Die elektronische
Welt mit

Arduino

entdecken

Erik Bartmann

basics

(V5]
)
—
—
o]
(<))
|
o

P Mit dem Arduino messen, steuern und spielen
> Elektronik leicht verstehen
P Kreativ programmieren lernen

O’REILLY"

Die elektronische Welt mit
Arduino entdecken

Erik Bartmann

O’REILLY"

Beijing - Cambridge < Farnham + KolIn - Sebastopol - Tokyo

Die Informationen in diesem Buch wurden mit groRter Sorgfalt erarbeitet. Dennoch kénnen
Fehler nicht vollstandig ausgeschlossen werden. Verlag, Autoren und Ubersetzer {ibernehmen
keine juristische Verantwortung oder irgendeine Haftung fiir eventuell verbliebene Fehler und
deren Folgen.

Alle Warennamen werden ohne Gewihrleistung der freien Verwendbarkeit benutzt und sind
moglicherweise eingetragene Warenzeichen. Der Verlag richtet sich im wesentlichen nach den
Schreibweisen der Hersteller. Das Werk einschlieRlich aller seiner Teile ist urheberrechtlich
geschiitzt. Alle Rechte vorbehalten einschlieRlich der Vervielfaltigung, Ubersetzung,
Mikroverfilmung sowie Einspeicherung und Verarbeitung in elektronischen Systemen.
Kommentare und Fragen konnen Sie gerne an uns richten:

O’Reilly Verlag

Balthasarstr. 81

50670 Koln

E-Mail: kommentar@oreilly.de

Copyright:
© 2011 by O’Reilly Verlag GmbH & Co. KG
1. Auflage 2011

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten
sind im Internet tiber http://dnb.d-nb.de abrufbar.

Lektorat: Volker Bomien, Koln

Fachliche Unterstiitzung: Markus Ulsafl, Hamburg
Korrektorat: Tanja Feder, Bonn

Satz: IlI-Satz, Husby; www.drei-satz.de
Umschlaggestaltung: Michael Oreal, Kéln
Produktion: Karin Driesen, Koln

Belichtung, Druck und buchbinderische Verarbeitung:
Media-Print, Paderborn

ISBN 978-3-89721-319-7

Dieses Buch ist auf 100% chlorfrei gebleichtem Papier gedruckt.

mailto:kommentar@oreilly.de
http://dnb.d-nb.de
http://www.drei-satz.de

Inhalt

GruBwort von Wolfgang Rudolph.............................. ...
Einleitung.

Kapitel 1: Was ist ein Mikrocontroller

Wozu kann man thn verwenden?
Allgemeiner Aufbau.

Kapitel 2: Das Arduino-Board..................................

Die StromversOrgUNE oottt e e e
Die KommunikationSwege.ottt
Die Programmiersprachen C/CH++.
Wie und womit kann ich Arduino programmieren?
Die Arduino-Entwicklungsumgebung.
Das Starten der Entwicklungsumgebung.
Die Portkommunikation
Befehl und Gehorsam

Kapitel 3: Die Elektronik

SCOpe .
Was ist Elektronik eigentlich?
Bauteile
Weitere interessante Bauteile.

Kapitel 4: Elektronische Grundschaltungen
SCOpe .
Widerstandsschaltungen
Kondensatorschaltungen i
Transistorschaltungen

S0P . e 113
Was isteine Platine? i 113
Das Steckbrett (Breadboard) 115
Die flexiblen Steckbriticken 118
Kapitel 6: Niitzliches Equipment. 121
SO . et 121
Niitzliches EQUIpment.t 121
Kapitel 7: Grundlegendes zur Programmierung...................... 133
Was ist ein Programm bzw. ein Sketch? L 133
Was bedeutet Datenverarbeitung? i 135
Die Struktur eines Arduino-Sketches 152
Wie lange lduft ein Sketch aufdem Board?. 155
Kapitel 8: Die Programmierung des Arduino-Boards 157
S0P .« et 157
Die digitalen POrts.ot 157
Die analogen POrtsot 159
Die serielle Schnittstelle 167
Projekt 1: Dererste Sketch 169
Projekt 2: Einen Sensor abfragen.................. 181
Projekt 3: Blinken mit Intervallsteuerung 197
Projekt 4: Der storrische Taster...................................... 209
Projekt 5: Ein Lauflicht 221
Projekt 6: Porterweiterung ... 235
Projekt 7: Porterweiterung mal 2.............. 255
Projekt 8: Die Statemachine.......... 271
Projekt 9: Der elektronische Wiirfel.................................. 293

@ Inhalt

Projekt 10:

Projekt 11:
Projekt 12:
Projekt 13:
Projekt 14:
Projekt 15:
Projekt 16:
Projekt 17:
Projekt 18:
Projekt 19:
Projekt 20:
Projekt 21:
Projekt 22:
Projekt 23:
Projekt 24:
Projekt 25:
Projekt 26:
Projekt 27:
Projekt 28:
Projekt 29:

Projekt 30:

Inhalt

Der elektronische Wiirfel (und wie erstelle

ich eine Bibliothek?) 315
Das Miniroulette................ ... 339
Lichtsensoren............l 353
Der Richtungsdetektor 367
Die Ansteuerung eines Servos 377
Das Lichtradar 387
Die Siebensegmentanzeige 397
Die Siebensegmentanzeige (mir gehen die Pins aus). 411
Der Reaktionstester..................... 423
DasKeyPad............. 439
Das KeyPad (Diesmal ganz anders) 457
Eine Alphanumerische Anzeige 471
Kommunikation Gber IPC........................... 489
Der Schrittmotor. ... 509
DerArduBot 521
Die Temperatur..............., 535
DerSoundundmehr............... 551
Data Monitoring i, 567
Der Arduino-Talker....................................... 581
Die drahtlose Kommunikation {iber Bluetooth 593
Bluetooth und das Android-Smartphone 607

Projekt 31: Der ArduBot wird funkgesteuert 613

Projekt 32: Netzwerk-Kommunikation............................. .. 621
Projekt 33: Digital ruftanalog 639
Projekt 34: Shieldbau 653
Anhang A: Befehls-Referenz................... 663
Anhang B: Wo bekommeichwas? 673
INdeX ... 675

@ Inhalt

GruBwort von Wolfgang
Rudolph

Ich bin begeistert!

Ich habe immer Bucher gern gehabt, die auf
eine einfache und unkonventionelle Art und
Weise Wissen vermitteln konnten und in
threr Schreibweise nicht belehrend waren,
sondern wie ein Freund daher kamen.

Das vorliegende Buch ist ein solches Werk.
Leicht und locker geschrieben und mit lusti-
gen Bildern aufgelockert, taucht man in die
Welt der Elektronik und des Arduino ein.

Vielleicht werden Sie, liebe Leserin oder lieber Leser, jetzt denken:
»Warum tiberhaupt noch ein Buch in der Zeit des Internet?« Das
kann ich Thnen beantworten.

Auch ich hole mir die meisten Informationen aus den unerschopfli-
chen Tiefen des Internet, aber oft weifS ich nicht, wonach ich genau
suchen muss, um meine aktuelle Wissensliicke zu fiillen. Auch
habe ich schon viele Halbwahrheiten oder gar vollstindig falsche
Informationen im Internet gefunden oder verzweifelt und entnervt
aufgegeben, weil ich nach 43 Forenbesuchen, 517 Werbelinks und
2716 Meinungen selbstkluger Mitmenschen weniger wusste als
vorher.

Als Grundlage, fiir den Anfang des Wissens, ist ein solches Buch,
auch heute noch die erste Wahl fiir mich! Hier finde ich Informati-
onen, die grindlich recherchiert sind, ausprobiert wurden und mit
eigener Erfahrung praxisgerecht aufbereitet sind. Hinter einem
Buch steht eine Person und ein Verlag, kein anonymer Inter-
netschreiberling. Ein solches Buch, und gerade dieses Buch, kann

Vi

durch das Internet mit seinen vielen Hobbyisten und selbsternann-
ten Experten nicht ersetzt werden.

Gute Fachbiicher sind auch heute noch fiir mich die Grundlage des
Wissens, und das Internet erganzt, wenn ich genug verstanden habe,
mein Wissen um spezielle Losungen und aktuelle Neuigkeiten.

Dem Autor Erik Bartmann mochte ich zu dem gelungenem Werk
gratulieren und dem O'Reilly Verlag danken, dass er es moglich
macht, ein solches Buch auf den Markt zu bringen. Es hilft Inter-
esse fiir diese Technologie zu entwickeln, denn gerade in Deutsch-
land brauchen wir die Fachkrifte, welche durch solche Biicher
»geboren« werden konnen.

Wolfgang Rudolph

Wolfgang Rudolph moderierte gemeinsam mit Wolfgang Back ab
1983 die TV-Sendung » WDR Computerclub«. Mit der nicht nur bei
Technikbegeisterten sehr beliebten TV-Sendung erreichten sie weit
itber die Grenzen von Deutschland hinaus Beachtung. Wolfgang
Rudolph gilt als Mitbegriinder und Urgestein des deutschen Computer-
journalismus und ist in der »Hall of Fame« des » Heinz Nixdorf Muse-
umsForum« in Paderborn — dem gréfSten Computermuseum der Welt
—unter den 100 bekanntesten Computerpionieren der Welt vertreten.

(wr)

GruBwort von Wolfgang Rudolph

Einleitung

Was mir in unserer heutigen und sehr schnelllebigen Zeit auffalle,
ist die Tatsache, dass wir immer hiufiger mit Dingen konfrontiert
werden, die vorgefertigt sind, und keine oder nur sehr geringe Mog-
lichkeiten bestehen, etwas an diesen zu verindern. Wir werden
tiber die unterschiedlichsten Medien wie Zeitung, Fernsehen oder
Internet, teilweise mit Pseudowahrheiten, versorgt, die viele als
gegeben hinnehmen, ohne sie zu hinterfragen. Dadurch besteht die
Gefahr einer schleichenden Entmiindigung der Menschen, deren
wir uns bewusst sein sollten. Die Benutzung des eigenen Verstan-
des wird auf diese Weise auf ein Minimum reduziert. Wo bleibt da
die Kreativitit? Du fragst dich jetzt moglicherweise, ob du das rich-
tige Buch liest und was das alles mit Arduino zu tun hat. Ich habe
absichtlich diese kurzen, provokanten und doch mit einer gewissen
Wahrheit behafteten Zeilen geschrieben, denn um die Wiederent-
deckung der Kreativitit soll es in diesem Buch gehen.

Die Elektronik ist ein weites Feld und eignet sich hervorragend, um
nach Lust und Laune seiner Kreativitit freien Lauf zu lassen. Es soll
in diesem Buch nicht um die Prisentation fertiger Losungen bzw.
Schaltungen gehen. Ganz ohne geht es natiirlich nicht. Doch vor-
rangiges Ziel ist es, Ansitze zu liefern, die zum Weiterentwickeln
animieren. Das Abliefern von vorgefertigten Bausitzen, die nach
einem Schema F zusammengebaut werden, ist zwar auf den ersten
Blick effizient und verlockend und wir kénnen uns relativ sicher
sein, dass alles so funktioniert, wie der Entwickler es sich erdacht
hat. Aber seien wir einmal ehrlich zu uns selbst und stellen uns die
Frage: »War das eine bemerkenswerte Leistung?« Sicherlich nicht!
Wir wollen mehr und vor allen Dingen etwas, das ausschlieflich
unseren eigenen Ideen oder der eigenen Kreativitit entsprungen ist.

Sicherlich benétigen wir gerade am Anfang noch etwas Anschub,
denn ohne das Vermitteln von erforderlichen Grundlagen kann es
nicht funktionieren. Dieser Prozess ist aber vollkommen normal,
denn wir mussten ja auch Krabbeln und Laufen, Lesen und Schrei-
ben lernen und waren auf die Hilfe anderer angewiesen. Doch was
wir spiter daraus gemacht haben, hing ganz allein von uns selbst

ab.

Arduino tallt in die Kategorie Open-Source. Sicherlich hast du diese
Bezeichnung schon einmal im Zusammenhang diverser frei verfiig-
barer Software gehort. Jedermann bzw. -frau kann sich an der Ent-
wicklung dieser Projekte beteiligen und seinen Beitrag dazu leisten.
Diese Art der Zusammenarbeit vieler interessierter und engagierter
Menschen birgt ein grofles Potential in sich und treibt die betreffen-
den Projekte deutlich voran. Die Ergebnisse kénnen sich sehen las-
sen und brauchen sich vor kommerziellen Projekten nicht zu
verstecken. Da es sich bei Arduino nicht alleine um Hardware han-
delt, sondern natiirlich auch um Software, wird der Symbiose dieser
beiden ein eigener Name zuteil. Physical Computing stellt eine
Beziehung zwischen Mensch und Computer dar. Unsere Welt, in
der wir leben, wird als analoges System angesehen. Im Gegensatz
dazu, agieren bzw. agieren die Computer in einem digitalen
Umfeld, das lediglich die logischen Zustinde von 1 und 0 kennt.

Es ist nun an uns kreativen Individuen, eine interessante Verbin-
dung beider Welten zu (er)schaffen, die das zu Ausdruck bringt,
wozu wir fahig sind.

Wir werden uns in diesem Buch zwei grundlegenden Themenberei-
chen widmen, ohne die wir unseren Weg nicht beschreiten konn-
ten.

¢ FElektronik (Bauteile und deren Funktionen)

¢ Mikrocontroller (Arduino-Board)

Natiirlich kénnen wir, da ja jedes Buch in seinem Umfang begrenzt
ist, diese beiden Themen nur anreiffen und nicht erschopfend
behandeln. Doch das soll ja auch nicht unser Ziel sein. Der Weg ist
das Ziel, und wenn dabei die Lust auf mehr erweckt wird, gibt es
unzihlige Literatur bzw. Informationen im Internet, um sich ent-
sprechend weiterzubilden. Dieses Buch soll den Grundstein dafiir
legen und quasi eine Initialziindung sein, um bei dir einen unbandi-
gen Wissensdurst zu stimulieren. Ich wiirde mich freuen, wenn ich
dich diesbeziiglich ein wenig inspirieren kénnte. Doch konzentriere

Einleitung

dich sich zunichst auf das, was du im Moment in den Hinden
halest.

Zu Beginn werden wir relativ locker und einfach starten und der
Eine oder Andere wird sich wohlmdglich fragen, ob das Blinken
einer Leuchtdiode wirklich eine Herausforderung darstellt. Aber sei
dir sicher, dass alles aufeinander aufbaut. Ein Satz setzt sich auch
aus simplen Buchstaben zusammen, wobei jeder einzelne fiir sich
alleine nicht unbedingt einen Sinn macht, und doch hat er eine
Daseinsberechtigung, ohne die wir nicht sinnvoll kommunizieren
konnten. Die geschickte Mischung aus den einzelnen Elementen
macht das Ergebnis aus.

Aufbau des Buches

Du wirst sicherlich schnell bemerken, dass der Stil dieses Buches
ein wenig von dem vielleicht gewohnten abweicht. Ich habe mich
fir eine lockere und fast kumpelhafte Sprache entschieden, die du
vielleicht schon aus meinem Buch iiber die Programmiersprache
Processing kennst. Auflerdem habe ich dir durch das komplette
Buch hindurch einen Begleiter zur Seite gestellt, der hier und dort
Fragen stellt, die dich moglicherweise ebenfalls an bestimmten Stel-
len beschiiftigen. Die Fragen mogen zeitweise den Charakter von
»Dummen Fragen« haben, doch das ist durchaus beabsichtigt.
Manchmal traut man sich wegen einer vermeintlichen Offensicht-
lichkeit oder Einfachheit mancher Zusammenhinge nicht, Fragen
zu stellen, da man fiirchtet, ausgelacht zu werden. Daher ist es
immer angenehmer, wenn man das nicht selbst tun muss, sondern
erleichtert aufatmen kann, weil ja zum Glick jemand anderes
ebenso wenig Kenntnis hat und zudem die Frage fiir mich formu-
liert!

Ebenso wenig mochte ich dich gleich zu Beginn mit den komplet-
ten Grundlagen der Elektronik bzw. der Programmierung des
Mikrocontrollers Arduino konfrontieren. Das hitte einen gewissen
Lehrbuchcharakter, den ich jedoch vermeiden mochte. Ich werde
die entsprechenden Themenbereiche zu gegebener Zeit ansprechen
und in die Beispiele integrieren. Du bekommst auf diese Weise
immer nur das geliefert, was zum betreffenden Lernfortschritt
erforderlich ist. Am Ende des Buches werde ich noch einmal die
wichtigsten Befehle in einer Codereferenz zusammenfassen, so dass

du immer die Moglichkeit hast, dort noch einmal nachzuschlagen,
falls Nachholbedarf besteht.

Einleitung

(v)

Xl

0

-

\
/

Der Aufbau der einzelnen Kapitel folgt einem mehr oder weniger
stringenten Ablauf. Am Anfang werde ich die zu besprechenden
Teilthemen anreifen, damit du einen Uberblick bekommst, was
dich erwartet. Im Anschluss wird das eigentliche Thema bespro-
chen und analysiert. Am Ende jedes Kapitels erfolgt noch einmal
eine Zusammenfassung der behandelten Bereiche, um die gewon-
nenen Kenntnisse ein wenig zu festigen. Fast simtliche Program-
miersprachen haben ihren Ursprung im Amerikanischen, was fiir
uns bedeutet, dass alle Befehle in der englischen Sprache ihren
Ursprung haben. Natiirlich werde ich zu allen Begrifflichkeiten die
passende Erlduterung liefern. Bei Experimenten werde ich versu-
chen, folgendes Ablaufschema einzuhalten:

* Benotigte Bauteile

* Programmcode

* Code Review (Code-Analyse)

* Schaltplan

* Schaltungsaufbau

* Troubleshooting (Was tun, wenn’s nicht auf Anhieb klappt?)
* Was haben wir gelernt?

* Workshop (Kleine Aufgabe zur Vertiefung der Thematik)

Einige Experimente sind mit Bildern von Oszilloskop- bzw. Logika-
nalyzeraufnahmen versehen, um die Signalverlidufe besser verstind-
lich zu machen. Innerhalb des Textes findest du immer mal wieder
farbige Piktogramme, die je nach Farbe abweichende Bedeutungen
haben.

Das konnte wichtig fiir dich sein

Hier findest du nitzliche Informationen, Tipps und Tricks zum
gerade angesprochenen Thema, die dir sicherlich helfen wer-
den. Darunter befinden sich auch Suchbegriffe fir die Suchma-
schine Google. Ich werde dir nur wenige feste Internetadressen
anbieten, da sie sich im Laufe der Zeit d&ndern kénnen oder ein-
fach wedfallen. Gerade, wenn es um Datenblatter elektroni-
scher Bauteile geht, sind die angefiihrten Links aber sehr
hilfreich.

Eine Bemerkung am Rande
Die Information hat nicht unmittelbar etwas mit dem Projekt zu
tun, das wir im Moment behandeln, doch man kann ja mal
Uber den Tellerrand schauen. Es ist allemal hilfreich, ein paar
Zusatzinformationen zu bekommen.

Einleitung

Achtung
Wenn du an eine solche Stelle gelangst, solltest du den Hinweis
aufmerksam lesen, denn er wird flr den erfolgreichen Aufbau
des Experimentes und die spatere Durchfihrung wichtig sein.

Ich habe die einzelnen Kapitel -nach Moglichkeit nicht unabhingig
voneinander aufgebaut. So kommt eins zum anderen und die
Sacherhalte werden nicht so hart voneinander getrennt. Der flie-
Rende Ubergang von einer Thematik zur nichsten mit der entspre-
chenden Uberleitung macht die Sache in meinen Augen
interessanter. Zeitweise werden von mir auch Quick and Dirty-
Losungen angeboten, die auf den ersten Blick moglicherweise
etwas umstiandlich erscheinen. Anschliefend folgt dann eine ver-
besserte Variante, was dich zum Nachdenken anregen soll, so dass
du vielleicht sagst: Ohh, das geht ja auch anders und sieht gar nicht
schlecht aus! Ich habe da aber noch eine andere Lisung gefunden, die
in meinen Augen noch besser funktioniert. Wenn das geschieht, dann
habe ich genau das erreicht, was ich beabsichtigt hatte. Falls nicht,
auch gut. Jeder geht seinen eigenen Weg und kommt irgendwann ans
Ziel.

An dieser Stelle mochte ich auch auf meine Internetseite www.erik-
bartmann.de hinweisen, auf der du u.a. einiges zum Thema Arduino
findest. Vor allen Dingen habe ich dort zahlreiche Links platziert,
die z.B. auf von mir erstellten Videos zum Thema Arduino verwei-
sen. Hierin werden Themen der einzelnen Kapitel aus diesem Buch
behandelt. Sie sollen dich ein wenig bei deinen Experimenten
unterstiitzen und zeigen, wie alles funktioniert. Da der Seitenum-
fang dieses Buches beschrinkt ist, ich aber noch weitere interes-
sante Themen auf dem Schirm habe, wirst du dort auch noch das
eine oder andere Zusatzkapitel finden, das sicherlich einen Blick
lohnt. Schaue einfach mal vorbei, und es wiirde mich sehr freuen,
wenn du bei dieser Gelegenheit ein wenig Feedback (positiv wie
negativ) geben wirdest. Die entsprechende Emailadresse lautet:
arduino@erik-bartmann.de und ist auch auf der Internetseite noch
einmal aufgefiihrt.

Voraussetzungen

Die einzige personliche Voraussetzung, die du mitbringen solltest,
ist das Interesse am Basteln und Experimentieren. Du musst kein
Elektronik-Freak sein und auch kein Computerexperte, um die hier

Einleitung

()

http://www.erik-bartmann.de
http://www.erik-bartmann.de
mailto:arduino@erik-bartmann.de

Xiv

im Buch gezeigten Experimente nachvollziehen bzw. nachbauen zu
konnen. Da wir sehr moderat beginnen werden, besteht absolut
keine Gefahr, dass irgendjemand auf der Strecke bleibt. Setz’ dich
also nicht selbst unter Druck und mach’ die Dinge nicht schwieri-
ger als sie sind. Der Spafifaktor steht immer an oberster Stelle.

Bendétigte Bauteile

Unser Arduino-Board fiir sich alleine ist zwar ganz nett und wir
konnen uns daran erfreuen, wie klein und schon alles konzipiert
wurde. Doch auf Dauer ist das wenig befriedigend und wir sollten
uns daher im nichsten Schritt ansehen, was wir so alles von auRen
an das Board anschliefen konnen. Falls du noch niemals in
irgendeiner Weise mit elektronischen Bauteilen (wie z.B. Wider-
stinden, Kondensatoren, Transistoren oder Dioden, um nur einige
zu nennen) in Berithrung gekommen bist, ist das nicht weiter
schlimm. Die benotigten Teile werden in ihrer Funktion ausfiihr-
lich beschrieben, so dass du nachher weifst, wie sie einzeln und
innerhalb der Schaltung reagieren. Vor jedem Experiment werde
ich also eine Liste mit den erforderlichen Teilen zur Verfuigung stel-
len, die dir die Moglichkeit gibt, diese entsprechend zu erwerben.
Kernelement ist natiirlich immer das Arduino-Board, das ich nicht
immer explizit erwihnen werde. Falls du dich an dieser Stelle fra-
gen solltest, was um Himmels Willen denn ein solches Arduino-
Board kosten mag und ob du nach dieser Investition deinen
gewohnten Lebensstil fortfithren kannst, kann ich nur sagen: Yes,
you can! Das Board kostet so um die 25 €, und das ist wirklich nicht
viel.

Ich verwende in allen Beispielen das im Moment neuste Arduino-
Board, das sich Arduino-Uno nennt. Es ist absolut programmkom-
patibel mit dem Vorgiangermodell Arduino-Duemilanove.

Eine Komplettliste aller in diesem Buch bendétigten Bauteile findest
du im Anhang. Ich werde aber nach Moglichkeit keine ausgefalle-
nen, exotischen bzw. teuren Bauteile verwenden. Falls du zu den
Jdgern und Sammlern zihlst, hast du vielleicht noch einen Haufen
alter elektronischer Gerite, wie Scanner, Drucker, DVD-Player,
Video-Recorder, Radios, etc. im Keller oder auf dem Dachboden,
die du ausschlachten kannst, um an diverse Bauteile zu gelangen.
Stelle aber vor dem Offnen derartiger Gerite immer sicher, dass sie
vom Stromnetz getrennt sind. Ansonsten besteht Lebensgefahr und
du willst doch sicherlich noch bis zum Ende des Buches gelangen.

Einleitung

Alle Experimente werden tibrigens mit Versorgungsspannungen
von 5V bzw. 12V betrieben.

<« Abbildung 1
MADE Das Arduino-Mikrocontroller-Board
INITALY =y NO T M NS Uno
' | | i

-
B
K

1
2 DIGITAL (PWM~)
LU

Verhaltensregeln

Wenn du dich so richtig im Brass befindest und du voll konzent-

riert bist auf etwas, das dir unheimlich viel SpaR macht, treten fol-
gende Effekte auf:

* Verminderte Nahrungsaufnahme, die zu kritischem Gewichts-
und besorgniserregendem Realititsverlust fithren kann.

* Unzureichende Fliissigkeitszufuhr bis hin zu Dehydrierung
und vermehrter Staubentwicklung

* Vernachlissigung samtlicher hygienischer Mafnahmen wie
Waschen, Duschen, Zihneputzen, verbunden mit erhohtem
Auftreten von Ungeziefer.

* Abbruch jeglicher zwischenmenschlicher Beziehungen

Lasse es nicht so weit kommen und 6ffne auch ab und zu das Fens-
ter, um zugewanderten Insekten das Verlassen des Zimmers zu
ermoglichen und um Frischluft bzw. Sonnenlicht hereinzulassen.
Um den oben genannten Effekten entgegen zu wirken, kannst du
z.B. den Wecker stellen, damit du in regelmiRigen Zeitintervallen
zu einer Unterbrechung deiner Titigkeiten aufgefordert wirst.
Hierzu ist natiirlich eine gewisse Selbstdisziplin erforderlich, die du

Einleitung @

Abbildung 2 »

Das Arduino-Mikrocontroller-Board
am besten {iber einen HUB mit dem

Xvi

PCverbinden

ganz alleine an den Tag legen musst. Ich mdchte mich nach der
Veroffentlichung dieses Buches nicht mit einer Beschwerdewelle
konfrontiert sehen, die von erbosten Partnern oder vernachlissig-
ten Freunden auf mich niederprasseln. Sagt also nicht, ich hitte
euch nicht mit den Risiken vertraut gemacht.

Was ratsam ist

Da es sich bei dem Arduino-Board um eine Experimentierplatine
handelt, an der wir allerlei Bauteile bzw. Kabel anschlieflen kon-
nen, und der Mensch nun einmal nicht unfehlbar ist, rate ich zur
erhohten Aufmerksambkeit. Das Board wird iiber die USB-Schnitt-
stelle direkt mit dem PC verbunden. Im schlimmsten Fall kann das
bedeuten, dass bei einer Unachtsamkeit, z.B. bei einem Kurzschluss
auf dem Board, Thr PC, speziell die USB-Schnittstelle, darunter lei-
det und das Mainboard beschidigt wird. Du kannst dem vorbeu-
gen, indem du einen USB-HUB zwischen Computer und Arduino-
Board schaltest. Du bekommst diese HUBs mit 4 Ports teilweise
schon fiir unter 10 €. Diese Investition zahlt sich auf jeden Fall aus,
und ich benutze selbst diese Konstellation der Anordnung.

Arduino-Board USB-Hub

USB-Verbindung
Arduino zu Hub

USB-Anschluss an PC

Der zweite wichtige Punkt ist die Tatsache, dass das Arduino-Board
auf der Unterseite recht viele Kontakte aufweist, was in der Natur

Einleitung

der Sache liegt. Es handelt sich dabei um Lotpunkte, tiber die die
Bauteile auf dieser Seite des Boards fixiert und miteinander verbun-
den werden. Das bedeutet natarlich, dass sie leitfahig sind und
extrem anfillig fir etwaige nicht beabsichtigte Verbindungen
untereinander. Im schlimmsten Fall, und sei dir sicher, dass dieser
Fall nach Murphy eintreten wird, erzeugst du einen Kurzschluss.
Ich spreche da aus Erfahrung und habe mir auf diese Weise schon
so einiges »zerschossen«. Lerne also aus den Fehlern anderer und
mache es besser. Das bedeutet natiirlich nicht, dass du nicht auch
Fehler machen diirftest, denn sie tragen sicherlich am meisten zum
Lernerfolg bei. Aber es miissen ja nicht immer gleich die schlimms-
ten Missgeschicke passieren und die Bauteile einer Kernschmelze
zugefithrt werden.

<« Abbildung 3
y o) Das Arduino-Mikrocontroller-Board

: ~ L' BOARD : -, 9.0, Uno von der Riickseite gesehen
UNO

-.ARDUINO

EEFEPPREPP RS

Wenn du das Board auf eine metallene Unterlage oder auf eine
unsaubere Tischplatte legen wiirdest, auf der sich blanke Kabel-
reste befinden, wire der Kurzschluss so sicher wie das Amen in der
Kirche und der Arger gewaltig. Lege eine gewisse Sorgfalt an den
Tag, damit es nicht so weit kommt, dann hast du sicherlich viel
Freude an der Materie.

An dieser Stelle mochte ich schon mit dem ersten Tipp um die Ecke
kommen. Vielleicht sind dir die vier Bohrungen mit einem Durch-
messer von 3mm in der Platine des Arduinoboards aufgefallen. Sie
befinden sich nicht zur besseren Beliftung des Boards an diesen
Stellen, sondern haben einen anderen Zweck. Damit das Board

Einleitung i

nicht mit der Lotseite direkt auf der Arbeitsunterlage liegt und - wie
schon erwihnt — ggf. mit leitenden Materialien in Bertihrung
kommt, kannst du dort sogenannte Gummipuffer bzw. Abstands-
halter fur Leiterplatten anbringen. Sie gewihrleisten einen Sicher-
heitsabstand zur Unterlage und kénnen dadurch einen Kurzschluss
verhindern. Ich rate trotzdem zur Vorsicht. Elektronische Schaltun-
gen, insbesondere integrierte Schaltkreise, wie z.B. der Mikropro-
zessor, reagieren sehr empfindlich auf elektrostatische Entladungen
(ESD). Beim Laufen tiber einen Teppich mit dem entsprechenden
Schuhwerk kann durch diese Reibung der Korper aufgeladen wer-
den, so dass bei Berithrung mit elektronischen Bauteilen kurzzeitig
ein sehr hoher Strom flieRen kann. Das fithrt in der Regel zur Zer-
storung des Bauteils. Bevor du dich also deinem Mikrocontroller-
Board niherst, solltest du sicherstellen, dass du nicht geladen bist.
Ein kurzer Griff an ein blankes Heizungsrohr kann diese Energie
ableiten. Sei also vorsichtig.

Das, was nicht fehlen darf

Auch jetzt komme ich wieder nicht umhin, einige Worte iiber
Familie, Freunde und liebgewonnene Menschen zu verlieren. Es ist
dir freigestellt, diesen Passus zu tiberspringen. Die Arbeit an mei-
nem ersten Buch iiber die Programmiersprache Processing beim
O’Reilly-Verlag — hore ich da jemanden sagen: »Jetzt macht er auch
noch Werbung fiir sein erstes Buch...« — hat eigentlich dazu
gefiihrt, dass ich mich einerseits gut und andererseits nicht so gut
fithle. Gut ist, dass ich es geschafft habe, meinen Lebenswunsch,
ein Buch iber Programmierung zu schreiben, endlich noch vor
einem eventuellen Ableben verwirklichen konnte. Nicht so gut war
die Tatsache, dass ich mich fiir einen lingeren Zeitraum von meiner
Familie distanzieren musste. Sie hat es aber verstanden und mich
ab und an mit Nahrung versorgt, so dass ich keine allzu groflen
korperlichen wie seelischen Schiaden davon trug.

Und was soll ich sagen... Kurz nach der Veroffentlichung habe ich
meinem Lektor Volker Bombien von meiner Vorliebe fiir den
Mikrocontroller Arduino erzihlt und schon konnte ich mich nicht
mehr aus der Sache herauswinden. Er hatte mich schon wieder am
Haken und dafiir bin ich ihm sehr dankbar. Mein Interesse an Elek-
tronik, das ich in jungen Jahren hatte und das lange Zeit auf FEis lag,
trat plotzlich wieder hervor und dann hat es mich wirklich gepackt.
Was heutzutage alles machbar ist, da haben wir vor 30 Jahren nur
von getraumt. Ich wiirde mich riesig freuen, konnte dieser Funke

Einleitung

der Begeisterung fiir die Thematik auf den einen oder anderen
Leser iberspringen. Mit der Arduino-Plattform und ein wenig
Grundwissen beziiglich Elektronik uns Tiir und Tor weit offen fiir
Dinge, die wir schon immer machen wollten. Der Dank gilt auch
meiner Familie, die bestimmt im Stillen stohnte: »Nein, jetzt zieht
er sich schon wieder fiir lingere Zeit zuriick. Ob das vielleicht an
uns liegt?« SchlieRlich einen grofen Dank in Richtung des Fachgut-
achters Herrn Markus Ulsafs und der Korrekturleserin Frau Tanja
Feder. Sie sind die Personen im Hintergrund, dhnlich den Souffleu-
sen in einer Theaterauffiihrung. Man bekommt sie nie zu Gesicht,
doch ihr Wirken macht sich an der Qualitit des Stiickes bemerk-
bar. Man kann und will nicht auf sie verzichten!

Ach ja, bevor ich’s vergesse. Ich mochte dir an dieser Stelle schon
mal deinen Wegbegleiter vorstellen. Er begleitet dich durch das
gesamte Buch und wird dir zur Seite stehen. Sein Name ist tibrigens
Ardus.

Ist echt cool, Mann! Ich bin ganz schén aufgeregt, was hier so auf
mich und dich zukommt. Aber wir werden das Kind — 4hm — das
Arduino-Board schon schaukeln, nicht wahr!?

Klar Ardus, das machen wir!

Ich {iberlasse nun euch beiden eurem Schicksal und ziehe mich erst
einmal diskret zuriick.

Viel Spafl und viel Erfolg beim Physical Computing mit deinem
Arduino-Board wiinscht dir

Enh Botuo

Einleitung

XIX

Was ist ein
Mikrocontroller

Falls du es nicht erwarten kannst, deinen Arduino anzuschlieRen
und das erste Experiment durchzufiihren, kannst du dieses Kapitel
getrost iiberspringen und vielleicht spiter hierauf zurtickkommen.
Das ist absolut kein Problem. In diesem ersten Kapitel wollen wir
uns den Mikrocontroller-Grundlagen widmen. Bei Mikrocontrol-
lern handelt es sich um integrierte Schaltkreise (IC = Integrated Cir-
cuit), d.h. komplexe Schaltungen, die auf kleinstem Raum auf
Halbleiterchips untergebracht sind. Was zu den Pionierzeiten der
Elektronik noch mit unzihligen Bauteilen wie Transistoren, Wider-
stinden oder Kondensatoren platzraubend auf mehr oder weniger
groflen Platinen verlotet wurde, findet jetzt Platz in unscheinbaren
kleinen schwarzen Plastikgehdusen mit einer bestimmten Anzahl
von Pins. So werden die Anschliisse genannt, die aus den ICs her-
ausragen, und mittels derer dann die Komminukation erfolgt. Im
folgenden Bild sichst du den ATmega328-Mikrocontroller, der
auch auf dem Arduino-Board verbaut wurde.

Er ist in seinen Ausmafen wirklich recht bescheiden, doch er ver-
fugt tiber eine ganze Menge Rechenpower. Eigentlich musstest du
lediglich diesen Controller auf eine Platine l6ten, dann mit Span-

Kapitel

<« Abbildung 1-1
Der ATmega328-Mikrocontroller
(Quelle:Atmel)

nung versorgen und schon konntest du mit ihm arbeiten. Es fehlen
natiirlich noch ein paar Komponenten wie z.B. Spannungsstabilisa-
toren und Anschliissse zur Programmierung — doch dazu spiter
mehr. Er ist aber in dieser Form schon (fast) einsatzbereit.

Wozu kann man ihn
verwenden?

Vielleicht stellst du dir jetzt die berechtigte Frage, wozu so ein
Mikrocontroller denn gut ist und was man mit ihm alles so anstel-
len kann? Da kann ich dir sagen, dass hier unzihlige Moglichkeiten
bestehen, deren Umsetzung einzig und allein von deiner Kreativitit
abhingt. In folgenden Bereichen spielen Mikrocontroller eine ent-
scheidende Rolle. Diese Liste kratzt nattrlich lediglich an der Ober-
fliche und soll dir vor allem ein Gefiihl fiir diverse Einsatzgebiete
vermitteln:

¢ Uberwachungsfunktionen in kritischen Umgebungen, wie z.B.
Brutkisten (Temperatur, Feuchtigkeit, Herzfrequenz und Blut-
druck des Frithchens, etc.).

* Heizungssteuerung (Kontrolle von auflen- bzw. Innentempera-
tur zur optimalen Beheizung von Rdumlichkeiten)

* Herzschrittmacher (Uberwachung der Herzfrequenz und ggf.
Stimulierung des Herzens)

* Haushaltsgerite (z.B. Programmsteuerung in modernen
Waschmaschinen oder Geschirrsptilern)

* Hobbyelektronik (MP3-Player, Handy, Fotoapparate, etc.)

* Robotik (z.B. Steuerung von Industrierobotern zur Montage
von Kraftfahrzeugteilen)

Diese Liste kann schier endlos fortgefithrt werden, doch wir kon-
nen eines beobachten. Mikrocontroller erfassen duflere Einfliisse
iiber Sensoren, verarbeiten sie intern mit Hilfe eines Programms
und schicken dann entsprechende Steuerbefehle nach draufen.
Sie zeigen also eine gewisse Eigenintelligenz, die natiirlich vom
implementierten Programm abhingt. Ein Mikrocontroller kann
Mess-, Steuer- und Regelfunktionen tibernehmen. Schauen wir
uns doch die Funktion eines Regelkreises, bei dem es sich um
einen geschlossenen Prozessablauf mit einer Storgrofe handelt,
einmal genauer an. Diese Storgrofe wird iiber einen Sensor an

Kapitel 1: Was ist ein Mikrocontroller

den Mikrocontroller iibermittelt, der dann entsprechend seiner
Programmierung reagiert.

Stelle dir folgendes Szenario vor. Wir befinden uns inmitten einer
Heizungssteuerung, die die Temperatur in unserem Arbeitszimmer
reguliert.

Der Sensor sagt zum Mikrocontroller: »Du, es ist ziemlich warm
hier im Arbeitszimmer!« Der Mikrokontroller seinerseits regiert dar-
auf mit der Regelung der Heizung. Die Heizung fithrt weniger Ener-
gie in Form von Wirme in den Raum. Der Sensor merkt dies und
teilt dem Mikrocontroller mit: » Ok, jetzt ist die Temperatur so, wie
sie angefordert wurde. 20 Grad Celsius sind ok.« Im Laufe der Zeit
kommt kalte Luft von drauflen herein. Der Sensor schligt Alarm
und teilt dem Mikrocontroller mit: Hey, es wird etwas frisch hier
und mein Mensch fangt ein wenig an zu frieren. Unternimm was! Der
Mikrocontroller regelt die Temperatur entsprechend nach oben.
Du siehst, dass das ein Ping-Pong Spiel ist, ein Regelkreis eben, der
auf duflere Storeinfliisse wie Temperaturschwankungen reagiert.

Allgemeiner Aufbau

Kommen wir jetzt zum allgemeinen Aufbau eines Mikrocontrollers,
um dir die einzelnen Komponenten innerhalb des Chips zu zeigen.

Stopp, stopp! Ich habe da zu Beginn eine Frage. Du hast gesagt, dass
wir mit dem Mikrocontroller eigentlich schon arbeiten kénnen. Wo
legt er denn sein Programm ab oder wo speichert er denn seine
Daten? Du hast sicherlich vergessen, die Speicherbausteine zu erwih-
nen, die noch angeschlossen werden miissen.

Ein guter Einwand, doch du kennst bisher noch nicht die ganze
Wahrheit iiber unseren Mikrocontroller. Wenn wir es genau neh-
men — und das tun wir — dann ist unser kleiner Freund hier ein
kompletter Computer auf kleinstem Raum mit all der Peripherie,
die du vielleicht von deinem PC her kennst, als da wiren:

e Zentrale Recheneinheit (CPU)
* Arbeitsspeicher

* Datenspeicher

* Taktgeber

* Ein- bzw. Ausgabeports

Allgemeiner Aufbau

Abbildung 1-2 p-
Das Blockschaltbild eines
Mikrocontrollers

Ein Mikrocontroller kann grob in drei Hauptbereiche unterteilt
werden:

e Zentrale Recheneinheit (CPU)
* Speicher (ROM + RAM)
* Ein- bzw. Ausgabeports

Den Taktgeber, also den Oszillator zur Triggerung der Zentralein-
heit, habe ich in dieser Differenzierung auflen vor gelassen. Du
erkennst die Ubereinstimmung mit den Peripherieelementen des
PC’s. Der Unterschied liegt jedoch darin, dass alle drei Bereiche des
Mikrocontrollers ein integraler Bestandteil desselben sind. Sie
befinden sich in ein und demselben Gehiuse, daher ist alles so ein-
fach und kompakt. Werfen wir einen Blick auf das vereinfachte
Blockschaltbild unseres Mikrocontrollers:

Datenbus
Zeitgeber t

Zentrale Recheneinheit
CPU

gl
|

Datenbus

E\termpt-&euerun% [Ein- IAusgabe—]
(IRQ) Ports (I/O)

Du fragst dich jetzt bestimmt, was denn die einzelnen Blocke in die-
sem Schaltbild bedeuten und was ihre genaue Aufgabe ist, richtig?
Nun, dann wollen wir mal sehen.

Die Zentrale Recheneinheit (CPU)

Das Arbeitstier in einem Mikrocontroller ist die zentrale Rechen-
einheit, auch kurz CPU (Central Processing Unit) genannt. Die
Hauptfunktion besteht in der Dekodierung und Ausfithrung von
Befehlen. Sie kann Speicher adressieren, Ein- bzw. Ausginge ver-
walten und auf Interrupts reagieren. Ein Interrupt ist eine Unterbre-

Kapitel 1: Was ist ein Mikrocontroller

chungsanforderung (IRQ = Interrupt Request) an die CPU, um den
gerade laufenden Rechenzyklus zu unterbrechen und auf ein
bestimmtes Ereignis reagieren zu konnen. Interrupts sind eine
wichtige Funktionalitdt, auf die wir noch zu sprechen kommen
werden.

Der Datenbus

Den Datenbus kénnen wir uns im wahrsten Sinn des Wortes als
einen Bus vorstellen, der die Daten von einem Block zum nichsten
transportiert. Die CPU fordert z.B. Daten aus dem Speicher an, die
auf den Bus gelegt werden und der CPU unmittelbar zur weiteren
Verarbeitung zur Verfilgung stehen. Wenn das Ergebnis der
Berechnung vorliegt, wird es wieder auf den Bus transferiert und
vielleicht an einen Ausgangsport abermittelt, der z.B. einen Motor
eines Roboters ansteuert, um ein bestimmtes Ziel anzufahren. Es
handelt sich bei dieser Bus-Struktur um eine Datenautobahn, die
gemeinsam von allen genutzt wird, die daran angeschlossen sind.

Speicherbereiche

In einem Mikrocontroller werden in der Regel zwei Speicherberei-
che unterschieden:

* Programmspeicher

* Datenspeicher

Der Programmspeicher dient zur Aufnahme des Programms, das
die CPU abarbeiten soll, wohingegen der Datenspeicher zur Ver-
waltung von temporir anfallenden Rechenergebnissen genutzt
wird.

<« Abbildung 1-3
Auf der Datenautobahn: »Nachster
Halt: Speicherl«

Allgemeiner Aufbau

Da scheint es aber ein Problem zu geben. Wenn ich meinen PC aus-
schalte, sind alle Programme, die sich im Speicher befunden haben,
weg und ich muss sie erst wieder von meiner Festplatte laden, um mit
ihnen arbeiten zu kénnen.

Das ist vollkommen korrekt und deshalb ist der Programmspei-
cher in einem Mikrocontroller ein ganz besonderer. Ein Mikrocon-
troller hat von Haus aus nattirlich keine Festplatte, doch kann er
sein Programm nach der Trennung von der Versorgungsspannung
im Gedichtnis behalten. Dazu wird eine besondere Art von Spei-
cher verwendet. Er nennt sich Flash-Speicher, und wie der Name
schon sagt handelt es sich um einen nicht fliichtigen Speicher.
Seine Bits und Bytes fliichten nicht nach dem Abschalten und ste-
hen uns auch weiterhin zur Verfiigung. Du hast diese Speicher-
form schon unzihlige Male bei deinem PC genutzt. Das BIOS ist in
einem Flash-EEPROM untergebracht und kann bei Bedarf mit
neuen Daten tiberschrieben werden, wenn eine neue Version vom
Hersteller bereitgestellt wurde. Man sag auch: »Das BIOS wird neu
geflashed. «

Im Gegensatz dazu haben wir natiirlich noch den Datenspeicher im
sogenannten SRAM. Dabei handelt es sich um einen fliichtigen
Speicherbereich, der die Daten, die zur Laufzeit des Programms
anfallen, nach dem Ausschalten verliert. Das ist aber auch nicht
weiter schlimm, denn diese Daten werden nur benotigt, wenn das
Programm auch ausgefithrt wird. Wenn der Mikrocontroller strom-
los ist, muss er auch nichts berechnen. Allerdings hat dieser Spei-
cher einen entscheidenden Vorteil gegeniiber unserem Flash-
Speicher: Er ermoglicht einen schnelleren Zugriff.

Die Ein- bzw. Ausgabeports

Die Ein- bzw. Ausgabeports sind der Draht des Mikrocontrollers
zur Auflenwelt. Sie sind quasi die Schnittstelle, an der die Periphe-
rie angeschlossen werden kann. Zur Peripherie zihlt eigentlich
alles, was sinnvoll mit der Schnittstelle verbunden werden kann.
Das konnen z.B. folgende elektronischen oder elektrischen Kompo-
nenten sein:

¢ LED (Leuchtdiode)
e Taster
e Schalter

Kapitel 1: Was ist ein Mikrocontroller

* LDR (Lichtempfindlicher Widerstand)
* Transistor
* Widerstand
* Lautsprecher oder Piezo-Element
Diese Liste lief3e sich noch endlos weiter fortfithren und wir werden

noch auf das eine oder andere Element und wie wir was mit wel-
chem Port verbinden zu sprechen kommen.

Grundsitzlich werden aber zwei unterschiedliche Portvarianten
unterschieden:

* Digitale Ein- bzw. Ausginge
* Analoge Ein- bzw. Ausginge

Was analoge und digitale Signale unterscheidet, werden wir spater
noch erértern.

Interrupt-Steuerung

Ein Mikrocontroller ist mit einer sogenannten Interrupt-Steuerung
ausgestattet. Was aber ist das und wozu wird sie benotige? Stelle dir
folgendes Szenario vor:

Du gehst abends zu Bett und mochtest aber piinktlich um 6:00 Uhr
aufstehen, um dich noch zu waschen, zu frithstiiccken und zur
Arbeit zu fahren, damit du rechtzeitig zum anberaumten Termin in
der Firma erscheinst. Wie gehst du in dieser Sache vor? Es gibt da
zwei unterschiedliche Ansitze mit abweichenden Ergebnissen:

<« Abbildung 1-4
Ein- bzw. Ausgabeports

Allgemeiner Aufbau

Ansatz Nr. 1

Du gehst abends zu Bett und stellst vorher die Weckzeit deines
Radioweckers auf 6:00 Uhr. Du kannst dich also véllig dem geruh-
samen Schlaf hingeben und brauchst keinen Gedanken an ein mog-
liches Verschlafen zu verschwenden. Der Wecker weckt dich zur
vorgesehenen Zeit und du erscheinst ausgeruht und voller Taten-
drang auf deiner Arbeitsstelle.

Ansatz Nr. 2

Du gehst am Abend zu Bett und weil du keinen Radiowecker
besitzt, stehst du alle halbe Stunde auf, um die aktuelle Uhrzeit zu
erfahren und um nicht einzuschlafen. Ist es dann endlich 6:00 Uhr
in der Friih, fuhlst du dich geridert und absolut unfihig zu arbei-
ten, weil du deine kostbaren Krifte fiir das kontinuierliche Lesen
der Uhr verbraucht hast.

Sicherlich denkst du tiber die beiden Ansiitze genauso, wie jeder
andere normal denkende Mensch auch. Ansatz 1 ist der bessere
und Ressourcen schonendere. Ubertragen wir das Beispiel einmal
auf unseren Mikrocontroller. An einem digitalen Eingangsport ist
ein Schalter angeschlossen, der den Zustand eines Ventils iiber-
wacht. Unser Mikrocontroller konnte jetzt so programmiert wer-
den, dass er in regelmiRigen kurzen Abstinden diesen Schalter auf
seinen Zustand hin abfragt. Dieses zyklische Abfragen, wird Polling
(was so viel wie abfragen bedeutet) genannt und ist in diesem Fall
eher ineffektiv, da unnotige CPU-Leistung verbraucht wird. Weit-
aus sinnvoller wire eine mittels Interrupt gesteuerte Uberwachung.
Die CPU geht ihrer regulidren Programmausfithrung nach und rea-
giert erst, wenn ein bestimmter Interrupt ausgelést wurde. Die
Hauptarbeit wird fiir kurze Zeit unterbrochen und in eine Unter-
brechungsroutine (ISR = Interrupt Service Routine) verzweigt. Dort
finden sich Instruktionen, wie beim Eintreffen des Interrupts ver-
fahren werden soll. Wenn die Abarbeitung beendet wurde, wird im
Hauptprogramm zuriick an die Stelle gesprungen, an der die Unter-
brechung stattfand, als wenn nichts geschehen wire.

Ist Arduino ein Mikrocontroller?

In diesem Kapitel haben wir uns den allgemeinen Grundlagen eines
Mikrocontrollers gewidmet. Die wichtigsten Hauptkomponenten
wie CPU, Speicher und Ports hast du nun kennengelernt und deren
Aufgabe im Ansatz verstanden. Alles schén und gut. Jetzt stellen

Kapitel 1: Was ist ein Mikrocontroller

wir uns die berechtigte Frage: »Ist unser Arduino ein waschechter
Mikrocontroller?« Die Antwort lautet — oder hittest du etwa etwas
anderes erwartet — eindeutig JA! Er besitzt all die oben genannten
Baugruppen und vereinigt sie in seinem (einem einzigen) Inneren.
Natiirlich ist da noch ein wenig mehr, denn der Mikrocontroller
hingt ja nicht einfach so irgendwo herum. Sein Zuhause teilt er mit
anderen elektronischen Bauelementen auf einer kompakten Platine,
die wir uns im nichsten Kapitel etwas niher anschauen wollen.

Das kannte wichtig fiir dich sein
Hier ein paar Begriffe fir die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

- Mikrocontroller
- AVR Mikrocontroller

« Atmel

Allgemeiner Aufbau

Kapitel
Das Arduino-Board

In diesem Kapitel mochte ich mit dem Hauptakteur beginnen, um
den sich alles dreht. Das Arduino-Microkontroller-Board. Doch
werfen wir zunichst einen Blick auf das Objekt der Begierde.

<« Abbildung 2-1
Das Arduino-Board

Auf diesem Bild kannst du natiirlich nicht erkennen, welche gerin-
gen Ausmalle das Arduino-Mikrocontroller-Board aufweist. Es ist
wirklich sehr handlich und hat die folgenden MafRe:

* Breite: ca. 7 cm

* Linge:ca.5cm

Abbildung 2-2 p-

Was ist wo auf der Arduino-

Experimentierplatine?

Das bedeutet, dass es locker in eine Hand passt und wirklich kom-
pakt ist. Wir erkennen auf der Platine die unterschiedlichsten Bau-
teile, auf die wir noch im Detail eingehen werden. Der grofite
Mitspieler, der uns direkt ins Auge fillt, ist der Mikrocontroller
selbst. Er ist vom Typ ATmega 328. Uber die Jahre wurden die
unterschiedlichsten Arduino-Boards entwickelt, die mit abweichen-
der Hardware bestiickt sind. Ich habe mich fir das Board mit der
Bezeichnung Arduino Uno entschieden, das im Moment das aktu-
ellste ist. Es gibt aber noch eine Reihe weiterer Boards, die ich dann
zum Abschluss am Ende des Buches erwihnen mochte.

Jetzt ist es endlich an der Zeit, unseren Blick in Richtung Arduino
zu lenken. Aus welchen einzelnen Komponenten besteht unsere
kleine Platine, die zunichst so unscheinbar wirkt? Manch einer
wird vielleicht behaupten, dass auf so kleinem Raum kaum etwas
Platz haben kann, mit dem sich ernsthaft etwas anfangen ldsst.
Doch in den letzten Jahren sind die Bauteile immer kleiner gewor-
den und was frither z.B. noch auf funf separaten Chips unterge-
bracht war, leistet heute ein einziger.

Digitale Ein-/Ausgénge

USB-Anschluss
MADE

IN ITALY = NOInTmNd O

i v Y

DIGITAL (PwWM~) F &

: Power LED
™I ﬁl

rx1@4 ARDUINO

"

Reset Button

Power-Anschluss : E R -

Controller

Versorgung Analoge Eingange

Das sind fiir den Anfang erst einmal die wichtigsten Komponenten
auf dem Arduino-Board, was natiirlich nicht bedeutet, dass die rest-
lichen fiir uns uninteressant wiren. Auf einige andere werden wir
noch zu gegebener Zeit zu sprechen kommen. Jetzt endlich die
Frage, die uns sicherlich alle brennend interessiert. Was kann das

Kapitel 2: Das Arduino-Board

Arduino-Board? Nun, hier sind einige Eckdaten, die ich dir nicht
vorenthalten mochte:

* Mikrocontroller ATmega 328

* 5V Betriebsspannung

* 14 digitale Ein- bzw. Ausginge (6 als PWM Ausginge schalt-
bar)

* 6 analoge Einginge (Auflosung 10 Bit)

* 32 KByte Flash Speicher (vom Bootloader werden 0.5 KByte
belegt)

« 2 KByte SRAM

* 1 KByte EEPROM

* 16 MHz Taktfrequenz
* USB Schnittstelle

Eine bescheidene Frage habe ich da mal. Wenn ich mir das Board so
anschaue, dann frage ich mich, was daran so besonders sein soll.
Kann ich in irgendeiner Weise mit dem Mikrocontroller kommunizie-
ren? Und wenn ja, dann wie?

Wie du aus der eben gezeigten Liste entnehmen kannst, stehen uns
zur Kommunikation mit dem Arduino-Board eine bestimmte
Anzahl von Ein- bzw. Ausgidngen zur Verfugung. Sie stellen die
Schnittstelle zur Aufenwelt dar und erméglichen uns, Daten an
den Mikrocontroller zu senden bzw. von ihm zu empfangen. Wirf
einen Blick auf das folgende Diagramm:

/—-\ <« Abbildung 2-3

Ein- und Ausgange des
|
Eingange (analog)
Arduino-

Arduino-Boards
Mikrocontroller

Ein-/Ausgdnge (digital)

L. 4

Der blaue Kasten auf der linken Seite symbolisiert den Arduino-
Mikrocontroller, der tiber bestimmte Schnittstellen mit uns kom-

Das Arduino-Board @

munizieren kann. Manche Ports, sind als Einginge, andere als Ein-
bzw. Ausginge vorhanden. Ein Port ist dabei ein definierter
Zugangsweg zum Mikrocontroller, quasi eine Tiir in das Innere,
derer wir uns bedienen konnen. Wirf noch einmal einen Blick auf
das Board und du wirst an der Ober- bzw. Unterkante jeweils
schwarze Buchsenleisten erkennen.

Haa, Moment mal! Irgendetwas stimmt hier nicht. Unser Mikrocont-
roller sollte doch analoge wie digitale Ein- bzw. Ausgangsports vor-
weisen. Im Diagramm sehe ich jedoch von den analogen Ports nur
Eingidnge. Wo sind die Ausginge geblieben? Da hast du sicherlich

etwas Vergessen!

Das hast du gut beobachtet, Ardus! Ich muss dir aber sagen, dass
das Diagramm vollig korrekt ist. Der Grund ist folgender und wird
spater auch noch niher erliutert: Unser Arduino-Board ist nicht
mit separaten analogen Ausgingen bestiickt. Das hort sich jetzt
bestimmt erst einmal recht merkwiirdig an, doch bestimmte digi-
tale Pins werden einfach als analoge Ausginge zweckentfremdet. Du
fragst dich jetzt bestimmt, wie das denn funktionieren soll? Hier ein
kleiner Vorgriff auf das, was noch im Kapitel iiber die Pulsweiten-
modulation, auch PWM genannt, kommt. Bei PWM handelt es sich
um ein Verfahren, bei dem ein Signal mehr oder weniger lange An-
bzw. Ausphasen aufweist. Ist die Anphase, in der Strom flief3t, lin-
ger als die Ausphase, leuchtet zum Beispiel eine angeschlossene
Lampe augenscheinlich heller als in dem Fall, in dem die Ausphase
langer ist. Thr wird also mehr Energie in einer bestimmten Zeit in
Form von elektrischem Strom zugefiithrt. Durch die Trigheit unse-
res Auges konnen wir schnell wechselnde Ereignisse nur bedingt
unterscheiden und auch beim Umschalten der Lampe zwischen den
beiden Zustinden Ein bzw. Aus kommt eine gewisse Verzogerung
zum Tragen. Dadurch hat es fiir uns den Anschein einer sich verin-
dernden Ausgangsspannung. Klingt etwas merkwiirdig, nicht
wahr? Du wirst es aber ganz sicher besser verstehen, wenn wir zum
entsprechenden Kapitel gelangen. Einen offensichtlichen entschei-
denden Nachteil hat die hier vorliegende Art der Portverwaltung
allerdings schon. Wenn du einen oder mehrere analoge Ausginge
verwendest, geht das zu Lasten der digitalen Portverfiigbarkeit. Es
stehen hierfiir dann eben weniger zur Verfugung. Doch das soll uns
nicht weiter stéren, denn wir kommen nicht an die Grenzen, die
eine Einschrinkung unserer Versuchsauftbauten bedeuten wiirde.

Kapitel 2: Das Arduino-Board

http://www.arduino.cc/
http://www.arduino.cc/
http://www.arduino.cc/

Bevor du weiter in dem Tempo erzihlst, muss ich dich wieder einmal
stoppen. Du hast in der Aufzihlung der Eckdaten des Arduino-
Boards eine Sache erwihnt, die ich aufgreifen méchte. Was genau ist
ein Bootloader?

Ok Ardus, das hitte ich beinahe vergessen! Ein Bootloader ist ein
kleines Programm, das in einem bestimmten Bereich des Flash-
Speichers auf dem Mikrocontroller-Board seinen Platz findet und
fir das Laden des eigentlichen Programms verantwortlich ist. Nor-
malerweise erhilt ein Mikrocontroller sein Arbeitsprogramm iiber
eine zusitzliche Hardware, z.B. einen ISP-Programmer. Durch den
Bootloader entfillt diese Notwendigkeit und so gestaltet sich das
Uploaden der Software wirklich komfortabel. Nach dem erfolgrei-
chen Ubertragen des Arbeitsprogramms in den Arbeitsspeicher des
Controllers wird es unmittelbar zur Ausfithrung gebracht. Ange-
nommen, du miisstest deinen Mikrocontroller ATmega 328 auf der
Platine aus irgendeinem Grund austauschen, dann wiirde der Neue
nicht wissen, was zu tun wire, da der Bootloader standardmifig
noch nicht geladen ist. Diese Prozedur kann mittels verschiedener
Verfahren erfolgen, die ich aber aus Platzgriinden nicht erkliren
kann. Im Internet finden sich aber gentigend Informationen, wie du
den passenden Bootloader fiir den Mikrocontroller installieren
kannst. Besuche doch einfach einmal meine Internetseite.

Die Stromversorgung

Damit unser Arduino-Board auch arbeiten kann, muss es in
irgendeiner Weise mit Energie versorgt werden. Diese Versorgung
erfolgt in erster Linie tiber die USB-Schnittstelle, die das Board mit
dem Rechner verbindet. Uber diesen Weg werden iibrigens auch
Daten zwischen Board und Rechner ausgetauscht. Wenn du dich
also in der Entwicklungsphase mit deinem Arduino befindest, ist
das die primire Versorgung fiir das Board. Die zweite Moglichkeit
besteht im Anschluss einer Batterie oder eines Netzgerites an den
Poweranschluss, der auch Power-Jack genannt wird. Diese Variante
kannst du z.B. verwenden, wenn du ein fahrbares Vehikel gebaut
hast, das durch den Arduino gesteuert wird. Das Gefihrt soll sich
unabhingig, ohne Kabelanschlusses frei im Raum bewegen kénnen
damit es nicht an einem meist zu kurzen USB-Kabel hingen bleibt.
Es soll sich eben um ein autarkes Gerit handeln.

Die Stromversorgung

Abbildung 2-4 »
Spannungsversorgung des
Arduino-Boards

Tabelle 2-1
Strom- bzw. Spannungswerte

USB-Anschluss

4| ™,

P! LN

y
.

\Spmuumg 2 [)atcti/
[—

Power-Anschluss

Spannung /\
——

Hier zeige ich dir einmal die unterschiedlichen Steckervarianten.
Du kannst sie nicht vertauschen, da sie vollkommen unterschiedli-
che Formen aufweisen und auch die Funktionen véllig voneinander
abweichen.

USB-Stecker Power-Jack

Wenn es um Strom bzw. Spannung geht, dann sollten wir einen
Blick auf die folgende Tabelle werfen:

Kategorie Wert
Betriebsspannung 5V(DQ)
Spannungsversorgung iiber Extern (empfohlen) 7-12V(DQ)
Spannungsversorgung iiber Extern (Grenzwerte) 6—20V (DC)
Gleichstrom pro Pin (maximal) 40mA

Die Bezeichnung DC hinter den Voltangaben bedeutet Direct Cur-
rent, was ubersetzt Gleichstrom bedeutet. Die USB-Schnittstelle
kann maximal einen Strom von 500mA liefern. Das reicht in der
Regel aus, um die meisten Versuchsschaltungen aus diesem Buch
zu realisieren. Sie ist sogar gegen Kurzschliisse und zu hohe Strome
derart geschiitzt, das eine sogenannte Poly-Sicherung ausgelost
wird. Das sollte aber nicht bedeuten, dass du weniger Sorgfalt beim

Kapitel 2: Das Arduino-Board

Aufbau einer Schaltung walten lassen solltest. Erinnere dich daran,
was ich dir in der Einleitung tiber den USB-Hub mit auf den Weg
gegeben habe und beherzige es.

Die Kommunikationswege

So ein Mikrocontroller-Board hat schon wirklich viele Anschliisse,
die es auseinander zu halten gilt. Du musst stets den Uberblick
bewahren, damit du nichts durcheinander bringst. Doch diese
Verwirrung — falls sie denn tiberhaupt aufgekommen ist — zeigt
sich nur am Anfang. Nach ein paar Tagen gehen dir diese Feinhei-
ten in Fleisch und Blut tiber. Wollen wir einmal die Unterschiede
aufzihlen.

Der USB-Port

Da haben wir zum einen den USB-Port. Ohne ihn wirst du nicht in
der Lage mit dem Board in irgendeiner Weise eine Kommunikation
zu initiieren. Wir kénnen das Arbeiten mit dem Arduino-Board in
zwei Phasen unterteilen. Die Zeit, in der du die Vorbereitungen
triffst, um dein Projekt umzusetzen, also Programmierarbeit leistest
und dir Gedanken iiber die Peripherie machst, nennt sich Entwick-
lungszeit (engl.: Designtime). Die Programmierung erfolgt mit Hilfe
einer Entwicklungsumgebung, die du in wenigen Augenblicken
kennenlernen wirst. Hierin wird das von dir erstellte Programm
eingegeben und zum Mikrocontroller tibertragen. Wenn das erfolg-
reich verlaufen ist, beginnt sofort die Laufzeit (engl.: Runtime). Du
musst dem Mikrocontroller also nicht explizit sagen: »So, mein
Freund, jetzt fange an zu arbeiten!« Er legt sofort los, wenn er alle
Instruktionen von dir erhalten hat. Zusitzlich kannst du aber auch
Daten iiber den USB-Port von deinem Computer empfangen oder
an ihn versenden. Wie das funktioniert, werden wir spiter noch
sehen.

Die Ein- bzw. Ausgabeports

Kommen wir zu den eigentlichen Ports, die die Schnittstelle des
Mikrocontrollers darstellen. Es sind wie die Augen, die Ohren und
der Mund beim Menschen Wege oder Kaniile, um Daten zu emp-
fangen bzw. aussenden. Durch und tiber diese Kommunikationska-

Die Kommunikationswege

Abbildung 2-5 »
Das EVA-Prinzip

Abbildung 2-6
Digitale Ein- bzw. Ausgange

nile findet eine Interaktion mit der Umgebung statt. Dein Arduino
nutzt Sensordaten (z.B. Temperatur, Licht und Feuchtigkeit) zur
internen Bewertung, die wiederum durch seine Programmierung
vorgegeben ist. Er wird dann entsprechend reagieren und entspre-
chende Aktionen durchfithren. Das konnen Lichtsignale, Téne
oder auch Bewegungen tiber angeschlossene Aktoren (Motoren +
Sensoren) sein.

Du hast sicherlich erkannt, dass wir es mit zwei steuerungstechni-
schen Signal-Kategorien zu tun haben. Sensoren liefern Daten und
Aktoren wandeln Eingangsgroflen in Ausgangsgrofen um. Dieser
Prozess verlduft nach dem EVA (Eingabe, Verarbeitung, Ausgabe)
Prinzip.

Eingabe Verarbeitung Ausgabe

Wo befinden sich diese Ein- bzw. Ausgabeports auf unserem Ardu-
ino-Board? Wenn du es so hiltst, dass du den Schriftzug UNO
lesen kannst, dann befinden sich die digitalen Ein- bzw. Ausgabe-
Ports am oberen Rand (2 x Achterblock).

CLIIIII1]

[N MmN —“TOoOoanw POINMTMOMANAO
g‘-a‘-a\;h;it

5 ' R
DIGITAL (PWM~)

Natirlich ist es wichtig zu wissen, welcher Port welche Bezeich-
nung hat, um ihn spiter in der Programmierung eindeutig anspre-
chen zu konnen. Deshalb ist jeder einzelne Pin mit einer Nummer
versehen. Beachte, dass die Nummerierung des ersten Pins mit 0
beginnt. Auf dieses Phanomen wirst du wihrend deiner Program-
mierung noch des Ofteren stoRen. Fast jede Aufzihlung beginnt
mit der Ziffer 0. Unterhalb einiger Ziffern befindet sich ein Tilde-
Zeichen (~), das auf den Umstand hindeutet, dass dieser Pin auch
als analoger Ausgang geschaltet werden kann. Es handelt sich um
einen PWM-Pin (du erinnerst dich: Pulsweitenmodulation, die wir
noch ausfiihrlich eingehen werden). Am unteren Ende der Platine
findest du sowohl die Versorgungs-Ports (links), als auch die analo-
gen Eingangs-Ports (2 x Sechserblock, rechts).

Kapitel 2: Das Arduino-Board

POWER ANALOG IN

>
m (-]
~2EBBF gzaazy

RESET

Auch hier siehst du wieder, dass die Nummerierung der anlogen
Ports mit 0 beginnt, doch dieses Mal von links gesehen.

Das kannte wichtig fiir dich sein

Bevor du die einzelnen Pins verkabelst, orientiere dich immer
an den entsprechenden Bezeichnungen, die entweder dard-
ber oder darunter stehen. Man kann sich aufgrund der dicht
beieinander stehenden Pins zum einen schnell verlesen und
zum anderen beim Verkabeln einfach einen Pin links oder
rechts daneben erwischen. Ganz schlimm kann es werden,
wenn du zwei oder mehr benachbarte Pins durch Unachtsam-
keit miteinander verbindest und einen Kurzschluss erzeugst.
Das konnte dazu flhren, dass der eine oder andere Kamerad
auf der Schaltung evtl. Rauchzeichen von sich gibt. Am besten
schaut man senkrecht von oben auf die Leisten. Ein Blick schrag
von der Seite birgt die genannten Gefahren in sich. Die spatere
Fehlersuche gestaltet sich dann etwas mihsam. Liegt ein Feh-
ler in der Programmierung oder in der Verkabelung vor? Zu
allem Ubel kann eine falsch verdrahtete Leitung unter Umstan-
den einen Schaden am Board verursachen. Verkable nie ein
Board, wenn es Uber den USB-Port noch oder schon unter
Spannung steht. Also nicht hektisch werden beim Verkabeln
der Schaltung, und vermeide es dabei stets, schon an den
nachsten Schritt, namlich den spateren Versuchslauf, zu den-
ken. Sei immer ganz konzentriert bei der Sache, und zwar im
Hier und Jetzt, dann wird nichts schief gehen.

Die Programmiersprachen
C/C++

Damit die Kommunikation mit dem Arduino-Board auch erfolg-
reich verlduft, mussten sich die Entwickler auf eine Sprachbasis
einigen. Nur, wenn alle Beteiligten die gleiche Sprache sprechen,
kann es zur Verstindigung untereinander kommen und ein Infor-
mationsfluss einsetzten. Wenn du ins Ausland fahrst und die Lan-
dessprache nicht beherrschst, musst du dich oder der Andere sich
in irgendeiner Form anpassen. Die Art und Weise ist dabei egal.
Das kann entweder durch Laute oder auch mit Hinden und FiiRen
sein. Wenn ihr eine Basis gefunden habt, kann’s losgehen. Bei unse-
rem Mikrocontroller ist das nicht anders. Wir miissen da jedoch

<« Abbildung 2-7

Versorgung + analoge Eingénge

Die Programmiersprachen C/C++

Abbildung 2-8 »
Der Compiler als Dolmetscher

zwischen zwei Ebenen unterscheiden. Der Mikrocontroller versteht
auf seiner Interpretationsebene nur Maschinensprache, auch Nati-
ver Code genannt, die fiir den Menschen nur sehr schwer zu verste-
hen ist, da sie lediglich aus Zahlenwerten besteht. Wir haben aber
von Kindesbeinen an gelernt, mit Worten und Sitzen zu kommuni-
zieren. Das ist aber reine Gewohnheitssache. Wiirden wir uns von
Geburt an mithilfe von Zahlenwerten mitteilen, wire auch diese
Kommunikationsform vollig ok. Jedenfalls benétigen wir aufgrund
dieses Sprachdilemmas eine Moglichkeit, in verstindlicher Form
mit dem Mikrocontroller kommunizieren zu koénnen. Deshalb
wurde eine Entwicklungsumgebung geschaffen, die Befehle iiber
eine sogenannte Hochsprache — das ist eine Sprache, die eine abs-
trakte Form dhnlich der unseren aufweist — entgegen nimmt. Doch
damit stecken wir dann wieder in einer Sackgasse, denn der Mikro-
controller versteht diese Sprache leider nicht. Es fehlt so etwas wie
ein Ubersetzter, der als Verbindungsglied zwischen Entwicklungs-
umgebung und Mikrocontroller arbeitet und dolmetscht. Diese
Aufgabe ibernimmt der sogenannter Compiler. bei dem es sich um
ein Programm handelt, das ein in einer Hochsprache geschriebenes
Programm in die Zielsprache des Empfingers (hier unsere CPU des
Mikrocontrollers) umwandelt.

Hochsprache Ubersetzung Zielsprache

g Maschinen-

Da sich fast alle Programmiersprachen des englischen Wortschat-
zes bedienen, kommen wir nicht umhin, auch diese Hiirde nehmen
zu miissen. Es ist also ein weiterer Ubersetzungsvorgang erforder-
lich, doch ich denke, dass das Schulenglisch hier sicher in den meis-
ten Fillen ausreichen wird. Die Instruktionen, also die Befehle, die
die Entwicklungsumgebung versteht, sind recht kurz gehalten und
gleichen denen in der Militarsprache. Es handelt sich um knappe
Anweisungen, mit denen wiedergeben wird, was zu tun ist.

Diese werden wir Schritt fiir Schritt lernen, es besteht also kein
Grund zur Besorgnis. Wie schon aus der Uberschrift zu diesem
Absatz korrekterweise ersichtlich ist, handelt es sich bei C bzw.
C++ ebenfalls um Hochsprachen. Alle professionellen Programme

Kapitel 2: Das Arduino-Board

werden heutzutage in C/C++ oder verwandten Sprachen wie C#
oder Java geschrieben, die allesamt dhnliche Syntaxformen aufwei-
sen. Um Proteststiirmen von den Programmierern, die ihre favori-
sierte Sprache hier nicht aufgelistet sehen, entgegenzuwirken,
mochte ich hier Folgendes anmerken: Das soll in keiner Weise
bedeuten, dass alle restlichen Sprachen — und hiervon gibt es eine
Menge — nicht in die Kategorie professionell fallen. Wir wollen uns
hier auf C/C++ konzentrieren, weil Arduino bzw. der Compiler
bereits tiber eine Teilmenge der Funktionalitit der Sprachen C/C++
verfiigt. Wer also schon mit C bzw. C++ programmiert hat, wird
sich hier bereits in vertrauter Umgebung befinden. Alle anderen
werden wir dahin fithren, dass sie sich ebenfalls recht schnell
zuhause fithlen werden. Viele andere Mikrocontroller-Entwick-
lungspakete verwenden auflerdem C/C+-+-dhnliche Compiler, so
dass das Studium dieser Sprachen auch diesbeziiglich recht bald
Friichte tragen wird, doch wir wollen uns ja hier mit Arduino
beschiftigen und uns ganz diesem Thema widmen. Wie wir was in
welcher Form programmieren, wird integraler Bestandteil dieses
Buches sein. Hab’ noch ein wenig Geduld, im Abschnitt »Befehl
und Gehorsam« auf Seite 44 wirst du umfangreich mit der Pro-
grammiersprache in Beriihrung kommen. Du kannst gespannt sein,
was wir alles anstellen werden.

Ich méchte aber gerne jetzt schon ein wenig Code sehen. Komm, zeig’
mir doch einfach schon ein Beispiel, nur damit ich einen kleinen Ein-
blick bekomme, ok!?

Na du bist wohl auch einer von denen, die es nicht erwarten kon-
nen. Also gut. Aber nur ein einfaches Beispiel, das wir spiter
sowieso als erstes kennenlernen werden:

int ledPin = 13; // Variable mit Pin 13 deklarieren +
// initialisieren

void setup(){
pinMode(ledPin, OUTPUT); // Digitaler Pin 13 als Ausgang
}

void loop(){
digitalWrite(ledPin, HIGH); // LED auf High-Pegel (5V)

delay(1000); // Eine Sekunde warten
digitalWrite(ledPin, LOW); // LED auf LOW-Pegel (oV)
delay(1000); // Eine Sekunde warten

}

Die Programmiersprachen C/C++ @

Und, zufrieden? Mit diesem Beispiel lisst du eine angeschlossene
Leuchtdiode blinken, die am digitalen Ausgang Pin 13 angeschlos-
sen wird. Sag’ nur, du willst das jetzt schon ausprobieren? Aber ich
habe doch noch gar nicht die Grundlagen fiir die Treiberinstalla-
tion erldutert. Die solltest du aber schon noch abwarten und dann
vor den weiteren Schritten erst einmal die Entwicklungsumgebung
richtig konfigurieren. Kénnen wir so verbleiben?

Wie und womit kann ich
Arduino programmieren?

Wie ich schon erwihnt habe, steht uns zur Programmierung des
Arduino-Mikrocontrollers eine Entwicklungsumgebung — auch
IDE (Integrated Development Environment) — zur Verfiigung, mit-
tels derer wir direkten Kontakt mit dem Board aufnehmen und das
Programm in den Mikrocontroller iibertragen. Ein Programm wird
ibrigens im Arduino-Kontext Sketch genannt, was grob tibersetzt
so viel wie Skizze bedeutet. Wir sprechen also ab jetzt nur noch von
Sketchen, wenn es sich um Arduino-Programme handelt. Um ein
moglichst breites Publikum mit Arduino anzusprechen, wurden fiir
die unterschiedlichsten Plattformen Entwicklungsumgebungen
geschaffen, die sich alle gleichen. Das bekannteste und verbreitetste
Betriebssystem ist Windows. Alle meine Sketche, die ich in diesem
Buch anfiihre, habe ich unter Windows entwickelt, was jedoch
nicht bedeutet, dass andere Plattformen schlechter wiren. Auf der
Internetseite von Arduino, die http://www.arduino.cc/ lautet, stehen
im Downloadbereich die unterschiedlichen Versionen fiir folgende
Betriebssysteme zur Verfiigung:

¢ Windows
* Linux (32 Bit)
* Mac OS

Dort findest du auch die sogenannten Release Notes (libersetzt:
Freigabevermerk), die wichtige Informationen iiber die betreffende
Version der IDE enthalten. Da geht es z.B. um neue Features oder
behobene Fehler, die in der Vorgingerversion aufgetreten sind. Es
lohnt sich allemal, hier einen Blick zu riskieren.

Kapitel 2: Das Arduino-Board

http://www.arduino.cc

Die Installation der Entwicklungs-
umgebung inklusive Treiber

Ich habe jetzt so lange auf die Entwicklungsumgebung hingewie-
sen, dass es nun langsam an der Zeit ist, diese ein wenig ndher zu
betrachten. Der Download von der o.g. Seite erfolgt mittels einer
gepackten Datei. Sie liegt entweder im zip-Format (Windows) oder
im tgz-Format (Linux) vor und kann an eine beliebige Stelle im
Dateisystem entpackt werden. Direkt nach dem Entpacken ist
sofort alles lauffihig. Ein Setup mittels einer Installationsroutine ist
nicht erforderlich. Im letzten Schritt vor der Programmierung muss
jedoch fiir Windows noch der Treiber fiir das aktuelle Uno-Board
installiert werden, damit die Kommunikation mit dem angeschlos-
senen Board {iber die USB-Schnittstelle auch reibungslos funktio-
niert. In der neuesten Ubuntu-Version 11.10 ist der Treiber schon
installiert.

Installation fiir Windows 7

Schritt 1
Entwicklungsumgebung entpacken

Schritt 2

Das Uno-Board iiber ein USB-Kabel mit einer der freien USB-Buch-
sen an deinem Rechner verbinden.

Werfen wir noch einen kurzen Blick auf das zu verwendende USB-
Kabel mit den unterschiedlichen Steckertypen, damit du beim Kauf
eines solchen Kabels — es ist nimlich nicht Bestandteil des Arduino-
Boards — nichts falsch machst.

Die Seite mit dem Stecker Typ-B wird mit dem Board und die mit
Typ-A mit dem PC verbunden. Bedenke, wie schon in der Einlei-

<« Abbildung 2-9
USB-Kabel zum Anschluss des
Arduino-Boards an den PC

Wie und womit kann ich Arduino programmieren?

Abbildung 2-10 »>

Ein Gerdt mit fehlendem Treiber

wurde erkannt.

Abbildung 2-11

Die Auswahl »Treibersoftware
manuell suchen und installieren«

Abbildung 2-12 p

Die Datei »Arduino UNO.inf«

auswahlen

tung erwihnt, dass die Verwendung eines USB-HUB die sicherere
Variante ist. Nach einiger Zeit sollte dein Betriebssystem melden,
dass es neue Hardware gefunden hat, und den Treiber Installations-
prozess starten. Da sich natlirlich auf diese Weise kein passender
Treiber finden lisst, wird nach einiger Zeit ein Dialog angezeigt,
der auf diesen Umstand hinweist. Du kannst ihn getrost schliefen.

Schritt 3

Gehe jetzt iiber die Computerverwaltung (rechte Maustaste auf das
Computer Desktop-Icon und Verwaltung wihlen) und 6ffne den
Gerdtemanager. Du findest in der angezeigten Hierarchie unter
Andere Gerdte einen Eintrag fiir das Arduino Uno-Board. Den
Namen hat das System also schon einmal richtig erkannt, doch das
niitzt uns an dieser Stelle nicht viel. Der passende Treiber wiirde
hier mehr Sinn machen.

a -|i7 Andere Gerdte
b Ui Arduine Uno

Schritt 4

Klicke mit der Maustaste auf den Eintrag Arduino Uno und 6ffne
mit der rechten Maustaste das Kontextmenii. Uber den Meniipunkt
Treibersoftware aktualisieren lasst sich ein Dialogfenster 6ffnen, bei
dem du die Option Treibersoftware manuell suchen und installieren
auswihlst.

=2 Auf dem Computer nach Treibersoftware suchen.
Treibersoftware manuell suchen und installieren.

Schritt 5

Anschlieffend musst du tiber den Browser an die Stelle navigieren,
an der die Treiberdatei Arduino UNO.inf gespeichert ist. Sie befin-
det sich im Stammverzeichnis von Arduino unterhalb des Ordners
drivers. Die Dateinamenerweiterung ist bei bekannten Dateien
standardmiRig deaktiviert, daher ist die Dateinamenerweiterung
.inf nicht zu sehen.

arduino-1.0-rel - # Name Anderungsdatum Typ GroBe
drivers
FTDIUSE Drivers Dateiordner
. examples " i . - .
& | Arduino Leonardo.inf Setup-Informationen 1KB
hardware : 2 b :
X & Arduino MEGA 2560.inf Setup-Informaticnen 4KB
ava
:'b & | Arduino Micro.inf 16 11 21:32 Setup-Informationen 4KB
i 1
|4 | Arduing UNO.inf 16,09.2011 21:32 Setup-Informationen 4 KB

libraries -

@

Kapitel 2: Das Arduino-Board

Nach erfolgreicher Installation dieses Treibers kannst du dich der
Arduino-Entwicklungsumgebung zuwenden und sie starten. Wie
das funktioniert, sehen wir gleich.

Das konnte wichtig fiir dich sein

Die neue Arduino-Entwicklungsumgebung mit der Versions-
nummer 1.0 steht in den Startlochern. Um den Entwicklern
einen Vorgeschmack auf das zu geben, was da bald erscheint,
werden sogenannte Beta-Versionen zur Verfigung gestellt, um
sich schon einmal mit den Neuerungen vertraut zu machen. Sie
sollten jedoch noch nicht fur produktive Zwecke verwendet
werden, da sicherlich noch einige Fehler enthalten sein kénn-
ten. Steht die Veroffentlichung der neuen Version kurz bevor,
gibt ein Hersteller Versionen heraus, die mit RC (Release Candi-
date) gekennzeichnet sind. Es handelt sich um einen Freigabe-
kandidat, der schon alle in der Endversion angekindigten
Features enthalten soll. Aus diesem Grund hat der Ordner im
Filesystem die Bezeichnung arduino-1.0-rc1.

Installation fiir Ubuntu

Fiir die Ubuntu-Linux 11.04 Version liegt schon ein Installationspa-
ket der Arduino-Version 0022 vor. Ich zeige dir hier die unkompli-
zierte Variante der Installation tber die Softwareverwaltung
KPackageKit. Ich selbst habe tibrigens auch KUbuntu bei mir instal-
liert, und zwar Ubuntu mit der Arbeitsumgebung KDE statt Gnome.

Schritt 1

Uber Anwendungen|System die Softwareverwaltung KPackageKit
offnen und dort DeveloperTools selektieren.

hd -
| mﬁm:: - " O MachNamersuton v 7 Blter , F9 2 ;
Software '

KPackageKit
a | Bezieban usd Entfernan von Softwars A

Listen
%

Softwareaktualisierung «]:[

Instalberte Vertauf
p - saftwace

Einsteliungen
Katagorian

= g 2 O =

Blroprogramme i "‘l Disnstprogramme Grafik interret Lernprogramme
m T - L / o
Multimedia schriftaten Sl Spiele rnnér»u Zugangehilfen

Enginetring Tweaks

P e | |t ommatulungn i Loruthanbann, | w” ke

<« Abbildung 2-13
KPackageKit bei KUbuntu

Wie und womit kann ich Arduino programmieren?

(»)

Schritt 2

Das Softwarepaket Arduino-Entwicklungsumgebung aus der ange-
botenen Liste selektieren und dann auf den rechts angezeigten
Installieren-Button klicken.

Abbildung 2-14 »
Arduino-Entwicklungsumgebung

auswahlen g Beziehen und Entfernen von Software a

<@ ‘ Pakete suchen &% NachNamensuchen v T Filter ‘ @ pnhangige Anderungen

KPackageKit

< [2‘ Debugging ;~ Graphic Interface Design ;~ IDEs B Localization ;™ Profiling /* Version Contf >

i 0§ Acceraiser 1.12.1-Qubuntu2 Verpassen S
Softwareaktualisierung
Alleyoop-Speichertest 0.9.7-1 Mithilfe das
(3] = ;
Anjuta IDE 2:2.32.1.1-0ubuntud Software in
Einstellungen !
Arduino-Entwickl bung 0022+dfsg-1
A% TSPl Bowser 0.6.1-3.1 Dateimana:
Bazaar Explarer 1.1.2-2 Grafische Be

i

Wenn es sich dabei um das einzige Paket handelt, das du installie-
ren mochtest, dann klicke zum Abschluss auf den Anwenden-
Button rechts unten. Im Anschluss wird das Paket heruntergeladen
und installiert.

[~ Wird installiert - KPackageKit [ROREY e wird installiert -~ KPackagekit @

Pakel:e werden installiert

Pakete werden heruntergeladen (1,2 MiB / Sek.)

Abbildung2-15A Nach Beendigung dieses Prozesses befindet sich unter Anwendun-
Herunterladen und Installierendes gepy | Entwicklung der neue Eintrag zu der Arduino-Entwicklungsum-
Paketes bzw. der Pakete gebung. Dieses Verfahren ist viel kiirzer als bei Windows, was!?

@ Kapitel 2: Das Arduino-Board

Die Arduino-Entwicklungs-
umgebung

Was ist iiberhaupt eine Entwicklungsumgebung und was konnen
wir mit ihr machen? Nun, sie bietet dem interessierten Program-
mierer bzw. angehenden Arduino-Experten, der du ja in Kiirze sein
wirst, ein Werkzeug zur Umsetzung seiner programmiertechni-
schen Ideen. Wir haben es ja zum einen mit Hardware zu tun,
deren Hauptbestandteil natiirlich das Arduino-Board ist. Hieran
werden die unterschiedlichsten elektronischen bzw. elektrischen
Bauteile angeschlossen, auf die wir noch im Detail zu sprechen
kommen. Das sind alles greifbare Dinge, die eben in ihrer Struktur
hart sind. Daher der Ausdruck Hardware. Was aber niitzt uns eine
Hardware, die nicht weifS, was sie tun soll? Etwas fehlt noch, um
die Sache rund zu machen. Genau, da ist andererseits die Software.
Das ist die Welt der Programme — oder im Falle von Arduino der
Sketche — und Daten. Die Software ist »weich«, d.h. du kannst sie
eben nicht unmittelbar mit deinen Hiénden greifen, es sei denn, du
druckst alles auf Papier aus. Die Software macht Hardware erst zu
dem, wozu sie eigentlich gedacht ist, nimlich Befehle zu interpre-
tieren und auszufithren. Beide zusammen bilden eine untrennbare
Einheit, denn keiner kommt ohne den anderen aus.

Das Starten der Entwicklungs-
umgebung

Kommen wir jetzt endlich zu etwas Konkretem. Der Start der Ent-
wicklungsumgebung, ich werde sie von jetzt an nur noch IDE nen-
nen, steht unmittelbar bevor. Im entpackten Verzeichnis, das du
von der Internetseite fiir Windows heruntergeladen hast, befindet
sich u.a. eine Datei mit dem Namen Arduino. Du erkennst sie an
dem typischen Icon.

©.0)

arduino

<« Abbildung 2-16
Die Datei »Arduino« zum Starten
der Entwicklungsumgebung

Das Starten der Entwicklungsumgebung

(»)

Abbildung 2-17 p
Die leere IDE (Windows)

Nach einem Doppelklick auf dieses Icon erhiltst du die folgende
Ansicht.

et sepza | vine 26 S ==

File Edit Sketch Tools Help

sketch_sepla

Bei Linux musst du tiber Anwendungen|Entwicklung den folgenden
Eintrag auswihlen:

Entwicklung

m Create physical computing projects
Arduino IDE

Das Fenster der IDE gleicht seinem Pendant unter Windows. Wenn
du genau hinschaust, kannst du vielleicht bestimmte voneinander
getrennte Bereiche erkennen, in denen sich vielleicht spiter etwas
abspielt. Auf diese Bereiche wollen wir nun einen genaueren Blick
werfen und sie systematisch von oben nach unten durchgehen.

Die Titelzeile

Die Titelzeile ist die Zeile am oberen Fensterrand, die zwei Informa-
tionen enthilt:

Kapitel 2: Das Arduino-Board

* den Sketch-Name (hier: sketch_sep22a) Dieser Name wird
automatisch vergeben und beginnt immer mit sketch_. Danach
folgen der Monat, der Tag und ein laufender Buchstabe a bis z,
falls an diesem Tag noch weitere Sketche erstellt werden. Die-
ser Sketch wurde demnach am 22. September in der ersten Ver-
sion dieses Tages erstellt.

¢ die Arduino IDE-Versionsnummer (hier Version 1.0, die sich
im Laufe der Zeit aber noch erhéhen wird, wenn Fehler beho-
ben wurden oder neue Funktionen hinzugekommen sind)

Die Mendileiste

In der Meniileiste werden unterschiedlichste Meniieintrige zur Aus-
wahl angeboten, tiber die du bestimmte Funktionen der IDE aufru-
fen kannst.

File Edit Sketch Tools Help

Die Symbolleiste

Unterhalb der Meniileiste befinden sich die Symbolleiste, die mit
einigen Piktogrammen — auch Icons genannt — versehen ist. Auf
deren einzelne Funktionen komme ich gleich zu sprechen.

Der Tabulatorbereich

Der Tabulatorbereich zeigt an, wie viele Quellcodedateien zum
jeweiligen gedffneten Arduino-Projekt gehoren.

sketch_sep22a

Im Moment kénnen wir lediglich einen Tabulator-Reiter mit dem
Namen sketch_sep22a erkennen. Es kénnen hier aber, je nach Pro-
grammieraufwand, weitere Registerkarten hinzugefigt werden.
Dazu dient das am rechten Rand befindliche Icon.

Der Editor

Kommen wir zu Herzstiick der IDE. Der Editorbereich, der sich im
Moment noch vollkommen jungfraulich darstellt, ist der zentrale
Ort, an dem du dich mit deinen Ideen austoben kannst. Hier gibst
du den Quellcode ein, also die Instruktionen, die den Mikrocont-

Das Starten der Entwicklungsumgebung

(»)

roller veranlassen sollen, das zu tun, was du ihm auftriagst. Das ist
die Welt der Sketche.

Die Infozeile

In der Infozeile wirst du tiber bestimmte durchgefithrte Aktionen
der IDE informiert.

Hast du z.B. einen Sketch erfolgreich auf deiner Festplatte gespei-
chert, bekommst du den hier gezeigten Wortlaut angezeigt. Alles in
Englisch natiirlich. Hat der Compiler bei der Ubersetzung einen
Fehler in deinem Sketch entdeckt, weil du dich vielleicht vertippt
hast, so tut er das hier u.a. mit einer entsprechenden Aussage kund.
Weitere Details zu erkannten Fehlern werden im Nachrichtenfens-
ter, das jetzt folgt, angezeigt.

Das Nachrichtenfenster

Uber das Nachrichtenfenster versorgt dich die DIE mit allen not-
wendigen Informationen, um dich auf dem Laufenden zu halten.
Was konnten das z.B. fir Informationen sein?

e Informationen {iiber Sketch-Transfer zum Arduino-Board

(erfolgreich oder fehlerhaft)

¢ Informationen iiber Ubersetzungsaktivititen des Compilers
(erfolgreich oder fehlerhaft)

* Informationen iiber den seriellen Monitor (erfolgreich oder
COM-Port nicht gefunden)

Kapitel 2: Das Arduino-Board

Die Statuszeile

In der Statuszeile wird entweder ein einzelner Wert angezeigt, der
die Zeilennummer des Cursors wiedergibt, (hier Zeile 3)

Arduino Uno on COM3E

oder einen markierten Bereich, der sich iiber einen Bereich erstreckt
(hier Zeile 1 bis 4)

Arduino Uno on COM3E

Zusitzlich erkennst du am rechten Rand den Namen deines Arduino-
Boards und den verwendeten COM-Port der seriellen Schnittstelle.

Die Symbolleiste im Detail

Beim tiglichen Umgang mit der IDE wirst Du sicherlich bemerken,
dass die Symbolleiste dein wichtigster Begleiter ist. Es handelt sich
zwar nicht um sehr viele Icons in der Leiste, doch ihre Funktionali-
titen solltest du beherrschen.

Das Icon hat die Aufgabe, den im Editor befindlichen Sketch auf seine Syntax hin zu

. tiberpriifen (Verify bedeutet iibersetzt priifen) und zu iibersetzten. Beim Start der
Uberpriifung (Kompilierung) wird ein horizontaler Balken angezeigt, der Aufschluss
tiber den Fortschritt gibt.

Ist kein Fehler festgestellt worden, wird der Vorgang mit der Meldung Done Compiling
abgeschlossen. Im Ausgabefenster findest du einen Hinweis iiber den Speicherbedarf
des Sketches.

die IDE immer nur einen Sketch zur selben Zeit verwalten kann. Startest du einen
neuen, denke daran, den alten Sketch unbedingt zu speichern. Andernfalls verlierst du
samtliche Informationen.

Alle Sketche werden in einem Sketchbook abgelegt, das sich im Verzeichnis ,C 2\

. Benutzer\<Benutzername>\Eigene Dokumente\Arduino”befindet. Fiir
den Benutzernamen musst du deinen eigenen Benutzernamen eintragen. Uber dieses
Symbol kannst du einen gespeicherten Sketch von der Festplatte in die IDE laden. Hier-
liber erreichst du auch die zahlreich vorhandenen Beispiel-Sketche, die die IDE von
Haus aus mitbringt. Schau Sie dir an, denn du kann einiges von ihnen lernen.

Uber das Speichern-Symbol sicherst du deinen Sketch auf einen Datentrager. Stan-
dardmaBig erfolgt die Speicherung im eben genannten Sketchbook-Verzeichnis.

. Um einen neuen Sketch anzulegen, benutzt du dieses Symbol. Denke aber daran, dass

« Tabelle 2-2
Iconfunktionen der Symbolleiste

Das Starten der Entwicklungsumgebung

Iconfunktionen der Symbolleiste

Tabelle 2-2 p-

Icon

Funktion

Dieses Symbol sorgt fiir eine Ubertragung des erfolgreich kompilierten Sketches auf
das Arduino-Board in den Mikrocontroller. Beim sogenannten Upload des Sketches
passieren folgende Dinge, die du visuell beobachten kannst. Auf dem Board befinden
sich einige kleine Leuchtdioden, die Aufschluss iiber bestimmte Aktivitdten geben.

L z::‘ ~

rx B4 ARDUINO

LED L: Ist mit Pin 73 verbunden und leuchtet kurz, wenn die Ubertragung beginnt
LED TX: Sendeleitung der seriellen Schnittstelle des Boards (blinkt bei Ubertragung)
LED RX: Empfangsleitung der seriellen Schnittstelle des Boards (blinkt bei Ubertra-
gung)

Die Sendeleitung (TX) ist hardwaremaBig mit dem digitalen Pin 7 und die Empfangs-
leitung (RX) mit dem digitalen Pin 0 verbunden.

Der serielle Monitor kann iiber dieses lcon gedffnet werden. Es offnet sich ein Dialog,
der einem Terminal &hnelt.

com3 [SlEnren
Autoscroll [Carriage retun | [9500baud |

In der oberen Zeile kannst du Befehle eingeben, die an das Board verschickt werden,
wenn du die Send-Taste driickst. Im mittleren Bereich bekommst du die Daten ange-
zeigt, die das Board iiber die serielle Schnittstelle versendet. So kdnnen bestimmte
Werte angezeigt werden, fiir die du dich interessierst. Im unteren Abschnitt kannst du
auf der rechten Seite iiber eine Auswahlliste die Ubertragungsgeschwindigkeit (Baud)
einstellen, die mit dem Wert korrespondieren muss, den du beim Programmieren des
Sketches verwendet hast. Stimmen diese Werte nicht iiberein, kann es zu keiner Kom-
munikation kommen.

@ Das kdnnte wichtig fiir Dich sein

Falls Du einmal die Funktion hinter einer der 6 Icons vergessen
haben solltest, dann fahre mit der Maus einfach Uber ein Sym-
bol und schaue rechts neben die Symbolleiste. Dort wird die
Bedeutung des Icon angezeigt.

Kapitel 2: Das Arduino-Board

Der Editor im Detalil

Der Editor, in den du deinen Quellcode eingibst, unterstiitzt dich
in vielerlei Hinsicht beim Programmieren. In der folgenden Abbil-
dung siehst du den Inhalt eines Editorfensters, bei dem es sich um
Quellcode handelt, den du an dieser Stelle noch nicht verstehen
musst. Es soll lediglich gezeigt werden, wie bzw. in welcher Form
dieser Quellcode dargestellt wird.

woid setup ()
1
Serial.begin(9600);

void loop()
{

Serial.printin("Hallo mein Arduino-Freund!™):

}

Welche optischen Merkmale fallen uns sofort auf? Ich fasse einmal
kurz zusammen, was wir sehen:

1. Die IDE verfiigt iiber die Moglichkeit, bestimmte Worter
innerhalb des Editors farblich hervorzuheben. Aber welche
Worter sind das?

2. Die Schriftstirke variiert in Abhingigkeit von bestimmten
Wortern.

3. Bestimmte Elemente werden besonders hervorgehoben. Hier
ist es die schlieRende geschweifte Klammer.

4. Bei der Darstellung des Quellcodes liegt eine gewisse optische
Gliederung vor. Manche Bereiche sind weiter nach rechts ein-
geriickt als andere.

Das ist natiirlich nicht reine Willkiir oder sieht einfach nur schick
aus. Alles hat seinen Grund. Gehen wir also auf die einzelnen
Punkte einmal genauer ein:

Zu Punkt 1

Bestimmte Waérter, auch Schliisselwérter genannt, werden farblich
hervorgehoben. Es handelt sich dabei um reservierte Namen, die
z.B. Befehlen zugewiesen wurden. Unsere Entwicklungsumgebung
bzw. der Compiler verfiigt ja iiber einen bestimmten Wortschatz,
dessen wir uns bedienen kénnen, um unseren Sketch zu program-
mieren. Wenn ein der IDE bekanntes (Schliissel-)Wort von dir ein-

<« Abbildung 2-18
Quellcode eines Arduino-Sketches

Das Starten der Entwicklungsumgebung

gegeben wird, reagiert sie in der Art darauf, dass sie es sofort
farblich hervorhebt. In diesem Fall sind Schliisselworter immer in
Orange gehalten. Auf diese Weise behiltst du zum einen einen bes-
seren Uberblick und zum anderen bemerkst du sofort, wenn ein
Befehl falsch geschrieben wurde. Er wird dann namlich nicht in der
entsprechenden Farbe dargestellt. Dadurch hast du fantastischer-
weise immer eine optische Riickmeldung und ein Feedback zu
dem, was du gerade in den Editor eingibst.

Zu Punkt 2

Einige Worter, die als Schliisselworter erkannt wurden, werden von
der IDE fetter dargestellt. Das sind hier z.B. die Worter setup und
loop, denen in einem Sketch eine elementare Rolle zukommt. Bei
diesen beiden Wértern handelt es sich um Funktionsnamen. Was
das genau ist und was sie bedeuten, soll an dieser Stelle erst einmal
zweitrangig sein. Durch die fettere Darstellung fallen sie aber leich-
ter ins Auge. Sie dient somit ebenfalls einem besseren Uberblick.

Zu Punkt 3

Instruktionen bzw. Befehle werden in der Programmierung mit der
Arduino-IDE immer blockorientiert eingegeben. Das bedeutet, dass
bestimmte Befehle, die untereinander aufgelistet sind, zu einem
bestimmten Ausfiihrungsblock gehoren. Ein solcher Block wird
durch ein geschweiftes Klammernpaar gekennzeichnet. Die off-
nende Klammer signalisiert den Beginn und die schliefende Klam-
mer das Ende des Blocks. Auch darauf gehen wir natiirlich noch zu
gegebener Zeit genauer ein. Jedenfalls gehoren beide Klammern
immer zusammen und koénnen nur paarweise verwendet werden.
Wird eine von beiden vergessen, kommt es unweigerlich zu einem
Fehler, da die zu erwartende und zwingend notwendige Block-
struktur nicht gegeben ist. Wenn du den Cursor hinter eine Klam-
mer setzt, wird automatisch die korrespondierende Klammer mit
einer rechteckigen Umrandung versehen. Du kannst das in diesem
Beispiel in der setup-Funktion sehen. Ich habe den Cursor hinter
der 6ffnenden geschweiften Klammer positioniert und die zugeho-
rige schliefende Klammer hat entsprechend reagiert. Das funktio-
niert {brigens auch mit den runden Klammern. Worin der
Unterschied zwischen beiden Klammern besteht, werden wir natiir-
lich auch noch sehen.

Kapitel 2: Das Arduino-Board

Zu Punkt 4

Der Quellcode innerhalb eines Ausfithrungsblocks wird in der
Regel weiter nach rechts eingeriickt als der Block bzw. die Blockbe-
zeichnung selbst. Das dient ebenfalls zur besseren Ubersicht und ist
auch bei der Fehlersuche sehr hilfreich. Wenn mehrere Blocke vor-
handen sind, kénnen sie durch die optische Gliederung besser
unterschieden werden. Natiirlich ist es auch moglich, den gesamten
Quellcode in eine einzige Zeile zu schreiben. Der Compiler wiirde
keinen syntaktischen Fehler feststellen, doch die Ubersicht wire
katastrophal. Ebenso konntest du alle Codezeilen linksbiindig ein-
geben, was ebenfalls ein grauenhafter Programmierstil wire. Es gibt
ibrigens auch einen interessanten Mentipunkt, der eine automati-
sche Einrtickung durchfiihrt. Er wird tiber Tools| Auto format aufge-
rufen.

Eine Bemerkung am Rande

Falls du vielleicht schon einmal mit einer Entwicklungsumge-
bung in einer anderen Sprache, wie z.B. C#, programmiert hast,
dann féllt dir garantiert ein Unterschied zur Arduino-Entwick-
lungsumgebung auf. Diese hier ist recht spartanisch gehalten
und besitzt nicht den gewaltigen Funktionsumfang wie andere
IDEs. Das hat wiederum seine Bewandtnis. Die Entwickler von
Arduino wollten die Philosophie der Einfachheit und Unkompli-
ziertheit auch bei der Handhabung bzw. Programmierung der
Software umsetzen. Viele Menschen schrecken davor zurtick,
sich mit den der technisierten Welt eigenen komplizierten
Bereichen wie Mikrocontroller oder Programmierung zu befas-
sen, weil sie beflirchten, dass alles viel zu kompliziert ist und sie
versagen konnten. Du musst dir aber keine Gedanken machen,
dass dich dieses Schicksal ereilen wird. Lass’ dich einfach tber-
raschen und vom Charme des Arduino einfangen.

Die Ubertragung des Sketches
zum Arduino-Board

Wenn du deinen Sketch zur Zufriedenheit programmiert hast und
auch die Uberpriifung bzw. Kompilierung erfolgreich war, wird es
ernst. Die Ubertragung zum Mikrocontroller steht nun auf dem
Plan. Doch Stopp! Eine wichtige Kleinigkeit, habe ich noch nicht
erwihnt. Da es sehr unterschiedliche Arduino-Boards auf dem
Markt gibt, die sich alle mehr oder weniger hardwaremaRig unter-
scheiden, aber dennoch durch eine einzige IDE mit Daten versorgt
werden, musst du eine grundlegende Einstellung vornehmen. Das
ist nicht weiter kompliziert. Schau’ her:

Das Starten der Entwicklungsumgebung

Abbildung 2-19 »

Auswahl deines Arduino-Boards in

der IDE

Help

Auto Format
Archive Sketch
Fix Encoding 8t Reload

Serial Menitor

Board
Serial Port

Programmer

Burn Bootloader

Strg+T

Strg+Urmschalt+M

H @ Arduino Uno

H Arduino Duemilanove w/ ATrnega328

Arduino Nano w/ ATmega328
Arduino Nano w/ ATmegal68
Arduino Mega 2560 or Mega ADK
Arduino Mega (ATmegal 280)
Arduino Leonardo

Arduino Mini

Arduino Ethernet

Arduino Fio

Arduino BT w/ ATmega323
Arduino BT w/ ATrmeqgal 63
LilyPad Arduino w/ ATmega328
LilyPad Arduino w/ ATmegal6s

Arduino Pre or Pro Mini (5V, 16 MHz) w/ ATmega328
Arduino Pre er Pro Mini (5V, 16 MHz) w/ ATmegal68
Arduino Pro or Pro Mini (3.3V, 8 MHz) w/ ATmega328
Arduino Pre or Pro Mini 3.3V, 8 MHz) w/ ATmegal6

Arduino NG or older w/ ATmegal6s
Arduino NG or older w/ ATmegad

Arduino Diecimila or Duemilanove w/ ATmegal68

Du wihlst also unter dem Meniipunkt Tools die Option Board aus
und erhiltst eine Liste aller Boards, die die IDE unterstiitzt. Da wir
mit dem neuesten Uno-Board arbeiten, selektierst du den ersten Lis-
teneintrag, der hier bei mir schon markiert ist, weil ich das schon vor-
her entsprechend eingestellt habe. Der Meniieintrag Serial Port
unterhalb des Board-Eintrags ist ausgegraut. Er kann also nicht selek-
tiert werden. Warum ist das so? Nun, wenn du dein Arduino-Board
noch nicht tiber die USB-Schnittstelle mit deinem Rechner verbun-
den hast, dann hat die IDE das Board natiirlich noch nicht erkannt.
Auch der Geritemanager zeigt es nicht an. Ich verbinde es jetzt ein-
mal, und du wirst sehen, wie sich die IDE verhilt.

Tools| Help

Auto Format

Archive Sketch

Strg+T

Fix Encoding & Reload

Serial Monitor

Board
Serial Port

Programmer

Burn Bootloader

Strg+Umschalt+M

13

oY COM3
Com4
Ccoma

Kapitel 2: Das Arduino-Board

Aha! Der COM-Port 3 wurde erkannt, an dem mein Board jetzt
angeschlossen ist. Alles klar?

Nein, ganz im Gegenteil! Du hast da bestimmt etwas durcheinander
gebracht. Einerseits sprichst du von einer seriellen Schnittstelle und
einem COM-Port und dann schlieft du das Board tiber den USB-
Anschluss an den Rechner an. Das sind doch zwei vollig unterschied-
liche Paar Schuhe!?

Natiirlich hast du Recht und fast hitte ich es vergessen zu erwih-
nen. Na wenigstens passt du auf! Altere Arduino-Boards haben
tatsidchlich noch eine serielle Schnittstelle (RS232) in Form eines
D-Sub-Anschlusses, der 9-polig ist und iiber ein serielles Kabel mit
dem Rechner verbunden wurde. Die Computer der neueren Gene-
rationen besitzen allesamt einen USB-Anschluss, der nach und
nach die serielle Schnittstelle verdriangt. Die heutigen Rechner
besitzen standardmiRig schon keine serielle Anschlussmoglichkeit
mehr. Die interne Verarbeitung erwartet aber eine serielle Kompo-
nente. Was also tun? Auf deinem Arduino-Board befindet sich u.a.
ein eigener kleiner Mikrocontroller vom Typ ATMEGA8SU2-MU,
der von Hause aus so programmiert wurde, dass er als USB zu Seri-
ell Konverter fungiert. Das dltere Board mit der Bezeichnung Due-
milanove hatte noch einen FTDI-Chip, der in dhnlicher Weise
arbeitete. Der neue Chip weist folgende Vorteile gegentiber dem
ilteren aulf:

e Er hat kiirzere Latenzzeiten (die Zeit zwischen einer Aktion
und einer verzogerten Reaktion).

* Erist programmierbar.

* Er kann sich am System als USB-Tastatur anmelden.

Bei der Linux-Variante hast du iibrigens keine COM-Ports, sondern
findest einen Eintrag, der wie folgt aussehen kann:

/dev/ttyACMo

Dev ist die Abkiirzung fiir Device, was Gerdt bedeutet. Nihere
Informationen findest du im Internet.

Kannst du mir ein bisschen etwas dazu erldutern, was bei der Uber-
tragung des Sketch-Codes zum Arduino-Board so passiert? Oder ist
diese Frage verfritht?

Nein, Ardus, die Frage ist nicht verfritht und hat durchaus ihre
Berechtigung. Ich hatte dir ja schon ein wenig tiber die Entwick-
lungsumgebung, den Compiler und die Programmiersprachen C/

Das Starten der Entwicklungsumgebung

Abbildung 2-20

Was geschieht bei der Ubertragung
des Sketches zum Arduino-Board
im Hintergrund?

Abbildung 2-21 p
Ausschnitt aus einer Intel-HEX Datei

C++ berichtet. Manche Menschen nehmen einfach alles so hin,
doch du stellst Fragen und das ist gut so!

Wir kénnen den Ablauf in einzelne logische Schritte unterteilen:

Schritt 7

Es findet eine Uberpriifung des Sketch-Codes durch die Entwick-
lungsumgebung statt, um sicherzustellen, dass die C/C++ Syntax
korrekt ist.

Schritt 2

Danach wird der Code zum Compiler (avr-gcc) geschickt, der ihn
in eine fiir den Mikrocontroller lesbare Sprache, die Maschinen-
sprache, iibersetzt.

Schritt 3

Im Anschluss wird der Code mit einigen Arduino-Bibliotheken, die
grundlegende Funktionalititen bereitstellen, zusammengefiihrt
und als Ergebnis eine Intel-HEX Datei erzeugt. Es handelt sich
dabei um eine Textdatei, die binire Informationen fiir Mikrocont-
roller speichert. Hier zeige ich dir einen kurzen Ausschnitt aus dem
ersten Sketch, den ich dir eben als Appetizer gezeigt habe.

ErsterSketch.cpp.hex ¥ |

1 :100000000C9461000C94TEOOOCI4TEOODCS4TEDOSS
:100010000C947EOOOCS4TEOOOCS4TEQOODCS4TEOOES
:100020000C947EOOOCS4TEOOOCS4TEOODCS4TEOOSS
:100030000C947EOOOCS4TEOOOCI4TEOODCS4TEOO48
:100040000C949D000CO4TEOOOCO47TEOOOCS47EQOLS
:100050000C947EQ00OCO47EQOOCS4TEOOOCS47EQO28
:100060000C947EQ00OCO47TEQOOOO000002400270008
:100070002R0000000000250028002B0000000000DE
:1000800023002600290004040404040404040202DA

W =] M R

Dieses Format versteht der Mikrocontroller, denn es ist seine
Native Language (iibersetzt: Muttersprache).

Kapitel 2: Das Arduino-Board

Schritt 4

Der Bootloader tibertriagt die Intel-HEX Datei tiber USB in den
Flash-Speicher des Mikrocontroller-Boards. Der sogenannte
Upload-Prozess, also die Ubertragung zum Board, erfolgt mit dem
Programm avrdude. Es ist Bestandteil der Arduino-Installation und
befindet sich unter arduino-1.0-rc1\hardware\tools\avr\bin. Nihere
Informationen iiber die Parameter, die beim Aufruf mit iibergeben
werden, findest du im Internet bzw. auf meiner Internetseite.

Die Portkommunikation

Du hast die Kommunikation mit deinem Arduino-Board bisher
lediglich auf der Ebene der Programmierung kennen gelernt. Ein
Sketch wird von dir programmiert und tiber den USB-Port auf das
Board tibertragen. Dort beginnt der Sketch unmittelbar nach dem
erfolgreichen Load mit der Ausfithrung und der Verarbeitung von
Daten. Diese Daten miissen aber irgendwie in Form von Sensoren-
werten lber Schnittstellen in den Mikrocontroller gelangen und
spiter ggf. wieder nach drauflen geschickt werden, um z.B. einen
Motor anzusteuern. Das haben wir schon anfangs, im Rahmen der
Ausfithrungen zu analogen bzw. digitalen Ports, kurz angerissen.

Was sind Schnittstellen?

Der Ausdruck Schnittstelle ist jetzt schon so oft gefallen, dass es nun
an der Zeit ist, auch eine giiltige und plausible Definition fiir diesen
Begriff zu liefern. Eine Schnittstelle oder auch Interface genannt dient
zur Kommunikation eines in sich geschlossenen Systems mit der
AuRenwelt. Schauen wir uns dazu die folgende Grafik an.

Innenwelt | AuBenwelt

(Arduino)5

(Black-Box)

Daten

Schnittstellen

|

<« Abbildung 2-22
Schnittstellen sind die
Verbindungskanale zwischen zwei
benachbarten Welten.

Die Portkommunikation

Eine Schnittstelle hat sowohl einen Fuf in der Innen- als auch in der
AuRenwelt und hilt somit den Kontakt zwischen beide Sphiren auf-
recht. Zwischen ihr stromen Informationen in Form von Daten hin
und her. Eigentlich konnte dein Arduino auch in einer kleinen
schwarzen Kiste verpackt sein, denn du musst gar nicht wissen, wie
es auf dem Board aussieht und welche einzelnen Bauteile dort welche
Funktion haben. Ein solches Gebilde nennt man auch Black-Box.

Was ist eine Black-Box?

Eine Black-Box ist ein mehr oder weniger komplexes System mit
einem Innenleben, das durch seine Kapselung der Auflenwelt ver-
borgen bleibt bzw. bleiben soll. Die innere Struktur ist dabei nicht
weiter von Bedeutung. Als Nutzer hat uns einzig und alleine zu
interessieren, was die Black-Box zu leisten vermag und wie wir uns
ihrer bedienen konnen. Aus diesem Grund liegt jeder Black-Box
eine detaillierte Beschreibung ihrer Schnittstellen bei, die Auf-
schluss tiber die Funktionalititen liefert. Dein Arduino-Board kann
als eine solche Box angesehen werden und wir werden im Laufe
dieses Buches einiges iiber die Schnittstellen und ihre Besonderhei-
ten bzw. ihr Verhalten erfahren.

{ Na, dann wollen wir mal sehen, was passiert! j

Wenn man sich nicht tiber die Funktion einer Block-Box im Klaren
ist, kann der Schuss vielleicht nach hinten losgehen. Vielleicht
schlummert etwas Explosives im Verborgenen. Soweit lassen wir es
aber nicht kommen.

Was ist der Unterschied zwischen
Digital und Analog?

Jetzt greife ich schon ein wenig auf das vor, was ich spiter noch im
Kapitel tiber die Grundlagen der Elektronik erwihnen werde. Doch
wenn wir schon bei der Black-Box und der Portkommunikation
sind und unser Arduino ja, wie schon gezeigt, mit digitalen und
analogen Ports ausgestattet ist, dann ist das jetzt kein schlechter
Zeitpunkt, auf die Unterschiede einzugehen.

In der Digitaltechnik (lat. digitus bedeutet tibersetzt »Finger«) wird
mit zwei definierten Zustidnden gearbeitet:

* LOW-Pegel (wird mit L oder 0 abgekiirzt)

Kapitel 2: Das Arduino-Board

* HIGH-Pegel (wird mit H oder 1 abgekiirzt)
Hier siehst du ein Signal, das digitalen Charakter besitzt.
<« Abbildung 2-23

Digitaler Signalverlauf
(Rechtecksignal)

Diesen beiden logischen Zustinden kénnen Spannungswerte zuge-
wiesen werden. In unserem Fall haben wir es bei den digitalen Sig-
nalen mit der +5V Logik zu tun. Was bedeutet das? In der
Digitaltechnik werden Spannungspegel biniren Zustinden zugeord-
net. Der Spannungswert 0V entspricht in der Regel dem bindren
LOW-Wert (niedriger Pegel) und +5V dem bindren HIGH-Wert
(hoher Pegel). Da es aber aufgrund unterschiedlicher Bauteiltoleran-
zen zu kleineres Abweichungen hinsichtlich der Widerstinde kom-
men kann, ist es notwendig, einen Toleranzbereich fiir die logischen
Zustinde zu definieren. Wiirden wir statt +5V nur +4.5V messen,
wire das streng gesehen ein LOW-Pegel. Aus diesem Grund wurden
Toleranzbereiche mit den folgenden Werten geschaffen:

u <« Abbildung 2-24
v Toleranzbereiche

'y

— 50V
High-Pegel

% 20V

} unbestimmt

+ 0.8V

Low-Pegel

+— 0.0V

Die Portkommunikation

Abbildung 2-25 »
Analoger Signalverlauf
(Sinussignal)

Im Gegensatz dazu haben analoge Signale eine ganz andere Quali-
tit. Sie konnen nicht nur im zeitlichen Verlauf zwischen den zwei
Pegeln HIGH bzw. LOW unterscheiden, sondern haben die Eigen-
schaft, stufenlos zwischen einem minimalen und einem maximalen
Wert zu pendeln.

- i 0. 00my

In unseren Beispielen werden wir uns beiden Signalarten widmen.

Der Eingang (INPUT)

Ein Informationsfluss kann in beide Richtungen verlaufen und wird
somit zu einem Informationsaustausch. Daher verfiigt das Arduino-
Board tiber Ports, die sich unterschiedlich verhalten. Natiirlich
miissen wir hier wieder zwischen digital und analog unterscheiden.
Fangen wir mit den Eingéngen an.

Digitale Eingdange

Die digitalen Eingéinge des Bords werden von Sensoren gespeist, die
digitalen Charakter aufweisen. Der einfachste digitale Sensor ist
eigentlich der Schalter. Er ist entweder offen und liefert kein Signal
(LOW-Pegel) oder er ist geschlossen und liefert ein Signal (HIGH-
Pegel). Ebenso kannst du dir auch einen Transistor vorstellen, bei
dem es sich um einen elektronischen Schalter handelt. Er liefert ver-
gleichbare Signalpegel an einen digitalen Eingang. Wie unter-
schiedliche Sensorschaltungen funktionieren, wirst du in Kiirze
erfahren.

Kapitel 2: Das Arduino-Board

Analoge Eingédnge

Die analogen Eingiinge des Boards konnen ebenfalls von Sensoren
gespeist werden, die sowohl analogen, als auch digitalen Charakter
besitzen. Stelle dir einen Temperatursensor vor, der in Abhingig-
keit von der Umgebungstemperatur seinen Widerstand dndert und
einen mehr oder weniger hohen Spannungspegel an den Eingang
liefert. Dieser empfangene Wert kann zu weiteren Berechnungen
herangezogen werden, um darauf basierend auf die wahre Tempe-
ratur schliefen zu kénnen. Ein Spannungswert wird in einen ent-
sprechenden Temperaturwert {bertragen und moglicherweise
entsprechend angezeigt oder er steuert vielleicht einen Ventilator,
der fiir eine bessere Kithlung sorgt.

Der Ausgang (OUTPUT)

Was rein kommt, muss auch irgendwie wieder raus. Das liegt in der
Natur der Dinge. Das Arduino-Board ist natiirlich ebenfalls mit
einer Anzahl von Ausgéngen versehen, mit deren Hilfe Steuerungen
oder Anzeigen erfolgen. Der Gegenpart zu einem Sensor ist ein
Aktor, wie z.B. ein Motor oder ein Relais.

Digitale Ausgange

Die digitalen Ausginge kannst du z.B. dazu verwenden, optische
Signalgeber, die interne Zustinde widerspiegeln, anzuschlieRen.
Das sind in der Regel Leuchtdioden, auch LEDs (Light Emitting
Diode) genannt, die mit einen entsprechenden Vorwiderstand ver-
sehen an den betreffenden Stellen angeklemmt werden. Natiirlich
kann ein digitaler Ausgang auch einen Transistor regeln, der seiner-
seits eine groflere Last steuert, als es der Arduino-Port in der Lage
wire zu tun. Diese Zusammenhinge werden wir ebenfalls noch
niher erldutern.

Analoge Ausgdnge

Mit den analogen Ausgingen ist das bei deinem Arduino so eine
Sache. Auf diesen Umstand bist du ja selbst schon sehr schnell
gestoflen. Derartig dedizierte, also nur fiir diesen Zweck ausgelegte
Ports gibt es nicht. Einige digitale Ports iibernehmen quasi die
Funktion und simulieren ein analoges Signal, das tiber die Pulswei-
tenmodulation generiert wird. Auch zu diesem Thema wirst du
noch einiges erfahren, wenn wir einen analogen Ausgang program-
mieren.

Die Portkommunikation

@

Abbildung 2-26 »
Der Befehl »pinMode«

Befehl und Gehorsam

Wenn es fiir einen Computer keine Software geben wiirde, dann
hittest du zwar ein ganz schones Stiick Hardware herumstehen, die
jedoch keinerlei Fihigkeiten besifle. Erst intelligente Software
haucht der Hardware Leben ein und lisst sie die ihr zugedachten
Aufgaben erfiillen. Diese miissen wir unserem Arduino-Mikrocon-
troller aber in irgendeiner Form mitteilen.

Du tust, was ich dir sage

Die Kommunikation erfolgt mittels sogenannter Befehle. Bei einem
Befehl handelt es sich um eine Anweisung an den Mikrocontroller,
den dieser aufgrund seiner Spezifikation versteht und in entspre-
chende Aktionen umsetzt. Wir wollen uns einfach mal einen Befehl
anschauen, damit du siehst, was ich meine. Der Sinn ist erst einmal
nicht von Bedeutung;:

pinMode(13, OUTPUT);

Wenn du diesen Befehl in die Entwicklungsumgebung eintippst,
dann erkennst Du, dass das Syntaxhighlighting in Aktion tritt und
erkannte Schliisselworter farblich hervorgehoben werden, zu denen
auch die Befehle gehoren. Dadurch wird die Ubersichtlichkeit ver-
bessert und du siehst sofort, wenn du z.B. einen Befehl falsch
geschrieben hast.

Schreibe folgende Zeile:
pinModes(13, OUTPUT);

Du wirst sehen, dass der vermeintliche Befehl nicht als solcher
erkannt wird. Er wird jetzt in der Farbe schwarz angezeigt, was dar-
auf hindeutet, dass etwas nicht stimmt. Der Befehl pinMode bedarf
aber beziiglich seiner Struktur noch weiterer Erkldarung. Du siehst
hinter ihm eine Anfiigung in runden Klammern. Dabei handelt es
sich um die Argumente, die dem Befehl beim Aufruf mit tibergeben
wurden. Es ist wie bei einer Tasche, in die du Dinge packst, die am
Zielort benotigt werden.

Befehl Pin Modus

((13, OUTPUT) ;)

@

Kapitel 2: Das Arduino-Board

Argumente sind Zusatzinformationen, die ein Befehl zur Abarbei-
tung benotigt. Was Sie in diesem Fall genau bewirken, wirst du in
Kiirze noch sehen. Die Argumente bei diesem Befehl geben an, dass
der Port 13 als Output, also Ausgang, arbeiten soll. Etwas Entschei-
dendes haben wir aber noch vergessen. Am Ende eines jeden Befehls
findet sich ein Semikolon. Das ist fir den Compiler der Hinweis, dass
der Befehl jetzt endet und ggf. ein neuer Befehl zu erwarten ist. Nicht
jeder Befehl benotigt iibrigens Argumente, wobei das runde Klam-
mernpaar aber trotzdem erforderlich ist. Es bleibt dann leer. Bitte
beachte aufjeden Fall die Klein- bzw. Grofschreibung. Genau wie in
den Programmiersprachen C/C++ erfolgt eine Unterscheidung hin-
sichtlich der Schreibweise. Solche Sprachen werden als Case-Sensi-
tive, bezeichnet. Daher ist pinMode ist nicht gleich pinmode!

Was passiert, wenn ein Befehl
unklar formuliert wurde?

Ein Befehl, den du an den Mikrocontroller schickst, wird auf jeden
Fall ausgefiihrt, es sei denn, er wurde falsch geschrieben. Du musst
dich mit dem Wortschatz des Mikrocontrollers bzw. der Entwick-
lungsumgebung, die ja mit C++ verwandt ist, vertraut machen und
versuchen, ihn wie deine Muttersprache zu beherrschen. Das geht
natiirlich nicht von heute auf morgen und braucht seine Zeit. Es ist
wie bei einer Fremdsprache. Je fter du dich in dieser Sprache mit-
teilst und sie anwendest, desto schneller beherrscht du sie. Wenn
du z.B. deiner auslindischen Bekanntschaft eine E-Mail schreibst
und du dich vielleicht bei dem einen oder anderen Wort ver-
schreibst, dann ist der Empfinger moglicherweise doch noch
imstande, das Wort und den Sinn zu verstehen. Bei einem Compu-
ter ist das anders. Er kennt in dieser Hinsicht kein Pardon. Entwe-
der du driickst dich klar und deutlich aus und verwendest die
exakte Schreibweise, oder er lehnt die Anweisung einfach ab und
streikt. Woher soll er auch wissen, was du meinst? Diese Intelligenz
konnen wir ihm nicht unterstellen. Wird ein Befehl falsch geschrie-
ben oder nicht auf die Klein- bzw. Grof$schreibung geachtet, dann
gibt es einen Compilerfehler. Zum Gliick teilt uns der Compiler in
den meisten Fillen mit, worum es sich beim erkannten Fehler han-
delt, und gibt auch die Stelle und den Grund an.

Er wird zwischen drei Fehlertypen unterschieden:

* syntaktische Fehler
* logische Fehler
* Laufzeitfehler

Befehl und Gehorsam

Der syntaktische Fehler

Du kannst froh sein, wenn es sich um einen syntaktischen Fehler
handelt. Er wird vom Compiler erkannt und ist einfach zu lokalisie-
ren. Schaue dir folgende Fehlermeldung genauer an.

Ich habe den Befehl pinMode komplett mit Kleinbuchstaben
geschrieben. Das ist natiirlich falsch und der Compiler bemerkt
dies auch. Dementsprechend teilt er uns mit, dass er pinmode in
diesem Bereich nicht kennt.

Der logische Fehler

Logische Fehler sind dufRerst unangenehm, denn dabei handelt es
sich um Fehler, die im Verborgenen ihr Unwesen treiben. Sie fith-
ren zu keiner Fehlermeldung, denn mit den Anweisungen ist alles
ok. Und dennoch stimmt etwas nicht. Der programmierte Sketch
will nicht so funktionieren, wie du dir das vorgestellt hast. Es muss
an etwas anderem liegen. Der Compiler ist nicht schuld an der
Misere. Die Ursache kann z.B. eine falsche Formel sein oder ein fal-
scher Wert, den du an einer Stelle definiert hast. Oder ein erforder-
licher Ausgangsport wurde als Eingang definiert. Die Fehlerquellen
sind breit gefichert. Du bekommst das, was du bestellt hast, und
das ist nicht immer das, was du eigentlich wolltest.

Kapitel 2: Das Arduino-Board

Wie man solchen Fehlern dennoch auf die Schliche kommt, wer-
den wir sehen, wenn wir zum Thema Debugging kommen. Dabei
handelt es sich um eine Methode, mit der du Fehler im Programm
ausfindig machen kannst.

Laufzeitfehler

Bei einem Laufzeitfehler handelt es sich um ein Problem, das erst
zur Laufzeit des Sketches auftritt. Syntaktisch ist auch hier alles in
Ordnung und der Compiler hat alles fiir gut befunden, doch
irgendwo tickt eine Zeitbombe, die nur darauf wartet, hochzuge-
hen. Das kann eine Zeit lang gut gehen und du denkst, dass alles
zur Zufriedenheit liuft. Und dann eines Tages erwischt es dich und
du fluchst: »Das hat doch bisher immer funktioniert. Warum jetzt
nicht mehr? So ein Sch...«

Hier ein Beispiel aus der Windowswelt: Angenommen, du hast
deine MP3-Sammlung auf einer externen Platte mit der Bezeich-
nung D: abgelegt. Ein Musikprogramm greift regelmiRig darauf zu
und spielt die dort gespeicherten Lieder ab. Alles liuft wunderbar.
Aus irgendeinem Grund ist die Platte nicht mehr verfiigbar, sei es
weil sie kaputtgegangen ist oder das USB-Kabel aus der Buchse
gerutscht ist. Jedenfalls versucht das Programm weiterhin, auf die
Musikdateien zuzugreifen, doch der Programmierer war nachlissig
und hat den Aufruf auf das Laufwerk nicht mit einer Fehlerbehand-
lung versehen. Der gestartete Zugriff ist nicht mehr moglich und
das Programm bricht sang- und klanglos ab. Das scheint vielleicht
an den Haaren herbeigezogen, doch so manches ein Programm rea-
giert einfach mit Abbruch, anstatt eine Fehlermeldung zu erzeugen.
Solche unkontrollierten Abbriiche konnen ganz schén nerven.

Das konnte wichtig fiir dich sein
Hier ein paar Begriffe fiir die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

Arduino
Freeduino

Arduino Projects

Befehl und Gehorsam

@

Die Elektronik

Scope

Wir wollen in diesem Kapitel einen geeigneten Einstieg in die Elek-
tronik finden, damit du in den Arduino-Projekten hinsichtlich der
zusitzlich verwendeten elektronischen Bauteile nicht véllig im
Regen stehst. Die Themen werden folgende sein:

* Grundlagen zur Elektronik

* Was sind Strom, Spannung und Widerstand?

* Das Ohmsche Gesetz

* Der geschlossene Stromkreis

* Was sind passive bzw. aktive Bauelemente?

* Die wichtigsten elektrischen und elektronischen Bauteile

* Der integrierte Schaltkreis

Was ist Elektronik eigentlich?

Wir horen heutzutage des Ofteren die AuRerung, dass unsere hoch-
technisierte Welt erst durch die Elektronik zu dem wurde, was sie
jetzt ist. Sie ist in allen denkbaren und undenkbaren Lebensberei-
chen vertreten. Doch was kénnen wir uns unter dem Begriff Elek-
tronik vorstellen? In Elektronik ist ja irgendwie das Wort Elektronen
enthalten, auf die wir gleich noch zu sprechen kommen. Diese
Elektronen wandern durch einen Leiter, z.B. einen Kupferdraht,
und bilden einen elektrischen Strom. Diesen Strom gilt es in
bestimmte Bahnen zu lenken, an- oder abzuschalten oder in ande-
rer Weise unter unserer Kontrolle zu bringen. Gelingt uns dies,
dann lassen sich hiermit fantastische Dinge bewerkstelligen. Wir

Kapitel

@

Abbildung 3-1

Elektronen auf dem Weg durch

einen Kupferleiter

haben Macht tiber etwas, das man mit bloRem Auge nicht sehen
kann und nur an den entsprechenden Auswirkungen zu erkennen
ist. Wir berechnen die unterschiedlichsten Prozesse und steuern
oder regeln sie dann nach unserem Willen. Auf sehr kleinem Raum
werden die Elektronen in gewiinschte Bahnen gelenkt und mal
hierhin und mal dorthin geschickt. Das ist vereinfacht gesagt Elek-
tronik. Wenn du schon einiges iiber die Grundlagen der Elektronik
weifdt, kannst du dieses Kapitel auch getrost iiberspringen.

Der Elektronenfluss

Jedes Kind lernt in der Schule im Fach Physik — wenn es denn noch
unterrichtet wird — etwas tiber die grundlegenden Zusammenhinge
von Spannung, Strom und Widerstand. Im Wesentlichen geht es
dabei um kleinste Teilchen, auch Elementarteilchen genannt, die
sich mit hoher Geschwindigkeit in einem Leiter bewegen. Das ist
die Welt der Elektronen. Sie besitzen viele unterschiedliche Eigen-
schaften, von denen ich hier einige nennen méchte:

* negative Ladung (-1,602176 *10° C)

* nahezu masselos (9,109382 * 103 kg)

¢ stabil (Lebensdauer > 10%* Jahre)
Ich habe weder Kosten noch Miithen gescheut und mit einer Spezi-
alkamera einmal eine Aufnahme von einem stromdurchflossenen
Leiter gemacht, um diese kleinsten Teilchen fiir dich sichtbar zu

machen. Sie bewegen sich gemeinsam in eine Richtung und sind fur
den Stromfluss verantwortlich.

t:‘q' '

Wenn ich gerade von einer negativen Ladung des Elektrons gespro-
chen habe, dann wirst du sicherlich bemerken, dass der Wert
-1,602176 x 10" sehr klein ist. Die Maf8einheit C bedeutet Cou-
lomb und steht fir die Ladung Q, die in einer festgelegten Zeit
durch einen Leiter mit einem bestimmten Querschnitt fliefit. Die
Formel zur Berechnung der Ladung Q lautet folgendermafen:

Q=1-t

Kapitel 3: Die Elektronik

Es handelt sich um das Produkt aus Stromstirke I in Ampere und
der Zeit t in Sekunden.

In dieser hochauflosenden Aufnahme der Wanderung der Elektro-
nen durch einen Kupferleiter habe ich einen Abschnitt markiert,
den die Elektronen in einer Sekunde zuriicklegen. Wir kénnen fest-
halten, dass eine Ladung von einem Coulomb transportiert wurde,
wenn in einer Sekunde ein Strom von einem Ampere geflossen ist.
Jetzt habe ich schon so oft den Begriff Strom verwendet, dass es
Zeit langsam wird, diese physikalische Grofle ein wenig niher zu
beleuchten.

Der Strom

Wie du in der letzten Formel ersehen kannst, stehen Ladung und
Strom in einer gewissen Beziehung zueinander. Wir kénnen es so
formulieren, dass Strom die Bewegung elektrischer Ladung bedeu-
tet. Je mehr Ladung pro Zeiteinheit bewegt wird, desto grofer ist
der elektrische Strom, der durch den Formelbuchstaben I gekenn-
zeichnet wird:

Die folgende Aufnahme zeigt uns einen niedrigen Elektronenfluss. Es
sind nur wenige Ladungstriger pro Zeiteinheit im Leiter unterwegs.

<« Abbildung 3-2

auf dem Weg durch einen Kupfer-
leiter in einem Zeitraum von 1
Sekunde

<« Abbildung 3-3

Niedriger Elektronenfluss — wenige
Elektronen bilden einen niedrigen
elektrischen Strom.

Was ist Elektronik eigentlich?

()

Abbildung 3-4 »

Hoher Elektronenfluss — viele
Elektronen bilden einen hohen
elektrischen Strom.

Abbildung 3-5 p
Elektronen bewegen sich aufgrund
eines Potentialunterschiedes.

Im Gegensatz ist in der nichsten Abbildung eine Aufnahme zu
sehen, bei der viele Ladungstriger pro Zeiteinheit durch den Leiter
sausen und einen hoheren Strom bilden.

Die Stromstirke I wird in der MaReinheit Ampere (A) gemessen,
wobei 1 Ampere fiir Mikrocontroller schon eine sehr hohe Stirke
darstellt. Die maximale Belastung eines digitalen Ausgangs deines
Arduino-Boards betrigt ja 40 mA, was Milliampere bedeutet. Ein
Milliampere ist der tausendste Teil eines Amperes (1000 mA = 1 A).

Die Spannung

Wenn wir uns die Aufnahmen der rasenden Elektronen in einem
Leiter anschauen, dann haben wir eines bisher aufRer Acht gelassen.
In unserer Welt gibt es fiir jedes Tun einen Grund oder einen ent-
sprechenden Antrieb. Es gibt immer etwas, das uns zu unseren
Handlungen antreibt oder motiviert. Bei den Elektronen ist das
nicht anders. Sie streben alle wie die Lemminge in eine Richtung
auf den Abgrund zu. Es muss also eine treibende Kraft geben, die
das bewirkt. Es wird oft der Vergleich mit Wasser angestellt, das
sich auf einem hoheren Niveau befindet und von oben nach unten
flief3t. Diese Analogie ist wirklich treffend und deswegen verwende
ich sie auch hier.

Kapitel 3: Die Elektronik

Wenn ich hier von einem Potentialunterschied spreche, dann han-
delt es sich in Wahrheit um einen Ladungsunterschied. Elektrische
Ladungen sind immer bestrebt, Ladungsunterschiede auszuglei-
chen. Nehmen wir als Beispiel eine geladene Batterie. Sie hat zwei
Anschliisse bzw. Pole, zwischen denen ein Ladungsunterschied
besteht. Der eine Pol hat einen Ladungsiiberschuss, der andere
einen Ladungsmangel. Wenn zwischen den beiden Polen keine
elektrische Verbindung besteht, kann kein Ladungsausgleich statt-
finden und es flieRt demnach auch kein Strom. Die elektrische
Spannung U wird in Volt (V) gemessen und ist ein MaR fir den
Potentialunterschied.

Uor scleis <5

Die Unterbrechung zwischen den beiden Potentialen verhindert
einen Ausgleich und es fliet kein Strom.

Erst wenn wieder eine Verbindung hergestellt wurde, kénnen die
Ladungstriger einen Ausgleich herbeifithren und es flieft ein
Strom.

Seite befinden?

Wie lange flieRt denn eigentlich der Strom? Bis auf der linken Seite o
keine Elektronen mehr vorhanden sind und sich alle auf der rechten “
/ ;

Der Strom fliefit so lange, bis ein Ladungsgleichgewicht hergestellt
wurde, also sich an beiden Polen gleich viele Ladungstriger befin-
den. Wenn alle Elektronen zum rechten Pol wandern wiirden, dann
entstiinde ja wieder ein Ungleichgewicht und der Vorgang wiirde in

<« Abbildung 3-6
Ein Ausgleich des Ladungs-

unterschiedes ist aufgrund der
Unterbrechung nicht mdglich.

<« Abbildung 3-7
Ein Ausgleich des Ladungs-
unterschiedes findet statt.

Was ist Elektronik eigentlich?

Abbildung 3-8 »

Der Gleichstrom im zeitlichen

Verlauf

umgekehrter Richtung erneut in Gang gesetzt werden. Auflerdem
lief3e sich nach einem Ladungsausgleich eine erneute Ladungstren-
nung nur mit einer Energiezufuhr erzielen. Diese ist aber nicht vor-
handen und deswegen ist eine normale Batterie nach einem
Ladungsausgleich auch leer.

Ich habe schon des Ofteren gehort, dass es unterschiedliche Strom-
formen gibt. Da gibt es Gleichstrom- und Wechselstrom. Kannst du
mir das bitte ein wenig erliutern?

Klar, Ardus! Dein Arduino-Board wird mit Gleichstrom betrieben.
Diese Stromform zeichnet sich dadurch aus, dass sich Stirke und
Richtung tiber die Zeit gesehen nicht dndern. Gleichstrom wird in
Fachkreisen auch mit den Buchstaben DC fiir Direct Current
bezeichnet. Im folgenden Diagramm siehst du den Gleichstrom im
zeitlichen Verlauf. Wechselstrom wird auch mit AC (Alternating
Current) abgekiirzt.

+

Auf der horizontalen X-Achse ist die Zeit t abgetragen und die verti-
kale Y-Achse zeigt die Spannung U an. Wir sehen, dass sich der
Spannungswert iiber die Zeit hin nicht dndert. Werfen wir nun im
Gegensatz dazu einen Blick auf einen Wechselstrom, der z.B. durch
eine Sinuskurve reprisentiert wird.

Hier dndert sich der Wert der Spannung zu jedem Zeitpunkt und
pendelt zwischen einem positiven bzw. negativen Grenzwert. In
den Diagrammen habe ich fiir die Spannung das Formelzeichen U
verwendet. Der elektrische Strom und die Spannung stehen in
einem bestimmten Verhiltnis zueinander, was uns zum nichsten
Thema bringt.

Kapitel 3: Die Elektronik

+ <=

Der allgemeine Widerstand

Den Elektronen, die sich durch einen Leiter bewegen, fillt es mal
mehr oder weniger leicht, diesen zu durchqueren. Sie missen sich
niamlich gegen sehr unterschiedliche vorherrschende Widerstdnde
zur Wehr setzten. Es gibt diverse Kategorien, die Aufschluss iiber
die Leitfdhigkeit eines Stoffes geben.

* Isolatoren (sehr hoher Widerstand, z.B. Keramik)

¢ schlechte Leiter (hoher Widerstand, z.B. Glas)

* gute Leiter (geringer Widerstand, z.B. Kupfer)

* sehr gute Leiter (Supraleitung bei sehr niedrigen Temperatu-
ren, bei der der elektrische Widerstand auf 0 sinkt)

* Halbleiter (Widerstand kann gesteuert werden, z.B. Silizium o.

Germanium)

Da habe ich schon zwei entscheidende elektrische GrofRen ins Spiel
gebracht, die in einer gewissen Beziehung zueinander stehen:
Widerstand R und Leitfihigkeit G. Je hoher der Widerstand, desto
geringer der Leitwert und je geringer der Widerstand, desto hoher
der Leitwert. Mathematisch gesehen besteht folgender Zusammen-
hang:

R_1
B

Der Widerstand ist der Kehrwert des Leitwertes. Ein erhohter
Widerstand ist mit einem Engpass vergleichbar, den die Elektronen

<« Abbildung 3-9

Der Wechselstrom im zeitlichen

Verlauf

Was ist Elektronik eigentlich?

Abbildung 3-10
Ein Widerstand, der den
Elektronenfluss bremst

iiberwinden missen. Dadurch wird der Stromfluss gebremst und
im Endeffekt geringer. Stell” dir dazu einmal vor, du ldufst tiber eine
glatte Fliche. Das Gehen bereitet dir in diesem Fall keine grofSen
Schwierigkeiten. Jetzt versuche bei gleichem Kraftaufwand durch
hohen Sand zu gehen. Das ist recht mithsam. Du gibst Energie in
Form von Wirme ab und deine Geschwindigkeit sinkt. Ahnlichen
Schwierigkeiten sehen sich die Elektronen gegeniiber, wenn sie
anstatt durch Kupfer plétzlich z.B. durch Glas miissen.

Dieser zu iiberwindende Widerstand hat natiirlich seine Auswir-
kungen. Aufgrund der verstirkten Reibung der Elektronen, z.B. an
der AuRenwand oder untereinander, entsteht Reibungsenergie in
Form von Wirme, die der Widerstand nach auflen abgibt. In den
meisten elektronischen Schaltungen werden spezielle Bauteile ver-
wendet, die den Stromfluss kiinstlich verringern, wobei der Wider-
standswert R in Ohm (Q) angegeben wird. Es handelt sich dabei
um extra angefertigte Widerstinde (z.B. Kohleschicht- oder Metall-
schichtwiderstinde) mit unterschiedlichen Werten, die mit einer
Farbkodierung versehen sind, die auf den jeweiligen Widerstands-
wert schlieflen ldsst. Weitere Informationen erhiltst du in i dem
entsprechenden Kapitel, das dem Bauteil Widerstand gewidmet ist.
Jetzt haben wir aber erst einmal alle elektrischen Grofen erlautert,
die fiir das Verstindnis eines sehr wichtigen Gesetzes erforderlich
sind.

Das Ohmsche Gesetz
Das Ohmsche Gesetz beschreibt den Zusammenhang von Spannung
U und Strom I in einem stromdurchflossenen Leiter bei konstanter
Temperatur. Die Formel lautet wie folgt:
- U

~
Der Widerstand ist der Quotient aus Spannung und Strom und wird
mit dem griechischen Buchstaben Omega Q gekennzeichnet. Wir

Kapitel 3: Die Elektronik

werden dieses Gesetz erstmals bei der Berechnung eines Vorwider-
standes fiir eine Leuchtdiode, die ohne diesen nicht betrieben wer-
den kann, praktisch anwenden. Mehr hierzu erfihrst du dann im
entsprechenden Kapitel.

Der geschlossene Stromkreis

Du weifSt jetzt, dass ein Stromfluss nur dann zustande kommen
kann, wenn der Kreis geschlossen und eine treibende Kraft am
Werk ist. Das ist bei Elektronen ebenso der Fall wie z.B. bei Was-
sermolekiilen. Werfen wir einen Blick auf einen einfachen Schalt-
plan.

Gleichstromkreis mit
Batterie und Widerstand

Auf der linken Seite des Schaltplanes befindet sich eine Gleichspan-
nungsquelle in Form einer Batterie, an deren beiden Polen + bzw. —
ein Widerstand angeschlossen ist. Der Stromkreis ist damit
geschlossen, und es kann — sofern die Batterie geladen ist — ein
Strom I flieRen. Aufgrund dieses Stromflusses fillt iiber dem
Widerstand R eine bestimmte Spannung U ab. Wie U, R und I
untereinander in Beziehung stehen, werden wir jetzt sehen.

Genau diese Groflen sind Bestandteil des Ohmschen Gesetzes. Ich
denke, dass wir es hier anwenden konnen. Richtig?

Das ist korrekt, Ardus! Wir wollen eine kleine Ubungsaufgabe
durchrechnen, wobei folgende Werte gegeben sind:

* Die Spannung U der Batterie betrigt 9V.

* Der Widerstand R hat einen Wert von 1.000 Q (1.000 Q =1 KQ).
Das K steht fiir Kilo und bedeutet 1.000.

Frage: Wie groR ist der Strom I, der durch den Widerstand und
natiirlich auch durch die Batterie flieRt?

Was ist Elektronik eigentlich?

<« Abbildung 3-11
Ein einfacher geschlossener Strom-
kreis mit Batterie und Widerstand

Abbildung 3-12 »

Messen der GroBen Strom bzw.

Spannung

Wenn wir die Formel

R_U
T

nach I umstellen, dann erhalten wir folgendes Ergebnis:

I_U
"R

Wenn wir nun unsere bekannten Werte einsetzen, sieht unsere
Berechnung folgendermaRen aus:

U el

R 10000

= =0,0094=9m4

Es fliefSt demnach ein Strom I von 9mA durch die Schaltung. Wenn
du eine solche Schaltung aufgebaut hast, kannst du mit einem Viel-
fachmessgerdt — auch Multimeter genannt — diese Werte nachmes-
sen. Dabei ist jedoch etwas zu beachten: Eine zu messende
Spannung U wird immer parallel zum entsprechenden Bauteil
ermittelt und der Strom I immer in Reihe mit dem Bauteil.

Gleichstromkreis mit
Volt—= bzw. Amperemeter

das Amperemeter. Wird dadurch die Messung der Stromstirke nicht
verfilscht?

{ Jeder Leiter hat doch einen gewissen Widerstand, so auch bestimmt

Hey super, Ardus! Das stimmt und deswegen haben Messgerite,
die auf »Stromstdrke messen« eingestellt wurden, einen sehr gerin-
gen Innenwiderstand. Auf diese Weise wird das Messergebnis fast
tiberhaupt nicht beeinflusst. Ich habe in den gezeigten Schaltungen
fiir die Spannungsquelle das Batterie-Symbol verwendet. Es konnen
aber in diversen Schaltplidnen auch andere Varianten vorkommen.

Kapitel 3: Die Elektronik

. O G&—

T o— 1

Das linke Symbol stellt eine Batterie dar. Die beiden mittleren Sym-
bole werden sowohl bei Batterien als auch bei Netzteilen genutzt,
und bei den beiden rechten Symbolen wird fiir den Minuspol das
Massezeichen verwendet. Es kommt meistens dann zum Einsatz,
wenn bei komplexeren Schaltplinen die Minusleitung nicht durch
den ganzen Plan gezogen werden soll. Wir kommen spiter in die-
sem Kapitel noch zu den elektronischen Grundschaltungen, bei
denen ich dann noch ein wenig genauer auf bestimmte Details ein-
gehen werde. Ich glaube, dass es jetzt an der Zeit ist, dich ein wenig
zu verwirren. Aber keine Angst, ich werde das Ritsel noch in die-
sem Abschnitt auflosen.

Achtung
In der Elektronik sind wir mit zwei entgegengesetzte Stromrich-
tungen konfrontiert. Du solltest deshalb wissen, worin der
Unterschied besteht.

Also, so einen Quatsch habe ich ja schon lange nicht mehr gehort!
Konnen die Elektronen sich jetzt ganz nach Belieben aussuchen, in
welche Richtung sie durch den Leiter flitzen mochten. Das grenzt ja
an Anarchie.

Also, Ardus, jetzt bleib mal ganz locker, denn es gibt in Wirklich-
keit natiirlich nur eine Stromrichtung. Die Ursache dieses Durchei-
nanders, wie ich es mal nennen mochte, war die Unkenntnis. Bevor
sich die Wissenschaftler ein genaueres Bild tiber die Theorie der
Elektronenbewegung machen konnten, hat man einfach mal so aus
der Hiifte heraus definiert, dass am Pluspol ein Elektronentiber-
schuss und am Minuspol ein Elektronenmangel vorherrscht. Aus
und fertig. Aufgrund dieser Festlegung miissen die Elektronen vom
Plus- zum Minuspol wandern, wenn zwischen den beiden Polen
eine leitende Verbindung hergestellt wird. Spitere Forschungen
brachten es dann ans Tageslicht: Die Elektronen haben sich dem
widersetzt und flieRen in genau der entgegengesetzten Richtung.
Da sich aber eine schlechte Angewohnheit nicht so schnell ablegen
lasst und alle bis dato mit der falschen Richtung gearbeitet hatten,
gab man dem Kind einen Namen. Die alte und falsche Richtung

<« Abbildung 3-13

Unterschiedliche Spannungs-

quellensymbole

Was ist Elektronik eigentlich?

nannte man Technische Stromrichtung. Der neuen, jetzt richtigen
Richtung gab man den Namen Physikalische Stromrichtung. Sie gibt
die eigentliche Elektronenbewegung an.

