
o
’r

e
i

ll
y

s
b

a
s

i
c

s
Er

ik
 B

ar
tm

an
n

Arduino
Die elektronische
Welt mit

	 Mit dem Arduino messen, steuern und spielen
	 Elektronik leicht verstehen
	 Kreativ programmieren lernen

entdecken

Behandelt

Arduino 1.0

Beijing · Cambridge · Farnham · Köln · Sebastopol · Tokyo

Die elektronische Welt mit
Arduino entdecken

Erik Bartmann

Die Informationen in diesem Buch wurden mit größter Sorgfalt erarbeitet. Dennoch können
Fehler nicht vollständig ausgeschlossen werden. Verlag, Autoren und Übersetzer übernehmen
keine juristische Verantwortung oder irgendeine Haftung für eventuell verbliebene Fehler und
deren Folgen.
Alle Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt und sind
möglicherweise eingetragene Warenzeichen. Der Verlag richtet sich im wesentlichen nach den
Schreibweisen der Hersteller. Das Werk einschließlich aller seiner Teile ist urheberrechtlich
geschützt. Alle Rechte vorbehalten einschließlich der Vervielfältigung, Übersetzung,
Mikroverfilmung sowie Einspeicherung und Verarbeitung in elektronischen Systemen.
Kommentare und Fragen können Sie gerne an uns richten:

O’Reilly Verlag
Balthasarstr. 81
50670 Köln
E-Mail: kommentar@oreilly.de

Copyright:
© 2011 by O’Reilly Verlag GmbH & Co. KG
1. Auflage 2011

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten
sind im Internet über http://dnb.d-nb.de abrufbar.

Lektorat: Volker Bomien, Köln
Fachliche Unterstützung: Markus Ulsaß, Hamburg
Korrektorat: Tanja Feder, Bonn
Satz: III-Satz, Husby; www.drei-satz.de
Umschlaggestaltung: Michael Oreal, Köln
Produktion: Karin Driesen, Köln
Belichtung, Druck und buchbinderische Verarbeitung:
Media-Print, Paderborn

ISBN 978-3-89721-319-7

Dieses Buch ist auf 100% chlorfrei gebleichtem Papier gedruckt.

mailto:kommentar@oreilly.de
http://dnb.d-nb.de
http://www.drei-satz.de

Inhalt
Grußwort von Wolfgang Rudolph. VII
Einleitung . IX

Kapitel 1: Was ist ein Mikrocontroller . 1
Wozu kann man ihn verwenden? . 2
Allgemeiner Aufbau . 3

Kapitel 2: Das Arduino-Board . 11
Die Stromversorgung . 15
Die Kommunikationswege. 17
Die Programmiersprachen C/C++. 19
Wie und womit kann ich Arduino programmieren? . 22
Die Arduino-Entwicklungsumgebung . 27
Das Starten der Entwicklungsumgebung. 27
Die Portkommunikation . 39
Befehl und Gehorsam . 44

Kapitel 3: Die Elektronik . 49
Scope . 49
Was ist Elektronik eigentlich? . 49
Bauteile . 60
Weitere interessante Bauteile. 85

Kapitel 4: Elektronische Grundschaltungen . 97
Scope . 97
Widerstandsschaltungen . 97
Kondensatorschaltungen . 105
Transistorschaltungen . 107
--- III

Kapitel 5: Das Zusammenfügen der Bauteile . 113
Scope . 113
Was ist eine Platine? . 113
Das Steckbrett (Breadboard) . 115
Die flexiblen Steckbrücken . 118

Kapitel 6: Nützliches Equipment. 121
Scope . 121
Nützliches Equipment. 121

Kapitel 7: Grundlegendes zur Programmierung . 133
Was ist ein Programm bzw. ein Sketch? . 133
Was bedeutet Datenverarbeitung? . 135
Die Struktur eines Arduino-Sketches . 152
Wie lange läuft ein Sketch auf dem Board?. 155

Kapitel 8: Die Programmierung des Arduino-Boards 157
Scope . 157
Die digitalen Ports . 157
Die analogen Ports . 159
Die serielle Schnittstelle . 167

Projekt 1: Der erste Sketch . 169

Projekt 2: Einen Sensor abfragen . 181

Projekt 3: Blinken mit Intervallsteuerung . 197

Projekt 4: Der störrische Taster . 209

Projekt 5: Ein Lauflicht . 221

Projekt 6: Porterweiterung . 235

Projekt 7: Porterweiterung mal 2 . 255

Projekt 8: Die Statemachine . 271

Projekt 9: Der elektronische Würfel . 293
-- InhaltIV

Projekt 10: Der elektronische Würfel (und wie erstelle
ich eine Bibliothek?) . 315

Projekt 11: Das Miniroulette . 339

Projekt 12: Lichtsensoren. 353

Projekt 13: Der Richtungsdetektor . 367

Projekt 14: Die Ansteuerung eines Servos . 377

Projekt 15: Das Lichtradar . 387

Projekt 16: Die Siebensegmentanzeige . 397

Projekt 17: Die Siebensegmentanzeige (mir gehen die Pins aus). 411

Projekt 18: Der Reaktionstester . 423

Projekt 19: Das KeyPad. 439

Projekt 20: Das KeyPad (Diesmal ganz anders) . 457

Projekt 21: Eine Alphanumerische Anzeige . 471

Projekt 22: Kommunikation über I2C. 489

Projekt 23: Der Schrittmotor . 509

Projekt 24: Der ArduBot . 521

Projekt 25: Die Temperatur . 535

Projekt 26: Der Sound und mehr . 551

Projekt 27: Data Monitoring . 567

Projekt 28: Der Arduino-Talker. 581

Projekt 29: Die drahtlose Kommunikation über Bluetooth 593

Projekt 30: Bluetooth und das Android-Smartphone 607
Inhalt --- V

Projekt 31: Der ArduBot wird funkgesteuert . 613

Projekt 32: Netzwerk-Kommunikation . 621

Projekt 33: Digital ruft analog . 639

Projekt 34: Shieldbau . 653

Anhang A: Befehls-Referenz . 663

Anhang B: Wo bekomme ich was? . 673

Index . 675
-- InhaltVI

First

Erstellen au
Arbeitsseite
(siehe Must
Hier Mini IVZ eingeben!Grußwort von Wolfgang
Rudolph
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Ich bin begeistert!
Ich habe immer Bücher gern gehabt, die auf
eine einfache und unkonventionelle Art und
Weise Wissen vermitteln konnten und in
ihrer Schreibweise nicht belehrend waren,
sondern wie ein Freund daher kamen.

Das vorliegende Buch ist ein solches Werk.
Leicht und locker geschrieben und mit lusti-
gen Bildern aufgelockert, taucht man in die
Welt der Elektronik und des Arduino ein.

Vielleicht werden Sie, liebe Leserin oder lieber Leser, jetzt denken:
»Warum überhaupt noch ein Buch in der Zeit des Internet?« Das
kann ich Ihnen beantworten.

Auch ich hole mir die meisten Informationen aus den unerschöpfli-
chen Tiefen des Internet, aber oft weiß ich nicht, wonach ich genau
suchen muss, um meine aktuelle Wissenslücke zu füllen. Auch
habe ich schon viele Halbwahrheiten oder gar vollständig falsche
Informationen im Internet gefunden oder verzweifelt und entnervt
aufgegeben, weil ich nach 43 Forenbesuchen, 517 Werbelinks und
2716 Meinungen selbstkluger Mitmenschen weniger wusste als
vorher.

Als Grundlage, für den Anfang des Wissens, ist ein solches Buch,
auch heute noch die erste Wahl für mich! Hier finde ich Informati-
onen, die gründlich recherchiert sind, ausprobiert wurden und mit
eigener Erfahrung praxisgerecht aufbereitet sind. Hinter einem
Buch steht eine Person und ein Verlag, kein anonymer Inter-
netschreiberling. Ein solches Buch, und gerade dieses Buch, kann
--- VII

durch das Internet mit seinen vielen Hobbyisten und selbsternann-
ten Experten nicht ersetzt werden.

Gute Fachbücher sind auch heute noch für mich die Grundlage des
Wissens, und das Internet ergänzt, wenn ich genug verstanden habe,
mein Wissen um spezielle Lösungen und aktuelle Neuigkeiten.

Dem Autor Erik Bartmann möchte ich zu dem gelungenem Werk
gratulieren und dem O'Reilly Verlag danken, dass er es möglich
macht, ein solches Buch auf den Markt zu bringen. Es hilft Inter-
esse für diese Technologie zu entwickeln, denn gerade in Deutsch-
land brauchen wir die Fachkräfte, welche durch solche Bücher
»geboren« werden können.

Wolfgang Rudolph

Wolfgang Rudolph moderierte gemeinsam mit Wolfgang Back ab
1983 die TV-Sendung »WDR Computerclub«. Mit der nicht nur bei
Technikbegeisterten sehr beliebten TV-Sendung erreichten sie weit
über die Grenzen von Deutschland hinaus Beachtung. Wolfgang
Rudolph gilt als Mitbegründer und Urgestein des deutschen Computer-
journalismus und ist in der »Hall of Fame« des »Heinz Nixdorf Muse-
umsForum« in Paderborn – dem größten Computermuseum der Welt
– unter den 100 bekanntesten Computerpionieren der Welt vertreten.
--- Grußwort von Wolfgang RudolphVIII

First

Erstellen au
Arbeitsseite
(siehe Must
Hier Mini IVZ eingeben!Einleitung
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Was mir in unserer heutigen und sehr schnelllebigen Zeit auffällt,
ist die Tatsache, dass wir immer häufiger mit Dingen konfrontiert
werden, die vorgefertigt sind, und keine oder nur sehr geringe Mög-
lichkeiten bestehen, etwas an diesen zu verändern. Wir werden
über die unterschiedlichsten Medien wie Zeitung, Fernsehen oder
Internet, teilweise mit Pseudowahrheiten, versorgt, die viele als
gegeben hinnehmen, ohne sie zu hinterfragen. Dadurch besteht die
Gefahr einer schleichenden Entmündigung der Menschen, deren
wir uns bewusst sein sollten. Die Benutzung des eigenen Verstan-
des wird auf diese Weise auf ein Minimum reduziert. Wo bleibt da
die Kreativität? Du fragst dich jetzt möglicherweise, ob du das rich-
tige Buch liest und was das alles mit Arduino zu tun hat. Ich habe
absichtlich diese kurzen, provokanten und doch mit einer gewissen
Wahrheit behafteten Zeilen geschrieben, denn um die Wiederent-
deckung der Kreativität soll es in diesem Buch gehen.

Die Elektronik ist ein weites Feld und eignet sich hervorragend, um
nach Lust und Laune seiner Kreativität freien Lauf zu lassen. Es soll
in diesem Buch nicht um die Präsentation fertiger Lösungen bzw.
Schaltungen gehen. Ganz ohne geht es natürlich nicht. Doch vor-
rangiges Ziel ist es, Ansätze zu liefern, die zum Weiterentwickeln
animieren. Das Abliefern von vorgefertigten Bausätzen, die nach
einem Schema F zusammengebaut werden, ist zwar auf den ersten
Blick effizient und verlockend und wir können uns relativ sicher
sein, dass alles so funktioniert, wie der Entwickler es sich erdacht
hat. Aber seien wir einmal ehrlich zu uns selbst und stellen uns die
Frage: »War das eine bemerkenswerte Leistung?« Sicherlich nicht!
Wir wollen mehr und vor allen Dingen etwas, das ausschließlich
unseren eigenen Ideen oder der eigenen Kreativität entsprungen ist.
--- IX

Sicherlich benötigen wir gerade am Anfang noch etwas Anschub,
denn ohne das Vermitteln von erforderlichen Grundlagen kann es
nicht funktionieren. Dieser Prozess ist aber vollkommen normal,
denn wir mussten ja auch Krabbeln und Laufen, Lesen und Schrei-
ben lernen und waren auf die Hilfe anderer angewiesen. Doch was
wir später daraus gemacht haben, hing ganz allein von uns selbst
ab.

Arduino fällt in die Kategorie Open-Source. Sicherlich hast du diese
Bezeichnung schon einmal im Zusammenhang diverser frei verfüg-
barer Software gehört. Jedermann bzw. -frau kann sich an der Ent-
wicklung dieser Projekte beteiligen und seinen Beitrag dazu leisten.
Diese Art der Zusammenarbeit vieler interessierter und engagierter
Menschen birgt ein großes Potential in sich und treibt die betreffen-
den Projekte deutlich voran. Die Ergebnisse können sich sehen las-
sen und brauchen sich vor kommerziellen Projekten nicht zu
verstecken. Da es sich bei Arduino nicht alleine um Hardware han-
delt, sondern natürlich auch um Software, wird der Symbiose dieser
beiden ein eigener Name zuteil. Physical Computing stellt eine
Beziehung zwischen Mensch und Computer dar. Unsere Welt, in
der wir leben, wird als analoges System angesehen. Im Gegensatz
dazu, agieren bzw. agieren die Computer in einem digitalen
Umfeld, das lediglich die logischen Zustände von 1 und 0 kennt.

Es ist nun an uns kreativen Individuen, eine interessante Verbin-
dung beider Welten zu (er)schaffen, die das zu Ausdruck bringt,
wozu wir fähig sind.

Wir werden uns in diesem Buch zwei grundlegenden Themenberei-
chen widmen, ohne die wir unseren Weg nicht beschreiten könn-
ten.

• Elektronik (Bauteile und deren Funktionen)

• Mikrocontroller (Arduino-Board)

Natürlich können wir, da ja jedes Buch in seinem Umfang begrenzt
ist, diese beiden Themen nur anreißen und nicht erschöpfend
behandeln. Doch das soll ja auch nicht unser Ziel sein. Der Weg ist
das Ziel, und wenn dabei die Lust auf mehr erweckt wird, gibt es
unzählige Literatur bzw. Informationen im Internet, um sich ent-
sprechend weiterzubilden. Dieses Buch soll den Grundstein dafür
legen und quasi eine Initialzündung sein, um bei dir einen unbändi-
gen Wissensdurst zu stimulieren. Ich würde mich freuen, wenn ich
dich diesbezüglich ein wenig inspirieren könnte. Doch konzentriere
-- EinleitungX

dich sich zunächst auf das, was du im Moment in den Händen
hältst.

Zu Beginn werden wir relativ locker und einfach starten und der
Eine oder Andere wird sich wohlmöglich fragen, ob das Blinken
einer Leuchtdiode wirklich eine Herausforderung darstellt. Aber sei
dir sicher, dass alles aufeinander aufbaut. Ein Satz setzt sich auch
aus simplen Buchstaben zusammen, wobei jeder einzelne für sich
alleine nicht unbedingt einen Sinn macht, und doch hat er eine
Daseinsberechtigung, ohne die wir nicht sinnvoll kommunizieren
könnten. Die geschickte Mischung aus den einzelnen Elementen
macht das Ergebnis aus.

Aufbau des Buches
Du wirst sicherlich schnell bemerken, dass der Stil dieses Buches
ein wenig von dem vielleicht gewohnten abweicht. Ich habe mich
für eine lockere und fast kumpelhafte Sprache entschieden, die du
vielleicht schon aus meinem Buch über die Programmiersprache
Processing kennst. Außerdem habe ich dir durch das komplette
Buch hindurch einen Begleiter zur Seite gestellt, der hier und dort
Fragen stellt, die dich möglicherweise ebenfalls an bestimmten Stel-
len beschäftigen. Die Fragen mögen zeitweise den Charakter von
»Dummen Fragen« haben, doch das ist durchaus beabsichtigt.
Manchmal traut man sich wegen einer vermeintlichen Offensicht-
lichkeit oder Einfachheit mancher Zusammenhänge nicht, Fragen
zu stellen, da man fürchtet, ausgelacht zu werden. Daher ist es
immer angenehmer, wenn man das nicht selbst tun muss, sondern
erleichtert aufatmen kann, weil ja zum Glück jemand anderes
ebenso wenig Kenntnis hat und zudem die Frage für mich formu-
liert!

Ebenso wenig möchte ich dich gleich zu Beginn mit den komplet-
ten Grundlagen der Elektronik bzw. der Programmierung des
Mikrocontrollers Arduino konfrontieren. Das hätte einen gewissen
Lehrbuchcharakter, den ich jedoch vermeiden möchte. Ich werde
die entsprechenden Themenbereiche zu gegebener Zeit ansprechen
und in die Beispiele integrieren. Du bekommst auf diese Weise
immer nur das geliefert, was zum betreffenden Lernfortschritt
erforderlich ist. Am Ende des Buches werde ich noch einmal die
wichtigsten Befehle in einer Codereferenz zusammenfassen, so dass
du immer die Möglichkeit hast, dort noch einmal nachzuschlagen,
falls Nachholbedarf besteht.
Einleitung --- XI

Der Aufbau der einzelnen Kapitel folgt einem mehr oder weniger
stringenten Ablauf. Am Anfang werde ich die zu besprechenden
Teilthemen anreißen, damit du einen Überblick bekommst, was
dich erwartet. Im Anschluss wird das eigentliche Thema bespro-
chen und analysiert. Am Ende jedes Kapitels erfolgt noch einmal
eine Zusammenfassung der behandelten Bereiche, um die gewon-
nenen Kenntnisse ein wenig zu festigen. Fast sämtliche Program-
miersprachen haben ihren Ursprung im Amerikanischen, was für
uns bedeutet, dass alle Befehle in der englischen Sprache ihren
Ursprung haben. Natürlich werde ich zu allen Begrifflichkeiten die
passende Erläuterung liefern. Bei Experimenten werde ich versu-
chen, folgendes Ablaufschema einzuhalten:

• Benötigte Bauteile

• Programmcode

• Code Review (Code-Analyse)

• Schaltplan

• Schaltungsaufbau

• Troubleshooting (Was tun, wenn’s nicht auf Anhieb klappt?)

• Was haben wir gelernt?

• Workshop (Kleine Aufgabe zur Vertiefung der Thematik)

Einige Experimente sind mit Bildern von Oszilloskop- bzw. Logika-
nalyzeraufnahmen versehen, um die Signalverläufe besser verständ-
lich zu machen. Innerhalb des Textes findest du immer mal wieder
farbige Piktogramme, die je nach Farbe abweichende Bedeutungen
haben.

Das könnte wichtig für dich sein
Hier findest du nützliche Informationen, Tipps und Tricks zum
gerade angesprochenen Thema, die dir sicherlich helfen wer-
den. Darunter befinden sich auch Suchbegriffe für die Suchma-
schine Google. Ich werde dir nur wenige feste Internetadressen
anbieten, da sie sich im Laufe der Zeit ändern können oder ein-
fach wegfallen. Gerade, wenn es um Datenblätter elektroni-
scher Bauteile geht, sind die angeführten Links aber sehr
hilfreich.

Eine Bemerkung am Rande
Die Information hat nicht unmittelbar etwas mit dem Projekt zu
tun, das wir im Moment behandeln, doch man kann ja mal
über den Tellerrand schauen. Es ist allemal hilfreich, ein paar
Zusatzinformationen zu bekommen.
-- EinleitungXII

Achtung
Wenn du an eine solche Stelle gelangst, solltest du den Hinweis
aufmerksam lesen, denn er wird für den erfolgreichen Aufbau
des Experimentes und die spätere Durchführung wichtig sein.

Ich habe die einzelnen Kapitel –nach Möglichkeit nicht unabhängig
voneinander aufgebaut. So kommt eins zum anderen und die
Sacherhalte werden nicht so hart voneinander getrennt. Der flie-
ßende Übergang von einer Thematik zur nächsten mit der entspre-
chenden Überleitung macht die Sache in meinen Augen
interessanter. Zeitweise werden von mir auch Quick and Dirty-
Lösungen angeboten, die auf den ersten Blick möglicherweise
etwas umständlich erscheinen. Anschließend folgt dann eine ver-
besserte Variante, was dich zum Nachdenken anregen soll, so dass
du vielleicht sagst: Ohh, das geht ja auch anders und sieht gar nicht
schlecht aus! Ich habe da aber noch eine andere Lösung gefunden, die
in meinen Augen noch besser funktioniert. Wenn das geschieht, dann
habe ich genau das erreicht, was ich beabsichtigt hatte. Falls nicht,
auch gut. Jeder geht seinen eigenen Weg und kommt irgendwann ans
Ziel.

An dieser Stelle möchte ich auch auf meine Internetseite www.erik-
bartmann.de hinweisen, auf der du u.a. einiges zum Thema Arduino
findest. Vor allen Dingen habe ich dort zahlreiche Links platziert,
die z.B. auf von mir erstellten Videos zum Thema Arduino verwei-
sen. Hierin werden Themen der einzelnen Kapitel aus diesem Buch
behandelt. Sie sollen dich ein wenig bei deinen Experimenten
unterstützen und zeigen, wie alles funktioniert. Da der Seitenum-
fang dieses Buches beschränkt ist, ich aber noch weitere interes-
sante Themen auf dem Schirm habe, wirst du dort auch noch das
eine oder andere Zusatzkapitel finden, das sicherlich einen Blick
lohnt. Schaue einfach mal vorbei, und es würde mich sehr freuen,
wenn du bei dieser Gelegenheit ein wenig Feedback (positiv wie
negativ) geben würdest. Die entsprechende Emailadresse lautet:
arduino@erik-bartmann.de und ist auch auf der Internetseite noch
einmal aufgeführt.

Voraussetzungen
Die einzige persönliche Voraussetzung, die du mitbringen solltest,
ist das Interesse am Basteln und Experimentieren. Du musst kein
Elektronik-Freak sein und auch kein Computerexperte, um die hier
Einleitung --- XIII

http://www.erik-bartmann.de
http://www.erik-bartmann.de
mailto:arduino@erik-bartmann.de

im Buch gezeigten Experimente nachvollziehen bzw. nachbauen zu
können. Da wir sehr moderat beginnen werden, besteht absolut
keine Gefahr, dass irgendjemand auf der Strecke bleibt. Setz’ dich
also nicht selbst unter Druck und mach’ die Dinge nicht schwieri-
ger als sie sind. Der Spaßfaktor steht immer an oberster Stelle.

Benötigte Bauteile
Unser Arduino-Board für sich alleine ist zwar ganz nett und wir
können uns daran erfreuen, wie klein und schön alles konzipiert
wurde. Doch auf Dauer ist das wenig befriedigend und wir sollten
uns daher im nächsten Schritt ansehen, was wir so alles von außen
an das Board anschließen können. Falls du noch niemals in
irgendeiner Weise mit elektronischen Bauteilen (wie z.B. Wider-
ständen, Kondensatoren, Transistoren oder Dioden, um nur einige
zu nennen) in Berührung gekommen bist, ist das nicht weiter
schlimm. Die benötigten Teile werden in ihrer Funktion ausführ-
lich beschrieben, so dass du nachher weißt, wie sie einzeln und
innerhalb der Schaltung reagieren. Vor jedem Experiment werde
ich also eine Liste mit den erforderlichen Teilen zur Verfügung stel-
len, die dir die Möglichkeit gibt, diese entsprechend zu erwerben.
Kernelement ist natürlich immer das Arduino-Board, das ich nicht
immer explizit erwähnen werde. Falls du dich an dieser Stelle fra-
gen solltest, was um Himmels Willen denn ein solches Arduino-
Board kosten mag und ob du nach dieser Investition deinen
gewohnten Lebensstil fortführen kannst, kann ich nur sagen: Yes,
you can! Das Board kostet so um die 25 €, und das ist wirklich nicht
viel.

Ich verwende in allen Beispielen das im Moment neuste Arduino-
Board, das sich Arduino-Uno nennt. Es ist absolut programmkom-
patibel mit dem Vorgängermodell Arduino-Duemilanove.

Eine Komplettliste aller in diesem Buch benötigten Bauteile findest
du im Anhang. Ich werde aber nach Möglichkeit keine ausgefalle-
nen, exotischen bzw. teuren Bauteile verwenden. Falls du zu den
Jägern und Sammlern zählst, hast du vielleicht noch einen Haufen
alter elektronischer Geräte, wie Scanner, Drucker, DVD-Player,
Video-Recorder, Radios, etc. im Keller oder auf dem Dachboden,
die du ausschlachten kannst, um an diverse Bauteile zu gelangen.
Stelle aber vor dem Öffnen derartiger Geräte immer sicher, dass sie
vom Stromnetz getrennt sind. Ansonsten besteht Lebensgefahr und
du willst doch sicherlich noch bis zum Ende des Buches gelangen.
-- EinleitungXIV

Alle Experimente werden übrigens mit Versorgungsspannungen
von 5V bzw. 12V betrieben.

Abbildung 1
Das Arduino-Mikrocontroller-Board
Uno

Verhaltensregeln
Wenn du dich so richtig im Brass befindest und du voll konzent-
riert bist auf etwas, das dir unheimlich viel Spaß macht, treten fol-
gende Effekte auf:

• Verminderte Nahrungsaufnahme, die zu kritischem Gewichts-
und besorgniserregendem Realitätsverlust führen kann.

• Unzureichende Flüssigkeitszufuhr bis hin zu Dehydrierung
und vermehrter Staubentwicklung

• Vernachlässigung sämtlicher hygienischer Maßnahmen wie
Waschen, Duschen, Zähneputzen, verbunden mit erhöhtem
Auftreten von Ungeziefer.

• Abbruch jeglicher zwischenmenschlicher Beziehungen

Lasse es nicht so weit kommen und öffne auch ab und zu das Fens-
ter, um zugewanderten Insekten das Verlassen des Zimmers zu
ermöglichen und um Frischluft bzw. Sonnenlicht hereinzulassen.
Um den oben genannten Effekten entgegen zu wirken, kannst du
z.B. den Wecker stellen, damit du in regelmäßigen Zeitintervallen
zu einer Unterbrechung deiner Tätigkeiten aufgefordert wirst.
Hierzu ist natürlich eine gewisse Selbstdisziplin erforderlich, die du
Einleitung --- XV

ganz alleine an den Tag legen musst. Ich möchte mich nach der
Veröffentlichung dieses Buches nicht mit einer Beschwerdewelle
konfrontiert sehen, die von erbosten Partnern oder vernachlässig-
ten Freunden auf mich niederprasseln. Sagt also nicht, ich hätte
euch nicht mit den Risiken vertraut gemacht.

Was ratsam ist
Da es sich bei dem Arduino-Board um eine Experimentierplatine
handelt, an der wir allerlei Bauteile bzw. Kabel anschließen kön-
nen, und der Mensch nun einmal nicht unfehlbar ist, rate ich zur
erhöhten Aufmerksamkeit. Das Board wird über die USB-Schnitt-
stelle direkt mit dem PC verbunden. Im schlimmsten Fall kann das
bedeuten, dass bei einer Unachtsamkeit, z.B. bei einem Kurzschluss
auf dem Board, Ihr PC, speziell die USB-Schnittstelle, darunter lei-
det und das Mainboard beschädigt wird. Du kannst dem vorbeu-
gen, indem du einen USB-HUB zwischen Computer und Arduino-
Board schaltest. Du bekommst diese HUBs mit 4 Ports teilweise
schon für unter 10 €. Diese Investition zahlt sich auf jeden Fall aus,
und ich benutze selbst diese Konstellation der Anordnung.

Abbildung 2
Das Arduino-Mikrocontroller-Board
am besten über einen HUB mit dem

PC verbinden

Der zweite wichtige Punkt ist die Tatsache, dass das Arduino-Board
auf der Unterseite recht viele Kontakte aufweist, was in der Natur
-- EinleitungXVI

der Sache liegt. Es handelt sich dabei um Lötpunkte, über die die
Bauteile auf dieser Seite des Boards fixiert und miteinander verbun-
den werden. Das bedeutet natürlich, dass sie leitfähig sind und
extrem anfällig für etwaige nicht beabsichtigte Verbindungen
untereinander. Im schlimmsten Fall, und sei dir sicher, dass dieser
Fall nach Murphy eintreten wird, erzeugst du einen Kurzschluss.
Ich spreche da aus Erfahrung und habe mir auf diese Weise schon
so einiges »zerschossen«. Lerne also aus den Fehlern anderer und
mache es besser. Das bedeutet natürlich nicht, dass du nicht auch
Fehler machen dürftest, denn sie tragen sicherlich am meisten zum
Lernerfolg bei. Aber es müssen ja nicht immer gleich die schlimms-
ten Missgeschicke passieren und die Bauteile einer Kernschmelze
zugeführt werden.

Abbildung 3
Das Arduino-Mikrocontroller-Board
Uno von der Rückseite gesehen

Wenn du das Board auf eine metallene Unterlage oder auf eine
unsaubere Tischplatte legen würdest, auf der sich blanke Kabel-
reste befinden, wäre der Kurzschluss so sicher wie das Amen in der
Kirche und der Ärger gewaltig. Lege eine gewisse Sorgfalt an den
Tag, damit es nicht so weit kommt, dann hast du sicherlich viel
Freude an der Materie.

An dieser Stelle möchte ich schon mit dem ersten Tipp um die Ecke
kommen. Vielleicht sind dir die vier Bohrungen mit einem Durch-
messer von 3mm in der Platine des Arduinoboards aufgefallen. Sie
befinden sich nicht zur besseren Belüftung des Boards an diesen
Stellen, sondern haben einen anderen Zweck. Damit das Board
Einleitung --- XVII

nicht mit der Lötseite direkt auf der Arbeitsunterlage liegt und - wie
schon erwähnt – ggf. mit leitenden Materialien in Berührung
kommt, kannst du dort sogenannte Gummipuffer bzw. Abstands-
halter für Leiterplatten anbringen. Sie gewährleisten einen Sicher-
heitsabstand zur Unterlage und können dadurch einen Kurzschluss
verhindern. Ich rate trotzdem zur Vorsicht. Elektronische Schaltun-
gen, insbesondere integrierte Schaltkreise, wie z.B. der Mikropro-
zessor, reagieren sehr empfindlich auf elektrostatische Entladungen
(ESD). Beim Laufen über einen Teppich mit dem entsprechenden
Schuhwerk kann durch diese Reibung der Körper aufgeladen wer-
den, so dass bei Berührung mit elektronischen Bauteilen kurzzeitig
ein sehr hoher Strom fließen kann. Das führt in der Regel zur Zer-
störung des Bauteils. Bevor du dich also deinem Mikrocontroller-
Board näherst, solltest du sicherstellen, dass du nicht geladen bist.
Ein kurzer Griff an ein blankes Heizungsrohr kann diese Energie
ableiten. Sei also vorsichtig.

Das, was nicht fehlen darf
Auch jetzt komme ich wieder nicht umhin, einige Worte über
Familie, Freunde und liebgewonnene Menschen zu verlieren. Es ist
dir freigestellt, diesen Passus zu überspringen. Die Arbeit an mei-
nem ersten Buch über die Programmiersprache Processing beim
O’Reilly-Verlag – höre ich da jemanden sagen: »Jetzt macht er auch
noch Werbung für sein erstes Buch…« – hat eigentlich dazu
geführt, dass ich mich einerseits gut und andererseits nicht so gut
fühle. Gut ist, dass ich es geschafft habe, meinen Lebenswunsch,
ein Buch über Programmierung zu schreiben, endlich noch vor
einem eventuellen Ableben verwirklichen konnte. Nicht so gut war
die Tatsache, dass ich mich für einen längeren Zeitraum von meiner
Familie distanzieren musste. Sie hat es aber verstanden und mich
ab und an mit Nahrung versorgt, so dass ich keine allzu großen
körperlichen wie seelischen Schäden davon trug.

Und was soll ich sagen… Kurz nach der Veröffentlichung habe ich
meinem Lektor Volker Bombien von meiner Vorliebe für den
Mikrocontroller Arduino erzählt und schon konnte ich mich nicht
mehr aus der Sache herauswinden. Er hatte mich schon wieder am
Haken und dafür bin ich ihm sehr dankbar. Mein Interesse an Elek-
tronik, das ich in jungen Jahren hatte und das lange Zeit auf Eis lag,
trat plötzlich wieder hervor und dann hat es mich wirklich gepackt.
Was heutzutage alles machbar ist, da haben wir vor 30 Jahren nur
von geträumt. Ich würde mich riesig freuen, könnte dieser Funke
-- EinleitungXVIII

der Begeisterung für die Thematik auf den einen oder anderen
Leser überspringen. Mit der Arduino-Plattform und ein wenig
Grundwissen bezüglich Elektronik uns Tür und Tor weit offen für
Dinge, die wir schon immer machen wollten. Der Dank gilt auch
meiner Familie, die bestimmt im Stillen stöhnte: »Nein, jetzt zieht
er sich schon wieder für längere Zeit zurück. Ob das vielleicht an
uns liegt?« Schließlich einen großen Dank in Richtung des Fachgut-
achters Herrn Markus Ulsaß und der Korrekturleserin Frau Tanja
Feder. Sie sind die Personen im Hintergrund, ähnlich den Souffleu-
sen in einer Theateraufführung. Man bekommt sie nie zu Gesicht,
doch ihr Wirken macht sich an der Qualität des Stückes bemerk-
bar. Man kann und will nicht auf sie verzichten!

 Ach ja, bevor ich’s vergesse. Ich möchte dir an dieser Stelle schon
mal deinen Wegbegleiter vorstellen. Er begleitet dich durch das
gesamte Buch und wird dir zur Seite stehen. Sein Name ist übrigens
Ardus.

Klar Ardus, das machen wir!

Ich überlasse nun euch beiden eurem Schicksal und ziehe mich erst
einmal diskret zurück.

Viel Spaß und viel Erfolg beim Physical Computing mit deinem
Arduino-Board wünscht dir

Ist echt cool, Mann! Ich bin ganz schön aufgeregt, was hier so auf
mich und dich zukommt. Aber wir werden das Kind – ähm – das
Arduino-Board schon schaukeln, nicht wahr!?
Einleitung --- XIX

First

Erstellen au
Arbeitsseite
(siehe Must

Kapitel
Hier Mini IVZ eingeben!

Kapitel 1 1Was ist ein
Mikrocontroller
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Falls du es nicht erwarten kannst, deinen Arduino anzuschließen
und das erste Experiment durchzuführen, kannst du dieses Kapitel
getrost überspringen und vielleicht später hierauf zurückkommen.
Das ist absolut kein Problem. In diesem ersten Kapitel wollen wir
uns den Mikrocontroller-Grundlagen widmen. Bei Mikrocontrol-
lern handelt es sich um integrierte Schaltkreise (IC = Integrated Cir-
cuit), d.h. komplexe Schaltungen, die auf kleinstem Raum auf
Halbleiterchips untergebracht sind. Was zu den Pionierzeiten der
Elektronik noch mit unzähligen Bauteilen wie Transistoren, Wider-
ständen oder Kondensatoren platzraubend auf mehr oder weniger
großen Platinen verlötet wurde, findet jetzt Platz in unscheinbaren
kleinen schwarzen Plastikgehäusen mit einer bestimmten Anzahl
von Pins. So werden die Anschlüsse genannt, die aus den ICs her-
ausragen, und mittels derer dann die Komminukation erfolgt. Im
folgenden Bild siehst du den ATmega328-Mikrocontroller, der
auch auf dem Arduino-Board verbaut wurde.

Abbildung 1-1
Der ATmega328-Mikrocontroller
(Quelle:Atmel)

Er ist in seinen Ausmaßen wirklich recht bescheiden, doch er ver-
fügt über eine ganze Menge Rechenpower. Eigentlich müsstest du
lediglich diesen Controller auf eine Platine löten, dann mit Span-
--- 1

nung versorgen und schon könntest du mit ihm arbeiten. Es fehlen
natürlich noch ein paar Komponenten wie z.B. Spannungsstabilisa-
toren und Anschlüsse zur Programmierung – doch dazu später
mehr. Er ist aber in dieser Form schon (fast) einsatzbereit.

Wozu kann man ihn
verwenden?
Vielleicht stellst du dir jetzt die berechtigte Frage, wozu so ein
Mikrocontroller denn gut ist und was man mit ihm alles so anstel-
len kann? Da kann ich dir sagen, dass hier unzählige Möglichkeiten
bestehen, deren Umsetzung einzig und allein von deiner Kreativität
abhängt. In folgenden Bereichen spielen Mikrocontroller eine ent-
scheidende Rolle. Diese Liste kratzt natürlich lediglich an der Ober-
fläche und soll dir vor allem ein Gefühl für diverse Einsatzgebiete
vermitteln:

• Überwachungsfunktionen in kritischen Umgebungen, wie z.B.
Brutkästen (Temperatur, Feuchtigkeit, Herzfrequenz und Blut-
druck des Frühchens, etc.).

• Heizungssteuerung (Kontrolle von außen- bzw. Innentempera-
tur zur optimalen Beheizung von Räumlichkeiten)

• Herzschrittmacher (Überwachung der Herzfrequenz und ggf.
Stimulierung des Herzens)

• Haushaltsgeräte (z.B. Programmsteuerung in modernen
Waschmaschinen oder Geschirrspülern)

• Hobbyelektronik (MP3-Player, Handy, Fotoapparate, etc.)

• Robotik (z.B. Steuerung von Industrierobotern zur Montage
von Kraftfahrzeugteilen)

Diese Liste kann schier endlos fortgeführt werden, doch wir kön-
nen eines beobachten. Mikrocontroller erfassen äußere Einflüsse
über Sensoren, verarbeiten sie intern mit Hilfe eines Programms
und schicken dann entsprechende Steuerbefehle nach draußen.
Sie zeigen also eine gewisse Eigenintelligenz, die natürlich vom
implementierten Programm abhängt. Ein Mikrocontroller kann
Mess-, Steuer- und Regelfunktionen übernehmen. Schauen wir
uns doch die Funktion eines Regelkreises, bei dem es sich um
einen geschlossenen Prozessablauf mit einer Störgröße handelt,
einmal genauer an. Diese Störgröße wird über einen Sensor an
--- Kapitel 1: Was ist ein Mikrocontroller2

den Mikrocontroller übermittelt, der dann entsprechend seiner
Programmierung reagiert.

Stelle dir folgendes Szenario vor. Wir befinden uns inmitten einer
Heizungssteuerung, die die Temperatur in unserem Arbeitszimmer
reguliert.

Der Sensor sagt zum Mikrocontroller: »Du, es ist ziemlich warm
hier im Arbeitszimmer!« Der Mikrokontroller seinerseits regiert dar-
auf mit der Regelung der Heizung. Die Heizung führt weniger Ener-
gie in Form von Wärme in den Raum. Der Sensor merkt dies und
teilt dem Mikrocontroller mit: »Ok, jetzt ist die Temperatur so, wie
sie angefordert wurde. 20 Grad Celsius sind ok.« Im Laufe der Zeit
kommt kalte Luft von draußen herein. Der Sensor schlägt Alarm
und teilt dem Mikrocontroller mit: Hey, es wird etwas frisch hier
und mein Mensch fängt ein wenig an zu frieren. Unternimm was! Der
Mikrocontroller regelt die Temperatur entsprechend nach oben.
Du siehst, dass das ein Ping-Pong Spiel ist, ein Regelkreis eben, der
auf äußere Störeinflüsse wie Temperaturschwankungen reagiert.

Allgemeiner Aufbau
Kommen wir jetzt zum allgemeinen Aufbau eines Mikrocontrollers,
um dir die einzelnen Komponenten innerhalb des Chips zu zeigen.

Ein guter Einwand, doch du kennst bisher noch nicht die ganze
Wahrheit über unseren Mikrocontroller. Wenn wir es genau neh-
men – und das tun wir – dann ist unser kleiner Freund hier ein
kompletter Computer auf kleinstem Raum mit all der Peripherie,
die du vielleicht von deinem PC her kennst, als da wären:

• Zentrale Recheneinheit (CPU)

• Arbeitsspeicher

• Datenspeicher

• Taktgeber

• Ein- bzw. Ausgabeports

Stopp, stopp! Ich habe da zu Beginn eine Frage. Du hast gesagt, dass
wir mit dem Mikrocontroller eigentlich schon arbeiten können. Wo
legt er denn sein Programm ab oder wo speichert er denn seine
Daten? Du hast sicherlich vergessen, die Speicherbausteine zu erwäh-
nen, die noch angeschlossen werden müssen.
Allgemeiner Aufbau --- 3

Ein Mikrocontroller kann grob in drei Hauptbereiche unterteilt
werden:

• Zentrale Recheneinheit (CPU)

• Speicher (ROM + RAM)

• Ein- bzw. Ausgabeports

Den Taktgeber, also den Oszillator zur Triggerung der Zentralein-
heit, habe ich in dieser Differenzierung außen vor gelassen. Du
erkennst die Übereinstimmung mit den Peripherieelementen des
PC’s. Der Unterschied liegt jedoch darin, dass alle drei Bereiche des
Mikrocontrollers ein integraler Bestandteil desselben sind. Sie
befinden sich in ein und demselben Gehäuse, daher ist alles so ein-
fach und kompakt. Werfen wir einen Blick auf das vereinfachte
Blockschaltbild unseres Mikrocontrollers:

Abbildung 1-2
Das Blockschaltbild eines

Mikrocontrollers

Du fragst dich jetzt bestimmt, was denn die einzelnen Blöcke in die-
sem Schaltbild bedeuten und was ihre genaue Aufgabe ist, richtig?
Nun, dann wollen wir mal sehen.

Die Zentrale Recheneinheit (CPU)
Das Arbeitstier in einem Mikrocontroller ist die zentrale Rechen-
einheit, auch kurz CPU (Central Processing Unit) genannt. Die
Hauptfunktion besteht in der Dekodierung und Ausführung von
Befehlen. Sie kann Speicher adressieren, Ein- bzw. Ausgänge ver-
walten und auf Interrupts reagieren. Ein Interrupt ist eine Unterbre-
--- Kapitel 1: Was ist ein Mikrocontroller4

chungsanforderung (IRQ = Interrupt Request) an die CPU, um den
gerade laufenden Rechenzyklus zu unterbrechen und auf ein
bestimmtes Ereignis reagieren zu können. Interrupts sind eine
wichtige Funktionalität, auf die wir noch zu sprechen kommen
werden.

Der Datenbus
Den Datenbus können wir uns im wahrsten Sinn des Wortes als
einen Bus vorstellen, der die Daten von einem Block zum nächsten
transportiert. Die CPU fordert z.B. Daten aus dem Speicher an, die
auf den Bus gelegt werden und der CPU unmittelbar zur weiteren
Verarbeitung zur Verfügung stehen. Wenn das Ergebnis der
Berechnung vorliegt, wird es wieder auf den Bus transferiert und
vielleicht an einen Ausgangsport übermittelt, der z.B. einen Motor
eines Roboters ansteuert, um ein bestimmtes Ziel anzufahren. Es
handelt sich bei dieser Bus-Struktur um eine Datenautobahn, die
gemeinsam von allen genutzt wird, die daran angeschlossen sind.

Abbildung 1-3
Auf der Datenautobahn: »Nächster
Halt: Speicher!«

Speicherbereiche
In einem Mikrocontroller werden in der Regel zwei Speicherberei-
che unterschieden:

• Programmspeicher

• Datenspeicher

Der Programmspeicher dient zur Aufnahme des Programms, das
die CPU abarbeiten soll, wohingegen der Datenspeicher zur Ver-
waltung von temporär anfallenden Rechenergebnissen genutzt
wird.
Allgemeiner Aufbau --- 5

Das ist vollkommen korrekt und deshalb ist der Programmspei-
cher in einem Mikrocontroller ein ganz besonderer. Ein Mikrocon-
troller hat von Haus aus natürlich keine Festplatte, doch kann er
sein Programm nach der Trennung von der Versorgungsspannung
im Gedächtnis behalten. Dazu wird eine besondere Art von Spei-
cher verwendet. Er nennt sich Flash-Speicher, und wie der Name
schon sagt handelt es sich um einen nicht flüchtigen Speicher.
Seine Bits und Bytes flüchten nicht nach dem Abschalten und ste-
hen uns auch weiterhin zur Verfügung. Du hast diese Speicher-
form schon unzählige Male bei deinem PC genutzt. Das BIOS ist in
einem Flash-EEPROM untergebracht und kann bei Bedarf mit
neuen Daten überschrieben werden, wenn eine neue Version vom
Hersteller bereitgestellt wurde. Man sag auch: »Das BIOS wird neu
geflashed.«

Im Gegensatz dazu haben wir natürlich noch den Datenspeicher im
sogenannten SRAM. Dabei handelt es sich um einen flüchtigen
Speicherbereich, der die Daten, die zur Laufzeit des Programms
anfallen, nach dem Ausschalten verliert. Das ist aber auch nicht
weiter schlimm, denn diese Daten werden nur benötigt, wenn das
Programm auch ausgeführt wird. Wenn der Mikrocontroller strom-
los ist, muss er auch nichts berechnen. Allerdings hat dieser Spei-
cher einen entscheidenden Vorteil gegenüber unserem Flash-
Speicher: Er ermöglicht einen schnelleren Zugriff.

Die Ein- bzw. Ausgabeports
Die Ein- bzw. Ausgabeports sind der Draht des Mikrocontrollers
zur Außenwelt. Sie sind quasi die Schnittstelle, an der die Periphe-
rie angeschlossen werden kann. Zur Peripherie zählt eigentlich
alles, was sinnvoll mit der Schnittstelle verbunden werden kann.
Das können z.B. folgende elektronischen oder elektrischen Kompo-
nenten sein:

• LED (Leuchtdiode)

• Taster

• Schalter

Da scheint es aber ein Problem zu geben. Wenn ich meinen PC aus-
schalte, sind alle Programme, die sich im Speicher befunden haben,
weg und ich muss sie erst wieder von meiner Festplatte laden, um mit
ihnen arbeiten zu können.
--- Kapitel 1: Was ist ein Mikrocontroller6

• LDR (Lichtempfindlicher Widerstand)

• Transistor

• Widerstand

• Lautsprecher oder Piezo-Element

Diese Liste ließe sich noch endlos weiter fortführen und wir werden
noch auf das eine oder andere Element und wie wir was mit wel-
chem Port verbinden zu sprechen kommen.

Abbildung 1-4
Ein- bzw. Ausgabeports

Grundsätzlich werden aber zwei unterschiedliche Portvarianten
unterschieden:

• Digitale Ein- bzw. Ausgänge

• Analoge Ein- bzw. Ausgänge

Was analoge und digitale Signale unterscheidet, werden wir später
noch erörtern.

Interrupt-Steuerung
Ein Mikrocontroller ist mit einer sogenannten Interrupt-Steuerung
ausgestattet. Was aber ist das und wozu wird sie benötigt? Stelle dir
folgendes Szenario vor:

Du gehst abends zu Bett und möchtest aber pünktlich um 6:00 Uhr
aufstehen, um dich noch zu waschen, zu frühstücken und zur
Arbeit zu fahren, damit du rechtzeitig zum anberaumten Termin in
der Firma erscheinst. Wie gehst du in dieser Sache vor? Es gibt da
zwei unterschiedliche Ansätze mit abweichenden Ergebnissen:
Allgemeiner Aufbau --- 7

Ansatz Nr. 1
Du gehst abends zu Bett und stellst vorher die Weckzeit deines
Radioweckers auf 6:00 Uhr. Du kannst dich also völlig dem geruh-
samen Schlaf hingeben und brauchst keinen Gedanken an ein mög-
liches Verschlafen zu verschwenden. Der Wecker weckt dich zur
vorgesehenen Zeit und du erscheinst ausgeruht und voller Taten-
drang auf deiner Arbeitsstelle.

Ansatz Nr. 2
Du gehst am Abend zu Bett und weil du keinen Radiowecker
besitzt, stehst du alle halbe Stunde auf, um die aktuelle Uhrzeit zu
erfahren und um nicht einzuschlafen. Ist es dann endlich 6:00 Uhr
in der Früh, fühlst du dich gerädert und absolut unfähig zu arbei-
ten, weil du deine kostbaren Kräfte für das kontinuierliche Lesen
der Uhr verbraucht hast.

Sicherlich denkst du über die beiden Ansätze genauso, wie jeder
andere normal denkende Mensch auch. Ansatz 1 ist der bessere
und Ressourcen schonendere. Übertragen wir das Beispiel einmal
auf unseren Mikrocontroller. An einem digitalen Eingangsport ist
ein Schalter angeschlossen, der den Zustand eines Ventils über-
wacht. Unser Mikrocontroller könnte jetzt so programmiert wer-
den, dass er in regelmäßigen kurzen Abständen diesen Schalter auf
seinen Zustand hin abfragt. Dieses zyklische Abfragen, wird Polling
(was so viel wie abfragen bedeutet) genannt und ist in diesem Fall
eher ineffektiv, da unnötige CPU-Leistung verbraucht wird. Weit-
aus sinnvoller wäre eine mittels Interrupt gesteuerte Überwachung.
Die CPU geht ihrer regulären Programmausführung nach und rea-
giert erst, wenn ein bestimmter Interrupt ausgelöst wurde. Die
Hauptarbeit wird für kurze Zeit unterbrochen und in eine Unter-
brechungsroutine (ISR = Interrupt Service Routine) verzweigt. Dort
finden sich Instruktionen, wie beim Eintreffen des Interrupts ver-
fahren werden soll. Wenn die Abarbeitung beendet wurde, wird im
Hauptprogramm zurück an die Stelle gesprungen, an der die Unter-
brechung stattfand, als wenn nichts geschehen wäre.

Ist Arduino ein Mikrocontroller?
In diesem Kapitel haben wir uns den allgemeinen Grundlagen eines
Mikrocontrollers gewidmet. Die wichtigsten Hauptkomponenten
wie CPU, Speicher und Ports hast du nun kennengelernt und deren
Aufgabe im Ansatz verstanden. Alles schön und gut. Jetzt stellen
--- Kapitel 1: Was ist ein Mikrocontroller8

wir uns die berechtigte Frage: »Ist unser Arduino ein waschechter
Mikrocontroller?« Die Antwort lautet – oder hättest du etwa etwas
anderes erwartet – eindeutig JA! Er besitzt all die oben genannten
Baugruppen und vereinigt sie in seinem (einem einzigen) Inneren.
Natürlich ist da noch ein wenig mehr, denn der Mikrocontroller
hängt ja nicht einfach so irgendwo herum. Sein Zuhause teilt er mit
anderen elektronischen Bauelementen auf einer kompakten Platine,
die wir uns im nächsten Kapitel etwas näher anschauen wollen.

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• Mikrocontroller

• AVR Mikrocontroller

• Atmel
Allgemeiner Aufbau --- 9

First

Erstellen au
Arbeitsseite
(siehe Must

Kapitel
Hier Mini IVZ eingeben!

Kapitel 2 2Das Arduino-Board
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
In diesem Kapitel möchte ich mit dem Hauptakteur beginnen, um
den sich alles dreht. Das Arduino-Microkontroller-Board. Doch
werfen wir zunächst einen Blick auf das Objekt der Begierde.

Abbildung 2-1
Das Arduino-Board

Auf diesem Bild kannst du natürlich nicht erkennen, welche gerin-
gen Ausmaße das Arduino-Mikrocontroller-Board aufweist. Es ist
wirklich sehr handlich und hat die folgenden Maße:

• Breite: ca. 7 cm

• Länge: ca. 5 cm
--- 11

Das bedeutet, dass es locker in eine Hand passt und wirklich kom-
pakt ist. Wir erkennen auf der Platine die unterschiedlichsten Bau-
teile, auf die wir noch im Detail eingehen werden. Der größte
Mitspieler, der uns direkt ins Auge fällt, ist der Mikrocontroller
selbst. Er ist vom Typ ATmega 328. Über die Jahre wurden die
unterschiedlichsten Arduino-Boards entwickelt, die mit abweichen-
der Hardware bestückt sind. Ich habe mich für das Board mit der
Bezeichnung Arduino Uno entschieden, das im Moment das aktu-
ellste ist. Es gibt aber noch eine Reihe weiterer Boards, die ich dann
zum Abschluss am Ende des Buches erwähnen möchte.

Jetzt ist es endlich an der Zeit, unseren Blick in Richtung Arduino
zu lenken. Aus welchen einzelnen Komponenten besteht unsere
kleine Platine, die zunächst so unscheinbar wirkt? Manch einer
wird vielleicht behaupten, dass auf so kleinem Raum kaum etwas
Platz haben kann, mit dem sich ernsthaft etwas anfangen lässt.
Doch in den letzten Jahren sind die Bauteile immer kleiner gewor-
den und was früher z.B. noch auf fünf separaten Chips unterge-
bracht war, leistet heute ein einziger.

Abbildung 2-2
Was ist wo auf der Arduino-

Experimentierplatine?

Das sind für den Anfang erst einmal die wichtigsten Komponenten
auf dem Arduino-Board, was natürlich nicht bedeutet, dass die rest-
lichen für uns uninteressant wären. Auf einige andere werden wir
noch zu gegebener Zeit zu sprechen kommen. Jetzt endlich die
Frage, die uns sicherlich alle brennend interessiert. Was kann das
--- Kapitel 2: Das Arduino-Board12

Arduino-Board? Nun, hier sind einige Eckdaten, die ich dir nicht
vorenthalten möchte:

• Mikrocontroller ATmega 328

• 5V Betriebsspannung

• 14 digitale Ein- bzw. Ausgänge (6 als PWM Ausgänge schalt-
bar)

• 6 analoge Eingänge (Auflösung 10 Bit)

• 32 KByte Flash Speicher (vom Bootloader werden 0.5 KByte
belegt)

• 2 KByte SRAM

• 1 KByte EEPROM

• 16 MHz Taktfrequenz

• USB Schnittstelle

Wie du aus der eben gezeigten Liste entnehmen kannst, stehen uns
zur Kommunikation mit dem Arduino-Board eine bestimmte
Anzahl von Ein- bzw. Ausgängen zur Verfügung. Sie stellen die
Schnittstelle zur Außenwelt dar und ermöglichen uns, Daten an
den Mikrocontroller zu senden bzw. von ihm zu empfangen. Wirf
einen Blick auf das folgende Diagramm:

Abbildung 2-3
Ein- und Ausgänge des
Arduino-Boards

Der blaue Kasten auf der linken Seite symbolisiert den Arduino-
Mikrocontroller, der über bestimmte Schnittstellen mit uns kom-

Eine bescheidene Frage habe ich da mal. Wenn ich mir das Board so
anschaue, dann frage ich mich, was daran so besonders sein soll.
Kann ich in irgendeiner Weise mit dem Mikrocontroller kommunizie-
ren? Und wenn ja, dann wie?
Das Arduino-Board -- 13

munizieren kann. Manche Ports, sind als Eingänge, andere als Ein-
bzw. Ausgänge vorhanden. Ein Port ist dabei ein definierter
Zugangsweg zum Mikrocontroller, quasi eine Tür in das Innere,
derer wir uns bedienen können. Wirf noch einmal einen Blick auf
das Board und du wirst an der Ober- bzw. Unterkante jeweils
schwarze Buchsenleisten erkennen.

Das hast du gut beobachtet, Ardus! Ich muss dir aber sagen, dass
das Diagramm völlig korrekt ist. Der Grund ist folgender und wird
später auch noch näher erläutert: Unser Arduino-Board ist nicht
mit separaten analogen Ausgängen bestückt. Das hört sich jetzt
bestimmt erst einmal recht merkwürdig an, doch bestimmte digi-
tale Pins werden einfach als analoge Ausgänge zweckentfremdet. Du
fragst dich jetzt bestimmt, wie das denn funktionieren soll? Hier ein
kleiner Vorgriff auf das, was noch im Kapitel über die Pulsweiten-
modulation, auch PWM genannt, kommt. Bei PWM handelt es sich
um ein Verfahren, bei dem ein Signal mehr oder weniger lange An-
bzw. Ausphasen aufweist. Ist die Anphase, in der Strom fließt, län-
ger als die Ausphase, leuchtet zum Beispiel eine angeschlossene
Lampe augenscheinlich heller als in dem Fall, in dem die Ausphase
länger ist. Ihr wird also mehr Energie in einer bestimmten Zeit in
Form von elektrischem Strom zugeführt. Durch die Trägheit unse-
res Auges können wir schnell wechselnde Ereignisse nur bedingt
unterscheiden und auch beim Umschalten der Lampe zwischen den
beiden Zuständen Ein bzw. Aus kommt eine gewisse Verzögerung
zum Tragen. Dadurch hat es für uns den Anschein einer sich verän-
dernden Ausgangsspannung. Klingt etwas merkwürdig, nicht
wahr? Du wirst es aber ganz sicher besser verstehen, wenn wir zum
entsprechenden Kapitel gelangen. Einen offensichtlichen entschei-
denden Nachteil hat die hier vorliegende Art der Portverwaltung
allerdings schon. Wenn du einen oder mehrere analoge Ausgänge
verwendest, geht das zu Lasten der digitalen Portverfügbarkeit. Es
stehen hierfür dann eben weniger zur Verfügung. Doch das soll uns
nicht weiter stören, denn wir kommen nicht an die Grenzen, die
eine Einschränkung unserer Versuchsaufbauten bedeuten würde.

Haa, Moment mal! Irgendetwas stimmt hier nicht. Unser Mikrocont-
roller sollte doch analoge wie digitale Ein- bzw. Ausgangsports vor-
weisen. Im Diagramm sehe ich jedoch von den analogen Ports nur
Eingänge. Wo sind die Ausgänge geblieben? Da hast du sicherlich
etwas vergessen!
--- Kapitel 2: Das Arduino-Board14

http://www.arduino.cc/
http://www.arduino.cc/
http://www.arduino.cc/

Ok Ardus, das hätte ich beinahe vergessen! Ein Bootloader ist ein
kleines Programm, das in einem bestimmten Bereich des Flash-
Speichers auf dem Mikrocontroller-Board seinen Platz findet und
für das Laden des eigentlichen Programms verantwortlich ist. Nor-
malerweise erhält ein Mikrocontroller sein Arbeitsprogramm über
eine zusätzliche Hardware, z.B. einen ISP-Programmer. Durch den
Bootloader entfällt diese Notwendigkeit und so gestaltet sich das
Uploaden der Software wirklich komfortabel. Nach dem erfolgrei-
chen Übertragen des Arbeitsprogramms in den Arbeitsspeicher des
Controllers wird es unmittelbar zur Ausführung gebracht. Ange-
nommen, du müsstest deinen Mikrocontroller ATmega 328 auf der
Platine aus irgendeinem Grund austauschen, dann würde der Neue
nicht wissen, was zu tun wäre, da der Bootloader standardmäßig
noch nicht geladen ist. Diese Prozedur kann mittels verschiedener
Verfahren erfolgen, die ich aber aus Platzgründen nicht erklären
kann. Im Internet finden sich aber genügend Informationen, wie du
den passenden Bootloader für den Mikrocontroller installieren
kannst. Besuche doch einfach einmal meine Internetseite.

Die Stromversorgung
Damit unser Arduino-Board auch arbeiten kann, muss es in
irgendeiner Weise mit Energie versorgt werden. Diese Versorgung
erfolgt in erster Linie über die USB-Schnittstelle, die das Board mit
dem Rechner verbindet. Über diesen Weg werden übrigens auch
Daten zwischen Board und Rechner ausgetauscht. Wenn du dich
also in der Entwicklungsphase mit deinem Arduino befindest, ist
das die primäre Versorgung für das Board. Die zweite Möglichkeit
besteht im Anschluss einer Batterie oder eines Netzgerätes an den
Poweranschluss, der auch Power-Jack genannt wird. Diese Variante
kannst du z.B. verwenden, wenn du ein fahrbares Vehikel gebaut
hast, das durch den Arduino gesteuert wird. Das Gefährt soll sich
unabhängig, ohne Kabelanschlusses frei im Raum bewegen können
damit es nicht an einem meist zu kurzen USB-Kabel hängen bleibt.
Es soll sich eben um ein autarkes Gerät handeln.

Bevor du weiter in dem Tempo erzählst, muss ich dich wieder einmal
stoppen. Du hast in der Aufzählung der Eckdaten des Arduino-
Boards eine Sache erwähnt, die ich aufgreifen möchte. Was genau ist
ein Bootloader?
Die Stromversorgung --- 15

Abbildung 2-4
Spannungsversorgung des

Arduino-Boards

Hier zeige ich dir einmal die unterschiedlichen Steckervarianten.
Du kannst sie nicht vertauschen, da sie vollkommen unterschiedli-
che Formen aufweisen und auch die Funktionen völlig voneinander
abweichen.

Wenn es um Strom bzw. Spannung geht, dann sollten wir einen
Blick auf die folgende Tabelle werfen:

Tabelle 2-1
Strom- bzw. Spannungswerte

Die Bezeichnung DC hinter den Voltangaben bedeutet Direct Cur-
rent, was übersetzt Gleichstrom bedeutet. Die USB-Schnittstelle
kann maximal einen Strom von 500mA liefern. Das reicht in der
Regel aus, um die meisten Versuchsschaltungen aus diesem Buch
zu realisieren. Sie ist sogar gegen Kurzschlüsse und zu hohe Ströme
derart geschützt, das eine sogenannte Poly-Sicherung ausgelöst
wird. Das sollte aber nicht bedeuten, dass du weniger Sorgfalt beim

USB-Stecker Power-Jack

Kategorie Wert

Betriebsspannung 5V (DC)

Spannungsversorgung über Extern (empfohlen) 7 – 12V (DC)

Spannungsversorgung über Extern (Grenzwerte) 6 – 20V (DC)

Gleichstrom pro Pin (maximal) 40mA
--- Kapitel 2: Das Arduino-Board16

Aufbau einer Schaltung walten lassen solltest. Erinnere dich daran,
was ich dir in der Einleitung über den USB-Hub mit auf den Weg
gegeben habe und beherzige es.

Die Kommunikationswege
So ein Mikrocontroller-Board hat schon wirklich viele Anschlüsse,
die es auseinander zu halten gilt. Du musst stets den Überblick
bewahren, damit du nichts durcheinander bringst. Doch diese
Verwirrung – falls sie denn überhaupt aufgekommen ist – zeigt
sich nur am Anfang. Nach ein paar Tagen gehen dir diese Feinhei-
ten in Fleisch und Blut über. Wollen wir einmal die Unterschiede
aufzählen.

Der USB-Port
Da haben wir zum einen den USB-Port. Ohne ihn wärst du nicht in
der Lage mit dem Board in irgendeiner Weise eine Kommunikation
zu initiieren. Wir können das Arbeiten mit dem Arduino-Board in
zwei Phasen unterteilen. Die Zeit, in der du die Vorbereitungen
triffst, um dein Projekt umzusetzen, also Programmierarbeit leistest
und dir Gedanken über die Peripherie machst, nennt sich Entwick-
lungszeit (engl.: Designtime). Die Programmierung erfolgt mit Hilfe
einer Entwicklungsumgebung, die du in wenigen Augenblicken
kennenlernen wirst. Hierin wird das von dir erstellte Programm
eingegeben und zum Mikrocontroller übertragen. Wenn das erfolg-
reich verlaufen ist, beginnt sofort die Laufzeit (engl.: Runtime). Du
musst dem Mikrocontroller also nicht explizit sagen: »So, mein
Freund, jetzt fange an zu arbeiten!« Er legt sofort los, wenn er alle
Instruktionen von dir erhalten hat. Zusätzlich kannst du aber auch
Daten über den USB-Port von deinem Computer empfangen oder
an ihn versenden. Wie das funktioniert, werden wir später noch
sehen.

Die Ein- bzw. Ausgabeports
Kommen wir zu den eigentlichen Ports, die die Schnittstelle des
Mikrocontrollers darstellen. Es sind wie die Augen, die Ohren und
der Mund beim Menschen Wege oder Kanäle, um Daten zu emp-
fangen bzw. aussenden. Durch und über diese Kommunikationska-
Die Kommunikationswege -- 17

näle findet eine Interaktion mit der Umgebung statt. Dein Arduino
nutzt Sensordaten (z.B. Temperatur, Licht und Feuchtigkeit) zur
internen Bewertung, die wiederum durch seine Programmierung
vorgegeben ist. Er wird dann entsprechend reagieren und entspre-
chende Aktionen durchführen. Das können Lichtsignale, Töne
oder auch Bewegungen über angeschlossene Aktoren (Motoren +
Sensoren) sein.

Du hast sicherlich erkannt, dass wir es mit zwei steuerungstechni-
schen Signal-Kategorien zu tun haben. Sensoren liefern Daten und
Aktoren wandeln Eingangsgrößen in Ausgangsgrößen um. Dieser
Prozess verläuft nach dem EVA (Eingabe, Verarbeitung, Ausgabe)
Prinzip.

Abbildung 2-5
Das EVA-Prinzip

Wo befinden sich diese Ein- bzw. Ausgabeports auf unserem Ardu-
ino-Board? Wenn du es so hältst, dass du den Schriftzug UNO
lesen kannst, dann befinden sich die digitalen Ein- bzw. Ausgabe-
Ports am oberen Rand (2 x Achterblock).

Abbildung 2-6
Digitale Ein- bzw. Ausgänge

Natürlich ist es wichtig zu wissen, welcher Port welche Bezeich-
nung hat, um ihn später in der Programmierung eindeutig anspre-
chen zu können. Deshalb ist jeder einzelne Pin mit einer Nummer
versehen. Beachte, dass die Nummerierung des ersten Pins mit 0
beginnt. Auf dieses Phänomen wirst du während deiner Program-
mierung noch des Öfteren stoßen. Fast jede Aufzählung beginnt
mit der Ziffer 0. Unterhalb einiger Ziffern befindet sich ein Tilde-
Zeichen (~), das auf den Umstand hindeutet, dass dieser Pin auch
als analoger Ausgang geschaltet werden kann. Es handelt sich um
einen PWM-Pin (du erinnerst dich: Pulsweitenmodulation, die wir
noch ausführlich eingehen werden). Am unteren Ende der Platine
findest du sowohl die Versorgungs-Ports (links), als auch die analo-
gen Eingangs-Ports (2 x Sechserblock, rechts).

������ ���	��

�� ��	��

�
����� �������
	��� �������
--- Kapitel 2: Das Arduino-Board18

Abbildung 2-7
Versorgung + analoge Eingänge

Auch hier siehst du wieder, dass die Nummerierung der anlogen
Ports mit 0 beginnt, doch dieses Mal von links gesehen.

Das könnte wichtig für dich sein
Bevor du die einzelnen Pins verkabelst, orientiere dich immer
an den entsprechenden Bezeichnungen, die entweder darü-
ber oder darunter stehen. Man kann sich aufgrund der dicht
beieinander stehenden Pins zum einen schnell verlesen und
zum anderen beim Verkabeln einfach einen Pin links oder
rechts daneben erwischen. Ganz schlimm kann es werden,
wenn du zwei oder mehr benachbarte Pins durch Unachtsam-
keit miteinander verbindest und einen Kurzschluss erzeugst.
Das könnte dazu führen, dass der eine oder andere Kamerad
auf der Schaltung evtl. Rauchzeichen von sich gibt. Am besten
schaut man senkrecht von oben auf die Leisten. Ein Blick schräg
von der Seite birgt die genannten Gefahren in sich. Die spätere
Fehlersuche gestaltet sich dann etwas mühsam. Liegt ein Feh-
ler in der Programmierung oder in der Verkabelung vor? Zu
allem Übel kann eine falsch verdrahtete Leitung unter Umstän-
den einen Schaden am Board verursachen. Verkable nie ein
Board, wenn es über den USB-Port noch oder schon unter
Spannung steht. Also nicht hektisch werden beim Verkabeln
der Schaltung, und vermeide es dabei stets, schon an den
nächsten Schritt, nämlich den späteren Versuchslauf, zu den-
ken. Sei immer ganz konzentriert bei der Sache, und zwar im
Hier und Jetzt, dann wird nichts schief gehen.

Die Programmiersprachen
C/C++
Damit die Kommunikation mit dem Arduino-Board auch erfolg-
reich verläuft, mussten sich die Entwickler auf eine Sprachbasis
einigen. Nur, wenn alle Beteiligten die gleiche Sprache sprechen,
kann es zur Verständigung untereinander kommen und ein Infor-
mationsfluss einsetzten. Wenn du ins Ausland fährst und die Lan-
dessprache nicht beherrschst, musst du dich oder der Andere sich
in irgendeiner Form anpassen. Die Art und Weise ist dabei egal.
Das kann entweder durch Laute oder auch mit Händen und Füßen
sein. Wenn ihr eine Basis gefunden habt, kann’s losgehen. Bei unse-
rem Mikrocontroller ist das nicht anders. Wir müssen da jedoch
Die Programmiersprachen C/C++ -- 19

zwischen zwei Ebenen unterscheiden. Der Mikrocontroller versteht
auf seiner Interpretationsebene nur Maschinensprache, auch Nati-
ver Code genannt, die für den Menschen nur sehr schwer zu verste-
hen ist, da sie lediglich aus Zahlenwerten besteht. Wir haben aber
von Kindesbeinen an gelernt, mit Worten und Sätzen zu kommuni-
zieren. Das ist aber reine Gewohnheitssache. Würden wir uns von
Geburt an mithilfe von Zahlenwerten mitteilen, wäre auch diese
Kommunikationsform völlig ok. Jedenfalls benötigen wir aufgrund
dieses Sprachdilemmas eine Möglichkeit, in verständlicher Form
mit dem Mikrocontroller kommunizieren zu können. Deshalb
wurde eine Entwicklungsumgebung geschaffen, die Befehle über
eine sogenannte Hochsprache – das ist eine Sprache, die eine abs-
trakte Form ähnlich der unseren aufweist – entgegen nimmt. Doch
damit stecken wir dann wieder in einer Sackgasse, denn der Mikro-
controller versteht diese Sprache leider nicht. Es fehlt so etwas wie
ein Übersetzter, der als Verbindungsglied zwischen Entwicklungs-
umgebung und Mikrocontroller arbeitet und dolmetscht. Diese
Aufgabe übernimmt der sogenannter Compiler. bei dem es sich um
ein Programm handelt, das ein in einer Hochsprache geschriebenes
Programm in die Zielsprache des Empfängers (hier unsere CPU des
Mikrocontrollers) umwandelt.

Abbildung 2-8
Der Compiler als Dolmetscher

Da sich fast alle Programmiersprachen des englischen Wortschat-
zes bedienen, kommen wir nicht umhin, auch diese Hürde nehmen
zu müssen. Es ist also ein weiterer Übersetzungsvorgang erforder-
lich, doch ich denke, dass das Schulenglisch hier sicher in den meis-
ten Fällen ausreichen wird. Die Instruktionen, also die Befehle, die
die Entwicklungsumgebung versteht, sind recht kurz gehalten und
gleichen denen in der Militärsprache. Es handelt sich um knappe
Anweisungen, mit denen wiedergeben wird, was zu tun ist.

Diese werden wir Schritt für Schritt lernen, es besteht also kein
Grund zur Besorgnis. Wie schon aus der Überschrift zu diesem
Absatz korrekterweise ersichtlich ist, handelt es sich bei C bzw.
C++ ebenfalls um Hochsprachen. Alle professionellen Programme

����� ����

�� �����
����
�������

����������� ������	���� �
�
�������

Mikro hergehört: Lampe an Port 13 anschalten. Ausführung!
--- Kapitel 2: Das Arduino-Board20

werden heutzutage in C/C++ oder verwandten Sprachen wie C#
oder Java geschrieben, die allesamt ähnliche Syntaxformen aufwei-
sen. Um Proteststürmen von den Programmierern, die ihre favori-
sierte Sprache hier nicht aufgelistet sehen, entgegenzuwirken,
möchte ich hier Folgendes anmerken: Das soll in keiner Weise
bedeuten, dass alle restlichen Sprachen – und hiervon gibt es eine
Menge – nicht in die Kategorie professionell fallen. Wir wollen uns
hier auf C/C++ konzentrieren, weil Arduino bzw. der Compiler
bereits über eine Teilmenge der Funktionalität der Sprachen C/C++
verfügt. Wer also schon mit C bzw. C++ programmiert hat, wird
sich hier bereits in vertrauter Umgebung befinden. Alle anderen
werden wir dahin führen, dass sie sich ebenfalls recht schnell
zuhause fühlen werden. Viele andere Mikrocontroller-Entwick-
lungspakete verwenden außerdem C/C++-ähnliche Compiler, so
dass das Studium dieser Sprachen auch diesbezüglich recht bald
Früchte tragen wird, doch wir wollen uns ja hier mit Arduino
beschäftigen und uns ganz diesem Thema widmen. Wie wir was in
welcher Form programmieren, wird integraler Bestandteil dieses
Buches sein. Hab’ noch ein wenig Geduld, im Abschnitt »Befehl
und Gehorsam« auf Seite 44 wirst du umfangreich mit der Pro-
grammiersprache in Berührung kommen. Du kannst gespannt sein,
was wir alles anstellen werden.

Na du bist wohl auch einer von denen, die es nicht erwarten kön-
nen. Also gut. Aber nur ein einfaches Beispiel, das wir später
sowieso als erstes kennenlernen werden:

int ledPin = 13; // Variable mit Pin 13 deklarieren +
 // initialisieren

void setup(){
 pinMode(ledPin, OUTPUT); // Digitaler Pin 13 als Ausgang
}

void loop(){
 digitalWrite(ledPin, HIGH); // LED auf High-Pegel (5V)
 delay(1000); // Eine Sekunde warten
 digitalWrite(ledPin, LOW); // LED auf LOW-Pegel (0V)
 delay(1000); // Eine Sekunde warten
}

Ich möchte aber gerne jetzt schon ein wenig Code sehen. Komm, zeig’
mir doch einfach schon ein Beispiel, nur damit ich einen kleinen Ein-
blick bekomme, ok!?
Die Programmiersprachen C/C++ -- 21

Und, zufrieden? Mit diesem Beispiel lässt du eine angeschlossene
Leuchtdiode blinken, die am digitalen Ausgang Pin 13 angeschlos-
sen wird. Sag’ nur, du willst das jetzt schon ausprobieren? Aber ich
habe doch noch gar nicht die Grundlagen für die Treiberinstalla-
tion erläutert. Die solltest du aber schon noch abwarten und dann
vor den weiteren Schritten erst einmal die Entwicklungsumgebung
richtig konfigurieren. Können wir so verbleiben?

Wie und womit kann ich
Arduino programmieren?
Wie ich schon erwähnt habe, steht uns zur Programmierung des
Arduino-Mikrocontrollers eine Entwicklungsumgebung – auch
IDE (Integrated Development Environment) – zur Verfügung, mit-
tels derer wir direkten Kontakt mit dem Board aufnehmen und das
Programm in den Mikrocontroller übertragen. Ein Programm wird
übrigens im Arduino-Kontext Sketch genannt, was grob übersetzt
so viel wie Skizze bedeutet. Wir sprechen also ab jetzt nur noch von
Sketchen, wenn es sich um Arduino-Programme handelt. Um ein
möglichst breites Publikum mit Arduino anzusprechen, wurden für
die unterschiedlichsten Plattformen Entwicklungsumgebungen
geschaffen, die sich alle gleichen. Das bekannteste und verbreitetste
Betriebssystem ist Windows. Alle meine Sketche, die ich in diesem
Buch anführe, habe ich unter Windows entwickelt, was jedoch
nicht bedeutet, dass andere Plattformen schlechter wären. Auf der
Internetseite von Arduino, die http://www.arduino.cc/ lautet, stehen
im Downloadbereich die unterschiedlichen Versionen für folgende
Betriebssysteme zur Verfügung:

• Windows

• Linux (32 Bit)

• Mac OS

Dort findest du auch die sogenannten Release Notes (übersetzt:
Freigabevermerk), die wichtige Informationen über die betreffende
Version der IDE enthalten. Da geht es z.B. um neue Features oder
behobene Fehler, die in der Vorgängerversion aufgetreten sind. Es
lohnt sich allemal, hier einen Blick zu riskieren.
--- Kapitel 2: Das Arduino-Board22

http://www.arduino.cc

Die Installation der Entwicklungs-
umgebung inklusive Treiber
Ich habe jetzt so lange auf die Entwicklungsumgebung hingewie-
sen, dass es nun langsam an der Zeit ist, diese ein wenig näher zu
betrachten. Der Download von der o.g. Seite erfolgt mittels einer
gepackten Datei. Sie liegt entweder im zip-Format (Windows) oder
im tgz-Format (Linux) vor und kann an eine beliebige Stelle im
Dateisystem entpackt werden. Direkt nach dem Entpacken ist
sofort alles lauffähig. Ein Setup mittels einer Installationsroutine ist
nicht erforderlich. Im letzten Schritt vor der Programmierung muss
jedoch für Windows noch der Treiber für das aktuelle Uno-Board
installiert werden, damit die Kommunikation mit dem angeschlos-
senen Board über die USB-Schnittstelle auch reibungslos funktio-
niert. In der neuesten Ubuntu-Version 11.10 ist der Treiber schon
installiert.

Installation für Windows 7

Schritt 1

Entwicklungsumgebung entpacken

Schritt 2

Das Uno-Board über ein USB-Kabel mit einer der freien USB-Buch-
sen an deinem Rechner verbinden.

Werfen wir noch einen kurzen Blick auf das zu verwendende USB-
Kabel mit den unterschiedlichen Steckertypen, damit du beim Kauf
eines solchen Kabels – es ist nämlich nicht Bestandteil des Arduino-
Boards – nichts falsch machst.

Abbildung 2-9
USB-Kabel zum Anschluss des
Arduino-Boards an den PC

Die Seite mit dem Stecker Typ-B wird mit dem Board und die mit
Typ-A mit dem PC verbunden. Bedenke, wie schon in der Einlei-
Wie und womit kann ich Arduino programmieren? --- 23

tung erwähnt, dass die Verwendung eines USB-HUB die sicherere
Variante ist. Nach einiger Zeit sollte dein Betriebssystem melden,
dass es neue Hardware gefunden hat, und den Treiber Installations-
prozess starten. Da sich natürlich auf diese Weise kein passender
Treiber finden lässt, wird nach einiger Zeit ein Dialog angezeigt,
der auf diesen Umstand hinweist. Du kannst ihn getrost schließen.

Schritt 3

Gehe jetzt über die Computerverwaltung (rechte Maustaste auf das
Computer Desktop-Icon und Verwaltung wählen) und öffne den
Gerätemanager. Du findest in der angezeigten Hierarchie unter
Andere Geräte einen Eintrag für das Arduino Uno-Board. Den
Namen hat das System also schon einmal richtig erkannt, doch das
nützt uns an dieser Stelle nicht viel. Der passende Treiber würde
hier mehr Sinn machen.

Abbildung 2-10
Ein Gerät mit fehlendem Treiber

wurde erkannt.

Schritt 4

Klicke mit der Maustaste auf den Eintrag Arduino Uno und öffne
mit der rechten Maustaste das Kontextmenü. Über den Menüpunkt
Treibersoftware aktualisieren lässt sich ein Dialogfenster öffnen, bei
dem du die Option Treibersoftware manuell suchen und installieren
auswählst.

Abbildung 2-11
Die Auswahl »Treibersoftware

manuell suchen und installieren«

Schritt 5

Anschließend musst du über den Browser an die Stelle navigieren,
an der die Treiberdatei Arduino UNO.inf gespeichert ist. Sie befin-
det sich im Stammverzeichnis von Arduino unterhalb des Ordners
drivers. Die Dateinamenerweiterung ist bei bekannten Dateien
standardmäßig deaktiviert, daher ist die Dateinamenerweiterung
.inf nicht zu sehen.

Abbildung 2-12
Die Datei »Arduino UNO.inf«

auswählen
--- Kapitel 2: Das Arduino-Board24

Nach erfolgreicher Installation dieses Treibers kannst du dich der
Arduino-Entwicklungsumgebung zuwenden und sie starten. Wie
das funktioniert, sehen wir gleich.

Das könnte wichtig für dich sein
Die neue Arduino-Entwicklungsumgebung mit der Versions-
nummer 1.0 steht in den Startlöchern. Um den Entwicklern
einen Vorgeschmack auf das zu geben, was da bald erscheint,
werden sogenannte Beta-Versionen zur Verfügung gestellt, um
sich schon einmal mit den Neuerungen vertraut zu machen. Sie
sollten jedoch noch nicht für produktive Zwecke verwendet
werden, da sicherlich noch einige Fehler enthalten sein könn-
ten. Steht die Veröffentlichung der neuen Version kurz bevor,
gibt ein Hersteller Versionen heraus, die mit RC (Release Candi-
date) gekennzeichnet sind. Es handelt sich um einen Freigabe-
kandidat, der schon alle in der Endversion angekündigten
Features enthalten soll. Aus diesem Grund hat der Ordner im
Filesystem die Bezeichnung arduino-1.0-rc1.

Installation für Ubuntu
Für die Ubuntu-Linux 11.04 Version liegt schon ein Installationspa-
ket der Arduino-Version 0022 vor. Ich zeige dir hier die unkompli-
zierte Variante der Installation über die Softwareverwaltung
KPackageKit. Ich selbst habe übrigens auch KUbuntu bei mir instal-
liert, und zwar Ubuntu mit der Arbeitsumgebung KDE statt Gnome.

Schritt 1

Über Anwendungen|System die Softwareverwaltung KPackageKit
öffnen und dort DeveloperTools selektieren.

Abbildung 2-13
KPackageKit bei KUbuntu
Wie und womit kann ich Arduino programmieren? --- 25

Schritt 2

Das Softwarepaket Arduino-Entwicklungsumgebung aus der ange-
botenen Liste selektieren und dann auf den rechts angezeigten
Installieren-Button klicken.

Abbildung 2-14
Arduino-Entwicklungsumgebung

auswählen

Wenn es sich dabei um das einzige Paket handelt, das du installie-
ren möchtest, dann klicke zum Abschluss auf den Anwenden-
Button rechts unten. Im Anschluss wird das Paket heruntergeladen
und installiert.

Abbildung 2-15
Herunterladen und Installieren des

Paketes bzw. der Pakete

Nach Beendigung dieses Prozesses befindet sich unter Anwendun-
gen|Entwicklung der neue Eintrag zu der Arduino-Entwicklungsum-
gebung. Dieses Verfahren ist viel kürzer als bei Windows, was!?
--- Kapitel 2: Das Arduino-Board26

Die Arduino-Entwicklungs-
umgebung
Was ist überhaupt eine Entwicklungsumgebung und was können
wir mit ihr machen? Nun, sie bietet dem interessierten Program-
mierer bzw. angehenden Arduino-Experten, der du ja in Kürze sein
wirst, ein Werkzeug zur Umsetzung seiner programmiertechni-
schen Ideen. Wir haben es ja zum einen mit Hardware zu tun,
deren Hauptbestandteil natürlich das Arduino-Board ist. Hieran
werden die unterschiedlichsten elektronischen bzw. elektrischen
Bauteile angeschlossen, auf die wir noch im Detail zu sprechen
kommen. Das sind alles greifbare Dinge, die eben in ihrer Struktur
hart sind. Daher der Ausdruck Hardware. Was aber nützt uns eine
Hardware, die nicht weiß, was sie tun soll? Etwas fehlt noch, um
die Sache rund zu machen. Genau, da ist andererseits die Software.
Das ist die Welt der Programme – oder im Falle von Arduino der
Sketche – und Daten. Die Software ist »weich«, d.h. du kannst sie
eben nicht unmittelbar mit deinen Händen greifen, es sei denn, du
druckst alles auf Papier aus. Die Software macht Hardware erst zu
dem, wozu sie eigentlich gedacht ist, nämlich Befehle zu interpre-
tieren und auszuführen. Beide zusammen bilden eine untrennbare
Einheit, denn keiner kommt ohne den anderen aus.

Das Starten der Entwicklungs-
umgebung
Kommen wir jetzt endlich zu etwas Konkretem. Der Start der Ent-
wicklungsumgebung, ich werde sie von jetzt an nur noch IDE nen-
nen, steht unmittelbar bevor. Im entpackten Verzeichnis, das du
von der Internetseite für Windows heruntergeladen hast, befindet
sich u.a. eine Datei mit dem Namen Arduino. Du erkennst sie an
dem typischen Icon.

Abbildung 2-16
Die Datei »Arduino« zum Starten
der Entwicklungsumgebung
Das Starten der Entwicklungsumgebung -- 27

Nach einem Doppelklick auf dieses Icon erhältst du die folgende
Ansicht.

Abbildung 2-17
Die leere IDE (Windows)

Bei Linux musst du über Anwendungen|Entwicklung den folgenden
Eintrag auswählen:

Das Fenster der IDE gleicht seinem Pendant unter Windows. Wenn
du genau hinschaust, kannst du vielleicht bestimmte voneinander
getrennte Bereiche erkennen, in denen sich vielleicht später etwas
abspielt. Auf diese Bereiche wollen wir nun einen genaueren Blick
werfen und sie systematisch von oben nach unten durchgehen.

Die Titelzeile

Die Titelzeile ist die Zeile am oberen Fensterrand, die zwei Informa-
tionen enthält:
--- Kapitel 2: Das Arduino-Board28

• den Sketch-Name (hier: sketch_sep22a) Dieser Name wird
automatisch vergeben und beginnt immer mit sketch_. Danach
folgen der Monat, der Tag und ein laufender Buchstabe a bis z,
falls an diesem Tag noch weitere Sketche erstellt werden. Die-
ser Sketch wurde demnach am 22. September in der ersten Ver-
sion dieses Tages erstellt.

• die Arduino IDE-Versionsnummer (hier Version 1.0, die sich
im Laufe der Zeit aber noch erhöhen wird, wenn Fehler beho-
ben wurden oder neue Funktionen hinzugekommen sind)

Die Menüleiste

In der Menüleiste werden unterschiedlichste Menüeinträge zur Aus-
wahl angeboten, über die du bestimmte Funktionen der IDE aufru-
fen kannst.

Die Symbolleiste

Unterhalb der Menüleiste befinden sich die Symbolleiste, die mit
einigen Piktogrammen – auch Icons genannt – versehen ist. Auf
deren einzelne Funktionen komme ich gleich zu sprechen.

Der Tabulatorbereich

Der Tabulatorbereich zeigt an, wie viele Quellcodedateien zum
jeweiligen geöffneten Arduino-Projekt gehören.

Im Moment können wir lediglich einen Tabulator-Reiter mit dem
Namen sketch_sep22a erkennen. Es können hier aber, je nach Pro-
grammieraufwand, weitere Registerkarten hinzugefügt werden.
Dazu dient das am rechten Rand befindliche Icon.

Der Editor

Kommen wir zu Herzstück der IDE. Der Editorbereich, der sich im
Moment noch vollkommen jungfräulich darstellt, ist der zentrale
Ort, an dem du dich mit deinen Ideen austoben kannst. Hier gibst
du den Quellcode ein, also die Instruktionen, die den Mikrocont-
Das Starten der Entwicklungsumgebung -- 29

roller veranlassen sollen, das zu tun, was du ihm aufträgst. Das ist
die Welt der Sketche.

Die Infozeile

In der Infozeile wirst du über bestimmte durchgeführte Aktionen
der IDE informiert.

Hast du z.B. einen Sketch erfolgreich auf deiner Festplatte gespei-
chert, bekommst du den hier gezeigten Wortlaut angezeigt. Alles in
Englisch natürlich. Hat der Compiler bei der Übersetzung einen
Fehler in deinem Sketch entdeckt, weil du dich vielleicht vertippt
hast, so tut er das hier u.a. mit einer entsprechenden Aussage kund.
Weitere Details zu erkannten Fehlern werden im Nachrichtenfens-
ter, das jetzt folgt, angezeigt.

Das Nachrichtenfenster

Über das Nachrichtenfenster versorgt dich die DIE mit allen not-
wendigen Informationen, um dich auf dem Laufenden zu halten.
Was könnten das z.B. für Informationen sein?

• Informationen über Sketch-Transfer zum Arduino-Board
(erfolgreich oder fehlerhaft)

• Informationen über Übersetzungsaktivitäten des Compilers
(erfolgreich oder fehlerhaft)

• Informationen über den seriellen Monitor (erfolgreich oder
COM-Port nicht gefunden)
--- Kapitel 2: Das Arduino-Board30

Die Statuszeile

In der Statuszeile wird entweder ein einzelner Wert angezeigt, der
die Zeilennummer des Cursors wiedergibt, (hier Zeile 3)

oder einen markierten Bereich, der sich über einen Bereich erstreckt
(hier Zeile 1 bis 4)

Zusätzlich erkennst du am rechten Rand den Namen deines Arduino-
Boards und den verwendeten COM-Port der seriellen Schnittstelle.

Die Symbolleiste im Detail
Beim täglichen Umgang mit der IDE wirst Du sicherlich bemerken,
dass die Symbolleiste dein wichtigster Begleiter ist. Es handelt sich
zwar nicht um sehr viele Icons in der Leiste, doch ihre Funktionali-
täten solltest du beherrschen.

Tabelle 2-2
Iconfunktionen der Symbolleiste

Icon Funktion

Das Icon hat die Aufgabe, den im Editor befindlichen Sketch auf seine Syntax hin zu
überprüfen (Verify bedeutet übersetzt prüfen) und zu übersetzten. Beim Start der
Überprüfung (Kompilierung) wird ein horizontaler Balken angezeigt, der Aufschluss
über den Fortschritt gibt.

Ist kein Fehler festgestellt worden, wird der Vorgang mit der Meldung Done Compiling
abgeschlossen. Im Ausgabefenster findest du einen Hinweis über den Speicherbedarf
des Sketches.

Um einen neuen Sketch anzulegen, benutzt du dieses Symbol. Denke aber daran, dass
die IDE immer nur einen Sketch zur selben Zeit verwalten kann. Startest du einen
neuen, denke daran, den alten Sketch unbedingt zu speichern. Andernfalls verlierst du
sämtliche Informationen.

Alle Sketche werden in einem Sketchbook abgelegt, das sich im Verzeichnis „C:\
Benutzer\<Benutzername>\Eigene Dokumente\Arduino“ befindet. Für
den Benutzernamen musst du deinen eigenen Benutzernamen eintragen. Über dieses
Symbol kannst du einen gespeicherten Sketch von der Festplatte in die IDE laden. Hier-
über erreichst du auch die zahlreich vorhandenen Beispiel-Sketche, die die IDE von
Haus aus mitbringt. Schau Sie dir an, denn du kann einiges von ihnen lernen.

Über das Speichern-Symbol sicherst du deinen Sketch auf einen Datenträger. Stan-
dardmäßig erfolgt die Speicherung im eben genannten Sketchbook-Verzeichnis.
Das Starten der Entwicklungsumgebung -- 31

Das könnte wichtig für Dich sein
Falls Du einmal die Funktion hinter einer der 6 Icons vergessen
haben solltest, dann fahre mit der Maus einfach über ein Sym-
bol und schaue rechts neben die Symbolleiste. Dort wird die
Bedeutung des Icon angezeigt.

Dieses Symbol sorgt für eine Übertragung des erfolgreich kompilierten Sketches auf
das Arduino-Board in den Mikrocontroller. Beim sogenannten Upload des Sketches
passieren folgende Dinge, die du visuell beobachten kannst. Auf dem Board befinden
sich einige kleine Leuchtdioden, die Aufschluss über bestimmte Aktivitäten geben.

LED L: Ist mit Pin 13 verbunden und leuchtet kurz, wenn die Übertragung beginnt

LED TX: Sendeleitung der seriellen Schnittstelle des Boards (blinkt bei Übertragung)

LED RX: Empfangsleitung der seriellen Schnittstelle des Boards (blinkt bei Übertra-
gung)

Die Sendeleitung (TX) ist hardwaremäßig mit dem digitalen Pin 1 und die Empfangs-
leitung (RX) mit dem digitalen Pin 0 verbunden.

Der serielle Monitor kann über dieses Icon geöffnet werden. Es öffnet sich ein Dialog,
der einem Terminal ähnelt.

In der oberen Zeile kannst du Befehle eingeben, die an das Board verschickt werden,
wenn du die Send-Taste drückst. Im mittleren Bereich bekommst du die Daten ange-
zeigt, die das Board über die serielle Schnittstelle versendet. So können bestimmte
Werte angezeigt werden, für die du dich interessierst. Im unteren Abschnitt kannst du
auf der rechten Seite über eine Auswahlliste die Übertragungsgeschwindigkeit (Baud)
einstellen, die mit dem Wert korrespondieren muss, den du beim Programmieren des
Sketches verwendet hast. Stimmen diese Werte nicht überein, kann es zu keiner Kom-
munikation kommen.

Icon FunktionTabelle 2-2
Iconfunktionen der Symbolleiste
--- Kapitel 2: Das Arduino-Board32

Der Editor im Detail
Der Editor, in den du deinen Quellcode eingibst, unterstützt dich
in vielerlei Hinsicht beim Programmieren. In der folgenden Abbil-
dung siehst du den Inhalt eines Editorfensters, bei dem es sich um
Quellcode handelt, den du an dieser Stelle noch nicht verstehen
musst. Es soll lediglich gezeigt werden, wie bzw. in welcher Form
dieser Quellcode dargestellt wird.

Abbildung 2-18
Quellcode eines Arduino-Sketches

Welche optischen Merkmale fallen uns sofort auf? Ich fasse einmal
kurz zusammen, was wir sehen:

1. Die IDE verfügt über die Möglichkeit, bestimmte Wörter
innerhalb des Editors farblich hervorzuheben. Aber welche
Wörter sind das?

2. Die Schriftstärke variiert in Abhängigkeit von bestimmten
Wörtern.

3. Bestimmte Elemente werden besonders hervorgehoben. Hier
ist es die schließende geschweifte Klammer.

4. Bei der Darstellung des Quellcodes liegt eine gewisse optische
Gliederung vor. Manche Bereiche sind weiter nach rechts ein-
gerückt als andere.

Das ist natürlich nicht reine Willkür oder sieht einfach nur schick
aus. Alles hat seinen Grund. Gehen wir also auf die einzelnen
Punkte einmal genauer ein:

Zu Punkt 1

Bestimmte Wörter, auch Schlüsselwörter genannt, werden farblich
hervorgehoben. Es handelt sich dabei um reservierte Namen, die
z.B. Befehlen zugewiesen wurden. Unsere Entwicklungsumgebung
bzw. der Compiler verfügt ja über einen bestimmten Wortschatz,
dessen wir uns bedienen können, um unseren Sketch zu program-
mieren. Wenn ein der IDE bekanntes (Schlüssel-)Wort von dir ein-
Das Starten der Entwicklungsumgebung -- 33

gegeben wird, reagiert sie in der Art darauf, dass sie es sofort
farblich hervorhebt. In diesem Fall sind Schlüsselwörter immer in
Orange gehalten. Auf diese Weise behältst du zum einen einen bes-
seren Überblick und zum anderen bemerkst du sofort, wenn ein
Befehl falsch geschrieben wurde. Er wird dann nämlich nicht in der
entsprechenden Farbe dargestellt. Dadurch hast du fantastischer-
weise immer eine optische Rückmeldung und ein Feedback zu
dem, was du gerade in den Editor eingibst.

Zu Punkt 2

Einige Wörter, die als Schlüsselwörter erkannt wurden, werden von
der IDE fetter dargestellt. Das sind hier z.B. die Wörter setup und
loop, denen in einem Sketch eine elementare Rolle zukommt. Bei
diesen beiden Wörtern handelt es sich um Funktionsnamen. Was
das genau ist und was sie bedeuten, soll an dieser Stelle erst einmal
zweitrangig sein. Durch die fettere Darstellung fallen sie aber leich-
ter ins Auge. Sie dient somit ebenfalls einem besseren Überblick.

Zu Punkt 3

Instruktionen bzw. Befehle werden in der Programmierung mit der
Arduino-IDE immer blockorientiert eingegeben. Das bedeutet, dass
bestimmte Befehle, die untereinander aufgelistet sind, zu einem
bestimmten Ausführungsblock gehören. Ein solcher Block wird
durch ein geschweiftes Klammernpaar gekennzeichnet. Die öff-
nende Klammer signalisiert den Beginn und die schließende Klam-
mer das Ende des Blocks. Auch darauf gehen wir natürlich noch zu
gegebener Zeit genauer ein. Jedenfalls gehören beide Klammern
immer zusammen und können nur paarweise verwendet werden.
Wird eine von beiden vergessen, kommt es unweigerlich zu einem
Fehler, da die zu erwartende und zwingend notwendige Block-
struktur nicht gegeben ist. Wenn du den Cursor hinter eine Klam-
mer setzt, wird automatisch die korrespondierende Klammer mit
einer rechteckigen Umrandung versehen. Du kannst das in diesem
Beispiel in der setup-Funktion sehen. Ich habe den Cursor hinter
der öffnenden geschweiften Klammer positioniert und die zugehö-
rige schließende Klammer hat entsprechend reagiert. Das funktio-
niert übrigens auch mit den runden Klammern. Worin der
Unterschied zwischen beiden Klammern besteht, werden wir natür-
lich auch noch sehen.
--- Kapitel 2: Das Arduino-Board34

Zu Punkt 4

Der Quellcode innerhalb eines Ausführungsblocks wird in der
Regel weiter nach rechts eingerückt als der Block bzw. die Blockbe-
zeichnung selbst. Das dient ebenfalls zur besseren Übersicht und ist
auch bei der Fehlersuche sehr hilfreich. Wenn mehrere Blöcke vor-
handen sind, können sie durch die optische Gliederung besser
unterschieden werden. Natürlich ist es auch möglich, den gesamten
Quellcode in eine einzige Zeile zu schreiben. Der Compiler würde
keinen syntaktischen Fehler feststellen, doch die Übersicht wäre
katastrophal. Ebenso könntest du alle Codezeilen linksbündig ein-
geben, was ebenfalls ein grauenhafter Programmierstil wäre. Es gibt
übrigens auch einen interessanten Menüpunkt, der eine automati-
sche Einrückung durchführt. Er wird über Tools|Auto format aufge-
rufen.

Eine Bemerkung am Rande
Falls du vielleicht schon einmal mit einer Entwicklungsumge-
bung in einer anderen Sprache, wie z.B. C#, programmiert hast,
dann fällt dir garantiert ein Unterschied zur Arduino-Entwick-
lungsumgebung auf. Diese hier ist recht spartanisch gehalten
und besitzt nicht den gewaltigen Funktionsumfang wie andere
IDEs. Das hat wiederum seine Bewandtnis. Die Entwickler von
Arduino wollten die Philosophie der Einfachheit und Unkompli-
ziertheit auch bei der Handhabung bzw. Programmierung der
Software umsetzen. Viele Menschen schrecken davor zurück,
sich mit den der technisierten Welt eigenen komplizierten
Bereichen wie Mikrocontroller oder Programmierung zu befas-
sen, weil sie befürchten, dass alles viel zu kompliziert ist und sie
versagen könnten. Du musst dir aber keine Gedanken machen,
dass dich dieses Schicksal ereilen wird. Lass’ dich einfach über-
raschen und vom Charme des Arduino einfangen.

Die Übertragung des Sketches
zum Arduino-Board
Wenn du deinen Sketch zur Zufriedenheit programmiert hast und
auch die Überprüfung bzw. Kompilierung erfolgreich war, wird es
ernst. Die Übertragung zum Mikrocontroller steht nun auf dem
Plan. Doch Stopp! Eine wichtige Kleinigkeit, habe ich noch nicht
erwähnt. Da es sehr unterschiedliche Arduino-Boards auf dem
Markt gibt, die sich alle mehr oder weniger hardwaremäßig unter-
scheiden, aber dennoch durch eine einzige IDE mit Daten versorgt
werden, musst du eine grundlegende Einstellung vornehmen. Das
ist nicht weiter kompliziert. Schau’ her:
Das Starten der Entwicklungsumgebung -- 35

Abbildung 2-19
Auswahl deines Arduino-Boards in

der IDE

Du wählst also unter dem Menüpunkt Tools die Option Board aus
und erhältst eine Liste aller Boards, die die IDE unterstützt. Da wir
mit dem neuesten Uno-Board arbeiten, selektierst du den ersten Lis-
teneintrag, der hier bei mir schon markiert ist, weil ich das schon vor-
her entsprechend eingestellt habe. Der Menüeintrag Serial Port
unterhalb des Board-Eintrags ist ausgegraut. Er kann also nicht selek-
tiert werden. Warum ist das so? Nun, wenn du dein Arduino-Board
noch nicht über die USB-Schnittstelle mit deinem Rechner verbun-
den hast, dann hat die IDE das Board natürlich noch nicht erkannt.
Auch der Gerätemanager zeigt es nicht an. Ich verbinde es jetzt ein-
mal, und du wirst sehen, wie sich die IDE verhält.
--- Kapitel 2: Das Arduino-Board36

Aha! Der COM-Port 3 wurde erkannt, an dem mein Board jetzt
angeschlossen ist. Alles klar?

Natürlich hast du Recht und fast hätte ich es vergessen zu erwäh-
nen. Na wenigstens passt du auf! Ältere Arduino-Boards haben
tatsächlich noch eine serielle Schnittstelle (RS232) in Form eines
D-Sub-Anschlusses, der 9-polig ist und über ein serielles Kabel mit
dem Rechner verbunden wurde. Die Computer der neueren Gene-
rationen besitzen allesamt einen USB-Anschluss, der nach und
nach die serielle Schnittstelle verdrängt. Die heutigen Rechner
besitzen standardmäßig schon keine serielle Anschlussmöglichkeit
mehr. Die interne Verarbeitung erwartet aber eine serielle Kompo-
nente. Was also tun? Auf deinem Arduino-Board befindet sich u.a.
ein eigener kleiner Mikrocontroller vom Typ ATMEGA8U2-MU,
der von Hause aus so programmiert wurde, dass er als USB zu Seri-
ell Konverter fungiert. Das ältere Board mit der Bezeichnung Due-
milanove hatte noch einen FTDI-Chip, der in ähnlicher Weise
arbeitete. Der neue Chip weist folgende Vorteile gegenüber dem
älteren auf:

• Er hat kürzere Latenzzeiten (die Zeit zwischen einer Aktion
und einer verzögerten Reaktion).

• Er ist programmierbar.

• Er kann sich am System als USB-Tastatur anmelden.

Bei der Linux-Variante hast du übrigens keine COM-Ports, sondern
findest einen Eintrag, der wie folgt aussehen kann:

/dev/ttyACM0

Dev ist die Abkürzung für Device, was Gerät bedeutet. Nähere
Informationen findest du im Internet.

Nein, Ardus, die Frage ist nicht verfrüht und hat durchaus ihre
Berechtigung. Ich hatte dir ja schon ein wenig über die Entwick-
lungsumgebung, den Compiler und die Programmiersprachen C/

Nein, ganz im Gegenteil! Du hast da bestimmt etwas durcheinander
gebracht. Einerseits sprichst du von einer seriellen Schnittstelle und
einem COM-Port und dann schließt du das Board über den USB-
Anschluss an den Rechner an. Das sind doch zwei völlig unterschied-
liche Paar Schuhe!?

Kannst du mir ein bisschen etwas dazu erläutern, was bei der Über-
tragung des Sketch-Codes zum Arduino-Board so passiert? Oder ist
diese Frage verfrüht?
Das Starten der Entwicklungsumgebung -- 37

C++ berichtet. Manche Menschen nehmen einfach alles so hin,
doch du stellst Fragen und das ist gut so!

Abbildung 2-20
Was geschieht bei der Übertragung

des Sketches zum Arduino-Board
im Hintergrund?

Wir können den Ablauf in einzelne logische Schritte unterteilen:

Schritt 1
Es findet eine Überprüfung des Sketch-Codes durch die Entwick-
lungsumgebung statt, um sicherzustellen, dass die C/C++ Syntax
korrekt ist.

Schritt 2

Danach wird der Code zum Compiler (avr-gcc) geschickt, der ihn
in eine für den Mikrocontroller lesbare Sprache, die Maschinen-
sprache, übersetzt.

Schritt 3

Im Anschluss wird der Code mit einigen Arduino-Bibliotheken, die
grundlegende Funktionalitäten bereitstellen, zusammengeführt
und als Ergebnis eine Intel-HEX Datei erzeugt. Es handelt sich
dabei um eine Textdatei, die binäre Informationen für Mikrocont-
roller speichert. Hier zeige ich dir einen kurzen Ausschnitt aus dem
ersten Sketch, den ich dir eben als Appetizer gezeigt habe.

Abbildung 2-21
Ausschnitt aus einer Intel-HEX Datei

Dieses Format versteht der Mikrocontroller, denn es ist seine
Native Language (übersetzt: Muttersprache).
--- Kapitel 2: Das Arduino-Board38

Schritt 4

Der Bootloader überträgt die Intel-HEX Datei über USB in den
Flash-Speicher des Mikrocontroller-Boards. Der sogenannte
Upload-Prozess, also die Übertragung zum Board, erfolgt mit dem
Programm avrdude. Es ist Bestandteil der Arduino-Installation und
befindet sich unter arduino-1.0-rc1\hardware\tools\avr\bin. Nähere
Informationen über die Parameter, die beim Aufruf mit übergeben
werden, findest du im Internet bzw. auf meiner Internetseite.

Die Portkommunikation
Du hast die Kommunikation mit deinem Arduino-Board bisher
lediglich auf der Ebene der Programmierung kennen gelernt. Ein
Sketch wird von dir programmiert und über den USB-Port auf das
Board übertragen. Dort beginnt der Sketch unmittelbar nach dem
erfolgreichen Load mit der Ausführung und der Verarbeitung von
Daten. Diese Daten müssen aber irgendwie in Form von Sensoren-
werten über Schnittstellen in den Mikrocontroller gelangen und
später ggf. wieder nach draußen geschickt werden, um z.B. einen
Motor anzusteuern. Das haben wir schon anfangs, im Rahmen der
Ausführungen zu analogen bzw. digitalen Ports, kurz angerissen.

Was sind Schnittstellen?
Der Ausdruck Schnittstelle ist jetzt schon so oft gefallen, dass es nun
an der Zeit ist, auch eine gültige und plausible Definition für diesen
Begriff zu liefern. Eine Schnittstelle oder auch Interface genannt dient
zur Kommunikation eines in sich geschlossenen Systems mit der
Außenwelt. Schauen wir uns dazu die folgende Grafik an.

Abbildung 2-22
Schnittstellen sind die
Verbindungskanäle zwischen zwei
benachbarten Welten.

����
��
�
���� �!"

��
��

		
�	�

�
�

#����$�
	 ��%��$�
	

&�	��
Die Portkommunikation --- 39

Eine Schnittstelle hat sowohl einen Fuß in der Innen- als auch in der
Außenwelt und hält somit den Kontakt zwischen beide Sphären auf-
recht. Zwischen ihr strömen Informationen in Form von Daten hin
und her. Eigentlich könnte dein Arduino auch in einer kleinen
schwarzen Kiste verpackt sein, denn du musst gar nicht wissen, wie
es auf dem Board aussieht und welche einzelnen Bauteile dort welche
Funktion haben. Ein solches Gebilde nennt man auch Black-Box.

Was ist eine Black-Box?
Eine Black-Box ist ein mehr oder weniger komplexes System mit
einem Innenleben, das durch seine Kapselung der Außenwelt ver-
borgen bleibt bzw. bleiben soll. Die innere Struktur ist dabei nicht
weiter von Bedeutung. Als Nutzer hat uns einzig und alleine zu
interessieren, was die Black-Box zu leisten vermag und wie wir uns
ihrer bedienen können. Aus diesem Grund liegt jeder Black-Box
eine detaillierte Beschreibung ihrer Schnittstellen bei, die Auf-
schluss über die Funktionalitäten liefert. Dein Arduino-Board kann
als eine solche Box angesehen werden und wir werden im Laufe
dieses Buches einiges über die Schnittstellen und ihre Besonderhei-
ten bzw. ihr Verhalten erfahren.

Wenn man sich nicht über die Funktion einer Block-Box im Klaren
ist, kann der Schuss vielleicht nach hinten losgehen. Vielleicht
schlummert etwas Explosives im Verborgenen. Soweit lassen wir es
aber nicht kommen.

Was ist der Unterschied zwischen
Digital und Analog?
Jetzt greife ich schon ein wenig auf das vor, was ich später noch im
Kapitel über die Grundlagen der Elektronik erwähnen werde. Doch
wenn wir schon bei der Black-Box und der Portkommunikation
sind und unser Arduino ja, wie schon gezeigt, mit digitalen und
analogen Ports ausgestattet ist, dann ist das jetzt kein schlechter
Zeitpunkt, auf die Unterschiede einzugehen.

In der Digitaltechnik (lat. digitus bedeutet übersetzt »Finger«) wird
mit zwei definierten Zuständen gearbeitet:

• LOW-Pegel (wird mit L oder 0 abgekürzt)

Na, dann wollen wir mal sehen, was passiert!
--- Kapitel 2: Das Arduino-Board40

• HIGH-Pegel (wird mit H oder 1 abgekürzt)

Hier siehst du ein Signal, das digitalen Charakter besitzt.

Abbildung 2-23
Digitaler Signalverlauf
(Rechtecksignal)

Diesen beiden logischen Zuständen können Spannungswerte zuge-
wiesen werden. In unserem Fall haben wir es bei den digitalen Sig-
nalen mit der +5V Logik zu tun. Was bedeutet das? In der
Digitaltechnik werden Spannungspegel binären Zuständen zugeord-
net. Der Spannungswert 0V entspricht in der Regel dem binären
LOW-Wert (niedriger Pegel) und +5V dem binären HIGH-Wert
(hoher Pegel). Da es aber aufgrund unterschiedlicher Bauteiltoleran-
zen zu kleineres Abweichungen hinsichtlich der Widerstände kom-
men kann, ist es notwendig, einen Toleranzbereich für die logischen
Zustände zu definieren. Würden wir statt +5V nur +4.5V messen,
wäre das streng gesehen ein LOW-Pegel. Aus diesem Grund wurden
Toleranzbereiche mit den folgenden Werten geschaffen:

Abbildung 2-24
Toleranzbereiche
Die Portkommunikation --- 41

Im Gegensatz dazu haben analoge Signale eine ganz andere Quali-
tät. Sie können nicht nur im zeitlichen Verlauf zwischen den zwei
Pegeln HIGH bzw. LOW unterscheiden, sondern haben die Eigen-
schaft, stufenlos zwischen einem minimalen und einem maximalen
Wert zu pendeln.

Abbildung 2-25
Analoger Signalverlauf

(Sinussignal)

In unseren Beispielen werden wir uns beiden Signalarten widmen.

Der Eingang (INPUT)
Ein Informationsfluss kann in beide Richtungen verlaufen und wird
somit zu einem Informationsaustausch. Daher verfügt das Arduino-
Board über Ports, die sich unterschiedlich verhalten. Natürlich
müssen wir hier wieder zwischen digital und analog unterscheiden.
Fangen wir mit den Eingängen an.

Digitale Eingänge
Die digitalen Eingänge des Bords werden von Sensoren gespeist, die
digitalen Charakter aufweisen. Der einfachste digitale Sensor ist
eigentlich der Schalter. Er ist entweder offen und liefert kein Signal
(LOW-Pegel) oder er ist geschlossen und liefert ein Signal (HIGH-
Pegel). Ebenso kannst du dir auch einen Transistor vorstellen, bei
dem es sich um einen elektronischen Schalter handelt. Er liefert ver-
gleichbare Signalpegel an einen digitalen Eingang. Wie unter-
schiedliche Sensorschaltungen funktionieren, wirst du in Kürze
erfahren.
--- Kapitel 2: Das Arduino-Board42

Analoge Eingänge
Die analogen Eingänge des Boards können ebenfalls von Sensoren
gespeist werden, die sowohl analogen, als auch digitalen Charakter
besitzen. Stelle dir einen Temperatursensor vor, der in Abhängig-
keit von der Umgebungstemperatur seinen Widerstand ändert und
einen mehr oder weniger hohen Spannungspegel an den Eingang
liefert. Dieser empfangene Wert kann zu weiteren Berechnungen
herangezogen werden, um darauf basierend auf die wahre Tempe-
ratur schließen zu können. Ein Spannungswert wird in einen ent-
sprechenden Temperaturwert übertragen und möglicherweise
entsprechend angezeigt oder er steuert vielleicht einen Ventilator,
der für eine bessere Kühlung sorgt.

Der Ausgang (OUTPUT)
Was rein kommt, muss auch irgendwie wieder raus. Das liegt in der
Natur der Dinge. Das Arduino-Board ist natürlich ebenfalls mit
einer Anzahl von Ausgängen versehen, mit deren Hilfe Steuerungen
oder Anzeigen erfolgen. Der Gegenpart zu einem Sensor ist ein
Aktor, wie z.B. ein Motor oder ein Relais.

Digitale Ausgänge
Die digitalen Ausgänge kannst du z.B. dazu verwenden, optische
Signalgeber, die interne Zustände widerspiegeln, anzuschließen.
Das sind in der Regel Leuchtdioden, auch LEDs (Light Emitting
Diode) genannt, die mit einen entsprechenden Vorwiderstand ver-
sehen an den betreffenden Stellen angeklemmt werden. Natürlich
kann ein digitaler Ausgang auch einen Transistor regeln, der seiner-
seits eine größere Last steuert, als es der Arduino-Port in der Lage
wäre zu tun. Diese Zusammenhänge werden wir ebenfalls noch
näher erläutern.

Analoge Ausgänge
Mit den analogen Ausgängen ist das bei deinem Arduino so eine
Sache. Auf diesen Umstand bist du ja selbst schon sehr schnell
gestoßen. Derartig dedizierte, also nur für diesen Zweck ausgelegte
Ports gibt es nicht. Einige digitale Ports übernehmen quasi die
Funktion und simulieren ein analoges Signal, das über die Pulswei-
tenmodulation generiert wird. Auch zu diesem Thema wirst du
noch einiges erfahren, wenn wir einen analogen Ausgang program-
mieren.
Die Portkommunikation --- 43

Befehl und Gehorsam
Wenn es für einen Computer keine Software geben würde, dann
hättest du zwar ein ganz schönes Stück Hardware herumstehen, die
jedoch keinerlei Fähigkeiten besäße. Erst intelligente Software
haucht der Hardware Leben ein und lässt sie die ihr zugedachten
Aufgaben erfüllen. Diese müssen wir unserem Arduino-Mikrocon-
troller aber in irgendeiner Form mitteilen.

Du tust, was ich dir sage
Die Kommunikation erfolgt mittels sogenannter Befehle. Bei einem
Befehl handelt es sich um eine Anweisung an den Mikrocontroller,
den dieser aufgrund seiner Spezifikation versteht und in entspre-
chende Aktionen umsetzt. Wir wollen uns einfach mal einen Befehl
anschauen, damit du siehst, was ich meine. Der Sinn ist erst einmal
nicht von Bedeutung:

pinMode(13, OUTPUT);

Wenn du diesen Befehl in die Entwicklungsumgebung eintippst,
dann erkennst Du, dass das Syntaxhighlighting in Aktion tritt und
erkannte Schlüsselwörter farblich hervorgehoben werden, zu denen
auch die Befehle gehören. Dadurch wird die Übersichtlichkeit ver-
bessert und du siehst sofort, wenn du z.B. einen Befehl falsch
geschrieben hast.

Schreibe folgende Zeile:

pinModes(13, OUTPUT);

Du wirst sehen, dass der vermeintliche Befehl nicht als solcher
erkannt wird. Er wird jetzt in der Farbe schwarz angezeigt, was dar-
auf hindeutet, dass etwas nicht stimmt. Der Befehl pinMode bedarf
aber bezüglich seiner Struktur noch weiterer Erklärung. Du siehst
hinter ihm eine Anfügung in runden Klammern. Dabei handelt es
sich um die Argumente, die dem Befehl beim Aufruf mit übergeben
wurden. Es ist wie bei einer Tasche, in die du Dinge packst, die am
Zielort benötigt werden.

Abbildung 2-26
Der Befehl »pinMode«

�������	
��
��������

 �'��
 (
� �����
--- Kapitel 2: Das Arduino-Board44

Argumente sind Zusatzinformationen, die ein Befehl zur Abarbei-
tung benötigt. Was Sie in diesem Fall genau bewirken, wirst du in
Kürze noch sehen. Die Argumente bei diesem Befehl geben an, dass
der Port 13 als Output, also Ausgang, arbeiten soll. Etwas Entschei-
dendes haben wir aber noch vergessen. Am Ende eines jeden Befehls
findet sich ein Semikolon. Das ist für den Compiler der Hinweis, dass
der Befehl jetzt endet und ggf. ein neuer Befehl zu erwarten ist. Nicht
jeder Befehl benötigt übrigens Argumente, wobei das runde Klam-
mernpaar aber trotzdem erforderlich ist. Es bleibt dann leer. Bitte
beachte auf jeden Fall die Klein- bzw. Großschreibung. Genau wie in
den Programmiersprachen C/C++ erfolgt eine Unterscheidung hin-
sichtlich der Schreibweise. Solche Sprachen werden als Case-Sensi-
tive, bezeichnet. Daher ist pinMode ist nicht gleich pinmode!

Was passiert, wenn ein Befehl
unklar formuliert wurde?
Ein Befehl, den du an den Mikrocontroller schickst, wird auf jeden
Fall ausgeführt, es sei denn, er wurde falsch geschrieben. Du musst
dich mit dem Wortschatz des Mikrocontrollers bzw. der Entwick-
lungsumgebung, die ja mit C++ verwandt ist, vertraut machen und
versuchen, ihn wie deine Muttersprache zu beherrschen. Das geht
natürlich nicht von heute auf morgen und braucht seine Zeit. Es ist
wie bei einer Fremdsprache. Je öfter du dich in dieser Sprache mit-
teilst und sie anwendest, desto schneller beherrscht du sie. Wenn
du z.B. deiner ausländischen Bekanntschaft eine E-Mail schreibst
und du dich vielleicht bei dem einen oder anderen Wort ver-
schreibst, dann ist der Empfänger möglicherweise doch noch
imstande, das Wort und den Sinn zu verstehen. Bei einem Compu-
ter ist das anders. Er kennt in dieser Hinsicht kein Pardon. Entwe-
der du drückst dich klar und deutlich aus und verwendest die
exakte Schreibweise, oder er lehnt die Anweisung einfach ab und
streikt. Woher soll er auch wissen, was du meinst? Diese Intelligenz
können wir ihm nicht unterstellen. Wird ein Befehl falsch geschrie-
ben oder nicht auf die Klein- bzw. Großschreibung geachtet, dann
gibt es einen Compilerfehler. Zum Glück teilt uns der Compiler in
den meisten Fällen mit, worum es sich beim erkannten Fehler han-
delt, und gibt auch die Stelle und den Grund an.

Er wird zwischen drei Fehlertypen unterschieden:

• syntaktische Fehler

• logische Fehler

• Laufzeitfehler
Befehl und Gehorsam -- 45

Der syntaktische Fehler
Du kannst froh sein, wenn es sich um einen syntaktischen Fehler
handelt. Er wird vom Compiler erkannt und ist einfach zu lokalisie-
ren. Schaue dir folgende Fehlermeldung genauer an.

Ich habe den Befehl pinMode komplett mit Kleinbuchstaben
geschrieben. Das ist natürlich falsch und der Compiler bemerkt
dies auch. Dementsprechend teilt er uns mit, dass er pinmode in
diesem Bereich nicht kennt.

Der logische Fehler
Logische Fehler sind äußerst unangenehm, denn dabei handelt es
sich um Fehler, die im Verborgenen ihr Unwesen treiben. Sie füh-
ren zu keiner Fehlermeldung, denn mit den Anweisungen ist alles
ok. Und dennoch stimmt etwas nicht. Der programmierte Sketch
will nicht so funktionieren, wie du dir das vorgestellt hast. Es muss
an etwas anderem liegen. Der Compiler ist nicht schuld an der
Misere. Die Ursache kann z.B. eine falsche Formel sein oder ein fal-
scher Wert, den du an einer Stelle definiert hast. Oder ein erforder-
licher Ausgangsport wurde als Eingang definiert. Die Fehlerquellen
sind breit gefächert. Du bekommst das, was du bestellt hast, und
das ist nicht immer das, was du eigentlich wolltest.
--- Kapitel 2: Das Arduino-Board46

Wie man solchen Fehlern dennoch auf die Schliche kommt, wer-
den wir sehen, wenn wir zum Thema Debugging kommen. Dabei
handelt es sich um eine Methode, mit der du Fehler im Programm
ausfindig machen kannst.

Laufzeitfehler
Bei einem Laufzeitfehler handelt es sich um ein Problem, das erst
zur Laufzeit des Sketches auftritt. Syntaktisch ist auch hier alles in
Ordnung und der Compiler hat alles für gut befunden, doch
irgendwo tickt eine Zeitbombe, die nur darauf wartet, hochzuge-
hen. Das kann eine Zeit lang gut gehen und du denkst, dass alles
zur Zufriedenheit läuft. Und dann eines Tages erwischt es dich und
du fluchst: »Das hat doch bisher immer funktioniert. Warum jetzt
nicht mehr? So ein Sch…«

Hier ein Beispiel aus der Windowswelt: Angenommen, du hast
deine MP3-Sammlung auf einer externen Platte mit der Bezeich-
nung D: abgelegt. Ein Musikprogramm greift regelmäßig darauf zu
und spielt die dort gespeicherten Lieder ab. Alles läuft wunderbar.
Aus irgendeinem Grund ist die Platte nicht mehr verfügbar, sei es
weil sie kaputtgegangen ist oder das USB-Kabel aus der Buchse
gerutscht ist. Jedenfalls versucht das Programm weiterhin, auf die
Musikdateien zuzugreifen, doch der Programmierer war nachlässig
und hat den Aufruf auf das Laufwerk nicht mit einer Fehlerbehand-
lung versehen. Der gestartete Zugriff ist nicht mehr möglich und
das Programm bricht sang- und klanglos ab. Das scheint vielleicht
an den Haaren herbeigezogen, doch so manches ein Programm rea-
giert einfach mit Abbruch, anstatt eine Fehlermeldung zu erzeugen.
Solche unkontrollierten Abbrüche können ganz schön nerven.

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• Arduino

• Freeduino

• Arduino Projects
Befehl und Gehorsam -- 47

First

Erstellen au
Arbeitsseite
(siehe Must

Kapitel
Hier Mini IVZ eingeben!

Kapitel 3 3Die Elektronik
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
Wir wollen in diesem Kapitel einen geeigneten Einstieg in die Elek-
tronik finden, damit du in den Arduino-Projekten hinsichtlich der
zusätzlich verwendeten elektronischen Bauteile nicht völlig im
Regen stehst. Die Themen werden folgende sein:

• Grundlagen zur Elektronik

• Was sind Strom, Spannung und Widerstand?

• Das Ohmsche Gesetz

• Der geschlossene Stromkreis

• Was sind passive bzw. aktive Bauelemente?

• Die wichtigsten elektrischen und elektronischen Bauteile

• Der integrierte Schaltkreis

Was ist Elektronik eigentlich?
Wir hören heutzutage des Öfteren die Äußerung, dass unsere hoch-
technisierte Welt erst durch die Elektronik zu dem wurde, was sie
jetzt ist. Sie ist in allen denkbaren und undenkbaren Lebensberei-
chen vertreten. Doch was können wir uns unter dem Begriff Elek-
tronik vorstellen? In Elektronik ist ja irgendwie das Wort Elektronen
enthalten, auf die wir gleich noch zu sprechen kommen. Diese
Elektronen wandern durch einen Leiter, z.B. einen Kupferdraht,
und bilden einen elektrischen Strom. Diesen Strom gilt es in
bestimmte Bahnen zu lenken, an- oder abzuschalten oder in ande-
rer Weise unter unserer Kontrolle zu bringen. Gelingt uns dies,
dann lassen sich hiermit fantastische Dinge bewerkstelligen. Wir
--- 49

haben Macht über etwas, das man mit bloßem Auge nicht sehen
kann und nur an den entsprechenden Auswirkungen zu erkennen
ist. Wir berechnen die unterschiedlichsten Prozesse und steuern
oder regeln sie dann nach unserem Willen. Auf sehr kleinem Raum
werden die Elektronen in gewünschte Bahnen gelenkt und mal
hierhin und mal dorthin geschickt. Das ist vereinfacht gesagt Elek-
tronik. Wenn du schon einiges über die Grundlagen der Elektronik
weißt, kannst du dieses Kapitel auch getrost überspringen.

Der Elektronenfluss
Jedes Kind lernt in der Schule im Fach Physik – wenn es denn noch
unterrichtet wird – etwas über die grundlegenden Zusammenhänge
von Spannung, Strom und Widerstand. Im Wesentlichen geht es
dabei um kleinste Teilchen, auch Elementarteilchen genannt, die
sich mit hoher Geschwindigkeit in einem Leiter bewegen. Das ist
die Welt der Elektronen. Sie besitzen viele unterschiedliche Eigen-
schaften, von denen ich hier einige nennen möchte:

• negative Ladung (–1,602176 * 10-19 C)

• nahezu masselos (9,109382 * 10-13 kg)

• stabil (Lebensdauer > 1024 Jahre)

Ich habe weder Kosten noch Mühen gescheut und mit einer Spezi-
alkamera einmal eine Aufnahme von einem stromdurchflossenen
Leiter gemacht, um diese kleinsten Teilchen für dich sichtbar zu
machen. Sie bewegen sich gemeinsam in eine Richtung und sind für
den Stromfluss verantwortlich.

Abbildung 3-1
Elektronen auf dem Weg durch

einen Kupferleiter

Wenn ich gerade von einer negativen Ladung des Elektrons gespro-
chen habe, dann wirst du sicherlich bemerken, dass der Wert
-1,602176 x 10-19 sehr klein ist. Die Maßeinheit C bedeutet Cou-
lomb und steht für die Ladung Q, die in einer festgelegten Zeit
durch einen Leiter mit einem bestimmten Querschnitt fließt. Die
Formel zur Berechnung der Ladung Q lautet folgendermaßen:
-- Kapitel 3: Die Elektronik50

Es handelt sich um das Produkt aus Stromstärke I in Ampere und
der Zeit t in Sekunden.

Abbildung 3-2
 auf dem Weg durch einen Kupfer-
leiter in einem Zeitraum von 1
Sekunde

In dieser hochauflösenden Aufnahme der Wanderung der Elektro-
nen durch einen Kupferleiter habe ich einen Abschnitt markiert,
den die Elektronen in einer Sekunde zurücklegen. Wir können fest-
halten, dass eine Ladung von einem Coulomb transportiert wurde,
wenn in einer Sekunde ein Strom von einem Ampere geflossen ist.
Jetzt habe ich schon so oft den Begriff Strom verwendet, dass es
Zeit langsam wird, diese physikalische Größe ein wenig näher zu
beleuchten.

Der Strom
Wie du in der letzten Formel ersehen kannst, stehen Ladung und
Strom in einer gewissen Beziehung zueinander. Wir können es so
formulieren, dass Strom die Bewegung elektrischer Ladung bedeu-
tet. Je mehr Ladung pro Zeiteinheit bewegt wird, desto größer ist
der elektrische Strom, der durch den Formelbuchstaben I gekenn-
zeichnet wird:

Die folgende Aufnahme zeigt uns einen niedrigen Elektronenfluss. Es
sind nur wenige Ladungsträger pro Zeiteinheit im Leiter unterwegs.

Abbildung 3-3
Niedriger Elektronenfluss – wenige
Elektronen bilden einen niedrigen
elektrischen Strom.
Was ist Elektronik eigentlich? -- 51

Im Gegensatz ist in der nächsten Abbildung eine Aufnahme zu
sehen, bei der viele Ladungsträger pro Zeiteinheit durch den Leiter
sausen und einen höheren Strom bilden.

Abbildung 3-4
Hoher Elektronenfluss – viele

Elektronen bilden einen hohen
elektrischen Strom.

Die Stromstärke I wird in der Maßeinheit Ampere (A) gemessen,
wobei 1 Ampere für Mikrocontroller schon eine sehr hohe Stärke
darstellt. Die maximale Belastung eines digitalen Ausgangs deines
Arduino-Boards beträgt ja 40 mA, was Milliampere bedeutet. Ein
Milliampere ist der tausendste Teil eines Amperes (1000 mA = 1 A).

Die Spannung
Wenn wir uns die Aufnahmen der rasenden Elektronen in einem
Leiter anschauen, dann haben wir eines bisher außer Acht gelassen.
In unserer Welt gibt es für jedes Tun einen Grund oder einen ent-
sprechenden Antrieb. Es gibt immer etwas, das uns zu unseren
Handlungen antreibt oder motiviert. Bei den Elektronen ist das
nicht anders. Sie streben alle wie die Lemminge in eine Richtung
auf den Abgrund zu. Es muss also eine treibende Kraft geben, die
das bewirkt. Es wird oft der Vergleich mit Wasser angestellt, das
sich auf einem höheren Niveau befindet und von oben nach unten
fließt. Diese Analogie ist wirklich treffend und deswegen verwende
ich sie auch hier.

Abbildung 3-5
Elektronen bewegen sich aufgrund

eines Potentialunterschiedes.
-- Kapitel 3: Die Elektronik52

Wenn ich hier von einem Potentialunterschied spreche, dann han-
delt es sich in Wahrheit um einen Ladungsunterschied. Elektrische
Ladungen sind immer bestrebt, Ladungsunterschiede auszuglei-
chen. Nehmen wir als Beispiel eine geladene Batterie. Sie hat zwei
Anschlüsse bzw. Pole, zwischen denen ein Ladungsunterschied
besteht. Der eine Pol hat einen Ladungsüberschuss, der andere
einen Ladungsmangel. Wenn zwischen den beiden Polen keine
elektrische Verbindung besteht, kann kein Ladungsausgleich statt-
finden und es fließt demnach auch kein Strom. Die elektrische
Spannung U wird in Volt (V) gemessen und ist ein Maß für den
Potentialunterschied.

Abbildung 3-6
Ein Ausgleich des Ladungs-
unterschiedes ist aufgrund der
Unterbrechung nicht möglich.

Die Unterbrechung zwischen den beiden Potentialen verhindert
einen Ausgleich und es fließt kein Strom.

Abbildung 3-7
Ein Ausgleich des Ladungs-
unterschiedes findet statt.

Erst wenn wieder eine Verbindung hergestellt wurde, können die
Ladungsträger einen Ausgleich herbeiführen und es fließt ein
Strom.

Der Strom fließt so lange, bis ein Ladungsgleichgewicht hergestellt
wurde, also sich an beiden Polen gleich viele Ladungsträger befin-
den. Wenn alle Elektronen zum rechten Pol wandern würden, dann
entstünde ja wieder ein Ungleichgewicht und der Vorgang würde in

Wie lange fließt denn eigentlich der Strom? Bis auf der linken Seite
keine Elektronen mehr vorhanden sind und sich alle auf der rechten
Seite befinden?
Was ist Elektronik eigentlich? -- 53

umgekehrter Richtung erneut in Gang gesetzt werden. Außerdem
ließe sich nach einem Ladungsausgleich eine erneute Ladungstren-
nung nur mit einer Energiezufuhr erzielen. Diese ist aber nicht vor-
handen und deswegen ist eine normale Batterie nach einem
Ladungsausgleich auch leer.

Klar, Ardus! Dein Arduino-Board wird mit Gleichstrom betrieben.
Diese Stromform zeichnet sich dadurch aus, dass sich Stärke und
Richtung über die Zeit gesehen nicht ändern. Gleichstrom wird in
Fachkreisen auch mit den Buchstaben DC für Direct Current
bezeichnet. Im folgenden Diagramm siehst du den Gleichstrom im
zeitlichen Verlauf. Wechselstrom wird auch mit AC (Alternating
Current) abgekürzt.

Abbildung 3-8
Der Gleichstrom im zeitlichen

Verlauf

Auf der horizontalen X-Achse ist die Zeit t abgetragen und die verti-
kale Y-Achse zeigt die Spannung U an. Wir sehen, dass sich der
Spannungswert über die Zeit hin nicht ändert. Werfen wir nun im
Gegensatz dazu einen Blick auf einen Wechselstrom, der z.B. durch
eine Sinuskurve repräsentiert wird.

Hier ändert sich der Wert der Spannung zu jedem Zeitpunkt und
pendelt zwischen einem positiven bzw. negativen Grenzwert. In
den Diagrammen habe ich für die Spannung das Formelzeichen U
verwendet. Der elektrische Strom und die Spannung stehen in
einem bestimmten Verhältnis zueinander, was uns zum nächsten
Thema bringt.

Ich habe schon des Öfteren gehört, dass es unterschiedliche Strom-
formen gibt. Da gibt es Gleichstrom- und Wechselstrom. Kannst du
mir das bitte ein wenig erläutern?

��

�

�

�

-- Kapitel 3: Die Elektronik54

Abbildung 3-9
Der Wechselstrom im zeitlichen
Verlauf

Der allgemeine Widerstand
Den Elektronen, die sich durch einen Leiter bewegen, fällt es mal
mehr oder weniger leicht, diesen zu durchqueren. Sie müssen sich
nämlich gegen sehr unterschiedliche vorherrschende Widerstände
zur Wehr setzten. Es gibt diverse Kategorien, die Aufschluss über
die Leitfähigkeit eines Stoffes geben.

