer folgenden Argumente der Servo-Bibliothek
mit, wie viele Mikrosekunden für 0 bzw. 180 Grad benötigt werden. Nicht alle Servos
bewegen sich über die gesamten 180 Grad, weshalb Sie mit Ihren Servos möglicherweise
ein wenig experimentieren müssen, um den gewünschten Bereich zu abzudecken.

Die Parameter für servo.attach(pin, min, max) sind wie folgt:

pin
Die Nummer des Pins, an den der Servo angeschlossen ist (Sie können einen
beliebigen Digitalpin wählen)

8.1 Die Position eines Servos kontrollieren | 293

min (optional)
Die Impulsbreite in Mikrosekunden für den Minimalwinkel (0 Grad) des Servos (vor-
eingestellt ist 544)

max (optional)
Die Impulsbreite in Mikrosekunde für den Maximalwinkel (180 Grad) des Servos
(voreingestellt ist 2400)

Die Servo-Bibliothek unterstützt bei den meisten Arduino-Boards bis zu 12
Servos und beim Arduino Mega sogar bis zu 48. Bei Standard-Boards wie
dem Uno deaktiviert die Bibliothek die analogWrite()-Funktionalität
(PWM) an den Pins 9 und 10, und zwar unabhängig davon, ob ein Servo
angeschlossen ist oder nicht. Weitere Informationen finden Sie in der
Referenz zur Servo-Bibliothek: http://arduino.cc/en/Reference/Servo.

Die Energiebedarf hängt vom Servo ab und davon, wie viel Drehmoment benötigt wird,
um die Welle zu drehen.

Sie benötigen eventuell eine externe Stromquelle von 5 oder 6 Volt, wenn
Sie mehrere Servos anschließen wollen. Vier AA-Zellen funktionieren gut,
wenn Sie mit Batterien arbeiten wollen. Denken Sie daran, dass die Masse
der externen Stromversorgung mit der Masse des Arduino verbunden sein
muss.

8.2 Ein oder zwei Servos mit einem Potentiometer oder
Sensor steuern

Problem
Sie wollen die Drehrichtung und die Geschwindigkeit von ein oder zwei Servos mit einem
Potentiometer steuern. Beispielsweise könnten Sie eine mit den Servos verbundene Ka-
mera oder einen Sensor schwenken und neigen. Das Rezept kann mit einer variablen
Spannung von einem Sensor arbeiten, der über einen analogen Eingang eingelesen wurde.

Lösung
Sie können die gleiche Bibliothek wie in Rezept 8.1 verwenden und um Code ergänzen,
der die Spannung vom Potentiometer einliest. Dieser Wert wird so skaliert, dass die
Position des Potentiometers (0 bis 1023) auf einen Winkel von 0 bis 180 Grad abgebildet
wird. Der einzige Unterschied in der Verschaltung ist der zusätzliche Potentiometer; siehe
Abbildung 8-4:

#include <Servo.h>

Servo myservo; // Servo-Objekt zur Steuerung des Servos erzeugen

int potpin = 0; // Analogpin des Potentiometers

294 | Kapitel 8: Physische Ausgabe

int val; // Variable für den Wert des Analogpins

void setup()
{
myservo.attach(9); // Servo an Pin 9 mit dem Servo-Objekt verbinden
}

void loop()
{
val = analogRead(potpin); // Wert des Potentiometers einlesen
val = map(val, 0, 1023, 0, 180); // Wert für Servo skalieren
myservo.write(val); // Position setzen
delay(15); // Auf Servo warten
}

TX
 1

RX
 02346 579 8101112

GN
D 13

AR
EF

RE
SE

T

Arduino

DIGITAL

4 5210 3

ANALOG

+5V (rot)

Signal (weiss)

Masse
 (schwarz)

Servo

Vi
n

5V3V
3

Gn
d

10K

Pot

Servo-

Anschluss

Gn
d

Abbildung 8-4: Servo mit Potentiometer steuern

Hobby-Servos besitzen ein Kabel mit einem weiblichen 3-Pin-Stecker, der
direkt in den »Servo«-Anschluss einiger Shields (wie dem Adafruit Motor
Shield) eingesteckt werden kann. Der physische Anschluss ist kompatibel
mit den Arduino-Anschlüssen, d.h., Sie können die gleichen Drahtbrücken
verwenden wie für die Arduino-Pins. Denken Sie daran, dass die Farben
der Signalanschlüsse nicht standardisiert sind. Manchmal wird Gelb an-
stelle von, Weiß verwendet. Rot befindet sich immer in der Mitte und der
Masse-Anschluss ist üblicherweise schwarz oder braun.

Diskussion
Sie können alles verwenden, was über analogRead (siehe Kapitel 5 und Kapitel 6) einge-
lesen werden kann. So können etwa die Gyroskop- und Beschleunigungsmesser-Rezepte

8.2 Ein oder zwei Servos mit einem Potentiometer oder Sensor steuern | 295

aus Kapitel 6 genutzt werden, um den Winkel des Servos über die Gierung des Gyroskops
oder den Winkel des Beschleunigungsmessers festzulegen.

Nicht alle Servos können sich über den gesamten Wertebereich der Servo-
Bibliothek bewegen. Wenn Ihr Servo brummt, weil er vorzeitig ein Ende
erreicht, sollten Sie den Ausgabebereich der map-Funktion so lange redu-
zieren, bis das Brummen aufhört. Ein Beispiel:

val=map(val,0,1023,10,170); // Die meisten Servos funktionieren in diesem
Bereich

8.3 Die Geschwindigkeit dauerrotierender Servos steuern

Problem
Sie wollen die Drehrichtung und Geschwindigkeit dauerrotierender Servos steuern. Bei-
spielsweise könnten Sie einen Roboter über zwei solche Servos antreiben und die
Geschwindigkeit und Richtung über Ihren Sketch regeln wollen.

Lösung
Dauerrotierende Servos sind eine Art Getriebemotor mit Vorwärts/Rückwärts-Geschwin-
digkeitsregelung. Die Steuerung dauerrotierender Servos ähnelt derjenigen normaler Servos.
Der Servo dreht sich in eine Richtung, während der Winkel über 90 Grad hinaus erhöht
wird, und in die andere Richtung, wenn er unter 90 Grad sinkt. Wann es vorwärts oder
rückwärts geht, hängt von der Verschaltung der Servos ab. Abbildung 8-5 zeigt die
Verschaltung zur Steuerung zweier Servos.

TX
 1

RX
 02346 579 8101112

GN
D 13

AR
EF

Gn
d

Vi
n

5 V3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

4 5210 3

ANALOG

+5V (rot)
Signal (weiss)

Masse
(schwarz)

Servos
externe

Spannungsquelle
(bei Bedarf)

Masse +5v

Servo-
Anschluss

+5v vom
Arduino

+5V

 vom Arduino

oder externer

Spannungsquelle

Servo-
Anschluss

Abbildung 8-5: Steuerung zweier Servos

296 | Kapitel 8: Physische Ausgabe

Servos werden üblicherweise über eine 4,8V bis 6V-Quelle gespeist. Größere Servos
benötigen möglicherweise mehr Strom, als das Arduino-Board über seinen +5V-Pin
liefern kann, und benötigen eine externe Stromversorgung. Vier 1,2V-Akkus können
genutzt werden, um den Arduino und die Servos anzutreiben. Denken Sie daran, dass
frische Alkali-Batterien eine Spannung über 1,5V liefern können. Überprüfen Sie mit
Ihrem Multimeter, ob die Gesamtspannung die 6 Volt auch nicht überschreitet – das
absolute Maximum für Arduino-Chips.

Der Sketch lässt die Servos zwischen 90 und 180 Grad hin und her laufen. Wären die
Servos mit Rädern verbunden, würde sich das Fahrzeug immer schneller nach vorne be-
wegen und dann wieder langsamer werden. Da der Code zur Servo-Steuerung in loop
liegt, würde sich das wiederholen, bis kein Saft mehr da ist:

#include <Servo.h>

Servo myservoLeft; // Servo-Objekt zur Steuerung des ersten Servos
Servo myservoRight; // Servo-Objekt zur Steuerung des zweite Servos

int angle = 0; // Variable enthält die Position der Servos

void setup()
{
myservoLeft.attach(9); // Linker Servo an Pin 9
myservoRight.attach(10); // Rechter Servo an Pin 10
}

void loop()
{
for(angle = 90; angle < 180; angle += 1) // In Einerschritten von
{ // 90 bis 180 Grad

// Halt bei 90 Grad

myservoLeft.write(angle); // Servo mit Geschwindigkeit in 'angle' drehen
myservoRight.write(180-angle); // Zweiter Servo in Gegenrichtung

delay(20); // 20ms warten zwischen Servo-Befehlen
}
for(angle = 180; angle >= 90; angle -= 1) // Von 180 bis 90 Grad
{
myservoLeft.write(angle); // Servo mit Geschwindigkeit in 'angle' drehen
myservoRight.write(180-angle); // Zweiter Servo in Gegenrichtung
}
}

Diskussion
Sie können für dauerrotierende und normale Servos ähnlichen Code nutzen, müssen aber
daran denken, dass dauerrotierende Servos nicht unbedingt bei genau 90 Grad aufhören
zu rotieren. Einige Servos besitzen kleine Potentiometer, mit denen man das justieren
kann. Alternativ können Sie ein paar Grad hinzufügen oder abziehen, um den Servo

8.3 Die Geschwindigkeit dauerrotierender Servos steuern | 297

anzuhalten. Hält der linke Servo beispielsweise bei 92 Grad an, passen Sie die entspre-
chende Servo-Steuerungszeile im Code wie folgt an:

myservoLeft.write(angle+TRIM); // int TRIM=2; zu beginn des Sketches deklarieren

8.4 Servos über Computerbefehle steuern

Problem
Sie wollen Befehle zur Verfügung stellen, mit denen sich Servos über den seriellen Port
steuern lassen. Beispielsweise könnten Sie die Servos über ein Programm steuern wollen,
das auf Ihrem Computer läuft.

Lösung
Sie können Software nutzen, um die Servos zu steuern. Das hat den Vorteil, dass eine
beliebige Zahl von Servos unterstützt werden kann. Allerdings muss der Sketch die
Servo-Position fortlaufend aktualisieren, d.h., die Logik wird komplizierter, wenn sich
die Anzahl der Servos erhöht und viele andere Aufgaben erledigt werden müssen.

Das folgende Rezept steuert vier Servos über Befehle an, die über den seriellen Port
eingehen. Die Befehle haben die folgende Form:

• 180a schreibt 180 an Servo a

• 90b schreibt 90 an Servo b

• 0c schreibt 0 an Servo c

• 17d schreibt 17 an Servo d

Nachfolgend der Sketch, der vier Servos an den Pins 7 bis 10 ansteuert:

#include <Servo.h> // Servo-Bibliothek

#define SERVOS 4 // Anzahl der Servos
int servoPins[SERVOS] = {7,8,9,10}; // Servos an Pins 7 bis 10

Servo myservo[SERVOS];

void setup()
{
Serial.begin(9600);
for(int i=0; i < SERVOS; i++)
myservo[i].attach(servoPins[i]);

}

void loop()
{
serviceSerial();
}

// serviceSerial überwacht den seriellen Port und aktualisiert die Position entsprechend der
empfangenen Daten

298 | Kapitel 8: Physische Ausgabe

// Die Servo-Daten werden im folgenden Format erwartet:
//
// "180a" schreibt 180 an Servo a
// "90b schreibt 90 an Servo b
//
void serviceSerial()
{
static int pos = 0;

if (Serial.available()) {
char ch = Serial.read();

if(isDigit(ch)) // Wenn ch eine Ziffer ist:
pos = pos * 10 + ch - '0'; // Wert akkumulieren
else if(ch >= 'a' && ch <= 'a'+ SERVOS) // Wenn ch ein Buchstabe für die Servos ist:
myservo[ch - 'a'].write(pos); // Servo positionieren

}
}

Diskussion
Der Anschluss der Servos entspricht dem vorigen Rezept. Jeder Servo-Anschluss wird mit
einem Digitalpin verbunden. Alle Servo-Masseanschlüsse werden mit der Arduino-Masse
verbunden. Die Servo-Stromanschlüsse werden miteinander verbunden. Möglicherweise
müssen Sie eine externe 5V- oder 6V-Spannungsquelle nutzen, wenn die Servos mehr
Strom ziehen, als die Arduino-Stromversorgung liefern kann.

Ein Array namens myservo (siehe Rezept 2.4) wird zur Referenzierung der vier Servos
verwendet. Eine for-Schleife in setup verknüpft jeden Servo im Array mit den im servo-
Pins-Array definierten Pins.

Ist das über den seriellen Port empfangene Zeichen eine Ziffer (ein Zeichen größer oder
gleich 0 und kleiner oder gleich 9), wird deren Wert in der Variablen pos aufsummiert. Ist
das Zeichen der Buchstabe a, wird die Position an den ersten Servo im Array (den Servo an
Pin 7) geschrieben. Die Buchstaben b, c und d steuern die anderen Servos.

Siehe auch
Wie man über den seriellen Port empfangene Daten verarbeitet, erläutert Kapitel 4.

8.5 Einen bürstenlosen Motor (per Fahrtregler) steuern

Problem
Sie wollen die Geschwindigkeit eines bürstenlosen Motors regeln.

Lösung
Der Sketch verwendet den gleichen Code wie in Rezept 8.2. Bis auf den Fahrtregler und
den Motor ist der Aufbau identisch. Ein elektronischer Fahrtregler ist ein Gerät, mit dem

8.5 Einen bürstenlosen Motor (per Fahrtregler) steuern | 299

bürstenlose Motoren in ferngesteuerten Fahrzeugen kontrolliert werden. Da sie in Massen
gefertigt werden, sind sie eine kosteneffektive Möglichkeit zur Steuerung bürstenloser
Motoren. Sie finden eine Auswahl, wenn Sie bei Ihrem bevorzugten Elektronik-Händler
oder bei Google »Fahrtregler« eingeben.

Bürstenlose Motoren haben drei Spulen, die entsprechend der Dokumentation mit den
Fahrtregler verbunden werden müssen (siehe Abbildung 8-6).

T
X

1
R

X
02346 579 8101112

G
N

D 13

A
R

E
F

R
E

S
E

T

Arduino

DIGITAL

4 5210 3

ANALOG

+5V (rot)

Signal (weiss)

Masse
(schwarz)

Elektronischer

Fahrtregler

V
in

5
V

3
V

3

G
n

d
G

n
d

10K-

Poti

Servo-
Anschluss

M

Motor-
Spannungs-
quelle

Masse

+V

Roter
Anschluss

nicht
verbunden

Abbildung 8-6: Anschluss eines Fahrtreglers

Diskussion
Stellen Sie anhand der Dokumentation sicher, dass Ihr Fahrtregler für Ihren bürstenlosen
Motor geeignet ist, und überprüfen Sie die Verschaltung. Bürstenlose Motoren haben drei
Anschlüsse für die einzelnen Spulen und zwei Anschlüsse für die Stromversorgung. Viele
Fahrtregler stellen Strom am mittleren Pin des Servo-Anschlusses bereit. Wenn Sie das
Arduino-Board nicht über den Fahrtregler versorgen wollen, müssen Sie den Anschluss
abklemmen oder abschneiden.

Wenn Ihr Fahrtregler 5V für die Servos und andere Einheiten bereitstellt
(man nennt das Battery Eliminator Circuit, kurz BEC), müssen Sie dieses
Kabel abklemmen, wenn Sie den Arduino mit dem Fahrtregler verbinden
(siehe Abbildung 8-6).

300 | Kapitel 8: Physische Ausgabe

8.6 Hubmagnete und Relais steuern

Problem
Sie wollen einen Hubmagneten oder ein Relais aus einem Programm heraus steuern. Hub-
magneten sind Elektromagnete, die elektrische Energie in mechanische Bewegung um-
wandeln. Ein elektromagnetisches Relais ist ein Schalter, der durch einen Hubmagneten
aktiviert wird.

Lösung
Die meisten Hubmagnete benötigen mehr Strom, als ein Arduino-Pin liefern kann, wes-
halb ein Transistor verwendet wird, um den Strom zu schalten, der zur Aktivierung des
Hubmagneten benötigt wird. Sie aktivieren den Hubmagneten, indem Sie mit digital-
Write den entsprechenden Pin auf HIGH setzen.

TX 1
RX 0

2
3
4

6
5

7

Gnd
Vin

5V
3V3

RESET

Gnd

A
R
D
U
I
N
O

1K

Widerstand

Hubmagnet-

Stromver-

sorgung

+ V

Gnd

Diode

1N4001

H
ubm

agnet

2N2222

oder

TIP102

c

e

b

eb
be

c
c

2N2222

TIP102

Abbildung 8-7: Hubmagneten mit einem Transistor ansteuern

Der Sketch schaltet einen Transistor, der wie in Abbildung 8-7 angeschlossen ist. Der
Hubmagnet wird einmal pro Stunde für eine Sekunde aktiviert:

int solenoidPin = 2; // Hubmagnet an Pin 2

void setup()
{
pinMode(solenoidPin, OUTPUT);
}

8.6 Hubmagnete und Relais steuern | 301

void loop()
{
long interval = 1000 * 60 * 60 ; // Interval = 60 Minuten

digitalWrite(solenoidPin, HIGH); // Aktiviert den Hubmagneten
delay(1000); // Wartet eine Sekunde
digitalWrite(solenoidPin, LOW); // Deaktiviert den Hubmagneten
delay(interval); // Wartet eine Stunde
}

Diskussion
Die Wahl des Transistors hängt von der Strommenge ab, die zur Aktivierung des Hub-
magneten oder Relais benötigt wird. Das Datenblatt kann das in Milliampere (mA)
angeben oder in Form des Widerstands der Spule. Um den vom Hubmagneten oder Re-
lais benötigten Strom zu berechnen, teilen Sie die Spannung an der Spule durch ihren
Widerstand (in Ohm). Ein 12V-Relais mit einem Spulenwiderstand von 185 Ohm be-
nötigt 65 mA: 12 (Volt) / 185 (Ohm) = 0,065 Ampere, also 65 mA.

Kleine Transistoren wie der 2N2222 reichen für Hubmagnete, die mehrere hundert
Milliampere benötigen. Größere Hubmagnete benötigen leistungsfähigere Transistoren
wie den TIP102/TIP120. Es gibt eine Vielzahl geeigneter Transistoren. Anhang B zeigt,
wie man Datenblätter liest und Transistoren auswählt.

Die Aufgabe der Freilaufdiode besteht darin, zu verhindern, dass die Gegen-EMK (elek-
tromagnetische Kraft) der Spule den Transistor beschädigen kann (die Gegen-EMK ist
eine Spannung, die erzeugt wird, wenn der Strom durch eine Spule abgeschaltet wird). Die
Polarität der Diode ist dabei wichtig. Eine farbige Markierung kennzeichnet die Kathode –
sie muss mit dem Pluspol des Hubmagneten verbunden sein.

Elektromagnetische Relais verhalten sich genau wie Hubmagnete. Ein spezielles Relais,
das sog. Solid-State- (SSR) oder Halbleiterrelais verfügt über eine interne Elektronik, die
ohne Transistor direkt über einen Arduino-Pin angesteuert werden kann. Auf dem
Datenblatt zu Ihrem Relais steht, welche Spannung und welchen Strom es benötigt. Alles
über 40 mA bei 5 Volt verlangt eine Schaltung wie in Abbildung 8-7.

8.7 Ein Objekt vibrieren lassen

Problem
Ihr Arduino soll etwas vibrieren lassen. Zum Beispiel soll Ihr Projekt jede Minute eine
Sekunde lang wackeln.

Lösung
Schließen Sie einen Vibrationsmotor wie in Abbildung 8-8 an.

302 | Kapitel 8: Physische Ausgabe

Der folgende Sketch schaltet den Vibrationsmotor jede Minute für eine Sekunde an:

/*
* Vibrate Sketch
* Vibriert jede Minute für eine Sekunde
*
*/

const int motorPin = 3; // Transistor für Vibrationsmotor an Pin 3

void setup()
{
pinMode(motorPin, OUTPUT);
}

void loop()
{
digitalWrite(motorPin, HIGH); // Vibration einschalten
delay(1000); // Eine Sekunde warten
digitalWrite(motorPin, LOW); // Vibration ausschalten
delay(59000); // 59 Sekunden warten
}

1K-

Widerstand

Diode

1N4001

2N2222

c

e

b

e
b c

2N2222

M
0.1

uFTX
 1

RX
 02346 579 8101112

G
ND 13

AR
EF

R
E

S
E

T

Arduino

DIGITAL

4 5210 3

ANALOG

V
in

5
V

3V
3

G
n

d
G

n
d

33 Ohm-

Widerstand

Abbildung 8-8: Anschluss eines Vibrationsmotors

Diskussion
Das Rezept nutzt einen speziellen Vibrationsmotor wie den SparkFun ROB-08449. Wenn
Sie ein altes Mobiltelefon besitzen, das Sie nicht mehr benötigen, könnte es kleine geeignete
Vibrationsmotoren enthalten. Vibrationsmotoren benötigen eine höhere Leistung, als ein
Arduino-Pin liefern kann, weshalb ein Transistor genutzt wird, um den Motor ein- und
auszuschalten. Nahezu jeder NPN-Transistor kann verwendet werden. Abbildung 8-3 zeigt
den gängigen 2N2222. Auf der Website zu diesem Buch (http://shop.oreilly.com/product/
0636920022244.do) finden Sie Anbieterinformationen zu diesen und anderen verwendeten
Komponenten. Ein 1K-Widerstand verbindet den Ausgangspin mit der Basis des Tran-

8.7 Ein Objekt vibrieren lassen | 303

sistors. Der Widerstandswert ist unkritisch und kann bis zu 4,7K betragen (er verhindert,
dass zu viel Strom durch den Ausgangspin fließt). Die Diode absorbiert (oder entkoppelt –
man nennt sie manchmal auch Freilaufdiode) die Spannungen, die von den Motorspulen
erzeugt werden, während sich der Motor dreht. Der Kondensator absorbiert die Spannungs-
spitzen, die erzeugt werden, wenn die Bürsten (die Kontakte, die den Strom mit den
Windungen verbinden) öffnen und schließen. Der 33 Ohm Widerstand wird benötigt, um
den Strom zu beschränken, der durch den Motor fließt.

Der Sketch setzt den Ausgangspin für eine Sekunde (1000 Millisekunden) auf HIGH und
wartet dann 59 Sekunden. Der Transistor schaltet (leitet), wenn der Pin HIGH ist und lässt
Strom durch den Motor fließen.

Hier eine Variante des Sketches, der einen Sensor nutzt, um den Motor vibrieren zu lassen.
Die Schaltung ähnelt der aus Abbildung 8-8, nur dass hier zusätzlich noch eine Photozelle
an Analogpin 0 angeschlossen ist (siehe Rezept 6.2):

/*
* Vibrate_Photocell Sketch
* Vibriert, wenn der Photosensor ein Licht erkennt, das heller ist als die Umgebung
*
*/

const int motorPin = 3; // Transistor für Vibrationsmotor an Pin 3
const int sensorPin = 0; // Photozelle an Analogeingang 0
int sensorAmbient = 0; // Umgebungslicht (im setup kalibriert)
const int thresholdMargin = 100; // Vibrations-Schwellwert über Umgebungslicht

void setup()
{
pinMode(motorPin, OUTPUT);
sensorAmbient = analogRead(sensorPin); // Zu Beginn Umgebungslicht messen;
}

void loop()
{
int sensorValue = analogRead(sensorPin);
if(sensorValue > sensorAmbient + thresholdMargin)
{
digitalWrite(motorPin, HIGH); //Vibration starten

}
else
{
digitalWrite(motorPin, LOW); // Vibration anhalten

}
}

Hier wird der Ausgangspin eingeschaltet, wenn Licht auf die Photozelle trifft. Beim Start
des Sketches wird das Umgebungslicht am Sensor gemessen und in der Variablen sensor-
Ambient gespeichert. Wird in loop eine Helligkeit gemessen, die über diesem Wert plus
einem Schwellwert liegt, wird der Vibrationsmotor eingeschaltet.

304 | Kapitel 8: Physische Ausgabe

8.8 Einen Bürstenmotor über einen Transistor ansteuern

Problem
Sie wollen einen Motor ein- und ausschalten. Sie wollen seine Geschwindigkeit kontrol-
lieren. Der Motor muss sich nur in eine Richtung drehen.

Lösung

1K-

Widerstand

Motor-
Spannungs-

quelle

+V

Masse

Diode

1N4001

2N2222

oder

TIP102

c

e

b

eb
be

c
c

2N2222

TIP102

M
0.1

uFTX
 1

RX
 02346 579 8101112

G
ND 13

AR
EF

R
ES

ET

Arduino

DIGITAL

4 5210 3

ANALOG

Vi
n

5V3V
3

G
nd

G
nd

Abbildung 8-9: Anschluss eines Bürstenmotors

Der folgende Sketch schaltet den Motor ein und aus und kontrolliert dessen Geschwindig-
keit über Befehle, die vom seriellen Port eingehen (Abbildung 8-9 zeigt die Verschaltung):

/*
* SimpleBrushed Sketch
* Befehle vom seriellen Port steuern die Motorgeschwindigkeit
* Die Ziffern '0' bis '9' sind gültig. '0' bedeutet aus, '9' die max. Geschwindigkeit
*/

const int motorPin = 3; // Motortreiber an Pin 3

void setup()
{
Serial.begin(9600);
}

void loop()
{
if (Serial.available()) {
char ch = Serial.read();

if(isDigit(ch)) // Ist ch eine Ziffer?
{

8.8 Einen Bürstenmotor über einen Transistor ansteuern | 305

int speed = map(ch, '0', '9', 0, 255);
analogWrite(motorPin, speed);
Serial.println(speed);
}
else
{
Serial.print("Unbekanntes Zeichen ");
Serial.println(ch);
}
}
}

Diskussion
Das Rezept ähnelt Rezept 8.7. Der Unterschied besteht darin, dass analogWrite genutzt
wird, um die Geschwindigkeit des Motors zu regeln. In Rezept 7.1 erfahren Sie mehr über
analogWrite und die Pulsweitenmodulation (PWM).

8.9 Die Drehrichtung eines Bürstenmotors über eine
H-Brücke steuern

Problem
Sie wollen die Drehrichtung eines Bürstenmotors steuern. Zum Beispiel könnten Sie den
Motor über Befehle vom seriellen Port in die eine oder in die andere Richtung drehen lassen.

Lösung
Eine H-Brücke kann zwei Bürstenmotoren steuern. Abbildung 8-10 zeigt den Anschluss
des Motortreiber-ICs L293D. Sie können auch den SN754410 verwenden, der das gleiche
Pin-Layout besitzt:

/*
* Brushed_H_Bridge_simple Sketch
* Befehle vom seriellen Port steuern die Drehrichtung des Motors
* + und - legen die Drehrichtung fest, alle anderen Tasten halten den Motor an
*/

const int in1Pin = 5; // H-Brücken-Eingangspins
const int in2Pin = 4;

void setup()
{
Serial.begin(9600);
pinMode(in1Pin, OUTPUT);
pinMode(in2Pin, OUTPUT);
Serial.println("+ - ändern die Drehrichtung, alle anderen Tasten halten den Motor an");
}
void loop()
{

306 | Kapitel 8: Physische Ausgabe

if (Serial.available()) {
char ch = Serial.read();
if (ch == '+')
{
Serial.println("CW");
digitalWrite(in1Pin,LOW);
digitalWrite(in2Pin,HIGH);
}
else if (ch == '-')
{
Serial.println("CCW");
digitalWrite(in1Pin,HIGH);
digitalWrite(in2Pin,LOW);
}
else
{
Serial.print("Motor angehalten");
digitalWrite(in1Pin,LOW);
digitalWrite(in2Pin,LOW);
}
}
}

TX 1
RX 0

2
3
4

6
5

7

Gnd
Vin

5V
3V3

RESET

Gnd
A
R
D
U
I
N
O

L293

H-Brücke

IN4

M

IN1 IN2 IN3

VSS

ENB

ENA

GND

GND

GND

GND

OUT4OUT1 OUT2 OUT3

VS

Motor-

Spannungs-

quelle

8

1

143 6 11

9

2 15107

12

4

Masse

+V

M

16

5

13

Abbildung 8-10: Anschluss zweier Bürstenmotoren mit H-Brücke L293D

Diskussion
Tabelle 8-1 zeigt, wie die Werte am H-Brücken-Eingang den Motor steuern. Im obigen
Sketch wird ein einzelner Motor über die Pins IN1 und IN2 angesteuert. Der EN-Pin ist
immer HIGH, da er direkt mit +5V verbunden ist.

8.9 Die Drehrichtung eines Bürstenmotors über eine H-Brücke steuern | 307

Tabelle 8-1: Logiktabelle für H-Brücke

EN IN1 IN2 Funktion?

HIGH LOW HIGH Im Uhrzeigersinn drehen

HIGH HIGH LOW Gegen den Uhrzeigersinn drehen

HIGH LOW LOW Motor anhalten

HIGH HIGH HIGH Motor anhalten

LOW Ignoriert Ignoriert Motor anhalten

Abbildung 8-10 zeigt, wie man einen zweiten Motor anschließt. Der folgende Sketch
steuert beide Motoren:

/*
* Brushed_H_Bridge_simple2 Sketch
* Befehle vom seriellen Port steuern die Drehrichtung des Motors
* + und - legen die Drehrichtung fest, alle anderen Tasten halten die Motoren an
*/

const int in1Pin = 5; // H-Brücken-Eingangspins
const int in2Pin = 4;

const int in3Pin = 3; // H-Brücken-Pins für zweiten Motor
const int in4Pin = 2;

void setup()
{
Serial.begin(9600);
pinMode(in1Pin, OUTPUT);
pinMode(in2Pin, OUTPUT);
pinMode(in3Pin, OUTPUT);
pinMode(in4Pin, OUTPUT);
Serial.println("+ - ändern die Drehrichtung, alle anderen Tasten halten die Motoren an");
}

void loop()
{
if (Serial.available()) {
char ch = Serial.read();
if (ch == '+')

{
Serial.println("CW");
// first motor
digitalWrite(in1Pin,LOW);
digitalWrite(in2Pin,HIGH);
//second motor
digitalWrite(in3Pin,LOW);
digitalWrite(in4Pin,HIGH);
}
else if (ch == '-')
{
Serial.println("CCW");
digitalWrite(in1Pin,HIGH);
digitalWrite(in2Pin,LOW);

308 | Kapitel 8: Physische Ausgabe

digitalWrite(in3Pin,HIGH);
digitalWrite(in4Pin,LOW);
}
else
{
Serial.print("Motoren angehalten");
digitalWrite(in1Pin,LOW);
digitalWrite(in2Pin,LOW);
digitalWrite(in3Pin,LOW);
digitalWrite(in4Pin,LOW);
}
}
}

8.10 Drehrichtung und Geschwindigkeit eines
Bürstenmotors mit einer H-Brücke steuern

Problem
Sie wollen die Drehrichtung und die Geschwindigkeit eines Bürstenmotors steuern. Das
erweitert die Funktionalität von Rezept 8.9, indem es neben der Drehrichtung auch die
Geschwindigkeit über Befehle steuert, die vom seriellen Port eingehen.

Lösung
Verbinden Sie den Bürstenmotor wie in Abbildung 8-11 zu sehen mit den Ausgangspins
der H-Brücke.

T X 1
R X 0

2
3
4

6
5

7

Gnd
Vin

5V
3V3

RESET

Gnd
A
R
D
U
I
N
O

L293

H-Bridge

IN4 IN1 IN2 IN3

E NB

VS S

E NA

G ND

O UT4O UT1 O UT2 O UT3

VS

Motor-

Spannungs-

quelle

8

3 6

9

2 15107

12

4

Masse

+V

G ND
G ND

G ND

M

16

1

1411

5

13

Abbildung 8-11: Anschluss eines Bürstenmotors. Nutzt analogWrite zur Geschwindigkeitsregelung

8.10 Drehrichtung und Geschwindigkeit eines Bürstenmotors mit einer H-Brücke steuern | 309

Der Sketch verarbeitet Befehle vom seriellen Monitor, um die Geschwindigkeit und die
Drehrichtung des Motors zu steuern. Eine 0 hält den Motor an und die Ziffern 1 bis 9
steuern die Geschwindigkeit. Mit »+« und »-« wird die Drehrichtung des Motors fest-
gelegt:

/*
* Brushed_H_Bridge Sketch
* Befehle vom seriellen Port steuern Drehrichtung und Geschwindigkeit des Motors
* Die Ziffer '0' bis '9' regeln die Geschwindigkeit; '0' steht für Motor aus und '9' ist die
Maximalgeschwindigkeit
* + und - legen die Drehrichtung fest, alle anderen Tasten halten die Motoren an

const int enPin = 5; // H-Brücken Enable-Pin
const int in1Pin = 7; // H-Brücken-Eingangspins
const int in2Pin = 4;

void setup()
{
Serial.begin(9600);
pinMode(in1Pin, OUTPUT);
pinMode(in2Pin, OUTPUT);
Serial.println("Geschwindigkeit (0-9) oder + - fuer Drehrichtung");
}

void loop()
{
if (Serial.available()) {
char ch = Serial.read();
if(isDigit(ch)) // Ist ch eine Ziffer?
{
int speed = map(ch, '0', '9', 0, 255);
analogWrite(enPin, speed);
Serial.println(speed);
}
else if (ch == '+')
{
Serial.println("CW");
digitalWrite(in1Pin,LOW);
digitalWrite(in2Pin,HIGH);
}
else if (ch == '-')
{
Serial.println("CCW");
digitalWrite(in1Pin,HIGH);
digitalWrite(in2Pin,LOW);
}
else
{
Serial.print("Unbekanntes Zeichen ");
Serial.println(ch);
}
}
}

310 | Kapitel 8: Physische Ausgabe

Diskussion
Das Rezept ähnelt Rezept 8.9, bei dem die Drehrichtung über die Pegel an den Pins IN1
und IN2 gesteuert wird. Zusätzlich wird aber die Geschwindigkeit über den analogWrite-
Wert am EN-Pin geregelt (mehr über PWM erfahren Sie in Kapitel 7). Der Wert 0 hält den
Motor an. Bei 255 läuft der Motor mit Höchstgeschwindigkeit. Die Geschwindigkeit
verhält sich proportional zum Wert innerhalb dieses Wertebereichs.

8.11 Richtung und Geschwindigkeit von Bürstenmotoren
über Sensoren steuern (L293 H-Brücke)

Problem
Sie wollen die Drehrichtung und Geschwindigkeit von Bürstenmotoren über das Feed-
back von Sensoren steuern. Zum Beispiel könnten Sie zwei Photozellen nutzen, die die
Geschwindigkeit und Richtung eines Roboters kontrollieren, so dass er einem Lichtstrahl
folgt.

Lösung
Die Lösung verwendet die gleichen Motor-Anschlüsse wie in Abbildung 8-10, nutzt aber
zusätzlich noch zwei lichtempfindliche Widerstände (siehe Abbildung 8-12).

T X 1
R X 0

2
3
4

6
5

7

Vin

3V3
RES ET

L293

H-Brücke

IN4 IN1 IN2 IN3

E NB

VS S

E NA

GND

O UT4O UT1 O UT2 O UT3

VS

Zur

Motorstrom-

versorgung

8

143 6 11

9

2 15107

13

5

13

5
12

4

G n d

+V

GND
GND

GND
16

1

4
5

2
3

Analog In

0

L
D
R

L
D
R

1

5V
Gnd
Gnd

Abbildung 8-12: Zwei über Sensoren gesteuerte Motoren

8.11 Richtung und Geschwindigkeit von Bürstenmotoren über Sensoren steuern (L293 H-Brücke) | 311

Der Sketch überwacht die Helligkeit der Sensoren und steuert die Motoren in die Rich-
tung, in der es heller ist:

/*
* Brushed_H_Bridge_Direction Sketch
* Nutzt Photosensoren zur Steuerung der Richtung
* Roboter bewegt sich zum Licht hin
*/

int leftPins[] = {5,7,4}; // Ein Pin für PWM, zwei Pins für die Richtung
int rightPins[] = {6,3,2};

const int MIN_PWM = 64; // Kann zwischen 0 und MAX_PWM liegen;
const int MAX_PWM = 128; // Kann zwischen ca. 50 und 255 liegen;
const int leftSensorPin = 0; // Analogpins für Sensoren
const int rightSensorPin = 1;

int sensorThreshold = 0; // Schwellwert für Bewegung

void setup()
{
for(int i=1; i < 3; i++)
{
pinMode(leftPins[i], OUTPUT);
pinMode(rightPins[i], OUTPUT);
}
}

void loop()
{
int leftVal = analogRead(leftSensorPin);
int rightVal = analogRead(rightSensorPin);

if(sensorThreshold == 0){ // Wurden die Sensoren kalibriert?
// Wenn nicht, leicht über dem Durchschnitt liegenden Wert verwenden
sensorThreshold = ((leftVal + rightVal) / 2) + 100 ;

}

if(leftVal > sensorThreshold || rightVal > sensorThreshold)
{
// Dem Licht folgen
setSpeed(rightPins, map(rightVal,0,1023, MIN_PWM, MAX_PWM));
setSpeed(leftPins, map(leftVal ,0,1023, MIN_PWM, MAX_PWM));
}
}

void setSpeed(int pins[], int speed)
{
if(speed < 0)
{
digitalWrite(pins[1],HIGH);
digitalWrite(pins[2],LOW);
speed = -speed;
}
else
{
digitalWrite(pins[1],LOW);

312 | Kapitel 8: Physische Ausgabe

digitalWrite(pins[2],HIGH);
}
analogWrite(pins[0], speed);
}

Diskussion
Der Sketch regelt die Geschwindigkeit zweier Motoren als Reaktion auf die von zwei
Photozellen gemessene Lichtmenge. Die Photozellen sind so angeordnet, dass die Erhö-
hung der Helligkeit auf einer Seite die Geschwindigkeit des Motors auf der anderen Seite
erhöht. Das lässt den Roboter in die Richtung des Lichts fahren. Fällt das Licht gleich-
mäßig auf beide Zellen, fährt der Roboter in einer geraden Linie vorwärts. Ist nicht genug
Licht vorhanden, hält der Roboter an.

Das Licht wird über die Analogeingänge 0 und 1 per analogRead (siehe Rezept 6.2) ge-
messen. Beim Programmstart wird das Umgebungslicht gemessen und als Schwellwert für
die minimale Lichtstärke verwendet, die zur Bewegung des Roboters benötigt wird. Dieser
Durchschnittswert wird noch um 100 erhöht, damit sich der Roboter bei kleinen
Änderungen des Umgebungslichts nicht bewegt. Die Lichtstärke wird mit analogRead
gemessen und über die map-Funktion in einen PWM-Wert umgewandelt. Legen Sie
MIN_PWM auf einen Wert fest, der ausreicht, um den Roboter zu bewegen (zu niedrige
Werte liefern nicht genug Drehmoment; Sie werden es einfach ausprobieren müssen).
Setzen Sie MAX_PWM auf einen Wert (bis zu 255), der die Höchstgeschwindigkeit festlegt, mit
der sich der Roboter bewegen soll.

TX 1
R X 0

2
3
4

6
5

7

Vin

3V3
R ESET

Pololu

FB6612FNG

H-Brücke

BIN2

M

AIN1 AIN2 BIN1

PWMB

VCC

PWMA

GND

BO2AO1 AO2 BO1VMOT

Motor-

Spannungs-

quelle
Masse +V

GND
GND

M

5V
Gnd
Gnd

STBY

Abbildung 8-13: Anschluss der H-Brücke beim Pololu-Breakout-Board

8.11 Richtung und Geschwindigkeit von Bürstenmotoren über Sensoren steuern (L293 H-Brücke) | 313

Die Geschwindigkeit des Motors wird über die Funktion setSpeed gesteuert. Zwei Pins
kontrollieren die Richtung eines Motors und ein weiterer Pin die Geschwindigkeit. Die
Pin-Nummern werden in den Arrays leftPins und rightPins vorgehalten. Der erste Pin
jedes Arrays ist der Geschwindigkeitspin, die beiden anderen sind für die Richtung ver-
antwortlich.

Eine Alternative zum L293 ist der Toshiba FB6612FNG. Er kann in allen Rezepten ein-
gesetzt werden, die den L293D verwenden. Abbildung 8-13 zeigt die Verschaltung des
FB6612, wie sie beim Pololu-Breakout-Board (SparkFun ROB-09402) verwendet wird.

Sie können die Zahl der benötigten Pins reduzieren, indem Sie die Richtungspins über
zusätzliche Hardware steuern. Dabei verwenden Sie für die Richtung nur jeweils einen Pin
je Motor und einen Transistor oder ein Logik-Gatter, das den Pegel des anderen H-Brü-
cken-Eingangs invertiert. Entsprechende Schaltungen finden Sie im Arduino-Wiki, aber
wenn Sie etwas Fertiges wünschen, können Sie ein H-Brücken-Shield wie das Freeduino
Motor Control Shield (NKC Electronics ARD-0015) oder das Ardumoto von SparkFun
(DEV-09213) verwenden. Diese Shields passen direkt auf den Arduino. Sie müssen nur
noch den Strom und die Spulen anschließen.

Der folgende Sketch wurde für das Ardumoto-Shield angepasst:

/*
* Brushed_H_Bridge_Direction Sketch für Ardumotor-Shield
* Nutzt Photosensoren zur Steuerung der Richtung
* Roboter bewegt sich in Richtung eines Lichts
*/

int leftPins[] = {10,12}; // Ein Pin für PWM, ein Pin für die Richtung
int rightPins[] = {11,13};

const int MIN_PWM = 64; // Kann zwischen 0 und MAX_PWM liegen;
const int MAX_PWM = 128; // Kann zwischen ca. 50 und 255 liegen;
const int leftSensorPin = 0; // Analogpins für Sensoren
const int rightSensorPin = 1;

int sensorThreshold = 0; // Schwellwert für Bewegung

void setup()
{
pinMode(leftPins[1], OUTPUT);
pinMode(rightPins[1], OUTPUT);
}

void loop()
{
int leftVal = analogRead(leftSensorPin);
int rightVal = analogRead(rightSensorPin);
if(sensorThreshold == 0){ // Wurden die Sensoren kalibriert?
// Wenn nicht, leicht über dem Durchschnitt liegenden Wert verwenden
sensorThreshold = ((leftVal + rightVal) / 2) + 100 ;

}

if(leftVal > sensorThreshold || rightVal > sensorThreshold)
{

314 | Kapitel 8: Physische Ausgabe

// Dem Licht folgen
setSpeed(rightPins, map(rightVal,0,1023, MIN_PWM, MAX_PWM));
setSpeed(leftPins, map(leftVal, 0,1023, MIN_PWM, MAX_PWM));
}
}

void setSpeed(int pins[], int speed)
{
if(speed < 0)
{
digitalWrite(pins[1],HIGH);
speed = -speed;
}
else
{
digitalWrite(pins[1],LOW);
}
analogWrite(pins[0], speed);
}

Die loop-Funktion entspricht der aus dem obigen Sketch. setSpeed umfasst weniger Code,
weil die Hardware des Shields es erlaubt, die Richtung des Motors mit einem einzigen Pin
zu steuern.

Die Zuordnung der Pins für das Freeduino-Shield ist wie folgt:

int leftPins[] = {10,13}; // PWM, Richtung
int rightPins[] = {9,12}; // PWM, Richtung

Nachfolgend implementieren wir die gleiche Funktionalität mit dem Adafruit Motor Shield
(http://www.ladyada.net/make/mshield/); siehe Abbildung 8-14. Wir nutzen eine Bibliothek
namens AFMotor, die von der Adafruit-Website heruntergeladen werden kann.

M M

Adafruit
Motor
Shield

4
5

2
1
0

3

Vin

5V
3V3
RESET

+V

Masse

Motor-

Spannungs-

quelle

Analog In

Gnd
Gnd

L
D
R

L
D
R

Abbildung 8-14: Verwendung des Adafruit Motor Shields

8.11 Richtung und Geschwindigkeit von Bürstenmotoren über Sensoren steuern (L293 H-Brücke) | 315

Das Adafruit-Shield unterstützt vier Anschlüsse für Motoren. Im folgenden Sketch sind
die Motoren mit den Anschlüssen 3 und 4 verbunden:

/*
* Brushed_H_Bridge_Direction Sketch für Adafruit Motor Shield
* Nutzt Photosensoren zur Steuerung der Richtung
* Roboter bewegt sich in Richtung eines Lichts
*/

#include "AFMotor.h" // Adafruit Motor Shield-Bibliothek

AF_DCMotor leftMotor(3, MOTOR12_1KHZ); // Motor #3, 1 KHz PWM nutzt Pin 5
AF_DCMotor rightMotor(4, MOTOR12_1KHZ); // Motor #4, 1 KHz PWM nutzt Pin 6

const int MIN_PWM = 64; // Kann zwischen 0 und MAX_PWM liegen;
const int MAX_PWM = 128; // Kann zwischen ca. 50 und 255 liegen;
const int leftSensorPin = 0; // Analogpins für Sensoren
const int rightSensorPin = 1;

int sensorThreshold = 0; // Schwellwert für Bewegung

void setup()
{
}

void loop()
{
int leftVal = analogRead(leftSensorPin);
int rightVal = analogRead(rightSensorPin);

if(sensorThreshold == 0){ // Wurden die Sensoren kalibriert?
// Wenn nicht, leicht über dem Durchschnitt liegenden Wert verwenden
sensorThreshold = ((leftVal + rightVal) / 2) + 100 ;

}

if(leftVal > sensorThreshold || rightVal > sensorThreshold)
{
// Dem Licht folgen
setSpeed(rightMotor, map(rightVal,0,1023, MIN_PWM, MAX_PWM));
setSpeed(leftMotor, map(leftVal ,0,1023, MIN_PWM, MAX_PWM));
}
}

void setSpeed(AF_DCMotor &motor, int speed)
{
if(speed < 0)
{
motor.run(BACKWARD);
speed = -speed;
}
else
{
motor.run(FORWARD);
}
motor.setSpeed(speed);
}

316 | Kapitel 8: Physische Ausgabe

Wenn Sie keines der obigen Shields nutzen, müssen Sie auf dem Datenblatt nachsehen,
welche Pins für PWM und Richtung verwendet werden müssen und das im Sketch
entsprechend korrigieren.

Siehe auch
Das Datenblatt zum Pololu-Board: http://www.pololu.com/file/0J86/TB6612FNG.pdf

Die Produktseite des Freeduino-Shields: http://www.nkcelectronics.com/freeduino-arduino-
motor-control-shield-kit.html

Die Produktseite des Ardumoto-Shields: http://www.sparkfun.com/commerce/product_
info.php?products_id=9213

Die Dokumentation und die Bibliothek zum Adafruit Motor Shield finden Sie unter
http://www.ladyada.net/make/mshield/

8.12 Einen bipolaren Schrittmotor ansteuern

Problem
Sie besitzen einen bipolaren (vieradrigen) Schrittmotor und wollen ihn aus einem Pro-
gramm heraus über eine H-Brücke steuern.

Lösung
Der Sketch steuert den Motor über serielle Befehle. Ein numerischer Wert gefolgt von
einem + bewegt ihn schrittweise in die eine Richtung, bei einem - in die andere. Beispiels-
weise vollzieht ein 24-Schritt-Motor mit »24+« eine vollständige Umdrehung in einer
Richtung und mit »12-« eine halbe Umdrehung in der anderen Richtung (Abbildung 8-15
zeigt den Anschluss eines vierpoligen bipolaren Schrittmotors über eineL293-H-Brücke):

/*
* Stepper_bipolar Sketch
*
* Schrittmotor wird über den seriellen Port gesteuert.
* Ein numerischer Wert gefolgt von '+' oder '-' bewegt den Motor schrittweise
*
*
* http://www.arduino.cc/en/Reference/Stepper
*/

#include <Stepper.h>

// Tragen Sie hier die Zahl der Schritte Ihres Motors ein
#define STEPS 24

// Instanz der stepper-Klasse erzeugen. Wir geben die
// Zahl der Motorschritte an und die Pins, mit denen
// er verbunden ist.

8.12 Einen bipolaren Schrittmotor ansteuern | 317

Stepper stepper(STEPS, 2, 3, 4, 5);

int steps = 0;

void setup()
{
// Geschwindigkeit des Motors auf 30 U/min setzen
stepper.setSpeed(30);
Serial.begin(9600);
}

void loop()
{
if (Serial.available()) {
char ch = Serial.read();

if(isDigit(ch)){ // Ist ch eine Ziffer?
steps = steps * 10 + ch - '0'; // Ja, Wert akkumulieren
}
else if(ch == '+'){
stepper.step(steps);
steps = 0;
}
else if(ch == '-'){
stepper.step(steps * -1);
steps = 0;
}
}
}

T X 1
R X 0

2
3
4

6
5

7

Gnd
Vin

5V
3V3

RESET

Gnd
A
R
D
U
I
N
O

L293

H-Brücke

IN4

M

IN1 IN2 IN3

E NB

VS S

E NA

G ND

O UT4O UT1 O UT2 O UT3

VS

Schrittmotor-

Spannungs-

quelle

8

1

143 6 11

16

9

2 15107

4-adrige Verschaltung mit L293 H-Brücke

13

5
12

4

Masse

0.1
uF

+V

G ND
G ND

G ND

Abbildung 8-15: Vieradriger bipolarer Schrittmotor an L293-H-Brücke

318 | Kapitel 8: Physische Ausgabe

Diskussion
Wenn Ihr Schrittmotor einen höheren Strom benötigt, als der L293 liefern kann (600 mA
beim L293D), können Sie ersatzweise den SN754410 verwenden. Code und Verschaltung
sind mit dem L293 identisch. Bei Strom von bis zu 2 Ampere können Sie den L298
verwenden. Sie können den obigen Sketch nutzen und müssen ihn entsprechend Abbil-
dung 8-16 verschalten.

TX 1
RX 0

2
3
4

6
5

7

Gnd
Vin

5V
3V3

RESET

Gnd
A
R
D
U
I
N
O

L298

IN4

M

IN1 IN2 IN3

E NB

VS S
E NA

G ND

O UT 4O UT 1 O UT 2 O UT 3

VS

Motor-

Spannungs-

quelle

46

142 3 13

9

1

11

5 12107

Arduino mit L298 H-Brücke

8

15

Sense A

Sense B

0.1 uf

0.1
uf

Abbildung 8-16: Unipolarer Schrittmotor an L298

Eine einfache Möglichkeit, einen L298 an den Arduino anzuschließen, bietet das Spark-
Fun Ardumoto-Shield (DEV-09213). Es wird einfach auf das Arduino-Board aufgesteckt
und benötigt nur die Verbindung zu den Motor-Spulen. Die Stromversorgung des Motors
erfolgt über den Arduino-Pin Vin. In1/2 wird durch Pin 12 gesteuert und ENA liegt an Pin
10. In3/4 ist mit Pin 13 verbunden und ENB liegt an Pin 11. Nehmen Sie die folgenden
Änderungen am obigen Code vor, um den Sketch mit dem Ardumoto nutzen zu können:

Stepper stepper(STEPS, 12,13);

Ersetzen Sie den Code in setup() durch

pinMode(10, OUTPUT);
digitalWrite(10, LOW); // A aktivieren

pinMode(11, OUTPUT);
digitalWrite(11, LOW); // B aktivieren

8.12 Einen bipolaren Schrittmotor ansteuern | 319

stepper.setSpeed(30); // Geschwindigkeit auf 30 U/min setzen

Serial.begin(9600);

Der Code in loop ist mit dem obigen Sketch identisch.

Siehe auch
Weitere Informationen zur Verschaltung von Schrittmotoren finden Sie in Tom Igoes
Schrittmotor-Notizen: http://www.tigoe.net/pcomp/code/circuits/motors.

8.13 Einen bipolaren Schrittmotor ansteuern (mit
EasyDriver-Board)

Problem
Sie besitzen einen bipolaren (vieradrigen) Schrittmotor und wollen ihn aus einem Pro-
gramm heraus über ein EasyDriver-Board steuern.

Lösung
Die Lösung ähnelt der aus Rezept 8.12 und verwendet auch die gleichen seriellen Befehle,
nutzt aber das beliebte EasyDriver-Board. Abbildung 8-17 zeigt die Verschaltung.

EasyDriver

Ver 4.2

Motor
BA Enable MS2RstPFD

MS1Slp+5vGnd Gnd Step Dir

Gnd
Pwr In

M+

T X 1
R X 0

2
3
4

6
5

7

G n d
V in

5 V
3 V3

R E S E T

G n d
A

O
N
I
U
D
R

Schrittmotor-

Spannungs-

quelle

Masse +V

M

APWR

Abbildung 8-17: Anschluss des EasyDriver-Boards

320 | Kapitel 8: Physische Ausgabe

Der folgende Sketch steuert die Schrittrichtung und die Anzahl der Schritte über den
seriellen Port. Im Gegensatz zum Code in Rezept 8.12 wird die Stepper-Bibliothek nicht
benötigt, da das EasyDriver-Board die Spulen des Motors per Hardware steuert:

/*
* Stepper_Easystepper Sketch
*
* Schrittmotor wird über den seriellen Port gesteuert.
* Ein numerischer Wert gefolgt von '+' oder '-' bewegt den Motor schrittweise
*
*/

const int dirPin = 2;
const int stepPin = 3;

int speed = 100; // Gewünschte Geschwindigkeit in Schritten pro Sekunde
int steps = 0; // Anzahl der Schritte

void setup()
{
pinMode(dirPin, OUTPUT);
pinMode(stepPin, OUTPUT);
Serial.begin(9600);
}

void loop()
{
if (Serial.available()) {
char ch = Serial.read();

if(isDigit(ch)){ // Ist ch eine Ziffer?
steps = steps * 10 + ch - '0'; // Ja, Wert akkumulieren
}
else if(ch == '+'){
step(steps);
steps = 0;
}
else if(ch == '-'){
step(-steps);
steps = 0;
}
else if(ch == 's'){
speed = steps;
Serial.print("Setze Geschwindigkeit auf ");
Serial.println(steps);
steps = 0;
}
}
}

void step(int steps)
{
int stepDelay = 1000 / speed; //Verzögerung in ms für Geschwindigkeit in Schritten pro Sekunde
int stepsLeft;

// Vorzeichen von steps bestimmt Richtung

8.13 Einen bipolaren Schrittmotor ansteuern (mit EasyDriver-Board) | 321

if (steps > 0)
{
digitalWrite(dirPin, HIGH);
stepsLeft = steps;
}
if (steps < 0)
{
digitalWrite(dirPin, LOW);
stepsLeft = -steps;
}
// Schritte bei jedem Durchlauf dekrementieren
while(stepsLeft > 0)
{
digitalWrite(stepPin,HIGH);
delayMicroseconds(1);
digitalWrite(stepPin,LOW);
delay(stepDelay);
stepsLeft--; // Verbliebene Schritte dekrementieren
}
}

Diskussion
Das EasyDriver-Board wird über die Pins M+ und Gnd (in der oberen rechten Ecke in
Abbildung 8-17) mit Strom versorgt. Das Board arbeitet mit Spannungen zwischen 8 und
30 Volt. Die richtige Betriebsspannung Ihres Schrittmotors entnehmen Sie dem Daten-
blatt. Wenn Sie einen 5V-Schrittmotor nutzen, müssen Sie 5V an die mit Gnd und +5V
gekennzeichneten Pins (unten links auf dem EasyDriver-Board) anlegen und den mit
APWR gekennzeichneten Jumper entfernen (damit wird der boardeigene Regler abge-
trennt und der Motor und das EasyDriver-Board werden über eine externe 5V-Quelle
versorgt).

Sie können den Stromverbrauch bei nicht laufendem Motor reduzieren, indem Sie den
Enable-Pin mit einem digitalen Ausgang verbinden und ihn auf HIGH setzen, um den
Ausgang zu deaktivieren (ein LOW aktiviert ihn).

Die Schrittoptionen legen Sie fest, indem Sie MS1 und MS2 mit +5V (HIGH) oder Masse
(LOW) verbinden (siehe Tabelle 8-2). Die Standardoptionen für das wie in Abbildung 8-17
verschaltete Board verwendet Achtel-Schritte (MS1 und MS2 sind HIGH, Reset ist HIGH und
Enable ist LOW).

Tabelle 8-2: Mikroschritt-Optionen

Auflösung MS1 MS2

Voller Schritt LOW LOW

Halber Schritt HIGH LOW

Viertel Schritt LOW HIGH

Achtel Schritt HIGH HIGH

322 | Kapitel 8: Physische Ausgabe

Sie können den Code auch so modifizieren, dass die Umdrehungen pro Sekunde über die
Geschwindigkeit bestimmt werden:

// Für Geschwindigkeit in U/min
int speed = 100; // Gewünschte Geschwindigkeit in U/min
int stepsPerRevolution = 200; // Schritte für eine Umdrehung

Ändern Sie die erste Zeile der step-Funktion wie folgt:

int stepDelay = 60L * 1000L / stepsPerRevolution / speed; // Geschwindigkeit in U/min

Alles andere bleibt unverändert, aber der gesendete Geschwindigkeitsbefehl gibt nun die
Umdrehungen pro Minute an.

8.14 Einen unipolaren Schrittmotor ansteuern (ULN2003A)

Problem
Sie verfügen über einen unipolaren (fünf- oder sechsadrigen) Schrittmotor und wollen ihn
über einen ULN2003A Darlington-Treiber steuern..

Lösung
Schließen Sie den unipolaren Schrittmotor wie in Abbildung 8-18 zu sehen an. Der +V-An-
schluss wird mit einer Stromquelle verbunden, die die vom Motor benötigte Spannung und
den entsprechenden Strom liefert.

Der folgende Sketch bewegt den Motor über Befehle vom seriellen Port. Ein numerischer
Wert gefolgt von einem + bewegt ihn in eine Richtung, ein - in die andere:

/*
* Stepper Sketch
*
* Schrittmotor wird über den seriellen Port gesteuert
* Ein numerischer Wert gefolgt von '+' oder '-' bewegt den Motor schrittweise
*
*
* http://www.arduino.cc/en/Reference/Stepper
*/

#include <Stepper.h>

// Tragen Sie hier die Zahl der Schritte Ihres Motors ein
#define STEPS 24

// Instanz der stepper-Klasse erzeugen. Wir geben die
// Zahl der Motorschritte an und die Pins, mit denen
// er verbunden ist
Stepper stepper(STEPS, 2, 3, 4, 5);

int steps = 0;

8.14 Einen unipolaren Schrittmotor ansteuern (ULN2003A) | 323

void setup()
{
stepper.setSpeed(30); // Geschwindigkeit auf 30 U/min setzen
Serial.begin(9600);
}

void loop()
{
if (Serial.available()) {
char ch = Serial.read();

if(isDigit(ch)){ // Ist ch eine Ziffer?
steps = steps * 10 + ch - '0'; // Ja, Wert akkumulieren
}
else if(ch == '+'){
stepper.step(steps);
steps = 0;
}
else if(ch == '-'){
stepper.step(steps * -1);
steps = 0;
}
else if(ch == 's'){
stepper.setSpeed(steps);
Serial.print("Setze Geschwindigkeit auf ");
Serial.println(steps);
steps = 0;
}
}
}

Diskussion
Dieser Motortyp besitzt zwei Spulenpaare und jede Spule hat in der Mitte einen An-
schluss. Bei Motoren mit fünf Anschlüssen sind die beiden mittleren Anschlüsse über
einen einzelnen Draht nach außen geführt. Wenn die Anschlüsse nicht gekennzeichnet
sind, können Sie die Verschaltung mit einem Multimeter bestimmen. Messen Sie den
Widerstand der Anschlusspaare und finden Sie die beiden Paare mit dem maximalen
Widerstand. Der mittlere Anschluss hat einen halb so großen Widerstand wie die ganze
Spule. Eine Schritt-für-Schritt-Anweisung finden Sie unter http://techref.massmind.org/
techref/io/stepper/wires.asp.

324 | Kapitel 8: Physische Ausgabe

T X 1
R X 0

2
3
4

6
5

7

Gnd
V in

5V
3V3

RESET

Gnd

A
R
D
U
I
N
O

ULN2003

IN4

M

IN1 IN2 IN3

GND

OUT4OUT1 OUT2 OUT3

+V

1316 1 5 14

1 432

Unipolarer Schrittmotor 4-Draht

Schrittmotor-

Spannungs-

quelle

9

8

Masse +V

Abbildung 8-18: Anschluss eines unipolaren Schrittmotors über ULN2003-Treiber

8.14 Einen unipolaren Schrittmotor ansteuern (ULN2003A) | 325

KAPITEL 9

Audio-Ausgabe

9.0 Einführung
Der Arduino wurde nicht als Synthesizer konzipiert, aber natürlich kann er über ein Aus-
gabegerät wie einen Lautsprecher Töne erzeugen.

Töne werden durch Schwingung der Luft erzeugt. Ein Ton hat eine bestimmte Höhe,
wenn man ihn ständig wiederholt. Der Arduino kann Töne erzeugen, indem er einen
Lautsprecher oder ein Piezo-Element (ein kleiner keramischer Signalgeber, der bei Impul-
sen Töne erzeugt) ansteuert. Dabei werden elektronische Impulse in Schwingung am
Lautsprecher umgewandelt, die die Luft vibrieren lassen. Die Höhe des Tons (die
Frequenz) wird durch die Zeit bestimmt, die es braucht, um den Lautsprecher ein- und
auszuschalten. Je kürzer diese Zeitspanne ist, desto höher ist die Frequenz.

Frequenzen werden in der Einheit Hertz gemessen. Sie gibt an, wie oft pro Sekunde das
Signal seinen wiederkehrenden Zyklus durchläuft. Das menschliche Gehör nimmt Töne
von etwa 20 Hertz (Hz) bis zu 20000 Hertz wahr (wenngleich das von Mensch zu Mensch
variiert und sich mit dem Alter verändert).

Die Arduino-Software enthält eine tone-Funktion, mit der Sie Töne erzeugen können.
Rezepte 9.1 und 9.2 zeigen, wie man die Funktion nutzt, um Töne zu erzeugen und
Melodien abzuspielen. Die tone-Funktion arbeitet mit Hardware-Timern. Bei einem
Standard-Arduino-Board kann nur jeweils ein Ton erzeugt werden. Sketches, bei denen
der Timer (timer2) für andere Aufgaben benötigt wird, etwa analogWrite für Pin 9 oder 10,
können die tone-Funktion nicht nutzen. Rezept 9.3 zeigt, wie man diese Einschränkung
mithilfe einer Bibliothek umgehen und mehrere Töne erzeugen kann. Rezept 9.4 zeigt, wie
man Töne ohne die tone-Funktion oder Hardware-Timer erzeugen kann.

Der Sound, den man erzeugen kann, indem man Impulse an einen Lautsprecher sendet,
ist beschränkt und klingt nicht besonders gut. Ausgegeben wird eine Rechteckwelle (siehe
Abbildung 9-1), die recht herb klingt und eher an ein antikes Computerspiel erinnert als
an ein Musikinstrument.

| 327

Lautsprechermembran
drückt die Luft, wenn Pin

an geht

Periode (ein Zyklus)

Impuls ist

halbe Periode

Frequenz ist die Anzahl der Zyklen pro Sekunde

Periode ist die Dauer eines Zyklus

Periode = 1/Frequenz

Abbildung 9-1: Töne mit digitalen Impulsen erzeugen

Es ist für den Arduino schwierig, musikalisch komplexere Sounds ohne externe Hardware
zu erzeugen. Sie können ein Shield nutzen, um die Fähigkeiten des Arduino in dieser
Hinsicht zu erweitern. Rezept 9.5 zeigt, wie man das Adafruit Wave Shield nutzt, um
Audiodateien wiederzugeben, die auf einer Speicherkarte auf dem Shield gespeichert sind.

Sie können den Arduino auch nutzen, um ein externes Gerät anzusteuern, das Sound
erzeugen kann. Rezept 9.6 zeigt, wie man MIDI-Nachrichten (Musical Instrument Digital
Interface) an ein MIDI-Gerät sendet. Solche Geräte erzeugen qualitativ hochwertige
Sounds für eine Vielzahl unterschiedlicher Instrumente und können viele Instrumente
gleichzeitig spielen. Der Sketch in Rezept 9.6 zeigt, wie man MIDI-Nachrichten erzeugt,
die eine Tonleiter spielen.

Rezept 9.7 enthält einen Überblick über eine Anwendung namens Arduino, die eine
komplexe Software-Verarbeitung zu Synthetisierung von Sound verwendet.

Dieses Kapitel behandelt die vielen Möglichkeiten, mit denen Sie Sound elektronisch
erzeugen können. Wenn Sie den Arduino akustische Instrumente (wie Glockenspiele,
Trommeln und Klaviere) spielen lassen wollen, können Sie Aktuatoren wie Hubmagneten
oder Servomotoren einsetzen, die in Kapitel 8 behandelt werden.

Viele Rezepte in diesem Kapitel steuern einen kleinen Lautsprecher oder ein Piezo-Ele-
ment an. Wie man ihn mit einem Arduino-Pin verbindet, zeigt Abbildung 9-2.

9
8 100 uF

Lautstärke-
regler

Lautsprecher oder
Piezoelement

+10
11
12

GND
13

AREFA
R
D
U
I
N
O

Abbildung 9-2: Anschluss eines Audio-Transducers

328 | Kapitel 9: Audio-Ausgabe

Der Lautstärkeregler ist ein variabler Widerstand, dessen Wert unkritisch ist. Alles zwi-
schen 200 und 500 Ohm wird funktionieren. Der Kondensator ist ein 100 Mikrofarad-
Elektrolyt, dessen positives Ende mit dem Arduino-Pin verbunden ist. Ein Lautsprecher
funktioniert unabhängig davon, welcher Anschluss mit Masse verbunden ist, doch bei
Piezo-Elementen spielt die Polung eine Rolle, d.h., Sie müssen den Masseanschluss
(üblicherweise schwarz) mit dem Masse-Pin verbinden.

Alternativ können Sie den Ausgang mit einem externen Audioverstärker verbinden.
Rezept 9.7 zeigt, wie ein Ausgangspin mit einem Klinkenstecker verbunden werden kann.

Der Spannungspegel (5 Volt) ist höher, als Audioverstärker es erwarten,
weshalb Sie einen variablen 4,7K-Widerstand benötigen könnten, um die
Spannung zu reduzieren. (Verbinden Sie ein Ende mit Pin 9 und das andere
Ende mit Masse. Verbinden Sie dann den Schieber mit dem Klinkenste-
cker. Das Gehäuse des Klinkensteckers verbinden Sie mit Masse.)

9.1 Töne ausgeben

Problem
Sie wollen Töne über einen Lautsprecher oder einen anderen Audio-Transducer aus-
geben. Sie wollen dabei die Frequenz und die Dauer des Tons festlegen.

Lösung
Verwenden Sie die Arduino-Funktion tone. Der folgende Sketch gibt einen Ton aus, des-
sen Frequenz über einen variablen Widerstand (oder anderen Sensor) am Analogeingang
0 festgelegt wird (siehe Abbildung 9-3):

/*
* Tone Sketch
*
* Gibt Töne über einen Lautsprecher an Digitalpin 9 aus.
* Die Frequenz wird durch den Wert bestimmt, der vom Analogport eingelesen wird.
*/

const int speakerPin = 9; // Lautsprecher an Pin 9
const int pitchPin = 0; // Poti bestimmt Frequenz des Tons

void setup()
{
}

void loop()
{
int sensor0Reading = analogRead(pitchPin); // Poti-Wert für Frequenz einlesen
// Analogwert auf geeigneten Wertebereich abbilden
int frequency = map(sensor0Reading, 0, 1023, 100,5000); // 100Hz bis 5kHz
int duration = 250; // Dauer des Tons

9.1 Töne ausgeben | 329

tone(speakerPin, frequency, duration); // Ton ausgeben
delay(1000); // Eine Sekunde warten

}

100 uF

Poti für
Tonlage

Zweiter Poti
für Dauer ist
optional

+TX
 1

RX
 02346 579 8101112

GN
D 13

AR
EF

Vi
n

5V3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

4 5210 3

ANALOG

Gn
d

Lautstärke-
regler

Lautsprecher oder
Piezoelement

Abbildung 9-3: Anschluss für den Tone-Sketch

Die tone-Funktion verarbeitet bis zu drei Parameter: den Pin, an dem der Lautsprecher
angeschlossen ist, die zu spielende Frequenz (in Hertz) und die Dauer des Tons (in
Millisekunden). Der dritte Parameter ist optional. Lässt man ihn weg, wird der Ton so
lange gespielt, bis tone erneut aufgerufen wird (oder noTone). Der Wert für die Frequenz
wird in der folgenden Zeile auf geeignete Werte abgebildet:

int frequency = map(sensor0Reading, 0, 1023, 100,5000); //100Hz bis 5kHz

Die nachfolgende Variante nutzt einen zweiten variablen Widerstand (der untere rechte
Poti in Abbildung 9-3), um die Dauer des Tons festzulegen:

const int speakerPin = 9; // Lautsprecher an Pin 9
const int pitchPin = 0; // 1. Poti bestimmt Frequenz des Tons
const int durationPin = 1; // 2. Poti bestimmt Dauer des Tons

void setup()
{
}

void loop()
{
int sensor0Reading = analogRead(pitchPin); // Poti-Wert für Frequenz einlesen
int sensor1Reading = analogRead(durationPin); // Poti-Wert für Dauer einlesen

// Analogwerte auf geeignete Wertebereiche abbilden
int frequency = map(sensor0Reading, 0, 1023, 100,5000); // 100Hz bis 5kHz
int duration = map(sensor1Reading, 0, 1023, 100,1000); // 0,1-1 Sekunde

330 | Kapitel 9: Audio-Ausgabe

tone(speakerPin, frequency, duration); // Ton für
delay(duration); // gewünschte Dauer ausgeben

}

Eine weitere Variante nutzt einen zusätzlichen Taster, so dass die Töne nur erzeugt
werden, wenn der Taster gedrückt wird.

Aktivieren Sie mit der folgenden Zeile in setup die Pullup-Widerstände (ein Anschluss-
diagramm und eine Erläuterung finden Sie in Rezept 5.2):

digitalWrite(inputPin,HIGH); // Internen Pullup am Eingangspin aktivieren

Modifizieren Sie den loop-Code so, dass die tone- und delay-Funktionen nur dann
aufgerufen werden, wenn der Taster gedrückt wird:

if(digitalRead(inputPin) = LOW) // Tasterwert einlesen
{
tone(speakerPin, frequency, duration); // Ton für
delay(duration); // gewünschte Dauer ausgeben

}

Sie können nahezu jeden Audio-Transducer (Wandler) nutzen, um Töne mit dem Ar-
duino zu erzeugen. Kleine Lautsprecher funktionieren sehr gut. Piezo-Elemente funk-
tionieren ebenfalls und sind kostengünstig, robust und können aus alten Grußkarten
wiederverwendet werden. Piezo-Elemente ziehen nur wenig Strom (sie sind hochohmige
Elemente), d.h., sie können direkt an einen Pin angeschlossen werden. Lautsprecher
haben üblicherweise einen deutlich kleineren Widerstand und müssen den Strom über
einen Widerstand beschränken. Die Komponenten, die zum Aufbau der Schaltung in
Abbildung 9-3 benötigt werden, sollten sich einfach auftreiben lassen. Hinweise zur
Beschaffung dieser Teile finden Sie auf der Website zum Buch (http://shop.oreilly.com/
product/0636920022244.do).

Siehe auch
Eine größere Funktionalität bietet die Tone-Bibliothek von Brett Hagman, die in Rezept 9.3
beschrieben wird.

9.2 Eine einfache Melodie spielen

Problem
Sie wollen den Arduino eine einfache Melodie spielen lassen.

Lösung
Nutzen Sie die tone-Funktion aus Rezept 9.1, um Töne auszugeben, die den Noten eines
Musikinstruments entsprechen. Der folgende Sketch verwendet tone, um einen String von
Noten auszugeben, und zwar das »Hallo, Welt« des Klavierunterrichts: »Morgen kommt
der Weihnachtsmann«

9.2 Eine einfache Melodie spielen | 331

/*
* Twinkle Sketch
*
* Spielt "Morgen kommt der Weihnachtsmann"
*
* Lautsprecher an Digitalpin 9
*/

const int speakerPin = 9; // Lautsprecher an Pin 9

char noteNames[] = {'C','D','E','F','G','a','b'};
unsigned int frequencies[] = {262,294,330,349,392,440,494};
const byte noteCount = sizeof(noteNames); // Anzahl der Noten (hier 7)

//Noten, Leerzeichen steht für eine Pause
char score[] = "CCGGaaGFFEEDDC GGFFEEDGGFFEED CCGGaaGFFEEDDC ";
const byte scoreLen = sizeof(score); // Anzahl der Noten

void setup()
{
}

void loop()
{
for (int i = 0; i < scoreLen; i++)
{
int duration = 333; // Jede Note für eine drittel Sekunde spielen
playNote(score[i], duration); // Note ausgeben
}

delay(4000); // Vier Sekunden warten, bevor die Melodie wiederholt wird
}

void playNote(char note, int duration)
{
// Den Ton ausgeben, der dem Notennamen entspricht
for (int i = 0; i < noteCount; i++)
{
// Passeden noteNamen finden, um den Index der Note zu ermitteln
if (noteNames[i] == note) // Notenname gefunden
tone(speakerPin, frequencies[i], duration); // Note ausgeben

}
// Gibt es keinen Treffer, ist die Note eine Pause
delay(duration);
}

noteNames ist ein Array von Zeichen, die für die Noten einer Partitur stehen. Jeder Eintrag
in diesem Array ist mit einer Frequenz verknüpft, die im notes-Array definiert ist. So hat
die Note C (der erste Eintrag im noteNames-Array) eine Frequenz von 262 Hz (der erste
Eintrag im notes-Array).

score ist ein Array, das die Noten des zu spielenden Stücks enthält:

// Leerzeichen steht für eine Pause
char score[] = "CCGGaaGFFEEDDC GGFFEEDGGFFEED CCGGaaGFFEEDDC ";

332 | Kapitel 9: Audio-Ausgabe

Bei jedem Zeichen in score, das einem Zeichen im noteNames-Array entspricht, wird die
entsprechende Note gespielt. Das Leerzeichen wird als Pause genutzt, aber jedes Zeichen,
das nicht in noteNames definiert ist, erzeugt ebenfalls eine Pause (d.h., es wird keine Note
gespielt).

Der Sketch ruft playNote für jedes Zeichen in score für eine drittel Sekunde auf.

Die playNote-Funktion sucht das noteNames-Array nach einem passenden Zeichen ab und
verwendet bei einem Treffer den entsprechenden Eintrag im frequencies-Array, um einen
Ton mit der gewünschten Frequenz auszugeben.

Jede Note wird für die gleiche Dauer ausgegeben. Wollen Sie auch die Dauer für jede Note
festlegen, können Sie den Sketch um den folgenden Code erweitern:

byte beats[scoreLen] = {1,1,1,1,1,1,2, 1,1,1,1,1,1,2,1,
1,1,1,1,1,1,2, 1,1,1,1,1,1,2,1,
1,1,1,1,1,1,2, 1,1,1,1,1,1,2};

byte beat = 180; // Takte pro Minute für Achtelnoten
unsigned int speed = 60000 / beat; // Zeit in ms für einen Takt

beats ist ein Array mit der Dauer jeder Note: 1 ist eine Achtelnote,2 eine Viertelnote und so
weiter.

beat ist die Anzahl der Takte pro Minute.

Die speed-Zeile wandelt die Takte pro Minute in eine Dauer in Millisekunden um.

Die einzige Änderung am loop-Code besteht darin, die Spieldauer aus dem beats-Array zu
ermitteln. Ändern Sie

int duration = 333; // Jede Note für eine drittel Sekunde spielen

in

int duration = beats[i] * speed; // Dauer über beats-Array bestimmen

9.3 Mehr als einen Ton gleichzeitig erzeugen

Problem
Sie wollen zwei Töne gleichzeitig ausgeben. Die Arduino Tone-Bibliothek kann bei einem
Standard-Board nur einen einzelnen Ton erzeugen, aber Sie brauchen zwei Töne gleich-
zeitig. Beachten Sie, dass das Mega-Board mehr Timer besitzt und bis zu sechs Töne er-
zeugen kann.

Lösung
Die Arduino Tone-Bibliothek ist auf einen einzelnen Ton beschränkt, da für jeden Ton ein
eigener Timer benötigt wird. Zwar besitzt ein Standard- Arduino-Board drei Timer, aber
einer wird von der millis-Funktion und ein weiterer für Servos genutzt. Das folgende
Rezept nutzt eine von Brett Hagman (dem Autor der Arduino tone-Funktion) entwickelte
Bibliothek. Diese Bibliothek ermöglicht es, mehrere Töne gleichzeitig zu erzeugen. Sie

9.3 Mehr als einen Ton gleichzeitig erzeugen | 333

können sie von http://code.google.com/p/rogue-code/wiki/ToneLibraryDocumentation he-
runterladen.

Hier ein Beispiel-Sketch aus dem Download, der zwei Töne ausgibt, die man über den
seriellen Port eingeben kann:

/*
* Dual Tones - Simultane Tonerzeugung
* Spielt die Noten 'a' bis 'g', die über den seriellen Monitor gesendet werden
* Kleinbuchstaben für den ersten, Großbuchstaben für den zweite Ton
* 's' beendet den gerade gespielten Ton
*/
#include <Tone.h>

int notes[] = { NOTE_A3,
NOTE_B3,
NOTE_C4,
NOTE_D4,
NOTE_E4,
NOTE_F4,
NOTE_G4 };

// Sie können die Töne als Array deklarieren
Tone notePlayer[2];

void setup(void)
{
Serial.begin(9600);
notePlayer[0].begin(11);
notePlayer[1].begin(12);
}

void loop(void)
{
char c;

if(Serial.available())
{
c = Serial.read();

switch(c)
{
case 'a'...'g':
notePlayer[0].play(notes[c - 'a']);
Serial.println(notes[c - 'a']);
break;

case 's':
notePlayer[0].stop();
break;

case 'A'...'G':
notePlayer[1].play(notes[c - 'A']);
Serial.println(notes[c - 'A']);
break;

case 'S':
notePlayer[1].stop();

334 | Kapitel 9: Audio-Ausgabe

break;

default:
notePlayer[1].stop();
notePlayer[0].play(NOTE_B2);
delay(300);
notePlayer[0].stop();
delay(100);
notePlayer[1].play(NOTE_B2);
delay(300);
notePlayer[1].stop();
break;

}
}
}

Diskussion
Um die Ausgabe zweier Töne an einem einzelnen Lautsprecher zu mischen, verwenden Sie
einen 500 Ohm-Widerstand an jedem Ausgangspin und verbinden sie am Lautsprecher.
Der andere Anschluss des Lautsprechers wird mit Masse verbunden (wie bei den voran-
gegangenen Sketches gezeigt).

Bei einem Standard-Arduino-Board nutzt der erste Ton Timer 2 (d.h., PWM ist an den
Pins 9 und 10 nicht verfügbar). Der zweite Ton verwendet Timer 1 (d.h., die Servo-Biblio-
thek und PWM an den Pins 11 und 12 funktionieren nicht). Bei einem Mega-Board
verwendet jeder simultane Ton die Timer in der folgenden Reihenfolge: 2, 3, 4, 5, 1, 0.