Technische Stromrichtung Physikalische Stromrichtun:
——————————— e

Elektronenbewegung

+|g-

T

Tja, die Historie... Sie ldsst sich nicht so einfach wegwischen, und
wir miissen einfach damit leben. Aber du kennst nun den Unter-
schied und kannst in Zukunft auch mitreden.

Bauteile

Das erste grundlegende elektronische Bauteil, mit dem ich dich in
Beriithrung gebracht habe, war der Widerstand. Es handelt sich um
den einfachsten Vertreter von Bauteilen in der Elektronik. Es gibt
aber noch eine uniiberschaubare Menge an weiteren Teilen, die
aufzuzihlen ganze Binde fiillen wiirde. Wir beschrinken uns in
diesem Kapitel auf die Basiselemente, die in zwei Kategorien unter-
teilt werden konnen: passive und aktive Bauelemente.

Der Unterschied zwischen passiven
und aktiven Bauelementen

Passive Bauelemente

In der Regel ist die Bezeichnung passive Bauelemente ihre Bezeich-
nung recht passend, da sie in keinster Weise eine Verstarkungswir-
kung auf das anliegende Signal haben. In diese Kategorie fallen z.B.
folgende Elemente:

e Widerstinde
¢ Kondensatoren

* Induktivititen (Spulen)

Kapitel 3: Die Elektronik

Aktive Bauelemente

Die aktiven Bauelemente konnen das anliegende Signal in einer
bestimmten Art und Weise beeinflussen, so dass es zu einer Ver-
stirkung kommen kann. Hierzu gehéren z.B. die folgenden Ele-
mente:

* Transistoren
* Thyristoren
* Optokoppler

Der Festwiderstand

Einen Widerstand, dessen Wert von aufen nicht zu indern ist —
sehen wir einmal von der Temperatur ab, die zu einer Anderung
fihren wiirde — nennt man genau genommen Festwiderstand.
Umgangssprachlich nennen wir ihn jedoch einfach nur Widerstand.
Fir die unterschiedlichsten Einsatzgebiete werden Widerstinde
mit verschiedenen Werten benétigt. Um diese zu unterscheiden,
hat man sich fiir ein Farbkodiersystem entschieden, da aufgrund
der kleinen Bauteile wenig Platz fiir eine ausfithrliche Beschriftung
vorhanden ist. AuRerdem gibt es verschiedene Groflen, die einen
ungefihren Riickschluss auf die maximal zulissige Verlustleistung
geben.

Am Anfang scheint das System etwas verwirrend zu sein und es ist
auch nicht ganz klar, von welcher Seite wir die einzelnen Farbringe
lesen sollen. Dazu méchte ich im Folgenden nun ein paar Hilfestel-
lungen liefern. Da aufgrund von Fertigungstoleranzen die Wider-

<« Abbildung 3-14
Widerstandssammelsurium

Bauteile

(«)

Abbildung 3-15 »

Ermittlung des Widerstandwertes

anhand der Farbkodierung

Tabelle 3-1
Farbkodierungstabelle fiir
Widerstande

standswerte vom angegebenen Wert mehr oder weniger abweichen
konnen, wird zusitzlich zu den Ringen, die den Wert angeben,
auch noch ein Toleranzring angefiigt, der sich beim Ermitteln des
Widerstandswertes auf der rechten Seite befinden muss. In den
meisten Fillen ist dies ein silberner oder goldener Ring. Die restli-
chen drei Farbringe zur Linken geben Aufschluss tiber den Wider-
standswert. Dann wollen wir einmal sehen, mit welchem Wert wir
es bei dem hier gezeigten Kollegen zu tun haben:

1.Ring: Braun =1
2.Ring: Griin =5
3.Ring:Rot =100

l— 4.Ring: Gold =+/-5%

Wenn wir diese Werte nebeneinander schreiben, ergibt sich folgen-
der Wert fiir den Widerstand:

1. Ziffer 2. Ziffer Multiplikator Toleranz Wert
1 5 100 +/-5% 150002 =1,5K

In der folgenden Tabelle findest du alle Farbkodierungen mit den
korrespondierenden Werten:

1.Ring 2. Ring 3.Ring 4. Ring
(1. Ziffer) (2. Ziffer) (Multiplikator) (Toleranz)
@ schwarz X 0 100=1
@ braun 1 1 10'=10 +/-1%
@ ot 2 2 102=100 +/-2%
orange 3 3 10°=1.000
gelb 4 4 10*=10.000
griin 5 5 10°=100.000 +/-0,5%
@ blau 6 6 10°=1.000.000 +/-0,25%
@ violett 7 7 107 =10.000.000 +/-0,1%
grau 8 8 108 =100.000.000 +/-0,05%
O weil 9 9 10° =1.000.000.000
gold 10"=0,1 +/-5%
silber 102=0,01 +/-10%

Kapitel 3: Die Elektronik

Die Schaltzeichen, also die Symbole, die in Schaltplinen fiir Wider-
stainde Verwendung finden, sehen wie folgt aus:

Europdische Variante US Variante
(nach DIN EN 60617) (nach ANSI)

R R

Es kann sich zum einen nach DIN (Deutsche Industrie Norm um ein
Rechteck mit den elektrischen Anschliissen zur rechten bzw. zur lin-
ken Seite handeln. Der Widerstandswert kann sich direkt innerhalb
des Symbols befinden oder auch direkt dariiber bzw. darunter. Zum
anderen kann aber auch die US-Variante nach ANSI (American Nati-
onal Standards Institute), Verwendung finden, bei der der Wider-
stand durch eine Zickzacklinie dargestellt wird. Diese Zickzacklinie
stammt noch aus der Zeit, als die Widerstinde noch aus mehr oder
weniger umfangreichen Drahtwicklungen aufgebaut waren. Auf das
Ohm-Zeichen wird in der Regel verzichtet, wobei bei Werten kleiner
1 Kilo-Ohm (1000 Ohm) lediglich die nackte Zahl angefiihrt wird
und bei Werten ab 1 Kilo-Ohm ein K fiir Kilo bzw. ab 1 Mega-Ohm
ein M fiir Mega angehingt wird. Hier einige Beispiele:

330Q 330

1000 Q2 1K

4700 Q 4,7 K oder auch 4K7
2,2MQ 22M

Um hinsichtlich der maximalen Verlustleistung keine Probleme zu
bekommen, konnen wir mit Hilfe der Formel

P=U-I

die Leistung P errechnen. Die Einheit der Leistung ist W und steht
fur Watt. Die Widerstinde, die wir fiir unsere Experimente verwen-
den, sind allesamt Kohlewiderstinde mit einer maximalen Verlust-
leistung von % Watt.

Der veranderliche Widerstand

Neben den Festwiderstinden gibt es eine ganze Reihe verdnderli-
cher Widerstinde. Denke z.B. einfach mal an den Lautstédrkeregler

Bauteile

<« Abbildung 3-16
Die Schaltzeichen fiir einen
Festwiderstand

« Tabelle 3-2
Unterschiedliche Widerstandswerte

Abbildung 3-17
Schematischer Aufbau eines
Trimmers bzw. Potentiometers in
zwei unterschiedlichen Positionen

an deinem Radio. Dabei handelt es sich um einen Widerstand, der
je nach Drehposition seinen Widerstandswert dndert.

Der Trimmer und der Potentiometer

Es gibt zwei unterschiedliche manuell verstellbare Widerstiande. Sie
nennen sich Trimmer bzw. Potentiometer — auch kurz Poti genannt
— und verindern ihre Widerstandswerte durch Drehung an der
beweglichen Achse. Im Prinzip funktionieren aber beide nach dem
gleichen Schema. In der folgenden Abbildung siehst du den sche-
matischen Aufbau. Auf einem nichtleitenden Trigermaterial befin-
det sich eine leitende Widerstandsschicht, an deren beiden Enden
(A und B) Kontakte angebracht sind. Zwischen diesen beiden Kon-
takten herrscht immer der gleiche Widerstandswert. Damit der
Widerstand verinderbar ist, wird ein dritter beweglicher Kontakt
(C) angebracht, der sich auf der Widerstandsschicht in beiden
Richtungen bewegen kann. Man nennt ihn Schleifer und er dient als
Abgriffkontakt fiir den variablen Widerstandswert.

'Position 1 Position %

Bei Position 1 besteht zwischen den Punkten A und C ein kleinerer
Widerstand als zwischen den Punkten C und B. Im Gegensatz dazu
wurde bei Position 2 der Schleifkontakt weiter nach rechts gedreht,
wobei sich der Widerstandswert zwischen Punkt A und C vergro-
Rert und gleichsam zwischen C und B verkleinert hat.

Der Trimmer

Der Trimmer dient als einmalig einzustellender Widerstand, der
meistens direkt auf einer Platine festgelotet wird. Dabei wird z.B.
eine Schaltung iiber einen kleinen Uhrmacher-Schraubendreher
kalibriert und der Wiederstandswert in der Regel dann nicht mehr
verandert.

Trimmer gibt es in so vielen unterschiedlichen Formen, dass ich aus
Platzgriinden nicht jeden einzelnen vorstellen kann. Das entspre-
chende Schaltzeichen aber sieht folgendermafen aus:

Kapitel 3: Die Elektronik

<« Abbildung 3-18
Das Schaltzeichen fiir einen
A B Trimmer

Der Potentiometer

Der/das Potentiometer wird als kontinuierlich verstellbarer Wider-
stand verwendet, der — wie schon eingangs erwihnt — z.B. zur Laut-
stirkeregelung bei Radios oder zur Helligkeitsregelung bei
Leuchtkorpern verwendet werden kann. Sein beweglicher Schleifer
ist Uiber eine Welle, die aus einem Gehiuseinneren nach auflen
gefithrt wird, mit einem Drehknopf verbunden. So kannst du den
Widerstandswert bequem mit der Hand regulieren.

Das Schaltzeichen fiir ein Potentiometer sieht wie folgt aus:

<« Abbildung 3-19
Das Schaltzeichen fiir das
A B Potentiometer

Der lichtempfindliche Widerstand

Der lichtempfindliche Widerstand wird auch LDR (Light Depending
Resistor) genannt. Es handelt sich um einen Photowiderstand, der
seinen Widerstandswert in Abhingigkeit von der auftreffenden
Lichtstirke dndert. Je hoher der Lichteinfall ist, desto geringer wird
sein Widerstand.

Wir werden mit diesem elektronischen Bauteil interessante Versu-
che im Zusammenhang mit einem Servo durchfithren. Der Servo-
Motor soll dabei einer Lichtquelle folgen und immer auf den hells-
ten Punkt weisen. Das Schaltzeichen fiir einen lichtempfindlichen
Widerstand sieht folgendermaflen aus:

E Z <« Abbildung 3-20
oder

Die Schaltzeichen fiir einen

lichtempfindlichen Widerstand

Ein Blick auf die Kennlinie eines LDR verdeutlicht noch einmal sein
Widerstandsverhalten bei unterschiedlichen Lichtstirken, wobei
die Lichtstirke in Lux angegeben wird.

Bauteile @

Abbildung 3-21 p
Die Kennlinie eines LDR

—

< Widerstandswert [Ohm]

Lichtstdrke [Ix]

Die Einsatzgebiete eines LDR sind recht unterschiedlich. Hier
einige Beispiele:

* als Dimmerungsschalter zur Ansteuerung einer zusitzlichen
Lichtquelle wie z.B. StraRenlaternen oder Fahrzeuginnenraum-
beleuchtung bei einsetzender Dunkelheit

* zur Messung der Lichtstirke firr Fotoaufnahmen

¢ als Sensor in Lichtschranken wie z.B. bei Fahrstuhltiiren oder
bei Zutrittskontrollen in Sicherheitsbereichen

Der Widerstandbereich des LDR hiingt vom verwendeten Material
ab und weist einen ungefihren Dunkelwiderstand zwischen 1 MQ
und 10 MQ auf. Bei einer Beleuchtungsstiarke von ca. 1000 Lux (Ix)
stellt sich ein Widerstand von 75 Q bis 300 Q ein. Lux ist dabei die
Bezeichnung fur die Einheit der Beleuchtungsstirke.

Der temperaturempfindliche
Widerstand

Der temperaturempfindliche Widerstand dndert seinen Wider-
standswert in Abhingigkeit von der ihn umgebenden Temperatur.
Es werden zwei unterschiedliche Typen produziert.

* NTC (Negativer Temperatur Coeffizient) - Heifleiter
* PTC (Positiver Temperatur Coeffizient) - Kaltleiter

NTC

Der NTC-Widerstand verhilt sich so, dass bei hohen Temperatu-
ren die Leitfihigkeit steigt, was gleichzeitig bedeutet, dass der
Widerstand sinkt.

Die Bauform gleicht der eines Keramik-Kondensators, wodurch
hier hin und wieder auch mal eine Verwechslung erfolgt. Ein Auf-
druck, der z.B. 4K7 lautet, gibt aber deutlich Aufschluss iiber einen
Widerstandswert. Unter der Bezeichnung Thermistor NTC 4K7 ist
dieser Widerstand eindeutig zu identifizieren. Das Schaltzeichen
sieht folgendermaflen aus:

Kapitel 3: Die Elektronik

Tl <« Abbildung 3-22
Das Schaltzeichen fiir einen NTC
(HeiBleiter)

An der Kennlinie eines NTC kannst du das Widerstandsverhalten

erkennen.
= <« Abbildung 3-23
§ Die Kennlinie eines NTC
=
=
10

Zd oc Temperatur [°C]

Wir kénnen auf den ersten Blick erkennen, dass die Kennlinie kein
lineares Verhalten aufweist. Der Verlauf erfolgt in einer Kurve und
nicht in einer Geraden wie beim LDR. Das wichtigste Merkmal die-
ses Widerstandes ist der sogenannte Kaltwiderstand, der den
Widerstandswert R, bei 20°C Raumtemperatur angibt. Ich habe in
die Kurve als Beispiel einen fiktiven Wert von 10 KQ eingetragen.

PTC

Der PTC-Widerstand ist das Gegenstiick zum NTC und weist ein
Temperaturverhalten auf, bei dem bei hohen Temperaturen die
Leitfihigkeit sinkt, was bedeutet, dass der Widerstand steigt. Das
Schaltzeichen sieht folgendermafen aus:

T T <« Abbildung 3-24
Ij Das Schaltzeichen eines PTC
(Kaltleiter)
Die Kennlinie eines PTC verlduft genau umgekehrt wie die eines
NTC und weist zudem noch besondere Merkmale auf. Sie kann im

niedrigen wie auch im hoheren Temperaturbereich iiber ein Mini-
mum bzw. ein Maximum verfiigen.

T <« Abbildung 3-25
s Die Kennlinie eines PTC
=
s
S
=

0

Temperatur [°C]

Bauteile @

Tabelle 3-3 »

Das Verhalten von NTC und PTC bei
unterschiedlichen Temperaturen

Abbildung 3-26 »
Das elektrische Feld (blaue

Feldlinien) zwischen den beiden

Kondensatorplatten

In der folgenden Tabelle habe ich das Verhalten beider temperaturab-
hingigen Widerstinde (NTC und PTC) noch einmal kurz skizziert.

Typ Temperatur Widerstand Strom
NTC 1 1 1

!) T
PTC 1 1)

1 T 7

Der Kondensator

Bei einem Kondensator handelt es sich um ein Bauteil, das im Prin-
zip aus zwei gegeniiberliegenden, leitenden Platten besteht. Liegt
zwischen beiden Platten z.B. eine Gleichspannung an, dann baut
sich dazwischen ein elektrisches Feld auf.

Beide Platten haben einen bestimmten Abstand zueinander und sind
durch eine Isolierschicht — dem Dielektrikum — voneinander getrennt.
Wenn der Kondensator aufgeladen ist, kann die Spannungsversor-
gung entfernt werden, wobei das elektrische Feld bestehen bleibt. Die
beiden Platten speichern also die ihnen zugefithrte Ladungsmenge Q
in As. Die Einheit As bedeutet Ampere mal Sekunde:

In diesem Fall verhilt sich ein Kondensator wie eine geladene Batterie.

Achtung
Ein geladener Kondensator sollte niemals kurzgeschlossen und
immer Uber einen geeigneten Widerstand entladen werden.

Die Ladungsmenge, die der Kondensator aufnehmen kann, hingt
von zwei Faktoren ab:

* Der Gesamtkapazitit C des Kondensators, die in Farard (F)
gemessen wird.

* Der Versorgungsspannung U, die am Kondensator anliegt.

Kapitel 3: Die Elektronik

Wir kénnen festhalten, dass die Ladungsmenge Q eines Kondensa-
tors umso grofer wird, je grofler die Kapazitit bzw. die Spannung
ist. Die folgende Formel zeigt uns den Zusammenhang der drei
GroRen:

Q=C-U

Hierzu ein kurzes Rechenbeispiel: Wir haben einen Kondensator
mit einer Kapazitit von C = 3,3 pF, der an einer Versorgungsspan-
nung von 9V liegt. Wie grof§ ist die Gesamtladung Q?

Q=C U=33uF -9V =297 - 107°4s

Die Kapazitit eines Kondensators liegt in der Regel weit unterhalb
von einem Farad. Daher bewegen sich die Grofen in den folgenden
Bereichen:

* uF (10°) — Mikrofarad
e nF (10°) — Nanofarad
* pF (10'?) - Pikofarad

Es gibt die unterschiedlichsten Arten von Kondensatoren, von
denen ich nur einige auffithren méchte:

Polungsunabhédngige Kondensatoren
¢ Keramikkondensatoren
¢ Kunststofffolienkondensatoren

* Metallpapierkondensatoren

Polungsrelevante Kondensatoren

* Elektrolytkondensatoren (auch Elkos genannt)

Ich habe hier einmal einen Elektrolytkondensator (links) und einen
Keramikkondensator (rechts) abgebildet. Es gibt da schon enorme
GroRenunterschiede, wie du hier erkennen kannst.

Polungsunabhdngige Kondensatoren konnen sowohl in Gleich- als
auch Wechselstromkreisen eingesetzt werden, wohingegen pol-
ungsabhdngige Kondensatoren, wie der Elektrolytkondensator,
lediglich im Gleichstromkreis und bei richtiger Polung zum Einsatz
kommen darf.

Bauteile

Die Funktionsweise von Kondensatoren habe ich soweit verstanden,
doch wo sie zu welchem Zweck eingesetzt werden, ist mir schleier-

haft.

Es gibt die unterschiedlichsten Einsatzgebiete, von denen ich hier
nur einige aufzeigen mochte:

* Zur Spannungsglittung bzw. Spannungsstabilisierung. Wenn
z.B. ein komplexes Bauteil wie der integrierte Schaltkreis auf
eine stabile Spannungsversorgung angewiesen ist, um seine
Daten nicht zu verlieren, dann wird zwischen + und — am Bau-
teilgehduse ein separater Kondensator geschaltet, der bei kurz-
zeitigen Spannungsschwankungen den vorherigen Pegel kurz
aufrechterhilt, so dass sich dieser Spannungseinbruch nicht
bemerkbar macht.

* Zur Signalkopplung, z.B. bei mehrstufigen Transistorschaltun-
gen.

* Bei Timerschaltungen, die nach einer bestimmten Zeit z.B.
einen Kontakt eines Relais 6ffnen oder schlieflen.

* Bei Taktgebern, die in regelmiRigen Abstinden Impulse an
einen Ausgang schicken.

Die Schaltzeichen fiir Kondensatoren sehen folgendermaRen aus:

Abbildung 3-27 » +
Die Schaltzeichen eines normalen 4' Ii 4' ”7
Kondensators (links) und eines
Elektrolytkondensators (rechts)

Wir wollen einmal sehen, wie sich ein Kondensator, den wir mit
einer Batterie verbinden, denn so verhilt:

Abbildung 3-28p Ladestrom Entladestrom
Schaltung zum Laden und Entladen

. (A) (A)
eines Kondensators U U

||
cll
L
Entladewiderstand

@ Kapitel 3: Die Elektronik

In dieser Schaltung siehst du einen Kondensator, der tiber eine Bat-
terie geladen wird, wenn sich der Wechselschalter in der momenta-
nen Position 1 befindet. Schalten wir hintiber zu Position 2, dann
wird der Kondensator C tiber den Widerstand R kurzgeschlossen,
und er entlddt sich wieder. An den beiden Strommessgeriten kann
man auf diese Weise sowohl den Lade- als auch den Entladestrom
messen. Das alles ist natiirlich fiir dich jetzt reine Theorie und des-
wegen habe ich eine Schaltung aufgebaut, bei der der Vorgang des
Schalterumlegens automatisch und elektronisch vollzogen wird.
Als Spannungsquelle wird keine Batterie verwendet, sondern ein
Frequenzgenerator, der so eingestellt ist, dass er Rechtecksignale
erzeugt. Die Spannung schwankt also in regelmiRigen Abstinden
zwischen einer vorgegebenen Spannung U, ., und 0 Volt.

max

3)
B

Rechteck—
@generator

<T7Masse

Ich habe an den beiden Messpunkten 1 bzw. 2 ein Zweikanaloszil-
loskop angeschlossen, das die Spannungsverldufe zeitlich darstellt.
Messpunkt 1 wird mit Kanal 1 (gelbe Kurve) verbunden und liegt
direkt am Ausgang des Rechteckgenerators. Messpunkt 2 wird mit
Kanal 2 (blaue Kurve) verbunden und zeigt quasi die Spannung
hinter dem Kondensator C an, die iiber dem Widerstand R abfillt.
Damit wollen wir untersuchen, inwieweit ein Rechtecksignal durch
den Kondensator gelangt. Die folgende Abbildung zeigt dir die
Spannungsverliufe genauer:

Bauteile

<« Abbildung 3-29

Schaltung zum Laden und Entladen
eines Kondensators {iber einen

Rechteckgenerator

Abbildung 3-30

Eingangs- und Ausgangsspannung
des Kondensators (Aufnahme mit

Multisim)

Wie ist das Oszillogramm nun zu deuten? Wenn der Spannungspe-
gel vor dem Kondensator von 0V auf z.B. 5V (gelbe Kurve) springt,
folgt der Ausgang des Kondensators (blaue Kurve) unmittelbar. Im
ersten Moment wirkt der ungeladene Kondensator wie ein Kurz-
schluss und lisst den Strom ungehindert durch. Bleibt der Span-
nungspegel vor dem Kondensator aber lingere Zeit auf 5V, dann
lidt sich der Kondensator auf und sein Widerstand steigt. Du
siehst, dass die untere blaue Kurve langsam abflacht und fast auf
0V zuriickgeht. Ein geladener Kondensator stellt fiir den Gleich-
strom eine Sperre dar und ldsst ihn nicht mehr durch. Wenn das
Rechtecksignal wieder auf OV abflacht, kann sich der Kondensator
iber den Widerstand entladen, wobei der Strom jetzt aber in eine
andere Richtung flieRt als beim Ladevorgang. Du erkennst das
daran, dass die blaue Kurve einen Sprung nach unten macht. Die
Ladung des Kondensators wird kleiner und kleiner und ebenso der
Entladestrom. Die Spannung iiber dem Widerstand, die durch die
untere Kurve reprisentiert wird, geht ebenfalls gegen 0V. Anschlie-
RRend wiederholt sich das ganze Spiel, und eine erneute Ladung des
Kondensators steht an.

Stopp mal, denn irgendetwas stimmt doch hier nicht so ganz! Du hast
doch gesagt, dass sich der Kondensator erst mit der Zeit aufladt und
dennoch macht die blaue Kurve einen Sprung von 0V auf den maxi-
malen Pegel, wenn sich das Eingangssignal auf 5V verstirke. Wie soll
ich denn das verstehen?

Gut, dass du hier einhakst, denn da bringst du wirklich etwas
durcheinander. Schaue dir noch einmal den Schaltungsaufbau an.
Das blaue Signal, auf das du hier anspielst, zeigt dir den Pegel, der
direkt hinter dem Kondensator abgegriffen wird, also quasi den
Strom, der durch den Kondensator flieRt. Es handelt sich dabei

Kapitel 3: Die Elektronik

nicht um die Kondensatorspannung. Um diese anzuzeigen, miissen
wir die Schaltung ein wenig modifizieren. Vertauschen wir doch
einfach einmal Widerstand und Kondensator. Es ergibt sich folgen-
des Schaltungsbild:

Punkt 1

—L T 112

Punkt 2

Rechteck— ==
HﬂJ generator

J;vMasse

Du siehst, dass der Widerstand R jetzt als Ladewiderstand arbeitet
und wir die Spannung parallel zum Kondensator C abgreifen. Das
folgende Oszillogramm zeigt uns den Lade- bzw. Entladevorgang
am Kondensator noch deutlicher.

Wird das Rechtecksignal von 0V auf Maximum verstarkt, dann
wird der Kondensator tiber den Widerstand geladen. Das braucht
nattiirlich seine Zeit. Wir erkennen dies daran, dass die blaue Kurve
sich nur langsam dem angestrebten Wert von 5V nihert. Springt
das Rechtecksignal zuriick auf 0V, dann ist zu diesem Zeitpunkt
der Kondensator noch geladen und gibt seine Energie jetzt langsam
Uiber den Widerstand ab. Die Ladespannung sinkt wieder gegen 0V,
bis wieder tiber das Rechtecksignal der Startschuss fiir das erneute
Laden fillt. AnschlieRen beginnt alles von vorne.

<« Abbildung 3-31

Schaltung zum Laden und Entladen
eines Kondensators iiber einen

Rechteckgenerator

<« Abbildung 3-32

Ladespannung des Kondensators

(Aufnahme mit Multisim)

Bauteile

Abbildung 3-33 p
Elektronen auf dem Weg durch die
Diode in Durchlassrichtung

Abbildung 3-34 »
Elektronen beim Versuch, die Diode
in Sperrrichtung zu durchqueren

Die Diode

Bei einer Diode handelt es sich um ein Bauteil, das in die Kategorie
Halbleiterelemente (Silizium oder Germanium) fillt. Sie hat die
Eigenschaft, den Strom nur in einer bestimmten Richtung (Durch-
lassrichtung) durchzulassen. Wenn er aus der anderen Richtung
kommt, wird er gesperrt (Sperrrichtung). Dieses elektrische Verhal-
ten erinnert nattirlich augenblicklich an ein Ventil, wie du es z.B. an
deinem Fahrrad vorfindest. Du kannst Luft von auflen in den
Schlauch hinein pumpen, aber es entweicht keine Luft von innen
nach aufen. Ich habe wieder meine hochauflosende Kamera
bemiiht, um die folgenden, einzigartigen Bilder zu machen.

Du erkennst, dass die Elektronen kein Problem beim Passieren der
Diode haben. Die interne Klappe offnet sich problemlos in die
Richtung, in die sie alle wollen. Die folgenden Kameraden haben
bei ihrer Wanderung durch die Diode nicht so viel Gliack:

Die Klappe lisst sich nicht in die gewiinschten Richtung bewegen,
so dass es am Checkpoint zu Tumulten kommt, weil keiner passie-
ren kann. Diode gibt es in den unterschiedlichsten Formen und
Farben. Hier zwei Beispiele:

-
— &

Da die Richtung, in der die Diode betrieben wird, enorm wichtig
ist, muss eine entsprechende Markierung auf dem Bauteilkorper
vorhanden sein. Es handelt sich diesmal nicht um eine Farbkodie-
rung, sondern um einen mehr oder weniger dicken Strich mit einer
zusitzlich aufgedruckten Bezeichnung. Tja, hier scheint es auf ein-

Kapitel 3: Die Elektronik

mal gentigend Platz fiir eine solche Beschriftung zu geben... Um sie
auch sprachlich auseinander zu halten, haben beide Anschliisse
unterschiedliche Bezeichnungen:

* Anode
* Kathode

Eine Silizium-Diode arbeitet in Durchlassrichtung, wenn die Anode
+0,7V positiver ist als die Kathode. Sehen wir uns dazu einmal die
gangigen Schaltsymbole an:

Wo sind jetzt aber Anode bzw. Kathode? Ich merke mir das immer
so: Die Kathode beginnt mit dem Buchstaben K und dieser hat
links eine senkrechte Linie. Das Diodenschaltsymbol hat ebenfalls

auf der rechten Seite eine lange senkrechte Linie. Dort befindet sich
die Kathode.

Anode ; Kathode

Das lisst sich doch recht einfach zu merken, oder? Wir sollten nun
einen Blick auf die Arbeitsweise der Diode in einer Schaltung riskieren.
Ich verwende statt eines Rechtecksignals ein Sinussignal am Eingang
der Diode, das sowohl positive als auch negative Spannungswerte auf-
weist. Das Schaltbild sollte dir bekannt vorkommen.

o
t 2 g
DIODE _ a
I Q
Qs
/\/ Sinus—
generator

Der Eingang der Diode, also die Anode, wird mit dem Ausgang des
Sinusgenerators verbunden. Dieser Verbindungspunkt wird durch
die gelbe Kurve im Oszillogramm dargestellt. Der Ausgang, also die
Kathode, wird durch die blaue Kurve reprisentiert. Wir sehen uns
das wieder aus der Nihe an:

<« Abbildung 3-35

Die Schaltzeichen fiir eine Diode,
links die offene, rechts die
geschlossene Variante.

<« Abbildung 3-36
Schaltung zur Ansteuerung einer
Diode iiber einen Sinusgenerator

Bauteile

Abbildung 3-37 p

Eingang bzw. Ausgang einer Diode

(Aufnahme mit Multisim)

Abbildung 3-38 p

Spannungs-Strom-Kennlinie einer
Silizium-Diode (Aufnahme mit Mul-

tisim)

Das gelbe Eingangssignal zeigt uns einen klaren Sinusverlauf. Da
die Silizium-Diode jedoch nur fiir positive Signale > +0,7V durch-
ldssig ist und fiir negative Signale eine Sperre bedeutet, zeigt uns die
blaue Ausgangskurve lediglich den positiven Fliigel der Sinuskurve.
Dort, wo sich eigentlich der negative Fliigel der Sinuskurve befin-
det, haben wir eine Nulllinie, was auf die Sperrrichtung der Diode
hindeutet. Wir sollten zum Abschluss der Diodenbetrachtung noch
einen Blick auf die Spannungs-Strom-Kennlinie werfen. Diese Kenn-
linie zeigt dir, ab welcher Eingangsspannung der Strom durch die
Diode zu fliefen beginnt und sie anfingt zu leiten. Das geschieht
nicht sofort, sondern beginnt langsam ab ca. +0,5V und wird dann
fast schlagartig auf +0,7V verstirke.

Kapitel 3: Die Elektronik

An den beiden folgenden sehr einfachen Schaltungen kannst du die
eben beschriebene Funktionsweise als elektronisches Ventil gut
erkennen. Sie bestehen jeweils aus zwei Dioden und zwei Lampen,
die durch eine Batterie mir Strom versorgt werden.

Sperrrichtung

Sperrrichtung

Durchlassrichtung
o

Durchlassrichtung

(
b

Linke Schaltung

In der linken Schaltung liegt der Pluspol der Batterie oben, so dass
er mit der Anode der Diode D2 verbunden ist. Diese ist somit in
Durchlassrichtung geschaltet, leitet den Strom durch und lasst
Lampe L2 leuchten. Diode D1 sperrt, da ihre Kathode am Pluspol
der Batterie liegt. Die Lampe L1 bleibt dunkel.

Rechte Schaltung

In der rechten Schaltung wurde lediglich die Polaritit der Batterie
vertauscht, so dass der Pluspol unten liegt. Die Polaritdtsverhilt-
nisse sind jetzt genau umgedreht. Der Pluspol der Batterie liegt an
der Anode der Diode D1 und lisst die Lampe L1 leuchten. Diode
D2 wird in Sperrrichtung betrieben, da der Pluspol an ihrer
Kathode liegt. Die Lampe L2 bleibt dunkel.

Vielleicht fragst du dich jetzt, wozu solche Bauteile benutzt wer-
den. Die Anwendungsgebiete sind recht vielfiltig, daher mochte ich
dir hier nur einige nennen:
* Gleichrichtung von Wechselstrom
* Spannungsstabilisierung
* Freilaufdiode (zum Schutz vor Uberspannung beim Abschalten
einer Induktivitit, z.B. bei einem Motor)

Es gibt viele unterschiedliche Diodentypen, z.B. Z-Dioden oder
Tunneldioden, um nur zwei zu nennen. Alle Typen aufzuzihlen und
zusitzlich noch die Unterschiede zu erldutern, wiirde den Umfang

Bauteile

<« Abbildung 3-39
Durchlass- bzw. Sperrrichtung von
Dioden in zwei Lampenschaltungen

Abbildung 3-40
Ein Transistorsammelsurium

dieses Buches sprengen. Ich verweise daher auf entsprechende
Elektronik-Fachliteratur oder das Internet.

Der Transistor

Jetzt kommen wir zu einem sehr interessanten elektronischen Bau-
teil, das die Entwicklung integrierter Schaltkreise auf kleinstem
Raum erst ermdglicht hat — dem Transistor! Es handelt sich dabei
um einen Halbleiterelement, das sowohl als elektronischer Schalter
als auch als Verstdrker Verwendung findet. Es ist das erste elektro-
nische Bauteil, das in die Kategorie aktives Bauteil fillt und dabei
drei Anschliisse besitzt. Nun, das muss ja dann schon etwas ganz
Besonderes sein. Und das ist es tatsdchlich. Auch hier gibt es wieder
eine Unmenge an Varianten in verschiedenen Formen, Grofen und
Farben.

Stopp mal bitte! Da hast du eben schon wieder den Ausdruck Halblei-
ter verwendet. Kannst du mir mal bitte verraten, wie das funktionie-
ren soll. Wie kann ein Material nur halb leiten? Das ist mir ein Ritsel!

Ok, Ardus. Der Ausdruck Halbleiter ist etwas widerspriichlich und
gibt das bezeichnete elektrische Verhalten nicht ganz korrekt wie-
der. Es bedeutet, dass das verwendete Material — z.B. Silizium —
unter gewissen Bedingungen leitet und dann wieder auch nicht. Es
wire fiir alle verstiandlicher, wenn anstelle des Ausdrucks Halbleiter
z.B. die Bezeichnung Steuerleiter verwendet wiirde. Doch daran
koénnen wir jetzt nichts mehr dndern und miussen es so nehmen,

Kapitel 3: Die Elektronik

wie es ist. Wir konnen den Transistor mit einem elektronisch regel-
baren Widerstand vergleichen, dessen Schleiferposition tiber einen
angelegten Strom beeinflusst werden kann und dessen Wert sich
somit regulieren lasst.

Je groRer der absolute Wert des Stromes am Punkt B ist, desto klei-
ner wird der Widerstand zwischen den Punkten C und E. Warum
ich genau diese Buchstaben verwende, wirst du gleich sehen. Wenn
wir uns ein Bauteil vorstellen, das wie schon erwihnt etwas steuern
soll (schalten oder verstirken), dann muss es ja tber eine Leitung
verfigen, die diese Steuerung tibernimmt, und zwei weitere, die
den Elektronenfluss (rein bzw. raus) ermoglichen. Damit haben wir
auch schon die drei Anschliisse eines Transistors auf sehr rudimen-
tire Weise beschrieben. Ich moéchte an dieser Stelle wieder auf
meine Spezialkamera zuriickgreifen und dich mit bisher nicht ver-
offentlichten Bildern iiberraschen.

Diese hochauflosende Aufnahme zeigt dir das Innere eines NPN-
Transistors (was das ist, wird gleich noch erliutert), der mit dem
Pluspol der Spannungsquelle iiber den Anschluss mit der Bezeich-
nung B gesteuert wird. Damit wir die einzelnen Anschliisse eines
Transistors auseinander halten koénnen, hat jedes Beinchen eine
Bezeichnung:

¢ B steht fiir Basis.
¢ (C steht fiir Collektor (deutsch: Kollektor).
* E steht fiir Emitter.

Auf diesem hochauflosenden Bild siehst Du, wie sich der Strom von
Elektronen zwischen Kollektor und Emitter bewegt. Es handelt sich

Bauteile

<« Abbildung 3-41

Elektronen auf dem Weg durch den

Transistor

Abbildung 3-42 »

Steuer- und Arbeitsstromkreis mit

elektrischen Bauteilen

um den Arbeitsstromkreis. Mit ihm werden z.B. andere Verbraucher
wie Lampen, Relais oder auch Motoren gesteuert. Dann ist da noch
der Strom, der durch die Basis flieRt. Das ist der Steuerstrom. Er
reguliert mit seiner Stirke den Arbeitsstrom. Mit einem sehr gerin-
gen Steuerstrom kann ein relativ hoher Arbeitsstrom geregelt wer-
den. Dieses Verhalten wird Verstdrkung genannt.

Der Unterschied zwischen Steuer- und Arbeitsstromkreis ist mir noch
nicht ganz klar. Warum haben wir auf einmal zwei Stromkreise? Ich
dachte, dass man es immer nur mit einem Kreis zu tun hitte.

Schau her, Ardus. Ich werde dir das Prinzip anhand einer einfachen
konventionellen Schaltung mit elektrischen Bauteilen zeigen.

@;amne

Schalter —
i 24V
L Relais / —/
3V
Steuerstromkreis Arbeitsstromkreis

Auf der linken Seite haben wir den Steuerstromkreis, der {iber einen
Schalter das angeschlossene Relais steuert. Die genaue Funktions-
weise eines Relais werde ich gleich noch erldutern. Fir den Augen-
blick reicht es, wenn du weiflt, dass es sich um ein elektro-
mechanisches Bauteil handelt, das beim Anlegen einer Spannung
einen Kontakt schliefft. Die Spannungsversorgung von 3V reicht
aus, um das kleine Relais anzusteuern. Auf der rechten Seite befin-
det sich der Arbeitsstromkreis, der eine Lampe mit 24V zum Leuch-
ten bringen soll. Die Arbeitskontakte des Relais schlieRen bei
geschlossenem Schalter diesen Stromkreis und die Lampe leuchtet.
Es ist davon auszugehen, dass im Steuerstromkreis ein niedrigerer
Strom flief3t, als im Arbeitsstromkreis. Kleine Ursache, grofe Wir-
kung. Du siehst, dass wir hier mit zwei unabhingigen getrennten
Stromkreisen arbeiten. Ubertragen wir jetzt diese Arbeitsweise ein-
mal auf den Transistor. Zuvor zeige ich dir aber noch die Schaltbil-
der des Transistors. Da es zwei unterschiedliche Typen gibt, haben

Kapitel 3: Die Elektronik

wir es auch mit verschiedenen Schaltsymbolen zu tun. Auf die
Unterschiede komme ich sofort zu sprechen.

NPN PNP

Die Unterschiede zwischen den Typen NPN und PNP liegen in der
Anordnung der Siliziumschichten. Jeder Transistor weist drei auf-
einander liegende Siliziumschichten auf, von denen die beiden
dufleren immer gleich sind. Bei einem NPN-Transistor liegen die N-
Schichten aufen und bilden den Kollektor bzw. Emitter. Bei der in
der Mitte liegenden Schicht handelt es sich um die Basis. Die Basis
eines NPN-Transistors wird also durch die P-Schicht gebildet. Der
NPN-Transistor schaltet durch, wenn das Basis-Emitter-Potential
mindestens +0,7V betrigt. Mit Durchschalten ist dabei der begin-
nende Stromfluss zwischen Kollektor und Emitter gemeint. Im
Gegensatz dazu schaltet der PNP-Transistor durch, wenn das Basis-
Emitter-Potential negativ ist und mindestens -0,7V betrigt. So, nun
kann ich dir das Prinzip von Steuer- und Arbeitsstromkreis mit
einem Transistor zeigen.

Lampe

&

Schalter ———
3V E
Steuerstromkreis Arbeitsstromkreis

Das Relais wurde durch den NPN-Transistor ersetzt, der iiber einen
Vorwiderstand R positiv angesteuert wird, wenn du den Schalter
schlieRt. Dieser Widerstand ist unbedingt erforderlich, da ein zu
hoher Basisstrom den Transistor tiiberhitzt, was mit einem
Totalausfall quittiert wird. Obwohl Steuer- und Arbeitsstromkreis
eine gemeinsame Masse besitzen, sprechen wir hier immer noch

<« Abbildung 3-43

Die unterschiedlichen Schaltzeichen

eines Transistors

<« Abbildung 3-44

Steuer- und Arbeitsstromkreis mit
elektrischen und elektronischen

Bauteilen

Bauteile

(»)

3
eBE

Abbildung 3-45 »

Die Pinbelegung der Transistoren
BC547Cund BC557C (Sicht von

unten auf die Beinchen)

»)

von zwei getrennten Stromkreisen. Sehen wir uns aber nun einmal
einen Transistor aus der Nihe an. Ich habe mich fiir den Typ
BC557C entschieden, den du auf dem folgenden Bild siehst. Es
handelt sich um einen PNP-Transistor, dessen Amtskollege der
NPN-Transistor BC547C ist. Wie du auf dem Bild Eine Hand voll
Transistoren gesehen hast, gibt es sehr unterschiedliche Gehiuse-
formen. Der hier gezeigte Transistor steckt in einem sogenannten
TO-92 Gehiuse aus Plastik.

Es handelt sich dabei um einen recht universellen Transistor, der
firr kleine Verstirkerschaltungen bzw. Schaltanwendungen geeig-
net ist. Die Pinbelegung dieser beider Typen ist gleich und sieht fol-
gendermaflen aus:

CBE

Das konnte fiir dich wichtig sein
Alle notwendigen Informationen zu Transistoren oder allen
anderen genannten Bauteilen in diesem Buch findest du in den
entsprechenden Datenblattern, die im Internet frei verfligbar
sind.

Wann und wo wir einen Transistor benotigen, wirst du in den ent-
sprechenden Kapiteln sehen, wenn es z.B. darum geht, einen Motor
oder mehrere Leuchtdioden anzusteuern. Da diese umfangreiche
Thematik den Rahmen dieses Buches sprengen wiirde, kann ich an
dieser Stelle nicht weiter auf sie eingehen und verweise wieder auf
die Fachliteratur bzw. das Internet.

Der integrierte Schaltkreis

Alles fing mit der Entdeckung des Transistors an, der es den Ent-
wicklern erméglichte, Schaltungen auf kleinstem Raum unterzu-
bringen. In den Anfingen wurden mehr oder weniger komplexe
Schaltungen mittels einer auf Rohren basierender Technik umge-
setzt. Diese waren um ein Vielfaches groRer als ein Transistor und
setzten entsprechend mehr Leistung um. Spiter platzierte man
Unmengen einzelner Transistoren auf iberdimensionalen Leiter-
platten, um komplexe Arbeitsprozesse an einem Ort konzentrieren
zu konnen. Dies fithrte aber auf die Dauer ebenso zu gigantischen

Kapitel 3: Die Elektronik

Ansammlungen von Platinen, daher kam man auf die Idee, mehrere
diskrete Bauteile, also Transistoren, Widerstinde und Kondensato-
ren, auf einem Silizium-Chip von wenigen Quadratmillimetern
unterzubringen. Der Integrierte Schaltkreis (engl.: IC = Integrated
Circuit) war geboren. Natiirlich erfolgte diese Miniaturisierung in
mehreren Schritten. Hier ein paar Zahlen zu den Integrationsgra-
den:

* 1960er Jahre: Ein paar Dutzend Transistoren pro Chip
(3 mm?)

* 1970er Jahre: Ein paar Tausend Transistoren pro Chip
(8 mm?)

* 1980er Jahre: Einige Hunderttausend Transistoren pro Chip
(20 mm?)

* Heute: Mehrere Milliarden Transistoren pro Chip

Ein beeindruckendes Beispiel liefert z.B. der Mikrocontroller
ATTiny13 mit seinen nur 8 Anschlussbeinchen. Es handelt sich hier
um einen richtigen Minicomputer mit allem, was dazu gehort, also
ein Rechenwerk, Speicher, Ein- bzw. Ausgabeports, usw. Vor eini-
gen Jahrzehnten hitte ein Computer mit dieser Komplexitit noch
zahllose Europlatinen (MaRe: 160mm x 100mm) mit diskreten Bau-
teilen erfordert.

Achtung

Ich habe dich bereits in der Einleitung schon kurz auf die
Gefahr hingewiesen, der die integrierten Schaltkreise hinsicht-
lich einer statischen Aufladung ausgesetzt sind. Ist dein Kérper
zB. durch das Laufen Uber einen Polyesterteppich aufgeladen,
dann kann diese elektrostatische Energie in Form eines Entla-
dungsblitzes schlagartig abgeleitet werden. Da kénnen dann
leicht 30.000 Volt zusammen kommen und das haut ganz
sicher den starksten Transistor aus dem Gehause. Eine vorhe-
rige Erdung z.B. an einem nicht lackierten Heizungsrohr oder
einem Schutzkontakt ist deshalb ratsam.

<« Abbildung 3-46

Der Mikrocontroller ATTiny13 in
einem DIP-Gehduse der Firma
Atmel

)

Bauteile

(»)

Abbildung 3-47 »
Leuchtdiodensammelsurium

Abbildung 3-48 »
Die Schaltzeichen einer Leuchtdiode

Die Leuchtdiode

Eine Leuchtdiode — auch kurz LED (Light Emitting Diode) genannt
— ist ein Halbleiterbauelement, das Licht mit einer bestimmten
Wellenlidnge abgibt, die wiederum abhingig vom verwendeten
Halbleitermaterial ist. Wie der Name Diode schon vermuten lisst,
ist beim Betrieb auf die Stromrichtung zu achten, denn nur bei
Durchlassrichtung sendet die LED Licht aus. Bei entgegengesetzter
Polung wird die LED nicht beschidigt, doch sie bleibt dann einfach
dunkel. Es ist unbedingt darauf zu achten, dass eine LED immer
mit einem richtig dimensionierten Vorwiderstand betrieben wird.
Andernfalls leuchtet sie nur ein Mal in einer beeindruckenden Hel-
ligkeit und dann nie wieder. Wie du den Wert des Vorwiderstandes
bestimmst, wirst du zu gegebener Zeit noch lernen. Leuchtdioden
gibt es in vielen Farben und Formen.

Genau wie bei einer Diode, hat die Leuchtdiode zwei Kontakte, von
denen einer die Anode und der andere die Kathode ist. Das Schalt-
zeichen sieht dhnlich aus und hat zusitzlich noch zwei Pfeile, die
das ausstrahlende Licht andeuten.

7

o

In der folgenden Abbildung kannst du sehen, dass ein Anschluss-
beinchen etwas linger ist als das andere.

Anode
Kathode

Kapitel 3: Die Elektronik

Dadurch lassen sich Anode und Kathode besser unterscheiden. Der
lingere Draht ist immer die Anode. Damit die LED leuchten kann,
miissen die Anode mit dem Plus- und die Kathode mit dem Minus-
pol verbunden werden. Die einfachste Schaltung zur Ansteuerung
einer LED siehst du in der folgenden Abbildung:

1 2 <« Abbildung 3-49
— Pt

; LED Ansteuerung einer LED mit einem
Vorwiderstand Vorwiderstand

Weitere interessante Bauteile

Die bisher erwihnten Schaltelemente zihlen allesamt zur Kategorie
der elektronischen Bauteile. Ich mochte dir jetzt ein paar Elemente
vorstellen, die in die Kategorie elektrische Bauteile fallen.

Der Schalter

Ein Stromfluss kommt nur dann zustande, wenn der Stromkreis
geschlossen ist und die Elektronen ungehindert flieRen koénnen.
Damit du aber von aufSen Einfluss darauf nehmen kannst, musst du
z.B. einen Schalter in den Stromkreis einbauen. Es handelt sich um
einen Mechanismus, der einen Kontakt 6ffnet bzw. schliefit. Es gibt
die unterschiedlichsten Ausfithrungen, die einige, wenige oder
mehrere Kontakte aufweisen.

<« Abbildung 3-50
Eine Hand voll Schalter

Weitere interessante Bauteile @

Abbildung 3-51 p

Die Schaltzeichen eines Schalters

Abbildung 3-52
Eine Hand voll Taster

Abbildung 3-53

Die Schaltzeichen fiir einen Taster

und filr einen Offner

Der einfachste Schalter besteht aus zwei Kontakten und kann durch
unterschiedliche Schaltsymbole dargestellt werden.

—o\o—
—¥
Der Zustand des Schalters kann als stabil bezeichnet werden.

Waurde der Schalter betitigt, dann bleibt die Schalterposition erhal-
ten, bis erneut umgeschaltet wird.

Der Taster

Der Taster ist mit dem Schalter verwandt und beeinflusst ebenfalls
den Stromfluss. Wird er nicht betitigt, dann ist der Stromkreis in
der Regel unterbrochen. Ich sage in der Regel, da es auch Taster
gibt, die ohne Betitigung geschlossen sind und auf einen Druck hin
den Stromkreis unterbrechen. Diese werden dann Offner genannt.

Das Schaltzeichen fur einen Taster gleicht ein wenig dem Symbol
fiir den Schalter. Doch gerade die feinen Unterschiede sind recht
wichtig und sollten nicht tibersehen werden.

Taster (SchlieRer) Offner

5 o— —olg

Der Zustand eines Tasters wird als nicht stabil bezeichnet. Driickst
du ihn, dann schlieRt der Kontakt und der Strom kann flieRen.
Lisst du ihn jedoch wieder los, dann bewegt sich der Kontakt in die

®

Kapitel 3: Die Elektronik

urspriingliche Position zuriick und der Stromkreis wird wieder
unterbrochen. Fiir unsere Experimente verwenden wir recht hiufig
Taster, Schalter hingegen seltener. Die bevorzugte Variante sind
Taster, die du direkt auf die Platine 16ten kannst. Sie nennen sich
Miniaturtaster.

Das Relais

Ich habe dir das Relais schon einmal kurz bei der Einfiihrung des
Transistors gezeigt. Ich mochte an dieser Stelle noch etwas genauer
auf dieses Bauteil eingehen. Ein Relais ist eigentlich nichts weiter
als ein Schalter oder Umschalter, den du aus der Ferne betitigen
kannst. Auf dem folgenden Foto aus vergangenen Tagen siehst du
einen Arbeiter, der einen Kontakt aus der Ferne schlief3t, zu einer
Zeit, als es noch keine Relais gab.

Ein Relais kann mit unterschiedliche Schaltzeichen dargestellt wer-
den.

--\T

Ich habe hier einmal ein Relais ge6ffnet, damit wir uns sein Innen-
leben genauer anschauen konnen.

Auf der linken Seite befindet sich die Spule, die im Inneren einen
Eisenkern besitzt, damit die Magnetfeldlinien besser transportiert
werden. Flief3t ein Strom durch die Spule, wird der Anker angezo-
gen und driickt die Arbeitskontakte nach rechts. Dadurch werden
sowohl Kontakte geschlossen als auch geoffnet. Die nachfolgende
schematische Abbildung zeigt uns, wie der Anker nach unten gezo-
gen wird und dabei einen Kontakt schlief3t.

Weitere interessante Bauteile

E

<« Abbildung 3-54

Ein Fernschalter aus vergangenen

Tagen

<« Abbildung 3-55

Das Schaltzeichen fiir ein Relais (mit

einem Arbeitskontakt)

Abbildung 3-56 »
Schema eines Relais

Abbildung 3-57 »
Eine Hand voll Motoren

[Drehpunkt
>
Spul
pue K12

Wird der Anker durch die Spule nach unten gezogen, dann schliefit
er die beiden Kontakte K1 bzw. K2. In gewisser Weise kannst du
ein Relais — falls das erwiinscht sein sollte — ebenfalls als Verstirker
nutzen. Mit einem kleinen Strom, der durch die Spule flieRt, kann
bei entsprechender Dimensionierung der Relaiskontakte, ein viel
groflerer Strom gesteuert werden.

Achtung
SchlieBe niemals ein Relais unmittelbar an einen Ausgang des
Arduino-Boards an! Es wird sicherlich mehr Strom fliel3en, als
ein einzelner Ausgang in der Lage ist zu liefern. Die Folge ware
eine Beschadigung des Mikrocontrollers. Du wirst spater noch
sehen, wie ein Relais angesteuert werden kann.

Der Motor

Ich denke, dass du sicherlich weikt, was ein Motor ist. Wir spre-
chen an dieser Stelle jedoch nicht von einem Verbrennungsmotor,
der z.B. mit Diesel betrieben wird, sondern von einem Elekiromo-
tor. Hierbei handelt es sich um ein Aggregat, das elektrische Ener-
gie in Bewegungsenergie umwandelt.

Motoren gibt es in vielen unterschiedlichen GréfSen und mit diver-
sen Spannungsbereichen. Sie werden sowohl far Gleichstrom- als
auch far Wechselstromversorgungen hergestellt.

Kapitel 3: Die Elektronik

m
M)

Wir konzentrieren uns jedoch auf Gleichstrom. Ein Gleichstrom-
motor besteht aus einem starren Element, das den Magnet darstellt
und einem beweglichen Element, der Spule, die drehbar auf einer
Welle montiert ist. Wird ein Strom durch einen Leiter geschickt,
dann bildet sich um ihn herum ein Magnetfeld. Das Magnetfeld
wird umso grofler, je mehr Drahtlinge auf einem bestimmten
Bereich konzentriert wird. Aus diesem Grund hat man sehr viel
Draht auf einen Triger gewickelt und damit eine Spule geschaffen.

Du siehst auf diesem Bild einen Leiter, durch den die Elektronen in
eine Richtung flitzen. Die roten Kreise zeigen uns die Magnetfeldli-
nien, die durch den Strom erzeugt werden. Wiirden wir jetzt eine
Kompassnadel an den starren Leiter fithren, kime es zu einer Reak-
tion seitens der beweglichen Nadel, die sich entlang der Magnet-
feldlinien ausrichtet. Sowohl die Magnetfeldlinien des Drahtes, als
auch die der Kompassnadel treten in eine Krifte-Wechselwirkung.
Haben wir aber stattdessen einen starren Magneten, in dem sich ein
beweglicher Draht befindet, dann bewirkt die auftretende Kraft
eine Bewegung des Drahtes.

Weitere interessante Bauteile

<« Abbildung 3-58
Das Schaltzeichen eines
Gleichstrommotors

<« Abbildung 3-59

Ein stromdurchflossener Leiter

<« Abbildung 3-60

Stark vereinfachtes Schema eines

Gleichstrommotors

(»)

In der Zeichnung siehst du eine einzige rote Drahtwindung, die sich
frei drehbar innerhalb des blauen Permanentmagneten befindet.
Lassen wir jetzt einen Strom durch den Draht flieRen, dann reagie-
ren die Magnetfelder des Drahtes mit denen des Magneten. Das
fithrt dazu, dass sich der Draht entlang der Achse dreht. Aufgrund
des zweigeteilten grauen Rotors, an dem der Draht befestigt ist,
wird er nach einer 180° Drehung umgepolt und der Strom flieRt in
entgegengesetzter Richtung. Das jetzt gedreht zur vorherigen Pola-
ritit erzeugte Magnetfeld im Draht sorgt dafiir, dass er sich weiter
bewegt, bis es nach weiteren 180° zur erneuten Umpolung kommt.
Dieser stindige Wechsel des Magnetfeldes sorgt fiir eine Drehbe-
wegung des Drahtes mit dem Rotor. Damit sich die Krifte zwischen
den beiden Magnetfeldern verstiarken, besitzt ein Motor natiirlich
vieler solcher Drahtwindungen, die dadurch eine Spule bilden und
er eine gewisse Kraft beim Drehen entwickelt. Da die Ansteuerung
eines Motors etwas mehr Strom verlangt, als ein einzelner Ausgang
des Mikrocontrollers in der Lage wire, benotigen wir einen Tran-
sistor, der die Aufgabe der Verstirkung tibernimmt. Wie das funk-
tioniert, wirst du noch sehen. Ein nicht zu vernachlissigendes
Problem ergibt sich jedoch beim Abschalten der Stromversorgung
zum Motor. Die Spule induziert nach dem Verlust des Versor-
gungsstromes selbst einen Strom (Selbstinduktion), der aufgrund
der Hohe und entgegengesetzter Flussrichtung den Mikrocontroller
bzw. den Transistor zerstoren kann. Wie wir dem entgegenwirken
konnen, wirst du ebenfalls noch sehen, wenn wir die Freilaufdiode

behandeln.

Der Schrittmotor

Wenn wir einen normalen Motor ansteuern, dann dreht er sich
solange, wie wir ihn mit Strom versorgen und durch den vorherigen
Schwung noch ein paar Umdrehungen weiter. Er bleibt dann
sicherlich an einer vorher nicht bestimmbaren Position stehen. Die-
ses Verhalten ist natiirlich unerwiinscht, wenn es darum geht,
bestimmte Positionen gezielt und auch mehrfach hintereinander
genau anzufahren. Damit das auch funktioniert, bendtigen wir eine
spezielle Art von Motor: Den Schrittmotor. Vielleicht hast du schon
einmal Industrieroboter gesehen, die z.B. bei der Montage von
Karosserieteilen zum Einsatz kommen, um diese Punktgenau
zusammen zu schweiffen. Da kommt es wirklich auf sehr hohe
Positionsgenauigkeit an, denn alles muss nachher auch zusammen
passen. Derartige Roboter werden durch Schrittmotoren gesteuert.

Kapitel 3: Die Elektronik

Aber auch in Flachbettscannern oder Plottern findest du diese Stell-
elemente, um eine exakte Positionierung zu ermoglichen.

Was fillt dir bei den Schrittmotoren in dem Bild auf, wenn du sie
mit den normalen Motoren vergleichst? Diese Motoren haben mehr
als zwei Anschlussdrihte. Das Schaltsymbol eines Schrittmotors
kann unterschiedlich ausfallen. Meistens wird ein Motor mit zwei
Spulen gezeichnet.

0]

Damit ein Schrittmotor bestimmte Positionen anfahren kann, muss
er im inneren einen Aufbau vorweisen, der ihn dazu bewegt, an
gewissen Stellen Halt zu machen. Da dies nicht mit mechanischen
Mitteln, wie z.B. einem Zahnrad, das bei der Drehung an einer
Stelle blockiert, gemacht wird, muss es irgendwie eine elektrische
Losung geben. Wenn ich z.B. einen Magneten auf einer Achse
befestige und rundherum Spulen positioniere, dann dreht sich der
Magnet zu der Spule hin, die vom Strom durchflossen wird, um
dann dort stehen zu bleiben. Nach diesem Prinzip funktioniert ein
Schrittmotor. Der Einfachheit halber habe ich einen Motor mit 4
Spulen und einer simplen Ansteuerung gewihlt, dessen Positionie-
rung dementsprechend grob ist. Aber es geht hierbei um’s Prinzip
und nicht um die Praxistauglichkeit.

« Abbildung 3-61

Eine Hand voll Schrittmotoren

<« Abbildung 3-62
Das Schaltzeichen eines
Schrittmotors

Weitere interessante Bauteile

()

Abbildung 3-63 »

Die schematische Darstellung eines
Schrittmotors mit 4 Spulen bzw.

Positionen

Abbildung 3-64 »
Gleichzeitiges Ansteuerung
mehrerer Spulen

In der Mitte siehst du den drehbar gelagerten Magneten, der von 4
Spulen umgeben ist. Alle Spulen sind mit einem ihrer beiden
Anschliisse mit Masse verbunden. Zur Verdeutlichung der Funktio-
nalitdt habe ich die Spule B mit einem Strom beaufschlagt, so dass
sich der Magnet in diese Richtung gedreht hat und dort stehen
bleibt. Wird immer nur eine Spule mit Strom versorgt, dann kon-
nen maximal 4 unterschiedliche Positionen (jeweils 90°) angefahren
werden. Werden jedoch zwei benachbarte Spulen gleichzeitig ver-
sorgt, dann bleibt der Anker zwischen ihnen stehen. Auf diese
Weise wird die Genauigkeit erhoht.

Statt mit 90°-Schritten, kann jetzt mit 45°-Schritten gearbeitet wer-
den. Damit die angefahrene Position jedoch stabil bleibt, muss die
jeweilige Spule bzw. Spulen immer mit Strom versorgt bleiben, bis
eine neue Richtung vorgegeben wird. Willst Du, dass sich der
Schrittmotor z.B. im Uhrzeigesinn dreht, dann miissen die Spulen-

Kapitel 3: Die Elektronik

anschliisse in der richtigen Reihenfolge angesteuert werden. Begin-
nen wir z.B. bei Spule B: B/BC/C/CD/D/DA/A/AB/B/usw.

Stopp mal kurz! Ich habe mir das Bild mit den verschiedenen Schritt-
motoren einmal unter die Lupe genommen. Mir ist da etwas aufge-
fallen. Manche Motoren haben 4 und einer 5 Anschliisse. Wo liegt
denn da der Unterschied?

Hast du eine Lupe verwendet, um das zu erkennen? Aber ja, Ardus!
Du hast vollkommen Recht. Es gibt zwei unterschiedliche Typen
von Schrittmotoren.

* Unipolare Schrittmotoren (5 oder 6 Anschliisse)

* Bipolare Schrittmotoren (4 Anschlisse)

Der unipolare Schrittmotor ist einfacher anzusteuern, da der Strom
immer in derselben Richtung durch die Spulen flieRt. In unserem
Beispiel habe ich deswegen diesen Typ erklirt. Fiir weitere Infor-
mationen muss ich dich auf weiterfithrende Literatur oder das
Internet verweisen.

Der Servo

Modellflugzeuge oder auch Modellschiffe besitzen zur Steuerung
der unterschiedlichsten Funktionen wie z.B. Geschwindigkeit oder
Kurs, kleine Servos. Es handelt sich dabei meist um kleine Gleich-
strommotoren, die mit drei Anschliissen versehen sind und deren
Stellposition tiber eine Puls Weiten Modulation (PWM) gesteuert
wird. Was das genau ist, wirst du noch im Kapitel iiber die Pro-
grammierung des Arduino-Boards kennen lernen.

<« Abbildung 3-65
Zwei unterschiedlich groBe Servos

Weitere interessante Bauteile

&

Abbildung 3-66 »

Das Schaltzeichen eines Servos

T

Das Schaltplansymbol fir einen Servo kann folgendermafRen aus-
schauen.

+ru-

Lasse mich das PWM-Thema trotzdem kurz anreiffen, damit du
ungefihr weiflt, worum es geht. Ein nicht modifizierter Servo hat in
der Regel einen Wirkungskreis von 0° bis 180° und kann sich nicht
wie ein Motor um 360° drehen. Die Ansteuerung, wie weit sich ein
Servo drehen soll, erfolgt iiber ein Rechtecksignal mit besonderen
Spezifikationen.

Periodendauer
Die Periodendauer T betrigt konstant 20ms.

Pulsbreite

Die Pulsbreite muss sich zwischen 1 ms (linker Anschlag) und 2 ms
(rechter Anschlag) bewegen. Nachfolgend siehst du drei Servo-
Positionen mit den entsprechenden Ansteuerungssignalen.

Mit dem ersten Beispiel von einer Pulsbreite von 1 ms positionieren
wir den Servo an den rechten Anschlag. Das entspricht dem Winkel
von 0°.

\/

20ms

Im zweiten Beispiel steuern wir den Servo mit einer Pulsbreite von
1,5 ms an, was ihn dazu veranlasst, auf die Mittelposition zu fah-
ren, die einem Winkel von 90° entspricht.

Kapitel 3: Die Elektronik

yy
A

|
20ms [

90°

Im dritten Beispiel wird unser Servo mit einer Pulsbreite von 2 ms
angesteuert, der seinerseits auf in den linken Anschlag fihrt, was
einem Winkel von 180° entspricht.

le
<

A

20ms

180°

Jetzt hast du eine ungefihre Vorstellung davon, was PWM ist. Uber
die Pulsweite bzw. —breite kannst du ein elektronisches Bauteil wie
den Servo ansteuern. Das gleiche Verfahren kann auch zur Hellig-
keitssteuerung z.B. bei Leuchtdioden verwendet werden. Doch
dazu spiter mehr. Aufgrund der unterschiedlichen Servotypen,
kénnen abweichende Werte vorkommen, doch das Prinzip ist das
Gleiche. Du brauchst dir nicht weiter den Kopf dariiber zu zerbre-
chen, wie du denn deinen Servo mit welchen Werten ansteuern
musst, denn die Arbeit haben sich schon andere Entwickler
gemacht und wir konnen ihr Wissen nutzen. Es gibt fertigen Quell-
code, den wir in unser Projekt mit einbinden konnen. Wie das
genau funktioniert, wirst du noch sehen. Da die Positionierung
iiber ein einziges Steuersignal an den Servo herangefiihrt wird, hat
er dementsprechend wenige Anschliisse.

Weitere interessante Bauteile

Abbildung 3-67 »

Die Anschlussbelegung eines Servos

Abbildung 3-68 »
Das Piezo-Element

h Versorgung (+5V)

Masse (0V)

Ansteuerung

€& Buchsenleiste

Das Piezo-Element

Ich mochte das Elektronik-Kapitel mit der Vorstellung des Piezo-
Elementes abschlieRen.

Das Teil sieht schon etwas merkwiirdig aus und man sollte kaum
vermuten, dass es Krach machen kann. Wir haben es mit einem
Bauteil zu tun, das im Inneren einen Kristall besitzt, der iiber eine
angelegte Spannung anfangt zu schwingen. Der sogenannte Piezo-
effekt tritt dann auf, wenn auf bestimmte Materialien Kriifte wie
Druck oder Verformung wirken. Es ist dann eine elektrische Span-
nung messbar. Das Piezo-Element geht den umgekehrten Weg. Bei
einer angelegten Spannung tritt eine regelmiRige Verformung auf,
die als Schwingung wahrzunehmen ist und die Luftmolekiile
anregt. Das nehmen wir als Ton wahr. Damit der Piezo etwas lauter
wird, klebt man ithn am besten auf eine frei schwingende Unterlage,
damit die ausgesendeten Schwingungen iibertragen und verstirkt
werden.

Kapitel 3: Die Elektronik

Elektronische
Grundschaltungen

Scope
In diesem Kapitel werden wir folgende Themen behandeln:

* Widerstandsschaltungen (Reihen- und Parallelschaltung)
* Der unbelastete Spannungsteiler
* Kondensatorschaltungen (Reihen- und Parallelschaltung)

* Transistorschaltungen

Da du jetzt die Grundlagen der Elektronik im vorangegangenen
Kapitel kennengelernt hast, besteht der nichste logische Schritt im
Zusammenfiigen mehrerer Bauteile zu einer Schaltung. Damit es
fur den Anfang nicht zu schwierig wird, werde ich dir einige elek-
tronische Grundschaltungen zeigen, fiir die meist nur sehr wenige
Bauteile erforderlich sind. In den spiteren Kapiteln zu den Ardu-
ino-Projekten wird die Komplexitit natiirlich etwas zunehmen,
aber du kannst auf den hier gezeigten Grundlagen auf jeden Fall
aufbauen. Dieses Kapitel soll kein Kompendium elektronischer
Grundschaltungen darstellen, sondern der Fokus liegt auf dem Ver-
staindnis der Arduino-Projekte. Erforderlichenfalls findest du
nihere Erliuterungen im Rahmen der entsprechenden Projekte.
Keine Sorge, alles Notwendige wird stets erldutert.

Widerstandsschaltungen

Ein einzelner Widerstand in einem einfachen Stromkreis arbeitet
als Strombegrenzer. Den Elektronen, die sich durch den Wider-
stand quilen, wird das Durchqueren dieses Bauteils mehr oder
minder schwer gemacht. Das Prinzip ist recht einfach zu verstehen.

Kapitel

Stelle dir eine grofRe Menschenmenge vor, die sich fir ein Musik-
konzert durch einen kleinen 2 Meter breiten Eingang zwingen
muss, um in das Innere der Veranstaltungshalle zu gelangen. Da
reiben sich die Korper aneinander und es kommt zu einem verlang-
samten Strom der Menschenmassen. Das ist natiirlich eine recht
schweiftreibende Angelegenheit und es wird viel Wirme abgege-
ben. Und auf jeden Fall geht es langsamer voran, als wenn der Ein-
gang z.B. 10 Meter breit wiire.

Reihen- und Parallelschaltungen

Was passiert eigentlich, wenn wir mehrere Widerstinde in einer
bestimmten Konstellation zusammenschalten? Das muss ja in
irgendeiner Weise einen Einfluss auf den Gesamtwiderstand haben.
Schauen wir uns dazu ein paar Beispiele an.

Die Reihenschaltung

Wenn wir zwei oder mehrere Widerstinde hintereinander schalten,
dann sprechen wir von einer Reihenschaltung. Es liegt in der Natur
der Sache, dass der Gesamtwiderstand umso hoher wird, je mehr
Einzelwiderstinde sich hintereinander befinden. Der Gesamtwider-
stand ist hierbei gleich der Summe der Einzelwiderstinde. Nehmen
wir einmal an, es wiren die folgenden 3 Widerstinde hintereinan-
der geschaltet:

—__RL = R2 J—=o— RS J—
1K 2K 1,5K

Der Gesamtwiderstand errechnet sich dann wie folgt:
Rges = Ry + Ry + Ry = 1K + 2K + 1,5K = 4,5K

Ich hitte gerne einmal deine Meinung beziiglich des Stromes
gehort, der durch die Widerstinde flieRt. Was denkst Du, wie es
sich mit diesem verhilt? Gehen wir dabei einmal davon aus, dass
der Strom von links nach rechts durch die Widerstinde fliefit.

Nun, der Strom miisste hinter jedem Widerstand geringer werden. Je
weiter rechts ich hinter jedem Widerstand messen wiirde, desto
geringer ist der Strom.

Kapitel 4: Elektronische Grundschaltungen

Tja Ardus, das stimmt nicht ganz. Der erste Teil deiner Aussage ist
korrekt, denn jeder einzelne Widerstand verringert den Stromfluss.
Dennoch wird im gesamten Stromkreis nur ein einziger Strom zu
messen sein, der an jeder Stelle gleich ist. Schauen wir uns das in
einer Schaltung an.

UL = ? U2 = ? u3 = ?

1e
&
&

)
-
7|

F

| ges = 7 U = 9y

Welche Werte sind in dieser Schaltung bekannt und welche sind
unbekannt, so dass sie berechnet werden miissen?

Bekannt: U, Ry, R, und R3
Unbekannt: Ly, Ug, Up und U
Da du jetzt weift, dass in einer Reihenschaltung der Strom I an

jeder Stelle konstant ist, kannst du die folgende Formel verwenden:

U
lgos = —= ————
9% " Rges Ri+ Ry + R;

=

Wenn du nun die Werte einsetzt, erhiltst du folgendes Ergebnis:

9V
I

e = = ?mA
2 T IF 1 3K + 15K

Da du jetzt einen Strom I=2mA ermittelst hast, der durch alle Bau-
teile flieRt, kannst du auch den Spannungsabfall an jedem einzel-
nen Widerstand berechnen. Die allgemeine Formel hierfiir lautet
folgendermaRen:

U=R"I
Die Losungsgleichungen sehen dann wie folgt aus:

Uy =1K-2mA = 2V

<« Abbildung 4-1
Eine Reihenschaltung von 3 Wider-
standen in einem Stromkreis

Widerstandsschaltungen

100

p

U, =2K-2mA =4V
Us = 1,5K-2mA =3V

Wenn du alle Teilspannungen (U, U,, Us) addierst, muss wieder
die Gesamtspannung U herauskommen.

Ul B u2 > u2 >

G ey . i
1 2K 1.9K
>

Der Spannungsabfall iiber einem Bauteil wird mit einem Pfeil
gekennzeichnet und weist in Stromrichtung von Plus nach Minus.

Das konnte fiir dich wichtig sein
Am Widerstand mit dem hochsten Wert féllt auch die hochste
Spannung ab.

Die Parallelschaltung

Bei einer Parallelschaltung befinden sich zwei oder mehr Bauteile
nebeneinander. Der Strom, der an einer solchen Schaltung
ankommy, teilt sich in mehrere Zweige auf.

1K

Es verhilt sich hier wie bei einem Flusslauf, der sich an einer Stelle
teilt und nach ein paar Kilometern wieder vereint wird. Der
Gesamtwiderstand errechnet sich wie folgt:

1 1 " 1 1 5 1
Rges Ry R, 1K 2K

Das Ergebnis fiir den Gesamtwiderstand R, lautet folgenderma-

ges
Ren:
Ry, = 666,67 Q

Werden mehr als zwei Widerstinde parallel geschaltet, dann musst
du die Formel um die entsprechende Anzahl von Summanden
erweitern:

Kapitel 4: Elektronische Grundschaltungen

L _1, 1 1
Ry Ry R Rn

Rges

Eine Schaltung mit zwei parallel geschalteten Widerstinden sieht
wie folgt aus:

U ? <« Abbildung 4-2

Eine Parallelschaltung mit zwei
Widerstdnden

+
E——

U =9V

Natirlich fliefit in dieser Schaltung auch ein geringer Strom durch
das Messgerit, das die Spannung tiber den Widerstinden misst,
doch das wollen wir hier vernachlissigen. Welche Werte sind in
dieser Schaltung bekannt und welche sind unbekannt, so dass sie
berechnet werden miissen?

Bekannt: U, R; und R,
Unbekannt: 1,,., [; und I,

ges>
Den Gesamtwiderstand haben wir mit 666,67 schon ermittelt. Auf
dieser Grundlage kannst du auch den Gesamtstrom Iy, vor der
Verzweigung recht einfach berechnen. Hier noch einmal zur Erin-

nerung:
[U
TR

Die Losung lautet:

Iges = m: 13,5mA

Wie ermittelst du jedoch die Teilstrome I; und I,? Das ist recht
simpel, denn du kennst den Widerstand jedes Teilzweiges und die

Widerstandsschaltungen 101

102

b

Spannung, die an jedem Widerstand anliegt, nicht wahr? Wenn
sich Bauteile parallel zueinander befinden, dann fillt an jedem ein-
zelnen die gleiche Spannung ab. In unserem Fall die 9V der Batte-
rie. Dann lass uns mal rechnen:

I _QV_") A
1—1K— m.

9V
L = K= 4,5mA

Wenn du beide Teilstrome I; und I, addierst, was mag dann wohl
herauskommen? Richtig, der Gesamtstrom.

1 1K
% I—b—-—
12 <K

Was sich vorne (also in der Abbildung links) verzweigt, wird am
Ende wieder zusammengefithrt und bildet die Summe der Teile.

Das konnte fiir dich wichtig sein
Sind mehrere Widerstande parallel geschaltet, dann ist der
Gesamtwiderstand kleiner als der kleinste Einzelwiderstand.

Hier ein Tipp hinsichtlich der Widerstandsgroflen. Wenn du zwei
Widerstidnde mit gleichen Werten parallel anschlief3t, dann ist der
Gesamtwiderstand genau die Hilfte des Einzelwiderstandes.
Rechne es doch einfach mal nach.

Der Spannungsteiler

In vielen Fillen moéchte man nicht unbedingt mit der vollen
Betriebsspannung von +5V arbeiten, um diverse Bauteile mit Span-
nung zu versorgen. Da du ja jetzt gelernt hast, dass Widerstinde
dazu genutzt werden, um z.B. Stréme zu verringern, mochte ich
dich mit einer Schaltung vertraut machen, die der Reihenschaltung
von Widerstinden gleicht. Die folgende Schaltung wird unbelaste-
ter Spannungsteiler genannt.

Kapitel 4: Elektronische Grundschaltungen

+5v O _L

ui|] |RL

=
] -
8]

uz2| |R2 u2

V

O

21
o}

Auf der linken Seite haben wir die Versorgungsspannung U = +5V
an den beiden Widerstinden R; und R, anliegen. Auf der rechten
Seite befindet sich der Abgriff U,, der sich parallel zum Widerstand
R, befindet. Wir greifen quasi eine Spannung zwischen den beiden
Widerstinden ab. Ein Teil der Versorgungsspannung fillt iiber R,
und der andere tiber R, ab. Zur Berechnung der Spannung an U,
kannst du folgende Formel nutzen:

R,

U, = :
2T R+ R,

u

[Hey stopp mal! Kannst du mir mal bitte erkliren, wie du auf diese }

Formel gekommen bist? Das ist mir irgendwie tiberhaupt nicht klar.

Ok, Ardus, kein Problem. Ich kann dir die Formel mittels einer Ver-
hiltnisgleichung plausibel machen. Ich stelle der anliegenden Span-
nung die entsprechenden Widerstinde gegentiber. Die Spannung U
liegt an den Widerstinden R; und R, an und U, lediglich am
Widerstand R,. Demnach kénnen wir folgende Verhiltnisglei-
chung aufstellen:

u U,
R,+ R, R,

Wenn du diese Formel nach U, umstellst, erhiltst du die o.g. For-
mel. Unter Umstdnden wollen wir die Schaltung aber moglichst
flexibel gestalten und nicht fir jeden gewiinschten Spannungs-
wert U, die Widerstinde austauschen. Aus diesem Grund ver-
wenden wir ein Bauteil, dass uns die Moglichkeit gibt, den
Widerstandswert schnell nach unseren Vorstellungen anzupas-

<« Abbildung 4-3
Der unbelastete Spannungsteiler

Widerstandsschaltungen

103

sen. Das Bauteil kennst du schon. Es heifit Potentiometer. Es ver-
fige Gber 3 Anschliisse und einen Drehknopf in der Mitte, mit
dessen Hilfe sich der Widerstandswert in den gegebenen Grenzen
justieren ldsst. Der mittlere Anschluss ist intern mit dem Schleifer
verbunden. Je nach Potentiometereinstellung kann der Wider-
stand dort abgegriffen werden. Schau dir die folgende Abbildung
an. Sie zeigt das Schaltbild eines Potentiometers, das der Schal-
tung des Spannungsteilers sehr dhnelt.

Abbildung 4-4 »
Der variable Spannungsteiler
mittels Potentiometer

+5Y

Potentiometer

U2

GND

Der Schleifer des Potentiometers ist Pin 2 in der Schaltung. Wenn
der Schleifer nach oben wandert, verringert sich der Widerstands-
wert zwischen Pin 1 und Pin 2 in dem Mafe, in dem er sich zwi-
schen Pin 2 und Pin 3 vergroflert. Wir konnen das Potentiometer
als zwei sich dndernde Widerstinde ansehen, mit einem Schleifer
als Teiler, der die beiden Widerstiande aufteilt. Die beiden folgen-
den Schaltungen zeigen das Verhalten des Potentiometers und die
resultierenden Wiederstinde R; und R;.

Abbildung 4-5v
Der variable Spannungsteiler
mittels Potentiometer

-0
O
uz uz2
-0 0
R1 < R2 R1 > R2

GND

o
=
=]

104 Kapitel 4: Elektronische Grundschaltungen

In der linken Schaltung siehst Du, dass der Widerstand R; kleiner
als R, ist. Das bedeutet, dass wir an R, die groflere Spannung mes-
sen werden, die ja auch die Ausgangsspannung U, ist. Das ist
eigentlich ganz logisch, denn wenn der Schleifer des Potentiometers
an Pin 2 immer weiter nach oben wandert, kommt er irgendwann
mit der Versorgungsspannung +5V in Bertthrung, die dann am
Ausgang zur Verfiilgung steht. Umgekehrt wird die Ausgangsspan-
nung immer kleiner, wenn der Schleifer des Potentiometers weiter
nach unten in Richtung Masse wandert. Wenn er dort angekom-
men ist, liegen am Ausgang OV an. Wir werden dieses Verhalten
nutzen, um z.B. die analogen Einginge des Mikrocontrollers mit
variablen Spannungswerten zu versorgen, die beispielsweise iiber
einem LDR oder NTC abfallen. Wie, du weiflt nicht mehr, was
diese Abkiirzungen bedeuten? Dann blittere noch einmal ein Kapi-
tel zuriick und mache dich schlau!

Kondensatorschaltungen

Kondensatoren dienen als Ladungsspeicher und wirken im Gleich-
stromkreis wie eine Unterbrechung. Es flieRt nur wihrend des Auf-
ladezyklus ein Ladestrom, der umso mehr abnimmt, je mehr der
Kondensator geladen ist. Dieser wiederum stellt am Ende dann eine
nicht mehr zu iiberwindende Hiirde fiir die Elektronen dar.

Reihen- und Parallelschaltungen

Genau wie Widerstinde kannst du auch Kondensatoren in unter-
schiedlichen Konstellationen zusammenschalten. Wir werden uns
hier, da wir im Moment ausschliefRlich mit Gleichstrom arbeiten,
nur auf die Kapazitit konzentrieren und nicht auf den Widerstand.
Ja, ein Kondensator hat ebenfalls einen Widerstand, der bei Wech-
selstrom frequenzabhingig ist. Kondensatoren verhalten sich
beziiglich ihrer Kapazititen bei Reihen- bzw. Parallelschaltungen
genau entgegengesetzt zu Widerstinden mit ihren Werten.

Die Reihenschaltung

Wenn du zwei oder mehr Kondensatoren in Reihe schaltest und die
Gesamtkapazitit ermitteln mochtest, kannst du hierzu die Formel
zur Berechnung des Gesamtwiderstandes in einer Parallelschaltung
verwenden.

|| | |
||

22pF c2l | 33pF

CL

Kondensatorschaltungen

105

106

Die Formel zur Berechnung der Gesamtkapazitit lautet wie folgt:

1 1 1 1

= +

= = 13,2pF
. G 2pF t agpr - P

Cg es

Die Parallelschaltung

Werden zwei oder mehr Kondensatoren parallel geschaltet, dann
kannst du die Formel fiir die Reihenschaltung bei Widerstinden
verwenden, um die Gesamtkapazitit zu ermitteln.

cel [22pF
L

c2l [22pF

Die Formel zur Berechnung der Gesamtkapazitit lautet folgender-
malflen:

Cges = C1 + (2

Du kannst die Parallelschaltung dieser beiden Kondensatoren leicht
verstehen, und du wirst sofort erkennen, warum sich die Gesamt-
kapazitit aus der Summe der beiden Einzelkapazititen zusammen-
setzt. Ich habe die Kondensatorplatten durch die blauen Punkte
einfach miteinander verbunden. Dadurch wurden die Platten ent-
sprechend vergrofert, so dass in der Summe eine Kapazitit aus bei-
den Einzelkondensatoren entstanden ist.

Ci| | 22pF
— -

c2l 122pF

Das Ergebnis wire in diesem Fall
Cyes = Cy + Cy = 22pF + 22pF = 44pF.

Also, wenn wir nur eine Gleichstrombetrachtung beziiglich der Kon-
densatoren durchfiithren, ist mir aber nicht ganz klar, wo derartige
Bauteile zum Einsatz kommen.

Kapitel 4: Elektronische Grundschaltungen

Vielleicht erinnerst du dich an die Stellen aus dem Elektronik-Kapi-
tel, in denen ich erldutert habe, dass Kondensatoren u.a. zur Span-
nungsglittung und -stabilisierung eingesetzt werden. Kommen wir
doch kurz auf die Spannungsstabilisierung zu sprechen. Wenn ein
Mikrocontroller an seinen zahlreichen Ausgingen sehr viele Ver-
braucher wie z.B. Leuchtdioden oder Motoren versorgen muss, die
moglicherweise alle zur gleichen Zeit aktiviert werden, dann kann
es schon zu kurzen Einbriichen der Versorgungsspannung kom-
men. Damit sich das nicht unmittelbar auf die Versorgung des
Mikrocontrollers auswirkt und hier vielleicht eine Unterversorgung
entsteht, so dass dieser seine Arbeit einstellt oder einen Reset
durchfiihrt, werden sogenannte Stiitzkondensatoren verwendet. Sie
werden parallel zu den beiden Anschliissen von V¢ (Voltage of
Common Collector = Positive Versorgungsspannung) bzw. Masse
des Controllers direkt neben dem Pins platziert. Ein Elektrolytkon-
densator von z.B. 100 uF speichert die Spannung und hilt diese
bei Einbriichen eine Weile aufrecht. Es handelt sich quasi eine USV
(Unterbrechungsfreie Stromversorgung) im Millisekunden Bereich.

Transistorschaltungen

Transistoren konnen sowohl Schaltelement als auch als Verstirker
sein. Die einfachste Transistorschaltung weist einen Basiswider-
stand und einen Verbraucher mit Vorwiderstand im Kollektor-
stromkreis auf und arbeitet als kontaktloser elektronischer
Schalter. Wir werden den Transistor vorwiegend als Schalter ein-
setzen, so dass ich auf eine entsprechende Erlduterung seiner Ver-
wendung als Verstirker aus Platzgriinden verzichte.

9 O+5V

LED-
Vorwiderstand

NPN-Transistor

<« Abbildung 4-6
Ein NPN-Transistor als Schalter

Transistorschaltungen

107

Abbildung 4-7 »

Steuer- und Arbeitsstromkreis
flieBen gemeinsam durch den
Transistor

108

Diese Schaltung hat sowohl einen Steuerstromkreis (links von der
Basis) als auch einen Arbeitsstromkreis (rechts von der Basis). Sehen
wir uns doch diese beiden Stromkreise einmal genauer an.

BE-Strom®
v

Der Steuerstrom Iy flieRt tiber die Basis-Emitter-Strecke (BE) des
Transistors, wohingegen der Arbeitsstrom I Gber die Kollektor-
Emitter-Strecke (CE) flieRt. Zwar wollte ich auf die Verwendung
des Transistors als Verstirker nicht eingehen, doch folgende For-
mel ist vielleicht interessant, denn mit ihrer Hilfe kannst du die
Stromverstarkung berechnen, die hier mit dem Buchstaben B ange-
geben ist:

_1e 300mA 6000
T Iy S0uA

Bei den in diesem Beispiel verwendeten Werten fiir Kollektor- bzw.
Basisstrom wird der Stromverstirkungsfaktor B = 6000 ermittelt. In
vielen Datenblittern wird der Stromverstirkungsfaktor B auch als
hgg angefiithrt. Die Verstarkung schont quasi den Ausgangspin des
Mikrocontrollers, der nur einen geringen Strom liefern muss, um
dann eine groflere Last (z.B. Relais, Motor oder Lampe) anzusteu-
ern, die erheblich mehr Strom benétigt, damit das betreffende Bau-
teil korrekt arbeiten kann. Wenn du den Schalter schliefit, liegen
am Vorwiderstand ca. +5V Betriebsspannung an. Der Transistor
schaltet durch und die Basis-Emitter-Spannung betrigt ca. +0,7V,
so dass die zuvor im gesperrten Zustand hochohmige Kollektor-
Emitter-Strecke niederohmig wird und der Arbeitsstrom flieRen
kann.

Hmm, wenn ich mir diese Schaltung anschaue, dann frage ich mich,
warum die Leuchtdiode tiber einen Transistor angesteuert wird und
nicht direkt tiber den Schalter. Macht das denn Sinn?

Kapitel 4: Elektronische Grundschaltungen

Was soll ich sagen, Ardus. Du hast ja Recht, denn diese Schaltung
soll dir lediglich zeigen, wie Steuer- und Arbeitsstromkreis zusam-
menarbeiten. Um lediglich eine Leuchtdiode anzusteuern, ist das
hier alles ein wenig oversized und nicht unbedingt notwendig.
Wenn du aber einen Verbraucher hast, der sehr viel Strom zieht,
den der Ausgang des Mikrocontrollers jedoch nicht in der Lage ist
zu liefern, dann benoétigst du eine Schaltung dhnlich der hier
beschriebenen. Erinnere dich an die Spezifikationen unseres Mikro-
controllers, der an einem einzigen Ausgang maximal 40mA zur Ver-
fugung stellen kann. Alles, was dartiber liegt, zerstort den
Controller. Du hast in deiner Bastelkiste vielleicht ein Relais, das
jedoch mit einer Spannung von 12V betrieben werden muss. Da
das Arduino-Board jedoch maximal 5V liefern kann, gibt es hier ein
Problem. Aber wer sagt uns denn itberhaupt, dass wir lediglich eine
einzige Stromquelle verwenden miissen? Du kannst mit zwei sepa-
raten Stromkreisen arbeiten. Hier ein Beispiel:

+12V
Q

Arduino

PWM
PWM
PWM

Freilaufdiode

Digital 1/0

VvCC
GND

Analog IN

AR

Negt

GND

7

GND

Was fillt uns auf? Nun, wir haben auf der linken Seite die +5V
Spannungsversorgung des Arduino-Boards und auf der rechten
Seite die des Relais mit +12V. Beide sind eigenstindige und unab-
hingige Stromquellen, die jedoch ein gemeinsames Massepotential
haben missen. Die beiden in der Schaltung gezeigten GND
(Ground)-Punkte sind miteinander verbunden.

I

I_Zpl Relais
) NPN-Transistor

A Abbildung 4-8

Der Arduino-Mikrocontroller steuert
liber einen Transistor ein Relais an
(Treiberschaltung).

Transistorschaltungen

109

(W) Achtung
Du darfst auf keinen Fall - ich wiederhole — auf keinen Fall die
beiden Versorgungsspannungspunkte +5V und +72V miteinan-
der verbinden! Das kracht auf jeden Fall und es wird mindes-
tens der Mikrocontroller zerstort.

Diese Diode, die sich parallel zum Relais befindet und sich Freilaufdi-
ode nennt, bereitet mir noch ein paar Kopfschmerzen. Wozu ist die
denn gut?

Da muss ich ein wenig ausholen, Ardus. Damit ein Relais arbeiten
kann und die Kontakte bei einem Stromfluss geschlossen werden,
bedarf es einer Spule, die ein Magnetfeld erzeugt und einen Anker
bewegt. Eine Spule wird in der Elektronik auch als Induktivitat
bezeichnet. Diese Induktivitit hat eine besondere Fihigkeit. Wenn
durch den sehr langen Draht der Spule ein Strom flielt, wird
dadurch ein Magnetfeld erzeugt. Soweit nichts Neues. Dieses Mag-
netfeld bewirkt jedoch nicht nur das Anziehen des Ankers, sondern
induziert in der Spule selbst eine Spannung. Dieser Vorgang wird
Selbstinduktion genannt. Die Spule zeigt uns dabei ein gewisses
MafRl an Widerspenstigkeit, denn die Induktionsspannung ist so
gerichtet, dass sie einer Anderung immer entgegen wirkt. Wenn ich
eine Spule mit Strom versorge, versucht die Selbstinduktionsspan-
nung, der eigentlichen Spannung entgegen zu wirken. Die eigentli-
che Spulenspannung baut sich erst langsam auf. Schalten wir
dagegen den Strom wieder ab, dann bewirkt die Anderung des
Magnetfeldes eine Induktionsspannung, die dem Spannungsabfall
entgegen wirkt und um ein vielfaches hoher sein wird, als die
urspriingliche Spannung. Das ist nun genau das Problem, dem wir
uns gegeniiber sehen. Das Einschalten mit der leichten Verzoge-
rung stellt kein Risiko fiir die Schaltung und dessen Bauteile dar.
Beim Abschalten jedoch muss dem extrem unerwiinschten Neben-
effekt der tiberhohten Spannungsspitze (>100V) in irgendeiner
Weise entgegengewirkt werden, damit die Schaltung anschliefend
noch zu gebrauchen ist. Die Uberlebenschancen fiir den Transistor
sind anderenfalls wirklich winzig. Aus diesem Grund wird eine
Diode parallel zum Relais platziert, um die Spannungsspitze zu blo-
cken bzw. den Strom in Richtung Spannungsquelle abzuleiten.

110 Kapitel 4: Elektronische Grundschaltungen

+é)2'v’ +%)2V

Sperrrichtung

Durchlassrichtung

-|- . B)durchgeschaitet Masse -« B >5perrt
+5V +5V
D\,.r_r E

Wird der Transistor im linken Schaltbild durchgesteuert, dann
zieht das Relais ein wenig verzogert an, so dass sich die gezeigten
Potentiale an der Diode einstellen, Plus an Kathode und Minus an
Anode. Das bedeutet, dass die Diode in Sperrrichtung arbeitet und
sich die Schaltung so verhilt, als wenn die Diode nicht vorhanden
wire. Wenn wir jedoch den Transistor mit Masse anschalten, fun-
giert er als Sperre, und durch die Anderung des Magnetfeldes der
Spule stellen sich die gezeigten Potentiale ein, Plus an Anode und
Minus an Kathode. Die Diode arbeitet in Durchlassrichtung und
leitet den Strom in Richtung Spannungsversorgung ab. Der Tran-
sistor bleibt verschont.

¥

<« Abbildung 4-9
Die Freilaufdiode schiitzt den
Transistor vor (berspannung.

Transistorschaltungen

m

Kapitel

Das Zusammenfiigen
der Bauteile

Scope

So langsam wird es ernst und wir wenden uns nach und nach der
Hardware zu, mit der du bald in Berithrung kommen wirst. Die
grundlegenden elektronischen Bauteile kennst du jetzt und es feh-
len dir eigentlich nur noch die Informationen, wo und wie du die
Bauteile befestigst bzw. miteinander verbindest. Wir stellen uns die
folgenden Fragen:

* Was sind Platinen?
* Was ist ein Steckbrett, auch Breadboard genannt?
* Was sind flexible Steckbriicken und welchen Nutzen haben sie?

* Kann man diese Steckbriicken vielleicht selbst giinstig und
ganz nach Bedarf herstellen?

Was ist eine Platine?

Um eine Schaltung permanent zu fixieren, verwendet man heutzu-
tage Platinen. Eine Platine ist eine diinne Platte von vielleicht 2mm
Stirke, die als Trager fiir diverse Bauteile dient und aus verschiede-
nen Materialien, wie z.B. Hartpapier oder Pertinax, hergestellt
wird. Es gibt unterschiedliche Arten von Platinen. Die professionell
hergestellten werden geitzt, so dass sich auf der Unterseite oder
auch Oberseite Leiterbahnen befinden, um die einzelnen Bauteile
elektrisch leitend miteinander zu verbinden. Das folgende Foto
zeigt eine solche Platine.

113

http://www.komputer.de

Abbildung 5-1

Professionell hergestellte Platine

mit gedtzter Unterseite
(Motor-Shield)

Abbildung 5-2 »
Semiprofessionell hergestellte

Platine mit manuell hinzugefiigten

114

Drahtbriicken

Natiirlich kannst du unter Einsatz des entsprechenden Equipments
und mit der erforderlichen Geschicklichkeit solche Resultate auch
zu Hause erzielen, doch das ist mit relativ viel Arbeit verbunden.
Wenn es etwas schneller gehen soll, was nicht zwangslaufig bedeu-
tet, dass das Ergebnis entsprechend unsauber wird und am Ende
nicht funktioniert, kannst du eine Lochrasterplatine verwenden. Sie
besteht aus vielen kleinen vorgebohrten Lochern, die einen
genormten Abstand (iiblicherweise 2,54 mm) zueinander haben,
und bietet dir damit die Flexibilitit, die benotigten Bauteile recht
frei zu platzieren. Du musst natiirlich die fehlenden Leiterbahnen
durch frei zu verlegende Drahtbriicken ersetzten.

Wenn du dir Miihe gibst und eine relativ ruhige Hand hast, kann
sich das Ergebnis durchaus sehen lassen. Moglicherweise ist dir
das aber immer zu viel, und nach meiner Erfahrung sind gerade
Einsteiger am Anfang recht experimentierfreudig und mochten
nicht sofort fertige Platinen fiir die halbe Ewigkeit herstellen,

Kapitel 5: Das Zusammenfiigen der Bauteile

dann gibt es eine viel charmantere Losung, mit der sich viel Arbeit
und Dreck vermeiden ldsst.

Das Steckbrett (Breadboard)

Das Steckbrett, auch Breadboard genannt, dient zur Aufnahme von
elektrischen sowie elektronischen Bauteilen, die {iber flexible Steck-
briicken miteinander verbunden werden kénnen. Auf diese Weise
testen sogar Profis neuartige Schaltungen, um ihre Funktionsfihig-
keit im Vorfeld zu iiberpriifen bzw. zu korrigieren, bevor sie sich
daranmachen, fertig geitzte Platinen in Serie herzustellen.

Wir sehen auf diesem Breadboard eine Unmenge an kleinen Buch-
sen, bei denen es sich um die Verbindungsstellen fiir die Anschliisse
der Bauteile bzw. Steckbriicken handelt, wobei immer nur ein
Anschluss in eine Buchse passt.

Wenn aber immer nur ein Anschluss in solch ein kleines Loch passt,
wie kann ich dann die Bauteile miteinander verbinden? Das verstehe
ich nicht so ganz.

Viele Buchsen des Breadboards sind intern miteinander verbun-
den, so dass pro Buchse noch weitere zur Verfiigung stehen, die
elektrische Verbindung untereinander aufweisen. So stehen dir in
der Regel immer genug Anschliisse zur Verfiigung, um die not-
wendigen Verbindungen herzustellen. Die Frage ist aber, nach
welchem Muster sind diese unsichtbaren Verbindungen innerhalb
des Boards aufgebaut? Schau her und staune. Die folgenden bei-
den Bilder zeigen dir sowohl ein Breadboard von auflen, als auch
von innen.

<« Abbildung 5-3
Ein Breadboard von aulSen

bzw. oben betrachtet (in stabiler

Seitenlage)

Das Steckbrett (Breadboard)

115

Ein

116

Abbildung 5-4
Breadboard von auRen (links)
und von innen (rechts)

Abbildung 5-5 »
Ein integrierter Schaltkreis auf
einem Breadbord

+
'

ABCDE ABCDE

20

N

@

-
)
T
<

n
)
T
<
a
5

[) 6 6)+
) 1 1)

+
'

Wenn du die beiden Bilder tibereinander legen wiirdest, dann
konntest du genau erkennen, welche Buchsen iiber eine leitende
Verbindung verfiigen. Doch ich denke, dass du auch auf diese
Weise gut erkennen kannst, was zusammen gehort. In jeder einzel-
nen Reihe (1 bis 41) bilden die Buchsen A bis E und F bis | einen
leitenden Block. Die beiden senkrechten Buchsenreihen in der
Mitte (+ bzw. -) stehen fiir die evtl. benétigte Stromversorgung an
mehreren Stellen zur Verfiigung. Ich werde zum besseren Verstind-
nis einfach einmal ein Bauteil mit mehreren Anschliissen auf dem
Steckbrett befestigen, damit du erkennst, worin der Vorteil derarti-
ger interner Verbindungen liegt.

ABCDE F GH

-—

[IHHII
I

freie Buchsen/Pin freie Buchsen/Pin

Kapitel 5: Das Zusammenfiigen der Bauteile

Dieser zukiinftige integrierte Schaltkreis mit ganzen 8 Beinchen
wird in die etwas groflere Liicke der beiden Verbindungsblocke A
bis E und F bis | gesteckt. Auf diese Weise hat jeder einzelne Pin
nach links bzw. nach rechts 4 zusitzliche Buchsen, die mit ithm
elektrisch verbunden sind. Dort kannst du sowohl weitere Bauteile
als auch Kabel hineinstecken. Es gibt iibrigens eine Menge unter-
schiedlicher Breadboards und fiir jeden Bedarf die passende GroRe.

<« Abbildung 5-6
Von ziemlich klein bis ganz schon
grof

Achtung (m)

Es gibt Breadboards, deren senkrechte Buchsenleisten, die
auch Power-Rails genannt werden, mittig eine elektrische
Unterbrechung aufweisen. Wenn du dir nicht sicher bist, ob du
ein derartiges Board gekauft hast, dann fiihre eine Durchgangs-
prifung mit einem Multimeter durch, in dem du eine Messung
zwischen dem obersten und dem untersten Pin einer einzel-
nen senkrechten Buchsenreihe vornimmst. Falls keine Verbin-
dung besteht und du eine durchgehende elektrische
Verbindung bendtigst, stelle sie Uber eine Steckbriicke her.

Das Steckbrett (Breadboard) 117

Abbildung 5-7 »
Gekaufte Flexible Steckbriicken
(low-cost)

Abbildung 5-8 »
Selbst hergestellte flexible
Steckbriicken an einem Umschalter

Die flexiblen Steckbriicken

Die Steckbriicken, die notwendig sind, damit einzelne Bauteile auf
dem Board miteinander in Verbindung treten kénnen, sind, wenn
du sie in annehmbarer Qualitit kaufen mochtest, recht teuer.

Es gibt sie in unterschiedlichen Farben und Liangen und sind — ich
miisste ligen, wenn ich etwas anderes behaupten wiirde — ganz
passabel. Fur einen Einsteiger reichen sie allemal und vergleichs-
weise giinstig lassen sie sich z.B. bei der Firma KOMPUTER.DE
(www.komputer.de) beziehen. Ganze 70 Stiick in 4 Farben sind fiir
knapp 4,00€ erhiltlich. Sie nennen sich Patchkabel oder Low Cost
Jumper Wires.

Kann ich die nicht selbst herstellen?

Ja, ich habe mir selbst einige Steckbriicken hergestellt und dazu
bedarf es nicht sehr viel. Der Vorteil: Man kann sich den flexiblen
Draht — auch Schaltlitze genannt — in der benétigten Stirke, den
erforderlichen Farben und natiirlich der passenden Lingen selbst
aussuchen. Das folgende Bild zeigt dir einen Umschalter, an den ich
drei der selbst hergestellten flexible Steckbriicken gelstet habe.

118

Kapitel 5: Das Zusammenfiigen der Bauteile

http://www.komputer.de

Auf diese Weise kannst du natiirlich alle von dir benétigten Bau-
teile wie z.B. Potentiometer, Motoren, Servos oder Schrittmotoren
mit diesen Anschliissen versehen. Dadurch gestaltet sich die Hand-
habung wirklich flexibel und die Zeit, die du vorher in das Herstel-
len der Steckbriicken bzw. Kabel investiert hast, wird im
Nachhinein wieder eingespart.

Folgende Materialien benotigst du zur Herstellung der flexiblen
Steckbriicken:

¢ Versilberter CU-Draht (0,6mm)
* Schaltlitze in der von dir bevorzugten Dicke (max. 0,5mm?)
* Schrumpfschlauch 3:1 (1,5/0,5)

<« Abbildung 5-9
Benétigte Materialien fiir flexible
Steckbriicken

Schaltlitze

Versilberter CU-Draht

Schrumpfschlauch /

Das folgende Werkzeug ist erforderlich:
* Feuerzeug
* Lotkolben
* Lotzinn
* Seitenschneider und ggf. eine Abisolierzange

Wenn du sehen mochtest, wie eine flexible Steckbriicke hergestellt
wird, dann besuche meine Homepage. Dort findest du einen Link
auf das Video. Ich mochte dir hier die einzelnen Phasen der Herstel-
lung einmal kurz zeigen.

Die flexiblen Steckbriicken 119

120

Abbildung 5-10

Die einzelnen Phasen bei der
Herstellung von flexiblen
Steckbriicken

Schritt 1

Die Schaltlitze auf die gewiinschte Linge kiirzen.

Schritt 2

Die Schaltlitze an beiden Enden ca. 0,5 cm abisolieren.

Schritt 3

Die Enden der Schaltlitze mit Lotzinn verzinnen.

Schritt 4
Den versilberten Kupferdraht an die Enden der Schaltlitze l6ten.

Schritt 5

Die zuvor abgeschnittenen Stiicke des Schrumpfschlauches (ca. 1
c¢m) auf die beiden Enden schieben, so dass sowohl die Lotstellen
als auch ein Teil der Isolierung der Schaltlitze abgedeckt werden.

Schritt 6

Die beiden Stiicke des Schrumpfschlauches mit einem Feuerzeug
ca. 3-4 Sekunden erhitzen, so dass der Schlauch schrumpft und
sich dem Draht anpasst. Fithre die Flamme aber nicht zu dicht an
den Schlauch, denn sonst verschmort er und hat keine Zeit zum
Schrumpfen.

Kapitel 5: Das Zusammenfiigen der Bauteile

Kapitel
Nitzliches Equipment

Scope

Kein Arbeiter kann ohne sein Handwerkszeug auskommen, denn
alles nur mit den Hidnden und den Zihnen zu erledigen, wird auf
die Dauer ein wenig mithsam und auch schmerzhaft. Ich moéchte
dir deswegen die folgenden Werkzeuge ans Herz legen. Wenn du
tiber einige Grundgeritschaften verfiigst, macht alles gleich doppelt
so viel SpafS.

Nitzliches Equipment

Wenn du schon einmal einen Blick in ein professionelles Elektronik-
labor oder eine Elektronikwerkstatt geworfen hast und du dich
wirklich fiir die Thematik interessierst, dann konntest du sicher
deine Begeisterung kaum verbergen. Die Vielfalt an Messgeriten
mit den vielen farbigen Kabeln und diversem Werkzeug ist fur
einen Laien uniiberschaubar und ldsst ihn ehrfirchtig staunen.
Jedenfalls ging es mir beim ersten Mal so, als mich mein Vater mit
zu seinen Arbeitsplatz genommen hat. Er arbeitete damals an
einem der vielen Windkanile des Deutschen Zentrums fiir Luft- und
Raumfahrt (DLR). Aber wie dem auch sei, alle haben einmal klein
angefangen. Ich mochte die Werkzeuge, die ich dir hier vorstelle, in
zwei Kategorien einordnen. Da in der Elektronik wie auch in der
Programmierung Englisch die Standardsprache ist, verwende auch
ich an dieser Stelle Ausdriicke, die sich mehr oder weniger einge-
biirgert haben.

121

122

Abbildung 6-1 »
Diverse Zangen

Kategorie 1
Must have! (Das Werkzeug ist unentbehrlich fiir deine Arbeit)

Kategorie 2

Nice to have! (Es ist nicht unbedingt erforderlich, das genannte
Werkzeug zu besitzen, doch es konnte einerseits die Arbeit erleich-
tern und andererseits auch das Ego befriedigen, um dann beispiels-
weise zu sagen: Ja, ich habe ein wahnsinnig tolles Messgerdt! Ich
kann es mir leisten.

Diverse Zangen

Die folgende Abbildung zeigt dir ein kleines Set, das die gebriauch-
lichsten Zangen fiir einen Bastler beinhaltet.

1. Einen Seitenschneider zum Durchtrennen von Kabeln

2. Eine Spitzzange zum Greifen und Fixieren von kleinen Bautei-
len

3. Eine Flachzange besitzt im Gegensatz zu einer Spitzzange brei-
tere Backen und kann dadurch eine groflere Kraft auf das zu
greifende Objekt ausiiben

4. Eine gebogene Zange bietet eine bessere Moglichkeit etwas zu
greifen, das recht versteckt und unzuginglich platziert ist

In meinen Augen fillt das Zangenset in die Kategorie: Must have!

Kapitel 6: Niitzliches Equipment

Die Abisolierzange

Eine Abisolierzange ist ein Werkzeug, das das Entfernen von Kabel-
ummantelungen erleichtert, um an den blanken Draht heran zu
kommen. Zwar ist auch ein Seitenschneider hierzu geeignet, doch
wenn du hier zu viel Kraft auf die Ummantelung austibst, dann hast
du schnell das Kabel um ein Stuck kiirzer gemacht.

<« Abbildung 6-2
Eine Abisolierzange

Dieses Werkzeug fillt bei mir in die Kategorie: Nice to have.

Schraubendreher

Kleine Uhrmacherschraubendreher eignen sich hervorragend zum
Festschrauben von Kabeln an Schraubklemmen, wie du das auf
dem folgenden Foto siehst.

Achtung @

Uhrmacherschraubendreher sind nicht isoliert und leiten den
Strom, da sie komplett aus Metall sind. Grundsatzlich solltest du
erst an einer Schaltung arbeiten, wenn sie wirklich spannungs-
los ist.

Nitzliches Equipment

Abbildung 6-3 »
Ein Set Uhrmacherschraubendreher

Wenn du ein IC auf einem Breadboard befestigt hast und es entfer-
nen mochtest, ohne dass sich die Anschlussbeinchen um 90° ver-
drehen und moglicherweise abbrechen, kannst du auch hierzu
einen passenden Uhrmacherschraubendreher verwenden.

Wenn du dies mit den blofen Fingern versuchen solltest, kann dir
das passieren, was du hier auf dem nichsten Bild siehst.

Du solltest also immer recht vorsichtig mit den empfindlichen
Beinchen eines IC’s umgehen. Wenn das hier Gezeigte ein- oder
zweimal geschieht, dann ist das noch ok. Werden die Anschluss-
beinchen aber einem groferen Stresstest unterzogen, dann konnten
sie sich schnell in Wohlgefallen auflésen. Die Uhrmacherschrau-
bendreher fallen eindeutig in die Kategorie: Must have!

Ein IC-Ausziehwerkzeug

Das Loésen eines IC’s vom Breadboard klappt zwar mit einem
Schraubendreher unter Beriicksichtigung der enormen Hebelwir-
kung ganz gut, doch der ambitionierte Elektroniker benutzt hierfiir
ein spezielles Tool, das noch nicht einmal teuer ist. Das Werkzeug
sieht aus wie Mamas Zuckerzange und kann in Notfillen auch die-
sen Zweck erfiillen, doch primir wurde es fiir das Loslésen eines
integrierten Schaltkreises z.B. von einem Breadboard entwickelt.
Ich wirde sagen, dass es in die Kategorie Nice to have fillt und
nicht unbedingt erforderlich ist, da sich — wie schon gezeigt — die
betreffenden Arbeiten, wenn Sie vorsichtig vorgehen, auch mit
anderen Mitteln bewerkstelligen lassen.

124

Kapitel 6: Niitzliches Equipment

<« Abbildung 6-4
IC-Ausziehwerkzeug

Ein digitales Multimeter

Bei einem Multimeter handelt es sich um ein Vielfachmessgerit, das
in der Lage ist, elektrische Grolen zu erfassen bzw. zu messen.

<« Abbildung 6-5
Drei verschiedene digitale
Multimeter

Die Gerite umfassen ein mehr oder weniger grofes Spektrum an
Messmoglichkeiten. Die meisten von Thnen weisen jedoch folgende
Grundfunktionalititen auf:

e Ermitteln des Widerstands eines Bauteils

* Priifen eines Stromkreis auf Durchgang (Durchgangspriifer mit
Ton)

* Messen von Gleichspannung / -strom
* Messen von Wechselspannung / -strom
* Ermitteln der Kapazititen von Kondensatoren

* Uberpriifen der Transistoren auf Funktionsfihigkeit

Nitzliches Equipment

126

Abbildung 6-6 »
Das Oszilloskop

Wie du siehst, ist das eine ganze Menge und in der Regel ausrei-
chend. Das Messgeriit fillt in die Kategorie: Must have! Es gibt sie
in diversen Preisklassen mit mehr oder weniger Funktionalitit,
doch in der Regel kannst du mit allen Geriten Widerstandsmessun-
gen vornehmen, Stromkreise auf Durchgang priifen und Strom-
bzw. Spannungsmessungen durchfithren. Die einfachsten Multime-
ter bekommst du schon fiir unter 10€, mit denen du auch schon
sehr gut arbeiten kannst. Auf der nach oben offenen Preisskala fin-
dest du natiirlich viele weitere Gerite mit zusitzlichen Funktionen,
die aber fiir einen Einsteiger alle in die Kategorie Nice to have fallen.
Die entsprechende Entscheidung muss dann je nach dem zur Ver-
figung stehenden Geldbeutel getroffen werden.

Achtung

Bevor du anfdngst, mit deinem Multimeter etwas zu messen,
musst du dich vergewissern, dass sich der Drehschalter zur Ein-
stellung der elektrischen Messgrofe auf der richtigen Position
befindet. Wenn du zB. einen Widerstandswert eines Bauteils
ermittelt hast (die Bestimmung eines Widerstandswertes muss
immer im spannungslosen Zustand erfolgen) und danach eine
anliegende Spannung messen, kann es u.U. dem Multimeter
schaden, wenn du vergisst, den Messmodus auf die richtige
Position zu stellen.

Das Oszilloskop

Das Oszilloskop gehort schon zur Konigsklasse der Messgerite. Es
kann z.B. Spannungsverliufe grafisch darstellen und eignet sich u.
a. hervorragend zur Fehlersuche.

Es gehort absolut in die Kategorie: Nice to have. Es macht jedoch
wahnsinnig SpaR, sich mit diesem Gerdt auseinanderzusetzen und

Kapitel 6: Niitzliches Equipment

Einsteigergerite sind schon fir knapp unter 300€ zu bekommen.
Ich werde in diesem Buch einige Male Gebrauch von einem Oszillo-
skop machen, um dir zeitliche Verliufe von Spannungen an
bestimmten Messpunkten einer Schaltung zu zeigen. Es eignet sich
hervorragend zu Demonstrationszwecken und hilft beim Verstind-
nis komplexer Vorginge.

Externe Stromversorgung

Dein Arduino-Board wird zwar iiber den USB-Anschluss mit Strom
versorgt und das reicht fur einige Experimente sicherlich aus, doch
wir kommen auch zu Schaltungen, mit denen wir z.B. einen Motor
ansteuern wollen, der zum Betrieb etwas mehr Saft braucht, wie
man so schon sagt. In diesem Fall ist eine externe Stromversorgung
unerlisslich, da ansonsten das Arduino-Board Schaden nehmen
wiirde.

Hier kommt es natiirlich auch wieder auf den Anwendungszweck an,
wobei ein Steckernetzteil in der Regel viel giinstiger ist als ein regel-
bares Labor-Netzgerit. Bei dem hier gezeigten Steckernetzteil wer-
den verschiedene Ausgangsspannungen angeboten, die iiber einen
kleinen Drehschalter ausgewihlt werden konnen. Es sind Spannun-
genvon3V, 5V, 6V, 7,5V, 9Vund 12V einstellbar. Eine weitere Kenn-
groRe ist der maximale Strom, den ein Netzgerit in der Lage ist zu
liefern. Je mehr Strom, desto teurer wird es. Dieses hier hat einen
maximalen Strom von 800mA, wohingegen das regelbare Netzgeriit
1,5A liefern kann. Preislich gesehen sind nach oben hin keine Gren-
zen gesetzt, so wie das eigentlich fiir fast alles im Leben gilt. Der Preis
dieses Labor-Netzgeriites mit einer analogen Anzeige liegt bei etwa
50 Euro, wohingegen das Steckernetzteil nur um die 15 Euro kosten
mag. Mit der folgenden Konstruktion kannst du dein Arduino-Board
iiber eine 9V Blockbatterie versorgen.

<« Abbildung 6-7

Ein stabilisiertes, regelbares Labor-
Netzgerat (1,5V — 15V Gleich-
strom) und ein Steckernetzteil

Nitzliches Equipment

127

Abbildung 6-8
Spannungsversorgung iiber eine 9V
Blockbatterie

Was du dafiir benotigst sind:
* ein 9V Batterieclip
e ein 2,1mm Stecker
* eine 9V Blockbatterie

Auf dem folgenden Bild siehst Du, wie der Batterieclip und der Ste-
cker miteinander verlotet wurden.

Abbildung 6-9 »
Spannungsversorgung iiber eine 9V
Blockbatterie

Achte unbedingt auf die korrekte Polung, so dass der Pluspol (+)
sich in der Mitte des Steckers befindet und der Minuspol (-) an der
sichtbaren silbernen Ummantelung. Kontrolliere nach dem Aufste-
cken der Batterie mit einem Multimeter die Polung der Anschliisse,
bevor du iiber den Stecker eine Verbindung mit deinem Arduino-
Board herstellst.

Eine Widerstands-Biegelehre

Als ich mich bei der Konzeption dieses Buches dem folgenden
Werkzeug zuwandte, habe ich erst einmal gestutzt und nachge-
forscht, wie denn die genaue Bezeichnung dafiir lautet. Es hat mich
schon einiges an Googelei gekostet, bis ich auf den richtigen Namen
Widerstands-Biegelehre stie. Wenn mich einer vorher danach

128 Kapitel 6: Niitzliches Equipment

gefragt hitte... Nun ja, das ist ein Plastikteil, mit dem man Wider-
stainde biegen kann, also eigentlich nicht die Widerstinde selbst,
sondern die Anschlussdrihte.

Das sieht ja schon irgendwie merkwiirdig aus und ist doch ein sehr
sinnvolles Tool. Fiir mich fillt es eindeutig in die Kategorie: Must
have! Es kann schon in eine irrsinnige Frickelei ausarten, wenn du
versuchst, die Anschlussdrihte eines Widerstandes so zu biegen,
dass sie problemlos in die Lécher einer Lochrasterplatine flutschen.
Ich finde, dass das Herstellen und Aussehen einer Platine etwas mit
Kunst zu tun hat und isthetisch ansprechend sein sollte. Wie sieht
das denn aus, wenn die Bauteile krumm und schief darauf platziert
wurden? Da hat wohl jemand keine richtige Lust gehabt oder es
fehlte ihm das richtige Werkzeug. Die Standard Lochrasterplatine
hat, wie schon einmal erwihnt, einen Lochabstand von 2,54mm.
Eben diese Biegelehre hat fiir unterschiedliche Widerstandsdimen-
sionen (mit Dioden geht das natiirlich genauso gut) verschiedene
Auflageflichen, in die die Widerstinde hineingelegt werden kén-
nen. Du musst dann lediglich die Anschlussdrihte mit den Fingern
stramm nach unten biegen und hast auf jeden Fall einen Abstand
der parallel nach unten weisenden Drihte, der immer ein Vielfa-
ches eines Lochabstandes betrigt. Das Bauteil passt dann wunder-
bar auf die Lochrasterplatine.

Fiir das Platzieren von Bauteilen auf einem Breadboard musst du
dieses Verfahren natiirlich nicht anwenden, denn eine Schaltung
wird dort nicht fiir immer und ewig fixiert werden. Da kann es
ruhig schon ein wenig wilder aussehen, als auf einer Platine. Den-

<« Abbildung 6-10
Eine Widerstandsbiegelehre
(ugs.: Biegeklotz)

<« Abbildung 6-11
Einlegen, Biegen, Fertig!

Nitzliches Equipment

129

130

Abbildung 6-12
Eine Lotstation mit einer
Rolle Létzinn

noch solltest du auch hier ein wenig Sorgfalt an den Tag legen,
denn es ist schnell ein Kurzschluss erzeugt, der das Funktionieren
der Schaltung und ggf. auch das Leben der Bauteile gefihrdet.

Der Lotkolben inklusive Lotzinn

Ein Lotkolben ist zum Basteln unerlisslich und fillt in meinen
Augen auf jeden Fall in die Kategorie Must have.

e
a0
250,

J
e

Eine Lotstation ist natiirlich dahingehend besser, als dass sie im
Gegensatz zu einem Lotkolben die Temperatur der Lotspitze regeln
kann, was gerade fiir temperaturempfindliche Bauteile wie inte-
grierte Schaltkreise unter Umstinden iiberlebenswichtig ist. Fiir
einen Einsteiger reicht in der Regel jedoch ein Lotkolben (teilweise
schon fiir um die 10 Euro erhiltlich) vollkommen aus und ist auch
preislich gesehen etwas attraktiver als eine Lotstation (Einstiegsmo-
delle schon ab 40 Euro). Wenn es aber spiter in diesem Buch um
das Herstellen kleiner Platinen geht, dann wirst du wohl sicherlich
um die Anschaffung eines solchen hoherpreisigen Lotwerkzeugs
nicht herum kommen. Die Entscheidung liegt aber ganz bei dir.

Die Entl6tpumpe

Wenn du deine Bauteile auf einer Platine festgelotet hast und es aus
irgendeinem Grund wieder entfernt werden (z.B. weil ein defektes
oder falsches Bauteil eingeldtet wurde), dann hast du ein Problem.
Bei einem zweibeinigen Bauteil konntest du noch Gliick haben. Du
erhitzt den ersten Lotpunkt mit dem Lotkolben, so dass er wieder
flussig wird, und ziehst das Bauteil an der Bauteilseite nach oben.

Kapitel 6: Niitzliches Equipment

Genauso gehst du dann beim zweiten Lotpunkt vor. Stelle dir aber
jetzt einmal einen Transistor mit 3 Anschliissen vor. Wenn du den
ersten Lotpunkt erhitzt hast, halten zwei weitere Beinchen ihn in
seiner aktuellen Position und das Herauslosen ist fast unmoglich.

Achtung
Wenn du ein elektronisches Bauteil mit einem Lotkolben Uber
einen ldngeren Zeitraum erhitzt, dann besteht die Gefahr der
Uberhitzung und damit der Zerstérung. Gerade Halbleiter sind
in puncto Hitze sehr empfindlich!

Jetzt kommt die Entlétpumpe ins Spiel.

Sie sieht fast aus, wie eine Spritze, hat jedoch am vorderen Ende
keine Nadel, sondern eine mehr oder weniger groRe Offnung. Auf
der gegentiberliegenden Seite befindet sich ein Druckknopf, mit
dem du einen unter Federdruck stehenden Kolben in die Pumpe
schieben kannst. Er rastet am Ende ein. Driickst du jetzt auf den
kleinen Knopf, dann schnellt der Kolben in die Ausgangsposition
zurlick und erzeugt so an der Spitze der Pumpe kurzzeitig einen
Unterdruck, der das zuvor verfliissigte Lotzinn einsaugt und die
Lotstelle mehr oder weniger vom Lotzinn befreit. Es ist ein wenig
Ubung bzw. das richtige Timing erforderlich, um die Pumpe richtig
einzusetzen, das Lotzinn zu erhitzten und im richtigen Augenblick
den Ausloser zu driicken. Am besten iibst du auf einer alten Platine
mit Bauteilen, die du nicht mehr benétigst oder die schon kaputt
sind. Dann kann im Ernstfall nichts schief gehen.

<« Abbildung 6-13
Eine Entlotpumpe

Nitzliches Equipment

Kapitel

Grundlegendes zur
Programmierung

In Kapitel 2 hast du schon so einiges iiber die Programmierung
erfahren. Ich habe dir das erste Programm gezeigt, das im Arduino-
Umfeld Sketch genannt wird, und einige allgemeine Informationen
zur Programmiersprache C bzw. C++ angefithrt. Doch was Pro-
grammieren eigentlich wirklich bedeutet, dartiber haben wir noch
kein einziges Wort verloren. Wir wissen, dass hierzu eine Maschine
benotigt wird, sei es ein PC, ein Mac oder ein Mikrocontroller wie
auf unserem Arduino-Board, die iiber eine Schnittstelle zu uns Men-
schen verfiigt. Eine solche Maschine besitzt keine eigene Intelli-
genz. Sie ist ohne unser Zutun nichts weiter als ein Stiick Hardware
und zu eigenstdndigem Handeln nicht in der Lage. Hard- bzw. Soft-
ware leben quasi in einer Zwangsymbiose, denn keiner kann ohne
den anderen auskommen. Erst die Programme hauchen der Hard-
ware eine gewisse Form von Leben ein und lassen sie Dinge tun, die
sich der Programmierer, also Du, erdacht hat.

Was ist ein Programm
bzw. ein Sketch?

Bei der Programmierung haben wir es in der Regel mit zwei Baustei-
nen zu tun.

Programmbaustein 1: Der Algorithmus

Der Sketch soll eigenstindig eine bestimmte Aufgabe erledigen.
Aus diesem Grund wird ein sogenannter Algorithmus erstellt, der
eine (An-)Sammlung von Einzelschritten beinhaltet, die fiir ein
erfolgreiches Ergebniserforderlich sind. Ein Algorithmus ist also

133

134

eine Rechenvorschrift, der wie ein Waschzettel abgearbeitet wird.
Stell’ dir einmal vor, du mdchtest eine kleine Holzkiste bauen, um
dein Arduino-Board dort unterzubringen, damit alles etwas scho-
ner bzw. aufgerdumter aussieht und es auch deinen Freunden
gefillt. Du baust dann ja auch nicht einfach drauf los und kaufst
Holz, in der Hoffnung, dass alles nachher auch irgendwie zusam-
menpasst. Es muss also ein Plan her, der zum Beispiel folgende
Punkte beinhaltet:

* Was sind die Mafle der Kiste?
* Welche Farbe soll sie haben?
* An welchen Stellen miissen Offnungen gebohrt werden, damit

z.B. Schalter oder Lampen platziert werden kénnen?

Wenn du das Material besorgt hast, folgt die eigentliche Arbeit, die
in in einer ganz bestimmten Reihenfolge erledigt wird:

* Holzplatten fixieren
* Holzplatten auf entsprechende MaRe zuschneiden
* Kanten mit Schmirgelpapier bearbeiten

* FEinige Holzplatten mit Lochern versehen, damit die Anschliis-
sen angebracht werden kénnen

* Holzplatten zusammenschrauben
* Kiste lackieren

* Arduino-Board einbauen und mit Schalter bzw. Lampe verka-

beln

Das sind viele Einzelschritte, die notwendig sind, um das gesteckte
Ziel zu erreichen. Genauso verhilt es sich beim Algorithmus.

Programmbaustein 2: Die Daten

Sicherlich hast du z.B. auch die MafSe der Kiste sorgfiltig auf dem
Plan vermerkt, damit du wihrend des Baus immer mal wieder
einen Blick darauf werfen kannst. Es soll ja spiter auch alles gut
zusammenpassen. Diese Mafe sind vergleichbar mit den Daten
eines Sketches. Der Algorithmus nutzt zur Abarbeitung seiner Ein-
zelschritte temporire Werte, die ihm fiir seine Arbeit hilfreich sind.
Dazu verwendet er eine Technik, die es ihm ermoglich Werte abzu-
speichern und spiter wieder abzurufen. Die Daten werden namlich
in sogenannten Variablen im Speicher abgelegt und sind dort jeder-
zeit verfiigbar. Doch dazu spiter mehr.

Kapitel 7: Grundlegendes zur Programmierung

Was bedeutet Daten-
verarbeitung?

Unter Datenverarbeitung verstehen wir das Anwenden eines Algo-
rithmus, der unter Zuhilfenahme von Daten andere Daten abruft,
sie dann tiber unterschiedliche Berechnungen verindert und spiter
wieder ausgibt. Dieses Prinzip wird EVA genannt:

* Eingabe

* Verarbeitung

* Ausgabe

<« Abbildung 7-1
Das EVA-Prinzip

Was sind Variablen?

Ich hatte schon kurz erwihnt, dass Daten in Variablen abgespei-
chert werden. Sie spielen in der Programmierung eine zentrale Rolle
und werden in der Datenverarbeitung genutzt, um Informationen
jeglicher Art zu speichern. Du kannst fiir den Begriff Variable auch
Platzhalter verwenden, obwohl das heutzutage niemand wirklich
macht, aber das bringt es wirklich auf den Punkt. Eine Variable
belegt innerhalb des Speichers einen bestimmten Platz und hilt ihn
frei. Der Computer bzw. Mikrocontroller verwaltet jedoch diesen
(Arbeits-)Speicher mit seinen eigenen Methoden. All dies erfolgt
mittels kryptischen Bezeichnungen, die sich unsereins bestimmt
schlecht merken kann. Aus diesem Grund kannst du Variablen mit
aussagekriftigen Namen versehen, die intern auf die eigentlichen
Speicheradressen verweisen.

Was bedeutet Datenverarbeitung?

Abbildung 7-2
Eine Variable zeigt auf einen
Speicherbereich im Arbeitsspeicher.

0x14BC231F

0x14BC2320

il

ledPin

0x14BC2321

0x14BC2322

0x14BC2323

UIIE

In dieser Abbildung sichst Du, dass die Variable mit dem Namen
ledPin auf eine Startadresse im Arbeitsspeicher zeigt. Du kannst sie
auch als eine Art Referenz betrachten, die auf etwas Bestimmtes
verweist. In Kapitel 2 habe ich dir einen kurzen Sketch prisentiert,
der u.a. die folgende Codezeile beinhaltete:

int ledPin = 13; // Variable mit Pin 13 deklarieren + initialisieren

Hier siehst du die Verwendung einer Variablen mit dem Namen
ledPin, der der numerische Wert 13 zugewiesen wurde. Spéter im
Sketch wird diese Variable ausgewertet und weiter verwendet.

Verrate mir doch bitte noch eines. Was bedeutet das kleine Wort int
vor dem Variablennamen?

Ja genau! Das kleine Wortchen int ist die Abkiirzung fiir das Wort
Integer. Integer ist ein Datentyp und wird in der Datenverarbeitung
dazu verwendet, um Ganzzahlen zu kennzeichnen, womit wir
schon beim nichsten Punkt wiren.

Die Datentypen

Wir sollten uns nun ein wenig mit den unterschiedlichen Datenty-
pen und der Frage, was ein Datentyp Uberhaupt ist und warum es
so viele unterschiedliche gibt, beschiftigen. Der Mikrocontroller
verwaltet seine Sketche und Daten in seinem Speicher. Dieser Spei-
cher ist ein strukturierter Bereich, der iiber Adressen verwaltet wird
und Informationen aufnimmt oder abgibt, wobei Informationen in
Form von Einsen und Nullen gespeichert werden. Die kleinste logi-
sche Speichereinheit ist das Bit, das eben die zwei Zustinde 1 oder
0 speichern kann. Stelle es dir als eine Art elektronischen Schalter
vor, der ein- bzw. ausgeschaltet werden kann. Da du mit einem Bit
lediglich zwei Zustinde abbilden kannst, sind natiirlich mehrere

136

Kapitel 7: Grundlegendes zur Programmierung

Bits zur Speicherung der Daten sinnvoll und notwendig. Der Ver-
bund aus 8 Bits wird 1 Byte genannt und erméglicht es, 28 = 256
unterschiedliche Zustinde zu speichern. Die Basis 2 wird verwen-
det, weil es sich um ein bindres System handelt, das lediglich zwei
Zustinde kennt. Wir kénnen mit 8 Bits also einen Wertebereich
von 0 bis 255 abdecken. Das uns vertraute Dezimalsystem hat als
Basis die Zahl 10. Doch siehe selbst, wie sich die einzelnen Stellen-
wertigkeiten ergeben:

Potenzen 100 102 101 100
Wertigkeit 1000 100

Bitkombination @ . . .

Natiirlich kannst du den Wert sofort ablesen, doch fiir jemanden,
der ausschlieRlich im Binirsystem zu Hause ist, ist das nicht sofort
ersichtlich und er muss die einzelnen Stellen addieren. Das wire in
diesem Fall

2-10°+1- 101 +7 - 1024+ 4 - 10% = 4712

Die Summierung habe ich bei der Stelle mit dem niedrigsten Wert
begonnen und in Richtung der Stelle mit dem héchstem Wert fort-
gesetzt. Doch zuriick zum Datentyp byte. In der folgenden Grafik
siehst du die 8 Bits eines Bytes, die einen bestimmten dezimalen
Wert reprisentieren.

Potenzen bl 26 25 24 23 22 21 20
Wertigkeit 128

(1)) DD DD

Jede einzelne Stelle hat eine bestimmte Wertigkeit. Die Umrech-
nung in eine Dezimalzahl ergibt sich ebenfalls aus der Addition der
einzelnen Stellenwertigkeiten:

1-2°40-2'4+1-2241-2%41-2%40-2540-25+1-27 =157

Hier ergibt sich die Zahl 157. Diese 8 Bits nehmen im Speicher
natiirlich einen gewissen Raum ein, der zur Speicherung einer Zahl
von 0 bis 255 benotigt wird. Fur kleinere Rechenoperationen ist
das méglicherweise vollkommen ausreichend, und deshalb wurde
der Datentyp byte mit dem genannten Wertebereich erschaffen.

<« Abbildung 7-3
Das Dezimalsystem und seine

Stellenwertigkeiten fiir die ersten 4

Stellen

<« Abbildung 7-4

Die 8 Bits eines Bytes mit seinen

Stellenwertigkeiten

Was bedeutet Datenverarbeitung?

137

Abbildung 7-5 »

Die 16 Bits des Datentyps »int«

(positive Zahl)

Abbildung 7-6

Die 16 Bits des Datentyps »int«

138

(negative Zahl)

Wenn wir jedoch mit Werten > 255 arbeiten mochten, stofRen wir
hier an die Grenzen des machbaren. Zur Berechnung grofRerer
Werte wurde der nichsthohere Datentyp geschaffen. Er nennt sich
int und steht, wie schon erwihnt, fiir Integer. Es wurden einfach 2
Bytes zu einem Verbund zusammengefasst, so dass jetzt ein grofe-
rer Wertebereich zur Verfiigung steht.

Ok, lass mich iiberlegen: Das wiren dann 216 = 65.536 Bitkombinati-
onen, also ein Wertebereich von 0 bis 65.535, richtig?

Fast, Ardus! Mit den 65.536 Bitkombinationen liegst du natiirlich
richtig, doch der Wertebereich ist nicht ganz der, den du angege-
ben hast. Du hast eines nicht bedacht oder konntest es auch nicht
wissen. Es gibt nicht nur positive, sondern auch negative Zahlen,
und die miissen ebenfalls in diesem Datentyp int untergebracht
werden. Dazu hat man sich folgendes einfallen lassen. Wenn ein
Datentyp sowohl fiir positive, als auch negative Zahlen vorgesehen,
wird ein spezielles Bit dafiir verwendet, eine Vorzeicheninforma-
tion zu speichern — quasi ein Flag. Dieses Flag ist in der Regel das
hochstwertigste Bit, das MSB (Most Significant Bit) genannt wird.
Dabei liegt es dann natiirlich in der Natur der Sache, dass far die
Abbildung des eigentlichen Wertes ein Bit weniger zur Speicherung
zur Verfligung steht. Schauen wir uns das einmal an zwei Beispielen
an. Zuerst haben wir eine positive Zahl, was du daran erkennst,
dass das Vorzeichenbit den Wert 0 hat.

Hoherwertiges Byte) Niederwertiges Byte

Netto:Information

Potenzen _2° 2" 2" o " o ¥ Fi Y o ¥ 3 P 2)
wess NHDHOOLEOOEODODH
MSB LSB

T Vorzeichenbit (0=positiv, 1=negativ)
Der dargestellten Bitkombination entspricht der dezimale Wert
+26181. Die gleiche Bitkombination mit einem Vorzeichenbit von

1 schaut dann wie folgt aus:

Hoherwertiges Byte . Niederwertiges Byte

Netto:Information

2

Potenzen _2° 2" 2" » ")°) P P A I R A
S nnn000n000000000
MSB LB

T Vorzeichenbit (0=positiv, 1=negativ)

Kapitel 7: Grundlegendes zur Programmierung

Wert -26181 zu tun. Das habe ich verstanden!

[Ok, das ist einfach. Bei dieser Bitkombination haben wir es mit dem }

Und schon bist du reingefallen. Dem ist leider nicht so. Die letzte
Bitkombination entspricht nicht dem negativen Wert des Wertes
+26181. Ein Test wiirde es ans Licht bringen. Um einen negativen
bindren Wert in einen positiven umzuwandeln, sind zwei Schritte
notwendig:

e Das Invertieren aller Bits (aus 1 wird 0 und aus 0 wird 1)

¢ Das Hinzuaddieren des Wertes 1

Eine Bemerkung am Rande
Die Invertierung aller Bits wird Einerkomplementbildung
genannt und ist eine Operation bei Bindrzahlen. Wenn am
Ende noch der Wert 7 hinzuaddiert wird, nennt man den
gesamten Prozess Zweierkomplementbildung.

Bei der Addition von Binirzahlen gelten folgende Regeln:

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Die Addition der einzelnen Stellen erfolgt analog zu der uns
bekannten Berechnung im Dezimalsystem. Schauen wir uns diese
Prozedur fiir eine andere Bindrkombination genauer an:

Hoherwertiges Byte Niederwertiges Byte

Potenzen 2" 2" _o°

Bitkombination @@@@m@@@@@@
00000000000000008E
0000000000000000s

Die unterste Bitkombination ergibt den dezimalen Wert +6.587.
Dies ist der negative Dezimalwert der obersten Bitkombination.
Wir kénnen also sagen, dass Folgendes gilt:

1110011001000101 = -6.587

« Tabelle 7-1
Addition einer Binarstelle

<« Abbildung 7-7
Ermitteln der negativen
Dezimalzahl

Was bedeutet Datenverarbeitung?

139

140

Abbildung 7-8
Eine positive Bindrzahl

Abbildung 7-9 »
Eine negative Binarzahl

Der Wertebereich des Datentyps int erstreckt sich von -32.768 bis
+32.767 und ist somit um einiges umfangreicher und flexibler als
der Datentyp byte.

Das mit den negativen Zahlen habe ich durchaus verstanden, doch
der Sinn der Bildung des Zweierkomplementes ist mir schleierhaft.
Doch warum betreibt man diesen Umstand? Es miisste doch reichen,
eine positive in eine negative Zahl zu konvertieren, wenn das Vorzei-
chenbit von 0 auf 1 gesetzt wird.

Ich mochte dir erst einmal beipflichten, denn auf den ersten Blick
scheint das reine Willkiir zu sein. Doch es steckt ein tieferer Sinn
dahinter, den wir jetzt erschlieRen wollen. Nehmen wir doch der
Einfachheit halber eine 8-Bit Zahl, der aber nicht der eben gezeigte
Datentyp byte Zugrunde liegt, denn dieser war ja vorzeichenlos.

Potenzen 7 X P 23 22 21 20
Wertigkeit 128 64 32 16

oo ooooooM

Diese positive Zahl (das MSB ist 0) stellt einen dezimalen Wert von
86 dar. Wenn du es mit mehreren Werten unterschiedlicher Zah-
lensysteme zu tun hast, macht es Sinn, die zugehérige Basis in klei-
neren Ziffern dahinter zu setzen. Ok, dann wollen wir daraus also
eine negative Zahl machen, indem wir lediglich das Vorzeichenbit
von 0 auf 1 dndern. Das vermeintlich richtige Ergebnis wire das
Folgende:

Potenzen 7 2S 24 23 2Z 21 20
Wertigkeit 128 64

s 1) (1) () ()) DD @) -

Wenn wir an dieser Stelle die Festlegung treffen wiirden, dass das
der negative Wert der eben gezeigten positiven Zahl ist, wire
zunichst alles ok. Damit kénnten wir leben. Doch in der Datenver-
arbeitung werden nicht nur Werte gespeichert und angezeigt. Es
wird auch mit ihnen gerechnet. Und da laufen wir in ein Problem
hinein. Nehmen wir einmal an, du wolltest einen Wert, sagen wir
+1, hinzuaddieren, was ja bedeutet, dass das Ergebnis um den
Wert 1 groRer wird, als der Ursprungswert. Sehen wir uns das wie-
der auf Bitebene an:

Kapitel 7: Grundlegendes zur Programmierung

Potenzen 2 26 25 24 23 22 21 20 < Abbildung 7-10
Das Ergebnis der Addition (wohl
Wertigkeit 128

Bltkomblnatlon . . @ . @ . @ @ nicht ganz richtig!)
Addition + 1 @@@@@@@n +1
Ergebnis @@@:

Na, fillt dir etwas auf? Trotz Addition eines positiven Wertes ist
das Ergebnis um den Wert 1 kleiner geworden. -86 + 1 = -87 ???
Auf diese Art und Weise kommen wir also nicht zum Ziel. Jetzt
wenden wir das eben angepriesene Einerkomplement auf den
Ursprungswert an. Ich werde dabei aber auch direkt auf das
nichste Problem hinweisen, das sich bei einer ganz besonderen
Zahl ergibt. Von jedem Wert kann ich das negative Pendant bilden,
in dem ich ein negatives Vorzeichen davor setze, so auch bei der
Zahl 0. Aber 0 und -0 sind absolut identisch und es besteht kein
arithmetischer Unterschied.

<« Abbildung 7-11
7 6 5 4 3 2 1 0
Potenzen 2 2 2 2 2 2 2 2 Zwei Bitkombinationen fiir den

Wertigkeit 128 gleichen Wert

poboannog
poboobnor

Das kann aber so nicht akzeptiert werden, da die Eindeutigkeit
nicht gewihrleistet ist. Aus diesem Grund wird der Wert 1 hinzu-
addiert, was in Summe die Zweierkomplementbildung ergibt. Dieses
Verfahren hast du gerade eben bei einer 16-Bit Zahl kennengelernt.
In der nachfolgenden Tabelle findest du ein paar Beispiele zu positi-
ven bzw. negativen Werten:

Positiver Wert Negativer Wert | Ta.belle 72
Positive und entsprechende

119= 00000001, ~Typ=T11T1T11, negative Werte
6449 = 01000000, -6449= 11000000,
8049 = 01010000, -8049= 10110000,

Hier habe ich eine kurze Frage an dich: Angenommen, du findest
die Bitkombination 10110010, im Speicher vor und jemand fragt

Was bedeutet Datenverarbeitung? 141

142

dich, welchem dezimalen Wert diese entspricht, kannst du ihm
dann eine eindeutige Antwort geben?

Klar, warum denn nicht? Ich habe doch jetzt die notwendigen Infor-
mationen, um eine erfolgreiche Konvertierung durchfiithren zu kén-
nen.

Nein, du hast noch nicht alle Informationen bekommen! Es wurde
dir lediglich die Bitkombination gezeigt, aber nicht der zugrunde
liegende Datentyp. Es existieren aber noch weitere 16-Bit Datenty-
pen, die ebenfalls genutzt werden kénnen, da die zugrunde lie-
gende Programmiersprache C bzw. C++ ist. Da haben wir z.B. den
Datentyp unsigned int, der ebenfalls ein Ganzzahltyp ist, jedoch —
wie das Wort unsigned = vorzeichenlos sagt — nur positive Werte
speichern kann. Ich mochte an dieser Stelle erwihnen, dass es den-
noch einige Unterschiede gibt, die von Compiler zu Compiler vari-
ieren konnen, da einige 2 Bytes und andere 4 Bytes verwenden, um
den Datentyp zu verwalten. In unserem Fall haben wir es aber mit 2
Bytes zu tun, was bedeutet, dass sich der Wertebereich von 0 bis
+65.535 erstreckt.

Halt, halt! Ich verstehe den ganzen Aufwand nicht so recht. Warum
wird nicht ein einziger Datentyp geschaffen, der groR genug dimensi-
oniert ist, um alle moglichen Werte aufzunehmen? Dann hitten wir
die ganzen Probleme mit den unterschiedlichen Wertebereichen
nicht, die sich niemand merken kann.

Ok, du meinst also, wir sollten einen Datentyp schaffen, der eine
Datenbreite von beispielsweise 16 Bytes hat und mit dem man fir
alle Eventualititen gertistet ist. Denken wir einmal scharf nach. Der
Speicherplatz in einem Mikrocontroller ist begrenzt und kann,
anders als bei einem PC, nicht einfach nach Belieben erweitert wer-
den. Fiir jede kleine Variable, die lediglich von 0 bis 255 zihlen
muss, wiirde eine 16-fache Uberdimensionierung in Kauf genom-
men. Wenn du nun einmal alle benétigten Variablen in deinem
Sketch aufsummierst, dann hast du schnell die Grenzen des zur
Vertiigung stehenden Speicherplatzes erreicht. Um dies zu verhin-
dern, wurden unterschiedliche Datentypen mit unterschiedlichen
Datenbreiten bzw. Wertebereichen geschaffen, so dass eigentlich
fir jeden Anwendungszweck eine entsprechende Auswahl getrof-
fen werden kann. Mit der Zeit hast du auch die wichtigsten Werte-
bereiche verinnerlicht und musst nicht mehr in einer Tabelle

Kapitel 7: Grundlegendes zur Programmierung

nachschauen. Apropos Tabelle: Ich liste hier fiir den Anfang einmal
die wichtigsten Datentypen auf, mit denen du in Zukunft konfron-
tiert werden wirst.

Dytentyp Wertebereich Datenbreite Beispiel «Tabelle 7"_?'
" Datentypen mit entsprechenden
byte 0bis 255 1Byte byte wert = 42; Wertebereichen
unsignedint Obis 65.535 2 Bytes unsigned int sekunden = 46547;
int -32.768 bis 2 Bytes int ticks = -325;
32.767
long 2" bis 2°1-1 4 Bytes long wert = -3457819;
float -3.4*10%bis 4Bytes float messwert = 27.5679;
34*10°8
double siehe float 4 Bytes double messwert = 27.5679;
boolean true oder false 1Byte boolean flag = true;
char -128 bis 127 1Byte char mw = 'm';
String variabel variabel String name = "Erik Bartmann";
Array variabel variabel int pinArray[] = {2, 3, 4, 5};

Die hier gezeigten Datentypen werden wir mehr oder weniger im
vorliegenden Buch spiter noch verwenden, so dass ich an dieser
Stelle nicht weiter darauf eingehen mochte.

Ich habe noch eine kurze Frage: Was passiert eigentlich, wenn ich
z.B. eine Variable vom Datentyp byte habe und beim Hochzihlen das
Maximum von 255 iiberschritten wird? Kommt es dann zu einem
Fehler?

Das sollte man tatsichlich vermuten, doch es kommt in diesem Fall
zu keinem Fehler und der Variableninhalt beginnt wieder bei 0 zu
zihlen.

Was sind Schleifen?

In einem Sketch kann zur Berechnung von Daten das Ausfithren
vieler einzelner wiederkehrender Schritte erforderlich sein. Wenn
es sich bei diesen Schritte z.B. um immer gleichartige Befehlsaus-
fihrungen handelt, dann ist es weder sinnvoll noch praktikabel,
diese Befehle in grofler Anzahl untereinander zu schreiben und
sequentiell, also hintereinander, ausfithren zu lassen. Aus diesem
Grund wurde in der Datenverarbeitung ein spezielles programm-
technisches Konstrukt geschaffen, das die Aufgabe hat, ein Pro-

Was bedeutet Datenverarbeitung? 143

144

Abbildung 7-12 »
Grundsatzlicher Aufbau einer
kopfgesteuerten Schleife

grammstiick, bestehend aus einem oder auch aus mehreren
Befehlen, mehrfach hintereinander auszufithren. Wir nennen dies
eine Schleife. Schauen wir uns an, wie eine Schleife grundsitzlich
aufgebaut ist. Es gibt zwei unterschiedliche Schleifenvarianten:

* kopfgesteuerte Schleifen

* fullgesteuerte Schleifen

Beiden Varianten ist gemeinsam, dass sie eine Instanz besitzen, die
die Kontrolle dariiber tibernimmt, ob und wie oft, die Schleife
durchlaufen werden muss. Des Weiteren ist dieser Instanz ein ein-
zelner Befehl oder ein ganzer Befehlsblock (Schleifenkorper) ange-
gliedert, der durch die Instanz gesteuert und abgearbeitet wird.

Kopfgesteuerte Schleifen

Bei kopfgesteuerten Schleifen befindet sich die Kontrollinstanz im
Schleifenkopf, der sich — wie der Name vermuten ldsst — am oberen
Ende der Schleife befindet. Das bedeutet wiederum, dass der Ein-
tritt in den ersten Schleifendurchlauf von der Auswertung der
Bedingung abhingt und ggf. nicht stattfindet. Die Schleife wird also
moglicherweise tiberhaupt nicht ausgefiihrt.

Ausfiihrung

Kontrollinstanz

[Schleifenkopf

Schleifenkorper

— Ausfiihrungsblock

Die Verwendung des Plurals kurz vorher in der entsprechenden
Uberschrift ist schon ein Hinweis darauf, dass es verschiedene
Typen von Kopfschleifen gibt, die in unterschiedlichen Situationen
zum FEinsatz kommen.

Kapitel 7: Grundlegendes zur Programmierung

for-Schleife

Die for-Schleife kommt immer dann zum Einsatz, wenn vor Beginn
des Schleifenaufrufs eindeutig feststeht, wie oft die Schleife durch-
laufen werden soll. Werfen wir dazu einen Blick auf das Flussdia-
gramm, das zur grafischen Wiedergabe des Programmflusses dient.

<« Abbildung 7-13
(Start) Das Flussdiagramm einer
»for«-Schleife

Laufvariable
initialisieren

wgung false

true

Anweisung(en)

Laufvariable
reinitialisieren

?

In der Schleife kommt eine Variable mit der Bezeichnung Laufvari-
able zum Einsatz. Sie wird in der Bedingung einer Bewertung unter-
zogen, die dariiber entscheidet, ob und wie oft die Schleife
durchlaufen wird. Der Wert dieser Variablen wird in der Regel im
Schleifenkopf bei jedem neuen Durchlauf modifiziert, so dass die
Abbruchbedingung irgendwann erreicht sein sollte, wenn du kei-
nen Denkfehler gemacht hast. Hier ein kurzes Beispiel, auf das wir
spéter noch genauer eingehen werden.

for(int 1 = 0; 1 < 7; i++)
pinMode(ledPin[i], OUTPUT);

Was bedeutet Datenverarbeitung? 145

146

Abbildung 7-14 »
Das FluBdiagramm einer
»while«-Schleife

Zu detaillierten Beispielen kommen wir noch in den einzelnen
Kapiteln.

while-Schleife

Die while-Schleife wird dann verwendet, wenn sich erst zur Laufzeit
der Schleife ergeben soll, ob und wie oft sie zu durchlaufen ist.
Wenn wihrend des Schleifendurchlaufes z.B. ein Eingang des
Mikrocontrollers kontinuierlich abgefragt bzw. {iberwacht wird
und bei einem bestimmten Wert eine Aktion durchgefithrt werden
soll, dann bist du mit dieser Schleife gut bedient. Wir wollen mal
schauen, wie das entsprechende Flussdiagramm aussieht:

Bedingung

true

Anweisung(en)

Die Abbruchbedingung befindet sich bei dieser Schleife ebenfalls
im Kopf. Es wird dort jedoch keine Modifikation der in der Bedin-
gung angefithrten Variablen vorgenommen. Sie muss im Schleifen-
korper erfolgen. Wenn dies vergessen wird, dann haben wir es mit
einer Endlosschleife zu tun, aus der es kein Entrinnen gibt, solange
der Sketch lduft. Auch hierzu ein kurzes Beispiel:

while(i » 1) // Kontrollinstanz

{
Serial.println(i);
i=1-15

}

Kapitel 7: Grundlegendes zur Programmierung

FuRgesteuerte Schleife

Kommen jetzt zur fufSgesteuerten Schleife. Sie wird so genannt, weil
die Kontrollinstanz im Schleifenfufs beheimatet ist.