• Isolatoren (sehr hoher Widerstand, z.B. Keramik)

• schlechte Leiter (hoher Widerstand, z.B. Glas)

• gute Leiter (geringer Widerstand, z.B. Kupfer)

• sehr gute Leiter (Supraleitung bei sehr niedrigen Temperatu-
ren, bei der der elektrische Widerstand auf 0 sinkt)

• Halbleiter (Widerstand kann gesteuert werden, z.B. Silizium o.
Germanium)

Da habe ich schon zwei entscheidende elektrische Größen ins Spiel
gebracht, die in einer gewissen Beziehung zueinander stehen:
Widerstand R und Leitfähigkeit G. Je höher der Widerstand, desto
geringer der Leitwert und je geringer der Widerstand, desto höher
der Leitwert. Mathematisch gesehen besteht folgender Zusammen-
hang:

Der Widerstand ist der Kehrwert des Leitwertes. Ein erhöhter
Widerstand ist mit einem Engpass vergleichbar, den die Elektronen

��

�

�

�

Was ist Elektronik eigentlich? -- 55

überwinden müssen. Dadurch wird der Stromfluss gebremst und
im Endeffekt geringer. Stell’ dir dazu einmal vor, du läufst über eine
glatte Fläche. Das Gehen bereitet dir in diesem Fall keine großen
Schwierigkeiten. Jetzt versuche bei gleichem Kraftaufwand durch
hohen Sand zu gehen. Das ist recht mühsam. Du gibst Energie in
Form von Wärme ab und deine Geschwindigkeit sinkt. Ähnlichen
Schwierigkeiten sehen sich die Elektronen gegenüber, wenn sie
anstatt durch Kupfer plötzlich z.B. durch Glas müssen.

Abbildung 3-10
Ein Widerstand, der den
Elektronenfluss bremst

Dieser zu überwindende Widerstand hat natürlich seine Auswir-
kungen. Aufgrund der verstärkten Reibung der Elektronen, z.B. an
der Außenwand oder untereinander, entsteht Reibungsenergie in
Form von Wärme, die der Widerstand nach außen abgibt. In den
meisten elektronischen Schaltungen werden spezielle Bauteile ver-
wendet, die den Stromfluss künstlich verringern, wobei der Wider-
standswert R in Ohm () angegeben wird. Es handelt sich dabei
um extra angefertigte Widerstände (z.B. Kohleschicht- oder Metall-
schichtwiderstände) mit unterschiedlichen Werten, die mit einer
Farbkodierung versehen sind, die auf den jeweiligen Widerstands-
wert schließen lässt. Weitere Informationen erhältst du in i dem
entsprechenden Kapitel, das dem Bauteil Widerstand gewidmet ist.
Jetzt haben wir aber erst einmal alle elektrischen Größen erläutert,
die für das Verständnis eines sehr wichtigen Gesetzes erforderlich
sind.

Das Ohmsche Gesetz
Das Ohmsche Gesetz beschreibt den Zusammenhang von Spannung
U und Strom I in einem stromdurchflossenen Leiter bei konstanter
Temperatur. Die Formel lautet wie folgt:

Der Widerstand ist der Quotient aus Spannung und Strom und wird
mit dem griechischen Buchstaben Omega  gekennzeichnet. Wir
-- Kapitel 3: Die Elektronik56

werden dieses Gesetz erstmals bei der Berechnung eines Vorwider-
standes für eine Leuchtdiode, die ohne diesen nicht betrieben wer-
den kann, praktisch anwenden. Mehr hierzu erfährst du dann im
entsprechenden Kapitel.

Der geschlossene Stromkreis
Du weißt jetzt, dass ein Stromfluss nur dann zustande kommen
kann, wenn der Kreis geschlossen und eine treibende Kraft am
Werk ist. Das ist bei Elektronen ebenso der Fall wie z.B. bei Was-
sermolekülen. Werfen wir einen Blick auf einen einfachen Schalt-
plan.

Abbildung 3-11
Ein einfacher geschlossener Strom-
kreis mit Batterie und Widerstand

Auf der linken Seite des Schaltplanes befindet sich eine Gleichspan-
nungsquelle in Form einer Batterie, an deren beiden Polen + bzw. –
ein Widerstand angeschlossen ist. Der Stromkreis ist damit
geschlossen, und es kann – sofern die Batterie geladen ist – ein
Strom I fließen. Aufgrund dieses Stromflusses fällt über dem
Widerstand R eine bestimmte Spannung U ab. Wie U, R und I
untereinander in Beziehung stehen, werden wir jetzt sehen.

Das ist korrekt, Ardus! Wir wollen eine kleine Übungsaufgabe
durchrechnen, wobei folgende Werte gegeben sind:

• Die Spannung U der Batterie beträgt 9V.

• Der Widerstand R hat einen Wert von 1.000  (1.000  = 1 K).
Das K steht für Kilo und bedeutet 1.000.

Frage: Wie groß ist der Strom I, der durch den Widerstand und
natürlich auch durch die Batterie fließt?

Genau diese Größen sind Bestandteil des Ohmschen Gesetzes. Ich
denke, dass wir es hier anwenden können. Richtig?
Was ist Elektronik eigentlich? -- 57

Wenn wir die Formel

nach I umstellen, dann erhalten wir folgendes Ergebnis:

Wenn wir nun unsere bekannten Werte einsetzen, sieht unsere
Berechnung folgendermaßen aus:

Es fließt demnach ein Strom I von 9mA durch die Schaltung. Wenn
du eine solche Schaltung aufgebaut hast, kannst du mit einem Viel-
fachmessgerät – auch Multimeter genannt – diese Werte nachmes-
sen. Dabei ist jedoch etwas zu beachten: Eine zu messende
Spannung U wird immer parallel zum entsprechenden Bauteil
ermittelt und der Strom I immer in Reihe mit dem Bauteil.

Abbildung 3-12
Messen der Größen Strom bzw.

Spannung

Hey super, Ardus! Das stimmt und deswegen haben Messgeräte,
die auf »Stromstärke messen« eingestellt wurden, einen sehr gerin-
gen Innenwiderstand. Auf diese Weise wird das Messergebnis fast
überhaupt nicht beeinflusst. Ich habe in den gezeigten Schaltungen
für die Spannungsquelle das Batterie-Symbol verwendet. Es können
aber in diversen Schaltplänen auch andere Varianten vorkommen.

Jeder Leiter hat doch einen gewissen Widerstand, so auch bestimmt
das Amperemeter. Wird dadurch die Messung der Stromstärke nicht
verfälscht?
-- Kapitel 3: Die Elektronik58

Abbildung 3-13
Unterschiedliche Spannungs-
quellensymbole

Das linke Symbol stellt eine Batterie dar. Die beiden mittleren Sym-
bole werden sowohl bei Batterien als auch bei Netzteilen genutzt,
und bei den beiden rechten Symbolen wird für den Minuspol das
Massezeichen verwendet. Es kommt meistens dann zum Einsatz,
wenn bei komplexeren Schaltplänen die Minusleitung nicht durch
den ganzen Plan gezogen werden soll. Wir kommen später in die-
sem Kapitel noch zu den elektronischen Grundschaltungen, bei
denen ich dann noch ein wenig genauer auf bestimmte Details ein-
gehen werde. Ich glaube, dass es jetzt an der Zeit ist, dich ein wenig
zu verwirren. Aber keine Angst, ich werde das Rätsel noch in die-
sem Abschnitt auflösen.

Achtung
In der Elektronik sind wir mit zwei entgegengesetzte Stromrich-
tungen konfrontiert. Du solltest deshalb wissen, worin der
Unterschied besteht.

Also, Ardus, jetzt bleib mal ganz locker, denn es gibt in Wirklich-
keit natürlich nur eine Stromrichtung. Die Ursache dieses Durchei-
nanders, wie ich es mal nennen möchte, war die Unkenntnis. Bevor
sich die Wissenschaftler ein genaueres Bild über die Theorie der
Elektronenbewegung machen konnten, hat man einfach mal so aus
der Hüfte heraus definiert, dass am Pluspol ein Elektronenüber-
schuss und am Minuspol ein Elektronenmangel vorherrscht. Aus
und fertig. Aufgrund dieser Festlegung müssen die Elektronen vom
Plus- zum Minuspol wandern, wenn zwischen den beiden Polen
eine leitende Verbindung hergestellt wird. Spätere Forschungen
brachten es dann ans Tageslicht: Die Elektronen haben sich dem
widersetzt und fließen in genau der entgegengesetzten Richtung.
Da sich aber eine schlechte Angewohnheit nicht so schnell ablegen
lässt und alle bis dato mit der falschen Richtung gearbeitet hatten,
gab man dem Kind einen Namen. Die alte und falsche Richtung

� �

�

�

Also, so einen Quatsch habe ich ja schon lange nicht mehr gehört!
Können die Elektronen sich jetzt ganz nach Belieben aussuchen, in
welche Richtung sie durch den Leiter flitzen möchten. Das grenzt ja
an Anarchie.
Was ist Elektronik eigentlich? -- 59

nannte man Technische Stromrichtung. Der neuen, jetzt richtigen
Richtung gab man den Namen Physikalische Stromrichtung. Sie gibt
die eigentliche Elektronenbewegung an.

Tja, die Historie... Sie lässt sich nicht so einfach wegwischen, und
wir müssen einfach damit leben. Aber du kennst nun den Unter-
schied und kannst in Zukunft auch mitreden.

Bauteile
Das erste grundlegende elektronische Bauteil, mit dem ich dich in
Berührung gebracht habe, war der Widerstand. Es handelt sich um
den einfachsten Vertreter von Bauteilen in der Elektronik. Es gibt
aber noch eine unüberschaubare Menge an weiteren Teilen, die
aufzuzählen ganze Bände füllen würde. Wir beschränken uns in
diesem Kapitel auf die Basiselemente, die in zwei Kategorien unter-
teilt werden können: passive und aktive Bauelemente.

Der Unterschied zwischen passiven
und aktiven Bauelementen

Passive Bauelemente
In der Regel ist die Bezeichnung passive Bauelemente ihre Bezeich-
nung recht passend, da sie in keinster Weise eine Verstärkungswir-
kung auf das anliegende Signal haben. In diese Kategorie fallen z.B.
folgende Elemente:

• Widerstände

• Kondensatoren

• Induktivitäten (Spulen)
-- Kapitel 3: Die Elektronik60

Aktive Bauelemente
Die aktiven Bauelemente können das anliegende Signal in einer
bestimmten Art und Weise beeinflussen, so dass es zu einer Ver-
stärkung kommen kann. Hierzu gehören z.B. die folgenden Ele-
mente:

• Transistoren

• Thyristoren

• Optokoppler

Der Festwiderstand
Einen Widerstand, dessen Wert von außen nicht zu ändern ist –
sehen wir einmal von der Temperatur ab, die zu einer Änderung
führen würde – nennt man genau genommen Festwiderstand.
Umgangssprachlich nennen wir ihn jedoch einfach nur Widerstand.
Für die unterschiedlichsten Einsatzgebiete werden Widerstände
mit verschiedenen Werten benötigt. Um diese zu unterscheiden,
hat man sich für ein Farbkodiersystem entschieden, da aufgrund
der kleinen Bauteile wenig Platz für eine ausführliche Beschriftung
vorhanden ist. Außerdem gibt es verschiedene Größen, die einen
ungefähren Rückschluss auf die maximal zulässige Verlustleistung
geben.

Abbildung 3-14
Widerstandssammelsurium

Am Anfang scheint das System etwas verwirrend zu sein und es ist
auch nicht ganz klar, von welcher Seite wir die einzelnen Farbringe
lesen sollen. Dazu möchte ich im Folgenden nun ein paar Hilfestel-
lungen liefern. Da aufgrund von Fertigungstoleranzen die Wider-
Bauteile --- 61

standswerte vom angegebenen Wert mehr oder weniger abweichen
können, wird zusätzlich zu den Ringen, die den Wert angeben,
auch noch ein Toleranzring angefügt, der sich beim Ermitteln des
Widerstandswertes auf der rechten Seite befinden muss. In den
meisten Fällen ist dies ein silberner oder goldener Ring. Die restli-
chen drei Farbringe zur Linken geben Aufschluss über den Wider-
standswert. Dann wollen wir einmal sehen, mit welchem Wert wir
es bei dem hier gezeigten Kollegen zu tun haben:

Abbildung 3-15
Ermittlung des Widerstandwertes

anhand der Farbkodierung

Wenn wir diese Werte nebeneinander schreiben, ergibt sich folgen-
der Wert für den Widerstand:

In der folgenden Tabelle findest du alle Farbkodierungen mit den
korrespondierenden Werten:

Tabelle 3-1
Farbkodierungstabelle für

Widerstände

1. Ziffer 2. Ziffer Multiplikator Toleranz Wert

1 5 100 +/- 5% 1500  = 1,5 K

)*+,
��-+ ����+.+)
/*+,
��-+0�1�+++.+2
3*+,
��-+,�	++++++.+)44
5*+,
��-+0�
�++++.+���+26

Farbe
1. Ring
(1. Ziffer)

2. Ring
(2. Ziffer)

3. Ring
(Multiplikator)

4. Ring
(Toleranz)

� schwarz x 0 100 = 1

� braun 1 1 101 = 10 +/- 1%

� rot 2 2 102 = 100 +/- 2%

� orange 3 3 103 = 1.000

� gelb 4 4 104 = 10.000

� grün 5 5 105 = 100.000 +/- 0,5%

� blau 6 6 106 = 1.000.000 +/- 0,25%

� violett 7 7 107 = 10.000.000 +/- 0,1%

� grau 8 8 108 = 100.000.000 +/- 0,05%

� weiß 9 9 109 = 1.000.000.000

� gold 10-1 = 0,1 +/- 5%

� silber 10-2 = 0,01 +/- 10%
-- Kapitel 3: Die Elektronik62

Die Schaltzeichen, also die Symbole, die in Schaltplänen für Wider-
stände Verwendung finden, sehen wie folgt aus:

Abbildung 3-16
Die Schaltzeichen für einen
Festwiderstand

Es kann sich zum einen nach DIN (Deutsche Industrie Norm um ein
Rechteck mit den elektrischen Anschlüssen zur rechten bzw. zur lin-
ken Seite handeln. Der Widerstandswert kann sich direkt innerhalb
des Symbols befinden oder auch direkt darüber bzw. darunter. Zum
anderen kann aber auch die US-Variante nach ANSI (American Nati-
onal Standards Institute), Verwendung finden, bei der der Wider-
stand durch eine Zickzacklinie dargestellt wird. Diese Zickzacklinie
stammt noch aus der Zeit, als die Widerstände noch aus mehr oder
weniger umfangreichen Drahtwicklungen aufgebaut waren. Auf das
Ohm-Zeichen wird in der Regel verzichtet, wobei bei Werten kleiner
1 Kilo-Ohm (1000 Ohm) lediglich die nackte Zahl angeführt wird
und bei Werten ab 1 Kilo-Ohm ein K für Kilo bzw. ab 1 Mega-Ohm
ein M für Mega angehängt wird. Hier einige Beispiele:

Tabelle 3-2
Unterschiedliche Widerstandswerte

Um hinsichtlich der maximalen Verlustleistung keine Probleme zu
bekommen, können wir mit Hilfe der Formel

die Leistung P errechnen. Die Einheit der Leistung ist W und steht
für Watt. Die Widerstände, die wir für unsere Experimente verwen-
den, sind allesamt Kohlewiderstände mit einer maximalen Verlust-
leistung von ¼ Watt.

Der veränderliche Widerstand
Neben den Festwiderständen gibt es eine ganze Reihe veränderli-
cher Widerstände. Denke z.B. einfach mal an den Lautstärkeregler

, ,

7����8
����+9��
��	�
�����+&#:+7:+;4;)<"

=�+9��
��	�
�����+�:�#"

Wert Kennzeichnung

330  330

1000  1 K

4700  4,7 K oder auch 4K7

2,2 M 2,2 M
Bauteile --- 63

an deinem Radio. Dabei handelt es sich um einen Widerstand, der
je nach Drehposition seinen Widerstandswert ändert.

Der Trimmer und der Potentiometer
Es gibt zwei unterschiedliche manuell verstellbare Widerstände. Sie
nennen sich Trimmer bzw. Potentiometer – auch kurz Poti genannt
– und verändern ihre Widerstandswerte durch Drehung an der
beweglichen Achse. Im Prinzip funktionieren aber beide nach dem
gleichen Schema. In der folgenden Abbildung siehst du den sche-
matischen Aufbau. Auf einem nichtleitenden Trägermaterial befin-
det sich eine leitende Widerstandsschicht, an deren beiden Enden
(A und B) Kontakte angebracht sind. Zwischen diesen beiden Kon-
takten herrscht immer der gleiche Widerstandswert. Damit der
Widerstand veränderbar ist, wird ein dritter beweglicher Kontakt
(C) angebracht, der sich auf der Widerstandsschicht in beiden
Richtungen bewegen kann. Man nennt ihn Schleifer und er dient als
Abgriffkontakt für den variablen Widerstandswert.

Abbildung 3-17
Schematischer Aufbau eines

Trimmers bzw. Potentiometers in
zwei unterschiedlichen Positionen

Bei Position 1 besteht zwischen den Punkten A und C ein kleinerer
Widerstand als zwischen den Punkten C und B. Im Gegensatz dazu
wurde bei Position 2 der Schleifkontakt weiter nach rechts gedreht,
wobei sich der Widerstandswert zwischen Punkt A und C vergrö-
ßert und gleichsam zwischen C und B verkleinert hat.

Der Trimmer

Der Trimmer dient als einmalig einzustellender Widerstand, der
meistens direkt auf einer Platine festgelötet wird. Dabei wird z.B.
eine Schaltung über einen kleinen Uhrmacher-Schraubendreher
kalibriert und der Wiederstandswert in der Regel dann nicht mehr
verändert.

Trimmer gibt es in so vielen unterschiedlichen Formen, dass ich aus
Platzgründen nicht jeden einzelnen vorstellen kann. Das entspre-
chende Schaltzeichen aber sieht folgendermaßen aus:

� � � �

(��
	
��+) (��
	
��+/
-- Kapitel 3: Die Elektronik64

Abbildung 3-18
Das Schaltzeichen für einen
Trimmer

Der Potentiometer

Der/das Potentiometer wird als kontinuierlich verstellbarer Wider-
stand verwendet, der – wie schon eingangs erwähnt – z.B. zur Laut-
stärkeregelung bei Radios oder zur Helligkeitsregelung bei
Leuchtkörpern verwendet werden kann. Sein beweglicher Schleifer
ist über eine Welle, die aus einem Gehäuseinneren nach außen
geführt wird, mit einem Drehknopf verbunden. So kannst du den
Widerstandswert bequem mit der Hand regulieren.

Das Schaltzeichen für ein Potentiometer sieht wie folgt aus:

Abbildung 3-19
Das Schaltzeichen für das
Potentiometer

Der lichtempfindliche Widerstand
Der lichtempfindliche Widerstand wird auch LDR (Light Depending
Resistor) genannt. Es handelt sich um einen Photowiderstand, der
seinen Widerstandswert in Abhängigkeit von der auftreffenden
Lichtstärke ändert. Je höher der Lichteinfall ist, desto geringer wird
sein Widerstand.

Wir werden mit diesem elektronischen Bauteil interessante Versu-
che im Zusammenhang mit einem Servo durchführen. Der Servo-
Motor soll dabei einer Lichtquelle folgen und immer auf den hells-
ten Punkt weisen. Das Schaltzeichen für einen lichtempfindlichen
Widerstand sieht folgendermaßen aus:

Abbildung 3-20
Die Schaltzeichen für einen
lichtempfindlichen Widerstand

 oder

Ein Blick auf die Kennlinie eines LDR verdeutlicht noch einmal sein
Widerstandsverhalten bei unterschiedlichen Lichtstärken, wobei
die Lichtstärke in Lux angegeben wird.

�
�

�
�

Bauteile --- 65

Abbildung 3-21
Die Kennlinie eines LDR

Die Einsatzgebiete eines LDR sind recht unterschiedlich. Hier
einige Beispiele:

• als Dämmerungsschalter zur Ansteuerung einer zusätzlichen
Lichtquelle wie z.B. Straßenlaternen oder Fahrzeuginnenraum-
beleuchtung bei einsetzender Dunkelheit

• zur Messung der Lichtstärke für Fotoaufnahmen

• als Sensor in Lichtschranken wie z.B. bei Fahrstuhltüren oder
bei Zutrittskontrollen in Sicherheitsbereichen

Der Widerstandbereich des LDR hängt vom verwendeten Material
ab und weist einen ungefähren Dunkelwiderstand zwischen 1 M
und 10 M auf. Bei einer Beleuchtungsstärke von ca. 1000 Lux (lx)
stellt sich ein Widerstand von 75  bis 300  ein. Lux ist dabei die
Bezeichnung für die Einheit der Beleuchtungsstärke.

Der temperaturempfindliche
Widerstand
Der temperaturempfindliche Widerstand ändert seinen Wider-
standswert in Abhängigkeit von der ihn umgebenden Temperatur.
Es werden zwei unterschiedliche Typen produziert.

• NTC (Negativer Temperatur Coeffizient) - Heißleiter

• PTC (Positiver Temperatur Coeffizient) - Kaltleiter

NTC

Der NTC-Widerstand verhält sich so, dass bei hohen Temperatu-
ren die Leitfähigkeit steigt, was gleichzeitig bedeutet, dass der
Widerstand sinkt.

Die Bauform gleicht der eines Keramik-Kondensators, wodurch
hier hin und wieder auch mal eine Verwechslung erfolgt. Ein Auf-
druck, der z.B. 4K7 lautet, gibt aber deutlich Aufschluss über einen
Widerstandswert. Unter der Bezeichnung Thermistor NTC 4K7 ist
dieser Widerstand eindeutig zu identifizieren. Das Schaltzeichen
sieht folgendermaßen aus:

�

�
�	

���

�

	�
�

���
��
��

�

����������
�����
-- Kapitel 3: Die Elektronik66

Abbildung 3-22
Das Schaltzeichen für einen NTC
(Heißleiter)

An der Kennlinie eines NTC kannst du das Widerstandsverhalten
erkennen.

Abbildung 3-23
Die Kennlinie eines NTC

Wir können auf den ersten Blick erkennen, dass die Kennlinie kein
lineares Verhalten aufweist. Der Verlauf erfolgt in einer Kurve und
nicht in einer Geraden wie beim LDR. Das wichtigste Merkmal die-
ses Widerstandes ist der sogenannte Kaltwiderstand, der den
Widerstandswert R20 bei 200C Raumtemperatur angibt. Ich habe in
die Kurve als Beispiel einen fiktiven Wert von 10 K eingetragen.

PTC
Der PTC-Widerstand ist das Gegenstück zum NTC und weist ein
Temperaturverhalten auf, bei dem bei hohen Temperaturen die
Leitfähigkeit sinkt, was bedeutet, dass der Widerstand steigt. Das
Schaltzeichen sieht folgendermaßen aus:

Abbildung 3-24
Das Schaltzeichen eines PTC
(Kaltleiter)

Die Kennlinie eines PTC verläuft genau umgekehrt wie die eines
NTC und weist zudem noch besondere Merkmale auf. Sie kann im
niedrigen wie auch im höheren Temperaturbereich über ein Mini-
mum bzw. ein Maximum verfügen.

Abbildung 3-25
Die Kennlinie eines PTC

�

�
�	

���

�

	

�
��
�
�������� ����

!��"

�

�
�	

���

�

	��
��

��

�
��
�
��������
Bauteile --- 67

In der folgenden Tabelle habe ich das Verhalten beider temperaturab-
hängigen Widerstände (NTC und PTC) noch einmal kurz skizziert.

Tabelle 3-3
Das Verhalten von NTC und PTC bei

unterschiedlichen Temperaturen

Der Kondensator
Bei einem Kondensator handelt es sich um ein Bauteil, das im Prin-
zip aus zwei gegenüberliegenden, leitenden Platten besteht. Liegt
zwischen beiden Platten z.B. eine Gleichspannung an, dann baut
sich dazwischen ein elektrisches Feld auf.

Abbildung 3-26
Das elektrische Feld (blaue

Feldlinien) zwischen den beiden
Kondensatorplatten

Beide Platten haben einen bestimmten Abstand zueinander und sind
durch eine Isolierschicht – dem Dielektrikum – voneinander getrennt.
Wenn der Kondensator aufgeladen ist, kann die Spannungsversor-
gung entfernt werden, wobei das elektrische Feld bestehen bleibt. Die
beiden Platten speichern also die ihnen zugeführte Ladungsmenge Q
in As. Die Einheit As bedeutet Ampere mal Sekunde:

In diesem Fall verhält sich ein Kondensator wie eine geladene Batterie.

Achtung
Ein geladener Kondensator sollte niemals kurzgeschlossen und
immer über einen geeigneten Widerstand entladen werden.

Die Ladungsmenge, die der Kondensator aufnehmen kann, hängt
von zwei Faktoren ab:

• Der Gesamtkapazität C des Kondensators, die in Farard (F)
gemessen wird.

• Der Versorgungsspannung U, die am Kondensator anliegt.

Typ Temperatur Widerstand Strom

NTC � � �

� � �

PTC � � �

� � �

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
-- Kapitel 3: Die Elektronik68

Wir können festhalten, dass die Ladungsmenge Q eines Kondensa-
tors umso größer wird, je größer die Kapazität bzw. die Spannung
ist. Die folgende Formel zeigt uns den Zusammenhang der drei
Größen:

Hierzu ein kurzes Rechenbeispiel: Wir haben einen Kondensator
mit einer Kapazität von C = 3,3 F, der an einer Versorgungsspan-
nung von 9V liegt. Wie groß ist die Gesamtladung Q?

Die Kapazität eines Kondensators liegt in der Regel weit unterhalb
von einem Farad. Daher bewegen sich die Größen in den folgenden
Bereichen:

• F (10-6) – Mikrofarad

• nF (10-9) – Nanofarad

• pF (10-12) - Pikofarad

Es gibt die unterschiedlichsten Arten von Kondensatoren, von
denen ich nur einige aufführen möchte:

Polungsunabhängige Kondensatoren

• Keramikkondensatoren

• Kunststofffolienkondensatoren

• Metallpapierkondensatoren

Polungsrelevante Kondensatoren

• Elektrolytkondensatoren (auch Elkos genannt)

Ich habe hier einmal einen Elektrolytkondensator (links) und einen
Keramikkondensator (rechts) abgebildet. Es gibt da schon enorme
Größenunterschiede, wie du hier erkennen kannst.

Polungsunabhängige Kondensatoren können sowohl in Gleich- als
auch Wechselstromkreisen eingesetzt werden, wohingegen pol-
ungsabhängige Kondensatoren, wie der Elektrolytkondensator,
lediglich im Gleichstromkreis und bei richtiger Polung zum Einsatz
kommen darf.
Bauteile --- 69

Es gibt die unterschiedlichsten Einsatzgebiete, von denen ich hier
nur einige aufzeigen möchte:

• Zur Spannungsglättung bzw. Spannungsstabilisierung. Wenn
z.B. ein komplexes Bauteil wie der integrierte Schaltkreis auf
eine stabile Spannungsversorgung angewiesen ist, um seine
Daten nicht zu verlieren, dann wird zwischen + und – am Bau-
teilgehäuse ein separater Kondensator geschaltet, der bei kurz-
zeitigen Spannungsschwankungen den vorherigen Pegel kurz
aufrechterhält, so dass sich dieser Spannungseinbruch nicht
bemerkbar macht.

• Zur Signalkopplung, z.B. bei mehrstufigen Transistorschaltun-
gen.

• Bei Timerschaltungen, die nach einer bestimmten Zeit z.B.
einen Kontakt eines Relais öffnen oder schließen.

• Bei Taktgebern, die in regelmäßigen Abständen Impulse an
einen Ausgang schicken.

Die Schaltzeichen für Kondensatoren sehen folgendermaßen aus:

Abbildung 3-27
Die Schaltzeichen eines normalen

Kondensators (links) und eines
Elektrolytkondensators (rechts)

Wir wollen einmal sehen, wie sich ein Kondensator, den wir mit
einer Batterie verbinden, denn so verhält:

Abbildung 3-28
Schaltung zum Laden und Entladen

eines Kondensators

Die Funktionsweise von Kondensatoren habe ich soweit verstanden,
doch wo sie zu welchem Zweck eingesetzt werden, ist mir schleier-
haft.

�

-- Kapitel 3: Die Elektronik70

In dieser Schaltung siehst du einen Kondensator, der über eine Bat-
terie geladen wird, wenn sich der Wechselschalter in der momenta-
nen Position 1 befindet. Schalten wir hinüber zu Position 2, dann
wird der Kondensator C über den Widerstand R kurzgeschlossen,
und er entlädt sich wieder. An den beiden Strommessgeräten kann
man auf diese Weise sowohl den Lade- als auch den Entladestrom
messen. Das alles ist natürlich für dich jetzt reine Theorie und des-
wegen habe ich eine Schaltung aufgebaut, bei der der Vorgang des
Schalterumlegens automatisch und elektronisch vollzogen wird.
Als Spannungsquelle wird keine Batterie verwendet, sondern ein
Frequenzgenerator, der so eingestellt ist, dass er Rechtecksignale
erzeugt. Die Spannung schwankt also in regelmäßigen Abständen
zwischen einer vorgegebenen Spannung Umax und 0 Volt.

Abbildung 3-29
Schaltung zum Laden und Entladen
eines Kondensators über einen
Rechteckgenerator

Ich habe an den beiden Messpunkten 1 bzw. 2 ein Zweikanaloszil-
loskop angeschlossen, das die Spannungsverläufe zeitlich darstellt.
Messpunkt 1 wird mit Kanal 1 (gelbe Kurve) verbunden und liegt
direkt am Ausgang des Rechteckgenerators. Messpunkt 2 wird mit
Kanal 2 (blaue Kurve) verbunden und zeigt quasi die Spannung
hinter dem Kondensator C an, die über dem Widerstand R abfällt.
Damit wollen wir untersuchen, inwieweit ein Rechtecksignal durch
den Kondensator gelangt. Die folgende Abbildung zeigt dir die
Spannungsverläufe genauer:
Bauteile --- 71

Abbildung 3-30
Eingangs- und Ausgangsspannung

des Kondensators (Aufnahme mit
Multisim)

Wie ist das Oszillogramm nun zu deuten? Wenn der Spannungspe-
gel vor dem Kondensator von 0V auf z.B. 5V (gelbe Kurve) springt,
folgt der Ausgang des Kondensators (blaue Kurve) unmittelbar. Im
ersten Moment wirkt der ungeladene Kondensator wie ein Kurz-
schluss und lässt den Strom ungehindert durch. Bleibt der Span-
nungspegel vor dem Kondensator aber längere Zeit auf 5V, dann
lädt sich der Kondensator auf und sein Widerstand steigt. Du
siehst, dass die untere blaue Kurve langsam abflacht und fast auf
0V zurückgeht. Ein geladener Kondensator stellt für den Gleich-
strom eine Sperre dar und lässt ihn nicht mehr durch. Wenn das
Rechtecksignal wieder auf 0V abflacht, kann sich der Kondensator
über den Widerstand entladen, wobei der Strom jetzt aber in eine
andere Richtung fließt als beim Ladevorgang. Du erkennst das
daran, dass die blaue Kurve einen Sprung nach unten macht. Die
Ladung des Kondensators wird kleiner und kleiner und ebenso der
Entladestrom. Die Spannung über dem Widerstand, die durch die
untere Kurve repräsentiert wird, geht ebenfalls gegen 0V. Anschlie-
ßend wiederholt sich das ganze Spiel, und eine erneute Ladung des
Kondensators steht an.

Gut, dass du hier einhakst, denn da bringst du wirklich etwas
durcheinander. Schaue dir noch einmal den Schaltungsaufbau an.
Das blaue Signal, auf das du hier anspielst, zeigt dir den Pegel, der
direkt hinter dem Kondensator abgegriffen wird, also quasi den
Strom, der durch den Kondensator fließt. Es handelt sich dabei

Stopp mal, denn irgendetwas stimmt doch hier nicht so ganz! Du hast
doch gesagt, dass sich der Kondensator erst mit der Zeit auflädt und
dennoch macht die blaue Kurve einen Sprung von 0V auf den maxi-
malen Pegel, wenn sich das Eingangssignal auf 5V verstärkt. Wie soll
ich denn das verstehen?
-- Kapitel 3: Die Elektronik72

nicht um die Kondensatorspannung. Um diese anzuzeigen, müssen
wir die Schaltung ein wenig modifizieren. Vertauschen wir doch
einfach einmal Widerstand und Kondensator. Es ergibt sich folgen-
des Schaltungsbild:

Abbildung 3-31
Schaltung zum Laden und Entladen
eines Kondensators über einen
Rechteckgenerator

Du siehst, dass der Widerstand R jetzt als Ladewiderstand arbeitet
und wir die Spannung parallel zum Kondensator C abgreifen. Das
folgende Oszillogramm zeigt uns den Lade- bzw. Entladevorgang
am Kondensator noch deutlicher.

Abbildung 3-32
Ladespannung des Kondensators
(Aufnahme mit Multisim)

Wird das Rechtecksignal von 0V auf Maximum verstärkt, dann
wird der Kondensator über den Widerstand geladen. Das braucht
natürlich seine Zeit. Wir erkennen dies daran, dass die blaue Kurve
sich nur langsam dem angestrebten Wert von 5V nähert. Springt
das Rechtecksignal zurück auf 0V, dann ist zu diesem Zeitpunkt
der Kondensator noch geladen und gibt seine Energie jetzt langsam
über den Widerstand ab. Die Ladespannung sinkt wieder gegen 0V,
bis wieder über das Rechtecksignal der Startschuss für das erneute
Laden fällt. Anschließen beginnt alles von vorne.
Bauteile --- 73

Die Diode
Bei einer Diode handelt es sich um ein Bauteil, das in die Kategorie
Halbleiterelemente (Silizium oder Germanium) fällt. Sie hat die
Eigenschaft, den Strom nur in einer bestimmten Richtung (Durch-
lassrichtung) durchzulassen. Wenn er aus der anderen Richtung
kommt, wird er gesperrt (Sperrrichtung). Dieses elektrische Verhal-
ten erinnert natürlich augenblicklich an ein Ventil, wie du es z.B. an
deinem Fahrrad vorfindest. Du kannst Luft von außen in den
Schlauch hinein pumpen, aber es entweicht keine Luft von innen
nach außen. Ich habe wieder meine hochauflösende Kamera
bemüht, um die folgenden, einzigartigen Bilder zu machen.

Abbildung 3-33
Elektronen auf dem Weg durch die

Diode in Durchlassrichtung

Du erkennst, dass die Elektronen kein Problem beim Passieren der
Diode haben. Die interne Klappe öffnet sich problemlos in die
Richtung, in die sie alle wollen. Die folgenden Kameraden haben
bei ihrer Wanderung durch die Diode nicht so viel Glück:

Abbildung 3-34
Elektronen beim Versuch, die Diode

in Sperrrichtung zu durchqueren

Die Klappe lässt sich nicht in die gewünschten Richtung bewegen,
so dass es am Checkpoint zu Tumulten kommt, weil keiner passie-
ren kann. Diode gibt es in den unterschiedlichsten Formen und
Farben. Hier zwei Beispiele:

Da die Richtung, in der die Diode betrieben wird, enorm wichtig
ist, muss eine entsprechende Markierung auf dem Bauteilkörper
vorhanden sein. Es handelt sich diesmal nicht um eine Farbkodie-
rung, sondern um einen mehr oder weniger dicken Strich mit einer
zusätzlich aufgedruckten Bezeichnung. Tja, hier scheint es auf ein-
-- Kapitel 3: Die Elektronik74

mal genügend Platz für eine solche Beschriftung zu geben... Um sie
auch sprachlich auseinander zu halten, haben beide Anschlüsse
unterschiedliche Bezeichnungen:

• Anode

• Kathode

Eine Silizium-Diode arbeitet in Durchlassrichtung, wenn die Anode
+0,7V positiver ist als die Kathode. Sehen wir uns dazu einmal die
gängigen Schaltsymbole an:

Abbildung 3-35
Die Schaltzeichen für eine Diode,
links die offene, rechts die
geschlossene Variante.

Wo sind jetzt aber Anode bzw. Kathode? Ich merke mir das immer
so: Die Kathode beginnt mit dem Buchstaben K und dieser hat
links eine senkrechte Linie. Das Diodenschaltsymbol hat ebenfalls
auf der rechten Seite eine lange senkrechte Linie. Dort befindet sich
die Kathode.

Das lässt sich doch recht einfach zu merken, oder? Wir sollten nun
einen Blick auf die Arbeitsweise der Diode in einer Schaltung riskieren.
Ich verwende statt eines Rechtecksignals ein Sinussignal am Eingang
der Diode, das sowohl positive als auch negative Spannungswerte auf-
weist. Das Schaltbild sollte dir bekannt vorkommen.

Abbildung 3-36
Schaltung zur Ansteuerung einer
Diode über einen Sinusgenerator

Der Eingang der Diode, also die Anode, wird mit dem Ausgang des
Sinusgenerators verbunden. Dieser Verbindungspunkt wird durch
die gelbe Kurve im Oszillogramm dargestellt. Der Ausgang, also die
Kathode, wird durch die blaue Kurve repräsentiert. Wir sehen uns
das wieder aus der Nähe an:

����� >�	����
Bauteile --- 75

Abbildung 3-37
Eingang bzw. Ausgang einer Diode

(Aufnahme mit Multisim)

Das gelbe Eingangssignal zeigt uns einen klaren Sinusverlauf. Da
die Silizium-Diode jedoch nur für positive Signale > +0,7V durch-
lässig ist und für negative Signale eine Sperre bedeutet, zeigt uns die
blaue Ausgangskurve lediglich den positiven Flügel der Sinuskurve.
Dort, wo sich eigentlich der negative Flügel der Sinuskurve befin-
det, haben wir eine Nulllinie, was auf die Sperrrichtung der Diode
hindeutet. Wir sollten zum Abschluss der Diodenbetrachtung noch
einen Blick auf die Spannungs-Strom-Kennlinie werfen. Diese Kenn-
linie zeigt dir, ab welcher Eingangsspannung der Strom durch die
Diode zu fließen beginnt und sie anfängt zu leiten. Das geschieht
nicht sofort, sondern beginnt langsam ab ca. +0,5V und wird dann
fast schlagartig auf +0,7V verstärkt.

Abbildung 3-38
Spannungs-Strom-Kennlinie einer

Silizium-Diode (Aufnahme mit Mul-
tisim)
-- Kapitel 3: Die Elektronik76

An den beiden folgenden sehr einfachen Schaltungen kannst du die
eben beschriebene Funktionsweise als elektronisches Ventil gut
erkennen. Sie bestehen jeweils aus zwei Dioden und zwei Lampen,
die durch eine Batterie mir Strom versorgt werden.

Abbildung 3-39
Durchlass- bzw. Sperrrichtung von
Dioden in zwei Lampenschaltungen

Linke Schaltung

In der linken Schaltung liegt der Pluspol der Batterie oben, so dass
er mit der Anode der Diode D2 verbunden ist. Diese ist somit in
Durchlassrichtung geschaltet, leitet den Strom durch und lässt
Lampe L2 leuchten. Diode D1 sperrt, da ihre Kathode am Pluspol
der Batterie liegt. Die Lampe L1 bleibt dunkel.

Rechte Schaltung

In der rechten Schaltung wurde lediglich die Polarität der Batterie
vertauscht, so dass der Pluspol unten liegt. Die Polaritätsverhält-
nisse sind jetzt genau umgedreht. Der Pluspol der Batterie liegt an
der Anode der Diode D1 und lässt die Lampe L1 leuchten. Diode
D2 wird in Sperrrichtung betrieben, da der Pluspol an ihrer
Kathode liegt. Die Lampe L2 bleibt dunkel.

Vielleicht fragst du dich jetzt, wozu solche Bauteile benutzt wer-
den. Die Anwendungsgebiete sind recht vielfältig, daher möchte ich
dir hier nur einige nennen:

• Gleichrichtung von Wechselstrom

• Spannungsstabilisierung

• Freilaufdiode (zum Schutz vor Überspannung beim Abschalten
einer Induktivität, z.B. bei einem Motor)

Es gibt viele unterschiedliche Diodentypen, z.B. Z-Dioden oder
Tunneldioden, um nur zwei zu nennen. Alle Typen aufzuzählen und
zusätzlich noch die Unterschiede zu erläutern, würde den Umfang
Bauteile --- 77

dieses Buches sprengen. Ich verweise daher auf entsprechende
Elektronik-Fachliteratur oder das Internet.

Der Transistor
Jetzt kommen wir zu einem sehr interessanten elektronischen Bau-
teil, das die Entwicklung integrierter Schaltkreise auf kleinstem
Raum erst ermöglicht hat – dem Transistor! Es handelt sich dabei
um einen Halbleiterelement, das sowohl als elektronischer Schalter
als auch als Verstärker Verwendung findet. Es ist das erste elektro-
nische Bauteil, das in die Kategorie aktives Bauteil fällt und dabei
drei Anschlüsse besitzt. Nun, das muss ja dann schon etwas ganz
Besonderes sein. Und das ist es tatsächlich. Auch hier gibt es wieder
eine Unmenge an Varianten in verschiedenen Formen, Größen und
Farben.

Abbildung 3-40
Ein Transistorsammelsurium

Ok, Ardus. Der Ausdruck Halbleiter ist etwas widersprüchlich und
gibt das bezeichnete elektrische Verhalten nicht ganz korrekt wie-
der. Es bedeutet, dass das verwendete Material – z.B. Silizium –
unter gewissen Bedingungen leitet und dann wieder auch nicht. Es
wäre für alle verständlicher, wenn anstelle des Ausdrucks Halbleiter
z.B. die Bezeichnung Steuerleiter verwendet würde. Doch daran
können wir jetzt nichts mehr ändern und müssen es so nehmen,

Stopp mal bitte! Da hast du eben schon wieder den Ausdruck Halblei-
ter verwendet. Kannst du mir mal bitte verraten, wie das funktionie-
ren soll. Wie kann ein Material nur halb leiten? Das ist mir ein Rätsel!
-- Kapitel 3: Die Elektronik78

wie es ist. Wir können den Transistor mit einem elektronisch regel-
baren Widerstand vergleichen, dessen Schleiferposition über einen
angelegten Strom beeinflusst werden kann und dessen Wert sich
somit regulieren lässt.

Je größer der absolute Wert des Stromes am Punkt B ist, desto klei-
ner wird der Widerstand zwischen den Punkten C und E. Warum
ich genau diese Buchstaben verwende, wirst du gleich sehen. Wenn
wir uns ein Bauteil vorstellen, das wie schon erwähnt etwas steuern
soll (schalten oder verstärken), dann muss es ja über eine Leitung
verfügen, die diese Steuerung übernimmt, und zwei weitere, die
den Elektronenfluss (rein bzw. raus) ermöglichen. Damit haben wir
auch schon die drei Anschlüsse eines Transistors auf sehr rudimen-
täre Weise beschrieben. Ich möchte an dieser Stelle wieder auf
meine Spezialkamera zurückgreifen und dich mit bisher nicht ver-
öffentlichten Bildern überraschen.

Abbildung 3-41
Elektronen auf dem Weg durch den
Transistor

Diese hochauflösende Aufnahme zeigt dir das Innere eines NPN-
Transistors (was das ist, wird gleich noch erläutert), der mit dem
Pluspol der Spannungsquelle über den Anschluss mit der Bezeich-
nung B gesteuert wird. Damit wir die einzelnen Anschlüsse eines
Transistors auseinander halten können, hat jedes Beinchen eine
Bezeichnung:

• B steht für Basis.

• C steht für Collektor (deutsch: Kollektor).

• E steht für Emitter.

Auf diesem hochauflösenden Bild siehst Du, wie sich der Strom von
Elektronen zwischen Kollektor und Emitter bewegt. Es handelt sich

�

7

Bauteile --- 79

um den Arbeitsstromkreis. Mit ihm werden z.B. andere Verbraucher
wie Lampen, Relais oder auch Motoren gesteuert. Dann ist da noch
der Strom, der durch die Basis fließt. Das ist der Steuerstrom. Er
reguliert mit seiner Stärke den Arbeitsstrom. Mit einem sehr gerin-
gen Steuerstrom kann ein relativ hoher Arbeitsstrom geregelt wer-
den. Dieses Verhalten wird Verstärkung genannt.

Schau her, Ardus. Ich werde dir das Prinzip anhand einer einfachen
konventionellen Schaltung mit elektrischen Bauteilen zeigen.

Auf der linken Seite haben wir den Steuerstromkreis, der über einen
Schalter das angeschlossene Relais steuert. Die genaue Funktions-
weise eines Relais werde ich gleich noch erläutern. Für den Augen-
blick reicht es, wenn du weißt, dass es sich um ein elektro-
mechanisches Bauteil handelt, das beim Anlegen einer Spannung
einen Kontakt schließt. Die Spannungsversorgung von 3V reicht
aus, um das kleine Relais anzusteuern. Auf der rechten Seite befin-
det sich der Arbeitsstromkreis, der eine Lampe mit 24V zum Leuch-
ten bringen soll. Die Arbeitskontakte des Relais schließen bei
geschlossenem Schalter diesen Stromkreis und die Lampe leuchtet.
Es ist davon auszugehen, dass im Steuerstromkreis ein niedrigerer
Strom fließt, als im Arbeitsstromkreis. Kleine Ursache, große Wir-
kung. Du siehst, dass wir hier mit zwei unabhängigen getrennten
Stromkreisen arbeiten. Übertragen wir jetzt diese Arbeitsweise ein-
mal auf den Transistor. Zuvor zeige ich dir aber noch die Schaltbil-
der des Transistors. Da es zwei unterschiedliche Typen gibt, haben

Der Unterschied zwischen Steuer- und Arbeitsstromkreis ist mir noch
nicht ganz klar. Warum haben wir auf einmal zwei Stromkreise? Ich
dachte, dass man es immer nur mit einem Kreis zu tun hätte.

Abbildung 3-42
Steuer- und Arbeitsstromkreis mit

elektrischen Bauteilen
-- Kapitel 3: Die Elektronik80

wir es auch mit verschiedenen Schaltsymbolen zu tun. Auf die
Unterschiede komme ich sofort zu sprechen.

Abbildung 3-43
Die unterschiedlichen Schaltzeichen
eines Transistors

Die Unterschiede zwischen den Typen NPN und PNP liegen in der
Anordnung der Siliziumschichten. Jeder Transistor weist drei auf-
einander liegende Siliziumschichten auf, von denen die beiden
äußeren immer gleich sind. Bei einem NPN-Transistor liegen die N-
Schichten außen und bilden den Kollektor bzw. Emitter. Bei der in
der Mitte liegenden Schicht handelt es sich um die Basis. Die Basis
eines NPN-Transistors wird also durch die P-Schicht gebildet. Der
NPN-Transistor schaltet durch, wenn das Basis-Emitter-Potential
mindestens +0,7V beträgt. Mit Durchschalten ist dabei der begin-
nende Stromfluss zwischen Kollektor und Emitter gemeint. Im
Gegensatz dazu schaltet der PNP-Transistor durch, wenn das Basis-
Emitter-Potential negativ ist und mindestens -0,7V beträgt. So, nun
kann ich dir das Prinzip von Steuer- und Arbeitsstromkreis mit
einem Transistor zeigen.

Abbildung 3-44
Steuer- und Arbeitsstromkreis mit
elektrischen und elektronischen
Bauteilen

Das Relais wurde durch den NPN-Transistor ersetzt, der über einen
Vorwiderstand R positiv angesteuert wird, wenn du den Schalter
schließt. Dieser Widerstand ist unbedingt erforderlich, da ein zu
hoher Basisstrom den Transistor überhitzt, was mit einem
Totalausfall quittiert wird. Obwohl Steuer- und Arbeitsstromkreis
eine gemeinsame Masse besitzen, sprechen wir hier immer noch

:(: (:(

7�

�7
Bauteile --- 81

von zwei getrennten Stromkreisen. Sehen wir uns aber nun einmal
einen Transistor aus der Nähe an. Ich habe mich für den Typ
BC557C entschieden, den du auf dem folgenden Bild siehst. Es
handelt sich um einen PNP-Transistor, dessen Amtskollege der
NPN-Transistor BC547C ist. Wie du auf dem Bild Eine Hand voll
Transistoren gesehen hast, gibt es sehr unterschiedliche Gehäuse-
formen. Der hier gezeigte Transistor steckt in einem sogenannten
TO-92 Gehäuse aus Plastik.

Es handelt sich dabei um einen recht universellen Transistor, der
für kleine Verstärkerschaltungen bzw. Schaltanwendungen geeig-
net ist. Die Pinbelegung dieser beider Typen ist gleich und sieht fol-
gendermaßen aus:

Abbildung 3-45
Die Pinbelegung der Transistoren

BC547C und BC557C (Sicht von
unten auf die Beinchen)

Das könnte für dich wichtig sein
Alle notwendigen Informationen zu Transistoren oder allen
anderen genannten Bauteilen in diesem Buch findest du in den
entsprechenden Datenblättern, die im Internet frei verfügbar
sind.

Wann und wo wir einen Transistor benötigen, wirst du in den ent-
sprechenden Kapiteln sehen, wenn es z.B. darum geht, einen Motor
oder mehrere Leuchtdioden anzusteuern. Da diese umfangreiche
Thematik den Rahmen dieses Buches sprengen würde, kann ich an
dieser Stelle nicht weiter auf sie eingehen und verweise wieder auf
die Fachliteratur bzw. das Internet.

Der integrierte Schaltkreis
Alles fing mit der Entdeckung des Transistors an, der es den Ent-
wicklern ermöglichte, Schaltungen auf kleinstem Raum unterzu-
bringen. In den Anfängen wurden mehr oder weniger komplexe
Schaltungen mittels einer auf Röhren basierender Technik umge-
setzt. Diese waren um ein Vielfaches größer als ein Transistor und
setzten entsprechend mehr Leistung um. Später platzierte man
Unmengen einzelner Transistoren auf überdimensionalen Leiter-
platten, um komplexe Arbeitsprozesse an einem Ort konzentrieren
zu können. Dies führte aber auf die Dauer ebenso zu gigantischen

� 7
-- Kapitel 3: Die Elektronik82

Ansammlungen von Platinen, daher kam man auf die Idee, mehrere
diskrete Bauteile, also Transistoren, Widerstände und Kondensato-
ren, auf einem Silizium-Chip von wenigen Quadratmillimetern
unterzubringen. Der Integrierte Schaltkreis (engl.: IC = Integrated
Circuit) war geboren. Natürlich erfolgte diese Miniaturisierung in
mehreren Schritten. Hier ein paar Zahlen zu den Integrationsgra-
den:

• 1960er Jahre: Ein paar Dutzend Transistoren pro Chip
(3 mm2)

• 1970er Jahre: Ein paar Tausend Transistoren pro Chip
(8 mm2)

• 1980er Jahre: Einige Hunderttausend Transistoren pro Chip
(20 mm2)

• Heute: Mehrere Milliarden Transistoren pro Chip

Ein beeindruckendes Beispiel liefert z.B. der Mikrocontroller
ATTiny13 mit seinen nur 8 Anschlussbeinchen. Es handelt sich hier
um einen richtigen Minicomputer mit allem, was dazu gehört, also
ein Rechenwerk, Speicher, Ein- bzw. Ausgabeports, usw. Vor eini-
gen Jahrzehnten hätte ein Computer mit dieser Komplexität noch
zahllose Europlatinen (Maße: 160mm x 100mm) mit diskreten Bau-
teilen erfordert.

Abbildung 3-46
Der Mikrocontroller ATTiny13 in
einem DIP-Gehäuse der Firma
Atmel

Achtung
Ich habe dich bereits in der Einleitung schon kurz auf die
Gefahr hingewiesen, der die integrierten Schaltkreise hinsicht-
lich einer statischen Aufladung ausgesetzt sind. Ist dein Körper
z.B. durch das Laufen über einen Polyesterteppich aufgeladen,
dann kann diese elektrostatische Energie in Form eines Entla-
dungsblitzes schlagartig abgeleitet werden. Da können dann
leicht 30.000 Volt zusammen kommen und das haut ganz
sicher den stärksten Transistor aus dem Gehäuse. Eine vorhe-
rige Erdung z.B. an einem nicht lackierten Heizungsrohr oder
einem Schutzkontakt ist deshalb ratsam.
Bauteile --- 83

Die Leuchtdiode
Eine Leuchtdiode – auch kurz LED (Light Emitting Diode) genannt
– ist ein Halbleiterbauelement, das Licht mit einer bestimmten
Wellenlänge abgibt, die wiederum abhängig vom verwendeten
Halbleitermaterial ist. Wie der Name Diode schon vermuten lässt,
ist beim Betrieb auf die Stromrichtung zu achten, denn nur bei
Durchlassrichtung sendet die LED Licht aus. Bei entgegengesetzter
Polung wird die LED nicht beschädigt, doch sie bleibt dann einfach
dunkel. Es ist unbedingt darauf zu achten, dass eine LED immer
mit einem richtig dimensionierten Vorwiderstand betrieben wird.
Andernfalls leuchtet sie nur ein Mal in einer beeindruckenden Hel-
ligkeit und dann nie wieder. Wie du den Wert des Vorwiderstandes
bestimmst, wirst du zu gegebener Zeit noch lernen. Leuchtdioden
gibt es in vielen Farben und Formen.

Abbildung 3-47
Leuchtdiodensammelsurium

Genau wie bei einer Diode, hat die Leuchtdiode zwei Kontakte, von
denen einer die Anode und der andere die Kathode ist. Das Schalt-
zeichen sieht ähnlich aus und hat zusätzlich noch zwei Pfeile, die
das ausstrahlende Licht andeuten.

Abbildung 3-48
Die Schaltzeichen einer Leuchtdiode

In der folgenden Abbildung kannst du sehen, dass ein Anschluss-
beinchen etwas länger ist als das andere.
-- Kapitel 3: Die Elektronik84

Dadurch lassen sich Anode und Kathode besser unterscheiden. Der
längere Draht ist immer die Anode. Damit die LED leuchten kann,
müssen die Anode mit dem Plus- und die Kathode mit dem Minus-
pol verbunden werden. Die einfachste Schaltung zur Ansteuerung
einer LED siehst du in der folgenden Abbildung:

Abbildung 3-49
Ansteuerung einer LED mit einem
Vorwiderstand

Weitere interessante Bauteile
Die bisher erwähnten Schaltelemente zählen allesamt zur Kategorie
der elektronischen Bauteile. Ich möchte dir jetzt ein paar Elemente
vorstellen, die in die Kategorie elektrische Bauteile fallen.

Der Schalter
Ein Stromfluss kommt nur dann zustande, wenn der Stromkreis
geschlossen ist und die Elektronen ungehindert fließen können.
Damit du aber von außen Einfluss darauf nehmen kannst, musst du
z.B. einen Schalter in den Stromkreis einbauen. Es handelt sich um
einen Mechanismus, der einen Kontakt öffnet bzw. schließt. Es gibt
die unterschiedlichsten Ausführungen, die einige, wenige oder
mehrere Kontakte aufweisen.

Abbildung 3-50
Eine Hand voll Schalter
Weitere interessante Bauteile --- 85

Der einfachste Schalter besteht aus zwei Kontakten und kann durch
unterschiedliche Schaltsymbole dargestellt werden.

Abbildung 3-51
Die Schaltzeichen eines Schalters

Der Zustand des Schalters kann als stabil bezeichnet werden.
Wurde der Schalter betätigt, dann bleibt die Schalterposition erhal-
ten, bis erneut umgeschaltet wird.

Der Taster
Der Taster ist mit dem Schalter verwandt und beeinflusst ebenfalls
den Stromfluss. Wird er nicht betätigt, dann ist der Stromkreis in
der Regel unterbrochen. Ich sage in der Regel, da es auch Taster
gibt, die ohne Betätigung geschlossen sind und auf einen Druck hin
den Stromkreis unterbrechen. Diese werden dann Öffner genannt.

Abbildung 3-52
Eine Hand voll Taster

Das Schaltzeichen für einen Taster gleicht ein wenig dem Symbol
für den Schalter. Doch gerade die feinen Unterschiede sind recht
wichtig und sollten nicht übersehen werden.

Abbildung 3-53
Die Schaltzeichen für einen Taster

und für einen Öffner

Der Zustand eines Tasters wird als nicht stabil bezeichnet. Drückst
du ihn, dann schließt der Kontakt und der Strom kann fließen.
Lässt du ihn jedoch wieder los, dann bewegt sich der Kontakt in die

?��	��+����

�%��" @''���
-- Kapitel 3: Die Elektronik86

ursprüngliche Position zurück und der Stromkreis wird wieder
unterbrochen. Für unsere Experimente verwenden wir recht häufig
Taster, Schalter hingegen seltener. Die bevorzugte Variante sind
Taster, die du direkt auf die Platine löten kannst. Sie nennen sich
Miniaturtaster.

Das Relais

Ich habe dir das Relais schon einmal kurz bei der Einführung des
Transistors gezeigt. Ich möchte an dieser Stelle noch etwas genauer
auf dieses Bauteil eingehen. Ein Relais ist eigentlich nichts weiter
als ein Schalter oder Umschalter, den du aus der Ferne betätigen
kannst. Auf dem folgenden Foto aus vergangenen Tagen siehst du
einen Arbeiter, der einen Kontakt aus der Ferne schließt, zu einer
Zeit, als es noch keine Relais gab.

Abbildung 3-54
Ein Fernschalter aus vergangenen
Tagen

Ein Relais kann mit unterschiedliche Schaltzeichen dargestellt wer-
den.

Abbildung 3-55
Das Schaltzeichen für ein Relais (mit
einem Arbeitskontakt)

Ich habe hier einmal ein Relais geöffnet, damit wir uns sein Innen-
leben genauer anschauen können.

Auf der linken Seite befindet sich die Spule, die im Inneren einen
Eisenkern besitzt, damit die Magnetfeldlinien besser transportiert
werden. Fließt ein Strom durch die Spule, wird der Anker angezo-
gen und drückt die Arbeitskontakte nach rechts. Dadurch werden
sowohl Kontakte geschlossen als auch geöffnet. Die nachfolgende
schematische Abbildung zeigt uns, wie der Anker nach unten gezo-
gen wird und dabei einen Kontakt schließt.
Weitere interessante Bauteile --- 87

Abbildung 3-56
Schema eines Relais

Wird der Anker durch die Spule nach unten gezogen, dann schließt
er die beiden Kontakte K1 bzw. K2. In gewisser Weise kannst du
ein Relais – falls das erwünscht sein sollte – ebenfalls als Verstärker
nutzen. Mit einem kleinen Strom, der durch die Spule fließt, kann
bei entsprechender Dimensionierung der Relaiskontakte, ein viel
größerer Strom gesteuert werden.

Achtung
Schließe niemals ein Relais unmittelbar an einen Ausgang des
Arduino-Boards an! Es wird sicherlich mehr Strom fließen, als
ein einzelner Ausgang in der Lage ist zu liefern. Die Folge wäre
eine Beschädigung des Mikrocontrollers. Du wirst später noch
sehen, wie ein Relais angesteuert werden kann.

Der Motor
Ich denke, dass du sicherlich weißt, was ein Motor ist. Wir spre-
chen an dieser Stelle jedoch nicht von einem Verbrennungsmotor,
der z.B. mit Diesel betrieben wird, sondern von einem Elektromo-
tor. Hierbei handelt es sich um ein Aggregat, das elektrische Ener-
gie in Bewegungsenergie umwandelt.

Abbildung 3-57
Eine Hand voll Motoren

Motoren gibt es in vielen unterschiedlichen Größen und mit diver-
sen Spannungsbereichen. Sie werden sowohl für Gleichstrom- als
auch für Wechselstromversorgungen hergestellt.

>) >/
���
�

&�������	
-- Kapitel 3: Die Elektronik88

Abbildung 3-58
Das Schaltzeichen eines
Gleichstrommotors

Wir konzentrieren uns jedoch auf Gleichstrom. Ein Gleichstrom-
motor besteht aus einem starren Element, das den Magnet darstellt
und einem beweglichen Element, der Spule, die drehbar auf einer
Welle montiert ist. Wird ein Strom durch einen Leiter geschickt,
dann bildet sich um ihn herum ein Magnetfeld. Das Magnetfeld
wird umso größer, je mehr Drahtlänge auf einem bestimmten
Bereich konzentriert wird. Aus diesem Grund hat man sehr viel
Draht auf einen Träger gewickelt und damit eine Spule geschaffen.

Abbildung 3-59
Ein stromdurchflossener Leiter

Du siehst auf diesem Bild einen Leiter, durch den die Elektronen in
eine Richtung flitzen. Die roten Kreise zeigen uns die Magnetfeldli-
nien, die durch den Strom erzeugt werden. Würden wir jetzt eine
Kompassnadel an den starren Leiter führen, käme es zu einer Reak-
tion seitens der beweglichen Nadel, die sich entlang der Magnet-
feldlinien ausrichtet. Sowohl die Magnetfeldlinien des Drahtes, als
auch die der Kompassnadel treten in eine Kräfte-Wechselwirkung.
Haben wir aber stattdessen einen starren Magneten, in dem sich ein
beweglicher Draht befindet, dann bewirkt die auftretende Kraft
eine Bewegung des Drahtes.

Abbildung 3-60
Stark vereinfachtes Schema eines
Gleichstrommotors

�

Weitere interessante Bauteile --- 89

In der Zeichnung siehst du eine einzige rote Drahtwindung, die sich
frei drehbar innerhalb des blauen Permanentmagneten befindet.
Lassen wir jetzt einen Strom durch den Draht fließen, dann reagie-
ren die Magnetfelder des Drahtes mit denen des Magneten. Das
führt dazu, dass sich der Draht entlang der Achse dreht. Aufgrund
des zweigeteilten grauen Rotors, an dem der Draht befestigt ist,
wird er nach einer 1800 Drehung umgepolt und der Strom fließt in
entgegengesetzter Richtung. Das jetzt gedreht zur vorherigen Pola-
rität erzeugte Magnetfeld im Draht sorgt dafür, dass er sich weiter
bewegt, bis es nach weiteren 1800 zur erneuten Umpolung kommt.
Dieser ständige Wechsel des Magnetfeldes sorgt für eine Drehbe-
wegung des Drahtes mit dem Rotor. Damit sich die Kräfte zwischen
den beiden Magnetfeldern verstärken, besitzt ein Motor natürlich
vieler solcher Drahtwindungen, die dadurch eine Spule bilden und
er eine gewisse Kraft beim Drehen entwickelt. Da die Ansteuerung
eines Motors etwas mehr Strom verlangt, als ein einzelner Ausgang
des Mikrocontrollers in der Lage wäre, benötigen wir einen Tran-
sistor, der die Aufgabe der Verstärkung übernimmt. Wie das funk-
tioniert, wirst du noch sehen. Ein nicht zu vernachlässigendes
Problem ergibt sich jedoch beim Abschalten der Stromversorgung
zum Motor. Die Spule induziert nach dem Verlust des Versor-
gungsstromes selbst einen Strom (Selbstinduktion), der aufgrund
der Höhe und entgegengesetzter Flussrichtung den Mikrocontroller
bzw. den Transistor zerstören kann. Wie wir dem entgegenwirken
können, wirst du ebenfalls noch sehen, wenn wir die Freilaufdiode
behandeln.

Der Schrittmotor
Wenn wir einen normalen Motor ansteuern, dann dreht er sich
solange, wie wir ihn mit Strom versorgen und durch den vorherigen
Schwung noch ein paar Umdrehungen weiter. Er bleibt dann
sicherlich an einer vorher nicht bestimmbaren Position stehen. Die-
ses Verhalten ist natürlich unerwünscht, wenn es darum geht,
bestimmte Positionen gezielt und auch mehrfach hintereinander
genau anzufahren. Damit das auch funktioniert, benötigen wir eine
spezielle Art von Motor: Den Schrittmotor. Vielleicht hast du schon
einmal Industrieroboter gesehen, die z.B. bei der Montage von
Karosserieteilen zum Einsatz kommen, um diese Punktgenau
zusammen zu schweißen. Da kommt es wirklich auf sehr hohe
Positionsgenauigkeit an, denn alles muss nachher auch zusammen
passen. Derartige Roboter werden durch Schrittmotoren gesteuert.
-- Kapitel 3: Die Elektronik90

Aber auch in Flachbettscannern oder Plottern findest du diese Stell-
elemente, um eine exakte Positionierung zu ermöglichen.

Abbildung 3-61
Eine Hand voll Schrittmotoren

Was fällt dir bei den Schrittmotoren in dem Bild auf, wenn du sie
mit den normalen Motoren vergleichst? Diese Motoren haben mehr
als zwei Anschlussdrähte. Das Schaltsymbol eines Schrittmotors
kann unterschiedlich ausfallen. Meistens wird ein Motor mit zwei
Spulen gezeichnet.

Abbildung 3-62
Das Schaltzeichen eines
Schrittmotors

Damit ein Schrittmotor bestimmte Positionen anfahren kann, muss
er im inneren einen Aufbau vorweisen, der ihn dazu bewegt, an
gewissen Stellen Halt zu machen. Da dies nicht mit mechanischen
Mitteln, wie z.B. einem Zahnrad, das bei der Drehung an einer
Stelle blockiert, gemacht wird, muss es irgendwie eine elektrische
Lösung geben. Wenn ich z.B. einen Magneten auf einer Achse
befestige und rundherum Spulen positioniere, dann dreht sich der
Magnet zu der Spule hin, die vom Strom durchflossen wird, um
dann dort stehen zu bleiben. Nach diesem Prinzip funktioniert ein
Schrittmotor. Der Einfachheit halber habe ich einen Motor mit 4
Spulen und einer simplen Ansteuerung gewählt, dessen Positionie-
rung dementsprechend grob ist. Aber es geht hierbei um’s Prinzip
und nicht um die Praxistauglichkeit.

�

Weitere interessante Bauteile --- 91

Abbildung 3-63
Die schematische Darstellung eines

Schrittmotors mit 4 Spulen bzw.
Positionen

In der Mitte siehst du den drehbar gelagerten Magneten, der von 4
Spulen umgeben ist. Alle Spulen sind mit einem ihrer beiden
Anschlüsse mit Masse verbunden. Zur Verdeutlichung der Funktio-
nalität habe ich die Spule B mit einem Strom beaufschlagt, so dass
sich der Magnet in diese Richtung gedreht hat und dort stehen
bleibt. Wird immer nur eine Spule mit Strom versorgt, dann kön-
nen maximal 4 unterschiedliche Positionen (jeweils 900) angefahren
werden. Werden jedoch zwei benachbarte Spulen gleichzeitig ver-
sorgt, dann bleibt der Anker zwischen ihnen stehen. Auf diese
Weise wird die Genauigkeit erhöht.

Abbildung 3-64
Gleichzeitiges Ansteuerung

mehrerer Spulen

Statt mit 900-Schritten, kann jetzt mit 450-Schritten gearbeitet wer-
den. Damit die angefahrene Position jedoch stabil bleibt, muss die
jeweilige Spule bzw. Spulen immer mit Strom versorgt bleiben, bis
eine neue Richtung vorgegeben wird. Willst Du, dass sich der
Schrittmotor z.B. im Uhrzeigesinn dreht, dann müssen die Spulen-

: �

�

�
�

�

�

�

�
�

�

�

:
�

-- Kapitel 3: Die Elektronik92

anschlüsse in der richtigen Reihenfolge angesteuert werden. Begin-
nen wir z.B. bei Spule B: B / BC / C / CD / D / DA / A / AB / B / usw.

Hast du eine Lupe verwendet, um das zu erkennen? Aber ja, Ardus!
Du hast vollkommen Recht. Es gibt zwei unterschiedliche Typen
von Schrittmotoren.

• Unipolare Schrittmotoren (5 oder 6 Anschlüsse)

• Bipolare Schrittmotoren (4 Anschlüsse)

Der unipolare Schrittmotor ist einfacher anzusteuern, da der Strom
immer in derselben Richtung durch die Spulen fließt. In unserem
Beispiel habe ich deswegen diesen Typ erklärt. Für weitere Infor-
mationen muss ich dich auf weiterführende Literatur oder das
Internet verweisen.

Der Servo
Modellflugzeuge oder auch Modellschiffe besitzen zur Steuerung
der unterschiedlichsten Funktionen wie z.B. Geschwindigkeit oder
Kurs, kleine Servos. Es handelt sich dabei meist um kleine Gleich-
strommotoren, die mit drei Anschlüssen versehen sind und deren
Stellposition über eine Puls Weiten Modulation (PWM) gesteuert
wird. Was das genau ist, wirst du noch im Kapitel über die Pro-
grammierung des Arduino-Boards kennen lernen.

Abbildung 3-65
Zwei unterschiedlich große Servos

Stopp mal kurz! Ich habe mir das Bild mit den verschiedenen Schritt-
motoren einmal unter die Lupe genommen. Mir ist da etwas aufge-
fallen. Manche Motoren haben 4 und einer 5 Anschlüsse. Wo liegt
denn da der Unterschied?
Weitere interessante Bauteile --- 93

Das Schaltplansymbol für einen Servo kann folgendermaßen aus-
schauen.

Abbildung 3-66
Das Schaltzeichen eines Servos

Lasse mich das PWM-Thema trotzdem kurz anreißen, damit du
ungefähr weißt, worum es geht. Ein nicht modifizierter Servo hat in
der Regel einen Wirkungskreis von 00 bis 1800 und kann sich nicht
wie ein Motor um 3600 drehen. Die Ansteuerung, wie weit sich ein
Servo drehen soll, erfolgt über ein Rechtecksignal mit besonderen
Spezifikationen.

Periodendauer

Die Periodendauer T beträgt konstant 20ms.

Pulsbreite

Die Pulsbreite muss sich zwischen 1 ms (linker Anschlag) und 2 ms
(rechter Anschlag) bewegen. Nachfolgend siehst du drei Servo-
Positionen mit den entsprechenden Ansteuerungssignalen.

Mit dem ersten Beispiel von einer Pulsbreite von 1 ms positionieren
wir den Servo an den rechten Anschlag. Das entspricht dem Winkel
von 00.

Im zweiten Beispiel steuern wir den Servo mit einer Pulsbreite von
1,5 ms an, was ihn dazu veranlasst, auf die Mittelposition zu fah-
ren, die einem Winkel von 900 entspricht.

� �

)��

/4��

		
-- Kapitel 3: Die Elektronik94

Im dritten Beispiel wird unser Servo mit einer Pulsbreite von 2 ms
angesteuert, der seinerseits auf in den linken Anschlag fährt, was
einem Winkel von 1800 entspricht.

Jetzt hast du eine ungefähre Vorstellung davon, was PWM ist. Über
die Pulsweite bzw. –breite kannst du ein elektronisches Bauteil wie
den Servo ansteuern. Das gleiche Verfahren kann auch zur Hellig-
keitssteuerung z.B. bei Leuchtdioden verwendet werden. Doch
dazu später mehr. Aufgrund der unterschiedlichen Servotypen,
können abweichende Werte vorkommen, doch das Prinzip ist das
Gleiche. Du brauchst dir nicht weiter den Kopf darüber zu zerbre-
chen, wie du denn deinen Servo mit welchen Werten ansteuern
musst, denn die Arbeit haben sich schon andere Entwickler
gemacht und wir können ihr Wissen nutzen. Es gibt fertigen Quell-
code, den wir in unser Projekt mit einbinden können. Wie das
genau funktioniert, wirst du noch sehen. Da die Positionierung
über ein einziges Steuersignal an den Servo herangeführt wird, hat
er dementsprechend wenige Anschlüsse.

)A2��

/4��

		

/��

/4��

��		
Weitere interessante Bauteile --- 95

Abbildung 3-67
Die Anschlussbelegung eines Servos

Das Piezo-Element
Ich möchte das Elektronik-Kapitel mit der Vorstellung des Piezo-
Elementes abschließen.

Abbildung 3-68
Das Piezo-Element

Das Teil sieht schon etwas merkwürdig aus und man sollte kaum
vermuten, dass es Krach machen kann. Wir haben es mit einem
Bauteil zu tun, das im Inneren einen Kristall besitzt, der über eine
angelegte Spannung anfängt zu schwingen. Der sogenannte Piezo-
effekt tritt dann auf, wenn auf bestimmte Materialien Kräfte wie
Druck oder Verformung wirken. Es ist dann eine elektrische Span-
nung messbar. Das Piezo-Element geht den umgekehrten Weg. Bei
einer angelegten Spannung tritt eine regelmäßige Verformung auf,
die als Schwingung wahrzunehmen ist und die Luftmoleküle
anregt. Das nehmen wir als Ton wahr. Damit der Piezo etwas lauter
wird, klebt man ihn am besten auf eine frei schwingende Unterlage,
damit die ausgesendeten Schwingungen übertragen und verstärkt
werden.
-- Kapitel 3: Die Elektronik96

First

Erstellen au
Arbeitsseite
(siehe Must

Kapitel
Hier Mini IVZ eingeben!

Kapitel 4 4Elektronische
Grundschaltungen
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Kapitel werden wir folgende Themen behandeln:

• Widerstandsschaltungen (Reihen- und Parallelschaltung)

• Der unbelastete Spannungsteiler

• Kondensatorschaltungen (Reihen- und Parallelschaltung)

• Transistorschaltungen

Da du jetzt die Grundlagen der Elektronik im vorangegangenen
Kapitel kennengelernt hast, besteht der nächste logische Schritt im
Zusammenfügen mehrerer Bauteile zu einer Schaltung. Damit es
für den Anfang nicht zu schwierig wird, werde ich dir einige elek-
tronische Grundschaltungen zeigen, für die meist nur sehr wenige
Bauteile erforderlich sind. In den späteren Kapiteln zu den Ardu-
ino-Projekten wird die Komplexität natürlich etwas zunehmen,
aber du kannst auf den hier gezeigten Grundlagen auf jeden Fall
aufbauen. Dieses Kapitel soll kein Kompendium elektronischer
Grundschaltungen darstellen, sondern der Fokus liegt auf dem Ver-
ständnis der Arduino-Projekte. Erforderlichenfalls findest du
nähere Erläuterungen im Rahmen der entsprechenden Projekte.
Keine Sorge, alles Notwendige wird stets erläutert.

Widerstandsschaltungen
Ein einzelner Widerstand in einem einfachen Stromkreis arbeitet
als Strombegrenzer. Den Elektronen, die sich durch den Wider-
stand quälen, wird das Durchqueren dieses Bauteils mehr oder
minder schwer gemacht. Das Prinzip ist recht einfach zu verstehen.
--- 97

Stelle dir eine große Menschenmenge vor, die sich für ein Musik-
konzert durch einen kleinen 2 Meter breiten Eingang zwängen
muss, um in das Innere der Veranstaltungshalle zu gelangen. Da
reiben sich die Körper aneinander und es kommt zu einem verlang-
samten Strom der Menschenmassen. Das ist natürlich eine recht
schweißtreibende Angelegenheit und es wird viel Wärme abgege-
ben. Und auf jeden Fall geht es langsamer voran, als wenn der Ein-
gang z.B. 10 Meter breit wäre.

Reihen- und Parallelschaltungen
Was passiert eigentlich, wenn wir mehrere Widerstände in einer
bestimmten Konstellation zusammenschalten? Das muss ja in
irgendeiner Weise einen Einfluss auf den Gesamtwiderstand haben.
Schauen wir uns dazu ein paar Beispiele an.

Die Reihenschaltung
Wenn wir zwei oder mehrere Widerstände hintereinander schalten,
dann sprechen wir von einer Reihenschaltung. Es liegt in der Natur
der Sache, dass der Gesamtwiderstand umso höher wird, je mehr
Einzelwiderstände sich hintereinander befinden. Der Gesamtwider-
stand ist hierbei gleich der Summe der Einzelwiderstände. Nehmen
wir einmal an, es wären die folgenden 3 Widerstände hintereinan-
der geschaltet:

Der Gesamtwiderstand errechnet sich dann wie folgt:

Ich hätte gerne einmal deine Meinung bezüglich des Stromes
gehört, der durch die Widerstände fließt. Was denkst Du, wie es
sich mit diesem verhält? Gehen wir dabei einmal davon aus, dass
der Strom von links nach rechts durch die Widerstände fließt.

Nun, der Strom müsste hinter jedem Widerstand geringer werden. Je
weiter rechts ich hinter jedem Widerstand messen würde, desto
geringer ist der Strom.
--- Kapitel 4: Elektronische Grundschaltungen98

Tja Ardus, das stimmt nicht ganz. Der erste Teil deiner Aussage ist
korrekt, denn jeder einzelne Widerstand verringert den Stromfluss.
Dennoch wird im gesamten Stromkreis nur ein einziger Strom zu
messen sein, der an jeder Stelle gleich ist. Schauen wir uns das in
einer Schaltung an.

Abbildung 4-1
Eine Reihenschaltung von 3 Wider-
ständen in einem Stromkreis

Welche Werte sind in dieser Schaltung bekannt und welche sind
unbekannt, so dass sie berechnet werden müssen?

Bekannt: U, R1, R2 und R3

Unbekannt: Iges, U1, U2 und U3

Da du jetzt weißt, dass in einer Reihenschaltung der Strom I an
jeder Stelle konstant ist, kannst du die folgende Formel verwenden:

Wenn du nun die Werte einsetzt, erhältst du folgendes Ergebnis:

Da du jetzt einen Strom I=2mA ermittelst hast, der durch alle Bau-
teile fließt, kannst du auch den Spannungsabfall an jedem einzel-
nen Widerstand berechnen. Die allgemeine Formel hierfür lautet
folgendermaßen:

Die Lösungsgleichungen sehen dann wie folgt aus:
Widerstandsschaltungen -- 99

Wenn du alle Teilspannungen (U1, U2, U3) addierst, muss wieder
die Gesamtspannung U herauskommen.

Der Spannungsabfall über einem Bauteil wird mit einem Pfeil
gekennzeichnet und weist in Stromrichtung von Plus nach Minus.

Das könnte für dich wichtig sein
Am Widerstand mit dem höchsten Wert fällt auch die höchste
Spannung ab.

Die Parallelschaltung
Bei einer Parallelschaltung befinden sich zwei oder mehr Bauteile
nebeneinander. Der Strom, der an einer solchen Schaltung
ankommt, teilt sich in mehrere Zweige auf.

Es verhält sich hier wie bei einem Flusslauf, der sich an einer Stelle
teilt und nach ein paar Kilometern wieder vereint wird. Der
Gesamtwiderstand errechnet sich wie folgt:

Das Ergebnis für den Gesamtwiderstand Rges lautet folgenderma-
ßen:

Rges = 666,67 

Werden mehr als zwei Widerstände parallel geschaltet, dann musst
du die Formel um die entsprechende Anzahl von Summanden
erweitern:
--- Kapitel 4: Elektronische Grundschaltungen100

Eine Schaltung mit zwei parallel geschalteten Widerständen sieht
wie folgt aus:

Abbildung 4-2
Eine Parallelschaltung mit zwei
Widerständen

Natürlich fließt in dieser Schaltung auch ein geringer Strom durch
das Messgerät, das die Spannung über den Widerständen misst,
doch das wollen wir hier vernachlässigen. Welche Werte sind in
dieser Schaltung bekannt und welche sind unbekannt, so dass sie
berechnet werden müssen?

Bekannt: U, R1 und R2

Unbekannt: Iges, I1 und I2

Den Gesamtwiderstand haben wir mit 666,67 schon ermittelt. Auf
dieser Grundlage kannst du auch den Gesamtstrom Iges vor der
Verzweigung recht einfach berechnen. Hier noch einmal zur Erin-
nerung:

Die Lösung lautet:

Wie ermittelst du jedoch die Teilströme I1 und I2? Das ist recht
simpel, denn du kennst den Widerstand jedes Teilzweiges und die
Widerstandsschaltungen -- 101

Spannung, die an jedem Widerstand anliegt, nicht wahr? Wenn
sich Bauteile parallel zueinander befinden, dann fällt an jedem ein-
zelnen die gleiche Spannung ab. In unserem Fall die 9V der Batte-
rie. Dann lass uns mal rechnen:

Wenn du beide Teilströme I1 und I2 addierst, was mag dann wohl
herauskommen? Richtig, der Gesamtstrom.

Was sich vorne (also in der Abbildung links) verzweigt, wird am
Ende wieder zusammengeführt und bildet die Summe der Teile.

Das könnte für dich wichtig sein
Sind mehrere Widerstände parallel geschaltet, dann ist der
Gesamtwiderstand kleiner als der kleinste Einzelwiderstand.

Hier ein Tipp hinsichtlich der Widerstandsgrößen. Wenn du zwei
Widerstände mit gleichen Werten parallel anschließt, dann ist der
Gesamtwiderstand genau die Hälfte des Einzelwiderstandes.
Rechne es doch einfach mal nach.

Der Spannungsteiler
In vielen Fällen möchte man nicht unbedingt mit der vollen
Betriebsspannung von +5V arbeiten, um diverse Bauteile mit Span-
nung zu versorgen. Da du ja jetzt gelernt hast, dass Widerstände
dazu genutzt werden, um z.B. Ströme zu verringern, möchte ich
dich mit einer Schaltung vertraut machen, die der Reihenschaltung
von Widerständen gleicht. Die folgende Schaltung wird unbelaste-
ter Spannungsteiler genannt.
--- Kapitel 4: Elektronische Grundschaltungen102

Abbildung 4-3
Der unbelastete Spannungsteiler

Auf der linken Seite haben wir die Versorgungsspannung U = +5V
an den beiden Widerständen R1 und R2 anliegen. Auf der rechten
Seite befindet sich der Abgriff U2, der sich parallel zum Widerstand
R2 befindet. Wir greifen quasi eine Spannung zwischen den beiden
Widerständen ab. Ein Teil der Versorgungsspannung fällt über R1
und der andere über R2 ab. Zur Berechnung der Spannung an U2
kannst du folgende Formel nutzen:

Ok, Ardus, kein Problem. Ich kann dir die Formel mittels einer Ver-
hältnisgleichung plausibel machen. Ich stelle der anliegenden Span-
nung die entsprechenden Widerstände gegenüber. Die Spannung U
liegt an den Widerständen R1 und R2 an und U2 lediglich am
Widerstand R2. Demnach können wir folgende Verhältnisglei-
chung aufstellen:

Wenn du diese Formel nach U2 umstellst, erhältst du die o.g. For-
mel. Unter Umständen wollen wir die Schaltung aber möglichst
flexibel gestalten und nicht für jeden gewünschten Spannungs-
wert U2 die Widerstände austauschen. Aus diesem Grund ver-
wenden wir ein Bauteil, dass uns die Möglichkeit gibt, den
Widerstandswert schnell nach unseren Vorstellungen anzupas-

Hey stopp mal! Kannst du mir mal bitte erklären, wie du auf diese
Formel gekommen bist? Das ist mir irgendwie überhaupt nicht klar.
Widerstandsschaltungen -- 103

sen. Das Bauteil kennst du schon. Es heißt Potentiometer. Es ver-
fügt über 3 Anschlüsse und einen Drehknopf in der Mitte, mit
dessen Hilfe sich der Widerstandswert in den gegebenen Grenzen
justieren lässt. Der mittlere Anschluss ist intern mit dem Schleifer
verbunden. Je nach Potentiometereinstellung kann der Wider-
stand dort abgegriffen werden. Schau dir die folgende Abbildung
an. Sie zeigt das Schaltbild eines Potentiometers, das der Schal-
tung des Spannungsteilers sehr ähnelt.

Abbildung 4-4
Der variable Spannungsteiler

mittels Potentiometer

Der Schleifer des Potentiometers ist Pin 2 in der Schaltung. Wenn
der Schleifer nach oben wandert, verringert sich der Widerstands-
wert zwischen Pin 1 und Pin 2 in dem Maße, in dem er sich zwi-
schen Pin 2 und Pin 3 vergrößert. Wir können das Potentiometer
als zwei sich ändernde Widerstände ansehen, mit einem Schleifer
als Teiler, der die beiden Widerstände aufteilt. Die beiden folgen-
den Schaltungen zeigen das Verhalten des Potentiometers und die
resultierenden Wiederstände R1 und R2.

Abbildung 4-5
Der variable Spannungsteiler

mittels Potentiometer
--- Kapitel 4: Elektronische Grundschaltungen104

In der linken Schaltung siehst Du, dass der Widerstand R1 kleiner
als R2 ist. Das bedeutet, dass wir an R2 die größere Spannung mes-
sen werden, die ja auch die Ausgangsspannung U2 ist. Das ist
eigentlich ganz logisch, denn wenn der Schleifer des Potentiometers
an Pin 2 immer weiter nach oben wandert, kommt er irgendwann
mit der Versorgungsspannung +5V in Berührung, die dann am
Ausgang zur Verfügung steht. Umgekehrt wird die Ausgangsspan-
nung immer kleiner, wenn der Schleifer des Potentiometers weiter
nach unten in Richtung Masse wandert. Wenn er dort angekom-
men ist, liegen am Ausgang 0V an. Wir werden dieses Verhalten
nutzen, um z.B. die analogen Eingänge des Mikrocontrollers mit
variablen Spannungswerten zu versorgen, die beispielsweise über
einem LDR oder NTC abfallen. Wie, du weißt nicht mehr, was
diese Abkürzungen bedeuten? Dann blättere noch einmal ein Kapi-
tel zurück und mache dich schlau!

Kondensatorschaltungen
Kondensatoren dienen als Ladungsspeicher und wirken im Gleich-
stromkreis wie eine Unterbrechung. Es fließt nur während des Auf-
ladezyklus ein Ladestrom, der umso mehr abnimmt, je mehr der
Kondensator geladen ist. Dieser wiederum stellt am Ende dann eine
nicht mehr zu überwindende Hürde für die Elektronen dar.

Reihen- und Parallelschaltungen
Genau wie Widerstände kannst du auch Kondensatoren in unter-
schiedlichen Konstellationen zusammenschalten. Wir werden uns
hier, da wir im Moment ausschließlich mit Gleichstrom arbeiten,
nur auf die Kapazität konzentrieren und nicht auf den Widerstand.
Ja, ein Kondensator hat ebenfalls einen Widerstand, der bei Wech-
selstrom frequenzabhängig ist. Kondensatoren verhalten sich
bezüglich ihrer Kapazitäten bei Reihen- bzw. Parallelschaltungen
genau entgegengesetzt zu Widerständen mit ihren Werten.

Die Reihenschaltung
Wenn du zwei oder mehr Kondensatoren in Reihe schaltest und die
Gesamtkapazität ermitteln möchtest, kannst du hierzu die Formel
zur Berechnung des Gesamtwiderstandes in einer Parallelschaltung
verwenden.
Kondensatorschaltungen -- 105

Die Formel zur Berechnung der Gesamtkapazität lautet wie folgt:

Die Parallelschaltung
Werden zwei oder mehr Kondensatoren parallel geschaltet, dann
kannst du die Formel für die Reihenschaltung bei Widerständen
verwenden, um die Gesamtkapazität zu ermitteln.

Die Formel zur Berechnung der Gesamtkapazität lautet folgender-
maßen:

Du kannst die Parallelschaltung dieser beiden Kondensatoren leicht
verstehen, und du wirst sofort erkennen, warum sich die Gesamt-
kapazität aus der Summe der beiden Einzelkapazitäten zusammen-
setzt. Ich habe die Kondensatorplatten durch die blauen Punkte
einfach miteinander verbunden. Dadurch wurden die Platten ent-
sprechend vergrößert, so dass in der Summe eine Kapazität aus bei-
den Einzelkondensatoren entstanden ist.

Das Ergebnis wäre in diesem Fall
Cges = C1 + C2 = 22pF + 22pF = 44pF.

Also, wenn wir nur eine Gleichstrombetrachtung bezüglich der Kon-
densatoren durchführen, ist mir aber nicht ganz klar, wo derartige
Bauteile zum Einsatz kommen.
--- Kapitel 4: Elektronische Grundschaltungen106

Vielleicht erinnerst du dich an die Stellen aus dem Elektronik-Kapi-
tel, in denen ich erläutert habe, dass Kondensatoren u.a. zur Span-
nungsglättung und -stabilisierung eingesetzt werden. Kommen wir
doch kurz auf die Spannungsstabilisierung zu sprechen. Wenn ein
Mikrocontroller an seinen zahlreichen Ausgängen sehr viele Ver-
braucher wie z.B. Leuchtdioden oder Motoren versorgen muss, die
möglicherweise alle zur gleichen Zeit aktiviert werden, dann kann
es schon zu kurzen Einbrüchen der Versorgungsspannung kom-
men. Damit sich das nicht unmittelbar auf die Versorgung des
Mikrocontrollers auswirkt und hier vielleicht eine Unterversorgung
entsteht, so dass dieser seine Arbeit einstellt oder einen Reset
durchführt, werden sogenannte Stützkondensatoren verwendet. Sie
werden parallel zu den beiden Anschlüssen von VCC (Voltage of
Common Collector = Positive Versorgungsspannung) bzw. Masse
des Controllers direkt neben dem Pins platziert. Ein Elektrolytkon-
densator von z.B. 100μF speichert die Spannung und hält diese
bei Einbrüchen eine Weile aufrecht. Es handelt sich quasi eine USV
(Unterbrechungsfreie Stromversorgung) im Millisekunden Bereich.

Transistorschaltungen
Transistoren können sowohl Schaltelement als auch als Verstärker
sein. Die einfachste Transistorschaltung weist einen Basiswider-
stand und einen Verbraucher mit Vorwiderstand im Kollektor-
stromkreis auf und arbeitet als kontaktloser elektronischer
Schalter. Wir werden den Transistor vorwiegend als Schalter ein-
setzen, so dass ich auf eine entsprechende Erläuterung seiner Ver-
wendung als Verstärker aus Platzgründen verzichte.

Abbildung 4-6
Ein NPN-Transistor als Schalter
Transistorschaltungen --- 107

Diese Schaltung hat sowohl einen Steuerstromkreis (links von der
Basis) als auch einen Arbeitsstromkreis (rechts von der Basis). Sehen
wir uns doch diese beiden Stromkreise einmal genauer an.

Abbildung 4-7
Steuer- und Arbeitsstromkreis
fließen gemeinsam durch den

Transistor

Der Steuerstrom IB fließt über die Basis-Emitter-Strecke (BE) des
Transistors, wohingegen der Arbeitsstrom IC über die Kollektor-
Emitter-Strecke (CE) fließt. Zwar wollte ich auf die Verwendung
des Transistors als Verstärker nicht eingehen, doch folgende For-
mel ist vielleicht interessant, denn mit ihrer Hilfe kannst du die
Stromverstärkung berechnen, die hier mit dem Buchstaben B ange-
geben ist:

Bei den in diesem Beispiel verwendeten Werten für Kollektor- bzw.
Basisstrom wird der Stromverstärkungsfaktor B = 6000 ermittelt. In
vielen Datenblättern wird der Stromverstärkungsfaktor B auch als
hFE angeführt. Die Verstärkung schont quasi den Ausgangspin des
Mikrocontrollers, der nur einen geringen Strom liefern muss, um
dann eine größere Last (z.B. Relais, Motor oder Lampe) anzusteu-
ern, die erheblich mehr Strom benötigt, damit das betreffende Bau-
teil korrekt arbeiten kann. Wenn du den Schalter schließt, liegen
am Vorwiderstand ca. +5V Betriebsspannung an. Der Transistor
schaltet durch und die Basis-Emitter-Spannung beträgt ca. +0,7V,
so dass die zuvor im gesperrten Zustand hochohmige Kollektor-
Emitter-Strecke niederohmig wird und der Arbeitsstrom fließen
kann.

�

7

�7
��
	��

�

 7��	���

Hmm, wenn ich mir diese Schaltung anschaue, dann frage ich mich,
warum die Leuchtdiode über einen Transistor angesteuert wird und
nicht direkt über den Schalter. Macht das denn Sinn?
--- Kapitel 4: Elektronische Grundschaltungen108

Was soll ich sagen, Ardus. Du hast ja Recht, denn diese Schaltung
soll dir lediglich zeigen, wie Steuer- und Arbeitsstromkreis zusam-
menarbeiten. Um lediglich eine Leuchtdiode anzusteuern, ist das
hier alles ein wenig oversized und nicht unbedingt notwendig.
Wenn du aber einen Verbraucher hast, der sehr viel Strom zieht,
den der Ausgang des Mikrocontrollers jedoch nicht in der Lage ist
zu liefern, dann benötigst du eine Schaltung ähnlich der hier
beschriebenen. Erinnere dich an die Spezifikationen unseres Mikro-
controllers, der an einem einzigen Ausgang maximal 40mA zur Ver-
fügung stellen kann. Alles, was darüber liegt, zerstört den
Controller. Du hast in deiner Bastelkiste vielleicht ein Relais, das
jedoch mit einer Spannung von 12V betrieben werden muss. Da
das Arduino-Board jedoch maximal 5V liefern kann, gibt es hier ein
Problem. Aber wer sagt uns denn überhaupt, dass wir lediglich eine
einzige Stromquelle verwenden müssen? Du kannst mit zwei sepa-
raten Stromkreisen arbeiten. Hier ein Beispiel:

Abbildung 4-8
Der Arduino-Mikrocontroller steuert
über einen Transistor ein Relais an
(Treiberschaltung).

Was fällt uns auf? Nun, wir haben auf der linken Seite die +5V
Spannungsversorgung des Arduino-Boards und auf der rechten
Seite die des Relais mit +12V. Beide sind eigenständige und unab-
hängige Stromquellen, die jedoch ein gemeinsames Massepotential
haben müssen. Die beiden in der Schaltung gezeigten GND
(Ground)-Punkte sind miteinander verbunden.
Transistorschaltungen --- 109

Achtung
Du darfst auf keinen Fall – ich wiederhole – auf keinen Fall die
beiden Versorgungsspannungspunkte +5V und +12V miteinan-
der verbinden! Das kracht auf jeden Fall und es wird mindes-
tens der Mikrocontroller zerstört.

Da muss ich ein wenig ausholen, Ardus. Damit ein Relais arbeiten
kann und die Kontakte bei einem Stromfluss geschlossen werden,
bedarf es einer Spule, die ein Magnetfeld erzeugt und einen Anker
bewegt. Eine Spule wird in der Elektronik auch als Induktivität
bezeichnet. Diese Induktivität hat eine besondere Fähigkeit. Wenn
durch den sehr langen Draht der Spule ein Strom fließt, wird
dadurch ein Magnetfeld erzeugt. Soweit nichts Neues. Dieses Mag-
netfeld bewirkt jedoch nicht nur das Anziehen des Ankers, sondern
induziert in der Spule selbst eine Spannung. Dieser Vorgang wird
Selbstinduktion genannt. Die Spule zeigt uns dabei ein gewisses
Maß an Widerspenstigkeit, denn die Induktionsspannung ist so
gerichtet, dass sie einer Änderung immer entgegen wirkt. Wenn ich
eine Spule mit Strom versorge, versucht die Selbstinduktionsspan-
nung, der eigentlichen Spannung entgegen zu wirken. Die eigentli-
che Spulenspannung baut sich erst langsam auf. Schalten wir
dagegen den Strom wieder ab, dann bewirkt die Änderung des
Magnetfeldes eine Induktionsspannung, die dem Spannungsabfall
entgegen wirkt und um ein vielfaches höher sein wird, als die
ursprüngliche Spannung. Das ist nun genau das Problem, dem wir
uns gegenüber sehen. Das Einschalten mit der leichten Verzöge-
rung stellt kein Risiko für die Schaltung und dessen Bauteile dar.
Beim Abschalten jedoch muss dem extrem unerwünschten Neben-
effekt der überhöhten Spannungsspitze (>100V) in irgendeiner
Weise entgegengewirkt werden, damit die Schaltung anschließend
noch zu gebrauchen ist. Die Überlebenschancen für den Transistor
sind anderenfalls wirklich winzig. Aus diesem Grund wird eine
Diode parallel zum Relais platziert, um die Spannungsspitze zu blo-
cken bzw. den Strom in Richtung Spannungsquelle abzuleiten.

Diese Diode, die sich parallel zum Relais befindet und sich Freilaufdi-
ode nennt, bereitet mir noch ein paar Kopfschmerzen. Wozu ist die
denn gut?
--- Kapitel 4: Elektronische Grundschaltungen110

Abbildung 4-9
Die Freilaufdiode schützt den
Transistor vor Überspannung.

Wird der Transistor im linken Schaltbild durchgesteuert, dann
zieht das Relais ein wenig verzögert an, so dass sich die gezeigten
Potentiale an der Diode einstellen, Plus an Kathode und Minus an
Anode. Das bedeutet, dass die Diode in Sperrrichtung arbeitet und
sich die Schaltung so verhält, als wenn die Diode nicht vorhanden
wäre. Wenn wir jedoch den Transistor mit Masse anschalten, fun-
giert er als Sperre, und durch die Änderung des Magnetfeldes der
Spule stellen sich die gezeigten Potentiale ein, Plus an Anode und
Minus an Kathode. Die Diode arbeitet in Durchlassrichtung und
leitet den Strom in Richtung Spannungsversorgung ab. Der Tran-
sistor bleibt verschont.
Transistorschaltungen --- 111

First

Erstellen au
Arbeitsseite
(siehe Must

Kapitel
Hier Mini IVZ eingeben!

Kapitel 5 5Das Zusammenfügen
der Bauteile
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
So langsam wird es ernst und wir wenden uns nach und nach der
Hardware zu, mit der du bald in Berührung kommen wirst. Die
grundlegenden elektronischen Bauteile kennst du jetzt und es feh-
len dir eigentlich nur noch die Informationen, wo und wie du die
Bauteile befestigst bzw. miteinander verbindest. Wir stellen uns die
folgenden Fragen:

• Was sind Platinen?

• Was ist ein Steckbrett, auch Breadboard genannt?

• Was sind flexible Steckbrücken und welchen Nutzen haben sie?

• Kann man diese Steckbrücken vielleicht selbst günstig und
ganz nach Bedarf herstellen?

Was ist eine Platine?
Um eine Schaltung permanent zu fixieren, verwendet man heutzu-
tage Platinen. Eine Platine ist eine dünne Platte von vielleicht 2mm
Stärke, die als Träger für diverse Bauteile dient und aus verschiede-
nen Materialien, wie z.B. Hartpapier oder Pertinax, hergestellt
wird. Es gibt unterschiedliche Arten von Platinen. Die professionell
hergestellten werden geätzt, so dass sich auf der Unterseite oder
auch Oberseite Leiterbahnen befinden, um die einzelnen Bauteile
elektrisch leitend miteinander zu verbinden. Das folgende Foto
zeigt eine solche Platine.
--- 113

http://www.komputer.de

Abbildung 5-1
Professionell hergestellte Platine

mit geätzter Unterseite
(Motor-Shield)

Natürlich kannst du unter Einsatz des entsprechenden Equipments
und mit der erforderlichen Geschicklichkeit solche Resultate auch
zu Hause erzielen, doch das ist mit relativ viel Arbeit verbunden.
Wenn es etwas schneller gehen soll, was nicht zwangsläufig bedeu-
tet, dass das Ergebnis entsprechend unsauber wird und am Ende
nicht funktioniert, kannst du eine Lochrasterplatine verwenden. Sie
besteht aus vielen kleinen vorgebohrten Löchern, die einen
genormten Abstand (üblicherweise 2,54 mm) zueinander haben,
und bietet dir damit die Flexibilität, die benötigten Bauteile recht
frei zu platzieren. Du musst natürlich die fehlenden Leiterbahnen
durch frei zu verlegende Drahtbrücken ersetzten.

Abbildung 5-2
Semiprofessionell hergestellte

Platine mit manuell hinzugefügten
Drahtbrücken

Wenn du dir Mühe gibst und eine relativ ruhige Hand hast, kann
sich das Ergebnis durchaus sehen lassen. Möglicherweise ist dir
das aber immer zu viel, und nach meiner Erfahrung sind gerade
Einsteiger am Anfang recht experimentierfreudig und möchten
nicht sofort fertige Platinen für die halbe Ewigkeit herstellen,
-- Kapitel 5: Das Zusammenfügen der Bauteile114

dann gibt es eine viel charmantere Lösung, mit der sich viel Arbeit
und Dreck vermeiden lässt.

Das Steckbrett (Breadboard)
Das Steckbrett, auch Breadboard genannt, dient zur Aufnahme von
elektrischen sowie elektronischen Bauteilen, die über flexible Steck-
brücken miteinander verbunden werden können. Auf diese Weise
testen sogar Profis neuartige Schaltungen, um ihre Funktionsfähig-
keit im Vorfeld zu überprüfen bzw. zu korrigieren, bevor sie sich
daranmachen, fertig geätzte Platinen in Serie herzustellen.

Abbildung 5-3
Ein Breadboard von außen
bzw. oben betrachtet (in stabiler
Seitenlage)

Wir sehen auf diesem Breadboard eine Unmenge an kleinen Buch-
sen, bei denen es sich um die Verbindungsstellen für die Anschlüsse
der Bauteile bzw. Steckbrücken handelt, wobei immer nur ein
Anschluss in eine Buchse passt.

Viele Buchsen des Breadboards sind intern miteinander verbun-
den, so dass pro Buchse noch weitere zur Verfügung stehen, die
elektrische Verbindung untereinander aufweisen. So stehen dir in
der Regel immer genug Anschlüsse zur Verfügung, um die not-
wendigen Verbindungen herzustellen. Die Frage ist aber, nach
welchem Muster sind diese unsichtbaren Verbindungen innerhalb
des Boards aufgebaut? Schau her und staune. Die folgenden bei-
den Bilder zeigen dir sowohl ein Breadboard von außen, als auch
von innen.

Wenn aber immer nur ein Anschluss in solch ein kleines Loch passt,
wie kann ich dann die Bauteile miteinander verbinden? Das verstehe
ich nicht so ganz.
Das Steckbrett (Breadboard) --- 115

Abbildung 5-4
Ein Breadboard von außen (links)

und von innen (rechts)

Wenn du die beiden Bilder übereinander legen würdest, dann
könntest du genau erkennen, welche Buchsen über eine leitende
Verbindung verfügen. Doch ich denke, dass du auch auf diese
Weise gut erkennen kannst, was zusammen gehört. In jeder einzel-
nen Reihe (1 bis 41) bilden die Buchsen A bis E und F bis J einen
leitenden Block. Die beiden senkrechten Buchsenreihen in der
Mitte (+ bzw. -) stehen für die evtl. benötigte Stromversorgung an
mehreren Stellen zur Verfügung. Ich werde zum besseren Verständ-
nis einfach einmal ein Bauteil mit mehreren Anschlüssen auf dem
Steckbrett befestigen, damit du erkennst, worin der Vorteil derarti-
ger interner Verbindungen liegt.

Abbildung 5-5
Ein integrierter Schaltkreis auf

einem Breadbord

� �� � � � � � � 	
 � � � � � � � � 	
 �
�

�

�

�

�

�

�

�

�

�

� �

� �

� �

� � � � � � � 	
 �
�

�

�

�

�

� � � � � � � 	
 �
�

�

�

�

�

� � � � �
�

� � 	
 �

��
��

'��
�+ �������(
� '��
�+ �������(
�
-- Kapitel 5: Das Zusammenfügen der Bauteile116

Dieser zukünftige integrierte Schaltkreis mit ganzen 8 Beinchen
wird in die etwas größere Lücke der beiden Verbindungsblöcke A
bis E und F bis J gesteckt. Auf diese Weise hat jeder einzelne Pin
nach links bzw. nach rechts 4 zusätzliche Buchsen, die mit ihm
elektrisch verbunden sind. Dort kannst du sowohl weitere Bauteile
als auch Kabel hineinstecken. Es gibt übrigens eine Menge unter-
schiedlicher Breadboards und für jeden Bedarf die passende Größe.

Abbildung 5-6
Von ziemlich klein bis ganz schön
groß

Achtung
Es gibt Breadboards, deren senkrechte Buchsenleisten, die
auch Power-Rails genannt werden, mittig eine elektrische
Unterbrechung aufweisen. Wenn du dir nicht sicher bist, ob du
ein derartiges Board gekauft hast, dann führe eine Durchgangs-
prüfung mit einem Multimeter durch, in dem du eine Messung
zwischen dem obersten und dem untersten Pin einer einzel-
nen senkrechten Buchsenreihe vornimmst. Falls keine Verbin-
dung besteht und du eine durchgehende elektrische
Verbindung benötigst, stelle sie über eine Steckbrücke her.
Das Steckbrett (Breadboard) --- 117

Die flexiblen Steckbrücken
Die Steckbrücken, die notwendig sind, damit einzelne Bauteile auf
dem Board miteinander in Verbindung treten können, sind, wenn
du sie in annehmbarer Qualität kaufen möchtest, recht teuer.

Abbildung 5-7
Gekaufte Flexible Steckbrücken

(low-cost)

Es gibt sie in unterschiedlichen Farben und Längen und sind – ich
müsste lügen, wenn ich etwas anderes behaupten würde – ganz
passabel. Für einen Einsteiger reichen sie allemal und vergleichs-
weise günstig lassen sie sich z.B. bei der Firma KOMPUTER.DE
(www.komputer.de) beziehen. Ganze 70 Stück in 4 Farben sind für
knapp 4,00€ erhältlich. Sie nennen sich Patchkabel oder Low Cost
Jumper Wires.

Kann ich die nicht selbst herstellen?
Ja, ich habe mir selbst einige Steckbrücken hergestellt und dazu
bedarf es nicht sehr viel. Der Vorteil: Man kann sich den flexiblen
Draht – auch Schaltlitze genannt – in der benötigten Stärke, den
erforderlichen Farben und natürlich der passenden Längen selbst
aussuchen. Das folgende Bild zeigt dir einen Umschalter, an den ich
drei der selbst hergestellten flexible Steckbrücken gelötet habe.

Abbildung 5-8
Selbst hergestellte flexible

Steckbrücken an einem Umschalter
-- Kapitel 5: Das Zusammenfügen der Bauteile118

http://www.komputer.de

Auf diese Weise kannst du natürlich alle von dir benötigten Bau-
teile wie z.B. Potentiometer, Motoren, Servos oder Schrittmotoren
mit diesen Anschlüssen versehen. Dadurch gestaltet sich die Hand-
habung wirklich flexibel und die Zeit, die du vorher in das Herstel-
len der Steckbrücken bzw. Kabel investiert hast, wird im
Nachhinein wieder eingespart.

Folgende Materialien benötigst du zur Herstellung der flexiblen
Steckbrücken:

• Versilberter CU-Draht (0,6mm)

• Schaltlitze in der von dir bevorzugten Dicke (max. 0,5mm2)

• Schrumpfschlauch 3:1 (1,5/0,5)

Abbildung 5-9
Benötigte Materialien für flexible
Steckbrücken

Das folgende Werkzeug ist erforderlich:

• Feuerzeug

• Lötkolben

• Lötzinn

• Seitenschneider und ggf. eine Abisolierzange

Wenn du sehen möchtest, wie eine flexible Steckbrücke hergestellt
wird, dann besuche meine Homepage. Dort findest du einen Link
auf das Video. Ich möchte dir hier die einzelnen Phasen der Herstel-
lung einmal kurz zeigen.
Die flexiblen Steckbrücken -- 119

Abbildung 5-10
Die einzelnen Phasen bei der

Herstellung von flexiblen
Steckbrücken

Schritt 1

Die Schaltlitze auf die gewünschte Länge kürzen.

Schritt 2

Die Schaltlitze an beiden Enden ca. 0,5 cm abisolieren.

Schritt 3

Die Enden der Schaltlitze mit Lötzinn verzinnen.

Schritt 4

Den versilberten Kupferdraht an die Enden der Schaltlitze löten.

Schritt 5

Die zuvor abgeschnittenen Stücke des Schrumpfschlauches (ca. 1
cm) auf die beiden Enden schieben, so dass sowohl die Lötstellen
als auch ein Teil der Isolierung der Schaltlitze abgedeckt werden.

Schritt 6

Die beiden Stücke des Schrumpfschlauches mit einem Feuerzeug
ca. 3-4 Sekunden erhitzen, so dass der Schlauch schrumpft und
sich dem Draht anpasst. Führe die Flamme aber nicht zu dicht an
den Schlauch, denn sonst verschmort er und hat keine Zeit zum
Schrumpfen.
-- Kapitel 5: Das Zusammenfügen der Bauteile120

First

Erstellen au
Arbeitsseite
(siehe Must

Kapitel
Hier Mini IVZ eingeben!

Kapitel 6 6Nützliches Equipment
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
Kein Arbeiter kann ohne sein Handwerkszeug auskommen, denn
alles nur mit den Händen und den Zähnen zu erledigen, wird auf
die Dauer ein wenig mühsam und auch schmerzhaft. Ich möchte
dir deswegen die folgenden Werkzeuge ans Herz legen. Wenn du
über einige Grundgerätschaften verfügst, macht alles gleich doppelt
so viel Spaß.

Nützliches Equipment
Wenn du schon einmal einen Blick in ein professionelles Elektronik-
labor oder eine Elektronikwerkstatt geworfen hast und du dich
wirklich für die Thematik interessierst, dann konntest du sicher
deine Begeisterung kaum verbergen. Die Vielfalt an Messgeräten
mit den vielen farbigen Kabeln und diversem Werkzeug ist für
einen Laien unüberschaubar und lässt ihn ehrfürchtig staunen.
Jedenfalls ging es mir beim ersten Mal so, als mich mein Vater mit
zu seinen Arbeitsplatz genommen hat. Er arbeitete damals an
einem der vielen Windkanäle des Deutschen Zentrums für Luft- und
Raumfahrt (DLR). Aber wie dem auch sei, alle haben einmal klein
angefangen. Ich möchte die Werkzeuge, die ich dir hier vorstelle, in
zwei Kategorien einordnen. Da in der Elektronik wie auch in der
Programmierung Englisch die Standardsprache ist, verwende auch
ich an dieser Stelle Ausdrücke, die sich mehr oder weniger einge-
bürgert haben.
--- 121

Kategorie 1

Must have! (Das Werkzeug ist unentbehrlich für deine Arbeit)

Kategorie 2

Nice to have! (Es ist nicht unbedingt erforderlich, das genannte
Werkzeug zu besitzen, doch es könnte einerseits die Arbeit erleich-
tern und andererseits auch das Ego befriedigen, um dann beispiels-
weise zu sagen: Ja, ich habe ein wahnsinnig tolles Messgerät! Ich
kann es mir leisten.

Diverse Zangen
Die folgende Abbildung zeigt dir ein kleines Set, das die gebräuch-
lichsten Zangen für einen Bastler beinhaltet.

Abbildung 6-1
Diverse Zangen

1. Einen Seitenschneider zum Durchtrennen von Kabeln

2. Eine Spitzzange zum Greifen und Fixieren von kleinen Bautei-
len

3. Eine Flachzange besitzt im Gegensatz zu einer Spitzzange brei-
tere Backen und kann dadurch eine größere Kraft auf das zu
greifende Objekt ausüben

4. Eine gebogene Zange bietet eine bessere Möglichkeit etwas zu
greifen, das recht versteckt und unzugänglich platziert ist

In meinen Augen fällt das Zangenset in die Kategorie: Must have!
--- Kapitel 6: Nützliches Equipment122

Die Abisolierzange
Eine Abisolierzange ist ein Werkzeug, das das Entfernen von Kabel-
ummantelungen erleichtert, um an den blanken Draht heran zu
kommen. Zwar ist auch ein Seitenschneider hierzu geeignet, doch
wenn du hier zu viel Kraft auf die Ummantelung ausübst, dann hast
du schnell das Kabel um ein Stück kürzer gemacht.

Abbildung 6-2
Eine Abisolierzange

Dieses Werkzeug fällt bei mir in die Kategorie: Nice to have.

Schraubendreher
Kleine Uhrmacherschraubendreher eignen sich hervorragend zum
Festschrauben von Kabeln an Schraubklemmen, wie du das auf
dem folgenden Foto siehst.

Achtung
Uhrmacherschraubendreher sind nicht isoliert und leiten den
Strom, da sie komplett aus Metall sind. Grundsätzlich solltest du
erst an einer Schaltung arbeiten, wenn sie wirklich spannungs-
los ist.
Nützliches Equipment -- 123

Abbildung 6-3
Ein Set Uhrmacherschraubendreher

Wenn du ein IC auf einem Breadboard befestigt hast und es entfer-
nen möchtest, ohne dass sich die Anschlussbeinchen um 900 ver-
drehen und möglicherweise abbrechen, kannst du auch hierzu
einen passenden Uhrmacherschraubendreher verwenden.

Wenn du dies mit den bloßen Fingern versuchen solltest, kann dir
das passieren, was du hier auf dem nächsten Bild siehst.

Du solltest also immer recht vorsichtig mit den empfindlichen
Beinchen eines IC’s umgehen. Wenn das hier Gezeigte ein- oder
zweimal geschieht, dann ist das noch ok. Werden die Anschluss-
beinchen aber einem größeren Stresstest unterzogen, dann könnten
sie sich schnell in Wohlgefallen auflösen. Die Uhrmacherschrau-
bendreher fallen eindeutig in die Kategorie: Must have!

Ein IC-Ausziehwerkzeug
Das Lösen eines IC’s vom Breadboard klappt zwar mit einem
Schraubendreher unter Berücksichtigung der enormen Hebelwir-
kung ganz gut, doch der ambitionierte Elektroniker benutzt hierfür
ein spezielles Tool, das noch nicht einmal teuer ist. Das Werkzeug
sieht aus wie Mamas Zuckerzange und kann in Notfällen auch die-
sen Zweck erfüllen, doch primär wurde es für das Loslösen eines
integrierten Schaltkreises z.B. von einem Breadboard entwickelt.
Ich würde sagen, dass es in die Kategorie Nice to have fällt und
nicht unbedingt erforderlich ist, da sich – wie schon gezeigt – die
betreffenden Arbeiten, wenn Sie vorsichtig vorgehen, auch mit
anderen Mitteln bewerkstelligen lassen.
--- Kapitel 6: Nützliches Equipment124

Abbildung 6-4
IC-Ausziehwerkzeug

Ein digitales Multimeter
Bei einem Multimeter handelt es sich um ein Vielfachmessgerät, das
in der Lage ist, elektrische Größen zu erfassen bzw. zu messen.

Abbildung 6-5
Drei verschiedene digitale
Multimeter

Die Geräte umfassen ein mehr oder weniger großes Spektrum an
Messmöglichkeiten. Die meisten von Ihnen weisen jedoch folgende
Grundfunktionalitäten auf:

• Ermitteln des Widerstands eines Bauteils

• Prüfen eines Stromkreis auf Durchgang (Durchgangsprüfer mit
Ton)

• Messen von Gleichspannung / -strom

• Messen von Wechselspannung / -strom

• Ermitteln der Kapazitäten von Kondensatoren

• Überprüfen der Transistoren auf Funktionsfähigkeit
Nützliches Equipment -- 125

Wie du siehst, ist das eine ganze Menge und in der Regel ausrei-
chend. Das Messgerät fällt in die Kategorie: Must have! Es gibt sie
in diversen Preisklassen mit mehr oder weniger Funktionalität,
doch in der Regel kannst du mit allen Geräten Widerstandsmessun-
gen vornehmen, Stromkreise auf Durchgang prüfen und Strom-
bzw. Spannungsmessungen durchführen. Die einfachsten Multime-
ter bekommst du schon für unter 10€, mit denen du auch schon
sehr gut arbeiten kannst. Auf der nach oben offenen Preisskala fin-
dest du natürlich viele weitere Geräte mit zusätzlichen Funktionen,
die aber für einen Einsteiger alle in die Kategorie Nice to have fallen.
Die entsprechende Entscheidung muss dann je nach dem zur Ver-
fügung stehenden Geldbeutel getroffen werden.

Achtung
Bevor du anfängst, mit deinem Multimeter etwas zu messen,
musst du dich vergewissern, dass sich der Drehschalter zur Ein-
stellung der elektrischen Messgröße auf der richtigen Position
befindet. Wenn du z.B. einen Widerstandswert eines Bauteils
ermittelt hast (die Bestimmung eines Widerstandswertes muss
immer im spannungslosen Zustand erfolgen) und danach eine
anliegende Spannung messen, kann es u.U. dem Multimeter
schaden, wenn du vergisst, den Messmodus auf die richtige
Position zu stellen.

Das Oszilloskop
Das Oszilloskop gehört schon zur Königsklasse der Messgeräte. Es
kann z.B. Spannungsverläufe grafisch darstellen und eignet sich u.
a. hervorragend zur Fehlersuche.

Abbildung 6-6
Das Oszilloskop

Es gehört absolut in die Kategorie: Nice to have. Es macht jedoch
wahnsinnig Spaß, sich mit diesem Gerät auseinanderzusetzen und
--- Kapitel 6: Nützliches Equipment126

Einsteigergeräte sind schon für knapp unter 300€ zu bekommen.
Ich werde in diesem Buch einige Male Gebrauch von einem Oszillo-
skop machen, um dir zeitliche Verläufe von Spannungen an
bestimmten Messpunkten einer Schaltung zu zeigen. Es eignet sich
hervorragend zu Demonstrationszwecken und hilft beim Verständ-
nis komplexer Vorgänge.

Externe Stromversorgung
Dein Arduino-Board wird zwar über den USB-Anschluss mit Strom
versorgt und das reicht für einige Experimente sicherlich aus, doch
wir kommen auch zu Schaltungen, mit denen wir z.B. einen Motor
ansteuern wollen, der zum Betrieb etwas mehr Saft braucht, wie
man so schön sagt. In diesem Fall ist eine externe Stromversorgung
unerlässlich, da ansonsten das Arduino-Board Schaden nehmen
würde.

Abbildung 6-7
Ein stabilisiertes, regelbares Labor-
Netzgerät (1,5V – 15V Gleich-
strom) und ein Steckernetzteil

Hier kommt es natürlich auch wieder auf den Anwendungszweck an,
wobei ein Steckernetzteil in der Regel viel günstiger ist als ein regel-
bares Labor-Netzgerät. Bei dem hier gezeigten Steckernetzteil wer-
den verschiedene Ausgangsspannungen angeboten, die über einen
kleinen Drehschalter ausgewählt werden können. Es sind Spannun-
gen von 3V, 5V, 6V, 7,5V, 9V und 12V einstellbar. Eine weitere Kenn-
größe ist der maximale Strom, den ein Netzgerät in der Lage ist zu
liefern. Je mehr Strom, desto teurer wird es. Dieses hier hat einen
maximalen Strom von 800mA, wohingegen das regelbare Netzgerät
1,5A liefern kann. Preislich gesehen sind nach oben hin keine Gren-
zen gesetzt, so wie das eigentlich für fast alles im Leben gilt. Der Preis
dieses Labor-Netzgerätes mit einer analogen Anzeige liegt bei etwa
50 Euro, wohingegen das Steckernetzteil nur um die 15 Euro kosten
mag. Mit der folgenden Konstruktion kannst du dein Arduino-Board
über eine 9V Blockbatterie versorgen.
Nützliches Equipment -- 127

Abbildung 6-8
Spannungsversorgung über eine 9V

Blockbatterie

Was du dafür benötigst sind:

• ein 9V Batterieclip

• ein 2,1mm Stecker

• eine 9V Blockbatterie

Auf dem folgenden Bild siehst Du, wie der Batterieclip und der Ste-
cker miteinander verlötet wurden.

Abbildung 6-9
Spannungsversorgung über eine 9V

Blockbatterie

Achte unbedingt auf die korrekte Polung, so dass der Pluspol (+)
sich in der Mitte des Steckers befindet und der Minuspol (-) an der
sichtbaren silbernen Ummantelung. Kontrolliere nach dem Aufste-
cken der Batterie mit einem Multimeter die Polung der Anschlüsse,
bevor du über den Stecker eine Verbindung mit deinem Arduino-
Board herstellst.

Eine Widerstands-Biegelehre
Als ich mich bei der Konzeption dieses Buches dem folgenden
Werkzeug zuwandte, habe ich erst einmal gestutzt und nachge-
forscht, wie denn die genaue Bezeichnung dafür lautet. Es hat mich
schon einiges an Googelei gekostet, bis ich auf den richtigen Namen
Widerstands-Biegelehre stieß. Wenn mich einer vorher danach
--- Kapitel 6: Nützliches Equipment128

gefragt hätte... Nun ja, das ist ein Plastikteil, mit dem man Wider-
stände biegen kann, also eigentlich nicht die Widerstände selbst,
sondern die Anschlussdrähte.

Abbildung 6-10
Eine Widerstandsbiegelehre
(ugs.: Biegeklotz)

Das sieht ja schon irgendwie merkwürdig aus und ist doch ein sehr
sinnvolles Tool. Für mich fällt es eindeutig in die Kategorie: Must
have! Es kann schon in eine irrsinnige Frickelei ausarten, wenn du
versuchst, die Anschlussdrähte eines Widerstandes so zu biegen,
dass sie problemlos in die Löcher einer Lochrasterplatine flutschen.
Ich finde, dass das Herstellen und Aussehen einer Platine etwas mit
Kunst zu tun hat und ästhetisch ansprechend sein sollte. Wie sieht
das denn aus, wenn die Bauteile krumm und schief darauf platziert
wurden? Da hat wohl jemand keine richtige Lust gehabt oder es
fehlte ihm das richtige Werkzeug. Die Standard Lochrasterplatine
hat, wie schon einmal erwähnt, einen Lochabstand von 2,54mm.
Eben diese Biegelehre hat für unterschiedliche Widerstandsdimen-
sionen (mit Dioden geht das natürlich genauso gut) verschiedene
Auflageflächen, in die die Widerstände hineingelegt werden kön-
nen. Du musst dann lediglich die Anschlussdrähte mit den Fingern
stramm nach unten biegen und hast auf jeden Fall einen Abstand
der parallel nach unten weisenden Drähte, der immer ein Vielfa-
ches eines Lochabstandes beträgt. Das Bauteil passt dann wunder-
bar auf die Lochrasterplatine.

Abbildung 6-11
Einlegen, Biegen, Fertig!

Für das Platzieren von Bauteilen auf einem Breadboard musst du
dieses Verfahren natürlich nicht anwenden, denn eine Schaltung
wird dort nicht für immer und ewig fixiert werden. Da kann es
ruhig schon ein wenig wilder aussehen, als auf einer Platine. Den-
Nützliches Equipment -- 129

noch solltest du auch hier ein wenig Sorgfalt an den Tag legen,
denn es ist schnell ein Kurzschluss erzeugt, der das Funktionieren
der Schaltung und ggf. auch das Leben der Bauteile gefährdet.

Der Lötkolben inklusive Lötzinn
Ein Lötkolben ist zum Basteln unerlässlich und fällt in meinen
Augen auf jeden Fall in die Kategorie Must have.

Abbildung 6-12
Eine Lötstation mit einer

Rolle Lötzinn

Eine Lötstation ist natürlich dahingehend besser, als dass sie im
Gegensatz zu einem Lötkolben die Temperatur der Lötspitze regeln
kann, was gerade für temperaturempfindliche Bauteile wie inte-
grierte Schaltkreise unter Umständen überlebenswichtig ist. Für
einen Einsteiger reicht in der Regel jedoch ein Lötkolben (teilweise
schon für um die 10 Euro erhältlich) vollkommen aus und ist auch
preislich gesehen etwas attraktiver als eine Lötstation (Einstiegsmo-
delle schon ab 40 Euro). Wenn es aber später in diesem Buch um
das Herstellen kleiner Platinen geht, dann wirst du wohl sicherlich
um die Anschaffung eines solchen höherpreisigen Lötwerkzeugs
nicht herum kommen. Die Entscheidung liegt aber ganz bei dir.

Die Entlötpumpe
Wenn du deine Bauteile auf einer Platine festgelötet hast und es aus
irgendeinem Grund wieder entfernt werden (z.B. weil ein defektes
oder falsches Bauteil eingelötet wurde), dann hast du ein Problem.
Bei einem zweibeinigen Bauteil könntest du noch Glück haben. Du
erhitzt den ersten Lötpunkt mit dem Lötkolben, so dass er wieder
flüssig wird, und ziehst das Bauteil an der Bauteilseite nach oben.
--- Kapitel 6: Nützliches Equipment130

Genauso gehst du dann beim zweiten Lötpunkt vor. Stelle dir aber
jetzt einmal einen Transistor mit 3 Anschlüssen vor. Wenn du den
ersten Lötpunkt erhitzt hast, halten zwei weitere Beinchen ihn in
seiner aktuellen Position und das Herauslösen ist fast unmöglich.

Achtung
Wenn du ein elektronisches Bauteil mit einem Lötkolben über
einen längeren Zeitraum erhitzt, dann besteht die Gefahr der
Überhitzung und damit der Zerstörung. Gerade Halbleiter sind
in puncto Hitze sehr empfindlich!

Jetzt kommt die Entlötpumpe ins Spiel.

Abbildung 6-13
Eine Entlötpumpe

Sie sieht fast aus, wie eine Spritze, hat jedoch am vorderen Ende
keine Nadel, sondern eine mehr oder weniger große Öffnung. Auf
der gegenüberliegenden Seite befindet sich ein Druckknopf, mit
dem du einen unter Federdruck stehenden Kolben in die Pumpe
schieben kannst. Er rastet am Ende ein. Drückst du jetzt auf den
kleinen Knopf, dann schnellt der Kolben in die Ausgangsposition
zurück und erzeugt so an der Spitze der Pumpe kurzzeitig einen
Unterdruck, der das zuvor verflüssigte Lötzinn einsaugt und die
Lötstelle mehr oder weniger vom Lötzinn befreit. Es ist ein wenig
Übung bzw. das richtige Timing erforderlich, um die Pumpe richtig
einzusetzen, das Lötzinn zu erhitzten und im richtigen Augenblick
den Auslöser zu drücken. Am besten übst du auf einer alten Platine
mit Bauteilen, die du nicht mehr benötigst oder die schon kaputt
sind. Dann kann im Ernstfall nichts schief gehen.
Nützliches Equipment -- 131

First

Erstellen au
Arbeitsseite
(siehe Must

Kapitel
Hier Mini IVZ eingeben!

Kapitel 7 7Grundlegendes zur
Programmierung
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
In Kapitel 2 hast du schon so einiges über die Programmierung
erfahren. Ich habe dir das erste Programm gezeigt, das im Arduino-
Umfeld Sketch genannt wird, und einige allgemeine Informationen
zur Programmiersprache C bzw. C++ angeführt. Doch was Pro-
grammieren eigentlich wirklich bedeutet, darüber haben wir noch
kein einziges Wort verloren. Wir wissen, dass hierzu eine Maschine
benötigt wird, sei es ein PC, ein Mac oder ein Mikrocontroller wie
auf unserem Arduino-Board, die über eine Schnittstelle zu uns Men-
schen verfügt. Eine solche Maschine besitzt keine eigene Intelli-
genz. Sie ist ohne unser Zutun nichts weiter als ein Stück Hardware
und zu eigenständigem Handeln nicht in der Lage. Hard- bzw. Soft-
ware leben quasi in einer Zwangsymbiose, denn keiner kann ohne
den anderen auskommen. Erst die Programme hauchen der Hard-
ware eine gewisse Form von Leben ein und lassen sie Dinge tun, die
sich der Programmierer, also Du, erdacht hat.

Was ist ein Programm
bzw. ein Sketch?
Bei der Programmierung haben wir es in der Regel mit zwei Baustei-
nen zu tun.

Programmbaustein 1: Der Algorithmus
Der Sketch soll eigenständig eine bestimmte Aufgabe erledigen.
Aus diesem Grund wird ein sogenannter Algorithmus erstellt, der
eine (An-)Sammlung von Einzelschritten beinhaltet, die für ein
erfolgreiches Ergebniserforderlich sind. Ein Algorithmus ist also
--- 133

eine Rechenvorschrift, der wie ein Waschzettel abgearbeitet wird.
Stell’ dir einmal vor, du möchtest eine kleine Holzkiste bauen, um
dein Arduino-Board dort unterzubringen, damit alles etwas schö-
ner bzw. aufgeräumter aussieht und es auch deinen Freunden
gefällt. Du baust dann ja auch nicht einfach drauf los und kaufst
Holz, in der Hoffnung, dass alles nachher auch irgendwie zusam-
menpasst. Es muss also ein Plan her, der zum Beispiel folgende
Punkte beinhaltet:

• Was sind die Maße der Kiste?

• Welche Farbe soll sie haben?

• An welchen Stellen müssen Öffnungen gebohrt werden, damit
z.B. Schalter oder Lampen platziert werden können?

Wenn du das Material besorgt hast, folgt die eigentliche Arbeit, die
in in einer ganz bestimmten Reihenfolge erledigt wird:

• Holzplatten fixieren

• Holzplatten auf entsprechende Maße zuschneiden

• Kanten mit Schmirgelpapier bearbeiten

• Einige Holzplatten mit Löchern versehen, damit die Anschlüs-
sen angebracht werden können

• Holzplatten zusammenschrauben

• Kiste lackieren

• Arduino-Board einbauen und mit Schalter bzw. Lampe verka-
beln

Das sind viele Einzelschritte, die notwendig sind, um das gesteckte
Ziel zu erreichen. Genauso verhält es sich beim Algorithmus.

Programmbaustein 2: Die Daten
Sicherlich hast du z.B. auch die Maße der Kiste sorgfältig auf dem
Plan vermerkt, damit du während des Baus immer mal wieder
einen Blick darauf werfen kannst. Es soll ja später auch alles gut
zusammenpassen. Diese Maße sind vergleichbar mit den Daten
eines Sketches. Der Algorithmus nutzt zur Abarbeitung seiner Ein-
zelschritte temporäre Werte, die ihm für seine Arbeit hilfreich sind.
Dazu verwendet er eine Technik, die es ihm ermöglich Werte abzu-
speichern und später wieder abzurufen. Die Daten werden nämlich
in sogenannten Variablen im Speicher abgelegt und sind dort jeder-
zeit verfügbar. Doch dazu später mehr.
--- Kapitel 7: Grundlegendes zur Programmierung134

Was bedeutet Daten-
verarbeitung?
Unter Datenverarbeitung verstehen wir das Anwenden eines Algo-
rithmus, der unter Zuhilfenahme von Daten andere Daten abruft,
sie dann über unterschiedliche Berechnungen verändert und später
wieder ausgibt. Dieses Prinzip wird EVA genannt:

• Eingabe

• Verarbeitung

• Ausgabe

Abbildung 7-1
Das EVA-Prinzip

Was sind Variablen?
Ich hatte schon kurz erwähnt, dass Daten in Variablen abgespei-
chert werden. Sie spielen in der Programmierung eine zentrale Rolle
und werden in der Datenverarbeitung genutzt, um Informationen
jeglicher Art zu speichern. Du kannst für den Begriff Variable auch
Platzhalter verwenden, obwohl das heutzutage niemand wirklich
macht, aber das bringt es wirklich auf den Punkt. Eine Variable
belegt innerhalb des Speichers einen bestimmten Platz und hält ihn
frei. Der Computer bzw. Mikrocontroller verwaltet jedoch diesen
(Arbeits-)Speicher mit seinen eigenen Methoden. All dies erfolgt
mittels kryptischen Bezeichnungen, die sich unsereins bestimmt
schlecht merken kann. Aus diesem Grund kannst du Variablen mit
aussagekräftigen Namen versehen, die intern auf die eigentlichen
Speicheradressen verweisen.
Was bedeutet Datenverarbeitung? --- 135

Abbildung 7-2
Eine Variable zeigt auf einen

Speicherbereich im Arbeitsspeicher.

In dieser Abbildung siehst Du, dass die Variable mit dem Namen
ledPin auf eine Startadresse im Arbeitsspeicher zeigt. Du kannst sie
auch als eine Art Referenz betrachten, die auf etwas Bestimmtes
verweist. In Kapitel 2 habe ich dir einen kurzen Sketch präsentiert,
der u.a. die folgende Codezeile beinhaltete:

int ledPin = 13; // Variable mit Pin 13 deklarieren + initialisieren

Hier siehst du die Verwendung einer Variablen mit dem Namen
ledPin, der der numerische Wert 13 zugewiesen wurde. Später im
Sketch wird diese Variable ausgewertet und weiter verwendet.

Ja genau! Das kleine Wörtchen int ist die Abkürzung für das Wort
Integer. Integer ist ein Datentyp und wird in der Datenverarbeitung
dazu verwendet, um Ganzzahlen zu kennzeichnen, womit wir
schon beim nächsten Punkt wären.