Es ist möglich, auf einem Standard-Arduino-Board mehr als drei Noten
simultan auszugeben (und mehr als sechs bei einem Mega), aber millis
und delay funktionieren dann nicht mehr richtig. Wenn Sie auf der si-
cheren Seite sein wollen, verwenden Sie simultan nicht mehr als zwei Töne
(bzw. fünf beim Mega).

9.4 Einen Ton erzeugen und eine LED ansteuern

Problem
Sie wollen Töne über einen Lautsprecher oder einen anderen Audio-Transducer aus-
geben, müssen sie aber per Software erzeugen, da Sie den Timer brauchen, z.B. weil Sie
analogWrite für Pin 9 oder 10 benötigen.

Lösung
Die in den vorangegangenen Rezepten behandelte tone-Funktion ist einfach zu nutzen,
benötigt aber einen Hardware-Timer, den Sie für andere Aufgaben wie analogWrite be-
nötigen könnten. Der folgende Code nutzt keinen Timer, macht aber nichts anderes,
während eine Note gespielt wird. Im Gegensatz zur Arduino tone-Funktion »blockiert«

9.4 Einen Ton erzeugen und eine LED ansteuern | 335

die hier beschriebene playTone-Funktion, d.h., sie kehrt erst zurück, wenn die Note
gespielt wurde.

Der Sketch spielt sechs Noten, jede mit der doppelten Frequenz der vorangegangenen
(also eine Oktave höher). Die playTone-Funktion erzeugt einen Ton der angegebenen
Dauer an einem Lautsprecher oder Piezo-Element, das mit einem digitalen Ausgangspin
und Masse verbunden ist (siehe Abbildung 9-4):

byte speakerPin = 9;
byte ledPin = 10;

void setup()
{
pinMode(speakerPin, OUTPUT);
}

void playTone(int period, int duration)
{
// period ist ein Takt
// duration ist die Dauer in Millisekunden
int pulse = period / 2;
for (long i = 0; i < duration * 1000L; i += period)
{
digitalWrite(speakerPin, HIGH);
delayMicroseconds(pulse);
digitalWrite(speakerPin, LOW);
delayMicroseconds(pulse);
}
}

void fadeLED(){
for (int brightness = 0; brightness < 255; brightness++)
{
analogWrite(ledPin, brightness);
delay(2);
}
for (int brightness = 255; brightness >= 0; brightness--) {
analogWrite(ledPin, brightness);
delay(2);
}

}
void loop()
{
// Eine Note mit einer Dauer von 15289 ist ein tiefes C (das zweitniedrigste C auf einem Klavier)
for(int period=15289; period >= 477; period=period / 2) // 6 Oktaven spielen
{
playTone(period, 200); // Ton für 200 ms spielen

}
fadeLED();
}

336 | Kapitel 9: Audio-Ausgabe

9
8

100 uF

220
Ohm

+
10
11
12

GND
13

AREFA
R
D
U
I
N
O

Lautstärke-
regler

Lautsprecher oder
Piezoelement

Abbildung 9-4: Anschluss von Lautsprecher und LED

Diskussion
Die beiden von playTone verwendeten Werte sind period und duration. Die Variable
period repräsentiert die Zeit eines Taktes des zu spielenden Tons. Der Lautsprecher wird
für die in period angegebene Dauer (in Mikrosekunden) ein- und ausgeschaltet. Die
for-Schleife wiederholt dieses Pulsieren für die im duration-Argument festgelegte Zeit in
Millisekunden.

Wenn Sie lieber mit Frequenzen arbeiten als mit Takten, können Sie die reziproke Be-
ziehung zwischen Frequenz und Zeit nutzen. Die Schwingungsdauer ist 1 durch die
Frequenz. Sie benötigen die Schwingungsdauer in Mikrosekunden. Da eine Sekunde einer
Million Mikrosekunden entspricht, wird die Schwingungsdauer als 1000000L / Frequenz
berechnet (das »L« am Ende der Zahl weist den Compiler an, mit langen Integerwerten zu
rechnen, damit der Wertebereich normaler Integerzahlen nicht überschritten wird. Be-
achten Sie hierzu die Erläuterungen in Rezept 2.2):

void playFrequency(int frequency, int duration)
{
int period = 1000000L / frequency;
int pulse = period / 2;

Der Rest des Codes ist mit playTone identisch:

for (long i = 0; i < duration * 1000L; i += period)
{
digitalWrite(speakerPin, HIGH);
delayMicroseconds(pulse);
digitalWrite(speakerPin, LOW);
delayMicroseconds(pulse);
}
}

Der Code dieses Rezepts wartet, bis der Ton vollständig gespielt wurde, bevor er sich
anderen Dingen zuwenden kann. Es ist möglich, den Ton im Hintergrund zu erzeugen
(ohne darauf warten zu müssen, dass er vollständig ausgegeben wurde), indem man den
Code zur Tongenerierung in einen Interrupthandler packt. Der Quellcode der tone-Funk-
tion, der mit der Arduino-Distribution geliefert wird, zeigt, wie das geht.

9.4 Einen Ton erzeugen und eine LED ansteuern | 337

Siehe auch
Rezept 9.7

Hier einige Beispiel für etwas komplexere Audio-Synthesen, die mit dem Arduino erreicht
werden können:

Pulse-Code Modulation
PCM erlaubt die Approximierung analoger Audiosignale mit digitalen Signalen. Ein
Arduino-Wiki-Artikel erklärt, wie man 8-Bit-PCM mit Hilfe eines Timers erzeugt.
Den Artikel finden Sie unter http://www.arduino.cc/playground/Code/PCMAudio.

Pocket Piano-Shield
Critter and Guitaris Pocket Piano-Shield bietet Ihnen eine klavierähnliche Tastatur,
Wavetable-Synthese, FM-Synthese und mehr. Siehe http://www.critterandguitari.com/
home/store/arduino-piano.php.

9.5 Eine WAV-Datei abspielen

Problem
Der Arduino soll aus einem Programm heraus das Abspielen einer WAV-Datei anstoßen.

Lösung
Dieser Sketch nutzt das Adafruit Wave Shield und basiert auf einem Beispiel-Sketch von
der Produktseite (http://www.adafruit.com/index.php?main_page=product_info&products_id
=94).

Der Sketch spielt eine von neun Dateien ab. Welche Datei das ist, hängt davon ab, in
welcher Stellung sich der variable Widerstand an Analogeingang 0 befindet, wenn die
Taste an Pin 15 gedrückt wird:

/*
* WaveShieldPlaySelection Sketch
*
* Ausgewählte WAV-Datei abspielen
*
* Position des variablen Widerstands beim Drücken des Tasters wählt die Datei aus
*
*/

#include <FatReader.h>
#include <SdReader.h>

#include "WaveHC.h"
#include "WaveUtil.h"

SdReader card; // Dieses Objekt enthält Informationen zur Karte
FatVolume vol; // Enthält Informationen zur Partition der Karte
FatReader root; // Enthält Informationen zum Root-Verzeichnis des Volumes

338 | Kapitel 9: Audio-Ausgabe

FatReader file; // Dieses Objekt repräsentiert die WAV-Datei
WaveHC wave; // Wave- (Audio) Objekt - es wird nur jeweils eine Datei abgespielt

const int buttonPin = 15;
const int potPin = 0; // Analogeingang an Pin 0

char * wavFiles[] = {
"1.WAV","2.WAV","3.WAV","4.WAV","5.WAV","6.WAV","7.WAV","8.WAV","9.WAV"};

void setup()
{
Serial.begin(9600);
pinMode(buttonPin, INPUT);
digitalWrite(buttonPin, HIGH); // Pullup-Widerstand einschalten

if (!card.init())
{
// Etwas ist schiefgegangen, sdErrorCheck gibt einen Fehlercode aus
putstring_nl("Initialisierung der Karte fehlgeschlagen!");
sdErrorCheck();
while(1); // 'Anhalten' - wir machen nichts!
}

// Optimiertes Lesen aktivieren - bei manchen Karten kann es zum Timeout kommen
card.partialBlockRead(true);

// FAT-Partition finden!
uint8_t part;
for (part = 0; part < 5; part++) // Wir müssen bis zu 5 Slots untersuchen
{
if (vol.init(card, part))
break; // Wir haben eine gefunden, also Schleife abbrechen

}
if (part == 5) // Gültige Partitionen sind 0 bis 4; andere sind nicht gültig
{
putstring_nl("Keine gültige FAT-Partition!");
sdErrorCheck(); // Etwas ist schiefgegangen. Fehler ausgeben
while(1); // und 'anhalten' - nichts tun!
}

// Dem Benutzer mitteilen, was wir gefunden haben
putstring("Verwende Partition ");
Serial.print(part, DEC);
putstring(", Typ ist FAT");
Serial.println(vol.fatType(),DEC); // FAT16 oder FAT32?

// Versuche, Stammverzeichnis zu öffnen
if (!root.openRoot(vol))
{
putstring_nl("Kann Stammvereichnis nicht oeffnen!"); // Etwas ist schiefgegangen, Fehler

ausgeben
while(1); // Dann 'anhalten' - nichts tun!
}

// An diesem Punkt waren alle Vorbereitungen erfolgreich.

9.5 Eine WAV-Datei abspielen | 339

putstring_nl("Bereit!");
}

void loop()
{
if(digitalRead(buttonPin) == LOW)
{
int value = analogRead(potPin);
int index = map(value,0,1023,0,8); // Index auf eine der 9 Dateien
playcomplete(wavFiles[index]);
Serial.println(value);
}
}

// Datei ohne Pause von Anfang bis Ende komplett abspielen.
void playcomplete(char *name)
{
// playfile findet die Datei und spielt sie ab
playfile(name);
while (wave.isplaying) {
// Wir warten, solange sie abgespielt wird
}
// Fertig mit Abspielen
}

void playfile(char *name) {
// Prüfen, ob das Wave-Objekt gerade etwas macht
if (wave.isplaying) {
// Es wird bereits atwas abgespielt,
wave.stop(); // also anhalten
}
// Im Stammverzeichis nachsehen und Datei öffnen
if (!file.open(root, name)) {
putstring("Kann Datei nicht oeffnen: ");
Serial.print(name);
return;
}
// Datei einlesen und in wave-Objekt umwandeln
if (!wave.create(file)) {
putstring_nl("Keine gueltige WAV-Datei");
return;
}
// start playback
wave.play();
}

void sdErrorCheck(void)
{
if (!card.errorCode()) return;
putstring("\n\rSD E/A-Fehler: "); Serial.print(card.errorCode(), HEX);
putstring(", ");
Serial.println(card.errorData(), HEX);
while(1)
; // Bei Fehler anhalten

}

340 | Kapitel 9: Audio-Ausgabe

Diskussion
Das Wave-Shield liest Daten von einer SD-Karte ein. Es nutzt eine eigene Bibliothek, die
von der Ladyada-Website (http://www.ladyada.net/make/waveshield/) heruntergeladen
werden kann. Die abzuspielenden WAV-Dateien müssen über einen Computer auf der
Speicherkarte abgelegt werden. Sie müssen als 22 kHz, 12-Bit unkomprimierte Mono-
dateien vorliegen und die Dateinamen müssen das 8.3-Format verwenden. Sie können das
Open Source Audio-Utility Audacity verwenden, um Audiodateien zu editieren und in das
richtige Format umzuwandeln. Das Wave-Shield liest die Audiodatei von der SD-Karte ein
d.h., die Länge der Audiodatei wird nur durch die Größe der Speicherkarte beschränkt.

Siehe auch
Die Bibliothek und Dokumentation zum Ladyada Wave-Shield: http://www.ladyada.net/
make/waveshield/

Audacity Audiobearbeitungs- und Konvertierungssoftware: http://audacity.sourceforge
.net/

SparkFun bietet verschiedene Audiomodule an, darunter ein Audio-Sound-Modul (http://
www.sparkfun.com/products/9534) und ein MP3-Breakout-Board (http://www.sparkfun
.com/products/8954).

9.6 MIDI steuern

Problem
Sie wollen mit dem Arduino Musik über einen MIDI-Synthesizer abspielen lassen.

Lösung
Um die Verbindung mit einem MIDI-Gerät herzustellen, benötigen Sie eine(n) fünf-
poligen DIN-Stecker/-Buchse. Bei einer Buchse benötigen Sie außerdem ein Verlänge-
rungskabel, um die Verbindung mit dem Gerät herzustellen. Verbinden Sie den MIDI-
Anschluss mit dem Arduino über einen 220 Ohm-Widerstand, wie in Abbildung 9-5 zu
sehen.

9.6 MIDI steuern | 341

T
X

 1
R

X
 02346 579 8101112

G
N

D 13

A
R

E
F

Gn
d

V
in

5V3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

220

Ohm

MIDI-

Anschluss

Abbildung 9-5: MIDI-Anschlüsse

Beim Upload des Codes auf den Arduino sollten Sie das MIDI-Gerät abklemmen, da es
den Upload stören könnte. Nachdem der Sketch hochgeladen wurde, verbinden Sie das
MIDI-Gerät mit dem Arduino-Ausgang. Ein Musikstück wird gespielt, sobald Sie den mit
Pin 2 verbundenen Taster drücken:

/*
midiOut Sketch
Sendet MIDI-Nachrichten an ein MIDI-Instrument, die ein Musikstück abspielen, sobald der Taster
an Pin 2 gedrückt wird
*/

//Diese Zahlen spezifizieren die Noten
const byte notes[8] = {60, 62, 64, 65, 67, 69, 71, 72};
//Sie sind Teil der MIDI-Spezifikation
const int length = 8;
const int switchPin = 2;
const int ledPin = 13;

void setup() {
Serial.begin(31250);
pinMode(switchPin, INPUT);
digitalWrite(switchPin, HIGH);
pinMode(ledPin, OUTPUT);
}

void loop() {
if (digitalRead(switchPin == LOW))
{
for (byte noteNumber = 0; noteNumber < 8; noteNumber++)
{

342 | Kapitel 9: Audio-Ausgabe

playMidiNote(1, notes[noteNumber], 127);
digitalWrite(ledPin, HIGH);
delay(70);
playMidiNote(1, notes[noteNumber], 0);
digitalWrite(ledPin, HIGH);
delay(30);
}
}
}

void playMidiNote(byte channel, byte note, byte velocity)
{
byte midiMessage= 0x90 + (channel - 1);
Serial.write(midiMessage);
Serial.write(note);
Serial.write(velocity);
}

Diskussion
Der Sketch nutzt den seriellen Port, um die MIDI-Daten zu senden. Die Schaltung an Pin 1
kann also den Upload des Codes auf das Board stören. Entfernen Sie den Draht von Pin 1
während des Uploads und schließen Sie ihn danach wieder an.

MIDI wurde ursprünglich genutzt, um digitale Musikinstrumente miteinander zu ver-
binden, so dass sie sich gegenseitig steuern können. Die MIDI-Spezifikation beschreibt die
elektrischen Anschlüsse und die Nachrichten, die Sie senden müssen.

MIDI ist genau genommen eine serielle Verbindung (mit einer ungewöhnlichen Ge-
schwindigkeit von 31250 Baud), d.h., der Arduino kann MIDI-Nachrichen über seinen
seriellen Hardware-Port an den Pins 0 und 1 senden. Da der serielle Port für die MIDI-
Nachrichten benötigt wird, können wir keine Meldungen an den seriellen Monitor
ausgeben, weshalb der Sketch die LED an Pin 13 aufblinken lässt, wenn er eine Note
sendet.

Jede MIDI-Nachricht besteht aus zumindest einem Byte. Dieses Byte legt fest, was zu tun
ist. Einige Befehle benötigen keine weiteren Informationen, andere brauchen zusätzliche
Daten. Die Nachricht in diesem Sketch ist note on, die zwei zusätzliche Informationen
benötigt: eine Note und ihre Lautstärke. Beide Informationen werden als Bytes im Bereich
von 0 bis 127 übertragen.

Der Sketch initialisiert den seriellen Port auf eine Geschwindigkeit von 31250 Baud. Der
restliche MIDI-spezifische Code befindet sich in der Funktion playMidiNote:

void playMidiNote(byte channel, byte note, byte velocity)
{
byte midiMessage= 0x90 + (channel - 1);
Serial.write(midiMessage);
Serial.write(note);
Serial.write(velocity);
}

9.6 MIDI steuern | 343

Die Funktion verlangt drei Parameter und berechnet das erste zu sendende Byte über die
Kanal-Information.

MIDI-Informationen werden über verschiedene Kanäle (1 bis 16) gesendet. Jeder Kanal
kann mit einem anderen Instrument belegt werden, so dass Mehrkanal-Musik gespielt
werden kann. Der Befehl für note on (zum Spielen eines Sounds) ist eine Kombination aus
0x90 (die höherwertigen vier Bits sind b1001) und dem gewünschten MIDI-Kanal in den
unteren vier Bits (mit Werten zwischen b0000 und b1111). Das Byte verwendet 0 bis 15
für die Kanäle 1 bis 16, weshalb wir noch eine 1 abziehen.

Dann wird die Note gesendet und die Lautstärke (die bei MIDI Geschwindigkeit, engl.
velocity, genannt wird, da sie ursprünglich angab, wie schnell die Taste einer Tastatur
bedient wird).

Die seriellen write-Anweisungen geben an, dass die Daten als Bytes (und nicht als ASCII-
Werte) gesendet werden sollen. println wird nicht verwendet, weil ein Zeilenvorschub-
Zeichen zusätzliche Bytes im Signal erzeugen würde, die wir dort nicht gebrauchen können.

Der Sound wird mit der gleichen Nachricht ausgeschaltet, nur dass die Lautstärke auf 0
gesetzt wird.

Dieses Rezept funktioniert mit MIDI-Geräten, die einen fünfpoligen MIDI-In-Anschluss
haben. Wenn Ihr MIDI-Gerät einen USB-Anschluss besitzt, funktioniert es nicht. Der
Arduino kann MIDI-Musikprogramme auf Ihrem Computer nicht ohne zusätzliche Hard-
ware (einen MIDI-nach-USB-Adapter) steuern. Zwar besitzt der Arduino einen USB-An-
schluss, doch Ihr Computer erkennt ihn als serielles Gerät und nicht als MIDI-Gerät.

Siehe auch
Um MIDI zu senden und zu empfangen, sehen Sie sich die MIDI-Bibliothek auf http://
www.arduino.cc/playground/Main/MIDILibrary an.

MIDI-Nachrichten werden detailliert in http://www.midi.org/techspecs/midimessages.php
beschrieben.

Weitere Informationen zum SparkFun MIDI Breakout-Shield (BOB-09598), finden Sie
auf http://www.sparkfun.com/products/9598.

Um den Arduino Uno als natives USB-MIDI-Gerät einzurichten, sehen Sie sich Rezept 18.14
an.

9.7 Audio-Synthesizer

Problem
Sie wollen komplexe Sounds erzeugen, wie sie bei der Produktion elektronischer Musik
verwendet werden.

344 | Kapitel 9: Audio-Ausgabe

Lösung
Die Simulation von Audio-Oszillatoren, wie sie in Sound-Synthesizern verwendet werden,
ist kompliziert, aber Peter Knight hat einen Sketch namens Auduino entwickelt, der es
dem Arduino ermöglicht, komplexere und interessantere Sounds zu erzeugen.

Laden Sie den Sketch von http://code.google.com/p/tinkerit/wiki/Auduino herunter.

Verbinden Sie fünf lineare 4,7 KOhm-Potentiometer mit den Analogpins 0 bis 4 (siehe
Abbildung 9-6). Potentiometer mit langem Stift sind besser, da man sie besser einstellen
kann. Pin 3 wird als Audio-Ausgang verwendet und wird über einen Klinkenstecker mit
dem Verstärker verbunden.

Diskussion
Der Sketch-Code ist komplex, da er direkt die Hardware-Timer manipuliert, um die ge-
wünschten Frequenzen zu erzeugen, die per Software transformiert werden, um die
gewünschten Audio-Effekte zu erzeugen. Der Code ist hier nicht enthalten, weil Sie ihn
nicht verstehen müssen, um Auduino nutzen zu können.

Auduino verwendet eine als Granularsynthese bezeichnete Technik zur Sound-Generierung.
Sie verwendet zwei elektronisch erzeugte Soundquellen (sog. Grains). Die variablen Wider-
stände steuern die Frequenz und das Abschwellen der Grains (Eingänge 0 und 2 für den
einen Grain sowie 3 und 1 für den anderen). Eingang 4 regelt die Synchronisation zwischen
den beiden Grains.

TX
 1

RX
 02346 579 8101112

GN
D 13

AR
EF

Gn
d

Vi
n

5 V3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

4 5210 3

ANALOG

Variable
Widerstände

4,7K

Audiostecker

Abbildung 9-6: Auduino

9.7 Audio-Synthesizer | 345

Wenn Sie den Code anpassen wollen, können Sie die Skala verändern, die zur Berechnung
der Frequenzen verwendet wird. Voreingestellt ist die pentatonische Skala, doch Sie
können das Auskommentieren und eine andere Option aktivieren, die eine andere Skala
verwendet.

Seien Sie vorsichtig, wenn Sie zusätzlichen Code in die Hauptschleife einfügen. Der Sketch
ist stark optimiert und zusätzlicher Code könnte ihn so stark verlangsamen, dass die
Audio-Synthese nicht mehr gut funktioniert.

Sie können jeden der Potis durch Sensoren ersetzen, die ein analoges Signal erzeugen (siehe
Kapitel 6). Beispielsweise könnte ein lichtempfindlicher Widerstand (siehe Rezept 6.2) oder
ein Entfernungsmesser (der gegen Ende von Rezept 6.4 beschrieben wurde) an einem der
Frequenzeingänge (Pin 0 oder 3) die Tonlage steuern, je nachdem, wie weit Ihre Hand vom
Sensor entfernt ist (schauen Sie bei Wikipedia oder Google nach »Theremin«, wenn Sie
etwas über das Musikinstrument erfahren wollen, das über Handbewegungen gespielt
wird).

Siehe auch
Video-Demonstration des Auduino: http://www.vimeo.com/2266458

Wikipedia-Artikel zur Granularsynthese: http://de.wikipedia.org/wiki/Granularsynthese

Wikipedia-Artikel zum Theremin: http://de.wikipedia.org/wiki/Theremin

346 | Kapitel 9: Audio-Ausgabe

KAPITEL 10

Externe Geräte fernsteuern

10.0 Einführung
Der Arduino kann mit nahezu jedem Gerät interagieren, das irgendeine Form von Fern-
bedienung verwendet. Dazu gehören Fernseher, Audioanlagen, Kameras, Garagentore,
Haushaltsgeräte und Spielzeug. Die meisten Fernbedienungen senden digitale Daten
mittels Infrarot oder Funk von einem Sender (Transmitter) an einen Empfänger (Recei-
ver). Unterschiedliche Protokolle (Signalmuster) werden genutzt, um einen Tastendruck
in ein digitales Signal umzuwandeln. Die Rezepte in diesem Kapitel zeigen, wie man
weitverbreitete Fernbedienungen und deren Protokolle nutzt.

Eine IR-Fernbedienung schaltet eine LED in bestimmten Mustern an und aus, um ein-
deutige Codes zu erzeugen. Diese Codes umfassen typischerweise 12 bis 32 Bit. Jede Taste
auf der Fernbedienung ist mit einem bestimmten Code verknüpft, der gesendet wird, wenn
man diese Taste drückt. Wird die Taste gedrückt, sendet die Fernbedienung üblicherweise
wiederholt den gleichen Code, auch wenn einige Fernbedienungen (z.B. NEC) einen spe-
ziellen Wiederholungscode senden. Bei RC-5- oder RC-6-Fernbedienungen von Philips
wird bei jedem Tastendruck ein Bit im Code umgeschaltet. Der Empfänger nutzt dieses
Bit, um zu erkennen, ob eine Taste ein zweites Mal gedrückt wurde. Mehr über die Technik
von IR-Fernbedienungen erfahren Sie auf http://www.sbprojects.com/knowledge/ir/ir.htm.

Die hier vorgestellten Rezepte verwenden ein kostengünstiges IR-Empfängermodul zur
Erkennung des Signals, das eine digitale Ausgabe erzeugt, die der Arduino lesen kann.
Diese digitale Ausgabe wird dann von einer Bibliothek namens IRremote verarbeitet. Sie
wurde von Ken Shirriff entwickelt und kann von http://www.arcfn.com/2009/08/multi-
protocol-infrared-remote-library.html heruntergeladen werden.

Die gleiche Bibliothek wird auch in den Rezepten genutzt, bei denen der Arduino als
Fernbedienung fungiert und Befehle sendet.

Installieren Sie die Bibliothek im libraries-Ordner in Ihrem Arduino-Sketch-Ordner. Hilfe
bei der Installation von Bibliotheken finden Sie in .

Funktechnik nutzende Fernbedienungen sind schwieriger zu emulieren als IR-Fernbedie-
nungen. Die Kontakte dieser Fernbedienungen lassen sich aber über den Arduino akti-

| 347

vieren. Die Rezepte für Funk-Fernbedienungen simulieren Tastendrücke, indem Sie die
entsprechenden Kontakte in der Fernbedienung schließen. Bei Funk-Fernbedienungen
müssen Sie die Fernbedienung möglicherweise auseinandernehmen und Drähte von den
Kontakten mit dem Arduino verbinden, um sie nutzen zu können. Als Optokoppler
bezeichnete Bauelemente werden genutzt, um eine elektrische Trennung zwischen dem
Arduino und der Fernbedienung zu erreichen. Diese Trennung verhindert, dass Strom
vom Arduino die Fernbedienung beschädigt (und umgekehrt).

Optokoppler ermöglichen dem Arduino die sichere Steuerung eines anderen Schaltkrei-
ses, der mit anderen Spannungen betrieben wird. Wie es der Name andeutet, ermöglichen
Optokoppler eine elektrische Trennung. Diese Bauelemente enthalten eine LED, die über
einen Arduino-Digitalpin angesteuert werden kann. Das Licht der LED im Optokoppler
ist auf einen lichtempfindlichen Transistor gerichtet. Wird die LED eingeschaltet, leitet
der Transistor und schließt den Kreis zwischen seinen beiden Anschlüssen – so, als würde
man eine Taste drücken.

10.1 Auf eine Infrarot-Fernbedienung reagieren

Problem
Sie wollen auf Tasten reagieren, die an einer Fernbedienung gedrückt wurden.

Lösung
Arduino kann die IR-Signale einer Fernbedienung über ein IR-Empfangsmodul (IR-Recei-
ver) verarbeiten. Gängige Bauteile sind das TSOP4838, PNA4602 und TSOP2438. Die
ersten beiden haben identische Anschlüsse, d.h., die Schaltung ist gleich. Beim TSOP2438
sind die +5V- und Masseanschlüsse vertauscht. Stellen Sie mit Hilfe des Datenblattes
sicher, dass Sie ihr Bauelement richtig anschließen.

Dieses Rezept nutzt die IRremote-Bibliothek von http://www.arcfn.com/2009/08/multi-
protocol-infrared-remote-library.html. Schließen Sie den IR-Empfänger Ihrem Datenblatt
entsprechend an. Die Anschlüsse in Abbildung 10-1 sind für den TSOP4838/PNA4602
gedacht.

Der folgende Sketch schaltet eine LED um, wenn eine Taste an der Infrarot-Fernbedie-
nung gedrückt wird:

/*
IR_remote_detector Sketch
Ein IR-Empfänger ist mit Pin 2 verbunden.
Die LED an Pin 13 wird bei jedem Tastendruck an der Fernbedienung ein- und ausgeschaltet.
*/

#include <IRremote.h> //Bibliothek einbinden

const int irReceiverPin = 2; // Pin für Empfänger
const int ledPin = 13;

348 | Kapitel 10: Externe Geräte fernsteuern

IRrecv irrecv(irReceiverPin); // IRrecv-Objekt erzeugen
decode_results decodedSignal; // Dekodierte Daten vom IR-Detektor
void setup()
{
pinMode(ledPin, OUTPUT);
irrecv.enableIRIn(); // Receiver-Objekt starten
}

boolean lightState = false; // Zustand der LED nachhalten
unsigned long last = millis(); // Festhalten, wann die letzte IR-Nachricht empfangen wurde

void loop()
{
if (irrecv.decode(&decodedSignal) == true) // Wahr, wenn eine Nachricht

// empfangen wurde
{
if (millis() - last > 250) { // Ist seit der letzten Nachricht 1/4 Sekunde vergangen?
lightState = !lightState; //Ja: LED umschalten
digitalWrite(ledPin, lightState);
}
last = millis();
irrecv.resume(); // Auf nächste Nachricht warten
}
}

TX 1
RX 0

2
3
4

6
5

7

Gnd
Vin

5V
3V3

RESET

Gnd

A

O
N
I
U
D
R

1 2 3

TSOP4838
oder
PNA4602

1 Ausgang
2 Masse
3 +5v

1 2 3

TSOP2438

1 Ausgang
2 +5V
3 Masse

Korrekte Spannungs- und

Masse-Anschlüsse im

Datenblatt nachsehen

Abbildung 10-1: Anschluss eine IR-Empfangsmoduls

Diskussion
Der IR-Receiver wandelt das IR-Signal in digitale Impulse um, die eine Folge von Einsen
und Nullen bilden, die für die Tasten der Fernbedienung stehen. Die IRremote-Bibliothek
dekodiert diese Impulse und liefert einen numerischen Wert für jede Taste zurück. (Die
Werte selbst hängen von der verwendeten Fernbedienung ab).

Das #include <IRremote.h> zu Beginn des Sketches stellt den Bibliothekscode innerhalb
des Sketches zur Verfügung und die Zeile IRrecv irrecv(irReceiverPin); erzeugt ein

10.1 Auf eine Infrarot-Fernbedienung reagieren | 349

IRrecv-Objekt namens irrecv, um die Signale vom IR-Receiver am irReceiverPin (hier
Pin 2) zu empfangen. In erfahren Sie mehr über die Verwendung von Bibliotheken.

Sie können das irrecv-Objekt nutzen, um auf das Signal des IR-Empfängers zuzugreifen.
Sie können ihm Befehle geben, die nach Signalen Ausschau halten und sie dekodieren. Die
dekodierten Antworten der Bibliothek werden in einer Variablen namens decode_results
gespeichert. Das receiver-Objekt wird im setup mit der Zeile irrecv.enableIRIn();
gestartet. Die Ergebnisse werden in loop mit Hilfe der Funktion irrecv.decode(&decoded-
Signal) überprüft.

Die decode-Funktion gibt true zurück, wenn Daten vorhanden sind, die dann in der
Variablen decodedSignal gespeichert werden. Rezept 2.11 erklärt, wie das &-Symbol bei
Funktionsaufrufen verwendet wird, bei denen die Parameter so modifiziert werden, dass
Informationen zurückgegeben werden können.

Wurde eine Nachricht von der Fernbedienung empfangen, schaltet der Code die LED um,
wenn seit dem letzten Wechsel mehr als eine viertel Sekunde vergangen ist. Anderenfalls
würde die LED sehr schnell ein- und ausgeschaltet werden, wenn die Fernbedienung die
Codes bei einem Tastendruck wiederholt sendet, und das Ganze würde eher willkürlich
wirken.

Die Variable decodedSignal enthält einen Wert, der mit einer Taste verknüpft ist. Dieser
Wert wird in diesem Rezept ignoriert (im nächsten aber verwendet), aber Sie können den
Wert ausgeben, indem Sie die im folgenden Code hervorgehobene Serial.println-Zeile in
Ihren Code einfügen:

if (irrecv.decode(&decodedSignal) == true) // Wahr, wenn eine Nachricht
// empfangen wurde

{
Serial.println(results.value); // Dekodiertes Ergebnis ausgeben

Die Bibliothek muss angewiesen werden, weiterhin auf Signale zu warten, was mit der
Zeile irrecv.resume(); erreicht wird.

Dieser Sketch schaltet eine LED ein und aus, wenn eine Taste an der Fernbedienung
gedrückt wird, aber Sie können andere Dinge steuern – zum Beispiel können Sie einen
Servomotor nutzen, um eine Lampe zu dimmen (mehr zur Steuerung physischer Geräte
finden Sie in Kapitel 8).

10.2 IR-Signale einer Fernbedienung dekodieren

Problem
Sie wollen eine bestimmte Taste erkennen, die auf einer Fernbedienung gedrückt wurde.

Lösung
Der folgende Sketch kontrolliert die Helligkeit einer LED über die Tasten einer Fernbe-
dienung. Der Code fordert beim Start die Tasten 0 bis 4 der Fernbedienung an. Die ent-

350 | Kapitel 10: Externe Geräte fernsteuern

sprechenden Codes werden im Arduino-Speicher (RAM) festgehalten. Der Sketch reagiert
auf diese Tasten, indem er die Helligkeit der LED in Abhängigkeit von der gedrückten
Taste einstellt. Die Taste 0 schaltet die LED aus und 1 bis 4 erhöhen die Helligkeit:

/*
RemoteDecode Sketch
IR-Signale werden dekodiert, um die Helligkeit einer LED zu steuern
Die Werte der Tasten 0 bis 4 werden zu Beginn des Sketches abgefragt und gespeichert
Die Taste 0 schaltet die LED aus, die Helligkeit wird mit den Tasten 1 bis 4 schrittweise erhöht
*/

#include <IRremote.h> // Bibliothek einbinden

const int irReceivePin = 2; // Pin für IR-Empfänger
const int ledPin = 9; // LED an PWM-Pin

const int numberOfKeys = 5; // 5 Tasten werden gelernt(0 bis 4)
long irKeyCodes[numberOfKeys]; // Codes für die jeweiligen Tasten

IRrecv irrecv(irReceivePin); // IR-Objekt erzeugen
decode_results results; // IR-Daten stehen hier

void setup()
{
Serial.begin(9600);
pinMode(irReceivePin, INPUT);
pinMode(ledPin, OUTPUT);
irrecv.enableIRIn(); // IR-Empfänger starten
learnKeycodes(); // Tastencodes der Fernbedienung lernen
Serial.println("Druecken Sie eine Taste der Fernbedienung");
}

void loop()
{
long key;
int brightness;

if (irrecv.decode(&results))
{
// Daten wurden empfangen
irrecv.resume();
key = convertCodeToKey(results.value);
if(key >= 0)
{
Serial.print("Taste empfangen: ");
Serial.println(key);
brightness = map(key, 0,numberOfKeys-1, 0, 255);
analogWrite(ledPin, brightness);
}
}
}

/*
* Codes der Fernbedienung lernen
*/
void learnKeycodes()

10.2 IR-Signale einer Fernbedienung dekodieren | 351

{
while(irrecv.decode(&results)) // Puffer leeren
irrecv.resume();

Serial.println("IR-Codes lernen...");
long prevValue = -1;
int i=0;
while(i < numberOfKeys)
{
Serial.print("Folgende Taste auf der Fernbedienung druecken: ");
Serial.print(i);
while(true)
{
if(irrecv.decode(&results))
{

if(results.value != -1 && results.value != prevValue)
{
showReceivedData();
irKeyCodes[i] = results.value;
i = i + 1;
prevValue = results.value;
irrecv.resume(); // Nächsten Wert empfangen
break;
}
irrecv.resume(); // Nächsten Wert empfangen

}
}
}
Serial.println("Lernen abgeschlossen...");
}

/*
* IR-Code in logischen Tastencode umwandeln
* (oder -1, wenn keine Ziffer empfangen wurde)
*/
int convertCodeToKey(long code)
{
for(int i=0; i < numberOfKeys; i++)
{
if(code == irKeyCodes[i])
{
return i; // Gefundene Taste zurückgeben
}
}
return -1;
}

/*
* Protokoll-Typ und Wert ausgeben
*/
void showReceivedData()
{
if (results.decode_type == UNKNOWN)
{
Serial.println("- Nachricht konnte nicht dekodiert werden");
}
else

352 | Kapitel 10: Externe Geräte fernsteuern

{
if (results.decode_type == NEC) {
Serial.print("- NEC dekodiert: ");
}
else if (results.decode_type == SONY) {
Serial.print("- SONY dekodiert: ");
}
else if (results.decode_type == RC5) {
Serial.print("- RC5 dekodiert: ");
}
else if (results.decode_type == RC6) {
Serial.print("- RC6 dekodiert: ");
}
Serial.print("Hexwert = ");
Serial.println(results.value, HEX);
}
}

Diskussion
Die Lösung basiert auf der IRremote-Bibliothek. Details finden Sie in der Einführung zu
diesem Kapitel.

Der Sketch startet die IR-Bibliothek mit dem folgenden Code:

irrecv.enableIRIn(); // IR-Empfänger starten

Er ruft dann die Funktion learnKeyCodes auf, um den Benutzer aufzufordern, die Tasten 0
bis 4 der Fernbedienung zu drücken. Der Code jeder Taste wird im Array irKeyCodes
festgehalten. Nachdem alle Taste erkannt und gespeichert wurden, wartet der loop-Code
auf einen Tastendruck und überprüft, ob es sich dabei um eine der Ziffern aus dem
irKeyCodes-Array handelt. Ist das der Fall, wird der Wert zur Steuerung der Helligkeit der
LED mittels analogWrite genutzt.

In Rezept 5.7 erfahren Sie mehr über die Verwendung von map und
analogWrite zur Steuerung der Helligkeit einer LED.

Die Bibliothek sollte mit den meisten IR-Fernbedienungen zurechtkommen. Sie kann die
Timings erkennen und speichern und bei Bedarf wiedergeben.

Sie können die Tastencodes auch fest vorgeben, damit sie im Sketch nicht immer wieder
neu erlernt werden müssen. Ersetzen Sie die Deklaration von irKeyCodes durch die fol-
genden Zeilen, um die Werte für die jeweiligen Tasten festzulegen. Ändern Sie die Werte
so ab, dass sie zu Ihrer Fernbedienung passen. Die Codes erscheinen im seriellen Monitor,
wenn die Tasten in der learnKeyCodes-Funktion gedrückt werden):

long irKeyCodes[numberOfKeys] = {
0x18E758A7, //0-Taste
0x18E708F7, //1-Taste
0x18E78877, //2-Taste
0x18E748B7, //3-Taste
0x18E7C837, //4-Taste
};

10.2 IR-Signale einer Fernbedienung dekodieren | 353

Siehe auch
Rezept 18.1 erklärt, wie man erlernte Daten im EEPROM (nichtflüchtiger Speicher) spei-
chern kann.

10.3 IR-Signale imitieren

Problem
Sie wollen mit dem Arduino einen Fernseher oder ein anderes fernbedientes Gerät steuern,
indem Sie entsprechende IR-Signale emulieren. Das ist das Gegenstück zu Rezept 10.2 – wir
senden Befehle, statt sie zu empfangen.

Lösung
Der Sketch verwendet die Fernbedienungs-Codes aus Rezept 10.2, um das Gerät zu steuern.
Fünf Taster wählen und senden einen von fünf Codes. Die Verschaltung ist in Abbil-
dung 10-2 zu sehen:

/*
irSend Sketch
Der Code benötigt eine IR-LED an Pin 3
und 5 Taster an den Pins 4-8
*/

#include <IRremote.h> // IR-Bibliothek

const int numberOfKeys = 5;
const int firstKey = 4; // Der erste Pin der 5 hintereinander

// angeschlossenen Taster
boolean buttonState[numberOfKeys];
boolean lastButtonState[numberOfKeys];
long irKeyCodes[numberOfKeys] = {
0x18E758A7, //0 key
0x18E708F7, //1 key
0x18E78877, //2 key
0x18E748B7, //3 key
0x18E7C837, //4 key
};

IRsend irsend;

void setup()
{
for (int i = 0; i < numberOfKeys; i++){
buttonState[i]=true;
lastButtonState[i]=true;
int physicalPin=i + firstKey;
pinMode(physicalPin, INPUT);
digitalWrite(physicalPin, HIGH); // Pullups einschalten
}

354 | Kapitel 10: Externe Geräte fernsteuern

Serial.begin(9600);
}

void loop() {
for (int keyNumber=0; keyNumber<numberOfKeys; keyNumber++)
{
int physicalPinToRead=keyNumber+4;
buttonState[keyNumber] = digitalRead(physicalPinToRead);
if (buttonState[keyNumber] != lastButtonState[keyNumber])
{
if (buttonState[keyNumber] == LOW)
{
irsend.sendSony(irKeyCodes[keyNumber], 32);
Serial.println("Sending");

}
lastButtonState[keyNumber] = buttonState[keyNumber];
}
}
}

Man kann nichts sehen, wenn die Codes gesendet werden, da das Licht
einer Infrarot-LED mit bloßem Auge nicht zu erkennen ist.

Sie können aber mit einer Digitalkamera prüfen, ob die Infrarot-LED funk-
tioniert – Sie sollten sie in der LCD-Anzeige der Kamera aufleuchten sehen.

TX 1
R X 0

2
3
4

6
5

7

G nd
V in

5 V
3 V 3

RESET

G nd

A

R

D

U

I

N

O

220 Ohm

Widerstand

9
8

10
11
12
13

Abbildung 10-2: Taster und LED für IR-Sender

Diskussion
Hier steuert der Arduino ein Gerät, indem er eine IR-LED so blinken lässt, dass sie die
Signale einer Fernbedienung imitiert. Dazu wird eine IR-LED benötigt, deren genaue

10.3 IR-Signale imitieren | 355

Spezifikation aber nicht weiter wichtig ist. Geeignete Komponenten finden Sie in
Anhang A.

Die IR-Bibliothek übernimmt die Umwandlung numerischer Codes in das Blinken der
IR-LED. Sie müssen ein Objekt zum Senden von IR-Nachrichten erzeugen. Die folgende
Zeile erzeugt ein IRsend-Objekt, das die LED an Pin 3 steuert (Sie können den Pin nicht
angeben, er ist in der Bibliothek fest vorgegeben):

IRsend irsend;

Der Code verwendet ein Array (siehe Rezept 2.4) namens irKeyCodes, um die Werte zu
speichern, die gesendet werden sollen. Er prüft, ob einer von fünf Tastern gedrückt wurde
und sendet den entsprechenden Code mit der folgenden Zeile:

irsend.sendSony(irKeyCodes[keyNumber], 32);

Das irSend-Objekt besitzt unterschiedliche Funktionen für verschiedene weitverbreitete
Infrarot-Codeformate. Sehen Sie sich also die Dokumentation der Bibliothek an, wenn Sie
ein anderes Format benötigen. Sie können Rezept 10.2 verwenden, wenn Sie sich das von
Ihrer Fernbedienung verwendete Format ansehen wollen.

Der Sketch übergibt den Code aus dem Array und die darauffolgende Zahl gibt an, wie
viele Bits der Wert besitzt. Das 0x vor den Zahlen der irKeyCodes bedeutet, dass es sich um
hexadezimale Codes handelt (Details zu Hexadezimalzahlen finden Sie in Kapitel 2). Jedes
Hex-Zeichen steht für einen 4-Bit-Wert. Die Codes nutzen acht Zeichen, sind also 32 Bit
lang.

Die LED ist mit einem strombegrenzenden Widerstand verbunden (siehe die Einführung
zu Kapitel 7).

Wenn Sie den Sendebereich erhöhen wollen, können Sie mehrere LEDs (oder eine
stärkere) verwenden.

Siehe auch
Kapitel 7 enthält weiterführende Informationen zur Steuerung von LEDs.

Mitch Altmans TV-B-Gone ist eine clevere Fernbedienungs-Anwendung. Eine Bauanlei-
tung finden Sie auf http://www.ladyada.net/make/tvbgone/.

10.4 Eine Digitalkamera steuern

Problem
Sie wollen mit dem Arduino eine Digitalkamera steuern und aus einem Programm heraus
Fotos aufnehmen. Sie könnten beispielsweise Zeitraffer-Aufnahmen über den Arduino
steuern.

356 | Kapitel 10: Externe Geräte fernsteuern

Lösung
Es gibt verschiedene Lösungen. Wenn Ihre Kamera eine Infrarot-Fernbedienung besitzt,
können Sie Rezept 10.2 verwenden, um die relevanten IR-Codes zu lernen und Rezept 10.3,
um den Arduino diese Codes an die Kamera senden zu lassen.

Wenn Ihre Kamera keine Infrarot-Fernbedienung besitzt, aber einen Anschluss für eine
kabelgebundene Fernbedienung hat, können Sie dieses Rezept nutzen, um die Kamera zu
steuern.

Der Klinkenstecker (engl. TRS) für die Kamera ist typischerweise 2,5 mm
oder 3,5 mm groß, Länge und Form entsprechen aber möglicherweise
keinem Standard. Die sicherste Möglichkeit, sich den richtigen Stecker zu
beschaffen, ist der Kauf eines einfachen Kabels für Ihre Kamera, das Sie
dann modifizieren, oder der Erwerb eines Adapterkabels von einem spe-
zialisierten Anbieter (googeln Sie nach »Kamera TRS«).

Sie verbinden den Arduino über Optokoppler mit einem geeigneten Kabel, wie in Abbil-
dung 10-3 zu sehen.

Der folgende Sketch nimmt 20 Bilder auf:

/*
camera Sketch
Nimmt 20 Bilder mit einer Digitalkamera auf
Pin 4 steuert den Fokus
Pin 3 steuert den Verschluss
*/

int focus = 4; // Optokoppler für Fokus
int shutter = 3; // Optokoppler für Verschluss
long exposure = 250; // Belichtungsdauer in Millisekunden
long interval = 10000; // Zeit in Millisekunden zwischen den Aufnahmen

void setup()
{
pinMode(focus, OUTPUT);
pinMode(shutter, OUTPUT);
for (int i=0; i<20; i++) // Kamera nimmt 20 Bilder auf
{
takePicture(exposure); // Bild schießen
delay(interval); // Bis zum nächsten Bild warten
}
}

void loop()
{

// Nach 20 Bildern sind wir fertig,
// weshalb die Schleife leer ist.
// loop muss hier aber trotzdem stehen,
// da der Sketch sonst nicht kompiliert wird

}

10.4 Eine Digitalkamera steuern | 357

void takePicture(long exposureTime)
{
int wakeup = 10; // Kamera braucht etwas Zeit, um aufzuwachen und zur Fokussierung

// Passen Sie das an Ihre Kamera an

digitalWrite(focus, HIGH); // Kamera und Fokus aufwachen lassen
delay(wakeup); // Aufwachen und Fokussierung abwarten
digitalWrite(shutter, HIGH); // Verschluss öffnen
delay(exposureTime); // Belichtungsdauer abwarten
digitalWrite(shutter, LOW); // Verschluss freigeben
digitalWrite(focus, LOW); // Fokus freigeben
}

T X 1
R X 0

2
3
4

6
5

7

Gnd
Vin

5V
3V3

R E SET

Gnd

A
R
D
U
I
N
O

220 Ohm

Widerstand

Optokoppler

PS2501
Optokoppler

1

2 3

4

220 Ohm

Widerstand

Abbildung 10-3: Optokoppler an Kamera-Klinkenstecker

Diskussion
Es ist nicht ratsam, die Arduino-Pins direkt mit der Kamera zu verbinden – die Spannun-
gen sind möglicherweise nicht kompatibel und Sie riskieren die Beschädigung Ihres
Arduino oder der Kamera. Optokoppler werden genutzt, um Arduino und Kamera zu
trennen. Mehr über diese Bauelemente erfahren Sie in der Einführung zu diesem Kapitel.

Sie müssen im Benutzerhandbuch der Kamera den richtigen Klinkenstecker heraussu-
chen.

Sie müssen möglicherweise die Reihenfolge ändern, in der die Pins in der takePicture-
Funktion ein- und ausgeschaltet werden, um das gewünschte Verhalten zu erzielen. Für
Langzeitbelichtungen mit einer Canon-Kamera müssen Sie den Fokus einschalten, dann
den Verschluss öffnen, ohne den Fokus freizugeben, dann den Verschluss und zum
Schluss den Verschluss wieder freigeben (wie im Sketch). Um ein Bild aufzunehmen und
die Kamera die Belichtungsdauer berechnen zu lassen, drücken Sie die Fokus-Taste, geben
sie wieder frei und drücken dann den Verschluss.

358 | Kapitel 10: Externe Geräte fernsteuern

Siehe auch
Wenn Sie Aspekte des Kamerabetriebs steuern wollen, sollten Sie sich das Canon Hack
Development Kit auf http://chdk.wikia.com/wiki/CHDK ansehen.

Siehe auch The Canon Camera Hackers Manual: Teach Your Camera New Tricks von
Berthold Daum (Rocky Nook).

Auf ähnliche Weise lassen sich auch Videokameras über LANC steuern. Die Suche nach
»LANC« im Arduino Playground liefert die entsprechenden Details.

10.5 Wechselstromgeräte über eine gehackte
Fernbedienung steuern

Problem
Sie wollen auf sichere Weise Wechselstrom ein- und ausschalten, um Lichter und Geräte
über eine Fernbedienung steuern zu können.

Lösung
Arduino kann die Tasten einer Fernbedienung über einen Optokoppler ansteuern. Das
kann bei Fernbedienungen notwendig sein, die mit Funk- statt mit Infrarot-Technik
arbeiten. Diese Technik kann für nahezu jede Fernsteuerung verwendet werden. Ein
Hack der Fernbedienung ist besonders nützlich, um potentiell gefährlichen Wechselstrom
von Ihnen und dem Arduino fernzuhalten, da nur die batteriebetriebene Fernbedienung
modifiziert wird.

Mit dem Öffnen der Fernbedienung erlischt die Garantie und der Gerät
kann dabei beschädigt werden. Die Infrarot-Rezepte in diesem Kapitel sind
vorzuziehen, weil eine Modifikation der Fernbedienung unnötig ist.

Wenn Sie dieses Rezept nutzen, die Fernbedienung aber weiterhin nutzen
wollen, sollten Sie sich eine Ersatz-Fernbedienung zum Hacken besorgen.
Die meisten Hersteller werden Ihnen mit Vergnügen eine Ersatz-Fernbe-
dienung verkaufen (doch Sie müssen auf die richtige Frequenz für das zu
steuernde Gerät achten). Sobald Sie diese Fernbedienung haben, müssen
Sie möglicherweise noch den von ihr verwendeten Kanal einstellen.

Öffnen Sie die Fernbedienung und schließen Sie den Optokoppler so an, dass der
Photo-Emitter (Pins 1 und 2 in Abbildung 10-4) mit dem Arduino und der Photo-Tran-
sistor (Pins 3 und 4) mit den Kontakten der Fernbedienung verbunden ist.

10.5 Wechselstromgeräte über eine gehackte Fernbedienung steuern | 359

T X 1
R X 0

2
3
4

6
5

7

G nd
Vin

5V
3 V3

RESE T

G nd

A
R
D
U
I
N
O

220 Ohm

Widerstand

Ein-
Kontakt-
schalter

Aus-
Kontakt-
schalter

220 Ohm

Widerstand

Fernbedienung

Aus

An
OPTOKOPPLER

PS2501
Fotokoppler

1

2 3

4

Abbildung 10-4: Anschluss eines Optokoppler an die Kontakte einer Fernbedienung

Der Sketch verwendet Kontaktschalter, um die Tasten der Fernbedienung ein- und aus-
zuschalten:

/*
OptoRemote Sketch
Taster an den Pins 2 und 3 schalten ferngesteuertes Gerät über Optokoppler ein und aus.

Die Ausgänge werde bei einem Tastendruck für mindestens eine halbe Sekunde gepulst
*/
const int onSwitchPin = 2; // Eingangspin für Ein-Schalter
const int offSwitchPin = 3; // Eingangspin für Aus-Schalter
const int remoteOnPin = 4; // Ausgangspin zum Einschalten der Fernbedienung
const int remoteOffPin = 5; // Ausgangspin zum Ausschalten der Fernbedienung
const int PUSHED = LOW; // Wert bei gedrückter Taste

void setup() {
Serial.begin(9600);
pinMode(remoteOnPin, OUTPUT);
pinMode(remoteOffPin, OUTPUT);
pinMode(onSwitchPin, INPUT);
pinMode(offSwitchPin, INPUT);
digitalWrite(onSwitchPin,HIGH); // Internen Pullup für inputPins aktivieren
digitalWrite(offSwitchPin,HIGH);
}

void loop(){
int val = digitalRead(onSwitchPin); // Eingabewert einlesen
// Einschalten, wenn Taster gedrückt

360 | Kapitel 10: Externe Geräte fernsteuern

if(val == PUSHED)
{
pulseRemote(remoteOnPin);
}
val = digitalRead(offSwitchPin); // Eingabewert einlesen
// Ausschalten, wenn Taster gedrückt
if(val == PUSHED)
{
pulseRemote(remoteOffPin);
}
}

// Optokoppler für eine halbe Sekunde einschalten, um das Signal an die Fernbedienung zu
übergeben
void pulseRemote(int pin)
{
digitalWrite(pin, HIGH); // Optokoppler einschalten
delay(500); // Halbe Sekunde warten
digitalWrite(pin, LOW); // Optokopller ausschalten
}

Diskussion
Die Taster der meisten Fernbedienungen bestehen aus einfachen Leiterbahnen und einem
leitenden Taster, der den Kontakt schließt, wenn er gedrückt wird. Weniger weit verbreitet
sind Fernbedienungen mit konventionellen Drucktastenschaltern. Sie sind einfacher zu
nutzen, weil die Beinchen der Schalter eine einfache Anschlussmöglichkeit bieten.

Zwar können die Fernbedienungstaste und der Optokoppler gemeinsam
verwendet werden – der Schaltvorgang erfolgt unabhängig von der ver-
wendeten Methode (Tastendruck oder Optokoppler) –, aber die mit dem
Arduino verbundenen Kabel können das schwierig machen.

Der Transistor des Optokopplers lässt den Strom nur in einer Richtung fließen. Wenn die
Sache beim ersten Versuch nicht funktioniert, vertauschen Sie einfach die beiden An-
schlüsse und schauen Sie, ob dies das Problem behebt.

Bei einigen Fernbedienungen sind alle Tasten auf einer Seite miteinander verbunden
(üblicherweise mit der Masse der Schaltung). Sie können die Leitungen auf dem Board
verfolgen, um das zu überprüfen, oder Sie können ein Multimeter nutzen, um den Wi-
derstand der Anschlüsse verschiedener Tasten zu messen. Bei einem gemeinsamen An-
schluss muss nur eine Ader für jede Gruppe verwendet werden. Weniger Anschlüsse
machen es einfacher, da die Verdrahtung der Adern recht fummelig sein kann, wenn die
Fernbedienung klein ist.

Optokoppler werden in Rezept 10.4 erläutert. Sehen Sie sich dieses Rezept an, wenn Sie
mit Optokopplern nicht vertraut sind.

Die Fernbedienung kann mehrere Kontakte für jede Taste verwenden. Sie könnten meh-
rere Optokoppler für jede Taste benötigen, um die Kontakte herzustellen. Abbildung 10-5
zeigt drei Optokoppler, die über einen einzelnen Arduino-Pin angesteuert werden.

10.5 Wechselstromgeräte über eine gehackte Fernbedienung steuern | 361

REMOTE
OPTOCOUPLERS

T X 1
R X 0

2
3
4

6
5

7

G n d
V in

5 V
3 V3

R E S E T

G n d

A
R
D
U
I
N
O

220 Ohm

Widerstand

220 Ohm

Widerstand

220 Ohm

Widerstand

Abbildung 10-5: Mehrere Optokoppler an einer einzelnen Taste der Fernbedienung

Siehe auch
Ein anderer Ansatz zur Steuerung von Wechselströmen ist ein isoliertes Relais wie der
PowerTailSwitch, der über Arduino-Pins direkt ein- und ausgeschaltet werden kann. Siehe
http://powerswitchtail.com/default.aspx.

362 | Kapitel 10: Externe Geräte fernsteuern

KAPITEL 11

Displays nutzen

11.0 Einführung
Eine Flüssigkristallanzeige (engl. Liquid Crystal Display, kurz LCD) ist eine einfache und
kostengünstige Möglichkeit, Ihr Projekt mit einem Benutzerinterface auszustatten. Dieses
Kapitel erklärt, wie man text- und grafikbasierte LCD-Panels mit dem Arduino verbindet
und betreibt. Das mit Abstand populärste LCD ist das auf dem Hitachi HD44780
basierende Text-Panel. Es gibt zwei bis vier Zeilen Text mit 16 oder 20 Zeichen pro Zeile
aus (es gibt auch Versionen mit 32 und 40 Zeichen, allerdings zu einem wesentlich
höheren Preis). Eine Bibliothek zur Ansteuerung textbasierter LC-Displays wird mit dem
Arduino mitgeliefert und Sie können Texte auf dem LCD ebenso einfach ausgeben wie
über den seriellen Monitor (siehe Kapitel 4), da LCD und serieller Monitor die gleichen
zugrundeliegenden print-Funktionen verwenden.

LCDs können mehr, als einfach nur Text darstellen. Wörter können gescrollt und
hervorgehoben werden und Sie können spezielle Symbole und nicht-englische Zeichen
ausgeben.

Sie können eigene Symbole und Blockgrafiken für das Text-LCD entwerfen, doch wenn
Sie feine grafische Details benötigen, müssen Sie ein Grafikdisplay verwenden. Grafische
LC-Displays (GLCD) kosten nur wenig mehr als Text-Displays und viele beliebte GLCD-
Panel können neben Grafik auch bis zu acht Textzeilen mit 20 Zeichen darstellen.

LCDs benötigen mehr Arduino-Anschlüsse als die meisten anderen Rezepte in diesem
Buch. Falsche Verbindungen sind das Hauptproblem bei LCDs, also nehmen Sie sich die
Zeit für die richtige Verschaltung und überprüfen Sie alles sorgfältig. Ein kostengünstiges
Multimeter, das Spannungen und Widerstände messen kann, ist eine große Hilfe, um den
korrekten Anschluss zu überprüfen. Es kann einem einige Kopfschmerzen ersparen, wenn
nichts auf dem Display erscheint. Sie brauchen nichts besonderes, selbst das einfachste
Multimeter hilft Ihnen sicherzustellen, dass die richtigen Pins verbunden und die Span-
nungen korrekt sind.

Es gibt sogar ein Video-Tutorial und ein PDF, das die Verwendung eines Multimeters be-
schreibt (siehe http://blog.makezine.com/archive/2007/01/multimeter_tutorial_make_1.html).

| 363

Für Projekte, die eine größere Anzeige benötigen, als sie günstige LCD-Panels bieten,
beschreibt Rezept 11.11, wie man einen Fernseher als Anzeige für den Arduino nutzen
kann.

11.1 Ein Text-LCD anschließen und nutzen

Problem
Sie besitzen ein Text-LCD, das auf dem Industriestandard HD44780 (oder einem kom-
patiblen Controller) basiert, und wollen Text und Zahlen ausgeben.

Lösung
Die Arduino-Software umfasst die LiquidCrystal-Bibliothek zur Steuerung von LC-Dis-
plays mit HD44780-Chip.

Die meisten für den Arduino gedachten Text-LCDs sind mit dem Hitachi
HD44780-Controller kompatibel. Wenn Sie sich nicht sicher sind, über-
prüfen Sie anhand des Datenblatts, ob er 44780-kompatibel ist.

Um die Anzeige ans Laufen zu bekommen, müssen Sie die Strom-, Daten- und Steuerpins
anschließen. Verbinden Sie die Daten- und Steuerpins mit digitalen Ausgängen, schließen
Sie ein Potentiometer für den Kontrast an und schließen Sie die Stromleitungen an. Wenn
Ihr Display eine Hintergrundbeleuchtung hat, muss sie ebenfalls angeschlossen werden,
üblicherweise über einen Widerstand.

T
X

1

R
X

02346 57

Gn
d

V
in

5
V

3V
3

R
ES

ET G
nd

Text LCD

1 16

10K-

Poti

220

Ohm

Widerstand für
Hintergrund-
beleuchtung
(falls nötig)

Arduino

2 3 4 5 6 11

Hintergrundbeleuchtung – (Masse)

Hintergrundbeleuchtung + (5V)

DIGITAL PINS

9 8101
1

12

G
N

D 13

AR
EF

Pull-up-
Widerstände

Abbildung 11-1: Anschluss eines Text-LCDs

364 | Kapitel 11: Displays nutzen

Abbildung 11-1 zeigt die gängigsten LCD-Anschlüsse. Stellen Sie mit Hilfe des Daten-
blatts sicher, das Sie die richtigen Pins verwenden. Tabelle 11-1 zeigt die wichtigsten
Anschlüsse, doch wenn Ihr LCD andere Pins verwendet, müssen Sie auf Kompatibilität
mit dem Hitachi HD44780 achten – dieses Rezept funktioniert nur mit LCDs, die mit
diesem Chip kompatibel sind. Das LCD verfügt über 16 Pins (bzw. 14 Pins ohne Hin-
tergrundbeleuchtung) – identifizieren Sie Pin 1 auf dem Panel, da es an einer anderen
Stelle liegen könnte, als in der Abbildung zu sehen.

Vielleicht fragen Sie sich, warum die LCD-Pins 7 bis 10 nicht angeschlos-
sen sind. Der Datentransfer des LCDs kann entweder über vier oder über
acht Pins erfolgen. Dieses Rezept arbeitet mit vier Pins, damit die anderen
vier Arduino-Pins für andere Aufgaben frei bleiben. Theoretisch steigt bei
acht Pins die Performance, ist aber nicht so hoch, dass sie den Verlust von
vier Arduino-Pins wert wäre.

Tabelle 11-1: LCD-Anschlüsse

LCD-Pin Funktion Arduino-Pin

1 Masse: Gnd oder 0V oder Vss Gnd

2 +5V oder Vdd 5V

3 Vo oder Kontrast

4 RS 12

5 R/W Gnd

6 E 11

7 D0

8 D1

9 D2

10 D3

11 D4 5

12 D5 4

13 D6 3

14 D7 2

15 A oder Anode

16 K oder Kathode

Sie müssen ein 10K-Potentiometer für den Kontrast an LCD-Pin 3 anschließen. Ohne die
richtige Spannung an diesem Pin sehen Sie auf dem Display möglicherweise gar nichts. In
Abbildung 11-1 ist eine Seite des Potis mit Gnd (Masse) verbunden, die andere Seite mit
+5V vom Arduino und der Schieber mit LCD-Pin 3. Das LCD wird über Gnd und +5V
vom Arduino an den LCD-Pins 1 und 2 mit Strom versorgt.

Viele LCD-Panels besitzen eine interne Lampe, die sog. Hintergrundbeleuchtung, um das
Display zu erhellen. Auf dem Datenblatt sollte stehen, ob es eine Hintergrundbeleuchtung
gibt und ob sie einen externen Widerstand benötigt – was häufig der Fall ist, damit die

11.1 Ein Text-LCD anschließen und nutzen | 365

Hintergrund-LEDs nicht durchbrennen. Falls Sie sich nicht sicher sind, schließen Sie
einfach einen 220 Ohm-Widerstand an. Die Hintergrundbeleuchtung ist gepolt, also
achten Sie darauf, dass Pin 15 mit +5V und Pin 16 mit Masse verbunden ist. (Der
abgebildete Widerstand ist zwischen Pin 16 und Masse angeschlossen, Sie können ihn
aber ebenso gut auch zwischen Pin 15 und +5V hängen.)

Überprüfen Sie die Verschaltung noch einmal, bevor Sie die Spannung einschalten, da Sie
das LCD beschädigen können, wenn die Spannungsversorgung falsch angeschlossen ist.
Um den mit Arduino gelieferten HelloWorld-Sketch auszuführen, klicken Sie in der IDE
das Files-Menü an und navigieren zu Examples→Library→LiquidCrystal→HelloWorld.

Der folgende Code wurde etwas modifiziert, um neben »Hallo, Welt« auch Zahlen
auszugeben. Passen Sie numRows und numCols an die Zeilen und Spalten Ihres LC-Displays
an:

/*
LiquidCrystal Library - Hallo, Welt

Demonstriert die Verwendung eines 16 × 2 LC-Displays.
http://www.arduino.cc/en/Tutorial/LiquidCrystal
*/

#include <LiquidCrystal.h> // Bibliothek einbinden

//Konstanten für die Zeilen und Spalten des LCDs
const int numRows = 2;
const int numCols = 16;

// Bibliothek mit den Interface-Pins initialisieren
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()
{
lcd.begin(numCols, numRows);
lcd.print("Hallo, Welt!"); // Meldung im LCD ausgeben.
}

void loop()
{
// Cursor an Spalte 0, Zeile 1 positionieren
// (Hinweis: Zeile 1 ist die zweite Zeile, da die Zählung bei 0 beginnt):
lcd.setCursor(0, 1);
// Seit Reset verstrichene Sekunden ausgeben.
lcd.print(millis()/1000);
}

Führen Sie den Sketch aus. In der ersten Zeile der Anzeige sollte »Hallo, Welt« erscheinen.
In der zweiten Zeile sollte eine Zahl erscheinen, die sich jede Sekunde erhöht.

366 | Kapitel 11: Displays nutzen

Diskussion
Wenn kein Text erscheint und Sie ganz sicher sind, dass alle Anschlüsse korrekt sind,
müssen Sie möglicherweise den Kontrast mit dem Poti einstellen. Wenn Sie den Poti auf
eine Seite drehen (üblicherweise die Seite, die mit Masse verbunden ist), ist der maximale
Kontrast eingestellt und Sie sollten kleine Blöcke sehen. Drehen Sie den Poti in die andere
Richtung, sehen Sie wahrscheinlich gar nichts mehr. Die richtige Einstellung hängt von
vielen Faktoren ab, einschließlich Blickwinkel und Temperatur – drehen Sie am Poti, bis
Sie ein gutes Ergebnis erzielen.

Wenn Sie bei keiner Poti-Stellung Pixelblöcke sehen können, überprüfen Sie, ob die An-
zeige über die richtigen Pins angesteuert wird.

Sobald Sie Text auf dem Display sehen, ist der Einsatz des LCDs in einem Sketch eine
einfache Sache. Sie nutzen ähnliche Befehle wie bei der seriellen Ausgabe, die in Kapitel 4
behandelt wurde. Das nächste Rezept geht genauer auf die print-Befehle ein und erläutert,
wie man die Textposition kontrolliert.

Siehe auch
Die LiquidCrystal-Referenz: http://arduino.cc/en/Reference/LiquidCrystalPrint.

Kapitel 4 enthält Details zu den print-Befehlen.

Das Datenblatt des Hitachi HD44780 LCD-Controllers ist die umfassende Referenz für
die Low-Level-Funktionalität. Die Arduino-Bibliothek versteckt einen Großteil der Kom-
plexität vor Ihnen, doch wenn Sie alles über die Fähigkeiten des Chips nachlesen wollen,
können Sie sich das Datenblatt von http://www.sparkfun.com/datasheets/LCD/HD44780
.pdf herunterladen.

Die LCD-Seite im Arduino Playground enthält Tipps zu Soft- und Hardware sowie
weiterführende Links: http://www.arduino.cc/playground/Code/LCD.

11.2 Text formatieren

Problem
Sie wollen die Position des im LC-Display dargestellten Textes kontrollieren, z.B. um
Werte an festgelegten Positionen auszugeben.

Lösung
Der folgende Sketch zählt zuerst von 9 bis 0 herunter und gibt dann eine Ziffernfolge in
drei Spalten à vier Zeichen aus. Passen Sie numRows und numCols an die Anzahl der Zeilen
und Spalten Ihres LCDs an:

/*
LiquidCrystal Library - FormatText
*/

11.2 Text formatieren | 367

#include <LiquidCrystal.h> // Bibliothek einbinden

//Konstanten für Zeilen und Spalten des LCDs
const int numRows = 2;
const int numCols = 16;

int count;

// Bibliothek mit Interface-Pins initialisieren
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()
{
lcd.begin(numCols, numRows);
lcd.print("Beginne in "); // Dieser String ist 11 Zeichen lang
for(int i=9; i > 0; i--) // Von 9 herunterzählen
{
// Erste Zeile ist 0
lcd.setCursor(11,0); // Cursor an das Ende des Strings bewegen
lcd.print(i);
delay(1000);
}
}

void loop()
{
int columnWidth = 4; //Spaltenbreite
int displayColumns = 3; //Anzahl der Spalten

lcd.clear();
for(int col=0; col < displayColumns; col++)
{
lcd.setCursor(col * columnWidth, 0);
count = count+ 1;
lcd.print(count);
}
delay(1000);
}

Diskussion
Die lcd.print- Funktionen sind Serial.print sehr ähnlich. Zusätzlich besitzt die LCD-
Bibliothek Befehle zur Steuerung der Cursorposition (Zeile und Spalte, an denen der Text
ausgegeben wird).

Die lcd.print-Anweisung gibt jedes neue Zeichen hinter dem vorigen aus. Über das Ende
einer Zeile hinausgehender Text kann in der nächsten Zeile oder auch gar nicht aus-
gegeben werden. Mit dem Befehl lcd.setCursor() können Sie festlegen, an welcher Posi-
tion der nächste lcd.print-Aufruf mit der Ausgabe beginnt. Sie legen die Spalte und Zeile
fest (die obere linke Ecke ist 0,0). Sobald der Cursor positioniert ist, erfolgt die Ausgabe
beim nächsten lcd.print an diesem Punkt und vorhandener Text wird überschrieben. Der

368 | Kapitel 11: Displays nutzen

Sketch in diesem Rezept nutzt das, um eine Reihe von Zahlen an festen Positionen aus-
zugeben.

Zum Beispiel stellt in setup die Zeile

lcd.setCursor(12,0); // Cursor an die 12. Stelle bewegen
lcd.print(i);

lcd.setCursor(12,0) sicher, dass jede Ziffer an der gleichen Position (12. Spalte, 1. Zeile)
ausgegeben wird. Die Ziffern erscheinen also immer an der gleichen Stelle und werden
nicht hintereinander ausgegeben.

Zeilen und Spalten beginnen bei 0, d.h., setCursor(4,0) positioniert den
Cursor in der fünften Spalte der ersten Zeile. Das liegt daran, dass zwi-
schen den Positionen 0 bis 4 fünf Zeichen liegen. Wenn das nicht klar ist,
zählen Sie es einfach (bei 0 beginnend) an den Fingern ab.

Die folgenden Zeilen nutzen setCursor, um die Spalten mit columnwidth Leerzeichen auf-
zufüllen:

lcd.setCursor(col * columnWidth, 0);
count = count+ 1;
lcd.print(count);
lcd.clear();

lcd.clear löscht den Bildschirm und bewegt den Cursor zurück in die obere linke Ecke.

Nachfolgend eine loop-Variante, die für die Ausgabe alle Zeilen Ihre LCDs nutzt. Ersetzen
Sie Ihren loop-Code durch folgende Zeilen (und tragen Sie für numRows und numCols die
Zeilen und Spalten Ihres LCDs ein):

void loop()
{
int columnWidth = 4;
int displayColumns = 3;

lcd.clear();
for(int row=0; row < numRows; row++)
{
for(int col=0; col < displayColumns; col++)
{
lcd.setCursor(col * columnWidth, row);
count = count+ 1;
lcd.print(count);
}
}
delay(1000);
}

Die erste for-Schleife geht die vorhandenen Zeilen durch, während die zweite die Spalten
verarbeitet.

11.2 Text formatieren | 369

Um die Zahl der in eine LCD-Zeile passenden Zahlen zu berechnen (statt sie einfach fest
einzutragen), ändern Sie die displayColumns-Zeile:

int displayColumns = 3;

wie folgt:

int displayColumns = numCols / columnWidth;

Siehe auch
Das Tutorial zur LiquidCrystal-Bibliothek: http://arduino.cc/en/Reference/LiquidCrystal
?from=Tutorial.LCDLibrary

11.3 Cursor und Display ein- und ausschalten

Problem
Sie wollen den Cursor blinken lassen und das Display ein- oder ausschalten, z.B. um die
Aufmerksamkeit auf einen bestimmten Bereich der Anzeige zu lenken.

Lösung
Dieser Sketch zeigt, wie Sie den Cursor (ein leuchtender Block an der Stelle, an der das
nächste Zeichen ausgegeben wird) blinken lassen können. Er zeigt auch, wie man die
Anzeige ein- und ausschalten kann, um Aufmerksamkeit zu erregen, indem man das
gesamte Display blinken lässt:

/*
blink
*/

// Bibliothek einbinden
#include <LiquidCrystal.h>

// Bibliothek mit den Interface-Pins initialsieren
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()
{
// Spalten und Zeilen des LCDs einstellen und
lcd.begin(16, 2);
// Eine Meldung auf dem LCD ausgeben.
lcd.print("Hallo, Welt!");
}

void loop()
{
lcd.setCursor(0, 1);

lcd.print("Cursor blinkt");
lcd.blink();

370 | Kapitel 11: Displays nutzen

delay(2000);

lcd.noBlink();
lcd.print(" noBlink");
delay(2000);

lcd.clear();

lcd.print("Display aus ...");
delay(1000);
lcd.noDisplay();
delay(2000);

lcd.display(); // Display wieder einschalten

lcd.setCursor(0, 0);
lcd.print(" Display-Flash !");
displayBlink(2, 250); // Zweimal blinken lassen
displayBlink(2, 500); // Und nochmal, aber doppelt so lang

lcd.clear();
}

void displayBlink(int blinks, int duration)
{
while(blinks--)
{
lcd.noDisplay();
delay(duration);
lcd.display();
delay(duration);
}
}

Diskussion
Der Sketch ruft die Funktionen blink und noBlink auf, um das Blinken des Cursors ein-
und auszuschalten.

Der Code, der das ganze Display blinken lässt, steht in der Funktion displayBlink. Die
Funktion verwendet lcd.display() und lcd.noDisplay(), um die Anzeige ein- und aus-
zuschalten (ohne den Text im internen Speicher zu löschen).

11.4 Text scrollen

Problem
Sie wollen Text scrollen. Zum Beispiel wollen Sie eine Laufschrift erzeugen, die mehr
Zeichen darstellt, als in eine Zeile des LC-Displays passen.

11.4 Text scrollen | 371

Lösung
Dieser Sketch demonstriert lcd.ScrollDisplayLeft und lcd.ScrollDisplayRight.

Er scrollt eine Textzeile nach links, wenn das System geneigt ist, und nach rechts, wenn er
nicht geneigt ist. Verbinden Sie eine Seite eines Neigungssensors mit Pin 7 und den
anderen Pin mit Masse (wenn Sie mit Neigungssensoren nicht vertraut sind, sehen Sie sich
Rezept 6.1 an):

/*
Scroll
* Der Sketch scrollt Text nach links, wenn er geneigt ist,
* und nach rechts, wenn nicht.
*/

#include <LiquidCrystal.h>

// Bibliothek mit den Interface-Pins initialisieren
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
const int numRows = 2;
const int numCols = 16;

const int tiltPin = 7; // Pin für Neigungssensor

const char textString[] = "Zum Scrollen neigen";
const int textLen = sizeof(textString) -1; // Zahl der Zeichen
boolean isTilted = false;

void setup()
{
// Spalten und Zeilen des LCDs festlegen
lcd.begin(numCols, numRows);
digitalWrite(tiltPin, HIGH); // Pullups für Neigungssensor aktivieren
lcd.print(textString);
}

void loop()
{
if(digitalRead(tiltPin) == LOW && isTilted == false)
{
// Geneigt, also Text nach links scrollen
isTilted = true;
for (int position = 0; position < textLen; position++)
{
lcd.scrollDisplayLeft();
delay(150);
}
}
if(digitalRead(tiltPin) == HIGH && isTilted == true)
{
// Nicht mehr geneigt, also Text nach rechts scrollen
isTilted = false;
for (int position = 0; position < textLen; position++)
{

372 | Kapitel 11: Displays nutzen

lcd.scrollDisplayRight();
delay(150);
}
}
}

Diskussion
Die erste Hälfte des loop-Codes behandelt den Übergang vom nicht geneigten in den ge-
neigten Zustand. Der Code prüft, ob der Neigungsschalter geschlossen (LOW) oder offen
(HIGH) ist. Ist er LOW und der aktuelle Zustand (der in isTilted steht) nicht geneigt, dann
wird der Text nach links gescrollt. Die Verzögerung in der for-Schleife steuert die Ge-
schwindigkeit des Scrollens. Passen Sie den Wert entsprechend an, wenn sich der Text zu
schnell oder zu langsam bewegt.

Die zweite Hälfte des Codes verwendet die gleiche Logik, um den Übergang vom ge-
neigten zum nicht geneigten Zustand zu verarbeiten.

Eine solche Scrolling-Fähigkeit ist besonders nützlich, wenn Sie mehr Text ausgeben
müssen, als in eine LCD-Zeile passt.

Der folgende Sketch verwendet die Funktion marquee (engl. Laufschrift), die Text mit einer
Länge von bis zu 32 Zeichen scrollen kann:

/*
Marquee
* Scrollt eine sehr lange Textzeile
*/

#include <LiquidCrystal.h>

// Bibliothek mit den Interface-Pins initialisieren
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
const int numRows = 2;
const int numCols = 16;

void setup()
{
// Spalten und Zeilen des LCDs festlegen
lcd.begin(numCols, numRows);
}

void loop()
{
marquee("Eine viel zu lange Nachricht!");
delay(1000);
lcd.clear();
}

// Diese Version von marquee scrollt sehr lange Nachrichten von Hand
void marquee(char *text)
{
int length = strlen(text); // Anzahl der Zeichen im Text

11.4 Text scrollen | 373

if(length < numCols)
lcd.print(text);
else
{
int pos;
for(pos = 0; pos < numCols; pos++)
lcd.print(text[pos]);

delay(1000); // Vor dem Scrollen etwas Zeit zum Lesen lassen
pos=1;
while(pos <= length - numCols)
{
lcd.setCursor(0,0);
for(int i=0; i < numCols; i++)
lcd.print(text[pos+i]);

delay(300);
pos = pos + 1;
}
}
}

Der LCD-Chip besitzt einen internen Speicher, der den Text aufnimmt. Dieser Speicher ist
begrenzt ((32 Byte bei den meisten vierzeiligen Displays). Wenn Sie längere Meldungen
ausgeben wollen, könnten die sich selbst überschreiben. Wenn Sie längere Nachrichten
(z.B. einen Tweet) scrollen oder das Scrollen genauer steuern wollen, benötigen Sie eine
andere Technik. Die folgende Funktion speichert den Text im Arduino-RAM und schickt
nur Teile an die Anzeige, um den Scroll-Effek zu erzielen. Die Nachrichten können eine
beliebige Länge haben, solange sie in den Arduino-Speicher passen:

void marquee(char *text)
{
int length = strlen(text); // Anzahl der Buchstaben im Text
if(length < numCols)
lcd.print(text);
else
{
int pos;
for(pos = 0; pos < numCols; pos++)
lcd.print(text[pos]);

delay(1000); // ermöglicht es, dass die erste Zeile vor dem Scrollen gelesen werden kann
pos=1;
while(pos <= length - numCols)
{
lcd.setCursor(0,0);
for(int i=0; i < numCols; i++)
lcd.print(text[pos+i]);

delay(300);
pos = pos + 1;
}
}
}

374 | Kapitel 11: Displays nutzen

11.5 Sonderzeichen darstellen

Problem
Sie wollen Sonderzeichen des LCD-Zeichenspeichers wie � (Grad), ¢, �, p (Pi) ausgeben.