« Abbildung 7-15
Grundsétzlicher Aufbau einer
fuBgesteuerten Schleife

— Ausfiihrungsblock

Ausfiihrung

Schleifenkorper

v : —

[Schleifenfu8

Kontrollinstanz

Thr Name lautet do...while-Schleife. Da die Auswertung der Bedin-
gung erst am Ende der Schleife stattfindet, kénnen wir zunichst
einmal festhalten, dass sie mindestens einmal ausgefiithrt wird.

<« Abbildung 7-16

(Start) Das Flussdiagramm einer
»do-while«-Schleife

Anweisung(en)

Bedingung

Diese Schleife wird recht selten Verwendung finden, doch der Voll-
stindigkeit halber wollte ich sie dir dennoch nicht vorenthalten. Die
Syntax gleicht der der while-Schleife, wobei du aber erkennen kannst,
dass die Kontrollinstanz am Fuf der Schleife untergebracht ist.

147

Was bedeutet Datenverarbeitung?

148

do
{

Serial.println(i);
i=1-1;
} while(i > 1); // Kontrollinstanz

Was sind Kontrollstrukturen?

In Kapitel 2 hast du u.a. schon etwas iiber Befehle erfahren. Sie tei-
len dem Mikrocontroller mit, was er zu tun hat. Ein Sketch besteht
aber in der Regel aus einer ganzen Reihe von Befehlen, die sequenti-
ell abgearbeitet werden. Das Arduino-Board ist mit einer bestimm-
ten Anzahl von Ein- bzw. Ausgingen versehen, an die du diverse
elektrische bzw. elektronische Komponenten anschlieffen kannst.
Wenn der Mikrocontroller auf bestimmte Einfliisse von auflen rea-
gieren soll, schlief3t du z.B. einen Sensor an einen Eingang ein. Die
einfachste Form eines Sensors ist ein Schalter oder Taster. Wenn
der Kontakt geschlossen wird, soll z.B. eine LED leuchten. Der
Sketch muss also eine Moglichkeit haben, eine Entscheidung zu
treffen. Ist der Schalter geschlossen, dann versorge LED mit Span-
nung (LED leuchtet), ist der Schalter offen, dann trenne die LED
von der Spannungsversorgung (LED wird dunkel).

Wir werfen zu Beginn wieder einen Blick auf das Flussdiagramm,
das uns zeigt, wie der Ablauf der Sketchausfihrung in bestimmte
Bahnen gelenkt wird, so dass es sich nicht mehr um einen linearen
Verlauf handelt. Der Sketch steht beim Erreichen einer Kontroll-
struktur an einem Scheideweg und er muss schauen, wie es weiter

Kapitel 7: Grundlegendes zur Programmierung

gehen soll. Als Entscheidungsgrundlage dient ihm eine Bedingung,
die es zu bewerten gilt. Programmtechnisch nutzen wir die if-
Anweisung. Es handelt sich um eine Wenn-Dann-Entscheidung.

Bedingung

<« Abbildung 7-17
Das Flussdiagramm einer
»if«-Kontrollstruktur

true

Anweisung(en)

(Ende)

Wurde die Bedingung als wahr erkannt, dann folgt die Ausfiihrung
einer oder auch mehrerer Anweisungen. Hier wieder ein kurzes Bei-
spiel:

if(tasterStatus == HIGH)
digitalWrite(ledPin, HIGH);

Wenn mehrere Befehle in einer if-Anweisung ausgefithrt werden
sollen, musst du einen Befehlsblock mit den geschweiften Klammer-
paaren bilden. Er wird dann als komplette Befehlseinheit ausge-

fithrt:

if(tasterStatus == HIGH)

{
digitalWrite(ledPin, HICGH);
Serial.println("HIGH-Level erreicht.");

}

Es gibt noch eine erweiterte Form der if-Kontrollstruktur. Es han-
delt sich dabei um eine Wenn-Dann-Sonst-Entscheidung, die sich
aus einer if-else-Anweisung ergibt. Das entsprechende Flussdia-
gramm sieht wie folgt aus:

Was bedeutet Datenverarbeitung?

149

150

Abbildung 7-18 p
Das Flussdiagramm einer
»if-else«-Kontrollstruktur

Bedingung

true

Anweisung(en) Anweisung(en)

|
(Ende)

Das folgende Codebeispiel zeigt dir die Syntax der if-else-Anwei-
sung:

if(tasterStatus == HIGH)
digitalWrite(ledPin, HIGH);
else
digitalWrite(ledPin, LOW);

Sei kommunikativ und sprich dariiber

Wenn Menschen sich einander mitteilen wollen, um z.B. Gefiihle
auszudriicken oder Informationen weiterzugeben, dann erfolgt das
iber Sprache in miindlicher oder schriftlicher Form. Nur so kén-
nen wir etwas erfahren und unser Wissen und das Verstindnis
mehren. Unwissenheit und Unverstidndnis iiber einen lingeren
Zeitraum frustriert. Doch nun zum eigentlichen Thema. Wenn
man sich als Programmierer eines Problems annimmt und kodiert,
dann ist es sicher sinnvoll, sich hier und da ein paar Notizen zu
machen. Manchmal hat man einen Geistesblitz oder eine geniale
Idee und ein paar Tage spiter — mir geht es jedenfalls des Ofteren
so — fillt es dann schwer, sich an die einzelnen Gedankenginge
detailiert zu erinnern. Was habe ich da bloR programmiert und
warum habe ich es so und nicht anders gemacht? Natiirlich kann
jeder Programmierer eigene Strategien fiir das Ablegen geeigneter
Notizen entwickeln: Collegeblock, Riickseite von Werbeprospek-

Kapitel 7: Grundlegendes zur Programmierung

ten, Word-Dokumente etc. Alle diese Methoden haben jedoch ent-
scheidende Nachteile:

* Wo habe ich denn blo meine Notizen hingelegt?
* Sind sie auch auf dem neusten und aktuellsten Stand?
* Jetzt kann ich nicht mal meine eigene Schrift lesen!

* Wie kann ich meine Notizen einem Freund zur Verfiigung stel-
len, der auch an meiner Programmierung interessiert ist?

Das Problem ist die Tennung von Programmiercode und Notizen,
die dann keine Einheit bilden. Wenn die Notizen verloren gehen,
wird es fiir dich unter Umstinden recht schwierig, alles noch ein-
mal zu rekonstruieren. Und jetzt stelle dir deinen Freund vor, der
absolut keine Ahnung hat, was du mit deinem Code erreichen woll-
test. Da muss eine andere Losung her: Du kannst innerhalb deines
Codes Anmerkungen bzw. Hinweise hinterlegen und das genau an
der Stelle, fiir die sie gerade relevant sind. So hast du alle Informati-
onen genau da, wo sie benotigt werden.

Einzeiliger Kommentar

Schaue dir einmal das folgende Beispiel aus einem Programm an:

int ledPinRotAuto = 7; // Pin 7 steuert rote LED (Autoampel)
int ledPinGelbAuto = 6; // Pin 6 steuert gelbe LED (Autoampel)
int ledPinGruenAuto = 5; // Pin 6 steuert griine LED (Autoampel)

Hier werden Variablen deklariert und mit einem Wert initialisiert.
Zwar sind recht aussagekriftige Namen ausgewihlt, doch ich
denke, es ist recht sinnvoll, noch einige kurze erginzende Anmer-
kungen anzuftthren. Hinter der eigentlichen Befehlszeile wird ein
Kommentar eingefiigt, der durch zwei Schrigstriche (Slashes) ein-
geleitet wird. Warum ist das notwendig? Ganz einfach! Der Compi-
ler versucht natiirlich alle vermeintlichen Befehle, die an ihn
herangetragenen werden, zu interpretieren und auszufithren. Neh-
men wir doch einfach einmal den ersten Kommentar:

Pin 7 steuert rote LED (Autoampel)

Es handelt sich um einzelne Elemente eines Satzes, die der Compi-
ler jedoch nicht versteht, da es sich nicht um Anweisungen handelt.
Es kommt bei dieser Schreibweise zu einem Fehler beim Kompilie-
ren des Codes. Die beiden // maskieren jetzt aber diese Zeile und
teilen dem Compiler mit: Hey Compiler. Alles, was nach den beiden

Was bedeutet Datenverarbeitung?

151

152

Schragstrichen folgt, ist nicht fiir dich relevant und kann getrost von
dir ignoriert werden. Es handelt sich um eine Gedankenstiitze des
Programmierers, der mal wieder zu ddmlich ist, sich die einfachsten
Sachen iiber einen lingeren Zeitraum (> 10 Minuten) zu merken. Sei
etwas nachsichtig mit ihm! Mittels dieser Schreibweise wird ein ein-
zeiliger Kommentar eingefiigt.

Mehrzeiliger Kommentar

Wenn du jedoch tiber mehrere Zeilen etwas schreiben mochtest,
z.B. etwas, das deinen Sketch in groben Ziigen beschreibt, kann es
lastig sein, vor jede Zeile zwei Schragstriche zu positionieren. Aus
diesem Grund gibt es noch die mehrzeilige Variante, die folgender-
maRen aussieht:

/*
Autor: Erik Bartmann
Scope: Ampelsteuerung
Datum: 31.01.2011
HP: www.erik-bartmann.de
*/

Dieser Kommentar hat eine einleitende Zeichenkombination /*und
eine abschliefende Zeichenkombination *. Alles, was sich zwi-
schen diesen beiden Tags (ein Tag ist eine Markierung, die zur
Kennzeichnung von Daten benutzt wird, die eine spezielle Bedeu-
tung haben) befindet, wird als Kommentar angesehen und vom
Compiler ignoriert. Alle Kommentare werden von der Arduino-
Entwicklungsumgebung mit der Farbe Grau versehen, um sie
sofort kenntlich zu machen.

Die Struktur eines Arduino-Sketches

Wenn du einen Sketch fiir dein Arduino-Board schreiben méchtest,
dann sind bestimmte Dinge unbedingt zu beachten. Damit der
Sketch lauffihig ist, benotigt er zwei programmtechnische Kon-
strukte, die in dieselbe Kategorie fallen. Es handelt sich um soge-
nannte Funktionen, die quasi den Sketch-Rahmen bilden. Doch
schauen wir uns zuerst einmal an, was eine Funktion tiberhaupt ist.
Bisher hast du einzelne Befehle kennengelernt, die fiir sich alleine
stehen und nicht unbedingt einen Bezug zueinander haben. Es ist
aber moglich, mehrere Befehle zu einer logischen Einheit zusam-
menzufassen und diesem Konstrukt dann einen aussagekriftigen
Namen zu geben. Anschliefen rufst du den Funktionsnamen wie

Kapitel 7: Grundlegendes zur Programmierung

http://www.erik-bartmann.de

einen einzelnen Befehl auf und alle hierin enthaltenen Befehle wer-
den als Einheit ausgefiihrt. Stellen wir vorab einige Uberlegungen
an, wie ein solcher Sketchablauf vonstattengehen kann. Angenom-
men, du mochtest eine Wanderung unternehmen und bestimmte
Dinge mit auf den Weg nehmen. Dann packst du zu Beginn einma-
lig deinen Rucksack mit den bendétigten Sachen und wanderst los.
Wihrend deiner Tour greifst du immer mal wieder in den Ruck-
sack, um dich zu stirken oder z.B. um dich auf der Landkarte zu
vergewissern, dass du noch auf dem richtigen Weg bist. Im {ibertra-
genen Sinne liuft es genau so in einem Sketch ab. Da erfolgt beim
Start einmalig die Ausrithrung einer bestimmten Aktion, um z.B.
Variablen zu initialisieren, die spiter verwendet werden sollen. Im
Anschluss werden in einer Endlosschleife bestimmte Befehle immer
und immer wieder ausgefiihrt, die den Sketch auf diese Weise am
Leben erhalten. Werfen wir einen Blick auf die Struktur des Sket-
ches, wobei ich die grundlegenden Bereiche in 3 Blocke unterteilt

habe.
Sketch-Start
Deklarierung + L Block 1
Initialisierung
einmaliges —
Ausfiihren S Plock2
immerwahrendes | Block 3
Ausfiihren 0op() o

Diese Blocke sind folgende:

Block 1: (Die Deklarierung und Initialisierung)

In diesem ersten Block werden z.B. — falls notwendig — externe
Bibliotheken tiber die #include-Anweisung eingebunden. Wie das
funktioniert, wirst du spder erfahren. Des Weiteren ist hier der
geeignete Platz zur Deklaration globaler Variablen, die innerhalb

<« Abbildung 7-19
Die grundlegende Sketch-Struktur

Die Struktur eines Arduino-Sketches

153

154

des kompletten Sketches sichtbar sind und verwendet werden kon-
nen. Mittels der Deklaration wird festgelegt, welchem Datentyp die
Variable zugeordnet sein soll. Bei der Initialisierung hingegen wird
die Variable mit einem Wert versehen.

Block 2: (Die setup-Funktion)

In der setup-Funktion werden meistens die einzelnen Pins des
Mikrocontrollers programmiert. Es wird also festgelegt, welche der
Pins als Ein- bzw. Ausginge arbeiten sollen. An manchen werden
z.B. Sensoren wie Taster oder temperaturempfindliche Wider-
stinde angeschlossen, die Signale von auflen an einen entsprechen-
den FEingang leiten. Andere wiederum leiten Signale an Ausginge
weiter, um z.B. einen Motor, einen Servo oder eine Leuchtdiode
anzusteuern.

Block 3: (Die loop-Funktion)

Die loop-Funktion bildet eine Endlosschleife, in der die Logik
untergebracht ist, iber die kontinuierlich Sensoren abgefragt oder
Aktoren angesteuert werden. Beide Funktion bilden zusammen mit
ihrem Namen einen Ausfithrungsblock, der durch die geschweiften
Klammerpaare {} gekennzeichnet wird. Diese dienen als Begren-
zungselemente, damit erkennbar ist, wo die Funktionsdefinition
beginnt und wo sie aufhort. Ich zeige dir am besten einmal die lee-
ren Funktionsriimpfe, die einen lauffihigen Sketch bilden. Es pas-
siert zwar nicht viel, doch es handelt sich tatsichlich um einen
richtigen Sketch.

void setup(){
// eine oder mehrere Anweisungen
/...

void loop(){
// eine oder mehrere Anweisungen
/...

Miissen diese Funktionen eigentlich genau diese Namen besitzen
oder kann ich sie beliebig benennen. Und was bedeutet das Wort
void, das vor jeder Funktion angefiihrt ist?

Ja, die Funktionen miissen genau diese Namen aufweisen, denn
beim Start des Sketches wird nach ihnen gesucht, weil sie als Ein-

Kapitel 7: Grundlegendes zur Programmierung

stiegspunkte dienen, um einen definierten Start zu gewihrleisten.
Woher sollte der Compiler wissen, welche Funktion nur einmal
ausgefithrt werden soll und welche kontinuierlich in einer Endlos-
schleife? Diese Namen sind also zwingend erforderlich. Nun zu dei-
ner zweiten Frage, was das Wort void bedeutet. Es handelt sich um
einen Datentyp, der aber einfach aussagt, dass die Funktion keinen
Wert an den Aufrufer zurtickliefert. void kann mit Leerstelle oder
Loch iibersetzt werden. Es bedeutet nicht 0 sondern einfach nichts.
Der allgemeine Aufbau einer Funktion sieht folgendermaflen aus:

(Riickgabedatentyp Name (Parameter))
{

return wert;

}

Wenn eine Funktion den Riickgabedatentyp void besitzt, dann ist
eine return-Anweisung, die einen Wert zuriick liefert nicht erlaubt.
Weist sie jedoch einen anderen Datentyp auf, dann kann sie einen
Wert an den Aufrufer zuriickliefern, der aber dem des angegebenen
Datentyps entsprechen muss. Du kannst einer Funktion sogar
Werte tibergeben, mit denen sie dann arbeiten soll. Diese werden in
runden Klammern angegeben und an die betreffenden Variablen
iibergeben. Variablen in einer Funktionsdefinition werden Parame-
ter genannt. Auch wenn keine Ubergabewerte notwendig sind, wie
z.B. bei setup() und loop(), miissen die Klammerpaare dennoch mit
angegeben werden. Sie bleiben dann einfach leer. Wie du eigene
Funktionen schreiben kannst, wirst du spiter noch in vereinzelten
Kapiteln erfahren.

Wie lange lauft ein Sketch
auf dem Board?

Hast du einen Sketch erst einmal erfolgreich auf das Arduino-Board
in den Mikrocontroller {ibertragen, dann wird er sofort ausgefiihrt.
Dies geschieht so lange, wie das Board mit Strom versorgt wird und
du keinen neuen Sketch tibertrigst. Entfernst du die Spannungsver-
sorgung, sei es USB oder extern, dann wird die Abarbeitung natiir-
lich gestoppt und dann erneut fortgefiihrt, wenn du das Board
wieder anschlieRt. Der Sketch bleibt wihrend des spannungslosen
Zustandes im (Flash-)Speicher des Mikrocontrollers erhalten und
muss nicht erneut geladen werden.

<« Abbildung 7-20
Allgemeiner Funktionsaufbau

Wie lange lduft ein Sketch auf dem Board?

155

156

»

\
J

Das konnte wichtig fiir dich sein
Hier ein paar Begriffe fur die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

Grundlagen Programmierung C++

EVA Prinzip Informatik

Kapitel 7: Grundlegendes zur Programmierung

Die Programmierung
des Arduino-Boards

Scope

Im vorliegenden Kapitel wenden wir uns den Schnittstellen unseres
Arduino-Boards zu. Es sind die Kommunikationskanile zur Inter-
aktion zwischen dem Board und der AuRenwelt. Die grundlegen-
den Themen, die wir ansprechen, sind folgende:

* Was sind digitale Ports?
* Was sind analoge Ports?
* Was ist ein PWM-Signal?

Die digitalen Ports

Die digitalen Ports deines Arduino-Boards kénnen sowohl als Ein-
als auch als Ausgdnge genutzt werden. Es ist jetzt aber nicht so, dass
z.B. die Pins 0 bis 7 Einginge und 8 bis 13 Ausginge sind. Jeden
einzelnen der 14 zur Verfiilgung stehenden digitalen Pins kannst du
individuell als Ein- oder Ausgang konfigurieren. Dazu wird ein
Befehl verwendet, der die Datenflussrichtung pro Pin definiert. Mit
dem pinMode-Befehl wird iiber die Angabe der Pinnummer und der
Richtung der Daten (INPUT oder OUTPUT) jeder einzelne Pin so
programmiert, wie du es in deinem Sketch bendtigst.

Die digitalen Eingdange
Um einen digitalen Pin als Eingang zu programmieren, wird der
besagte Befehl pinMode verwendet. Die folgende Grafik zeigt dir die

beiden erforderlichen Schritte zum Konfigurieren bzw. Abfragen
eines digitalen Eingangs.

Kapitel

157

158

Abbildung 8-1
Konfiguration und Lesen des
digitalen Eingangs an Pin 5

Abbildung 8-2 p-
Konfiguration und setzen des
digitalen Ausgangs an Pin 5

(5, INDPUT))
(wert = (5)7)

TX 1

o
Im ersten Schritt erfolgt die Konfiguration des Pin 5 tiber pinMode
als Eingang (INPUT), und zwar einmalig innerhalb der erstmals im
Kapitel 7 erwihnten setup-Funktion. Im zweiten Schritt kannst du
den logischen Pegel (HIGH oder LOW) des Pins tiber den digital-

Read-Befehl abfragen. Er wird in diesem Beispiel der Variablen wert
zugewiesen und kann spiter verarbeitet werden.

Die digitalen Ausgdnge

Um einen digitalen Pin als Ausgang zu programmieren, wird natiir-
lich wieder der Befehl pinMode verwendet, jedoch diesmal mit
OUPUT als zweitem Argument. Die folgende Grafik zeigt dir die
beiden erforderlichen Schritte zum Konfigurieren bzw. setzten
eines digitalen Ausgangs.

(5, OUTPUT) ;)
(5, HIGH))

l\\on.nwo?N o
’ 3

2
Im ersten Schritt erfolgt die Konfiguration des Pin 5 iiber pinMode
als Ausgang (OUTPUT), und zwar einmalig innerhalb der erstmals
im Kapitel 4 erwahnten setup-Funktion. Im zweiten Schritt kannst
du den logischen Pegel (HIGH oder LOW) des Pins iiber den digi-
talWrite-Befehl setzten.

TX 1

Das konnte fiir dich wichtig sein
Die beiden digitalen Pins 0 (RX=Empfangen) und T (TX=Senden)
haben eine Sonderfunktion und werden von der seriellen
Schnittstelle genutzt. In den Grafiken sind sie in einer anderen

Kapitel 8: Die Programmierung des Arduino-Boards

Farbe hervorgehoben. Um Probleme zu vermeiden, solltest du
diese beiden Pins nicht unbedingt verwenden. Ich habe schon
so einige Probleme damit gehabt und lasse sie bei meinen
Schaltungen immer auflen vor. Falls du ihre Verwendung den-
noch aufgrund von Portknappheit in Erwdgung ziehst, solltest
du beim Ubertragen des Sketches zum Mikrocontroller die vor-
gesehenen Verbindungen kurz entfernen. Andernfalls kann es
zu Problemen kommen, so dass der Sketch nicht Gbermittelt
werden kann.

Die analogen Ports

Die analogen Eingédnge

Analoge Signale sind einem Mikrocontroller ebenso fremd wie
Intelligenz, obwohl manche Wissenschaftler meinen, sie kénnten
ihren Maschinen eine Form von Personlichkeit einprogrammieren.
Doch werfen wir jetzt einen genaueren Blick auf analoge Signale.

<« Abbildung 8-3
Ein analoges Signal

fOA

v

Wir sehen, dass sie im zeitlichen Verlauf unterschiedliche Werte
zwischen einem Minimum bzw. Maximum aufweisen und dass sie
keine festen Abstufungen haben, wie sie z.B. bei digitalen Signalen
vorliegen, bei denen nur ein Wechsel zwischen HIGH- bzw. LOW-
Pegel stattfindet. Um ein analoges Signal von einem Mikrocontrol-
ler verarbeiten zu lassen, benétigen wir einen analogen Eingang und
alles ist gut.

Du hast gerade gesagt, dass analoge Signale stufenlos zwischen zwei
Grenzen schwanken kénnen. Das bedeutet also, dass bei Messungen
am analogen Eingang jeder beliebige Wert angezeigt werden kann —
richtig?

Das ist die Theorie, doch wir haben es hier mit einem Mikrocont-
roller zu tun, der eigentlich nur digitale Signale verarbeiten kann.
Ich muss diesbeziglich ein wenig ausholen. Analoge Signale werden

Die analogen Ports 159

iber eine besondere Schaltung, die Analog/Digital-Wandler (kurz:
A/D-Wandler) genannt wird, verarbeitet bzw. gespeichert. Theore-
tisch besteht ein analoges Signal aus unendlich kleinen Schwankun-
gen, die im zeitlichen Verlauf auftreten. Wie aber kénnen diese
Werte von einem Mikrocontroller erkannt werden? Schauen wir
uns die eben gezeigte Kurve noch einmal genauer an.

Abbildung 8-4 »
Ein analoges Signal wird digitali-
siert (4-Bit Auflosung).

(0 o

|/

e analoger Kurvenverlauf
e quantisiertes Signal

In dieser Grafik siehst du das analoge Signal, das durch den roten
Kurvenverlauf dargestellt wird. Zu bestimmten Zeiten der Messung
(auf der X-Achse, Zeitachse), entspricht jedem ermittelten Momen-
tanwert eine Binirkombination (auf der Y-Achse, Bindrzahl). Du
kannst aber aus der Grafik ersehen, dass nicht jedem ermittelten
Wert ein eigener digitaler Wert zugewiesen wird. Es gibt vielmehr
bestimmte Bereiche, in die mehrere unterschiedliche analoge Mess-
punkte fallen. Schaue dir z.B. die analoge Werte zu den Zeitpunk-
ten 8 und 9 an. Sie sind von unterschiedlicher Grofle und fallen
doch in den digitalen Bereich 0111.

zwischen den beiden Werten und somit wiren beide gleich.

{ Aber warum ist das so? Es erfolgt dann doch keine Unterscheidung }

Nun Ardus, ich hatte dir ja schon gesagt, dass ein analoges Signal
im zeitlichen Verlauf unendlich unterschiedliche Abstufungen auf-
weist. Um allen minimalen Werten gerecht zu werden, missten wir
einen ebenso unendlich »breiten« Bindrwert bereit stellen, damit
alle Werte abgebildet werden kénnen. Das lisst sich natiirlich nicht
realisieren und es ist auch nicht unbedingt notwendig. Unser
Mikrocontroller stellt zur Auflésung eines analogen Signales 10 Bits
zur Verfiigung. Dies ist Uibrigens auch die Bezeichnung fiir eine

160 Kapitel 8: Die Programmierung des Arduino-Boards

KenngroRe des A/D-Wandlers: Auflosung 10 Bit. Was aber bedeu-
ten diese 10 Bits? Mit ihnen kénnen 21 = 1.024 unterschiedliche
Bitkombinationen interpretiert werden. Wenn wir die Referenz-
spannung von +5V, die das Arduino-Board u.a. zur Verfigung
stellt, nehmen, so kann ein analoger Eingang — und wir haben 6 an

der Zahl (A0 bis A5) — Werte zwischen OV und +5V verarbeiten.

B POWER ANALOG IN
mm>%%50.—cmmwm
B B85 R e

Intern wird das Eingangssignal tiber einen A/D-Wandler pro Kanal
in Bitkombinationen umgerechnet, und da ein einzelner Kanal auf-
grund der 10 Bit Auflésung 1.024 Abstufungen aufweist, lasst sich
die kleinste Messeinheit — auch Messgenauigkeit genannt — wie folgt
berechnen:

Referenzspannung +5V

= =4.883mV =~ 49mV
Auflosung 1024 i s

Messgenauigkeit =

Achtung

Wenn du an einen analogen Eingang eine héhere Spannung
als +5V anlegst, dann wird der Mikrocontroller auf diesem
Kanal auf jeden Fall beschéadigt oder komplett zerstért. Achte
also unbedingt darauf, mit welchen Spannungen du arbeitest.
Das ist dann wichtig, wenn du externe Spannungsquellen wie
z.B. eine +9V Blockbatterie oder sogar ein separates Netzteil
verwendest. Flr unsere analogen Beispiele verwende ich
jedoch ausschlie3lich die Board-eigene Spannungsversorgung
von +5V.

Das Abfragen eines an einem analogen Eingang liegenden Signales
erfolgt tiber den Befehl analogRead(Pinnummer). In der Grafik
siehst du das Abfragen des analogen Pins mit der Nummer 0.

oOH N ML
I T T I L

BCTTTT]

<« Abbildung 8-5

Die analogen Ports A0 bis A5 an
einer 6-poligen Buchsenleiste
(rechte Seite)

O

<« Abbildung 8-6
Welcher Wert liegt am analogen
Pin 0?

Die analogen Ports

161

Tabelle 8-1

Gemessene analoge Werte mit
entsprechenden realen
Eingangsspannungen

Abbildung 8-7 »
Analoge Pins auf digitaler Seite

In der folgenden Tabelle siehst du einige Beispiele fir gemessene
Werte an einem analogen Fingang und dessen real anliegender
Spannung.

Gemessener analoger Wert Entsprechender Wert
0 ov

1 4,9mV

2 9,8mV

1023 5v

Die analogen Ausgdnge

Du hast ja vor kurzem schon selbst erkannt, dass das Mikrocontrol-
ler-Board keine analogen Ausginge besitzt. Ob das ein Fehler ist
und diese einfach vergessen wurden? Mmbh, ich glaube nicht! Ich
kann an dieser Stelle bereits sagen, dass es keine dedizierten, also
eigens fiir analoge Signale erforderlichen Ausginge gibt. Da aber
trotzdem analoge Ausgiinge fiir uns zur Verfiigung stehen, so wirbt
jedenfalls die Beschreibung des Arduino-Boards, muss es eine
andere Losung geben. Doch welche? Da sind wir auch schon beim
Thema PWM. Drei Buchstaben und keine Ahnung, was sie bedeu-
ten, was dann auch schon die Uberleitung zum nichsten Abschnitt
ist.

Was bedeutet PWM?

Du wiirdest es vielleicht auf Anhieb nicht vermuten, doch die ver-
meintlich fehlenden analogen Ausginge befinden sich auf einigen
digitalen Pins. Wenn du dir das Arduino-Board einmal genauer
anschaust, dann befindet sich unterhalb einiger dieser Pins ein
merkwiirdiges Zeichen, das an eine Schlangenlinie erinnert. Dieses
Zeichen wird Tilde genannt und kennzeichnet die analogen Aus-

gange.

™M

o -
Z-—|-—|-?|-c

S o 00 NOUWnME MN-S
t : = t ™ ¥
"y DIGITAL (PWM~) K &

PWM ist die Abkiirzung fir Pulse-Width-Modulation und bedeutet
ibersetzt Pulsweitenmodulation. Jetzt bist du sicherlich genau so
schlau wie vorher. Doch schau her. Bei einem PWM-Signal handelt

162

Kapitel 8: Die Programmierung des Arduino-Boards

es sich um ein digitales Signal mit konstanter Frequenz und Span-
nung. Das einzige, was variiert, ist der Tastgrad. Was das ist, wirst
du gleich sehen.

Impulsdauer - ——: :
; ; t : ;
Periodendauer ‘«g = >

Je breiter der Impuls, desto mehr Energie wird an den Nutzer
geschickt.

t
Tastgrad = —
astgra T

Wir kénnen auch sagen, dass die Fliche des Impulses ein MaR fiir
die abgegebene Energie ist. Ich habe hier einmal vier Oszillo-
gramme bei einem Tastgrad von 25%, 50%, 75% und 100% aufge-

nommen.

<« Abbildung 8-8

Impulsdauer und Periodendauer im
zeitlichen Verlauf (t variiert beim
PWM; Tist konstant)

<« Abbildung 8-9
Der Tastgrad liegt bei 25%.

Die analogen Ports

163

164

Abbildung 8-10
Der Tastgrad liegt bei 50%.

Abbildung 8-11
Der Tastgrad liegt bei 75%.

Wenn wir eine LED an den PWM-Ausgang anschléssen, dann
erhielte sie nur % der moglichen Energie zum Leuchten. Bevor sie
richtig aufleuchten kann, wird sie auch schon wieder ausgeschaltet.
Das bedeutet, dass sie nur recht schwach leuchtet.

Bei einem Tastgrad von 50% ist die An-Zeit gleich der Aus-Zeit pro
Periodendauer. Die LED leuchtet auf jeden Fall heller als bei 25%,
da ihr pro Zeiteinheit mehr Energie zugeftihrt wird.

Kapitel 8: Die Programmierung des Arduino-Boards

Bei einem Tastgrad von 75% fillt das Verhiltnis von An-Zeit zu
Aus-Zeit eindeutig zugunsten der An-Zeit aus, was bedeutet, dass
die LED wiederum heller leuchtet als bei 25% bzw. 50%.

<« Abbildung 8-12
Der Tastgrad liegt bei nahezu
100%.

Bei fast 100% Tastgrad leuchtet die LED stindig und ist somit auch
am hellsten. Bei der Verwendung von analogen Ausgingen liegt
eines natiirlich auf der Hand: Die Anzahl der verwendeten analo-
gen Ausginge geht natiirlich zu Lasten der zur Verfiigung stehen-
den digitalen Pins.

Wenn ich jetzt den analogen Ausgang nutzen mochte, der sich aber
auf einem digitalen Pin befindet, wie spreche ich ihn dann an? Ver-
wende ich den digitalWrite-Befehl mit vielleicht einem weiteren Para-
meter?

Die Frage ist absolut berechtigt, Ardus! Fiir die analoge Ausgabe
iiber ein PWM-Signal verwendest du den analogWrite-Befehl, der
die Angabe des Pins und die des Wertes erfordert. Wir kommen zu
gegebener Zeit natiirlich noch genauer darauf zu sprechen. Der
iibergebene Wert kann sich zwischen 0 und 255 bewegen. In der
folgenden Tabelle habe ich einige markante Werte dargestellt.

Die analogen Ports 165

Abbildung 8-13 p
Der Befehl »analogWrite« mit ein
paar Beispielwerten

»

Argumente

Befehl Pin PWM

| Iellies
((5, 64);)

L> PWM-Wert Tastgrad
0 0%

64 25%
128 50%
191 75%
255 100%

In diesem Beispiel wird PWM-Pin Nummer 5 angesprochen und
iber den PWM-Wert 64 ein Tastgrad von 25% erreicht. Uber die
folgende Formel kannst du dir unter Verwendung des gewiinschten
Prozentwertes den erforderlichen PWM-Wert berechnen.

gewinschter Tastgrad [%] - 255
100%

PWM — Wert =

Das kdnnte fiir dich wichtig sein
Um einen analogen Ausgang zu nutzten, ist es nicht notwen-
dig, den erforderlichen Pin mit dem pinMode-Befehl als Aus-
gang (OUTPUT) zu programmieren.

Abschlieflend zu diesem Thema muss ich natiirlich betonen, dass
es sich bei einem PWM-Signal nicht um ein wirkliches analoges Sig-
nal im eigentlichen Sinne handelt. Wenn jedoch ein solches beno-
tigt wird, kannst du ein RC-Glied an den Ausgang schalten, was
einen Tiefpass darstellt, wobei die Ausgangsspannung geglittet
wird. Nihere Informationen dazu findest du im Internet oder auf
meiner Internetseite.

Das konnte wichtig fiir dich sein
Hier ein paar Begriffe fur die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

PWM Signal

Pulsweitenmodulation

166

Kapitel 8: Die Programmierung des Arduino-Boards

Die serielle Schnittstelle

Ein weitere Moglichkeit, mit deinem Arduino-Board in Kontakt zu
treten, ist die serielle Schnittstelle, die — wie schon erwihnt — iiber
den USB-Port zur Vertfiigung gestellt wird. Du benétigst zur Kom-
munikation noch nicht einmal ein externes Terminal-Programm,
denn du kannst den Serial Monitor nutzen. Diese Art der Verbin-
dungsaufnahme mit deinem Arduino-Board kann in zahlreichen
Situationen niitzlich sein:

* Bei der Eingabe von Werten withrend des Sketchlaufs
* Bei der Ausgabe von Werten wihrend des Sketchlaufs

* Bei der Ausgabe von bestimmten Werten wihrend des
Sketchlaufs zur Fehlersuche

Da wir standardmiflig nicht iiber ein Eingabegerit am Arduino-
Board verfiigen, bietet sich die serielle Schnittstelle gerade dazu an,
Daten manuell tiber die Tastatur einzugeben, um so den Ablauf des
Sketches ggf. zu beeinflussen. Wir werden aber auch sehen, dass
sich diese Schnittstelle sehr gut dazu verwenden lisst, eine gemein-
same Kommunikationsbasis fuir unterschiedliche Programme bzw.
Programmiersprachen zu schaffen. Du wirst interessante Moglich-
keiten kennenlernen, wie du dein Arduino-Board z.B. mit einer C#-
Anwendung steuerst oder Daten an diese verschickst, um sie gra-
fisch aufbereitet darzustellen. Du kannst die Programmiersprache
Processing auflerdem wunderbar auf eine solche Weise nutzen, dass
sie als grafisches Frontend fiir das Arduino-Board arbeitet. Ein
Buch tiber Processing ist ebenfalls von mir im O’Reilly-Verlag
erschienen und bietet einen sehr guten Einstieg in diese Sprache.
Falls dein Sketch einmal nicht so lduft, wie du es dir vorstellst, dann
nutze den Serial Monitor der Schnittstelle als Ausgabefenster, um
dir ggf. Inhalte von Variablen ausgeben zu lassen. Auf diese Weise
kannst du Fehler im Source-Code ermitteln und eliminieren. Wie
du dabei am besten vorgehst, wirst du spéter noch erfahren. Der
Fachbegriff dafiir lautet Debugging.

Die serielle Schnittstelle

167

Projekt

Der erste Sketch

Scope

In unserem ersten wirklichen Experiment beschiftigen wir uns mit
folgenden Themen:

Deklarierung und Initialisierung einer Variablen + Variante
Programmierung eines digitalen Pins als Ausgang (OUTPUT)
Der Befehl pinMode()

Der Befehl digitalWrite()

Der Befehl delay()

Der komplette Sketch

Analyse des Schaltplans

Aufbau der Schaltung

Workshop

Das Leuchtfeuer —
»Hello World« auf Arduinisch

Tja, Ardus, jetzt wird’s ernst! Aber nein, es wird nicht wirklich
schwierig und wir fangen ganz gemichlich an. In den meisten
Handbiichern iiber die unterschiedlichen Programmiersprachen
wird zu Anfang immer ein so genanntes Hello World-Programm
prisentiert. Es ist das Programm, das Einsteiger ganz zu Beginn
meistens zu sehen bekommen. Es soll einen ersten Einblick in die
Syntax der neuen Programmiersprache bieten und den Text »Hello
world« in einem Fenster ausgeben. Auf diese Weise meldet sich die

169

170

neue Programmiersprache bei dir und dem Rest der Welt, um zu
zeigen: »Hey Leute, ich bin da! Mach was mit mir.« Jetzt haben wir
schon ein kleines Problem, denn unser Arduino hat in seinem
Urzustand kein Display, also kein Anzeigegerit, sich dir mitteilen
zu kénnen. Was also tun? Wenn eine Kommunikation nicht in
schriftlicher Form moglich ist, dann vielleicht mittels optischer
oder akustischer Signale. Wir entscheiden uns fiir die optische
Variante, denn einen Signalgeber wie eine Leuchtdiode, auch LED
genannt, kénnen wir ohne allzu grofle Probleme an einen der digi-
talen Ausginge klemmen und erregt bestimmt deine Aufmerksam-
keit. Ich war jedenfalls sehr beeindruckt, als es bei mir auf Anhieb
funktioniert hat.

Bendtigte Bauteile

Da es sich ein sehr einfaches Beispiel ist, benotigen wir lediglich
eine einzelne LED und einen Vorwiderstand.

Benétigte Bauteile

1xrote LED

——8WP— 1xWiderstand 220

Im Kapitel tiber die Arduino Grundlagen habe ich dir kurz gezeigt,
dass sich auf dem Board u.a. auch einige LEDs befinden, von denen
eine direkt mit dem digitalen Pin 13 verbunden ist und einen eige-
nen Vorwiderstand besitzt. Also genau genommen miissten wir
eigentlich keine externen Bauteile an das Board anklemmen.

hLED an Pin 13

L

e O

Rx.Hs ARDUINO

Diese LED befindet sich direkt links neben dem Arduino Schriftzug
bzw. Logo.

Projekt 1: Der erste Sketch

Eine Bemerkung am Rande n
Wenn du ein brandneues Arduino Board das erste Mal mit dei-
nem Rechner verbindest, dann leuchtet diese Onboard-LED im
Sekundentakt. Es wurde also nach dem Zusammenbau des
Boards im Werk schon ein erster Sketch mit dieser Grundfunkti-
onalitat geladen.

Sketch-Code

Der Sketch-Code fiir das erste Beispiel sieht folgendermafien aus:

int ledPin = 13; // Variable mit Pin 13 deklarieren + initialisieren
void setup(){
pinMode(ledPin, OUTPUT); // Digitaler Pin 13 als Ausgang

}

void loop(){
digitalWrite(ledPin, HIGH); // LED auf High-Pegel (5V)

delay(1000); // Eine Sekunde warten
digitalWrite(ledPin, LOW); // LED auf LOW-Pegel (oV)
delay(1000); // Eine Sekunde warten

}

Wenn du den Code in den Editor iibertragen hast, kannst du ihn
tiberpriifen. Der Compiler versucht ihn dann zu tibersetzten. Hier
die beiden erforderlichen Schritte:

lcon Funktion | T.abelle1-1 -
— " . - Schritte zum Kompilieren und
) Uberpriifung durch Kompilierung starten Ubertragen

[,] Bei erfolgreicher Kompilierung Ubertragung zum Mikrocontroller starten

Am Schluss erhiltst du dann eine Meldung iiber die erfolgreiche
Ubertragung angezeigt. AuRerdem werden dir die GroRe des beno-
tigten Speichers und der insgesamt zur Verfiigung stehenden Spei-
chers in Bytes angezeigt.

<« Abbildung 1-1
Statusmeldung und Anzeige der
Speicherinformationen

Das Leuchtfeuer — »Hello World« auf Arduinisch 7m

Tabelle 1-2 »

Bendtigte Variablen und deren

172

Aufgabe

Abbildung 1-2 »
Variablen-Deklaration +
Initialisierung

Stopp mal eben, bevor du hier weiter machst. Wie verhilt es sich
eigentlich mit den Wortern OUTPUT, HIGH oder LOW? Sind das
Schliisselworter? Sie sind jedenfalls von der IDE farblich markiert
worden.

Gut aufgepasst, Ardus! Da muss ich ein wenig ausholen. Wenn du
in der Programmierung Variablen mit Werten initialisierst, von
denen zunichst nur du weifSt, was sie bedeuten, dann fiithrt das bei
anderen Personen, die mit dem betreffenden Code arbeiten, sicher-
lich zu Verstindnisproblemen. Was um Himmels Willen bedeutet
die Zahl 42? Eine recht magische Zahl. So ein Programmierstil ist in
meinen Augen nicht gerade tiberzeugend. Klar, wir haben auch
gerade die Zahl 13 fiir die Pinbezeichnung des digitalen Ausgangs
genommen, doch in Zukunft wollen wir den Programmcode ein
wenig aussagekriftigre gestalten. Ubrigens werden solche im Quell-
code auftretende, omindse Werte Magic Numbers genannt. Doch
kommen wir wieder zuriick zu den farblich hervorgehobenen Wor-
tern. Bei diesen handelt es sich um Konstanten. Das sind Bezeich-
ner, die, genau wie Variablen, mit einem Wert initialisiert wurden
und nicht mehr dnderbar sind. Deswegen nennt man sie ja auch
Konstanten. Ein solcher Konstantenname sagt doch schon gleich
viel mehr aus als irgendein kryptischer Wert. Auf die Befehle pin-
Mode und digitalWrite kommen wir gleich noch zu sprechen und
ich werde dann auch die Bedeutung dieser Konstanten erkliren.

Code-Review

Zu Beginn deklarieren und initialisieren wir eine globale Variable, die
den Namen ledPin aufweist, vom ganzzahligen Datentyps int (int =
Integer) istund die in allen Funktionen sichtbarist, mitdem Wert 13.

Variable Aufgabe

ledPin Enthalt die Pin-Nummer fiir die LED am digitalen Ausgang Pin 73

Die Initialisierung ist gleichbedeutend mit einer Wertzuweisung
tiber den Zuweisungsoperator =. Die Deklaration und Initialisierung
erfolgt hier in einer Zeile. Damit wird die Schreibweise gegeniiber
der zweizeiligen Variante verkiirzt.

Datentyp Deklarierung Initialisierung

l
[|] | |
¢ ledPin = 13;)

Projekt 1: Der erste Sketch

Falls du dich dafiir entscheiden solltest, diese beiden Aktionen
getrennt zu schreiben, was natiirlich vollkommen ok wire, diirfen
die beiden Zeilen aber nicht unmittelbar aufeinander folgen. Das
folgende Beispiel fithrt zu einem Fehler:

int ledPin; // Variable deklarieren
ledPin = 13; // Variable mit dem Wert 13 initialisieren -> Fehler!!!

Die Deklaration der globalen Variablen ledPin erfolgt auRerhalb der
Funktionen setup bzw. loop. Die Initialisierung muss jedoch in der
setup-Funktion vorgenommen werden, die einmalig aufgerufen
wird. Der korrekte Sketch-Code wiirde dann wie folgt lauten:

int ledPin; // Variable deklarieren

void setup(){
ledPin = 13; // Variable mit dem Wert 13 initialisieren
/...

}

Du hittest natiirlich auch ohne Variable arbeiten konnen und
direkt den Wert 13 iiberall in den Befehlen pinMode bzw. digital-
Write einsetzten konnen. Was wire aber der Nachteil? Falls du dich
entschlieflt, spiter einmal einen anderen Pin zu verwenden, musst
du den kompletten Sketch-Code durchsuchen und alle entspre-
chenden Stellen anpassen. Das ist recht mithsam und vor allen Din-
gen sehr fehleranfillig. Vielleicht iibersiehst du ja die eine oder
andere zu editierende Stelle, und dann hast du ein Problem. Bei
disem kurzen Beispiel macht das noch nichts, doch wenn die Sket-
che linger werden, dann wirst du den eben erlduterten Program-
mieransatz wirklich schitzen lernen. Wir machen wir es daher von
Anfang an richtig — soweit alles klar? Die setup-Funktion wird ein-
malig zu Beginn des Sketchstartes aufgerufen und der digitale Pin
13 als Ausgang programmiert. Sehen wir uns dazu noch einmal den

Befehl pinMode an.

Argumente

Befehl Pin Modus

((13, OUTPUT) ;)

Das Leuchtfeuer — »Hello World« auf Arduinisch

<« Abbildung 1-3
Der Befehl »pinMode« mit seinen
Argumenten

173

174

Abbildung 1-4 »
Der Befehl »digitalWrite« mit
seinen Argumenten

Tabelle 1-3 »

Konstanten mit den
entsprechenden numerischen
Werten

Er nimmt zwei Argumente auf, wobei der erste fiir den zu konfigu-
rierenden Pin bzw. Port steht und der zweite bestimmt, ob sich der
Pin wie ein Eingang oder Ausgang verhalten soll. Du willst ja eine
LED anschliefen, und deswegen benotigen wir einen Ausgangspin.
Der Befehl erwartet zwei numerische Argumente, wobei das zweite,
das den Modus iiber die Informationsrichtung darstellt, eine Kon-
stante mit einem bestimmten Wert ist. Hinter der Konstanten
OUTPUT verbirgt sich der Wert 1. Also mal ganz ehrlich, was wiir-
dest du zum folgenden Befehl sagen:

pinMode(13, 1);

Also mir wire da irgendwie nicht so ganz klar, was hier eigentlich
geschieht. Die urspriingliche Form ist viel aussagekriftiger und du
weildt sofort, worum es geht. Ebenso verhilt es sich mit dem Befehl
digitalWrite, der ebenfalls zwei Argumente entgegennimmt.

Argumente

Befehl Pin Pegel

| | |
| |] . |
((13, HIGH)))

Hier haben wir ebenfalls eine Konstante mit dem Namen HIGH,
die als Argument bewirken soll, dass ein HIGH-Pegel an Pin 13
anliegt. Dahinter verbirgt sich der numerische Wert 1. In der fol-
genden Tabelle findest du die entsprechenden Werte:

Konstante ~ Wert Erklarung

INPUT 0 Konstante fiir den Befehl pinMode (programmiert Pin als Eingang)
outPUT 1 Konstante fiir den Befehl pinMode (programmiert Pin als Ausgang)
Low 0 Konstante fiir den Befehl digitalWrite (setzt Pin auf LOW-Level)
HIGH 1 Konstante fiir den Befehl digitalWrite (setzt Pin auf HIGH-Level)

Der letzte verwendete Befehl delay ist fiir die Zeitverzogerung
zustandig. Er unterbricht die Sketchausfithrung fiir einen entspre-
chenden Zeitraum, wobei der tibergebene Wert diese Zeitdauer in
Millisekunden (ms) angibt.

Projekt 1: Der erste Sketch

Argument

Befehl Zeit [ms]

(

(1000) ;)

Der Wert 1000 besagt, dass genau 1000 ms, also 1 Sekunde gewar-
tet wird, bis es weitergeht.

Doch nun weiter im Sketch. Nun startet die loop-Funktion, bei der
es sich hier um eine Endlosschleife handelt, ihre Arbeit. Hier die
einzelnen Arbeitsschritte:

1.

A

LED an Pin 13 anschalten
Warte eine Sekunde

LED an Pin 13 ausschalten
Warte eine Sekunde

Gehe wieder zu Punkt 1 und beginne von vorne

Der Schaltplan

Wenn du dir den Schaltplan anschaust, wirst du sehen, dass eigent-
lich alles recht verstindlich ist.

—1 VCC
—— GND

Das Leuchtfeuer — »Hello World« auf Arduinisch

Arduino 13 > 1 > 2
12 R N
H LED Rot
PWM |1
PWM —-190
=) F9°
%
= |7,
= PWM %
= PWM 2
i i
pwM [
12,
L3
[<
AF‘IEIIOQ IN GHD

Pl

« Abbildung 1-5
Der Befehl »delay«

<« Abbildung 1-6

Arduino-Board mit einer LED an

Pin 13

175

Abbildung 1-7 »

Die blinkende LED als Leuchtfeuer

176

fiir unseren ersten Sketch

Abbildung 1-8 »
Der zeitliche Verlauf in einem
Impulsdiagramm

Die Anode der LED (hier LED-Anschluss 1) wird {iber den Vorwi-
derstand mit Pin 13 verbunden und das andere Ende, bei dem es
sich um die Kathode handelt (hier LED-Anschluss 2), mit der
Masse des Arduino-Boards.

Schaltungsaufbau

Der Schaltungsaufbau ist dementsprechend einfach. Achte aber auf
die korrekte Polung der LED, denn anderenfalls kannst du lediglich
eine dunkle LED bewundern. Die aufgelstete LED auf dem Board
selbst blinkt aber trotzdem. Du ldufst mit einer falsch gepolten LED
also nicht Gefahr, etwas zu beschidigen, doch du solltest es schon
richtig machen.

ONINQYY ‘mwxe

Es ist zwar sehr schwer zu erkennen, doch wenn du genau hin-
schaust, dann siehst du, dass die Onboard-LED zur selben Zeit
leuchtet wie die extern angeschlossene LED. Die LEDs sollten
direkt nach der erfolgreichen Ubertragen zum Board zu blinken
beginnen. Wir wollen uns den zeitlichen Verlauf einmal niher
anschauen. Die LED blinkt im Abstand von 2 Sekunden.

Projekt 1: Der erste Sketch

Achtung

Im Internet kursieren Schaltskizzen, bei denen eine Leuchtdi-
ode direkt zwischen Masse und Pin 13 gesteckt wurde. Da die
beiden Steckbuchsen auf der Seite der digitalen Pins direkt
nebeneinander liegen, kdnnte man dort sehr einfach eine LED
einstecken. Ich warne ausdricklich vor dieser Variante, da die
LED ohne Vorwiderstand betrieben wird. Dabei mache ich mir
weniger Sorgen um die LED als um deinen Mikrocontroller. Ich
habe einmal die Stirke des Stromes gemessen und er betragt
ganze 60mA. Dieser Wert liegt 50% Gber dem Maximum und ist
damit definitiv zu hoch. Erinnere dich daran, dass der maximal
zuldssige Strom flr einen digitalen Pin des Mikrocontrollers
40mA betragt.

Troubleshooting

Falls die LED nicht leuchtet, kann es dafiir wie schon erwihnt ver-
schiedene Griinde geben:

Das Leuchtfeuer — »Hello World« auf Arduinisch

Die LED wurde verpolt eingesteckt. Erinnere dich noch einmal
an die beiden unterschiedlichen Anschliisse einer LED mit der
Anode und Kathode.

langes Beinchen

+ (Anode)

kurzes Beinchen

- (Kathode)

Die LED ist vielleicht defekt und wegen Uberspannung aus
vergangenen Experimenten durchgebrannt. Teste Sie mit
einem Vorwiderstand an einer 5V Spannungsquelle.

Kontrolliere noch einmal die Steckleistenbuchsen, die mit der
LED bzw. dem Vorwiderstand verbunden sind. Sind das wirk-
lich GND und Pin 13?

Uberpriife noch einmal den Sketch, den du in den Editor der
IDE eingegeben hast. Hast du vielleicht eine Zeile vergessen
oder dich verschrieben und ist der Sketch wirklich korrekt
ubertragen worden?

Wenn die auf dem Board befindliche LED blinkt, dann sollte

die eingesteckte LED ebenfalls blinken. In diesem Fall arbeitet
der Sketch korrekt.

@

177

Abbildung 1-9
Der zeitliche Verlauf eines Impulses

Was hast du gelernt?

* Du hast die korrekte Deklaration bzw. Initialisierung von glo-
balen Variablen sowohl in einer als auch mehreren Zeilen ken-
nengelernt.

* Die Dateniibertragungsrichtung eines einzelnen Pins hast du
mit dem Befehl pinMode auf OUTPUT gesetzt, so dass du ein
digitales Signal (HIGH bzw. LOW) iiber den Befehl digital-
Write zum Ausgang schicken konntest, an der die LED ange-
klemmt war.

¢ Uber den Befehl delay hast du eine zeitliche Unterbrechung des
Sketches eingeleitet, damit die LED eine bestimmte Zeit an
bzw. aus war.

* Du weiflt, dass wenn du eine LED betreiben mdochtest, hierzu
ein entsprechend dimensionierter Vorwiderstand unerlisslich
ist. Nachfolgend siehst du ein Ersatzschaltbild der LED mit
einem 220 Ohm Vorwiderstand.

Workshop

In unserem ersten Workshop mochte ich dir die Aufgabe stellen,
den Sketch so zu dndern, dass du die Zeit, in der die LED leuchtet,
und die Zeit, in der die LED dunkel ist, in zwei Variablen ausla-
gerst, so dass du den Tastgrad bequem modifizieren kannst. Der
Tastgrad kann bei einer periodischen Folge von Impulsen angege-
ben werden und beschreibt das Verhiltnis von Impulsdauer und
Periodendauer. Das Ergebnis wird meist in Prozent angegeben. Im
folgenden Impulsdiagramm siehst du die unterschiedlichen Zeiten
fir t bzw. T.

178

Projekt 1: Der erste Sketch

t = Impulsdauer
T = Periodendauer

Die Formel zur Berechnung des Tastgrades lautet folgendermafien:
T d :
g —=—
astgra T

Programmiere den Sketch so, dass die LED 500 ms leuchtet und 1 s
aus ist. Der Tastgrad lieRe sich demnach wie folgt berechnen:

500 ms _
Tastgrad = ———= 0.3
1500 ms

Das entspricht dann einem Tastgrad von 33%. In Hinblick auf die
gesamte Periodendauer leuchtet die LED also zu 33%.

Workshop

179

Projekt
Einen Sensor abfragen

Scope

In unserem zweiten Experiment behandeln wir folgende Themen:

* Deklarierung und Initialisierung mehrerer Variablen

* Programmierung von Pins als Eingang (INPUT) und Ausgang
(OUTPUT)

* Der Befehl digitalRead()

* Die Verwendung der if-else-Kontrollstruktur
* Der komplette Sketch

* Analyse des Schaltplanes

* Aufbau der Schaltung

* Workshop

Dricke den Taster

In diesem Beispiel wollen wir den umgekehrten Weg gehen, und
nicht wie in unserem ersten Sketch vom Arduino-Board Informatio-
nen in Form von Lichtsignalen an die AufRenwelt schicken, sondern
ein Bauteil an einen Pin anschlieRen, den Zustand des Bauteils
abfragen und diesen wieder an eine angeschlossene LED senden.
Dabei soll sich folgendes Verhalten zeigen:

* Taster nicht gedriickt — LED dunkel
* Taster gedriickt — LED hell

181

http://fritzing.org/

182

Benotigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile.

Bendtigte Bauteile

1xrote LED
R
‘ 1 x Taster
— -
1x Widerstand 70K
— P —

1x Widerstand 330
//'\\ Mehrere flexible Steckbriicken in unterschiedli-
chen Farben und Langen

Sketch-Code

Der Sketch-Code fiir das Beispiel sieht folgendermaflen aus:

int ledPin = 13; // LED-Pin 13
int tasterPin = 8; // Taster-Pin 8
int tasterStatus; // Variable zur Aufname des Tasterstatus
void setup(){
pinMode(ledPin, OUTPUT); // LED-Pin als Ausgang
pinMode(tasterPin, INPUT); // Taster-Pin als Eingang

}

void loop(){
tasterStatus = digitalRead(tasterPin);
if(tasterStatus == HIGH)
digitalWrite(ledPin, HIGH);
else
digitalWrite(ledPin, LOW);
}

Wenn du den Code iibertragen hast, dann kompiliere ihn wie du es
gelernt hast und sende ithn zum Mikrocontroller.

Projekt 2: Einen Sensor abfragen

Das kannte wichtig fiir dich sein
Ein digitaler Pin arbeitet standardméfig als Eingang und muss
deswegen nicht explizit Gber den pinMode-Befehl als solcher
programmiert werden. Fir eine bessere Ubersicht ist es aber
trotzdem sinnvoll. Du kannst diesen Schritt allerdings dann
weglassen, wenn dein Speicher knapp und daher jedes Byte
wichtig wird.

Code-Review

Du siehst, dass wir es in diesem Beispiel schon mit mehreren Vari-
ablen zu tun haben, die wir zu Beginn erst einmal deklarieren bzw.
initialisieren miissen. Gehen wir der Reihe nach vor:

Variable Aufgabe

ledPin enthdlt die Pin-Nummer fiir die LED am digitalen Ausgang Pin 73
tasterPin enthlt die Pin-Nummer fiir den Taster am digitalen Eingang Pin 8
tasterStatus dient als Aufnahme des Taster-Status filr eine spatere Auswertung

Werfen wir kurz einen Blick auf das Flussdiagramm:
Start
loop-Schleife

Taste
gedriickt ?

LED HIGH-Pegel ~ —

LED LOW-Pegel ~ —

Das Diagramm liest sich recht einfach. Wenn die Ausfithrung des
Sketches in der loop-Endlosschleife angelangt ist, wird der Zustand
des Taster-Pins kontinuierlich abgefragt und in der Variablen tas-
terStatus abgelegt. Hier die entsprechende Codezeile:

tasterStatus = digitalRead(tasterPin);

Die Variable wird also auf diese Weise stindig neu initialisiert, und
ihr Inhalt dndert sich in Abhingigkeit vom Tasterstatus. Die Syntax
des Befehls digitalRead lautet wie folgt:

« Tabelle 2-1
Erforderliche Variablen und deren
Aufgabe

« Abbildung 2-1
Flussdiagramm zur Ansteuerung
der LED

Driicke den Taster

183

184

Abbildung 2-2 »
Der Befehl »digitalRead«

Abbildung 2-3 »
Abfrage durch
»if-else«-Kontrollstruktur

Argument

Befehl | Pin |

((tasterPin) ;)

Diese Funktion wird nicht nur einfach aufgerufen, sondern sie lie-
fert uns einen Riickgabewert, der fiir unsere Auswertung herange-
zogen werden kann. Uber den Zuweisungsoperator = wird der Wert
an die Variable tasterStatus ibergeben. Bei den moglichen Werten
kann es sich entweder um HIGH oder LOW handeln, die wie-
derum, wie du schon gelernt hast, Konstanten sind, die die Lesbar-
keit erhohen. Welche Werte sich dahinter verbergen, weifit du ja
jetzt aus dem letzten Kapitel. Im Anschluss an die Abfrage erfolgt
dann die Bewertung durch eine Kontrollstruktur mittels einer if-
else-Abfrage (Wenn-Dann-Sonst):

if(tasterStatus == HIGH)
digitalWrite(ledPin, HIGH);
else
digitalWrite(ledPin, LOW);

Die if-Anweisung bewertet die in den runden Klammern stehende
Bedingung, die frei tibersetzt etwa wie folgt lautet: »Ist der Inhalt
der Variablen tasterStatus gleich dem Wert HIGH? Falls ja, fiihre die
Befehlszeile aus, die der if-Anweisung unmittelbar folgt. Falls nein,
fahre mit der Anweisung fort, die der else-Anweisung folgt.

Befehl Bedingung

(tasterPin == HIGH))
(ledPin, HIGH) ;)

wenn-dann (

(

((ledPin, LOW);)

Wenn du dir das folgende Flussdiagramm anschaust, erkennst du
die Arbeitsweise dieser Kontrollstruktur:

Projekt 2: Einen Sensor abfragen

<« Abbildung 2-4
Flussdiagramm zur
»if-else«-Kontrollstruktur

Bedingung

v

Anweisung(en) Anweisung(en)

« |

v

(Ende)

Es gibt auch noch eine einfachere Variante der if-Kontrollstruktur,
bei der der else-Zweig nicht vorhanden ist. Wir werden auch hier-
auf noch zu sprechen kommen. Du siehst also, dass ein Programm-
ablauf nicht unbedingt geradlinig verlaufen muss. Es konnen
Verzweigungen eingebaut werden, die anhand von Bewertungsme-
chanismen unterschiedliche Befehle bzw. Befehlsblocke zur Aus-
fihrung bringen. Ein Sketch agiert nicht nur, sondern reagiert auf
duflere Einfliisse, z.B. auf Sensorensignale.

Achtung @

Ein sehr haufiger Anfangerfehler ist die Verwechslung von
Gleichheits- und Zuweisungsoperator. Der Gleichheitsoperator
== und der Zuweisungsoperator = haben vollig unterschiedli-
che Aufgaben, werden aber oft vertauscht. Das Heimttickische
ist, dass beide Schreibweisen in einer Bedingung verwendet
werden kénnen und gultig sind. Hier die korrekte Verwendung
des Gleichheitsoperators:

if(tasterStatus == HIGH)

Nun die falsche Verwendung des Zuweisungsoperators:
if(tasterStatus = HIGH)

Aber warum um Himmels Willen erzeugt denn diese Schreib-
weise keinen Fehler? Ganz einfach: Es erfolgt eine Zuweisung
der Konstanten HIGH (numerischer Wert 1) an die Variable tas-
terStatus. 1 bedeutet kein Nullwert und wird als true (wahr)
interpretiert. Bei einer Codezeile, die if(true)... lautet, wird der
nachfolgende Befehl immer ausgefiihrt. Ein numerischer Wert 0
wird in C/C++ als false (falsch) angesehen und jeder von 0 ver-

Driicke den Taster 185

Abbildung 2-5 »

Arduino-Board mit einem Taster an

186

Pin 8 (nicht ganz korrekt)

schiedene als true. Derartige Fehler haben es in sich und es
muss immer wieder sehr viel Zeit darauf ver(sch)wendet wer-
den, sie ausfindig zu machen.

Der Schaltplan

Schauen wir uns zunichst den Anschluss des Tasters an den digita-
len Eingang genauer an. Ich habe ihn an Pin 8 angeschlossen, um
ihn raumlich ein wenig von Pin 13 zu trennen. Natiirlich hitte ich
auch jeden anderen digitalen Pin verwenden kénnen.

Arduino

[EEN
(o]

[EEN
e

=
=

PWM
PWM
PWM

|

=
o

Taster

"]

+5V

Digital 1,/0

°“&Prmﬁif@\

Analog IN

SeREEE

Du siehst hier den offenen Taster, der mit einem Anschluss am
digitalen Pin 8 verbunden ist und mit dem anderen an der +5V
Betriebsspannung des Arduino-Boards. Und hier beginnen die Pro-
bleme auch schon an. Die Schaltung, wie du sie hier siehst, funktio-
niert nicht so, wie du es dir vielleicht vorstellst. Wenn einem
Eingang kein definierter Pegel in Form von HIGH bzw. LOW zuge-
fithrt wird, ist das Verhalten von den unterschiedlichsten Faktoren
wie z.B. statischer Energie aus der Umgebung oder Luftfeuchtigkeit
abhingig. Das gleicht eher einem Gliicksspiel als einer stabilen
Schaltung. Zur Behebung dieses Problems gibt es unterschiedliche
Ansitze, von denen du einige nach und nach kennen lernen wirst.
Abhilfe schafft z.B. ein sogenannter Pull-Down-Widerstand, der
den Pegel bzw. das Potential quasi nach unten zieht. Da jedoch
iiber diesen Widerstand auch ein Strom flieRit, sollte er relativ hoch

Projekt 2: Einen Sensor abfragen

gewihlt werden. Die folgende Schaltung zeigt diesen Widerstand,
der Pin 8 tiber 10K (das ist ein Erfahrungswert, der in der Literatur
oftmals verwendet wird) nach Masse zieht, wenn der Taster nicht
geschlossen ist.

Arduino

Il el [t
Lol |2 B [#]

PWM
PWM
PWM

Digital 1/0

Analog IN

S REEES

Somit hat der digitale Eingang bei offenem Taster einen definierten
LOW-Pegel, der von der Software eindeutig erkannt wird. Wenn
der Taster jetzt gedriickt wird, fallen iber dem Widerstand die +5V
Betriebsspannung ab. Diese liegt sofort an Pin 8 an, dem dann ent-
sprechend ein definierter HIGH-Pegel zugefithrt wird. Mit diesem
Vorwissen konnen wir uns nun der eigentlichen Schaltung widmen.

Arduino 13 1 2
- =2} | g
E‘ LED Rot
PWM (==
pwm [LO.
\Ci PWM | 2.,
~ 3 _'TE\)KI_
= -7
?éPWM 6 Taster
Z oo [5- 5 o
PWM [
| 2o
5
0
Analog IN 8. =8
+5Y

SEEERE

Driicke den Taster

<« Abbildung 2-6

Arduino-Board mit einem Taster an
Pin 8 inklusive Pull-Down-Wider-
stand

<« Abbildung 2-7
Arduino-Board mit kompletter
Schaltung fiir Taster und LED

187

Abbildung 2-8 »
Eine LED mit Vorwiderstand und
Strom- bzw. Spannungswerten

Ich muss mal wieder unterbrechen, denn mich macht wieder einmal
etwas stutzig. Als Vorwiderstand hast du im vorherigen Kapitel einen
220 Ohm-Widerstand eingesetzt. Der hier verwendete weist aber
einen Wert von 330 Ohm auf. Das gleicht ja ebenfalls einem Gliicks-
spiel. Was soll ich denn nun nehmen?

Ok, das ist natiirlich ein berechtigter Einwand und das schreit nach
einer Erklarung. Ich werde dir jetzt zeigen, wie man einen Vorwi-
derstand berechnet, der in einer Schaltung gut funktioniert und bei
dem es zu keinerlei Problemen kommt. Die folgende Abildung zeigt
eine Schaltung mit einer LED und Vorwiderstand sowie die ent-
sprechenden Strom- bzw. Spannungswerte.

Iges

=
+5V : A

>
o Uny =7V

......... i Uges = +5V

&3
! R Upgp =2V
i)

&

G6ND O—mmm by A

Um den Wert eines Widerstandes zu berechnen, wird wieder das
Ohmsche Gesetz herangezogen. Ich habe die allgemeine Formel
schon nach dem zu ermittelnden Widerstand R umgestellt.
R = u

o
Wie ermitteln wir aber jetzt die Werte von Spannung und Strom?

Ganz einfach: An Vorwiderstand und LED, die ja in Reihe geschal-
tet sind, liegen +5V an. Diese Spannung liefert ja der Ausgang eines

188

Projekt 2: Einen Sensor abfragen

Arduino-Pins. An der LED zwischen den Punkten B und C fallen in
der Regel so um die +2V ab, je nach eingesetzter LED bzw. deren
Farbe. Die Spannung am Vorwiderstand, also zwischen den Punk-
ten A und B in der Schaltung, ist demnach die Differenz von +5V
und +2V, also +3V. Jetzt miissen wir nur noch wissen, wie grof$ der
Strom ist, der durch Widerstand und LED flieRt. Erinnere dich
daran, dass in einer Reihenschaltung von elektronischen Bauteilen
der Strom durch alle gleich ist. Aus dem Datenblatt des Arduino-
Boards kannst du erfahren, dass der maximale Strom, den ein Pin
zu liefern in der Lage ist, 40mA betrigt. Dieser Wert darf unter kei-
nen Umstdnden iiberschritten werden, da der Mikrocontroller sonst
auf jeden Fall Schaden nehmen wiirde. Daher begrenzen wir den
Stromfluss durch eben diesen in der Schaltung eingefiigten Vorwi-
derstand Ry. Es ist jedoch nicht ratsam, am Limit von 40mA zu
arbeiten, sondern zur Sicherheit immer etwas darunter. Zur Berech-
nung des Vorwiderstandes verwende ich einmal zwei unterschiedli-
che Stromwerte von 5mA und 10mA, wobei Werte zwischen 5mA
und 30mA fiir eine LED vollkommen ok sind:

Uges - ULJ';'D = 5V -2V

R = = 3000
! I 10mA
und
Upe — U 5V — 2V
R, = -9¢ LED _ = 6000

I, 5mA

Der Wert des Vorwiderstandes kann sich also im Bereich von 300
bis 600 Ohm bewegen, so dass der Ausgangsport des Arduino nur
moderat belastet wird. Natiirlich kénnen auch hohere Wider-
standswerte eingesetzt werden, um den Strom noch weiter zu
begrenzen, doch fiir eine LED wiirde das bedeuten, dass ihre Hel-
ligkeit immer weiter abnehmen wiirde, und du mochtest ja schlie3-
lich noch sehen, wenn sie leuchtet. Ich habe mich fiir einen Wert
von 330 Ohm bei allen weiteren Schaltungen bei LEDs mit Vorwi-
derstand entschieden. Widerstinde werden tibrigens nicht in allen
moglichen Werten produziert, sondern es gibt unterschiedlichen E-
Reihen mit bestimmten Abstufungen. Du solltest bei dem Kauf von
Widerstinden, die in praktischen Sortimenten erhiltlich sind, auch
auf die maximale Verlustleistung achten. Widerstinde mit einer
Verlustleistung von % Watt sind dabei vollkommen ausreichend.
Soweit die Theorie. Es geht doch aber nichts iiber reale Messungen

Driicke den Taster

189

Abbildung 2-9 »

Strommessung im LED-Ansteue-

190

rungskreis mit Vorwiderstand

am lebenden Objekt. Ich habe ein Multimeter in den Stromkreis
der LED Ansteuerung geschaltet, um den Strom zu messen.

VOITCRAFT' 98 o vemsr

GND +5V

s —— A

LED 1 RV

Um den Strom auf maximal 10mA zu begrenzen, habe ich einen
Vorwiderstand von 330 Ohm gewihlt. Das Multimeter zeigt einen
Strom von 8,58mA an, das entspricht fast dem vorgegebenen Wert
von 10mA. Der Unterschied kommt durch Bauteiltoleranzen
zustande und ist sogar etwas geringer als in der Vorgabe vorgese-
hen.

Schaltungsaufbau

Der Schaltungsaufbau wird schon etwas komplexer und deswegen
wollen wir uns das Ganze einmal mittels Fritzing anschauen. Dieses
wirklich niitzliche Tool findest du auf der Internetseite http://
fritzing.org/. Es unterstiitzt uns beim Aufbau und Zusammenste-
cken elektronischer Bauteile auf einer Arbeitsunterlage. Du hast z.
B. die Arduino-Mikrocontrollerplatine, ein Breadboard, diverse
elektronische bzw. elektrische Komponenten und vieles mehr. Du
kannst dir diese Software kostenfrei herunterladen und fiir deine
Projekte verwenden.

Projekt 2: Einen Sensor abfragen

http://fritzing.org
http://fritzing.org

LED mit
Vorwiderstand

Taster mit
Pull-Down-
Widerstand

Das kannte wichtig fiir dich sein

Falls du dir nicht mehr sicher sein solltest, wie die einzelnen
Buchsen eines Breadboards untereinander verbunden sind,
dann schlage noch einmal im Elektronikkapitel unter Steckbrett
nach. Dort findest du den grundlegenden internen Verdrah-
tungsplan.

Troubleshooting

Falls die LED nicht leuchtet, wenn du den Taster driickst, oder die
LED stindig leuchtet, trenne das Board aus Sicherheitsgriinden
sofort vom USB-Anschluss und iiberpriife Folgendes:

Driicke den Taster

Entsprechen deine Steckverbindungen auf dem Breadboard
wirklich der Schaltung?

Wurde die LED ist richtig herum eingesteckt, d.h. ist die Pol-
ung korrekt?

Es gibt Taster mit 2 bzw. 4 Anschliissen. Werden bei der Vari-
ante mit 4 Anschliissen, die einzelnen Anschliisse korrekt ver-
wendet? Fihre ggf. einen Durchgangstest mit einem
Multimeter durch und tiberpriife damit die Funktionsfihigkeit
des Tasters und der entsprechenden Beinchen.

Haben die beiden Widerstinde die korrekten Werte oder wur-
den sie versehentlich vertauscht?

Ist der Sketch-Code korrekt?

<« Abbildung 2-10
Aufbau der Schaltung mit Fritzing

191

Abbildung 2-11

Schaltung mit Pulldown-Wider-

192

stand

Tabelle 2-2
Pinpotentiale

Weitere Moglichkeiten fiir definierte
Eingangspegel

Bevor wir dieses Kapitel beschlieffen, mochte ich noch — wie ver-
sprochen — auf weitere Moglichkeiten eingehen, einen definierten

Pegel an einem Eingangspin zu erhalten, wenn kein Eingangssignal
von auflen anliegt. Folgende drei Varianten sind firr uns wichtig:

Mit Pulldown-Widerstand

Diese Schaltung hast du gerade eben schon verwendet.

n'

Pulldown

GND

Bei offenem Taster gelangt das Massepotential tiber den Pulldown-
Widerstand an den Eingangspin deines Mikrocontrollers. Wird der
Taster geschlossen, dann fillt iber dem Widerstand die Versor-
gungsspannung von +5V ab und das Potential am Eingangspin
steigt auf eben diesen Wert.

Tasterstatus Pin-Potential

Offen 0V (Masse, LOW-Pegel)
Geschlossen +5V (Versorgungsspannung, HIGH-Pegel)

Mit Pullup-Widerstand

Was bei einem Widerstand nach Masse funktioniert, kann auch
mit einem Widerstand in Richtung Versorgungsspannung realisiert
werden. Die Potentiale sind jetzt genau umgekehrt.

Projekt 2: Einen Sensor abfragen

Bei offenem Taster liegt die Versorgungsspannung von +5V iiber
dem Pullup-Widerstand am Eingangspin deines Mikrocontrollers
an. Wird der Taster geschlossen, dann wird der Pin sofort mit dem
Massepotential verbunden.

Tasterstatus Pin-Potential

Offen +5V (Versorgungsspannung, HIGH-Pegel)
Geschlossen 0V (Masse, LOW-Pegel)

Mit internem Pullup-Widerstand
des Mikrocontrollers

Die ganze Arbeit und der Aufwand mit einem separaten Pulldown-
bzw. Pullup-Widerstand ist eigentlich tiberfliissig, denn dein Mikro-
controller besitzt intern an den digitalen Pins fest eingebaute
Pullup-Widerstdnde, die bei Bedarf tiber die Software hinzugeschal-
tet werden konnen. Du kannst dir das folgendermafen vorstellen:

+5V

interner Pullup—Widerstand
2

Arduino

<« Abbildung 2-12
Schaltung mit Pullup-Widerstand

<« Tabelle 2-3
Pinpotentiale

<« Abbildung 2-13
Interner Pullup-Widerstand des
Mikrocontrollers

Driicke den Taster

193

194

Ich habe in diesem Beispiel den Pin 10 ausgesucht, an dem z.B. dein
Taster angeschlossen wird. Du erkennst den internen Pullup-
Widerstand R, der iiber einen elektronischen Schalter den Pin 10
mit der Versorgungsspannung +5V verbindet. Die Frage ist jetzt
aber, wie du diesen Schalter schliefen kannst, damit der Pin bei
fehlendem Eingangssignal einen HIGH-Pegel aufweist. Hierzu sind
folgende Befehle erforderlich:

pinMode(pin, INPUT); // Pin als Eingang programmieren
digitalWrite(pin, HIGH); // Einschalten des internen Pullup-Widerstandes

Stopp mal! Hier stimmt doch was nicht. Du programmierst einen Pin
als Eingang, weil wir hieran einen Taster anschlieRen wollen. Das ist
mir noch klar. Aber dann sendest du etwas mit digitalWrite an eben
diesen Pin, der nicht als Ausgang programmiert wurde. Was soll denn
das bitte bedeuten?

Genau das ist ja der Punkt. Uber die gerade gezeigte Befehlssequenz
aktivierst du den internen 20K Pullup-Widerstand, der das Potential
in Richtung +5V zwingt, wenn kein Eingangssignal anliegt.

Achtung

Falls du dich fir die beiden Varianten (externer bzw. interner
Pullup-Widerstand) entscheiden solltest, dann musst du deinen
Code ein wenig modifizieren. Uberlege erst einmal, bevor du
jetzt weiter liest. Wird der Taster nicht betdtigt, dann liegt,
wenn du mit einem Pulldown-Widerstand arbeitest, am Eingang
des Pins ein LOW-Pegel an. Die Abfrage, ob der Taster gedrtckt
wird, erfolgt dann Uber folgende Zeile:

if(tasterStatus == HIGH)

So weit so gut. Jetzt arbeitest du jedoch mit einem Pullup-
Widerstand, der bei offenem Taster ein HIGH-Signal am Pin ver-
ursacht. Um den Taster auf gedriickt hin abzufragen, musst du
jetzt die Zeile

if(tasterStatus == LOW)

schreiben, bei der du das HIGH gegen LOW ausgetauscht hast. Klar?

@ Das kdnnte wichtig fiir dich sein

Hier ein paar Begriffe fur die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

Pullup Widerstand
Pulldown Widerstand

Projekt 2: Einen Sensor abfragen

Was hast du gelernt?

Du hast die Verwendung mehrerer Variablen kennengelernt,
die fiir die unterschiedlichsten Zwecke genutzt wurden (Dekla-
ration far Eingangs- bzw. Ausgangspin und Aufnahme von Sta-
tusinformationen).

Digitale Pins sind standardmiRig als Eingang programmiert
und missen nicht explizit als solche programmiert werden.

Du hast die Funktion digitalRead kennengelernt, die in Abhin-
gigkeit vom anliegenden Pegel an einem digitalen Eingang ent-
weder LOW oder HIGH zuriickliefert. Dieser Wert wurde
einer Variablen zugewiesen, um sie spiter in einer weiteren
Verarbeitung zu nutzten.

Anhand der if-else-Kontrollstruktur hast du gesehen, wie
innerhalb eines Sketches auf bestimmte Einfliisse reagiert wer-
den kann, um den Ablauf zu steuern.

Verschiedene Schaltpline haben dir veranschaulicht, wie man
Verbindungen zwischen elektronischen Komponenten gra-
fisch darstellt, um die Schaltung in ihrer Funktion zu verste-
hen.

Ein offener digitaler Eingang einer elektronischen Kompo-
nente, der keinen definierten Pegel (HIGH oder LOW) auf-
weist, fithrt in der Regel zu undefiniertem Verhalten der
Schaltung, das nicht vorhersehbar ist.

Aus diesem Grund wurde die Verwendung des Pulldown-
Widerstandes bzw. des Pullup-Widerstandes erldutert, die
jeweils ein definiertes Potential erzwingen.

Der Mikrocontroller besitzt interne 20K Pullup-Widerstinde,
die tiber die Software aktiviert werden konnen. Auf diese
Weise kannst du dir das Hinzufiigen von externen Pullup-
Widerstinden sparen.

Die Berechnung eines Vorwiderstandes fiir eine LED bereitet
dir jetzt keine Probleme mehr.

Du hast das Tool Fritzing kennengelernt, mit dem du bei der
Erstellung von Schaltungen per Drag & Drop sehr schnell
Resultate erzielen kannst.

Workshop

In diesem Workshop mochte ich dir eine Aufgabe stellen, bei der es
um das Pullen von digitalen Pegeln geht. Pullen heifit ja bekanntlich

Workshop

195

196

Abbildung 2-14 p
Pull-Up-Widerstand

ziehen und genau das tut ein Pull-Down-Widerstand. Der umge-
kehrte Weg ist aber ebenso moglich. Uber einen Pullup-Widerstand
kannst du einen Pegel nach oben in Richtung Versorgungsspannung
ziehen. Du siehst hier einen bereits bekannten Ausschnitt aus einer
Schaltung;:

+5V
O

GND

Programmiere deinen Sketch so um, dass die Schaltung wie hier
gezeigt funktioniert. Driickst du den Taster, dann leuchtet die LED.
Lisst du ihn los, dann geht sie wieder aus. Der Punkt Pin in der
Schaltung wird dabei mit Pin 8 deines Arduino-Boards verbunden.
Die Ansteuerung der LED bleibt dabei unverindert.

Projekt 2: Einen Sensor abfragen

Blinken mit
Intervallsteuerung

Scope
In diesem Experiment behandeln wir folgende Themen:

* Deklarierung und Initialisierung mehrerer Variablen

* Programmierung mehrerer Pins sowohl als Eingang (INPUT)
als auch als Ausgang (OUTPUT)

* Der Befehl digitalRead()

e Der Befehl millis()

* Die Verwendung der if-else-Kontrollstruktur
* Der komplette Sketch

* Analyse des Schaltplanes

* Aufbau der Schaltung

* Workshop

Driicke den Taster und
er reagiert

In unserem ersten Beispiel hast du gesehen, wie wir tiber die Verzo-
gerungsfunktion delay eine Unterbrechung in der Sketchausfiih-
rung bewirkt haben. Die angeschlossene LED an dem digitalen
Ausgang Pin 13 blinkte in regelmifRigen Abstinden. Eine solche
Schaltung bzw. Programmierung hat jedoch einen Nachteil, den
wir erkennen und beheben wollen. Wir miissen die Blinkschaltung
ein wenig erweitern. Was geschihe wohl, wenn du an einem digita-
len Eingang zusitzlich einen Taster anschliefen wiirdest, um sei-

Projekt

197

198

nen Zustand kontinuierlich abzufragen. Wenn du die Taste
driickst, soll eine weitere LED leuchten. Vielleicht erkennst du
schon jetzt, worauf ich hinaus mochte. Solange die Sketchaustiih-
rung in der delay-Funktion gefangen ist, wird die Abarbeitung des
Codes unterbrochen, und der digitale Eingang kann demnach nicht
abgefragt werden. Du driickst also den Taster und nichts passiert.

Benotigte Bauteile

Fiir dieses Beispiel benotigen wir eine LED und einen Taster.

Bendtigte Bauteile

1xrote LED

1x gelbe LED

1 x Taster

1x Widerstand 70K

2 x Widerstand 330

Mehrere flexible Steckbriicken in unterschiedli-
chen Farben und Langen

)%’\\

Sketch-Code

Der folgende Sketch-Code funktioniert nicht, wie wir es vielleicht
erwarten wiirden.

// Der folgende Code funktioniert nicht wie erhofft ®

int ledPinBlink = 13; // Rote Blink-LED-Pin 13

int ledPinTaster = 10; // Gelbe Taster-LED-Pin 10

int tasterPin = 8; // Taster-Pin 8

int tasterStatus; // Variable zur Aufname des Tasterstatus

void setup(){
pinMode(ledPinBlink, OUTPUT); // Blink-LED-Pin als Ausgang
pinMode(ledPinTaster, OUTPUT); // Taster-LED-Pin als Ausgang
pinMode(tasterPin, INPUT); // Taster-Pin als Eingang

}

Projekt 3: Blinken mit Intervallsteuerung

void loop(){
// Blink-LED blinken lassen
digitalWrite(ledPinBlink, HIGH); // Rote LED auf High-Pegel (5V)

delay(1000); // Eine Sekunde warten
digitalWrite(ledPinBlink, LOW); // Rote LED auf LOW-Pegel (0V)
delay(1000); // Eine Sekunde warten

// Abfrage des Taster-Status
tasterStatus = digitalRead(tasterPin);
if(tasterStatus == HIGH)
digitalWrite(ledPinTaster, HIGH); // Gelbe LED auf High-Pegel (5V)
else
digitalWrite(ledPinTaster, LOW); // Gelbe LED auf Low-Pegel (0V)

Das verstehe ich irgendwie nicht. Die Ausfithrung kommt doch in der
Endlosschleife irgendwann einmal an der Zeile fiir die Tasterabfrage
vorbei. Dann wird der Status doch korrekt abgefragt.

Du hast es erfasst und auch richtig formuliert. Das entscheidende
Wortchen ist hier irgendwann! Du mochtest aber, dass zu jedem
Zeitpunkt der Abarbeitung deines Codes auf den Taster reagiert
wird und nicht nur dann, wenn die Ausfithrung irgendwann einmal
dort vorbeischaut. Die delay-Funktionen behindern doch quasi die
Fortfiihrung des Codes. Klar? Ich zeige dir das Verhalten einmal an
einem Impulsdiagramm, bei dem die drei relevanten Signale wie
Blink-LED (Pin 13), Taster (Pin 8) und Taster-LED (Pin 10) unter-
einander zu sehen sind:

« Abbildung 3-1
Impulsdiagramm der Signale an Pin
13,8und 10

L L 5 U A 0 8 L

Schaue einmal auf das gelbe Signal, das den Zustand des Tasters
darstellt. Ich driicke ihn mehrmals und dennoch reagiert das rote
Signal an Pin 10 anfangs nicht. Halte ich den Taster jedoch fiir eine
lingere Zeit gedriickt (an den mit A markierten Stellen), dann
siehst Du, dass das Signal an Pin 10 endlich ebenfalls auf HIGH-
Pegel wechselt. Aber warum geschieht das nicht an der mit B mar-
kierten Stelle? Da halte ich doch auch den Taster lingere Zeit

Driicke den Taster und er reagiert 199

200

gedriickt. Ganz einfach! Du hast zwei delay-Aufrufe und der zweite
ist fiir die Verzogerung des LOW-Pegels zustindig. Wurde dieser
abgearbeitet, dann wird der Zustand des Tasters ganz kurz abge-
fragt, und zwar genau zwischen dem Wechsel von LOW nach
HIGH. Deswegen reagiert der Pegel an Pin 10 immer auf die anstei-
gende (A) und nicht auf die abfallende (B) Flanke. Ist doch eigent-
lich recht simpel, oder!? Aus diesem Grund miissen wir aber jetzt
auf delay verzichten und einen anderen Weg wihlen. Schau’ einmal
her, und lass’ dich nicht durch den Umfang der Codezeilen irritie-
ren, denn wir gehen alles schrittchenweise durch:

int ledPinBlink = 13; // Rote Blink-LED-Pin 13

int ledPinTaster = 10; // Gelbe Taster-LED-Pin 10

int tasterPin = 8; // Taster-Pin 8

int tasterStatus; // Variable zur Aufname des Tasterstatus
int interval = 2000; // Intervalzeit (2 Sekunden)

unsigned long prev; // Zeit-Variable

int ledStatus = LOW; // Statusvariable fiir die Blink-LED

void setup(){
pinMode(ledPinBlink, OUTPUT); // Blink-LED-Pin als Ausgang
pinMode(ledPinTaster, OUTPUT); // Taster-LED-Pin als Ausgang
pinMode(tasterPin, INPUT); // Taster-Pin als Eingang
prev = millis(); // jetzigen Zeitstempel merken

}

void loop(){
// Blink-LED iber Intervalsteuerung blinken lassen
if((millis() - prev) > interval){
prev = millis();
ledStatus = !ledStatus; // Toggeln des LED-Status
digitalWrite(ledPinBlink, ledStatus); // Toggeln der roten LED
}
// Abfrage des Taster-Status
tasterStatus = digitalRead(tasterPin);
if(tasterStatus == HIGH)
digitalWrite(ledPinTaster, HIGH); // Gelbe LED auf High-Pegel (5V)
else
digitalWrite(ledPinTaster, LOW); // Gelbe LED auf High-Pegel (0V)

Code-Review

Hier siehst Du, dass wir es mit immer mehr Variablen zu tun
haben, die wir am Anfang erst einmal deklarieren bzw. initialisieren
miissen. Gehen wir der Reihe nach vor:

Projekt 3: Blinken mit Intervallsteuerung

Variable Aufgabe < Tabelle 3-1

Erforderliche Variablen und deren

ledPinBlink Enthélt die Pin-Nummer fiir die LED am digitalen Ausgang Pin 73 Aufgabe
ledPinTaster Enthélt die Pin-Nummer fiir die LED am digitalen Eingang Pin 70

tasterPin Enthélt die Pin-Nummer fiir den Taster am digitalen Eingang Pin 8

tasterStatus Dient als Aufnahme des Taster-Status fiir spatere Auswertung

interval Enthélt den Wert fiir die Intervalsteuerung

prev Nimmt den aktuellen Wert der millis-Funktion auf

ledStatus Speichert den Status fiir die Taster-LED

Ich denke, dass ich mit der Intervalsteuerung beginne, denn sie ist
hier das Wichtigste. Das folgende Diagramm zeigt uns einen zeitli-
chen Verlauf mit bestimmten markanten Zeitwerten. Zuvor muss
ich aber noch einige Dinge im Quellcode erkliren. Da ist zum einen
die neue millis-Funktion, die die Zeit seit dem Starten des aktuellen
Sketches in Millisekunden zurtick liefert. Dabei ist auf etwas Wich-
tiges zu achten. Der Riickgabedatentyp ist unsigned long, also ein
vorzeichenloser 32-Bit Ganzzahltyp, dessen Wertebereich sich von
0 bis 4.294.967.295 (232-1) erstreckt. Dieser Wertebereich ist so
groR, weil er tiber einen lingeren Zeitraum (max. 49.71 Tage) in
der Lage sein soll, die Daten aufzunehmen, bevor es zu einem Uber-
lauf kommt.

Das kénnte fiir dich wichtig sein @
Ein Uberlauf bedeutet bei Variablen Gbrigens, dass der maximal
abbildbare Wertebereich fur einen bestimmten Datentyp Uber-
schritten wurde und anschlielend wieder bei 0 begonnen
wird. Fur den Datentyp byte, der eine Datenbreite von 8 Bits
aufweist und demnach 28 = 256 Zusténde (0 bis 255) speichern
kann, tritt ein Uberlauf bei der Aktion 255 + 1 auf. Den Wert 256
ist der Datentyp byte nicht mehr in der Lage zu verarbeiten.

Es wurden von mir drei weitere Variablen eingefiigt, die folgende
Aufgabe haben:

e interval (nimmt die Zeit im ms auf, die fiir das Blinkinterval
zustindig ist)

* prev (nimmt die aktuell verstrichene Zeit in ms auf. Prev
kommt von previous und bedeutet iibersetzt: vorher)

* ledStatus (In Abhingigkeit des Status von HIGH oder LOW
der Variablen, wird die Blink-LED angesteuert)

Driicke den Taster und er reagiert 201

202

Abbildung 3-2

Interval = 2000

Zeitleiste - EREE ek EEEE »

Zeitlicher Verlauf der 1000 2000 3000 4000 5000
Intervalsteuerung | i I
: t[ms]
(] o
1] .
| [[I
5 |
| (] (]
3|
| (] (]
4| .
| [] [

Wollen wir das Diagramm einmal analysieren, wobei ich markante
Zeitpunkte zur Verdeutlichung herausgegriffen habe. Natirlich
lduft die Zeit nicht real in diesen Schritten ab:

Tabelle 3-2 Zeitpunkt Erklarung

Variableninhalte im zeitlichen
Verlauf Es wird die aktuelle Zeit (in diesem Fall 7000) in Millisekunden in die Variable prev
tibernommen. Dies erfolgt einmalig in der setup-Funktion. Die Differenz millis() —
prev liefert den Wert 0 zum Ergebnis. Dieser Wert ist nicht groBer als der Interval-
wert 2000. Die Bedingung ist nicht erfiillt und der if-Block wird nicht ausgefiihrt.

2 Weitere 7000 ms spater wird wieder die Differenz millis() — prev gebildet und das
Ergebnis dahingehend iiberpriift, ob es groRer als der Intervalwert 2000 ist. 7000
ist nicht gréBer 2000, also ist die Bedingung wieder nicht erfiillt.

3 Nochmals 7000 ms spater wird erneut die Differenz millis() — prev gebildet und das
Ergebnis dahingehend iiberpriift, ob es groBer als der Intervalwert 2000 ist. 2000
ist nicht groBer 2000, also ist die Bedingung wieder nicht erfiillt.

4 Nach 3007 ms Laufzeit erbringt die Differenz jedoch einen Wert, der groRer als der
Intervalwert 2000 ist. Die Bedingung wird erfiillt und der i-Block zur Ausfiihrung
gebracht. Es wird der alte prev-Wert mit dem aktuellen Zeit aus der millis-Funktion
tiberschrieben. Der Zustand der Blink-LED kann umgekehrt werden. Das Spiel
beginnt auf der Basis des neuen Zeitwertes in der Variablen prev von vorne.

Wihrend des ganzen Ablaufes wurde an keiner Stelle im Quellcode
ein Halt in Form einer Pause eingelegt, so dass das Abfragen des

Projekt 3: Blinken mit Intervallsteuerung

digitalen Pins 8 zur Steuerung der Taster-LED in keinster Weise
beeintrachtigt wurde. Ein Druck auf den Taster wird fast unmittel-
bar ausgewertet und zur Anzeige gebracht. Der einzige neue Befehl,
bei dem es sich ja um eine Funktion handelt, die einen Wert zuriick
liefert, lautet millis.

Befehl

(();)
Du siehst, dass er keine Argumente entgegen nimmt und deswegen

ein leeres Klammernpaar hat. Sein Riickgabewert besitzt den
Datentyp unsigned long.

Eine Zeile bereitet mir aber noch ein wenig Kopfschmerzen. Was
bedeutet denn ledStatus = !HledStatus ? Und was heisst toggeln?

Du bist ja wieder schneller als ich, denn so weit war ich doch noch
gar nicht. Aber ok, wenn Du’s schon mal ansprichst, dann will ich
auch sofort darauf eingehen. In der Variablen ledStatus wird der
Pegel gespeichert, der die rote LED ansteuert bzw. fir das Blinken
zustindig ist (HIGH bedeutet leuchten und LOW bedeutet dun-
kel). Uber die nachfolgende Zeile

digitalWrite(ledPinBlink, ledStatus);

wird die LED dann angesteuert. Das Blinken wird ja gerade
dadurch erreicht, dass du zwischen den beiden Zustinden HIGH
bzw. LOW hin- und herschaltest. Das wird auch Toggeln genannt.
Ich werde die Zeile etwas umformulieren, denn dann wird der Sinn
vielleicht etwas deutlicher.

if(ledStatus == LOW)
ledStatus = HIGH;
else
ledStatus = LOW;

In der ersten Zeile wird abgefragt, ob der Inhalt der Variablen led-
Status gleich LOW ist. Falls ja, setze ihn auf HIGH, andernfalls auf
LOW. Das bedeutet ebenfalls ein Toggeln des Status. Viel kiirzer
geht es mit der folgenden einzeiligen Variante, die ich ja schon ver-
wendet habe.

ledStatus = !ledStatus; // Toggeln des LED-Status

<« Abbildung 3-3
Der Befehl »millis«

Driicke den Taster und er reagiert

203

Abbildung 3-4 p

Impulsdiagramm der Signale an Pin

204

13,8und 10

Ich verwende dabei den logischen Not-Operator, der durch das
Ausrufezeichen reprisentiert wird. Er wird hiufig bei booleschen
Variablen verwendet, die nur die Wahrheitswerte true bzw. false
annehmen konnen. Der Not-Operator ermittelt ein Ergebnis, das
einen entgegengesetzten Wahrheitswert aufweist, wie der Operand.
Es funktioniert aber auch bei den beiden Pegeln HIGH bzw. LOW.

Am Schluss wird noch ganz normal und ohne Verzégerung der Tas-
ter an Port 8 abgefragt.

tasterStatus = digitalRead(tasterPin);
if(tasterStatus == HICGH)
digitalWrite(ledPinTaster, HIGH);
else
digitalWrite(ledPinTaster, LOW);

Ich zeige dir das Verhalten wieder an einem Impulsdiagramm, bei
dem die drei relevanten Signale wieder Blink-LED (Pin 13), Taster
(Pin 8) und Taster-LED (Pin 10), wie auch schon eben, untereinan-
der dargestellt sind:

Wir erkennen, dass das blaue Signal die Blink-LED an Pin 13 dar-
stellt. Wenn ich jetzt in unregelmifligen Abstinden den Taster an
Pin 8 betiitige - dargestellt durch das gelbe Signal - reagiert unmit-
telbar das rote Signal der Taster-LED an Pin 10. Es ist keine Zeit-
verzogerung bzw. Unterbrechung zu erkennen. Das Verhalten der
Schaltung ist genau das, was wir erreichen wollten.

Der Schaltplan

Das Lesen des Schaltplanes diirfte dir jetzt wohl keine Probleme
mehr bereiten. Es ist lediglich eine weitere LED hinzugekommen,
die auf den Druck des Tasters reagieren soll.

Projekt 3: Blinken mit Intervallsteuerung

Arduino i—m L H 2.
e R LED ROt
11
PWM ==
P R0 . I35 - -1t 2. ¢
Q pwm —g—- R LED Gelb
% PWM I, Taster
— 5
PWM
e -
WM |5
-2
[
0 <&
Analog IN S, o
SEECEE
Schaltungsaufbau

Auf deinem Breadboard wird es jetzt schon ein wenig voller.

Taster-LED mit
Vorwiderstand

Blink-LED mit
Vorwiderstand

Taster mit
Pull-Down-
Widerstand

=
=5
aQ
<
et
3
o

g om

Das kannte wichtig fiir dich sein

Driicke den Taster und er reagiert

Wie du dieser und auch im letzten Schaltungsaufbau sicherlich
bemerkt hast, verwende ich unterschiedliche Farben fir die fle-
xiblen Steckbrticken. Wenn du Schaltungen auf deinem Bread-
board zusammen steckst, dann ist es ratsam, dass du ebenfalls
mit unterschiedlichen Farben arbeitest. Ich habe z.B. Rot fir die
Betriebsspannung und Schwarz fur Masse verwendet. Weitere
Signalleitungen kannst du in Blau, Gelb oder auch Rot stecken.

<« Abbildung 3-5
Arduino-Board mit Taster und zwei
LEDs

<« Abbildung 3-6
Aufbau der Schaltung mit Fritzing

205

206

Es gibt da keine festen Regeln, doch du solltest fiir dich selbst
ein Farbsystem entwickeln, damit du den Uberblick behiltst. Es
kénnte auch fur AuBenstehende hilfreich sein, ein sauber kon-
zipiertes Breadboard vorzufinden.

Troubleshooting

Falls die LED nicht leuchtet, wenn du den Taster driickst, oder die
LED standig leuchtet, iiberpriife bitte Folgendes:

Entsprechen deine Steckverbindungen auf dem Breadboard
wirklich der Schaltskizze?

Wurden die LEDs richtig herum eingesteckt? Denke an die
richtige Polung!

Achte auf den Taster mit 2 bzw. 4 Anschliissen. Fithre ggf.
einen Durchgangstest mit einem Multimeter durch, und iiber-
priife so die Funktionsfihigkeit des Tasters und der entspre-
chenden Beinchen.

Haben die beiden Widerstinde die korrekten Werte? Wurden
sie eventuell vertauscht?

Ist der Sketch-Code korrekt?

Was hast du gelernt?

Du hast die Verwendung mehrerer Variablen kennengelernt,
die fiir die unterschiedlichsten Zwecke genutzt wurden (Dekla-
ration fiir Eingangs- bzw. Ausgangspin und Aufnahme von Sta-
tusinformationen).

Der Befehl delay unterbricht die Ausfithrung des Sketches und
erzwingt eine Pause, so dass alle nachfolgenden Befehle nicht
berticksichtigt werden, bis die Wartezeit verstrichen ist.

Du hast tiber die Intervallsteuerung mittels der millis-Funktion
einen Weg kennengelernt, dennoch den kontinuierlichen Sketch-
ablauf der loop-Endlosschleife aufrecht zu erhalten, so dass
weitere Befehle der loop-Schleife zur Ausfithrung gebracht
wurden und damit eine Auswertung weiterer Sensoren, wie z.B.
der angeschlossene Taster, moglich waren.

Du hast verschiedene Impulsdiagramme kennen und lesen
gelernt, die grafisch unterschiedliche Pegelzustinde im zeitli-
chen Verlauf sehr gut darstellen.

Projekt 3: Blinken mit Intervallsteuerung

Workshop

Entwerfe doch einfach mal einen Sketch, der bei einem Tasten-
druck die LED zum Leuchten bringt und beim nichsten wieder
ausschaltet. Das soll immer in diesem Wechsel geschehen. Eine
knifflige Angelegenheit, die wir fiir ein kommendes Kapitel benoti-
gen werden. Vielleicht st6Rt du dabei auf ein Problem, dass wir spi-
ter 16sen wollen. Das Stichwort lautet Prellen. Doch dazu spiter
mehr.

Driicke den Taster und er reagiert

207

Projekt
Der storrische Taster

Scope

In diesem Kapitel wirst du erkennen, dass sich ein Taster oder auch
ein Schalter nicht immer so verhilt, wie du es dir vielleicht vor-
stellst. Nehmen wir fiir dieses Beispiel einen Taster, der — so die
Theorie — eine Unterbrechung des Stromflusses authebt, solange er
gedriickt bleibt, und die Unterbrechung wieder herstellt, wenn du
ihn loslisst. Das ist nichts Neues und absolut einfach zu verstehen.
Doch bei elektronische Schaltungen, deren Aufgabe z.B. im Ermit-
teln der exakten Anzahl von Tastendriicken liegt, um diese dann
spéter auszuwerten, bekommen wir es mit einem Problem zu tun,
das zunichst gar nicht augenfillig ist.

Ich wurde geprellt

Das Stichwort fiir unser niachstes Thema lautet Prellen. Wenn du
einen ganz normalen Taster driickst und auch gedriicke halest, sollte
man meinen, dass der mechanische Kontakt im Taster einmalig
geschlossen wird. Das ist jedoch meistens nicht der Fall, denn wir
haben es mit einem Bauteil zu tun, das innerhalb einer sehr kurzen
Zeitspanne — im Millisekundenbereich — den Kontakt mehrfach off-
net und wieder schlief$t. Die Kontaktflichen eines Tasters sind in der
Regel nicht vollkommen glatt, und wenn wir uns diese unter einem
Elektronenmikroskop anschauten, sihen wir viele Unebenheiten
und auch Verunreinigungen. Diese fithren dazu, dass die Beriih-
rungspunkte der leitenden Materialien bei Anniherung nicht sofort
und nicht auf Dauer zueinander finden. Eine weitere Ursache fiir den
hier angefithrten Effekt kann im Schwingen bzw. Federn des Kon-
taktmaterials liegen, wodurch bei Berithrung kurzzeitig der Kontakt
mehrfach hintereinander geschlossen und wieder gedffnet wird.

209

http://www.arduino.cc/playground/Code/Bounce
http://www.arduino.cc/playground/Code/Bounce
http://www.arduino.cc/playground/Code/Bounce

Abbildung 4-1
Ein prellender Taster

210

Diese Impulse, die der Taster liefert, werden vom Mikrocontroller
registriert und korrekt verarbeitet, namlich so, als ob du den Taster
absichtlich ganz oft und schnell hintereinander driickst. Das Ver-
halten ist natiirlich storend und muss in irgendeiner Weise verhin-
dert werden. Dazu schauen wir uns das folgende Impulsdiagramm
einmal etwas genauer an:

Stabiler Zustand

Ich habe den Taster einmalig gedriickt und dann gedriickt gehalten,
doch bevor er den stabilen Zustand des Durchschaltens erreicht
hat, zickte er ein wenig und unterbrach die gewiinschte Verbin-
dung mehrfach. Dieses Ein- und Ausschalten, bis der endgiiltige
gewiinschte HIGH-Pegel erreicht ist, wird Prellen genannt. Das
Verhalten kann auch in entgegengesetzter Richtung auftreten.
Auch wenn ich den Taster wieder loslasse, werden unter Umstin-
den mehrere Impulse generiert, bis ich endlich den gewiinschten
LOW-Pegel erhalte. Das Prellen des Tasters ist fiir das menschliche
Auge kaum oder tberhaupt nicht wahrnehmbar, und wenn wir
eine Schaltung aufbauen, die bei gedriicktem Taster eine LED
ansteuern soll, dann wiirden sich die einzelnen Impulse aufgrund
der Trigheit der Augen als ein HIGH-Pegel darstellen. Versuchen
wir es nun mit einer anderen Lésung. Was hiltst du davon, wenn
wir eine Schaltung aufbauen, die einen Taster an einem digitalen
Eingang besitzt und eine LED an einem anderen digitalen Ausgang.

Aber das ist doch nichts Neues. Was soll das bringen? Du hast eben
gesagt, dass bei einer Schaltung dieser Art mogliches Prellen nicht
erkennbar dargestellt wird.

Unsere Schaltung ist ja nicht die einzige Komponente. Neben
Hardware haben wir doch noch die Software, und die wollen wir
jetzt so gestalten, dass beim ersten Impuls die LED zu leuchten
beginnt. Beim nichsten soll sie erléschen und beim darauffolgen-
den wieder leuchten usw. Wir haben es also mit einem Toggeln des
logischen Pegels zu tun. Wenn jetzt mehrere Impulse beim Drii-
cken des Tasters von der Schaltung bzw. der Software registriert
werden, dann wechselt die LED mehrfach ihren Zustand. Bei einem

Projekt 4: Der storrische Taster

prellfreien Taster sollten sich die Zustinde wie im folgenden Dia-
gramm darstellen.

<« Abbildung 4-2
Pegelanderung der LED bei einem
Tasterdruck

Du siehst, dass bei mehrfachen Tastendriicken (ansteigende
Flanke), die hier mit A markiert sind, der Zustand der LED toggelt.
Wie konnen wir das softwaremiRig bewerkstelligen? Schauen wir
erst einmal auf die Bauteilliste.

Bendtigte Bauteile

Fur die folgende Schaltung habe ich einen alten Taster aus meiner
Krambkiste verwendet, der mit Sicherheit heftig prellen wird. Neue
Taster, die man heutzutage erhilt, haben moglicherweise einen
mechanischen Prellschutz mit einem erkennbaren Druckpunkt ein-
gebaut. Wenn du ihn driickst, kannst du ein leichtes Knacken
wahrnehmen. Das deutet darauf hin, dass der Kontakt mit einem
erhohten Druck bzw. erhohter Geschwindigkeit geschlossen wird,
um so das Prellen zu verhindern bzw. zu minimieren.

Benétigte Bauteile

1x rote LED

1x Taster (ohne Prellschutz)

o TlAkg—— 1x Widerstand 330
— Bbla

1x Widerstand 70K

Mehrere flexible Steckbriicken in unterschiedli-
chen Farben und Langen

Ich wurde geprellt 2m

Tabelle 4-1 p

Bendtigte Variablen und deren

212

Aufgabe

Sketch-Code

Der Sketch-Code fiir das Beispiel schaut wie folgt aus:

int tasterPin = 2; // Taster-Pin 2
int tasterWert = 0; // Variable zur Aufname des Tasterstatus
int vorherTasterWert = 0; // Variable zur Aufname des alten
Tasterstatus
int ledPin = 8; // LED-Pin 8
int zaehler = 0; // Zdhlervariable
void setup(){
pinMode(tasterPin, INPUT); // Taster-Pin als Eingang
pinMode(ledPin, OUTPUT); // LED-Pin als Ausgang
}

void loop(){

tasterWert = digitalRead(tasterPin); // Abfrage des Taster
// Ist vorheriger Tasterwert ungleich aktuellem Tasterwert?
if(vorherTasterhWert != tasterWert){

if(tasterWert == HIGH){

zaehler++; // Zahler inkrementieren (+1)

}

}

vorherTasterhWert = tasterWert; // Speichern des aktuellen
// Tasterwertes

if(zaehler%2 == 0) // Ist Zdhler eine gerade Zahl?
digitalWrite(ledPin, HIGH);
else

digitalWrite(ledPin, LOW);
}

Der Code sieht auf den ersten Blick nicht sonderlich kompliziert
aus, doch diesmal ist er etwas raffinierter. Inwiefern das so ist, wirst
du gleich sehen.

Code-Review

Zu Beginn deklarieren und initialisieren wir wieder eine Reihe glo-
baler Variablen.

Variable Aufgabe

tasterPin Diese Variable enthélt die Pin-Nummer fiir den angeschlossenen Taster an Pin 2.
tasterWert Diese Variable nimmt den Tasterstatus auf.

vorherTasterWert Diese Variable dient zur Aufnahme des vorherigen Tasterstatus.

ledPin Diese Variable enthélt die Pin-Nummer fiir die angeschlossenen LED an Pin 8.
zaehler Diese Variable speichert die HIGH-Pegel des Tasterstatus.

Projekt 4: Der storrische Taster

Die Initialisierung der einzelnen Pins innerhalb der setup-Funktion
bedarf keiner weiteren Erkldrung, so dass wir uns direkt auf die
loop-Funktion stiirzen kénnen. Der Pegel des angeschlossenen Tas-
ters wird kontinuierlich tber die digitalRead-Funktion abgefragt
und in der Variablen tasterWert gespeichert:

tasterlWert = digitalRead(tasterPin);

Die Aufgabe des Sketches besteht aber jetzt darin, jeden Tasten-
druck, der ja durch einen HIGH-Pegel reprisentiert wird, zu erken-
nen und eine Zihlervariable entsprechend hochzuzihlen.
Normalerweise wiirden wir sagen, dass die folgenden Codezeilen
dies bewerkstelligen konnten:

void loop(){
tasterlWert = digitalRead(tasterPin); // Abfrage des Taster
if(tasterWert == HIGH){
zaehler++; // Zéhler inkrementieren (+1)

}
/] ...

Der Code birgt aber einen entscheidenden Fehler. Bei jedem
erneuten Durchlauf der loop-Funktion wird bei gedriicktem Tas-
ter die Zihlervariable inkrementiert, und je linger du den Taster
gedriickt haltst, desto weiter wird die Variable hochgezihlt. Es
soll aber bei gedriicktem Taster lediglich der Inhalt der Variablen
um 1 erhoht werden. Wie koénnen wir dieses Verhalten des
Codes dndern? Die Losung ist eigentlich recht einfach. Du musst
lediglich den Pegel des letzten Tastendrucks nach der Abfrage in
einer Variablen zwischenspeichern. Bei der nichsten Abfrage
wird der neue Wert mit dem alten verglichen. Sind beide Pegel
unterschiedlich, dann musst du lediglich iiberpriifen, ob der
neue Wert dem HIGH-Pegel entspricht, denn diese mochten wir
ja zdhlen. Im Anschluss wird wieder der aktuelle neue Pegel fiir
den nichsten Vergleich zwischengespeichert und alles beginnt
von vorne.

Wenn wir aber den Zihler bei jedem Tastendruck hochzihlen, wie
wird dann das Ein- bzw. Ausschalten der LED realisiert? Die LED
muss doch bei jedem 1., 3., 5., 7. usw. Tastendruck leuchten und bei
jedem 2., 4., 6., 8. usw. Tastendruck wieder ausgehen.

Ich wurde geprellt 213

Tabelle 4-2 »

Ganzzahl-Division durch den Wert 2

214

Das ist genau der Ansatz, den wir zur Losung des Problems genutzt
haben. Du musst den Inhalt der Zihlervariablen in irgendeiner
Weise bewerten. Was fillt dir auf, wenn du dir die Werte
anschaust, die fiir das Leuchten der LED verantwortlich sind?

und die tibrigen sind gerade.

{ Ich hab’s! Alle Werte, bei denen die LED leuchten soll, sind ungerade,]

Perfekt, denn das ist die Lésung. Wir miissen also eine programm-
technische Méglichkeit finden, die es uns erlaubt, einen Wert auf
gerade bzw. ungerade zu testen. Ich gebe dir einen Tipp. Wenn du
Werte durch 2 dividierst, dann erhiltst du fiir gerade Zahlen keinen
Rest, bei den ungeraden hingegen schon. Wirf einmal einen Blick
auf die folgende Tabelle:

Division Ergebnis und Rest der Division Rest vorhanden?
1/2 ORest 7 Ja

2/2 TRest0 Nein

3/2 TRest 1 Ja

4/2 2Rest0 Nein

5/2 2Rest 1 Ja

6/2 3Rest0 Nein

Du siehst also, dass es nur fiir ungerade Werte einen Restwert gibt.
In der Programmierung haben wir zur Ermittlung des Restwertes
einen speziellen Operator. Es handelt sich dabei um den Modulo-
Operator, der durch das Prozentzeichen % dargestellt wird. Die
erste Zeile der Codezeilen iiberpriift den Zihlerwert auf gerade
bzw. ungerade:

if(zaehler%2 == 0) // Ist Zahler eine gerade Zahl?
digitalWrite(ledPin, HIGH);
else

digitalWrite(ledPin, LOW);

Bei geraden Werten wird die LED zum Leuchten gebracht, bei
ungeraden erlischt sie wieder.

Achtung
Die Operanden des Modulo-Operators % mussen einen ganz-
zahligen Datentyp aufweisen, wie z.B. int, byte oder unsigned int.

Projekt 4: Der storrische Taster

Nun wollen wir mal sehen, wie sich die Schaltung verhilt, wenn
wir den Taster mehrfach hintereinander im Abstand von sagen wir
1 Sekunde driicken. Das Ergebnis siehst du hier wieder im folgen-
den Impulsdiagramm:

Das ist sicherlich nicht das Verhalten, das wir beabsichtigt haben.
Die LED toggelt nicht im Rhythmus des Tastendrucks, sondern
zeigt das typische Verhalten, das bei einem prellenden Taster oder
Schalter auftritt. Was also tun, damit das Prellen keine derartige
Auswirkung auf die Schaltung bzw. den Zihler hat? Eine der
Losungen ist das Hinzuftigen einer zeitlichen Verzégerung, um das
Prellen abklingen zu lassen. Fiige einfach einmal einen delay-Befehl
hinter der Auswertung des Counters hinzu:

if(zaehler%2 == 0)
digitalWrite(ledPin, HIGH);
else
digitalWrite(ledPin, LOW);
delay(10); // 10 ms warten, bevor eine erneute Abfrage des Tasters
// erfolgt

Ich habe hier einen Wert von 10 Millisekunden genommen, der fur
meinen Taster genau richtig war. Der korrekte bzw. optimale Wert
hingt nattirlich immer davon ab, wie schnell du den Taster hinter-
einander betitigen mochtest, damit die Software noch darauf rea-
gieren kann. Experimentiere ein wenig mit verschiedenen Werten
und wihle dann den fiir dich passenden aus.

Der Schaltplan

Wenn du dir den Schaltplan anschaust, wird er dir bestimmt
bekannt vorkommen. Die verwendete Software unterscheidet sich
allerdings ein wenig.

<« Abbildung 4-3
Pegelanderung der LED bei einem

Ich wurde geprellt

215

Abbildung 4-4 »
Arduino-Board mit Taster und LED
zur Veranschaulichung des Prellens

216

Arduino 13
12
pwm | L1,
pwm | L0
\D\ PWM %
= 2~ {33 } -1 2
— 7 R N*
o T LED Rot
‘S, PWM E%
=S PWM [
R
PWM %
1 |' 1ER3K ,'
10 Taster
Analog IN -

+5V GND

R L%

Weitere Moglichkeiten zur
Kompensation des Prellens

Wir haben bisher lediglich eine Moglichkeit zur Kompensation, des
Prellens eines mechanischen Bauelementes, z.B. des Tasters, ken-
nengelernt. Es gibt aber noch weitere:

1. Spezielle Taster, die nicht prellen und einen festen Druckpunkt
haben.

2. Mittels einer eigens zu diesem Zweck vorgesehenen Bibliothek,
deren Name Bounce-Library lautet.

3. Mittels einer kleinen zusitzlichen hardwaretechnischen
Losung tiber ein RC-Glied

Ich méchte kurz auf den Punkte 2 eingehen. Falls dich auch Punkt
3 interessiert, findest du hierzu zahlreiche Informationen im Inter-
net oder auch auf meiner eigenen Internetseite. Eine Bibliothek,
auch Library genannt, ist eine Software-Komponente, die z.B. von
anderen Programmierern entwickelt wurde, um ein spezielles Pro-
blem zu 1&sen. Damit das Rad nicht immer wieder neu erfunden
werden muss, wurde der betreffendre Code in eine Library ver-
packt und anderen Usern zur Verfiigung gestellt, um ihnen Arbeit
zu ersparen. Wenn es sich um frei verfiigbare Bibliotheken handelt,
und das ist im Arduino-Umfeld wohl meistens der Fall, kannst du
sie bedenkenlos in deinem Projekt verwenden. Die Bounce-Library

Projekt 4: Der storrische Taster

findest du im Internet auf der Seite hitp://www.arduino.cc/play-
ground/Code/Bounce. Du kannst sie dort in Form einer gepackten
Zip-Datei herunterladen. Entpacke sie in das Arduino-Verzeichnis
arduino-1.0-rcI\libraries\, in dem sich auch schon diverse andere
Libraries befinden, die im Lieferumfang der Arduino-Software stan-
dardmiRig enthalten sind. Nach dem Entpacken sollte sich fol-
gende File-Struktur ergeben

Wenn du jetzt deinen Sketch programmieren mochtest, in dem du
diese Library verwenden willst, wirst du durch die Entwicklungs-
umgebung unterstiitzt, indem dir beim Einfiigen der Bibliothek in
dein Projekt entsprechende Hilfestellung geleistet wird. Du musst
deinem Compiler zunichst in irgendeiner Weise mitteilen, dass du
Fremdcode mit einbinden mochtest. Dies erfolgt mittels der Pri-
prozessoranweisung #include. Nihere Erlduterungen hierzu folgen
spiter. Du musst nach dem Entpacken des Codes in das o.g. Ver-
zeichnis lediglich die #include-Anweisung iiber die in der folgenden
Abbildung gezeigten Mentipunkte der IDE hinzuzufiigen.

[Sketch| Tools Help

Verify / Compile Strg+R

Show Sketch Folder Strg+K

Add File...
Import Library... 4 Bounce
| E£PROM
Ethernet
Firmmata

Uber Sketch|Import Library... kannst du eine Liste aller verfiigbaren
Bibliotheken im [libraries-Verzeichnis anzeigen. Bei Auswahl der
Option Bounce wird die erforderliche #include-Prdprozessoranwei-
sung automatisch in der ersten Zeile des Editors platziert. Nach die-
ser Zeile schreibst du deinen Code, der z.B. wie folgt ausschauen
kann:

#include <Bounce.h> // Bounce-Library einbinden

int ledPin = 12; // LED-Pin 12

int tasterPin = 8; // Taster-Pin 8

int warteZeit = 10; // Wartezeit = 10ms

Bounce entprellung = Bounce(tasterPin, warteZeit); // Bounce-Objekt

// generieren

void setup(){
pinMode(ledPin, OUTPUT); // LED-Pin als Ausgang
pinMode(tasterPin, INPUT); // Taster-Pin als Eingang

}

<« Abbildung 4-5
Einbinden der Bounce-Library in
deinen Sketch

Ich wurde geprellt

217

http://www.arduino.cc/play-ground/Code/Bounce
http://www.arduino.cc/play-ground/Code/Bounce
http://www.arduino.cc/play-ground/Code/Bounce

218

void loop(){
entprellung.update (); // Update der Entprellung
int wert = entprellung.read(); // Lese Update-Wert
if (wert == HIGH)
digitalWrite(ledPin, HIGH); // LED anschalten
else
digitalWrite(ledPin, LOW); // LED ausschalten
}

Was ein Objekt ist, das wirst du spiter noch erfahren. Nimm den
Code erst einmal so, wie er ist. Ich wiirde dir vorschlagen, dass du
den Code verwendest, den wir fur die Schaltung geschrieben
haben, bei der die LED bei jedem Tastendruck toggeln soll. Er eig-
net sich am besten fiir die Uberpriifung der Funktionsfihigkeit der
Bounce-Library.

Das konnte wichtig fiir dich sein
Hier ein paar Begriffe fur die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

Prellen Taster

Entprellen

Schaltungsaufbau

Da ich diese Schaltung schon einmal mit Fritzing dhnlich aufgebaut
habe, lasse ich sie an dieser Stelle weg.

Troubleshooting

Falls die LED beim Tasterdruck nicht leuchtet oder toggelt, konnen
hierfiir mehrere Griinde vorliegen:

* Die LED ist verpolt eingesteckt worden. Erinnere dich noch
einmal an die beiden unterschiedlichen Anschliisse einer LED
mit der Anode und Kathode.

* Die LED ist vielleicht defekt und durch Uberspannung aus ver-
gangenen Experimenten durchgebrannt. Teste sie mit einem
Vorwiderstand an einer 5V Spannungsquelle.

* Kontrolliere noch einmal die Verbindungen der LED bzw. die
Bauteile auf deinem Breadboard.

¢ Uberpriife noch einmal den Sketch, den du in den Editor der
IDE eingegeben hast. Hast du vielleicht eine Zeile vergessen
oder dich verschrieben und ist der Sketch wirklich korrekt
ibertragen worden?

Projekt 4: Der storrische Taster

 Uberpriife die Funktionsfihigkeit des von dir verwendeten
Tasters mit einem Durchgangspriifer oder Multimeter.

Was hast du gelernt?

e Du hast erfahren, dass mechanische Bauteile wie Taster oder
Schalter Kontakte nicht unmittelbar schliefen oder offnen.
Durch verschiedene Faktoren, z.B. Fertigungstoleranzen, Ver-
unreinigungen oder schwingende Materialien, kénnen mehrere
und kurz hintereinander folgende Unterbrechungen erfolgen,
bevor ein stabiler Zustand erreicht wird. Dieses Verhalten wird
von elektronischen Schaltungen registriert und entsprechend
verarbeitet. Wenn du z.B. die Anzahl von Tastenrucken zih-
len mochtest, konnen sich solche Mehrfachimpulse als aufler-
ordentlich storend erweisen.

* Dieses Verhalten kann tiber unterschiedliche Ansitze kompen-
siert werden:

* durch eine softwaretechnische Lésung (z.B. durch eine Ver-
zogerungsstrategie beim Abfragen des Eingangssignals)

¢ durch eine hardwaretechnische Losung (z.B. RC-Glied)

* Du hast gelernt, wie du eine externe Library von anderen Ent-
wicklern in deinen Sketch einbinden kannst und was eine
#include-Prdprozessordirektive ist.

Workshop

In diesem Workshop méchte ich dich dazu animieren, eine Schal-
tung zu konstruieren, die mehrere LEDs ansteuert. Sagen wir, dass
es mindestens 5 LEDs sein sollten. Bei jedem Tastendruck soll die
Software eine weitere LED in der Kette anschalten. Auf diese Weise
kannst du wunderbar das Prellen ohne einen Logikanalyzer sicht-
bar machen, wenn nimlich auf einen Tastendruck direkt mehrere
LEDs zu leuchten beginnen. Korrigiere dann die Programmierung
so, dass das Prellen keine Auswirkungen mehr hat, und tberpriife
es mit der Schaltung.

Tipp
Wenn du eine LED-Kette mit vielen hintereinander geschalteten

LEDs realisieren mochtest, kannst du eine sogenannte Bar-Graph-
Anzeige verwenden. Es gibt sie in unterschiedlichen Ausfiithrungen,

Tipp

219

Abbildung 4-6 »
Bar-Graph-Anzeige vom Typ YBG
2000 mit 20 LED-Elementen

wobei die einzelnen LEDs jeweils platzsparend in einem Gehiuse
untergebracht sind. Es sind Bauteile mit 10 oder auch 20 LED-Ele-
menten verfiigbar.

Du darfst aber hier auch nicht auf die entsprechenden Vorwider-
stande verzichten.

220

Projekt 4: Der storrische Taster

Ein Lauflicht

Scope

In diesem Experiment behandeln wir folgende Themen:

Deklarierung und Initialisierung eines Arrays
Programmierung mehrerer Pins als Ausgang (OUTPUT)
Die Verwendung einer for-Schleife

Der komplette Sketch

Analyse des Schaltplans

Aufbau der Schaltung

Workshop

Ein Lauflicht

Du hast jetzt schon einiges iiber die Ansteuerung von LEDs erfah-
ren, so dass wir in einigen kommenden Kapiteln die unterschied-
lichsten Schaltungen aufbauen kénnen, um mehrere Leuchtdioden
blinken zu lassen. Das hort sich zwar im Moment vielleicht recht
simpel an, doch lass’ dich einmal iiberraschen. Wir wollen mit
einem Lauflicht beginnen, das nach und nach die einzelnen LEDs
ansteuert. Die an den digitalen Pins angeschlossenen LEDs sollen

nach dem folgenden Muster aufleuchten:

Projekt

221

222

Abbildung 5-1 »
Leuchtsequenz der 7 LEDs

LED1 LED2 LED3 LED4 LED5 LED6 LED7

v @OOO000..
e J@OOO00
e)O@OOOO
e (DOO@OOO
e JOO0@O0
e DOO00@0 /
()OO0 00@

Bei jedem neuen Durchlauf leuchtet also die LED eine Position wei-
ter rechts. Ist das Ende erreicht, dann beginnt das Spiel von vorne.
Du kannst die Programmierung der einzelnen Pins, die ja allesamt
als Ausginge arbeiten sollen, auf unterschiedliche Weise angehen.
Mit dem Wissen, das du bisher hast, musst du sieben Variablen
deklarieren und mit den entsprechenden Pin-Werten initialisieren.
Das wiirde dann vielleicht wie folgt aussehen:

int ledPin1 = 7;
int ledPin2 = 8;
int ledPin3 = 9;

etc.

Anschlieffend muss jeder einzelne Pin in der setup-Funktion mit
pinMode als Ausgang programmiert werden, was ebenfalls eine
mithsame Tipparbeit darstellt:

pinMode(ledPin1, OUTPUT);
pinMode(ledPin1, OUTPUT);
pinMode(ledPin1, OUTPUT);

etc.

Aber die Rettung naht. Ich méchte dir einen interessanten Variab-
len-Typ vorstellen, der in der Lage ist, mehrere Werte des gleichen
Datentyps unter einem Namen zu speichern.

Puahh! Jetzt machst du dich aber lustig tiber mich. Wie soll denn eine
Variable unter Verwendung eines einzigen Namens mehrere Werte
speichern und wie soll ich die einzelnen Werte denn speichern oder
abrufen?

Projekt 5: Ein Lauflicht

Geduld, denn auch das ist moglich. Diese spezielle Form der Vari-
ablen nennt sich Array. Der Zugriff darauf erfolgt nattrlich nicht
nur iber den eindeutigen Namen, sondern eine solche Variable
besitzt zudem noch einen Index. Dieser Index ist eine Ganzzahl, die
hochgezihlt wird. Auf diese Weise werden die einzelnen Elemente
des Arrays, so werden nimlich die gespeicherten Werte genannt,
aufgerufen bzw. geindert. Du wirst das im nun folgenden Sketch-
Code sehen.

Bendtigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

Benétigte Bauteile

/ 7 xrote LED

———— @M@ ——— 7xWiderstand 330
//-\\ Mehrere flexible Steckbriicken in unterschiedli-
chen Farben und Léngen

Sketch-Code

Hier der Sketch-Code zur Ansteuerung des Lauflichtes mit sieben
LEDs:

int ledPin[] = {7, 8, 9, 10, 11, 12, 13}; // LED-Array mit Pin-Werten
int wartezeit = 200; // Pause zwischen den Wechseln im ms
void setup()
{
for(int i = 0; 1 < 7; i++)
pinMode(ledPin[i], OUTPUT); // Alle Pins des Arrays als Ausgang
}

void loop()
{
for(int i = 0; 1 < 7; i++)
{
digitalWrite(ledPin[i], HIGH); // Array-Element auf HICH-Pegel
delay(wartezeit);
digitalWrite(ledPin[i], LOW); // Array-Element auf LOW-Pegel
}
}

Ein Lauflicht

223

Tabelle 5-1 p

Bendtigte Variablen und deren

224

Aufgabe

Abbildung 5-2 »
Array-Deklaration

Code-Review

Fiir unser Experiment benotigen wir programmtechnisch gesehen
die folgenden Variablen:

Variable Aufgabe

ledPin Die Array-Variable zur Aufnahme der einzelnen Pins, an denen die LEDs
angeschlossen werden.

wartezeit Enthélt die Zeit in ms, die zwischen dem LED-Wechsel gewartet werden soll.

Im Lauflicht-Sketch begegnest du zum ersten Mal einem Array und
einer Schleife. Die Schleife wird benotigt, um komfortabel die ein-
zelnen Array-Elemente {iber die darin enthaltenen Pin-Nummern
anzusprechen. Es werden so zum einen alle Pins als Ausginge pro-
grammiert und zum anderen die digitalen Ausginge ausgelesen. Ich
hatte erwihnt, dass jedes einzelne Element iiber einen Index ange-
sprochen wird, und da die Schleife, die wir hier nutzen, einen
bestimmten Wertebereich automatisch anfihrt, ist dieses Kon-
strukt wie fiir uns geschaffen. Beginnen sollten wir mit der Array-
Variablen. Die Deklaration dhnelt der bei einer ganz normalen Vari-
ablen, wobei aber zusitzlich das eckige Klammerpaar hinter dem
Namen erforderlich ist:

Datentyp Arrayname GroBe

(ledPin[7] ;)

* Der Datentyp legt fest, welchen Typ die einzelnen Array-Ele-
mente haben sollen.

* Der Array-Name ist ein eindeutiger Name fir den Zugriff auf
die Variable.

* DasKennzeichen fiir das Array sind die eckigen Klammern mit der
Grofenangabe, wie viele Elemente das Array aufnehmen soll.

Du kannst dir ein Array wie einen Schrank mit mehreren Schubladen
vorstellen. Jede einzelne Schublade hat ein Schildchen mit einer fort-
laufenden Nummer auf der Auenseite. Wenn ich dir daher z.B. die
Anweisung gebe, doch bitte die Schublade mit der Nummer 3 zu 6ft-
nen, um zu sehen, was darinnen ist, dann ist das wohl ziemlich ein-
deutig, oder? Ahnlich verhilt es sich bei einem Array.

Projekt 5: Ein Lauflicht

Index 0o 1 2 3 4 5 6

S DODD00

Bei diesem Array wurden nach der Deklaration alle Elemente impli-
zit mit dem Wert 0 initialisiert. Die Initialisierung kann jedoch
explizit auf zwei unterschiedliche Weisen erfolgen. Wir haben den
komfortablen Weg gewihlt und die Werte, mit denen das Array

versehen werden soll, in geschweiften Klammern hinter der Dekla-
ration, durch Komma separiert, aufgelistet:

int ledPin[] = {7, 8, 9, 10, 11, 12, 13};

Basierend auf dieser Befehlszeile sieht der Array-Inhalt wie folgt aus:

Index 0 4 5

2 3 6
Arrayinhalt @ @ @ @

Haben wir nicht eine entscheidende Sache vergessen? Bei der Dekla-
ration des Arrays ist die eckige Klammer leer. Dort sollte doch die
GroRe des Arrays angegeben sein.

Korrekt erkannt, aber in diesem Fall weif§ der Compiler anhand der
mitgelieferten Informationen bei der Initialisierung, die ja in dersel-
ben Zeile erfolgt, um wie viele Elemente es sich handelt. Aus die-
sem Grund kannst du sie weglassen. Die etwas aufwindigere Art
der Initialisierung besteht darin, die einzelnen Werte jedem Array-
Element explizit zuzuweisen:

int ledPin[7]; // Deklaration des Arrays mit 7 Elementen
void setup()

{
ledPin[0] = 7;
ledPin[1] = 8;
ledPin[2] = 9;
ledPin[3] = 10;
ledPin[4] = 11;
ledPin[5] = 12;
ledPin[6] = 13;
/] ...

}

Achtung

Das erste Array-Element hat immer den Index mit der Nummer
0. Deklarierst du zB. ein Array mit 70 Elementen, dann ist der

®

Ein Lauflicht

225

226

Abbildung 5-3 »
Die »for«-Schleife

hochste zuldssige Index der mit der Nummer 9, also immer eins
weniger, als die Anzahl der Elemente. Haltst du dich nicht an
diese Tatsache, dann provozierst du mdglicherweise einen
Laufzeitfehler, denn der Compiler, der hinter der Entwicklungs-
umgebung steckt, bemerkt das weder zur Entwicklungszeit
noch spater zur Laufzeit, und deshalb solltest du doppelte
Sorgfalt walten lassen.

Kommen wir jetzt zur Schleife und schauen uns die Syntax ein
wenig genauer an.

Befehl Initialisierung Test Update

I
((i=0; i< 7; it++))

Die Schleife wird mit dem Schlisselwort for eingeleitet und wird
deswegen auch for-Schleife genannt. Thr werden, in runden Klam-
mern eingeschlossen, bestimmte Informationen geliefert, die Aus-
kunft iiber folgende Eckpunkte geben:

* Mit welchem Wert soll die Schleife beim Zihlen beginnen?
(Initialisierung)
* Wie weit soll gezihlt werden? (Test)

* Um welchen Betrag soll der urspriingliche Wert verindert wer-
den? (Update)

Die drei Informationseinheiten legen das Verhalten der for-Schleife
fest und bestimmen ihr Verhalten beim Aufruf.

Das konnte wichtig fiir dich sein
Eine for-Schleife kommt meistens dann zum Einsatz, wenn von
vornherein bekannt ist, wie oft bestimmte Anweisungen aus-
gefuhrt werden sollen. Diese Eckdaten werden im sogenann-
ten Schleifenkopf, der von runden Klammern umschlossen ist,
definiert.

Aber werden wir etwas konkreter. Die Codezeile
for(int i = 0; 1 < 7; i++)

deklariert und initialisiert eine Variable i vom Datentyp int mit dem
Wert 0. Die Angabe des Datentyps innerhalb der Schleife besagt,
dass es sich um eine lokale Variable handelt, die nur solange exis-
tiert, wie die for-Schleife iteriert, also ihren Durchlauf hat. Beim
Verlassen der Schleife wird die Variable i aus dem Speicher ent-

Projekt 5: Ein Lauflicht

fernt. Die genaue Bezeichnung fiir eine Variable innerhalb einer
Schleife lautet Laufvariable. Sie durchlduft solange einen Bereich,
wie die Bedingung (i < 7) erfullt ist, die hier mit Test bezeichnet
wurde. Anschlieffend erfolgt ein Update der Variablen durch den
Update-Ausdruck. Der Ausdruck i++ erhoht die Variable i um den
Wert 1.

Du hast den Ausdruck i++ verwendet. Kannst du mir bitte erkliren,
was das genau bedeutet? Er soll den Wert um 1 erhéhen, doch die
Schreibweise ist irgendwie komisch.

Bei den beiden hintereinander angefithrten Pluszeichen ++ handelt
es sich um einen Operator, der den Inhalt des Operanden, also der
Variablen, um den Wert 1 erhoht. Programmierer sind von Hause
aus faule Zeitgenossen und versuchen alles, was eingetippt werden
muss, irgendwie kiirzer zu formulieren. Wenn man bedenkt, wie
viele Codezeilen ein Programmierer in seinem Leben so eingeben
muss, dann kommt es schon auf jeden Tastendruck an. In Summe
konnte es sich um Monate oder Jahre an Lebenszeit handeln, die
sich durch kiirzere Schreibweisen eingesparen lassen und fiir wich-
tigere Dinge, wie noch mehr Code, genutzt werden kénnten. Jeden-
falls sind die beiden folgenden Ausdriicke in ihren Auswirkungen
vollkommen identisch:

i++;undi=i+ 1;
Es wurden 2 Zeichen weniger verwendet, was eine Einsparung von
immerhin 40% ausmacht. Doch weiter im Text. Die Laufvariable i

wird dann als Indexvariable im Array eingesetzt und fahrt somit die
einzelnen Array-Elemente nacheinander an.

Index

0
Arrayinhalt

Bei diesem Snapshot eines Schleifendurchlaufs hat die Variable i
den Wert 3 und spricht somit das 4. Element an, welches wiederum
den Inhalt 10 besitzt. Das bedeutet, dass mit den zwei Zeilen

for(int 1 = 0; 1 < 7; i++)
pinMode(ledPin[i], OUTPUT);

Ein Lauflicht 227

228

innerhalb der setup-Funktion alle im Array ledPin hinterlegten Pins
als Ausginge programmiert werden. Folgendes ist noch sehr wich-
tig zu erwihnen: Wenn keine Blockbildung mit einer for-Schleife
mittels geschweifter Klammern stattfindet, wie wir es jedoch gleich
in der loop-Funktion sehen werden, wird nur die Zeile, die der for-
Schleife unmittelbar folgt, von dieser beriicksichtigt. Der Code der
loop-Funktion beinhaltet lediglich eine for-Schleife, die durch ihre
Blockstruktur jetzt aber mehrere Befehle anspricht:

for(int i = 0; 1 < 7; i++)
{
digitalWrite(ledPin[i], HIGH); // Array-Element auf HIGH-Pegel

delay(wartezeit);
digitalWrite(ledPin[i], LOW); // Array-Element auf LOW-Pegel

}

Ich mochte dir an einem kurzen Sketch zeigen, wie die Laufvariable
i heraufgezihlt (inkrementiert) wird:

void setup(){
Serial.begin(9600); // Serielle Schnittstelle konfigurieren
for(int 1 = 0; 1 < 7; i++)
Serial.println(i); // Ausgabe an die serielle Schnittstelle
}

void loop(){/* leer */}

Da unser Arduino ja von Hause aus kein Ausgabefenster besitzt,
miissen wir uns etwas anderes einfallen lassen. Die serielle Schnitt-
stelle, an der er quasi angeschlossen ist, konnen wir dazu nutzen,
Daten zu versenden. Die Entwicklungsumgebung verfiigt iiber
einen Serial-Monitor, der diese Daten bequem empfangen und dar-
stellen kann. Du kannst ihn sogar dazu verwenden, Daten an das
Arduino-Board zu schicken, die anschlieRend dort verarbeitet wer-
den konnen. Doch dazu spiter mehr. Der hier gezeigte Code initia-
lisiert iiber den Befehl

Serial.begin(9600);

die serielle Schnittstelle mit einer Ubertragungsrate von 9600 Baud.
Die Zeile

Serial.println(i);

sendet dann mittels der println-Funktion den Wert der Variablen i
an die Schnittstelle. Du musst jetzt lediglich den Serial-Monitor 6ff-
nen und dir werden die Werte angezeigt:

Projekt 5: Ein Lauflicht

Nolneendng | [9600baud |

Du siehst hier, wie die Werte der Laufvariablen i von 0 bis 6 ausgege-
ben werden, die wir in unserem eigentlichen Sketch zur Auswahl der
Array-Elemente benotigen. Ich habe den Code innerhalb der setup-
Funktion platziert, damit die for-Schleife nur einmalig ausgefiihrt wird
und die Anzeige nicht stindig durchliuft. Die folgende Abbildung
zeigt dir die einzelnen Durchliufe der for-Schleife etwas genauer.

Schleifenvariable Test Update

f
— =[]

2. Durchlauf -|:>
7. Durchlauf -:>

8. Durchlauf -Q

Ein Lauflicht

<« Abbildung 5-4
Die Ausgabe der Werte im
Serial-Monitor

< Abbildung 5-5
Verhalten der »for«-Schleife

229

kommt mir vollkommen spanisch vor. Da steht Serial und begin bzw.
println und dazwischen ein Punkt. Was hat es damit auf sich?

N~ ﬁi Halt halt! Der Code zur Programmierung der seriellen Schnittstelle

Du bist ganz schon wissbegierig und das gefillt mir! Also gut. Ich
muss an dieser Stelle eine Anleihe aus der objektorientierten Pro-
grammierung machen, denn diese benotige ich hier, um dir die Syn-
tax zu erldutern. Wir werden spiter noch genauer auf diese Art der
Programmierung eingehen, denn C++ ist eine objektorientierte
Sprache, auch kurz OOP genannt. Diese Sprache orientiert sich an
der Wirklichkeit, die aus realen Objekten wie z.B. Tisch, Lampe,
Computer, Miisliriegel, etc. besteht. So haben die Entwickler auch
ein programmtechnisches Objekt geschaffen, das die serielle
Schnittstelle reprisentiert. Dieses Objekt haben sie Serial genannt
und es findet seinen Einsatz innerhalb eines Sketches. Jetzt hat aber
jedes Objekt zum einen bestimmte Eigenschaften wie z.B. Farbe,
oder Gréfle und zum anderen ein oder mehrere Verhalten, die fest-
legen, was man mit diesem Objekt so alles anstellen kann. Bei einer
Lampe wire das Verhalten z.B. Lampe ein- oder ausschalten. Doch
zuriick zu unserem Serial-Objekt. Das Verhalten dieses Objektes
wird durch zahlreiche Funktionen gesteuert, die in der OOP Metho-
den genannt werden. Zwei dieser Methoden hast du jetzt schon
kennengelernt. Die Methode begin initialisiert das Serial-Objekt
mit der angeforderten Ubertragungsrate und die Methode println
(print line bedeutet soviel wie: Drucke und mache einen Zeilenvor-
schub) gibt etwas auf der seriellen Schnittstelle aus. Das Bindeglied
zwischen Objekt und Methode ist der Punktoperator (.), der beide
verbindet. Wenn ich also bei setup und loop von Funktionen spre-
che, ist das nur die halbe Wahrheit, denn wenn man es genau
nimmt, sind es Methoden.

») Das konnte fiir dich wichtig sein

Du hast jetzt erfahren, wie etwas an die serielle Schnittstelle
geschickt werden kann. Du kannst dir diesen Umstand zunutze
machen, wenn du einen oder mehrere Fehler in einem Sketch
finden mochtest. Funktioniert der Sketch nicht so, wie du dir
das vorstellst, dann positioniere an unterschiedlichen Stellen
im Code, die dir wichtig erscheinen, Ausgabe-Befehle in Form
von Serial.printin(...); und lasse dir bestimmte Variableninhalte
oder auch Texte ausgeben. Auf diese Weise erfahrst du, was
dein Sketch so treibt und warum er moglicherweise nicht kor-
rekt ablduft. Du musst lediglich lernen, die ausgegebenen
Daten zu interpretieren. Das ist manchmal jedoch nicht so ein-
fach und es gehort ein wenig Ubung dazu.

\

230 Projekt 5: Ein Lauflicht

Der Schaltplan

Der Schaltplan zeigt uns die einzelnen LEDs mit ihren 330 Ohm-

Vorwiderstinden.
Ardui <« Abbildung 5-6
rauino ino-
13 770} 1 ” 2 Dﬁs{\rdumq Board steuert 7 LEDs
12 R L D\}. fiir ein Lauflicht an.
pwm |11 \—| /1Pl 2 ¢
e 190_ R LED Y
o 1 2
Q PwM - '_33T‘,R, H\\T——-n
T LED
i 7 3] 2. 4
= 6 R R
remic PWM —— LED
5 PWM | 5 . =" m 1 ’ 2 \
L4 R D
PWM —gl- {330} 1 N—\f——an
R
s LED
_3__ r—ggw 1 \\”2 \
Analog IN e keg
v
CREEEE -
Schaltungsaufbau

Dein Breadboard hat nun Zuwachs an elektronischen Komponen-
ten in Form von Widerstdnden und Leuchtdioden bekommen.

<« Abbildung 5-7
Aufbau der Lauflicht-Schaltung mit
Fritzing

>
S
o
c
ot
3
(=]

®und e

Ein Lauflicht 231

232

(W) Achtung

Wenn du die elektronischen Bauteile so dicht nebeneinander
steckst, wie das hier bei mir der Fall ist, dann musst du beson-
ders gut hinschauen, denn es ist mir auch schon des Ofteren
passiert, dass ich das Nachbarloch auf dem Breadboard
erwischt hatte, was natirlich dazu fihrte, dass die Schaltung
nur in Teilen oder Uberhaupt nicht funktionierte. Kritisch wird
es, wenn du mit Versorgungsspannungs- und Masseleitungen
direkt nebeneinander arbeitest. Es kann auch zu Problemen
kommen, wenn du die flexiblen Drahtbriicken nicht ganz in
ihren Lochern versenkst, so dass noch Stlicke der blanken und
leitenden Drdhte herausragen. Durch das Bewegen der Bri-
cken kann es dann zu Kurzschlissen kommen, die moglicher-
weise alles zerstoren. Also ist auch hier wieder die notige
Sorgfalt geboten.

Troubleshooting

Falls die LEDs nicht nacheinander zu leuchten beginnen, trenne
das Board sicherheitshalber besser vom USB-Anschluss und iiber-
priife bitte Folgendes:

* Entsprechen deine Steckverbindungen auf dem Breadboard
wirklich der Schaltung?

¢ Gibt es eventuell Kurzschliisse untereinander?

* Wurden die LEDs richtig herum eingesteckt? Denke an die
richtige Polung!

¢ Haben die Widerstinde die korrekten Werte?
¢ Ist der Sketch-Code korrekt?

Was hast du gelernt?

* Du hast eine Sonderform einer Variablen kennengelernt, die es
dir ermoglicht, mehrere Werte des gleichen Datentyps aufzu-
nehmen. Sie wird Array-Variable genannt. Thre einzelnen Ele-
mente werden iiber einen Index angesprochen.

* Die for-Schleife ermdoglicht Dir, eine oder mehrere Codezeilen
mehrfach auszufithren. Die Steuerung erfolgt iiber eine soge-
nannte Laufvariable, die innerhalb der Schleife arbeitet und
mit einem bestimmten Startwert initialisiert wird. Uber eine
Bedingung hast du festlegt, wie lange die Schleife durchlaufen
werden soll. Damit hast du die Kontrolle dariiber, welchen
Wertebereich die Variable verarbeitet.

Projekt 5: Ein Lauflicht

Durch eine Blockbildung mittels des geschweiften Klammern-
paares kannst du mehrere Befehle zu einem Block zusammen-
fassen, die dann z.B. bei einer for-Schleife allesamt ausgefiihrt
werden.

Die gerade angefiithrte Laufvariable wird dazu verwendet, den
Index eines Arrays zu dndern, um damit die einzelnen Array-
Elemente anzusprechen.

Workshop

Im unserem Workshop mochte ich dich dazu animieren, das Lauf-
licht in verschiedenen Mustern blinken zu lassen. Es gibt dabei
unterschiedliche Varianten:

Immer nur in eine Richtung mit einer LED (das kennst du
bereits)

Vor und zuriick mit einer oder mehreren LEDs

Vor und zuriick zur selben Zeit (zwei LEDs die sich aufeinan-
der zu bewegen)

Zufallsauswahl der einzelnen LEDs

Fiir eine zufillige Ansteuerung einer LED benétigst du eine weitere
Funktion, die du bisher noch nicht kennengelernt hast. Sie nennt
sich random, was tibersetzt so viel wie ziellos oder zufllig bedeutet.
Die Syntax dieser Funktion gibt es in zwei Varianten:

1. Variante

Wenn du einen zufilligen Wert in einem Bereich von 0 bis Ober-
grenze generieren mochtest, verwende die nachfolgende Variante.

Oberster Wert
Befehl (exklusive)

(

(7) ;)

Wichtig ist jedoch, dass der oberste Wert, den du angibst, immer
exklusive ist. In diesem Beispiel generierst du also Zufallszahlen in
einem Bereich von 0 bis 6.

Ein Lauflicht

<« Abbildung 5-8
Der Befehl »random« (mit einem
Argument)

233

234

Abbildung 5-9 »
Der Befehl random
(mit zwei Argumenten)

2. Variante

Wenn du einen zufilligen Wert im Bereich von Untergrenze bis
Obergrenze generieren mochtest, verwende die in der folgenden
Abbildung dargestellte Variante.

Oberster Wert
Befehl Unterster Wert (exklusive)

((2, 6)))

Dieser Befehl generiert Zufallszahlen im Bereich von 2 bis 5. Auch
hier gilt wieder, dass der oberste Wert exklusive ist. Dieser
Umstand kann einen schon manchmal stutzig machen, doch es ist
eben in dieser Form nicht zu dndern.

Projekt 5: Ein Lauflicht

Porterweiterung

Scope

In diesem Experiment behandeln wir folgende Themen:

* Deklarierung und Initialisierung mehrerer Variablen
* Programmierung mehrerer Pins als Ausgang (OUTPUT)
* Das Schieberegister vom Typ 74HC595 mit 8 Ausgingen

* Die Ansteuerung des Schieberegisters iiber 3 Leitungen des
Arduino-Boards

* Die Definition einer eigenen Funktion
* Der komplette Sketch

* Analyse des Schaltplans

* Aufbau der Schaltung

* Weitere Sketches

* Der Befehl shiftOut

* Workshop

Digitale Porterweiterung

In unserem letzten Kapitel hast Du gesehen, wie du iiber die
Ansteuerung mehrerer LEDs ein Lauflicht programmieren kannst.
Da dein Arduino-Board jedoch eine begrenzte Anzahl an digitalen
Ausgingen besitzt, konnen dir diese wertvollen Ressourcen irgend-
wann abhanden kommen, wenn du dein Lauflicht mit noch weite-
ren LEDs versehen mochtest. Vielleicht willst du ja nicht nur

Projekt

235

236

digitale Ausginge ansteuern, sondern auch ein paar Sensoren an
digitalen Eingingen anschlieRen. Es liegt in der Natur der Sache,
dass dir aus diesem Grund immer weniger digitale Pins zur Verfi-
gung stehen. Wie kommen wir aus diesem Dilemma heraus? Es gibt
da durchaus mehrere Ansitze, von denen ich dir hier einen vorstel-
len will. Ich mochte hierfiir ein Schieberegister verwenden. Die
Frage, die du dir jetzt bestimmt stellst ist: »Was ist ein Schieberegis-
ter und wie arbeitet es?« Du kommst bei diesem Experiment das
erste Mal mit einem Integrierten Schaltkreis (IC=Integrated circuit)
in Berithrung, der mit deinem Arduino-Board verbunden wird. Ein
Schieberegister ist eine Schaltung, die tiber ein Taktsignal gesteuert
wird und mehrere Ausginge besitzt, die hintereinander angeordnet
sind. Bei jedem Takt wird der Pegel, der am Eingang des Schiebere-
gisters anliegt, an den nichsten Ausgang weitergereicht. So wan-
dert diese Information durch alle vorhandenen Ausginge.