Die Datentypen
Wir sollten uns nun ein wenig mit den unterschiedlichen Datenty-
pen und der Frage, was ein Datentyp überhaupt ist und warum es
so viele unterschiedliche gibt, beschäftigen. Der Mikrocontroller
verwaltet seine Sketche und Daten in seinem Speicher. Dieser Spei-
cher ist ein strukturierter Bereich, der über Adressen verwaltet wird
und Informationen aufnimmt oder abgibt, wobei Informationen in
Form von Einsen und Nullen gespeichert werden. Die kleinste logi-
sche Speichereinheit ist das Bit, das eben die zwei Zustände 1 oder
0 speichern kann. Stelle es dir als eine Art elektronischen Schalter
vor, der ein- bzw. ausgeschaltet werden kann. Da du mit einem Bit
lediglich zwei Zustände abbilden kannst, sind natürlich mehrere

�����

��
������

��
�������

��
�������

���

��
�������

��
�����
�

���

Verrate mir doch bitte noch eines. Was bedeutet das kleine Wort int
vor dem Variablennamen?
--- Kapitel 7: Grundlegendes zur Programmierung136

Bits zur Speicherung der Daten sinnvoll und notwendig. Der Ver-
bund aus 8 Bits wird 1 Byte genannt und ermöglicht es, 28 = 256
unterschiedliche Zustände zu speichern. Die Basis 2 wird verwen-
det, weil es sich um ein binäres System handelt, das lediglich zwei
Zustände kennt. Wir können mit 8 Bits also einen Wertebereich
von 0 bis 255 abdecken. Das uns vertraute Dezimalsystem hat als
Basis die Zahl 10. Doch siehe selbst, wie sich die einzelnen Stellen-
wertigkeiten ergeben:

Abbildung 7-3
Das Dezimalsystem und seine
Stellenwertigkeiten für die ersten 4
Stellen

Natürlich kannst du den Wert sofort ablesen, doch für jemanden,
der ausschließlich im Binärsystem zu Hause ist, ist das nicht sofort
ersichtlich und er muss die einzelnen Stellen addieren. Das wäre in
diesem Fall

Die Summierung habe ich bei der Stelle mit dem niedrigsten Wert
begonnen und in Richtung der Stelle mit dem höchstem Wert fort-
gesetzt. Doch zurück zum Datentyp byte. In der folgenden Grafik
siehst du die 8 Bits eines Bytes, die einen bestimmten dezimalen
Wert repräsentieren.

Abbildung 7-4
Die 8 Bits eines Bytes mit seinen
Stellenwertigkeiten

Jede einzelne Stelle hat eine bestimmte Wertigkeit. Die Umrech-
nung in eine Dezimalzahl ergibt sich ebenfalls aus der Addition der
einzelnen Stellenwertigkeiten:

Hier ergibt sich die Zahl 157. Diese 8 Bits nehmen im Speicher
natürlich einen gewissen Raum ein, der zur Speicherung einer Zahl
von 0 bis 255 benötigt wird. Für kleinere Rechenoperationen ist
das möglicherweise vollkommen ausreichend, und deshalb wurde
der Datentyp byte mit dem genannten Wertebereich erschaffen.

)444

5
)44

<
)4

)
)

/

)44)4))4/)43(�	�����

B��	
���
	

	����
��	
��

)/C

)
;5

4
3/

4
);

)
C

)
5

)
/

4
)

)

/4/)///3/5/2/;/<(�	�����

B��	
���
	

	����
��	
��
Was bedeutet Datenverarbeitung? --- 137

Wenn wir jedoch mit Werten > 255 arbeiten möchten, stoßen wir
hier an die Grenzen des machbaren. Zur Berechnung größerer
Werte wurde der nächsthöhere Datentyp geschaffen. Er nennt sich
int und steht, wie schon erwähnt, für Integer. Es wurden einfach 2
Bytes zu einem Verbund zusammengefasst, so dass jetzt ein größe-
rer Wertebereich zur Verfügung steht.

Fast, Ardus! Mit den 65.536 Bitkombinationen liegst du natürlich
richtig, doch der Wertebereich ist nicht ganz der, den du angege-
ben hast. Du hast eines nicht bedacht oder konntest es auch nicht
wissen. Es gibt nicht nur positive, sondern auch negative Zahlen,
und die müssen ebenfalls in diesem Datentyp int untergebracht
werden. Dazu hat man sich folgendes einfallen lassen. Wenn ein
Datentyp sowohl für positive, als auch negative Zahlen vorgesehen,
wird ein spezielles Bit dafür verwendet, eine Vorzeicheninforma-
tion zu speichern – quasi ein Flag. Dieses Flag ist in der Regel das
höchstwertigste Bit, das MSB (Most Significant Bit) genannt wird.
Dabei liegt es dann natürlich in der Natur der Sache, dass für die
Abbildung des eigentlichen Wertes ein Bit weniger zur Speicherung
zur Verfügung steht. Schauen wir uns das einmal an zwei Beispielen
an. Zuerst haben wir eine positive Zahl, was du daran erkennst,
dass das Vorzeichenbit den Wert 0 hat.

Abbildung 7-5
Die 16 Bits des Datentyps »int«

(positive Zahl)

Der dargestellten Bitkombination entspricht der dezimale Wert
+26181. Die gleiche Bitkombination mit einem Vorzeichenbit von
1 schaut dann wie folgt aus:

Abbildung 7-6
Die 16 Bits des Datentyps »int«

(negative Zahl)

Ok, lass mich überlegen: Das wären dann 216 = 65.536 Bitkombinati-
onen, also ein Wertebereich von 0 bis 65.535, richtig?

44))4)) 4
/4/)///3/5/2/;/</C/D/)4/))/)//)3/)5/)2

�E���$��	
���+ F	� :
����$��	
���+ F	�

444)4) 4)
(�	�����

	����
��	
��

9����
�����
	+��.���
	
GA+�.����	
G"

�� H�

:�		��#�'����	
��

44))))) 4
/4/)///3/5/2/;/</C/D/)4/))/)//)3/)5/)2

�E���$��	
���+ F	� :
����$��	
���+ F	�

444)4) 4)
(�	�����

	����
��	
��

9����
�����
	+��.���
	
GA+�.����	
G"

�� H�

:�		��#�'����	
��
--- Kapitel 7: Grundlegendes zur Programmierung138

Und schon bist du reingefallen. Dem ist leider nicht so. Die letzte
Bitkombination entspricht nicht dem negativen Wert des Wertes
+26181. Ein Test würde es ans Licht bringen. Um einen negativen
binären Wert in einen positiven umzuwandeln, sind zwei Schritte
notwendig:

• Das Invertieren aller Bits (aus 1 wird 0 und aus 0 wird 1)

• Das Hinzuaddieren des Wertes 1

Eine Bemerkung am Rande
Die Invertierung aller Bits wird Einerkomplementbildung
genannt und ist eine Operation bei Binärzahlen. Wenn am
Ende noch der Wert 1 hinzuaddiert wird, nennt man den
gesamten Prozess Zweierkomplementbildung.

Bei der Addition von Binärzahlen gelten folgende Regeln:

Tabelle 7-1
Addition einer Binärstelle

Die Addition der einzelnen Stellen erfolgt analog zu der uns
bekannten Berechnung im Dezimalsystem. Schauen wir uns diese
Prozedur für eine andere Binärkombination genauer an:

Abbildung 7-7
Ermitteln der negativen
Dezimalzahl

Die unterste Bitkombination ergibt den dezimalen Wert +6.587.
Dies ist der negative Dezimalwert der obersten Bitkombination.
Wir können also sagen, dass Folgendes gilt:

1110011001000101 = -6.587

Ok, das ist einfach. Bei dieser Bitkombination haben wir es mit dem
Wert -26181 zu tun. Das habe ich verstanden!

A B A+B Übertrag

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

44))))) 4
/4/)///3/5/2/;/</C/D/)4/))/)//)3/)5/)2

�E���$��	
���+ F	� :
����$��	
���+ F	�

444)4) 4)
(�	�����

	����
��	
��

))444 4 4))))4) 4) 4

))444 4 4))))4) 4))

7
�������
����	

�)
Was bedeutet Datenverarbeitung? --- 139

Der Wertebereich des Datentyps int erstreckt sich von -32.768 bis
+32.767 und ist somit um einiges umfangreicher und flexibler als
der Datentyp byte.

Ich möchte dir erst einmal beipflichten, denn auf den ersten Blick
scheint das reine Willkür zu sein. Doch es steckt ein tieferer Sinn
dahinter, den wir jetzt erschließen wollen. Nehmen wir doch der
Einfachheit halber eine 8-Bit Zahl, der aber nicht der eben gezeigte
Datentyp byte Zugrunde liegt, denn dieser war ja vorzeichenlos.

Abbildung 7-8
Eine positive Binärzahl

Diese positive Zahl (das MSB ist 0) stellt einen dezimalen Wert von
86 dar. Wenn du es mit mehreren Werten unterschiedlicher Zah-
lensysteme zu tun hast, macht es Sinn, die zugehörige Basis in klei-
neren Ziffern dahinter zu setzen. Ok, dann wollen wir daraus also
eine negative Zahl machen, indem wir lediglich das Vorzeichenbit
von 0 auf 1 ändern. Das vermeintlich richtige Ergebnis wäre das
Folgende:

Abbildung 7-9
Eine negative Binärzahl

Wenn wir an dieser Stelle die Festlegung treffen würden, dass das
der negative Wert der eben gezeigten positiven Zahl ist, wäre
zunächst alles ok. Damit könnten wir leben. Doch in der Datenver-
arbeitung werden nicht nur Werte gespeichert und angezeigt. Es
wird auch mit ihnen gerechnet. Und da laufen wir in ein Problem
hinein. Nehmen wir einmal an, du wolltest einen Wert, sagen wir
+1, hinzuaddieren, was ja bedeutet, dass das Ergebnis um den
Wert 1 größer wird, als der Ursprungswert. Sehen wir uns das wie-
der auf Bitebene an:

Das mit den negativen Zahlen habe ich durchaus verstanden, doch
der Sinn der Bildung des Zweierkomplementes ist mir schleierhaft.
Doch warum betreibt man diesen Umstand? Es müsste doch reichen,
eine positive in eine negative Zahl zu konvertieren, wenn das Vorzei-
chenbit von 0 auf 1 gesetzt wird.

)/C

4
;5

)
3/

4
);

)
C

4
5

)
/

)
)

4

/4/)///3/5/2/;/<(�	�����

B��	
���
	

	����
��	
�� .+C;)4
--- Kapitel 7: Grundlegendes zur Programmierung140

Abbildung 7-10
Das Ergebnis der Addition (wohl
nicht ganz richtig!)

Na, fällt dir etwas auf? Trotz Addition eines positiven Wertes ist
das Ergebnis um den Wert 1 kleiner geworden. -86 + 1 = -87 ???
Auf diese Art und Weise kommen wir also nicht zum Ziel. Jetzt
wenden wir das eben angepriesene Einerkomplement auf den
Ursprungswert an. Ich werde dabei aber auch direkt auf das
nächste Problem hinweisen, das sich bei einer ganz besonderen
Zahl ergibt. Von jedem Wert kann ich das negative Pendant bilden,
in dem ich ein negatives Vorzeichen davor setze, so auch bei der
Zahl 0. Aber 0 und -0 sind absolut identisch und es besteht kein
arithmetischer Unterschied.

Abbildung 7-11
Zwei Bitkombinationen für den
gleichen Wert

Das kann aber so nicht akzeptiert werden, da die Eindeutigkeit
nicht gewährleistet ist. Aus diesem Grund wird der Wert 1 hinzu-
addiert, was in Summe die Zweierkomplementbildung ergibt. Dieses
Verfahren hast du gerade eben bei einer 16-Bit Zahl kennengelernt.
In der nachfolgenden Tabelle findest du ein paar Beispiele zu positi-
ven bzw. negativen Werten:

Tabelle 7-2
Positive und entsprechende
negative Werte

Hier habe ich eine kurze Frage an dich: Angenommen, du findest
die Bitkombination 101100102 im Speicher vor und jemand fragt

)/C

4
;5

4
3/

4
);

4
C

4
5

4
/

4
)

4

/4/)///3/5/2/;/<(�	�����

B��	
���
	

.4

)))))))) .4

Positiver Wert Negativer Wert

110 = 000000012 -110 = 111111112

6410 = 010000002 -6410 = 110000002

8010 = 010100002 -8010 = 101100002
Was bedeutet Datenverarbeitung? --- 141

dich, welchem dezimalen Wert diese entspricht, kannst du ihm
dann eine eindeutige Antwort geben?

Nein, du hast noch nicht alle Informationen bekommen! Es wurde
dir lediglich die Bitkombination gezeigt, aber nicht der zugrunde
liegende Datentyp. Es existieren aber noch weitere 16-Bit Datenty-
pen, die ebenfalls genutzt werden können, da die zugrunde lie-
gende Programmiersprache C bzw. C++ ist. Da haben wir z.B. den
Datentyp unsigned int, der ebenfalls ein Ganzzahltyp ist, jedoch –
wie das Wort unsigned = vorzeichenlos sagt – nur positive Werte
speichern kann. Ich möchte an dieser Stelle erwähnen, dass es den-
noch einige Unterschiede gibt, die von Compiler zu Compiler vari-
ieren können, da einige 2 Bytes und andere 4 Bytes verwenden, um
den Datentyp zu verwalten. In unserem Fall haben wir es aber mit 2
Bytes zu tun, was bedeutet, dass sich der Wertebereich von 0 bis
+65.535 erstreckt.

Ok, du meinst also, wir sollten einen Datentyp schaffen, der eine
Datenbreite von beispielsweise 16 Bytes hat und mit dem man für
alle Eventualitäten gerüstet ist. Denken wir einmal scharf nach. Der
Speicherplatz in einem Mikrocontroller ist begrenzt und kann,
anders als bei einem PC, nicht einfach nach Belieben erweitert wer-
den. Für jede kleine Variable, die lediglich von 0 bis 255 zählen
muss, würde eine 16-fache Überdimensionierung in Kauf genom-
men. Wenn du nun einmal alle benötigten Variablen in deinem
Sketch aufsummierst, dann hast du schnell die Grenzen des zur
Verfügung stehenden Speicherplatzes erreicht. Um dies zu verhin-
dern, wurden unterschiedliche Datentypen mit unterschiedlichen
Datenbreiten bzw. Wertebereichen geschaffen, so dass eigentlich
für jeden Anwendungszweck eine entsprechende Auswahl getrof-
fen werden kann. Mit der Zeit hast du auch die wichtigsten Werte-
bereiche verinnerlicht und musst nicht mehr in einer Tabelle

Klar, warum denn nicht? Ich habe doch jetzt die notwendigen Infor-
mationen, um eine erfolgreiche Konvertierung durchführen zu kön-
nen.

Halt, halt! Ich verstehe den ganzen Aufwand nicht so recht. Warum
wird nicht ein einziger Datentyp geschaffen, der groß genug dimensi-
oniert ist, um alle möglichen Werte aufzunehmen? Dann hätten wir
die ganzen Probleme mit den unterschiedlichen Wertebereichen
nicht, die sich niemand merken kann.
--- Kapitel 7: Grundlegendes zur Programmierung142

nachschauen. Apropos Tabelle: Ich liste hier für den Anfang einmal
die wichtigsten Datentypen auf, mit denen du in Zukunft konfron-
tiert werden wirst.

Tabelle 7-3
Datentypen mit entsprechenden
Wertebereichen

Die hier gezeigten Datentypen werden wir mehr oder weniger im
vorliegenden Buch später noch verwenden, so dass ich an dieser
Stelle nicht weiter darauf eingehen möchte.

Das sollte man tatsächlich vermuten, doch es kommt in diesem Fall
zu keinem Fehler und der Variableninhalt beginnt wieder bei 0 zu
zählen.

Was sind Schleifen?
In einem Sketch kann zur Berechnung von Daten das Ausführen
vieler einzelner wiederkehrender Schritte erforderlich sein. Wenn
es sich bei diesen Schritte z.B. um immer gleichartige Befehlsaus-
führungen handelt, dann ist es weder sinnvoll noch praktikabel,
diese Befehle in großer Anzahl untereinander zu schreiben und
sequentiell, also hintereinander, ausführen zu lassen. Aus diesem
Grund wurde in der Datenverarbeitung ein spezielles programm-
technisches Konstrukt geschaffen, das die Aufgabe hat, ein Pro-

Dytentyp Wertebereich Datenbreite Beispiel

byte 0 bis 255 1 Byte byte wert = 42;

unsigned int 0 bis 65.535 2 Bytes unsigned int sekunden = 46547;

int -32.768 bis
32.767

2 Bytes int ticks = -325;

long -231 bis 231-1 4 Bytes long wert = -3457819;

float -3.4 * 1038 bis
 3.4 * 1038

4 Bytes float messwert = 27.5679;

double siehe float 4 Bytes double messwert = 27.5679;

boolean true oder false 1 Byte boolean flag = true;

char -128 bis 127 1 Byte char mw = 'm';

String variabel variabel String name = "Erik Bartmann";

Array variabel variabel int pinArray[] = {2, 3, 4, 5};

Ich habe noch eine kurze Frage: Was passiert eigentlich, wenn ich
z. B. eine Variable vom Datentyp byte habe und beim Hochzählen das
Maximum von 255 überschritten wird? Kommt es dann zu einem
Fehler?
Was bedeutet Datenverarbeitung? --- 143

grammstück, bestehend aus einem oder auch aus mehreren
Befehlen, mehrfach hintereinander auszuführen. Wir nennen dies
eine Schleife. Schauen wir uns an, wie eine Schleife grundsätzlich
aufgebaut ist. Es gibt zwei unterschiedliche Schleifenvarianten:

• kopfgesteuerte Schleifen

• fußgesteuerte Schleifen

Beiden Varianten ist gemeinsam, dass sie eine Instanz besitzen, die
die Kontrolle darüber übernimmt, ob und wie oft, die Schleife
durchlaufen werden muss. Des Weiteren ist dieser Instanz ein ein-
zelner Befehl oder ein ganzer Befehlsblock (Schleifenkörper) ange-
gliedert, der durch die Instanz gesteuert und abgearbeitet wird.

Kopfgesteuerte Schleifen
Bei kopfgesteuerten Schleifen befindet sich die Kontrollinstanz im
Schleifenkopf, der sich – wie der Name vermuten lässt – am oberen
Ende der Schleife befindet. Das bedeutet wiederum, dass der Ein-
tritt in den ersten Schleifendurchlauf von der Auswertung der
Bedingung abhängt und ggf. nicht stattfindet. Die Schleife wird also
möglicherweise überhaupt nicht ausgeführt.

Abbildung 7-12
Grundsätzlicher Aufbau einer

kopfgesteuerten Schleife

Die Verwendung des Plurals kurz vorher in der entsprechenden
Überschrift ist schon ein Hinweis darauf, dass es verschiedene
Typen von Kopfschleifen gibt, die in unterschiedlichen Situationen
zum Einsatz kommen.

���
�
'���E����

>��	��

��	���

���'1�������
���

��
�'1

��
��
�

���
�
'�����'
--- Kapitel 7: Grundlegendes zur Programmierung144

for-Schleife

Die for-Schleife kommt immer dann zum Einsatz, wenn vor Beginn
des Schleifenaufrufs eindeutig feststeht, wie oft die Schleife durch-
laufen werden soll. Werfen wir dazu einen Blick auf das Flussdia-
gramm, das zur grafischen Wiedergabe des Programmflusses dient.

Abbildung 7-13
Das Flussdiagramm einer
»for«-Schleife

In der Schleife kommt eine Variable mit der Bezeichnung Laufvari-
able zum Einsatz. Sie wird in der Bedingung einer Bewertung unter-
zogen, die darüber entscheidet, ob und wie oft die Schleife
durchlaufen wird. Der Wert dieser Variablen wird in der Regel im
Schleifenkopf bei jedem neuen Durchlauf modifiziert, so dass die
Abbruchbedingung irgendwann erreicht sein sollte, wenn du kei-
nen Denkfehler gemacht hast. Hier ein kurzes Beispiel, auf das wir
später noch genauer eingehen werden.

for(int i = 0; i < 7; i++)
 pinMode(ledPin[i], OUTPUT);

 ��
�����

��$�
�������"

���	

��	

���	

H��'G��
��
�
��
�
	
�

�
����

�
��

H��'G��
��
�

�
	
�

�
����
Was bedeutet Datenverarbeitung? --- 145

Zu detaillierten Beispielen kommen wir noch in den einzelnen
Kapiteln.

while-Schleife

Die while-Schleife wird dann verwendet, wenn sich erst zur Laufzeit
der Schleife ergeben soll, ob und wie oft sie zu durchlaufen ist.
Wenn während des Schleifendurchlaufes z.B. ein Eingang des
Mikrocontrollers kontinuierlich abgefragt bzw. überwacht wird
und bei einem bestimmten Wert eine Aktion durchgeführt werden
soll, dann bist du mit dieser Schleife gut bedient. Wir wollen mal
schauen, wie das entsprechende Flussdiagramm aussieht:

Abbildung 7-14
Das Flußdiagramm einer

»while«-Schleife

Die Abbruchbedingung befindet sich bei dieser Schleife ebenfalls
im Kopf. Es wird dort jedoch keine Modifikation der in der Bedin-
gung angeführten Variablen vorgenommen. Sie muss im Schleifen-
körper erfolgen. Wenn dies vergessen wird, dann haben wir es mit
einer Endlosschleife zu tun, aus der es kein Entrinnen gibt, solange
der Sketch läuft. Auch hierzu ein kurzes Beispiel:

while(i > 1) // Kontrollinstanz

{
 Serial.println(i);
 i = i - 1;

}

 ��
�����

��$�
�������"

���	

	���

'�
��

�
��

--- Kapitel 7: Grundlegendes zur Programmierung146

Fußgesteuerte Schleife
Kommen jetzt zur fußgesteuerten Schleife. Sie wird so genannt, weil
die Kontrollinstanz im Schleifenfuß beheimatet ist.

Abbildung 7-15
Grundsätzlicher Aufbau einer
fußgesteuerten Schleife

Ihr Name lautet do...while-Schleife. Da die Auswertung der Bedin-
gung erst am Ende der Schleife stattfindet, können wir zunächst
einmal festhalten, dass sie mindestens einmal ausgeführt wird.

Abbildung 7-16
Das Flussdiagramm einer
»do-while«-Schleife

Diese Schleife wird recht selten Verwendung finden, doch der Voll-
ständigkeit halber wollte ich sie dir dennoch nicht vorenthalten. Die
Syntax gleicht der der while-Schleife, wobei du aber erkennen kannst,
dass die Kontrollinstanz am Fuß der Schleife untergebracht ist.

���
�
'��'�%
>��	��

��	���

���'1�������
���

��
�'1

��
��
�

���
�
'���E����

 ��
�����

��$�
�������"

	���

'�
��

�
��

���	
Was bedeutet Datenverarbeitung? --- 147

do
{
 Serial.println(i);
 i = i - 1;
} while(i > 1); // Kontrollinstanz

Was sind Kontrollstrukturen?
In Kapitel 2 hast du u.a. schon etwas über Befehle erfahren. Sie tei-
len dem Mikrocontroller mit, was er zu tun hat. Ein Sketch besteht
aber in der Regel aus einer ganzen Reihe von Befehlen, die sequenti-
ell abgearbeitet werden. Das Arduino-Board ist mit einer bestimm-
ten Anzahl von Ein- bzw. Ausgängen versehen, an die du diverse
elektrische bzw. elektronische Komponenten anschließen kannst.
Wenn der Mikrocontroller auf bestimmte Einflüsse von außen rea-
gieren soll, schließt du z.B. einen Sensor an einen Eingang ein. Die
einfachste Form eines Sensors ist ein Schalter oder Taster. Wenn
der Kontakt geschlossen wird, soll z.B. eine LED leuchten. Der
Sketch muss also eine Möglichkeit haben, eine Entscheidung zu
treffen. Ist der Schalter geschlossen, dann versorge LED mit Span-
nung (LED leuchtet), ist der Schalter offen, dann trenne die LED
von der Spannungsversorgung (LED wird dunkel).

Wir werfen zu Beginn wieder einen Blick auf das Flussdiagramm,
das uns zeigt, wie der Ablauf der Sketchausführung in bestimmte
Bahnen gelenkt wird, so dass es sich nicht mehr um einen linearen
Verlauf handelt. Der Sketch steht beim Erreichen einer Kontroll-
struktur an einem Scheideweg und er muss schauen, wie es weiter
--- Kapitel 7: Grundlegendes zur Programmierung148

gehen soll. Als Entscheidungsgrundlage dient ihm eine Bedingung,
die es zu bewerten gilt. Programmtechnisch nutzen wir die if-
Anweisung. Es handelt sich um eine Wenn-Dann-Entscheidung.

Abbildung 7-17
Das Flussdiagramm einer
»if«-Kontrollstruktur

Wurde die Bedingung als wahr erkannt, dann folgt die Ausführung
einer oder auch mehrerer Anweisungen. Hier wieder ein kurzes Bei-
spiel:

if(tasterStatus == HIGH)
 digitalWrite(ledPin, HIGH);

Wenn mehrere Befehle in einer if-Anweisung ausgeführt werden
sollen, musst du einen Befehlsblock mit den geschweiften Klammer-
paaren bilden. Er wird dann als komplette Befehlseinheit ausge-
führt:

if(tasterStatus == HIGH)
{
 digitalWrite(ledPin, HIGH);
 Serial.println("HIGH-Level erreicht.");
}

Es gibt noch eine erweiterte Form der if-Kontrollstruktur. Es han-
delt sich dabei um eine Wenn-Dann-Sonst-Entscheidung, die sich
aus einer if-else-Anweisung ergibt. Das entsprechende Flussdia-
gramm sieht wie folgt aus:

�	��	

 ��
�����

��$�
�������"

7���

	���

'�
��
Was bedeutet Datenverarbeitung? --- 149

Abbildung 7-18
Das Flussdiagramm einer
»if-else«-Kontrollstruktur

Das folgende Codebeispiel zeigt dir die Syntax der if-else-Anwei-
sung:

if(tasterStatus == HIGH)
 digitalWrite(ledPin, HIGH);
else

 digitalWrite(ledPin, LOW);

Sei kommunikativ und sprich darüber
Wenn Menschen sich einander mitteilen wollen, um z.B. Gefühle
auszudrücken oder Informationen weiterzugeben, dann erfolgt das
über Sprache in mündlicher oder schriftlicher Form. Nur so kön-
nen wir etwas erfahren und unser Wissen und das Verständnis
mehren. Unwissenheit und Unverständnis über einen längeren
Zeitraum frustriert. Doch nun zum eigentlichen Thema. Wenn
man sich als Programmierer eines Problems annimmt und kodiert,
dann ist es sicher sinnvoll, sich hier und da ein paar Notizen zu
machen. Manchmal hat man einen Geistesblitz oder eine geniale
Idee und ein paar Tage später – mir geht es jedenfalls des Öfteren
so – fällt es dann schwer, sich an die einzelnen Gedankengänge
detailiert zu erinnern. Was habe ich da bloß programmiert und
warum habe ich es so und nicht anders gemacht? Natürlich kann
jeder Programmierer eigene Strategien für das Ablegen geeigneter
Notizen entwickeln: Collegeblock, Rückseite von Werbeprospek-

�	��	

 ��
�����

��$�
�������"

7���

	���

'�
��

��$�
�������"
--- Kapitel 7: Grundlegendes zur Programmierung150

ten, Word-Dokumente etc. Alle diese Methoden haben jedoch ent-
scheidende Nachteile:

• Wo habe ich denn bloß meine Notizen hingelegt?

• Sind sie auch auf dem neusten und aktuellsten Stand?

• Jetzt kann ich nicht mal meine eigene Schrift lesen!

• Wie kann ich meine Notizen einem Freund zur Verfügung stel-
len, der auch an meiner Programmierung interessiert ist?

Das Problem ist die Tennung von Programmiercode und Notizen,
die dann keine Einheit bilden. Wenn die Notizen verloren gehen,
wird es für dich unter Umständen recht schwierig, alles noch ein-
mal zu rekonstruieren. Und jetzt stelle dir deinen Freund vor, der
absolut keine Ahnung hat, was du mit deinem Code erreichen woll-
test. Da muss eine andere Lösung her: Du kannst innerhalb deines
Codes Anmerkungen bzw. Hinweise hinterlegen und das genau an
der Stelle, für die sie gerade relevant sind. So hast du alle Informati-
onen genau da, wo sie benötigt werden.

Einzeiliger Kommentar
Schaue dir einmal das folgende Beispiel aus einem Programm an:

int ledPinRotAuto = 7; // Pin 7 steuert rote LED (Autoampel)
int ledPinGelbAuto = 6; // Pin 6 steuert gelbe LED (Autoampel)

int ledPinGruenAuto = 5; // Pin 6 steuert grüne LED (Autoampel)
...

Hier werden Variablen deklariert und mit einem Wert initialisiert.
Zwar sind recht aussagekräftige Namen ausgewählt, doch ich
denke, es ist recht sinnvoll, noch einige kurze ergänzende Anmer-
kungen anzuführen. Hinter der eigentlichen Befehlszeile wird ein
Kommentar eingefügt, der durch zwei Schrägstriche (Slashes) ein-
geleitet wird. Warum ist das notwendig? Ganz einfach! Der Compi-
ler versucht natürlich alle vermeintlichen Befehle, die an ihn
herangetragenen werden, zu interpretieren und auszuführen. Neh-
men wir doch einfach einmal den ersten Kommentar:

Pin 7 steuert rote LED (Autoampel)

Es handelt sich um einzelne Elemente eines Satzes, die der Compi-
ler jedoch nicht versteht, da es sich nicht um Anweisungen handelt.
Es kommt bei dieser Schreibweise zu einem Fehler beim Kompilie-
ren des Codes. Die beiden // maskieren jetzt aber diese Zeile und
teilen dem Compiler mit: Hey Compiler. Alles, was nach den beiden
Was bedeutet Datenverarbeitung? --- 151

Schrägstrichen folgt, ist nicht für dich relevant und kann getrost von
dir ignoriert werden. Es handelt sich um eine Gedankenstütze des
Programmierers, der mal wieder zu dämlich ist, sich die einfachsten
Sachen über einen längeren Zeitraum (> 10 Minuten) zu merken. Sei
etwas nachsichtig mit ihm! Mittels dieser Schreibweise wird ein ein-
zeiliger Kommentar eingefügt.

Mehrzeiliger Kommentar
Wenn du jedoch über mehrere Zeilen etwas schreiben möchtest,
z.B. etwas, das deinen Sketch in groben Zügen beschreibt, kann es
lästig sein, vor jede Zeile zwei Schrägstriche zu positionieren. Aus
diesem Grund gibt es noch die mehrzeilige Variante, die folgender-
maßen aussieht:

/*

 Autor: Erik Bartmann
 Scope: Ampelsteuerung
 Datum: 31.01.2011

 HP: www.erik-bartmann.de
*/

Dieser Kommentar hat eine einleitende Zeichenkombination /* und
eine abschließende Zeichenkombination */. Alles, was sich zwi-
schen diesen beiden Tags (ein Tag ist eine Markierung, die zur
Kennzeichnung von Daten benutzt wird, die eine spezielle Bedeu-
tung haben) befindet, wird als Kommentar angesehen und vom
Compiler ignoriert. Alle Kommentare werden von der Arduino-
Entwicklungsumgebung mit der Farbe Grau versehen, um sie
sofort kenntlich zu machen.

Die Struktur eines Arduino-Sketches
Wenn du einen Sketch für dein Arduino-Board schreiben möchtest,
dann sind bestimmte Dinge unbedingt zu beachten. Damit der
Sketch lauffähig ist, benötigt er zwei programmtechnische Kon-
strukte, die in dieselbe Kategorie fallen. Es handelt sich um soge-
nannte Funktionen, die quasi den Sketch-Rahmen bilden. Doch
schauen wir uns zuerst einmal an, was eine Funktion überhaupt ist.
Bisher hast du einzelne Befehle kennengelernt, die für sich alleine
stehen und nicht unbedingt einen Bezug zueinander haben. Es ist
aber möglich, mehrere Befehle zu einer logischen Einheit zusam-
menzufassen und diesem Konstrukt dann einen aussagekräftigen
Namen zu geben. Anschließen rufst du den Funktionsnamen wie
--- Kapitel 7: Grundlegendes zur Programmierung152

http://www.erik-bartmann.de

einen einzelnen Befehl auf und alle hierin enthaltenen Befehle wer-
den als Einheit ausgeführt. Stellen wir vorab einige Überlegungen
an, wie ein solcher Sketchablauf vonstattengehen kann. Angenom-
men, du möchtest eine Wanderung unternehmen und bestimmte
Dinge mit auf den Weg nehmen. Dann packst du zu Beginn einma-
lig deinen Rucksack mit den benötigten Sachen und wanderst los.
Während deiner Tour greifst du immer mal wieder in den Ruck-
sack, um dich zu stärken oder z.B. um dich auf der Landkarte zu
vergewissern, dass du noch auf dem richtigen Weg bist. Im übertra-
genen Sinne läuft es genau so in einem Sketch ab. Da erfolgt beim
Start einmalig die Ausrührung einer bestimmten Aktion, um z.B.
Variablen zu initialisieren, die später verwendet werden sollen. Im
Anschluss werden in einer Endlosschleife bestimmte Befehle immer
und immer wieder ausgeführt, die den Sketch auf diese Weise am
Leben erhalten. Werfen wir einen Blick auf die Struktur des Sket-
ches, wobei ich die grundlegenden Bereiche in 3 Blöcke unterteilt
habe.

Abbildung 7-19
Die grundlegende Sketch-Struktur

Diese Blöcke sind folgende:

Block 1: (Die Deklarierung und Initialisierung)

In diesem ersten Block werden z.B. – falls notwendig – externe
Bibliotheken über die #include-Anweisung eingebunden. Wie das
funktioniert, wirst du späer erfahren. Des Weiteren ist hier der
geeignete Platz zur Deklaration globaler Variablen, die innerhalb

��	���"

����"

�
���

���
+���'1����

����$8�������
++++++++++++++���'1����

&��
��
�����+�
#�
	
�

�
�����

���	����	��	

���+)

���+/

���+3
Die Struktur eines Arduino-Sketches -- 153

des kompletten Sketches sichtbar sind und verwendet werden kön-
nen. Mittels der Deklaration wird festgelegt, welchem Datentyp die
Variable zugeordnet sein soll. Bei der Initialisierung hingegen wird
die Variable mit einem Wert versehen.

Block 2: (Die setup-Funktion)

In der setup-Funktion werden meistens die einzelnen Pins des
Mikrocontrollers programmiert. Es wird also festgelegt, welche der
Pins als Ein- bzw. Ausgänge arbeiten sollen. An manchen werden
z.B. Sensoren wie Taster oder temperaturempfindliche Wider-
stände angeschlossen, die Signale von außen an einen entsprechen-
den Eingang leiten. Andere wiederum leiten Signale an Ausgänge
weiter, um z.B. einen Motor, einen Servo oder eine Leuchtdiode
anzusteuern.

Block 3: (Die loop-Funktion)

Die loop-Funktion bildet eine Endlosschleife, in der die Logik
untergebracht ist, über die kontinuierlich Sensoren abgefragt oder
Aktoren angesteuert werden. Beide Funktion bilden zusammen mit
ihrem Namen einen Ausführungsblock, der durch die geschweiften
Klammerpaare {} gekennzeichnet wird. Diese dienen als Begren-
zungselemente, damit erkennbar ist, wo die Funktionsdefinition
beginnt und wo sie aufhört. Ich zeige dir am besten einmal die lee-
ren Funktionsrümpfe, die einen lauffähigen Sketch bilden. Es pas-
siert zwar nicht viel, doch es handelt sich tatsächlich um einen
richtigen Sketch.

void setup(){
 // eine oder mehrere Anweisungen
 // ...

}

void loop(){
 // eine oder mehrere Anweisungen
 // ...

}

Ja, die Funktionen müssen genau diese Namen aufweisen, denn
beim Start des Sketches wird nach ihnen gesucht, weil sie als Ein-

Müssen diese Funktionen eigentlich genau diese Namen besitzen
oder kann ich sie beliebig benennen. Und was bedeutet das Wort
void, das vor jeder Funktion angeführt ist?
--- Kapitel 7: Grundlegendes zur Programmierung154

stiegspunkte dienen, um einen definierten Start zu gewährleisten.
Woher sollte der Compiler wissen, welche Funktion nur einmal
ausgeführt werden soll und welche kontinuierlich in einer Endlos-
schleife? Diese Namen sind also zwingend erforderlich. Nun zu dei-
ner zweiten Frage, was das Wort void bedeutet. Es handelt sich um
einen Datentyp, der aber einfach aussagt, dass die Funktion keinen
Wert an den Aufrufer zurückliefert. void kann mit Leerstelle oder
Loch übersetzt werden. Es bedeutet nicht 0 sondern einfach nichts.
Der allgemeine Aufbau einer Funktion sieht folgendermaßen aus:

Abbildung 7-20
Allgemeiner Funktionsaufbau

Wenn eine Funktion den Rückgabedatentyp void besitzt, dann ist
eine return-Anweisung, die einen Wert zurück liefert nicht erlaubt.
Weist sie jedoch einen anderen Datentyp auf, dann kann sie einen
Wert an den Aufrufer zurückliefern, der aber dem des angegebenen
Datentyps entsprechen muss. Du kannst einer Funktion sogar
Werte übergeben, mit denen sie dann arbeiten soll. Diese werden in
runden Klammern angegeben und an die betreffenden Variablen
übergeben. Variablen in einer Funktionsdefinition werden Parame-
ter genannt. Auch wenn keine Übergabewerte notwendig sind, wie
z.B. bei setup() und loop(), müssen die Klammerpaare dennoch mit
angegeben werden. Sie bleiben dann einfach leer. Wie du eigene
Funktionen schreiben kannst, wirst du später noch in vereinzelten
Kapiteln erfahren.

Wie lange läuft ein Sketch
auf dem Board?
Hast du einen Sketch erst einmal erfolgreich auf das Arduino-Board
in den Mikrocontroller übertragen, dann wird er sofort ausgeführt.
Dies geschieht so lange, wie das Board mit Strom versorgt wird und
du keinen neuen Sketch überträgst. Entfernst du die Spannungsver-
sorgung, sei es USB oder extern, dann wird die Abarbeitung natür-
lich gestoppt und dann erneut fortgeführt, wenn du das Board
wieder anschließt. Der Sketch bleibt während des spannungslosen
Zustandes im (Flash-)Speicher des Mikrocontrollers erhalten und
muss nicht erneut geladen werden.

�� !"#$��#%��%&�
'#(�	�#)#(�%�)�
*

++
,���
���)
(�-)�)�
.�/��01�"��

)�%1)�
/�)%�
++
'� -%
$��
2#%��%&�
����
3

Wie lange läuft ein Sketch auf dem Board? -- 155

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• Grundlagen Programmierung C++

• EVA Prinzip Informatik
--- Kapitel 7: Grundlegendes zur Programmierung156

First

Erstellen au
Arbeitsseite
(siehe Must

Kapitel
Hier Mini IVZ eingeben!

Kapitel 8 8Die Programmierung
des Arduino-Boards
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
Im vorliegenden Kapitel wenden wir uns den Schnittstellen unseres
Arduino-Boards zu. Es sind die Kommunikationskanäle zur Inter-
aktion zwischen dem Board und der Außenwelt. Die grundlegen-
den Themen, die wir ansprechen, sind folgende:

• Was sind digitale Ports?

• Was sind analoge Ports?

• Was ist ein PWM-Signal?

Die digitalen Ports
Die digitalen Ports deines Arduino-Boards können sowohl als Ein-
als auch als Ausgänge genutzt werden. Es ist jetzt aber nicht so, dass
z.B. die Pins 0 bis 7 Eingänge und 8 bis 13 Ausgänge sind. Jeden
einzelnen der 14 zur Verfügung stehenden digitalen Pins kannst du
individuell als Ein- oder Ausgang konfigurieren. Dazu wird ein
Befehl verwendet, der die Datenflussrichtung pro Pin definiert. Mit
dem pinMode-Befehl wird über die Angabe der Pinnummer und der
Richtung der Daten (INPUT oder OUTPUT) jeder einzelne Pin so
programmiert, wie du es in deinem Sketch benötigst.

Die digitalen Eingänge
Um einen digitalen Pin als Eingang zu programmieren, wird der
besagte Befehl pinMode verwendet. Die folgende Grafik zeigt dir die
beiden erforderlichen Schritte zum Konfigurieren bzw. Abfragen
eines digitalen Eingangs.
--- 157

Abbildung 8-1
Konfiguration und Lesen des

digitalen Eingangs an Pin 5

Im ersten Schritt erfolgt die Konfiguration des Pin 5 über pinMode
als Eingang (INPUT), und zwar einmalig innerhalb der erstmals im
Kapitel 7 erwähnten setup-Funktion. Im zweiten Schritt kannst du
den logischen Pegel (HIGH oder LOW) des Pins über den digital-
Read-Befehl abfragen. Er wird in diesem Beispiel der Variablen wert
zugewiesen und kann später verarbeitet werden.

Die digitalen Ausgänge
Um einen digitalen Pin als Ausgang zu programmieren, wird natür-
lich wieder der Befehl pinMode verwendet, jedoch diesmal mit
OUPUT als zweitem Argument. Die folgende Grafik zeigt dir die
beiden erforderlichen Schritte zum Konfigurieren bzw. setzten
eines digitalen Ausgangs.

Abbildung 8-2
Konfiguration und setzen des

digitalen Ausgangs an Pin 5

Im ersten Schritt erfolgt die Konfiguration des Pin 5 über pinMode
als Ausgang (OUTPUT), und zwar einmalig innerhalb der erstmals
im Kapitel 4 erwähnten setup-Funktion. Im zweiten Schritt kannst
du den logischen Pegel (HIGH oder LOW) des Pins über den digi-
talWrite-Befehl setzten.

Das könnte für dich wichtig sein
Die beiden digitalen Pins 0 (RX=Empfangen) und 1 (TX=Senden)
haben eine Sonderfunktion und werden von der seriellen
Schnittstelle genutzt. In den Grafiken sind sie in einer anderen

�
4

�

�
4

�
5�
�

5657�

�������	6�
�'�����

/�)%
8
��"�%#9��#�	6��
�

�

�4

�

�4

�
5�
�

5657�

�������	6�
��������

��"�%#9:)�%�	6�
;�<;��
� �
--- Kapitel 8: Die Programmierung des Arduino-Boards158

Farbe hervorgehoben. Um Probleme zu vermeiden, solltest du
diese beiden Pins nicht unbedingt verwenden. Ich habe schon
so einige Probleme damit gehabt und lasse sie bei meinen
Schaltungen immer außen vor. Falls du ihre Verwendung den-
noch aufgrund von Portknappheit in Erwägung ziehst, solltest
du beim Übertragen des Sketches zum Mikrocontroller die vor-
gesehenen Verbindungen kurz entfernen. Andernfalls kann es
zu Problemen kommen, so dass der Sketch nicht übermittelt
werden kann.

Die analogen Ports

Die analogen Eingänge
Analoge Signale sind einem Mikrocontroller ebenso fremd wie
Intelligenz, obwohl manche Wissenschaftler meinen, sie könnten
ihren Maschinen eine Form von Persönlichkeit einprogrammieren.
Doch werfen wir jetzt einen genaueren Blick auf analoge Signale.

Abbildung 8-3
Ein analoges Signal

Wir sehen, dass sie im zeitlichen Verlauf unterschiedliche Werte
zwischen einem Minimum bzw. Maximum aufweisen und dass sie
keine festen Abstufungen haben, wie sie z.B. bei digitalen Signalen
vorliegen, bei denen nur ein Wechsel zwischen HIGH- bzw. LOW-
Pegel stattfindet. Um ein analoges Signal von einem Mikrocontrol-
ler verarbeiten zu lassen, benötigen wir einen analogen Eingang und
alles ist gut.

Das ist die Theorie, doch wir haben es hier mit einem Mikrocont-
roller zu tun, der eigentlich nur digitale Signale verarbeiten kann.
Ich muss diesbezüglich ein wenig ausholen. Analoge Signale werden

�

����

Du hast gerade gesagt, dass analoge Signale stufenlos zwischen zwei
Grenzen schwanken können. Das bedeutet also, dass bei Messungen
am analogen Eingang jeder beliebige Wert angezeigt werden kann –
richtig?
Die analogen Ports -- 159

über eine besondere Schaltung, die Analog/Digital-Wandler (kurz:
A/D-Wandler) genannt wird, verarbeitet bzw. gespeichert. Theore-
tisch besteht ein analoges Signal aus unendlich kleinen Schwankun-
gen, die im zeitlichen Verlauf auftreten. Wie aber können diese
Werte von einem Mikrocontroller erkannt werden? Schauen wir
uns die eben gezeigte Kurve noch einmal genauer an.

Abbildung 8-4
Ein analoges Signal wird digitali-

siert (4-Bit Auflösung).

In dieser Grafik siehst du das analoge Signal, das durch den roten
Kurvenverlauf dargestellt wird. Zu bestimmten Zeiten der Messung
(auf der X-Achse, Zeitachse), entspricht jedem ermittelten Momen-
tanwert eine Binärkombination (auf der Y-Achse, Binärzahl). Du
kannst aber aus der Grafik ersehen, dass nicht jedem ermittelten
Wert ein eigener digitaler Wert zugewiesen wird. Es gibt vielmehr
bestimmte Bereiche, in die mehrere unterschiedliche analoge Mess-
punkte fallen. Schaue dir z.B. die analoge Werte zu den Zeitpunk-
ten 8 und 9 an. Sie sind von unterschiedlicher Größe und fallen
doch in den digitalen Bereich 0111.

Nun Ardus, ich hatte dir ja schon gesagt, dass ein analoges Signal
im zeitlichen Verlauf unendlich unterschiedliche Abstufungen auf-
weist. Um allen minimalen Werten gerecht zu werden, müssten wir
einen ebenso unendlich »breiten« Binärwert bereit stellen, damit
alle Werte abgebildet werden können. Das lässt sich natürlich nicht
realisieren und es ist auch nicht unbedingt notwendig. Unser
Mikrocontroller stellt zur Auflösung eines analogen Signales 10 Bits
zur Verfügung. Dies ist übrigens auch die Bezeichnung für eine

�

����

	 � � � � � � � �
 �	 �� �� �� �� �� �� �� �� �
 �	
����	
��
�������������
�������������
��
���

����
���

��
�
��

�
��
�
�

�

�
�

���

��

�
�

�

��

�

�

Aber warum ist das so? Es erfolgt dann doch keine Unterscheidung
zwischen den beiden Werten und somit wären beide gleich.
--- Kapitel 8: Die Programmierung des Arduino-Boards160

Kenngröße des A/D-Wandlers: Auflösung 10 Bit. Was aber bedeu-
ten diese 10 Bits? Mit ihnen können 210 = 1.024 unterschiedliche
Bitkombinationen interpretiert werden. Wenn wir die Referenz-
spannung von +5V, die das Arduino-Board u.a. zur Verfügung
stellt, nehmen, so kann ein analoger Eingang – und wir haben 6 an
der Zahl (A0 bis A5) – Werte zwischen 0V und +5V verarbeiten.

Abbildung 8-5
Die analogen Ports A0 bis A5 an
einer 6-poligen Buchsenleiste
(rechte Seite)

Intern wird das Eingangssignal über einen A/D-Wandler pro Kanal
in Bitkombinationen umgerechnet, und da ein einzelner Kanal auf-
grund der 10 Bit Auflösung 1.024 Abstufungen aufweist, lässt sich
die kleinste Messeinheit – auch Messgenauigkeit genannt – wie folgt
berechnen:

Achtung
Wenn du an einen analogen Eingang eine höhere Spannung
als +5V anlegst, dann wird der Mikrocontroller auf diesem
Kanal auf jeden Fall beschädigt oder komplett zerstört. Achte
also unbedingt darauf, mit welchen Spannungen du arbeitest.
Das ist dann wichtig, wenn du externe Spannungsquellen wie
z.B. eine +9V Blockbatterie oder sogar ein separates Netzteil
verwendest. Für unsere analogen Beispiele verwende ich
jedoch ausschließlich die Board-eigene Spannungsversorgung
von +5V.

Das Abfragen eines an einem analogen Eingang liegenden Signales
erfolgt über den Befehl analogRead(Pinnummer). In der Grafik
siehst du das Abfragen des analogen Pins mit der Nummer 0.

Abbildung 8-6
Welcher Wert liegt am analogen
Pin 0?

.6.�.�.�.
.�
.'.=�<
�'��:,�

>�
�

<'
2

<'
2

6>��
�>

�,
?,
�

.6.�.�.�.
.�

#�#9�"��#�	���
Die analogen Ports -- 161

In der folgenden Tabelle siehst du einige Beispiele für gemessene
Werte an einem analogen Eingang und dessen real anliegender
Spannung.

Tabelle 8-1
Gemessene analoge Werte mit

entsprechenden realen
Eingangsspannungen

Die analogen Ausgänge
Du hast ja vor kurzem schon selbst erkannt, dass das Mikrocontrol-
ler-Board keine analogen Ausgänge besitzt. Ob das ein Fehler ist
und diese einfach vergessen wurden? Mmh, ich glaube nicht! Ich
kann an dieser Stelle bereits sagen, dass es keine dedizierten, also
eigens für analoge Signale erforderlichen Ausgänge gibt. Da aber
trotzdem analoge Ausgänge für uns zur Verfügung stehen, so wirbt
jedenfalls die Beschreibung des Arduino-Boards, muss es eine
andere Lösung geben. Doch welche? Da sind wir auch schon beim
Thema PWM. Drei Buchstaben und keine Ahnung, was sie bedeu-
ten, was dann auch schon die Überleitung zum nächsten Abschnitt
ist.

Was bedeutet PWM?
Du würdest es vielleicht auf Anhieb nicht vermuten, doch die ver-
meintlich fehlenden analogen Ausgänge befinden sich auf einigen
digitalen Pins. Wenn du dir das Arduino-Board einmal genauer
anschaust, dann befindet sich unterhalb einiger dieser Pins ein
merkwürdiges Zeichen, das an eine Schlangenlinie erinnert. Dieses
Zeichen wird Tilde genannt und kennzeichnet die analogen Aus-
gänge.

Abbildung 8-7
Analoge Pins auf digitaler Seite

PWM ist die Abkürzung für Pulse-Width-Modulation und bedeutet
übersetzt Pulsweitenmodulation. Jetzt bist du sicherlich genau so
schlau wie vorher. Doch schau her. Bei einem PWM-Signal handelt

Gemessener analoger Wert Entsprechender Wert

0 0V

1 4,9mV

2 9,8mV

... ...

1023 5V
--- Kapitel 8: Die Programmierung des Arduino-Boards162

es sich um ein digitales Signal mit konstanter Frequenz und Span-
nung. Das einzige, was variiert, ist der Tastgrad. Was das ist, wirst
du gleich sehen.

Abbildung 8-8
Impulsdauer und Periodendauer im
zeitlichen Verlauf (t variiert beim
PWM; T ist konstant)

Je breiter der Impuls, desto mehr Energie wird an den Nutzer
geschickt.

Wir können auch sagen, dass die Fläche des Impulses ein Maß für
die abgegebene Energie ist. Ich habe hier einmal vier Oszillo-
gramme bei einem Tastgrad von 25%, 50%, 75% und 100% aufge-
nommen.

Abbildung 8-9
Der Tastgrad liegt bei 25%.

#���
������
(��
��������� �

�

Die analogen Ports -- 163

Wenn wir eine LED an den PWM-Ausgang anschlössen, dann
erhielte sie nur ¼ der möglichen Energie zum Leuchten. Bevor sie
richtig aufleuchten kann, wird sie auch schon wieder ausgeschaltet.
Das bedeutet, dass sie nur recht schwach leuchtet.

Abbildung 8-10
Der Tastgrad liegt bei 50%.

Bei einem Tastgrad von 50% ist die An-Zeit gleich der Aus-Zeit pro
Periodendauer. Die LED leuchtet auf jeden Fall heller als bei 25%,
da ihr pro Zeiteinheit mehr Energie zugeführt wird.

Abbildung 8-11
Der Tastgrad liegt bei 75%.
--- Kapitel 8: Die Programmierung des Arduino-Boards164

Bei einem Tastgrad von 75% fällt das Verhältnis von An-Zeit zu
Aus-Zeit eindeutig zugunsten der An-Zeit aus, was bedeutet, dass
die LED wiederum heller leuchtet als bei 25% bzw. 50%.

Abbildung 8-12
Der Tastgrad liegt bei nahezu
100%.

Bei fast 100% Tastgrad leuchtet die LED ständig und ist somit auch
am hellsten. Bei der Verwendung von analogen Ausgängen liegt
eines natürlich auf der Hand: Die Anzahl der verwendeten analo-
gen Ausgänge geht natürlich zu Lasten der zur Verfügung stehen-
den digitalen Pins.

Die Frage ist absolut berechtigt, Ardus! Für die analoge Ausgabe
über ein PWM-Signal verwendest du den analogWrite-Befehl, der
die Angabe des Pins und die des Wertes erfordert. Wir kommen zu
gegebener Zeit natürlich noch genauer darauf zu sprechen. Der
übergebene Wert kann sich zwischen 0 und 255 bewegen. In der
folgenden Tabelle habe ich einige markante Werte dargestellt.

Wenn ich jetzt den analogen Ausgang nutzen möchte, der sich aber
auf einem digitalen Pin befindet, wie spreche ich ihn dann an? Ver-
wende ich den digitalWrite-Befehl mit vielleicht einem weiteren Para-
meter?
Die analogen Ports -- 165

Abbildung 8-13
Der Befehl »analogWrite« mit ein

paar Beispielwerten

In diesem Beispiel wird PWM-Pin Nummer 5 angesprochen und
über den PWM-Wert 64 ein Tastgrad von 25% erreicht. Über die
folgende Formel kannst du dir unter Verwendung des gewünschten
Prozentwertes den erforderlichen PWM-Wert berechnen.

Das könnte für dich wichtig sein
Um einen analogen Ausgang zu nutzten, ist es nicht notwen-
dig, den erforderlichen Pin mit dem pinMode-Befehl als Aus-
gang (OUTPUT) zu programmieren.

Abschließend zu diesem Thema muss ich natürlich betonen, dass
es sich bei einem PWM-Signal nicht um ein wirkliches analoges Sig-
nal im eigentlichen Sinne handelt. Wenn jedoch ein solches benö-
tigt wird, kannst du ein RC-Glied an den Ausgang schalten, was
einen Tiefpass darstellt, wobei die Ausgangsspannung geglättet
wird. Nähere Informationen dazu findest du im Internet oder auf
meiner Internetseite.

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• PWM Signal

• Pulsweitenmodulation

#�#9�":)�%�	6�
7���
�:�@:�)%
�#0%")#�
� ��
�� ���
��	 ���
�
� ���
��� ����

 �'��
 (
� (B�

�������	�
--- Kapitel 8: Die Programmierung des Arduino-Boards166

Die serielle Schnittstelle
Ein weitere Möglichkeit, mit deinem Arduino-Board in Kontakt zu
treten, ist die serielle Schnittstelle, die – wie schon erwähnt – über
den USB-Port zur Verfügung gestellt wird. Du benötigst zur Kom-
munikation noch nicht einmal ein externes Terminal-Programm,
denn du kannst den Serial Monitor nutzen. Diese Art der Verbin-
dungsaufnahme mit deinem Arduino-Board kann in zahlreichen
Situationen nützlich sein:

• Bei der Eingabe von Werten während des Sketchlaufs

• Bei der Ausgabe von Werten während des Sketchlaufs

• Bei der Ausgabe von bestimmten Werten während des
Sketchlaufs zur Fehlersuche

Da wir standardmäßig nicht über ein Eingabegerät am Arduino-
Board verfügen, bietet sich die serielle Schnittstelle gerade dazu an,
Daten manuell über die Tastatur einzugeben, um so den Ablauf des
Sketches ggf. zu beeinflussen. Wir werden aber auch sehen, dass
sich diese Schnittstelle sehr gut dazu verwenden lässt, eine gemein-
same Kommunikationsbasis für unterschiedliche Programme bzw.
Programmiersprachen zu schaffen. Du wirst interessante Möglich-
keiten kennenlernen, wie du dein Arduino-Board z.B. mit einer C#-
Anwendung steuerst oder Daten an diese verschickst, um sie gra-
fisch aufbereitet darzustellen. Du kannst die Programmiersprache
Processing außerdem wunderbar auf eine solche Weise nutzen, dass
sie als grafisches Frontend für das Arduino-Board arbeitet. Ein
Buch über Processing ist ebenfalls von mir im O’Reilly-Verlag
erschienen und bietet einen sehr guten Einstieg in diese Sprache.
Falls dein Sketch einmal nicht so läuft, wie du es dir vorstellst, dann
nutze den Serial Monitor der Schnittstelle als Ausgabefenster, um
dir ggf. Inhalte von Variablen ausgeben zu lassen. Auf diese Weise
kannst du Fehler im Source-Code ermitteln und eliminieren. Wie
du dabei am besten vorgehst, wirst du später noch erfahren. Der
Fachbegriff dafür lautet Debugging.
Die serielle Schnittstelle --- 167

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 1 1Der erste Sketch
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In unserem ersten wirklichen Experiment beschäftigen wir uns mit
folgenden Themen:

• Deklarierung und Initialisierung einer Variablen + Variante

• Programmierung eines digitalen Pins als Ausgang (OUTPUT)

• Der Befehl pinMode()

• Der Befehl digitalWrite()

• Der Befehl delay()

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Workshop

Das Leuchtfeuer –
»Hello World« auf Arduinisch
Tja, Ardus, jetzt wird’s ernst! Aber nein, es wird nicht wirklich
schwierig und wir fangen ganz gemächlich an. In den meisten
Handbüchern über die unterschiedlichen Programmiersprachen
wird zu Anfang immer ein so genanntes Hello World-Programm
präsentiert. Es ist das Programm, das Einsteiger ganz zu Beginn
meistens zu sehen bekommen. Es soll einen ersten Einblick in die
Syntax der neuen Programmiersprache bieten und den Text »Hello
world« in einem Fenster ausgeben. Auf diese Weise meldet sich die
--- 169

neue Programmiersprache bei dir und dem Rest der Welt, um zu
zeigen: »Hey Leute, ich bin da! Mach was mit mir.« Jetzt haben wir
schon ein kleines Problem, denn unser Arduino hat in seinem
Urzustand kein Display, also kein Anzeigegerät, sich dir mitteilen
zu können. Was also tun? Wenn eine Kommunikation nicht in
schriftlicher Form möglich ist, dann vielleicht mittels optischer
oder akustischer Signale. Wir entscheiden uns für die optische
Variante, denn einen Signalgeber wie eine Leuchtdiode, auch LED
genannt, können wir ohne allzu große Probleme an einen der digi-
talen Ausgänge klemmen und erregt bestimmt deine Aufmerksam-
keit. Ich war jedenfalls sehr beeindruckt, als es bei mir auf Anhieb
funktioniert hat.

Benötigte Bauteile
Da es sich ein sehr einfaches Beispiel ist, benötigen wir lediglich
eine einzelne LED und einen Vorwiderstand.

Im Kapitel über die Arduino Grundlagen habe ich dir kurz gezeigt,
dass sich auf dem Board u.a. auch einige LEDs befinden, von denen
eine direkt mit dem digitalen Pin 13 verbunden ist und einen eige-
nen Vorwiderstand besitzt. Also genau genommen müssten wir
eigentlich keine externen Bauteile an das Board anklemmen.

Diese LED befindet sich direkt links neben dem Arduino Schriftzug
bzw. Logo.

Benötigte Bauteile

1 x rote LED

1 x Widerstand 220
-- Projekt 1: Der erste Sketch170

Eine Bemerkung am Rande
Wenn du ein brandneues Arduino Board das erste Mal mit dei-
nem Rechner verbindest, dann leuchtet diese Onboard-LED im
Sekundentakt. Es wurde also nach dem Zusammenbau des
Boards im Werk schon ein erster Sketch mit dieser Grundfunkti-
onalität geladen.

Sketch-Code
Der Sketch-Code für das erste Beispiel sieht folgendermaßen aus:

int ledPin = 13; // Variable mit Pin 13 deklarieren + initialisieren
void setup(){
 pinMode(ledPin, OUTPUT); // Digitaler Pin 13 als Ausgang
}

void loop(){
 digitalWrite(ledPin, HIGH); // LED auf High-Pegel (5V)
 delay(1000); // Eine Sekunde warten

 digitalWrite(ledPin, LOW); // LED auf LOW-Pegel (0V)
 delay(1000); // Eine Sekunde warten
}

Wenn du den Code in den Editor übertragen hast, kannst du ihn
überprüfen. Der Compiler versucht ihn dann zu übersetzten. Hier
die beiden erforderlichen Schritte:

Tabelle 1-1
Schritte zum Kompilieren und
Übertragen

Am Schluss erhältst du dann eine Meldung über die erfolgreiche
Übertragung angezeigt. Außerdem werden dir die Größe des benö-
tigten Speichers und der insgesamt zur Verfügung stehenden Spei-
chers in Bytes angezeigt.

Abbildung 1-1
Statusmeldung und Anzeige der
Speicherinformationen

Icon Funktion

Überprüfung durch Kompilierung starten

Bei erfolgreicher Kompilierung Übertragung zum Mikrocontroller starten
Das Leuchtfeuer – »Hello World« auf Arduinisch -- 171

Gut aufgepasst, Ardus! Da muss ich ein wenig ausholen. Wenn du
in der Programmierung Variablen mit Werten initialisierst, von
denen zunächst nur du weißt, was sie bedeuten, dann führt das bei
anderen Personen, die mit dem betreffenden Code arbeiten, sicher-
lich zu Verständnisproblemen. Was um Himmels Willen bedeutet
die Zahl 42? Eine recht magische Zahl. So ein Programmierstil ist in
meinen Augen nicht gerade überzeugend. Klar, wir haben auch
gerade die Zahl 13 für die Pinbezeichnung des digitalen Ausgangs
genommen, doch in Zukunft wollen wir den Programmcode ein
wenig aussagekräftigre gestalten. Übrigens werden solche im Quell-
code auftretende, ominöse Werte Magic Numbers genannt. Doch
kommen wir wieder zurück zu den farblich hervorgehobenen Wör-
tern. Bei diesen handelt es sich um Konstanten. Das sind Bezeich-
ner, die, genau wie Variablen, mit einem Wert initialisiert wurden
und nicht mehr änderbar sind. Deswegen nennt man sie ja auch
Konstanten. Ein solcher Konstantenname sagt doch schon gleich
viel mehr aus als irgendein kryptischer Wert. Auf die Befehle pin-
Mode und digitalWrite kommen wir gleich noch zu sprechen und
ich werde dann auch die Bedeutung dieser Konstanten erklären.

Code-Review
Zu Beginn deklarieren und initialisieren wir eine globale Variable, die
den Namen ledPin aufweist, vom ganzzahligen Datentyps int (int =
Integer) ist und die in allen Funktionen sichtbar ist, mit dem Wert 13.

Tabelle 1-2
Benötigte Variablen und deren

Aufgabe

Die Initialisierung ist gleichbedeutend mit einer Wertzuweisung
über den Zuweisungsoperator =. Die Deklaration und Initialisierung
erfolgt hier in einer Zeile. Damit wird die Schreibweise gegenüber
der zweizeiligen Variante verkürzt.

Abbildung 1-2
Variablen-Deklaration +

 Initialisierung

Stopp mal eben, bevor du hier weiter machst. Wie verhält es sich
eigentlich mit den Wörtern OUTPUT, HIGH oder LOW? Sind das
Schlüsselwörter? Sie sind jedenfalls von der IDE farblich markiert
worden.

Variable Aufgabe

ledPin Enthält die Pin-Nummer für die LED am digitalen Ausgang Pin 13

��%
9�����
8

��

&�	��	F� &��
��
����� #�
	
�

�
�����
-- Projekt 1: Der erste Sketch172

Falls du dich dafür entscheiden solltest, diese beiden Aktionen
getrennt zu schreiben, was natürlich vollkommen ok wäre, dürfen
die beiden Zeilen aber nicht unmittelbar aufeinander folgen. Das
folgende Beispiel führt zu einem Fehler:

int ledPin; // Variable deklarieren

ledPin = 13; // Variable mit dem Wert 13 initialisieren -> Fehler!!!

Die Deklaration der globalen Variablen ledPin erfolgt außerhalb der
Funktionen setup bzw. loop. Die Initialisierung muss jedoch in der
setup-Funktion vorgenommen werden, die einmalig aufgerufen
wird. Der korrekte Sketch-Code würde dann wie folgt lauten:

int ledPin; // Variable deklarieren

void setup(){
 ledPin = 13; // Variable mit dem Wert 13 initialisieren
 // ...

}

Du hättest natürlich auch ohne Variable arbeiten können und
direkt den Wert 13 überall in den Befehlen pinMode bzw. digital-
Write einsetzten können. Was wäre aber der Nachteil? Falls du dich
entschließt, später einmal einen anderen Pin zu verwenden, musst
du den kompletten Sketch-Code durchsuchen und alle entspre-
chenden Stellen anpassen. Das ist recht mühsam und vor allen Din-
gen sehr fehleranfällig. Vielleicht übersiehst du ja die eine oder
andere zu editierende Stelle, und dann hast du ein Problem. Bei
disem kurzen Beispiel macht das noch nichts, doch wenn die Sket-
che länger werden, dann wirst du den eben erläuterten Program-
mieransatz wirklich schätzen lernen. Wir machen wir es daher von
Anfang an richtig – soweit alles klar? Die setup-Funktion wird ein-
malig zu Beginn des Sketchstartes aufgerufen und der digitale Pin
13 als Ausgang programmiert. Sehen wir uns dazu noch einmal den
Befehl pinMode an.

Abbildung 1-3
Der Befehl »pinMode« mit seinen
Argumenten

�������	
��
��������

 �'��
 (
� �����

�������	�
Das Leuchtfeuer – »Hello World« auf Arduinisch -- 173

Er nimmt zwei Argumente auf, wobei der erste für den zu konfigu-
rierenden Pin bzw. Port steht und der zweite bestimmt, ob sich der
Pin wie ein Eingang oder Ausgang verhalten soll. Du willst ja eine
LED anschließen, und deswegen benötigen wir einen Ausgangspin.
Der Befehl erwartet zwei numerische Argumente, wobei das zweite,
das den Modus über die Informationsrichtung darstellt, eine Kon-
stante mit einem bestimmten Wert ist. Hinter der Konstanten
OUTPUT verbirgt sich der Wert 1. Also mal ganz ehrlich, was wür-
dest du zum folgenden Befehl sagen:

pinMode(13, 1);

Also mir wäre da irgendwie nicht so ganz klar, was hier eigentlich
geschieht. Die ursprüngliche Form ist viel aussagekräftiger und du
weißt sofort, worum es geht. Ebenso verhält es sich mit dem Befehl
digitalWrite, der ebenfalls zwei Argumente entgegennimmt.

Abbildung 1-4
Der Befehl »digitalWrite« mit

seinen Argumenten

Hier haben wir ebenfalls eine Konstante mit dem Namen HIGH,
die als Argument bewirken soll, dass ein HIGH-Pegel an Pin 13
anliegt. Dahinter verbirgt sich der numerische Wert 1. In der fol-
genden Tabelle findest du die entsprechenden Werte:

Tabelle 1-3
Konstanten mit den

entsprechenden numerischen
Werten

Der letzte verwendete Befehl delay ist für die Zeitverzögerung
zuständig. Er unterbricht die Sketchausführung für einen entspre-
chenden Zeitraum, wobei der übergebene Wert diese Zeitdauer in
Millisekunden (ms) angibt.

��"�%#9:)�%�	
��
;�<;��

 �'��
 (
� (���

�������	�

Konstante Wert Erklärung

INPUT 0 Konstante für den Befehl pinMode (programmiert Pin als Eingang)

OUTPUT 1 Konstante für den Befehl pinMode (programmiert Pin als Ausgang)

LOW 0 Konstante für den Befehl digitalWrite (setzt Pin auf LOW-Level)

HIGH 1 Konstante für den Befehl digitalWrite (setzt Pin auf HIGH-Level)
-- Projekt 1: Der erste Sketch174

Abbildung 1-5
Der Befehl »delay«

Der Wert 1000 besagt, dass genau 1000 ms, also 1 Sekunde gewar-
tet wird, bis es weitergeht.

Doch nun weiter im Sketch. Nun startet die loop-Funktion, bei der
es sich hier um eine Endlosschleife handelt, ihre Arbeit. Hier die
einzelnen Arbeitsschritte:

1. LED an Pin 13 anschalten

2. Warte eine Sekunde

3. LED an Pin 13 ausschalten

4. Warte eine Sekunde

5. Gehe wieder zu Punkt 1 und beginne von vorne

Der Schaltplan
Wenn du dir den Schaltplan anschaust, wirst du sehen, dass eigent-
lich alles recht verständlich ist.

Abbildung 1-6
Arduino-Board mit einer LED an
Pin 13

��9#&	
�����

 �'��
 ��
	+I��J

�������	
Das Leuchtfeuer – »Hello World« auf Arduinisch -- 175

Die Anode der LED (hier LED-Anschluss 1) wird über den Vorwi-
derstand mit Pin 13 verbunden und das andere Ende, bei dem es
sich um die Kathode handelt (hier LED-Anschluss 2), mit der
Masse des Arduino-Boards.

Schaltungsaufbau
Der Schaltungsaufbau ist dementsprechend einfach. Achte aber auf
die korrekte Polung der LED, denn anderenfalls kannst du lediglich
eine dunkle LED bewundern. Die aufgelötete LED auf dem Board
selbst blinkt aber trotzdem. Du läufst mit einer falsch gepolten LED
also nicht Gefahr, etwas zu beschädigen, doch du solltest es schon
richtig machen.

Abbildung 1-7
Die blinkende LED als Leuchtfeuer

für unseren ersten Sketch

Es ist zwar sehr schwer zu erkennen, doch wenn du genau hin-
schaust, dann siehst du, dass die Onboard-LED zur selben Zeit
leuchtet wie die extern angeschlossene LED. Die LEDs sollten
direkt nach der erfolgreichen Übertragen zum Board zu blinken
beginnen. Wir wollen uns den zeitlichen Verlauf einmal näher
anschauen. Die LED blinkt im Abstand von 2 Sekunden.

Abbildung 1-8
Der zeitliche Verlauf in einem

Impulsdiagramm
-- Projekt 1: Der erste Sketch176

Achtung
Im Internet kursieren Schaltskizzen, bei denen eine Leuchtdi-
ode direkt zwischen Masse und Pin 13 gesteckt wurde. Da die
beiden Steckbuchsen auf der Seite der digitalen Pins direkt
nebeneinander liegen, könnte man dort sehr einfach eine LED
einstecken. Ich warne ausdrücklich vor dieser Variante, da die
LED ohne Vorwiderstand betrieben wird. Dabei mache ich mir
weniger Sorgen um die LED als um deinen Mikrocontroller. Ich
habe einmal die Stärke des Stromes gemessen und er beträgt
ganze 60mA. Dieser Wert liegt 50% über dem Maximum und ist
damit definitiv zu hoch. Erinnere dich daran, dass der maximal
zulässige Strom für einen digitalen Pin des Mikrocontrollers
40mA beträgt.

Troubleshooting
Falls die LED nicht leuchtet, kann es dafür wie schon erwähnt ver-
schiedene Gründe geben:

• Die LED wurde verpolt eingesteckt. Erinnere dich noch einmal
an die beiden unterschiedlichen Anschlüsse einer LED mit der
Anode und Kathode.

• Die LED ist vielleicht defekt und wegen Überspannung aus
vergangenen Experimenten durchgebrannt. Teste Sie mit
einem Vorwiderstand an einer 5V Spannungsquelle.

• Kontrolliere noch einmal die Steckleistenbuchsen, die mit der
LED bzw. dem Vorwiderstand verbunden sind. Sind das wirk-
lich GND und Pin 13?

• Überprüfe noch einmal den Sketch, den du in den Editor der
IDE eingegeben hast. Hast du vielleicht eine Zeile vergessen
oder dich verschrieben und ist der Sketch wirklich korrekt
übertragen worden?

• Wenn die auf dem Board befindliche LED blinkt, dann sollte
die eingesteckte LED ebenfalls blinken. In diesem Fall arbeitet
der Sketch korrekt.
Das Leuchtfeuer – »Hello World« auf Arduinisch -- 177

Was hast du gelernt?
• Du hast die korrekte Deklaration bzw. Initialisierung von glo-

balen Variablen sowohl in einer als auch mehreren Zeilen ken-
nengelernt.

• Die Datenübertragungsrichtung eines einzelnen Pins hast du
mit dem Befehl pinMode auf OUTPUT gesetzt, so dass du ein
digitales Signal (HIGH bzw. LOW) über den Befehl digital-
Write zum Ausgang schicken konntest, an der die LED ange-
klemmt war.

• Über den Befehl delay hast du eine zeitliche Unterbrechung des
Sketches eingeleitet, damit die LED eine bestimmte Zeit an
bzw. aus war.

• Du weißt, dass wenn du eine LED betreiben möchtest, hierzu
ein entsprechend dimensionierter Vorwiderstand unerlässlich
ist. Nachfolgend siehst du ein Ersatzschaltbild der LED mit
einem 220 Ohm Vorwiderstand.

Workshop
In unserem ersten Workshop möchte ich dir die Aufgabe stellen,
den Sketch so zu ändern, dass du die Zeit, in der die LED leuchtet,
und die Zeit, in der die LED dunkel ist, in zwei Variablen ausla-
gerst, so dass du den Tastgrad bequem modifizieren kannst. Der
Tastgrad kann bei einer periodischen Folge von Impulsen angege-
ben werden und beschreibt das Verhältnis von Impulsdauer und
Periodendauer. Das Ergebnis wird meist in Prozent angegeben. Im
folgenden Impulsdiagramm siehst du die unterschiedlichen Zeiten
für t bzw. T.

Abbildung 1-9
Der zeitliche Verlauf eines Impulses
-- Projekt 1: Der erste Sketch178

t = Impulsdauer

T = Periodendauer

Die Formel zur Berechnung des Tastgrades lautet folgendermaßen:

Programmiere den Sketch so, dass die LED 500 ms leuchtet und 1 s
aus ist. Der Tastgrad ließe sich demnach wie folgt berechnen:

Das entspricht dann einem Tastgrad von 33%. In Hinblick auf die
gesamte Periodendauer leuchtet die LED also zu 33%.
Workshop -- 179

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 2 2Einen Sensor abfragen
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In unserem zweiten Experiment behandeln wir folgende Themen:

• Deklarierung und Initialisierung mehrerer Variablen

• Programmierung von Pins als Eingang (INPUT) und Ausgang
(OUTPUT)

• Der Befehl digitalRead()

• Die Verwendung der if-else-Kontrollstruktur

• Der komplette Sketch

• Analyse des Schaltplanes

• Aufbau der Schaltung

• Workshop

Drücke den Taster
In diesem Beispiel wollen wir den umgekehrten Weg gehen, und
nicht wie in unserem ersten Sketch vom Arduino-Board Informatio-
nen in Form von Lichtsignalen an die Außenwelt schicken, sondern
ein Bauteil an einen Pin anschließen, den Zustand des Bauteils
abfragen und diesen wieder an eine angeschlossene LED senden.
Dabei soll sich folgendes Verhalten zeigen:

• Taster nicht gedrückt – LED dunkel

• Taster gedrückt – LED hell
--- 181

http://fritzing.org/

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile.

Sketch-Code
Der Sketch-Code für das Beispiel sieht folgendermaßen aus:

int ledPin = 13; // LED-Pin 13
int tasterPin = 8; // Taster-Pin 8

int tasterStatus; // Variable zur Aufname des Tasterstatus
void setup(){
 pinMode(ledPin, OUTPUT); // LED-Pin als Ausgang
 pinMode(tasterPin, INPUT); // Taster-Pin als Eingang
}

void loop(){
 tasterStatus = digitalRead(tasterPin);
 if(tasterStatus == HIGH)
 digitalWrite(ledPin, HIGH);
 else
 digitalWrite(ledPin, LOW);
}

Wenn du den Code übertragen hast, dann kompiliere ihn wie du es
gelernt hast und sende ihn zum Mikrocontroller.

Benötigte Bauteile

1 x rote LED

1 x Taster

1 x Widerstand 10K

1 x Widerstand 330

Mehrere flexible Steckbrücken in unterschiedli-
chen Farben und Längen
--- Projekt 2: Einen Sensor abfragen182

Das könnte wichtig für dich sein
Ein digitaler Pin arbeitet standardmäßig als Eingang und muss
deswegen nicht explizit über den pinMode-Befehl als solcher
programmiert werden. Für eine bessere Übersicht ist es aber
trotzdem sinnvoll. Du kannst diesen Schritt allerdings dann
weglassen, wenn dein Speicher knapp und daher jedes Byte
wichtig wird.

Code-Review
Du siehst, dass wir es in diesem Beispiel schon mit mehreren Vari-
ablen zu tun haben, die wir zu Beginn erst einmal deklarieren bzw.
initialisieren müssen. Gehen wir der Reihe nach vor:

Tabelle 2-1
Erforderliche Variablen und deren
Aufgabe

Werfen wir kurz einen Blick auf das Flussdiagramm:

Abbildung 2-1
Flussdiagramm zur Ansteuerung
der LED

Das Diagramm liest sich recht einfach. Wenn die Ausführung des
Sketches in der loop-Endlosschleife angelangt ist, wird der Zustand
des Taster-Pins kontinuierlich abgefragt und in der Variablen tas-
terStatus abgelegt. Hier die entsprechende Codezeile:

tasterStatus = digitalRead(tasterPin);

Die Variable wird also auf diese Weise ständig neu initialisiert, und
ihr Inhalt ändert sich in Abhängigkeit vom Tasterstatus. Die Syntax
des Befehls digitalRead lautet wie folgt:

Variable Aufgabe

ledPin enthält die Pin-Nummer für die LED am digitalen Ausgang Pin 13

tasterPin enthält die Pin-Nummer für den Taster am digitalen Eingang Pin 8

tasterStatus dient als Aufnahme des Taster-Status für eine spätere Auswertung

+++?��	�
����1��	+K

:�
�

L�

++++++�	��	

�������
�
'�

H7&+�#0��(���

H7&+HMB�(���

Drücke den Taster --- 183

Abbildung 2-2
Der Befehl »digitalRead«

Diese Funktion wird nicht nur einfach aufgerufen, sondern sie lie-
fert uns einen Rückgabewert, der für unsere Auswertung herange-
zogen werden kann. Über den Zuweisungsoperator = wird der Wert
an die Variable tasterStatus übergeben. Bei den möglichen Werten
kann es sich entweder um HIGH oder LOW handeln, die wie-
derum, wie du schon gelernt hast, Konstanten sind, die die Lesbar-
keit erhöhen. Welche Werte sich dahinter verbergen, weißt du ja
jetzt aus dem letzten Kapitel. Im Anschluss an die Abfrage erfolgt
dann die Bewertung durch eine Kontrollstruktur mittels einer if-
else-Abfrage (Wenn-Dann-Sonst):

if(tasterStatus == HIGH)
 digitalWrite(ledPin, HIGH);
else
 digitalWrite(ledPin, LOW);

Die if-Anweisung bewertet die in den runden Klammern stehende
Bedingung, die frei übersetzt etwa wie folgt lautet: »Ist der Inhalt
der Variablen tasterStatus gleich dem Wert HIGH? Falls ja, führe die
Befehlszeile aus, die der if-Anweisung unmittelbar folgt. Falls nein,
fahre mit der Anweisung fort, die der else-Anweisung folgt.

Abbildung 2-3
Abfrage durch

»if-else«-Kontrollstruktur

Wenn du dir das folgende Flussdiagramm anschaust, erkennst du
die Arbeitsweise dieser Kontrollstruktur:

��"�%#9��#�	%#0%�)�����

 �'��
 (
�

�������	

�A	%#0%�)���
88
;�<;�
��"�%#9:)�%�	9������
;�<;��

�90�
��"�%#9:)�%�	9������
=�:��

$��������

����	

 �'��
 ��
�����
--- Projekt 2: Einen Sensor abfragen184

Abbildung 2-4
Flussdiagramm zur
»if-else«-Kontrollstruktur

Es gibt auch noch eine einfachere Variante der if-Kontrollstruktur,
bei der der else-Zweig nicht vorhanden ist. Wir werden auch hier-
auf noch zu sprechen kommen. Du siehst also, dass ein Programm-
ablauf nicht unbedingt geradlinig verlaufen muss. Es können
Verzweigungen eingebaut werden, die anhand von Bewertungsme-
chanismen unterschiedliche Befehle bzw. Befehlsblöcke zur Aus-
führung bringen. Ein Sketch agiert nicht nur, sondern reagiert auf
äußere Einflüsse, z.B. auf Sensorensignale.

Achtung
Ein sehr häufiger Anfängerfehler ist die Verwechslung von
Gleichheits- und Zuweisungsoperator. Der Gleichheitsoperator
== und der Zuweisungsoperator = haben völlig unterschiedli-
che Aufgaben, werden aber oft vertauscht. Das Heimtückische
ist, dass beide Schreibweisen in einer Bedingung verwendet
werden können und gültig sind. Hier die korrekte Verwendung
des Gleichheitsoperators:

if(tasterStatus == HIGH)

Nun die falsche Verwendung des Zuweisungsoperators:

if(tasterStatus = HIGH)

Aber warum um Himmels Willen erzeugt denn diese Schreib-
weise keinen Fehler? Ganz einfach: Es erfolgt eine Zuweisung
der Konstanten HIGH (numerischer Wert 1) an die Variable tas-
terStatus. 1 bedeutet kein Nullwert und wird als true (wahr)
interpretiert. Bei einer Codezeile, die if(true)... lautet, wird der
nachfolgende Befehl immer ausgeführt. Ein numerischer Wert 0
wird in C/C++ als false (falsch) angesehen und jeder von 0 ver-

�	��	

 ��
�����

��$�
�������"

7���

	���

'�
��

��$�
�������"
Drücke den Taster --- 185

schiedene als true. Derartige Fehler haben es in sich und es
muss immer wieder sehr viel Zeit darauf ver(sch)wendet wer-
den, sie ausfindig zu machen.

Der Schaltplan
Schauen wir uns zunächst den Anschluss des Tasters an den digita-
len Eingang genauer an. Ich habe ihn an Pin 8 angeschlossen, um
ihn räumlich ein wenig von Pin 13 zu trennen. Natürlich hätte ich
auch jeden anderen digitalen Pin verwenden können.

Abbildung 2-5
Arduino-Board mit einem Taster an

Pin 8 (nicht ganz korrekt)

Du siehst hier den offenen Taster, der mit einem Anschluss am
digitalen Pin 8 verbunden ist und mit dem anderen an der +5V
Betriebsspannung des Arduino-Boards. Und hier beginnen die Pro-
bleme auch schon an. Die Schaltung, wie du sie hier siehst, funktio-
niert nicht so, wie du es dir vielleicht vorstellst. Wenn einem
Eingang kein definierter Pegel in Form von HIGH bzw. LOW zuge-
führt wird, ist das Verhalten von den unterschiedlichsten Faktoren
wie z.B. statischer Energie aus der Umgebung oder Luftfeuchtigkeit
abhängig. Das gleicht eher einem Glücksspiel als einer stabilen
Schaltung. Zur Behebung dieses Problems gibt es unterschiedliche
Ansätze, von denen du einige nach und nach kennen lernen wirst.
Abhilfe schafft z.B. ein sogenannter Pull-Down-Widerstand, der
den Pegel bzw. das Potential quasi nach unten zieht. Da jedoch
über diesen Widerstand auch ein Strom fließt, sollte er relativ hoch
--- Projekt 2: Einen Sensor abfragen186

gewählt werden. Die folgende Schaltung zeigt diesen Widerstand,
der Pin 8 über 10K (das ist ein Erfahrungswert, der in der Literatur
oftmals verwendet wird) nach Masse zieht, wenn der Taster nicht
geschlossen ist.

Abbildung 2-6
Arduino-Board mit einem Taster an
Pin 8 inklusive Pull-Down-Wider-
stand

Somit hat der digitale Eingang bei offenem Taster einen definierten
LOW-Pegel, der von der Software eindeutig erkannt wird. Wenn
der Taster jetzt gedrückt wird, fallen über dem Widerstand die +5V
Betriebsspannung ab. Diese liegt sofort an Pin 8 an, dem dann ent-
sprechend ein definierter HIGH-Pegel zugeführt wird. Mit diesem
Vorwissen können wir uns nun der eigentlichen Schaltung widmen.

Abbildung 2-7
Arduino-Board mit kompletter
Schaltung für Taster und LED
Drücke den Taster --- 187

Ok, das ist natürlich ein berechtigter Einwand und das schreit nach
einer Erklärung. Ich werde dir jetzt zeigen, wie man einen Vorwi-
derstand berechnet, der in einer Schaltung gut funktioniert und bei
dem es zu keinerlei Problemen kommt. Die folgende Abildung zeigt
eine Schaltung mit einer LED und Vorwiderstand sowie die ent-
sprechenden Strom- bzw. Spannungswerte.

Abbildung 2-8
Eine LED mit Vorwiderstand und
Strom- bzw. Spannungswerten

Um den Wert eines Widerstandes zu berechnen, wird wieder das
Ohmsche Gesetz herangezogen. Ich habe die allgemeine Formel
schon nach dem zu ermittelnden Widerstand R umgestellt.

Wie ermitteln wir aber jetzt die Werte von Spannung und Strom?
Ganz einfach: An Vorwiderstand und LED, die ja in Reihe geschal-
tet sind, liegen +5V an. Diese Spannung liefert ja der Ausgang eines

Ich muss mal wieder unterbrechen, denn mich macht wieder einmal
etwas stutzig. Als Vorwiderstand hast du im vorherigen Kapitel einen
220 Ohm-Widerstand eingesetzt. Der hier verwendete weist aber
einen Wert von 330 Ohm auf. Das gleicht ja ebenfalls einem Glücks-
spiel. Was soll ich denn nun nehmen?
--- Projekt 2: Einen Sensor abfragen188

Arduino-Pins. An der LED zwischen den Punkten B und C fallen in
der Regel so um die +2V ab, je nach eingesetzter LED bzw. deren
Farbe. Die Spannung am Vorwiderstand, also zwischen den Punk-
ten A und B in der Schaltung, ist demnach die Differenz von +5V
und +2V, also +3V. Jetzt müssen wir nur noch wissen, wie groß der
Strom ist, der durch Widerstand und LED fließt. Erinnere dich
daran, dass in einer Reihenschaltung von elektronischen Bauteilen
der Strom durch alle gleich ist. Aus dem Datenblatt des Arduino-
Boards kannst du erfahren, dass der maximale Strom, den ein Pin
zu liefern in der Lage ist, 40mA beträgt. Dieser Wert darf unter kei-
nen Umständen überschritten werden, da der Mikrocontroller sonst
auf jeden Fall Schaden nehmen würde. Daher begrenzen wir den
Stromfluss durch eben diesen in der Schaltung eingefügten Vorwi-
derstand RV. Es ist jedoch nicht ratsam, am Limit von 40mA zu
arbeiten, sondern zur Sicherheit immer etwas darunter. Zur Berech-
nung des Vorwiderstandes verwende ich einmal zwei unterschiedli-
che Stromwerte von 5mA und 10mA, wobei Werte zwischen 5mA
und 30mA für eine LED vollkommen ok sind:

und

Der Wert des Vorwiderstandes kann sich also im Bereich von 300
bis 600 Ohm bewegen, so dass der Ausgangsport des Arduino nur
moderat belastet wird. Natürlich können auch höhere Wider-
standswerte eingesetzt werden, um den Strom noch weiter zu
begrenzen, doch für eine LED würde das bedeuten, dass ihre Hel-
ligkeit immer weiter abnehmen würde, und du möchtest ja schließ-
lich noch sehen, wenn sie leuchtet. Ich habe mich für einen Wert
von 330 Ohm bei allen weiteren Schaltungen bei LEDs mit Vorwi-
derstand entschieden. Widerstände werden übrigens nicht in allen
möglichen Werten produziert, sondern es gibt unterschiedlichen E-
Reihen mit bestimmten Abstufungen. Du solltest bei dem Kauf von
Widerständen, die in praktischen Sortimenten erhältlich sind, auch
auf die maximale Verlustleistung achten. Widerstände mit einer
Verlustleistung von ¼ Watt sind dabei vollkommen ausreichend.
Soweit die Theorie. Es geht doch aber nichts über reale Messungen
Drücke den Taster --- 189

am lebenden Objekt. Ich habe ein Multimeter in den Stromkreis
der LED Ansteuerung geschaltet, um den Strom zu messen.

Abbildung 2-9
Strommessung im LED-Ansteue-

rungskreis mit Vorwiderstand

Um den Strom auf maximal 10mA zu begrenzen, habe ich einen
Vorwiderstand von 330 Ohm gewählt. Das Multimeter zeigt einen
Strom von 8,58mA an, das entspricht fast dem vorgegebenen Wert
von 10mA. Der Unterschied kommt durch Bauteiltoleranzen
zustande und ist sogar etwas geringer als in der Vorgabe vorgese-
hen.

Schaltungsaufbau
Der Schaltungsaufbau wird schon etwas komplexer und deswegen
wollen wir uns das Ganze einmal mittels Fritzing anschauen. Dieses
wirklich nützliche Tool findest du auf der Internetseite http://
fritzing.org/. Es unterstützt uns beim Aufbau und Zusammenste-
cken elektronischer Bauteile auf einer Arbeitsunterlage. Du hast z.
B. die Arduino-Mikrocontrollerplatine, ein Breadboard, diverse
elektronische bzw. elektrische Komponenten und vieles mehr. Du
kannst dir diese Software kostenfrei herunterladen und für deine
Projekte verwenden.
--- Projekt 2: Einen Sensor abfragen190

http://fritzing.org
http://fritzing.org

Abbildung 2-10
Aufbau der Schaltung mit Fritzing

Das könnte wichtig für dich sein
Falls du dir nicht mehr sicher sein solltest, wie die einzelnen
Buchsen eines Breadboards untereinander verbunden sind,
dann schlage noch einmal im Elektronikkapitel unter Steckbrett
nach. Dort findest du den grundlegenden internen Verdrah-
tungsplan.

Troubleshooting
Falls die LED nicht leuchtet, wenn du den Taster drückst, oder die
LED ständig leuchtet, trenne das Board aus Sicherheitsgründen
sofort vom USB-Anschluss und überprüfe Folgendes:

• Entsprechen deine Steckverbindungen auf dem Breadboard
wirklich der Schaltung?

• Wurde die LED ist richtig herum eingesteckt, d.h. ist die Pol-
ung korrekt?

• Es gibt Taster mit 2 bzw. 4 Anschlüssen. Werden bei der Vari-
ante mit 4 Anschlüssen, die einzelnen Anschlüsse korrekt ver-
wendet? Führe ggf. einen Durchgangstest mit einem
Multimeter durch und überprüfe damit die Funktionsfähigkeit
des Tasters und der entsprechenden Beinchen.

• Haben die beiden Widerstände die korrekten Werte oder wur-
den sie versehentlich vertauscht?

• Ist der Sketch-Code korrekt?
Drücke den Taster --- 191

Weitere Möglichkeiten für definierte
Eingangspegel
Bevor wir dieses Kapitel beschließen, möchte ich noch – wie ver-
sprochen – auf weitere Möglichkeiten eingehen, einen definierten
Pegel an einem Eingangspin zu erhalten, wenn kein Eingangssignal
von außen anliegt. Folgende drei Varianten sind für uns wichtig:

Mit Pulldown-Widerstand
Diese Schaltung hast du gerade eben schon verwendet.

Abbildung 2-11
Schaltung mit Pulldown-Wider-

stand

Bei offenem Taster gelangt das Massepotential über den Pulldown-
Widerstand an den Eingangspin deines Mikrocontrollers. Wird der
Taster geschlossen, dann fällt über dem Widerstand die Versor-
gungsspannung von +5V ab und das Potential am Eingangspin
steigt auf eben diesen Wert.

Tabelle 2-2
Pinpotentiale

Mit Pullup-Widerstand
Was bei einem Widerstand nach Masse funktioniert, kann auch
mit einem Widerstand in Richtung Versorgungsspannung realisiert
werden. Die Potentiale sind jetzt genau umgekehrt.

Tasterstatus Pin-Potential

Offen 0V (Masse, LOW-Pegel)

Geschlossen +5V (Versorgungsspannung, HIGH-Pegel)
--- Projekt 2: Einen Sensor abfragen192

Drücke den Taster --- 193

Abbildung 2-12
Schaltung mit Pullup-Widerstand

Bei offenem Taster liegt die Versorgungsspannung von +5V über
dem Pullup-Widerstand am Eingangspin deines Mikrocontrollers
an. Wird der Taster geschlossen, dann wird der Pin sofort mit dem
Massepotential verbunden.

Tabelle 2-3
Pinpotentiale

Mit internem Pullup-Widerstand
des Mikrocontrollers
Die ganze Arbeit und der Aufwand mit einem separaten Pulldown-
bzw. Pullup-Widerstand ist eigentlich überflüssig, denn dein Mikro-
controller besitzt intern an den digitalen Pins fest eingebaute
Pullup-Widerstände, die bei Bedarf über die Software hinzugeschal-
tet werden können. Du kannst dir das folgendermaßen vorstellen:

Abbildung 2-13
Interner Pullup-Widerstand des
Mikrocontrollers

Tasterstatus Pin-Potential

Offen +5V (Versorgungsspannung, HIGH-Pegel)

Geschlossen 0V (Masse, LOW-Pegel)

Ich habe in diesem Beispiel den Pin 10 ausgesucht, an dem z.B. dein
Taster angeschlossen wird. Du erkennst den internen Pullup-
Widerstand R, der über einen elektronischen Schalter den Pin 10
mit der Versorgungsspannung +5V verbindet. Die Frage ist jetzt
aber, wie du diesen Schalter schließen kannst, damit der Pin bei
fehlendem Eingangssignal einen HIGH-Pegel aufweist. Hierzu sind
folgende Befehle erforderlich:

pinMode(pin, INPUT); // Pin als Eingang programmieren
digitalWrite(pin, HIGH); // Einschalten des internen Pullup-Widerstandes

Genau das ist ja der Punkt. Über die gerade gezeigte Befehlssequenz
aktivierst du den internen 20K Pullup-Widerstand, der das Potential
in Richtung +5V zwingt, wenn kein Eingangssignal anliegt.

Achtung
Falls du dich für die beiden Varianten (externer bzw. interner
Pullup-Widerstand) entscheiden solltest, dann musst du deinen
Code ein wenig modifizieren. Überlege erst einmal, bevor du
jetzt weiter liest. Wird der Taster nicht betätigt, dann liegt,
wenn du mit einem Pulldown-Widerstand arbeitest, am Eingang
des Pins ein LOW-Pegel an. Die Abfrage, ob der Taster gedrückt
wird, erfolgt dann über folgende Zeile:

if(tasterStatus == HIGH)

So weit so gut. Jetzt arbeitest du jedoch mit einem Pullup-
Widerstand, der bei offenem Taster ein HIGH-Signal am Pin ver-
ursacht. Um den Taster auf gedrückt hin abzufragen, musst du
jetzt die Zeile

if(tasterStatus == LOW)

schreiben, bei der du das HIGH gegen LOW ausgetauscht hast. Klar?

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• Pullup Widerstand

• Pulldown Widerstand

Stopp mal! Hier stimmt doch was nicht. Du programmierst einen Pin
als Eingang, weil wir hieran einen Taster anschließen wollen. Das ist
mir noch klar. Aber dann sendest du etwas mit digitalWrite an eben
diesen Pin, der nicht als Ausgang programmiert wurde. Was soll denn
das bitte bedeuten?
--- Projekt 2: Einen Sensor abfragen194

Was hast du gelernt?
• Du hast die Verwendung mehrerer Variablen kennengelernt,

die für die unterschiedlichsten Zwecke genutzt wurden (Dekla-
ration für Eingangs- bzw. Ausgangspin und Aufnahme von Sta-
tusinformationen).

• Digitale Pins sind standardmäßig als Eingang programmiert
und müssen nicht explizit als solche programmiert werden.

• Du hast die Funktion digitalRead kennengelernt, die in Abhän-
gigkeit vom anliegenden Pegel an einem digitalen Eingang ent-
weder LOW oder HIGH zurückliefert. Dieser Wert wurde
einer Variablen zugewiesen, um sie später in einer weiteren
Verarbeitung zu nutzten.

• Anhand der if-else-Kontrollstruktur hast du gesehen, wie
innerhalb eines Sketches auf bestimmte Einflüsse reagiert wer-
den kann, um den Ablauf zu steuern.

• Verschiedene Schaltpläne haben dir veranschaulicht, wie man
Verbindungen zwischen elektronischen Komponenten gra-
fisch darstellt, um die Schaltung in ihrer Funktion zu verste-
hen.

• Ein offener digitaler Eingang einer elektronischen Kompo-
nente, der keinen definierten Pegel (HIGH oder LOW) auf-
weist, führt in der Regel zu undefiniertem Verhalten der
Schaltung, das nicht vorhersehbar ist.

• Aus diesem Grund wurde die Verwendung des Pulldown-
Widerstandes bzw. des Pullup-Widerstandes erläutert, die
jeweils ein definiertes Potential erzwingen.

• Der Mikrocontroller besitzt interne 20K Pullup-Widerstände,
die über die Software aktiviert werden können. Auf diese
Weise kannst du dir das Hinzufügen von externen Pullup-
Widerständen sparen.

• Die Berechnung eines Vorwiderstandes für eine LED bereitet
dir jetzt keine Probleme mehr.

• Du hast das Tool Fritzing kennengelernt, mit dem du bei der
Erstellung von Schaltungen per Drag & Drop sehr schnell
Resultate erzielen kannst.

Workshop
In diesem Workshop möchte ich dir eine Aufgabe stellen, bei der es
um das Pullen von digitalen Pegeln geht. Pullen heißt ja bekanntlich
Workshop -- 195

ziehen und genau das tut ein Pull-Down-Widerstand. Der umge-
kehrte Weg ist aber ebenso möglich. Über einen Pullup-Widerstand
kannst du einen Pegel nach oben in Richtung Versorgungsspannung
ziehen. Du siehst hier einen bereits bekannten Ausschnitt aus einer
Schaltung:

Abbildung 2-14
Pull-Up-Widerstand

Programmiere deinen Sketch so um, dass die Schaltung wie hier
gezeigt funktioniert. Drückst du den Taster, dann leuchtet die LED.
Lässt du ihn los, dann geht sie wieder aus. Der Punkt Pin in der
Schaltung wird dabei mit Pin 8 deines Arduino-Boards verbunden.
Die Ansteuerung der LED bleibt dabei unverändert.
--- Projekt 2: Einen Sensor abfragen196

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 3 3Blinken mit
Intervallsteuerung
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Deklarierung und Initialisierung mehrerer Variablen

• Programmierung mehrerer Pins sowohl als Eingang (INPUT)
als auch als Ausgang (OUTPUT)

• Der Befehl digitalRead()

• Der Befehl millis()

• Die Verwendung der if-else-Kontrollstruktur

• Der komplette Sketch

• Analyse des Schaltplanes

• Aufbau der Schaltung

• Workshop

Drücke den Taster und
er reagiert
In unserem ersten Beispiel hast du gesehen, wie wir über die Verzö-
gerungsfunktion delay eine Unterbrechung in der Sketchausfüh-
rung bewirkt haben. Die angeschlossene LED an dem digitalen
Ausgang Pin 13 blinkte in regelmäßigen Abständen. Eine solche
Schaltung bzw. Programmierung hat jedoch einen Nachteil, den
wir erkennen und beheben wollen. Wir müssen die Blinkschaltung
ein wenig erweitern. Was geschähe wohl, wenn du an einem digita-
len Eingang zusätzlich einen Taster anschließen würdest, um sei-
--- 197

nen Zustand kontinuierlich abzufragen. Wenn du die Taste
drückst, soll eine weitere LED leuchten. Vielleicht erkennst du
schon jetzt, worauf ich hinaus möchte. Solange die Sketchausfüh-
rung in der delay-Funktion gefangen ist, wird die Abarbeitung des
Codes unterbrochen, und der digitale Eingang kann demnach nicht
abgefragt werden. Du drückst also den Taster und nichts passiert.

Benötigte Bauteile
Für dieses Beispiel benötigen wir eine LED und einen Taster.

Sketch-Code
Der folgende Sketch-Code funktioniert nicht, wie wir es vielleicht
erwarten würden.

// Der folgende Code funktioniert nicht wie erhofft 
int ledPinBlink = 13; // Rote Blink-LED-Pin 13
int ledPinTaster = 10; // Gelbe Taster-LED-Pin 10

int tasterPin = 8; // Taster-Pin 8
int tasterStatus; // Variable zur Aufname des Tasterstatus
void setup(){
 pinMode(ledPinBlink, OUTPUT); // Blink-LED-Pin als Ausgang
 pinMode(ledPinTaster, OUTPUT); // Taster-LED-Pin als Ausgang
 pinMode(tasterPin, INPUT); // Taster-Pin als Eingang
}

Benötigte Bauteile

1 x rote LED

1 x gelbe LED

1 x Taster

1 x Widerstand 10K

2 x Widerstand 330

Mehrere flexible Steckbrücken in unterschiedli-
chen Farben und Längen
--- Projekt 3: Blinken mit Intervallsteuerung198

void loop(){
 // Blink-LED blinken lassen
 digitalWrite(ledPinBlink, HIGH); // Rote LED auf High-Pegel (5V)
 delay(1000); // Eine Sekunde warten
 digitalWrite(ledPinBlink, LOW); // Rote LED auf LOW-Pegel (0V)
 delay(1000); // Eine Sekunde warten

 // Abfrage des Taster-Status
 tasterStatus = digitalRead(tasterPin);

 if(tasterStatus == HIGH)
 digitalWrite(ledPinTaster, HIGH); // Gelbe LED auf High-Pegel (5V)
 else

 digitalWrite(ledPinTaster, LOW); // Gelbe LED auf Low-Pegel (0V)
}

Du hast es erfasst und auch richtig formuliert. Das entscheidende
Wörtchen ist hier irgendwann! Du möchtest aber, dass zu jedem
Zeitpunkt der Abarbeitung deines Codes auf den Taster reagiert
wird und nicht nur dann, wenn die Ausführung irgendwann einmal
dort vorbeischaut. Die delay-Funktionen behindern doch quasi die
Fortführung des Codes. Klar? Ich zeige dir das Verhalten einmal an
einem Impulsdiagramm, bei dem die drei relevanten Signale wie
Blink-LED (Pin 13), Taster (Pin 8) und Taster-LED (Pin 10) unter-
einander zu sehen sind:

Abbildung 3-1
Impulsdiagramm der Signale an Pin
13, 8 und 10

Schaue einmal auf das gelbe Signal, das den Zustand des Tasters
darstellt. Ich drücke ihn mehrmals und dennoch reagiert das rote
Signal an Pin 10 anfangs nicht. Halte ich den Taster jedoch für eine
längere Zeit gedrückt (an den mit A markierten Stellen), dann
siehst Du, dass das Signal an Pin 10 endlich ebenfalls auf HIGH-
Pegel wechselt. Aber warum geschieht das nicht an der mit B mar-
kierten Stelle? Da halte ich doch auch den Taster längere Zeit

Das verstehe ich irgendwie nicht. Die Ausführung kommt doch in der
Endlosschleife irgendwann einmal an der Zeile für die Tasterabfrage
vorbei. Dann wird der Status doch korrekt abgefragt.
Drücke den Taster und er reagiert -- 199

gedrückt. Ganz einfach! Du hast zwei delay-Aufrufe und der zweite
ist für die Verzögerung des LOW-Pegels zuständig. Wurde dieser
abgearbeitet, dann wird der Zustand des Tasters ganz kurz abge-
fragt, und zwar genau zwischen dem Wechsel von LOW nach
HIGH. Deswegen reagiert der Pegel an Pin 10 immer auf die anstei-
gende (A) und nicht auf die abfallende (B) Flanke. Ist doch eigent-
lich recht simpel, oder!? Aus diesem Grund müssen wir aber jetzt
auf delay verzichten und einen anderen Weg wählen. Schau’ einmal
her, und lass’ dich nicht durch den Umfang der Codezeilen irritie-
ren, denn wir gehen alles schrittchenweise durch:

int ledPinBlink = 13; // Rote Blink-LED-Pin 13
int ledPinTaster = 10; // Gelbe Taster-LED-Pin 10
int tasterPin = 8; // Taster-Pin 8

int tasterStatus; // Variable zur Aufname des Tasterstatus
int interval = 2000; // Intervalzeit (2 Sekunden)
unsigned long prev; // Zeit-Variable

int ledStatus = LOW; // Statusvariable für die Blink-LED

void setup(){
 pinMode(ledPinBlink, OUTPUT); // Blink-LED-Pin als Ausgang
 pinMode(ledPinTaster, OUTPUT); // Taster-LED-Pin als Ausgang
 pinMode(tasterPin, INPUT); // Taster-Pin als Eingang
 prev = millis(); // jetzigen Zeitstempel merken
}

void loop(){
 // Blink-LED über Intervalsteuerung blinken lassen
 if((millis() - prev) > interval){

 prev = millis();
 ledStatus = !ledStatus; // Toggeln des LED-Status
 digitalWrite(ledPinBlink, ledStatus); // Toggeln der roten LED

 }
 // Abfrage des Taster-Status
 tasterStatus = digitalRead(tasterPin);

 if(tasterStatus == HIGH)
 digitalWrite(ledPinTaster, HIGH); // Gelbe LED auf High-Pegel (5V)
 else

 digitalWrite(ledPinTaster, LOW); // Gelbe LED auf High-Pegel (0V)
}

Code-Review
Hier siehst Du, dass wir es mit immer mehr Variablen zu tun
haben, die wir am Anfang erst einmal deklarieren bzw. initialisieren
müssen. Gehen wir der Reihe nach vor:
--- Projekt 3: Blinken mit Intervallsteuerung200

Tabelle 3-1
Erforderliche Variablen und deren
Aufgabe

Ich denke, dass ich mit der Intervalsteuerung beginne, denn sie ist
hier das Wichtigste. Das folgende Diagramm zeigt uns einen zeitli-
chen Verlauf mit bestimmten markanten Zeitwerten. Zuvor muss
ich aber noch einige Dinge im Quellcode erklären. Da ist zum einen
die neue millis-Funktion, die die Zeit seit dem Starten des aktuellen
Sketches in Millisekunden zurück liefert. Dabei ist auf etwas Wich-
tiges zu achten. Der Rückgabedatentyp ist unsigned long, also ein
vorzeichenloser 32-Bit Ganzzahltyp, dessen Wertebereich sich von
0 bis 4.294.967.295 (232-1) erstreckt. Dieser Wertebereich ist so
groß, weil er über einen längeren Zeitraum (max. 49.71 Tage) in
der Lage sein soll, die Daten aufzunehmen, bevor es zu einem Über-
lauf kommt.

Das könnte für dich wichtig sein
Ein Überlauf bedeutet bei Variablen übrigens, dass der maximal
abbildbare Wertebereich für einen bestimmten Datentyp über-
schritten wurde und anschließend wieder bei 0 begonnen
wird. Für den Datentyp byte, der eine Datenbreite von 8 Bits
aufweist und demnach 28 = 256 Zustände (0 bis 255) speichern
kann, tritt ein Überlauf bei der Aktion 255 + 1 auf. Den Wert 256
ist der Datentyp byte nicht mehr in der Lage zu verarbeiten.

Es wurden von mir drei weitere Variablen eingefügt, die folgende
Aufgabe haben:

• interval (nimmt die Zeit im ms auf, die für das Blinkinterval
zuständig ist)

• prev (nimmt die aktuell verstrichene Zeit in ms auf. Prev
kommt von previous und bedeutet übersetzt: vorher)

• ledStatus (In Abhängigkeit des Status von HIGH oder LOW
der Variablen, wird die Blink-LED angesteuert)

Variable Aufgabe

ledPinBlink Enthält die Pin-Nummer für die LED am digitalen Ausgang Pin 13

ledPinTaster Enthält die Pin-Nummer für die LED am digitalen Eingang Pin 10

tasterPin Enthält die Pin-Nummer für den Taster am digitalen Eingang Pin 8

tasterStatus Dient als Aufnahme des Taster-Status für spätere Auswertung

interval Enthält den Wert für die Intervalsteuerung

prev Nimmt den aktuellen Wert der millis-Funktion auf

ledStatus Speichert den Status für die Taster-LED
Drücke den Taster und er reagiert -- 201

Abbildung 3-2
Zeitlicher Verlauf der

Intervalsteuerung

Wollen wir das Diagramm einmal analysieren, wobei ich markante
Zeitpunkte zur Verdeutlichung herausgegriffen habe. Natürlich
läuft die Zeit nicht real in diesen Schritten ab:

Tabelle 3-2
Variableninhalte im zeitlichen

Verlauf

Während des ganzen Ablaufes wurde an keiner Stelle im Quellcode
ein Halt in Form einer Pause eingelegt, so dass das Abfragen des

��
	
�
�	�

	+I��J

)444 /444 3444 5444 2444

���G �

��" �

��"����G

)444)444 4
)

/

3

5

)444 /444)444

)444 3444 /444

)444 344) /44)

#�	��G�
+.+/444

Zeitpunkt Erklärung

1 Es wird die aktuelle Zeit (in diesem Fall 1000) in Millisekunden in die Variable prev
übernommen. Dies erfolgt einmalig in der setup-Funktion. Die Differenz millis() –
prev liefert den Wert 0 zum Ergebnis. Dieser Wert ist nicht größer als der Interval-
wert 2000. Die Bedingung ist nicht erfüllt und der if-Block wird nicht ausgeführt.

2 Weitere 1000 ms später wird wieder die Differenz millis() – prev gebildet und das
Ergebnis dahingehend überprüft, ob es größer als der Intervalwert 2000 ist. 1000
ist nicht größer 2000, also ist die Bedingung wieder nicht erfüllt.

3 Nochmals 1000 ms später wird erneut die Differenz millis() – prev gebildet und das
Ergebnis dahingehend überprüft, ob es größer als der Intervalwert 2000 ist. 2000
ist nicht größer 2000, also ist die Bedingung wieder nicht erfüllt.

4 Nach 3001 ms Laufzeit erbringt die Differenz jedoch einen Wert, der größer als der
Intervalwert 2000 ist. Die Bedingung wird erfüllt und der if-Block zur Ausführung
gebracht. Es wird der alte prev-Wert mit dem aktuellen Zeit aus der millis-Funktion
überschrieben. Der Zustand der Blink-LED kann umgekehrt werden. Das Spiel
beginnt auf der Basis des neuen Zeitwertes in der Variablen prev von vorne.
--- Projekt 3: Blinken mit Intervallsteuerung202

digitalen Pins 8 zur Steuerung der Taster-LED in keinster Weise
beeinträchtigt wurde. Ein Druck auf den Taster wird fast unmittel-
bar ausgewertet und zur Anzeige gebracht. Der einzige neue Befehl,
bei dem es sich ja um eine Funktion handelt, die einen Wert zurück
liefert, lautet millis.

Abbildung 3-3
Der Befehl »millis«

Du siehst, dass er keine Argumente entgegen nimmt und deswegen
ein leeres Klammernpaar hat. Sein Rückgabewert besitzt den
Datentyp unsigned long.

Du bist ja wieder schneller als ich, denn so weit war ich doch noch
gar nicht. Aber ok, wenn Du’s schon mal ansprichst, dann will ich
auch sofort darauf eingehen. In der Variablen ledStatus wird der
Pegel gespeichert, der die rote LED ansteuert bzw. für das Blinken
zuständig ist (HIGH bedeutet leuchten und LOW bedeutet dun-
kel). Über die nachfolgende Zeile

digitalWrite(ledPinBlink, ledStatus);

wird die LED dann angesteuert. Das Blinken wird ja gerade
dadurch erreicht, dass du zwischen den beiden Zuständen HIGH
bzw. LOW hin- und herschaltest. Das wird auch Toggeln genannt.
Ich werde die Zeile etwas umformulieren, denn dann wird der Sinn
vielleicht etwas deutlicher.

if(ledStatus == LOW)
 ledStatus = HIGH;
else
 ledStatus = LOW;

In der ersten Zeile wird abgefragt, ob der Inhalt der Variablen led-
Status gleich LOW ist. Falls ja, setze ihn auf HIGH, andernfalls auf
LOW. Das bedeutet ebenfalls ein Toggeln des Status. Viel kürzer
geht es mit der folgenden einzeiligen Variante, die ich ja schon ver-
wendet habe.

ledStatus = !ledStatus; // Toggeln des LED-Status

(�99�0	��

 �'��

Eine Zeile bereitet mir aber noch ein wenig Kopfschmerzen. Was
bedeutet denn ledStatus = !ledStatus ? Und was heisst toggeln?
Drücke den Taster und er reagiert -- 203

Ich verwende dabei den logischen Not-Operator, der durch das
Ausrufezeichen repräsentiert wird. Er wird häufig bei booleschen
Variablen verwendet, die nur die Wahrheitswerte true bzw. false
annehmen können. Der Not-Operator ermittelt ein Ergebnis, das
einen entgegengesetzten Wahrheitswert aufweist, wie der Operand.
Es funktioniert aber auch bei den beiden Pegeln HIGH bzw. LOW.

Am Schluss wird noch ganz normal und ohne Verzögerung der Tas-
ter an Port 8 abgefragt.

 tasterStatus = digitalRead(tasterPin);

 if(tasterStatus == HIGH)
 digitalWrite(ledPinTaster, HIGH);
 else

 digitalWrite(ledPinTaster, LOW);

Ich zeige dir das Verhalten wieder an einem Impulsdiagramm, bei
dem die drei relevanten Signale wieder Blink-LED (Pin 13), Taster
(Pin 8) und Taster-LED (Pin 10), wie auch schon eben, untereinan-
der dargestellt sind:

Abbildung 3-4
Impulsdiagramm der Signale an Pin

13, 8 und 10

Wir erkennen, dass das blaue Signal die Blink-LED an Pin 13 dar-
stellt. Wenn ich jetzt in unregelmäßigen Abständen den Taster an
Pin 8 betätige - dargestellt durch das gelbe Signal - reagiert unmit-
telbar das rote Signal der Taster-LED an Pin 10. Es ist keine Zeit-
verzögerung bzw. Unterbrechung zu erkennen. Das Verhalten der
Schaltung ist genau das, was wir erreichen wollten.

Der Schaltplan
Das Lesen des Schaltplanes dürfte dir jetzt wohl keine Probleme
mehr bereiten. Es ist lediglich eine weitere LED hinzugekommen,
die auf den Druck des Tasters reagieren soll.
--- Projekt 3: Blinken mit Intervallsteuerung204

Abbildung 3-5
Arduino-Board mit Taster und zwei
LEDs

Schaltungsaufbau
Auf deinem Breadboard wird es jetzt schon ein wenig voller.

Abbildung 3-6
Aufbau der Schaltung mit Fritzing

Das könnte wichtig für dich sein
Wie du dieser und auch im letzten Schaltungsaufbau sicherlich
bemerkt hast, verwende ich unterschiedliche Farben für die fle-
xiblen Steckbrücken. Wenn du Schaltungen auf deinem Bread-
board zusammen steckst, dann ist es ratsam, dass du ebenfalls
mit unterschiedlichen Farben arbeitest. Ich habe z.B. Rot für die
Betriebsspannung und Schwarz für Masse verwendet. Weitere
Signalleitungen kannst du in Blau, Gelb oder auch Rot stecken.
Drücke den Taster und er reagiert -- 205

Es gibt da keine festen Regeln, doch du solltest für dich selbst
ein Farbsystem entwickeln, damit du den Überblick behältst. Es
könnte auch für Außenstehende hilfreich sein, ein sauber kon-
zipiertes Breadboard vorzufinden.

Troubleshooting
Falls die LED nicht leuchtet, wenn du den Taster drückst, oder die
LED ständig leuchtet, überprüfe bitte Folgendes:

• Entsprechen deine Steckverbindungen auf dem Breadboard
wirklich der Schaltskizze?

• Wurden die LEDs richtig herum eingesteckt? Denke an die
richtige Polung!

• Achte auf den Taster mit 2 bzw. 4 Anschlüssen. Führe ggf.
einen Durchgangstest mit einem Multimeter durch, und über-
prüfe so die Funktionsfähigkeit des Tasters und der entspre-
chenden Beinchen.

• Haben die beiden Widerstände die korrekten Werte? Wurden
sie eventuell vertauscht?

• Ist der Sketch-Code korrekt?

Was hast du gelernt?
• Du hast die Verwendung mehrerer Variablen kennengelernt,

die für die unterschiedlichsten Zwecke genutzt wurden (Dekla-
ration für Eingangs- bzw. Ausgangspin und Aufnahme von Sta-
tusinformationen).

• Der Befehl delay unterbricht die Ausführung des Sketches und
erzwingt eine Pause, so dass alle nachfolgenden Befehle nicht
berücksichtigt werden, bis die Wartezeit verstrichen ist.

• Du hast über die Intervallsteuerung mittels der millis-Funktion
einen Weg kennengelernt, dennoch den kontinuierlichen Sketch-
ablauf der loop-Endlosschleife aufrecht zu erhalten, so dass
weitere Befehle der loop-Schleife zur Ausführung gebracht
wurden und damit eine Auswertung weiterer Sensoren, wie z.B.
der angeschlossene Taster, möglich waren.

• Du hast verschiedene Impulsdiagramme kennen und lesen
gelernt, die grafisch unterschiedliche Pegelzustände im zeitli-
chen Verlauf sehr gut darstellen.
--- Projekt 3: Blinken mit Intervallsteuerung206

Workshop
Entwerfe doch einfach mal einen Sketch, der bei einem Tasten-
druck die LED zum Leuchten bringt und beim nächsten wieder
ausschaltet. Das soll immer in diesem Wechsel geschehen. Eine
knifflige Angelegenheit, die wir für ein kommendes Kapitel benöti-
gen werden. Vielleicht stößt du dabei auf ein Problem, dass wir spä-
ter lösen wollen. Das Stichwort lautet Prellen. Doch dazu später
mehr.
Drücke den Taster und er reagiert -- 207

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 4 4Der störrische Taster
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
f den
n

-> also: manuell auf den Arbeitsseiten ziehen!!!er)
Scope
In diesem Kapitel wirst du erkennen, dass sich ein Taster oder auch
ein Schalter nicht immer so verhält, wie du es dir vielleicht vor-
stellst. Nehmen wir für dieses Beispiel einen Taster, der – so die
Theorie – eine Unterbrechung des Stromflusses aufhebt, solange er
gedrückt bleibt, und die Unterbrechung wieder herstellt, wenn du
ihn loslässt. Das ist nichts Neues und absolut einfach zu verstehen.
Doch bei elektronische Schaltungen, deren Aufgabe z.B. im Ermit-
teln der exakten Anzahl von Tastendrücken liegt, um diese dann
später auszuwerten, bekommen wir es mit einem Problem zu tun,
das zunächst gar nicht augenfällig ist.

Ich wurde geprellt
Das Stichwort für unser nächstes Thema lautet Prellen. Wenn du
einen ganz normalen Taster drückst und auch gedrückt hältst, sollte
man meinen, dass der mechanische Kontakt im Taster einmalig
geschlossen wird. Das ist jedoch meistens nicht der Fall, denn wir
haben es mit einem Bauteil zu tun, das innerhalb einer sehr kurzen
Zeitspanne – im Millisekundenbereich – den Kontakt mehrfach öff-
net und wieder schließt. Die Kontaktflächen eines Tasters sind in der
Regel nicht vollkommen glatt, und wenn wir uns diese unter einem
Elektronenmikroskop anschauten, sähen wir viele Unebenheiten
und auch Verunreinigungen. Diese führen dazu, dass die Berüh-
rungspunkte der leitenden Materialien bei Annäherung nicht sofort
und nicht auf Dauer zueinander finden. Eine weitere Ursache für den
hier angeführten Effekt kann im Schwingen bzw. Federn des Kon-
taktmaterials liegen, wodurch bei Berührung kurzzeitig der Kontakt
mehrfach hintereinander geschlossen und wieder geöffnet wird.
--- 209

http://www.arduino.cc/playground/Code/Bounce
http://www.arduino.cc/playground/Code/Bounce
http://www.arduino.cc/playground/Code/Bounce

Diese Impulse, die der Taster liefert, werden vom Mikrocontroller
registriert und korrekt verarbeitet, nämlich so, als ob du den Taster
absichtlich ganz oft und schnell hintereinander drückst. Das Ver-
halten ist natürlich störend und muss in irgendeiner Weise verhin-
dert werden. Dazu schauen wir uns das folgende Impulsdiagramm
einmal etwas genauer an:

Abbildung 4-1
Ein prellender Taster

Ich habe den Taster einmalig gedrückt und dann gedrückt gehalten,
doch bevor er den stabilen Zustand des Durchschaltens erreicht
hat, zickte er ein wenig und unterbrach die gewünschte Verbin-
dung mehrfach. Dieses Ein- und Ausschalten, bis der endgültige
gewünschte HIGH-Pegel erreicht ist, wird Prellen genannt. Das
Verhalten kann auch in entgegengesetzter Richtung auftreten.
Auch wenn ich den Taster wieder loslasse, werden unter Umstän-
den mehrere Impulse generiert, bis ich endlich den gewünschten
LOW-Pegel erhalte. Das Prellen des Tasters ist für das menschliche
Auge kaum oder überhaupt nicht wahrnehmbar, und wenn wir
eine Schaltung aufbauen, die bei gedrücktem Taster eine LED
ansteuern soll, dann würden sich die einzelnen Impulse aufgrund
der Trägheit der Augen als ein HIGH-Pegel darstellen. Versuchen
wir es nun mit einer anderen Lösung. Was hältst du davon, wenn
wir eine Schaltung aufbauen, die einen Taster an einem digitalen
Eingang besitzt und eine LED an einem anderen digitalen Ausgang.

Unsere Schaltung ist ja nicht die einzige Komponente. Neben
Hardware haben wir doch noch die Software, und die wollen wir
jetzt so gestalten, dass beim ersten Impuls die LED zu leuchten
beginnt. Beim nächsten soll sie erlöschen und beim darauffolgen-
den wieder leuchten usw. Wir haben es also mit einem Toggeln des
logischen Pegels zu tun. Wenn jetzt mehrere Impulse beim Drü-
cken des Tasters von der Schaltung bzw. der Software registriert
werden, dann wechselt die LED mehrfach ihren Zustand. Bei einem

Aber das ist doch nichts Neues. Was soll das bringen? Du hast eben
gesagt, dass bei einer Schaltung dieser Art mögliches Prellen nicht
erkennbar dargestellt wird.
-- Projekt 4: Der störrische Taster210

prellfreien Taster sollten sich die Zustände wie im folgenden Dia-
gramm darstellen.

Abbildung 4-2
Pegeländerung der LED bei einem
Tasterdruck

Du siehst, dass bei mehrfachen Tastendrücken (ansteigende
Flanke), die hier mit A markiert sind, der Zustand der LED toggelt.
Wie können wir das softwaremäßig bewerkstelligen? Schauen wir
erst einmal auf die Bauteilliste.

Benötigte Bauteile
Für die folgende Schaltung habe ich einen alten Taster aus meiner
Kramkiste verwendet, der mit Sicherheit heftig prellen wird. Neue
Taster, die man heutzutage erhält, haben möglicherweise einen
mechanischen Prellschutz mit einem erkennbaren Druckpunkt ein-
gebaut. Wenn du ihn drückst, kannst du ein leichtes Knacken
wahrnehmen. Das deutet darauf hin, dass der Kontakt mit einem
erhöhten Druck bzw. erhöhter Geschwindigkeit geschlossen wird,
um so das Prellen zu verhindern bzw. zu minimieren.

Benötigte Bauteile

1 x rote LED

1 x Taster (ohne Prellschutz)

1x Widerstand 330

1 x Widerstand 10K

Mehrere flexible Steckbrücken in unterschiedli-
chen Farben und Längen
Ich wurde geprellt --- 211

Sketch-Code
Der Sketch-Code für das Beispiel schaut wie folgt aus:

int tasterPin = 2; // Taster-Pin 2

int tasterWert = 0; // Variable zur Aufname des Tasterstatus
int vorherTasterWert = 0; // Variable zur Aufname des alten

Tasterstatus
int ledPin = 8; // LED-Pin 8
int zaehler = 0; // Zählervariable

void setup(){
 pinMode(tasterPin, INPUT); // Taster-Pin als Eingang
 pinMode(ledPin, OUTPUT); // LED-Pin als Ausgang
}

void loop(){
 tasterWert = digitalRead(tasterPin); // Abfrage des Taster
 // Ist vorheriger Tasterwert ungleich aktuellem Tasterwert?
 if(vorherTasterWert != tasterWert){

 if(tasterWert == HIGH){
 zaehler++; // Zähler inkrementieren (+1)
 }

 }
 vorherTasterWert = tasterWert; // Speichern des aktuellen
 // Tasterwertes

 if(zaehler%2 == 0) // Ist Zähler eine gerade Zahl?
 digitalWrite(ledPin, HIGH);
 else

 digitalWrite(ledPin, LOW);
}

Der Code sieht auf den ersten Blick nicht sonderlich kompliziert
aus, doch diesmal ist er etwas raffinierter. Inwiefern das so ist, wirst
du gleich sehen.

Code-Review
Zu Beginn deklarieren und initialisieren wir wieder eine Reihe glo-
baler Variablen.

Tabelle 4-1
Benötigte Variablen und deren

Aufgabe

Variable Aufgabe

tasterPin Diese Variable enthält die Pin-Nummer für den angeschlossenen Taster an Pin 2.

tasterWert Diese Variable nimmt den Tasterstatus auf.

vorherTasterWert Diese Variable dient zur Aufnahme des vorherigen Tasterstatus.

ledPin Diese Variable enthält die Pin-Nummer für die angeschlossenen LED an Pin 8.

zaehler Diese Variable speichert die HIGH-Pegel des Tasterstatus.
-- Projekt 4: Der störrische Taster212

Die Initialisierung der einzelnen Pins innerhalb der setup-Funktion
bedarf keiner weiteren Erklärung, so dass wir uns direkt auf die
loop-Funktion stürzen können. Der Pegel des angeschlossenen Tas-
ters wird kontinuierlich über die digitalRead-Funktion abgefragt
und in der Variablen tasterWert gespeichert:

tasterWert = digitalRead(tasterPin);

Die Aufgabe des Sketches besteht aber jetzt darin, jeden Tasten-
druck, der ja durch einen HIGH-Pegel repräsentiert wird, zu erken-
nen und eine Zählervariable entsprechend hochzuzählen.
Normalerweise würden wir sagen, dass die folgenden Codezeilen
dies bewerkstelligen könnten:

void loop(){
 tasterWert = digitalRead(tasterPin); // Abfrage des Taster
 if(tasterWert == HIGH){
 zaehler++; // Zähler inkrementieren (+1)
 }
// ...

}

Der Code birgt aber einen entscheidenden Fehler. Bei jedem
erneuten Durchlauf der loop-Funktion wird bei gedrücktem Tas-
ter die Zählervariable inkrementiert, und je länger du den Taster
gedrückt hältst, desto weiter wird die Variable hochgezählt. Es
soll aber bei gedrücktem Taster lediglich der Inhalt der Variablen
um 1 erhöht werden. Wie können wir dieses Verhalten des
Codes ändern? Die Lösung ist eigentlich recht einfach. Du musst
lediglich den Pegel des letzten Tastendrucks nach der Abfrage in
einer Variablen zwischenspeichern. Bei der nächsten Abfrage
wird der neue Wert mit dem alten verglichen. Sind beide Pegel
unterschiedlich, dann musst du lediglich überprüfen, ob der
neue Wert dem HIGH-Pegel entspricht, denn diese möchten wir
ja zählen. Im Anschluss wird wieder der aktuelle neue Pegel für
den nächsten Vergleich zwischengespeichert und alles beginnt
von vorne.

Wenn wir aber den Zähler bei jedem Tastendruck hochzählen, wie
wird dann das Ein- bzw. Ausschalten der LED realisiert? Die LED
muss doch bei jedem 1., 3., 5., 7. usw. Tastendruck leuchten und bei
jedem 2., 4., 6., 8. usw. Tastendruck wieder ausgehen.
Ich wurde geprellt --- 213

Das ist genau der Ansatz, den wir zur Lösung des Problems genutzt
haben. Du musst den Inhalt der Zählervariablen in irgendeiner
Weise bewerten. Was fällt dir auf, wenn du dir die Werte
anschaust, die für das Leuchten der LED verantwortlich sind?

Perfekt, denn das ist die Lösung. Wir müssen also eine programm-
technische Möglichkeit finden, die es uns erlaubt, einen Wert auf
gerade bzw. ungerade zu testen. Ich gebe dir einen Tipp. Wenn du
Werte durch 2 dividierst, dann erhältst du für gerade Zahlen keinen
Rest, bei den ungeraden hingegen schon. Wirf einmal einen Blick
auf die folgende Tabelle:

Tabelle 4-2
Ganzzahl-Division durch den Wert 2

Du siehst also, dass es nur für ungerade Werte einen Restwert gibt.
In der Programmierung haben wir zur Ermittlung des Restwertes
einen speziellen Operator. Es handelt sich dabei um den Modulo-
Operator, der durch das Prozentzeichen % dargestellt wird. Die
erste Zeile der Codezeilen überprüft den Zählerwert auf gerade
bzw. ungerade:

if(zaehler%2 == 0) // Ist Zähler eine gerade Zahl?
 digitalWrite(ledPin, HIGH);
 else
 digitalWrite(ledPin, LOW);

Bei geraden Werten wird die LED zum Leuchten gebracht, bei
ungeraden erlischt sie wieder.

Achtung
Die Operanden des Modulo-Operators % müssen einen ganz-
zahligen Datentyp aufweisen, wie z.B. int, byte oder unsigned int.

Ich hab’s! Alle Werte, bei denen die LED leuchten soll, sind ungerade,
und die übrigen sind gerade.

Division Ergebnis und Rest der Division Rest vorhanden?

1 / 2 0 Rest 1 Ja

2 / 2 1 Rest 0 Nein

3 / 2 1 Rest 1 Ja

4 / 2 2 Rest 0 Nein

5 / 2 2 Rest 1 Ja

6 / 2 3 Rest 0 Nein
-- Projekt 4: Der störrische Taster214

Nun wollen wir mal sehen, wie sich die Schaltung verhält, wenn
wir den Taster mehrfach hintereinander im Abstand von sagen wir
1 Sekunde drücken. Das Ergebnis siehst du hier wieder im folgen-
den Impulsdiagramm:

Abbildung 4-3
Pegeländerung der LED bei einem
Tasterdruck

Das ist sicherlich nicht das Verhalten, das wir beabsichtigt haben.
Die LED toggelt nicht im Rhythmus des Tastendrucks, sondern
zeigt das typische Verhalten, das bei einem prellenden Taster oder
Schalter auftritt. Was also tun, damit das Prellen keine derartige
Auswirkung auf die Schaltung bzw. den Zähler hat? Eine der
Lösungen ist das Hinzufügen einer zeitlichen Verzögerung, um das
Prellen abklingen zu lassen. Füge einfach einmal einen delay-Befehl
hinter der Auswertung des Counters hinzu:

if(zaehler%2 == 0)

 digitalWrite(ledPin, HIGH);
 else
 digitalWrite(ledPin, LOW);
delay(10); // 10 ms warten, bevor eine erneute Abfrage des Tasters
 // erfolgt

Ich habe hier einen Wert von 10 Millisekunden genommen, der für
meinen Taster genau richtig war. Der korrekte bzw. optimale Wert
hängt natürlich immer davon ab, wie schnell du den Taster hinter-
einander betätigen möchtest, damit die Software noch darauf rea-
gieren kann. Experimentiere ein wenig mit verschiedenen Werten
und wähle dann den für dich passenden aus.

Der Schaltplan
Wenn du dir den Schaltplan anschaust, wird er dir bestimmt
bekannt vorkommen. Die verwendete Software unterscheidet sich
allerdings ein wenig.
Ich wurde geprellt --- 215

Abbildung 4-4
Arduino-Board mit Taster und LED

zur Veranschaulichung des Prellens

Weitere Möglichkeiten zur
Kompensation des Prellens
Wir haben bisher lediglich eine Möglichkeit zur Kompensation, des
Prellens eines mechanischen Bauelementes, z.B. des Tasters, ken-
nengelernt. Es gibt aber noch weitere:

1. Spezielle Taster, die nicht prellen und einen festen Druckpunkt
haben.

2. Mittels einer eigens zu diesem Zweck vorgesehenen Bibliothek,
deren Name Bounce-Library lautet.

3. Mittels einer kleinen zusätzlichen hardwaretechnischen
Lösung über ein RC-Glied

Ich möchte kurz auf den Punkte 2 eingehen. Falls dich auch Punkt
3 interessiert, findest du hierzu zahlreiche Informationen im Inter-
net oder auch auf meiner eigenen Internetseite. Eine Bibliothek,
auch Library genannt, ist eine Software-Komponente, die z.B. von
anderen Programmierern entwickelt wurde, um ein spezielles Pro-
blem zu lösen. Damit das Rad nicht immer wieder neu erfunden
werden muss, wurde der betreffendre Code in eine Library ver-
packt und anderen Usern zur Verfügung gestellt, um ihnen Arbeit
zu ersparen. Wenn es sich um frei verfügbare Bibliotheken handelt,
und das ist im Arduino-Umfeld wohl meistens der Fall, kannst du
sie bedenkenlos in deinem Projekt verwenden. Die Bounce-Library
-- Projekt 4: Der störrische Taster216

findest du im Internet auf der Seite http://www.arduino.cc/play-
ground/Code/Bounce. Du kannst sie dort in Form einer gepackten
Zip-Datei herunterladen. Entpacke sie in das Arduino-Verzeichnis
arduino-1.0-rc1\libraries\, in dem sich auch schon diverse andere
Libraries befinden, die im Lieferumfang der Arduino-Software stan-
dardmäßig enthalten sind. Nach dem Entpacken sollte sich fol-
gende File-Struktur ergeben

Wenn du jetzt deinen Sketch programmieren möchtest, in dem du
diese Library verwenden willst, wirst du durch die Entwicklungs-
umgebung unterstützt, indem dir beim Einfügen der Bibliothek in
dein Projekt entsprechende Hilfestellung geleistet wird. Du musst
deinem Compiler zunächst in irgendeiner Weise mitteilen, dass du
Fremdcode mit einbinden möchtest. Dies erfolgt mittels der Prä-
prozessoranweisung #include. Nähere Erläuterungen hierzu folgen
später. Du musst nach dem Entpacken des Codes in das o.g. Ver-
zeichnis lediglich die #include-Anweisung über die in der folgenden
Abbildung gezeigten Menüpunkte der IDE hinzuzufügen.