Lösung
Ermitteln Sie den Zeichencode des darzustellenden Zeichens in der Zeichenmuster-Ta-
belle des LCD-Datenblatts. Der folgende Sketch gibt einige gängige Symbole in setup aus.
Er gibt dann alle darstellbaren Symbole in loop aus:

/*
LiquidCrystal Library - Special Chars
*/

#include <LiquidCrystal.h>

//Zeilen und Spalten für Ihr LCD anpassen
const int numRows = 2;
const int numCols = 16;

// Definition einiger nützlicher Sonderzeichen
const byte degreeSymbol = B11011111;
const byte piSymbol = B11110111;
const byte centsSymbol = B11101100;
const byte sqrtSymbol = B11101000;
const byte omegaSymbol = B11110100; // Das Symbol für Ohm

byte charCode = 32; // Erstes druckbares ASCII-Zeichen
int col;
int row;

// Bibliothek mit den Interface-Pins initialisieren
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()
{
lcd.begin(numRows, numCols);

showSymbol(degreeSymbol, "Grad");
showSymbol (piSymbol, "Pi");
showSymbol(centsSymbol, "Cent");
showSymbol(sqrtSymbol, "Quadrat");
showSymbol(omegaSymbol, "Ohm");
lcd.clear();

}

void loop()
{
lcd.print(charCode);
calculatePosition();
if(charCode == 255)

11.5 Sonderzeichen darstellen | 375

{
// Alle Zeichen ausgegeben, also ein wenig warten
// und wieder von vorne anfangen
delay(2000);
lcd.clear();
row = col = 0;
charCode = 32;

}
charCode = charCode + 1;

}

void calculatePosition()
{
col = col + 1;
if(col == numCols)
{
col = 0;
row = row + 1;
if(row == numRows)
{
row = 0;
delay(2000); // pause
lcd.clear();

}
lcd.setCursor(col, row);
}

}

// Sonderzeichen samt Beschreibung ausgeben
void showSymbol(byte symbol, char * description)
{
lcd.clear();
lcd.write(symbol);
lcd.print(' '); // Leerzeichen vor Beschreibung einfügen
lcd.print(description);
delay(3000);
}

Diskussion
Eine Tabelle mit den verfügbaren Zeichenmustern finden Sie auf dem Datenblatt des LCD-
Controller-Chips (auf S. 17 auf dem Datenblatt an http://www.sparkfun.com/datasheets/
LCD/HD44780.pdf).

Ermitteln Sie das gewünschte Zeichen in der Tabelle. Der Code jedes Zeichens wird durch
die Kombination der Binärwerte der Spalte und Zeile bestimmt (siehe Abbildung 11-2).

376 | Kapitel 11: Displays nutzen

Grad-Symbol

obere 4 Bit

untere 4 Bit

Abbildung 11-2: Zeichencode aus Datenblatt ermitteln

Zum Beispiel ist das Grad-Symbol (�) der drittletzte Eintrag in der unteren Zeile der
Tabelle in Abbildung 11-2. Seine Spalte gibt die oberen vier Bits mit 1101 und die Zeile die
unteren vier Bits mit 1111 an. Kombiniert man beide, erhält man den Code für das
Symbol: B11011111. Sie können diesen Binärwert nutzen oder ihn in einen Hexwert
(0xDF) oder Dezimalwert (223) umwandeln. Beachten Sie, dass Abbildung 11-2 nur 4 der
insgesamt 16 Zeilen auf dem Datenblatt zeigt.

Die LCD-Anzeige kann natürlich auch jedes druckbare ASCII-Zeichen darstellen. Dazu
nutzen Sie den entsprechenden ASCII-Wert in lcd.print.

Der Sketch nutzt eine Funktion namens showSymbol, um das Sonderzeichen und eine
Beschreibung auszugeben:

void showSymbol(byte symbol, char * description)

(Wenn Sie eine kleine Auffrischung brauchen, wie man Zeichenketten verwendet und an
Funktionen übergibt, sehen Sie sich Rezept 2.6 an.)

Siehe auch
Datenblatt zum Hitachi HD44780: http://www.sparkfun.com/datasheets/LCD/HD44780
.pdf

11.6 Eigene Zeichen definieren

Problem
Sie wollen eigene Zeichen oder Symbole (Glyphen) definieren und anzeigen. Die ge-
wünschten Symbole sind im LCD-Zeichenspeicher nicht vordefiniert.

11.6 Eigene Zeichen definieren | 377

Lösung
Wenn Sie den folgenden Code hochladen, erscheint abwechselnd ein lächelnder und ein
schmollender Smiley:

/*
custom_char Sketch
Erzeugt ein animiertes Smiley mit selbstdefinierten Zeichen
*/

#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

byte happy[8] =
{
B00000,
B10001,
B00000,
B00000,
B10001,
B01110,
B00000,
B00000
};

byte saddy[8] =
{
B00000,
B10001,
B00000,
B00000,
B01110,
B10001,
B00000,
B00000
};

void setup() {
lcd.createChar(0, happy);
lcd.createChar(1, saddy);
lcd.begin(16, 2);

}

void loop() {
for (int i=0; i<2; i++)
{
lcd.setCursor(0,0);
lcd.write(i);
delay(500);
}
}

378 | Kapitel 11: Displays nutzen

Diskussion
Die LiquidCrystal-Bibliothek ermöglicht die Definition von bis zu acht eigenen Zeichen,
die über die Zeichencodes 0 bis 7 ausgegeben werden können. Jedes Zeichen wird auf der
Anzeige in einem Raster aus 5×8 Pixeln dargestellt. Sie definieren ein Zeichen in einem
Array von acht Bytes. Jedes Byte definiert eine Zeile des Zeichens. Schreibt man sie als
Binärzahl, steht eine 1 für ein eingeschaltetes und die 0 für ein ausgeschaltetes Pixel (alle
Werte hinter dem fünften Bit werden ignoriert). Der Sketch definiert zwei Zeichen
namens happy und saddy (siehe Abbildung 11-3).

happy saddy

B00000

B10001

B00000

B00000

B10001

B01110

B00000

B00000

B00000

B10001

B00000

B00000

B01110

B10001

B00000

B00000

Abbildung 11-3: Definition eigener Zeichen

Die folgende Zeile in setup erzeugt das Zeichen aus den im happy-Array definierten Werten
und weist es dem Zeichen 0 zu:

lcd.createChar(0, happy);

Um das selbstdefinierte Zeichen auszugeben, nutzen Sie die folgende Zeile:

lcd.write(0);

Beachten Sie den Unterschied beim Schreiben eines Zeichens mit und ohne
Hochkomma. Die folgende Zeile gibt eine 0 aus, nicht das Smiley-Symbol:

lcd.write('0'); // gibt eine 0 aus

Der Code in der for-Schleife schaltet zwischen den Zeichen 0 und 1 hin und her, um eine
Animation zu erzeugen.

11.7 Große Symbole darstellen

Problem
Sie wollen zwei oder mehr selbstdefinierte Zeichen kombinieren, um Symbole darzustel-
len, die größer sind als ein einzelnes Zeichen, z.B. Zahlen doppelter Höhe.

11.7 Große Symbole darstellen | 379

Lösung
Der folgende Sketch gibt Zahlen doppelter Größe über selbstdefinierte Zeichen aus:

/*
* customChars
*
* Dieser Sketch gibt große Ziffern aus
* Die bigDigit-Arrays wurden vom Arduino-Forum-Mitglied dcb inspiriert
*/

#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

byte glyphs[5][8] = {
{ B11111,B11111,B00000,B00000,B00000,B00000,B00000,B00000 },
{ B00000,B00000,B00000,B00000,B00000,B00000,B11111,B11111 },
{ B11111,B11111,B00000,B00000,B00000,B00000,B11111,B11111 },
{ B11111,B11111,B11111,B11111,B11111,B11111,B11111,B11111 } ,
{ B00000,B00000,B00000,B00000,B00000,B01110,B01110,B01110 } };

const int digitWidth = 3; // Breite in großen Ziffer in Zeichen
// (Ohne Leerzeichen zwischen den Zeichen)

//Arrays zur Indexierung der selbstdefinierten Zeichen, aus denen die großen Ziffern bestehen
// Ziffern 0-4 0 1 2 3 4
const char bigDigitsTop[10][digitWidth]={ 3,0,3, 0,3,32, 2,2,3, 0,2,3, 3,1,3,
// Ziffern 5-9 5 6 7 8 9

3,2,2, 3,2,2, 0,0,3, 3,2,3, 3,2,3};

const char bigDigitsBot[10][digitWidth]={ 3,1,3, 1,3,1, 3,1,1, 1,1,3, 32,32,3,
1,1,3, 3,1,3, 32,32,3, 3,1,3, 1,1,3};

char buffer[12]; // Puffer zur Umwandlung einer Zahl in einen String
void setup ()
{
lcd.begin(20,4);
// Selbstdefinierte Zeichen erzeugen
for(int i=0; i < 5; i++)
lcd.createChar(i, glyphs[i]); // 5 eigene Zeichen definieren
// Countdown ausgeben
for(int digit = 9; digit >= 0; digit--)
{
showDigit(digit, 2); // Ziffer ausgeben
delay(1000);
}
lcd.clear();
}

void loop ()
{
// Nun ausgeben, wie lange der Sketch läuft (in Sekunden)
int number = millis() / 1000;
showNumber(number, 0);
delay(1000);
}

380 | Kapitel 11: Displays nutzen

void showDigit(int digit, int position)
{
lcd.setCursor(position * (digitWidth + 1), 0);
for(int i=0; i < digitWidth; i++)
lcd.write(bigDigitsTop[digit][i]);
lcd.setCursor(position * (digitWidth + 1), 1);
for(int i=0; i < digitWidth; i++)
lcd.write(bigDigitsBot[digit][i]);

}
void showNumber(int value, int position)
{
int index; // Index auf die auszugebende Ziffer, 0 ist die Ziffer ganz links
itoa(value, buffer, 10); // Mehr zu itoa finden Sie in Rezept 2.8
// Alle Ziffern nacheinander ausgeben
for(index = 0; index < 10; index++) // Bis zu 10 Ziffern darstellen
{
char c = buffer[index];
if(c == 0) // Auf Null prüfen (nicht auf '0')
return; // Das String-Ende-Zeichen ist die Null, siehe Kapitel 2
c = c - 48; //ASCII-Wert in numerischen Wert umwandeln (siehe Rezept 2.9)
showDigit(c, position + index);
}
}

Diskussion
Die Zeichen eines LC-Displays haben eine feste Größe, aber man kann durch die
Kombination von Zeichen größere Symbole darstellen. Dieses Rezept erzeugt mit der in
Rezept 11.6 beschriebenen Technik fünf selbstdefinierte Zeichen. Diese Symbole (siehe
Abbildung 11-4) können so kombiniert werden, dass sich mit ihnen große Ziffern (siehe
Abbildung 11-5) darstellen lassen. Der Sketch zählt auf dem LCD in großen Ziffern von 9
bis 0 herunter. Er gibt dann in Sekunden aus, wie lange der Sketch schon läuft.

0 1 2 3 4

Abbildung 11-4: Selbstdefinierte Zeichen für große Ziffern

Abbildung 11-5: Aus selbstdefinierten Zeichen zusammengesetzte Ziffern

11.7 Große Symbole darstellen | 381

Das glyphs-Array definiert die Pixel für fünf selbstdefinierte Zeichen. Die zwei Dimensio-
nen des Arrays stehen in den eckigen Klammern:

byte glyphs[5][8] = {

[5] ist die Zahl der Zeichen und [8] die Anzahl der Zeilen pro Zeichen. Jedes Element
enthält Einsen und Nullen die festlegen, ob ein Pixel an dieser Stelle der Zeile an oder aus
ist. Wenn Sie die Werte in glyph[0] (dem ersten Zeichen) mit Abbildung 11-2 vergleichen,
können Sie sehen, dass die Einsen den dunklen Pixeln entsprechen:

{ B11111,B11111,B00000,B00000,B00000,B00000,B00000,B00000 } ,

Jede große Ziffer setzt sich aus sechs der selbstdefinierten Zeichen zusammen, drei für die
obere und drei für die untere Hälfte. Die Arrays bigDigitsTop und bigDigitsBot definieren,
welches selbstdefinierte Zeichen für die oberen und unteren Zeilen auf der LCD-Anzeige
verwendet wird.

Siehe auch
Falls Sie wirklich große Ziffern benötigen, finden Sie in Kapitel 7 Informationen zu
7-Segment-LED-Anzeigen. 7-Segment-Anzeigen gibt es in Größen von etwa einem bis zu
5 Zentimetern und mehr. Sie benötigen wesentlich mehr Strom als LC-Displays und
können Buchstaben und Symbole nicht besonders gut darstellen, sind aber eine gute
Wahl, wenn Sie etwas groß darstellen wollen.

11.8 Kleine Pixel darstellen

Problem
Sie wollen Informationen mit einer feineren Auflösung als ein einzelnes Zeichen dar-
stellen, z.B. um ein Balkendiagramm auszugeben.

Lösung
Rezept 11.7 beschreibt, wie man große Symbole darstellen kann, die aus mehr als einem
Zeichen bestehen. Dieses Rezept macht das Gegenteil: Es definiert acht kleine Symbole,
jedes einen Pixel höher als das vorherige (siehe Abbildung 11-6).

0 1 2 3 4 5 6 7

Abbildung 11-6: Acht selbstdefinierte Zeichen bilden vertikale Balken

382 | Kapitel 11: Displays nutzen

Diese Symbole werden genutzt, um Balkendiagramme zu zeichnen. Wie das geht, zeigt
der folgende Sketch:

/*
* customCharPixels
*/

#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

//Zeilen und Spalten für ihr LCD anpassen
const int numRows = 2;
const int numCols = 16;

// Bitarray definiert Pixel für 8 selbstdefinierte Zeichen
// Einsen und Nullen geben an, ob ein Pixel an oder aus ist

byte glyphs[8][8] = {
{B00000,B00000,B00000,B00000,B00000,B00000,B00000,B11111}, // 0
{B00000,B00000,B00000,B00000,B00000,B00000,B11111,B11111}, // 1
{B00000,B00000,B00000,B00000,B00000,B11111,B11111,B11111}, // 2
{B00000,B00000,B00000,B00000,B11111,B11111,B11111,B11111}, // 3
{B00000,B00000,B00000,B11111,B11111,B11111,B11111,B11111}, // 4
{B00000,B00000,B11111,B11111,B11111,B11111,B11111,B11111}, // 5
{B00000,B11111,B11111,B11111,B11111,B11111,B11111,B11111}, // 6
{B11111,B11111,B11111,B11111,B11111,B11111,B11111,B11111}}; // 7

void setup ()
{
lcd.begin(numCols, numRows);
for(int i=0; i < 8; i++)
lcd.createChar(i, glyphs[i]); // Selbstdefinierte Zeichen erzeugen
lcd.clear();
}

void loop ()
{
for(byte i=0; i < 8; i++)
lcd.write(i); // Alle Balken darstellen
delay(2000);
lcd.clear();
}

Diskussion
Der Sketch erzeugt acht selbstdefinierte Zeichen, jedes ein Pixel höher als das vorige (siehe
Abbildung 11-6). Sie werden nacheinander in der oberen Zeile des LCDs ausgegeben. Mit
diesen »Balkendiagramm«-Zeichen können Sie Werte in Ihrem Sketch darstellen, die auf
einem Bereich von 0 bis 7 abgebildet werden können. Das folgende Code-Fragment gibt
beispielsweise einen Wert aus, der über den Analogeingang 0 eingelesen wurde:

11.8 Kleine Pixel darstellen | 383

int value = analogRead(0);
byte glyph = map(value, 0, 1023,0,8);// Proportionalen Wert zwischen 0 und 7 zurückgeben
lcd.print(glyph);

Für eine höhere Auflösung können Sie die Balken auch stapeln. Die Funktion double-
HeightBars im nachfolgenden Code gibt einen Wert zwischen 0 und 15 mit einer
Auflösung von 16 Pixeln über zwei Zeilen der Anzeige aus:

void doubleHeightBars(int value, int column)
{
char upperGlyph;
char lowerGlyph;

if(value < 8)
{
upperGlyph = ' '; // Kein Pixel an
lowerGlyph = value;

}
else
{
upperGlyph = value - 8;
lowerGlyph = 7; // Alle Pixel an

}

lcd.setCursor(column, 0); // Obere Hälfte ausgeben
lcd.write(upperGlyph);
lcd.setCursor(column, 1); // Untere Hälfe ausgeben
lcd.write(lowerGlyph);
}

Die doubleHeightBars-Funktion kann wie folgt genutzt werden, um den Wert eines
Analogeingangs auszugeben:

for(int i=0; i < 16; i++)
{
int value = analogRead(0);
value = map(value, 0, 1023,0,16);
doubleHeightBars(value, i); // Wert zwischen 0 und 15 ausgeben
delay(1000); // Einmal pro Sekunde aktualisieren
}

Wenn Sie horizontale Balken brauchen, können Sie fünf Zeichen definieren (jedes ein
Pixel breiter als das vorige) und eine ähnliche Logik wie bei den vertikalen Balken
verwenden, um die Zeichen zu bestimmen, die ausgegeben werden sollen.

Ein komplexeres Beispiel dieser Technik finden Sie in einem Sketch, das eine bekannte
Computersimulation, John Conways Spiel des Lebens (Game of Life) implementiert. Sie
können den Sketch auf der Website zu diesem Buch (http://shop.oreilly.com/product/
0636920022244.do) herunterladen.

384 | Kapitel 11: Displays nutzen

11.9 Ein graphisches LC-Display anschließen und nutzen

Problem
Sie wollen Grafik und Text auf einem LCD mit einem KS0108 (oder kompatiblen)
LCD-Treiber ausgeben.

Lösung
Diese Lösung verwendet die Arduino GLCD-Bibliothek zur Ansteuerung des Displays. Sie
können Sie von http://code.google.com/p/glcd-arduino/downloads/list herunterladen (Hilfe
bei der Installation von Bibliotheken finden Sie in).

Es gibt viele verschiedene GLCD-Controller. Stellen Sie sicher, dass Ihrer
ein KS0108 oder ein kompatibler ist.

Die Anschlüsse von GLCDs sind nicht standardisiert, d.h., Sie müssen auf dem Datenblatt
nachsehen, wie es richtig anzuschließen ist. Der fehlerhafte Anschluss der Signalleitungen
ist die häufigste Fehlerursache und besondere Sorgfalt ist bei den Versorgungsanschlüssen
vonnöten, da der falsche Anschluss das Panel beschädigen kann.

Die meisten GLCD-Panels benötigen einen externen variablen Widerstand, um die LCD-
Betriebsspannung (Kontrast) einzustellen und eventuell einen weiteren (festen) Widerstand,
um den Strom für die Hintergrundbeleuchtung zu beschränken. Das Datenblatt des Panels
sollte alle Informationen zum Anschluss und die benötigten Komponenten enthalten.

Tabelle 11-2 zeigt den Standardanschluss eines KS0108-Panels an einen Arduino (oder
Mega). Sie müssen auf dem Datenblatt Ihres Panels nachsehen, wo bei Ihrem Display die
jeweiligen Funktionen liegen. Die Tabelle zeigt die drei gängigsten Panel-Layouts. Das erste
(in der Tabelle mit »Panel A« bezeichnet), ist in Abbildung 11-7 zu sehen. Die Dokumen-
tation der GLCD-Bibliothek enthält farbige Anschlussdiagramme der gängigsten Displays.

Tabelle 11-2: Anschluss eines KS0108-Panels an einen Arduino oder Mega

Arduino-Pins Mega-Pins GLCD-Funktion Panel A Panel B Panel C Kommentar

5V 5V +5 volts 1 2 13

Gnd Gnd Gnd 2 1 14

– – Contrast in 3 3 12 Schleifer des Kontrast-Potis

8 22 D0 4 7 1

9 23 D1 5 8 2

10 24 D2 6 9 3

11 25 D3 7 10 4

4 26 D4 8 11 5

5 27 D5 9 12 6

6 28 D6 10 13 7

11.9 Ein graphisches LC-Display anschließen und nutzen | 385

Tabelle 11-2: Anschluss eines KS0108-Panels an einen Arduino oder Mega (Fortsetzung)

Arduino-Pins Mega-Pins GLCD-Funktion Panel A Panel B Panel C Kommentar

7 29 D7 11 14 8

14 (Analog 0) 33 CSEL1 12 15 15 Chip-Select 1

15 (Analog 1) 34 CSEL2 13 16 16 Chip-Select 2

Reset Reset 14 17 18 Mit Reset verbinden

16 (Analog 2) 35 R_W 15 5 10 Lesen/Schreiben (Read/Write)

17 (Analog 3) 36 D_I 16 4 11 Daten/Instruktionen (RS)

18 (Analog 4) 37 EN 17 6 9 Enable

– – Contrast out 18 18 17 10K oder 20K vorgegeben

– – Backlight +5 19 19 19 Siehe Datenblatt

Gnd Gnd Backlight Gnd 20 20 20 Siehe Datenblatt

Die Zahlen in den Arduino- und Mega-Spalten sind die Arduino- (oder Mega-) Pins, die in
der mit der Bibliothek mitgelieferten Konfigurationsdatei verwendet werden. Sie können
auch andere Pins verwenden, wenn sie bereits belegt sind. Wenn Sie die Anschlüsse
ändern, müssen Sie auch die Zuweisungen in der Konfigurationsdatei anpassen und sich
in der Bibliotheks-Dokumentation ansehen, wie man die Konfigurationsdatei editiert.

Der Anschluss des Panels entsprechend der Standardkonfiguration und die
Ausführung des Sketches in diesem Rezept ermöglicht es Ihnen, alles
auszutesten, bevor Sie die Konfiguration ändern. Eine der Verschaltung
nicht entsprechende Konfiguration ist die häufigste Fehlerursache, wes-
halb bei einem Test mit minimalen Änderungen die Wahrscheinlichkeit
steigt, dass es auf Anhieb funktioniert.

10K
Kontrast-

Poti

T
X

1
R

X
02346 57

V
in5V3V
3

RE
SE

T

G
nd

Arduino

G
nd

4 5210 3

ANALOG

9 8101112

G
ND 13

AR
EF

DIGITAL

+5
V

G
n

d

C
on

tr
a

s
t

In

C
on

tr
a

s
t

O
u

t

D
a

ta
 7

D
a

ta
 6

D
a

ta
 5

D
a

ta
 4

D
a

ta
 3

D
a

ta
 1

D
a

ta
 0

D
a

ta
 2

E
N

D
_

I
(R

S
)

R
_

W

C
S

E
L

2

C
S

E
L

1

220

Ohm

Widerstand für
Hintergrund-
beleuchtung
(falls nötig)

Hintergrundbeleuchtung – (Masse)

Hintergrundbeleuchtung + (5V)

GLCD

KS0108

Abbildung 11-7: Anschluss eines GLCDs für Panels vom Typ A; Ihre Pinbelegung finden Sie auf dem
Datenblatt

386 | Kapitel 11: Displays nutzen

Der folgende Sketch gibt etwas Text und einige graphische Objekte aus:

/*
glcd
*/

#include <glcd.h>

#include "fonts/allFonts.h" // Zugriff auf alle mitgelieferten Schriften

int count = 0;

void setup()
{
GLCD.Init(NON_INVERTED); // Bibliothek initialsieren
GLCD.ClearScreen();
GLCD.SelectFont(System5x7); // Systemfont in fester Breite wählen
GLCD.print("Hallo, Welt"); // Text ausgeben
delay(3000);
}

void loop()
{

GLCD.ClearScreen();
GLCD.DrawRect(0, 0, 64, 61, BLACK); // Rechteck auf der linken Seite der Anzeige
// Abgerundetes Rechteck um den Textbereich
GLCD.DrawRoundRect(68, 0, 58, 61, 5, BLACK);
for(int i=0; i < 62; i += 4)
{
// Linien von oben links nach unten rechts zeichnen
GLCD.DrawLine(1,1,63,i, BLACK);
}
GLCD.DrawCircle(32,31,30,BLACK); // Kreis in der Mitte der linken Seite
GLCD.FillRect(92,40,16,16, WHITE); // Textbereich löschen
GLCD.CursorTo(5,5); // Textcursor positionieren
GLCD.PrintNumber(count); // und eine Zahl ausgeben
count = count + 1;
delay(1000);

}

Diskussion
Die Bibliothek bietet eine Vielzahl grundlegender High-Level-Zeichenfunktionen, von
denen einige in diesem Sketch demonstriert werden. Alle Funktionen sind in der Doku-
mentation der Bibliothek beschrieben.

Die Bildschirmkoordinaten für Text und Grafik beginnen in der linken oberen Ecke. Die
am weitesten verbreiteten GLCD-Panels haben 128 × 64 Pixel und die Bibliothek arbeitet
standardmäßig mit dieser Auflösung. Hat ihr Panel eine andere Auflösung, müssen Sie die
Konfigurationsdatei der Bibliothek entsprechend korrigieren (momentan werden Panels
mit bis zu 255 × 255 Punkten unterstützt).

11.9 Ein graphisches LC-Display anschließen und nutzen | 387

GLCD erlaubt die Ausgabe von Text auf dem Bildschirm mit Befehlen, die den Arduino
print-Befehlen für den seriellen Port ähneln. Darüber hinaus können Sie die Schriftart und
-größe festlegen. Sie können auch einen Bereich der Anzeige festlegen, die als Textfenster
verwendet werden soll. In diesem Bereich haben Sie dann ein »virtuelles Terminal«, in
dem Text innerhalb der definierten Grenzen ausgeben und gescrollt wird. Der nach-
folgende Code erzeugt zum Beispiel ein 32 Pixel großes Quadrat in der Mitte des
Bildschirms:

gText myTextArea = gText(GLCD.CenterX-16, GLCD.CenterY -16, GLCD.CenterX +16,
GLCD.CenterY+16);

Mit Code wie dem folgenden können Sie eine Schriftart auswählen und im Textbereich
ausgeben:

myTextArea.SelectFont(System5x7); // Systemfont für Textbereich wählen
name textTop
myTextArea.println("Los!"); // Eine Textzeile im Textbereich ausgeben.

Der mit der Bibliothek mitgelieferte Beispiel-Sketch zeigt, wie man mehrere Textbereiche
zusammen mit Grafikelementen nutzen kann.

Diese Grafikanzeigen haben wesentlich mehr Anschlüsse als Text-LCDs und Sie müssen
darauf achten, dass Ihr Panel korrekt angeschlossen ist.

Wenn keine Pixel auf dem Display erscheinen oder verstümmelt sind, machen Sie Fol-
gendes:

• Überprüfen Sie die +5V- und Masse-Anschlüsse zwischen dem Arduino und dem
GLCD-Panel.

• Stellen Sie sicher, dass alle Daten- und Befehlspins dem Datenblatt entsprechend
verschaltet sind und mit der Konfiguration übereinstimmen. Das ist die häufigste
Fehlerursache.

• Überprüfen Sie mit Hilfe des Datenblatts, dass die richtigen Timing-Werte in der
Konfigurationsdatei eingestellt sind.

• Überprüfen Sie die Kontrast-Spannung (typischerweise zwischen –3 und –4 Volt) am
Contrast-in-Pin des LCD-Panels. Gehen Sie den gesamten Wertebereich des Potis
langsam durch, während der Sketch läuft. Manche Displays sind bei dieser Einstel-
lung sehr empfindlich.

• Stellen Sie sicher, dass der Sketch korrekt kompiliert und auf den Arduino hoch-
geladen wurde.

• Führen Sie den GLCDdiags Diagnose-Sketch aus. Er steht im Menü über Exam-
ples→GLCD→GLCDdiags zur Verfügung.

Wenn die linke und rechte Seite des Bildes vertauscht ist, vertauschen Sie die CSEL1- und
CSEL2-Anschlüsse (Sie können die Pins auch in der Konfigurationdatei vertauschen).

388 | Kapitel 11: Displays nutzen

11.10 Bitmaps für graphische Displays

Problem
Sie wollen eigene graphische Images (Bitmaps) entwerfen und mit dem GLC-Display aus
Rezept 11.9 einsetzen. Die Schriftdefinition und der Text soll im Programmspeicher
abgelegt werden, um die RAM-Nutzung zu minimieren.

Lösung
Sie können die mit der Bibliothek mitgelieferten Bitmaps nutzen, oder eigene entwerfen.
Bitmaps werden in Header-Dateien mit der Endung .h definiert. Zum Beispiel findet sich
ein Arduino-Icon namens ArduinoIcon.h im bitmap-Ordner des GLCD-Bibliotheksver-
zeichnisses. Der Ordner enthält auch eine Datei namens allBitmaps.h, die Details zu allen
mitgelieferten Bitmaps enthält. Sie können also die folgende Zeile einfügen, um alle
mitgelieferten (oder neuen) Bitmaps verfügbar zu machen:

#include "bitmaps/allBitmaps.h" // Bindet alle mitgelieferten Bitmaps ein

Beachten Sie, dass das Einbinden aller Bitmaps keinen Speicher verbraucht, solange sie im
Sketch nicht explizit mit DrawBitmap referenziert werden.

Um das Hinzufügen eigener Bitmaps zu ermöglichen, enthält die GLCD-Bibliothek ein
Utility namens glcdMakeBitmap, das Dateien vom .gif, .jpg, .bmp, .tga oder .png in eine
Header-Datei umwandelt, die von GLCD genutzt werden kann. Die Datei glcdMakeBit-
map.pde ist ein Processing-Sketch, der in der Processing-Umgebung ausgeführt werden
kann. Der Sketch liegt im Verzeichnis bitmaps/utils/glcdMakeBitmap directory. Weitere
Informationen zu Processing finden Sie unter http://processing.org/.

Es gibt auch eine .java- (Java) Laufzeit-Datei (glcdMakeBitmap.jar) und eine .java-(Ja-
va-)Quelldatei (glcdMakeBitmap.java) im Verzeichnis bitmaps/utils/Java.

Führen Sie den Sketch aus, indem Sie ihn in Processing laden (oder die .jar-Datei ankli-
cken). Ziehen Sie die umzuwandelnden Images dann einfach über das Fenster. Die Datei
wird im bitmaps-Verzeichnis gespeichert und es wird automatisch ein Eintrage in all-
BitMaps.h eingefügt, d.h., das neue Image kann direkt im Sketch verwendet werden.

Um das zu demonstrieren, benennen Sie ein Image auf Ihrem Computer in me.jpg um.
Starten Sie dann glcdMakeBitmap und ziehen Sie das Image in das erscheinende Fenster.

Kompilieren Sie den folgenden Sketch und laden Sie ihn hoch. Auf dem Display erscheint
das mitgelieferte Arduino-Icon gefolgt von dem von Ihnen erzeugten Image:

/*
* GLCDImage
* In me.h definiertes Image ausgeben
*/

#include <glcd.h>

#include "bitmaps/allBitmaps.h" // Alle Images im bitmap-Ordner einbinden

11.10 Bitmaps für graphische Displays | 389

void setup()
{
GLCD.Init(); // Bibliothek initialisieren
GLCD.ClearScreen();
GLCD.DrawBitmap(ArduinoIcon, 0,0); // Mitgelieferte Bitmap zeichnen
delay(5000);
GLCD.ClearScreen();
GLCD.DrawBitmap(me, 0,0); // Ihre Bitmap zeichnen
}

void loop()
{

}

Die folgende Zeile zeichnet das in ArduinoIcon.h definierte Image, das mit der Bibliothek
mitgeliefert wird:

GLCD.DrawBitmap(ArduinoIcon, 0,0); // Mitgelieferte Bitmap zeichnen

Nach einer Pause zeichnet die folgende Zeile das von Ihnen erzeugte Image aus der Datei
me.h:

GLCD.DrawBitmap(me, 0,0);

Siehe auch
Weitere Informationen zur Erzeugung und Nutzung graphischer Images finden Sie in der
Dokumentation der Bibliothek.

Die Dokumentation beschreibt auch, wie man eigene Schriften erzeugen kann.

11.11 Text auf dem Fernseher ausgeben

Problem
Sie wollen Text auf einem Fernseher oder einem Monitor mit Videoeingang ausgeben.

Lösung
Dieses Rezept nutzt ein Shield namens TellyMate, um Texte und Blockgrafiken auf einem
Fernseher auszugeben. Das Shield wird am Arduino aufgesteckt und besitzt einen Aus-
gang, der mit dem Videoeingang eines Fernsehers verbunden werden kann.

Der folgende Sketch gibt alle Zeichen, die der TellyMate darstellen kann, auf einem Fern-
seher aus:

/*
TellyMate
Einfache Demo des TellyMate-Shield
*/

390 | Kapitel 11: Displays nutzen

const byte ESC = 0x1B; // In TellyMate-Befehlen verwendetes ASCII-Escape-Zeichen

void setup()
{
Serial.begin(57600); // 57k6 Baud ist die Standard-Geschwindigkeit des TellyMate
clear(); // Bildschirm löschen
Serial.print(" TellyMate-Zeichensatz"); // Etwas Text ausgeben
delay(2000);
}

void loop()
{

byte charCode = 32; // Die Zeichen 0 bis 31 sind Steuerzeichen
for(int row=0; row < 7; row++) // 7 Zeilen ausgeben
{
setCursor(2, row + 8); // Display zentrieren
for(int col= 0; col < 32; col++) // 32 Zeichen pro Zeile
{
Serial.print(charCode);
charCode = charCode + 1;
delay(20);

}
}
delay(5000);
clear();
}

// TellyMate-Hilfsfunktionen

void clear() // Bildschirm löschen
{ // <ESC>E
Serial.print(ESC);
Serial.print('E');
}

void setCursor(int col, int row) // Cursor positionieren
{ // <ESC>Yrc
Serial.print(ESC);
Serial.print('Y') ;
Serial.print((unsigned char)(32 + row)) ;
Serial.print((unsigned char)(32 + col)) ;
}

Diskussion
Der Arduino steuert die TellyMate-Anzeige, indem er Befehle über den seriellen Port
sendet.

TellyMate kommuniziert mit dem Arduino über den seriellen Port, d.h.,
Sie müssen das Shield abtrennen, um Sketches hochzuladen.

11.11 Text auf dem Fernseher ausgeben | 391

Abbildung 11-8 zeigt, welche Zeichen dargestellt werden können. Eine Tabelle mit den
Werten aller Zeichen finden Sie unter http://en.wikipedia.org/wiki/Code_page_437.

Abbildung 11-8: TellyMate-Zeichensatz (Codeseite 437)

Die Zeichen 0 bis 31 werden als Steuerbefehle für den Bildschirm inter-
pretiert, d.h., nur die Zeichen 32 bis 255 können dargestellt werden.

Der Sketch verwendet nicht-druckbare Zeichen, sogenannte Escape-Codes, um druckbare
Zeichen von Befehlen zur Bildschirmsteuerung zu unterscheiden. Solche Steuercodes
bestehen aus dem ESC-Zeichen (die Abkürzung für Escape, hex 0x1b), gefolgt von einem
oder mehreren Zeichen, die die eigentliche Funktion bestimmen. Details zu allen Steuer-
codes finden Sie in der TellyMate-Dokumentation.

Der Sketch nutzt einige Hilfsfunktionen, die die zur Steuerung benötigen Zeichenfolgen
senden, damit Sie sich auf die eigentlichen Aktivitäten des Sketches konzentrieren
können.

Auf dem Bildschirm erscheint ein blinkender Cursor, den Sie mit einem Steuercode aus-
schalten können. Die Funktion cursorHide schaltet den Cursor aus:

void cursorHide()
{ // <ESC>f
Serial.write(ESC) ; // Das Escape-Zeichen
Serial.print('f') ; // gefolgt vom Buchstaben f schaltet den Cursor aus.
}

Um einen Rahmen um die Grenzen des Bildschirms zu zeichnen, fügen Sie die Funktionen
drawBox und showXY am Ende des obigen Sketches hinzu. Damit der Sketch Sie auch nutzt,
fügen Sie die folgende Zeile innerhalb der öffnenden Klammer der Schleife ein:

drawBox(1,0, 38, 24); // Bildschirm ist 38 Zeichen breit und 25 hoch

Die drawBox-Funktion gibt die vier Ecken sowie die oberen, unteren und seitlichen Linien
mit Hilfe entsprechender Blockgrafik-Codes aus:

// Für den Rahmen verwendete Zeichen
// siehe http://en.wikipedia.org/wiki/Code_page_437
const byte boxUL = 201;
const byte boxUR = 187;
const byte boxLL = 200;
const byte boxLR = 188;

392 | Kapitel 11: Displays nutzen

const byte HLINE = 205; // Horizontale Linie
const byte VLINE = 186; // Vertikale Linie

void drawBox(int startRow, int startCol, int width, int height)
{
// Zeichne obere Zeile
showXY(boxUL, startCol,startRow); // Obere linke Ecke
for(int col = startCol + 1; col < startCol + width-1; col++)
Serial.print(HLINE); // Die Linie

Serial.print(boxUR); // Obere rechte Ecke

// Rahmen links und rechts
for(int row = startRow + 1; row < startRow + height -1; row++)
{
showXY(VLINE, startCol,row); // Linker Rand
showXY(VLINE, startCol + width-1,row); // Rechter Rand

}
// Zeichne untere Zeile
showXY(boxLL, 0, startRow+height-1); // Untere linke Ecke
for(int col = startCol + 1; col < startCol + width-1; col++)
Serial.write(HLINE);

Serial.write(boxLR);

}

Eine von drawBox genutzte Hilfsfunktion namens showXY fasst die Cursor-Positionierung
und die Ausgabe zusammen:

void showXY(char ch, int x, int y){
// Zeichen an x- und y-Position ausgeben
setCursor(x,y);
Serial.write(ch);
}

Hier ein weiterer Sketch, der die Befehle zur Cursorsteuerung nutzt, um einen »Ball« über
den Bildschirm springen zu lassen:

/*
TellyBounce
*/

// Bildschirmgrenzen definieren
const int HEIGHT = 25; // Anzahl der Zeilen
const int WIDTH = 38; // Zeichen pro Zeile
const int LEFT = 0; // Daraus abgeleitete nützliche Konstanten
const int RIGHT = WIDTH -1;
const int TOP = 0;
const int BOTTOM = HEIGHT-1;

const byte BALL = 'o'; // Zeichencode für den Ball
const byte ESC = 0x1B; // Von TellyMate-Befehlen verwendetes ASCII-Escape-Zeichen

int ballX = WIDTH/2; // x-Position des Balls
int ballY = HEIGHT/2; // y-Position des Balls
int ballDirectionY = 1; // x-Richtung des Balls
int ballDirectionX = 1; // y-Richtung des Balls

11.11 Text auf dem Fernseher ausgeben | 393

// Dieses Intervall bewegt den Ball in weniger als 4 Sekunden über den 38-Zeichen-Bildschirm
long interval = 100;

void setup()
{
Serial.begin(57600); // 57k6 Baud ist die TellyMate-Standardgeschwindigkeit
clear(); // Bildschirm löschen
cursorHide(); // Cursor ausschalten
}

void loop()
{
moveBall();
delay(interval);
}

void moveBall() {
// Erreicht der Ball den oberen oder unteren Rand, kehren wir die y-Richtung um
if (ballY == BOTTOM || ballY == TOP)
ballDirectionY = -ballDirectionY;

// Erreicht der Ball den linken oder rechten Rand, kehren wir die x-Richtung um
if ((ballX == LEFT) || (ballX == RIGHT))
ballDirectionX = -ballDirectionX;

// Alte Position des Balls löschen
showXY(' ', ballX, ballY);

// Position des Balls in beiden Richtung erhöhen
ballX = ballX + ballDirectionX;
ballY = ballY + ballDirectionY;

// Ball an neuer Position ausgeben
showXY(BALL, ballX, ballY);
}

// TellyMate-Hilfsfunktionen

void clear() // Bildschirm löschen
{ // <ESC>E
Serial.write(ESC);
Serial.write('E');
}

void setCursor(int col, int row) // Cursor positionieren
{ // <ESC>Yrc
Serial.write(ESC);
Serial.write('Y') ;
Serial.write((unsigned char)(32 + row)) ;
Serial.write((unsigned char)(32 + col)) ;
}

void cursorShow()
{ // <ESC>e
Serial.write(ESC) ;
Serial.write('e') ;
}

394 | Kapitel 11: Displays nutzen

void cursorHide()
{ // <ESC>f
Serial.write(ESC) ;
Serial.write('f') ;
}

void showXY(char ch, int x, int y){
// Zeichen an x- und y-Position ausgeben
setCursor(x,y);
Serial.write(ch);
}

Siehe auch
Detaillierte Informationen zum TellyMate-Shield finden Sie unter http://www.batsocks
.co.uk/products/Shields/index_Shields.htm.

Weitere Informationen zur Codeseite 437, einschließlich einer Zeichentabelle, finden Sie
unter http://en.wikipedia.org/wiki/Code_page_437.

11.11 Text auf dem Fernseher ausgeben | 395

KAPITEL 12

Datum und Uhrzeit

12.0 Einführung
Die Arbeit mit Zeiten ist ein grundlegendes Element der Interaktivität von Computern.
Dieses Kapitel behandelt die im Arduino fest eingebauten Funktionen und stellt zusätz-
liche Techniken zur Behandlung von Zeitverzögerungen, Zeitmessungen und Zeit- und
Datumsangaben vor.

12.1 Zeitverzögerungen

Problem
Ihr Sketch soll eine bestimmte Zeitspanne pausieren. Dabei kann es sich um ein paar
Millisekunden handeln oder um Sekunden, Minuten, Stunden oder Tage.

Lösung
Die Arduino-Funktion delay wird im gesamten Buch von vielen Sketches genutzt. delay
hält den Sketch für die Zeit in Millisekunden an, die als Parameter übergeben wird. (1000
Millisekunden sind eine Sekunde.) Der folgende Sketch zeigt, wie Sie mit delay nahezu
jede Pause hinbekommen:

/*
* delay Sketch
*/

const long oneSecond = 1000; // Eine Sekunde sind 1000 Millisekunden
const long oneMinute = oneSecond * 60; // Eine Minute
const long oneHour = oneMinute * 60; // Eine Stunde
const long oneDay = oneHour * 24; // Ein Tag

void setup()
{
Serial.begin(9600);
}

| 397

void loop()
{
Serial.println("Eine Millisekunde pausieren");
delay(1);
Serial.println("Eine Sekunde pausieren");
delay(oneSecond);
Serial.println("Eine Minute pausieren");
delay(oneMinute);
Serial.println("Eine Stunde pausieren");
delay(oneHour);
Serial.println("Einen Tag pausieren");
delay(oneDay);
Serial.println("Bereit für den Neustart");
}

Diskussion
Der Wertebereich der delay-Funktion reicht von einer tausendstel Sekunde bis zu etwa 25
Tagen bzw. etwas unter 50 Tagen, wenn Sie mit unsigned long arbeiten (in Kapitel 2
erfahren Sie mehr über die Variablentypen).

Die delay-Funktion hält die Ausführung des Sketches für die angegebene Zeitspanne an.
Wenn Sie während dieser Zeit andere Aufgaben erledigen müssen, ist die millis-Funk-
tion, wie in Rezept 12.2 erläutert, die bessere Wahl.

Für sehr kurze Zeitverzögerungen können Sie delayMicroseconds verwenden. Eine Milli-
sekunde dauert 1000 Mikrosekunden und eine Million Mikrosekunden ist eine Sekunde.
Die Zeitspannen von delayMicroseconds liegen zwischen einer Mikrosekunde und ca.
16 Millisekunden. Ist die Pause aber länger als ein paar tausend Mikrosekunden, sollten
Sie delay verwenden:

delayMicroseconds(10); // 10 Mikrosekunde warten

delay und delayMicroseconds pausieren mindestens für die im Parameter
angegebene Dauer, doch die Verzögerung kann auch etwas länger sein,
wenn es innerhalb dieser Zeitspanne zu Interrupts kommt.

Siehe auch
Die Arduino-Referenz zu delay: http://www.arduino.cc/en/Reference/Delay

12.2 Laufzeiten messen mit millis

Problem
Sie wollen wissen, wie viel Zeit seit einem Ereignis vergangen ist. Zum Beispiel wollen Sie
wissen, wie lange eine Taste gedrückt wurde.

398 | Kapitel 12: Datum und Uhrzeit

Lösung
Arduino besitzt eine Funktion namens millis (für Millisekunden), die im folgenden Sketch
verwendet wird, um zu ermitteln, wie lange eine Taste gedrückt wurde (Rezept 5.2 be-
schreibt, wie der Taster anzuschließen ist):

/*
millisDuration Sketch
Gibt an, wie lange (in Millisekunden) eine Taste gedrückt wude
*/

const int switchPin = 2; // Eingangspin

long startTime; // millis-Wert beim ersten Drücken der Taste
long duration; // Variable für die Dauer

void setup()
{
pinMode(switchPin, INPUT);
digitalWrite(switchPin, HIGH); // Pullup-Widerstand aktivieren
Serial.begin(9600);
}

void loop()
{
if(digitalRead(switchPin) == LOW)
{
// Sobald die Taste gedrückt wurde
startTime = millis();
while(digitalRead(switchPin) == LOW)
; // Warten, solange die Taste gedrückt wird

long duration = millis() - startTime;
Serial.println(duration);

}
}

Diskussion
Die millis-Funktion gibt in Millisekunden zurück, wie lange der aktuelle Sketch schon
läuft.

Nach etwa 50 Tagen kommt es bei der millis-Funktion zu einem Überlauf
(d.h., der Wert springt wieder auf 0 zurück). In 12.4 und 12.5 finden Sie
Informationen darüber, wie Sie die Time-Bibliothek nutzen können, um
Intervalle von Sekunden bis hin zu Jahren zu verarbeiten.

Indem Sie die Startzeit des Ereignisses festhalten, können Sie dessen Dauer ermitteln,
wenn Sie die Startzeit von der aktuellen Zeit abziehen:

long duration = millis() - startTime;

12.2 Laufzeiten messen mit millis | 399

Sie können eine eigene Verzögerungsfunktion mit millis entwickeln, die sich anderen
Aufgaben widmet, während sie fortlaufend prüft, ob die festgelegte Zeitspanne abgelaufen
ist. Ein entsprechendes Beispiel finden Sie im Sketch BlinkWithoutDelay, das bei der
Arduino-Distribution mitgeliefert wird. Die folgenden Fragmente aus dem Sketch erläu-
tern den Schleifencode:

void loop()
{
// Hier steht der Code, der die ganze Zeit laufen muss...

Die nächste Zeile prüft, ob die gewünschte Zeitspanne verstrichen ist:

if (millis() - previousMillis > interval)
{
// Festhalten, wann die LED zuletzt geblinkt hat

Ist die Zeitspanne verstrichen, wird der aktuelle millis-Wert in der Variablen previous-
Millis gespeichert:

previousMillis = millis();

// Ist die LED aus, schalten wir sie an, und umgekehrt
if (ledState == LOW)
ledState = HIGH;
else
ledState = LOW;

// LED auf ledState setzen
digitalWrite(ledPin, ledState);
}
}

Hier nun eine Möglichkeit, diese Logik in eine Funktion namens myDelay zu packen, die
den Code in loop pausieren lässt, während dieser Zeit aber eine andere Aufgabe erledigen
kann. Sie können die Funktionalität für Ihre Anwendung anpassen, doch in diesem
Beispiel leuchtet die LED fünfmal pro Sekunde auf, obwohl die print-Anweisung in loop
mit 4-Sekunden-Intervallen ausgebremst wird:

// LED für festgelegte Dauer blinken lassen
const int ledPin = 13; // LED-Pin

int ledState = LOW; // ledState setzt LED
long previousMillis = 0; // Letzter Update der LED

void setup()
{
pinMode(ledPin, OUTPUT);
Serial.begin(9600);
}

void loop()
{
Serial.println(millis() / 1000); // Verstrichene Zeit alle vier Sekunden ausgeben
// Vier Sekunden warten (gleichzeitig aber eine LED schnell blinken lassen)
myDelay(4000);
}

400 | Kapitel 12: Datum und Uhrzeit

// duration ist Verzögerungszeit in Millisekunden
void myDelay(unsigned long duration)
{
unsigned long start = millis();
while (millis() - start <= duration)
{
blink(100); // LED innerhalb der while-Schleife blinken lassen
}
}

// interval gibt an, wie lange die LED an und aus sein soll
void blink(long interval)
{
if (millis() - previousMillis > interval)
{
// Letztes Blinken der LED
previousMillis = millis();
// Ist die LED aus, schalten wir sie an, und umgekehrt
if (ledState == LOW)
ledState = HIGH; else
ledState = LOW;
digitalWrite(ledPin, ledState);
}
}

Sie können in der myDelay-Funktion Code für eine beliebige Aktion einfügen, die wieder-
holt ausgeführt werden soll, während die Funktion darauf wartet, dass die festgelegte
Zeitspanne verstreicht.

Ein anderer Ansatz nutzt eine Bibliothek aus dem Arduino Playground namens Timed-
Action (http://www.arduino.cc/playground/Code/TimedAction):

#include <TimedAction.h>

//TimedAction-Klasse initialisieren, um den Status einer LED jede Sekunde zu ändern.
TimedAction timedAction = TimedAction(NO_PREDELAY,1000,blink);

const int ledPin = 13; // LED-Pin
boolean ledState = LOW;

void setup()
{
pinMode(ledPin,OUTPUT);
digitalWrite(ledPin,ledState);
}

void loop()
{
timedAction.check();
}

void blink()

12.2 Laufzeiten messen mit millis | 401

{
if (ledState == LOW)
ledState = HIGH;
else
ledState = LOW;

digitalWrite(ledPin,ledState);
}

Siehe auch
Die Arduino-Referenz für millis: http://www.arduino.cc/en/Reference/Millis

In 12.4 und 12.5 finden Sie Informationen darüber, wie Sie die Time-Bibliothek nutzen
können, um Intervalle von Sekunden bis hin zu Jahren zu verarbeiten.

12.3 Die Dauer eines Impulses präziser messen

Problem
Sie wollen die Dauer eines Impulses im Mikrosekundenbereich genau bestimmen. Zum
Beispiel wollen Sie die genaue Dauer eines HIGH- oder LOW-Impulses an einem Pin messen.

Lösung
Die pulseIn-Funktion gibt die Dauer (in Mikrosekunden) eines sich ändernden Signals an
einem Digitalpin zurück. Der folgende Sketch gibt die Dauer der HIGH- und LOW-Impulse in
Mikrosekunden aus, die von analogWrite erzeugt werden (beachten Sie den entsprechen-
den Abschnitt in Rezept 7.1 in Kapitel 7). Da die analogWrite-Impulse intern vom Arduino
erzeugt werden, ist keine externe Verschaltung nötig:

/*
PulseIn Sketch
Dauer der HIGH- und LOW-Impulse von analogWrite ausgeben
*/

const int inputPin = 3; // Analoger Ausgangspin
unsigned long val; // Enthält den Wert von pulseIn

void setup()
{
Serial.begin(9600);

analogWrite(inputPin, 128);
Serial.print("Schreibe 128 an Pin ");
Serial.print(inputPin);
printPulseWidth(inputPin);

analogWrite(inputPin, 254);
Serial.print("Schreibe 254 an Pin ");

402 | Kapitel 12: Datum und Uhrzeit

Serial.print(inputPin);
printPulseWidth(inputPin);

}

void loop()
{
}

void printPulseWidth(int pin)
{
val = pulseIn(pin, HIGH);
Serial.print(": HIGH-Impulslänge = ");
Serial.print(val);
val = pulseIn(pin, LOW);
Serial.print(", LOW-Impulslänge = ");
Serial.println(val);

}

Diskussion
Auf dem seriellen Monitor erscheint:

Schreibe 128 an Pin 3: HIGH-Impulslänge = 989, LOW-Impulslänge = 997
Schreibe 254 an Pin 3: HIGH-Impulslänge = 1977, LOW-Impulslänge = 8

pulseIn misst, wie lange ein Impuls entweder HIGH oder LOW ist:

pulseIn(pin, HIGH); // Wie lange (in Mikrosekunden) ist Impuls HIGH
pulseIn(pin, LOW) // Wie lange (in Mikrosekunden) ist Impuls HIGH

Die pulseIn-Funktion wartet darauf, dass der Impuls beginnt (bzw. auf einen Timeout,
falls kein Impuls kommt). Standardmäßig liegt das Timeout bei einer Sekunde, aber Sie
können das ändern, indem Sie die gewünschte Zeit in Mikrosekunden als dritten Para-
meter übergeben (denken Sie daran, dass 1000 Mikrosekunden eine Millisekunde sind):

pulseIn(pin, HIGH, 5000); // 5 Millisekunden auf Impuls warten

Der Timeout-Wert ist nur von Bedeutung, falls der Impuls nicht innerhalb
der festgelegten Zeitspanne startet. Sobald der Beginn des Impulses er-
kannt wurde, beginnt die Funktion mit der Zeitmessung und kehrt erst
zurück, wenn der Impuls endet.

pulseIn kann Werte zwischen etwa 10 Mikrosekunden bis drei Minuten messen, doch der
Wert sehr langer Impulse ist nicht besonders genau.

Siehe auch
Die Arduino-Referenz zu pulseIn: http://www.arduino.cc/en/Reference/PulseIn

Rezept 6.4 zeigt, wie pulseIn die Impulsdauer eines Ultraschall-Abstandssensors misst.

Rezept 18.2 enthält Informationen zur Verwendung von Hardware-Interrupts.

12.3 Die Dauer eines Impulses präziser messen | 403

12.4 Arduino als Uhr verwenden

Problem
Sie wollen die Uhrzeit (Stunden, Minuten und Sekunden) in einem Sketch ausgeben, ohne
externe Hardware anschließen zu müssen.

Lösung
Der folgende Sketch verwendet die Time-Bibliothek zur Ausgabe der Uhrzeit. Sie kann
von http://www.arduino.cc/playground/Code/Time heruntergeladen werden.

/*
* Time Sketch
*
*/

#include <Time.h>

void setup()
{
Serial.begin(9600);
setTime(12,0,0,1,1,11); // Zeit ist 12 Uhr mittags am 1.1.2011
}

void loop()
{
digitalClockDisplay();
delay(1000);
}

void digitalClockDisplay(){
// Digitalanzeige der Zeit
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.print(" ");
Serial.print(day());
Serial.print(" ");
Serial.print(month());
Serial.print(" ");
Serial.print(year());
Serial.println();
}

void printDigits(int digits){
// Hilfsfunktion zur Uhrendarstellung: Gibt vorstehenden Doppelpunkt und führende 0 aus
Serial.print(":");
if(digits < 10)
Serial.print('0');
Serial.print(digits);
}

404 | Kapitel 12: Datum und Uhrzeit

Diskussion
Die Time-Bibliothek ermöglicht es Ihnen, Datum und Uhrzeit nachzuhalten. Viele
Arduino-Boards verwenden einen Quarzkristall für den Zeitgeber, der auf ein paar
Sekunden pro Tag genau ist. Es gibt aber keine Batterie, mit deren Hilfe die Zeit beim
Ausschalten erhalten bleibt. Aus diesem Grund beginnt die Zeitrechnung bei jedem Start
des Sketches bei 0, d.h., Sie müssen Datum und Uhrzeit mit der Funktion setTime setzen.
Der Sketch setzt Datum und Uhrzeit bei jedem Start auf den 1. Januar um 12 Uhr mittags.

Die Time-Bibliothek verwendet einen als Unix-Zeit (auch POSIX-Zeit)
bezeichneten Standard. Die Werte geben die Zeit in Sekunden an, die seit
dem 1.1.1970 verstrichen ist. Erfahrene C-Programmierer werden erken-
nen, dass das dem time_t entspricht, das in der ISO-Standard-C-Bibliothek
zur Speicherung von Zeitwerten verwendet wird.

Natürlich ist es sinnvoller, Datum und Uhrzeit auf die aktuelle lokale Zeit einzustellen,
statt einen festen Wert zu verwenden. Der folgende Sketch liest den numerischen Zeitwert
(die Zahl der seit dem 1.1.1970 verstrichenen Sekunden) über den seriellen Port ein, um
die Zeit zu setzen. Sie können einen Wert über den seriellen Monitor eingeben (die
aktuelle Unix-Zeit findet sich auf vielen Webseiten, wenn man bei Google nach »Unix-
Zeit umrechnen« sucht):

/*
* TimeSerial Sketch
* Time-Bibliothek über seriellen Port setzen
*
* Nachrichten bestehen aus dem Buchstaben T, gefolgt vom 10-stelligen Zeitwert
* (in Sekunden seit dem 1.1.1970)
* Geben Sie die folgende Zeile im seriellen Monitor ein,
* um den 1.1.2011, 12 Uhr mittags einzustellen:
* T1293883200
*
* Ein Processing-Beispiel-Sketch, der diese Nachrichten automatisch sendet,
* ist in der Time-Bibliothek enthalten
*/

#include <Time.h>

#define TIME_MSG_LEN 11 // Zeitsynchronisation besteht aus dem HEADER, gefolgt von
// zehn ASCII-Ziffern

#define TIME_HEADER 'T' // Header-Tag zur seriellen Zeitsynchronisation

void setup() {
Serial.begin(9600);
Serial.println("Warte auf Zeitsynchronisation");
}

void loop(){
if(Serial.available())
{
processSyncMessage();
}
if(timeStatus()!= timeNotSet)

12.4 Arduino als Uhr verwenden | 405

{
// Wenn Datum/Uhrzeit gesetzt wurde
digitalClockDisplay();
}
delay(1000);
}

void digitalClockDisplay(){
// Digitalanzeige von Datum/Uhrzeit
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.print(" ");
Serial.print(day());
Serial.print(" ");
Serial.print(month());
Serial.print(" ");
Serial.print(year());
Serial.println();
}

void printDigits(int digits){
// Hilfsfunktion zur Uhrendarstellung: Gibt vorstehenden Doppelpunkt und führende 0 aus
Serial.print(":");
if(digits < 10)
Serial.print('0');
Serial.print(digits);
}

void processSyncMessage() {
// Wenn Zeitsynchronisation vom seriellen Port verfügbar ist, Datum/Uhrzeit aktualisieren und
true zurückgeben
// Die Nachricht besteht aus einem Header und 10 ASCII-Ziffern
while(Serial.available() >= TIME_MSG_LEN){
char c = Serial.read() ;
Serial.print(c);
if(c == TIME_HEADER) {
time_t pctime = 0;
for(int i=0; i < TIME_MSG_LEN -1; i++){
c = Serial.read();
if(isDigit(c)) {
pctime = (10 * pctime) + (c - '0') ; // Ziffern in eine Zahl umwandeln
}

}
setTime(pctime); // Uhr auf empfangenen Wert einstellen
}
}
}

Der Code zur Ausgabe von Uhrzeit und Datum ist mit dem obigen Code identisch, doch
diesmal empfängt der Sketch Datum und Uhrzeit über den seriellen Port. Wenn Sie mit
dem Empfang numerischer Daten über den seriellen Port nicht vertraut sind, sehen Sie
sich die Diskussion in Rezept 4.3 an.

Ein Processing-Sketch namens SyncArduinoClock ist in den Beispielen der Time-Biblio-
thek enthalten (im Ordner Time/Examples/Processing/SyncArduinoClock). Dieser Proces-

406 | Kapitel 12: Datum und Uhrzeit

sing-Sketch sendet bei einem Mausklick die aktuelle Zeit an den Arduino. Führen Sie
SyncArduinoClock in Processing aus und stellen Sie sicher, dass der serielle Port mit dem
Arduino verbunden ist (Kapitel 4 beschreibt, wie man einen Processing-Sketch ausführt,
der mit dem Arduino kommuniziert). Die Nachricht Warte auf Zeitsynchronisation sollte
im Processing-Textbereich (der schwarze Bereich am unteren Rand der Processing-IDE)
erscheinen. Klicken Sie das Processing-Anwendungsfenster an (ein graues, 200 Pixel
großes Quadrat), und im Textbereich sollten Datum und Uhrzeit erscheinen, wie sie
vom Arduino-Sketch ausgegeben werden.

Sie können die Uhr auch über den seriellen Monitor stellen, wenn Sie die aktuelle
Unix-Zeit kennen. http://www.epochconverter.com/ ist eine der viele Webseiten, die die
aktuelle Zeit in diesem Format bereitstellt. Kopieren Sie die zehnstellige Zahl, die als
aktuelle Unix-Zeit angegeben wird, und fügen Sie sie in das Sendefenster des seriellen
Monitors ein. Stellen Sie der Zahl den Buchstaben T voran und klicken Sie auf Send.
Wenn Sie beispielsweise Folgendes eingeben:

T1282041639

sollte der Arduino jede Sekunde Datum und Zeit ausgeben:

10:40:49 17 8 2010
10:40:50 17 8 2010
10:40:51 17 8 2010
10:40:52 17 8 2010
10:40:53 17 8 2010
10:40:54 17 8 2010
. . .

Sie können die Zeit auch über Tasten oder andere Eingabegeräte wie Neigungssensoren,
einen Joystick oder einen Drehgeber einstellen.

Der folgende Sketch verwendet zwei Taster, um die Zeiger der Uhr vor- und zurück-
zubewegen. Abbildung 12-1 zeigt die Verschaltung (falls Sie Hilfe bei den Tastern brau-
chen, sehen Sie sich Rezept 5.2 an):

/*
AdjustClockTime Sketch
Taster an Pins 2 und 3 justieren die Zeit
*/

#include <Time.h>

const int btnForward = 2; // Taster für Zeit vor
const int btnBack = 3; // Taster für Zeit zurück

unsigned long prevtime; // Wann wurde die Uhr zuletzt ausgegeben

void setup()
{
digitalWrite(btnForward, HIGH); // Interne Pullup-Widerstände aktivieren
digitalWrite(btnBack, HIGH);
setTime(12,0,0,1,1,11); // Wir beginnen mit dem 1.1.2011, 12 Uhr mittags
Serial.begin(9600);
Serial.println("Bereit");

12.4 Arduino als Uhr verwenden | 407

}

void loop()
{
prevtime = now(); // Zeit festhalten
while(prevtime == now()) // Bis zur nächsten Sekunde warten
{
// Wurde Taste gedrückt?
if(checkSetTime())

prevtime = now(); // Zeit wurde geändert, also Startzeit zurücksetzen
}
digitalClockDisplay();
}

// Prüft, ob Zeit korrigiert werden muss
// Gibt wahr zurück, wenn die Zeit geändert wurde
boolean checkSetTime()
{
int step; // Um wie viele Sekunden bewegen wir uns (zurück, wenn negativ)
boolean isTimeAdjusted = false; // Wahr, wenn Zeit korrigiert wurde
step = 1; // Vorwärts
while(digitalRead(btnForward)== LOW)
{
adjustTime(step);
isTimeAdjusted = true; // Zeit wurde geändert
step = step + 1; // Nächster Schritt ist größer
digitalClockDisplay(); // Uhr aktualisieren
delay(100);

}
step = -1; // Rückwärts mit negativen Zahlen
while(digitalRead(btnBack)== LOW)
{
adjustTime(step);
isTimeAdjusted = true; // Zeit wurde geändert
step = step - 1; // Nächster Schritt wird größer
digitalClockDisplay(); // Uhr aktualisieren
delay(100);

}
return isTimeAdjusted; // Zurückgeben, ob Zeit korrigiert wurde
}

void digitalClockDisplay(){
// Digitalanzeige von Datum/Uhrzeit
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.print(" ");
Serial.print(day());
Serial.print(" ");
Serial.print(month());
Serial.print(" ");
Serial.print(year());
Serial.println();
}

void printDigits(int digits){
// Hilfsfunktion zur Uhrendarstellung: Gibt vorstehenden Doppelpunkt und führende 0 aus

408 | Kapitel 12: Datum und Uhrzeit

Serial.print(":");
if(digits < 10)
Serial.print('0');
Serial.print(digits);
}

TX
 1

R
X

 02346 579 8101112

G
N

D 13

A
R

E
F

G
nd

Vi
n

5V3V
3

RE
SE

T

G
nd

Arduino

DIGITAL

4 5210 3

ANALOG

Zeit läuft
vorwärts

Zeit läuft
rückwärts

Abbildung 12-1: Zwei Taster zur Einstellung der Uhrzeit

Der Sketch nutzt die Funktionen digitalClockDisplay und printDigits aus Rezept 12.3,
d.h., Sie müssen sie kopieren, bevor Sie den Sketch ausführen können.

Hier eine Variante des Sketches, der die Position eines variablen Widerstands nutzt, um
die Richtung und die Geschwindigkeit der Korrektur zu bestimmen, wenn eine Taste
gedrückt wird:

#include <Time.h>

const int potPin = 0; // Poti für Richtung und Geschwindigkeit
const int buttonPin = 2; // Taster aktiviert Zeitkorrektur

unsigned long prevtime; // Wann wurde die Uhrzeit zuletzt ausgegeben?

void setup()
{
digitalWrite(buttonPin, HIGH); // Interne Pullup-Widerstände aktivieren
setTime(12,0,0,1,1,11); // Wir beginnen mit dem 1.1.2011, 12 Uhr mittags
Serial.begin(9600);
}

void loop()
{
prevtime = now(); // Zeit festhalten
while(prevtime == now()) // Bis zur nächsten Sekunde warten
{
// Wurde Taste gedrückt?

12.4 Arduino als Uhr verwenden | 409

if(checkSetTime())
prevtime = now(); // Zeit wurde geändert, also Startzeit zurücksetzen

}
digitalClockDisplay();
}

// Prüft, ob Zeit korrigiert werden muss
// Gibt wahr zurück, wenn die Zeit geändert wurde
boolean checkSetTime()
{
int value; // Vom Poti eingelesener Wert
int step; // Um wie viele Sekunden bewegen wir uns (zurück, wenn negativ)
boolean isTimeAdjusted = false; // Wahr, wenn Zeit korrigiert wurde

while(digitalRead(buttonPin)== LOW)
{
// here while button is pressed
value = analogRead(potPin); // Potiwert einlesen
step = map(value, 0,1023, 10, -10); // Wert auf gewünschten Wertebereich abbilden
if(step != 0)
{
adjustTime(step);
isTimeAdjusted = true; // Zeit wurde geändert
digitalClockDisplay(); // Uhr aktualsieren
delay(100);

}
}
return isTimeAdjusted;
}

Der obige Sketch nutzt die Funktionen digitalClockDisplay und printDigits aus Re-
zept 12.3, d.h., Sie müssen sie kopieren, bevor Sie den Sketch ausführen können.
Abbildung 12-2 zeigt, wie Poti und Taster angeschlossen sind.

Alle diese Beispiele geben die Uhrzeit über den seriellen Port aus, aber Sie können auch
LEDs oder LCDs verwenden. Der Download für das Grafik-LCD aus Rezept 11.9 enthält
Beispiel-Sketches, mit denen sich eine Analoguhr auf dem LCD anzeigen und einstellen
lässt.

Die Time-Bibliothek umfasst einige Hilfsfunktionen, die eine Konvertierung aus und in
verschiedene Zeitformate ermöglichen. So können Sie zum Beispiel herausfinden, wie viel
Zeit seit Beginn dieses Tages schon vergangen ist und wie viel Zeit noch bis zum Ende
dieses Tages bleibt.

410 | Kapitel 12: Datum und Uhrzeit

TX
 1

R
X

02346 579 8101112

G
N

D 13

AR
EF

G
nd

V
in

5V3V
3

R
E

S
E

T

G
nd

Arduino

DIGITAL

4 5210 3

ANALOG

Drücken, um
Zeit einzustellen

Poti drehen, um
Richtung und
Geschwindigkeit
festzulegen

Abbildung 12-2: Poti zur Zeitkorrektur

Eine vollständige Liste finden Sie in Time.h im Ordner libraries. Weitere Details finden Sie
in :

dayOfWeek(now()); // Wochentag (Sonntag ist Tag 1)
elapsedSecsToday(now()); // Verstrichene Sekunden seit

// Beginn des Tages
nextMidnight(now()); // Zeit bis zum Ende des Tages
elapsedSecsThisWeek(now()); // Verstrichene Zeit seit

// Beginn der Woche

Sie könnten Tage und Monate auch als Textstrings ausgeben. Hier eine Variante der Digi-
talanzeige, die Tag und Monat als Text ausgibt:

void digitalClockDisplay(){
// Digitalanzeige von Datum/Uhrzeit
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.print(" ");
Serial.print(dayStr(weekday())); // Wochentag ausgeben
Serial.print(" ");
Serial.print(day());
Serial.print(" ");
Serial.print(monthShortStr(month())); // Monat (abgekürzt) ausgeben
Serial.print(" ");

12.4 Arduino als Uhr verwenden | 411

Serial.print(year());
Serial.println();
}

Siehe auch
Referenz der Arduino Time-Bibliothek: http://www.arduino.cc/playground/Code/Time

Wikipedia-Artikel zur Unix-Zeit: http://de.wikipedia.org/wiki/Unixzeit

http://www.epochconverter.com/ und http://www.onlineconversion.com/unix_time.htm sind
zwei beliebte Tools zur Konvertierung der Unix- Zeit.

12.5 Einen Alarm einrichten, um regelmäßig eine Funktion
aufzurufen

Problem
Sie wollen eine bestimmte Aktion an bestimmten Tagen und zu bestimmten Uhrzeiten
ausführen.

Lösung
TimeAlarms ist eine Bibliothek, die im Download der Time-Bibliothek aus Rezept 12.4
mit enthalten ist (d.h., die Installation der Time-Bibliothek installiert auch TimeAlarms).
TimeAlarms macht die Einrichtung zeit- und datumsgesteuerter Alarme einfach:

/*
* TimeAlarmsExample Sketch
*
* Dieses Beispiel ruft Alarmfunktionen um 8:30 und 17:45 Uhr auf.
* Simuliert das Einschalten von Lichtern am Abend und das Ausschalten am Morgen
*
* Ein Timer wird alle 15 Sekunden aufgerufen
* Ein weiterer nur einmal nach 10 Sekunden
*
* Beim Start setzen wir die Zeit auf den 1.1.2010, 8:30 Uhr
*/

#include <Time.h>
#include <TimeAlarms.h>

void setup()
{
Serial.begin(9600);
Serial.println("TimeAlarms-Beispiel");
Serial.println("Alarme werden taeglich um 8:30 und 17:45 Uhr ausgeloest");
Serial.println("Ein Timer wird alle 15 Sekunden ausgeloest");
Serial.println("Ein anderer nur einmal nach 10 Sekunden");
Serial.println();

412 | Kapitel 12: Datum und Uhrzeit

setTime(8,29,40,1,1,10); // 8:29:40 Uhr am 1.1.2010

Alarm.alarmRepeat(8,30,0, MorningAlarm); // Jeden Tag um 8:30 Uhr
Alarm.alarmRepeat(17,45,0,EveningAlarm); // Jeden Tag um 17:45 Uhr

Alarm.timerRepeat(15, RepeatTask); // Timer alle 15 Sekunden
Alarm.timerOnce(10, OnceOnlyTask); // und einmal nach 10 Sekunden
}

void MorningAlarm()
{
Serial.println("Alarm: - schalte Licht aus");
}

void EveningAlarm()
{
Serial.println("Alarm: - schalte Licht ein");
}

void RepeatTask()
{
Serial.println("15-Sekunden-Timer");
}

void OnceOnlyTask()
{
Serial.println("Dieser Timer loest nur einmal aus");
}

void loop()
{
digitalClockDisplay();
Alarm.delay(1000); // Zwischen Uhrenanzeige eine Sekunde warten
}

void digitalClockDisplay()
{
// Digitalanzeige der Uhrzeit
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.println();
}

// Hilfsfunktion zur Uhrendarstellung: Gibt
// vorstehenden Doppelpunkt und führende 0 aus
//
void printDigits(int digits)
{
Serial.print(":");
if(digits < 10)
Serial.print('0');
Serial.print(digits);
}

12.5 Einen Alarm einrichten, um regelmäßig eine Funktion aufzurufen | 413

Diskussion
Sie können festlegen, dass Aufgaben zu einer bestimmten Tageszeit (wir nennen das
Alarme) oder in bestimmten Zeitintervallen (sog. Timer) ausgeführt werden sollen. Jede
dieser Aufgaben kann kontinuierlich oder einmalig ausgeführt werden.

Um einen Alarm zu definieren, der regelmäßig zu einer bestimmten Tageszeit ausgeführt
wird, verwenden Sie Folgendes:

Alarm.alarmRepeat(8,30,0, MorningAlarm);

Das ruft die Funktion MorningAlarm jeden Tag um 8:30 Uhr morgens auf.

Soll ein Alarm nur einmal angestoßen werden, verwenden Sie die Methode alarmOnce:

Alarm.alarmOnce(8,30,0, MorningAlarm);

Damit wird die Funktion MorningAlarm nur einmal ausgeführt (wenn es wieder 8:30 Uhr
ist) und danach nicht wieder.

Timer stoßen Aufgaben nach einem festgelegten Zeitintervall an, nicht zu einer bestimm-
ten Tageszeit. Das Timer-Intervall kann in Sekunden oder in Stunden, Minuten und
Sekunden angegeben werden:

Alarm.timerRepeat(15, Repeats); // Timer-Job alle 15 Sekunden ausführen

Damit wird die Funktion Repeats in Ihrem Sketch alle 15 Sekunden ausgeführt.

Soll ein Timer nur einmal ausgeführt werden, verwenden Sie die Methode timerOnce:

Alarm.timerOnce(10, OnceOnly); // Einmal nach 10 Sekunden

Das ruft die Funktion onceOnly im Sketch 10 Sekunden nach Erzeugung des Timers auf.

Ihr Code muss Alarm.delay regelmäßig aufrufen, da diese Funktion den
Status aller eingetragenen Ereignisse prüft. Rufen Sie Alarm.delay nicht
regelmäßig auf, wird auch kein Alarm ausgelöst. Sie können Alarm.
delay(0) aufrufen, wenn der Scheduler sofort aufgerufen werden soll. Ver-
wenden Sie immer Alarm.delay statt delay, wenn Sie in einem Sketch
TimeAlarms verwenden.

Die TimeAlarms-Bibliothek benötigt die Time-Bibliothek – siehe Rezept 12.4. Es wird
keine interne oder externe Hardware für die TimeAlarms-Bibliothek benötigt. Der Sche-
duler nutzt keine Interrupts, die aufgerufenen Verarbeitungsfunktionen sind genau wie
alle anderen Funktion in Ihrem Sketch (Code in Interrupt-Handlern unterliegt Beschrän-
kungen, die in Kapitel 17 diskutiert werden, sie gelten für TimeAlarms-Funktionen aber
nicht).

Timer-Intervalle reichen von einer Sekunde bis zu mehreren Jahren. (Wenn Sie Timer-
Intervalle unter einer Sekunde brauchen, ist die TimedAction-Bibliothek von Alexander
Brevig die bessere Wahl; siehe http://www.arduino.cc/playground/Code/TimedAction.)

Die Ausführung von Aufgaben zu bestimmten Zeiten basiert auf der System-Uhr der
Time-Bibliothek (Details finden Sie in Rezept 12.4). Wenn Sie die Systemzeit ändern (z.B.

414 | Kapitel 12: Datum und Uhrzeit

über einen Aufruf von setTime), bleiben die Alarmzeiten unangetastet. Nutzen Sie bei-
spielsweise setTime, um die Uhr eine Stunde vorzustellen, werden alle Alarme und Timer
eine Stunde früher angestoßen. Ist es mit anderen Worten 13:00 Uhr und eine Aufgabe
soll in zwei Stunden (um 15:00 Uhr) ausgeführt werden, und Sie stellen die Zeit auf 14:00
Uhr vor, dann wird der Task in einer Stunde ausgeführt. Stellen Sie die Systemzeit zurück
– zum Beispiel auf 12:00 Uhr –, wird der Task in drei Stunden angestoßen (wenn es laut
Systemuhr 15:00 Uhr ist). Wird die Zeit auf einen Wert gesetzt, der vor der Ausführungs-
zeit des Tasks liegt, wird diese Aufgabe sofort angestoßen (d.h. bei nächsten Aufruf von
Alarm.delay).

Das Verhalten von Alarmen ist offensichtlich: Aufgaben werden für einen bestimmten
Zeitpunkt festgelegt und zu eben diesem Zeitpunkt ausgeführt. Der Effekt von Timern ist
möglicherweise nicht ganz so offensichtlich. Wird ein Timer auf fünf Minuten eingestellt
und die Uhr um eine Stunde zurückgesetzt, wird dieser Timer erst in einer Stunde und
fünf Minuten ausgelöst (selbst wenn es sich um einen periodischen Timer handelt – die
Wiederholung wird erst eingerichtet, nachdem er ausgelöst wurde).

Bis zu sechs Alarme und Timer können gleichzeitig ausgeführt werden. Sie können die
Bibliothek aber so modifizieren, dass zusätzliche Tasks ausgeführt werden können.
Rezept 16.3 zeigt, wie das geht.

onceOnly-Alarme und -Timer werden gelöscht, sobald sie angestoßen wurden, können
aber so oft Sie wollen wieder neu eingetragen werden, solange insgesamt nicht mehr als
sechs verwendet werden. Der folgende Code zeigt, wie ein timerOnce-Task erneut einge-
tragen wird:

Alarm.timerOnce(random(10), randomTimer); // Nach zufällig festgelegter
// Zeitspanne anstoßen

void randomTimer(){
int period = random(2,10); // Neue zufällige Zeitspanne
Alarm.timerOnce(period, randomTimer); // Neuer zufälliger Timer
}

12.6 Eine Echtzeituhr nutzen

Problem
Sie wollen die von einer Echtzeituhr (real-time clock, RTC) bereitgestellte Zeit nutzen.
Externe Boards sind üblicherweise batteriebetrieben, d.h., die Zeit ist auch dann korrekt,
wenn der Arduino zurückgesetzt oder ausgeschaltet wird.

Lösung
Die einfachste Möglichkeit zur Nutzung einer Echtzeituhr bietet eine Zusatzbibliothek der
Time-Bibliothek namens DS1307RTC.h. Dieses Rezept eignet sich für die weitverbreiteten
DS1307- und DS1337-RTC- ICs:

12.6 Eine Echtzeituhr nutzen | 415

/*
* TimeRTC Sketch
* Time-Bibliothek mit Echtzeituhr
*
*/

#include <Time.h>
#include <Wire.h>
#include <DS1307RTC.h> // Einfache DS1307-Bibliothek, die die Zeit als time_t zurückgibt

void setup() {
Serial.begin(9600);
setSyncProvider(RTC.get); // Diese Funktion liest die Zeit von der Echtzeituhr ein
if(timeStatus()!= timeSet)
Serial.println("Synchronisation mit Echtzeituhr fehlgeschlagen");

else
Serial.println("Systemzeit ueber Echtzeituhr gesetzt");

}

void loop()
{
digitalClockDisplay();
delay(1000);

}

void digitalClockDisplay(){
// Digitalanzeige von Datum/Uhrzeit
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.print(" ");
Serial.print(day());
Serial.print(" ");
Serial.print(month());
Serial.print(" ");
Serial.print(year());
Serial.println();
}

// Hilfsfunktion zur Uhrendarstellung: Gibt
// vorstehenden Doppelpunkt und führende 0 aus
//
void printDigits(int digits){
Serial.print(":");
if(digits < 10)
Serial.print('0');
Serial.print(digits);
}

Die meisten RTC-Boards für den Arduino nutzen das I2C-Protokoll zur Kommunikation
(mehr zu I2C erfahren Sie in Kapitel 13). Verbinden Sie den mit »SCL« (oder »Clock«)
gekennzeichneten Anschluss mit dem Arduino-Analogpin 5 und »SDA« (oder »Data«) mit
Analogpin 4, wie in Abbildung 12-3 zu sehen. (Die Analogpins 4 und 5 werden für I2C
genutzt; siehe Kapitel 13). Achten Sie darauf, die +5V- und Masse-Pins korrekt anzu-
schließen.