Der integrierte Schaltkreis 74HC595, den wir fur unsere Zwecke
verwenden, besitzt einen seriellen Eingang, in den wir die Daten
hineinschieben, und 8 Ausginge, die mit internen Speicherregistern
versehen sind, um die Zustinde zu halten. Es werden zur Versor-
gung lediglich 3 digitale Pins benétigt, die den Baustein mit Daten
versehen, der seinerseits seine 8 Ausginge ansteuert. Das ist schon
eine enorme Einsparung, denn der Schaltkreis 74HC595 lisst sich
kaskadieren, so dass eine fast unbegrenzte Erweiterung der digita-
len Ausginge moglich wird. Was bedeutet das aber genau? Schauen
wir uns dazu die einzelnen Ein- bzw. Ausginge dieses Schaltkreises
genauer an. In der folgenden Abbildung siehst du die Pinbelegung
des 74HCS595, und zwar in einer Ansicht von oben auf das entspre-
chende Gehiuse.

Projekt 6: Porterweiterung

o [1]O \J Vee
o [Z] 74HCS95 5 o,
Qp DS
Qe OE
Q- [5] [12] sT_cP
Qg [6] SH_CP
Qy MR
GND [8] [9] Q"

In der folgenden Tabelle sind die einzelnen Pins und ihre Bedeu-
tung aufgelistet:

Pin Bedeutung

Vec Versorgungsspannung +5V

GND Masse OV

Qp-Qy Parallele Ausgdnge 7 bis 8

Qy" Serieller Ausgang (Eingang fiir ein zweites Schieberegister)
MR Master Reset (LOW aktiv)

SH_CP Schieberegister Takteingang (Shiftregister clock input)
ST_CP Speicherregister Takteingang (Storageregister clock input)
OE Ausgang aktivieren (Output enable / LOW aktiv)

DS Serieller Eingang (Serial data input)

Die Funktionsweise des Schieberegisters kann man wie folgt
beschreiben. Wenn der Takt am Schieberegister Takteingang SH_
CP von LOW auf HIGH wechselt, wird der Pegel am seriellen Ein-
gang DS gelesen, in eines der internen Shiftregister tibertragen und
zwischengespeichert. Das Speichern in diese Register bedeutet
jedoch noch keinesfalls eine Ubertragung zu den Ausgingen Q4 bis
Qp- Erst durch einen Taktimpuls am Speicherregister ST_CP von
LOW auf HIGH, werden alle Informationen der internen Shiftregis-
ter an die Ausginge transferiert. Das macht Sinn, denn erst wenn
alle Informationen am seriellen Eingang gelesen wurden, sollen sie
an den Ausgingen erkannt werden. Den Wechsel des logischen
Pegels von LOW auf HIGH nennt man Taktflankensteuerung, weil

<« Abbildung 6-1
Die Pinbelegung des
Schieberegisters 74HC595

« Tabelle 6-1
Bedeutung der Pins des
Schieberegisters 74HC595

Digitale Porterweiterung

237

eine Aktion erst ausgefithrt wird, wenn ein Pegelwechsel in der
beschriebenen Weise stattfindet. Aber werfen wir doch mal einen
Blick in das Innere des Schieberegisters und beobachten, was da so
vor sich geht...

Ahh, hier sehen wir SH_CP bei der Arbeit. Wenn er die Fahne von
LOW auf HIGH setzt, wandert der potentielle Anwirter, der sich in
der DS-Area befindet, in das nichste Shiftregister und wartet dort
auf seine weitere Reise zum Ausgang.

Abbildung 6-2 »
Der Kollege »SH_(P« bei der
Abfertigung der seriellen Daten

Im nichsten Bild siehst du ST_CP bei der Arbeit, der fiir das Freige-
ben der Daten in den internen Shiftregistern an die Ausginge ver-
antwortlich ist.

Abbildung 6-3 »

Der Kollege »ST_(P« gibt die Daten
der Shiftregister an die Ausgange
frei.

Sl alle drin- ?

,”'—-'—--

2=

238 Projekt 6: Porterweiterung

Wenn er die Fahne von LOW auf HIGH setzt, 6ffnen sich die
Tiren der internen Shiftregister und erst dann konnen die Daten
den Weg zum Ausgang finden. Wir werden den bildlich beschrie-
benen Vorgang einmal in mehreren Sketches nachbilden, damit du
die Arbeitsweise des Schieberegisters live miterleben kannst. Wir
fangen ganz simpel zu Fuf$ an, und du wirst am Ende sehen, dass es
fur die ganzen Aktionen, die wir hier einzeln und im Detail ausfiih-
ren, einen komfortablen Befehl gibt, der dir die Arbeit abnimmt
und vieles erleichtert.

Bendotigte Bauteile

Fiir dieses Beispiel benétigen wir die folgenden Bauteile:

Bendtigte Bauteile

1 x Schieberegister 74H(595

8 xrote LED

8 x Widerstand 330

1x Taster

Mehrere flexible Steckbriicken in unterschiedli-
chen Farben und Langen

-y —
g 1x Widerstand 70K
A]
<

Sketch-Code

Hier der Sketch-Code zur Ansteuerung des Schieberegisters
74HCS595 iiber 3 Leitungen der digitalen Ausginge. Die benétigten
Pins am Schieberegister sind folgende:

* SH_CP (Schieberegister Takteingang)
* ST_CP (Speicherregister Takteingang)

Digitale Porterweiterung

239

240

* DS (Serieller Eingang fiir die Daten)

Die 3 Datenleitungen werden Variablen zugewiesen, die ich wie
folgt genannt habe:

* SH_CP wird taktPin genannt
* ST_CP wird speicherPin genannt

* DS wird datenPin genannt

Dieser Sketch setzt den seriellen Input DS auf HIGH, der dann tiber
Schieberegister-Takteingang SH_CP (Wechsel von LOW-HIGH) in
das interne Register iibernommen wird. Anschliefend werden die
Ausginge iiber die internen Register mittels Speicherregister-Takt-
eingang ST_CP programmiert und gespeichert.

int taktPin = 8; // SH_CP
int speicherPin = 9; // ST CP
int datenPin = 10; // DS
void setup(){
pinMode(taktPin, OUTPUT);
pinMode(speicherPin, OUTPUT);
pinMode(datenPin, OUTPUT);
resetPins(); // Alle Pins auf LOW setzen
// DS fir die spatere Ubernahme durch SH_CP auf HICH setzten
digitalWrite(datenPin, HIGH); // DS
delay(20); // Kurze Pause fiir die Verarbeitung
// Ubertragen des Pegels an DS in interne Speicherregister
digitalWrite(taktPin, HIGH); // SH CP
delay(20); // Kurze Pause fiir die Verarbeitung
// Ubertragen der internen Speicherregister an die Ausgénge
digitalWrite(speicherPin, HIGH); // ST CP
delay(20);
}

void loop(){/* leer */}

// Reset aller Pins -> LOW-Pegel

void resetPins(){
digitalWrite(taktPin, LOW);
digitalWrite(speicherPin, LOW);
digitalWrite(datenPin, LOW);

}

Code-Review

Fiir unser Experiment bengtigen wir programmtechnisch gesehen
die folgenden Variablen:

Projekt 6: Porterweiterung

Variable Aufgabe

taktPin SH_CPSignal
speicherPin ST_(PSignal
datenPin DS Signal

Zu Beginn werden die Variablen mit den benétigten Pin-Informati-
onen versorgt und am Anfang der setup-Funktion alle Pins als Aus-
ginge programmiert. Du kommst in diesem Kapitel das erste Mal
mit einer selbst geschriebenen Funktion in Bertthrung. Eine Funk-
tion ist ja eigentlich nichts Neues mehr fiir Dich, denn setup und
loop fallen in eben diese Kategorie der programmtechnischen Kon-
strukte. Ich mochte dennoch an dieser Stelle etwas genauer auf
diese Thematik eingehen, damit der Sinn und Zweck noch deutli-
cher wird. Eine Funktion kann als eine Art Unterprogramm betrach-
tet werden, das innerhalb des normal ablaufenden Sketches immer
wieder aufgerufen werden kann. Sie wird tiber ihren Namen aufge-
rufen und kann sowohl einen Wert an den Aufrufer zuriickliefern
als auch mehrere Ubergabewerte aufnehmen, die sie zur Berech-
nung bzw. Verarbeitung benétigt. Die formale Struktur einer Funk-
tion sieht folgendermaflen aus:

(Riickgabedatentyp Name (Parameter))

}

Der umrandete Bereich wird Funktionssignatur genannt und stellt
die formale Schnittstelle zur Funktion dar. Eine Funktion ist ver-
gleichbar mit einer Black-Box, die du schon kennengelernt hast.
Eigentlich musst du gar nicht wissen, wie sie funktioniert. Das Ein-
zige, wovon du Kenntnis haben musst, ist die Struktur der Schnitt-
stelle und in welcher Form ein Wert ggf. zuriickgegeben wird.
Natirlich programmierst du hier die Funktion selbst und musst
deswegen schon wissen, was du an Logik dort hineinpackst. Doch
es gibt auch Funktionen, die du z.B. aus dem Internet beziehen
kannst, sofern sie keine lizenztechnischen Einschrinkungen haben,
und die du in deinem Projekt nutzen kannst. Wurden sie von ande-
ren programmiert und erfolgreich getestet, dann kann es dir egal
sein, wie sie funktionieren. Die Hauptsache ist, dass sie funktionie-
ren! Doch zuriick zu unserer Funktionsdefinition. Falls sie einen
Wert an den Aufrufer zuriickliefert, wie das z.B. auch digitalRead
macht, musst du in deiner Funktion den entsprechenden Datentyp

« Tabelle 6-2

Bendtigte Variablen und deren

Aufgabe

<« Abbildung 6-4
Grundlegender Aufbau einer
Funktion

Digitale Porterweiterung

241

242

/

angeben. Angenommen, du mochtest Werte zuriickliefern, die alle-
samt Ganzzahlen sind, dann ist das der Datentyp Integer, der mit
dem Schliisselwort int gekennzeichnet wird. Wenn eine Ruckgabe
jedoch nicht erforderlich ist, musst du das durch das Schliisselwort
void (tbersetzt: leer) kenntlich machen, das sich ja auch vor den
beiden Hauptfunktionen setup und loop findet.

Ich mochte da einmal kurz unterbrechen, weil ich eine Frage habe.
Du hast angefiihrt, dass Funktionen immer iiber ihren Namen aufge-
rufen werden. Das habe ich soweit verstanden. Doch wie ist das bei
den beiden Funktionen setup und loop? Ich muss an keiner Stelle im
Code festlegen, dass sie aufgerufen werden sollen, und trotzdem
funktioniert es. Wie ist das moglich?

Das ist eine berechtigte Frage und dieses Verhalten wird meist nicht
hinterfragt. Bei setup und loop handelt es sich um Systemfunktio-
nen, die implizit aufgerufen werden. Du musst Dich, wie du ja
schon gesehen hast, nicht extra darum kiimmern.

Eine Bemerkung am Rande
Falls es dich interessiert, kannst du im Installationsverzeichnis
unter arduino-1.0-rc1\hardware\arduino\cores\arduino nach-
schauen und die Datei main.cop einmal mit einem Texteditor
offnen. Du bekommst Folgendes zu sehen:

1 #define ARDUINO_MAIN
2 #1nclude

7]

4 int main(void)

5 @i

6 init();

7

8 H#i1f defined(USBCON)
9 USB.attach(};

10 F#endaf

11

12 setup();

13

14 o for {;;)

15 Tloop();

16 if (serialEventRun) serialEventRun();
17 ¥

13

19 return o;

EO -

Die bei C++ direkt zu Beginn beim Programmstart aufgerufene
Funktion nennt sich main, die du auch hier siehst. Sie ist quasi
der Einstiegspunkt, damit das Programm weil3, womit es begin-
nen soll. Die Funktion main enthélt mehrere Funktionsaufrufe,
die nacheinander abgearbeitet werden. Unter anderem kannst

Projekt 6: Porterweiterung

du die setup-Funktion und in einer Endlosschleife, die mit for(;)
definiert wird, den Aufruf der loop-Funktion entdecken. Jetzt
erkennst du sicherlich die Abldufe bzw. Zusammenhange, die
im Hintergrund beim Start eines Sketches ablaufen, wenn es
um das Aufrufen von setup bzw. loop geht.

Wenn du deiner Funktion einen oder mehrere Werte tibergeben
mochtest, dann werden diese innerhalb der runden Klammern hin-
ter dem Funktionsnamen durch Kommata getrennt mit ihren ent-
sprechenden Datentypen aufgelistet. Falls du keine Werte
ibergeben willst, bleibt das runde Klammernpaar einfach leer.
Weglassen darfst du es nicht. Die Signatur haben wir jetzt soweit
abgehandelt, dass nur noch der Funktionsrumpf tibrig bleibt, der
durch das geschweifte Klammernpaar gebildet wird. Alle Befehle,
die sich innerhalb dieser Klammern befinden, gehoren zu dieser
Funktion und werden beim Funktionsaufruf sequentiell von oben
nach unten abgearbeitet. Doch nun zuriick zu unserem Code.
Warum ist es sinnvoll, eine eigene Funktion zu schreiben? Ganz
einfach! Es macht immer dann Sinn, wenn die gleichen Befehle
mehrmals im Code auszufithren sind, und das ist hier der Fall. Ich
muss an unterschiedlichen Stellen die Befehlsfolge

digitalWrite(taktPin, LOW);
digitalWrite(speicherPin, LOW);
digitalWrite(datenPin, LOW);

ausfiihren, um die Pegel an den einzelnen digitalen Pins zu resetten,
d.h. mit LOW-Pegel zu versehen. Wiirde ich das ohne Funktion
realisieren, dann warde der Sketch eine ganze Anzahl von Codezei-
len mehr umfassen und wire damit auch relativ untibersichtlich.

Das konnte fiir dich wichtig sein

Quellcode, der im Sketch mehrfach mit der gleichen Befehlsse-
quenz vorhanden ist, nennt man redundanten Code oder Code-
redundanz. Du lagerst diesen Code am besten in eine Funktion
aus und gibst ihr einen aussagekraftigen Namen, um deren
Sinn verstandlich zu machen. Wenn du eine Modifikation vor-
nehmen musst, fuhrst du diese zentral innerhalb der Funktion
durch und nicht an vielen Stellen, die irgendwo im Code ver-
streut sind, was sehr fehleranféllig und zeitraubend ware.

Zu Beginn des Sketches werden durch den Funktionsaufruf

resetPins(); // Alle Pins auf LOW setzen

Digitale Porterweiterung

243

244

/

VHIGH

LOw

die Pins 8, 9 und 10 auf LOW-Pegel gesetzt. Dann mochte ich das
erste HIGH-Pegel-Signal an DS anlegen, was tiber die Zeile

digitalWrite(datenPin, HIGH); // DS

erfolgt. Anschlieffend warte ich 20 ms und fahre mit der Zeile
digitalWrite(taktPin, HIGH); // SH CP

fort, die den HIGH-Pegel von DS in das interne Speicherregister
tibertragt. Es muss dabei beriicksichtigt werden, dass dies nur mit-
tels einer Flankensteuerung von LOW nach HIGH erfolgen kann.

Noch erfolgt keine Transferierung in Richtung Ausgabeports. Ich
warte erneut 20ms, und erst mit der Zeile

digitalWrite(speicherPin, HIGH); // ST CP

erfolgt die Ubertragung der internen Speicherregister an die Aus-
ginge, was in unserem Fall bedeutet, dass die LEDs angesteuert
werden. Auch hier ist ein Pegelwechsel von LOW zu HIGH erfor-
derlich. Das ist tibrigens auch der Grund, warum ich die resetPins-
Funktion benétige, die mir spiter einen erneuten Pegelwechsel von
LOW zu HIGH ermoglicht.

Der Schaltplan

Der Schaltplan zeigt uns die einzelnen LEDs mit ihren 330 Ohm-
Vorwiderstinden, die durch das Schieberegister 74HC595 ange-
steuert werden. Der Master-Reset-Eingang des Chips liegt iiber den
Pullup-Widerstand an der +5V Betriebsspannung, so dass bei nicht
gedriicktem Taster der Reset nicht ausgelost wird, da der MR-Ein-
gang LOW-Aktiv ist. Das erkennst du daran, dass sich tiber dem
MR ein waagerechter Strich befindet, was eine Negation bedeutet.
Der Eingang Output-Enabled ist ebenfalls LOW-Aktiv und liegt fest
verdrahtet auf Masse, denn die Ausginge sollen immer freigeschal-
tet sein. Die Ansteuerung des Schieberegisters erfolgt tiber die
Arduino-Pins 8, 9 und 10 mit den oben beschrieben Funktionen.

Hast du den Sketch gestartet, dann wird sofort die erste LED an
Ausgang Q4 leuchten, da du lediglich einmal eine »1« ins Schiebe-
register geschoben hast. Fiir einen Reset musst du sowohl den Tas-
ter der Schaltung als auch den Reset-Taster auf dem Arduino-Board
betitigen.

Projekt 6: Porterweiterung

o|Pullup—Widerstand

Vorwiderstinde

Arduino 113 LED
42 {3301 >
11 14 15 LED
il = -y
o pm |2 11 Moy cp ac (2 ér
= 8 | 10 ViR a0 3 S Pt
= p Y = Lep™
= Leria¥
o I 12 R i e
o BT 7= il i 13 PP QF —¢ Lep™
o PWM 2] OE QG
—] onp e - TPt
i LED
PYM D e P 9 == H‘m_,_
S o LED
10 o JL4HCH595 T30 1 %
Analog IN j LED
ml -:rl mlml r.l cl |
A

CHD

Schaltungsaufbau

Dein Breadboard fiillt sich mehr und mehr und das macht die

Sache immer interessanter, nicht wahr!?

Pinbelegung:
Pin 8: SH_CP
Pin9: ST CP
Pin 10: DS

Digitale Porterweiterung

Reset-Taster

A Abbildung 6-5

Das Arduino-Board steuert iiber
3 Signalleitungen das Schiebe-
register 74HC595 an.

<« Abbildung 6-6
Der Aufbau der Schaltung mit
Fritzing

245

246

Ein erweiterter Sketch Teil 1

Jetzt wollen wir den Sketch ein wenig erweitern, so dass du meh-
rere Werte in den seriellen Eingang schieben kannst. Das ist immer
noch eine Zwischenstufe und noch nicht die endgiiltige Losung, die
ich dir vorstellen méchte. Dieser Code soll in der Lage sein, eine in
einem Daten-Array gespeicherte Sequenz in das Schieberegister zu
ibertragen. Der Schaltungsaufbau bleibt dabei unverindert.

int taktPin = 8; // SH_CP

int speicherPin = 9; // ST CP

int datenPin = 10; // DS

int datenmArray[] = {1, 0, 1, 0, 1, 1, 0, 1};

void setup(){
pinMode(taktPin, OUTPUT);
pinMode(speicherPin, OUTPUT);
pinMode(datenPin, OUTPUT);
resetPins(); // Alle Pins auf LOW setzten
setzePins(datenArray); // Setze Pins iber das Daten-Array
// Ubertragen der internen Speicherregister an die Ausgénge
digitalWrite(speicherPin, HIGH); // ST CP

void loop(){/* leer */}

void resetPins(){
digitalWrite(taktPin, LOW);
digitalWrite(speicherPin, LOW);
digitalWrite(datenPin, LOW);

}

void setzePins(int daten[]){
for(int 1 = 0; 1 < 8; i++){
resetPins();
digitalWrite(datenPin, daten[i]); delay(20);
digitalWrite(taktPin, HIGH); delay(20);
}
}

Dann wollen wir mal sehen, wie der Code so seine Arbeit verrich-
tet. Alles dreht sich hier um das Daten-Array, in dem das Muster
hinterlegt ist, wie die einzelnen LEDs anzusteuern sind. Das ist also
die Deklarations- bzw. Initialisierungszeile:

int datenArray[] = {1, 0, 1, 0, 1, 1, 0, 1};

Projekt 6: Porterweiterung

Der Code liest die einzelnen Array-Elemente von links nach rechts
aus und schiebt die Werte in das Schieberegister. Eine 1 bedeutet
LED an, eine 0 LED aus.

die Werte 1 und 0 verwendet. Funktioniert das denn auch? Solltest du

Einen kurzen Moment noch. Du hast fiir die Ansteuerung der LEDs
nicht besser mit den Konstantennamen HIGH und LOW arbeiten?

Ich habe hier die Werte 1 und 0 verwendet, weil das genau die
Werte sind, die sich hinter den Konstanten HIGH bzw. LOW ver-
bergen. Normalerweise bin ich ja gegen Magic Numbers, doch in
diesem Fall dachte ich, ich kénnte eine Ausnahme machen. 1 und 0
sind ja auch die logischen Werte und deswegen bereitet das keine
allzu groflen Verstindnisprobleme — oder? Natiirlich kannst du
auch statt

int datenmArray[] = {1, 0, 1, 0, 1, 1, 0, 1};
die folgende Zeile schreiben:

int datenArray[] = {HIGH, LOW, HIGH, LOW, HIGH, HIGH, LOW, HIGH};

Doch zuriick zum Code und wie er das Array auswertet. Die Sache
ist eigentlich recht simpel, denn ich habe eine weitere Funktion mit
dem Namen setztePins hinzugefugt, die die Aufgabe tbernimmt,
das Schieberegister zu befiillen. Sie hat einen Ubergabeparameter,
der aber keine normale Variable aufnehmen kann, sondern nur ein
ganzes Array. Beim Aufruf iibergebe ich einfach das Daten-Array
als Argument an die Funktion.

setzePins(datenArray);
Die Funktion wurde wie folgt definiert:

void setzePins(int daten[]){
for(int i = 0; 1 < 8; i++){
resetPins(); // Pin-Reset und Vorbereitung fiir Takt-Flankensteuerung
digitalWrite(datenPin, daten[i]); delay(20);
digitalWrite(taktPin, HIGH); delay(20);
}
}

Du siehst, dass in der Signatur der Funktion mittels eines eckigen
Klammerpaares ein Array des Datentyps int deklariert wurde. Beim
Aufruf der Funktion wird das urspriingliche Array datenArray in
daten kopiert, mit dem dann innerhalb der Funktion gearbeitet

Digitale Porterweiterung

247

248

Abbildung 6-7 »
Schieberegister

Abbildung 6-8 »
Schieberegister beim ersten
SH_CP-Takt

wird. Nun wird tiber die for-Schleife — die kennst du ja jetzt schon —
jedes einzelne Array-Element angefahren, tiber

digitalWrite(datenPin, daten[i]);
an den seriellen Eingang geschickt und im nichsten Schritt mit

digitalWrite(taktPin, HIGH);

in das erste interne Register geschoben. Das Ganze erfolgt acht Mal
(0 bis 7), wobei die internen Register ihre Werte immer an den
Nachfolger weiterreichen. Die folgenden Abbildungen veranschau-
lichen das hoffentlich noch ein wenig mehr.

interne Register

DS 0 1 2 3 4 5 6 7
afononnoon

Q% % 9 & & Qo Y
Ausgange

Zu Beginn sind die internen Register noch alle leer. Am seriellen
Eingang wartet jedoch schon eine 1 auf den Transport in das erste
interne Register.

g
-
«o-_r. [0 R

Ausgange

Die sich am seriellen Eingang befindende 1 wird beim SH_CP-Takt
in das erste interne Register geschoben. Die Inhalte aller Register
werden um eine Position weiter nach rechts verschoben. Nach die-
ser Aktion ergeben sich folgende Zustinde:

Projekt 6: Porterweiterung

<« Abbildung 6-9
DS Schieberegister-Zustande nach dem

0 1 2 3 4 5 6 7
: *@@@@@C‘i@@

interne Register

Serieller
Eingang

ST_ CP
Q, % Q O O O %
Ausgange

Am Eingang befindet sich jetzt eine 0, die ebenfalls beim nichsten
SH_CP-Takt in das erste interne Register geschoben wird. Doch
zuvor wandert der Zustand des ersten internen Registers in das
zweite, das zweite in das dritte usw. Wir machen jetzt einen Zeit-
sprung, nach dem alle Werte des Arrays in die internen Register
nach dem o.g. Schema geschoben wurden und der ST_CP-Takt die
Register zu den Ausgingen durchgeschaltet hat.

<« Abbildung 6-10
Schieberegister-Zustande nach dem
Einlesen der Array-Werte und nach
dem ST_(CP-Takt

interne Register
DS 0

1 2 3 4 5 6 7
10000000
Serieller l l l l l l l l

1]

—

.

Eingang
fnnnnnnn
ST_CP
A B (D E F
Ausgange
Erst jetzt liegen die Werte des eingelesenen Arrays an den Ausgin-

gen an, wobei der erste eingeschobene Wert ganz rechts und der
letzte ganz links liegt.

Wie kann ich dieses Verhalten aber umkehren? Ich méchte also nun,
dass sich der erste Array-Wert ganz links und der letzte ganz rechts
am Ausgang befindet, so dass die Reihenfolge quasi umgedreht
wurde.

Das ist kein Problem, denn das Setzen der Pins geschieht wo? Rich-
tig, innerhalb der setztePins-Funktion. Die for-Schleife fihrt die ein-
zelnen Pins an. Wenn du jetzt zuerst den letzten statt den ersten
Wert abrufst und in das Schieberegister iibertrigst, wird die Rei-
henfolge umgekehrt. Hier der modifizierte Code der for-Schleife:

for(int i = 7; i >= 0; i--){
/] ...
}

Digitale Porterweiterung 249

250

Abbildung 6-11 p
Bindrkombination fiir den
Ganzzahlwert 157

Ein erweiterter Sketch Teil 2

Nun habe ich dir so viel Grundwissen iiber das Schieberegister
74HC595 vermittelt, dass ich dich mit einem speziellen Befehl ver-
traut machen mochte, der dir ein wenig Arbeit abnimmt. Dieser
Befehl lautet shiftOut und ist wirklich einfach anzuwenden. Doch
zu Beginn muss ich dir einige Informationen tiber die Speicherung
von Werten im Computer geben, die recht wichtig sind, um die
Funktionsweise eines Mikrocontrollers zu verstehen. Fiir meine
Ausfithrungen ziehe ich den Datentypen byte heran, der ja eine
Datenbreite von 8 Bits besitzt und Werte von 0 bis 255 speichern
kann. In der folgenden Abbildung ist der dezimale Wert 157 als
bindrer Wert 10011101 dargestellt.

Potenzen 7 X 2 23 22 21 20
Wertigkeit 128 64 32 16

somin 1)(0) () (DD

Wenn du dir die Potenzen anschaust, wirst du sehen, dass die Basis
die Zahl 2 ist. Wir Menschen rechnen aufgrund unserer 10 Finger,
die wir normalerweise haben, mit der Basis 10. Die Wertigkeiten
der einzelnen Stellen einer Zahl ist also 10°, 10, 10? usw. Fur die
Zahl 157 wire das 7*10° + 5*10! + 1*102, was in Summe natiirlich
wieder 157 ergibt. Da der Mikrocontroller jedoch nur 2 Zustinde
(HIGH und LOW) speichern kann, liegt dem bindren System (von
lat. binidr = je zwei), wie es genannt wird, die Basis 2 zugrunde. Der
dezimale Wert der o.g. Bindrkombination errechnet sich demnach
wie folgt, wobei meist mit dem niedrigsten Wert bzw. Bit angefan-
gen wird:

17204021+ 17224+ 1"23+ 1724+ 0°2° + 0720+ 1726 = 1579

Das konnte fiir dich wichtig sein
Zur besseren Ubersicht wird bei der Verwendung von Werten
unterschiedlicher Zahlensysteme die Basis hinter den Wert
geschrieben.

Mit einer Datenbreite von 8 Bit (auch 1 Byte genannt) kannst du
256 unterschiedliche Werte (0 bis 255) darstellen. Auf Grundlage
dieses Wissens koénnen wir uns jetzt dem shiftOut-Befehl zuwen-
den. Er hat unterschiedliche Parameter, die du hier kennen lernen
WirSt.

Projekt 6: Porterweiterung

Befehl DS SH_CP Ubertragungsrichtung Wert

((datenPin, taktPin,MSBFIRST,wert))

Die Argumente datenPin, taktPin bzw. der zu tbertragene Wert
sollten klar sein. Was aber bedeutet die Konstante MSBFIRST? Mit
diesem Argument kannst du die Bit-Ubertragungsrichtung festle-
gen. Bei einem Byte wird das hochstwertige Bit Most-Significant-Bit
(MSB) und das niederwertigste Least-Significant-Bit (LSB) genannt.
Du kannst also mit der Verwendung von

MSBFIRST LSBFIRST
128 64 32 16

<« Abbildung 6-12

Der Befehl shiftOut mit seinen

zahlreichen Argumenten

OEOMOEH QEEOOOLE—>

festlegen, welches Bit zuerst in das Schieberegister transferiert wer-
den soll. Nachfolgend erhiltst du den kompletten Code mit dem
Befehl shiftOut. Die Schaltung muss auch hier nicht verdndert wer-
den.

int taktPin = 8; // SH_CP

int speicherPin = 9; // ST CP

int datenPin = 10; // DS

byte wert = 157; // Zu Ubertragener Wert

void setup(){
pinMode(taktPin, OUTPUT);
pinMode(speicherPin, OUTPUT);
pinMode(datenPin, OUTPUT);

}

void loop(){
digitalWrite(speicherPin, LOW);
shiftOut(datenPin, taktPin, MSBFIRST, wert);
digitalWrite(speicherPin, HIGH);
delay(20);

}

Das konnte fiir dich wichtig sein
Du kannst statt des dezimalen Wertes 757 auch direkt die Binar-
kombination bei der Initialisierung der Variablen angeben, so
dass die Umrechnung entféllt. Schreibe einfach B10071101. Das
Prafix B ist ein Kennzeichen dafir, dass es sich um eine Binar-
kombination handelt, mit der die Variable initialisiert werden
soll.

Digitale Porterweiterung

251

Abbildung 6-13 A

Impulsdiagramm fiir den iiber-
gebenen Wert 157 (b100111071)

252

Ich habe ein Impulsdiagramm angefertigt, das dir die Pegel der 3
Datenleitungen zur Ansteuerung des Schieberegisters im zeitlichen
Ablauf zueinander zeigt.

Ganz oben erkennst du das Taktsignal SH_CP zur Ubernahme der
Daten am seriellen Eingang DS. Nach Abschluss des 8. Taktes wird
der Pegel von ST_CP von LOW auf HIGH gesetzt und die Daten
werden aus den internen Registern an die Ausginge tibertragen.
Spiele ein wenig mit unterschiedlichen Werten und Ubertragungs-
richtungen, um das Verstindnis zu vertiefen.

Das konnte wichtig fiir dich sein
Hier ein paar Begriffe fir die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

74HC595
74HC595 Datenblatt
74HC595 datasheet

Troubleshooting

Falls die LEDs nicht nacheinander zu leuchten beginnen, trenne
das Board sicherheitshalber besser vom USB-Anschluss und iiber-
priife Folgendes:

* Entsprechen deine Steckverbindungen auf dem Breadboard
wirklich der Schaltskizze?

¢ Gibt es eventuell Kurzschliisse untereinander?
* Wurden die LEDs richtig herum eingesteckt? Stimmt die Polung?
¢ Haben die Widerstinde die korrekten Werte?

* Hast du das Schieberegister richtig verkabelt? Kontrolliere
noch einmal alle Verbindungen, die ja recht zahlreich sind.

¢ Ist der Sketch-Code korrekt?

Projekt 6: Porterweiterung

Was hast du gelernt?
* Du hast das Schieberegister vom Typ 74HC595 mit seriellem
Eingang und 8 Ausgingen kennengelernt.

* Im ersten Sketch erfolgte Ansteuerung der drei Datenleitungen
SH_CP, ST_CP und DS und die Taktsignale waren taktflanken-
gesteuert, was bedeutet, dass sie nur auf einen Pegelwechsel von
LOW zu HIGH reagieren.

* Der Befehl shiftOut bietet eine einfache Moglichkeit, Bitkombi-
nationen tiber Dezimal- oder auch Binirzahlen an das Schiebe-
register zu versenden.

* Du kannst eine Variable vom Datentyp byte mit einem Ganz-
zahlwert z.B. 157 initialisieren oder mit Hilfe der entsprechen-
den Bitkombination, der das Prifix B vorangestellt werden
muss, also z.B. B10011101.

Workshop

In diesem Workshop mdéchte ich dich zu zunichst dazu anregen,
alle LEDs so aufleuchten zu lassen, dass alle moglichen Bitkombi-
nationen von 00000000 bis 11111111 angezeigt werden.

Denke dir im zweiten Schritt verschiedene Muster oder Sequenzen
aus, nach denen die LEDs blinken sollen. Ich gebe dir dazu ein Bei-
spiel:

s @OO000@ e,
e O@OOO@O
e OO@OBOO
e OOOBOOD
e OOBOBOO
et tolela] (o
o te'slelelel

Der 7. Durchlauf hat das gleiche Muster wie der 1. und die Sequenz
beginnt wieder von vorne. Es handelt sich augenscheinlich um zwei

Digitale Porterweiterung 253

254

leuchtende LEDs, die sich von auflen aufeinander zubewegen und
wieder auseinander laufen. Du kannst diesen Ablauf sich 3x wie-
derholen lassen. Im Anschluss miissen alle LEDs 5x hintereinander
firr 2 Sekunde blinken, dann soll das Spiel von vorne beginnen.

Projekt 6: Porterweiterung

Porterweiterung
mal 2

Scope

In diesem Experiment behandeln wir folgende Themen:

* Deklarierung und Initialisierung mehrerer Variablen
* Programmierung mehrerer Pins als Ausgang (OUTPUT)
» Zwei Schieberegister vom Typ 74HC595 mit je 8 Ausgingen

* Die Ansteuerung der Schieberegister iiber 3 Leitungen des
Arduino-Boards

* Der komplette Sketch

* Analyse des Schaltplans
* Aufbau der Schaltung

* Workshop

Digitale Porterweiterung mal 2

Das Schieberegister 74HC595 hat neben den 8 parallelen Ausgin-
gen noch einen weiteren, der fiir uns bisher keine Rolle gespielt hat.
Vielleicht ist er dir schon aufgefallen, doch du hattest vielleicht kei-
nen Grund danach zu fragen. Werfen wir noch einmal einen Blick
auf die Pinbelegung des ICs.

Projekt

255

Abbildung 7-1
Die Pinbelegung des Schiebe-

registers 74HC595 (Ausgangspins)

256

Abbildung 7-2 p-
Die Kaskadierung zweier
Schieberegister

Ich habe die normalen Ausginge Pin Qu bis Qg farblich gelb
gekennzeichnet und den, auf den es jetzt ankommt, griin. Er hat die
Bezeichnung Qg" und hat eine besondere Aufgabe. Es handelt sich
dabei um den seriellen Ausgang fiir ein weiteres Schieberegister,

das dies

en Pin als seriellen Fingang nutzt. Du kannst diese Funktio-

nalitit dazu nutzen, mehrere Schieberegister hintereinander zu
schalten, um so eine theoretisch unbegrenzte Anzahl von Ausgin-
gen zu erhalten. In der folgenden Grafik kénnen wir die Verbin-
dung beider Bausteine sehen. Sie reicht vom seriellen Ausgang Q"
des ersten Schieberegisters bis zum seriellen Eingang DS des zwei-
ten Schieberegisters.

Qg
Qe
Qp
Qg
Qr
Qg [6]
Qy
GND

Serieller Eingang
1

' Ubergang zum 2. Schieberegister

1
1! 1
1
o) U [T6] Vo 11 Q e U [16] Ve 1
cc ', B cc
1 1
1 1
Wl os < o (3] I 0s <
—_— 1 —_—
OE ' OE
STCP 1 Q ST cP
F
1
SH.CP } Qg [6] SH_CP
— 1 —
Rty VR
F Q' - GND F Q' ---»

Die Ans

chliisse von ST_CP bzw. SH_CP werden einfach von beiden

ICs parallel zusammen geschaltet und wie bisher genutzt. Master-

Projekt 7: Porterweiterung mal 2

Reset und Output-Enabled werden die gleichen festen Potentiale
wie bei der Schaltung mit nur einem Schieberegister zugewiesen.

Benotigte Bauteile

Fiir dieses Beispiel benétigen wir die folgenden Bauteile:

Benétigte Bauteile

2 x Schieberegister 74H(595

16 xrote LED

&P ——— 16xWiderstand 330
//-\\ Mehrere flexible Steckbriicken in unterschiedli-
chen Farben und Léngen

Sketch-Code

Der Sketch-Code erfordert ein erweitertes Basiswissen beziiglich
der Bitmanipulation, auf die wir gleich eingehen werden. Zunichst
jedoch der Code:

int taktPin = 8; // SH_CP
int speicherPin = 9; // ST CP
int datenPin = 10; // DS
void setup(){
pinMode(taktPin, OUTPUT);
pinMode(speicherPin, OUTPUT);
pinMode(datenPin, OUTPUT);
}

void loop(){
sendeBytes(0B0110011001000101); // Zu libertragene Bindrzahl =
// 26181(dez)
}

// Funktion zum Ubertragen der Informationen
void sendeBytes(int wert){

Digitale Porterweiterung mal 2

257

Tabelle 7-1 p

Bendtigte Variablen und deren

258

Aufgabe

Abbildung 7-3 »
Die 8 Ausgange eines
Schieberegister

digitalWrite(speicherPin, LOW);
shiftOut(datenPin, taktPin, MSBFIRST, wert >> 8);
shiftOut(datenPin, taktPin, MSBFIRST, wert & 255);
digitalWrite(speicherPin, HIGH);

Code-Review

Fiir unser Experiment bengtigen wir programmtechnisch gesehen
die folgenden Variablen:

Variable Aufgabe

taktPin SH_CP Signal
speicherPin ST_CPSignal
datenPin DS Signal

Zu Beginn werden wieder die Variablen mit den benétigten Pin-
Informationen versorgt und zu Anfang der setup-Funktion alle Pins
als Ausginge programmiert. Doch kommen wir jetzt zum eigentli-
chen und wichtigen Thema der Bitmanipulation. Zuerst eine kurze
Wiederholung dessen, was du schon gelernt hast. Die 8 Ausginge
eines einzelnen Schieberegisters reprisentieren die 8 Bits eines ein-
zelnen Bytes.

interne Register

DS 0 1 2 3 4 5 6 7
1T1—]0]Jfo0]Jfo0ofo0foO

0 J(o]0
S T N T T A A

% % % & & G Y
Ausgdnge

Mit diesen 8 Bits (I Byte) kannst du 28 = 256 verschiedene Bitkom-
binationen darstellen. Wenn wir also Zahlenwerte von 0 bis 255
iiber die shiftOut-Funktion an das Schieberegister schicken, errei-
chen wir damit alle Ausginge (Q4 bis Qp). Haben wir jedoch auf-
grund der Kaskadierung zweier Schieberegister doppelt so viele
Ausginge, dann stehen uns statt 8 jetzt 16 Bits zur Verfigung. Das
ist eine Bandbreite von 21¢ = 65536 Bitkombinationen. Mit den bis-

Projekt 7: Porterweiterung mal 2

herigen Werten von 0 bis 255 kannst du aber nicht die zusitzlichen

8 Bits erreichen. Schau’ her:

Schieberegister 2 (Hoherwertiges Byte)

Schieberegister 1 (Niederwertiges Byte)

interne Register
Mot

Douoonnodn)

OCCLr D

Ausgange

Seneller
Eingang

interne Reg ister

EOTEOEEE-]

EEeaaaaaE

Ausgange

Senellev
Eingang

Ich habe in der Darstellung die Ausginge ein wenig umgruppiert,
denn die niederwertigste Stelle befindet sich in der Regel ganz
rechts und die hochstwertige ganz links. Daher werden jetzt die

A Abbildung 7-4
Die 16 Ausgange zweier
Schieberegister

Daten von rechts in das erste Schieberegister geschoben und wan-

dern nach links bis in das zweite.

g

W

}L 5554,.:,“«-;»51‘«/4_* /

Sclele e 8 fr SR ;,/" :

g . ¥
,\' -&w‘\ (?(L’_._\

i

74 A

Wenn ich mir den Sketch-Code so anschaue, dann wiirde ich sagen,

dass er ziemlich kompliziert aussieht. Ich muss doch lediglich dem
shiftOut-Befehl den zu tibertragenen Wert von 26181 als Argument
tibergeben und die beiden Schieberegister werden mit dem Wert initi-
shiftout(datenPin,

alisiert. Also ich meine das z.B. so:
MSBFIRST, 26181);.

taktPin,

Im Ansatz ist diese Uberlegung vollkommen korrekt, doch an einer
Stelle hakt es. Der shiftOut-Befehl kann nur ein einzelnes Byte in

Richtung Schieberegister iibertragen und ist mit einem Wert > 255
iiberfordert. Aus diesem Grund miissen wir einen Trick anwenden.
Betrachten wir die Zahl 26181 ab jetzt ausschliefflich als Bindrzahl,
denn damit arbeitet ja der Mikrocontroller.

Digitale Porterweiterung mal 2

259

Abbildung 7-5 »
Die Dezimalzahl 26181 als
16-Bit-Bindrzahl

Abbildung 7-6 »
Logische Verschiebung nach rechts

Dezimalwe‘rt: 26181

! Hoherwertiges Byte Niederwertiges Byte !

=2‘S PR L L A L 4 z8= :27 X r 2 2 2 2 2“=
00000aa0n0a000aun

Die Ubertragung muss, wie schon im Sketch zu sehen war, in zwei
separaten Schritten erfolgen. Zuerst wird das hoherwertige,
anschliefend das niederwertige Byte mit dem shiftOut-Befehl iiber-
tragen. Erst im Anschluss wird der Speicherpin (Signal: ST_CP) auf
HIGH-Level gesetzt. Wie aber separieren wir die 2x8-Bit-Informati-
onen aus dem 16-Bit Wort?

Das konnte fiir dich wichtig sein
Der Datenverbund von 4 Bits wird in der Programmierung 1
Nibble genannt. Das nachsthéhere Datenpaket von 8 Bits nen-
nen wir T Byte. Bei einer Datenbreite von 16 Bits haben wir es
mit einem Wort zu tun.

Wir miissen uns dazu der bitweisen Operatoren bedienen, die es
uns ermoglichen, einzelne oder mehrere Bits einer Zahl bequem zu
modifizieren bzw. anzusprechen. Ich beginne mit dem logischen
Verschieben (engl. Shift). Die folgende Grafik zeigt dir das Verschie-
ben der einzelnen Bits eines Bytes um eine Stelle nach rechts.

MSB LSB

o CESDOE

Drei wesentliche Dinge sind hierbei erwihnenswert:

¢ Alle Bits wandern eine Position weiter nach rechts.

* Auf der linken Seite wird eine 0 an die Stelle des hichstwertigen
Bits (MSB = Most Significant Bit) eingefiigt, denn die frei wer-
dende Stelle muss auch mit einen definierten Wert versehen
werden.

e Auf der rechten Seite ist kein Platz mehr fiir das vormals nie-
derwertigste Bit (LSB = Least Significant Bit). Es wird in diesem
Fall nicht mehr benotigt und verschwindet im Nirwana.

Diese Operation wird mit dem Shift-Operator >> durchgefiihrt.

260

Projekt 7: Porterweiterung mal 2

Operand 1 Operator Operand 2 4 Abl?ildung 77 ST
| Der Shift-Operator fiir die logische

Verschiebung nach rechts

]
(wert >> 1;)

Die beiden Pfeile weisen nach rechts, was bedeutet, dass alle Bits in
diese Richtung verschoben werden. Operand 2 gibt dabei vor, um
wie viele Stellen Operand 1 nach rechts verschoben werden soll.
Hier ein Beispiel:

byte wert = 0b01000101; // Dezimalzahl 69
void setup(){

Serial.begin(9600);

Serial.println(wert >> 1, BIN);

}
void loop(){/* leer */}

Die Ausgabe im Serial Monitor lautet 100010. Lass’ dich nicht ver-
unsichern, denn fithrende Nullen werden nicht mit ausgegeben. Du
siehst tibrigens, dass bei der println-Funktion iiber einen zusitzli-
chen Parameter gesteuert werden kann, in welchem Format der
Wert auszugeben ist. BIN bedeutet Bindr und deshalb wird dir der
Wert nicht in dezimaler, sondern in bindrer Form angezeigt. Schau’
in der Referenz nach, um dich tiber weitere Optionen zu informie-
ren. Der Wert 1 hinter dem Verschiebeoperator gibt an, um wie
viele Stellen verschoben werden soll.

ren zu manipulieren?

Ist es eigentlich auch méglich, Dezimalzahlen mit bitweisen Operato-
@
<

)

Eine berechtigte Frage, Ardus! Da der Mikrocontroller — wie du g;&
jetzt ja schon weiflt — nur mit Einsen und Nullen umgehen kann,
behandelt er Dezimalzahlen schon von Hause aus wie Bindrzahlen.
Die Antwort lautet eindeutig: Ja! Doch kommen wir jetzt zum
eigentlichen Thema zuriick. Wir miissen aus der 16-Bit Zahl das
hochstwertige Byte extrahieren und als 8-Bit Wert darstellen.
Kannst du dir vorstellen, wie das funktionieren soll? Du musst
lediglich die 16 Bits um 8 Stellen nach rechts verschieben. Danach
befinden sich die 8 Bits des hdchstwertigen Bytes an der Stelle des
niederwertigen Bytes. Das wird mit der Codezeile

shiftOut(datenPin, taktPin, MSBFIRST, wert >> 8);

Digitale Porterweiterung mal 2 261

Abbildung 7-8
Logische Verschiebung 8 Stellen
nach rechts

Tabelle 7-2 p
Wahrheitstabelle fiir die bitweise
Und-Verkniipfung

Abbildung 7-9 »
Der Wert 255 dient als Maske fiir
die Filterung der unteren 8 Bits.

erreicht. Alle Bits des vormals niederwertigen Bytes gehen dabei ver-
loren. Wir verindern jedoch nicht den eigentlichen Ursprungswert
der Variablen wert, so dass die vermeintlich verloren geglaubten Bits
immer noch fur die nachste Operation zur Verfiigung stehen.

Niederwertiges Byte

:27 2 r 2 2 2 2 2“=
0annnann

Hoherwertiges Byte

215 214 213 211 211

28

P
Ju

0000000000a00an0n

Der zweite Schritt besteht in der Extrahierung des niederwertigsten
Bytes. Fiir diese Aktion bendtigen wir den bitweisen Operator
AND, der durch das Kaufmanns-Und (&) reprisentiert wird. Um
nur bestimmte Bits zu berticksichtigen, wird eine Art Schablone
oder Maske tiber den urspriinglichen Wert gelegt. Wir verwenden
dazu folgende Codezeile:

shiftOut(datenPin, taktPin, MSBFIRST, wert & 255);

Der dezimale Wert 255 ist gleichbedeutend mit der Binirzahl
11111111, die als Maske dient. Schau’ dir die folgende Wahrheits-
tabelle an, die die logischen Zustinde von A bzw. B und deren Ver-
kniipfungsergebnis angibt.

=
=

&B

- o o
- o = o -
o o o

Das Ergebnis ist nur dann 1, wenn beide Operanden den Wert 1
besitzen.

Hoherwertiges Byte Niederwertiges Byte

h 21 oM I)1) 210 2 28' 7 6 5 2 2 2

0nno0o0n
Q0000000 L LI LI XIX[)imeos
DH0O0000n

262

Projekt 7: Porterweiterung mal 2

Das hoherwertige Byte wird bei dieser Operation nicht berticksich-
tigt, denn die Informationen werden durch die in der Grafik sym-
bolisch dargestellte Lochmaske geblockt.

Das konnte fiir dich wichtig sein
Die beiden von mir vorgestellten bitweisen Operatoren sind
nicht alle, die in diese Kategorie fallen. Im Laufe dieses Buches
wirst du noch weitere Operatoren kennenlernen, und in der
Codereferenz am Ende des Buches findest du noch einmal eine
Zusammenfassung.

Der Schaltplan

Der Schaltplan zeigt uns die 16 LEDs mit ihren 330 Ohm-Vorwi-
derstinden, die durch die beiden Schieberegister 74HC595 ange-
steuert werden.

Vorwiderstdande
Arduino i3, Pullup Widerstand L Pis
112 Schieberegister 1 H\\r
pwn |11 14 lpsg QA L3
oo %‘J 11 a8 | [' Pis
O PwM SH_CP Qc
< 8 10 iR 06 E T P
= 7
B [e QE 5l W}
£ pum |- 12 hst cp aF |2 ! Pis
— VCC gt I 130 OF a6 6 l—@
o
. g Ha aH L S
PuM S
(2, aH- 2 - €S
L. -
0. JHHCE95) P
Analog IN
{501 [
.nl ..rl ml N[.-.l ol &
Schieberegister 2 ”—m | gF
14 15
DS QA
QB —1 [! LS
e oopstce Qg —— e >
0 O 04 MR an ! >
i 12 Q2 vy g
ST CP QF J]
13 4AF 6
{] OE nlel I
QH ﬂ P
an- |2 ! P
7EACS95 33} >

Wir sehen auferdem, dass von beiden Schieberegistern die Pins
SH_CP und ST_CP parallel angesteuert werden und Master-Reset
und Output-Enabled die gleichen festen Potentiale zugewiesen wur-

A Abbildung 7-10

Das Arduino-Board steuert iiber 3

Signalleitungen die beiden
74H(595-Schieberegister an.

Digitale Porterweiterung mal 2

263

den. Der serielle Ausgang Qg des ersten Registers ist mit dem seri-
ellen Eingang DS des zweiten Registers verbunden.

Schaltungsaufbau

Die Schaltung habe ich auf zwei getrennte Breadboards aufgeteilt,
da es aus platztechnischen Griinden nicht anders moglich war.
Natiirlich kannst du die komplette Verdrahtung auf einem einzi-
gen, groflen Breadboard unterbringen. Dann hast du auch alle
LEDs in einer Reihe angeordnet und kannst die unterschiedlichsten
Muster erzeugen.

Schieberegister 1 (LSB) Schieberegister 2 (MSB)

264

Xy -
P

>
3
a
=
el
=
o

®una

Pinbelegung
Pin 8: SH_CP
Pin 9: ST_CP
Pin 10: DS

Abbildung 7-11 A
Der Aufbau der Schaltung mit
Fritzing

Troubleshooting

Falls die LEDs nicht oder nur teilweise leuchten, trenne das Board
sicherheitshalber besser vom USB-Anschluss und tiberpriife bitte
Folgendes:

* Entsprechen deine Steckverbindungen auf dem Breadboard
wirklich der Schaltskizze?

¢ Gibt es eventuell Kurzschliisse untereinander?

* Wurden die LEDs richtig herum eingesteckt ? Stimmt die Pol-
ung?

¢ Haben die Widerstinde die korrekten Werte?

Projekt 7: Porterweiterung mal 2

* Hast du die Schieberegister richtig verkabelt? Kontrolliere
noch einmal alle Verbindungen, die ja recht zahlreich sind.
Wichtig sind auch die festen Potentiale von Master-Reset und
Output-Enabled.

¢ Uberpriife noch einmal den Sketch-Code auf Korrektheit. Ver-
binde das Board wieder mit der USB-Schnittstelle und fithre
einen kompletten Funktionstest aller LEDs durch. Schalte alle
an, mache eine Pause und schalte alle wieder aus. Platziere fol-
genden Code innerhalb der loop-Funktion:

sendeBytes(0b1111111111111111); delay(300);
sendeBytes(0b0000000000000000); delay(300);

Dieser Test sollte erfolgreich verlaufen, denn ansonsten hast du
ein Problem mit der Verkabelung. Erfolgreiche Fehlersuche!

Was hast du gelernt?

* Du hast das Schieberegister vom Typ 74HC595 kaskadiert und
so miteinander verbunden, dass du 16 digitale Ausginge erhal-
ten hast.

* Anhand der Bitmanipulation hast du gesehen, wie einzelne
Werte modifiziert bzw. gefiltert werden kénnen.

* Der Shift-Operator kann dabei die Bits sowohl nach rechts als
auch nach links verschieben.

* Der logische Und-Operator wird zum Maskieren einzelner Bits
genutzt.

Workshop

In diesem Workshop wollen wir ein wenig mit der Bitmanipulation
spielen. Ich erwihnte ja schon, dass es noch weitere Operatoren
gibt und wir wollen mal sehen, was man mit diesen so anstellen
kann.

Der Shift Operator

Neben dem Shift-Operator »»>, der die Bits nach rechts schiebt, gibt
es noch den Operator, der fiir das Verschieben nach links verant-
wortlich ist. Er wird ebenfalls durch einen Doppelfeil << reprisen-
tiert, der aber im Vergleich zum Shiftoperator in die
entgegengesetzte Richtung weist. Mit diesem Wissen solltest du in
der Lage sein, einen Sketch zu schreiben, bei dem z.B. eine einzelne

Digitale Porterweiterung mal 2

265

Abbildung 7-12 p

Der Shift-Left-Operator bei der

Arbeit

Tabelle 7-3 p

Wahrheitstabelle fiir bitweise NOT-

Anwendung des NOT-Operators auf

266

Verkniipfung

Abbildung 7-13 p>

ein 16-Bit-Wort

LED endlos vor- und zuriickwandert. Ich hatte kurz das Gliick, den
Shift-Left-Operator bei seiner anspruchsvollen Aufgabe zu beob-
achten.

Wir sehen, dass er auf der rechten Seite eine 0 einschiebt und auf
der linken eine 1 herunterfillt. Es wiirde in diesem Fall auch kein
Zuriickschieben mehr niitzen, denn die 1 ist vom Tisch und verlo-
ren. Ahnlich verhilt es sich mit dem Shift-Operator »>, der nach
rechts schiebt.

Der NOT-Operator

Kommen wir jetzt zu einem Operator, der sich auf alle Bits gleicher-
mafen auswirkt. Es handelt sich dabei um den bitweisen NOT-
Operator. Er invertiert alle Bits. Aus 0 wird 1 und aus 1 eine 0.

0 1
1 0

In der folgenden Abbildung habe ich das 16-Bit-Wort mit dem
NOT-Operator verkniipft. Du siehst, dass jedes einzelne Bit getog-
gelt wird.

P Hoherwertiges Byte o Niederwertiges Byte _
215 oM 28 7 210 2 Y 2 » 2 2 2) I3

POOVVODOHOOOOOOOHO
000000000 nannan

Projekt 7: Porterweiterung mal 2

Du kannst z.B. den Test-Sketch von eben ein wenig umschreiben,
damit alle LEDs blinken. Um das Ganze ein wenig flexibler hand-
haben zu koénnen, habe ich das Bitmuster in die globale Variable
bitMuster ausgelagert:

/...
int bitMuster; // globale Bitmuster-Variable
void setup(){
/...
bitMuster = 0b1111111111111111; // Initialisierung der Bitmuster-
// Variable

void loop(){
sendeBytes(bitMuster); // Senden des Bitmusters an die Schieberegister
bitMuster = ~bitMuster; // bitweises NOT
delay(300); // 300ms Pause

}

In der loop-Funktion wird das Bitmuster angezeigt, im nichsten
Schritt invertiert und dann eine kleine Pause eingelegt, um den
Wechsel fiir das Auge sichtbar zu machen. Experimentiere ein
wenig mit den Bitmustern. Du kannst interessante Effekte erzielen.
Hier ein paar Beispiele:

bitMuster = 0b1010101010101010;
bitMuster = 0b1111111100000000;
bitMuster = 0b1100110011001100;
bitMuster = 0b1111000000001111;

Natirlich kannst du auch mehrere unterschiedliche Bitmuster hin-
tereinander anzuzeigen. Der Moglichkeiten sind hier keine Grenzen
gesetzt.

Der UND-Operator

Den UND-Operator hatten wir schon eben erwahnt. Er wird meis-
tens dazu genutzt, mit einer Maske bestimmte Bits herauszufiltern
oder zu ermitteln, ob ein bestimmtes Bit in einem Wert gesetzt ist.
Letzteres wollen wir uns jetzt einmal genauer anschauen. Nehmen
wir einmal an, ich mochte aus irgendeinem Grund wissen, ob das
Bit an der Stelle 2¢ gesetzt ist.

Digitale Porterweiterung mal 2

267

Abbildung 7-14 »

Uberpriifung, ob ein Bit gesetzt ist

268

Tabelle 7-4 p
Wahrheitstabelle fiir bitweise
Oder-Verkniipfung

Hoherwertiges Byte Niederwertiges Byte .
A LD L LD L S A A R A A S S I
0000000000000a00
000000000 000000 -

000000000000 0000E

Wir erstellen dafiir eine Maske, die nur an der interessanten Stelle
die Information des zu iiberpriifenden Wertes durchlisst. In unse-
rem Fall ist das die Stelle 2¢ mit dem dezimalen Wert 64. Die Uber-
priifung sieht dann folgendermafen aus:

int wert, maske;
void setup(){
Serial.begin(9600);
wert = 0b0110011001000101; // Zu Uberprifender Wert
maske = 0b0000000001000000; // Bitmaske
if((wert & maske) == maske)
Serial.println("Bit ist gesetzt.");
else
Serial.println("Bit ist nicht gesetzt.");
}

void loop(){/*leer*/}

Wenn das Ergebnis des Vergleichs mit dem des Maskenwertes
iibereinstimmt, ist das zu iberpriifende Bit gesetzt, andernfalls
nicht. Die Ausgabe im Serial-Monitor zeigt in unserem Beispiel,
dass das Bit gesetzt ist.

Der ODER-Operator

Maochtest du ein einzelnes oder auch mehrere Bits an unterschiedli-
chen Stellen setzten, dann ist der ODER-Operator die erste Wahl.
Ein Blick in die Wahrheitstabelle zeigt uns, dass das Ergebnis 1 ist,
sobald nur einer der Operanden den Wert 1 aufweist.

0 0 0
0 1 1
1 0 1
1 1 1

Projekt 7: Porterweiterung mal 2

Das ODER-Zeichen wird durch den senkrechten (Pipe-)Strich
reprasentiert. Wenn du z.B. das Bit an der Position 2! setzten
mochtest, verwende die folgende Maske:

Hoherwertiges Byte Niederwertiges Byte

12 11
2

008000000000000 0y
00000000 0000E000
00000000 0000000oEE

Die Maske hat lediglich an der Position 2! eine 1, was bedeutet,
dass bei einer ODER-Verkniipfung nur an dieser einen Stelle eine
mogliche Verdnderung gegeniiber 1 stattfindet. Ich sage absichtlich
»mogliche«, da der Bitwert an dieser Stelle vielleicht vor der Ver-
kniipfung schon 1 war. Dann erfolgt natiirlich keine Anderung. An
den Stellen, an der die Maske eine 0 aufweist, dndert sich nichts.

| Maske (2)

int wert, maske;
void setup(){
Serial.begin(9600);
wert = 26181; // Ausgangswert 26181
maske = 2; // Bitmaske = 0000000000000010
Serial.println(wert | maske); // Ergebnis = 26183

}

void loop(){/*leer*/}

Vorschau auf etwas
Interessantes

Ich mochte dir an dieser Stelle gerne den Mund wissrig machen im
Hinblick auf etwas sehr Interessantes. In einem gesonderten Kapi-
tel werde ich die Moglichkeit ansprechen, Schaltungen auf eigens
dafiir hergestellten Platinen unterzubringen. Diese Platinen werden
huckepack oben auf dein Arduino-Board gesteckt und haben den
Vorteil, dass du die einzelnen Bauteile nicht mittels fliegender Ver-
drahtung verbinden musst. Sie werden auf die Platine gelotet und
haben so eine hohere Stabilitit und Kompaktheit. Ich werden dir
sowohl die Verdrahtungspline als auch die Layouts zur Verfigung
stellen. Dann kannst du entweder Lochrasterplatinen verwenden
oder auch Platinen direkt dtzen. Aber jetzt zeige ich dir schon ein-

<« Abbildung 7-15
Setzen eines einzelnen Bits

Vorschau auf etwas Interessantes

269

270

Abbildung 7-16 »
Zwei Schieberegister vom Typ
74HC595 mit LED-Bar

mal die Platine, die ich auf die beschriebene Weise angefertigt

habe.

Das macht doch Lust auf mehr — oder? Keine ldstigen Kabel, die
immer mal wieder das Breadboard verlassen wollen. Keine wackli-
gen LEDs, die nicht in der Position bleiben, in der du sie gerne hit-
test. Mit der hier gezeigten Konstruktion kannst du dein Werk
schon mal mit zu Freunden nehmen, ohne Gefahr zu laufen, dass
sich die Schaltung unterwegs verselbststandigt. Wir werden noch
viele solcher Platinen herstellen und am Ende wirst du eine nette
Sammlung fertiger Schaltungen aufweisen kénnen. Wenn du ein
wenig Fingerfertigkeit besitzt, ist das Ganze recht leicht umzuset-
zen. Alle Informationen dazu findest du auf meiner Internetseite,
auf der auch die Platinenlayouts fiir viele selbstgemachte Hucke-
pack-Platinen zum Download zur Verfiigung stehen. Es lohnt sich
also, dort mal einen Blick zu riskieren.

Das konnte wichtig fiir dich sein
Hier ein paar Begriffe fur die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

74HC595 Schieberegister
Kingbright RGB 2000

Projekt 7: Porterweiterung mal 2

Projekt

Die Statemachine

Scope

In diesem Experiment behandeln wir folgende Themen:

Deklarierung und Initialisierung mehrerer Variablen
Programmierung mehrerer Pins als Ausgang (OUTPUT)
Programmierung eines Ports als Eingang (INPUT)

Der komplette Sketch

Analyse des Schaltplans

Aufbau der Schaltung

Erweiterter Sketch (Interaktive Ampelschaltung)
Workshop

Eine Ampelschaltung

Jetzt hast du schon so viel gelernt, dass es fiir die nichste Heraus-
forderung reicht. Das Programmieren einer Ampelschaltung ist eine
klassische Aufgabe. In diesem Zusammenhang fillt meistens der
Begriff State Machine. Es handelt sich dabei um eine Maschine, die
unterschiedliche, aber endliche Zustinde annehmen kann. Dies hat
ihr den englischen Namen Finite State Machine, auch kurz FSM,
eingebracht, der das Verhalten dieser Maschine in der Tat recht gut
beschreibt. Folgende Punkte sind Bestandteil dieses Modells, wobei
ich die Sache hier sehr vereinfacht darstelle:

2N

Abbildung 8-1 »
Ampelzustdnde mit Phasenwechsel

* Zustand
* Zustandsiibergang
* Aktion

Doch dazu gleich mehr. Kommen wir zu unserer Ampel zuriick, die
eine Lichtanlage zur Regelung des Verkehrs ist und mit unter-
schiedlichen Farben arbeitet, wobei der Wechsel der Farben in
Deutschland einheitlich geregelt ist. Werden wir uns aber zuerst
einmal iiber die einzelnen moglichen Ampelphasen klar.

Phasenwechsel Phasenwechsel Phasenwechsel

............

.
’ ’ ’ i
. ’
K

e ® 0D
() O 0
()) @ ()

2.Phase 3.Phase 4.Rhase

.
.

Die einzelnen Ampelphasen werden von der 1. bis zur 4. Phase
durchlaufen. Danach wird wieder von vorne begonnen. Der Ein-
fachheit halber beschrinken wir uns auf eine Ampel fir eine Fahrt-
richtung. Das Beispiel regt sicherlich zum Experimentieren an und
macht viel Spafk. Die Bedeutung der einzelnen Farben sollte klar
sein, doch ich nenne sie zur Sicherheit noch einmal:

¢ Rot (keine Fahrerlaubnis)
* Gelb (Auf nichstes Signal warten)

¢ Griin (Fahrerlaubnis)

Jede einzelne Phase hat eine festgelegte Leuchtdauer. Der Verkehrs-
teilnehmer muss genug Zeit haben, die einzelne Phase wahrzuneh-
men und entsprechend zu reagieren. Wir werden fiir unser Beispiel
folgende Leuchtdauern definieren, die sicherlich nicht der Realitit
entsprechen, denn du mochtest bestimmt nicht allzu lange auf den
Phasenwechsel warten. Du kannst die Zeiten aber nach Belieben
anpassen.

272

Projekt 8: Die Statemachine

1. Phase . Phase . P! 4. Phase Tabelle 8-1

Phasen mit Brenndauer

Dauer: 70 Sekunden Dauer: 2 Sekunden Dauer: 70 Sekunden Dauer: 3 Sekunden

N
w
=
Y
(7]
m

)
)

@,

00

O
O

Nach dem Ubertragen des Sketches soll die Ampelschaltung die
gerade gezeigte 4 Phasen durchlaufen und wieder von vorne begin-
nen. Werfen wir zuerst aber einen Blick auf die Bauteilliste.

Bendtigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

Bendtigte Bauteile

1xrote LED

1xgelbe LED

1xgriine LED
3 x Widerstand 330

Mehrere flexible Steckbriicken in unterschiedli-
chen Farben und Langen

RS

Sketch-Code

Hier der Sketch-Code zur Ansteuerung der Ampelschaltung:

#define DELAY1 10000 // Pause 1, 10 Sekunden
#define DELAY2 2000 // Pause 2, 2 Sekunden
#define DELAY3 3000 // Pause 3, 3 Sekunden
int ledPinRot = 7; // Pin 7 steuert rote LED

Eine Ampelschaltung 273

int ledPinGelb = 6; // Pin 6 steuert gelbe LED
int ledPinGruen = 5; // Pin 5 steuert griine LED
void setup(){
pinMode(ledPinRot, OUTPUT); // Pin als Ausgang
pinMode(ledPinGelb, OUTPUT); // Pin als Ausgang
pinMode(ledPinGruen, OUTPUT); // Pin als Ausgang
}

void loop(){
digitalWrite(ledPinRot, HIGH); // rote LED anschalten

delay(DELAY1); // 10 Sekunden warten
digitalWrite(ledPinGelb, HIGH); // gelbe LED anschalten
delay(DELAY2); // 2 Sekunden warten

digitalWrite(ledPinRot, LOW); // rote LED ausschalten
digitalWrite(ledPinGelb, LOW); // gelbe LED ausschalten
digitalWrite(ledPinGruen, HIGH); // griine LED anschalten
delay(DELAY1); // 10 Sekunden warten
digitalWrite(ledPinGruen, LOW); // grine LED ausschalten
digitalWrite(ledPinGelb, HIGH); // gelbe LED anschalten
delay(DELAY3); // 3 Sekunden warten
digitalWrite(ledPinGelb, LOW); // gelbe LED ausschalten

Code-Review

Fiir unser Experiment bengtigen wir programmtechnisch gesehen
die folgenden Variablen:

Tabelle8-2 - pEPEFIR Aufgabe

Bendtigte Variablen und deren

Aufgabe ledPinRot Ansteuerung der roten LED
ledPinGelb Ansteuerung der gelben LED
ledPinGruen Ansteuerung der griinen LED

Da habe ich gleich zu Beginn mal wieder eine Frage. Im Sketch-Code
befinden sich direkt am Anfang drei Zeilen, deren Inhalt mir vollends
unbekannt ist. Was bedeutet #define und der nachfolgende Rest in
der Zeile?

Du bist mal wieder schneller als die Polizei erlaubt. Der Befehl
#define ist eigentlich kein richtiger Befehl, sondern eine Préiprozess-
ordirektive. Erinnere dich an die #include-Prdprozessordirektive.
Du erkennst sie daran, dass am Ende der Zeile kein Semikolon
steht, welches ja normalerweise das Ende eines Befehls kennzeich-

274 Projekt 8: Die Statemachine

net. Wenn der Compiler mit dem Ubersetzten des Quellcodes
beginnt, verarbeitet ein spezieller Teil des Compilers — der Prdpro-
zessor — die Prdprozessor-Direktiven, die immer mit dem Rautenzei-
chen # eingeleitet werden. Du lernst im Verlauf dieses Buches noch
weitere solcher Direktiven kennen. Die #define-Direktive gestattet
uns die Verwendung von symbolischen Namen und Konstanten. Die
Syntax zur Verwendung dieser Direktive lautet wie folgt:

Direktive Bezeichner Wert

|
(#define DELAY1 10000)

Die Zeile arbeitet folgendermaRen: Uberall, wo der Compiler im
Sketch-Code den Bezeichner DELAY1 findet, ersetzt er ihn durch
den Wert 10000. Du kannst die #define-Direktive immer dort ein-
setzten, wo du im Code Konstanten verwenden méchtest, um diese
komfortabel an einer Stelle zu verwalten. Ich habe diese Thematik
schon einmal angesprochen. Keine Magic-Numbers!

Aber warum hast du denn nicht #define tiberall dort angewendet, wo
die Pins definiert wurden? Das sind doch eigentlich auch Konstanten,
die sich im Laufe des Sketches nicht mehr dndern.

Da hast du Recht! Das hitte ich durchaus tun kénnen und einige
Arduino-Sketche, die du im Internet findest, verwenden diese
Schreibweise. Statt

int ledPinRot = 7;
kannst du auch
#define ledPinRot 7

schreiben. Der Sketch arbeitet wie vorher und es macht keinen
Unterschied, ob du die erste oder die zweite Variante nutzt. Ich ver-
wende in meinen Sketches die Variablendeklaration bzw. —initiali-
sierung fuir Pins, und wenn es um Konstanten geht, nutze ich die
#define-Direktive. Dir stehen beide Moglichkeiten zur Verfiigung,
doch wenn du dich fiir eine entscheidest, solltest du sie einheitlich
verwenden und nicht heute so und morgen so vorgehen. Wir wol-
len aber jetzt wieder zu unserem Sketch kommen und schauen, wie
er funktioniert.

<« Abbildung 8-2
Die »#define-Direktive«

Eine Ampelschaltung

275

276

Abbildung 8-3 »
Ansteuerung der einzelnen
Amplephasen

Abbildung 8-4 »
Impulsdiagramm der
Ampelschaltung

sJdigitalWrite (ledPinRot, HIGH);
delay (DELAY1) ;

digitalWrite (ledPinGelb, HIGH) ;
delay (DELAY2) ;

digitalWrite (ledPinRot, LOW);
digitalWrite (ledPinGelb, LOW);
digitalWrite (ledPinGruen, HIGH);
delay (DELAY1) ;

{)
@ v..
H ‘

‘--.-----..__.....
Tumag,
digitalWrite (ledPinGruen, LOW);

digitalWrite (ledPinGelb, HIGH) ;

elay ;
" |d lay (DELAY3) ;
Q R ,..ldlgltalerte(1edPinGelb, LOW) ;
. 0
d

»
.

@ R *e..... o Ausschalten der gelben
P “p

LED nicht vergessen!

Du musst unbedingt darauf achten, die einzelnen LEDs nicht nur
einzuschalten, sondern auch bei verschiedenen Phasenwechseln
wieder auszuschalten. Beim Wechsel von Phase 1 auf Phase 2
kommt zur roten LED lediglich eine gelbe hinzu. Die rote kann also
getrost weiter leuchten. Doch beim Wechsel von Phase 2 auf Phase
3 musst du beachten, dass die rote bzw. gelbe LED auszuschalten
ist, bevor die griine zu Leuchten beginnt. Wenn dann von Phase 4
wieder auf Phase 1 geschaltet wird und die Phasen von vorne begin-
nen, muss die gelbe LED ausgeschaltet werden. Wirf” doch einmal
einen Blick auf das Impulsdiagramm, dann erkennst Du, wie die
LEDs in den unterschiedlichen Phasen im Wechsel leuchten.

.
Y
-““ |
..
A"

Rot/Gelb Grin

Projekt 8: Die Statemachine

Der Schaltplan

Der Schaltplan zeigt uns die drei farbigen LEDs mit ihren 330
Ohm-Vorwiderstinden. An zusitzlicher Hardware ist der Aufwand
jetzt etwas zuriickgegangen, doch das dndert sich bald wieder.

s <« Abbildung 8-5
Arduino 13, Das Arduino-Board steuert unsere
12 Ampelanlage.
pwm L1,
PWM %
Q rum . [T} i 2
i - P
: “‘7—' LED Rot
©
= pwM |- (330 1 P 2 !
o)) 5 R 3\
o Pk 4 LED Gelb
a3 Lo [Tty 2 o
Y
-2 . LED Griin
1.
b -
Analog IN
.n[;, m\ N\ ﬁ\ ol o
Schaltungsaufbau

<« Abbildung 8-6
Aufbau der Ampelschaltung mit
Fritzing

=
3
a
=
-
3
Q

®und em

Eine Ampelschaltung 277

278

Ein erweiterter Sketch
(Interaktive Ampelschaltung)

Da dieser Sketch hinsichtlich der Programmierung und des Auf-
baus relativ einfach war, wollen wir die Sache ein wenig modifizie-
ren. Stelle dir jetzt eine Fullgingerampel vor, die auf einer geraden
LandstraRe installiert ist. Es macht dort wenig Sinn, die Phasen fur
die Autofahrer sich stindig wechseln zu lassen, wenn kein FuRRgin-
ger die Fahrbahn iiberqueren mochte. Wie soll die Ampelschaltung
mit ihren Phasen also funktionieren? Was benétigen wir an zusitz-
lichem Material und wie miissen wir die Logik erweitern? Die fol-
genden Punkte sind hierbei zu beriicksichtigen:

* Kommt kein FulRginger vorbei, um die Strafle zu iiberqueren,
haben die Autofahrer immer griines Licht. Die Fulgingerampel
bleibt rot.

Driickt ein FuRginger den Ampelknopf, um die Strale -mog-
lichst sicher zu tiberqueren, wechselt das griine Licht der Auto-
fahrer tiber Gelb zu Rot. Danach erhilt der FuRginger griines
Licht. Nach Ablauf einer fest definierten Zeit, wird dem Fuf3-
ginger wieder rotes Licht angezeigt und die Autofahrer erhal-
ten tiber Rot/Gelb dann griines Licht.

Die Ausgangssituation sieht also folgendermafien aus:

1. Phase

Auto FuBganger Erlduterungen

Diese beiden Lichtsignale bleiben solange bestehen, bis ein FuBgan-
ger vorbei kommt und den Ampelknopf driickt. Erst dann werden die
Phasenwechsel in Gang gesetzt, damit der Autofahrer rotes Licht und
der FuBganger griines Licht bekommt.

000
O

Aber schauen wir uns die Sache im Detail an:

2. Phase

Auto FuBganger Erlduterungen

Der Phasenwechsel wurde durch den Druck auf den Ampelknopf ein-
geleitet. Dem Autofahrer wird das Signal gelb angezeigt, was bedeu-
tet, dass Rot in Kiirze folgt.

0D

Dauer: 3 Sekunden

OO0

Projekt 8: Die Statemachine

3. Phase

Auto FuBganger Erlduterungen

Autofahrer und FuBgénger haben zuerst einmal aus Sicherheitsgriin-
den ein rotes Signal erhalten. Das gibt dem Autofahrer die Maglich-
keit, den Gefahrenbereich des Zebrastreifens zu raumen.

O

Dauer: 7 Sekunde

O0®

4. Phase

Erlauterungen

Nach einer kurzen Zeit erhalt der FuBgénger das Gehsignal.
Dauer: 70 Sekunden

FuBganger
()
&)

[3
@,
O

hd
T
>
Q
0
)

Auto Erlauterungen

Nach der Griinphase fiir den FuBganger erhélt auch dieser wieder das
Stoppsignal.

Dauer: 7 Sekunde

ep);

O

o
o
>
Q
0
o

Erlauterungen

Dem Autofahrer wird das Rot- / Gelbsignal angezeigt, das ankiindigt,
dass er gleich freie Fahrt {iber das Griinsignal erhdlt.

Dauer: 2 Sekunden

FuBganger
()
O

@
0,
O

7. Phase

Auto FuBganger Erlduterungen

Die letzte Phase bedeutet wieder griines Licht fiir die Autofahrer und
ein Stoppsignal fiir die FuBgénger. Sie ist gleichbedeutend mit der
ersten Phase.

Dauer: Bis auf Knopfdruck

o 0
)

Eine Ampelschaltung

279

280

Fiir diesen erweiterten Sketch benétigst du zusitzlich die folgenden
Bauteile:

Benétigte Bauteile

1xrote LED

1xgriine LED

2 x Widerstand 330

1x Widerstand 10K

1x Taster

Der erweiterte Code sieht dann wie folgt aus:

#define DELAYO 10000 // Pause 0, 10 Sekunden

#define DELAY1 1000 // Pause 1, 1 Sekunde

#define DELAY2 2000 // Pause 2, 2 Sekunden

#define DELAY3 3000 // Pause 3, 3 Sekunden

int ledPinRotAuto = 7; // Pin 7 steuert rote LED (Autoampel)

int ledPinGelbAuto = 6; // Pin 6 steuert gelbe LED (Autoampel)

int ledPinGruenAuto = 5; // Pin 6 steuert griine LED (Autoampel)

int ledPinRotFuss = 3; // Pin 3 steuert rote LED (FuBgangerampel)

int ledPinGruenFuss = 2; // Pin 2 steuert griine LED (FuRgdngerampel)
int tasterPinAmpel = 8; // Ampeltaster wird an Pin 8 angeschlossen

int tasterAmpelWert = LOW; // Variable fiir den Status des Ampeltasters

void setup(){
pinMode(ledPinRotAuto, OUTPUT); // Pin als Ausgang
pinMode(ledPinGelbAuto, OUTPUT); // Pin als Ausgang
pinMode(ledPinGruenAuto, OUTPUT); // Pin als Ausgang

pinMode(ledPinRotFuss, OUTPUT); // Pin als Ausgang
pinMode(ledPinGruenFuss, OUTPUT); // Pin als Ausgang
pinMode(tasterPinAmpel, INPUT); // Pin als Eingang

digitalWrite(ledPinGruenAuto, HIGH); // Anfangswerte (Autoampel griin)
digitalWrite(ledPinRotFuss, HIGH); // Anfangswerte (FuRgangerampel
// rot)
}

void loop(){

// Ampeltasterstatus in Variable einlesen
tasterAmpelWert = digitalRead(tasterPinAmpel);

Projekt 8: Die Statemachine

// Wurde Taster gedriickt, rufe Funktion auf
if(tasterAmpelWert == HIGH)
ampelUmschaltung();
}

void ampelUmschaltung(){
digitallrite(ledPinGruenAuto, LOW);
digitalWrite(ledPinCelbAuto, HIGH); delay(DELAY3);
digitalWrite(ledPinGelbAuto, LOW);
digitallirite(ledPinRotAuto, HIGH); delay(DELAY1);
digitallrite(ledPinRotFuss, LOW);
digitalWrite(ledPinGruenFuss, HIGH); delay(DELAYO);
digitalWrite(ledPinGruenFuss, LOW);
digitallirite(ledPinRotFuss, HIGH); delay(DELAY1);
digitallrite(ledPinGelbAuto, HICH); delay(DELAY2);
digitalWrite(ledPinRotAuto, LOW);
digitalWrite(ledPinGelbAuto, LOW);
digitallirite(ledPinGruenAuto, HIGH);

}

Die Anzahl der bendtigten Ports ist auf 6 gestiegen, doch das
bedeutet nicht, dass es jetzt sehr viel schwieriger geworden ist. Du
musst lediglich mehr Sorgfalt walten lassen, wenn es um das Ver-
kabeln bzw. die Pinzuweisung geht. Beginnen wir wieder mit den
Variablen, die ganz am Anfang unseres Programms aufgefiihrt
werden.

Fiir unser Experiment benotigen wir programmtechnisch gesehen
die folgenden Variablen:

Variable Aufgabe

ledPinRotAuto Ansteuerung der roten LED (Auto)
ledPinGelbAuto Ansteuerung der gelben LED (Auto)
ledPinGruenAuto Ansteuerung der griinen LED (Auto)
ledPinRotFuss Ansteuerung der roten LED (FuBganger)
ledPinGruenFuss Ansteuerung der griinen LED (FuBganger)
tasterPinAmpel Anschluss des Tasters fiir die FuBgangerampel
tasterAmpelWert Nimmt den Wert des Tasterstatus auf

Innerhalb der setup-Funktion werden die einzelnen Pins als Aus-
bzw. Eingénge programmiert und die Variable tasterAmpelWert mit
dem Startwert LOW versehen. Weil die Ampelschaltung keine Pha-
sentiberginge hat, wenn der Taster nicht gedriickt wird, muss sie
einen definierten Ausgangszustand aufweisen. Aus diesem Grund
werden Autoampel und Fuflgingerampel mit den beiden Zeilen

<« Tabelle 8-3

Bendtigte Variablen und deren

Aufgabe

Eine Ampelschaltung

281

282

Abbildung 8-7 »
Aufruf der »ampelUmschaltunge-
Funktion

digitalWrite(ledPinGruenAuto, HICH);
digitalWrite(ledPinRotFuss, HIGH);

initialisiert. Innerhalb der loop-Funktion wird kontinuierlich der
Taster-Status iber die digitalRead-Funktion abgefragt und das
Ergebnis der Variablen tasterAmpelWert zugewiesen. Die Auswer-
tung erfolgt direkt im Anschluss iiber die if-Kontrollstrukeur:

if(tasterAmpelWert == HIGH)
ampelUmschaltung();

Bei HIGH-Pegel erfolgt ein Sprung zur Funktion ampelUmschal-
tung, die die Phaseniiberginge einleitet.

Was passiert eigentlich, wenn ich nach dem Driicken des Tasters die-
sen noch mal betitige? Bringt das den Ablauf in irgendeiner Weise
durcheinander?

Das ist an dieser Stelle eine berechtigte Frage. Rekapitulieren wir
doch einmal den Ablauf des Sketches. Das folgende Diagramm
sollte dir bei der Beantwortung deiner Frage behilflich sein.

(loop)

Taster gedrtickt

ampelUmschaltung

]

Wie du erkennen kannst, wird nach Eintritt der Verarbeitung in die
loop-Funktion der Tasterstatus kontinuierlich abgefragt und ausge-
wertet. Es sind die einzige Verarbeitungsschritte innerhalb dieser
Funktion. Sie hat also nichts anderes zu tun, als den Tasterstatus zu
beobachten und bei einem Pegelwechsel von LOW nach HIGH in
die ampelUmschaltung-Funktion zu verzweigen. Wenn die Funk-
tion aufgerufen wurde, werden die einzelnen Phasenwechsel initi-
iert und die Phasen durch unterschiedliche Aufrufe der delay-

Projekt 8: Die Statemachine

Funktion gehalten. Wir befinden uns zu diesem Zeitpunkt nicht
mehr in der loop-Funktion, sondern haben diese kurzzeitig verlas-
sen. Ein erneuter Tastendruck wiirde demnach von der Logik nicht
registriert werden, da die digitalRead-Funktion nicht mehr kontinu-
ierlich aufgerufen wird. Das geschieht erst nach dem Verlassen der
ampelUmschaltung-Funktion.

void loop ()
{

tasterAmpelWert = digitalRead (tasterPinfmpel);

if(tasterAmpelWeﬁt

= HIGH) Funktionsaufruf
ampelUmschaltung () ;
}

void ampelUmschaltung ()}
{

Riicksprung)

Ich denke, dass damit deine Frage ausreichend beantwortet wurde.
Bevor wir zum Schaltplan kommen, mochte ich dir jetzt wieder ein
Impulsdiagramm zeigen, um die einzelnen Leuchtdauern im Verhalt-
nis zueinander darzustellen. Die stabile Ausgangsituation zeigt uns,
dass die Autoampel Griin und die Fuflgingerampel Rot zeigt. Jetzt
kommt ein mutiger FuRgianger mit der Absicht daher, die Strafle an
einem vermeintlich sicheren Ort zu tiberqueren und driickt den
Ampelknopf, wodurch die Phasenwechsel initiiert werden.

<« Abbildung 8-8
Aufruf und Riicksprung

<« Abbildung 8-9
Impulsdiagramm der interaktiven
Ampelschaltung

Eine Ampelschaltung

283

Im Schaltplan zum gerade gezeigten Sketch siehst du die Erweite-
rungen, die du vornehmen musst, um die Schaltung ans Laufen zu
bringen.

Abbildung 8-10 Taster

DieinteraktiveSchaItqu mit Auto- Arduino &
und FuBgangerampel Fe O
e #5V
PWH %ﬁ o]
PWM = R
Q PwM %” Autoampel ;
= | e H‘iﬂ
a 6 LED Rof
§1 PWM 5 I_,'Hnl
SRt e LED Gelb
4 3351 1
3 R HQA
A LED Griin
$ FuRgangerampel
0 {3301 1 Byl \;
Analog IN R LED Rat
"EEREL TP
LED Grin
57
GO
Der Aufbau auf dem Breadboard sieht dann wie folgt aus:
Abbildung 8-11 »
Aufbau der interaktiven Ampel-
schaltung mit Fritzing Taster
i Autoampel
FuBgéngerampel

®ine o

Ein nochmals erweiterter Sketch

Ich mochte den Sketch zur Ampelsteuerung nochmal ein wenig
modifizieren, um deine kleinen grauen Zellen noch mehr zu bean-

284 Projekt 8: Die Statemachine

spruchen. Was mich personlich an der Programmierung der
Ampelschaltung gestort hat, ist der Umstand, dass ich beim ersten
Ausprobieren immer wieder vergessen habe, irgendeine LED beim
Phasenwechsel auszuschalten, bevor dann die nichste leuchten
sollte. Deshalb habe ich mir tiberlegt, das An- bzw. Ausschalten der
LEDs einfacher zu gestalten. Leider ist dazu ein wenig Vorbereitung
erforderlich, doch die konnte sich fiir spitere Projekte als niitzlich
erweisen. Zunichst muss ich dir ein wenig tber Bits und Bytes
erzihlen. Die Schaltung bleibt dabei unverdndert. Der Computer
und auch das Arduino-Board speichern alle Daten auf unterster
Speicherebene in Form von Bits und Bytes (8 Bits) ab. Ich habe das
Thema schon ein wenig im Kapitel tiber die digitale Porterweiterung
angerissen. Ich rekapituliere noch mal kurz:

Potenzen A LI ER & 23 22 21 20 4 I}bblldlfngls-n”
Binarkombination fiir den

Wertigkeit 128 64 32 16 Ganzzahlwert 157
e nooaoaon

Die Bitkombination 10011101 stellt einen dezimalen Wert von
1720+ 02+ 122+ 1"+ 1724+ 0°2° + 026 + 172 = 1579

dar. Wenn wir jetzt einfach festlegen, dass bestimmte Bits inner-
halb dieses Bytes zur Ansteuerung der einzelnen LEDs unserer
Ampelsteuerung genutzt werden, dann ist es doch moglich, alle
LEDs iiber einen einzigen dezimalen Wert an- bzw. auszuschalten.
Ich mache es noch ein wenig deutlicher:

128 64 32 16 8 4 2 1 < Abbildung 8-13

Welches Bit ist fiir welche LED
(1) OO

werden nicht bengtigt

.

¥+ 00@

Du siehst, dass 5 Bits dieses Bytes zu Ansteuerung ausreichen. Aber
wie machen wir das jetzt genau? Ich habe die entsprechenden Dezi-

Eine Ampelschaltung

285

Tabelle 8-4 »
Dezimalwerte zum Ansteuern
der LEDs

Tabelle 8-5 »
Bitweise Und-Verkniipfung

Tabelle 8-6 »
Ermitteln, ob das entsprechende Bit
gesetztist.

malwerte, die ich aus den einzelnen Phasen ermittelt habe, einmal
in einer Tabelle zusammengetragen:

Fuganger Auto

LED Rot Rot Dezimalwert
Stellenwert 2'=16 2=8 2=4 2'=2 =1

Phase 1 0 1 1 0 0 12

Phase 2 0 1 0 1 0 10

Phase 3 0 1 0 0 1 9

Phase 4 1 0 0 0 1 17

Phase 5 0 1 0 0 1 9

Phase 6 0 1 0 1 1 n

Jetzt miissen wir aus den entsprechenden Dezimalwerten das ent-
sprechende Bit herausfiltern, das ftr die einzelne LED zustindig ist.
Das ist mit dem bitweisen UND-Operator & moglich. Nachfolgend
siehst du die Wertetabelle, die uns zeigt, dass das Ergebnis nur
dann 1 ist, wenn beide Operanden den Wert 1 besitzen.

Operand 1 Operand 2 Und-Verkniipfung

0 0 0
0 1 0
1 0 0
1 1 1

Dazu ein Beispiel: Wir wollen tiberpriifen, ob in Phase 1 unserer
Ampelsteuerung die rote LED der Fullgingerampel leuchtet.

FuBganger Auto

LED Rot Rot Dezimalwert
Stellenwert =16 =8 =4 2'=2 20=1

Phase 1 0 1 1 0 0 12

Operand 0 1 0 0 0 8

Ergebnis 0 1 0 0 0 8

Der zweite Operand mit dem dezimalen Wert 8 arbeitet als eine Art
Filter. Er tiberpriift lediglich an der Bitposition mit dem Wert 28, ob
dort eine 1 im ersten Operanden vorliegt. Das ist in unserem Fall
gegeben und das Ergebnis ist der Wert 8. Die folgende Tabelle zeigt
uns die dezimalen Werte, mit denen die Werte aus den einzelnen

286

Projekt 8: Die Statemachine

Phasen bitweise UND-verkniipft werden miissen, um den erforder-
lichen Zustand der LED zu ermitteln:

LED Verkniipfungswert des 2. Operanden
rote LED (Auto) 1

gelbe LED (Auto) 2

griine LED (Auto) 4

rote LED (FuBganger) 8

griine LED (FuBganger) 16

Zur Uberpriifung nutzten wir den ?-Operator (Bedingungsopera-
tor). Es handelt sich dabei um eine spezielle Form der Bewertung
eines Ausdrucks. Die allgemeine Syntax lautet wie folgt:

(Bedingung?Anweisungl : Anweisung2)

Gelangt die Programmausfithrung an diese Zeile, wird zuerst die
Bedingung bewertet. Ist das Ergebnis wahr, wird Anweisungl aus-
gefithrt, andernfalls Anweisung2. Um mit diesem Konstrukt alle
LEDs anzusteuern, miissen wir folgende Codezeilen schreiben,
wobei der Dezimalwert zur Ansteuerung der LEDs in der Variablen
ampelwert gespeichert ist.

digitalWrite(ledPinRotAuto, (ampelwert&1)==1?HIGH:LOW);
digitalWrite(ledPinGelbAuto, (ampelwert82)==2?HIGH:LOW);
digitalWrite(ledPinGruenAuto, (ampelwert84)==4?HIGH:LOW);
digitallWrite(ledPinRotFuss, (ampelwert88)==8?HIGH:LOW);
digitalWrite(ledPinGruenFuss, (ampelwert&16)==16?HIGH:LOW);

Mit diesen 5 Codezeilen konnen wir den Zustand (An- oder Ausge-
schaltet) aller 5 LEDs steuern.

Etwas ist mir aber noch nicht ganz klar. Wie realisieren wir die unter-
schiedlichen Leuchtdauern der einzelnen Ampelphasen? Ich sehe nir-
gendwo den delay-Befehl, der ja fir die Pausen verantwortlich ist.

Das hast du richtig bemerkt, Ardus, und deswegen packen wir diese
Codezeilen auch in eine separate Funktion und iibergeben ihr
sowohl den ampelwert, als auch einen zweiten Wert fur die delay-
Funktion. Das Ganze sieht dann wie folgt aus:

void setzelEDs(int ampelwert, int pause){
digitalWrite(ledPinRotAuto, (ampelwert81)==1?HIGH:LOW);
digitalWrite(ledPinGelbAuto, (ampelwert82)==2?HIGH:LOW);

<« Tabelle 8-7
Werte zum Ermitteln der gesetzten
bzw. nicht gesetzten Bits

<« Abbildung 8-14
Der Bedingungsoperator »?«

Eine Ampelschaltung

287

288

digitalWrite(ledPinGruenAuto, (ampelwert84)==4?HIGH:LOW);
digitalWrite(ledPinRotFuss, (ampelwert88)==8?HIGH:LOW);
digitalWrite(ledPinGruenFuss, (ampelwert&16)==16?HIGH:LOW);
delay(pause);

}

Zur Ansteuerung der einzelnen Ampelphasen musst du jetzt nur
noch diese Funktion mit den entsprechenden Werten aufrufen, die
ich in der Tabelle Dezimalwerte zum Ansteuern der LEDs aufgelistet
habe. Die Aufrufe lauten dann wie folgt:

void ampelUmschaltung(){
setzelEDs(10, 2000);
setzelEDs(9, 1000);
setzelEDs(17, 10000);
setzelEDs(9, 1000);
setzelEDs(11, 2000);
setzelEDs(12, 0);

}

Du siehst, dass innerhalb der ampelUmschaltung-Funktion die set-
zeLEDs-Funktion aufgerufen wird. Aber schauen wir uns das an
einem einzelnen Beispiel ein wenig genauer an. Da die Funktion
mehrere Parameter besitzt, ist es sicherlich sinnvoll zu wissen, wie
diese in welcher Reihenfolge beim Aufruf iibergeben werden:

setzelEDs (10, 2000);

/

void setzelEDs(int ampelwert, int pause)

{
}

Die Argumente 10 bzw. 2000 werden in genau der Reihenfolge an
die Parameter der Funktion setzteLEDs iibergeben, in der du sie in
den runden Klammern auflistest. Die Funktionsparameter werden
durch die lokalen Variablen ampelwert und pause definiert, in die
die iibergebenen Werte kopiert werden.

Achtung
Beachte unbedingt die Reihenfolge der Argumente beim Auf-
ruf der Funktion. Wenn sie vertauscht werden, kommt es zwar
in diesem Fall zu keinem Absturz des Sketches, doch die Schal-
tung reagiert nicht so, wie beabsichtigt. Folgende Punkte sind
zu beachten:

- Die Anzahl der Argumente muss mit denen der Parameter
Ubereinstimmen.

Projekt 8: Die Statemachine

Die Ubergebenen Datentypen der Argumente muss
denen der Parameter entsprechen.

Die Reihenfolge beim Aufruf muss eingehalten werden.

Du hast jetzt schon wieder den Begriff lokale Variable verwendet. Lei-
der habe ich den Unterschied zwischen lokalen und globalen Variab-
len noch immer nicht so richtig verstanden.

Kein Problem! Der Unterschied ist recht simpel. Globale Variablen
werden am Anfang jedes Sketches deklariert bzw. initialisiert und
sind zur Laufzeit tiberall sichtbar, also auch innerhalb von Funktio-
nen. In den folgenden Codezeile sehen wir eine globale Variable
unseres Sketches:

int ledPinRotAuto = 7; // Pin 7 steuert rote LED (Autoampel)
/...

Diese wird dann spiter innerhalb der setup-Funktion verwendet.
Sie ist also dort sichtbar und du kannst auf sie zugreifen.

void setup(){
pinMode(ledPinRotAuto, OUTPUT); // Pin als Ausgang

}

Lokale Variablen werden immer innerhalb von Funktionen oder
auch z.B. innerhalb einer for-Schleife deklariert bzw. initialisiert.
Sie haben eine begrenzte Lebensdauer und sind nur innerhalb der
Funktion oder des Ausfithrungsblocks sichtbar. Wenn ich von
Lebensdauer spreche, bedeutet das, dass lokalen Variablen beim
Funktionsaufruf im Speicher ein spezieller Bereich zur Verfiigung
gestellt wird. Nach Verlassen der Funktion werden diese Variablen
nicht mehr benétigt und der Speicher wird wieder freigegeben. Eine
lokale Variable ist aulRerhalb der Funktion, in der sie deklariert
wurde, niemals sichtbar und kann auch nicht von auflerhalb ver-
wendet werden.

Ok, das habe ich verstanden. Aber wie sieht es mit den Werten aus,
die mit #define am Anfang des Sketches definiert wurden? Wie ver-
halten sie sich?

Du kannst sie ebenfalls als globale Definitionen ansehen, die im
kompletten Sketch sichtbar sind und auf die du von tiberall Zugriff
hast. Da du nun in diesem Kapitel das erste mal mit der #define-
Direktive in Berithrung gekommen bist, kann ich dir auch verraten,

Eine Ampelschaltung 289

290

)

dass Konstanten wie HIGH, LOW, INPUT oder OUTPUT, und es
gibt noch eine ganze Menge mehr, durch eben diese Direktiven
festgelegt wurden.

Eine Bemerkung am Rande

Fall es dich interessiert, dann schaue doch einmal im folgenden
Verzeichnis nach:

arduino-1.0-rc1\hardware\arduino\cores\arduino

Dort befindet sich u.a. eine Datei mit dem Namen Arduino.h. Es
handelt sich dabei um eine Header-Datei von C++, die viele
wichtige Definitionen beinhaltet, zB. auch die eben genann-
ten. Hier siehst du einen kurzen Ausschnitt:

36 HIGH 0x1
37 e LOW Ox0
38

39 #define INFUT Ox0
40 #define OUTPUT Ox1
41

42 #define true Oxl1
45 #define false Ox0
Ci

Gt

e PT

48 HALF PI 1
47 TWO_PI &.

48 DEG_TO RAD 0
49 RAD TO DEG 57.
50

51 SERIAL 0x0
52 DISPLAY Oxl
53

54 #define LSBFIRST 0

55 #define MSBFIRST 1

Na, kommt dir das irgendwie bekannt vor? Was eine Header-
Dateij ist, das wirst du spéater in diesem Buch noch genauer
erfahren. Ich mochte an dieser Stelle nur so viel verraten, dass
sie vom Compiler in das Projekt mit eingebunden wird und alle
in ihr enthaltenen Definitionen im Sketch global verfiigbar sind.

Troubleshooting

Falls die LEDs nicht nacheinander zu leuchten beginnen, trenne
das Board sicherheitshalber besser vom USB-Anschluss und iiber-
prafe bitte Folgendes:

Entsprechen deine Steckverbindungen auf dem Breadboard
wirklich der Schaltskizze?

Gibt es eventuell Kurzschliisse untereinander?

Wurden die LEDs richtig herum eingesteckt? Stimmt die Pol-

Projekt 8: Die Statemachine

Haben die Widerstinde die korrekten Werte?
Ist der Sketch-Code korrekt?

Hast du den Taster richtig verkabelt? Fiihre bei den relevanten
Kontakten noch einmal eine entsprechende Messung mit
einem Durchgangspriifer durch.

Was hast du gelernt?

Du hast erfahren, wie man mit der digitalRead-Funktion den
Pegel eines digitalen Ausgangs bestimmen kann.

Wir haben sowohl eine einfache Ampelschaltung realisiert, die
unabhingig von duferen Einfliissen automatisch die einzelnen
Phasenwechsel initiiert, als auch eine interaktive Ampelschal-
tung, die mit Hilfe eines Sensors — in Form eines Tasters — auf
Impulse von auflen reagiert und erst dann die Phasenwechsel
einleitet.

Die Verwendung der Priprozessor-Direktive #define diirfte dir
jetzt keine Schwierigkeiten mehr bereiten. Sie kommt meistens
dort zu Einsatz, wo Konstanten definiert werden. Der Compi-
ler ersetzt tiberall im Code den Namen des Bezeichners durch
den entsprechenden Wert.

Der Bedingungsoperator ? kann dazu verwendet werden, in
Abhingigkeit von einer Ausdrucksbewertung unterschiedliche
Werte zuriickzuliefern. Die Schreibweise ist recht kompakt
und manchmal nicht immer auf den ersten Blick zu verstehen.

Du hast erfahren, wie einer Funktion mehrere Werte {iberge-
ben werden kénnen und worauf im Einzelnen zu achten ist.

Der Unterschied zwischen lokalen und globalen Variablen ist
dir jetzt geldufig und du weifit, was in diesem Zusammenhang
Sichtbarkeit und Lebensdauer bedeutet.

Workshop

Realisiere eine Ampelschaltung an einer Kreuzung. Die folgende
Skizze soll dir als Grundlage dienen, einen passenden Einstieg zu
finden.

Eine Ampelschaltung

291

292

Abbildung 8-15 »
Ampelschaltung mit
FuBgangerampel

Die Ampelpaare A als auch B sollen dabei gleich angesteuert wer-
den. Auf einen Fufgingeriiberweg soll diesmal verzichtet werden.
Achte darauf, dass wenn eine Richtung rotes Licht erhilt, der ande-
ren nicht sofort Griin angezeigt wird. Es sollte schon ein Sicher-
heitspuffer far die Autofahrer eingeplant werden, beim Wechsel
von Griin auf Rot noch gerade so iiber die Kreuzung jagen. Viel-
leicht hast du ja etwas Material im Keller, um dir die Kreuzung z.B.
aus Holz nachzubauen. Das macht direkt noch mehr Spaf§ und du
kannst auferdem deine Freunde beeindrucken.

Vorschau auf etwas
Interessantes

Auch in diesem Fall habe ich dir zur Realisierung der Ampelschal-
tung mit FuRgingerampel eine Platine anzubieten, die du leicht
selbst bauen kannst. Doch schau her...

Projekt 8: Die Statemachine

Der elektronische
Wiirfel

Scope

In diesem Experiment behandeln wir folgende Themen:

* Deklarierung und Initialisierung eines zweidimensionalen
Arrays

* Programmierung mehrerer Pins als Ausgang (OUTPUT)
* Programmierung eines Ports als Eingang (INPUT)

* Der komplette Sketch

* Analyse des Schaltplans

* Aufbau der Schaltung

* Workshop

* Vorschau auf etwas Interessantes

Der Wiirfel

In den letzten Kapiteln hast du schon einige Grundlagen zur Pro-
grammierung des Arduino-Boards kennengelernt. Du wirst natiir-
lich vermuten oder hoffen, dass das nicht alles sein kann, und
deshalb werden wird anhand von ein paar interessanten Schaltun-
gen unser Wissen anwenden, vertiefen und erweitern. Es ist
immer wieder spannend, einen elektronischen Wiirfel zu bauen.
Vor einigen Jahren, als es die Mikroprozessoren noch nicht gab
oder unerschwinglich waren, hat man die Schaltung mit mehreren
integrierten Schaltkreisen, auch ICs genannt, aufgebaut. Im Inter-
net finden sich hierfiir zahllose Bastelanweisungen. Wir wollen
den elektronischen Wiirfel alleine mit dem Arduino-Board

Projekt

293

294

Abbildung 9-1 »
Die Nummerierung der
Wiirfelaugen

Tabelle 9-1 »
Welche LED leuchtet bei
welcher Zahl?

ansteuern. Jeder kennt doch mindestens ein Wiirfelspiel, sei es
Kniffel, Mensch drgere dich nicht oder vielleicht Heckmeck. Wir
wollen mit unserer nachsten Schaltung einen elektronischen Wiir-
fel realisieren. Er besteht aus einer Anzeigeeinheit, die aus 7 LEDs
und einem Taster, der das Wiirfeln startet, zusammengesetzt ist.
Ich zeige dir zuerst einmal die Anordnung der LEDs, die den
Punkten eines richtigen Wiirfels nachempfunden ist, wobei die
einzelnen Punkte mit einer Nummer versehen sind, damit wir
spiter bei der Ansteuerung der einzelnen LEDs den Uberblick
behalten. Die Nummer 1 befindet sich in der linken oberen Ecke
und die Nummerierung wird dann nach unten und dann nach
rechts fortgesetzt, bis sie schlieflich bei Nummer 7 ganz rechts
unten endet.

Unser Aufbau soll einen Taster besitzen, der im gedriickten
Zustand mit dem Wiirfeln beginnt, was bedeutet, dass alle LEDs
unregelmiRig aufflackern. Lisst man den Taster wieder los, stoppt
die Anzeige bei einer bestimmten LED-Kombination, die dann die
gewlirfelte Zahl reprisentiert. Die einzelnen Augenkombinationen
setzen sich wie folgt zusammen:

Wiirfel Zahl LED
1 2 3 4 5 (4 7

v
v v
3 v v v

Projekt 9: Der elektronische Wiirfel

Wiirfel Zahl LED

1 2 3 4 5 6
4 4 v 4 v
5 4 v v v v
6 4 4 v 4 4 v

Es ist zwar durchaus moglich, die Schaltung auf einem Breadboard
aufzubauen, doch aufgrund der Symmetrie der LEDs ist es nicht
immer ganz einfach, diese zu realisieren. In einem extra Kapitel
werden wir die Schaltung auf einer speziellen Platine, einem soge-
nannten Shield, zusammenbauen und oben auf das Arduino-Board
aufstecken. Das ist die sauberste und eleganteste Weise, einen dau-
erhaften elektronischen Wiirfel herzustellen. Doch zuerst wollen
wir das Breadboard nutzen. Was wird an Material benotigt?

Bendtigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

Benétigte Bauteile

7 xrote LED
o Tk — 7 x Widerstand 330
—— -y 1x Widerstand 70K
R
‘ 1x Taster

Mehrere flexible Steckbriicken in unterschiedli-
chen Farben und Langen

« Tabelle 9-1
Welche LED leuchtet bei
welcher Zahl?

Der Wiirfel

295

Tabelle 9-2 »

Bendtigte Variablen und deren

296

Aufgabe

Sketch-Code

Hier der Sketch-Code zur Ansteuerung des elektronischen Wiirfels:

#define WARTEZEIT 20

int augen[6][7] = {{o0, 0, 0, 1, 0, 0, 0}, // Wirfelzahl 1
{1, 0, 0, 0, 0, 0, 1}, // Wirfelzahl 2
{1, 0, 0, 1, 0, 0, 1}, // Wirfelzahl 3
{1, 0, 1, 0, 1, 0, 1}, // Wirfelzahl 4
{1, 0, 1, 1, 1, 0, 1}, // Wirfelzahl 5
{1, 1, 1, 0, 1, 1, 1}}; // Wirfelzahl 6
int pin[] = {2, 3, 4, 5, 6, 7, 8};

int pinOffset = 2; // Erste LED ist auf Pin 2
int tasterPin = 13; // Taster an Pin 13

void setup(){
for(int 1 = 0; 1 < 7; i++)
pinMode(pin[i], OUTPUT);
pinMode(tasterPin, INPUT);
}

void loop(){
if(digitalRead(tasterPin) == HIGH)
zeigeAugen(random(1, 7)); // Eine Zahl zwischen 1 und 6 generieren

}

void zeigeAugen(int wert){
for(int 1 = 0; 1 < 7; i++)
digitalWrite(i + pinOffset, (augen[wert - 1][i] == 1)?HIGH:LOW);
delay(WARTEZEIT); // Eine kurze Pause einfiigen
}

Code-Review

Fiir unser Experiment bendtigen wir programmtechnisch gesehen
die folgenden Variablen:

Variable Aufgabe

augen Zweidimensionales Array, das die Informationen iiber die anzusteuernden LEDs fiir
den jeweiligen Anzeigewert enthalt.

pin Eindimensionales Array, das die Nummern der einzelnen LED-Pins enthalt.

pinOffset Die erste LED liegt nicht an Pin 0. Diese Variable beinhaltet einen Offset-Wert, der
die Startposition filr eine for-Schleife festlegt, um die erste LED und alle weiteren
anzusteuern.

tasterPin Anschlusspin des Tasters zum Wiirfeln

Projekt 9: Der elektronische Wiirfel

Die Programmierung fillt jetzt schon ein wenig komplexer aus und
wir haben es diesmal nicht nur mit einem eindimensionalen Array
zu tun, das du ja schon im Kapitel iiber das Lauflicht kennengelernt
hast. Das zweidimensionale Array wird dazu benétigt, die Num-
mern der LEDs zu speichern, die in Abhingigkeit von der gewtirfel-
ten Zahl leuchten sollen. Wir erinnern uns noch einmal kurz daran,
wie ein eindimensionales Array funktioniert und wie du darauf
zugreifen kannst.

Index 0 1 2 3 4 5 6
Arrayinhalt@[10][11][12][13]

Die Deklaration bzw. Initialisierung des Arrays erfolgt iiber die
diese Zeile:

int ledPin[] = {7, 8, 9, 10, 11, 12, 13};

Dabei beinhaltet das Array 7 Elemente. Ein eindimensionales Array
erkennst du an dem eckigen Klammernpaar hinter dem Variablen-
namen. Der Zugriff auf ein einzelnes Element erfolgt iiber die
Angabe des Index innerhalb der Klammern. Méchtest du auf das 4.
Element zugreifen, dann schreibst du Folgendes:

ledPin[3]
Bedenke, dass die Zihlweise bei 0 beginnt! Ein zweidimensionales
Array erhilt im iibertragenen Sinn zusitzlich eine zweite Raumdi-

mension, so dass es von einer eindimensionalen Geraden quasi zu
einer Fliche mutiert.

Spalten (LED's)
Index ™ 1) I

[=))

Zeilen (Zahl)
=)
(=)
(=)

Der Wiirfel

<« Abbildung 9-2
Das eindimensionale Array

<« Abbildung 9-3
Das zweidimensionale Array

297

Abbildung 9-4 »
Zuordnung der Spaltenwerte des
Arrays zu den entsprechenden LEDs

Es verhilt sich dhnlich wie beim Zugriff auf eine Figur auf einem
Schachbrett. Um sie eindeutig zu lokalisieren, wird eine Koordina-
tenangabe wie z.B. Dame auf DI vorgenommen, wobei D die
Angabe der Spalte und 1 die der Reihe ist. Das hier gezeigte Array
weist 6x7 = 42 Elemente auf. Die Deklaration und Initialisierung
erfolgt in der uns bekannten Weise, es muss lediglich ein weiteres
Klammernpaar fur die neue Dimension hinzugefligt werden.

int augen[6]([7] = {{0, 0, 0, 1, 0, 0, O}, // Wirfelzahl 1
{0, 0, 1, 0, 0, O, 1}, // Wirfelzahl 2
{0, 0, 1, 1, 0, O, 1}, // Wirfelzahl 3
{1, 0, 1, 0, 1, 0, 1}, // Wirfelzahl 4
{1, 0, 1, 1, 1, 0, 1}, // Wirfelzahl 5
{1, 1, 1, 0, 1, 1, 1}}; // Wirfelzahl 6

Der erste Wert [6] im eckigen Klammernpaar gibt die Anzahl der
Zeilen, der zweite [7] die der Spalten an. Der Zugriff auf ein Ele-
ment erfolgt ebenfalls tiber das doppelte Klammernpaar:

augen|[zeile][spalte]

Auf diese Weise kannst du Zeile fiir Zeile ansprechen und die ent-
sprechenden LED-Werte auslesen, um auf diese zuzugreifen. Die
Zuordnung der einzelnen Werte siehst du in der folgenden Abbil-

4.@...@@
10000000

298

Projekt 9: Der elektronische Wiirfel

Etwas kommt mir hier recht merkwiirdig vor. Ein Wiirfel weist doch
keine 0 auf einer seiner Seiten auf. In der Grafik beginnt es aber bei 0
und endet bei der 5 statt bei der 6. Kannst du mir das bitte noch mal
erklaren?

Die Erkldrung ist einfach, denn du hast da etwas durcheinanderge-
bracht. Es sind nicht die Wiirfelaugen, die dort aufgelistet sind,
sondern es ist der Array-Index. Erinnere dich bitte, dass der Index
immer bei 0 beginnt und somit einen numerischen Versatz von
Wiirfelaugen - 1 hat. Wir wollen einen kleinen Sketch schreiben,
der dir die Inhalte des zweidimensionalen Arrays im Serial Monitor
ausgibt:

int augen[6][7] = {{0, 0, 0, 1, 0, 0, O}, // Wirfelzahl 1
{1, 0, 0, 0, 0, 0, 1}, // Wirfelzahl 2
{1, 0, 0, 1, 0, 0, 1}, // Wirfelzahl 3
{1, 0, 1, 0, 1, 0, 1}, // Wirfelzahl 4
{1, 0, 1, 1, 1, 0, 1}, // Wirfelzahl 5
{1, 1, 1, o, 1, 1, 1}}; // Wirfelzahl 6

void setup(){
Serial.begin(9600);
for(int zeile = 0; zeile < 6; zeile++){
for(int spalte = 0; spalte < 7; spalte++)
Serial.print(augen[zeile][spalte]);
Serial.println();
}
}

void loop(){...}

Wir haben es an dieser Stelle mit zwei verschachtelten for-Schleifen
zu tun. Die duflere, die die Laufvariable zeile besitzt beginnt bei
ihrem Anfangswert 0 zu zihlen. Danach kommt die innere an die
Reihe und beginnt ebenfalls mit dem Wert 0 ihrer Laufvariablen
spalte. Bevor jedoch die duflere Schleife ihren Wert erhoht, muss
zuerst die innere komplett alle ihre Werte abgearbeitet haben.

Das kdnnte wichtig fiir dich sein
Bei ineinander verschachtelten Schleifen erfolgt die Abarbei-
tung von innen nach auflen. Das bedeutet, dass zuerst die
innere Schleife alle ihre Durchlaufe erledigt haben muss, bevor
die dul3ere einen weiter zahlt und die innere wieder mit ihren
Durchldufen fortfahrt. Das Spiel wird solange fortgesetzt, bis
alle Schleifen abgearbeitet wurden.

Der Wiirfel

»

299

300

Abbildung 9-5 »
Der Serial Monitor gibt den
Arrayinhalt Zeile fiir Zeile aus.

Die Ausgabe im Serial Monitor zeigt dir den Inhalt des Arrays:

|=| com3

0001000
1000001
1001001
1010101
1011101
1110111

[¥] Autoscrall Nolineending | [9600baud

Vergleiche diese Ausgabe mit der Arrayinitialisierung und du wirst
sehen, dass sie tibereinstimmen. Doch kommen jetzt zur eigentli-
chen Codeanalyse. Die setup-Funktion iibernimmt wieder die Auf-
gabe der Initialisierung der einzelnen Pins:

void setup(){
for(int 1 = 0; i < 7; i++)
pinMode(pin[i], OUTPUT);
pinMode(tasterPin, INPUT);
}

Die Pins zur Ansteuerung des LEDs wurden ebenfalls in ein Array
gepackt, die in der setup-Funktion als OUTPUT programmiert wer-
den. Lediglich dem Taster, der an einem digitalen Eingang ange-
schlossen wird, wird eine normale Variable zugewiesen. Die
Hauptaufgabe tibernimmt wieder die loop-Funktion:

void loop(){
if(digitalRead(tasterPin) == HIGH)
zeigeAugen(random(1, 7)); // Eine Zahl zwischen 1 und 6 generieren

}

void zeigeAugen(int wert){
for(int 1 = 0; 1 < 7; i++)
digitalWrite(i + pinOffset, (augen[wert - 1][i] == 1)?HIGH:LOW);
delay (WARTEZEIT);
}

Wenn der Taster gedriickt wurde, wird die Funktion zeigeAugen
aufgerufen. Als Argument wird ihr ein Zufallswert zwischen 1 und
6 iibergeben. Die Arbeitsweise der Funktion sollten wir ein wenig
unter die Lupe nehmen. Sie besteht eigentlich nur aus einer for-

Projekt 9: Der elektronische Wiirfel

Schleife, die die einzelnen LEDs fiir eine gewtirfelte Ziffer ansteuert.
Nehmen wir einmal an, dass eine 4 gewiirfelt wurde, wobei der
Funktion dieser Wert als Argument geliefert wird. Jetzt beginnt die
for-Schleife mit ihrer Arbeit. Sie steuert die Pins an und ermittelt
den erforderlichen HIGH/LOW-Pegel fiir die jeweilige LED:

for(int 1 = 0; 1 < 7; i++)
digitalWrite (i + pinOffset, (augen[wert - 1][i] == 1) ?HIGH:LOW) ;
\ | || | |
LED-Pin HIGH/LOW-Pegel

auch nicht so richtig verstanden habe.

[Hier kommt die Offset-Variable zum Einsatz, deren Verwendung ich }

Kein Problem, Ardus! Die Variable pinOffset hat den Wert 2 und
legt fest, dass der erste anzusprechende Pin dort zu finden ist. Der
erste, mit der Nummer 0, ist RX und der zweite, mit der Nummer
1, ist der TX der seriellen Schnittstelle. Diese beiden Pins meiden
wir in der Regel. Da die for-Schleife mit dem Wert 0 startet, wird
der Offset-Wert hinzuaddiert. Aber jetzt zuriick zu unserem Bei-
spiel, in dem eine 4 gewiirfelt wurde. Um die benotigen HIGH/
LOW-Pegel zu ermitteln, spricht die for-Schleife das 4. Array-Ele-
ment an. Da wir aber mit dem Indexwert 0 beginnen, miissen wir
diesen Wert um 1 vermindern.

<« Abbildung 9-6

= ({0, 0, 0o, 1, 0, 0, 0}, // wirfelzahl 1 Auswahldes richtigen Array-
4 1 (1, 0o, 0, 0, O, 0O, 1}, // wirfelzahl 2 L 9 y
{1, o, 0, 1, 0, 0, 1}, // wirfelzahl 3 Elementesbei einerzuvor
{1, 0, 1, 0, 1, 0, 1}, // Wirfelzahl 4 -
(1.0, 1,1, 1, 0, 1), // wirfelsan, 5 dewirfeltenZahl
{1, 1, 1, 0, 1, 1, 1}}; // wWirfelzahl 6

Index

In der ausgewihlten Zeile des Arrays befinden sich die Werte 1, 0,
1,0, 1, 0, 1, die durch die for-Schleife einzeln angesprochen wer-
den. Dies geschieht durch den folgenden Ausdruck:

(augen[wert - 1][i] == 1)?HIGH:LOW)

Dieser iiberpriift, ob die Werte 1 bzw. 0 sind. Bei 1 wird HIGH-Pegel
zuriick geliefert, bei 0 LOW-Pegel. Auf diese Weise werden die LEDs
der gewiirfelten Zahl aktiviert bzw. deaktiviert. Solange du den Tas-
ter gedriickt hiltst, wird immer wieder eine neue Zahl ermittelt und
die LEDs blicken alle sehr schnell hintereinander. Erst beim Loslas-
sen wird die Anzeige bei der letzten Zahl gestoppt. Wie schnell die
Zahlen bei gedriicktem Taster wechseln, kannst du mit der Konstan-
ten WARTEZEIT beeinflussen, fiir die hier 20ms angegeben wurde.

Der Wiirfel 301

Der Schaltplan

Der Schaltplan zeigt uns die 7 Wiirfel LEDs mit ihren 330 Ohm-
Vorwiderstinden und den Wiirfeltaster mit seinem Pulldown-

Widerstand.
Abbi|dung9-7} A d " Wiirfeln
Das Arduino-Board steuert die 7 il ii Q O 1
LEDs unseres Wiirfels einzeln an. PWE l TR =
pwn L0
o e Wiirfel LED's
2 pune -5 =% 1 . 2 1 = 2
= Wi |3 T30 H_'_ [
Pun_i_ 1 'ﬁsf4m L ; 1 '*f__.
[3 7
| o, 1 —é—'q:%_m 1 'qu
Analog IN
Schaltungsaufbau
Abbildung 9-8 »
Aufbau des elektronischen Wiirfels
mit Fritzing

uom
L o

outnpuJy

Taster

302 Projekt 9: Der elektronische Wiirfel

Bei diesem Schaltungsaufbau siehst Du, dass ich zwei Breadboards
verwendet habe. Es gibt jedoch auch breitere Versionen, die genii-
gend Platz bieten, um alle Bauteile darauf platzieren zu kénnen.
Experimentiere ein wenig mit der Anordnung, denn du sollst ja
nicht alles so hinnehmen, wie ich es dir zeige. Finde deine eigene
Strategie. In der folgenden Abbildung siehst du den Aufbau der
Schaltung auf einem einzigen Breadboard, wozu ein wenig Frickelei
notig war. Aber ich denke, dass es so ganz gut funktioniert.

Ich habe mich an das eindimensionale Array erinnert und etwas expe-
rimentiert. Du hast gesagt, dass die Angabe der Arraygrofe in den
eckigen Klammern entfallen kann, wenn ich das Array sofort in der-
selben Zeile initialisiere. Der Compiler wiisste dann anhand der tiber-
gebenen Werte, wie groff das Array sein soll. Ich bin dann also beim
zweidimensionalen Array ebenso vorgegangen und habe einen Fehler

erhalten.
- Y,

Die Idee ist nicht schlecht und ich sehe, dass du mitdenkst und das
Gelernte anwendest. Doch leider lisst sich dies beim zweidimensio-
nalen Array nicht 1:1 {ibertragen. Wenn du alle Angaben zur Array-
grofle weglasst und

int augen[][] = {{o0, 0, 0, 1, 0, 0, 0}, // Wirfelzahl 1
{1, o, 0, 0, 0, 0, 1}, // Wirfelzahl 2

Bevor wir die Sache hier abschlieflen, ist mir noch etwas aufgefallen. \>

<« Abbildung 9-9
Aufbau des elektronischen Wiirfels
auf einem Breadboard

Der Wiirfel

303

Abbildung 9-10
LED-Gruppen beim elektronischen
Wiirfel

{1, 0, 0, 1, 0, 0, 1}, // Wirfelzahl 3
{1, 0, 1, 0, 1, 0, 1}, // Wirfelzahl 4
{1, o0, 1, 1, 1, 0, 1}, // Wirfelzahl 5
{1, 1, 1, 0, 1, 1, 1}}; // Wirfelzahl 6

schreibst, meckert der Compiler, wie du das ja schon selbst festge-
stellt hast. Die Ubersetzung der Fehlermeldung besagt ungefihr,
dass bei einem mehrdimensionalen Array alle Grenzen bis auf die
erste angegeben werden miissen. Du kannst also folgende Zeile
schreiben:

int augen[][7] = ...

Der Compiler wird diesen Code akzeptieren.

Was konnen wir vielleicht noch
verbessern?

Es gibt meistens eine Moglichkeit, etwas zu verbessern oder zu ver-
einfachen. Du musst dich einfach einmal zuriicklehnen und die
Sache auf dich wirken lassen. Denke vielleicht nicht allzu ange-
strengt dariiber nach. Die besten Einfille kommen Dir, wenn du
dich zwischendurch mit etwas anderem befasst. So geht es mir
jedenfalls meistens. Zuriick zum Wiirfel. Wenn du dir die einzel-
nen Augen eines Wiirfels bei unterschiedlichen Werten anschaust,
dann wird dir vielleicht etwas auffallen. Werfe dazu noch einmal
einen Blick auf die Tabelle Welche LED’s leuchten bei welcher Zahl?
Ein kleiner Tipp: Leuchten alle acht LEDs unabhingig voneinander
oder kann es sein, dass manche eine Gruppe bilden und immer
gemeinsam angehen? Doofe Frage, was? Natiirlich ist das so. Ich
habe die einzelnen Gruppen einmal in der folgenden Abbildung
dargestellt.

Gruppe A Gruppe B Gruppe C Gruppe D

LED: 4 LED:1+7 LED:3+5 LED:2+6

Fiir sich alleine genommen machen nur Gruppe A und Gruppe B
einen Sinn, bei Gruppe C und Gruppe D ist das weniger der Fall.

304

Projekt 9: Der elektronische Wiirfel

Aber durch eine Gruppe oder eine Kombination aus mehreren
Gruppen werden die gewiinschten Wiirfelaugen erzeugt. Dann
wollen wir mal schauen, welchen Gruppe bzw. Gruppen bei wel-
chen Wiirfelaugen betroffen ist bzw. sind:

<« Tabelle 9-3

v v v

Gruppe A

Gruppe B v v v v v
Gruppe C v v v
Gruppe D v

Es ist tatsichlich so, dass wir mit 4 statt 7 Ansteuerungsleitungen
zu den LEDs auskommen.

Wenn ich das richtig verstanden habe, dann miissen wir in Gruppe B,
C und D zwei LEDs zusammenschalten. Ist das denn so ohne Weite-
res moglich? Muss ich sie in Reihe oder parallel verdrahten?

Das hast du richtig verstanden, Ardus. Im Kapitel Einen Sensor
abfragen haben wir den Vorwiderstand fiir eine rote LED berech-
net. Falls es dir entfallen sein sollte, schlage noch einmal nach.
Wenn wir mehrere LEDs ansteuern mochten, schalten wir sie in
Reihe. An einer einzelnen roten LED fallen ca. 2V ab, was bedeutet,
dass am Vorwiderstand 3V abfallen miissen. Da wir jetzt aber zwei
LEDs hintereinander schalten, kénnen wir Folgendes fiir die abzu-
fallende Spannung am Vorwiderstand Ry feststellen:

URV — Uges - ULEDl - ULEDZ — +5V - 2V - 2V = 1V

Am Vorwiderstand Ry miissen wir also 1V »verbraten«, damit noch
jeweils 2V fiir jede einzelne LED {ibrig bleibt. Fiir den Strom, der ja
durch alle Bauteile gleichermaRen flieSt — du erinnerst dich hoffent-
lich noch an das Verhalten von Strom in einer Reihenschaltung —
setze ich mal 10mA (10mA = 0,01A) an. Wir erhalten dann fol-
gende Werte in der Formel zur Berechnung des Vorwiderstandes:

Uges - ULEDrs _ S5V -4V

Ry, = -
4 i 0,014

= 1000

Der Wiirfel 305

Die Schaltung sieht wie folgt aus:

Abbildung9-11» cup +5V
Zwei LEDs mit einem
Vorwiderstand
N * \l,lsc, - 10mA
LED 1 LED 2 v
< < <
ULED = 2\" UI.ED] 2\- U]w' — 1\'
<
Upes = +5V
(®) Achtung

Achte darauf, dass die beiden LEDs in dieselbe Richtung wei-
sen, denn sonst wird es nichts mit der Leuchterei. Die Anode
von LED 7 wird mit der Kathode von LED 2 verbunden.

Auch hier habe ich die Berechnung wieder praktisch nachgemes-
sen, um mich zu vergewissern, dass auch alles seine Richtigkeit hat.

Abbildung 9-12 p
Strommessung im Ansteuerungs-
kreis mit zwei LEDs und einem
neuen Vorwiderstand

306 Projekt 9: Der elektronische Wiirfel

Der Strom von 7,84mA ist absolut in Ordnung und liegt wieder
unterhalb der Vorgabe von maximal 10mA. Da zwei LEDs im
Vergleich zu einer einzelnen natiirlich die doppelte Versorgungs-
spannung in Anspruch nehmen, muss der Vorwiderstand dement-
sprechend kleiner dimensioniert sein, damit beide LEDs dieselbe
Helligkeit ausstrahlen, wie das bei einer einzeln angesteuerten der
Fall ist. Natiirlich kannst du fur alle Gruppen A bis D den gleichen
Vorwiderstand von 330 Q verwenden, was aber bedeutet, dass
Gruppe A mit nur einer LED heller leuchtet — so die Theorie — als
die restlichen Gruppen. Jetzt sollten wir uns langsam der Program-
mierung zuwenden. Womit fangen wir am besten an? Nun, ich
wiirde sagen, dass du dir noch einmal die Tabelle Wiirfelaugen und
LED-Gruppen anschaust, damit du vielleicht eine Systematik
erkennst, wann welche LED-Gruppe bei welchen Wiirfelaugen
anzusteuern ist. Du machst das am besten Schritt fiir Schritt und
nimmst dir eine Gruppe nach der anderen vor. Du kannst sie voll-
kommen separat voneinander betrachten, denn die Logik zur
Ansteuerung fagt nachher alle Gruppen zusammen, so dass sie
gemeinsam die richtigen Wiirfelaugen anzeigen. Also, los geht’s.
Ich zeige dir hier vereinfacht noch einmal die Gruppe A der eben
angefiihrten Tabelle.

Wiirfel 1 2 3 4 5 6
Gruppe A v v v
Hier noch ein kleiner Tipp: Was haben die Zahlen 1, 3 und 5
gemeinsam?

(Ich glaube, dass das allesamt ungerade Zahlen sind. >

Perfekt, Ardus! Das ist die korrekte Losung.

Formulierung zur Ansteuerung von Gruppe A:

Ist die ermittelte Zufallszahl ungerade, dann steuere Gruppe A an.

Jetzt kommt Gruppe B an die Reihe. Hier der entsprechende Tabel-
lenauszug;:

Wiirfel 1 2 3 4 5 6
Gruppe B v v v v v

Was stellst du hier fest?

Der Wiirfel 307

< Es sind alle Zahlen aufler der 1 betroffen.)

Klasse, Ardus! Aber wie konnte eine Formulierung aussehen, die
der Mikrocontroller gut versteht? Eine etwas umstindliche
Beschreibung wiire folgende: Wenn die Zahl 2 oder 3 oder 4 oder 5
oder 6, dann steuere Gruppe B an. Suche wieder die Gemeinsam-
keit und du kannst es viel kiirzer formulieren.

Formulierung zur Ansteuerung von Gruppe B:
Ist die ermittelte Zufallszahl gréfSer 1, dann steuere Gruppe B an.

Schauen wir uns jetzt Gruppe C an:

Wiirfel 1 2 3 4 5 6
Gruppe C v v v

Jetzt hast du den Dreh sicherlich raus, nicht wahr!?

{ Es sind alle Zahlen grofRer 3 betroffen.)

Super, Ardus!

Formulierung zur Ansteuerung von Gruppe C:
Ist die ermittelte Zufallszahl gréfSer 3, dann steuere Gruppe C an.

Und zu guter Letzt die Gruppe D:

Wiirfel 1 2 3 4 5 6
Gruppe D v

Da brauche ich dich ja wohl nicht mehr zu fragen, oder?

Formulierung zur Ansteuerung von Gruppe D:

Ist die ermittelte Zufallszahl gleich 6, dann steuere Gruppe D an.
Jetzt konnen uns endlich dem Programmieren widmen. Dabei wirst
du erkennen, dass diese Losung viel einfacher als die Verwendung
eines Array ist. Man muss aber erst einmal einige Wege gedanklich
durchspielen, um dann zu sehen, dass man nur 4 statt 7 Pins zur
LED-Ansteuerung benotigt. Trotzdem war es ein guter Einstieg, um
dir diese Thematik spielerisch zu vermitteln. Hier der Sketch-Code
zur Ansteuerung des elektronischen Wiirfels mit der reduzierten
Anzahl an Steuerleitungen:

308 Projekt 9: Der elektronische Wiirfel

#define WARTEZEIT

int GruppeA =
int GruppeB =
int GruppeC =
int GruppeD =

int tasterPin = 13; // Taster an Pin 13

void setup(){

pinMode(GruppeA,
pinMode(GruppeB,
pinMode (GruppeC,
pinMode(GruppeD,

}

void loop(){

if(digitalRead(tasterPin) == HIGH)
zeigeAugen(random(1, 7)); // Eine Zahl zwischen 1 und 6 generieren

}

8;
9;
10;
11;

20
// LED 4
// LED 1 + 7
// LED 3 + 5
// LED 2 + 6

OUTPUT);
OUTPUT);
OUTPUT);
OUTPUT);

void zeigeAugen(int wert){
// Loschen aller Gruppen
digitalWrite(GruppeA, LOW);
digitalWrite(GruppeB, LOW);
digitalWrite(GruppeC, LOW);
digitalWrite(GruppeD, LOW);
// Ansteuerung aller Gruppen

if(wert%2 != 0) // Ist der Wert ungerade?

digitalWrite(GruppeA, HIGH);

if(wert > 1)

digitalWrite(GruppeB, HIGH);

if(wert > 3)

digitalWrite(GruppeC, HIGH);
if(wert == 6)
digitalWrite(GruppeD, HIGH);

delay(WARTEZEIT); // Eine kurze Pause einfligen

}

Stopp! Mir ist da aber etwas aufgefallen, das du vergessen hast! Du
hast die Pins fiir die Gruppen A bis D als Ausgang programmiert, aber
vergessen, den Pin fiir den Taster als Eingang zu definieren.

Stimmt, Ardus! Ich habe diesen Eingang an Pin 13 nicht als Fingang
programmiert. Soweit hast du Recht. Vergessen habe ich es aber
nicht, denn standardmaifig sind alle digitalen Pins als Eingang defi-
niert und miissen bei entsprechender Verwendung nicht noch ein-
mal explizit als solche programmiert werden. Du kannst das bei

Der Wiirfel

309

310

Arduino
a
=
s
— vee o
—| GND &
Analog IN

PWM
PwWM
PWM

PWM
PWM

PWM

deinen Sketches natiirlich durchaus tun, denn es fordert sicherlich
das Verstindnis.

Ich habe eigentlich alles verstanden, bis auf die Zeile, in der bestimmt
wird, ob der Wert ungerade ist. Kannst du mir das bitte einmal erldu-
tern?

Klar, Ardus! Der %-Operator (Modulo-Operator) ermittelt immer
den Restwert einer Division. Ist eine Zahl durch 2 dividierbar, dann
fallt sie in die Kategorie Gerade Zahl. Der Wert aus der Restwert-
Division ist in dem Fall immer 0. Mit der Zeile

if(wert%2 != 0)

frage ich aber, ob der Restwert ungleich 0 ist, um so die Gruppe A
anzusteuern.

Bevor wir zur Schaltung kommen, hier noch eine Anmerkung:
Wenn du trotz des errechneten Vorwiderstandeswertes von 100 Q
far die Gruppen B bis D in diesem Fall die alten Widerstinde von
330 Q verwendest, macht das nicht allzu viel aus. Die Helligkeit
scheint fast die gleiche zu sein. Aber das nur am Rande. Im Schalt-
plan siehst Du, dass wir nun weniger Vorwiderstiande fur die LEDs
benotigen als im vorangegangenen Projekt:

1

Abbildung 9-13 A

Das Arduino-Board steuert die
7 LEDs unseres Wiirfels in
LED-Gruppen an.

Wirfeln
13 Y v, W—
0 O
12 é,
11 1071 sV
10 e
- s
. R Wiirfel LED’s
- | T L
&, o L 5
%@ 330} _gomal
—~3 -]
i
i
O

Yy

Gruppe A: LED 4 Ansteuerung: Pin 8
Gruppe B: LED 1 + 7 Ansteuerung: Pin 9
Gruppe C: LED 3 + & Ansteuerung: Pin 10
Gruppe D: LED 2 + & Ansteuerung: Pin 11

GND

Projekt 9: Der elektronische Wiirfel

Der Breadboardaufbau gestaltet sich aufgrund der verminderten
Ansteuerungsleitungen etwas einfacher:

<« Abbildung 9-14
Aufbau des elektronischen Wiirfels
iiber LED-Gruppen mit Fritzing

Xy -
XL -

CUTNpaY

Taster

Troubleshooting

Falls die LEDs nach dem Druck auf den Taster nicht anfangen zu
blinken oder vielleicht merkwiirdige bzw. unsinnige Wirfelaugen
angezeigt werden, trenne das Board sicherheitshalber vom USB-
Anschluss und tiberpriife Folgendes:

* Entsprechen deine Steckverbindungen auf dem Breadboard
der Schaltung?

¢ Gibt es eventuell Kurzschliisse untereinander?

* Wurden die LEDs richtig herum eingesteckt bzw stimmt die
Polung?

¢ Haben die Widerstinde die korrekten Werte?
* Ist der Sketch-Code korrekt?

Der Wiirfel 31

312

* Hast du den Taster richtig verkabelt? Messe die relevanten
Kontakte noch einmal mit einem Durchgangspriifer nach.

Was hast du gelernt?

* Du hast in diesem Kapitel erfahren, wie ein zweidimensionales
Array zu deklarieren bzw. initialisieren ist und wie du die ein-
zelnen Array-Elemente ansprichst.

* Mit dem Serial Monitor kannst du dir Variableninhalte ausge-
ben lassen, um die Richtigkeit der enthaltenen Werte zu prii-
fen. Auf diese Weise kannst du eine Fehlersuche durchfiihren
und den Code bei nicht korrektem Verhalten analysieren. Du
musst dir an diesem Punkt aber sicher sein, dass die Schaltung
korrekt verkabelt wurde, denn suchst du den Fehler im Source-
Code, obwohl er in der Hardware zu finden ist. Das kann dann
sehr zeitaufwendig und vielleicht auch nervenaufreibend wer-
den.

* Du hast gelernt, wie du einen Vorwiderstand fiir zwei in Reihe
liegende LEDs berechnen kannst, so dass die Helligkeit fast
unverdndert bleibt.

Workshop

Die Aufgabe dieses Workshops ist schon etwas anspruchsvoller.
Du erinnerst dich sicherlich an das Schieberegister 74HC595 mit
seinen 8 Ausgingen. Versuche eine Schaltung zu konstruieren bzw.
einen Sketch zu programmieren, die bzw. der einen elektronischen
Wiirfel diber das Schieberegister ansteuert. Wie viele digitale Pins
sparst du mit dieser Variante ein? Bedeutet das ein Vorteil gegenii-
ber der Realisierung mittels LED-Gruppen?

Vorschau auf etwas

Interessantes

Im Kapitel iiber die Digitale Porterweiterung Teil 2 habe ich dich
das erste Mal auf die Moglichkeit hingewiesen, Platinen selbst her-
zustellen, um sie spiter als Erweiterungen auf das Arduino-Board
zu stecken. Hier mochte ich Die zeigen, wie meine Losung hinsicht-
lich des elektronischen Wiirfels aussicht.

Projekt 9: Der elektronische Wiirfel

<« Abbildung 9-15
Der elektronische Wiirfel auf einer
Platine

Was hiltst du davon? Das ist doch sicherlich eine schone Erweite-
rung, wobei mir schon alleine die Planung und Umsetzung eine
Menge SpaR gemacht hat. Du wirst es nicht fir moglich halten, was
dir wihrend des Baus noch so an weiteren Ideen kommen werden.
Das macht siichtig — glaube es mir!

Vorschau auf etwas Interessantes 313

Projekt

Der elektronische
Wiirfel (und wie erstelle
ich eine Bibliothek?)

Scope

Irgendwann ist auch fiir dich der Zeitpunkt gekommen, an dem du
dir so viele Grundkenntnisse angeeignet hast, dass du eigene Ideen
realisieren mochtest, die andere vielleicht noch nicht hatten. Viel-
leicht mochtest du aber auch ein schon vorhandenes Projekt
verbessern, weil deine Lésung eleganter ist und sich viel unkompli-
zierter umsetzen lisst. Unzihlige Softwareentwickler vor dir haben
sich Gedanken zu den unterschiedlichsten Themen gemacht und
Bibliotheken programmiert, um anderen Entwicklern Arbeit und
Zeit zu ersparen. In diesem Kapitel geht es um die Grundlagen bzw.
die Erstellung derartiger Bibliotheken. Falls dich die Programmier-
sprache C++ inklusive objektorientierte Programmierung schon
immer interessiert hat, wirst du hier einiges zu diesem Thema
erfahren.

Bibliotheken

Wenn du die Arduino-Entwicklungsumgebung installiert bzw. ent-
packt hast, werden von Hause aus einige fertige Bibliotheken, auch
Libraries genannt, mitgeliefert. Es handelt sich dabei um so interes-
sante Themen wie z.B. die Ansteuerung

* cines Servos

* eines Schrittmotors

* eines LC-Displays

* cines externen EEPROM zu Speicherung von Daten

* etc.

315

Diese Bibliotheken werden im Verzeichnis libraries unterhalb des
Arduino-Instllationsverzeichnisses gespeichert. Wenn du auf einen
Blick sehen mochtest, welche Libraries vorhanden sind, kannst du
dazu den Windows-Explorer nutzen oder aber den Weg tiber die
Arduino-Entwicklungsumgebung bestreiten. Es existiert dort ein
spezieller Mentipunkt Sketch|Import Library..., iiber den du eine
entsprechende Liste anzeigen kannst.

Abbildung 10-1 > G5 Tools Help
Anzeigen bzw. Importieren von

W Verify / Compile Strg+R
Libraries

Show Sketch Folder Strg+K

Add File...

Import Library... 4 Bounce
EEPROM
Ethernet
Firmata
LiquidCrystal
Maouse
5D
Sevo
SoftwareSerial
SPI
Stepper
Wire
Wuerfel

Die Meniipunkte stimmen mit den Verzeichnissen im Ordner
Libraries iberein. Das ist zwar wieder alles wunderbar, doch wir
sollten uns zunichst einmal anschauen, wie eine Arduino-Library
denn arbeitet bzw. was du mit ihr bewirken kannst.

Was ist eine Library im Detail?

Bevor wir zu einem konkreten Beispiel kommen, solltest du
zunichst einmal einige grundlegende Informationen iiber Libraries
erhalten. Ich hatte schon erwihnt, dass mit einer Library mehr oder
weniger komplexe Programmieraufgaben quasi gebiindelt und in
einem Programmpaket zusammengefasst werden. Die folgende
Grafik veranschaulicht das Zusammenspiel zwischen der Arduino-
Library und Arduino-API:

Projekt 10: Der elektronische Wiirfel (und wie erstelle ich eine Bibliothek?)

Arduino Library

Arduino API

pinMode
digitalWrite

analogRead
millis
digitalRead

analogWrite ey

Wir haben es mit zwei Programmschichten zu tun, die sich in
einem Abhingigkeitsverhiltnis voneinander befinden. Ich fange
einmal von innen nach auflen an. Die innere Schicht habe ich Ardu-
ino-API genannt. API ist die Abkiirzung fiir Application
programming Interface und eine Schnittstelle zu allen zur Verfu-
gung stehenden Arduino-Befehlen. Ich habe aus Platzgriinden
natiirlich nur wenige ausgewihlt. Die duflere Schicht wird durch
die Arduino-Library reprisentiert, die sich um die innere Schicht
herumwickelt. Sie wird deshalb als Wrapper (engl. Hiille) bezeich-
net und bedient sich der Arduino-API. Damit du Zugriff auf die
Wrapper-Schicht erhiltst, muss dort eine Schnittstelle implemen-
tiert sein, denn du willst ja die Funktionalitit einer Library nutzen.
Eine Schnittstelle ist ein Durchgangsportal zum Inneren der Library,
die eine in sich geschlossene Einheit darstellt. Der Fachbegriff daftr
lautet Kapselung. Was das im Detail ist und was das Ganze mit der
Programmiersprache C++ zu tun hat, das wirst du gleich sehen.

Warum bendtigen wir Libraries?

Das ist eventuell eine blode Frage, weil ich die Antwort bzw. den
Grund fiir das Erstellen einer Library schon mehrfach genannt
habe. Doch ich méchte die Vorteile an dieser Stelle noch einmal
zusammenfassen:

¢ Damit das Rad nicht immer neu erfinden werden muss, haben
die Entwickler die Moglichkeit geschaffen, Programmcode in
eine Library auszulagern. Viele Programmierer auf der ganzen
Welt profitieren von diesen programmtechnischen Konstruk-
ten, die sie ohne groflere Probleme in ihren eigenen Projekten

Bibliotheken

<« Abbildung 10-2
Wie arbeitet eine Arduino-Library?

317

verwenden konnen. Das entsprechende Stichwort hierfiir ist
Wiederverwendbarkeit.

* Wenn eine Library getestet wurde und keine Fehler mehr auf
weist, kann sie ohne Kenntnis der inneren Abliufe verwendet
werden. Thre Funktionalitit wird gekapselt und vor der Aufen-
welt verborgen. Das einzige, was ein Programmierer kennen
muss, ist die korrekte Verwendung ihrer Schnittstellen.

* Der eigene Code wird auf diese Weise tibersichtlicher und sta-

biler.

Was bedeutet Objektorientierte
Programmierung?

Die Welt der Objektorientierten Programmierung — kurz OOP
genannt — ist fiir die meisten Anfianger ein Buch mit sieben Siegeln
und es bereitet so manchen Kopfzerbrechen und schlaflose Nichte.
Das muss es aber nicht und ich hoffe, ich trage ein wenig dazu bei.
Ich meine nicht zum Kopfzerbrechen, sondern zum Verstindnis! In
der Programmiersprache C++ wird alles als Objekt angesehen und
dieser Programmierstil — auch Programmierparadigma genannt —
orientiert sich an der uns umgebenden Realitit. Wir sind von zahl-
losen Objekten umgeben, die mehr oder weniger real sind und von
uns angefasst und begutachtet werden kénnen. Wenn du dir ein
einzelnes Objekt einmal aus der Nihe anschaust, dann wirst du
bestimmte Merkmale feststellen kénnen. Nehmen wir doch einmal
einen Wiirfel, wo wir schon beim Thema sind. Einen elektroni-
schen Wiirfel hast du schon ganz am Anfang dieses Buches
programmiert und zusammengebaut. In irgendeinem Gesellschafts-
spiel hast du bestimmt den einen oder anderen Wiirfel, den du Dir
aus der Nihe anschauen kannst. Was kannst du tiber einen Wiirfel
berichten, wenn du ihn in aller Ausfithrlichkeit z.B. einem Auferir-
dischen beschreiben miisstest?

* Wie ist sein Aussehen?

* Wie grof ist er?

* Isteer leicht oder eher etwas schwerer?

* Welche Farbe hat er?

* Hat er Punkte oder sind Symbole auf ihm zu sehen?

* Wie ist die gewiirfelte Zahl oder das gewiirfelte Symbol?

* Was kannst du mit ihm machen? (Blode Frage, was!?)

Projekt 10: Der elektronische Wiirfel (und wie erstelle ich eine Bibliothek?)

Die Eintrdge in dieser Liste konnen in zwei Kategorien unterteilt
werden.

Eigenschaften

Doch welcher Eintrag gehort zu welcher Kategorie?

Wenn es um Strom bzw. Spannung geht, dann sollten wir einen
Blick auf die folgende Tabelle werfen:

Eigenschaften Verhalten
GroRe wiirfeln
Gewicht

Farbe

Punkte oder Symbole

gwiirfelte Punktezahl oder gewiirfeltes Symbol

Fiir unsere geplante Programmierung kommen jedoch lediglich
zwei Listeneintrige in Frage. Alle anderen sind zur Beschreibung
eines Objektes zwar interessant, doch fiir einen elektronischen
Wiirfel ohne Belang. Es interessieren uns:

* die gewiirfelte Punktezahl (Zustand)

o wiirfeln (Aktion)

halten in einen Sketch tibertragen soll. Wie soll das denn gehen?

[Ich habe keinen blassen Schimmer, wie ich Eigenschaften oder Ver- }

Das stellt kein groRes Problem dar, Ardus! Sieh her:

Eigenschaften

Eigenschaften werden in Variablen abgelegt und das Verhalten
iiber Funktionen gesteuert. Doch im Kontext der objektorientierten
Programmierung erhalten Variablen und Funktionen eine andere
Bezeichnung. Breche aber bitte nicht in Panik aus, denn das ist rei-
ner Formalismus und im Endeffekt dasselbe.

<« Tabelle 10-1
Gegeniiberstellung von
Eigenschaften und Verhalten

Bibliotheken

319

Prozedurale Programmierung ooP

Variablen | Felder

Funktionen | Methoden

Variablen werden zu Feldern (engl: Fields) und Funktionen zu
Methoden (engl: Methods).

Oh Mann, das ist ja ein wahnsinniger Fortschritt. Ich benenne ein-
fach ein paar Programmelemente um und schaffe damit ein neues —
wie hast du es genannt — Programmierparadigma. Soll das der Fort-
schritt sein?

Also Ardus, nun werde mal nicht sarkastisch. Ich bin doch noch gar
nicht fertig. In der prozeduralen Programmierung, wie man sie z.B.
von den Sprachen C oder Pascal her kennt, werden logisch zusam-
menhingende Anweisungen, die zur Losung eines Problems not-
wendig sind, in sogenannte Prozeduren ausgelagert, die unseren
Funktionen gleichen. Funktionen arbeiten in der Regel bestenfalls
mit Variablen, die thnen als Argumente iibergeben wurden, oder im
ungiinstigen Fall mit globalen Variablen, die zu Beginn eines Pro-
grammes deklariert wurden. Diese sind im gesamten Code sichtbar
und jeder kann sie nach Belieben modifizieren. Das birgt gewisse
Gefahren in sich und ist aus heutiger Sicht die denkbar schlechteste
Variante, mit Variablen bzw. Daten umzugehen. Variablen und
Funktionen bilden keine logische Einheit und leben im Code quasi
nebeneinander her, ohne eine direkte Bezichung zueinander zu
haben.

Variablen
Variablen

Kommen wir jetzt zur objektorientierten Programmierung. Dort
gibt es ein Konstrukt, das sich Klasse nennt. Vereinfacht koénnen

Projekt 10: Der elektronische Wiirfel (und wie erstelle ich eine Bibliothek?)

wir sagen, dass sie als Container fur Felder (auch Feldvariablen
genannt) bzw. Methoden dient.

w

Variablen

>

Die Klasse umschlieRt ihre Mitglieder, die in der OOP Member
bzw. Mitglieder genannt werden, wie einen Mantel der Verschwie-
genheit. Ein Zugriff auf die Member erfolgt in der Regel nur iiber
die Klasse.

Der Aufbau einer Klasse

Was in Gottes Namen ist aber eine Klasse? Wenn du noch in keins-
ter Weise Berithrungspunkte mit C++, Java oder vielleicht C# —
um nur einige Programmiersprachen zu nennen — hattest, dann
sagt dir dieser Begriff so viel wie mir ein chinesisches Schriftzei-
chen. Aber im Endeffekt ist die Sache relativ einfach zu verstehen,
obwohl die Programmierung schon etwas anspruchsvoller ist als
vielleicht in anderen Sprachen. Wenn du Dir die letzte Grafik noch
einmal anschaust, wirst du feststellen, dass eine Klasse einen
umschliefenden Charakter hat und in etwa einem Container
gleicht. Eine Klasse ist durch das Schliisselwort class gefolgt von
dem vergebenen Namen definiert. Darauf folgt ein geschweiftes
Klammerpaar, das du schon bei anderen Konstrukten, wie z.B.
einer for-Schleife, gesehen hast und eine Blockbildung bewirkt.
Hinter der schliefenden Klammer folgt ein Semikolon.