Abbildung 4-5
Einbinden der Bounce-Library in
deinen Sketch

Über Sketch|Import Library... kannst du eine Liste aller verfügbaren
Bibliotheken im libraries-Verzeichnis anzeigen. Bei Auswahl der
Option Bounce wird die erforderliche #include-Präprozessoranwei-
sung automatisch in der ersten Zeile des Editors platziert. Nach die-
ser Zeile schreibst du deinen Code, der z.B. wie folgt ausschauen
kann:

#include <Bounce.h> // Bounce-Library einbinden
int ledPin = 12; // LED-Pin 12

int tasterPin = 8; // Taster-Pin 8
int warteZeit = 10; // Wartezeit = 10ms
Bounce entprellung = Bounce(tasterPin, warteZeit); // Bounce-Objekt

 // generieren
void setup(){
 pinMode(ledPin, OUTPUT); // LED-Pin als Ausgang
 pinMode(tasterPin, INPUT); // Taster-Pin als Eingang
}

Ich wurde geprellt --- 217

http://www.arduino.cc/play-ground/Code/Bounce
http://www.arduino.cc/play-ground/Code/Bounce
http://www.arduino.cc/play-ground/Code/Bounce

void loop(){
 entprellung.update (); // Update der Entprellung
 int wert = entprellung.read(); // Lese Update-Wert

 if (wert == HIGH)
 digitalWrite(ledPin, HIGH); // LED anschalten
 else

 digitalWrite(ledPin, LOW); // LED ausschalten
}

Was ein Objekt ist, das wirst du später noch erfahren. Nimm den
Code erst einmal so, wie er ist. Ich würde dir vorschlagen, dass du
den Code verwendest, den wir für die Schaltung geschrieben
haben, bei der die LED bei jedem Tastendruck toggeln soll. Er eig-
net sich am besten für die Überprüfung der Funktionsfähigkeit der
Bounce-Library.

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• Prellen Taster

• Entprellen

Schaltungsaufbau
Da ich diese Schaltung schon einmal mit Fritzing ähnlich aufgebaut
habe, lasse ich sie an dieser Stelle weg.

Troubleshooting
Falls die LED beim Tasterdruck nicht leuchtet oder toggelt, können
hierfür mehrere Gründe vorliegen:

• Die LED ist verpolt eingesteckt worden. Erinnere dich noch
einmal an die beiden unterschiedlichen Anschlüsse einer LED
mit der Anode und Kathode.

• Die LED ist vielleicht defekt und durch Überspannung aus ver-
gangenen Experimenten durchgebrannt. Teste sie mit einem
Vorwiderstand an einer 5V Spannungsquelle.

• Kontrolliere noch einmal die Verbindungen der LED bzw. die
Bauteile auf deinem Breadboard.

• Überprüfe noch einmal den Sketch, den du in den Editor der
IDE eingegeben hast. Hast du vielleicht eine Zeile vergessen
oder dich verschrieben und ist der Sketch wirklich korrekt
übertragen worden?
-- Projekt 4: Der störrische Taster218

• Überprüfe die Funktionsfähigkeit des von dir verwendeten
Tasters mit einem Durchgangsprüfer oder Multimeter.

Was hast du gelernt?
• Du hast erfahren, dass mechanische Bauteile wie Taster oder

Schalter Kontakte nicht unmittelbar schließen oder öffnen.
Durch verschiedene Faktoren, z.B. Fertigungstoleranzen, Ver-
unreinigungen oder schwingende Materialien, können mehrere
und kurz hintereinander folgende Unterbrechungen erfolgen,
bevor ein stabiler Zustand erreicht wird. Dieses Verhalten wird
von elektronischen Schaltungen registriert und entsprechend
verarbeitet. Wenn du z.B. die Anzahl von Tastenrücken zäh-
len möchtest, können sich solche Mehrfachimpulse als außer-
ordentlich störend erweisen.

• Dieses Verhalten kann über unterschiedliche Ansätze kompen-
siert werden:

• durch eine softwaretechnische Lösung (z.B. durch eine Ver-
zögerungsstrategie beim Abfragen des Eingangssignals)

• durch eine hardwaretechnische Lösung (z.B. RC-Glied)

• Du hast gelernt, wie du eine externe Library von anderen Ent-
wicklern in deinen Sketch einbinden kannst und was eine
#include-Präprozessordirektive ist.

Workshop
In diesem Workshop möchte ich dich dazu animieren, eine Schal-
tung zu konstruieren, die mehrere LEDs ansteuert. Sagen wir, dass
es mindestens 5 LEDs sein sollten. Bei jedem Tastendruck soll die
Software eine weitere LED in der Kette anschalten. Auf diese Weise
kannst du wunderbar das Prellen ohne einen Logikanalyzer sicht-
bar machen, wenn nämlich auf einen Tastendruck direkt mehrere
LEDs zu leuchten beginnen. Korrigiere dann die Programmierung
so, dass das Prellen keine Auswirkungen mehr hat, und überprüfe
es mit der Schaltung.

Tipp
Wenn du eine LED-Kette mit vielen hintereinander geschalteten
LEDs realisieren möchtest, kannst du eine sogenannte Bar-Graph-
Anzeige verwenden. Es gibt sie in unterschiedlichen Ausführungen,
Tipp -- 219

wobei die einzelnen LEDs jeweils platzsparend in einem Gehäuse
untergebracht sind. Es sind Bauteile mit 10 oder auch 20 LED-Ele-
menten verfügbar.

Abbildung 4-6
Bar-Graph-Anzeige vom Typ YBG

2000 mit 20 LED-Elementen

Du darfst aber hier auch nicht auf die entsprechenden Vorwider-
stände verzichten.
-- Projekt 4: Der störrische Taster220

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 5 5Ein Lauflicht
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Deklarierung und Initialisierung eines Arrays

• Programmierung mehrerer Pins als Ausgang (OUTPUT)

• Die Verwendung einer for-Schleife

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Workshop

Ein Lauflicht
Du hast jetzt schon einiges über die Ansteuerung von LEDs erfah-
ren, so dass wir in einigen kommenden Kapiteln die unterschied-
lichsten Schaltungen aufbauen können, um mehrere Leuchtdioden
blinken zu lassen. Das hört sich zwar im Moment vielleicht recht
simpel an, doch lass’ dich einmal überraschen. Wir wollen mit
einem Lauflicht beginnen, das nach und nach die einzelnen LEDs
ansteuert. Die an den digitalen Pins angeschlossenen LEDs sollen
nach dem folgenden Muster aufleuchten:
--- 221

-- Projekt 5: Ein Lauflicht222

Abbildung 5-1
Leuchtsequenz der 7 LEDs

Bei jedem neuen Durchlauf leuchtet also die LED eine Position wei-
ter rechts. Ist das Ende erreicht, dann beginnt das Spiel von vorne.
Du kannst die Programmierung der einzelnen Pins, die ja allesamt
als Ausgänge arbeiten sollen, auf unterschiedliche Weise angehen.
Mit dem Wissen, das du bisher hast, musst du sieben Variablen
deklarieren und mit den entsprechenden Pin-Werten initialisieren.
Das würde dann vielleicht wie folgt aussehen:

int ledPin1 = 7;
int ledPin2 = 8;

int ledPin3 = 9;

etc.

Anschließend muss jeder einzelne Pin in der setup-Funktion mit
pinMode als Ausgang programmiert werden, was ebenfalls eine
mühsame Tipparbeit darstellt:

pinMode(ledPin1, OUTPUT);
pinMode(ledPin1, OUTPUT);
pinMode(ledPin1, OUTPUT);

etc.

Aber die Rettung naht. Ich möchte dir einen interessanten Variab-
len-Typ vorstellen, der in der Lage ist, mehrere Werte des gleichen
Datentyps unter einem Namen zu speichern.

)*+&����
��'-

/*+&����
��'-

3*+&����
��'-

5*+&����
��'-

2*+&����
��'-

;*+&����
��'-

<*+&����
��'-

����� ����� ����� ����	 ����
 ����� �����

Puahh! Jetzt machst du dich aber lustig über mich. Wie soll denn eine
Variable unter Verwendung eines einzigen Namens mehrere Werte
speichern und wie soll ich die einzelnen Werte denn speichern oder
abrufen?

Geduld, denn auch das ist möglich. Diese spezielle Form der Vari-
ablen nennt sich Array. Der Zugriff darauf erfolgt natürlich nicht
nur über den eindeutigen Namen, sondern eine solche Variable
besitzt zudem noch einen Index. Dieser Index ist eine Ganzzahl, die
hochgezählt wird. Auf diese Weise werden die einzelnen Elemente
des Arrays, so werden nämlich die gespeicherten Werte genannt,
aufgerufen bzw. geändert. Du wirst das im nun folgenden Sketch-
Code sehen.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Sketch-Code
Hier der Sketch-Code zur Ansteuerung des Lauflichtes mit sieben
LEDs:

int ledPin[] = {7, 8, 9, 10, 11, 12, 13}; // LED-Array mit Pin-Werten
int wartezeit = 200; // Pause zwischen den Wechseln im ms
void setup()
{
 for(int i = 0; i < 7; i++)
 pinMode(ledPin[i], OUTPUT); // Alle Pins des Arrays als Ausgang
}

void loop()
{
 for(int i = 0; i < 7; i++)
 {

 digitalWrite(ledPin[i], HIGH); // Array-Element auf HIGH-Pegel
 delay(wartezeit);

 digitalWrite(ledPin[i], LOW); // Array-Element auf LOW-Pegel
 }
}

Benötigte Bauteile

7 x rote LED

7 x Widerstand 330

Mehrere flexible Steckbrücken in unterschiedli-
chen Farben und Längen
Ein Lauflicht --- 223

Code-Review
Für unser Experiment benötigen wir programmtechnisch gesehen
die folgenden Variablen:

Tabelle 5-1
Benötigte Variablen und deren

Aufgabe

Im Lauflicht-Sketch begegnest du zum ersten Mal einem Array und
einer Schleife. Die Schleife wird benötigt, um komfortabel die ein-
zelnen Array-Elemente über die darin enthaltenen Pin-Nummern
anzusprechen. Es werden so zum einen alle Pins als Ausgänge pro-
grammiert und zum anderen die digitalen Ausgänge ausgelesen. Ich
hatte erwähnt, dass jedes einzelne Element über einen Index ange-
sprochen wird, und da die Schleife, die wir hier nutzen, einen
bestimmten Wertebereich automatisch anfährt, ist dieses Kon-
strukt wie für uns geschaffen. Beginnen sollten wir mit der Array-
Variablen. Die Deklaration ähnelt der bei einer ganz normalen Vari-
ablen, wobei aber zusätzlich das eckige Klammerpaar hinter dem
Namen erforderlich ist:

Abbildung 5-2
Array-Deklaration

• Der Datentyp legt fest, welchen Typ die einzelnen Array-Ele-
mente haben sollen.

• Der Array-Name ist ein eindeutiger Name für den Zugriff auf
die Variable.

• Das Kennzeichen für das Array sind die eckigen Klammern mit der
Größenangabe, wie viele Elemente das Array aufnehmen soll.

Du kannst dir ein Array wie einen Schrank mit mehreren Schubladen
vorstellen. Jede einzelne Schublade hat ein Schildchen mit einer fort-
laufenden Nummer auf der Außenseite. Wenn ich dir daher z.B. die
Anweisung gebe, doch bitte die Schublade mit der Nummer 3 zu öff-
nen, um zu sehen, was darinnen ist, dann ist das wohl ziemlich ein-
deutig, oder? Ähnlich verhält es sich bei einem Array.

Variable Aufgabe

ledPin Die Array-Variable zur Aufnahme der einzelnen Pins, an denen die LEDs
angeschlossen werden.

wartezeit Enthält die Zeit in ms, die zwischen dem LED-Wechsel gewartet werden soll.

��%
9�����B�C�

&�	��	F� ����F���� 0�E%�
-- Projekt 5: Ein Lauflicht224

Bei diesem Array wurden nach der Deklaration alle Elemente impli-
zit mit dem Wert 0 initialisiert. Die Initialisierung kann jedoch
explizit auf zwei unterschiedliche Weisen erfolgen. Wir haben den
komfortablen Weg gewählt und die Werte, mit denen das Array
versehen werden soll, in geschweiften Klammern hinter der Dekla-
ration, durch Komma separiert, aufgelistet:

int ledPin[] = {7, 8, 9, 10, 11, 12, 13};

Basierend auf dieser Befehlszeile sieht der Array-Inhalt wie folgt aus:

Korrekt erkannt, aber in diesem Fall weiß der Compiler anhand der
mitgelieferten Informationen bei der Initialisierung, die ja in dersel-
ben Zeile erfolgt, um wie viele Elemente es sich handelt. Aus die-
sem Grund kannst du sie weglassen. Die etwas aufwändigere Art
der Initialisierung besteht darin, die einzelnen Werte jedem Array-
Element explizit zuzuweisen:

int ledPin[7]; // Deklaration des Arrays mit 7 Elementen
void setup()
{

 ledPin[0] = 7;
 ledPin[1] = 8;
 ledPin[2] = 9;

 ledPin[3] = 10;
 ledPin[4] = 11;
 ledPin[5] = 12;

 ledPin[6] = 13;
 // ...
}

Achtung
Das erste Array-Element hat immer den Index mit der Nummer
0. Deklarierst du z.B. ein Array mit 10 Elementen, dann ist der

53/)4

�����
#���!

����F
���
	
2

�
;

�

53/)4

�������
#���!

����F
���
	
2

��
;

��

Haben wir nicht eine entscheidende Sache vergessen? Bei der Dekla-
ration des Arrays ist die eckige Klammer leer. Dort sollte doch die
Größe des Arrays angegeben sein.
Ein Lauflicht --- 225

höchste zulässige Index der mit der Nummer 9, also immer eins
weniger, als die Anzahl der Elemente. Hältst du dich nicht an
diese Tatsache, dann provozierst du möglicherweise einen
Laufzeitfehler, denn der Compiler, der hinter der Entwicklungs-
umgebung steckt, bemerkt das weder zur Entwicklungszeit
noch später zur Laufzeit, und deshalb solltest du doppelte
Sorgfalt walten lassen.

Kommen wir jetzt zur Schleife und schauen uns die Syntax ein
wenig genauer an.

Abbildung 5-3
Die »for«-Schleife

Die Schleife wird mit dem Schlüsselwort for eingeleitet und wird
deswegen auch for-Schleife genannt. Ihr werden, in runden Klam-
mern eingeschlossen, bestimmte Informationen geliefert, die Aus-
kunft über folgende Eckpunkte geben:

• Mit welchem Wert soll die Schleife beim Zählen beginnen?
(Initialisierung)

• Wie weit soll gezählt werden? (Test)

• Um welchen Betrag soll der ursprüngliche Wert verändert wer-
den? (Update)

Die drei Informationseinheiten legen das Verhalten der for-Schleife
fest und bestimmen ihr Verhalten beim Aufruf.

Das könnte wichtig für dich sein
Eine for-Schleife kommt meistens dann zum Einsatz, wenn von
vornherein bekannt ist, wie oft bestimmte Anweisungen aus-
geführt werden sollen. Diese Eckdaten werden im sogenann-
ten Schleifenkopf, der von runden Klammern umschlossen ist,
definiert.

Aber werden wir etwas konkreter. Die Codezeile

for(int i = 0; i < 7; i++)

deklariert und initialisiert eine Variable i vom Datentyp int mit dem
Wert 0. Die Angabe des Datentyps innerhalb der Schleife besagt,
dass es sich um eine lokale Variable handelt, die nur solange exis-
tiert, wie die for-Schleife iteriert, also ihren Durchlauf hat. Beim
Verlassen der Schleife wird die Variable i aus dem Speicher ent-

A�)	��%
�
8
��
�
D
��
�EE�

 �'��
 #�
	
�

�
����� ?��	 =���	�
-- Projekt 5: Ein Lauflicht226

fernt. Die genaue Bezeichnung für eine Variable innerhalb einer
Schleife lautet Laufvariable. Sie durchläuft solange einen Bereich,
wie die Bedingung (i < 7) erfüllt ist, die hier mit Test bezeichnet
wurde. Anschließend erfolgt ein Update der Variablen durch den
Update-Ausdruck. Der Ausdruck i++ erhöht die Variable i um den
Wert 1.

Bei den beiden hintereinander angeführten Pluszeichen ++ handelt
es sich um einen Operator, der den Inhalt des Operanden, also der
Variablen, um den Wert 1 erhöht. Programmierer sind von Hause
aus faule Zeitgenossen und versuchen alles, was eingetippt werden
muss, irgendwie kürzer zu formulieren. Wenn man bedenkt, wie
viele Codezeilen ein Programmierer in seinem Leben so eingeben
muss, dann kommt es schon auf jeden Tastendruck an. In Summe
könnte es sich um Monate oder Jahre an Lebenszeit handeln, die
sich durch kürzere Schreibweisen eingesparen lassen und für wich-
tigere Dinge, wie noch mehr Code, genutzt werden könnten. Jeden-
falls sind die beiden folgenden Ausdrücke in ihren Auswirkungen
vollkommen identisch:

i++; und i = i + 1;

Es wurden 2 Zeichen weniger verwendet, was eine Einsparung von
immerhin 40% ausmacht. Doch weiter im Text. Die Laufvariable i
wird dann als Indexvariable im Array eingesetzt und fährt somit die
einzelnen Array-Elemente nacheinander an.

Bei diesem Snapshot eines Schleifendurchlaufs hat die Variable i
den Wert 3 und spricht somit das 4. Element an, welches wiederum
den Inhalt 10 besitzt. Das bedeutet, dass mit den zwei Zeilen

for(int i = 0; i < 7; i++)
 pinMode(ledPin[i], OUTPUT);

Du hast den Ausdruck i++ verwendet. Kannst du mir bitte erklären,
was das genau bedeutet? Er soll den Wert um 1 erhöhen, doch die
Schreibweise ist irgendwie komisch.

53/)4

�������
#���!

����F
���
	
2

��
;

��

��

�

Ein Lauflicht --- 227

innerhalb der setup-Funktion alle im Array ledPin hinterlegten Pins
als Ausgänge programmiert werden. Folgendes ist noch sehr wich-
tig zu erwähnen: Wenn keine Blockbildung mit einer for-Schleife
mittels geschweifter Klammern stattfindet, wie wir es jedoch gleich
in der loop-Funktion sehen werden, wird nur die Zeile, die der for-
Schleife unmittelbar folgt, von dieser berücksichtigt. Der Code der
loop-Funktion beinhaltet lediglich eine for-Schleife, die durch ihre
Blockstruktur jetzt aber mehrere Befehle anspricht:

for(int i = 0; i < 7; i++)
{

 digitalWrite(ledPin[i], HIGH); // Array-Element auf HIGH-Pegel
 delay(wartezeit);
 digitalWrite(ledPin[i], LOW); // Array-Element auf LOW-Pegel
}

Ich möchte dir an einem kurzen Sketch zeigen, wie die Laufvariable
i heraufgezählt (inkrementiert) wird:

void setup(){
 Serial.begin(9600); // Serielle Schnittstelle konfigurieren
 for(int i = 0; i < 7; i++)
 Serial.println(i); // Ausgabe an die serielle Schnittstelle
}

void loop(){/* leer */}

Da unser Arduino ja von Hause aus kein Ausgabefenster besitzt,
müssen wir uns etwas anderes einfallen lassen. Die serielle Schnitt-
stelle, an der er quasi angeschlossen ist, können wir dazu nutzen,
Daten zu versenden. Die Entwicklungsumgebung verfügt über
einen Serial-Monitor, der diese Daten bequem empfangen und dar-
stellen kann. Du kannst ihn sogar dazu verwenden, Daten an das
Arduino-Board zu schicken, die anschließend dort verarbeitet wer-
den können. Doch dazu später mehr. Der hier gezeigte Code initia-
lisiert über den Befehl

Serial.begin(9600);

die serielle Schnittstelle mit einer Übertragungsrate von 9600 Baud.
Die Zeile

Serial.println(i);

sendet dann mittels der println-Funktion den Wert der Variablen i
an die Schnittstelle. Du musst jetzt lediglich den Serial-Monitor öff-
nen und dir werden die Werte angezeigt:
-- Projekt 5: Ein Lauflicht228

Abbildung 5-4
Die Ausgabe der Werte im
Serial-Monitor

Du siehst hier, wie die Werte der Laufvariablen i von 0 bis 6 ausgege-
ben werden, die wir in unserem eigentlichen Sketch zur Auswahl der
Array-Elemente benötigen. Ich habe den Code innerhalb der setup-
Funktion platziert, damit die for-Schleife nur einmalig ausgeführt wird
und die Anzeige nicht ständig durchläuft. Die folgende Abbildung
zeigt dir die einzelnen Durchläufe der for-Schleife etwas genauer.

Abbildung 5-5
Verhalten der »for«-Schleife
Ein Lauflicht --- 229

Du bist ganz schön wissbegierig und das gefällt mir! Also gut. Ich
muss an dieser Stelle eine Anleihe aus der objektorientierten Pro-
grammierung machen, denn diese benötige ich hier, um dir die Syn-
tax zu erläutern. Wir werden später noch genauer auf diese Art der
Programmierung eingehen, denn C++ ist eine objektorientierte
Sprache, auch kurz OOP genannt. Diese Sprache orientiert sich an
der Wirklichkeit, die aus realen Objekten wie z.B. Tisch, Lampe,
Computer, Müsliriegel, etc. besteht. So haben die Entwickler auch
ein programmtechnisches Objekt geschaffen, das die serielle
Schnittstelle repräsentiert. Dieses Objekt haben sie Serial genannt
und es findet seinen Einsatz innerhalb eines Sketches. Jetzt hat aber
jedes Objekt zum einen bestimmte Eigenschaften wie z.B. Farbe,
oder Größe und zum anderen ein oder mehrere Verhalten, die fest-
legen, was man mit diesem Objekt so alles anstellen kann. Bei einer
Lampe wäre das Verhalten z.B. Lampe ein- oder ausschalten. Doch
zurück zu unserem Serial-Objekt. Das Verhalten dieses Objektes
wird durch zahlreiche Funktionen gesteuert, die in der OOP Metho-
den genannt werden. Zwei dieser Methoden hast du jetzt schon
kennengelernt. Die Methode begin initialisiert das Serial-Objekt
mit der angeforderten Übertragungsrate und die Methode println
(print line bedeutet soviel wie: Drucke und mache einen Zeilenvor-
schub) gibt etwas auf der seriellen Schnittstelle aus. Das Bindeglied
zwischen Objekt und Methode ist der Punktoperator (.), der beide
verbindet. Wenn ich also bei setup und loop von Funktionen spre-
che, ist das nur die halbe Wahrheit, denn wenn man es genau
nimmt, sind es Methoden.

Das könnte für dich wichtig sein
Du hast jetzt erfahren, wie etwas an die serielle Schnittstelle
geschickt werden kann. Du kannst dir diesen Umstand zunutze
machen, wenn du einen oder mehrere Fehler in einem Sketch
finden möchtest. Funktioniert der Sketch nicht so, wie du dir
das vorstellst, dann positioniere an unterschiedlichen Stellen
im Code, die dir wichtig erscheinen, Ausgabe-Befehle in Form
von Serial.println(…); und lasse dir bestimmte Variableninhalte
oder auch Texte ausgeben. Auf diese Weise erfährst du, was
dein Sketch so treibt und warum er möglicherweise nicht kor-
rekt abläuft. Du musst lediglich lernen, die ausgegebenen
Daten zu interpretieren. Das ist manchmal jedoch nicht so ein-
fach und es gehört ein wenig Übung dazu.

Halt halt! Der Code zur Programmierung der seriellen Schnittstelle
kommt mir vollkommen spanisch vor. Da steht Serial und begin bzw.
println und dazwischen ein Punkt. Was hat es damit auf sich?
-- Projekt 5: Ein Lauflicht230

Der Schaltplan
Der Schaltplan zeigt uns die einzelnen LEDs mit ihren 330 Ohm-
Vorwiderständen.

Abbildung 5-6
Das Arduino-Board steuert 7 LEDs
für ein Lauflicht an.

Schaltungsaufbau
Dein Breadboard hat nun Zuwachs an elektronischen Komponen-
ten in Form von Widerständen und Leuchtdioden bekommen.

Abbildung 5-7
Aufbau der Lauflicht-Schaltung mit
Fritzing
Ein Lauflicht --- 231

Achtung
Wenn du die elektronischen Bauteile so dicht nebeneinander
steckst, wie das hier bei mir der Fall ist, dann musst du beson-
ders gut hinschauen, denn es ist mir auch schon des Öfteren
passiert, dass ich das Nachbarloch auf dem Breadboard
erwischt hatte, was natürlich dazu führte, dass die Schaltung
nur in Teilen oder überhaupt nicht funktionierte. Kritisch wird
es, wenn du mit Versorgungsspannungs- und Masseleitungen
direkt nebeneinander arbeitest. Es kann auch zu Problemen
kommen, wenn du die flexiblen Drahtbrücken nicht ganz in
ihren Löchern versenkst, so dass noch Stücke der blanken und
leitenden Drähte herausragen. Durch das Bewegen der Brü-
cken kann es dann zu Kurzschlüssen kommen, die möglicher-
weise alles zerstören. Also ist auch hier wieder die nötige
Sorgfalt geboten.

Troubleshooting
Falls die LEDs nicht nacheinander zu leuchten beginnen, trenne
das Board sicherheitshalber besser vom USB-Anschluss und über-
prüfe bitte Folgendes:

• Entsprechen deine Steckverbindungen auf dem Breadboard
wirklich der Schaltung?

• Gibt es eventuell Kurzschlüsse untereinander?

• Wurden die LEDs richtig herum eingesteckt? Denke an die
richtige Polung!

• Haben die Widerstände die korrekten Werte?

• Ist der Sketch-Code korrekt?

Was hast du gelernt?
• Du hast eine Sonderform einer Variablen kennengelernt, die es

dir ermöglicht, mehrere Werte des gleichen Datentyps aufzu-
nehmen. Sie wird Array-Variable genannt. Ihre einzelnen Ele-
mente werden über einen Index angesprochen.

• Die for-Schleife ermöglicht Dir, eine oder mehrere Codezeilen
mehrfach auszuführen. Die Steuerung erfolgt über eine soge-
nannte Laufvariable, die innerhalb der Schleife arbeitet und
mit einem bestimmten Startwert initialisiert wird. Über eine
Bedingung hast du festlegt, wie lange die Schleife durchlaufen
werden soll. Damit hast du die Kontrolle darüber, welchen
Wertebereich die Variable verarbeitet.
-- Projekt 5: Ein Lauflicht232

• Durch eine Blockbildung mittels des geschweiften Klammern-
paares kannst du mehrere Befehle zu einem Block zusammen-
fassen, die dann z.B. bei einer for-Schleife allesamt ausgeführt
werden.

• Die gerade angeführte Laufvariable wird dazu verwendet, den
Index eines Arrays zu ändern, um damit die einzelnen Array-
Elemente anzusprechen.

Workshop
Im unserem Workshop möchte ich dich dazu animieren, das Lauf-
licht in verschiedenen Mustern blinken zu lassen. Es gibt dabei
unterschiedliche Varianten:

• Immer nur in eine Richtung mit einer LED (das kennst du
bereits)

• Vor und zurück mit einer oder mehreren LEDs

• Vor und zurück zur selben Zeit (zwei LEDs die sich aufeinan-
der zu bewegen)

• Zufallsauswahl der einzelnen LEDs

Für eine zufällige Ansteuerung einer LED benötigst du eine weitere
Funktion, die du bisher noch nicht kennengelernt hast. Sie nennt
sich random, was übersetzt so viel wie ziellos oder zufällig bedeutet.
Die Syntax dieser Funktion gibt es in zwei Varianten:

1. Variante
Wenn du einen zufälligen Wert in einem Bereich von 0 bis Ober-
grenze generieren möchtest, verwende die nachfolgende Variante.

Abbildung 5-8
Der Befehl »random« (mit einem
Argument)

Wichtig ist jedoch, dass der oberste Wert, den du angibst, immer
exklusive ist. In diesem Beispiel generierst du also Zufallszahlen in
einem Bereich von 0 bis 6.

)#���(���

 �'��

M����	��+B��	
+++��!�
��
G�"
Ein Lauflicht --- 233

2. Variante
Wenn du einen zufälligen Wert im Bereich von Untergrenze bis
Obergrenze generieren möchtest, verwende die in der folgenden
Abbildung dargestellte Variante.

Abbildung 5-9
Der Befehl random

(mit zwei Argumenten)

Dieser Befehl generiert Zufallszahlen im Bereich von 2 bis 5. Auch
hier gilt wieder, dass der oberste Wert exklusive ist. Dieser
Umstand kann einen schon manchmal stutzig machen, doch es ist
eben in dieser Form nicht zu ändern.

)#���(��
7��

 �'��

M����	��+B��	
+++��!�
��
G�"=�	���	��+B��	
-- Projekt 5: Ein Lauflicht234

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 6 6Porterweiterung
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Deklarierung und Initialisierung mehrerer Variablen

• Programmierung mehrerer Pins als Ausgang (OUTPUT)

• Das Schieberegister vom Typ 74HC595 mit 8 Ausgängen

• Die Ansteuerung des Schieberegisters über 3 Leitungen des
Arduino-Boards

• Die Definition einer eigenen Funktion

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Weitere Sketches

• Der Befehl shiftOut

• Workshop

Digitale Porterweiterung
In unserem letzten Kapitel hast Du gesehen, wie du über die
Ansteuerung mehrerer LEDs ein Lauflicht programmieren kannst.
Da dein Arduino-Board jedoch eine begrenzte Anzahl an digitalen
Ausgängen besitzt, können dir diese wertvollen Ressourcen irgend-
wann abhanden kommen, wenn du dein Lauflicht mit noch weite-
ren LEDs versehen möchtest. Vielleicht willst du ja nicht nur
--- 235

digitale Ausgänge ansteuern, sondern auch ein paar Sensoren an
digitalen Eingängen anschließen. Es liegt in der Natur der Sache,
dass dir aus diesem Grund immer weniger digitale Pins zur Verfü-
gung stehen. Wie kommen wir aus diesem Dilemma heraus? Es gibt
da durchaus mehrere Ansätze, von denen ich dir hier einen vorstel-
len will. Ich möchte hierfür ein Schieberegister verwenden. Die
Frage, die du dir jetzt bestimmt stellst ist: »Was ist ein Schieberegis-
ter und wie arbeitet es?« Du kommst bei diesem Experiment das
erste Mal mit einem Integrierten Schaltkreis (IC=Integrated Circuit)
in Berührung, der mit deinem Arduino-Board verbunden wird. Ein
Schieberegister ist eine Schaltung, die über ein Taktsignal gesteuert
wird und mehrere Ausgänge besitzt, die hintereinander angeordnet
sind. Bei jedem Takt wird der Pegel, der am Eingang des Schiebere-
gisters anliegt, an den nächsten Ausgang weitergereicht. So wan-
dert diese Information durch alle vorhandenen Ausgänge.

Der integrierte Schaltkreis 74HC595, den wir für unsere Zwecke
verwenden, besitzt einen seriellen Eingang, in den wir die Daten
hineinschieben, und 8 Ausgänge, die mit internen Speicherregistern
versehen sind, um die Zustände zu halten. Es werden zur Versor-
gung lediglich 3 digitale Pins benötigt, die den Baustein mit Daten
versehen, der seinerseits seine 8 Ausgänge ansteuert. Das ist schon
eine enorme Einsparung, denn der Schaltkreis 74HC595 lässt sich
kaskadieren, so dass eine fast unbegrenzte Erweiterung der digita-
len Ausgänge möglich wird. Was bedeutet das aber genau? Schauen
wir uns dazu die einzelnen Ein- bzw. Ausgänge dieses Schaltkreises
genauer an. In der folgenden Abbildung siehst du die Pinbelegung
des 74HC595, und zwar in einer Ansicht von oben auf das entspre-
chende Gehäuse.

Und Hepp!
--- Projekt 6: Porterweiterung236

Abbildung 6-1
Die Pinbelegung des
Schieberegisters 74HC595

In der folgenden Tabelle sind die einzelnen Pins und ihre Bedeu-
tung aufgelistet:

Tabelle 6-1
Bedeutung der Pins des
Schieberegisters 74HC595

Die Funktionsweise des Schieberegisters kann man wie folgt
beschreiben. Wenn der Takt am Schieberegister Takteingang SH_
CP von LOW auf HIGH wechselt, wird der Pegel am seriellen Ein-
gang DS gelesen, in eines der internen Shiftregister übertragen und
zwischengespeichert. Das Speichern in diese Register bedeutet
jedoch noch keinesfalls eine Übertragung zu den Ausgängen QA bis
QH. Erst durch einen Taktimpuls am Speicherregister ST_CP von
LOW auf HIGH, werden alle Informationen der internen Shiftregis-
ter an die Ausgänge transferiert. Das macht Sinn, denn erst wenn
alle Informationen am seriellen Eingang gelesen wurden, sollen sie
an den Ausgängen erkannt werden. Den Wechsel des logischen
Pegels von LOW auf HIGH nennt man Taktflankensteuerung, weil

Pin Bedeutung

VCC Versorgungsspannung +5V

GND Masse 0V

QA - QH Parallele Ausgänge 1 bis 8

QH" Serieller Ausgang (Eingang für ein zweites Schieberegister)

MR Master Reset (LOW aktiv)

SH_CP Schieberegister Takteingang (Shiftregister clock input)

ST_CP Speicherregister Takteingang (Storageregister clock input)

OE Ausgang aktivieren (Output enable / LOW aktiv)

DS Serieller Eingang (Serial data input)
Digitale Porterweiterung -- 237

eine Aktion erst ausgeführt wird, wenn ein Pegelwechsel in der
beschriebenen Weise stattfindet. Aber werfen wir doch mal einen
Blick in das Innere des Schieberegisters und beobachten, was da so
vor sich geht…

Ahh, hier sehen wir SH_CP bei der Arbeit. Wenn er die Fahne von
LOW auf HIGH setzt, wandert der potentielle Anwärter, der sich in
der DS-Area befindet, in das nächste Shiftregister und wartet dort
auf seine weitere Reise zum Ausgang.

Abbildung 6-2
Der Kollege »SH_CP« bei der

Abfertigung der seriellen Daten

Im nächsten Bild siehst du ST_CP bei der Arbeit, der für das Freige-
ben der Daten in den internen Shiftregistern an die Ausgänge ver-
antwortlich ist.

Abbildung 6-3
Der Kollege »ST_CP« gibt die Daten

der Shiftregister an die Ausgänge
frei.
--- Projekt 6: Porterweiterung238

Wenn er die Fahne von LOW auf HIGH setzt, öffnen sich die
Türen der internen Shiftregister und erst dann können die Daten
den Weg zum Ausgang finden. Wir werden den bildlich beschrie-
benen Vorgang einmal in mehreren Sketches nachbilden, damit du
die Arbeitsweise des Schieberegisters live miterleben kannst. Wir
fangen ganz simpel zu Fuß an, und du wirst am Ende sehen, dass es
für die ganzen Aktionen, die wir hier einzeln und im Detail ausfüh-
ren, einen komfortablen Befehl gibt, der dir die Arbeit abnimmt
und vieles erleichtert.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Sketch-Code
Hier der Sketch-Code zur Ansteuerung des Schieberegisters
74HC595 über 3 Leitungen der digitalen Ausgänge. Die benötigten
Pins am Schieberegister sind folgende:

• SH_CP (Schieberegister Takteingang)

• ST_CP (Speicherregister Takteingang)

Benötigte Bauteile

1 x Schieberegister 74HC595

8 x rote LED

8 x Widerstand 330

1 x Widerstand 10K

1 x Taster

Mehrere flexible Steckbrücken in unterschiedli-
chen Farben und Längen
Digitale Porterweiterung -- 239

• DS (Serieller Eingang für die Daten)

Die 3 Datenleitungen werden Variablen zugewiesen, die ich wie
folgt genannt habe:

• SH_CP wird taktPin genannt

• ST_CP wird speicherPin genannt

• DS wird datenPin genannt

Dieser Sketch setzt den seriellen Input DS auf HIGH, der dann über
Schieberegister-Takteingang SH_CP (Wechsel von LOW-HIGH) in
das interne Register übernommen wird. Anschließend werden die
Ausgänge über die internen Register mittels Speicherregister-Takt-
eingang ST_CP programmiert und gespeichert.

int taktPin = 8; // SH_CP
int speicherPin = 9; // ST_CP

int datenPin = 10; // DS
void setup(){
 pinMode(taktPin, OUTPUT);
 pinMode(speicherPin, OUTPUT);
 pinMode(datenPin, OUTPUT);
 resetPins(); // Alle Pins auf LOW setzen

 // DS für die spätere Übernahme durch SH_CP auf HIGH setzten
 digitalWrite(datenPin, HIGH); // DS
 delay(20); // Kurze Pause für die Verarbeitung

 // Übertragen des Pegels an DS in interne Speicherregister
 digitalWrite(taktPin, HIGH); // SH_CP
 delay(20); // Kurze Pause für die Verarbeitung

 // Übertragen der internen Speicherregister an die Ausgänge
 digitalWrite(speicherPin, HIGH); // ST_CP
 delay(20);

}

void loop(){/* leer */}

// Reset aller Pins -> LOW-Pegel
void resetPins(){

 digitalWrite(taktPin, LOW);
 digitalWrite(speicherPin, LOW);
 digitalWrite(datenPin, LOW);
}

Code-Review
Für unser Experiment benötigen wir programmtechnisch gesehen
die folgenden Variablen:
--- Projekt 6: Porterweiterung240

Tabelle 6-2
Benötigte Variablen und deren
Aufgabe

Zu Beginn werden die Variablen mit den benötigten Pin-Informati-
onen versorgt und am Anfang der setup-Funktion alle Pins als Aus-
gänge programmiert. Du kommst in diesem Kapitel das erste Mal
mit einer selbst geschriebenen Funktion in Berührung. Eine Funk-
tion ist ja eigentlich nichts Neues mehr für Dich, denn setup und
loop fallen in eben diese Kategorie der programmtechnischen Kon-
strukte. Ich möchte dennoch an dieser Stelle etwas genauer auf
diese Thematik eingehen, damit der Sinn und Zweck noch deutli-
cher wird. Eine Funktion kann als eine Art Unterprogramm betrach-
tet werden, das innerhalb des normal ablaufenden Sketches immer
wieder aufgerufen werden kann. Sie wird über ihren Namen aufge-
rufen und kann sowohl einen Wert an den Aufrufer zurückliefern
als auch mehrere Übergabewerte aufnehmen, die sie zur Berech-
nung bzw. Verarbeitung benötigt. Die formale Struktur einer Funk-
tion sieht folgendermaßen aus:

Abbildung 6-4
Grundlegender Aufbau einer
Funktion

Der umrandete Bereich wird Funktionssignatur genannt und stellt
die formale Schnittstelle zur Funktion dar. Eine Funktion ist ver-
gleichbar mit einer Black-Box, die du schon kennengelernt hast.
Eigentlich musst du gar nicht wissen, wie sie funktioniert. Das Ein-
zige, wovon du Kenntnis haben musst, ist die Struktur der Schnitt-
stelle und in welcher Form ein Wert ggf. zurückgegeben wird.
Natürlich programmierst du hier die Funktion selbst und musst
deswegen schon wissen, was du an Logik dort hineinpackst. Doch
es gibt auch Funktionen, die du z.B. aus dem Internet beziehen
kannst, sofern sie keine lizenztechnischen Einschränkungen haben,
und die du in deinem Projekt nutzen kannst. Wurden sie von ande-
ren programmiert und erfolgreich getestet, dann kann es dir egal
sein, wie sie funktionieren. Die Hauptsache ist, dass sie funktionie-
ren! Doch zurück zu unserer Funktionsdefinition. Falls sie einen
Wert an den Aufrufer zurückliefert, wie das z.B. auch digitalRead
macht, musst du in deiner Funktion den entsprechenden Datentyp

Variable Aufgabe

taktPin SH_CP Signal

speicherPin ST_CP Signal

datenPin DS Signal

�� !"#$��#%��%&�
'#(�	�#)#(�%�)�
*

++
,���
���)
(�-)�)�
.�/��01�"��
3

Digitale Porterweiterung -- 241

angeben. Angenommen, du möchtest Werte zurückliefern, die alle-
samt Ganzzahlen sind, dann ist das der Datentyp Integer, der mit
dem Schlüsselwort int gekennzeichnet wird. Wenn eine Rückgabe
jedoch nicht erforderlich ist, musst du das durch das Schlüsselwort
void (übersetzt: leer) kenntlich machen, das sich ja auch vor den
beiden Hauptfunktionen setup und loop findet.

Das ist eine berechtigte Frage und dieses Verhalten wird meist nicht
hinterfragt. Bei setup und loop handelt es sich um Systemfunktio-
nen, die implizit aufgerufen werden. Du musst Dich, wie du ja
schon gesehen hast, nicht extra darum kümmern.

Eine Bemerkung am Rande
Falls es dich interessiert, kannst du im Installationsverzeichnis
unter arduino-1.0-rc1\hardware\arduino\cores\arduino nach-
schauen und die Datei main.cpp einmal mit einem Texteditor
öffnen. Du bekommst Folgendes zu sehen:

Die bei C++ direkt zu Beginn beim Programmstart aufgerufene
Funktion nennt sich main, die du auch hier siehst. Sie ist quasi
der Einstiegspunkt, damit das Programm weiß, womit es begin-
nen soll. Die Funktion main enthält mehrere Funktionsaufrufe,
die nacheinander abgearbeitet werden. Unter anderem kannst

Ich möchte da einmal kurz unterbrechen, weil ich eine Frage habe.
Du hast angeführt, dass Funktionen immer über ihren Namen aufge-
rufen werden. Das habe ich soweit verstanden. Doch wie ist das bei
den beiden Funktionen setup und loop? Ich muss an keiner Stelle im
Code festlegen, dass sie aufgerufen werden sollen, und trotzdem
funktioniert es. Wie ist das möglich?
--- Projekt 6: Porterweiterung242

du die setup-Funktion und in einer Endlosschleife, die mit for(;;)
definiert wird, den Aufruf der loop-Funktion entdecken. Jetzt
erkennst du sicherlich die Abläufe bzw. Zusammenhänge, die
im Hintergrund beim Start eines Sketches ablaufen, wenn es
um das Aufrufen von setup bzw. loop geht.

Wenn du deiner Funktion einen oder mehrere Werte übergeben
möchtest, dann werden diese innerhalb der runden Klammern hin-
ter dem Funktionsnamen durch Kommata getrennt mit ihren ent-
sprechenden Datentypen aufgelistet. Falls du keine Werte
übergeben willst, bleibt das runde Klammernpaar einfach leer.
Weglassen darfst du es nicht. Die Signatur haben wir jetzt soweit
abgehandelt, dass nur noch der Funktionsrumpf übrig bleibt, der
durch das geschweifte Klammernpaar gebildet wird. Alle Befehle,
die sich innerhalb dieser Klammern befinden, gehören zu dieser
Funktion und werden beim Funktionsaufruf sequentiell von oben
nach unten abgearbeitet. Doch nun zurück zu unserem Code.
Warum ist es sinnvoll, eine eigene Funktion zu schreiben? Ganz
einfach! Es macht immer dann Sinn, wenn die gleichen Befehle
mehrmals im Code auszuführen sind, und das ist hier der Fall. Ich
muss an unterschiedlichen Stellen die Befehlsfolge

digitalWrite(taktPin, LOW);
digitalWrite(speicherPin, LOW);
digitalWrite(datenPin, LOW);

ausführen, um die Pegel an den einzelnen digitalen Pins zu resetten,
d.h. mit LOW-Pegel zu versehen. Würde ich das ohne Funktion
realisieren, dann würde der Sketch eine ganze Anzahl von Codezei-
len mehr umfassen und wäre damit auch relativ unübersichtlich.

Das könnte für dich wichtig sein
Quellcode, der im Sketch mehrfach mit der gleichen Befehlsse-
quenz vorhanden ist, nennt man redundanten Code oder Code-
redundanz. Du lagerst diesen Code am besten in eine Funktion
aus und gibst ihr einen aussagekräftigen Namen, um deren
Sinn verständlich zu machen. Wenn du eine Modifikation vor-
nehmen musst, führst du diese zentral innerhalb der Funktion
durch und nicht an vielen Stellen, die irgendwo im Code ver-
streut sind, was sehr fehleranfällig und zeitraubend wäre.

Zu Beginn des Sketches werden durch den Funktionsaufruf

resetPins(); // Alle Pins auf LOW setzen
Digitale Porterweiterung -- 243

die Pins 8, 9 und 10 auf LOW-Pegel gesetzt. Dann möchte ich das
erste HIGH-Pegel-Signal an DS anlegen, was über die Zeile

digitalWrite(datenPin, HIGH); // DS

erfolgt. Anschließend warte ich 20 ms und fahre mit der Zeile

digitalWrite(taktPin, HIGH); // SH_CP

fort, die den HIGH-Pegel von DS in das interne Speicherregister
überträgt. Es muss dabei berücksichtigt werden, dass dies nur mit-
tels einer Flankensteuerung von LOW nach HIGH erfolgen kann.

Noch erfolgt keine Transferierung in Richtung Ausgabeports. Ich
warte erneut 20ms, und erst mit der Zeile

digitalWrite(speicherPin, HIGH); // ST_CP

erfolgt die Übertragung der internen Speicherregister an die Aus-
gänge, was in unserem Fall bedeutet, dass die LEDs angesteuert
werden. Auch hier ist ein Pegelwechsel von LOW zu HIGH erfor-
derlich. Das ist übrigens auch der Grund, warum ich die resetPins-
Funktion benötige, die mir später einen erneuten Pegelwechsel von
LOW zu HIGH ermöglicht.

Der Schaltplan
Der Schaltplan zeigt uns die einzelnen LEDs mit ihren 330 Ohm-
Vorwiderständen, die durch das Schieberegister 74HC595 ange-
steuert werden. Der Master-Reset-Eingang des Chips liegt über den
Pullup-Widerstand an der +5V Betriebsspannung, so dass bei nicht
gedrücktem Taster der Reset nicht ausgelöst wird, da der MR-Ein-
gang LOW-Aktiv ist. Das erkennst du daran, dass sich über dem
MR ein waagerechter Strich befindet, was eine Negation bedeutet.
Der Eingang Output-Enabled ist ebenfalls LOW-Aktiv und liegt fest
verdrahtet auf Masse, denn die Ausgänge sollen immer freigeschal-
tet sein. Die Ansteuerung des Schieberegisters erfolgt über die
Arduino-Pins 8, 9 und 10 mit den oben beschrieben Funktionen.

Hast du den Sketch gestartet, dann wird sofort die erste LED an
Ausgang QA leuchten, da du lediglich einmal eine »1« ins Schiebe-
register geschoben hast. Für einen Reset musst du sowohl den Tas-
ter der Schaltung als auch den Reset-Taster auf dem Arduino-Board
betätigen.
--- Projekt 6: Porterweiterung244

Abbildung 6-5
Das Arduino-Board steuert über
3 Signalleitungen das Schiebe-
register 74HC595 an.

Schaltungsaufbau
Dein Breadboard füllt sich mehr und mehr und das macht die
Sache immer interessanter, nicht wahr!?

Abbildung 6-6
Der Aufbau der Schaltung mit
Fritzing
Digitale Porterweiterung -- 245

Ein erweiterter Sketch Teil 1
Jetzt wollen wir den Sketch ein wenig erweitern, so dass du meh-
rere Werte in den seriellen Eingang schieben kannst. Das ist immer
noch eine Zwischenstufe und noch nicht die endgültige Lösung, die
ich dir vorstellen möchte. Dieser Code soll in der Lage sein, eine in
einem Daten-Array gespeicherte Sequenz in das Schieberegister zu
übertragen. Der Schaltungsaufbau bleibt dabei unverändert.

int taktPin = 8; // SH_CP

int speicherPin = 9; // ST_CP
int datenPin = 10; // DS
int datenArray[] = {1, 0, 1, 0, 1, 1, 0, 1};

void setup(){
 pinMode(taktPin, OUTPUT);
 pinMode(speicherPin, OUTPUT);
 pinMode(datenPin, OUTPUT);
 resetPins(); // Alle Pins auf LOW setzten
 setzePins(datenArray); // Setze Pins über das Daten-Array

 // Übertragen der internen Speicherregister an die Ausgänge
 digitalWrite(speicherPin, HIGH); // ST_CP
}

void loop(){/* leer */}

void resetPins(){
 digitalWrite(taktPin, LOW);
 digitalWrite(speicherPin, LOW);
 digitalWrite(datenPin, LOW);
}

void setzePins(int daten[]){
 for(int i = 0; i < 8; i++){
 resetPins();

 digitalWrite(datenPin, daten[i]); delay(20);
 digitalWrite(taktPin, HIGH); delay(20);
 }

}

Dann wollen wir mal sehen, wie der Code so seine Arbeit verrich-
tet. Alles dreht sich hier um das Daten-Array, in dem das Muster
hinterlegt ist, wie die einzelnen LEDs anzusteuern sind. Das ist also
die Deklarations- bzw. Initialisierungszeile:

int datenArray[] = {1, 0, 1, 0, 1, 1, 0, 1};
--- Projekt 6: Porterweiterung246

Der Code liest die einzelnen Array-Elemente von links nach rechts
aus und schiebt die Werte in das Schieberegister. Eine 1 bedeutet
LED an, eine 0 LED aus.

Ich habe hier die Werte 1 und 0 verwendet, weil das genau die
Werte sind, die sich hinter den Konstanten HIGH bzw. LOW ver-
bergen. Normalerweise bin ich ja gegen Magic Numbers, doch in
diesem Fall dachte ich, ich könnte eine Ausnahme machen. 1 und 0
sind ja auch die logischen Werte und deswegen bereitet das keine
allzu großen Verständnisprobleme – oder? Natürlich kannst du
auch statt

int datenArray[] = {1, 0, 1, 0, 1, 1, 0, 1};

die folgende Zeile schreiben:

int datenArray[] = {HIGH, LOW, HIGH, LOW, HIGH, HIGH, LOW, HIGH};

Doch zurück zum Code und wie er das Array auswertet. Die Sache
ist eigentlich recht simpel, denn ich habe eine weitere Funktion mit
dem Namen setztePins hinzugefügt, die die Aufgabe übernimmt,
das Schieberegister zu befüllen. Sie hat einen Übergabeparameter,
der aber keine normale Variable aufnehmen kann, sondern nur ein
ganzes Array. Beim Aufruf übergebe ich einfach das Daten-Array
als Argument an die Funktion.

setzePins(datenArray);

Die Funktion wurde wie folgt definiert:

void setzePins(int daten[]){
 for(int i = 0; i < 8; i++){
 resetPins(); // Pin-Reset und Vorbereitung für Takt-Flankensteuerung

 digitalWrite(datenPin, daten[i]); delay(20);
 digitalWrite(taktPin, HIGH); delay(20);
 }

}

Du siehst, dass in der Signatur der Funktion mittels eines eckigen
Klammerpaares ein Array des Datentyps int deklariert wurde. Beim
Aufruf der Funktion wird das ursprüngliche Array datenArray in
daten kopiert, mit dem dann innerhalb der Funktion gearbeitet

Einen kurzen Moment noch. Du hast für die Ansteuerung der LEDs
die Werte 1 und 0 verwendet. Funktioniert das denn auch? Solltest du
nicht besser mit den Konstantennamen HIGH und LOW arbeiten?
Digitale Porterweiterung -- 247

wird. Nun wird über die for-Schleife – die kennst du ja jetzt schon –
jedes einzelne Array-Element angefahren, über

digitalWrite(datenPin, daten[i]);

an den seriellen Eingang geschickt und im nächsten Schritt mit

digitalWrite(taktPin, HIGH);

in das erste interne Register geschoben. Das Ganze erfolgt acht Mal
(0 bis 7), wobei die internen Register ihre Werte immer an den
Nachfolger weiterreichen. Die folgenden Abbildungen veranschau-
lichen das hoffentlich noch ein wenig mehr.

Abbildung 6-7
Schieberegister

Zu Beginn sind die internen Register noch alle leer. Am seriellen
Eingang wartet jedoch schon eine 1 auf den Transport in das erste
interne Register.

Abbildung 6-8
Schieberegister beim ersten

SH_CP-Takt

Die sich am seriellen Eingang befindende 1 wird beim SH_CP-Takt
in das erste interne Register geschoben. Die Inhalte aller Register
werden um eine Position weiter nach rechts verschoben. Nach die-
ser Aktion ergeben sich folgende Zustände:

53/)4

44444
2

4
;

4
<

4

N� N N� N& N7 NO N0 N�

�	����+,��
�	��
&�

�

����8���

���
�

��
7
�����

53/)4

44444
2

4
;

4
<

4

N� N N� N& N7 NO N0 N�

�	����+,��
�	��
&�

)

����8���

���
�

��
7
�����

��P�(
�?P�(
--- Projekt 6: Porterweiterung248

Abbildung 6-9
Schieberegister-Zustände nach dem
ersten SH_CP-Takt

Am Eingang befindet sich jetzt eine 0, die ebenfalls beim nächsten
SH_CP-Takt in das erste interne Register geschoben wird. Doch
zuvor wandert der Zustand des ersten internen Registers in das
zweite, das zweite in das dritte usw. Wir machen jetzt einen Zeit-
sprung, nach dem alle Werte des Arrays in die internen Register
nach dem o.g. Schema geschoben wurden und der ST_CP-Takt die
Register zu den Ausgängen durchgeschaltet hat.

Abbildung 6-10
Schieberegister-Zustände nach dem
Einlesen der Array-Werte und nach
dem ST_CP-Takt

Erst jetzt liegen die Werte des eingelesenen Arrays an den Ausgän-
gen an, wobei der erste eingeschobene Wert ganz rechts und der
letzte ganz links liegt.

Das ist kein Problem, denn das Setzen der Pins geschieht wo? Rich-
tig, innerhalb der setztePins-Funktion. Die for-Schleife fährt die ein-
zelnen Pins an. Wenn du jetzt zuerst den letzten statt den ersten
Wert abrufst und in das Schieberegister überträgst, wird die Rei-
henfolge umgekehrt. Hier der modifizierte Code der for-Schleife:

for(int i = 7; i >= 0; i--){
 // ...
}

53/)4

4444)
2

4
;

4
<

4

N� N N� N& N7 NO N0 N�

�	����+,��
�	��
&�

	

����8���

���
�

��
7
�����

��P�(
�?P�(

53/)4

4))4)
2

)
;

4
<

)

N� N N� N& N7 NO N0 N�

�	����+,��
�	��
&�

4

����8���

���
�

��
7
�����

��P�(
�?P�(

4))4)) 4)

Wie kann ich dieses Verhalten aber umkehren? Ich möchte also nun,
dass sich der erste Array-Wert ganz links und der letzte ganz rechts
am Ausgang befindet, so dass die Reihenfolge quasi umgedreht
wurde.
Digitale Porterweiterung -- 249

Ein erweiterter Sketch Teil 2
Nun habe ich dir so viel Grundwissen über das Schieberegister
74HC595 vermittelt, dass ich dich mit einem speziellen Befehl ver-
traut machen möchte, der dir ein wenig Arbeit abnimmt. Dieser
Befehl lautet shiftOut und ist wirklich einfach anzuwenden. Doch
zu Beginn muss ich dir einige Informationen über die Speicherung
von Werten im Computer geben, die recht wichtig sind, um die
Funktionsweise eines Mikrocontrollers zu verstehen. Für meine
Ausführungen ziehe ich den Datentypen byte heran, der ja eine
Datenbreite von 8 Bits besitzt und Werte von 0 bis 255 speichern
kann. In der folgenden Abbildung ist der dezimale Wert 157 als
binärer Wert 10011101 dargestellt.

Abbildung 6-11
Binärkombination für den

Ganzzahlwert 157

Wenn du dir die Potenzen anschaust, wirst du sehen, dass die Basis
die Zahl 2 ist. Wir Menschen rechnen aufgrund unserer 10 Finger,
die wir normalerweise haben, mit der Basis 10. Die Wertigkeiten
der einzelnen Stellen einer Zahl ist also 100, 101, 102 usw. Für die
Zahl 157 wäre das 7*100 + 5*101 + 1*102, was in Summe natürlich
wieder 157 ergibt. Da der Mikrocontroller jedoch nur 2 Zustände
(HIGH und LOW) speichern kann, liegt dem binären System (von
lat. binär = je zwei), wie es genannt wird, die Basis 2 zugrunde. Der
dezimale Wert der o.g. Binärkombination errechnet sich demnach
wie folgt, wobei meist mit dem niedrigsten Wert bzw. Bit angefan-
gen wird:

1*20 + 0*21 + 1*22 + 1*23 + 1*24 + 0*25 + 0*26 + 1*26 = 15710

Das könnte für dich wichtig sein
Zur besseren Übersicht wird bei der Verwendung von Werten
unterschiedlicher Zahlensysteme die Basis hinter den Wert
geschrieben.

Mit einer Datenbreite von 8 Bit (auch 1 Byte genannt) kannst du
256 unterschiedliche Werte (0 bis 255) darstellen. Auf Grundlage
dieses Wissens können wir uns jetzt dem shiftOut-Befehl zuwen-
den. Er hat unterschiedliche Parameter, die du hier kennen lernen
wirst.

)/C

)
;5

4
3/

4
);

)
C

)
5

)
/

4
)

)

/4/)///3/5/2/;/<(�	�����

B��	
���
	

	����
��	
��
--- Projekt 6: Porterweiterung250

Abbildung 6-12
Der Befehl shiftOut mit seinen
zahlreichen Argumenten

Die Argumente datenPin, taktPin bzw. der zu übertragene Wert
sollten klar sein. Was aber bedeutet die Konstante MSBFIRST? Mit
diesem Argument kannst du die Bit-Übertragungsrichtung festle-
gen. Bei einem Byte wird das höchstwertige Bit Most-Significant-Bit
(MSB) und das niederwertigste Least-Significant-Bit (LSB) genannt.
Du kannst also mit der Verwendung von

MSBFIRST LSBFIRST

festlegen, welches Bit zuerst in das Schieberegister transferiert wer-
den soll. Nachfolgend erhältst du den kompletten Code mit dem
Befehl shiftOut. Die Schaltung muss auch hier nicht verändert wer-
den.

int taktPin = 8; // SH_CP
int speicherPin = 9; // ST_CP
int datenPin = 10; // DS

byte wert = 157; // Zu übertragener Wert
void setup(){
 pinMode(taktPin, OUTPUT);
 pinMode(speicherPin, OUTPUT);
 pinMode(datenPin, OUTPUT);
}

void loop(){
 digitalWrite(speicherPin, LOW);
 shiftOut(datenPin, taktPin, MSBFIRST, wert);
 digitalWrite(speicherPin, HIGH);
 delay(20);

}

Das könnte für dich wichtig sein
Du kannst statt des dezimalen Wertes 157 auch direkt die Binär-
kombination bei der Initialisierung der Variablen angeben, so
dass die Umrechnung entfällt. Schreibe einfach B10011101. Das
Präfix B ist ein Kennzeichen dafür, dass es sich um eine Binär-
kombination handelt, mit der die Variable initialisiert werden
soll.

0-�A%�1%	�#%������%#!%�����?����?��/�)%��

 �'��
 &� ��P�(����	��������
��	��� B��	
Digitale Porterweiterung -- 251

Ich habe ein Impulsdiagramm angefertigt, das dir die Pegel der 3
Datenleitungen zur Ansteuerung des Schieberegisters im zeitlichen
Ablauf zueinander zeigt.

Abbildung 6-13
Impulsdiagramm für den über-

gebenen Wert 157 (b10011101)

Ganz oben erkennst du das Taktsignal SH_CP zur Übernahme der
Daten am seriellen Eingang DS. Nach Abschluss des 8. Taktes wird
der Pegel von ST_CP von LOW auf HIGH gesetzt und die Daten
werden aus den internen Registern an die Ausgänge übertragen.
Spiele ein wenig mit unterschiedlichen Werten und Übertragungs-
richtungen, um das Verständnis zu vertiefen.

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• 74HC595

• 74HC595 Datenblatt

• 74HC595 datasheet

Troubleshooting
Falls die LEDs nicht nacheinander zu leuchten beginnen, trenne
das Board sicherheitshalber besser vom USB-Anschluss und über-
prüfe Folgendes:

• Entsprechen deine Steckverbindungen auf dem Breadboard
wirklich der Schaltskizze?

• Gibt es eventuell Kurzschlüsse untereinander?

• Wurden die LEDs richtig herum eingesteckt? Stimmt die Polung?

• Haben die Widerstände die korrekten Werte?

• Hast du das Schieberegister richtig verkabelt? Kontrolliere
noch einmal alle Verbindungen, die ja recht zahlreich sind.

• Ist der Sketch-Code korrekt?
--- Projekt 6: Porterweiterung252

Was hast du gelernt?
• Du hast das Schieberegister vom Typ 74HC595 mit seriellem

Eingang und 8 Ausgängen kennengelernt.

• Im ersten Sketch erfolgte Ansteuerung der drei Datenleitungen
SH_CP, ST_CP und DS und die Taktsignale waren taktflanken-
gesteuert, was bedeutet, dass sie nur auf einen Pegelwechsel von
LOW zu HIGH reagieren.

• Der Befehl shiftOut bietet eine einfache Möglichkeit, Bitkombi-
nationen über Dezimal- oder auch Binärzahlen an das Schiebe-
register zu versenden.

• Du kannst eine Variable vom Datentyp byte mit einem Ganz-
zahlwert z.B. 157 initialisieren oder mit Hilfe der entsprechen-
den Bitkombination, der das Präfix B vorangestellt werden
muss, also z.B. B10011101.

Workshop
In diesem Workshop möchte ich dich zu zunächst dazu anregen,
alle LEDs so aufleuchten zu lassen, dass alle möglichen Bitkombi-
nationen von 00000000 bis 11111111 angezeigt werden.

Denke dir im zweiten Schritt verschiedene Muster oder Sequenzen
aus, nach denen die LEDs blinken sollen. Ich gebe dir dazu ein Bei-
spiel:

Abbildung 6-14
LED-Sequenz für die Ansteuerung
durch das Schieberegister 74HC595

Der 7. Durchlauf hat das gleiche Muster wie der 1. und die Sequenz
beginnt wieder von vorne. Es handelt sich augenscheinlich um zwei

)*+&����
��'-

/*+&����
��'-

3*+&����
��'-

5*+&����
��'-

2*+&����
��'-

;*+&����
��'-

<*+&����
��'-
Digitale Porterweiterung -- 253

leuchtende LEDs, die sich von außen aufeinander zubewegen und
wieder auseinander laufen. Du kannst diesen Ablauf sich 3x wie-
derholen lassen. Im Anschluss müssen alle LEDs 5x hintereinander
für ½ Sekunde blinken, dann soll das Spiel von vorne beginnen.
--- Projekt 6: Porterweiterung254

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 7 7Porterweiterung
mal 2
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Deklarierung und Initialisierung mehrerer Variablen

• Programmierung mehrerer Pins als Ausgang (OUTPUT)

• Zwei Schieberegister vom Typ 74HC595 mit je 8 Ausgängen

• Die Ansteuerung der Schieberegister über 3 Leitungen des
Arduino-Boards

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Workshop

Digitale Porterweiterung mal 2
Das Schieberegister 74HC595 hat neben den 8 parallelen Ausgän-
gen noch einen weiteren, der für uns bisher keine Rolle gespielt hat.
Vielleicht ist er dir schon aufgefallen, doch du hattest vielleicht kei-
nen Grund danach zu fragen. Werfen wir noch einmal einen Blick
auf die Pinbelegung des ICs.
--- 255

Abbildung 7-1
Die Pinbelegung des Schiebe-

registers 74HC595 (Ausgangspins)

Ich habe die normalen Ausgänge Pin QA bis QH farblich gelb
gekennzeichnet und den, auf den es jetzt ankommt, grün. Er hat die
Bezeichnung QH" und hat eine besondere Aufgabe. Es handelt sich
dabei um den seriellen Ausgang für ein weiteres Schieberegister,
das diesen Pin als seriellen Eingang nutzt. Du kannst diese Funktio-
nalität dazu nutzen, mehrere Schieberegister hintereinander zu
schalten, um so eine theoretisch unbegrenzte Anzahl von Ausgän-
gen zu erhalten. In der folgenden Grafik können wir die Verbin-
dung beider Bausteine sehen. Sie reicht vom seriellen Ausgang QH"
des ersten Schieberegisters bis zum seriellen Eingang DS des zwei-
ten Schieberegisters.

Abbildung 7-2
Die Kaskadierung zweier

Schieberegister

Die Anschlüsse von ST_CP bzw. SH_CP werden einfach von beiden
ICs parallel zusammen geschaltet und wie bisher genutzt. Master-

�

�

�

�

�

�

� �	

��

��

��

��

��

����
�����
�

�

��

��

��

��

��

��

� �

!��

��

�"

#�

"�$��

"�$��

�%

��&&

�

�

�

�

�

�

� �	

��

��

��

��

��

����
�����
�

�

��

��

��

��

��

��

� �

!��

��

�"

#�

"�$��

"�$��

�%

��&&

�

�

�

�

�

�

� �	

��

��

��

��

��

����
�����
�

�

��

��

��

��

��

��

� �

!��

��

�"

#�

"�$��

"�$��

�%

��&&

������������	
�	

�
��
�	
�������������
���
�����
--- Projekt 7: Porterweiterung mal 2256

Reset und Output-Enabled werden die gleichen festen Potentiale
wie bei der Schaltung mit nur einem Schieberegister zugewiesen.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Sketch-Code
Der Sketch-Code erfordert ein erweitertes Basiswissen bezüglich
der Bitmanipulation, auf die wir gleich eingehen werden. Zunächst
jedoch der Code:

int taktPin = 8; // SH_CP

int speicherPin = 9; // ST_CP
int datenPin = 10; // DS
void setup(){
 pinMode(taktPin, OUTPUT);
 pinMode(speicherPin, OUTPUT);
 pinMode(datenPin, OUTPUT);
}

void loop(){
 sendeBytes(0B0110011001000101); // Zu übertragene Binärzahl =
 // 26181(dez)
}

// Funktion zum Übertragen der Informationen
void sendeBytes(int wert){

Benötigte Bauteile

2 x Schieberegister 74HC595

16 x rote LED

16 x Widerstand 330

Mehrere flexible Steckbrücken in unterschiedli-
chen Farben und Längen
Digitale Porterweiterung mal 2 -- 257

 digitalWrite(speicherPin, LOW);
 shiftOut(datenPin, taktPin, MSBFIRST, wert >> 8);
 shiftOut(datenPin, taktPin, MSBFIRST, wert & 255);
 digitalWrite(speicherPin, HIGH);
}

Code-Review
Für unser Experiment benötigen wir programmtechnisch gesehen
die folgenden Variablen:

Tabelle 7-1
Benötigte Variablen und deren

Aufgabe

Zu Beginn werden wieder die Variablen mit den benötigten Pin-
Informationen versorgt und zu Anfang der setup-Funktion alle Pins
als Ausgänge programmiert. Doch kommen wir jetzt zum eigentli-
chen und wichtigen Thema der Bitmanipulation. Zuerst eine kurze
Wiederholung dessen, was du schon gelernt hast. Die 8 Ausgänge
eines einzelnen Schieberegisters repräsentieren die 8 Bits eines ein-
zelnen Bytes.

Abbildung 7-3
Die 8 Ausgänge eines

Schieberegister

Mit diesen 8 Bits (1 Byte) kannst du 28 = 256 verschiedene Bitkom-
binationen darstellen. Wenn wir also Zahlenwerte von 0 bis 255
über die shiftOut-Funktion an das Schieberegister schicken, errei-
chen wir damit alle Ausgänge (QA bis QH). Haben wir jedoch auf-
grund der Kaskadierung zweier Schieberegister doppelt so viele
Ausgänge, dann stehen uns statt 8 jetzt 16 Bits zur Verfügung. Das
ist eine Bandbreite von 216 = 65536 Bitkombinationen. Mit den bis-

Variable Aufgabe

taktPin SH_CP Signal

speicherPin ST_CP Signal

datenPin DS Signal

53/)4

44444
2

4
;

4
<

4

N� N N� N& N7 NO N0 N�

�	����+,��
�	��
&�

�

����8���

���
�

��
7
�����
--- Projekt 7: Porterweiterung mal 2258

herigen Werten von 0 bis 255 kannst du aber nicht die zusätzlichen
8 Bits erreichen. Schau’ her:

Abbildung 7-4
Die 16 Ausgänge zweier
Schieberegister

Ich habe in der Darstellung die Ausgänge ein wenig umgruppiert,
denn die niederwertigste Stelle befindet sich in der Regel ganz
rechts und die höchstwertige ganz links. Daher werden jetzt die
Daten von rechts in das erste Schieberegister geschoben und wan-
dern nach links bis in das zweite.

Im Ansatz ist diese Überlegung vollkommen korrekt, doch an einer
Stelle hakt es. Der shiftOut-Befehl kann nur ein einzelnes Byte in
Richtung Schieberegister übertragen und ist mit einem Wert > 255
überfordert. Aus diesem Grund müssen wir einen Trick anwenden.
Betrachten wir die Zahl 26181 ab jetzt ausschließlich als Binärzahl,
denn damit arbeitet ja der Mikrocontroller.

����8���

&�

���
�

��
7
�����

44444 4 4 4

N� N0 NO N7 N& N� N N�

�	����+,��
�	��

N�Q

���
������
�	��+)+�:
����$��	
���+ F	�"

)

����8���

&�

���
�

��
7
�����

44444 4 4 4

N� N0 NO N7 N& N� N N�

�	����+,��
�	��

N�Q

���
������
�	��+/+��E���$��	
���+ F	�"

)

/4/)///3/5/2/;/</C/D/)4/))/)//)3/)5/)2

Wenn ich mir den Sketch-Code so anschaue, dann würde ich sagen,
dass er ziemlich kompliziert aussieht. Ich muss doch lediglich dem
shiftOut-Befehl den zu übertragenen Wert von 26181 als Argument
übergeben und die beiden Schieberegister werden mit dem Wert initi-
alisiert. Also ich meine das z.B. so: shiftOut(datenPin, taktPin,
MSBFIRST, 26181);.
Digitale Porterweiterung mal 2 -- 259

Abbildung 7-5
Die Dezimalzahl 26181 als

16-Bit-Binärzahl

Die Übertragung muss, wie schon im Sketch zu sehen war, in zwei
separaten Schritten erfolgen. Zuerst wird das höherwertige,
anschließend das niederwertige Byte mit dem shiftOut-Befehl über-
tragen. Erst im Anschluss wird der Speicherpin (Signal: ST_CP) auf
HIGH-Level gesetzt. Wie aber separieren wir die 2x8-Bit-Informati-
onen aus dem 16-Bit Wort?

Das könnte für dich wichtig sein
Der Datenverbund von 4 Bits wird in der Programmierung 1
Nibble genannt. Das nächsthöhere Datenpaket von 8 Bits nen-
nen wir 1 Byte. Bei einer Datenbreite von 16 Bits haben wir es
mit einem Wort zu tun.

Wir müssen uns dazu der bitweisen Operatoren bedienen, die es
uns ermöglichen, einzelne oder mehrere Bits einer Zahl bequem zu
modifizieren bzw. anzusprechen. Ich beginne mit dem logischen
Verschieben (engl. Shift). Die folgende Grafik zeigt dir das Verschie-
ben der einzelnen Bits eines Bytes um eine Stelle nach rechts.

Abbildung 7-6
Logische Verschiebung nach rechts

Drei wesentliche Dinge sind hierbei erwähnenswert:

• Alle Bits wandern eine Position weiter nach rechts.

• Auf der linken Seite wird eine 0 an die Stelle des höchstwertigen
Bits (MSB = Most Significant Bit) eingefügt, denn die frei wer-
dende Stelle muss auch mit einen definierten Wert versehen
werden.

• Auf der rechten Seite ist kein Platz mehr für das vormals nie-
derwertigste Bit (LSB = Least Significant Bit). Es wird in diesem
Fall nicht mehr benötigt und verschwindet im Nirwana.

Diese Operation wird mit dem Shift-Operator >> durchgeführt.

444)4) 4)44))4)) 4
/4/)///3/5/2/;/</C/D/)4/))/)//)3/)5/)2

�E���$��	
���+ F	� :
����$��	
���+ F	�

&��
��
$��	-+ #!$!

444)4) 4)
/4/)///3/5/2/;/<

44)44 4) 44)

�� H�
--- Projekt 7: Porterweiterung mal 2260

Abbildung 7-7
Der Shift-Operator für die logische
Verschiebung nach rechts

Die beiden Pfeile weisen nach rechts, was bedeutet, dass alle Bits in
diese Richtung verschoben werden. Operand 2 gibt dabei vor, um
wie viele Stellen Operand 1 nach rechts verschoben werden soll.
Hier ein Beispiel:

byte wert = 0b01000101; // Dezimalzahl 69
void setup(){
 Serial.begin(9600);
 Serial.println(wert >> 1, BIN);
}

void loop(){/* leer */}

Die Ausgabe im Serial Monitor lautet 100010. Lass’ dich nicht ver-
unsichern, denn führende Nullen werden nicht mit ausgegeben. Du
siehst übrigens, dass bei der println-Funktion über einen zusätzli-
chen Parameter gesteuert werden kann, in welchem Format der
Wert auszugeben ist. BIN bedeutet Binär und deshalb wird dir der
Wert nicht in dezimaler, sondern in binärer Form angezeigt. Schau’
in der Referenz nach, um dich über weitere Optionen zu informie-
ren. Der Wert 1 hinter dem Verschiebeoperator gibt an, um wie
viele Stellen verschoben werden soll.

Eine berechtigte Frage, Ardus! Da der Mikrocontroller – wie du
jetzt ja schon weißt – nur mit Einsen und Nullen umgehen kann,
behandelt er Dezimalzahlen schon von Hause aus wie Binärzahlen.
Die Antwort lautet eindeutig: Ja! Doch kommen wir jetzt zum
eigentlichen Thema zurück. Wir müssen aus der 16-Bit Zahl das
höchstwertige Byte extrahieren und als 8-Bit Wert darstellen.
Kannst du dir vorstellen, wie das funktionieren soll? Du musst
lediglich die 16 Bits um 8 Stellen nach rechts verschieben. Danach
befinden sich die 8 Bits des höchstwertigen Bytes an der Stelle des
niederwertigen Bytes. Das wird mit der Codezeile

shiftOut(datenPin, taktPin, MSBFIRST, wert >> 8);

/�)%

FF

�

M������+) M����	�� M������+/

Ist es eigentlich auch möglich, Dezimalzahlen mit bitweisen Operato-
ren zu manipulieren?
Digitale Porterweiterung mal 2 -- 261

erreicht. Alle Bits des vormals niederwertigen Bytes gehen dabei ver-
loren. Wir verändern jedoch nicht den eigentlichen Ursprungswert
der Variablen wert, so dass die vermeintlich verloren geglaubten Bits
immer noch für die nächste Operation zur Verfügung stehen.

Abbildung 7-8
Logische Verschiebung 8 Stellen

nach rechts

Der zweite Schritt besteht in der Extrahierung des niederwertigsten
Bytes. Für diese Aktion benötigen wir den bitweisen Operator
AND, der durch das Kaufmanns-Und (&) repräsentiert wird. Um
nur bestimmte Bits zu berücksichtigen, wird eine Art Schablone
oder Maske über den ursprünglichen Wert gelegt. Wir verwenden
dazu folgende Codezeile:

shiftOut(datenPin, taktPin, MSBFIRST, wert & 255);

Der dezimale Wert 255 ist gleichbedeutend mit der Binärzahl
11111111, die als Maske dient. Schau’ dir die folgende Wahrheits-
tabelle an, die die logischen Zustände von A bzw. B und deren Ver-
knüpfungsergebnis angibt.

Tabelle 7-2
Wahrheitstabelle für die bitweise

Und-Verknüpfung

Das Ergebnis ist nur dann 1, wenn beide Operanden den Wert 1
besitzen.

Abbildung 7-9
Der Wert 255 dient als Maske für
die Filterung der unteren 8 Bits.

444)4) 4)44))4)) 4
/4/)///3/5/2/;/</C/D/)4/))/)//)3/)5/)2

�E���$��	
���+ F	� :
����$��	
���+ F	�

44))4)) 444444 4 4 4

A B A&B

0 0 0

0 1 0

1 0 0

1 1 1

44))4)) 4
/4/)///3/5/2/;/</C/D/)4/))/)//)3/)5/)2

�E���$��	
���+ F	� :
����$��	
���+ F	�

444)4) 4)

444)4) 4)

�����+�/22"
--- Projekt 7: Porterweiterung mal 2262

Das höherwertige Byte wird bei dieser Operation nicht berücksich-
tigt, denn die Informationen werden durch die in der Grafik sym-
bolisch dargestellte Lochmaske geblockt.

Das könnte für dich wichtig sein
Die beiden von mir vorgestellten bitweisen Operatoren sind
nicht alle, die in diese Kategorie fallen. Im Laufe dieses Buches
wirst du noch weitere Operatoren kennenlernen, und in der
Codereferenz am Ende des Buches findest du noch einmal eine
Zusammenfassung.

Der Schaltplan
Der Schaltplan zeigt uns die 16 LEDs mit ihren 330 Ohm-Vorwi-
derständen, die durch die beiden Schieberegister 74HC595 ange-
steuert werden.

Abbildung 7-10
Das Arduino-Board steuert über 3
Signalleitungen die beiden
74HC595-Schieberegister an.

Wir sehen außerdem, dass von beiden Schieberegistern die Pins
SH_CP und ST_CP parallel angesteuert werden und Master-Reset
und Output-Enabled die gleichen festen Potentiale zugewiesen wur-
Digitale Porterweiterung mal 2 -- 263

den. Der serielle Ausgang QH“ des ersten Registers ist mit dem seri-
ellen Eingang DS des zweiten Registers verbunden.

Schaltungsaufbau
Die Schaltung habe ich auf zwei getrennte Breadboards aufgeteilt,
da es aus platztechnischen Gründen nicht anders möglich war.
Natürlich kannst du die komplette Verdrahtung auf einem einzi-
gen, großen Breadboard unterbringen. Dann hast du auch alle
LEDs in einer Reihe angeordnet und kannst die unterschiedlichsten
Muster erzeugen.

Abbildung 7-11
Der Aufbau der Schaltung mit

Fritzing

Troubleshooting
Falls die LEDs nicht oder nur teilweise leuchten, trenne das Board
sicherheitshalber besser vom USB-Anschluss und überprüfe bitte
Folgendes:

• Entsprechen deine Steckverbindungen auf dem Breadboard
wirklich der Schaltskizze?

• Gibt es eventuell Kurzschlüsse untereinander?

• Wurden die LEDs richtig herum eingesteckt ? Stimmt die Pol-
ung?

• Haben die Widerstände die korrekten Werte?
--- Projekt 7: Porterweiterung mal 2264

• Hast du die Schieberegister richtig verkabelt? Kontrolliere
noch einmal alle Verbindungen, die ja recht zahlreich sind.
Wichtig sind auch die festen Potentiale von Master-Reset und
Output-Enabled.

• Überprüfe noch einmal den Sketch-Code auf Korrektheit. Ver-
binde das Board wieder mit der USB-Schnittstelle und führe
einen kompletten Funktionstest aller LEDs durch. Schalte alle
an, mache eine Pause und schalte alle wieder aus. Platziere fol-
genden Code innerhalb der loop-Funktion:

sendeBytes(0b1111111111111111); delay(300);

sendeBytes(0b0000000000000000); delay(300);

Dieser Test sollte erfolgreich verlaufen, denn ansonsten hast du
ein Problem mit der Verkabelung. Erfolgreiche Fehlersuche!

Was hast du gelernt?
• Du hast das Schieberegister vom Typ 74HC595 kaskadiert und

so miteinander verbunden, dass du 16 digitale Ausgänge erhal-
ten hast.

• Anhand der Bitmanipulation hast du gesehen, wie einzelne
Werte modifiziert bzw. gefiltert werden können.

• Der Shift-Operator kann dabei die Bits sowohl nach rechts als
auch nach links verschieben.

• Der logische Und-Operator wird zum Maskieren einzelner Bits
genutzt.

Workshop
In diesem Workshop wollen wir ein wenig mit der Bitmanipulation
spielen. Ich erwähnte ja schon, dass es noch weitere Operatoren
gibt und wir wollen mal sehen, was man mit diesen so anstellen
kann.

Der Shift Operator
Neben dem Shift-Operator >>, der die Bits nach rechts schiebt, gibt
es noch den Operator, der für das Verschieben nach links verant-
wortlich ist. Er wird ebenfalls durch einen Doppelfeil << repräsen-
tiert, der aber im Vergleich zum Shiftoperator in die
entgegengesetzte Richtung weist. Mit diesem Wissen solltest du in
der Lage sein, einen Sketch zu schreiben, bei dem z.B. eine einzelne
Digitale Porterweiterung mal 2 -- 265

LED endlos vor- und zurückwandert. Ich hatte kurz das Glück, den
Shift-Left-Operator bei seiner anspruchsvollen Aufgabe zu beob-
achten.

Abbildung 7-12
Der Shift-Left-Operator bei der

Arbeit

Wir sehen, dass er auf der rechten Seite eine 0 einschiebt und auf
der linken eine 1 herunterfällt. Es würde in diesem Fall auch kein
Zurückschieben mehr nützen, denn die 1 ist vom Tisch und verlo-
ren. Ähnlich verhält es sich mit dem Shift-Operator >>, der nach
rechts schiebt.

Der NOT-Operator
Kommen wir jetzt zu einem Operator, der sich auf alle Bits gleicher-
maßen auswirkt. Es handelt sich dabei um den bitweisen NOT-
Operator. Er invertiert alle Bits. Aus 0 wird 1 und aus 1 eine 0.

Tabelle 7-3
Wahrheitstabelle für bitweise NOT-

Verknüpfung

In der folgenden Abbildung habe ich das 16-Bit-Wort mit dem
NOT-Operator verknüpft. Du siehst, dass jedes einzelne Bit getog-
gelt wird.

Abbildung 7-13
Anwendung des NOT-Operators auf

ein 16-Bit-Wort

A ~A

0 1

1 0

444)4) 4)44))4)) 4
/4/)///3/5/2/;/</C/D/)4/))/)//)3/)5/)2

�E���$��	
���+ F	� :
����$��	
���+ F	�

)))4) 4) 4

���	
	��

��	
	��

��	
	��

��	
	��

��	
	��

��	
	��

��	
	��

��	
	��

��	
	��

��	
	��

��	
	��

��	
	��

��	
	��

��	
	��

��	
	��

��	
	��

))44) 4 4)
--- Projekt 7: Porterweiterung mal 2266

Du kannst z.B. den Test-Sketch von eben ein wenig umschreiben,
damit alle LEDs blinken. Um das Ganze ein wenig flexibler hand-
haben zu können, habe ich das Bitmuster in die globale Variable
bitMuster ausgelagert:

//...

int bitMuster; // globale Bitmuster-Variable
void setup(){
 //...
 bitMuster = 0b1111111111111111; // Initialisierung der Bitmuster-
 // Variable

}

void loop(){
 sendeBytes(bitMuster); // Senden des Bitmusters an die Schieberegister
 bitMuster = ~bitMuster; // bitweises NOT
 delay(300); // 300ms Pause

}

In der loop-Funktion wird das Bitmuster angezeigt, im nächsten
Schritt invertiert und dann eine kleine Pause eingelegt, um den
Wechsel für das Auge sichtbar zu machen. Experimentiere ein
wenig mit den Bitmustern. Du kannst interessante Effekte erzielen.
Hier ein paar Beispiele:

bitMuster = 0b1010101010101010;

bitMuster = 0b1111111100000000;
bitMuster = 0b1100110011001100;
bitMuster = 0b1111000000001111;

Natürlich kannst du auch mehrere unterschiedliche Bitmuster hin-
tereinander anzuzeigen. Der Möglichkeiten sind hier keine Grenzen
gesetzt.

Der UND-Operator
Den UND-Operator hatten wir schon eben erwähnt. Er wird meis-
tens dazu genutzt, mit einer Maske bestimmte Bits herauszufiltern
oder zu ermitteln, ob ein bestimmtes Bit in einem Wert gesetzt ist.
Letzteres wollen wir uns jetzt einmal genauer anschauen. Nehmen
wir einmal an, ich möchte aus irgendeinem Grund wissen, ob das
Bit an der Stelle 26 gesetzt ist.
Digitale Porterweiterung mal 2 -- 267

Abbildung 7-14
Überprüfung, ob ein Bit gesetzt ist

Wir erstellen dafür eine Maske, die nur an der interessanten Stelle
die Information des zu überprüfenden Wertes durchlässt. In unse-
rem Fall ist das die Stelle 26 mit dem dezimalen Wert 64. Die Über-
prüfung sieht dann folgendermaßen aus:

int wert, maske;
void setup(){
 Serial.begin(9600);
 wert = 0b0110011001000101; // Zu überprüfender Wert
 maske = 0b0000000001000000; // Bitmaske

 if((wert & maske) == maske)
 Serial.println("Bit ist gesetzt.");
 else

 Serial.println("Bit ist nicht gesetzt.");
}

void loop(){/*leer*/}

Wenn das Ergebnis des Vergleichs mit dem des Maskenwertes
übereinstimmt, ist das zu überprüfende Bit gesetzt, andernfalls
nicht. Die Ausgabe im Serial-Monitor zeigt in unserem Beispiel,
dass das Bit gesetzt ist.

Der ODER-Operator
Möchtest du ein einzelnes oder auch mehrere Bits an unterschiedli-
chen Stellen setzten, dann ist der ODER-Operator die erste Wahl.
Ein Blick in die Wahrheitstabelle zeigt uns, dass das Ergebnis 1 ist,
sobald nur einer der Operanden den Wert 1 aufweist.

Tabelle 7-4
Wahrheitstabelle für bitweise

Oder-Verknüpfung

44))4)) 4
/4/)///3/5/2/;/</C/D/)4/))/)//)3/)5/)2

�E���$��	
���+ F	� :
����$��	
���+ F	�

444)4 4 4 4

444)4) 4)

�����+�;5"

44444444 7�����
�-+;5

A B A|B

0 0 0

0 1 1

1 0 1

1 1 1
--- Projekt 7: Porterweiterung mal 2268

Das ODER-Zeichen wird durch den senkrechten (Pipe-)Strich
repräsentiert. Wenn du z.B. das Bit an der Position 21 setzten
möchtest, verwende die folgende Maske:

Abbildung 7-15
Setzen eines einzelnen Bits

Die Maske hat lediglich an der Position 21 eine 1, was bedeutet,
dass bei einer ODER-Verknüpfung nur an dieser einen Stelle eine
mögliche Veränderung gegenüber 1 stattfindet. Ich sage absichtlich
»mögliche«, da der Bitwert an dieser Stelle vielleicht vor der Ver-
knüpfung schon 1 war. Dann erfolgt natürlich keine Änderung. An
den Stellen, an der die Maske eine 0 aufweist, ändert sich nichts.

int wert, maske;

void setup(){
 Serial.begin(9600);
 wert = 26181; // Ausgangswert 26181

 maske = 2; // Bitmaske = 0000000000000010
 Serial.println(wert | maske); // Ergebnis = 26183
}

void loop(){/*leer*/}

Vorschau auf etwas
Interessantes
Ich möchte dir an dieser Stelle gerne den Mund wässrig machen im
Hinblick auf etwas sehr Interessantes. In einem gesonderten Kapi-
tel werde ich die Möglichkeit ansprechen, Schaltungen auf eigens
dafür hergestellten Platinen unterzubringen. Diese Platinen werden
huckepack oben auf dein Arduino-Board gesteckt und haben den
Vorteil, dass du die einzelnen Bauteile nicht mittels fliegender Ver-
drahtung verbinden musst. Sie werden auf die Platine gelötet und
haben so eine höhere Stabilität und Kompaktheit. Ich werden dir
sowohl die Verdrahtungspläne als auch die Layouts zur Verfügung
stellen. Dann kannst du entweder Lochrasterplatinen verwenden
oder auch Platinen direkt ätzen. Aber jetzt zeige ich dir schon ein-

44))4)) 4
/4/)///3/5/2/;/</C/D/)4/))/)//)3/)5/)2

�E���$��	
���+ F	� :
����$��	
���+ F	�

444)4) 4)

R+�����+�/"

7�����
�-+/;)C3

44444 4 4 4 44444 4) 4

44))4)) 4 444)4)))

B��	-+/;)C)
Vorschau auf etwas Interessantes --- 269

mal die Platine, die ich auf die beschriebene Weise angefertigt
habe.

Abbildung 7-16
Zwei Schieberegister vom Typ

74HC595 mit LED-Bar

Das macht doch Lust auf mehr – oder? Keine lästigen Kabel, die
immer mal wieder das Breadboard verlassen wollen. Keine wackli-
gen LEDs, die nicht in der Position bleiben, in der du sie gerne hät-
test. Mit der hier gezeigten Konstruktion kannst du dein Werk
schon mal mit zu Freunden nehmen, ohne Gefahr zu laufen, dass
sich die Schaltung unterwegs verselbstständigt. Wir werden noch
viele solcher Platinen herstellen und am Ende wirst du eine nette
Sammlung fertiger Schaltungen aufweisen können. Wenn du ein
wenig Fingerfertigkeit besitzt, ist das Ganze recht leicht umzuset-
zen. Alle Informationen dazu findest du auf meiner Internetseite,
auf der auch die Platinenlayouts für viele selbstgemachte Hucke-
pack-Platinen zum Download zur Verfügung stehen. Es lohnt sich
also, dort mal einen Blick zu riskieren.

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• 74HC595 Schieberegister

• Kingbright RGB 2000
--- Projekt 7: Porterweiterung mal 2270

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 8 8Die Statemachine
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Deklarierung und Initialisierung mehrerer Variablen

• Programmierung mehrerer Pins als Ausgang (OUTPUT)

• Programmierung eines Ports als Eingang (INPUT)

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Erweiterter Sketch (Interaktive Ampelschaltung)

• Workshop

Eine Ampelschaltung
Jetzt hast du schon so viel gelernt, dass es für die nächste Heraus-
forderung reicht. Das Programmieren einer Ampelschaltung ist eine
klassische Aufgabe. In diesem Zusammenhang fällt meistens der
Begriff State Machine. Es handelt sich dabei um eine Maschine, die
unterschiedliche, aber endliche Zustände annehmen kann. Dies hat
ihr den englischen Namen Finite State Machine, auch kurz FSM,
eingebracht, der das Verhalten dieser Maschine in der Tat recht gut
beschreibt. Folgende Punkte sind Bestandteil dieses Modells, wobei
ich die Sache hier sehr vereinfacht darstelle:
--- 271

• Zustand

• Zustandsübergang

• Aktion

Doch dazu gleich mehr. Kommen wir zu unserer Ampel zurück, die
eine Lichtanlage zur Regelung des Verkehrs ist und mit unter-
schiedlichen Farben arbeitet, wobei der Wechsel der Farben in
Deutschland einheitlich geregelt ist. Werden wir uns aber zuerst
einmal über die einzelnen möglichen Ampelphasen klar.

Abbildung 8-1
Ampelzustände mit Phasenwechsel

Die einzelnen Ampelphasen werden von der 1. bis zur 4. Phase
durchlaufen. Danach wird wieder von vorne begonnen. Der Ein-
fachheit halber beschränken wir uns auf eine Ampel für eine Fahrt-
richtung. Das Beispiel regt sicherlich zum Experimentieren an und
macht viel Spaß. Die Bedeutung der einzelnen Farben sollte klar
sein, doch ich nenne sie zur Sicherheit noch einmal:

• Rot (keine Fahrerlaubnis)

• Gelb (Auf nächstes Signal warten)

• Grün (Fahrerlaubnis)

Jede einzelne Phase hat eine festgelegte Leuchtdauer. Der Verkehrs-
teilnehmer muss genug Zeit haben, die einzelne Phase wahrzuneh-
men und entsprechend zu reagieren. Wir werden für unser Beispiel
folgende Leuchtdauern definieren, die sicherlich nicht der Realität
entsprechen, denn du möchtest bestimmt nicht allzu lange auf den
Phasenwechsel warten. Du kannst die Zeiten aber nach Belieben
anpassen.

������� ������� ������� �������

�����	������� �����	������� �����	�������

�����	�������
--- Projekt 8: Die Statemachine272

Tabelle 8-1
Phasen mit Brenndauer

Nach dem Übertragen des Sketches soll die Ampelschaltung die
gerade gezeigte 4 Phasen durchlaufen und wieder von vorne begin-
nen. Werfen wir zuerst aber einen Blick auf die Bauteilliste.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Sketch-Code
Hier der Sketch-Code zur Ansteuerung der Ampelschaltung:

#define DELAY1 10000 // Pause 1, 10 Sekunden

#define DELAY2 2000 // Pause 2, 2 Sekunden

#define DELAY3 3000 // Pause 3, 3 Sekunden

int ledPinRot = 7; // Pin 7 steuert rote LED

1. Phase 2. Phase 3. Phase 4. Phase

Dauer: 10 Sekunden Dauer: 2 Sekunden Dauer: 10 Sekunden Dauer: 3 Sekunden

Benötigte Bauteile

1 x rote LED

1 x gelbe LED

1 x grüne LED

3 x Widerstand 330

Mehrere flexible Steckbrücken in unterschiedli-
chen Farben und Längen
Eine Ampelschaltung --- 273

int ledPinGelb = 6; // Pin 6 steuert gelbe LED

int ledPinGruen = 5; // Pin 5 steuert grüne LED

void setup(){

 pinMode(ledPinRot, OUTPUT); // Pin als Ausgang

 pinMode(ledPinGelb, OUTPUT); // Pin als Ausgang

 pinMode(ledPinGruen, OUTPUT); // Pin als Ausgang

}

void loop(){

 digitalWrite(ledPinRot, HIGH); // rote LED anschalten

 delay(DELAY1); // 10 Sekunden warten

 digitalWrite(ledPinGelb, HIGH); // gelbe LED anschalten

 delay(DELAY2); // 2 Sekunden warten

 digitalWrite(ledPinRot, LOW); // rote LED ausschalten

 digitalWrite(ledPinGelb, LOW); // gelbe LED ausschalten

 digitalWrite(ledPinGruen, HIGH); // grüne LED anschalten

 delay(DELAY1); // 10 Sekunden warten

 digitalWrite(ledPinGruen, LOW); // grüne LED ausschalten

 digitalWrite(ledPinGelb, HIGH); // gelbe LED anschalten

 delay(DELAY3); // 3 Sekunden warten

 digitalWrite(ledPinGelb, LOW); // gelbe LED ausschalten

}

Code-Review
Für unser Experiment benötigen wir programmtechnisch gesehen
die folgenden Variablen:

Tabelle 8-2
Benötigte Variablen und deren

Aufgabe

Du bist mal wieder schneller als die Polizei erlaubt. Der Befehl
#define ist eigentlich kein richtiger Befehl, sondern eine Präprozess-
ordirektive. Erinnere dich an die #include-Präprozessordirektive.
Du erkennst sie daran, dass am Ende der Zeile kein Semikolon
steht, welches ja normalerweise das Ende eines Befehls kennzeich-

Variable Aufgabe

ledPinRot Ansteuerung der roten LED

ledPinGelb Ansteuerung der gelben LED

ledPinGruen Ansteuerung der grünen LED

Da habe ich gleich zu Beginn mal wieder eine Frage. Im Sketch-Code
befinden sich direkt am Anfang drei Zeilen, deren Inhalt mir vollends
unbekannt ist. Was bedeutet #define und der nachfolgende Rest in
der Zeile?
--- Projekt 8: Die Statemachine274

net. Wenn der Compiler mit dem Übersetzten des Quellcodes
beginnt, verarbeitet ein spezieller Teil des Compilers – der Präpro-
zessor – die Präprozessor-Direktiven, die immer mit dem Rautenzei-
chen # eingeleitet werden. Du lernst im Verlauf dieses Buches noch
weitere solcher Direktiven kennen. Die #define-Direktive gestattet
uns die Verwendung von symbolischen Namen und Konstanten. Die
Syntax zur Verwendung dieser Direktive lautet wie folgt:

Abbildung 8-2
Die »#define-Direktive«

Die Zeile arbeitet folgendermaßen: Überall, wo der Compiler im
Sketch-Code den Bezeichner DELAY1 findet, ersetzt er ihn durch
den Wert 10000. Du kannst die #define-Direktive immer dort ein-
setzten, wo du im Code Konstanten verwenden möchtest, um diese
komfortabel an einer Stelle zu verwalten. Ich habe diese Thematik
schon einmal angesprochen. Keine Magic-Numbers!

Da hast du Recht! Das hätte ich durchaus tun können und einige
Arduino-Sketche, die du im Internet findest, verwenden diese
Schreibweise. Statt

int ledPinRot = 7;

kannst du auch

#define ledPinRot 7

schreiben. Der Sketch arbeitet wie vorher und es macht keinen
Unterschied, ob du die erste oder die zweite Variante nutzt. Ich ver-
wende in meinen Sketches die Variablendeklaration bzw. –initiali-
sierung für Pins, und wenn es um Konstanten geht, nutze ich die
#define-Direktive. Dir stehen beide Möglichkeiten zur Verfügung,
doch wenn du dich für eine entscheidest, solltest du sie einheitlich
verwenden und nicht heute so und morgen so vorgehen. Wir wol-
len aber jetzt wieder zu unserem Sketch kommen und schauen, wie
er funktioniert.

G��A���
2,=.H

����

&
���	
G� ���
����� B��	

Aber warum hast du denn nicht #define überall dort angewendet, wo
die Pins definiert wurden? Das sind doch eigentlich auch Konstanten,
die sich im Laufe des Sketches nicht mehr ändern.
Eine Ampelschaltung --- 275

Abbildung 8-3
Ansteuerung der einzelnen

Amplephasen

Du musst unbedingt darauf achten, die einzelnen LEDs nicht nur
einzuschalten, sondern auch bei verschiedenen Phasenwechseln
wieder auszuschalten. Beim Wechsel von Phase 1 auf Phase 2
kommt zur roten LED lediglich eine gelbe hinzu. Die rote kann also
getrost weiter leuchten. Doch beim Wechsel von Phase 2 auf Phase
3 musst du beachten, dass die rote bzw. gelbe LED auszuschalten
ist, bevor die grüne zu Leuchten beginnt. Wenn dann von Phase 4
wieder auf Phase 1 geschaltet wird und die Phasen von vorne begin-
nen, muss die gelbe LED ausgeschaltet werden. Wirf’ doch einmal
einen Blick auf das Impulsdiagramm, dann erkennst Du, wie die
LEDs in den unterschiedlichen Phasen im Wechsel leuchten.

Abbildung 8-4
Impulsdiagramm der

Ampelschaltung
--- Projekt 8: Die Statemachine276

Der Schaltplan
Der Schaltplan zeigt uns die drei farbigen LEDs mit ihren 330
Ohm-Vorwiderständen. An zusätzlicher Hardware ist der Aufwand
jetzt etwas zurückgegangen, doch das ändert sich bald wieder.

Abbildung 8-5
Das Arduino-Board steuert unsere
Ampelanlage.

Schaltungsaufbau
Abbildung 8-6

Aufbau der Ampelschaltung mit
Fritzing
Eine Ampelschaltung --- 277

Ein erweiterter Sketch
(Interaktive Ampelschaltung)
Da dieser Sketch hinsichtlich der Programmierung und des Auf-
baus relativ einfach war, wollen wir die Sache ein wenig modifizie-
ren. Stelle dir jetzt eine Fußgängerampel vor, die auf einer geraden
Landstraße installiert ist. Es macht dort wenig Sinn, die Phasen für
die Autofahrer sich ständig wechseln zu lassen, wenn kein Fußgän-
ger die Fahrbahn überqueren möchte. Wie soll die Ampelschaltung
mit ihren Phasen also funktionieren? Was benötigen wir an zusätz-
lichem Material und wie müssen wir die Logik erweitern? Die fol-
genden Punkte sind hierbei zu berücksichtigen:

• Kommt kein Fußgänger vorbei, um die Straße zu überqueren,
haben die Autofahrer immer grünes Licht. Die Fußgängerampel
bleibt rot.

• Drückt ein Fußgänger den Ampelknopf, um die Straße –mög-
lichst sicher zu überqueren, wechselt das grüne Licht der Auto-
fahrer über Gelb zu Rot. Danach erhält der Fußgänger grünes
Licht. Nach Ablauf einer fest definierten Zeit, wird dem Fuß-
gänger wieder rotes Licht angezeigt und die Autofahrer erhal-
ten über Rot/Gelb dann grünes Licht.

Die Ausgangssituation sieht also folgendermaßen aus:

1. Phase

Aber schauen wir uns die Sache im Detail an:

2. Phase

Auto Fußgänger Erläuterungen

Diese beiden Lichtsignale bleiben solange bestehen, bis ein Fußgän-
ger vorbei kommt und den Ampelknopf drückt. Erst dann werden die
Phasenwechsel in Gang gesetzt, damit der Autofahrer rotes Licht und
der Fußgänger grünes Licht bekommt.

Auto Fußgänger Erläuterungen

Der Phasenwechsel wurde durch den Druck auf den Ampelknopf ein-
geleitet. Dem Autofahrer wird das Signal gelb angezeigt, was bedeu-
tet, dass Rot in Kürze folgt.

Dauer: 3 Sekunden
--- Projekt 8: Die Statemachine278

3. Phase

4. Phase

5. Phase

6. Phase

7. Phase

Auto Fußgänger Erläuterungen

Autofahrer und Fußgänger haben zuerst einmal aus Sicherheitsgrün-
den ein rotes Signal erhalten. Das gibt dem Autofahrer die Möglich-
keit, den Gefahrenbereich des Zebrastreifens zu räumen.

Dauer: 1 Sekunde

Auto Fußgänger Erläuterungen

Nach einer kurzen Zeit erhält der Fußgänger das Gehsignal.

Dauer: 10 Sekunden

Auto Fußgänger Erläuterungen

Nach der Grünphase für den Fußgänger erhält auch dieser wieder das
Stoppsignal.

Dauer: 1 Sekunde

Auto Fußgänger Erläuterungen

Dem Autofahrer wird das Rot- / Gelbsignal angezeigt, das ankündigt,
dass er gleich freie Fahrt über das Grünsignal erhält.

Dauer: 2 Sekunden

Auto Fußgänger Erläuterungen

Die letzte Phase bedeutet wieder grünes Licht für die Autofahrer und
ein Stoppsignal für die Fußgänger. Sie ist gleichbedeutend mit der
ersten Phase.

Dauer: Bis auf Knopfdruck
Eine Ampelschaltung --- 279

Für diesen erweiterten Sketch benötigst du zusätzlich die folgenden
Bauteile:

Der erweiterte Code sieht dann wie folgt aus:

#define DELAY0 10000 // Pause 0, 10 Sekunden
#define DELAY1 1000 // Pause 1, 1 Sekunde
#define DELAY2 2000 // Pause 2, 2 Sekunden
#define DELAY3 3000 // Pause 3, 3 Sekunden
int ledPinRotAuto = 7; // Pin 7 steuert rote LED (Autoampel)
int ledPinGelbAuto = 6; // Pin 6 steuert gelbe LED (Autoampel)
int ledPinGruenAuto = 5; // Pin 6 steuert grüne LED (Autoampel)
int ledPinRotFuss = 3; // Pin 3 steuert rote LED (Fußgängerampel)
int ledPinGruenFuss = 2; // Pin 2 steuert grüne LED (Fußgängerampel)
int tasterPinAmpel = 8; // Ampeltaster wird an Pin 8 angeschlossen
int tasterAmpelWert = LOW; // Variable für den Status des Ampeltasters

void setup(){
 pinMode(ledPinRotAuto, OUTPUT); // Pin als Ausgang
 pinMode(ledPinGelbAuto, OUTPUT); // Pin als Ausgang
 pinMode(ledPinGruenAuto, OUTPUT); // Pin als Ausgang
 pinMode(ledPinRotFuss, OUTPUT); // Pin als Ausgang
 pinMode(ledPinGruenFuss, OUTPUT); // Pin als Ausgang
 pinMode(tasterPinAmpel, INPUT); // Pin als Eingang
 digitalWrite(ledPinGruenAuto, HIGH); // Anfangswerte (Autoampel grün)
 digitalWrite(ledPinRotFuss, HIGH); // Anfangswerte (Fußgängerampel
 // rot)
}

void loop(){
 // Ampeltasterstatus in Variable einlesen
 tasterAmpelWert = digitalRead(tasterPinAmpel);

Benötigte Bauteile

1 x rote LED

1 x grüne LED

2 x Widerstand 330

1 x Widerstand 10K

1 x Taster
--- Projekt 8: Die Statemachine280

 // Wurde Taster gedrückt, rufe Funktion auf
 if(tasterAmpelWert == HIGH)
 ampelUmschaltung();
}

void ampelUmschaltung(){
 digitalWrite(ledPinGruenAuto, LOW);
 digitalWrite(ledPinGelbAuto, HIGH); delay(DELAY3);
 digitalWrite(ledPinGelbAuto, LOW);
 digitalWrite(ledPinRotAuto, HIGH); delay(DELAY1);
 digitalWrite(ledPinRotFuss, LOW);
 digitalWrite(ledPinGruenFuss, HIGH); delay(DELAY0);
 digitalWrite(ledPinGruenFuss, LOW);
 digitalWrite(ledPinRotFuss, HIGH); delay(DELAY1);
 digitalWrite(ledPinGelbAuto, HIGH); delay(DELAY2);
 digitalWrite(ledPinRotAuto, LOW);
 digitalWrite(ledPinGelbAuto, LOW);
 digitalWrite(ledPinGruenAuto, HIGH);
}

Die Anzahl der benötigten Ports ist auf 6 gestiegen, doch das
bedeutet nicht, dass es jetzt sehr viel schwieriger geworden ist. Du
musst lediglich mehr Sorgfalt walten lassen, wenn es um das Ver-
kabeln bzw. die Pinzuweisung geht. Beginnen wir wieder mit den
Variablen, die ganz am Anfang unseres Programms aufgeführt
werden.

Für unser Experiment benötigen wir programmtechnisch gesehen
die folgenden Variablen:

Tabelle 8-3
Benötigte Variablen und deren
Aufgabe

Innerhalb der setup-Funktion werden die einzelnen Pins als Aus-
bzw. Eingänge programmiert und die Variable tasterAmpelWert mit
dem Startwert LOW versehen. Weil die Ampelschaltung keine Pha-
senübergänge hat, wenn der Taster nicht gedrückt wird, muss sie
einen definierten Ausgangszustand aufweisen. Aus diesem Grund
werden Autoampel und Fußgängerampel mit den beiden Zeilen

Variable Aufgabe

ledPinRotAuto Ansteuerung der roten LED (Auto)

ledPinGelbAuto Ansteuerung der gelben LED (Auto)

ledPinGruenAuto Ansteuerung der grünen LED (Auto)

ledPinRotFuss Ansteuerung der roten LED (Fußgänger)

ledPinGruenFuss Ansteuerung der grünen LED (Fußgänger)

tasterPinAmpel Anschluss des Tasters für die Fußgängerampel

tasterAmpelWert Nimmt den Wert des Tasterstatus auf
Eine Ampelschaltung --- 281

digitalWrite(ledPinGruenAuto, HIGH);
digitalWrite(ledPinRotFuss, HIGH);

initialisiert. Innerhalb der loop-Funktion wird kontinuierlich der
Taster-Status über die digitalRead-Funktion abgefragt und das
Ergebnis der Variablen tasterAmpelWert zugewiesen. Die Auswer-
tung erfolgt direkt im Anschluss über die if-Kontrollstruktur:

if(tasterAmpelWert == HIGH)
 ampelUmschaltung();

Bei HIGH-Pegel erfolgt ein Sprung zur Funktion ampelUmschal-
tung, die die Phasenübergänge einleitet.

Das ist an dieser Stelle eine berechtigte Frage. Rekapitulieren wir
doch einmal den Ablauf des Sketches. Das folgende Diagramm
sollte dir bei der Beantwortung deiner Frage behilflich sein.

Abbildung 8-7
Aufruf der »ampelUmschaltung«-

Funktion

Wie du erkennen kannst, wird nach Eintritt der Verarbeitung in die
loop-Funktion der Tasterstatus kontinuierlich abgefragt und ausge-
wertet. Es sind die einzige Verarbeitungsschritte innerhalb dieser
Funktion. Sie hat also nichts anderes zu tun, als den Tasterstatus zu
beobachten und bei einem Pegelwechsel von LOW nach HIGH in
die ampelUmschaltung-Funktion zu verzweigen. Wenn die Funk-
tion aufgerufen wurde, werden die einzelnen Phasenwechsel initi-
iert und die Phasen durch unterschiedliche Aufrufe der delay-

Was passiert eigentlich, wenn ich nach dem Drücken des Tasters die-
sen noch mal betätige? Bringt das den Ablauf in irgendeiner Weise
durcheinander?
--- Projekt 8: Die Statemachine282

Funktion gehalten. Wir befinden uns zu diesem Zeitpunkt nicht
mehr in der loop-Funktion, sondern haben diese kurzzeitig verlas-
sen. Ein erneuter Tastendruck würde demnach von der Logik nicht
registriert werden, da die digitalRead-Funktion nicht mehr kontinu-
ierlich aufgerufen wird. Das geschieht erst nach dem Verlassen der
ampelUmschaltung-Funktion.

Abbildung 8-8
Aufruf und Rücksprung

Ich denke, dass damit deine Frage ausreichend beantwortet wurde.
Bevor wir zum Schaltplan kommen, möchte ich dir jetzt wieder ein
Impulsdiagramm zeigen, um die einzelnen Leuchtdauern im Verhält-
nis zueinander darzustellen. Die stabile Ausgangsituation zeigt uns,
dass die Autoampel Grün und die Fußgängerampel Rot zeigt. Jetzt
kommt ein mutiger Fußgänger mit der Absicht daher, die Straße an
einem vermeintlich sicheren Ort zu überqueren und drückt den
Ampelknopf, wodurch die Phasenwechsel initiiert werden.

Abbildung 8-9
Impulsdiagramm der interaktiven
Ampelschaltung
Eine Ampelschaltung --- 283

Im Schaltplan zum gerade gezeigten Sketch siehst du die Erweite-
rungen, die du vornehmen musst, um die Schaltung ans Laufen zu
bringen.

Abbildung 8-10
Die interaktive Schaltung mit Auto-

und Fußgängerampel

Der Aufbau auf dem Breadboard sieht dann wie folgt aus:

Abbildung 8-11
Aufbau der interaktiven Ampel-

schaltung mit Fritzing

Ein nochmals erweiterter Sketch
Ich möchte den Sketch zur Ampelsteuerung nochmal ein wenig
modifizieren, um deine kleinen grauen Zellen noch mehr zu bean-
--- Projekt 8: Die Statemachine284

spruchen. Was mich persönlich an der Programmierung der
Ampelschaltung gestört hat, ist der Umstand, dass ich beim ersten
Ausprobieren immer wieder vergessen habe, irgendeine LED beim
Phasenwechsel auszuschalten, bevor dann die nächste leuchten
sollte. Deshalb habe ich mir überlegt, das An- bzw. Ausschalten der
LEDs einfacher zu gestalten. Leider ist dazu ein wenig Vorbereitung
erforderlich, doch die könnte sich für spätere Projekte als nützlich
erweisen. Zunächst muss ich dir ein wenig über Bits und Bytes
erzählen. Die Schaltung bleibt dabei unverändert. Der Computer
und auch das Arduino-Board speichern alle Daten auf unterster
Speicherebene in Form von Bits und Bytes (8 Bits) ab. Ich habe das
Thema schon ein wenig im Kapitel über die digitale Porterweiterung
angerissen. Ich rekapituliere noch mal kurz:

Abbildung 8-12
Binärkombination für den
Ganzzahlwert 157

Die Bitkombination 10011101 stellt einen dezimalen Wert von

1*20 + 0*21 + 1*22 + 1*23 + 1*24 + 0*25 + 0*26 + 1*26 = 15710

dar. Wenn wir jetzt einfach festlegen, dass bestimmte Bits inner-
halb dieses Bytes zur Ansteuerung der einzelnen LEDs unserer
Ampelsteuerung genutzt werden, dann ist es doch möglich, alle
LEDs über einen einzigen dezimalen Wert an- bzw. auszuschalten.
Ich mache es noch ein wenig deutlicher:

Abbildung 8-13
Welches Bit ist für welche LED
zuständig?

Du siehst, dass 5 Bits dieses Bytes zu Ansteuerung ausreichen. Aber
wie machen wir das jetzt genau? Ich habe die entsprechenden Dezi-

)/C

)
;5

4
3/

4
);

)
C

)
5

)
/

4
)

)

/4/)///3/5/2/;/<(�	�����

B��	
���
	

	����
��	
��

5

)
)

)
/

4
C

)
);

)
)/C

)
;5

4
3/

4

$�����+�
��	+���E	
�	
Eine Ampelschaltung --- 285

malwerte, die ich aus den einzelnen Phasen ermittelt habe, einmal
in einer Tabelle zusammengetragen:

Tabelle 8-4
Dezimalwerte zum Ansteuern

der LEDs

Jetzt müssen wir aus den entsprechenden Dezimalwerten das ent-
sprechende Bit herausfiltern, das für die einzelne LED zuständig ist.
Das ist mit dem bitweisen UND-Operator & möglich. Nachfolgend
siehst du die Wertetabelle, die uns zeigt, dass das Ergebnis nur
dann 1 ist, wenn beide Operanden den Wert 1 besitzen.

Tabelle 8-5
Bitweise Und-Verknüpfung

Dazu ein Beispiel: Wir wollen überprüfen, ob in Phase 1 unserer
Ampelsteuerung die rote LED der Fußgängerampel leuchtet.

Tabelle 8-6
Ermitteln, ob das entsprechende Bit

gesetzt ist.

Der zweite Operand mit dem dezimalen Wert 8 arbeitet als eine Art
Filter. Er überprüft lediglich an der Bitposition mit dem Wert 28, ob
dort eine 1 im ersten Operanden vorliegt. Das ist in unserem Fall
gegeben und das Ergebnis ist der Wert 8. Die folgende Tabelle zeigt
uns die dezimalen Werte, mit denen die Werte aus den einzelnen

Fußgänger Auto

LED Grün Rot Grün Gelb Rot Dezimalwert

Stellenwert 24 = 16 23 = 8 22 = 4 21 = 2 20 = 1

Phase 1 0 1 1 0 0 12

Phase 2 0 1 0 1 0 10

Phase 3 0 1 0 0 1 9

Phase 4 1 0 0 0 1 17

Phase 5 0 1 0 0 1 9

Phase 6 0 1 0 1 1 11

Operand 1 Operand 2 Und-Verknüpfung

0 0 0

0 1 0

1 0 0

1 1 1

Fußgänger Auto

LED Grün Rot Grün Gelb Rot Dezimalwert

Stellenwert 24 = 16 23 = 8 22 = 4 21 = 2 20 = 1

Phase 1 0 1 1 0 0 12

Operand 0 1 0 0 0 8

Ergebnis 0 1 0 0 0 8
--- Projekt 8: Die Statemachine286

Phasen bitweise UND-verknüpft werden müssen, um den erforder-
lichen Zustand der LED zu ermitteln:

Tabelle 8-7
Werte zum Ermitteln der gesetzten
bzw. nicht gesetzten Bits

Zur Überprüfung nutzten wir den ?-Operator (Bedingungsopera-
tor). Es handelt sich dabei um eine spezielle Form der Bewertung
eines Ausdrucks. Die allgemeine Syntax lautet wie folgt:

Abbildung 8-14
Der Bedingungsoperator »?«

Gelangt die Programmausführung an diese Zeile, wird zuerst die
Bedingung bewertet. Ist das Ergebnis wahr, wird Anweisung1 aus-
geführt, andernfalls Anweisung2. Um mit diesem Konstrukt alle
LEDs anzusteuern, müssen wir folgende Codezeilen schreiben,
wobei der Dezimalwert zur Ansteuerung der LEDs in der Variablen
ampelwert gespeichert ist.

 digitalWrite(ledPinRotAuto, (ampelwert&1)==1?HIGH:LOW);
 digitalWrite(ledPinGelbAuto, (ampelwert&2)==2?HIGH:LOW);
 digitalWrite(ledPinGruenAuto, (ampelwert&4)==4?HIGH:LOW);
 digitalWrite(ledPinRotFuss, (ampelwert&8)==8?HIGH:LOW);
 digitalWrite(ledPinGruenFuss, (ampelwert&16)==16?HIGH:LOW);

Mit diesen 5 Codezeilen können wir den Zustand (An- oder Ausge-
schaltet) aller 5 LEDs steuern.

Das hast du richtig bemerkt, Ardus, und deswegen packen wir diese
Codezeilen auch in eine separate Funktion und übergeben ihr
sowohl den ampelwert, als auch einen zweiten Wert für die delay-
Funktion. Das Ganze sieht dann wie folgt aus:

void setzeLEDs(int ampelwert, int pause){
 digitalWrite(ledPinRotAuto, (ampelwert&1)==1?HIGH:LOW);
 digitalWrite(ledPinGelbAuto, (ampelwert&2)==2?HIGH:LOW);

LED Verknüpfungswert des 2. Operanden

rote LED (Auto) 1

gelbe LED (Auto) 2

grüne LED (Auto) 4

rote LED (Fußgänger) 8

grüne LED (Fußgänger) 16

�����"1�"I.�/��01�"
J.�/��01�"�

Etwas ist mir aber noch nicht ganz klar. Wie realisieren wir die unter-
schiedlichen Leuchtdauern der einzelnen Ampelphasen? Ich sehe nir-
gendwo den delay-Befehl, der ja für die Pausen verantwortlich ist.
Eine Ampelschaltung --- 287

 digitalWrite(ledPinGruenAuto, (ampelwert&4)==4?HIGH:LOW);
 digitalWrite(ledPinRotFuss, (ampelwert&8)==8?HIGH:LOW);
 digitalWrite(ledPinGruenFuss, (ampelwert&16)==16?HIGH:LOW);
 delay(pause);
}

Zur Ansteuerung der einzelnen Ampelphasen musst du jetzt nur
noch diese Funktion mit den entsprechenden Werten aufrufen, die
ich in der Tabelle Dezimalwerte zum Ansteuern der LEDs aufgelistet
habe. Die Aufrufe lauten dann wie folgt:

void ampelUmschaltung(){
 setzeLEDs(10, 2000);
 setzeLEDs(9, 1000);

 setzeLEDs(17, 10000);
 setzeLEDs(9, 1000);
 setzeLEDs(11, 2000);

 setzeLEDs(12, 0);
}

Du siehst, dass innerhalb der ampelUmschaltung-Funktion die set-
zeLEDs-Funktion aufgerufen wird. Aber schauen wir uns das an
einem einzelnen Beispiel ein wenig genauer an. Da die Funktion
mehrere Parameter besitzt, ist es sicherlich sinnvoll zu wissen, wie
diese in welcher Reihenfolge beim Aufruf übergeben werden:

Die Argumente 10 bzw. 2000 werden in genau der Reihenfolge an
die Parameter der Funktion setzteLEDs übergeben, in der du sie in
den runden Klammern auflistest. Die Funktionsparameter werden
durch die lokalen Variablen ampelwert und pause definiert, in die
die übergebenen Werte kopiert werden.

Achtung
Beachte unbedingt die Reihenfolge der Argumente beim Auf-
ruf der Funktion. Wenn sie vertauscht werden, kommt es zwar
in diesem Fall zu keinem Absturz des Sketches, doch die Schal-
tung reagiert nicht so, wie beabsichtigt. Folgende Punkte sind
zu beachten:

• Die Anzahl der Argumente muss mit denen der Parameter
übereinstimmen.
--- Projekt 8: Die Statemachine288

• Die übergebenen Datentypen der Argumente muss
denen der Parameter entsprechen.

• Die Reihenfolge beim Aufruf muss eingehalten werden.

Kein Problem! Der Unterschied ist recht simpel. Globale Variablen
werden am Anfang jedes Sketches deklariert bzw. initialisiert und
sind zur Laufzeit überall sichtbar, also auch innerhalb von Funktio-
nen. In den folgenden Codezeile sehen wir eine globale Variable
unseres Sketches:

int ledPinRotAuto = 7; // Pin 7 steuert rote LED (Autoampel)
// ...

Diese wird dann später innerhalb der setup-Funktion verwendet.
Sie ist also dort sichtbar und du kannst auf sie zugreifen.

void setup(){
 pinMode(ledPinRotAuto, OUTPUT); // Pin als Ausgang
}

Lokale Variablen werden immer innerhalb von Funktionen oder
auch z.B. innerhalb einer for-Schleife deklariert bzw. initialisiert.
Sie haben eine begrenzte Lebensdauer und sind nur innerhalb der
Funktion oder des Ausführungsblocks sichtbar. Wenn ich von
Lebensdauer spreche, bedeutet das, dass lokalen Variablen beim
Funktionsaufruf im Speicher ein spezieller Bereich zur Verfügung
gestellt wird. Nach Verlassen der Funktion werden diese Variablen
nicht mehr benötigt und der Speicher wird wieder freigegeben. Eine
lokale Variable ist außerhalb der Funktion, in der sie deklariert
wurde, niemals sichtbar und kann auch nicht von außerhalb ver-
wendet werden.

Du kannst sie ebenfalls als globale Definitionen ansehen, die im
kompletten Sketch sichtbar sind und auf die du von überall Zugriff
hast. Da du nun in diesem Kapitel das erste mal mit der #define-
Direktive in Berührung gekommen bist, kann ich dir auch verraten,

Du hast jetzt schon wieder den Begriff lokale Variable verwendet. Lei-
der habe ich den Unterschied zwischen lokalen und globalen Variab-
len noch immer nicht so richtig verstanden.

Ok, das habe ich verstanden. Aber wie sieht es mit den Werten aus,
die mit #define am Anfang des Sketches definiert wurden? Wie ver-
halten sie sich?
Eine Ampelschaltung --- 289

dass Konstanten wie HIGH, LOW, INPUT oder OUTPUT, und es
gibt noch eine ganze Menge mehr, durch eben diese Direktiven
festgelegt wurden.

Eine Bemerkung am Rande
Fall es dich interessiert, dann schaue doch einmal im folgenden
Verzeichnis nach:

arduino-1.0-rc1\hardware\arduino\cores\arduino

Dort befindet sich u.a. eine Datei mit dem Namen Arduino.h. Es
handelt sich dabei um eine Header-Datei von C++, die viele
wichtige Definitionen beinhaltet, z.B. auch die eben genann-
ten. Hier siehst du einen kurzen Ausschnitt:

Na, kommt dir das irgendwie bekannt vor? Was eine Header-
Datei ist, das wirst du später in diesem Buch noch genauer
erfahren. Ich möchte an dieser Stelle nur so viel verraten, dass
sie vom Compiler in das Projekt mit eingebunden wird und alle
in ihr enthaltenen Definitionen im Sketch global verfügbar sind.

Troubleshooting
Falls die LEDs nicht nacheinander zu leuchten beginnen, trenne
das Board sicherheitshalber besser vom USB-Anschluss und über-
prüfe bitte Folgendes:

• Entsprechen deine Steckverbindungen auf dem Breadboard
wirklich der Schaltskizze?

• Gibt es eventuell Kurzschlüsse untereinander?

• Wurden die LEDs richtig herum eingesteckt? Stimmt die Pol-
ung?
--- Projekt 8: Die Statemachine290

• Haben die Widerstände die korrekten Werte?

• Ist der Sketch-Code korrekt?

• Hast du den Taster richtig verkabelt? Führe bei den relevanten
Kontakten noch einmal eine entsprechende Messung mit
einem Durchgangsprüfer durch.

Was hast du gelernt?
• Du hast erfahren, wie man mit der digitalRead-Funktion den

Pegel eines digitalen Ausgangs bestimmen kann.

• Wir haben sowohl eine einfache Ampelschaltung realisiert, die
unabhängig von äußeren Einflüssen automatisch die einzelnen
Phasenwechsel initiiert, als auch eine interaktive Ampelschal-
tung, die mit Hilfe eines Sensors – in Form eines Tasters – auf
Impulse von außen reagiert und erst dann die Phasenwechsel
einleitet.

• Die Verwendung der Präprozessor-Direktive #define dürfte dir
jetzt keine Schwierigkeiten mehr bereiten. Sie kommt meistens
dort zu Einsatz, wo Konstanten definiert werden. Der Compi-
ler ersetzt überall im Code den Namen des Bezeichners durch
den entsprechenden Wert.

• Der Bedingungsoperator ? kann dazu verwendet werden, in
Abhängigkeit von einer Ausdrucksbewertung unterschiedliche
Werte zurückzuliefern. Die Schreibweise ist recht kompakt
und manchmal nicht immer auf den ersten Blick zu verstehen.

• Du hast erfahren, wie einer Funktion mehrere Werte überge-
ben werden können und worauf im Einzelnen zu achten ist.

• Der Unterschied zwischen lokalen und globalen Variablen ist
dir jetzt geläufig und du weißt, was in diesem Zusammenhang
Sichtbarkeit und Lebensdauer bedeutet.

Workshop
Realisiere eine Ampelschaltung an einer Kreuzung. Die folgende
Skizze soll dir als Grundlage dienen, einen passenden Einstieg zu
finden.
Eine Ampelschaltung --- 291

Die Ampelpaare A als auch B sollen dabei gleich angesteuert wer-
den. Auf einen Fußgängerüberweg soll diesmal verzichtet werden.
Achte darauf, dass wenn eine Richtung rotes Licht erhält, der ande-
ren nicht sofort Grün angezeigt wird. Es sollte schon ein Sicher-
heitspuffer für die Autofahrer eingeplant werden, beim Wechsel
von Grün auf Rot noch gerade so über die Kreuzung jagen. Viel-
leicht hast du ja etwas Material im Keller, um dir die Kreuzung z.B.
aus Holz nachzubauen. Das macht direkt noch mehr Spaß und du
kannst außerdem deine Freunde beeindrucken.

Vorschau auf etwas
Interessantes
Auch in diesem Fall habe ich dir zur Realisierung der Ampelschal-
tung mit Fußgängerampel eine Platine anzubieten, die du leicht
selbst bauen kannst. Doch schau her...

Abbildung 8-15
Ampelschaltung mit

Fußgängerampel
--- Projekt 8: Die Statemachine292

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 9 9Der elektronische
Würfel
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Deklarierung und Initialisierung eines zweidimensionalen
Arrays

• Programmierung mehrerer Pins als Ausgang (OUTPUT)

• Programmierung eines Ports als Eingang (INPUT)

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Workshop

• Vorschau auf etwas Interessantes

Der Würfel
In den letzten Kapiteln hast du schon einige Grundlagen zur Pro-
grammierung des Arduino-Boards kennengelernt. Du wirst natür-
lich vermuten oder hoffen, dass das nicht alles sein kann, und
deshalb werden wird anhand von ein paar interessanten Schaltun-
gen unser Wissen anwenden, vertiefen und erweitern. Es ist
immer wieder spannend, einen elektronischen Würfel zu bauen.
Vor einigen Jahren, als es die Mikroprozessoren noch nicht gab
oder unerschwinglich waren, hat man die Schaltung mit mehreren
integrierten Schaltkreisen, auch ICs genannt, aufgebaut. Im Inter-
net finden sich hierfür zahllose Bastelanweisungen. Wir wollen
den elektronischen Würfel alleine mit dem Arduino-Board
--- 293

ansteuern. Jeder kennt doch mindestens ein Würfelspiel, sei es
Kniffel, Mensch ärgere dich nicht oder vielleicht Heckmeck. Wir
wollen mit unserer nächsten Schaltung einen elektronischen Wür-
fel realisieren. Er besteht aus einer Anzeigeeinheit, die aus 7 LEDs
und einem Taster, der das Würfeln startet, zusammengesetzt ist.
Ich zeige dir zuerst einmal die Anordnung der LEDs, die den
Punkten eines richtigen Würfels nachempfunden ist, wobei die
einzelnen Punkte mit einer Nummer versehen sind, damit wir
später bei der Ansteuerung der einzelnen LEDs den Überblick
behalten. Die Nummer 1 befindet sich in der linken oberen Ecke
und die Nummerierung wird dann nach unten und dann nach
rechts fortgesetzt, bis sie schließlich bei Nummer 7 ganz rechts
unten endet.

Abbildung 9-1
Die Nummerierung der

Würfelaugen

Unser Aufbau soll einen Taster besitzen, der im gedrückten
Zustand mit dem Würfeln beginnt, was bedeutet, dass alle LEDs
unregelmäßig aufflackern. Lässt man den Taster wieder los, stoppt
die Anzeige bei einer bestimmten LED-Kombination, die dann die
gewürfelte Zahl repräsentiert. Die einzelnen Augenkombinationen
setzen sich wie folgt zusammen:

Tabelle 9-1
Welche LED leuchtet bei

welcher Zahl?

�

�

�

�

�

�

�

Würfel Zahl LED

1 2 3 4 5 6 7

1 ✓

2 ✓ ✓

3 ✓ ✓ ✓
--- Projekt 9: Der elektronische Würfel294

Es ist zwar durchaus möglich, die Schaltung auf einem Breadboard
aufzubauen, doch aufgrund der Symmetrie der LEDs ist es nicht
immer ganz einfach, diese zu realisieren. In einem extra Kapitel
werden wir die Schaltung auf einer speziellen Platine, einem soge-
nannten Shield, zusammenbauen und oben auf das Arduino-Board
aufstecken. Das ist die sauberste und eleganteste Weise, einen dau-
erhaften elektronischen Würfel herzustellen. Doch zuerst wollen
wir das Breadboard nutzen. Was wird an Material benötigt?

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

4 ✓ ✓ ✓ ✓

5 ✓ ✓ ✓ ✓ ✓

6 ✓ ✓ ✓ ✓ ✓ ✓

Benötigte Bauteile

7 x rote LED

7 x Widerstand 330

1 x Widerstand 10K

1 x Taster

Mehrere flexible Steckbrücken in unterschiedli-
chen Farben und Längen

Würfel Zahl LED

1 2 3 4 5 6 7 Tabelle 9-1
Welche LED leuchtet bei
welcher Zahl?
Der Würfel -- 295

Sketch-Code
Hier der Sketch-Code zur Ansteuerung des elektronischen Würfels:

#define WARTEZEIT 20
int augen[6][7] = {{0, 0, 0, 1, 0, 0, 0}, // Würfelzahl 1
 {1, 0, 0, 0, 0, 0, 1}, // Würfelzahl 2

 {1, 0, 0, 1, 0, 0, 1}, // Würfelzahl 3
 {1, 0, 1, 0, 1, 0, 1}, // Würfelzahl 4
 {1, 0, 1, 1, 1, 0, 1}, // Würfelzahl 5

 {1, 1, 1, 0, 1, 1, 1}}; // Würfelzahl 6
int pin[] = {2, 3, 4, 5, 6, 7, 8};
int pinOffset = 2; // Erste LED ist auf Pin 2

int tasterPin = 13; // Taster an Pin 13

void setup(){
 for(int i = 0; i < 7; i++)
 pinMode(pin[i], OUTPUT);
 pinMode(tasterPin, INPUT);
}

void loop(){
 if(digitalRead(tasterPin) == HIGH)
 zeigeAugen(random(1, 7)); // Eine Zahl zwischen 1 und 6 generieren
}

void zeigeAugen(int wert){
 for(int i = 0; i < 7; i++)

 digitalWrite(i + pinOffset, (augen[wert - 1][i] == 1)?HIGH:LOW);
 delay(WARTEZEIT); // Eine kurze Pause einfügen
}

Code-Review
Für unser Experiment benötigen wir programmtechnisch gesehen
die folgenden Variablen:

Tabelle 9-2
Benötigte Variablen und deren

Aufgabe

Variable Aufgabe

augen Zweidimensionales Array, das die Informationen über die anzusteuernden LEDs für
den jeweiligen Anzeigewert enthält.

pin Eindimensionales Array, das die Nummern der einzelnen LED-Pins enthält.

pinOffset Die erste LED liegt nicht an Pin 0. Diese Variable beinhaltet einen Offset-Wert, der
die Startposition für eine for-Schleife festlegt, um die erste LED und alle weiteren
anzusteuern.

tasterPin Anschlusspin des Tasters zum Würfeln
--- Projekt 9: Der elektronische Würfel296

Die Programmierung fällt jetzt schon ein wenig komplexer aus und
wir haben es diesmal nicht nur mit einem eindimensionalen Array
zu tun, das du ja schon im Kapitel über das Lauflicht kennengelernt
hast. Das zweidimensionale Array wird dazu benötigt, die Num-
mern der LEDs zu speichern, die in Abhängigkeit von der gewürfel-
ten Zahl leuchten sollen. Wir erinnern uns noch einmal kurz daran,
wie ein eindimensionales Array funktioniert und wie du darauf
zugreifen kannst.