416 | Kapitel 12: Datum und Uhrzeit

Abbildung 12-3: Anschluss einer Echtzeituhr

Diskussion
Der Code ähnelt den anderen Rezepten, die die Time-Bibliothek nutzen, erhält seine Da-
ten aber über die Echtzeituhr und nicht über den seriellen Port oder einen fest kodierten
Wert. Nur eine zusätzliche Zeile ist nötig:

setSyncProvider(RTC.get); // Diese Funktion liest die Zeit von der Echtzeituhr ein

Die Funktion setSyncProvider teilt der Time-Bibliothek mit, wie sie Informationen zum
Setzen (und Aktualisieren) der Zeit bekommt. RTC.get ist einer Methode der RTC-Biblio-
thek, die die aktuelle Zeit in dem Format (Unix-Zeit) zurückliefert, die die Time-Biblio-
thek nutzt.

Jedes Mal, wenn der Arduino startet, ruft die setup-Funktion RTC.get auf, um die Zeit
über die RTC-Hardware zu setzen.

Bevor Sie die korrekte Zeit vom Modul einlesen können, müssen Sie sie aber erst einmal
setzen. Hier ein Sketch, der es Ihnen erlaubt, die Zeit der RTC-Hardware einzustellen. Das
ist nur nötig, wenn Sie die RTC zum ersten Mal an eine Batterie anschließen, die Batterie
wechseln oder die Zeit ändern müssen:

/*
* TimeRTCSet Sketch
* Time-Bibliothek mit Echtzeituhr
*
* RTC wird entsprechend einer Nachricht vom seriellen Port gesetzt
* Ein beispielhafter Processing-Sketch zum Setzen der Zeit ist im Download enthalten
*/

#include <Time.h>
#include <Wire.h>

12.6 Eine Echtzeituhr nutzen | 417

#include <DS1307RTC.h> // Einfache DS1307-Bibliothek gibt Zeit als time_t zurück

void setup() {
Serial.begin(9600);
setSyncProvider(RTC.get); // Liest Zeit von RTC ein
if(timeStatus()!= timeSet)
Serial.println("Synchronisation mit Echtzeituhr fehlgeschlagen");

else
Serial.println("Systemzeit über Echtzeituhr gesetzt");

}

void loop()
{
if(Serial.available())
{
time_t t = processSyncMessage();
if(t >0)
{
RTC.set(t); // RTC und Systemzeit auf empfangenen Wert einstellen
setTime(t);

}
}
digitalClockDisplay();
delay(1000);

}

void digitalClockDisplay(){
// Digitalanzeige von Datum/Uhrzeit
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.print(" ");
Serial.print(day());
Serial.print(" ");
Serial.print(month());
Serial.print(" ");
Serial.print(year());
Serial.println();
}

// Hilfsfunktion zur Uhrendarstellung: Gibt
// vorstehenden Doppelpunkt und führende 0 aus
//
void printDigits(int digits){
Serial.print(":");
if(digits < 10)
Serial.print('0');
Serial.print(digits);
}

/* Nachrichten zur Zeitsynchronisation vom seriellen Port verarbeiten */
#define TIME_MSG_LEN 11 // Zeitsynchronisation vom PC ist ein HEADER gefolgt von Unix time_t

// als zehn ASCII-Ziffern
#define TIME_HEADER 'T' // Header-Tag für serielle Zeitsynchronisationsnachricht

time_t processSyncMessage() {
// Gibt Zeit zurück, wenn eine gültige Sync-Nachricht über den seriellen Port empfangen wurde

418 | Kapitel 12: Datum und Uhrzeit

// Die Zeit-Nachricht besteht au einem Header und zehn ASCII-Ziffern
while(Serial.available() >= TIME_MSG_LEN){
char c = Serial.read() ;
Serial.print(c);
if(c == TIME_HEADER) {
time_t pctime = 0;
for(int i=0; i < TIME_MSG_LEN -1; i++){
c = Serial.read();
if(c >= '0' && c <= '9'){
pctime = (10 * pctime) + (c - '0') ; // Ziffer in Zahl umwandeln
}

}
return pctime;
}
}
return 0;
}

Der Sketch ist nahezu identisch mit dem TimeSerial-Sketch in Rezept 12.4, der die Zeit
über den seriellen Port setzt. Hier wird aber die folgende Funktion zum Setzen der RTC
aufgerufen, wenn eine Zeit-Nachricht vom Computer empfangen wurde:

RTC.set(t); // RTC und Systemzeit auf empfangenen Wert einstellen

setTime(t);

Der RTC-Chip nutzt I2C zur Kommunikation mit dem Arduino. I2C wird in Kapitel 13
erläutert; in Rezept 13.3 finden Sie weitere Details zur I2C-Kommunikation mit dem
RTC-Chip.

Siehe auch
Datenblatt zum SparkFun BOB-00099: http://store.gravitech.us/i2crecl.html

12.6 Eine Echtzeituhr nutzen | 419

KAPITEL 13

Kommunikation per I2C und SPI

13.0 Einführung
Die I2C- (Inter-Integrated Circuit) und SPI- (Serial Peripheral Interface) Standards wurden
entwickelt, um auf einfache Weise digitale Informationen zwischen Sensoren und Mikro-
controllern wie dem Arduino auszutauschen. Arduino-Bibliotheken für I2C und SPI
machen es einfach, diese beiden Protokolle zu verwenden.

Die Wahl zwischen I2C und SPI wird üblicherweise durch die Bauelemente bestimmt, die
Sie anschließen wollen. Manche Bauelemente unterstützen beide Standards, doch übli-
cherweise unterstützt ein Bauelement oder Chip nur den einen oder den anderen.

I2C hat den Vorteil, dass für den Anschluss mit dem Arduino nur zwei Leitungen benötigt
werden. Mehrere Bauelemente über die beiden Anschlüsse zu betreiben, ist recht einfach
und Sie erhalten Bestätigungen, dass die Signale korrekt empfangen wurden. Die Nach-
teile sind, dass die Datenraten geringer sind als bei SPI und dass die Daten nur in jeweils
eine Richtung fließen können, was die Datenrate noch weiter senkt, wenn eine bidirek-
tionale Kommunikation notwendig ist. Darüber hinaus werden Pullup-Widerstände für
die Anschlüsse benötigt, um eine zuverlässige Signalübertragung zu gewährleisten (mehr
über Pullups erfahren Sie in der Einführung zu Kapitel 5).

Die Vorteile von SPI sind eine höhere Datenrate und separate Ein- und Ausgänge, so dass
gleichzeitig gesendet und empfangen werden kann. Es benötigt nur eine zusätzliche
Leitung pro Bauelement (zur Geräteauswahl), d.h., Sie benötigen mehr Anschlüsse,
wenn Sie viele Bauelemente anbinden.

Die meisten Arduino-Projekte nutzen SPI-Einheiten für Anwendungen mit hohen Daten-
raten (z.B. Ethernet und Speicherkarten) und nur einer angeschlossenen Einheit. I2C wird
eher für Sensoren verwendet, die nicht so viele Daten senden müssen.

Dieses Kapitel zeigt, wie man I2C und SPI nutzt, um gängige Bauelemente anzuschließen.
Es zeigt auch, wie man für Multiboard-Anwendungen mehrere Arduino-Boards über I2C
miteinander koppelt.

| 421

I2C
Die beide Anschlüsse des I2C-Busses heißen SCL und SDA. Sie sind bei einem Standard-
Arduino-Board über Analogpin 5 für SCL, der das Taktsignal (Clock) liefert, und
Analogpin 4 für SDL, der den Datentransfer übernimmt. Beim Mega verwenden Sie
Digitalpin 20 für SDA und Pin 21 für SCL. Uno-Boards der Revision 3 besitzen zusätzliche
Pins (siehe Rezept 1.2), die die Pins 4 und 5 duplizieren. Wenn Sie ein solches Board
besitzen, können Sie sich die Pins aussuchen. Ein Gerät auf dem I2C-Bus wird als Master
betrachtet. Seine Aufgabe besteht darin, den Informationsaustausch zwischen den ande-
ren angeschlossenen Geräten (Slaves) zu koordinieren. Es kann nur einen Master geben
und in den meisten Fällen ist der Arduino der Master, der die anderen Chips steuert.
Abbildung 13-1 zeigt einen I2C-Master mit mehreren I2C- Slaves.

Mit Arduino 1.0 eingeführte Boards wie das Leonardo-Board duplizieren
die SCL- und SDA-Anschlüsse an Pins neben dem AREF-Pin. Die neue
Lage der Pins ermöglicht es zukünftigen Boards, die I2C-Anschlüsse
immer an der gleichen Stelle zu belassen.

I2C

Slave
Masse

+ VSDASCL

Alog 5

Alog 4

I2C
Master

Entkoppelungs-
kondensator

I2C
Slave

Masse

+ VSDASCL

+V

Data

Clock

Pullup-
widerstände

Abbildung 13-1: Ein I2C-Master mit ein oder mehr I2C-Slaves

I2C-Geräte benötigen zur Kommunikation eine gemeinsame Masse. Der
Masse-Anschluss des Arduino muss mit der Masse jedes I2C-Gerätes
verbunden sein.

Slaves werden über ihre Adresse identifiziert. Jeder Slave muss eine eindeutige Adresse
besitzen. Einige I2C-Geräte haben feste Adressen (ein Beispiel ist der Nunchuck in
Rezept 13.2), während Sie bei anderen die Adresse konfigurieren können, indem Sie
bestimmte Pins auf HIGH oder LOW setzen (siehe Rezept 13.7) oder Initialisierungs-
befehle senden.

Arduino nutzt für I2C-Adressen 7-Bit-Werte. Die Datenblätter einiger
Geräte verwenden 8-Bit-Adressen. Ist das bei Ihnen der Fall, teilen Sie
den Wert durch zwei, um den richtigen 7-Bit-Wert zu bestimmen.

422 | Kapitel 13: Kommunikation per I2C und SPI

I2C und SPI definieren nur, wie die Kommunikation zwischen den Geräten zu erfolgen
hat. Die zu sendenden Nachrichten hängen vom jeweiligen Gerät (und was es macht) ab.
Sie müssen auf dem Datenblatt Ihres Geräts nachsehen, welche Befehle für den Betrieb
benötigt werden und welche Daten benötigt oder zurückgegeben werden.

Die Arduino Wire-Bibliothek versteckt die gesamte Low-Level-Funktionalität von I2C vor
Ihnen und erlaubt das Senden einfacher Befehle zur Initialisierung und Kommunikation von
Geräten. Rezept 13.1 ist eine einfache Einführung in diese Bibliothek und ihre Nutzung.

Wire-Code nach Arduino 1.0 migrieren

Die Arduino Wire-Bibliothek wurde in der Release 1.0 geändert. Sie müssen für ältere
Releases geschriebene Sketches entsprechend modifizieren und unter 1.0 neu kompilie-
ren. Die Methoden send und receive wurden zugunsten der Konsistenz mit anderen
Bibliotheken umbenannt:

Ändern Sie Wire.send() in Wire.write().
Ändern Sie Wire.receive() in Wire.read().

Bei write müssen Sie nun den Variablentyp für literale Konstanten angeben. Ein Beispiel:

Ändern Sie Wire.write(0x10) in Wire.write((byte)0x10).

3,3V-Geräte mit 5V-Boards nutzen
Viele I2C-Geräte sind für den 3,3V-Betrieb ausgelegt und können beschädigt werden,
wenn man sie an ein 5V-Arduino-Board anschließt. Sie können so etwas wie das
BOB-08745 Breakout-Board von SparkFun verwenden, das den Anschluss über einen
Pegelwandler ermöglicht (siehe Abbildung 13-2). Das Pegelwandler-Board hat eine Seite
für 3,3V (low-voltage, LV) und eins für 5 Volt (high-voltage, HV).

Vin

5V
3V3
RESET

TXI
RXD
LV
GND
RXD
TXI

TXO

LV|HV

HMC5883L
Magnetometer

RX1
HV

GND
RX1
TXO

Gnd

4 SDA
5 SCL

2
1
0 Analog In

3

Gnd

GND

VCC

SDA

SCL

Abbildung 13-2: 3,3V-Gerät mit Pegelwandler betreiben

Für ein 3,3V-I2C-Gerät schließen Sie die LV-Seite wie folgt an:

• Oberen TXI-Pin mit I2C SDA-Pin

• Unteren TXI-Pin mit I2C SCL-Pin

• LV-Pin an I2C VCC und 3,3V-Spannungsversorgung

• GND-Pin an I2C-Masse

13.0 Einführung | 423

Die HV-Seite schließen Sie wie folgt an:

• Oberen TXO-Pin mit I2C SDA-Pin

• Unteren TXO-Pin mit I2C SCL-Pin

• HV-Pin mit Arduino 5V-Spannungsversorgung

• GND-Pin mit Arduino-Masse

Sie können mehrere I2C-Geräte mit einem einzelnen Pegelwandler anschließen, wie
Abbildung 13-3 zeigt.

Vin

3V3
RESET

Pegelwandler3,3 V-I2C-Element Arduino 5-I2C-Element

TXI
RXD
LV
GND
RXD
TXI

TXO

LV|HV

RX1
HV

GND
RX1
TXO

Gnd

2
1
0 Analog In

3

VCC

GND

SDA

SCL

GND

SDA

SCL

VCC

4 SDA
5 SCL

VCC

SDA

SCL

VCC

SDA

SCL

GNDGND

Gnd

5V

Abbildung 13-3: Anschluss mehrerer 3,3V- und 5V-I2C-Geräte

Beispiele für die Verwendung eines Pegelwandlers finden Sie in der Diskussion zum
ITG-3200 in Rezept 6.15 und dem HMC5883 in Rezept 6.16.

SPI
Jüngere Arduino-Releases (seit Release 0019) enthalten eine Bibliothek, die die Kom-
munikation mit SPI-Geräten erlaubt. SPI besitzt separate Eingangs- (»MOSI«) und Aus-
gangsleitungen (»MISO«) sowie einen Taktanschluss (Clock). Diese drei Leitungen
werden mit den entsprechenden Anschlüssen von ein oder mehr Slaves verbunden. Slaves
werden über ein Signal an der Slave-Select-Leitung (SS) identifiziert. Abbildung 13-4 zeigt
die Verschaltung bei SPI.

S
C
L
K

SPI Slave

M
O
S
I

M
I
S
O

S
S

SCLK

SPI Master

MOSI

SS2

SS1

MISO

S
C
L
K

SPI Slave

M
O
S
I

M
I
S
O

S
S

Abbildung 13-4: Signalanschlüsse für SPI-Master und -Slaves

424 | Kapitel 13: Kommunikation per I2C und SPI

Die für die SPI-Pins zu verwendenden Pin-Nummern sehen Sie in Tabelle 13-1.

Tabelle 13-1: Arduino-Digitalpins für SPI

SPI-Signal Standard-Arduino-Board Arduino-Mega

SCLK (clock) 13 52

MISO (data out) 12 50

MOSI (data in) 11 51

SS (slave select) 10 53

Siehe auch
I2C mit SPI vergleichende Application Note: http://www.maxim-ic.com/app-notes/index
.mvp/id/4024

Referenz der Arduino Wire-Bibliothek: http://www.arduino.cc/en/Reference/Wire

Referenz der Arduino SPI-Bibliothek: http://www.arduino.cc/playground/Code/Spi

13.1 Steuerung einer RGB-LED mit dem BlinkM-Modul

Problem
Sie wollen I2C-fähige LEDs wie das BlinkM-Modul steuern.

Lösung
BlinkM ist ein vormontiertes Farb-LED-Modul, das einen einfachen Einstieg in I2C
ermöglicht.

Verbinden Sie die BlinkM-Pins wie in Abbildung 13-5 gezeigt mit den Analogpins 2 bis 5.

Der folgende Sketch basiert auf Rezept 7.4, steuert aber nicht die Spannung der roten,
grünen und blauen LED-Elemente, sondern sendet I2C-Befehle an das BlinkM-Modul.
Diese Anweisungen legen die Rot-, Grün- und Blauanteile der zu erzeugenden Farbe fest.
Die Funktion hueToRGB entspricht der aus Rezept 7.4 und ist an dieser Stelle nicht erneut
abgedruckt. Kopieren Sie die Funktion vor der Kompilierung an das Ende des Skripts.
(Auf der Website zu diesem Buch finden Sie den kompletten Sketch):

/*
* BlinkM Sketch
* Der Sketch geht kontinuierlich den Farbkreis durch
*/

#include <Wire.h>

const int address = 0; // Standard I2C-Adresse für BlinkM

13.1 Steuerung einer RGB-LED mit dem BlinkM-Modul | 425

int color = 0; // Wert zwischen 0 und 255 bestimmt den Farbton
byte R, G, B; // Rot-, Grün- und Blauanteil

void setup()
{
Wire.begin(); // I2C-Unterstützung initialisieren

// Spannung für BlinkM einschalten
pinMode(17, OUTPUT); // Pin 17 (Analogausgang 3) versorgt BlinkM mit +5V
digitalWrite(17, HIGH);
pinMode(16, OUTPUT); // Pin 16 (Analogausgang 2) ist Masse
digitalWrite(16, LOW);
}

void loop()
{
int brightness = 255; // 255 ist maximale Helligkeit
hueToRGB(color, brightness); // Farbton in RGB umwandeln
// RGB-Werte an BlinkM schreiben

Wire.beginTransmission(address);// I2C-Kommunikation mit BlinkM einleiten
Wire.write('c'); // 'c' == Farbe wechseln
Wire.write(R); // Wert für Rot
Wire.write(B); // Wert für Blau
Wire.write(G); // Wert für Grün
Wire.endTransmission(); // I2C-Bus freigeben

color++; // Farbwert erhöhen
if (color > 255)
color = 0;
delay(10);

}
T

X
 1

R
X

 02346 579 8101112

G
N

D 13

A
R

E
F

G
nd

V
in

5V3V
3

R
ES

ET

G
nd

Arduino

DIGITAL

4 5210 3

ANALOG

4 521 3

ANALOG
BlinkM

Abbildung 13-5: An Analogpins aufgestecktes BlinkM-Modul

426 | Kapitel 13: Kommunikation per I2C und SPI

Diskussion
Die Wire-Bibliothek wird wie folgt in den Sketch eingebunden:

#include <Wire.h>

Weitere Details zur Nutzung von Bibliotheken finden Sie in .

Der Code in setup initialisiert die Wire-Bibliothek, die Hardware im Arduino zur
Ansteuerung von SCA und SDL an den Analogpins 4 und 5 und schaltet die Pins ein, die
zur Spannungsversorgung des BlinkM-Moduls genutzt werden.

Der loop-Code ruft die Funktion hueToRGB auf, um die Rot-, Grün- und Blauwerte der
Farbe zu berechnen.

Die R-, G- und B-Werte werden mit der folgenden Sequenz an BlinkM gesendet:

Wire.beginTransmission(address); // Beginn einer I2C-Nachricht für die BlinkM-Adresse
Wire.write('c'); // 'c' ist ein Befehl, der die nachfolgende Farbe einstellt
Wire.write(R); // Rotanteil
Wire.write(B); // Blauanteil
Wire.write(G); // Grünanteil
Wire.endTransmission(); // I2C-Nachricht abgeschlossen

Die gesamteDatenübertragung an I2C-Geräte folgt diesem Muster: beginTransmission,
eine Reihe von write-Nachrichten und endTransmission.

Versionen vor Arduino 1.0 verwenden Wire.send statt Wire.write.

I2C unterstützt bis zu 127 Geräte, die mit den Clock- und Datenpins verbunden sind. Die
Adresse bestimmt dabei, welches Gerät reagiert. Die Standard-Adresse für BlinkM ist 0,
kann aber geändert werden, indem man einen Befehl zur Adressänderung sendet – im
BlinkM-Benutzerhandbuch finden Sie Informationen zu allen Befehlen.

TX
 1

RX
 02346 579 8101112

G
ND 13

AR
EF

G
nd

Vi
n

5V3V
3

RE
SE

T

G
nd

Arduino

DIGITAL

4 5210 3

ANALOG

BlinkM BlinkM BlinkM

Abbildung 13-6: Anschluss mehrerer BlinkM-Module

13.1 Steuerung einer RGB-LED mit dem BlinkM-Modul | 427

Um mehrere BlinkMs anzuschließen, verbinden Sie alle Clock-Pins (»c« am BlinkM,
Analogpin 5 am Arduino) und alle Datenpins (»d« am BlinkM, Analogpin 4 am Arduino)
wie in Abbildung 13-6 zu sehen. Die Versorgungsanschlüsse sollten mit +5V und Masse
des Arduino oder einer externen Spannungsversorgung verbunden sein (da die Analog-
pins nur wenige Module mit Strom versorgen können).

Jedes BlinkM zieht bis zu 60 mA, d.h., wenn Sie mehr als eine Handvoll
verwenden, müssen Sie eine externe Spannungsversorgung nutzen.

Sie müssen jedem BlinkM eine andere I2C-Adresse zuweisen und Sie können den
BlinkMTester-Sketch nutzen, der mit den BlinkM-Beispielen geliefert wird, die von
http://code.google.com/p/blinkm-projects/ heruntergeladen werden können.

Kompilieren Sie den BlinkMTester-Sketch und laden Sie ihn hoch. Stecken Sie ein
BlinkM-Modul nach dem anderen auf den Arduino auf. (Schalten Sie die Spannung beim
Auf- und Abstecken der Module aus.) Verwenden Sie den BlinkMTester Scan-Befehl s,
um sich die aktuelle Adresse ausgeben zu lassen, und den Befehl A, um jedem Modul eine
andere Adresse zuzuweisen.

BlinkMTester kommuniziert mit 19.200 Baud, d.h., Sie müssen diese
Baudrate im seriellen Monitor einstellen, damit etwas Lesbares auf dem
Display erscheint.

Sobald alle BlinkMs eine eindeutige Adresse haben, können Sie die address-Variable im
obigen Sketch auf die Adresse des BlinkMs setzen, den Sie steuern wollen. Das nach-
folgende Beispiel geht von den Adressen 9 bis 11 aus:

#include <Wire.h>

int addressA = 9; // I2C-Adresse für BlinkM
int addressB = 10;
int addressC = 11;

int color = 0; // Wert 0 und 255 bestimmt den Farbton
byte R, G, B; // Rot-, Grün- und Blauanteil

void setup()
{
Wire.begin(); // I2C-Unterstützug initialisieren

// Spannung für BlinkM einschalten
pinMode(17, OUTPUT); // Pin 17 (Analogausgang 4) versorgt BlinkM mit +5V
digitalWrite(17, HIGH);
pinMode(16, OUTPUT); // Pin 16 (Analogausgang 3) ist Masse
digitalWrite(16, LOW);
}

void loop()
{
int brightness = 255; // 255 ist maximale Helligkeit

428 | Kapitel 13: Kommunikation per I2C und SPI

hueToRGB(color, brightness); // Farbton in RGB umwandeln
// RGB-Werte an jedes BlinkM schreiben
setColor(addressA, R,G,B);
setColor(addressB, G,B,R);
setColor(addressC, B,R,G);

color++; // Farbwert erhöhen
if(color > 255) // Für gültigen Wert sorgen
color = 0;
delay(10);

}

void setColor(int address, byte R, byte G, byte B)
{
Wire.beginTransmission(address);// I2C-Kommunikation mit BlinkM einleiten
Wire.write('c'); // 'c' == Farbe ändern
Wire.write(R); // Rotanteil
Wire.write(B); // Blauanteil
Wire.write(G); // Grünanteil
Wire.endTransmission(); // I2C-Bus freigeben
}

// hueToRGB-Funktion aus obigem Sketch nutzen

Die Funktion setColor schreibt die übergebenen RGB-Werte an das BlinkM-Modul mit
der angegebenen Adresse.

Der Code nutzt die bereits angesprochene hueToRGB-Funktion, um einen Integerwert in
seine Rot-, Grün- und Blauanteile umzuwandeln.

Siehe auch
Das BlinkM-Benutzerhandbuch: http://thingm.com/fileadmin/thingm/downloads/BlinkM_
datasheet.pdf

Arduino-Beispielsketches: http://code.google.com/p/blinkm-projects/

13.2 Den Wii Nunchuck-Beschleunigungsmesser nutzen

Problem
Sie wollen einen Wii Nunchuck als einfachen und kostengünstigen Beschleunigungs-
messer nutzen. Der Nunchuck ist ein weitverbreiteter, kostengünstiger Spiele-Controller,
bei dem sich die Orientierung des Controllers mit Hilfe des Gravitationseffekts messen
lässt.

Lösung
Der Nunchuck verwendet einen proprietären Stecker. Soll der Nunchuck nicht wieder an
die Wii angeschlossen werden, können Sie den Abschluss einfach abschneiden. Alternativ
können Sie die Verbindungen (vorsichtig) über eine kleine Lochrasterplatte herstellen

13.2 Den Wii Nunchuck-Beschleunigungsmesser nutzen | 429

oder einen entsprechenden Adapter von Todbot kaufen (http://todbot.com/blog/2008/
02/18/wiichuck-wii-nunchuck-adapter-available/).

TX
 1

RX
 02346 579 8101112

GN
D 13

AR
EF

Gn
d

Vi
n

5V3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

4 5210 3
ANALOG

4 53 5

2 6

1 3

Nunchuck-Anschluss

Nunchuck-Anschlüsse

1 (PWR) an Analogpin 3 (oder +5V)
2 (SCL) an Analogpin 5
5 (SDA) an Analogpin 4
6 (GND) an Analogpin 2 (oder Masse)

Nunchuck-
Adapter

Abbildung 13-7: Anschluss eines Nunchuck

/*
* nunchuck_lines Sketch
* Sendet Daten an Processing, um Linien zu zeichnen, die der Nunchuck-Bewegung folgen
*/

#include <Wire.h> // Wire initialisieren

const int vccPin = A3; // +V über Pin 17
const int gndPin = A2; // Masse über Pin 16

const int dataLength = 6; // Anzahl anzuforderner Bytes
static byte rawData[dataLength]; // Array zur Speicherung der Nunchuck-Daten

enum nunchuckItems { joyX, joyY, accelX, accelY, accelZ, btnZ, btnC };

void setup() {
pinMode(gndPin, OUTPUT); // Spannungsversorgung initialisieren
pinMode(vccPin, OUTPUT);
digitalWrite(gndPin, LOW);
digitalWrite(vccPin, HIGH);
delay(100); // Auf Stabilisierung warten

Serial.begin(9600);
nunchuckInit();
}

void loop(){
nunchuckRead();
int acceleration = getValue(accelX);
if((acceleration >= 75) && (acceleration <= 185))
{
//map gibt Werte von 0 bis 63 für Werte von 75 bis 185 zurück

430 | Kapitel 13: Kommunikation per I2C und SPI

byte x = map(acceleration, 75, 185, 0, 63);
Serial.write(x);
}
delay(20); // Zeit zwischen Redraws in Millisekunden
}

void nunchuckInit(){
Wire.begin(); // Mit I2C-Bus als Master verbinden
Wire.beginTransmission(0x52);// Übertragung an Gerät 0x52
Wire.write((byte)0x40); // Speicheradresse senden
Wire.write((byte)0x00); // Eine Null senden
Wire.endTransmission(); // Übertragung beenden
}

// Daten vom Nunchuck anfordern
static void nunchuckRequest(){
Wire.beginTransmission(0x52);// Übertragung an Gerät 0x52
Wire.write((byte)0x00); // Ein Byte senden
Wire.endTransmission(); // Übertragung beenden
}

// Daten vom Nunchuck empfangen. Gibt bei Erfolg
// 'wahr' zurück, anderenfalls 'falsch'
boolean nunchuckRead(){
int cnt=0;
Wire.requestFrom (0x52, dataLength); // Daten vom Nunchuck anfordern
while (Wire.available ()) {
rawData[cnt] = nunchuckDecode(Wire.read());
cnt++;
}
nunchuckRequest(); // Nutzdaten anfordern
if (cnt >= dataLength)
return true; // Erfolgreich, wenn alle 6 Bytes empfangen wurden,
else
return false; //anderenfalls Fehler

}

// Daten in ein Format umwandeln, das die meisten wiimote-Treiber akzeptieren
static char nunchuckDecode (byte x) {
return (x ^ 0x17) + 0x17;
}

int getValue(int item){
if (item <= accelZ)
return (int)rawData[item];
else if (item == btnZ)
return bitRead(rawData[5], 0) ? 0: 1;
else if (item == btnC)
return bitRead(rawData[5], 1) ? 0: 1;

}

Diskussion
I2C wird bei kommerziellen Produkten wie dem Nunchuck häufig zur Kommunikation
zwischen den Geräten genutzt. Es gibt kein offizielles Datenblatt für das Gerät, aber die

13.2 Den Wii Nunchuck-Beschleunigungsmesser nutzen | 431

Nunchuck-Signale wurden analysiert (Reverse Engineering), um die zur Kommunikation
benötigten Befehle zu ermitteln.

Sie können den folgenden Processing-Sketch nutzen, um eine Linie auf dem Bildschirm zu
zeichnen, die der Bewegung des Nunchuck folgt, wie in Abbildung 13-8 zu sehen (in
Kapitel 4 erfahren Sie mehr darüber, wie Sie vom Arduino empfangene serielle Daten mit
Processing verarbeiten können. Kapitel 4 zeigt auch, wie man Processing für den Arduino
einrichtet und nutzt):

// Processing-Sketch zeichnet Linie, die den Nunchuck-Daten folgt

import processing.serial.*;

Serial myPort; // Serial-Objekt erzeugen
public static final short portIndex = 1;

void setup()
{
size(200, 200);
// Verwendeten Port öffnen - siehe Kapitel 4
myPort = new Serial(this,Serial.list()[portIndex], 9600);
}

void draw()
{
if (myPort.available() > 0) { // Wenn Daten vorhanden sind,
int y = myPort.read(); // einlesen und speichern
background(255); // Weißer Hintergrund
line(0,63-y,127,y); // Linie zeichnen
}
}

Abbildung 13-8: Nunchuck-Bewegung als geneigte Linie in Processing

432 | Kapitel 13: Kommunikation per I2C und SPI

Der Sketch bindet die Wire-Bibliothek für die I2C-Kommunikation ein und definiert die
Pins, die zur Spannungsversorgung des Nunchuck genutzt werden:

#include <Wire.h> // Wire initialisieren

const int vccPin = A3; // +V (vcc) an Pin 17
const int gndPin = A2; // Masse an Pin 16

Wire.h ist die I2C-Bibliothek, die mit der Arduino-Release mitgeliefert wird. A3 ist
Analogpin 3 (Digitalpin 17), A2 ist Analogpin 2 (Digitalpin 16). Diese Pins versorgen den
Nunchuck mit Spannung.

enum nunchuckItems { joyX, joyY, accelX, accelY, accelZ, btnZ, btnC };

enum ist ein Konstrukt zur Erzeugung enumerierter Listen mit Konstanten, in diesem Fall
einer Liste der vom Nunchuck zurückgelieferter Sensorwerte. Diese Konstanten werden
genutzt, um Requests für einen der Nunchuck-Sensorwerte zu identifizieren.

setup initialisiert die zur Spannungsversorgung des Nunchuck verwendeten Pins, indem
es vccPin auf HIGH und gndPin auf LOW setzt. Das ist nur notwendig, wenn der Nunchuck-
Adapter die Spannungsversorgung übernimmt. Die Verwendung von Digitalpins als
Spannungsquelle ist üblicherweise nicht zu empfehlen, solange man nicht sicher ist, dass
das versorgte Gerät (wie der Nunchuck) nicht mehr Strom zieht als erlaubt (40 mA; siehe
Kapitel 5).

Die Funktion nunchuckInit baut die I2C-Kommunikation mit dem Nunchuck auf.

Die I2C-Kommunikation beginnt mit Wire.begin(). In diesem Beispiel ist der Arduino als
Master für die Initialisierung des Slaves verantwortlich, also des Nunchucks an Adresse
0x52.

Die folgende Zeile weist die Wire-Bibliothek an, das Senden einer Nachricht an das Gerät
mit der Hexadezimal-Adresse 52 (0x52) einzuleiten:

beginTransmission(0x52);

Die I2C-Dokumentation gibt Adressen üblicherweise hexadezimal an. Es
ist daher recht bequem, diese Notation auch in Ihrem Sketch zu verwen-
den.

Wire.send legt die übergebenen Werte in einem Puffer der Wire-Bibliothek ab, in dem die
Daten zwischengespeichert werden, bis Wire.endTransmission aufgerufen wird, um die
Daten tatsächlich zu senden.

nunchuckRequest und nunchuckRead werden genutzt, um Daten vom Nunchuck anzufor-
dern und einzulesen.

Die Wire-Funktion requestFrom wird genutzt, um sechs Datenbytes von Gerät 0x52 (dem
Nunchuck) einzulesen.

13.2 Den Wii Nunchuck-Beschleunigungsmesser nutzen | 433

Der Nunchuck gibt seine Daten in sechs Bytes zurück:

Byte Nummer Beschreibung

Byte 1 Analog-Joystick, Wert der x-Achse

Byte 2 Analog-Joystick, Wert er y-Achse

Byte 3 Beschleunigung x-Achse

Byte 4 Beschleunigung y-Achse

Byte 5 Beschleunigung z-Achse

Byte 6 Button-Zustände und niederwertige Bits der Beschleunigung

Wire.available funktioniert wie Serial.available (siehe Kapitel 4), gibt also an, wie viele
Bytes über das I2C-Interface empfangen wurden. Sind Daten verfügbar, werden sie mit
Wire.read eingelesen und mit nunchuckDecode dekodiert. Die Dekodierung ist nötig, um die
gesendeten Werte in Zahlen umzuwandeln, die vom Sketch genutzt werden können.
Diese Werte werden in einem Puffer namens rawData gespeichert. Ein Request fordert die
nächsten sechs Datenbytes an und ist dann für den nächsten Aufruf bereit:

int acceleration = getValue(accelX);

Der Funktion getValue wird eine der Konstanten aus der enumerierten Sensorliste
übergeben, in diesem Fall accelX für die Beschleunigung an der x-Achse.

Sie können zusätzliche Felder senden, indem Sie sie durch Kommata trennen (siehe
Rezept 4.4). Hier eine entsprechend überarbeitete loop-Funktion:

void loop(){
nunchuckRead();
Serial.print("H,"); // Header
for(int i=0; i < 3; i++)
{
Serial.print(getValue(accelX+ i), DEC);
if(i > 2)
Serial.write(',');

else
Serial.write('\n') ;

}
delay(20); // Zeit zwischen Redraws in Millisekunden
}

Siehe auch
Rezept 16.5 für eine Nunchuck-Bibliothek und die Diskussion in Rezept 4.4 für einen
Processing-Sketch, der ein Echtzeit-Diagramm aller Nunchuck-Werte darstellt.

434 | Kapitel 13: Kommunikation per I2C und SPI

13.3 Anbindung einer externen Echtzeituhr

Problem
Sie wollen Datum/Uhrzeit einer externen Echtzeituhr (Real-Time Clock, RTC) nutzen.

Lösung
Die Lösung nutzt die Wire-Bibliothek, um auf eine Echtzeituhr zuzugreifen. Sie verwendet
die gleiche Hardware wie in Rezept 12.6. Die Verschaltung finden Sie in Abbildung 12-3.

/*
* I2C_RTC Sketch
* Beispiel-Code für den Zugriff auf eine Echtzeituhr über die Wire-Bibliothek
*/

#include <Wire.h>

const byte DS1307_CTRL_ID = 0x68; // Adresse der DS1307-Echtzeituhr
const byte NumberOfFields = 7; // Zahl der Felder (Bytes), die

// von der Echtzeituhr angefordert werden
int Second ;
int Minute;
int Hour;
int Day;
int Wday;
int Month;
int Year;

void setup() {
Serial.begin(9600);
Wire.begin();
}

void loop()
{
Wire.beginTransmission(DS1307_CTRL_ID);
Wire.write((byte)0x00);
Wire.endTransmission();

// 7 Datenfelder anfordern(Sek, Min, Std, WTag, Dat, Mon, Jhr)
Wire.requestFrom(DS1307_CTRL_ID, NumberOfFields);

Second = bcd2dec(Wire.read() & 0x7f);
Minute = bcd2dec(Wire.read());
Hour = bcd2dec(Wire.read() & 0x3f); // Maske erwartet 24-Stunden-Format
Wday = bcd2dec(Wire.read());
Day = bcd2dec(Wire.read());
Month = bcd2dec(Wire.read());
Year = bcd2dec(Wire.read());
Year = Year + 2000; // RTC-Jahr 0 ist Jahr 2000

digitalClockDisplay(); // Datum/Uhrzeit ausgeben
delay(1000);
}

13.3 Anbindung einer externen Echtzeituhr | 435

// BCD (Binär kodierte Dezimalzahl) in Dezimal umwandeln
byte bcd2dec(byte num)
{
return ((num/16 * 10) + (num % 16));
}

void digitalClockDisplay(){
// Digitalanzeige von Datum/Uhrzeit
Serial.print(Hour);
printDigits(Minute);
printDigits(Second);
Serial.print(" ");
Serial.print(Day);
Serial.print(" ");
Serial.print(Month);
Serial.print(" ");
Serial.print(Year);
Serial.println();
}

// Hilfsfunktion zur Uhrendarstellung: Gibt
// vorstehenden Doppelpunkt und führende 0 aus
//
void printDigits(int digits){
Serial.print(":");
if(digits < 10)
Serial.print('0');
Serial.print(digits);
}

Die requestFrom-Methode der Wire-Bibliothek wird verwendet, um sieben Zeitfelder von
der Uhr anzufordern (DS1307_CTRL_ID ist die Adresse der Uhr):

Wire.requestFrom(DS1307_CTRL_ID, NumberOfFields);

Die Werte für Datum und Uhrzeit werden mit sieben Aufrufen der Wire.receive-Methode
abgerufen:

Die vom Modul zurückgelieferten Werte sind binär kodierte Dezimalzahlen (BCD). Wir
nutzen daher die Funktion bcd2dec, um die Werte beim Empfang umzuwandeln. (BCD
speichert Dezimalwerte in vier Datenbits.)

Siehe auch
Rezept 12.6 zeigt, wie man die Uhr setzt.

13.4 Externen EEPROM-Speicher anbinden

Problem
Sie benötigen mehr Permanentspeicher, als der Arduino bereitstellt, und wollen einen
externen Speicherchip nutzen, um die Kapazität zu erhöhen.

436 | Kapitel 13: Kommunikation per I2C und SPI

Lösung
Dieses Rezept nutzt das I2C-fähige serielle EEPROM 24LC128 von Microchip Technolo-
gy. Abbildung 13-9 zeigt die Verschaltung.

TX
 1

R
X

 02346 579 8101112

G
N

D 13

A
R

E
F

G
nd

V
in

5V3V
3

R
E

S
E

T

G
nd

Arduino

DIGITAL

4 5210 3

ANALOG

24LC128

I2C EEPROM

A0

A1

A2

Gnd

Vcc

WP

SCL

SDA

0.1 uf

Abbildung 13-9: Anschluss eines I2C-EEPROMs

Das Rezept stellt eine vergleichbare Funktionalität bereit wie die Arduino EEPROM-
Bibliothek (siehe Rezept 17.1), verwendet aber ein über I2C angebundenes externes
EEPROM, um eine wesentlich höhere Speicherkapazität zur Verfügung zu stellen:

/*
* I2C EEPROM Sketch
* Version für 24LC128
*/
#include <Wire.h>

const byte EEPROM_ID = 0x50; // I2C-Adresse für 24LC128-EEPROM

// Erstes sichtbares ASCII-Zeichen ('!') hat den Wert 33
int thisByte = 33;

void setup()
{
Serial.begin(9600);
Wire.begin();

Serial.println("Schreibe 1024 Byte an EEPROM");
for (int i=0; i < 1024; i++)
{
I2CEEPROM_Write(i, thisByte);
// Weiter mit nächstem Zeichen
thisByte++;

13.4 Externen EEPROM-Speicher anbinden | 437

if (thisByte == 126) // Sie könnten auch "if (thisByte == '~')" verwenden
thisByte = 33; // Von vorn anfangen

}

Serial.println("Lese 1024 Byte von EEPROM");
int thisByte = 33;
for (int i=0; i < 1024; i++)
{
char c = I2CEEPROM_Read(i);
if(c != thisByte)
{
Serial.println("Lesefehler");
break;
}
else
{
Serial.print(c);
}
thisByte++;
if(thisByte == 126)
{
Serial.println();
thisByte = 33; // In neuer Zeile von vorn anfangen
}
}
Serial.println();
}

void loop()
{

}

// Diese Funktion entspricht EEPROM.write()
void I2CEEPROM_Write(unsigned int address, byte data)
{
Wire.beginTransmission(EEPROM_ID);
Wire.write((int)highByte(address));
Wire.write((int)lowByte(address));
Wire.write(data);
Wire.endTransmission();
delay(5); // Warten, dass I2C-EEPROM den Schreibzyklus abschließt
}

// Diese Funktion entspricht EEPROM.read()
byte I2CEEPROM_Read(unsigned int address)
{
byte data;
Wire.beginTransmission(EEPROM_ID);
Wire.write((int)highByte(address));
Wire.write((int)lowByte(address));
Wire.endTransmission();
Wire.requestFrom(EEPROM_ID,(byte)1);
while(Wire.available() == 0) // Auf Daten warten
;

438 | Kapitel 13: Kommunikation per I2C und SPI

data = Wire.read();
return data;
}

Diskussion
Dieses Rezept verwendet den 24LC128, der 128K Bit Speicher hat. Es gibt aber vergleich-
bare Chips mit höheren und niedrigeren Kapazitäten (der Mikrochip-Link im Siehe-auch-
Abschnitt enthält einen entsprechenden Querverweis). Die Adresse des Chips wird über
die drei mit A0 bis A2 gekennzeichneten Pins festgelegt und liegt zwischen 0x50 und
0x57, wie in Tabelle 13-2 zu sehen.

Tabelle 13-2: Adressen für 24LC128

A0 A1 A2 Adresse

Gnd Gnd Gnd 0x50

+5V Gnd Gnd 0x51

Masse +5V Masse 0x52

+5V +5V Masse 0x53

Masse Masse +5V 0x54

+5V Masse +5V 0x55

+5V +5V Masse 0x56

+5V +5V +5V 0x57

Die Verwendung der Wire-Bibliothek entspricht 13.1 und 13.2. In diesen Rezepten kön-
nen Sie nachlesen, wie die Initialisierung und die Anforderung der Daten von einem
I2C-Gerät erfolgt.

Die EEPROM-spezifischen Lese- und Schreiboperationen finden sich in den Funktionen
i2cEEPROM_Write und i2cEEPROM_Read. Die Operationen beginnen mit einem Wire.begin-
Transmission an die I2C-Adresse des Geräts. Dem folgt ein 2-Byte-Wert für die Speicher-
zelle der Lese-/Schreiboperation. Bei der Schreibfunktion folgt auf die Adresse der zu
schreibende Wert – in diesem Beispiel wird an die Speicherzelle ein Byte geschrieben.

Die Leseoperation sendet die Speicherzelle an das EEPROM und dann ein Wire.request-
From(EEPROM_ID,(byte)1);. Das liefert ein Datenbyte von der gerade gesetzten Speicher-
adresse zurück.

Wenn Sie die Schreibgeschwindigkeit erhöhen wollen, können Sie die Verzögerung von
5ms durch eine Statusprüfung ersetzen, die ermittelt, wann das EEPROM bereit ist, ein
weiteres Byte zu schreiben. Siehe hierzu die »Acknowledge Polling«-Technik, die im
Abschnitt 7 des Datenblatts beschrieben wird. Daten können nicht nur einzeln, sondern
auch in 64 Byte großen »Seiten« geschrieben werden. Details finden Sie in Abschnitt 6 des
Datenblatts.

13.4 Externen EEPROM-Speicher anbinden | 439

Der Chip merkt sich die angegebene Adresse und bewegt sich bei jeder Lese- oder Schreib-
operation zur nächsten Speicherzelle. Wenn Sie mehr als ein Byte einlesen müssen, legen Sie
einfach die Startadresse fest und können dann wiederholt Daten anfordern und empfangen.

Die Wire-Bibliothek kann bis zu 32 Byte in einem einzigen Request lesen
oder schreiben. Wenn Sie versuchen, mehr einzulesen oder zu schreiben,
können Bytes verloren gehen.

Mit dem Pin WP (Write Protect) können Sie den Schreibschutz aktivieren. Er ist hier mit
Masse verbunden, damit der Arduino in den Speicher schreiben kann. Wird er an 5V
angeschlossen, werden Schreiboperationen unterbunden. Auf diese Weise können Sie
persistente Daten in den Speicher schreiben und dann vor versehentlichem Überschreiben
schützen.

Siehe auch
Datenblatt zum 24LC128: http://ww1.microchip.com/downloads/en/devicedoc/21191n.pdf

Wenn Sie die Schreibgeschwindigkeit erhöhen wollen, können Sie die Verzögerung von
5ms durch eine Statusprüfung ersetzen, die ermittelt, wann das EEPROM bereit ist, ein
weiteres Byte zu schreiben. Siehe hierzu die »Acknowledge Polling«-Technik, die im
Abschnitt 7 des Datenblatts erläutert wird.

Einen Querverweis auf vergleichbare I2C-EEPROMs mit unterschiedlichen Kapazitäten
finden Sie in http://ww1.microchip.com/downloads/en/DeviceDoc/21621d.pdf.

Es gibt ein Shield, das Temperatursensor, EEPROM und 7-Segment-Anzeige kombiniert:
http://store.gravitech.us/7segmentshield.html.

13.5 Temperatur per Digital-Thermometer messen

Problem
Sie wollen die Temperatur messen, vielleicht sogar mit mehr als einem Thermometer, um
die Werte an verschiedenen Stellen abgreifen zu können.

Lösung
Das Rezept verwendet den Temperatursensor TMP75 von Texas Instruments. Sie schlie-
ßen einen einzelnen TMP75 wie in Abbildung 13-10 zu sehen an:

/*
* I2C_Temperature Sketch
* I2C access the TMP75 digital Thermometer
*/

440 | Kapitel 13: Kommunikation per I2C und SPI

#include <Wire.h>

const byte TMP75_ID = 0x49; // Adresse des TMP75
const byte NumberOfFields = 2; // Anzahl anzufordernder Felder (Bytes)

// Höherwertiges Byte der Temperatur (vorzeichenbehafteter Wert in Grad Celsius)
char tempHighByte;
// Niederwertiges Byte der Temperatur (die Nachkommastellen)
char tempLowByte;

float temperature; // Temperatur im Fließkomma-Format

void setup() {
Serial.begin(9600);
Wire.begin();

Wire.beginTransmission(TMP75_ID);
Wire.write(1); // 1 ist das Konfigurationsregister
// Standardkonfiguration einstellen, Datenblatt beschreibt die Bedeutung der Konfig-Bits
Wire.write((byte)0);
Wire.endTransmission();

Wire.beginTransmission(TMP75_ID);
Wire.write((byte)0); // Zeigerregister auf 0 setzen (die 12-Bit-Temperatur)
Wire.endTransmission();

}

void loop()
{
Wire.requestFrom(TMP75_ID, NumberOfFields);
tempHighByte = Wire.read();
tempLowByte = Wire.read();
Serial.print("Integer-Temperatur ist ");

Serial.print(tempHighByte, DEC);
Serial.print(",");

// Die unteren 4 Bit von LowByte enthalten die fractional-Temperatur
int t = word(tempHighByte, tempLowByte) / 16 ;
temperature = t / 16.0; // In Fließkommazahl umwandeln
Serial.println(temperature);
delay(1000);

}

13.5 Temperatur per Digital-Thermometer messen | 441

TX
 1

R
X

 02346 579 8101112

G
N

D 13

A
R

E
F

G
nd

V
in

5V3V
3

R
E

S
E

T

G
nd

Arduino

DIGITAL

4 5210 3

ANALOG

TMP75

Thermometer

SDA

SCL

ALRT

Gnd

Vcc

A0

A1

A2

0.1 uf

Abbildung 13-10: TMP75 I2C-Thermometer

Diskussion
Wie bei allen I2C-Bauelemente in diesem Kapitel erfolgt die Kommunikation über die
beiden SCL- und SDA-Pins. Auch Spannung und Masse müssen angeschlossen werden,
um das Bauelement mit Strom zu versorgen.

Setup sendet Daten zur Konfiguration des normalen Betriebs – es gibt eine Reihe von
Optionen für spezialisierte Anwendungen (Interrupts, Energiesparmodus etc.), aber wir
verwenden hier den normalen Modus mit einer Auflösung von 0,5�C.

Um die Temperatur einzulesen, fordert der Arduino (als Master) im loop-Code vom Slave
(mit der Adresse TMP75_ID) zwei Datenbytes an:

Wire.requestFrom(TMP75_ID, NumberOfFields);

Wire.read ruft die beiden Bytes ab (auf dem Datenblatt wird detailliert beschrieben, wie
Daten vom Gerät angefordert werden können):

tempHighByte = Wire.read();
tempLowByte = Wire.read();

Das erste Byte ist der Integerwert der Temperatur in Grad Celsius. Das zweite Byte enthält
vier signifikante Bits mit der Temperatur.

Die beiden Bytes werden in ein 16-Bit-Wort umgewandelt (siehe Kapitel 3) und dann
verschoben, um einen 12-Bit-Wert zu bilden. Da die ersten vier Bits die Temperatur
darstellen, wird der Wert erneut um vier Bit verschoben, um den Fließkommawert zu
ermitteln.

442 | Kapitel 13: Kommunikation per I2C und SPI

Der TMP75 kann mit acht unterschiedlichen Adressen konfiguriert werden, wodurch sich
bis zu acht Geräte am gleichen Bus betreiben lassen (siehe Abbildung 13-11). Der Sketch
verwendet die I2C-Adresse 0x49 (der TMP75-Adress-Pin A ist mit +5V verbunden, A1
und A2 mit Masse). Tabelle 13-3 zeigt die Anschlüsse für die acht Adressen.

TX
 1

RX
 02346 579 8101112

GN
D 13

AR
EF

Gn
d

Vi
n

5V3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

4 5210 3

ANALOG

TMP75

Thermometer

SDA

SCL

ALRT

Gnd

Vcc

A0

A1

A2

0.1 uF

SDA

SCL

ALRT

Gnd

Vcc

A0

A1

A2

0.1 uF

Abbildung 13-11: Paralleler Anschluss mehrerer Geräte mit verschiedenen Adressen über SDA und SCL

Tabelle 13-3: Address values for TMP75

A0 A1 A2 Adresse

Masse Masse Masse 0x48

+5V Masse Masse 0x49

Masse +5V Masse 0x4A

+5V +5V Masse 0x4B

Masse Masse +5V 0x4C

+5V Masse +5V 0x4D

+5V +5V Masse 0x4E

+5V +5V +5V 0x4F

Werden mehrere I2C-Geräte angeschlossen, verbindet man alle SDA- und alle SCL-Lei-
tungen miteinander. Jedes Gerät wird mit der Spannungsversorgung verbunden und nutzt
einen 0,1mF-Parallelkondensator. Die Masseleitungen müssen miteinander verbunden
sein, selbst wenn separate Spannungsversorgungen (z.B. Batterien) verwendet werden.

Der folgende Sketch gibt die Temperatur zweier Geräte aus, die benachbarte Adressen
(beginnend bei 0x49) verwenden:

#include <Wire.h>

const byte TMP75_ID = 0x49; // Adresse des ersten TMP75

const byte NumberOfFields = 2; // Anzahl anzufordernder Felder (Bytes)
const byte NumberOfDevices = 2; // Anzahl TMP75s

13.5 Temperatur per Digital-Thermometer messen | 443

char tempHighByte; // Höherwertiges Byte der Temperatur
// (vorzeichenbehafteter Wert in Grad
// Celsius)

char tempLowByte; // Niederwertiges Byte der Temperatur
// (die Nachkommastellen)

float temperature; // Temperatur im Fließkomma-Format

void setup() {
Serial.begin(9600);
Wire.begin();

for (int i=0; i < NumberOfDevices; i++)
{
Wire.beginTransmission(TMP75_ID+i);
Wire.write(1);
// Standardkonfiguration einstellen, Datenblatt beschreibt die Bedeutung der Konfig-Bits
Wire.write((byte)0);
Wire.endTransmission();

Wire.beginTransmission(TMP75_ID+i);
Wire.write((byte)0); // Zeigerregister auf 0 setzen (die 12-Bit-Temperatur)
Wire.endTransmission();
}
}

void loop()
{
for (int i=0; i < NumberOfDevices; i++)
{
byte id = TMP75_ID + i; // Adressen liegen nebeneinander
Wire.requestFrom(id, NumberOfFields);
tempHighByte = Wire.read();
tempLowByte = Wire.read();
Serial.print(id,HEX); // Geräteadresse ausgeben
Serial.print(": Integer-Temperatur ist ");
Serial.print(tempHighByte, DEC);
Serial.print(",");

// Die unteren 4 Bit von LowByte enthalten die fractional-Temperatur
int t = word(tempHighByte, tempLowByte) / 16 ;
temperature = t / 16.0; // In Fließkomma umwandeln
Serial.println(temperature);
}
delay(1000);
}

Sie können weitere Geräte hinzufügen, wenn Sie die Zahl der Geräte in NumberOfDevices
anpassen und aufeinanderfolgende Adressen verwenden (die in diesem Beispiel bei 0x49
beginnen).

Der Alert-Anschluss (Pin 3) kann so programmiert werden, dass er ein
Signal liefert, wenn die Temperatur einen Schwellwert erreicht. Details zu
diesem Feature finden Sie auf dem Datenblatt.

444 | Kapitel 13: Kommunikation per I2C und SPI

Siehe auch
Das TMP75-Datenblatt: http://focus.ti.com/docs/prod/folders/print/tmp75.html

In Rezept 3.15 erfahren Sie mehr über die word-Funktion.

13.6 Vier 7-Segment-LEDs mit nur zwei Leitungen steuern

Problem
Sie wollen eine mehrstellige 7-Segment-Anzeige nutzen und müssen die Zahl der benötig-
ten Arduino-Pins minimieren.

Lösung
Dieses Rezept nutzt das Gravitech 7-Segment-Display-Shield, das einen SAA1064 I2C-
nach-7-Segment-Treiber von Philips verwendet (siehe Abbildung 13-12).

Der folgende einfache Sketch schaltet nacheinander jedes Segment aller Anzeigen ein:

/*
* I2C_7Segment Sketch
*/

#include <Wire.h>

const byte LedDrive = 0x38; // I2C-Adresse der 7-Segment-Anzeige

int segment,decade;

void setup() {
Serial.begin(9600);
Wire.begin(); // An I2C-Bus anbinden

Wire.beginTransmission(LedDrive);
Wire.write((byte)0);
Wire.write(B01000111); // Ziffern 1 bis 4 mit maximalem Treiberstrom nutzen
Wire.endTransmission();
}

void loop()
{
for (segment = 0; segment < 8; segment++)
{
Wire.beginTransmission(LedDrive);
Wire.write(1);
for (decade = 0 ; decade < 4; decade++)
{
byte bitValue = bit(segment);
Wire.write(bitValue);
}

13.6 Vier 7-Segment-LEDs mit nur zwei Leitungen steuern | 445

Wire.endTransmission();
delay (250);
}
}

Abbildung 13-12: Gravitech I2C-Shield

Diskussion
Der SAA1064-Chip (an Adresse 0x38) wird in setup initialisiert. Der verwendete Wert
konfiguriert den Chip so, dass alle vier Anzeigen mit maximalem Strom angesteuert
werden (Details zur Konfiguration finden Sie im Datenblatt-Abschnitt zu den Steuerbits).

Der loop-Code aktiviert nacheinander jedes Segment aller Anzeigen. Der Befehl Wire.
send(1); teilt dem Chip mit, dass das nächste empfangene Byte die erste Anzeige und
nachfolgende Bytes die nachfolgenden Anzeigen ansteuern.

Zu Beginn wird der Wert 1 viermal gesendet und der Chip aktiviert das A-Segment (oben)
aller vier Anzeigen. (In Kapitel 2 erfahren Sie mehr über die bit-Funktion.)

Der Wert von segment wird in der for-Schleife inkrementiert, wodurch bitValue so
verschoben wird, dass das nächste LED-Segment eingeschaltet wird.

Jede Bit-Position entspricht einem Segment der Anzeige. Die Werte dieser Bit-Positionen
lassen sich so kombinieren, dass mehr als ein Segment eingeschaltet wird.

Der folgende Sketch zählt von 0 bis 9999. Im Array lookup[10] finden Sie die Werte, die
benötigt werden, um die Ziffern 0 bis 9 in einem Segment anzuzeigen:

#include <Wire.h>

const byte LedDrive = 0x38; // I2C-Adresse der 7-Segment-Anzeige

// Lookup-Array mit den für die jeweilige Ziffer zu aktivierenden Segmenten

446 | Kapitel 13: Kommunikation per I2C und SPI

const int lookup[10] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};

int count;

void setup()
{
Wire.begin(); // Mit I2C-Bus verbinden (Adresse für Master optional)
}

void loop()
{
Wire.beginTransmission(LedDrive);
Wire.write((byte)0);
Wire.write(B01000111); // 7-Segment-Treiber initialisieren - siehe Datenblatt
Wire.endTransmission();

// Zahlen von 0 bis 9999 ausgeben
for (count = 0; count <= 9999; count++)
{
displayNumber(count);
delay(10);
}
}

// Bis zu vier Ziffern auf einer 7-Segment-I2C-Anzeige ausgeben
void displayNumber(int number)
{
number = constrain(number, 0, 9999);
Wire.beginTransmission(LedDrive);
Wire.write(1);
for(int i =0; i < 4; i++)
{
byte digit = number % 10;
{
Wire.write(lookup[digit]);

}
number = number / 10;
}
Wire.endTransmission();
}

Der Funktion displayNumber wird die auszugebende Zahl übergeben. Der für jedes
Segment zu sendende Wert in der for-Schleife wird in zwei Schritten verarbeitet. Zuerst
wird die Ziffer bestimmt, indem man den Rest ermittelt, nachdem die Zahl durch 10
dividiert wurde. Dieser Wert (eine Ziffer zwischen 0 und 9) wird genutzt, um das
Bitmuster aus dem lookup[]-Array abzurufen, in dem die zur Darstellung der Ziffer
benötigten Segmente stehen.

Jede nachfolgende Ziffer wird bestimmt, indem man die Zahl durch 10 teilt und dann den
Rest ermittelt. Sobald der Rest 0 ist, wurden alle Ziffern gesendet.

Sie können führende Nullen (unnötige Nullen vor den Ziffern) unterdrücken, indem Sie
displayNumber wie folgt anpassen:

// Bis zu vier Ziffern auf einer 7-Segment-I2C-Anzeige ausgeben
void displayNumber(int number)

13.6 Vier 7-Segment-LEDs mit nur zwei Leitungen steuern | 447

{
number = constrain(number, 0, 9999);
Wire.beginTransmission(LedDrive);
Wire.write(1);
for(int i =0; i < 4; i++)
{
byte digit = number % 10;
// Hier wird auf führende Nullen geprüft
if ((number == 0) && (i > 0)) {
Wire.write((byte)0); // Alle Segmente ausschalten, um führende Nullen zu unterdrücken

}
else {
Wire.write(lookup[digit]);

}
number = number / 10;
}
Wire.endTransmission();
}

Die folgende Anweisung prüft, ob der Wert 0 ist, und stellt sicher, dass es sich nicht um
die erste (niederwertigste) Ziffer handelt:

if ((number == 0) && (i > 0))
Wire.write((byte)0); // Alle Segmente ausschalten, um führende Nullen zu unterdrücken

Ist das der Fall, wird eine 0 gesendet und alle Segmente für die Ziffer werden ausgeschal-
tet. Damit werden führende Nullen unterdrückt, aber eine einzelne Null ausgegeben,
wenn dieser Wert an die Funktion übergeben wird.

Der Ausdruck (byte)0 wird in der Wire.write-Anweisung benötigt, damit
der Compiler weiß, dass die Null ein Bytewert sein soll. Lassen Sie das weg,
erhalten Sie die Fehlermeldung »call of overloaded ’write(int)’ is ambi-
guous«, was bedeutet, dass der Compiler sich nicht entscheiden kann,
welche write-Methode er aufrufen soll,

Siehe auch
SAA1064-Datenblatt: http://www.nxp.com/documents/data_sheet/SAA1064_CNV.pdf

Es gibt ein Shield, das Temperatursensor, EEPROM und 7-Segment-Anzeige kombiniert:
http://store.gravitech.us/7segmentshield.html.

13.7 Einen I2C-Port-Expander integrieren

Problem
Sie wollen mehr Ein-/Ausgabeports nutzen, als Ihr Board zur Verfügung stellt.

448 | Kapitel 13: Kommunikation per I2C und SPI

Lösung
Sie können einen externen Port-Expander wie den PCF8574A nutzen, der acht Ein-/Aus-
gangspins besitzt, die über I2C angesteuert werden können. Der folgende Sketch erzeugt
eine Balkenanzeige mit acht LEDs. Abbildung 13-13 zeigt die Verschaltung.

TX
 1

RX
 02346 579 8101112

G
N

D 13

A
RE

F

Gn
d

Vi
n

5V3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

4 5210 3
ANALOG

PCF8574A

I2C Port Expander

0.1 uF

A0

A1

A2

P0

P1

P2

P3

Gnd

Vcc

SDA

SCL

INT

P7

P6

P5

P4

Abbildung 13-13: PCF8574A Port-Expander steuert acht LEDs

Der Sketch hat die gleiche Funktionalität wie in Rezept 7.5, verwendet aber zur Ansteue-
rung der LEDs einen I2C-Port-Expander, so dass nur zwei Pins benötigt werden:

/*
* I2C_7segment
* Nutzt I2C-Port zur Steuerung einer Balkenanzeige
* Aktiviert eine Reihe von LEDs proportional zum Wert eines Analog-Senors
* Siehe Rezept 7.5
*/

#include <Wire.h>

//Adresse für PCF8574. Anschluss wie in Abbildung 13-13
const int address = 0x38;
const int NbrLEDs = 8;

const int analogInPin = 0; // Analogeingang für
// variablen Widerstand

int sensorValue = 0; // Vom Sensor eingelesener Wert
int ledLevel = 0; // In LED-Balkenanzeige umgewandelter Wert
int ledBits = 0; // Bits für jede LED werden auf 1 gesetzt, um die LED einzuschalten

void setup()
{
Wire.begin(); // I2C initialisieren
Serial.begin(9600);
}

13.7 Einen I2C-Port-Expander integrieren | 449

void loop() {
sensorValue = analogRead(analogInPin); // Analogwert einlesen
ledLevel = map(sensorValue, 0, 1023, 0, NbrLEDs); // Auf Anzahl LEDs abbilden
for (int led = 0; led < NbrLEDs; led++)
{
if (led < ledLevel) {
bitWrite(ledBits,led, HIGH); // LED unter Pegel einschalten
}
else {
bitWrite(ledBits,led, LOW); // LED über Pegel ausschalten
}
// Wert an I2C senden
Wire.beginTransmission(address);
Wire.write(ledBits);
Wire.endTransmission();
}
delay(100);
}

Diskussion
Die Widerstände müssen 220 Ohm oder mehr haben (in Kapitel 7 wird beschrieben, wie
man Widerstände wählt).

Der PCF8574A kann LEDs nur mit geringeren Strömen als der Arduino
treiben. Wenn Sie höhere Ströme brauchen (Details finden Sie auf dem
Datenblatt), finden Sie in Rezept 13.8 ein geeigneteres Bauelement.

Sie können die Adresse über die Adresspins A0, A1 und A2 ändern (siehe Tabelle 13-4).

Tabelle 13-4: Address values for PCF8574A

A0 A1 A2 Address

Masse Masse Masse 0x38

+5V Masse Masse 0x39

Masse +5V Masse 0x3A

+5V +5V Masse 0x3B

Masse Masse +5V 0x3C

+5V Masse +5V 0x3D

+5V +5V Masse 0x3E

+5V +5V +5V 0x3F

Sie können den Port-Expander auch als Eingang nutzen. Ein Byte lesen Sie wie folgt ein:

Wire.requestFrom(address, 1);
if(Wire.available())
{
data = Wire.receive();
Serial.println(data,BIN);
}

450 | Kapitel 13: Kommunikation per I2C und SPI

Siehe auch
PCF8574-Datenblatt: http://www.nxp.com/documents/data_sheet/PCF8574.pdf

13.8 Mehrstellige 7-Segment-Anzeigen über SPI ansteuern

Problem
Sie wollen 7-Segment-Anzeigen ansteuern, ohne zu viele Pins nutzen zu müssen.

Lösung
Dieses Rezept bietet eine Funktionalität wie Rezept 7.12, benötigt aber nur drei Ausgangs-
pins. Der Text beschreibt die SPI-Befehle, die zur Kommunikation mit dem MAX7221
genutzt werden (Abbildung 13-14 zeigt die Verschaltung):

/*
* SPI_Max7221_0019
*/

#include <SPI.h>

const int slaveSelect = 10; // Zur Aktivierung es aktiven Slaves verwendeter Pin

const int numberOfDigits = 2; // Anzahl angeschlossener Ziffern
const int maxCount = 99;

int count = 0;

void setup()
{
SPI.begin(); // SPI initialisieren
pinMode(slaveSelect, OUTPUT);
digitalWrite(slaveSelect,LOW); // Slave wählen
// 7221 auf Anzeige von 7-Segment-Daten vorbereiten - siehe Datenblatt
sendCommand(12,1); // Normaler Modus (voreingestellt ist Shutdown-Modus);
sendCommand(15,0); // Display-Test aus
sendCommand(10,8); // Mittlere Helligkeit (Wertebereich ist 0-15)
sendCommand(11,numberOfDigits); // Zahl der Anzeigen festlegen
sendCommand(9,255); // Dekodierungsart; wir verwenden Standard-7-Segment-Anzeigen
digitalWrite(slaveSelect,HIGH); // Slave deaktivieren
}

void loop()
{
displayNumber(count);
count = count + 1;
if (count > maxCount)
count = 0;
delay(100);
}

// Ausgabe von bis zu vier Ziffern auf 7-Segment-Anzeige

13.8 Mehrstellige 7-Segment-Anzeigen über SPI ansteuern | 451

void displayNumber(int number)
{
for (int i = 0; i < numberOfDigits; i++)
{
byte character = number % 10; // Wert der Ziffer ganz rechts ermitteln
// Segmentnummer als Befehl senden; erstes Segment ist Befehl1
sendCommand(numberOfDigits-i, character);
number = number / 10;
}
}

void sendCommand(int command, int value)
{
digitalWrite(slaveSelect,LOW); // Chip-Select ist aktiv Low
// 2-Byte-Datentransfer zum 7221
SPI.transfer(command);
SPI.transfer(value);
digitalWrite(slaveSelect,HIGH); // Chip freigeben, Übertragungsende
}

A

R

D

U

I

N

O

2413

6 715 11217201622 212314

1 12

Di
g

2

Di
g

3

Se
g

F

Di
g

1

Di
g

0

Se
g

G

Se
g

C

Se
g

B

Se
g

Dp

Se
g

E

Se
g

D

Se
g

A

SS
 (S

el
ec

t)

M
O

SI
 (D

 In
)

SC
K

(C
lo

ck
)

M
IS

O
 (D

 O
ut

)

Gnd

Vin

5V

3V3

RESET

Gnd

R1

18194 9

G
nd

G
nd

I S
et

+
5

V

MAX7221

5 8103

Di
g

6

Di
g

7

Di
g

5

Di
g

4

0.1
uF

10
uF

9

8

10

11

12

GND

13

AREF

12 1378109 5611
18 14173154 1216 Pins for Digit 1

Pins for Digit 2

Digit 2Digit 1

Abbildung 13-14: Anschluss eines MAX7221 mit Lite-On LTD-6440G

Diskussion
Der MAX7221 benötigt LEDs mit gemeinsamer Kathode. Das Pinout in Abbildung 13-14
ist für die Lite-On LTD-6440G, eine zweistellige 7-Segment-LED. Die Segmente jeder
Ziffer müssen miteinander verbunden werden. Zum Beispiel liegt der Dezimalpunkt für
die erste Ziffer an Pin 4 und für die zweite Ziffer an Pin 9. Wie in der Abbildung zu sehen,
sind die Pins 4 und 9 miteinander verbunden und an den MAX7221-Pin 22 angeschlos-
sen.

452 | Kapitel 13: Kommunikation per I2C und SPI

Der MAX7221 kann bis zu acht Segmente ansteuern (oder eine 8 × 8-Matrix). Die
Steuerung erfolgt über Befehle, die festlegen, welches LED-Segment eingeschaltet werden
soll.

Nach der Initialisierung der Bibliothek wird der SPI-Code in der Funktion sendCommand
zusammengefasst. SPI verwendet den mit dem Chip verbundenen Select-Slave-Anschluss
und der Chip wird aktiviert, indem man diesen Pin auf LOW setzt. Alle SPI-Befehle werden
dann von diesem Chip empfangen, bis der Pin wieder auf HIGH gesetzt wird. SPI.transfer
ist die Bibliotheksfunktion zum Senden einer SPI-Nachricht. Sie besteht aus zwei Teilen:
einem numerischen Code, der angibt, welches Register die Nachricht empfangen soll,
gefolgt von den eigentlichen Daten. Details zu jedem SPI-Gerät finden Sie auf dem
Datenblatt.

Setup initialisiert den 7221, indem er Befehle zum Aufwachen (der Chip startet in einem
Stromsparmodus) sendet, die Helligkeit anpasst, die Anzahl der Ziffern festlegt und die
Dekodierung für 7-Segment-Anzeigen aktiviert. Jeder Befehl besteht aus einer Befehls-ID
(die auf dem Datenblatt Register genannt wird) und einem Wert für diesen Befehl.

Zum Beispiel dient Befehl (Register) 10 der Helligkeit, d.h., der folgende Befehl stellt eine
mittlere Helligkeit ein (der Wertebereich liegt zwischen 0 und 15):

sendCommand(10,8); // Mittlere Helligkeit einstellen

Die Befehle 1 bis 8 werden zur Steuerung der Anzeigen verwendet. Der folgende Code
aktiviert die Segmente, die die Ziffer 5 in der ersten (ganz linken) Anzeige darstellen.
Beachten Sie, dass die Anzeigennummern auf dem Datenblatt (und in Abbildung 13-14)
bei 0 beginnen, d.h., Sie müssen daran denken, dass Sie die Anzeige 0 mit dem Befehl 1
steuern, Anzeige1 mit dem Befehl 2 und so weiter:

sendCommand(1, 5); // 5 in der ersten Anzeige ausgeben

Sie können führende Nullen unterdrücken, indem Sie zwei Codezeilen in displayNumber
einfügen und 0xf an den 7221 senden, um alle Segmente zu löschen, wenn der Wert
tatsächlich 0 ist:

void displayNumber(int number)
{
for (int i = 0; i < numberOfDigits; i++)
{
byte character = number % 10;

Die beiden nächsten Zeilen unterdrücken führende Nullen:

if ((number == 0) && (i > 0))
character = 0xf; // 7221-Segmente löschen

sendCommand(numberOfDigits-i, character);
number = number / 10;
}
}

13.8 Mehrstellige 7-Segment-Anzeigen über SPI ansteuern | 453

13.9 Kommunikation zwischen zwei oder mehr
Arduino-Boards

Problem
Sie wollen, dass zwei oder mehr Arduino-Boards zusammenarbeiten. Vielleicht wollen Sie
die E/A-Kapazität erhöhen oder mehr Daten verarbeiten, als ein einzelnes Board bewälti-
gen kann. Sie können I2C nutzen, um Daten zwischen den Boards zu übergeben und so
die Last zu verteilen.

Lösung
Die beiden Sketches in diesem Rezept zeigen, wie man I2C als Kommunikationskanal
zwischen zwei oder mehr Arduino-Boards verwenden kann. Die Verschaltung sehen Sie in
Abbildung 13-15.

TX
 1

RX
 02346 579 8101112

G
N

D 13

AR
EF

G
nd

Vi
n

5V3V
3

RE
SE

T

G
nd

Arduino

DIGITAL

TX
 1

RX
 02346 579 8101112

G
ND 13

AR
EF

G
nd

Vi
n

5V3V
3

RE
SE

T

G
nd

Arduino

DIGITAL

4 5210 3

ANALOG

4 5210 3

ANALOG

Abbildung 13-15: Arduino als I2C-Master und -Slave

Der Master sendet über den seriellen Port eingegangene Zeichen über I2C an einen
Arduino-Slave:

/*
* I2C_Master
* Serielle Daten an einen I2C-Slave weitergeben
*/

#include <Wire.h>

const int address = 4; // Zu nutzende Adresse

void setup()
{
Wire.begin();

}

454 | Kapitel 13: Kommunikation per I2C und SPI

void loop()
{
char c;
if(Serial.available() > 0)
{
// Daten
Wire.beginTransmission(address); // An Gerät senden
Wire.write(c);
Wire.endTransmission();

}
}

Der Slave gibt die über I2C empfangenen Zeichen über seinen seriellen Port aus:

/*
* I2C_Slave
* Überwacht I2C-Requests und gibt sie über den seriellen Port aus
*/

#include <Wire.h>

const int address = 4; // Zur Kommunikation verwendete Adresse

void setup()
{
Serial.begin(9600);
Wire.begin(address); // I2C-Bus über diese Adresse anbinden
Wire.onReceive(receiveEvent); // Event-Handler für Requests registrieren
}

void loop()
{
// Leer - die gesamte Verarbeitung erfolgt in receiveEvent
}

void receiveEvent(int howMany)
{
while(Wire.available() > 0)
{
char c = Wire.read(); // Byte als Zeichen empfangen
Serial.write(c); // und ausgeben
}
}

Diskussion
Dieses Kapitel konzentriert sich auf den Arduino als I2C-Master, der auf verschiedene
I2C-Slaves zugreift. Hier fungiert ein zweiter Arduino als I2C-Slave, der auf Requests von
einem anderen Arduino reagiert. In Kapitel 4 behandelte Techniken zum Senden von
Datenbytes können auch hier angewandt werden. Arduino 1.0 hat eine print-Funktion in
die Wire-Biblothek integriert, d.h., Sie können Daten nun auch mit der print-Methode
senden.

13.9 Kommunikation zwischen zwei oder mehr Arduino-Boards | 455

Der folgende Sketch sendet seine Ausgabe über I2C mit Wire.println. Mit dem oben
vorgestellten I2C-Slave-Sketch kann der Master Daten ausgeben, ohne den eigenen
seriellen Port nutzen zu müssen (der serielle Port des Slaves wird zur Ausgabe genutzt):

/*
* I2C_Master
* Sendet über print Sensordaten an einen I2C-Slave
*/

#include <Wire.h>

const int address = 4; // Zur Kommunikation verwendete Adresse
const int sensorPin = 0; // Analogpin für Sensor
int val; // Variable für Sensorwert

void setup()
{
Wire.begin();

}

void loop()
{
val = analogRead(sensorPin); // Spannung am Poti einlesen

// (Wert zwischen 0 und 1023)
Wire.beginTransmission(address); // An Slave senden
Wire.println(val);
Wire.endTransmission();
delay(1000);

}

Siehe auch
Kapitel 4 enthält weitere Informationen zur Verwendung der Arduino print-Funktion.

456 | Kapitel 13: Kommunikation per I2C und SPI

KAPITEL 14

Drahtlose Kommunikation

14.0 Einführung
Die Fähigkeit des Arduino zur Interaktion mit der Umgebung ist wundervoll, doch
manchmal möchte man mit dem Arduino aus der Ferne kommunizieren, ohne Drähte
und den Aufwand einer vollständigen TCP/IP-Verbindung. Dieses Kapitel behandelt
verschiedene einfache Drahtlos-Module für Anwendungen, bei denen geringe Kosten die
Hauptforderung sind. Die meisten Rezepte konzentrieren sich auf die vielseitigen XBee-
Module.

XBee stellt eine flexible Drahtlos-Lösung für den Arduino dar, doch diese Flexibilität kann
auch verwirrend ein. Dieses Kapitel enthält Beispiele, die vom einfachen »Drahtlos-Ersatz
für den seriellen Port« bis hin zu Mesh-Netzwerken reichen, die mehrere Boards mit
mehreren Sensoren verbinden.

Eine Reihe verschiedener XBee-Module stehen zur Verfügung. Die beliebtesten sind das
XBee 802.15.4 (auch als XBee Serie 1 bekannt) und das XBee ZB Serie 2. Die Serie 1 ist
einfacher zu nutzen als die Serie 2, unterstützt aber keine Mesh-Netzwerke. Siehe http://
www.digi.com/support/kbase/kbaseresultdetl.jsp?id=2213.

14.1 Nachrichten über Low-Cost-Drahtlos-Module senden

Problem
Sie wollen Daten zwischen zwei Arduino-Boards über einfache, kostengünstige Drahtlos-
Module senden.

Lösung
Dieses Rezept verwendet einfache Sende- und Empfangsmodule wie die SparkFun 315
MHz: WRL-10535 und WRL-10533, oder 434 MHz: WRL-10534 und WRL-10532.

| 457

Schließen Sie den Sender wie in Abbildung 14-1 und den Empfänger wie in Abbildung 14-2
an. Bei einigen Modulen heißt der Spannungsanschluss VDD statt Vcc.