Schliisselwort Klassenname <« Abbildung 10-3
Die allgemeine Klassendefinition
[[\

Name {

Bibliotheken 321

Wie ich eben schon erwihnt habe, besitzt die Klasse unterschiedli-
che Klassenmitglieder in Form von Feldern und Methoden, die
durch die Klassendefinition zu einer Einheit verschmelzen. In der
OOP gibt es unterschiedliche Zugriffsmoglichkeiten, um den
Zugriff auf die Mitglieder zu reglementieren.

Kannst du mir mal bitte verraten, was diese Reglementierung fiir
einen Sinn haben soll> Wenn ich eine Variable, 4hh... ich meine
natiirlich ein Feld innerhalb einer Klasse definiere, dann méchte ich
doch sicherlich irgendwann einmal darauf zugreifen kénnen. Was
niitzt eine Reglementierung, wenn die Klasse dann fiir mich nicht
mehr erreichbar ist? Oder habe ich das Prinzip falsch verstanden?

Du hast das Prinzip — das tibrigens Kapselung genannt wird — schon
richtig verstanden. Ich kann bestimmte Mitglieder von der Auflen-
welt abschirmen, so dass sie von auflerhalb der Klasse nicht direkt
erreicht werden konnen. Die Betonung liegt hier auf direkt. Nattr-
lich gibt es Moglichkeiten, den Zugriff zu gewihrleisten. Das erledi-
gen dann z.B. die Methoden. Aber was hat das alles fiir einen Sinn,
wirst du du dich jetzt bestimmt fragen.

nehmen, oder?

4? { Richtig! Dann kann man doch auch direkt auf die Felder Einfluss]

Ok, Ardus. Ich denke, wenn du Dir die folgende Abbildungen
anschaust, wird dir das Prinzip bestimmt sofort klar werden.

Abbildung 10-4 »
Zugriff auf ein Feld der Klasse

Zugriff von aulBen
ist mdglich

Der Zugriff auf das Feld der Klasse von aufRerhalb ist in diesem Fall
gestattet, weil das Feld ein bestimmtes Etikett mitbekommen hat,
das sich Zugriffsmodifizierer nennt. Es lautet in diesem Fall public
und bedeutet so viel wie: »Der Zugriff ist fiir die Offentlichkeit
gewidhrt und jeder kann ohne Einschrinkung hiervon Gebrauch

@— Projekt 10: Der elektronische Wiirfel (und wie erstelle ich eine Bibliothek?)

machen« . Jetzt stelle dir einmal folgendes Szenario vor: Du hast
eine Feldvariable, die einen Schrittmotor steuern soll, wobei der
Wert den Winkel vorgibt. Es sind aber nur Winkelwerte von 0° bis
3599 zuléssig. Jeder Wert darunter oder dariiber kann die Sketch-
Ausfithrung gefihrden, so dass der Servo nicht mehr korrekt ange-
steuert wird. Wenn du tiber den Zugriffsmodifizierer public einen
freien Zugriff auf die Feldvariable ermoglichst, kann keine Validie-
rung erfolgen. Was einmal abgespeichert wurde, fithrt unmittelbar
zu einer Reaktion, die nicht unbedingt richtig sein muss. Die
Losung des Problems ist die Abschottung der Feldvariablen iiber
den Zugriffsmodifizierer private. Das schon erwihnte Prinzip der
Kapselung wird angewendet.

Zugriff von auen
ist nicht mdglich

Schon und gut!
Doch wie komme ich jetzt an die Feldvariable heran?

Das geschieht mit einer Methode, die ebenfalls einen Zugriffsmodi-
fizierer erhalten hat, Ardus. Der muss jedoch public sein, damit der
Zugriff von auflen funktioniert. Das Ganze stellt sich dann wie folgt

dar:

Zugriff von aulen

ist maglich
B e

Bibliotheken

<« Abbildung 10-5
Kein Zugriff auf ein Feld der Klasse

<« Abbildung 10-6
Lugriff auf ein Feld der Klasse iiber
die Methode

323

Jetzt erkennst du sicherlich, dass der Zugriff auf die Feldvariable
aber den Umweg der Methode stattfindet, wobei der Umweg einen
Vorteil und keinen Nachteil mit sich bringt. Innerhalb der Methode
kannst du jetzt die Validierung unterbringen, die nur zuldssige
Werte an die Feldvariable iibermittelt.

‘h"”

Warum kann die Methode aber auf die private Feldvariable zugreifen?
Ich dachte, dass das nicht moglich sei.
4 _. e T]
07\

Der Zugriffsmodifizierer private besagt, dass der Zugriff von aufRer-
halb der Klasse nicht moglich ist. Klassenmitglieder wie Methoden
GRS konnen jedoch auf als private deklarierte Mitglieder zugreifen. Sie
Vo 2{\5%‘ gehoren alle einer Klasse an und sind deshalb auch innerhalb dieser
== frei zuginglich. Ich fasse aber noch einmal kurz zusammen:
Zugriffsmodifizierer steuern den Zugriff auf Klassenmitglieder.

. 'I.'al?elle 10'2. > Zugriffsmodifizierer Beschreibung
Zugriffsmodifizierer und ihre

Bedeutung public Auf Feldvariablen und Methoden kann von iiberall im Sketch zugegrif-
fen werden. Solche Mitglieder stellen eine dffentliche Schnittstelle der

Klasse dar.
private Auf Feldvariablen und Methoden kénnen nur Klassenmitgliedern der-

selben Klasse zugreifen.

Wenn du eine Klasse deinem Arduino-Projekt hinzuftigen méch-
test, dann ist es sinnvoll, eine neue Datei zu erstellen, die die Datei-
endung .cpp erhilt, und die Klassendefinition dorthin auszulagern.
Wie das funktioniert, wirst du gleich an unserem konkreten Bei-
spiel fiir die Wiirfel-Library sehen. Also gedulde dich noch ein
wenig.

Ein Klasse bendtigt Unterstiitzung

Du hast jetzt gesehen, was eine Klasse bewirkt und wie du sie for-
mell erstellen kannst. Bisher habe ich dir aber nur die halbe Wahr-
heit erzihlt, denn die Klasse benétigt die Unterstiitzung einer
weiteren, sehr wichtigen Datei. Sie wird Header-Datei genannt und
enthilt die Deklarationen (Kopf- oder Vorabinformationen) fiir die
zu erstellende Klasse. Wenn du Felder bzw. Methoden in C++ ver-
wenden mochtest, ist es zwingend erforderlich, diese vor der
eigentlichen Nutzung dem Compiler bekanntzumachen. Dies
erfolgt mittels der Definition der Felder und Funktions- bzw.
Methodenprototypen. In der betreffenden Datei werden auch die
Reglementierungen tiber die Zugriffsmodifizierer public bzw. pri-

Projekt 10: Der elektronische Wiirfel (und wie erstelle ich eine Bibliothek?)

vate festgelegt. Der formale Aufbau der Header-Datei gleicht dem
der Klassendefinition, beinhaltet jedoch keinen ausformulierten
Code. Das bedeutet, dass lediglich die Methoden-Signaturen Erwah-
nung finden. Eine Signatur besteht lediglich aus den Kopfinformati-
onen mit Methodenname, Riickgabetyp und Parameterliste. Der
allgemeine Aufbau lautet:

class Name{
public:

// Public Member
private:

// Private Member

};

Der Bereich zur Definition der der public Member folgt im
Anschluss an das Schlisselwort public, gefolgt von einem Doppel-
punkt. Der Bereich zur Definition der private Member folgt im
Anschluss an das Schliisselwort private, ebenfalls gefolgt von einem
Doppelpunkt. Die Header-Datei erhilt die Dateiendung .h.

Eine Klasse wird zu einem Objekt

Wenn du eine Klasse iiber die Klassendefinition erst einmal erstellt
hast, kannst du sie wie bei der Deklaration einer Variablen als
neuen Datentypen verwenden. Dieser Vorgang wird in der OOP
Instanziierung genannt. Mit der Definition einer Klasse hast du aus
programmtechnischer Sicht noch kein existierendes Objekt
geschaffen. Die Klassendefinition ist lediglich als eine Art Schablone
oder Bauplan anzusehen, die fiir die Erzeugung eines oder mehrerer
Objekte herangezogen werden kann.

(Objekt 1 w
Instanziierung (Objekt 2 W

N Objekt 3
N

Die Instanziierung geschieht in folgender Weise:

y

Klassenname Objektname();

Bibliotheken

<« Abbildung 10-7
Von der Klasse zum Objekt

Stopp mal, denn etwas stimmt doch hier nicht. du hast angefiihre,
dass die Instanziierung eines Objektes der einer ganz normalen Vari-
ablendeklaration entspricht. Das habe ich verstanden. Doch ich sehe
da hinter dem Namen, den du fiir das Objekt vergeben hast, noch ein
rundes Klammerpaar. Ist das ein doppelter Tippfehler? Doch eher
nicht. Was hat das zu bedeuten?

Gut bemerkt, Ardus! Das hat natiirlich seine Bewandtnis. Ich werde
diesem Aspekt ein neues Teilkapitel widmen, denn er ist duflerst
wichtig bei der Instanziierung.

Ein Objekt initialisieren —
Was ist ein Konstruktor?

Eine Klassendefinition beinhaltet in der Regel einige Feldvariablen,
mit denen nach der Instanziierung gearbeitet wird. Damit ein
Objekt einen definierten Anfangszustand aufweisen kann, ist es
sinnvoll, es zu gegebener Zeit zu initialisieren. Was koénnte ein bes-
serer Zeitpunke fir diese Initialisierung sein als direkt bei der
Instanziierung? Auf diese Weise kann sie nicht vergessen werden
und bereitet dir spiter auch keine Probleme bei der Sketch-Ausfiih-
rung. Wie konnen wir aber ein Objekt initialisieren? Nun, das
geschieht am besten mittels eine Methode, die diese Aufgabe iiber-
nimmt.

Dann muss ich also beim Instanziieren eine Methode mit angeben,
der ich bestimmte Werte als Argumente mitgebe. Doch woher weif}
ich denn, wie diese Methode lautet?

Du hast Recht, Ardus! Wir miissen eine Methode aufrufen und ihr
ggf. ein paar Werte mit auf den Weg geben. Doch wie kénnten wir
diese Methode nennen? Es ist eigentlich ganz einfach und genial
gelost. Die Methode zur Objektinitialisierung trigt den gleichen
Namen, wie die Klasse. Da es sich um eine ganz spezielle Methode
handelt, hat sie auch einen eigenen Namen bekommen. Sie wird
Konstruktor genannt. Wie die Bezeichnung vermuten lisst, kon-
struiert dieser Konstruktor gewissermafen das Objekt. Da es aber
nicht zwingend erforderlich ist, ein Objekt zu Beginn mit bestimm-
ten Werten zu initialisieren, muss er nicht unbedingt eine Parame-
terliste aufweisen. Er verhilt sich dann wie eine Methode, der keine
Werte tibergeben werden und lediglich das leere Klammerpaar
besitzt. Das ist auch die Antwort auf deine Frage bezuglich des run-
den Klammerpaares, das du bei der Instanziierung gesehen hast.

Projekt 10: Der elektronische Wiirfel (und wie erstelle ich eine Bibliothek?)

Du darfst es unter keinen Umstinden weglassen bzw. vergessen.
Jetzt muss ich doch schon etwas konkreter werden, um dir die Syn-
tax zu zeigen. Hier siehst du den Inhalt der Header-Dateti fiir unsere
geplante Wiirfel-Library:

class Wuerfel{

public:
Wuerfel(); // Konstruktor
/...

private:
/...

};

Unterhalb des Zugriffsmodifizierers public befindet sich der
Konstruktor mit dem gleichen Namen wie der der Klasse. Er besitzt
ein leeres Klammerpaar und wird deshalb Standardkonstruktor
genannt.

(. .
Hast du nicht eben gesagt, dass man dem Konstruktor wie einer

Methode ein paar Argumente tibergeben kann, um das Objekt zu ini-
tialisieren? Das leere Klammerpaar sagt mir aber, dass der Konstruktor
keine Werte entgegennehmen kann. Wie soll das denn funktionieren?
Die zweite Sache, die mir aufgefallen ist, bezieht sich auf den vermeint-
lichen Riickgabetyp einer Methode. Du hast beim Konstruktor den
Riickgabetyp nicht mit angegeben. Warum hast du ihn weggelassen?

.

Du hast vollkommen Recht, Ardus, wenn du sagst, dass der Kon-
struktor in dieser Form keine Werte entgegennehmen kann. Das ist
eine gute Uberleitung zum nichsten Thema. Doch vorher méchte
ich dir noch die Antwort auf deine Frage hinsichtlich des fehlenden
Riickgabetyps geben. Liefert eine Methode einen Wert an ihren
Aufrufer zuriick, dann muss natiirlich der entsprechende Datentyp
mit angegeben werden. Wenn keine Riickgabe erfolgt, wird das
Schlusselwort void verwendet. Kommen wir jetzt zu unserem Kon-
struktor zurtick. Er wird nicht explizit durch eine Befehlszeile auf-
gerufen, sondern implizit durch die Instanziierung eines Objektes.
Aus diesem Grund kann auch nichts an einen Aufrufer zuriickgelie-
fert werden, und deshalb hat der Konstruktor nicht einmal den
Riickgabetyp void.

Die Uberladung

Was ich dir jetzt zeige, mag fur dich auf den ersten Blick etwas ver-
wirrend sein. Du kannst einen Konstruktor und nattirlich auch
Methoden mehrfach mit demselben Namen definieren.

Bibliotheken

327

Das kann ich dir aber irgendwie nicht auf Anhieb glauben. Das wider-
spricht doch dem Grundsatz der Eindeutigkeit. Wenn z.B. eine
Methode zweimal in einem Sketch mit demselben Namen vorkommt,
wie soll dann der Compiler wissen, welche von beiden aufzurufen ist?

Du hast vollkommen Recht Ardus. Aber in diesem Fall spielt nicht
nur allein der Name eine entscheidende Rolle, sondern die soge-
nannte Signatur, auf die ich schon einmal zu sprechen gekommen
bin. Im folgenden Beispiel zeige ich dir zwei zulédssige Konstrukto-
ren mit gleichem Namen, die jedoch abweichende Signaturen auf-
weisen:

Wuerfel();
Wuerfel(int, int, int, int);

Der erste Konstruktor reprisentiert den dir schon bekannten Stan-
dardkonstruktor mit dem leeren Klammerpaar, der keine Argu-
mente entgegennehmen kann. Der zweite hat eine vollig andere
Signatur, denn er kann 4 Werte vom Datentyp int aufnehmen.
Wenn du nun ein Wuerfel-Objekt instanziierst, dann kannst du
zwischen zwei Varianten wihlen:

Wuerfel meinWuerfel();

oder

Wuerfel meinWuerfel(8, 9, 10, 11);

Der Compiler ist so intelligent, dass er erkennt, welchen Konstruk-
tor er aufzurufen hat.

Die Wiirfel-Library

Die mehr oder weniger kurze Einfithrung war notwendig, damit du
die Erstellung einer Arduino-Library nachvollziehen kannst. Ich
mochte das zweite Wiirfelprojekt als Basis fiir die Umsetzung einer
Library nutzen. Es handelt sich um die verbesserte Variante mit der
Ansteuerung der LED-Gruppen. Wir benétigen also zwei Dateien,
um die Library erfolgreich zu erstellen.

Dateien einer Library

Deklaration Implementierung
Header-Datei .h Klassendatei .cpp

Projekt 10: Der elektronische Wiirfel (und wie erstelle ich eine Bibliothek?)

Die Header-Datei

Ich beginne mit der Header-Datei, die lediglich die Prototyp-Infor-
mationen enthilt und keine ausformulierten Codeinformationen
aufweist. Zu Beginn sollte ich mir natiirlich ein paar Gedanken
iber die benotigten Member der Klasse machen. Ich bendétige zur
Ansteuerung der LED-Gruppen 4 digitale Pins, die ich iber ent-
sprechende Felder ansteuere:

* pinGruppeA
* pinGruppeB
* pinGruppeC
* pinGruppeD

Diese Informationen werden wir dem Konstruktor, der 4 Parameter
des Datentyps int besitzt, spiter bei der Instanziierung mitgeben.
Die Felder werden als private deklariert, denn sie miissen lediglich
intern von einer Methode angesprochen werden, die ich roll nenne
und die keine Argumente entgegennimmt bzw. auch keinen Riick-
gabewert liefert. Die Klasse bekommt einen sprechenden Namen,
der wuerfel lautet.

#ifndef Wuerfel h
#define Wuerfel h

#if ARDUINO < 100
#include <WProgram.h>
#else

#include <Arduino.h>
#endif

class Wuerfel{

public:
Wuerfel(int, int, int, int); // Konstruktor
void roll(); // Methode zum Rollen des Wirfels

private:
int GruppeA; // Feld flr LED-Cruppe
int GruppeB; // Feld flir LED-Gruppe
int GruppeC; // Feld fir LED-Gruppe
int GruppeD; // Feld fir LED-Gruppe

O N @™ >

I
#endif

Ich habe der Klassendefinition noch einige Zusatzinformationen
hinzugefiigt, die einer weiteren Erlduterung bediirfen. Die kom-
plette Klasse wurde von dem folgenden Konstrukt ummantelt:

Bibliotheken

#ifndef Wuerfel h
#define Wuerfel h

#endif

Da es aufgrund von verschachteltem Code zu Mehrfacheinbindun-
gen kommen kann, hat man sich eine Moglichkeit iiberlegt, diese
zu unterbinden und eine Doppelkompilierung zu verhindern. Der
Grund fur diese Ummantelung ist die Sicherstellung der einmaligen
Einbindung der Header-Datei. Bei den Anweisungen #ifndef,
#define und #endif handelt es sich um Prdprozessoranweisungen.
#ifndef leitet eine bedingte Kompilierung ein und ist die Abkiir-
zung fiir if not defined, was so viel wie wenn nicht definiert bedeutet.
Wurde der Begriff Wuerfel_h (Name der Header-Datei mit Unter-
strich), der als Makro bezeichnet wird, noch nicht definiert, dann
hole das nun nach und fithre die Anweisungen in der Header-Datei
aus. Wiirde die Header-Datei ein zweites Mal aufgerufen, dann
wire das Makro unter dem Namen gesetzt und dieser Teil der
Kompilierung wird verworfen. Die include-Anweisungen

#if ARDUINO < 100
#include <WProgram.h>
#else

#include <Arduino.hy
#endif

sind notwendig, um der Library die Arduino-eigenen Datentypen
bzw. Konstanten (z.B. HIGH, LOW, INPUT oder OUTPUT)
bekanntzugeben. An dieser Stelle wird es ein wenig tricky. Alle
Arduino-Versionen, die kleiner als die Version 1.0 sind, benétigen
eine Header-Datei mit dem Namen WProgram.h, wenn es darum
geht, z.B. die 0.g. Konstanten zu verwenden. Da steckt natiirlich
noch eine ganze Menge mehr dahinter, doch fiir dieses Beispiel
reicht es erst einmal aus. Die Arduino-Versionsnummer ist tbri-
gens in der Definition ARDUINO gespeichert und kann also fiir die
aktuell verwendete Entwicklungsumgebung ausgelesen werden. So
gehen wir auch in unserem Fall vor. Ist die Versionsnummer < 100
(entspricht Version 1.00), dann soll die dltere Header-Datei WPro-
gram.h eingebunden werden. Andernfalls wird die neue Header-
Datei Arduino.h verwendet. Diese Anderung der Header-Dateien
sorgt grofltenteils fiir Unmut und ich bin auch nicht gerade erbaut
von dieser Anpassung.

Projekt 10: Der elektronische Wiirfel (und wie erstelle ich eine Bibliothek?)

Bitte verrate mir, warum der Konstruktor bei der Angabe der Parame- > ‘3
ter lediglich die Datentypen aufweist und der eigentliche Variablen- = g
Name fehlt.

Der Grund hierfiir liegt darin, dass wir an dieser Stelle nur die Pro- ~
totyp-Informationen benotigen. Der eigentliche Code befindet sich
spiter in der Klassendatei mit der Endung .cpp. .

Die Klassendatei

Die eigentliche Code-Implementierung erfolgt mittels der Klassen-
Datei mit der Endung .cpp:

#if ARDUINO < 100
#include <WProgram.h>
#else

#include <Arduino.h>
#endif

#include "Wuerfel.h"
#define WARTEZEIT 20

// Parametrisierter Konstruktor
Wuerfel::Wuerfel(int A, int B, int C, int D){

GruppeA = A;
GruppeB = B;
GruppeC = C;
GruppeD = D;

pinMode (GruppeA, OUTPUT);
pinMode (GruppeB, OUTPUT);
pinMode (GruppeC, OUTPUT);
pinMode (GruppeD, OUTPUT);

}

// Methode zum Wiirfeln

void Wuerfel::roll(){
int zahl = random(1, 7);
digitalWrite(GruppeA, zahl%2!=0?HIGH:LOW);
digitalWrite(GruppeB, zahl>1?HIGH:LOW);
digitalWrite(GruppeC, zahl>3?HIGH:LOW);
digitalWrite(GruppeD, zahl==6?HIGH:LOW);
delay (WARTEZEIT); // Eine kurze Pause einfiigen

Bibliotheken 331

Damit die Verbindung zur vorher erstellten Header-Datei moglich
ist, wird mit der include-Anweisung

#include "Wuerfel.h"

auf sie verwiesen und sie wird beim Kompilieren mit eingebunden.
Auch hier ist die include-Anweisung

#if ARDUINO < 100
#include <WProgram.h>
#else

#include <Arduino.hy
#endif

notwendig, um die eben genannten Arduino-Sprachelemente nut-
zen zu kénnen. Kommen wir jetzt zur Erlduterung des Codes, der ja
die eigentliche Implementierungen enthilt. Starten wir mit dem
Konstruktor:

Wuerfel::Wuerfel(int A, int B, int C, int D){

GruppeA = A;
GruppeB = B;
GruppeC = C;
GruppeD = D;

pinMode (GruppeA, OUTPUT);
pinMode (GruppeB, OUTPUT);
)
)

)

pinMode (GruppeC, OUTPUT
pinMode (GruppeD, OUTPUT

)

}

Wenn du dir die Methode roll anschaust, dann wirst du sicherlich
bemerken, dass ich sie im Vergleich zum vorherigen Kapitel etwas
modifiziert habe.

Genau, du hast hier das Loschen der aller LEDs, bevor neue angesteu-
ert werden, weggelassen. Das verstehe ich noch nicht so ganz!

Stimmt, Ardus! Das ist aber auch gefahrlos moglich, denn die
Ansteuerung der einzelnen LED-Gruppen erfolgt tiber den Bedin-
gungsoperator ?, den du schon im Kapitel tiber die Statemachine
kennengelernt hast. Dieser Operator liefert bei der Auswertung der
Bedingung entweder LOW oder HIGH zuriick, so dass die entspre-
chende LED-Gruppe immer mit dem richtigen Pegel versorgt wird
und ich sie nicht vorher mit LOW zuriicksetzen muss. Was dich
vielleicht noch verwundern wird, ist das Prifix Wuerfel:: sowohl
vor dem Konstruktornamen als auch vor der Methode roll. Es han-

@— Projekt 10: Der elektronische Wiirfel (und wie erstelle ich eine Bibliothek?)

delt sich dabei um den Klassennamen, tiber den der Compiler
erkennt, zu welcher Klasse die Methodendefinition gehort. Die
Methode wird durch diese Notation qualifiziert. Da das Wiirfel-
Objekt, das wir generieren mochten, 4 LED-Gruppen anzusteuern
hat, macht es Sinn, diese Informationen bei der Instanziierung zu
iibergeben. Natiirlich wire es auch nach der Objekt-Generierung
moglich, dies iiber eine separate Methode, die wir z.B. Init nennen
wiirden, zu realisieren. Das birgt aber die Gefahr in sich, dass dieser
Schritt moglicherweise vergessen wird. Aus diesem Grund wurde
der Konstruktor erfunden. Werfen wir gleich einen kurzen Blick in
unseren Sketch, der diese Library nutzt.

Das Anlegen der benétigten Dateien

Ich wiirde dir vorschlagen, dass du die beiden benétigen Library-
Dateien .h und .cpp unabhingig von der Arduino-Entwicklungsum-
gebung programmierst. Es bieten sich zahllose Editoren wie z.B.
Notepad++ oder Programmers Notepad an. Beide Dateien spei-
cherst du in einem aussagekriftigen Verzeichnis wie z.B. Wuerfel
ab, das du nach der Fertigstellung in den Arduino-Library-Ordner

...\arduino-1.0-rc1\libraries

kopierst. Anschlieflend startest du die Arduino-Entwicklungsumge-
bung neu und beginnst mit der Programmierung des Sketches.

Syntaxhighlighting fiir neue Library erméglichen

Elementare Datentypen, wie z.B. int, float oder char oder auch
andere Schliisselworter wie z.B. setup oder loop werden durch die
Entwicklungsumgebung farblich hervorgehoben. Es gibt fiir die
Erstellung eigener Libraries eine Moglichkeit, Klassennamen oder
Methoden der IDE bekanntzumachen, so dass sie ebenfalls farbig
dargestellt werden. Damit das funktioniert, muss im Bibliotheks-
verzeichnis eine Datei mit dem Namen

keywords.txt
angelegt werden, die eine bestimmte Syntax aufweisen muss.

Kommentare

Erlduternde Kommentare werden mit dem # Doppelkreuz (ugs.
Lattenzaun) eingeleitet:

Das ist ein Kommentar

Bibliotheken

Datentypen und Klassen (KEYWORD1)

Datentypen oder auch Klassennamen werden in orange gekenn-
zeichnet und missen unter Einhaltung der folgenden Syntax defi-
niert werden:

Klassenname KEYWORD1

Methoden und Funktionen (KEYWORD?2)

Methoden bzw. Funktionen werden in braun gekennzeichnet und
miissen unter Einhaltung der folgenden Syntax definiert werden:

Methode KEYWORD2

Konstanten (LITERAL1)

Konstanten werden in blau gekennzeichnet und miissen unter Ein-
haltung der folgenden Syntax definiert werden:

Konstante LITERAL1

Hier nun der Inhalt der keywords.txt Datei fiir unsere Wiirfel-
Library:

Die Nutzung der Library

Befindet sich die Wiirfel-Library im o.g. Verzeichnis, dann hat das
folgenden Vorteil:

Projekt 10: Der elektronische Wiirfel (und wie erstelle ich eine Bibliothek?)

Tools Help

Verify / Compile Strg+R

Show Sketch Folder Strg+K

Add File...

Import Library... 3 Bounce

| EcPROM

Ethernet
Firmata
LiquidCrystal
Mouse
sD
Servo
SoftwareSerial
5P1
Stepper
Wire
Wuerfel

Wenn du dir den letzten Mentipunkt anschaust, dann findest du
die programmierte Wiirfel-Library wieder. Die Bezeichnung Impor-
tieren ist etwas irrefithrend, denn eigentlich wird an dieser Stelle
iiberhaupt nichts importiert. Alles, was passiert, ist das Einfiigen
der folgenden Zeile in dein Sketch-Fenster:

#include <Wuerfel.h>

Die Include-Zeile ist zwingend notwendig, wenn du auf die Funkti-
onalitit der Wiirfel-Library zugreifen mochtest. Woher sollte der
Compiler sonst wissen, auf welche Bibliothek er zugreifen muss. Es
werden nicht einfach auf gut Gliick alle verfiigbaren Libraries ein-
gebunden. Jetzt folgt die Instanziierung, die die Klassendefinition
in den Status eines realen Objektes erhebt. Das generierte Objekt
meinWuerfel wird auch als Instanzvariable bezeichnet. Dieser
Begriff ist in der Literatur recht hiufig anzutreffen.

Wuerfel meinWuerfel(8, 9, 10, 11);

Die Ubergabewerte 8, 9, 10 und 11 stehen fiir die digitalen Pins, an
denen die LED-Gruppen angeschlossen sind. Auf diese Weise
wurde dein Wiirfel-Objekt initialisiert, damit es intern arbeiten
kann, wenn die Methode zum Wiirfeln aufgerufen wird. Die Argu-
mente werden in der angegebenen Reihenfolge tibergeben.

<« Abbildung 10-8
Importieren der Wiirfel-Library

Die Nutzung der Library

335

Wuerfel meinWuerfel(8, 9, 10, 11);

g

Wuerfel: :Wuerfel (int A, int B, int C, int D)
£

}

Sie werden in den lokalen Variablen A, B, C und D gespeichert, die
dann wiederum an die Felder GruppeA, GruppeB, GruppeC und
GruppeD weitergereicht werden. Jetzt erfolgt der Aufruf der
Methode, wenn die Bedingung erfiillt ist, dass am digitalen Eingang
ein HIGH-Potential anliegt, was tiber den angeschlossenen Taster
gesteuert werden kann.

void setup(){
pinMode(13, INPUT); // Nicht unbedingt notwendigt - klar warum!?

}

void loop(){
if(digitalRead(13) == HIGH)
meinhWuerfel.roll();

}

Du siehst hier auch, dass das Syntaxhighlighting funktioniert, denn
sowohl der Klassenname als auch die Methode wurden farblich
hervorgehoben. Da die Methode roll ein Mitglied der Klassendefini-
tion Wuerfel ist, muss beim Aufruf derselben eine Verbindung zur
Klasse hergestellt werden. Ein Aufruf tiber

10l1l();

wiirde auf jeden Fall einen Fehler verursachen. Die Beziehung wird
iiber den sogenannten Punktoperator hergestellt, der zwischen
Klasse und Methode eingefiigt wird und als Bindeglied fungiert.

Punktoperator

l

meinWuerfel.roll();

/N

Instanzvariable Methode

Wir werden spiiter noch die eine oder andere Library programmie-
ren, die dir oder auch anderen Programmieren niitzlich sein kén-
nen. Auflerdem erwirbst du dann ein wenig Praxis im Umgang mit

Projekt 10: Der elektronische Wiirfel (und wie erstelle ich eine Bibliothek?)

der Programmiersprache C++ und der objektorientierten Program-
mierung.

Das konnte wichtig fiir dich sein

Hier ein paar Begriffe fiir die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

Objektorientierte Programmierung
OooP
Arduino Library

Was hast du gelernt?

Die Nutzung der Library

Ich gebe zu, dass die Lernkurve in diesem Kapitel etwas steiler
geworden ist, doch es ist die Sache wert. Du hast einiges tiber
das neue Programmierparadigma Objektorientierte Program-
mierung erfahren.

Der Unterschied zwischen einer Klasse und einem Objekt ist
dir jetzt sicherlich geldufig.

In der OOP verwenden wir den Begriff Methode anstelle von
Funktion und Feld anstelle von Variable.

Der Konstruktor ist eine Methode mit einer besonderen Auf-
gabe. Er initialisiert das Objekt, damit ein definierter Aus-
gangszustand erzielt werden kann.

Die unterschiedlichen Zugriffsmodifizierer public bzw. private
regeln den Zugriff auf die Objektmitglieder, wobei private fiir
die Kapselung von Mitgliedern verantwortlich ist.

Du hast gesehen, iiber welche Code-Informationen eine Hea-
der- bzw. cpp-Datei verfiigen muss.

Das aus einer Klasse instanziierte Objekt wird auch Instanzva-
riable genannt.

Um auf Felder bzw. Methoden zugreifen zu kénnen, wird der
Punktoperator verwendet, der nach dem Namen der Instanzva-
riablen eingefiigt wird und quasi als Bindeglied zwischen bei-
den fungiert.

Du hast gelernt, wie eine Arduino-Library erstellt wird und an
welche Stelle sie im Dateisystem kopiert werden muss, damit
du einen globalen Zugriff auf sie erhiltst.

Zum Abschluss hast du erfahren, wie du bestimmte Methoden als
Schliisselworter mit farblicher Kennung konfigurieren kannst.

337

Das Miniroulette

Scope

In diesem Experiment behandeln wir folgende Themen:

* Deklarierung und Initialisierung eines eindimensionalen
Arrays

* Programmierung mehrerer Pins als Ausgang (OUTPUT)
* Der Befehl randomSeed() im Zusammenspiel mit random()

* Abfragen eines analogen Eingangs mit dem Befehl
analogRead ()

* Der komplette Sketch

* Analyse des Schaltplans
* Aufbau der Schaltung

* Workshop

Das Roulettespiel

Nachdem du schon mit dem Lauflicht in Berithrung gekommen
bist, méchte ich dir nun eine weitere, dhnliche Schaltung bzw. Pro-
grammierung vorstellen. Du kennst das Spiel Roulette bestimmt aus
dem Casino bzw. der Spielbank. Es ist das wohl bekannteste
Gliicksspiel und wir wollen uns hier ein Mini-Roulette basteln. Der
Sinn des Spiels besteht darin, vorauszusagen, in welchem Feld eine
Kugel, die im Roulettekessel im Kreis rotiert, zu liegen kommt. Es
gibt unterschiedliche Roulette-Varianten mit einer abweichenden
Anzahl von Fichern. Fiir unser Spiel werden wir 12 LEDs ansteu-
ern, was natiirlich etwas weniger als in einem Originalspiel ist. Des-

Projekt

339

Abbildung 11-1
Frontplatte fiir das Roulette-Spiel

Abbildung 11-2 p
Frontplatte fiir das Roulette-Spiel

wegen nennen wir es ja auch Mini-Roulette. Da der Aufbau des
Spieles im Hinblick auf die runde Anordnung der LEDs auf einem
Breadboard recht mithsam ist und nicht gerade schon aussieht,
habe ich mich fiir eine Frontplatte entschieden, die auf einem
Shield angebracht wird. Auf einer solchen Platte aus Freischaum,
die z.B. fiir Werbetafeln oder Displays benutzt werden, kann man
wunderbar passende Locher an beliebigen Stellen bohren und ist
nicht an die festen Rasterabstinde einer Lochrasterplatine gebun-
den. Du kannst die Platte mit Distanzhiilsen oben auf dem Shield
platzieren, was wirklich recht gut aussieht. Lass’ dich tiberraschen.
Die Detailinformationen findest du im entsprechenden Kapitel
tiber den Shieldbau.

Aufgrund der Tatsache, dass die Frontplatte nicht {ibermiRig grofd
ist, habe ich mich entschieden, kleine LEDs mit einem Durchmes-
ser von 3mm zu verwenden.

Shield Frontplatte

o

340

Projekt 11: Das Miniroulette

In der folgenden Abbildung sichst du die Mafe fiir die Frontplatte:
<« Abbildung 11-3

Male der Frontplatte fiir das

5,2¢cm
Roulette-Spiel

6,5m

1mm

Bendétigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

Benotigte Bauteile

| S —
«_<———
12 x LEDs 3mm / je 4 rote, griine und gelbe
- diddw—
—

12 x Widerstand 330

1x Widerstand 70K

1x Taster

Litze in beliebiger Farbe

Das Roulettespiel

34

342

Benétigte Bauteile

2 x Stiftleiste mit 6 Pins + 2 x Stiftleiste mit 8
Pins

1 x Shieldplatine

1 x Freischaumplatte, grau (z.B. aus dem Bau-
markt: 500 x 250 3)

Sketch-Code

Hier der Sketch-Code zur Ansteuerung des Mini-Roulettes:

#define WARTEZEIT 40

#define OBERGRENZE 13

#define THRESHOLD 1000

int pin[] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}; // Array fir LED’s
int tasterPin = 0, tasterWert = 0;

int letztezahl = 1;

void setup(){
randomSeed (analogRead(5)); // Zufallszahlenstart unvorhersehbar
// machen
for(int 1 = 0; 1 < 12; i++)
pinMode(pin[i], OUTPUT); //Alle Pins als Ausgang programmieren
}

void loop(){
if(analogRead(tasterPin) > THRESHOLD)
rouletteStart(random(1, OBERGRENZE)); // Starten des Roulettes
}

void rouletteStart(int zahl){
digitalWrite(letztezahl + 1, LOW); // Loschen der letzten LED
letztezahl = zahl; // Sichern der letzten Zahl (LED)

Projekt 11: Das Miniroulette

int k = 1; // Faktor, um WARTEZEIT zu
// verlangern
for(int i = 0; 1 < 6; i++){
if(i > 2) k++; // Faktor fiir WARTEZEIT wird inkrementiert
for(int j = 0; j < 12; j++){
digitalWrite(pin[j], HIGH);
if((i == 5)8(j + 1 == zahl)) break;
delay(WARTEZEIT * k); // Wartezeit zwischen LED-Wechsel
digitalWrite(pin[j], LOW);
}
}

Stopp, Stopp, Stopp! Also, da gibt es wieder eine Stelle im Code, die
mir schleierhaft ist. Es geht um die Variablendeklaration in der Zeile
int tasterPin = 0, tasterWert = 0;. Ich dachte, dass bei der Deklaration
fir jede Variable eine eigene Zeile erforderlich sei. Jetzt stehen dort
aber zwei Variablen in einer Zeile und fiir die zweite fehlt die Angabe
des Datentyps. Wie funktioniert das denn nun wieder?

Oh, hatte ich das vergessen zu erwidhnen? Also gut: Wenn du meh-
rere Variablen desselben Datentyps deklarieren bzw. initialisieren
mochtest, dann kannst du das in einer einzigen Zeile erledigen. Der
gewihlte Datentyp zu Beginn der Codezeile bezieht sich dann auf
alle nachfolgend genannten Variablen, die durch Kommata
getrennt aufgelistet werden.

Code-Review

Fiir unser Experiment bendtigen wir programmtechnisch gesehen
die folgenden Variablen:

Variable Aufgabe

pin Eindimensionales Array, das die Nummern der einzelnen LED-Pins enthalt

tasterPin Enthélt die Nummer des Anschlusspins fiir den Taster. Es handelt sich in diesem
Fall um einen analogen Pin. Die Erlduterung dazu erfolgt in Kiirze

tasterWert Der Wert des analogen Eingangs am tasterPin wird dieser Variablen zugewiesen

letzteZahl Speichert die zuletzt ermittelte Zufallszahl

Da wir es in diesem Kapitel mit 12 anzusteuernden LEDs zu tun
haben, macht es wieder Sinn, die Nummern der einzelnen Pins in
einem Array zu speichern und in der setup-Funktion entsprechend
als Ausgang zu programmieren.

« Tabelle 11-1

Bendtigte Variablen und deren

Aufgabe

Das Roulettespiel

343

Abbildung 11-4 »
Der Befehl »analogRead«

344

Lass mich mal iiberlegen. Du hast in einem der letzten Kapitel
erwihnt, dass die digitalen Pins 0 fiir RX und 1 fiir TX der seriellen
Schnittstelle nach Maglichkeit nicht verwendet werden sollen. Wir
haben aber ganze 12 LEDs fiir das Roulette-Spiel anzusteuern. Das
bedeutet, dass uns kein freier Pin mehr fiir Abfrage des Tasters zur
Verfligung steht. Wie kénnen wir das Problem 16sen?

Du hast vielleicht schon den Befehl analogRead im Sketch-Code
ausfindig gemacht. Thn wollen wir uns jetzt einmal genauer
anschauen, denn bisher haben wir lediglich digitale Signale verar-
beitet. Jetzt wird es also analog. Im Gegensatz zu einem digitalen
Signal, bei dem es nur zwei definierte Pegel (im Idealfall 0V und 5V)
gibt, kann ein analoges Signal beliebige Werte zwischen einem
Minimum bzw. einem Maximum aufweisen. Die Syntax des Befehls
analogRead lautet wie folgt:

Argu‘ment

Befehl ‘ Pin ‘

((tasterPin) ;)

Dir stehen 6 analoge Eingénge zur Verfiigung, die unabhingig von-
einander ausgelesen werden konnen. Im Kapitel iiber die Program-
mierung des Arduino-Boards habe ich schon ein paar Worte iiber
die analogen Ports verloren.

Eine Sache ist mir sofort aufgefallen. Um einen Pin in einem Sketch
zu verwenden, muss man ihn vorher programmieren, damit der
Mikrocontroller weifR, ob er als Ein- oder Ausgang zu verwenden ist.
Das ist jedoch in unserem Beispiel fiir den analogen Pin nicht erfolgt.
Miissen wir nicht mittels pinMode(tasterPin, INPUT) den Pin als Ein-
gang definieren?

Ok, Ardus, es gibt einen Sachverhalt, den du noch nicht kennst und
den ich noch nicht erwihnt habe: Der Befehl pinMode wirkt nur auf
die digitalen Pins und nicht auf die analogen. Mit deinem vorge-
schlagenen Befehl hittest du den digitalen Pin 0 als Eingang pro-
grammiert, doch das wollen wir natiirlich nicht! Bei den analogen
Eingidngen Pin 0 bis 5 handelt es sich um dedizierte Pins, die nur als

Projekt 11: Das Miniroulette

Eingdnge arbeiten und deshalb keine explizite Programmierung als
solche erfordern.

Das konnte fiir dich wichtig sein
Analoge Eingdnge miussen in der setup-Funktion nicht eigens
als solche programmiert werden, wie das zB. bei den digitalen
Pins mit dem Befehl pinMode geschieht. Sie sind von Hause aus
als Eingangs-Pins definiert.

Doch nun zum Spiel und der betreffenden Programmierung. Die 12
LEDs sind im Kreis angeordnet und von 1 bis 12 durchnummeriert.

Die Simulation der Kugelrotation beginnt bei LED 1, endet bei
LED 12 und verlduft gegen den Uhrzeigersinn. Es wird mit einer
bestimmten Geschwindigkeit gestartet, die dann jedoch immer
geringer wird, so wie es bei der Kugel im realen Spiel auch der Fall
ist. Irgendwann wird die rotierende Ansteuerung der LEDs
gestoppt und es leuchtet nur noch eine LED. Das ist dann die im
Roulette ermittelte Zahl. Ich denke, dass die Variablendeklaration
bzw. —initialisierung, die setup- und die loop-Funktion eigentlich
soweit klar sein mussten. Kommen wir also zur Arbeitsweise der
rouletteStart-Funktion, die aufgerufen wird, wenn der Taster beti-
tigt wird. Wenn er nicht gedriickt wird, bekommt der analoge Ein-
gang iiber den Pulldown-Widerstand einen LOW-Pegel, was einem
Wert von 0 entspricht. Driickst du jetzt den Taster, gelangen +5V
an den Eingang, was einem Wert von 1023 bzw. HIGH-Pegel ent-
spricht. Die rouletteStart-Funktion wird aufgerufen, wenn der Wert
grofler als 1000 ist. Den Wert habe ich deshalb so gewihlt, weil
analoge Werte nicht immer genau das liefern, was man erwartet.
Somit habe ich einen kleinen Sicherheitspuffer eingerichtet. Wir
beginnen mit den ersten beiden Zeilen der Funktion. Sie dienen
dazu, die letzte generierte Zahl zu speichern und beim nichsten
Roulette-Durchgang die entsprechende LED auszuschalten.

digitalWrite(letzteZahl + 1, LOW); // LOschen der letzten LED
letzteZahl = zahl; // Sichern der letzten Zahl (LED)

Die for-Schleife ibernimmt die Hauptaufgabe der Ansteuerung der
LED’s.

int k = 1; // Faktor, um WARTEZEIT zu verldngern
for(int i = 0; i < 6; i++){

if(i » 2) k++; // Faktor fiir WARTEZEIT wird inkrementiert

for(int j = 0; j < 12; j++){

Das Roulettespiel

345

346

digitalWrite(pin[j], HIGH);
if((i == 5)88(j + 1 == zahl)) break;
delay(WARTEZEIT * k); // Wartezeit zwischen LED-Wechsel
digitalWrite(pin[j], LOW);
}
}

Die Variable k benutzen wir als Faktor, um die Wartezeit zu verlin-
gern. Die Kugel rollt ja in der Realitit mit der Zeit auch immer
etwas langsamer. Die erste duflere for-Schleife sorgt dafiir, dass 6
Runden (0 bis 5) durchlaufen werden, bevor die letzte LED die
Roulettezahl anzeigt. denn es soll ja schlieRlich ein wenig Span-
nung aufgebaut werden und nicht schon nach einer Runde Schluss
sein. Ganz zu Beginn wird 3-mal ohne eine veranderte Zeitverzoge-
rung rotiert. Erst, wenn i > 2 ist, wird der Wert von k inkremen-
tiert, also um den Wert 1 erhoht.

if(i > 2) k++; // Faktor fiir WARTEZEIT wird inkrementiert

Dann startet die innere for-Schleife, um die LED’s anzusteuern. Die
Zeile

if((1 == 5)8&%(j + 1 == zahl)) break;

wird dazu genutzt, um in der letzten Rotationsrunde beim Errei-
chen der Roulettezahl die innere Schleife durch den break-Befehl zu
verlassen. Im Schleifenkopf einer for-Schleife steht zu Beginn die
Anzahl der Durchliufe fest. Doch es gibt eine Méglichkeit, aus sol-
chen gesteckten Grenzen vorzeitig auszusteigen. Schau’ dir mal den
folgenden kleinen Sketch an:

void setup () {
Serial .begin(9600) ;
for{int i = 0; i < 20; it+)} {
if(i > 10}
break;
Serial .println(i);
}
Serial .println{"Ende der for-Schleife.");
}

void loop(){

}

Er zaubert folgende Ausgabe in den Serial-Monitor:

Projekt 11: Das Miniroulette

-
| 5| COM3 ole] = |
o
1
3
4
5
3
7
]

3

10

Ende der for-Schleife.

[¥] Autoscroll Nolineending | |9800baud |

Eigentlich sollte man ja meinen, dass die for-Schleife die Werte von
0 bis 19 anzeigt, doch die break-Anweisung macht ihr einen Strich
durch die Rechnung. Du siehst, das bei einem Wert > 10 der Lauf-
variablen i die Schleife vorzeitig verlassen wird und die Ausfiihrung
an die Stelle springt, die der Schleife unmittelbar folgt.

So wie es aussieht, bist du jetzt mit den Erklirungen des Codes durch,
richtig!? Aber eine Sache ist dir wohl entgangen. Wie sieht es mit dem
Befehl randomSeed aus und warum wird irgendein analoger Eingang
abgefragt?

Oh Ardus, das wire mir fast durchgerutscht. Danke fiir den Hin-
weis! Um eine Zufallszahl zu ermitteln, wird der Befehl random ver-
wendet, den du ja schon kennst. Du hast aber auch gelernt, dass es
sich dabei nicht um eine richtige Zufallszahl handelt, sondern um
eine Pseudozufallszahl, die nach einem vordefinierten Algorithmus
berechnet wird. Es wiirden nach dem Start eines Sketches immer
die gleichen Zufallszahlen generiert werden, was jedoch sicherlich
nicht erwiinscht ist. Daher gibt es alternativ den Befehl random-
Seed, der den Algorithmus zur Generierung der Zufallszahlen quasi
initialisiert. Wenn diesem Befehl unterschiedliche Startwerte als
Argument {ibergeben werden, dann erhalten wir auch unterschied-
liche Zufallszahl-Sequenzen.

Das soll doch bestimmt ein Witz sein, oder! Wie soll ich denn diesem
Befehl unterschiedliche Initialisierungswerte mit auf den Weg geben?
Etwa wieder iiber eine Zufallszahl mittels random-Befehl?

Das Roulettespiel 347

Abbildung 11-5 p

Das Arduino-Board steuert die 12

348

LEDs des Roulettespiels an

Da hast du nicht ganz Unrecht, Ardus! Aber diesen Zufallswert las-
sen wir nicht tiber einen Algorithmus berechnen, sondern iiber
einen Wert an einem analogen Eingang, der nicht beschaltet wurde.
Im Normalfall mochtest du sicherlich einen Spannungswert an
einem der analogen Finginge ermitteln, um dann zu sagen: »OKk,
ich messe jetzt diesen oder jenen Wert, der genau einem definierten
Zustand eines Sensors entspricht.« Wenn ein analoger Eingang
jedoch nicht mit einem Sensor verbunden ist, dann reagiert er auf
elektromagnetische Felder, die uns stindig umgeben und auch auf
ihn einwirken. Diese sind aber niemals in konstanter Form vorhan-
den, sondern unterliegen kontinuierlich einer nicht vorhersehbaren
Schwankung. Diesen Umstand nutzten wir, um mit dem Befehl

randomSeed (analogRead(5))

den analogen Eingang an Pin 5 abzufragen, und den ermittelten
Wert als Argument dem Befehl randomSeed fiir die Initialisierung
mitzugegeben.

Der Schaltplan

Der Schaltplan ist nicht weiter kompliziert und dhnelt dem fiir das
Lauflicht.

I
4

Arduino 13

=
m

§
ik

m
=]
o,

PWH

1
1

PuM
\
VCC PWM

GND
]

o
Digital 1/0

i
1

|
H

m
=]

1

{
T

Analog IN LED ?
A1 A
=530} Pol—
LED ?
—
C}'Sta!'tc I—l?_.

Projekt 11: Das Miniroulette

Schaltungsaufbau

In der folgenden Abbildung siehst du sowohl das Shield als auch
die Frontplatte von hinten. Die Kathodenanschliisse der 12 LEDs
weisen nach auflen, so dass ich mit einem Draht, der einen Kreis
bildet, alle Anschliisse erreiche, die dann mit der Masse verbunden
werden.

Alle Anodenanschliisse, die nach innen weisen, wurden mit je
einem Vorwiderstand verbunden, an denen wiederum die
Anschliissse zu den digitalen Ausgingen fithren. Der Pulldown-
Widerstand hat ebenfalls Platz auf dem Shield gefunden und ver-
bindet den analogen Eingang Pin 0 direkt mit Masse. Uber den Tas-
ter werden dann — wenn er gedriickt wird — die +5V ebenfalls an
den analogen Eingang gefiihrt. Jetzt zeige ich dir gleich das Plati-
nen-Sandwich, damit du eine Vorstellung davon bekommst, wie
das Ganze zusammengebaut aussieht. Wenn du die Frontplatte mit
den Bohrungen fiir die Schrauben auf die Shieldplatine legst,
kannst du ganz einfach dort die Markierungen anbringen, wo sich
die Locher befinden miissen. Als Abstandshalter zwischen Front-
platte und Shield habe ich Distanzhiilsen verwendet, die du recht
ginstig bei Reichelt Elektronik bestellen kannst.

<« Abbildung 11-6
Die Frontplatte von der Riickseite
gesehen

<« Abbildung 11-7
Distanzhiilse
(DK 15mm, Kunststoff)

Das Roulettespiel

349

350

Abbildung 11-8 p
Das Platinen-Sandwich

Hier siehst du das fertig zusammengebaute Frontplatten/Shield-
Sandwich. Um die beiden Platten miteinander zu verbinden, habe
ich M3-Schrauben mit einer Linge von 30mm auf die Lange von ca.
23mm gekirzt. Passender gibt es sie meines Wissen wohl nicht.

€&——— Frontplatte
€———Distanzhiilse

€—Shield

‘,” |

Troubleshooting

Falls die LEDs nach dem Druck auf den Taster nicht der Reihe
nach blinken oder sie tiberhaupt nicht leuchten, trenne das Board

sicherheitshalber vom USB-Anschluss und iiberpriife bitte Folgen-
des:

* Entsprechen deine Steckverbindungen auf dem Breadboard
wirklich der Schaltskizze?

¢ Gibt es eventuell Kurzschliisse untereinander?

* Wurden die LEDs richtig herum eingesteckt? Stimmt die Pol-
ung ?

* Haben die Widerstinde die korrekten Werte?

¢ Weist der Sketch-Code Fehler auf?

* Hat sich ein Verkablungsfehler eingeschlichen, der bei 12
LEDs ja durchaus im Bereich des Moglichen liegt?

Was hast du gelernt?

* Du hast gelernt, wie man einen analogen Eingang mit dem
Befehl analogRead abfragt.

* Du weillt nun, dass bei einem analogen Eingang keine explizite
Programmierung innerhalb der setup-Funktion erforderlich ist,
wie sie zum Beispiel bei einem digitalen Pin mit dem Befehl
pinMode erfolgt.

Projekt 11: Das Miniroulette

* Mit dem Befehl randomSeed kannst du die Generierung der
Zufallszahlen tiber random initialisieren, damit nicht immer
die gleichen Zufallszahlen berechnet werden.

* Mit dem break-Befehl kannst du eine Schleife vorzeitig verlas-
sen, wenn eine definierte Zusatzbedingung erfiillt wird.

* Ein offener analoger Eingang liefert nicht vorhersehbare
Werte, die in Abhingigkeit von den entsprechenden elektro-
magnetischen Feldern der Umgebung variieren kénnen.

Workshop

Nutze doch den Aufbau mit den 12 LEDs zur Anzeige der dich
umgebenen elektromagnetischen Felder. Je hoher der gemessene
Wert an einem analogen Eingang ist, desto mehr LEDs sollen
leuchten. Verwende einfach einen Draht, der als Antenne dient,
und verbinde ihn mit einem analogen Eingang. Fithre einige Versu-
che mit dieser Schaltung in deinem héuslichen Umfeld durch. Was
konnte eine elektromagnetische Strahlung verursachen?

* Ein Mikrowellengerit
* Ein Rohrenfernsehgerit
* Ein Telefon oder Handy

e Fin stromdurchflossener Leiter wie z.B. ein Netzkabel (Fiithre
diesen Versuch nur kontaktlos durch und komme niemals auf
die Idee, den Antennendraht mit einem stromfithrenden Leiter
zu verbinden. Es besteht Lebensgefahr fiir dich und dein Ardu-
ino-Board!)

* Elektrische Gerite wie Computer, Drucker, etc.

Ich werde dir an dieser Stelle einen interessanten Befehl vorstellen,
der es dir ermoglicht, einen Wertebereich in einen anderen umzu-
wandeln. Dieser Befehl heifft map und steht fiir mapping (Zuord-
nung). Aber was macht er genau? Die folgende Grafik
veranschaulicht den Mapping-Vorgang. Es soll ein Eingangs-Wer-
tebereich, der sich von 0 bis 1023 erstreckt, auf den neuen Aus-
gangs-Wertebereich von 0 bis 11 umgerechnet werden.

Das Roulettespiel

351

Abbildung 11-9 p

Was geschieht beim Mapping?

352

Abbildung 11-10 p
Der Befehl »map«

—>1023

Eingang—— Mapplng Ausgang

—

Auf der linken Seite siehst du einen Eingang. Dort stromen Werte
in einem Bereich von 0 bis 1023 herein, die einem analogen Wert
entsprechen. Uns stehen jedoch nicht 1023 LEDs zur Verfiigung,
wobei jede LED einem Spannungswert entsprechen wiirde. Da wir
nur 12 LEDs haben, muss der am Eingang zur Verfugung stehende
Wertebereich geschrumpft werden. Diese Aufgabe ibernimmt der
map-Befehl. Die Syntax lautet wie folgt:

Eingang Ausgang

{ | \

Befehl Eingangswert Unterster Wert ~ ObersterWert Unterster Wert Oberster Wert

[| | \
((wert, 0, 1023, 0, 11);)

Der Riickgabewert des Befehls map ist der neu berechnete Wert.
Hier ein Beispiel fiir die Verwendung;:

int ledWert = map(wert, 0, 1023, 0, 11);

Projekt 11: Das Miniroulette

Lichtsensoren

Scope
In diesem Experiment behandeln wir folgende Themen:

* Lichtmengenmessung tiber einen lichtempfindlichen Wider-
stand (LDR)

* Programmierung mehrerer Pins als Ausgang (OUTPUT)

* Abfragen eines analogen Eingangs mit dem Befehl
analogRead))

* Der komplette Sketch

* Analyse des Schaltplans

* Aufbau der Schaltung

* Kommunikation mit Processing
* Workshop

Der Lichtsensor

In diesem Kapitel wollen wir eine Schaltung aufbauen, die in der
Lage ist, auf duflere Einfliisse bzw. Gegebenheiten zu reagieren. Die
wohl markantesten Umweltwerte, die stindig auf uns einwirken,
sind Temperatur und Helligkeit. Beide konnen von Mensch zu
Mensch unterschiedlich wahrgenommen werden und sind subjek-
tive Eindriicke. Der eine empfindet es als angenehm warm und der
andere bekommt vor Kilte eine Ginsehaut. Natiirlich gibt es
Gerite bzw. Sensoren, die Temperatur und Helligkeit objektiv mes-
sen. Widmen wir uns in unserer nichsten Schaltung der Helligkeit,
die wir iiber einen lichtempfindlichen Widerstand, auch LDR
(Light pependent Resistor) genannt, messen wollen. Es handelt sich

Projekt

353

http://processing.org/
http://processing.org/
http://processing.org/

354

dabei um einen Halbleiter, dessen Widerstandswert lichtabhingig
ist. Je grofRer die Lichtmenge ist, die auf den LDR trifft, desto gerin-
ger wird der Widerstand. Unsere Schaltung soll in Abhingigkeit
vom Helligkeitswert eine Reihe von LEDs ansteuern, die dann
mehr oder weniger leuchten. Die Schaltung gleicht der fiir unser
Lauflicht, wobei die Ansteuerung der einzelnen LEDs jedoch nicht
nacheinander durch eine Schleife erfolgt, sondern durch eine Logik,
die die Helligkeit am lichtempfindlichen Widerstand auswertet.

Bendtigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

Benétigte Bauteile

1xLDR
10 x rote LED
— - — 10 x Widerstand 330
— - 1x Widerstand 70K

//\\ Mehrere flexible Steckbriicken in unterschiedli-
chen Farben und Langen

Sketch-Code

int pin[] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}; // Pin-Array
int analogPin = 0; // Pin des analogen Eingangs
int analogWert = 0; // Speichert gemessenen Analogwert

void setup(){
for(int 1 = 0; 1 < 10; i++)
pinMode(pin[i], OUTPUT);
}

void loop(){
analogWert = analogRead(analogPin);

Projekt 12: Lichtsensoren

steuereLEDs(analoghert);
}

// Funktion zum Ansteueren der LED’s
void steuerelEDs(int wert){
int bargraphWert = map(wert, 0, 1023, 0, 9);
for(int i = 0; 1 < 10; i++)
digitalWrite(pin[i], (bargraphWert >= 1)?HIGH:LOW);

Code-Review

Fiir unser Experiment bendtigen wir programmtechnisch gesehen
die folgenden Variablen:

Variable Aufgabe

pin[] Speichert die Pinnummern zur Ansteuerung der 10 LEDs
analogPin Pinnummer fiir den analogen Eingang
analogWert Speichert den gemessenen analogen Wert

Da wir es wieder mit vielen LEDs zu tun haben, bietet sich ein
LED-Array an, das in pin[] gespeichert wird. Die loop-Funktion
liest kontinuierlich den Wert am analogen Eingang Pin 0. Die
Funktion steuereLEDs wird im Anschluss mit dem gemessenen
Wert aufgerufen und ist firr die Ansteuerung der einzelnen LEDs
zustindig. Die Auflosung jedes analogen Eingangs betrigt 10-Bit
und es konnen dort Werte im Bereich von 0 bis 1023 gemessen
werden. Da ich fiir unser Beispiel jedoch lediglich 10 LEDs ver-
wende, miissen wir den zu grofRen Eingangswertebereich in ein fiir
uns passenden Ausgangswertebereich von 0 bis 9 (10 LEDs)
umrechnen. Die map-Funktion leistet uns wieder gute Dienste. Das
entsprechende Ergebnis wird in der Variablen bargraphWert abge-
legt. Im Anschluss wird jede einzelne LED angesteuert und mit dem
aktuell ermittelten bargraphWert verglichen. Ist dieser grofler als
die gerade angesteuerte Pinnummer der LED, dann wird er auf
HIGH gesetzt, andernfalls auf LOW. Je hoher der Wert ist, desto
mehr LEDs leuchten.

Der Schaltplan

Der Schaltplan sieht dem fiir das Lauflicht zum Verwechseln #hn-
lich, hat aber noch eine Erweiterung, die das Messen der Licht-
starke ermoglicht:

« Tabelle 12-1

Bendtigte Variablen und deren

Aufgabe

Der Lichtsensor

355

356

!

,_
=
=

Arduino E=8

._.
-
s
.
5=
L
&

33

Ci

O

5
&

Pum L
PWM 1
PWM

B 4
&

=0
&

Digital 1/0

Abbildung 12-1 A
Die Schaltung fiir die
Lichtmengenmessung

5] LED
vee e, ——3m]
PWM 3
" 4—|—@ >
3
PWM
s LEDQli
e I
W 2 P
i LED
Analog IN 330 'Qﬁ
LED
m]qlrﬂ]ml‘—lic I_3'3t|_l |
R LED
', LOR ', ', 10K ',
RN <~

GND

Was ein Spannungsteiler ist, das hast du schon gesehen.

analoger Eingang

+5V N I\ GND

Die beiden Widerstinde (LDR und 10K) bilden einen Spannungs-
teiler, wobei der mittlere Abgriff an den analogen Eingang des
Arduino-Boards gefithrt wird. In Abhingigkeit von der vorliegen-
den Helligkeit am LDR #ndern sich die Widerstandsverhiltnisse
bzw. die Spannungsverhiltnisse. Am grofleren Widerstand fillt
naturgemif auch die grofRere Spannung ab. Wird der Widerstand
des LDR durch mehr Lichteinfluss geringer, fillt an ihm weniger
Spannung ab. Das heifSt aber, dass am 10K Widerstand ein hoheres
Spannungspotential anliegt, das dem analogen Eingang zur Verfa-
gung steht. Wir messen einen grofleren Wert an diesem Pin, was
bedeutet, dass mehr LEDs aufleuchten. Wenn weniger Licht auf
den LDR fillt, kehrt sich dieser Vorgang um.

Projekt 12: Lichtsensoren

mehr Spannung abfillt, dann muss doch bei einem verdunkelten
LDR die groRere Spannung am analogen Eingang anliegen.

Erkldre mir das bitte noch einmal. Wenn am grofReren Widerstand }

L
<)
- g,
09
Ich verstehe dein Problem, Ardus. Schaw her, ich erliutere es dir = ﬂ"
anhand der folgenden Abbildungen: :

+5V

analoger
Eingang

Widerstande bzw. Spannungs-
potentiale bei unterschiedlichen
GND - LED-Reihe Lichtverhaltnissen

U U
- ;
g <« Abbildung 12-2

Die Linge der Pfeile geben die Grofle des Spannungspotentials an.
Wenn es bewdlkt ist, dann ist der Widerstand bzw. die Spannung
am LDR hoch. Scheint dagegen die Sonne, so sind Widerstand und
die Spannung gering. Da jedoch nur 5V fiir den Spannungsteiler zur
Verfiigung stehen, bleibt fiir den Spannungsabfall am unteren
Widerstand immer nur der Rest {ibrig. Dieser wird dem analogen
Eingang gegen Masse gemessen zugefiihrt.

Das kdnnte wichtig fiir dich sein »
Hier ein paar Begriffe fir die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

LDR
Fotowiderstand
Lichtabhédngiger Widerstand

Der Lichtsensor 357

Schaltungsaufbau

Abbildung 12-3 »
Aufbau der Sensorenschaltung mit
Fritzing

Auf dem Breadboard befinden sich auf der rechten Seite die 10
LEDs zur Anzeige der Lichtstirke und unterhalb des Arduino-
Boards der Spannungsteiler mit LDR und Festwiderstand.

Abbildung 12-4
Der Schaltungsaufbau der
Lichtsensorenschaltung

Wir werden kommunikativ

Es ist zwar in meinen Augen recht interessant, bei unterschiedli-
chen Lichtverhiltnissen das Spiel der LEDs zu beobachten, doch
der zeitliche Verlauf ist tiber eine lingere Periode nur schwer zu
erkennen. Aus diesem Grund méchte ich dir in diesem Kapitel ein
Projekt vorstellen, das dir sicherlich noch mehr Spafl machen wird,
da es auch etwas fiir das Auge bietet. Die Programmiersprache Pro-

358 Projekt 12: Lichtsensoren

cessing bietet sich gerade dazu an, wenn es darum geht, Grafiken zu
generieren. Du findest die Entwicklungsumgebung ftr die Pro-
grammiersprache Processing auf der Internetseite http://processing.
org/. Das Schone daran ist, dass du, genau wie bei Arduino, ledig-
lich die heruntergeladene Datei in ein Verzeichnis entpacken
musst. Eine Installation ist nicht erforderlich. Was in anderen Pro-
grammiersprachen wie z.B. C/C++ oder C# viel Programmierauf-
wand bedeutet, geht bei Processing locker und flockig von der
Hand. Falls ich dich mit den folgenden Seiten im Buch neugierig
gemacht habe, mochte ich dich auf mein Buch Processing aufmerk-
sam machen, das ebenfalls im O’Reilly Verlag erschienen ist. Dort
findest du viele interessante Beispiele, die ebenfalls in lockerer
Manier prisentiert werden. Damit du siehst, was dich gleich erwar-
tet, mochte ich dir zu Beginn direkt einmal die Ausgabe im Grafik-
fenster von Processing zeigen.

ReadLDRData

Die angezeigten Werte werden stindig aktualisiert, wobei die
Kurve von rechts nach links tiber das Fenster wandert. Aktuelle
Werte werden auf der rechten Seite eingeschoben und alte Werte
verschwinden links aus dem Fenster.

chen Daten untereinander austauschen kénnen?

[Kannst du mir verraten, wie zwei unterschiedliche Programmierspra- }

Dazu wollte ich gerade kommen, Ardus. Es muss also eine gemein-
same Basis geben, die zur Verstindigung untereinander festgelegt
wird. Die serielle Schnittstelle ist dir ja schon ein Begriff. Fast jede
Programmiersprache beherbergt in threm Sprachvorrat Befehle zum
Senden bzw. Abfragen dieser Schnittstelle. In unserem Beispiel gibt

Wir werden kommunikativ

<« Abbildung 12-5
Grafikausgabe der Lichtmengen-
werte im Grafikfenster von
Processing

359

http://processing

360

es einen Sender und einen Empfinger. Die Kommunikation erfolgt
unidirektional, was In-Eine-Richtung bedeutet. Die serielle Schnitt-
stelle ist zwar in der Lage, in beide Richtungen quasi gleichzeitig zu
kommunizieren, doch wir beschrinken uns auf Oneway.

Sender)

Arduino

seriell

J

Das einzige, was dein Arduino-Board tun soll, ist die Messwertauf-
nahme und das Verschicken der Daten iiber die serielle Schnitt-
stelle. Leichter gesagt als getan!? Nein, wirklich nicht, denn die
meiste Rechenarbeit erfolgt auf der Seite von Processing. Doch
gehen wir zunéchst einmal auf die Senderseite ein und schauen uns
an, was Arduino zu tun hat.

Arduino der Sender

Um den Helligkeitswert an die serielle Schnittstelle zu schicken,
benotigst du auf Hardwareseite lediglich den Spannungsteiler mit
LDR und 10K-Festwiderstand, der am analogen Eingang Pin 0
angeschlossen ist. Der Sketch sieht dann folgendermaflen aus:

void setup(){
Serial.begin(9600);
}

void loop(){
Serial.println(analogRead(0));

}

Dann wollen wir mal sehen, was das bisschen Code so macht. In
der setup-Funktion wird die serielle Schnittstelle fiir die Ubertra-
gung vorbereitet. Die ersten Berithrungspunkte mit der objektori-
entierten Programmierung hattest du im Kapitel iiber den
elektronischen Wiirfel das Erstellen einer eigenen Library. Die seri-
elle Schnittstelle wird als ein programmtechnisches Objekt angese-
hen, das sich Serial nennt. Thm stehen einige Methoden zur Seite,
von denen wir jetzt Gebrauch machen wollen.

Projekt 12: Lichtsensoren

Punktoperator

l

Serial.begin(9600);

gy

Objekt Methode

Die Methode zum Initialisieren der Schnittstelle lautet begin und
nimmt einen Wert entgegen, der die Geschwindigkeit der Ubertra-
gung bestimmt. In unserem Fall ist das 9600. Kartoffeln pro Qua-
dratmeter oder was? Nein, es handelt sich um eine Angabe, die die
MaReinheit Baud hat und die Schrittgeschwindigkeit angibt. 1
Baud bedeutet 1 Zustandsidnderung / Sekunde. Fiir nihere Infor-
mationen verweise ich auf die Fachliteratur bzw. das Internet. Die
zweite Methode, die wir verwenden mochten lautet println. Sie sen-
det den ihr iibergebenen Wert an die serielle Schnittstelle. In unse-
rem kurzen Sketch ist es der Wert des analogen Pins 0. Die Abfrage
des analogen Pins und die Ubertragung an die Schnittstelle erfolgt
kontinuierlich innerhalb der loop-Funktion.

Achtung
Damit eine erfolgreiche Kommunikation zwischen Sender und
Empfanger stattfinden kann, muss bei beiden Stationen die
gleiche Ubertragungsrate eingestellt sein.

Du kannst die Ubertragung der ermittelten Werte in Echtzeit mit-
verfolgen, im einfachsten Fall, indem du den Serial Monitor der
Entwicklungsumgebung 6ffnest.

[¥] Autoscroll Na line ending v | |9600baud |

<« Abbildung 12-6
Ausgabe der Daten im Serial
Monitor

Wir werden kommunikativ

361

362

Natiirlich funktioniert das auch mit jedem anderen Terminalpro-
gramm, das Zugriff auf die serielle Schnittstelle erhilt. Achte auch
hier auf die korrekte Einstellung der Ubertragungsrate, die du in
der rechten unteren Ecke des Fensters vornehmen kannst.

Processing der Empfanger

Kommen wir jetzt zum eigentlichen Programm, das die Hauptauf-
gabe tibernimmt, ndmlich uns die empfangenen Werte grafisch dar-
zustellen. Der Code ist etwas umfangreich und wer sich
eingehender mit ihm auseinandersetzen mochte, den verweise ich
auf mein schon erwihntes Buch iiber Processing. Dennoch méchte
ich dir eine kurze Beschreibung liefern, damit du nicht ganz im
Regen stehst.

import processing.serial.*;

Serial meinSeriellerPort;
int xPos = 1;

int serialValue;

int[] yPos;

void setup(){
size(400, 300);
println(Serial.list());
meinSeriellerPort = new Serial(this, Serial.list()[0], 9600);
meinSeriellerPort.bufferUntil('\n");
// set inital background
background(0);
yPos = new int[width];

}

void draw(){
background(0);
stroke(255, 255, 0, 120);
for(int i=0; i < width; i+=50)
line(i, 0, i, height);
for(int i=0; i < height; i+=50)
line(o0, i, width, 1i);

stroke(255, 0, 0);

strokeWeight(1);

int yPosPrev = 0, xPosPrev = 0;
println(serialValue);

// Arraywerte nach links verschieben
for(int x = 1; x < width; x++)

Projekt 12: Lichtsensoren

yPos[x-1] = yPos[x];
// Anhdngen der neuen Mauskoordinate
// am rechten Ende des Arrays
yPos[width - 1] = serialValue;
// Anzeigen des Arrays
for(int x = 0; x < width; x++){

if(x »0)
line(xPosPrev, yPosPrev, x, yPos[x]);
xPosPrev = x; // Speichern der letzten x-Position

yPosPrev = yPos[x]; // Speichern der letzten y-Position
}
}

void serialEvent(Serial meinSeriellerPort){

String portStream = meinSeriellerPort.readString();

float data = float(portStream);

serialvalue = height - (int)map(data, 0, 1023, 0, height);
}

In Processing gibt es ebenfalls zwei Hauptfunktionen, die denen
von Arduino gleichen:

Arduino 4 . Processing

v

Die setup-Funktion wird in Processing ebenfalls einmalig zu Beginn
des Sketch-Starts aufgerufen und dient zum Initialisieren von Vari-
ablen. Bei der draw-Funktion handelt es sich genau wie bei der
loop-Funktion in Arduino um eine Endlosschleife, die ihre Bezeich-
nung dem Umstand schuldet, dass sie zum Zeichnen (engl: dra-
wing) der grafischen Elemente im Ausgabefenster genutzt wird.
Bevor du in Processing die serielle Schnittstelle ansprechen kannst,
musst du mit der Zeile

import processing.serial.*;

ein Paket der Sprache Java importieren. Ja, du hast richtig gehort!
Processing ist eine Java-basierte Sprache, im Gegensatz zu Arduino,
wo es um C bzw. C++ geht. Beide Sprachen haben aber eine sehr
dhnliche Syntax und deswegen fillt das Programmieren in Proces-

<« Abbildung 12-7
Der direkte Vergleich der beiden
Hauptfunktionen

Wir werden kommunikativ

363

364

sing nicht schwer, wenn du dich mit C bzw. C++ auskennst. Mit
der Zeile

println(Serial.list());

gibt dir Processing eine Liste aller zur Verfiigung stehenden seriel-
len Schnittstellen aus. Die Ausgabe im Nachrichtenfenster sieht bei
mir wie folgt aus:

Sie zeigt an, dass zwei serielle Ports zur Verfiigung stehen. Da Ardu-
ino auf dem ersten Port COM3 arbeitet und den Listeneintrag [0]
besitzt, trage ich diesen Index in der darauffolgenden Zeile ein:

meinSeriellerPort = new Serial(this, Serial.list()[0], 9600);

Es wird dadurch ein neues serielles Objekt generiert, das in Proces-
sing mit dem Schliisselwort new instanziiert wird. Du siehst, dass
auch hier der Wert 9600 auftaucht, der mit dem Wert im Arduino-
Sketch korrespondieren muss. In der draw-Funktion werden nun
alle grafischen Elemente wie das Hintergrundraster und die Kurve
gezeichnet. In der serialEvent-Funktion laufen die tibermittelten
Werte des Arduino auf und werden in der Variablen serialValue
gespeichert. Diese Variable wird in der draw-Funktion zum Zeich-
nen der Kurve genutzt.

Achtung

Wenn du ein Terminalprogramm wie z.B. des Serial-Monitor
gedffnet hast, um dir die Werte anzeigen zu lassen, die Arduino
verschickt, dann bekommst du Probleme, wenn du gleichzeitig
in Processing die grafische Anzeige der Werte starten moch-
test. Der entsprechende COM-Port wurde durch das Terminal-
programm exklusiv gesperrt und dadurch ist kein weiterer
Zugriff durch ein anderes Programm maoglich. Schliel3e also
ggf. vorher dein Terminalprogramm, bevor du Processing mit
der Auswertung der Daten startest.

Troubleshooting

Falls die einzelnen LEDs keine Reaktion auf Lichtverhiltnisinde-
rungen zeigen oder spiter im Ausgabefenster von Processing bei
unterschiedlichen Lichtverhiltnissen keine Verianderung des Kur-
venverlaufs zu beobachten ist, kann das mehrere Griinde haben:

Projekt 12: Lichtsensoren

e Uberpriife bei deiner Steckverbindungen auf dem Breadboard,
ob sie wirklich der Schaltung entsprechen.

* Achte auf etwaige Kurzschliisse untereinander.
* Haben die Widerstinde die korrekten Werte?
* Wurden alle LEDs korrekt gepolt?

¢ Uberpriife noch einmal den Sketch-Code auf Arduino- und auf
Processingseite auf Richtigkeit.

* Offne den Serial-Monitor der Arduino-IDE, um dich zu verge-
wissern, dass auch bei unterschiedlichen Lichtverhiltnissen
abweichende Werte an die serielle Schnittstelle tibergeben wer-
den. Im Processing-Code kannst du der draw-Funktion die
Zeile println(serialValue) hinzufiigen, damit die (hoffentlich
empfangenen) Werte ebenfalls im Nachrichtenfenster von Pro-
cessing angezeigt werden.

¢ Achte darauf, dass die verwendete serielle Schnittstelle nicht
durch einen anderen Prozess blockiert wird und nur Processing
darauf zugreift.

Was hast du gelernt?

* Du hast gelernt, wie man einen analogen Eingang mit dem
Befehl analogRead abfragt, an den ein lichtempfindlicher
Widerstand (LDR) angeschlossen ist.

* Ein Spannungsteiler dient dazu, eine angelegte Spannung in
einem bestimmten Verhiltnis aufzuteilen. Diese Eigenschaft
haben wir dazu genutzt, dem analogen Fingang eine von der
Lichtstirke abhingige Spannung zuzufiihren.

* Du hast geschen, wie du iiber die serielle Schnittstelle Daten
zwischen zwei Programmen austauschen kannst. Der Sender
war hier das Arduino-Board und der Empfinger ein Proces-
sing-Sketch, der die empfangenden Daten visuell in Form eines
Kurvenverlaufes dargestellt hat.

Workshop

Entwickle einen Arduino-Sketch, der z.B. beim Erreichen eines
bestimmten Schwellenwertes alle angesprochenen LEDs regelmai-
Rig blinken ldsst, um dir zu signalisieren, dass jetzt ein kritischer
Zustand erreicht ist und du Sonnencreme mit Lichtschutzfaktor
75+ auftragen musst.

Wir werden kommunikativ

365

Projekt
Der Richtungsdetektor

Scope

In diesem Experiment behandeln wir folgende Themen:

* Lichtmengenmessung iiber zwei lichtempfindliche Wider-
stinde (LDRs)

* Abfragen zweier analoger Einginge mit dem Befehl
analogRead ()

* Der komplette Sketch

* Analyse des Schaltplans

* Aufbau der Schaltung

* Kommunikation mit Processing
* Workshop

Der Richtungsdetektor

Dieses Kapitel baut auf das vorangegangene auf und du du solltest
dieses daher nach Maoglichkeit zuerst durcharbeiten. Wir wollen
jetzt zwei lichtempfindliche Widerstinde so anordnen, dass sie sich
auf horizontaler Ebene in einem bestimmten Abstand voneinander
befinden, wie du du es in der folgenden Grafik sehen kannst.

LDR 1 LDR 2

367

Abbildung 13-1

Die Lichtquelle befindet sich genau

zwischen LDR 1 und LDR 2

Abbildung 13-2 -

Die Lichtquelle befindet sich in
geringerem Abstand zu LDR 1 als zu

368

LDR2.

Du fragst dich jetzt bestimmt, was diese Anordnung zu bedeuten hat.
Ganz einfach: Ich mochte eine Lichtquelle, wie z.B. eine Taschen-
lampe, an den beiden LDRs vorbeibewegen und diese Bewegung soll
in einem Processing-Fenster sichtbar gemacht werden. Was bedeutet
das fiir das Widerstandsverhalten der einzelnen LDRs? Schauen wir
uns die Sache einmal genauer an. Wir haben schon gesehen, dass der
Widerstand eines LDR immer weiter abnimmt, je mehr Licht darauf
tallt. Spielen wir einfach mal ein paar markante Szenarien durch.

Fall 1

Im ersten Beispiel befindet sich die Lichtquelle in einer bestimmten
Entfernung genau zwischen den bei beiden LDRs. Das bedeutet,
dass beide genau die gleiche Lichtmenge empfangen und beide
ungefihr den gleichen Widerstand aufweisen miissten. Durch Bau-
teiltoleranzen verhalten sich zwei identische LDRs aber nicht
immer gleich. Das ist jedoch fiir unsere Schaltung erst einmal nicht
weiter von Bedeutung,.

LDR 1 LDR 2

Wir kénnen deshalb Folgendes feststellen:

Ripr1= Ripr2

Fall 2

Im zweiten Beispiel befindet sich die Lichtquelle in geringerer
Entfernung zu LDR 1 als zu LDR 2. Das bedeutet, dass LDR 1 eine
groflere Lichtmenge empfingt als LDR 2 und er dementsprechend
einen kleineren Widerstand aufweist als sein Nachbar, der hier zu
seiner Rechten positioniert wurde.

LDR 1 LDR 2

g =

Projekt 13: Der Richtungsdetektor

Wir kénnen deshalb Folgendes feststellen:

Ripr1 < Ripr2

Fall 3

Im dritten Beispiel befindet sich die Lichtquelle in einer geringeren
Entfernung zu LDR 2 als zu LDR 1. Das bedeutet, dass LDR 2 eine
groflere Lichtmenge empfingt als LDR 1 und er dementsprechend
einen kleineren Widerstand aufweist als sein Nachbar, der hier zu
seiner Linken positioniert wurde.

LDR 1 LDR 2

Wir kénnen deshalb Folgendes feststellen:

Ripr1 > Ripr2

Um dich nicht zu lange auf die Folter zu spannen, zeige ich dir
gleich das Ausgabefenster in Processing. Da macht das Zusammen-
spiel von Arduino und Processing richtig Spaf, denn ermittelte
Messwerte sind sofort sichtbar und Anderungen zeigen unmittelbar
ihre Auswirkung.

Ich zeige dir mal den Versuchsaufbau mit den beiden LDRs. Sie
wurden auf eine kleine Lochrasterplatine im seitlichen Abstand von
3 c¢m gelotet. Natiirlich kannst du du sie auch auf dem Breadboard

<« Abbildung 13-3

Die Lichtquelle befindet sich in
geringerem Abstand zu LDR 2 als zu
LDR 1.

A Abbildung 13-4
Anzeige der Lichtquellenpositionen
in Processing

Der Richtungsdetektor

369

positionieren, wie du du das spiter auch in einer anderen Abbil-
dung sehen wirst.

Abbildung 13-5 p
Die beiden LDRs auf einer
Lochrasterplatine

Bendétigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

Benétigte Bauteile

2xdie gleiche LDR

— 2 x Widerstand 70K

/\ Mehrere flexible Steckbriicken in unterschiedli-
chen Farben und Léngen

Bevor du du hier weiter machst, habe ich eine kurze Frage: Wenn ich
das richtig sehe, miissen bei diesem Versuchsaufbau zwei Sensor-

werte verarbeitet und auch an Processing tibertragen werden. Wie
funktioniert das mit der seriellen Schnittstelle? Werden diese beiden
Werte nacheinander tibertragen und wie kann Processing diese unter-
scheiden?

Die Uberlegungen, die du du anstellst, sind recht gut, Ardus' Du
liegst vollkommen richtig, wenn du erkennst, dass zwei voneinan-
der unabhiingige Sensorwerte verarbeitet werden miissen. Aber es
wird trotzdem lediglich nur ein Wert an Processing geschickt. Das
klingt vielleicht etwas seltsam, doch es wird dir gleich ganz klar
sein.

370 Projekt 13: Der Richtungsdetektor

Arduino-Sketch-Code

int analogWertPino;
int analogWertPini;

void setup(){
Serial.begin(9600);
}

void loop(){
int messwert;
analogWertPin0o = analogRead(0);
analoghertPinl = analogRead(1);
messwert = analogWertPini - analogWertPino;
Serial.println(messwert);

}

Arduino-Code-Review

Fiir unser Experiment benotigen wir programmtechnisch die fol-
genden Variablen:

Variable Aufgabe

analogWertPin0 Speichert den Sensorwert von LDR 1
analogWertPin1 Speichert den Sensorwert von LDR 2

messwert Differenz von analogWertPin1 bzw. analogWertPin0

Wenn du dir den Code anschaust, dann wirst du sofort sehen, dass
lediglich ein einziger Wert an die serielle Schnittstelle tibertragen
wird. Es wird die Differenz beider analoger Einginge gebildet und
das Ergebnis tibertragen. Doch wie soll das funktionieren. Die ent-
scheidende Zeile diese:

messwert = analogWertPinl - analogWertPino;

Sehen wir uns dazu die folgende Tabelle an, in der ich wieder die
einzelnen Szenarien zusammengetragen habe:

Lichtquelle Widersténde Spannungen Differenz
Links Rior1 <Riprz Urpr1 < Uppra >0
Mittig Rior1 =Ripr2 Uior = Uipr2 =0
Rechts Rio1 > Riora Utprt > Uiprz <0

Der Richtungsdetektor

« Tabelle 13-1
Bendtigte Variablen und deren
Aufgabe

« Tabelle 13-2
LDR-Szenarien (idealisiert)

3N

Wir sehen, dass man anhand der ermittelten Differenz sofort erken-
nen kann, wo sich eine Lichtquelle in Bezug auf die beiden LDRs

befindet.

Der Schaltplan

Dem Schaltplan kannst du entnehmen, dass wir mit zwei separaten
Spannungsteilern arbeiten, die unabhingig voneinander ihre Werte
an zwei analoge Eingénge iibermitteln.

Abbildung 13-6
Die Schaltung fiir die Lichtmengen-
messung iiber zwei LDRs

Arduino

PWM
PWM
PWM

1

L

[0r 7]
P P

PWM
PWM

vec

Digital 1/0
PrrkERPRRREERE

PWM

{I0K}
R
| 10K]

Analog IN

-

GHD

Schaltungsaufbau

Abbildung 13-7 »
Aufbau der Sensorenschaltung mit
Fritzing

= PuRg

Arduino

372 Projekt 13: Der Richtungsdetektor

Auf dem Breadboard befinden sich auf der rechten unteren Seite die
zwei LDRs zur Aufnahme der Lichtmengen.

<« Abbildung 13-8
Der Aufbau der Lichtsensoren-
schaltung

EEEEsEEEREEEEEE
e e e e e e e

Wir werden wieder
kommunikativ

Machen wir wieder den Schwenk zu Processing. Wie kénnen wir
mit dem Differenzwert jetzt die Grafikausgabe bzw. den roten senk-
rechten Balken ansteuern? In Processing gehort es zu den einfachs-
ten Ubungen, einen senkrechten Balken zu positionieren. Wollen
wir doch mal sehen, wie das denn funktioniert. Doch zunichst der
komplette Code:

import processing.serial.*;
Serial meinSeriellerPort;
int LDRMessung, xPos;

void setup(){
size(321, 250); smooth();
println(Serial.list());
meinSeriellerPort = new Serial(this, Serial.list()[0], 9600);
meinSeriellerPort.bufferUntil('\n");

}

void draw(){
background(0);
zeichneRaster();
stroke(255, 0, 0); strokeWeight(3);
xPos = width / 2 + LDRMessung * 2;

Wir werden wieder kommunikativ 373

374

line(xPos, height / 2 - 10, xPos, height / 2 + 10);
}

void zeichneRaster(){
int h = 20;
stroke(255, 255, 0); strokeWeight(1);
line(0, height / 2, width, height / 2);
for(int i = 0; 1 <= width; i += 20){
if(i == width / 2) h = 20;
else h = 5;
line(i, height / 2 - h, i, height / 2 + h);
}
}

void serialEvent(Serial meinSeriellerPort){
String portStream = meinSeriellerPort.readString();
float data = float(portStream);
LDRMessung = (int)map(data, 0, 1023, 0, width);

}

Die fiir das Zeichnen der vertikalen Linie verantwortlichen Code-
zeilen befinden sich in der draw-Funktion und lauten wie folgt:

xPos = width / 2 + LDRMessung * 2;
line(xPos, height / 2 - 10, xPos, height / 2 + 10);

Die Variable xPos wird wie folgt berechnet

Die Systemvariable width von Processing (sie wird automatisch
gesetzt) beinhaltet immer die aktuelle Pixel-Breite des Ausgabefens-
ters. Ich dividiere diesen Wert durch 2, damit die senkrechte Linie
horizontal gesehen erst einmal genau in der Mitte des Fensters posi-
tioniert wird. Im Anschluss wird der seitens Arduino iibertragene
Wert, der sich in der Variablen LDRMessung befindet, zu dieser
Position hinzuaddiert. Der Faktor 2 erhoht hierbei die dargestellte
Empfindlichkeit. Spiele ein wenig mit diesem Wert, um die jeweili-
gen Auswirkungen zu sehen.

rechts wandert?

{ Wie kommt es aber, dass der Balken mal nach links und mal nach]

Nun Ardus, da der Wert der Variablen LDRMessung sowohl nega-
tiv als auch positiv sein kann, wird er von der Variablen xPos abge-
zogen oder zu ihr hinzuaddiert, und dadurch kommt es zu einer
Richtungsidnderung. Abschlieffend noch ein kleiner Tipp, wie du
das Verhalten der beiden lichtempfindlichen Widerstinde vielleicht

Projekt 13: Der Richtungsdetektor

positiv beeinflussen kannst: Im Moment befinden sich beide LDRs
direkt nebeneinander. Trenne sie doch einfach mal durch eine
kleine Platte voneinander und beobachte, was geschieht. Soweit so
gut. Du darfst gespannt sein auf einer der nichsten Versuchsauf-
bauten, denn wir wollen einen Richtungsdetektor entwickeln, der
sich auf einem drehbaren Untersatz befindet. Wandert die Licht-
quelle vor den beiden LDRs, dann werden diese sich neu positio-
nieren, und zwar so, dass sich die Lichtquelle wieder genau
zwischen ithnen befindet. Doch bis wir soweit sind, miissen wir uns
noch mit anderen Themen beschiftigen, die wir als Grundlage fiir
diese Schaltung bendtigen. Du kannst gespannt sein!

Troubleshooting

Wenn im Ausgabefenster von Processing keine Positionsinderung
des vertikalen Balkens bei unterschiedlichen Lichtverhiltnissen
erfolgt, kann das mehrere Griinde haben:

* Uberpriife deine Steckverbindungen auf dem Breadboard, ob
sie wirklich der Schaltung entsprechen.

* Achte auf etwaige Kurzschliisse untereinander.

e Haben die Widerstinde die korrekten Werte und hast du zwei
gleiche LDRs verwendet?

¢ Uberpriife noch einmal den Sketch-Code auf Arduino- und auf
Processingseite auf seine Richtigkeit.

* Achte darauf, dass die serielle Schnittstelle nur von Processing
genutzt und nicht durch einen anderen Prozess blockiert wird.

* Wandert der Balken in Processing immer in die der Lichtquelle
entgegengesetzte Richtung, dann vertausche die Anschliisse
der beiden LDRs.

Workshop

Passe den Processing-Code so an, dass sich die Farbe des senkrech-
ten Balkens in Abhingigkeit von dessen Position dndert. Im zen-
trierten Bereich soll er z.B. die Farbe Rot haben. Wandert er weiter
nach links bzw. nach rechts, so idndert sich sein Aussehen iiber
Gelb bzw. Griin in Blau. Definiere bestimmte Positionsbereiche,
um die einzelnen Farbwechsel zu ermoglichen. Die Farbe wird iiber
den Befehl stroke eingestellt.

Wir werden wieder kommunikativ

375

376

»

\
J

Das konnte wichtig fiir dich sein
Hier ein paar Begriffe fur die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

Processing
Processing stroke

Processing Farbe

Projekt 13: Der Richtungsdetektor

Projekt

Die Ansteuerung eines l 4
Servos

Scope

In diesem Experiment behandeln wir folgende Themen:

* Was genau ist ein Servo?

* Wie kannst du ihn ansteuern?
* Der komplette Sketch

* Analyse des Schaltplans

* Aufbau der Schaltung

* Workshop

Der Servo

Modellflugzeuge oder auch Modellschiffe besitzen zur Steuerung der
unterschiedlichsten Funktionen wie z.B. Geschwindigkeit oder Kurs
kleine Servos. Es handelt sich dabei meist um kleine Gleichstrommo-
toren, die mit drei Anschliissen versehen sind und deren Stellposition
iiber die uns schon bekannte Pulsweitenmodulation PWM gesteuert
wird. Die Schaltung, die wir gleich aufbauen werden, steuert die
Position des Servos iiber ein angeschlossenes Potentiometer.

<« Abbildung 14-1
Ein Servo(-Motor)

377

Abbildung 14-2 p

Servoposition zeigt 0° bei einer

Servoposition zeigt 90° bei einer

378

Pulsdauer von Tms.

Abbildung 14-3

Pulsdauer von 1,5ms.

Hier ein paar Grundlagen, damit du die Ansteuerung besser ver-
stehst. Uber die Linge des Pulses wird der gewiinschte Winkel
angesteuert, wobei ich betonen muss, dass Servos in der Regel nicht
wie z.B. Motoren 360°-Drehung austithren konnen. Thr Wirkungs-
bereich beschrinkt sich von 0° bis 180°. Die Periodendauer einer
Schwingung betrigt konstant T = 20ms. Die entsprechende Fre-
quenz berechnet sich wie folgt:

1 1
f=—= =50 Hz
T 0,02s

Das einzige, was sich idndert, ist die Pulsbreite, die sich zwischen
Ims (rechter Anschlag) und 2ms (linker Anschlag) bewegen muss.
Nachfolgend siehst du drei Servo-Positionen mit den entsprechen-
den Ansteuerungssignalen. Im ersten Beispiel mit einer Pulsbreite
von Ims positionieren wir den Servo am rechten Anschlag.

20ms .

Tms

Im zweiten Beispiel mit einer Pulsbreite von 1,5ms wird der Servo
in der Mittelstellung positioniert.

_ 20ms S

1,5ms

Im dritten Beispiel mit einer Pulsbreite von 2ms wird der Servo am
linken Anschlag positioniert.

Projekt 14: Die Ansteuerung eines Servos

< 20ms _

Aufgrund der unterschiedlichen Servotypen kénnen abweichende
Werte vorkommen, doch das Prinzip ist immer das gleiche. Du
brauchst dir nicht weiter den Kopf dariiber zu zerbrechen, wie du
denn deinen Servo mit welchen Werten ansteuern musst, denn die
Arbeit haben sich schon andere Entwickler gemacht. Genau, es gibt
dafiir eine fertige Library, die du nutzen kannst. Wihle iiber das
entsprechende Menti Sketch|Import Library... den Eintrag fiir den
Servo aus.

Bendtigte Bauteile

Fiir dieses Beispiel benétigen wir die folgenden Bauteile:

Benétigte Bauteile

— 1x Servo (z.B. von Modelcraft Typ RS-2)

1x Potentiometer (z.B. 70K)

/‘\\ Mehrere flexible Steckbriicken in unterschiedli-
chen Farben und Langen

<« Abbildung 14-4

Servoposition zeigt 180° bei einer

Pulsdauer von 2ms.

Der Servo

379

380

Tabelle 14-1 p
Bendtigte Variablen und deren
Aufgabe

Arduino-Sketch-Code

#include <Servo.h>

Servo meinServo; // Servo-Objekt
int analogPin = 0; // Analoger Pin
int potentiometerWert; // Speichert Potentiometerwert

void setup(){
meinServo.attach(9); // Objekt mit Pin 9 verbinden
Serial.begin(9600); // Serielle Schnittstelle initialisieren

}

void loop(){
potentiometerWert = map(analogRead(analogPin), 0, 1023, 0, 179);
Serial.println(potentiometerWert); // Ausgabe des Wertes
meinServo.write(potentiometerWert); // Servo ansteuern
delay(20); // Eine kurze Pause

}

Eine kurze Frage: Warum benétigen wir als letzten Befehl in der loop-
Funktion einen delay-Befehl?

Nun, Ardus, da es sich bei einem Servo um ein elektro-mechani-
sches Bauteil handelt, das erst nach einer gewissen Zeit seine
gewiinschte Position angefahren hat, ist es ratsam, ihn erst nach
einer kurzen Pause mit einem neuen Steuerkommando zu versor-
gen.

Arduino-Code-Review

Fiir unser Experiment bengtigen wir programmtechnisch gesehen
die folgenden Variablen:

Variable Aufgabe

meinServo Das Servo-Objekt
analogPin Analoger Pin fiir den Potentiometeranschluss
potentiometerWert Speichert den Potentiometerwert

Zu Beginn mochte ich dir das Servo-Objekt vorstellen. Es stellt dir
eine bestimmte Anzahl von Methoden mit den unterschiedlichsten
Funktionen zur Verfiigung, die du fiir deine Sketches nutzen
kannst, um mit dem Servo zu kommunizieren. Dann wollen wir
mal sehen:

Projekt 14: Die Ansteuerung eines Servos

detach()

attached()

write()

Das sind ja eine ganze Menge und deshalb werde ich nur auf die im
Moment wichtigsten genauer eingehen. In der setup-Funktion miis-
sen wir das Servo-Objekt dahingehend initialisieren, dass bekannt
ist, an welchem Pin dein Servo angeschlossen ist. Das muss auf
jeden Fall einer der PWM-Pins sein, die bekannter Weise auf den
digitalen Ein- bzw. Ausgidngen liegen. Ich habe mich far Pin 9 ent-
schieden.

meinServo.attach(9);

Die attach-Methode (attach bedeutet (ibersetzt anschlieflen) ist ver-
antwortlich fiir das programmtechnische Verbinden des Servo-
Objektes mit dem Arduino-Pin. Der nichste Schritt ist dir schon
wohlvertraut. Es geht um die Abfrage des analogen Pins 0, an dem
das Potentiometer angeschlossen ist, und die Ubergabe dieses Wer-
tes an die map-Funktion.

potentiometerhWert = map(analogRead(analogPin), 0, 1023, 0, 179);

Da der Servo einen Aktionsradius von 180° hat, muss der gemes-
sene Wert des analogen Eingangs, der sich im Bereich von 0 bis
1023 bewegen kann, heruntergerechnet werden.

—>1023

179

Spannung am .)
analogen Pin Mappmg Servo-Winkel

<« Abbildung 14-5
Methoden des Servo-Objektes

Der Servo

382

Tabelle 14-2 p
Methoden des Servo-Objekts

Abbildung 14-6 »
Die Ansteuerung eines Servos

Im Anschluss wird der neu berechnete Potentiometerwert als Argu-
ment an die write-Methode des Servo-Objektes iibergeben und
damit die neue Stellposition angefordert.

meinServo.write(potentiometeriWert);

Der Servo fiahrt unmittelbar nach Erhalt dieses Befehls an die neue
Position. Die restlichen Methoden mdchte ich kurz erliutern.

Methode Erklarung

detach() Der zuvor iiber attach() belegte Pin wird wieder freigeben.
attached() gibt den Wert wahr zuriick, wenn der Pin mit attach belegt wurde.

read() gibt den aktuellen Servo-Positionswert zuriick, der mit write geschrieben wurde.

Nihere Informationen findest du auf der Internetseite von Arduino.

Der Schaltplan

Die Schaltung ist recht einfach und besteht lediglich aus unserem
Arduino-Board, einem Potentiometer und dem Servo. Drehst du
am Potentiometer, soll der Servo die gleiche Bewegung mitmachen.

Arduino
PWM
PWM [——=
O PwN
=
=
vee =y
GND o PWM
PWM
Analog IN
ml-rlmlf\ll -—tlc
(4]
1 3

Patentiometer

Projekt 14: Die Ansteuerung eines Servos

Schaltungsaufbau

<« Abbildung 14-7
Aufbau der Servoschaltung mit
Fritzing

Potentiometer 4—|_ M

Auf dem Breadboard befinden sich lediglich die Anschliisse des Ser-
vos bzw. Potentiometers.

<« Abbildung 14-8
Der Aufbau der Servoschaltung

Fiir diese Schaltung habe ich einen alten Potentiometer mit Dreh-
knopf aus einem alten Radio ausgebaut und direkt ein paar
Anschlussdrihte angelotet. Im Kapitel tiber das Zusammenfiigen
der Bauteile hast du schon erfahren, wie du dir ganz einfach selbst
ein paar flexible Steckbriicken herstellen kannst. Auf meiner Inter-
netseite findest du den Link zu einem Video, dass dir die einzelnen

Der Servo 383

Schritte besser zeigen, als ein paar Bilder hier im Buch. So habe ich
z.B. auch diesem Potentiometer ein paar Strippen verpasst.

Hier noch zwei Tipps zur Steckverbindung des Servos.

Tipp 1 (Steckleiste anl6ten)

&l

original modifiziert

}

Auf der linken Seite siehst du eine 3-poligen Buchse, die du in die-
ser Form nicht direkt mit dem Breadboard verbinden kannst. Auf
der rechten Seite ist die von mir angelétete 3-polige Stiftleiste abge-
bildet. diese Leiste lisst sich nun wunderbar auf das Breadboard
stecken.

Tipp 2 (Adaptersteckleiste herstellen)

Anschlusspins
sind zu kurz!

384 Projekt 14: Die Ansteuerung eines Servos

| | Anschlusspins
" nach unten
schieben.

Wenn du dir z.B. eine 40-polige Stiftleiste besorgst, die ein Raster-
mafd von 2,54 mm hat, dann trenne mit einem Seitenschneider oder
mit den Fingern vorsichtig 3 Stifte als einen zusammenhéngenden
Block ab. Diese kleine Stiftleiste soll als Adapter dienen, um ihn in
die Buchsenleiste des Servos zu stecken. Auf diese Weise konntest
du jetzt versuchen, den Anschluss auf dein Breadboard zu stecken.
Doch halt! Die Anschlusslingen der Pins sind zu kurz und finden
keinen Halt auf dem Board. Doch das stellt keine Hiirde fiir uns
dar. Nimm dir einfach eine kleine Spitz- oder Flachzange, wie ich
sie im Kapitel iiber niitzliches Equipment vorgestellt habe (Num-
mer 2 oder 3 der diversen Zangen) und schiebe vorsichtig einen Pin
nach dem anderen in Richtung des kiirzeren Endes, so dass nach-
her auf beiden Seiten die Enden gleich lang sind. Auf dem Bild
siehst Du, dass ich bereits einen Pin in die richtige Richtung
geschoben habe. Das geht recht einfach, da die Stifte lediglich im
Plastik stecken und keine richtig feste Verbindung besteht. Falls du
vielleicht einen anderen Servo als den von mir oben angegebenen in
deiner Krabbelkiste hast, kann es sein, dass die Farben der einzel-
nen Kabel nicht mit den hier gezeigten iibereinstimmen. Es gibt
Servos, bei denen die PWM-Signalleitung statt orange vielleicht
gelb oder weild ist. Es schadet also nicht, vorher einmal einen Blick
auf das Datenblatt des Servos zu werfen, das sicherlich im Internet
zu finden ist.

Das kdnnte wichtig fiir dich sein
Hier ein paar Begriffe fiir die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

Servo

Servomotoren

Troubleshooting

Falls der Servo sich nicht oder sich immer in die falsche Richtung
im Hinblick auf den Potentiometers dreht, kann das mehrere
Griinde haben:

* Uberpriife bei deinen Steckverbindungen auf dem Bread-
board, ob sie wirklich der Schaltung entsprechen.

* Achte auf etwaige Kurzschliisse untereinander.

e Hat der Servo die hier beschriebenen Anschluss-Kabelfarben
oder weichen sie eventuell ab? Studiere das Datenblatt des ver-
wendeten Servos.

Der Servo

385

386

Was hast du gelernt?
* In diesem Kapitel bist du mit den Grundlagen eines Servos ver-
traut gemacht worden.
* Du hast die Ansteuerung itber ein PWM-Signal kennengelernt.

* Du hast zum Betrieb des Servos die Servo-Library und ihre Mit-
glieder benutzt.

Workshop

Positioniere eine Lichtquelle auf einem Servo und lasse ihn wie ein
Leuchtfeuer von links nach rechts und umgekehrt schwenken. In
der folgenden Abbildung siehst du eine LED-Mini-Taschenlampe,
die ich mit zwei Drahtschleifen auf dem Servo befestigt habe.

Diese kleine Taschenlampe passt wegen ihrer geringen Grofle wun-
derbar auf den Servo.

Achtung
Verwende unter keinen Umstdnden einen Laserpointer, denn
wenn der Servo sich einmal bewegt, dann hast du ihn nicht
unter deiner direkten Kontrolle und er kénnte dir oder jemand
anderem in die Augen strahlen. Das wére wegen der Gefahr fur
die Augen nicht akzeptabel!

Projekt 14: Die Ansteuerung eines Servos

Das Lichtradar

Scope

In diesem Experiment befassen wir uns mit folgenden Themen:

Ansteuerung eines Servos iiber zwei LDR

Drehung des Servos in Richtung der wandernden Lichtquelle
Der komplette Sketch

Analyse des Schaltplans

Aufbau der Schaltung

Workshop

Das Lichtradar

Du hast im Kapitel tiber den Richtungsdetektor gesehen, wie wir
auf relativ einfache Weise mit zwei LDRs auf eine sich bewegende
Lichtquelle reagieren kénnen. Jetzt wollen wir die zwei Lichtsenso-
ren auf einen Servo montieren, so dass er in der Lage ist, die beiden
Sensoren in dem moglichen Bereich von 180° zu drehen. Bei ent-
sprechender Programmierung kann der Servo dann die Sensoren-
phalanx immer in Richtung der sich bewegenden Lichtquelle

ausrichten.

Projekt

15

387

Abbildung 15-1 p
Auf einer Platine befindliche LDRs
sind mit dem Servo verbunden.

Was konnten wir nun mit der gezeigten Anordnung von Servo +
LDR 1 + LDR 2 alles so anstellen? Du hast doch bestimmt schon
einmal etwas iiber die Funktionsweise eines Radars gehort, oder!?
Radar bedeutet frei tibersetzt Funkortung. In unserem Beispiel
haben wir es aber nicht mit Funkwellen, sondern mit Lichtwellen
zu tun. Unser Aufbau soll in der Lage sein, einer Lichtquelle zu fol-
gen. Wenn du also z.B. eine Taschenlampe vor den beiden Licht-
sensoren bewegst, soll der Servo der Lichtquelle folgen. So
jedenfalls die Theorie. Wir wollen mal schauen, wie wir das in die
Praxis umsetzen konnen. Im Kapitel tiber die Lichtsensoren haben
wir schon einen Richtungsdetektor entwickelt. Er konnte feststel-
len, in welche Richtung sich eine Lichtquelle bewegt. Nach dem
gleichen Prinzip wird jetzt das Lichtsignal dazu verwendet, einen
Servo anzusteuern. Dieser soll sich so lange in eine bestimmte Rich-
tung bewegen, bis die Richtungssensoren melden, dass sie beide die
gleiche Lichtmenge empfangen. Der vorhandene Pappstreifen soll
die beiden LDRs ein wenig voneinander trennen, so dass das Licht
bei der Bewegung jeweils einen der beiden Sensoren mehr beein-
flusst. Experimentiere ggf. ein wenig mit unterschiedlichen Gro-
Ren.

Benotigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

388

Projekt 15: Das Lichtradar

Benotigte Bauteile

1x Servo (z.B. von Modelcraft Typ RS-2)

2xLDR

1 x Pappstreifen (MaBe ca.: 8cm x 3¢m)

2 x Widerstand 70K

1x Stiick einer Lochrasterplatine (MafBe ca.: 5cm
X 3cm)

Mehrere flexible Steckbriicken in unterschiedli-
chen Farben und Léngen

Arduino-Sketch-Code

#include <Servo.h>
#define analogPino 0
#define analogPini 1
Servo meinServo;

int analogWertPino;
int analogWertPini;

Das Lichtradar

389

Tabelle 15-1 p

Benétigte Variablen und deren

390

Aufgabe

int mittelPosition = 90;

int ergebnisMessung = 0;

int messungSample = 0;

int ansprechZeit = 100;

int anzahlMessungen = 10;

unsigned long zeitletzteMessung = 0;

void setup(){
meinServo.attach(9);

}

void loop(){
analoghertPin0 = analogRead(analogPino0);
analogWertPinl = analogRead(analogPin1);
if(millis() - zeitlLetzteMessung > ansprechZeit){
for(int i = 0; i < anzahlMessungen; i++){
int messung = (analogWertPinil - analogWertPin0);
messungSample = messungSample + messung;
}
ergebnisMessung = messungSample/ anzahlMessungen;
meinServo.write(mittelPosition + ergebnisMessung);
zeitletzteMessung = millis();

Arduino-Code-Review

Fuir unser Experiment benotigen wir programmtechnisch gesehen
die folgenden Variablen:

Variable Aufgabe

meinServo Das Servo-Objekt
analogWertPin0 Analoger Wert von Pin 0
analogWertPin1 Analoger Wert von Pin 7
mittelPosition Wert fiir die Mittelposition zwischen 0° und 780°
messung Differenz der Werte analogWertPin1 und analogWertPin0
anzahlMessungen Anzahl der Messungen fiir die Mittelwertbildung
messungSample Aufsummierung aller Messwerte
ergebnisMessung Gemittelter Wert der einzelnen Messungen
ansprechZeit Zeitpunkt, zu dem die ndchste Messung erfolgen soll
zeitLetzteMessung Zeitwert, wann letzte Messung stattfand

Die Zeilen

analogWertPino = analogRead(analogPino);
analogWertPini = analogRead(analogPin1);

Projekt 15: Das Lichtradar

lesen die Werte an den beiden analogen Eingangen Pin 0 und Pin 1
und speichern sie in der entsprechenden Variablen. Uber

messung = analogWertPinil - analogWertPino;

wird die Differenz gebildet, die jedoch nicht sofort zur Ansteuerung
genutzt wird. Damit der Servo nicht unmittelbar auf vielleicht gro-
Rere Spriinge reagiert und ins Schwingen gerit, werden zum einen
iiber eine if-Abfrage

if(millis() - zeitletzteMessung > ansprechZeit){ ... }

nur in bestimmten Zeitabstinden Messungen durchgefithrt und
zum anderen mehrere Messungen aufsummiert, um anschlieRend
das arithmetische Mittel zu bilden:

for(int i=0; i<10; i++){
int messung = (analogWertPinl - analogWertPino);
messungSample = messungSample + messung;

}

ergebnisMessung = messungSample/10; // Arithmetisches Mittel bilden

Erst im Anschluss erfolgt die eigentliche Servo-Ansteuerung iiber
die folgende Zeile:

meinServo.write(mittelposition + ergebnisMessung);

Die Variable mittelPosition steuert den Servo in die 90°-Position, um
bei gleichen Werten der beiden LDRs eine Mittelstellung zu gewihr-
leisten. Je nach Lichteinfall wird der Servo nach links bzw. nach
rechts ausgelenkt. Du kennst schon das Verhalten, wenn einer der
beiden LDRs eine grofere Lichtmenge erhilt. Der Wert der Variab-
len messung wird positiv bzw. negativ. Diese Polaritit machen wir
uns zu Nutze und addieren den Wert zur neutralen Mittelposition
hinzu. Das bedeutet wiederum, dass sich der Servo links bzw. rechts
herum bewegt, bis beide LDRs den gleichen Widerstandswert auf-
weisen, was gleiche Lichtmenge fiir beide bedeutet. Der Servo
stoppt. Schauen wir uns doch einfach einmal ein Beispiel an, bei dem
die Lichtquelle zum linken LDR hin verschoben wird.

LDR 1 LDR 2

A
s 03E=n
v

Das Lichtradar

392

Wir kénnen Folgendes festhalten: Ry pr; < Ripra- Was sagt denn
unser Spannungsteiler dazu?

,r_\-.-o—_L L/
utL Bl v

uz | [r2 U2 I:> analoger Eingang Pin 0
Lo

Fillt Licht auf den LDR, dann wird sein Widerstand geringer, was
wiederum bedeutet, dass weniger Spannung an ihm abfillt. Da aber
zwischen LDR und R, immer +5V anliegen, heiflt das, dass an R,
jetzt ein grofleres Spannungspotential anliegt als zuvor. Diese Span-
nung wird dem analogen Eingang zugefiithrt. Wir erinnern uns
noch einmal an die Formel zur Berechnung eines Spannungsteilers:

a
=

N o
o

R,

U= ——— U

Ripr+ Ry
Die folgende Tabelle zeigt Tendenzpfeile fiir die unterschiedlichen
Parameter, wobei die Lichtmenge die GrofRe ist, die von uns verin-
dert wird.

Lichtmenge;pg Ryppg Uipri U Uin o

A~ v Vv 0y 0

So weit, so gut. Wenn der linke LDR (LDR1) mehr Licht abbe-
kommt, muss sich der Servo in diese Richtung drehen, damit auch
der rechte LDR (LDR2) dem Licht zugewandt wird und eine hohere
Lichtmenge erhilt. Wenn beide Potentiale ausgeglichen sind, bleibt
der Servo wieder stehen. Die Berechnung des Winkelwertes erfolgt
iiber folgende Codezeile:

messung = analogWertPinl - analogWertPino;

Fiir unser Beispiel, bei dem mehr Licht auf den linken LDR fillt,
der am analogen Pin 0 angeschlossen ist, bedeutet das eine hohere
Spannung an diesem Pin. Der Wert der Variablen messung wird

Projekt 15: Das Lichtradar

kleiner, weil der Subtrahend groRer wird. Die eigentliche Ubergabe
des angeforderten Winkels erfolgt in der folgenden Zeile:

meinServo.write(mittelPosition + ergebnisMessung);

Dabei wird der Mittelposition der Wert der Variablen ergebnisMes-
sung hinzuaddiert. Bei einem kleineren Wert von ergebnisMessung
wird auch der angeforderte Winkel geringer und der Servo dreht
sich.

Servo-Drehrichtung

Bei einer Verschiebung der Lichtquelle nach rechts bewegen sich
alle genannten Parameter in die entgegengesetzte Richtung.

Der Schaltplan

Die Schaltung ist eine Kombination aus vorangegangenen Experi-
menten mit den Lichtsensoren und dem Servo.

<« Abbildung 15-2
- Die Ansteuerung eines Servos iiber
Arduino 2wei LDRs
PWM
PN 4 # 4
Q pum v BHv
= pwm —
vee =2
GND S Pl
P . %‘]&
Analog IN
l.n[{I’L Ml Nl La =]

GND

Das Lichtradar 393

Abbildung 15-3

Aufbau der Lichtradarschaltung mit

394

Fritzing

Schaltungsaufbau

Troubleshooting

Falls sich der Servo bei sich wechselnden Lichtverhiltnissen nicht
oder in die falsche Richtung dreht, iiberpriife folgende Punkte:

Entsprechen deine Steckverbindungen auf dem Breadboard
wirklich der Schaltskizze?

Gibt es etwaige Kurzschliisse untereinander?

Haben die Widerstinde die korrekten Werte und hast du zwei
gleiche LDRs verwendet?

Ist der Sketch-Code korrekt?

Falls sich der Servo in die falsche Richtung drehen sollte, dann
hast du LDR 1 mit LDR 2 an den analogen Eingingen Pin 0
bzw. Pin 1 vertauscht.

Wenn der Servo anfangen sollte zu oszillieren, sich also stindig
sich von links nach rechts und umgekehrt bewegt, dann bist
du vielleicht mit deiner Lichtquelle zu dicht an den beiden
LDRs. Verdunkle den Raum etwas und entferne dich mit der
Lampe.

Workshop

Was hiltst du davon, wenn du eine Figur aus Pappe baust, hinter
dessen Augen sich die beiden LDRs befinden. Diese Figur, was
immer das auch sein mag, dreht sich dann in die Richtung, in der

Projekt 15: Das Lichtradar

sich eine helle Lichtquelle befindet, oder macht vielleicht ein paar
Bewegungen, wenn jemand das Zimmer betritt und sich die Licht-
verhiltnisse dndern. Das ist doch bestimmt eine nette Spielerei fiir
zu Hause, fiir die Schule oder fiir’s Biiro.

Tipp

Es kann natiirlich vorkommen, dass bei bestimmten Lichtverhailt-
nissen der Servo trotz der Messwertmittelung anfingt zu schwin-
gen. Experimentiere dann ein wenig mit folgenden Werten:

* anzahlMessungen

* ansprechZeit

Das Lichtradar

395

Projekt
16
Siebensegmentanzeige

Scope

In diesem Experiment behandeln wir folgende Themen:

* Ansteuerung einer einzelnen Siebensegmentanzeige
* Der komplette Sketch

* Analyse des Schaltplans

* Aufbau der Schaltung

* Workshop

Die Siebensegmentanzeige

Wenn wir logische Zustinde (wahr bzw. falsch) oder Daten (14, 2.
5, »Hallo User«) in irgendeiner Form visualisieren wollten, miissten
wir fiir den ersten Fall LEDs ansteuern und im zweiten auf den
Serial-Monitor zurtickgreifen. In der Elektronik gibt es neben LEDs
noch weitere Anzeigeelemente, eines davon die Siebensegmentan-
zeige. Wie der Name schon vermuten lisst, besteht diese Anzeige
aus sieben einzelnen Elementen die in einer bestimmten Form
angeordnet sind, um Ziffern und in beschrinktem Mafle auch Zei-
chen darstellen zu kénnen. In der nachfolgenden Abbildung ist der
Aufbau einer solchen Anzeige schematisch dargestellt.

— <« Abbildung 16-1
; U Ub Eine Siebensegmentanzeige
—>
9
d
—>

397

398

Tabelle 16-1 »
Die Ansteuerung der sieben
Segmente

Du kannst erkennen, dass jedes der sieben Segmente mit einem klei-
nen Buchstaben versehen wurde. Die Reihenfolge spielt zwar keine
unmittelbare Rolle, doch die hier gezeigte Form hat sich eingebtir-
gert und wird fast tiberall verwendet. Darum werden wir sie auch
hier in dieser Art und Weise beibehalten. Wenn wir jetzt die einzel-
nen Segmente geschickt ansteuern, konnen wir unsere Ziffern von 0
bis 9 sehr gut abbilden. Es sind auch noch Buchstaben méglich, auf
die wir etwas spidter zu sprechen kommen werden. Du wirst
bestimmt schon vielen dieser Siebensegmentanzeigen im Alltag
begegnet sein, ohne dass du weiter dariiber nachgedacht hast. Du
kannst beim nichsten Stadtbummel ja einmal auf diese Anzeigen
achten. Du wirst schnell realisieren, an wie vielen Stellen sie zum
Einsatz kommen. Hier eine kleine Liste der Einsatzmoglichkeiten.

* Preisanzeige an Tankstellen (Sie zeigen irgendwie immer zu
viel an...)
* Zeitanzeige an manchen hohen Gebiuden
¢ Temperaturanzeige
* Digitaluhren
* Blutdruck-Messgerite
* Elektronische Fieberthermometer
In der folgenden Tabelle wollen wir fiir die zukiinftige Programmie-

rung einmal festhalten, bei welchen Ziffern welches der sieben Seg-
mente angesteuert werden muss.

Anzeige a b 4 d e f g

— 1 1 1 1 1 1 0

-

Ui' 0 1 1 0 0 0 0
lﬂzg 1 1 0 1 1 0 1
U”E', 1 1 1 1 0 0 1
U'Z', 0 1 1 0 0 1 1

Projekt 16: Die Siebensegmentanzeige

Anzeige a b 4 d e f g

—
—

—
I
N
o
—_
N
o
—_
—_

I
— —

_
I
-
o
-
-
-
-
-

I
o —_—

=

]
—_
—_
—_
(=)
(=)
(=)
o

H

__
Il
_

-
-
-
-
-
-
-

:_
I

_1_1 1

-

-

-

-

o

-

-

Der Wert 1 in unserer Tabelle bedeutet nicht unbedingt HIGH-
Pegel, sondern es handelt sich um die Ansteuerung des betref-
fenden Segmentes. Das kann entweder mit dem schon genannten
HIGH-Pegel (+5V inklusive Vorwiderstand) oder auch mit einem
LOW-Pegel (0V) erfolgen. Du fragst dich jetzt bestimmt, wovon
das denn abhingt, denn fiir eine Ansteuerung muss man sich ja
entscheiden. Die Entscheidung wird uns aber durch den Typ der
Siebensegmentanzeige abgenommen. Es gibt hier zwei unter-
schiedliche Ansitze:

¢ Gemeinsame Kathode

¢ Gemeinsame Anode

Bei einer gemeinsamen Kathode sind alle Kathoden der einzelnen
LEDs einer Siebensegmentanzeige intern zusammengefithrt und
werden extern mit Masse verbunden. Die Ansteuerung der einzel-
nen Segmente erfolgt iiber Vorwiderstinde, die entsprechend mit
HIGH-Pegel verbunden werden. Wir verwenden in unserem fol-
genden Beispiel aber eine Siebensegmentanzeige mit einer gemein-
samen Anode. Hier ist es genau andersherum als beim vorherigen
Typ. Alle Anoden der einzelnen LEDs sind intern miteinander ver-
bunden und werden extern mit HIGH-Pegel verbunden. Die
Ansteuerung erfolgt tiber entsprechend dimensionierte Vorwider-
stinde tiber die einzelnen Kathoden der LEDs, die nach auflen
gefithrt werden.

« Tabelle 16-1
Die Ansteuerung der sieben
Segmente

Die Siebensegmentanzeige

399

Siebensegmentanzeige
(gemeinsame An ode?

__,_h___l i \\2 -
.—._1—”;2‘_.—_
.__.l_’g\\%._._

Abbildung 16-2 »
Die Ansteuerung der Siebenseg-
mentanzeige vom Typ SA 39-11 GE

Im hier links gezeigten Aufbau einer Siebensegmentanzeige mit
gemeinsamer Anode werden alle Anoden der einzelnen LEDs im
Betrieb mit der Versorgungsspannung +5V verbunden. Die Katho-
den werden spiter mit den digitalen Ausgingen deines Arduino-
Boards verbunden und entsprechend der eben gezeigten Ansteue-
rungstabelle mit unterschiedlichen Spannungspegeln versorgt. Wir
verwenden in unserem Versuchsaufbau eine Siebensegmentanzeige
mit gemeinsamer Anode des Typs SA 39-11 GE. Ich habe die Pin-
belegung dieser Anzeige einmal in den folgenden Abbildungen auf-
gezeigt.

Pin 3

In der linken Grafik die verwendeten Pins der Siebensegmentan-
zeige zu sehen und in der rechten Grafik ist die Pinbelegung des
verwendeten Typs dargestellt. Die Bezeichnung DP ist tibrigens die
Abkiirzung fir Dezimalpunkt.

Bendtigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

Benétigte Bauteile

1xSiebensegmentanzeige (z.B. Typ SA 39-11 GE
mit gemeinsamer Anode)

ik —— 7 x Widerstand 330

//'\\ Mehrere flexible Steckbriicken in unterschiedli-
chen Farben und Langen

400

Projekt 16: Die Siebensegmentanzeige

Arduino-Sketch-Code

int segmente[10][7] = {{1, 1, 1, 1, 1, 1, 0}, // O
{o, 1, 1, 0, 0, 0, O}, // 1
{1, 1, 0, 1, 1, 0, 1}, // 2
{1, 1, 1, 1, 0, 0, 1}, // 3
{o, 1, 1, 0, 0, 1, 1}, // 4
{1, 0, 1, 1, 0, 1, 1}, // 5
{1, 0, 1, 1, 1, 1, 1}, // 6
{1, 1, 1, 0, 0, 0, O}, // 7
{1, 1, 1, 1, 1, 1, 1}, // 8
{1, 1, 1, 1, 0, 1, 1}}; // 9

int pinArray[] = {2, 3, 4, 5, 6, 7, 8};

void setup(){
for(int i = 0; 1 < 7; i++)
pinMode(pinArray[i], OUTPUT);
}

void loop(){
for(int i = 0; 1 < 10; i++){
for(int j = 0; j < 7; j++)
digitalWrite(pinArray[j], (segmente[i][j]==1)?LOW:HIGH);
delay(1000); // Pause von 1 Sekunde
}
}

Arduino-Code-Review

Fiir unser Experiment benétigen wir programmtechnisch gesehen
die folgenden Variablen:

Variable Aufgabe < Tabelle 16-2

. . . ; ; Bendtigte Variablen und deren
segmente Zweidimensionales Array zur Speicherung der Segmentinformation pro Ziffer Aufgabe

pinArray Eindimensionales Array zur Speicherung der angeschlossenen Pins der Anzeige

Da fiir jede einzelne Ziffer von 0 bis 9 die Informationen iiber die
anzusteuernden Segmente gespeichert sein miissen, bietet sich
sofort ein zweidimensionales Array an. Diese Werte werden in der
globalen Variablen segmente zu Beginn des Sketches gespeichert:

int segmente[10][7] = {{...},

s

Die Siebensegmentanzeige 401

402

Das Array umfasst 10 x 7 Speicherplitze, wobei jedes einzelne iiber
die Koordinaten

segmente[x][y]

angesprochen werden kann. Die x-Koordinate steht fur alle Ziffern
von 0 bis 9 (entspricht 10 Speicherplitzen) und die y-Koordinate
fur alle Segmente a bis g (entspricht 7 Speicherplitzen). Wenn wir
z.B. die anzusteuernden Segmente der Ziffer 3 ermitteln mochten,
dann lédsst sich das durch die Zeile

segmente[3][y]

bewerkstelligen, wobei fiir die Variable y die Werte von 0 bis 6 iiber
eine for-Schleife eingesetzt werden miissen. Die Segmentdaten lau-
ten dann wie folgt:

Stopp mal kurz! Du hast doch gesagt, dass dieser Typ der Siebenseg-
mentanzeige eine gemeinsame Anode hat. Jetzt steht aber im segment-
Array an der Stelle eine 1, an der eigentlich eine Ansteuerung mit
Masse erfolgen sollte. Ist das nicht so?

Der ersten Aussage kann ich vollkommen zustimmen. Bei der
zweiten hast du moglicherweise nicht ganz aufgepasst. Ich hatte
erwihnt, dass eine 1 nicht unbedingt HIGH-Pegel bedeutet, son-
dern lediglich, dass dieses Segment anzusteuern ist. Bei einer Sie-
bensegmentanzeige mit gemeinsamer Kathode wird mit HIGH-
Pegel angesteuert, um das gewiinschte Segment leuchten zu las-
sen, bei einer Siebensegmentanzeige mit gemeinsamer Anode
erfolgt das mittels LOW-Pegel. Und genau dazu dient die folgende
Zeile:

digitalWrite(pinArray[j], (segmente[i][j]==1)?LOW:HICH);

Projekt 16: Die Siebensegmentanzeige

Ist die Information eine 1, dann wird LOW als Argument an die
digitalWrite-Funktion tibergeben, andernfalls ein HIGH. Bei LOW
wird das entsprechende Segment leuchten, wobei es bei einem
HIGH so gesteuert wird, dass es dunkel bleibt. Unser Sketch zeigt
im Sekundentakt alle Ziffern von 0 bis 9 an. Dazu wird folgender
Code verwendet:

for(int 1 = 0; 1 < 10; i++){
for(int j = 0; j < 7; j++)
digitalWrite(pinArray[j], (segmente[i][j]==1)?LOW:HIGH);
delay(1000); // Pause von 1 Sekunde
}

Die duflere Schleife mit der Laufvariablen i wihlt die anzuzeigende
Ziffer im Array aus und die innere Schleife mit der Laufvariablen j
die anzusteuernden Segmente.

Der Schaltplan

Die Schaltung gleicht der, mit der wir das Lauflicht angesteuert
haben. Aber keine Angst, denn es wird gleich noch etwas komple-
Xer.

Arduino 13 2
12
T
WM %‘* R Siebenseqmentanzeiqe
PWHTo 1 3 z 10
o p ——
< WM . R 2] / Xb g
— 5 3 CA C.AL&
4? pw B R 3 e/ /c s
— vee 2 o[301 2 | 4 op |6
— GND = L ?
FME o N
PWM
%
i
0 R
Analog IN ———{ 330]
R

ch G EEE

A Abbildung 16-3
Die Ansteuerung der
Siebensegmentanzeige

Die Siebensegmentanzeige

403

Schaltungsaufbau

Abbildung 16-4 A
Aufbau der Siebensegment-
anzeigenschaltung mit Fritzing

Siebensegmentanzeige mit I

gemeinsamer Anode (Pin 2) |
= <110
W 2| 19
B 3| 18
2 4] 17
5] - |6

ouUTNpJY

Verbesserter Sketch

Die Ansteuerung der einzelnen Segmente je Ziffer erfolgte tiber ein
zweidimensionales Array, bei dem die erste Dimension zu Selektion
der gewiinschten Ziffer und die zweite Dimension fiir die einzelnen
Segmente diente. Im folgenden Sketch wollen wir das Ganze mit
einem eindimensionalen Array realisieren. Wie das funktionieren
soll? Nun, das ist recht simpel, denn du kennst dich ja mittlerweile
ganz gut mit Bits und Bytes aus. Die Segmentinformation speichern
wir jetzt in einem einzigen Wert ab. Welcher Datentyp wiirde sich
fiir dieses Vorhaben geradezu anbieten? Du hast es mit einer Sie-
bensegmentanzeige plus einem einzigen Dezimalpunkt zu tun, den
wir aber aufien vorlassen wollen. Das wiren dann 7 Bits, die wun-
derbar in einem einzigen Byte mit 8 Bits Platz finden. Jedes ein-
zelne Bit weisen wir einfach einem Segment zu und kénnen mit
einem einzigen Bytewert alle bendtigten Segmente ansteuern. An
dieser Stelle mochte ich dir noch eine interessante Moglichkeit zei-
gen, direkt iiber eine Bitkombination eine Variable zu initialisieren:

void setup(){
Serial.begin(9600);
byte a = B10001011; // Variable deklarieren + initialisieren
Serial.println(a, BIN); // Als Bindr-Wert ausgeben
Serial.println(a, HEX); // Als Hex-Wert ausgeben
Serial.println(a, DEC); // Als Dezimal-Wert ausgeben

}

void loop(){/* leer */}

404

Projekt 16: Die Siebensegmentanzeige

Die entscheidende Zeile ist natiirlich die folgende:

byte a = B10001011;

Das Merkwiirdige oder eigentlich Geniale daran ist die Tatsache,
dass du tber den vorangestellten Buchstaben B eine Bitkombina-
tion angeben kannst, die der Variablen zur Linken zugewiesen
wird. Das vereinfacht die Sache ungemein, wenn du z.B. eine Bit-
kombination kennst und diese speichern mochtest. Andernfalls
hittest du erst den Bindrwert in eine Dezimalzahl umwandeln miis-
sen, um sie anschlieflend zu speichern. Dieser Zwischenschritt ent-
fallt jetzt.

Nun, das ist mir aber tiberhaupt nicht klar. Der Datentyp byte — so
wie ich das verstanden habe — ist doch ein Ganzzahl. Datentyp und
Ganzzahlen bestehen doch eigentlich immer aus Ziffern von 0 bis 9.
Warum kann ich jetzt hier den Buchstaben B voranstellen und eine
Bitkombination folgen lassen? Oder haben wir es hier mit einer Zei-
chenkette zu tun?

Der Datentyp byte ist ein Ganzzahldatentyp. Damit hast du voll-
kommen Recht. Womit du leider Unrecht hast, ist deine Vermu-
tung, dass es sich hier um eine Zeichenkette handelt. Diese wiirde
dann auch in doppelten Anfithrungszeichen eingeschlossen. Es
muss sich also um etwas anderes handeln. Irgendeine Idee? Ich sage
nur #define. Na, klingelt es? Ok, schau’ her. Es gibt eine Datei in
den Tiefen von Arduino, die sich binary.h nennt und sich im Ver-
zeichnis

arduino-1.0-rc1\hardware\arduino\cores\arduino

befindet. Ich zeige dir einen kurzen Ausschnitt dieser Datei, denn
sie enthilt sehr viele Zeilen, die alle zu zeigen tiberfliissig wire.

El#ifndef Binary h
#define Binary h

BO 0

BOO 0

BOOD O
BO00O 0
BOOO0OOD O
B0O000O0D 0
BO0OO0O0OO0D 0
B0O0000000 0
Bl 1

BO1l 1

BOD1 1
BOoO1 1
BOOOO1 1
B0O000OO01 1
BOOO0OOO1 1
B0O0000001 1

Die Siebensegmentanzeige

406

In dieser Datei befinden sich alle moglichen Bitkombinationen fir
die Werte von 0 bis 255, die dort als symbolische Konstanten defi-
niert wurden. Ich habe mir einmal erlaubt, die Zeile fiir den Wert
139 zu entfernen (bitte nicht nachmachen, es sein denn, du stellst
anschliefend wieder den urspriinglichen Zustand her!), um zu
sehen, was der Compiler moglicherweise zu meckern hat. Sieh’ her:

void setup(){
Serial.hegin(9600);
byte a = B1l0O001011; A/ Warilable deklarieren + initialisieren
Serial.println(a, BIN); // Als Binar-Wert ausgeben
Serial.printlnia, HEX); // Als Hex-Wert ausgeben
Serial.println(a, DEC); // Als Dezimal-Wert ausgeben

'

void loop () {/* leer */}

‘B1000101

Die Fehlermeldung sagt Dir, dass die Bezeichnung B10001011
nicht gefunden wird. Bevor ich zum eigentlichen Thema zuriick-
komme, mochte ich dir noch die folgenden Zeilen erldutern:

Serial.println(a, BIN); // Als Bindr-Wert ausgeben
Serial.println(a, HEX); // Als Hex-Wert ausgeben
Serial.println(a, DEC); // Als Dezimal-Wert ausgeben

Die println-Funktion kann noch ein weiteres Argument neben dem
auszugebenden Wert entgegennehmen, der, durch ein Komma
getrennt, angegeben werden kann. Ich habe hier einmal die drei
wichtigsten angefiihrt. Weitere findest du auf der Befehls-Referenz-
seite von Arduino im Internet. Die Erlduterungen finden sich
selbstredend als Kommentare hinter den Befehlszeilen. Die Aus-
gabe im Serial-Monitor ist dann folgende:

10001011
8B
139

Doch kommen wir jetzt endlich zur Ansteuerung der Siebenseg-
mentanzeige tiber das eindimensionale Array. Ich zeige dir vorab
wieder den kompletten Sketch, den wir gleich analysieren werden:

Projekt 16: Die Siebensegmentanzeige

byte segmente[10]= {Boi111110, //
Boo0110000, //
B01101101, //
Bo1111001, //
Boo110011, //
Boi011011, //
Bo1011111, //
Bo1110000, //
Bo1111111, //
Bo1111011}; //
int pinArray[] = {2, 3, 4, 5, 6, 7, 8};

W 00 ~N oUW N PO

void setup(){
for(int i = 0; 1 < 7; i++)
pinMode(pinArray[i], OUTPUT);
}

void loop(){
for(int i = 0; 1 < 10; i++){ // Ansteuern der Ziffer
for(int j = 6; j >= 0; j--){ // Abfragen der Bits fiir die
// Segmente
digitalWrite(pinArray[6 - j], bitRead(segmente[i], j) == 1?LOW:
HIGH);
}
delay(500); // Eine halbe Sekunde warten
}
}

In der folgenden Abbildung kannst du sehr gut erkennen, welches
Bit innerhalb des Bytes fiir welches Segment verantwortlich ist:

« Abbildung 16-5

Pot 7 6 5 4 3 2 1 0
° erllzen. 2 2 2 2 2 2 2 2 Ein Byte steuert die Segmente der
Wertigkeit 128 64 32 16 8 4 2 1 Anzeige (hier das Beispiel fiir die
Bitkombination @ @ @ Ziffer 4).
a b 3 d e f [
—o
a
f b
o
9
e C
d
— >

Da wir lediglich 7 Segmente anzusteuern haben und ich den Dezi-
malpunkt nicht beriicksichtige, habe ich das MSB (erinnere Dich:

Die Siebensegmentanzeige 407

408

Abbildung 16-6 »
Der Befehl »bitRead«

MSB = hochstwertiges Bit) konstant bei allen Array-Elementen mit
dem Wert 0 versehen. Das entscheidende geschieht nattirlich wie-
der — wie sollte es anders sein — innerhalb der loop-Funktion. Wer-
fen wir einen genaueren Blick darauf:

void loop(){
for(int 1 = 0; 1 < 10; i++){ // Ansteuern der Ziffer
for(int j = 6; j >= 0; j--){ // Abfragen der Bits fiir die Segmente
digitalWrite(pinArray[6 - j], bitRead(segmente[i], j) == 12LOW:HIGH);
}

delay(500); // Eine halbe Sekunde warten
}
}

Die duflere for-Schleife mit der Laufvariablen i steuert wieder die
einzelnen Ziffern von 0 bis 9 an. Das war auch in der ersten Losung
so realisiert worden. Jetzt kommt jedoch der abweichende Code.
Die innere for-Schleife mit der Laufvariablen j ist fiir das Auswih-
len des einzelnen Bits innerhalb der selektierten Ziffer zustindig.
Ich fange dabei auf der linken Seite mit Position 6 an, die fiir das
Segment a zustandig ist. Da jedoch das Pin-Array an Index-Position
6 den Pin 8 fiir Segment g verwaltet, muss die Ansteuerung entge-
gengesetzt laufen. Das geschieht mittels der Subtraktion von der
Zahl 6, da ich das Pin-Array aus dem ersten Beispiel so iibernehmen
wollte:

pinArray[6 - j]

Nun kommen wir zu einer interessanten Funktion, die es uns
erlaubt, ein einzelnes Bit in einem Byte abzufragen. Sie lautet wie
folgt:

Argumente

Befehl Wert Bitposition

C (139, 3);)

In diesem Beispiel wird fiir den dezimalen Wert 139 (binir:
10001011) das Bit an Position 3 ermittelt. Die Zdhlung beginnt bei
Index 0 am LSB (least significant bit) auf der rechten Seite. Der
Riickgabewert wire demnach eine 1. Durch die Befehlszeile

digitalWrite(pinArray[6 - j], bitRead(segmente[i], j) == 1?LOW:HIGH);

Projekt 16: Die Siebensegmentanzeige

wird tberpriift, ob die selektierte Bitposition eine 1 zuriickgibt.
Falls dies der Fall ist, wird der ausgewihlte Pin mit LOW-Pegel
angesteuert, was bedeutet, dass das Segment leuchtet. Nicht ver-
gessen: Gemeinsame Anode! Kannst du den Unterschied zwischen
beiden Losungen einmal formulieren?

(. . . .
Dann lass mich mal tiberlegen. Ok, in der ersten Version mit dem

zweidimensionalen Array wurde durch die erste Dimension die anzu-
zeigende Ziffer ausgewihlt und iiber die zweite die anzusteuernden
Segmente. Diese Information steckte in den einzelnen Array-Elemen-
ten. Bei der zweiten Version wurde ebenfalls die anzuzeigende Ziffer
tiber die erste Dimension ausgewihlt. Da es sich um ein eindimensio-
nales Array handelt, ist dies jedoch die einzige Dimension. Die Infor-
mation zur Ansteuerung der Segmente ist jetzt jedoch in den
einzelnen Bytewerten enthalten. Was vorher durch die Array-Ele-
mente der zweiten Dimension erfolgte, wird jetzt iiber die Bits eines

Wertes geldst.
\ J

Echt klasse, Ardus! Die Technik ist vergleichbar.

Troubleshooting

Falls die Anzeige nicht den Ziffern von 0 bis 9 entspricht oder unsin-
nige Kombinationen angezeigt werden, dann tiberpriife Folgendes:

* Entsprechen deine Steckverbindungen auf dem Breadboard
wirklich der Schaltung?

* Gibt es eventuell Kurzschliisse untereinander?

* Ist der Sketch-Code korrekt?

* Wenn unsinnige Zeichen in der Anzeige auftauchen, dann hast
du moglicherweise die Steuerleitungen der einzelnen Seg-
mente vertauscht. Kontrolliere noch einmal die Verdrahtung

anhand des Schaltplanes bzw. des Datenblattes der Siebenseg-
mentanzeige.

* Hastdu das segmente-Array mit den richtigen Werten initialisiert?

Was hast du gelernt?

* In diesem Kapitel wurdest du mit den Grundlagen der Ansteu-
erung einer Siebensegmentanzeige vertraut gemacht.

* Uber die Initialisierung eines Arrays hast du die einzelnen Seg-
mente der Anzeige definiert, um diese spiter komfortabel
ansteuern zu konnen.

Die Siebensegmentanzeige 409

410

* Die Header-Datei binary.h beinhaltet viele symbolische Kon-
stanten, die du in deinen Sketches verwenden kannst.

* Du hast erfahren, dass iiber die println-Methode durch Anfii-
gen eines weiteren Argumentes (BIN, HEX bzw. DEC) ein aus-
zugebender Wert in eine Zahl einer anderen Zahlenbasis
konvertiert werden kann.

¢ Mit der Funktion bitRead kannst du einzelne Bits eines Wertes
auf deren Zustand hin abfragen.

Workshop

Erweitere die Programmierung des Sketches so, dass in der Anzeige
neben den Ziffern von 0 bis 9 auch bestimmte Buchstaben ange-
zeigt werden konnen. Dies ist zwar nicht fur das gesamte Alphabet
moglich, doch iiberlege einmal, welche Buchstaben sich hierfiir eig-
nen konnten. Es folgen ein paar Beispiele fiir den Anfang:

> 2

HYREEEN
L

Weitere niitzliche Hinweise zu Siebensegmentanzeigen:

Siebensegmentanzeigen gibt es in einer schier uniibersehbaren
Anzahl an Varianten. Sie sind in unterschiedlichen Farben erhilt-
lich, z.B. in folgenden:

* Gelb

* Rot

* Griin

* Superhelles Rot

Natiirlich musst du beim Kauf immer auf die Anschlussvarianten
achten:

* gemeinsame Anode

* gemeinsame Kathode

Es gibt sie in unterschiedlichen Groflen. Hier Beispiele fur den
Anbieter Kingbright:

* Typ SA-39: Ziffernhohe = 0.39« = 9.9mm
* Typ SA-56: Ziffernhshe = 0.56« = 14.2mm

Weitere Informationen findest du im Workshop des nichsten Kapitels.

Projekt 16: Die Siebensegmentanzeige

Projekt
Die Siebensegment- l 7
anzeige (mir gehen die
Pins aus)

Scope

In diesem Experiment behandeln wir folgende Themen:

* Ansteuerung mehrerer Siebensegmentanzeigen
* Der komplette Sketch

* Analyse des Schaltplans

* Aufbau der Schaltung

* Workshop

Das vermeintliche Problem

Das Ansteuern einer einzelnen Siebensegmentanzeige mit 8 Steuer-
leitungen — wenn wir den Dezimalpunkt mitrechnen — stellt tech-
nisch gesehen kein Problem dar. Eine einzige Siebensegmentstelle
ist zwar schon und gut, doch man mochte bestimmt auch einmal
einen Wert anzeigen, der aus zwei oder mehr Ziffern besteht. Blei-
ben wir beim Beispiel fiir zwei Ziffern. Was denkst Du, wie viele
Anschliisse wir zu Realisierung dieses Vorhabens benétigen? Also,
eine einzige Anzeige belegt 7 Segment-Pins deines Arduino-Boards
und eine Leitung fiir die gemeinsame Anode. Bei zwei Anzeigen
wiren das schon 14 Segment-Pins, bei drei 21 usw. Das ist mit den
vorhandenen Pins von 0 bis 13 irgendwie nicht zu schaffen. Es gibt
ein Arduino-Board, das viel mehr Pins zur Ansteuerung bereitstellt.
Es ist das Arduino Mega Board mit sage und schreibe 54 digitalen
Ein- bzw. Ausgingen. Doch willst du dir das vorher noch zulegen,
bevor wir hier fortfahren? Blode Frage, was!? Natiirlich nicht. Es
gibt eine viel elegantere Losung. Das Stichwort dazu lautet Multi-

am

412

plexing. Was ist das nun schon wieder? Es handelt sich um eine
interessante Moglichkeit, viele Siebensegmentanzeigen parallel zu
schalten. Bleiben wir am Anfang jedoch bei unseren zwei Zitfern.
Wenn du das Prinzip verstanden hast, kannst du die Schaltung fast
beliebig erweitern. Welchen Ansatz verfolgen wir hierbei? Nun, wir
verbinden einfach einmal alle Segment-Pins (1, 2, 4, 5, 7, 9, 10) der
ersten Anzeige mit denen der zweiten Anzeige. Ich meine also Pin 1
mit Pin 1, Pin 2 mit Pin 2 usw.

Hey, einen Moment! Dann wiirden doch bei der Ansteuerung der
Segmente auf beiden Anzeigen immer die gleiche Ziffer zu sehen sein,
oder!?

Das ist bis zu diesem Punkt durchaus korrekt. Ich war aber noch
nicht ganz fertig mit meiner Ausfithrung. Die gemeinsamen Ano-
den der beiden Anzeigen werden jedoch nicht zusammengefiihrt
und gleichzeitig angesteuert. Was wiire, wenn wir die Segmente der
beiden Anzeigen ansteuern, aber nur der ersten Anzeige die Versor-
gungsspannung von +5V iiber die gemeinsame Anode zukommen
lassen wiirden? Nun, es wire lediglich diese Anzeige in der Lage,
die angeforderten Segmente anzuzeigen. Der zweiten hitten wir
zwar auch die Signalpegel zugefiihrt, doch sie konnen nicht darge-
stellt werden, weil die Versorgungsspannung fehlt. Drehen wir das
Spielchen jetzt um, und versorgen anstelle der ersten, die zweite
Anzeige tiber die gemeinsame Anode mit der Versorgungsspannung
+5V — natiirlich mit anderen Daten fiir die einzelnen Segmente. Die
erste Anzeige bliebe dunkel und die zweite wiirde die angeforderte
Ziffer darstellen. Jetzt kommen wir zum entscheidenden Punkt.
Erfolgt dieser Wechsel zwischen den beiden Anzeigen schnell
genug, so dass die Trigheit unserer Augen ihn nicht mehr in ein-
zelne Bilder auflosen kann, haben wir eine Anzeige mit zwei Stellen
realisiert, die 7 statt 14 Segmentleitungen in ihrem Schaltungsauf-
bau besitzt. Das ist doch eine feine Sache und die Schaltung kann —
wie schon erwihnt — fast beliebig erweitert werden. Du kommst
jetzt das erste Mal mit einem weiteren elektronischen Bauteil, dem
Transistor, in Berithrung. Der Transistor arbeitet in diesem Fall als
Schalter, der die gemeinsame Anode der beiden Anzeigen bei
Bedarf mit Spannung versorgt. Wie das genau funktioniert, sehen
wir gleich. In der folgenden Abbildung siehst du schon einmal die
beiden Stellen der Siebensegmentanzeigen.

Projekt 17: Die Siebensegmentanzeige (mir gehen die Pins aus)

<« Abbildung 17-1
Zwei Siebensegmentanzeigen, die
zusammen die Zahl 43 anzeigen.

Beide zeigen unterschiedliche Ziffern an. Es scheint also zu funktio-
nieren.

Bendétigte Bauteile

Fiir dieses Beispiel benétigen wir die folgenden Bauteile:

Bendtigte Bauteile

2xSiebensegmentanzeige (z.B. Typ SA 39-11 GE
mit gemeinsamer Anode)

7 x Widerstand 330

2 x Widerstand 7K

> 2 x Transistor BC557 (PNP)
/\\ Mehrere flexible Steckbriicken in unterschiedli-
chen Farben und Langen

Arduino-Sketch-Code

byte segmente[10]= { Boiii11i0, //
B00110000, //
Bo1101101, //
Bo1111001, //
B00110011, //
B01011011, //
Bo1o11111, //
B01110000, //
Boi111111, //
Boi111011}; //

O 0N OOV B W N 2 O

Das vermeintliche Problem 413

byte PinAHa)’[] = {2) 3, 4, 5, 6) 7, 8})
byte einerStelle = 12, zehnerStelle = 13;

void setup(){
for(int 1 = 0; i < 7; i++)
pinMode(pinArray[i], OUTPUT);
pinMode(einerStelle, OUTPUT);
pinMode(zehnerStelle, OUTPUT);
}

void loop(){
anzeige(43); // Anzuzeigender Wert

}

void anzeige(int wert){
byte einer, zehner;
zehner = int(wert / 10); // Ziffer der Zehnerstelle berechnen
einer = wert - zehner * 10; // Ziffer der Einerstelle berechnen
// Einerstelle aktiv schalten
digitalWrite(einerStelle, LOW);
digitalWrite(zehnerStelle, HIGH);
ansteuerung(einer); // Anforderung der Anzeige der Einerstelle
// Zehnerstelle aktiv schalten
digitalWrite(einerStelle, HIGH);
digitalWrite(zehnerStelle, LOW);
ansteuerung(zehner); // Anforderung der Anzeige der Zehnerstelle

}

void ansteuerung(int a){
for(int j = 6; j >= 0; j--) // Abfragen der Bits fiir die Segmente
digitalhrite(pinArray[6 - j], bitRead(segmente[a], j) == 1?LOW:HIGH);
delay(5); // notwendige Pause von 5ms

}

Arduino-Code-Review

Fiir unser Experiment bendtigen wir programmtechnisch gesehen
die folgenden Variablen:

Tabelle 17-1 » Variable Aufgabe

Bendtigte Variablen und deren

Aufgabe segmente Zweidimensionales Array zur Speicherung der Segmentinformation pro Ziffer
pinArray Eindimensionales Array zur Speicherung der angeschlossenen Pins der Anzeige
einerStelle Wert des Pins fiir die Einerstelle

zehnerStelle Wert des Pins fiir die Zehnerstelle
einer Wert der Einerstelle
zehner Wert der Zehnerstelle

414 Projekt 17: Die Siebensegmentanzeige (mir gehen die Pins aus)

Die Ausgangspins werden wir gewohnt programmiert, wobei in
diesem Experiment noch zwei weitere Pins hinzugekommen sind.
Sie werden benotigt, um die Einer- bzw. Zehnerstelle anzusteuern.
Schauen wir uns das doch einmal im Detail. Innerhalb der loop-
Funktion wird der anzeige-Funktion der gewiinschte Anzeigewert
als Argument iibergeben. Sie ermittelt in zwei Schritten die Wertig-
keit der Einer- bzw. Zehnerstelle. Wir beginnen mit der Zehner-
stelle, die durch das Dividieren durch den Wert 10 und das
Weglassen der Nachkommastelle ermittelt wird. Nehmen wir als
Beispiel den Wert 43.

Zehnerstellenberechnung
1. Schritt:

43
10~
2. Schritt:

4,3

int(4.3) = 4 (Die Integerfunktion int ermittelt den Ganzzahlanteil
ohne zu runden.)

3. Schritt:

zehner = 4 (Zuweisung des Ergebnisses an die Variable)

Einerstellenberechnung
1. Schritt:

einer = 43 — 4 * 10 = 3 (Ursprungswert — Zehnerstellenwert * 10)

Im niichsten Schritt bereitet die anzeige-Funktion die Pins vor, die
zur Ansteuerung der Anoden der Siebensegmentanzeigen notwen-
dig sind.