Abbildung 9-2
Das eindimensionale Array

Die Deklaration bzw. Initialisierung des Arrays erfolgt über die
diese Zeile:

int ledPin[] = {7, 8, 9, 10, 11, 12, 13};

Dabei beinhaltet das Array 7 Elemente. Ein eindimensionales Array
erkennst du an dem eckigen Klammernpaar hinter dem Variablen-
namen. Der Zugriff auf ein einzelnes Element erfolgt über die
Angabe des Index innerhalb der Klammern. Möchtest du auf das 4.
Element zugreifen, dann schreibst du Folgendes:

ledPin[3]

Bedenke, dass die Zählweise bei 0 beginnt! Ein zweidimensionales
Array erhält im übertragenen Sinn zusätzlich eine zweite Raumdi-
mension, so dass es von einer eindimensionalen Geraden quasi zu
einer Fläche mutiert.

Abbildung 9-3
Das zweidimensionale Array

53/)4

�������
#���!

����F
���
	
2

��
;

��

53/)4#���! 2 ;

4)444 4 4

4444) 4)

4)44) 4)

)4)4) 4)

)))4) 4)

)4)))))

4

)

/

3

5

2

���
	��+�H7&S�"

��

�
�+�
��
�
"
Der Würfel -- 297

Es verhält sich ähnlich wie beim Zugriff auf eine Figur auf einem
Schachbrett. Um sie eindeutig zu lokalisieren, wird eine Koordina-
tenangabe wie z.B. Dame auf D1 vorgenommen, wobei D die
Angabe der Spalte und 1 die der Reihe ist. Das hier gezeigte Array
weist 6x7 = 42 Elemente auf. Die Deklaration und Initialisierung
erfolgt in der uns bekannten Weise, es muss lediglich ein weiteres
Klammernpaar für die neue Dimension hinzugefügt werden.

int augen[6][7] = {{0, 0, 0, 1, 0, 0, 0}, // Würfelzahl 1
 {0, 0, 1, 0, 0, 0, 1}, // Würfelzahl 2
 {0, 0, 1, 1, 0, 0, 1}, // Würfelzahl 3

 {1, 0, 1, 0, 1, 0, 1}, // Würfelzahl 4
 {1, 0, 1, 1, 1, 0, 1}, // Würfelzahl 5
 {1, 1, 1, 0, 1, 1, 1}}; // Würfelzahl 6

Der erste Wert [6] im eckigen Klammernpaar gibt die Anzahl der
Zeilen, der zweite [7] die der Spalten an. Der Zugriff auf ein Ele-
ment erfolgt ebenfalls über das doppelte Klammernpaar:

augen[zeile][spalte]

Auf diese Weise kannst du Zeile für Zeile ansprechen und die ent-
sprechenden LED-Werte auslesen, um auf diese zuzugreifen. Die
Zuordnung der einzelnen Werte siehst du in der folgenden Abbil-
dung:

Abbildung 9-4
Zuordnung der Spaltenwerte des

Arrays zu den entsprechenden LEDs

53/)4 2 ;

4)444 4 4

4444) 4)

4)44) 4)

)4)4) 4)

)))4) 4)

)4)))))

4

)

/

3

5

2

�

�

�

�

�

�

�

--- Projekt 9: Der elektronische Würfel298

Die Erklärung ist einfach, denn du hast da etwas durcheinanderge-
bracht. Es sind nicht die Würfelaugen, die dort aufgelistet sind,
sondern es ist der Array-Index. Erinnere dich bitte, dass der Index
immer bei 0 beginnt und somit einen numerischen Versatz von
Würfelaugen - 1 hat. Wir wollen einen kleinen Sketch schreiben,
der dir die Inhalte des zweidimensionalen Arrays im Serial Monitor
ausgibt:

int augen[6][7] = {{0, 0, 0, 1, 0, 0, 0}, // Würfelzahl 1

 {1, 0, 0, 0, 0, 0, 1}, // Würfelzahl 2
 {1, 0, 0, 1, 0, 0, 1}, // Würfelzahl 3
 {1, 0, 1, 0, 1, 0, 1}, // Würfelzahl 4

 {1, 0, 1, 1, 1, 0, 1}, // Würfelzahl 5
 {1, 1, 1, 0, 1, 1, 1}}; // Würfelzahl 6

void setup(){
 Serial.begin(9600);
 for(int zeile = 0; zeile < 6; zeile++){

 for(int spalte = 0; spalte < 7; spalte++)
 Serial.print(augen[zeile][spalte]);
 Serial.println();
 }
}

void loop(){...}

Wir haben es an dieser Stelle mit zwei verschachtelten for-Schleifen
zu tun. Die äußere, die die Laufvariable zeile besitzt beginnt bei
ihrem Anfangswert 0 zu zählen. Danach kommt die innere an die
Reihe und beginnt ebenfalls mit dem Wert 0 ihrer Laufvariablen
spalte. Bevor jedoch die äußere Schleife ihren Wert erhöht, muss
zuerst die innere komplett alle ihre Werte abgearbeitet haben.

Das könnte wichtig für dich sein
Bei ineinander verschachtelten Schleifen erfolgt die Abarbei-
tung von innen nach außen. Das bedeutet, dass zuerst die
innere Schleife alle ihre Durchläufe erledigt haben muss, bevor
die äußere einen weiter zählt und die innere wieder mit ihren
Durchläufen fortfährt. Das Spiel wird solange fortgesetzt, bis
alle Schleifen abgearbeitet wurden.

Etwas kommt mir hier recht merkwürdig vor. Ein Würfel weist doch
keine 0 auf einer seiner Seiten auf. In der Grafik beginnt es aber bei 0
und endet bei der 5 statt bei der 6. Kannst du mir das bitte noch mal
erklären?
Der Würfel -- 299

Die Ausgabe im Serial Monitor zeigt dir den Inhalt des Arrays:

Abbildung 9-5
Der Serial Monitor gibt den

Arrayinhalt Zeile für Zeile aus.

Vergleiche diese Ausgabe mit der Arrayinitialisierung und du wirst
sehen, dass sie übereinstimmen. Doch kommen jetzt zur eigentli-
chen Codeanalyse. Die setup-Funktion übernimmt wieder die Auf-
gabe der Initialisierung der einzelnen Pins:

void setup(){
 for(int i = 0; i < 7; i++)
 pinMode(pin[i], OUTPUT);
 pinMode(tasterPin, INPUT);
}

Die Pins zur Ansteuerung des LEDs wurden ebenfalls in ein Array
gepackt, die in der setup-Funktion als OUTPUT programmiert wer-
den. Lediglich dem Taster, der an einem digitalen Eingang ange-
schlossen wird, wird eine normale Variable zugewiesen. Die
Hauptaufgabe übernimmt wieder die loop-Funktion:

void loop(){
 if(digitalRead(tasterPin) == HIGH)
 zeigeAugen(random(1, 7)); // Eine Zahl zwischen 1 und 6 generieren
}

void zeigeAugen(int wert){
 for(int i = 0; i < 7; i++)

 digitalWrite(i + pinOffset, (augen[wert - 1][i] == 1)?HIGH:LOW);
 delay(WARTEZEIT);
}

Wenn der Taster gedrückt wurde, wird die Funktion zeigeAugen
aufgerufen. Als Argument wird ihr ein Zufallswert zwischen 1 und
6 übergeben. Die Arbeitsweise der Funktion sollten wir ein wenig
unter die Lupe nehmen. Sie besteht eigentlich nur aus einer for-
--- Projekt 9: Der elektronische Würfel300

Schleife, die die einzelnen LEDs für eine gewürfelte Ziffer ansteuert.
Nehmen wir einmal an, dass eine 4 gewürfelt wurde, wobei der
Funktion dieser Wert als Argument geliefert wird. Jetzt beginnt die
for-Schleife mit ihrer Arbeit. Sie steuert die Pins an und ermittelt
den erforderlichen HIGH/LOW-Pegel für die jeweilige LED:

Kein Problem, Ardus! Die Variable pinOffset hat den Wert 2 und
legt fest, dass der erste anzusprechende Pin dort zu finden ist. Der
erste, mit der Nummer 0, ist RX und der zweite, mit der Nummer
1, ist der TX der seriellen Schnittstelle. Diese beiden Pins meiden
wir in der Regel. Da die for-Schleife mit dem Wert 0 startet, wird
der Offset-Wert hinzuaddiert. Aber jetzt zurück zu unserem Bei-
spiel, in dem eine 4 gewürfelt wurde. Um die benötigen HIGH/
LOW-Pegel zu ermitteln, spricht die for-Schleife das 4. Array-Ele-
ment an. Da wir aber mit dem Indexwert 0 beginnen, müssen wir
diesen Wert um 1 vermindern.

Abbildung 9-6
Auswahl des richtigen Array-
Elementes bei einer zuvor
gewürfelten Zahl

In der ausgewählten Zeile des Arrays befinden sich die Werte 1, 0,
1, 0, 1, 0, 1, die durch die for-Schleife einzeln angesprochen wer-
den. Dies geschieht durch den folgenden Ausdruck:

(augen[wert - 1][i] == 1)?HIGH:LOW)

Dieser überprüft, ob die Werte 1 bzw. 0 sind. Bei 1 wird HIGH-Pegel
zurück geliefert, bei 0 LOW-Pegel. Auf diese Weise werden die LEDs
der gewürfelten Zahl aktiviert bzw. deaktiviert. Solange du den Tas-
ter gedrückt hältst, wird immer wieder eine neue Zahl ermittelt und
die LEDs blicken alle sehr schnell hintereinander. Erst beim Loslas-
sen wird die Anzeige bei der letzten Zahl gestoppt. Wie schnell die
Zahlen bei gedrücktem Taster wechseln, kannst du mit der Konstan-
ten WARTEZEIT beeinflussen, für die hier 20ms angegeben wurde.

�
������������������������
������������������������ ��!��"���#���$%����&��'$�'������(;�<;)=�:��

H7&�(
� �#0��HMB�(���

Hier kommt die Offset-Variable zum Einsatz, deren Verwendung ich
auch nicht so richtig verstanden habe.

**�"��"��"��"��"��"��+"��,,��-����.�/���
�*�"��"��"��"��"��"��+"��,,��-����.�/���
�*�"��"��"��"��"��"��+"��,,��-����.�/��0
�*�"��"��"��"��"��"��+"��,,��-����.�/���
�*�"��"��"��"��"��"��+"��,,��-����.�/���
�*�"��"��"��"��"��"��++��,,��-����.�/���

5+�+)
3

#���!
Der Würfel -- 301

Der Schaltplan
Der Schaltplan zeigt uns die 7 Würfel LEDs mit ihren 330 Ohm-
Vorwiderständen und den Würfeltaster mit seinem Pulldown-
Widerstand.

Abbildung 9-7
Das Arduino-Board steuert die 7

LEDs unseres Würfels einzeln an.

Schaltungsaufbau
Abbildung 9-8

Aufbau des elektronischen Würfels
mit Fritzing
--- Projekt 9: Der elektronische Würfel302

Bei diesem Schaltungsaufbau siehst Du, dass ich zwei Breadboards
verwendet habe. Es gibt jedoch auch breitere Versionen, die genü-
gend Platz bieten, um alle Bauteile darauf platzieren zu können.
Experimentiere ein wenig mit der Anordnung, denn du sollst ja
nicht alles so hinnehmen, wie ich es dir zeige. Finde deine eigene
Strategie. In der folgenden Abbildung siehst du den Aufbau der
Schaltung auf einem einzigen Breadboard, wozu ein wenig Frickelei
nötig war. Aber ich denke, dass es so ganz gut funktioniert.

Abbildung 9-9
Aufbau des elektronischen Würfels
auf einem Breadboard

Die Idee ist nicht schlecht und ich sehe, dass du mitdenkst und das
Gelernte anwendest. Doch leider lässt sich dies beim zweidimensio-
nalen Array nicht 1:1 übertragen. Wenn du alle Angaben zur Array-
größe weglässt und

int augen[][] = {{0, 0, 0, 1, 0, 0, 0}, // Würfelzahl 1

 {1, 0, 0, 0, 0, 0, 1}, // Würfelzahl 2

Bevor wir die Sache hier abschließen, ist mir noch etwas aufgefallen.
Ich habe mich an das eindimensionale Array erinnert und etwas expe-
rimentiert. Du hast gesagt, dass die Angabe der Arraygröße in den
eckigen Klammern entfallen kann, wenn ich das Array sofort in der-
selben Zeile initialisiere. Der Compiler wüsste dann anhand der über-
gebenen Werte, wie groß das Array sein soll. Ich bin dann also beim
zweidimensionalen Array ebenso vorgegangen und habe einen Fehler
erhalten.
Der Würfel -- 303

 {1, 0, 0, 1, 0, 0, 1}, // Würfelzahl 3
 {1, 0, 1, 0, 1, 0, 1}, // Würfelzahl 4
 {1, 0, 1, 1, 1, 0, 1}, // Würfelzahl 5

 {1, 1, 1, 0, 1, 1, 1}}; // Würfelzahl 6

schreibst, meckert der Compiler, wie du das ja schon selbst festge-
stellt hast. Die Übersetzung der Fehlermeldung besagt ungefähr,
dass bei einem mehrdimensionalen Array alle Grenzen bis auf die
erste angegeben werden müssen. Du kannst also folgende Zeile
schreiben:

int augen[][7] = ...

Der Compiler wird diesen Code akzeptieren.

Was können wir vielleicht noch
verbessern?
Es gibt meistens eine Möglichkeit, etwas zu verbessern oder zu ver-
einfachen. Du musst dich einfach einmal zurücklehnen und die
Sache auf dich wirken lassen. Denke vielleicht nicht allzu ange-
strengt darüber nach. Die besten Einfälle kommen Dir, wenn du
dich zwischendurch mit etwas anderem befasst. So geht es mir
jedenfalls meistens. Zurück zum Würfel. Wenn du dir die einzel-
nen Augen eines Würfels bei unterschiedlichen Werten anschaust,
dann wird dir vielleicht etwas auffallen. Werfe dazu noch einmal
einen Blick auf die Tabelle Welche LED’s leuchten bei welcher Zahl?
Ein kleiner Tipp: Leuchten alle acht LEDs unabhängig voneinander
oder kann es sein, dass manche eine Gruppe bilden und immer
gemeinsam angehen? Doofe Frage, was? Natürlich ist das so. Ich
habe die einzelnen Gruppen einmal in der folgenden Abbildung
dargestellt.

Abbildung 9-10
LED-Gruppen beim elektronischen

Würfel

Für sich alleine genommen machen nur Gruppe A und Gruppe B
einen Sinn, bei Gruppe C und Gruppe D ist das weniger der Fall.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0�����+� 0�����+ 0�����+� 0�����+&

H7&-+5 H7&-+)+�+< H7&-+3+�+2 H7&-+/+�+;
--- Projekt 9: Der elektronische Würfel304

Aber durch eine Gruppe oder eine Kombination aus mehreren
Gruppen werden die gewünschten Würfelaugen erzeugt. Dann
wollen wir mal schauen, welchen Gruppe bzw. Gruppen bei wel-
chen Würfelaugen betroffen ist bzw. sind:

Tabelle 9-3
Würfelaugen und LED-Gruppen

Es ist tatsächlich so, dass wir mit 4 statt 7 Ansteuerungsleitungen
zu den LEDs auskommen.

Das hast du richtig verstanden, Ardus. Im Kapitel Einen Sensor
abfragen haben wir den Vorwiderstand für eine rote LED berech-
net. Falls es dir entfallen sein sollte, schlage noch einmal nach.
Wenn wir mehrere LEDs ansteuern möchten, schalten wir sie in
Reihe. An einer einzelnen roten LED fallen ca. 2V ab, was bedeutet,
dass am Vorwiderstand 3V abfallen müssen. Da wir jetzt aber zwei
LEDs hintereinander schalten, können wir Folgendes für die abzu-
fallende Spannung am Vorwiderstand RV feststellen:

Am Vorwiderstand RV müssen wir also 1V »verbraten«, damit noch
jeweils 2V für jede einzelne LED übrig bleibt. Für den Strom, der ja
durch alle Bauteile gleichermaßen fließt – du erinnerst dich hoffent-
lich noch an das Verhalten von Strom in einer Reihenschaltung –
setze ich mal 10mA (10mA = 0,01A) an. Wir erhalten dann fol-
gende Werte in der Formel zur Berechnung des Vorwiderstandes:

Würfel

Gruppe A ✓ ✓ ✓

Gruppe B ✓ ✓ ✓ ✓ ✓

Gruppe C ✓ ✓ ✓

Gruppe D ✓

Wenn ich das richtig verstanden habe, dann müssen wir in Gruppe B,
C und D zwei LEDs zusammenschalten. Ist das denn so ohne Weite-
res möglich? Muss ich sie in Reihe oder parallel verdrahten?
Der Würfel -- 305

Die Schaltung sieht wie folgt aus:

Abbildung 9-11
Zwei LEDs mit einem

Vorwiderstand

Achtung
Achte darauf, dass die beiden LEDs in dieselbe Richtung wei-
sen, denn sonst wird es nichts mit der Leuchterei. Die Anode
von LED 1 wird mit der Kathode von LED 2 verbunden.

Auch hier habe ich die Berechnung wieder praktisch nachgemes-
sen, um mich zu vergewissern, dass auch alles seine Richtigkeit hat.

Abbildung 9-12
Strommessung im Ansteuerungs-

kreis mit zwei LEDs und einem
neuen Vorwiderstand
--- Projekt 9: Der elektronische Würfel306

Der Strom von 7,84mA ist absolut in Ordnung und liegt wieder
unterhalb der Vorgabe von maximal 10mA. Da zwei LEDs im
Vergleich zu einer einzelnen natürlich die doppelte Versorgungs-
spannung in Anspruch nehmen, muss der Vorwiderstand dement-
sprechend kleiner dimensioniert sein, damit beide LEDs dieselbe
Helligkeit ausstrahlen, wie das bei einer einzeln angesteuerten der
Fall ist. Natürlich kannst du für alle Gruppen A bis D den gleichen
Vorwiderstand von 330  verwenden, was aber bedeutet, dass
Gruppe A mit nur einer LED heller leuchtet – so die Theorie – als
die restlichen Gruppen. Jetzt sollten wir uns langsam der Program-
mierung zuwenden. Womit fangen wir am besten an? Nun, ich
würde sagen, dass du dir noch einmal die Tabelle Würfelaugen und
LED-Gruppen anschaust, damit du vielleicht eine Systematik
erkennst, wann welche LED-Gruppe bei welchen Würfelaugen
anzusteuern ist. Du machst das am besten Schritt für Schritt und
nimmst dir eine Gruppe nach der anderen vor. Du kannst sie voll-
kommen separat voneinander betrachten, denn die Logik zur
Ansteuerung fügt nachher alle Gruppen zusammen, so dass sie
gemeinsam die richtigen Würfelaugen anzeigen. Also, los geht’s.
Ich zeige dir hier vereinfacht noch einmal die Gruppe A der eben
angeführten Tabelle.

Hier noch ein kleiner Tipp: Was haben die Zahlen 1, 3 und 5
gemeinsam?

Perfekt, Ardus! Das ist die korrekte Lösung.

Formulierung zur Ansteuerung von Gruppe A:

Ist die ermittelte Zufallszahl ungerade, dann steuere Gruppe A an.

Jetzt kommt Gruppe B an die Reihe. Hier der entsprechende Tabel-
lenauszug:

Was stellst du hier fest?

Würfel 1 2 3 4 5 6

Gruppe A ✓ ✓ ✓

Ich glaube, dass das allesamt ungerade Zahlen sind.

Würfel 1 2 3 4 5 6

Gruppe B ✓ ✓ ✓ ✓ ✓
Der Würfel -- 307

Klasse, Ardus! Aber wie könnte eine Formulierung aussehen, die
der Mikrocontroller gut versteht? Eine etwas umständliche
Beschreibung wäre folgende: Wenn die Zahl 2 oder 3 oder 4 oder 5
oder 6, dann steuere Gruppe B an. Suche wieder die Gemeinsam-
keit und du kannst es viel kürzer formulieren.

Formulierung zur Ansteuerung von Gruppe B:

Ist die ermittelte Zufallszahl größer 1, dann steuere Gruppe B an.

Schauen wir uns jetzt Gruppe C an:

Jetzt hast du den Dreh sicherlich raus, nicht wahr!?

Super, Ardus!

Formulierung zur Ansteuerung von Gruppe C:

Ist die ermittelte Zufallszahl größer 3, dann steuere Gruppe C an.

Und zu guter Letzt die Gruppe D:

Da brauche ich dich ja wohl nicht mehr zu fragen, oder?

Formulierung zur Ansteuerung von Gruppe D:

Ist die ermittelte Zufallszahl gleich 6, dann steuere Gruppe D an.
Jetzt können uns endlich dem Programmieren widmen. Dabei wirst
du erkennen, dass diese Lösung viel einfacher als die Verwendung
eines Array ist. Man muss aber erst einmal einige Wege gedanklich
durchspielen, um dann zu sehen, dass man nur 4 statt 7 Pins zur
LED-Ansteuerung benötigt. Trotzdem war es ein guter Einstieg, um
dir diese Thematik spielerisch zu vermitteln. Hier der Sketch-Code
zur Ansteuerung des elektronischen Würfels mit der reduzierten
Anzahl an Steuerleitungen:

Es sind alle Zahlen außer der 1 betroffen.

Würfel 1 2 3 4 5 6

Gruppe C ✓ ✓ ✓

Es sind alle Zahlen größer 3 betroffen.

Würfel 1 2 3 4 5 6

Gruppe D ✓
--- Projekt 9: Der elektronische Würfel308

#define WARTEZEIT 20
int GruppeA = 8; // LED 4
int GruppeB = 9; // LED 1 + 7

int GruppeC = 10; // LED 3 + 5
int GruppeD = 11; // LED 2 + 6
int tasterPin = 13; // Taster an Pin 13

void setup(){
 pinMode(GruppeA, OUTPUT);
 pinMode(GruppeB, OUTPUT);
 pinMode(GruppeC, OUTPUT);
 pinMode(GruppeD, OUTPUT);
}

void loop(){
 if(digitalRead(tasterPin) == HIGH)
 zeigeAugen(random(1, 7)); // Eine Zahl zwischen 1 und 6 generieren

}

void zeigeAugen(int wert){
 // Löschen aller Gruppen
 digitalWrite(GruppeA, LOW);
 digitalWrite(GruppeB, LOW);
 digitalWrite(GruppeC, LOW);
 digitalWrite(GruppeD, LOW);
 // Ansteuerung aller Gruppen

 if(wert%2 != 0) // Ist der Wert ungerade?
 digitalWrite(GruppeA, HIGH);
 if(wert > 1)

 digitalWrite(GruppeB, HIGH);
 if(wert > 3)
 digitalWrite(GruppeC, HIGH);
 if(wert == 6)
 digitalWrite(GruppeD, HIGH);
 delay(WARTEZEIT); // Eine kurze Pause einfügen
}

Stimmt, Ardus! Ich habe diesen Eingang an Pin 13 nicht als Eingang
programmiert. Soweit hast du Recht. Vergessen habe ich es aber
nicht, denn standardmäßig sind alle digitalen Pins als Eingang defi-
niert und müssen bei entsprechender Verwendung nicht noch ein-
mal explizit als solche programmiert werden. Du kannst das bei

Stopp! Mir ist da aber etwas aufgefallen, das du vergessen hast! Du
hast die Pins für die Gruppen A bis D als Ausgang programmiert, aber
vergessen, den Pin für den Taster als Eingang zu definieren.
Der Würfel -- 309

deinen Sketches natürlich durchaus tun, denn es fördert sicherlich
das Verständnis.

Klar, Ardus! Der %-Operator (Modulo-Operator) ermittelt immer
den Restwert einer Division. Ist eine Zahl durch 2 dividierbar, dann
fällt sie in die Kategorie Gerade Zahl. Der Wert aus der Restwert-
Division ist in dem Fall immer 0. Mit der Zeile

if(wert%2 != 0)

frage ich aber, ob der Restwert ungleich 0 ist, um so die Gruppe A
anzusteuern.

Bevor wir zur Schaltung kommen, hier noch eine Anmerkung:
Wenn du trotz des errechneten Vorwiderstandeswertes von 100 
für die Gruppen B bis D in diesem Fall die alten Widerstände von
330  verwendest, macht das nicht allzu viel aus. Die Helligkeit
scheint fast die gleiche zu sein. Aber das nur am Rande. Im Schalt-
plan siehst Du, dass wir nun weniger Vorwiderstände für die LEDs
benötigen als im vorangegangenen Projekt:

Abbildung 9-13
Das Arduino-Board steuert die

7 LEDs unseres Würfels in
LED-Gruppen an.

Ich habe eigentlich alles verstanden, bis auf die Zeile, in der bestimmt
wird, ob der Wert ungerade ist. Kannst du mir das bitte einmal erläu-
tern?
--- Projekt 9: Der elektronische Würfel310

Der Breadboardaufbau gestaltet sich aufgrund der verminderten
Ansteuerungsleitungen etwas einfacher:

Abbildung 9-14
Aufbau des elektronischen Würfels
über LED-Gruppen mit Fritzing

Troubleshooting
Falls die LEDs nach dem Druck auf den Taster nicht anfangen zu
blinken oder vielleicht merkwürdige bzw. unsinnige Würfelaugen
angezeigt werden, trenne das Board sicherheitshalber vom USB-
Anschluss und überprüfe Folgendes:

• Entsprechen deine Steckverbindungen auf dem Breadboard
der Schaltung?

• Gibt es eventuell Kurzschlüsse untereinander?

• Wurden die LEDs richtig herum eingesteckt bzw stimmt die
Polung?

• Haben die Widerstände die korrekten Werte?

• Ist der Sketch-Code korrekt?
Der Würfel -- 311

• Hast du den Taster richtig verkabelt? Messe die relevanten
Kontakte noch einmal mit einem Durchgangsprüfer nach.

Was hast du gelernt?
• Du hast in diesem Kapitel erfahren, wie ein zweidimensionales

Array zu deklarieren bzw. initialisieren ist und wie du die ein-
zelnen Array-Elemente ansprichst.

• Mit dem Serial Monitor kannst du dir Variableninhalte ausge-
ben lassen, um die Richtigkeit der enthaltenen Werte zu prü-
fen. Auf diese Weise kannst du eine Fehlersuche durchführen
und den Code bei nicht korrektem Verhalten analysieren. Du
musst dir an diesem Punkt aber sicher sein, dass die Schaltung
korrekt verkabelt wurde, denn suchst du den Fehler im Source-
Code, obwohl er in der Hardware zu finden ist. Das kann dann
sehr zeitaufwendig und vielleicht auch nervenaufreibend wer-
den.

• Du hast gelernt, wie du einen Vorwiderstand für zwei in Reihe
liegende LEDs berechnen kannst, so dass die Helligkeit fast
unverändert bleibt.

Workshop
Die Aufgabe dieses Workshops ist schon etwas anspruchsvoller.
Du erinnerst dich sicherlich an das Schieberegister 74HC595 mit
seinen 8 Ausgängen. Versuche eine Schaltung zu konstruieren bzw.
einen Sketch zu programmieren, die bzw. der einen elektronischen
Würfel über das Schieberegister ansteuert. Wie viele digitale Pins
sparst du mit dieser Variante ein? Bedeutet das ein Vorteil gegenü-
ber der Realisierung mittels LED-Gruppen?

Vorschau auf etwas
Interessantes
Im Kapitel über die Digitale Porterweiterung Teil 2 habe ich dich
das erste Mal auf die Möglichkeit hingewiesen, Platinen selbst her-
zustellen, um sie später als Erweiterungen auf das Arduino-Board
zu stecken. Hier möchte ich Die zeigen, wie meine Lösung hinsicht-
lich des elektronischen Würfels aussieht.
--- Projekt 9: Der elektronische Würfel312

Abbildung 9-15
Der elektronische Würfel auf einer
Platine

Was hältst du davon? Das ist doch sicherlich eine schöne Erweite-
rung, wobei mir schon alleine die Planung und Umsetzung eine
Menge Spaß gemacht hat. Du wirst es nicht für möglich halten, was
dir während des Baus noch so an weiteren Ideen kommen werden.
Das macht süchtig – glaube es mir!
Vorschau auf etwas Interessantes --- 313

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 10 10Der elektronische
Würfel (und wie erstelle
ich eine Bibliothek?)
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
Irgendwann ist auch für dich der Zeitpunkt gekommen, an dem du
dir so viele Grundkenntnisse angeeignet hast, dass du eigene Ideen
realisieren möchtest, die andere vielleicht noch nicht hatten. Viel-
leicht möchtest du aber auch ein schon vorhandenes Projekt
verbessern, weil deine Lösung eleganter ist und sich viel unkompli-
zierter umsetzen lässt. Unzählige Softwareentwickler vor dir haben
sich Gedanken zu den unterschiedlichsten Themen gemacht und
Bibliotheken programmiert, um anderen Entwicklern Arbeit und
Zeit zu ersparen. In diesem Kapitel geht es um die Grundlagen bzw.
die Erstellung derartiger Bibliotheken. Falls dich die Programmier-
sprache C++ inklusive objektorientierte Programmierung schon
immer interessiert hat, wirst du hier einiges zu diesem Thema
erfahren.

Bibliotheken
Wenn du die Arduino-Entwicklungsumgebung installiert bzw. ent-
packt hast, werden von Hause aus einige fertige Bibliotheken, auch
Libraries genannt, mitgeliefert. Es handelt sich dabei um so interes-
sante Themen wie z.B. die Ansteuerung

• eines Servos

• eines Schrittmotors

• eines LC-Displays

• eines externen EEPROM zu Speicherung von Daten

• etc.
--- 315

Diese Bibliotheken werden im Verzeichnis libraries unterhalb des
Arduino-Instllationsverzeichnisses gespeichert. Wenn du auf einen
Blick sehen möchtest, welche Libraries vorhanden sind, kannst du
dazu den Windows-Explorer nutzen oder aber den Weg über die
Arduino-Entwicklungsumgebung bestreiten. Es existiert dort ein
spezieller Menüpunkt Sketch|Import Library..., über den du eine
entsprechende Liste anzeigen kannst.

Abbildung 10-1
Anzeigen bzw. Importieren von

Libraries

Die Menüpunkte stimmen mit den Verzeichnissen im Ordner
Libraries überein. Das ist zwar wieder alles wunderbar, doch wir
sollten uns zunächst einmal anschauen, wie eine Arduino-Library
denn arbeitet bzw. was du mit ihr bewirken kannst.

Was ist eine Library im Detail?
Bevor wir zu einem konkreten Beispiel kommen, solltest du
zunächst einmal einige grundlegende Informationen über Libraries
erhalten. Ich hatte schon erwähnt, dass mit einer Library mehr oder
weniger komplexe Programmieraufgaben quasi gebündelt und in
einem Programmpaket zusammengefasst werden. Die folgende
Grafik veranschaulicht das Zusammenspiel zwischen der Arduino-
Library und Arduino-API:
-- Projekt 10: Der elektronische Würfel (und wie erstelle ich eine Bibliothek?)316

Abbildung 10-2
Wie arbeitet eine Arduino-Library?

Wir haben es mit zwei Programmschichten zu tun, die sich in
einem Abhängigkeitsverhältnis voneinander befinden. Ich fange
einmal von innen nach außen an. Die innere Schicht habe ich Ardu-
ino-API genannt. API ist die Abkürzung für Application
Programming Interface und eine Schnittstelle zu allen zur Verfü-
gung stehenden Arduino-Befehlen. Ich habe aus Platzgründen
natürlich nur wenige ausgewählt. Die äußere Schicht wird durch
die Arduino-Library repräsentiert, die sich um die innere Schicht
herumwickelt. Sie wird deshalb als Wrapper (engl. Hülle) bezeich-
net und bedient sich der Arduino-API. Damit du Zugriff auf die
Wrapper-Schicht erhältst, muss dort eine Schnittstelle implemen-
tiert sein, denn du willst ja die Funktionalität einer Library nutzen.
Eine Schnittstelle ist ein Durchgangsportal zum Inneren der Library,
die eine in sich geschlossene Einheit darstellt. Der Fachbegriff dafür
lautet Kapselung. Was das im Detail ist und was das Ganze mit der
Programmiersprache C++ zu tun hat, das wirst du gleich sehen.

Warum benötigen wir Libraries?
Das ist eventuell eine blöde Frage, weil ich die Antwort bzw. den
Grund für das Erstellen einer Library schon mehrfach genannt
habe. Doch ich möchte die Vorteile an dieser Stelle noch einmal
zusammenfassen:

• Damit das Rad nicht immer neu erfinden werden muss, haben
die Entwickler die Möglichkeit geschaffen, Programmcode in
eine Library auszulagern. Viele Programmierer auf der ganzen
Welt profitieren von diesen programmtechnischen Konstruk-
ten, die sie ohne größere Probleme in ihren eigenen Projekten

�
�
	�
B�
	�
���
��,���

�
�
	�
,���

���
��B�
	�

�
�����

������

�

�

�����������

���������� ���!
"'
(�

���)
��

�
Bibliotheken -- 317

verwenden können. Das entsprechende Stichwort hierfür ist
Wiederverwendbarkeit.

• Wenn eine Library getestet wurde und keine Fehler mehr auf
weist, kann sie ohne Kenntnis der inneren Abläufe verwendet
werden. Ihre Funktionalität wird gekapselt und vor der Außen-
welt verborgen. Das einzige, was ein Programmierer kennen
muss, ist die korrekte Verwendung ihrer Schnittstellen.

• Der eigene Code wird auf diese Weise übersichtlicher und sta-
biler.

Was bedeutet Objektorientierte
Programmierung?
Die Welt der Objektorientierten Programmierung – kurz OOP
genannt – ist für die meisten Anfänger ein Buch mit sieben Siegeln
und es bereitet so manchen Kopfzerbrechen und schlaflose Nächte.
Das muss es aber nicht und ich hoffe, ich trage ein wenig dazu bei.
Ich meine nicht zum Kopfzerbrechen, sondern zum Verständnis! In
der Programmiersprache C++ wird alles als Objekt angesehen und
dieser Programmierstil – auch Programmierparadigma genannt –
orientiert sich an der uns umgebenden Realität. Wir sind von zahl-
losen Objekten umgeben, die mehr oder weniger real sind und von
uns angefasst und begutachtet werden können. Wenn du dir ein
einzelnes Objekt einmal aus der Nähe anschaust, dann wirst du
bestimmte Merkmale feststellen können. Nehmen wir doch einmal
einen Würfel, wo wir schon beim Thema sind. Einen elektroni-
schen Würfel hast du schon ganz am Anfang dieses Buches
programmiert und zusammengebaut. In irgendeinem Gesellschafts-
spiel hast du bestimmt den einen oder anderen Würfel, den du Dir
aus der Nähe anschauen kannst. Was kannst du über einen Würfel
berichten, wenn du ihn in aller Ausführlichkeit z.B. einem Außerir-
dischen beschreiben müsstest?

• Wie ist sein Aussehen?

• Wie groß ist er?

• Ist er leicht oder eher etwas schwerer?

• Welche Farbe hat er?

• Hat er Punkte oder sind Symbole auf ihm zu sehen?

• Wie ist die gewürfelte Zahl oder das gewürfelte Symbol?

• Was kannst du mit ihm machen? (Blöde Frage, was!?)
-- Projekt 10: Der elektronische Würfel (und wie erstelle ich eine Bibliothek?)318

Die Einträge in dieser Liste können in zwei Kategorien unterteilt
werden.

Doch welcher Eintrag gehört zu welcher Kategorie?

Wenn es um Strom bzw. Spannung geht, dann sollten wir einen
Blick auf die folgende Tabelle werfen:

Tabelle 10-1
Gegenüberstellung von
Eigenschaften und Verhalten

Für unsere geplante Programmierung kommen jedoch lediglich
zwei Listeneinträge in Frage. Alle anderen sind zur Beschreibung
eines Objektes zwar interessant, doch für einen elektronischen
Würfel ohne Belang. Es interessieren uns:

• die gewürfelte Punktezahl (Zustand)

• würfeln (Aktion)

Das stellt kein großes Problem dar, Ardus! Sieh her:

Eigenschaften werden in Variablen abgelegt und das Verhalten
über Funktionen gesteuert. Doch im Kontext der objektorientierten
Programmierung erhalten Variablen und Funktionen eine andere
Bezeichnung. Breche aber bitte nicht in Panik aus, denn das ist rei-
ner Formalismus und im Endeffekt dasselbe.

7
�������'	�� 9����
	��

Eigenschaften Verhalten

Größe würfeln

Gewicht

Farbe

Punkte oder Symbole

gwürfelte Punktezahl oder gewürfeltes Symbol

Ich habe keinen blassen Schimmer, wie ich Eigenschaften oder Ver-
halten in einen Sketch übertragen soll. Wie soll das denn gehen?

7
�������'	��

9����
	��

9��
��
��

O���	
����
Bibliotheken -- 319

Variablen werden zu Feldern (engl: Fields) und Funktionen zu
Methoden (engl: Methods).

Also Ardus, nun werde mal nicht sarkastisch. Ich bin doch noch gar
nicht fertig. In der prozeduralen Programmierung, wie man sie z.B.
von den Sprachen C oder Pascal her kennt, werden logisch zusam-
menhängende Anweisungen, die zur Lösung eines Problems not-
wendig sind, in sogenannte Prozeduren ausgelagert, die unseren
Funktionen gleichen. Funktionen arbeiten in der Regel bestenfalls
mit Variablen, die ihnen als Argumente übergeben wurden, oder im
ungünstigen Fall mit globalen Variablen, die zu Beginn eines Pro-
grammes deklariert wurden. Diese sind im gesamten Code sichtbar
und jeder kann sie nach Belieben modifizieren. Das birgt gewisse
Gefahren in sich und ist aus heutiger Sicht die denkbar schlechteste
Variante, mit Variablen bzw. Daten umzugehen. Variablen und
Funktionen bilden keine logische Einheit und leben im Code quasi
nebeneinander her, ohne eine direkte Beziehung zueinander zu
haben.

Kommen wir jetzt zur objektorientierten Programmierung. Dort
gibt es ein Konstrukt, das sich Klasse nennt. Vereinfacht können

9��
��
��

O���	
����

O�
���

��	�����

""����#	�����	����$��%%�	���$

Oh Mann, das ist ja ein wahnsinniger Fortschritt. Ich benenne ein-
fach ein paar Programmelemente um und schaffe damit ein neues –
wie hast du es genannt – Programmierparadigma. Soll das der Fort-
schritt sein?

9��
��
��

O���	
����

O���	
����

9��
��
��
O���	
����
-- Projekt 10: Der elektronische Würfel (und wie erstelle ich eine Bibliothek?)320

wir sagen, dass sie als Container für Felder (auch Feldvariablen
genannt) bzw. Methoden dient.

Die Klasse umschließt ihre Mitglieder, die in der OOP Member
bzw. Mitglieder genannt werden, wie einen Mantel der Verschwie-
genheit. Ein Zugriff auf die Member erfolgt in der Regel nur über
die Klasse.

Der Aufbau einer Klasse
Was in Gottes Namen ist aber eine Klasse? Wenn du noch in keins-
ter Weise Berührungspunkte mit C++, Java oder vielleicht C# –
um nur einige Programmiersprachen zu nennen – hattest, dann
sagt dir dieser Begriff so viel wie mir ein chinesisches Schriftzei-
chen. Aber im Endeffekt ist die Sache relativ einfach zu verstehen,
obwohl die Programmierung schon etwas anspruchsvoller ist als
vielleicht in anderen Sprachen. Wenn du Dir die letzte Grafik noch
einmal anschaust, wirst du feststellen, dass eine Klasse einen
umschließenden Charakter hat und in etwa einem Container
gleicht. Eine Klasse ist durch das Schlüsselwort class gefolgt von
dem vergebenen Namen definiert. Darauf folgt ein geschweiftes
Klammerpaar, das du schon bei anderen Konstrukten, wie z.B.
einer for-Schleife, gesehen hast und eine Blockbildung bewirkt.
Hinter der schließenden Klammer folgt ein Semikolon.

Abbildung 10-3
Die allgemeine Klassendefinition

9��
��
��

O���	
����

O���	
����

9��
��
��
O���	
����

&����	

 9#00
'#(�*

3�

���
1���
$��	 >
���������
Bibliotheken -- 321

Wie ich eben schon erwähnt habe, besitzt die Klasse unterschiedli-
che Klassenmitglieder in Form von Feldern und Methoden, die
durch die Klassendefinition zu einer Einheit verschmelzen. In der
OOP gibt es unterschiedliche Zugriffsmöglichkeiten, um den
Zugriff auf die Mitglieder zu reglementieren.

Du hast das Prinzip – das übrigens Kapselung genannt wird – schon
richtig verstanden. Ich kann bestimmte Mitglieder von der Außen-
welt abschirmen, so dass sie von außerhalb der Klasse nicht direkt
erreicht werden können. Die Betonung liegt hier auf direkt. Natür-
lich gibt es Möglichkeiten, den Zugriff zu gewährleisten. Das erledi-
gen dann z.B. die Methoden. Aber was hat das alles für einen Sinn,
wirst du du dich jetzt bestimmt fragen.

Ok, Ardus. Ich denke, wenn du Dir die folgende Abbildungen
anschaust, wird dir das Prinzip bestimmt sofort klar werden.

Abbildung 10-4
Zugriff auf ein Feld der Klasse

Der Zugriff auf das Feld der Klasse von außerhalb ist in diesem Fall
gestattet, weil das Feld ein bestimmtes Etikett mitbekommen hat,
das sich Zugriffsmodifizierer nennt. Es lautet in diesem Fall public
und bedeutet so viel wie: »Der Zugriff ist für die Öffentlichkeit
gewährt und jeder kann ohne Einschränkung hiervon Gebrauch

Kannst du mir mal bitte verraten, was diese Reglementierung für
einen Sinn haben soll? Wenn ich eine Variable, ähh... ich meine
natürlich ein Feld innerhalb einer Klasse definiere, dann möchte ich
doch sicherlich irgendwann einmal darauf zugreifen können. Was
nützt eine Reglementierung, wenn die Klasse dann für mich nicht
mehr erreichbar ist? Oder habe ich das Prinzip falsch verstanden?

Richtig! Dann kann man doch auch direkt auf die Felder Einfluss
nehmen, oder?

&����	

O�
�
���

�
���

�

����
''+G��+��%��

�	+�E�

��
-- Projekt 10: Der elektronische Würfel (und wie erstelle ich eine Bibliothek?)322

machen« . Jetzt stelle dir einmal folgendes Szenario vor: Du hast
eine Feldvariable, die einen Schrittmotor steuern soll, wobei der
Wert den Winkel vorgibt. Es sind aber nur Winkelwerte von 00 bis
3590 zulässig. Jeder Wert darunter oder darüber kann die Sketch-
Ausführung gefährden, so dass der Servo nicht mehr korrekt ange-
steuert wird. Wenn du über den Zugriffsmodifizierer public einen
freien Zugriff auf die Feldvariable ermöglichst, kann keine Validie-
rung erfolgen. Was einmal abgespeichert wurde, führt unmittelbar
zu einer Reaktion, die nicht unbedingt richtig sein muss. Die
Lösung des Problems ist die Abschottung der Feldvariablen über
den Zugriffsmodifizierer private. Das schon erwähnte Prinzip der
Kapselung wird angewendet.

Abbildung 10-5
Kein Zugriff auf ein Feld der Klasse

Das geschieht mit einer Methode, die ebenfalls einen Zugriffsmodi-
fizierer erhalten hat, Ardus. Der muss jedoch public sein, damit der
Zugriff von außen funktioniert. Das Ganze stellt sich dann wie folgt
dar:

Abbildung 10-6
Zugriff auf ein Feld der Klasse über
die Methode

&����	

O�
�
���

�
��
G�	�

����
''+G��+��%��

�	+�
��	+�E�

��

Schön und gut!
Doch wie komme ich jetzt an die Feldvariable heran?

&����	

O�
�
���

�
��
G�	�����
''+G��+��%��

�	+�E�

��

��	���� ���

�
Bibliotheken -- 323

Jetzt erkennst du sicherlich, dass der Zugriff auf die Feldvariable
über den Umweg der Methode stattfindet, wobei der Umweg einen
Vorteil und keinen Nachteil mit sich bringt. Innerhalb der Methode
kannst du jetzt die Validierung unterbringen, die nur zulässige
Werte an die Feldvariable übermittelt.

Der Zugriffsmodifizierer private besagt, dass der Zugriff von außer-
halb der Klasse nicht möglich ist. Klassenmitglieder wie Methoden
können jedoch auf als private deklarierte Mitglieder zugreifen. Sie
gehören alle einer Klasse an und sind deshalb auch innerhalb dieser
frei zugänglich. Ich fasse aber noch einmal kurz zusammen:
Zugriffsmodifizierer steuern den Zugriff auf Klassenmitglieder.

Tabelle 10-2
Zugriffsmodifizierer und ihre

Bedeutung

Wenn du eine Klasse deinem Arduino-Projekt hinzufügen möch-
test, dann ist es sinnvoll, eine neue Datei zu erstellen, die die Datei-
endung .cpp erhält, und die Klassendefinition dorthin auszulagern.
Wie das funktioniert, wirst du gleich an unserem konkreten Bei-
spiel für die Würfel-Library sehen. Also gedulde dich noch ein
wenig.

Ein Klasse benötigt Unterstützung
Du hast jetzt gesehen, was eine Klasse bewirkt und wie du sie for-
mell erstellen kannst. Bisher habe ich dir aber nur die halbe Wahr-
heit erzählt, denn die Klasse benötigt die Unterstützung einer
weiteren, sehr wichtigen Datei. Sie wird Header-Datei genannt und
enthält die Deklarationen (Kopf- oder Vorabinformationen) für die
zu erstellende Klasse. Wenn du Felder bzw. Methoden in C++ ver-
wenden möchtest, ist es zwingend erforderlich, diese vor der
eigentlichen Nutzung dem Compiler bekanntzumachen. Dies
erfolgt mittels der Definition der Felder und Funktions- bzw.
Methodenprototypen. In der betreffenden Datei werden auch die
Reglementierungen über die Zugriffsmodifizierer public bzw. pri-

Warum kann die Methode aber auf die private Feldvariable zugreifen?
Ich dachte, dass das nicht möglich sei.

Zugriffsmodifizierer Beschreibung

public Auf Feldvariablen und Methoden kann von überall im Sketch zugegrif-
fen werden. Solche Mitglieder stellen eine öffentliche Schnittstelle der
Klasse dar.

private Auf Feldvariablen und Methoden können nur Klassenmitgliedern der-
selben Klasse zugreifen.
-- Projekt 10: Der elektronische Würfel (und wie erstelle ich eine Bibliothek?)324

vate festgelegt. Der formale Aufbau der Header-Datei gleicht dem
der Klassendefinition, beinhaltet jedoch keinen ausformulierten
Code. Das bedeutet, dass lediglich die Methoden-Signaturen Erwäh-
nung finden. Eine Signatur besteht lediglich aus den Kopfinformati-
onen mit Methodenname, Rückgabetyp und Parameterliste. Der
allgemeine Aufbau lautet:

class Name{

public:
 // Public Member
private:

 // Private Member
};

Der Bereich zur Definition der der public Member folgt im
Anschluss an das Schlüsselwort public, gefolgt von einem Doppel-
punkt. Der Bereich zur Definition der private Member folgt im
Anschluss an das Schlüsselwort private, ebenfalls gefolgt von einem
Doppelpunkt. Die Header-Datei erhält die Dateiendung .h.

Eine Klasse wird zu einem Objekt
Wenn du eine Klasse über die Klassendefinition erst einmal erstellt
hast, kannst du sie wie bei der Deklaration einer Variablen als
neuen Datentypen verwenden. Dieser Vorgang wird in der OOP
Instanziierung genannt. Mit der Definition einer Klasse hast du aus
programmtechnischer Sicht noch kein existierendes Objekt
geschaffen. Die Klassendefinition ist lediglich als eine Art Schablone
oder Bauplan anzusehen, die für die Erzeugung eines oder mehrerer
Objekte herangezogen werden kann.

Abbildung 10-7
Von der Klasse zum Objekt

Die Instanziierung geschieht in folgender Weise:

Klassenname Objektname();

&����	
������
���" " '	(
��

" '	(
��

" '	(
��

#��	���

�����
Bibliotheken -- 325

Gut bemerkt, Ardus! Das hat natürlich seine Bewandtnis. Ich werde
diesem Aspekt ein neues Teilkapitel widmen, denn er ist äußerst
wichtig bei der Instanziierung.

Ein Objekt initialisieren –
Was ist ein Konstruktor?
Eine Klassendefinition beinhaltet in der Regel einige Feldvariablen,
mit denen nach der Instanziierung gearbeitet wird. Damit ein
Objekt einen definierten Anfangszustand aufweisen kann, ist es
sinnvoll, es zu gegebener Zeit zu initialisieren. Was könnte ein bes-
serer Zeitpunkt für diese Initialisierung sein als direkt bei der
Instanziierung? Auf diese Weise kann sie nicht vergessen werden
und bereitet dir später auch keine Probleme bei der Sketch-Ausfüh-
rung. Wie können wir aber ein Objekt initialisieren? Nun, das
geschieht am besten mittels eine Methode, die diese Aufgabe über-
nimmt.

Du hast Recht, Ardus! Wir müssen eine Methode aufrufen und ihr
ggf. ein paar Werte mit auf den Weg geben. Doch wie könnten wir
diese Methode nennen? Es ist eigentlich ganz einfach und genial
gelöst. Die Methode zur Objektinitialisierung trägt den gleichen
Namen, wie die Klasse. Da es sich um eine ganz spezielle Methode
handelt, hat sie auch einen eigenen Namen bekommen. Sie wird
Konstruktor genannt. Wie die Bezeichnung vermuten lässt, kon-
struiert dieser Konstruktor gewissermaßen das Objekt. Da es aber
nicht zwingend erforderlich ist, ein Objekt zu Beginn mit bestimm-
ten Werten zu initialisieren, muss er nicht unbedingt eine Parame-
terliste aufweisen. Er verhält sich dann wie eine Methode, der keine
Werte übergeben werden und lediglich das leere Klammerpaar
besitzt. Das ist auch die Antwort auf deine Frage bezüglich des run-
den Klammerpaares, das du bei der Instanziierung gesehen hast.

Stopp mal, denn etwas stimmt doch hier nicht. du hast angeführt,
dass die Instanziierung eines Objektes der einer ganz normalen Vari-
ablendeklaration entspricht. Das habe ich verstanden. Doch ich sehe
da hinter dem Namen, den du für das Objekt vergeben hast, noch ein
rundes Klammerpaar. Ist das ein doppelter Tippfehler? Doch eher
nicht. Was hat das zu bedeuten?

Dann muss ich also beim Instanziieren eine Methode mit angeben,
der ich bestimmte Werte als Argumente mitgebe. Doch woher weiß
ich denn, wie diese Methode lautet?
-- Projekt 10: Der elektronische Würfel (und wie erstelle ich eine Bibliothek?)326

Du darfst es unter keinen Umständen weglassen bzw. vergessen.
Jetzt muss ich doch schon etwas konkreter werden, um dir die Syn-
tax zu zeigen. Hier siehst du den Inhalt der Header-Datei für unsere
geplante Würfel-Library:

class Wuerfel{

public:
 Wuerfel(); // Konstruktor

 //...
private:
 // ...

};

Unterhalb des Zugriffsmodifizierers public befindet sich der
Konstruktor mit dem gleichen Namen wie der der Klasse. Er besitzt
ein leeres Klammerpaar und wird deshalb Standardkonstruktor
genannt.

Du hast vollkommen Recht, Ardus, wenn du sagst, dass der Kon-
struktor in dieser Form keine Werte entgegennehmen kann. Das ist
eine gute Überleitung zum nächsten Thema. Doch vorher möchte
ich dir noch die Antwort auf deine Frage hinsichtlich des fehlenden
Rückgabetyps geben. Liefert eine Methode einen Wert an ihren
Aufrufer zurück, dann muss natürlich der entsprechende Datentyp
mit angegeben werden. Wenn keine Rückgabe erfolgt, wird das
Schlüsselwort void verwendet. Kommen wir jetzt zu unserem Kon-
struktor zurück. Er wird nicht explizit durch eine Befehlszeile auf-
gerufen, sondern implizit durch die Instanziierung eines Objektes.
Aus diesem Grund kann auch nichts an einen Aufrufer zurückgelie-
fert werden, und deshalb hat der Konstruktor nicht einmal den
Rückgabetyp void.

Die Überladung
Was ich dir jetzt zeige, mag für dich auf den ersten Blick etwas ver-
wirrend sein. Du kannst einen Konstruktor und natürlich auch
Methoden mehrfach mit demselben Namen definieren.

Hast du nicht eben gesagt, dass man dem Konstruktor wie einer
Methode ein paar Argumente übergeben kann, um das Objekt zu ini-
tialisieren? Das leere Klammerpaar sagt mir aber, dass der Konstruktor
keine Werte entgegennehmen kann. Wie soll das denn funktionieren?
Die zweite Sache, die mir aufgefallen ist, bezieht sich auf den vermeint-
lichen Rückgabetyp einer Methode. Du hast beim Konstruktor den
Rückgabetyp nicht mit angegeben. Warum hast du ihn weggelassen?
Bibliotheken -- 327

Du hast vollkommen Recht Ardus. Aber in diesem Fall spielt nicht
nur allein der Name eine entscheidende Rolle, sondern die soge-
nannte Signatur, auf die ich schon einmal zu sprechen gekommen
bin. Im folgenden Beispiel zeige ich dir zwei zulässige Konstrukto-
ren mit gleichem Namen, die jedoch abweichende Signaturen auf-
weisen:

Wuerfel();
Wuerfel(int, int, int, int);

Der erste Konstruktor repräsentiert den dir schon bekannten Stan-
dardkonstruktor mit dem leeren Klammerpaar, der keine Argu-
mente entgegennehmen kann. Der zweite hat eine völlig andere
Signatur, denn er kann 4 Werte vom Datentyp int aufnehmen.
Wenn du nun ein Wuerfel-Objekt instanziierst, dann kannst du
zwischen zwei Varianten wählen:

Wuerfel meinWuerfel();

oder

Wuerfel meinWuerfel(8, 9, 10, 11);

Der Compiler ist so intelligent, dass er erkennt, welchen Konstruk-
tor er aufzurufen hat.

Die Würfel-Library
Die mehr oder weniger kurze Einführung war notwendig, damit du
die Erstellung einer Arduino-Library nachvollziehen kannst. Ich
möchte das zweite Würfelprojekt als Basis für die Umsetzung einer
Library nutzen. Es handelt sich um die verbesserte Variante mit der
Ansteuerung der LED-Gruppen. Wir benötigen also zwei Dateien,
um die Library erfolgreich zu erstellen.

Das kann ich dir aber irgendwie nicht auf Anhieb glauben. Das wider-
spricht doch dem Grundsatz der Eindeutigkeit. Wenn z.B. eine
Methode zweimal in einem Sketch mit demselben Namen vorkommt,
wie soll dann der Compiler wissen, welche von beiden aufzurufen ist?

+++++&��
���	
��
�������&�	�
+*�

&�	�
��+�
���+H
����F

#��
����	
�����
>
�������	�
+*���
-- Projekt 10: Der elektronische Würfel (und wie erstelle ich eine Bibliothek?)328

Die Header-Datei
Ich beginne mit der Header-Datei, die lediglich die Prototyp-Infor-
mationen enthält und keine ausformulierten Codeinformationen
aufweist. Zu Beginn sollte ich mir natürlich ein paar Gedanken
über die benötigten Member der Klasse machen. Ich benötige zur
Ansteuerung der LED-Gruppen 4 digitale Pins, die ich über ent-
sprechende Felder ansteuere:

• pinGruppeA

• pinGruppeB

• pinGruppeC

• pinGruppeD

Diese Informationen werden wir dem Konstruktor, der 4 Parameter
des Datentyps int besitzt, später bei der Instanziierung mitgeben.
Die Felder werden als private deklariert, denn sie müssen lediglich
intern von einer Methode angesprochen werden, die ich roll nenne
und die keine Argumente entgegennimmt bzw. auch keinen Rück-
gabewert liefert. Die Klasse bekommt einen sprechenden Namen,
der wuerfel lautet.

#ifndef Wuerfel_h
#define Wuerfel_h

#if ARDUINO < 100
#include <WProgram.h>
#else
#include <Arduino.h>
#endif

class Wuerfel{
public:

 Wuerfel(int, int, int, int); // Konstruktor
 void roll(); // Methode zum Rollen des Würfels
private:

 int GruppeA; // Feld für LED-Gruppe A
 int GruppeB; // Feld für LED-Gruppe B
 int GruppeC; // Feld für LED-Gruppe C

 int GruppeD; // Feld für LED-Gruppe D
};
#endif

Ich habe der Klassendefinition noch einige Zusatzinformationen
hinzugefügt, die einer weiteren Erläuterung bedürfen. Die kom-
plette Klasse wurde von dem folgenden Konstrukt ummantelt:
Bibliotheken -- 329

#ifndef Wuerfel_h
#define Wuerfel_h

...

#endif

Da es aufgrund von verschachteltem Code zu Mehrfacheinbindun-
gen kommen kann, hat man sich eine Möglichkeit überlegt, diese
zu unterbinden und eine Doppelkompilierung zu verhindern. Der
Grund für diese Ummantelung ist die Sicherstellung der einmaligen
Einbindung der Header-Datei. Bei den Anweisungen #ifndef,
#define und #endif handelt es sich um Präprozessoranweisungen.
#ifndef leitet eine bedingte Kompilierung ein und ist die Abkür-
zung für if not defined, was so viel wie wenn nicht definiert bedeutet.
Wurde der Begriff Wuerfel_h (Name der Header-Datei mit Unter-
strich), der als Makro bezeichnet wird, noch nicht definiert, dann
hole das nun nach und führe die Anweisungen in der Header-Datei
aus. Würde die Header-Datei ein zweites Mal aufgerufen, dann
wäre das Makro unter dem Namen gesetzt und dieser Teil der
Kompilierung wird verworfen. Die include-Anweisungen

#if ARDUINO < 100

#include <WProgram.h>
#else
#include <Arduino.h>
#endif

sind notwendig, um der Library die Arduino-eigenen Datentypen
bzw. Konstanten (z.B. HIGH, LOW, INPUT oder OUTPUT)
bekanntzugeben. An dieser Stelle wird es ein wenig tricky. Alle
Arduino-Versionen, die kleiner als die Version 1.0 sind, benötigen
eine Header-Datei mit dem Namen WProgram.h, wenn es darum
geht, z.B. die o.g. Konstanten zu verwenden. Da steckt natürlich
noch eine ganze Menge mehr dahinter, doch für dieses Beispiel
reicht es erst einmal aus. Die Arduino-Versionsnummer ist übri-
gens in der Definition ARDUINO gespeichert und kann also für die
aktuell verwendete Entwicklungsumgebung ausgelesen werden. So
gehen wir auch in unserem Fall vor. Ist die Versionsnummer < 100
(entspricht Version 1.00), dann soll die ältere Header-Datei WPro-
gram.h eingebunden werden. Andernfalls wird die neue Header-
Datei Arduino.h verwendet. Diese Änderung der Header-Dateien
sorgt größtenteils für Unmut und ich bin auch nicht gerade erbaut
von dieser Anpassung.
-- Projekt 10: Der elektronische Würfel (und wie erstelle ich eine Bibliothek?)330

Der Grund hierfür liegt darin, dass wir an dieser Stelle nur die Pro-
totyp-Informationen benötigen. Der eigentliche Code befindet sich
später in der Klassendatei mit der Endung .cpp.

Die Klassendatei
Die eigentliche Code-Implementierung erfolgt mittels der Klassen-
Datei mit der Endung .cpp:

#if ARDUINO < 100

#include <WProgram.h>

#else

#include <Arduino.h>

#endif

#include "Wuerfel.h"

#define WARTEZEIT 20

// Parametrisierter Konstruktor

Wuerfel::Wuerfel(int A, int B, int C, int D){

GruppeA = A;

GruppeB = B;

GruppeC = C;

GruppeD = D;

pinMode(GruppeA, OUTPUT);

pinMode(GruppeB, OUTPUT);

pinMode(GruppeC, OUTPUT);

pinMode(GruppeD, OUTPUT);

}

// Methode zum Würfeln

void Wuerfel::roll(){

int zahl = random(1, 7);

digitalWrite(GruppeA, zahl%2!=0?HIGH:LOW);

digitalWrite(GruppeB, zahl>1?HIGH:LOW);

digitalWrite(GruppeC, zahl>3?HIGH:LOW);

digitalWrite(GruppeD, zahl==6?HIGH:LOW);

delay(WARTEZEIT); // Eine kurze Pause einfügen

}

Bitte verrate mir, warum der Konstruktor bei der Angabe der Parame-
ter lediglich die Datentypen aufweist und der eigentliche Variablen-
Name fehlt.
Bibliotheken -- 331

Damit die Verbindung zur vorher erstellten Header-Datei möglich
ist, wird mit der include-Anweisung

#include "Wuerfel.h"

auf sie verwiesen und sie wird beim Kompilieren mit eingebunden.
Auch hier ist die include-Anweisung

#if ARDUINO < 100
#include <WProgram.h>
#else

#include <Arduino.h>
#endif

notwendig, um die eben genannten Arduino-Sprachelemente nut-
zen zu können. Kommen wir jetzt zur Erläuterung des Codes, der ja
die eigentliche Implementierungen enthält. Starten wir mit dem
Konstruktor:

Wuerfel::Wuerfel(int A, int B, int C, int D){

GruppeA = A;
GruppeB = B;
GruppeC = C;

GruppeD = D;
pinMode(GruppeA, OUTPUT);
pinMode(GruppeB, OUTPUT);
pinMode(GruppeC, OUTPUT);
pinMode(GruppeD, OUTPUT);

}

Wenn du dir die Methode roll anschaust, dann wirst du sicherlich
bemerken, dass ich sie im Vergleich zum vorherigen Kapitel etwas
modifiziert habe.

Stimmt, Ardus! Das ist aber auch gefahrlos möglich, denn die
Ansteuerung der einzelnen LED-Gruppen erfolgt über den Bedin-
gungsoperator ?, den du schon im Kapitel über die Statemachine
kennengelernt hast. Dieser Operator liefert bei der Auswertung der
Bedingung entweder LOW oder HIGH zurück, so dass die entspre-
chende LED-Gruppe immer mit dem richtigen Pegel versorgt wird
und ich sie nicht vorher mit LOW zurücksetzen muss. Was dich
vielleicht noch verwundern wird, ist das Präfix Wuerfel:: sowohl
vor dem Konstruktornamen als auch vor der Methode roll. Es han-

Genau, du hast hier das Löschen der aller LEDs, bevor neue angesteu-
ert werden, weggelassen. Das verstehe ich noch nicht so ganz!
-- Projekt 10: Der elektronische Würfel (und wie erstelle ich eine Bibliothek?)332

delt sich dabei um den Klassennamen, über den der Compiler
erkennt, zu welcher Klasse die Methodendefinition gehört. Die
Methode wird durch diese Notation qualifiziert. Da das Würfel-
Objekt, das wir generieren möchten, 4 LED-Gruppen anzusteuern
hat, macht es Sinn, diese Informationen bei der Instanziierung zu
übergeben. Natürlich wäre es auch nach der Objekt-Generierung
möglich, dies über eine separate Methode, die wir z.B. Init nennen
würden, zu realisieren. Das birgt aber die Gefahr in sich, dass dieser
Schritt möglicherweise vergessen wird. Aus diesem Grund wurde
der Konstruktor erfunden. Werfen wir gleich einen kurzen Blick in
unseren Sketch, der diese Library nutzt.

Das Anlegen der benötigten Dateien
Ich würde dir vorschlagen, dass du die beiden benötigen Library-
Dateien .h und .cpp unabhängig von der Arduino-Entwicklungsum-
gebung programmierst. Es bieten sich zahllose Editoren wie z.B.
Notepad++ oder Programmers Notepad an. Beide Dateien spei-
cherst du in einem aussagekräftigen Verzeichnis wie z.B. Wuerfel
ab, das du nach der Fertigstellung in den Arduino-Library-Ordner

...\arduino-1.0-rc1\libraries

kopierst. Anschließend startest du die Arduino-Entwicklungsumge-
bung neu und beginnst mit der Programmierung des Sketches.

Syntaxhighlighting für neue Library ermöglichen
Elementare Datentypen, wie z.B. int, float oder char oder auch
andere Schlüsselwörter wie z.B. setup oder loop werden durch die
Entwicklungsumgebung farblich hervorgehoben. Es gibt für die
Erstellung eigener Libraries eine Möglichkeit, Klassennamen oder
Methoden der IDE bekanntzumachen, so dass sie ebenfalls farbig
dargestellt werden. Damit das funktioniert, muss im Bibliotheks-
verzeichnis eine Datei mit dem Namen

keywords.txt

angelegt werden, die eine bestimmte Syntax aufweisen muss.

Kommentare

Erläuternde Kommentare werden mit dem # Doppelkreuz (ugs.
Lattenzaun) eingeleitet:

Das ist ein Kommentar
Bibliotheken -- 333

Datentypen und Klassen (KEYWORD1)

Datentypen oder auch Klassennamen werden in orange gekenn-
zeichnet und müssen unter Einhaltung der folgenden Syntax defi-
niert werden:

Klassenname KEYWORD1

Methoden und Funktionen (KEYWORD2)

Methoden bzw. Funktionen werden in braun gekennzeichnet und
müssen unter Einhaltung der folgenden Syntax definiert werden:

Methode KEYWORD2

Konstanten (LITERAL1)

Konstanten werden in blau gekennzeichnet und müssen unter Ein-
haltung der folgenden Syntax definiert werden:

Konstante LITERAL1

Hier nun der Inhalt der keywords.txt Datei für unsere Würfel-
Library:

#--------------------------------------
Farbgebung für Wuerfel-Library
#--------------------------------------

#--------------------------------------
KEYWORD1 für Datentypen bzw. Klassen

#--------------------------------------

Wuerfel KEYWORD1

#--------------------------------------
KEYWORD2 für Methoden und Funktionen

#--------------------------------------

roll KEYWORD2

#--------------------------------------
LITERAL1 für Konstanten

#--------------------------------------

Die Nutzung der Library
Befindet sich die Würfel-Library im o.g. Verzeichnis, dann hat das
folgenden Vorteil:
-- Projekt 10: Der elektronische Würfel (und wie erstelle ich eine Bibliothek?)334

Abbildung 10-8
Importieren der Würfel-Library

Wenn du dir den letzten Menüpunkt anschaust, dann findest du
die programmierte Würfel-Library wieder. Die Bezeichnung Impor-
tieren ist etwas irreführend, denn eigentlich wird an dieser Stelle
überhaupt nichts importiert. Alles, was passiert, ist das Einfügen
der folgenden Zeile in dein Sketch-Fenster:

#include <Wuerfel.h>

Die Include-Zeile ist zwingend notwendig, wenn du auf die Funkti-
onalität der Würfel-Library zugreifen möchtest. Woher sollte der
Compiler sonst wissen, auf welche Bibliothek er zugreifen muss. Es
werden nicht einfach auf gut Glück alle verfügbaren Libraries ein-
gebunden. Jetzt folgt die Instanziierung, die die Klassendefinition
in den Status eines realen Objektes erhebt. Das generierte Objekt
meinWuerfel wird auch als Instanzvariable bezeichnet. Dieser
Begriff ist in der Literatur recht häufig anzutreffen.

Wuerfel meinWuerfel(8, 9, 10, 11);

Die Übergabewerte 8, 9, 10 und 11 stehen für die digitalen Pins, an
denen die LED-Gruppen angeschlossen sind. Auf diese Weise
wurde dein Würfel-Objekt initialisiert, damit es intern arbeiten
kann, wenn die Methode zum Würfeln aufgerufen wird. Die Argu-
mente werden in der angegebenen Reihenfolge übergeben.
Die Nutzung der Library -- 335

Sie werden in den lokalen Variablen A, B, C und D gespeichert, die
dann wiederum an die Felder GruppeA, GruppeB, GruppeC und
GruppeD weitergereicht werden. Jetzt erfolgt der Aufruf der
Methode, wenn die Bedingung erfüllt ist, dass am digitalen Eingang
ein HIGH-Potential anliegt, was über den angeschlossenen Taster
gesteuert werden kann.

void setup(){
pinMode(13, INPUT); // Nicht unbedingt notwendigt – klar warum!?

}

void loop(){
if(digitalRead(13) == HIGH)

 meinWuerfel.roll();
}

Du siehst hier auch, dass das Syntaxhighlighting funktioniert, denn
sowohl der Klassenname als auch die Methode wurden farblich
hervorgehoben. Da die Methode roll ein Mitglied der Klassendefini-
tion Wuerfel ist, muss beim Aufruf derselben eine Verbindung zur
Klasse hergestellt werden. Ein Aufruf über

roll();

würde auf jeden Fall einen Fehler verursachen. Die Beziehung wird
über den sogenannten Punktoperator hergestellt, der zwischen
Klasse und Methode eingefügt wird und als Bindeglied fungiert.

Wir werden später noch die eine oder andere Library programmie-
ren, die dir oder auch anderen Programmieren nützlich sein kön-
nen. Außerdem erwirbst du dann ein wenig Praxis im Umgang mit
-- Projekt 10: Der elektronische Würfel (und wie erstelle ich eine Bibliothek?)336

der Programmiersprache C++ und der objektorientierten Program-
mierung.

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• Objektorientierte Programmierung

• OOP

• Arduino Library

Was hast du gelernt?
• Ich gebe zu, dass die Lernkurve in diesem Kapitel etwas steiler

geworden ist, doch es ist die Sache wert. Du hast einiges über
das neue Programmierparadigma Objektorientierte Program-
mierung erfahren.

• Der Unterschied zwischen einer Klasse und einem Objekt ist
dir jetzt sicherlich geläufig.

• In der OOP verwenden wir den Begriff Methode anstelle von
Funktion und Feld anstelle von Variable.

• Der Konstruktor ist eine Methode mit einer besonderen Auf-
gabe. Er initialisiert das Objekt, damit ein definierter Aus-
gangszustand erzielt werden kann.

• Die unterschiedlichen Zugriffsmodifizierer public bzw. private
regeln den Zugriff auf die Objektmitglieder, wobei private für
die Kapselung von Mitgliedern verantwortlich ist.

• Du hast gesehen, über welche Code-Informationen eine Hea-
der- bzw. cpp-Datei verfügen muss.

• Das aus einer Klasse instanziierte Objekt wird auch Instanzva-
riable genannt.

• Um auf Felder bzw. Methoden zugreifen zu können, wird der
Punktoperator verwendet, der nach dem Namen der Instanzva-
riablen eingefügt wird und quasi als Bindeglied zwischen bei-
den fungiert.

• Du hast gelernt, wie eine Arduino-Library erstellt wird und an
welche Stelle sie im Dateisystem kopiert werden muss, damit
du einen globalen Zugriff auf sie erhältst.

• Zum Abschluss hast du erfahren, wie du bestimmte Methoden als
Schlüsselwörter mit farblicher Kennung konfigurieren kannst.
Die Nutzung der Library -- 337

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 11 11Das Miniroulette
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Deklarierung und Initialisierung eines eindimensionalen
Arrays

• Programmierung mehrerer Pins als Ausgang (OUTPUT)

• Der Befehl randomSeed() im Zusammenspiel mit random()

• Abfragen eines analogen Eingangs mit dem Befehl
analogRead()

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Workshop

Das Roulettespiel
Nachdem du schon mit dem Lauflicht in Berührung gekommen
bist, möchte ich dir nun eine weitere, ähnliche Schaltung bzw. Pro-
grammierung vorstellen. Du kennst das Spiel Roulette bestimmt aus
dem Casino bzw. der Spielbank. Es ist das wohl bekannteste
Glücksspiel und wir wollen uns hier ein Mini-Roulette basteln. Der
Sinn des Spiels besteht darin, vorauszusagen, in welchem Feld eine
Kugel, die im Roulettekessel im Kreis rotiert, zu liegen kommt. Es
gibt unterschiedliche Roulette-Varianten mit einer abweichenden
Anzahl von Fächern. Für unser Spiel werden wir 12 LEDs ansteu-
ern, was natürlich etwas weniger als in einem Originalspiel ist. Des-
--- 339

wegen nennen wir es ja auch Mini-Roulette. Da der Aufbau des
Spieles im Hinblick auf die runde Anordnung der LEDs auf einem
Breadboard recht mühsam ist und nicht gerade schön aussieht,
habe ich mich für eine Frontplatte entschieden, die auf einem
Shield angebracht wird. Auf einer solchen Platte aus Freischaum,
die z.B. für Werbetafeln oder Displays benutzt werden, kann man
wunderbar passende Löcher an beliebigen Stellen bohren und ist
nicht an die festen Rasterabstände einer Lochrasterplatine gebun-
den. Du kannst die Platte mit Distanzhülsen oben auf dem Shield
platzieren, was wirklich recht gut aussieht. Lass’ dich überraschen.
Die Detailinformationen findest du im entsprechenden Kapitel
über den Shieldbau.

Abbildung 11-1
Frontplatte für das Roulette-Spiel

Aufgrund der Tatsache, dass die Frontplatte nicht übermäßig groß
ist, habe ich mich entschieden, kleine LEDs mit einem Durchmes-
ser von 3mm zu verwenden.

Abbildung 11-2
Frontplatte für das Roulette-Spiel
--- Projekt 11: Das Miniroulette340

In der folgenden Abbildung siehst du die Maße für die Frontplatte:

Abbildung 11-3
Maße der Frontplatte für das
Roulette-Spiel

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Benötigte Bauteile

12 x LEDs 3mm / je 4 rote, grüne und gelbe

12 x Widerstand 330

1 x Widerstand 10K

1 x Taster

Litze in beliebiger Farbe

2A/+��
;A2

+��

/+��

5+��

3+��

<+��

/A2
+��

,��	����%+'1�+?��	��

)+��
Das Roulettespiel --- 341

Sketch-Code
Hier der Sketch-Code zur Ansteuerung des Mini-Roulettes:

#define WARTEZEIT 40
#define OBERGRENZE 13
#define THRESHOLD 1000
int pin[] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}; // Array für LED´s
int tasterPin = 0, tasterWert = 0;

int letzteZahl = 1;

void setup(){
 randomSeed(analogRead(5)); // Zufallszahlenstart unvorhersehbar
 // machen
 for(int i = 0; i < 12; i++)

 pinMode(pin[i], OUTPUT); //Alle Pins als Ausgang programmieren
}

void loop(){
 if(analogRead(tasterPin) > THRESHOLD)
 rouletteStart(random(1, OBERGRENZE)); // Starten des Roulettes
}

void rouletteStart(int zahl){
 digitalWrite(letzteZahl + 1, LOW); // Löschen der letzten LED
 letzteZahl = zahl; // Sichern der letzten Zahl (LED)

2 x Stiftleiste mit 6 Pins + 2 x Stiftleiste mit 8
Pins

1 x Shieldplatine

1 x Freischaumplatte, grau (z.B. aus dem Bau-
markt: 500 x 250 x 3)

Benötigte Bauteile
--- Projekt 11: Das Miniroulette342

 int k = 1; // Faktor, um WARTEZEIT zu
 // verlängern
 for(int i = 0; i < 6; i++){

 if(i > 2) k++; // Faktor für WARTEZEIT wird inkrementiert
 for(int j = 0; j < 12; j++){
 digitalWrite(pin[j], HIGH);
 if((i == 5)&&(j + 1 == zahl)) break;
 delay(WARTEZEIT * k); // Wartezeit zwischen LED-Wechsel
 digitalWrite(pin[j], LOW);
 }
 }

}

Oh, hatte ich das vergessen zu erwähnen? Also gut: Wenn du meh-
rere Variablen desselben Datentyps deklarieren bzw. initialisieren
möchtest, dann kannst du das in einer einzigen Zeile erledigen. Der
gewählte Datentyp zu Beginn der Codezeile bezieht sich dann auf
alle nachfolgend genannten Variablen, die durch Kommata
getrennt aufgelistet werden.

Code-Review
Für unser Experiment benötigen wir programmtechnisch gesehen
die folgenden Variablen:

Tabelle 11-1
Benötigte Variablen und deren
Aufgabe

Da wir es in diesem Kapitel mit 12 anzusteuernden LEDs zu tun
haben, macht es wieder Sinn, die Nummern der einzelnen Pins in
einem Array zu speichern und in der setup-Funktion entsprechend
als Ausgang zu programmieren.

Stopp, Stopp, Stopp! Also, da gibt es wieder eine Stelle im Code, die
mir schleierhaft ist. Es geht um die Variablendeklaration in der Zeile
int tasterPin = 0, tasterWert = 0;. Ich dachte, dass bei der Deklaration
für jede Variable eine eigene Zeile erforderlich sei. Jetzt stehen dort
aber zwei Variablen in einer Zeile und für die zweite fehlt die Angabe
des Datentyps. Wie funktioniert das denn nun wieder?

Variable Aufgabe

pin Eindimensionales Array, das die Nummern der einzelnen LED-Pins enthält

tasterPin Enthält die Nummer des Anschlusspins für den Taster. Es handelt sich in diesem
Fall um einen analogen Pin. Die Erläuterung dazu erfolgt in Kürze

tasterWert Der Wert des analogen Eingangs am tasterPin wird dieser Variablen zugewiesen

letzteZahl Speichert die zuletzt ermittelte Zufallszahl
Das Roulettespiel --- 343

Du hast vielleicht schon den Befehl analogRead im Sketch-Code
ausfindig gemacht. Ihn wollen wir uns jetzt einmal genauer
anschauen, denn bisher haben wir lediglich digitale Signale verar-
beitet. Jetzt wird es also analog. Im Gegensatz zu einem digitalen
Signal, bei dem es nur zwei definierte Pegel (im Idealfall 0V und 5V)
gibt, kann ein analoges Signal beliebige Werte zwischen einem
Minimum bzw. einem Maximum aufweisen. Die Syntax des Befehls
analogRead lautet wie folgt:

Abbildung 11-4
Der Befehl »analogRead«

Dir stehen 6 analoge Eingänge zur Verfügung, die unabhängig von-
einander ausgelesen werden können. Im Kapitel über die Program-
mierung des Arduino-Boards habe ich schon ein paar Worte über
die analogen Ports verloren.

Ok, Ardus, es gibt einen Sachverhalt, den du noch nicht kennst und
den ich noch nicht erwähnt habe: Der Befehl pinMode wirkt nur auf
die digitalen Pins und nicht auf die analogen. Mit deinem vorge-
schlagenen Befehl hättest du den digitalen Pin 0 als Eingang pro-
grammiert, doch das wollen wir natürlich nicht! Bei den analogen
Eingängen Pin 0 bis 5 handelt es sich um dedizierte Pins, die nur als

Lass mich mal überlegen. Du hast in einem der letzten Kapitel
erwähnt, dass die digitalen Pins 0 für RX und 1 für TX der seriellen
Schnittstelle nach Möglichkeit nicht verwendet werden sollen. Wir
haben aber ganze 12 LEDs für das Roulette-Spiel anzusteuern. Das
bedeutet, dass uns kein freier Pin mehr für Abfrage des Tasters zur
Verfügung steht. Wie können wir das Problem lösen?

#�#9�"��#�	%#0%�)�����

 �'��
 (
�

�������	

Eine Sache ist mir sofort aufgefallen. Um einen Pin in einem Sketch
zu verwenden, muss man ihn vorher programmieren, damit der
Mikrocontroller weiß, ob er als Ein- oder Ausgang zu verwenden ist.
Das ist jedoch in unserem Beispiel für den analogen Pin nicht erfolgt.
Müssen wir nicht mittels pinMode(tasterPin, INPUT) den Pin als Ein-
gang definieren?
--- Projekt 11: Das Miniroulette344

Eingänge arbeiten und deshalb keine explizite Programmierung als
solche erfordern.

Das könnte für dich wichtig sein
Analoge Eingänge müssen in der setup-Funktion nicht eigens
als solche programmiert werden, wie das z.B. bei den digitalen
Pins mit dem Befehl pinMode geschieht. Sie sind von Hause aus
als Eingangs-Pins definiert.

Doch nun zum Spiel und der betreffenden Programmierung. Die 12
LEDs sind im Kreis angeordnet und von 1 bis 12 durchnummeriert.

Die Simulation der Kugelrotation beginnt bei LED 1, endet bei
LED 12 und verläuft gegen den Uhrzeigersinn. Es wird mit einer
bestimmten Geschwindigkeit gestartet, die dann jedoch immer
geringer wird, so wie es bei der Kugel im realen Spiel auch der Fall
ist. Irgendwann wird die rotierende Ansteuerung der LEDs
gestoppt und es leuchtet nur noch eine LED. Das ist dann die im
Roulette ermittelte Zahl. Ich denke, dass die Variablendeklaration
bzw. –initialisierung, die setup- und die loop-Funktion eigentlich
soweit klar sein müssten. Kommen wir also zur Arbeitsweise der
rouletteStart-Funktion, die aufgerufen wird, wenn der Taster betä-
tigt wird. Wenn er nicht gedrückt wird, bekommt der analoge Ein-
gang über den Pulldown-Widerstand einen LOW-Pegel, was einem
Wert von 0 entspricht. Drückst du jetzt den Taster, gelangen +5V
an den Eingang, was einem Wert von 1023 bzw. HIGH-Pegel ent-
spricht. Die rouletteStart-Funktion wird aufgerufen, wenn der Wert
größer als 1000 ist. Den Wert habe ich deshalb so gewählt, weil
analoge Werte nicht immer genau das liefern, was man erwartet.
Somit habe ich einen kleinen Sicherheitspuffer eingerichtet. Wir
beginnen mit den ersten beiden Zeilen der Funktion. Sie dienen
dazu, die letzte generierte Zahl zu speichern und beim nächsten
Roulette-Durchgang die entsprechende LED auszuschalten.

digitalWrite(letzteZahl + 1, LOW); // Löschen der letzten LED
letzteZahl = zahl; // Sichern der letzten Zahl (LED)

Die for-Schleife übernimmt die Hauptaufgabe der Ansteuerung der
LED’s.

int k = 1; // Faktor, um WARTEZEIT zu verlängern

 for(int i = 0; i < 6; i++){

 if(i > 2) k++; // Faktor für WARTEZEIT wird inkrementiert

 for(int j = 0; j < 12; j++){

�
�

�

�

�

�
�

�

�	

��

��
Das Roulettespiel --- 345

 digitalWrite(pin[j], HIGH);

 if((i == 5)&&(j + 1 == zahl)) break;

 delay(WARTEZEIT * k); // Wartezeit zwischen LED-Wechsel

 digitalWrite(pin[j], LOW);

 }

 }

Die Variable k benutzen wir als Faktor, um die Wartezeit zu verlän-
gern. Die Kugel rollt ja in der Realität mit der Zeit auch immer
etwas langsamer. Die erste äußere for-Schleife sorgt dafür, dass 6
Runden (0 bis 5) durchlaufen werden, bevor die letzte LED die
Roulettezahl anzeigt. denn es soll ja schließlich ein wenig Span-
nung aufgebaut werden und nicht schon nach einer Runde Schluss
sein. Ganz zu Beginn wird 3-mal ohne eine veränderte Zeitverzöge-
rung rotiert. Erst, wenn i > 2 ist, wird der Wert von k inkremen-
tiert, also um den Wert 1 erhöht.

if(i > 2) k++; // Faktor für WARTEZEIT wird inkrementiert

Dann startet die innere for-Schleife, um die LED’s anzusteuern. Die
Zeile

if((i == 5)&&(j + 1 == zahl)) break;

wird dazu genutzt, um in der letzten Rotationsrunde beim Errei-
chen der Roulettezahl die innere Schleife durch den break-Befehl zu
verlassen. Im Schleifenkopf einer for-Schleife steht zu Beginn die
Anzahl der Durchläufe fest. Doch es gibt eine Möglichkeit, aus sol-
chen gesteckten Grenzen vorzeitig auszusteigen. Schau’ dir mal den
folgenden kleinen Sketch an:

Er zaubert folgende Ausgabe in den Serial-Monitor:
--- Projekt 11: Das Miniroulette346

Eigentlich sollte man ja meinen, dass die for-Schleife die Werte von
0 bis 19 anzeigt, doch die break-Anweisung macht ihr einen Strich
durch die Rechnung. Du siehst, das bei einem Wert > 10 der Lauf-
variablen i die Schleife vorzeitig verlassen wird und die Ausführung
an die Stelle springt, die der Schleife unmittelbar folgt.

Oh Ardus, das wäre mir fast durchgerutscht. Danke für den Hin-
weis! Um eine Zufallszahl zu ermitteln, wird der Befehl random ver-
wendet, den du ja schon kennst. Du hast aber auch gelernt, dass es
sich dabei nicht um eine richtige Zufallszahl handelt, sondern um
eine Pseudozufallszahl, die nach einem vordefinierten Algorithmus
berechnet wird. Es würden nach dem Start eines Sketches immer
die gleichen Zufallszahlen generiert werden, was jedoch sicherlich
nicht erwünscht ist. Daher gibt es alternativ den Befehl random-
Seed, der den Algorithmus zur Generierung der Zufallszahlen quasi
initialisiert. Wenn diesem Befehl unterschiedliche Startwerte als
Argument übergeben werden, dann erhalten wir auch unterschied-
liche Zufallszahl-Sequenzen.

So wie es aussieht, bist du jetzt mit den Erklärungen des Codes durch,
richtig!? Aber eine Sache ist dir wohl entgangen. Wie sieht es mit dem
Befehl randomSeed aus und warum wird irgendein analoger Eingang
abgefragt?

Das soll doch bestimmt ein Witz sein, oder! Wie soll ich denn diesem
Befehl unterschiedliche Initialisierungswerte mit auf den Weg geben?
Etwa wieder über eine Zufallszahl mittels random-Befehl?
Das Roulettespiel --- 347

Da hast du nicht ganz Unrecht, Ardus! Aber diesen Zufallswert las-
sen wir nicht über einen Algorithmus berechnen, sondern über
einen Wert an einem analogen Eingang, der nicht beschaltet wurde.
Im Normalfall möchtest du sicherlich einen Spannungswert an
einem der analogen Eingänge ermitteln, um dann zu sagen: »Ok,
ich messe jetzt diesen oder jenen Wert, der genau einem definierten
Zustand eines Sensors entspricht.« Wenn ein analoger Eingang
jedoch nicht mit einem Sensor verbunden ist, dann reagiert er auf
elektromagnetische Felder, die uns ständig umgeben und auch auf
ihn einwirken. Diese sind aber niemals in konstanter Form vorhan-
den, sondern unterliegen kontinuierlich einer nicht vorhersehbaren
Schwankung. Diesen Umstand nutzten wir, um mit dem Befehl

randomSeed(analogRead(5))

den analogen Eingang an Pin 5 abzufragen, und den ermittelten
Wert als Argument dem Befehl randomSeed für die Initialisierung
mitzugegeben.

Der Schaltplan
Der Schaltplan ist nicht weiter kompliziert und ähnelt dem für das
Lauflicht.

Abbildung 11-5
Das Arduino-Board steuert die 12

LEDs des Roulettespiels an
--- Projekt 11: Das Miniroulette348

Schaltungsaufbau
In der folgenden Abbildung siehst du sowohl das Shield als auch
die Frontplatte von hinten. Die Kathodenanschlüsse der 12 LEDs
weisen nach außen, so dass ich mit einem Draht, der einen Kreis
bildet, alle Anschlüsse erreiche, die dann mit der Masse verbunden
werden.

Abbildung 11-6
Die Frontplatte von der Rückseite
gesehen

Alle Anodenanschlüsse, die nach innen weisen, wurden mit je
einem Vorwiderstand verbunden, an denen wiederum die
Anschlüsse zu den digitalen Ausgängen führen. Der Pulldown-
Widerstand hat ebenfalls Platz auf dem Shield gefunden und ver-
bindet den analogen Eingang Pin 0 direkt mit Masse. Über den Tas-
ter werden dann – wenn er gedrückt wird – die +5V ebenfalls an
den analogen Eingang geführt. Jetzt zeige ich dir gleich das Plati-
nen-Sandwich, damit du eine Vorstellung davon bekommst, wie
das Ganze zusammengebaut aussieht. Wenn du die Frontplatte mit
den Bohrungen für die Schrauben auf die Shieldplatine legst,
kannst du ganz einfach dort die Markierungen anbringen, wo sich
die Löcher befinden müssen. Als Abstandshalter zwischen Front-
platte und Shield habe ich Distanzhülsen verwendet, die du recht
günstig bei Reichelt Elektronik bestellen kannst.

Abbildung 11-7
Distanzhülse
(DK 15mm, Kunststoff)
Das Roulettespiel --- 349

Hier siehst du das fertig zusammengebaute Frontplatten/Shield-
Sandwich. Um die beiden Platten miteinander zu verbinden, habe
ich M3-Schrauben mit einer Länge von 30mm auf die Länge von ca.
23mm gekürzt. Passender gibt es sie meines Wissen wohl nicht.

Abbildung 11-8
Das Platinen-Sandwich

Troubleshooting
Falls die LEDs nach dem Druck auf den Taster nicht der Reihe
nach blinken oder sie überhaupt nicht leuchten, trenne das Board
sicherheitshalber vom USB-Anschluss und überprüfe bitte Folgen-
des:

• Entsprechen deine Steckverbindungen auf dem Breadboard
wirklich der Schaltskizze?

• Gibt es eventuell Kurzschlüsse untereinander?

• Wurden die LEDs richtig herum eingesteckt? Stimmt die Pol-
ung ?

• Haben die Widerstände die korrekten Werte?

• Weist der Sketch-Code Fehler auf?

• Hat sich ein Verkablungsfehler eingeschlichen, der bei 12
LEDs ja durchaus im Bereich des Möglichen liegt?

Was hast du gelernt?
• Du hast gelernt, wie man einen analogen Eingang mit dem

Befehl analogRead abfragt.

• Du weißt nun, dass bei einem analogen Eingang keine explizite
Programmierung innerhalb der setup-Funktion erforderlich ist,
wie sie zum Beispiel bei einem digitalen Pin mit dem Befehl
pinMode erfolgt.
--- Projekt 11: Das Miniroulette350

• Mit dem Befehl randomSeed kannst du die Generierung der
Zufallszahlen über random initialisieren, damit nicht immer
die gleichen Zufallszahlen berechnet werden.

• Mit dem break-Befehl kannst du eine Schleife vorzeitig verlas-
sen, wenn eine definierte Zusatzbedingung erfüllt wird.

• Ein offener analoger Eingang liefert nicht vorhersehbare
Werte, die in Abhängigkeit von den entsprechenden elektro-
magnetischen Feldern der Umgebung variieren können.

Workshop
Nutze doch den Aufbau mit den 12 LEDs zur Anzeige der dich
umgebenen elektromagnetischen Felder. Je höher der gemessene
Wert an einem analogen Eingang ist, desto mehr LEDs sollen
leuchten. Verwende einfach einen Draht, der als Antenne dient,
und verbinde ihn mit einem analogen Eingang. Führe einige Versu-
che mit dieser Schaltung in deinem häuslichen Umfeld durch. Was
könnte eine elektromagnetische Strahlung verursachen?

• Ein Mikrowellengerät

• Ein Röhrenfernsehgerät

• Ein Telefon oder Handy

• Ein stromdurchflossener Leiter wie z.B. ein Netzkabel (Führe
diesen Versuch nur kontaktlos durch und komme niemals auf
die Idee, den Antennendraht mit einem stromführenden Leiter
zu verbinden. Es besteht Lebensgefahr für dich und dein Ardu-
ino-Board!)

• Elektrische Geräte wie Computer, Drucker, etc.

Ich werde dir an dieser Stelle einen interessanten Befehl vorstellen,
der es dir ermöglicht, einen Wertebereich in einen anderen umzu-
wandeln. Dieser Befehl heißt map und steht für mapping (Zuord-
nung). Aber was macht er genau? Die folgende Grafik
veranschaulicht den Mapping-Vorgang. Es soll ein Eingangs-Wer-
tebereich, der sich von 0 bis 1023 erstreckt, auf den neuen Aus-
gangs-Wertebereich von 0 bis 11 umgerechnet werden.
Das Roulettespiel --- 351

Abbildung 11-9
Was geschieht beim Mapping?

Auf der linken Seite siehst du einen Eingang. Dort strömen Werte
in einem Bereich von 0 bis 1023 herein, die einem analogen Wert
entsprechen. Uns stehen jedoch nicht 1023 LEDs zur Verfügung,
wobei jede LED einem Spannungswert entsprechen würde. Da wir
nur 12 LEDs haben, muss der am Eingang zur Verfügung stehende
Wertebereich geschrumpft werden. Diese Aufgabe übernimmt der
map-Befehl. Die Syntax lautet wie folgt:

Abbildung 11-10
Der Befehl »map«

Der Rückgabewert des Befehls map ist der neu berechnete Wert.
Hier ein Beispiel für die Verwendung:

int ledWert = map(wert, 0, 1023, 0, 11);

4

)4/3

4

))

����
��7
����� �������

(#�	/�)%�
��

����
��

��

 �'��
 M����	��+B��	=�	���	��+B��	7
������$��	 M����	��+B��	=�	���	��+B��	

7
����� �������
--- Projekt 11: Das Miniroulette352

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 12 12Lichtsensoren
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
f den
n

-> also: manuell auf den Arbeitsseiten ziehen!!!er)

Scope
In diesem Experiment behandeln wir folgende Themen:

• Lichtmengenmessung über einen lichtempfindlichen Wider-
stand (LDR)

• Programmierung mehrerer Pins als Ausgang (OUTPUT)

• Abfragen eines analogen Eingangs mit dem Befehl
analogRead()

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Kommunikation mit Processing

• Workshop

Der Lichtsensor
In diesem Kapitel wollen wir eine Schaltung aufbauen, die in der
Lage ist, auf äußere Einflüsse bzw. Gegebenheiten zu reagieren. Die
wohl markantesten Umweltwerte, die ständig auf uns einwirken,
sind Temperatur und Helligkeit. Beide können von Mensch zu
Mensch unterschiedlich wahrgenommen werden und sind subjek-
tive Eindrücke. Der eine empfindet es als angenehm warm und der
andere bekommt vor Kälte eine Gänsehaut. Natürlich gibt es
Geräte bzw. Sensoren, die Temperatur und Helligkeit objektiv mes-
sen. Widmen wir uns in unserer nächsten Schaltung der Helligkeit,
die wir über einen lichtempfindlichen Widerstand, auch LDR
(Light Dependent Resistor) genannt, messen wollen. Es handelt sich
--- 353

http://processing.org/
http://processing.org/
http://processing.org/

dabei um einen Halbleiter, dessen Widerstandswert lichtabhängig
ist. Je größer die Lichtmenge ist, die auf den LDR trifft, desto gerin-
ger wird der Widerstand. Unsere Schaltung soll in Abhängigkeit
vom Helligkeitswert eine Reihe von LEDs ansteuern, die dann
mehr oder weniger leuchten. Die Schaltung gleicht der für unser
Lauflicht, wobei die Ansteuerung der einzelnen LEDs jedoch nicht
nacheinander durch eine Schleife erfolgt, sondern durch eine Logik,
die die Helligkeit am lichtempfindlichen Widerstand auswertet.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Sketch-Code
int pin[] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}; // Pin-Array

int analogPin = 0; // Pin des analogen Eingangs
int analogWert = 0; // Speichert gemessenen Analogwert

void setup(){
 for(int i = 0; i < 10; i++)
 pinMode(pin[i], OUTPUT);
}

void loop(){
 analogWert = analogRead(analogPin);

Benötigte Bauteile

1 x LDR

10 x rote LED

10 x Widerstand 330

1 x Widerstand 10K

Mehrere flexible Steckbrücken in unterschiedli-
chen Farben und Längen
-- Projekt 12: Lichtsensoren354

 steuereLEDs(analogWert);
}

// Funktion zum Ansteueren der LED´s
void steuereLEDs(int wert){
 int bargraphWert = map(wert, 0, 1023, 0, 9);

 for(int i = 0; i < 10; i++)
 digitalWrite(pin[i], (bargraphWert >= i)?HIGH:LOW);
}

Code-Review
Für unser Experiment benötigen wir programmtechnisch gesehen
die folgenden Variablen:

Tabelle 12-1
Benötigte Variablen und deren
Aufgabe

Da wir es wieder mit vielen LEDs zu tun haben, bietet sich ein
LED-Array an, das in pin[] gespeichert wird. Die loop-Funktion
liest kontinuierlich den Wert am analogen Eingang Pin 0. Die
Funktion steuereLEDs wird im Anschluss mit dem gemessenen
Wert aufgerufen und ist für die Ansteuerung der einzelnen LEDs
zuständig. Die Auflösung jedes analogen Eingangs beträgt 10-Bit
und es können dort Werte im Bereich von 0 bis 1023 gemessen
werden. Da ich für unser Beispiel jedoch lediglich 10 LEDs ver-
wende, müssen wir den zu großen Eingangswertebereich in ein für
uns passenden Ausgangswertebereich von 0 bis 9 (10 LEDs)
umrechnen. Die map-Funktion leistet uns wieder gute Dienste. Das
entsprechende Ergebnis wird in der Variablen bargraphWert abge-
legt. Im Anschluss wird jede einzelne LED angesteuert und mit dem
aktuell ermittelten bargraphWert verglichen. Ist dieser größer als
die gerade angesteuerte Pinnummer der LED, dann wird er auf
HIGH gesetzt, andernfalls auf LOW. Je höher der Wert ist, desto
mehr LEDs leuchten.

Der Schaltplan
Der Schaltplan sieht dem für das Lauflicht zum Verwechseln ähn-
lich, hat aber noch eine Erweiterung, die das Messen der Licht-
stärke ermöglicht:

Variable Aufgabe

pin[] Speichert die Pinnummern zur Ansteuerung der 10 LEDs

analogPin Pinnummer für den analogen Eingang

analogWert Speichert den gemessenen analogen Wert
Der Lichtsensor -- 355

Abbildung 12-1
Die Schaltung für die

Lichtmengenmessung

Was ein Spannungsteiler ist, das hast du schon gesehen.

Die beiden Widerstände (LDR und 10K) bilden einen Spannungs-
teiler, wobei der mittlere Abgriff an den analogen Eingang des
Arduino-Boards geführt wird. In Abhängigkeit von der vorliegen-
den Helligkeit am LDR ändern sich die Widerstandsverhältnisse
bzw. die Spannungsverhältnisse. Am größeren Widerstand fällt
naturgemäß auch die größere Spannung ab. Wird der Widerstand
des LDR durch mehr Lichteinfluss geringer, fällt an ihm weniger
Spannung ab. Das heißt aber, dass am 10K Widerstand ein höheres
Spannungspotential anliegt, das dem analogen Eingang zur Verfü-
gung steht. Wir messen einen größeren Wert an diesem Pin, was
bedeutet, dass mehr LEDs aufleuchten. Wenn weniger Licht auf
den LDR fällt, kehrt sich dieser Vorgang um.
-- Projekt 12: Lichtsensoren356

Ich verstehe dein Problem, Ardus. Schau’ her, ich erläutere es dir
anhand der folgenden Abbildungen:

Die Länge der Pfeile geben die Größe des Spannungspotentials an.
Wenn es bewölkt ist, dann ist der Widerstand bzw. die Spannung
am LDR hoch. Scheint dagegen die Sonne, so sind Widerstand und
die Spannung gering. Da jedoch nur 5V für den Spannungsteiler zur
Verfügung stehen, bleibt für den Spannungsabfall am unteren
Widerstand immer nur der Rest übrig. Dieser wird dem analogen
Eingang gegen Masse gemessen zugeführt.

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• LDR

• Fotowiderstand

• Lichtabhängiger Widerstand

Erkläre mir das bitte noch einmal. Wenn am größeren Widerstand
mehr Spannung abfällt, dann muss doch bei einem verdunkelten
LDR die größere Spannung am analogen Eingang anliegen.

Abbildung 12-2
Widerstände bzw. Spannungs-
potentiale bei unterschiedlichen
Lichtverhältnissen
Der Lichtsensor -- 357

Schaltungsaufbau
Abbildung 12-3

Aufbau der Sensorenschaltung mit
Fritzing

Auf dem Breadboard befinden sich auf der rechten Seite die 10
LEDs zur Anzeige der Lichtstärke und unterhalb des Arduino-
Boards der Spannungsteiler mit LDR und Festwiderstand.

Abbildung 12-4
Der Schaltungsaufbau der

Lichtsensorenschaltung

Wir werden kommunikativ
Es ist zwar in meinen Augen recht interessant, bei unterschiedli-
chen Lichtverhältnissen das Spiel der LEDs zu beobachten, doch
der zeitliche Verlauf ist über eine längere Periode nur schwer zu
erkennen. Aus diesem Grund möchte ich dir in diesem Kapitel ein
Projekt vorstellen, das dir sicherlich noch mehr Spaß machen wird,
da es auch etwas für das Auge bietet. Die Programmiersprache Pro-
-- Projekt 12: Lichtsensoren358

cessing bietet sich gerade dazu an, wenn es darum geht, Grafiken zu
generieren. Du findest die Entwicklungsumgebung für die Pro-
grammiersprache Processing auf der Internetseite http://processing.
org/. Das Schöne daran ist, dass du, genau wie bei Arduino, ledig-
lich die heruntergeladene Datei in ein Verzeichnis entpacken
musst. Eine Installation ist nicht erforderlich. Was in anderen Pro-
grammiersprachen wie z.B. C/C++ oder C# viel Programmierauf-
wand bedeutet, geht bei Processing locker und flockig von der
Hand. Falls ich dich mit den folgenden Seiten im Buch neugierig
gemacht habe, möchte ich dich auf mein Buch Processing aufmerk-
sam machen, das ebenfalls im O’Reilly Verlag erschienen ist. Dort
findest du viele interessante Beispiele, die ebenfalls in lockerer
Manier präsentiert werden. Damit du siehst, was dich gleich erwar-
tet, möchte ich dir zu Beginn direkt einmal die Ausgabe im Grafik-
fenster von Processing zeigen.

Abbildung 12-5
Grafikausgabe der Lichtmengen-
werte im Grafikfenster von
Processing

Die angezeigten Werte werden ständig aktualisiert, wobei die
Kurve von rechts nach links über das Fenster wandert. Aktuelle
Werte werden auf der rechten Seite eingeschoben und alte Werte
verschwinden links aus dem Fenster.

Dazu wollte ich gerade kommen, Ardus. Es muss also eine gemein-
same Basis geben, die zur Verständigung untereinander festgelegt
wird. Die serielle Schnittstelle ist dir ja schon ein Begriff. Fast jede
Programmiersprache beherbergt in ihrem Sprachvorrat Befehle zum
Senden bzw. Abfragen dieser Schnittstelle. In unserem Beispiel gibt

Kannst du mir verraten, wie zwei unterschiedliche Programmierspra-
chen Daten untereinander austauschen können?
Wir werden kommunikativ -- 359

http://processing

es einen Sender und einen Empfänger. Die Kommunikation erfolgt
unidirektional, was In-Eine-Richtung bedeutet. Die serielle Schnitt-
stelle ist zwar in der Lage, in beide Richtungen quasi gleichzeitig zu
kommunizieren, doch wir beschränken uns auf Oneway.

Das einzige, was dein Arduino-Board tun soll, ist die Messwertauf-
nahme und das Verschicken der Daten über die serielle Schnitt-
stelle. Leichter gesagt als getan!? Nein, wirklich nicht, denn die
meiste Rechenarbeit erfolgt auf der Seite von Processing. Doch
gehen wir zunächst einmal auf die Senderseite ein und schauen uns
an, was Arduino zu tun hat.

Arduino der Sender
Um den Helligkeitswert an die serielle Schnittstelle zu schicken,
benötigst du auf Hardwareseite lediglich den Spannungsteiler mit
LDR und 10K-Festwiderstand, der am analogen Eingang Pin 0
angeschlossen ist. Der Sketch sieht dann folgendermaßen aus:

void setup(){

 Serial.begin(9600);
}

void loop(){
 Serial.println(analogRead(0));
}

Dann wollen wir mal sehen, was das bisschen Code so macht. In
der setup-Funktion wird die serielle Schnittstelle für die Übertra-
gung vorbereitet. Die ersten Berührungspunkte mit der objektori-
entierten Programmierung hattest du im Kapitel über den
elektronischen Würfel das Erstellen einer eigenen Library. Die seri-
elle Schnittstelle wird als ein programmtechnisches Objekt angese-
hen, das sich Serial nennt. Ihm stehen einige Methoden zur Seite,
von denen wir jetzt Gebrauch machen wollen.

����
�� (������
�����
�

������ 7��'8����
-- Projekt 12: Lichtsensoren360

Die Methode zum Initialisieren der Schnittstelle lautet begin und
nimmt einen Wert entgegen, der die Geschwindigkeit der Übertra-
gung bestimmt. In unserem Fall ist das 9600. Kartoffeln pro Qua-
dratmeter oder was? Nein, es handelt sich um eine Angabe, die die
Maßeinheit Baud hat und die Schrittgeschwindigkeit angibt. 1
Baud bedeutet 1 Zustandsänderung / Sekunde. Für nähere Infor-
mationen verweise ich auf die Fachliteratur bzw. das Internet. Die
zweite Methode, die wir verwenden möchten lautet println. Sie sen-
det den ihr übergebenen Wert an die serielle Schnittstelle. In unse-
rem kurzen Sketch ist es der Wert des analogen Pins 0. Die Abfrage
des analogen Pins und die Übertragung an die Schnittstelle erfolgt
kontinuierlich innerhalb der loop-Funktion.

Achtung
Damit eine erfolgreiche Kommunikation zwischen Sender und
Empfänger stattfinden kann, muss bei beiden Stationen die
gleiche Übertragungsrate eingestellt sein.

Du kannst die Übertragung der ermittelten Werte in Echtzeit mit-
verfolgen, im einfachsten Fall, indem du den Serial Monitor der
Entwicklungsumgebung öffnest.

Abbildung 12-6
Ausgabe der Daten im Serial
Monitor
Wir werden kommunikativ -- 361

Natürlich funktioniert das auch mit jedem anderen Terminalpro-
gramm, das Zugriff auf die serielle Schnittstelle erhält. Achte auch
hier auf die korrekte Einstellung der Übertragungsrate, die du in
der rechten unteren Ecke des Fensters vornehmen kannst.

Processing der Empfänger
Kommen wir jetzt zum eigentlichen Programm, das die Hauptauf-
gabe übernimmt, nämlich uns die empfangenen Werte grafisch dar-
zustellen. Der Code ist etwas umfangreich und wer sich
eingehender mit ihm auseinandersetzen möchte, den verweise ich
auf mein schon erwähntes Buch über Processing. Dennoch möchte
ich dir eine kurze Beschreibung liefern, damit du nicht ganz im
Regen stehst.

import processing.serial.*;

Serial meinSeriellerPort;
int xPos = 1;
int serialValue;
int[] yPos;

void setup(){
 size(400, 300);

 println(Serial.list());
 meinSeriellerPort = new Serial(this, Serial.list()[0], 9600);
 meinSeriellerPort.bufferUntil('\n');
 // set inital background
 background(0);
 yPos = new int[width];
}

void draw(){
 background(0);
 stroke(255, 255, 0, 120);
 for(int i=0; i < width; i+=50)
 line(i, 0, i, height);
 for(int i=0; i < height; i+=50)
 line(0, i, width, i);

 stroke(255, 0, 0);
 strokeWeight(1);

 int yPosPrev = 0, xPosPrev = 0;
 println(serialValue);
 // Arraywerte nach links verschieben

 for(int x = 1; x < width; x++)
-- Projekt 12: Lichtsensoren362

 yPos[x-1] = yPos[x];
 // Anhängen der neuen Mauskoordinate
 // am rechten Ende des Arrays

 yPos[width - 1] = serialValue;
 // Anzeigen des Arrays
 for(int x = 0; x < width; x++){
 if(x >0)
 line(xPosPrev, yPosPrev, x, yPos[x]);

 xPosPrev = x; // Speichern der letzten x-Position
 yPosPrev = yPos[x]; // Speichern der letzten y-Position
 }

}

void serialEvent(Serial meinSeriellerPort){

 String portStream = meinSeriellerPort.readString();
 float data = float(portStream);
 serialValue = height - (int)map(data, 0, 1023, 0, height);
}

In Processing gibt es ebenfalls zwei Hauptfunktionen, die denen
von Arduino gleichen:

Abbildung 12-7
Der direkte Vergleich der beiden
Hauptfunktionen

Die setup-Funktion wird in Processing ebenfalls einmalig zu Beginn
des Sketch-Starts aufgerufen und dient zum Initialisieren von Vari-
ablen. Bei der draw-Funktion handelt es sich genau wie bei der
loop-Funktion in Arduino um eine Endlosschleife, die ihre Bezeich-
nung dem Umstand schuldet, dass sie zum Zeichnen (engl: dra-
wing) der grafischen Elemente im Ausgabefenster genutzt wird.
Bevor du in Processing die serielle Schnittstelle ansprechen kannst,
musst du mit der Zeile

import processing.serial.*;

ein Paket der Sprache Java importieren. Ja, du hast richtig gehört!
Processing ist eine Java-basierte Sprache, im Gegensatz zu Arduino,
wo es um C bzw. C++ geht. Beide Sprachen haben aber eine sehr
ähnliche Syntax und deswegen fällt das Programmieren in Proces-

������� ���)	����$

��	�� ��	��

��� ���$
Wir werden kommunikativ -- 363

sing nicht schwer, wenn du dich mit C bzw. C++ auskennst. Mit
der Zeile

println(Serial.list());

gibt dir Processing eine Liste aller zur Verfügung stehenden seriel-
len Schnittstellen aus. Die Ausgabe im Nachrichtenfenster sieht bei
mir wie folgt aus:

Sie zeigt an, dass zwei serielle Ports zur Verfügung stehen. Da Ardu-
ino auf dem ersten Port COM3 arbeitet und den Listeneintrag [0]
besitzt, trage ich diesen Index in der darauffolgenden Zeile ein:

meinSeriellerPort = new Serial(this, Serial.list()[0], 9600);

Es wird dadurch ein neues serielles Objekt generiert, das in Proces-
sing mit dem Schlüsselwort new instanziiert wird. Du siehst, dass
auch hier der Wert 9600 auftaucht, der mit dem Wert im Arduino-
Sketch korrespondieren muss. In der draw-Funktion werden nun
alle grafischen Elemente wie das Hintergrundraster und die Kurve
gezeichnet. In der serialEvent-Funktion laufen die übermittelten
Werte des Arduino auf und werden in der Variablen serialValue
gespeichert. Diese Variable wird in der draw-Funktion zum Zeich-
nen der Kurve genutzt.

Achtung
Wenn du ein Terminalprogramm wie z.B. des Serial-Monitor
geöffnet hast, um dir die Werte anzeigen zu lassen, die Arduino
verschickt, dann bekommst du Probleme, wenn du gleichzeitig
in Processing die grafische Anzeige der Werte starten möch-
test. Der entsprechende COM-Port wurde durch das Terminal-
programm exklusiv gesperrt und dadurch ist kein weiterer
Zugriff durch ein anderes Programm möglich. Schließe also
ggf. vorher dein Terminalprogramm, bevor du Processing mit
der Auswertung der Daten startest.

Troubleshooting
Falls die einzelnen LEDs keine Reaktion auf Lichtverhältnisände-
rungen zeigen oder später im Ausgabefenster von Processing bei
unterschiedlichen Lichtverhältnissen keine Veränderung des Kur-
venverlaufs zu beobachten ist, kann das mehrere Gründe haben:
-- Projekt 12: Lichtsensoren364

• Überprüfe bei deiner Steckverbindungen auf dem Breadboard,
ob sie wirklich der Schaltung entsprechen.

• Achte auf etwaige Kurzschlüsse untereinander.

• Haben die Widerstände die korrekten Werte?

• Wurden alle LEDs korrekt gepolt?

• Überprüfe noch einmal den Sketch-Code auf Arduino- und auf
Processingseite auf Richtigkeit.

• Öffne den Serial-Monitor der Arduino-IDE, um dich zu verge-
wissern, dass auch bei unterschiedlichen Lichtverhältnissen
abweichende Werte an die serielle Schnittstelle übergeben wer-
den. Im Processing-Code kannst du der draw-Funktion die
Zeile println(serialValue) hinzufügen, damit die (hoffentlich
empfangenen) Werte ebenfalls im Nachrichtenfenster von Pro-
cessing angezeigt werden.

• Achte darauf, dass die verwendete serielle Schnittstelle nicht
durch einen anderen Prozess blockiert wird und nur Processing
darauf zugreift.

Was hast du gelernt?
• Du hast gelernt, wie man einen analogen Eingang mit dem

Befehl analogRead abfragt, an den ein lichtempfindlicher
Widerstand (LDR) angeschlossen ist.

• Ein Spannungsteiler dient dazu, eine angelegte Spannung in
einem bestimmten Verhältnis aufzuteilen. Diese Eigenschaft
haben wir dazu genutzt, dem analogen Eingang eine von der
Lichtstärke abhängige Spannung zuzuführen.

• Du hast gesehen, wie du über die serielle Schnittstelle Daten
zwischen zwei Programmen austauschen kannst. Der Sender
war hier das Arduino-Board und der Empfänger ein Proces-
sing-Sketch, der die empfangenden Daten visuell in Form eines
Kurvenverlaufes dargestellt hat.

Workshop
Entwickle einen Arduino-Sketch, der z.B. beim Erreichen eines
bestimmten Schwellenwertes alle angesprochenen LEDs regelmä-
ßig blinken lässt, um dir zu signalisieren, dass jetzt ein kritischer
Zustand erreicht ist und du Sonnencreme mit Lichtschutzfaktor
75+ auftragen musst.
Wir werden kommunikativ -- 365

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 13 13Der Richtungsdetektor
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Lichtmengenmessung über zwei lichtempfindliche Wider-
stände (LDRs)

• Abfragen zweier analoger Eingänge mit dem Befehl
analogRead()

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Kommunikation mit Processing

• Workshop

Der Richtungsdetektor
Dieses Kapitel baut auf das vorangegangene auf und du du solltest
dieses daher nach Möglichkeit zuerst durcharbeiten. Wir wollen
jetzt zwei lichtempfindliche Widerstände so anordnen, dass sie sich
auf horizontaler Ebene in einem bestimmten Abstand voneinander
befinden, wie du du es in der folgenden Grafik sehen kannst.
--- 367

--- Projekt 13: Der Richtungsdetektor368

Du fragst dich jetzt bestimmt, was diese Anordnung zu bedeuten hat.
Ganz einfach: Ich möchte eine Lichtquelle, wie z.B. eine Taschen-
lampe, an den beiden LDRs vorbeibewegen und diese Bewegung soll
in einem Processing-Fenster sichtbar gemacht werden. Was bedeutet
das für das Widerstandsverhalten der einzelnen LDRs? Schauen wir
uns die Sache einmal genauer an. Wir haben schon gesehen, dass der
Widerstand eines LDR immer weiter abnimmt, je mehr Licht darauf
fällt. Spielen wir einfach mal ein paar markante Szenarien durch.

Fall 1

Im ersten Beispiel befindet sich die Lichtquelle in einer bestimmten
Entfernung genau zwischen den bei beiden LDRs. Das bedeutet,
dass beide genau die gleiche Lichtmenge empfangen und beide
ungefähr den gleichen Widerstand aufweisen müssten. Durch Bau-
teiltoleranzen verhalten sich zwei identische LDRs aber nicht
immer gleich. Das ist jedoch für unsere Schaltung erst einmal nicht
weiter von Bedeutung.

Abbildung 13-1
Die Lichtquelle befindet sich genau

zwischen LDR 1 und LDR 2

Wir können deshalb Folgendes feststellen:

Fall 2

Im zweiten Beispiel befindet sich die Lichtquelle in geringerer
Entfernung zu LDR 1 als zu LDR 2. Das bedeutet, dass LDR 1 eine
größere Lichtmenge empfängt als LDR 2 und er dementsprechend
einen kleineren Widerstand aufweist als sein Nachbar, der hier zu
seiner Rechten positioniert wurde.

Abbildung 13-2
Die Lichtquelle befindet sich in

geringerem Abstand zu LDR 1 als zu
LDR 2.

Wir können deshalb Folgendes feststellen:

Fall 3

Im dritten Beispiel befindet sich die Lichtquelle in einer geringeren
Entfernung zu LDR 2 als zu LDR 1. Das bedeutet, dass LDR 2 eine
größere Lichtmenge empfängt als LDR 1 und er dementsprechend
einen kleineren Widerstand aufweist als sein Nachbar, der hier zu
seiner Linken positioniert wurde.

Abbildung 13-3
Die Lichtquelle befindet sich in
geringerem Abstand zu LDR 2 als zu
LDR 1.

Wir können deshalb Folgendes feststellen:

Um dich nicht zu lange auf die Folter zu spannen, zeige ich dir
gleich das Ausgabefenster in Processing. Da macht das Zusammen-
spiel von Arduino und Processing richtig Spaß, denn ermittelte
Messwerte sind sofort sichtbar und Änderungen zeigen unmittelbar
ihre Auswirkung.

Abbildung 13-4
Anzeige der Lichtquellenpositionen
in Processing

Ich zeige dir mal den Versuchsaufbau mit den beiden LDRs. Sie
wurden auf eine kleine Lochrasterplatine im seitlichen Abstand von
3 cm gelötet. Natürlich kannst du du sie auch auf dem Breadboard
Der Richtungsdetektor --- 369

positionieren, wie du du das später auch in einer anderen Abbil-
dung sehen wirst.

Abbildung 13-5
Die beiden LDRs auf einer

Lochrasterplatine

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Die Überlegungen, die du du anstellst, sind recht gut, Ardus! Du
liegst vollkommen richtig, wenn du erkennst, dass zwei voneinan-
der unabhängige Sensorwerte verarbeitet werden müssen. Aber es
wird trotzdem lediglich nur ein Wert an Processing geschickt. Das
klingt vielleicht etwas seltsam, doch es wird dir gleich ganz klar
sein.

Benötigte Bauteile

2 x die gleiche LDR

2 x Widerstand 10K

Mehrere flexible Steckbrücken in unterschiedli-
chen Farben und Längen

Bevor du du hier weiter machst, habe ich eine kurze Frage: Wenn ich
das richtig sehe, müssen bei diesem Versuchsaufbau zwei Sensor-
werte verarbeitet und auch an Processing übertragen werden. Wie
funktioniert das mit der seriellen Schnittstelle? Werden diese beiden
Werte nacheinander übertragen und wie kann Processing diese unter-
scheiden?
--- Projekt 13: Der Richtungsdetektor370

Arduino-Sketch-Code
int analogWertPin0;
int analogWertPin1;

void setup(){
 Serial.begin(9600);
}

void loop(){
 int messwert;
 analogWertPin0 = analogRead(0);
 analogWertPin1 = analogRead(1);

 messwert = analogWertPin1 - analogWertPin0;
 Serial.println(messwert);
}

Arduino-Code-Review
Für unser Experiment benötigen wir programmtechnisch die fol-
genden Variablen:

Tabelle 13-1
Benötigte Variablen und deren
Aufgabe

Wenn du dir den Code anschaust, dann wirst du sofort sehen, dass
lediglich ein einziger Wert an die serielle Schnittstelle übertragen
wird. Es wird die Differenz beider analoger Eingänge gebildet und
das Ergebnis übertragen. Doch wie soll das funktionieren. Die ent-
scheidende Zeile diese:

messwert = analogWertPin1 - analogWertPin0;

Sehen wir uns dazu die folgende Tabelle an, in der ich wieder die
einzelnen Szenarien zusammengetragen habe:

Tabelle 13-2
LDR-Szenarien (idealisiert)

Variable Aufgabe

analogWertPin0 Speichert den Sensorwert von LDR 1

analogWertPin1 Speichert den Sensorwert von LDR 2

messwert Differenz von analogWertPin1 bzw. analogWertPin0

Lichtquelle Widerstände Spannungen Differenz

Links RLDR1 < RLDR2 ULDR1 < ULDR2 > 0

Mittig RLDR1 = RLDR2 ULDR1 = ULDR2 = 0

Rechts RLDR1 > RLDR2 ULDR1 > ULDR2 < 0
Der Richtungsdetektor --- 371

Wir sehen, dass man anhand der ermittelten Differenz sofort erken-
nen kann, wo sich eine Lichtquelle in Bezug auf die beiden LDRs
befindet.

Der Schaltplan
Dem Schaltplan kannst du entnehmen, dass wir mit zwei separaten
Spannungsteilern arbeiten, die unabhängig voneinander ihre Werte
an zwei analoge Eingänge übermitteln.

Abbildung 13-6
Die Schaltung für die Lichtmengen-

messung über zwei LDRs

Schaltungsaufbau
Abbildung 13-7

Aufbau der Sensorenschaltung mit
Fritzing
--- Projekt 13: Der Richtungsdetektor372

Auf dem Breadboard befinden sich auf der rechten unteren Seite die
zwei LDRs zur Aufnahme der Lichtmengen.

Abbildung 13-8
Der Aufbau der Lichtsensoren-
schaltung

Wir werden wieder
kommunikativ
Machen wir wieder den Schwenk zu Processing. Wie können wir
mit dem Differenzwert jetzt die Grafikausgabe bzw. den roten senk-
rechten Balken ansteuern? In Processing gehört es zu den einfachs-
ten Übungen, einen senkrechten Balken zu positionieren. Wollen
wir doch mal sehen, wie das denn funktioniert. Doch zunächst der
komplette Code:

import processing.serial.*;
Serial meinSeriellerPort;
int LDRMessung, xPos;

void setup(){
 size(321, 250); smooth();

 println(Serial.list());
 meinSeriellerPort = new Serial(this, Serial.list()[0], 9600);
 meinSeriellerPort.bufferUntil('\n');
}

void draw(){
 background(0);
 zeichneRaster();
 stroke(255, 0, 0); strokeWeight(3);

 xPos = width / 2 + LDRMessung * 2;
Wir werden wieder kommunikativ --- 373

 line(xPos, height / 2 - 10, xPos, height / 2 + 10);
}

void zeichneRaster(){
 int h = 20;
 stroke(255, 255, 0); strokeWeight(1);

 line(0, height / 2, width, height / 2);
 for(int i = 0; i <= width; i += 20){
 if(i == width / 2) h = 20;
 else h = 5;
 line(i, height / 2 - h, i, height / 2 + h);
 }
}

void serialEvent(Serial meinSeriellerPort){
 String portStream = meinSeriellerPort.readString();
 float data = float(portStream);

 LDRMessung = (int)map(data, 0, 1023, 0, width);
}

Die für das Zeichnen der vertikalen Linie verantwortlichen Code-
zeilen befinden sich in der draw-Funktion und lauten wie folgt:

xPos = width / 2 + LDRMessung * 2;
line(xPos, height / 2 - 10, xPos, height / 2 + 10);

Die Variable xPos wird wie folgt berechnet

Die Systemvariable width von Processing (sie wird automatisch
gesetzt) beinhaltet immer die aktuelle Pixel-Breite des Ausgabefens-
ters. Ich dividiere diesen Wert durch 2, damit die senkrechte Linie
horizontal gesehen erst einmal genau in der Mitte des Fensters posi-
tioniert wird. Im Anschluss wird der seitens Arduino übertragene
Wert, der sich in der Variablen LDRMessung befindet, zu dieser
Position hinzuaddiert. Der Faktor 2 erhöht hierbei die dargestellte
Empfindlichkeit. Spiele ein wenig mit diesem Wert, um die jeweili-
gen Auswirkungen zu sehen.

Nun Ardus, da der Wert der Variablen LDRMessung sowohl nega-
tiv als auch positiv sein kann, wird er von der Variablen xPos abge-
zogen oder zu ihr hinzuaddiert, und dadurch kommt es zu einer
Richtungsänderung. Abschließend noch ein kleiner Tipp, wie du
das Verhalten der beiden lichtempfindlichen Widerstände vielleicht

Wie kommt es aber, dass der Balken mal nach links und mal nach
rechts wandert?
--- Projekt 13: Der Richtungsdetektor374

positiv beeinflussen kannst: Im Moment befinden sich beide LDRs
direkt nebeneinander. Trenne sie doch einfach mal durch eine
kleine Platte voneinander und beobachte, was geschieht. Soweit so
gut. Du darfst gespannt sein auf einer der nächsten Versuchsauf-
bauten, denn wir wollen einen Richtungsdetektor entwickeln, der
sich auf einem drehbaren Untersatz befindet. Wandert die Licht-
quelle vor den beiden LDRs, dann werden diese sich neu positio-
nieren, und zwar so, dass sich die Lichtquelle wieder genau
zwischen ihnen befindet. Doch bis wir soweit sind, müssen wir uns
noch mit anderen Themen beschäftigen, die wir als Grundlage für
diese Schaltung benötigen. Du kannst gespannt sein!

Troubleshooting
Wenn im Ausgabefenster von Processing keine Positionsänderung
des vertikalen Balkens bei unterschiedlichen Lichtverhältnissen
erfolgt, kann das mehrere Gründe haben:

• Überprüfe deine Steckverbindungen auf dem Breadboard, ob
sie wirklich der Schaltung entsprechen.

• Achte auf etwaige Kurzschlüsse untereinander.

• Haben die Widerstände die korrekten Werte und hast du zwei
gleiche LDRs verwendet?

• Überprüfe noch einmal den Sketch-Code auf Arduino- und auf
Processingseite auf seine Richtigkeit.

• Achte darauf, dass die serielle Schnittstelle nur von Processing
genutzt und nicht durch einen anderen Prozess blockiert wird.

• Wandert der Balken in Processing immer in die der Lichtquelle
entgegengesetzte Richtung, dann vertausche die Anschlüsse
der beiden LDRs.

Workshop
Passe den Processing-Code so an, dass sich die Farbe des senkrech-
ten Balkens in Abhängigkeit von dessen Position ändert. Im zen-
trierten Bereich soll er z.B. die Farbe Rot haben. Wandert er weiter
nach links bzw. nach rechts, so ändert sich sein Aussehen über
Gelb bzw. Grün in Blau. Definiere bestimmte Positionsbereiche,
um die einzelnen Farbwechsel zu ermöglichen. Die Farbe wird über
den Befehl stroke eingestellt.
Wir werden wieder kommunikativ --- 375

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• Processing

• Processing stroke

• Processing Farbe
--- Projekt 13: Der Richtungsdetektor376

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 14 14Die Ansteuerung eines
Servos
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Was genau ist ein Servo?

• Wie kannst du ihn ansteuern?

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Workshop

Der Servo
Modellflugzeuge oder auch Modellschiffe besitzen zur Steuerung der
unterschiedlichsten Funktionen wie z.B. Geschwindigkeit oder Kurs
kleine Servos. Es handelt sich dabei meist um kleine Gleichstrommo-
toren, die mit drei Anschlüssen versehen sind und deren Stellposition
über die uns schon bekannte Pulsweitenmodulation PWM gesteuert
wird. Die Schaltung, die wir gleich aufbauen werden, steuert die
Position des Servos über ein angeschlossenes Potentiometer.

Abbildung 14-1
Ein Servo(-Motor)
--- 377

Hier ein paar Grundlagen, damit du die Ansteuerung besser ver-
stehst. Über die Länge des Pulses wird der gewünschte Winkel
angesteuert, wobei ich betonen muss, dass Servos in der Regel nicht
wie z.B. Motoren 3600-Drehung ausführen können. Ihr Wirkungs-
bereich beschränkt sich von 00 bis 1800. Die Periodendauer einer
Schwingung beträgt konstant T = 20ms. Die entsprechende Fre-
quenz berechnet sich wie folgt:

Das einzige, was sich ändert, ist die Pulsbreite, die sich zwischen
1ms (rechter Anschlag) und 2ms (linker Anschlag) bewegen muss.
Nachfolgend siehst du drei Servo-Positionen mit den entsprechen-
den Ansteuerungssignalen. Im ersten Beispiel mit einer Pulsbreite
von 1ms positionieren wir den Servo am rechten Anschlag.

Abbildung 14-2
Servoposition zeigt 00 bei einer

Pulsdauer von 1ms.

Im zweiten Beispiel mit einer Pulsbreite von 1,5ms wird der Servo
in der Mittelstellung positioniert.

Abbildung 14-3
Servoposition zeigt 900 bei einer

Pulsdauer von 1,5ms.

Im dritten Beispiel mit einer Pulsbreite von 2ms wird der Servo am
linken Anschlag positioniert.

/4��

)��

44

/4��

)A2��

D44
--- Projekt 14: Die Ansteuerung eines Servos378

Abbildung 14-4
Servoposition zeigt 1800 bei einer
Pulsdauer von 2ms.

Aufgrund der unterschiedlichen Servotypen können abweichende
Werte vorkommen, doch das Prinzip ist immer das gleiche. Du
brauchst dir nicht weiter den Kopf darüber zu zerbrechen, wie du
denn deinen Servo mit welchen Werten ansteuern musst, denn die
Arbeit haben sich schon andere Entwickler gemacht. Genau, es gibt
dafür eine fertige Library, die du nutzen kannst. Wähle über das
entsprechende Menü Sketch|Import Library... den Eintrag für den
Servo aus.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Benötigte Bauteile

1 x Servo (z.B. von Modelcraft Typ RS-2)

1 x Potentiometer (z.B. 10K)

Mehrere flexible Steckbrücken in unterschiedli-
chen Farben und Längen

/4��

/��

)C44
Der Servo -- 379

Arduino-Sketch-Code
#include <Servo.h>

Servo meinServo; // Servo-Objekt

int analogPin = 0; // Analoger Pin
int potentiometerWert; // Speichert Potentiometerwert

void setup(){
 meinServo.attach(9); // Objekt mit Pin 9 verbinden

 Serial.begin(9600); // Serielle Schnittstelle initialisieren
}

void loop(){
 potentiometerWert = map(analogRead(analogPin), 0, 1023, 0, 179);
 Serial.println(potentiometerWert); // Ausgabe des Wertes
 meinServo.write(potentiometerWert); // Servo ansteuern
 delay(20); // Eine kurze Pause
}

Nun, Ardus, da es sich bei einem Servo um ein elektro-mechani-
sches Bauteil handelt, das erst nach einer gewissen Zeit seine
gewünschte Position angefahren hat, ist es ratsam, ihn erst nach
einer kurzen Pause mit einem neuen Steuerkommando zu versor-
gen.

Arduino-Code-Review
Für unser Experiment benötigen wir programmtechnisch gesehen
die folgenden Variablen:

Tabelle 14-1
Benötigte Variablen und deren

Aufgabe

Zu Beginn möchte ich dir das Servo-Objekt vorstellen. Es stellt dir
eine bestimmte Anzahl von Methoden mit den unterschiedlichsten
Funktionen zur Verfügung, die du für deine Sketches nutzen
kannst, um mit dem Servo zu kommunizieren. Dann wollen wir
mal sehen:

Eine kurze Frage: Warum benötigen wir als letzten Befehl in der loop-
Funktion einen delay-Befehl?

Variable Aufgabe

meinServo Das Servo-Objekt

analogPin Analoger Pin für den Potentiometeranschluss

potentiometerWert Speichert den Potentiometerwert
--- Projekt 14: Die Ansteuerung eines Servos380

Abbildung 14-5
Methoden des Servo-Objektes

Das sind ja eine ganze Menge und deshalb werde ich nur auf die im
Moment wichtigsten genauer eingehen. In der setup-Funktion müs-
sen wir das Servo-Objekt dahingehend initialisieren, dass bekannt
ist, an welchem Pin dein Servo angeschlossen ist. Das muss auf
jeden Fall einer der PWM-Pins sein, die bekannter Weise auf den
digitalen Ein- bzw. Ausgängen liegen. Ich habe mich für Pin 9 ent-
schieden.

meinServo.attach(9);

Die attach-Methode (attach bedeutet übersetzt anschließen) ist ver-
antwortlich für das programmtechnische Verbinden des Servo-
Objektes mit dem Arduino-Pin. Der nächste Schritt ist dir schon
wohlvertraut. Es geht um die Abfrage des analogen Pins 0, an dem
das Potentiometer angeschlossen ist, und die Übergabe dieses Wer-
tes an die map-Funktion.

potentiometerWert = map(analogRead(analogPin), 0, 1023, 0, 179);

Da der Servo einen Aktionsradius von 1800 hat, muss der gemes-
sene Wert des analogen Eingangs, der sich im Bereich von 0 bis
1023 bewegen kann, heruntergerechnet werden.