Gnd

Vin

5V

3V3

R E S E T

Gnd

A
R
D
U
I
N
O

9

8

10

11

12

13

G
nd

A
nt

V
cc

D
ata

Transmitter

Abbildung 14-1: Einfacher Drahtlos-Sender mit VirtualWire

Gnd

Vin

5V

3V3

R E SET

Gnd

A
R
D
U
I
N
O

9

8

10

11

12

13

G
n

d

V
cc

T
e

st

D
a

ta

V
cc

A
n

t

G
n

d

G
n

d

Receiver

Abbildung 14-2: Einfacher Drahtlos-Empfänger mit VirtualWire

458 | Kapitel 14: Drahtlose Kommunikation

Der Sender-Sketch überträgt eine einfache Textnachricht an den Empfänger-Sketch, der
diesen Text über den seriellen Monitor ausgibt. Sender- und Empfänger-Sketch verwen-
den die VirtualWire-Bibliothek von Mike McCauley, die eine Schnittstelle zur Drahtlos-
Hardware bereitstellt. Die Bibliothek kann von http://www.open.com.au/mikem/arduino/
VirtualWire-1.5.zip heruntergeladen werden:

/*
SimpleSend
Dieser Sketch sendet eine kurze Textnachricht mit Hilfe der VirtualWire-Bibliothek
Verbinden Sie den Transmitter-Datenpin mit Arduino-Pin 12
*/

#include <VirtualWire.h>

void setup()
{
// IO und ISR initialisieren
vw_setup(2000); // Bits pro Sekunde

}

void loop()
{
send("Hallo");
delay(1000);

}

void send (char *message)
{
vw_send((uint8_t *)message, strlen(message));
vw_wait_tx(); // Warten, bis gesamte Nachricht gesendet wurde
}

Der Empfänger-Sketch verwendet ebenfalls die VirtualWire-Bibliothek:

/*
SimpleReceive
Dieser Sketch gibt Textstrings aus, die über VirtualWire empfangen wurden
Verbinden Sie den Empfänger-Datenpin mit dem Arduino-Pin 11
*/
#include <VirtualWire.h>

byte message[VW_MAX_MESSAGE_LEN]; // Puffer für eingehende Nachrichten
byte msgLength = VW_MAX_MESSAGE_LEN; // Länge der Nachricht

void setup()
{
Serial.begin(9600);
Serial.println("Bereit");

// IO und ISR initialisieren
vw_setup(2000); // Bits pro Sekunde
vw_rx_start(); // Empfänger starten

}

14.1 Nachrichten über Low-Cost-Drahtlos-Module senden | 459

void loop()
{
if (vw_get_message(message, &msgLength)) // Non-blocking
{

Serial.print("Empfangen: ");
for (int i = 0; i < msgLength; i++)
{

Serial.write(message[i]);
}
Serial.println();
}

}

Diskussion
Die VirtualWire-Bibliothek verwendet standardmäßig Pin 12 zum Senden und Pin 11 zum
Empfangen. Wenn Sie andere Pins verwenden wollen, schauen Sie in die Dokumentation
(siehe Link am Ende des Rezepts). Setup initialisiert die Bibliothek. Der loop-Code ruft
einfach eine send-Funktion auf, die wiederum die Bibliotheksfunktion vw_send aufruft und
dann wartet, bis die Nachricht übertragen wurde.

Der Empfänger initialisiert die Empfangslogik der Bibliothek und wartet dann in loop auf
Nachrichten. vw_get_message gibt true zurück, wenn eine Nachricht vorhanden ist. Ist das
der Fall, wird jedes Zeichen der Nachricht über den seriellen Monitor ausgegeben.

Die VirtualWire-Bibliothek packt mehrere Bytes zu Paketen zusammen, d.h., zum Senden
binärer Daten müssen Sie nur die Adresse der Daten und die Zahl zu sendender Bytes
übergeben.

Der folgende Sender-Sketch ähnelt dem obigen Sender-Sketch, füllt den Nachrichten-
Puffer aber mit Binärwerten von Analogeingängen, die über analogRead eingelesen wur-
den. Die Größe des Puffers entspricht der Anzahl der zu sendenden Integerwerte mal der
Anzahl der Bytes in einem Integerwert (die sechs Analogwerte benötigen 12 Bytes, da
jedes int aus zwei Bytes besteht):

/*
SendBinary
Sendet digitale und analoge Pin-Werte als Binärdaten per VirtualWire
Siehe SendBinary in Kapitel 4
*/

#include <VirtualWire.h>

const int numberOfAnalogPins = 6; // Anzahl einzulesender Analogpins

int data[numberOfAnalogPins]; // Der Datenpuffer

const int dataBytes = numberOfAnalogPins * sizeof(int); // Anzahl der Bytes
// im Datenpuffer

460 | Kapitel 14: Drahtlose Kommunikation

void setup()
{
// IO und ISR initialisieren
vw_setup(2000); // Bits pro Sekunde

}

void loop()
{
int values = 0;
for(int i=0; i <= numberOfAnalogPins; i++)
{
// Analogport einlesen
data[i] = analogRead(i); // Wert im Datenpuffer speichern
}
send((byte*)data, dataBytes);
delay(1000); // Einmal pro Sekunde senden
}

void send (byte *data, int nbrOfBytes)
{
vw_send(data, nbrOfBytes);
vw_wait_tx(); // Warten, bis gesamte Nachricht gesendet wurde
}

Mit dem Operator sizeof wird die Größe eines int in Byte bestimmt.

Die Empfänger-Seite wartet auf eingehende Nachrichten, stellt sicher, dass sie die richtige
Länge haben und wandelt den Puffer wieder in sechs Integerwerte um, die über den
seriellen Monitor ausgegeben werden:

#include <VirtualWire.h>

const int numberOfAnalogPins = 6; // Anzahl zu empfangender Integerwerte
int data[numberOfAnalogPins]; // Der Datenpuffer

// Anzahl der Bytes im Datenpuffer
const int dataBytes = numberOfAnalogPins * sizeof(int);

byte msgLength = dataBytes;

void setup()
{
Serial.begin(9600);
Serial.println("Bereit");

14.1 Nachrichten über Low-Cost-Drahtlos-Module senden | 461

// IO und ISR initialisieren
vw_set_ptt_inverted(true); // Für DR3100 erforderlich
vw_setup(2000); // Bits pro Sekunde

vw_rx_start(); // Empfänger starten
}

void loop()
{
if (vw_get_message((byte*)data, &msgLength)) // Non-blocking
{
Serial.println("Empfangen: ");
if(msgLength == dataBytes)
{
for (int i = 0; i < numberOfAnalogPins; i++)
{
Serial.print("Pin ");
Serial.print(i);
Serial.print("=");
Serial.println(data[i]);

}
}
else
{
Serial.print("Falsche Nachrichtlänge: ");
Serial.println(msgLength);

}
Serial.println();
}
}

Der serielle Monitor zeigt die Analogwerte des sendenden Arduinos an:

Empfangen:
Pin 0=1023
Pin 1=100
Pin 2=227
Pin 3=303
Pin 4=331
Pin 5=358

Beachten Sie, dass die maximale Puffergröße für VirtualWire bei 30 Bytes liegt (die Kon-
stante VW_MAX_MESSAGE_LEN ist in der Header-Datei der Bibliothek definiert).

Die Reichweite liegt, je nach Versorgungsspannung und Antenne, bei etwa 100 Metern.
Hindernisse zwischen Sender und Empfänger reduzieren die Reichweite.

Es gibt keine Garantie dafür, dass die Nachrichten zugestellt werden. Wenn Sie außerhalb
der Reichweite sind oder wenn es starke Interferenzen gibt, können Nachrichten verloren
gehen. Wenn Sie einen Mechanismus benötigen, der die Zustellung garantiert, ist die
ZigBee-API (die in den noch folgenden Rezepten genutzt wird) die bessere Wahl. Doch
die günstigen Module funktionieren gut, wenn es um Aufgaben wie die Ausgabe von
Sensorwerten geht – jede Nachricht enthält den aktuellen Sensorwert und falls Nach-
richten verloren gehen, werden sie durch nachfolgende Nachrichten ersetzt.

462 | Kapitel 14: Drahtlose Kommunikation

Siehe auch
Ein technisches Dokument zur VirtualWire-Bibliothek kann von http://www.open.com.au/
mikem/arduino/VirtualWire.pdf heruntergeladen werden.

Datenblätter zu den Sende- und Empfangsmodulen finden Sie unter http://www.sparkfun
.com/datasheets/Wireless/General/MO-SAWR.pdf und http://www.sparkfun.com/datasheets/
Wireless/General/MO-RX3400.pdf.

14.2 Den Arduino mit einem ZigBee- oder
802.15.4-Netzwerk verbinden

Problem
Sie wollen Ihren Arduino mit einem ZigBee- oder 802.15.4-Netzwerk verbinden.

802.15.4 ist ein IEEE-Funknetz-Standard, der in Produkten wie den preiswerten XBee-
Modulen von Digi International eingesetzt wird. ZigBee ist eine Unternehmens-Allianz
und auch der Name eines Standards, der von dieser Allianz gepflegt wird. ZigBee ist eine
Obermenge von IEEE 802.15.4 und in vielen Produkten implementiert, einschließlich
einiger XBee-Module von Digi.

Nur XBee-Module, die als ZigBee-kompatiblel gelistet sind, etwa die XBee
ZB-Module, sind garantiert ZigBee-konform. Davon abgesehen können Sie
einen Teil der Features (IEEE 802.15.4) von ZigBee auch mit Modulen der
älteren XBee Serie 1 verwenden. Tatsächlich funktionieren alle hier vor-
gestellten Rezepte mit Serie-1-Modulen.

Fehlersuche beim XBee
Wenn Sie Probleme haben, Ihre XBees zum Sprechen zu bringen, überprüfen Sie, ob sie den
gleichen Firmware-Typ verwenden (z.B. XB24-ZB unter dem Modem: XBee-Einstellung wie
in Abbildung 14-5) und ob die aktuellste Firmware-Version genutzt wird (der Versions-Wert
in Abbildung 14-5). Umfassende Tipps zur XBee-Fehlersuche finden Sie in Robert Faludis
»Common XBee Mistakes« auf http://www.faludi.com/projects/common-xbee-mistakes/. Um-
fassende Informationen zum Umgang mit XBees finden Sie im Buch Building Wireless Sensor
Networks von O’Reilly (suchen Sie danach auf www.oreilly.de).

Lösung
Besorgen Sie sich zwei oder mehr XBee-Module, konfigurieren Sie sie (wie in Rezept 14.3
beschrieben) für die Kommunikation und verbinden Sie sie mit (mindestens) einem
Arduino. Sie können weitere XBee-Module mit anderen Arduinos, einem Computer oder
einem Analog-Sensor verbinden (siehe Rezept 14.4).

14.2 Den Arduino mit einem ZigBee- oder 802.15.4-Netzwerk verbinden | 463

Wenn Sie den Arduino mit dem XBee verbinden und den nachfolgenden Sketch aus-
führen, gibt der Arduino jede Nachricht aus, die er vom XBee empfängt:

/*
XBeeEcho
Alles ausgeben, was über die seriellen Port eingeht
*/

void setup()
{
Serial.begin(9600);
}

void loop()
{
while (Serial.available()) {
Serial.write(Serial.read()); // Empfangene Daten ausgeben
}
}

Abbildung 14-3 zeigt den Anschluss eines Adafruit XBee-Adapters an den Arduino.
Beachten Sie, dass die RX-Leitung des Arduino mit dem TX-Anschluss des XBee ver-
bunden ist und umgekehrt.

TX
 1

RX
 02346 579 8101112

G
N

D 13

AR
EF

G
nd

Vi
n

5V3V
3

RE
SE

T

G
nd

Arduino

DIGITAL

4 5210 3

ANALOG

Adafruit

XBee

Adapter

RTS

TX

+5V

Gnd

RST

D TR

RX

C TS

Abbildung 14-3: Anschluss eines Arduino an einen XBee per Adafruit XBee-Adapter

Wenn Sie einen anderen Adapter ohne eigenen Spannungsregler verwenden,
wird die Spannung direkt an den XBee weitergegeben. In diesem Fall müs-
sen Sie den 3V3-Pin des Arduino mit der Spannungsversorgung des Adap-
ters verbinden. Anderenfalls riskieren Sie ein Durchbrennen Ihres XBee.

464 | Kapitel 14: Drahtlose Kommunikation

Sind die XBees mit einem Computer und/oder einem Arduino verbunden und konfigu-
riert, können Sie Nachrichten hin und her senden.

Sie müssen den Arduino vom XBee trennen, bevor Sie ihn programmieren.
Das liegt daran, dass der Arduino die Pins 0 und 1 für die Programmierung
nutzt. Die Signale kommen sich dann mit allem in die Quere (z.B. dem
XBee), was an diese Pins angeschlossen ist.

Diskussion
Zur Konfiguration Ihrer XBees stecken Sie sie in einen XBee-Adapter wie dem Adafruit
XBee-Adapter-Kit und einen USB-nach-TTL-Seriell-Adapter wie den TTL-232R, um den
Adapter mit einem Computer zu verbinden.

Sie sollten mindestens zwei Adapter (und bei Bedarf zwei Kabel) kaufen,
um zwei XBees gleichzeitig an den Computer anschließen zu können. Die
gleichen Adapter können auch genutzt werden, um ein XBee mit dem
Arduino zu verbinden.

Sie können auch einen All-In-One- XBee-USB-Adapter wie den Parallax XBee USB-Adap-
ter oder den SparkFun XBee Explorer USB verwenden.

Abbildung 14-4 zeigt den Adafruit XBee-Adapter und den SparkFun XBee Explorer USB
mit aufgesteckten Series 2 XBee-Modulen.

Abbildung 14-4: Zwei XBees, einer am Adafruit-, und der andere am SparkFun-Adapter

14.2 Den Arduino mit einem ZigBee- oder 802.15.4-Netzwerk verbinden | 465

Series 2-Konfiguration

Zur Erstkonfiguration von Series 2 XBees müssen Sie Ihre XBees mit einem Windows-
Computer verbinden (das Konfigurations-Utility ist für Mac und Linux nicht verfügbar).
Schließen Sie erst einmal nur einen an einem USB-Port an. Der TTL-232R und der
Parallax XBee USB-Adapter verwenden beide den gleichen USB-nach-Seriell-Treiber wie
der Arduino auch. Sie müssen also keine zusätzlichen Treiber installieren.

1. Öffnen Sie den Gerätemanager (drücken Sie Windows-R, geben Sie devmgmt.msc ein
und drücken Sie Enter), öffnen Sie den Ports-Bereich (COM & LPT) und halten Sie
die Nummer des USB-Ports fest, mit dem der XBee verbunden ist. Wenn das nicht
ganz klar ist, ziehen Sie den Stecker und stecken ihn wieder ein.) Beenden Sie den
Gerätemanager.

2. Starten Sie die X-CTU-Anwendung (http://www.digi.com/support/productdetl.jsp
?pid=3352&osvid=0&tp=5&tp2=0), wählen Sie den oben ermittelten Port aus und
drücken Sie Test/Query, um sicherzustellen, dass X-CTU den XBee erkennt. (Wenn
nicht, sehen Sie sich das Support-Dokument unter http://www.digi.com/support/
kbase/kbaseresultdetl.jsp?id=2103 an.)

3. Wechseln Sie zum Reiter Modem Configuration und klicken Sie auf Read. X-CTU
ermittelt das verwendete XBee-Modell sowie dessen aktuelle Konfiguration.

4. Unter Function Set wählen Sie ZIGBEE COORDINATOR AT (nicht API).

5. Klicken Sie das Versions-Menü an und wählen Sie die höchste verfügbare Firmware-
Version aus.

6. Klicken Sie auf Show Defaults.

7. Ändern Sie die PAN ID-Einstellung von 0 auf 1234 (oder jeden anderen Hexa-
dezimalwert; die PAN ID muss aber für alle Geräte im gleichen Netzwerk identisch
sein), wie in Abbildung 14-5 zu sehen.

8. Klicken Sie auf Write.

9. Klicken Sie den Terminal-Reiter an.

10. Lassen Sie nun X-CTU laufen und den XBee eingesteckt. Schließen Sie den zweiten
XBee an einem anderen USB-Port an. Wiederholen Sie die obigen Schritte (im
zweiten Schritt starten Sie eine zweite Instanz von X-CTU), wählen im vierten
Schritt aber statt ZIGBEE COORDINATOR AT die Option ZIGBEE ROUTER
AT. Bei diesem XBee müssen Sie Channel Verification (JV) auch auf 1 setzen. Damit
bestätigt er die Verwendung des richtigen Kanals, was die Verbindung mit dem Ko-
ordinator zuverlässiger macht.

466 | Kapitel 14: Drahtlose Kommunikation

Abbildung 14-5: Konfiguration des XBee

Wenn Sie zwei Windows-Rechner haben, können Sie jeden XBee an einen
separaten Rechner anschließen.

Beide XBees sind angeschlossen und in beiden X-CTU-Instanzen ist der Terminal-Reiter
aktiv. Geben Sie nun etwas in eines der Terminal-Fenster ein. Was Sie in einem XBee
eingeben, erscheint auf dem Terminal des anderen. Sie haben Ihr erstes einfaches XBee
Personal Area Network (PAN) eingerichtet. Nun können Sie die XBees mit zwei Arduino-
Boards verbinden und den Sketch aus Rezept 14.3 ausführen.

Konfiguration der Serie 1

Für Serie-1-XBees können Sie einen Mac oder einen PC mit Linux oder Windows nutzen.
Wenn Sie die Firmware der XBees aktualisieren wollen, müssen Sie allerdings das
X-CTU-Utility aus Rezept 14.3 verwenden.

14.2 Den Arduino mit einem ZigBee- oder 802.15.4-Netzwerk verbinden | 467

Ermitteln Sie den seriellen Port Ihres XBee, wie es in »Den seriellen Port ermitteln« auf
Seite 468 beschreiben wird. Verbinden Sie diesen Port mit dem Terminal-Programm. Die
Verbindung zum XBee stellen Sie mit CoolTerm (Windows oder Mac) wie folgt her:

1. Starten Sie CoolTerm.

Sie können CoolTerm für Windows und Mac von http://freeware.the-
meiers.org/ herunterladen. PuTTY ist für Windows und Linux von
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html verfüg-
bar. PuTTY für Linux können Sie möglicherweise auch über den Paketma-
nager Ihres Linux-Systems installieren. Bei Ubuntu ist PuTTY beispiels-
weise über das Universe-Repository mit apt-get install putty verfügbar.

2. Klicken Sie den Options-Button in der Symbolleiste an.

3. Wählen Sie den seriellen USB-Port aus (z.B. usbserial-A700eYw1 bei einem Mac oder
COM8 bei eine PC). Stellen Sie sicher, das 9600 Baud, 8 Datenbits, keine Parität und
1 Stop-Bit eingestellt sind (das entspricht der Voreinstellung).

4. Aktivieren Sie Local Echo.

5. Klicken Sie auf OK.

6. Klicken Sie den Save-Button in der Symbolleiste an und speichern Sie die Session-
Einstellungen.

7. Bei weiteren Sessions überspringen Sie die Schritte 2 bis 6, klicken stattdessen auf
Open und laden die gesicherten Einstellungen.

8. Klicken Sie den Connect-Button in der Symbolleiste an.

Den seriellen Port ermitteln
Um den seriellen Port zu ermitteln, der Ihrem XBee unter Windows zugewiesen wurde,
sehen Sie sich den ersten Schritt in Rezept 14.3 an. Um ihn unter Mac OS X zu ermitteln,
öffnen Sie ein Mac OS X-Terminal-Fenster (in /Applications/Utilities) und geben den
folgenden Befehl ein: ls /dev/tty.usbserial-*. Unter Linux öffnen Sie ein xterm oder
ein vergleichbares Terminal-Fenster und geben ls /dev/ttyUSB* ein.

Erscheint hier mehr als ein Eintrag, klemmen Sie alle seriellen USB-Geräte bis auf den
XBee ab und geben den Befehl erneut ein. Sie sollten jetzt nur noch einen Eintrag sehen.

Das Ergebnis sieht bei einem Mac etwa so aus:

/dev/tty.usbserial-A700eYw1

Und bei Linux etwa so:

/dev/ttyUSB0

Das ist der Dateiname für den seriellen USB-Port Ihres XBee.

468 | Kapitel 14: Drahtlose Kommunikation

Um die Verbindung zu Ihrem XBee über PuTTY (Windows oder Linux) herzustellen,
machen Sie Folgendes:

1. Starten Sie PuTTY.

2. Klicken Sie unter Connection Type auf Serial.

3. Tragen Sie den Namen des seriellen Ports im Feld Serial Line ein (z.B. /dev/ttyUSB0
unter Linux oder COM7 unter Windows). Stellen Sie sicher, dass die Geschwindig-
keit (Speed) auf 9600 gesetzt ist (das ist die Voreinstellung).

4. Auf der linken Seite des Fenster klicken Sie unter Category auf Terminal.

5. Unter Local Echo wählen Sie Force On.

6. Unter »Set various terminal options« wählen Sie Implicit LF in Every CR.

7. Auf der linken Seite des Fensters klicken Sie unter Category auf Session.

8. Geben Sie der Session einen Namen, z.B. »XBee 1«, und klicken Sie auf Save.

9. Bei zukünftigen Sessions überspringen Sie die Schritte 2 bis 8 und klicken die
gespeicherte Session doppelt an.

Nachdem Sie die Verbindung hergestellt haben, konfigurieren Sie den ersten XBee mit den
folgenden AT-Befehlen. Sie müssen +++ eingeben (kein Return oder Enter) und eine
Sekunde warten, um den XBee auf sich aufmerksam zu machen (er antwortet mit »OK«):

ATMY1234
ATDL5678
ATDH0
ATID0
ATWR

Lassen Sie das Terminal-Fenster geöffnet, um weitere Befehle eingeben zu können.
Stecken Sie nun den zweiten XBee ein und stellen Sie wie oben beschrieben wieder eine
Verbindung mit PuTTY oder CoolTerm her (um ein neues PuTTY-Fenster zu öffnen,
starten Sie das Programm einfach noch einmal; ein neues CoolTerm-Fenster öffnen Sie
mit File→New). Dann konfigurieren Sie den zweiten XBee mit den folgenden Befehlen:

ATMY5678
ATDL1234
ATDH0
ATID0
ATWR

Nun können Sie Befehle im Terminal-Fenster eines XBee eingeben und die Eingaben
erscheinen im Terminal-Fenster des anderen XBee (und umgekehrt).

Der Befehl ATMY legt den Identifier für einen XBee fest, ATDL und ATDH das untere und obere
Byte für den Ziel-XBee. ATID legt die Netzwerk-ID fest (die für alle XBees, die miteinander
kommunizieren sollen, gleich sein muss) und ATWR speichert die Einstellungen, damit der
XBee sie nicht vergisst, wenn er aus- und wieder eingeschaltet wird.

14.2 Den Arduino mit einem ZigBee- oder 802.15.4-Netzwerk verbinden | 469

Mit dem Arduino kommunizieren

Nachdem die XBee-Module konfiguriert sind, wählen Sie einen der XBees aus, schließen
dessen Terminal-Fenster und trennen ihn vom Computer. Dann laden Sie den nach-
folgenden Code auf den Arduino hoch und verbinden den XBee wie in Abbildung 14-3 zu
sehen mit dem Arduino. Wenn Sie nun Zeichen über ein Terminal-Programm eingeben,
wird es zweimal ausgegeben (Echo), d.h., wenn Sie a eingeben, sehen Sie aa).

Wenn jedes Zeichen doppelt erscheint, liegt das am lokalen Echo, das Sie
im Terminal-Programm aktiviert haben. Wenn Sie wollen, können Sie die
Verbindung trennen und mit deaktiviertem lokalen Echo wieder herstellen
(folgen Sie dazu den obigen Anweisungen für CoolTerm oder PuTTY und
schalten Sie das lokale Echo aus).

Siehe auch
14.3, 14.4 und 14.5

14.3 Eine Nachricht an einen bestimmten XBee senden

Problem
Sie wollen festlegen, welcher Knoten die Nachrichten von Ihrem Arduino-Sketch erhält.

Lösung
Senden Sie die AT-Befehle direkt aus dem Arduino-Sketch:

/*
XBeeMessage
Sendet eine Nachricht über die Adresse an einen XBee
*/

boolean configured;

boolean configureRadio() {

// Befehlsmodus aktivieren:
Serial.print("+++");

String ok_response = "OK\r"; // Die von uns erwartete Antwort

// Text der Antwort in response-Variable einlesen
String response = String("");
while (response.length() < ok_response.length()) {
if (Serial.available() > 0) {
response += (char) Serial.read();
}
}

470 | Kapitel 14: Drahtlose Kommunikation

// Bei der richtigen Antwort konfigurieren wir den XBee und geben 'wahr' zurück.
if (response.equals(ok_response)) {
Serial.print("ATDH0013A200\r"); // Höherwertiges Bytes des Ziels-ERSETZEN
Serial.print("ATDL403B9E1E\r"); // Niederwertiges Byte des Ziels-ERSETZEN
Serial.print("ATCN\r"); // Zurück zum Datenmodus
return true;
} else {
return false; // Die Antwort war falsch
}
}

void setup () {
Serial.begin(9600); // Seriellen Port starten
configured = configureRadio();
}

void loop () {
if (configured) {
Serial.print("Hallo!");
delay(3000);
}
else {
delay(30000); // 30 Sekunden warten
configured = configureRadio(); // Erneut versuchen
}
}

Diskussion
Zwar funktioniert die Konfiguration aus Rezept 14.2 für zwei XBees, ist aber nicht be-
sonders flexibel, wenn mehr als zwei genutzt werden.

Nehmen wir zum Beispiel ein Netzwerk aus drei Serie-2-XBee-Knoten, bei dem ein XBee
mit der COORDINATOR AT-Firmware ausgestattet ist und zwei andere mit der
ROUTER AT-Firmware. Vom Koordinator gesendete Nachrichten gehen an die beiden
Router. Nachrichten von den jeweiligen Routern landen beim Koordinator.

Die Serie-1-Konfiguration in diesem Rezept ist etwas flexibler, da es die Ziele explizit
angibt. Da die Geräte über AT-Befehle konfiguriert und die Konfiguration dann gespei-
chert wird, kodieren Sie die Zieladressen fest in die Firmware ein.

Diese Lösung erlaubt es hingegen, AT-Befehle zur Konfiguration der XBees zu senden.
Das Herz der Lösung bildet die Funktion configureRadio(). Sie sendet die Escape-Sequenz
+++, um den XBee in den Befehlsmodus zu schalten (so wie bei der Serie-1-Konfiguration
am Ende von Rezept 14.2). Nach dem Senden dieser Escape-Sequenz wartet der Arduino-
Sketch auf die OK-Antwort, bevor er die folgenden AT-Befehle sendet:

ATDH0013A200
ATDL403B9E1E
ATCN

In Ihrem Code müssen Sie 0013A200 und 403B9E1E durch die oberen und
unteren Adressbytes des Ziels ersetzen.

14.3 Eine Nachricht an einen bestimmten XBee senden | 471

Die ersten beiden Befehle entsprechen denen der Serie-1-Konfiguration am Ende von
Rezept 14.2, doch die Zahlen sind länger. Das liegt daran, dass in diesem Rezept
Serie-2–Adressen verwendet werden. Wie in Rezept 14.2 erklärt, können Sie die Adresse
eines Serie-1-XBee mit dem Befehl ATMY festlegen, doch bei Serie-2-XBees hat jedes Modul
eine eindeutige Adresse, die in den Chip integriert ist. Sie können sich den höherwertigen
(ATDH) und niederwertigen (ATDL) Teil der Seriennummer mit X-CTU ansehen (siehe
Abbildung 14-6). Dieser Wert steht auch auf dem Label unter dem XBee.

Der Befehl ATCN beendet den Befehlmodus und ist sozusagen die Umkehrung der +++-Se-
quenz.

Abbildung 14-6: Höher- und niederwertige Bytes der Seriennummer mit X-CTU nachschauen

Siehe auch
Rezept 14.2

472 | Kapitel 14: Drahtlose Kommunikation

14.4 Sensordaten zwischen XBees senden

Problem
Sie wollen den Status von Digital-, Analog- oder Steuerpins basierend auf vom XBee
empfangenen Befehlen senden.

Lösung
Verbinden Sie einen der XBees (den sendenden XBee) mit einem Analogsensor und
konfigurieren Sie ihn so, dass er den Wert regelmäßig sendet. Verbinden Sie den Arduino
mit einem XBee (dem empfangenden XBee), der für den API-Modus konfiguriert ist und
die API-Frames einliest, die vom anderen XBee empfangen werden.

Diskussion
XBees verfügen über einen integrierten Analog/Digital-Wandler (analog-to-digital con-
verter, ADC), der regelmäßig abgefragt werden kann. Der XBee kann so konfiguriert
werden, dass er die Werte (zwischen 0 und 1023) an andere XBees im Netzwerk sendet.
Die Konfiguration und der Code unterscheiden sich zwischen Serie-2- und Serie-1-XBees
ein wenig.

Serie-2-XBees

Mit X-CTU (siehe Rezept 14.3 in Rezept 14.2), konfigurieren Sie den sendenden XBee als
ZIGBEE ROUTER AT (nicht API) und mit den folgenden Einstellungen (klicken Sie Write,
wenn Sie fertig sind):

PAN ID: 1234 (oder ein anderer von Ihnen gewählter Wert, der aber für alle XBees
gleich sein muss)
Channel Verification (JV): 1 (stellt sicher, dass der Router nach einer Stromunter-
brechung bzw. Neustart zunächst auf dem vorhandenen Kanal nach dem (bekannten)
Coordinator sucht und falls er keinen findet, den Kanal verlässt und versucht, einen
neuen Coordinator in einem neuen PAN zu finden. Bei JV=0 würde er das letztere
nicht tun, sondern auf dem Kanal verbleiben)
Destination Address High (DH): der höherwertige Teil der Adresse (SH) des anderen
XBee, üblicherweise 13A200
Destination Address Low (DL): der niederwertige Teil der Adresse (SL) des anderen
XBee
Unter I/O Settings, AD0/DIO0 Configuration (D0): 2
Unter I/O Settings→Sampling Rate (IR): 64 (100 Millisekunden in hex)

Sie können den höher- (ATDH) und niederwertigen (ATDL) Teil der Serien-
nummer mit X-CTU ermitteln (siehe Abbildung 14-6). Die Werte stehen
aber auch auf dem Label auf der Unterseite des XBee.

14.4 Sensordaten zwischen XBees senden | 473

Konfigurieren Sie den empfangenden XBee als ZIGBEE COORDINATOR API (nicht AT)
und den folgenden Einstellungen:

PAN ID: 1234 (oder ein anderer von Ihnen gewählter Wert, der aber für alle XBees
gleich sein muss)
Destination Address High (DH): der höherwertige Teil der Adresse (SH) des anderen
XBee, üblicherweise 13A200
Destination Address Low (DL): der niederwertige Teil der Adresse (SL) des anderen
XBee

Verbinden Sie den sendenden XBee mit dem Sensor, wie in Abbildung 14-7 zu sehen. Der
Wert von R1 muss doppelt so hoch sein wie der des Potis (bei einem 10K-Poti also ein
20K-Widerstand). Das liegt daran, dass der Analog/Digital-Wandler des Seri- 2-XBees im
Bereich von 0 bis 1,2 Volt arbeitet. R1 sorgt dafür, dass die 3,3 Volt auf unter 1,2 Volt
sinken.

Überprüfen Sie sorgfältig das Pinout Ihres XBee-Breakout-Boards, da die
Pins des Breakout-Boards nicht immer mit den Pins des XBee überein-
stimmen. Beispielsweise ist bei einigen Breakout-Boards der obere linke
Pin Masse und der darunter 3,3V.

Analog In 0 or Digital I/O 0

Analog In 1 or Digital I/O 1

Analog In 2 or Digital I/O 2

Analog In 3 or Digital I/O 3

RTS

Association Indicator

VREF (not in Series 2 Xbees)

On/Sleep Indicator

CTS

Digital I/O 4

3.3V power in

TX

RX

Digital I/O 12

Reset

PWM0

Digital I/O 11

Reserved

DTR

Ground

XBees
10K

Pot

+3.3V

Ground

R1

Abbildung 14-7: Anschluss des empfangenden Serie 2-XBee an einen Analogsensor

Nun laden Sie den folgenden Sketch auf den Arduino hoch und schließen den sendenden
XBee wie in Rezept 14.2 an den Arduino an. Wenn Sie den Arduino neu programmieren,
müssen Sie den XBee zuerst abklemmen:

/*
XBeeAnalogReceive

474 | Kapitel 14: Drahtlose Kommunikation

Analogwert von einem XBee API-Frame einlesen und die Helligkeit einer LED entsprechend setzen
*/

#define LEDPIN 9

void setup() {
Serial.begin(9600);
pinMode(LEDPIN, OUTPUT);
}

void loop() {

if (Serial.available() >= 21) { // Warten, bis ein paar Daten vorliegen

if (Serial.read() == 0x7E) { // Startzeichen eines Frames

// Uninteressante Bytes im API-Frame überspringen
for (int i = 0; i < 18; i++) {
Serial.read();

}

// Die nächsten beiden Bytes sind der höher- und der niederwertige Teil des Sensorwerts
int analogHigh = Serial.read();
int analogLow = Serial.read();
int analogValue = analogLow + (analogHigh * 256);

// Helligkeit auf PWM-Bereich abbilden
int brightness = map(analogValue, 0, 1023, 0, 255);

// LED einschalten
analogWrite(LEDPIN, brightness);
}
}
}

Serie-1-XBees

Mit Hilfe eines Terminal-Programms (siehe Rezept 14.3 in Rezept 14.2) senden Sie die
folgenden Konfigurationsbefehle an den XBee:

ATRE
ATMY1234
ATDL5678
ATDH0
ATID0
ATD02
ATIR64
ATWR

Dann senden Sie die folgenden Konfigurationsbefehle an die XBees:

ATRE
ATMY5678
ATDL1234
ATDH0
ATID0
ATWR

14.4 Sensordaten zwischen XBees senden | 475

Beide XBees
ATRE setzt den XBee auf die Werkseinstellung zurück. Der ATMY-Befehl legt die ID des
XBee fest. ATDL und ATDH setzen das nieder- und das höherwertige Byte des Ziel-XBee.
ATID legt die Netzwerk-ID fest (und muss bei allen miteinander kommunizierenden
XBees gleich sein). ATWR speichert die Einstellungen im XBee, damit sie auch erhalten
bleiben, wenn er aus- und wieder eingeschaltet wird.

Sendender XBee
ATD02 konfiguriert Pin 20 (Analog- oder Digitaleingang 0) als analogen Eingang;
ATIR64 weist den XBee an, den Sensor alle 100 Millisekunde (64 hex) abzufragen
und an den durch ATDL und ATDH festgelegten XBee zu senden.

Schließen Sie den sendenden XBee wie in Abbildung 14-8 zu sehen an den Sensor an.

Achten Sie auf das Pinout Ihres XBee-Breakout-Boards, da dessen Pins
nicht mit den Pins des XBees übereinstimmen müssen. Zum Beispiel liegt
bei manchen Breakout-Boards Masse (GND) am oberen linken Pin, und
darunter 3,3V. Auch könnte der VREF-Pin (RES beim SparkFun XBee
Explorer USB) der fünfte Pin unten rechts sein, während er beim XBee
selbst der vierte von unten ist.

XBee

10K

Pot

+3.3V
3.3V power in

TX

RX

Digital I/O 12

Reset

PWM0

Digital I/O 11

Reserved

DTR

Ground

Analog In 0 or Digital I/O 0

Analog In 1 or Digital I/O 1

Analog In 2 or Digital I/O 2

Analog In 3 or Digital I/O 3

RTS

Association Indicator

VREF

On/Sleep Indicator

CTS

Digital I/O 4

Abbildung 14-8: Anschluss des empfangenden Serie 1-XBee an einen Analogsensor

Im Gegensatz zur Serie 2 verwenden Serie1-XBees eine externe Referenz,
die mit 3,3V verbunden ist. Da die Spannung am Schleifer des Potis nie
höher sein kann als die Referenzspannung, wird der Widerstand aus
Abbildung 14-7 nicht benötigt.

476 | Kapitel 14: Drahtlose Kommunikation

Nun laden Sie den folgenden Sketch auf den Arduino hoch und schließen den sendenden
XBee wie in Rezept 14.2 beschrieben an den Arduino an. Muss der Arduino neu pro-
grammiert werden, klemmen Sie den XBee zuerst ab:

/*
XBeeAnalogReceiveSeries1
Analogwert von XBee API-Frame einlesen und Helligkeit einer LED entsprechend einstellen
*/

const int ledPin = 9;

void setup() {
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
configureRadio(); // Überprüfen Sie den Rückgabewert, wenn eine Fehlerbehandlung notwendig ist
}

boolean configureRadio() {

// Befehlsmodus aktivieren
Serial.flush();
Serial.print("+++");
delay(100);

String ok_response = "OK\r"; // Die von uns erwartete Antwort

// Text der Antwort in die response-Variable einlesen
String response = String("");
while (response.length() < ok_response.length()) {
if (Serial.available() > 0) {
response += (char) Serial.read();
}
}

// Bei der richtigen Antwort XBee konfigurieren und 'wahr' zurückgeben
if (response.equals(ok_response)) {
Serial.print("ATAP1\r"); // API-Modus aktivieren
delay(100);
Serial.print("ATCN\r"); // Zurück zum Datenmodus
return true;
} else {
return false; // Die Antwort war falsch
}
}

void loop() {

if (Serial.available() >= 14) { // Auf ein paar Daten warten

if (Serial.read() == 0x7E) { // Startzeichen eines Frames

// Uninteressante Bytes des API-Frames überspringen
for (int i = 0; i < 10; i++) {
Serial.read();

}

14.4 Sensordaten zwischen XBees senden | 477

// Die nächsten beiden Bytes sind der höher- und der niederwertige Teil des Sensorwerts
int analogHigh = Serial.read();
int analogLow = Serial.read();
int analogValue = analogLow + (analogHigh * 256);

// Helligkeit auf PWM-Bereich abbilden
int brightness = map(analogValue, 0, 1023, 0, 255);

// LED einschalten
analogWrite(ledPin, brightness);
}
}
}

Bei Serie-1-XBees muss der Arduino-Code den XBee mit einem AT-Befehl
(ATAP1) für den API-Modus konfigurieren. Bei Serie-2-XBees geschieht das,
indem man eine andere Firmware-Version in den Flash-Speicher schreibt.
Der Grund für die Rückkehr in den Datemodus (ATCN) ist, dass der
Befehlsmodus vorher mit +++ aktiviert wurde und die Rückkehr in den
Datenmodus notwendig ist,um Daten empfangen zu können.

Siehe auch
Rezept 14.2

14.5 Einen mit dem XBee verbundenen Aktuator aktivieren

Problem
Sie wollen einen XBee einen Pin aktivieren lassen, über den ein daran angeschlossener
Aktuator (z.B. ein Relais oder eine LED) eingeschaltet werden kann.

Lösung
Konfigurieren Sie den mit dem Aktuator verbundenen XBee so, dass er Anweisungen von
einem anderen XBee akzeptiert. Verbinden Sie den anderen XBee mit einem Arduino, der
die Befehle sendet, die zur Aktivierung des digitalen E/A-Pins notwendig sind.

Diskussion
Die digitalen/analogen E/A-Pins des XBee können als digitale Ausgänge konfiguriert
werden. Darüber hinaus können XBees so konfiguriert werden, dass Sie Anweisungen
von anderen XBees akzeptieren, mit denen diese Pins ein- und ausgeschaltet werden
können. Bei Serie-2-XBees nutzen Sie das »Remote AT Command«-Feature. Bei Serie-
1-XBees können Sie die direkte Ein-/Ausgabe nutzen, was einen »virtuellen Draht« (virtual
wire) zwischen den XBees erzeugt.

478 | Kapitel 14: Drahtlose Kommunikation

Serie-2-XBees

Mittels X-CTU (siehe Rezept 14.3) konfigurieren Sie den empfangenden XBee als ZIGBEE
ROUTER AT (nicht API) und nehmen die folgenden Einstellungen vor:

PAN ID: 1234 (oder ein anderer von Ihnen gewählter Wert, der aber für alle XBees
gleich sein muss)
Channel Verification (JV): 1 (stellt sicher, dass der Router nach einer Stromunter-
brechung bzw. Neustart zunächst auf dem vorhandenen Kanal nach dem (bekannten)
Coordinator sucht und falls er keinen findet, den Kanal verlässt und versucht, einen
neuen Coordinator in einem neuen PAN zu finden. Bei JV=0 würde er das letztere
nicht tun, sondern auf dem Kanal verbleiben)
Destination Address High (DH): der höherwertige Teil der Adresse (SH) des anderen
XBee, üblicherweise 13A200
Destination Address Low (DL): der niederwertige Teil der Adresse (SL) des anderen XBee
Unter I/O Settings, AD1/DIO1 Configuration (D1): 4 (digitaler Ausgang, low)

Sie können den höherwertigen (ATDH) und niederwertige (ATDL) Teil der
Seriennummer mit X-CTU ermitteln, wie in Abbildung 14-6 gezeigt. Die
Zahlen stehen auch auf dem Label auf der Unterseite des XBee.

Konfigurieren Sie den sendenden XBee mit der ZIGBEE COORDINATOR API (nicht AT)
und nehmen Sie die folgenden Einstellungen vor:

PAN ID: 1234 (stellt sicher, dass der Router nach einer Stromunterbrechung bzw.
Neustart zunächst auf dem vorhandenen Kanal nach dem (bekannten) Coordinator
sucht und falls er keinen findet, den Kanal verlässt und versucht, einen neuen
Coordinator in einem neuen PAN zu finden. Bei JV=0 würde er das letztere nicht
tun, sondern auf dem Kanal verbleiben)
Destination Address High (DH): der höherwertige Teil der Adresse (SH) des anderen
XBee, üblicherweise 13A200
Destination Address Low (DL): der niederwertige Teil der Adresse (SL) des anderen XBee

Schließen Sie eine LED an den empfangenden XBee an, wie in Abbildung 14-9 zu sehen.

3.3V power in

TX

RX

Digital I/O 12

Reset

PWM0

Digital I/O 11

Reserved

DTR

Ground

XBee

+3.3V

Ground

220

Ohm

a

k

Analog In 0 or Digital I/O 0

Analog In 1 or Digital I/O 1

Analog In 2 or Digital I/O 2

Analog In 3 or Digital I/O 3

RTS

Association Indicator

VREF (not in Series 2 Xbees)

On/Sleep Indicator

CTS

Digital I/O 4

Abbildung 14-9: Anschluss einer LED an XBees digitalen E/A-Pin 1 (Serie 1 und Serie 2)

14.5 Einen mit dem XBee verbundenen Aktuator aktivieren | 479

Nun laden Sie den folgenden Sketch auf den Arduino hoch und schließen den sendenden
XBee wie in Rezept 14.2 beschrieben an den Arduino an. Wenn Sie den Arduino neu
programmieren müssen, dürfen Sie nicht vergessen, den XBee zuerst abzuklemmen. Der
Sketch sendet einen Remote AT-Befehl (ATD14 oder ATD15), der Pin 1 (ATD1) abwechselnd
ein und ausschaltet:

/*
XBeeActuate
Sendet einen Remote AT-Befehl, um den Digitalpin eines anderen XBee zu aktivieren
*/

const byte frameStartByte = 0x7E;
const byte frameTypeRemoteAT = 0x17;
const byte remoteATOptionApplyChanges = 0x02;

void setup() {
Serial.begin(9600);
}

void loop()
{

toggleRemotePin(1);
delay(3000);
toggleRemotePin(0);
delay(2000);
}

byte sendByte(byte value) {
Serial.write(value);
return value;
}

void toggleRemotePin(int value) { // 0 = aus, nicht-0 = an

byte pin_state;
if (value) {
pin_state = 0x5;
} else {
pin_state = 0x4;
}

sendByte(frameStartByte); // Start des API-Frames

// Höher- und niederwertiger Teil der Frame-Länge (ohne Prüfsumme)
sendByte(0x0);
sendByte(0x10);

long sum = 0; // Prüfsumme akkumulieren

sum += sendByte(frameTypeRemoteAT); // Dieser Frame enthält einen
// Remote AT-Befehl

sum += sendByte(0x0); // Frame-ID ist 0; wir erwarten keine Antwort

480 | Kapitel 14: Drahtlose Kommunikation

// Die folgenden 8 Bytes geben die ID des Empfängers an
// Broadcasting an alle Knoten mit 0xFFFF
sum += sendByte(0x0);
sum += sendByte(0x0);
sum += sendByte(0x0);
sum += sendByte(0x0);
sum += sendByte(0x0);
sum += sendByte(0x0);
sum += sendByte(0xFF);
sum += sendByte(0xFF);

// Die beiden folgenden Bytes enthalten die 16-Bit-Adresse des Empfängers
// Broadcasting an alle Knoten mit 0xFFFE
sum += sendByte(0xFF);
sum += sendByte(0xFF);

sum += sendByte(remoteATOptionApplyChanges); // Remote AT-Optionen senden

// Text des AT-Befehls senden
sum += sendByte('D');
sum += sendByte('1');

// Der Wert (0x4 für aus, 0x5 für an)
sum += sendByte(pin_state);

// Prüfsumme senden
sendByte(0xFF - (sum & 0xFF));

delay(10); // Pause, damit der Mikrocontroller zur Ruhe kommt
}

Serie 1-XBees

Mit Hilfe eines Terminal-Programms (siehe Rezept 14.3) senden Sie die folgenden Kon-
figurationsbefehle an den sendenden XBee (der mit dem Arduino verbunden ist):

ATRE
ATMY1234
ATDL5678
ATDH0
ATID0
ATD13
ATICFF
ATWR

Dann senden Sie die folgenden Konfigurationsbefehle an den empfangenden XBee:

ATRE
ATMY5678
ATDL1234
ATDH0
ATID0
ATD14
ATIU0
ATIA1234
ATWR

14.5 Einen mit dem XBee verbundenen Aktuator aktivieren | 481

Beide XBees
ATRE setzt den XBee auf die Werkseinstellung zurück. Der ATMY-Befehl legt die
XBee-ID fest. ATDL und ATDH legen das niederwertige und höherwertige Byte des
Ziel-XBee fest. ATID legt die Netzwerk-ID fest (die für alle miteinander kommunizie-
renden XBees gleich sein muss). ATWR speichert die Einstellungen im XBee, damit sie
auch erhalten bleiben, wenn die Spannung aus- und wieder eingeschaltet wird.

Sendender XBee
ATICFF weist den XBee an, alle Digitaleingänge abzufragen und deren Werte an den
XBee zu senden, der mit ATDL und ATDH festgelegt wurde. ATD13 konfiguriert Pin 19
(Analog- oder Digitaleingang 1) als digitalen Eingang. Der Zustand dieses Pins wird
vom sendenden zum empfangenden XBee weitergegeben.

Empfangender XBee
ATIU1 weist den XBee an, die empfangenen Frames nicht an den seriellen Port zu
schicken. ATIA1234 weist ihn an, Befehle vom anderen XBee (mit der MY-Adresse
1234) zu akzeptieren. ATD14 setzt Pin 19 (Analog- oder Digitaleingang 1) auf 0 (aus).

Schließen Sie den sendenden XBee wie in Abbildung 14-10 zu sehen an den Arduino an.

Schließen Sie dann den empfangenden XBee wie in Rezept 14.2 beschrieben an den
Arduino an. Beachten Sie, dass wir jetzt keine AT-Befehle über den seriellen Port senden,
sondern eine elektrische Verbindung nutzen, um den XBee-Pin einzuschalten. Die beiden
10K-Widerstände bilden einen Spannungsteiler, der die 5V-Spannung des Arduino auf
etwa 2,5V reduziert (hoch genug, damit der XBee sie erkennt, aber niedrig genug, um eine
Beschädigung der XBee-3,3V-Pins zu vermeiden).

VREF (not in Series 2 Xbees)
On/Sleep Indicator

Association Indicator
RTS
Analog In 3 or Digital I/O 3

Analog In 1 or Digital I/O 1

Analog In 2 or Digital I/O 2

Analog In 0 or Digital I/O 0

CTS
Digital I/O 4

Digital I/O 11
Reserved

PWM0
Reset

Digital I/O 12

TX
RX

3.3V power in

DTR
Ground

XBees

+3.3V

Ground

10K

Ohm

Arduino Pin 2

10K

Ohm

Abbildung 14-10: Anschluss des Arduino an E/A-Pin 1 des sendenden Serie 1-XBee

Nun laden Sie den folgenden Sketch auf den sendenden Arduino hoch. Der Sketch
schaltet den digitalen E/A-Pin des XBee abwechselnd ein (5) und aus (4). Da der sendende
XBee so eingestellt ist, dass er die Pin-Zustände an den empfangenden XBee weitergibt,
ändern sich die Zustände auch auf dem empfangenden XBee:

/*
XBeeActuateSeries1

482 | Kapitel 14: Drahtlose Kommunikation

Digitalpin eines anderen XBees aktivieren.
*/

const int xbeePin = 2;

void setup() {
pinMode(xbeePin, OUTPUT);
}

void loop()
{

digitalWrite(xbeePin, HIGH);
delay(3000);
digitalWrite(xbeePin, LOW);
delay(3000);
}

Siehe auch
Rezept 14.2

14.6 Nachrichten über Low-Cost-Transceiver senden

Problem
Sie wünschen sich eine Low-Cost-Drahtlos-Lösung, die mehr kann als die einfachen
Module in Rezept 14.1.

Lösung
Verwenden Sie die zunehmend beliebter werdenden Hope RFM12B-Module zum Senden
und Empfangen von Daten. Das Rezept verwendet zwei Arduino-Boards und Drahtlos-
Module. Ein Paar liest und sendet Werte, das andere gibt die empfangenen Werte aus. Die
Verschaltung ist bei beiden gleich.

Schließen Sie die Module wie in Abbildung 14-11 zu sehen an. Die Antenne ist nur ein
Stück Draht, zugeschnitten auf die richtige Länge für die Frequenz Ihrer Module (78 mm
für 915 MHz, 82 mm für 868 MHz und 165 mm für 433 MHz).

14.6 Nachrichten über Low-Cost-Transceiver senden | 483

 1
 0

2
3
4

6
5

7

9
8

10
11

GND
13

AREF
Vin

5V
3V3

RESET

Gnd

For 3.3V Arduino
See text

Connect module IRQ to digital pin 2

All resistors
10K Ohms

Antenna
(see text for details)

Gnd

A
R
D
U
I
N
O

Ant RFM-12B
+3.3v

Gnd

MOSI (D in)

SCK (Clock)

SS (Select)

IRQ

MISO (D Out)

21

Abbildung 14-11: Anschluss eines RFM12B-Transceivers

Wenn Sie einen 3,3V-Arduino nutzen (wie den Fio oder den 3,3V-Arduino-Pro), lassen
Sie die Widerstände weg und verbinden Sie die Arduino-Pins 10, 11 und 13 direkt mit den
entsprechenden RFM12B-Pins.

Der Sender-Sketch sendet einmal pro Sekunde die Werte der sechs Analogpins:

/*
* SimpleSend
* RFM12B Wireless-Demo - Sender - kein ACK
* Sendet die Werte der Analogeingänge 0 bis 5
*
*/

#include <RF12.h> // Von jeelabs.org
#include <Ports.h>

// RF12B constants:
const byte network = 100; // Netzwerk-Gruppe (im Bereich von 1-255)
const byte myNodeID = 1; // Eindeutige Knoten-ID des Empfängers (zwischen 1 und 30)

// Frequenz des RF12B kann RF12_433MHZ, RF12_868MHZ oder RF12_915MHZ sein.
const byte freq = RF12_868MHZ; // Frequenz an Modul anpassen

const byte RF12_NORMAL_SENDWAIT = 0;

void setup()
{
rf12_initialize(myNodeID, freq, network); // RFM12 initialisieren
}

const int payloadCount = 6; // Zahl der Integerwerte in den Nutzdaten den gelesenen
// Analogeingängen anpassen

int payload[payloadCount];

void loop()
{

484 | Kapitel 14: Drahtlose Kommunikation

for(int i= 0; i < payloadCount; i++)
{
payload[i] = analogRead(i);
}
while (!rf12_canSend()) // Treiber zum Senden bereit?
rf12_recvDone(); // Nein, warten

rf12_sendStart(rf12_hdr, payload, payloadCount*sizeof(int));
rf12_sendWait(RF12_NORMAL_SENDWAIT); // Warten, bis Senden abgeschlossen ist

delay(1000); // Einmal pro Sekunde senden
}

Der Empfänger-Sketch gibt die sechs Analogwerte über den seriellen Monitor aus:

/*
* SimpleReceive
* RFM12B Wireless-Demo - Empfänger - kein ACK
*
*/

#include <RF12.h> // Von jeelabs.org
#include <Ports.h>

// RFM12B constants:
const byte network = 100; // Netzwerk-Gruppe (im Bereich von 1-255)
const byte myNodeID = 2; // Eindeutige Knoten-ID des Empfängers (1 bis 30)

// Frequenz des RFM12B kann RF12_433MHZ, RF12_868MHZ oder RF12_915MHZ sein
const byte freq = RF12_868MHZ; // Frequenz an Modul anpassen

void setup()
{
rf12_initialize(myNodeID,freq,network); // RFM12 mit obigen Einstellungen initialisieren
Serial.begin(9600);
Serial.println("RFM12B-Empfaenger bereit");
Serial.println(network,DEC); // Netzwerk- und
Serial.println(myNodeID,DEC); // Knoten-ID ausgeben
}

const int payloadCount = 6; // Zahl der Integerwerte in den Nutzdaten den gelesenen
// Analogeingängen anpassen

void loop()
{
if (rf12_recvDone() && rf12_crc == 0 && (rf12_hdr & RF12_HDR_CTL) == 0)
{
int *payload = (int*)rf12_data; // Zugriff auf rf12-Datenpuffer über Array von ints
for(int i= 0; i < payloadCount; i++)
{
Serial.print(payload[i]);
Serial.print(" ");
}
Serial.println();
}
}

14.6 Nachrichten über Low-Cost-Transceiver senden | 485

Diskussion
Die RFM12B-Module sind für 3,3V konzipiert und die Widerstände in Abbildung 14-11
werden benötigt, um die Spannung auf den richtigen Pegel zu bringen. Die JeeLabs-
Websitehttp://jeelabs.com/products/rfm12b-board enthält Details zu Breakout-Boards und
Modulen für den RFM12B.

Die RF12-Bibliothek unterstützt unterschiedliche Gruppen von Modulen in der gleichen
Umgebung. Jede Gruppe wird über eine Netzwerk-ID identifiziert. Die Sender- und
Empfänger-Sketches müssen die gleiche Netzwerk-ID verwenden, um miteinander kom-
munizieren zu können. Jeder Knoten muss eine eindeutige ID innerhalb des Netzwerks
besitzen. In diesem Beispiel verwenden wird das Netzwerk 100 mit der Sender-ID 1 und
der Empfänger-ID 2.

Der loop-Code füllt ein Array (siehe Rezept 2.4) namens payload mit sechs Integerwerten,
die von den Analogeingängen 0 bis 5 eingelesen wurden.

Das Senden erfolgt über den Aufruf von rf12_sendStart. Das Argument rf12-hdr be-
stimmt den Zielknoten, der mit 0 voreingestellt ist. (Das Senden an Knoten 0 gibt die
Daten an alle Knoten im Netzwerk weiter); &payload ist die Adresse des Nutzdaten-
Puffers. payloadCount * sizeof(int) ist die Anzahl der Bytes im Puffer. rf12_sendWait
wartet, bis das Senden abgeschlossen ist (Stromsparoptionen finden Sie in der RF12-Do-
kumentation).

Dieser Code bestätigt den Empfang der Nachrichten nicht. Bei Anwendungen wie diesen,
bei denen fortlaufend Informationen gesendet werden, ist der gelegentliche Verlust von
Informationen aber kein Problem, da sie beim nächsten Senden aktualisiert werden. Im
Beispiel-Code der Bibliothek finden Sie Sketches, die andere Techniken zum Senden und
Empfangen der Daten verwenden.

Alle Arten von Daten, die in einen 66-Byte-Puffer passen, können gesendet werden. Der
folgende Sketch sendet zum Beispiel eine binäre Datenstruktur, die aus einem Integer-
und einem Fließkommawert besteht:

/*
* RFM12B Wireless-Demo - struct-Sender - kein ACK
* Sendet einen Fließkommawert in einer C-Struktur
*/

#include <RF12.h> // Von jeelabs.org
#include <Ports.h>

// RF12B constants:
const byte network = 100; // Netzwerk-Gruppe (im Bereich von 1-255)
const byte myNodeID = 1; // Eindeutige Knoten-ID des Empfängers (1 bis 30)

// Frequenz des RF12B kann RF12_433MHZ, RF12_868MHZ oder RF12_915MHZ sein
const byte freq = RF12_868MHZ; // Frequenz an Modul anpassen

const byte RF12_NORMAL_SENDWAIT = 0;

void setup()

486 | Kapitel 14: Drahtlose Kommunikation

{
rf12_initialize(myNodeID, freq, network); // RFM12 initialisieren
}

typedef struct { // Datenstruktur der Nachricht, muss Tx entsprechen
int pin; // Zur Messung verwendeter Pin
float value; // Messwert als Fließkommazahl
}
Payload;

Payload sample; // Instanz vom Typ Payload deklarieren

void loop()
{
int inputPin = 0; // Der Eingangspin
float value = analogRead(inputPin) * 0.01; // Ein Fließkommawert
sample.pin = inputPin; // send demontx.ct1=emontx.ct1+1;
sample.value = value;

while (!rf12_canSend()) // Treiber zum Senden bereit?
rf12_recvDone(); // Nein, warten

rf12_sendStart(rf12_hdr, &sample, sizeof sample);
rf12_sendWait(RF12_NORMAL_SENDWAIT); // Warten, bis Senden abgeschlossen ist

Serial.print(sample.pin);
Serial.print(" = ");
Serial.println(sample.value);
delay(1000);
}

Hier der Sketch, der die struct-Daten empfängt und ausgibt:

/*
* RFM12B Wireless-Demo - struct-Empfänger - kein ACK
*
*/

#include <RF12.h> // Von jeelabs.org
#include <Ports.h>

// RF12B constants:
const byte network = 100; // Netzwerk-Gruppe (zwischen 1-255)
const byte myNodeID = 2; // Eindeutige Knoten-ID des Empfängers (1 bis 30)

// Frequenz des RF12B kann RF12_433MHZ, RF12_868MHZ oder RF12_915MHZ sein
const byte freq = RF12_868MHZ; // Frequenz an Modul anpassen

void setup()
{
rf12_initialize(myNodeID,freq,network); // RFM12 mit obigen Einstellungen initialisieren
Serial.begin(9600);
Serial.print("RFM12B-Empfänger bereit");
}

typedef struct { // Datenstruktur der Nachricht, muss Tx entsprechen

14.6 Nachrichten über Low-Cost-Transceiver senden | 487

int pin; // Zur Messung verwendete Pin-Nummer
float value; // Messwert als Fließkommazahl
}
Payload;

Payload sample; // Instanz vom Typ Payload deklarieren

void loop() {

if (rf12_recvDone() && rf12_crc == 0 && (rf12_hdr & RF12_HDR_CTL) == 0)
{
sample = *(Payload*)rf12_data; // Nutzdaten abrufen
Serial.print("Analogeingang ");
Serial.print(sample.pin);
Serial.print(" = ");
Serial.println(sample.value);
}
}

Dieser Code ähnelt den beiden vorigen Sketches, doch diesmal wurde der payload-Puffer
durch einen Zeiger namens sample ersetzt, der auf die Payload-Struktur verweist.

Siehe auch
Die in diesem Rezept verwendeten Bibliotheken wurden von Jean-Claude Wippler ent-
wickelt. Eine Fülle von Informationen finden Sie auf der Website http://www.jeelabs.com.

Alle Funktionen der RF12-Bibliothek sind hier dokumentiert: http://jeelabs.net/projects/
cafe/wiki/RF12.

Einen Beispiel-Sketch zum Senden von Strings mit dem RFM12 finden Sie hier: http://
jeelabs.org/2010/09/29/sending-strings-in-packets.

Ein Beispiel für den Ruhemodus (als Stromsparmodus) zwischen den Sendeoperationen
finden Sie hier: https://github.com/openenergymonitor/emonTxFirmware.

Ein Breakout-Board für den RFM12B finden Sie hier: http://jeelabs.com/products/rfm12b-
board.

Das JeeNode ist ein Board, das den RFM12B und einen Arduino-kompatiblen Chip
kombiniert: http://http://jeelabs.com/products/jeenode.

Eine 433 MHz-Version des RFM12B, die auf der ganzen Welt funktionieren sollte, finden
Sie bei SparkFun: http://www.sparkfun.com/products/9582.

488 | Kapitel 14: Drahtlose Kommunikation

14.7 Mit Bluetooth-Geräten kommunizieren

Problem
Sie wollen Informationen per Bluetooth an/von andere(n) Geräte(n) (wie Laptops oder
Mobiltelefone) senden oder empfangen.

Lösung
Verbinden Sie den Arduino mit einem Bluetooth-Modul wie dem BlueSMiRF, dem
Bluetooth Mate oder dem Bluetooth Bee (siehe Abbildung 14-12).

TX
 1

RX
 02346 579 8101112

GN
D 13

AR
EF

Vi
n

5V3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

4 5210 3

ANALOG

Gn
d

CTS

RN-42

BlueSMIRF

VCC

GND

TX

RX

RTS

Abbildung 14-12: Anschluss eines BlueSMiRF Bluetooth-Moduls über SoftwareSerial-Pins

Dieser Sketch ist dem aus Rezept 4.13 ähnlich. Er überwacht, welche Zeichen über den
seriellen Hardware-Port und einen Software-Port (der mit Bluetooth verbunden ist)
eingehen und sendet alle empfangenen Zeichen an den jeweils anderen Port:

/*
* Per SoftwareSerial mit BlueSMiRF-Modul kommunizieren
* Pairing-ID ist 1234
*/

#include <SoftwareSerial.h>

const int rxpin = 2; // Empfänger-Pin
const int txpin = 3; // Sender-Pin
SoftwareSerial bluetooth(rxpin, txpin); // Neuer serieller Port an festgelegten Pins

void setup()
{
Serial.begin(9600);
bluetooth.begin(9600); // Seriellen Software-Port initialisieren
Serial.println("Seriell bereit");
bluetooth.println("Bluetooth bereit");
}

14.7 Mit Bluetooth-Geräten kommunizieren | 489

void loop()
{
if (bluetooth.available())
{
char c = (char)bluetooth.read();
Serial.write(c);
}
if (Serial.available())
{
char c = (char)Serial.read();
bluetooth.write(c);
}
}

Diskussion
Ihr Computer (oder Telefon) muss Bluetooth-fähig sein, um mit diesem Sketch kom-
munizieren zu können. Beide Seiten einer Bluetooth-Konversation müssen »gekoppelt«
werden (das sog. Pairing) – die ID des mit dem Arduino verbundenen Moduls muss der
anderen Seite bekannt sein. Die Standard-ID für das BlueSMiRF ist 1234. In der Do-
kumentation Ihres Computers/Telefons können Sie nachlesen, wie man die Pairing-ID
setzt und eine Verbindung herstellt.

Wenn Ihr Board an ein FTDI-Kabel aufgesteckt werden kann, können Sie es direkt mit
dem Bluetooth-Mate-Modul verbinden (siehe Abbildung 14-13).

GND

Bluetooth MateArduino Pro Mini

CTS
VCC
TX
RX
RTS

Abbildung 14-13: Bluetooth Mate verwendet die gleichen Anschlüsse wie FTDI

Das Bluetooth Mate kann auch an ein Standard-Board angeschlossen werden, wie Abbil-
dung 14-14 zeigt.

490 | Kapitel 14: Drahtlose Kommunikation

GND

Bluetooth Mate

CTS
VCC

RTS

TX
 1

RX
 02346 579 8101112

GN
D 13

AR
EF

Vi
n

5V3V
3

RE
SE

T

Gn
d

Arduino

DIGITAL

4 5210 3

ANALOG

Gn
d

TX
RX

Abbildung 14-14: Anschluss von Bluetooth Mate für SoftwareSerial

Alle gängigen Bluetooth-Module für den Arduino implementieren das
Bluetooth Serial Port Profile (SPP). Sobald die Geräte gekoppelt sind,
betrachtet der Computer oder das Telefon das Modul als seriellen Port.
Diese Module können nicht als andere Bluetooth-Geräte, etwa als Maus
oder Tastatur, auftreten.

Die Reichweite von Bluetooth liegt zwischen 5 und 100 Metern, je nachdem, ob Sie mit
Klasse-3-, -2- oder -1-Geräten arbeiten.

Siehe auch
Ein SparkFun-Tutorial behandelt die Installation und Verwendung von Bluetooth:
http://www.sparkfun.com/tutorials/67

Bluetooth Bee ist ein Bluetooth-Modul, das in einen XBee-Sockel passt, d.h., Sie können
für XBee entwickelte Shields und Adapter verwenden: http://www.seeedstudio.com/depot/
bluetooth-bee-p-598.html.

14.7 Mit Bluetooth-Geräten kommunizieren | 491

KAPITEL 15

Ethernet und Netzwerke

15.0 Einführung
Sie wollen Ihre Sensordaten teilen? Die Aktionen Ihres Arduino durch andere Leute
steuern lassen? Ihr Arduino kann über Ethernet und Netzwerke mit einem breiteren
Publikum kommunizieren. Dieses Kapitel beschreibt die vielen Möglichkeiten, mit denen
Sie den Arduino mit dem Internet nutzen können. Die Beispiele demonstrieren, wie Sie
Web-Clients und -Server aufbauen und nutzen und wie man die gängigsten Internet-
Kommunikationsprotokolle mit dem Arduino verwendet.

Das Internet erlaubt es einem Client (z.B. Ihrem Web-Browser), Informationen von einem
Server (einem Web-Server oder einem anderen Internet-Serviceanbieter) abzurufen. Dieses
Kapitel enthält Rezepte, die zeigen, wie man einen Internet-Client aufbaut, der Informationen
von Diensten wie Google oder Yahoo! abruft. Andere Rezepte zeigen, wie der Arduino als
Internet-Server fungieren kann, der Informationen über Internetprotokolle an Clients aus-
liefert, und wie man einen Web-Server aufbaut, der Webseiten an Web-Browser zurückgibt.

Die Arduino Ethernet-Bibliothek unterstützt eine Reihe von Methoden (Protokollen), die
es Ihrem Sketch ermöglichen, als Internet-Client oder -Server zu fungieren. Die Ethernet-
Bibliothek verwendet eine Reihe von Standard-Internet-Protokollen und versteckt einen
Großteil der auf unterster Ebene angesiedelten Details. Clients und Server zum Laufen zu
bringen und nützliche Dinge machen lassen, verlangt ein grundlegendes Verständnis der
Netzwerkadressierung und -Protokolle. Sie könnten sich eine der vielen Einführungen im
Netz ansehen oder eines der folgenden einführenden Bücher:

• Netzwerke von Kopf bis Fuß (ISBN 978-3-89721-944-1) von Al Anderson und Ryan
Benedetti (O’Reilly)

• Network Know-How: An Essential Guide for the Accidental Admin von John Ross (No
Starch Press)

• Windows NT TCP/IP Network Administration von Craig Hunt und Robert Bruce
Thompson (O’Reilly)

• Making Things Talk (ISBN 978-3-86899-162-8) von Tom Igoe (O’Reilly)

(Suchen Sie nach O’Reilly-Titeln auf www.oreilly.de.)

| 493

Hier einige Schlüsselkonzepte dieses Kapitels, mit denen Sie sich ausführlicher auseinan-
dersetzen sollten, als das hier möglich ist:

Ethernet
Die auf unterster Ebene angesiedelte Signalisierungsschicht, die für die grundlegende
physikalische Nachrichtenübertragung sorgt. Die Quell- und Zieladressen dieser
Nachrichten werden über die MAC-Adresse (Media Access Control) festgelegt. Ihr
Arduino-Sketch definiert eine MAC-Adresse, die innerhalb Ihres Netzwerks eindeutig
sein muss.

TCP und IP
Transmission Control Protocol (TCP) und Internet Protocol (IP) sind die Kernpro-
tokolle des Internet, die direkt über Ethernet ansetzen. Sie stellen die Nachrichten-
übertragung zur Verfügung, die über das globale Internet läuft. TCP/IP-Nachrichten
werden zwischen eindeutigen IP-Adressen für Sender und Empfänger ausgeliefert. Ein
Server im Internet verwendet einen numerischen Wert (eine Adresse), die kein
anderer Server besitzt, so dass er eindeutig identifiziert werden kann. Diese Adresse
besteht aus vier Bytes, die üblicherweise durch Punkte voneinander getrennt sind
(z.B. ist 64.233.187.64 eine IP-Adresse, die von Google verwendet wird). Das Internet
verwendet das Domain Name System (DNS), um gängige Dienstnamen (http://
www.google.com) in numerische IP-Adressen umzuwandeln. Diese Fähigkeit wurde
im Arduino 1.0 eingeführt. Rezept 15.3 zeigt, wie Sie das in Ihren Sketches nutzen
können.

Lokale IP-Adressen
Ist in Ihrem Heimnetzwerk mehr als ein Computer über einen Breitband-Router oder
ein Gateway angeschlossen, verwendet jeder Rechner wahrscheinlich eine lokale
IP-Adresse, die von Ihrem Router zur Verfügung gestellt wird. Diese lokale Adresse
wird mit Hilfe des DHCP-Dienstes (Dynamic Host Configuration Protocol) Ihres
Routers erzeugt. Die Arduino Ethernet-Bibliothek enthält nun (seit Release 1.0) einen
DHCP-Dienst. Die meisten Rezepte in diesem Kapitel verwenden eine vom Benutzer
festgelegte IP-Adresse, die Sie an Ihr Netzwerk anpassen müssen. Rezept 15.2 zeigt,
wie die IP-Adresse automatisch über DHCP bezogen werden kann.

Die Web-Requests eines Web-Browsers und die daraus resultierenden Antworten ver-
senden HTTP-Nachrichten (Hypertext Transfer Protocol). Damit ein Web-Client oder
-Server korrekt auf HTTP-Requests und -Responses reagieren kann, muss er das Protokoll
verstehen. Viele Rezepte in diesem Kapitel nutzen dieses Protokoll. Die oben aufgeführten
Referenzen enthalten weitere Details, die Ihnen helfen zu verstehen, wie diese Rezepte im
Detail funktionieren.

Webseiten werden üblicherweise in HTML (Hypertext Markup Language) formatiert.
Zwar ist der Einsatz von HTML beim Aufbau eines Arduino-Webservers nicht zwingend
(wie Rezept 15.9 zeigt), aber die von Ihnen ausgelieferten Webseiten können diese Fä-
higkeit nutzen.

Daten aus einer Webseite zu extrahieren, die man sich eigentlich mit einem Web-Browser
ansehen soll, ist wegen der ganzen zusätzlichen Texte, Bilder und Format-Tags einer

494 | Kapitel 15: Ethernet und Netzwerke

typischen Seite ein wenig wie die Suche nach der Stecknadel im Heuhaufen. Diese
Aufgabe kann durch die Stream-Parsing-Funktionalität von Arduino 1.0 vereinfacht
werden, die bestimmte Zeichenfolgen aufspüren und Strings oder numerische Daten aus
einem Datenstrom herausfiltern kann. Wenn Sie mit einer älteren Arduino-Release
arbeiten, können Sie eine Bibliothek namens TextFinder aus dem Arduino Playground
herunterladen. TextFinder extrahiert Informationen aus einem Datenstrom. Stream-Par-
sing und TextFinder bieten eine vergleichbare Funktionalität (Stream-Parsing basiert auf
dem TextFinder-Code, den die erste Ausgabe dieses Buches nutzt). Allerdings wurden
einige Methoden umbenannt. In der TextFinder-Dokumentation im Playground finden
Sie Hilfe, wenn Sie Sketches von TextFinder nach Arduino 1.0 migrieren wollen.

Web-Austauschformate wurden entwickelt, um eine zuverlässige Extrahierung von Web-
Daten per Software zu ermöglichen. XML and JSON sind zwei der am weitesten
verbreiteten Formate und Rezept 15.5 zeigt, wie man sie mit dem Arduino nutzen kann.

Arduino 1.0 Enhancements
Die Arduino Ethernet-Bibliothek hat in der 1.0-Release einige Verbesserungen erfahren,
die ihre Nutzung vereinfachen. Darüber hinaus wurden Dienste wie DHCP und DNS
hinzugefügt, für die früher der Download zusätzlicher Bibliotheken notwendig war. Bei
einigen Klassen und Methoden hat sich der Name geändert, d.h., für ältere Releases
geschriebene Sketches müssen angepasst werden, um unter Arduino 1.0 zu funktionieren.
Hier eine Zusammenfassung der Änderungen, die für ältere Sketches notwendig sind:

• SPI.h muss (seit Arduino 0018) vor dem Ethernet-Include am Anfang des Sketches
stehen.

• Client client(server, 80); wird zu EthernetClient client;.

• if(client.connect())wird zu if(client.connect(serverName, 80)>0).

• Server server(80) wird zu EthernetServer server(80).

• DHCP benötigt keine externe Bibliothek (siehe Rezept 15.2).

• DNS benötigt keine externe Bibliothek (siehe Rezept 15.3).

• Suche nach Wörtern und Zahlen wird durch das neue Stream-Parsing vereinfacht
(siehe Rezept 15.4).

• F(text)-Konstrukt hinzugefügt, um das Speichern von Text im Flash-Speicher zu
vereinfachen (Rezept 15.11).

Der Code dieses Kapitels ist für die Arduino Release 1.0 gedacht. Wenn Sie
eine ältere Version verwenden, laden Sie den Code der ersten Ausgabe über
http://oreilly.com/catalog/9780596802486 herunter.

Der Code für dieses Buch wurde mit den Release Candidates von Arduino
1.0 getestet. Mögliche Updates an Sketches sind in der Datei changelog.txt
http://shop.oreilly.com/product/0636920022244.do aufgeführt.

15.0 Einführung | 495

Alternative Hardware für kostengünstige Netzwerke
Wenn Sie ein kostengünstiges und Eigenbau-freundliches Ethernet-Board brauchen, das
ohne SMD-Technik auskommt, können Sie das Open-Source-Design nutzen, das für das
Nanode-Projekt entwickelt wurde. Es nutzt den gleichen ATmega328-Controller wie der
Arduino, ersetzt aber den Wiznet-Chip durch den günstigeren ENC28J60. Dieser Chip
bietet die gleiche Funktionalität, die in diesem Kapitel beschrieben wird, verwendet aber
andere Bibliotheken, d.h., Sie müssen mit Sketches arbeiten, die speziell für den
ENC28J60 entwickelt wurden.

Weitere Informationen finden Sie auf der Nanode-Homepage: http://www.nanode.eu/.

15.1 Ein Ethernet-Shield einrichten

Problem
Sie wollen ein Ethernet-Shield mit einer fest kodierten IP-Adresse einrichten.

Lösung
Dieser Sketch basiert auf dem Ethernet-Client Beispiel-Sketch, das mit Arduino mitgelie-
fert wird. Stellen Sie sicher, dass Sie eine für Ihr Netzwerk gültige Arduino-IP-Adresse (der
Wert der ip-Variablen) verwenden:

/*
* Simple Web Client
* Arduino 1.0-Version
*/

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
byte ip[] = { 192, 168, 1, 177 }; // Auf gültige Adresse achten
byte server[] = { 209,85,229,104 }; // Google

// Mehr zur IP-Adressierung erfahren Sie im Text

EthernetClient client;

void setup()
{
Serial.begin(9600); // Seriellen Port starten
Ethernet.begin(mac,ip);
delay(1000); // Der Ethernet-Hardware eine Sekunde zur Initialisierung geben

Serial.println("Verbinde...");

if (client.connect(server, 80)) {
Serial.println("Verbunden");
client.println("GET /search?q=arduino HTTP/1.0"); // Der HTTP-Request
client.println();
}

496 | Kapitel 15: Ethernet und Netzwerke

else {
Serial.println("Verbindung fehlgeschlagen");
}
}

void loop()
{
if (client.available()) {
char c = client.read();
Serial.print(c); // Alle empfangenen Daten über seriellen Monitor ausgeben
}

if (!client.connected()) {
Serial.println();
Serial.println("Trenne Verbindung...");
client.stop();
for(;;)
;

}
}

Diskussion
Der Sketch führt eine Google-Suche nach dem Wort »arduino« durch. Sein Zweck besteht
darin, Sie mit funktionierendem Code zu versorgen, mit dem Sie prüfen können, ob Ihre
Netzwerk-Konfiguration für das Arduino Ethernet-Shield funktioniert.

Bis zu vier Adressen müssen richtig konfiguriert werden, damit der Sketch eine Verbin-
dung herstellen und das Ergebnis der Suche über den seriellen Monitor ausgeben kann:

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

Die MAC-Adresse identifiziert Ihr Ethernet-Shield eindeutig. Jedes Netzwerk-Gerät muss
eine andere MAC-Adresse verwenden und wenn es in Ihrem Netzwerk mehr als ein
Arduino-Shield gibt, muss jedes eine andere Adresse nutzen. Bei neueren Ethernet-Shields
ist die MAC-Adresse auf einem Aufkleber auf der Unterseite aufgedruckt. Bei nur einem
Ethernet-Shield müssen Sie sie nicht ändern.

byte ip[] = { 192, 168, 1, 177 }; // Auf gültige Adresse achten

Die IP-Adresse wird genutzt, um etwas zu identifizieren, was über das Internet kom-
muniziert. Sie muss innerhalb Ihres Netzwerks ebenfalls eindeutig sein. Die Adresse
besteht aus vier Bytes und der Bereich gültiger Werte hängt von der Konfiguration Ihres
Netzwerks ab. IP-Adressen werden üblicherweise mit Punkten dargestellt, die die einzel-
nen Bytes trennen – zum Beispiel 192.168.1.177. In allen Arduino-Sketches werden
Kommata anstelle von Punkten verwendet, da die Bytes in einem Array abgelegt sind
(siehe Rezept 2.4).

Wenn ihr Netzwerk über einen Router oder ein Gateway mit dem Internet verbunden ist,
müssen Sie möglicherweise die IP-Adresse des Gateways beim Aufruf von ethernet.begin
übergeben. Sie finden die Adresse des Gateways in der Dokumentation Ihres Routers/

15.1 Ein Ethernet-Shield einrichten | 497

Gateways. Fügen Sie zwei Zeilen hinter den IP- und Server-Adressen im Sketch ein. Eine
mit der Adresse Ihres DNS-Servers, und die andere mit der Gateway-Adresse:

// falls von Router oder Gateway verlangt
byte dns_server[] = { 192, 168, 1, 2 }; // Adresse des DNS-Servers
byte gateway[] = { 192, 168, 1, 254 }; // Adresse des Gateways

Passen Sie die erste Zeile in setup so an, dass die Gateway-Adresse in der Ethernet-Ini-
tialisierung enthalten ist:

Ethernet.begin(mac, ip, dns_server, gateway);

Die Server-Adresse besteht auf der 4-Byte-IP-Adresse des Servers, mit dem Sie die
Verbindung herstellen wollen – in diesem Fall also Google. Server-IP-Adressen ändern
sich gelegentlich, d.h., Sie müssen eventuell das ping-Utility Ihres Betriebssystems nutzen,
um die aktuelle IP-Adresse des gewünschten Servers zu ermitteln:

byte server[] = { 64, 233, 187, 99 }; // Google

Die Zeile zu Beginn des Sketches, die <SPI.h> einbindet, wird seit Arduino-
Release 0019 verlangt.

Siehe auch
Die Web-Referenz zum Arduino Ethernet-Shield finden Sie unter http://arduino.cc/en/
Guide/ArduinoEthernetShield.

15.2 Die IP-Adresse automatisch beziehen

Problem
Die vom Ethernet-Shield verwendete IP-Adresse muss innerhalb Ihres Netzwerks ein-
deutig sein und Sie wollen sie automatisch beziehen. Das Ethernet-Shield soll die IP-
Adresse von einem DHCP-Server abrufen.