Vorbereiten der Anzeige des Einerwertes auf der rechten Seite

Das vermeintliche Problem

415

416

Aufrufen der »ansteuerung«-Funktion mit der Ubergabe
des einer-Wertes, der angezeigt werden soll

ansteuerung(einer);

void ansteuerung(int a){
for(int j = 6; j >= 0; j--) // Abfragen der Bits fiir die Segmente
digitalWrite(pinArray[6 - j], bitRead(segmente[a], j) == 1?LOW:HIGH);
delay(5); // notwendige Pause von 5ms

}

Die Funktionsweise der for-Schleife ist dir mittlerweile bekannt
und deshalb verzichte ich an dieser Stelle auf weitere Ausfithrun-
gen. Was noch erwihnenswert wire, ist der delay-Befehl im
Anschluss der for-Schleife. Er sorgt dafiir, dass die Darstellung der
Ziffer eine Weile bestehen bleibt. Erhohe diesen Wert doch einfach
mal auf 50 oder 100. Dann erkennst du das Hin- und Herschalten
der beiden Anzeigen. Setzt du ihn jedoch auf 0, dann... Doch siehe
selbst!

Oh, was ist denn das? Kannst du mir mal bitte verraten, warum du
die Einerstelle, um sie auszuwihlen, mit LOW ansteuerst? So wie ich
das verstanden habe, wird doch damit einer der Transistoren ange-
steuert, um das Anodensignal an die Siebensegmentanzeige durchzu-
schalten. Das verstehe ich nun wirklich nicht.

Das ist kein Problem, Ardus! Erstens hatten wir noch keine Schal-
tung mit Transistoren und zweitens hast du den Schaltplan noch
nicht gesehen. Hier ein kurzer Ausschnitt, damit ich deine Frage
schnell beantworten kann:

zu Pin 12

Einerstelle

413 10
2] o L9
31ca ca |2
S EW
a2y op |6

Projekt 17: Die Siebensegmentanzeige (mir gehen die Pins aus)

Da der Transistor die Plusleitung steuern soll, miissen wir einen
PNP-Transistor verwenden. Der Emitter befindet sich in diesem
Fall oben, was aber lediglich eine Darstellungssache ist. Der Tran-
sistor wird einfach horizontal gespiegelt dargestellt. Um ihn durch-
zusteuern, miissen wir die Basis iiber den 1K-Vorwiderstand mit
Masse verbinden. Die Richtung des Steuerstroms ist in diesem Fall
vom Emitter iiber die Basis zum Minuspol. Der Strom flieRt also
quasi aus dem Transistor — sprich der Basis — heraus. Der Arbeits-
strom flieRt vom Emitter zum Kollektor und versorgt auf diese
Weise die gemeinsame Anode mit dem erforderlichen Plus-Poten-
tial. Die Kathoden werden dann, wenn sie leuchten sollen, wie
gewohnt {iber Masse angesteuert. Die Ansteuerung der Zehner-
stelle erfolgt in gleicher Weise. In der folgenden Abbildung zeige
ich dir die Anschlussbelegung der drei Beinchen des Transistors
BC557C.

C B E

Vorbereiten der Anzeige des Zehnerwertes auf der linken

Ry

| pinz | | Pin1z |

LY

1
[

alWrite (einerStelle, HIGH):
talWrite (zehnerStelle, W) ;

||
I)

— —

Zehner Einer

Du siehst, dass sich die Potentiale zwischen Pin 12 und Pin 13
umgekehrt haben, was dazu fihrt, dass jetzt die Zehnerstelle fiir die
Anzeige vorbereitet wird. Der nichste Schritt ist vergleichbar mit
dem vorherigen, doch jetzt wird der Wert fiir die Zehnerstelle tiber-
geben.

<« Abbildung 17-2
Die Anschlussbelegung des Transis-
tors BC557C

Das vermeintliche Problem

417

Aufrufen der »ansteuerung«-Funktion mit der Ubergabe
des einer-Wertes, der angezeigt werden soll

ansteuerung(zehner);

Jetzt ist es aber an der Zeit, dir den kompletten Schaltplan zu zei-
gen.

Der Schaltplan

Die Schaltung ist jetzt schon etwas umfangreicher geworden. du
siehst, dass alle Steuerleitungen der Segmente a bis g zusammen
gefiithrt wurden.

£]BCSS7 £]8css7
PNP

I_JH_‘ | Zehnerstelle Einerstelle
130}
.

13
12
11
10
1
] 3 [a
‘ [2] b
{3 I —-—3 Ca CA
ra— s by B i
PWH 5

s
olulm .

[
Ia! |~..|lm -] =4

9 4
f b
A (]
e c
d op

oP

Y

d

bbbt

—{330]

] o

Arduino
12 |
pwn 1
PWH ==
o Le.
} WM a
= 7
=] &
vee = 5
GND a
PwN 3
2
-l
[
Analag IN

418

SREEEE!

Abbildung 17-3 A
Die Ansteuerung zweier
Siebensegmentanzeigen

!
N

l

Schaltungsaufbau

Auf dem Breadboard wird es wieder etwas voller und du musst dich
schon ein wenig darauf konzentrieren, dass die richtigen Pins mit-
einander verbunden werden.

Lass’ dich aber nicht entmutigen, denn auch ich kann die Anzahl
der Verkabelungsfehler, die ich schon gemacht habe, nicht mehr
zihlen. Kritisch wird es natiirlich, wenn du Kurzschliisse erzeugst.

Projekt 17: Die Siebensegmentanzeige (mir gehen die Pins aus)

<« Abbildung 17-4
Aufbau der Siebensegmentanzei-
genschaltung auf dem Breadboard

Troubleshooting

Falls die Anzeige nicht den gewiinschten Wert darstellt oder ein-
zelne Segmente fehlen bzw. unsinnige Zeichen angezeigt werden,
dann iiberpriife Folgendes:

* Entsprechen deine Steckverbindungen auf dem Breadboard
wirklich der Schaltskizze?.

e Gibt es eventuell Kurzschliisse untereinander?

* Hast du das segmente-Array mit den richtigen Initialisierungs-
werten versehen?

* Hast du die richtigen PNP-Transistoren vom Typ BC 557 ver-
wendet und hast du die Anschlussbeinchen korrekt verdrahtet?
Man kann leicht den Emitter mit dem Kollektor verwechseln.
Vergiss auch nicht die Vorwiderstinde, die die Basis der Tran-
sistoren ansteuern.

* Hast du vielleicht den delay-Befehl vergessen? In diesem Fall
leuchten in der Anzeige namlich alle Segmente auf.

¢ Wenn die Ziffern der Einer- bzw. Zehnerstelle vertauscht sind,
hast du sicherlich Pin 12 mit Pin 13 verwechselt.

Das vermeintliche Problem 419

420

Was hast du gelernt?

* In diesem Erweiterungskapitel hast du erfahren, dass man tiber
einen Trick, der Multiplexing genannt wird, mehr als eine Sie-
bensegmentanzeige ansteuern kann, ohne dass sich die Anzahl
der Ansteuerleitungen zu den einzelnen Segmenten erhoht.

* Es wurden lediglich die gemeinsamen Anoden nacheinander
im stetigen Wechsel tiber einen PNP-Transistor angesteuert.
Erfolgt dieser Wechsel in einer bestimmten, hohen Geschwin-
digkeit, wird die Trigheit der Augen ausgenutzt, die das Hin-
und Herschalten nicht mehr unterscheiden kénnen. Es wird als
gleichmiRiges Leuchten wahrgenommen.

Workshop

Teil 1

Im ersten Teil des Workshops wollen wir analoge Werte in der
Anzeige darstellen. Schliefe einen Potentiometer (z.B. 10K) an
einen der analogen Eingiinge an, wie du es in der folgenden Abbil-
dung siehst, und wandle den gemessenen Wert so um, dass in der
Anzeige Werte von 00 bis 99 dargestellt werden konnen.

VCC
GND

o
& PWM

PWM

EEpRER

Analog IN

SECERE

]

170k 2

Ich will mehr Stellen

Das diirfte kein allzu groRes Problem fiir dich darstellen, wenn du
die zweistellige Anzeige auf vier Stellen erweiterst. Dann kannst du
z.B. auch die analogen Werte eines Eingangs von 0 bis 1023 gut
darstellen. Es macht an dieser Stelle Sinn, dass du dir zuvor den
Schaltplan aufzeichnest und dich dann an diesem orientierst. Du
musst dir die Berechnung der zusitzlichen Stellen (Hunderter- bzw.
Tausenderstelle) tiberlegen, denn bisher hatten wir ja lediglich 2

Projekt 17: Die Siebensegmentanzeige (mir gehen die Pins aus)

Stellen zur Verfiigung. Du kannst auch Siebensegmentanzeigen
kaufen, die iber mehrere Stellen in einem Gehiuse verfugen.

Diese 4-stellige Anzeige habe ich aus einem alten CD-Player ausge-
baut, und sie funktioniert noch einwandfrei. Wenn du keine
Anschlussbelegung im Internet finden kannst, dann ist einfach vor-
sichtiges Ausprobieren angesagt. Zuerst solltest du herausfinden, ob
du es mit einer gemeinsamen Anode oder Kathode zu tun hast. Es exis-
tieren noch sehr viele weitere Anzeigeeinheiten. Hier zwei Beispiele:

Dot-Matrix-Display
(5x7 Punkte) von
Kingbright

Alphanumerisches Display
von Kingbright

Teil 2

Um eine oder mehrere Siebensegmentanzeigen anzusteuern, hast du
die einzelnen Segmente direkt mit den digitalen Ausgingen tiber Vor-
widerstinde verbunden. Es gibt jedoch noch weitere Varianten, um
eine Ansteuerung zu realisieren. Uberlege dir einmal eine Schaltung
mit entsprechender Programmierung, um das Schieberegister
74HCS595 die Arbeit erledigen zu lassen. Im Kapitel tiber die Digitale
Porterweiterung hast du die Grundlagen dieses ICs kennengelernt.
Bisher haben wir den Dezimalpunkt, der bei einer Siebensegmentan-
zeige eigentlich immer vorhanden ist, auffen vorgelassen. Beriick-
sichtige ihn doch in diesem Teil des Workshops. Pin 6 steuert den
Dezimalpunkt an.

Pin 3

110

Das vermeintliche Problem

<« Abbildung 17-5
Die Ansteuerung der Siebenseg-
mentanzeige vom Typ SA 39-11 GE

a1

Es gibt aber noch weitere Moglichkeiten, Siebensegmentanzeigen
anzusteuern:

* Uber einen Baustein mit der Bezeichnung MCP23016/-17/-18.
Es handelt sich um Port-Expander, die tiber den I’C-Bus ange-
steuert werden. Dieser Bus wird Thema eines spéteren Kapitels
sein, doch ich wollte es nicht versiumen, der IC in diesem
Kapitel zu erwihnen.

* Der Baustein PCF 8574 ist ebenfalls ein Port-Expander, der
iber den I’C-Bus anzusteuern ist.

* Des Weiteren gibt es noch den LED-Treiber MAX7221, der
speziell zur Ansteuerung von Siebensegmentanzeigen mit
gemeinsamer Kathode entwickelt wurde. Die Daten werden
tiber das serielle Interface SPI (Serial peripheral Interface) in
den Baustein geschrieben. Wenn du eine 8x8 LED Matrix
betreiben mochtest, ist dieser IC hervorragend dazu geeignet.

Projekt 17: Die Siebensegmentanzeige (mir gehen die Pins aus)

Der Reaktionstester

Scope
In diesem Experiment behandeln wir folgende Themen:

* Ansteuerung mehrerer Siebensegmentanzeigen

* Reaktion auf den Phasenwechsel einer Ampelschaltung
* Der komplette Sketch

* Analyse des Schaltplans

* Aufbau der Schaltung

* Workshop

Wie schnell bist du?

Nachdem wir jetzt die Siebensegmentanzeige mit ihren zwei Stellen
abgehandelt haben, kénnten wir eigentlich mal iiber eine Schaltung
nachdenken, die deine Reaktionsfihigkeit testet. Das Hochzihlen
und Anzeigen einer Variablen bedeutet fiir dich ja kein Problem
mehr. Was wiirdest du von einer Schaltung halten, die auf Knopf-
druck die Ampelphasen Rot, Gelb und Griin einleitet und bei der
du beim Eintreten der Griinphase so schnell wie moglich erneut
den Taster driicken musst? Bei Griin startet der Zihler, und die
Anzeige beginnt mit dem Hochzuzihlen. Je schneller du reagierst,
desto schneller wird der Zihler gestoppt und desto kleiner ist die
Zahl in der Anzeige. Starte einen Wettbewerb entweder mit dir
selbst oder mit deinen Freunden. Doch pass’ auf: Wenn du den

Projekt

423

424

Taster vor der Griinphase betitigst, wird die Schaltung das bemer-
ken und entsprechend reagieren, und dann hast du in dieser Runde
schon verloren. Du wirst sicherlich bemerken, dass unsere Schal-
tungen und auch die Programmierungen der Projekte etwas an
Umfang zunehmen. Das soll dich aber nicht weiter beunruhigen,
denn es gehort zum normalen Lernen dazu, dass Dinge komplexer
werden. Wir entleihen einfach Sketch-Code aus Themenbereichen,
die wir schon besprochen haben, und fiigen ihn so zusammen, dass
hieraus daraus neue und interessante Schaltungen ergeben. In unse-
rem nichsten Beispiel kombinieren wir die Funktionalitit der
Ampelsteuerung mit der unserer Siebensegmentanzeige, die einen
Wert kontinuierlich hochzihlt. Das Ergebnis ist ein Reaktionstes-
ter. Natiirlich massen wir die beiden Grundschaltungen von Ampel
und Siebensegmentanzeige ein wenig anpassen, doch die Funkti-
onsweise bleibt im Wesentlichen bestehen.

Benotigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

Benétigte Bauteile

2xSiebensegmentanzeige (z.B. Typ SA39-11 GE
mit gemeinsamer Anode)

10 x Widerstand 330

2 x Widerstand 7K

2 x Transistor BC557 (PNP)

1x Widerstand 70K

1 x Taster

Projekt 18: Der Reaktionstester

Benétigte Bauteile

/ / / je 1xrote, gelbe und griine LED

//\\ Mehrere flexible Steckbriicken in unterschiedli-
chen Farben und Léngen

Ich wiirde sagen, dass wir die Schaltung anhand der folgenden
Stichpunkte aufbauen bzw. programmieren:

Nach dem Starten soll in der Anzeige 00 zu sehen sein.
Alle LEDs der Ampel sind aus.

Es wird auf einen Tastendruck gewartet, der den Ampelpha-
senwechsel startet.

Wurde die Taste gedriickt, dann beginnt die Sequenz mit der
Phase Rot (2 Sekunden).

Es folgt die Phase Gelb (2 Sekunden).

Wenn wihrend der Gelb-Phase die Taste gedriickt wurde,
was definitiv zu frith ist, erfolgt eine Unterbrechung der
Sequenz. Die rote LED blinkt dann schnell hintereinander
und in der Anzeige blinkt die 99. Anschliefend kann ein
neuer Versuch gestartet werden, indem der Taster erneut
betitigt wird.

Wurde die Phase Griin erreicht, beginnt der interne Zihler mit
dem Hochzuzihlen und zeigt den Wert in der Anzeige an. Jetzt
muss schnellstmoglich der Taster betitigt werden, um den
Zihlvorgang zu unterbrechen und den letzten Zihlerstand in
der Anzeige zu prisentieren.

Erfolgt keine Reaktion seitens des Spielers, bis der maximale
Wert 99 in der Anzeige erscheint, blinken die Anzeige und die
rote LED schnell hintereinander. Es kann dann ein neuer Ver-
such gestartet werden.

Der Reaktionstest wird tiber das Driicken des Reset-Tasters auf
dem Arduino-Board erneut gestartet.

Bevor es losgeht, sollten wir einen Blick aus das entsprechende
Flussdiagramm werfen, damit du den Ablauf der einzelnen Funkti-
onen der Schaltung besser verstehst.

Wie schnell bist du?

425

426

Abbildung 18-1 p
Flussdiagramm zur Reaktions-
schaltung

v

Anzeige "00"
Ampel aus

Lu friih gedriickt

Ampel "Griin"

zaehler++
Anzeige Zahler

Ja
Anzeige Zahler

Da der Quellcode etwas umfangreicher geworden ist, habe ich eine
niitzliche Funktion der IDE verwendet und mit dieser Codezeilen
in mehrere funktionelle Blocke unterteilt und tiber zusitzliche Tab-
Registerkarten in verschiedenen Fenstern platziert. Hitten wir den
gesamten Code in einem einzigen Fenster untergebracht, ginge das
sicherlich zu Lasten der Ubersichtlichkeit. Bei der Fehlersuche ist
diese Art der Vorgehensweise sehr von Vorteil, wenn man z.B.
genau weilS, dass der Code in bestimmten Fenstern fehlerfrei arbei-
tet und man die Suche daher auf einen kleineren Bereich begrenzen
kann. Doch wie funktioniert die Aufteilung? Im Kapitel Arduino-

Projekt 18: Der Reaktionstester

Grundlagen habe ich diese Moglichkeit kurz angesprochen, bin
jedoch nicht weiter darauf eingegangen. Das mochte ich an dieser
Stelle nachholen. Am oberen rechten Rand befindet sich ein kleines
unscheinbares Icon, das bei einem Mausklick ein Kontext-Menii
offnet.

Auf der rechten Seite befindet sich ein Dreieck, das ich hier mit
einer roten Markierung versehen habe. Wie du siehst, sind fiir die-
sen Sketch schon die benotigten Tab-Registerkarten mit den
Bezeichnungen Funktionen und Siebensegmentanzeige vorhanden.
Die Registerkarte mit dem Haupt-Sketch, der die setup- bzw. loop-
Funktionen beinhaltet, befindet sich immer auf der linken Seite
und alle nachtriglich hinzugefiigten werden jeweils rechts davon
eingefiigt. Wenn du also eine weitere Tab-Registerkarte hinzufiigen
mochtest, klickst du mit der linken Maustaste auf das Piktogramm
mit dem Pfeilsymbol. Darauthin wird das folgende Menti geofinet:

Rename

Delete

Previous Tab Strg+Alt+Links
Mext Tab Strg+Alt+Rechts

Reaktionstester(01

Funktionen

SiebensegmentAnzeige

Wihle den rot markierten Eintrag mit dem Namen New Tab aus,
wobei ein Eingabefenster unterhalb des Quellcodes angezeigt wird,
in dem du den Namen der neuen Quelldatei, der keine Leerzeichen
beinhalten darf, eingeben kannst. Anschliefen musst du die Ein-
gabe mit dem Button OK bestitigen.

T

Bei der Kompilierung fiigt der Compiler die einzelnen Tab-Register-
karten zu einer einzigen Quelldatei zusammen und iibersetzt sie, als
wire es eine einzige.

Wie schnell bist du?

427

Wenn ich den Quellcode jetzt aufsplitte, werden dann zusitzliche
Dateien pro angelegter Tab-Registerkarte erstellt?

Eine berechtigte Frage, Ardus! Du liegst mit deiner Vermutung
absolut richtig, denn ein Blick in das Dateisystem zeigt dir die
zusiétzlichen Dateien.

Bibliothek "Dokumente”

Reaktionstester(01

Name Anderungsdatum Typ GroBe

|| Funktionen.ing 26.09.2011 08:06 INO-Datei 1KB
|| Reaktionstester001.ino 26.09.2011 08:05 INO-Datei 2KB
|| SiebensegmentAnzeigeino 26,09.2011 08:06 INO-Datei 1KB

Alle Dateien haben die Endung ino erhalten. Auf diese Weise wird
angezeigt, dass es sich um Arduino-Sketch-Dateien handelt.

Arduino-Sketch-Code

Sehen wir uns zunichst den Code fiir die Tab-Registerkarte Funkti-
onen genauer an:

// Wird aufgerufen, wenn der Taster vor der Griin-Phase gedriickt wird
void blinken(){

digitalWrite(ledPinRot, HIGH);

digitalWrite(ledPinGelb, LOW);

digitalWrite(ledPinGruen, LOW);

for(int 1 = 0; 1 < 30; i++){

digitalWrite(ledPinRot, (i%2 == 0)?HIGH:LOW);

delay(50); // Pause beim Blinken

anzeige(99); // 99 bedeutet: Fehler!!! (zu friih oder zu spat geriickt)
}

reset();

}

// Auf Anfangswerte zuriicksetzen

void reset(){
phase = 0, startPunkt = 0, stopZeit = 0;
anzeigeWert = 0;
taster = false, gestoppt = false;
digitalWrite(ledPinRot, LOW);
digitalWrite(ledPinGelb, LOW);
digitalWrite(ledPinGruen, LOW);

428 Projekt 18: Der Reaktionstester

Diese Funktion wird aufgerufen, wenn der Taster entweder zu frith
oder tiberhaupt nicht betitigt wird. Die Tab-Registerkarte Sieben-
segmentanzeige beinhaltet den schon bekannten Code aus dem
Kapitel tiber die Siebensegmentanzeige, der lediglich an einer Stelle
leicht modifiziert wurde. Darauf gehe ich gleich niher ein.

byte segmente[10]= { Boi1i1110, //
B00110000, //
Bo1101101, //
Boi1111001, //
Boo110011, //
Bo1i011011, //
Boi011111, //
B01110000, //
Bo1111111, //
Bo1111011}; //

OW 0~ OVl B W N B O

void anzeige(int wert){
byte einer, zehner;
zehner = int(wert / 10);
einer = wert - zehner * 10;
ansteuerung(einer, false); // Anzeige Einestelle
ansteuerung(zehner, true); // Anzeige Zehnerstelle

void ansteuerung(int a, boolean f){
digitalWrite(einerStelle, f);
digitalWrite(zehnerStelle, !f);
for(int j = 6; j >= 0; j--) // Abfragen der Bits fiir die Segmente
digitalWrite(pinArray[6 - j], bitRead(segmente[a], j) == 1?LOW:HIGH);
delay(5); // Pause
}

Die Ansteuerung der Einer- bzw. Zehnerstelle habe ich etwas ver-
kiirzt. Schaue dir dazu noch einmal die Losung bei der Siebenseg-
mentanzeige an und vergleiche sie mit dieser hier. Beim Aufruf der
ansteuerung-Funktion gebe ich zusitzlich zum anzuzeigenden Wert
noch einen booleschen Wert mit. Ist dieser false, dann wird die
Einerstelle angezeigt, bei true, die Zehnerstelle. Die Funktion wer-
tet dann diesen Wert aus und steuert entweder die Einer- oder die
Zehnerstelle an:

digitalWrite(einerStelle, f);
digitalWrite(zehnerStelle, !f);

Durch das If (NOT f) in der zweiten Anweisung wird der Wahr-
heitswert genau in das Gegenteil umgekehrt. Somit ist immer nur

Wie schnell bist du?

429

430

eine der beiden Alternativen wahr und es wird entsprechend auch
nur eine Stelle der Anzeige angesteuert.

Hey, hey, hey! Das ist doch nicht dein Ernst. Die digital Write-Funk-
tion erwartet doch entweder ein HIGH oder ein LOW im zweiten
Parameter. Wie kannst du da einfach mit true bzw. false arbeiten?
Wenn ich das richtig sehe, sind das doch vollkommen unterschiedli-
che Datentypen. Warum ist das moglich?

Ich verstehe deine Aufregung, doch die Antwort ist recht simpel.
Hinter den Kulissen werden HIGH und LOW bzw. true und false
als numerische Werte angesehen. Gib doch im Serial-Monitor ein-
mal Folgendes ein:

Serial.begin(9600);
Serial.printIn(LOW, DEC); // Ausgabe des LOW-Pegels als Dezimalzahl
Serial.println(false, DEC); // Ausgabe des false-Wertes als Dezimalzahl

Wenn du dir das Ergebnis anschaust, dann wirst du merken, dass
die gleichen Werte verwendet wurden. Ersetze LOW durch HIGH
bzw. false durch true und es kommen wieder die gleichen Werte
heraus. Aus diesem Grund habe ich eine boolesche Variable ver-
wendet, da ich sie mit dem NOT-Operator (Ausrufezeichen) in ihr
Gegenteil umkehren und damit negieren kann. Der eigentliche
Sketch-Code sieht dann wie folgt aus:

byte pinArray[] = {2, 3, 4, 5, 6, 7, 8}; // Fiir Siebensegmentanzeige
byte einerStelle = 12, zehnerStelle = 13;

byte ledPinRot = 9, ledPinGelb = 10, ledPinGruen = 11; // Fir Ampel
byte phase = 0; // 1 = Rot, 2 = Gelb, 3 = Griin

long startPunkt = 0; // Wenn Taster gedriickt - > Startpunkt

byte anzeigeWert, stopZeit;

boolean taster = false, gestoppt = false;

void setup(){

for(int 1 = 0; 1 < 7; i++)
pinMode(pinArray[i], OUTPUT);

pinMode(einerStelle, OUTPUT);

pinMode(zehnerStelle, OUTPUT);

pinMode(ledPinRot, OUTPUT);

pinMode(ledPinGelb, OUTPUT);

pinMode(ledPinGruen, OUTPUT);

void loop(){

Projekt 18: Der Reaktionstester

taster = analogRead(0) > 1000; // taster = true wenn Analogwert >
// 1000 ist
if(phase < 3) anzeige(0); // Zeige am Anfang 00 in der Anzeige
// Steuerung der Ampelphasen
if((taster) & (startPunkt == 0)){
phase = 1; // Beginne mit Rot
startPunkt = millis();
}
if((phase == 1) && (millis() - startPunkt > 2000))
digitalWrite(ledPinRot, HIGH);
if((phase == 1) 8& (millis() - startPunkt > 4000)){
digitalWrite(ledPinGelb, HIGH);
phase = 2; // Gelb
}
if((phase == 2) 8& (millis() - startPunkt > 6000)){
digitalWrite(ledPinGruen, HIGH);
phase = 3; // Grin
}
// Zahle hoch, wenn LED Griin und noch nicht gestoppt wurde
if((phase == 3) && (!gestoppt))
anzeige(anzeigeWert++);
// Leuchtet LED Grin wund der Taster wurde gedriickt
if((taster) & (phase == 3)){
gestoppt = true; // Flag fiir gestoppt auf "wahr" setzen
stopZeit = anzeigeWert; // Stoppzeit sichern
}
// Wenn gestoppt, dann Stoppzeit anzeigen
if(gestoppt)
anzeige(stopZeit);
// Wenn in Gelbphase Taster gedriickt -> zu frih
if((taster) 8& (phase ==2))
blinken();
// Wenn iberhaupt nicht reagiert wird -> blinken
if(anzeigeWert == 99)
blinken();
}

Du fithlst dich auf den ersten Blick moglicherweise ein wenig
erschlagen, doch es ist halb so wild.

Arduino-Code-Review

Fiir unser Experiment benétigen wir programmtechnisch gesehen
die folgenden Variablen:

Wie schnell bist du?

431

Tabelle 18-1 p

Benétigte Variablen und deren

432

Aufgabe

Variable Aufgabe

segmente Eindimensionales Array zur Speicherung der Segmentinformation pro Ziffer
pinArray Eindimensionales Array zur Speicherung der angeschlossenen Pins der Anzeige
einerStelle Wert des Pins fiir die Einerstelle

zehnerStelle Wert des Pins fiir die Zehnerstelle

einer Wert der Einerstelle

zehner Wert der Zehnerstelle

ledPinRot Wert des Pins fiir die rote Ampel-LED

ledPinGelb Wert des Pins fiir die gelbe Ampel-LED

ledPinGruen Wert des Pins fiir die griine Ampel-LED

phase Wert fiir die Ampelphasen

startPunkt Wert fiir die Speicherung der Zeit in Millisekunden seit Tasterdruck
taster Statuswert des Tasters (gedriickt: true, nicht gedriickt: false)
anzeigeWert Zahler zum Hochzahlen der Anzeige

stopZeit Wert der gestoppten Zeit

gestoppt Statuswert, wenn korrekt gestoppt wurde

Die einzelnen Pins zur Segmentansteuerung bzw. firr die gemein-
samen Anoden haben sich nicht gedndert, und ich habe sie daher
aus unserem Kapitel iiber die Siebensegmentanzeige tibernom-
men. Hinzugekommen sind die drei Pins fiir die Ampel-LEDs. Als
nichstes haben wir die Variable phase, die die einzelnen Ampel-
Phasen wiederspiegelt. Die Variable startpunkt wird spiter beno-
tigt, um eine Zahl zu speichern, die fiir den Zeitpunkt steht, an
dem der Taster gedriickt wurde. Es handelt sich dabei um einen
Wert, der die Zeit in Millisekunden seit Programmstart angibt. Da
dieser Wert mit der Zeit natiirlich recht groff wird, ist die Daten-
breite des Datentyps int fiir uns nicht groR genug dimensioniert.
Wir miissen auf long ausweichen. Die Variable anzeigewert ist fiir
das Hochzihlen um den Wert 1 zustindig. Der jeweils resultie-
rende Wert wird beim rechtzeitigen Stoppen in der Anzeige darge-
stellt und in die Variable stopZeit iibernommen. Zu guter Letzt
haben wir noch zwei Variablen des Datentyps boolean, die als
Flag, also als Anzeiger fir einen bestimmten Zustand, dienen. Der
Variablen taster wird dann den Wert true, also wahr, zugewiesen,
wenn der Taster betitigt wurde. Die Variable gestoppt ist ebenfalls
true, wenn der Zihlvorgang zur rechten Zeit gestoppt wurde. Ok,
dann werden wir uns den Code nun einmal genauer anschauen.

Projekt 18: Der Reaktionstester

Die Zeile
taster = analogRead(0) > 1000;

bedarf bestimmt einiger Erlduterung. Die Variable taster ist vom
Datentyp boolean und kann lediglich true oder false speichern. Um
diese Zeile zu verstehen, musst du von rechts nach links lesen und
eine Unterteilung in zwei getrennte Schritte vornehmen:

Zuweisung Vergleichsoperation

taster = analogRead(0) > 1000;

Bei dem ersten Schritt, der in rot markiert ist, handelt es sich um
eine Vergleichsoperation. Wenn der gemessene analoge Wert an
Pin 0 grofer 1000 ist, dann liefert dieser Vergleich den Wert true
zuriick, andernfalls false. Dieses Ergebnis wird im zweiten Schritt
der booleschen Variablen taster zugewiesen, der hier blau markiert
ist. Als nidchstes kommen wir zur Steuerung der einzelnen Ampel-
Phasen. Diese Phasen werden in der Variablen phase gespeichert:

if(phase < 3) anzeige(0); // Zeige am Anfang 00 in der Anzeige
// Steuerung der Ampelphasen
if((taster) 8&% (startPunkt == 0)){

phase = 1; // Beginne mit Rot

startPunkt = millis();

}
if((phase == 1) 8& (millis() - startPunkt > 2000))

digitalWrite(ledPinRot, HIGH);

if((phase == 1) 8&% (millis() - startPunkt > 4000)){
digitalWrite(ledPinGelb, HIGH);
phase = 2; // Gelb

}

if((phase == 2) 8&% (millis() - startPunkt > 6000)){
digitalWrite(ledPinGruen, HIGH);
phase = 3; // Grin

}

Wurde noch keine Phase eingeleitet, was bedeutet, dass phase < 3
ist, dann ist in der Anzeige 00 zu sehen. Wird jetzt erstmalig der
Taster betitigt, dann wird der Variablen phase der Wert 1 zugewie-
sen und startpunkt erhilt als Wert die seit Programmstart vergan-
gene Zeit in Millisekunden, der tiber die millis-Funktion ermittelt
wird. Mithilfe des Wertes in startpunkt werden die einzelnen
Ampelphasen gesteuert.

Wie schnell bist du?

433

434

Oh Mann, warum gehst du den komplizierten Weg iiber die millis-
Funktion. Warum verwendest du nicht einfach die delay-Funktion,
um die Pausen zwischen den einzelnen Ampelphasen zu steuern? Ist
das nicht viel einfacher?

Nun, die Verwendung der delay-Funktion wiirde den Code wohl in
der Tat verkiirzen. Leider aber auch den Spaf an der Schaltung,
denn sie wiirde nicht mehr funktionieren. Das betreffende Problem
hatte ich schon einmal angesprochen, doch du hast es sicherlich
kurzzeitig aus deinem Speicher entfernt. Wenn ich es dir jetzt aber
nochmal erldutere, dann fillt dir sicherlich alles wieder ein. Wiir-
den wir die delay-Funktion zwischen den Ampelphasen verwenden,
wie konnten wir dann z.B. ermitteln, ob zwischen Gelb-Phase und
Griin-Phase der Taster eventuell zu frith gedriickt wurde? Die
delay-Funktion unterbricht den Ablauf des Sketches fiir die angege-
bene Zeitdauer und macht nichts weiter, als einfach warten. Der
Sketch ist nicht in der Lage, auf weitere Einflisse, die ggf. von
auflen an das Board herangetragen werden, zu reagieren, da die
Ausfiithrung einfach pausiert. Es ist fiir uns aber sehr wichtig, zu
wissen, ob unerlaubter Weise die Taste in der Gelb-Phase gedriickt
wurde. Dies erreichen wir mit dem gezeigten Code und der millis-
Funktion. Die entsprechende Uberpriifung findet relativ am Ende
der loop-Funktion statt, die jetzt kontinuierlich abgearbeitet wird:

if((taster) &% (phase ==2))
blinken();

Wurde der Taster in der Gelb-Phase (phase = 2) gedriickt, dann
kommt es zu einer Anzeige iiber den verfrithten Tastendruck, siehe
blinken-Funktion in der Funktionen-Registerkarte. Ist die Griin-
Phase (phase = 3) erreicht, dann wird der interne Zahler, der iiber
die Variable anzeigeWert realisiert wurde, bei jedem loop-Durchlauf
um den Wert 1 erhoht. Das geschieht jedoch nur, wenn die boole-
sche Variable gestoppt noch den Wert false aufweist. Das Aus-
rufezeichen vor der Variablen bedeutet NICHT (not) und bewirkt
eine Umkehrung des logischen Wertes.

if((phase == 3) && (!gestoppt))
anzeige(anzeigelert++);

Wurde die Griin-Phase erreicht, kann nach Kriften auf die Taste
gedriickt werden:

Projekt 18: Der Reaktionstester

if((taster) & (phase == 3)){
gestoppt = true; // Flag fir gestoppt auf "wahr" setzen
stopZeit = anzeigeWert; // Stopzeit sichern

}

Dadurch wird das Flag gestoppt auf true gesetzt und der anzeige-
Wert in die Variable stopZeit gerettet. Erst jetzt wird beim nichsten
loop-Durchlauf auf die nachfolgende Bedingung positiv reagiert,
denn die Variable gestoppt ist wahr:

if(gestoppt)
anzeige(stopZeit);

Es wird die Funktion anzeige aus der SiebensegmentAnzeige-Regis-
terkarte mit der stopZeit aufgerufen, was zur Folge hat, dass die
entsprechende Zahl in der Anzeige erscheint. Game over!

Der Schaltplan

Die Schaltung gleicht der fur die Siebensegmentanzeige. Es sind
lediglich der Taster und die drei LEDs zur Ampelansteuerung hin-

zugekommen.
e|acss? ALY
2 PP = PNP
Rﬂlt Ampel
Gelb
o
Arduino 13 etk
i2 [0}
o ET1 —_r LA
PN 10 (L]
Q tww : o] —| Zehnerstelle Einerstelle
= 7 — 1rg i T 110
£ F 2] | 21 b2 2] N
B P 3 8 3 8
— vCC 2 5 L 330} C (Y = Lt ca [B
~— GND C'hme. L] I—%-e r%-— ;-e c :
- i ‘ _ﬁsu } d Il {1 oP -2
1 {330}
o - \
Analag IN B {330}
9 ﬁ_l l
ml.,lmlwlnln EEE
O3 QO O——o
¥ iy
R Taster

A Abbildung 18-2
Die Ansteuerung von zwei Sieben-
segmentanzeigen

Wie schnell bist du? 435

Aufbau der Reaktionsschaltung auf

436

Abbildung 18-3 p

dem Breadboard

Schaltungsaufbau

Wie du auf diesem Breadboard siehst, ist die Verwendung unter-
schiedlicher Kabelfarben unerlisslich. Es sollte aber nicht das pri-
mire Ziel sein, das ganze Konstrukt so bunt wie moglich zu
gestalten, sondern bestimmte Leitungsgruppen einer Farbe zuzu-
ordnen. Ich mochte dir diesbeziiglich, wie ich es auch schon einmal
erwihnt habe, keine Vorschriften machen. Denke dir selbst ein ent-
sprechendes System aus. Es ist allerdings sinnvoll, fiir Masseleitun-
gen schwarze und fiir die Stromversorgungsleitungen (von z.B.
+5V) rote Kabel zu verwenden.

Troubleshooting

Dieses Kapitel gleicht im Aufbau dem vorangegangenen. Du kannst
also einfach nochmal dort nachlagen, falls etwas nicht funktionie-
ren sollte.

Projekt 18: Der Reaktionstester

Was hast du gelernt?

* In diesem Kapitel haben wir geschickt zwei Sketche aus unter-
schiedlichen Kapiteln (Ampel- bzw. Siebensegmentansteue-
rung) miteinander kombiniert, um einen Reaktionstester zu
programmieren.

* Du hast auflerdem die Moglichkeit der IDE kennengelernt, den

Code auf mehrere Dateien zu verteilen. Das tragt sehr zur
Ubersichtlichkeit bei.

* Des Weiteren hast du gesehen, wie du iiber die millis-Funktion
Zeitabldufe koordinieren bzw. entsprechend darauf reagieren
kannst.

Workshop

Teil 1

Bisher konntest du nach einem erfolgreichen Reaktionstest die
Schaltung lediglich iiber den Reset-Taster auf dem Arduino-Board
zuriicksetzen. Erweitere doch die Schaltung bzw. die Programmie-
rung so, dass dies entweder durch den Start-Stopp-Taster oder
einen weiteren Taster erfolgen kann. Denke daran, dass in diesem
Fall bestimmte Variablen auf ihre Startwerte zuriickgesetzt werden
missen.

Teil 2

Da die Pausenzeiten zwischen den Phasenwechseln immer gleich
sind, kann man sich mit der Zeit ein wenig darauf einstellen und
nach Gefiihl einfach mal die Taste driicken. Andere doch den
Sketch so ab, dass die Pause beim Phasenwechsel von Gelb nach
Griin variabel ist und tiber eine Zufallsfunktion gesteuert wird. Du
weiflt dann nicht, wann die Ampel endlich auf Griin umspringt und
du den Taster betitigen musst. Natiirlich sollte sich die Pausenzeit
in einem gewissen Rahmen bewegen und sich nicht bis zu einer
Minute ausdehnen. Ich denke, dass eine Zeitspanne von 1 bis 5
Sekunden ausreichend ist. Aber das liegt natiirlich bei dir. Experi-
mentiere ein wenig.

Wie schnell bist du?

Projekt
Das KeyPad

Scope
In diesem Experiment behandeln wir folgende Themen:

* Die Herstellung eines eigenen KeyPads

* Wie konnen die einzelnen Taster elegant abgefragt werden?
* Der komplette Sketch

* Analyse des Schaltplans

* Aufbau der Schaltung

* Workshop

Was ist ein KeyPad?

Was ein Taster ist und wie er arbeitet, hast du schon in diversen
Kapiteln kennengelernt. Far manch ein Projekt ist es aber notwen-
dig, mehrere Taster in einer Matrix, also in Zeilen und Spalten
anzuordnen, um z.B. mit den Ziffern von 0 bis 9 und zwei Sonder-
tasten wie * und # arbeiten zu kénnen. Wo wird das benotigt?
Nun, du verwendest diese Kombination von Tasten tiglich, nim-
lich beim Telefonieren.

<« Abbildung 19-1
Die Wahltasten eines Telefons

439

Abbildung 19-2
Ein 4x4 Folien-KeyPad mit
16 Tasten und ein 4x3 Folien-Key-
Pad mit 12 Tasten

Es handelt sich um eine Matrix von 4x3 (4 Zeilen und 3 Spalten)
Tasten. Diese Matrix wird auch KeyPad — kleine Tastatur — genannt
und es gibt sie fertig in unterschiedlichen Varianten zu kaufen. Im
folgenden Bild sichst du zwei Folien-KeyPads. Das linke besitzt
sogar ein paar zusitzliche Sondertasten A bis D, die u.U. sehr sinn-
voll sein konnen, falls Dir die 12 Tasten des rechten KeyPads fiir
dein Projekt nicht ausreichen sollten.

Wenn ich mir vorstelle, ich miisste z.B. das 4x4 Folien-KeyPad an
meinen Arduino anschlieflen, stiinde ich wohl vor einigen Problemen,
da mir sicherlich die Pins ausgingen. Ich konnte allerdings alle 16
Tasten z.B. auf einer Seite mit +5V verbinden und die anderen 16
Anschliisse dann mit den digitalen Eingéingen. Zur Not lieRen sich ja
noch die analogen Eingiinge missbrauchen. Das haben wir doch auch
schon in der Vergangenheit gemacht.

J/

Nun Ardus, das kannst du natiirlich so versuchen zu realisieren und
es wiirde auch funktionieren, wenn da nicht die physikalischen
Grenzen des Arduino Uno-Boards wiren. Ein Ausweg wire das
Arduino-Mega Board, das sehr viel mehr Schnittstellen besitzt. Aber
wir wollen die Sache natiirlich elegant l6sen. Es gibt tibrigens eine
fertige KeyPad-Bibliothek auf der Arduino-Internetseite, doch wir
wolle an dieser Stelle die Sache selbst in die Hand nehmen. Wir
widmen uns dem 4x3 KeyPad, das wir selbst bauen wollen. Die fol-
gende Liste zeigt Dir, welche Materialien erforderlich sind.

Bendtigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

()

Projekt 19: Das KeyPad

Bendtigte Bauteile

k.

\ 12 x Taster

1 x Set Stapelbare Buchsenleisten (2 x 8 + 2 x 6)

1 x Platine mit den MaBSen 70.x 70 oder besser
16 x 10 (dann kannst du 2 Shields daraus her-

stellen) Ich habe den Ausschnitt fiir das Shield
schon markiert und werde gleich naher darauf
eingehen.

Litze in ggf. unterschiedlichen Farben

Voriiberlegungen

Du hast eben angemerkt, dass wir fiir unser 4x4 KeyPad so um die
16 Leitungen bendtigen, um alle Tasten abzufragen. Fur ein 4x3
KeyPad wiren es nur noch 12 Leitungen; das sind aber meiner Mei-
nung nach immer noch zu viele. Es gibt eine elegantere Ldsung,
deren Grundidee du schon bei der Ansteuerung der beiden Sieben-
segmentanzeigen kennengelernt hast. Was haben Siebensegment-
anzeigen mit diesen Tastern zu tun, fragst du dich jetzt bestimmt.
Das Stichwort lautet Multiplexing. Es bedeutet, das bestimmte Sig-
nale zusammengefasst und iber ein Ubertragungsmedium
geschickt werden, um den Aufwand an Leitungen zu minimieren
und so den groRemoglich Nutzen zu erzielen. Bei den Siebenseg-
mentanzeigen wurden die Steuerleitungen zweier Segmente parallel
geschaltet und zur Ansteuerung beider genutzt. Auf diese Weise
werden 7 bzw. 8 Leitungen pro Segment eingespart. Die Losung zur

Was ist ein KeyPad?

M

Abbildung 19-3 p

Die Verdrahtung der 12 Taster eines

4x3 KeyPads

Abbildung 19-4 »

Die Taste 5 wurde gedriickt (Die

dicken Linien zeigen den
Stromfluss)

Abfrage der einzelnen Taster eines KeyPads wurde denkbar einfach
realisiert. Doch zuvor zeige ich Dir die Verdrahtung der 12 Taster.

Spalten
)

£

07@ 1.7@ 07@
“}@ “7@) “}@ 2Zeilen
07@ 07 0/@
0}@ 07@ 0/@

3

Stelle Dir einfach ein Drahtgitter mit 4x3 Drihten vor, die iiberein-
ander gelegt wurden, jedoch keine Berithrungspunkte untereinan-
der aufweisen. Genau das zeigt diese Grafik. Du siehst die 4 blauen
horizontalen Drihte, die in Zeilen mit den Bezeichnungen 0 bis 3
angeordnet sind. Dariiber liegen in einem geringen Abstand die 3
roten vertikalen Drihte in Spalten mit den Bezeichnungen 0 bis 2.
An jedem Kreuzungspunkt befinden sich kleine Kontakte, die
durch das Herunterdriicken des Tasters den jeweiligen Kreuzungs-
punkt so verbinden, so dass er elektrisch leitend wird und die
betreffende Zeile bzw. Spalte eine elektrische Strecke bildet. Am
besten schaust du Dir das in der folgenden Grafik einmal genauer
an. Es wurde der Taster mit der Nummer 5 gedriickt.

Spalten
S
Vo Y® Yo e
1»7@ t } "/@
Vo 1o v

3

Der Strom kann demnach von Zeile 2 iiber den Kreuzungspunkt
Nummer 5 in Spalte 1 flieRen und dort registriert werden.

()

Projekt 19: Das KeyPad

Wenn aber an allen Zeilen gleichzeitig eine Spannung anliegt, konnte
auch z.B. die dariiber liegende Taste 2 gedriickt werden und ich
wiirde an Spalte 1 einen entsprechenden Impuls registrieren. Wie
kann das unterschieden werden?

Ok, Ardus! Ich sehe, dass du das Prinzip noch nicht ganz verstan-
den hast. Das ist natiirlich kein Beinbruch. Hor zu. Etwas unscharf
formuliert schicken wir nacheinander ein Signal durch die Zeilen 0
bis 3 und fragen dann ebenfalls nacheinander den Pegel an den
Spalten 0 bis 2 ab. Der Ablauf erfolgt dann wie folgt:

High-Pegel an Draht in Reihe O
* Abfragen des Pegels an Spalte 0
* Abfragen des Pegels an Spalte 1
* Abfragen des Pegels an Spalte 2

High-Pegel an Draht in Reihe 1
* Abfragen des Pegels an Spalte 0
* Abfragen des Pegels an Spalte 1
* Abfragen des Pegels an Spalte 2

etc.

Diese Abfrage geschieht natiirlich dermafen schnell, dass es in
einer einzigen Sekunde zu so vielen Durchldufen kommt, so dass
kein einziger Tastendruck unter den Tisch fillt. Das Shield habe ich
mit folgenden Pinnummern der digitalen Ein- bzw. Ausginge fest
verdrahtet:

<« Abbildung 19-5
Verdrahtung der einzelnen Zeilen
Pin’5 bzw. Spalten mit den digitalen Pins

Spalten
Pin8 Pin7 Pin6

07@ 0}@ 07@

° ° ° Pin4
“/@) “/@> "/@ Zeilen
° ° ° Pin3
0/@) u u/@

Pin2

u7® u7@ u7@

Was ist ein KeyPad? 443

Wir machen es an dieser Stelle etwas spannender und erstellen eine
eigene Library, die du spiter in anderen Projekten verwenden
kannst. Sie stellt eine gewisse Grundfunktionalitdt zur Verfugung
und kann bei Bedarf natiirlich abgedndert oder erweitert werden.
Der Hauptsketch fragt kontinuierlich das Shield ab, welche Taste
gedriickt wurde. Das Resultat wird zur Visualisierung an den
Serial-Monitor ausgegeben. Folgende Spezifikationen habe ich mir
dabei ausgedacht:

¢ Driickst du keine Taste, soll auch kein Zeichen im Serial-Moni-
tor ausgegeben werden

* Wird eine Taste nur kurz gedriickt, so erscheint die entspre-
chende Ziffer bzw. das Zeichen im Monitor

* Driickst du eine Taste iiber einen lingeren Zeitraum, der ent-
sprechend vorher festgelegt werden kann, dann erscheint die
Ziffer bzw. das Zeichen solange mehrfach hintereinander im
Monitor, bis du die Taste wieder loslisst

Arduino-Sketch-Code

Hauptsketch mit Code-Review

Ich beginne am besten mit dem Hauptsketch, der aufgrund der aus-
gelagerten Funktionalitdt in einer Library sehr spartanisch und
tibersichtlich anmutet. Doch warte mal ab. Es wird noch um eini-
ges komplexer und interessanter:

#include "MyKeyPad.h"
int rowArray[] = {2, 3, 4, 5}; // Array mit Zeilen Pin-Nummern
// initialisieren
int colArray[] = {6, 7, 8}; // Array mit Spalten Pin-Nummern
// initialisieren
MyKeyPad myOwnKeyPad(rowArray, colArray); // Instanziierung eines
// Objektes

void setup(){
Serial.begin(9600); // Serielle Ausgabe vorbereiten
myOwnKeyPad. setDebounceTime(500); // Prellzeit auf s500ms setzen

}

void loop(){
char myKey = myOwnKeyPad.readKey(); // Abfragen des gedriickten
// Tasters

@

Projekt 19: Das KeyPad

if(myKey != KEY_NOT_PRESSED) // Abfrage, ob irgendein Taster
// gedriickt
Serial.println(myKey); // Ausgabe des Tastenzeichens

}

Die erste Zeile bindet, wie du das schon bei der Wiirfel-Library
kennengelernt hast, die Header-Datei ein, um die Bibliothek nutzen
zu konnen. Auf deren Inhalt kommen wir gleich zu sprechen.
Zuerst deklarieren wir zwei Arrays und initialisieren sie mit den
Pinnummern der Zeilen- bzw. Spaltenanschlisse des KeyPads. Dies
ermoglicht eine hohere Flexibilitdt, damit bei abweichenden Kon-
struktionen entsprechend reagiert werden kann. Die Zeile

MyKeyPad myOwnKeyPad(rowArray, colArray);

generiert die Instanz myOwnKeyPad der Klasse MyKeyPad, die in
der Library definiert ist, und iibergibt die beiden Arrays an den
Konstruktor der Klasse. Diese Informationen werden dort benétigt,
um die Auswertung zu starten, welche der 12 Tasten denn gedriickt
wurde. Die Festlegung der Prellzeit erfolgt mit der folgenden Zeile:

myOwnKeyPad. setDebounceTime(500);

Dadurch wird die Methode setDebounceTime mit dem Argument
500 aufgerufen. Im Anschluss erfolgt innerhalb der loop-Funktion
die kontinuierliche Abfrage der Instanz, nach dem Motto: »Hey,
nenne mir mal die Taste, die gerade auf dem KeyPad gedriickt wird!«
Ermoglicht wird dies durch den Aufruf der folgenden Zeile:

char myKey = myOwnKeyPad.readKey();

Sie weist das Ergebnis der Abfrage der Variablen myKey des Daten-
typs char zu. Jetzt konnen wir entsprechend darauf regieren. Das
miissen wir auch, denn die Methode liefert unabhingig davon, ob
eine Taste gedriickt wurde oder nicht, immer einen Wert zuriick.
Du méchtest aber bestimmt nur dann etwas in der Anzeige sehen,
wenn eine Taste gedriickt wird. Aus diesem Grund wird der Wert
KEY_NOT_PRESSED zuriickgeliefert, falls keine Taste gedriickt
wird. Die if-Abfrage

if(myKey = KEY_NOT_PRESSED)
Serial.println(myKey);

sendet also nur dann die entsprechende Tastenbezeichnung an den
Serial-Monitor, wenn du wirklich eine Taste driickst.

Was ist ein KeyPad?

445

Bevor ich den Anschluss verpasse: Was verbirgt sich denn genau hin-

ter KEY_NOT_PRESSED?

Das kann ich recht schnell aufkliren, denn ich wire im nichsten
Schritt sowieso zur Header-Datei gekommen. Dort sind zahlreiche
symbolische Konstanten definiert. Hinter der eben genannten Kon-
stanten verbirgt sich das Zeichen«-», das immer dann gesendet
wird, wenn kein Taster gedriickt wird. Ich habe ihr einen sprechen-
den Namen gegeben, denn dadurch wird der Code lesbarer.

Header-Datei mit Code-Review

Die Header-Datei dient, wie schon erwihnt, der Bekanntgabe der
in der eigentlichen Klassendefinition benotigten Felder und Metho-
den. Schauen wir mal, was dort zu finden ist:

#ifndef
#define

MYKEYPAD_H
MYKEYPAD_H

#1if ARDUINO < 100

#include <WProgram.h>

#else

#include <Arduino.hy

#endif

#define KEY_NOT_PRESSED '-' // Wird benotigt, wenn keine Taste
gedriickt wird

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

KEY_ 1 '1'
KEY 2 '2'
KEY_3 '3’
KEY_4 '4'
KEY 5 '5'
KEY 6 '6'
KEY_7 '7'
KEY_8 '8’
KEY_9 "9’
KEY_0 '0'
KEY_STAR '*'
KEY_HASH '#'

class MyKeyPad{
public:
MyKeyPad(int rowArray[], int colArray[]); // Parametrisierter

// Konstruktor

void setDebounceTime(unsigned int debounceTime); // Setzen der

// Prellzeit

char readKey(); // Ermittelt die gedriickte Taste auf dem KeyPad

()

Projekt 19: Das KeyPad

private:

unsigned int debounceTime; // Private Variable fir die Prellzeit

long lastValue; // Letzte Zeit der millis-Funktion
int row[4]; // Array fir die Zeilen
int col[3]; // Array fiir die Spalten

};

#endif

Im oberen Teil siehst du die zahlreichen symbolischen Konstanten
und die entsprechenden Zeichen. Darunter folgt die formelle Klas-
sendefinition ohne Ausformulierung des Codes, der sich bekann-

terweise in der cpp-Datei befindet.

Hey, stopp mal kurz. Du willst mir schon wieder etwas unterjubeln,
was ich noch nicht kenne. Was bedeutet denn unsigned int bei der
Variablendeklaration. Es handelt sich doch um eine solche, oder!?

Also Ardus, du hast ja keine hohe Meinung von mir! Natiirlich wire
ich darauf zu sprechen gekommen. Der Datentyp int ist dir ja
gelaufig. Er erstreckt sich vom negativen bis zum positiven Werte-
bereich. Das Schliisselwortchen unsigned davor besagt, dass die
Variable vorzeichenlos deklariert wird, was zusitzlich noch bedeu-
tet, dass sich ihr Wertebereich verdoppelt, da die negativen Werte
wegfallen. Dieser Datentyp benotigt ebenfalls wie int zur Speiche-
rung 2 Bytes, die jetzt komplett den positiven Werten zur
Verfiigung stehen. Der Wertebereich erstreckt sich von 0 bis 65.

535.

CPP-Datei mit Code-Review

Jetzt geht es ein wenig an’s Eingemachte.

#include "MyKeyPad.h"
// Parametrisierter Konstruktor
MyKeyPad: :MyKeyPad(int rowArray[], int colArray[]){
// Kopieren der Pin-Arrays
for(int r = 0; r < 4; 1++)
row[r] = rowArray[r];
for(int ¢ = 0; ¢ < 3; c++)
col[c] = colArray[c];
// Programmieren der digitalen Pins
for(int r = 0; 1 < 4; 1++)
pinMode(row[1], OUTPUT);
for(int ¢ = 0; ¢ < 3; c++)
pinMode(col[c], INPUT);
// Initialwert fiir debounceTime auf 300ms festlegen
debounceTime = 300;

Was ist ein KeyPad?

447

// Methode zum Setzen der Prellzeit
void MyKeyPad::setDebounceTime(unsigned int time){
debounceTime = time;

}

// Methode zum Ermitteln des gedriickten Tasters auf dem KeyPad
char MyKeyPad: :readKey(){
char key = KEY_NOT_PRESSED;
for(int r = 0; 1 < 4; r++){
digitalWrite(row[r], HIGH);
for(int ¢ = 0; ¢ < 3; c++){
if((digitalRead(col[c]) == HIGH)&(millis() - lastValue) >=

debounceTime){
if((c==2)88&(r==3)) key = KEY_1;
if((c==1)88&(r==3)) key = KEY_2;
if((c==0)8&(r==3)) key = KEY_3;
if((c==2)88&(r==2)) key = KEY_4;
if((c==1)8&(r==2)) key = KEY_5;
if((c==0)8&(r==2)) key = KEY_6;
if((c==2)8&(r==1)) key = KEY_7;
if((c==1)8&(r==1)) key = KEY_8;
if((c==0)8&(r==1)) key = KEY_9;
if((c==2)8&(r==0)) key = KEY_STAR; // *
1f((c==1)83(r==0)) key = KEY_o;
if((c==0)88(r==0)) key = KEY_HASH; // #

lastvalue = millis();
}

}
digitalWrite(row[r], LOW); // Zuriicksetzten auf Ursprungspegel

}

return key;

}

Schauen wir uns zuerst den Konstruktor an. Er dient dazu, das zu
generierende Objekt zu initialisieren und mit definierten Startwer-
ten zu versehen. Durch den FEinsatz eines Kontruktors sollte die
Instanz nach Moglichkeit fertig initialisiert sein, so dass weitere
Methodenaufrufe zu Initialisierung in der Regel nicht mehr not-
wendig erscheinen. Sie werden nur noch zur Korrektur bestimmter
Parameter herangezogen, die sich ggf. im Verlauf eines Sketches
indern miussen oder konnen. Der Konstruktor wird nur einmalig
und implizit bei der Instanziierung aufgerufen und danach im
Leben eines Objektes nie wieder. In unserem Beispiel werden ihm
beim Aufruf die Zeilen- bzw. Spalten-Arrays iibergeben, so dass
diese dann tber zwei for-Schleifen an die privaten Arrays tiberge-
ben werden konnen:

()

Projekt 19: Das KeyPad

// Kopieren der Pin-Arrays
for(int r = 0; 1 < 4; r++)
row[r] = rowArray[r];
for(int ¢ = 0; c < 3; c++)
col[c] = colArray[c];

Im Anschluss werden die digitalen Pins initialisiert bzw. deren
Flussrichtungen festgelegt:

// Programmieren der digitalen Pins
for(int r = 0; 1 < 4; r++)
pinMode(row[1], OUTPUT);
for(int ¢ = 0; c < 3; c++)
pinMode(col[c], INPUT);
// Initialwert fiir debounceTime auf 300ms festlegen
debounceTime = 300;

Du hast gerade gesagt, dass ein Objekt tiber den Konstruktor immer
komplett instanziiert werden sollte. Du tibergibst dem Konstruktor
aber lediglich die Pin-Arrays fiir Zeilen und Spalten. Ein weiterer
wichtiger Parameter ist aber auch die Prellzeit. Die wird aber nicht
tiber den Konstruktor an das Objekt weitergegeben. Daftir hast du
aber eine eigene Methode, die das erledigen soll. Widerspricht das
nicht deiner Aussage von eben?

.

Ich sage mal »Jein«, Ardus! Dem Konstruktor fehlt in der Tat die
Angabe tiber die Prellzeit. Aber sieh’” Dir doch mal die letzte Zeile
im Konstruktor an. Dort wird die Zeit auf 300ms gesetzt. Es ist
quasi eine hart verdrahtete Initialisierung, wie man in Program-
miererkreisen so schén sagt. Falls Dir der Wert nicht zusagt, kannst
du ihn immer noch nach deinen eigenen Bediirfnissen anpassen —
so wie ich das im Ubrigen auch mit dem Aufruf der Methode setDe-
bounceTime gemacht habe. Der Wert von 500ms erschien mir hier
passender. Natiirlich hitte ich das auch gleich so festlegen konnen,
doch ich wollte Dir diese Moglichkeit aufzeigen, damit du spater
vielleicht in deinen eigenen Sketchen entsprechend experimentie-
ren kannst. Die eigentliche Arbeit iibernimmt die Methode read-
Key, die tiber die loop-Schleife immer und immer wieder aufgerufen
wird, um auf einen Tastendruck sofort reagieren zu kénnen. Zu
Beginn des Methodenaufrufes wird iiber die Zeile

char key = KEY_NOT_PRESSED;

der Wert des Feldes key stets mit einem Initialwert versehen.
Schaue in der Header-Datei nach, um welches Zeichen es sich han-

Was ist ein KeyPad?

449

450

delt. Wenn nimlich keine Taste gedriickt wird, ist es genau dieses
Zeichen, dass als Ergebnis zuriickgeliefert wird. Jetzt erfolgt der
Aufruf der zwei ineinander verschachtelten for-Schleifen. Die erste
Zeile des KeyPads wird tiber

digitalWrite(row[r], HIGH);

mit HIGH-Pegel versehen. AnschlieRend werden alle Spalten auf
deren Pegel hin abgefragt.

for(int ¢ = 0; ¢ < 3; c++){
if((digitalRead(col[c]) == HIGH)&&(millis() - lastValue) >=
debounceTime){

if((c==2)83(r==3)) key = KEY_1;

if((c==1)83(r==3)) key = KEY_2;

if((c==0)8&(r==3)) key = KEY_3;

if((c==2)88(r==2)) key = KEY_4;

if((c==1)88(r==2)) key = KEY_S5;

if((c==0)8&(r==2)) key = KEY_6;

if((c==2)8&(r==1)) key = KEY_7;

if((c==1)8&(r==1)) key = KEY_8;

if((c==0)8&(r==1)) key = KEY_9;

if((c==2)88(r==0)) key = KEV_STAR; // *
if((c==1)88(r==0)) key = KEY_O;

if((c==0)8&(r==0)) key = KEY_HASH; // #

lastValue = millis();

Wenn eine Spalte ebenfalls einen HIGH-Pegel aufweist und
zusitzlich die Prellzeit beriicksichtigt wurde, dann ist die erste if-
Bedingung erfiillt und alle nachfolgenden if-Bedingungen werden
ausgewertet. Trifft eine Bedingung hinsichtlich der Zeilenzihler r
und der Spaltenzihler ¢ zu, dann wird das Feld key mit dem ent-
sprechenden Wert initialisiert und am Ende der Methode tiber die
return-Anweisung an den Aufrufer zurtickgeliefert. Nach dem kom-
pletten Durchlauf der inneren Schleife muss natiirlich die gerade
mit HIGH-Pegel versehene Zeile wieder mit LOW-Pegel auf ihren
Ausgangszustand zuriickgesetzt werden. Bliebe der Zustand HIGH
bestehen, dann wire eine gezielte Abfrage einer einzigen Zeile nicht
mehr moglich. Alle Zeilen hitten nach einem Durchlauf der dufSe-
ren Schleife einen HIGH-Pegel und das brichte die ganze Abfrage-
logik ganz schon durcheinander.

Projekt 19: Das KeyPad

Die Sache mit der Prellzeit ist mir irgendwie noch nicht so ganz klar.
Bitte erklidre mir noch einmal die betreffende Funktion. Warum sie
eingesetzt werden muss, habe ich verstanden, doch wie funktioniert
das Ganze an der Stelle?

Aber ja, Ardus! Die millis-Funktion liefert die Anzahl der Mil-
lisekunden seit Sketchstart zurtick. Im Feld lastValue wird nach der
Abarbeitung der inneren Schleife der letzte Wert sozusagen zwi-
schengespeichert. Wird jetzt die Schleife erneut aufgerufen, dann
wird die Differenz zwischen dem aktuellen Millisekundenwert und
dem vorherigen Wert gebildet. Nur, wenn sie grofRer als die festge-
legte Prellzeit ist, wird die Bedingung als wahr erkannt. Sie steht
jedoch in einer logischen Und-Verkniipfung mit dem davor ange-
fithrten Ausdruck in Verbindung.

if((digitalRead(col[c]) == HIGH)8&(millis() - lastValue) »>=
debounceTime)...

Nur wenn beide Bedingungen das logische Ergebnis wahr an die if-
Anweisung liefern, wird mit der nachfolgende Klammer fortgefah-
ren. Mit diesem Konstrukt kannst du eine zeitliche Unterbrechung
erzielen, die so auch in einigen Sketches vorkommt.

Der Schaltplan

Die Schaltung ist recht simpel aufgebaut, aber die Anforderung an
die Programmierung ist ein wenig gestiegen.

Arduino 13
112,
s ik
pwm L0
OPHML
>~ 8
e 7
:‘? 6 ™~ — (=)
— VCC 2 ::: | 5 3
— ono e T TP
PWH |3 2
V. Ve 4L oy s e
%l LB te KEYPAD
—_—— I .
0 Y4RE 74
Analog IN ——| 0 % 8 19
4 b
SEERRE N

<« Abbildung 19-6
Die Ansteuerung unseres KeyPads

Was ist ein KeyPad?

451

Abbildung 19-7

Aufbau des KeyPads mit einem

452

eigenen Shield

Eine Sache fillt mir bei diesem Schaltbild sofort auf. Wird kein Taster
betitigt, dann hingen die digitalen Einginge 6, 7 und 8 quasi in der
Luft. Hast du nicht zu Beginn einmal gesagt, dass ein Eingang immer
einen definierten Pegel haben sollte?

Richtig, Ardus! Aber das KeyPad sollte relativ einfach gehalten wer-
den, und falls nicht gerade der Blitz in deinen Sessel fahrt und somit
eine hohe statische Verunreinigung deiner Umgebung hervorruft,
funktioniert das wunderbar. Ich hatte keine Probleme mit dieser
Schaltung. Probiere es selbst einmal aus. Aber wenn wir schon
beim Thema sind, dann schreibe doch den Sketch so um, dass die
internen Pullup-Widerstinde genutzt werden. Das Shield brauchst
du dafiir nicht zu modifizieren. Lediglich der Code muss ein wenig
angepasst werden. Hier ein kleiner Tipp zum Einstieg: Werden die
Pullups aktiviert, dann musst du die einzelnen Pins statt auf HIGH-
jetzt auf LOW-Pegel hin abfragen. Den Rest musst du aber schon
selbst herausfinden. Betrachte es als Teil des gleich folgenden
Workshops.

Shieldaufbau

Der Shieldaufbau sieht doch schon nicht schlecht aus, oder? Ich
hatte Dir eingangs versprochen, Dir zu zeigen, wie du die entspre-
chende PlatinengrofRe erhiltst. Das Foto mit der Platine, das du zu
Beginn des Kapitels gesehen hast, war schon mit Markierungen ver-
sehen, die die endgiiltige Shieldgrofe markierten. Detailliertere
Informationen zur Herstellung findest du im Kapitel iiber den

Shieldbau.

Projekt 19: Das KeyPad

Schnittlinie

< 20 Locher —————>|

PR R e e e e e e e e s
— e e e e ereeeecreenece
A e e o e e e e 0o
L IR IR B B A B B B R A S) ()
et e e e e e e acececeee
e d Ded D e g De e
e d b:.d D= d Dee
P 0 @ 00 F e e e e e
® ¢ 8 @ 0 0 Q0T TreCTTE
« g D« Jd O - d D« &
8] o 1o
% a Ded o (e Diele
3 * e & 8 0 0 0 ""“
N e e e elvllel oS
~N g Ded D= r%'f
| e e o e e o dE
o] Jo] [o] ¢
ll..'...'."."a
s e eeweeeevigee
d D« D« (D
o] Jof
Die'd
.
\ 4 3

3 Schnittlinie

Auf dem Bild erkennst du die genauen Positionen der Buchsenleisten
und der Taster. Zihle einfach die einzelnen Locher auf der Platine
und positioniere anschlieRend die Bauteile. Beginne mit dem Einzu-
loten aber erst dann, wenn du alles auf die Platine gesteckt hast. Auf
diese Weise vermeidest du eine Fehlpositionierung und ein Fehler
fallt Dir sofort auf. Wenn du die einzelnen Bauteile sofort nach dem
Aufstecken festlotest, kann es passieren, dass Dir ein Fehler erst spa-
ter auffillt und du alles wieder herausléten musst. Die Riickseite der
Platine sieht nach der vollstindigen Verlétung der Bauteile bzw. der
einzelnen Drahtverbindungen wie folgt aus:

-1 e

Digitale Pins

e . ;

Taster Spaltenverbindungen

Was ist ein KeyPad?

<« Abbildung 19-8
ShieldgroBe anhand der
Lochabstédnde

<« Abbildung 19-9
Die Riickseite der Platine

453

454

Die griinen Kabel stellen die Verbindungen zu den Zeilen, die gel-
ben zu den Spalten her. Die roten Kabel sind die mittleren Spalten-
verbindungen, die iiber die horizontalen Drihte fiithren.

Troubleshooting

Da es einiges an Lotaufwand bedeutet, dieses Shield zusammen
zubauen, konnen sich zahlreiche Fehler einschleichen:

* Uberpriife, ob die einzelnen Drihte mit den richtigen Pins ver-
bunden wurden.

* Achte auf etwaige Kurzschliisse untereinander. Nimm am bes-
ten eine Lupe zur Hand und wirf einen Blick zwischen die ein-
zelnen Lotverbindungen. Ein haarfeiner Schluss ist mit blofSem
Auge meist nicht zu erkennen.

* Hast du die einzelnen Taster richtig untereinander verbunden,
so dass sie Zeilen bzw. Reihen bilden? Schaue Dir noch einmal
den Schaltplan an.

Was hast du gelernt?

* Du hast gesehen, dass man sich mit sehr einfachen und giinsti-
gen Bauteilen ein KeyPad selbst herstellen kann. Wenn du die
notige Geduld besitzt und den Wunsch hegst, selbst einmal
etwas zu bauen und nicht immer auf fertige Komponenten aus
den Geschiften zurtickzugreifen, dann war das bestimmt ein
passender Einstieg, der dich hoffentlich dazu animiert hat, kre-
ativ zu werden bzw. zu bleiben.

* Ich denke, dass das Loten, das in den Anfingen der elektroni-
schen Basteleien vor einigen Jahrzehnten exzessiv praktiziert
wurde, heutzutage etwas aus der Mode gekommen ist. Doch
ich hoffe, dass dich der Geruch von geschmolzenem Lotzinn
und verbranntem Plastik ebenso in seinen Bann gezogen hat
wie mich in meiner Jugend.

* Wir haben zusammen eine eigene Klasse erstellt, die fiir das
Abfragen der Taster-Matrix genutzt werden kann. Du hast
dabei sicherlich von den Grundlagen der OOP profitiert, die
wir zuvor erldutert hatten.

Projekt 19: Das KeyPad

Workshop

Die KeyPad-Library ist im Moment noch Teil deines Sketches, den
du erstellt hast. Ich denke, dass es eine gute Idee ist, diese Library
nun fiir alle weiteren Sketches, die davon Gebrauch machen sollen,
an einen zentralen Ort kopierst. Falls du vergessen haben solltest,
wo das ist, kannst du noch einmal einen Blick in das Kapitel iiber
den Elektronischen Wiirfel werfen, in dem du das erste Mal eine
eigene Library erstellt hast. Dort findest du die notwendigen Infor-
mationen. Des Weiteren solltest du deine Library um die Datei key-
words.txt erweitern. Trage dort die erforderlichen Schliisselworter
ein, die in der Arduino-IDE farblich hervorgehoben werden sollen.

Was ist ein KeyPad?

455

Das KeyPad
(Diesmal ganz anders)

Projekt

20

Scope

In diesem Experiment behandeln wir folgende Themen:

Die Herstellung eines eigenen KeyPads

Wie konnen die einzelnen Taster eleganter abgefragt werden?
Der komplette Sketch

Analyse des Schaltplans

Aufbau der Schaltung

Ein Zahlen-Rate-Spiel

Workshop

Noch ein KeyPad?

Was ein KeyPad ist und wie du es selbst herstellen kannst, hast du
ja im letzten Kapitel schon gesehen. Wie, wenn ich dir nun erzihlen
wiirde, dass wir anstelle der 7 Leitungen nur noch eine einzige
benotigen, um auf die Tastendriicke zu reagieren? Unmdglich,
sagst Du!? Mitnichten — und das Ganze lduft diesmal nicht digital,
sondern analog ab. Ich mache dir das mit Hilfe des folgenden Bildes
deutlich.

457

Abbildung 20-1
Ein Widerstandsregler

——o VCC

—~— GND

Arduino
o
>
]
=
s
=
Analog IN

s [
ho |Let

|

.
"

PWM
PWM
PwM

s
=l

PWM
PWM

PwWM

R

-

Wir haben es hier mit einem regelbaren Widerstand zu tun, der in
Form eines Schiebereglers realisiert wurde. Du kannst seinen Wider-
standswert vergrofern bzw. verkleinern, indem du den Regler nach
oben oder nach unten schiebst. Rechts daneben befindet sich eine
Skala, die die einzelnen Ziffern und Symbole anzeigt, bei denen du
den Regler positionieren musst, was dann einem bestimmten Wider-
standswert entspricht. Da es hier natiirlich keine festen Raster gibt,
die an verschiedenen Stellen den Regler festhalten, ist diese Losung
natiirlich sehr ungenau. Das analoge KeyPad arbeitet in dhnlicher
Weise. Driickst du eine Taste, dann wird ein bestimmter Gesamtwi-
derstandswert aus einer diversen Anzahl von Einzelwiderstinden
zusammengesetzt. Diese hingt davon ab, welche Taste du driickst.
An dieser Stelle mochte ich dich jetzt schon mit dem Schaltplan kon-
frontieren, da du das Prinzip dann sofort durchblickst.

4

})O
1 &

A

458

[]

Abbildung 20-2 A
Der Schaltplan fiir das analoge

KeyPad

5q

Projekt 20: Das KeyPad (Diesmal ganz anders)

Die Widerstinde mit dem Wert 220 bilden mit dem oberen 10K
Widerstand quasi einen Spannungsteiler, bei dem nach und nach,
abhingig davon, wie weit rechts sich die gedriickte Taste befindet,
mehr Widerstinde fir den oberen Teil des Spannungsteilers hinzu-
geschaltet werden. Das bedeutet, dass fiir die Ausgangsspannung,
die an den analogen Eingang an Pin 0 gefithrt wird, immer weniger
Potential iibrig bleibt. Der untere 10K Widerstand arbeitet als Pull-
down-Widerstand, damit bei offenen Tastern ein definierter Pegel
von 0V gemessen wird. Die nachfolgende Tabelle zeigt dir die von
mir gemessenen Werte, die ich mir {iber die analogRead-Funktion
habe anzeigen lassen. Sie werden spiter dazu verwendet, die Tas-
tendriicke auszuwerten.

Taste 1 2 3 4 5 6 7 8 9 * (1] #
o 176 163 149 136 122 108 95 79 64 48 32 15

Diese Werte kdonnen bei Dir natiirlich etwas abweichen, da die
Widerstinde eine bestimmte Toleranz aufweisen. Teste es einfach
aus und passe sie ggf. an, das sollte kein allzu grofRes Problem dar-
stellen. Aber du kannst erkennen, dass die gemessene Spannung
von links nach rechts kontinuierlich abnimmt, wobei die Differenz
zwischen benachbarten Werten im Schnitt 15 betragt.

Benotigte Bauteile

Fiir dieses Beispiel benétigen wir die folgenden Bauteile:

Bendtigte Bauteile
E

{ 12 x Taster

12 x Widerstand 220

— Bk - 2 x Widerstand 10K

bl

1x Set stapelbare Buchsenleisten (2 x 8 + 2 x 6)

Noch ein KeyPad?

« Tabelle 20-1
Ermittelte Werte mit »analogRead«

459

460

Benétigte Bauteile

1x Shieldplatine

Litze in ggf. unterschiedlichen Farben

Arduino-Sketch-Code

Ich denke, dass du jetzt schon soweit bist, dass wir wieder eine
Library entwickeln kénnen.

Haupt-Sketch mit Code-Review

Ich beginne wieder mit dem Hauptsketch:

#include "MyAnalogKeyPad.h"
#define analogPin 0 // Definition des analogen Pins
MyAnalogKeyPad myOwnKeyPad(analogPin); // Instanziierung eines Objektes

void setup(){
Serial.begin(9600); // Serielle Ausgabe vorbereiten
myOwnKeyPad. setDebounceTime(500); // Prellzeit auf 500ms setzen

}

void loop(){
char myKey = myOwnKeyPad.readKey(); // Abfragen des gedriickten Tasters
if(myKey != KEY_NOT_PRESSED) // Abfrage, ob irgendein Taster gedriickt
Serial.println(myKey); // Ausgabe des Tastenzeichens

Projekt 20: Das KeyPad (Diesmal ganz anders)

Dieser Sketch gleicht dem des vorangegangenen KeyPads. Doch
anstelle der Definition der Zeilen und Spalten wird hier nur der
analoge Eingang festgelegt. Dieser erhilt als alleiniger Eingang die
Information, welche Taste gedriickt wurde. Dem Konstruktor wird
beim Instanziieren diese Pin-Nummer iibermittelt. Alles andere
entspricht etwa dem Hauptsketch des vorherigen Kapitels.

Header-Datei mit Code-Review

Die Headerdatei muss lediglich in der Klassendefinition angepasst
werden. Die symbolischen Konstanten lasse ich hier aus Platzgriin-
den weg:

class MyAnalogKeyPad{
public:
MyAnalogKeyPad(byte analogPin); // Parametrisierter Konstruktor
void setDebounceTime(unsigned int debounceTime); // Setzen der Prellzeit

void setThresholdvalue(byte tv); // Setzen der Threshold

char readKey(); // Ermittelt die gedriickte Taste auf dem KeyPad
private:

byte analogPin; // Analoger Pin zur Messwertaufnahme

unsigned int debounceTime; // Private Variable fir die Prellzeit

long lastValue; // Letzte Zeit der millis-Funktion

byte threshold; // Toleranzwert

};

Da wir es mit analogen Werten zu tun haben, die es aufgrund von
Bauteiltoleranzen nicht immer so genau nehmen, missen wir eine
Bandbreite fiir die gemessenen Werte implementieren. Nimm z.B.
den ersten Wert 176, der bei meinem Shield mit den von mir ver-
wendeten Widerstinden ermittelt wurde. Die Wahrscheinlichkeit,
dass du einen abweichenden Wert erhiltst, ist recht hoch. Den-
noch sollte die Schaltung auch bei dir funktionieren. Aus diesem
Grund gibt es das Feld mit dem Namen threshold, was tibersetzt so
viel wie Grenzwert bedeutet. Dieser Wert wird dem ermittelten
Wert hinzugefiigt bzw. von ihm abgezogen, um so einen Toleranz-
bereich zu erhalten. Befindet sich der ermittelte Wert innerhalb die-
ser Toleranz, wird das Ergebnis als eindeutig identifiziert.

CPP-Datei mit Code-Review

Nun kommen wir wieder zur Implementierung des eigentlichen
Codes:

Noch ein KeyPad?

461

#include "MyAnalogKeyPad.h"
// Paramtrisierter Konstruktor
MyAnalogKeyPad: :MyAnalogKeyPad(byte ap){
// AnagogPin fiir Messwertaufnahme
analogPin = ap;
// Initialwert fiir debounceTime festlegen
debounceTime = 300;
// Toleranzwert festlegen
threshold = 5;

// Methode zum Setzen der Prellzeit
void MyAnalogKeyPad: :setDebounceTime(unsigned int time){
debounceTime = time;

}

// Methode zum Setzen der Prellzeit

void MyAnalogKeyPad: :setThresholdvValue(byte tv){
threshold = tv;

}

// Methode zum Ermitteln des gedriickten Tasters auf dem KeyPad
char MyAnalogKeyPad: :readKey(){
char key = KEY_NOT_PRESSED;
byte aValue = analogRead(analogPin);
if((avalue > 0)8&(millis() - lastValue >= debounceTime)){
if((avalue > (176 - threshold)) 8& (avalue < (176 + threshold)))

key = KEY_1;

if((avalue > (163 - threshold)) && (avalue < (163 + threshold)))
key = KEY_2;

if((avalue > (149 - threshold)) &8 (aValue < (149 + threshold)))
key = KEY_3;

if((avalue > (136 - threshold)) 8& (avValue < (136 + threshold)))
key = KEY_4;

if((avalue > (122 - threshold)) && (avalue < (122 + threshold)))
key = KEY_5;

if((aValue > (108 - threshold)) &8 (aValue < (108 + threshold)))
key = KEY_6;

if((avalue > (94 - threshold)) 8& (aValue < (94 + threshold))) key
= KEY_7;

if((avalue > (79 - threshold)) 8& (avalue < (79 + threshold))) key
= KEV_8;

if((avalue > (64 - threshold)) 8& (avalue < (64 + threshold))) key
= KEY_9;

if((avalue > (48 - threshold)) && (aValue < (48 + threshold))) key
= KEY_STAR;

if((avalue > (32 - threshold)) 8& (avalue < (32 + threshold))) key
= KEY_O;

Projekt 20: Das KeyPad (Diesmal ganz anders)

if((avalue > (15 - threshold)) && (avalue < (15 + threshold))) key
= KEY_HASH;
lastValue = millis();
}

return key;

}

Fiir meine Belange ist der implizit gesetzte threshold-Wert von 5 ok,
und deshalb nutze ich die Methode setThresholdValue nicht. Du
musst vielleicht ein wenig mit den Werten experimentieren.

Shieldaufbau

Yole,
.
o0
O.
O

Q0

Bei diesem Shieldaufbau habe ich die benétigten Widerstinde auf
die Riickseite der Platine gelotet. Ich wollte auf diese Weise die
schéne Vorderseite mit den 12 Tastern nicht dadurch verunstalten,
dass sich zwischen ihnen zahllose Widerstinde tummeln. Du
kannst hier die in Reihe geschalteten Widerstiande, die sich wie eine
Perlenkette hintereinander aufreihen, relativ gut erkennen. Das
Zusammenloten des Shields bedeutet schon ein wenig Frickelei,
denn es ist nicht viel Platz auf der Lotseite und es soll ja halbwegs
ordentlich aussehen. Der Zeitaufwand betrigt — wenn alles ohne
Probleme ablduft — schon eine gute Stunde. Aber nimm dir auf
jeden Fall geniigend Zeit, denn wenn Hetzerei und Nervositit im
Spiel sind, geht moglicherweise einiges schief. Auf dem folgenden
Bild habe ich die Verkabelung noch einmal nachgezeichnet, damit
es auch keine Unstimmigkeiten gibt:

<« Abbildung 20-3

Aufbau des KeyPads mit einem
eigenen Shield (diesmal von der
Lotseite her gesehen)

Noch ein KeyPad?

463

Abbildung 20-4 p
Verkabelung auf der Lotseite

Lotseite

Digitale Pins
Analoge Pins

Ein kleines Zahlenratespiel

Es wird Zeit, dass wir das gelernte in einem kleinen Spiel umsetzen.
Was hiltst du davon, wenn wir den Mikrocontroller sich eine Zahl
ausdenken lassen, die du dann erraten musst? Die einzigen Hilfe-
stellung, die er dir bei deinen Rateversuchen gibt, sind folgende
Aussagen:

e Zahl zu klein
* Zahl zu grof}
e Zahl erraten

Diese Kommentare werden dann an den Serial-Monitor geschickt,
damit du bei deiner nichsten Zahleneingabe entsprechend reagie-
ren kannst. Wenn du die Zahl erraten konntest, werden dir die
Anzahl der benétigten Versuche angezeigt und das Spiel beginnt
von vorne.

#include "MyAnalogKeyPad.h"

#define analogPin 0 // Definition des analogen Pins
#define MIN 10 // Untergrenze fiir Zufallszahl
#define MAX 1000 // Obergrenze fiir Zufallszahl

MyAnalogKeyPad myOwnKeyPad(analogPin); // Instanziierung eines
// Objektes

int arduinoZahl, versuche; // Generierte Zufall, Anzahl
// der Versuche

Projekt 20: Das KeyPad (Diesmal ganz anders)

@

char deinezahl[5]; // Max. 5-stellige Zahl
byte stelle; // Markiert die gerade eingegebene Stelle

void setup(){
Serial.begin(9600); // Serielle Ausgabe vorbereiten
myOwnKeyPad. setDebounceTime(500); // Prellzeit auf 500ms setzen
arduinoZahl = zufallszahl(MIN, MAX); // Zu erratende Zahl
// generieren
Serial.println("Ich habe mir eine Zahl zwischen " +
String(MIN) + " und " + String(MAX) + " ausgedacht...");
Serial.print(">>");

}

void loop(){
char myKey = myOwnKeyPad.readKey(); // Abfragen des gedriickten
// Tasters
if(myKey != KEY_NOT_PRESSED){ // Abfrage, ob irgendein Taster
// gedriickt
deineZahl[stelle] = myKey;
stelle++;
Serial.print(myKey);
}
if(stelle == int(log10(MAX))+1){
versuche++;
int a = atoi(deinezahl);
if(a == arduinoZahl){
Serial.println("\nJaaa!");
Serial.printIn("\nDu hast " + String(versuche) + " Versuch(e)
benoetigt.");
versuche = 0;
arduinoZahl = zufallszahl(MIN, MAX);
Serial.println("\nIch habe mir eine neue Zahl ausgedacht... ");
}
else if(a < arduinoZahl)
Serial.println("\nZu klein");
else
Serial.println("\nZu gross");
Serial.print(">>");
stelle = 0; // Zuriicksetzen der Stelle
}
}

int zufallszahl(int minimum, int maximum){
randomSeed(analogRead(5));
return random(minimum, maximum + 1);

}

Noch ein KeyPad?

465

466

Da sind eine Menge neuer Details drin, die ich noch erldutern
muss. Ich zeige dir aber erst einmal den Ablauf des Sketches im
Serial-Monitor.

Ich habe mir eine Zzhl zwischen 10 und 1000 ausgedacht...
>>0500

Zu gross

>>0250

Zu gross

>>0175

Zu klein

>>0Z40

Zu gross

>>0236

Jaza!
Du hast 5 Versuchie) bencetigt.

Ich habe mir eine neue Zahl ausgedacht. ..
>

Zu Beginn des Spiels wird dir der Bereich angegeben, in dem sich
die zu erratende Zahl befindet. Danach gibst du iiber das KeyPad
nacheinander die Ziffern deiner Zahl ein. Da der maximale Wert
1000 vier Stellen besitzt, wird automatisch nach der Eingabe deiner
4. Ziffer das Ergebnis bewertet. Das bedeutet natiirlich, dass du
immer fithrende Nullen mit eingeben musst. Wurde die Zahl von
dir erraten, wird dir angezeigt, wie viele Versuche du zur Lsung
des Riitsels benotigt hast. Danach beginnt das Spiel erneut mit einer
neuen Zufallszahl, die du erraten musst. Da die KeyPad-Methode
einzelne Zeichen vom Datentyp char zuriickliefert, speichern wir
deine Eingaben einfach in einem Array, das ebenfalls den Datentyp
char aufweist. Die Deklarationszeile dazu lautet wie folgt:

char deinezahl[5];

Es werden 5-stellige Zahlen als das Maximum festgelegt und ich
denke, dass das vollkommen ausreichend ist. Wie kommen jetzt
aber deine Eingaben in dieses Array? Dies geschieht mittels der fol-
genden Zeilen:

char myKey = myOwnKeyPad.readKey(); // Abfragen des gedriickten Tasters
if(myKey != KEY_NOT_PRESSED){ // Abfrage, ob irgendein Taster
// gedriickt
deineZahl[stelle] = myKey;
stelle++;
Serial.print(myKey);
}

Projekt 20: Das KeyPad (Diesmal ganz anders)

Wird eine Taste gedriickt, dann wird das 1. Array-Element mit die-
sem Tasten-Wert versehen, der an die Position 0 geschrieben wird.
Erinnere Dich, dass das erste Element mit dem Index 0 anzuspre-
chen ist. Die Variable stelle ist fiir die Adressierung der einzelnen
Elemente verantwortlich und wird nach jedem Tastendruck inkre-
mentiert. Anschliefend wird das Tastenzeichen an den Serial-
Monitor iibertragen und du siehst sofort, was du gedriickt hast.
Jetzt wird es etwas knifflig. Da die Anzahl der Stellen der zu erra-
tenden Zahl vom maximalen Wert abhingt, der tiber

#define MAX 1000 // Obergrenze fiir Zufallszahl

definiert wurde, muss der Sketch hier entsprechend flexibel reagie-
ren konnen. Wie ermitteln wir aber die Anzahl der Stellen auf mog-
lichst einfache Weise? Das funktioniert wunderbar mit dem 10er-
Logarithmus und wird im Sketch mittels der Zeile

int(log10(MAX))+1

errechnet. Die Funktion dazu lautet log10 und ist Teil der Mathe-
matik-Bibliothek von C++. Durch die int-Funktion werden die
Nachkommastellen abgeschnitten und am Ende wird das Ergebnis
um den Wert 1 erhoht. Wenn die Anzahl der von dir eingegeben
Stellen gleich der Stellen des groftmoglichen Wertes ist, ist die
Bedingung der if-Anweisung erfiillt und es wird ihr Rumpf ausge-
fuhrt, der die Bewertung deiner Eingabe veranlasst. Jetzt muss
deine Eingabe, die sich ja im Array deineZahl befindet, mit der vom
Mikrocontroller generierten Zahl verglichen werden.

[Wie kann man denn um Himmels Willen ein Array mit einer Zahl }
@

vergleichen? Das soll funktionieren?

)

A -
Das funktioniert und aus diesem Grund habe ich auch deine Ein- ﬁ& -

gabe nicht in eine Variable vom Datentyp String schreiben lassen,
sondern in ein char-Array. Die momentane String-Library von
Arduino unterstiitzt nicht die Konvertierung von Zeichenketten in
einen numerischen Datentyp. Also bedienen wir uns einer Funk-
tion, die diese Aufgabe wunderbar iibernehmen kann, sofern ihr
z.B. ein char-Array tibergeben wird.

int a = atoi(deinezahl);

Der Name setzt sich aus ASCII to Integer zusammen. Das Ergebnis
der Funktion wird der Variablen a zugewiesen. Im Anschluss wird

Noch ein KeyPad? 467

Tabelle 20-2 p
Einige Escape-Sequenzen

h 4
-

dieser Wert mit der generierten Zahl des Mikrocontrollers vergli-
chen und tiber einige if- bzw. else if-Anweisungen die Ausgabe an
den Serial-Monitor geleitet.

Da sind ein paar Zeilen, die ich irgendwie verstehe und dann doch
wieder nicht. Eine dieser Zeilen ist Serial.printIn("\nJaaa!");. Was
sollen denn dieser nach links gekippte Schrigstrich und das nachfol-
gende n bedeuten? Davon gibt es ja noch mehr im Code.

Ok, Ardus. Der nach links gekippte Schrigstrich \ nennt sich Back-
slash. Er leitet eine sogenannte Escape-Sequenz ein, die sich inner-
halb einer ganz normalen Zeichenkette befindet. Hier eine kurze —
und tberhaupt nicht vollstandige — Liste einiger Escape-Sequenzen
und ihrer Funktionen.

Escape-Sequenz Funktion

\n Zeilenvorschub

\" Doppeltes Anfiihrungszeichen
\\ Backslash

\t Horizontaler Tabulator

Das konnte wichtig fiir dich sein
Hier ein paar Begriffe fur die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

Escape Sequence

Steuerzeichen C

Da im Sketch an zwei Stellen eine neue Zufallszahl ermittelt werden
muss, liegt es nahe, diese Codezeilen in eine Funktion auszulagern:

int zufallszahl(int minimum, int maximum){
randomSeed(analogRead(5));
return random(minimum, maximum + 1);

}

Da der analoge Eingang an Pin 5 von unserem Sketch in keiner
Weise beschaltet bzw. benétigt wird, kénnen wir thn wunderbar
zur Generierung neuer Zufallszahlen verwenden, so dass nicht
immer die gleichen erzeugt werden. Falls dir das noch unklar sein
sollte, wirf” einen erneuten Blick in das Kapitel Das Miniroulette.

468

Projekt 20: Das KeyPad (Diesmal ganz anders)

Troubleshooting

Da hier der Lotaufwand im Vergleich zum letzten Kapitel noch ein-
mal zugenommen hat, ist die Gefahr natiirlich noch groRRer gewor-
den, dass aufgrund von Unachtsamkeit Fehler unterlaufen:

* Uberpriife die Verkabelung auf Korrektheit.

* Achte auf etwaige Kurzschliisse untereinander. Die Verdrah-
tungsdichte ist fur unsere Verhiltnisse hoch und da die Verbin-
dungsdrihte aus einzelnen kleineren Drihten (Litze genannt)
bestehen, kénnen sich sehr schnell einige dieser kleinen Kame-
raden verirren und ungewollt Kontakt zum Nachbarn aufneh-
men.

Was hast du gelernt?

* Im Zeitalter der Digitaltechnik muss nicht immer alles aus Ein-
sen und Nullen bestehen. Anhand des hier vorgestellten analo-
gen KeyPads konntest du sehr schén sehen, dass man mit einer
Widerstandskette und entsprechend positionierten Tastern
eine wunderbar funktionierende KeyPad-Schaltung bauen
kann, die lediglich mit einem einzigen Pin arbeitet, um auf die
Tastendriicke zu reagieren.

* Wir haben ein Zahlen-Rate-Spiel entwickelt, das durch die
Verwendung des KeyPads wunderbar zu realisieren war.

* Unterschiedliche Escape-Sequenzen kénnen dazu genutzt wer-
den, Steuerfunktionen zu tibernehmen.

* Du hast die atoi-Funktion kennengelernt, mit der ein String in
eine Ganzzahl konvertiert werden kann.

Workshop

Mach’ dir ein paar Gedanken, wie du das KeyPad modifizieren
kannst, um die einzelnen Tasten und ihre dahinter liegenden Funk-
tionen besser sichtbar zu machen. Kannst du vielleicht eine zusitz-
liche Komponente anbringen, so dass die Tasten irgendwie
beschriftet sind? Schicke mir doch deine Lésung(en), so dass ich sie
dann auf meiner Internetseite — natiirlich unter deinem Namen —
prisentieren kann.

Noch ein KeyPad?

469

Eine Alphanumerische
Anzeige

Scope
In diesem Experiment behandeln wir folgende Themen:

* Was ist eine LCD-Anzeige

* Wie konnen wir sie ansteuern
* Der komplette Sketch

* Analyse des Schaltplans

* Aufbau der Schaltung

* Zahlen-Rate-Spiel Reloaded
* Workshop

Was ist eine LCD-Anzeige?

Was wire ein Mikrocontroller ohne eine entsprechende Anzeige,
die es uns ermoglicht, unabhingig vom Computer bzw. Serial-
Monitor, etwas an die Auflenwelt zu schicken? Natiirlich hast du
schon gesehen, wie wir z.B. ein paar Siebensegmentanzeigen zur
Darstellung von einzelnen Ziffern verwendet haben. Doch wenn es
darum geht, mehrere Stellen oder auch Buchstaben oder Sonderzei-
chen, wie z.B. *, #, %, etc., auf diese Weise darzustellen, dann
haben wir die Grenzen des Machbaren erreicht. Fiir solche Fille
gibt es LC-Displays, auch kurz LCD (Liquid cristal bisplay) genannt.
Es handelt sich dabei um Fliissigkeitsanzeigen, die im Inneren Fliis-
sigkristalle besitzen, die in Abhingigkeit von einer angelegten
Spannung ihre Ausrichtung dndern kénnen, um so den Lichteinfall
mehr oder weniger zu beeinflussen.

Projekt

21

an

h 4
-

Das konnte wichtig fiir dich sein
Hier ein paar Begriffe fur die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

LCD
LCD Modul AVR
Dot matrix display

Solche Anzeigeelemente nutzen in der Regel aus einzelnen Punkten
zusammengesetzte Muster (Dot-Matrix), um fast jede Art von Zei-
chen (Ziffern, Buchstaben oder Sonderzeichen) darstellen zu kon-
nen. Es gibt sie in unterschiedlichen Gréflen und Ausstattungen.
Nachfolgend zeige ich dir einmal drei unterschiedliche Displays.

472

Graphic LCD4884 Shield OPTREX DMC-2047 HMC162235G

Abbildung 21-1 A
Unterschiedliche LC-Displays

Das erste Display LCD4884 mit einer Auflgsung von 84x48 Pixeln
ist sogar schon auf einem Shield montiert, besitzt einen Miniatur-
Joystick zur Navigation durch die entsprechenden Meniis und
kann mit der entsprechenden Library direkt angesteuert werden. Es
kann sogar Miniaturgrafiken darstellen, ist also in der Darstellung
der Anzeigeelemente sehr flexibel. Das zweite DMC-2047 ist sogar
mit 4 LEDs und einer IR-Empfangsdiode ausgestattet. Das dritte
Display vom Typ HMC16223SG ist 2-zeiliges Display mit einem
kompatiblem Hitachi HDD44780-Controller, auf den wir gleich
noch zu sprechen kommen werden. Zur komfortablen Nutzung
haben viele Anzeigen einen integrierten Controller, der die einzel-
nen Punkte bzw. Segmente ansteuert. Miissten wir uns darum im
Einzelnen auch noch kiimmern, dann wire der Sketch um ein Viel-
faches umfangreicher. Im Arduino-Umfeld wird relativ hiufig ein
LC-Display mit einem HD44780-Treiber verwendet. Dieser Treiber
hat sich als Quasi-Standard durchgesetzt und wird von vielen ande-
ren Herstellen adaptiert. In der nachfolgenden Abbildung ist ein
solches Display zu sehen.

Projekt 21: Eine Alphanumerische Anzeige

http://www.arduino.cc/en/Tutorial/LiquidCrystal
http://www.arduino.cc/en/Tutorial/LiquidCrystal
http://www.arduino.cc/en/Tutorial/LiquidCrystal
http://arduino.cc/en/Reference/LiquidCrystal
http://www.sparkfun.com/datasheets/LCD/HD44780.pdf

Fiir dieses Element existiert eine Bibliothek, die standardmiRig mit
der Arduino-IDE geliefert wird. Nattrlich kannst du fast jedes x-
beliebige Display anschlieffen, wenn du eine passende Library fin-
dest oder du sie dir selbst entwickelst. Fuir unsere Experimente ver-
wenden wir das gezeigte Display, das 2 Zeilen mit jeweils 16
Zeichen aufweist.

Benotigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

Benétigte Bauteile

1xLCD HD44780 + 76-polige Stift-
leiste mit Rastermal 2,54

1x Trimmer 10K oder 20K

Mehrere flexible Steckbriicken in

/"\\ unterschiedlichen Farben und Lan-
gen

Vorbemerkung zur Nutzung
des LC-Displays

Wenn du dir ein brandneues LC-Display kaufst, dann besitzt es,
wie du auf dem obigen Bild sehen kannst, vielleicht lediglich Kon-
taktierungen auf der Trigerplatine. Jetzt kannst du entweder die
benotigten Kontakte mit Kabeln versehen, um sie spiter fir die
Schaltung mit dem Breadboard zu nutzen, oder du besorgst dir am

<« Abbildung 21-2
Ein LC-Display

Was ist eine LCD-Anzeige?

473

Abbildung 21-3 p
Die 5x8 Dot-Matrix des LC-Displays

besten eine Stiftleiste, wie du sie ebenfalls in der Abbildung erken-
nen kannst. Diese Leisten werden z.B. in einreihiger 40-poliger
Ausfithrung mit einem Rastermafl von 2,54 angeboten. Kiirze sie
durch Knicken an der entsprechenden Stelle vorsichtig auf eine
Linge von 16 Stiften und sei dabei auf jeden Fall vorsichtig, denn
sie brechen sehr leicht an einer nicht erwiinschten Stelle ab.
Danach steckst du die Leiste von unten mit dem kiirzeren Beinchen
nach oben durch die Bohrungen und lotest sie auf der Oberseite
fest.

2. Von oben verldten

Tl. Von unten in die Bohrungen schieben

Auf diese Weise kannst du das Modul wunderbar auf dein Bread-
board stecken.

Interessante Grundlagen

Bevor wir das LC-Display richtig ansteuern, mochte ich dich mit
ein paar wichtigen und interessanten Grundlagen versorgen. Wie
ist so ein Display des genannten Typs eigentlich aufgebaut? Ich
hatte schon erwihnt, dass zum Aufbau der einzelnen Zeichen eine
Dot-Matrix verwendet wird. Dot bedeutet iibersetzt Punkt und
stellt das kleinste darstellbare Element in dieser Matrix dar. Ein ein-
zelnes Zeichen wird aus einer 5x8 Dot-Matrix aufgebaut.

Durch geschickte Ansteuerung der einzelnen Punkte konnen die
unterschiedlichsten Zeichen generiert werden. Das nachfolgende
Bild zeigt dir das Wort Arduino und die einzelnen Punkte, aus
denen die Buchstaben zusammengesetzt wurden.

474

Projekt 21: Eine Alphanumerische Anzeige

OEEND 00000 0O00Om 00000 oomoo Ooooo cogood
EO0O00OR 0O0000 O00Om 00000 00000 ooooo cogod
EOOON EOEED OEECOE EOO0O OO0 EOEED OEEERO
EOOOE EECOOR EOOEE EOOO OONOO EEOOR EOOON
EEEEE EOOOO EOOOR EOOOR OOROO EOOOR EOOOW
EOO0OR EOO0OO0 EOOOR EOOER O0OROO0 EOOOR EOOON
EOOON EOOCOOCOO0 COEEEE [(OEECON OEEE0 EOOO OEEERQO
Oooooo ooooo ooooo ooooo ooooo oobooo ooogod

Die Ansteuerung des Displays erfolgt parallel, was bedeutet, dass
alle Datenbits zur gleichen Zeit an den Kontroller versendet wer-
den. Es gibt 2 unterschiedliche Modi (4-Bit bzw. 8-Bit), wobei der
4-Bit-Modus der gingigere ist, da hier weniger Datenleitungen zum
Display geschaltet werden miissen und sich der Aufwand entspre-
chend reduziert.

Also halt mal. Ein bisschen verstehe ich ja auch. Wenn ich statt 8 nur
noch 4 Bits verwende, dann habe ich eine geringere Datenbreite und
kann aber doch somit weniger unterschiedliche Informationen iiber-
tragen. Wie soll das denn gehen?

Das ist ein guter Einwand, Ardus! Aber es funktioniert trotzdem
ohne Einbufle des Informationsumfanges. Im 4-Bit Modus wird
einfach die zu iibertragenden 8 Bit an Informationen in zwei gleich
grofRe Hilften aufgesplittet. Zuerst die ersten 4-Bits, dann die letz-
ten 4-Bits. Die Informationsbreite von 4 Bits wird in der Datenver-
arbeitung {ibrigens Nibble genannt. Die Ubertragung der Daten
erfolgt parallel und dann doch wieder seriell. Lass’ dich dadurch
aber nicht verwirren. Der 4-Bit-Modus ist zwar etwas langsamer als
der 8-Bit-Modus, doch das spielt fiir unsere Belange keine Rolle.
Kommen wir jetzt zum LCD-Anzeigemodul Hitachi HDD44780
und dessen Pinbelegung bzw. der erforderlichen Beschaltung. Es
gibt zwei unterschiedliche Varianten, wobei die eine mit 16 Pins
iiber eine Hintergrundbeleuchtung verfiigt und die mit 14 Pins
ohne auskommt.

4-Bit Daten
lWHintergrundbeIeuchtung

g —

VO (10K-20K Poti)

RW (GND)

BB A g

<« Abbildung 21-4
Das Wort Arduino aus einzelnen
Punkten (Dots) zusammengesetzt

« Abbildung 21-5
Die Beschaltung des Anzeigemoduls

Was ist eine LCD-Anzeige?

475

476

Tabelle 21-1 p
LCD-Pinbelegung fiir die
16-Pin-Variante

Von den 8 Datenleitungen werden lediglich die obersten 4 (D4 —
D7) benétigt. In der folgenden Tabelle findest du die Pinbelegung
und deren Bedeutung:

LCD-Pin Arduino-Pin

1 GND Masse

2 +5V +5V

3 - Kontrasteinstellung iiber 70K oder 20K Poti
4 12 RS (Register Select)

5 GND RW (Read/Write) / fest auf Masse (HIGH: Read / LOW: Write)
6 1 E (Enable)

n 5 Datenleitung D4

12 4 Datenleitung D5

13 3 Datenleitung D6

14 2 Datenleitung D7

15 - Anode (+) / Uber Vorwiderstand 220 Ohm!
16 GND Kathode (-)

Mit dem ersten LCD-Sketch wollen wir erreichen, dass der gerade
gezeigte Schriftzug »Mich steuert ein Arduino an:-)« im Display
erscheint.

Arduino-Sketch-Code

Erschrick nicht, wenn du die recht komplexe Ansteuerungslogik
siehst. Wir werden eine Library nutzen, die es uns ermoglicht, das
LC-Display auf eine recht simple Weise zu nutzen.

#include <LiquidCrystal.h>

#define RS 12 // Register Select

#define E 11 // Enable

#define D4 5 // Datenleitung 4

#define D5 4 // Datenleitung 5

#define D6 3 // Datenleitung 6

#define D7 2 // Datenleitung 7

#define COLS 16 // Anzahl der Spalten

#define ROWS 2 // Anzahl der Zeilen

LiquidCrystal 1lcd(RS, E, D4, D5, D6, D7); // Objekt instanziieren

void setup(){

lcd.begin(COLS, ROWS); // Anzahl der Spalten und Zeilen
lcd.print("Mich steuert ein"); // Ausgabe des Textes
lcd.setCursor(0, 1); // In die 2. Zeile wechseln

Projekt 21: Eine Alphanumerische Anzeige

led.print("Arduino an:-)"); // Ausgabe des Textes
}

void loop(){/* leer */}

Arduino-Code-Review

Um die Funktionalitit zur Ansteuerung des LC-Displays nutzen zu
konnen, muss die Library LiquidCrystal eingebunden werden. Fir
unser Experiment benoétigen wir programmtechnisch gesehen dann
die folgende Variable:

Variable Aufgabe

led Das L(D-Objekt

Fiir die Generierung eines LCD-Objekts miissen dem Konstruktor
folgende Parameter mitgeteilt werden:

* Pin Register Select (RS)
¢ Pin Enable (E)
* Pins der Datenleitungen D4 bis D7

LiquidCrystal 1lcd(RS, E, D4, D5, D6, D7); // Objekt instanziieren

Die Klasse LiquidCrystal stellt eine Reihe von Methoden zur
Verfiigung, denn alleine durch den Konstruktor kénnen wir keinen
Text auf das LC-Display schicken. Bevor dies moglich ist, miissen
wir dem Anzeige-Objekt noch ein paar zusitzliche Information zur
weiteren Initialisierung iibergeben: Es gibt ja hinsichtlich der An-
zahl von Spalten bzw. Zeilen recht unterschiedliche LC-Displays,
und genau diese wichtige Angabe muss hier erfolgen. Du siehst,
dass nicht alles dem Konstruktor zur kompletten Initialisierung
mitgegeben wird. Jetzt muss eine Methode her.

LCD-Methode: begin
Methodenname Anzahl der Spalten Anzahl der Zeilen

|
| | |] |
((Cols, Rows) ;)

Die Methode begin teilt dem LCD-Objekt die Anzahl der Spalten
und der Zeilen des angeschlossenen Displays mit. Jetzt ist alles
soweit vorbereitet, dass du einen Text verschicken kannst.

« Tabelle 21-2

Bendtigte Variablen und deren

Aufgabe

<« Abbildung 21-6
Die LCD-Methode begin

Was ist eine LCD-Anzeige?

477

Abbildung 21-7 »
Die LCD-Methode »print«

Abbildung 21-8
Die LCD-Methode »setCursor«

Abbildung 21-9 »
Die Koordinaten der einzelnen

Zeichen, die Giber setCursor ange-

478

sprochen werden kdnnen

LCD-Methode: print
Methodenname Ausgalbetext
| || |
(("Mich steuert ein"))

Die Methode print teilt dem LCD-Objekt mit, was es zur Anzeige
an das Display schicken soll. Sie ist vergleichbar mit der des Serial-
Monitors.

Warte mal kurz! Das Display, das du verwendest, hat doch zwei Zei-
len. Wie hast du festgelegt, dass der Text in die erste Zeile geschrie-
ben wird?

Wenn ich keine Angaben tiber die Position des anzuzeigenden Tex-
tes mache, wird er am Anfang der ersten Zeile positioniert. Wie du
anhand des Beispiels erkennst, haben wir auch noch eine weitere
Zeile mit Text. Kommen wir zur dritten wichtigen Methode.

LCD-Methode: setCursor

Methodlenname Spalte Zeile
I IFH
C (0, 1);)

Die Methode setCursor positioniert du den Cursor an die Stelle, an
der die nachfolgende Textausgabe starten soll. Sie ist mal wieder —
wie sollte es anders sein — Null-basiert, was bedeutet, dass die erste
Zeile bzw. Spalte mit dem Index 0 versehen sind. Um in die zweite
Zeile zu gelangen, musst Du, wie hier geschehen, den Wert 1 ver-
wenden. Die folgende Abbildung ist dir vielleicht eine Hilfe, wenn
es um das Positionieren der Ausgabe geht.

o RRRAIBIAIARA

Projekt 21: Eine Alphanumerische Anzeige

Bevor ich es vergesse: Natirlich kannst du auch die komplette
Anzeige 16schen, so dass sich keinerlei Zeichen mehr darin befin-
den. Dazu wird die folgende Methode verwendet:

LCD-Methode: clear

Methodenname <« Abbildung 21-10

Die LCD-Methode »clear«
(();)

Sie besitzt keine Parameter, l6scht alle Zeichen aus der Anzeige und
positioniert den Cursor in der linken oberen Ecke an der Koordi-
nate 0, 0.

Der Schaltplan

g Arduino 13
12
PwWM 11
PWM _@190
O PWH [—
} WM a
5 =
ot 6
¥ ale = ::: 5
—— GND = i
PWM 3
2
1.,
a 2
=4 Hintergrund -
Addalad 1N beleuchtung
P |
aNM:mmhImm]ﬂT:ﬂﬂﬁﬂﬂ
O>0u;L2Wo oA MNM T U Qs o H
2|-¢'|>2\ (== = B~ - o B — - E -~ | =3
v o+ o

o~
Kantrast
HD 44780

U GND +%V
GND

A Abbildung 21-11
Die Verschaltung des LC-Displays
HD44780

Was ist eine LCD-Anzeige? 479

(W) Achtung

Abbildung 21-12 p

Aufbau der LCD-Ansteuerung mit

480

Fritzing

Abbildung 21-13 p
16-polige IC-Fassung

Es gibt HD44780-Varianten, bei denen kannst du die Hintergrund-
beleuchtung ohne einen Vorwiderstand an +5V anschlieflen,
und wiederum solche, die einen entsprechend dimensionier-
ten Widerstand bendtigen. Wirf' auf jeden Fall vor dem
Anschlieen an die Versorgungsspannung einen Blick ins das
entsprechende Datenblatt. Zur Not kannst du die Hintergrund-
beleuchtung erst einmal weglassen. Wenn es nicht zu dunkel
ist, kannst du bei ausreichend hoch eingestelltem Kontrast die
Anzeige trotzdem lesen.

Schaltungsaufbau

= Kontrast — 1 R - = - - - - .

LCD: HD44780

Das Zahlen-Rate-Spiel Reloaded

Was liegt niher, als das im letzten Kapitel entwickelte Zahlen-Rate-
Spiel mit dem LC-Display zu realisieren. Wenn es funktioniert,
benotigst du keinen Computer mehr und du bist wegen der LCD-
Anzeigeeinheit ein wenig unabhingiger. Ich habe fur die Realisie-
rung das LC-Display auf eine Lochrasterplatine gesteckt, auf der
sich 2 x 16-polige IC-Fassungen direkt nebeneinander befinden.

Projekt 21: Eine Alphanumerische Anzeige

Ein vergleichbarer Sockel — natiirlich mit mehr Pins — ist auch auf
deinem Arduino-Board vorhanden und hilt den Mikrocontroller an
seiner Position. Solche Fassungen sind recht niitzlich, denn wenn
ein IC einmal in die ewigen Jagdgriinde eingehen sollte, dann muss
man ihn nicht erst mithsam ausléten, sondern kann ihn bequem
entfernen. Die Platine hat die MafRe 10cm x Scm.

Wie du siehst, habe ich auch gleich den Trimmer fiir die Kontrast-
einstellung darauf platziert. Bei einem Blick auf die Riickseite der
Platine sichst du, wie ich die einzelnen Pins der IC-Fassungen mit-
einander verbunden habe. Es wurden immer die gegeniiberliegen-
den Pins durch mehrere Létpunkte verbunden.

Pin 16 Pin 1
IC- ‘iockl‘l 2 I(Qol:kel

Trimmer

Manchmal reicht eben auch eine fliegende Verdrahtung vollkommen
aus. In der folgenden Abbildung habe ich schon das LC-Display auf
die Trigerplatine befestigt. Die Stiftleiste der Anzeige wird dabei in
die unteren Buchsen der beiden IC-Fassungen gesteckt. Die obere
Reihe wird spiter fiir die Anschliisse zum Shield benétigt.

<« Abbildung 21-14
Tragerplatine fiir das LC-Display

<« Abbildung 21-15
Lotseite der Tragerplatine fiir das
LC-Display

Was ist eine LCD-Anzeige?

481

Abbildung 21-16 » G
LC-Display auf der Tragerplatine [EASAMASAAAAELAALY

—————

Jetzt fehlen lediglich noch die Verbindungsleitungen zu deinem
Analog-KeyPad. Die Verbindungen werden tiber die schon bekann-
ten Stiftleisten hergestellt. Dazu benétigst du Folgendes:

* 1x 16-polige Stiftleiste
* 2 x 8-polige Stiftleisten
* 1 x 6-polige Stiftleiste
Die 16-polige Stiftleiste wird mit der Trigerplatine, auf der sich das

LC-Display befindet, verbunden. Nachfolgend siehst du die angels-
teten Verbindungsleitungen.

Abbildung 21-17 p
16-polige Stiftleiste

Auf das KeyPad werden die beiden 8-poligen bzw. die eine 6-polige
Stiftleiste aufgesteckt.

Abbildung 21-18 p
Das analoge KeyPad mit den drei
Stiftleisten

S-polige Stiftleiste ' RS u. E S-polige Stiftleiste ' Datenleitungen

6-polige Stiftleiste fiir +57 und GND

482 Projekt 21: Eine Alphanumerische Anzeige

Anhand der Farben und der genannten Pinbelegungen sollte es kein
Problem bereiten, den kleinen Kabelbaum mit den Stiftleisten her-
zustellen. In der folgenden Abbildung habe ich einmal die drei
Komponenten, also Trigerplatine mit LC-Display, Arduino-Board
und aufgestecktes KeyPad-Shield miteinander verbunden.

Achtung

Wenn du die Stiftleisten mit Kabeln der Versorgungsspannung
bzw. Masse verlotest, die auch noch direkt nebeneinander lie-
gen, dann ist die Gefahr groR, dass es zwischen diesen benach-
barten Kontakten bzw. Kabeln durch Bewegung irgendwann
einmal zu einem Kurzschluss kommt. Aus diesem Grund habe
ich diese Kabel jeweils mit einem Stlick Schrumpfschlauch ver-
sehen, die die Lotstellen gut umhllen.

Jetzt kommt der komplette Code, der an Umfang schon etwas
zugenommen hat.

#include <LiquidCrystal.h>
#include <MyAnalogKeyPad.h>
#define analogPinKeyPad 0 // Definition des analogen Pins

#define MIN 10

// Untergrenze fiir Zufallszahl

#define MAX 1000 // Obergrenze fiir Zufallszahl

Was ist eine LCD-Anzeige?

<« Abbildung 21-19
Der komplette Schaltungsaufbau
des Zahlen-Rate-Spiels

<« Abbildung 21-20

Die 6-polige Stiftleiste mit zwei
Schrumpfschlauchstiicken (rote
Pfeile)

483

484

#define RS 12 // LCD-Register Select Pin

#define E 11 // LCD-Enable Pin

f#define D4 5 // LCD-Datenleitung Pin 4

f#idefine D5 4 // LCD-Datenleitung Pin 5

#define D6 3 // LCD-Datenleitung Pin 6

#define D7 2 // LCD-Datenleitung Pin 7

#define COLS 16 // Anzahl der LCD-Spalten

#define RONS 2 // Anzahl der LCD-Zeilen

int arduinoZahl, versuche; // Die generierte Zahl, Anzahl der Versuche
char deineZahl[5]; // Max. 5-stellige Zahl

byte stelle;

MyAnalogKeyPad myOwnKeyPad(analogPinKeyPad); // KeyPad Instanziierung
LiquidCrystal lcd(RS, E, D4, D5, D6, D7); // LCD Instanziierung

void setup(){
myOwnKeyPad. setDebounceTime(500); // Prellzeit auf 500ms setzen

lcd.begin(COLS, ROWS); // Anzahl der Spalten und Zeilen
lcd.blink(); // Cursor blinken lassen
startSequence(); // Aufruf der Startsequenz

}

void loop(){
char myKey = myOwnKeyPad.readKey(); // Abfragen des gedriickten
// Tasters
if(myKey != KEY_NOT_PRESSED){ // Abfrage, ob irgendein Taster
// gedriickt
deinezahl[stelle] = myKey;
stelle++;
lcd.print(myKey); // Taste im LCD anzeigen

}

if(stelle == int(log10(MAX))+1){
versuche++;
int a = atoi(deineZahl);
if(a == arduinoZahl){

lcd.clear(); // LCD-Anzeige 1dschen
led.print("Erraten!!!"); // Ausgabe an das LCD

lcd.setCursor(o, 1); // Cursor in die 2.Zeile positionieren
led.print("Versuche: " + String(versuche));

delay(4000); // 4 Sekunden warten

versuche = 0; // Anzahl der Versuche zuriicksetzen
startSequence(); // Startsequenz aufrufen

}
else if(a < arduinoZahl){

lcd.setCursor(0, 1); // Cursor in die 2.Zeile positionieren
led.print("Zu klein"); // Ausgabe an das LCD
lcd.setCursor(0, 0); // Cursor in die 1.Zeile positionieren

}

Projekt 21: Eine Alphanumerische Anzeige

else{
lcd.setCursor(o, 1); // Cursor in die 2.Zeile positionieren
lcd.print("Zu gross"); // Ausgabe an das LCD
lcd.setCursor(0, 0); // Cursor in die 1.Zeile positionieren

}

lcd.setCursor(2, 0); // Cursor an die 3.Stelle der 1.Zeile

// positionieren
stelle = 0;
}
}

int zufallszahl(int minimum, int maximum){
randomSeed(analogRead(5));
return random(minimum, maximum + 1);

}

void startSequence(){
arduinoZahl = zufallszahl(MIN, MAX); // Zu erratende Zahl generieren

lcd.clear(); // LCD-Anzeige ldschen
lcd.print("Rate eine Zahl"); // Ausgabe an das LCD
lcd. setCursor(o, 1); // Cursor in die 2.Zeile
// positionieren
led.print("von " + String(MIN) + " - " + String(MAX));
delay(4000); // 4 Sekunden warten
lcd.clear(); // LCD-Anzeige 16schen
led.print(">>"); // Ausgabe an das LCD

}

An dieser Stelle mochte ich mich nicht allzu viel mit dem Code
beschiftigen. Ich habe bestimmte Stellen, an denen im letzten Kapi-
tel Ausgaben an den Serial-Monitor geschickt wurden, so modifi-
ziert, dass die Ausgabe nun tiber das LC-Display erfolgt. Es ist aber
noch eine neue Methode hinzugekommen, die einen blinkenden
Cursor im Display anzeigt:

LCD-Methode: blink

Methodenname

(();)

Sie wird einmalig in der setup-Funktion aufgerufen und veranlasst
einen Cursor an der aktuellen Schreibposition zu blinken. Wenn du
einen Blick an den Anfang des Sketches wirfst, dann wirst du
sicherlich bemerken, dass es durchaus moglich ist, mehrere Libra-

<« Abbildung 21-21
Die LCD-Methode »blink«

Was ist eine LCD-Anzeige?

485

ries in ein Projekt einzubinden. Es gibt da theoretisch keine Gren-
zen. Natirlich gibt irgendwann einmal der Flash-Speicher zu
verstehen, dass er nun erschopft ist und kein Code mehr hinzuge-
fagt werden kann.

Eine Sache ist mir ginzlich unverstandlich und ich weif nicht genau,
ob sie schon erliutert wurde. Da ist z.B. die Zeile led.print("von " +
String(MIN) + " - " + String(MAX));. Du gibst also Zeichenketten aus
und verwendest den + Operator. Wie sollen denn Zeichenketten
addiert werden? Das funktioniert doch nur mit Zahlen — richtig?

Vollkommen richtig, Ardus. Es konnen, wenn es um eine mathema-
tische Addition geht, nur Werte addiert werden. Der »+«-Operator
bei Zeichenketten kann natiirlich keine Addition ausfithren. Wie
sollte das auch funktionieren? Es werden jedoch die einzelnen Zei-
chenketten zu einer einzigen zusammengefiigt. Man sagt auch, sie
werden konkateniert. Wenn nun auch, wie in unserem Sketch,
numerische Werte Teil der anzuzeigenden Zeichenkette sind, miis-
sen diese zuvor in einen String konvertiert werden. Dies erfolgt mit-
tels der String-Funktion, wie z.B. bei String(MIN).

@ Das kdnnte wichtig fiir dich sein

Hier ein paar interessante Links zum Thema Arduino und LCD:
http.//www.arduino.cc/en/Tutorial/LiquidCrystal
http.//arduino.cc/en/Reference/LiquidCrystal
http//www.sparkfun.com/datasheets/LCD/HD44780.pdf

Nachfolgend noch ein interessanter Hinweis auf ein fertiges Key-
Pad-Shield, das in der Lage ist, ein LC-Display aufzunehmen.

Abbildung 21-22 p
4x4 Keypad-Shield mit 5110
Display Interface

486 Projekt 21: Eine Alphanumerische Anzeige

http://www.arduino.cc/en/Tutorial/LiquidCrystal
http://arduino.cc/en/Reference/LiquidCrystal
http://www.sparkfun.com/datasheets/LCD/HD44780.pdf

Wer es lieber fertig mag und auflerdem relativ kompakt, fir den
lohnt sich sicherlich ein Blick auf das 4x4 KeyPad-Shield mit dem
entsprechenden Displayaufsatz. Das monochrome Display hat eine
Auflgsung von 84x48 Pixeln und ist kompatibel mit dem 3310
LCD Display, fir das eine Arduino-Library existiert.

Das kdonnte wichtig fiir dich sein
Hier ein paar Begriffe fir die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

Nokia 5110 LCD
3310 LCD

Troubleshooting

Wenn du nach dem Anschlieffen des LC-Displays und dem Laden
des Sketches nichts siehst, dann tiberpriife Folgendes:

* Ist die Verkabelung korrekt?
¢ Gibt es eventuell Kurzschliisse untereinander?

* Wurde der Kontrast-Trimmer korrekt angeschlossen? Regu-
liere ggf. den Kontrast etwas herauf, bis du etwas in der
Anzeige siehst.

Was hast du gelernt?

* Du hast zum ersten Mal ein Anzeigeelement angeschlossen,
dass nicht nur in der Lage ist, zu blinken, sondern auch Zahlen
und Text ausgeben kann.

* Die LiquidCrystal-Library hat es dir ermoglicht, in einfacher
Weise ein LC-Display mit einem HDD44780-Controller anzu-
steuern.

* Damit hast du dann das im vorangegangenen Kapitel entwi-
ckelte Zahlen-Rate-Spiel sehr anschaulich und schén umge-
setzt.

* Dir wurden fiir weitere Experimente noch mehr LC-Display-
Typen vorgestellt, so dass das Basteln und Entwickeln sicher-
lich kein Ende mehr nehmen wird.

Workshop

Mach’ dir ein paar Gedanken hinsichtlich eines Schlosses in Form
eines Sicherheits-Code, das an manchen Eingingen zu sensiblen

Was ist eine LCD-Anzeige?

487

488

Bereichen installiert ist. Bevor sich die Tiir 6ffnet, musst du einen
mehrstelligen Code eingeben. Natiirlich bekommst du bei einer fal-
schen Eingabe keinen Hinweis darauf, ob der eingegebene Zahlen-
code zu niedrig oder zu hoch ist. Du kannst z.B. einen Servo
anschliefen, der bei korrektem Code einen Riegel der Schieffanlage
zurtickfahrt. Hast du den Code drei Mal in Folge falsch eingegeben,
musst du eine bestimmte Zeit von z. B. drei Minuten warten, bevor
die nichste Eingabe erfolgen kann. Entwickle eine Zugangskon-
trolle zu deinem Zimmer, um listige Mitbewohner oder Geschwis-
ter auf Distanz zu halten.

Projekt 21: Eine Alphanumerische Anzeige

Kommunikation
tiber 1°C

Scope
In diesem Experiment behandeln wir folgende Themen:

¢ Was bedeutet I°C?

* Was ist ein Bussystem

* Der komplette Sketch

* Analyse des Schaltplans
* Aufbau der Schaltung

* Workshop

Was bedeutet 1°C?

Einige Entwickler haben sich vor ca. 20 Jahren Gedanken dariiber
gemacht, wie sich elektronische Bauteile am besten miteinander
verbinden lassen, damit sie Daten bzw. Informationen untereinan-
der austauschen koénnen. Was bedeutet jedoch in diesem Zusam-
menhang am besten? Nun, die Verbindungen sollten zum einen auf
schnelle Weise hergestellt werden kénnen, und zum anderen sollte
das mit moglichst wenig Schaltungsaufwand verbunden sein.
Wenn wir z.B. einzelne integrierte Bausteine (auch ICs genannt)
verwenden, ist es z.B. hinsichtlich der benétigten Datenleitungen,
mit denen die Bausteine miteinander verbunden werden, ein auf-
windiges Unterfangen, das in dem MafRe steigt, in dem immer
mehr Kommunikationskomponenten beteiligt sind.

Projekt

22

489

Abbildung 22-1 p
Ein antikes EPROMs vom Typ 2764K
(mit 28 Beinchen)

+5V

oY

ATmega 328p

12C
Master

AEFABFAFAARARARRRA

[28] scL
[27] SDA
[26]

ERERSREREREEE)

Das auf dem Bild gezeigte EPROM hat schon eine Menge
Anschlussbeinchen. Stell dir mal vor, du hittest eine Platine mit 10
oder 20 dieser Speicherbausteine, die es alle zu verdrahten gilt. Ers-
tens nehmen diese Bausteine schon einiges an Platz weg und zudem
miissen alle Pins verdrahtet werden. Es war also schon ein immen-
ser Aufwand, der damals vor ca. 20 Jahren betrieben wurde. Die
Entwickler kamen dann auf die Idee, eine Art Bus-System zu entwi-
ckeln, an das zahlreiche elektronische Teilnehmer angeschlossen
werden konnen, um dariiber Daten auszutauschen. Sie nannten es
I2C. Doch was genau verbirgt sich hinter dieser recht kryptisch
anmutenden Bezeichnung? Es handelt sich um einen seriellen
Datenbus, der tiber zwei Leitungen — SCL und SDA genannt —
Daten verschickt. In der folgenden Abbildung siehst du die Ver-
schaltung der einzelnen Komponenten fiir unseren Mikrocontroller

B

ATmega 328p.
|E]ofj|PuIIup—Widerst§nde

||

oY oY o J o J

12C
Slave 1

12C
Slave 2

12C
Slave 3

12C
Slave n

RN
EJERN

-
-
-

EjERN
EJERN

U Anono

el

= F

®
Gemeinsame Masse mit Mikrocontroller

Abbildung22-2A Das Bus-System arbeitet als bidirektionale Master/Slave-Architek-
Das |%C-Bussystem (Ein Master und
viele Slave-Komponenten)

tur. Whow, was fir ein geschwollener Ausdruck. Doch das

490

Projekt 22: Kommunikation iiber I>C

zugrunde liegende Prinzip ist eigentlich ganz simpel und recht ein-
fach zu verstehen. Master/Slave bedeutet, dass eine Komponente
der Master, also derjenige ist, der die ganze Ubertragungen steuert
und koordiniert. Die anderen Komponenten sind als Slave dekla-
riert und senden auf Anforderung vom Master ihre Daten an das
Bussystem. Die Daten wurden dann vom Master entgegen genom-
men und ausgewertet. Bidirektional bedeutet, dass Daten in beide
Richtungen, vom Master zum Slave bzw. vom Slave zum Master,
iibertragen werden. Auf der linken Seite der Abbildung befindet
sich das Hirn des Bus-System — der Mikrocontroller, der als Master
arbeitet. Alle angeschlossenen elektronischen Komponenten sind
tiber zwei Leitungen mit ihm verbunden. Diese Leitungen haben
folgende Bezeichnungen bzw. Aufgaben:

* SCL (Serial Clock Line) Taktleitung
* SDA (Serial Data Line) Datenleitung

Diese beiden Leitungen sind iiber sogenannte Pullup-Widerstinde,
die in unserem Fall jeweils einen Widerstandswert von 10K haben,
mit der Versorgungsspannung verbunden.

Stopp mal kurz! Wenn alle elektronischen Komponenten an zwei Lei-
tungen hingen, wie kann dann der Master einen bestimmten Slave
auswihlen? Es erhalten doch alle zur selben Zeit die gleichen Infor-
mationen. Reagieren dann alle auf einmal oder wird ein bestimmter
Slave ausgewihlt?

Das ist eine berechtigte Frage, Ardus, die ich mir zu Beginn auch
gestellt habe. Damit jede einzelne I?’C-Komponente eindeutig ange-
sprochen werden kann, benétigt sie eine Adresse. Wenn du meh-
rere Slave-Komponenten an dein Arduino Mikrocontroller
anschlieft, muss jeder einzelnen von ihnen eine eigene Adresse
zugewiesen werden. Diese muss unbedingt eindeutig sein. Es darf
unter keinen Umstinden eine Adresse doppelt vergeben werden.

Was gibt es denn fiir unterschiedliche elektronische Bauteile, die ich
iiber den *C-Bus mit dem Arduino-Board verbinden kann? Ich kann
mir das im Moment tiberhaupt noch nicht konkret vorstellen.

Kein Problem, Ardus. Es gibt schon einige wichtige >C-Komponen-
ten:

* Speicherbausteine
(z.B. 24L.C08, 24LC16, 24L.C64 0. 24L.C256)

Was bedeutet 1°C? 491

Abbildung 22-3 »
Serielles |%C EEPROM vom Typ
241(64

492

* Port-Extension-Bausteine - I/O-Erweiterungen
(z.B. PCF8574A o. MCP23016)

¢ Uhr- bzw. Kalenderbausteine
(z.B. PCF8583, DS1307 0. DS1337)

* Digitale Temperatursensoren (z.B. TMP75 0. LM75)
* 7-Segmentanzeigen (z.B. SAA1064)

Ich mochte hier mit dem Speicherbaustein beginnen, der im Gegen-
satz zum eben gezeigten EPROM schon wie ein Zwerg anmutet.

Dieser Baustein hat eine Speicherkapazitit von 64 KBits. Das sind
umgerechnet 8 KBytes. Ich denke, dass wir unser erstes ?C-Experi-
ment mit diesem beginnen sollten.

Die alten Speicherbausteine hast du EPROM und die neuen bzw.
aktuellen EEPROM genannt. Ist das ein Schreibfehler oder gibt es da
wirklich einen Unterschied?

Es mogen sich vielleicht noch einige wenige Schreibfehler — ich
hoffe aber, die Anzahl geht gegen Null — in das vorliegende Buch
eingeschlichen haben, doch diese Schreibweise ist so beabsichtigt.
Die alten Speicherbausteile konnten nur mit einem entsprechen-
den Brenngerit, dem EPROMmer gebrannt werden. Das Loschen
war dann nur noch mit einem speziellen Loschgerdt moglich, das
eine UV-Lampe im Inneren besaR. Deshalb hat so ein EPROM
auch ein kleines Fenster auf der Oberseite. Direkt darunter befin-
det sich der Halbleiterbaustein. EPROM ist die Abkiirzung fiir
Erasable Programmable Read-Only Memory, was iibersetzt [dsch-
barer programmierbarer Nur-Lese-Speicher bedeutet. Die aktuellen
Bausteine mit der Bezeichnung EEPROM, was Electrically
Erasable Programmable Read-Only Memory heifft und tbersetzt
elektrisch loschbarer programmierbarer Nur-Lese-Speicher bedeu-
tet, konnen tiber die CPU bzw. {iber Programmierung mit neuen
Daten versorgt werden.

Projekt 22: Kommunikation iiber I>C

Das kannte wichtig fiir dich sein
Hier ein paar Begriffe fir die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

12C

Two wire interface

Bendtigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

Benétigte Bauteile
p 2 x Widerstand 10K

//-\\ Mehrere flexible Steckbriicken in unterschiedli-
chen Farben und Langen

Vorbemerkung zur Nutzung des
EEPROM 24LC64

1x EEPROM vom Typ 24L(64

Bevor es losgeht, muss ich dir noch etwas zu EEPROM 24LC64
erldutern. Dieses EEPROM ist einer aus einer ganzen Reihe von
Speicherbausteinen mit gleicher Pinbelegung, jedoch unterschiedli-
chen Kapazititen. Hier eine kleine Auswahl:

Bezeichnung Speicherkapazitat Speicherbereich
241008 8-KBit = 8.792 Bits = 7 KByte 0bis 1.023
241C64 64-Kbit = 65.536 Bits = 8 KByte 0bis 8.792
2410256 256-Kbit = 262.144 Bits = 32 KByte 0 bis 32.767

Ich mochte es nicht versiumen, zu erwihnen, dass ein solcher
Speicherbaustein eine begrenzte Lebensdauer hinsichtlich der
Schreib-/Lesezyklen hat. Der Hersteller garantiert 1.000.000 Zyklen
und eine Aufrechterhaltung der Daten von 100 Jahren. Die Haltbar-
keit der Daten sollte fiir unsere Zwecke ausreichen, doch wenn du
vorhast, alle paar Sekunden Daten zu Schreiben bzw. zu Lesen,
musst du dir schon Gedanken dariiber machen, wann es mit dem EE-
PROM vorbei ist. Wir lassen es aber nicht soweit kommen. Werfen

Was bedeutet 1°C?

« Tabelle 22-1
Unterschiedliche 12C EEPROMs

493

Abbildung 22-4 p

Die Pinbelegung des serielles IC
EEPROM vom Typ 24LC64 (Blick von

oben)

Tabelle 22-2 p

Die Bedeutung der einzelnen Pins

494

der EEPROM

wir doch einmal einen Blick auf die Pinbelegung eines dieser Bau-
steine:

A0 (@) ' +5V

Al W
A2 241L.C64 scL
GND SDA

Alle ICs haben zur Orientierung beziiglich der Pinbelegung auf
einer Seite eine kleine Kerbe oder einen kleinen Punkt. So auch bei
diesem EEPROM. Die einzelnen Pins haben folgende Bedeutung:

Pin Bezeichnung Bedeutung

1 A0 Bit 0 der Adresse

2 Al Bit 7 der Adresse

3 A2 Bit 2 der Adresse

4 Vgs bzw. GND Masse

5 SDA Serial Data Line (wird mit analog Pin 4 verbunden)

6 SCL Serial Clock Line (wird mit analog Pin 5 verbunden)

7 Wp Write Protect (GND: schreiben méglich, +5V: nur lesen)
8 Ve bzw. +5V Spannungsversorgung

Gehen wir doch die einzelnen Pins der Reihe nach durch. Wie ich
schon erwihnte, muss jedem Baustein, der am I?’C-Bus angeschlos-
sen ist, eine eigene und eindeutige Adresse zugewiesen werden. Das
ist wie bei einem Brieftriger, der eine Strafle entlanggeht, um dort
die Post abzuliefern. Die StraRe entspricht dem Bus und die einzel-
nen Hausnummern den Adressen der angeschlossenen I°C-Kompo-
nenten. Fiir die korrekte Zustellung ist eine eindeutige
Hausnummer unentbehrlich. Da das EEPROM drei Adressleitun-
gen nach aufen fuhrt, ist die Anzahl der unterschiedlichen Adress-

kombinationen 2° = 8. Wie setzt sich aber die Busadresse
zusammen?
Fester Bestandteil Variabler Bestandteil

A1||AO

Projekt 22: Kommunikation iiber I>C

Die Busadresse hat einen festen Teil mit der Bitkombination 1010
und einen variablen Teil A2, A1 und A0. Den letzteren kannst du
modifizieren, um eine Komponente anzusprechen. Die folgende
Tabelle zeigt dir die moglichen Bitkombinationen mit den entspre-
chenden Busadressen.

Busadresse (Hex)
0x50
0x51
0x52
0x53
0x54
0x55
0x56
0x57

Ok, das habe ich soweit verstanden. Aber wenn ich mich recht ent-
sinne, dann haben wir es doch auf der Ebene der Mikrocontroller
Programmierung immer mit Bits und Bytes zu tun. Wenn ich die
Anzahl der Bits hier zihle, dann komme ich lediglich auf 7. Zum voll-
standigen Byte fehlt jedoch 1 Bit. Wo ist das denn abgeblieben?

Dir entgeht aber auch gar nichts, was!? Ok, Ardus. Die Program-
mierer der Library haben es uns recht einfach gemacht, auf eine I2C
Komponente zuzugreifen. Diese Wiring-Library erwartet eine
Adresse ohne das LSB, das zwar intern durchaus verwendet wird,
iiber das du dir aber keine Gedanken machen musst. Eigentlich
sieht das Byte fiir die Busadresse folgendermafien aus:

Fester Bestandteil Variabler Bestandteil

|
| LSB
A1| A0 RW

Jetzt hast du deine 8 Bits, aber noch eine Anmerkung fiir dein Ver-
staindnis: Das LSB dient als Read/Write-Flag (0=write, 1=read
only). Doch, wie schon erwihnt, ist diese Funktionalitit firr uns
nicht von Bedeutung und wird alleine tiber die Library verwaltet.
Zerbreche dir also dariiber nicht den Kopf. Bevor wir aber weiter

« Tabelle 22-3
Die zur Verfiigung stehenden
Busadressen im Hex-Format

Was bedeutet 12C?

495

Tabelle 22-4 p

Anderungen in der Wire-Library in

496

der Arduino-Version 1.00

ins Detail gehen - und es gibt noch einiges zu besprechen - wenden
wir wieder dem Sketch-Code zu.

Arduino-Sketch-Code

Du musst an dieser Stelle aufpassen, wenn du ilteren Code vor der
Arduino-Version 1.00 verwendest. Ich habe den Sketch-Code flexi-
bel gehalten, so dass er sowohl in der Version 0022 als auch in 1.00
lauffihig ist. Das Problem ist folgendes: Die Wire-Library wurde
fur die Version 1.00 angepasst, so dass einige Methoden, die in die-
sem Kapitel verwendet werden, umbenannt wurden:

in Version 0022 in Version 1.00

send write

receive read

#include <Wire.h>
#define I2CBaustein 0x50 // Festlegen der I2C Zugriffsadresse

void setup(){
Wire.begin();
Serial.begin(9600);
unsigned int speicherAdresse = 0; // Startadresse
byte wert = 7; // Zu speichernder Wert
schreibeEEPROM(I2CBaustein, speicherAdresse, wert); // Schreiben
Serial.println(leseEEPROM(I2CBaustein, speicherAdresse), HEX); // Lesen
}

void loop(){/* leer */}

void schreibeEEPROM(int I2CBausteinAdresse, unsigned int speicherAdresse,
byte daten){
Wire.beginTransmission(I2CBausteinAdresse); // Verbindung zu I2C
// initiieren
#if ARDUINO < 100
Wire.send((byte)(speicherAdresse >> 8)); // MSB (hoherwertiges Byte)

// senden
Wire.send((byte)(speicherAdresse & OxFF)); // LSB (niederweriges Byte)
// senden
Wire.send(daten); // Daten-Byte zum Speichern
// senden
#else
Wire.write((byte)(speicherAdresse >> 8)); // MSB (hoherwertiges Byte)
// senden
Wire.write((byte)(speicherAdresse & OxFF)); // LSB (niederweriges Byte)
// senden

Projekt 22: Kommunikation iiber I>C

Wire.write(daten); // Daten-Byte zum Speichern

// senden
#endif
Wire.endTransmission(); // Verbindung zu I2C trennen
delay(5); // Kurze Pause. AuBerst
// wichtig!!!
}

byte leseEEPROM(int I2CBausteinAdresse, unsigned int speicherAdresse){
byte datenByte = OxFF;
Wire.beginTransmission(I2CBausteinAdresse); // Verbindung zu I2C
// initiieren
#1if ARDUINO < 100
Wire.send((byte)(speicherAdresse >> 8)); // MSB (hdherwertiges Byte)

// senden
Wire.send((byte)(speicherAdresse & OxFF)); // LSB (niederwertiges Byte)
// senden
#else
Wire.write((byte)(speicherAdresse >> 8)); // MSB (hoherwertiges Byte)
// senden
Wire.write((byte)(speicherAdresse & OxFF)); // LSB (niederwertiges Byte)
// senden
#endif
Wire.endTransmission(); // Verbindung zu I2C trennen
Wire.requestFrom(I2CBausteinAdresse, 1); // Anfordern der Daten vom
// Slave

#if ARDUINO < 100

if(Wire.available()) datenByte = Wire.receive(); // Sind Daten vorhanden?

#else
if(Wire.available()) datenByte = Wire.read(); // Sind Daten vorhanden?
#endif
return datenByte; // Daten-Byte
// zurickliefern

Arduino-Code-Review

Der Code beinhaltet schon recht viele neue Befehle, die zum
grofiten Teil alle mit der Wire-Library zusammenhingen. Was soll
der Sketch-Code denn ausfithren? Die Aufgabe ist recht simpel,

doch es gehort schon einiges an Aufwand zur Realisierung:

* Festlegen der Speicheradresse fiir die Speicherung der Daten
* Speichern der Daten

* Abrufen der zuvor gespeicherten Daten

Was bedeutet 1°C?

497

498

Abbildung 22-5 »
Die einzelnen Schritte beim
Speichern in das EEPROM

Wir sollten uns nun die einzelnen Prozesse, also Speichern bzw.
Lesen, im Einzelnen genauer anschauen.

Der Speicherprozess

Transmission beginnen

Transmission beenden

—Speicheradresse

—Datenbyte

= Transmission beginnen
—12C Komponentenadresse
— (bertragen

—Transmission Ende

Da diese Schritte beim Speichern regelmiflig aufgerufen werden
miissen, habe ich sie in eine entsprechende Funktion ausgelagert,
die ich schreibeEEPROM genannt habe. Thr werden die Bausteina-
dresse, die Speicheradresse und die Daten iibergeben.

void schreibeEEPROM(int I2CBausteinAdresse, unsigned int
speicherAdresse, byte daten){
Wire.beginTransmission(I2CBausteinAdresse); // Verbindung zu I2C

#if ARDUINO < 100

Wire.send((byte)(speicherAdresse >> 8));

Wire.send((byte) (speicherAdresse & OxFF));

Wire.send(daten);

#else

Wire.write((byte)(speicherAdresse >> 8));

Wire.write((byte)(speicherAdresse & OxFF));

Wire.write(daten);

#endif
Wire.endTransmission();

delay(s);

Projekt 22:

// initiieren

// MSB (hGherwertiges
// Byte) senden

// LSB (niederwertiges
// Byte) senden

// Daten-Byte zum

// Speichern senden

// MSB (hoherwertiges
// Byte) senden

// LSB (niederwertiges
// Byte) senden

// Daten-Byte zum

// Speichern senden

// Verbindung zu I2C

// trennen

// Kurze Pause. AuRerst
// wichtig!!!

Kommunikation {iber I1>C

Der Speicherprozess erfolgt innerhalb einer sogenannten Transmis-
sion. Sie wird durch die Methode beginTransmission eingeleitet und
durch endTranmission abgeschlossen. In dieser erfolgt die Adressie-
rung der gewiinschten Speicheradresse und nachfolgend die Uber-
tragung der Daten. Beim Transmissionsbeginn wird die I°C-
Bausteinadresse gesendet, damit die am Bus angeschlossenen Teil-
nehmer wissen, wer gemeint ist:

Wire.beginTransmission(I2CBausteinAdresse);

Jetzt wird es ein wenig tricky. Da die Kommunikation nur in 1
Byte-Blocken erfolgen kann, der Adressbereich fur den internen
Speicher des EEPROMs aber 2 Bytes umfasst, muss die Ansprache
der Speicheradresse in zwei separaten Schritten erfolgen. Schauen
wir uns dazu das folgende Beispiel an: Du mochtest an der Spei-
cheradresse 4.596,, den Wert 457, ablegen. Die Bindrkombination
fur die Adresse lautet wie folgt:

Hoherwertiges Byte MSB Niederwertiges Byte LSB

N E Y A A L L A L Y T A Y S A S A A &
LN n0ooooonnnnonnn

Wie kommen wir jetzt an das MSB, also das hoherwertige Byte
heran? Vielleicht erinnerst du dich noch an den Bit-Schiebeoperator
>>. Wenn du die hier gezeigte Bitkombination um 8 Stellen nach
rechts schiebst, dann erhiltst du den Bytewert des MSB. Hierzu
wird folgender Befehl verwendet:

speicherAdresse >> 8

Hoherwertiges Byte Niederwertiges Byte

~ 1 =z’ r 2 2 2 2 7 z":
0006060600

215 214 213 212 211 2]0 29 28

0000o0Boonoonoo0n0n

Ergebnis

Was bedeutet 1°C?

500

Das Ergebnis liegt jetzt als Byte vor und kann mit der Befehlszeile
Wire.write((byte)(speicherAdresse >> 8)); // ab Version 1.00

oder

Wire.send((byte)(speicherAdresse >> 8)); // Versionen < 1.00

tibertragen werden.

nis schreiben? Ich dachte, dass es schon um das Ergebnis handle, das
in Form eines Bytes vorliegt.

Ok, ich sende also mit der write-Methode der Wire-Library den Byte-
wert. Warum muss ich denn noch den Datentyp byte vor das Ergeb-

Nicht ganz, Ardus! Die Variable speicherAdresse ist vom Datentyp
unsigned int, was bedeutet, dass keine negativen Werte interpretiert
werden, denn Speicheradressen sind immer positive Ganzzahl-
werte. Wir haben zwar das Endergebnis in den unteren 8 Bits als
LSB vorliegen, doch die oberen 8 Bits des MSB sind trotzdem noch
vorhanden und mit Nullen versehen. Die write-Methode erwartet
jedoch in unserem Fall einen Wert des Datentyps byte. Aus diesem
Grund muss tiber den sogenannten Cast-Operator, der sich in den
runden Klammern vor dem vermeintlichen Ergebnis befindet, eine
Konvertierung in den erforderlichen Datentyp byte erfolgen. Jetzt
fehlt noch das niederwertige Byte LSB, das im zweiten Schritt iiber-
tragen werden muss. Wir wenden die schon bekannte bitweise
UND-Verkniipfung an, die als Filter bzw. Maske arbeitet, um
bestimmte Bits zu maskieren:

Hoherwertiges Byte Niederwertiges Byte
14 213 212 11 10 29 28 7 26 25 24 23 21 2! 20

ononononas
0000000 e I XL XXX IX|)umem

0000000000000 0005EEE

Das Ergebnis liegt jetzt als Byte vor und kann mit der Befehlszeile

Wire.write((byte)(speicherAdresse & OxFF)); // ab Version 1.00

oder

Wire.send((byte)(speicherAdresse & OxFF)); // Versionen < 1.00

Projekt 22: Kommunikation iiber I>C

iibertragen werden.

Der Vorgang der Adressierung ist jetzt abge-

schlossen und die Transmission erwartet im nichsten Schritt das

Datenbyte, das mit

der Zeile

Wire.write(daten); // ab Version 1.00

oder

Wire.send(daten); // Versionen < 1.00

gesendet wird. Der Datentyp der Variablen daten ist schon byte und
muss nicht erst entsprechend tiber den Cast-Operator konvertiert
werden. Der Abschluss der Transmission wird durch die Zeile

Wire.endTransmission();

gebildet. Eine nicht

zu vergessene Zeile, die ebenfalls zur Funktion

gehort, ist folgende:

delay(5);

Sie fiigt eine kleine
viele Daten hinterei

Pause ein und kommt dann zum Tragen, wenn
nander an den Bus geschickt werden. Du musst

dem Bus ein wenig Zeit geben, um die Daten zu verarbeiten. Es
kann zu merkwiirdigen Effekten der Datenkorruption kommen,
wenn diese Pause nicht eingehalten wird.

Der Leseprozess

Transmission beginnen

Transmission beenden

Transmission beginnen <« Abbildung22-6
—12C Komponentenadresse Die einzelnen Schritte beim Lesen
iibertragen aus dem EEPROM

—Speicheradresse

—Transmission Ende

|

Daten anfordern

l

Daten vom Bus abrufen

Was bedeutet 1°C?

501

502

Auch hier habe ich die einzelnen Schritte in eine entsprechende
Funktion ausgelagert, die ich leseEEPROM genannt habe. Thr wer-
den die Bausteinadresse und die Speicheradresse tibergeben:

byte leseEEPROM(int I2CBausteinAdresse, unsigned int speicherAdresse){

byte datenByte = OxFF;

Wire.beginTransmission(I2CBausteinAdresse); // Verbindung zu I2C
// initiieren

#if ARDUINO < 100

Wire.send((byte) (speicherAdresse >> 8)); // MSB (hGherwertiges
// Byte) senden

Wire.send((byte)(speicherAdresse & OxFF)); // LSB (niederwertiges
// Byte) senden

#else

Wire.write((byte)(speicherAdresse >> 8)); // MSB (hoherwertiges
// Byte) senden

Wire.write((byte)(speicherAdresse & OxFF)); // LSB (niederwertiges
// Byte) senden

#endif

Wire.endTransmission(); // Verbindung zu I2C
// trennen

Wire.requestFrom(I2CBausteinAdresse, 1); // Anfordern der Daten

// vom Slave

#if ARDUINO < 100
if(Wire.available()) datenByte = Wire.receive(); // Sind Daten

// vorhanden?
#else
if(Wire.available()) datenByte = Wire.read(); // Sind Daten

// vorhanden?
#endif
return datenByte; // Daten-Byte

// zuriickliefern

}

Der Leseprozess erfolgt ebenfalls innerhalb der dir schon bekann-
ten Transmission. Beim Transmissionsbeginn wird wieder die I°C-
Bausteinadresse gesendet, damit die am Bus angeschlossenen Teil-
nehmer wissen, wer gemeint ist.