�	
�)*+,

�	�-�
�

�)*+, �

�)*	�+,

�	��+, .��
	+,

4

)4/3

4

)<D

����
����������+��
���
����+(
� ���G��B
���

Der Servo -- 381

Im Anschluss wird der neu berechnete Potentiometerwert als Argu-
ment an die write-Methode des Servo-Objektes übergeben und
damit die neue Stellposition angefordert.

meinServo.write(potentiometerWert);

Der Servo fährt unmittelbar nach Erhalt dieses Befehls an die neue
Position. Die restlichen Methoden möchte ich kurz erläutern.

Tabelle 14-2
Methoden des Servo-Objekts

Nähere Informationen findest du auf der Internetseite von Arduino.

Der Schaltplan
Die Schaltung ist recht einfach und besteht lediglich aus unserem
Arduino-Board, einem Potentiometer und dem Servo. Drehst du
am Potentiometer, soll der Servo die gleiche Bewegung mitmachen.

Abbildung 14-6
Die Ansteuerung eines Servos

Methode Erklärung

detach() Der zuvor über attach() belegte Pin wird wieder freigeben.

attached() gibt den Wert wahr zurück, wenn der Pin mit attach belegt wurde.

read() gibt den aktuellen Servo-Positionswert zurück, der mit write geschrieben wurde.
--- Projekt 14: Die Ansteuerung eines Servos382

Schaltungsaufbau
Abbildung 14-7

Aufbau der Servoschaltung mit
Fritzing

Auf dem Breadboard befinden sich lediglich die Anschlüsse des Ser-
vos bzw. Potentiometers.

Abbildung 14-8
Der Aufbau der Servoschaltung

Für diese Schaltung habe ich einen alten Potentiometer mit Dreh-
knopf aus einem alten Radio ausgebaut und direkt ein paar
Anschlussdrähte angelötet. Im Kapitel über das Zusammenfügen
der Bauteile hast du schon erfahren, wie du dir ganz einfach selbst
ein paar flexible Steckbrücken herstellen kannst. Auf meiner Inter-
netseite findest du den Link zu einem Video, dass dir die einzelnen
Der Servo -- 383

Schritte besser zeigen, als ein paar Bilder hier im Buch. So habe ich
z.B. auch diesem Potentiometer ein paar Strippen verpasst.

Hier noch zwei Tipps zur Steckverbindung des Servos.

Tipp 1 (Steckleiste anlöten)

Auf der linken Seite siehst du eine 3-poligen Buchse, die du in die-
ser Form nicht direkt mit dem Breadboard verbinden kannst. Auf
der rechten Seite ist die von mir angelötete 3-polige Stiftleiste abge-
bildet. diese Leiste lässt sich nun wunderbar auf das Breadboard
stecken.

Tipp 2 (Adaptersteckleiste herstellen)
--- Projekt 14: Die Ansteuerung eines Servos384

Wenn du dir z.B. eine 40-polige Stiftleiste besorgst, die ein Raster-
maß von 2,54 mm hat, dann trenne mit einem Seitenschneider oder
mit den Fingern vorsichtig 3 Stifte als einen zusammenhängenden
Block ab. Diese kleine Stiftleiste soll als Adapter dienen, um ihn in
die Buchsenleiste des Servos zu stecken. Auf diese Weise könntest
du jetzt versuchen, den Anschluss auf dein Breadboard zu stecken.
Doch halt! Die Anschlusslängen der Pins sind zu kurz und finden
keinen Halt auf dem Board. Doch das stellt keine Hürde für uns
dar. Nimm dir einfach eine kleine Spitz- oder Flachzange, wie ich
sie im Kapitel über nützliches Equipment vorgestellt habe (Num-
mer 2 oder 3 der diversen Zangen) und schiebe vorsichtig einen Pin
nach dem anderen in Richtung des kürzeren Endes, so dass nach-
her auf beiden Seiten die Enden gleich lang sind. Auf dem Bild
siehst Du, dass ich bereits einen Pin in die richtige Richtung
geschoben habe. Das geht recht einfach, da die Stifte lediglich im
Plastik stecken und keine richtig feste Verbindung besteht. Falls du
vielleicht einen anderen Servo als den von mir oben angegebenen in
deiner Krabbelkiste hast, kann es sein, dass die Farben der einzel-
nen Kabel nicht mit den hier gezeigten übereinstimmen. Es gibt
Servos, bei denen die PWM-Signalleitung statt orange vielleicht
gelb oder weiß ist. Es schadet also nicht, vorher einmal einen Blick
auf das Datenblatt des Servos zu werfen, das sicherlich im Internet
zu finden ist.

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• Servo

• Servomotoren

Troubleshooting
Falls der Servo sich nicht oder sich immer in die falsche Richtung
im Hinblick auf den Potentiometers dreht, kann das mehrere
Gründe haben:

• Überprüfe bei deinen Steckverbindungen auf dem Bread-
board, ob sie wirklich der Schaltung entsprechen.

• Achte auf etwaige Kurzschlüsse untereinander.

• Hat der Servo die hier beschriebenen Anschluss-Kabelfarben
oder weichen sie eventuell ab? Studiere das Datenblatt des ver-
wendeten Servos.
Der Servo -- 385

Was hast du gelernt?
• In diesem Kapitel bist du mit den Grundlagen eines Servos ver-

traut gemacht worden.

• Du hast die Ansteuerung über ein PWM-Signal kennengelernt.

• Du hast zum Betrieb des Servos die Servo-Library und ihre Mit-
glieder benutzt.

Workshop
Positioniere eine Lichtquelle auf einem Servo und lasse ihn wie ein
Leuchtfeuer von links nach rechts und umgekehrt schwenken. In
der folgenden Abbildung siehst du eine LED-Mini-Taschenlampe,
die ich mit zwei Drahtschleifen auf dem Servo befestigt habe.

Diese kleine Taschenlampe passt wegen ihrer geringen Größe wun-
derbar auf den Servo.

Achtung
Verwende unter keinen Umständen einen Laserpointer, denn
wenn der Servo sich einmal bewegt, dann hast du ihn nicht
unter deiner direkten Kontrolle und er könnte dir oder jemand
anderem in die Augen strahlen. Das wäre wegen der Gefahr für
die Augen nicht akzeptabel!
--- Projekt 14: Die Ansteuerung eines Servos386

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 15 15Das Lichtradar
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment befassen wir uns mit folgenden Themen:

• Ansteuerung eines Servos über zwei LDR

• Drehung des Servos in Richtung der wandernden Lichtquelle

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Workshop

Das Lichtradar
Du hast im Kapitel über den Richtungsdetektor gesehen, wie wir
auf relativ einfache Weise mit zwei LDRs auf eine sich bewegende
Lichtquelle reagieren können. Jetzt wollen wir die zwei Lichtsenso-
ren auf einen Servo montieren, so dass er in der Lage ist, die beiden
Sensoren in dem möglichen Bereich von 1800 zu drehen. Bei ent-
sprechender Programmierung kann der Servo dann die Sensoren-
phalanx immer in Richtung der sich bewegenden Lichtquelle
ausrichten.
--- 387

Abbildung 15-1
Auf einer Platine befindliche LDRs

sind mit dem Servo verbunden.

Was könnten wir nun mit der gezeigten Anordnung von Servo +
LDR 1 + LDR 2 alles so anstellen? Du hast doch bestimmt schon
einmal etwas über die Funktionsweise eines Radars gehört, oder!?
Radar bedeutet frei übersetzt Funkortung. In unserem Beispiel
haben wir es aber nicht mit Funkwellen, sondern mit Lichtwellen
zu tun. Unser Aufbau soll in der Lage sein, einer Lichtquelle zu fol-
gen. Wenn du also z.B. eine Taschenlampe vor den beiden Licht-
sensoren bewegst, soll der Servo der Lichtquelle folgen. So
jedenfalls die Theorie. Wir wollen mal schauen, wie wir das in die
Praxis umsetzen können. Im Kapitel über die Lichtsensoren haben
wir schon einen Richtungsdetektor entwickelt. Er konnte feststel-
len, in welche Richtung sich eine Lichtquelle bewegt. Nach dem
gleichen Prinzip wird jetzt das Lichtsignal dazu verwendet, einen
Servo anzusteuern. Dieser soll sich so lange in eine bestimmte Rich-
tung bewegen, bis die Richtungssensoren melden, dass sie beide die
gleiche Lichtmenge empfangen. Der vorhandene Pappstreifen soll
die beiden LDRs ein wenig voneinander trennen, so dass das Licht
bei der Bewegung jeweils einen der beiden Sensoren mehr beein-
flusst. Experimentiere ggf. ein wenig mit unterschiedlichen Grö-
ßen.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:
-- Projekt 15: Das Lichtradar388

Arduino-Sketch-Code
#include <Servo.h>
#define analogPin0 0
#define analogPin1 1
Servo meinServo;

int analogWertPin0;
int analogWertPin1;

Benötigte Bauteile

1 x Servo (z.B. von Modelcraft Typ RS-2)

2 x LDR

1 x Pappstreifen (Maße ca.: 8cm x 3cm)

2 x Widerstand 10K

1 x Stück einer Lochrasterplatine (Maße ca.: 5cm
x 3cm)

Mehrere flexible Steckbrücken in unterschiedli-
chen Farben und Längen

3��

C��

)A2��)A2���
		�
Das Lichtradar -- 389

int mittelPosition = 90;
int ergebnisMessung = 0;
int messungSample = 0;
int ansprechZeit = 100;
int anzahlMessungen = 10;
unsigned long zeitLetzteMessung = 0;

void setup(){
 meinServo.attach(9);
}

void loop(){
 analogWertPin0 = analogRead(analogPin0);
 analogWertPin1 = analogRead(analogPin1);
 if(millis() - zeitLetzteMessung > ansprechZeit){
 for(int i = 0; i < anzahlMessungen; i++){
 int messung = (analogWertPin1 - analogWertPin0);
 messungSample = messungSample + messung;
 }
 ergebnisMessung = messungSample/ anzahlMessungen;
 meinServo.write(mittelPosition + ergebnisMessung);
 zeitLetzteMessung = millis();
 }
}

Arduino-Code-Review
Für unser Experiment benötigen wir programmtechnisch gesehen
die folgenden Variablen:

Tabelle 15-1
Benötigte Variablen und deren

Aufgabe

Die Zeilen

analogWertPin0 = analogRead(analogPin0);
analogWertPin1 = analogRead(analogPin1);

Variable Aufgabe

meinServo Das Servo-Objekt

analogWertPin0 Analoger Wert von Pin 0

analogWertPin1 Analoger Wert von Pin 1

mittelPosition Wert für die Mittelposition zwischen 00 und 1800

messung Differenz der Werte analogWertPin1 und analogWertPin0

anzahlMessungen Anzahl der Messungen für die Mittelwertbildung

messungSample Aufsummierung aller Messwerte

ergebnisMessung Gemittelter Wert der einzelnen Messungen

ansprechZeit Zeitpunkt, zu dem die nächste Messung erfolgen soll

zeitLetzteMessung Zeitwert, wann letzte Messung stattfand
-- Projekt 15: Das Lichtradar390

lesen die Werte an den beiden analogen Eingängen Pin 0 und Pin 1
und speichern sie in der entsprechenden Variablen. Über

messung = analogWertPin1 - analogWertPin0;

wird die Differenz gebildet, die jedoch nicht sofort zur Ansteuerung
genutzt wird. Damit der Servo nicht unmittelbar auf vielleicht grö-
ßere Sprünge reagiert und ins Schwingen gerät, werden zum einen
über eine if-Abfrage

if(millis() - zeitLetzteMessung > ansprechZeit){ ... }

nur in bestimmten Zeitabständen Messungen durchgeführt und
zum anderen mehrere Messungen aufsummiert, um anschließend
das arithmetische Mittel zu bilden:

for(int i=0; i<10; i++){

 int messung = (analogWertPin1 - analogWertPin0);
 messungSample = messungSample + messung;
}

ergebnisMessung = messungSample/10; // Arithmetisches Mittel bilden

Erst im Anschluss erfolgt die eigentliche Servo-Ansteuerung über
die folgende Zeile:

meinServo.write(mittelposition + ergebnisMessung);

Die Variable mittelPosition steuert den Servo in die 900-Position, um
bei gleichen Werten der beiden LDRs eine Mittelstellung zu gewähr-
leisten. Je nach Lichteinfall wird der Servo nach links bzw. nach
rechts ausgelenkt. Du kennst schon das Verhalten, wenn einer der
beiden LDRs eine größere Lichtmenge erhält. Der Wert der Variab-
len messung wird positiv bzw. negativ. Diese Polarität machen wir
uns zu Nutze und addieren den Wert zur neutralen Mittelposition
hinzu. Das bedeutet wiederum, dass sich der Servo links bzw. rechts
herum bewegt, bis beide LDRs den gleichen Widerstandswert auf-
weisen, was gleiche Lichtmenge für beide bedeutet. Der Servo
stoppt. Schauen wir uns doch einfach einmal ein Beispiel an, bei dem
die Lichtquelle zum linken LDR hin verschoben wird.
Das Lichtradar -- 391

Wir können Folgendes festhalten: RLDR1 < RLDR2. Was sagt denn
unser Spannungsteiler dazu?

Fällt Licht auf den LDR, dann wird sein Widerstand geringer, was
wiederum bedeutet, dass weniger Spannung an ihm abfällt. Da aber
zwischen LDR und R2 immer +5V anliegen, heißt das, dass an R2
jetzt ein größeres Spannungspotential anliegt als zuvor. Diese Span-
nung wird dem analogen Eingang zugeführt. Wir erinnern uns
noch einmal an die Formel zur Berechnung eines Spannungsteilers:

Die folgende Tabelle zeigt Tendenzpfeile für die unterschiedlichen
Parameter, wobei die Lichtmenge die Größe ist, die von uns verän-
dert wird.

So weit, so gut. Wenn der linke LDR (LDR1) mehr Licht abbe-
kommt, muss sich der Servo in diese Richtung drehen, damit auch
der rechte LDR (LDR2) dem Licht zugewandt wird und eine höhere
Lichtmenge erhält. Wenn beide Potentiale ausgeglichen sind, bleibt
der Servo wieder stehen. Die Berechnung des Winkelwertes erfolgt
über folgende Codezeile:

messung = analogWertPin1 - analogWertPin0;

Für unser Beispiel, bei dem mehr Licht auf den linken LDR fällt,
der am analogen Pin 0 angeschlossen ist, bedeutet das eine höhere
Spannung an diesem Pin. Der Wert der Variablen messung wird

LichtmengeLDR RLDR1 ULDR1 UR2 UPin 0

    
-- Projekt 15: Das Lichtradar392

kleiner, weil der Subtrahend größer wird. Die eigentliche Übergabe
des angeforderten Winkels erfolgt in der folgenden Zeile:

meinServo.write(mittelPosition + ergebnisMessung);

Dabei wird der Mittelposition der Wert der Variablen ergebnisMes-
sung hinzuaddiert. Bei einem kleineren Wert von ergebnisMessung
wird auch der angeforderte Winkel geringer und der Servo dreht
sich.

Bei einer Verschiebung der Lichtquelle nach rechts bewegen sich
alle genannten Parameter in die entgegengesetzte Richtung.

Der Schaltplan
Die Schaltung ist eine Kombination aus vorangegangenen Experi-
menten mit den Lichtsensoren und dem Servo.

Abbildung 15-2
Die Ansteuerung eines Servos über
zwei LDRs

"�*+,��*�(*�'(�-�.
Das Lichtradar -- 393

Schaltungsaufbau
Abbildung 15-3

Aufbau der Lichtradarschaltung mit
Fritzing

Troubleshooting
Falls sich der Servo bei sich wechselnden Lichtverhältnissen nicht
oder in die falsche Richtung dreht, überprüfe folgende Punkte:

• Entsprechen deine Steckverbindungen auf dem Breadboard
wirklich der Schaltskizze?

• Gibt es etwaige Kurzschlüsse untereinander?

• Haben die Widerstände die korrekten Werte und hast du zwei
gleiche LDRs verwendet?

• Ist der Sketch-Code korrekt?

• Falls sich der Servo in die falsche Richtung drehen sollte, dann
hast du LDR 1 mit LDR 2 an den analogen Eingängen Pin 0
bzw. Pin 1 vertauscht.

• Wenn der Servo anfangen sollte zu oszillieren, sich also ständig
sich von links nach rechts und umgekehrt bewegt, dann bist
du vielleicht mit deiner Lichtquelle zu dicht an den beiden
LDRs. Verdunkle den Raum etwas und entferne dich mit der
Lampe.

Workshop
Was hältst du davon, wenn du eine Figur aus Pappe baust, hinter
dessen Augen sich die beiden LDRs befinden. Diese Figur, was
immer das auch sein mag, dreht sich dann in die Richtung, in der
-- Projekt 15: Das Lichtradar394

sich eine helle Lichtquelle befindet, oder macht vielleicht ein paar
Bewegungen, wenn jemand das Zimmer betritt und sich die Licht-
verhältnisse ändern. Das ist doch bestimmt eine nette Spielerei für
zu Hause, für die Schule oder für’s Büro.

Tipp
Es kann natürlich vorkommen, dass bei bestimmten Lichtverhält-
nissen der Servo trotz der Messwertmittelung anfängt zu schwin-
gen. Experimentiere dann ein wenig mit folgenden Werten:

• anzahlMessungen

• ansprechZeit
Das Lichtradar -- 395

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 16 16Die
Siebensegmentanzeige
f den

Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

n
er)Scope

In diesem Experiment behandeln wir folgende Themen:

• Ansteuerung einer einzelnen Siebensegmentanzeige

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Workshop

Die Siebensegmentanzeige
Wenn wir logische Zustände (wahr bzw. falsch) oder Daten (14, 2.
5, »Hallo User«) in irgendeiner Form visualisieren wollten, müssten
wir für den ersten Fall LEDs ansteuern und im zweiten auf den
Serial-Monitor zurückgreifen. In der Elektronik gibt es neben LEDs
noch weitere Anzeigeelemente, eines davon die Siebensegmentan-
zeige. Wie der Name schon vermuten lässt, besteht diese Anzeige
aus sieben einzelnen Elementen die in einer bestimmten Form
angeordnet sind, um Ziffern und in beschränktem Maße auch Zei-
chen darstellen zu können. In der nachfolgenden Abbildung ist der
Aufbau einer solchen Anzeige schematisch dargestellt.

Abbildung 16-1
Eine Siebensegmentanzeige

/

0

'

�

�

1

.

--- 397

Du kannst erkennen, dass jedes der sieben Segmente mit einem klei-
nen Buchstaben versehen wurde. Die Reihenfolge spielt zwar keine
unmittelbare Rolle, doch die hier gezeigte Form hat sich eingebür-
gert und wird fast überall verwendet. Darum werden wir sie auch
hier in dieser Art und Weise beibehalten. Wenn wir jetzt die einzel-
nen Segmente geschickt ansteuern, können wir unsere Ziffern von 0
bis 9 sehr gut abbilden. Es sind auch noch Buchstaben möglich, auf
die wir etwas später zu sprechen kommen werden. Du wirst
bestimmt schon vielen dieser Siebensegmentanzeigen im Alltag
begegnet sein, ohne dass du weiter darüber nachgedacht hast. Du
kannst beim nächsten Stadtbummel ja einmal auf diese Anzeigen
achten. Du wirst schnell realisieren, an wie vielen Stellen sie zum
Einsatz kommen. Hier eine kleine Liste der Einsatzmöglichkeiten.

• Preisanzeige an Tankstellen (Sie zeigen irgendwie immer zu
viel an...)

• Zeitanzeige an manchen hohen Gebäuden

• Temperaturanzeige

• Digitaluhren

• Blutdruck-Messgeräte

• Elektronische Fieberthermometer

In der folgenden Tabelle wollen wir für die zukünftige Programmie-
rung einmal festhalten, bei welchen Ziffern welches der sieben Seg-
mente angesteuert werden muss.

Tabelle 16-1
Die Ansteuerung der sieben

Segmente

Anzeige a b c d e f g

1 1 1 1 1 1 0

0 1 1 0 0 0 0

1 1 0 1 1 0 1

1 1 1 1 0 0 1

0 1 1 0 0 1 1
-- Projekt 16: Die Siebensegmentanzeige398

Der Wert 1 in unserer Tabelle bedeutet nicht unbedingt HIGH-
Pegel, sondern es handelt sich um die Ansteuerung des betref-
fenden Segmentes. Das kann entweder mit dem schon genannten
HIGH-Pegel (+5V inklusive Vorwiderstand) oder auch mit einem
LOW-Pegel (0V) erfolgen. Du fragst dich jetzt bestimmt, wovon
das denn abhängt, denn für eine Ansteuerung muss man sich ja
entscheiden. Die Entscheidung wird uns aber durch den Typ der
Siebensegmentanzeige abgenommen. Es gibt hier zwei unter-
schiedliche Ansätze:

• Gemeinsame Kathode

• Gemeinsame Anode

Bei einer gemeinsamen Kathode sind alle Kathoden der einzelnen
LEDs einer Siebensegmentanzeige intern zusammengeführt und
werden extern mit Masse verbunden. Die Ansteuerung der einzel-
nen Segmente erfolgt über Vorwiderstände, die entsprechend mit
HIGH-Pegel verbunden werden. Wir verwenden in unserem fol-
genden Beispiel aber eine Siebensegmentanzeige mit einer gemein-
samen Anode. Hier ist es genau andersherum als beim vorherigen
Typ. Alle Anoden der einzelnen LEDs sind intern miteinander ver-
bunden und werden extern mit HIGH-Pegel verbunden. Die
Ansteuerung erfolgt über entsprechend dimensionierte Vorwider-
stände über die einzelnen Kathoden der LEDs, die nach außen
geführt werden.

1 0 1 1 0 1 1

1 0 1 1 1 1 1

1 1 1 0 0 0 0

1 1 1 1 1 1 1

1 1 1 1 0 1 1

Anzeige a b c d e f g Tabelle 16-1
Die Ansteuerung der sieben
Segmente
Die Siebensegmentanzeige -- 399

Im hier links gezeigten Aufbau einer Siebensegmentanzeige mit
gemeinsamer Anode werden alle Anoden der einzelnen LEDs im
Betrieb mit der Versorgungsspannung +5V verbunden. Die Katho-
den werden später mit den digitalen Ausgängen deines Arduino-
Boards verbunden und entsprechend der eben gezeigten Ansteue-
rungstabelle mit unterschiedlichen Spannungspegeln versorgt. Wir
verwenden in unserem Versuchsaufbau eine Siebensegmentanzeige
mit gemeinsamer Anode des Typs SA 39-11 GE. Ich habe die Pin-
belegung dieser Anzeige einmal in den folgenden Abbildungen auf-
gezeigt.

Abbildung 16-2
Die Ansteuerung der Siebenseg-

mentanzeige vom Typ SA 39-11 GE

In der linken Grafik die verwendeten Pins der Siebensegmentan-
zeige zu sehen und in der rechten Grafik ist die Pinbelegung des
verwendeten Typs dargestellt. Die Bezeichnung DP ist übrigens die
Abkürzung für Dezimalpunkt.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Benötigte Bauteile

1 x Siebensegmentanzeige (z.B. Typ SA 39-11 GE
mit gemeinsamer Anode)

7 x Widerstand 330

Mehrere flexible Steckbrücken in unterschiedli-
chen Farben und Längen

/

0

'

�

�

1

.

�

�

�

�

� �

�

�

�	
-- Projekt 16: Die Siebensegmentanzeige400

Arduino-Sketch-Code
int segmente[10][7] = {{1, 1, 1, 1, 1, 1, 0}, // 0
 {0, 1, 1, 0, 0, 0, 0}, // 1
 {1, 1, 0, 1, 1, 0, 1}, // 2

 {1, 1, 1, 1, 0, 0, 1}, // 3
 {0, 1, 1, 0, 0, 1, 1}, // 4

 {1, 0, 1, 1, 0, 1, 1}, // 5
 {1, 0, 1, 1, 1, 1, 1}, // 6
 {1, 1, 1, 0, 0, 0, 0}, // 7

 {1, 1, 1, 1, 1, 1, 1}, // 8
 {1, 1, 1, 1, 0, 1, 1}}; // 9
int pinArray[] = {2, 3, 4, 5, 6, 7, 8};

void setup(){
 for(int i = 0; i < 7; i++)

 pinMode(pinArray[i], OUTPUT);
}

void loop(){
 for(int i = 0; i < 10; i++){
 for(int j = 0; j < 7; j++)

 digitalWrite(pinArray[j], (segmente[i][j]==1)?LOW:HIGH);
 delay(1000); // Pause von 1 Sekunde
 }

}

Arduino-Code-Review
Für unser Experiment benötigen wir programmtechnisch gesehen
die folgenden Variablen:

Tabelle 16-2
Benötigte Variablen und deren
Aufgabe

Da für jede einzelne Ziffer von 0 bis 9 die Informationen über die
anzusteuernden Segmente gespeichert sein müssen, bietet sich
sofort ein zweidimensionales Array an. Diese Werte werden in der
globalen Variablen segmente zu Beginn des Sketches gespeichert:

int segmente[10][7] = {{...},

 ...
 {...}};

Variable Aufgabe

segmente Zweidimensionales Array zur Speicherung der Segmentinformation pro Ziffer

pinArray Eindimensionales Array zur Speicherung der angeschlossenen Pins der Anzeige
Die Siebensegmentanzeige -- 401

Das Array umfasst 10 x 7 Speicherplätze, wobei jedes einzelne über
die Koordinaten

segmente[x][y]

angesprochen werden kann. Die x-Koordinate steht für alle Ziffern
von 0 bis 9 (entspricht 10 Speicherplätzen) und die y-Koordinate
für alle Segmente a bis g (entspricht 7 Speicherplätzen). Wenn wir
z.B. die anzusteuernden Segmente der Ziffer 3 ermitteln möchten,
dann lässt sich das durch die Zeile

segmente[3][y]

bewerkstelligen, wobei für die Variable y die Werte von 0 bis 6 über
eine for-Schleife eingesetzt werden müssen. Die Segmentdaten lau-
ten dann wie folgt:

Der ersten Aussage kann ich vollkommen zustimmen. Bei der
zweiten hast du möglicherweise nicht ganz aufgepasst. Ich hatte
erwähnt, dass eine 1 nicht unbedingt HIGH-Pegel bedeutet, son-
dern lediglich, dass dieses Segment anzusteuern ist. Bei einer Sie-
bensegmentanzeige mit gemeinsamer Kathode wird mit HIGH-
Pegel angesteuert, um das gewünschte Segment leuchten zu las-
sen, bei einer Siebensegmentanzeige mit gemeinsamer Anode
erfolgt das mittels LOW-Pegel. Und genau dazu dient die folgende
Zeile:

digitalWrite(pinArray[j], (segmente[i][j]==1)?LOW:HIGH);

�

�

�

�
��
��

/
0

'

�

�

1

.

Stopp mal kurz! Du hast doch gesagt, dass dieser Typ der Siebenseg-
mentanzeige eine gemeinsame Anode hat. Jetzt steht aber im segment-
Array an der Stelle eine 1, an der eigentlich eine Ansteuerung mit
Masse erfolgen sollte. Ist das nicht so?
-- Projekt 16: Die Siebensegmentanzeige402

Ist die Information eine 1, dann wird LOW als Argument an die
digitalWrite-Funktion übergeben, andernfalls ein HIGH. Bei LOW
wird das entsprechende Segment leuchten, wobei es bei einem
HIGH so gesteuert wird, dass es dunkel bleibt. Unser Sketch zeigt
im Sekundentakt alle Ziffern von 0 bis 9 an. Dazu wird folgender
Code verwendet:

for(int i = 0; i < 10; i++){

 for(int j = 0; j < 7; j++)
 digitalWrite(pinArray[j], (segmente[i][j]==1)?LOW:HIGH);
 delay(1000); // Pause von 1 Sekunde

}

Die äußere Schleife mit der Laufvariablen i wählt die anzuzeigende
Ziffer im Array aus und die innere Schleife mit der Laufvariablen j
die anzusteuernden Segmente.

Der Schaltplan
Die Schaltung gleicht der, mit der wir das Lauflicht angesteuert
haben. Aber keine Angst, denn es wird gleich noch etwas komple-
xer.

Abbildung 16-3
Die Ansteuerung der
Siebensegmentanzeige
Die Siebensegmentanzeige -- 403

Schaltungsaufbau

Abbildung 16-4
Aufbau der Siebensegment-

anzeigenschaltung mit Fritzing

Verbesserter Sketch
Die Ansteuerung der einzelnen Segmente je Ziffer erfolgte über ein
zweidimensionales Array, bei dem die erste Dimension zu Selektion
der gewünschten Ziffer und die zweite Dimension für die einzelnen
Segmente diente. Im folgenden Sketch wollen wir das Ganze mit
einem eindimensionalen Array realisieren. Wie das funktionieren
soll? Nun, das ist recht simpel, denn du kennst dich ja mittlerweile
ganz gut mit Bits und Bytes aus. Die Segmentinformation speichern
wir jetzt in einem einzigen Wert ab. Welcher Datentyp würde sich
für dieses Vorhaben geradezu anbieten? Du hast es mit einer Sie-
bensegmentanzeige plus einem einzigen Dezimalpunkt zu tun, den
wir aber außen vorlassen wollen. Das wären dann 7 Bits, die wun-
derbar in einem einzigen Byte mit 8 Bits Platz fänden. Jedes ein-
zelne Bit weisen wir einfach einem Segment zu und können mit
einem einzigen Bytewert alle benötigten Segmente ansteuern. An
dieser Stelle möchte ich dir noch eine interessante Möglichkeit zei-
gen, direkt über eine Bitkombination eine Variable zu initialisieren:

void setup(){
 Serial.begin(9600);
 byte a = B10001011; // Variable deklarieren + initialisieren
 Serial.println(a, BIN); // Als Binär-Wert ausgeben
 Serial.println(a, HEX); // Als Hex-Wert ausgeben
 Serial.println(a, DEC); // Als Dezimal-Wert ausgeben
}

void loop(){/* leer */}
-- Projekt 16: Die Siebensegmentanzeige404

Die entscheidende Zeile ist natürlich die folgende:

byte a = B10001011;

Das Merkwürdige oder eigentlich Geniale daran ist die Tatsache,
dass du über den vorangestellten Buchstaben B eine Bitkombina-
tion angeben kannst, die der Variablen zur Linken zugewiesen
wird. Das vereinfacht die Sache ungemein, wenn du z.B. eine Bit-
kombination kennst und diese speichern möchtest. Andernfalls
hättest du erst den Binärwert in eine Dezimalzahl umwandeln müs-
sen, um sie anschließend zu speichern. Dieser Zwischenschritt ent-
fällt jetzt.

Der Datentyp byte ist ein Ganzzahldatentyp. Damit hast du voll-
kommen Recht. Womit du leider Unrecht hast, ist deine Vermu-
tung, dass es sich hier um eine Zeichenkette handelt. Diese würde
dann auch in doppelten Anführungszeichen eingeschlossen. Es
muss sich also um etwas anderes handeln. Irgendeine Idee? Ich sage
nur #define. Na, klingelt es? Ok, schau’ her. Es gibt eine Datei in
den Tiefen von Arduino, die sich binary.h nennt und sich im Ver-
zeichnis

arduino-1.0-rc1\hardware\arduino\cores\arduino

befindet. Ich zeige dir einen kurzen Ausschnitt dieser Datei, denn
sie enthält sehr viele Zeilen, die alle zu zeigen überflüssig wäre.

Nun, das ist mir aber überhaupt nicht klar. Der Datentyp byte – so
wie ich das verstanden habe – ist doch ein Ganzzahl. Datentyp und
Ganzzahlen bestehen doch eigentlich immer aus Ziffern von 0 bis 9.
Warum kann ich jetzt hier den Buchstaben B voranstellen und eine
Bitkombination folgen lassen? Oder haben wir es hier mit einer Zei-
chenkette zu tun?
Die Siebensegmentanzeige -- 405

In dieser Datei befinden sich alle möglichen Bitkombinationen für
die Werte von 0 bis 255, die dort als symbolische Konstanten defi-
niert wurden. Ich habe mir einmal erlaubt, die Zeile für den Wert
139 zu entfernen (bitte nicht nachmachen, es sein denn, du stellst
anschließend wieder den ursprünglichen Zustand her!), um zu
sehen, was der Compiler möglicherweise zu meckern hat. Sieh’ her:

Die Fehlermeldung sagt Dir, dass die Bezeichnung B10001011
nicht gefunden wird. Bevor ich zum eigentlichen Thema zurück-
komme, möchte ich dir noch die folgenden Zeilen erläutern:

Serial.println(a, BIN); // Als Binär-Wert ausgeben
Serial.println(a, HEX); // Als Hex-Wert ausgeben
Serial.println(a, DEC); // Als Dezimal-Wert ausgeben

Die println-Funktion kann noch ein weiteres Argument neben dem
auszugebenden Wert entgegennehmen, der, durch ein Komma
getrennt, angegeben werden kann. Ich habe hier einmal die drei
wichtigsten angeführt. Weitere findest du auf der Befehls-Referenz-
seite von Arduino im Internet. Die Erläuterungen finden sich
selbstredend als Kommentare hinter den Befehlszeilen. Die Aus-
gabe im Serial-Monitor ist dann folgende:

10001011
8B
139

Doch kommen wir jetzt endlich zur Ansteuerung der Siebenseg-
mentanzeige über das eindimensionale Array. Ich zeige dir vorab
wieder den kompletten Sketch, den wir gleich analysieren werden:
-- Projekt 16: Die Siebensegmentanzeige406

byte segmente[10]= {B01111110, // 0
 B00110000, // 1
 B01101101, // 2
 B01111001, // 3
 B00110011, // 4
 B01011011, // 5
 B01011111, // 6
 B01110000, // 7
 B01111111, // 8
 B01111011}; // 9
int pinArray[] = {2, 3, 4, 5, 6, 7, 8};

void setup(){
 for(int i = 0; i < 7; i++)

 pinMode(pinArray[i], OUTPUT);
}

void loop(){
 for(int i = 0; i < 10; i++){ // Ansteuern der Ziffer
 for(int j = 6; j >= 0; j--){ // Abfragen der Bits für die

 // Segmente
 digitalWrite(pinArray[6 - j], bitRead(segmente[i], j) == 1?LOW:
 HIGH);
 }
 delay(500); // Eine halbe Sekunde warten
 }

}

In der folgenden Abbildung kannst du sehr gut erkennen, welches
Bit innerhalb des Bytes für welches Segment verantwortlich ist:

Abbildung 16-5
Ein Byte steuert die Segmente der
Anzeige (hier das Beispiel für die
Ziffer 4).

Da wir lediglich 7 Segmente anzusteuern haben und ich den Dezi-
malpunkt nicht berücksichtige, habe ich das MSB (erinnere Dich:

)/C ;5

4
3/

)
);

)
C

4
5

4
/

)
)

)

/4/)///3/5/2/;/<(�	�����

B��	
���
	

	����
��	
��

/

0

'

�

�

1

.

4
� � � � � ' �
Die Siebensegmentanzeige -- 407

MSB = höchstwertiges Bit) konstant bei allen Array-Elementen mit
dem Wert 0 versehen. Das entscheidende geschieht natürlich wie-
der – wie sollte es anders sein – innerhalb der loop-Funktion. Wer-
fen wir einen genaueren Blick darauf:

void loop(){
 for(int i = 0; i < 10; i++){ // Ansteuern der Ziffer
 for(int j = 6; j >= 0; j--){ // Abfragen der Bits für die Segmente

 digitalWrite(pinArray[6 - j], bitRead(segmente[i], j) == 1?LOW:HIGH);
 }
 delay(500); // Eine halbe Sekunde warten

 }
}

Die äußere for-Schleife mit der Laufvariablen i steuert wieder die
einzelnen Ziffern von 0 bis 9 an. Das war auch in der ersten Lösung
so realisiert worden. Jetzt kommt jedoch der abweichende Code.
Die innere for-Schleife mit der Laufvariablen j ist für das Auswäh-
len des einzelnen Bits innerhalb der selektierten Ziffer zuständig.
Ich fange dabei auf der linken Seite mit Position 6 an, die für das
Segment a zuständig ist. Da jedoch das Pin-Array an Index-Position
6 den Pin 8 für Segment g verwaltet, muss die Ansteuerung entge-
gengesetzt laufen. Das geschieht mittels der Subtraktion von der
Zahl 6, da ich das Pin-Array aus dem ersten Beispiel so übernehmen
wollte:

pinArray[6 - j]

Nun kommen wir zu einer interessanten Funktion, die es uns
erlaubt, ein einzelnes Bit in einem Byte abzufragen. Sie lautet wie
folgt:

Abbildung 16-6
Der Befehl »bitRead«

In diesem Beispiel wird für den dezimalen Wert 139 (binär:
10001011) das Bit an Position 3 ermittelt. Die Zählung beginnt bei
Index 0 am LSB (least significant bit) auf der rechten Seite. Der
Rückgabewert wäre demnach eine 1. Durch die Befehlszeile

digitalWrite(pinArray[6 - j], bitRead(segmente[i], j) == 1?LOW:HIGH);

$�%��#�	
�K�
���

 �'��
 B��	
	���
	
��

�������	�
-- Projekt 16: Die Siebensegmentanzeige408

wird überprüft, ob die selektierte Bitposition eine 1 zurückgibt.
Falls dies der Fall ist, wird der ausgewählte Pin mit LOW-Pegel
angesteuert, was bedeutet, dass das Segment leuchtet. Nicht ver-
gessen: Gemeinsame Anode! Kannst du den Unterschied zwischen
beiden Lösungen einmal formulieren?

Echt klasse, Ardus! Die Technik ist vergleichbar.

Troubleshooting
Falls die Anzeige nicht den Ziffern von 0 bis 9 entspricht oder unsin-
nige Kombinationen angezeigt werden, dann überprüfe Folgendes:

• Entsprechen deine Steckverbindungen auf dem Breadboard
wirklich der Schaltung?

• Gibt es eventuell Kurzschlüsse untereinander?

• Ist der Sketch-Code korrekt?

• Wenn unsinnige Zeichen in der Anzeige auftauchen, dann hast
du möglicherweise die Steuerleitungen der einzelnen Seg-
mente vertauscht. Kontrolliere noch einmal die Verdrahtung
anhand des Schaltplanes bzw. des Datenblattes der Siebenseg-
mentanzeige.

• Hast du das segmente-Array mit den richtigen Werten initialisiert?

Was hast du gelernt?
• In diesem Kapitel wurdest du mit den Grundlagen der Ansteu-

erung einer Siebensegmentanzeige vertraut gemacht.

• Über die Initialisierung eines Arrays hast du die einzelnen Seg-
mente der Anzeige definiert, um diese später komfortabel
ansteuern zu können.

Dann lass mich mal überlegen. Ok, in der ersten Version mit dem
zweidimensionalen Array wurde durch die erste Dimension die anzu-
zeigende Ziffer ausgewählt und über die zweite die anzusteuernden
Segmente. Diese Information steckte in den einzelnen Array-Elemen-
ten. Bei der zweiten Version wurde ebenfalls die anzuzeigende Ziffer
über die erste Dimension ausgewählt. Da es sich um ein eindimensio-
nales Array handelt, ist dies jedoch die einzige Dimension. Die Infor-
mation zur Ansteuerung der Segmente ist jetzt jedoch in den
einzelnen Bytewerten enthalten. Was vorher durch die Array-Ele-
mente der zweiten Dimension erfolgte, wird jetzt über die Bits eines
Wertes gelöst.
Die Siebensegmentanzeige -- 409

• Die Header-Datei binary.h beinhaltet viele symbolische Kon-
stanten, die du in deinen Sketches verwenden kannst.

• Du hast erfahren, dass über die println-Methode durch Anfü-
gen eines weiteren Argumentes (BIN, HEX bzw. DEC) ein aus-
zugebender Wert in eine Zahl einer anderen Zahlenbasis
konvertiert werden kann.

• Mit der Funktion bitRead kannst du einzelne Bits eines Wertes
auf deren Zustand hin abfragen.

Workshop
Erweitere die Programmierung des Sketches so, dass in der Anzeige
neben den Ziffern von 0 bis 9 auch bestimmte Buchstaben ange-
zeigt werden können. Dies ist zwar nicht für das gesamte Alphabet
möglich, doch überlege einmal, welche Buchstaben sich hierfür eig-
nen könnten. Es folgen ein paar Beispiele für den Anfang:

Weitere nützliche Hinweise zu Siebensegmentanzeigen:

Siebensegmentanzeigen gibt es in einer schier unübersehbaren
Anzahl an Varianten. Sie sind in unterschiedlichen Farben erhält-
lich, z.B. in folgenden:

• Gelb

• Rot

• Grün

• Superhelles Rot

Natürlich musst du beim Kauf immer auf die Anschlussvarianten
achten:

• gemeinsame Anode

• gemeinsame Kathode

Es gibt sie in unterschiedlichen Größen. Hier Beispiele für den
Anbieter Kingbright:

• Typ SA-39: Ziffernhöhe = 0.39« = 9.9mm

• Typ SA-56: Ziffernhöhe = 0.56« = 14.2mm

Weitere Informationen findest du im Workshop des nächsten Kapitels.
-- Projekt 16: Die Siebensegmentanzeige410

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 17 17Die Siebensegment-
anzeige (mir gehen die
Pins aus)
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Ansteuerung mehrerer Siebensegmentanzeigen

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Workshop

Das vermeintliche Problem
Das Ansteuern einer einzelnen Siebensegmentanzeige mit 8 Steuer-
leitungen – wenn wir den Dezimalpunkt mitrechnen – stellt tech-
nisch gesehen kein Problem dar. Eine einzige Siebensegmentstelle
ist zwar schön und gut, doch man möchte bestimmt auch einmal
einen Wert anzeigen, der aus zwei oder mehr Ziffern besteht. Blei-
ben wir beim Beispiel für zwei Ziffern. Was denkst Du, wie viele
Anschlüsse wir zu Realisierung dieses Vorhabens benötigen? Also,
eine einzige Anzeige belegt 7 Segment-Pins deines Arduino-Boards
und eine Leitung für die gemeinsame Anode. Bei zwei Anzeigen
wären das schon 14 Segment-Pins, bei drei 21 usw. Das ist mit den
vorhandenen Pins von 0 bis 13 irgendwie nicht zu schaffen. Es gibt
ein Arduino-Board, das viel mehr Pins zur Ansteuerung bereitstellt.
Es ist das Arduino Mega Board mit sage und schreibe 54 digitalen
Ein- bzw. Ausgängen. Doch willst du dir das vorher noch zulegen,
bevor wir hier fortfahren? Blöde Frage, was!? Natürlich nicht. Es
gibt eine viel elegantere Lösung. Das Stichwort dazu lautet Multi-
--- 411

plexing. Was ist das nun schon wieder? Es handelt sich um eine
interessante Möglichkeit, viele Siebensegmentanzeigen parallel zu
schalten. Bleiben wir am Anfang jedoch bei unseren zwei Ziffern.
Wenn du das Prinzip verstanden hast, kannst du die Schaltung fast
beliebig erweitern. Welchen Ansatz verfolgen wir hierbei? Nun, wir
verbinden einfach einmal alle Segment-Pins (1, 2, 4, 5, 7, 9, 10) der
ersten Anzeige mit denen der zweiten Anzeige. Ich meine also Pin 1
mit Pin 1, Pin 2 mit Pin 2 usw.

Das ist bis zu diesem Punkt durchaus korrekt. Ich war aber noch
nicht ganz fertig mit meiner Ausführung. Die gemeinsamen Ano-
den der beiden Anzeigen werden jedoch nicht zusammengeführt
und gleichzeitig angesteuert. Was wäre, wenn wir die Segmente der
beiden Anzeigen ansteuern, aber nur der ersten Anzeige die Versor-
gungsspannung von +5V über die gemeinsame Anode zukommen
lassen würden? Nun, es wäre lediglich diese Anzeige in der Lage,
die angeforderten Segmente anzuzeigen. Der zweiten hätten wir
zwar auch die Signalpegel zugeführt, doch sie können nicht darge-
stellt werden, weil die Versorgungsspannung fehlt. Drehen wir das
Spielchen jetzt um, und versorgen anstelle der ersten, die zweite
Anzeige über die gemeinsame Anode mit der Versorgungsspannung
+5V – natürlich mit anderen Daten für die einzelnen Segmente. Die
erste Anzeige bliebe dunkel und die zweite würde die angeforderte
Ziffer darstellen. Jetzt kommen wir zum entscheidenden Punkt.
Erfolgt dieser Wechsel zwischen den beiden Anzeigen schnell
genug, so dass die Trägheit unserer Augen ihn nicht mehr in ein-
zelne Bilder auflösen kann, haben wir eine Anzeige mit zwei Stellen
realisiert, die 7 statt 14 Segmentleitungen in ihrem Schaltungsauf-
bau besitzt. Das ist doch eine feine Sache und die Schaltung kann –
wie schon erwähnt – fast beliebig erweitert werden. Du kommst
jetzt das erste Mal mit einem weiteren elektronischen Bauteil, dem
Transistor, in Berührung. Der Transistor arbeitet in diesem Fall als
Schalter, der die gemeinsame Anode der beiden Anzeigen bei
Bedarf mit Spannung versorgt. Wie das genau funktioniert, sehen
wir gleich. In der folgenden Abbildung siehst du schon einmal die
beiden Stellen der Siebensegmentanzeigen.

Hey, einen Moment! Dann würden doch bei der Ansteuerung der
Segmente auf beiden Anzeigen immer die gleiche Ziffer zu sehen sein,
oder!?
--- Projekt 17: Die Siebensegmentanzeige (mir gehen die Pins aus)412

Abbildung 17-1
Zwei Siebensegmentanzeigen, die
zusammen die Zahl 43 anzeigen.

Beide zeigen unterschiedliche Ziffern an. Es scheint also zu funktio-
nieren.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Arduino-Sketch-Code
byte segmente[10]= { B01111110, // 0
 B00110000, // 1
 B01101101, // 2
 B01111001, // 3
 B00110011, // 4
 B01011011, // 5
 B01011111, // 6
 B01110000, // 7
 B01111111, // 8
 B01111011}; // 9

Benötigte Bauteile

2 x Siebensegmentanzeige (z.B. Typ SA 39-11 GE
mit gemeinsamer Anode)

7 x Widerstand 330

2 x Widerstand 1K

2 x Transistor BC557 (PNP)

Mehrere flexible Steckbrücken in unterschiedli-
chen Farben und Längen
Das vermeintliche Problem -- 413

byte pinArray[] = {2, 3, 4, 5, 6, 7, 8};
byte einerStelle = 12, zehnerStelle = 13;

void setup(){
 for(int i = 0; i < 7; i++)
 pinMode(pinArray[i], OUTPUT);
 pinMode(einerStelle, OUTPUT);
 pinMode(zehnerStelle, OUTPUT);
}

void loop(){
 anzeige(43); // Anzuzeigender Wert
}

void anzeige(int wert){
 byte einer, zehner;
 zehner = int(wert / 10); // Ziffer der Zehnerstelle berechnen

 einer = wert - zehner * 10; // Ziffer der Einerstelle berechnen
 // Einerstelle aktiv schalten
 digitalWrite(einerStelle, LOW);
 digitalWrite(zehnerStelle, HIGH);
 ansteuerung(einer); // Anforderung der Anzeige der Einerstelle
 // Zehnerstelle aktiv schalten

 digitalWrite(einerStelle, HIGH);
 digitalWrite(zehnerStelle, LOW);
 ansteuerung(zehner); // Anforderung der Anzeige der Zehnerstelle

}

void ansteuerung(int a){

 for(int j = 6; j >= 0; j--) // Abfragen der Bits für die Segmente
 digitalWrite(pinArray[6 - j], bitRead(segmente[a], j) == 1?LOW:HIGH);
 delay(5); // notwendige Pause von 5ms

}

Arduino-Code-Review
Für unser Experiment benötigen wir programmtechnisch gesehen
die folgenden Variablen:

Tabelle 17-1
Benötigte Variablen und deren

Aufgabe

Variable Aufgabe

segmente Zweidimensionales Array zur Speicherung der Segmentinformation pro Ziffer

pinArray Eindimensionales Array zur Speicherung der angeschlossenen Pins der Anzeige

einerStelle Wert des Pins für die Einerstelle

zehnerStelle Wert des Pins für die Zehnerstelle

einer Wert der Einerstelle

zehner Wert der Zehnerstelle
--- Projekt 17: Die Siebensegmentanzeige (mir gehen die Pins aus)414

Die Ausgangspins werden wir gewohnt programmiert, wobei in
diesem Experiment noch zwei weitere Pins hinzugekommen sind.
Sie werden benötigt, um die Einer- bzw. Zehnerstelle anzusteuern.
Schauen wir uns das doch einmal im Detail. Innerhalb der loop-
Funktion wird der anzeige-Funktion der gewünschte Anzeigewert
als Argument übergeben. Sie ermittelt in zwei Schritten die Wertig-
keit der Einer- bzw. Zehnerstelle. Wir beginnen mit der Zehner-
stelle, die durch das Dividieren durch den Wert 10 und das
Weglassen der Nachkommastelle ermittelt wird. Nehmen wir als
Beispiel den Wert 43.

Zehnerstellenberechnung

1. Schritt:

2. Schritt:

int(4.3) = 4 (Die Integerfunktion int ermittelt den Ganzzahlanteil
ohne zu runden.)

3. Schritt:

zehner = 4 (Zuweisung des Ergebnisses an die Variable)

Einerstellenberechnung

1. Schritt:

einer = 43 – 4 * 10 = 3 (Ursprungswert – Zehnerstellenwert * 10)

Im nächsten Schritt bereitet die anzeige-Funktion die Pins vor, die
zur Ansteuerung der Anoden der Siebensegmentanzeigen notwen-
dig sind.

Vorbereiten der Anzeige des Einerwertes auf der rechten Seite
Das vermeintliche Problem -- 415

Aufrufen der »ansteuerung«-Funktion mit der Übergabe
des einer-Wertes, der angezeigt werden soll

ansteuerung(einer);

...

...

void ansteuerung(int a){
 for(int j = 6; j >= 0; j--) // Abfragen der Bits für die Segmente

 digitalWrite(pinArray[6 - j], bitRead(segmente[a], j) == 1?LOW:HIGH);
 delay(5); // notwendige Pause von 5ms
}

Die Funktionsweise der for-Schleife ist dir mittlerweile bekannt
und deshalb verzichte ich an dieser Stelle auf weitere Ausführun-
gen. Was noch erwähnenswert wäre, ist der delay-Befehl im
Anschluss der for-Schleife. Er sorgt dafür, dass die Darstellung der
Ziffer eine Weile bestehen bleibt. Erhöhe diesen Wert doch einfach
mal auf 50 oder 100. Dann erkennst du das Hin- und Herschalten
der beiden Anzeigen. Setzt du ihn jedoch auf 0, dann... Doch siehe
selbst!

Das ist kein Problem, Ardus! Erstens hatten wir noch keine Schal-
tung mit Transistoren und zweitens hast du den Schaltplan noch
nicht gesehen. Hier ein kurzer Ausschnitt, damit ich deine Frage
schnell beantworten kann:

Oh, was ist denn das? Kannst du mir mal bitte verraten, warum du
die Einerstelle, um sie auszuwählen, mit LOW ansteuerst? So wie ich
das verstanden habe, wird doch damit einer der Transistoren ange-
steuert, um das Anodensignal an die Siebensegmentanzeige durchzu-
schalten. Das verstehe ich nun wirklich nicht.
--- Projekt 17: Die Siebensegmentanzeige (mir gehen die Pins aus)416

Da der Transistor die Plusleitung steuern soll, müssen wir einen
PNP-Transistor verwenden. Der Emitter befindet sich in diesem
Fall oben, was aber lediglich eine Darstellungssache ist. Der Tran-
sistor wird einfach horizontal gespiegelt dargestellt. Um ihn durch-
zusteuern, müssen wir die Basis über den 1K-Vorwiderstand mit
Masse verbinden. Die Richtung des Steuerstroms ist in diesem Fall
vom Emitter über die Basis zum Minuspol. Der Strom fließt also
quasi aus dem Transistor – sprich der Basis – heraus. Der Arbeits-
strom fließt vom Emitter zum Kollektor und versorgt auf diese
Weise die gemeinsame Anode mit dem erforderlichen Plus-Poten-
tial. Die Kathoden werden dann, wenn sie leuchten sollen, wie
gewohnt über Masse angesteuert. Die Ansteuerung der Zehner-
stelle erfolgt in gleicher Weise. In der folgenden Abbildung zeige
ich dir die Anschlussbelegung der drei Beinchen des Transistors
BC557C.

Abbildung 17-2
Die Anschlussbelegung des Transis-
tors BC557C

Vorbereiten der Anzeige des Zehnerwertes auf der linken
Seite

Du siehst, dass sich die Potentiale zwischen Pin 12 und Pin 13
umgekehrt haben, was dazu führt, dass jetzt die Zehnerstelle für die
Anzeige vorbereitet wird. Der nächste Schritt ist vergleichbar mit
dem vorherigen, doch jetzt wird der Wert für die Zehnerstelle über-
geben.
Das vermeintliche Problem -- 417

Aufrufen der »ansteuerung«-Funktion mit der Übergabe
des einer-Wertes, der angezeigt werden soll

ansteuerung(zehner);

Jetzt ist es aber an der Zeit, dir den kompletten Schaltplan zu zei-
gen.

Der Schaltplan
Die Schaltung ist jetzt schon etwas umfangreicher geworden. du
siehst, dass alle Steuerleitungen der Segmente a bis g zusammen
geführt wurden.

Abbildung 17-3
Die Ansteuerung zweier

Siebensegmentanzeigen Schaltungsaufbau
Auf dem Breadboard wird es wieder etwas voller und du musst dich
schon ein wenig darauf konzentrieren, dass die richtigen Pins mit-
einander verbunden werden.

Lass’ dich aber nicht entmutigen, denn auch ich kann die Anzahl
der Verkabelungsfehler, die ich schon gemacht habe, nicht mehr
zählen. Kritisch wird es natürlich, wenn du Kurzschlüsse erzeugst.
--- Projekt 17: Die Siebensegmentanzeige (mir gehen die Pins aus)418

Abbildung 17-4
Aufbau der Siebensegmentanzei-
genschaltung auf dem Breadboard

Troubleshooting
Falls die Anzeige nicht den gewünschten Wert darstellt oder ein-
zelne Segmente fehlen bzw. unsinnige Zeichen angezeigt werden,
dann überprüfe Folgendes:

• Entsprechen deine Steckverbindungen auf dem Breadboard
wirklich der Schaltskizze?.

• Gibt es eventuell Kurzschlüsse untereinander?

• Hast du das segmente-Array mit den richtigen Initialisierungs-
werten versehen?

• Hast du die richtigen PNP-Transistoren vom Typ BC 557 ver-
wendet und hast du die Anschlussbeinchen korrekt verdrahtet?
Man kann leicht den Emitter mit dem Kollektor verwechseln.
Vergiss auch nicht die Vorwiderstände, die die Basis der Tran-
sistoren ansteuern.

• Hast du vielleicht den delay-Befehl vergessen? In diesem Fall
leuchten in der Anzeige nämlich alle Segmente auf.

• Wenn die Ziffern der Einer- bzw. Zehnerstelle vertauscht sind,
hast du sicherlich Pin 12 mit Pin 13 verwechselt.
Das vermeintliche Problem -- 419

Was hast du gelernt?
• In diesem Erweiterungskapitel hast du erfahren, dass man über

einen Trick, der Multiplexing genannt wird, mehr als eine Sie-
bensegmentanzeige ansteuern kann, ohne dass sich die Anzahl
der Ansteuerleitungen zu den einzelnen Segmenten erhöht.

• Es wurden lediglich die gemeinsamen Anoden nacheinander
im stetigen Wechsel über einen PNP-Transistor angesteuert.
Erfolgt dieser Wechsel in einer bestimmten, hohen Geschwin-
digkeit, wird die Trägheit der Augen ausgenutzt, die das Hin-
und Herschalten nicht mehr unterscheiden können. Es wird als
gleichmäßiges Leuchten wahrgenommen.

Workshop

Teil 1

Im ersten Teil des Workshops wollen wir analoge Werte in der
Anzeige darstellen. Schließe einen Potentiometer (z.B. 10K) an
einen der analogen Eingänge an, wie du es in der folgenden Abbil-
dung siehst, und wandle den gemessenen Wert so um, dass in der
Anzeige Werte von 00 bis 99 dargestellt werden können.

Ich will mehr Stellen

Das dürfte kein allzu großes Problem für dich darstellen, wenn du
die zweistellige Anzeige auf vier Stellen erweiterst. Dann kannst du
z.B. auch die analogen Werte eines Eingangs von 0 bis 1023 gut
darstellen. Es macht an dieser Stelle Sinn, dass du dir zuvor den
Schaltplan aufzeichnest und dich dann an diesem orientierst. Du
musst dir die Berechnung der zusätzlichen Stellen (Hunderter- bzw.
Tausenderstelle) überlegen, denn bisher hatten wir ja lediglich 2
--- Projekt 17: Die Siebensegmentanzeige (mir gehen die Pins aus)420

Stellen zur Verfügung. Du kannst auch Siebensegmentanzeigen
kaufen, die über mehrere Stellen in einem Gehäuse verfügen.

Diese 4-stellige Anzeige habe ich aus einem alten CD-Player ausge-
baut, und sie funktioniert noch einwandfrei. Wenn du keine
Anschlussbelegung im Internet finden kannst, dann ist einfach vor-
sichtiges Ausprobieren angesagt. Zuerst solltest du herausfinden, ob
du es mit einer gemeinsamen Anode oder Kathode zu tun hast. Es exis-
tieren noch sehr viele weitere Anzeigeeinheiten. Hier zwei Beispiele:

Teil 2

Um eine oder mehrere Siebensegmentanzeigen anzusteuern, hast du
die einzelnen Segmente direkt mit den digitalen Ausgängen über Vor-
widerstände verbunden. Es gibt jedoch noch weitere Varianten, um
eine Ansteuerung zu realisieren. Überlege dir einmal eine Schaltung
mit entsprechender Programmierung, um das Schieberegister
74HC595 die Arbeit erledigen zu lassen. Im Kapitel über die Digitale
Porterweiterung hast du die Grundlagen dieses ICs kennengelernt.
Bisher haben wir den Dezimalpunkt, der bei einer Siebensegmentan-
zeige eigentlich immer vorhanden ist, außen vorgelassen. Berück-
sichtige ihn doch in diesem Teil des Workshops. Pin 6 steuert den
Dezimalpunkt an.

Abbildung 17-5
Die Ansteuerung der Siebenseg-
mentanzeige vom Typ SA 39-11 GE/

0

'

�

�

1

.

�

�

�

�

� �

�

�

�	

��
Das vermeintliche Problem -- 421

Es gibt aber noch weitere Möglichkeiten, Siebensegmentanzeigen
anzusteuern:

• Über einen Baustein mit der Bezeichnung MCP23016 / -17 / -18.
Es handelt sich um Port-Expander, die über den I2C-Bus ange-
steuert werden. Dieser Bus wird Thema eines späteren Kapitels
sein, doch ich wollte es nicht versäumen, der IC in diesem
Kapitel zu erwähnen.

• Der Baustein PCF 8574 ist ebenfalls ein Port-Expander, der
über den I2C-Bus anzusteuern ist.

• Des Weiteren gibt es noch den LED-Treiber MAX7221, der
speziell zur Ansteuerung von Siebensegmentanzeigen mit
gemeinsamer Kathode entwickelt wurde. Die Daten werden
über das serielle Interface SPI (Serial Peripheral Interface) in
den Baustein geschrieben. Wenn du eine 8x8 LED Matrix
betreiben möchtest, ist dieser IC hervorragend dazu geeignet.
--- Projekt 17: Die Siebensegmentanzeige (mir gehen die Pins aus)422

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 18 18Der Reaktionstester
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Ansteuerung mehrerer Siebensegmentanzeigen

• Reaktion auf den Phasenwechsel einer Ampelschaltung

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Workshop

Wie schnell bist du?
Nachdem wir jetzt die Siebensegmentanzeige mit ihren zwei Stellen
abgehandelt haben, könnten wir eigentlich mal über eine Schaltung
nachdenken, die deine Reaktionsfähigkeit testet. Das Hochzählen
und Anzeigen einer Variablen bedeutet für dich ja kein Problem
mehr. Was würdest du von einer Schaltung halten, die auf Knopf-
druck die Ampelphasen Rot, Gelb und Grün einleitet und bei der
du beim Eintreten der Grünphase so schnell wie möglich erneut
den Taster drücken musst? Bei Grün startet der Zähler, und die
Anzeige beginnt mit dem Hochzuzählen. Je schneller du reagierst,
desto schneller wird der Zähler gestoppt und desto kleiner ist die
Zahl in der Anzeige. Starte einen Wettbewerb entweder mit dir
selbst oder mit deinen Freunden. Doch pass’ auf: Wenn du den
--- 423

Taster vor der Grünphase betätigst, wird die Schaltung das bemer-
ken und entsprechend reagieren, und dann hast du in dieser Runde
schon verloren. Du wirst sicherlich bemerken, dass unsere Schal-
tungen und auch die Programmierungen der Projekte etwas an
Umfang zunehmen. Das soll dich aber nicht weiter beunruhigen,
denn es gehört zum normalen Lernen dazu, dass Dinge komplexer
werden. Wir entleihen einfach Sketch-Code aus Themenbereichen,
die wir schon besprochen haben, und fügen ihn so zusammen, dass
hieraus daraus neue und interessante Schaltungen ergeben. In unse-
rem nächsten Beispiel kombinieren wir die Funktionalität der
Ampelsteuerung mit der unserer Siebensegmentanzeige, die einen
Wert kontinuierlich hochzählt. Das Ergebnis ist ein Reaktionstes-
ter. Natürlich müssen wir die beiden Grundschaltungen von Ampel
und Siebensegmentanzeige ein wenig anpassen, doch die Funkti-
onsweise bleibt im Wesentlichen bestehen.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Benötigte Bauteile

2 x Siebensegmentanzeige (z.B. Typ SA 39-11 GE
mit gemeinsamer Anode)

10 x Widerstand 330

2 x Widerstand 1K

2 x Transistor BC557 (PNP)

1 x Widerstand 10K

1 x Taster
-- Projekt 18: Der Reaktionstester424

Ich würde sagen, dass wir die Schaltung anhand der folgenden
Stichpunkte aufbauen bzw. programmieren:

• Nach dem Starten soll in der Anzeige 00 zu sehen sein.

• Alle LEDs der Ampel sind aus.

• Es wird auf einen Tastendruck gewartet, der den Ampelpha-
senwechsel startet.

• Wurde die Taste gedrückt, dann beginnt die Sequenz mit der
Phase Rot (2 Sekunden).

• Es folgt die Phase Gelb (2 Sekunden).

• Wenn während der Gelb-Phase die Taste gedrückt wurde,
was definitiv zu früh ist, erfolgt eine Unterbrechung der
Sequenz. Die rote LED blinkt dann schnell hintereinander
und in der Anzeige blinkt die 99. Anschließend kann ein
neuer Versuch gestartet werden, indem der Taster erneut
betätigt wird.

• Wurde die Phase Grün erreicht, beginnt der interne Zähler mit
dem Hochzuzählen und zeigt den Wert in der Anzeige an. Jetzt
muss schnellstmöglich der Taster betätigt werden, um den
Zählvorgang zu unterbrechen und den letzten Zählerstand in
der Anzeige zu präsentieren.

• Erfolgt keine Reaktion seitens des Spielers, bis der maximale
Wert 99 in der Anzeige erscheint, blinken die Anzeige und die
rote LED schnell hintereinander. Es kann dann ein neuer Ver-
such gestartet werden.

• Der Reaktionstest wird über das Drücken des Reset-Tasters auf
dem Arduino-Board erneut gestartet.

Bevor es losgeht, sollten wir einen Blick aus das entsprechende
Flussdiagramm werfen, damit du den Ablauf der einzelnen Funkti-
onen der Schaltung besser verstehst.

 je 1x rote, gelbe und grüne LED

Mehrere flexible Steckbrücken in unterschiedli-
chen Farben und Längen

Benötigte Bauteile
Wie schnell bist du? --- 425

Abbildung 18-1
Flussdiagramm zur Reaktions-

schaltung

Da der Quellcode etwas umfangreicher geworden ist, habe ich eine
nützliche Funktion der IDE verwendet und mit dieser Codezeilen
in mehrere funktionelle Blöcke unterteilt und über zusätzliche Tab-
Registerkarten in verschiedenen Fenstern platziert. Hätten wir den
gesamten Code in einem einzigen Fenster untergebracht, ginge das
sicherlich zu Lasten der Übersichtlichkeit. Bei der Fehlersuche ist
diese Art der Vorgehensweise sehr von Vorteil, wenn man z.B.
genau weiß, dass der Code in bestimmten Fenstern fehlerfrei arbei-
tet und man die Suche daher auf einen kleineren Bereich begrenzen
kann. Doch wie funktioniert die Aufteilung? Im Kapitel Arduino-

?��	��+����1��	K

����
��+Q44Q
++����
+���

���	

:�
�

�
��

L�

����
+Q,�	Q

����
+Q0�
�Q

?��	��+����1��	K L� ��+'�1�+����1��	

����
+Q0�1�Q

+++����
����
����
��+�8�
��

:�
�

?��	��+����1��	K

L�

:�
�

����
��+�8�
��
-- Projekt 18: Der Reaktionstester426

Grundlagen habe ich diese Möglichkeit kurz angesprochen, bin
jedoch nicht weiter darauf eingegangen. Das möchte ich an dieser
Stelle nachholen. Am oberen rechten Rand befindet sich ein kleines
unscheinbares Icon, das bei einem Mausklick ein Kontext-Menü
öffnet.

Auf der rechten Seite befindet sich ein Dreieck, das ich hier mit
einer roten Markierung versehen habe. Wie du siehst, sind für die-
sen Sketch schon die benötigten Tab-Registerkarten mit den
Bezeichnungen Funktionen und Siebensegmentanzeige vorhanden.
Die Registerkarte mit dem Haupt-Sketch, der die setup- bzw. loop-
Funktionen beinhaltet, befindet sich immer auf der linken Seite
und alle nachträglich hinzugefügten werden jeweils rechts davon
eingefügt. Wenn du also eine weitere Tab-Registerkarte hinzufügen
möchtest, klickst du mit der linken Maustaste auf das Piktogramm
mit dem Pfeilsymbol. Daraufhin wird das folgende Menü geöffnet:

Wähle den rot markierten Eintrag mit dem Namen New Tab aus,
wobei ein Eingabefenster unterhalb des Quellcodes angezeigt wird,
in dem du den Namen der neuen Quelldatei, der keine Leerzeichen
beinhalten darf, eingeben kannst. Anschließen musst du die Ein-
gabe mit dem Button OK bestätigen.

Bei der Kompilierung fügt der Compiler die einzelnen Tab-Register-
karten zu einer einzigen Quelldatei zusammen und übersetzt sie, als
wäre es eine einzige.
Wie schnell bist du? --- 427

Eine berechtigte Frage, Ardus! Du liegst mit deiner Vermutung
absolut richtig, denn ein Blick in das Dateisystem zeigt dir die
zusätzlichen Dateien.

Alle Dateien haben die Endung ino erhalten. Auf diese Weise wird
angezeigt, dass es sich um Arduino-Sketch-Dateien handelt.

Arduino-Sketch-Code
Sehen wir uns zunächst den Code für die Tab-Registerkarte Funkti-
onen genauer an:

// Wird aufgerufen, wenn der Taster vor der Grün-Phase gedrückt wird
void blinken(){
 digitalWrite(ledPinRot, HIGH);
 digitalWrite(ledPinGelb, LOW);
 digitalWrite(ledPinGruen, LOW);

 for(int i = 0; i < 30; i++){
 digitalWrite(ledPinRot, (i%2 == 0)?HIGH:LOW);
 delay(50); // Pause beim Blinken

 anzeige(99); // 99 bedeutet: Fehler!!! (zu früh oder zu spät gerückt)
 }
 reset();

}

// Auf Anfangswerte zurücksetzen

void reset(){
 phase = 0, startPunkt = 0, stopZeit = 0;
 anzeigeWert = 0;

 taster = false, gestoppt = false;
 digitalWrite(ledPinRot, LOW);
 digitalWrite(ledPinGelb, LOW);
 digitalWrite(ledPinGruen, LOW);
}

Wenn ich den Quellcode jetzt aufsplitte, werden dann zusätzliche
Dateien pro angelegter Tab-Registerkarte erstellt?
-- Projekt 18: Der Reaktionstester428

Diese Funktion wird aufgerufen, wenn der Taster entweder zu früh
oder überhaupt nicht betätigt wird. Die Tab-Registerkarte Sieben-
segmentanzeige beinhaltet den schon bekannten Code aus dem
Kapitel über die Siebensegmentanzeige, der lediglich an einer Stelle
leicht modifiziert wurde. Darauf gehe ich gleich näher ein.

byte segmente[10]= { B01111110, // 0
 B00110000, // 1
 B01101101, // 2
 B01111001, // 3
 B00110011, // 4
 B01011011, // 5
 B01011111, // 6
 B01110000, // 7
 B01111111, // 8
 B01111011}; // 9

void anzeige(int wert){
 byte einer, zehner;
 zehner = int(wert / 10);

 einer = wert - zehner * 10;
 ansteuerung(einer, false); // Anzeige Einestelle
 ansteuerung(zehner, true); // Anzeige Zehnerstelle

}

void ansteuerung(int a, boolean f){

 digitalWrite(einerStelle, f);
 digitalWrite(zehnerStelle, !f);
 for(int j = 6; j >= 0; j--) // Abfragen der Bits für die Segmente

 digitalWrite(pinArray[6 - j], bitRead(segmente[a], j) == 1?LOW:HIGH);
 delay(5); // Pause
}

Die Ansteuerung der Einer- bzw. Zehnerstelle habe ich etwas ver-
kürzt. Schaue dir dazu noch einmal die Lösung bei der Siebenseg-
mentanzeige an und vergleiche sie mit dieser hier. Beim Aufruf der
ansteuerung-Funktion gebe ich zusätzlich zum anzuzeigenden Wert
noch einen booleschen Wert mit. Ist dieser false, dann wird die
Einerstelle angezeigt, bei true, die Zehnerstelle. Die Funktion wer-
tet dann diesen Wert aus und steuert entweder die Einer- oder die
Zehnerstelle an:

digitalWrite(einerStelle, f);
digitalWrite(zehnerStelle, !f);

Durch das !f (NOT f) in der zweiten Anweisung wird der Wahr-
heitswert genau in das Gegenteil umgekehrt. Somit ist immer nur
Wie schnell bist du? --- 429

eine der beiden Alternativen wahr und es wird entsprechend auch
nur eine Stelle der Anzeige angesteuert.

Ich verstehe deine Aufregung, doch die Antwort ist recht simpel.
Hinter den Kulissen werden HIGH und LOW bzw. true und false
als numerische Werte angesehen. Gib doch im Serial-Monitor ein-
mal Folgendes ein:

 Serial.begin(9600);
 Serial.println(LOW, DEC); // Ausgabe des LOW-Pegels als Dezimalzahl
 Serial.println(false, DEC); // Ausgabe des false-Wertes als Dezimalzahl

Wenn du dir das Ergebnis anschaust, dann wirst du merken, dass
die gleichen Werte verwendet wurden. Ersetze LOW durch HIGH
bzw. false durch true und es kommen wieder die gleichen Werte
heraus. Aus diesem Grund habe ich eine boolesche Variable ver-
wendet, da ich sie mit dem NOT-Operator (Ausrufezeichen) in ihr
Gegenteil umkehren und damit negieren kann. Der eigentliche
Sketch-Code sieht dann wie folgt aus:

byte pinArray[] = {2, 3, 4, 5, 6, 7, 8}; // Für Siebensegmentanzeige

byte einerStelle = 12, zehnerStelle = 13;

byte ledPinRot = 9, ledPinGelb = 10, ledPinGruen = 11; // Für Ampel

byte phase = 0; // 1 = Rot, 2 = Gelb, 3 = Grün

long startPunkt = 0; // Wenn Taster gedrückt - > Startpunkt

byte anzeigeWert, stopZeit;

boolean taster = false, gestoppt = false;

void setup(){

 for(int i = 0; i < 7; i++)

 pinMode(pinArray[i], OUTPUT);

 pinMode(einerStelle, OUTPUT);

 pinMode(zehnerStelle, OUTPUT);

 pinMode(ledPinRot, OUTPUT);

 pinMode(ledPinGelb, OUTPUT);

 pinMode(ledPinGruen, OUTPUT);

}

void loop(){

Hey, hey, hey! Das ist doch nicht dein Ernst. Die digitalWrite-Funk-
tion erwartet doch entweder ein HIGH oder ein LOW im zweiten
Parameter. Wie kannst du da einfach mit true bzw. false arbeiten?
Wenn ich das richtig sehe, sind das doch vollkommen unterschiedli-
che Datentypen. Warum ist das möglich?
-- Projekt 18: Der Reaktionstester430

 taster = analogRead(0) > 1000; // taster = true wenn Analogwert >

 // 1000 ist

 if(phase < 3) anzeige(0); // Zeige am Anfang 00 in der Anzeige

 // Steuerung der Ampelphasen

 if((taster) && (startPunkt == 0)){

 phase = 1; // Beginne mit Rot

 startPunkt = millis();

 }

 if((phase == 1) && (millis() - startPunkt > 2000))

 digitalWrite(ledPinRot, HIGH);

 if((phase == 1) && (millis() - startPunkt > 4000)){

 digitalWrite(ledPinGelb, HIGH);

 phase = 2; // Gelb

 }

 if((phase == 2) && (millis() - startPunkt > 6000)){

 digitalWrite(ledPinGruen, HIGH);

 phase = 3; // Grün

 }

 // Zähle hoch, wenn LED Grün und noch nicht gestoppt wurde

 if((phase == 3) && (!gestoppt))

 anzeige(anzeigeWert++);

 // Leuchtet LED Grün und der Taster wurde gedrückt

 if((taster) && (phase == 3)){

 gestoppt = true; // Flag für gestoppt auf "wahr" setzen

 stopZeit = anzeigeWert; // Stoppzeit sichern

 }

 // Wenn gestoppt, dann Stoppzeit anzeigen

 if(gestoppt)

 anzeige(stopZeit);

 // Wenn in Gelbphase Taster gedrückt -> zu früh

 if((taster) && (phase ==2))

 blinken();

 // Wenn überhaupt nicht reagiert wird -> blinken

 if(anzeigeWert == 99)

 blinken();

}

Du fühlst dich auf den ersten Blick möglicherweise ein wenig
erschlagen, doch es ist halb so wild.

Arduino-Code-Review
Für unser Experiment benötigen wir programmtechnisch gesehen
die folgenden Variablen:
Wie schnell bist du? --- 431

Tabelle 18-1
Benötigte Variablen und deren

Aufgabe

Die einzelnen Pins zur Segmentansteuerung bzw. für die gemein-
samen Anoden haben sich nicht geändert, und ich habe sie daher
aus unserem Kapitel über die Siebensegmentanzeige übernom-
men. Hinzugekommen sind die drei Pins für die Ampel-LEDs. Als
nächstes haben wir die Variable phase, die die einzelnen Ampel-
Phasen wiederspiegelt. Die Variable startpunkt wird später benö-
tigt, um eine Zahl zu speichern, die für den Zeitpunkt steht, an
dem der Taster gedrückt wurde. Es handelt sich dabei um einen
Wert, der die Zeit in Millisekunden seit Programmstart angibt. Da
dieser Wert mit der Zeit natürlich recht groß wird, ist die Daten-
breite des Datentyps int für uns nicht groß genug dimensioniert.
Wir müssen auf long ausweichen. Die Variable anzeigewert ist für
das Hochzählen um den Wert 1 zuständig. Der jeweils resultie-
rende Wert wird beim rechtzeitigen Stoppen in der Anzeige darge-
stellt und in die Variable stopZeit übernommen. Zu guter Letzt
haben wir noch zwei Variablen des Datentyps boolean, die als
Flag, also als Anzeiger für einen bestimmten Zustand, dienen. Der
Variablen taster wird dann den Wert true, also wahr, zugewiesen,
wenn der Taster betätigt wurde. Die Variable gestoppt ist ebenfalls
true, wenn der Zählvorgang zur rechten Zeit gestoppt wurde. Ok,
dann werden wir uns den Code nun einmal genauer anschauen.

Variable Aufgabe

segmente Eindimensionales Array zur Speicherung der Segmentinformation pro Ziffer

pinArray Eindimensionales Array zur Speicherung der angeschlossenen Pins der Anzeige

einerStelle Wert des Pins für die Einerstelle

zehnerStelle Wert des Pins für die Zehnerstelle

einer Wert der Einerstelle

zehner Wert der Zehnerstelle

ledPinRot Wert des Pins für die rote Ampel-LED

ledPinGelb Wert des Pins für die gelbe Ampel-LED

ledPinGruen Wert des Pins für die grüne Ampel-LED

phase Wert für die Ampelphasen

startPunkt Wert für die Speicherung der Zeit in Millisekunden seit Tasterdruck

taster Statuswert des Tasters (gedrückt: true, nicht gedrückt: false)

anzeigeWert Zähler zum Hochzählen der Anzeige

stopZeit Wert der gestoppten Zeit

gestoppt Statuswert, wenn korrekt gestoppt wurde
-- Projekt 18: Der Reaktionstester432

Die Zeile

taster = analogRead(0) > 1000;

bedarf bestimmt einiger Erläuterung. Die Variable taster ist vom
Datentyp boolean und kann lediglich true oder false speichern. Um
diese Zeile zu verstehen, musst du von rechts nach links lesen und
eine Unterteilung in zwei getrennte Schritte vornehmen:

Bei dem ersten Schritt, der in rot markiert ist, handelt es sich um
eine Vergleichsoperation. Wenn der gemessene analoge Wert an
Pin 0 größer 1000 ist, dann liefert dieser Vergleich den Wert true
zurück, andernfalls false. Dieses Ergebnis wird im zweiten Schritt
der booleschen Variablen taster zugewiesen, der hier blau markiert
ist. Als nächstes kommen wir zur Steuerung der einzelnen Ampel-
Phasen. Diese Phasen werden in der Variablen phase gespeichert:

if(phase < 3) anzeige(0); // Zeige am Anfang 00 in der Anzeige
// Steuerung der Ampelphasen

if((taster) && (startPunkt == 0)){

 phase = 1; // Beginne mit Rot

 startPunkt = millis();

}

if((phase == 1) && (millis() - startPunkt > 2000))

 digitalWrite(ledPinRot, HIGH);

if((phase == 1) && (millis() - startPunkt > 4000)){

 digitalWrite(ledPinGelb, HIGH);

 phase = 2; // Gelb

}

if((phase == 2) && (millis() - startPunkt > 6000)){

 digitalWrite(ledPinGruen, HIGH);

 phase = 3; // Grün

}

Wurde noch keine Phase eingeleitet, was bedeutet, dass phase < 3
ist, dann ist in der Anzeige 00 zu sehen. Wird jetzt erstmalig der
Taster betätigt, dann wird der Variablen phase der Wert 1 zugewie-
sen und startpunkt erhält als Wert die seit Programmstart vergan-
gene Zeit in Millisekunden, der über die millis-Funktion ermittelt
wird. Mithilfe des Wertes in startpunkt werden die einzelnen
Ampelphasen gesteuert.
Wie schnell bist du? --- 433

Nun, die Verwendung der delay-Funktion würde den Code wohl in
der Tat verkürzen. Leider aber auch den Spaß an der Schaltung,
denn sie würde nicht mehr funktionieren. Das betreffende Problem
hatte ich schon einmal angesprochen, doch du hast es sicherlich
kurzzeitig aus deinem Speicher entfernt. Wenn ich es dir jetzt aber
nochmal erläutere, dann fällt dir sicherlich alles wieder ein. Wür-
den wir die delay-Funktion zwischen den Ampelphasen verwenden,
wie könnten wir dann z.B. ermitteln, ob zwischen Gelb-Phase und
Grün-Phase der Taster eventuell zu früh gedrückt wurde? Die
delay-Funktion unterbricht den Ablauf des Sketches für die angege-
bene Zeitdauer und macht nichts weiter, als einfach warten. Der
Sketch ist nicht in der Lage, auf weitere Einflüsse, die ggf. von
außen an das Board herangetragen werden, zu reagieren, da die
Ausführung einfach pausiert. Es ist für uns aber sehr wichtig, zu
wissen, ob unerlaubter Weise die Taste in der Gelb-Phase gedrückt
wurde. Dies erreichen wir mit dem gezeigten Code und der millis-
Funktion. Die entsprechende Überprüfung findet relativ am Ende
der loop-Funktion statt, die jetzt kontinuierlich abgearbeitet wird:

if((taster) && (phase ==2))
 blinken();

Wurde der Taster in der Gelb-Phase (phase = 2) gedrückt, dann
kommt es zu einer Anzeige über den verfrühten Tastendruck, siehe
blinken-Funktion in der Funktionen-Registerkarte. Ist die Grün-
Phase (phase = 3) erreicht, dann wird der interne Zähler, der über
die Variable anzeigeWert realisiert wurde, bei jedem loop-Durchlauf
um den Wert 1 erhöht. Das geschieht jedoch nur, wenn die boole-
sche Variable gestoppt noch den Wert false aufweist. Das Aus-
rufezeichen vor der Variablen bedeutet NICHT (not) und bewirkt
eine Umkehrung des logischen Wertes.

if((phase == 3) && (!gestoppt))
 anzeige(anzeigeWert++);

Wurde die Grün-Phase erreicht, kann nach Kräften auf die Taste
gedrückt werden:

Oh Mann, warum gehst du den komplizierten Weg über die millis-
Funktion. Warum verwendest du nicht einfach die delay-Funktion,
um die Pausen zwischen den einzelnen Ampelphasen zu steuern? Ist
das nicht viel einfacher?
-- Projekt 18: Der Reaktionstester434

if((taster) && (phase == 3)){
 gestoppt = true; // Flag für gestoppt auf "wahr" setzen
 stopZeit = anzeigeWert; // Stopzeit sichern

}

Dadurch wird das Flag gestoppt auf true gesetzt und der anzeige-
Wert in die Variable stopZeit gerettet. Erst jetzt wird beim nächsten
loop-Durchlauf auf die nachfolgende Bedingung positiv reagiert,
denn die Variable gestoppt ist wahr:

if(gestoppt)

 anzeige(stopZeit);

Es wird die Funktion anzeige aus der SiebensegmentAnzeige-Regis-
terkarte mit der stopZeit aufgerufen, was zur Folge hat, dass die
entsprechende Zahl in der Anzeige erscheint. Game over!

Der Schaltplan
Die Schaltung gleicht der für die Siebensegmentanzeige. Es sind
lediglich der Taster und die drei LEDs zur Ampelansteuerung hin-
zugekommen.

Abbildung 18-2
Die Ansteuerung von zwei Sieben-
segmentanzeigen
Wie schnell bist du? --- 435

Schaltungsaufbau
Abbildung 18-3

Aufbau der Reaktionsschaltung auf
dem Breadboard

Wie du auf diesem Breadboard siehst, ist die Verwendung unter-
schiedlicher Kabelfarben unerlässlich. Es sollte aber nicht das pri-
märe Ziel sein, das ganze Konstrukt so bunt wie möglich zu
gestalten, sondern bestimmte Leitungsgruppen einer Farbe zuzu-
ordnen. Ich möchte dir diesbezüglich, wie ich es auch schon einmal
erwähnt habe, keine Vorschriften machen. Denke dir selbst ein ent-
sprechendes System aus. Es ist allerdings sinnvoll, für Masseleitun-
gen schwarze und für die Stromversorgungsleitungen (von z.B.
+5V) rote Kabel zu verwenden.

Troubleshooting
Dieses Kapitel gleicht im Aufbau dem vorangegangenen. Du kannst
also einfach nochmal dort nachlagen, falls etwas nicht funktionie-
ren sollte.
-- Projekt 18: Der Reaktionstester436

Was hast du gelernt?
• In diesem Kapitel haben wir geschickt zwei Sketche aus unter-

schiedlichen Kapiteln (Ampel- bzw. Siebensegmentansteue-
rung) miteinander kombiniert, um einen Reaktionstester zu
programmieren.

• Du hast außerdem die Möglichkeit der IDE kennengelernt, den
Code auf mehrere Dateien zu verteilen. Das trägt sehr zur
Übersichtlichkeit bei.

• Des Weiteren hast du gesehen, wie du über die millis-Funktion
Zeitabläufe koordinieren bzw. entsprechend darauf reagieren
kannst.

Workshop

Teil 1

Bisher konntest du nach einem erfolgreichen Reaktionstest die
Schaltung lediglich über den Reset-Taster auf dem Arduino-Board
zurücksetzen. Erweitere doch die Schaltung bzw. die Programmie-
rung so, dass dies entweder durch den Start-Stopp-Taster oder
einen weiteren Taster erfolgen kann. Denke daran, dass in diesem
Fall bestimmte Variablen auf ihre Startwerte zurückgesetzt werden
müssen.

Teil 2

Da die Pausenzeiten zwischen den Phasenwechseln immer gleich
sind, kann man sich mit der Zeit ein wenig darauf einstellen und
nach Gefühl einfach mal die Taste drücken. Ändere doch den
Sketch so ab, dass die Pause beim Phasenwechsel von Gelb nach
Grün variabel ist und über eine Zufallsfunktion gesteuert wird. Du
weißt dann nicht, wann die Ampel endlich auf Grün umspringt und
du den Taster betätigen musst. Natürlich sollte sich die Pausenzeit
in einem gewissen Rahmen bewegen und sich nicht bis zu einer
Minute ausdehnen. Ich denke, dass eine Zeitspanne von 1 bis 5
Sekunden ausreichend ist. Aber das liegt natürlich bei dir. Experi-
mentiere ein wenig.
Wie schnell bist du? --- 437

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 19 19Das KeyPad
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
f den
n

-> also: manuell auf den Arbeitsseiten ziehen!!!er)

Scope
In diesem Experiment behandeln wir folgende Themen:

• Die Herstellung eines eigenen KeyPads

• Wie können die einzelnen Taster elegant abgefragt werden?

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Workshop

Was ist ein KeyPad?
Was ein Taster ist und wie er arbeitet, hast du schon in diversen
Kapiteln kennengelernt. Für manch ein Projekt ist es aber notwen-
dig, mehrere Taster in einer Matrix, also in Zeilen und Spalten
anzuordnen, um z.B. mit den Ziffern von 0 bis 9 und zwei Sonder-
tasten wie * und # arbeiten zu können. Wo wird das benötigt?
Nun, du verwendest diese Kombination von Tasten täglich, näm-
lich beim Telefonieren.

Abbildung 19-1
Die Wahltasten eines Telefons
--- 439

Es handelt sich um eine Matrix von 4x3 (4 Zeilen und 3 Spalten)
Tasten. Diese Matrix wird auch KeyPad – kleine Tastatur – genannt
und es gibt sie fertig in unterschiedlichen Varianten zu kaufen. Im
folgenden Bild siehst du zwei Folien-KeyPads. Das linke besitzt
sogar ein paar zusätzliche Sondertasten A bis D, die u.U. sehr sinn-
voll sein können, falls Dir die 12 Tasten des rechten KeyPads für
dein Projekt nicht ausreichen sollten.

Abbildung 19-2
Ein 4x4 Folien-KeyPad mit

16 Tasten und ein 4x3 Folien-Key-
Pad mit 12 Tasten

Nun Ardus, das kannst du natürlich so versuchen zu realisieren und
es würde auch funktionieren, wenn da nicht die physikalischen
Grenzen des Arduino Uno-Boards wären. Ein Ausweg wäre das
Arduino-Mega Board, das sehr viel mehr Schnittstellen besitzt. Aber
wir wollen die Sache natürlich elegant lösen. Es gibt übrigens eine
fertige KeyPad-Bibliothek auf der Arduino-Internetseite, doch wir
wolle an dieser Stelle die Sache selbst in die Hand nehmen. Wir
widmen uns dem 4x3 KeyPad, das wir selbst bauen wollen. Die fol-
gende Liste zeigt Dir, welche Materialien erforderlich sind.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Wenn ich mir vorstelle, ich müsste z.B. das 4x4 Folien-KeyPad an
meinen Arduino anschließen, stünde ich wohl vor einigen Problemen,
da mir sicherlich die Pins ausgingen. Ich könnte allerdings alle 16
Tasten z.B. auf einer Seite mit +5V verbinden und die anderen 16
Anschlüsse dann mit den digitalen Eingängen. Zur Not ließen sich ja
noch die analogen Eingänge missbrauchen. Das haben wir doch auch
schon in der Vergangenheit gemacht.
--- Projekt 19: Das KeyPad440

Vorüberlegungen
Du hast eben angemerkt, dass wir für unser 4x4 KeyPad so um die
16 Leitungen benötigen, um alle Tasten abzufragen. Für ein 4x3
KeyPad wären es nur noch 12 Leitungen; das sind aber meiner Mei-
nung nach immer noch zu viele. Es gibt eine elegantere Lösung,
deren Grundidee du schon bei der Ansteuerung der beiden Sieben-
segmentanzeigen kennengelernt hast. Was haben Siebensegment-
anzeigen mit diesen Tastern zu tun, fragst du dich jetzt bestimmt.
Das Stichwort lautet Multiplexing. Es bedeutet, das bestimmte Sig-
nale zusammengefasst und über ein Übertragungsmedium
geschickt werden, um den Aufwand an Leitungen zu minimieren
und so den größtmöglich Nutzen zu erzielen. Bei den Siebenseg-
mentanzeigen wurden die Steuerleitungen zweier Segmente parallel
geschaltet und zur Ansteuerung beider genutzt. Auf diese Weise
werden 7 bzw. 8 Leitungen pro Segment eingespart. Die Lösung zur

Benötigte Bauteile

12 x Taster

1 x Set Stapelbare Buchsenleisten (2 x 8 + 2 x 6)

1 x Platine mit den Maßen 10 x 10 oder besser
16 x 10 (dann kannst du 2 Shields daraus her-
stellen) Ich habe den Ausschnitt für das Shield
schon markiert und werde gleich näher darauf
eingehen.

Litze in ggf. unterschiedlichen Farben
Was ist ein KeyPad? --- 441

Abfrage der einzelnen Taster eines KeyPads wurde denkbar einfach
realisiert. Doch zuvor zeige ich Dir die Verdrahtung der 12 Taster.

Abbildung 19-3
Die Verdrahtung der 12 Taster eines

4x3 KeyPads

Stelle Dir einfach ein Drahtgitter mit 4x3 Drähten vor, die überein-
ander gelegt wurden, jedoch keine Berührungspunkte untereinan-
der aufweisen. Genau das zeigt diese Grafik. Du siehst die 4 blauen
horizontalen Drähte, die in Zeilen mit den Bezeichnungen 0 bis 3
angeordnet sind. Darüber liegen in einem geringen Abstand die 3
roten vertikalen Drähte in Spalten mit den Bezeichnungen 0 bis 2.
An jedem Kreuzungspunkt befinden sich kleine Kontakte, die
durch das Herunterdrücken des Tasters den jeweiligen Kreuzungs-
punkt so verbinden, so dass er elektrisch leitend wird und die
betreffende Zeile bzw. Spalte eine elektrische Strecke bildet. Am
besten schaust du Dir das in der folgenden Grafik einmal genauer
an. Es wurde der Taster mit der Nummer 5 gedrückt.

Abbildung 19-4
Die Taste 5 wurde gedrückt (Die

dicken Linien zeigen den
Stromfluss)

Der Strom kann demnach von Zeile 2 über den Kreuzungspunkt
Nummer 5 in Spalte 1 fließen und dort registriert werden.

� � �

� � �

� � �

/ � 0

���
	��

��

��

/) 4

4

)

/

3

� � �

� � �

� � �

/ � 0

���
	��

��

��

/) 4

4

)

/

3

--- Projekt 19: Das KeyPad442

Ok, Ardus! Ich sehe, dass du das Prinzip noch nicht ganz verstan-
den hast. Das ist natürlich kein Beinbruch. Hör zu. Etwas unscharf
formuliert schicken wir nacheinander ein Signal durch die Zeilen 0
bis 3 und fragen dann ebenfalls nacheinander den Pegel an den
Spalten 0 bis 2 ab. Der Ablauf erfolgt dann wie folgt:

High-Pegel an Draht in Reihe 0

• Abfragen des Pegels an Spalte 0

• Abfragen des Pegels an Spalte 1

• Abfragen des Pegels an Spalte 2

High-Pegel an Draht in Reihe 1

• Abfragen des Pegels an Spalte 0

• Abfragen des Pegels an Spalte 1

• Abfragen des Pegels an Spalte 2

etc.

Diese Abfrage geschieht natürlich dermaßen schnell, dass es in
einer einzigen Sekunde zu so vielen Durchläufen kommt, so dass
kein einziger Tastendruck unter den Tisch fällt. Das Shield habe ich
mit folgenden Pinnummern der digitalen Ein- bzw. Ausgänge fest
verdrahtet:

Abbildung 19-5
Verdrahtung der einzelnen Zeilen
bzw. Spalten mit den digitalen Pins

Wenn aber an allen Zeilen gleichzeitig eine Spannung anliegt, könnte
auch z.B. die darüber liegende Taste 2 gedrückt werden und ich
würde an Spalte 1 einen entsprechenden Impuls registrieren. Wie
kann das unterschieden werden?

� � �

� � �

� � �

/ � 0

���
	��

��

��

(
�+C (
�+< (
�+;

(
�+/

(
�+3

(
�+5

(
�+2
Was ist ein KeyPad? --- 443

Wir machen es an dieser Stelle etwas spannender und erstellen eine
eigene Library, die du später in anderen Projekten verwenden
kannst. Sie stellt eine gewisse Grundfunktionalität zur Verfügung
und kann bei Bedarf natürlich abgeändert oder erweitert werden.
Der Hauptsketch fragt kontinuierlich das Shield ab, welche Taste
gedrückt wurde. Das Resultat wird zur Visualisierung an den
Serial-Monitor ausgegeben. Folgende Spezifikationen habe ich mir
dabei ausgedacht:

• Drückst du keine Taste, soll auch kein Zeichen im Serial-Moni-
tor ausgegeben werden

• Wird eine Taste nur kurz gedrückt, so erscheint die entspre-
chende Ziffer bzw. das Zeichen im Monitor

• Drückst du eine Taste über einen längeren Zeitraum, der ent-
sprechend vorher festgelegt werden kann, dann erscheint die
Ziffer bzw. das Zeichen solange mehrfach hintereinander im
Monitor, bis du die Taste wieder loslässt

Arduino-Sketch-Code

Hauptsketch mit Code-Review
Ich beginne am besten mit dem Hauptsketch, der aufgrund der aus-
gelagerten Funktionalität in einer Library sehr spartanisch und
übersichtlich anmutet. Doch warte mal ab. Es wird noch um eini-
ges komplexer und interessanter:

#include "MyKeyPad.h"
int rowArray[] = {2, 3, 4, 5}; // Array mit Zeilen Pin-Nummern

 // initialisieren
int colArray[] = {6, 7, 8}; // Array mit Spalten Pin-Nummern
 // initialisieren

MyKeyPad myOwnKeyPad(rowArray, colArray); // Instanziierung eines
 // Objektes

void setup(){
 Serial.begin(9600); // Serielle Ausgabe vorbereiten
 myOwnKeyPad.setDebounceTime(500); // Prellzeit auf 500ms setzen

}

void loop(){
 char myKey = myOwnKeyPad.readKey(); // Abfragen des gedrückten
 // Tasters
--- Projekt 19: Das KeyPad444

 if(myKey != KEY_NOT_PRESSED) // Abfrage, ob irgendein Taster
 // gedrückt
 Serial.println(myKey); // Ausgabe des Tastenzeichens
}

Die erste Zeile bindet, wie du das schon bei der Würfel-Library
kennengelernt hast, die Header-Datei ein, um die Bibliothek nutzen
zu können. Auf deren Inhalt kommen wir gleich zu sprechen.
Zuerst deklarieren wir zwei Arrays und initialisieren sie mit den
Pinnummern der Zeilen- bzw. Spaltenanschlüsse des KeyPads. Dies
ermöglicht eine höhere Flexibilität, damit bei abweichenden Kon-
struktionen entsprechend reagiert werden kann. Die Zeile

MyKeyPad myOwnKeyPad(rowArray, colArray);

generiert die Instanz myOwnKeyPad der Klasse MyKeyPad, die in
der Library definiert ist, und übergibt die beiden Arrays an den
Konstruktor der Klasse. Diese Informationen werden dort benötigt,
um die Auswertung zu starten, welche der 12 Tasten denn gedrückt
wurde. Die Festlegung der Prellzeit erfolgt mit der folgenden Zeile:

myOwnKeyPad.setDebounceTime(500);

Dadurch wird die Methode setDebounceTime mit dem Argument
500 aufgerufen. Im Anschluss erfolgt innerhalb der loop-Funktion
die kontinuierliche Abfrage der Instanz, nach dem Motto: »Hey,
nenne mir mal die Taste, die gerade auf dem KeyPad gedrückt wird!«
Ermöglicht wird dies durch den Aufruf der folgenden Zeile:

char myKey = myOwnKeyPad.readKey();

Sie weist das Ergebnis der Abfrage der Variablen myKey des Daten-
typs char zu. Jetzt können wir entsprechend darauf regieren. Das
müssen wir auch, denn die Methode liefert unabhängig davon, ob
eine Taste gedrückt wurde oder nicht, immer einen Wert zurück.
Du möchtest aber bestimmt nur dann etwas in der Anzeige sehen,
wenn eine Taste gedrückt wird. Aus diesem Grund wird der Wert
KEY_NOT_PRESSED zurückgeliefert, falls keine Taste gedrückt
wird. Die if-Abfrage

if(myKey != KEY_NOT_PRESSED)
 Serial.println(myKey);

sendet also nur dann die entsprechende Tastenbezeichnung an den
Serial-Monitor, wenn du wirklich eine Taste drückst.
Was ist ein KeyPad? --- 445

Das kann ich recht schnell aufklären, denn ich wäre im nächsten
Schritt sowieso zur Header-Datei gekommen. Dort sind zahlreiche
symbolische Konstanten definiert. Hinter der eben genannten Kon-
stanten verbirgt sich das Zeichen«-», das immer dann gesendet
wird, wenn kein Taster gedrückt wird. Ich habe ihr einen sprechen-
den Namen gegeben, denn dadurch wird der Code lesbarer.

Header-Datei mit Code-Review
Die Header-Datei dient, wie schon erwähnt, der Bekanntgabe der
in der eigentlichen Klassendefinition benötigten Felder und Metho-
den. Schauen wir mal, was dort zu finden ist:

#ifndef MYKEYPAD_H
#define MYKEYPAD_H

#if ARDUINO < 100
#include <WProgram.h>
#else

#include <Arduino.h>
#endif

#define KEY_NOT_PRESSED '-' // Wird benötigt, wenn keine Taste
gedrückt wird
#define KEY_1 '1'
#define KEY_2 '2'
#define KEY_3 '3'
#define KEY_4 '4'
#define KEY_5 '5'
#define KEY_6 '6'
#define KEY_7 '7'
#define KEY_8 '8'
#define KEY_9 '9'
#define KEY_0 '0'
#define KEY_STAR '*'
#define KEY_HASH '#'

class MyKeyPad{
 public:

 MyKeyPad(int rowArray[], int colArray[]); // Parametrisierter
 // Konstruktor
 void setDebounceTime(unsigned int debounceTime); // Setzen der

 // Prellzeit
 char readKey(); // Ermittelt die gedrückte Taste auf dem KeyPad

Bevor ich den Anschluss verpasse: Was verbirgt sich denn genau hin-
ter KEY_NOT_PRESSED?
--- Projekt 19: Das KeyPad446

Was ist ein KeyPad? --- 447

 private:
 unsigned int debounceTime; // Private Variable für die Prellzeit
 long lastValue; // Letzte Zeit der millis-Funktion

 int row[4]; // Array für die Zeilen
 int col[3]; // Array für die Spalten
};

#endif

Im oberen Teil siehst du die zahlreichen symbolischen Konstanten
und die entsprechenden Zeichen. Darunter folgt die formelle Klas-
sendefinition ohne Ausformulierung des Codes, der sich bekann-
terweise in der cpp-Datei befindet.

Also Ardus, du hast ja keine hohe Meinung von mir! Natürlich wäre
ich darauf zu sprechen gekommen. Der Datentyp int ist dir ja
geläufig. Er erstreckt sich vom negativen bis zum positiven Werte-
bereich. Das Schlüsselwörtchen unsigned davor besagt, dass die
Variable vorzeichenlos deklariert wird, was zusätzlich noch bedeu-
tet, dass sich ihr Wertebereich verdoppelt, da die negativen Werte
wegfallen. Dieser Datentyp benötigt ebenfalls wie int zur Speiche-
rung 2 Bytes, die jetzt komplett den positiven Werten zur
Verfügung stehen. Der Wertebereich erstreckt sich von 0 bis 65.
535.

CPP-Datei mit Code-Review
Jetzt geht es ein wenig an’s Eingemachte.

#include "MyKeyPad.h"

// Parametrisierter Konstruktor
MyKeyPad::MyKeyPad(int rowArray[], int colArray[]){
 // Kopieren der Pin-Arrays
 for(int r = 0; r < 4; r++)
 row[r] = rowArray[r];
 for(int c = 0; c < 3; c++)
 col[c] = colArray[c];
 // Programmieren der digitalen Pins
 for(int r = 0; r < 4; r++)
 pinMode(row[r], OUTPUT);
 for(int c = 0; c < 3; c++)
 pinMode(col[c], INPUT);
 // Initialwert für debounceTime auf 300ms festlegen
 debounceTime = 300;
}

Hey, stopp mal kurz. Du willst mir schon wieder etwas unterjubeln,
was ich noch nicht kenne. Was bedeutet denn unsigned int bei der
Variablendeklaration. Es handelt sich doch um eine solche, oder!?

// Methode zum Setzen der Prellzeit
void MyKeyPad::setDebounceTime(unsigned int time){
 debounceTime = time;

}

// Methode zum Ermitteln des gedrückten Tasters auf dem KeyPad

char MyKeyPad::readKey(){
 char key = KEY_NOT_PRESSED;
 for(int r = 0; r < 4; r++){
 digitalWrite(row[r], HIGH);
 for(int c = 0; c < 3; c++){

 if((digitalRead(col[c]) == HIGH)&&(millis() - lastValue) >=
 debounceTime){
 if((c==2)&&(r==3)) key = KEY_1;
 if((c==1)&&(r==3)) key = KEY_2;
 if((c==0)&&(r==3)) key = KEY_3;
 if((c==2)&&(r==2)) key = KEY_4;
 if((c==1)&&(r==2)) key = KEY_5;
 if((c==0)&&(r==2)) key = KEY_6;
 if((c==2)&&(r==1)) key = KEY_7;
 if((c==1)&&(r==1)) key = KEY_8;
 if((c==0)&&(r==1)) key = KEY_9;
 if((c==2)&&(r==0)) key = KEY_STAR; // *
 if((c==1)&&(r==0)) key = KEY_0;
 if((c==0)&&(r==0)) key = KEY_HASH; // #
 lastValue = millis();

 }
 }
 digitalWrite(row[r], LOW); // Zurücksetzten auf Ursprungspegel
 }
return key;
}

Schauen wir uns zuerst den Konstruktor an. Er dient dazu, das zu
generierende Objekt zu initialisieren und mit definierten Startwer-
ten zu versehen. Durch den Einsatz eines Kontruktors sollte die
Instanz nach Möglichkeit fertig initialisiert sein, so dass weitere
Methodenaufrufe zu Initialisierung in der Regel nicht mehr not-
wendig erscheinen. Sie werden nur noch zur Korrektur bestimmter
Parameter herangezogen, die sich ggf. im Verlauf eines Sketches
ändern müssen oder können. Der Konstruktor wird nur einmalig
und implizit bei der Instanziierung aufgerufen und danach im
Leben eines Objektes nie wieder. In unserem Beispiel werden ihm
beim Aufruf die Zeilen- bzw. Spalten-Arrays übergeben, so dass
diese dann über zwei for-Schleifen an die privaten Arrays überge-
ben werden können:
--- Projekt 19: Das KeyPad448

// Kopieren der Pin-Arrays
 for(int r = 0; r < 4; r++)
 row[r] = rowArray[r];

 for(int c = 0; c < 3; c++)
 col[c] = colArray[c];

Im Anschluss werden die digitalen Pins initialisiert bzw. deren
Flussrichtungen festgelegt:

// Programmieren der digitalen Pins
 for(int r = 0; r < 4; r++)

 pinMode(row[r], OUTPUT);
 for(int c = 0; c < 3; c++)
 pinMode(col[c], INPUT);
 // Initialwert für debounceTime auf 300ms festlegen
 debounceTime = 300;

Ich sage mal »Jein«, Ardus! Dem Konstruktor fehlt in der Tat die
Angabe über die Prellzeit. Aber sieh’ Dir doch mal die letzte Zeile
im Konstruktor an. Dort wird die Zeit auf 300ms gesetzt. Es ist
quasi eine hart verdrahtete Initialisierung, wie man in Program-
miererkreisen so schön sagt. Falls Dir der Wert nicht zusagt, kannst
du ihn immer noch nach deinen eigenen Bedürfnissen anpassen –
so wie ich das im Übrigen auch mit dem Aufruf der Methode setDe-
bounceTime gemacht habe. Der Wert von 500ms erschien mir hier
passender. Natürlich hätte ich das auch gleich so festlegen können,
doch ich wollte Dir diese Möglichkeit aufzeigen, damit du später
vielleicht in deinen eigenen Sketchen entsprechend experimentie-
ren kannst. Die eigentliche Arbeit übernimmt die Methode read-
Key, die über die loop-Schleife immer und immer wieder aufgerufen
wird, um auf einen Tastendruck sofort reagieren zu können. Zu
Beginn des Methodenaufrufes wird über die Zeile

char key = KEY_NOT_PRESSED;

der Wert des Feldes key stets mit einem Initialwert versehen.
Schaue in der Header-Datei nach, um welches Zeichen es sich han-

Du hast gerade gesagt, dass ein Objekt über den Konstruktor immer
komplett instanziiert werden sollte. Du übergibst dem Konstruktor
aber lediglich die Pin-Arrays für Zeilen und Spalten. Ein weiterer
wichtiger Parameter ist aber auch die Prellzeit. Die wird aber nicht
über den Konstruktor an das Objekt weitergegeben. Dafür hast du
aber eine eigene Methode, die das erledigen soll. Widerspricht das
nicht deiner Aussage von eben?
Was ist ein KeyPad? --- 449

delt. Wenn nämlich keine Taste gedrückt wird, ist es genau dieses
Zeichen, dass als Ergebnis zurückgeliefert wird. Jetzt erfolgt der
Aufruf der zwei ineinander verschachtelten for-Schleifen. Die erste
Zeile des KeyPads wird über

digitalWrite(row[r], HIGH);

mit HIGH-Pegel versehen. Anschließend werden alle Spalten auf
deren Pegel hin abgefragt.

...

for(int c = 0; c < 3; c++){
 if((digitalRead(col[c]) == HIGH)&&(millis() - lastValue) >=
 debounceTime){

 if((c==2)&&(r==3)) key = KEY_1;
 if((c==1)&&(r==3)) key = KEY_2;
 if((c==0)&&(r==3)) key = KEY_3;
 if((c==2)&&(r==2)) key = KEY_4;
 if((c==1)&&(r==2)) key = KEY_5;
 if((c==0)&&(r==2)) key = KEY_6;
 if((c==2)&&(r==1)) key = KEY_7;
 if((c==1)&&(r==1)) key = KEY_8;
 if((c==0)&&(r==1)) key = KEY_9;
 if((c==2)&&(r==0)) key = KEY_STAR; // *
 if((c==1)&&(r==0)) key = KEY_0;
 if((c==0)&&(r==0)) key = KEY_HASH; // #
 lastValue = millis();
 }
}

...

Wenn eine Spalte ebenfalls einen HIGH-Pegel aufweist und
zusätzlich die Prellzeit berücksichtigt wurde, dann ist die erste if-
Bedingung erfüllt und alle nachfolgenden if-Bedingungen werden
ausgewertet. Trifft eine Bedingung hinsichtlich der Zeilenzähler r
und der Spaltenzähler c zu, dann wird das Feld key mit dem ent-
sprechenden Wert initialisiert und am Ende der Methode über die
return-Anweisung an den Aufrufer zurückgeliefert. Nach dem kom-
pletten Durchlauf der inneren Schleife muss natürlich die gerade
mit HIGH-Pegel versehene Zeile wieder mit LOW-Pegel auf ihren
Ausgangszustand zurückgesetzt werden. Bliebe der Zustand HIGH
bestehen, dann wäre eine gezielte Abfrage einer einzigen Zeile nicht
mehr möglich. Alle Zeilen hätten nach einem Durchlauf der äuße-
ren Schleife einen HIGH-Pegel und das brächte die ganze Abfrage-
logik ganz schön durcheinander.
--- Projekt 19: Das KeyPad450

Aber ja, Ardus! Die millis-Funktion liefert die Anzahl der Mil-
lisekunden seit Sketchstart zurück. Im Feld lastValue wird nach der
Abarbeitung der inneren Schleife der letzte Wert sozusagen zwi-
schengespeichert. Wird jetzt die Schleife erneut aufgerufen, dann
wird die Differenz zwischen dem aktuellen Millisekundenwert und
dem vorherigen Wert gebildet. Nur, wenn sie größer als die festge-
legte Prellzeit ist, wird die Bedingung als wahr erkannt. Sie steht
jedoch in einer logischen Und-Verknüpfung mit dem davor ange-
führten Ausdruck in Verbindung.

if((digitalRead(col[c]) == HIGH)&&(millis() - lastValue) >=
 debounceTime)...

Nur wenn beide Bedingungen das logische Ergebnis wahr an die if-
Anweisung liefern, wird mit der nachfolgende Klammer fortgefah-
ren. Mit diesem Konstrukt kannst du eine zeitliche Unterbrechung
erzielen, die so auch in einigen Sketches vorkommt.

Der Schaltplan
Die Schaltung ist recht simpel aufgebaut, aber die Anforderung an
die Programmierung ist ein wenig gestiegen.

Abbildung 19-6
Die Ansteuerung unseres KeyPads

Die Sache mit der Prellzeit ist mir irgendwie noch nicht so ganz klar.
Bitte erkläre mir noch einmal die betreffende Funktion. Warum sie
eingesetzt werden muss, habe ich verstanden, doch wie funktioniert
das Ganze an der Stelle?
Was ist ein KeyPad? --- 451

Richtig, Ardus! Aber das KeyPad sollte relativ einfach gehalten wer-
den, und falls nicht gerade der Blitz in deinen Sessel fährt und somit
eine hohe statische Verunreinigung deiner Umgebung hervorruft,
funktioniert das wunderbar. Ich hatte keine Probleme mit dieser
Schaltung. Probiere es selbst einmal aus. Aber wenn wir schon
beim Thema sind, dann schreibe doch den Sketch so um, dass die
internen Pullup-Widerstände genutzt werden. Das Shield brauchst
du dafür nicht zu modifizieren. Lediglich der Code muss ein wenig
angepasst werden. Hier ein kleiner Tipp zum Einstieg: Werden die
Pullups aktiviert, dann musst du die einzelnen Pins statt auf HIGH-
jetzt auf LOW-Pegel hin abfragen. Den Rest musst du aber schon
selbst herausfinden. Betrachte es als Teil des gleich folgenden
Workshops.

Shieldaufbau
Abbildung 19-7

Aufbau des KeyPads mit einem
eigenen Shield

Der Shieldaufbau sieht doch schon nicht schlecht aus, oder? Ich
hatte Dir eingangs versprochen, Dir zu zeigen, wie du die entspre-
chende Platinengröße erhältst. Das Foto mit der Platine, das du zu
Beginn des Kapitels gesehen hast, war schon mit Markierungen ver-
sehen, die die endgültige Shieldgröße markierten. Detailliertere
Informationen zur Herstellung findest du im Kapitel über den
Shieldbau.

Eine Sache fällt mir bei diesem Schaltbild sofort auf. Wird kein Taster
betätigt, dann hängen die digitalen Eingänge 6, 7 und 8 quasi in der
Luft. Hast du nicht zu Beginn einmal gesagt, dass ein Eingang immer
einen definierten Pegel haben sollte?
--- Projekt 19: Das KeyPad452

Abbildung 19-8
Shieldgröße anhand der
Lochabstände

Auf dem Bild erkennst du die genauen Positionen der Buchsenleisten
und der Taster. Zähle einfach die einzelnen Löcher auf der Platine
und positioniere anschließend die Bauteile. Beginne mit dem Einzu-
löten aber erst dann, wenn du alles auf die Platine gesteckt hast. Auf
diese Weise vermeidest du eine Fehlpositionierung und ein Fehler
fällt Dir sofort auf. Wenn du die einzelnen Bauteile sofort nach dem
Aufstecken festlötest, kann es passieren, dass Dir ein Fehler erst spä-
ter auffällt und du alles wieder herauslöten musst. Die Rückseite der
Platine sieht nach der vollständigen Verlötung der Bauteile bzw. der
einzelnen Drahtverbindungen wie folgt aus:

Abbildung 19-9
Die Rückseite der Platine

����
		

�
�

��
��

		

�

�

��
��
�$
	��

��
�

1�
$�

�
�	
��
��
�

/4+HE����
/2
+HE

��
��
Was ist ein KeyPad? --- 453

Die grünen Kabel stellen die Verbindungen zu den Zeilen, die gel-
ben zu den Spalten her. Die roten Kabel sind die mittleren Spalten-
verbindungen, die über die horizontalen Drähte führen.

Troubleshooting
Da es einiges an Lötaufwand bedeutet, dieses Shield zusammen
zubauen, können sich zahlreiche Fehler einschleichen:

• Überprüfe, ob die einzelnen Drähte mit den richtigen Pins ver-
bunden wurden.

• Achte auf etwaige Kurzschlüsse untereinander. Nimm am bes-
ten eine Lupe zur Hand und wirf einen Blick zwischen die ein-
zelnen Lötverbindungen. Ein haarfeiner Schluss ist mit bloßem
Auge meist nicht zu erkennen.

• Hast du die einzelnen Taster richtig untereinander verbunden,
so dass sie Zeilen bzw. Reihen bilden? Schaue Dir noch einmal
den Schaltplan an.

Was hast du gelernt?
• Du hast gesehen, dass man sich mit sehr einfachen und günsti-

gen Bauteilen ein KeyPad selbst herstellen kann. Wenn du die
nötige Geduld besitzt und den Wunsch hegst, selbst einmal
etwas zu bauen und nicht immer auf fertige Komponenten aus
den Geschäften zurückzugreifen, dann war das bestimmt ein
passender Einstieg, der dich hoffentlich dazu animiert hat, kre-
ativ zu werden bzw. zu bleiben.

• Ich denke, dass das Löten, das in den Anfängen der elektroni-
schen Basteleien vor einigen Jahrzehnten exzessiv praktiziert
wurde, heutzutage etwas aus der Mode gekommen ist. Doch
ich hoffe, dass dich der Geruch von geschmolzenem Lötzinn
und verbranntem Plastik ebenso in seinen Bann gezogen hat
wie mich in meiner Jugend.

• Wir haben zusammen eine eigene Klasse erstellt, die für das
Abfragen der Taster-Matrix genutzt werden kann. Du hast
dabei sicherlich von den Grundlagen der OOP profitiert, die
wir zuvor erläutert hatten.
--- Projekt 19: Das KeyPad454

Workshop
Die KeyPad-Library ist im Moment noch Teil deines Sketches, den
du erstellt hast. Ich denke, dass es eine gute Idee ist, diese Library
nun für alle weiteren Sketches, die davon Gebrauch machen sollen,
an einen zentralen Ort kopierst. Falls du vergessen haben solltest,
wo das ist, kannst du noch einmal einen Blick in das Kapitel über
den Elektronischen Würfel werfen, in dem du das erste Mal eine
eigene Library erstellt hast. Dort findest du die notwendigen Infor-
mationen. Des Weiteren solltest du deine Library um die Datei key-
words.txt erweitern. Trage dort die erforderlichen Schlüsselwörter
ein, die in der Arduino-IDE farblich hervorgehoben werden sollen.
Was ist ein KeyPad? --- 455

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 20 20Das KeyPad
(Diesmal ganz anders)
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Die Herstellung eines eigenen KeyPads

• Wie können die einzelnen Taster eleganter abgefragt werden?

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Ein Zahlen-Rate-Spiel

• Workshop

Noch ein KeyPad?
Was ein KeyPad ist und wie du es selbst herstellen kannst, hast du
ja im letzten Kapitel schon gesehen. Wie, wenn ich dir nun erzählen
würde, dass wir anstelle der 7 Leitungen nur noch eine einzige
benötigen, um auf die Tastendrücke zu reagieren? Unmöglich,
sagst Du!? Mitnichten – und das Ganze läuft diesmal nicht digital,
sondern analog ab. Ich mache dir das mit Hilfe des folgenden Bildes
deutlich.
--- 457

Abbildung 20-1
Ein Widerstandsregler

Wir haben es hier mit einem regelbaren Widerstand zu tun, der in
Form eines Schiebereglers realisiert wurde. Du kannst seinen Wider-
standswert vergrößern bzw. verkleinern, indem du den Regler nach
oben oder nach unten schiebst. Rechts daneben befindet sich eine
Skala, die die einzelnen Ziffern und Symbole anzeigt, bei denen du
den Regler positionieren musst, was dann einem bestimmten Wider-
standswert entspricht. Da es hier natürlich keine festen Raster gibt,
die an verschiedenen Stellen den Regler festhalten, ist diese Lösung
natürlich sehr ungenau. Das analoge KeyPad arbeitet in ähnlicher
Weise. Drückst du eine Taste, dann wird ein bestimmter Gesamtwi-
derstandswert aus einer diversen Anzahl von Einzelwiderständen
zusammengesetzt. Diese hängt davon ab, welche Taste du drückst.
An dieser Stelle möchte ich dich jetzt schon mit dem Schaltplan kon-
frontieren, da du das Prinzip dann sofort durchblickst.

Abbildung 20-2
Der Schaltplan für das analoge

KeyPad
--- Projekt 20: Das KeyPad (Diesmal ganz anders)458

Die Widerstände mit dem Wert 220 bilden mit dem oberen 10K
Widerstand quasi einen Spannungsteiler, bei dem nach und nach,
abhängig davon, wie weit rechts sich die gedrückte Taste befindet,
mehr Widerstände für den oberen Teil des Spannungsteilers hinzu-
geschaltet werden. Das bedeutet, dass für die Ausgangsspannung,
die an den analogen Eingang an Pin 0 geführt wird, immer weniger
Potential übrig bleibt. Der untere 10K Widerstand arbeitet als Pull-
down-Widerstand, damit bei offenen Tastern ein definierter Pegel
von 0V gemessen wird. Die nachfolgende Tabelle zeigt dir die von
mir gemessenen Werte, die ich mir über die analogRead-Funktion
habe anzeigen lassen. Sie werden später dazu verwendet, die Tas-
tendrücke auszuwerten.

Tabelle 20-1
Ermittelte Werte mit »analogRead«

Diese Werte können bei Dir natürlich etwas abweichen, da die
Widerstände eine bestimmte Toleranz aufweisen. Teste es einfach
aus und passe sie ggf. an, das sollte kein allzu großes Problem dar-
stellen. Aber du kannst erkennen, dass die gemessene Spannung
von links nach rechts kontinuierlich abnimmt, wobei die Differenz
zwischen benachbarten Werten im Schnitt 15 beträgt.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Taste 1 2 3 4 5 6 7 8 9 * 0 #

Wert 176 163 149 136 122 108 95 79 64 48 32 15

Benötigte Bauteile

12 x Taster

12 x Widerstand 220

2 x Widerstand 10K

1 x Set stapelbare Buchsenleisten (2 x 8 + 2 x 6)
Noch ein KeyPad? --- 459

Arduino-Sketch-Code
Ich denke, dass du jetzt schon soweit bist, dass wir wieder eine
Library entwickeln können.

Haupt-Sketch mit Code-Review
Ich beginne wieder mit dem Hauptsketch:

#include "MyAnalogKeyPad.h"
#define analogPin 0 // Definition des analogen Pins
MyAnalogKeyPad myOwnKeyPad(analogPin); // Instanziierung eines Objektes

void setup(){
 Serial.begin(9600); // Serielle Ausgabe vorbereiten
 myOwnKeyPad.setDebounceTime(500); // Prellzeit auf 500ms setzen
}

void loop(){
 char myKey = myOwnKeyPad.readKey(); // Abfragen des gedrückten Tasters

 if(myKey != KEY_NOT_PRESSED) // Abfrage, ob irgendein Taster gedrückt
 Serial.println(myKey); // Ausgabe des Tastenzeichens
}

1 x Shieldplatine

Litze in ggf. unterschiedlichen Farben

Benötigte Bauteile
--- Projekt 20: Das KeyPad (Diesmal ganz anders)460

Dieser Sketch gleicht dem des vorangegangenen KeyPads. Doch
anstelle der Definition der Zeilen und Spalten wird hier nur der
analoge Eingang festgelegt. Dieser erhält als alleiniger Eingang die
Information, welche Taste gedrückt wurde. Dem Konstruktor wird
beim Instanziieren diese Pin-Nummer übermittelt. Alles andere
entspricht etwa dem Hauptsketch des vorherigen Kapitels.

Header-Datei mit Code-Review
Die Headerdatei muss lediglich in der Klassendefinition angepasst
werden. Die symbolischen Konstanten lasse ich hier aus Platzgrün-
den weg:

class MyAnalogKeyPad{
 public:
 MyAnalogKeyPad(byte analogPin); // Parametrisierter Konstruktor

 void setDebounceTime(unsigned int debounceTime); // Setzen der Prellzeit
 void setThresholdValue(byte tv); // Setzen der Threshold
 char readKey(); // Ermittelt die gedrückte Taste auf dem KeyPad

 private:
 byte analogPin; // Analoger Pin zur Messwertaufnahme
 unsigned int debounceTime; // Private Variable für die Prellzeit

 long lastValue; // Letzte Zeit der millis-Funktion
 byte threshold; // Toleranzwert
};

Da wir es mit analogen Werten zu tun haben, die es aufgrund von
Bauteiltoleranzen nicht immer so genau nehmen, müssen wir eine
Bandbreite für die gemessenen Werte implementieren. Nimm z.B.
den ersten Wert 176, der bei meinem Shield mit den von mir ver-
wendeten Widerständen ermittelt wurde. Die Wahrscheinlichkeit,
dass du einen abweichenden Wert erhältst, ist recht hoch. Den-
noch sollte die Schaltung auch bei dir funktionieren. Aus diesem
Grund gibt es das Feld mit dem Namen threshold, was übersetzt so
viel wie Grenzwert bedeutet. Dieser Wert wird dem ermittelten
Wert hinzugefügt bzw. von ihm abgezogen, um so einen Toleranz-
bereich zu erhalten. Befindet sich der ermittelte Wert innerhalb die-
ser Toleranz, wird das Ergebnis als eindeutig identifiziert.

CPP-Datei mit Code-Review
Nun kommen wir wieder zur Implementierung des eigentlichen
Codes:
Noch ein KeyPad? --- 461

#include "MyAnalogKeyPad.h"
// Paramtrisierter Konstruktor
MyAnalogKeyPad::MyAnalogKeyPad(byte ap){

 // AnagogPin für Messwertaufnahme
 analogPin = ap;
 // Initialwert für debounceTime festlegen

 debounceTime = 300;
 // Toleranzwert festlegen

 threshold = 5;
}

// Methode zum Setzen der Prellzeit
void MyAnalogKeyPad::setDebounceTime(unsigned int time){
 debounceTime = time;

}

// Methode zum Setzen der Prellzeit

void MyAnalogKeyPad::setThresholdValue(byte tv){
 threshold = tv;
}

// Methode zum Ermitteln des gedrückten Tasters auf dem KeyPad
char MyAnalogKeyPad::readKey(){

 char key = KEY_NOT_PRESSED;
 byte aValue = analogRead(analogPin);
 if((aValue > 0)&&(millis() - lastValue >= debounceTime)){

 if((aValue > (176 - threshold)) && (aValue < (176 + threshold)))
key = KEY_1;
 if((aValue > (163 - threshold)) && (aValue < (163 + threshold)))

key = KEY_2;
 if((aValue > (149 - threshold)) && (aValue < (149 + threshold)))
key = KEY_3;
 if((aValue > (136 - threshold)) && (aValue < (136 + threshold)))
key = KEY_4;
 if((aValue > (122 - threshold)) && (aValue < (122 + threshold)))

key = KEY_5;
 if((aValue > (108 - threshold)) && (aValue < (108 + threshold)))
key = KEY_6;
 if((aValue > (94 - threshold)) && (aValue < (94 + threshold))) key
= KEY_7;
 if((aValue > (79 - threshold)) && (aValue < (79 + threshold))) key

= KEY_8;
 if((aValue > (64 - threshold)) && (aValue < (64 + threshold))) key
= KEY_9;
 if((aValue > (48 - threshold)) && (aValue < (48 + threshold))) key
= KEY_STAR;
 if((aValue > (32 - threshold)) && (aValue < (32 + threshold))) key

= KEY_0;
--- Projekt 20: Das KeyPad (Diesmal ganz anders)462

 if((aValue > (15 - threshold)) && (aValue < (15 + threshold))) key
= KEY_HASH;
 lastValue = millis();

 }
return key;
}

Für meine Belange ist der implizit gesetzte threshold-Wert von 5 ok,
und deshalb nutze ich die Methode setThresholdValue nicht. Du
musst vielleicht ein wenig mit den Werten experimentieren.

Shieldaufbau
Abbildung 20-3

Aufbau des KeyPads mit einem
eigenen Shield (diesmal von der
Lötseite her gesehen)

Bei diesem Shieldaufbau habe ich die benötigten Widerstände auf
die Rückseite der Platine gelötet. Ich wollte auf diese Weise die
schöne Vorderseite mit den 12 Tastern nicht dadurch verunstalten,
dass sich zwischen ihnen zahllose Widerstände tummeln. Du
kannst hier die in Reihe geschalteten Widerstände, die sich wie eine
Perlenkette hintereinander aufreihen, relativ gut erkennen. Das
Zusammenlöten des Shields bedeutet schon ein wenig Frickelei,
denn es ist nicht viel Platz auf der Lötseite und es soll ja halbwegs
ordentlich aussehen. Der Zeitaufwand beträgt – wenn alles ohne
Probleme abläuft – schon eine gute Stunde. Aber nimm dir auf
jeden Fall genügend Zeit, denn wenn Hetzerei und Nervosität im
Spiel sind, geht möglicherweise einiges schief. Auf dem folgenden
Bild habe ich die Verkabelung noch einmal nachgezeichnet, damit
es auch keine Unstimmigkeiten gibt:
Noch ein KeyPad? --- 463

Abbildung 20-4
Verkabelung auf der Lötseite

Ein kleines Zahlenratespiel
Es wird Zeit, dass wir das gelernte in einem kleinen Spiel umsetzen.
Was hältst du davon, wenn wir den Mikrocontroller sich eine Zahl
ausdenken lassen, die du dann erraten musst? Die einzigen Hilfe-
stellung, die er dir bei deinen Rateversuchen gibt, sind folgende
Aussagen:

• Zahl zu klein

• Zahl zu groß

• Zahl erraten

Diese Kommentare werden dann an den Serial-Monitor geschickt,
damit du bei deiner nächsten Zahleneingabe entsprechend reagie-
ren kannst. Wenn du die Zahl erraten konntest, werden dir die
Anzahl der benötigten Versuche angezeigt und das Spiel beginnt
von vorne.

#include "MyAnalogKeyPad.h"
#define analogPin 0 // Definition des analogen Pins
#define MIN 10 // Untergrenze für Zufallszahl
#define MAX 1000 // Obergrenze für Zufallszahl
MyAnalogKeyPad myOwnKeyPad(analogPin); // Instanziierung eines
 // Objektes

int arduinoZahl, versuche; // Generierte Zufall, Anzahl
 // der Versuche

��
��
�$
	��

��
�

1�
$�

�
�	
��
��
�

�2
�	�
	

3
451

�����$6��

451
--- Projekt 20: Das KeyPad (Diesmal ganz anders)464

char deineZahl[5]; // Max. 5-stellige Zahl
byte stelle; // Markiert die gerade eingegebene Stelle

void setup(){
 Serial.begin(9600); // Serielle Ausgabe vorbereiten
 myOwnKeyPad.setDebounceTime(500); // Prellzeit auf 500ms setzen

 arduinoZahl = zufallszahl(MIN, MAX); // Zu erratende Zahl
 // generieren

 Serial.println("Ich habe mir eine Zahl zwischen " +
 String(MIN) + " und " + String(MAX) + " ausgedacht...");
 Serial.print(">>");
}

void loop(){
 char myKey = myOwnKeyPad.readKey(); // Abfragen des gedrückten
 // Tasters
 if(myKey != KEY_NOT_PRESSED){ // Abfrage, ob irgendein Taster
 // gedrückt
 deineZahl[stelle] = myKey;
 stelle++;

 Serial.print(myKey);
 }
 if(stelle == int(log10(MAX))+1){
 versuche++;
 int a = atoi(deineZahl);
 if(a == arduinoZahl){

 Serial.println("\nJaaa!");
 Serial.println("\nDu hast " + String(versuche) + " Versuch(e)
 benoetigt.");

 versuche = 0;
 arduinoZahl = zufallszahl(MIN, MAX);
 Serial.println("\nIch habe mir eine neue Zahl ausgedacht... ");
 }
 else if(a < arduinoZahl)
 Serial.println("\nZu klein");
 else
 Serial.println("\nZu gross");
 Serial.print(">>");
 stelle = 0; // Zurücksetzen der Stelle
 }
}

int zufallszahl(int minimum, int maximum){
 randomSeed(analogRead(5));

 return random(minimum, maximum + 1);
}

Noch ein KeyPad? --- 465

Da sind eine Menge neuer Details drin, die ich noch erläutern
muss. Ich zeige dir aber erst einmal den Ablauf des Sketches im
Serial-Monitor.

Zu Beginn des Spiels wird dir der Bereich angegeben, in dem sich
die zu erratende Zahl befindet. Danach gibst du über das KeyPad
nacheinander die Ziffern deiner Zahl ein. Da der maximale Wert
1000 vier Stellen besitzt, wird automatisch nach der Eingabe deiner
4. Ziffer das Ergebnis bewertet. Das bedeutet natürlich, dass du
immer führende Nullen mit eingeben musst. Wurde die Zahl von
dir erraten, wird dir angezeigt, wie viele Versuche du zur Lösung
des Rätsels benötigt hast. Danach beginnt das Spiel erneut mit einer
neuen Zufallszahl, die du erraten musst. Da die KeyPad-Methode
einzelne Zeichen vom Datentyp char zurückliefert, speichern wir
deine Eingaben einfach in einem Array, das ebenfalls den Datentyp
char aufweist. Die Deklarationszeile dazu lautet wie folgt:

char deineZahl[5];

Es werden 5-stellige Zahlen als das Maximum festgelegt und ich
denke, dass das vollkommen ausreichend ist. Wie kommen jetzt
aber deine Eingaben in dieses Array? Dies geschieht mittels der fol-
genden Zeilen:

char myKey = myOwnKeyPad.readKey(); // Abfragen des gedrückten Tasters
if(myKey != KEY_NOT_PRESSED){ // Abfrage, ob irgendein Taster
 // gedrückt

 deineZahl[stelle] = myKey;
 stelle++;
 Serial.print(myKey);
}

--- Projekt 20: Das KeyPad (Diesmal ganz anders)466

Wird eine Taste gedrückt, dann wird das 1. Array-Element mit die-
sem Tasten-Wert versehen, der an die Position 0 geschrieben wird.
Erinnere Dich, dass das erste Element mit dem Index 0 anzuspre-
chen ist. Die Variable stelle ist für die Adressierung der einzelnen
Elemente verantwortlich und wird nach jedem Tastendruck inkre-
mentiert. Anschließend wird das Tastenzeichen an den Serial-
Monitor übertragen und du siehst sofort, was du gedrückt hast.
Jetzt wird es etwas knifflig. Da die Anzahl der Stellen der zu erra-
tenden Zahl vom maximalen Wert abhängt, der über

#define MAX 1000 // Obergrenze für Zufallszahl

definiert wurde, muss der Sketch hier entsprechend flexibel reagie-
ren können. Wie ermitteln wir aber die Anzahl der Stellen auf mög-
lichst einfache Weise? Das funktioniert wunderbar mit dem 10er-
Logarithmus und wird im Sketch mittels der Zeile

int(log10(MAX))+1

errechnet. Die Funktion dazu lautet log10 und ist Teil der Mathe-
matik-Bibliothek von C++. Durch die int-Funktion werden die
Nachkommastellen abgeschnitten und am Ende wird das Ergebnis
um den Wert 1 erhöht. Wenn die Anzahl der von dir eingegeben
Stellen gleich der Stellen des größtmöglichen Wertes ist, ist die
Bedingung der if-Anweisung erfüllt und es wird ihr Rumpf ausge-
führt, der die Bewertung deiner Eingabe veranlasst. Jetzt muss
deine Eingabe, die sich ja im Array deineZahl befindet, mit der vom
Mikrocontroller generierten Zahl verglichen werden.