Lösung
Dieses Rezept ähnelt dem Sketch aus Rezept 15.1, übergibt aber keine IP-Adresse an die
Ethernet.begin-Methode:

/*
* Einfacher Client zur Ausgabe der vom DHCP-Server zugewiesenen IP-Adresse
* Arduino-1.0-Version
*/

498 | Kapitel 15: Ethernet und Netzwerke

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
byte server[] = { 209,85,229,104 }; // Google

EthernetClient client;

void setup()
{
Serial.begin(9600);
if(Ethernet.begin(mac) == 0) { // Ethernet mit mac & DHCP starten
Serial.println("Ethernet-Konfiguration ueber DHCP fehlgeschlagen");
while(true) // Weitermachen zwecklos, in Endlosschleife warten
;

}
delay(1000); // Ethernet-Shield eine Sekunde zur Initialisierung geben

Serial.print("IP-Adresse: ");
IPAddress myIPAddress = Ethernet.localIP();
Serial.print(myIPAddress);
if(client.connect(server, 80)>0) {
Serial.println(" verbunden");
client.println("GET /search?q=arduino HTTP/1.0");
client.println();
} else {
Serial.println("Verbindung fehlgeschlagen");
}
}

void loop()
{
if (client.available()) {
char c = client.read();
// Kommentarzeichen der nachfolgenden Zeile entfernen, um alle empfangenen Zeichen auszugeben
// Serial.print(c);
}

if (!client.connected()) {
Serial.println();
Serial.println("Trenne Verbindung");
client.stop();
for(;;)
;

}
}

Diskussion
Die mit Arduino 1.0 mitgelieferte Bibliothek unterstützt nun DHCP (frühere Releases
benötigten die Bibliothek eines Drittanbieters von http://blog.jordanterrell.com/post/
Arduino-DHCP-Library-Version-04.aspx.

Der Hauptunterschied zum Sketch in Rezept 15.1 besteht darin, dass es keine Variable für
die IP-Adresse (oder das Gateway) gibt. Diese Werte werden vom DHCP-Server abge-

15.2 Die IP-Adresse automatisch beziehen | 499

rufen, wenn der Sketch startet. Zusätzlich wird überprüft, ob der Aufruf von ethernet.
begin erfolgreich war. Nur so können Sie sicherstellen, dass eine gültige IP-Adresse vom
DHCP-Server bereitgestellt wurde (ohne eine gültige IP-Adresse ist kein Zugang zum
Internet möglich).

Der Code gibt die IP-Adresse im seriellen Monitor über die Methode IPAddress.printTo
aus, die bei Arduino 1.0 eingeführt wurde:

Serial.print("IP-Adresse: ");
IPAddress myIPAddress = Ethernet.localIP();
Serial.print(myIPAddress);

Das an Serial.print übergebene Argument mag etwas seltsam wirken,
doch die neue IPAddress-Klasse ist in der Lage, ihren Wert an Serial zu
übergeben, die von der Print-Klasse abgeleitet sind.

Wenn Sie mit der Ableitung von Klassen nicht vertraut sind, reicht es, zu
sagen, dass das IPAddress-Objekt clever genug ist, bei Bedarf seine Adresse
auszugeben.

15.3 Hostnamen in IP-Adressen umwandeln (DNS)

Problem
Sie wollen einen Servernamen wie yahoo.com anstelle einer festen IP-Adresse verwenden.
Web-Dienste nutzen häufig mehrere IP-Adressen für ihre Server und die von Ihnen
angegebene Adresse muss nicht aktiv sein, wenn Sie die Verbindung herstellen wollen.

Lösung
Sie können DNS nutzen, um eine gültige IP-Adresse für den von Ihnen angegebenen
Namen zu ermitteln:

/*
* Web Client DNS Sketch
* Arduino 1.0-Version
*/

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
char serverName[] = "www.google.com";

EthernetClient client;

void setup()
{
Serial.begin(9600);
if (Ethernet.begin(mac) == 0) { // Ethernet starten
Serial.println("Ethernet-Konfiguration ueber DHCP fehlgeschlagen");

500 | Kapitel 15: Ethernet und Netzwerke

while(true) // Weitermachen zwecklos, in Endlosschleife warten
;

}
delay(1000); // Ethernet-Shield eine Sekunde zur Initialisierung geben

int ret = client.connect(serverName, 80);
if (ret == 1) {
Serial.println("Verbunden"); // Erfolgreiche Verbindung melden
// Make an HTTP request:
client.println("GET /search?q=arduino HTTP/1.0");
client.println();
}
else {
Serial.println("Verbindung fehlgeschlagen: ");
Serial.print(ret,DEC);
}
}

void loop()
{
// Eingehende Bytes vom Server einlesen und ausgeben
if (client.available()) {
char c = client.read();
Serial.print(c);
}

// Client nach Trennung anhalten
if (!client.connected()) {
Serial.println();
Serial.println("Trenne Verbindung");
client.stop();

while(true) ; // Endlosschleife
}
}

Diskussion
Der Code entspricht dem aus Rezept 15.2, d.h., er führt eine Google-Suche nach
»arduino« aus. Doch bei dieser Version ist es nicht nötig, eine Google-IP-Adresse
anzugeben – sie wird über eine Anfrage an den Internet DNS-Dienst ermittelt.

Der Request wird angestoßen, indem wir »www.google.com« anstelle einer IP-Adresse an
die client.connect-Methode übergeben:

char serverName[] = "www.google.com";

int ret = client.connect(serverName, 80);
if(ret == 1) {
Serial.println("Verbunden"); // Erfolgreiche Verbindung melden

Die Funktion gibt 1 zurück, wenn der Hostname vom DNS-Server erfolgreich in eine
IP-Adresse aufgelöst werden konnte und wenn die Verbindung vom Client erfolgreich
war. Hier die Werte, die von client.connect zurückgegeben werden:

15.3 Hostnamen in IP-Adressen umwandeln (DNS) | 501

1 = Erfolg
0 = Verbindung fehlgeschlagen
-1 = kein DNS-Server angegeben
-2 = keine DNS-Einträge gefunden
-3 = Timeout

Beim Fehlercode –1 müssen Sie den zu nutzenden DNS-Server von Hand festlegen. Die
Adresse des DNS-Servers liefert üblicherweise der DHCP-Server, doch wenn Sie das
Shield von Hand konfigurieren, müssen Sie ihn angeben (anderenfalls gibt connect –1
zurück).

15.4 Daten von einem Webserver abrufen

Problem
Sie wollen mit dem Arduino Daten von einem Webserver abrufen. Zum Beispiel könnten
Sie von einem Webserver gelieferte Werte extrahieren und verarbeiten wollen.

Lösung
Der folgende Sketch nutzt die Yahoo!-Suche, um 50 Kilometer in Meilen umzuwandeln.
Er sendet die Anfrage (Query) »50+km+in+mi« und gibt das Ergebnis über den seriellen
Monitor aus. Der Sketch funktioniert in dieser Form erst ab Arduino 1.0.1 IDE.

/*
Simple Client Parsing Sketch
Arduino 1.0-Version
*/
#include <SPI.h>
#include <Ethernet.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
char serverName[] = "search.yahoo.com";

EthernetClient client;

int result; // Das Ergebnis der Berechnung

void setup()
{
Serial.begin(9600);
if(Ethernet.begin(mac) == 0) { // Ethernet starten
Serial.println("Ethernet-Konfiguration ueber DHCP fehlgeschlagen");
while(true) // Weitermachen zwecklos, in Endlosschleife warten
;

}
delay(1000); // Ethernet-Shield eine Sekunde zur Initialisierung geben

Serial.println("Verbinde...");
}

void loop()

502 | Kapitel 15: Ethernet und Netzwerke

{
if (client.connect(serverName, 80)>0) {
Serial.print("Verbunden... ");
client.println("GET /search?p=50+km+in+mi HTTP/1.0");
client.println();
} else {
Serial.println("Verbindung fehlgeschlagen");
}
if (client.connected()) {
if(client.find("50 Kilometers")){
if(client.find("=")){
result = client.parseInt();
Serial.print("50 km sind ");
Serial.print(result);
Serial.println(" Meilen");

}
}
else
Serial.println("Ergebnis nicht gefunden");

client.stop();
delay(10000); // In 10 Sekunden erneut abfragen
}
else {
Serial.println();
Serial.println("Nicht verbunden");
client.stop();
delay(1000);
}
}

Diskussion
Der Sketch erwartet, dass das Ergebnis mit Fettdruck eingeleitet wird (mit Hilfe des
HTML-Tags -Tags). Dann folgen der in der Query angegebene Wert und das Wort
Kilometers.

Die Suche erfolgt über die Stream-Parsing-Funktionen, die in der Einführung zu diesem
Kapitel beschrieben wurden. Die find-Methode durchsucht die empfangenen Daten und
gibt true zurück, wenn der gesuchte String gefunden wurde. Der Code sucht nach Text,
der mit der Antwort verknüpft ist. Im Beispiel wird in der folgenden Zeile versucht, den
Text »50 Kilometers« zu finden:

if (client.find("50 Kilometers")){

client.find wird erneut genutzt, um das Gleichheitszeichen zu finden, das vor dem
numerischen Ergebnis steht.

Das Ergebnis wird mit der Methode parseInt herausgefiltert und über den seriellen Mo-
nitor ausgegeben.

15.4 Daten von einem Webserver abrufen | 503

parseInt liefert einen Integerwert zurück. Wenn Sie einen Fließkomma-Wert einlesen
müssen, verwenden Sie stattdessen parseFloat:

float floatResult = client.parseInt();
Serial.println(floatResult);

Wenn Sie eine robuste Suche brauchen, müssen Sie nach einem eindeutigen Tag Aus-
schau halten, der nur vor den gewünschten Daten auftaucht. Das ist bei Seiten mit
eindeutigen Tags für jedes Feld einfacher zu erreichen. Das folgende Beispiel gibt den
Google-Aktienkurs von Google Finance zurück und schreibt den Wert an den Analog-
ausgang 3 (siehe Kapitel 7) und an den seriellen Monitor:

/*
* Web Client Google Finance Sketch
* Google-Aktienkurs abrufen und an Analogpin 3 schreiben.
*/

#include <SPI.h> // Für Arduino-Versionen ab 0018 Pflicht
#include <Ethernet.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
char serverName[] = "www.google.com";

EthernetClient client;
float value;

void setup()
{
Serial.begin(9600);
if(Ethernet.begin(mac) == 0) { // Ethernet starten
Serial.println("Ethernet-Konfiguration über DHCP fehlgeschlagen");
while(true) // Weitermachen zwecklos, in Endlosschleife warten
;

}
delay(1000); // Ethernet-Shield eine Sekunde zur Initialisierung geben
}

void loop()
{
Serial.print("Verbinde...");
if (client.connect(serverName, 80)>0) {
client.println("GET //finance?q=google HTTP/1.0");
client.println("User-Agent: Arduino 1.0");
client.println();
}
else
{
Serial.println("Verbindung fehlgeschlagen");
}
if (client.connected()) {
if(client.find(""))
{
client.find(">"); // Nächstes '>' suchen
value = client.parseFloat();
Serial.print("Google-Kurs steht bei ");
Serial.println(value); // Wert ausgeben

504 | Kapitel 15: Ethernet und Netzwerke

}
else
Serial.print("Konnte Feld nicht finden");

}
else {
Serial.println("Verbindung getrennt");
}
client.stop();
client.flush();
delay(5000); // 5 Sekunden warten
}

Diese Beispiele verwenden den GET-Befehl, um eine bestimmte Seite abzurufen. Manche
Web-Requests müssen Daten im »Rumpf« (Body) der Nachricht an den Server senden,
weil mehr Daten übertragen werden, als der GET-Befehl verarbeiten kann. Diese Requests
werden über den POST-Befehl verarbeitet. Hier ein Beispiel für den POST-Befehl, der den
Babel-Fish-Übersetzungsdienst nutzt, um Text vom Italienischen ins Englische zu über-
setzen:

/*
* Web Client Babel Fish Sketch
* Nutzt Post, um Daten von einem Webserver abzurufen
*/

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
char serverName[] = "babelfish.yahoo.com";

EthernetClient client;

// zu übersetzender Text
char * transText = "trtext=Ciao+mondo+da+Arduino.&lp=it_en";

const int MY_BUFFER_SIZE = 30; // Groß genug für Ergebnis
char buffer [MY_BUFFER_SIZE+1]; // Abschließende Null berücksichtigen

void setup()
{
Serial.begin(9600);
if(Ethernet.begin(mac) == 0) { // Ethernet starten
Serial.println("Ethernet-Konfiguration ueber DHCP fehlgeschlagen");
while(true) // Weitermachen zwecklos, in Endlosschleife warten
;

}
delay(1000); // Ethernet-Shield eine Sekunde zur Initialisierung geben
}

void loop()
{
Serial.print("Verbinde...");
postPage("/translate_txt", transText);
delay(5000);
}

15.4 Daten von einem Webserver abrufen | 505

void postPage(char *webPage, char *parameter){
if (client.connect(serverName,80)>0) {
client.print("POST ");
client.print(webPage);
client.println(" HTTP/1.0");
client.println("Content-Type: application/x-www-form-urlencoded");
client.println("Host: babelfish.yahoo.com");
client.print("Content-Length: ");
client.println(strlen(parameter));
client.println();
client.println(parameter);
}
else {
Serial.println(" Verbindung fehlgeschlagen");
}
if (client.connected()) {
client.find("<div id=\"result\">");
client.find(">");
memset(buffer,0, sizeof(buffer)); // clear the buffer
client.readBytesUntil('<' ,buffer, MY_BUFFER_SIZE);
Serial.println(buffer);

}
else {
Serial.println("Verbindung getrennt");
}
client.stop();
client.flush();
}

POST muss die Länge des Inhalts senden, damit der Server weiß, wie viele
Daten er zu erwarten hat. Das Fehlen der Länge oder ein falscher Wert sind
häufig die Ursachen für Probleme mit POST. In Rezept 15.12 finden Sie ein
weiteres Beispiel für einen POST-Request.

Sites wie Google Weather und Google Finance ändern die zur Identifizierung von Feldern
genutzten Tags üblicherweise nicht. Doch wenn sich bei der Aktualisierung einer Site die
Tags ändern, nach denen Sie suchen, funktioniert der Sketch nicht mehr, bis Sie den
Such-Code korrigieren. Eine zuverlässigere Möglichkeit, Daten von einem Webserver zu
extrahieren, bietet die Verwendung eines formalen Protokolls wie XML oder JSON. Das
nächste Rezept zeigt, wie man Informationen von einer Site extrahiert, die mit XML
arbeitet.

15.5 XML-Daten von einem Webserver abrufen

Problem
Sie möchten Daten von einer Site abrufen, die Informationen im XML-Format veröffent-
licht. Beispielsweise könnten Sie Werte bestimmter Felder aus einem der Google API-
Dienste nutzen wollen.

506 | Kapitel 15: Ethernet und Netzwerke

Lösung
Der folgende Sketch ruft das Wetter in London über Google Weather ab. Er verwendet die
Google XML-API:

/*
* Simple Client Google Weather
* Ruft XML-Daten von http://www.google.com/ig/api?weather=london,uk
* Liest die Temperatur aus dem Feld <temp_f data="66" />
* Schreibt die Temperatur an Analogausgang
*/

#include <SPI.h> // Für Arduino-Versionen ab 0018 Pflicht
#include <Ethernet.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
char serverName[] = "www.google.com";

const int temperatureOutPin = 3; // Analogausgang für Temperatur
const int humidityOutPin = 5; // Analogausgang für Luftfeuchtigkeit

EthernetClient client;

void setup()
{
Serial.begin(9600);
if(Ethernet.begin(mac) == 0) { // Ethernet starten
Serial.println("Ethernet-Konfiguration über DHCP fehlgeschlagen");
while(true) // Weitermachen zwecklos, in Endlosschleife warten
;

}
delay(1000); // Ethernet-Shield eine Sekunde zur Initialisierung geben

Serial.println("Verbinde...");
}

void loop()
{
if (client.connect(serverName,80)>0) {
// Google-Wetter für London abfragen
client.println("GET /ig/api?weather=london HTTP/1.0");
client.println();
}
else {
Serial.println(" Verbindung fehlgeschlagen");
}
if (client.connected()) {
// Temperatur in Fahrenheit ("<temp_c data=" für Celsius)
if(client.find("<temp_f data="))
{
int temperature = client.parseInt();
analogWrite(temperatureOutPin, temperature); // Wert an Analogport schreiben
Serial.print("Temperatur: "); // und über seriellen Port ausgeben
Serial.println(temperature);

}
else

15.5 XML-Daten von einem Webserver abrufen | 507

Serial.print("Konnte Temperatur-Feld nicht finden");
##! // Temperatur in Fahrenheit ("<temp_c data=" für Celsius) !##

if(client.find("<humidity data="))
{
int humidity = client.parseInt();
analogWrite(humidityOutPin, humidity); // Wert an Analogport schreiben
Serial.print("Luftfeuchtigkeit: "); // und über seriellen Port ausgeben
Serial.println(humidity);

}
else
Serial.print("Konnte Luftfeuchtigkeits-Feld nicht finden");

}
else {
Serial.println("Verbindung getrennt");
}
client.stop();
client.flush();
delay(60000); // Eine Minute bis zum nächsten Update warten
}

Vor jedem Feld steht ein Tag. Derjenige, der bei Google Weather die Temperatur in
Fahrenheit enthält, ist "<temp_f data=".

Wenn Sie die Temperatur in Grad Celsius brauchen, suchen Sie bei dieser Site nach dem
Tag "<temp_c data=".

Sie müssen sich die Dokumentation der Sie interessierenden Seite ansehen, um die Tags
für die gewünschten Daten zu ermitteln.

Sie wählen die Seite über die Informationen aus, die in Ihrem GET-Befehl gesendet werden.
Das ist auch von der jeweiligen Site abhängig, d.h., im obigen Beispiel wird die Stadt in der
GET-Anweisung durch den Text hinter dem Gleichheitszeichen festgelegt. Wenn Sie also
die Stadt von London in Rom ändern wollen, ändern Sie

client.println("GET /ig/api?weather=london HTTP/1.0"); // Wetter für London

in:

client.println("GET /ig/api?weather=Rome HTTP/1.0"); // Wetter für Rom

Sie können eine Variable nutzen, wenn die Stadt vom Programm aus kontrolliert werden
soll:

char *cityString[4] = { "London", "New%20York", "Rome", "Tokyo"};
int city;

void loop()
{
city = random(4); // Stadt zufällig auswählen
if (client.connect(serverName,80)>0) {
Serial.print("Wetter fuer ");
Serial.println(cityString[city]);

client.print("GET /ig/api?weather=");
client.print(cityString[city]); // Eine von 4 zufälligen Städten ausgeben
client.println(" HTTP/1.0");

508 | Kapitel 15: Ethernet und Netzwerke

client.println();
}
else {
Serial.println(" Verbindung fehlgeschlagen");
}
if (client.connected()) {
// Temperatur in Fahrenheit ("<temp_c data=\"" für Celsius)
if(client.find("<temp_f data="))
{
int temperature = client.parseInt();
analogWrite(temperatureOutPin, temperature); // Wert an Analogausgang schreiben
Serial.print(cityString[city]);
Serial.print(" Temperatur: "); // und über seriellen Port ausgeben
Serial.println(temperature);

}
else
Serial.println("Konnte Temperatur-Feld nicht finden");
// Temperatur in Fahrenheit ("<temp_c data=\"" für Celsius)
if(client.find("<humidity data="))
{
int humidity = client.parseInt();
analogWrite(humidityOutPin, humidity); // Wert an Analogausgang schreiben
Serial.print("Luftfeuchtigkeit: "); // und über seriellen Port ausgeben
Serial.println(humidity);

}
else
Serial.println("Konnte Luftfeuchtigkeits-Feld nicht finden");

}
else {
Serial.println("Verbindung getrennt");
}
client.stop();
client.flush();
delay(60000); // Eine Minute bis zum nächsten Update warten
}

// Der restliche Code entspricht dem des obigen Sketchs

In URLs gesendete Informationen dürfen keine Leerzeichen enthalten,
weshalb New York als »New%20York« geschrieben werden muss. Die
Kodierung für das Leerzeichen ist %20. Ihr Browser übernimmt die
Kodierung vor dem Senden des Requests, doch beim Arduino müssen Sie
das Leerzeichen selbst durch %20 ersetzen.

15.6 Den Arduino als Webserver einrichten

Problem
Ihr Arduino soll Webseiten ausliefern. Zum Beispiel könnten Sie sich mit Ihrem Web-
Browser die Werte der Sensoren ansehen wollen, die mit den Arduino-Analogpins ver-
bunden sind.

15.6 Den Arduino als Webserver einrichten | 509

Lösung
Dieser Sketch wird mit dem Arduino als Standard-Beispiel für einen Webserver mitgelie-
fert. Er zeigt die Werte der analogen Eingangspins an. Dieses Rezept erläutert, wie der
Sketch funktioniert und wie man ihn erweitern kann:

/*
* Web Server
* Einfacher Webserver, der die Werte der analogen Eingangspins ausgibt.
*/

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
byte ip[] = { 192, 168, 1, 177}; // IP-Adresse des Webservers

EthernetServer server(80);

void setup()
{
Ethernet.begin(mac, ip);
server.begin();
}

void loop()
{
EthernetClient client = server.available();
if (client) {
// Ein HTTP-Request endet mit einer Leerzeile
boolean current_line_is_blank = true;
while (client.connected()) {
if (client.available()) {
char c = client.read();
// Haben wir das Zeilenende erreicht (ein Newline
// Zeichen empfangen) und ist die Zeile leer, dann ist der HTTP-Request beendet
// und wir können eine Antwort senden
if (c == '\n' && current_line_is_blank) {
// Standard HTTP-Response-Header senden
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println();

// Werte aller analogen Eingangspins ausgeben
for (int i = 0; i < 6; i++) {
client.print("Analogeingang ");
client.print(i);
client.print(" ist ");
client.print(analogRead(i));
client.println("
");
}
break;
}
if (c == '\n') {
// Wir beginnen eine neue Zeile
current_line_is_blank = true;

510 | Kapitel 15: Ethernet und Netzwerke

} else if (c != '\r') {
// Es gibt Zeichen in der aktuellen Zeile
current_line_is_blank = false;
}

}
}
// Dem Web-Browser Zeit geben, die Daten zu empfangen
delay(1);
client.stop();
}
}

Diskussion
Wie in Rezept 15.1 diskutiert, benötigen alle Sketches, die die Ethernet-Bibliothek nutzen,
eine eindeutige MAC- und IP-Adresse. Die in diesem Sketch zugewiesene IP-Adresse
bestimmt die Adresse des Webservers. In diesem Beispiel liefert die Eingabe von
192.168.1.177 im Adressfeld des Browsers eine Seite zurück, die die Werte der analogen
Eingangspins 0 bis 5 enthält (in Kapitel 5 erfahren Sie mehr über Analogports).

Wie in der Einführung dieses Kapitel erläutert, ist 192.168.1.177 eine lokale Adresse, die
nur innerhalb Ihres lokalen Netzwerks sichtbar ist. Soll der Webserver im Internet
verfügbar sein, müssen Sie Ihren Router so konfigurieren, dass er eingehende Nachrichten
an den Arduino weitergibt. Diese Technik wird Port-Weiterleitung (port forwarding)
genannt und Sie müssen in der Dokumentation Ihres Routers nachsehen, wie man sie
konfiguriert. Mehr zur Port-Weiterleitung im Allgemeinen erfahren Sie in SSH, The Secure
Shell: The Definitive Guide von Daniel J. Barrett, Richard E. Silverman und Robert G.
Byrnes. Suchen Sie bei www.oreilly.de danach.)

Wenn Sie das Arduino Ethernet-Board so konfigurieren, dass es im
Internet sichtbar ist, ist es für jeden zugänglich, der diese spezielle IP-
Adresse hat. Die Arduino Ethernet-Bibliothek bietet keine sicheren Ver-
bindungen an, d.h., Sie müssen darauf achten, welche Informationen Sie
bereitstellen.

Die beiden Zeilen in setup initialisieren die Ethernet-Bibliothek und konfigurieren den
Webserver mit der von Ihnen festgelegten IP-Adresse. Der loop wartet und verarbeitet alle
Requests, die am Webserver eingehen:

EthernetClient client = server.available();

Das client-Objekt ist der Webserver – es verarbeitet die Nachrichten für die IP-Adresse,
die Sie dem Server zugewiesen haben.

if (client) überprüft, ob der Client erfolgreich gestartet wurde.

while (client.connected()) überprüft, ob der Webserver mit einem Client verbunden ist,
der Daten anfordert.

client.available() und client.read() prüfen, ob Daten verfügbar sind und lesen ein Byte
ein, wenn dass der Fall ist. Das entspricht Serial.available(), das in Kapitel 4 diskutiert

15.6 Den Arduino als Webserver einrichten | 511

wurde, nur dass die Daten über das Internet kommen und nicht über den seriellen Port.
Der Code liest die Daten ein, bis er eine Zeile ohne Daten findet, was das Ende eines
Requests anzeigt. Ein HTTP-Header wird mit client.println ausgegeben, gefolgt von den
Werten der Analog-Ports.

15.7 Eingehende Web-Requests verarbeiten

Problem
Sie wollen digitale und analoge Ausgänge mit einem Arduino steuern, der als Webserver
fungiert. Zum Beispiel wollen Sie die Werte bestimmter Pins steuern, indem Sie ent-
sprechende Parameter von Ihrem Web-Browser senden.

Lösung
Dieser Sketch liest von einem Browser gesendete Requests ein und ändert die Werte
digitaler und analoger Ausgangs-Ports.

Der URL (der vom Browser-Request empfangene Text) besteht aus einem oder mehreren
Feldern, die mit dem Wort pin beginnen, gefolgt von einem D für digital oder A für analog
und der Pin-Nummer. Der Wert des Pins folgt auf ein Gleichheitszeichen.

Senden Sie zum Beispiel http://192.168.1.177/?pinD2=1 über die Adresse Ihres Web-
Browsers, wird der Digitalpin 2 eingeschaltet. Mit http://192.168.1.177/?pinD2=0 wird er
wieder ausgeschaltet. (In Kapitel 7 finden Sie Informationen zum Anschluss von LEDs an
Arduino-Pins.)

Abbildung 15-1 zeigt die Ausgabe des Web-Browsers, wenn Sie die Verbindung mit dem
hier entwickelten Webserver-Rezept herstellen.

Abbildung 15-1: Browser-Ausgabe der in diesem Rezept entwickelten Lösung

512 | Kapitel 15: Ethernet und Netzwerke

/*
* WebServerParsing
* Reagiert auf Requests in der URL zur Änderung digitaler und analoger Ausgänge
* Gibt die Anzahl geänderter Ports und die Werte der analogen Eingänge aus
* Beispiel:
* http://192.168.1.177/?pinD2=1 schaltet Digitalpin 2 an
* http://192.168.1.177/?pinD2=0 schaltet Pin 2 aus
* Der Sketch demonstriert das Text-Parsing der 1.0 Stream-Klasse
*/

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
byte ip[] = { 192,168,1,177 };

EthernetServer server(80);

void setup()
{
Serial.begin(9600);
Ethernet.begin(mac, ip);
server.begin();
Serial.println("Bereit");
}

void loop()
{
EthernetClient client = server.available();
if (client) {
while (client.connected()) {
if (client.available()) {
// Zähler für geänderte Pins
int digitalRequests = 0;
int analogRequests = 0;
if(client.find("GET /")) { // Nach 'GET' suchen
// Mit "pin" beginnende Tokens suchen und bei der ersten Leerzeile aufhören
// Bis zum Zeilenende nach 'pin' suchen
while(client.findUntil("pin", "\n\r")){
char type = client.read(); // D oder A
// Der nächste ASCII-Integerwert im Stream ist der Pin
int pin = client.parseInt();
int val = client.parseInt(); // Die folgende Zahl ist der Wert
if(type == 'D') {
Serial.print("Digitalpin ");
pinMode(pin, OUTPUT);
digitalWrite(pin, val);
digitalRequests++;

}
else if(type == 'A'){
Serial.print("Analog-Pin ");
analogWrite(pin, val);
analogRequests++;

}
else {
Serial.print("Unbekannter Typ ");
Serial.print(type);

15.7 Eingehende Web-Requests verarbeiten | 513

}
Serial.print(pin);
Serial.print("=");
Serial.println(val);
}
}
Serial.println();

// findUntil hat Leerzeile entdeckt(lf gefolgt von cr),
// d.h., der HTTP-Request ist abgeschlossen und wir können eine Antwort senden
// Standard HTTP-Response-Header senden
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println();

// Anzahl der vom Request verarbeiteten Pins ausgeben
client.print(digitalRequests);
client.print(" Digitalpin(s) gesetzt");
client.println("
");
client.print(analogRequests);
client.print(" Analog-Pin(s) gesetzt");
client.println("
");
client.println("
");

// Werte aller analogen Eingangspins ausgeben
for (int i = 0; i < 6; i++) {
client.print("Analogeingang ");
client.print(i);
client.print(" ist ");
client.print(analogRead(i));
client.println("
");
}
break;

}
}
// Web-Browser Zeit geben, die Daten zu empfangen
delay(1);
client.stop();
}
}

Diskussion
Folgendes wurde gesendet: http://192.168.1.177/?pinD2=1. Die Information wird dann
wie folgt heruntergebrochen: Alles vor dem Fragezeichen wird als Adresse des Webservers
betrachtet (in diesem Beispiel 192.168.1.177; diese Adresse ist die IP-Adresse, die Sie zu
Beginn des Sketches für das Arduino-Board festgelegt haben). Die restlichen Daten
bestehen aus einer Liste von Feldern, die mit dem Wort pin beginnen, gefolgt von einem
D für einen Digitalpin und einem A für einen Analogpin. Der numerische Wert, der auf
das D oder A folgt, ist die Pin-Nummer. Darauf folgt ein Gleichheitszeichen und schließ-
lich der Wert, auf den der Pin gesetzt werden soll. pinD2=1 setzt also den Digitalpin 2 auf
HIGH. Es gibt für jeden Pin ein Feld und die einzelnen Felder sind durch &-Zeichen

514 | Kapitel 15: Ethernet und Netzwerke

(Ampersand) voneinander getrennt. Sie geben so viele Felder an, wie Arduino-Pins ge-
ändert werden sollen.

15.8 Das Anfordern bestimmter Seiten verarbeiten

Problem
Sie wollen auf Ihrem Webserver mehr als eine Seite anbieten, z.B. um den Status ver-
schiedener Sensoren auf unterschiedlichen Seiten darzustellen.

Lösung
Der folgende Sketch untersucht Requests für Seiten namens »analog« und »digital« und
gibt die entsprechenden Pin-Werte aus:

/*
* WebServerMultiPage
* Verarbeitet Requests zur Darstellung digitaler und analoger Ausgangs-Ports
* http://192.168.1.177/analog/ Gibt analoge Pindaten aus
* http://192.168.1.177/digital/ Gibt digitale Pindaten aus
*/

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
byte ip[] = { 192,168,1,177 };

const int MAX_PAGE_NAME_LEN = 8; // Max. Zeichen im Seitenamen
char buffer[MAX_PAGE_NAME_LEN+1]; // Seitenname + abschließende Null

EthernetServer server(80);
EthernetClient client;

void setup()
{
Serial.begin(9600);
Ethernet.begin(mac, ip);
server.begin();
Serial.println("Bereit");
}

void loop()
{
client = server.available();

15.8 Das Anfordern bestimmter Seiten verarbeiten | 515

if (client) {
while (client.connected()) {
if (client.available()) {
if(client.find("GET ")) {
// Seitennamen suchen
memset(buffer,0, sizeof(buffer)); // Puffer löschen
if(client.find("/"))
if(client.readBytesUntil('/', buffer, MAX_PAGE_NAME_LEN))
{
if(strcmp(buffer, "analog") == 0)
showAnalog();
else if(strcmp(buffer, "digital") == 0)
showDigital();
else
unknownPage(buffer);

}
}
Serial.println();
break;

}
}
// Web-Browser Zeit geben, die Seite zu empfangen
delay(1);
client.stop();
}
}

void showAnalog()
{
Serial.println("analog");
sendHeader();
client.println("<h1>Analoge Pins</h1>");
// Werte aller analogen Eingangspins ausgeben

for (int i = 0; i < 6; i++) {
client.print("Analog-Pin ");
client.print(i);
client.print(" = ");
client.print(analogRead(i));
client.println("
");
}
}

void showDigital()
{
Serial.println("digital");
sendHeader();
client.println("<h1>Digitale Pins</h1>");
// Werte der Digitalpins ausgeben
for (int i = 2; i < 8; i++) {
pinMode(i, INPUT);
client.print("Digitalpin ");
client.print(i);
client.print(" ist ");
if(digitalRead(i) == LOW)
client.print("LOW");
else

516 | Kapitel 15: Ethernet und Netzwerke

client.print("HIGH");
client.println("
");
}
client.println("</body></html>");
}

void unknownPage(char *page)
{
sendHeader();
client.println("<h1>Unbekannte Seite</h1>");
client.print(page);
client.println("
");
client.println("Bekannte Seiten sind:
");
client.println("/analog/
");
client.println("/digital/
");
client.println("</body></html>");
}

void sendHeader()
{
// Standard HTTP-Response-Header senden
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println();
client.println("<html><head><title>Webserver Multipage-Beispiel</title>");
client.println("<body>");
}

Diskussion
Sie können das mit Ihrem Web-Browser ausprobieren, indem Sie http://192.168.1.177/
analog/ oder http://192.168.1.177/digital/ eingeben (wenn Sie eine andere IP-Adresse für
Ihren Webserver verwenden, müssen Sie den URL entsprechend anpassen).

Abbildung 15-2 zeigt die erwartete Ausgabe.

15.8 Das Anfordern bestimmter Seiten verarbeiten | 517

Abbildung 15-2: Ausgabe der Digitalpin-Werte im Browser

Der Sketch sucht nach einem »/«-Zeichen, um das Ende des Seitennamen zu bestimmen.
Der Server meldet eine unbekannte Seite, wenn das »/«-Zeichen den Seitennamen nicht
abschließt.

Sie können das ganz einfach um etwas Code aus Rezept 15.7 erweitern, der die Steuerung
der Arduino-Pins über eine weitere Seite namens update erlaubt. Hier der neue loop-Code:

void loop()
{
client = server.available();
if (client) {
while (client.connected()) {
if (client.available()) {
if(client.find("GET ")) {
// Seitennamen suchen
memset(buffer,0, sizeof(buffer)); // Puffer löschen
if(client.readBytesUntil('/', buffer, MAX_PAGE_NAME_LEN))
{
if(strcmp(buffer, "analog") == 0)
showAnalog();
else if(strcmp(buffer, "digital") == 0)
showDigital();
// Zusätzlicher Code für neue update-Seite
else if(strcmp(buffer, "update") == 0)
doUpdate();
else
unknownPage(buffer);

}
}
Serial.println();

518 | Kapitel 15: Ethernet und Netzwerke

break;
}
}
// Web-Browser Zeit geben, die Daten zu empfangen
delay(1);
client.stop();
}
}

Hier die doUpdate-Funktion:

void doUpdate()
{
Serial.println("update");
sendHeader();
// Mit "pin" beginnende Tokens finden und bei der ersten Leerzeile aufhören
while(client.findUntil("pin", "\n\r")){
char type = client.read(); // D or A
int pin = client.parseInt();
int val = client.parseInt();
if(type == 'D') {
Serial.print("Digitalpin ");
pinMode(pin, OUTPUT);
digitalWrite(pin, val);

}
else if(type == 'A'){
Serial.print("Analog-Pin ");
analogWrite(pin, val);

}
else {
Serial.print("Unbekannter Typ ");
Serial.print(type);
}
Serial.print(pin);
Serial.print("=");
Serial.println(val);
}
}

Wenn Sie http://192.168.1.177/update/?pinA5=128 über Ihren Web-Browser senden, wird
der Wert 128 an den Analog-Pin 5 geschrieben.

15.9 Antworten des Webservers mit HTML aufbereiten

Problem
Sie wollen HTML-Elemente wie Tabellen und Bilder nutzen, um das Aussehen der vom
Arduino zurückgelieferten Webseiten zu verbessern. Zum Beispiel wollen Sie die Ausgabe
aus Rezept 15.8 in einer HTML-Tabelle darstellen.

15.9 Antworten des Webservers mit HTML aufbereiten | 519

Lösung
Abbildung 15-3 zeigt, wie dieses Rezept die Ausgabe der Pin-Werte aufbereitet (forma-
tiert). (Vergleichen Sie das mit den unformatierten Werten in Abbildung 15-2.)

Abbildung 15-3: Seiten mit HTML-Formatierung

Der folgende Sketch bietet die gleiche Funktionalität wie Rezept 15.8 und formatiert die
Ausgabe mit Hilfe von HTML:

/*
* WebServerMultiPageHTML
* Arduino 1.0 version
* Analoge und digitale Pin-Werte mit HTML ausgeben
*/

#include <SPI.h> // Seit Arduino-Version 0018 Pflicht
#include <Ethernet.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
byte ip[] = { 192,168,1,177 };

// Puffer muss groß genug sein, die angeforderten Seitennamen und die abschließende Null auf
// zunehmen
const int MAX_PAGE_NAME_LEN = 8+1; // Max. Zeichen im Seitennamen + Null
char buffer[MAX_PAGE_NAME_LEN];

EthernetServer server(80);
EthernetClient client;

void setup()
{
Serial.begin(9600);

Ethernet.begin(mac, ip);
server.begin();
pinMode(13,OUTPUT);
for(int i=0; i < 3; i++)
{
digitalWrite(13,HIGH);

520 | Kapitel 15: Ethernet und Netzwerke

delay(500);
digitalWrite(13,LOW);
delay(500);

}
}

void loop()
{
client = server.available();
if (client) {
while (client.connected()) {
if (client.available()) {
if(client.find("GET ")) {
// look for the page name
memset(buffer,0, sizeof(buffer)); // Puffer löschen
if(client.find("/"))
if(client.readBytesUntil('/', buffer, MAX_PAGE_NAME_LEN))
{
if(strcasecmp(buffer, "analog") == 0)
showAnalog();
else if(strcasecmp(buffer, "digital") == 0)
showDigital();
else
unknownPage(buffer);

}
}
break;

}
}
// Web-Browser Zeit geben, die Daten zu empfangen
delay(1);
client.stop();
}
}

void showAnalog()
{
sendHeader("Multipage: Analog");
client.println("<h2>Analoge Pins</h2>");
client.println("<table border='1' >");
for (int i = 0; i < 6; i++) {
// Wert aller analogen Eingangspins ausgeben
client.print("<tr><td>Analogpin ");
client.print(i);
client.print(" </td><td>");
client.print(analogRead(i));
client.println("</td></tr>");
}
client.println("</table>");
client.println("</body></html>");
}

void showDigital()
{
sendHeader("Multi-page: Digital");
client.println("<h2>Digitale Pins</h2>");
client.println("<table border='1'>");

15.9 Antworten des Webservers mit HTML aufbereiten | 521

for (int i = 2; i < 8; i++) {
// Wert der Digitalpins ausgeben
pinMode(i, INPUT);
digitalWrite(i, HIGH); // Pullups einschalten
client.print("<tr><td>Digitalpin ");
client.print(i);
client.print(" </td><td>");
if(digitalRead(i) == LOW)
client.print("Low");
else
client.print("High");
client.println("</td></tr>");
}
client.println("</table>");
client.println("</body></html>");
}

void unknownPage(char *page)
{
sendHeader("Unbekannte Seite");
client.println("<h1>Unbekannte Seite</h1>");
client.print(page);
client.println("
");
client.println("Bekannte Seiten sind:
");
client.println("/analog/
");
client.println("/digital/
");
client.println("</body></html>");
}

void sendHeader(char *title)
{
// Standard HTTP-Response-Header senden
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println();
client.print("<html><head><title>");
client.println(title);
client.println("</title><body>");
}

Diskussion
Die gleichen Informationen liefert auch Rezept 15.8, aber hier werden die Daten in einer
HTML-Tabelle aufbereitet. Der folgende Code weist den Web-Browser an, eine Tabelle
mit einer Rahmenbreite von 1 zu erzeugen:

client.println("<table border='1' >");

Die for-Schleife definiert die Datenzellen der Tabelle mit dem <td>- und die Zeilen mit
dem <tr>-Tag. Der folgende Code platziert den String "Analogpin " in einer Zelle, die in
einer neuen Zeile beginnt:

client.print("<tr><td>Analogpin ");

522 | Kapitel 15: Ethernet und Netzwerke

Dann wird der Wert der Variablen i ausgegeben:

client.print(i);

Die nächste Zeile enthält die Tags, die die Zelle schließen und eine neue Zelle beginnen:

client.print(" </td><td>");

Nun wird der von analogRead zurückgelieferte Wert in die Zelle geschrieben:

client.print(analogRead(i));

Die Tags, die eine Zelle und eine Zeile abschließen, sehen wie folgt aus:

client.println("</td></tr>");

Die for-Schleife wird durchlaufen, bis alle sechs Analogwerte ausgegeben wurden. Jedes
in Rezept 14.3 erwähnte Buch und eine der vielen HTML-Referenz-Sites liefert weitere
Details zu den HTML-Tags.

Siehe auch
Learning Web Design von Jennifer Niederst Robbins (O’Reilly)

Web Design in a Nutshell von Jennifer Niederst Robbins (O’Reilly)

HTML & XHTML: The Definitive Guide von Chuck Musciano und Bill Kennedy
(O’Reilly)

(Suchen Sie nach O’Reilly-Titeln auf www.oreilly.de.)

15.10 Formulare (POST) verarbeiten

Problem
Sie wollen Formular-Webseiten entwickeln, die es dem Benutzer erlauben, eine Aktion
auszuwählen, die vom Arduino ausgeführt wird. Abbildung 15-4 zeigt die Webseite, die in
diesem Rezept erzeugt wird.

15.10 Formulare (POST) verarbeiten | 523

Abbildung 15-4: Web-Formular mit Buttons

Lösung
Der folgende Sketch erzeugt ein Formular mit Buttons. Der Benutzer kann die Buttons in
seinem Browser anklicken und der Arduino-Webserver reagiert darauf. In diesem Beispiel
schaltet der Sketch in Abhängigkeit vom gedrückten Button einen Pin an oder aus:

/*
* WebServerPost Sketch
* Schaltet Pin 8 über HTML-Formular an oder aus
*/

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
byte ip[] = { 192,168,1,177 };

const int MAX_PAGENAME_LEN = 8; // Max. Zeichen im Seitennamen
char buffer[MAX_PAGENAME_LEN+1]; // Zusätzliches Zeichen für abschließende Null

EthernetServer server(80);

void setup()
{
Serial.begin(9600);
Ethernet.begin(mac, ip);
server.begin();
delay(2000);
}

void loop()
{
EthernetClient client = server.available();
if (client) {
int type = 0;
while (client.connected()) {

if (client.available()) {
// GET, POST, or HEAD

524 | Kapitel 15: Ethernet und Netzwerke

memset(buffer,0, sizeof(buffer)); // Puffer löschen
if(client.find("/"))
if(client.readBytesUntil('/', buffer,sizeof(buffer))){
Serial.println(buffer);
if(strcmp(buffer,"POST ") == 0){
client.find("\n\r"); // Body überspringen
// Mit "pin" beginnenden String finden, bei der ersten Leerzeile anhalten
// POST-Parameter werden in der Form pinDx=Y erwartet
// x ist dabei die Pin-Nummer und Y ist 0 für LOW und 1 für HIGH
while(client.findUntil("pinD", "\n\r")){
int pin = client.parseInt(); // Die Pin-Nummer
int val = client.parseInt(); // 0 oder 1
pinMode(pin, OUTPUT);
digitalWrite(pin, val);
}

}
sendHeader(client,"Post-Beispiel");
//HTML-Button, um Pin 8 auszuschalten
client.println("<h2>Buttons anklicken, um Pin 8 ein- oder auszuschalten</h2>");
client.print(
"<form action='/' method='POST'><p><input type='hidden' name='pinD8'");
client.println(" value='0'><input type='submit' value='Off'/></form>");
//HTML-Button, um Pin 8 einzuschalten
client.print(
"<form action='/' method='POST'><p><input type='hidden' name='pinD8'");
client.print(" value='1'><input type='submit' value='On'/></form>");
client.println("</body></html>");
client.stop();
}
break;

}
}
// Web-Browser Zeit geben, die Daten zu empfangen
delay(1);
client.stop();
}
}
void sendHeader(EthernetClient client, char *title)
{
// Standard HTTP-Response-Header senden
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println();
client.print("<html><head><title>");
client.print(title);
client.println("</title><body>");
}

Diskussion
Eine Webseite mit einem Formular besteht aus HTML-Tags, die die Steuerelemente
(Buttons, Checkboxen, Label etc.) festlegen, aus denen die Benutzerschnittstelle auf-
gebaut ist. Dieses Rezept nutzt Buttons zur Interaktion mit dem Benutzer.

15.10 Formulare (POST) verarbeiten | 525

Die folgenden Zeilen erzeugen einen Button namens pinD8 mit dem Text »AUS«, der beim
Anklicken den Wert 0 (Null) sendet:

client.print("<form action='/' method='POST'><p><input type='hidden' name='pinD8'");
client.println(" value='0'><input type='submit' value='AUS'/></form>");

Empfängt der Server einen Request von einem Browser, sucht er nach dem String "POST",
um den Anfang des gesendeten Formulars zu erkennen:

if (strcmp(buffer,"POST ") == 0) // Beginn des Formulars erkennen

client.find("\n\r"); // Weiter zum Body
// Mit "pin" beginnenden Parameter finden und Suche bei der erste Leerzeile beenden
// Die POST-Parameter werden in der Form pinDx=Y erwartet
// wobei x die Pin-Nummer ist. Y ist 0 für LOW und 1 für HIGH

Wird der AUS-Button gedrückt, enthält die empfangene Seite den String pinD8=0. Sie
enthält pinD8=1, wenn der AN-Button gedrückt wird.

Der Sketch durchsucht die empfangenen Daten, bis er den Button-Namen (pinD) findet:

while(client.findUntil("pinD", "\n\r"))

Die Methode findUntil im obigen Code sucht nach »pinD« und beendet seine Suche am
Zeilenende (\n\r ist die Kombination aus Newline und Carriage Return, die der Browser
am Ende des Formulars sendet).

Die auf pinD folgende Zahl ist die Pin-Nummer:

int pin = client.parseInt(); // die Pin-Nummer

Der auf die Pin-Nummer folgende Wert ist 0, wenn der Button AUS bedrückt wurde, bzw.
1, wenn der EIN-Button gedrückt wurde:

int val = client.parseInt(); // 0 oder 1

Der empfangene Wert wird an den Pin geschrieben, nachdem dieser als Ausgang
geschaltet wurde:

pinMode(pin, OUTPUT);
digitalWrite(pin, val);

Weitere Buttons können eingefügt werden, indem man die entsprechenden Tags für
weitere Steuerelemente aufnimmt. Die folgenden Zeilen fügen einen weiteren Button ein,
der den Digitalpin 9 einschaltet:

//HTML-Button schaltet Pin 9 ein
client.print("<form action='/' method='POST'><p><input type='hidden' name='pinD9'");
client.print(" value='1'><input type='submit' value='EIN'/></form>");

526 | Kapitel 15: Ethernet und Netzwerke

15.11 Webseiten mit großen Datenmengen zurückgeben

Problem
Ihre Webseiten benötigen mehr Speicher, als Ihnen zur Verfügung steht, weshalb Sie den
Programmspeicher (auch Flash-Speicher genannt) zur Speicherung von Daten nutzen
wollen (siehe Rezept 16.4).

Lösung
Der folgende Sketch kombiniert den POST-Code aus Rezept 15.10 mit dem HTML-Code
aus Rezept 15.9 und fügt zusätzlichen Code ein, der auf Text zugreift, der im Programm-
speicher enthalten ist. Wie in Rezept 15.9 kann der Server den Status der analogen und
digitalen Pins ausgeben und die Digitalpins ein- und ausschalten (siehe Abbildung 15-5).

Abbildung 15-5: Webseite mit LED-Images

/*
* WebServerMultiPageHTMLProgmem Sketch
*
* Verarbeitet Requests zur Änderung digitaler und analoger Ausgangs-Port
* Gibt die Zahl der geänderten Ports und die Werte der analogen Eingangspins aus.
*
* http://192.168.1.177/analog/ Gibt analoge Pindaten aus
* http://192.168.1.177/digital/ Gibt digitale Pindaten aus
* http://192.168.1.177/change/ Ändert digitale Pindaten
*
*/

15.11 Webseiten mit großen Datenmengen zurückgeben | 527

#include <SPI.h> // Seit Arduino-Version 0018 Pflicht
#include <Ethernet.h>

#include <avr/pgmspace.h> // Für Programmspeicher
#define P(name) static const prog_uchar name[] PROGMEM // Statischen String deklarieren

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
byte ip[] = { 192,168,1,177 };

const int MAX_PAGENAME_LEN = 8; // Max. Zeichen im Seitenamen
char buffer[MAX_PAGENAME_LEN+1]; // Zusätzliches Zeichen für abschließende Null

EthernetServer server(80);
EthernetClient client;

void setup()
{
Serial.begin(9600);
Ethernet.begin(mac, ip);
server.begin();
delay(1000);
Serial.println(F("Bereit"));
}

void loop()
{

client = server.available();
if (client) {
int type = 0;
while (client.connected()) {
if (client.available()) {
// GET, POST, or HEAD
memset(buffer,0, sizeof(buffer)); // Puffer löschen
if(client.readBytesUntil('/', buffer,MAX_PAGENAME_LEN)){
if(strcmp(buffer, "GET ") == 0)
type = 1;
else if(strcmp(buffer,"POST ") == 0)
type = 2;
// Seitennamen suchen
memset(buffer,0, sizeof(buffer)); // Puffer löschen
if(client.readBytesUntil('/', buffer,MAX_PAGENAME_LEN))
{
if(strcasecmp(buffer, "analog") == 0)
showAnalog();

else if(strcasecmp(buffer, "digital") == 0)
showDigital();

else if(strcmp(buffer, "change")== 0)
showChange(type == 2);

else
unknownPage(buffer);

}
}
break;

}
}
// Web-Browser Zeit geben, die Daten zu empfangen

528 | Kapitel 15: Ethernet und Netzwerke

delay(1);
client.stop();
}
}

void showAnalog()
{
Serial.println(F("analog"));
sendHeader("Multipage-Beispiel - Analog");
client.println("<h1>Analoge Pins</h1>");
// Werte der analogen Eingangspins ausgeben

client.println(F("<table border='1' >"));
for (int i = 0; i < 6; i++) {
client.print(F("<tr><td>Analog-Pin "));
client.print(i);
client.print(F(" </td><td>"));
client.print(analogRead(i));
client.println(F("</td></tr>"));
}
client.println(F("</table>"));
client.println(F("</body></html>"));
}

// MIME-kodierte Daten für Images ein- und ausgeschalteter LED:
// siehe: http://www.motobit.com/util/base64-decoder-encoder.asp
P(led_on) = "<img src=\"data:image/jpg;base64,"
"/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAHgAA/+4ADkFkb2JlAGTAAAAAAf/b"
"AIQAEAsLCwwLEAwMEBcPDQ8XGxQQEBQbHxcXFxcXHx4XGhoaGhceHiMlJyUjHi8vMzMvL0BAQEBA"
"QEBAQEBAQEBAQAERDw8RExEVEhIVFBEUERQaFBYWFBomGhocGhomMCMeHh4eIzArLicnJy4rNTUw"
"MDU1QEA/QEBAQEBAQEBAQEBA/8AAEQgAGwAZAwEiAAIRAQMRAf/EAIIAAAICAwAAAAAAAAAAAAAA"
"AAUGAAcCAwQBAAMBAAAAAAAAAAAAAAAAAAACBAUQAAECBAQBCgcAAAAAAAAAAAECAwARMRIhQQQF"
"UWFxkaHRMoITUwYiQnKSIxQ1EQAAAwYEBwAAAAAAAAAAAAAAARECEgMTBBQhQWEiMVGBMkJiJP/a"
"AAwDAQACEQMRAD8AcNz3BGibKie0nhC0v3A+teKJt8JmZEdHuZalOitgUoHnEpQEWtSyLqgACWFI"
"nixWiaQhsUFFBiQSbiMvvrmeCBp27eLnG7lFTDxs+Kra8oOyium3ltJUAcDIy4EUMN/7Dnq9cPMO"
"W90E9kxeyF2d3HFOQ175olKudUm7TqlfKqDQEDOFR1sNqtC7k5ERYjndNPFSArtvnI/nV+ed9coI"
"ktd2BgozrSZO3J5jVEXRcwD2bbXNdq0zT+BohTyjgPp5SYdPJZ9NP2jsiIz7vhjLohtjnqJ/ouPK"
"co//2Q=="
"\"/>";

P(led_off) = "<img src=\"data:image/jpg;base64,"
"/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAHgAA/+4ADkFkb2JlAGTAAAAAAf/b"
"AIQAEAsLCwwLEAwMEBcPDQ8XGxQQEBQbHxcXFxcXHx4XGhoaGhceHiMlJyUjHi8vMzMvL0BAQEBA"
"QEBAQEBAQEBAQAERDw8RExEVEhIVFBEUERQaFBYWFBomGhocGhomMCMeHh4eIzArLicnJy4rNTUw"
"MDU1QEA/QEBAQEBAQEBAQEBA/8AAEQgAHAAZAwEiAAIRAQMRAf/EAHgAAQEAAwAAAAAAAAAAAAAA"
"AAYFAgQHAQEBAQAAAAAAAAAAAAAAAAACAQQQAAECBQAHBQkAAAAAAAAAAAECAwAREhMEITFhoSIF"
"FUFR0UIGgZHBMlIjM1MWEQABAwQDAQEAAAAAAAAAAAABABECIWESA1ETIyIE/9oADAMBAAIRAxEA"
"PwBvl5SWEkkylpJMGsj1XjXSE1kCQuJ8Iy9W5DoxradFa6VDf8IJZAQ6loNtBooTJaqp3DP5oBlV"
"nWrTpEouQS/Cf4PO0uKbqWHGXTSlztSvuVFiZjmfLH3GUuMkzSoTMu8aiNsXet5/17hFyo6PR64V"
"ZnuqfqDDDySFpNpYH3E6aFjzGBr2DkMuFBSFDsWkilUdLftW13pWpcdWqnbBzI/l6hVXKZlROUSe"
"L1KX5zvAPXESjdHsTFWpxLKOJ54hIA1DZCj+Vx/3r96fCNrkvRaT0+V3zV/llplr9sVeHZui/ONk"
"H3dzt6cL/9k="
"\"/>";
;

15.11 Webseiten mit großen Datenmengen zurückgeben | 529

void showDigital()
{
Serial.println(F("digital"));
sendHeader("Multipage-Beispiel - Digital");
client.println(F("<h2>Digitale Pins</h2>"));
// Werte der Digitalpins ausgeben
client.println(F("<table border='1'>"));
for (int i = 2; i < 8; i++) {
pinMode(i, INPUT);
digitalWrite(i, HIGH); // Pullups einschalten
client.print(F("<tr><td>Digitalpin "));
client.print(i);
client.print(F(" </td><td>"));
if(digitalRead(i) == LOW)
printP(led_off);
else
printP(led_on);
client.println(F("</td></tr>"));
}
client.println(F("</table>"));

client.println(F("</body></html>"));
}

void showChange(boolean isPost)
{
Serial.println(F("change"));
if(isPost)
{
Serial.println("isPost");
client.find("\n\r"); // Body überspringen
// Nach mit "pin" beginnenden Parametern suchen und bei der ersten Leerzeile abbrechen
Serial.println(F("Suche nach Parametern"));
while(client.findUntil("pinD", "\n\r")){
int pin = client.parseInt(); // Pin-Nummer
int val = client.parseInt(); // 0 oder 1
Serial.print(pin);
Serial.print("=");
Serial.println(val);
pinMode(pin, OUTPUT);
digitalWrite(pin, val);
}
}
sendHeader("Multipage-Beispiel - Ändern");
// Tabelle mit Buttons von 2 bis 9
// 2 bis 5 sind Eingänge, die anderen Buttons sind Ausgänge
client.println(F("<table border='1'>"));

// Eingangspins ausgeben
for (int i = 2; i < 6; i++) { // Pins 2-5 sind Eingänge
pinMode(i, INPUT);
digitalWrite(i, HIGH); // Pullups einschalten
client.print(F("<tr><td>Digitaler Eingang "));
client.print(i);
client.print(F(" </td><td>"));

530 | Kapitel 15: Ethernet und Netzwerke

client.print(F(" </td><td>"));
client.print(F(" </td><td>"));
client.print(F(" </td><td>"));

if(digitalRead(i) == LOW)
//client.print("AUS");
printP(led_off);
else
//client.print("EIN");
printP(led_on);
client.println("</td></tr>");
}

// Ausgangspins 6-9 ausgeben
// Hinweis: Pins 10-13 werden vom Ethernet-Shield genutzt
for (int i = 6; i < 10; i++) {
client.print(F("<tr><td>Digitaler Ausgang "));
client.print(i);
client.print(F(" </td><td>"));
htmlButton("EIN", "pinD", i, "1");
client.print(F(" </td><td>"));
client.print(F(" </td><td>"));
htmlButton("AUS", "pinD", i, "0");
client.print(F(" </td><td>"));

if(digitalRead(i) == LOW)
//client.print("AUS");
printP(led_off);
else
//client.print("EIN");
printP(led_on);
client.println(F("</td></tr>"));
}
client.println(F("</table>"));
}

// HTML-Button erzeugen
void htmlButton(char * label, char *name, int nameId, char *value)
{
client.print(F("<form action='/change/' method='POST'><p><input type='hidden' name='"));
client.print(name);
client.print(nameId);
client.print(F("' value='"));
client.print(value);
client.print(F("'><input type='submit' value='"));
client.print(label);
client.print(F("'/></form>"));
}

void unknownPage(char *page)
{
Serial.print(F("Unbekannt : "));
Serial.println(F("page"));

sendHeader("Unbekannte Seite");
client.println(F("<h1>Unbekannte Seite</h1>"));

15.11 Webseiten mit großen Datenmengen zurückgeben | 531

client.println(page);
client.println(F("</body></html>"));
}

void sendHeader(char *title)
{
// Standard HTTP-Response-Header senden
client.println(F("HTTP/1.1 200 OK"));
client.println(F("Content-Type: text/html"));
client.println();
client.print(F("<html><head><title>"));
client.println(title);
client.println(F("</title><body>"));
}

void printP(const prog_uchar *str)
{
// Daten aus dem Programmspeicher in den lokalen Speicher kopieren
// 32-Byte-Segmente schreiben, um sehr kurze TCP/IP-Pakete zu vermeiden
// Aus der webduino-Bibliothek, Copyright 2009 Ben Combee, Ran Talbott
uint8_t buffer[32];
size_t bufferEnd = 0;

while (buffer[bufferEnd++] = pgm_read_byte(str++))
{
if (bufferEnd == 32)
{
client.write(buffer, 32);
bufferEnd = 0;
}
}

// Rest rausschreiben, bis auf die abschließende NUL
if (bufferEnd > 1)
client.write(buffer, bufferEnd - 1);

}

Diskussion
Die Logik beim Aufbau der Webseite ähnelt der aus den vorangegangenen Rezepten. Das
Formular basiert auf Rezept 15.10, enthält aber mehr Elemente in der Tabelle und
verwendet eingebettete Grafik-Objekte für den Status der Pins. Wenn Sie schon einmal
eine Webseite entwickelt haben, sind Sie wahrscheinlich mit der Verwendung von JPEG-
Images innerhalb einer Seite vertraut. Die Arduino Ethernet-Bibliothek kann Images im
.jpg-Format nicht verarbeiten.

Images müssen in einem Internet-Standard wie MIME (Multipurpose Internet Mail Exten-
sions) kodiert sein. Auf diese Weise lassen sich grafische (und andere) Medien in Textform
darstellen. Der Sketch zeigt, wie die LED-Images MIME-kodiert aussehen. Viele Web-
basierte Dienste ermöglichen die MIME-Kodierung Ihrer Images. Die hier genutzten Images
wurden mit dem Dienst von http://www.motobit.com/util/base64-decoder-encoder.asp um-
gewandelt.

532 | Kapitel 15: Ethernet und Netzwerke

Selbst die in diesem Beispiel verwendeten kleinen LED-Images sind zu groß, um in das
Arduino-RAM zu passen. Daher nutzen wir Programmspeicher (Flash). In Rezept 16.3
finden Sie eine Erläuterung des P(name)-Ausdrucks.

Die Images der ein- und ausgeschalteten LEDs werden als eine Folge von Zeichen
gespeichert. Das Array für die eingeschaltete LED beginnt wie folgt:

P(led_on) = "<img src=\"data:image/jpg;base64,"

P(led_on) = definiert led_on als Namen dieses Arrays. Die Zeichen sind die HTML-Tags
für ein Image gefolgt von den MIME-kodieren Daten, aus denen das Image besteht.

Dieses Beispiel basiert auf Code, der für den Webduino-Webserver geschrieben wurde.
Webduino wird zum Aufbau von Webseiten wärmstens empfohlen, wenn Ihre Anwen-
dung komplizierter ist, als die hier vorgestellten Beispiele.

Siehe auch
In Rezept 16.4 erfahren Sie mehr über das F("text")-Konstrukt zur Speicherung von Text
im Flash-Speicher.

Webduino-Webseite: http://code.google.com/p/webduino/

15.12 Twitter-Nachrichten senden

Problem
Ihr Arduino soll Nachrichten an Twitter senden, z.B. wenn ein Sensor eine Aktivität
erkennt, die Sie per Twitter überwachen wollen.

Lösung
Der folgende Sketch sendet eine Twitter-Nachricht, wenn ein Schalter geschlossen wird.
Er nutzt einen Proxy auf http://www.thingspeak.com für die Autorisierung, d.h., Sie
müssen sich auf dieser Site registrieren, um einen (kostenlosen) API-Schlüssel zu erhalten.
Klicken Sie den Sign-Up-Button auf der Homepage an und füllen Sie das Formular aus
(die gewünschte Benutzer-ID, E-Mail, Zeitzone und das Passwort). Wenn Sie den Create-
Account-Button anklicken, erhalten Sie einen ThingSpeak API-Schlüssel. Um den Thing-
Speak-Dienst nutzen zu können, müssen Sie Ihren Twitter-Account autorisieren, damit
ThingTweet Nachrichten an Ihren Account posten kann. Nachdem Sie das eingerichtet
haben, ersetzen Sie "YourThingTweetAPIKey" durch Ihren Schlüssel und führen den fol-
gende Sketch aus:

/*
* Sende Tweet, wenn Taster an Pin 2 gedrückt wird
* Nutzt api.thingspeak.com als Twitter-Proxy
* Siehe: http://community.thingspeak.com/documentation/apps/thingtweet/
*/

15.12 Twitter-Nachrichten senden | 533

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
byte server[] = { 184, 106, 153, 149 }; // IP-Adresse für ThingSpeak-API

char *thingtweetAPIKey = "YourThingTweetAPIKey"; // Durch Ihren ThingTweet API-Schlüssel
// ersetzen

EthernetClient client;

boolean MsgSent = false;
const int Sensor = 2;

void setup()
{
Serial.begin(9600);
if (Ethernet.begin(mac) == 0) { // Ethernet starten
Serial.println("Ethernet-Konfiguration über DHCP fehlgeschlagen");
while(true) // Weitermachen zwecklos, in Endlosschleife warten
;

}
pinMode(Sensor, INPUT);
digitalWrite(Sensor, HIGH); // Pullup-Widerstände einschalten
delay(1000);
Serial.println("Bereit");
}

void loop()
{
if(digitalRead(Sensor) == LOW)
{ // Briefkasten geöffnet

if(MsgSent == false){ // Nachricht gesendet?
MsgSent = sendMessage("Post ist da");
if(MsgSent)
Serial.println("Tweet erfolgreich");

else
Serial.println("Tweet fehlgeschlagen");

}
}
else{
MsgSent = false; // Briefkasten geschlossen, Status zurücksetzen

}
delay(100);
}

boolean sendMessage(char *message)
{
boolean result = false;

const int tagLen = 16; // Anzahl Tag-Zeichen zum Framing der Nachricht
int msgLen = strlen(message) + tagLen + strlen(thingtweetAPIKey);
Serial.println("Verbinde ...");

534 | Kapitel 15: Ethernet und Netzwerke

if (client.connect(server, 80)) {
Serial.println("Fuehre POST-Request aus...");
client.print("POST /apps/thingtweet/1/statuses/update HTTP/1.1\r\n");
client.print("Host: api.thingspeak.com\r\n");
client.print("Connection: close\r\n");
client.print("Content-Type: application/x-www-form-urlencoded\r\n");
client.print("Content-Length: ");
client.print(msgLen);
client.print("\r\n\r\n");
client.print("api_key="); // msg-Tag
client.print(thingtweetAPIKey); // api-Schlüssel
client.print("&status="); // msg-Tag
client.print(message); // Die Nachricht
client.println("\r\n");
}
else {
Serial.println("Verbindung fehlgeschlagen");
}
// Response-String
if (client.connected()) {
Serial.println("Verbunden");
if(client.find("HTTP/1.1") && client.find("200 OK")){
result = true;

}
else
Serial.println("Trenne Verbindung - kein 200 OK");

}
else {
Serial.println("Verbindung getrennt");
}
client.stop();
client.flush();

return result;
}

Diskussion
Der Sketch wartet, bis ein Pin auf LOW geht, und sendet dann über die ThingTweet-API
eine Nachricht an Twitter.

Das Web-Interface übernimmt die Funktion sendMessage();, die die übergebene Nach-
richt sendet. Bei diesem Sketch versucht sie, die Nachricht »Post ist da« an Twitter zu
senden und gibt true zurück, wenn die Verbindung hergestellt werden kann.

Weitere Details finden Sie in der Dokumentation auf der ThingTweet-Website: http://
community.thingspeak.com/documentation/apps/thingtweet/

Die folgende Version nutzt die gleiche sendMessage-Funktion, kann aber mehrere Sensoren
überwachen:

/*
* Sende über mehrere Sensoren ausgelösten Tweet
* Nutzt api.thingspeak.com als Twitter-Proxy

15.12 Twitter-Nachrichten senden | 535

* Siehe: http://community.thingspeak.com/documentation/apps/thingtweet/
*/

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
byte server[] = { 184, 106, 153, 149 }; // IP-Adresse für ThingSpeak-API

char *thingtweetAPIKey = "YourThingTweetAPIKey"; // Ihr ThingTweet API-Schlüssel

EthernetClient client;
boolean MsgSent = false;

char frontOpen[] = "Die Vordertuer wurde geoeffnet";
char backOpen[] = "Die Hintertuer wurde geoeffnet";

const int frontSensor = 2; // Sensor-Pins
const int backSensor = 3;

boolean frontMsgSent = false;
boolean backMsgSent = false;

void setup()
{
// Ethernet.begin(mac,ip);
Serial.begin(9600);
if(Ethernet.begin(mac) == 0) { // Ethernet starten
Serial.println("Ethernet-Konfiguration ueber DHCP fehlgeschlagen");
while(true) // Weitermachen zwecklos, in Endlosschleife warten
;

}
pinMode(frontSensor, INPUT);
pinMode(backSensor, INPUT);
digitalWrite(frontSensor, HIGH); // pull-ups
digitalWrite(backSensor, HIGH);
delay(1000);
Serial.println("Bereit");
}

void loop()
{
if(digitalRead(frontSensor) == LOW)
{ // Vordertür offen
if (frontMsgSent == false) { // Nachricht gesendet?
frontMsgSent = sendMessage(frontOpen);

}
}
else{
frontMsgSent = false; // Tür geschlossen, Status zurücksetzen

}
if(digitalRead(backSensor) == LOW)
{
if(frontMsgSent == false) {
backMsgSent = sendMessage(backOpen);

}
}

536 | Kapitel 15: Ethernet und Netzwerke

else {
backMsgSent = false;

}
delay(100);
}

// sendMesage-Funktion aus obigem Sketch einfügen

Der zur Kommunikation mit Twitter verwendete Code ist identisch, doch die gesendeten
Nachrichten werden aus den Sensorwerten konstruiert, die über zwei Arduino-Digitalpins
eingelesen werden.

Siehe auch
Ein ThingSpeak Arduino-Tutorial finden Sie auf http://community.thingspeak.com/tutori-
als/arduino/using-an-arduino-ethernet-shield-to-update-a-thingspeak-channel/

15.13 Einfache Nachrichten (UDP) senden und empfangen

Problem
Sie wollen einfache Nachrichten über das Internet senden und empfangen.

Lösung
Der folgende Sketch nutzt die Arduino UDP-Bibliothek (User Datagram Protocol) zum
Senden und Empfangen von Strings. In diesem einfachen Beispiel gibt der Arduino den
empfangenen String über den seriellen Monitor aus und schickt dem Sender den String
»ACK« zurück:

/*
* UDPSendReceiveStrings
* Empfängt String in UDP-Nachrichten, gibt sie über den seriellen Port aus
* und schickt den String "ACK" an den Sender zurück
* Benötigt Arduino 1.0
*
*/

#include <SPI.h> // Für Arduino-Versionen ab 0018 Pflicht
#include <Ethernet.h>
#include <EthernetUdp.h> // Arduino-1.0-UDP-Bibliothek

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; // MAC-Adresse
byte ip[] = {192, 168, 1, 177 }; // IP-Adresse des Arduino

unsigned int localPort = 8888; // Lokaler Port

// Puffer zum Empfangen und Senden von Daten
char packetBuffer[UDP_TX_PACKET_MAX_SIZE]; //Puffer für eingehende Pakete
char replyBuffer[] = "ACK"; // Zurückgesendeter String

15.13 Einfache Nachrichten (UDP) senden und empfangen | 537

// UDP-Instanz zum Senden und Empfangen von Paketen per UDP
EthernetUDP Udp;

void setup() {
// Ethernet und UDP starten
Ethernet.begin(mac,ip);
Udp.begin(localPort);
Serial.begin(9600);
}

void loop() {
// Wenn Daten vorhanden sind, Paket einlesen
int packetSize = Udp.parsePacket();
if(packetSize)
{
Serial.print("Paket empfangen... Groesse: ");
Serial.println(packetSize);

// Paket in packetBuffer einlessen und IP-Adresse und Port-Nummer des Senders ermitteln
Udp.read(packetBuffer,UDP_TX_PACKET_MAX_SIZE);
Serial.println("Inhalt:");
Serial.println(packetBuffer);

// String an Sender zurückschicken
Udp.beginPacket(Udp.remoteIP(), Udp.remotePort());
Udp.write(replyBuffer);
Udp.endPacket();
}
delay(10);
}

Sie können das testen, indem Sie den folgenden Processing-Sketch auf Ihrem Computer
ausführen (in Kapitel 4 finden Sie Hinweise zur Installation und Betrieb von Processing):

// Processing-UDP-Beispiel zum Senden und Empfangen von String-Daten vom Arduino
// Drücken Sie eine beliebige Taste, um die Nachricht "Hallo, Arduino" zu senden

import hypermedia.net.*;

UDP udp; // UDP-Objekt definieren

void setup() {
udp = new UDP(this, 6000); // Datagramm-Verbindung an Port 6000 herstellen
//udp.log(true); // <-- Verbindungs-Aktivität ausgeben
udp.listen(true); // und auf eingehende Nachrichten warten
}

void draw()
{
}

void keyPressed() {
String ip = "192.168.1.177"; // Entfernte IP-Adresse
int port = 8888; // Ziel-Port

udp.send("Hallo, Arduino", ip, port); // Die zu sendende Nachricht
}

538 | Kapitel 15: Ethernet und Netzwerke

void receive(byte[] data) { // <-- Standard-Handler
//void receive(byte[] data, String ip, int port) { // Erweiterter Handler

for(int i=0; i < data.length; i++)
print(char(data[i]));

println();
}

Diskussion
Stecken Sie das Ethernet-Shield auf den Arduino und verbinden Sie das Ethernet-Kabel
mit dem Computer. Laden Sie den Sketch auf den Arduino hoch und führen Sie den
Processing-Sketch auf dem Computer aus. Drücken Sie eine beliebige Taste, um die
Nachricht »Hallo, Arduino« zu senden. Arduino sendet »ACK« zurück, was im Pro-
cessing-Textfenster erscheint. Die Länge des Strings ist durch eine Konstante in Ethernet-
Udp.h beschränkt. Voreingestellt sind 24 Bytes, was Sie aber erhöhen können, indem Sie
die folgende Zeile in Udp.h entsprechend anpassen:

#define UDP_TX_PACKET_MAX_SIZE 24

UDP ist eine einfache und schnelle Möglichkeit, Nachrichten über Ethernet zu senden
und zu empfangen. Doch es gibt Einschränkungen: Die Zustellung der Nachrichten wird
nicht garantiert und bei einem stark ausgelasteten Netzwerk können Nachrichten ver-
loren- oder in der falschen Reihenfolge eingehen. Aber UDP ist gut geeignet, wenn es um
solche Dinge wie die Status-Ausgabe von Arduino-Sensoren geht – jede Nachricht enthält
den aktuellen Sensorwert und verlorene Nachrichten werden durch nachfolgende Nach-
richten ersetzt.

Der folgende Sketch demonstriert das Senden und Empfangen von Sensor-Nachrichten.
Er empfängt Nachrichten mit Werten, die an die analogen Ausgangsports geschrieben
werden sollen, und antwortet dem Sender mit den Werten der analogen Eingangspins:

/*
* UDPSendReceive Sketch:
*/

#include <SPI.h> // Ab Arduino-Version 0018 Pflicht
#include <Ethernet.h>
#include <EthernetUDP.h> // Arduino 1.0 UDP-Bibliothek

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; // MAC-Adresse
byte ip[] = {192, 168, 1, 177 }; // IP-Adresse des Arduino

unsigned int localPort = 8888; // Lokaler Port

char packetBuffer[UDP_TX_PACKET_MAX_SIZE]; //Puffer für eingehende Pakete
int packetSize; // Größe empfangener Pakete

const int analogOutPins[] = { 3,5,6,9}; // Ethernet-Shield nutzt Pins 10 und 11

// UDP-Instanz zum Senden und Empfangen von UDP-Paketen
EthernetUDP Udp;

15.13 Einfache Nachrichten (UDP) senden und empfangen | 539

void setup() {
Ethernet.begin(mac,ip);
Udp.begin(localPort);

Serial.begin(9600);
Serial.println("Bereit");
}

void loop() {
// Wenn Daten vorhanden, Paket einlesen
packetSize = Udp.parsePacket();
if(packetSize > 0)
{
Serial.print("Paket empfangen... Groesse: ");
Serial.print(packetSize);
Serial.println("Inhalt:");
// Paket in packetBuffer schreiben und IP-Adresse und Portnummer des Senders ermitteln
packetSize = min(packetSize,UDP_TX_PACKET_MAX_SIZE);
Udp.read(packetBuffer,UDP_TX_PACKET_MAX_SIZE);

for(int i=0; i < packetSize; i++)
{

byte value = packetBuffer[i];
if(i < 4)
{
// Nur an die ersten vier analogen Ausgangspins schreiben
analogWrite(analogOutPins[i], value);

}
Serial.println(value, DEC);

}
Serial.println();
// Sender die Werte unserer analogen Ports mitteilen
sendAnalogValues(Udp.remoteIP(), Udp.remotePort());
}
//kurz warten
delay(10);
}

void sendAnalogValues(IPAddress targetIp, unsigned int targetPort)
{
int index = 0;
for(int i=0; i < 6; i++)
{
int value = analogRead(i);

packetBuffer[index++] = lowByte(value); // Niederwertiges Byte);
packetBuffer[index++] = highByte(value); // Höherwertiges Byte); }

}
//Paket an Sender zurückschicken
Udp.beginPacket(targetIp, targetPort);
Udp.write(packetBuffer);
Udp.endPacket();
}

540 | Kapitel 15: Ethernet und Netzwerke

Der Sketch sendet und empfängt die Werte der Analogports 0 bis 5 als Binärdaten. Wenn
Sie nicht mit Binärdaten enthaltenden Nachrichten vertraut sind, sehen Sie sich die
Einführung zu Kapitel 4 sowie Rezepte 4.6 und 4.7 an.

Der Unterschied besteht darin, dass die Daten mit Udp.write anstelle von Serial.write
gesendet werden.

Hier ein Processing-Sketch, den Sie mit dem obigen Sketch nutzen können. Es nutzt sechs
Rollbalken, die Sie mit der Maus bewegen können, um die sechs analogWrite-Werte
festzulegen. Er gibt die empfangenen Sensordaten im Processing-Textfenster aus:

// Processing UDPTest
// Demo Sketch senden + empfangen von Arduino-Daten durch Gebrauch von UDP

import hypermedia.net.*;

UDP udp; // Das UDP-Objekt definieren

HScrollbar[] scroll = new HScrollbar[6]; //Siehe: topics/gui/scrollbar

void setup() {
size(256, 200);
noStroke();
for(int i=0; i < 6; i++) // Rollbalken ausgeben
scroll[i] = new HScrollbar(0, 10 + (height / 6) * i, width, 10, 3*5+1);

udp = new UDP(this, 6000); // Datagramm-Verbindung anPort 6000 aufbauen
//udp.log(true); // Verbindungsaktivität ausgeben
udp.listen(true); // und auf eingehende Verbindung warten
}

void draw()
{
background(255);
fill(255);
for(int i=0; i < 6; i++) {
scroll[i].update();
scroll[i].display();
}
}

void keyPressed() {
String ip = "192.168.1.177"; // Entfernte IP-Adresse
int port = 8888; // Ziel-Port
byte[] message = new byte[6] ;

for (int i=0; i < 6; i++){
message[i] = byte(scroll[i].getPos());
println(int(message[i]));
}
println();
udp.send(message, ip, port);

}

15.13 Einfache Nachrichten (UDP) senden und empfangen | 541

void receive(byte[] data) { // <-- Standard-Handler
//void receive(byte[] data, String ip, int port) { // <-- Erweiterter Handler

println("eingehende Daten:");
for(int i=0; i < 6; i++){
scroll[i].setPos(data[i]);
println((int)data[i]);

}
}

class HScrollbar
{
int swidth, sheight; // Breite und Höhe des Balkens
int xpos, ypos; // x- und y-Position des Balkens
float spos, newspos; // x-Position des Sliders
int sposMin, sposMax; // max- und min-Wert des Sliders
int loose; // wie locker/fest
boolean over; // Maus über Slider?
boolean locked;
float ratio;

HScrollbar (int xp, int yp, int sw, int sh, int l) {
swidth = sw;
sheight = sh;
int widthtoheight = sw - sh;
ratio = (float)sw / (float)widthtoheight;
xpos = xp;
ypos = yp-sheight/2;
spos = xpos + swidth/2 - sheight/2;
newspos = spos;
sposMin = xpos;
sposMax = xpos + swidth - sheight;
loose = l;
}

void update() {
if (over()) {
over = true;
} else {
over = false;
}
if (mousePressed && over) {
locked = true;
}
if (!mousePressed) {
locked = false;
}
if (locked) {
newspos = constrain(mouseX-sheight/2, sposMin, sposMax);
}
if(abs(newspos - spos) > 1) {
spos = spos + (newspos-spos)/loose;
}
}

542 | Kapitel 15: Ethernet und Netzwerke

int constrain(int val, int minv, int maxv) {
return min(max(val, minv), maxv);
}

boolean over() {
if (mouseX > xpos && mouseX < xpos+swidth &&
mouseY > ypos && mouseY < ypos+sheight) {
return true;
} else {
return false;
}
}

void display() {
fill(255);
rect(xpos, ypos, swidth, sheight);
if (over || locked) {
fill(153, 102, 0);
} else {
fill(102, 102, 102);
}
rect(spos, ypos, sheight, sheight);
}

float getPos() {
return spos * ratio;
}

void setPos(int value) {
spos = value / ratio;
}
}

15.14 Die Zeit von einem Internet-Zeitserver abrufen

Problem
Sie wollen die aktuelle Zeit von einem Internet-Zeitserver abrufen, z.B. um die auf dem
Arduino laufende Software-Uhr zu synchronisieren.