Wire.beginTransmission(I2CBausteinAdresse);
Es folgt die Speicheradressierung

Wire.write((byte)(speicherAdresse >> 8)); // MSB (hoherwertiges Byte)
// senden
Wire.write((byte)(speicherAdresse & OxFF)); // LSB (niederweriges
// Byte) senden

Projekt 22: Kommunikation iiber I>C

die jetzt jedoch sofort im Anschluss mit dem Transmissionsende

Wire.endTransmission();

quittiert wird. Beachte auch hier wieder den Code fiir Arduino-Ver-
sionen < 1.00. Na, das scheint ja auf den ersten Blick etwas verwir-
rend zu sein. Wo bleibt denn der Schritt, der das Lesen aus dem
EEPROM einleitet? Sollte dieser nicht innerhalb der Transmission
erfolgen? Die Antwort lautet NEIN! Das Lesen erfolgt erst nach der
Beendigung der Transmission. Dafiir sind die folgenden Codezeilen
verantwortlich:

Wire.requestFrom(I2CBausteinAdresse, 1); // Anfordern der
// Daten vom Slave
if(Wire.available()) datenByte = Wire.read(); // Sind Daten
// vorhanden?

Die requestFrom-Methode fordert die Daten mit der im ersten
Argument iibergebenen I?C-Bausteinadresse an. Das zweite Argu-
ment legt fest, wie viele Bytes ab der Startadresse abgerufen werden
sollen. Danach werden die Daten an den Bus tibertragen. Nun
kommt die available-Methode ins Spiel, die den logischen Wert
true zuriickliefert, wenn Daten vorliegen. Uber die if-Abfrage wer-
den dann bei entsprechender Bewertung mit dem Ergebnis true die
Daten uiber die read-Methode vom Bus empfangen und in der Vari-
ablen datenByte gespeichert. Uber den letzten Befehl in der Funk-
tion, wird mittels refurn-Anweisung der Wert der Variablen an den
Aufrufer zuriickgeliefert. Die println-Methode gibt diese Daten in
HEX-Format an den Serial-Monitor aus. Hier kannst du sie dir
dann anschauen.

Achtung

Ich habe den Zugriff auf das EEPROM innerhalb der setup-Funk-
tion platziert. Dadurch wird sichergestellt, dass das Speichern
bzw. Abrufen der Daten einmalig zum Sketchbeginn stattfin-
det. Komm bitte nicht auf die Idee, den Code in die loop-Funk-
tion zu verschieben. Das funktioniert zwar auch ganz gut, doch
das EEPROM hat — wie ich schon eingangs erwahnt habe - eine
begrenzte Anzahl von Schreib- / Lesezyklen. Innerhalb der
loop-Funktion kannst du das EEPROM schnell in kirzester Zeit
Uber dieses Limit hinaus belasten, so dass du als Ergebnis ein
schones kleines schwarzes Plastikgehduse hast, dass keinerlei
Funktion mehr erfillt. Tja, das kann ja auch etwas Feines sein.

Was bedeutet 1°C?

503

Der Schaltplan

Arduino

vce
——— GND

PWM
PWMN
PwWM

Digital 1,/0

PHbHER R

PwWM

Analog IN

PWM
PWM

"
(=]

l

s
LS}

l

.
-

EEPROM 24LCH4L

AD +5V

Al WP

5
4

SEE

SDA

1
2

d1a2 scL
2 GND SDA

! T T
10K

= Pullup-
— Widerstande

8
¥l
3]
5

SCL

Abbildung 22-7 A
Die Verschaltung des EEPROM
241C64

=
o
Iz}
o
E
o

Abbildung 22-8 A

Aufbau der EEPROM-Ansteuerung

504

mit Fritzing

Schaltungsaufbau

PUM e &

3 7
DIGITAL

PN o
PuM -0

Arduino

wWw.arduino.cc

POWER

m
>
m

5
=
=
o

S5V6GndVin 012345

y

=D PURgy

A

ANALOG IN .

i

R)

S I N A A A)
csssamflesss s am
m EEEEE R |

e s 00

® e s s s D GED + e s s

D A A I)
s s s 0 s EED G -

s s 0000

e s 0000

s 8008

& s s 8 s s s s s O
® s 008000 |--¢¢|-n.-

Projekt 22: Kommunikation {iber I>C

Wir programmieren einen Monitor

Wenn du dir den Inhalt des gesamten EEPROMs einmal anschauen
mochtest, ist es wohl recht mithsam, Byte fiir Byte auszulesen. Aus
diesem Grund werden wir uns jetzt einen Monitor programmieren,
der sowohl die Speicheradressen als auch deren Inhalte im Serial-
Monitor ausgibt. Die folgende Abbildung gibt dir schon einmal
einen Vorgeschmack auf die Ausgabe, wie ich sie mir vorgestellt

habe:

|4 coMs

0000z
0008z
oola:
oola:
oozo: 2z
ooza:
0030-
0038:
0040z
0048z
0050z
0058z
0080z
0068z
oo7a:
0078:
00BO:

4]

[¥] Autoscroll [Nolne ending | [s600baud |

In der linken Spalte werden die Speicher-Startadressen der Speicher-
inhalte angezeigt, die in der betreffenden Zeile gelistet werden. Die
Startadresse einer Zeile bezieht sich immer auf den ersten Hex-
Wert, der ihr folgt. Um die entsprechende Speicheradresse eines
sich weiter rechts befindenden Datenwertes zu ermitteln, musst du
lediglich die Speicher-Startadresse um den Positionswert des
Datenwertes erweitern. Der erste Wert hat natiirlich die Positions-
nummer 0, da seine Startadresse ja schon angezeigt wird. Zum bes-
seren Verstandnis hier ein Beispiel:

L&) COMS EE =]

Qand |
Position 3: Adresse = 0008 + 3= 0011
0000: 7b 01 02 \E

0008: 08 03 0a @) 0c od e of 3
0010: 10 11 12 13 14 15 16 17 1

Was bedeutet 12C?

<« Abbildung 22-9
Ausgabe des EEPROM-Inhaltes im
Serial-Monitor

505

506

Sowohl die Speicher-Startadressen als auch die Datenwerte werden
im Hex-Format angezeigt. Hier der Code, der diese Ausgabe
ermoglicht:

#include <Wire.h>
#define I2CBaustein 0x50 // Festlegen der I2C Zugriffsadresse
/*
Speicherbereiche fiir unterschiedliche EEPROMs
24LC08: 8-KBit = 8192 Bits = 1 KByte / Speicherbereich: 0 - 1023
24LC64: 64-KBit = 65536 Bits = 8 KByte / Speicherbereich: 0 - 8191
241C256: 256-KBit = 262144 Bits = 32 KByte / Speicherbereich: 0 -
32767
*/
#define Startadresse 0
#define Endeadresse 8191
void setup(){
Wire.begin();
Serial.begin(9600);
int adresse = 0;
for(unsigned int adr = Startadresse; adr <= Endeadresse; adr++){
int a = leseEEPROM(I2CBaustein, adr); // Lese Daten
if((adr == 0)||(adr % 8 == 0))

Serial.print(int2hex(adr, 4) + ": "); // Zeige Speicheradresse
// an
Serial.print(int2hex(a, 2) + " "); // Zeige Daten-Byte an
if((adr + 1) % 8 == 0)
Serial.println(); // Zeilenvorschub

// int -> hex-Konvertierung mit der Angabe der Stellen
String int2hex(int wert, int stellen){
String temp = String(wert, HEX);
String prae = ""
int len = temp.length(); // Die Ldnge der Zeichenkette ermitteln
int diff = stellen - len;
for(int 1 = 0; i < diff; i++)
prae = prae + "0"; // Fihrende Nullen erzeugen
return prae + temp; // Fihrende Nullen + Ergebnis zuriickliefern

}

Des Weiteren benotigst du natiirlich noch die leseEEPROM-Funk-
tion, die ich hier nicht noch einmal aufliste. Im oberen, auskom-
mentierten Codebereich habe ich unterschiedliche Adressbereiche
fiir drei EEPROM-Versionen vermerkt. Du kannst sie ggf. anpas-
sen, wenn du mit anderen EEPROMs experimentierst.

Projekt 22: Kommunikation iiber I>C

Troubleshooting

Wenn dir nach dem Schreiben eines Datenbytes der entsprechende
Wert beim Lesen nicht wieder angezeigt wird, iiberpriife Folgen-

des:
* Ist die Verkabelung korrekt?

¢ Gibt es eventuell Kurzschliisse untereinander?

e Hast du die korrekte Bus-Adresse verwendet? A0 bis A2 miis-
sen bei Adresse 0x50 mit Masse verbunden sein. Ebenso muss
der WP-Anschluss auf Masse liegen, da das EEPROM sonst
nur Daten lesen, aber nicht schreiben kann.

Was hast du gelernt?

¢ Du hast in diesem Kapitel erfahren, was ein I?°C-Bus ist und
wie du mit diesem eine ganze Reihe von Komponenten anspre-
chen kannst.

* Uber ein angeschlossenes EEPROM kannst du Daten abrufen
und speichern, um iiber einen lingeren Zeitraum — auch bei
Verlust der Betriebsspannung — noch darauf zugreifen zu kén-
nen.

* Die wire-Library diente bei diesem Vorhaben als Unterstiit-
zung, wobei du dich nicht mit den tieferen Details des *C-Bus-
ses auseinandersetzen musstest.

* Du hast einen EEPROM-Monitor programmiert, damit du dir
die Inhalte komfortabel anzeigen lassen kannst.

Workshop

Entwickle eine Schaltung bzw. einen Sketch, der die Lichtverhalt-
nisse vor deinem Fenster in bestimmten Zeitabstdnden iber einen
LDR ermittelt und die Werte in das EEPROM schreibt. Du kannst
dir dann am Abend die Werte auslesen und z.B. eine entsprechende
Kurve in Excel erstellen. Unser Serial-Monitor hat im letzten Bei-
spiel die gespeicherten Werte im Hex-Format ausgegeben. Die Aus-
gabe kann natiirlich auch dezimal erfolgen, was fur die
Kurvendarstellung sicherlich sinnvoller ist. Des Weiteren kannst du
vielleicht den EEPROM-Monitor so umprogrammieren, dass statt
der Hex-Werte Dezimalwerte angezeigt werden. Damit aber die
Ubersichtlichkeit nicht leidet, wiirde ich dir raten, dass alle Werte

Was bedeutet 1°C?

507

508

die gleiche Stellenanzahl aufweisen. Gib also am besten die fithren-
den Nullen immer mit aus, so wie das auch hier bei den Speichera-
dressen erfolgt ist.

Projekt 22: Kommunikation iiber I>C

Der Schrittmotor

Scope

In diesem Experiment behandeln wir folgende Themen:

* Was ist ein Schrittmotor?

* Wie kannst du ihn ansteuern?
* Der komplette Sketch

* Analyse des Schaltplans

* Aufbau der Schaltung

* Workshop

Noch mehr Bewegung

In dem Kapitel iiber den Servo bist du das erste Mal mit einem Bau-
teil in Bertthrung gekommen, das elektrischen Strom in Bewegung
umwandelt. Sein Aktionsradius war von Hause aus in solcher
Weise eingeschrinkt, dass er sich nur um 180° drehen konnte.
Natiirlich kénnen Modifikationen durchgefithrt werden, um dieses
Manko zu beheben, doch fiir die meisten Anwendungszwecke
reicht dieser Radius durchaus. Falls dennoch einmal mehr Aktions-
freiheit erforderlich ist, kommt der Schrittmotor zum Einsatz. Du
erinnerst dich hoffentlich noch an das Kapitel Die Elektronik, in
dem ich dich bereits mit den entsprechenden vertraut gemacht
habe. Diese waren zugegebener MafRen ein wenig rudimentir, und
deshalb mochte ich dieses gesamte Kapitel dem Schrittmotor wid-
men. Damit dir moglichst wenig Kosten entstehen, solltest du tiber-
legen, ob sich vielleicht irgendwelche alten Gerite ausschlachten
lassen. Schrittmotoren findest du z.B. in folgenden Geriten:

Projekt

23

509

http://www.ladyada.net/make/mshield/

Abbildung 23-1
Ein 3,5 Zoll Floppy-Laufwerk

Abbildung 23-2
Der Schrittmotor PL155-020 aus
einem alten CD-ROM Laufwerk

* Druckern

* Flachbettscannern

* CD/DVD-Laufwerken

* alten Floppy-Drives (3,5 Zoll)

In der folgenden Abbildung siehst du ein 3,5 Zoll Floppy-Laufwerk,
das teilweise sogar heute noch in Computern verwendet wird.
Allerdings ist es ein schon fast ausgestorbener Vertreter der Gerite
zur Datenspeicherung.

Als ich vor einiger Zeit einen Blick in unseren Wertstofthof gewor-
fen habe, da lachte mich eine Sammlung von ca. 10 alten Laufwer-
ken an und die riefen: »Nimm’ uns mitl« Ich konnte dieser
Aufforderung nicht widerstehen. In einem solchen Laufwerk befin-
det sich ein kleiner Schrittmotor, der meistens vom Typ PL155-020
ist. Dieser treibt einen kleinen Schlitten an, an dem sich der
Schreib-/Lesekopf befindet. In der folgenden Abbildung ist eine
solche Einheit aus einem alten CD-ROM Laufwerk zu sehen.

*—Sclmttmolor

510

Projekt 23: Der Schrittmotor

Dieser Schrittmotor ist mit 4 Anschliissen versehen, die wir uns ein
wenig genauer anschauen wollen. Ich habe iibrigens, wie du in der
Abbildung erkennen kannst, schon ein paar farbige Leitungen
angelotet, damit das Ansteuern mit dem Arduino-Board leichter
von der Hand geht. In der folgenden Grafik siehst du, welche
Anschlussbezeichnungen verwendet werden:

PL155-020

B 1

0

P o R O O .
© ¥

Spindel 1

Dieser Motor hat 4 Anschliisse, was darauf hindeutet, dass es sich
um einen bipolaren Schrittmotor handelt. Um den Motor in Gang
zu setzen, missen die gezeigten Anschliissen bestimmte Impulse in
einer bestimmten zeitlichen Abfolge erhalten.

Anschliisse

Schritt Al A3 Bl B3
1 LOW HIGH HIGH LOW

2 LOW HIGH LOW HIGH

3 HIGH LOW LOW HIGH

4 HIGH LOW HIGH LOW

cw

Wenn wir einen Sketch schreiben, der nacheinander die Schritte
von 1 bis 4 abarbeitet und die entsprechenden Pegel LOW bzw.
HIGH an den Schrittmotor schickt, wird dieser sich im Uhrzeiger-
sinn drehen. Bei entgegengesetzter Schrittfolge erfolgt die Drehung
gegen den Uhrzeigersinn. Eine wichtige Gegebenheit habe ich bis-
her noch nicht erwihnt. Du kannst den Schrittmotor nicht einfach
so an die digitalen Ausginge anschlief(en, denn diese wiirden dann
so belastet, dass das Board unweigerlich einen Schaden davon-
triige. Aus diesem Grund nutzen wir einen Motortreiber vom Typ
1293, den ich dir in der folgenden Abbildung quasi von innen
zeige.

<« Abbildung 23-3
Die Anschliisse des Schrittmotors
PL155-020 D

<« Abbildung 23-4
Die Ansteuerungssequenzen fiir
den Schrittmotor PL155-020 D

Noch mehr Bewegung

51

Abbildung 23-5 p
Der Motortreiber vom Typ L293DNE

Abbildung 23-6 w
Die Ansteuerung des Schrittmotors
iiber den Motortreiber L293DNE

12EN [L 293 [16]Vecy
1A 2] [15] 4A
1Y y XZE 4y
GND [13] GND
GND [12] GND
2y [6] 111] 3Y
2A A igﬂ 3A
Veeo 9]34EN

Die kleinen Dreiecke stellen das Symbol fiir den Treiber dar, der erfor-
derlich ist, um die Leistung zu bringen, die ein angeschlossener Motor
fiir seinen Betrieb benotigt. Die IC-Anschliisse, mit dem Buchstaben A
sind die Eingidnge und die mit Y die Ausginge. Jeweils zwei Treiber tei-
len sich einen gemeinsamen Freigabeanschluss, der mit der Abkiir-
zung 1,2EN bzw. 3,4EN gekennzeichnet ist. Das EN steht fur Enable,
was so viel wie ermdglichen bedeutet. Dieser Motortreiber kann pro
Ausgang einen Strom von 600mA bereitstellen. Folgende Treiberbau-
steine sind in der Lage, einen hoheren Strom zu liefern:

* SN754410 (1Ampere)
e 1298 (2 Ampere)

Ich denke, dass es sinnvoll ist, wenn ich dir jetzt schon einmal den
Schaltplan prisentiere.

Externe Spannungsversorgung
16 fiir den Schrittmotar

Inputl Ve
Input2
Input3
Inputh
Outputl
—0 Qutput2
Qutput3
Qutputh

+ Batt

I

i
9
8]
&
5

- Batt

B3 Bipolarer Schrittmator

PL15S-020

Arduina
(]
=
B
vee @
—~— GND =
PWM
Analog IN

e

()

B1
A3 Al

gemeinsame Massaleitung

512

Projekt 23: Der Schrittmotor

Was fillt uns hier auf? Nun, da befindet sich auf der rechten Seite
des Schaltplanes eine zusitzliche Spannungsquelle, die notwendig
ist, um den Schrittmotor mit separater Spannung bzw. separatem
Strom zu versorgen. Bei zwei oder mehr Spannungsquellen ist es
jedoch immer erforderlich, die Masseleitungen zusammenzuschal-
ten, um einen gemeinsamen Bezugspunkt herzustellen.

Achtung
Auf keinen Fall dirfen die (+)-Pole des Arduino-Boards und der
externen Spannungsquelle miteinander verbunden werden!
Das zerstort das Arduino-Board!

Laut Datenblatt des Schrittmotors benotigt dieser zum Betrieb 5V.
Wenn die Versorgungsspannung des Schrittmotors darunterliegt,
wird die Positionierung ungenau und ist nicht reproduzierbar. Es
gleicht dann mehr einem Gliicksspiel, wenn eine bestimmte Posi-
tion mehrfach punktgenau angefahren werden soll. Hier ein paar
Eckwerte des Schrittmotors PL15S-020:

* Anzahl der Schritte pro Umdrehung: 20
* Typ: Bipolar
* Spannungsversorung: 5V

* Spulenwiderstand pro Phase: 10 Ohm

Ich glaube, du hast etwas Entscheidendes vergessen! Soweit ich mich
entsinne, benotigt eine Motoransteuerung eine Schutzdiode. Hast du
das nicht ganz am Anfang einmal erwihnt?

Vollkommen korrekt, Ardus! Aber vergessen habe ich sie trotzdem
nicht. Der kleine Zusatz DNE hinter der Bezeichnung L293 bedeu-
tet, dass die Schutzdioden, auch Freilaufdioden genannt, schon im
Motortreiberbaustein integriert wurden. Das ist natiirlich eine feine
Sache! Falls du einen ilteren Baustein mit der Bezeichnung 293
(ohne den Zusatz DNE) in einer Krabbelkiste finden solltest, dann
ist es zwingend notwendig, die Schutzdioden extern zu verschalten!
Andernfalls nimmt das Arduino-Board Schaden.

Noch mehr Bewegung

513

http://www.arduino.cc/en/Reference/Stepper

514

Benotigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

Bendtigte Bauteile

1x Motortreiber vom Typ L293DNE

1 x Bipolarer Schrittmotor (z.B. PL155-020 aus
einem alten CD/DVD-ROM-Laufwerk)

Mehrere flexible Steckbriicken in unterschiedli-
chen Farben und Langen

Was mache ich denn bloff, wenn ich kein altes Floppy- oder CD/
DVD-ROM-Laufwerk finde? Dann kann ich doch das Experiment
nicht durchfthren.

Keine Panik, Ardus! Du kannst eigentlich fast jeden bipolaren
Schrittmotor verwenden. Du musst dir lediglich das entsprechende
Datenblatt aus dem Internet besorgen, um an die Spezifikationen
heranzukommen. Achte auf jeden Fall auf den Strom, den der
Schrittmotor im Betrieb zieht, und vergleiche ihn mit dem fiir den
hier verwendeten Motortreiber. Er darf unter keinen Umstinden
iiber 600mA pro Anschluss liegen. Andernfalls musst du dir entwe-
der einen anderen Schrittmotor oder einen anderen Treiberbaustein
besorgen. Wenn du keine solcher alten bzw. defekten Gerite hast,
wie ich sie am Anfang genannt habe, besuche doch die Internetseite
von Pollin Electronic (www.pollin.de). Dort findest du recht giins-
tige Schrittmotoren.

Wenn ich mir den Schaltplan so anschaue, dann habe ich ein klitze-
kleines Problem mit der externen Spannungsquelle, die ja laut Schritt-
motor-Eckdaten 5V betragen muss. Wo nehme ich die denn nun her?

Da musst du entweder ein regelbares Labornetzteil oder — was noch
glinstiger ist — ein Steckernetzteil verwenden. Ich habe dir beide
Gerite im Kapitel tiber Niitzliches Equipment vorgestellt.

Projekt 23: Der Schrittmotor

http://www.pollin.de

Arduino-Sketch-Code

#define Stepper_A1 5 // Pin fiir Stepper A1l
#define Stepper_A3 4 // Pin fiir Stepper A3
#define Stepper_B1 3 // Pin fiir Stepper Bl
#define Stepper_B3 2 // Pin fiir Stepper B3

byte stepValues[5][4] = {{LOW, LOW,
{LOW, HIGH,
{LOW, HIGH,
{HIGH, LOW,
{HIGH, LOW,

void setup(){

pinMode (Stepper_A1, OUTPUT);

pinMode (Stepper_A3, OUTPUT);

pinMode(Stepper_B1, OUTPUT);

pinMode (Stepper_B3, OUTPUT);

for(int i = 0; 1 < 10; i++){
action(30, 2); // 30 Steps nach
action(-30, 10); // 30 Steps nach

}

action(0, 0); // Stromlos schalten

}

void loop(){/* leer*/}

LOW, LOW}, // Stepper aus
HIGH, LOW}, // Step 1
LOW, HIGH}, // Step 2
LON, HIGH}, // Step 3
HIGH, LOW}}; // Step 4

rechts mit 2ms Pause
links mit 10ms Pause

void action(int count, byte delayValue){

if(count > 0) // Drehung nach rechts

for(int i = 0; 1 < count; i++)

for(int sequenceStep = 1; sequenceStep <= 4; sequenceStep++)
moveStepper (sequenceStep, delayValue);

if(count < 0) // Drehung nach links

for(int 1 = 0; 1 < abs(count); i++)
for(int sequenceStep = 4; sequenceStep > 0; sequenceStep--)
moveStepper (sequenceStep, delayValue);

if(count == 0) // Stromlos schalten
moveStepper (0, delayValue);

}

void moveStepper(byte s, byte delayValue){
digitalWrite(Stepper_A1, stepValues[s][0]);
digitalWrite(Stepper_A3, stepValues[s][1]);

[
digitalWrite(Stepper_B1, stepValues[s][
digitalWrite(Stepper_B3, stepValues[s][

delay(delayValue); // Pause

]
]
2]);
3D

Noch mehr Bewegung

515

516

Tabelle 23-1
Bendtigte Variablen und ihre
Aufgaben

In diesem Sketch verwendest du — so glaube ich zumindest — eine mir
unbekannte Funktion, die abs lautet. Kannst du mir das ein wenig
genauer erliutern?

Oops! Stimmt, Ardus, die hatte ich glaube ich noch nicht erwihnt.
Wendest du die Funktion abs, was die Abkiirzung von absolute ist,
auf eine reelle Zahl an, dann wird einfach das Vorzeichen nicht
beriicksichtigt. Das Ergebnis ist immer positiv. Mathematiker for-
mulieren diesen Sachverhalt wie folgt:

||_{ x firx =0
= —x furx <0

Die beiden senkrechten Striche vor bzw. hinter dem x bedeutet
tbrigens Betrag von x, weshalb die Absolutfunktion auch Betrags-
funktion genannt wird. Am besten lisst sich die Arbeitsweise
jedoch anhand eines Graphen verdeutlichen, den ich fiir die abs-
Funktion erstellt habe:

Arduino-Code-Review

Fiir unser Schrittmotor-Experiment benétigen wir programmtech-
nisch gesehen die folgenden Variablen:

Variable Aufgabe

stepValues[5][4] Zweidimensionales Array zur Speicherung der Schrittinformationen, um den
Motor zu bewegen.

Der Inhalt des Arrays entspricht exakt den Werten der Tabelle mit
den Ansteuerungssequenzen. Ich habe lediglich am Anfang eine
Zeile mit LOW-Werten hinzugefiigt, die dazu dient, den Schrittmo-
tor nach Erreichen der angeforderten Position stromlos zu schalten.

Projekt 23: Der Schrittmotor

Wiirde ich das nicht tun, bliebe der Motor zwar am Ende stehen,
doch wir hitten es mit einer aktiven Fixierung an der letzten ange-
fahrenen Position zu tun. Du kannst einen solchen Motor nicht
mehr mit der Hand bewegen, da er noch mit Spannung versorgt
wird. Das bedeutet wiederum, dass er nach kurzer Zeit recht warm

oder heiff wird.

byte stepvalues[5][4] = {{LOW, LOW, LOW, LOW}, // Stepper aus
{LOW, HIGH, HIGH, LOW}, // Step 1
{LOW, HIGH, LOW, HIGH}, // Step 2
{HIGH, LOW, LOW, HIGH}, // Step 3
{HIGH, LOW, HIGH, LOW}}; // Step 4

Sehen wir uns zunichst die Funktion an, die den Schrittmotor
bewegt. Sie lautet moveStepper und nimmt zwei Argumente entge-
gen. Das erste steht fiir den Sequenzschritt, also 1 bis 4 fiir eine
Rechtsdrehung und 4 bis 1 fiir eine Linksdrehung. Das zweite
Argument gibt eine Wartezeit vor, die zwischen den einzelnen
Sequenzschritten eingehalten wird. Auf diese Weise kannst du die
Geschwindigkeit des Schrittmotors ein wenig beeinflussen. Dieser
Wert sollte jedoch nicht unter 2 liegen, da in einem solchen Fall die
elektrische Ansteuerung derart schnell erfolgt, dass der Motor
mechanisch nicht mehr reagieren kann. Er brummt bzw. zuckt
dann nur noch.

void moveStepper(byte s, byte delayValue){
digitalWrite(Stepper_A1, stepValues[s][0]);
digitalWrite(Stepper_A3, stepValues[s][1]);
digitalWrite(Stepper_B1, stepValues[s][2]);
digitalWrite(Stepper_B3, stepValues[s][3]);
delay(delayValue); // Pause

}

Innerhalb der Funktion wird der tibergebene Sequenzschritt als
Index in der ersten Dimension an das Sequenz-Array stepValues
tibergeben. Die zweite Dimension steht fiir die Spannungspegel
LOW bzw. HIGH. Uber die Indexwerte 0 bis 3 werden sie entspre-
chend abgerufen und den digitalen Ausgingen iibergeben, die wie-
derum den Schrittmotor iiber den Treiberbaustein ansteuern.
Kommen wir jetzt zur action-Funktion, die die moveStepper-Funk-
tion aufruft:

void action(int count, byte delayValue){
if(count > 0) // Drehung nach rechts
for(int 1 = 0; 1 < count; i++)
for(int sequenceStep = 1; sequenceStep <= 4; sequenceStep++)

Noch mehr Bewegung

518

moveStepper (sequenceStep, delayValue);
if(count < 0) // Drehung nach links
for(int i = 0; 1 < abs(count); i++)
for(int sequenceStep = 4; sequenceStep > 0; sequenceStep--)
moveStepper (sequenceStep, delayValue);
if(count == 0) // Stromlos schalten
moveStepper (0, delayValue);
}

Ihr werden die Anzahl der Schritte, bzw. die Pause nach jedem
Schritt tbergeben. Bei einem positiven Schrittwert dreht der
Schrittmotor sich rechts-, bei einem negativen links herum. Ist der
Wert 0, wird der Schrittmotor stromlos geschaltet. Es arbeiten
immer zwei verschachtelte for-Schleifen Hand in Hand, um den
Motor zu bewegen. Die duflere Schleife regelt die Schrittanzahl,
wihrend die innere die Drehrichtung vorgibt. Ist der Schrittwert
positiv, arbeitet die innere Schleife die Sequenzschritte von 1 bis 4
ab, wiihrend bei negativem Wert die Sequenzschritte von 4 bis 1
abgearbeitet werden. Diese Sequenz dient der moveStepper-Funk-
tion als Index, mit dem stepValues-Array die entsprechenden LOW-
bzw. HIGH-Werte ausliest. Die eigentliche Anforderung zur Bewe-
gung des Schrittmotors erfolgt tiber den Aufruf der action-Funk-
tion, mit einer Codezeile wie der folgenden:

action(30, 2);

Sie teilt dem Schrittmotor Folgendes mit: »Drehe dich 30 Schritte
nach rechts und legen zwischen jedem Schritte eine Pause von 2ms
ein!« Die Zeile

action(-30, 10);

hingegen besagt »Drehe dich 30 Schritte nach links und lege zwi-
schen jedem Schritt 10ms Pause ein!«.

Auf diese Weise lidsst sich der Schrittmotor an die gewiinschte
Stelle bewegt werden. Denke aber an die mechanischen Grenzen,
denn weiter als minimal links bzw. maximal rechts geht einfach
nicht. Da niitzt auch keine héhere Spannung. Ich mochte an dieser
Stelle nicht versdumen, dich auf zwei Dinge hinzuweisen:

Fertige Schrittmotoren-Library

Es gibt eine fertige Library, mit der du Schrittmotoren ansteuern
kannst, ohne dir Gedanken um die Programmierung machen zu
miissen. Sie lautet Stepper und ist Bestandteil des Arduino-Down-

Projekt 23: Der Schrittmotor

loadpakets. Alle notwenigen Informationen dazu findest du unter
http://www.arduino.cc/en/Reference/Stepper.

Fertiges Motor-Shield

Du kannst ein fertiges Motor-Shield kaufen, das zwei der eben ange-
sprochenen Motortreiber L293DNE verwendet. Damit nicht so
viele digitale Pins ver(sch)wendet werden, erfolgt die Ansteuerung
elegant tiber das Schieberegister 74HC595. Darum brauchst du dir
aber keine Gedanken machen, denn alle Logik steckt in der zur
Verfiigung stehenden Library, die du auf der entsprechenden Inter-
netseite findest.

Du kannst an dieses Shield die unterschiedlichsten Motor-Kompo-
nenten anschliefRen:

* 2 Hobby-Servos
* Bis zu 4 Gleichstrommotoren

* Bis zu 2 Schrittmotoren (unipolar oder bipolar)

Alle weiteren Informationen findest du unter http:/www.ladyada.
net/make/mshield).

Troubleshooting

Falls der Schrittmotor sich nicht bewegt oder vielleicht nur zuckt
oder brummt, dann tiberpriife folgende Punkte:

* Ist die Verkabelung korrekt?

* Gibt es etwaige Kurzschliisse untereinander?

 Falls der Schrittmotor beim Start des Sketches nicht die Posi-
tion verdndert oder vielleicht nur kurz zuckt oder brummt,

<« Abbildung 23-7
Das Motor-Shield

Noch mehr Bewegung

519

http://www.arduino.cc/en/Reference/Stepper
http://www.ladyada

Abbildung 23-8 p

Ein bipolarer Schrittmotor an einer

520

Lego-Konstruktion

dann liegt der Verdacht nahe, dass du die vier Anschliisse ver-
tauscht hast.

* Hast du die gemeinsame Masseverbindung zwischen Arduino-
Board und externer Spannungsquelle hergestellt?

* Du darfst auf keinen Fall, die beiden Versorgungsspannungs-
pole des Board und der externen Spannungsquelle, die mit
einem (+) gekennzeichnet sind, miteinander verbinden!
Dadurch wird das Arduino-Board zerstort!

Was hast du gelernt?

* Du hast in diesem Kapitel erfahren, wie ein bipolarer Schritt-
motor anzusteuern ist.

* Die Ansteuerung haben wir {ber den Treiberbaustein
L293DNE realisiert.

Workshop

In der folgenden Abbildung siehst du eine Lego-Konstruktion, an
die ich einen Schrittmotor aus einem alten Flachbettscanner mon-
tiert habe.

Den Zahnriemen und die Umlenkrolle habe ich ebenfalls aus besag-
tem Flachbettscanner ibernommen. Wird der Schrittmotor ange-
trieben, dann bewegt sich der Schlitten, der auf Zahnstangen liuft,
von links nach rechts und umgekehrt. Mit ein wenig Geschick und
Kreativitit kannst du dir auf diese Weise einen XY-Schreiber bauen.
Nihere Informationen findest du zu gegebener Zeit auf meiner
Internetseite.

Projekt 23: Der Schrittmotor

Projekt

Der ArduBot 24

Scope

In diesem Experiment behandeln wir folgende Themen:

* Die Ansteuerung eines Elektromotors
* Der komplette Sketch

* Analyse des Schaltplans

* Aufbau der Schaltung

* Workshop

Der ArduBot

Nun hast du ja im letzten Kapitel gesehen, wie du iiber den Motor-
treiber L293 DNE einen bipolaren Schrittmotor ansteuern kannst.
Ein ganz normaler Motor mit lediglich 2 Anschliissen kann eben-
falls tiber diesen Treiberbaustein angesteuert werden. Wir wollen
jetzt einen ArduBot — also ein Fahrzeug mit Arduino-Steuerung —
konstruieren. Was liegt da niher, als uns die Lego-Komponenten
unserer Kinder auszuleihen.

521

Abbildung 24-1 p
Die Ansteuerung eines Motors

Abbildung 24-2 »
Die Ansteuerungsschaltung eines
Motors iiber eine H-Bridge

Machen wir uns jedoch zuvor ein paar Gedanken iiber die Ansteue-
rung eines Motors. Wenn du diesen fest mit einer Spannungsquelle
verbindest, gibt es nur zwei Zustinde:

Matar dreht sich

Schalter geschlossen

1 4
1V O—————0O0—0—= m O ov
S e
Motor steht
Schalter offen
) A m
+H12VO—————0O O Q/ O ov
ot

Du siehst, dass der Motor fest in der Schaltung verdrahtet wurde
und die beiden Zustinde Motor dreht sich bzw. Motor steht anneh-
men kann.

Fur die Ansteuerung eines Roboterfahrzeuges ist diese Schaltung
sicherlich nicht zu gebrauchen, denn wie kann er denn in die entge-
gengesetzte Richtung fahren?

Das ist genau das Problem, auf das ich hindeuten wollte, Ardus. Ein
Anschluss ist immer mit +12V und der andere mit OV verbunden.
Damit er sich in entgegengesetzter Richtung dreht, miisstest du ent-
weder die Spannungsquelle oder den Motor umpolen. Das ist
jedoch nicht praktikabel und aus diesem Grund verwenden wir
eine besondere Schaltung, die das Umpolen ermoglicht.

o)

+12v (/;\
b

ov ™ o~

O

f

522

Projekt 24: Der ArduBot

Du siehst in dieser Schaltung den Motor in der Mitte und er ist von
4 Schaltern umgeben. Je nachdem, in welcher Kombination die
Schalter betitigt, also geschlossen werden, dreht sich der Motor
entweder links oder rechts herum. Wenn du die Anordnung der
Schalter bzw. der Anschliisse einmal aus der Ferne betrachtest,
dann siehst du, dass sie den Buchstaben H ergibt. So hat diese
Schaltung ihren Namen bekommen: H-Schaltung oder H-Bridge.
Dann lass’ uns einmal sehen, welche Schalterkombinationen fiir
eine sinnvolle Ansteuerung in Frage kommen.

i ™ 3
I O 0O i
\‘ I
, 13
Drehung » = }ghung X
o K,—ﬁ 2V / ~\
ov - N v b o ~
@) O
y A
- é)
) -
|
Schalter 51 und 54 sind geschlossen Schalter 52 und 53 sind geschlossen
Motor dreht rechts herum Motor dreht links herum

Du siehst, dass je nach gewiinschter Drehrichtung des Motors, die
Schalter S1 bis $4 entsprechend geschlossen werden miissen. Es ist
jedoch darauf zu achten, dass kein Kurzschluss entsteht, denn
durch das SchlieRen von SI + S2 bzw. S3 + $4 werden die beiden
Pole der Spannungsquelle unmittelbar verbunden. Fassen wir die
Schalterkombinationen doch einmal in einer Tabelle zusammen.
Dabei bedeutet 0 offener und 1 geschlossener Schalter.

S1 S2 S3 S4 Motorverhalten

Rechtsdrehung des Motors

Linksdrehung des Motors

Bremsung (Motoranschliisse werden kurzgeschlossen)

Motor lduft ungebremst aus

1 0
0 1
1 0
0 1
0 0
1 1 Verbotene Schalterstellung (Kurzschluss!)
0 0

—_ O O O = = o

1
0
0
1 Bremsung (Motoranschliisse werden kurzgeschlossen)
0
0
1

Verbotene Schalterstellung (Kurzschluss!)

Der ArduBot

<« Abbildung 24-3
Die sinnvolle Ansteuerung eines
Motors iiber eine H-Bridge

« Tabelle 24-1
Schalterkombinationen der
H-Bridge

523

Abbildung 24-4
Die Ansteuerung der ArduBot-

Motoren iiber ein L293DNE-Shield

Natiirlich kénnten wir fiir die gezeigten Zustinde Schalter und
Relais einsetzen, doch es ist am sinnvollsten, den schon bekannten
Treiberbaustein L.293 zu verwenden. Er besitzt vier Ein- bzw. Aus-
ginge und kann demnach zwei separate Motoren ansteuern. Ich
habe dazu ein eigenes Shield gebaut, das den Treiberbaustein und
drei Anschlussklemmen besitzt, mit denen die zwei Motoren und
die externe Spannungsversorgung angebracht werden.

Der Schaltplan ist denkbar einfach, bei der Ansteuerung des Motor-
treibers werden die gleichen Pins wie im letzten Kapitel verwendet.

Arduino

YCE&
GND

Digital 1/0

Analog IN

A

fry
(sa}

LN |5 |00 D [

Qutput2 GND 10pF

Output3 GND i%
GND
L293
z 4
R L R L
z z 18,8 1[4, .9 18, 4
1 3 4 5 6
Ri{_hlungsa'nzeiqe Richhmg'sanzeige Motor 1 Mator 2 Externe
Matar 1 Matar 2

Spannungsquelle

gemeinsame Masseleitung

524

Abbildung 24-5 A
Der Schaltplan fiir das
L293DNE-Shield

Wenn du jetzt die einzelnen Ausginge des Motortreibers noch
geschickt ansteuerst, dann wird der ArduBot genau das tun, was du
von ihm verlangst. Die einzelnen LED’s auf dem Shield zeigen die
Drehrichtung des jeweiligen Motors an.

Projekt 24: Der ArduBot

Ich verstehe nicht ganz, wie ich jetzt die einzelnen Schalter innerhalb
des Treiberbausteins steuern soll. Pro Motor sind das doch vier Schal-
ter. Wir haben aber lediglich zwei Steuerleitungen fiir einen einzelnen
Motor. Wie funktioniert das denn? Und warum befindet sich ein
Kondensator in der Schaltung?

Ok, Ardus, das wiren dann zwei Fragen. Ich beantworte zuerst
Frage Nummer eins. Durch die vier Schalter, von denen immer
zwei quasi iiberkreuz geschaltet wurden, haben wir die Polaritdt am
Motor verindert. Schau’ dir das folgende Schaltbild an, in dem
lediglich ein einziger Motor am Treiberbaustein angeschlossen ist.

A o - Inputl Vecl
B A R Arduino Input2z 1,2EN
Input3d 3,4EN
Inputh Vec?2

Qutputi GND
Qutput2 GND
Qutput3 GND
Qutput4 GND

[293

&

o o

ERleluklsNp
= v
Rl el

Durch die Einginge A bzw. B, die vom Arduino gesteuert werden,
wird die Polaritit am Motor beeinflusst.

A Motorverhalten

B
0 0 Motor Stopp
0 1 Linksdrehung des Motors
1 0 Rechtsdrehung des Motors
1 1 Motor Stopp

Nun zu Frage Nummer zwei. Die Schaltung besitzt einen Elektro-
lytkondensator, um etwaige Spannungsspitzen bzw. Spannungsein-
briiche zu kompensieren, die entstehen kénnen, wenn der Motor
einem Lastwechsel unterzogen wird. Das geschieht unter Umstin-
den sowohl beim Aktivieren, als auch beim Deaktivieren. Der Kon-
densator arbeitet dann als Puffer und hilt das vorherige
Spannungsniveau kurzzeitig aufrecht.

Der ArduBot

<« Abbildung 24-6
Ein Motor am Treiberbaustein L293

« Tabelle 24-2
Polaritdtssteuerung iiber den
Treiberbaustein L293

525

Bendétigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

Benétigte Bauteile

1x Motortreiber vom Typ L293DNE

2 x Motor (ggf. von Lego)

2 x griine LED

2xgelbe LED

4 x Widerstand 330

i

1 x Elektrolyt-Kondensator 70uF

1x Shieldplatine

M M w M 1 x Set stapelbare Buchsenleisten (2x 8 + 2 x 6)

526 Projekt 24: Der ArduBot

Benétigte Bauteile

ﬁ 3 x Anschlussklemmen zum Einldten auf
Lochrasterplatine (RM: 2,54)

Litze in ggf. unterschiedlichen Farben

Arduino-Sketch-Code

Die Ansteuerung der Motoren erfolgt in diesem Kapitel wieder iiber
eine eigens zu diesem Zeck erstellte Library.

Hauptsketch mit Code-Review

Ich beginne auch hier wieder mit dem Hauptsketch:

#include "ArduBotMotor.h";

ArduBotMotor abm = ArduBotMotor(2, 3, 4, 5); // Motorinstanz erzeugen
void setup(){
abm.move (FORWARD, STRAIGHT); // 1 Fahrzeuglidnge forwdrts fahren
abm.move (RIGHT, QUARTER); // 1/4 Rechtsdrehung

abm.move (PAUSE, 1000); // Pause fiir 1 Sekunde
abm.move (BACKWARD, 3000); // Riickwdrts fahren fiir 3 Sekunden
abm.move (LEFT, HALF); // 1/2 Linksdrehung

}
void loop(){/* leer */}

Die komplette Steuerung des ArduBots erfolgt einmalig innerhalb
der setup-Funktion, damit das Roboterfahrzeug sich nicht endlos
weiterbewegt. Zu Beginn miissen wir wieder die Header-Datei der
benotigten Klasse einbinden und danach ein Objekt erstellen. Der
Konstruktor erwartet die vier Pins, an denen der Motortreiber ange-
schlossen ist, der wiederum die Motoren steuert. Pin 2 und 3 sind
fir Motor 1 bzw. Pin 4 und 5 fiir Motor vorgesehen. Die Klasse
ArduBotMotor beinhaltet im Moment lediglich eine einzige
Methode mit dem Namen move. Mit ihr kannst du dein Fahrzeug
in alle Richtungen fahren und unterwegs auch Pausen einlegen las-

Der ArduBot

527

Abbildung 24-7 »
Die »move«-Methode

Tabelle 24-3 p-
Magliche Werte fiir das erste
Argument und ihre Bedeutungen

Tabelle 24-4 p
Magliche Werte fiir das zweite
Argument und ihre Bedeutungen

sen. Die Steuerung erfolgt also {iber die Argumente der move-
Methode.

Methode Was?

((FORWARD, 2000) ;)

Wie lange?

Das erste Argument teilt dem Motor mit, was er machen soll, und
das zweite, wie lange die Aktion dauern soll. Fur das erste Argu-
ment stehen dir folgende Optionen zur Verfiigung:

Was? Bedeutung

FORWARD Vorwdrtshewegung
BACKWARD Riickwdrtshewegung
RIGHT Rechtsdrehung

LEFT Linksdrehung

PAUSE Pause

Das zweite Argument kann die folgenden Werte annehmen:

Wielange? Bedeutung

<Wert> Ein Interegerwert in Millisekunden (z.B. 2000 fiir 2 Sekunden)
QUARTER Ein Zeitwert, der eine Vierteldrehung ermdglicht.

HALF Ein Zeitwert, der eine halbe Drehung ermdglicht.

STRAIGHT Ein Zeitwert, der eine ganze Fahrzeuglange.

Die Dauer der Aktion wird immer iiber die Angabe der Zeit gere-
gelt. Du kannst entweder eine Zeitangabe in Millisekunden vorneh-
men oder einen vordefinierten Zeitwert auswihlen, der sprechen-
der ist und natiirlich vorher fiir deinen ArduBot ermittelt werden
muss. Du verwendest ggf. andere Motoren mit einer abweichenden
Getriebeiibersetzung und die von mir angegebenen Zeitwerte sind
fiir deine Konfiguration nicht passend? In diesem Fall ist einfaches
Ausprobieren angesagt, und genau das macht ja gerade den Reiz
des Ganzen aus. Es soll ja eben nicht nach dem Motto: » Auspacken,
Einschalten, Geht« ablaufen.

528

Projekt 24: Der ArduBot

Header-Datei mit Code-Review

Die Aufgabe der Header-Datei ist dir mittlerweile bekannt und
bedarf eigentlich keiner weiteren Erlduterung.

#ifndef ARDUBOTMOTOR H
#define ARDUBOTMOTOR H

#if ARDUINO < 100
#include <WProgram.h>
#else

#include <Arduino.h>
#endif

// Bewegungsrichtungen + Pause
enum Motion
{

FORWARD = 1,

BACKWARD,

RIGHT,

LEFT,

PAUSE

};

// Drehwinkel in Form von Zeitangaben
// Diese Werte miissen von dir sicherlich angepasst werden
enum Turn

{
QUARTER = 4450, // Zeit flr 1/4 Drehung
HALF = 8900, // Zeit fiir 1/2 Drehung
STRAIGHT = 4500, // Zeit fir 1 Fahrzeugldnge
};

class ArduBotMotor{
public:
ArduBotMotor(byte mi_P1, byte mi_P2, byte m2_P1, byte m2_P2);
// Konstruktor
void move(Motion mV, int mD); // Steuere Motor an
private:
byte motor1l Pin1, motor1l Pin2;
byte motor2 Pini1, motor2 Pin2;
byte moveValue;
int moveDuration;
};
#endif

Der ArduBot

529

...keiner weiteren Erliuterungen, sagst Du!? Das soll wohl ein Witz
sein. Da gibt es wieder zwei Codebereiche, die ich in der Form noch
nicht kenne. Sie beginnen jeweils mit dem Wortchen enum. Habe ich
gepennt oder vielleicht Du?

Also Ardus, ich liebe deine Direktheit! Du hast natiirlich Recht.
Was es mit enum so auf sich hat, muss natiirlich noch genauestens
erldutert werden. Dieses Schliisselwort ist die Abkiirzung fir Enu-
meration und bedeutet tibersetzt Aufzdhlung. Eine solche Aufzih-
lung ist immer dann sinnvoll, wenn wir eine bestimmte Anzahl von
Alternativwerten fiir ein Argument einer Methode bzw. Funktion
benotigen. Auf diese Weise wird eine gewisse Sicherheit hergestellt,
dass auch wirklich nur die vorher definierten Werte eine akzeptiert
werden. Abweichende Elemente, die nicht Bestandteil der Aufzih-
lung sind, fithren zu einem Compilerfehler. In der folgenden Enu-
meration wird eine Liste der erlaubten Argumente zur Steuerung
der Bewegungsrichtung zusammengestellt und die entsprechenden
Elemente werden unter einem bestimmten Namen — hier Motion —
gruppiert. Dabei werden die einzelnen Elemente durch ein
geschweiftes Klammernpaar zu einem Block zusammengefasst und
durch Kommas getrennt aufgelistet. Hinter der schliefenden Klam-
mer befindet sich ein Semikolon, um die Aufzihlung abzuschlie-
Ren.

enum Motion
{
FORWARD =
BACKWARD,
RIGHT,
LEFT,
PAUSE

s

Jedem Aufzihlungselement wird ein Wert tiber den Zuweisungso-
perator zugewiesen. Fiir das erste Element ist das der Wert 1.

Ok, das leuchtet mir ein. Doch warum haben alle nachfolgenden Ele-
U Q’ mente keine Zuweisung erhalten? Wurde hier etwas vergessen?

Nein, Ardus, ich habe hier nichts vergessen, denn alle nachfolgen-
den Elemente werden implizit jeweils um den Wert 1 erhoht. Ich
hitte sogar die explizite Initialisierung des ersten Elementes weglas-
sen konnen, das dann mit dem Wert 0 initialisiert worden wire. Es
. 24]% konnen nur ganzzahlige Werte zur Initialisierung verwendet wer-
= den. Damit die entsprechende Methode, die diese Enumeration

530 Projekt 24: Der ArduBot

verwendet, eine Typiiberpriifung des iibergebenen Argumentes
durchfiihren kann, wird die Aufzihlung als neuer Datentyp angege-
ben. Schau’ her:

void move(Motion mV, int mD); // Steuere Motor an

Das erste Argument mV ist vom Typ Motion und akzeptiert aus-
schlieRlich Elemente aus dieser Enumeration. Das zweite Argument
ist aber vom Typ int und akzeptiert somit alle ganzzahligen Werte.
Dennoch wird die zweite Enumeration fiir dieses Argument zur
Verfiigung gestellt:

enum Turn

{
QUARTER = 4450, // Zeit flr 1/4 Drehung
HALF = 8900, // Zeit fiir 1/2 Drehung
STRAIGHT = 4500 // Zeit fir 1 Fahrzeuglange

};

Jedes einzelne Element wurde explizit mit einem Initialisierungs-
wert versehen.

Warum hast du denn an dieser Stelle nicht den zweiten Methodenpa-
rameter mit dem Datentyp Turn versehen, so wie du das auch fiir den
ersten getan hast?

Sicherlich hitte ich so vorgehen konnen, doch dann wire es mir
nicht moglich gewesen, reine Integerwerte zur individuellen Zeitan-
gabe fiir den Pausenwert zu tibergeben. Eine Zeile wie

abm.move (PAUSE, 1000); // Pause fiir 1 Sekunde

mit dem Argument 1000 lieferte dann einen Compilerfehler, denn
dieser Wert ist nicht Bestandteil der Aufzihlung.

CPP-Datei mit Code-Review

Nun folgt wieder die Implementierung des eigentlichen Codes:

#include "ArduBotMotor.h"

// Parametrisierter Konstruktor

ArduBotMotor: :ArduBotMotor(byte m1_P1, byte m1 P2, byte m2_P1, byte

m2_P2){

motord Pinl = m1_P1; motori Pin2 = mi P2;
motor2 Pinl = m2_P1; motor2 Pin2 = m2_P2;
pinMode(motorl Pini, OUTPUT); // Als Ausgang programmieren
pinMode(motor1_Pin2, OUTPUT); // Als Ausgang programmieren

Der ArduBot

531

532

pinMode(motor2_Pini, OUTPUT); // Als Ausgang programmieren
pinMode(motor2 Pin2, OUTPUT); // Als Ausgang programmieren

}

// Methode zum Ansteuern des Motors

void ArduBotMotor::move(Motion mV, int mD){

moveValue = mV; moveDuration = mD;
byte m1 1, m1 2, m2_1, m2_2;
switch(moveValue){
case FORWARD: // Vorwarts
mi_1 = LOW; mi_2 = HIGH;
m2_1 = LOW; m2_2 = HIGH; break;
case BACKWARD: // Riickwarts
mi_1 = HIGH; m1 2 = LOW;
m2_1 = HIGH; m2_2 = LOW; break;
case RIGHT: // Rechts
mi 1 = HIGH; m1 2 = LOW;
m2_1 = LOW; m2_2 = HIGH; break;
case LEFT: // Links
mi 1 = LOW; m1_2 = HIGH;
m2_1 = HIGH; m2_2 = LOW; break;
case PAUSE: // Pause
mi1 = LOW; ml2 = LOW;
m2_1 = LOW; m2_2 = LOW; break;

}

digitalWrite(motorl Pini, m1 1);
digitalWrite(motorl Pin2, m1 2);
digitalWrite(motor2 Pini, m2_1);
digitalWrite(motor2_Pin2, m2_2);
delay(moveDuration); // Beginn Pause
digitalWrite(motor1 Pin1, LOW); // Motor
digitalWrite(motoral Pin2, LOW); // Motor
digitalWrite(motor2 Pin1, LOW); // Motor
digitalWrite(motor2 Pin2, LOW); // Motor

}

stopp
stopp
stopp
stopp

In Abhingigkeit vom ersten Parameter werden die privaten Felder

tiber die switch-Anweisung

* ml_1,ml_2 (Motor 1)
e m2_1,m2_2 (Motor 2)

initialisiert, die spiter den Eingingen der Motortreibers zugefiihrt
werden, um die Motoren entsprechend anzusteuern. Der zweite
Parameter wird lediglich als Argument fur die delay-Funktion beno-
tigt und legt fest, wie lange die Motoren angesteuert werden sollen,

bevor sie deaktiviert werden.

Projekt 24: Der ArduBot

Troubleshooting

Wenn dein ArduBot sich nicht so verhalten sollte, wie du es ihm
aufgetragen hast, tiberpriife folgende Punkte:

* Ist die Verkabelung auf Korrektheit?
e Gibt es eventuell Kurzschliisse untereinander?

* Drehen sich die Motoren zwar, jedoch in entgegengesetzte
Richtungen, dann kontrolliere die Polung und vertausche sie
ggf.

* Fiihrt der ArduBot z.B. bei der Angabe des Argumentes QUAR-
TER weniger wie eine Vierteldrehung aus, dann passe den Ini-
tialisierungswert entsprechend nach oben an. Bedenke auch,
dass mit zunehmender Belastung der Batterie hinsichtlich der
Betriebszeit diese immer leerer wird und die Bewegungen ent-
sprechend langsamer erfolgen. Das fithrt natiirlich bei einer
Zeitsteuerung, wie wir sie hier vorliegen haben, zu verkiirzten
Bewegungsablaufen. Tausche die Batterie nach einiger Zeit
gegen eine neue aus. Hier noch ein Tipp: Wenn du mit dem
Experiment fertig bist, trenne die Batterie immer von der
Schaltung. Auf diese Weise hilt sie langer.

Was hast du gelernt?

e Du hast erfahren, wie du tiber den Motortreiber L293 zwei
Elektomotoren unabhingig voneinander steuern kannst.

* Du konntest anhand eines Motor-Shields Marke Eigenbau
sehen, wie sich die Verbindungen zu den beiden Motoren bzw.
der Batterie recht gut und flexibel herstellen liefen.

Workshop

Bereite fiir dein ArduBot doch einmal einen Parcours vor, den er
exakt abfahren soll. Natiirlich benétigst du dafiir ein entsprechend
langes USB-Kabel, damit das Roboterfahrzeug eine gewisse Freiheit
hat.

Da kann man sich aber ganz schon verheddern und mein USB- T ?

Anschlusskabel ist auch nicht so lang. Gibt es denn da keine andere
Moglichkeit der Steuerung, z.B. mit einer Fernbedienung oder so dhn-

lich?

Der ArduBot 533

534

Nun, Ardus, fiir den Moment sollte das genug an Informationen
sein. Wir kommen gleich noch zu einem interessanten Kapitel, in
dem es um Funkiibertragung geht. Das wird dich bestimmt interes-
sieren, denn du kannst deinen Arduino dann mit einem Smart-
phone steuern. Na, habe ich dich neugierig gemacht!?

Projekt 24: Der ArduBot

Die Temperatur

Scope

In diesem Experiment behandeln wir folgende Themen:

* Was ist Temperatur?

* Wie konnen wir sie messen?

* Der komplette Sketch

* Analyse des Schaltplans

* Aufbau der Schaltung

* Erweiterung der Schaltung um einen Liifter
* Workshop

Heil} oder kalt oder was?

Wir leben alle in einer Welt bzw. Umgebung, die der wir von unter-
schiedlichen Stoffen umgeben sind. In der Regel kénnen diese
Stoffe drei Zustinde annehmen, die in der Physik Aggregatzustinde
genannt werden. Ein solcher Aggregatzustand kann entweder fest,
fliissig oder gasférmig sein und hangt meist von einer physikalische
GroRe ab, die sich Temperatur nennt. Was aber bedeutet Tempera-
tur und wie macht sie sich bemerkbar bzw. wie kann sie gemessen
werden. Jedwede Materie besteht im Innersten aus sehr kleinen
Teilchen, die Atome genannt werden. Diese wiederum bestehen aus
Elektronen (Ladung: negativ) in der Hiille und aus Protonen
(Ladung: positiv) bzw. Neutronen (Ladung: keine) im Kern. Das
sind nun auch wieder keineswegs die kleinsten Teilchen, doch rei-
chen sie fiir unser Beispiel zur Erkliarung, was Temperatur ist, voll-
kommen aus.

Projekt

25

535

Abbildung 25-1 p
Die Bewegung der Atome

Abbildung 25-2 p

Der Temperatursensor LM35 mit
seiner Anschlussbelegung in einem

536

T0-92-Plastikgehduse

,,f,;) -
7.9 TJ)
P e

Diese kleinen Teilchen sind in stindig und scheinbar ziellos in unter-
schiedlichen Richtungen und mit unterschiedlichen Geschwindigkei-
ten in Bewegung. Die Temperatur ist dabei ein Mafl fiir diese
thermische Bewegung der Atome bzw. Molekiile (Verbund von meh-
reren Atomen) eines Stoffes. Je schneller sie sich bewegen, desto gro-
Rer ist die Wahrscheinlichkeit, dass sie miteinander kollidieren. Bei
diesem Vorgang wird Bewegungsenergie in Wirmeenergie umge-
wandelt. Die thermische Bewegung ist also ein Maf fiir die Tempera-
tur eines Stoffes.

Wie kann Temperatur gemessen
werden?

Um die Temperatur messen zu kénnen, werden Temperatursenso-
ren verwendet. Sie wandeln die gemessene Temperatur in unter-
schiedliche Widerstands- bzw. Spannungswerte um, die dann auf
die vorherrschende Temperatur schlieRen lassen. Im Kapitel iiber
die Elektronik hast du schon einen PTC bzw. NTC kennengelernt.
Diese Bauteile verindern ihren Widerstandswert in Abhingigkeit
von der Temperatur. Sie sind leider recht ungenau und haben nicht
unbedingt eine lineare Kennlinie. Aus diesem Grund mochte ich dir
einen Temperatursensor vorstellen, der seine Sache sehr gut macht.
Er nennt sich LM 35 und hat drei Anschlussbeinchen. Zwei sind fir
die Spannungsversorgung zustindig und einer dient als Ausgang.
Das Bauteil sieht einem Transistor zum Verwechseln dhnlich.

’
I
A4

+5V Masse
Ausgang

Projekt 25: Die Temperatur

Dieser Sensor wandelt die gemessene Temperatur in einen analo-
gen Spannungswert um, der sich proportional zur Temperatur
andert. Dies wird als temperaturproportionales Spannungsverhalten
bezeichnet. Der Sensor hat eine Empfindlichkeit von 10mV/C’ und
einen messbaren Temperaturbereich von 0° bis 100° Celsius. Die
Formel zur Berechnung der Temperatur in Abhingigkeit vom
gemessenen Wert am analogen Eingang lautet wie folgt:

5.0 -100.0 - analogPin
1024.0

Temperatur [°C] =

Die Formelwerte haben folgende Bewandtnis:
* 5.0: Arduino-Referenzspannung von 5V
* 100.0: Maximal messbarer Wert des Temperaturfiihlers

* 1024: Auflésung des analogen Eingangs

Wir wollen gleich den gemessenen
Wert an einen Processing-Sketch
schicken und uns den Temperatur-
verlauf grafisch anzeigen lassen. Das
Ganze sieht dann ungefihr wie folgt
aus:

B Temperturmessungl M35

Dir wird die Temperatur zum einen
in Form eines Temperaturwertes
angezeigt und zum anderen in einer
grafischen Kurve im zeitlichen Ver-
lauf.

Benotigte Bauteile

Fiir dieses Beispiel benétigen wir die folgenden Bauteile:

Bendtigte Bauteile
|' X

!
‘n
\ 1x Temperatursensor vom Typ LM35

//-\\ Mehrere flexible Steckbriicken in unterschiedli-
chen Farben und Léngen

« Abbildung 25-3
Der Temperaturverlauf in
Processing dargestellt

Wie kann Temperatur gemessen werden?

537

538

Arduino-Sketch-Code

#define sensorPin 0 // Verbunden mit LM35 Ausgang
#define DELAY 10 // kurze Wartezeit
const int cycles = 20; // Anzahl der Messungen

void setup(){
Serial.begin(9600);
}

void loop(){
float resultTemp = 0.0;
for(int 1 = 0; i < cycles; i++){
int analogValue = analogRead(sensorPin);

float temperature = (5.0 * 100.0 * analogValue) / 1024;
resultTemp += temperature; // Aufsummieren der Messwerte

delay(DELAY);
}

resultTemp /= cycles; // Berechnung des Durchschnittes
Serial.println(resultTemp); // Ausgabe an die serielle Schnittstelle

}

Arduino-Code-Review

Der vom Temperatursensor LM35 ermittelte Wert wird tiber die

eben genannte Formel berechnet

float temperature = (5.0 * 100.0 * analogValue) / 1024;

und {iiber eine for-Schleife gemittelt. Dies erfolgt {iber das Aufsum-
mieren der Messwerte und die Bildung des Durchschnittes. Im
Anschluss wird der gemittelte Wert an die serielle Schnittstelle

ibertragen:

Serial.println(resultTemp);

Dort wird er dann unmittelbar von Processing verarbeitet.

Processing-Code-Review

import processing.serial.*;
Serial meinSeriellerPort;
float realTemperatur;

int temperatur, xPos;

int[] yPos;

PFont font;

Projekt 25:

Die Temperatur

void setup(){
size(321, 250); smooth();
println(Serial.list());
meinSeriellerPort = new Serial(this, Serial.list()[0], 9600);
meinSeriellerPort.bufferUntil("\n");
yPos = new int[width];
for(int i = 0; 1 < width; i++)
yPos[i] = 250;
font = createFont("Courier New", 40, false);
textFont(font, 40); textAlign(RIGHT);

void draw(){
background(0, 0, 255, 100);
strokelWeight(2); stroke(255, 0, 0);
fill(100, 100, 100); rect(10, 100, width - 20, 130);
strokeWeight(1); stroke(0, 255, 0);
int yPosPrev = 0, xPosPrev = 0;
// Arraywerte nach links verschieben
for(int x = 1; x < width; x++)
yPos[x-1] = yPos[x];
// Anhangen der neuen Mauskoordinate am rechten Ende des Arrays
yPos[width-1] = temperatur;
// Anzeigen des Arrays
for(int x = 10; x < width - 10 ; x++)
point(x, yPos[x]);
£i11(255);
text(realTemperatur + " °C", 250, 30); // Celsius
delay(100);

void serialEvent (Serial meinSeriellerPort){
String portStream = meinSeriellerPort.readString();
float data = float(portStream);
realTemperatur = data;
temperatur = height - (int)map(data, 0, 100, 0, 130) - 25;
println(realTemperatur);

}

Wenn du dich mit Processing intensiver auseinandersetzen moch-
test, dann wirf doch einmal einen Blick in mein Processing-Buch,
das auch im O’Reilly-Verlag erschienen ist.

Das konnte wichtig fiir dich sein »)
Wenn du das Ausgabefenster von Processing gedffnet hast und
vergisst, es wieder zu schlielen, ist die Kommunikation mit
dem Arduino-Board nicht maglich. Warum? Ganz einfach! Pro-
cessing greift auf die serielle Schnittstelle zu, die auch dein

Wie kann Temperatur gemessen werden?

Abbildung 25-4 »
Der Temperatursensor sendet seine
Daten an einen analogen Eingang.

Arduino-Board zur Kommunikation mit der Entwicklungsumge-
bung benotigt. Dieser Port ist also durch Processing blockiert
und muss erst wieder durch das SchlieBen des Ausgabefensters
freigegeben werden.

Der Schaltplan

Der Schaltplan ist — ich muss es zugeben — etwas simpel, doch wir
werden ihn gleich etwas erweitern, um mehr Funktionalitit in die
Schaltung zu bekommen.

Arduino 13
12
pwm L.
P L0,
O PwM i«
B 8
- L7,
oo 2 &
-1 cno B PR
PuM 3
L2,
L1,
|0
Analog IN
mH mlmlv—clc:

Ein erweiterter Sketch (Jetzt mit mehr
Drumherum)

Es wird Zeit, dass wir mit dem Temperatursensor etwas Anstindiges
anfangen. Was hiltst du davon, wenn wir die Schaltung direkt um
mehrere Komponenten erweitern? Ich denke, dass ein Ventilator zur
Verbesserung des Raumklimas und ein Display zur Anzeige von
niitzlichen Informationen interessante Projekte wiren. Die Schal-
tung bzw. der Sketch sollen in der Lage sein, einen Liiftermotor beim
Erreichen einer bestimmten Temperatur anzuschalten bzw. beim
Unterschreiten der Temperatur wieder auszuschalten. Wir haben es
dann auch mit einer neuen Thematik zu tun, die sich mit der Ansteu-
erung eines Motors befasst. Da ein Motor zum Betrieb sicherlich
mehr Strom bzw. Spannung benotigt, als das Arduino-Board liefern
kann, miissen wir uns etwas einfallen lassen. Du hast im Kapitel iiber
die Elektronischen Grundschaltungen erfahren, wie ein Relais ange-
steuert werden kann. Wenn du das Relais durch einen Motor ersetzt,
hast du quasi eine Motorsteuerung. Doch schau’ her:

540

Projekt 25: Die Temperatur

Externe Spannungsversorgung
fiir den Mator

o +Batt

Freilauf=Diode

—o0 —Batt

L
zum Arduine gemeinsame
¢ Masseleitung

In dieser Schaltung habe ich einen stirkeren Transistor vom Typ
TIP 120 verwendet. Es handelt sich um einen Darlington-Leistungs-
transistor in einem TO-220 Gehiuse, der in der Lage ist, einen Kol-
lektorstrom I = 5A zu schalten und eine Kollektor-Emitter-
Spannung Ucg = 60V verkraftet.

Die Freilaufdiode diirfen wir nattirlich nicht vergessen. Sie ist vom
Typ 1N4004. Kennst du noch den Grund dafiir, dass sie fir die
Schaltung obligatorisch ist? Falls nicht, wirf ebenfalls einen Blick in
das Kapitel tiber die Elektronischen Grundschaltungen. Du darfst
diese Diode auf keinen Fall vergessen und du musst auflerdem auf
die korrekte Polung achten, denn sonst wird dein Arduino-Board
mit hochster Wahrscheinlichkeit Schaden erleiden. Des Weiteren
mochte ich ein LC-Display verwenden, um die aktuelle Temperatur
anzuzeigen. Diesmal handelt es sich aber um ein Display, das iiber
den PC-Bus anzusteuern ist. Es ist vom Typ I2C/TWI LCD1602.

hKonImst
IOR0R

<« Abbildung 25-5
Die Ansteuerung eines Motors

<« Abbildung 25-6

Der Darlington-Leistungstransistor
TIP 120 in einem T0-220
Plastikgehduse

<« Abbildung 25-7
Die Riickseite des LC-Displays 1602

Wie kann Temperatur gemessen werden?

541

Die Ansteuerung dieses Displays wird gleich anhand des verwende-
ten Sketches gezeigt. Kommen wir jetzt jedoch zum kompletten
Schaltplan, der schon etwas anspruchsvoller aussieht.

Benotigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

Benétigte Bauteile

\
|
j | 1x Temperatursensor vom Typ LM35

1x Leistungstransistor TIP 120

1x Widerstand 1K
— - 2 x Widerstand 10K
i3 1x Diode 1N4004

LC-Display 12C/TWILCD1602 Module

Liifter-Motor z.B. 12V

/"\\ Mehrere flexible Steckbriicken in
unterschiedlichen Farben und Langen

542 Projekt 25: Die Temperatur

Arduino l—g' Externe Spannungsversorgung
ﬁ- fiir den Motor
m % —o +Batt
i T — 1o —patt
- _L TiPL2D
vee 'gm -
12C/TWI LCD1602 Module ~—| ano o i
3
\doddodooodooooan) TN EH
DENEONEEREOREEES %}, Hﬂ ™
lud o= £ 5
i; 03 Analag IN o LME|
AL i MM Hln\ e gemeinsame
Masseleitung
Ok, da haben wir auf der linken Seite das I2C LC-Display mit den Pull- A Abbildung 25-8
up-Widerstinden. In der Mitte befindet sich unser Arduino und rechts ~ Die komplette Schaltung mit

daneben der Temperatursensor LM35. Ganz rechts siehst du die
Motoransteuerung mit Transistor TIP 120 und Freilauf-Diode
1N4004. Dann werfen wir nun einmal einen Blick auf den Sketch-
Code:

#include <Wire.h>

#include <LiquidCrystal I2C.h>

#define sensorPin 0 // Verbunden mit LM35 Ausgang

#define DELAY1 10 // kurze Wartezeit beim Messen

#define DELAY2 500 // kurze Wartezeit beim Anzeigen

#define motorPin 9 // Lifter-Pin

#tdefine threshold 25 // Schalt-Temperatur flr Lifter (25 Grad
// Celsius)

#define hysterese 0.5 // Hysterese-Wert (0.5 Grad Celsius)

const int cycles = 20; // Anzahl der Messungen

LiquidCrystal I2C lcd(0x27, 16, 2); // Adresse auf 0x27 flr 16
// Zeichen/2 Zeilen

void setup(){
pinMode(motoxPin, OUTPUT);
lcd.init(); // LD initialisieren
lcd.backlight(); // Hintergrundbeleuchtung aktivieren
}

void loop(){

float resultTemp = 0.0;

for(int i = 0; i < cycles; i++){
int analogValue = analogRead(sensorPin);
float temperature = (5.0 * 100.0 * analogValue) / 1024;
resultTemp += temperature; // Aufsummieren der Messwerte
delay(DELAY1);

}

Sensor, Anzeige und Motor bzw.
Liifter

resultTemp /= cycles;
lcd.clear();

Wie kann Temperatur gemessen werden?

// Berechnung des Durchschnitts
// clear-Methode 16scht LCD Inhalt

543

544

led.print("Temp: "); // print-Methode schreibt LCD Inhalt
lcd.print(resultTemp);
#if ARDUINO < 100
lcd.print(oxDo + 15, BYTE); // Grad-Zeichen (Arduino 0022)
#else
lcd.write(oxDo + 15); // Grad-Zeichen (Arduino 1.00)
#endif
led.print("c");
lcd.setCursor(0, 1); // setCorsor-Methode positioniert LCD-Cursor
led.print("Motor: ");
if(resultTemp > (threshold + hysterese))
digitalWrite(motoxPin, HIGH);
else if(resultTemp < (threshold - hysterese))
digitalWrite(motoxPin, LOW);
lcd.print(digitalRead(motorPin) == HIGH?"an":"aus");
delay(DELAY2);
}

Die Ermittlung der Temperatur erfolgt wie gehabt und hat sich im
Vergleich zum vorherigen Beispiel nicht gedndert.

Ich glaube, du willst mir wieder etwas unterjubeln oder hast es ein-
fach vergessen. Auch in diesem Sketch-Code befindet sich ein Pro-
grammelement, dass du mir noch nicht vorgestellt hast. Was
bedeutet denn die Zeile const int cycles = 20; ? Was mich etwas verun-
sichert, ist das kleine Wortchen const.

Gut dass du aufpasst, sonst hitte ich das wirklich vergessen! Dazu
muss ich ein klein wenig ausholen, wobei das Ganze aber recht ein-
fach zu verstehen ist. Wir haben es mit einer weiteren Form der
Variablendeklaration zu tun. Demnach kennst du jetzt drei Schreib-
weisen, die ich anhand eines Beispieles nochmal aufzeige:

1. int grandios = 47;

2. #define grandios 47

3. const int grandios = 47,
Alle drei Versionen initialisieren scheinbar eine Variable, die gran-
dios lautet, mit dem Wert 47. Worin liegt aber der Unterschied? Es

muss ja einen geben, sonst hitten wir nicht unterschiedliche
Schreibweisen.

zu 1

Ok, die erste Variante int grandios = 47; lasst den Compiler einen
Bereich im Flash-Speicher reservieren, um den Wert 47 dort abzu-
legen. Es wird also zusitzlicher Speicherplatz benétigt und belegt.

Projekt 25: Die Temperatur

Zu 2

Diese Variante nutzt die Priprozessor Direktive #define, die ledig-
lich einem Namen einen Wert zuordnet, den der Compiler bei sei-
ner Ubersetzung iiberall dort ersetzt, wo er im Sketch-Code
auftaucht. Auf diese Weise wird kein zusitzlicher Speicherplatz
gebunden, um eine Variable zu verwalten. Du solltest dir aber bei
dieser Schreibweise die Frage stellen, welcher Datentyp Verwen-
dung findet, denn er wird ja nicht wie im ersten Beispiel angegeben.
Was konnte hier die Losung sein?

Zu 3

Wird das Schliisselwort const vor der Variablendeklaration verwen-
det, dann ist die vermeintliche Variable keine Variable mehr, son-
dern eine Konstante, deren Wert zur Laufzeit des Sketches nicht
mehr gedndert werden kann. Es handelt sich quasi um eine Vari-
able mit Nur-Lese-Status. Was hiltst du nun davon, wenn ich dir
nun verrate, dass diese Variante ebenfalls keinen Speicherplatz
belegt? Es wird ja sichergestellt, dass die Variable nicht mehr modi-
fizierbar ist, warum sollte sie also dann im Speicher einen Bereich
belegen? Aber worin liegt dann der Unterschied zur #define-Vari-
ante? Ganz einfach: Hier kannst du einen bestimmten Datentyp
angeben.

Im Internet und in zahllosen Bichern wird wild zwischen den drei
Moglichkeiten hin- und hergewechselt. Fir welche Variante
soll(t)en wir uns entscheiden? Nun, wenn der Speicherplatz knapp
wird und eine explizite Angabe des Datentyps notwendig ist, dann
ist natiirlich Variante 3 zu empfehlen. Kommen wir wieder zuriick
zu unserer Schaltung. Ich zeige dir am besten einmal die LCD-
Anzeige:

emp: 23.83°C

Motor: an

Du kannst jetzt wunderbar die Temperatur und den Motorstatus
ablesen.

Stopp, stopp, stopp! Die Funktion des Sketches habe ich soweit
durchblickt, doch was eine Hysterese ist, dass liegt fiir mich im Mo-
ment noch im tiefsten Dunkel.

Wie kann Temperatur gemessen werden?

Abbildung 25-9 »
Bei schwankender Temperatur um
den Schwellenwert dndert sich der
Motorstatus standig.

Das kannst du mir jetzt aber nicht vorwerfen, denn ich wollte es dir
gerade erkldren. Stell’ dir folgende Situation vor. Der Liifter soll wie
in unserem Beispiel bei 25 Grad Celsius angeschaltet werden, damit
wir mit ein wenig Frischluft versorgt werden, denn das ununterbro-
chene Frickeln mit Arduino kann zeitweise schon etwas schweifR-
treibend sein. Jetzt ist aber die Raumtemperatur nicht 100%ig
konstant und auch der Fiihler unterliegt gewissen Schwankungen.
Es wird also z.B. ein Zustand erreicht, bei dem die gemessene Tem-
peratur stindig zwischen 24,8 und 25,2 Grad Celsius hin- und her-
wechselt. Das bedeutet wiederum, dass der Liifter stindig kurz
hintereinander aus- bzw. angeschaltet wiirde. Ganz schon nervig
auf die Dauer! Wir schauen uns das an dem folgenden Diagramm
etwas genauer an:

Trd

25 /\
B—F%

/\\/\\
]

N

an aus an aus | an aus an

24

Motor-Status

O = Schaltpunkte t

Jetzt kommt die Hysterese (der Begriff stammt aus dem Griechi-
schen und bedeutet hinterher bzw. spiter) ins Spiel. Man kann das
Verhalten einer Regelung mit Hysterese so erkldren: Die Ausgangs-
grofle, die hier den Motor steuert, ist nicht alleine von der Ein-
gangsgrofle, die vom Sensor geliefert wird, abhingig. Es spielt auch
der Zustand der AusgangsgrofRe, der zuvor herrschte, eine entschei-
dende Rolle. Um wieder auf unser Beispiel zu kommen, haben wir
einen Schwellwert von 25 Grad Celsius und eine Hysterese von 0,5
Grad Celsius. Werfen wir dazu einen genaueren Blick auf die Liif-
ter-Regelung;:

if(resultTemp > (threshold + hysterese))
digitalWrite(motorPin, HIGH);

else if(resultTemp < (threshold - hysterese))
digitalWrite(motorPin, LOW);

Wann wird der Liifter angeschaltet?
Ist die Bedingung

resultTemp > (threshold + hysterese) ...

546

Projekt 25: Die Temperatur

erftllt, wird der Liifter beginnen, sich zu drehen. Das ist hier dann
der Fall, wenn die gemessene Temperatur grofier als 25 + 0.5 Grad
Celsius ist.

Wann wird der Liifter ausgeschaltet?
Ist die Bedingung

resultTemp < (threshold - hysterese)

erfiillt, wird der Liifter aufthéren, sich zu drehen, in diesem Beispiel
also dann, wenn die gemessene Temperatur kleiner als 25 — 0.5
Grad Celsius ist. Zusammengefasst bedeutet dies Folgendes:

* Lifter an bei: Temperatur > 25.5 Grad Celsius
* Lifter aus bei: Temperatur < 24.5 Grad Celsius

Wir schauen uns das an dem folgenden Diagramm wieder etwas
genauer an:

Trq

; AN AN
“: \S_/ \s_/

2 an aus an aus an Motor-Status

O = Schaltpunkte t t

1 2

Wenn du dir den Temperaturverlauf zwischen den Punkten ¢; und
t, anschaust, wirst du sehen, dass sich die Temperatur stindig
iiber- bzw. unterhalb von 25 Grad Celsius bewegt. Ohne Hysterese-
Steuerung hittest du ein stindiges Motor an bzw. Motor aus. Der
komplette Schaltungsaufbau sieht dann wie folgt aus:

LC-Display
12V Lufter

Temp.-Sensor LM35

Transistor TIP 120
Externe

Spannungsversorgung

<« Abbildung 25-10

Bei schwankender Temperatur um
den Schwellenwert dndert sich der
Motorstatus nicht sténdig.

<« Abbildung 25-11
Der komplette Schaltungsaufbau

Wie kann Temperatur gemessen werden?

547

548

(W) Achtung

Da du hier mit einer externen Spannungsquelle arbeiten musst,
ist erhohte Sorgfalt geboten. Wie ich schon erwahnt habe,
musst du die beiden Massepunkte von Arduino und externer
Spannungsquelle miteinander verbinden. Jedoch nicht die
Plus-Potentiale! Vertausche auf keinen Fall diese beiden Poten-
tiale und achte darauf, dass es zu keinen Kurzschlissen kommt.
Bevor du alles in Betrieb nimmst, kontrolliere den Schaltungs-
aufbau noch einmal auf korrekte Verdrahtung. Uberpriife lieber
einmal zu viel, als einmal zu wenig.

Troubleshooting

Falls sich nach Erreichen der eingestellten Schwellentemperatur +
Hyteresewert der Liifter nicht drehen sollte, schalte alles sofort aus
und iiberpriife Folgendes:

Ist die Verkabelung auf Korrektheit?
Gibt es eventuell Kurzschliisse untereinander?

Hast du die gemeinsame Masseverbindung zwischen Arduino-
Board und externer Spannungsquelle hergestellt?

Wurde die Freilaufdiode richtig herum eingebaut?

Falls auf dem LC-Display nichts zu sehen ist, hast du vielleicht
den Kontrast zu niedrig eingestellt.

Was hast du gelernt?

Du hast in diesem Kapitel erfahren, wie der Temperatursensor
LM35 arbeitet und Temperaturwerte in entsprechende Span-
nungswerte umwandelt, die am analogen Eingang deines
Arduino-Boards ausgewertet werden kénnen.

Zur Darstellung des Temperaturwertes hast du das LC-Dis-
plays I2C/TWI LCD1602 verwendet, das iiber den I?’C-Bus
anzusteuern ist.

Damit der Lifter korrekt arbeitet, musstest du ihn iiber eine
externe Spannungsversorgung versorgen, die wiederum iiber
den Leistungstransistor TIP 120 geschaltet wurde.

Du hast erfahren, wie eine Diode vom Typ 1N4004 als Frei-
lauf-Diode zum Schutz deines Arduino-Boards arbeitet.

Projekt 25: Die Temperatur

Workshop

Erweitere deine Schaltung so, dass du z.B. iiber zwei zusitzliche
Taster den Temperaturschwellenwert nach unten bzw. nach oben
anpassen kannst. Beim Erreichen dieses Schwellenwertes soll das
LC-Display anfangen zu blinken, um auf sich aufmerksam zu
machen. Wenn du nihere Informationen tiber die Library bzw. den
Befehlsumfang des LC-Displays erfahren mochtest, dann tippe z.B.
folgende Suchbegriffe bei Google ein:
e 2C/TWILCD 1602

e dfrobot

Zusatzhinweise

Nattirlich gibt es noch viele weitere Temperatursensoren. Hier eine
kleine Auswahl:

e TMP75 (mit I°C-Bus)
* AD22100 (Analoger Temperatursensor)

* DHTI11 (Temperatur- und Feuchtigkeitsensor mit integrirtem
8-bit Mikrocontroller)

» DS1820 (Digitaler 1-wire Temperatursensor)

Wie kann Temperatur gemessen werden?

549

Projekt

26

Der Sound und mehr

Scope

In diesem Experiment behandeln wir folgende Themen:

* Tonerzeugung iiber ein eines Piezo-Element
* Der komplette Sketch

* Analyse des Schaltplans

* Aufbau der Schaltung

* Erstellung des Farbfolgen-Spiels

* Workshop

Haste Tone?

Vielleicht hast du jetzt erst einmal genug von Lichtsignalen und
blinkenden LEDs. Daher wollen wir uns nun gleich anschauen, wie
dein Arduino-Board tiber ein Piezo-Element Tone erzeugen kann.
Dieses Bauteil habe ich dir schon im Kapitel iiber Elektronik vorge-
stellt.

<« Abbildung 26-1
Ein Piezo-Element

Du darfst keine akustischen Schockwellen von einem Piezo erwar-
ten, denn die Schwingungen, die es ausfithren kann, finden auf
kleinstem Raum statt. Dennoch kénnen wir es fiir unsere Zwecke

551

552

prima einsetzen. SchliefSen wir das Element z.B. an einen digitalen
Ausgang an und schalten in bestimmten Zeitabstdnden den Aus-
gang auf HIGH- bzw. auf LOW-Pegel, dann horen wir ein Knacken
im Piezo-Element. Je kiirzer der Zeitraum zwischen HIGH- bzw.
LOW-Pegel ist, desto hoher ist der horbare Ton, je linger der Zeit-
raum, desto tiefer ist er. Du kannst das Phinomen leicht nachstel-
len, wenn du z.B. mit den Fingern mehr oder weniger schnell iiber
ein Lamellengitter fihrst. Je schneller du bist, desto hoher hort sich
das Geknatter an. Auch der Piezo funktioniert nach diesem Prinzip.
Ein Knacken, das mal langsamer, mal schneller aufeinander folgt,
ist fir die Tonhohe verantwortlich. Ein ganz einfacher Sketch zur
Erzeugung eines Tons sieht wie folgt aus:

#define piezoPin 13 // Piezo-Element an Pin 13
#define DELAY 1000

void setup(){
pinMode(piezoPin, OUTPUT);
}

void loop(){
digitalWrite(piezoPin, HIGH); delayMicroseconds(DELAY);
digitallWrite(piezoPin, LOW); delayMicroseconds(DELAY);
}

Wundere dich nicht tiber die delayMicroseconds-Funktion. Sie
arbeitet dhnlich wie die delay-Funktion. Der tibergebene Wert wird
aber nicht in Millisekunden, sondern in Mikrosekunden interpre-
tiert. Das ist noch einmal um den Faktor 1000 kleiner: 1 ms =
1000 ps. Diese neue Funktion verwenden wir hier deshalb, weil wir
mit delay nicht kleiner 1ms werden kénnen.

Benotigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

Bendtigte Bauteile

@ 1x Piezo-Element
/"\\ Mehrere flexible Steckbriicken in unterschiedli-
chen Farben und Langen

Projekt 26: Der Sound und mehr

Arduino-Sketch-Code

Fiir den ersten brauchbaren Sketch, der in der Lage sein soll, meh-
rere Tone unterschiedlicher Frequenzen zu erzeugen, legen wir am
besten ein Ton-Array mit unterschiedlichen Werten an, die wir
dann im Laufe des Sketches nacheinander abrufen werden. Wir
nutzen dazu die von Arduino bereitgestellte tone-Funktion. Dazu
gleich mehr.

#define piezoPin 13 // Piezo-Element an Pin 13
#define toneDuration 500 // Ton-Dauer

#define tonePause 800 // Pausenldnge zwischen den Ténen
int tones[] = {523, 659, 587, 698, 659, 784, 698, 880};
int elements = sizeof(tones) / sizeof(tones[0]);

void setup(){
noTone(piezoPin); // Piezo stumm schalten
for(int i = 0; 1 < elements; i++){
tone(piezoPin, tones[i], toneDuration); // Ton spielen
delay(tonePause); // Pause zwischen den Tonen
}
}

void loop(){/* leer */}

Code-Review

Fur unser Experiment benétigen wir programmtechnisch gesehen
die folgenden Variablen:

Variable Aufgabe

tones|] Array, das die Frequenzen der einzelnen zu spielenden Téne beinhaltet.
elements Anzahl der Array-Elemente

Das eindimensionale tones-Array ist vom Datentyp int und beinhal-
tet die Frequenzen der abzuspielenden Téne in Hertz. Die Einheit
Hertz [Hz] ist ein Maf} fir die Anzahl der Schwingungen pro
Sekunde. Je hoher der Wert, desto hoher auch der Ton und umge-
kehrt. Der Variablen elements wird die Anzahl der Array-Elemente
zugewiesen, die spiter in der for-Schleife benutzt wird, um alle Ele-
mente anzusprechen. Auf diese Weise entfillt das manuelle Anpas-
sen der Obergrenze. bzw. der Bedingung der for-Schleife, denn das
geschieht nun automatisch mittels einer Berechnung.

Haste Tone?

« Tabelle 26-1

Bendtigte Variablen und deren

Aufgabe

553

554

Au weia! Diese Berechnung der Anzahl der Array-Elemente bereitet
mir schon ein paar Kopfschmerzen. Kannst du mir das mal bitte
erkldren!

Dazu wollte ich gerade kommen. Wir nutzen zu diesem Zweck die
sizeof-Funktion von C++. Diese Funktion ermittelt die Grofle einer
Variablen bzw. eines Objektes im Speicher. Dazu folgendes kurzes
Beispiel:

byte byteWert = 16; // Variable vom Datentyp byte
int intWert = 4; // Variable vom Datentyp int
long longWert = 3.14; // Variable vom Datentyp long

int meinArray[] = {25, 46, 9}; // Array vom Datentyp int
void setup(){
Serial.begin(9600);
Serial.print("Anzahl der Bytes fuer 'byte': ");
Serial.println(sizeof(byteWert));
Serial.print("Anzahl der Bytes fuer 'int': ");
Serial.println(sizeof(intWert));
Serial.print("Anzahl der Bytes fuer 'long': ");
Serial.println(sizeof(longWert));
Serial.print("Anzahl der Bytes fuer 'meinArray': ");
Serial.println(sizeof(meinArray));

void loop(){/* leer */}
Die Ausgabe sieht dann wie folgt aus:

Anzahl der Bytes fuer 'byte': 1
Anzahl der Bytes fuer 'int': 2
Anzahl der Bytes fuer 'long': 4
Anzahl der Bytes fuer 'meinArray': 6

Wenn du dir die Werte fiir die Datentypen byte, int und long
anschaust, wirst du bemerken, dass sie mit denen identisch sind,
die ich dir im Kapitel Grundlegendes zur Programmierung genannt
habe, in dem es um die Datentypen bzw. die Wertebereiche ging.
Wirf einen Blick auf die letzte Ausgabenzeile. Das Array belegt im
Speicher also 6 Bytes. Das ist auch logisch, denn ein einziges int-
Element benétigt 2 Bytes an Speicherplatz. Wir haben es aber mit 3
Elementen zu tun. Das Ergebnis ist also 2 x 3 = 6 Bytes. Durch die
Zeile

int elements = sizeof(tones) / sizeof(tones[0]);

Projekt 26: Der Sound und mehr

erfolgt die Division der Anzahl aller Bytes des Arrays durch die
Anzahl der Bytes eines einzelnen Elementes. So erhiltst du immer
die Anzahl der Array-Elemente. Doch nun zuriick zu unserem
Sketch. Ganz am Anfang wird tiber die noTone-Funktion der Piezo
— falls er noch wegen eines vorangegangenen Sketchs piepsen sollte
— stumm geschaltet. Sie hat lediglich einen Parameter, der den Pin
angibt, an dem sich der Piezo befindet.

Befehl Pin <« Abbildung 26-2
| Die »noTone«-Funktion schaltet
| | | den Piezo stumm.

((piezoPin) ;)

Die tone-Funktion besitzt jedoch noch zwei weitere Parameter. Der
eine gibt die Frequenz an, der andere die Dauer, die der Ton horbar
sein soll.

Befehl Pin Frequenz Dauer < Abbildung 26-3
| | | | Die »Tone«-Funktion ldsst

| || | | | den Piezo ténen.

((piezoPin, 440,700) ;)

Kannst du mir mal bitte verraten, wie du auf die einzelnen Werte
gekommen bist, die du im fones-Array verwendet hast? Hast du sie
alle ausprobiert, so dass sie ungefahr stimmig sind?

Nein, ich habe sie aus einem Beispiel-Sketch, der Teil der Arduino-
IDE ist. Suche einmal nach der Datei pitches.h unterhalb des Ordners
examples der Arduino-Installation und 6ffne sie mit einem Editor.
Dort findest du zu vielen Noten die entsprechenden Frequenzwerte.
Du kannst diese Datei auch in deinen Sketch mit einbinden und dann
direkt die symbolischen Konstanten verwenden. Versuche das ein-
mal. Der Code ist dann viel sprechender und tibersichtlicher als bei
der Verwendung irgendwelcher Zahlenwerte.

Der Schaltungsaufbau

Der Schaltungsaufbau haut einen nicht gerade um, was?

Haste Tone? 555

Abbildung 26-4 »
Das angeschlossenen
Piezo-Element

Abbildung 26-5 »

Das Shield plus Frontplatte fiir das

556

Farben-Sequenz-Spiel

]

outnpay i

L LI

Ein erweiterter Sketch
(Farben-Sequenz-Spiel)

Jetzt wollen wir das gelernte in einem interessanten Spiel unterbrin-
gen, das ich das Farben-Sequenz-Spiel genannt habe. Du hast es mit
vier LEDs in vier unterschiedlichen Farben zu tun, die in einem
Viereck angeordnet sind. Neben jeder einzelnen LED befindet sich
ein Taster. Der Mikrocontroller denkt sich nun eine Abfolge aus, in
der die LEDs aufleuchten sollen. Diese Folge musst du nun korrekt
wiederholen. Am Anfang besteht die Sequenz nur aus einer einzi-
gen aufleuchtenden LED, sie wird jedoch nach jedem erfolgreichen
Wiedergeben um eine erweitert. Das Aufleuchten jeder der vier
unterschiedlichen LEDs ist zusitzlich noch jeweils mit einem ein-
deutigen Ton verbunden. Es ist also nicht nur was fiir’s Auge, son-
dern auch fiir’s Ohr. Ich habe die Schaltung wieder mittels eines
eigens dafiir hergestellten Shields plus Frontplatte realisiert. Doch
schau’ her:

Projekt 26: Der Sound und mehr

Du siehst auf der Frontplatte die vier groffen 5mm LED mit den
daneben platzierten Tastern. Leuchtet eine LED auf, musst du den
daneben befindlichen Taster driicken. Im unteren Bereich siehst du
drei kleinere 3mm LEDs. Sie dienen der Statusanzeige, auf die ich
spiter zu sprechen komme. Das Shield und die Frontplatte bzw. die
Verkabelung kannst du gut in der nichsten Abbildung erkennen.

Es sieht vielleicht schlimmer aus als es ist, und wenn du den Schalt-
plan siehst, dann wird dir der Aufbau klar. Ich fasse einmal die
Punkte zusammen, die ich als Anforderung fiir das Spiel definieren
wiirde:

* Es soll eine bestimmte Sequenzlinge durch den Sketch vorge-
geben werden, die erst einmal konstant ist.

* Jeder einzelnen der 4 LEDs soll ein eigener Ton mit spezieller
Tonhohe zugeordnet werden.

* Leuchtet eine der 4 LEDs, dann wird der entsprechende Ton
abgespielt.

* Wird der daneben befindliche Taster gedriickt, dann leuchet
die LED und es ist der entsprechende Ton zu horen.

* Wurde die Sequenz in der richtigen Reihenfolge wiedergege-
ben, dann leuchtet die griine Status-LED und eine aufsteigende
Tonfolge ist zu horen. Im Anschluss beginnt das Spiel mit einer
neuen Sequenz von vorne.

* Wurde die Sequenz an irgendeiner Stelle falsch wiederholt,
dann leuchet die rote Status-LED und es erklingt eine abfal-
lende Tonfolge. Im Anschluss wird das Spiel mit einer neuen
Sequenz gestartet.

Haste Tone?

<« Abbildung 26-6
Das gedffnete Shield plus
umgedrehte Frontplatte

557

Bendétigte Bauteile:

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

Bendtigte Bauteile

4 x LED (nach Maglichkeit verschie-
denfarbige)

7 x Widerstand 330

3x LED 3mm/ rot, griin und gelb

4 x Taster

4x Distanzhiilse DK15mm, Kunst-
stoff

4 x Schrauben M3 /30mm auf ca.
23mm kiirzen + 4 Muttern

s
,E
' 4

Frontplatte

1x Shield + 1x Frontplatte

Litze in unterschiedlichen Farben

2 x Stiftleiste mit 6 Pins + 2 x Stift-
leiste mit 8 Pins

Projekt 26: Der Sound und mehr

Werfen wir zunichst wieder einen Blick auf den Schaltplan:

3
L_;%E_J
Status LEﬁS rat
a0) 2
Arduino 13 R Status LEﬁ‘gelb Piezo—Element
12
11 {3501
PWM ‘ R Status LEB“grUn
pun (-0 [
o pwn |2
o 8 . -
= 2 {330} > O O
s 3 R LED w},"@ Taster weilR
= pum
e & rwn 2 ~— T
i 4 LED gelb Taster gelb
P [
2 ot 50
%« LED grin Taster griin
Analog IN I
mIJIMINIﬂlol R LED rt Taster rot
Und dazu jetzt der etwas umfangreichere Sketch-Code: A Abbildung 26-7

#define MAXARRAY 5 // Vorgabe der Sequenzlange

int ledPin[] = {2, 3, 4, 5}; // LED-Array mit Pin-Werten
#define piezoPin 13 // Piezo-Pin

#define tasterPinRot 6 // Taster Pin an roter LED
#define tasterPinGruen 7 // Taster-Pin an griiner LED
#define tasterPinGelb 8 // Taster-Pin an gelber LED
#define tasterPinWeiss 9 // Taster-Pin an weiBer LED
#define ledStatusPinGruen 10 // Status LED griin

#define ledStatusPinGelb 11 // Status LED gelb

#define ledStatusPinRot 12 // Status LED rot

int colorArray[MAXARRAY]; // Enthdlt die Zahlenfolge fiir
// anzuzeigende Farben
{1047, 1175, 1319, 1397}; // Tonfrequenzen fiir die 4

// Farben

int tones[] =

int counter = 0;
boolean fail = false;

void setup(){
Serial.begin(9600);
for(int i = 0; 1 < 4; i++)
pinMode(ledPin[i], OUTPUT); // LED-Pins als OUTPUT programmieren

pinMode(tasterPinRot, INPUT); digitalWrite(tasterPinRot, HIGH);

pinMode(tasterPinGruen, INPUT); digitalWrite(tasterPinGruen, HIGH);

pinMode (tasterPinGelb, INPUT); digitalWrite(tasterPinGelb, HIGH);

pinMode(tasterPinWeiss, INPUT); digitalWrite(tasterPinWeiss, HIGH);

Haste Tone?

// Anzahl der gerade aufleuchtenden LEDs

Die komplette Schaltung des
Farben-Sequenz-Spiels

559

560

pinMode (ledStatusPinGruen, OUTPUT);
pinMode(ledStatusPinGelb, OUTPUT);
pinMode(ledStatusPinRot, OUTPUT);

}

void loop(){
Serial.println("Spielstart");
generateColors();
int tasterCode;
for(int i = 0; i <= counter; i++){ // AuBere Schleife
giveSignalSequence(i);
for(int k = 0; k <= i; k++){ // Innere Schleife
while(digitalRead(tasterPinRot) 83 digitalRead(tasterPinGruen) 8&
digitalRead(tasterPinGelb) 8& digitalRead(tasterPinWeiss));
Serial.println("Taste gedriickt!"); // Zur Kontrolle im Serial
// Monitor
// Anzeigen der geriickten Farbe
if(!digitalRead(tasterPinRot))
tasterCode = 0;
if(!digitalRead(tasterPinGruen))
tasterCode = 1;
if(!digitalRead(tasterPinGelb))
tasterCode = 2;
if(!digitalRead(tasterPinleiss))
tasterCode = 3;
giveSignal(tasterCode);
// Uberpriifung ob richtige Farbe gedriickt wurde
if(colorArray[k] != tasterCode){
fail = true;
break; // Innere for-Schleife verlassen
}
}

if(!fail)

Serial.println("richtig"); // Zur Kontrolle im Serial Monitor
else{

digitalWrite(ledStatusPinRot, HIGH);

for(int i = 3000; i > 500; i-=150){

tone(piezoPin, i, 10); delay(20);

}

Serial.println("falsch"); // Zur Kontrolle im Serial Monitor

delay(2000);

digitalWrite(ledStatusPinRot, LOW);

counter = 0; fail = false;

break; // for-Schleife verlassen

Projekt 26: Der Sound und mehr

delay(2000);

if(counter + 1 == MAXARRAY){
digitalWrite(ledStatusPinGruen, HIGH);
for(int i = 500; i < 3000; i+=150){
tone(piezoPin, i, 10); delay(20);
}
Serial.println("Ende!"); // Zur Kontrolle im Serial Monitor
delay(2000);
digitalWrite(ledStatusPinGruen, LOW);
counter = 0; fail = false;
break; // AuRere for-Schleife verlassen
}
counter++; // Zdhler inkrementieren
}
}

void giveSignalSequence(int value){
// Anzeige LEDs
for(int i = 0; 1 <= value; i++){
digitalWrite(2 + colorArray[i], HIGH);
generateTone(colorArray[i]); delay(1000);
digitalWrite(2 + colorArray[i], LOW); delay(1000);
}
}

void generateTone(int value){
tone(piezoPin, tones[value], 1000);

}

void giveSignal(int value){
// Anzeige LED + Tonsignal
digitalWrite(2 + value, HIGH); generateTone(value); delay(200);
digitalWrite(2 + value, LOW); delay(200);

}

void generateColors(){
randomSeed(analogRead(0));
for(int i = 0; 1 < MAXARRAY; i++)
colorArray[i] = random(4); // Zufallszahlen von 0 bis 3
// generieren
// 0 = Rot, 1 = Griin, 2 = Gelb, 3 = Weiss
for(int i = 0; 1 < MAXARRAY; i++)
Serial.println(colorArray[i]); // Zur Kontrolle im Serial Monitor

Haste Tone?

561

562

Wie funktioniert nun die Programmierung im Einzelnen? Der Code
mutet auf den ersten Blick erschlagend an. Betrachte ihn nicht
daher nicht als Ganzes, sondern zerlege wie beim Losen einer
umfangreichen Aufgabe das Gesamtpaket in Teilpakete und arbeite
dich Schritt fur Schritt durch. Jeder anzuzeigenden Farbe, sei es
Rot, Griin, Gelb oder Weif3, ist ein Zahlenwert zugeordnet: Rot 0,
Griin 1, Gelb 2 und WeiR 3. Auf diese Weise kann ein Array mit
Werten von 0 bis 3 initialisiert werden, das dann zur Anzeige der
LEDs herangezogen werden kann. Angenommen, du hast ein Array
mit den Werten 0, 2, 2, 1, 3 vorliegen, dann leuchten die Dioden in
der Sequenz Rot, Gelb, Gelb, Griin, Weif3. In unserem Sketch lautet
das Array colorArray und wird iiber die generateColors-Funktion
mit Werten versehen. Um die Werte sichtbar zu machen, wandelt
die giveSignal-Funktion diese in Signale zur Ansteuerung der LEDs
um.

void giveSignalSequence(int value){
// Anzeige LEDs
for(int i = 0; i <= value; i++){
digitalWrite(2 + colorArray[i], HIGH);
generateTone(colorArray[i]); delay(1000);
digitalWrite(2 + colorArray[i], LOW); delay(1000);
}
}

Wenn die Funktion immer die Farbsequenz anzeigen soll, warum
benotigen wir dann noch einen Ubergabeparameter? Und was bedeu-
tet die 2, die in der digitalWrite-Funktion verwendet wird? Wie war
das noch mit den Magic-Numbers?

Tja, Ardus, es soll ja nicht zu Beginn die komplette Sequenz zur
Anzeige gebracht werden, sondern erst nach und nach immer eine
Farbe mehr. Das Farb-Array colorArray beinhaltet die komplette
Sequenz, doch der Ubergabewert, der in value gespeichert wird,
sagt der Funktion, wie viele Array-Elemente abgefragt und ange-
zeigt werden sollen. Nun ja, da die 4 grofen LEDs an den digitalen
Ausgingen von Pin 2 bis Pin 5 angeschlossen sind, handelt es sich
bei der 2 quasi um einen Offset, der den Start-Pin angibt, wenn wir
die Werte von 0 bis 3 des Farb-Arrays hinzuaddieren. Natiirlich
hast du Recht, dass man keine Magic-Numbers verwenden sollte.
Du kannst natiirlich auch eine symbolische Konstante z.B. mit dem
Namen FARBPINOFFSET verwenden.

Projekt 26: Der Sound und mehr

Bevor wir schon mit der Erklirung der Logik in der loop-Funktion
fortfahren, mochte ich noch einmal auf die setup-Funktion zu spre-
chen kommen. Da gibt es z.B. die Taster-Pins, die natiirlich als Ein-
gang programmiert werden. Dennoch wird tber die digitalWrite-
Funktion etwas an eben diese Einginge geschickt. Warum machst du
das?

Ich nutze die Moglichkeit, die im Mikrocontroller vorhandenen
und intern verschalteten Pullup-Widerstinde zu aktivieren. So
umgehe ich die Notwendigkeit der Verschaltung externer Pullup-
bzw. Pulldown-Widerstinde. Ich habe das aber schon einmal im
Kapitel Einen Sensor Abfragen erliutert! Na, schon vergessen?
Dann schau dort noch einmal nach.

~
Ok, ich schaue nach. Wenn ich in die loop-Funktion sehe, dann ist da

ja einiges los. Was ich auch noch nicht so ganz verstehe — und das ist
im Moment so einiges — ist die Tatsache, dass die loop-Funktion doch
kontinuierlich durchlaufen wird. Demnach miisste doch u.a. auch die
erste for-Schleife, die du mit Aufere Schleife gekennzeichnet hast,
stindig abgearbeitet werden. Sie ist ja — so wie ich das sehe — fiir die
die Anzeige der Sequenz zustindig, die iiber die Variable counter

gesteuert wird.
\ Y

Hey, Ardus, gut erkannt! Normalerweise wirde die loop-Funktion,
die ja eine Endlosschleife darstellt, stindig abgearbeitet werden. Ich
habe aber einen Stopp eingebaut, der solange bestehen bleibt, wie
keine der vier Tasten gedriickt wird. Hier siehst du nochmal den
betreffenden Codeabschnitt:

while(digitalRead(tastexPinRot) &8 digitalRead(tasterPinGruen) &&
digitalRead(tasterPinGelb) &8 digitalRead(tasterPinlWeiss));

Da die digitalen Eingidnge, an denen die Taster angeschlossen sind,
tiber die internen Pullup-Widerstande an +5V hingen, muss ich auf
LOW-Pegel hin abfragen. Solange also alle Einginge auf HIGH-
Pegel liegen, fithrt die while-Schleife die Anweisung aus, die ihr
unmittelbar folgt.

Das ist ja eben mein Problem! Welche Anweisung wird denn ausge-
fuhre? Eigentlich miisste laut Code die nachfolgende Zeile Serial.
println("Taste gedriickt!"); ausgefithrt werden. Das macht aber wenig
Sinn!

Haste Tone? 563

564

Da hast du Recht! Das macht wenig Sinn. Du hast eine Kleinigkeit
ibersehen. Der Befehl, der der while-Schleife unmittelbar folgt, ist
das Semikolon ganz am Ende. Es ist quasi eine Leeranweisung und
bewirkt, dass die while-Schleife, wenn keiner der Taster gedriickt
wird, selbst in einer Endlosschleife steckt. So haben wir elegant den
Programmfluss an dieser Stelle gestoppt. Erst, wenn irgendeine der
vier Tasten gedriickt wird, ist die Bedingung in der while-Schleife
nicht mehr erfiillt und der Programmablauf wird fortgefiithrt. Jetzt
wird ermittelt, welche der Tasten gedriickt wurde, um den betref-
fenden Farbwert mit dem Element des Arrays zu vergleichen, das
gerade iiber die innere Schleife ausgewihlt wurde. Wurde eine
Ubereinstimmung erzielt, dann kommt der nichste Farbwert aus
der Sequenz zum Vorschein. Wenn du jedoch einen Fehler gemacht
hast, wird die Variable fail mit dem Wert true versehen und die
innere for-Schleife tiber die break-Anweisung vorzeitig verlassen.
Das bedeutet wiederum, dass die if-Anweisung

if(1fail)...

den Programmablauf entsprechend fortfithrt. Die Variable counter
wird, sofern kein Fehler gemacht wurde und das Ende der Sequenz
noch nicht erreicht ist, um den Wert 1 erhoht, so dass beim nichs-
ten Anzeigen die Sequenz linger ist. Zum besseren Verstiandnis der
Vorginge habe ich die Ausgaben auf dem Serial-Monitor im Code
belassen. Sie zeigen dir am Anfang, welche Sequenz ausgewihlt
wurde, damit du ggf. ein wenig damit experimentieren kannst.
Weitere Erliduterungen sollen an dieser Stelle nicht erfolgen. Gehe
den Code selbst einmal durch und versuche ihn zu verstehen.

Troubleshooting

Wenn nach dem Ubertragen des Sketches keine der vier groRen
LEDs zu leuchten beginnen oder der Piezo keinen Ton von sich
gibt, dann tiberpriife folgende Punkte:

* Ist die Verkabelung korrekt?
¢ Gibt es eventuell Kurzschliisse untereinander?

* Haben sich moglicherweise Lotbriicken eingeschlichen?

Projekt 26: Der Sound und mehr

Was hast du gelernt?

* Du hast in diesem Kapitel erfahren, wie du ein Piezo-Element
ansteuern kannst, indem du iiber das An- bzw. Ausschalten
des entsprechenden digitalen Ausgangs eine Frequenz
erzeugst.

* Es ist jedoch auch moglich, tiber die Funktionen noTone bzw.
tone Einfluss auf den Piezo zu nehmen, so dass er entweder
verstummt oder in einer gewiinschten Frequenz ertont.

* Auflerdem hast du gesehen, wie du mit ganz einfachen Mitteln
eine ansprechende Frontplatte selbst herstellen kannst.

Workshop

Erweitere deinen Sketch so, dass nach jeder korrekten Wiedergabe
beim Start eines neuen Spiels die Sequenz verlingert wird. Du
kannst auch ein wenig mit den Pausen zwischen den einzelnen Far-
ben spielen. Verkiirze sie so, dass das Spiel nach und nach etwas
schwieriger wird. Ich habe eine der kleinen 3mm LEDs nicht in
meinem Sketch verwendet. Es handelt sich um die mittlere gelbe
LED. Denke dir doch eine Moglichkeit aus, sie mit einer sinnvollen
Funktion zu versehen. Du kannst sie z.B. kurz aufleuchten lassen,
wenn ein neues Spiel beginnt. Es gibt da sicherlich viele Moglich-
keiten.

Haste Tone?

565

Projekt

27

Data Monitoring

Scope

In diesem Experiment befassen wir uns mit folgenden Themen:

* Abfragen der Sensordaten des Arduino-Boards und spiteres
Senden an Processing, um dort die Werte grafisch darzustellen

* Schreiben eines Ubertragungsprotokolls

* Der komplette Sketch von Processing und Arduino
* Analyse des Schaltplans

* Aufbau der Schaltung

* Workshop

Datenerfassung und
Visualisierung

In diesem Kapitel geht es um die Datenerfassung tiber dein Ardu-
ino-Board, um die Daten dann grafisch darzustellen. Die Program-
miersprache Processing habe ich ja schon einige Male wegen ihrer
fantastischen grafischen Moglichkeiten erwihnt. Wir werden sie
auch jetzt wieder nutzen, um die analogen Einginge des Boards
kontinuierlich abzufragen und die Daten an Processing zu versen-
den. Die serielle Schnittstelle ist auch hierbei wieder das geeignete
Ubertragungsmedium. Um dir bereits einen kleinen Vorgeschmack
auf das zu geben, was wir entwickeln wollen, zeige ich dir hier
schon einmal das Processing-Ausgabefenster, das die Daten nahezu
in Echtzeit prisentiert.

567

Abbildung 27-1 p
Der Arduino Analog-Tracker
inklusive Analog-Input-Shield

568

Du kannst in der linken Grafik die unterschiedlichen Werte der 6
analogen Einginge erkennen, die untereinander angeordnet sind.
Es werden sowohl der analoge Wert als auch ein Balkendiagramm
angezeigt. Damit ich die Werte recht einfach und ohne fliegende
Verdrahtung auf einem Breadboard verindern kann, habe ich ein
Input-Shield mit 4 Potentiometern gebaut. Fiir 6 hat der Platz auf
der Frontplatte leider nicht gereicht, doch ich denke, dass es so
auch ganz gut funktioniert. Was hiltst du davon, wenn wir in
einem weiteren Schritt auch gleich noch alle digitalen Pins abfragen
und deren Status ebenfalls iibertragen? Aber beginnen wir erst ein-
mal mit den analogen Signalen.

Also wenn ich das recht verstehe, dann willst du iiber die serielle
Schnittstelle die Daten der einzelnen Potentiometer verschicken. Das
kann ich ja irgendwie nicht glauben. Und dann sollen auch noch alle
Statuswerte der digitalen Pins iibertragen werden? Wie viele serielle
Schnittstellen benétigen wir denn dafiir?

Du kannst es mir ruhig glauben, und es wird lediglich eine serielle
Schnittstelle benétigt. Das Stichwort dazu lautet Ubertragungspro-
tokoll. Aber was ist das und wie wird ein solches Protokoll verwen-
det? Stell dir vor, du bist bei unserem Bundesprisidenten zum
Essen eingeladen, weil du dich z.B. im sozialen Bereich verdient
gemacht hast und eine Auszeichnung erhalten sollst. Stirmst du
nun einfach auf ihn zu, um ihm die Hand zu schiitteln? Das ent-
sprache wohl nicht ganz dem vorgesehenen Protokoll, das fiir der-
artige Empfénge vorgesehen ist. Auch in diesem Kontext wird also
der Begriff Protokoll verwendet. Es handelt sich dabei um eine Ver-
einbarung, wie sich z.B. zwei Parteien einander begegnen, um eine
Kommunikation stattfinden zu lassen. Verletzt eine der Parteien
das Protokoll, kommt es zu Missverstindnissen, so dass keine die

Projekt 27: Data Monitoring

andere richtig versteht. Ahnlich liuft es in der Datenverarbeitung

ab.

Sender

Arduino

g Ubertragungsprotokol!

Wir schreiben ein
Ubertragungsprotokoll

Uberlegen wir einmal, welche Informationen iibertragen werden
miissen, damit Sender und Empfinger dieselbe Informationsgrund-
lage besitzen:

seriell

* Handelt es sich um einen analogen oder digitalen Pin?
* Von welcher Pin-Nummer werden gerade Daten tibertragen?

* Welcher Wert wird tibertragen (Analog: 0 bis 1023 / Digital: 0
oder 1) ?

Zusitzlich zur eigentlichen Netto-Ubertragungsinformation sollten
noch weitere Rahmen-Informationen (auch Frame genannt) gesen-
det werden. Ich meine damit eine Start-Kennung und eine Ende-Ken-
nung bzw. die Kenntnis, dass die zu iibertragene Information eine
bestimmte Zeichenlinge aufweist. Dabei ist das nachfolgende Pro-
tokoll herausgekommen. Falls du noch Potential fir Erweiterungen
siehst, kannst du dir nattirlich dein eigenes entwickeln.

11 Zeichen

StingStelle 0 1 2 3 4 5 6 7 8 910
w5 @@E@O0EGE(Hee
| |1 | 1 |1 Il

Startkennung Pin-Nummer Endekennung

Datentyp Pin-Wert Zeilenumbruch
A= Analog
D = Digital

Die komplette Linge bzw. Anzahl der Zeichen pro Ubertragungs-
zeile betrdgt 11 Zeichen. Dazu gehoren natiirlich die Zeichen fiir
CR (Carriage Return) und LF (Line Feed). Unterhalb der einzelnen

<« Abbildung 27-2

Das Ubertragungsprotokoll muss

bei Sender und Empfanger

gleichermafen bekannt sein.

Wir schreiben ein Ubertragungsprotokoll

569

Positionen findest du die Bedeutung der String-Stelle(n). Schauen
wir uns dazu ein kurzes Beispiel an. Nehmen wir einmal an, der
Sender (das Arduino-Board) schickt folgende Zeichenkette iiber die
serielle Schnittstelle an den Empfinger (Processing-Anwendung):

String-Stelle 0 1 2 3 4 5 6 7 8§ 9 10
o | | [00000:s:
Die Information wiirde auf der Empfingerseite wie folgt interpre-
tiert:

* Linge von 11 Zeichen: Datensatzlinge ist ok.

* Start-Kennung und Stopp-Kennung sind vorhanden: Datensatz
ist valide.

* Datentyp: A bedeutet, dass analoge Informationen iibertragen
werden.

* Pin-Nummer ist 03.
* Der zu Gibermittelnde Wert ist 0756.
Durch einen entsprechend implementierten Algorithmus, den wir

gleich noch sehen, werden diese Informationen aus der Zeichen-
kette extrahiert und entsprechend interpretiert.

werden.

{ Bitte erklire mir einmal, warum die Zeichen CR bzw. LF verwendet]

—

Der Grund liegt darin, dass auf diese Weise die Gegenstelle, also
der Empfinger, erkennt, wann eine neue Datenzeile beginnt.
Andernfalls bekdmen wir einfach alle Zeichen hintereinander gelie-
fert und miissten dann anhand der Start- bzw. Stopp-Kennung den
_ z S Datenstrom entwirren, um auf eine einzelne Zeile zugreifen zu kon-
————————— nen. Zwar iberpriifen wir, ob die Kennungen vorhanden sind,
doch diese Uberpriifung wird nur durchgefithrt, um sicher zu
gehen, dass die Daten korrekt iibertragen wurden.

Benotigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

Bendtigte Bauteile

; I! i 4 x bzw. 6 x Potentiometer z.B. 10K

570 Projekt 27: Data Monitoring

Benétigte Bauteile
//-\\ Mehrere flexible Steckbriicken in unterschiedli-
chen Farben und Léngen

Arduino-Sketch-Code

Da dein Arduino als Sende-Instanz arbeitet, schickt er mit dem fol-
genden Code alle ermittelten Pin-Informationen an die serielle
Schnittstelle:

void setup(){
Serial.begin(38400); // Ubertragungsrate
}

void loop(){
// Sende analoge Werte
for(int i = 0; 1 <= 5; i++)
Serial.println(normalize("A", i, analogRead(i)));
// Sende digitale Werte
for(int i = 0; 1 <= 13; i++)
Serial.println(normalize("D", i, digitalRead(i)));
}

String normalize(String t, int pin, int value){
String pinString = String(pin);
String valueString = String(value);
if(pin < 10)
pinString = "0" + String(pin); // Wenn einstellig, dann filhrende
// Null anfiigen
int count = 4 - valueString.length();
for(int i = 0; 1 < count; i++)
valueString = String("0") + valueString; // Fihrende Nullen
// anfiigen
String r = String("S") + String(t) + String(pinString) +
String(valueString) + String("E");
return r; // Normalisierte Zeichenkette wird zurilickgeliefert

}

Arduino-Code-Review

Du siehst, dass wir in diesem Sketch mit einer Ubertragungsrate
von 38400 Baud arbeiten, damit die Daten méglichst schnell zum
Empfinger gelangen. In der loop-Schleife werden nacheinander alle
analogen bzw. digitalen Einginge abgefragt und zur Ubertragung
tiber die normalize-Funktion aufbereitet. In dieser werden Daten-

Wir schreiben ein Ubertragungsprotokoll

571

572

typ, Pin-Nummer und Pin-Wert zusammengefiigt und am Schluss
mit einer Start- bzw. Ende-Kennung versehen, so dass das Paket im
Anschluss fiir das Versenden bereit ist. Es wird darauf geachtet,
dass die Pin-Nummer immer 2-stellig und der Pin-Wert immer 4-
stellig ist. Das erleichtert das Interpretieren der Daten auf Empfin-
gerseite.

Processing-Sketch-Code

Der Processing-Sketch-Code ist schon etwas umfangreicher, da er
neben der Interpretation des Datenstroms auch noch fiir die Visua-
lisierung der Daten verantwortlich ist. Dieser Code-Abschnitt ist
der umfangreichste. Um nicht fiir jede einzelne analoge Scrollbar
den Code duplizieren zu miissen, habe ich eine Klasse entwickelt,
die als Bauplan fiir mehrere Anzeigen dient. Ich zeige dir am besten
zuerst die Klassendefinition und anschlieRend den eigentlichen
Aufruf im Hauptsketch.

Klassendefinition
class Scrollbar{
// Felder
PFont myFont; // Font zur Darstellung von Textinformation

String scrollbarName; // Name der Scrollbar
int xPos, yPos, scrollbarWidth, scrollbarHeight; //
// Dimensionsinformationen
color bgColor; // Hintergrundfarbe
// Konstruktor
Scrollbar(String name, int x, int y, int sbW, int sbH, color c){
scrollbarName = name;
xPos = x; yPos = y;
scrollbarWidth = sbW; scrollbarHeight = sbH;
bgColor = c;
myFont = createFont("Courier New", 12, false);
textFont(myFont, 12);
}
// Methoden
void drawScrollbar(int value){
float s = scrollbarWidth / 1024.0; // Faktor fur 100er-
// Markierungen
float recalcValue = map(value, 0, 1023, 0, scrollbarWidth - 2);
fill(bgColor); // Hintergrundfarbe setzen
stroke(255); // Linienfarbe auf weif
rect(xPos, yPos, scrollbarWidth, scrollbarHeight); // Rechteck
// zeichnen
stroke(255, 0, 0); strokeWeight(2);
line(xPos + 1 + recalcValue, yPos + 1,

Projekt 27: Data Monitoring

xPos + 1 + recalcValue, yPos - 15 + scrollbarHeight);
strokeWeight(1); // Strichstarke 1 Punkt
fi11(255); // Textfarbe
text(scrollbarName, xPos, yPos - 5); // Scrollbar-Namen ausgeben
// Value in der Anzeige loschen
fi11(0); noStroke();
rect(textWidth(scrollbarName) + 20, yPos - 16, 50, 15);
fi11(255, 0, 0); // Textfarbe
text(value, xPos + textWidth(scrollbarName) + 1, yPos - 5);
stroke(255, 255, 0);
for(int i = 100; i <=1000; i+=100) // Markierungen zeichnen
line(xPos + 1 + i * s, yPos + scrollbarHeight, xPos + 1 + i * s,
yPos + scrollbarHeight - 10);
}
}

Haupt-Sketch

import processing.serial.*;

String portStream;

Serial meinSeriellerPort;

Scrollbar myScrollbaro, myScrollbari, myScrollbar2, myScrollbar3,
myScrollbar4, myScrollbar5;

void setup(){

size(400, 400);

println(Serial.list());

meinSeriellerPort = new Serial(this, Serial.list()[1], 38400);

// ggf. anpassen!

meinSeriellerPort.bufferUntil('\n");

background(0);

myScrollbar0 = new Scrollbar("Analog Pin 0:", 20, 20, 350, 35,
color(89, 7, 243));

myScrollbarl = new Scrollbar(“Analog Pin 1:", 20, 80, 350, 35,
color(120, 207, 120));

myScrollbar2 = new Scrollbar("Analog Pin 2:", 20, 140, 350, 35,
color(40, 50, 120));

myScrollbar3 = new Scrollbar("Analog Pin 3:", 20, 200, 350, 35,
color(120, 120, 120));

myScrollbar4 = new Scrollbar('Analog Pin 4:", 20, 260, 350, 35,
color(80, 207, 20));

myScrollbar5 = new Scrollbar("Analog Pin 5:", 20, 320, 350, 35,
color(120, 90, 90));

}

void draw (){
char dataType;
int pin, value;
if(portStream != null){
if(portStream.length() == 11 8& // Stimmt die Lange von 11 Zeichen?

Wir schreiben ein Ubertragungsprotokoll 573

574

portStream.charAt(0)== 'S' 83 // Ist die Start-Kennung vorhanden?
portStream.charAt(8)== 'E'){ // Ist die Ende-Kennung vorhanden?
dataType = portStream.charAt(1); // Datentyp extrahieren
pin = int(portStream.substring(2, 4)); // Pin-Nummer extrahieren
value = int(portStream.substring(4, 8)); // Pin-Wert extrahieren
if(dataType == 'A"){ // Ist der Datentyp Analog?
if(pin == 0) // Analog Pin 0
myScrollbaro.drawScrollbar(value);
if(pin == 1) // Analog Pin 1
myScrollbari.drawScrollbar(value);
if(pin == 2) // Analog Pin 2
myScrollbar2.drawScrollbar(value);
if(pin == 3) // Analog Pin 3
myScrollbar3.drawScrollbar(value);
if(pin == 4) // Analog Pin 4
myScrollbar4.drawScrollbar(value);
if(pin == 5) // Analog Pin 5
myScrollbars.drawScrollbar(value);

}
}

void serialEvent(Serial meinSeriellerPort){
portStream = meinSeriellerPort.readString();

}

Damit der Processing-Sketch auf die korrekte serielle Schnittstelle
zugreift, habe ich mit der Zeile

println(Serial.list());

alle zur Verfiigung stehenden COM-Ports ausgeben lassen. Das
Ergebnis war bei mir folgendes:

[0] "CoM4"
[1] "COM5"

Da auf Arduino-Seite bei mir momentan COMS aktiviert ist — dass
kann sich iibrigens zwischenzeitig 4ndern, wenn gerade ein COM-
Port anderweitig verwendet wird — hat dieser die Index-Nummer 1.
Deshalb habe ich in der Zeile

meinSeriellerPort = new Serial(this, Serial.list()[1], 38400);

den Wert 1 in den eckigen Klammern eingesetzt. Wenn das bei dir
ein anderer Port ist, musst du den Index-Wert dort entsprechend
anpassern.

Projekt 27: Data Monitoring

Processing-Code-Review
Im Haupt-Sketch werden durch Instanziierungen wie z.B.

Scrollbar myScrollbaro,...
myScrollbar0o = new Scrollbar("Analog Pin 0:", 20, 20, 350, 35,
color(89,7,243));

Scrollbar-Objekte generiert. Der Konstruktor nimmt alle erforderli-
chen Argumente entgegen, um die Scrollbar zu erstellen:

* Argument 1: 20 = x-Position der linken oberen Ecke der Scroll-

bar

* Argument 2: 20 = y-Position der linken oberen Ecke der Scroll-
bar

» Argument 3: 350 = Breite der Scrollbar

* Argument 4: 35 = Hohe der Scrollbar

* Argument 5: color(89, 7, 243) = RGB-Wert der Scrollbar-Hin-
tergrundfarbe

Uber die Methode

myScrollbaro.drawScrollbar(value);

wird dann die Scrollbar im Ausgabefenster von Processing darge-

stellt.
Ei P
ine Bemerkung am Rande ()
Man kann den Processing-Sketch Ubrigens in eine Java-Anwen- -
dung exportieren, die dann ohne die Processing Entwicklungs-
umgebung lauffahig ist. Du musst lediglich den MenUpunkt
Export Application in Processing aufrufen.

Edit Sketch Tools Help

Mew Strg+N
Open... Strg+0
Sketchbook 2
Examples 3
Close Strg+W
Save Strg+5
Save As... Strg+Umschalt+5
Export Strg+E

Export Application Strg+Umschalt+E

Page Setup Strg+Umschalt+P
Print Strg+P
Preferences Strg+Comma
Quit Strg+Q

Wir schreiben ein Ubertragungsprotokoll

575

Im Anschluss 6ffnet sich ein Dialogfenster, in dem du die aus-
wahlen kannst, fur welche Platform (Windows, Mac bzw. Linux)

die Anwendung(en) ers

Export Options =]

Export to Application creates double-dlickable,
standalone applications for the selected plaforms.

Platforms
[¥]Windows [T]MacOSX [] Linux

Options

[7] Full Screen (Present mode)
Show a Stop button

tellt werden soll(en).

Name

W lib
I, source
3 ArduincAnalegTracker.exe

%] nebSerial.dll

Danach wird im Projektverzeichnis eine neue Verzeichnisstruk-

tur erstellt, die alle Date
Anwendung zu starten.

ien enthélt, die erforderlich sind, um die

Der Schaltungsaufbau

Sal L L] L] g Ll L]
ixa ia & a > 5 g 2 3
Digital 170 = |3
(=] E il | - | L3 -
o ERIE
= 2 L&
= =T g
= ol
< 23
abhildung 2734 Troubleshooting
Beschaltung der 6 analogen
Einginge Sollten sich beim Verindern der Potentiometerwerte die Scrollbar-
Anzeigen nicht bewegen, dann schlieRe das Processing-Ausgabe-
fenster, offne den Serial-Monitor von Arduino und stelle hier die
korrekte Baudrate ein. Du solltest dann den Datenstrom beobach-
ten konnen, der ungefihr wie folgt aussieht:
SD090000E
SD100000E
576

Projekt 27: Data Monitoring

SD110000E
SD120000E
SD130000E
SA000169E
SA010254E
SA020527E
SA030354E
SA040358E

Jede Zeile weist einen unterschiedlichen Inhalt auf, doch die Linge
muss immer konstant sein. Sender und Empfianger miissen iiber die
gleiche Ubertragungsrate verfiigen, da andernfalls nur kryptische
Zeichen angezeigt werden. Falls diesbeziiglich ein Problem auftritt,
kontrolliere die Verkabelung und die Sketche von Arduino und
Processing auf Korrektheit.

Was hast du gelernt?

* Du hast in diesem Kapitel erfahren, wie man ein Ubertragungs-
protokoll selbst entwickeln kann, um damit unterschiedliche
Daten {iber ein Medium — hier die serielle Schnittstelle — zu
verschicken.

* Die fantastischen Moglichkeiten von Processing haben wir
dazu genutzt, abstrakte Daten zu visualisieren und deren zeitli-
che Verianderungen zu erkennen.

Workshop

Erweitere deinen Sketch so, dass dein Analog-Tracker zu einem
Combi-Tracker wird. Er soll also analoge wie auch digitale Signale
darstellen kénnen. Ich habe dazu schon einmal die erforderliche
Processing-Klasse geschrieben, und die Ausgabe der digitalen Pins
sieht bei mir wie folgt aus:

Du kannst jeden einzelnen digitalen Pin mit einer Hintergrundfarbe
und einer Pin-Nummer versehen. Der Ubersicht halber habe ich
nur die Pins von 2 bis 10 abgebildet. Das kann natiirlich nach Belie-
ben verindert werden. Fiige dem Processing-Sketch die folgende
Klasse hinzu:

Wir schreiben ein Ubertragungsprotokoll

577

578

class Circles{

// Felder

PFont myFont; // Font zur Darstellung von Textinformation
String circleName; // Name des Objektes

int xPos, yPos; // Positionsinformation

color bgColor; // Hintergrundfarbe

// Konstruktor

Circles(String name, int x, int y, color c){
circleName = name;
xPos = x; yPos = y;
bgColor = c;
myFont = createFont("Courier New", 12, false);
textFont(myFont, 12);

}

// Methoden

void drawCircles(int value){
ellipseMode(CORNER);
£111(255); // Textfarbe
text(circleName, xPos + 6, yPos - 10); // Name des Objektes anzeigen
fi11(0); noStroke(); // Hintergundinformation zum Ldschen der

// Farbe
rect(xPos, yPos, 20, 20); // Loschen der Farbe
stroke(255, 0, 0);
if(value == 0) noFill(); // Ist Wert = 0, dann keine Fillung
else fill(bgColor); // Ist Wert <> 0, dann Fiillung mit
// Hintergrundfarbe

ellipse(xPos, yPos, 20, 20); // Kreis zeichnen

}

}

Die Instanziierung der Klasse zeige ich dir ansatzweise an einen Bei-
spiel. Den Rest musst du natiirlich selbst entwickeln und weiterfiih-
ren. Hier die Zeile fiir die globale Deklaration:

Circles DigPin2, ...
Diese Zeile platzierst du innerhalb der setup-Funktion:
DigPin2 = new Circles("2", 20, 400, color(255, 255, 0, 150));

Jetzt musst du die Abfrage innerhalb der draw-Funktion von Pro-
cessing erweitern. Bisher haben wir lediglich den Datentyp analog
herausgefiltert. Wie musst du den Sketch erweitern, damit auch
digitale Datentypen selektiert werden, um anschlieRend die
Methode der Circles-Klasse aufzurufen? Jetzt bist du dran!

Projekt 27: Data Monitoring

Tipp
Wenn du nicht fiir jeden digitalen Eingang einen Pulldown-Wider-

stand verwenden mochtest, kannst du die internen Pullup-Wider-
stinde aktivieren. Wie das funktioniert, weiRlt du bereits.

bauen. Wie mache ich das?

[Die von dir entwickelte Frontplatte mit Shield méchte ich auch nach- }

Ich habe dir absichtlich keine Bauanleitung bzw. Mafie fiir die Boh-
rungen gegeben. Die Mafe fuir Frontplatte und Shield entsprechen
denen aus vorangegangenen Kapiteln. Versuche dich einmal selbst
daran. Besorge dir entsprechend kleine Potentiometer und platziere
sie so auf der Frontplatte, dass sie sich nicht gegenseitig behindern.
Also nicht einfach Locher bohren und hoffen, dass es passt! Fertige
einen Plan mit den MafRen und den Abstinden der Locher zum
Rand bzw. untereinander an, dann wird sicher alles funktionieren.

Wir schreiben ein Ubertragungsprotokoll 579

Projekt

Der Arduino-Talker

Scope
In diesem Experiment behandeln wir folgende Themen:

* Die Ansteuerung des Arduino-Boards iiber C#
* Der komplette Sketch

* Analyse des Schaltplans

* Aufbau der Schaltung

* Workshop

Der Arduino-Talker

Ich finde es immer sehr spannend, wenn eine Kommunikation
zwischen unterschiedlichen Baugruppen oder verschiedenen Pro-
grammiersprachen stattfindet. Das ist manchmal mit einigen
Schwierigkeiten verbunden, doch sind diese einmal gelést und tiber-
wunden, dann macht es doppelt so viel SpaR. In diesem Kapitel
mochte ich dir zeigen, wie du tber die serielle Schnittstelle mittels
Serial-Monitor dein Arduino-Board steuern kannst. AufRerdem stelle
ich dir ein C#-Programm vor, mit dem du iiber eine komfortable
Oberfliche Steuerbefehle absetzen kannst, einfach um das Ganze
etwas einfacher zu handhaben. Mit Hilfe der C# 2010 Express-Edi-
tion, die kostenlos von der Microsoft- Internetseite heruntergeladen
werden kann, habe ich diese Anwendung programmiert.

Das kénnte wichtig fiir dich sein »)
Hier ein paar Begriffe fir die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

Cit
C# 2010 Express

581

(0 ArduinoTalker 1.2 by Erik Bartmann

—

I —

Serial settings

COM-Ports: | COMS

Digital Corttrol

Pz
P03
Pn ot
Pn 05
P 06
P 07
P02
P s
Pn 10
P T
P 12
Pn 13

Baud-Rate: | 3600

Pwm L <

Pwm JL <

pwm T <« [

Pwm L <

pwm T <[]

pwm JL < [

@ www.erikcbartmann de

[arduino @erk-batmann.de

[

Jd &

&

] Arduino SktechCode

AN

a

\ Arduine-Galker

|5 Al pins set to LOW-Level |

582

Abbildung 28-1 A

Der Arduino-Talker (in G

programmiert)

Uber mehrere Schaltflichen und Schieberegler kannst du die digita-
len Ausginge deines Arduino-Boards bequem manipulieren. Da RX
und TX ja manchmal Probleme bereiten, habe ich mich dabei auf
die Pins von 2 bis 13 konzentriert. Zur Demonstration der Funktio-
nalitét ist das vollkommen ausreichend. Im oberen Bereich COM-
Port Settings kannst du dir die zur Verfugung stehenden COM-
Ports anzeigen lassen und den Port auswihlen, den Arduino zur
seriellen Kommunikation nutzen soll. Uber diesen Weg wollen wir
ihn steuern. Im Bereich Digital-Control findest du die einzelnen
On/Off-Schaltflichen, die die Pegel an den digitalen Ausginge
indern. Wie du weiflt, haben einige Ausginge PWM-Funktionali-
tit, und deshalb befinden sich rechts neben den entsprechenden
Pins Schieberegler, mit denen du das PWM-Signal beeinflussen
kannst: ganz links bedeutet 0% und ganz rechts 100%. Natiirlich
kannst du zum erstmaligen Experimentieren die Anzahl der beno-
tigten LEDs auf ein Breadboard stecken, doch ich habe mir zu die-
sem Zweck wieder ein Shield gebastelt, das mit 2 x LED-
Baranzeigen ausgestattet ist. So kann ich auch fur zukuinftige Anzei-
geexperimente immer mal wieder darauf zuriickgreifen.

Projekt 28: Der Arduino-Talker

<« Abbildung 28-2
Das Anzeige-Shield fiir die digitalen
Ausgdnge

Du kannst in dieser Abbildung erkennen, dass manche der ange-
steuerten LEDs in unterschiedlicher Helligkeit leuchten. LED 2, 3
und 7 leuchten sehr hell, wohingegen 5, 9 und 11 in unterschiedli-
cher Stirke leuchten. Diese LEDs liegen ganz zufillig an den Pins,
an denen eine PWM-Steuerung moglich ist. Die Regelung wurde
mit den Schiebereglern der C#-Anwendung realisiert.

Bendstigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

Benotigte Bauteile

12 x rote LED (oder 2 x LED-Baranzeigen
wie aus Kapitel Digitale Porterweiterung
Teil 2)

12 x Widerstand 330

1x Shieldplatine

Der Arduino-Talker 583

584

Abbildung 28-3 »
Digitaler Pin 03 wird auf
HIGH-Pegel gesetzt

Benétigte Bauteile
I"”” ‘ Hi‘| { HH |||||| 1 x Set stapelbare Buchsenleisten (2 x 8

+2x6)

Litze in ggf. unterschiedlichen Farben

Sketch-Code

Der folgende Sketch fragt regelmiRig die serielle Schnittstelle ab, um
ggf. auf den auflaufenden Datenstrom — auch Stream genannt — rea-
gieren zu kénnen. Nicht jeder Zeichenstrom hat eine Auswirkung auf
die angeschlossenen LEDs. Das Ubertragungsprotokoll muss stim-
men. Im Kapitel Data-Monitoring wurden Informationen vom Ardu-
ino an eine andere Applikation (Processing) geschickt, um dort die
ermittelten Sensordaten zu visualisieren. Jetzt gehen wir den entge-
gengesetzten Weg, indem wir Informationen mittels eines Terminal-
programms (Serial-Monitor) tber die serielle Schnittstelle oder
mittels einer Applikation — hier C# — an das Arduino-Board schi-
cken, um dort die digitalen Ausginge zu steuern.

11 Zeichen
String-Stelle 0 1 2 3 4 5 6 7 8
L0 | | 000000
L I 1L 11 I 11 11 I 11 |
Startkennung | Pin-Nummer Endekennung |
Datentyp Pin-Wert Zeilenumbruch
a=Analog
d = Digital

Hier siehst du einige Beispiele, die tiber den Serial-Monitor an das
Arduino-Board gesendet werden:

String-Stelle 7

0 1 2 3 4 5 6
= @S8000

.

(0

Projekt 28: Der Arduino-Talker

<« Abbildung 28-4
Digitaler Pin 06 wird auf LOW-Pegel
gesetzt

String-Stelle 0 1
Data .
String-Stelle 0 1

)

#define ARRAY_SIZE 12

#define StartTag 83 // S-Zeichen
#define EndTag 69 // E-Zeichen
#define DigitalTag 100 // d-Zeichen
#define AnalogTag 97 // a-Zeichen

H

<« Abbildung 28-5

Digitaler Pin 09 wird als analoger
Ausgang mit PWM-Signal 179
versehen.

| onooa
| onuoa

()

int ArduPin = 0; // Arduino-Pin

int ArduValue = 0; // Arduino-Value

int PinArray[ARRAY_SIZE] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13};
int bufferCount; // Anzahl der eingelesenen Zeichen

char buffer[20]; // Serial Input-Buffer

void setup(){
Serial.begin(9600);
for(int i = 0; 1 < ARRAY_SIZE; i++)
pinMode(PinArray [i], OUTPUT);

void loop(){/* leer */}

void serialkvent(){
char ch = Serial.read();
buffer[bufferCount] = ch;
bufferCount++;
if(ch == 13)
evalSerialData();

void evalSerialData(){
// Start: S=83, End: E=69
// buffer[1]: Type (d: digital, a: analog)
// buffer[2] + buffer[3] : Pin
// buffer[4] bis buffer[7] : Value
if((buffer[0] == StartTag) &3 (buffer[8] == EndTag))
{
Serial.println("S....... E Frame ok");
// Pin berechnen
ArduPin = (buffer[2] - 48) * 10 + (buffer[3] - 48);

Der Arduino-Talker 585

Tabelle 28-1 »

Bendtigte Variablen und deren

586

Aufgabe

// Pin-Wert berechnen

Arduvalue = (buffer[4] - 48) * 1000 +
(buffer[5] - 48) * 100 +
(buffer[6] - 48) * 10 +
(buffer[7] - 48);

// Digital

if(buffer[1] == DigitalTag)

{

Serial.println("Type: digital");
if(Arduvalue == 0)
digitalWrite(ArduPin, LOW);
if(Arduvalue == 1)
digitalWrite(ArduPin, HIGH);
)3
// Analog
if(buffer[1] == AnalogTag){
Serial.println("Type: analog");
analoghrite(ArduPin, ArduValue);
}
Serial.print("Pin: ");
Serial.println(ArduPin);
Serial.print("Value: ");
Serial.println(Arduvalue);

Serial.println("-----------=---o-m- ");
}
else{
Serial.println("Error!");
Serial.println("-------------------- ");
}
buffer[o] = "'."; buffer[8] = '."; // Buffer invalid setzen
bufferCount = 0; // Reset Buffer Counter
Code-Review

Fiir unser Experiment benétigen wir programmtechnisch gesehen
die folgenden Variablen:

Variable Aufgabe

PinArray Enthélt die Pin-Nummern, an denen die LEDs angeschlossen sind
ArduPin Bekommt die anzusprechende Pin-Nummer zugewiesen
ArduValue Bekommt den Wert zugewiesen, der an den Pin geschickt werden soll

buffer- Anzahl der Zeichen im Input-Buffer
Count

buffer Serial Input-Buffer Array

Projekt 28: Der Arduino-Talker

Die loop-Funktion ist in unserem Sketch leer. Da dringt sich dir
bestimmt die Frage auf, wie denn der Sketch auf etwaige einge-
hende Zeichen reagieren kann. Dies wird tiber eine sogenannte
Event-Funktion mit dem Namen serialEvent der seriellen Schnitt-
stelle ermoglicht. Sie wird immer genau dann aufgerufen, wenn
Daten vorliegen:

void serialEvent(){
char ch = Serial.read();
buffer[bufferCount] = ch;
bufferCount++;
if(ch == 13)
evalSerialData();
}

Die eingelesenen Zeichen werden in die Variable ch vom Datentyp
char gespeichert und im Array buffer gespeichert. Die Index-Vari-
able bufferCount zihlt bei jedem erneut gelesenen Zeichen um den
Wert 1 herauf, so dass alle Zeichen in das Array iibertragen wer-
den, bis die Eingabe mit der Return-Taste bestitigt wird. Der
ASCII-Code fiir CR (Carriage Return) betrigt 13. Dieser fithrt
dazu, dass die evalSerialData-Funktion aufgerufen wird. Es erfolgt
jetzt die Uberpriifung hinsichtlich der Protokolldefinition. Diese
Hiirde muss genommen werden, damit die Daten eine Reaktion auf
dem Arduino-Board hervorrufen kénnen. Start- bzw. Endmarkie-
rungen missen sich an den richtigen Stellen befinden. In der Pro-
grammierung wird eine Markierung als Tag (Tdk gesprochen)
bezeichnet:

if((buffer[o] == StartTag)8&3(buffer[8] == EndTag))
{...}

Wurde auch diese Herausforderung gemeistert, dann sind die Rah-
menbedingungen erfiillt und die eigentlichen Netto-Informationen
konnen extrahiert werden.

Ich habe immer noch nicht so recht verstanden, warum du so einen
Aufwand betreibst. Kénnen die einzelnen Datenzeilen nicht ohne
Lingenanalyse bzw. Start- und Ende-Kennung einfach gelesen und
ausgewertet werden?

Nun, Ardus, idealerweise wiirde das schon funktonieren. Doch
leider herrscht in der Realitit nicht immer der Idealfall. Bei der
Ubertragung kénnen z.B. von aufRen Storsignale auf eine Ubertra-

Der Arduino-Talker

588

J

gungsleitung einwirken oder es kann ein Wackelkontakt auftre-
ten. All das fihrt zur Verfilschung der eigentlichen zu
iibertragenden Informationen. Natiirlich ist das ganze Drum-
herum fiir unsere LED-Ansteuerung nicht unbedingt notwendig,
doch wir wollen es von Anfang an richtig machen, und vielleicht
musst du ja irgendwann einmal etwas entwickeln, bei dem
gewisse Sicherheitsaspekte wichtig sind. Dann liegst du mit dem
hier gezeigten Ansatz genau richtig. Kommen wir jetzt also zur
Ermittlung der Pin-Information, die mittels des folgenden Code-
abschnitts erfolgt:

ArduPin = (buffer[2] - 48) * 10 + (buffer[3] - 48);

An den Positionen 2 (Einerstelle) bzw. 3 (Zehnerstelle) ist die Num-
mer des anzusprechenden Pins hinterlegt.

Soweit ist mir alles klar. Doch warum um Himmels Willen muss von
jeder Stelle noch der Wert 48 subtrahiert werden? Das ist mir schlei-
erhaft!

Das hat folgenden Grund: Bei der Ubertragung werden ASCII-Zei-
chen tibermittelt. ASCII steht fir American Standard Code for
Information Interchange, der dazu dient, sowohl Ziffern als auch
Zeichen zu kodieren. Da der Computer nur mit Zahlen jonglieren
kann, miissen alle zu iibertragende Zeichen in einen numerischen
Wert konvertiert werden. Das zu iibertragende Zeichen, das der 0
entspricht, lautet 48 (dezimal). Das fiir die Ziffer 9 lautet 57 dezi-
mal). Um jetzt an den eigentlichen Wert zu gelangen, miissen wir
von jedem Ubertragungswert 48 subtrahieren.

Das konnte wichtig fiir dich sein
Hier ein paar Begriffe fur die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

ASCII
ASCll Tabelle

Die Extrahierung des Pin-Wertes erfolgt in gleicher Manier:

Arduvalue = (buffer[4] - 48) * 1000 + // Tausenderstelle
(buffer[5] - 48) * 100 + // Hunderterstelle
(buffer[6] - 48) * 10 + // Zehnerstelle
(buffer[7] - 48); // Einerstelle

Projekt 28: Der Arduino-Talker

Bevor wir jetzt einen digitalen Pin auf deinem Arduino-Board
ansprechen, muss noch ermittelt werden, ob ein digitaler Ausgang
mit HIGH- bzw. LOW-Pegel versehen werden muss oder ob ein
analoger Ausgang iiber PWM anzusprechen ist. Das wird mit den
folgenden Zeilen ermoglicht:

// Digital
if(buffer[1] == DigitalTag){
Serial.println("Type: digital");
if(Arduvalue == 0)
digitalWrite(ArduPin, LOW);
if(Arduvalue == 1)
digitalWrite(ArduPin, HIGH);

}
// Analog

if(buffer[1] == AnalogTag){
Serial.println("Type: analog");
analoghrite(ArduPin, Arduvalue);
}

Wie du siehst, wird im digitalen Fall die digital Write-Funktion, im
analogen Fall die analogWrite-Funktion bemiitht. Du kannst die
Funktionalitit des Sketches bzw. der Schaltung sogar schon ohne
die komfortable C#-Anwendung testen, denn es werden ja einfach
nur in Abhangigkeit von der Aktion, die du ausfihrst, die richtigen
Kommandos an die serielle Schnittstelle geschickt. Offne doch den
Serial-Monitor und gebe z.B. die folgenden Zeilen ein:

* S5a060018E
* Sd020001E

Schau’ dir an, wie die LEDs reagieren. Die komplette C#-Anwen-
dung mit einer detaillierten Beschreibung findest du auf meiner
Internetseite. Leider kann ich diese Details aufgrund ihres Umfan-
ges nicht in diesem Kapitel aufnehmen. Doch keine Bange: Ich
werde eine PDF-Datei mit allen notwendigen Informationen erstel-
len sie zum Download zur Verfiigung stellen.

Ich habe irgendwie ein paar Probleme mit der Eingabe in den Serial-
Monitor. Also, die Eingabe klappt schon, doch die Auswirkungen auf
dem Arduino-Board bzw. auf die angeschlossenen LEDs sind nicht
so, wie sie sein sollten. Was mache ich nur falsch?

Zeige mir doch einfach einmal deine Eingabe, die du gemacht hast.
Vielleicht stimmt deine eingestellte Ubertragungsrate nicht?

Der Arduino-Talker

590

COM3

5d020001E

- N E Frame ok -
Type: digital F

m

Autoscroll

:Carriaga return v: 9500 baud v:

N ———————————————————————————————————

Ok, du wolltest als die LED an Pin 2 anschalten. Die Ubertragungs-
rate von 9600 Baud stimmt mit der im Sketch tiberein.

@ Achtung

Links neben der Drop-Down-Box fir die Ubertragungsrate
befindet sich eine weitere Liste, in der du Auswéhlen kannst,
was nach dem Drlcken der RETURN-Taste geschehen soll. Stan-
dardmaBig ist hier No line ending ausgewdhlt. Das bedeutet,
dass nur die Zeichen Ubertragen werden, die du in der Einga-
bezeile eingetippt hast. Du musst jedoch den Eintrag

| Carriage return -

selektieren, so dass nach der Eingabebestdtigung zusatzlich
noch das Steuerzeichen flr Carriage-Return Ubertragen wird.
Andernfalls wird die evalSerialData-Funktion nicht aufgerufen.

Wie du siehst, erhiltst du eine entsprechende Riickmeldung, wenn
dein Befehl korrekt erkannt wurde. Wenn du versuchtst, etwas zu
ibertragen, dass nicht dem vereinbarten Protokoll entspricht, wird
das mit einem Error quittiert.

(W) Achtung

Der Sketch-Code fur die C#-Anwendung fur den Arduino-Talker
wurde dahingehend modifiziert, dass alle Riickmeldungen an
die serielle Schnittstelle entfernt wurden, da andernfalls die
Anwendung recht trédge reagieren wirde. Die Funktionalitat ist
davon nicht betroffen! Du findest den Sketch-Code aber in der
Anwendung selber.

Projekt 28: Der Arduino-Talker

Troubleshooting

Wenn die Steuerung deiner digitalen Ausginge nicht funktioniert,
tiberpriife Folgendes:

Ist die Verkabelung korrekt?
Gibt es eventuell Kurzschliisse untereinander?

Ist bei Sender und Empfinger auch wirklich die gleiche Uber-
tragungsrate eingestellt?

Wurde die GroR- bzw. Kleinschreibung beriicksichtigt, die ja
hier einen Unterschied macht?

Was hast du gelernt?

Du hast erfahren, wie du, wieder mittels Implementierung
eines Ubertragungsprotokolls, unterschiedliche Daten iiber die
serielle Schnittstelle schicken kannst, um so dein Arduino-
Board zu steuern.

Das funktioniert sowohl tiber eine Eingabe in einem Terminal-
Programm, wie hier dem Serial-Monitor, als auch iiber eine
komfortable Anwendung mit einer grafischen Benutzeroberfli-
che. Das kurz gezeigte C#-Programm ist nur ein Beispiel fiir
eine mogliche Realisierung, denn du kannst nahezu jede Pro-
grammiersprache verwenden, die einen Zugriff auf die serielle
Schnittstelle ermoglicht.