Das funktioniert und aus diesem Grund habe ich auch deine Ein-
gabe nicht in eine Variable vom Datentyp String schreiben lassen,
sondern in ein char-Array. Die momentane String-Library von
Arduino unterstützt nicht die Konvertierung von Zeichenketten in
einen numerischen Datentyp. Also bedienen wir uns einer Funk-
tion, die diese Aufgabe wunderbar übernehmen kann, sofern ihr
z.B. ein char-Array übergeben wird.

int a = atoi(deineZahl);

Der Name setzt sich aus ASCII to Integer zusammen. Das Ergebnis
der Funktion wird der Variablen a zugewiesen. Im Anschluss wird

Wie kann man denn um Himmels Willen ein Array mit einer Zahl
vergleichen? Das soll funktionieren?
Noch ein KeyPad? --- 467

dieser Wert mit der generierten Zahl des Mikrocontrollers vergli-
chen und über einige if- bzw. else if-Anweisungen die Ausgabe an
den Serial-Monitor geleitet.

Ok, Ardus. Der nach links gekippte Schrägstrich \ nennt sich Back-
slash. Er leitet eine sogenannte Escape-Sequenz ein, die sich inner-
halb einer ganz normalen Zeichenkette befindet. Hier eine kurze –
und überhaupt nicht vollständige – Liste einiger Escape-Sequenzen
und ihrer Funktionen.

Tabelle 20-2
Einige Escape-Sequenzen

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• Escape Sequence

• Steuerzeichen C

Da im Sketch an zwei Stellen eine neue Zufallszahl ermittelt werden
muss, liegt es nahe, diese Codezeilen in eine Funktion auszulagern:

int zufallszahl(int minimum, int maximum){

 randomSeed(analogRead(5));
 return random(minimum, maximum + 1);
}

Da der analoge Eingang an Pin 5 von unserem Sketch in keiner
Weise beschaltet bzw. benötigt wird, können wir ihn wunderbar
zur Generierung neuer Zufallszahlen verwenden, so dass nicht
immer die gleichen erzeugt werden. Falls dir das noch unklar sein
sollte, wirf’ einen erneuten Blick in das Kapitel Das Miniroulette.

Da sind ein paar Zeilen, die ich irgendwie verstehe und dann doch
wieder nicht. Eine dieser Zeilen ist Serial.println("\nJaaa!");. Was
sollen denn dieser nach links gekippte Schrägstrich und das nachfol-
gende n bedeuten? Davon gibt es ja noch mehr im Code.

Escape-Sequenz Funktion

\n Zeilenvorschub

\" Doppeltes Anführungszeichen

\\ Backslash

\t Horizontaler Tabulator
--- Projekt 20: Das KeyPad (Diesmal ganz anders)468

Troubleshooting
Da hier der Lötaufwand im Vergleich zum letzten Kapitel noch ein-
mal zugenommen hat, ist die Gefahr natürlich noch größer gewor-
den, dass aufgrund von Unachtsamkeit Fehler unterlaufen:

• Überprüfe die Verkabelung auf Korrektheit.

• Achte auf etwaige Kurzschlüsse untereinander. Die Verdrah-
tungsdichte ist für unsere Verhältnisse hoch und da die Verbin-
dungsdrähte aus einzelnen kleineren Drähten (Litze genannt)
bestehen, können sich sehr schnell einige dieser kleinen Kame-
raden verirren und ungewollt Kontakt zum Nachbarn aufneh-
men.

Was hast du gelernt?
• Im Zeitalter der Digitaltechnik muss nicht immer alles aus Ein-

sen und Nullen bestehen. Anhand des hier vorgestellten analo-
gen KeyPads konntest du sehr schön sehen, dass man mit einer
Widerstandskette und entsprechend positionierten Tastern
eine wunderbar funktionierende KeyPad-Schaltung bauen
kann, die lediglich mit einem einzigen Pin arbeitet, um auf die
Tastendrücke zu reagieren.

• Wir haben ein Zahlen-Rate-Spiel entwickelt, das durch die
Verwendung des KeyPads wunderbar zu realisieren war.

• Unterschiedliche Escape-Sequenzen können dazu genutzt wer-
den, Steuerfunktionen zu übernehmen.

• Du hast die atoi-Funktion kennengelernt, mit der ein String in
eine Ganzzahl konvertiert werden kann.

Workshop
Mach’ dir ein paar Gedanken, wie du das KeyPad modifizieren
kannst, um die einzelnen Tasten und ihre dahinter liegenden Funk-
tionen besser sichtbar zu machen. Kannst du vielleicht eine zusätz-
liche Komponente anbringen, so dass die Tasten irgendwie
beschriftet sind? Schicke mir doch deine Lösung(en), so dass ich sie
dann auf meiner Internetseite – natürlich unter deinem Namen –
präsentieren kann.
Noch ein KeyPad? --- 469

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 21 21Eine Alphanumerische
Anzeige
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Was ist eine LCD-Anzeige

• Wie können wir sie ansteuern

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Zahlen-Rate-Spiel Reloaded

• Workshop

Was ist eine LCD-Anzeige?
Was wäre ein Mikrocontroller ohne eine entsprechende Anzeige,
die es uns ermöglicht, unabhängig vom Computer bzw. Serial-
Monitor, etwas an die Außenwelt zu schicken? Natürlich hast du
schon gesehen, wie wir z.B. ein paar Siebensegmentanzeigen zur
Darstellung von einzelnen Ziffern verwendet haben. Doch wenn es
darum geht, mehrere Stellen oder auch Buchstaben oder Sonderzei-
chen, wie z.B. *, #, %, etc., auf diese Weise darzustellen, dann
haben wir die Grenzen des Machbaren erreicht. Für solche Fälle
gibt es LC-Displays, auch kurz LCD (Liquid Cristal Display) genannt.
Es handelt sich dabei um Flüssigkeitsanzeigen, die im Inneren Flüs-
sigkristalle besitzen, die in Abhängigkeit von einer angelegten
Spannung ihre Ausrichtung ändern können, um so den Lichteinfall
mehr oder weniger zu beeinflussen.
--- 471

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• LCD

• LCD Modul AVR

• Dot matrix display

Solche Anzeigeelemente nutzen in der Regel aus einzelnen Punkten
zusammengesetzte Muster (Dot-Matrix), um fast jede Art von Zei-
chen (Ziffern, Buchstaben oder Sonderzeichen) darstellen zu kön-
nen. Es gibt sie in unterschiedlichen Größen und Ausstattungen.
Nachfolgend zeige ich dir einmal drei unterschiedliche Displays.

Abbildung 21-1
Unterschiedliche LC-Displays

Das erste Display LCD4884 mit einer Auflösung von 84x48 Pixeln
ist sogar schon auf einem Shield montiert, besitzt einen Miniatur-
Joystick zur Navigation durch die entsprechenden Menüs und
kann mit der entsprechenden Library direkt angesteuert werden. Es
kann sogar Miniaturgrafiken darstellen, ist also in der Darstellung
der Anzeigeelemente sehr flexibel. Das zweite DMC-2047 ist sogar
mit 4 LEDs und einer IR-Empfangsdiode ausgestattet. Das dritte
Display vom Typ HMC16223SG ist 2-zeiliges Display mit einem
kompatiblem Hitachi HDD44780-Controller, auf den wir gleich
noch zu sprechen kommen werden. Zur komfortablen Nutzung
haben viele Anzeigen einen integrierten Controller, der die einzel-
nen Punkte bzw. Segmente ansteuert. Müssten wir uns darum im
Einzelnen auch noch kümmern, dann wäre der Sketch um ein Viel-
faches umfangreicher. Im Arduino-Umfeld wird relativ häufig ein
LC-Display mit einem HD44780-Treiber verwendet. Dieser Treiber
hat sich als Quasi-Standard durchgesetzt und wird von vielen ande-
ren Herstellen adaptiert. In der nachfolgenden Abbildung ist ein
solches Display zu sehen.
--- Projekt 21: Eine Alphanumerische Anzeige472

http://www.arduino.cc/en/Tutorial/LiquidCrystal
http://www.arduino.cc/en/Tutorial/LiquidCrystal
http://www.arduino.cc/en/Tutorial/LiquidCrystal
http://arduino.cc/en/Reference/LiquidCrystal
http://www.sparkfun.com/datasheets/LCD/HD44780.pdf

Abbildung 21-2
Ein LC-Display

Für dieses Element existiert eine Bibliothek, die standardmäßig mit
der Arduino-IDE geliefert wird. Natürlich kannst du fast jedes x-
beliebige Display anschließen, wenn du eine passende Library fin-
dest oder du sie dir selbst entwickelst. Für unsere Experimente ver-
wenden wir das gezeigte Display, das 2 Zeilen mit jeweils 16
Zeichen aufweist.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Vorbemerkung zur Nutzung
des LC-Displays
Wenn du dir ein brandneues LC-Display kaufst, dann besitzt es,
wie du auf dem obigen Bild sehen kannst, vielleicht lediglich Kon-
taktierungen auf der Trägerplatine. Jetzt kannst du entweder die
benötigten Kontakte mit Kabeln versehen, um sie später für die
Schaltung mit dem Breadboard zu nutzen, oder du besorgst dir am

Benötigte Bauteile

1 x LCD HD44780 + 16-polige Stift-
leiste mit Rastermaß 2,54

1 x Trimmer 10K oder 20K

Mehrere flexible Steckbrücken in
unterschiedlichen Farben und Län-
gen
Was ist eine LCD-Anzeige? --- 473

besten eine Stiftleiste, wie du sie ebenfalls in der Abbildung erken-
nen kannst. Diese Leisten werden z.B. in einreihiger 40-poliger
Ausführung mit einem Rastermaß von 2,54 angeboten. Kürze sie
durch Knicken an der entsprechenden Stelle vorsichtig auf eine
Länge von 16 Stiften und sei dabei auf jeden Fall vorsichtig, denn
sie brechen sehr leicht an einer nicht erwünschten Stelle ab.
Danach steckst du die Leiste von unten mit dem kürzeren Beinchen
nach oben durch die Bohrungen und lötest sie auf der Oberseite
fest.

Auf diese Weise kannst du das Modul wunderbar auf dein Bread-
board stecken.

Interessante Grundlagen
Bevor wir das LC-Display richtig ansteuern, möchte ich dich mit
ein paar wichtigen und interessanten Grundlagen versorgen. Wie
ist so ein Display des genannten Typs eigentlich aufgebaut? Ich
hatte schon erwähnt, dass zum Aufbau der einzelnen Zeichen eine
Dot-Matrix verwendet wird. Dot bedeutet übersetzt Punkt und
stellt das kleinste darstellbare Element in dieser Matrix dar. Ein ein-
zelnes Zeichen wird aus einer 5x8 Dot-Matrix aufgebaut.

Abbildung 21-3
Die 5x8 Dot-Matrix des LC-Displays

Durch geschickte Ansteuerung der einzelnen Punkte können die
unterschiedlichsten Zeichen generiert werden. Das nachfolgende
Bild zeigt dir das Wort Arduino und die einzelnen Punkte, aus
denen die Buchstaben zusammengesetzt wurden.
--- Projekt 21: Eine Alphanumerische Anzeige474

Abbildung 21-4
Das Wort Arduino aus einzelnen
Punkten (Dots) zusammengesetzt

Die Ansteuerung des Displays erfolgt parallel, was bedeutet, dass
alle Datenbits zur gleichen Zeit an den Kontroller versendet wer-
den. Es gibt 2 unterschiedliche Modi (4-Bit bzw. 8-Bit), wobei der
4-Bit-Modus der gängigere ist, da hier weniger Datenleitungen zum
Display geschaltet werden müssen und sich der Aufwand entspre-
chend reduziert.

Das ist ein guter Einwand, Ardus! Aber es funktioniert trotzdem
ohne Einbuße des Informationsumfanges. Im 4-Bit Modus wird
einfach die zu übertragenden 8 Bit an Informationen in zwei gleich
große Hälften aufgesplittet. Zuerst die ersten 4-Bits, dann die letz-
ten 4-Bits. Die Informationsbreite von 4 Bits wird in der Datenver-
arbeitung übrigens Nibble genannt. Die Übertragung der Daten
erfolgt parallel und dann doch wieder seriell. Lass’ dich dadurch
aber nicht verwirren. Der 4-Bit-Modus ist zwar etwas langsamer als
der 8-Bit-Modus, doch das spielt für unsere Belange keine Rolle.
Kommen wir jetzt zum LCD-Anzeigemodul Hitachi HDD44780
und dessen Pinbelegung bzw. der erforderlichen Beschaltung. Es
gibt zwei unterschiedliche Varianten, wobei die eine mit 16 Pins
über eine Hintergrundbeleuchtung verfügt und die mit 14 Pins
ohne auskommt.

Abbildung 21-5
Die Beschaltung des Anzeigemoduls

Also halt mal. Ein bisschen verstehe ich ja auch. Wenn ich statt 8 nur
noch 4 Bits verwende, dann habe ich eine geringere Datenbreite und
kann aber doch somit weniger unterschiedliche Informationen über-
tragen. Wie soll das denn gehen?

�� -
0%�1�)%
���
.)�1���
#�J@�

�	 �� �� �� �� �� �� ��

5�
	+&�	��

�
�

�

�
�
�

�
�

��
�

�

��

�

��
�
��

!
"

!
#

��
�

�
�

�
$
%
&
'(

� �
�

�

�
�	���������
����	���

� � � � � � � �
 �	 �� �� �� �� �� ��
Was ist eine LCD-Anzeige? --- 475

Von den 8 Datenleitungen werden lediglich die obersten 4 (D4 –
D7) benötigt. In der folgenden Tabelle findest du die Pinbelegung
und deren Bedeutung:

Tabelle 21-1
LCD-Pinbelegung für die

16-Pin-Variante

Mit dem ersten LCD-Sketch wollen wir erreichen, dass der gerade
gezeigte Schriftzug »Mich steuert ein Arduino an:-)« im Display
erscheint.

Arduino-Sketch-Code
Erschrick nicht, wenn du die recht komplexe Ansteuerungslogik
siehst. Wir werden eine Library nutzen, die es uns ermöglicht, das
LC-Display auf eine recht simple Weise zu nutzen.

#include <LiquidCrystal.h>
#define RS 12 // Register Select
#define E 11 // Enable
#define D4 5 // Datenleitung 4
#define D5 4 // Datenleitung 5
#define D6 3 // Datenleitung 6
#define D7 2 // Datenleitung 7
#define COLS 16 // Anzahl der Spalten
#define ROWS 2 // Anzahl der Zeilen
LiquidCrystal lcd(RS, E, D4, D5, D6, D7); // Objekt instanziieren

void setup(){
 lcd.begin(COLS, ROWS); // Anzahl der Spalten und Zeilen
 lcd.print("Mich steuert ein"); // Ausgabe des Textes
 lcd.setCursor(0, 1); // In die 2. Zeile wechseln

LCD-Pin Arduino-Pin

1 GND Masse

2 +5V +5V

3 - Kontrasteinstellung über 10K oder 20K Poti

4 12 RS (Register Select)

5 GND RW (Read/Write) / fest auf Masse (HIGH: Read / LOW: Write)

6 11 E (Enable)

11 5 Datenleitung D4

12 4 Datenleitung D5

13 3 Datenleitung D6

14 2 Datenleitung D7

15 - Anode (+) / Über Vorwiderstand 220 Ohm!

16 GND Kathode (-)
--- Projekt 21: Eine Alphanumerische Anzeige476

 lcd.print("Arduino an:-)"); // Ausgabe des Textes
}

void loop(){/* leer */}

Arduino-Code-Review
Um die Funktionalität zur Ansteuerung des LC-Displays nutzen zu
können, muss die Library LiquidCrystal eingebunden werden. Für
unser Experiment benötigen wir programmtechnisch gesehen dann
die folgende Variable:

Tabelle 21-2
Benötigte Variablen und deren
Aufgabe

Für die Generierung eines LCD-Objekts müssen dem Konstruktor
folgende Parameter mitgeteilt werden:

• Pin Register Select (RS)

• Pin Enable (E)

• Pins der Datenleitungen D4 bis D7

LiquidCrystal lcd(RS, E, D4, D5, D6, D7); // Objekt instanziieren

Die Klasse LiquidCrystal stellt eine Reihe von Methoden zur
Verfügung, denn alleine durch den Konstruktor können wir keinen
Text auf das LC-Display schicken. Bevor dies möglich ist, müssen
wir dem Anzeige-Objekt noch ein paar zusätzliche Information zur
weiteren Initialisierung übergeben: Es gibt ja hinsichtlich der An-
zahl von Spalten bzw. Zeilen recht unterschiedliche LC-Displays,
und genau diese wichtige Angabe muss hier erfolgen. Du siehst,
dass nicht alles dem Konstruktor zur kompletten Initialisierung
mitgegeben wird. Jetzt muss eine Methode her.

LCD-Methode: begin

Abbildung 21-6
Die LCD-Methode begin

Die Methode begin teilt dem LCD-Objekt die Anzahl der Spalten
und der Zeilen des angeschlossenen Displays mit. Jetzt ist alles
soweit vorbereitet, dass du einen Text verschicken kannst.

Variable Aufgabe

lcd Das LCD-Objekt

$�"��	��90�
��/0��

��	��������� �����
+���+���
	�� �����
+���+��

��
Was ist eine LCD-Anzeige? --- 477

LCD-Methode: print

Abbildung 21-7
Die LCD-Methode »print«

Die Methode print teilt dem LCD-Objekt mit, was es zur Anzeige
an das Display schicken soll. Sie ist vergleichbar mit der des Serial-
Monitors.

Wenn ich keine Angaben über die Position des anzuzeigenden Tex-
tes mache, wird er am Anfang der ersten Zeile positioniert. Wie du
anhand des Beispiels erkennst, haben wir auch noch eine weitere
Zeile mit Text. Kommen wir zur dritten wichtigen Methode.

LCD-Methode: setCursor

Abbildung 21-8
Die LCD-Methode »setCursor«

Die Methode setCursor positioniert du den Cursor an die Stelle, an
der die nachfolgende Textausgabe starten soll. Sie ist mal wieder –
wie sollte es anders sein – Null-basiert, was bedeutet, dass die erste
Zeile bzw. Spalte mit dem Index 0 versehen sind. Um in die zweite
Zeile zu gelangen, musst Du, wie hier geschehen, den Wert 1 ver-
wenden. Die folgende Abbildung ist dir vielleicht eine Hilfe, wenn
es um das Positionieren der Ausgabe geht.

Abbildung 21-9
Die Koordinaten der einzelnen

Zeichen, die über setCursor ange-
sprochen werden können

�)��%	L�� -
0%�1�)%
���L��

��	��������� �������	�!	

Warte mal kurz! Das Display, das du verwendest, hat doch zwei Zei-
len. Wie hast du festgelegt, dass der Text in die erste Zeile geschrie-
ben wird?

0�%�1)0�)	��

��

��	��������� ���
	� ��

�

� � � � � � � �
 �	 �� �� �� �� �� ��

4A4)A4 /A4 3A4 5A4 2A4 ;A4 <A4 CA4 DA4)4A4))A4)/A4)3A4)5A4)2A4

4A))A) /A) 3A) 5A) 2A) ;A) <A) CA) DA))4A)))A))/A))3A))5A))2A)
--- Projekt 21: Eine Alphanumerische Anzeige478

Bevor ich es vergesse: Natürlich kannst du auch die komplette
Anzeige löschen, so dass sich keinerlei Zeichen mehr darin befin-
den. Dazu wird die folgende Methode verwendet:

LCD-Methode: clear

Abbildung 21-10
Die LCD-Methode »clear«

Sie besitzt keine Parameter, löscht alle Zeichen aus der Anzeige und
positioniert den Cursor in der linken oberen Ecke an der Koordi-
nate 0, 0.

Der Schaltplan

Abbildung 21-11
Die Verschaltung des LC-Displays
HD44780

 9�#)	��

��	���������
Was ist eine LCD-Anzeige? --- 479

Achtung
Es gibt HD44780-Varianten, bei denen kannst du die Hintergrund-
beleuchtung ohne einen Vorwiderstand an +5V anschließen,
und wiederum solche, die einen entsprechend dimensionier-
ten Widerstand benötigen. Wirf’ auf jeden Fall vor dem
Anschließen an die Versorgungsspannung einen Blick ins das
entsprechende Datenblatt. Zur Not kannst du die Hintergrund-
beleuchtung erst einmal weglassen. Wenn es nicht zu dunkel
ist, kannst du bei ausreichend hoch eingestelltem Kontrast die
Anzeige trotzdem lesen.

Schaltungsaufbau
Abbildung 21-12

Aufbau der LCD-Ansteuerung mit
Fritzing

Das Zahlen-Rate-Spiel Reloaded
Was liegt näher, als das im letzten Kapitel entwickelte Zahlen-Rate-
Spiel mit dem LC-Display zu realisieren. Wenn es funktioniert,
benötigst du keinen Computer mehr und du bist wegen der LCD-
Anzeigeeinheit ein wenig unabhängiger. Ich habe für die Realisie-
rung das LC-Display auf eine Lochrasterplatine gesteckt, auf der
sich 2 x 16-polige IC-Fassungen direkt nebeneinander befinden.

Abbildung 21-13
16-polige IC-Fassung
--- Projekt 21: Eine Alphanumerische Anzeige480

Ein vergleichbarer Sockel – natürlich mit mehr Pins – ist auch auf
deinem Arduino-Board vorhanden und hält den Mikrocontroller an
seiner Position. Solche Fassungen sind recht nützlich, denn wenn
ein IC einmal in die ewigen Jagdgründe eingehen sollte, dann muss
man ihn nicht erst mühsam auslöten, sondern kann ihn bequem
entfernen. Die Platine hat die Maße 10cm x 5cm.

Abbildung 21-14
Trägerplatine für das LC-Display

Wie du siehst, habe ich auch gleich den Trimmer für die Kontrast-
einstellung darauf platziert. Bei einem Blick auf die Rückseite der
Platine siehst du, wie ich die einzelnen Pins der IC-Fassungen mit-
einander verbunden habe. Es wurden immer die gegenüberliegen-
den Pins durch mehrere Lötpunkte verbunden.

Abbildung 21-15
Lötseite der Trägerplatine für das
LC-Display

Manchmal reicht eben auch eine fliegende Verdrahtung vollkommen
aus. In der folgenden Abbildung habe ich schon das LC-Display auf
die Trägerplatine befestigt. Die Stiftleiste der Anzeige wird dabei in
die unteren Buchsen der beiden IC-Fassungen gesteckt. Die obere
Reihe wird später für die Anschlüsse zum Shield benötigt.
Was ist eine LCD-Anzeige? --- 481

Abbildung 21-16
LC-Display auf der Trägerplatine

Jetzt fehlen lediglich noch die Verbindungsleitungen zu deinem
Analog-KeyPad. Die Verbindungen werden über die schon bekann-
ten Stiftleisten hergestellt. Dazu benötigst du Folgendes:

• 1 x 16-polige Stiftleiste

• 2 x 8-polige Stiftleisten

• 1 x 6-polige Stiftleiste

Die 16-polige Stiftleiste wird mit der Trägerplatine, auf der sich das
LC-Display befindet, verbunden. Nachfolgend siehst du die angelö-
teten Verbindungsleitungen.

Abbildung 21-17
16-polige Stiftleiste

Auf das KeyPad werden die beiden 8-poligen bzw. die eine 6-polige
Stiftleiste aufgesteckt.

Abbildung 21-18
Das analoge KeyPad mit den drei

Stiftleisten
--- Projekt 21: Eine Alphanumerische Anzeige482

Anhand der Farben und der genannten Pinbelegungen sollte es kein
Problem bereiten, den kleinen Kabelbaum mit den Stiftleisten her-
zustellen. In der folgenden Abbildung habe ich einmal die drei
Komponenten, also Trägerplatine mit LC-Display, Arduino-Board
und aufgestecktes KeyPad-Shield miteinander verbunden.

Abbildung 21-19
Der komplette Schaltungsaufbau
des Zahlen-Rate-Spiels

Achtung
Wenn du die Stiftleisten mit Kabeln der Versorgungsspannung
bzw. Masse verlötest, die auch noch direkt nebeneinander lie-
gen, dann ist die Gefahr groß, dass es zwischen diesen benach-
barten Kontakten bzw. Kabeln durch Bewegung irgendwann
einmal zu einem Kurzschluss kommt. Aus diesem Grund habe
ich diese Kabel jeweils mit einem Stück Schrumpfschlauch ver-
sehen, die die Lötstellen gut umhüllen.

Abbildung 21-20
Die 6-polige Stiftleiste mit zwei
Schrumpfschlauchstücken (rote
Pfeile)

Jetzt kommt der komplette Code, der an Umfang schon etwas
zugenommen hat.

#include <LiquidCrystal.h>
#include <MyAnalogKeyPad.h>

#define analogPinKeyPad 0 // Definition des analogen Pins
#define MIN 10 // Untergrenze für Zufallszahl
#define MAX 1000 // Obergrenze für Zufallszahl
Was ist eine LCD-Anzeige? --- 483

#define RS 12 // LCD-Register Select Pin
#define E 11 // LCD-Enable Pin
#define D4 5 // LCD-Datenleitung Pin 4
#define D5 4 // LCD-Datenleitung Pin 5
#define D6 3 // LCD-Datenleitung Pin 6
#define D7 2 // LCD-Datenleitung Pin 7
#define COLS 16 // Anzahl der LCD-Spalten
#define ROWS 2 // Anzahl der LCD-Zeilen
int arduinoZahl, versuche; // Die generierte Zahl, Anzahl der Versuche
char deineZahl[5]; // Max. 5-stellige Zahl
byte stelle;

MyAnalogKeyPad myOwnKeyPad(analogPinKeyPad); // KeyPad Instanziierung
LiquidCrystal lcd(RS, E, D4, D5, D6, D7); // LCD Instanziierung

void setup(){
 myOwnKeyPad.setDebounceTime(500); // Prellzeit auf 500ms setzen
 lcd.begin(COLS, ROWS); // Anzahl der Spalten und Zeilen
 lcd.blink(); // Cursor blinken lassen
 startSequence(); // Aufruf der Startsequenz
}

void loop(){
 char myKey = myOwnKeyPad.readKey(); // Abfragen des gedrückten

 // Tasters
 if(myKey != KEY_NOT_PRESSED){ // Abfrage, ob irgendein Taster
 // gedrückt

 deineZahl[stelle] = myKey;
 stelle++;
 lcd.print(myKey); // Taste im LCD anzeigen

 }

 if(stelle == int(log10(MAX))+1){
 versuche++;
 int a = atoi(deineZahl);
 if(a == arduinoZahl){

 lcd.clear(); // LCD-Anzeige löschen
 lcd.print("Erraten!!!"); // Ausgabe an das LCD
 lcd.setCursor(0, 1); // Cursor in die 2.Zeile positionieren

 lcd.print("Versuche: " + String(versuche));
 delay(4000); // 4 Sekunden warten
 versuche = 0; // Anzahl der Versuche zurücksetzen

 startSequence(); // Startsequenz aufrufen
 }
 else if(a < arduinoZahl){

 lcd.setCursor(0, 1); // Cursor in die 2.Zeile positionieren
 lcd.print("Zu klein"); // Ausgabe an das LCD
 lcd.setCursor(0, 0); // Cursor in die 1.Zeile positionieren

 }
--- Projekt 21: Eine Alphanumerische Anzeige484

 else{
 lcd.setCursor(0, 1); // Cursor in die 2.Zeile positionieren
 lcd.print("Zu gross"); // Ausgabe an das LCD

 lcd.setCursor(0, 0); // Cursor in die 1.Zeile positionieren
 }
 lcd.setCursor(2, 0); // Cursor an die 3.Stelle der 1.Zeile

 // positionieren
 stelle = 0;

 }
}

int zufallszahl(int minimum, int maximum){
 randomSeed(analogRead(5));
 return random(minimum, maximum + 1);

}

void startSequence(){

 arduinoZahl = zufallszahl(MIN, MAX); // Zu erratende Zahl generieren
 lcd.clear(); // LCD-Anzeige löschen
 lcd.print("Rate eine Zahl"); // Ausgabe an das LCD

 lcd.setCursor(0, 1); // Cursor in die 2.Zeile
 // positionieren
 lcd.print("von " + String(MIN) + " - " + String(MAX));
 delay(4000); // 4 Sekunden warten
 lcd.clear(); // LCD-Anzeige löschen
 lcd.print(">>"); // Ausgabe an das LCD

}

An dieser Stelle möchte ich mich nicht allzu viel mit dem Code
beschäftigen. Ich habe bestimmte Stellen, an denen im letzten Kapi-
tel Ausgaben an den Serial-Monitor geschickt wurden, so modifi-
ziert, dass die Ausgabe nun über das LC-Display erfolgt. Es ist aber
noch eine neue Methode hinzugekommen, die einen blinkenden
Cursor im Display anzeigt:

LCD-Methode: blink

Abbildung 21-21
Die LCD-Methode »blink«

Sie wird einmalig in der setup-Funktion aufgerufen und veranlasst
einen Cursor an der aktuellen Schreibposition zu blinken. Wenn du
einen Blick an den Anfang des Sketches wirfst, dann wirst du
sicherlich bemerken, dass es durchaus möglich ist, mehrere Libra-

$9��!	��

��	���������
Was ist eine LCD-Anzeige? --- 485

ries in ein Projekt einzubinden. Es gibt da theoretisch keine Gren-
zen. Natürlich gibt irgendwann einmal der Flash-Speicher zu
verstehen, dass er nun erschöpft ist und kein Code mehr hinzuge-
fügt werden kann.

Vollkommen richtig, Ardus. Es können, wenn es um eine mathema-
tische Addition geht, nur Werte addiert werden. Der »+«-Operator
bei Zeichenketten kann natürlich keine Addition ausführen. Wie
sollte das auch funktionieren? Es werden jedoch die einzelnen Zei-
chenketten zu einer einzigen zusammengefügt. Man sagt auch, sie
werden konkateniert. Wenn nun auch, wie in unserem Sketch,
numerische Werte Teil der anzuzeigenden Zeichenkette sind, müs-
sen diese zuvor in einen String konvertiert werden. Dies erfolgt mit-
tels der String-Funktion, wie z.B. bei String(MIN).

 Das könnte wichtig für dich sein
Hier ein paar interessante Links zum Thema Arduino und LCD:

• http://www.arduino.cc/en/Tutorial/LiquidCrystal

• http://arduino.cc/en/Reference/LiquidCrystal

• http://www.sparkfun.com/datasheets/LCD/HD44780.pdf

Nachfolgend noch ein interessanter Hinweis auf ein fertiges Key-
Pad-Shield, das in der Lage ist, ein LC-Display aufzunehmen.

Abbildung 21-22
4×4 Keypad-Shield mit 5110

Display Interface

Eine Sache ist mir gänzlich unverständlich und ich weiß nicht genau,
ob sie schon erläutert wurde. Da ist z.B. die Zeile lcd.print("von " +
String(MIN) + " - " + String(MAX));. Du gibst also Zeichenketten aus
und verwendest den + Operator. Wie sollen denn Zeichenketten
addiert werden? Das funktioniert doch nur mit Zahlen – richtig?
--- Projekt 21: Eine Alphanumerische Anzeige486

http://www.arduino.cc/en/Tutorial/LiquidCrystal
http://arduino.cc/en/Reference/LiquidCrystal
http://www.sparkfun.com/datasheets/LCD/HD44780.pdf

Wer es lieber fertig mag und außerdem relativ kompakt, für den
lohnt sich sicherlich ein Blick auf das 4x4 KeyPad-Shield mit dem
entsprechenden Displayaufsatz. Das monochrome Display hat eine
Auflösung von 84x48 Pixeln und ist kompatibel mit dem 3310
LCD Display, für das eine Arduino-Library existiert.

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• Nokia 5110 LCD

• 3310 LCD

Troubleshooting
Wenn du nach dem Anschließen des LC-Displays und dem Laden
des Sketches nichts siehst, dann überprüfe Folgendes:

• Ist die Verkabelung korrekt?

• Gibt es eventuell Kurzschlüsse untereinander?

• Wurde der Kontrast-Trimmer korrekt angeschlossen? Regu-
liere ggf. den Kontrast etwas herauf, bis du etwas in der
Anzeige siehst.

Was hast du gelernt?
• Du hast zum ersten Mal ein Anzeigeelement angeschlossen,

dass nicht nur in der Lage ist, zu blinken, sondern auch Zahlen
und Text ausgeben kann.

• Die LiquidCrystal-Library hat es dir ermöglicht, in einfacher
Weise ein LC-Display mit einem HDD44780-Controller anzu-
steuern.

• Damit hast du dann das im vorangegangenen Kapitel entwi-
ckelte Zahlen-Rate-Spiel sehr anschaulich und schön umge-
setzt.

• Dir wurden für weitere Experimente noch mehr LC-Display-
Typen vorgestellt, so dass das Basteln und Entwickeln sicher-
lich kein Ende mehr nehmen wird.

Workshop
Mach’ dir ein paar Gedanken hinsichtlich eines Schlosses in Form
eines Sicherheits-Code, das an manchen Eingängen zu sensiblen
Was ist eine LCD-Anzeige? --- 487

Bereichen installiert ist. Bevor sich die Tür öffnet, musst du einen
mehrstelligen Code eingeben. Natürlich bekommst du bei einer fal-
schen Eingabe keinen Hinweis darauf, ob der eingegebene Zahlen-
code zu niedrig oder zu hoch ist. Du kannst z.B. einen Servo
anschließen, der bei korrektem Code einen Riegel der Schießanlage
zurückfährt. Hast du den Code drei Mal in Folge falsch eingegeben,
musst du eine bestimmte Zeit von z. B. drei Minuten warten, bevor
die nächste Eingabe erfolgen kann. Entwickle eine Zugangskon-
trolle zu deinem Zimmer, um lästige Mitbewohner oder Geschwis-
ter auf Distanz zu halten.
--- Projekt 21: Eine Alphanumerische Anzeige488

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 22 22Kommunikation
über I2C
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Was bedeutet I2C?

• Was ist ein Bussystem

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Workshop

Was bedeutet I2C?
Einige Entwickler haben sich vor ca. 20 Jahren Gedanken darüber
gemacht, wie sich elektronische Bauteile am besten miteinander
verbinden lassen, damit sie Daten bzw. Informationen untereinan-
der austauschen können. Was bedeutet jedoch in diesem Zusam-
menhang am besten? Nun, die Verbindungen sollten zum einen auf
schnelle Weise hergestellt werden können, und zum anderen sollte
das mit möglichst wenig Schaltungsaufwand verbunden sein.
Wenn wir z.B. einzelne integrierte Bausteine (auch ICs genannt)
verwenden, ist es z.B. hinsichtlich der benötigten Datenleitungen,
mit denen die Bausteine miteinander verbunden werden, ein auf-
wändiges Unterfangen, das in dem Maße steigt, in dem immer
mehr Kommunikationskomponenten beteiligt sind.
--- 489

Abbildung 22-1
Ein antikes EPROMs vom Typ 2764K

(mit 28 Beinchen)

Das auf dem Bild gezeigte EPROM hat schon eine Menge
Anschlussbeinchen. Stell dir mal vor, du hättest eine Platine mit 10
oder 20 dieser Speicherbausteine, die es alle zu verdrahten gilt. Ers-
tens nehmen diese Bausteine schon einiges an Platz weg und zudem
müssen alle Pins verdrahtet werden. Es war also schon ein immen-
ser Aufwand, der damals vor ca. 20 Jahren betrieben wurde. Die
Entwickler kamen dann auf die Idee, eine Art Bus-System zu entwi-
ckeln, an das zahlreiche elektronische Teilnehmer angeschlossen
werden können, um darüber Daten auszutauschen. Sie nannten es
I2C. Doch was genau verbirgt sich hinter dieser recht kryptisch
anmutenden Bezeichnung? Es handelt sich um einen seriellen
Datenbus, der über zwei Leitungen – SCL und SDA genannt –
Daten verschickt. In der folgenden Abbildung siehst du die Ver-
schaltung der einzelnen Komponenten für unseren Mikrocontroller
ATmega 328p.

Abbildung 22-2
Das I2C-Bussystem (Ein Master und

viele Slave-Komponenten)

Das Bus-System arbeitet als bidirektionale Master/Slave-Architek-
tur. Whow, was für ein geschwollener Ausdruck. Doch das

�

�

�

�

�

�

� ��

��

��

��

��

��

��

�

"�2

�	

��

��

��

��

��

�	

�

��

��

��

��

"��

3334��
�/)��*

�������	
��

�	
5

�	
5

��!

� �

(�

���B
����	8���

0���
�����+�����+�
	+�
������	��

��

3334��
"
/+�3�

3334��
"
/+�3�

3334��
"
/+�3�

3334��
"
/+�3�
-- Projekt 22: Kommunikation über I2C490

zugrunde liegende Prinzip ist eigentlich ganz simpel und recht ein-
fach zu verstehen. Master/Slave bedeutet, dass eine Komponente
der Master, also derjenige ist, der die ganze Übertragungen steuert
und koordiniert. Die anderen Komponenten sind als Slave dekla-
riert und senden auf Anforderung vom Master ihre Daten an das
Bussystem. Die Daten wurden dann vom Master entgegen genom-
men und ausgewertet. Bidirektional bedeutet, dass Daten in beide
Richtungen, vom Master zum Slave bzw. vom Slave zum Master,
übertragen werden. Auf der linken Seite der Abbildung befindet
sich das Hirn des Bus-System – der Mikrocontroller, der als Master
arbeitet. Alle angeschlossenen elektronischen Komponenten sind
über zwei Leitungen mit ihm verbunden. Diese Leitungen haben
folgende Bezeichnungen bzw. Aufgaben:

• SCL (Serial Clock Line) Taktleitung

• SDA (Serial Data Line) Datenleitung

Diese beiden Leitungen sind über sogenannte Pullup-Widerstände,
die in unserem Fall jeweils einen Widerstandswert von 10K haben,
mit der Versorgungsspannung verbunden.

Das ist eine berechtigte Frage, Ardus, die ich mir zu Beginn auch
gestellt habe. Damit jede einzelne I2C-Komponente eindeutig ange-
sprochen werden kann, benötigt sie eine Adresse. Wenn du meh-
rere Slave-Komponenten an dein Arduino Mikrocontroller
anschließt, muss jeder einzelnen von ihnen eine eigene Adresse
zugewiesen werden. Diese muss unbedingt eindeutig sein. Es darf
unter keinen Umständen eine Adresse doppelt vergeben werden.

Kein Problem, Ardus. Es gibt schon einige wichtige I2C-Komponen-
ten:

• Speicherbausteine
(z.B. 24LC08, 24LC16, 24LC64 o. 24LC256)

Stopp mal kurz! Wenn alle elektronischen Komponenten an zwei Lei-
tungen hängen, wie kann dann der Master einen bestimmten Slave
auswählen? Es erhalten doch alle zur selben Zeit die gleichen Infor-
mationen. Reagieren dann alle auf einmal oder wird ein bestimmter
Slave ausgewählt?

Was gibt es denn für unterschiedliche elektronische Bauteile, die ich
über den I2C-Bus mit dem Arduino-Board verbinden kann? Ich kann
mir das im Moment überhaupt noch nicht konkret vorstellen.
Was bedeutet I2C? -- 491

• Port-Extension-Bausteine - I/O-Erweiterungen
(z.B. PCF8574A o. MCP23016)

• Uhr- bzw. Kalenderbausteine
(z.B. PCF8583, DS1307 o. DS1337)

• Digitale Temperatursensoren (z.B. TMP75 o. LM75)

• 7-Segmentanzeigen (z.B. SAA1064)

Ich möchte hier mit dem Speicherbaustein beginnen, der im Gegen-
satz zum eben gezeigten EPROM schon wie ein Zwerg anmutet.

Abbildung 22-3
Serielles I2C EEPROM vom Typ

24LC64

Dieser Baustein hat eine Speicherkapazität von 64 KBits. Das sind
umgerechnet 8 KBytes. Ich denke, dass wir unser erstes I2C-Experi-
ment mit diesem beginnen sollten.

Es mögen sich vielleicht noch einige wenige Schreibfehler – ich
hoffe aber, die Anzahl geht gegen Null – in das vorliegende Buch
eingeschlichen haben, doch diese Schreibweise ist so beabsichtigt.
Die alten Speicherbausteile konnten nur mit einem entsprechen-
den Brenngerät, dem EPROMmer gebrannt werden. Das Löschen
war dann nur noch mit einem speziellen Löschgerät möglich, das
eine UV-Lampe im Inneren besaß. Deshalb hat so ein EPROM
auch ein kleines Fenster auf der Oberseite. Direkt darunter befin-
det sich der Halbleiterbaustein. EPROM ist die Abkürzung für
Erasable Programmable Read-Only Memory, was übersetzt lösch-
barer programmierbarer Nur-Lese-Speicher bedeutet. Die aktuellen
Bausteine mit der Bezeichnung EEPROM, was Electrically
Erasable Programmable Read-Only Memory heißt und übersetzt
elektrisch löschbarer programmierbarer Nur-Lese-Speicher bedeu-
tet, können über die CPU bzw. über Programmierung mit neuen
Daten versorgt werden.

Die alten Speicherbausteine hast du EPROM und die neuen bzw.
aktuellen EEPROM genannt. Ist das ein Schreibfehler oder gibt es da
wirklich einen Unterschied?
-- Projekt 22: Kommunikation über I2C492

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• I2C

• Two wire interface

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Vorbemerkung zur Nutzung des
EEPROM 24LC64
Bevor es losgeht, muss ich dir noch etwas zu EEPROM 24LC64
erläutern. Dieses EEPROM ist einer aus einer ganzen Reihe von
Speicherbausteinen mit gleicher Pinbelegung, jedoch unterschiedli-
chen Kapazitäten. Hier eine kleine Auswahl:

Tabelle 22-1
Unterschiedliche I2C EEPROMs

Ich möchte es nicht versäumen, zu erwähnen, dass ein solcher
Speicherbaustein eine begrenzte Lebensdauer hinsichtlich der
Schreib-/Lesezyklen hat. Der Hersteller garantiert 1.000.000 Zyklen
und eine Aufrechterhaltung der Daten von 100 Jahren. Die Haltbar-
keit der Daten sollte für unsere Zwecke ausreichen, doch wenn du
vorhast, alle paar Sekunden Daten zu Schreiben bzw. zu Lesen,
musst du dir schon Gedanken darüber machen, wann es mit dem EE-
PROM vorbei ist. Wir lassen es aber nicht soweit kommen. Werfen

Benötigte Bauteile

1 x EEPROM vom Typ 24LC64

2 x Widerstand 10K

Mehrere flexible Steckbrücken in unterschiedli-
chen Farben und Längen

Bezeichnung Speicherkapazität Speicherbereich

24LC08 8-KBit = 8.192 Bits = 1 KByte 0 bis 1.023

24LC64 64-Kbit = 65.536 Bits = 8 KByte 0 bis 8.192

24LC256 256-Kbit = 262.144 Bits = 32 KByte 0 bis 32.767
Was bedeutet I2C? -- 493

wir doch einmal einen Blick auf die Pinbelegung eines dieser Bau-
steine:

Abbildung 22-4
Die Pinbelegung des serielles I2C

EEPROM vom Typ 24LC64 (Blick von
oben)

Alle ICs haben zur Orientierung bezüglich der Pinbelegung auf
einer Seite eine kleine Kerbe oder einen kleinen Punkt. So auch bei
diesem EEPROM. Die einzelnen Pins haben folgende Bedeutung:

Tabelle 22-2
Die Bedeutung der einzelnen Pins

der EEPROM

Gehen wir doch die einzelnen Pins der Reihe nach durch. Wie ich
schon erwähnte, muss jedem Baustein, der am I2C-Bus angeschlos-
sen ist, eine eigene und eindeutige Adresse zugewiesen werden. Das
ist wie bei einem Briefträger, der eine Straße entlanggeht, um dort
die Post abzuliefern. Die Straße entspricht dem Bus und die einzel-
nen Hausnummern den Adressen der angeschlossenen I2C-Kompo-
nenten. Für die korrekte Zustellung ist eine eindeutige
Hausnummer unentbehrlich. Da das EEPROM drei Adressleitun-
gen nach außen führt, ist die Anzahl der unterschiedlichen Adress-
kombinationen 23 = 8. Wie setzt sich aber die Busadresse
zusammen?

��2���

�

�

�

�

�

�

�

�

�	

��

��

� � "��

"�2

6�

��!

Pin Bezeichnung Bedeutung

1 A0 Bit 0 der Adresse

2 A1 Bit 1 der Adresse

3 A2 Bit 2 der Adresse

4 VSS bzw. GND Masse

5 SDA Serial Data Line (wird mit analog Pin 4 verbunden)

6 SCL Serial Clock Line (wird mit analog Pin 5 verbunden)

7 WP Write Protect (GND: schreiben möglich, +5V: nur lesen)

8 VCC bzw. +5V Spannungsversorgung

� 	 � 	 �� �� �	

O��	��+ ��	���	�

 9��
��
��+ ��	���	�

-- Projekt 22: Kommunikation über I2C494

Die Busadresse hat einen festen Teil mit der Bitkombination 1010
und einen variablen Teil A2, A1 und A0. Den letzteren kannst du
modifizieren, um eine Komponente anzusprechen. Die folgende
Tabelle zeigt dir die möglichen Bitkombinationen mit den entspre-
chenden Busadressen.

Tabelle 22-3
Die zur Verfügung stehenden
Busadressen im Hex-Format

Dir entgeht aber auch gar nichts, was!? Ok, Ardus. Die Program-
mierer der Library haben es uns recht einfach gemacht, auf eine I2C
Komponente zuzugreifen. Diese Wiring-Library erwartet eine
Adresse ohne das LSB, das zwar intern durchaus verwendet wird,
über das du dir aber keine Gedanken machen musst. Eigentlich
sieht das Byte für die Busadresse folgendermaßen aus:

Jetzt hast du deine 8 Bits, aber noch eine Anmerkung für dein Ver-
ständnis: Das LSB dient als Read/Write-Flag (0=write, 1=read
only). Doch, wie schon erwähnt, ist diese Funktionalität für uns
nicht von Bedeutung und wird alleine über die Library verwaltet.
Zerbreche dir also darüber nicht den Kopf. Bevor wir aber weiter

26 25 24 23 22 21 20 Busadresse (Hex)

1 0 1 0 0 0 0 0x50

1 0 1 0 0 0 1 0x51

1 0 1 0 0 1 0 0x52

1 0 1 0 0 1 1 0x53

1 0 1 0 1 0 0 0x54

1 0 1 0 1 0 1 0x55

1 0 1 0 1 1 0 0x56

1 0 1 0 1 1 1 0x57

Ok, das habe ich soweit verstanden. Aber wenn ich mich recht ent-
sinne, dann haben wir es doch auf der Ebene der Mikrocontroller
Programmierung immer mit Bits und Bytes zu tun. Wenn ich die
Anzahl der Bits hier zähle, dann komme ich lediglich auf 7. Zum voll-
ständigen Byte fehlt jedoch 1 Bit. Wo ist das denn abgeblieben?

� 	 � 	 �� �� �	

O��	��+ ��	���	�

 9��
��
��+ ��	���	�

%76

2"�
Was bedeutet I2C? -- 495

ins Detail gehen - und es gibt noch einiges zu besprechen - wenden
wir wieder dem Sketch-Code zu.

Arduino-Sketch-Code
Du musst an dieser Stelle aufpassen, wenn du älteren Code vor der
Arduino-Version 1.00 verwendest. Ich habe den Sketch-Code flexi-
bel gehalten, so dass er sowohl in der Version 0022 als auch in 1.00
lauffähig ist. Das Problem ist folgendes: Die Wire-Library wurde
für die Version 1.00 angepasst, so dass einige Methoden, die in die-
sem Kapitel verwendet werden, umbenannt wurden:

Tabelle 22-4
Änderungen in der Wire-Library in

der Arduino-Version 1.00

#include <Wire.h>
#define I2CBaustein 0x50 // Festlegen der I2C Zugriffsadresse

void setup(){
 Wire.begin();
 Serial.begin(9600);
 unsigned int speicherAdresse = 0; // Startadresse
 byte wert = 7; // Zu speichernder Wert
 schreibeEEPROM(I2CBaustein, speicherAdresse, wert); // Schreiben
 Serial.println(leseEEPROM(I2CBaustein, speicherAdresse), HEX); // Lesen
}

void loop(){/* leer */}

void schreibeEEPROM(int I2CBausteinAdresse, unsigned int speicherAdresse,

 byte daten){
 Wire.beginTransmission(I2CBausteinAdresse); // Verbindung zu I2C
 // initiieren

 #if ARDUINO < 100
 Wire.send((byte)(speicherAdresse >> 8)); // MSB (höherwertiges Byte)
 // senden

 Wire.send((byte)(speicherAdresse & 0xFF)); // LSB (niederweriges Byte)
 // senden
 Wire.send(daten); // Daten-Byte zum Speichern

 // senden
 #else
 Wire.write((byte)(speicherAdresse >> 8)); // MSB (höherwertiges Byte)

 // senden
 Wire.write((byte)(speicherAdresse & 0xFF)); // LSB (niederweriges Byte)
 // senden

in Version 0022 in Version 1.00

send write

receive read
-- Projekt 22: Kommunikation über I2C496

 Wire.write(daten); // Daten-Byte zum Speichern
 // senden
 #endif

 Wire.endTransmission(); // Verbindung zu I2C trennen
 delay(5); // Kurze Pause. Äußerst
 // wichtig!!!

}

byte leseEEPROM(int I2CBausteinAdresse, unsigned int speicherAdresse){
 byte datenByte = 0xFF;
 Wire.beginTransmission(I2CBausteinAdresse); // Verbindung zu I2C

 // initiieren
 #if ARDUINO < 100
 Wire.send((byte)(speicherAdresse >> 8)); // MSB (höherwertiges Byte)

 // senden
 Wire.send((byte)(speicherAdresse & 0xFF)); // LSB (niederwertiges Byte)
 // senden

 #else
 Wire.write((byte)(speicherAdresse >> 8)); // MSB (höherwertiges Byte)
 // senden

 Wire.write((byte)(speicherAdresse & 0xFF)); // LSB (niederwertiges Byte)
 // senden
 #endif

 Wire.endTransmission(); // Verbindung zu I2C trennen
 Wire.requestFrom(I2CBausteinAdresse, 1); // Anfordern der Daten vom
 // Slave

 #if ARDUINO < 100
 if(Wire.available()) datenByte = Wire.receive(); // Sind Daten vorhanden?

 #else
 if(Wire.available()) datenByte = Wire.read(); // Sind Daten vorhanden?
 #endif

 return datenByte; // Daten-Byte
 // zurückliefern
}

Arduino-Code-Review
Der Code beinhaltet schon recht viele neue Befehle, die zum
größten Teil alle mit der Wire-Library zusammenhängen. Was soll
der Sketch-Code denn ausführen? Die Aufgabe ist recht simpel,
doch es gehört schon einiges an Aufwand zur Realisierung:

• Festlegen der Speicheradresse für die Speicherung der Daten

• Speichern der Daten

• Abrufen der zuvor gespeicherten Daten
Was bedeutet I2C? -- 497

Wir sollten uns nun die einzelnen Prozesse, also Speichern bzw.
Lesen, im Einzelnen genauer anschauen.

Der Speicherprozess

Abbildung 22-5
Die einzelnen Schritte beim

Speichern in das EEPROM

Da diese Schritte beim Speichern regelmäßig aufgerufen werden
müssen, habe ich sie in eine entsprechende Funktion ausgelagert,
die ich schreibeEEPROM genannt habe. Ihr werden die Bausteina-
dresse, die Speicheradresse und die Daten übergeben.

void schreibeEEPROM(int I2CBausteinAdresse, unsigned int
 speicherAdresse, byte daten){
 Wire.beginTransmission(I2CBausteinAdresse); // Verbindung zu I2C
 // initiieren
 #if ARDUINO < 100
 Wire.send((byte)(speicherAdresse >> 8)); // MSB (höherwertiges
 // Byte) senden
 Wire.send((byte)(speicherAdresse & 0xFF)); // LSB (niederwertiges
 // Byte) senden
 Wire.send(daten); // Daten-Byte zum
 // Speichern senden
 #else
 Wire.write((byte)(speicherAdresse >> 8)); // MSB (höherwertiges
 // Byte) senden
 Wire.write((byte)(speicherAdresse & 0xFF)); // LSB (niederwertiges
 // Byte) senden
 Wire.write(daten); // Daten-Byte zum
 // Speichern senden
 #endif
 Wire.endTransmission(); // Verbindung zu I2C
 // trennen
 delay(5); // Kurze Pause. Äußerst
 // wichtig!!!
}

?�����
��
��+���
����

����	������+��

����	������+H�

����	������+&�	��

?�����
��
��+�������

���
�����������

&�	���F	�

?�����
��
��+���
����
#/�+>�������	���������
1���	�����

?�����
��
��+7���
-- Projekt 22: Kommunikation über I2C498

Der Speicherprozess erfolgt innerhalb einer sogenannten Transmis-
sion. Sie wird durch die Methode beginTransmission eingeleitet und
durch endTranmission abgeschlossen. In dieser erfolgt die Adressie-
rung der gewünschten Speicheradresse und nachfolgend die Über-
tragung der Daten. Beim Transmissionsbeginn wird die I2C-
Bausteinadresse gesendet, damit die am Bus angeschlossenen Teil-
nehmer wissen, wer gemeint ist:

Wire.beginTransmission(I2CBausteinAdresse);

Jetzt wird es ein wenig tricky. Da die Kommunikation nur in 1
Byte-Blöcken erfolgen kann, der Adressbereich für den internen
Speicher des EEPROMs aber 2 Bytes umfasst, muss die Ansprache
der Speicheradresse in zwei separaten Schritten erfolgen. Schauen
wir uns dazu das folgende Beispiel an: Du möchtest an der Spei-
cheradresse 4.59610 den Wert 4510 ablegen. Die Binärkombination
für die Adresse lautet wie folgt:

Wie kommen wir jetzt an das MSB, also das höherwertige Byte
heran? Vielleicht erinnerst du dich noch an den Bit-Schiebeoperator
>>. Wenn du die hier gezeigte Bitkombination um 8 Stellen nach
rechts schiebst, dann erhältst du den Bytewert des MSB. Hierzu
wird folgender Befehl verwendet:

speicherAdresse >> 8

4)444 4 4)
/4/)///3/5/2/;/</C/D/)4/))/)//)3/)5/)2

�E���$��	
���+ F	� :
����$��	
���+ F	�

4))))) 4 4
(�	�����

	����
��	
��

�� H�

4))))) 4 44)444 4 4)
/4/)///3/5/2/;/</C/D/)4/))/)//)3/)5/)2

�E���$��	
���+ F	� :
����$��	
���+ F	�

4)444 4 4)44444 4 4 4

7�����
�
Was bedeutet I2C? -- 499

Das Ergebnis liegt jetzt als Byte vor und kann mit der Befehlszeile

Wire.write((byte)(speicherAdresse >> 8)); // ab Version 1.00

oder

Wire.send((byte)(speicherAdresse >> 8)); // Versionen < 1.00

übertragen werden.

Nicht ganz, Ardus! Die Variable speicherAdresse ist vom Datentyp
unsigned int, was bedeutet, dass keine negativen Werte interpretiert
werden, denn Speicheradressen sind immer positive Ganzzahl-
werte. Wir haben zwar das Endergebnis in den unteren 8 Bits als
LSB vorliegen, doch die oberen 8 Bits des MSB sind trotzdem noch
vorhanden und mit Nullen versehen. Die write-Methode erwartet
jedoch in unserem Fall einen Wert des Datentyps byte. Aus diesem
Grund muss über den sogenannten Cast-Operator, der sich in den
runden Klammern vor dem vermeintlichen Ergebnis befindet, eine
Konvertierung in den erforderlichen Datentyp byte erfolgen. Jetzt
fehlt noch das niederwertige Byte LSB, das im zweiten Schritt über-
tragen werden muss. Wir wenden die schon bekannte bitweise
UND-Verknüpfung an, die als Filter bzw. Maske arbeitet, um
bestimmte Bits zu maskieren:

Das Ergebnis liegt jetzt als Byte vor und kann mit der Befehlszeile

Wire.write((byte)(speicherAdresse & 0xFF)); // ab Version 1.00

oder

Wire.send((byte)(speicherAdresse & 0xFF)); // Versionen < 1.00

Ok, ich sende also mit der write-Methode der Wire-Library den Byte-
wert. Warum muss ich denn noch den Datentyp byte vor das Ergeb-
nis schreiben? Ich dachte, dass es schon um das Ergebnis handle, das
in Form eines Bytes vorliegt.

4)444 4 4)
/4/)///3/5/2/;/</C/D/)4/))/)//)3/)5/)2

�E���$��	
���+ F	� :
����$��	
���+ F	�

4))))) 4 4

�����+�OO"

44444444 7�����
�-+/55)4

4))))) 4 4
-- Projekt 22: Kommunikation über I2C500

übertragen werden. Der Vorgang der Adressierung ist jetzt abge-
schlossen und die Transmission erwartet im nächsten Schritt das
Datenbyte, das mit der Zeile

Wire.write(daten); // ab Version 1.00

oder

Wire.send(daten); // Versionen < 1.00

gesendet wird. Der Datentyp der Variablen daten ist schon byte und
muss nicht erst entsprechend über den Cast-Operator konvertiert
werden. Der Abschluss der Transmission wird durch die Zeile

Wire.endTransmission();

gebildet. Eine nicht zu vergessene Zeile, die ebenfalls zur Funktion
gehört, ist folgende:

delay(5);

Sie fügt eine kleine Pause ein und kommt dann zum Tragen, wenn
viele Daten hintereinander an den Bus geschickt werden. Du musst
dem Bus ein wenig Zeit geben, um die Daten zu verarbeiten. Es
kann zu merkwürdigen Effekten der Datenkorruption kommen,
wenn diese Pause nicht eingehalten wird.

Der Leseprozess

Abbildung 22-6
Die einzelnen Schritte beim Lesen
aus dem EEPROM

?�����
��
��+���
����

����	������+��

����	������+H�

���
�����������

?�����
��
��+���
����
#/�+>�������	���������
1���	�����

?�����
��
��+������� ?�����
��
��+7���

&�	��+��'������

&�	��+G��+ ��+����'��
Was bedeutet I2C? -- 501

Auch hier habe ich die einzelnen Schritte in eine entsprechende
Funktion ausgelagert, die ich leseEEPROM genannt habe. Ihr wer-
den die Bausteinadresse und die Speicheradresse übergeben:

byte leseEEPROM(int I2CBausteinAdresse, unsigned int speicherAdresse){
 byte datenByte = 0xFF;

 Wire.beginTransmission(I2CBausteinAdresse); // Verbindung zu I2C
 // initiieren

 #if ARDUINO < 100
 Wire.send((byte)(speicherAdresse >> 8)); // MSB (höherwertiges
 // Byte) senden

 Wire.send((byte)(speicherAdresse & 0xFF)); // LSB (niederwertiges
 // Byte) senden
 #else

 Wire.write((byte)(speicherAdresse >> 8)); // MSB (höherwertiges
 // Byte) senden
 Wire.write((byte)(speicherAdresse & 0xFF)); // LSB (niederwertiges

 // Byte) senden
 #endif
 Wire.endTransmission(); // Verbindung zu I2C

 // trennen
 Wire.requestFrom(I2CBausteinAdresse, 1); // Anfordern der Daten
 // vom Slave

 #if ARDUINO < 100
 if(Wire.available()) datenByte = Wire.receive(); // Sind Daten
 // vorhanden?

 #else
 if(Wire.available()) datenByte = Wire.read(); // Sind Daten
 // vorhanden?

 #endif
 return datenByte; // Daten-Byte
 // zurückliefern

}

Der Leseprozess erfolgt ebenfalls innerhalb der dir schon bekann-
ten Transmission. Beim Transmissionsbeginn wird wieder die I2C-
Bausteinadresse gesendet, damit die am Bus angeschlossenen Teil-
nehmer wissen, wer gemeint ist.

Wire.beginTransmission(I2CBausteinAdresse);

Es folgt die Speicheradressierung

Wire.write((byte)(speicherAdresse >> 8)); // MSB (höherwertiges Byte)

 // senden
Wire.write((byte)(speicherAdresse & 0xFF)); // LSB (niederweriges
 // Byte) senden
-- Projekt 22: Kommunikation über I2C502

die jetzt jedoch sofort im Anschluss mit dem Transmissionsende

Wire.endTransmission();

quittiert wird. Beachte auch hier wieder den Code für Arduino-Ver-
sionen < 1.00. Na, das scheint ja auf den ersten Blick etwas verwir-
rend zu sein. Wo bleibt denn der Schritt, der das Lesen aus dem
EEPROM einleitet? Sollte dieser nicht innerhalb der Transmission
erfolgen? Die Antwort lautet NEIN! Das Lesen erfolgt erst nach der
Beendigung der Transmission. Dafür sind die folgenden Codezeilen
verantwortlich:

Wire.requestFrom(I2CBausteinAdresse, 1); // Anfordern der
 // Daten vom Slave

if(Wire.available()) datenByte = Wire.read(); // Sind Daten
 // vorhanden?

Die requestFrom-Methode fordert die Daten mit der im ersten
Argument übergebenen I2C-Bausteinadresse an. Das zweite Argu-
ment legt fest, wie viele Bytes ab der Startadresse abgerufen werden
sollen. Danach werden die Daten an den Bus übertragen. Nun
kommt die available-Methode ins Spiel, die den logischen Wert
true zurückliefert, wenn Daten vorliegen. Über die if-Abfrage wer-
den dann bei entsprechender Bewertung mit dem Ergebnis true die
Daten über die read-Methode vom Bus empfangen und in der Vari-
ablen datenByte gespeichert. Über den letzten Befehl in der Funk-
tion, wird mittels return-Anweisung der Wert der Variablen an den
Aufrufer zurückgeliefert. Die println-Methode gibt diese Daten in
HEX-Format an den Serial-Monitor aus. Hier kannst du sie dir
dann anschauen.

Achtung
Ich habe den Zugriff auf das EEPROM innerhalb der setup-Funk-
tion platziert. Dadurch wird sichergestellt, dass das Speichern
bzw. Abrufen der Daten einmalig zum Sketchbeginn stattfin-
det. Komm bitte nicht auf die Idee, den Code in die loop-Funk-
tion zu verschieben. Das funktioniert zwar auch ganz gut, doch
das EEPROM hat – wie ich schon eingangs erwähnt habe – eine
begrenzte Anzahl von Schreib- / Lesezyklen. Innerhalb der
loop-Funktion kannst du das EEPROM schnell in kürzester Zeit
über dieses Limit hinaus belasten, so dass du als Ergebnis ein
schönes kleines schwarzes Plastikgehäuse hast, dass keinerlei
Funktion mehr erfüllt. Tja, das kann ja auch etwas Feines sein.
Was bedeutet I2C? -- 503

Der Schaltplan

Schaltungsaufbau

Abbildung 22-8
Aufbau der EEPROM-Ansteuerung

mit Fritzing

Abbildung 22-7
Die Verschaltung des EEPROM

24LC64
-- Projekt 22: Kommunikation über I2C504

Wir programmieren einen Monitor
Wenn du dir den Inhalt des gesamten EEPROMs einmal anschauen
möchtest, ist es wohl recht mühsam, Byte für Byte auszulesen. Aus
diesem Grund werden wir uns jetzt einen Monitor programmieren,
der sowohl die Speicheradressen als auch deren Inhalte im Serial-
Monitor ausgibt. Die folgende Abbildung gibt dir schon einmal
einen Vorgeschmack auf die Ausgabe, wie ich sie mir vorgestellt
habe:

Abbildung 22-9
Ausgabe des EEPROM-Inhaltes im
Serial-Monitor

In der linken Spalte werden die Speicher-Startadressen der Speicher-
inhalte angezeigt, die in der betreffenden Zeile gelistet werden. Die
Startadresse einer Zeile bezieht sich immer auf den ersten Hex-
Wert, der ihr folgt. Um die entsprechende Speicheradresse eines
sich weiter rechts befindenden Datenwertes zu ermitteln, musst du
lediglich die Speicher-Startadresse um den Positionswert des
Datenwertes erweitern. Der erste Wert hat natürlich die Positions-
nummer 0, da seine Startadresse ja schon angezeigt wird. Zum bes-
seren Verständnis hier ein Beispiel:
Was bedeutet I2C? -- 505

Sowohl die Speicher-Startadressen als auch die Datenwerte werden
im Hex-Format angezeigt. Hier der Code, der diese Ausgabe
ermöglicht:

#include <Wire.h>
#define I2CBaustein 0x50 // Festlegen der I2C Zugriffsadresse
/*
Speicherbereiche für unterschiedliche EEPROMs

24LC08: 8-KBit = 8192 Bits = 1 KByte / Speicherbereich: 0 - 1023
24LC64: 64-KBit = 65536 Bits = 8 KByte / Speicherbereich: 0 - 8191
24LC256: 256-KBit = 262144 Bits = 32 KByte / Speicherbereich: 0 -

32767
*/
#define Startadresse 0
#define Endeadresse 8191
void setup(){
 Wire.begin();

 Serial.begin(9600);
 int adresse = 0;
 for(unsigned int adr = Startadresse; adr <= Endeadresse; adr++){
 int a = leseEEPROM(I2CBaustein, adr); // Lese Daten
 if((adr == 0)||(adr % 8 == 0))
 Serial.print(int2hex(adr, 4) + ": "); // Zeige Speicheradresse
 // an
 Serial.print(int2hex(a, 2) + " "); // Zeige Daten-Byte an
 if((adr + 1) % 8 == 0)

 Serial.println(); // Zeilenvorschub
 }
}

// int -> hex-Konvertierung mit der Angabe der Stellen
String int2hex(int wert, int stellen){

 String temp = String(wert, HEX);
 String prae = "";
 int len = temp.length(); // Die Länge der Zeichenkette ermitteln

 int diff = stellen - len;
 for(int i = 0; i < diff; i++)
 prae = prae + "0"; // Führende Nullen erzeugen

 return prae + temp; // Führende Nullen + Ergebnis zurückliefern
}

Des Weiteren benötigst du natürlich noch die leseEEPROM-Funk-
tion, die ich hier nicht noch einmal aufliste. Im oberen, auskom-
mentierten Codebereich habe ich unterschiedliche Adressbereiche
für drei EEPROM-Versionen vermerkt. Du kannst sie ggf. anpas-
sen, wenn du mit anderen EEPROMs experimentierst.
-- Projekt 22: Kommunikation über I2C506

Troubleshooting
Wenn dir nach dem Schreiben eines Datenbytes der entsprechende
Wert beim Lesen nicht wieder angezeigt wird, überprüfe Folgen-
des:

• Ist die Verkabelung korrekt?

• Gibt es eventuell Kurzschlüsse untereinander?

• Hast du die korrekte Bus-Adresse verwendet? A0 bis A2 müs-
sen bei Adresse 0x50 mit Masse verbunden sein. Ebenso muss
der WP-Anschluss auf Masse liegen, da das EEPROM sonst
nur Daten lesen, aber nicht schreiben kann.

Was hast du gelernt?
• Du hast in diesem Kapitel erfahren, was ein I2C-Bus ist und

wie du mit diesem eine ganze Reihe von Komponenten anspre-
chen kannst.

• Über ein angeschlossenes EEPROM kannst du Daten abrufen
und speichern, um über einen längeren Zeitraum – auch bei
Verlust der Betriebsspannung – noch darauf zugreifen zu kön-
nen.

• Die wire-Library diente bei diesem Vorhaben als Unterstüt-
zung, wobei du dich nicht mit den tieferen Details des I2C-Bus-
ses auseinandersetzen musstest.

• Du hast einen EEPROM-Monitor programmiert, damit du dir
die Inhalte komfortabel anzeigen lassen kannst.

Workshop
Entwickle eine Schaltung bzw. einen Sketch, der die Lichtverhält-
nisse vor deinem Fenster in bestimmten Zeitabständen über einen
LDR ermittelt und die Werte in das EEPROM schreibt. Du kannst
dir dann am Abend die Werte auslesen und z.B. eine entsprechende
Kurve in Excel erstellen. Unser Serial-Monitor hat im letzten Bei-
spiel die gespeicherten Werte im Hex-Format ausgegeben. Die Aus-
gabe kann natürlich auch dezimal erfolgen, was für die
Kurvendarstellung sicherlich sinnvoller ist. Des Weiteren kannst du
vielleicht den EEPROM-Monitor so umprogrammieren, dass statt
der Hex-Werte Dezimalwerte angezeigt werden. Damit aber die
Übersichtlichkeit nicht leidet, würde ich dir raten, dass alle Werte
Was bedeutet I2C? -- 507

die gleiche Stellenanzahl aufweisen. Gib also am besten die führen-
den Nullen immer mit aus, so wie das auch hier bei den Speichera-
dressen erfolgt ist.
-- Projekt 22: Kommunikation über I2C508

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 23 23Der Schrittmotor
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Was ist ein Schrittmotor?

• Wie kannst du ihn ansteuern?

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Workshop

Noch mehr Bewegung
In dem Kapitel über den Servo bist du das erste Mal mit einem Bau-
teil in Berührung gekommen, das elektrischen Strom in Bewegung
umwandelt. Sein Aktionsradius war von Hause aus in solcher
Weise eingeschränkt, dass er sich nur um 1800 drehen konnte.
Natürlich können Modifikationen durchgeführt werden, um dieses
Manko zu beheben, doch für die meisten Anwendungszwecke
reicht dieser Radius durchaus. Falls dennoch einmal mehr Aktions-
freiheit erforderlich ist, kommt der Schrittmotor zum Einsatz. Du
erinnerst dich hoffentlich noch an das Kapitel Die Elektronik, in
dem ich dich bereits mit den entsprechenden vertraut gemacht
habe. Diese waren zugegebener Maßen ein wenig rudimentär, und
deshalb möchte ich dieses gesamte Kapitel dem Schrittmotor wid-
men. Damit dir möglichst wenig Kosten entstehen, solltest du über-
legen, ob sich vielleicht irgendwelche alten Geräte ausschlachten
lassen. Schrittmotoren findest du z.B. in folgenden Geräten:
--- 509

http://www.ladyada.net/make/mshield/

• Druckern

• Flachbettscannern

• CD/DVD-Laufwerken

• alten Floppy-Drives (3,5 Zoll)

In der folgenden Abbildung siehst du ein 3,5 Zoll Floppy-Laufwerk,
das teilweise sogar heute noch in Computern verwendet wird.
Allerdings ist es ein schon fast ausgestorbener Vertreter der Geräte
zur Datenspeicherung.

Abbildung 23-1
Ein 3,5 Zoll Floppy-Laufwerk

Als ich vor einiger Zeit einen Blick in unseren Wertstoffhof gewor-
fen habe, da lachte mich eine Sammlung von ca. 10 alten Laufwer-
ken an und die riefen: »Nimm’ uns mit!« Ich konnte dieser
Aufforderung nicht widerstehen. In einem solchen Laufwerk befin-
det sich ein kleiner Schrittmotor, der meistens vom Typ PL15S-020
ist. Dieser treibt einen kleinen Schlitten an, an dem sich der
Schreib-/Lesekopf befindet. In der folgenden Abbildung ist eine
solche Einheit aus einem alten CD-ROM Laufwerk zu sehen.

Abbildung 23-2
Der Schrittmotor PL15S-020 aus

einem alten CD-ROM Laufwerk
-- Projekt 23: Der Schrittmotor510

Dieser Schrittmotor ist mit 4 Anschlüssen versehen, die wir uns ein
wenig genauer anschauen wollen. Ich habe übrigens, wie du in der
Abbildung erkennen kannst, schon ein paar farbige Leitungen
angelötet, damit das Ansteuern mit dem Arduino-Board leichter
von der Hand geht. In der folgenden Grafik siehst du, welche
Anschlussbezeichnungen verwendet werden:

Abbildung 23-3
Die Anschlüsse des Schrittmotors
PL15S-020 D

Dieser Motor hat 4 Anschlüsse, was darauf hindeutet, dass es sich
um einen bipolaren Schrittmotor handelt. Um den Motor in Gang
zu setzen, müssen die gezeigten Anschlüssen bestimmte Impulse in
einer bestimmten zeitlichen Abfolge erhalten.

Abbildung 23-4
Die Ansteuerungssequenzen für
den Schrittmotor PL15S-020 D

Wenn wir einen Sketch schreiben, der nacheinander die Schritte
von 1 bis 4 abarbeitet und die entsprechenden Pegel LOW bzw.
HIGH an den Schrittmotor schickt, wird dieser sich im Uhrzeiger-
sinn drehen. Bei entgegengesetzter Schrittfolge erfolgt die Drehung
gegen den Uhrzeigersinn. Eine wichtige Gegebenheit habe ich bis-
her noch nicht erwähnt. Du kannst den Schrittmotor nicht einfach
so an die digitalen Ausgänge anschließen, denn diese würden dann
so belastet, dass das Board unweigerlich einen Schaden davon-
trüge. Aus diesem Grund nutzen wir einen Motortreiber vom Typ
L293, den ich dir in der folgenden Abbildung quasi von innen
zeige.

)
 3

�)
�3

(H)2��4/4

��
���

Noch mehr Bewegung -- 511

Abbildung 23-5
Der Motortreiber vom Typ L293DNE

Die kleinen Dreiecke stellen das Symbol für den Treiber dar, der erfor-
derlich ist, um die Leistung zu bringen, die ein angeschlossener Motor
für seinen Betrieb benötigt. Die IC-Anschlüsse, mit dem Buchstaben A
sind die Eingänge und die mit Y die Ausgänge. Jeweils zwei Treiber tei-
len sich einen gemeinsamen Freigabeanschluss, der mit der Abkür-
zung 1,2EN bzw. 3,4EN gekennzeichnet ist. Das EN steht für Enable,
was so viel wie ermöglichen bedeutet. Dieser Motortreiber kann pro
Ausgang einen Strom von 600mA bereitstellen. Folgende Treiberbau-
steine sind in der Lage, einen höheren Strom zu liefern:

• SN754410 (1Ampere)

• L298 (2 Ampere)

Ich denke, dass es sinnvoll ist, wenn ich dir jetzt schon einmal den
Schaltplan präsentiere.

Abbildung 23-6
Die Ansteuerung des Schrittmotors

über den Motortreiber L293DNE

�

�

�

�

�

�

� �	

��

��

��

��

��

��23�
�

�

!����8�3�

!���

��

�9

� �

� �

�9

��

��

�9

� �

� �

�9

��

�8�3�

� �

��
-- Projekt 23: Der Schrittmotor512

Was fällt uns hier auf? Nun, da befindet sich auf der rechten Seite
des Schaltplanes eine zusätzliche Spannungsquelle, die notwendig
ist, um den Schrittmotor mit separater Spannung bzw. separatem
Strom zu versorgen. Bei zwei oder mehr Spannungsquellen ist es
jedoch immer erforderlich, die Masseleitungen zusammenzuschal-
ten, um einen gemeinsamen Bezugspunkt herzustellen.

Achtung
Auf keinen Fall dürfen die (+)-Pole des Arduino-Boards und der
externen Spannungsquelle miteinander verbunden werden!
Das zerstört das Arduino-Board!

Laut Datenblatt des Schrittmotors benötigt dieser zum Betrieb 5V.
Wenn die Versorgungsspannung des Schrittmotors darunterliegt,
wird die Positionierung ungenau und ist nicht reproduzierbar. Es
gleicht dann mehr einem Glücksspiel, wenn eine bestimmte Posi-
tion mehrfach punktgenau angefahren werden soll. Hier ein paar
Eckwerte des Schrittmotors PL15S-020:

• Anzahl der Schritte pro Umdrehung: 20

• Typ: Bipolar

• Spannungsversorung: 5V

• Spulenwiderstand pro Phase: 10 Ohm

Vollkommen korrekt, Ardus! Aber vergessen habe ich sie trotzdem
nicht. Der kleine Zusatz DNE hinter der Bezeichnung L293 bedeu-
tet, dass die Schutzdioden, auch Freilaufdioden genannt, schon im
Motortreiberbaustein integriert wurden. Das ist natürlich eine feine
Sache! Falls du einen älteren Baustein mit der Bezeichnung L293
(ohne den Zusatz DNE) in einer Krabbelkiste finden solltest, dann
ist es zwingend notwendig, die Schutzdioden extern zu verschalten!
Andernfalls nimmt das Arduino-Board Schaden.

Ich glaube, du hast etwas Entscheidendes vergessen! Soweit ich mich
entsinne, benötigt eine Motoransteuerung eine Schutzdiode. Hast du
das nicht ganz am Anfang einmal erwähnt?
Noch mehr Bewegung -- 513

http://www.arduino.cc/en/Reference/Stepper

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Keine Panik, Ardus! Du kannst eigentlich fast jeden bipolaren
Schrittmotor verwenden. Du musst dir lediglich das entsprechende
Datenblatt aus dem Internet besorgen, um an die Spezifikationen
heranzukommen. Achte auf jeden Fall auf den Strom, den der
Schrittmotor im Betrieb zieht, und vergleiche ihn mit dem für den
hier verwendeten Motortreiber. Er darf unter keinen Umständen
über 600mA pro Anschluss liegen. Andernfalls musst du dir entwe-
der einen anderen Schrittmotor oder einen anderen Treiberbaustein
besorgen. Wenn du keine solcher alten bzw. defekten Geräte hast,
wie ich sie am Anfang genannt habe, besuche doch die Internetseite
von Pollin Electronic (www.pollin.de). Dort findest du recht güns-
tige Schrittmotoren.

Da musst du entweder ein regelbares Labornetzteil oder – was noch
günstiger ist – ein Steckernetzteil verwenden. Ich habe dir beide
Geräte im Kapitel über Nützliches Equipment vorgestellt.

Benötigte Bauteile

1 x Motortreiber vom Typ L293DNE

1 x Bipolarer Schrittmotor (z.B. PL15S-020 aus
einem alten CD/DVD-ROM-Laufwerk)

Mehrere flexible Steckbrücken in unterschiedli-
chen Farben und Längen

Was mache ich denn bloß, wenn ich kein altes Floppy- oder CD/
DVD-ROM-Laufwerk finde? Dann kann ich doch das Experiment
nicht durchführen.

Wenn ich mir den Schaltplan so anschaue, dann habe ich ein klitze-
kleines Problem mit der externen Spannungsquelle, die ja laut Schritt-
motor-Eckdaten 5V betragen muss. Wo nehme ich die denn nun her?
-- Projekt 23: Der Schrittmotor514

http://www.pollin.de

Arduino-Sketch-Code
#define Stepper_A1 5 // Pin für Stepper A1
#define Stepper_A3 4 // Pin für Stepper A3
#define Stepper_B1 3 // Pin für Stepper B1
#define Stepper_B3 2 // Pin für Stepper B3

byte stepValues[5][4] = {{LOW, LOW, LOW, LOW}, // Stepper aus
 {LOW, HIGH, HIGH, LOW}, // Step 1
 {LOW, HIGH, LOW, HIGH}, // Step 2
 {HIGH, LOW, LOW, HIGH}, // Step 3
 {HIGH, LOW, HIGH, LOW}}; // Step 4

void setup(){
 pinMode(Stepper_A1, OUTPUT);
 pinMode(Stepper_A3, OUTPUT);
 pinMode(Stepper_B1, OUTPUT);
 pinMode(Stepper_B3, OUTPUT);
 for(int i = 0; i < 10; i++){

 action(30, 2); // 30 Steps nach rechts mit 2ms Pause
 action(-30, 10); // 30 Steps nach links mit 10ms Pause
 }

 action(0, 0); // Stromlos schalten
}

void loop(){/* leer*/}

void action(int count, byte delayValue){

 if(count > 0) // Drehung nach rechts
 for(int i = 0; i < count; i++)
 for(int sequenceStep = 1; sequenceStep <= 4; sequenceStep++)

 moveStepper(sequenceStep, delayValue);
 if(count < 0) // Drehung nach links
 for(int i = 0; i < abs(count); i++)

 for(int sequenceStep = 4; sequenceStep > 0; sequenceStep--)
 moveStepper(sequenceStep, delayValue);
 if(count == 0) // Stromlos schalten

 moveStepper(0, delayValue);
}

void moveStepper(byte s, byte delayValue){
 digitalWrite(Stepper_A1, stepValues[s][0]);
 digitalWrite(Stepper_A3, stepValues[s][1]);
 digitalWrite(Stepper_B1, stepValues[s][2]);
 digitalWrite(Stepper_B3, stepValues[s][3]);
 delay(delayValue); // Pause

}

Noch mehr Bewegung -- 515

Oops! Stimmt, Ardus, die hatte ich glaube ich noch nicht erwähnt.
Wendest du die Funktion abs, was die Abkürzung von absolute ist,
auf eine reelle Zahl an, dann wird einfach das Vorzeichen nicht
berücksichtigt. Das Ergebnis ist immer positiv. Mathematiker for-
mulieren diesen Sachverhalt wie folgt:

Die beiden senkrechten Striche vor bzw. hinter dem x bedeutet
übrigens Betrag von x, weshalb die Absolutfunktion auch Betrags-
funktion genannt wird. Am besten lässt sich die Arbeitsweise
jedoch anhand eines Graphen verdeutlichen, den ich für die abs-
Funktion erstellt habe:

Arduino-Code-Review
Für unser Schrittmotor-Experiment benötigen wir programmtech-
nisch gesehen die folgenden Variablen:

Tabelle 23-1
Benötigte Variablen und ihre

Aufgaben

Der Inhalt des Arrays entspricht exakt den Werten der Tabelle mit
den Ansteuerungssequenzen. Ich habe lediglich am Anfang eine
Zeile mit LOW-Werten hinzugefügt, die dazu dient, den Schrittmo-
tor nach Erreichen der angeforderten Position stromlos zu schalten.

In diesem Sketch verwendest du – so glaube ich zumindest – eine mir
unbekannte Funktion, die abs lautet. Kannst du mir das ein wenig
genauer erläutern?

Variable Aufgabe

stepValues[5][4] Zweidimensionales Array zur Speicherung der Schrittinformationen, um den
Motor zu bewegen.
-- Projekt 23: Der Schrittmotor516

Würde ich das nicht tun, bliebe der Motor zwar am Ende stehen,
doch wir hätten es mit einer aktiven Fixierung an der letzten ange-
fahrenen Position zu tun. Du kannst einen solchen Motor nicht
mehr mit der Hand bewegen, da er noch mit Spannung versorgt
wird. Das bedeutet wiederum, dass er nach kurzer Zeit recht warm
oder heiß wird.

byte stepValues[5][4] = {{LOW, LOW, LOW, LOW}, // Stepper aus
 {LOW, HIGH, HIGH, LOW}, // Step 1
 {LOW, HIGH, LOW, HIGH}, // Step 2
 {HIGH, LOW, LOW, HIGH}, // Step 3
 {HIGH, LOW, HIGH, LOW}}; // Step 4

Sehen wir uns zunächst die Funktion an, die den Schrittmotor
bewegt. Sie lautet moveStepper und nimmt zwei Argumente entge-
gen. Das erste steht für den Sequenzschritt, also 1 bis 4 für eine
Rechtsdrehung und 4 bis 1 für eine Linksdrehung. Das zweite
Argument gibt eine Wartezeit vor, die zwischen den einzelnen
Sequenzschritten eingehalten wird. Auf diese Weise kannst du die
Geschwindigkeit des Schrittmotors ein wenig beeinflussen. Dieser
Wert sollte jedoch nicht unter 2 liegen, da in einem solchen Fall die
elektrische Ansteuerung derart schnell erfolgt, dass der Motor
mechanisch nicht mehr reagieren kann. Er brummt bzw. zuckt
dann nur noch.

void moveStepper(byte s, byte delayValue){

 digitalWrite(Stepper_A1, stepValues[s][0]);
 digitalWrite(Stepper_A3, stepValues[s][1]);
 digitalWrite(Stepper_B1, stepValues[s][2]);
 digitalWrite(Stepper_B3, stepValues[s][3]);
 delay(delayValue); // Pause
}

Innerhalb der Funktion wird der übergebene Sequenzschritt als
Index in der ersten Dimension an das Sequenz-Array stepValues
übergeben. Die zweite Dimension steht für die Spannungspegel
LOW bzw. HIGH. Über die Indexwerte 0 bis 3 werden sie entspre-
chend abgerufen und den digitalen Ausgängen übergeben, die wie-
derum den Schrittmotor über den Treiberbaustein ansteuern.
Kommen wir jetzt zur action-Funktion, die die moveStepper-Funk-
tion aufruft:

void action(int count, byte delayValue){
 if(count > 0) // Drehung nach rechts

 for(int i = 0; i < count; i++)
 for(int sequenceStep = 1; sequenceStep <= 4; sequenceStep++)
Noch mehr Bewegung -- 517

 moveStepper(sequenceStep, delayValue);
 if(count < 0) // Drehung nach links
 for(int i = 0; i < abs(count); i++)

 for(int sequenceStep = 4; sequenceStep > 0; sequenceStep--)
 moveStepper(sequenceStep, delayValue);
 if(count == 0) // Stromlos schalten

 moveStepper(0, delayValue);
}

Ihr werden die Anzahl der Schritte, bzw. die Pause nach jedem
Schritt übergeben. Bei einem positiven Schrittwert dreht der
Schrittmotor sich rechts-, bei einem negativen links herum. Ist der
Wert 0, wird der Schrittmotor stromlos geschaltet. Es arbeiten
immer zwei verschachtelte for-Schleifen Hand in Hand, um den
Motor zu bewegen. Die äußere Schleife regelt die Schrittanzahl,
während die innere die Drehrichtung vorgibt. Ist der Schrittwert
positiv, arbeitet die innere Schleife die Sequenzschritte von 1 bis 4
ab, während bei negativem Wert die Sequenzschritte von 4 bis 1
abgearbeitet werden. Diese Sequenz dient der moveStepper-Funk-
tion als Index, mit dem stepValues-Array die entsprechenden LOW-
bzw. HIGH-Werte ausliest. Die eigentliche Anforderung zur Bewe-
gung des Schrittmotors erfolgt über den Aufruf der action-Funk-
tion, mit einer Codezeile wie der folgenden:

action(30, 2);

Sie teilt dem Schrittmotor Folgendes mit: »Drehe dich 30 Schritte
nach rechts und legen zwischen jedem Schritte eine Pause von 2ms
ein!« Die Zeile

action(-30, 10);

hingegen besagt »Drehe dich 30 Schritte nach links und lege zwi-
schen jedem Schritt 10ms Pause ein!«.

Auf diese Weise lässt sich der Schrittmotor an die gewünschte
Stelle bewegt werden. Denke aber an die mechanischen Grenzen,
denn weiter als minimal links bzw. maximal rechts geht einfach
nicht. Da nützt auch keine höhere Spannung. Ich möchte an dieser
Stelle nicht versäumen, dich auf zwei Dinge hinzuweisen:

Fertige Schrittmotoren-Library

Es gibt eine fertige Library, mit der du Schrittmotoren ansteuern
kannst, ohne dir Gedanken um die Programmierung machen zu
müssen. Sie lautet Stepper und ist Bestandteil des Arduino-Down-
-- Projekt 23: Der Schrittmotor518

loadpakets. Alle notwenigen Informationen dazu findest du unter
http://www.arduino.cc/en/Reference/Stepper.

Fertiges Motor-Shield

Du kannst ein fertiges Motor-Shield kaufen, das zwei der eben ange-
sprochenen Motortreiber L293DNE verwendet. Damit nicht so
viele digitale Pins ver(sch)wendet werden, erfolgt die Ansteuerung
elegant über das Schieberegister 74HC595. Darum brauchst du dir
aber keine Gedanken machen, denn alle Logik steckt in der zur
Verfügung stehenden Library, die du auf der entsprechenden Inter-
netseite findest.

Abbildung 23-7
Das Motor-Shield

Du kannst an dieses Shield die unterschiedlichsten Motor-Kompo-
nenten anschließen:

• 2 Hobby-Servos

• Bis zu 4 Gleichstrommotoren

• Bis zu 2 Schrittmotoren (unipolar oder bipolar)

Alle weiteren Informationen findest du unter http://www.ladyada.
net/make/mshield/.

Troubleshooting
Falls der Schrittmotor sich nicht bewegt oder vielleicht nur zuckt
oder brummt, dann überprüfe folgende Punkte:

• Ist die Verkabelung korrekt?

• Gibt es etwaige Kurzschlüsse untereinander?

• Falls der Schrittmotor beim Start des Sketches nicht die Posi-
tion verändert oder vielleicht nur kurz zuckt oder brummt,
Noch mehr Bewegung -- 519

http://www.arduino.cc/en/Reference/Stepper
http://www.ladyada

dann liegt der Verdacht nahe, dass du die vier Anschlüsse ver-
tauscht hast.

• Hast du die gemeinsame Masseverbindung zwischen Arduino-
Board und externer Spannungsquelle hergestellt?

• Du darfst auf keinen Fall, die beiden Versorgungsspannungs-
pole des Board und der externen Spannungsquelle, die mit
einem (+) gekennzeichnet sind, miteinander verbinden!
Dadurch wird das Arduino-Board zerstört!

Was hast du gelernt?
• Du hast in diesem Kapitel erfahren, wie ein bipolarer Schritt-

motor anzusteuern ist.

• Die Ansteuerung haben wir über den Treiberbaustein
L293DNE realisiert.

Workshop
In der folgenden Abbildung siehst du eine Lego-Konstruktion, an
die ich einen Schrittmotor aus einem alten Flachbettscanner mon-
tiert habe.

Abbildung 23-8
Ein bipolarer Schrittmotor an einer

Lego-Konstruktion

Den Zahnriemen und die Umlenkrolle habe ich ebenfalls aus besag-
tem Flachbettscanner übernommen. Wird der Schrittmotor ange-
trieben, dann bewegt sich der Schlitten, der auf Zahnstangen läuft,
von links nach rechts und umgekehrt. Mit ein wenig Geschick und
Kreativität kannst du dir auf diese Weise einen XY-Schreiber bauen.
Nähere Informationen findest du zu gegebener Zeit auf meiner
Internetseite.
-- Projekt 23: Der Schrittmotor520

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 24 24Der ArduBot
f den

Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

n
er)Scope

In diesem Experiment behandeln wir folgende Themen:

• Die Ansteuerung eines Elektromotors

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Workshop

Der ArduBot
Nun hast du ja im letzten Kapitel gesehen, wie du über den Motor-
treiber L293 DNE einen bipolaren Schrittmotor ansteuern kannst.
Ein ganz normaler Motor mit lediglich 2 Anschlüssen kann eben-
falls über diesen Treiberbaustein angesteuert werden. Wir wollen
jetzt einen ArduBot – also ein Fahrzeug mit Arduino-Steuerung –
konstruieren. Was liegt da näher, als uns die Lego-Komponenten
unserer Kinder auszuleihen.
--- 521

Machen wir uns jedoch zuvor ein paar Gedanken über die Ansteue-
rung eines Motors. Wenn du diesen fest mit einer Spannungsquelle
verbindest, gibt es nur zwei Zustände:

Abbildung 24-1
Die Ansteuerung eines Motors

Du siehst, dass der Motor fest in der Schaltung verdrahtet wurde
und die beiden Zustände Motor dreht sich bzw. Motor steht anneh-
men kann.

Das ist genau das Problem, auf das ich hindeuten wollte, Ardus. Ein
Anschluss ist immer mit +12V und der andere mit 0V verbunden.
Damit er sich in entgegengesetzter Richtung dreht, müsstest du ent-
weder die Spannungsquelle oder den Motor umpolen. Das ist
jedoch nicht praktikabel und aus diesem Grund verwenden wir
eine besondere Schaltung, die das Umpolen ermöglicht.

Abbildung 24-2
Die Ansteuerungsschaltung eines

Motors über eine H-Bridge

Für die Ansteuerung eines Roboterfahrzeuges ist diese Schaltung
sicherlich nicht zu gebrauchen, denn wie kann er denn in die entge-
gengesetzte Richtung fahren?
--- Projekt 24: Der ArduBot522

Du siehst in dieser Schaltung den Motor in der Mitte und er ist von
4 Schaltern umgeben. Je nachdem, in welcher Kombination die
Schalter betätigt, also geschlossen werden, dreht sich der Motor
entweder links oder rechts herum. Wenn du die Anordnung der
Schalter bzw. der Anschlüsse einmal aus der Ferne betrachtest,
dann siehst du, dass sie den Buchstaben H ergibt. So hat diese
Schaltung ihren Namen bekommen: H-Schaltung oder H-Bridge.
Dann lass’ uns einmal sehen, welche Schalterkombinationen für
eine sinnvolle Ansteuerung in Frage kommen.

Abbildung 24-3
Die sinnvolle Ansteuerung eines
Motors über eine H-Bridge

Du siehst, dass je nach gewünschter Drehrichtung des Motors, die
Schalter S1 bis S4 entsprechend geschlossen werden müssen. Es ist
jedoch darauf zu achten, dass kein Kurzschluss entsteht, denn
durch das Schließen von S1 + S2 bzw. S3 + S4 werden die beiden
Pole der Spannungsquelle unmittelbar verbunden. Fassen wir die
Schalterkombinationen doch einmal in einer Tabelle zusammen.
Dabei bedeutet 0 offener und 1 geschlossener Schalter.

Tabelle 24-1
Schalterkombinationen der
H-Bridge

S1 S2 S3 S4 Motorverhalten

1 0 0 1 Rechtsdrehung des Motors

0 1 1 0 Linksdrehung des Motors

1 0 1 0 Bremsung (Motoranschlüsse werden kurzgeschlossen)

0 1 0 1 Bremsung (Motoranschlüsse werden kurzgeschlossen)

0 0 0 0 Motor läuft ungebremst aus

1 1 0 0 Verbotene Schalterstellung (Kurzschluss!)

0 0 1 1 Verbotene Schalterstellung (Kurzschluss!)
Der ArduBot --- 523

Natürlich könnten wir für die gezeigten Zustände Schalter und
Relais einsetzen, doch es ist am sinnvollsten, den schon bekannten
Treiberbaustein L293 zu verwenden. Er besitzt vier Ein- bzw. Aus-
gänge und kann demnach zwei separate Motoren ansteuern. Ich
habe dazu ein eigenes Shield gebaut, das den Treiberbaustein und
drei Anschlussklemmen besitzt, mit denen die zwei Motoren und
die externe Spannungsversorgung angebracht werden.

Abbildung 24-4
Die Ansteuerung der ArduBot-

Motoren über ein L293DNE-Shield

Der Schaltplan ist denkbar einfach, bei der Ansteuerung des Motor-
treibers werden die gleichen Pins wie im letzten Kapitel verwendet.

Abbildung 24-5
Der Schaltplan für das

L293DNE-Shield

Wenn du jetzt die einzelnen Ausgänge des Motortreibers noch
geschickt ansteuerst, dann wird der ArduBot genau das tun, was du
von ihm verlangst. Die einzelnen LED’s auf dem Shield zeigen die
Drehrichtung des jeweiligen Motors an.
--- Projekt 24: Der ArduBot524

Ok, Ardus, das wären dann zwei Fragen. Ich beantworte zuerst
Frage Nummer eins. Durch die vier Schalter, von denen immer
zwei quasi überkreuz geschaltet wurden, haben wir die Polarität am
Motor verändert. Schau’ dir das folgende Schaltbild an, in dem
lediglich ein einziger Motor am Treiberbaustein angeschlossen ist.

Abbildung 24-6
Ein Motor am Treiberbaustein L293

Durch die Eingänge A bzw. B, die vom Arduino gesteuert werden,
wird die Polarität am Motor beeinflusst.

Tabelle 24-2
Polaritätssteuerung über den
Treiberbaustein L293

Nun zu Frage Nummer zwei. Die Schaltung besitzt einen Elektro-
lytkondensator, um etwaige Spannungsspitzen bzw. Spannungsein-
brüche zu kompensieren, die entstehen können, wenn der Motor
einem Lastwechsel unterzogen wird. Das geschieht unter Umstän-
den sowohl beim Aktivieren, als auch beim Deaktivieren. Der Kon-
densator arbeitet dann als Puffer und hält das vorherige
Spannungsniveau kurzzeitig aufrecht.

Ich verstehe nicht ganz, wie ich jetzt die einzelnen Schalter innerhalb
des Treiberbausteins steuern soll. Pro Motor sind das doch vier Schal-
ter. Wir haben aber lediglich zwei Steuerleitungen für einen einzelnen
Motor. Wie funktioniert das denn? Und warum befindet sich ein
Kondensator in der Schaltung?

A B Motorverhalten

0 0 Motor Stopp

0 1 Linksdrehung des Motors

1 0 Rechtsdrehung des Motors

1 1 Motor Stopp
Der ArduBot --- 525

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Benötigte Bauteile

1 x Motortreiber vom Typ L293DNE

2 x Motor (ggf. von Lego)

2 x grüne LED

2 x gelbe LED

4 x Widerstand 330

1 x Elektrolyt-Kondensator 10µF

1 x Shieldplatine

1 x Set stapelbare Buchsenleisten (2 x 8 + 2 x 6)
--- Projekt 24: Der ArduBot526

Arduino-Sketch-Code
Die Ansteuerung der Motoren erfolgt in diesem Kapitel wieder über
eine eigens zu diesem Zeck erstellte Library.

Hauptsketch mit Code-Review
Ich beginne auch hier wieder mit dem Hauptsketch:

#include "ArduBotMotor.h";

ArduBotMotor abm = ArduBotMotor(2, 3, 4, 5); // Motorinstanz erzeugen

void setup(){
 abm.move(FORWARD, STRAIGHT); // 1 Fahrzeuglänge forwärts fahren
 abm.move(RIGHT, QUARTER); // 1/4 Rechtsdrehung
 abm.move(PAUSE, 1000); // Pause für 1 Sekunde
 abm.move(BACKWARD, 3000); // Rückwärts fahren für 3 Sekunden
 abm.move(LEFT, HALF); // 1/2 Linksdrehung
}

void loop(){/* leer */}

Die komplette Steuerung des ArduBots erfolgt einmalig innerhalb
der setup-Funktion, damit das Roboterfahrzeug sich nicht endlos
weiterbewegt. Zu Beginn müssen wir wieder die Header-Datei der
benötigten Klasse einbinden und danach ein Objekt erstellen. Der
Konstruktor erwartet die vier Pins, an denen der Motortreiber ange-
schlossen ist, der wiederum die Motoren steuert. Pin 2 und 3 sind
für Motor 1 bzw. Pin 4 und 5 für Motor vorgesehen. Die Klasse
ArduBotMotor beinhaltet im Moment lediglich eine einzige
Methode mit dem Namen move. Mit ihr kannst du dein Fahrzeug
in alle Richtungen fahren und unterwegs auch Pausen einlegen las-

3 x Anschlussklemmen zum Einlöten auf
Lochrasterplatine (RM: 2,54)

Litze in ggf. unterschiedlichen Farben

Benötigte Bauteile
Der ArduBot --- 527

sen. Die Steuerung erfolgt also über die Argumente der move-
Methode.

Das erste Argument teilt dem Motor mit, was er machen soll, und
das zweite, wie lange die Aktion dauern soll. Für das erste Argu-
ment stehen dir folgende Optionen zur Verfügung:

Tabelle 24-3
Mögliche Werte für das erste

Argument und ihre Bedeutungen

Das zweite Argument kann die folgenden Werte annehmen:

Tabelle 24-4
Mögliche Werte für das zweite

Argument und ihre Bedeutungen

Die Dauer der Aktion wird immer über die Angabe der Zeit gere-
gelt. Du kannst entweder eine Zeitangabe in Millisekunden vorneh-
men oder einen vordefinierten Zeitwert auswählen, der sprechen-
der ist und natürlich vorher für deinen ArduBot ermittelt werden
muss. Du verwendest ggf. andere Motoren mit einer abweichenden
Getriebeübersetzung und die von mir angegebenen Zeitwerte sind
für deine Konfiguration nicht passend? In diesem Fall ist einfaches
Ausprobieren angesagt, und genau das macht ja gerade den Reiz
des Ganzen aus. Es soll ja eben nicht nach dem Motto: »Auspacken,
Einschalten, Geht« ablaufen.

Abbildung 24-7
Die »move«-Methode

(�M�	���:.�2�
������

��	���� B��K B
�+
����K

Was? Bedeutung

FORWARD Vorwärtsbewegung

BACKWARD Rückwärtsbewegung

RIGHT Rechtsdrehung

LEFT Linksdrehung

PAUSE Pause

Wie lange? Bedeutung

<Wert> Ein Interegerwert in Millisekunden (z.B. 2000 für 2 Sekunden)

QUARTER Ein Zeitwert, der eine Vierteldrehung ermöglicht.

HALF Ein Zeitwert, der eine halbe Drehung ermöglicht.

STRAIGHT Ein Zeitwert, der eine ganze Fahrzeuglänge.
--- Projekt 24: Der ArduBot528

Header-Datei mit Code-Review
Die Aufgabe der Header-Datei ist dir mittlerweile bekannt und
bedarf eigentlich keiner weiteren Erläuterung.

#ifndef ARDUBOTMOTOR_H
#define ARDUBOTMOTOR_H

#if ARDUINO < 100

#include <WProgram.h>
#else
#include <Arduino.h>

#endif

// Bewegungsrichtungen + Pause

enum Motion
{
 FORWARD = 1,

 BACKWARD,
 RIGHT,
 LEFT,

 PAUSE
};

// Drehwinkel in Form von Zeitangaben
// Diese Werte müssen von dir sicherlich angepasst werden
enum Turn

{
 QUARTER = 4450, // Zeit für 1/4 Drehung
 HALF = 8900, // Zeit für 1/2 Drehung

 STRAIGHT = 4500, // Zeit für 1 Fahrzeuglänge
};

class ArduBotMotor{
 public:
 ArduBotMotor(byte m1_P1, byte m1_P2, byte m2_P1, byte m2_P2);

 // Konstruktor
 void move(Motion mV, int mD); // Steuere Motor an
 private:

 byte motor1_Pin1, motor1_Pin2;
 byte motor2_Pin1, motor2_Pin2;
 byte moveValue;

 int moveDuration;
};
#endif
Der ArduBot --- 529

Also Ardus, ich liebe deine Direktheit! Du hast natürlich Recht.
Was es mit enum so auf sich hat, muss natürlich noch genauestens
erläutert werden. Dieses Schlüsselwort ist die Abkürzung für Enu-
meration und bedeutet übersetzt Aufzählung. Eine solche Aufzäh-
lung ist immer dann sinnvoll, wenn wir eine bestimmte Anzahl von
Alternativwerten für ein Argument einer Methode bzw. Funktion
benötigen. Auf diese Weise wird eine gewisse Sicherheit hergestellt,
dass auch wirklich nur die vorher definierten Werte eine akzeptiert
werden. Abweichende Elemente, die nicht Bestandteil der Aufzäh-
lung sind, führen zu einem Compilerfehler. In der folgenden Enu-
meration wird eine Liste der erlaubten Argumente zur Steuerung
der Bewegungsrichtung zusammengestellt und die entsprechenden
Elemente werden unter einem bestimmten Namen – hier Motion –
gruppiert. Dabei werden die einzelnen Elemente durch ein
geschweiftes Klammernpaar zu einem Block zusammengefasst und
durch Kommas getrennt aufgelistet. Hinter der schließenden Klam-
mer befindet sich ein Semikolon, um die Aufzählung abzuschlie-
ßen.

enum Motion
{

 FORWARD = 1,
 BACKWARD,
 RIGHT,

 LEFT,
 PAUSE

};

Jedem Aufzählungselement wird ein Wert über den Zuweisungso-
perator zugewiesen. Für das erste Element ist das der Wert 1.

Nein, Ardus, ich habe hier nichts vergessen, denn alle nachfolgen-
den Elemente werden implizit jeweils um den Wert 1 erhöht. Ich
hätte sogar die explizite Initialisierung des ersten Elementes weglas-
sen können, das dann mit dem Wert 0 initialisiert worden wäre. Es
können nur ganzzahlige Werte zur Initialisierung verwendet wer-
den. Damit die entsprechende Methode, die diese Enumeration

...keiner weiteren Erläuterungen, sagst Du!? Das soll wohl ein Witz
sein. Da gibt es wieder zwei Codebereiche, die ich in der Form noch
nicht kenne. Sie beginnen jeweils mit dem Wörtchen enum. Habe ich
gepennt oder vielleicht Du?

Ok, das leuchtet mir ein. Doch warum haben alle nachfolgenden Ele-
mente keine Zuweisung erhalten? Wurde hier etwas vergessen?
--- Projekt 24: Der ArduBot530

verwendet, eine Typüberprüfung des übergebenen Argumentes
durchführen kann, wird die Aufzählung als neuer Datentyp angege-
ben. Schau’ her:

void move(Motion mV, int mD); // Steuere Motor an

Das erste Argument mV ist vom Typ Motion und akzeptiert aus-
schließlich Elemente aus dieser Enumeration. Das zweite Argument
ist aber vom Typ int und akzeptiert somit alle ganzzahligen Werte.
Dennoch wird die zweite Enumeration für dieses Argument zur
Verfügung gestellt:

enum Turn
{

 QUARTER = 4450, // Zeit für 1/4 Drehung
 HALF = 8900, // Zeit für 1/2 Drehung
 STRAIGHT = 4500 // Zeit für 1 Fahrzeuglänge

};

Jedes einzelne Element wurde explizit mit einem Initialisierungs-
wert versehen.

Sicherlich hätte ich so vorgehen können, doch dann wäre es mir
nicht möglich gewesen, reine Integerwerte zur individuellen Zeitan-
gabe für den Pausenwert zu übergeben. Eine Zeile wie

abm.move(PAUSE, 1000); // Pause für 1 Sekunde

mit dem Argument 1000 lieferte dann einen Compilerfehler, denn
dieser Wert ist nicht Bestandteil der Aufzählung.

CPP-Datei mit Code-Review
Nun folgt wieder die Implementierung des eigentlichen Codes:

#include "ArduBotMotor.h"
// Parametrisierter Konstruktor
ArduBotMotor::ArduBotMotor(byte m1_P1, byte m1_P2, byte m2_P1, byte

 m2_P2){
 motor1_Pin1 = m1_P1; motor1_Pin2 = m1_P2;
 motor2_Pin1 = m2_P1; motor2_Pin2 = m2_P2;

 pinMode(motor1_Pin1, OUTPUT); // Als Ausgang programmieren
 pinMode(motor1_Pin2, OUTPUT); // Als Ausgang programmieren

Warum hast du denn an dieser Stelle nicht den zweiten Methodenpa-
rameter mit dem Datentyp Turn versehen, so wie du das auch für den
ersten getan hast?
Der ArduBot --- 531

 pinMode(motor2_Pin1, OUTPUT); // Als Ausgang programmieren
 pinMode(motor2_Pin2, OUTPUT); // Als Ausgang programmieren
}

// Methode zum Ansteuern des Motors
void ArduBotMotor::move(Motion mV, int mD){

 moveValue = mV; moveDuration = mD;
 byte m1_1, m1_2, m2_1, m2_2;

 switch(moveValue){
 case FORWARD: // Vorwärts
 m1_1 = LOW; m1_2 = HIGH;
 m2_1 = LOW; m2_2 = HIGH; break;
 case BACKWARD: // Rückwärts
 m1_1 = HIGH; m1_2 = LOW;
 m2_1 = HIGH; m2_2 = LOW; break;
 case RIGHT: // Rechts
 m1_1 = HIGH; m1_2 = LOW;
 m2_1 = LOW; m2_2 = HIGH; break;
 case LEFT: // Links
 m1_1 = LOW; m1_2 = HIGH;
 m2_1 = HIGH; m2_2 = LOW; break;
 case PAUSE: // Pause
 m1_1 = LOW; m1_2 = LOW;
 m2_1 = LOW; m2_2 = LOW; break;
 }
 digitalWrite(motor1_Pin1, m1_1);

 digitalWrite(motor1_Pin2, m1_2);
 digitalWrite(motor2_Pin1, m2_1);
 digitalWrite(motor2_Pin2, m2_2);

 delay(moveDuration); // Beginn Pause
 digitalWrite(motor1_Pin1, LOW); // Motor stopp
 digitalWrite(motor1_Pin2, LOW); // Motor stopp
 digitalWrite(motor2_Pin1, LOW); // Motor stopp
 digitalWrite(motor2_Pin2, LOW); // Motor stopp
}

In Abhängigkeit vom ersten Parameter werden die privaten Felder
über die switch-Anweisung

• m1_1, m1_2 (Motor 1)

• m2_1, m2_2 (Motor 2)

initialisiert, die später den Eingängen der Motortreibers zugeführt
werden, um die Motoren entsprechend anzusteuern. Der zweite
Parameter wird lediglich als Argument für die delay-Funktion benö-
tigt und legt fest, wie lange die Motoren angesteuert werden sollen,
bevor sie deaktiviert werden.
--- Projekt 24: Der ArduBot532

Troubleshooting
Wenn dein ArduBot sich nicht so verhalten sollte, wie du es ihm
aufgetragen hast, überprüfe folgende Punkte:

• Ist die Verkabelung auf Korrektheit?

• Gibt es eventuell Kurzschlüsse untereinander?

• Drehen sich die Motoren zwar, jedoch in entgegengesetzte
Richtungen, dann kontrolliere die Polung und vertausche sie
ggf.

• Führt der ArduBot z.B. bei der Angabe des Argumentes QUAR-
TER weniger wie eine Vierteldrehung aus, dann passe den Ini-
tialisierungswert entsprechend nach oben an. Bedenke auch,
dass mit zunehmender Belastung der Batterie hinsichtlich der
Betriebszeit diese immer leerer wird und die Bewegungen ent-
sprechend langsamer erfolgen. Das führt natürlich bei einer
Zeitsteuerung, wie wir sie hier vorliegen haben, zu verkürzten
Bewegungsabläufen. Tausche die Batterie nach einiger Zeit
gegen eine neue aus. Hier noch ein Tipp: Wenn du mit dem
Experiment fertig bist, trenne die Batterie immer von der
Schaltung. Auf diese Weise hält sie länger.

Was hast du gelernt?
• Du hast erfahren, wie du über den Motortreiber L293 zwei

Elektomotoren unabhängig voneinander steuern kannst.

• Du konntest anhand eines Motor-Shields Marke Eigenbau
sehen, wie sich die Verbindungen zu den beiden Motoren bzw.
der Batterie recht gut und flexibel herstellen ließen.

Workshop
Bereite für dein ArduBot doch einmal einen Parcours vor, den er
exakt abfahren soll. Natürlich benötigst du dafür ein entsprechend
langes USB-Kabel, damit das Roboterfahrzeug eine gewisse Freiheit
hat.

Da kann man sich aber ganz schön verheddern und mein USB-
Anschlusskabel ist auch nicht so lang. Gibt es denn da keine andere
Möglichkeit der Steuerung, z.B. mit einer Fernbedienung oder so ähn-
lich?
Der ArduBot --- 533

Nun, Ardus, für den Moment sollte das genug an Informationen
sein. Wir kommen gleich noch zu einem interessanten Kapitel, in
dem es um Funkübertragung geht. Das wird dich bestimmt interes-
sieren, denn du kannst deinen Arduino dann mit einem Smart-
phone steuern. Na, habe ich dich neugierig gemacht!?
--- Projekt 24: Der ArduBot534

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 25 25Die Temperatur
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Was ist Temperatur?

• Wie können wir sie messen?

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Erweiterung der Schaltung um einen Lüfter

• Workshop

Heiß oder kalt oder was?
Wir leben alle in einer Welt bzw. Umgebung, die der wir von unter-
schiedlichen Stoffen umgeben sind. In der Regel können diese
Stoffe drei Zustände annehmen, die in der Physik Aggregatzustände
genannt werden. Ein solcher Aggregatzustand kann entweder fest,
flüssig oder gasförmig sein und hängt meist von einer physikalische
Größe ab, die sich Temperatur nennt. Was aber bedeutet Tempera-
tur und wie macht sie sich bemerkbar bzw. wie kann sie gemessen
werden. Jedwede Materie besteht im Innersten aus sehr kleinen
Teilchen, die Atome genannt werden. Diese wiederum bestehen aus
Elektronen (Ladung: negativ) in der Hülle und aus Protonen
(Ladung: positiv) bzw. Neutronen (Ladung: keine) im Kern. Das
sind nun auch wieder keineswegs die kleinsten Teilchen, doch rei-
chen sie für unser Beispiel zur Erklärung, was Temperatur ist, voll-
kommen aus.
--- 535

Abbildung 25-1
Die Bewegung der Atome

Diese kleinen Teilchen sind in ständig und scheinbar ziellos in unter-
schiedlichen Richtungen und mit unterschiedlichen Geschwindigkei-
ten in Bewegung. Die Temperatur ist dabei ein Maß für diese
thermische Bewegung der Atome bzw. Moleküle (Verbund von meh-
reren Atomen) eines Stoffes. Je schneller sie sich bewegen, desto grö-
ßer ist die Wahrscheinlichkeit, dass sie miteinander kollidieren. Bei
diesem Vorgang wird Bewegungsenergie in Wärmeenergie umge-
wandelt. Die thermische Bewegung ist also ein Maß für die Tempera-
tur eines Stoffes.

Wie kann Temperatur gemessen
werden?
Um die Temperatur messen zu können, werden Temperatursenso-
ren verwendet. Sie wandeln die gemessene Temperatur in unter-
schiedliche Widerstands- bzw. Spannungswerte um, die dann auf
die vorherrschende Temperatur schließen lassen. Im Kapitel über
die Elektronik hast du schon einen PTC bzw. NTC kennengelernt.
Diese Bauteile verändern ihren Widerstandswert in Abhängigkeit
von der Temperatur. Sie sind leider recht ungenau und haben nicht
unbedingt eine lineare Kennlinie. Aus diesem Grund möchte ich dir
einen Temperatursensor vorstellen, der seine Sache sehr gut macht.
Er nennt sich LM 35 und hat drei Anschlussbeinchen. Zwei sind für
die Spannungsversorgung zuständig und einer dient als Ausgang.
Das Bauteil sieht einem Transistor zum Verwechseln ähnlich.

Abbildung 25-2
Der Temperatursensor LM35 mit

seiner Anschlussbelegung in einem
TO-92-Plastikgehäuse
-- Projekt 25: Die Temperatur536

Dieser Sensor wandelt die gemessene Temperatur in einen analo-
gen Spannungswert um, der sich proportional zur Temperatur
ändert. Dies wird als temperaturproportionales Spannungsverhalten
bezeichnet. Der Sensor hat eine Empfindlichkeit von 10mV/C0 und
einen messbaren Temperaturbereich von 00 bis 1000 Celsius. Die
Formel zur Berechnung der Temperatur in Abhängigkeit vom
gemessenen Wert am analogen Eingang lautet wie folgt:

Die Formelwerte haben folgende Bewandtnis:

• 5.0: Arduino-Referenzspannung von 5V

• 100.0: Maximal messbarer Wert des Temperaturfühlers

• 1024: Auflösung des analogen Eingangs

Abbildung 25-3
Der Temperaturverlauf in
Processing dargestellt

Wir wollen gleich den gemessenen
Wert an einen Processing-Sketch
schicken und uns den Temperatur-
verlauf grafisch anzeigen lassen. Das
Ganze sieht dann ungefähr wie folgt
aus:

Dir wird die Temperatur zum einen
in Form eines Temperaturwertes
angezeigt und zum anderen in einer
grafischen Kurve im zeitlichen Ver-
lauf.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Benötigte Bauteile

1 x Temperatursensor vom Typ LM35

Mehrere flexible Steckbrücken in unterschiedli-
chen Farben und Längen
Wie kann Temperatur gemessen werden? --- 537

Arduino-Sketch-Code
#define sensorPin 0 // Verbunden mit LM35 Ausgang
#define DELAY 10 // kurze Wartezeit
const int cycles = 20; // Anzahl der Messungen

void setup(){
 Serial.begin(9600);
}

void loop(){
 float resultTemp = 0.0;
 for(int i = 0; i < cycles; i++){

 int analogValue = analogRead(sensorPin);
 float temperature = (5.0 * 100.0 * analogValue) / 1024;
 resultTemp += temperature; // Aufsummieren der Messwerte

 delay(DELAY);
 }
 resultTemp /= cycles; // Berechnung des Durchschnittes

 Serial.println(resultTemp); // Ausgabe an die serielle Schnittstelle
}

Arduino-Code-Review
Der vom Temperatursensor LM35 ermittelte Wert wird über die
eben genannte Formel berechnet

float temperature = (5.0 * 100.0 * analogValue) / 1024;

und über eine for-Schleife gemittelt. Dies erfolgt über das Aufsum-
mieren der Messwerte und die Bildung des Durchschnittes. Im
Anschluss wird der gemittelte Wert an die serielle Schnittstelle
übertragen:

Serial.println(resultTemp);

Dort wird er dann unmittelbar von Processing verarbeitet.

Processing-Code-Review
import processing.serial.*;
Serial meinSeriellerPort;

float realTemperatur;
int temperatur, xPos;
int[] yPos;

PFont font;
-- Projekt 25: Die Temperatur538

void setup(){
 size(321, 250); smooth();
 println(Serial.list());

 meinSeriellerPort = new Serial(this, Serial.list()[0], 9600);
 meinSeriellerPort.bufferUntil('\n');
 yPos = new int[width];

 for(int i = 0; i < width; i++)
 yPos[i] = 250;

 font = createFont("Courier New", 40, false);
 textFont(font, 40); textAlign(RIGHT);
}

void draw(){
 background(0, 0, 255, 100);

 strokeWeight(2); stroke(255, 0, 0);
 fill(100, 100, 100); rect(10, 100, width - 20, 130);
 strokeWeight(1); stroke(0, 255, 0);

 int yPosPrev = 0, xPosPrev = 0;
 // Arraywerte nach links verschieben
 for(int x = 1; x < width; x++)

 yPos[x-1] = yPos[x];
 // Anhängen der neuen Mauskoordinate am rechten Ende des Arrays
 yPos[width-1] = temperatur;

 // Anzeigen des Arrays
 for(int x = 10; x < width - 10 ; x++)
 point(x, yPos[x]);

 fill(255);
 text(realTemperatur + " °C", 250, 30); // Celsius
 delay(100);

}

void serialEvent (Serial meinSeriellerPort){

 String portStream = meinSeriellerPort.readString();
 float data = float(portStream);
 realTemperatur = data;

 temperatur = height - (int)map(data, 0, 100, 0, 130) - 25;
 println(realTemperatur);
}

Wenn du dich mit Processing intensiver auseinandersetzen möch-
test, dann wirf doch einmal einen Blick in mein Processing-Buch,
das auch im O’Reilly-Verlag erschienen ist.

Das könnte wichtig für dich sein
Wenn du das Ausgabefenster von Processing geöffnet hast und
vergisst, es wieder zu schließen, ist die Kommunikation mit
dem Arduino-Board nicht möglich. Warum? Ganz einfach! Pro-
cessing greift auf die serielle Schnittstelle zu, die auch dein
Wie kann Temperatur gemessen werden? --- 539

Arduino-Board zur Kommunikation mit der Entwicklungsumge-
bung benötigt. Dieser Port ist also durch Processing blockiert
und muss erst wieder durch das Schließen des Ausgabefensters
freigegeben werden.

Der Schaltplan
Der Schaltplan ist – ich muss es zugeben – etwas simpel, doch wir
werden ihn gleich etwas erweitern, um mehr Funktionalität in die
Schaltung zu bekommen.

Abbildung 25-4
Der Temperatursensor sendet seine
Daten an einen analogen Eingang.

Ein erweiterter Sketch (Jetzt mit mehr
Drumherum)
Es wird Zeit, dass wir mit dem Temperatursensor etwas Anständiges
anfangen. Was hältst du davon, wenn wir die Schaltung direkt um
mehrere Komponenten erweitern? Ich denke, dass ein Ventilator zur
Verbesserung des Raumklimas und ein Display zur Anzeige von
nützlichen Informationen interessante Projekte wären. Die Schal-
tung bzw. der Sketch sollen in der Lage sein, einen Lüftermotor beim
Erreichen einer bestimmten Temperatur anzuschalten bzw. beim
Unterschreiten der Temperatur wieder auszuschalten. Wir haben es
dann auch mit einer neuen Thematik zu tun, die sich mit der Ansteu-
erung eines Motors befasst. Da ein Motor zum Betrieb sicherlich
mehr Strom bzw. Spannung benötigt, als das Arduino-Board liefern
kann, müssen wir uns etwas einfallen lassen. Du hast im Kapitel über
die Elektronischen Grundschaltungen erfahren, wie ein Relais ange-
steuert werden kann. Wenn du das Relais durch einen Motor ersetzt,
hast du quasi eine Motorsteuerung. Doch schau’ her:
-- Projekt 25: Die Temperatur540

Abbildung 25-5
Die Ansteuerung eines Motors

In dieser Schaltung habe ich einen stärkeren Transistor vom Typ
TIP 120 verwendet. Es handelt sich um einen Darlington-Leistungs-
transistor in einem TO-220 Gehäuse, der in der Lage ist, einen Kol-
lektorstrom IC = 5A zu schalten und eine Kollektor-Emitter-
Spannung UCE = 60V verkraftet.

Abbildung 25-6
Der Darlington-Leistungstransistor
TIP 120 in einem TO-220
Plastikgehäuse

Die Freilaufdiode dürfen wir natürlich nicht vergessen. Sie ist vom
Typ 1N4004. Kennst du noch den Grund dafür, dass sie für die
Schaltung obligatorisch ist? Falls nicht, wirf ebenfalls einen Blick in
das Kapitel über die Elektronischen Grundschaltungen. Du darfst
diese Diode auf keinen Fall vergessen und du musst außerdem auf
die korrekte Polung achten, denn sonst wird dein Arduino-Board
mit höchster Wahrscheinlichkeit Schaden erleiden. Des Weiteren
möchte ich ein LC-Display verwenden, um die aktuelle Temperatur
anzuzeigen. Diesmal handelt es sich aber um ein Display, das über
den I2C-Bus anzusteuern ist. Es ist vom Typ I2C/TWI LCD1602.

Abbildung 25-7
Die Rückseite des LC-Displays 1602
Wie kann Temperatur gemessen werden? --- 541

Die Ansteuerung dieses Displays wird gleich anhand des verwende-
ten Sketches gezeigt. Kommen wir jetzt jedoch zum kompletten
Schaltplan, der schon etwas anspruchsvoller aussieht.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Benötigte Bauteile

1 x Temperatursensor vom Typ LM35

1 x Leistungstransistor TIP 120

1 x Widerstand 1K

2 x Widerstand 10K

1 x Diode 1N4004

LC-Display I2C/TWI LCD1602 Module

Lüfter-Motor z.B. 12V

Mehrere flexible Steckbrücken in
unterschiedlichen Farben und Längen
-- Projekt 25: Die Temperatur542

Abbildung 25-8
Die komplette Schaltung mit
Sensor, Anzeige und Motor bzw.
Lüfter

Ok, da haben wir auf der linken Seite das I2C LC-Display mit den Pull-
up-Widerständen. In der Mitte befindet sich unser Arduino und rechts
daneben der Temperatursensor LM35. Ganz rechts siehst du die
Motoransteuerung mit Transistor TIP 120 und Freilauf-Diode
1N4004. Dann werfen wir nun einmal einen Blick auf den Sketch-
Code:

#include <Wire.h>
#include <LiquidCrystal_I2C.h>
#define sensorPin 0 // Verbunden mit LM35 Ausgang
#define DELAY1 10 // kurze Wartezeit beim Messen
#define DELAY2 500 // kurze Wartezeit beim Anzeigen
#define motorPin 9 // Lüfter-Pin
#define threshold 25 // Schalt-Temperatur für Lüfter (25 Grad
 // Celsius)
#define hysterese 0.5 // Hysterese-Wert (0.5 Grad Celsius)
const int cycles = 20; // Anzahl der Messungen
LiquidCrystal_I2C lcd(0x27, 16, 2); // Adresse auf 0x27 für 16
 // Zeichen/2 Zeilen

void setup(){
 pinMode(motorPin, OUTPUT);
 lcd.init(); // LCD initialisieren
 lcd.backlight(); // Hintergrundbeleuchtung aktivieren
}

void loop(){
 float resultTemp = 0.0;
 for(int i = 0; i < cycles; i++){
 int analogValue = analogRead(sensorPin);
 float temperature = (5.0 * 100.0 * analogValue) / 1024;
 resultTemp += temperature; // Aufsummieren der Messwerte
 delay(DELAY1);
 }
 resultTemp /= cycles; // Berechnung des Durchschnitts

 lcd.clear(); // clear-Methode löscht LCD Inhalt
Wie kann Temperatur gemessen werden? --- 543

 lcd.print("Temp: "); // print-Methode schreibt LCD Inhalt
 lcd.print(resultTemp);
 #if ARDUINO < 100
 lcd.print(0xD0 + 15, BYTE); // Grad-Zeichen (Arduino 0022)
 #else
 lcd.write(0xD0 + 15); // Grad-Zeichen (Arduino 1.00)
 #endif
 lcd.print("C");
 lcd.setCursor(0, 1); // setCorsor-Methode positioniert LCD-Cursor
 lcd.print("Motor: ");
 if(resultTemp > (threshold + hysterese))
 digitalWrite(motorPin, HIGH);
 else if(resultTemp < (threshold - hysterese))
 digitalWrite(motorPin, LOW);
 lcd.print(digitalRead(motorPin) == HIGH?"an":"aus");
 delay(DELAY2);
}

Die Ermittlung der Temperatur erfolgt wie gehabt und hat sich im
Vergleich zum vorherigen Beispiel nicht geändert.

Gut dass du aufpasst, sonst hätte ich das wirklich vergessen! Dazu
muss ich ein klein wenig ausholen, wobei das Ganze aber recht ein-
fach zu verstehen ist. Wir haben es mit einer weiteren Form der
Variablendeklaration zu tun. Demnach kennst du jetzt drei Schreib-
weisen, die ich anhand eines Beispieles nochmal aufzeige:

1. int grandios = 47;

2. #define grandios 47

3. const int grandios = 47;

Alle drei Versionen initialisieren scheinbar eine Variable, die gran-
dios lautet, mit dem Wert 47. Worin liegt aber der Unterschied? Es
muss ja einen geben, sonst hätten wir nicht unterschiedliche
Schreibweisen.

zu 1

Ok, die erste Variante int grandios = 47; lässt den Compiler einen
Bereich im Flash-Speicher reservieren, um den Wert 47 dort abzu-
legen. Es wird also zusätzlicher Speicherplatz benötigt und belegt.

Ich glaube, du willst mir wieder etwas unterjubeln oder hast es ein-
fach vergessen. Auch in diesem Sketch-Code befindet sich ein Pro-
grammelement, dass du mir noch nicht vorgestellt hast. Was
bedeutet denn die Zeile const int cycles = 20; ? Was mich etwas verun-
sichert, ist das kleine Wörtchen const.
-- Projekt 25: Die Temperatur544

Wie kann Temperatur gemessen werden? --- 545

zu 2

Diese Variante nutzt die Präprozessor Direktive #define, die ledig-
lich einem Namen einen Wert zuordnet, den der Compiler bei sei-
ner Übersetzung überall dort ersetzt, wo er im Sketch-Code
auftaucht. Auf diese Weise wird kein zusätzlicher Speicherplatz
gebunden, um eine Variable zu verwalten. Du solltest dir aber bei
dieser Schreibweise die Frage stellen, welcher Datentyp Verwen-
dung findet, denn er wird ja nicht wie im ersten Beispiel angegeben.
Was könnte hier die Lösung sein?

zu 3

Wird das Schlüsselwort const vor der Variablendeklaration verwen-
det, dann ist die vermeintliche Variable keine Variable mehr, son-
dern eine Konstante, deren Wert zur Laufzeit des Sketches nicht
mehr geändert werden kann. Es handelt sich quasi um eine Vari-
able mit Nur-Lese-Status. Was hältst du nun davon, wenn ich dir
nun verrate, dass diese Variante ebenfalls keinen Speicherplatz
belegt? Es wird ja sichergestellt, dass die Variable nicht mehr modi-
fizierbar ist, warum sollte sie also dann im Speicher einen Bereich
belegen? Aber worin liegt dann der Unterschied zur #define-Vari-
ante? Ganz einfach: Hier kannst du einen bestimmten Datentyp
angeben.

Im Internet und in zahllosen Büchern wird wild zwischen den drei
Möglichkeiten hin- und hergewechselt. Für welche Variante
soll(t)en wir uns entscheiden? Nun, wenn der Speicherplatz knapp
wird und eine explizite Angabe des Datentyps notwendig ist, dann
ist natürlich Variante 3 zu empfehlen. Kommen wir wieder zurück
zu unserer Schaltung. Ich zeige dir am besten einmal die LCD-
Anzeige:

Du kannst jetzt wunderbar die Temperatur und den Motorstatus
ablesen.

Stopp, stopp, stopp! Die Funktion des Sketches habe ich soweit
durchblickt, doch was eine Hysterese ist, dass liegt für mich im Mo-
ment noch im tiefsten Dunkel.

Das kannst du mir jetzt aber nicht vorwerfen, denn ich wollte es dir
gerade erklären. Stell’ dir folgende Situation vor. Der Lüfter soll wie
in unserem Beispiel bei 25 Grad Celsius angeschaltet werden, damit
wir mit ein wenig Frischluft versorgt werden, denn das ununterbro-
chene Frickeln mit Arduino kann zeitweise schon etwas schweiß-
treibend sein. Jetzt ist aber die Raumtemperatur nicht 100%ig
konstant und auch der Fühler unterliegt gewissen Schwankungen.
Es wird also z.B. ein Zustand erreicht, bei dem die gemessene Tem-
peratur ständig zwischen 24,8 und 25,2 Grad Celsius hin- und her-
wechselt. Das bedeutet wiederum, dass der Lüfter ständig kurz
hintereinander aus- bzw. angeschaltet würde. Ganz schön nervig
auf die Dauer! Wir schauen uns das an dem folgenden Diagramm
etwas genauer an:

Abbildung 25-9
Bei schwankender Temperatur um
den Schwellenwert ändert sich der

Motorstatus ständig.

Jetzt kommt die Hysterese (der Begriff stammt aus dem Griechi-
schen und bedeutet hinterher bzw. später) ins Spiel. Man kann das
Verhalten einer Regelung mit Hysterese so erklären: Die Ausgangs-
größe, die hier den Motor steuert, ist nicht alleine von der Ein-
gangsgröße, die vom Sensor geliefert wird, abhängig. Es spielt auch
der Zustand der Ausgangsgröße, der zuvor herrschte, eine entschei-
dende Rolle. Um wieder auf unser Beispiel zu kommen, haben wir
einen Schwellwert von 25 Grad Celsius und eine Hysterese von 0,5
Grad Celsius. Werfen wir dazu einen genaueren Blick auf die Lüf-
ter-Regelung:

if(resultTemp > (threshold + hysterese))

 digitalWrite(motorPin, HIGH);
else if(resultTemp < (threshold - hysterese))
 digitalWrite(motorPin, LOW);

Wann wird der Lüfter angeschaltet?

Ist die Bedingung

resultTemp > (threshold + hysterese) ...

�

 %

 &

������

�
��
�
��
�
��
� '(�(��)�
���

*�)��
�������

-- Projekt 25: Die Temperatur546

erfüllt, wird der Lüfter beginnen, sich zu drehen. Das ist hier dann
der Fall, wenn die gemessene Temperatur größer als 25 + 0.5 Grad
Celsius ist.

Wann wird der Lüfter ausgeschaltet?

Ist die Bedingung

resultTemp < (threshold - hysterese)

erfüllt, wird der Lüfter aufhören, sich zu drehen, in diesem Beispiel
also dann, wenn die gemessene Temperatur kleiner als 25 – 0.5
Grad Celsius ist. Zusammengefasst bedeutet dies Folgendes:

• Lüfter an bei: Temperatur > 25.5 Grad Celsius

• Lüfter aus bei: Temperatur < 24.5 Grad Celsius

Wir schauen uns das an dem folgenden Diagramm wieder etwas
genauer an:

Abbildung 25-10
Bei schwankender Temperatur um
den Schwellenwert ändert sich der
Motorstatus nicht ständig.