Lösung
Der folgende Sketch ruft die Zeit von einem NTP-Server (Network Time Protocol) ab und
gibt das Ergebnis in Sekunden seit dem 1.1.1900 (NTP-Zeit) und in Sekunden seit dem
1.1.1970 aus:

/*
* UdpNtp Sketch
* Zeit von einem NTP-Zeitserver abrufen
* Demonstriert UDP-sendPacket und -ReceivePacket
*/

#include <SPI.h>

15.14 Die Zeit von einem Internet-Zeitserver abrufen | 543

#include <Ethernet.h>

#include <EthernetUDP.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; // MAC-Adresse

unsigned int localPort = 8888; // Lokaler Port

IPAddress timeServer(192, 43, 244, 18); // time.nist.gov NTP-Server
const int NTP_PACKET_SIZE= 48; // NTP-Zeitstempel steht in den ersten 48

// Bytes der NAchricht
byte packetBuffer[NTP_PACKET_SIZE]; // Puffer für ein- und ausgehende Pakete

// UDP-Instanz zum Senden und Empfangen von UDP-Paketen
EthernetUDP Udp;

void setup()
{
Serial.begin(9600);
// start Ethernet and UDP
if (Ethernet.begin(mac) == 0) {
Serial.println("Ethernet-Konfiguration ueber DHCP fehlgeschlagen");
// Weitermachen zwecklos, in Endlosschleife warten
for(;;)
;

}
Udp.begin(localPort);
}

void loop()
{
sendNTPpacket(timeServer); // NTP-Paket an Zeitserver senden
// Antwort verfügbar?
delay(1000);
if (Udp.parsePacket()) {
Udp.read(packetBuffer,NTP_PACKET_SIZE); // Paket in Puffer einlesen

// Timestamp beginnt an Byte 40, vier Bytes in long-Wert umwandeln
unsigned long hi = word(packetBuffer[40], packetBuffer[41]);
unsigned long low = word(packetBuffer[42], packetBuffer[43]);
unsigned long secsSince1900 = hi << 16 | low; // NTP-Zeit

// (Sekunden seit dem 1.1.1900)

Serial.print("Sekunden seit dem 1.1.1900 = ");
Serial.println(secsSince1900);

Serial.print("Unix-Zeit = ");
// Unix-Zei beginnt am 1.1.1970
const unsigned long seventyYears = 2208988800UL;
unsigned long epoch = secsSince1900 - seventyYears; // 70 Jahre abziehen
Serial.println(epoch); // Unix-Zeit ausgeben

// Stunde, Minute und Sekunde ausgeben:
// UTC ist die Zeit am Greenwich-Meridian (GMT)
Serial.print("Die UTC-Zeit ist ");
// Stunde ausgeben (86400 sind Sek./Tag)

544 | Kapitel 15: Ethernet und Netzwerke

Serial.print((epoch % 86400L) / 3600);
Serial.print(':');
if (((epoch % 3600) / 60) < 10) {
// Führende Null für die ersten zehn Minuten
Serial.print('0');
}
// Minute ausgeben (3600 Sek sind 1 Std.)
Serial.print((epoch % 3600) / 60);
Serial.print(':');
if ((epoch % 60) < 10) {
// Führende Null für die erste zehn Sekunden
Serial.print('0');
}
Serial.println(epoch %60); // Sekunden ausgeben
}
// Zehn Sekunden bis zur nächsten Abfrage warten
delay(10000);
}

// NTP-Request an den Zeitserver mit der angegebenen Adresse senden
unsigned long sendNTPpacket(IPAddress& address)
{
memset(packetBuffer, 0, NTP_PACKET_SIZE); // Alle Bytes im Puffer auf 0 setzen

// Für NTP-Request benötigte Werte setzen
packetBuffer[0] = B11100011; // LI, Version, Mode
packetBuffer[1] = 0; // Stratum
packetBuffer[2] = 6; // Max. Intervall zwischen Nachrichten in Sekunden
packetBuffer[3] = 0xEC; // Genauigkeit der Uhr
// Bytes 4 - 11 sind Root Delay und wurden von memset auf 0 gesetzt
packetBuffer[12] = 49; // Referenz-ID, vier Bytes
packetBuffer[13] = 0x4E;
packetBuffer[14] = 49;
packetBuffer[15] = 52;

// Alle NTP-Felder enthalten vorgegebene Werte, nun
// kann das anfordernde Paket gesendet werden
Udp.beginPacket(address, 123); //NTP-Requests gehen an Port 123
Udp.write(packetBuffer,NTP_PACKET_SIZE);
Udp.endPacket();
}

Diskussion
NTP ist ein Protokoll zur Zeitsynchronisation über Internet-Nachrichten. NTP-Server
geben die Zeit als Wert der seit dem 1.1.1900 verstrichenen Sekunden zurück. NTP gibt
die Zeit als koordinierte Weltzeit (UTC, Coordinated Universal Time, entspricht der
Greenwich Mean Time) zurück und berücksichtigt weder Zeitzonen noch die Sommer-
zeit.

NTP-Server verwenden UDP-Nachrichten. Eine Einführung in UDP finden Sie in Re-
zept 15.13. Die NTP-Nachricht wird in der Funktion sendNTPpacket erzeugt und Sie
müssen den Code dieser Funktion sehr wahrscheinlich nicht ändern. Die Funktion
erwartet die Adresse eines NTP-Servers. Sie können die Adresse aus dem obigen Beispiel

15.14 Die Zeit von einem Internet-Zeitserver abrufen | 545

verwenden, oder Sie suchen sich einen der vielen Server aus, die eine Suche nach »NTP
Adresse« ausspuckt. Wenn Sie mehr über die einzelnen NTP-Felder erfahren wollen,
sehen Sie sich die Dokumentation auf http://www.ntp.org/ an.

Die Antwort von NTP ist eine Nachricht in einem festen Format. Die Zeitinformation
besteht aus vier Bytes, die am 40. Byte beginnen. Diese vier Bytes bilden den 32-Bit-Wert
(ein Integerwert vom Typ unsigned long), mit der seit dem 1.1.1900 verstrichenen Zeit in
Sekunden. Dieser Wert (und die in Unix-Zeit umgewandelte Zeit) werden ausgegeben.
Soll die Zeit vom NTP-Server in ein freundlicheres Format mit Stunden, Minuten,
Sekunden sowie Tag, Monat, Jahr umgewandelt werden, können Sie die Arduino Time-
Bibliothek nutzen (siehe Kapitel 12). Hier eine Variante des obigen Codes, die die Zeit im
Format 14:32:56 Monday 18 Jan 2010 ausgibt:

/*
* Time_NTP Sketch
* Zeisynchronisation per NTP-Zeitserver
* Der Sketch nutzt die Time- und die
* Arduino Ethernet-Bibliothek
*/

#include <Time.h>
#include <SPI.h> // Seit Arduino-Version 0018 Pflicht
#include <Ethernet.h>
#include <EthernetUDP.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
byte ip[] = { 192, 168, 1, 44 }; // Gültige IP-Adresse (oder DHCP) verwenden

unsigned int localPort = 8888; // Lokaler Port

IPAddress timeServer(192, 43, 244, 18); // time.nist.gov NTP-Server

const int NTP_PACKET_SIZE= 48; // NTP.Zeitstempel in den ersten 48 Bytes der Nachricht
byte packetBuffer[NTP_PACKET_SIZE]; // Puffer für ein- und ausgehende Pakete

time_t prevDisplay = 0; // Wann wurde die Zeit zuletzt ausgegeben

// UDP-Instanz zum Senden und Empfangen von UDP-Paketen
EthernetUDP Udp;

void setup()
{
Serial.begin(9600);
Ethernet.begin(mac,ip);
Udp.begin(localPort);
Serial.println("Warte auf Synchronisation");
setSyncProvider(getNtpTime);
while(timeStatus()== timeNotSet)
; // Warten, bis die Zeit vom Sync-Provider gesetzt wurde

}

546 | Kapitel 15: Ethernet und Netzwerke

void loop()
{
if(now() != prevDisplay) // Ausgabe nur aktualisieren, wenn sich die Zeit geändert hat
{
prevDisplay = now();
digitalClockDisplay();
}
}

void digitalClockDisplay(){
// Digitalanzeige der Uhrzeit
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.print(" ");
Serial.print(dayStr(weekday()));
Serial.print(" ");
Serial.print(day());
Serial.print(" ");
Serial.print(monthShortStr(month()));
Serial.print(" ");
Serial.print(year());
Serial.println();
}

void printDigits(int digits){
// Hilfsfunktion für Digitaluhr: Gibt
// vorstehenden Doppelpunkt und führende 0 aus
Serial.print(":");
if(digits < 10)
Serial.print('0');
Serial.print(digits);
}

/*-------- NTP-Code ----------*/

unsigned long getNtpTime()
{
sendNTPpacket(timeServer); // Sendet NTP-Paket an Zeitserver
delay(1000);
if (Udp.parsePacket()) {
Udp.read(packetBuffer,NTP_PACKET_SIZE); // Paket in Puffer einlesen

//Zeitstempel beginnt an Byte 40, vier Bytes in long long integer umwandeln
unsigned long hi = word(packetBuffer[40], packetBuffer[41]);
unsigned long low = word(packetBuffer[42], packetBuffer[43]);
// NTP-Zeit (Sekunden seit dem 1.1.1900)
unsigned long secsSince1900 = hi << 16 | low;
// Unix-Zeit beginnt am 1.1.1970
const unsigned long seventyYears = 2208988800UL;
unsigned long epoch = secsSince1900 - seventyYears; // 70 Jahre abziehen
return epoch;

}
return 0; // Bei Fehler 0 zurückgeben
}

15.14 Die Zeit von einem Internet-Zeitserver abrufen | 547

// NTP-Request an Zeitserver an übergebene Adresse senden
unsigned long sendNTPpacket(IPAddress address)
{
memset(packetBuffer, 0, NTP_PACKET_SIZE); // Alle Bytes im Puffer auf 0 setzen

// Werte für NTP-Request initialisieren
packetBuffer[0] = B11100011; // LI, Version, Mode
packetBuffer[1] = 0; // Stratum
packetBuffer[2] = 6; // Max. Intervall zwischen Nachrichten in Sekunden
packetBuffer[3] = 0xEC; // Genauigkeit
// Bytes 4 - 11 sind für Root Delay und wurden von memset auf 0 gesetzt
packetBuffer[12] = 49; // 4-Byte-Referenz-ID
packetBuffer[13] = 0x4E;
packetBuffer[14] = 49;
packetBuffer[15] = 52;

// Zeitstempel anforderndes Paket senden
Udp.beginPacket(address, 123); //NTP-Requests gehen an Port 123
Udp.write(packetBuffer,NTP_PACKET_SIZE);
Udp.endPacket();
}

Siehe auch
Kapitel 12 für weitere Informationen zur Arduino Time-Bibliothek.

Details zu NTP finden Sie auf http://www.ntp.org/.

NTP-Code von Jesse Jaggars (der den Sketch in diesem Rezept inspiriert hat), finden Sie
unter http://github.com/cynshard/arduino-ntp.

Wenn Sie eine Arduino-Release vor 1.0 verwenden, können Sie die UDP-Bibliothek von
https://bitbucket.org/bjoern/arduino_osc/src/tip/libraries/Ethernet/ herunterladen.

15.15 Pachube-Feeds überwachen

Problem
Arduino soll auf Informationen eines Webdienstes reagieren, der Sicherheit und Daten-
Backups bietet. Pachube ist ein Web-basierter Dienst, der Daten-Feeds in Echtzeit bietet.
Sie wollen basierend auf den Datenwerten eines Pachube-Feeds ein Gerät aktivieren oder
einen Alarm auslösen.

Lösung
Der folgende Sketch liest die ersten vier Datenfelder aus Feed Nr. 504 ein und gibt sie über
den seriellen Monitor aus:

/*
* Monitor Pachube feed

548 | Kapitel 15: Ethernet und Netzwerke

* Lese Feed mit V2-API im CSV-Format
*/

#include <SPI.h>
#include <Ethernet.h>

const int feedID = 504; // ID des entfernten
// Pachube-Feeds, mit dem
// Sie die Verbindung herstellen

const int streamCount = 4; // Zahl der einzulesenden Daten-Streams
const long PACHUBE_REFRESH = 600000; // Alle 10 Minuten aktualisieren
const long PACHUBE_RETRY = 10000; // Bei Verbindungsfehler/-reset

// 10 Sekunden warten
// Darf nicht unter 5 Sek. liegen

#define PACHUBE_API_KEY "your key here . . ." // Durch Ihren API-Schlüssel ersetzen

// MAC-Adresse; muss innerhalb des Netzwerks eindeutig sein
byte mac[] = { 0xCC, 0xAC, 0xBE, 0xEF, 0xFE, 0x91 };
char serverName[] = "api.pachube.com";

int streamData[streamCount]; // Typ bei Bedarf an Ihre Daten anpassen

EthernetClient client;

void setup()
{
Serial.begin(9600);
if (Ethernet.begin(mac) == 0) {
Serial.println(F("Ethernet-Konfiguration ueber DHCP fehlgeschlagen"));
// Weitermachen zwecklos, in Endlosschleife warten
for(;;)
;

}
}

void loop()
{
if(getFeed(feedID, streamCount) == true)
{
for(int id = 0; id < streamCount; id++){
Serial.println(streamData[id]);

}
Serial.println("--");
delay(PACHUBE_REFRESH);

}
else
{
Serial.println(F("Konnte Feed nicht empfangen"));
delay(PACHUBE_RETRY);

}
}

// Gibt wahr zurück, wenn Verbindung hergestellt und alle angeforderten Streams eingelesen
// werden konnten
boolean getFeed(int feedId, int streamCount)
{

15.15 Pachube-Feeds überwachen | 549

boolean result = false;
if (client.connect(serverName, 80)>0) {
client.print(F("GET /v2/feeds/"));
client.print(feedId);
client.print(F(".csv HTTP/1.1\r\nHost: api.pachube.com\r\nX-PachubeApiKey: "));
client.print(PACHUBE_API_KEY);
client.print("\r\nUser-Agent: Arduino 1.0");
client.println("\r\n");
}
else {
Serial.println("Verbindung fehlgeschlagen");
}
if (client.connected()) {
Serial.println("Verbunden");
if(client.find("HTTP/1.1") && client.find("200 OK"))
result = processCSVFeed(streamCount);

else
Serial.println("Trenne Verbindung - kein 200 OK");

}
else {
Serial.println("Verbindung getrennt");
}
client.stop();
client.flush();
return result;
}

int processCSVFeed(int streamCount)
{
int processed = 0;
client.find("\r\n\r\n"); // Leerzeile zeigt Anfang der Daten an
for(int id = 0; id < streamCount; id++)
{
int id = client.parseInt(); // Sie können das zur Wahl einer bestimmten ID nutzen
client.find(","); // Letzten Zeitstempel überspringen
streamData[id] = client.parseInt();
processed++;
}
return(processed == streamCount); // Wahr zurückgeben, wenn alle Daten empfangen wurden
}

Diskussion
Um Pachube nutzen zu können, müssen Sie zuerst einen Account einrichten. Die Pachube
Quickstart-Seite erklärt wie: http://community.pachube.com/?q=node/4. Sobald Sie sich
angemeldet haben, erhalten Sie per E-Mail einen Benutzernamen und einen API-Schlüssel.
Tragen Sie den Schlüssel in die folgende Zeile des Sketches ein:

#define PACHUBE_API_KEY "your key here . . ." // Durch Ihren API-Schlüssel ersetzen

Jeder Pachube-Feed (Datenquelle) wird über eine ID identifiziert. Unser Beispiel-Sketch
nutzt Feed 504 (Umgebungsdaten aus dem Pachube-Büro). Im folgenden Sketch erfolgt
der Zugriff auf die Feeds über die Methode getFeed, der die Feed-ID und die Zahl der
Datenelemente übergeben wird. Bei Erfolg gibt getFeed true zurück und Sie können die

550 | Kapitel 15: Ethernet und Netzwerke

Daten mit der processFeed-Methode verarbeiten. Sie liefert den Wert der Sie interes-
sierenden Daten zurück (jedes Datenelement wird bei Pachube als Stream bezeichnet).

Pachube unterstützt eine Reihe von Datenformaten und der obige Sketch nutzt das
einfachste: CSV (unter http://api.pachube.com/v2/#data-formats erfahren Sie mehr über
die Pachube-Datenformate).

Sie können zusätzliche Informationen aus einem Feed extrahieren, wenn Sie das XML-
Format nutzen. Hier ein Beispiel der Pachube XML-Daten des in diesem Rezept ver-
wendeten Streams:

<environment updated="2010-06-08T09:30:11Z" id="504"
creator="http://www.pachube.com/users/hdr">
<title>Pachube Office environment</title>
<feed>http://api.pachube.com/v2/feeds/504.xml</feed>
<status>live</status>
<website>http://www.haque.co.uk/</website>
<tag>Tag1</tag>
<tag>Tag2</tag>
<location domain="physical" exposure="indoor" disposition="fixed">
<name>office</name>
<lat>51.5235375648154</lat>
<lon>-0.0807666778564453</lon>
<ele>23.0</ele>
</location>
<data id="0">
<tag>humidity</tag>
<min_value>0.0</min_value>
<max_value>847.0</max_value>
<current_value at="2010-06-08T09:30:11.000000Z">311</current_value>
</data>
</environment>

Der Titel Pachube Office environment zeigt den Anfang der Daten an. Jeder Stream wird
durch den Tag data id= (gefolgt von der numerischen Stream-ID) eingeleitet. Die Funktion
processXMLFeed im folgenden Sketch nutzt diese Information, um die gewünschte Feed-ID
zu finden und die minimalen, maximalen und aktuellen Werte aus dem gewünschten
Feed zu extrahieren:

/*
* Monitor Pachube feed
* V2-API mit XML-Format
* Steuert Servo über den Wert eines bestimmten Streams
*/

#include <SPI.h>
#include <Ethernet.h>

#include <Servo.h> // Dieser Sketch steuert einen Servo

const int feedID = 504; // Gewünschter Pachube-Feed
const int streamToGet = 0; // Daten-ID des gewünschten Streams

const long PACHUBE_REFRESH = 600000; // Alle 10 Minuten aktualisieren
const long PACHUBE_RETRY = 10000; // Bei Verbindungsfehler/-reset

15.15 Pachube-Feeds überwachen | 551

#define PACHUBE_API_KEY "your key here . . ." // Ihren API-Schlüssel eintragen

// MAC-Adresse, muss in Ihrem Netzwerk eindeutig sein
byte mac[] = { 0xCC, 0xAC, 0xBE, 0xEF, 0xFE, 0x91 };
char serverName[] = "api.pachube.com";

EthernetClient client;

// Von Pachube zurückgelieferte Stream-Werte
int currentValue; // Aktueller Wert des Streams
int minValue; // Minimaler Wert des Streams
int maxValue; // Maximaler Wert des Streams

Servo myservo; // Servo-Objekt
void setup()
{
Serial.begin(9600);
myservo.attach(9); // Servo an Pin 9 mit Servo-Objekt verbinden

if (Ethernet.begin(mac) == 0) {
Serial.println("Ethernet-Konfiguration ueber DHCP fehlgeschlagen");
// Weitermachen zwecklos, in Endlosschleife warten
for(;;)
;

}
}

void loop()
{
if(getFeed(feedID, streamToGet) == true)
{
Serial.print(F("Wert="));
Serial.println(currentValue);
// Im Bereich von 0 bis 90 Grad proportional positionieren
int servoPos = map(currentValue, minValue, maxValue, 0,90);
myservo.write(servoPos);
Serial.print(F("Pos="))

;
Serial.println(servoPos);
delay(PACHUBE_REFRESH);
}
else
{
Serial.println(F("Konnte Feed nicht lesen"));
delay(PACHUBE_RETRY);
}
}

// Gibt wahr zurück, wenn Verbindung mit angefordertem Stream hergestellt und alle angeforderte
Daten abgerufen werden konnten
boolean getFeed(int feedId, int streamId)
{
boolean result = false;
if (client.connect(serverName, 80)>0) {
Serial.print("Verbinde mit Feed ");

552 | Kapitel 15: Ethernet und Netzwerke

Serial.print(feedId);
Serial.print(" ... ");
client.print("GET /v2/feeds/");
client.print(feedId);
client.print(".xml HTTP/1.1\r\nHost: api.pachube.com\r\nX-PachubeApiKey: ");
client.print(PACHUBE_API_KEY);
client.print("\r\nUser-Agent: Arduino 1.0");
client.println("\r\n");
}
else {
Serial.println("Verbindung fehlgeschlagen");
}
if (client.connected()) {
Serial.println("Verbunden");
if(client.find("HTTP/1.1") && client.find("200 OK"))
result = processXMLFeed(streamId);
else
Serial.println("Trenne Verbindung - kein 200 OK");

}
else {
Serial.println("Verbindung getrennt");
}
client.stop();
client.flush();
return result;
}

boolean processXMLFeed(int streamId)
{
client.find("<environment updated=");
for(int id = 0; id <= streamId; id++)
{
if(client.find("<data id=")){ // Finde nächstes Datenfeld
if(client.parseInt()== streamId){ // Ist das unser Stream?
if(client.find("<min_value>")){
minValue = client.parseInt();
if(client.find("<max_value>")){
maxValue = client.parseInt();
if(client.find("<current_value ")){
client.find(">"); // Bis zur spitzen Klammer suchen
currentValue = client.parseInt();
return true; // Alle benötigten Daten gefunden

}
}
}

}
}
else {
Serial.print(F("Kann Daten für ID "));
Serial.println(id);
Serial.print(F(" nicht finden")); }

}
return false; // Parsing der Daten fehlgeschlagen
}

Das Stream-Parsing von Arduino 1.0 wird genutzt, um nach den gewünschten Feldern zu
suchen. Eine Liste aller Felder finden Sie in der Dokumentation der Pachube-API.

15.15 Pachube-Feeds überwachen | 553

Siehe auch
Die Pachube API-Dokumentation: http://api.pachube.com/v2/.

Eine Arduino-Bibliothek, die den Zugriff auf Pachube vereinfacht, finden Sie hier: http://
code.google.com/p/pachubelibrary/.

15.16 Informationen an Pachube senden

Problem
Arduino soll Feeds auf Pachube aktualisieren. Zum Beispiel sollen die Werte der an den
Arduino angeschlossenen Sensoren in einem Pachube-Feed veröffentlicht werden.

Lösung
Der folgende Sketch liest die Temperatur-Sensoren ein, die mit den analogen Eingangs-
pins (siehe Rezept 6.8) verbunden sind, und sendet die Daten an Pachube:

/*
* Update Pachube feed
* Sendet Temperatur von (bis zu) sechs LM35-Sensoren
* V2 API
*/

#include <SPI.h>
#include <Ethernet.h>

const int feedID = 2955; // ID des Feeds
const int streamCount = 6; // Anzahl der zu sendenden Daten-Streams (Sensoren)
const long REFRESH_INTERVAL = 60000; // Jede Minute aktualisieren
// Bei Verbindungsfehler/-reset 10 Sekunden warten
// Darf nicht unter 5 Sekunden liegen
const long RETRY_INTERVAL = 10000;

#define PACHUBE_API_KEY "Your key here . . . " // Ihren API-Schlüssel eintragen

// Muss für Ihr Netzwerk eindeutig sein
byte mac[] = { 0xCC, 0xAC, 0xBE, 0xEF, 0xFE, 0x91 };
char serverName[] = "www.pachube.com";

EthernetClient client;

void setup()
{
Serial.begin(9600);
Serial.println("Bereit");
if (Ethernet.begin(mac) == 0) { // Ethernet starten
Serial.println("Ethernet-Konfiguration ueber DHCP fehlgeschlagen");
while(true) // Weitermachen zwecklos, in Endlosschleife warten
;

}
}

554 | Kapitel 15: Ethernet und Netzwerke

void loop()
{
String dataString = "";
for (int id = 0; id < streamCount; id++)
{
int temperature = getTemperature(id);
dataString += String(id);
dataString += ",";
dataString += String(temperature);
dataString += "\n";

}
if (putFeed(feedID, dataString, dataString.length()) == true)
{
Serial.println("Feed aktualisiert");
delay(REFRESH_INTERVAL);

}
else
{
Serial.println("Konnte Feed nicht aktualisieren");
delay(RETRY_INTERVAL);

}
}

// true zurückgeben, wenn Verbindung hergestellt und Daten gesendet werden konnten
boolean putFeed(int feedId, String feedData, int length)
{
boolean result = false;
if (client.connect(serverName, 80)>0) {
Serial.print("Verbinde Feed "); Serial.println(feedId);
client.print("PUT /v2/feeds/");
client.print(feedId);
client.print(".csv HTTP/1.1\r\nHost: api.pachube.com\r\nX-PachubeApiKey: ");
client.print(PACHUBE_API_KEY);
client.print("\r\nUser-Agent: Arduino 1.0");
client.print("\r\nContent-Type: text/csv\r\nContent-Length: ");
client.println(length+2, DEC); // für cr/lf
client.println("Connection: close");
client.println("\r\n");
// jetzt Daten ausgeben
Serial.println(feedData); // Optional an seriellen Monitor ausgeben
client.print(feedData);
client.println("\r\n");
}
else {
Serial.println("Verbindung fehlgeschlagen");
}
// Response-String
if (client.connected()) {
Serial.println("Verbunden");
if(client.find("HTTP/1.1") && client.find("200 OK")){
result = true;

}
else
Serial.println("Verbindung getrennt - kein 200 OK");

}
else {

15.16 Informationen an Pachube senden | 555

Serial.println("Verbindung getrennt");
}
client.stop();
client.flush();
return result;
}

// Temperatur (gerundet auf den nächsten Grad-Wert) zurückgeben
int getTemperature(int pin)
{
int value = analogRead(pin);
int celsius = (value * 500L) / 1024; // 10mv pro Grad
return celsius;

}

Diskussion
Das Rezept ähnelt Rezept 15.15, verwendet aber die putFeed-Methode, um Daten an
Pachube zu senden. Im Beispiel werden Informationen von Temperatursensoren gesen-
det. Für Code, der zu Ihrer Anwendung passt, sehen Sie sich das Kapitel an, in dem dieser
Sensor behandelt wird.

Pachube benötigt die Anzahl der Zeichen der Daten, bevor der eigentliche Inhalt gesendet
wird. Sie wird über die Stringverkettungs-Funktion (siehe Rezept 2.5) bestimmt. Zuerst
wird ein String erzeugt, der alle Felder enthält, und dann wird String.length()genutzt,
um dessen Länge zu bestimmen.

Der folgende Sketch nutzt eine andere Technik, die kein RAM für Stringdaten benötigt. Er
nutzt eine neue, bei Arduino 1.0 eingeführte Fähigkeit, die die Zahl der ausgegebenen
Zeichen zurückliefert. Die Funktion outputCSV zählt die Anzahl der ausgegebenen Zeichen
und gibt sie zurück. Sie wird zuerst aufgerufen, um die Gesamtzahl der über den seriellen
Port ausgegebenen Zeichen zu berechnen. Sie wird dann erneut aufgerufen, um die
Zeichen an den Ethernet-Client zu senden, der mit Pachube verbunden ist:

/*
* Update Pachube feed
* Sendet Temperatur im Fließkomma-Format von (bis zu) sechs LM35-Sensoren
* V2-API
*/

#include <SPI.h>
#include <Ethernet.h>

const int feedID = 2955; // ID des Feeds
const int streamCount = 6; // Zahl zu sendender Daten-Streams (Sensoren)
const long REFRESH_INTERVAL = 60000; // Jede Minute aktualisieren
// Bei Verbindungsfehler/-reset 10 Sekunden warten
// Darf nicht unter 5 Sekunden liegen
const long RETRY_INTERVAL = 10000;

#define PACHUBE_API_KEY "Your key here . . . " // Ihren API-Schlüssel eintragen

556 | Kapitel 15: Ethernet und Netzwerke

// Muss innerhalb des Netzwerks eindeutig sein
byte mac[] = { 0xCC, 0xAC, 0xBE, 0xEF, 0xFE, 0x91 };
char serverName[] = "www.pachube.com";

EthernetClient client;

void setup()
{
Serial.begin(9600);
Serial.println("Bereit");
if(Ethernet.begin(mac) == 0) { // Ethernet starten
Serial.println("Ethernet-Konfiguration ueber DHCP fehlgeschlagen");
while(true) // Weitermachen zwecklos, in Endlosschleife warten
;

}
}

void loop()
{
int contentLen = outputCSV(Serial); // Zahl der Zeichen ermitteln
if(putFeed(feedID, contentLen) == true){
Serial.println("Feed aktualisiert");
delay(REFRESH_INTERVAL);

}
else {
Serial.println("Konnte Feed nicht aktualisieren");
delay(RETRY_INTERVAL);

}
}

// true zurückgeben, wenn Verbindung hergestellt und Daten gesendet werden konnten
boolean putFeed(int feedId, int length)
{
boolean result = false;
if (client.connect(serverName, 80)>0) {
Serial.print("Verbinde Feed "); Serial.println(feedId);
client.print("PUT /v2/feeds/");
client.print(feedId);
client.print(".csv HTTP/1.1\r\nHost: api.pachube.com\r\nX-PachubeApiKey: ");
client.print(PACHUBE_API_KEY);
client.print("\r\nUser-Agent: Arduino 1.0");
client.print("\r\nContent-Type: text/csv\r\nContent-Length: ");
client.println(length+2, DEC); // allow for cr/lf
client.println("Connection: close");
client.println("\r\n");
outputCSV(client);
client.println("\r\n");
}
else {
Serial.println("Verbindung fehlgeschlagen");
}
// response string
if (client.connected()) {
Serial.println("Verbunden");
if(client.find("HTTP/1.1") && client.find("200 OK")){
result = true;

}

15.16 Informationen an Pachube senden | 557

else
Serial.println("Trenne Verbindung - kein 200 OK");

}
else {
Serial.println("Verbindung getrent");
}
client.stop();
client.flush();
return result;
}

int outputCSV(Stream &stream)
{
int count = 0;
for(int id = 0; id < streamCount; id++) {
float temperature = getTemperature(id);
count += stream.print(id,DEC);
count += stream.print(',');
count += stream.print(temperature,1); // Eine Stelle hinterm Komma
count += stream.print("\n");
}
return count;
}

float getTemperature(int inPin)
{
int value = analogRead(inPin);
float millivolts = (value / 1024.0) * 5000; // Siehe Rezept 6.8
return millivolts / 10; // 10mV pro Grad Celsius

}

558 | Kapitel 15: Ethernet und Netzwerke

KAPITEL 16

Bibliotheken nutzen,
ändern und aufbauen

16.0 Einführung
Bibliotheken erweitern die Funktionalität der Arduino-Umgebung. Sie erweitern die zur
Verfügung stehenden Befehle um Fähigkeiten, die im Arduino-Kern nicht zur Verfügung
stehen. Mit Bibliotheken können Sie zusätzliche Features hinzufügen, die jedem Sketch
zur Verfügung stehen, sobald die Bibliothek installiert ist.

Die Arduino-Software-Distribution enthält fest integrierte Bibliotheken, die gängige Auf-
gaben übernehmen. Diese Bibliotheken werden in Rezept 16.1 diskutiert.

Bibliotheken stellen auch eine gute Möglichkeit dar, Code zu teilen, der für andere
nützlich sein könnte. Viele Bibliotheken von Drittanbietern stellen spezialisierte Fähig-
keiten zur Verfügung. Sie können im Arduino Playground und über andere Sites herunter-
geladen werden. Viele der in den früheren Kapitel behandelten Bauelemente nutzen
Bibliotheken, um den Zugriff auf diese Geräte zu vereinfachen.

Bibliotheken können aber auch komplexen Code kapseln, um dessen Verwendung zu
vereinfachen. Ein Beispiel ist die bei Arduino mitgelieferte Wire-Bibliothek, die einen
Großteil der Komplexität der Hardware-Kommunikation auf unterster Ebene vor uns
versteckt (siehe Kapitel 13).

Dieses Kapitel erläutert, wie man Bibliotheken nutzt und anpasst. Es zeigt auch, wie man
eigene Bibliotheken aufbaut.

16.1 Mitgelieferte Bibliotheken nutzen

Problem
Sie wollen Bibliotheken in Ihrem Sketch nutzen, die bei der Arduino-Distribution mit-
geliefert werden.

| 559

Lösung
Dieses Rezept zeigt, wie Sie Funktionen einer Arduino-Bibliothek in Ihrem Sketch nutzen
können.

Eine Liste der verfügbaren Bibliotheken können Sie sich im IDE-Menü über Sketch→Im-
port Library anzeigen lassen. Es erscheint eine Liste mit allen verfügbaren Bibliotheken.
Etwa das erste Dutzend sind die Bibliotheken, die mit Arduino mitgeliefert werden. Eine
horizontale Linie trennt diese von den Bibliotheken, die Sie selbst heruntergeladen und
installiert haben.

Klicken Sie eine Bibliothek an, wird sie in den aktuellen Sketch eingebunden, indem die
folgende Zeile zu Beginn des Sketches eingefügt wird:

#include <NamedergewähltenBibliothek.h>

Das sorgt dafür, dass die Funktionen der Bibliothek in Ihrem Sketch zur Verfügung
stehen.

Die Arduino-IDE aktualisiert die Liste der verfügbaren Bibliotheken nur
beim Start. Wenn Sie eine Bibliothek installieren, nachem die IDE bereits
läuft, müssen Sie die IDE beenden und neu starten, damit die neue Biblio-
thek erkannt wird.

Die Arduino-Bibliotheken sind in der Referenz auf http://arduino.cc/en/Reference/Libraries
dokumentiert und jede Bibliothek enthält Beispiel-Sketches, die ihre Verwendung de-
monstrieren. Kapitel 1 zeigt, wie man in der IDE an die Beispiele gelangt.

Die bei Arduino Version 1.0 enthaltenen Bibliotheken sind:

EEPROM
Liest und schreibt Daten aus/in Speicher, dessen Inhalt auch erhalten bleibt, wenn
der Strom ausgeschaltet wird. Siehe Kapitel 17.

Ethernet
Wird zur Kommunikation mit dem Arduino Ethernet-Shield oder Arduino Ethernet-
Board genutzt. Siehe Kapitel 15.

Firmata
Ein Protokoll, das die serielle Kommunikation und die Steuerung des Boards verein-
facht.

LiquidCrystal
Zur Steuerung kompatibler LC-Displays; siehe Kapitel 11.

SD
Lesen und Schreiben von Dateien von/an SD-Karten über externe Hardware.

Servo
Steuerung von Servomotoren; siehe Kapitel 8.

560 | Kapitel 16: Bibliotheken nutzen, ändern und aufbauen

SoftwareSerial
Stellt zusätzliche serielle Ports bereit.

SPI
Wird für Ethernet- und SPI-Hardware genutzt; siehe Kapitel 13.

Stepper
Steuerung von Schrittmotoren; siehe Kapitel 8.

Wire
Zur Steuerung von mit dem Arduino verbundenen I2C-Geräten; siehe Kapitel 13.

Die beiden folgenden Bibliotheken finden sich in Releases vor Arduino 1.0, sind aber nicht
länger Teil der Arduino-Distribution:

Matrix
Hilft bei der Steuerung einer LED-Matrix; siehe Kapitel 7.

Sprite
Sprites für eine LED-Matrix.

Diskussion
Mit einer bestimmten Hardware innerhalb des Arduino-Chips arbeitende Bibliotheken
funktionieren nur mit vordefinierten Pins. Beispiele für diese Art Bibliotheken sind Wire
und SPI. Bibliotheken, die dem Benutzer die Wahl der Pins erlauben, erledigen das
üblicherweise in setup; Servo, LiquidCrystal und Stepper sind Beispiele für diese Art von
Bibliotheken. Informationen zur Konfiguration finden Sie in der Dokumentation der
jeweiligen Bibliothek.

Das #include einer Bibliothek fügt den Bibliothekscode hinter den Kulissen in Ihren
Sketch ein. Das bedeutet, dass sich die Größe Ihres Sketches (wie sie am Ende der Kom-
pilierung gemeldet wird) erhöht, aber der Arduino Build-Prozess ist clever genug, nur den
Teil der Bibliothek einzufügen, den der Sketch tatsächlich verwendet. Sie müssen sich also
keine Gedanken um den Speicherbedarf von Methoden machen, die gar nicht verwendet
werden. Daher müssen Sie sich auch keine Gedanken darum machen, ob ungenutzte
Funktionen die Codemenge reduzieren, die Sie in den Sketch packen können.

Die bei Arduino mitgelieferten Bibliotheken (und viele Bibliotheken von Drittanbietern)
enthalten Beispiel-Sketches, die die Verwendung der Bibliothek demonstrieren. Diese sind
über das Menü File→Examples zugänglich.

Siehe auch
Die Arduino-Referenz für Bibliotheken: http://arduino.cc/en/Reference/Libraries

16.1 Mitgelieferte Bibliotheken nutzen | 561

16.2 Bibliotheken von Drittanbietern installieren

Problem
Sie wollen eine Bibliothek für den Arduino nutzen, die nicht in der Standard-Distribution
enthalten ist.

Lösung
Laden Sie die Bibliothek herunter, die häufig in Form einer .zip-Datei vorliegt. Entpacken
Sie diese Datei und Sie erhalten einen Ordner, der der gleichen Namen hat wie die
Bibliothek. Dieser Ordner muss in einen Ordner namens libraries im Arduino-Dokumen-
tenordner kopiert werden. Um diesen Ordner zu finden, öffnen Sie Preferences (Ardui-
no→Preferences auf dem Mac; File→Preferences unter Windows) und notieren sich die
Position des Sketchbooks. Wechseln Sie mit einem Dateisystem-Browser (Windows
Explorer oder Mac OS X Finder) oder über das Terminal in dieses Verzeichnis. Gibt es
keinen libraries-Ordner, legen Sie einen an und kopieren den entpackten Ordner dort
hinein.

Wenn die Arduino IDE noch läuft, beenden und starten Sie sie neu. Die IDE durchsucht
diesen Ordner nur beim Start nach Bibliotheken. Wenn Sie sich nun das Menü
Sketch→Import Library ansehen, erscheint am unteren Rand (unter der grauen Linie und
dem Wort Contributed) die gerade hinzugefügte Bibliothek.

Enthält die Bibliothek Beispiel-Sketches, können Sie diese über das IDE-Menü ansehen.
Klicken Sie auf File→Examples und Sie finden die Beispiele unter dem Namen der
Bibliothek in einem Abschnitt zwischen den allgemeinen Beispielen und den Beispielen
zu den mit Arduino ausgelieferten Bibliotheken.

Diskussion
Eine große Zahl von Bibliotheken steht von Drittanbietern zur Verfügung. Viele sind von
hoher Qualität, werden aktiv gepflegt und umfassen eine gute Dokumentation sowie
Beispiel-Sketches. Der Arduino Playground ist ein guter Ort, um nach Bibliotheken zu
suchen: http://www.arduino.cc/playground/.

Achten Sie darauf, Bibliotheken mit einer guten Dokumentation und mit Beispielen zu
nutzen. Schauen Sie in den Arduino-Foren, ob es Threads (Diskussionen) gibt, die diese
Bibliothek behandeln. Bibliotheken, die für frühe Arduino-Versionen entwickelt wurden,
können Probleme bereiten, wenn man sie mit der neuesten Arduino-Version nutzt.
Möglicherweise müssen Sie sehr viel lesen (die Threads beliebter Bibliotheken enthalten
Hunderte Postings), um Informationen darüber zu finden, wie man ältere Bibliotheken
mit der neuesten Arduino-Release nutzen kann.

Wenn die Bibliotheks-Beispiele nicht im Examples-Menü erscheinen, oder wenn Sie die
Meldung erhalten, dass die Bibliothek nicht gefunden werden konnte (»Library not
found«), dann prüfen Sie, ob der Bibliotheksordner am richtigen Ort liegt und ob der

562 | Kapitel 16: Bibliotheken nutzen, ändern und aufbauen

Name richtig geschrieben wurde. Ein Bibliotheksordner namens <BibliotheksName>
muss eine Datei namens <LibraryName>.h in genau der gleichen Schreibweise enthalten.
Stellen Sie sicher, dass auch alle weiteren Dateien im Ordner vorhanden sind, die von der
Bibliothek benötigt werden.

16.3 Eine Bibliothek anpassen

Problem
Sie möchten das Verhalten einer Bibliothek anpassen, etwa um deren Fähigkeiten zu
erweitern. So unterstützt die TimeAlarms-Bibliothek aus Kapitel 12 nur sechs Alarme, Sie
benötigen aber mehr (siehe Rezept 12.5).

Lösung
Die Time- und TimeAlarms-Bibliotheken werden in Kapitel 12 beschrieben. Sehen Sie
sich Rezept 12.5 an, um sich mit der Standard-Funktionalität vertraut zu machen. Die
Bibliotheken können von der Website zu diesem Buch (http://shop.oreilly.com/product/
0636920022244.do), oder von http://www.arduino.cc/playground/uploads/Code/Time.zip
(dieser Download umfasst beide Bibliotheken) heruntergeladen werden.

Wenn Sie die Time- und TimeAlarms-Bibliotheken installiert haben, kompilieren Sie den
folgenden Sketch und laden ihn auf den Arduino hoch. Der Sketch versucht, sieben
Alarme einzurichten – einen mehr, als die Bibliothek unterstützt. Jeder Alarm-Task gibt
einfach die Task-Nummer aus:

/*
multiple_alarms Sketch
Verwendet mehr Timer, als die Bibliothek standardmäßig unterstützt -
Sie müssen die Header-Datei editieren, um mehr als 6 Alarme zu unterstützen
*/

#include <Time.h>
#include <TimeAlarms.h>

int currentSeconds = 0;

void setup()
{
Serial.begin(9600);

// create 7 alarm tasks
Alarm.timerRepeat(1, repeatTask1);
Alarm.timerRepeat(2, repeatTask2);
Alarm.timerRepeat(3, repeatTask3);
Alarm.timerRepeat(4, repeatTask4);
Alarm.timerRepeat(5, repeatTask5);
Alarm.timerRepeat(6, repeatTask6);
Alarm.timerRepeat(7, repeatTask7); // 7ter Timer
}

16.3 Eine Bibliothek anpassen | 563

void repeatTask1()
{
Serial.print("Task 1 ");
}

void repeatTask2()
{
Serial.print("Task 2 ");
}
void repeatTask3()
{
Serial.print("Task 3 ");
}

void repeatTask4()
{
Serial.print("Task 4 ");
}

void repeatTask5()
{
Serial.print("Task 5 ");
}

void repeatTask6()
{
Serial.print("Task 6 ");
}

void repeatTask7()
{
Serial.print("Task 7 ");
}

void loop()
{
if(second() != currentSeconds)
{
// Zeit jede Sekunde ausgeben
// Task-Nummer wird ausgegeben, wenn der Alarm für diesen Task angestoßen wird
Serial.println();
Serial.print(second());
Serial.print("->");
currentSeconds = second();
Alarm.delay(1); // Alarm.delay muss aufgerufen werden, um die Alarme zu verarbeiten
}
}

Öffnen Sie den seriellen Monitor und sehen Sie sich die Ausgabe an. Nach neun Sekunden
sieht die Ausgabe so aus:

1->Task 1
2->Task 1 Task 2
3->Task 1 Task 3
4->Task 1 Task 2 Task 4
5->Task 1 Task 5

564 | Kapitel 16: Bibliotheken nutzen, ändern und aufbauen

6->Task 1 Task 2 Task 3 Task 6
7->Task 1
8->Task 1 Task 2 Task 4
9->Task 1 Task 3

Der für sieben Sekunden angesetzte Task wird nicht ausgeführt, weil die Bibliothek nur
sechs Timer-»Objekte« zur Verfügung stellt.

Sie können das erweitern, indem Sie die Bibliothek anpassen. Wechseln Sie in den
Bibliotheksordner in ihrem Arduino Documents-Ordner.

Sie können die Lage des Verzeichnisses mit dem Sketchbook-Ordner
ermitteln, indem Sie File→Preferences (unter Windows) oder Arduino
→Preferences (auf einem Mac) in der IDE auswählen. Es erscheint eine
Dialogbox, die die Lage des Sketchbooks zeigt.

Wenn die Time- und TimeAlarms-Bibliotheken installiert sind (beide Bibliotheken befin-
den sich in der heruntergeladenen Datei), wechseln Sie in den Ordner Libraries\
TimeAlarms. Öffnen Sie die Header-Datei TimeAlarms.h (weitere Details zu Header-Da-
teien finden Sie in Rezept 16.4). Sie können die Datei mit einem beliebigen Texteditor
bearbeiten, z.B. mit Notepad unter Windows oder TextEdit auf einem Mac.

Am Anfang der TimeAlarms.h-Datei sehen Sie die folgenden Zeilen:

#ifndef TimeAlarms_h
#define TimeAlarms_h

#include <inttypes.h>
#include "Time.h"
#define dtNBR_ALARMS 6

Die maximale Anzahl der Alarme wird durch dtNbr_ALARMS definiert.

Ändern Sie:

#define dtNBR_ALARMS 6

in:
#define dtNMBR_ALARMS 7

und speichern Sie die Datei.

Laden Sie den Sketch erneut auf den Arduino hoch, und diesmal sollte die Ausgabe wie
folgt aussehen:

1->Task 1
2->Task 1 Task 2
3->Task 1 Task 3
4->Task 1 Task 2 Task 4
5->Task 1 Task 5
6->Task 1 Task 2 Task 3 Task 6
7->Task 1 Task 7
8->Task 1 Task 2 Task 4
9->Task 1 Task 3

Wie Sie sehen, wird Task 7 jetzt nach sieben Sekunden aktiviert.

16.3 Eine Bibliothek anpassen | 565

Diskussion
Die von einer Bibliothek gebotenen Möglichkeiten sind häufig ein Kompromiss aus den
von der Bibliothek verwendeten Ressourcen und den für den Rest Ihres Sketches zur
Verfügung stehenden Ressourcen. Häufig ist es möglich, das an Ihren Bedarf anzupassen.
Zum Beispiel könnten Sie die Speichernutzung der Serial-Bibliothek reduzieren müssen,
damit Ihrem Sketch mehr RAM zur Verfügung steht. Oder Sie könnten den Speicherplatz
erhöhen müssen, den eine Bibliothek in Ihrer Anwendung nutzt. Die Entwickler legen die
Bibliotheken üblicherweise so an, dass sie typische Szenarieren abdecken. Benötigt Ihre
Anwendung Fähigkeiten, die die Entwickler nicht berücksichtigt haben, können Sie die
Bibliothek möglicherweise so anpassen, dass sie Ihren Anforderungen genügt.

In diesem Beispiel stellt die TimeAlarms-Bibliothek im RAM Platz für sechs Alarme bereit.
Jeder benötigt etwa ein Dutzend Bytes und der Platz wird auch dann reserviert, wenn
weniger genutzt werden. Die Anzahl der Alarme ist in der Header-Datei der Bibliothek
definiert (der Header ist eine Datei namens TimeAlarms.h im Ordner TimeAlarms). Hier
die ersten Zeilen aus TimeAlarms.h:

#ifndef TimeAlarms_h
#define TimeAlarms_h

#include <inttypes.h>

#include "Time.h"

#define dtNBR_ALARMS 6

Bei der TimeAlarms-Bibliothek wird die maximale Anzahl von Alarmen in einer #define-
Anweisung festgelegt. Da Sie diesen Wert erhöht und die Header-Datei gespeichert haben,
nutzt der Sketch die neue Obergrenze, wenn er neu kompiliert und hochgeladen wird.

Manchmal werden Konstanten genutzt, um Eigenschaften wie die Taktfrequenz eines
Boards zu definieren. Arbeitet das Board mit einer anderen Geschwindigkeit, kann es zu
unerwarteten Ergebnissen kommen. Sie können das Problem dann üblicherweise behe-
ben, indem Sie die Werte in der Header-Datei an ihr Board anpassen.

Wenn Sie die Header-Datei ändern und die Bibliothek dann gar nicht mehr funktioniert,
können Sie die Bibliothek erneut herunterladen und den Originalzustand wiederherstel-
len.

Siehe auch
Rezept 16.4 erläutert, wie man die Funktionalität von Bibliotheken erweitern kann.

566 | Kapitel 16: Bibliotheken nutzen, ändern und aufbauen

16.4 Eine eigene Bibliothek entwickeln

Problem
Sie wollen eine eigene Bibliothek entwickeln. Bibliotheken sind eine bequeme Möglich-
keit, Code wiederzuverwenden, und stellen eine gute Lösung dar, um ihn mit anderen
Nutzern zu teilen.

Lösung
Eine Bibliothek ist eine Sammlung von Methoden und Variablen, die in einem Format
kombiniert werden, die es Nutzern ermöglicht, in standardisierter Form auf Funktionen
und Variablen zuzugreifen.

Die meisten Arduino-Bibliotheken sind als Klassen geschrieben. Wenn Sie mit C++ oder
Java vertraut sind, kennen Sie sich auch mit Klassen aus. Bibliotheken lassen sich aber
auch ohne Klassen entwickeln und dieses Rezept zeigt, wie das geht.

Das Rezept erläutert, wie Sie die BlinkLED-Funktion im Sketch aus Rezept 7.1 in eine
Bibliothek umwandeln.

In Rezept 7.1 finden Sie ein Schaltdiagramm und eine Erklärung der Schaltung. Die
Bibliothek enthält die blinkLED-Funktion aus diesem Rezept. Hier der Sketch, der zu
Testen der Bibliothek verwendet wird:

/*
* blinkLibTest
*/

#include "blinkLED.h"

const int firstLedPin = 3; // LED-Pins
const int secondLedPin = 5;
const int thirdLedPin = 6;

void setup()
{
pinMode(firstLedPin, OUTPUT); // LED-Pins aus Ausgang delarieren
pinMode(secondLedPin, OUTPUT);
pinMode(thirdLedPin, OUTPUT);
}

void loop()
{
// Jede LED für 1000 Millisekunden (1 Sekunde) blinken lassen
blinkLED(firstLedPin, 1000);
blinkLED(secondLedPin, 1000);
blinkLED(thirdLedPin, 1000);
}

16.4 Eine eigene Bibliothek entwickeln | 567

Die blinkLED-Funktion aus Rezept 7.1 muss aus dem Sketch entfernt und in eine separaten
Datei namens blinkLED.cpp verschoben werden (in der Diskussion werden Details zu den
.cpp-Dateien erläutert):

/* blinkLED.cpp
* einfache Bibliothek, die eine LED für die angegebene Dauer in Millisekunden blinken lässt
*/
#include "Arduino.h" // Wprogram.h für Arduino-Versionen vor 1.0
#include "blinkLED.h"

// LED am angebenen Pin für die angegebene Dauer in Millisekunden blinken lassen
void blinkLED(int pin, int duration)
{
digitalWrite(pin, HIGH); // LED einschalten
delay(duration);
digitalWrite(pin, LOW); // LED ausschalten
delay(duration);
}

Die meisten Bibliotheksautoren sind Programmierer, die den von ihnen
bevorzugten Programmier-Editor nutzen, doch Sie können jeden beliebi-
gen Texteditor verwenden, um diese Dateien anzulegen.

Legen Sie die Header-Datei blinkLED.h wie folgt an:

/*
* blinkLED.h
* Headerdatei für BlinkLED-Bibliothek
*/
#include "Arduino.h"

void blinkLED(int pin, int duration); // Funktions-Prototyp

Diskussion
Wir nennen die Bibliothek »blinkLED« und speichern sie im Bibliotheksordner (siehe
Rezept 16.2). Legen Sie ein Unterverzeichnis namens blinkLED im Bibliotheksordner an
und kopieren Sie blinkLED.h und blinkLED.cpp in dieses Verzeichnis.

Die Funktion blinkLED aus Rezept 7.1 wird aus dem Sketch entfernt und in eine Biblio-
theksdatei namens blinkLED.cpp ausgelagert (Die Erweiterung .cpp steht für »C Plus Plus«
und enthält den ausführbaren Code).

Die Begriffe Funktion und Methode werden in der Dokumentation von
Arduino-Bibliotheken genutzt, um Codeblöcke wie blinkLED zu referenzie-
ren. Der Begriff Methode wird für Funktionsblöcke in Klassen verwendet.
Beide Begriffe stehen für die Funktionsblöcke, die durch die Bibliothek
zugänglich gemacht werden.

Die Datei blinkLED.cpp enthält die Funktion blinkLED, die mit dem Code aus Rezept 7.1
identisch ist. Zusätzlich wurden am Anfang die folgenden beiden Zeilen hinzugefügt:

568 | Kapitel 16: Bibliotheken nutzen, ändern und aufbauen

#include "Arduino.h" // Arduino include
#include "blinkLED.h"

Die Zeile #include "Arduino.h" wird von Bibliotheken benötigt, die Arduino-Funktionen
oder -Konstanten verwenden. Ohne diese Zeile meldet der Compiler Fehler für alle in
Ihrem Sketch genutzten Arduino-Funktionen.

Arduino.h wurde mit der Release 1.0 eingeführt und ersetzt WProgram.h.
Wenn Sie Sketches mit älteren Releases kompilieren, können Sie die
folgenden bedingten Includes nutzen, um die richtige Variante einzubin-
den:

#if ARDUINO >= 100
#include "Arduino.h // für 1.0 und höher
#else
#include "WProgram.h" // für ältere Releases
#endif

Die nächste Zeile, #include "blinkLED.h", bindet die Funktonsdefinitionen (auch Proto-
typen genannt) in Ihre Bibliothek ein. Der Arduino Build-Prozess erzeugt bei der Kom-
pilierung automatisch Prototypen für alle Funktionen – für Bibliotheken werden aber
keine Prototypen erzeugt, d.h. Sie müssen für diese Prototypen eine Header-Datei
anlegen. Es ist eben diese Header-Datei, die in einen Sketch eingefügt wird, wenn Sie
eine Bibliothek über die IDE importieren (siehe Rezept 16.1).

Jede Bibliothek muss eine Datei besitzen, die die Namen der bereitgestell-
ten Funktionen deklariert. Diese Datei wird als Header-Datei (oder auch
Include-Datei) bezeichnet und hat die Form <BibliotheksName>.h. In
unserem Beispiel heißt die Header-Datei blinkLED.h und liegt im gleichen
Ordner wie blinkLED.cpp.

Die Header-Datei für unsere Bibliothek ist simpel. Sie deklariert nur eine Funktion:

void blinkLED(int pin, int duration); // Funktions-Prototyp

Das sieht der Funktionsdefinition in blinkLED.cpp sehr ähnlich:

void blinkLED(int pin, int duration)

Doch es gibt einen kleinen, aber feinen Unterschied. An den Prototypen in der Header-
Datei ist ein Semikolon angehangen. Das teilt dem Compiler mit, dass es sich nur um eine
Deklaration der Form der Funktion handelt, und nicht um den Code. Die Quelldatei
blinkLED.cpp enthält dieses Semikolon nicht, und das informiert den Compiler darüber,
dass es sich um den Quellcode der Funktion handelt.

Bibliotheken können mehr als eine Header- und mehr als eine Implemen-
tierungsdatei verwenden. Es muss aber zumindest einen Header geben, der
mit dem Namen der Bibliothek übereinstimmt. Eben diese Datei wird am
Anfang Ihres Sketches eingefügt, wenn Sie eine Bibliothek importieren.

16.4 Eine eigene Bibliothek entwickeln | 569

Ein gutes Buch zu C++ wird beschreiben, wie man Header- und .cpp-Dateien zur Ent-
wicklung von Modulen einsetzt. Im Siehe auch-Abschnitt dieses Rezepts finden Sie eine
Auswahl.

Sind blinkLED.cpp und blinkLED.h am richtigen Platz, schließen Sie die IDE und starten
Sie sie erneut.

Die Arduino-IDE aktualisiert die verfügbaren Bibliotheken nur beim Start.
Wenn Sie eine Bibliothek anlegen, während die IDE läuft, müssen Sie die
IDE beenden und wieder neu starten, damit die Bibliothek erkannt wird.

Wenn Sie den blinkLibTest-Sketch hochladen, sollten die drei LEDs blinken.

Die Bibliothek um zusäzliche Funktionen zu erweitern, ist einfach. Zum Beispiel können
Sie einige Konstanten aufnehmen. Die Benutzer der Bibliothek können dann diese selbst-
erklärenden Konstanten anstelle von Millisekunden-Angaben nutzen.

Fügen Sie die drei folgenden Zeilen mit Konstanten hinzu, die traditionell vor dem ersten
Funktionsprototypen stehen:

// Konstanten für Blinkdauer
const int BLINK_SHORT = 250;
const int BLINK_MEDIUM = 500;
const int BLINK_LONG = 1000;

void blinkLED(int pin, int duration); // Funktions-Prototyp

Ändern Sie den loop-Code wie folgt und laden Sie den Sketch hoch, um sich die
unterschiedlichen Blinkgeschwindigkeiten anzusehen:

void loop()
{
blinkLED(firstLedPin, BLINK_SHORT);
blinkLED(secondLedPin, BLINK_MEDIUM);
blinkLED(thirdLedPin, BLINK_LONG);
}

Sie müssen die IDE nur schließen und neu starten, wenn Sie den Biblio-
theksordner neu angelegt haben, nicht aber bei weiteren Änderungen an
der Bibliothek. Ab Arduino-Release 0017 (und höher) eingebundene Bib-
liotheken werden jedesmal neu kompiliert, wenn der Sketch kompiliert
wird. Bei Arduino-Releases vor 0017 musste die Objektdatei der Biblio-
thek gelöscht werden, damit die Bibliothek neu kompiliert und Änderun-
gen integriert wurden.

Neue Funktionen können einfach hinzugefügt werden. Das folgende Beispiel fügt eine
Funktion hinzu, die eine LED n mal blinken lässt, wobei der entsprechende Wert an die
Funktion übergeben wird. Hier der loop-Code:

void loop()
{
blinkLED(firstLedPin,BLINK_SHORT, 5); // blinke 5 mal

570 | Kapitel 16: Bibliotheken nutzen, ändern und aufbauen

blinkLED(secondLedPin,BLINK_MEDIUM, 3); // blinke 3 mal
blinkLED(thirdLedPin, BLINK_LONG); // blinke 1 mal
}

Um diese Funktionalität in die Bibliothek aufzunehmen, fügen wir den Prototyp wie folgt
in blinkLED.h ein:

/*
* blinkLED.h
* Header-Datei für BlinkLED-Bibliothek
*/
#include "Arduino.h"

// Konstanten für Blinkdauer
const int BLINK_SHORT = 250;
const int BLINK_MEDIUM = 500;
const int BLINK_LONG = 1000;

void blinkLED(int pin, int duration);

// Neue Funktion mit Zähler
void blinkLED(int pin, int duration, int repeats);

Fügen Sie die Funktion in blinkLED.cpp ein:

/*
* blinkLED.cpp
* einfache Bibliothek, die eine LED für die angegebene Dauer in Millisekunden blinken lässt
*/
#include "Arduino.h" // Wprogram.h für ältere Arduino-Versionen
#include "blinkLED.h"

// LED am angebenen Pin für die angegebene Dauer in Millisekunden blinken lassen
void blinkLED(int pin, int duration)
{
digitalWrite(pin, HIGH); // LED an
delay(duration);
digitalWrite(pin, LOW); // LED aus
delay(duration);
}

/* Funktion mit Zähler */
void blinkLED(int pin, int duration, int repeats)
{
while(repeats)
{
blinkLED(pin, duration);
repeats = repeats -1;
}
}

Sie können eine Datei namens keywords.txt anlegen, wenn Sie eine Syntaxhervorhebung
wünschen (das Einfärben von Schlüsselwörtern beim Bearbeiten eines Sketches in der
IDE). Das ist eine Textdatei, die den Namen des Schlüsselwortes und seinen Typ angibt –
jeder Typ verwendet eine andere Farbe. Schlüsselwort und Typ müssen durch einen

16.4 Eine eigene Bibliothek entwickeln | 571

Tabulator (kein Leerzeichen) getrennt sein. Speichern Sie zum Beispiel folgende Datei als
keywords.txt im blinkLED-Ordner:

#######################################
Methoden und Funktionen (KEYWORD2)
#######################################
blinkLED KEYWORD2
#######################################
Konstanten (LITERAL1)
#######################################
BLINK_SHORT LITERAL1
BLINK_MEDIUM LITERAL1
BLINK_LONG LITERAL1

Sie müssen die IDE beenden und neu starten, wenn Sie eine neue Biblio-
thek anlegen oder die keywords.txt-Datei modifizieren. Sie müssen sie
nicht neu starten, wenn Sie Code- (.c oder .cpp) oder Header-Dateien (.h)
bearbeiten.

Siehe auch
Weitere Beispiele zur Entwicklung einer Bibliothek finden Sie in Rezept 16.5.

»Writing a Library for Arduino«: http://www.arduino.cc/en/Hacking/LibraryTutorial

Beachten Sie auch folgende Bücher zu C++:

• Practical C++ Programming von Steve Oualline (O’Reilly; Suchen Sie danach auf
www.oreilly.de)

• C++ Primer Plus von Stephen Prata (Sams)

• C++ Primer von Stanley B. Lippman, Josée Lajoie und Barbara E. Moo (Addison-
Wesley Professional)

16.5 Eine Bibliothek entwickeln, die andere Bibliotheken
nutzt

Problem
Sie wollen eine Bibliothek entwickeln, die die Funktionalität einer oder mehrerer existie-
render Bibliothek(en) nutzt. Zum Beispiel wollen Sie die Wire-Bibliothek verwenden, um
Daten von einem Wii Nunchuck-Controller abzurufen.

Lösung
Dieses Rezept nutzt die in Rezept 13.2 beschriebenen Funktionen, um über die Wire-
Bibliothek mit einem Wii Nunchuck zu kommunizieren.

572 | Kapitel 16: Bibliotheken nutzen, ändern und aufbauen

Legen Sie einen Ordner namens Nunchuck im Bibliotheksverzeichnis an (Details zur Da-
teistruktur einer Bibliothek finden Sie in Rezept 16.4). Legen Sie eine Datei namens
Nunchuck.h an, die den folgenden Code enthält:

/*
* Nunchuck.h
* Arduino-Bibliothek für Wii Nunchuck
*/

#ifndef Nunchuck_included
#define Nunchuck_included

// Identitäten für alle vom Wii Nunchuck zurückgelieferten Felder
enum nunchuckItems { wii_joyX, wii_joyY, wii_accelX, wii_accelY, wii_accelZ,

wii_btnC, wii_btnZ, wii_ItemCount };

// Pins neben I2C als Spannung und Masse für Nunchuck verwenden
void nunchuckSetPowerpins();

// I2C-Interface für Nunchuck initialisieren
void nunchuckInit();

// Daten vom Nunchuck anfordern
void nunchuckRequest();

// Daten vom Nunchuck abrufen,
// gibt true bei Erfolg zurück, sonst false
bool nunchuckRead();

// Daten in ein Format umwandeln, das die meisten wiimote-Treiber erwarten
char nunchuckDecode (uint8_t x);

// angeforderten Wert zurückliefern
int nunchuckGetValue(int item);

#endif

Legen Sie eine Datei namens Nunchuck.cpp im Nunchuck-Ordner mit folgendem Inhalt an:

/*
* Nunchuck.cpp
* Arduino-Bibliothek für wii Nunchuck
*/

#include "Arduino.h" // Arduino

#include "Wire.h" // Wire (I2C)
#include "Nunchuck.h" // Defines dieser Bibliothek

// Definitionen für Standard Arduino-Board (19 und 18 für Mega)
const int vccPin = 17; // +v und Masse über diese Pins
const int gndPin = 16;

const int dataLength = 6; // Anzahl anzufordernder Bytes
static byte rawData[dataLength]; // Array für Nunchuck-Daten

16.5 Eine Bibliothek entwickeln, die andere Bibliotheken nutzt | 573

// Pins neben I2C als Spannungsversorgung und Masse für Nunchuck verwenden
void nunchuckSetPowerpins()
{
pinMode(gndPin, OUTPUT); // Versorgungspins einstellen
pinMode(vccPin, OUTPUT);
digitalWrite(gndPin, LOW);
digitalWrite(vccPin, HIGH);
delay(100); // Warten, dass sich die Spannungsversorgung stabilisiert
}

// I2C-Interface für Nunchuck initialisieren
void nunchuckInit()
{
Wire.begin(); // I2C-Bus als Master betreten
Wire.beginTransmission(0x52);// Übertragung an Gerät 0x52
Wire.write((byte)0x40); // Speicheradresse senden
Wire.write((byte)0x00); // Null senden.
Wire.endTransmission(); // Übertragung beenden
}

// Daten vom Nunchuck anfordern
void nunchuckRequest()
{
Wire.beginTransmission(0x52);// Übertragung an Gerät 0x52
Wire.write((byte)0x00);// Ein Byte senden
Wire.endTransmission();// Übertragung beenden
}

// Daten vom Nunchuck empfangen,
// gibt true bei Erfolg zurück, anderenfalls false
bool nunchuckRead()
{
byte cnt=0;
Wire.requestFrom (0x52, dataLength);// Daten vom Nunchuck anfordern
while (Wire.available ()) {
byte x = Wire.read();
rawData[cnt] = nunchuckDecode(x);
cnt++;
}
nunchuckRequest(); // Nächste Nutzdaten anfordern
if (cnt >= dataLength)
return true; // Erfolg, wenn alle 6 Bytes empfangen wurden
else
return false; // Fehler

}

// Daten in ein Format umwandeln, das die meisten wiimote-Treiber erwarten
char nunchuckDecode (byte x)
{
return (x ^ 0x17) + 0x17;

}

// Angeforderten Wert abrufen
int nunchuckGetValue(int item)
{
if(item <= wii_accelZ)
return (int)rawData[item];

574 | Kapitel 16: Bibliotheken nutzen, ändern und aufbauen

else if(item == wii_btnZ)
return bitRead(rawData[5], 0) ? 0: 1;
else if(item == wii_btnC)
return bitRead(rawData[5], 1) ? 0: 1;

}

Schließen Sie den Nunchuck wie in Rezept 13.2 an, und nutzen Sie den folgenden Sketch,
um die Bibliothek zu testen (wenn die IDE bereits läuft, während Sie diese beiden Dateien
anlegen, beenden und starten Sie die IDE neu, damit die neue Bibliothek auftaucht):

/*
* WiichuckSerial
*
* Nutzt Nunchuck-Bibliothek, um Sensorwerte an den seriellen Port zu senden
*/

#include <Wire.h>
#include "Nunchuck.h"

void setup()
{
Serial.begin(9600);
nunchuckSetPowerpins();
nunchuckInit(); // Initialisierungs-Handshake
nunchuckRead(); // Ersten Aufruf ignorieren
delay(50);
}

void loop()
{
nunchuckRead();
Serial.print("H,"); // Header
for(int i=0; i < 5; i++) // Werte des Beschleunigungsmessers und der Buttons ausgeben
{
Serial.print(nunchuckGetValue(wii_accelX+ i), DEC);
Serial.write(',');

}
Serial.println();
delay(20); // Pause in Millisekunden
}

Diskussion
Um eine andere Bibliothek einzubinden, verwenden Sie wie in einem normalen Sketch die
include-Anweisung. Es ist sinnvoll, in Ihrer Dokumentation Informationen zu allen von
Ihnen verwendeten zusätzlichen Bibliotheken aufzuführen, insbesondere dann, wenn eine
Bibliothek benötigt wird, die nicht in der Standard-Distribution enthalten ist.

Der Hauptunterschied zwischen den Bibliotheks-Code um dem Sketch in Rezept 13.2
besteht im Einbinden von Nunchuck.h, das die Funktions-Prototypen enthält. (Arduino
Sketch-Code erzeugt diese Prototypen stillschweigend für Sie, während Prototypen für
Arduino-Bibliotheken explizit angelegt werden müssen).

16.5 Eine Bibliothek entwickeln, die andere Bibliotheken nutzt | 575

Hier ein weiteres Beispiel für eine Bibliothek. Sie verwendet eine C++-Klasse, um die
Bibliotheksfunktionen zu kapseln. Eine Klasse ist eine Programmiertechnik zur Gruppie-
rung von Funktionen und Variablen, die von den meisten Arduino-Bibliotheken verwen-
det wird.

Die Bibliothek kann beim Debugging helfen, indem sie Daten über die Wire-Bibliothek an
einen zweiten Arduino sendet. Das ist besonders nützlich, wenn der serielle Hardware-
Port nicht verfügbar ist und ein Software-Port aufgrund der zeitlichen Abläufe nicht in
Frage kommt. Hier wird die print-Funktionalität des Arduino-Kerns zum Aufbau einer
neuen Bibliothek genutzt, die Ausgaben an I2C sendet. Die Verbindungen und der Code
werden in Rezept 13.9 behandelt. Die folgende Beschreibung zeigt, wie man diesen Code
in eine Bibliothek umwandelt.

Legen Sie einen Ordner namens i2cDebug im Bibliotheksverzeichis an (Details zur Datei-
struktur einer Bibliothek finden Sie in Rezept 16.4). Legen Sie eine Datei namens
i2cDebug.h mit dem folgenden Code an:

/*
* i2cDebug.h
*/
#ifndef i2cDebug_included
#define i2cDebug_included

#include <Arduino.h>
#include <Print.h> // Arduino print-Klasse

class i2cDebugClass : public Print
{
private:
int i2cAddress;
byte count;
size_t write(byte c);
public:
i2cDebugClass();
boolean begin(int id);

};

extern i2cDebugClass i2cDebug; // das I2C-Debug-Objekt
#endif

Erzeugen Sie die folgende Datei namens i2cDebug.cpp im i2cDebug-Ordner:

/*
* i2cDebug.cpp
*/

#include <i2cDebug.h>

#include <Wire.h> // Arduino I2C-Bibliothek

i2cDebugClass::i2cDebugClass()
{
}

576 | Kapitel 16: Bibliotheken nutzen, ändern und aufbauen

boolean i2cDebugClass::begin(int id)
{
i2cAddress = id; // Slave-Adresse speichern
Wire.begin(); // mit I2C-Bus verbinden (Adresse für Master optional)
return true;
}

size_t i2cDebugClass::write(byte c)
{
if(count == 0)
{
// Erstes Zeichen der Übertragung?
Wire.beginTransmission(i2cAddress); // An Gerät senden
}
Wire.write(c);
// Daten senden, wenn I2C-Puffer voll oder Zeilenende erreicht
// BUFFER_LENGTH ist in der Wire-Bibliothek definiert
if(++count >= BUFFER_LENGTH || c == '\n')
{
// Sende Daten, wenn Puffer voll oder Newline
Wire.endTransmission();
count = 0;
}
return 1; // ein Zeichen geschrieben
}

i2cDebugClass i2cDebug; // I2C-Debug-Objekt erzeugen

Die write-methode liefert size_t zurück. Dieser Wert ermöglicht es der
print-Funktion, die Zahl der ausgegebnen Zeichen zurückzugeben. Das
wurde it Arduino 1.0 eingeführt-davor haben write und print keine Werte
zurückgegeben. Wenn ihre Bibliothek auf Stream oder Print basiert, müs-
sen Sie den Rückgabetyp in size_t ändern.

Laden Sie den Beispiel-Sketch in die IDE:

/*
* i2cDebug
* Beispiel-Sketch für i2cDebug-Bibliothek
*/

#include <Wire.h> // Arduino I2C-Bibliothek
#include <i2cDebug.h>

const int address = 4; // Adresse des Kommunikationsgerätes
const int sensorPin = 0; // Analoger Eingangspin des Sensors
int val; // Variable für Sensorwert

void setup()
{
Serial.begin(9600);
i2cDebug.begin(address);
}

16.5 Eine Bibliothek entwickeln, die andere Bibliotheken nutzt | 577

void loop()
{
// Spannung am Poti einlesen (val liegt zwischen 0 und 1023)
val = analogRead(sensorPin);
Serial.println(val);
i2cDebug.println(val);
}

Vergessen Sie nicht, die IDE neu zu starten, nachdem Sie den Bibliotheksordner angelegt
haben. Weitere Details zur Entwicklung einer Bibliothek finden Sie in Rezept 16.4.

Laden Sie den I2C-Slave-Sketch auf ein anderes Arduino-Board hoch und verschalten Sie
die Boards wie in Rezept 13.9 beschrieben. Die Ausgabe des Arduino-Boards mit Ihrer
Bibliothek sollte auf dem zweiten Board zu sehen sein.

Falls Sie mit C++-Klassen nicht vertraut sind, bieten folgende Bücher eine gute Einfüh-
rung:

• Programming Interactivity von Joshua Noble (O’Reilly; suche Sie danach www.
oreilly.de)

• C++ Primer von Stanley B. Lippman, Josée Lajoie und Barbara E. Moo (Addison-
Wesley Professional)

16.6 Bibliotheken von Drittanbietern an Arduino 1.0
anpassen

Problem
Sie wollen die Bibliothek eines Drittanbieters nutzen, die für Arduino-Releases vor 1.0
entwickelt wurde.

Lösung
Bei den meisten Bibliotheken müssen nur wenige Zeilen geändert werden, damit sie unter
Arduino 1.0 laufen. Zum Beispiel muss einer oder mehrere dieser Includes:

#include "wiring.h"
#include "WProgram.h"
#include "WConstants.h"
#include "pins_arduino.h"

durch ein einzelnes Include ersetzt werden:

#include "Arduino.h"

Die Dateinamen können zwischen spitzen Klammern oder Anführungs-
zeichen stehen.

578 | Kapitel 16: Bibliotheken nutzen, ändern und aufbauen

Diskussion
Ältere Bibliotheken, die sich unter Arduino 1.0 nicht kompilieren lassen, erzeugen eine
oder mehrere der folgenden Fehlermeldungen:

source file: error: wiring.h: No such file or directory
source file: error: WProgram.h: No such file or directory
source file: error: WConstants.h: No such file or directory
source file: error: pins_arduino.h: No such file or directory

»Source file« (Quelldatei) ist der vollständige Pfad auf die Bibliotheksdatei, die aktualisiert
werden muss. Es wird eine Reihe weiterer Fehler geben, die aber daher rühren, dass die
angegebenen Dateien in der 1.0-Release nicht enthalten sind. Diese Fehler sollten ver-
schwinden, sobald Sie die alten Header-Dateien durch Arduino.h ersetzt haben. Die
Definitionen in diesen Dateien sind nun in Arduino.h enthalten, d.h. die Lösung besteht
darin, alle obigen Dateien durch ein einzelnes Include von Arduino.h zu ersetzen.

Soll Arduino 1.0 neben früheren Kompilaten genutzt werden, können Sie ein bedingtes
include nutzen (siehe Rezept 16.6):

#if ARDUINO >= 100
#include "Arduino.h"
#else
// Diese Dateinamen werden in der Originalversion der Bibliothek verwendet
#include "wiring.h"
#include "pins_arduino.h"
#endif

Siehe auch
Bibliotheken von Drittanbietern, die Serial, Ethernet und andere Funktionalitäten nutzen,
deren Syntax sich bei Arduino 1.0 geändert hat, verlangen zusätzliche Anpassungen am
Code. Details finden Sie in Anhang H und in den Kapiteln dieses Buches, die diese Funk-
tionalität behandeln.