Workshop

Ich habe folgende Idee, obwohl die Sache vielleicht etwas knifflig
werden kann: Du weifit jetzt, wie du tiber die entsprechenden Steu-
erbefehle die digitalen bzw. analogen Ausginge manipulieren
kannst. Fuige dem Sketch eine Funktionalitit hinzu, mit der du ein-
zelne LEDs unabhingig voneinander blinken lassen kannst. Ver-
wende dazu den Kleinbuchstaben b. Du hast dann also die
folgenden drei Moglichkeiten:

d fiir digital

a fiir analog

e b fiir blink

Hier zwei Beispiele:

Der Arduino-Talker

Sb020001E lisst die LED an Pin 2 blinken.

592

* Sb030000E stoppt im gegebenen Fall das Blinken der LED an
Pin 3. Falls sie nicht blinkt, sondern kontinuierlich leuchtet,
soll sie nun ausgehen.

Tipp

Du musst den Blink-Status jeder einzelnen LED irgendwie spei-
chern und was bietet sich dazu wohl an? Vielleicht ein Array!? Du
kannst Auf keinen Fall mit der delay-Funktion arbeiten. Falls du
nicht mehr weifdt, warum das nicht méglich ist, wirf nochmal einen
Blick in das Kapitel Das Blinken einer LED Teil 2 und frische dein
Wissen auf.

Projekt 28: Der Arduino-Talker

Projekt

29

Die drahtlose
Kommunikation (iber
Bluetooth

Scope

In diesem Experiment behandeln wir folgende Themen:

* Was ist Funk-Kommunikation
* Was ist Bluetooth

* Das Bluetooth-Shield

* Aufbau der Schaltung

* Workshop

Was ist Funk-Kommunikation?

Bisher hat unser Datenaustausch bzw. die Kommunikation zwi-
schen Computer und Arduino-Board immer drahtgebunden iiber
die serielle Schnittstelle stattgefunden. Das ist fiir viele unserer
Experimente auch vollig ausreichend und es spricht nichts dage-
gen. Was aber, wenn du z.B. unseren ArduBot einen lingeren Weg
fahren lassen méchtest und die angeforderte Strecke die Linge des
USB-Kabels tibersteigt? Oder lasse ihn einmal zahlreiche Rotatio-
nen in die unterschiedlichsten Richtungen ausfithren, dann wird
das Kabel anschliefend recht verzwirbelt sein. Eine Losung wire
ein lingeres USB-Kabel, doch die maximale Linge betrigt im
Schnitt um die 5 bis 7 Meter, was auch vom angeschlossenen USB-
Gerit abhingt. Ich denke, dass es jetzt an der Zeit ist, iiber eine
Funk-Kommunikation nachzudenken. Diese drahtlose Art der Kom-
munikation ermoglicht einen flexiblen Datenaustausch zwischen
Endgeriiten, ohne listiges und storendes Verlegen von zahllosen
Strippen, in denen man sich regelmifig verheddert. Natiirlich gibt

593

594

Tabelle 29-1 p
Bluetooth-Klassen mit Sende-
leistung und Reichweite

es hinsichtlich der Reichweite ebenfalls Beschrinkungen, die von
der abgestrahlten Sendeleistung abhingen. Fine dir sicherlich
schon bekannte Funkverbindung diirfte das WLAN (Wireless-
LAN) sein, das vielleicht dein Router bereitstellt. Das WLAN kann
je nach Umgebungsbeschaffenheit schon einige Meter an Wegstre-
cke tiberbriicken, wobei Angaben von ca. 300 Metern sicherlich nur
im Freien unter sehr giinstigen Bedingungen erreicht werden.
Innerhalb von Gebiuden sieht die Sache schon viel schlechter aus.
Zwischen benachbarten Rdumen wird es auf jeden Fall besser funk-
tionieren als iiber mehrere Etagen hinweg, bei denen sich im Boden
wahre Abschirmgitter in Form von Stahlarmierungen befinden. Da
verkiirzt sich die Reichweite schon auf ca. 10 bis 20 Meter. Kom-
men wir jetzt zu einem Funkverfahren, das eher auf kurzer Distanz
von 1 bis 100 Metern Verwendung findet. Es nennt sich Bluetooth.
Da sich Bluetooth und WLAN das gleiche Frequenzband von 2,4
GHz teilen, kann es u.U. zu Storungen durch Uberlagerungen kom-
men. Die Reichweite von Bluetooth hingt ebenfalls von der abge-
strahlten Sendeleistung ab, wobei es drei Klassen gibt:

Klasse Sendeleistung Reichweite

1 100 mW ca. 100 Meter
2 2,5mW ca. 10 Meter
3 TmW . 1 Meter

Natiirlich ist nicht nur der Sender fiir eine Reichweitenbeschrin-
kung verantwortlich. Auch der Empfinger trigt mafRgeblich dazu
bei. Faktoren wie Antennenqualitdt und Empfianger-Empfindlich-
keit spielen ebenfalls eine grofle Rolle.

Das konnte wichtig fiir dich sein
Hier ein paar Begriffe fur die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

Bluetooth
WLAN

Genug der Vorrede, denn weitere und detaillierte Informationen
findest du im Internet oder in spezieller Fachliteratur. Ich mochte
dir jetzt ein interessantes und kostengiinstiges Shield vorstellen, das
wir fiir unsere drahtlose Kommunikation mit dem Arduino-Board
verwenden werden.

Projekt 29: Die drahtlose Kommunikation {iber Bluetooth

<« Abbildung 29-1
Das Bluetooth-Shield von ITead
Studio in der Version 2.1

Wenn ich mir das Bluetooth-Shield so anschaue, dann verstehe ich
zwar das Prinzip, doch wie und mit was kommt die Kommunikation
zustande? Wie kann ich dann die empfangenen Daten auf dem Ardu-
ino abrufen? Da ist doch sicherlich wieder eine spezielle Library erfor-
derlich — richtig!?

Das sind ganz naheliegende Fragen, Ardus, die ich mir zu Beginn
ebenfalls gestellt habe. Die Sache stellt sich aber relativ einfach dar.
Die Kommunikation kann mit jedem anderen Bluetooth-Gerit
erfolgen, also z.B. mit einem Bluetooth-Adapter, den du an deinem
Computer anschlieffen kannst, oder auch mit einem entsprechen-
den Smartphone.

<« Abbildung 29-2
Der Bluetooth-Adapter fiir die
USB-Schnittstelle

Das wirklich geniale bei der Kommunikation mit dem Arduino-
Board ist die Tatsache, dass die ganze Kommunikation iiber die
serielle Schnittstelle des Boards erfolgt und du somit keine spezielle
Library hierfiir benotigst. Aufferdem steht dir nach der Installation
des Bluetooth-Adapters an deinem Computer ein neuer COM-Port
zur Verfogung. Du merkst bestimmt, worauf ich hinaus mochte.
Wenn du jetzt ein Terminal-Programm wie z.B. PuTTY mit dem
COM-Port des Bluetooth-Adapters verbindest und dort Befehle
absetzt, werden diese {iber Bluetooth in den Ather geschickt. Wenn
jetzt dein Arduino-Board mit dem Bluetooth-Shield versehen ist,
konnen dort iiber die serielle Schnittstelle die gesendeten PuTTY-

Was ist Funk-Kommunikation? 595

Abbildung 29-3 »
Der Bluetooth-Adapter sendet und
das Bluetooth-Shield empféngt.

Abbildung 29-4 p
Das Arduino Sandwich mit
Bluetooth- und Anzeige-Shield

Befehle empfangen und ausgewertet werden. In der folgenden
Abbildung habe ich einmal versucht, den Datenfluss wihrend der
Kommunikation zu veranschaulichen, wobei der Datenfluss von
links nach rechts erfolgt.

Computer +
Terminalprogramm

_-BT‘Ada -
"> g

e

Im letzten Kapitel habe ich dich mit dem Anzeige-Shield vertraut
gemacht — und das nicht ohne Grund. Denn nun méchte ich dir die
Stapelmoglichkeit mehrerer Shields auf dem Arduino-Board vorstel-
len. In der folgenden Abbildung siehst du zuunterst das Arduino-
Board mit dem aufgestecktem Bluetooth-Shield. Mit diesem Dop-
pelpack wird die Funkverbindung hergestellt. Darauf wird jetzt
noch das Angzeige-Shield gesteckt, denn die Anschlisse, die vom
Arduino-Board kommen, werden durch das Bluetooth-Shield hin-
durch nach oben gefiihrt.

Arduino + BT-Shield

Serial-Monitor

Anzeige-Shield———=

o Externe
Bluetooth-Shield—> X
Spannungsversorgung

Arduino-Board———> %

Du kannst in der Abbildung erkennen, dass das Arduino-Sandwich
vollkommen autark, also eigenstindig, ohne eine Anbindung an
deinen Computer arbeitet. Die Spannungsversorgung erfolgt iiber
eine 9V-Blockbatterie hergestellt. Alles Weitere erfolgt tiber die
Funkverbindung mittels Bluetooth.

Das Bluetooth-Shield

Bisher habe ich lediglich die Themen Bluetooth-Adapter bzw. Blue-
tooth-Shield grob angerissen und ihre Funktionen ein wenig erldu-
tert. Es ist nun an der Zeit, ein genauer auf diese Bauteile
einzugehen. Ich fange einfach einmal mit dem Bluetooth-Shield an.

596

Projekt 29: Die drahtlose Kommunikation {iber Bluetooth

Dass wir fiir die eigentlich Kommunikation keine spezielle Library
benotigen, weifdt du bereits, weil alles iiber die beiden Pins RX bzw.
TX der seriellen Schnittstelle des Arduino-Boards lauft. Dennoch
miissen wir uns hier auch mit der eigentlichen Konfiguration des
Bluetooth-Shields befassen, denn es gibt unterschiedliche Parame-
ter, die es bei Bedarf anzupassen gilt.

Achtung @

Ich sollte an dieser Stelle einen Umstand ansprechen, der fir
die Konfiguration von Shields Uber das Arduino-Board sehr
wichtig ist. Viele Shields, so auch das hier vorliegende Blue-
tooth-Shield, werden Uber die serielle Schnittstelle des Arduino-
Boards konfiguriert. Es kann deshalb u.U. notwendig sein, vor
der Konfiguration den AVR vom Arduino-Shield vorsichtig zu
entfernen. Warum? Nun, der AVR blockiert mit seinen RX- bzw.
TX-Anschlissen zeitweise die serielle Schnittstelle, so dass eine
Kommunikation mit dem aufgesteckten Shield nicht moglich
ist. Du kannst deinen AVR jedoch mit einem Leer-Sketch (auch
Null-Code genannt) versorgen, der lediglich aus den notwendi-
gen Funktionen setup und loop besteht, deren Inhalt jedoch
leer ist. Also void setup() {} und void loop(){}.

Konfigurations-Modus

Auf dem Bluetooth-Shield befinden sich zwei kleine Schiebeschal-
ter, die es in die richtigen Positionen zu setzen gilt.

<« Abbildung 29-5
Die hardwaremaBige Konfiguration

1. Spannungspegel —
; des Bluetooth-Shield

2 Modus—"\

Uber den rechten Schiebeschalter kann die gewiinschte Versor-
gungsspannung ausgewihlt werden. In meinem Fall habe ich mich
fir 5V entschieden und den Schalter nach unten geschoben. Der
linke Schiebeschalter muss zur Konfiguration des Shields iiber die
serielle Schnittstelle ebenfalls in die untere Position gesetzt werden.
Er ist mit To FT232 beschriftet, wodurch gekennzeichnet wird,
dass im gegebenen Falle die Datentibertragung, die vormals iiber
den FTDI-Chip (bei Arduino-Duemilanove) lief, jetzt tiber den
ATmega8U2 beim Arduino-Uno erfolgt.

Was ist Funk-Kommunikation? 597

598

Abbildung 29-6 »
Konfigurations-Modus des
Bluetooth-Shields

Tabelle 29-2 »
Die Parameter des Bluetooth-
Shields nach der Auslieferung

Tabelle 29-3 p
Ubertragungsraten

Konfigurations-Modus

00000000

.............. Terminal

In diesem Fall wird das Arduino-Board als Schnittstelle zwischen
einem Terminalprogramm wie z.B. PuTTY und dem Bluetooth-
Shield genutzt.

00000000
Bluetooth Shield V2.1

Verbindung testen

Die Kommunikation mit dem Bluetooth-Shield erfolgt iiber soge-
nannte AT-Befehle. Um zu sehen, ob das Board auch reagiert, 6ff-
nest du den Serial-Monitor und legst als Ubertragungsrate 9600
Baud fest. Jetzt gibst du einfach den Befehl AT ein und driickst die
RETURN-Taste. Das Shield sollte mit OK reagieren. Das Bluetooth-
Shield ist standardmifig mit folgenden Parametern vorkonfiguriert:

Parameter Wert
Ubertragungsrate 9600

Paritat N (None = keine)
Datenbits 8

Stoppbit 1

Pin-Code 1234

Anpassen der Ubertragungsrate
Mit dem Befehl

AT+<Parameter>

kann die Baudrate angepasst werden. Der folgenden Tabelle kannst
du entnehmen, welche Zeichenfolgen in die spitzen Klammern ein-
gefligt werden konnen.

<Parameter> Ubertragungsrate

BAUD1 1200
BAUD2 2400
BAUD3 4800
BAUD4 9600

Projekt 29: Die drahtlose Kommunikation {iber Bluetooth

<Parameter> Ubertragungsrate

BAUDS 19200
BAUD6 38400
BAUD7 57600
BAUDS 115200

Nach erfolgreicher Anpassung antwortet das Board z.B. mit
OK38400. Jetzt darfst du natiirlich nicht vergessen, firr den Serial-
Monitor ebenfalls die neue Ubertragungsrate anzugeben, da
ansonsten keine Kommunikation zustande kommen kann.

Anderung des Namens
Mit dem Befehl

AT+NAME<EigenerName>

kannst du deinem Shield einen eindeutigen Namen zuweisen. Das
Shield reagiert danach mit OKsetname.

Anderung der PIN
Mit dem Befehl

AT+PIN<XXXX>

kann der Pin-Code gedndert werden. Er wird immer vierstellig ver-
geben. Den Pin-Code solltest du nach Moglichkeit nicht vergessen!
Nach erfolgreicher Anpassung erfolgt die Meldung OKsetPIN.

Arbeits-Modus

Wurde die Konfiguration abgeschlossen, muss der linke Schiebe-
schalter in die Position To Board (auf dem Shield steht Broad)
gebracht werden. Anders als beim Konfigurations-Modus erfolgt der
Datenfluss hier so, wie er in der folgenden Abbildung zu sehen ist:

Terminal

Bluetooth-Adapter

Arbeits-Modus

00000000
Bluetooth Shield V2.1

<« Abbildung 29-7
Arbeits-Modus des
Bluetooth-Shields

Was ist Funk-Kommunikation?

mailto:@0�*�*/.-

600

Jeglicher Datentransfer erfolgt jetzt iiber die Funkstrecke und
gelangt auf diesem Weg tiber das Bluetooth-Shield zur seriellen
Schnittstelle deines Arduino-Boards.

Wenn ich mir das letzte Bild so anschaue, dann kommt bei mir eine
Frage auf. Das Terminalprogramm muss doch zu einem COM-Port
eine Verbindung aufnehmen? Ist das der gleiche Port, den auch der
Serial-Monitor verwendet?

Nein, Ardus, natiirlich nicht. Der COM-Port des Serial-Monitors
geht doch direkt zum Arduino-Board. Dabei handelt es sich um
eine kabelgebundene Kommunikation. Wir wollen jedoch tber
eine Funkstrecke kommunizieren, und dazu benétigen wir zusétz-
lich noch den Bluetooth-Adapter. Dieser Adapter kann Bluetooth-
Gerdte — wie z.B. dein Bluetooth-Shield — in der niheren Umgebung
erkennen und fiigt sie deinem System hinzu, so dass sie von da an
iiber Funk angesprochen werden kénnen. Hat das Hinzufiigen des
Bluetooth-Shields funktioniert, dann wird auf deinem Computer ein
neuer COM-Port bereitgestellt. Uber diesen Port, der ja dein Blue-
tooth-Shield reprisentiert, nimmst du dann mit deinem Terminal-
programm Kontakt auf. Dazu kommen wir jetzt.

Der Bluetooth-Adapter

Verwechsle nicht das Bluetooth-Shield mit dem Bluetooth-Adapter.
Der Adapter wird in den USB-Anschluss deines Computers
gesteckt und kann nach erfolgreicher Treiberinstallation eine Funk-
verbindung zum Bluetooth-Shield aufnehmen. Dazu sind die nach-
folgend beschriebenen Schritte erforderlich. Natiirlich muss dein
Bluetooth-Shield vorher auf dein Arduino-Board gesteckt werden,
damit es mit Spannung versorgt wird, denn es soll ja nun tiber Funk
erkannt werden. Andernfalls kannst du lange warten.

Hinzufligen eines neuen Bluetooth-Gerates

Wenn ich den Mentipunkt Gerdt hinzufiigen in meiner Bluetooth-
Adapter-Installation auswihle (dieser Punkt kann fir deinen Adap-
ter ggf. anders lauten), wird mir folgendes Dialogfenster angezeigt:

Projekt 29: Die drahtlose Kommunikation {iber Bluetooth

‘Wihlen Sie ein Gerat aus, das diesem Computer hinzugefiigt werden soll.

Neue Gerate werden weiterhin gesucht und an dieser Stelle angezeigt.

7 BTOOL
ﬂ Bluetooth
Andere

Wie soll werden, wenn das Gerdt nicht gefunden wird?

Du siehst, dass sich da ein Gerit anbietet, das sich BT001 nennt.
Ich hatte bei der Konfiguration meinem Shield genau diesen
Namen gegeben. Wihle das Gerit aus und klicke auf die Schaltfla-
che Weiter, so dass der folgende Dialog angezeigt wird:

>
‘Wahlen Sie eine Kopplungsoption aus.

< Eigenen Kopplungscode erstellen
Das Gerét verfugt Gber eine Zehnertastatur.

% Ohne Code koppeln
Fur diesen Gerdtetyp (z. B. eine Maus) ist keine sichere
Verbindung erforderlich.

Wie kann ben werden, dass das Gerdt dber ginen verfagt?

Wihle den Meniipunke Kopplungscode des Gerdtes eingeben aus,
sodass der folgende Dialog aufgerufen wird, in dem du jetzt deinen
Kopplungscode eingeben musst, der der Pin-Nummer entspricht.

<« Abbildung 29-8

Der Dialog »Gerét hinzufiigen«

<« Abbildung 29-9
Auswahl der Kopplungsoption

Was ist Funk-Kommunikation?

601

Abbildung 29-10 p
Eingabe des Kopplungscodes

@ [* Gerat hinzufigen

Geben Sie den Kopplungscode fir das Gerét ein.

Hiermit wird berpriift, ob Sie die Verbindung mit dem richtigen Gerat
herstellen.

1234

Der Code wird entweder auf dem Gerat angezeigt, oder er befindet sich
in den im Ligferumfang des Gerats enthaltenen Informationen.

BT001

Wie muss vorgegangen werden, wenn der Code fir die nicht gefunden werden kann?

Nach einem Klick auf die Schaltfliche Weiter wird die Installation
des neuen Gerites abgeschlossen. AbschlieRend solltest du einen
Blick in deinen Gerdtemanager werfen, damit du siehst, welcher
COM-Port hinzugekommen ist.

YF Anschlisse (COM & LPT)

T3 Brother MFC-5400CN Remote Setup Port (COM4)

1iBgige Seriell-Gber-Bluetooth-Verbindung (COME)
’? StandardmafBgige Seriell-Ober-Bluetooth-Verbindung (COM3)

Siehe da, ich habe zwei neue COM-Ports erhalten, von denen
COMS derjenige ist, den wir fiir das Terminalprogramm verwen-
den konnen, um jetzt Befehle an das Bluetooth-Shield bzw. das
Arduino-Board per Funk zu versenden.

Benotigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

1 x Bluetooth-Shield

1x Bluetooth-Adapter

Projekt 29: Die drahtlose Kommunikation {iber Bluetooth

Benétigte Bauteile

1x Anzeige-Shield aus dem letzten
Kapitel (zum Aufstecken auf das BT-
Shield)

Sketch-Code

Der Sketch-Code ist der gleiche, den wir im Kapitel Arduino-Talker
verwendet haben. Du musst ihn nicht anpassen. Wir haben ja
lediglich die Eingabe der Befehle vom drahtgebundenen Serial-
Monitor auf die Bluetooth-Ebene verlagert. Am Protokoll hat sich
nicht geindert, sondern lediglich am Ubertragungsmedium.

Abschicken der Befehle
Uber Bluetooth

Jetzt ist es an der Zeit, unsere Bluetooth-Strecke in Betrieb zu neh-
men. Offne ein Terminalprogramm deiner Wahl, vielleicht PuTTY,
und stelle eine Verbindung zu deinem neuen Bluetooth-COM-Port
her, der in meinem Fall COMS ist. Zuerst habe ich in PuTTY die
richtige Konfiguration eingestellt. Wihle die betreffenden Einstel-
lungen genau so aus, wie du es im markierten Bericht in der nach-
folgenden Abbildung siehst.

£2 PuTTY Configuration ==
Category:
[=)- Session Options cortrolling the terminal emulation
Logging Set various terminal options
. 'Tamgiua = 9] Auto wrap mode intially on
iz =] DEC Origin Mode intially on
Features [Implicit CR in every LF
- Window [implicit LF in svery CR
- Appearance Use background colour to erase screen
Behaviour [] Emable blinking text
~Jwendation Answerback to “E:
Selection PUTTY
- Colours
=)+ Connection Line discipline options.
Eata Local echo:
il @) Auto @ Force on () Force off
;L'rg‘? Local line eding:
- 55H @ Auto @ Force on (©) Force off
Serial Remote-controlled printing
Printer to send ANS| printer output to:
Mone (printing disabled) -
ooa

Was ist Funk-Kommunikation?

<« Abbildung 29-11
PuTTY-Konfiguration (Terminal)

603

Abbildung 29-12 p

Dann 6ffnest du eine serielle Verbindung (Serial connection), indem
du die folgenden Werte in den Dialog eintragst.

. . PuTTY Configuration [ES
PuTTY-Konfiguration (Serial) 8 2
Category:
=)- Session Options controling local serialines
Logaing St
=) Teminal
egbibard Serial line to connect to come
el
e Configure the seral ine
=) Window Speed (baud) 9600
Aoneamce) Data bits 8
Behaviour
- Translation Stop bits 1
Selection) T S—
- Colours ot (More -
=) Connection Flow cortrol Hone -
Data
o
Teinet
- Rlogin
- 55H
- Serial
About Open |[Cancel]

Wenn du dann auf die Schaltfliche Open klickst, 6ffnet sich das
PuTTY-Eingabefenster, wo ich schon einmal in die erste Zeile etwas
eingetragen und mit RETURN bestitigt habe:

Abbildung 29-13 »
PuTTY-Eingabe

22 CoMs - PuTTY l= =] = |

Mir fillt da gerade etwas ein. Kann ich nicht auch den im letzten
Kapitel vorgestellten Arduino-Talker zur Bluetooth-Kommunikation
nutzen? Dann miisste ich nicht immer die umstindlichen Befehlszei-
len eingeben.

Ja sicher, Ardus, das geht auch. Verbinde dich statt mit dem eigent-
lichen Arduino-COM-Port jetzt mit dem Bluetooth-COM-Port.
Dann erfolgt die Kommunikation mit dem Arduino-Talker per
Funk.

604 Projekt 29: Die drahtlose Kommunikation {iber Bluetooth

Troubleshooting

Wenn die Steuerung deiner digitalen Ausginge nicht funktioniert,
tiberpriife Folgendes:

* Ist die Verkabelung korrekt?
¢ Gibt es eventuell Kurzschliisse untereinander?

* Achte darauf, immer den richtigen COM-Port zu verwenden.
Ich habe da auch schon einmal etwas durcheinander gebracht
und dann den Fehler an der falschen Stelle gesucht.

* Falls du ein anderes Terminalprogramm als PuTTY zur Ein-
gabe verwenden mochtest, tiberpriife zuerst die Korrektheit
der Konfiguration. Manchmal musst du einfach ein wenig her-
umprobieren, um die richtigen Parameter zu finden.

Was hast du gelernt?

* Du hast erfahren, wie die Funkkommunikation iiber Bluetooth
funktioniert.

* Wir haben die im letzten Kapitel verwendeten Kommandos fiir
die Eingabe in ein Terminalprogramm, im vorliegenden Fall
PuTTY, verwendet, um per Funk das Anzeige-Shield zu steu-
ern.

Workshop

Versuche doch einmal per Bluetooth-Verbindung einem Piezo-Ele-
ment verschiedene Tone zu entlocken. Vielleicht musst du dazu das
Protokoll ein wenig anpassen. Schreibe doch ein eigenes, denn
meine Vorstellungen miissen nicht unbedingt deinen entsprechen.
Die Hauptsache ist, dass nachher Schaltung und Sketch eine Ein-
heit bilden und sich in einem regem Datenaustausch miteinander

befinden.

Was ist Funk-Kommunikation?

605

Bluetooth und das
Android-Smartphone

Scope
In diesem Experiment behandeln wir folgende Themen:

* Wie kann ich tiber mein Smartphone mit Android-Betriebssys-
tem iiber Bluetooth das Anzeige-Shield steuern?

Das Smartphone

Da Smartphones in der heutigen Zeit sehr
verbreitet sind und eine enorme Band-
breite an Funktionen bieten — ja, man

kann auch mit ihnen telefonieren — P
mochte ich dir zum Thema Bluetooth eine @i, [Tead Studio

' ke IR Sk

Moglichkeit vorstellen, tiber ein App der
Firma ITead Studio unser Anzeige-Shield
zu steuern. Als App bezeichnet man tibri-
gens eine Anwendung, die auf einem
Smartphone ausgefiihrt werden kann. Die
genannte Firma ist auch Anbieter des ver-
wendeten Bluetooth-Shields und stellt auf
ihrer Internetseite eine App fur das
Betriebssystem Arduino zum freien
Download zur Verfiigung. Sie nennt sich ITead BT Debugging
Assistant. Wenn du genau diese Bezeichnung bei Google eingibst,
dann wirst du zum entsprechenden Download-Link gefiihrt.

Projekt

30

<« Abbildung 30-1

Das Smartphone mit der Bluetooth-
App »ITEAD BT Debugging
Assistant«

607

Abbildung 30-2 p

Die App hat das Bluetooth-Shield
gefunden (Der Name lautet BT001)

Abbildung 30-3

Die Eingabe des Kommandos an das

608

Bluetooth-Shield

Nach der Installation und dem Start der App siehst du die oben
gezeigte Abbildung. Wir gehen die einzelnen Schritte zur Verbin-
dungsaufnahme einmal durch.

Schritt 1: (Suchen des Bluetooth-Shields)

Zu Beginn muss die App natiirlich dein Bluetooth-Shield im Ather
ausfindig machen. Tippe dazu auf die Search Device Schaltfliche.
Nach einiger Zeit meldet sich das Shield mit der entsprechenden
Kennung.

; 3
;;I ; :E! 1614

00:10:05:05:0135
BT001

Schritt 2: (Bluetooth-Device auswéhlen)
Mit dem Finger wiahlst du dann das erkannte Bluetooth-Device aus.

Schritt 3: (Eingabe des Kommandos)

Nach der Auswahl des Bluetooth-Geriites erscheint die folgende
Anzeige, in der du das gewiinschte Kommando eingeben kannst:

e o L R

[l send s ex [l send asNewLine

-]

Achte darauf, dass das Hikchen Send as New Line ausgewihlt ist.
Dadurch wird veranlasst, dass ein CR an den Sendetext angehingt
wird, da es ansonsten Probleme mit dem Protokoll gibt. Wenn du

Projekt 30: Bluetooth und das Android-Smartphone

die Schaltfliche Send angetippt hast, kannst du die Riickmeldung
in der Anzeige sehen. Ich mochte dich an dieser Stelle mit einem
neuen Sketch vertraut machen, der die Befehlstibertragung viel-
leicht vereinfacht. In meinem Smartphone kannst du die Eingabe-
zeile Sd2=1 sehen. Nachfolgend einige mégliche Eingaben:

Befehlszeile: . . .
Befehlszeile: @
Befehlszeile: @

Die erste Befehlszeile setzt den digitalen Pin 2 auf HIGH-Pegel. Die
zweite den Pin 13 auf LOW-Pegel und die dritte den digitalen Pin
11 mit einem PWM-Wert von 80. Du siehst, dass du mit ganz einfa-
chen Mitteln — natiirlich musst du ein Smartphone besitzen — per
Bluetooth Befehle an dein Shield senden kannst. Doch schauen wir
uns dazu einmal den Sketch-Code genauer an, der tibrigens von
Michael Margolis beigesteuert wurde, der Autor des Buches Ardu-
ino Cookbook ist. Ich habe den Sketch lediglich leicht angepasst. An
dieser Stelle noch einmal vielen Dank fir deine Unterstiitzung,
Michael.

#define StartTag "S" // S-Zeichen
#define DigitalTag 'd" // d-Zeichen
#define AnalogTag 'a' // a-Zeichen

#define ARRAY_SIZE 12

int ArduPin = 0; // Arduino-Pin
int ArduValue = 0; // Arduino-Value
int PinArray[ARRAY_SIZE] = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13};

void setup(){
Serial.begin(9600);
for(int i = 0; i < ARRAY_SIZE; i++)
pinMode(PinArray[i], OUTPUT);

void loop(){
if(Serial.find(StartTag))
{
while(Serial.available() < 1); // Warten bis Zeichen kommen
char type = Serial.read(); // d (digital) oder a (analog)

<« Abbildung 30-4

Beispieleingaben fiir das Smart-

phone

Das Smartphone

609

http://www.appinventorbeta.com/

610

ArduPin = Serial.parseInt(); // Pin-Nummer ermitteln
ArduValue = Serial.parseInt(); // Wert ermitteln
if(type == DigitalTag)
{
if(Arduvalue == 0)
digitalWrite(ArduPin, LOW);
else
digitalWrite(ArduPin, HIGH);
}
else if(type == AnalogTag)
analoghrite(ArduPin, ArduValue);
}
}

Wir sollten unser Augenmerk auf die loop-Funktion lenken, denn
da spielt die Musik. Uber die find-Methode der Serial-Klasse wird
der Eingabestrom nach dem StartTag durchsucht. Falls es nicht
erkannt wird, passiert erst einmal gar nichts. Ist das StartTag
jedoch Teil des Eingabestroms, dann wird der nachfolgende
Befehlsblock betreten. Uber die available-Methode wird jetzt
solange gewartet, bis weitere Daten eingehen. Das erste Zeichen
wird in der Variablen type gespeichert und sollte entweder d (digi-
tal) bzw. a (analog) sein, damit eine spitere Reaktion ausgelost
wird. Uber die parselnt-Methode wird der nachfolgende Zeichen-
strom ausgewertet und, falls es sich um Integerwerte handelt, in
den entsprechenden Variablen ArduPin und ArduValue gespei-
chert. Jetzt kommt der festgestellte Typ der Variablen type ins Spiel
und es wird entsprechend ein digitales oder ein analoges Signal
interpretiert und entweder HIGH- bzw. LOW-Pegel gesetzt oder
ein PWM-Signal ausgegeben.

Das ist schon sehr beeindruckend, doch gibt es nicht eine komfortab-
lere Moglichkeit der Ansteuerung, ohne die ganzen Zeichen mithsam
eingeben zu miissen? Ich meine so dhnlich wie beim Arduino-Talker.
Der hat doch auch eine schone Benutzeroberfliche, die man blof ent-
sprechend anklicken muss.

Du bist ja ganz schon verwohnt, Ardus! Ich wollte dir doch nur zei-
gen, dass du iiber Bluetooth deines Smartphones die gleichen Kom-
mandos absetzen kannst wie z.B. tiber ein Terminalprogramm.
Aber schau’ her. Ich habe einen solchen Einwand schon erwartet
und deshalb in einer Nacht- und Nebelaktion eine spezielle App
entwickelt.

Projekt 30: Bluetooth und das Android-Smartphone

f
| K4 bd MA L FL REL
Pn a2z g - 3

Die App mit dem Namen Arduino-TalkerBT an dieser Stelle zu
erldutern wiirde ein wenig den Rahmen dieses Buches sprengen.
Du kannst aber auf meiner Internetseite nachschauen. Dort findest
du ein spezielles Kapitel mit detaillierten Informationen und einem
Link zu einem Video, das dir die Funktion veranschaulicht. Du
kannst LEDs ein- bzw. ausschalten oder sogar blinken lassen. Lass’
deiner Kreativitit freien Lauf und denke einmal dariiber nach, was
du auf diese Weise alles Steuern kannst.

Sag mal, ist es eigentlich schwierig, eine App fiir ein Smartphone zu
programmieren?

Nun, Ardus, das kommt immer darauf an, was du entwickeln
mochtest und wie umfangreich das Projekt ist. Was wiirdest du
davon halten, wenn ich dir sagte, dass das u.U. iiberhaupt nicht
schwierig sein muss!? Wenn du das geeignete Werkzeug dazu an
die Hand bekommst, dann ist vieles sogar — mit ein wenig Einarbei-
tung — relativ einfach umzusetzen. Du kannst zwei Wege beschrei-
ten. Da gibt es zum einen das Android Software Development Kit
(SDK), mit dem du tiber die Eclipse- Entwicklungsumgebung mit-
tels Java alles programmieren kannst, was dein Herz begehrt. Das
setzt natiirlich voraus, dass du dich mit der Programmiersprache
Java auskennst, was fir einen Anfinger zusitzlichen Aufwand
bedeuten kann, weil Java vielleicht nicht immer ganz einfach zu
verstehen ist. Du musst dich also mit einer Vielzahl von unter-
schiedlichen Themen befassen, und bevor du zu einem ersten
brauchbaren Ergebnis kommst, kann schon ein wenig Zeit ins Land
gehen. Zum anderen mochte ich dir eine sehr interessante und
innovative Losung vorschlagen, bei der du nicht eine einzige Code-

Das Smartphone

<« Abbildung 30-5

Der Arduino-TalkerBT auf dem

Smartphone

611

612

e

zeile schreiben musst. Wie das gehen soll? Ganz einfach! Schau’ dir
den App Inventor an. Er wurde anfinglich von Google entwickelt
und ist jetzt Open-Source, da Google sich entschieden hat, keine
Entwicklungszeit mehr in dieses — in meinen Augen sehr schone
Projekt — zu investieren. Mit ihm kannst du in einer Art Baukasten-
system die benotigten App-Elemente, wie z.B. Schaltflichen, Text-
eingabeboxen, Bilder etc. zusammenstellen. Im zweiten Schritt
teilst du deiner App mit, was denn passieren soll, wenn z.B. eine
Schaltfliache beriihrt wurde. Das erfolgt alles ohne die Eingabe einer
einzigen Codezeile. Das Thema App Inventor wiirde ein ganzes
Buch fiillen, und deswegen mochte ich dich auf das Internet oder
spezielle Fachbiicher verweisen. Die Entwicklungsumgebung lduft
ibrigens innerhalb des Browsers, wobei deine Projekte nicht lokal
auf deinem Rechner, sondern auf einem Server verwaltet werden.
Auf diese Weise kannst du an jedem beliebigen Ort auf der Welt
Zugriff auf deine App Inventor-Projekte nehmen. Du benotigst dazu
lediglich einen entsprechenden Account. Die Entscheidung, wel-
chen Weg du einschlagst, liegt natiirlich ganz bei Dir. Eclipse mit
Android SDK oder App Inventor? Die Internetseite fur den App
Inventor lautet aktuell http://www.appinventorbeta.com/. Vielleicht
dndert sich die Adresse spiter nach Beendigung der Beta-Phase.
Also regelmiflig googlen!

Das konnte wichtig fiir dich sein
Hier ein paar Begriffe fur die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

App Inventor
Android Entwicklung
Android SDK

Troubleshooting

Sollten die in den ITead BT Debugging Assistant eingegebenen
Befehle nicht funktionieren, dann kontrolliere zuerst, ob du die
Klein- bzw. GrofRschreibung eingehalten hast.

Projekt 30: Bluetooth und das Android-Smartphone

http://www.appinventorbeta.com

Projekt

Der ArduBot wird 3 l

funkgesteuert

Scope
In diesem Experiment behandeln wir folgende Themen:

* Wie kann ich tiber mein Smartphone mit Android-Betriebssys-
tem via Bluetooth den ArduBot steuern?

ArduBot Reloaded

Du hattest dich im Kapitel tiber den ArduBot dariiber beschwert,
dass du eine ziemlich lange Leitung hast — dhh ich meine eine lange
USB-Leitung benotigst, um deinem ArduBot ein wenig Bewegungs-
freiheit zu gonnen. Ich habe mir diesen Einwand zu Herzen genom-
men und eine Fernsteuerung iiber das schon im letzten Kapitel
verwendete Smartphone mit Android Betriebssystem geschrieben.

<« Abbildung 31-1
Der Ardubot mit niitzlicher Payload
(Nutzlast)

613

Wie du auf dem Foto erkennen kannst, wurde der ArduBot mit
einer sehr niitzlichen Payload versehen.

Abbildung 31-2 p

Das Shield-Sandwich mit Arduino-
Board, Bluetooth-Adapter und
Motor-Shield

Motor-Shield

Bluetooth-Shield
Arduino-Board

Lego Trigerplatte

Jetzt erkennst du sicherlich den Vorteil von selbst hergestellten
Shields, wie das schon verwendete Motor-Shield zur Ansteuerung
der beiden Elektromotoren. Alles wurde aufeinandergesteckt und
am Ende auf einer Lego-Trigerplatte befestigt, die sehr gut oben
auf dem ArduBot Platz findet.

Ok, wenn ich mir das Shield-Sandwich so anschaue, ist das schon
eine sehr kompakte Angelegenheit. Kannst du mir aber bitte einmal
erkldren, wie das Zusammenspiel der einzelnen Shields bzw. deren
Kommunikation untereinander ablauft?

Klar, Ardus, das Ganze liuft in den folgenden vier Schritten ab, die
ich in der nichsten Abbildung durchnummeriert habe.

Abbildung 31-3 ;
Der Ablauf der Kommunikation | i I —

zwischen den einzelnen Shields K
s

© Digitale Ausgange

e

Schritt 1

Die vom Smartphone ausgesendeten Funksignale via Bluetooth
werden vom Bluetooth-Shield empfangen.

Schritt 2

Das Bluetooth-Shield leitet die empfangenen Kommandos an die
serielle Schnittstelle des Arduino-Boards 1:1 weiter.

614 Projekt 31: Der ArduBot wird funkgesteuert

Schritt 3

Das Arduino-Board entschlisselt die tiber die serielle Schnittstelle
eingehenden Kommandos und wandelt sie tiber die digitalen Aus-
gange in Steuersignale fiir das Motor-Shield um.

Schritt 4

Die vom Motor-Shield tiber die digitalen Ausgidnge des Arduino-
Boards empfangenen Steuersignale werden tiber den Motortreiber
entsprechend an die beiden Elektromotoren geschickt, die dann fiir
die Bewegung des ArduBots verantwortlich sind.

Die App, die ich zur Steuerung erstellt habe, wurde mit dem schon
erwihnten App-Inventor entwickelt. Sie lautet ArduBotBT und
kann von meiner Internetseite heruntergeladen werden.

ChR] & 5:09 PM <« Abbildung 31-4
ATQUBOIBT V1.0 www.Erik-Bartmann.de Die ArduBotBT App

Select BT-Device Connect to BT-Device

Du kannst deinen ArduBot damit vorwirts bzw. riickwirts fahren
oder eine Drehung nach links bzw. nach rechts ausfiihren lassen.

Stopp mal kurz! Du hast jetzt zwar erwihnt, wie ich iiber die App den
ArduBot steuern kann, doch ich kann sicherlich nicht den Sketch aus
dem ArduBot-Kapitel verwenden. Es fehlt dafiir bestimmt die Blue-
tooth-Anbindung, richtig?

Vollkommen korrekt, Ardus! Ich werde dir deswegen jetzt den
erforderlichen und leicht modifizierten Sketch zeigen, der gewisser-
mafen eine Vereinigung des Codes aus ArduBot- und Bluetooth-
Kommunikations-Kapitel darstellt.

ArduBot Reloaded 615

616

Arduino-Sketch-Code

Was du 1:1 iitbernehmen kannst, ist der ArduBot Sketch-Code aus
dem entsprechenden Kapitel. Wir haben doch eine spezielle Klasse
zur Ansteuerung entwickelt. Erinnerst du dich?

ArduBotBT

Du benotigst demnach die beiden folgenden Dateien:

* ArduBotMotor.cpp
* ArduBotMotor.h

Vielleicht hast du ja schon eine eigene Library im entsprechenden
Arduino-Verzeichnis angelegt. Dann musst du ja lediglich noch
einen Verweis einbauen. Doch schauen wir uns den eigentlichen
Sketch nun genauer an:

#include "ArduBotMotor.h";
#define StartTag "S" // Start-Tag

#define moveTag 'm' // Move-Tag
#define ARRAY_SIZE 12

char action; // Action-Type (m: move)
int actionDirection; // Action-Direction
int actionValue = 0; // Action-Value (im Moment immer 1)

ArduBotMotor abm = ArduBotMotor(2, 3, 4, 5); // Motorinstanz erzeugen

void setup(){
Serial.begin(9600);
}

void loop(){
if(Serial.find(StartTag)){
while(Serial.available() < 1); // Warten bis Zeichen kommen
char action = Serial.read(); // m: move, hoffentlich ®
actionDirection = Serial.parseInt(); // Action-Direction ermitteln
actionValue = Serial.parselnt(); // Action-Wert ermitteln
if(action == moveTag){
if(actionDirection == 1)
abm.move (FORWARD, STRAIGHT); // 1 Fahrzeugldnge forwdrts
// fahren
if(actionDirection == 2)
abm.move (BACKWARD, STRAIGHT); // 1 Fahrzeugldnge riickwdrts
//fahren

Projekt 31: Der ArduBot wird funkgesteuert

if(actionDirection == 3)
abm.move (LEFT, QUARTER); // 1/4 Linksdrehung
if(actionDirection == 4)
abm.move (RIGHT, QUARTER); // 1/4 Rechtsdrehung
}
}
}

Um den ArduBot anzusteuern, haben wir unser letztes Protokoll ein
wenig modifiziert. Das eigentliche Format ist natirlich gleich
geblieben, doch die Interpretation der Inhalte hat sich geandert.

Befehlszeile: . . . @ vorwarts
Befehlszeile: . . . @ riickwarts
Befehlszeile: . . . @ links
Befehlszeile: . . . @ rechts

Wir haben jetzt keinen Datentyp wie analog bzw. digital mehr. Die
hier angefiithrte String-Position beinhaltet den ArduBot-Typ, der
festlegt, was der ArduBot denn machen soll. Es wird im Moment
lediglich die Kennung m (m steht fiir move) iibertragen. Die nach-
folgende Stelle steht fiir die Bewegungsrichtung, wobei ich mich fiir
den folgenden Code entschieden habe:

* 1 =vorwirts fahren
* 2 =riickwiirts fahren
* 3 =links drehen

* 4 = rechts drehen

Natiirlich kannst du dir noch viel zusitzlichen Code ausdenken,
denn der ArduBot fihrt im Moment immer nur eine Fahrzeuglinge
vor- bzw. riickwirts und dreht sich nur um 90° links- oder rechts-
herum. Der actionValue ist fiir alle Kommandos der Wert 1, was
bedeutet, dass der Befehl zur unmittelbaren Ausfithrung kommen
soll. Die eigentliche Ansteuerung des ArduBots erfolgt mittels der
folgenden Zeilen:

if(action == moveTag){
if(actionDirection == 1)
abm.move (FORWARD, STRAIGHT); // 1 Fahrzeugldnge forwdrts fahren
if(actionDirection == 2)
abm.move (BACKWARD, STRAIGHT); // 1 Fahrzeugldnge riickwdrts fahren

ArduBot Reloaded

617

when pinMovel eft.Click

test C‘

Abbildung 31-5 A

Ausschnitt aus dem App-Inventor
zur Steuerung des ArduBots iiber
Bluetooth

BTClient.IsConnected

call te:
BTClient.SendText

if(actionDirection == 3)
abm.move (LEFT, QUARTER);
if(actionDirection == 4)
abm.move (RIGHT, QUARTER);
}

// 1/4 Linksdrehung

// 1/4 Rechtsdrehung

Die Auswertung von actionDirection entscheidet iiber die Aktion,
die zur Ausfiihrung gebracht wird.

Auch wenn ich jetzt nerve. Zeige mir doch bitte einmal den Aus-
schnitt aus dem App-Inventor, der die Befehle zur Steuerung per Blue-
tooth iibermittelt. Du hast gesagt, dass dort keine einzige Codezeile
geschrieben werden muss. Ich kann mir darunter nun {iberhaupt
nichts vorstellen.

Also gut, Ardus. Dieser Part nimmt nicht so viel Platz ein und ist
relativ schnell erklirt. AuRerdem gewinnst du eine Vorstellung vom
Baukastenprinzip des App-Inventors.

when ptnMoveForward.Click

te=t () BTClientisConnected

call text S
BTClient.SendText S Smi=1n

do

if

then-do

when pinMoveRight.Click

test r:

do

if

BTClient.IsConnected

then-do B T o
- e
H BTClient. SendText Smd=1nv

! Sm3=1n

when ptnMoveBackward.Click

test BTClient.IsConnected

call text text
BIClientSendText He Sm2=1in

i

do

i

then-do

Du siehst, dass jede Schaltfliche der App einen eigenen Codeblock
bekommen hat. Nehmen wir doch einfach einmal den obersten
Block. Er wird angesprungen, wenn die Schaltfliche fir das Vor-
warts fahren ausgewihlt wurde (when-do-Block). Im if-Block findet
anschliefend eine Uberpriifung statt, ob iiberhaupt eine Bluetooth-
Verbindung besteht. Wird dieser Test erfolgreich mit Ja bewertet,
dann sendet der Bluetooth-Client die enthaltene Zeichenkette im

618

Projekt 31: Der ArduBot wird funkgesteuert

Text-Block via Bluetooth. Das Signal wird vom Bluetooth-Shield
empfangen und alles nimmt seinen schon beschriebenen Lauf.

Workshop

Wenn du dich fiir die Entwicklung tiber den App-Inventor entschie-
den haben solltest, dann erweitere doch die Ansteuerung des Ardu-
Bots dahingehend, dass er zusitzliche Aktion ausfithren kann bzw.
tiber eine erweiterte Funktionalitiit verfligt, z.B folgende:

ArduBot Reloaded

eine halbe Drehung
Aktionen iiber mehrere Fahrzeuglingen

Vielleicht bringst du noch LEDs an deinem ArduBot an, die du
tiber geeignete Kommandos an- bzw. ausschalten kannst.

Ebenso kannst du deinen ArduBot iiber einen angeschlossenen
Piezo Tone von sich geben lassen.

619

Projekt

Netzwerk- 3 2
Kommunikation

Scope
In diesem Experiment behandeln wir folgende Themen:

* Was ist ein Netzwerk?
¢ Wie konnen wir den Arduino in ein Netzwerk einbinden?

* Was ist ein Web-Server?

Was ist ein Netzwerk?

Das grofite Netzwerk, das wir Menschen tagtiglich (be)nutzen, ist
das World-Wide-Web — kurz www genannt. Es handelt sich dabei
um die Vernetzung einer Vielzahl von Rechnersystemen, die auf der
ganzen Welt miteinander in Verbindung stehen. Schon durch den
Zusammenschluss lediglich zweier Computer iiber ein geeignetes
Ubertragungsmedium (z.B. Ethernet-Kabel, Glasfaser-Kabel oder
WLan) entsteht ein Netzwerk. Du kannst es dir wie ein Gehirn vor-
stellen, in dem mehrere 100 Milliarden Nervengzellen existieren.
Jede dieser Nervenzellen besitzt bis zu zehntausend Synapsen. Bei
diesen handelt es sich um die Kommunikationswege, die die Ner-
venzellen nutzen, um Informationen weiterzuleiten bzw. auszutau-
schen. Jede einzelne Nervengzelle konnte im Gehirn fiir einen
einzelnen Computer stehen, der iiber die Synapsen, also seine Netz-
werkkarte (das konnen ggf. auch mehrere sein), mit anderen Syste-
men in Verbindung steht.

621

http://arduino.cc/en/Guide/ArduinoEthernetShield
http://arduino.cc/en/Guide/ArduinoEthernetShield
http://arduino.cc/en/Guide/ArduinoEthernetShield

Abbildung 32-1 p
Ein kleines Netzwerk inklusive
Arduino-Board

Abbildung 32-2 p
Steckverbindung RJ45 eines
Netzwerkkabels

Arduino 1
IT7

Die einzelnen Rechnersysteme, die ich in dieser Abbildung der Ein-
fachheit halber mit IT1 bis IT7 bezeichnet habe, sind {iber die Netz-
werkkarten bzw. Netzwerkkabel untereinander verbunden.
Natiirlich ist das hier vereinfacht dargestellt, denn in der Realitit
sind die Netzwerkkomponenten z.B. iiber sogenannte Switche ver-
bunden. Das sind Verteiler bzw. Netzwerkweichen, die die Daten
auf intelligente Weise zu den einzelnen Teilnehmern schicken. In
der folgenden Abbildung siehst du eine Steckverbindung des Typs
RJ45 eines heute gingigen Netzwerkkabels.

V.

).f

pe.

o/

R

;f-f& Y

Ich denke, dass du mit diesem Stecker sicherlich schon einmal in
Berithrung gekommen bist, denn dein Computer ist garantiert mit
einem Netzwerkkabel tiber den Router verbunden, der eine Verbin-
dung zu deinem Provider bzw. dem Internet herstellt.

Also, wenn ich mir diesen Stecker so anschaue, und den kenne ich ja
tatsichlich schon, dann sehe ich auf meinem Arduino-Board keine
Buchse, in die ich ihn stecken konnte. Wie soll ich denn da mit mei-
nem Arduino-Board eine Netzwerkverbindung herstellen?

Du bist mal wieder schneller als die Polizei erlaubt, Ardu. Ich war
doch mit meinen Ausfithrungen noch gar nicht fertig. Natiirlich

Projekt 32: Netzwerk-Kommunikation

besitzt das Arduino-Board von Hause aus keinen Netzwerkan-
schluss. Dazu wird eine zusitzliche Netzwerkkomponente benétigt.

Ethernet-Shield ENC28J60 Ethernet Modul

In der Abbildung siehst du auf der linken Seite das Ethernet-Shield,
das zusitzlich noch mit einem microSD-Sockel versehen ist. Dort
kannst du Daten zwischenspeichern, was aber im Moment nicht
unser Thema ist. Rechts davon befindet sich das Ethernet-Modul
ENC28]60. Das ist im Vergleich zum Ethernet-Shield giinstiger, bie-
tet jedoch keine Moglichkeit der Speicherung von Daten auf eine
SD-Card und kann nicht unmittelbar auf das Arduino-Board
gesteckt werden. Die Anschliisse auf dem Modul miissen iiber
Patchkabel mit deinem Arduino-Board verbunden werden. Das
sollte aber kein Hindernis darstellen und auflerdem weiflt du ja,
wie du dir ohne groRere Probleme selbst ein Shield herstellen
kannst.

Du hast jetzt schon einige Male den Ausdruck Ethernet verwendet.
Was hat es damit auf sich? Ich denke, dass es etwas mit dem Internet
bzw. Netzwerk zu tun hat — oder?

Deine Vermutung ist korrekt, Ardus! Das ist ein gutes Stichwort,
um einige netzwerkspezifische Punkte zur Sprache zu bringen.

Ethernet

Der Begriff Ethernet steht fiir eine kabelgebundene Technologie zur
Datentibertragung. Seit den 1990er Jahren ist das der Standard fiir
eine ganze Reihe von LAN-Technologien (Local Area Network).
Die Ubermittlung der Daten erfolgt in der Regel iiber sogenannte
Twisted-Pair-Kabel (verdrillte Kabel) des Standards CAT-5 oder
hoher.

<« Abbildung 32-3
Zwei Ethernet-Komponenten

Was ist ein Netzwerk?

623

624

TCP/IP

Uber Protokolle hast du in einigen der vorangegangenen Kapiteln
schon etwas erfahren. Das Ethernet nutzt zur Dateniibertragung
ebenfalls ein Protokoll, das sich TCP (Transfer Control Protocol)
nennt. Ubersetzt wiirde es Ubertragungs-Kontroll-Protokoll ge-
nannt werden. Dieses Protokoll ermoglicht die Ubertragung von In-
formationen tiber das lokale oder globale Netzwerk und sorgt fir
eine verlustfreie Kommunikation. Es gibt Mechanismen, durch die
bei einem drohenden Datenverlust die zu tibertragenden Datenpa-
kete gerettet bzw. erneut tibertragen werden. Die Bezeichnung IP
(Internet Protocol) steht fir die Adressierung der zu tibertragenden
Datenpakete, die vom Sender zu einem ganz bestimmten Empfin-
ger geleitet werden sollen. Somit steht dieses Protokoll fur die
Adressierung der zu iibertragenden Datenpakete. Jeder Teilnehmer
im Netzwerk besitzt eine eindeutige Adresse vergleichbar mit der
Hausnummer in einer ganz bestimmten Straf%e einer Stadt. Damit z.
B. der Postbote ein Paket zweifelsfrei zustellen kann, diirfen keine
doppelten Hausnummern vorhanden sein, was ja im Normalfall
auch so ist. Das IP wird immer im Zusammenhang mit TCP ge-
nannt bzw. verwendet.

IP-Adresse

Die IP-Adresse eines Netzwerkteilnehmers muss innerhalb eines
Netzwerkes die Forderung nach Eindeutigkeit erfiillen. Sie wird
einem im Netz befindlichen Gerit zugewiesen und stellt damit
sicher, dass es adressierbar bzw. erreichbar ist. Die IP-Adressen der
IPv4-Notation setzen sich aus 4 Bytes (32 Bits) zusammen.

32 Bit

Byte 1 Byte 2 Byte 3 Byte 4

() (s), (2), (o)

Diese Adresse hat mein Router meinem PC zugewiesen, damit ich
im Netzwerk verfiigbar bin.

Netzwerkmaske

Eine IP-Adresse setzt sich immer aus einem Netzwerkanteil und
einem Hostanteil zusammen. Die Netzwerkmaske legt nun fest, wie
viele Gerite in einem Netzwerk zu erreichen sind und welche sich
in anderen Netzwerken befinden.

Projekt 32: Netzwerk-Kommunikation

P-adresse (192) (168) (2] [(100]

Netzwerk-Maske (255] (285) (255) (o)

L | L |
T

\
Netzwerkanteil Hostanteil

Um an den Hostanteil zu gelangen, wird die IP-Adresse mit der
Netzmaske UND-verkniipft. Bei der gezeigten Netzmaske besteht
theoretisch die Méglichkeit von 28 = 256 moglichen Rechnern im
angegebenen Netzwerk. Ich sage absichtlich theoretisch, denn die
255 beispielsweise hat eine Sonderstellung. Die Details hier zu
erliutern, wiirde den Rahmen dieses Buches sprengen und darum
verweise ich wieder auf entsprechende Fachliteratur bzw. das
Internet.

MAC-Adresse

Die MAC-Adresse Media Access Control) ist eine Adresse, die welt-
weit eindeutig sein muss und jedem Netzwerkadapter zugewiesen
wurde. Sie besteht aus 6 Bytes, wobei die ersten 3 Bytes eine Her-
stellerkennung OUI (Organizational Unit ldentifier) enthalten. Die
restlichen 3 Bytes ergeben die Stationskennung, die vom jeweiligen
Hersteller vergeben wird. Hier ein Beispiel fur die MAC-Adresse
eines Netzwerkadapters:

1C-6F-65-94-D5-1A

Gateway

Ein Gateway ist ein Durchgang zu einem gesonderten Bereich, der
tibertragen auf unsere Thematik mit Netziibergang tibersetzt wer-
den kann. Was konnte das fiir ein Gerit sein? Der Router, der mit
einem Bein — dhh Kabel — im Internet steht, wird als ein Gateway
bezeichnet. Mein Router hat z.B. die IP-Adresse 192.168.2.1 und
leitet meine Anfragen an meinen Provider bzw. das Internet weiter.
Wenn du in deiner Kommandozeile den Befehl ipconfig /all ein-
gibst, erhiltst du u.a. die folgenden Hinweise:

Standardgateway : 192.168.2.1
DHCP-Server : 192.168.2.1

In der folgenden Abbildung siehst du das Ethernet-Shield im
Zusammenspiel mit dem Arduino-Board.

Was ist ein Netzwerk?

625

Abbildung 32-4

Ethernet-Shield und Arduino-Board
Netewerkkabel

e |
i e

USE-Kabel

Ethemet-Shield

hidiie

Ardumo-Board

Bendtigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

Benétigte Bauteile

1 x Ethernet-Shield (http.//arduino.
cc/en/Guide/ArduinoEthernetShield)

1 x Netzwerkkabel (lang genug, um
vom Router zum Ethernet-Shield zu
reichen)

1 x analoges Input-Shield aus dem
Kapitel Data-Monitoring

Verwende ein normales Patch-Kabel, wenn du das Ethernet-
Shield mit deinem Router verbindest. Diese Kabel sind teilweise
gelb, weils oder auch schwarz. SchlieBe auf keinen Fall ein rotes
Netzwerkkabel zwischen deinem Router und dem Ethernet-

626 Projekt 32: Netzwerk-Kommunikation

http://arduino.cc/en/Guide/ArduinoEthernetShield
http://arduino.cc/en/Guide/ArduinoEthernetShield

Shield an, denn dabei handelt es sich in der Regel um ein soge-
nanntes Crosskabel, das nur verwendet werden kann, wenn du
dein Shield direkt mit der Netzwerkkarte deines Computers ver-
bindest. Es werden hierbei Giberkreuzte Empfangs- bzw. Sende-
leitungen verwendet. Néhere Informationen dazu findest du im
Internet.

Mit dem folgenden Sketch wollen wir das Ethernet-Shield wie einen
Web-Server arbeiten lassen. Wenn du dich iiber deinen Web-Brow-
ser (z.B. Firefox, Opera oder IE) mit dem Internet verbindest, stellst
du eine Verbindung zu einem Web-Server her:

Client 1 <« Abbildung 32-5
IQ, Ethernet-Shield und Arduino-Board
o Client 5
Client 2 $
o
RN
;& Server
1 =)
E Client 4
Client 3

Auf diesem Bild siehst du in der Mitte einen Server (Anbieter), der
die Anfragen von zahlreichen Clients (Kunden) beantwortet. Bei
einem Server handelt es sich um eine Software, die auf eine Kontakt-
anfrage von auflen reagiert und Informationen liefert. Das kann z.B.
ein Mail- bzw. FTP-Server oder ein Web-Server sein. Ein Client
kann z.B. ein Mail-Client wie z.B. Thunderbird oder Outlook sein.
Wenn es sich um einen Web-Client handelt, ist es moglicherweise
ein Firefox, Opera oder IE, die in diesem Buch schon erwihnt wur-
den. Kommen wir jetzt jedoch zu einem konkreten Beispiel, bei
dem das Ethernet-Shield in der Funktion als Web-Server die Werte
der analogen Einginge des Arduino-Boards versenden soll. Hier
eine Vorschau auf die Ausgabe im Web-Browser:

<« Abbildung 32-6

Ausgabe der HTML-Seite innerhalb
des Web-Browsers (numerische
Analog Pin 1: 710 und grafische Anzeige)

Werte der analogen Eingiinge

Analog Pin 0: 356

Analog Pin 2: 866

Analog Pin 3: 454

Analog Pin 4: 415

Analog Pin 5: 349

Was ist ein Netzwerk? 627

Abbildung 32-7

Das Grundgeriist einer Internetseite

628

Abbildung 32-8
Das Tag-Paar »title«

wie man Internetseiten programmiert?

MY~ Das ist doch nicht dein Ernst! Muss ich jetzt etwa auch noch lernen,
: :
2

Na ja, Ardus. Ganz kommen wir da nicht drumherum. Aber ich
kann dich beruhigen. Wir werden nur an der Oberfliche kratzen,
denn dieses Thema fiillt ganze Biicherschrinke. Internetseiten wer-
den in HTML programmiert. Das ist die Abkiirzung fiir Hypertext
Markup Language. Es handelt sich um eine textbasierte Auszeich-
nungssprache, mit der z.B. Text, Bilder, Videos oder Links auf einer
Internetseite dargestellt werden und die der Web-Browser lesen und
anzeigen kann. Im Folgenden werde ich dir das Grundgertist einer
Internetseite zeigen, das wir spiter ein wenig mit Inhalt fiillen wer-
den, um unsere Informationen darzustellen. Die meisten HTML-
Elemente werden durch sogenannte TAG-Paare gekennzeichnet.
Dabei gibt es immer ein 6ffnendes und ein schlieRendes TAG. Die
folgende Grafik zeigt dir das angekiindigte Grundgeriist, wobei ich
die korrespondierenden Paare farblich markiert habe.

G
-

Inhalt der Seite

</html>

Anhand der roten gestrichelten Linien erkennst du zusitzlich die
Paarbildungen. Die einzelnen TAGs bzw. HTML-Elemente werden
durch die Elementnamen, die in eckigen Klammern eingeschlossen
werden, gebildet. Schauen wir uns doch ein solches TAG-Paar ein-
mal genauer an:

Start-Tag Ende-Tag

!—;\!—;\

G i GHED

Projekt 32: Netzwerk-Kommunikation

Dieses Paar ist fiir die Uberschrift der Internetseite verantwortlich,
wobei sich der Text zwischen dem 6ffnenden und dem schlieRen-
den TAG befindet. Der schlieRende TAG besitzt den gleichen Ele-
mentnamen wie der 6ffnende, jedoch mit einem vorangestellten
Schrdgstrich (auch Slash genannt).

Arduino-Sketch-Code

#include <SPI.h>
#include <Ethernet.h>

byte MACAddress[] = {OXDE, OxAD, OxBE, OXEF, OXFE, OxED}; // MAC-Adresse
byte IPAddress[] = {192, 168, 2, 110}; // IP-Adresse
int const HTTPPORT = 80; // HTTP-Port 80 (Standardport)
String barColor[] = {"ffoooo", "ooffoo", "ooffff",
"ffffo0", "ffooff", "550055"}; // RGB-Farben fiir
Color-Bars
#define HTML_TOP "<html>\n<head><title>Arduino Web-Server</titles</
head>\n<body>"
#define HTML_BOTTOM "</body>\n</html>"
EthernetServer myServer (HTTPPORT); // lWeb-Server auf angegebenen Port
// starten

void setup(){
Ethernet.begin(MACAddress, IPAddress); // Ethernet initialisieren
myServer.begin(); // Server starten

}

void loop(){
EthernetClient myClient = myServer.available();
if(myClient){
myClient.println("HTTP/1.1 200 OK");
myClient.println("Content-Type: text/html");
myClient.println();

myClient.println(HTML_TOP); // HTML-Top
showValues(myClient); // HTML-Content
myClient.println(HTML_BOTTOM); // HTML-Bottom
}
delay(1); // Kurze Pause fiir Web-Browser
myClient.stop(); // Client-Verbindung schlieRen
}

void showValues(EthernetClient &myClient){
for(int i = 0; 1 < 6; i++){
myClient.print("“Analog Pin ");

Was ist ein Netzwerk?

629

Tabelle 32-1 »

Bendtigte Variablen und deren

630

Aufgabe

myClient.print(i);
myClient.print(": ");
myClient.print(analogRead(i));
myClient.print("<div style=\"height: 15px; background-color: #");
myClient.print(barColor[i]);
myClient.print("; width:");
myClient.print(analogRead(i));
myClient.println("px; border: 2px solid;\"></div>");
}
}

Um auf den Arduino Web-Server zuzugreifen, gibst du die im
Sketch-Code vergebene IP-Adresse in die Adresszeile deines Ardu-
ino-Web-Browsers ein. In meinem Fall ist das folgende:

LJ | http://192.168.2.110/ = [

Wenn dir diese Angabe zu kryptisch erscheint, kannst du natirlich
auch eine sprechendere Adresse vergeben:

L1 http://arduino, i

Du musst dazu lediglich unter Windows die hosts-Datei mit Admi-
nistratorrechten unter C\Windows\System32\drivers\etc anpassen
und die Zeile hinzufiigen, in der ich den Namen Arduino angegeben
habe:

localhost name resolution 1s handled withan DNS 1tself.

127.0.8.1 localhost
s localhost
192.168.2.110 Arduino

Dann ist der Aufruf einfacher und du musst dir nicht die IP-Adresse
merken.

Arduino-Code-Review

Fiir unser Web-Server-Experiment benétigen wir programmtech-
nisch gesehen die folgenden Variablen:

Variable Aufgabe

MACAddress[] ~ Eindimensionales Array zur Speicherung der MAC-Adresse fiir das Ethernet-
Shield

IPAddress[] Eindimensionales Array zur Speicherung der IP-Adresse fiir das Ethernet-Shield

Projekt 32: Netzwerk-Kommunikation

Variable Aufgabe < Tabelle 32-1

Benétigte Variablen und deren
Aufgabe

HTTPPORT Variable zur Speicherung der Port-Adresse fiir HTML

barColor(] Eindimensionales Array zur Speicherung der Farbinformationen fiir die horizon-
talen Werte-Balken

HTML_TOP Zusammenfassung einiger HTML-TAGs fiir den oberen Bereich

HTML_BOT- Zusammenfassung einiger HTML-TAGs fiir den unteren Bereich
TOM

Damit du die Funktionalitit des Ethernet-Shields nutzen kannst,
miissen zwei Libraries mit eingebunden werden.

* SPLh — Serial-Peripheral-Interface-Bus, wird fiir Arduino-Versi-
onen > 0018 benétigt.

e Ethernet.h

Ich habe mal eine Frage hinsichtlich der Variablen HTTPPORT. Ist
das ein Schreibfehler? Muss das nicht HTMLPORT lauten? Ich
dachte, es geht hier um HTML-Seiten.

Stimmt, Ardus, das ist am Anfang etwas verwirrend. HTTP ist die
Abkiirzung fur Hypertext Transfer Protocol. Wie du vielleicht
ahnst, haben wir es in der Computertechnik mit einer Vielzahl von
unterschiedlichen Protokollen zu tun. Wenn es um Web-Seiten
geht, dann ist dieses Protokoll fiir die Ubertragung verantwortlich.
Wenn du eine Web-Adresse in deinen Browser eingibst, dann fingt
diese meistens mit http://... an und nicht mit html://. Kommen wir
jetzt zur Portdefinition. Der Standardport fir Web-Server, die das
HTTP-Protokoll nutzen, ist die Nummer 80. Stelle dir diese Num-
mer als eine Art Abzweigung auf der Netzwerkstrasse vor, auf der
sich noch andere Protokolle tummeln. Hier eine kurze Liste mit
Anwendungen, von denen du vielleicht schon einmal gehort hast:

Port Dienst Aufgabe 4 Tab.ellle 32-2 o
. . ; Eine wirklich sehr kurze Liste mit

21 FTP Dateitransfer iiber FTP-Client Portnummern und Diensten

25 SMTP E-Mail-Versand

110 POP3 Client-Zugriff auf einen E-Mail-Server

Ich mochte noch einmal kurz auf die Struktur einer HTML-Seite zu
sprechen kommen. Der einzige variable Anteil unserer Seite ist der
Bereich, den ich mit Inhalt der Seite gekennzeichnet habe. Was sich
daritber bzw. darunter befinde, indert sich nicht. Aus diesem
Grund habe ich den oberen Teil

Was ist ein Netzwerk? 631

632

<html>

Uberschrift -

in die Definition HTML_TOP und den unteren Teil

</html>

in HTML_BOTTOM ausgelagert. Dies findest du im Sketch in den
folgenden Zeilen wieder:

#define HTML_TOP "<html>\n<head><title>Arduino Web-Server</title>
</head>\n<body>"
#define HTML_BOTTOM "</body>\n</html>"

Die Escape-Sequenz \n sorgt fiir einen Zeilenvorschub, so dass der
HTML-Code in einer gewissen Weise formatiert wird und nicht
alles in eine einzige Zeile gepackt wird. Kommen wir jetzt zum
eigentlichen Ablauf unseres Sketches. In der setup-Funktion wer-
den wie immer verschiedene Programmteile initialisiert.

void setup(){
Ethernet.begin(MACAddress, IPAddress); // Ethernet initialisieren
myServer.begin(); // Server starten

}

Das Ethernet-Shield wird {iber den ersten Schritt mit der MAC-
bzw. einer eindeutigen IP-Adresse versehen.

Bitte verrate mir doch einmal, wie du gerade auf die genannte IP-
Adresse 192.168.2.110 gekommen bist. Das ist mir absolut schleier-
haft.

Ok Ardus, die Antwort ist recht simpel. Mein Router befindet sich
im Adressbereich von 192.168.2 und besitzt die Hostadresse 1, was
wiederum bedeutet, dass seine IP-Adresse 192.168.2.1 lautet. In
dem Bereich ab 192.168.2.2 bis 192.168.2.254 kann ich also weite-
ren Netzwerkteilnehmern Adressen zuweisen. Zuriick zur Initiali-
sierung. Im zweiten Schritt wird der Web-Server gestartet, so dass
er auf eingehende Anfragen reagieren kann. Er lauscht quasi ins
Netz hinein und verharrt solange in Lauerstellung, bis ein Client an

Projekt 32: Netzwerk-Kommunikation

thn herantritt und etwas von ihm wissen mochte. Dann nimmt er
seine Arbeit auf und liefert die Daten, um sich anschlieRend erneut
auf die Lauer zu legen. Kommen wir nun zur eigentlichen Verarbei-
tung innerhalb der loop-Funktion. Zu Beginn wird geprift, ob eine
Anfrage eines Clients vorliegt:

EthernetClient myClient = myServer.available();
if(myClient){...}

Wenn die if-Abfrage erfolgreich beantwortet wird, kann der Server
damit beginnen, seine Informationen an den Client zu schicken.

zu lesen und kein Ausdruck, den es zu bewerten gilt.

[Wie war das noch mit der if-Abfrage? Da ist doch lediglich myClient }
Y

Kein Problem, Ardus! Das ist lediglich die Kurzschreibweise fiir fol-
genden Code:

if(myClient == true){...}

Die Abfrage auf true kann weggelassen werden, denn wenn der
Ausdruck innerhalb der if-Anweisung true ist, wird der nachfol-
gende Block ausgefiihrt. Du musst dann nicht noch einmal mit ==
priifen, ob der Ausdruck true ist. Soweit alles klar? Hat also ein Cli-
ent eine Anfrage an den Server gestartet, dann liefert der Server zu
Beginn die folgenden Zeilen zuriick:

myClient.println("HTTP/1.1 200 OK");
myClient.println("Content-Type: text/html");
myClient.println();

In der ersten Zeile bestitigt der Server die Client-Anfrage mit der
Ubertragung der Version 1.1 des HTTP-Protokolls, gefolgt vom
Status-Code 200, der besagt, dass die Anfrage erfolgreich bearbeitet
wurde und das Ergebnis der Anfrage in der Antwort ibertragen
wird. In der zweiten Zeile wird der sogenannte Mime-Type mitge-
teilt, der in unserem Fall text/html lautet. Der Mime-Type gibt Auf-
schluss Uber die Art der Daten, die der Server sendet. Handelt es
sich um reine Textinformationen, wie in unserem Fall, oder wird
dem Client vielleicht ein Bild geliefert? Dann miissen die tibertrage-
nen Daten natiirlich entsprechend interpretiert und nicht als Klar-
text angezeigt werden. Nun kommen wir zum Code, der die
gelesenen Daten deines Arduino-Boards versendet:

myClient.println(HTML_TOP); // HTML-Top
showValues(myClient); // HTML-Content
myClient.println(HTML_BOTTOM); // HTML-Bottom

Was ist ein Netzwerk? 633

634

Die Aufgaben von HTML_TOP bzw. HTML_BOTTOM hast du
schon kennengelernt. Das Abrufen der Daten des Boards erledigt
die showValues-Funktion, die wir uns jetzt anschauen:

void showValues(EthernetClient 8myClient){
for(int 1 = 0; 1 < 6; i++){

myClient.print("Analog Pin ");
myClient.print(i);
myClient.print(": ");
myClient.print(analogRead(i));
myClient.print("<div style=\"height: 25px; background-color: #");
myClient.print(barColor[i]);
myClient.print("; width:");
myClient.print(analogRead(i));
myClient.printIn("px; border: 2px solid;\"></div>");

Zum Gliick habe ich heute meinen Restlichtverstirker eingeschaltet,
denn im Funktionskopf sche ich vor dem Parameter myClient ein
Kaufmanns-Und (&). Ich traue mich erst gar nicht, nach einem Tipp-
fehler zu fragen, denn es ist sicherlich keiner — oder!?

Richtig, Ardus! Das ist kein Tippfehler, sondern ein Kennzeichen
dafiir, dass es sich um eine Referenz handelt. Wenn ich eine Vari-
able an einen Funktionsparameter tibergebe, dann wird in der
Funktion mit einer Kopie dieser Variablen gearbeitet, die keinen
Einfluss auf die Originalvariable hat. Die Funktion kann z.B. den
Wert des Parameters verdoppeln. Das Original bleibt unangetastet.
Damit ich aber innerhalb der Funktion das originale Client-Objekt
nutzen kann, wird durch den Referenzoperator & die Speichera-
dresse des Originals tibergeben. Innerhalb der Funktion arbeite ich
quasi mit dem Original. Die Funktion zeigt zum einen die Werte
der analogen Finginge an und zum anderen horizontale Balken.
Dazu nutze ich den div-TAG, der als Behilter fiir weitere HTML-
Elemente genutzt werden kann. Ich nutze ihn an dieser Stelle, um
einen bestimmten Bereich mit einer Farbe zu fiillen. Es gibt die
Moglichkeit tiber eine sogenannte Style-Angabe Hohen- bzw. Brei-
teninformationen anzuftihren. Eine HTML-Zeile konnte z.B. wie
folgt aussehen:

Analog Pin 0: 168<div style="height: 25px; background-color: #ff0000;
width:168px; border: 2px solid;"></div>

Projekt 32: Netzwerk-Kommunikation

Der div-Bereich hat in diesem Fall eine Hohe von 25 und eine Breite
von 168 Pixeln. Fiir detailliertere Informationen muss ich auf Fach-
literatur bzw. Internet verweisen.

Das kénnte wichtig fiir dich sein »)
Hier ein paar Begriffe fir die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

selfhtml
cascading stylesheets

div-tag

Also eine Sache ist mir nach dem Versuchsaufbau etwas negativ auf-
gefallen. Die Werte der analogen Eingiéinge werden zwar wunderbar
angezeigt, doch das war’s dann auch. Drehe ich an einem der Potentio-
meter, dndert sich auf der Internetseite iiberhaupt nichts. Das hitte
ich mir aber gewiinscht.

Nun, Ardus, das ist ja auch ok so. Der Web-Browser ruft eine Seite
beim Web-Server ab und stellt sie dar (dieser Vorgang wird auch
Rendern genannt). Sendet der Browser keine weitere Anfrage, dann
bleibt der Inhalt der Seite natiirlich unverindert. Du kannst jedoch
ofter mal die Refresh-Taste (F5) des Browsers driicken. Aber ich
denke, dass das nicht deinen Vorstellungen entspricht. Ich habe
eine Losung fur Dich. Modifiziere doch die Codezeile in deinem
Sketch, in der HTML_TOP definiert wurde, und du wirst sehen,
wie sich das Verhalten deines Browsers dndert.

#define HTML_TOP "<html>\n<head><title>Arduino Web-Server</title></
head>\n \<meta http-equiv=\"refresh\" content=\"1\">\n<body>"

Der entscheidende Passus ist folgender:

<meta http-equiv=\"refresh\" content=\"1\">

Durch den gezeigten meta-TAG wird der Browser aufgefordert, sei-
nerseits jede Sekunde automatisch einen Refresh durchzufithren.
Der Backslash \, der am Ende der ersten Zeile der Definition von
HTMIL_TOP angefiihrt ist, bewirkt tibrigens, dass diese Zeile in der
nichsten fortgefithrt werden kann. Andernfalls kommt es zu einem
Compilerfehler.

Was ist ein Netzwerk? 635

Troubleshooting

Wenn die Seite des Web-Servers nicht angezeigt wird, tiberpriife
Folgendes:

* Hast du die korrekte IP-Adresse in die Adresszeile deines
Browsers eingegeben? Sie muss mit der im Sketch tibereinstim-
men.

* Kannst du den Web-Server iiber das Absetzen eines ping-
Befehls in der Kommandozeile erreichen? Falls nicht, iiber-
priife dein Netzwerkkabel oder ggf. auch deine Firewall-Ein-
stellungen. Eine erfolgreiche Ausfithrung des ping-Befehls
liefert folgendes Ergebnis:

IC:sUsers™ >ping 192.168.2.118

Ping wird ausgefiihet fiir 192.168.2.118 mit 32 Bytes Daten:
6 2 Zeit=1ms TIL=128
=32 Zeit{ims TTIL=128
2 Zeit{ims TTL=128
2 Zeit{ims TTL=128

@z Verl x
. Zeitangahen in Millisek.:
Minimum = Bms. Maxinum = ims,. Mittelwert = Bns

* Das Ethernet-Shield besitzt einige LEDs, die Informationen
iiber den Zustand liefern:

TX bzw. RX blinken, wenn Daten gesendet
bzw. empfangen werden

«€——— Blinkt, wenn eine Ethernet-Kollision festgestellt wurde
&——— Netzwerk arbeitet in Full-Duplex

&«— 100MB/s Netzwerkverbindung erkannt

«€——— Netzwerk-Link festgestellt. Blinkt bei Transfer.

-. «———— Ethernet-Shield hat Spannungsversorgung

L 2

¢ Uberpriife die Anzeige der LEDs. Es miissen auf jeden Fall die
PWR- und die LINK-LED leuchten. Die 100M-LED leuchtet
nur bei einem 100MB/s-Netzwerk. Bei 10MB/s bleibt sie dun-
kel. Werden Daten wie im letzten Beispiel im Sekundentakt
gesendet, dann blinken TX- bzw. RX-LED im selben Rhyth-
mus.

Projekt 32: Netzwerk-Kommunikation

Was hast du gelernt?
* Du hast in diesem Kapitel erfahren, wie du einen Web-Server
mit dem Ethernet-Shield realisieren kannst.

* Du hast die analogen Einginge abgefragt und gesehen, wie
nahezu in Echtzeit die Werte angezeigt werden.

* Das Grundgeriist einer HTML-Seite diirfte dir jetzt ebenfalls
bekannt sein.

Workshop

Schreibe doch einen Sketch, der zusitzlich neben den analogen Ein-
gingen noch den Status der digitalen Einginge auf deiner Arduino-
Webseite darstellt.

Was ist ein Netzwerk?

637

Projekt

Digital ruft analog 33

Scope

In diesem Experiment behandeln wir folgende Themen:
* Die Herstellung eines Shields zur Generierung von analogen
Signalen
* Was ist ein Digital-Analog-Wandler?
* Was ist eine R2ZR-Widerstandsleiter
* Was sind Portregister?
* Der komplette Sketch
* Analyse des Schaltplans
* Aufbau der Schaltung
* Workshop

Wie wandele ich digitale in
analoge Signale?

Das Auswerten analoger Signale mit deinem Arduino-Board lisst
sich tiber die analogen Eingiinge denkbar einfach realisieren. Der
umgekehrte Weg, also eine analoge Spannung tiber den Mikrocont-
roller zu erzeugen und auszugeben, ist lediglich tiber die digitalen
Ausginge mit PWM-Funktionalitdt moglich. Wenn du dir die Kur-
venform der PWM-Signale angeschaut hast, wirst du schon
bemerkt haben, dass sie nicht viel mit der eines analogen Signals
gemeinsam hat. Die meisten Mikrocontroller bieten von Hause aus
keine Umwandlung eines digitalen Signals in ein analoges Signal
an. Dazu miussten sie intern tber einen DA-Wandler verfigen.

639

Abbildung 33-1 p

R2R-Widerstandsleiter mit 6-Bit

640

Eingang

Solch einen Konverter, der auch DAC (Digital-Analog-Converter)
genannt wird, wollen wir in diesem Kapitel mit einfachen Mitteln
herstellen. Das Stichwort hierzu lautet R2R-Netzwerk. Diese
Bezeichnung ist dem Umstand geschuldet, dass der Konverter mit-
tels mehrerer Widerstinde realisiert wird, die kaskadenformig
angeordnet sind und sich in einem bestimmten Verhiltnis zueinan-
der befinden miissen. Die Anordnung der Bauelemente erinnert
auch ein wenig an eine Leiter, so dass diese Art der Schaltung auch
unter dem Begriff Widerstandsleiter in der Fachliteratur zu finden
ist. Wir konnen festhalten, dass das Widerstandsnetzwerk zur Auf-
teilung einer Referenzspannung, die in unserem Fall +5V betrigt,
dient. Die folgende Schaltskizze zeigt eine R2R-Widerstandsleiter
mit einem 6-Bit Eingang.

MSB es

e}
-

7

LSB EO

Vielleicht hast du dich schon gefragt, woher die Bezeichnung R2R
stammt. Wenn du dir das Schaltbild genauer anschaust, siehst du,
dass die gezeigten Widerstinde keine festen Werte besitzen, son-
dern es werden lediglich die Widerstandsverhdltnisse angezeigt. Die
Werte der Widerstinde (horizontal) an den Anschlissen E bis Es,
die mit den digitalen Ausgingen verbunden werden, sind doppelt

Projekt 33: Digital ruft analog

so groR, wie die Werte an den Widerstinden (vertikal), die als Bin-
deglied der Sprossenwiderstinde der Leiter dienen und zum Aus-
gangspunkt Upyeang flthren. Der untere Widerstand, der mit
Masse verbunden ist, hat das gleiche Verhiltnis 2R wie die Spros-
senwiderstinde. Zum Ermitteln der Ausgangsspannung kann die
folgende Formel herangezogen werden:

Ues | Ues | Uez | Uea | Uey Ugo

Unusgang = ==+ 7=+ 5=+ T+ 5o+ of

Fiir dieses Beispiel mit seinen 6 Eingingen kann eine Auflésung
von

URef
UAuflﬁsung = H

erzielt werden. Dabei ist U, die Spannung, mit der die einzelnen
Einginge angesteuert werden. Fiir eine Ug,s von 5V wiirde das
Ergebnis wie folgt lauten:

u _ Urer _ 5V _ g1z my
Auflosung = “gam = pa = 1O m

Dieser Wert bedeutet die kleinste Schrittweite, wenn der 6-Bit-Ein-
gang jeweils um den binidren Wert von 1 hochgezihlt wird. Die fol-
gende Tabelle zeigt die ersten 4 Werte und den letzten Wert.

Ausgangsspannung 4 Tabelle 33-1
Bindrkombinationen und gerundete

000000 ov

Ausgangsspannungen
000001 7813 mV
000010 156,26 mV
000011 23439 mV

mm 5v

Fiir unser geplantes D/A-Wandler-Shield haben wir also eine 6-Bit-
Auflosung (2° = 64).

®

Das kannte wichtig fiir dich sein
Hier ein paar Begriffe fir die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

R2R Netzwerk
Widerstandsleiter

Wie wandele ich digitale in analoge Signale? 641

http://www.arduino.cc/en/Reference/PortManipulation
http://www.arduino.cc/en/Reference/PortManipulation

642

Vielleicht hast du bemerkt, dass ich dir bisher keine Widerstands-
werte genannt habe. Das ist eigentlich auch nicht notwendig,
solange das Widerstandsverhiltnis exakt 2:1 betrigt. Zudem sollte
die Toleranz der einzelnen Widerstinde moglichst gering sein, um
relativ genaue Ergebnisse zu erzielen. Fiir unser Vorhaben lassen
wir das jedoch aufler Acht.

Bendstigte Bauteile

Fiir dieses Beispiel benotigen wir die folgenden Bauteile:

Benotigte Bauteile

S Ay — 17 x Widerstand 47K

by

1x Set stapelbare Buchsenleisten
(2x8+2x6)

1 x Shield-Platine

Litze in ggf. unterschiedlichen
Farben

Voriiberlegungen

Das R2R-Netzwerk mit den Widerstandsverhiltnissen von 2:1 mag
dir vielleicht hinsichtlich der Realisierung Kopfschmerzen bereiten,
da du Widerstandswerte finden musst, die im genannten Verhiltnis
zueinander stehen. Die Losung ist aber recht einfach. Damit die
flieRenden Strome nicht zu hoch werden, habe ich einen Wider-

Projekt 33: Digital ruft analog

stand von 47K gewihlt. Nun fragst du dich bestimmt, ob es einen
Widerstandswert von 23,5K gibt. Nun, ich denke nicht, und doch
lisst sich dieser Wert ganz einfach erzielen. Wenn du zwei Wider-
stainde mit dem gleichen Wert parallel schaltest, bekommst du
genau die Hilfte des Einzelwiderstandes als Ergebnis. Wenn nam-
lich R; = R, ist, gilt Folgendes:

L _1+1_2
- "R R R

Rges Ry Ry
Rges = =
ges 3

Simpel, nicht wahr!?

Arduino-Sketch-Code

int pinArray[] = {8, 9, 10, 11, 12, 13};
byte R2RPattern;
void setup(){

for(int i = 0; 1 < 6; i++)

pinMode(pinArray[i], OUTPUT);
R2RPattern = B000001; // Bitmuster zur Ansteuerung der digitalen
// Ausgange

}

void loop(){
for(int i = 0; 1 < 6; i++){
digitalWrite(pinArray[i], bitRead(R2RPattern, i) == 1?HIGH:LOW);
}
}

Mit diesem recht kurzen Sketch werden die digitalen Ausginge
angesteuert, an denen sich das R2R-Netzwerk befindet. Diese
Ansteuerung erfolgt mittels der Variablen R2RPattern und es wird
am Netzwerk-Ausgang eine entsprechende Spannung geliefert.

Arduino-Code-Review

Fiir unser Experiment bendtigen wir programmtechnisch gesehen
die folgenden Variablen:

Variable Aufgabe

pinArray Eindimensionales Array zur Speicherung der angeschlossenen Pins der Anzeige

R2RPattern Beinhaltet die zur Ansteuerung des R2R-Netzwerkes verwendete Bitkombination

« Tabelle 33-2

Bendtigte Variablen und deren

Aufgabe

Wie wandele ich digitale in analoge Signale?

643

Abbildung 33-2 -

R2R-Netzwerk auf dem Breadboard
(Ausgangsspannung fiir Binar-

kombination von 000001)

In der folgenden Abbildung siehst du die Schaltung, die ich erst ein-
mal auf einem Breadboard zusammengesteckt habe, bevor ich sie
im Anschluss auf das R2R-Shield iibertrage.

Ich habe das Netzwerk mit der Bitkombination 000001 aus dem
Sketch angesteuert und das Messgerit zeigt eine Spannung von
0,080V an, was natiirlich 80mV entspricht. Wenn du noch einmal
einen Blick in die Tabelle mit den Ausgangsspannungen wirfst,
dann findest du dort den Wert 78,13mV fiir die verwendete Bit-
kombination. Der Ausgangswert von 80mV stimmt also nicht ganz
mit dem kalkulierten Tabellenwert tiberein, doch das ist schon ok
so, denn das Ergebnis wird z.B. durch die Bauteiltoleranzen der ver-
wendeten Widerstinde oder auch durch Anzeigefehler des Mess-
gerites ein wenig verfilscht. Ich habe schon einmal ein R2R-
Netzwerk aufgebaut, bei dem die Werte fast alle bis auf die zweite
Nachkommastelle stimmten, doch das war reiner Zufall.

Der Schaltplan

Wie du erkennen kannst, besteht die Schaltung lediglich aus
Widerstinden, die in einer bestimmten Weise verbunden sind, so
dass das Ergebnis das R2R-Netzwerk ist.

Projekt 33: Digital ruft analog

(o)

Arduino

- =
X X
T

0
~
z

Digital 1/
i3

— VCC
GND

U Ausgang

Analeg IN

A4

Die Widerstinde, die mit R gekennzeichnet sind, haben natiirlich
den genannten Wert von 47K. Die Widerstandspaare mit der Kenn-

zeichnung R/2 haben als resultierende GroRe einen Wert von
23,5K.

Shieldaufbau

Auf dem Bild kannst du wunderbar die Widerstandsleiter erken-
nen, wobei der einzelne Pin am oberen Ende des Shields der Aus-
gang ist, an dem du dein Multimeter anschliefen kannst, um die
Ausgangsspannung zu messen.

Jetzt wird's interessant —
Ansteuerung der Portregister

Ich erzihle dir nichts Neues, wenn ich hier erwihne, dass die
gesamte Kommunikation des Arduino-Boards tiber die Ein- bzw.
Ausginge stattfindet. Das gilt also fiir die Steuerung der LEDs, der

Wie wandele ich digitale in analoge Signale?

A Abbildung 33-3
Die Ansteuerung des R2R-Netz-
werkes iiber 6 digitale Ausgénge

<« Abbildung 33-4
Aufbau des R2R-Netzwerkes mit
einem eigenen Shield

645

Abbildung 33-5 p

Portregister des Arduino-Boards

646

Abbildung 33-6
Portregister B

Motoren, der Servos und das Einlesen von Werten eines Tempera-
tursensors oder eines regelbaren oder lichtempfindlichen Wider-
standes, um nur einige zu nennen. Dein Mikrocontroller
ATmega328p arbeitet intern mit sogenannten Registern, die mit den
Ein- bzw. Ausgingen (Pins) verbunden sind. Als Register werden in
der Computertechnik Speicherbereiche innerhalb eines Prozessors
bezeichnet, die unmittelbar mit der zentralen Recheneinheit ver-
bunden sind. Das hat zur Folge, dass der Zugriff auf diese Bereiche
sehr schnell erfolgt, da nicht der Umweg iiber externe Speicherbau-
steine genommen werden muss. Die einzelnen Pins deines Ardu-
ino-Boards sind intern mit Portregistern verbunden, die ich in der
folgenden Abbildung farblich (griine, rote und gelbe Umrandung)
hervorgehoben und mit den Bezeichnungen Port B, C und D verse-
hen habe.

PortB PortD

UsB

Port

Dann greifen wir uns doch einfach einmal Port B und schauen ihn
uns genauer an:

Port B

Pin: 13121110 9 8

Du erkennst sicherlich die digitalen Ein- bzw. Ausginge Pin 8 bis
13 sofort wieder. Die beiden linken Pins sind fiir unsere Portbe-
trachtung ohne Bedeutung, da sie Aref bzw. Masse zur Verfiigung
stellen und nicht manipuliert werden konnen. Also stehen uns im
Portregister B ganze 6 Bits zur Verfugung, mit denen wir die unter-
schiedlichsten Dinge anstellen kénnen. Was fiir ein Zufall, denn
unser Widerstandsleiter wird auch mit 6 Bits angesteuert. Doch

Projekt 33: Digital ruft analog

dazu spiter mehr. Jeder der drei gezeigten Ports wird innerhalb
eines Sketches tiber die folgenden Bezeichner angesprochen:

* PORTB
* PORTC
* PORTD
Ok, dann wissen wir also schon einmal, wie die einzelnen Ports

anzusprechen sind, wobei wir uns in unserem Beispiel — wie schon
erwihnt — mit Port B befassen werden.

Da habe ich direkt mal eine Frage. Wenn ich die digitalen Pins pro-
grammiere, muss ich doch innerhalb der setup-Funktion festlegen,
wie ich diese verwenden mochte, ob als Ein- oder Ausgang. Wenn ich
also ein Port-Register habe, wie soll ich denn diesem Register mittei-
len, ob es als Ausgang oder als Eingang arbeiten soll?

Also Ardus. Wenn du nicht wirst, dann hitte ich nicht gewusst,
wie ich zum nichsten Punkt tiberzuleiten kann, doch das war das
passende Stichwort fir mich. Ich muss aber zunichst kurz etwas
klaren: Du kannst natiirlich jedem einzelnen Bit im Port-Register
die individuelle Datenflussrichtung vorgeben. Das komplette Regis-
ter arbeitet nicht in der Form, dass alle Pins als Ein- oder als Aus-
ginge arbeiten. Jeder Pin kann separat konfiguriert werden. Um
genau das zu ermdglichen, sind weitere Register vorhanden, die die
Datenflussrichtung der einzelnen Pins beeinflussen. Sie tragen den
Namen DDRx, wobei das x fiir den jeweiligen anzusprechenden
Port steht. Fir unseren PORTB lautet das Register dann DDRB.
Die drei ersten Buchstaben stehen fiir Data Direction Register, was
tibersetzt soviel wie Daten-Richtungs-Speicher heifft. Dann wollen
wir mal schauen, wie das Ganze im Detail funktioniert. Bevor ich
also einen Port verwende, muss ich erst die Datenflussrichtung
tiber das entsprechende DDR definieren. In der folgenden Abbil-
dung wird die Datenflussrichtung, die wir mit unserer Programmie-
rung erreichen wollen, mittels der Pfeile angezeigt.

<« Abbildung 33-7

PO rt B Portregister B mit unterschiedli-
chen Datenflussrichtungen der ein-
zelnen Pins

Pin: 13121110 9 8

Wie wandele ich digitale in analoge Signale? 647

648

Tabelle 33-3 p
Werte fiir das DDR

Abbildung 33-8
Initialisierung des DDR fiir die
unterschiedlichen Datenfluss-

richtungen

Ok, wir haben also folgende Gegebenheiten:
* FEinginge: Pin 8, 9 und 10
* Ausginge: Pin 11, 12 und 13

Um einem einzelnen Pin die Datenflussrichtung vorzugeben, muss
dieser im DDR mit dem folgenden Wert belegt werden:

Wert Arbeitsweise

0 Pin arbeitet als Eingang — vergleichbar mit pinMode(pin, INPUT);
1 Pin arbeitet als Ausgang — vergleichbar mit pinMode(pin, OUTPUT);

Das bedeutet fiir das DDR also die folgende Programmierung:

Port B

DDR: @ @ [(11 [1] [o] [o] [0]
Pin: x x 13121110 9 8

Jetzt konnen wir z.B. die digitalen Ausginge Pin 11, 12 und 13 auf
HIGH-Pegel setzen, was iiber den PORTB-Befehl realisiert wird.
Hier der entsprechende Abschnitt aus einem Sketch:

void setup(){
DDRB = 0b11111000; // Pin 8, 9, 10 als INPUT. Pin 11, 12, 13 als
// OUTPUT.
PORTB = 0b00111000; // Pin 11, 12, 13 auf HIGH-Pegel setzen

}
void loop(){/* leer */}

Die beiden hochstwertigen Bits fur die nicht verwendbaren Pins habe
ichim DDR einfach mit 1 belegt. Das spielt keine weitere Rolle fiir uns.
Wenn du dir das Setzen der Ausginge auf HIGH-Pegel anschaust, was
kannst du im Vergleich zur bisher bekannten Pin-Manipulation fest-
stellen? Ich stelle beide Varianten einmal gegeniiber:

digitalWrite(11, HIGH); PORTB = 0b00111000;
digitalWrite(12, HIGH);
digitalWrite(13, HIGH);

Na, keine Idee? Ok. Uber die herkommliche Weise auf der linken
Seite werden die einzelnen Pins nacheinander mit einem HIGH-
Pegel versehen. Dagegen werden auf der rechten Seite mit einen
einzigen Befehl alle Pins gleichzeitig auf HIGH-Pegel gesetzt, da das

Projekt 33: Digital ruft analog

Bitmuster unmittelbar auf alle Pins zur gleichen Zeit angewendet
wird. Wenn es also schnell gehen soll, dann ist die neue Variante
iiber die Port-Manipulation die bessere Wahl. Was hiltst du von
dem folgenden Sketch, der am Ausgang der Widerstandsleiter eine
Linie in Form eines Sigeblattes erzeugt:

void setup(){
DDRB = 0b11111111; // Alle Pins als Ausgang programmiert

}

void loop(){
for(int i = 0; i <= 63; i++) // 63 = B0oO111111
PORTB = i; // Ansteuerung des Port-B Registers

T P] T <« Abbildung 33-9
Oszillogramm mit einer
Sageblattlinie

Was denkst Du, wie der Sketch angepasst werden muss, damit die
folgende Kurve erzeugt wird?

. ‘ <« Abbildung 33-10
QWO : ; 00d Oszillogramm mit einer Linie im
Dreiecksverlauf

Wie wandele ich digitale in analoge Signale? 649

Abbildung 33-11 p
Oszillogramm mit einer Sinuskurve

Wenn du diese Losung ins Auge gefasst hattest, dann liegst du
goldrichtig.

void loop(){
for(int i = 0; 1 <= 63; i++)
PORTB = i; // Ansteuerung des Port-B Registers (aufsteigende Flanke)
for(int i = 63; i >= 0; i--)
PORTB = i; // Ansteuerung des Port-B Registers (abfallende Flanke)

}

Welche anderen Kurvenverliufe gibt es noch? Was ist mit einem
Sinusverlauf? Da die Sinus-Funktion zur Berechnung der Werte
eine gewisse Zeit benotigt, ist man dazu ibergegangen, sogenannte
Lookup-Tables (LUT) zu erstellen. Dabei handelt es sich um Tabel-
len, in denen die Ergebnisse einer Berechnung schon hinterlegt
sind. Auf diese Weise kann z.B. der Kurvenverlauf einer Sinus-
Funktion iiber die auf der Kurve liegenden Punkte abgebildet wer-

den.

Der Sketch zur Generierung des Sinusverlaufs ist aufgrund der
umfangreichen LUT recht mithsam abzutippen und darum ver-
weise ich auf meine Internetseite.

byte LUT[] =

{31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 38, 38, 39, 39, 40, 40,
41, 41, 42, 42, 43, 43, 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 49, 49,
50, 50, 50, 51, 51, 52, 52, 52, 53, 53, 54, 54, 54, 55, 55, 55, 56, 56,
56, 57, 57, 57, 58, 58, 58, 59, 59, 59, 59, 60, 60, 60, 60, 60, 61, 61,
61, 61, 61, 61, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62,
62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 61, 61, 61,
61, 61, 61, 60, 60, 60, 60, 60, 59, 59, 59, 59, 58, 58, 58, 57, 57, 57,

650

Projekt 33: Digital ruft analog

56, 561
50, 49,
41, 40,
31, 30,
21, 21,
12, 12,

12,

5 4, 4, 4,

0, 0, 0,
1,1, 1,

0,
1,

7,7, 7, 8,

15, 15,
24, 24,

void setup(){

DDRB =
}

16,
25,

55, 55, 55, 54, 54, 54, 53, 53, 52, 52, 52, 51, 51, 50, 50,
48, 48, 47, 47, 46, 46, 45, 45, 44, 44, 43, 43, 42, 42, 41,
39, 39, 38, 38, 37, 36, 36, 35, 35, 34, 34, 33, 33, 32, 32,
29, 29, 28, 28, 27, 27, 26, 26, 25, 24, 24, 23, 23, 22, 22,
20, 19, 19, 18, 18, 17, 17, 16, 16, 15, 15, 14, 14, 13, 13,
11, 11, 10, 10, 10, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 5, 5,
3,3,33,22,2,2,2,1,1,1,1, 1,1, 0,0, 0, 0, 0,
0, 0, 0,0,0,0,00,0,0,0,00,0,0,0,0, 0,0, 0,
1,1,2,2,2,2,2,3,3,3,3,4,4,4,5,5,5, 6, 6, 6,
8, 8, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14,
16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31};

0b11111111; // Alle Pins als Ausgang programmiert

void loop(){
for(int i = 0; i <= 360; i++)
PORTB = LUT[i]; // Ansteuerung des Port-B Registers

}

Das Programm zur Generierung der LUT findest du ebenfalls auf
meiner Internetseite.

Achtung

Es besteht ein nicht unerhebliches Risiko, deinen Mikrocontrol-
ler so zu programmieren, dass er anschlieSend nicht mehr rea-
giert. Wenn du dir Port-D anschaust, wirst du sicherlich
bemerken, dass an Pin 0 bzw. Pin 1 die Steuersignale fir RX bzw.
TX liegen. RX ist fur das Empfangen, TX fur das Senden der
Daten verantwortlich. Die Datenflussrichtung ist also folgende:
RX = INPUT, TX = OUTPUT. Wenn du durch unachtsames Pro-
grammieren Uber DDRD diese Werte anderst, kannst du mit
Sicherheit keinen Sketch mehr auf dein Arduino-Board Ubertra-
gen. Du musst dir also ganz sicher, was du hier tust. Uberpriife
deinen Sketch lieber dreimal, bevor du ihn an den Mikrocont-
roller schickst. Nahere Informationen findest du unter http.//
www.arduino.cc/en/Reference/PortManipulation.

Troubleshooting

Falls die Ausgangsspannung des R2R-Netzwerkes nicht den
gewlnschten Werten der gesendeten Bindrkombination entspricht,
iiberpriife Folgendes:

e Haben alle verwendeten Widerstinde des R2R-Netzwerkes
den gleichen Wert?

Wie wandele ich digitale in analoge Signale?

651

http://www.arduino.cc/en/Reference/PortManipulation
http://www.arduino.cc/en/Reference/PortManipulation

652

* Hast du auch keinen der Anschliisse zum Netzwerk vergessen?
(Ich spreche aus Erfahrung, denn ich hatte mal einen Knoten-
punkt vergessen und habe dann bestimmt 10 Minuten darauf
ver(sch)wendet, den Fehler zu finden!)

Was hast du gelernt?

* In diesem Kapitel wurde dir ein R2R-Widerstandsnetzwerk
vorgestellt.

* Mit diesem Netzwerk konntest du einen einfachen Digital/
Analog-Wandler realisieren.

* Wir haben die Port-Register deines Mikrocontrollers kennen-
gelernt und du hast tiber Port-B die digitalen Ausginge mani-
puliert.

Workshop

Versuche einmal, durch Manipulation des LUT-Arrays unter-
schiedliche Kurvenformen zu erzeugen. Beachte dabei auf jeden
Fall, dass dir lediglich 6-Bit zur Verfiigung stehen, um eine Kurve
darzustellen. Das ist ein Wertebereich von 0 bis 63. Wenn du darii-
ber liegst, zerstorst du zwar nicht die Schaltung oder deinen Mikro-
controller, doch die Kurve sieht dann garantiert nicht so aus, wie
du es beabsichtigt hast.

Projekt 33: Digital ruft analog

Projekt

Shieldbau 34

Scope

In diesem Kapitel wollen wir gemeinsam ein sogenanntes Proto-
shield konstruieren und dann zusammenbauen. Sicherlich kannst
du dir solche universellen Shields fertig oder zum zusammenloten
in diversen Onlineshops bestellen, doch ich fiir mein Teil bastele so
etwas gerne selber. Natiirlich besitze ich auch ein gekauftes Shield,
doch ich dachte mir, dass ich die Herstellung auch einfach mal
selbst ausprobieren kénnte. Hoffentlich kann ich dich mit dieser
Liebe zur Frickelei ein wenig anstecken und dazu animieren, selbst
Dinge zu entwerfen, dann zu l6ten und schlieflich zusammenzu-
bauen. In der folgenden Abbildung siehst du ein fertiges Proto-
shield der Firma Sparkfun. Auf ihm befinden sich sowohl zwei
LEDs als auch Taster. In der Mitte ist unverkennbar ein kleines
Breadboard zu erkennen, auf dem kleinere Schaltungen zusammen-
gesteckt werden konnen. Das ist eine feine Sache, um auf kleinem
Raum Schaltungen zu realisieren.

<« Abbildung 34-1
Ein Protoshield der Firma Sparkfun

653

654

Abbildung 34-2 -
Das fertige Protoshield

Natiirlich kannst du auch auf einem Shield ohne Breadboardaufsatz
Schaltungen fiir die Ewigkeit zusammenléten, um sie bei Bedarf auf
der Mutterplatine aufzustecken, so dass du so eine fertige Kompo-
nente besitzt. Ich habe mir die unterschiedlichsten Shields gebaut,
die eben nur fiir den einen Anwendungszweck zu gebrauchen sind
und sie eignen sich deshalb hervorragend zu Demonstrationszwe-
cken oder weil es Spaff macht, etwas Fertiges vorweisen zu konnen,
ohne lange mit Bauteilen und Steckbriicken hantieren zu miissen.
Im Anschluss an diese Bauanleitung werde ich dir zeigen, wie wir
den elektronischen Wiirfel auf einem Shield zusammenbauen.

Protoshield Marke Eigenbau

Wenn du ein bisschen Geschick und Fingerfertigkeit besitzt, und
davon gehe ich aus, dann kannst du dir das folgende Shield selber
bauen. Auf meiner Internetseite findest du ein Video, dass den Bau
des Shields von Anfang bis Ende dokumentiert und dir zeigt, wor-
auf du achten musst. Es ist aber wirklich recht simpel und du wirst
es bestimmt hinbekommen. In der folgenden Abbildung siehst du
das fertige Produkt.

Natiirlich befinden sich auf der Platine aufler den stapelbaren
Buchsenleisten noch keine Bauteile. Das ist die Spielwiese, auf der
du dich dann austoben kannst und auf der die Schaltungen, die du
dir ausgedacht hast, ihr Zuhause finden.

Was wird so bendtigt?
Werkzeug

Am besten ist natiirlich eine Lotstation, doch es geht natiirlich auch
mit einem einfachen Lotkolben, den du schon fiir wenig Geld

Projekt 34: Shieldbau

erwerben kannst. Auflerdem sind eine kleine gebogene Zange und
etwas Lotzinn erforderlich.

<« Abbildung 34-3
Die bendtigten Werkzeuge zum Bau
eines Protoshields

Material

Neben dem Werkzeug benotigst du das Material zum Bau des
Shields. Es handelt sich dabei um eine Lochrasterplatine und ein Set
stapelbarer Buchsenleisten, die du z.B. bei der Firma Watterott
bestellen kannst. Im Anhang findest du die Adresse, um dir ggf. die
Teile dort zu bestellen.

<« Abbildung 34-4
Erforderliches Material

Die stapelbaren Buchsenleisten werden in einem Set zu 4 Stiick (2 x
6 Pins + 2 x 8 Pins) geliefert.

Was wird so ben6tigt? 655

656

Abbildung 34-5 »
Lochrasterplatine

Abbildung 34-6 »
VergroBerter Ausschnitt einer
Lochrasterplatine

Verdammt, da stimmt
doch was nicht!

Wir werfen zu Beginn einmal einen Blick auf die Lochrasterplatine,
die es in unterschiedlichen Formaten auf dem Markt gibt. Meine
Platine hat die Mafle 100mm x 100mm und sieht folgendermafen

aus:

Die Platine besteht zum einen aus einem isolierenden Trigermate-
rial, das z.B. aus Hartpapier oder Epoxidharz-Glasfasermatten
besteht, und zum anderen aus einer leitenden Kupferschicht. Die
Lochrasterplatine hat, wie der Name schon sagt, zahlreiche Locher
in einem bestimmten Abstand, die von einer runden Kupferschicht
umrandet sind. Steckst du von der Vorderseite den Anschlussdraht
eines Bauteils zur Riickseite durch, dann wird dieser Draht tiber das
Lotzinn mit der Kupferschicht verbunden und somit fixiert.

In diesem Ausschnitt habe ich den Abstand der Loécher zueinander,
der in der Regel 2,54mm betrigt, eingezeichnet. Und da bekommen
wir es auch schon mit einem Problem zu tun. Mit der Lochraster-
platine ist alles in Ordnung, doch unser Arduino-Board hilt sich
nicht in jeder Hinsicht an diesen Standard und es ist mir ein Ritsel,

Projekt 34: Shieldbau

warum die Entwickler etwas anderes wollten. Ich habe das Proto-
shield hier mit der Elektronik-CAD-Software Target 3001! entwi-
ckelt und die Lochabstinde eingetragen.

[CREERR ERREEE

Analog In | Power
, @8mm

Digital I/0 Digital /0

Die Lochrasterplatine hat dann spiter folgende MafRe:

* Breite: 64mm
e Hohe: 53mm

Wollen wir jetzt mal ein wenig rechnen, um die Entfernungen der
einzelnen Locher zueinander zu verstehen. Die beiden oberen
Lochreihen von je 6 Bohrungen fiir Analog In und Power bereiten
uns keine Probleme, denn zwischen den beiden befindet sich ein
freies Loch, das heiRt, dass der Abstand 2 x 2,54mm = 5,08mm
betragt. Fiir die Lochrasterplatine bedeutet dieser Abstand kein
Problem. Jetzt kommen wir jedoch zu den unteren Bohrreihen fiir
Digital I/O. Aus einem mir nicht bekannten Grund ist der Abstand
zwischen den beiden Reihen eben nicht ein Vielfaches von 2,54mm,
sondern geringer. Er betrigt ca. 3,81mm. Das bedeutet, dass es
nicht ohne Weiteres moglich ist, die Buchenleisten mit den Steck-
pinnen in der hier vorliegenden Form zu verwenden. Du siehst aber
auf dem fertigen Shield, dass ich sie trotzdem iiber die vorhandenen
Bohrungen der Lochrasterplatine eingelétet habe.

Kannst du mir dann verraten, wie das von dir hergestellte Shield auf
die Buchsen der Arduino-Platine passen soll. Da verbiegst du dir aber
ganz schén die Pins!

Genau das ich auch die Losung des Problems. Du musst die Stifte
der rechten Buchsenleiste etwas modifizieren. Schau’ dir die fol-

<« Abbildung 34-7
Top-Ansicht des Protoshields mit
Target 3001! erstellt

Verdammt, da stimmt doch was nicht!

657

gende Abbildung an, dann siehst du die nach links gebogenen
Stifte.

Abbildung 34-8 p
Stifte der digitalen Buchsenleisten

Falls das noch etwas zu undeutlich sein sollte, helfen dir sicherlich
die beiden folgenden Abbildungen mit Vorher- und Nachher-
Effekt. Zuerst die Vorher-Grafik:

Abbildung 34-9 p- Digital /O Digital /O
Mit diesem Pinabstand von

2x2,54mm = 5,08mm passt das

sasin-sooccs: [
N AT

— [— —] |

2,54mm 5,08mm

Jetzt kommt die Nachher-Grafik:

Abbildung 34-10 p- Digital /O Digital 1O
Durch das Zurechtbiegen der Pins

passt das Shield jetzt problemlos

QHHHHHHHWM

«—
mm

2,54mm 3,81m

Das Biegen der Pins der rechten Buchsenleiste nach links erfolgt mit
der kleinen Zange, die ich dir am Anfang genannt habe. Gehe dabei
sehr vorsichtig vor und biege die Pins nicht zu oft hin und her, denn
dann kann es namlich passieren, dass dir der Pin abbricht. Aber
keine Angst! Bei mir hat es auch geklappt und es ist kein Hexen-
werk. Der Biegevorgang pro Pin erfolgt dabei in zwei Schritten.
Zuerst biegst du den Pin nach links und setzt danach die Zange
etwas weiter unten an und biegst ihn wieder nach rechts. Auf diese
Weise erhilt er wieder eine senkrechte Ausrichtung, die einfach ein
wenig nach links verschobene ist. Der Pin sollte sich jetzt tiber
einem Loch der Buchsenleiste befinden. Beginne am besten mit
dem linken dufleren Pin und arbeite dich nach rechts vor.

658 Projekt 34: Shieldbau

Ein erstes Beispiel fiir eine
Anwendung

Du koénntest dich jetzt fragen, warum wir uns die ganze Miihe
gemacht haben, und deswegen mochte ich dir — wie versprochen —
ein erstes Beispiel fiir eine interessante Anwendung zeigen. Wir
haben doch einen elektronischen Wiirfel in einem der vorangegan-
gen Kapitel entwickelt. Es wire doch sicherlich ein lohnendes ers-
tes Projekt, diesen Wiirfel auf das Shield zu bannen, damit seine
Funktion immer verfiigbar ist und du ihn bei Bedarf schnell und
ohne groReren Aufwand vorzeigen kannst. Mit der folgenden
Abbildung mochte ich dich ein wenig auf den Geschmack bringen,
so dass du es selbst einmal versuchst.

Damit das auch alles einwandfrei funktioniert, liefere ich dir hier
die notwendigen Informationen.

Bendétigte Bauteile

Fiir dieses Beispiel benétigen wir die folgenden Bauteile:

Benétigte Bauteile

7 xrote LED
ey —— 7 x Widerstand 330
— Blab— 1x Widerstand 10K

Ein erstes Beispiel fiir eine Anwendung

<« Abbildung 34-11

Elektronischer Wiirfel auf einem

Shield

659

Abbildung 34-12 p

Platinenansicht des elektronischen

660

Wiirfels mit Blick auf die Bau-
teilseite

Benotigte Bauteile

‘Y

\ 1x Taster

1xProtoshield (Lochrasterplatine +
stapelbare Buchsenleisten)

Sketch-Code

Den Sketch-Code kannst du natiirlich aus dem Kapitel tiber den
elektronischen Wiirfel tibernehmen, denn schaltungstechnisch
haben wir nichts verandert.

Shieldkonstruktion

Die Shieldkonstruktion habe ich mit der CAD-Software Target
3001! durchgefiihrt. Falls du dich dazu entschliefen solltest, die
Schaltung nicht auf einer Lochrasterplatine, sondern auf einer
eigens daftir hergestellten Platine aufzubauen, dann findest du auf
meiner Internetseite die notwendigen Dateien mit Schaltplan und
Layout. Platinen kénnen auf die unterschiedlichsten Weisen herge-
stellt werden. Du kannst sie z.B. dtzen oder auch eine Isolations-
frase verwenden. Weitere Informationen findest du ebenfalls auf
meiner Internetseite.

Taster

0K Pulldown-Widerstand

Erik Bartmanr

Projekt 34: Shieldbau

Diese Abbildung zeigt das Shield mit Blick auf die Oberseite, auf
der sich die Bauteile befinden werden. Die Leiterbahnen befinden
sich natiirlich auf der Unterseite, und wenn du die Platine
umdrehst, dann hast du natiirlich eine gespiegelte Ansicht der Bau-

teilseite.
<« Abbildung 34-13
wdnemmhl_.cf B Platinenansicht des elektronischen
latiiw Wiirfels mit Blick auf die Unterseite
I?IJ
1atesT ™

brsleeliw -nwob it AT

G 1
nnemtisd +itd (i%fg; LIl JIIIILI/LW

Werfen wir jetzt zum Schluss noch einen Blick auf die Unterseite
des fertigen Boards, damit du den Verlauf der gelsteten Leiterbah-
nen erkennen kannst.

<« Abbildung 34-14
Gelotete Leiterbahnen des
elektronischen Wiirfels

Ein erstes Beispiel fiir eine Anwendung 661

662

Abbildung 34-15 »
Arduino-Board + Adapterplatine
+ Shield

Falls du genauere Informationen zum Loten bendtigst, besuche
meine Internetseite.

Das konnte fiir dich wichtig sein

Wenn du vorhast, eine ganze Reihe solcher Shields mit den
unterschiedlichsten Schaltungen zu bauen und du nicht immer
eine Pinreihe der Buchsenleiste zurechtbiegen méchtest, dann
kannst du auch einmalig ein Shield als quasi Adapterplatine her-
stellen. Darauf steckst du dann die Shields, bei denen naturlich
der Lochrasterabstand 2,54mm betragt. Auf diese Weise kannst
du dir das standige Biegen der einzelnen Pins ersparen.

Die Anordnung der einzelnen Komponenten wire dann die in der
folgenden Abbildung dargestellte:

Shield

Adapter-Platine

Arduino-Board

Alles hat seine Vor- und Nachteile, und fiir welche Variante du dich
entscheidest, bleibt ganz allein dir iiberlassen. Hauptsache, du hast
Spaf§ am Experimentieren und findest deinen eigenen Weg.

Das konnte fiir dich wichtig sein
Falls du nicht mehrere Shields Ubereinander stapeln mochtest,
kannst du auch — auller bei der Adapterplatine — auf die stapel-
baren Buchsenleistenverzichten. Es gibt spezielle Stiftleisten
mit Uberlangen Pins (ca. 13mm) auf einer Seite.

Diese kannst du natiirlich ebenfalls verwenden, so dass es u.U.
etwas kostengiinstiger wird.

Projekt 34: Shieldbau

Anhang
Befehls-Referenz

Scope

In diesem Kapitel gebe ich einen groben Uberblick iiber die verwen-
deten Befehle. Wenn du dir detaillierte Informationen einholen
mochtest, dann schaue auf der Arduino-Internetseite http://www.
arduino.cc/en/Reference/HomePage nach. Dort findest du auch Be-
fehle bzw. Informationen, die ich aus Platzgriinden in diesem Buch
nicht aufnehmen konnte.

Wer macht was?
Sketch-Struktur

Die Struktur eines Arduino-Sketches muss zwingend die beiden fol-
genden Funktionen aufweisen.

setup

Die setup-Funktion wird beim Start des Sketches einmalig ausgefiihrt
und in der Regel dazu verwendet, Programmteile wie z.B. Variablen
zuinitialisieren, d.h. mit Anfangswerten zu versehen. Ebenso werden
z.B. die digitalen Pins an dieser Stelle iiber pinMode so programmiert,
dass sie entweder als Ein- oder Ausgiinge arbeiten.

loop

Die loop-Funktion lisst sich — wie der Name bereits vermuten ldsst
— mit einer Schleife vergleichen, die endlos durchlaufen wird. Sie ist
quasi die treibende Kraft jedes Sketches und enthilt alle notwendi-

663

http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Reference/HomePage

664

gen Befehle, wie z.B. das kontinuierliche Abfragen von Pins, um
ggf. auf Einfliisse von auflen reagieren zu konnen.

Kontrollstrukturen

Kontrollstrukturen ermoglichen dir, den Ablauf deines Sketches zu
beeinflussen, und sie reagieren auf formulierte Bedingungen: Wenn
dies oder das zutrifft, dann tue jenes.

if
Die if-Anweisung ist ein wiirdiger Vertreter dieser Kategorie. Die
Syntax lautet wie folgt:

if(<Bedingung>)
// dann flihre diese Zeile aus

Sollen mehrere Befehle ausgefiihrt werden, dann miissen diese iiber
eine Blockbildung mittels eines geschweiften Klammernpaares
gruppiert bzw. zusammengefasst werden.

if(<Bedingung>){
// fiihre diese Zeile aus
// und auch diese, usw.

}

Wird die formulierte Bedingung als wahr bewertet, dann kommt es
zur Ausfiihrung des nachfolgenden Befehls bzw. die nachfolgenden
Befehle.

if- else

Eine Erweiterung der if-Anweisung ist die if-else-Anweisung. Wird
die formulierte Bedingung nicht als wahr bewertet, dann kommt
der else-Zweig zur Ausfithrung.

if(<Bedingung>)
// wenn wahr, dann fiihre diese Zeile aus
else
// wenn nicht wahr, dann fiihre diese Zeile aus

Auch hier kann die gezeigte Blockbildung von Befehlssequenzen
angewendet werden.

switch-case

Das switch-case Konstrukt wird meistens dann verwendet, wenn
fiir eine formulierte Bedingung bestimmte Ergebnissequenzen
bekannt sind. Zwar kidme hier auch eine if-Anweisung in Betracht,

Anhang A: Befehls-Referenz

doch die switch-case Variante ist diesbeziiglich als die elegantere
Variante anzusehen.

switch(<Bedingung>){

case label:
// Befehle
break;

case label:
// Befehle
break;

default:
// Befehle

}

Die mit dem Doppelpunkt markierten Namen sind sogenannte
Sprungmarken, mit denen gekennzeichnet wird, wo die Ausfithrung
in Abhingigkeit von der formulierten Bedingung fortgefiihrt wird.
Die break-Anweisung stellt eine Unterbrechung in der Ausfithrung
dar. Die default-Sprungmarke ist optional und wird immer dann
angesprungen, wenn keine der vorher definierten Sprungmarken
greift. Sie ist im weitesten Sinne vergleichbar mit dem else-Zweig in
einem if-else-Konstrukt.

Schleifen

Schleifen dienen in der Programmierung dazu, bestimmte Anwei-
sungen immer und immer wieder auszufithren. Die loop-Funktion
gehort z.B. zu dieser Kategorie. Natiirlich kénnen wir eigene Schlei-
fen programmieren.

for
Die for-Schleife kommt immer dann zum Einsatz, wenn beim Ein-
tritt in die Schleife bekannt ist, wie oft sie durchlaufen werden soll.

for(<Initialisierung>; <Bedingung>; <Update>)
<BefehlXYZ>; // Diese Zeile wird iiber die for-Schleife kontrolliert

Die im Schleifenkopf genannten Punkte haben folgende Bedeu-
tung;:
* Initialisierung — Festlegung des Startwertes fiir die Schleife
* Bedingung — Anzahl der Iterationen (Anzahl der Wiederholun-
gen)
* Update — Anpassung der in der Initialisierung genannten Vari-
ablen

Wer macht was?

665

666

Hier ein Beispiel:

for(int i = 0; i < 10; i++)
Serial.println(i); // Ich werde 10 x ausgefiihrt

while

Die while-Schleife hat im Gegensatz zur for-Schleife lediglich eine
formulierte Bedingung im Schleifenkopf. Das bedeutet zwingend,
dass z.B. die in der Bedingung benannte Variable inhaltlich im
Schleifenkorper verindert werden muss, da wir es sonst ggf. mit
einer Endlosschleife zu tun haben.

while(<Bedingung>){
<BefehlXYZ>; // Diese Zeile wird iiber die while-Schleife kontrolliert
<Update>; // Sehr wichtig, da es sonst ggf. zur Endlosschleife kommt

}

Dieser Schleifentyp kommt meistens dann zum Einsatz, wenn zu
Beginn der Schleifenausfithrung nicht eindeutig klar ist, wie oft die
Schleife durchlaufen werden soll.

break

Hinsichtlich der genannten for- bzw. while-Schleifen, die ihre
Durchldufe solange ausfithren, wie es die formulierte Bedingung
zulisst, gibt es noch ein Notausstieg, wie ich es einmal nennen
mochte. Uber die break-Anweisung kann eine Schleife vorzeitig ver-
lassen werden, wobei die Sketch-Ausfithrung an der Stelle fortge-
fithrt wird, die unmittelbar auf die Schleife folgt, also dort, wo es
nach dem normalem Schleifendurchlauf auch weiter gehen wiirde.
Hier ein Beispiel:

for(i = 0; 1 < 10; 1 ++){
if(i > 5) // vorzeitiger Ausstieg aus der for-Schleife, wenn i > 5
break;
Serial.println(i);

Wichtige Konstanten

Bei der Programmierung eines Sketches kommst du immer wieder
mit sogenannten Konstanten in Berithrung. Diese verfiigen tiber fir
uns menschliche Wesen recht verstindliche Namen, hinter denen
sich aber irgendwelche omindsen Werte verbergen.

Anhang A: Befehls-Referenz

INPUT

Die Konstante INPUT wird bei der Programmierung der digitalen
Pins verwendet, wenn es darum geht, die Datenflussrichtung fest-
zulegen. Soll ein digitaler Pin als Eingang arbeiten, dann wird iiber
den pinMode-Befehl, auf den ich noch spiter in dieser Befehls-Refe-
renz zu sprechen kommen werde, diese Konstante als ein weiteres
Argument tibergeben. Die folgende Befehlszeile konfiguriert Pin 13
als Eingang:

pinMode(13, INPUT);

OUTPUT

Die Konstante OUTPUT wird ebenfalls bei der Programmierung
der digitalen Pins verwendet, wenn es darum geht, einen digitalen
Pin als Ausgang zu definieren. Die folgende Befehlszeile konfiguriert
Pin 13 als Ausgang:

pinMode(13, OUTPUT);

HIGH

Die Konstante HIGH wird z.B. beim Setzen eines digitalen Aus-
gangs auf HIGH-Pegel verwendet. Die folgende Befehlszeile setzt
Pin 8 auf HIGH-Pegel:

digitalWrite(8, HICH);

LOW

Die Konstante LOW wird z.B. beim Setzen eines digitalen Ausgangs
auf LOW-Pegel verwendet. Die folgende Befehlszeile setzt Pin 8 auf
LOW-Pegel:

digitalWrite(8, LOW);

true

Die Konstante true kommt z.B. bei Kontrollstrukturen innerhalb
von Bedingungen zum Einsatz:

if(a == true)...

Wenn die boolesche Variable a den Wahrheitswert true aufweist,
wird der Befehl, der der if-Anweisung folgt, ausgefiihrt.

Wer macht was?

668

false
Die Konstante false kommt z.B. bei Kontrollstrukturen innerhalb
von Bedingungen zum Einsatz:

if(a == false)...

Wenn die boolesche Variable a den Wahrheitswert false aufweist,
wird der Befehl, der der if-Anweisung folgt, ausgefiihrt.

Funktionen

Funktionen werden im Sprachgebrauch der Programmierer teil-
weise auch als Befehle bezeichnet.

Befehle der digitalen Pins

pinMode

Uber den pinMode-Befehl wird ein digitaler Pin so programmiert,
dass er entweder als Eingang oder als Ausgang arbeitet. Es werden
dabei die bereits in dieser Befehlsreferenz angesprochenen Kon-
stanten INPUT bzw. OUTPUT verwendet.

digitalWrite

Uber den digital Write-Befehl wird zum einen der Ausgangspegel eines
digitalen Pins beeinflusst, der mit OUTPUT als Ausgang program-
miert wurde. Es kommen die in dieser Befehlsreferenz schon angespro-
chenen Konstanten HIGH bzw. LOW zum Einsatz. Zum anderen
kann an einem digitalen Pin, der iiber INPUT als Eingang program-
miert wurde, der interne Pullup-Widerstand aktiviert werden.

digitalRead

Mittels des digitalRead-Befehls kann der Pegel (HIGH bzw. LOW)
eines digitalen Pins abgefragt werden. Die folgende Befehlszeile
liest den Wert des Pins mit der Bezeichnung inputPin ein und spei-
chert das Ergebnis in der Variablen digValue ab:

digvalue = digitalRead(inputPin);

Befehle der analogen Pins
analogRead

Uber den analogRead-Befehl wird ein analoger Eingang abgefragt,
wobei ein Wert von 0 bis 1023 zuriickgeliefert wird. Dieser Werte-

Anhang A: Befehls-Referenz

bereich beruht auf der 10-Bit-Auflosung des analog/digital-Wand-
lers. Die folgende Befehlszeile liest den analogen Wert des Pins mit
der Bezeichnung inputPin ein und speichert ihn in der Variablen
anValue ab:

anValue = analogRead(inputPin);

analogWrite

Uber den analogWrite-Befehl wird ein digitaler Ausgang, der mit
PWM (Pulse-Weiten-Modulation) arbeitet, beeinflusst. Es handelt
sich dabei nicht um ein echtes analoges Signal, sondern ein digita-
les Signal mit einem bestimmten Puls-Pausen-Verhdltnis. Schaue
dazu in das Kapitel iiber PWM.

Zeitgemalle Befehle

Es gibt einige Funktionen, die eine zeitliche Komponente beinhal-
ten.

delay

Der delay-Befehl dient zur Unterbrechung der Sketch-Ausfithrung
fir den angegebenen Zeitraum, wobei der iibergebene Wert als
Angabe in Millisekunden interpretiert wird. Die folgende Befehls-
zeile bewirkt eine Unterbrechung fiir 3 Sekunden:

delay(3000);

delayMicroseconds

Falls der delay-Befehl aufgrund seiner Spezifikation hinsichtlich der
Interpretation des Wertes als Angabe in Millisekunden zu grob ist,
kann der delayMicroseconds-Befehl verwendet werden. Die Sketch-
Ausfiihrung wird fiir den angegeben Zeitraum unterbrochen, wobei
der Wert in Mikrosekunden interpretiert wird. Die folgende
Befehlszeile bewirkt eine Unterbrechung fiir 100 Mikrosekunden:

delayMicroseconds(100);

millis

Der millis-Befehl liefert einen Wert zuriick, der die Zeit, die seit
Sketchstart vergangen ist, in Millisekunden angibt. Es ist zu beach-
ten, dass dieser Wert nach ca. 50 Tagen eine GrofRe erreicht hat,
der dazu fiihrt, dass die zur Speicherung verwendete Variable iiber-
lauft und die Zdhlung wieder bei 0 beginnt.

Wer macht was?

669

670

Zufallswerte

random
Uber den random-Befehl kénnen Pseudo-Zufallswerte erzeugt wer-
den.

random(10); // Generierung von Zufallszahlen von 0 bis 9
random(10, 20); // Generierung von Zufallszahlen von 10 bis 19

Es ist zu beachten, dass der angegebene Maximalwert immer exklu-
sive ist.

randomSeed

Uber den randomSeed-Befehl wird die Initialisierung der Zufalls-
zahlengenerierung neu gestartet. Auf diese Weise werden nicht
immer die gleichen Zufallszahlen erzeugt.

randomSeed (analogRead(0));

Es wird der unbenutzte und offene analoge Eingang Pin 0 verwen-
det, der nicht vorhersehbare Werte an randomSeed liefert.

Die serielle Schnittstelle

Hinsichtlich der seriellen Schnittstelle, die tiber das Serial-Objekt
angesprochen wird, stehen unterschiedliche Methoden zur Verfii-

gung.
begin

Die begin-Methode initialisiert das Serial-Objekt mit der gewiinsch-
ten Ubertragungsrate.

Serial.begin(9600); // Ubertragungsrate von 9600 Baud
print

Die print-Methode versendet eine Nachricht an die serielle Schnitt-
stelle, einmal ohne und einmal mit Zeilenvorschub:

Serial.print("Hier spricht Arduino!!!"); // ohne Zeilenvorschub
Serial.println("Hier spricht Arduino!!!"); // mit Zeilenvorschub

available

Die available-Methode iiberpriift, ob bei der seriellen Schnittstelle
Daten zum Abholen bereitliegen.

if(Serial.available() > 0) {...}

Anhang A: Befehls-Referenz

read
Die read-Methode liest Daten von der seriellen Schnittstelle.

data = Serial.read();

Praprozessor-Direktiven

Wir haben in unseren Sketches zwei Prdprozessor-Direktiven ver-
wendet, die den Compiler zu einem bestimmtem Verhalten zwingt.

#include

Die include-Direktive veranlasst den Compiler, die angegebene
Library mit in den aktuellen Sketch einzubinden. Da es sich um
eine Direktive handelt, wird die Zeile nicht mit einem Semikolon
abgeschlossen. Beispiel:

#include <Stepper.h>

#define

Uber die define-Direktive konnen Konstanten mit einem Namen
versehen werden. Der Compiler ersetzt beim Kompilieren inner-
halb des gesamten Sketches den Namen durch die angegebene
Definition. Da es sich um eine Direktive handelt, wird die Zeile
nicht mit einem Semikolon abgeschlossen. Beispiel:

#define ledPin 8

Wer macht was?

671

Anhang
Wo bekomme ich was?

Bezugsquellen

Natiirlich ist es gerade am Anfang sehr wichtig, den einen oder
anderen Hinweis zu erhalten, wo ich bestimmte Hardware bzw.
Software beziehen kann. Deswegen méchte ich an dieser Stelle eine
Liste mit Bezugsquellen zur Verfiigung stellen, wobei die Reihen-
folge rein willkirlich ist. AuRerdem kann ich natiirlich aufgrund
der Vielzahl der Anbieter nur eine kleine Anzahl nennen.

Hardware

Arduino-Equipment (Inland)

www.komputer.de
www.tinkersoup.de
www.watterott.com

www.lipoly.de/arduino

Arduino-Equipment (Ausland)
www.sparkfun.com

www.seeedstudio.com
http://store.arduino.cc/eulindex.php’main_page=index
www.robotshop.com

www.adafruit.com

www.makershed.com

673

http://www.komputer.de
http://www.tinkersoup.de
http://www.watterott.com
http://www.lipoly.de/arduino
http://www.sparkfun.com
http://www.seeedstudio.com
http://store.arduino.cc/eu/index.php?main_page=index
http://www.robotshop.com
http://www.adafruit.com
http://www.makershed.com

674

Elektronik-Bauteile
www.pollin.de
www.reichelt.de
www.conrad.de
www.voelkner.de
www.sander-electronic.de

www.segor.de

Software

www.arduino.cc
http://fritzing.org/
http://kicad.sourceforge.net/

Anhang B: Wo bekomme ich was?

http://www.pollin.de
http://www.reichelt.de
http://www.conrad.de
http://www.voelkner.de
http://www.sander-electronic.de
http://www.segor.de
http://www.arduino.cc
http://fritzing.org/
http://kicad.sourceforge.net/

Index

Symbole

275

#define 671

#include 671

% (Modulo-Operator) 310
%-Operator 214, 310

& (UND-Operator) 286
++-Operator 227
+-Operator 486

. (Punktoperator) 230
==-Operator 185
=-Operator 184

>> (Shift-Operator) 260
?(Bedingungsoperator) 287
\ (Backslash) 468

A

A/D-Wandler 160
Abbruchbedingung 146
Abisolierzange 119, 123
Absolutfunktion 516
adafruit 673
Adapterplatine 662
Aktive Bauelemente 61
Algorithmus 133

Alphanumerische Anzeige 471

Ampelschaltung 271
Analog 40
Analog/Digital-Wandler 160
analoge Ausginge 162
analoge Einginge 159
analoger Port 159

analoges Signal 160
analogRead 350, 668

Analog-Tracker 577
analogWrite 669
AND (Operator) 262
Android 613
Android Software Development Kit 611
Android-Smartphone 607
Anode 75,176
Anschliisse 78
App 608, 615
App-Inventor 615
Application Programming Interface (API) 317
Arbeitsspeicher 3
ArduBot 521,613
ferngesteuert 613
ArduBotBT 615
Arduino
API 316
Befehls-Referenz 663
Board 12
Entwicklungsumgebung 27
Library 316
programmieren 22
Programmierung 157
serielle Schnittstelle 167
Sketch 35, 133
Arduino Uno 12
Arduino-Board
+-Pol 513
Arduino-Control 582
Arduino-Talker 581
Argumente
Reihenfolge 288
Array
eindimensional 297
zweidimensional 297

675

Array-Variable 232
AT (Befehl) 598
ATmega 328 12
Atome 535

attach 381
Aufzihlung 530
Ausftihrungsblock 154
Ausgabeport 17
Ausgang 43,173
available 670

B

Backslash 468
Baudrate 598
Bauplan 325
Bauteile XIV
Bedingungsoperator 287
Befehl 45
begin 670
Betragstunktion 516
Betriebsspannung 16
Bibliothek 216
Bibliotheken
programmieren 315
BIN 261
binires System 250
Bitmanipulation 258
Black-Box 40
Blockbildung 233
Bluetooth 593, 607, 613

Bluetooth-Adapter 595, 600

Bluetooth-Shield 595, 614
Bounce 217
Bounce-Library 216
Breadboard

siehe Steckbrett 115
break 346, 666
byte 405

C

C# 2010 Express-Edition 581

Carriage Return 587
Cast-Operator 500

CD/DVD-ROM-Laufwerk 514

Coderedundanz 243
Combi-Tracker 577
Compiler 217
COM-Port 595
conrad 674

const 545

Container 321

CPU 3,4

CR (Carriage Return) 569

D

Darlington-Leistungstransistor 541
Data Monitoring 567

Daten 134

Datenbus 5

Datenerfassung 567
Datenspeicher 3

Datenstrom 584

Datentypen 136
Datentibertragungsrichtung 178
Datenverarbeitung 135

DDR 648

Debugging 167

Deklaration 172

Deklarierung 153

delay 174, 434, 669
delayMicroseconds 669
Designtime 17

Dezimalpunkt 400
Dielektrikum 68

Digital 40
Digital-Analog-Converter (DAC) 640
digitale Ausginge 158

digitale Eingéinge 157

digitaler Port 157

digitalRead 668

digitalWrite 172, 668

Diode 74

Distanzhiilsen 349

Doppeltes Anfithrungszeichen 468
Dot-Matrix 472

Drahtgitter 442

E

Eclipse 611

Editor 33
Einerkomplementbildung 139
Eingang 42, 157, 183
Einstiegspunkte 155
Elektronenfluss 50
Elektronik 49

elektronischer Wiirfel 293
Elementnamen 628
Empfinger 570

676

Index

EN (siche Enable) 512
Enable 512
Entlétpumpe 130
Entwicklungsumgebung
Arduino 23
enum 530
Enumeration 530
EPROM 490, 492
Equipment 121
Escape-Sequenz 468
Ethernet 623
Ethernet-Shield 623
EVA 135
EVA (Eingabe, Verarbeitung, Ausgabe) Prinzip 18

F

false 668

Feldvariablen 321
Festwiderstand 61
Feuerzeug 119

Finite State Machine 271
Floppy-Laufwerk 510
Flussdiagramm 145
Folien-KeyPad 440

for 665

for-Schleife 145, 226
Frame 569

Freilaufdiode 111, 513, 541
Freischaum 340

Fritzing 190

fritzing 674

FTDI-Chip 597
Funk-Kommunikation 593
Funkortung 388
Funktion 152

Funktionen 668
Funktionsrumpf 243
Funktionssignatur 241
FuRgesteuerte Schleife 147

G

Gateway 625
Gerdtemanager 602
geschlossene Stromkreise 57
Gleichheitsoperator 185
Gleichstrom 16, 54

globale Variable 172
Grenzwert 461
Grundschaltungen 97

H

Halbleiter 55, 78
Halbleiterelement 78
Hartpapier 113
H-Bridge 523
Header-Datei 324
Hertz 553
HIGH 667
HIGH-Pegel 41
Hochsprache 20
H-Schaltung 523
Hysterese 545
Hz

siehe Hertz 553

12C 489

IC-Ausziehwerkzeug 124

IDE (Integrated Development Environment) 22

if 664

if- else 664

if-Anweisung 184

if-else-Abfrage 184

Impulsdauer 178

Index 232

Initialisierung 153, 172
hart verdrahtete 449

INPUT 42, 667

Input-Shield 568

Instanziierung 325

int 447

Integrated Circuit 1

integrierter Schaltkreis 82

Interface 39

Interrupt 7

interval 201

Intervalsteuerung 202

IP-Adresse 624

Isolatoren 55

ITead Studio 607

J
Java 21,611

K

Kapselung 317, 322
Kathode 75,176
Kaufmanns-Und (&) 262

Index

677

KeyPad 439
Klammernpaar 233
Klasse 320

Member 321

Mitglieder 321
Klassendefinition 325
Kommentar 151
Kommunikation

drahtlose 593

unidirektional 360
Kommunikationswege 17
komputer 673
Kondensator 68
Kondensatorschaltungen 105
Konstante 275
Konstanten 172, 666
Konstruktor 448
Kontrollstrukturen 148, 664
Kugelrotation 345

L

Ladung 50
Ladungsmangel 53
Ladungsunterschied 53
Laufvariable 145,227, 232,233
Laufzeitfehler 47
LCD-Anzeige 471
LDR 65
Least-Significant-Bit (LSB) 251
LED 170

Anode 176

Kathode 176

Kette 219

Pegelidnderung 211
ledStatus 201, 203
Lego 521
Leiter 55
Leitwert 55
Leuchtdiode 84
LF (Line Feed) 569
Library 216,316
Lichtradar 387
Lichtsensoren 353
Light Dependent Resistor (LDR) 353
lipoly 673
Liquid Cristal Display (LCD) 471
LiquidCrystal 477
Lochrasterplatine 114, 656
logische Fehler 46
logische Zustinde 397

logisches Verschieben 260
lokale Variable 226, 289
loop 175

loop-Funktion 154
Lotkolben 119, 130
Lotzinn 119, 130

LOW 667

LOW-Pegel 40

LSB 408

M

Mac 133
MAC-Adresse 625
Magic-Numbers 562
makershed 673
map 352
mapping 351
Maske 262
Masse 177
Master 491
Matrix 440
MAX7221 422
Messgenauigkeit 161
Methode
Riickgabetyp 327
Methoden 230
Methodenname 325
Methoden-Signatur 325
Mikrocontroller 1
millis 201, 434, 669
Millisekunden 201
Miniroulette 339
Most-Significant-Bit (MSB) 251
Motor 88
Drehrichtung 523
Motor-Shield 614
MSB 407
Multimeter 125
Multiplexing 412, 441

N

Netzwerk 621
Netzwerk-Kommunikation 621
Netzwerkmaske 624

Neutronen 535

noTone 555

NOT-Operator 266

Not-Operator 204

NOT-Operator (Ausrufezeichen) 430
NPN 81

678

0

Objekt
Eigenschaften 230
Methode 230
Verhalten 230

Objektorientierte Programmierung 230, 318

ODER-Operator 268
Ohmsches Gesetz 56, 188
Onboard-LED 171

(e]0)

siehe Objektorientierte Programmierung 230,

318
Operatoren
bitweise 260
Oszilloskop 126
OUTPUT 43, 158, 667

P

Parallelschaltung 98, 100
Parameter 155
Parameterliste 325
Pascal 320

Passive Bauelemente 60
Payload 614

PC 133

Periodendauer 178
Pertinax 113

Physical Computing X
Piezo 551

Piezo-Element 96
ping-Befehl 636
pinMode 158, 172, 668
Pinnummer 157

Pins 1

PL15S-020 513

Platine 113, 656

PNP 81

PNP-Transistor 420
pollin 674

Pollin Electronic 514
Portdefinition 631
Porterweiterung 235, 255
Port-Expander 422
Portkommunikation 39
Portregister 645
Potentiometer 64, 568
Power-Jack 15
Priprozessoranweisung 217
Priprozessordirektive 274

Priprozessor-Direktiven 671
Prellen 209

prev 201

print 670

private 324

Processing 167, 567
Programm 133
Programmierparadigma 318
Programmiersprachen 19
Protokoll 568

Protonen 535

Protoshield 653
prozeduralen Programmierung 320
Prozeduren 320
Pseudozufallszahl 347

PTC 67

public 322
Pull-Down-Widerstand 186
Pullen 195
Pullup-Widerstand 193
Pulsbreite 378
Pulse-Width-Modulation 162
Pulsweitenmodulation 377
Punktoperator 230, 336
PuTTY 595

PWM 162

R

R2R-Netzwerk 644
Radar 388

random 233, 670
randomSeed 670
RC-Glied 216

read 671
Reaktionstester 423
Register 646
reichelt 674
Reichweite 594
Reihenschaltung 98
Relais 81, 87
Release Notes 22
Rendern 635
Richtungsdetektor 367
Roboterfahrzeug 522
robotshop 673
Roulette 339
Roulettespiel 339
Riickgabetyp 325
Runtime 17

Index

679

S

sander-electronic 674
Schablone 262, 325
Schalter 85
Schaltlitze 118
Schieberegister 236
Schleife
verschachtelte 299
Schleifen 143, 665
kopfgesteuerte 144
Schleifenfuff 147
Schleifenkopf 226
Schnittstelle 39, 317
seriell 670
Schnittstellen 318
Schrigstrich 629
Schraubendreher 123
Schrittmotor 90, 509
bipolarer 511
Schutzdiode 513
SD-Card 623
seeedstudio 673
segor 674
Seitenschneider 119
Semikolon 564
Sender 570
Serial Clock Line 491
Serial Data Line 491
Serial Monitor 167,312
Serial Peripheral Interface 422
Serial-Monitor 444
serielle Schnittstelle 167
Servo 93, 377
Ansteuerung eines 377
Pulsbreite 378
setup-Funktion 154
Shield 653
Eigenbau 654
Shieldbau 653
Shift-Operator 260
Siebensegmentanzeige 397
Signalkopplung 70
Signalleitung 205
Signatur 325
sizeof 554
Sketch
Struktur 663
Slave 491
Sound 551
Spannung 52
Spannungsabfall 99

Spannungsteiler 102, 356

Spannungsverhalten
temperaturproportionales 537

Spannungsversorgung 16

sparkfun 673

Speicherbereiche 5

SPI (Serial Peripheral Interface) 422

Standardkonstruktor 327

Statemachine 271

Steckbrett 115

Steckbriicken 118

Stepper 518

Stream 584

Strom 51

Stromversorgung 15, 127

Supraleitung 55

Switch 622

switch-case 664

symbolische Namen 275

syntaktische Fehler 46

T

Taktgeber 3
Tastatur 440
Taster 86

prellen 210
Tasterabfrage 199
tasterWert 213
Tastgrad 165, 178
TCP/IP 624
threshold 461
Tilde-Zeichen (~) 18
tinkersoup 673
Toggeln 203, 210
tone 553
Transistor 78

PNP 420
Transistorschaltungen 107
Treiber

Symbol 512
Treiberdatei 24
Trimmer 64
true 667

U

Uberladung 327

Uberlauf 201

Ubertragungsprotokoll 568
Ende-Kennung 569
Start-Kennung 569

680

Index

Ubertragungsrate 598
Ubuntu 25
Umlenkrolle 520
UND-Operator 267
UND-Operator (&) 286
unsigned long 203
Unterprogramm 241
Update 227
Update-Ausdruck 227
USB-Port 17

v

Validierung 323
Variable
Lebensdauer 289
lokale 289
vorzeichenlos 447
Variablen 135
Update 227
Variablendeklaration 544
Verdrahtung
fliegende 481
Verhaltensregeln XV
Versorgungsspannung 196
Verstirker 78
voelkner 674
Volt 53
Vorwiderstand 177, 188

w

watterott 673
Web-Browser 627

Web-Server 627
Wechselstrom 54

while 666

while-Schleife 146
Widerstand 55
Widerstands-Biegelehre 128
Widerstandsleiter 640
Widerstandsregler 458
Widerstandsschaltungen 97
Widerstandsverhiltnisse 640
Wiederverwendbarkeit 318
Windows 7 23
Wire-Library 500

WLAN 594

Wrapper 317

X
XY-Schreiber 520

A

zaehler 212
Zahnriemen 520
Zangen 122
Zeichenketten

konkatenieren 486
Zeilenvorschub 468
Zugriffsmodifizierer 322
Zuordnung

siche mapping 351
Zuweisungsoperator 172, 184, 185, 530
Zweierkomplementbildung 139

Index

681

	Inhalt
	Grußwort von Wolfgang Rudolph
	Einleitung
	Kapitel 1: Was ist ein Mikrocontroller
	Wozu kann man ihn verwenden?
	Allgemeiner Aufbau

	Kapitel 2: Das Arduino-Board
	Die Stromversorgung
	Die Kommunikationswege
	Die Programmiersprachen C/C++
	Wie und womit kann ich Arduino programmieren?
	Die Arduino-Entwicklungsumgebung
	Das Starten der Entwicklungsumgebung
	Die Portkommunikation
	Befehl und Gehorsam

	Kapitel 3: Die Elektronik
	Scope
	Was ist Elektronik eigentlich?
	Bauteile
	Weitere interessante Bauteile

	Kapitel 4: Elektronische Grundschaltungen
	Scope
	Widerstandsschaltungen
	Kondensatorschaltungen
	Transistorschaltungen

	Kapitel 5: Das Zusammenfügen der Bauteile
	Scope
	Was ist eine Platine?
	Das Steckbrett (Breadboard)
	Die flexiblen Steckbrücken

	Kapitel 6: Nützliches Equipment
	Scope
	Nützliches Equipment

	Kapitel 7: Grundlegendes zur Programmierung
	Was ist ein Programm bzw. ein Sketch?
	Was bedeutet Datenverarbeitung?
	Die Struktur eines Arduino-Sketches
	Wie lange läuft ein Sketch auf dem Board?

	Kapitel 8: Die Programmierung des Arduino-Boards
	Scope
	Die digitalen Ports
	Die analogen Ports
	Die serielle Schnittstelle

	Projekt 1: Der erste Sketch
	Projekt 2: Einen Sensor abfragen
	Projekt 3: Blinken mit Intervallsteuerung
	Projekt 4: Der störrische Taster
	Projekt 5: Ein Lauflicht
	Projekt 6: Porterweiterung
	Projekt 7: Porterweiterung mal 2
	Projekt 8: Die Statemachine
	Projekt 9: Der elektronische Würfel
	Projekt 10: Der elektronische Würfel (und wie erstelle ich eine Bibliothek?)
	Projekt 11: Das Miniroulette
	Projekt 12: Lichtsensoren
	Projekt 13: Der Richtungsdetektor
	Projekt 14: Die Ansteuerung eines Servos
	Projekt 15: Das Lichtradar
	Projekt 16: Die Siebensegmentanzeige
	Projekt 17: Die Siebensegmentanzeige (mir gehen die Pins aus)
	Projekt 18: Der Reaktionstester
	Projekt 19: Das KeyPad
	Projekt 20: Das KeyPad (Diesmal ganz anders)
	Projekt 21: Eine Alphanumerische Anzeige
	Projekt 22: Kommunikation über I2C
	Projekt 23: Der Schrittmotor
	Projekt 24: Der ArduBot
	Projekt 25: Die Temperatur
	Projekt 26: Der Sound und mehr
	Projekt 27: Data Monitoring
	Projekt 28: Der Arduino-Talker
	Projekt 29: Die drahtlose Kommunikation über Bluetooth
	Projekt 30: Bluetooth und das Android-Smartphone
	Projekt 31: Der ArduBot wird funkgesteuert
	Projekt 32: Netzwerk- Kommunikation
	Projekt 33: Digital ruft analog
	Projekt 34
: Shieldbau
	Anhang A: Befehls-Referenz
	Anhang B: Wo bekomme ich was?
	Index