16.6 Bibliotheken von Drittanbietern an Arduino 1.0 anpassen | 579

Index

Symbole
4051-Multiplexer 172
802.15.4-Standard 463
+ (Addition) Operator 69
+= (Addition) Operator 68
& (Ampersand) 51
=, Zuweisungsoperator 62
&= (binäre UND-Maske) Operator 68
|= (binäre ODER-Maske) Operator 68
<< (Bitshift links) Operator 84
>> (Bitshift rechts) Operator 84
& (bitweises UND) Operator 65
^ (bitwise Exclusive Or) operator 65
~ (bitwise negation) operator 65
| (bitweises ODER) Operator 65
{} (geschweifte Klammern) 54
/ (Division) Operator 69, 71
/= (Division) Operator 68
==, Gleich-Operator 61
> Größer-als-Operator 61
>=, Größer-oder-gleich-Operator 61
<, Kleiner-als-Operator 61
<=, Kleiner-oder-gleich-Operator 61
&&, (logisches UND) Operator 64
|| (logisches ODER) Operator 64
% (Modulo) Operator 72, 198
* (Multiplikation) Operator 69
*= (Multiplikation) Operator 68
!=, Ungleich-Operator 61
! (NICHT) Operator 64
; (Semikolon)

in Funktionen 48, 51
in Header-Dateien 569

<<= (Linksshift) Operator 68
>>= (Rechtsshift) Operator 68
+, Stringoperator 41
- (Subtraktion) Operator 69
-= (Subtraktion) Operator 68

A
abs, Funktion 72–73
Abschwellen (LED) 257
Absolutwert von Zahlen 72
Abstand, messen 192
accel Sketch 240
Achse, Vorzeichen in Processing ändern 130
Adafruit Industries

Adafruit Motor Shield 295
Adafruit Wave Shield 338
Boarduino-Board 4
XBee-Adapter 464

ADC (analog-to-digital converter), Analog/
Digital-Wandler
(siehe auch analogRead, Funktion)

Addition (+) Operator 69
AdjustClockTime Sketch 407
ADXL320-Beschleunigungsmesser 239
AFMotor-Bibliothek 315
Aktionen

basierend auf Bedingungen 52
basierend auf Variablen 59

Aktuatoren aktivieren 478
Alarm

Funktion aufrufen per 412
Alarme

erzeugen 563
Allen, Charlie 267
Altman, Mitch 356
Ampersand (&) 51
amplitude, Definition 203
Analog/Digital-Wandler (analog-to-digital

converter ADC) 473
(siehe auch analogRead, Funktion)

AnalogMeter Sketch 286
Analogpins

40 mA pro Pin umgehen 251
Abstandsmessung 195
Anschlussbelegung 150
Anzahl der Ausgänge erhöhen 281

Index | 581

auf Spannungsänderungen reagieren 177
Daten in Logdateien speichern 136
Eingang einlesen 152
Helligkeit einer LED regeln 248
logische Namen 150
maximaler Pin-Strom 244
Messtemperatur 205
Multiple Inputs lesen 172
Rotation mit Gyroskop erkennen 226
Spannung einlesen 168
Spannung messen 179
Spannungen messen 175
visuelle Ausgabe und 241
Werte senden 123
Wertebereich ändern 170

analogRead, Funktion
Abstandsmessung 195
auf Spannungsänderungen reagieren 177
blinkende LED. Codebeispiel 18
detecting sound 202
Messdistanz 196
Sensoren und 183, 200
Servos steuern 295
Spannung einlesen 168
Spannung messen 180
Spannungen messen 175
Temperatur messen 205
weiterführende Informationen 170
Wertebereich ändern 170

analogWrite, Funktion
Geschwindigkeit eines Bürstenmotors regeln

311
Helligkeit einer LED regeln 249
visuelle Ausgabe und 241

Animation
Herzschlag 262

Animationseffekt
Smiley 378

Anode
gemeinsame 252, 257

Anoden
Definition 243

Anweisungen
Folgen von, wiederholt ausführen 54
wiederholen mit Zählern 56

Anzeige (Display) siehe LC-Display
Arduino Leonardo

Board 3
einrichten 9

Arduino Leonardo-Boards
SCL- und SDA-Leitungen 422
USB-Maus emulieren 130

Arduino Mega
Anschlussbelegung 151

Arduino Mega-Board
GLCDs und 385
I2C und 422
mehrere Töne gleichzeitig ausgeben 333
Pin-Anordnung 425
serielle Ports 91, 139

Arduino Playground 2, 562
Arduino Uno

Board 3
IDE installieren 6

Arduino UNO-Board
einrichten 8

Arduino-Board 2
Anschlussbelegung 150
einrichten 8
hochladen/ausführen des Blink-Sketches 13
Kommunikation zwischen 454
Linux-Umgebung 6
Mac-Umgebung 7
maximaler Pin-Strom 244
mehrere Töne gleichzeitig ausgeben 333
Pin-Anordnung 425
serielle Kommunikation 90
Spannung, Erwägungen 423
weitere Informationen 4
Windows-Umgebung 6

Arduino-Shields siehe Shields
Arduino-Software 2

IDE installieren 5
Versionskontrolle 16

Arduino-Umgebung
Arduino-Boards einrichten 8
ein Projekt beginnen 17
Einführung 1
IDE installieren 4

Arduino.h-Datei 569, 579
ArduinoMouse Sketch 128
Argumente

Definition 46
als Referenzen 51

array-Sketch 29
Arrays

Definition 31
LED-Matrix 279

582 | Index

in Sketches 29
Strings und 32, 37

ASCII-Zeichensatz
in numerische Werte umwandeln 102
Null 32

ATCN-Befehl 472
ATD-Befehl 472
ATD02-Befehl 476
ATD13-Befehl 482
ATD14-Befehl 482
ATDH-Befehl 469
ATDL-Befehl 469
ATIA1234-Befehl 482
ATICFF-Befehl 482
ATID-Befehl 469, 476, 482
ATIR64-Befehl 476
ATIU1-Befehl 482
Atmel

ATmeg32U4-Controller 130
ATMY-Befehl 469, 472, 482
atoi, Funktion 43, 104
atol, Funktion 43, 104
ATRE-Befehl 476, 482
ATWR-Befehl 469, 482
Audio-Ausgabe 327

einfache Melodien spielen 331
LED ansteuern 335
mehrere Töne gleichzeitig ausgeben 333
MIDI steuern 341
Synthesizer 344
Töne ausgeben 329
Töne erzeugen 335

Audio-Ausgabe output
WAV-Dateien abspielen 338

Audioausgabe
Töne erkennen 200

Auduino Sketch 345
Aufbereitung von Webserver-Requests 519
auffüllen (padding), Strukturen 118

B
 tag 503
Babel-Fish-Übersetzungsdienst 505
Balkenanzeige

LED-Matrix, Beispiel 268
mehrere LEDs aneinanderreihen 255

Balkendiagramme
aus selbstdefinierten Zeichen 383

Bargraph Sketch 255, 268
Basic_Strings Sketch 33

Battery Eliminator Circuit (BEC) 300
Baudrate

Definition 96
GPS 225
Serieller Monitor 225

BCD (binär kodierte Dezimalzahlen) 436
bcd2dec, Funktion 436
BEC (Battery Eliminator Circuit) 300
Bedingungen

Aktionen basierend auf 52
aus Schleifen ausbrechen basierend auf 58
Kompilierung basierend auf 579

Beschleunigung, messen 239
Beschleunigungsmesser, Wii Nunchuck 239,

429
Bibliothek

andere Bibliotheken nutzen 572
entwickeln 572

Bibliotheken 559
anpassen 563
als Klassen 567
entwickeln 567
mitgelieferte 559
Sketches und 561
Speichernutzung 566
von Drittanbietern aktualisieren 578
von Drittanbietern installieren 562
weiterführende Informationen 560

Bilder (Images), auf LED-Matrix darstellen 262
binär kodierte Dezimalzahlen (BCD) 436
Binärformat

Daten empfangen im 119
Daten senden im 115
Sonderzeichen darstellen 377
Text senden im 98
Werte aus Processing 121

BinaryDataFromProcessing Sketch 122
bipolare Schrittmotoren 292

ansteuern 317
mit EasyDriver-Board ansteuern 320

bit, Funktion 81
bitClear, Funktion 81
bitFunctions Sketch 81
Bitmaps für GLC-Displays 389
bitRead, Funktion

Funktionalität 81
mehrere Analogeingänge einlesen 174
mehrere Pinwerte senden 125

Bits
Pinwerte senden 123

Index | 583

setzen/lesen 80
verschieben (Shifting) 84

bits-Sketch 66
bitSet, Funktion 80
bitweise Operationen 65
bitWrite, Funktion 81
Blink Sketch

Cursor ein- und ausschalten 370
blink, Funktion 44, 371
Blink-Sketch

ausführen 13
laden 10, 13

blink3 Sketch 47
BlinkLED, Funktion 567
blinkLibTest Sketch 567, 570
BlinkM Sketch 425
BlinkM-Modul 425
BlinkMTester Sketch 428
BlinkWithoutDelay Sketch 400
BlueSMiRF-Modul 489–490
Bluetooth Bee-Modul 489, 491
Bluetooth Mate-Modul 489
Bluetooth-Geräte, Kommunikation mit 489
Boards siehe Arduino-Boards
BOB-08669 Breakout-Board 200
boolean, Datentyp 26
Bray Terminal, Programm 97
Breadcrumbs-Projekt 226
break-Anweisung 59–60
Brushed_H_Bridge Sketch 310
Brushed_H_Bridge_Direction Sketch 312, 314
Brushed_H_Bridge_simple Sketch 306
Brushed_H_Bridge_simple2 Sketch 308
Bürsten- und bürstenlose Motoren 291

Drehrichtung mit H-Brücke steuern 306, 309
Drehrichtung steuern mit Sensoren 311
Geschwindigkeit mit H-Brücke steuern 309
Geschwindigkeit regeln mit Sensoren 311
per Fahrtregler steuern 299
über Transistoren ansteuern 305

byte, Datentyp
Definition 26
verschieben (Shifting) von Bits 84

ByteOperators Sketch 85, 87

C
C, Sprache

Strings in Zahlen umwandeln 43
Strings und 37

C, Sprache, Strings und 35
camera Sketch 357
Canon Hack Development Kit 359
Carriage Return (\r) 107
case-Anweisung 254
ceil, Funktion 76
Celsius Temperaturskala 204, 442
char, Datentyp 26
character strings siehe strings
charAt, Funktion 34
Charlieplexing 244

about 265
LED-Matrix steuern über 265

Charlieplexing Sketch 265
client-Klasse (Webserver)

available-Methode 511
connect-Methode 495, 501
connected-Methode 511
find-Methode 503
findUntil-Methode 526
parseFloat-Methode 504
parseInt-Methode 503
println-Methode 512
read-Methode 511

CommaDelimitedInput Sketch 107
CommaDelimitedOutput Sketch 106
compareTo, Funktion 34
Computerbefehle, Servos steuern über 298
concat, Funktion 34, 41
configureRadio, Funktion 471
constants

weiterführende Informationen 156
constrain, Funktion 19
Conway, John 384
CoolTerm, Programm 97
CoolTerm-Programm 468
Coordinated Universal Time (UTC) 545
cos, Funktion 77
Countdown-Timer 160
CSV-Format, Beispiele 134, 551, 556
Cursor (LCD), ein- und ausschalten 370
cursorHide, Funktion 392
custom_char Sketch 378
customCharPixels Sketch 383
customChars Sketch 380
CuteCom, Programm 97

584 | Index

D
Datenblätter lesen 184
Datentypen

Erwägungen für Binärformat 118
von Arduino unterstützte 25

Datum
Alarm basierend auf 412
ausgeben 406

Datum/Uhrzeit
Time-Bibliothek 405

Dauer
von Impulsen messen 402
Von Zeitverzögerungen bestimmen 398

dauerrotierende Servos 296
Dauerstrom-Treiber 252
Debounce Sketch 158
debounce, Funktion 159
Debugging

Bibliotheks-Unterstützung 576
Informationen an Computer senden 94

default (case-Anweisung) 61
DEG_TO_RAD Konstante 78
Dekodierung von IR-Signalen 350
delay Sketch 397
delay, Funktion

mehrere Töne gleichzeitig ausgeben 335
Töne ausgeben 331
Verzögerungen erzeugen 397

delayMicroseconds, Funktion 398
Dezimalformat

BCD und 436
Sonderzeichen darstellen 377
Text senden im 98

DHCP (Dynamic Host Configuration Protocol)
Drittanbieter-Bibliothek 499
IP-Adresse und 494, 498

Digi International 463
Digi-Key-Steckbrett 152
Digital-Thermometer 440
digitalClockDisplay, Funktion 409
digitale Pins

einlesen 23
Digitalkamera steuern 356
Digitalpins

40 mA pro Pin umgehen 251
als Eingang konfigurieren 150
Anschlussbelegung 150
Daten in Logdateien speichern 136
Eingänge einlesen 150

ermittelt, wie lang ein Taster gedrückt
wurde 160

Input messen 151
interne Pullup-Widerstände 156
LED-Matrix, Beispiel 259
logische Namen 150
maximaler Pin-Strom 244
Schließen eines Schalters erkennen 158
SPI-Geräte 425
Tastaturen einlesen 165
visuelle Ausgabe und 241
weiterführende Informationen 156
Werte senden 123
Zustand eines Schalters messen 152

digitalRead, Funktion
Funktionalität 23, 150–151
Schalterstellung ermitteln 152
Spannung überwachen 154
weiterführende Informationen 156

digitalWrite, Funktion
digitale Ausgabe und 241
Funktionalität 23
Hubmagnete und Relais steuern 301
interne Pullup-Widerstände und 157
weiterführende Informationen 156

Diode
Entkopplungsdiode 304

Dioden
Definition 243

Display5vOrless Sketch 175
displayBlink, Funktion 371
DisplayMoreThan5V Sketch 180
displayNumber, Funktion 278, 447, 453
Division (/) Operator 69, 71
DNS (Domain Name System) 494

IP-Adressen auflösen 500
do...while-Schleife 55
doEncoder, Funktion 216
Domain Name System siehe DNS
double, Datentyp 26, 28
doubleHeightBars, Funktion 384
doUpdate, Funktion 519
Drahtlose Kommunikation

802.15.4-Netzwerk 463
Aktuatoren aktivieren 478
Nachrichten senden 457
ZigBee-Netzwerk 463

drahtlose Kommunikation
mit Bluetooth-Geräten 489
Fernbedienungen und 347

Index | 585

Nachrichten senden an XBees 470
Nachrichten über Transceiver senden 483
Sensordaten zwischen XBees senden 473

draw, Funktion (Processing) 121
DrawBitmap, Funktion 389
drawBox, Funktion 392
Drehbewegung

messen 210, 213
messen mehrerer Drehbewegungen 213

Drehmoment, Motor 291
Drehrichtung

eines Bürstenmotors steuern 306
von Bürstenmotoren steuern 309, 311

Drehscheibe, Bewegung verfolgen 210, 215
Drehwinkelgeber

Bewegung einer Drehscheibe verfolgen 210,
215

Funktionalität 212
Drehwinkelgeber einlesen 210
DS1307 RTC-Chip 415
DS1307RTC.h-Bibliothek 415
DS1337 RTC-Chip 415
Dual Tones Sketch 334
Dynamic Host Configuration Protocol siehe

DHCP
dynamische Speicherallozierung 35

E
EasyDriver-Board 320
Echtzeituhr (Real-Time Clock, RTC) 415, 435
EEPROM-Bibliothek 560
EEPROM-Speicher

anbinden 436
Elektronik

Einführungen 149
elektronische Fahrtregler

bürstenlose Motoren steuern 299
elektronische Geschwindigkeitsregelungen 291
elektronischer Fahrtregler 299
endsWith, Funktion 34
Entkopplungsdiode 304
Entprellen 158, 161
equals, Funktion 35
equalsIgnoreCase, Funktion 35
Escape-Codes 392
Ethernet-Bibliothek 493, 560

begin, Funktion 497–498
Sicherheit 511
Sketches und 511

Verbesserungen 495
von Drittanbietern, Erwägungen 579

Ethernet-Shield
einrichten 496
IP-Adresse und 498
MAC-Adresse und 497

EZ1Rangefinder Distance Sensor Sketch 194

F
fabs, Funktion 28
Fahrenheit Temperaturskala 204
Fahrtregler

bürstenlose Motoren steuern 299
Faludi, Robert 463
Farbe, von LEDs steuern 252
Fehlermeldungen

beim Hochladen von Sketches 14
Kompilierung 12, 579
Werte an Konstanten zuweisen 63

Fehlersuche
Geräteanschlüsse 292
weiterführende Informationen 15
XBee-Module 463

Fernbedienung 347
Digitalkamera steuern 356
Infrarot 347
IR-Signale dekodieren 350
Signale imitieren 354
Wechselstromgeräte steuern 359

Fernbedienungen
drahtlose Kommunikation und 347

Fernseher, Text ausgeben über 390
Firmata-Bibliothek 127, 560
Flash-Speicher siehe Programmspeicher
Fließkommazahlen

auf- und abrunden 76
Genauigkeit 28
in Sketches 27
Speicherverbrauch 176

Fließkommazahlen auf- und abrunden 76
floor, Funktion 76
Fluss-Spannung 243
Fluss-Steuerung

Definition 119
Überlegungen für Binärformat 119
weiterführende Informationen 119

for-Schleife
Anweisungen wiederholen mit Zählern 56
LED-Matrix, Beispiel 262

586 | Index

ForLoop Sketch 56
formatierter Text

senden 98
Formulare, Webseiten und 523
Freeduino Motor Control Shield 314
FrequencyTimer2 library 270
FTDI-Treiber 7
FTDIUSBSerialDriver-Paket 7
functionReferences Sketch 50
Funktionen

Alarm zum Aufruf von 412
anlegen 45
Arduino-Referenz 49
mehrere Werte zurückgeben 49
Namenskonventionen 48
Semikolon in 48, 51
trigonometrische 77
zu Sketches hinzufügen 45

Funktionen, überladen 46
Funktionsdeklaration, Definition 51
Funktionskopf 51
Funktionsrumpf 51
Funktionsüberladung 117

G
Gegen-EMK 302
gemeinsame Anode 252, 257
gemeinsame Kathode 252, 257, 279
geschweifte Klammern {} 54
Geschwindigkeit

Bewegung einer Drehscheibe verfolgen 210
dauerrotierende Servos und 296
von Bürstenmotoren regeln 311
von Bürstenmotoren steuern 309

Geschwindigkeitsregelung 291
GET-Befehl 505, 508
getBytes, Funktion 35
getDistance, Funktion 198
getkey, Funktion 167
GettingStarted Sketch 147
getValue, Funktion 174, 434
GLC-Display (grafisches LCD) 363
GLC-Display (graphisches LCD)

Ausgabe an 410
Bitmaps entwerfen für 389

GLCD (graphisches LCD)
anschließen 385
Anschlüsse 385

GLCD Bibliothek 385
glcd Sketch 387

GLCDdiags Diagnose-Sketch 388
GLCDImage Sketch 389
Gleich, (==) Operator 61
Gleichstrommotoren siehe Bürsten- und bürs-

tenlose Motoren
globale Variablen 50, 163
GNU screen, Programm 97
Google Earth

Bewegung steuern in 131
GoogleEarth_FS Sketch 134
herunterladen 132
weiterführende Informationen 136

Google Finance 504, 506
Google Weather 506–507
Google XML API 507
GPS-Modul

Daten empfangen von 143
Position bestimmen per 221

GPS-Module
kreative Projekte 226

grafisches LC-Display siehe GLC-Display
Gravitech 7-Segment-Display-Shield 445
Greenwich Mean Time 545
Größer-als, (>) Operator 61
Größer-oder-gleich, (>=) Operator 61
Gyroskop, Rotation erkennen mit 226

H
.h Dateiendung 389
H-Brücke 291

bipolare Schrittmotoren ansteuern 317
Drehrichtung eines Bürstenmotors steuern

306
Drehrichtung von Bürstenmotoren steuern

309
Geschwindigkeit von Bürstenmotoren

steuern 309
Sensoren zur Steuerung der Drehrichtung

und Geschwindigkeit von
Bürstenmotoren 311

Hagman, Brett 331, 333
Hart, Mikal 101, 140, 222, 226
Header-Dateien 569
Helligkeit

steuern 243
Hello Matrix Sketch 280
Hexadezimalformat

Sonderzeichen darstellen 377
Text senden im 98

highByte, Funktion

Index | 587

Binärdaten senden 116
weiterführende Informationen 83, 119

Hintergrundbeleuchtung (LCD) 365
Strom beschränken 385

Hintergrundgeräusche 185
Hitachi HD44780 363–364, 377
hiWord, Makro 86
HM55bCompass Sketch 231
HMC5883L Sketch 235
HMC5883L-Magnetometer 235
Hochladen, Uploading 2
Hope RFM12B-Module 483
Hostname, in IP-Adresse auflösen 500
HTML (HyperText Markup Language) 494

 tag 503
GET-Befehl 505, 508
POST-Befehl 505, 523, 527
Requests aufbereiten 519
<td>-Tag 522
<tr>-Tag 522

HTTP (Hypertext Transfer Protocol) 494
Hubmagnete und Relais 291

steuern 301
hueToRGB, Funktion 254, 425
HyperText Markup Language siehe HTML
Hypertext Transfer Protocol (HTTP) 494

I
I2C (Inter-Integrated Circuit) 184, 421

7-Segment-Anzeigen steuern 445
EEPROM-Speicher anbinden 436
Kommunikation zwischen Arduino-Boards

454
Port-Expander integrieren 448
RGB-LEDs steuern 425
Richtungssensoren und 235
Temperatur messen 440
Verbindung mit Echtzeituhr 435
Wii Nunchuck-Beschleunigungsmesser 429

I2C-7Segment Sketch 449
I2C_EEPROM Sketch 437
I2C_Master Sketch 454, 456
I2C_RTC Sketch 435
I2C_Slave Sketch 455
I2C_Temperature Sketch 440
i2cEEPROM_Read, Funktion 439
i2cEEPROM_Write, Funktion 439
IDE (Integrated Development Environment) 2

installieren 4
Sketches bearbeiten mit 13

IEEE 802.15.4-Standard 463
if-Anweisung 53
if...else-Anweisung 53
Impuls

Impulsdauer messen 402
Include-Dateien 569
indexOf, Funktion 34
Infrarot-Technik technology siehe IR-Technik

(infrarot)
init, Funktion 25
.ino. Dateierweiterung 16–17
int, Datentyp

Definition 25
aus höher-/niederwertigen Bytes bilden 87
höher-/niederwertige Bytes extrahieren 85
verschieben (Shifting) von Bits 84

Integrated Development Environment siehe IDE
Inter-Integrated Circuit siehe I2C
Internet Protocol (IP) 494
Internet-Zeitserver 543
Interpolation, Technik 197
IOREF-Pin 9
IP (Internet Protocol) 494
IP-Adresse

automatisch beziehen 498
DNS und 500
eindeutig 511
fest kodiert 496

IP-Adressen
DNS und 494
lokal 494

IPAddress-Klasse
printTo-Methode 500

ir-distance Sketch 196
IR-Empfangsmodul 348
IR-Technik (Infrarot)

Fernbedienung und 347
IR-Technik (infrarot)

Fernbedienung und 348
Sensoren und 196
Signale dekodieren 350
Signale imitieren 354

IR_remote_detector Sketch 348
IRecv-Objekt

decode, Funktion 350
enableIRIn, Funktion 350
resume, Funktion 350

IRremote-Bibliothek 347–348, 353
irSend Sketch 354
IRsend-Objekt 356

588 | Index

ITG-3200 Beispiel-Sketch 229
ITG-3200-Sensor 229
itoa, Funktion 42

J
Jaggars, Jesse 548
Jameco 2132349 Punktmatrixanzeige 259
Jameco-Steckbrett 152
Java

Bitmaps erzeugen 389
Robot-Klasse 130
split, Methode 108

Java language Processing open source tool
Java Sprache

Robot-Klasse 130
JeeLabs Website 486
JeeNode-Board 488
Joysticks

Beschleunigung und 239
Daten einlesen von 236
Google Earth steuern über 131

.jpg. Dateierweiterung 532
JSON-Format 495

K
Kathode

Definition 243
gemeinsam 252, 257, 279

Keypad Sketch 165
Klassen

Bibliotheken als 567
Definition 576
weiterführende Informationen 578

Kleiner-oder-gleich, (<=) Operator 61
Klinkenstecker 357
Klopfsensoren 199
Knight, Peter 345
KnightRider Sketch 258
Kodierungstechniken siehe Programmier-

techniken
kommaseparierter Text, in Gruppen

aufteilen 38
Kommunikationsprotokoll

Definition 92
Kommunikationsprotokolle

weiterführende Informationen 493
Kompass, Richtung bestimmen 231
Kompilierung

bedingte Kompilierung 579

Definition 10, 12
Fehlermeldungen 12, 579

Kondensator
an Sensoren anschließen 198

Konstanten
Werte zuweisen an 63

Konvertieren
Zahlen in Strings 41

Konvertierung
ASCII-Zeichen in numerische Werte 102
Spannungspegel 423
Strings in Zahlen 43, 104

KS0108-Panel 385
Kurzschluss 243

L
L293 H-Brücke 311
L293D H-Brücke 306
Ladyada-Website 226, 341
LANC 359
lastIndexOf, Funktion 34–35
LC-Display 363

Anschlüsse 365
Cursor ein- und ausschalten 370
Display ein- und ausschalten 370
Text formatieren 367
textbasiert 364
weiterführende Informationen 367

LC-Displays 385
Ausgabe an 410
eigene Zeichen definieren 377
große Symbole darstellen 379
Pixel, kleiner als einzelnes Zeichen 382
Sonderzeichen darstellen 375
Text scrollen 371

leading Nullen 447
learnKeyCodes, Funktion 353
LED-Balkenanzeige, »abschwellend« 257
LED-Matrix

Bilder (Images) darstellen 262
mit Schieberegistern ansteuern 280
per Multiplexing steuern 259
über Charlieplexing steuern 265

LED_intensity Sketch 284
LED_state Sketch 270
LEDBrightness Sketch 248
LEDs

40 mA pro Pin umgehen 251
7-Segment-Anzeige ansteuern 274, 276

Index | 589

7-Segment-Anzeige steuern 445
7-Segment-Anzeigen ansteuern 451
Abstandsmessung 192
aneinanderreihen 255
anschließen und nutzen 245
ansteuern 335
Anzahl der analogen Ausgänge erhöhen 281
Ausgabe an 410
Balkenanzeige 255, 268
bei gedrückter Taste einschalten 152
blinkende, Codebeispiele 15, 17
detecting mouse movement 217
Digitalpins und 151
Erwägungen bei Widerständen 261
Farbe steuern 252
Helligkeit regeln 248
Hochleistungs-LEDs ansteuern 249
IR-Fernbedienung und 348
IR-Signale imitieren 354
Klopfsensoren und 200
Lage bei neuen Boards 9
LED-Matrix ansteuern 279
maximaler Pin-Strom 244, 261
mehrfarbig 244
mit BlinkM-Modul steuern 425
motion erkennen 190
movement erkennen 185
Multiplexing und 244
technische Daten 243
Warnung bei niedriger Spannung 179
Widerstände und 247, 251

LEDs Sketch 246
length, Funktion 35
Leone, Alex 282
less than (<) Operator 61
Licht

Lichtstärke messen 188
lichtempfindlicher Widerstand 17, 188
Linefeed (\n) 107
Linux-Umgebung

Arduino-IDE installieren 6
XBee Serie 1, Konfiguration 467

Liquid Crystal Display siehe LC-Display
LiquidCrystal-Bibliothek 98, 364, 560

clear, Funktion 369
display, Funktion 371
eigene Zeichen definieren 379
FormatText Sketch 367
Hello World Sketch 366
noDisplay Funktion 371

print, Funktion 368, 377
ScrollDisplayLeft, Funktion 372
ScrollDisplayRight, Funktion 372
setCursor, Funktion 368
Special Chars Sketch 375
weiterführende Informationen 367, 370

Lite-On LTC-4727JR 276
Lite-On LTD-6440G 452
lm335 Sketch 206
LM335-Temperatursensor 206
lm35 Sketch 204
LM35 Temperatursensor 204
Logdateien, Daten speichern in 136
logische Operatoren 64
lokale IP-Adressen 494
LOL-Board 271
long, Datentyp

Definition 26
aus höher-/niederwertigen Bytes bilden 87
höher-/niederwertige Bytes extrahieren 85
verschieben (Shifting) von Bits 84

loop, Funktion 25
lötfreie Steckbretter 152
lowByte, Funktion

Binärdaten senden 116
Funktionalität 85
weiterführende Informationen 83, 119

lowWord, Makro 86
ltoa, Funktion 42

M
MAC-Adresse 494

eindeutig 497, 511
Mac-Umgebung

Arduino-IDE installieren 6
Mauszeiger bewegen 127
XBee Serie 1, Konfiguration 467

main, Funktion 25
makeLong, Makro 88
Makros 86
Map Sketch 170
map, Funktion

blinkende LED, Codebeipiel 19
Erwägungen bei Servos 296
mehrere LEDs aneinanderreihen 256
weiterführende Informationen 172
Wertebereich ändern 170

Marquee Sketch 373
marquee, Funktion 373

590 | Index

Master (I2C) 422
Kommunikation zwischen Arduino-Boards

454
Master (SPI) 424
mathematische Operatoren

Absolutwert bestimmen 72
Bits setzen/lesen 80
einfache Mathematik mittels 69
Fließkommazahlen auf- und abrunden 76
höher-/niederwertige Bytes extrahieren 85
int aus höher-/niederwertigen Bytes bilden 87
Minimum/Maximum 74
Quadratwurzel 76
Rest einer Division ermitteln 71
trigonometrische Funktionen 77
verschieben (Shifting) von Bits 84
Vorrang 70
Werte inkrementieren/dekrementieren 70
Zahlen auf Wertebereich beschränken 73
Zahlen potenzieren 75
Zufallszahlen generieren 78

Matrix-Bibliothek 280, 561
matrixMpx Sketch 259
matrixMpxAnimation Sketch 262
Maus

Bewegungen verarbeiten 217
Mauszeiger bewegen 127

max, Funktion 74, 258
Max7221_digits Sketch 277
MAX72xx devices

7-Segment-Anzeigen ansteuern 451
MAX72xx, Bauelemente

7-Segment-Anzeige ansteuern 276
MAX72xx-Bauelemente

LED-Matrix ansteuern 279
MaxBotix EZ1, Sensor 194
McCauley, Mike 459
Media Access Control-Adresse siehe MAC-

Adresse
Melodien, spielen 331
Mesh-Netzwerke, XBee und 457
Microchip 24LC128 EEPROM 437, 440
microphone Sketch 201
MIDI (Musical Instrument Digital Interface)

328, 341
MIDI-Bibliothek 344
midiOut Sketch 342
Mikrophone, Tone erkennen 200
millis, Funktion

Dauer von Zeitverzögerungen 398

mehrere Töne gleichzeitig ausgeben 333, 335
Pausen erzeugen 398
Überlauf 399
weiterführende Informationen 402
Zeit verwalten 265

millisDuration Sketch 399
MIME (Multipurpose Internet Mail Extensions)

532
min, Funktion 74
mitgelieferte Bibliotheken 559
MMA7260Q-Beschleunigungsmesser 239
Modulo (%) Operator 72
Modulo-Operator (%) 198
Monitor Pachube feed Sketch 551
MorningAlarm, Funktion 414
moserial, Programm 97
motion erkennen 190
Mouse Sketch 217
mouseBegin, Funktion 220
Multimeter 152, 363
multiple_alarms Sketch 563
multiplexer Sketch 172
Multiplexer, mehrere Eingänge einlesen 172
Multiplexing

7-Segment-LED-Anzeige ansteuern 274
Multiplexing-Technik 244

LED-Matrix steuern per 259
Multiplikation (*) Operator 69
Multipurpose Internet Mail Extensions (MIME)

532
MultiRX Sketch 146
Musical Instrument Digital Interface (MIDI)

328, 341
myDelay, Funktion 400

N
\n (Linefeed) 107
Nachrichten

Binärdaten empfangen 119
Binärdaten senden 115
Binärwerte aus Processing senden 121
Kommunikationsprotokoll 92
mehrere Textfelder empfangen 111
mehrere Textfelder senden 106
MIDI 341
senden/empfangen mit UDP 537
Twitter 533
über Drahtlos-Module senden 457
über Transceiver senden 483

Index | 591

Namenskonventionen für Funktionen 48
Nanode-Projekt 496
negative Zahlen 103
Neigungssensor 185, 372
Network Time Protocol (NTP) 543
Neue Hardware gefunden-Assistent 6
NewSoftSerial-Bibliothek

Daten an mehrere Geräte senden 140
Daten von mehreren Geräten empfangen 143

NICHT, (!) Operator 64
NKC Electronics 281, 314
NMEA 0183-Protokoll 221
noBlink, Funktion 371
NTP (Network Time Protocol) 543
Null

ASCII-Wert 32
Null, Wert 32
Nullen

führende 447
NumberToString-Sketch 42
nunchuck_lines Sketch 430
nunchuckDecode, Funktion 434
nunchuckInit, Funktion 433

O
ohmsche Sensoren 189
Ohmsches Gesetz 247
onceOnly, Funktion 414
Optokoppler 348

Digitalkamera steuern 358
Fernbedienung ansteuern 359

OptoRemote Sketch 360
outputCSV, Funktion 556

P
Pachube-Feeds

aktualisieren 554
überwachen 548

Parallax
HM55B Compass Module 231
PING))) Ultraschall-Abstandssensor 192
PIR Sensor 190
RFID Reader 207

Parameter
Definition 46
als Referenzen 51

parse-Methoden (Stream-Klasse) 114
Passive Infrarot-Sensoren (PIR) 190
PC-Umgebung siehe Windows-Umgebung

PCF8574A port expander 449
PCM (Pulse-Code Modulation) 338
Pegelwandler 423
Phi-Effekt 244
Philips

RC-5 Fernbedienung 347
RC-6 Fernbedienung 347

physische Ausgabe siehe Bürsten- und bürsten-
lose Motoren; Servomotoren; Schritt-
motoren

PI, Konstante 78
piezo Sketch 199
Piezo-Element

Definition 327
Töne erzeugen 336

Piezo-Elemente
Vibration messen 199

Ping))) Sensor Sketch 192
pinMode, Funktion

digitale Ausgabe und 241
Funktionalität 23, 150
weiterführende Informationen 156

Pins siehe Analogpins; Digitalpins
PIR (Passive Infrarot-Sensoren 190
PIR Sketch 190
Pixel

Definition 264
in GLC-Displays 387
kleiner als einzelnes Zeichen 382

PJRC
Teensy- und Teensy++-Boards 4
USB-Maus emulieren 130

playMidiNote, Funktion 343
playNote, Funktion 333
PlayStation Spiele-Controller

Daten einlesen von 236
PlayStation-Controller

Sensoren und 184
playTone, Funktion 336
Pocket Piano-Shield 338
Polarität, Definition 244
Polling, Definition 212
Pololu-Breakout-Board 314
Port-Expander, integrieren 448
POSIX-Zeit 405
POST-Befehl 505, 523, 527
Pot Sketch 168
Potentiometer 152

Schleifer 169
Servos steuern mit 294

592 | Index

Spannung einlesen 168
Wertebereich ändern 170

pow, Funktion 75
PowerTailSwitch, Relais 362
Prellen von Kontakten 158
primitive Typen, einfache 25
printDigits, Funktion 409
Processing Open Source Tool 93

Binärdaten empfangen 119
Binäre Werte senden 121
Bitmaps erzeuge 389
createWriter, Funktion 139
DateFormat, Funktion 138
Daten in Logdateien speichern 136
draw, Funktion 121
Google Earth steuern 131
Mauszeiger bewegen 127
mehrere Textfelder in Nachrichten senden

106
Nachrichten per UDP senden/empfangen 538
Pinwerte senden 123
setup, Funktion 120
SyncArduinoClock Sketch 406
Umgebung einrichten 147
weiterführende Informationen 94
Wii Nunchuck Sketch 432

Processing UDP Test Sketch 541
Processing, Open Source-Tool

weiterführende Informationen 111
Programme siehe Sketches
Programmiertechniken 400

Ausführung von Code verzögern 400
bedingte Kompilierung 579

Programmspeicher
Webseiten und 527

Projekt, beginnen 17
Prototyp

Definition 51
Prototypen

Definition 569
PSX Sketch 237
Pulldown-Widerstände

Definition 151
Schalter verbunden über 152

Pullup Sketch 157
Pullup-Widerstände

aktivieren interner 156
Definition 151
Taster verbinden über 155

Pulse-Code Modulation (PCM) 338

PulseIn Sketch 402
pulseIn, Funktion 184, 193, 402
Pulsweitenmodulationn siehe PWM
Pushbutton Sketch 52–53, 152
PuTTY, Programm 97, 469
PWM (Pulsweitenmodulation) 242

Extender-Chips 281
Helligkeit einer LED regeln 248

Q
Quadratwurzel 76

R
\r (Carriage Return) 107
RAD_TO_DEG Konstante 78
RadioShack-Steckbrett 152
Random Sketch 79
random, Funktion 78, 115
randomSeed, Funktion 79
readArduinoInt, Funktion 126
readStatus, Funktion 234
RealTerm, Programm 98
ReceiveBinaryData_P Sketch 120
ReceiveMultipleFieldsBinary_P Sketch 125
ReceiveMultipleFieldsBinaryToFile_P Sketch

137
Referenzen, Parameter als 51
Relais siehe Hubmagnete und Relais
relationale Operatoren 61
RelationalExpressions-Sketch 61
RemoteDecode Sketch 351
Repeats, Funktion 414
replace, Funktion 35
reset, Funktion 234
RespondingToChanges Sketch 178
Rest nach Division 71
RF12-Bibliothek 486
RFID Sketch 208
RFID-Tags, lesen 207
RFM12B wireless Demo (struct receiver) Sketch

487
RFM12B Wireless-Demo (struct sender) Sketch

486
RFM12B-Module 483
RGB-Farbskala 252, 425
RGB_LEDs Sketch 252
Richtung

bestimmen (Kompass) 231
nachhalten (GPS) 210

Index | 593

Robot -Klasse (Java)
Nutzungshinweise 130

Robot-Klasse (Java)
weiterführende Informationen 130

RotaryEncoderInterrupt Sketch 215
RotaryEncoderMultiPoll Sketch 213
Rotation

mit Gyroskop erkennen 226
RS-232-Standard 91
RTC (Real-Time Clock, Echtzeituhr) 415, 435

S
Schalter

Fernbedienung hacken 359
mehrere Analogeingänge einlesen 174
ohne externe Widerstände 156
schließen erkennen 158
Zeitspanne im aktuellen Zustand ermitteln

160
Zustand messen 152

Schieberegister
7-Segment-Anzeige ansteuern 276
LED-Matrix ansteuern 279

Schrittmotoren 291
bipolare Schrittmotoren ansteuern 317, 320
unipolare Schrittmotoren steuern 323

SCL-Anschluss (I2C) 422
Richtungssensoren und 235
Temperatur einlesen (Beispiel) 442

SCL-Verbindung (I2C)
IOREF-Pin und 9

Scroll Sketch 372
SD-Bibliothek 560
SDA-Anschluss (I2C) 422

Richtungssensoren und 235
Temperatur einlesen (Beispiel) 442

SDA-Verbindung (I2C)
IOREF-Pin und 9

Seeed Studio Bazaar 4
Semikolon (;)

in Funktionen 48, 51
in Header-Dateien 569

SendBinary Sketch 115, 460
sendBinary, Funktion 117, 125
sendCommand, Funktion 278, 453
SendingBinaryFields Sketch 124
SendingBinaryToArduino Sketch 121
SendInput API, Funktion 131
sendMessage, Funktion 535

Sensoren 183
Abstandsmessung 192
Beschleunigung messen 239
Bewegung einer Drehscheibe verfolgen 210,

215
Bürstenmotoren steuern mit 311
Daten von Spiele-Controller einlesen 236
Daten zwischen XBees senden 473
Google Earth steuern über 131
Kondensator anschließen an 198
LED-Matrix steuern 259
Lichtstärke messen 188
Mausbewegungen verarbeiten 217
messen mehrerer Drehwinkelgeber 213
motion erkennen 190
movement erkennen 185
Position bestimmen per GPS 221
RFID-Tags lesen 207
Richtung bestimmen 231
Rotation mit Gyroskop erkennen 226
Servos steuern mit 294
Spannung einlesen 168
Temperatur 440
Temperatur messen 204, 554
Töne erkennen 200
Twitter-Nachrichten senden 533
Vibration messen 199
weiterführende Informationen 185

Serial Peripheral Interface siehe SPI
Serial Port Profile (SPP) 490
Serial-Bibliothek

available, Funktion 434, 511
begin, Funktion 95
8-Bit-Werte 101
flush, Methode 93
list, Funktion, 121
parseFloat, Funktion 106
parseInt, Funktion 44, 106
peek, Funktion 94
print, Funktion 93, 97, 99
print. Funktion 95
println, Funktion 97, 99, 108
read, Funktion 44
setTimeout, Funktion 45
von Drittanbietern, Erwägungen 579
write, Funktion 93, 100, 116

serialEvent, Funktion 105
SerialFormatting Sketch 98
serialIn, Funktion 234

594 | Index

SerialMouse Sketch 127
serialOut, Funktion 234
SerialOutput Sketch 95
SerialReceive Sketch 101, 105
SerialReceiveMultipleFields Sketch 112
serielle Befehle, Servos steuern über 298
Serielle Bibliothek

println, Funktion 23
serielle Kommunikation

Binärdaten empfangen 119
binäre Daten senden 115
Binärwerte aus Processing senden 121
Daten an mehrere Geräte senden 139
Daten empfangen 101
Daten in Logdateien speichern 136
Daten von mehreren Geräten empfangen 143
Debugging-Informationen senden 94
formatierten Text senden 98
Google Earth steuern 131
Mauszeiger bewegen 127
mehrere Textfelder in Nachrichten empfan-

gen 111
mehrere Textfelder in Nachrichten senden

106
numerische Daten senden 98
Pinwerte senden 123
Position mit GPS bestimmen 223
Processing-Umgebung einrichten 147
serielle Bibliotheken 92
serielle Hardware 90
serielles Protokoll 92
Servos steuern 298
TellyMate-Shield und 391
weiterführende Informationen 101

Serielle Kommunikation 89
Serieller Monitor

Abbildung 89
Abstandsmessung 192
Bürstenmotoren steuern 310
Funktionalität 19
Position per GPS bestimmen 224
Spannungen ausgeben 175
starten 95
Uhr stellen 407
Werte an Computer ausgeben 23
Zahlenfolge ausgeben 95

Servo-Bibliothek 294, 560
attach-Methode 293

Servomotor
Position kontrollieren 292

Servomotoren 289
Geschwindigkeit dauerrotierender Servos 296
map-Funktion und 296
steuern mehrerer 294
über seriellen Port steuern 298

setCharAt, Funktion 35
setColor, Funktion 429
setSpeed, Funktion 314
setSyncProvider, Funktion 417
setTime, Funktion 405, 415
setup, Funktion (Arduino) 25
setup, Funktion (Processing) 120
SevenSegment Sketch 271
SevenSegmentMpx Sketch 274
shaken Sketch 187
Shields

Adafruit Motor Shield 295
Adafruit Wave Shield 338
Anschlussbelegung und 151
Ardumoto 314, 319
Bluetooth Bee-Unterstützung 491
Ethernet 496
Freeduino Motor Control Shield 314
GPS-Datenlogger 226
H-Brücke 314
MIDI-Breakout 344
Pin-Verbindungen und 9
Pocket Piano 338
7-Segment 440, 445
Tellymate 390
USB-Host-Shield 238

Shirriff, Ken 347
show, Funktion 264
showDigit, Funktion 273, 276
ShowSensorData Sketch 108
showSymbol, Funktion 377
showXY, Funktion 392
Sicherheit, Ethernet-Bibliothek 511
signed, Schlüsselwort 26
Simple Client Google Weather Sketch 507
Simple Client Parsing Sketch 502
Simple Client to display IP address Sketch 498
Simple Web Client Sketch 496
SimpleBrushed Sketch 305
SimpleRead Sketch 93, 119
SimpleReceive Sketch 459, 485
SimpleSend Sketch 459, 484
sin, Funktion 77
Sketch-Editor

öffnen 15

Index | 595

Sketcheditor
Funktionalität 10

Sketches 215
Aktionen basierend auf Bedingungen 52
Aktionen basierend auf Variablen 59
Anweisungen wiederholen mit Zählern 56
Arrays in 29
aus Schleifen ausbrechen 58
Bibliotheken und 561
bitweise Operationen 65
blinkende LED, Codebeispiel 15, 17
Definition 2, 12
einfache primitive Typen 25
erstellen 15
Fehlermeldungen 12, 14
Fließkommazahlen in 27
Folgen von Anweisungen wiederholt ausfüh-

ren 54
funktionale Blöcke in 45
logische Vergleiche 64
mehrere Werte in Funktionen zurückliefern

49
mit IDE bearbeiten 10, 13
speichern 13, 15
Strings bearbeiten 32
Strings in Zahlen umwandeln 43
Strings vergleichen 63
Struktur 24
Zahlen in Strings umwandeln 41
Zeichen/numerische Werte vergleichen 61
zusammengesetzte Operatoren 68

Slave (I2C) 422
Adresse und 422
Kommunikation zwischen Arduino-Boards

454
Slave (SPI)

identifizieren 424
SN754410 H-Brücke 306
SoftwareSerial to talk to BlueSmiRF Modul

Sketch 489
SoftwareSerial-Bibliothek 224, 561

Daten an mehrere Geräte senden 140
Daten von mehreren Geräten empfangen 143

SoftwareSerialInput Sketch 144
SoftwareSerialOutput Sketch 140
Solid-State-Relay (SSR) 302
Sonderzeichen

darstellen 375
Southern Hemisphere Sketch 222, 224

Spannung
3,3V-Board, Erwägungen 423
5V-Board, Erwägungen 423
an Analogpins einlesen 168
auf Spannungsänderungen reagieren 177
digital überwachen 154
digitale Ausgabe und 241
Erwägungen bei 3,3-Volt-Board 154
Fluss-Spannung 243
Gegen-EMK 302
Klopfsensor und 199
LC-Display und 365
LED, technische Daten 243
messen 175, 179
Pegelwandler 423
Wertebereich ändern 170

Spannungs-Offset 203
Spannungsteiler 179
SparkFun

344
12-Tasten-Tastatur 165
ADXL203CE-Beschleunigungsmesser 239
Ardumoto Shield 314, 319
Audio-Sound-Modul 341
BOB-00099 Datenblatt 419
BOB-08745 Breakout-Board 423
Electret-Mikrofon 200
GPS-Module 226
grüne LEDs 281
LISY300AL-Gyroskop 228
LY530AL-Breakout-Board 227
MIDI Breakout-Shield 344
PIR Motion Sensor 190
PRT-00137-Steckbrett 152
ROB-08449 Vibrationsmotor 303
ROB-09402 Breakout-Board 314
SEN-09801-Breakout-Board 229
WRL-10532 457
WRL-10533 457
WRL-10534 457
WRL-10535 457
XBee Explorer USB 465, 476

Speicher-Management
Fließkommazahlen und 176

Speicherverwaltung
Bibliotheken und 566
Bitmaps und 389
dynamische Speicherallozierung 35
externen Speicher anbinden 436
Webseiten und 527

596 | Index

SPI (Serial Peripheral Interface) 184, 421
7-Segment-Anzeigen ansteuern 451

SPI-Bibliothek 424, 561
transfer, Funktion 453
weiterführende Informationen 425

SPI.h-Datei 495
SPI_MAX7221_0019 Sketch 451
split, Methode (Java) 108
SplitSplit Sketch 38–39
SPP (Serial Port Profile) 490
Sprite library 280
Sprite-Bibliothek 561
sqrt, Funktion 76
SREG (Interrupt-Register) 217
SSR (Solid-State-Relais) 302
startMeasurement, Funktion 234
startsWith, Funktion 35
statische Variablen 163
Steckbretter

lötfrei, 152
Stepper Sketch 323
Stepper-Bibliothek 561
Stepper_bipolar Sketch 317
Stepper_Easystepper Sketch 321
strcat, Funktion 37
strcmp, Funktion 38, 63
strcpy, Funktion 37
Stream-Klasse

find, Methode 114
findUntil, Methode 114
parseFloat, Methode 114
parseInt, Methode 114
readBytes, Methode 114
readBytesUntil, Methode 115
setTimeout. Methode 114

Streaming-Bibliothek 101
String, Datentyp

26
C character arrays and 35

String-Bibliothek
C, Sprache, und 37
Speichernutzung 36
weiterführende Informationen 36

String-Bibliothk
Strings bearbeiten 32

String-Klasse 41
length-Methode 556

Stringfunktionen (Arduino) 34
Strings 32

Arrays und 32, 37

bearbeiten 32
C, Sprache, und 35, 37
Datentyp für 26, 35
Definition 32
deklarieren 37
in Zahlen umwandeln 43, 104
kommaseparierten Text in Gruppen

aufteilen 38
kopieren 37
Länge bestimmen 37
mehrere Felder in 106
Null in 32
vergleichen 38, 63
verketten 37
Zahlen umwandeln in 41

StringToNumber-Sketch 43
strlen, Funktion 37
strncmp Funktion 64
Stromversorgung

Hochleistungs-LEDs und 250
strtok_r, Funktion 40
Strukturen

Definition 117
Erwägungen für Binärformat 118
Versatz 118–119

Strukturen packen 119
substring, Funktion 35, 39
Subtraktion (-) Operator 69
swap, Funktion 50–51
swap-Sketch 50
Sweep Sketch 292
switch-Anweisung 59
SwitchCase Sketch 59
SwitchTime Sketch 161
switchTime, Funktion 162
SwitchTimeMultiple Sketch 163
Symbole

eigene definieren 377
große 379

SyncArduinoClock Sketch 406
Synchronisation

Binärdaten und 118
Uhren-Software 543

Synthesizer
MIDI 341

T
takePicture, Funktion 358
tan, Funktion 77

Index | 597

Tastatur
einlesen 165

TCP (Transmission Control Protocol) 494
<td>-Tag 522
TellyBounce Sketch 393
TellyMate Shield 390
TellyMate Sketch 390
Temperatur messen 204, 440, 554
Terminal-Fenster 469
Texas Instrument TMP75 440
Text formatieren

LC-Display und 367
Text scrollen 371
Textfelder/-Daten

LC-Displays und 364
Textfelder/-daten

für LC-Displays formatieren 367
scrollen 371
über Fernseher ausgeben 390

Textfelder/Daten
formatiert senden 98
in Nachrichten empfangen 111
in Nachrichten senden 106

TextFinder Bibliothek 495
TextString Bibliothek 33
Theremin 346
Thermometer, digital 440
ThingSpeak API-Schlüssel 533
ThingTweet Website 535
tilt Sketch 185
Time Sketch 404
Time-Bibliothek 404, 414, 563
Time_NTP Sketch 546
TimeAlarmExample Sketch 412
TimeAlarms Bibliothek 412, 563
TimedAction-Bibliothek 401
Timeout, festlegen 403
Timer 414

Countdown-Timer 160
TimeRTC Sketch 415
TimeRTCSet Sketch 417
TimeSerial Sketch 405
TinyGPS-Bibliothek 222
TLC Sketch 282
Tlc5940-Bibliothek 282

clear-Methode 283
init Method 283
NUM_TLCS-Konstante 285
set Method 283
setAll-Methode 283

update-Methode 283
weiterführende Informationen 285

TLC5940-Chip 281
toCharArray, Funktion 35
Todbot-Adapter 430
toInt, Funktion 35
toLowerCase, Funktion 35
Töne siehe Audio-Ausgabe
Tone Sketch 329
tone, Funktion 327

mehrere Töne gleichzeitig ausgeben 333
playing simple melodies 331
Töne ausgeben 329

Tone-Bibliothek 331, 333
Toshiba FB6612FNG 314
toUpperCase, Funktion 35
<tr> tag 522
Transceiver, Nachrichten senden über 483
Transducer 331
Transistor

steuern von Hochleistungs-LEDs 249
Transistor-Transistor Logik (TTL) 90
Transistoren

Bürstenmotoren ansteuern 305
Hubmagnete und Relais steuern 302

Transmission Control Protocol (TCP) 494
Trennzeichen 106
trigonometrische Funktionen 77
trim, Funktion 35
TTL (Transistor-Transistor Logik) 90
TTL-Pegel 90
TV-B-Gone Fernbedienungs-Anwendung 356
Twinkle Sketch 331
Twitter-Nachrichten, senden 533

U
UARTs 146
UDP (User Datagram Protocol) 537, 545
UdpNtp Sketch 543
UDPSendReceive Sketch 539
UDPSendReceiveStrings Sketch 537
Uhr

Echtzeituhr 415
Uhrzeit ausgeben 404

Uhren
synchronisieren 543

ULN2003A Darlington-Treiber 323
Ungleich, (!=) Operator 61
unipolare Schrittmotoren 292

598 | Index

Unix-Zeit 405, 412
unpolare Schrittmotoren

steuern 323
unsigned, Schlüsselwort 26
Update Pachube feed Sketch 554, 556
USB-Protokoll

Digitalpins und 150
MIDI-Geräte und 344
serielle Kommunikation und 91
Spiele-Controller und 238
USB-Maus emulieren 130
XBeeAdapter 465

User Datagram Protocol (UDP) 537, 545
USGlobalSat EM-406A GPS module 223
UTC (Coordinated Universal Time) 545

V
Variablen

Aktionen basierend auf 59
Definition 50
einfache primitive Typen 25
globale 163
statisch 163
volatile 217

variabler Widerstand 152
Vergleichsoperatoren 61
Versionskontrolle 16
Verzögerung, Zeitverzögerung siehe Zeitverzöge-

rung
Vibrate Sketch 303
Vibrate_Photocell Sketch 304
Vibration

messen 199
Objekte wackeln lassen 302

VirtualWire-Bibliothek 459
visuelle Ausgabe siehe LEDs
void, Datentyp 26
volatile Variablen 217
Vorrang von Operatoren 70
VW_MAX_MESSAGE_LEN, Konstante 462

W
WAV-Dateien, abspielen 338
WaveShieldPlaySelection Sketch 338
Web Client Babel Fish Sketch 505
Web Client DNS Sketch 500
Web Client Google Finance Sketch 504
Web Server Sketch 510
Webduino Webserver 533

Webseiten
Formulare 523
große Datenmengen und 527
Requests verarbeiten 515

Webserver
auf Arduino einrichten 509
Daten abrufen von 502
Requests aufbereiten 519
Requests bestimmter Seiten verarbeiten 515
Requests verarbeiten 512

WebServerMultiPage Sketch 515
WebServerMultiPageHTML Sketch 520
WebServerMultiPageHTMLProgmem Sketch

527
WebServerParsing Sketch 512
WebServerPost Sketch 524
Wechselstrom

Geräte steuern 359
while-Schleife 54
Widerstand

Erwägungen bei LEDs 261
Kurzschluss und 243
LEDs und 247, 251
Ohmsches Gesetz 247
variabel 152
Wert in Ohm berechnen 286

Widerstände
Pulldown 151–152
Pullup 151, 155
Schalter ohne externe 156

Wiederholung von Anweisungen
mit Zählern 56

Wii Nunchuck
Beschleunigungsmesser 429
Google Earth steuern per 132
Google Earth steuern über 131

WiichuckSerial Sketch 132
WiiNunchuck

Beschleunigungsmesser 239
Windows-Umgebung

Arduino-IDE installieren 6
Mauszeiger bewegen 127
XBee Serie 1, Konfiguration 467
XBee Series 2, Konfiguration 466

Wippler, Jean-Claude 488
Wire-Befehl

send, Funktion 446
Wire-Bibliothek 561

available, Funktion 434
begin, Funktion 433

Index | 599

beginTransmission, Funktion 439
Bibliotheken entwickeln 572
einbinden 427
endTransmission, Funktion 433
println, Funktion 456
read, Funktion 423, 434, 442
receive, Funktion 423, 436
requestFrom, Funktion 433, 436, 439
send, Funktion 423, 433
weiterführende Informationen 425
write, Funktion 423, 448
Zugriff auf Echtzeituhr 435

word, Funktion 87

X
X-CTU-Anwendung

XBee Serie 1, Konfiguration 467
XBee Series 2-Konfiguration 466

XBee Actuate Sketch 480
XBee-Module

Aktuatoren aktivieren 478
Fehlersuche 463
mit 802.15.4-Netzwerken verbinden 463
mit ZigBee-Netzwerken verbinden 463
Nachrichten senden an 470
»Remote AT Command«-Feature 478
Sensordaten senden zwischen 473
seriellen Port ermitteln 468
Series 1, Konfiguration 467
Series 2, -Konfiguration 466
ZigBee-Kompatibilität 463

XBeeActuateSeries1 Sketch 482
XBeeAnalogReceive Sketch 474
XBeeAnalogReceiveSeries1 Sketch 477
XBeeEcho Sketch 464
XBeeMessage Sketch 470
XBeeModule 457
XML-Format 495, 506, 551

Z
Zahlen/numerische Daten 61

Absolutwert bestimmen 72

ASCII-Zeichen umwandeln in 102
auf Wertebereich beschränken 73
LC-Displays und 364
mit Zeichen vergleichen 61
negative 103
potenzieren 75
Quadratwurzel 76
Strings umwandeln in 43, 104
umwandeln in Strings 41
vom Arduino senden 98

Zähler
Anweisungen wiederholen mit 56

Zambetti, Nicholas 280
Zeichen/Zeichenwert,

Datentyp 26
Zeichen/Zeichenwerte

eigene definieren 377
in numerische Werte umwandeln 102
mit Zahlen vergleichen 61
Sonderzeichen darstellen 375

Zeiger (Maus), bewegen 127
Zeitmessung 265

Alarm zum Aufruf von Funktionen 412
Dauer von Zeitverzögerungen 398
Echtzeituhr 415, 435
Impulsdauer 402
Konvertierungs-Tools 412
für gedrückte Taster 160
Uhren-Software synchronisieren 543
Uhrzeit ausgeben 404

Zeitraffer-Aufnahmen 356
Zeitverzögerung 264

Animationeffekt und 264
einstellen 259

ZIGBEE COORDINATOR AT, Funktion 466,
479

ZIGBEE ROUTER AT, Funktion 466, 473, 479
ZigBee-Standard 463
ZTerm, Programm 98
Zufallszahlengenerator 78
zusammengesetzte Operatoren 68
Zuweisung, (=) Operator 62

600 | Index

Über den Autor
Michael Margolis ist Technologieexperte im Bereich Echtzeitsysteme mit dem Schwer-
punkt Hardware- und Software-Entwicklung für die Umgebungs-Interaktion. Er hat über
30 Jahre Erfahrung auf Führungsebene bei Sony, Microsoft und Lucent/Bell Labs. Er hat
Bibliotheken und Kernsoftware geschrieben, die in der Arduino 1.0-Distribution enthal-
ten ist.

Kolophon
Das Tier auf dem Cover des Arduino Kochbuchs ist ein Spielzeug-Hase. Mechanisches
Spielzeug wie dieser Hase werden über Federn, Getriebe, Riemenräder, Hebel oder andere
einfache Maschinen bewegt, angetrieben durch mechanische Energie. Solche Spielsachen
haben eine lange Geschichte. Antike Beispiele sind aus Griechenland, China und der
arabischen Welt bekannt.

Die Herstellung mechanischen Spielzeugs florierte im frühen modernen Europa. Im
späten 14. Jahrhundert demonstrierte der deutsche Erfinder Karel Grod fliegendes Auf-
zieh-Spielzeug. Prominente Wissenschaftler jener Tage, darunter Leonardo da Vinci,
Descartes und Galileo Galilei, waren für ihr mechanisches Spielzeug berühmt. Da Vincis
berühmter mechanischer Löwe, 1509 für Louis XII gebaut, ging zum König hoch und
öffnete seinen Brustkasten, um eine Fleur-de-Lis zu offenbaren.

Die Kunst der Herstellung mechanischen Spielzeugs erreichte ihren Höhepunkt im späten
18. Jahrhundert mit den berühmten »Automaten« des Schweizer Uhrmachers Pierre
Jaquet-Droz und seines Sohnes Henri-Louis. Die menschlichen Figuren konnten so
lebensechte Dinge tun wie eine Feder in ein Tintenfass tauchen, ganze Sätze schreiben,
zeichnen und vom Papier Radiergummi-Reste wegblasen. Im 19. Jahrhundert brachten
europäische und amerikanische Unternehmen beliebtes Spielzeug zum Aufziehen heraus,
das zu Sammlerstücken geworden ist.

Da die Herstellung dieses Originalspielzeuges mit seiner komplizierten Mechanik und
aufwendigen Dekoration sehr zeit- und kostenintensiv war, blieb es Königshäusern oder
der Unterhaltung Erwachsener vorbehalten. Erst seit dem späten 19. Jahrhundert, mit
dem Aufkommen der Massenproduktion und billiger Materialien (Blech und später
Kunststoff), wurde mechanisches Spielzeug auch zu Spielsachen für Kinder. Die güns-
tigen, sich bewegenden Neuheiten waren über ein Jahrhundert sehr beliebt, bis sie von
batteriebetriebenen Spielsachen abgelöst wurden.

Die Abbildung auf dem Cover stammt vom Dover Pictorial Archive. Die Schriftart auf
dem Cover ist Adobe ITC Garamond. Als Textschrift wird Linotype Birka verwendet, als
Überschriftenschrift Adobe Myriad Condensed und als Code-Schrift LucasFonts The-
SansMonoCondensed.

	Arduino Kochbuch
	Inhalt
	Vorwort
	Leserkreis
	Organisation
	Was ausgelassen wurde
	Code-Stil (Über den Code)
	Arduino-Version
	Verwendete Konventionen
	Verwendung der Codebeispiele
	Danksagungen
	Hinweise zur Neuauflage

	Kapitel 1 — Erste Schritte
	1.0 Einführung
	Arduino-Software
	Arduino-Hardware
	Siehe auch

	1.1 Installation der integrierten Entwicklungsumgebung (IDE)
	Problem
	Lösung
	Diskussion
	Siehe auch

	1.2 Das Arduino-Board einrichten
	Problem
	Lösung
	Diskussion
	Siehe auch

	1.3 Einen Arduino-Sketch mit der integrierten Entwicklungsumgebung (IDE) bearbeiten
	Problem
	Lösung
	Diskussion
	Siehe auch

	1.4 Den Blink-Sketch hochladen und ausführen
	Problem
	Lösung
	Diskussion
	Siehe auch

	1.5 Einen Sketch erstellen und speichern
	Problem
	Lösung
	Diskussion
	Siehe auch

	1.6 Arduino verwenden
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 2 — Den Sketch machen lassen, was Sie wollen
	2.0 Einführung
	2.1 Strukturierung eines Arduino-Programms
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.2 Einfache primitive Typen (Variablen) nutzen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.3 Fließkommazahlen verwenden
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.4 Mit Gruppen von Werten arbeiten
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.5 Arduino-Stringfunktionen nutzen
	Problem
	Lösung
	Diskussion
	Zwischen Arduino-Strings und C-Zeichenketten wählen

	Siehe auch

	2.6 C-Zeichenketten nutzen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.7 Durch Komma getrennten Text in Gruppen aufteilen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.8 Eine Zahl in einen String umwandeln
	Problem
	Lösung
	Diskussion

	2.9 Einen String in eine Zahl umwandeln
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.10 Ihren Code in Funktionsblöcken strukturieren
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.11 Mehr als einen Wert in einer Funktion zurückliefern
	Problem
	Lösung
	Diskussion

	2.12 Aktionen basierend auf Bedingungen ausführen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.13 Eine Folge von Anweisungen wiederholt ausführen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.14 Anweisungen über einen Zähler wiederholen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.15 Aus Schleifen ausbrechen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.16 Basierend auf einem Variablenwert verschiedene Aktionen durchführen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.17 Zeichen und Zahlen vergleichen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.18 Strings vergleichen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.19 Logische Vergleiche durchführen
	Problem
	Lösung
	Diskussion

	2.20 Bitweise Operationen durchführen
	Problem
	Lösung
	Diskussion
	Siehe auch

	2.21 Operationen und Zuweisungen kombinieren
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 3 — Mathematische Operatoren nutzen
	3.0 Einführung
	3.1 Addieren, subtrahieren, multiplizieren und dividieren
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.2 Werte inkrementieren und dekrementieren
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.3 Den Rest einer Division bestimmen
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.4 Den Absolutwert ermitteln
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.5 Zahlen auf einen Wertebereich beschränken
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.6 Das Minimum oder Maximum bestimmen
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.7 Eine Zahl potenzieren
	Problem
	Lösung
	Diskussion

	3.8 Die Quadratwurzel berechnen
	Problem
	Lösung
	Diskussion

	3.9 Fließkommazahlen auf- und abrunden
	Problem
	Lösung
	Diskussion

	3.10 Trigonometrische Funktionen nutzen
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.11 Zufallszahlen erzeugen
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.12 Bits setzen und lesen
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.13 Bits verschieben (Shifting)
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.14 Höher- und niederwertige Bytes aus int oder long extrahieren
	Problem
	Lösung
	Diskussion
	Siehe auch

	3.15 int- oder long-Werte aus höher- und niederwertigen Bytes bilden
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 4 — Serielle Kommunikation
	4.0 Einführung
	Serielle Hardware
	Serielle Software
	Serielles Protokoll
	Neues in Arduino 1.0
	Siehe auch

	4.1 Debugging-Informationen vom Arduino an Ihren Computer senden
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.2 Formatierten Text und numerische Daten vom Arduino senden
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.3 Serielle Daten mit Arduino empfangen
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.4 Mehrere Textfelder vom Arduino in einer einzelnen Nachricht senden
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.5 Mit dem Arduino mehrere Textfelder in einer Nachricht empfangen
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.6 Binäre Daten vom Arduino senden
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.7 Binärdaten vom Arduino auf einem Computer empfangen
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.8 Binäre Werte aus Processing an den Arduino senden
	Problem
	Lösung
	Diskussion

	4.9 Den Wert mehrerer Arduino-Pins senden
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.10 Den Mauszeiger eines PCs oder Macs bewegen
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.11 Google Earth per Arduino steuern
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.12 Arduino-Daten in einer Datei auf dem Computer festhalten
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.13 Daten an zwei serielle Geräte gleichzeitig senden
	Problem
	Lösung
	Diskussion
	Siehe auch

	4.14 Serielle Daten von zwei Geräten gleichzeitig empfangen
	Problem
	Lösung
	Diskussion
	Daten von mehreren SoftwareSerial-Ports empfangen

	4.15 Serielle Daten mit Processing Senden und Empfangen
	Problem
	Lösung

	Kapitel 5 — Einfacher digitaler und analoger Input
	5.0 Einführung
	5.1 Einen Schalter verwenden
	Problem
	Lösung
	Diskussion
	Siehe auch

	5.2 Taster ohne externen Widerstand verwenden
	Problem
	Lösung
	Diskussion

	5.3 Das Schließen eines Schalters zuverlässig erkennen
	Problem
	Lösung
	Diskussion
	Siehe auch

	5.4 Ermitteln, wie lange eine Taste gedrückt wird
	Problem
	Lösung
	Diskussion

	5.5 Von einer Tastatur lesen
	Problem
	Lösung
	Diskussion
	Siehe auch

	5.6 Analogwerte einlesen
	Problem
	Lösung
	Diskussion
	Siehe auch

	5.7 Wertebereiche ändern
	Problem
	Lösung
	Diskussion
	Siehe auch

	5.8 Mehr als sechs analoge Eingänge einlesen
	Problem
	Lösung
	Diskussion
	Siehe auch

	5.9 Spannungen von bis zu 5V messen
	Problem
	Lösung
	Diskussion

	5.10 Auf Spannungsänderungen reagieren
	Problem
	Lösung
	Diskussion

	5.11 Spannungen über 5V messen (Spannungsteiler)
	Problem
	Lösung
	Diskussion

	Kapitel 6 — Werte von Sensoren einlesen
	6.0 Einführung
	Siehe auch

	6.1 Movement erkennen
	Problem
	Lösung
	Diskussion
	Siehe auch

	6.2 Licht messen
	Problem
	Lösung
	Diskussion
	Siehe auch

	6.3 Motion erkennen (Passive Infrarot-Detektoren integrieren)
	Problem
	Lösung
	Diskussion

	6.4 Abstände messen
	Problem
	Lösung
	Diskussion
	Siehe auch

	6.5 Abstände genauer messen
	Problem
	Lösung
	Diskussion
	Siehe auch

	6.6 Vibration messen
	Problem
	Lösung
	Diskussion

	6.7 Geräusche erkennen
	Problem
	Lösung
	Diskussion

	6.8 Temperatur messen
	Problem
	Lösung
	Diskussion
	Siehe auch

	6.9 RFID-Tags lesen
	Problem
	Lösung
	Diskussion

	6.10 Drehbewegungen messen
	Problem
	Lösung
	Diskussion

	6.11 Mehrere Drehbewegungen messen
	Problem
	Lösung
	Diskussion

	6.12 Drehbewegungen in einem viel beschäftigten Sketch messen
	Problem
	Lösung
	Diskussion

	6.13 Eine Maus nutzen
	Problem
	Lösung
	Diskussion
	Siehe auch

	6.14 Die Position per GPS bestimmen
	Problem
	Lösung
	Diskussion
	Siehe auch

	6.15 Bewegungen mit einem Gyroskop erkennen
	Problem
	Lösung
	Diskussion
	Verwendung des älteren LISY300AL-Gyroskops
	Rotation mit dem ITG-3200 in drei Dimensionen messen

	Siehe auch

	6.16 Richtung bestimmen
	Problem
	Lösung
	Diskussion

	6.17 Daten von einem Spiele-Controller (PlayStation) einlesen
	Problem
	Lösung
	Diskussion
	Siehe auch

	6.18 Beschleunigung messen
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 7 — Visuelle Ausgabe
	7.0 Einführung
	Digitale Ausgänge
	Analoge Ausgänge
	Licht steuern
	Technische Daten von LEDs
	Multiplexing
	Maximaler Pin-Strom

	7.1 LEDs anschließen und nutzen
	Problem
	Lösung
	Diskussion
	Siehe auch

	7.2 Helligkeit einer LED regeln
	Problem
	Lösung
	Diskussion
	Siehe auch

	7.3 Hochleistungs-LEDs ansteuern
	Problem
	Lösung
	Diskussion
	Wie man die 40 mA pro Pin umgeht

	Siehe auch

	7.4 Die Farbe einer LED steuern
	Problem
	Lösung
	Diskussion
	Siehe auch

	7.5 Mehrere LEDs aneinanderreihen: LED-Balkenanzeige
	Problem
	Lösung
	Diskussion
	Siehe auch

	7.6 Mehrere LEDs aneinanderreihen: Knight Rider-Lauflicht
	Problem
	Lösung
	Diskussion

	7.7 Eine LED-Matrix per Multiplexing steuern
	Problem
	Lösung
	Diskussion

	7.8 Bilder (Images) auf einer LED-Matrix darstellen
	Problem
	Lösung
	Diskussion
	Siehe auch

	7.9 Eine LED-Matrix ansteuern: Charlieplexing
	Problem
	Lösung
	Diskussion
	Siehe auch

	7.10 Eine 7-Segment-LED-Anzeige ansteuern
	Problem
	Lösung
	Diskussion

	7.11 Mehrstellige 7-Segment-LED-Anzeigen ansteuern: Multiplexing
	Problem
	Lösung
	Diskussion

	7.12 Mehrstellige 7-Segment-LED-Anzeigen mit MAX7221-Schieberegistern ansteuern
	Problem
	Lösung
	Lösung

	7.13 Eine LED-Matrix mit MAX72xx-Schieberegistern ansteuern
	Problem
	Lösung
	Diskussion
	Siehe auch

	7.14 Die Anzahl analoger Ausgänge mit PWM-Extender-Chips (TLC5940) erhöhen
	Problem
	Lösung
	Diskussion
	Siehe auch

	7.15 Ein analoges Anzeigeinstrument nutzen
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 8 — Physische Ausgabe
	8.0 Einführung
	Bewegungssteuerung mit Servomotoren
	Hubmagnete und Relais
	Bürsten- und bürstenlose Motoren
	Schrittmotoren
	Fehlersuche

	8.1 Die Position eines Servos kontrollieren
	Problem
	Lösung
	Diskussion

	8.2 Ein oder zwei Servos mit einem Potentiometer oder Sensor steuern
	Problem
	Lösung
	Diskussion

	8.3 Die Geschwindigkeit dauerrotierender Servos steuern
	Problem
	Lösung
	Diskussion

	8.4 Servos über Computerbefehle steuern
	Problem
	Lösung
	Diskussion
	Siehe auch

	8.5 Einen bürstenlosen Motor (per Fahrtregler) steuern
	Problem
	Lösung
	Diskussion

	8.6 Hubmagnete und Relais steuern
	Problem
	Lösung
	Diskussion

	8.7 Ein Objekt vibrieren lassen
	Problem
	Lösung
	Diskussion

	8.8 Einen Bürstenmotor über einen Transistor ansteuern
	Problem
	Lösung
	Diskussion

	8.9 Die Drehrichtung eines Bürstenmotors über eine H-Brücke steuern
	Problem
	Lösung
	Diskussion

	8.10 Drehrichtung und Geschwindigkeit eines Bürstenmotors mit einer H-Brücke steuern
	Problem
	Lösung
	Diskussion

	8.11 Richtung und Geschwindigkeit von Bürstenmotoren über Sensoren steuern (L293 H-Brücke)
	Problem
	Lösung
	Diskussion
	Siehe auch

	8.12 Einen bipolaren Schrittmotor ansteuern
	Problem
	Lösung
	Diskussion
	Siehe auch

	8.13 Einen bipolaren Schrittmotor ansteuern (mit EasyDriver-Board)
	Problem
	Lösung
	Diskussion

	8.14 Einen unipolaren Schrittmotor ansteuern (ULN2003A)
	Problem
	Lösung
	Diskussion

	Kapitel 9 — Audio-Ausgabe
	9.0 Einführung
	9.1 Töne ausgeben
	Problem
	Lösung
	Siehe auch

	9.2 Eine einfache Melodie spielen
	Problem
	Lösung

	9.3 Mehr als einen Ton gleichzeitig erzeugen
	Problem
	Lösung
	Diskussion

	9.4 Einen Ton erzeugen und eine LED ansteuern
	Problem
	Lösung
	Diskussion
	Siehe auch

	9.5 Eine WAV-Datei abspielen
	Problem
	Lösung
	Diskussion
	Siehe auch

	9.6 MIDI steuern
	Problem
	Lösung
	Diskussion
	Siehe auch

	9.7 Audio-Synthesizer
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 10 — Externe Geräte fernsteuern
	10.0 Einführung
	10.1 Auf eine Infrarot-Fernbedienung reagieren
	Problem
	Lösung
	Diskussion

	10.2 IR-Signale einer Fernbedienung dekodieren
	Problem
	Lösung
	Diskussion
	Siehe auch

	10.3 IR-Signale imitieren
	Problem
	Lösung
	Diskussion
	Siehe auch

	10.4 Eine Digitalkamera steuern
	Problem
	Lösung
	Diskussion
	Siehe auch

	10.5 Wechselstromgeräte über eine gehackte Fernbedienung steuern
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 11 — Displays nutzen
	11.0 Einführung
	11.1 Ein Text-LCD anschließen und nutzen
	Problem
	Lösung
	Diskussion
	Siehe auch

	11.2 Text formatieren
	Problem
	Lösung
	Diskussion
	Siehe auch

	11.3 Cursor und Display ein- und ausschalten
	Problem
	Lösung
	Diskussion

	11.4 Text scrollen
	Problem
	Lösung
	Diskussion

	11.5 Sonderzeichen darstellen
	Problem
	Lösung
	Diskussion
	Siehe auch

	11.6 Eigene Zeichen definieren
	Problem
	Lösung
	Diskussion

	11.7 Große Symbole darstellen
	Problem
	Lösung
	Diskussion
	Siehe auch

	11.8 Kleine Pixel darstellen
	Problem
	Lösung
	Diskussion

	11.9 Ein graphisches LC-Display anschließen und nutzen
	Problem
	Lösung
	Diskussion

	11.10 Bitmaps für graphische Displays
	Problem
	Lösung
	Siehe auch

	11.11 Text auf dem Fernseher ausgeben
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 12 — Datum und Uhrzeit
	12.0 Einführung
	12.1 Zeitverzögerungen
	Problem
	Lösung
	Diskussion
	Siehe auch

	12.2 Laufzeiten messen mit millis
	Problem
	Lösung
	Diskussion
	Siehe auch

	12.3 Die Dauer eines Impulses präziser messen
	Problem
	Lösung
	Diskussion
	Siehe auch

	12.4 Arduino als Uhr verwenden
	Problem
	Lösung
	Diskussion
	Siehe auch

	12.5 Einen Alarm einrichten, um regelmäßig eine Funktion aufzurufen
	Problem
	Lösung
	Diskussion

	12.6 Eine Echtzeituhr nutzen
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 13 — Kommunikation per I2C und SPI
	13.0 Einführung
	I2C
	Wire-Code nach Arduino 1.0 migrieren

	3,3V-Geräte mit 5V-Boards nutzen
	SPI
	Siehe auch

	13.1 Steuerung einer RGB-LED mit dem BlinkM-Modul
	Problem
	Lösung
	Diskussion
	Siehe auch

	13.2 Den Wii Nunchuck-Beschleunigungsmesser nutzen
	Problem
	Lösung
	Diskussion
	Siehe auch

	13.3 Anbindung einer externen Echtzeituhr
	Problem
	Lösung
	Siehe auch

	13.4 Externen EEPROM-Speicher anbinden
	Problem
	Lösung
	Diskussion
	Siehe auch

	13.5 Temperatur per Digital-Thermometer messen
	Problem
	Lösung
	Diskussion
	Siehe auch

	13.6 Vier 7-Segment-LEDs mit nur zwei Leitungen steuern
	Problem
	Lösung
	Diskussion
	Siehe auch

	13.7 Einen I2C-Port-Expander integrieren
	Problem
	Lösung
	Diskussion
	Siehe auch

	13.8 Mehrstellige 7-Segment-Anzeigen über SPI ansteuern
	Problem
	Lösung
	Diskussion

	13.9 Kommunikation zwischen zwei oder mehr Arduino-Boards
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 14 — Drahtlose Kommunikation
	14.0 Einführung
	14.1 Nachrichten über Low-Cost-Drahtlos-Module senden
	Problem
	Lösung
	Diskussion
	Siehe auch

	14.2 Den Arduino mit einem ZigBee- oder 802.15.4-Netzwerk verbinden
	Problem
	Lösung
	Diskussion
	Series 2-Konfiguration
	Konfiguration der Serie 1
	Mit dem Arduino kommunizieren

	Siehe auch

	14.3 Eine Nachricht an einen bestimmten XBee senden
	Problem
	Lösung
	Diskussion
	Siehe auch

	14.4 Sensordaten zwischen XBees senden
	Problem
	Lösung
	Diskussion
	Serie-2-XBees
	Serie-1-XBees

	Siehe auch

	14.5 Einen mit dem XBee verbundenen Aktuator aktivieren
	Problem
	Lösung
	Diskussion
	Serie-2-XBees
	Serie 1-XBees

	Siehe auch

	14.6 Nachrichten über Low-Cost-Transceiver senden
	Problem
	Lösung
	Diskussion
	Siehe auch

	14.7 Mit Bluetooth-Geräten kommunizieren
	Problem
	Lösung
	Diskussion
	Siehe auch

	Kapitel 15 — Ethernet und Netzwerke
	15.0 Einführung
	Arduino 1.0 Enhancements
	Alternative Hardware für kostengünstige Netzwerke

	15.1 Ein Ethernet-Shield einrichten
	Problem
	Lösung
	Diskussion
	Siehe auch

	15.2 Die IP-Adresse automatisch beziehen
	Problem
	Lösung
	Diskussion

	15.3 Hostnamen in IP-Adressen umwandeln (DNS)
	Problem
	Lösung
	Diskussion

	15.4 Daten von einem Webserver abrufen
	Problem
	Lösung
	Diskussion

	15.5 XML-Daten von einem Webserver abrufen
	Problem
	Lösung

	15.6 Den Arduino als Webserver einrichten
	Problem
	Lösung
	Diskussion

	15.7 Eingehende Web-Requests verarbeiten
	Problem
	Lösung
	Diskussion

	15.8 Das Anfordern bestimmter Seiten verarbeiten
	Problem
	Lösung
	Diskussion

	15.9 Antworten des Webservers mit HTML aufbereiten
	Problem
	Lösung
	Diskussion
	Siehe auch

	15.10 Formulare (POST) verarbeiten
	Problem
	Lösung
	Diskussion

	15.11 Webseiten mit großen Datenmengen zurückgeben
	Problem
	Lösung
	Diskussion
	Siehe auch

	15.12 Twitter-Nachrichten senden
	Problem
	Lösung
	Diskussion
	Siehe auch

	15.13 Einfache Nachrichten (UDP) senden und empfangen
	Problem
	Lösung
	Diskussion

	15.14 Die Zeit von einem Internet-Zeitserver abrufen
	Problem
	Lösung
	Diskussion
	Siehe auch

	15.15 Pachube-Feeds überwachen
	Problem
	Lösung
	Diskussion
	Siehe auch

	15.16 Informationen an Pachube senden
	Problem
	Lösung
	Diskussion

	Kapitel 16 — Bibliotheken nutzen, ändern und aufbauen
	16.0 Einführung
	16.1 Mitgelieferte Bibliotheken nutzen
	Problem
	Lösung
	Diskussion
	Siehe auch

	16.2 Bibliotheken von Drittanbietern installieren
	Problem
	Lösung
	Diskussion

	16.3 Eine Bibliothek anpassen
	Problem
	Lösung
	Diskussion
	Siehe auch

	16.4 Eine eigene Bibliothek entwickeln
	Problem
	Lösung
	Diskussion
	Siehe auch

	16.5 Eine Bibliothek entwickeln, die andere Bibliotheken nutzt
	Problem
	Lösung
	Diskussion

	16.6 Bibliotheken von Drittanbietern an Arduino 1.0 anpassen
	Problem
	Lösung
	Diskussion
	Siehe auch

	Index