Wenn du dir den Temperaturverlauf zwischen den Punkten t1 und
t2 anschaust, wirst du sehen, dass sich die Temperatur ständig
über- bzw. unterhalb von 25 Grad Celsius bewegt. Ohne Hysterese-
Steuerung hättest du ein ständiges Motor an bzw. Motor aus. Der
komplette Schaltungsaufbau sieht dann wie folgt aus:

Abbildung 25-11
Der komplette Schaltungsaufbau

�

 %

 &

������

�
��
�
��
� '(�(��)�
���

 %+%

 &+%

*�)��
�������
 �! �
Wie kann Temperatur gemessen werden? --- 547

Achtung
Da du hier mit einer externen Spannungsquelle arbeiten musst,
ist erhöhte Sorgfalt geboten. Wie ich schon erwähnt habe,
musst du die beiden Massepunkte von Arduino und externer
Spannungsquelle miteinander verbinden. Jedoch nicht die
Plus-Potentiale! Vertausche auf keinen Fall diese beiden Poten-
tiale und achte darauf, dass es zu keinen Kurzschlüssen kommt.
Bevor du alles in Betrieb nimmst, kontrolliere den Schaltungs-
aufbau noch einmal auf korrekte Verdrahtung. Überprüfe lieber
einmal zu viel, als einmal zu wenig.

Troubleshooting
Falls sich nach Erreichen der eingestellten Schwellentemperatur +
Hyteresewert der Lüfter nicht drehen sollte, schalte alles sofort aus
und überprüfe Folgendes:

• Ist die Verkabelung auf Korrektheit?

• Gibt es eventuell Kurzschlüsse untereinander?

• Hast du die gemeinsame Masseverbindung zwischen Arduino-
Board und externer Spannungsquelle hergestellt?

• Wurde die Freilaufdiode richtig herum eingebaut?

• Falls auf dem LC-Display nichts zu sehen ist, hast du vielleicht
den Kontrast zu niedrig eingestellt.

Was hast du gelernt?
• Du hast in diesem Kapitel erfahren, wie der Temperatursensor

LM35 arbeitet und Temperaturwerte in entsprechende Span-
nungswerte umwandelt, die am analogen Eingang deines
Arduino-Boards ausgewertet werden können.

• Zur Darstellung des Temperaturwertes hast du das LC-Dis-
plays I2C/TWI LCD1602 verwendet, das über den I2C-Bus
anzusteuern ist.

• Damit der Lüfter korrekt arbeitet, musstest du ihn über eine
externe Spannungsversorgung versorgen, die wiederum über
den Leistungstransistor TIP 120 geschaltet wurde.

• Du hast erfahren, wie eine Diode vom Typ 1N4004 als Frei-
lauf-Diode zum Schutz deines Arduino-Boards arbeitet.
-- Projekt 25: Die Temperatur548

Workshop
Erweitere deine Schaltung so, dass du z.B. über zwei zusätzliche
Taster den Temperaturschwellenwert nach unten bzw. nach oben
anpassen kannst. Beim Erreichen dieses Schwellenwertes soll das
LC-Display anfangen zu blinken, um auf sich aufmerksam zu
machen. Wenn du nähere Informationen über die Library bzw. den
Befehlsumfang des LC-Displays erfahren möchtest, dann tippe z.B.
folgende Suchbegriffe bei Google ein:

• I2C/TWI LCD 1602

• dfrobot

Zusatzhinweise

Natürlich gibt es noch viele weitere Temperatursensoren. Hier eine
kleine Auswahl:

• TMP75 (mit I2C-Bus)

• AD22100 (Analoger Temperatursensor)

• DHT11 (Temperatur- und Feuchtigkeitsensor mit integrirtem
8-bit Mikrocontroller)

• DS1820 (Digitaler 1-wire Temperatursensor)
Wie kann Temperatur gemessen werden? --- 549

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 26 26Der Sound und mehr
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Tonerzeugung über ein eines Piezo-Element

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Erstellung des Farbfolgen-Spiels

• Workshop

Haste Töne?
Vielleicht hast du jetzt erst einmal genug von Lichtsignalen und
blinkenden LEDs. Daher wollen wir uns nun gleich anschauen, wie
dein Arduino-Board über ein Piezo-Element Töne erzeugen kann.
Dieses Bauteil habe ich dir schon im Kapitel über Elektronik vorge-
stellt.

Abbildung 26-1
Ein Piezo-Element

Du darfst keine akustischen Schockwellen von einem Piezo erwar-
ten, denn die Schwingungen, die es ausführen kann, finden auf
kleinstem Raum statt. Dennoch können wir es für unsere Zwecke
--- 551

prima einsetzen. Schließen wir das Element z.B. an einen digitalen
Ausgang an und schalten in bestimmten Zeitabständen den Aus-
gang auf HIGH- bzw. auf LOW-Pegel, dann hören wir ein Knacken
im Piezo-Element. Je kürzer der Zeitraum zwischen HIGH- bzw.
LOW-Pegel ist, desto höher ist der hörbare Ton, je länger der Zeit-
raum, desto tiefer ist er. Du kannst das Phänomen leicht nachstel-
len, wenn du z.B. mit den Fingern mehr oder weniger schnell über
ein Lamellengitter fährst. Je schneller du bist, desto höher hört sich
das Geknatter an. Auch der Piezo funktioniert nach diesem Prinzip.
Ein Knacken, das mal langsamer, mal schneller aufeinander folgt,
ist für die Tonhöhe verantwortlich. Ein ganz einfacher Sketch zur
Erzeugung eines Tons sieht wie folgt aus:

#define piezoPin 13 // Piezo-Element an Pin 13
#define DELAY 1000

void setup(){
 pinMode(piezoPin, OUTPUT);
}

void loop(){
 digitalWrite(piezoPin, HIGH); delayMicroseconds(DELAY);
 digitalWrite(piezoPin, LOW); delayMicroseconds(DELAY);
}

Wundere dich nicht über die delayMicroseconds-Funktion. Sie
arbeitet ähnlich wie die delay-Funktion. Der übergebene Wert wird
aber nicht in Millisekunden, sondern in Mikrosekunden interpre-
tiert. Das ist noch einmal um den Faktor 1000 kleiner: 1 ms =
1000 s. Diese neue Funktion verwenden wir hier deshalb, weil wir
mit delay nicht kleiner 1ms werden können.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Benötigte Bauteile

1 x Piezo-Element

Mehrere flexible Steckbrücken in unterschiedli-
chen Farben und Längen
--- Projekt 26: Der Sound und mehr552

Arduino-Sketch-Code
Für den ersten brauchbaren Sketch, der in der Lage sein soll, meh-
rere Töne unterschiedlicher Frequenzen zu erzeugen, legen wir am
besten ein Ton-Array mit unterschiedlichen Werten an, die wir
dann im Laufe des Sketches nacheinander abrufen werden. Wir
nutzen dazu die von Arduino bereitgestellte tone-Funktion. Dazu
gleich mehr.

#define piezoPin 13 // Piezo-Element an Pin 13
#define toneDuration 500 // Ton-Dauer
#define tonePause 800 // Pausenlänge zwischen den Tönen
int tones[] = {523, 659, 587, 698, 659, 784, 698, 880};

int elements = sizeof(tones) / sizeof(tones[0]);

void setup(){
 noTone(piezoPin); // Piezo stumm schalten
 for(int i = 0; i < elements; i++){
 tone(piezoPin, tones[i], toneDuration); // Ton spielen
 delay(tonePause); // Pause zwischen den Tönen
 }
}

void loop(){/* leer */}

Code-Review
Für unser Experiment benötigen wir programmtechnisch gesehen
die folgenden Variablen:

Tabelle 26-1
Benötigte Variablen und deren
Aufgabe

Das eindimensionale tones-Array ist vom Datentyp int und beinhal-
tet die Frequenzen der abzuspielenden Töne in Hertz. Die Einheit
Hertz [Hz] ist ein Maß für die Anzahl der Schwingungen pro
Sekunde. Je höher der Wert, desto höher auch der Ton und umge-
kehrt. Der Variablen elements wird die Anzahl der Array-Elemente
zugewiesen, die später in der for-Schleife benutzt wird, um alle Ele-
mente anzusprechen. Auf diese Weise entfällt das manuelle Anpas-
sen der Obergrenze. bzw. der Bedingung der for-Schleife, denn das
geschieht nun automatisch mittels einer Berechnung.

Variable Aufgabe

tones[] Array, das die Frequenzen der einzelnen zu spielenden Töne beinhaltet.

elements Anzahl der Array-Elemente
Haste Töne? --- 553

Dazu wollte ich gerade kommen. Wir nutzen zu diesem Zweck die
sizeof-Funktion von C++. Diese Funktion ermittelt die Größe einer
Variablen bzw. eines Objektes im Speicher. Dazu folgendes kurzes
Beispiel:

byte byteWert = 16; // Variable vom Datentyp byte

int intWert = 4; // Variable vom Datentyp int

long longWert = 3.14; // Variable vom Datentyp long

int meinArray[] = {25, 46, 9}; // Array vom Datentyp int

void setup(){

 Serial.begin(9600);

 Serial.print("Anzahl der Bytes fuer 'byte': ");

 Serial.println(sizeof(byteWert));

 Serial.print("Anzahl der Bytes fuer 'int': ");

 Serial.println(sizeof(intWert));

 Serial.print("Anzahl der Bytes fuer 'long': ");

 Serial.println(sizeof(longWert));

 Serial.print("Anzahl der Bytes fuer 'meinArray': ");

 Serial.println(sizeof(meinArray));

}

void loop(){/* leer */}

Die Ausgabe sieht dann wie folgt aus:

Anzahl der Bytes fuer 'byte': 1

Anzahl der Bytes fuer 'int': 2

Anzahl der Bytes fuer 'long': 4

Anzahl der Bytes fuer 'meinArray': 6

Wenn du dir die Werte für die Datentypen byte, int und long
anschaust, wirst du bemerken, dass sie mit denen identisch sind,
die ich dir im Kapitel Grundlegendes zur Programmierung genannt
habe, in dem es um die Datentypen bzw. die Wertebereiche ging.
Wirf einen Blick auf die letzte Ausgabenzeile. Das Array belegt im
Speicher also 6 Bytes. Das ist auch logisch, denn ein einziges int-
Element benötigt 2 Bytes an Speicherplatz. Wir haben es aber mit 3
Elementen zu tun. Das Ergebnis ist also 2 x 3 = 6 Bytes. Durch die
Zeile

int elements = sizeof(tones) / sizeof(tones[0]);

Au weia! Diese Berechnung der Anzahl der Array-Elemente bereitet
mir schon ein paar Kopfschmerzen. Kannst du mir das mal bitte
erklären!
--- Projekt 26: Der Sound und mehr554

erfolgt die Division der Anzahl aller Bytes des Arrays durch die
Anzahl der Bytes eines einzelnen Elementes. So erhältst du immer
die Anzahl der Array-Elemente. Doch nun zurück zu unserem
Sketch. Ganz am Anfang wird über die noTone-Funktion der Piezo
– falls er noch wegen eines vorangegangenen Sketchs piepsen sollte
– stumm geschaltet. Sie hat lediglich einen Parameter, der den Pin
angibt, an dem sich der Piezo befindet.

Abbildung 26-2
Die »noTone«-Funktion schaltet
den Piezo stumm.

Die tone-Funktion besitzt jedoch noch zwei weitere Parameter. Der
eine gibt die Frequenz an, der andere die Dauer, die der Ton hörbar
sein soll.

Abbildung 26-3
Die »Tone«-Funktion lässt
den Piezo tönen.

Nein, ich habe sie aus einem Beispiel-Sketch, der Teil der Arduino-
IDE ist. Suche einmal nach der Datei pitches.h unterhalb des Ordners
examples der Arduino-Installation und öffne sie mit einem Editor.
Dort findest du zu vielen Noten die entsprechenden Frequenzwerte.
Du kannst diese Datei auch in deinen Sketch mit einbinden und dann
direkt die symbolischen Konstanten verwenden. Versuche das ein-
mal. Der Code ist dann viel sprechender und übersichtlicher als bei
der Verwendung irgendwelcher Zahlenwerte.

Der Schaltungsaufbau
Der Schaltungsaufbau haut einen nicht gerade um, was?

������	���N������

 �'��
 (
�

%���	���N��������������

 �'��
 (
� O��T���� &����

Kannst du mir mal bitte verraten, wie du auf die einzelnen Werte
gekommen bist, die du im tones-Array verwendet hast? Hast du sie
alle ausprobiert, so dass sie ungefähr stimmig sind?
Haste Töne? --- 555

Abbildung 26-4
Das angeschlossenen

Piezo-Element

Ein erweiterter Sketch
(Farben-Sequenz-Spiel)
Jetzt wollen wir das gelernte in einem interessanten Spiel unterbrin-
gen, das ich das Farben-Sequenz-Spiel genannt habe. Du hast es mit
vier LEDs in vier unterschiedlichen Farben zu tun, die in einem
Viereck angeordnet sind. Neben jeder einzelnen LED befindet sich
ein Taster. Der Mikrocontroller denkt sich nun eine Abfolge aus, in
der die LEDs aufleuchten sollen. Diese Folge musst du nun korrekt
wiederholen. Am Anfang besteht die Sequenz nur aus einer einzi-
gen aufleuchtenden LED, sie wird jedoch nach jedem erfolgreichen
Wiedergeben um eine erweitert. Das Aufleuchten jeder der vier
unterschiedlichen LEDs ist zusätzlich noch jeweils mit einem ein-
deutigen Ton verbunden. Es ist also nicht nur was für’s Auge, son-
dern auch für’s Ohr. Ich habe die Schaltung wieder mittels eines
eigens dafür hergestellten Shields plus Frontplatte realisiert. Doch
schau’ her:

Abbildung 26-5
Das Shield plus Frontplatte für das

Farben-Sequenz-Spiel
--- Projekt 26: Der Sound und mehr556

Du siehst auf der Frontplatte die vier großen 5mm LED mit den
daneben platzierten Tastern. Leuchtet eine LED auf, musst du den
daneben befindlichen Taster drücken. Im unteren Bereich siehst du
drei kleinere 3mm LEDs. Sie dienen der Statusanzeige, auf die ich
später zu sprechen komme. Das Shield und die Frontplatte bzw. die
Verkabelung kannst du gut in der nächsten Abbildung erkennen.

Abbildung 26-6
Das geöffnete Shield plus
umgedrehte Frontplatte

Es sieht vielleicht schlimmer aus als es ist, und wenn du den Schalt-
plan siehst, dann wird dir der Aufbau klar. Ich fasse einmal die
Punkte zusammen, die ich als Anforderung für das Spiel definieren
würde:

• Es soll eine bestimmte Sequenzlänge durch den Sketch vorge-
geben werden, die erst einmal konstant ist.

• Jeder einzelnen der 4 LEDs soll ein eigener Ton mit spezieller
Tonhöhe zugeordnet werden.

• Leuchtet eine der 4 LEDs, dann wird der entsprechende Ton
abgespielt.

• Wird der daneben befindliche Taster gedrückt, dann leuchet
die LED und es ist der entsprechende Ton zu hören.

• Wurde die Sequenz in der richtigen Reihenfolge wiedergege-
ben, dann leuchtet die grüne Status-LED und eine aufsteigende
Tonfolge ist zu hören. Im Anschluss beginnt das Spiel mit einer
neuen Sequenz von vorne.

• Wurde die Sequenz an irgendeiner Stelle falsch wiederholt,
dann leuchet die rote Status-LED und es erklingt eine abfal-
lende Tonfolge. Im Anschluss wird das Spiel mit einer neuen
Sequenz gestartet.
Haste Töne? --- 557

Benötigte Bauteile:
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Benötigte Bauteile

4 x LED (nach Möglichkeit verschie-
denfarbige)

7 x Widerstand 330

3 x LED 3mm / rot, grün und gelb

4 x Taster

4 x Distanzhülse DK15mm, Kunst-
stoff

4 x Schrauben M3 / 30mm auf ca.
23mm kürzen + 4 Muttern

1 x Shield + 1 x Frontplatte

Litze in unterschiedlichen Farben

2 x Stiftleiste mit 6 Pins + 2 x Stift-
leiste mit 8 Pins
--- Projekt 26: Der Sound und mehr558

Werfen wir zunächst wieder einen Blick auf den Schaltplan:

Abbildung 26-7
Die komplette Schaltung des
 Farben-Sequenz-Spiels

Und dazu jetzt der etwas umfangreichere Sketch-Code:

#define MAXARRAY 5 // Vorgabe der Sequenzlänge
int ledPin[] = {2, 3, 4, 5}; // LED-Array mit Pin-Werten

#define piezoPin 13 // Piezo-Pin
#define tasterPinRot 6 // Taster Pin an roter LED
#define tasterPinGruen 7 // Taster-Pin an grüner LED
#define tasterPinGelb 8 // Taster-Pin an gelber LED
#define tasterPinWeiss 9 // Taster-Pin an weißer LED
#define ledStatusPinGruen 10 // Status LED grün
#define ledStatusPinGelb 11 // Status LED gelb
#define ledStatusPinRot 12 // Status LED rot
int colorArray[MAXARRAY]; // Enthält die Zahlenfolge für
 // anzuzeigende Farben
int tones[] = {1047, 1175, 1319, 1397}; // Tonfrequenzen für die 4
 // Farben

int counter = 0; // Anzahl der gerade aufleuchtenden LEDs
boolean fail = false;

void setup(){
 Serial.begin(9600);
 for(int i = 0; i < 4; i++)

 pinMode(ledPin[i], OUTPUT); // LED-Pins als OUTPUT programmieren

 pinMode(tasterPinRot, INPUT); digitalWrite(tasterPinRot, HIGH);
 pinMode(tasterPinGruen, INPUT); digitalWrite(tasterPinGruen, HIGH);
 pinMode(tasterPinGelb, INPUT); digitalWrite(tasterPinGelb, HIGH);
 pinMode(tasterPinWeiss, INPUT); digitalWrite(tasterPinWeiss, HIGH);
Haste Töne? --- 559

 pinMode(ledStatusPinGruen, OUTPUT);

 pinMode(ledStatusPinGelb, OUTPUT);

 pinMode(ledStatusPinRot, OUTPUT);

}

void loop(){

 Serial.println("Spielstart");

 generateColors();

 int tasterCode;

 for(int i = 0; i <= counter; i++){ // Äußere Schleife

 giveSignalSequence(i);

 for(int k = 0; k <= i; k++){ // Innere Schleife

 while(digitalRead(tasterPinRot) && digitalRead(tasterPinGruen) &&

 digitalRead(tasterPinGelb) && digitalRead(tasterPinWeiss));

 Serial.println("Taste gedrückt!"); // Zur Kontrolle im Serial

 // Monitor

 // Anzeigen der gerückten Farbe

 if(!digitalRead(tasterPinRot))

 tasterCode = 0;

 if(!digitalRead(tasterPinGruen))

 tasterCode = 1;

 if(!digitalRead(tasterPinGelb))

 tasterCode = 2;

 if(!digitalRead(tasterPinWeiss))

 tasterCode = 3;

 giveSignal(tasterCode);

 // Überprüfung ob richtige Farbe gedrückt wurde

 if(colorArray[k] != tasterCode){

 fail = true;

 break; // Innere for-Schleife verlassen

 }

 }

 if(!fail)

 Serial.println("richtig"); // Zur Kontrolle im Serial Monitor

 else{

 digitalWrite(ledStatusPinRot, HIGH);

 for(int i = 3000; i > 500; i-=150){

 tone(piezoPin, i, 10); delay(20);

 }

 Serial.println("falsch"); // Zur Kontrolle im Serial Monitor

 delay(2000);

 digitalWrite(ledStatusPinRot, LOW);

 counter = 0; fail = false;

 break; // for-Schleife verlassen

 }
--- Projekt 26: Der Sound und mehr560

 delay(2000);

 if(counter + 1 == MAXARRAY){

 digitalWrite(ledStatusPinGruen, HIGH);

 for(int i = 500; i < 3000; i+=150){

 tone(piezoPin, i, 10); delay(20);

 }

 Serial.println("Ende!"); // Zur Kontrolle im Serial Monitor

 delay(2000);

 digitalWrite(ledStatusPinGruen, LOW);

 counter = 0; fail = false;

 break; // Äußere for-Schleife verlassen

 }

 counter++; // Zähler inkrementieren

 }

}

void giveSignalSequence(int value){

 // Anzeige LEDs

 for(int i = 0; i <= value; i++){

 digitalWrite(2 + colorArray[i], HIGH);

 generateTone(colorArray[i]); delay(1000);

 digitalWrite(2 + colorArray[i], LOW); delay(1000);

 }

}

void generateTone(int value){

 tone(piezoPin, tones[value], 1000);

}

void giveSignal(int value){

 // Anzeige LED + Tonsignal

 digitalWrite(2 + value, HIGH); generateTone(value); delay(200);

 digitalWrite(2 + value, LOW); delay(200);

}

void generateColors(){

 randomSeed(analogRead(0));

 for(int i = 0; i < MAXARRAY; i++)

 colorArray[i] = random(4); // Zufallszahlen von 0 bis 3

 // generieren

 // 0 = Rot, 1 = Grün, 2 = Gelb, 3 = Weiss

 for(int i = 0; i < MAXARRAY; i++)

 Serial.println(colorArray[i]); // Zur Kontrolle im Serial Monitor

}

Haste Töne? --- 561

Wie funktioniert nun die Programmierung im Einzelnen? Der Code
mutet auf den ersten Blick erschlagend an. Betrachte ihn nicht
daher nicht als Ganzes, sondern zerlege wie beim Lösen einer
umfangreichen Aufgabe das Gesamtpaket in Teilpakete und arbeite
dich Schritt für Schritt durch. Jeder anzuzeigenden Farbe, sei es
Rot, Grün, Gelb oder Weiß, ist ein Zahlenwert zugeordnet: Rot 0,
Grün 1, Gelb 2 und Weiß 3. Auf diese Weise kann ein Array mit
Werten von 0 bis 3 initialisiert werden, das dann zur Anzeige der
LEDs herangezogen werden kann. Angenommen, du hast ein Array
mit den Werten 0, 2, 2, 1, 3 vorliegen, dann leuchten die Dioden in
der Sequenz Rot, Gelb, Gelb, Grün, Weiß. In unserem Sketch lautet
das Array colorArray und wird über die generateColors-Funktion
mit Werten versehen. Um die Werte sichtbar zu machen, wandelt
die giveSignal-Funktion diese in Signale zur Ansteuerung der LEDs
um.

void giveSignalSequence(int value){

 // Anzeige LEDs
 for(int i = 0; i <= value; i++){
 digitalWrite(2 + colorArray[i], HIGH);
 generateTone(colorArray[i]); delay(1000);
 digitalWrite(2 + colorArray[i], LOW); delay(1000);
 }

}

Tja, Ardus, es soll ja nicht zu Beginn die komplette Sequenz zur
Anzeige gebracht werden, sondern erst nach und nach immer eine
Farbe mehr. Das Farb-Array colorArray beinhaltet die komplette
Sequenz, doch der Übergabewert, der in value gespeichert wird,
sagt der Funktion, wie viele Array-Elemente abgefragt und ange-
zeigt werden sollen. Nun ja, da die 4 großen LEDs an den digitalen
Ausgängen von Pin 2 bis Pin 5 angeschlossen sind, handelt es sich
bei der 2 quasi um einen Offset, der den Start-Pin angibt, wenn wir
die Werte von 0 bis 3 des Farb-Arrays hinzuaddieren. Natürlich
hast du Recht, dass man keine Magic-Numbers verwenden sollte.
Du kannst natürlich auch eine symbolische Konstante z.B. mit dem
Namen FARBPINOFFSET verwenden.

Wenn die Funktion immer die Farbsequenz anzeigen soll, warum
benötigen wir dann noch einen Übergabeparameter? Und was bedeu-
tet die 2, die in der digitalWrite-Funktion verwendet wird? Wie war
das noch mit den Magic-Numbers?
--- Projekt 26: Der Sound und mehr562

Ich nutze die Möglichkeit, die im Mikrocontroller vorhandenen
und intern verschalteten Pullup-Widerstände zu aktivieren. So
umgehe ich die Notwendigkeit der Verschaltung externer Pullup-
bzw. Pulldown-Widerstände. Ich habe das aber schon einmal im
Kapitel Einen Sensor Abfragen erläutert! Na, schon vergessen?
Dann schau dort noch einmal nach.

Hey, Ardus, gut erkannt! Normalerweise würde die loop-Funktion,
die ja eine Endlosschleife darstellt, ständig abgearbeitet werden. Ich
habe aber einen Stopp eingebaut, der solange bestehen bleibt, wie
keine der vier Tasten gedrückt wird. Hier siehst du nochmal den
betreffenden Codeabschnitt:

while(digitalRead(tasterPinRot) && digitalRead(tasterPinGruen) &&
 digitalRead(tasterPinGelb) && digitalRead(tasterPinWeiss));

Da die digitalen Eingänge, an denen die Taster angeschlossen sind,
über die internen Pullup-Widerstände an +5V hängen, muss ich auf
LOW-Pegel hin abfragen. Solange also alle Eingänge auf HIGH-
Pegel liegen, führt die while-Schleife die Anweisung aus, die ihr
unmittelbar folgt.

Bevor wir schon mit der Erklärung der Logik in der loop-Funktion
fortfahren, möchte ich noch einmal auf die setup-Funktion zu spre-
chen kommen. Da gibt es z.B. die Taster-Pins, die natürlich als Ein-
gang programmiert werden. Dennoch wird über die digitalWrite-
Funktion etwas an eben diese Eingänge geschickt. Warum machst du
das?

Ok, ich schaue nach. Wenn ich in die loop-Funktion sehe, dann ist da
ja einiges los. Was ich auch noch nicht so ganz verstehe – und das ist
im Moment so einiges – ist die Tatsache, dass die loop-Funktion doch
kontinuierlich durchlaufen wird. Demnach müsste doch u.a. auch die
erste for-Schleife, die du mit Äußere Schleife gekennzeichnet hast,
ständig abgearbeitet werden. Sie ist ja – so wie ich das sehe – für die
die Anzeige der Sequenz zuständig, die über die Variable counter
gesteuert wird.

Das ist ja eben mein Problem! Welche Anweisung wird denn ausge-
führt? Eigentlich müsste laut Code die nachfolgende Zeile Serial.
println("Taste gedrückt!"); ausgeführt werden. Das macht aber wenig
Sinn!
Haste Töne? --- 563

Da hast du Recht! Das macht wenig Sinn. Du hast eine Kleinigkeit
übersehen. Der Befehl, der der while-Schleife unmittelbar folgt, ist
das Semikolon ganz am Ende. Es ist quasi eine Leeranweisung und
bewirkt, dass die while-Schleife, wenn keiner der Taster gedrückt
wird, selbst in einer Endlosschleife steckt. So haben wir elegant den
Programmfluss an dieser Stelle gestoppt. Erst, wenn irgendeine der
vier Tasten gedrückt wird, ist die Bedingung in der while-Schleife
nicht mehr erfüllt und der Programmablauf wird fortgeführt. Jetzt
wird ermittelt, welche der Tasten gedrückt wurde, um den betref-
fenden Farbwert mit dem Element des Arrays zu vergleichen, das
gerade über die innere Schleife ausgewählt wurde. Wurde eine
Übereinstimmung erzielt, dann kommt der nächste Farbwert aus
der Sequenz zum Vorschein. Wenn du jedoch einen Fehler gemacht
hast, wird die Variable fail mit dem Wert true versehen und die
innere for-Schleife über die break-Anweisung vorzeitig verlassen.
Das bedeutet wiederum, dass die if-Anweisung

if(!fail)...

den Programmablauf entsprechend fortführt. Die Variable counter
wird, sofern kein Fehler gemacht wurde und das Ende der Sequenz
noch nicht erreicht ist, um den Wert 1 erhöht, so dass beim nächs-
ten Anzeigen die Sequenz länger ist. Zum besseren Verständnis der
Vorgänge habe ich die Ausgaben auf dem Serial-Monitor im Code
belassen. Sie zeigen dir am Anfang, welche Sequenz ausgewählt
wurde, damit du ggf. ein wenig damit experimentieren kannst.
Weitere Erläuterungen sollen an dieser Stelle nicht erfolgen. Gehe
den Code selbst einmal durch und versuche ihn zu verstehen.

Troubleshooting
Wenn nach dem Übertragen des Sketches keine der vier großen
LEDs zu leuchten beginnen oder der Piezo keinen Ton von sich
gibt, dann überprüfe folgende Punkte:

• Ist die Verkabelung korrekt?

• Gibt es eventuell Kurzschlüsse untereinander?

• Haben sich möglicherweise Lötbrücken eingeschlichen?
--- Projekt 26: Der Sound und mehr564

Was hast du gelernt?
• Du hast in diesem Kapitel erfahren, wie du ein Piezo-Element

ansteuern kannst, indem du über das An- bzw. Ausschalten
des entsprechenden digitalen Ausgangs eine Frequenz
erzeugst.

• Es ist jedoch auch möglich, über die Funktionen noTone bzw.
tone Einfluss auf den Piezo zu nehmen, so dass er entweder
verstummt oder in einer gewünschten Frequenz ertönt.

• Außerdem hast du gesehen, wie du mit ganz einfachen Mitteln
eine ansprechende Frontplatte selbst herstellen kannst.

Workshop
Erweitere deinen Sketch so, dass nach jeder korrekten Wiedergabe
beim Start eines neuen Spiels die Sequenz verlängert wird. Du
kannst auch ein wenig mit den Pausen zwischen den einzelnen Far-
ben spielen. Verkürze sie so, dass das Spiel nach und nach etwas
schwieriger wird. Ich habe eine der kleinen 3mm LEDs nicht in
meinem Sketch verwendet. Es handelt sich um die mittlere gelbe
LED. Denke dir doch eine Möglichkeit aus, sie mit einer sinnvollen
Funktion zu versehen. Du kannst sie z.B. kurz aufleuchten lassen,
wenn ein neues Spiel beginnt. Es gibt da sicherlich viele Möglich-
keiten.
Haste Töne? --- 565

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 27 27Data Monitoring
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment befassen wir uns mit folgenden Themen:

• Abfragen der Sensordaten des Arduino-Boards und späteres
Senden an Processing, um dort die Werte grafisch darzustellen

• Schreiben eines Übertragungsprotokolls

• Der komplette Sketch von Processing und Arduino

• Analyse des Schaltplans

• Aufbau der Schaltung

• Workshop

Datenerfassung und
Visualisierung
In diesem Kapitel geht es um die Datenerfassung über dein Ardu-
ino-Board, um die Daten dann grafisch darzustellen. Die Program-
miersprache Processing habe ich ja schon einige Male wegen ihrer
fantastischen grafischen Möglichkeiten erwähnt. Wir werden sie
auch jetzt wieder nutzen, um die analogen Eingänge des Boards
kontinuierlich abzufragen und die Daten an Processing zu versen-
den. Die serielle Schnittstelle ist auch hierbei wieder das geeignete
Übertragungsmedium. Um dir bereits einen kleinen Vorgeschmack
auf das zu geben, was wir entwickeln wollen, zeige ich dir hier
schon einmal das Processing-Ausgabefenster, das die Daten nahezu
in Echtzeit präsentiert.
--- 567

Abbildung 27-1
Der Arduino Analog-Tracker

inklusive Analog-Input-Shield

Du kannst in der linken Grafik die unterschiedlichen Werte der 6
analogen Eingänge erkennen, die untereinander angeordnet sind.
Es werden sowohl der analoge Wert als auch ein Balkendiagramm
angezeigt. Damit ich die Werte recht einfach und ohne fliegende
Verdrahtung auf einem Breadboard verändern kann, habe ich ein
Input-Shield mit 4 Potentiometern gebaut. Für 6 hat der Platz auf
der Frontplatte leider nicht gereicht, doch ich denke, dass es so
auch ganz gut funktioniert. Was hältst du davon, wenn wir in
einem weiteren Schritt auch gleich noch alle digitalen Pins abfragen
und deren Status ebenfalls übertragen? Aber beginnen wir erst ein-
mal mit den analogen Signalen.

Du kannst es mir ruhig glauben, und es wird lediglich eine serielle
Schnittstelle benötigt. Das Stichwort dazu lautet Übertragungspro-
tokoll. Aber was ist das und wie wird ein solches Protokoll verwen-
det? Stell dir vor, du bist bei unserem Bundespräsidenten zum
Essen eingeladen, weil du dich z.B. im sozialen Bereich verdient
gemacht hast und eine Auszeichnung erhalten sollst. Stürmst du
nun einfach auf ihn zu, um ihm die Hand zu schütteln? Das ent-
spräche wohl nicht ganz dem vorgesehenen Protokoll, das für der-
artige Empfänge vorgesehen ist. Auch in diesem Kontext wird also
der Begriff Protokoll verwendet. Es handelt sich dabei um eine Ver-
einbarung, wie sich z.B. zwei Parteien einander begegnen, um eine
Kommunikation stattfinden zu lassen. Verletzt eine der Parteien
das Protokoll, kommt es zu Missverständnissen, so dass keine die

Also wenn ich das recht verstehe, dann willst du über die serielle
Schnittstelle die Daten der einzelnen Potentiometer verschicken. Das
kann ich ja irgendwie nicht glauben. Und dann sollen auch noch alle
Statuswerte der digitalen Pins übertragen werden? Wie viele serielle
Schnittstellen benötigen wir denn dafür?
-- Projekt 27: Data Monitoring568

andere richtig versteht. Ähnlich läuft es in der Datenverarbeitung
ab.

Abbildung 27-2
Das Übertragungsprotokoll muss
bei Sender und Empfänger
gleichermaßen bekannt sein.

Wir schreiben ein
Übertragungsprotokoll
Überlegen wir einmal, welche Informationen übertragen werden
müssen, damit Sender und Empfänger dieselbe Informationsgrund-
lage besitzen:

• Handelt es sich um einen analogen oder digitalen Pin?

• Von welcher Pin-Nummer werden gerade Daten übertragen?

• Welcher Wert wird übertragen (Analog: 0 bis 1023 / Digital: 0
oder 1) ?

Zusätzlich zur eigentlichen Netto-Übertragungsinformation sollten
noch weitere Rahmen-Informationen (auch Frame genannt) gesen-
det werden. Ich meine damit eine Start-Kennung und eine Ende-Ken-
nung bzw. die Kenntnis, dass die zu übertragene Information eine
bestimmte Zeichenlänge aufweist. Dabei ist das nachfolgende Pro-
tokoll herausgekommen. Falls du noch Potential für Erweiterungen
siehst, kannst du dir natürlich dein eigenes entwickeln.

Die komplette Länge bzw. Anzahl der Zeichen pro Übertragungs-
zeile beträgt 11 Zeichen. Dazu gehören natürlich die Zeichen für
CR (Carriage Return) und LF (Line Feed). Unterhalb der einzelnen

����
�� (������
�����
�

������ 7��'8����

����	����������	���

��������� ���������

4

�
)

��&
/

4
3

)
5

)
2

4
;

/
<

3
�	�
����	�

�

&�	� 7
C D)4

�, HO

�	��	������� (
��:�����
(
��B��	

7����������
&�	��	F�
�+.+���
��
&+.+&
�
	�

��

���������

))+��
����
Wir schreiben ein Übertragungsprotokoll --- 569

Positionen findest du die Bedeutung der String-Stelle(n). Schauen
wir uns dazu ein kurzes Beispiel an. Nehmen wir einmal an, der
Sender (das Arduino-Board) schickt folgende Zeichenkette über die
serielle Schnittstelle an den Empfänger (Processing-Anwendung):

Die Information würde auf der Empfängerseite wie folgt interpre-
tiert:

• Länge von 11 Zeichen: Datensatzlänge ist ok.

• Start-Kennung und Stopp-Kennung sind vorhanden: Datensatz
ist valide.

• Datentyp: A bedeutet, dass analoge Informationen übertragen
werden.

• Pin-Nummer ist 03.

• Der zu übermittelnde Wert ist 0756.

Durch einen entsprechend implementierten Algorithmus, den wir
gleich noch sehen, werden diese Informationen aus der Zeichen-
kette extrahiert und entsprechend interpretiert.

Der Grund liegt darin, dass auf diese Weise die Gegenstelle, also
der Empfänger, erkennt, wann eine neue Datenzeile beginnt.
Andernfalls bekämen wir einfach alle Zeichen hintereinander gelie-
fert und müssten dann anhand der Start- bzw. Stopp-Kennung den
Datenstrom entwirren, um auf eine einzelne Zeile zugreifen zu kön-
nen. Zwar überprüfen wir, ob die Kennungen vorhanden sind,
doch diese Überprüfung wird nur durchgeführt, um sicher zu
gehen, dass die Daten korrekt übertragen wurden.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

4

�
)

�
/

4
3

3
5

4
2

<
;

2
<

;
�	�
����	�

�

&�	� 7
C D)4

�, HO

Bitte erkläre mir einmal, warum die Zeichen CR bzw. LF verwendet
werden.

Benötigte Bauteile

4 x bzw. 6 x Potentiometer z.B. 10K
-- Projekt 27: Data Monitoring570

Arduino-Sketch-Code
Da dein Arduino als Sende-Instanz arbeitet, schickt er mit dem fol-
genden Code alle ermittelten Pin-Informationen an die serielle
Schnittstelle:

void setup(){
 Serial.begin(38400); // Übertragungsrate
}

void loop(){
 // Sende analoge Werte

 for(int i = 0; i <= 5; i++)
 Serial.println(normalize("A", i, analogRead(i)));
 // Sende digitale Werte

 for(int i = 0; i <= 13; i++)
 Serial.println(normalize("D", i, digitalRead(i)));
}

String normalize(String t, int pin, int value){
 String pinString = String(pin);

 String valueString = String(value);
 if(pin < 10)
 pinString = "0" + String(pin); // Wenn einstellig, dann führende

 // Null anfügen
 int count = 4 - valueString.length();
 for(int i = 0; i < count; i++)

 valueString = String("0") + valueString; // Führende Nullen
 // anfügen
 String r = String("S") + String(t) + String(pinString) +

 String(valueString) + String("E");
 return r; // Normalisierte Zeichenkette wird zurückgeliefert
}

Arduino-Code-Review
Du siehst, dass wir in diesem Sketch mit einer Übertragungsrate
von 38400 Baud arbeiten, damit die Daten möglichst schnell zum
Empfänger gelangen. In der loop-Schleife werden nacheinander alle
analogen bzw. digitalen Eingänge abgefragt und zur Übertragung
über die normalize-Funktion aufbereitet. In dieser werden Daten-

Mehrere flexible Steckbrücken in unterschiedli-
chen Farben und Längen

Benötigte Bauteile
Wir schreiben ein Übertragungsprotokoll --- 571

typ, Pin-Nummer und Pin-Wert zusammengefügt und am Schluss
mit einer Start- bzw. Ende-Kennung versehen, so dass das Paket im
Anschluss für das Versenden bereit ist. Es wird darauf geachtet,
dass die Pin-Nummer immer 2-stellig und der Pin-Wert immer 4-
stellig ist. Das erleichtert das Interpretieren der Daten auf Empfän-
gerseite.

Processing-Sketch-Code
Der Processing-Sketch-Code ist schon etwas umfangreicher, da er
neben der Interpretation des Datenstroms auch noch für die Visua-
lisierung der Daten verantwortlich ist. Dieser Code-Abschnitt ist
der umfangreichste. Um nicht für jede einzelne analoge Scrollbar
den Code duplizieren zu müssen, habe ich eine Klasse entwickelt,
die als Bauplan für mehrere Anzeigen dient. Ich zeige dir am besten
zuerst die Klassendefinition und anschließend den eigentlichen
Aufruf im Hauptsketch.

Klassendefinition
class Scrollbar{
 // Felder
 PFont myFont; // Font zur Darstellung von Textinformation
 String scrollbarName; // Name der Scrollbar
 int xPos, yPos, scrollbarWidth, scrollbarHeight; //
 // Dimensionsinformationen
 color bgColor; // Hintergrundfarbe
 // Konstruktor
 Scrollbar(String name, int x, int y, int sbW, int sbH, color c){
 scrollbarName = name;
 xPos = x; yPos = y;
 scrollbarWidth = sbW; scrollbarHeight = sbH;
 bgColor = c;
 myFont = createFont("Courier New", 12, false);
 textFont(myFont, 12);
 }
 // Methoden
 void drawScrollbar(int value){
 float s = scrollbarWidth / 1024.0; // Faktor für 100er-
 // Markierungen
 float recalcValue = map(value, 0, 1023, 0, scrollbarWidth - 2);
 fill(bgColor); // Hintergrundfarbe setzen
 stroke(255); // Linienfarbe auf weiß
 rect(xPos, yPos, scrollbarWidth, scrollbarHeight); // Rechteck
 // zeichnen
 stroke(255, 0, 0); strokeWeight(2);
 line(xPos + 1 + recalcValue, yPos + 1,
-- Projekt 27: Data Monitoring572

 xPos + 1 + recalcValue, yPos - 15 + scrollbarHeight);
 strokeWeight(1); // Strichstärke 1 Punkt
 fill(255); // Textfarbe
 text(scrollbarName, xPos, yPos - 5); // Scrollbar-Namen ausgeben
 // Value in der Anzeige löschen
 fill(0); noStroke();
 rect(textWidth(scrollbarName) + 20, yPos - 16, 50, 15);
 fill(255, 0, 0); // Textfarbe
 text(value, xPos + textWidth(scrollbarName) + 1, yPos - 5);
 stroke(255, 255, 0);
 for(int i = 100; i <=1000; i+=100) // Markierungen zeichnen
 line(xPos + 1 + i * s, yPos + scrollbarHeight, xPos + 1 + i * s,
yPos + scrollbarHeight - 10);
 }
}

Haupt-Sketch
import processing.serial.*;
String portStream;
Serial meinSeriellerPort;
Scrollbar myScrollbar0, myScrollbar1, myScrollbar2, myScrollbar3,
myScrollbar4, myScrollbar5;

void setup(){
 size(400, 400);
 println(Serial.list());
 meinSeriellerPort = new Serial(this, Serial.list()[1], 38400);
 // ggf. anpassen!
 meinSeriellerPort.bufferUntil('\n');
 background(0);
 myScrollbar0 = new Scrollbar("Analog Pin 0:", 20, 20, 350, 35,
 color(89, 7, 243));
 myScrollbar1 = new Scrollbar("Analog Pin 1:", 20, 80, 350, 35,
 color(120, 207, 120));
 myScrollbar2 = new Scrollbar("Analog Pin 2:", 20, 140, 350, 35,
 color(40, 50, 120));
 myScrollbar3 = new Scrollbar("Analog Pin 3:", 20, 200, 350, 35,
 color(120, 120, 120));
 myScrollbar4 = new Scrollbar("Analog Pin 4:", 20, 260, 350, 35,
 color(80, 207, 20));
 myScrollbar5 = new Scrollbar("Analog Pin 5:", 20, 320, 350, 35,
 color(120, 90, 90));
}

void draw (){
 char dataType;
 int pin, value;
 if(portStream != null){
 if(portStream.length() == 11 && // Stimmt die Länge von 11 Zeichen?
Wir schreiben ein Übertragungsprotokoll --- 573

 portStream.charAt(0)== 'S' && // Ist die Start-Kennung vorhanden?
 portStream.charAt(8)== 'E'){ // Ist die Ende-Kennung vorhanden?
 dataType = portStream.charAt(1); // Datentyp extrahieren

 pin = int(portStream.substring(2, 4)); // Pin-Nummer extrahieren
 value = int(portStream.substring(4, 8)); // Pin-Wert extrahieren
 if(dataType == 'A'){ // Ist der Datentyp Analog?

 if(pin == 0) // Analog Pin 0
 myScrollbar0.drawScrollbar(value);

 if(pin == 1) // Analog Pin 1
 myScrollbar1.drawScrollbar(value);
 if(pin == 2) // Analog Pin 2

 myScrollbar2.drawScrollbar(value);
 if(pin == 3) // Analog Pin 3
 myScrollbar3.drawScrollbar(value);

 if(pin == 4) // Analog Pin 4
 myScrollbar4.drawScrollbar(value);
 if(pin == 5) // Analog Pin 5

 myScrollbar5.drawScrollbar(value);
 }
 }

 }
}

void serialEvent(Serial meinSeriellerPort){
 portStream = meinSeriellerPort.readString();
}

Damit der Processing-Sketch auf die korrekte serielle Schnittstelle
zugreift, habe ich mit der Zeile

println(Serial.list());

alle zur Verfügung stehenden COM-Ports ausgeben lassen. Das
Ergebnis war bei mir folgendes:

[0] "COM4"
[1] "COM5"

Da auf Arduino-Seite bei mir momentan COM5 aktiviert ist – dass
kann sich übrigens zwischenzeitig ändern, wenn gerade ein COM-
Port anderweitig verwendet wird – hat dieser die Index-Nummer 1.
Deshalb habe ich in der Zeile

meinSeriellerPort = new Serial(this, Serial.list()[1], 38400);

den Wert 1 in den eckigen Klammern eingesetzt. Wenn das bei dir
ein anderer Port ist, musst du den Index-Wert dort entsprechend
anpassen.
-- Projekt 27: Data Monitoring574

Processing-Code-Review
Im Haupt-Sketch werden durch Instanziierungen wie z.B.

Scrollbar myScrollbar0,...

myScrollbar0 = new Scrollbar("Analog Pin 0:", 20, 20, 350, 35,
color(89,7,243));

Scrollbar-Objekte generiert. Der Konstruktor nimmt alle erforderli-
chen Argumente entgegen, um die Scrollbar zu erstellen:

• Argument 1: 20 = x-Position der linken oberen Ecke der Scroll-
bar

• Argument 2: 20 = y-Position der linken oberen Ecke der Scroll-
bar

• Argument 3: 350 = Breite der Scrollbar

• Argument 4: 35 = Höhe der Scrollbar

• Argument 5: color(89, 7, 243) = RGB-Wert der Scrollbar-Hin-
tergrundfarbe

Über die Methode

myScrollbar0.drawScrollbar(value);

wird dann die Scrollbar im Ausgabefenster von Processing darge-
stellt.

Eine Bemerkung am Rande
Man kann den Processing-Sketch übrigens in eine Java-Anwen-
dung exportieren, die dann ohne die Processing Entwicklungs-
umgebung lauffähig ist. Du musst lediglich den Menüpunkt
Export Application in Processing aufrufen.
Wir schreiben ein Übertragungsprotokoll --- 575

Im Anschluss öffnet sich ein Dialogfenster, in dem du die aus-
wählen kannst, für welche Platform (Windows, Mac bzw. Linux)
die Anwendung(en) erstellt werden soll(en).

Danach wird im Projektverzeichnis eine neue Verzeichnisstruk-
tur erstellt, die alle Dateien enthält, die erforderlich sind, um die
Anwendung zu starten.

Der Schaltungsaufbau

Abbildung 27-3
Beschaltung der 6 analogen

Eingänge

Troubleshooting
Sollten sich beim Verändern der Potentiometerwerte die Scrollbar-
Anzeigen nicht bewegen, dann schließe das Processing-Ausgabe-
fenster, öffne den Serial-Monitor von Arduino und stelle hier die
korrekte Baudrate ein. Du solltest dann den Datenstrom beobach-
ten können, der ungefähr wie folgt aussieht:

SD090000E
SD100000E
-- Projekt 27: Data Monitoring576

SD110000E
SD120000E
SD130000E

SA000169E
SA010254E
SA020527E

SA030354E
SA040358E

...

Jede Zeile weist einen unterschiedlichen Inhalt auf, doch die Länge
muss immer konstant sein. Sender und Empfänger müssen über die
gleiche Übertragungsrate verfügen, da andernfalls nur kryptische
Zeichen angezeigt werden. Falls diesbezüglich ein Problem auftritt,
kontrolliere die Verkabelung und die Sketche von Arduino und
Processing auf Korrektheit.

Was hast du gelernt?
• Du hast in diesem Kapitel erfahren, wie man ein Übertragungs-

protokoll selbst entwickeln kann, um damit unterschiedliche
Daten über ein Medium – hier die serielle Schnittstelle – zu
verschicken.

• Die fantastischen Möglichkeiten von Processing haben wir
dazu genutzt, abstrakte Daten zu visualisieren und deren zeitli-
che Veränderungen zu erkennen.

Workshop
Erweitere deinen Sketch so, dass dein Analog-Tracker zu einem
Combi-Tracker wird. Er soll also analoge wie auch digitale Signale
darstellen können. Ich habe dazu schon einmal die erforderliche
Processing-Klasse geschrieben, und die Ausgabe der digitalen Pins
sieht bei mir wie folgt aus:

Du kannst jeden einzelnen digitalen Pin mit einer Hintergrundfarbe
und einer Pin-Nummer versehen. Der Übersicht halber habe ich
nur die Pins von 2 bis 10 abgebildet. Das kann natürlich nach Belie-
ben verändert werden. Füge dem Processing-Sketch die folgende
Klasse hinzu:
Wir schreiben ein Übertragungsprotokoll --- 577

class Circles{
 // Felder
 PFont myFont; // Font zur Darstellung von Textinformation

 String circleName; // Name des Objektes
 int xPos, yPos; // Positionsinformation
 color bgColor; // Hintergrundfarbe

 // Konstruktor
 Circles(String name, int x, int y, color c){

 circleName = name;
 xPos = x; yPos = y;
 bgColor = c;

 myFont = createFont("Courier New", 12, false);
 textFont(myFont, 12);
 }

 // Methoden
 void drawCircles(int value){
 ellipseMode(CORNER);
 fill(255); // Textfarbe
 text(circleName, xPos + 6, yPos - 10); // Name des Objektes anzeigen
 fill(0); noStroke(); // Hintergundinformation zum Löschen der

 // Farbe
 rect(xPos, yPos, 20, 20); // Löschen der Farbe
 stroke(255, 0, 0);

 if(value == 0) noFill(); // Ist Wert = 0, dann keine Füllung
 else fill(bgColor); // Ist Wert <> 0, dann Füllung mit
 // Hintergrundfarbe

 ellipse(xPos, yPos, 20, 20); // Kreis zeichnen
 }
}

Die Instanziierung der Klasse zeige ich dir ansatzweise an einen Bei-
spiel. Den Rest musst du natürlich selbst entwickeln und weiterfüh-
ren. Hier die Zeile für die globale Deklaration:

Circles DigPin2, ...

Diese Zeile platzierst du innerhalb der setup-Funktion:

DigPin2 = new Circles("2", 20, 400, color(255, 255, 0, 150));

Jetzt musst du die Abfrage innerhalb der draw-Funktion von Pro-
cessing erweitern. Bisher haben wir lediglich den Datentyp analog
herausgefiltert. Wie musst du den Sketch erweitern, damit auch
digitale Datentypen selektiert werden, um anschließend die
Methode der Circles-Klasse aufzurufen? Jetzt bist du dran!
-- Projekt 27: Data Monitoring578

Tipp
Wenn du nicht für jeden digitalen Eingang einen Pulldown-Wider-
stand verwenden möchtest, kannst du die internen Pullup-Wider-
stände aktivieren. Wie das funktioniert, weißt du bereits.

Ich habe dir absichtlich keine Bauanleitung bzw. Maße für die Boh-
rungen gegeben. Die Maße für Frontplatte und Shield entsprechen
denen aus vorangegangenen Kapiteln. Versuche dich einmal selbst
daran. Besorge dir entsprechend kleine Potentiometer und platziere
sie so auf der Frontplatte, dass sie sich nicht gegenseitig behindern.
Also nicht einfach Löcher bohren und hoffen, dass es passt! Fertige
einen Plan mit den Maßen und den Abständen der Löcher zum
Rand bzw. untereinander an, dann wird sicher alles funktionieren.

Die von dir entwickelte Frontplatte mit Shield möchte ich auch nach-
bauen. Wie mache ich das?
Wir schreiben ein Übertragungsprotokoll --- 579

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 28 28Der Arduino-Talker
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
f den
n

-> also: manuell auf den Arbeitsseiten ziehen!!!er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Die Ansteuerung des Arduino-Boards über C#

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Workshop

Der Arduino-Talker
Ich finde es immer sehr spannend, wenn eine Kommunikation
zwischen unterschiedlichen Baugruppen oder verschiedenen Pro-
grammiersprachen stattfindet. Das ist manchmal mit einigen
Schwierigkeiten verbunden, doch sind diese einmal gelöst und über-
wunden, dann macht es doppelt so viel Spaß. In diesem Kapitel
möchte ich dir zeigen, wie du über die serielle Schnittstelle mittels
Serial-Monitor dein Arduino-Board steuern kannst. Außerdem stelle
ich dir ein C#-Programm vor, mit dem du über eine komfortable
Oberfläche Steuerbefehle absetzen kannst, einfach um das Ganze
etwas einfacher zu handhaben. Mit Hilfe der C# 2010 Express-Edi-
tion, die kostenlos von der Microsoft- Internetseite heruntergeladen
werden kann, habe ich diese Anwendung programmiert.

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• C#

• C# 2010 Express
--- 581

Abbildung 28-1
Der Arduino-Talker (in C#

programmiert)

Über mehrere Schaltflächen und Schieberegler kannst du die digita-
len Ausgänge deines Arduino-Boards bequem manipulieren. Da RX
und TX ja manchmal Probleme bereiten, habe ich mich dabei auf
die Pins von 2 bis 13 konzentriert. Zur Demonstration der Funktio-
nalität ist das vollkommen ausreichend. Im oberen Bereich COM-
Port Settings kannst du dir die zur Verfügung stehenden COM-
Ports anzeigen lassen und den Port auswählen, den Arduino zur
seriellen Kommunikation nutzen soll. Über diesen Weg wollen wir
ihn steuern. Im Bereich Digital-Control findest du die einzelnen
On/Off-Schaltflächen, die die Pegel an den digitalen Ausgänge
ändern. Wie du weißt, haben einige Ausgänge PWM-Funktionali-
tät, und deshalb befinden sich rechts neben den entsprechenden
Pins Schieberegler, mit denen du das PWM-Signal beeinflussen
kannst: ganz links bedeutet 0% und ganz rechts 100%. Natürlich
kannst du zum erstmaligen Experimentieren die Anzahl der benö-
tigten LEDs auf ein Breadboard stecken, doch ich habe mir zu die-
sem Zweck wieder ein Shield gebastelt, das mit 2 x LED-
Baranzeigen ausgestattet ist. So kann ich auch für zukünftige Anzei-
geexperimente immer mal wieder darauf zurückgreifen.
--- Projekt 28: Der Arduino-Talker582

Abbildung 28-2
Das Anzeige-Shield für die digitalen
Ausgänge

Du kannst in dieser Abbildung erkennen, dass manche der ange-
steuerten LEDs in unterschiedlicher Helligkeit leuchten. LED 2, 3
und 7 leuchten sehr hell, wohingegen 5, 9 und 11 in unterschiedli-
cher Stärke leuchten. Diese LEDs liegen ganz zufällig an den Pins,
an denen eine PWM-Steuerung möglich ist. Die Regelung wurde
mit den Schiebereglern der C#-Anwendung realisiert.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Benötigte Bauteile

12 x rote LED (oder 2 x LED-Baranzeigen
wie aus Kapitel Digitale Porterweiterung
Teil 2)

12 x Widerstand 330

1 x Shieldplatine
Der Arduino-Talker -- 583

Sketch-Code
Der folgende Sketch fragt regelmäßig die serielle Schnittstelle ab, um
ggf. auf den auflaufenden Datenstrom – auch Stream genannt – rea-
gieren zu können. Nicht jeder Zeichenstrom hat eine Auswirkung auf
die angeschlossenen LEDs. Das Übertragungsprotokoll muss stim-
men. Im Kapitel Data-Monitoring wurden Informationen vom Ardu-
ino an eine andere Applikation (Processing) geschickt, um dort die
ermittelten Sensordaten zu visualisieren. Jetzt gehen wir den entge-
gengesetzten Weg, indem wir Informationen mittels eines Terminal-
programms (Serial-Monitor) über die serielle Schnittstelle oder
mittels einer Applikation – hier C# – an das Arduino-Board schi-
cken, um dort die digitalen Ausgänge zu steuern.

Hier siehst du einige Beispiele, die über den Serial-Monitor an das
Arduino-Board gesendet werden:

Abbildung 28-3
Digitaler Pin 03 wird auf

HIGH-Pegel gesetzt

1 x Set stapelbare Buchsenleisten (2 x 8
+ 2 x 6)

Litze in ggf. unterschiedlichen Farben

Benötigte Bauteile

4

�
)

���
/

4
3

)
5

4
2

/
;

/
<

3
�	�
����	�

�

&�	� 7
C

�	��	������� (
��:�����
(
��B��	

7����������
&�	��	F�
�+.+���
��
�+.+&
�
	�

))+��
����

�, HO

��

���������

4

�
)

�
/

4
3

3
5

4
2

4
;

4
<

)
�	�
����	�

�

&�	� 7
C

--- Projekt 28: Der Arduino-Talker584

Abbildung 28-4
Digitaler Pin 06 wird auf LOW-Pegel
gesetzt

Abbildung 28-5
Digitaler Pin 09 wird als analoger
Ausgang mit PWM-Signal 179
versehen.

#define ARRAY_SIZE 12

#define StartTag 83 // S-Zeichen

#define EndTag 69 // E-Zeichen

#define DigitalTag 100 // d-Zeichen

#define AnalogTag 97 // a-Zeichen

int ArduPin = 0; // Arduino-Pin

int ArduValue = 0; // Arduino-Value

int PinArray[ARRAY_SIZE] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13};

int bufferCount; // Anzahl der eingelesenen Zeichen

char buffer[20]; // Serial Input-Buffer

void setup(){

 Serial.begin(9600);

 for(int i = 0; i < ARRAY_SIZE; i++)

 pinMode(PinArray [i], OUTPUT);

}

void loop(){/* leer */}

void serialEvent(){

 char ch = Serial.read();

 buffer[bufferCount] = ch;

 bufferCount++;

 if(ch == 13)

 evalSerialData();

}

void evalSerialData(){

 // Start: S=83, End: E=69

 // buffer[1]: Type (d: digital, a: analog)

 // buffer[2] + buffer[3] : Pin

 // buffer[4] bis buffer[7] : Value

 if((buffer[0] == StartTag) && (buffer[8] == EndTag))

 {

 Serial.println("S.......E Frame ok");

 // Pin berechnen
 ArduPin = (buffer[2] - 48) * 10 + (buffer[3] - 48);

4

�
)

�
/

4
3

;
5

4
2

4
;

4
<

4
�	�
����	�

�

&�	� 7
C

4

�
)

�
/

4
3

D
5

4
2

)
;

<
<

D
�	�
����	�

�

&�	� 7
C

Der Arduino-Talker -- 585

 // Pin-Wert berechnen
 ArduValue = (buffer[4] - 48) * 1000 +
 (buffer[5] - 48) * 100 +

 (buffer[6] - 48) * 10 +
 (buffer[7] - 48);
 // Digital

 if(buffer[1] == DigitalTag)
 {

 Serial.println("Type: digital");
 if(ArduValue == 0)
 digitalWrite(ArduPin, LOW);
 if(ArduValue == 1)
 digitalWrite(ArduPin, HIGH);
 }

 // Analog
 if(buffer[1] == AnalogTag){
 Serial.println("Type: analog");
 analogWrite(ArduPin, ArduValue);
 }
 Serial.print("Pin: ");
 Serial.println(ArduPin);
 Serial.print("Value: ");
 Serial.println(ArduValue);
 Serial.println("--------------------");
 }
 else{

 Serial.println("Error!");
 Serial.println("--------------------");
 }

 buffer[0] = '.'; buffer[8] = '.'; // Buffer invalid setzen
 bufferCount = 0; // Reset Buffer Counter
}

Code-Review
Für unser Experiment benötigen wir programmtechnisch gesehen
die folgenden Variablen:

Tabelle 28-1
Benötigte Variablen und deren

Aufgabe

Variable Aufgabe

PinArray Enthält die Pin-Nummern, an denen die LEDs angeschlossen sind

ArduPin Bekommt die anzusprechende Pin-Nummer zugewiesen

ArduValue Bekommt den Wert zugewiesen, der an den Pin geschickt werden soll

buffer-
Count

Anzahl der Zeichen im Input-Buffer

buffer Serial Input-Buffer Array
--- Projekt 28: Der Arduino-Talker586

Die loop-Funktion ist in unserem Sketch leer. Da drängt sich dir
bestimmt die Frage auf, wie denn der Sketch auf etwaige einge-
hende Zeichen reagieren kann. Dies wird über eine sogenannte
Event-Funktion mit dem Namen serialEvent der seriellen Schnitt-
stelle ermöglicht. Sie wird immer genau dann aufgerufen, wenn
Daten vorliegen:

void serialEvent(){

 char ch = Serial.read();
 buffer[bufferCount] = ch;
 bufferCount++;

 if(ch == 13)
 evalSerialData();
}

Die eingelesenen Zeichen werden in die Variable ch vom Datentyp
char gespeichert und im Array buffer gespeichert. Die Index-Vari-
able bufferCount zählt bei jedem erneut gelesenen Zeichen um den
Wert 1 herauf, so dass alle Zeichen in das Array übertragen wer-
den, bis die Eingabe mit der Return-Taste bestätigt wird. Der
ASCII-Code für CR (Carriage Return) beträgt 13. Dieser führt
dazu, dass die evalSerialData-Funktion aufgerufen wird. Es erfolgt
jetzt die Überprüfung hinsichtlich der Protokolldefinition. Diese
Hürde muss genommen werden, damit die Daten eine Reaktion auf
dem Arduino-Board hervorrufen können. Start- bzw. Endmarkie-
rungen müssen sich an den richtigen Stellen befinden. In der Pro-
grammierung wird eine Markierung als Tag (Täk gesprochen)
bezeichnet:

if((buffer[0] == StartTag)&&(buffer[8] == EndTag))
{ ... }

Wurde auch diese Herausforderung gemeistert, dann sind die Rah-
menbedingungen erfüllt und die eigentlichen Netto-Informationen
können extrahiert werden.

Nun, Ardus, idealerweise würde das schon funktonieren. Doch
leider herrscht in der Realität nicht immer der Idealfall. Bei der
Übertragung können z.B. von außen Störsignale auf eine Übertra-

Ich habe immer noch nicht so recht verstanden, warum du so einen
Aufwand betreibst. Können die einzelnen Datenzeilen nicht ohne
Längenanalyse bzw. Start- und Ende-Kennung einfach gelesen und
ausgewertet werden?
Der Arduino-Talker -- 587

gungsleitung einwirken oder es kann ein Wackelkontakt auftre-
ten. All das führt zur Verfälschung der eigentlichen zu
übertragenden Informationen. Natürlich ist das ganze Drum-
herum für unsere LED-Ansteuerung nicht unbedingt notwendig,
doch wir wollen es von Anfang an richtig machen, und vielleicht
musst du ja irgendwann einmal etwas entwickeln, bei dem
gewisse Sicherheitsaspekte wichtig sind. Dann liegst du mit dem
hier gezeigten Ansatz genau richtig. Kommen wir jetzt also zur
Ermittlung der Pin-Information, die mittels des folgenden Code-
abschnitts erfolgt:

ArduPin = (buffer[2] - 48) * 10 + (buffer[3] - 48);

An den Positionen 2 (Einerstelle) bzw. 3 (Zehnerstelle) ist die Num-
mer des anzusprechenden Pins hinterlegt.

Das hat folgenden Grund: Bei der Übertragung werden ASCII-Zei-
chen übermittelt. ASCII steht für American Standard Code for
Information Interchange, der dazu dient, sowohl Ziffern als auch
Zeichen zu kodieren. Da der Computer nur mit Zahlen jonglieren
kann, müssen alle zu übertragende Zeichen in einen numerischen
Wert konvertiert werden. Das zu übertragende Zeichen, das der 0
entspricht, lautet 48 (dezimal). Das für die Ziffer 9 lautet 57 dezi-
mal). Um jetzt an den eigentlichen Wert zu gelangen, müssen wir
von jedem Übertragungswert 48 subtrahieren.

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• ASCII

• ASCII Tabelle

Die Extrahierung des Pin-Wertes erfolgt in gleicher Manier:

ArduValue = (buffer[4] - 48) * 1000 + // Tausenderstelle

 (buffer[5] - 48) * 100 + // Hunderterstelle
 (buffer[6] - 48) * 10 + // Zehnerstelle
 (buffer[7] - 48); // Einerstelle

Soweit ist mir alles klar. Doch warum um Himmels Willen muss von
jeder Stelle noch der Wert 48 subtrahiert werden? Das ist mir schlei-
erhaft!
--- Projekt 28: Der Arduino-Talker588

Bevor wir jetzt einen digitalen Pin auf deinem Arduino-Board
ansprechen, muss noch ermittelt werden, ob ein digitaler Ausgang
mit HIGH- bzw. LOW-Pegel versehen werden muss oder ob ein
analoger Ausgang über PWM anzusprechen ist. Das wird mit den
folgenden Zeilen ermöglicht:

// Digital
if(buffer[1] == DigitalTag){
 Serial.println("Type: digital");
 if(ArduValue == 0)
 digitalWrite(ArduPin, LOW);
 if(ArduValue == 1)
 digitalWrite(ArduPin, HIGH);
}

// Analog
if(buffer[1] == AnalogTag){
 Serial.println("Type: analog");
 analogWrite(ArduPin, ArduValue);
}

Wie du siehst, wird im digitalen Fall die digitalWrite-Funktion, im
analogen Fall die analogWrite-Funktion bemüht. Du kannst die
Funktionalität des Sketches bzw. der Schaltung sogar schon ohne
die komfortable C#-Anwendung testen, denn es werden ja einfach
nur in Abhängigkeit von der Aktion, die du ausführst, die richtigen
Kommandos an die serielle Schnittstelle geschickt. Öffne doch den
Serial-Monitor und gebe z.B. die folgenden Zeilen ein:

• Sa060018E

• Sd020001E

Schau’ dir an, wie die LEDs reagieren. Die komplette C#-Anwen-
dung mit einer detaillierten Beschreibung findest du auf meiner
Internetseite. Leider kann ich diese Details aufgrund ihres Umfan-
ges nicht in diesem Kapitel aufnehmen. Doch keine Bange: Ich
werde eine PDF-Datei mit allen notwendigen Informationen erstel-
len sie zum Download zur Verfügung stellen.

Zeige mir doch einfach einmal deine Eingabe, die du gemacht hast.
Vielleicht stimmt deine eingestellte Übertragungsrate nicht?

Ich habe irgendwie ein paar Probleme mit der Eingabe in den Serial-
Monitor. Also, die Eingabe klappt schon, doch die Auswirkungen auf
dem Arduino-Board bzw. auf die angeschlossenen LEDs sind nicht
so, wie sie sein sollten. Was mache ich nur falsch?
Der Arduino-Talker -- 589

Ok, du wolltest als die LED an Pin 2 anschalten. Die Übertragungs-
rate von 9600 Baud stimmt mit der im Sketch überein.

Achtung
Links neben der Drop-Down-Box für die Übertragungsrate
befindet sich eine weitere Liste, in der du Auswählen kannst,
was nach dem Drücken der RETURN-Taste geschehen soll. Stan-
dardmäßig ist hier No line ending ausgewählt. Das bedeutet,
dass nur die Zeichen übertragen werden, die du in der Einga-
bezeile eingetippt hast. Du musst jedoch den Eintrag

selektieren, so dass nach der Eingabebestätigung zusätzlich
noch das Steuerzeichen für Carriage-Return übertragen wird.
Andernfalls wird die evalSerialData-Funktion nicht aufgerufen.

Wie du siehst, erhältst du eine entsprechende Rückmeldung, wenn
dein Befehl korrekt erkannt wurde. Wenn du versuchtst, etwas zu
übertragen, dass nicht dem vereinbarten Protokoll entspricht, wird
das mit einem Error quittiert.

Achtung
Der Sketch-Code für die C#-Anwendung für den Arduino-Talker
wurde dahingehend modifiziert, dass alle Rückmeldungen an
die serielle Schnittstelle entfernt wurden, da andernfalls die
Anwendung recht träge reagieren würde. Die Funktionalität ist
davon nicht betroffen! Du findest den Sketch-Code aber in der
Anwendung selber.
--- Projekt 28: Der Arduino-Talker590

Troubleshooting
Wenn die Steuerung deiner digitalen Ausgänge nicht funktioniert,
überprüfe Folgendes:

• Ist die Verkabelung korrekt?

• Gibt es eventuell Kurzschlüsse untereinander?

• Ist bei Sender und Empfänger auch wirklich die gleiche Über-
tragungsrate eingestellt?

• Wurde die Groß- bzw. Kleinschreibung berücksichtigt, die ja
hier einen Unterschied macht?

Was hast du gelernt?
• Du hast erfahren, wie du, wieder mittels Implementierung

eines Übertragungsprotokolls, unterschiedliche Daten über die
serielle Schnittstelle schicken kannst, um so dein Arduino-
Board zu steuern.

• Das funktioniert sowohl über eine Eingabe in einem Terminal-
Programm, wie hier dem Serial-Monitor, als auch über eine
komfortable Anwendung mit einer grafischen Benutzeroberflä-
che. Das kurz gezeigte C#-Programm ist nur ein Beispiel für
eine mögliche Realisierung, denn du kannst nahezu jede Pro-
grammiersprache verwenden, die einen Zugriff auf die serielle
Schnittstelle ermöglicht.

Workshop
Ich habe folgende Idee, obwohl die Sache vielleicht etwas knifflig
werden kann: Du weißt jetzt, wie du über die entsprechenden Steu-
erbefehle die digitalen bzw. analogen Ausgänge manipulieren
kannst. Füge dem Sketch eine Funktionalität hinzu, mit der du ein-
zelne LEDs unabhängig voneinander blinken lassen kannst. Ver-
wende dazu den Kleinbuchstaben b. Du hast dann also die
folgenden drei Möglichkeiten:

• d für digital

• a für analog

• b für blink

Hier zwei Beispiele:

• Sb020001E lässt die LED an Pin 2 blinken.
Der Arduino-Talker -- 591

• Sb030000E stoppt im gegebenen Fall das Blinken der LED an
Pin 3. Falls sie nicht blinkt, sondern kontinuierlich leuchtet,
soll sie nun ausgehen.

Tipp
Du musst den Blink-Status jeder einzelnen LED irgendwie spei-
chern und was bietet sich dazu wohl an? Vielleicht ein Array!? Du
kannst Auf keinen Fall mit der delay-Funktion arbeiten. Falls du
nicht mehr weißt, warum das nicht möglich ist, wirf nochmal einen
Blick in das Kapitel Das Blinken einer LED Teil 2 und frische dein
Wissen auf.
--- Projekt 28: Der Arduino-Talker592

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 29 29Die drahtlose
Kommunikation über
Bluetooth
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Was ist Funk-Kommunikation

• Was ist Bluetooth

• Das Bluetooth-Shield

• Aufbau der Schaltung

• Workshop

Was ist Funk-Kommunikation?
Bisher hat unser Datenaustausch bzw. die Kommunikation zwi-
schen Computer und Arduino-Board immer drahtgebunden über
die serielle Schnittstelle stattgefunden. Das ist für viele unserer
Experimente auch völlig ausreichend und es spricht nichts dage-
gen. Was aber, wenn du z.B. unseren ArduBot einen längeren Weg
fahren lassen möchtest und die angeforderte Strecke die Länge des
USB-Kabels übersteigt? Oder lasse ihn einmal zahlreiche Rotatio-
nen in die unterschiedlichsten Richtungen ausführen, dann wird
das Kabel anschließend recht verzwirbelt sein. Eine Lösung wäre
ein längeres USB-Kabel, doch die maximale Länge beträgt im
Schnitt um die 5 bis 7 Meter, was auch vom angeschlossenen USB-
Gerät abhängt. Ich denke, dass es jetzt an der Zeit ist, über eine
Funk-Kommunikation nachzudenken. Diese drahtlose Art der Kom-
munikation ermöglicht einen flexiblen Datenaustausch zwischen
Endgeräten, ohne lästiges und störendes Verlegen von zahllosen
Strippen, in denen man sich regelmäßig verheddert. Natürlich gibt
--- 593

es hinsichtlich der Reichweite ebenfalls Beschränkungen, die von
der abgestrahlten Sendeleistung abhängen. Eine dir sicherlich
schon bekannte Funkverbindung dürfte das WLAN (Wireless-
LAN) sein, das vielleicht dein Router bereitstellt. Das WLAN kann
je nach Umgebungsbeschaffenheit schon einige Meter an Wegstre-
cke überbrücken, wobei Angaben von ca. 300 Metern sicherlich nur
im Freien unter sehr günstigen Bedingungen erreicht werden.
Innerhalb von Gebäuden sieht die Sache schon viel schlechter aus.
Zwischen benachbarten Räumen wird es auf jeden Fall besser funk-
tionieren als über mehrere Etagen hinweg, bei denen sich im Boden
wahre Abschirmgitter in Form von Stahlarmierungen befinden. Da
verkürzt sich die Reichweite schon auf ca. 10 bis 20 Meter. Kom-
men wir jetzt zu einem Funkverfahren, das eher auf kurzer Distanz
von 1 bis 100 Metern Verwendung findet. Es nennt sich Bluetooth.
Da sich Bluetooth und WLAN das gleiche Frequenzband von 2,4
GHz teilen, kann es u.U. zu Störungen durch Überlagerungen kom-
men. Die Reichweite von Bluetooth hängt ebenfalls von der abge-
strahlten Sendeleistung ab, wobei es drei Klassen gibt:

Tabelle 29-1
Bluetooth-Klassen mit Sende-

leistung und Reichweite

Natürlich ist nicht nur der Sender für eine Reichweitenbeschrän-
kung verantwortlich. Auch der Empfänger trägt maßgeblich dazu
bei. Faktoren wie Antennenqualität und Empfänger-Empfindlich-
keit spielen ebenfalls eine große Rolle.

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• Bluetooth

• WLAN

Genug der Vorrede, denn weitere und detaillierte Informationen
findest du im Internet oder in spezieller Fachliteratur. Ich möchte
dir jetzt ein interessantes und kostengünstiges Shield vorstellen, das
wir für unsere drahtlose Kommunikation mit dem Arduino-Board
verwenden werden.

Klasse Sendeleistung Reichweite

1 100 mW ca. 100 Meter

2 2,5 mW ca. 10 Meter

3 1 mW ca. 1 Meter
-- Projekt 29: Die drahtlose Kommunikation über Bluetooth594

Abbildung 29-1
Das Bluetooth-Shield von ITead
Studio in der Version 2.1

Das sind ganz naheliegende Fragen, Ardus, die ich mir zu Beginn
ebenfalls gestellt habe. Die Sache stellt sich aber relativ einfach dar.
Die Kommunikation kann mit jedem anderen Bluetooth-Gerät
erfolgen, also z.B. mit einem Bluetooth-Adapter, den du an deinem
Computer anschließen kannst, oder auch mit einem entsprechen-
den Smartphone.

Abbildung 29-2
Der Bluetooth-Adapter für die
USB-Schnittstelle

Das wirklich geniale bei der Kommunikation mit dem Arduino-
Board ist die Tatsache, dass die ganze Kommunikation über die
serielle Schnittstelle des Boards erfolgt und du somit keine spezielle
Library hierfür benötigst. Außerdem steht dir nach der Installation
des Bluetooth-Adapters an deinem Computer ein neuer COM-Port
zur Verfügung. Du merkst bestimmt, worauf ich hinaus möchte.
Wenn du jetzt ein Terminal-Programm wie z.B. PuTTY mit dem
COM-Port des Bluetooth-Adapters verbindest und dort Befehle
absetzt, werden diese über Bluetooth in den Äther geschickt. Wenn
jetzt dein Arduino-Board mit dem Bluetooth-Shield versehen ist,
können dort über die serielle Schnittstelle die gesendeten PuTTY-

Wenn ich mir das Bluetooth-Shield so anschaue, dann verstehe ich
zwar das Prinzip, doch wie und mit was kommt die Kommunikation
zustande? Wie kann ich dann die empfangenen Daten auf dem Ardu-
ino abrufen? Da ist doch sicherlich wieder eine spezielle Library erfor-
derlich – richtig!?
Was ist Funk-Kommunikation? --- 595

Befehle empfangen und ausgewertet werden. In der folgenden
Abbildung habe ich einmal versucht, den Datenfluss während der
Kommunikation zu veranschaulichen, wobei der Datenfluss von
links nach rechts erfolgt.

Abbildung 29-3
Der Bluetooth-Adapter sendet und

das Bluetooth-Shield empfängt.

Im letzten Kapitel habe ich dich mit dem Anzeige-Shield vertraut
gemacht – und das nicht ohne Grund. Denn nun möchte ich dir die
Stapelmöglichkeit mehrerer Shields auf dem Arduino-Board vorstel-
len. In der folgenden Abbildung siehst du zuunterst das Arduino-
Board mit dem aufgestecktem Bluetooth-Shield. Mit diesem Dop-
pelpack wird die Funkverbindung hergestellt. Darauf wird jetzt
noch das Anzeige-Shield gesteckt, denn die Anschlüsse, die vom
Arduino-Board kommen, werden durch das Bluetooth-Shield hin-
durch nach oben geführt.

Abbildung 29-4
Das Arduino Sandwich mit

Bluetooth- und Anzeige-Shield

Du kannst in der Abbildung erkennen, dass das Arduino-Sandwich
vollkommen autark, also eigenständig, ohne eine Anbindung an
deinen Computer arbeitet. Die Spannungsversorgung erfolgt über
eine 9V-Blockbatterie hergestellt. Alles Weitere erfolgt über die
Funkverbindung mittels Bluetooth.

Das Bluetooth-Shield
Bisher habe ich lediglich die Themen Bluetooth-Adapter bzw. Blue-
tooth-Shield grob angerissen und ihre Funktionen ein wenig erläu-
tert. Es ist nun an der Zeit, ein genauer auf diese Bauteile
einzugehen. Ich fange einfach einmal mit dem Bluetooth-Shield an.
-- Projekt 29: Die drahtlose Kommunikation über Bluetooth596

Dass wir für die eigentlich Kommunikation keine spezielle Library
benötigen, weißt du bereits, weil alles über die beiden Pins RX bzw.
TX der seriellen Schnittstelle des Arduino-Boards läuft. Dennoch
müssen wir uns hier auch mit der eigentlichen Konfiguration des
Bluetooth-Shields befassen, denn es gibt unterschiedliche Parame-
ter, die es bei Bedarf anzupassen gilt.

Achtung
Ich sollte an dieser Stelle einen Umstand ansprechen, der für
die Konfiguration von Shields über das Arduino-Board sehr
wichtig ist. Viele Shields, so auch das hier vorliegende Blue-
tooth-Shield, werden über die serielle Schnittstelle des Arduino-
Boards konfiguriert. Es kann deshalb u.U. notwendig sein, vor
der Konfiguration den AVR vom Arduino-Shield vorsichtig zu
entfernen. Warum? Nun, der AVR blockiert mit seinen RX- bzw.
TX-Anschlüssen zeitweise die serielle Schnittstelle, so dass eine
Kommunikation mit dem aufgesteckten Shield nicht möglich
ist. Du kannst deinen AVR jedoch mit einem Leer-Sketch (auch
Null-Code genannt) versorgen, der lediglich aus den notwendi-
gen Funktionen setup und loop besteht, deren Inhalt jedoch
leer ist. Also void setup() {} und void loop(){}.

Konfigurations-Modus
Auf dem Bluetooth-Shield befinden sich zwei kleine Schiebeschal-
ter, die es in die richtigen Positionen zu setzen gilt.

Abbildung 29-5
Die hardwaremäßige Konfiguration
des Bluetooth-Shield

Über den rechten Schiebeschalter kann die gewünschte Versor-
gungsspannung ausgewählt werden. In meinem Fall habe ich mich
für 5V entschieden und den Schalter nach unten geschoben. Der
linke Schiebeschalter muss zur Konfiguration des Shields über die
serielle Schnittstelle ebenfalls in die untere Position gesetzt werden.
Er ist mit To FT232 beschriftet, wodurch gekennzeichnet wird,
dass im gegebenen Falle die Datenübertragung, die vormals über
den FTDI-Chip (bei Arduino-Duemilanove) lief, jetzt über den
ATmega8U2 beim Arduino-Uno erfolgt.
Was ist Funk-Kommunikation? --- 597

Abbildung 29-6
Konfigurations-Modus des

Bluetooth-Shields

In diesem Fall wird das Arduino-Board als Schnittstelle zwischen
einem Terminalprogramm wie z.B. PuTTY und dem Bluetooth-
Shield genutzt.

Verbindung testen

Die Kommunikation mit dem Bluetooth-Shield erfolgt über soge-
nannte AT-Befehle. Um zu sehen, ob das Board auch reagiert, öff-
nest du den Serial-Monitor und legst als Übertragungsrate 9600
Baud fest. Jetzt gibst du einfach den Befehl AT ein und drückst die
RETURN-Taste. Das Shield sollte mit OK reagieren. Das Bluetooth-
Shield ist standardmäßig mit folgenden Parametern vorkonfiguriert:

Tabelle 29-2
Die Parameter des Bluetooth-
Shields nach der Auslieferung

Anpassen der Übertragungsrate

Mit dem Befehl

AT+<Parameter>

kann die Baudrate angepasst werden. Der folgenden Tabelle kannst
du entnehmen, welche Zeichenfolgen in die spitzen Klammern ein-
gefügt werden können.

Tabelle 29-3
Übertragungsraten

�
-��,,�(3"(��
�3!�:�

�:�! �!

�,
3�
�
��
�

�,
30
*,
/�

>��'
����	
���������

%
;

�
;

�*�-��,3< #
��=�./�<�

<"�

��*=��/

Parameter Wert

Übertragungsrate 9600

Parität N (None = keine)

Datenbits 8

Stoppbit 1

Pin-Code 1234

<Parameter> Übertragungsrate

BAUD1 1200

BAUD2 2400

BAUD3 4800

BAUD4 9600
-- Projekt 29: Die drahtlose Kommunikation über Bluetooth598

Nach erfolgreicher Anpassung antwortet das Board z.B. mit
OK38400. Jetzt darfst du natürlich nicht vergessen, für den Serial-
Monitor ebenfalls die neue Übertragungsrate anzugeben, da
ansonsten keine Kommunikation zustande kommen kann.

Änderung des Namens

Mit dem Befehl

AT+NAME<EigenerName>

kannst du deinem Shield einen eindeutigen Namen zuweisen. Das
Shield reagiert danach mit OKsetname.

Änderung der PIN

Mit dem Befehl

AT+PIN<xxxx>

kann der Pin-Code geändert werden. Er wird immer vierstellig ver-
geben. Den Pin-Code solltest du nach Möglichkeit nicht vergessen!
Nach erfolgreicher Anpassung erfolgt die Meldung OKsetPIN.

Arbeits-Modus
Wurde die Konfiguration abgeschlossen, muss der linke Schiebe-
schalter in die Position To Board (auf dem Shield steht Broad)
gebracht werden. Anders als beim Konfigurations-Modus erfolgt der
Datenfluss hier so, wie er in der folgenden Abbildung zu sehen ist:

Abbildung 29-7
Arbeits-Modus des
Bluetooth-Shields

BAUD5 19200

BAUD6 38400

BAUD7 57600

BAUD8 115200

<Parameter> Übertragungsrate

�
-��,,�(3"(��
�3!�:�

�:�! �!

�,
3�
�
��
�

�,
30
*,
/�

����
	�������

%
;

�
;

�*�-��,3< #
��=�./�<�

<"�

��*=��/

�
-��,,�(���/>��*

�-�?@0�*�*/.-�.
Was ist Funk-Kommunikation? --- 599

mailto:@0�*�*/.-

Jeglicher Datentransfer erfolgt jetzt über die Funkstrecke und
gelangt auf diesem Weg über das Bluetooth-Shield zur seriellen
Schnittstelle deines Arduino-Boards.

Nein, Ardus, natürlich nicht. Der COM-Port des Serial-Monitors
geht doch direkt zum Arduino-Board. Dabei handelt es sich um
eine kabelgebundene Kommunikation. Wir wollen jedoch über
eine Funkstrecke kommunizieren, und dazu benötigen wir zusätz-
lich noch den Bluetooth-Adapter. Dieser Adapter kann Bluetooth-
Geräte – wie z.B. dein Bluetooth-Shield – in der näheren Umgebung
erkennen und fügt sie deinem System hinzu, so dass sie von da an
über Funk angesprochen werden können. Hat das Hinzufügen des
Bluetooth-Shields funktioniert, dann wird auf deinem Computer ein
neuer COM-Port bereitgestellt. Über diesen Port, der ja dein Blue-
tooth-Shield repräsentiert, nimmst du dann mit deinem Terminal-
programm Kontakt auf. Dazu kommen wir jetzt.

Der Bluetooth-Adapter
Verwechsle nicht das Bluetooth-Shield mit dem Bluetooth-Adapter.
Der Adapter wird in den USB-Anschluss deines Computers
gesteckt und kann nach erfolgreicher Treiberinstallation eine Funk-
verbindung zum Bluetooth-Shield aufnehmen. Dazu sind die nach-
folgend beschriebenen Schritte erforderlich. Natürlich muss dein
Bluetooth-Shield vorher auf dein Arduino-Board gesteckt werden,
damit es mit Spannung versorgt wird, denn es soll ja nun über Funk
erkannt werden. Andernfalls kannst du lange warten.

Hinzufügen eines neuen Bluetooth-Gerätes

Wenn ich den Menüpunkt Gerät hinzufügen in meiner Bluetooth-
Adapter-Installation auswähle (dieser Punkt kann für deinen Adap-
ter ggf. anders lauten), wird mir folgendes Dialogfenster angezeigt:

Wenn ich mir das letzte Bild so anschaue, dann kommt bei mir eine
Frage auf. Das Terminalprogramm muss doch zu einem COM-Port
eine Verbindung aufnehmen? Ist das der gleiche Port, den auch der
Serial-Monitor verwendet?
-- Projekt 29: Die drahtlose Kommunikation über Bluetooth600

Abbildung 29-8
Der Dialog »Gerät hinzufügen«

Du siehst, dass sich da ein Gerät anbietet, das sich BT001 nennt.
Ich hatte bei der Konfiguration meinem Shield genau diesen
Namen gegeben. Wähle das Gerät aus und klicke auf die Schaltflä-
che Weiter, so dass der folgende Dialog angezeigt wird:

Abbildung 29-9
Auswahl der Kopplungsoption

Wähle den Menüpunkt Kopplungscode des Gerätes eingeben aus,
sodass der folgende Dialog aufgerufen wird, in dem du jetzt deinen
Kopplungscode eingeben musst, der der Pin-Nummer entspricht.
Was ist Funk-Kommunikation? --- 601

Abbildung 29-10
Eingabe des Kopplungscodes

Nach einem Klick auf die Schaltfläche Weiter wird die Installation
des neuen Gerätes abgeschlossen. Abschließend solltest du einen
Blick in deinen Gerätemanager werfen, damit du siehst, welcher
COM-Port hinzugekommen ist.

Siehe da, ich habe zwei neue COM-Ports erhalten, von denen
COM8 derjenige ist, den wir für das Terminalprogramm verwen-
den können, um jetzt Befehle an das Bluetooth-Shield bzw. das
Arduino-Board per Funk zu versenden.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Benötigte Bauteile

1 x Bluetooth-Shield

1 x Bluetooth-Adapter
-- Projekt 29: Die drahtlose Kommunikation über Bluetooth602

Sketch-Code
Der Sketch-Code ist der gleiche, den wir im Kapitel Arduino-Talker
verwendet haben. Du musst ihn nicht anpassen. Wir haben ja
lediglich die Eingabe der Befehle vom drahtgebundenen Serial-
Monitor auf die Bluetooth-Ebene verlagert. Am Protokoll hat sich
nicht geändert, sondern lediglich am Übertragungsmedium.

Abschicken der Befehle
über Bluetooth
Jetzt ist es an der Zeit, unsere Bluetooth-Strecke in Betrieb zu neh-
men. Öffne ein Terminalprogramm deiner Wahl, vielleicht PuTTY,
und stelle eine Verbindung zu deinem neuen Bluetooth-COM-Port
her, der in meinem Fall COM8 ist. Zuerst habe ich in PuTTY die
richtige Konfiguration eingestellt. Wähle die betreffenden Einstel-
lungen genau so aus, wie du es im markierten Bericht in der nach-
folgenden Abbildung siehst.

Abbildung 29-11
PuTTY-Konfiguration (Terminal)

1 x Anzeige-Shield aus dem letzten
Kapitel (zum Aufstecken auf das BT-
Shield)

Benötigte Bauteile
Was ist Funk-Kommunikation? --- 603

Dann öffnest du eine serielle Verbindung (Serial connection), indem
du die folgenden Werte in den Dialog einträgst.

Abbildung 29-12
PuTTY-Konfiguration (Serial)

Wenn du dann auf die Schaltfläche Open klickst, öffnet sich das
PuTTY-Eingabefenster, wo ich schon einmal in die erste Zeile etwas
eingetragen und mit RETURN bestätigt habe:

Abbildung 29-13
PuTTY-Eingabe

Ja sicher, Ardus, das geht auch. Verbinde dich statt mit dem eigent-
lichen Arduino-COM-Port jetzt mit dem Bluetooth-COM-Port.
Dann erfolgt die Kommunikation mit dem Arduino-Talker per
Funk.

Mir fällt da gerade etwas ein. Kann ich nicht auch den im letzten
Kapitel vorgestellten Arduino-Talker zur Bluetooth-Kommunikation
nutzen? Dann müsste ich nicht immer die umständlichen Befehlszei-
len eingeben.
-- Projekt 29: Die drahtlose Kommunikation über Bluetooth604

Troubleshooting
Wenn die Steuerung deiner digitalen Ausgänge nicht funktioniert,
überprüfe Folgendes:

• Ist die Verkabelung korrekt?

• Gibt es eventuell Kurzschlüsse untereinander?

• Achte darauf, immer den richtigen COM-Port zu verwenden.
Ich habe da auch schon einmal etwas durcheinander gebracht
und dann den Fehler an der falschen Stelle gesucht.

• Falls du ein anderes Terminalprogramm als PuTTY zur Ein-
gabe verwenden möchtest, überprüfe zuerst die Korrektheit
der Konfiguration. Manchmal musst du einfach ein wenig her-
umprobieren, um die richtigen Parameter zu finden.

Was hast du gelernt?
• Du hast erfahren, wie die Funkkommunikation über Bluetooth

funktioniert.

• Wir haben die im letzten Kapitel verwendeten Kommandos für
die Eingabe in ein Terminalprogramm, im vorliegenden Fall
PuTTY, verwendet, um per Funk das Anzeige-Shield zu steu-
ern.

Workshop
Versuche doch einmal per Bluetooth-Verbindung einem Piezo-Ele-
ment verschiedene Töne zu entlocken. Vielleicht musst du dazu das
Protokoll ein wenig anpassen. Schreibe doch ein eigenes, denn
meine Vorstellungen müssen nicht unbedingt deinen entsprechen.
Die Hauptsache ist, dass nachher Schaltung und Sketch eine Ein-
heit bilden und sich in einem regem Datenaustausch miteinander
befinden.
Was ist Funk-Kommunikation? --- 605

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 30 30Bluetooth und das
Android-Smartphone
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Wie kann ich über mein Smartphone mit Android-Betriebssys-
tem über Bluetooth das Anzeige-Shield steuern?

Das Smartphone
Abbildung 30-1

Das Smartphone mit der Bluetooth-
App »ITEAD BT Debugging
Assistant«

Da Smartphones in der heutigen Zeit sehr
verbreitet sind und eine enorme Band-
breite an Funktionen bieten – ja, man
kann auch mit ihnen telefonieren –
möchte ich dir zum Thema Bluetooth eine
Möglichkeit vorstellen, über ein App der
Firma ITead Studio unser Anzeige-Shield
zu steuern. Als App bezeichnet man übri-
gens eine Anwendung, die auf einem
Smartphone ausgeführt werden kann. Die
genannte Firma ist auch Anbieter des ver-
wendeten Bluetooth-Shields und stellt auf
ihrer Internetseite eine App für das
Betriebssystem Arduino zum freien
Download zur Verfügung. Sie nennt sich ITead BT Debugging
Assistant. Wenn du genau diese Bezeichnung bei Google eingibst,
dann wirst du zum entsprechenden Download-Link geführt.
--- 607

Nach der Installation und dem Start der App siehst du die oben
gezeigte Abbildung. Wir gehen die einzelnen Schritte zur Verbin-
dungsaufnahme einmal durch.

Schritt 1: (Suchen des Bluetooth-Shields)

Zu Beginn muss die App natürlich dein Bluetooth-Shield im Äther
ausfindig machen. Tippe dazu auf die Search Device Schaltfläche.
Nach einiger Zeit meldet sich das Shield mit der entsprechenden
Kennung.

Abbildung 30-2
Die App hat das Bluetooth-Shield

gefunden (Der Name lautet BT001)

Schritt 2: (Bluetooth-Device auswählen)

Mit dem Finger wählst du dann das erkannte Bluetooth-Device aus.

Schritt 3: (Eingabe des Kommandos)

Nach der Auswahl des Bluetooth-Gerätes erscheint die folgende
Anzeige, in der du das gewünschte Kommando eingeben kannst:

Abbildung 30-3
Die Eingabe des Kommandos an das

Bluetooth-Shield

Achte darauf, dass das Häkchen Send as New Line ausgewählt ist.
Dadurch wird veranlasst, dass ein CR an den Sendetext angehängt
wird, da es ansonsten Probleme mit dem Protokoll gibt. Wenn du
-- Projekt 30: Bluetooth und das Android-Smartphone608

die Schaltfläche Send angetippt hast, kannst du die Rückmeldung
in der Anzeige sehen. Ich möchte dich an dieser Stelle mit einem
neuen Sketch vertraut machen, der die Befehlsübertragung viel-
leicht vereinfacht. In meinem Smartphone kannst du die Eingabe-
zeile Sd2=1 sehen. Nachfolgend einige mögliche Eingaben:

Abbildung 30-4
Beispieleingaben für das Smart-
phone

Die erste Befehlszeile setzt den digitalen Pin 2 auf HIGH-Pegel. Die
zweite den Pin 13 auf LOW-Pegel und die dritte den digitalen Pin
11 mit einem PWM-Wert von 80. Du siehst, dass du mit ganz einfa-
chen Mitteln – natürlich musst du ein Smartphone besitzen – per
Bluetooth Befehle an dein Shield senden kannst. Doch schauen wir
uns dazu einmal den Sketch-Code genauer an, der übrigens von
Michael Margolis beigesteuert wurde, der Autor des Buches Ardu-
ino Cookbook ist. Ich habe den Sketch lediglich leicht angepasst. An
dieser Stelle noch einmal vielen Dank für deine Unterstützung,
Michael.

#define StartTag "S" // S-Zeichen

#define DigitalTag 'd' // d-Zeichen

#define AnalogTag 'a' // a-Zeichen

#define ARRAY_SIZE 12

int ArduPin = 0; // Arduino-Pin

int ArduValue = 0; // Arduino-Value

int PinArray[ARRAY_SIZE] = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13};

void setup(){

 Serial.begin(9600);

 for(int i = 0; i < ARRAY_SIZE; i++)

 pinMode(PinArray[i], OUTPUT);

}

void loop(){

 if(Serial.find(StartTag))

 {

 while(Serial.available() < 1); // Warten bis Zeichen kommen

 char type = Serial.read(); // d (digital) oder a (analog)

� � / .) �'��
���

�-

� �) . 4 �'��
���

�- 3

� �) . C �'��
���

�-) 4
Das Smartphone -- 609

http://www.appinventorbeta.com/

 ArduPin = Serial.parseInt(); // Pin-Nummer ermitteln

 ArduValue = Serial.parseInt(); // Wert ermitteln

 if(type == DigitalTag)

 {

 if(ArduValue == 0)

 digitalWrite(ArduPin, LOW);

 else

 digitalWrite(ArduPin, HIGH);

 }

 else if(type == AnalogTag)

 analogWrite(ArduPin, ArduValue);

 }

}

Wir sollten unser Augenmerk auf die loop-Funktion lenken, denn
da spielt die Musik. Über die find-Methode der Serial-Klasse wird
der Eingabestrom nach dem StartTag durchsucht. Falls es nicht
erkannt wird, passiert erst einmal gar nichts. Ist das StartTag
jedoch Teil des Eingabestroms, dann wird der nachfolgende
Befehlsblock betreten. Über die available-Methode wird jetzt
solange gewartet, bis weitere Daten eingehen. Das erste Zeichen
wird in der Variablen type gespeichert und sollte entweder d (digi-
tal) bzw. a (analog) sein, damit eine spätere Reaktion ausgelöst
wird. Über die parseInt-Methode wird der nachfolgende Zeichen-
strom ausgewertet und, falls es sich um Integerwerte handelt, in
den entsprechenden Variablen ArduPin und ArduValue gespei-
chert. Jetzt kommt der festgestellte Typ der Variablen type ins Spiel
und es wird entsprechend ein digitales oder ein analoges Signal
interpretiert und entweder HIGH- bzw. LOW-Pegel gesetzt oder
ein PWM-Signal ausgegeben.

Du bist ja ganz schön verwöhnt, Ardus! Ich wollte dir doch nur zei-
gen, dass du über Bluetooth deines Smartphones die gleichen Kom-
mandos absetzen kannst wie z.B. über ein Terminalprogramm.
Aber schau’ her. Ich habe einen solchen Einwand schon erwartet
und deshalb in einer Nacht- und Nebelaktion eine spezielle App
entwickelt.

Das ist schon sehr beeindruckend, doch gibt es nicht eine komfortab-
lere Möglichkeit der Ansteuerung, ohne die ganzen Zeichen mühsam
eingeben zu müssen? Ich meine so ähnlich wie beim Arduino-Talker.
Der hat doch auch eine schöne Benutzeroberfläche, die man bloß ent-
sprechend anklicken muss.
-- Projekt 30: Bluetooth und das Android-Smartphone610

Abbildung 30-5
Der Arduino-TalkerBT auf dem
Smartphone

Die App mit dem Namen Arduino-TalkerBT an dieser Stelle zu
erläutern würde ein wenig den Rahmen dieses Buches sprengen.
Du kannst aber auf meiner Internetseite nachschauen. Dort findest
du ein spezielles Kapitel mit detaillierten Informationen und einem
Link zu einem Video, das dir die Funktion veranschaulicht. Du
kannst LEDs ein- bzw. ausschalten oder sogar blinken lassen. Lass’
deiner Kreativität freien Lauf und denke einmal darüber nach, was
du auf diese Weise alles Steuern kannst.

Nun, Ardus, das kommt immer darauf an, was du entwickeln
möchtest und wie umfangreich das Projekt ist. Was würdest du
davon halten, wenn ich dir sagte, dass das u.U. überhaupt nicht
schwierig sein muss!? Wenn du das geeignete Werkzeug dazu an
die Hand bekommst, dann ist vieles sogar – mit ein wenig Einarbei-
tung – relativ einfach umzusetzen. Du kannst zwei Wege beschrei-
ten. Da gibt es zum einen das Android Software Development Kit
(SDK), mit dem du über die Eclipse- Entwicklungsumgebung mit-
tels Java alles programmieren kannst, was dein Herz begehrt. Das
setzt natürlich voraus, dass du dich mit der Programmiersprache
Java auskennst, was für einen Anfänger zusätzlichen Aufwand
bedeuten kann, weil Java vielleicht nicht immer ganz einfach zu
verstehen ist. Du musst dich also mit einer Vielzahl von unter-
schiedlichen Themen befassen, und bevor du zu einem ersten
brauchbaren Ergebnis kommst, kann schon ein wenig Zeit ins Land
gehen. Zum anderen möchte ich dir eine sehr interessante und
innovative Lösung vorschlagen, bei der du nicht eine einzige Code-

Sag mal, ist es eigentlich schwierig, eine App für ein Smartphone zu
programmieren?
Das Smartphone -- 611

zeile schreiben musst. Wie das gehen soll? Ganz einfach! Schau’ dir
den App Inventor an. Er wurde anfänglich von Google entwickelt
und ist jetzt Open-Source, da Google sich entschieden hat, keine
Entwicklungszeit mehr in dieses – in meinen Augen sehr schöne
Projekt – zu investieren. Mit ihm kannst du in einer Art Baukasten-
system die benötigten App-Elemente, wie z.B. Schaltflächen, Text-
eingabeboxen, Bilder etc. zusammenstellen. Im zweiten Schritt
teilst du deiner App mit, was denn passieren soll, wenn z.B. eine
Schaltfläche berührt wurde. Das erfolgt alles ohne die Eingabe einer
einzigen Codezeile. Das Thema App Inventor würde ein ganzes
Buch füllen, und deswegen möchte ich dich auf das Internet oder
spezielle Fachbücher verweisen. Die Entwicklungsumgebung läuft
übrigens innerhalb des Browsers, wobei deine Projekte nicht lokal
auf deinem Rechner, sondern auf einem Server verwaltet werden.
Auf diese Weise kannst du an jedem beliebigen Ort auf der Welt
Zugriff auf deine App Inventor-Projekte nehmen. Du benötigst dazu
lediglich einen entsprechenden Account. Die Entscheidung, wel-
chen Weg du einschlägst, liegt natürlich ganz bei Dir. Eclipse mit
Android SDK oder App Inventor? Die Internetseite für den App
Inventor lautet aktuell http://www.appinventorbeta.com/. Vielleicht
ändert sich die Adresse später nach Beendigung der Beta-Phase.
Also regelmäßig googlen!

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• App Inventor

• Android Entwicklung

• Android SDK

Troubleshooting
Sollten die in den ITead BT Debugging Assistant eingegebenen
Befehle nicht funktionieren, dann kontrolliere zuerst, ob du die
Klein- bzw. Großschreibung eingehalten hast.
-- Projekt 30: Bluetooth und das Android-Smartphone612

http://www.appinventorbeta.com

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 31 31Der ArduBot wird
funkgesteuert
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
f den
n

-> also: manuell auf den Arbeitsseiten ziehen!!!er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Wie kann ich über mein Smartphone mit Android-Betriebssys-
tem via Bluetooth den ArduBot steuern?

ArduBot Reloaded
Du hattest dich im Kapitel über den ArduBot darüber beschwert,
dass du eine ziemlich lange Leitung hast – ähh ich meine eine lange
USB-Leitung benötigst, um deinem ArduBot ein wenig Bewegungs-
freiheit zu gönnen. Ich habe mir diesen Einwand zu Herzen genom-
men und eine Fernsteuerung über das schon im letzten Kapitel
verwendete Smartphone mit Android Betriebssystem geschrieben.

Abbildung 31-1
Der Ardubot mit nützlicher Payload
(Nutzlast)
--- 613

Wie du auf dem Foto erkennen kannst, wurde der ArduBot mit
einer sehr nützlichen Payload versehen.

Abbildung 31-2
Das Shield-Sandwich mit Arduino-

Board, Bluetooth-Adapter und
Motor-Shield

Jetzt erkennst du sicherlich den Vorteil von selbst hergestellten
Shields, wie das schon verwendete Motor-Shield zur Ansteuerung
der beiden Elektromotoren. Alles wurde aufeinandergesteckt und
am Ende auf einer Lego-Trägerplatte befestigt, die sehr gut oben
auf dem ArduBot Platz findet.

Klar, Ardus, das Ganze läuft in den folgenden vier Schritten ab, die
ich in der nächsten Abbildung durchnummeriert habe.

Abbildung 31-3
Der Ablauf der Kommunikation
zwischen den einzelnen Shields

Schritt 1

Die vom Smartphone ausgesendeten Funksignale via Bluetooth
werden vom Bluetooth-Shield empfangen.

Schritt 2

Das Bluetooth-Shield leitet die empfangenen Kommandos an die
serielle Schnittstelle des Arduino-Boards 1:1 weiter.

Ok, wenn ich mir das Shield-Sandwich so anschaue, ist das schon
eine sehr kompakte Angelegenheit. Kannst du mir aber bitte einmal
erklären, wie das Zusammenspiel der einzelnen Shields bzw. deren
Kommunikation untereinander abläuft?
-- Projekt 31: Der ArduBot wird funkgesteuert614

Schritt 3

Das Arduino-Board entschlüsselt die über die serielle Schnittstelle
eingehenden Kommandos und wandelt sie über die digitalen Aus-
gänge in Steuersignale für das Motor-Shield um.

Schritt 4

Die vom Motor-Shield über die digitalen Ausgänge des Arduino-
Boards empfangenen Steuersignale werden über den Motortreiber
entsprechend an die beiden Elektromotoren geschickt, die dann für
die Bewegung des ArduBots verantwortlich sind.

Die App, die ich zur Steuerung erstellt habe, wurde mit dem schon
erwähnten App-Inventor entwickelt. Sie lautet ArduBotBT und
kann von meiner Internetseite heruntergeladen werden.

Abbildung 31-4
Die ArduBotBT App

Du kannst deinen ArduBot damit vorwärts bzw. rückwärts fahren
oder eine Drehung nach links bzw. nach rechts ausführen lassen.

Vollkommen korrekt, Ardus! Ich werde dir deswegen jetzt den
erforderlichen und leicht modifizierten Sketch zeigen, der gewisser-
maßen eine Vereinigung des Codes aus ArduBot- und Bluetooth-
Kommunikations-Kapitel darstellt.

Stopp mal kurz! Du hast jetzt zwar erwähnt, wie ich über die App den
ArduBot steuern kann, doch ich kann sicherlich nicht den Sketch aus
dem ArduBot-Kapitel verwenden. Es fehlt dafür bestimmt die Blue-
tooth-Anbindung, richtig?
ArduBot Reloaded -- 615

Arduino-Sketch-Code
Was du 1:1 übernehmen kannst, ist der ArduBot Sketch-Code aus
dem entsprechenden Kapitel. Wir haben doch eine spezielle Klasse
zur Ansteuerung entwickelt. Erinnerst du dich?

Du benötigst demnach die beiden folgenden Dateien:

• ArduBotMotor.cpp

• ArduBotMotor.h

Vielleicht hast du ja schon eine eigene Library im entsprechenden
Arduino-Verzeichnis angelegt. Dann musst du ja lediglich noch
einen Verweis einbauen. Doch schauen wir uns den eigentlichen
Sketch nun genauer an:

#include "ArduBotMotor.h";
#define StartTag "S" // Start-Tag
#define moveTag 'm' // Move-Tag

#define ARRAY_SIZE 12

char action; // Action-Type (m: move)

int actionDirection; // Action-Direction
int actionValue = 0; // Action-Value (im Moment immer 1)

ArduBotMotor abm = ArduBotMotor(2, 3, 4, 5); // Motorinstanz erzeugen

void setup(){
 Serial.begin(9600);
}

void loop(){
 if(Serial.find(StartTag)){
 while(Serial.available() < 1); // Warten bis Zeichen kommen
 char action = Serial.read(); // m: move, hoffentlich 
 actionDirection = Serial.parseInt(); // Action-Direction ermitteln
 actionValue = Serial.parseInt(); // Action-Wert ermitteln
 if(action == moveTag){
 if(actionDirection == 1)
 abm.move(FORWARD, STRAIGHT); // 1 Fahrzeuglänge forwärts
 // fahren
 if(actionDirection == 2)
 abm.move(BACKWARD, STRAIGHT); // 1 Fahrzeuglänge rückwärts
 //fahren
-- Projekt 31: Der ArduBot wird funkgesteuert616

 if(actionDirection == 3)
 abm.move(LEFT, QUARTER); // 1/4 Linksdrehung
 if(actionDirection == 4)

 abm.move(RIGHT, QUARTER); // 1/4 Rechtsdrehung
 }
 }

}

Um den ArduBot anzusteuern, haben wir unser letztes Protokoll ein
wenig modifiziert. Das eigentliche Format ist natürlich gleich
geblieben, doch die Interpretation der Inhalte hat sich geändert.

Wir haben jetzt keinen Datentyp wie analog bzw. digital mehr. Die
hier angeführte String-Position beinhaltet den ArduBot-Typ, der
festlegt, was der ArduBot denn machen soll. Es wird im Moment
lediglich die Kennung m (m steht für move) übertragen. Die nach-
folgende Stelle steht für die Bewegungsrichtung, wobei ich mich für
den folgenden Code entschieden habe:

• 1 = vorwärts fahren

• 2 = rückwärts fahren

• 3 = links drehen

• 4 = rechts drehen

Natürlich kannst du dir noch viel zusätzlichen Code ausdenken,
denn der ArduBot fährt im Moment immer nur eine Fahrzeuglänge
vor- bzw. rückwärts und dreht sich nur um 900 links- oder rechts-
herum. Der actionValue ist für alle Kommandos der Wert 1, was
bedeutet, dass der Befehl zur unmittelbaren Ausführung kommen
soll. Die eigentliche Ansteuerung des ArduBots erfolgt mittels der
folgenden Zeilen:

if(action == moveTag){
 if(actionDirection == 1)
 abm.move(FORWARD, STRAIGHT); // 1 Fahrzeuglänge forwärts fahren
 if(actionDirection == 2)
 abm.move(BACKWARD, STRAIGHT); // 1 Fahrzeuglänge rückwärts fahren

� �) .) �'��
���

�-

� � / .) �'��
���

�-

� � 3 .) �'��
���

�-

� � 5 .) �'��
���

�-

G��$8�	�

�1��$8�	�

���

����	�
ArduBot Reloaded -- 617

 if(actionDirection == 3)
 abm.move(LEFT, QUARTER); // 1/4 Linksdrehung
 if(actionDirection == 4)

 abm.move(RIGHT, QUARTER); // 1/4 Rechtsdrehung
 }

Die Auswertung von actionDirection entscheidet über die Aktion,
die zur Ausführung gebracht wird.

Also gut, Ardus. Dieser Part nimmt nicht so viel Platz ein und ist
relativ schnell erklärt. Außerdem gewinnst du eine Vorstellung vom
Baukastenprinzip des App-Inventors.

Abbildung 31-5
Ausschnitt aus dem App-Inventor
zur Steuerung des ArduBots über

Bluetooth

Du siehst, dass jede Schaltfläche der App einen eigenen Codeblock
bekommen hat. Nehmen wir doch einfach einmal den obersten
Block. Er wird angesprungen, wenn die Schaltfläche für das Vor-
wärts fahren ausgewählt wurde (when-do-Block). Im if-Block findet
anschließend eine Überprüfung statt, ob überhaupt eine Bluetooth-
Verbindung besteht. Wird dieser Test erfolgreich mit Ja bewertet,
dann sendet der Bluetooth-Client die enthaltene Zeichenkette im

Auch wenn ich jetzt nerve. Zeige mir doch bitte einmal den Aus-
schnitt aus dem App-Inventor, der die Befehle zur Steuerung per Blue-
tooth übermittelt. Du hast gesagt, dass dort keine einzige Codezeile
geschrieben werden muss. Ich kann mir darunter nun überhaupt
nichts vorstellen.
-- Projekt 31: Der ArduBot wird funkgesteuert618

Text-Block via Bluetooth. Das Signal wird vom Bluetooth-Shield
empfangen und alles nimmt seinen schon beschriebenen Lauf.

Workshop
Wenn du dich für die Entwicklung über den App-Inventor entschie-
den haben solltest, dann erweitere doch die Ansteuerung des Ardu-
Bots dahingehend, dass er zusätzliche Aktion ausführen kann bzw.
über eine erweiterte Funktionalität verfügt, z.B folgende:

• eine halbe Drehung

• Aktionen über mehrere Fahrzeuglängen

• Vielleicht bringst du noch LEDs an deinem ArduBot an, die du
über geeignete Kommandos an- bzw. ausschalten kannst.

• Ebenso kannst du deinen ArduBot über einen angeschlossenen
Piezo Töne von sich geben lassen.
ArduBot Reloaded -- 619

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 32 32Netzwerk-
Kommunikation
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Was ist ein Netzwerk?

• Wie können wir den Arduino in ein Netzwerk einbinden?

• Was ist ein Web-Server?

Was ist ein Netzwerk?
Das größte Netzwerk, das wir Menschen tagtäglich (be)nutzen, ist
das World-Wide-Web – kurz www genannt. Es handelt sich dabei
um die Vernetzung einer Vielzahl von Rechnersystemen, die auf der
ganzen Welt miteinander in Verbindung stehen. Schon durch den
Zusammenschluss lediglich zweier Computer über ein geeignetes
Übertragungsmedium (z.B. Ethernet-Kabel, Glasfaser-Kabel oder
WLan) entsteht ein Netzwerk. Du kannst es dir wie ein Gehirn vor-
stellen, in dem mehrere 100 Milliarden Nervenzellen existieren.
Jede dieser Nervenzellen besitzt bis zu zehntausend Synapsen. Bei
diesen handelt es sich um die Kommunikationswege, die die Ner-
venzellen nutzen, um Informationen weiterzuleiten bzw. auszutau-
schen. Jede einzelne Nervenzelle könnte im Gehirn für einen
einzelnen Computer stehen, der über die Synapsen, also seine Netz-
werkkarte (das können ggf. auch mehrere sein), mit anderen Syste-
men in Verbindung steht.
--- 621

http://arduino.cc/en/Guide/ArduinoEthernetShield
http://arduino.cc/en/Guide/ArduinoEthernetShield
http://arduino.cc/en/Guide/ArduinoEthernetShield

Abbildung 32-1
Ein kleines Netzwerk inklusive

Arduino-Board

Die einzelnen Rechnersysteme, die ich in dieser Abbildung der Ein-
fachheit halber mit IT1 bis IT7 bezeichnet habe, sind über die Netz-
werkkarten bzw. Netzwerkkabel untereinander verbunden.
Natürlich ist das hier vereinfacht dargestellt, denn in der Realität
sind die Netzwerkkomponenten z.B. über sogenannte Switche ver-
bunden. Das sind Verteiler bzw. Netzwerkweichen, die die Daten
auf intelligente Weise zu den einzelnen Teilnehmern schicken. In
der folgenden Abbildung siehst du eine Steckverbindung des Typs
RJ45 eines heute gängigen Netzwerkkabels.

Abbildung 32-2
Steckverbindung RJ45 eines

Netzwerkkabels

Ich denke, dass du mit diesem Stecker sicherlich schon einmal in
Berührung gekommen bist, denn dein Computer ist garantiert mit
einem Netzwerkkabel über den Router verbunden, der eine Verbin-
dung zu deinem Provider bzw. dem Internet herstellt.

Du bist mal wieder schneller als die Polizei erlaubt, Ardu. Ich war
doch mit meinen Ausführungen noch gar nicht fertig. Natürlich

Also, wenn ich mir diesen Stecker so anschaue, und den kenne ich ja
tatsächlich schon, dann sehe ich auf meinem Arduino-Board keine
Buchse, in die ich ihn stecken könnte. Wie soll ich denn da mit mei-
nem Arduino-Board eine Netzwerkverbindung herstellen?
-- Projekt 32: Netzwerk-Kommunikation622

besitzt das Arduino-Board von Hause aus keinen Netzwerkan-
schluss. Dazu wird eine zusätzliche Netzwerkkomponente benötigt.

Abbildung 32-3
Zwei Ethernet-Komponenten

In der Abbildung siehst du auf der linken Seite das Ethernet-Shield,
das zusätzlich noch mit einem microSD-Sockel versehen ist. Dort
kannst du Daten zwischenspeichern, was aber im Moment nicht
unser Thema ist. Rechts davon befindet sich das Ethernet-Modul
ENC28J60. Das ist im Vergleich zum Ethernet-Shield günstiger, bie-
tet jedoch keine Möglichkeit der Speicherung von Daten auf eine
SD-Card und kann nicht unmittelbar auf das Arduino-Board
gesteckt werden. Die Anschlüsse auf dem Modul müssen über
Patchkabel mit deinem Arduino-Board verbunden werden. Das
sollte aber kein Hindernis darstellen und außerdem weißt du ja,
wie du dir ohne größere Probleme selbst ein Shield herstellen
kannst.

Deine Vermutung ist korrekt, Ardus! Das ist ein gutes Stichwort,
um einige netzwerkspezifische Punkte zur Sprache zu bringen.

Ethernet

Der Begriff Ethernet steht für eine kabelgebundene Technologie zur
Datenübertragung. Seit den 1990er Jahren ist das der Standard für
eine ganze Reihe von LAN-Technologien (Local Area Network).
Die Übermittlung der Daten erfolgt in der Regel über sogenannte
Twisted-Pair-Kabel (verdrillte Kabel) des Standards CAT-5 oder
höher.

Du hast jetzt schon einige Male den Ausdruck Ethernet verwendet.
Was hat es damit auf sich? Ich denke, dass es etwas mit dem Internet
bzw. Netzwerk zu tun hat – oder?
Was ist ein Netzwerk? -- 623

TCP/IP

Über Protokolle hast du in einigen der vorangegangenen Kapiteln
schon etwas erfahren. Das Ethernet nutzt zur Datenübertragung
ebenfalls ein Protokoll, das sich TCP (Transfer Control Protocol)
nennt. Übersetzt würde es Übertragungs-Kontroll-Protokoll ge-
nannt werden. Dieses Protokoll ermöglicht die Übertragung von In-
formationen über das lokale oder globale Netzwerk und sorgt für
eine verlustfreie Kommunikation. Es gibt Mechanismen, durch die
bei einem drohenden Datenverlust die zu übertragenden Datenpa-
kete gerettet bzw. erneut übertragen werden. Die Bezeichnung IP
(Internet Protocol) steht für die Adressierung der zu übertragenden
Datenpakete, die vom Sender zu einem ganz bestimmten Empfän-
ger geleitet werden sollen. Somit steht dieses Protokoll für die
Adressierung der zu übertragenden Datenpakete. Jeder Teilnehmer
im Netzwerk besitzt eine eindeutige Adresse vergleichbar mit der
Hausnummer in einer ganz bestimmten Straße einer Stadt. Damit z.
B. der Postbote ein Paket zweifelsfrei zustellen kann, dürfen keine
doppelten Hausnummern vorhanden sein, was ja im Normalfall
auch so ist. Das IP wird immer im Zusammenhang mit TCP ge-
nannt bzw. verwendet.

IP-Adresse

Die IP-Adresse eines Netzwerkteilnehmers muss innerhalb eines
Netzwerkes die Forderung nach Eindeutigkeit erfüllen. Sie wird
einem im Netz befindlichen Gerät zugewiesen und stellt damit
sicher, dass es adressierbar bzw. erreichbar ist. Die IP-Adressen der
IPv4-Notation setzen sich aus 4 Bytes (32 Bits) zusammen.

Diese Adresse hat mein Router meinem PC zugewiesen, damit ich
im Netzwerk verfügbar bin.

Netzwerkmaske

Eine IP-Adresse setzt sich immer aus einem Netzwerkanteil und
einem Hostanteil zusammen. Die Netzwerkmaske legt nun fest, wie
viele Geräte in einem Netzwerk zu erreichen sind und welche sich
in anderen Netzwerken befinden.

)D/
 F	�+)

);C /)447 7 7
 F	�+/ F	�+3 F	�+5

3/+
	
-- Projekt 32: Netzwerk-Kommunikation624

Um an den Hostanteil zu gelangen, wird die IP-Adresse mit der
Netzmaske UND-verknüpft. Bei der gezeigten Netzmaske besteht
theoretisch die Möglichkeit von 28 = 256 möglichen Rechnern im
angegebenen Netzwerk. Ich sage absichtlich theoretisch, denn die
255 beispielsweise hat eine Sonderstellung. Die Details hier zu
erläutern, würde den Rahmen dieses Buches sprengen und darum
verweise ich wieder auf entsprechende Fachliteratur bzw. das
Internet.

MAC-Adresse

Die MAC-Adresse (Media Access Control) ist eine Adresse, die welt-
weit eindeutig sein muss und jedem Netzwerkadapter zugewiesen
wurde. Sie besteht aus 6 Bytes, wobei die ersten 3 Bytes eine Her-
stellerkennung OUI (Organizational Unit Identifier) enthalten. Die
restlichen 3 Bytes ergeben die Stationskennung, die vom jeweiligen
Hersteller vergeben wird. Hier ein Beispiel für die MAC-Adresse
eines Netzwerkadapters:

1C-6F-65-94-D5-1A

Gateway

Ein Gateway ist ein Durchgang zu einem gesonderten Bereich, der
übertragen auf unsere Thematik mit Netzübergang übersetzt wer-
den kann. Was könnte das für ein Gerät sein? Der Router, der mit
einem Bein – ähh Kabel – im Internet steht, wird als ein Gateway
bezeichnet. Mein Router hat z.B. die IP-Adresse 192.168.2.1 und
leitet meine Anfragen an meinen Provider bzw. das Internet weiter.
Wenn du in deiner Kommandozeile den Befehl ipconfig /all ein-
gibst, erhältst du u.a. die folgenden Hinweise:

Standardgateway : 192.168.2.1
DHCP-Server : 192.168.2.1

In der folgenden Abbildung siehst du das Ethernet-Shield im
Zusammenspiel mit dem Arduino-Board.

)D/);C /)447 7 7
/22 /22 /22 47 7 7

#(��������

:�	�$���������

:�	�$�����	�

 ���	��	�

Was ist ein Netzwerk? -- 625

Abbildung 32-4
Ethernet-Shield und Arduino-Board

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Achtung
Verwende ein normales Patch-Kabel, wenn du das Ethernet-
Shield mit deinem Router verbindest. Diese Kabel sind teilweise
gelb, weiß oder auch schwarz. Schließe auf keinen Fall ein rotes
Netzwerkkabel zwischen deinem Router und dem Ethernet-

Benötigte Bauteile

1 x Ethernet-Shield (http://arduino.
cc/en/Guide/ArduinoEthernetShield)

1 x Netzwerkkabel (lang genug, um
vom Router zum Ethernet-Shield zu
reichen)

1 x analoges Input-Shield aus dem
Kapitel Data-Monitoring
-- Projekt 32: Netzwerk-Kommunikation626

http://arduino.cc/en/Guide/ArduinoEthernetShield
http://arduino.cc/en/Guide/ArduinoEthernetShield

Shield an, denn dabei handelt es sich in der Regel um ein soge-
nanntes Crosskabel, das nur verwendet werden kann, wenn du
dein Shield direkt mit der Netzwerkkarte deines Computers ver-
bindest. Es werden hierbei überkreuzte Empfangs- bzw. Sende-
leitungen verwendet. Nähere Informationen dazu findest du im
Internet.

Mit dem folgenden Sketch wollen wir das Ethernet-Shield wie einen
Web-Server arbeiten lassen. Wenn du dich über deinen Web-Brow-
ser (z.B. Firefox, Opera oder IE) mit dem Internet verbindest, stellst
du eine Verbindung zu einem Web-Server her:

Abbildung 32-5
Ethernet-Shield und Arduino-Board

Auf diesem Bild siehst du in der Mitte einen Server (Anbieter), der
die Anfragen von zahlreichen Clients (Kunden) beantwortet. Bei
einem Server handelt es sich um eine Software, die auf eine Kontakt-
anfrage von außen reagiert und Informationen liefert. Das kann z.B.
ein Mail- bzw. FTP-Server oder ein Web-Server sein. Ein Client
kann z.B. ein Mail-Client wie z.B. Thunderbird oder Outlook sein.
Wenn es sich um einen Web-Client handelt, ist es möglicherweise
ein Firefox, Opera oder IE, die in diesem Buch schon erwähnt wur-
den. Kommen wir jetzt jedoch zu einem konkreten Beispiel, bei
dem das Ethernet-Shield in der Funktion als Web-Server die Werte
der analogen Eingänge des Arduino-Boards versenden soll. Hier
eine Vorschau auf die Ausgabe im Web-Browser:

Abbildung 32-6
Ausgabe der HTML-Seite innerhalb
des Web-Browsers (numerische
und grafische Anzeige)
Was ist ein Netzwerk? -- 627

Na ja, Ardus. Ganz kommen wir da nicht drumherum. Aber ich
kann dich beruhigen. Wir werden nur an der Oberfläche kratzen,
denn dieses Thema füllt ganze Bücherschränke. Internetseiten wer-
den in HTML programmiert. Das ist die Abkürzung für Hypertext
Markup Language. Es handelt sich um eine textbasierte Auszeich-
nungssprache, mit der z.B. Text, Bilder, Videos oder Links auf einer
Internetseite dargestellt werden und die der Web-Browser lesen und
anzeigen kann. Im Folgenden werde ich dir das Grundgerüst einer
Internetseite zeigen, das wir später ein wenig mit Inhalt füllen wer-
den, um unsere Informationen darzustellen. Die meisten HTML-
Elemente werden durch sogenannte TAG-Paare gekennzeichnet.
Dabei gibt es immer ein öffnendes und ein schließendes TAG. Die
folgende Grafik zeigt dir das angekündigte Grundgerüst, wobei ich
die korrespondierenden Paare farblich markiert habe.

Abbildung 32-7
Das Grundgerüst einer Internetseite

Anhand der roten gestrichelten Linien erkennst du zusätzlich die
Paarbildungen. Die einzelnen TAGs bzw. HTML-Elemente werden
durch die Elementnamen, die in eckigen Klammern eingeschlossen
werden, gebildet. Schauen wir uns doch ein solches TAG-Paar ein-
mal genauer an:

Abbildung 32-8
Das Tag-Paar »title«

Das ist doch nicht dein Ernst! Muss ich jetzt etwa auch noch lernen,
wie man Internetseiten programmiert?

U�	�
V

U��	�
V

U����V

U�����V

U	
	
�V U�	
	
�V

U���FV

U����FV

��������
'	

#���
	+���+��
	�

U	
	
�V U�	
	
�V��������
'	

�	��	�?�� 7����?��
-- Projekt 32: Netzwerk-Kommunikation628

Dieses Paar ist für die Überschrift der Internetseite verantwortlich,
wobei sich der Text zwischen dem öffnenden und dem schließen-
den TAG befindet. Der schließende TAG besitzt den gleichen Ele-
mentnamen wie der öffnende, jedoch mit einem vorangestellten
Schrägstrich (auch Slash genannt).

Arduino-Sketch-Code
#include <SPI.h>

#include <Ethernet.h>

byte MACAddress[] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED}; // MAC-Adresse

byte IPAddress[] = {192, 168, 2, 110}; // IP-Adresse
int const HTTPPORT = 80; // HTTP-Port 80 (Standardport)
String barColor[] = {"ff0000", "00ff00", "00ffff",
 "ffff00", "ff00ff", "550055"}; // RGB-Farben für
Color-Bars
#define HTML_TOP "<html>\n<head><title>Arduino Web-Server</title></
 head>\n<body>"
#define HTML_BOTTOM "</body>\n</html>"
EthernetServer myServer(HTTPPORT); // Web-Server auf angegebenen Port
 // starten

void setup(){
 Ethernet.begin(MACAddress, IPAddress); // Ethernet initialisieren
 myServer.begin(); // Server starten
}

void loop(){
 EthernetClient myClient = myServer.available();

 if(myClient){
 myClient.println("HTTP/1.1 200 OK");
 myClient.println("Content-Type: text/html");
 myClient.println();

 myClient.println(HTML_TOP); // HTML-Top
 showValues(myClient); // HTML-Content
 myClient.println(HTML_BOTTOM); // HTML-Bottom
 }

 delay(1); // Kurze Pause für Web-Browser
 myClient.stop(); // Client-Verbindung schließen
}

void showValues(EthernetClient &myClient){
 for(int i = 0; i < 6; i++){

 myClient.print("Analog Pin ");
Was ist ein Netzwerk? -- 629

 myClient.print(i);
 myClient.print(": ");
 myClient.print(analogRead(i));

 myClient.print("<div style=\"height: 15px; background-color: #");
 myClient.print(barColor[i]);
 myClient.print("; width:");
 myClient.print(analogRead(i));
 myClient.println("px; border: 2px solid;\"></div>");
 }
}

Um auf den Arduino Web-Server zuzugreifen, gibst du die im
Sketch-Code vergebene IP-Adresse in die Adresszeile deines Ardu-
ino-Web-Browsers ein. In meinem Fall ist das folgende:

Wenn dir diese Angabe zu kryptisch erscheint, kannst du natürlich
auch eine sprechendere Adresse vergeben:

Du musst dazu lediglich unter Windows die hosts-Datei mit Admi-
nistratorrechten unter C:\Windows\System32\drivers\etc anpassen
und die Zeile hinzufügen, in der ich den Namen Arduino angegeben
habe:

Dann ist der Aufruf einfacher und du musst dir nicht die IP-Adresse
merken.

Arduino-Code-Review
Für unser Web-Server-Experiment benötigen wir programmtech-
nisch gesehen die folgenden Variablen:

Tabelle 32-1
Benötigte Variablen und deren

Aufgabe

Variable Aufgabe

MACAddress[] Eindimensionales Array zur Speicherung der MAC-Adresse für das Ethernet-
Shield

IPAddress[] Eindimensionales Array zur Speicherung der IP-Adresse für das Ethernet-Shield
-- Projekt 32: Netzwerk-Kommunikation630

Damit du die Funktionalität des Ethernet-Shields nutzen kannst,
müssen zwei Libraries mit eingebunden werden.

• SPI.h – Serial-Peripheral-Interface-Bus, wird für Arduino-Versi-
onen > 0018 benötigt.

• Ethernet.h

Stimmt, Ardus, das ist am Anfang etwas verwirrend. HTTP ist die
Abkürzung für Hypertext Transfer Protocol. Wie du vielleicht
ahnst, haben wir es in der Computertechnik mit einer Vielzahl von
unterschiedlichen Protokollen zu tun. Wenn es um Web-Seiten
geht, dann ist dieses Protokoll für die Übertragung verantwortlich.
Wenn du eine Web-Adresse in deinen Browser eingibst, dann fängt
diese meistens mit http://... an und nicht mit html://. Kommen wir
jetzt zur Portdefinition. Der Standardport für Web-Server, die das
HTTP-Protokoll nutzen, ist die Nummer 80. Stelle dir diese Num-
mer als eine Art Abzweigung auf der Netzwerkstrasse vor, auf der
sich noch andere Protokolle tummeln. Hier eine kurze Liste mit
Anwendungen, von denen du vielleicht schon einmal gehört hast:

Tabelle 32-2
Eine wirklich sehr kurze Liste mit
Portnummern und Diensten

Ich möchte noch einmal kurz auf die Struktur einer HTML-Seite zu
sprechen kommen. Der einzige variable Anteil unserer Seite ist der
Bereich, den ich mit Inhalt der Seite gekennzeichnet habe. Was sich
darüber bzw. darunter befinde, ändert sich nicht. Aus diesem
Grund habe ich den oberen Teil

HTTPPORT Variable zur Speicherung der Port-Adresse für HTML

barColor[] Eindimensionales Array zur Speicherung der Farbinformationen für die horizon-
talen Werte-Balken

HTML_TOP Zusammenfassung einiger HTML-TAGs für den oberen Bereich

HTML_BOT-
TOM

Zusammenfassung einiger HTML-TAGs für den unteren Bereich

Variable Aufgabe Tabelle 32-1
Benötigte Variablen und deren
Aufgabe

Ich habe mal eine Frage hinsichtlich der Variablen HTTPPORT. Ist
das ein Schreibfehler? Muss das nicht HTMLPORT lauten? Ich
dachte, es geht hier um HTML-Seiten.

Port Dienst Aufgabe

21 FTP Dateitransfer über FTP-Client

25 SMTP E-Mail-Versand

110 POP3 Client-Zugriff auf einen E-Mail-Server
Was ist ein Netzwerk? -- 631

in die Definition HTML_TOP und den unteren Teil

in HTML_BOTTOM ausgelagert. Dies findest du im Sketch in den
folgenden Zeilen wieder:

#define HTML_TOP "<html>\n<head><title>Arduino Web-Server</title>
 </head>\n<body>"
#define HTML_BOTTOM "</body>\n</html>"

Die Escape-Sequenz \n sorgt für einen Zeilenvorschub, so dass der
HTML-Code in einer gewissen Weise formatiert wird und nicht
alles in eine einzige Zeile gepackt wird. Kommen wir jetzt zum
eigentlichen Ablauf unseres Sketches. In der setup-Funktion wer-
den wie immer verschiedene Programmteile initialisiert.

void setup(){
 Ethernet.begin(MACAddress, IPAddress); // Ethernet initialisieren
 myServer.begin(); // Server starten
}

Das Ethernet-Shield wird über den ersten Schritt mit der MAC-
bzw. einer eindeutigen IP-Adresse versehen.

Ok Ardus, die Antwort ist recht simpel. Mein Router befindet sich
im Adressbereich von 192.168.2 und besitzt die Hostadresse 1, was
wiederum bedeutet, dass seine IP-Adresse 192.168.2.1 lautet. In
dem Bereich ab 192.168.2.2 bis 192.168.2.254 kann ich also weite-
ren Netzwerkteilnehmern Adressen zuweisen. Zurück zur Initiali-
sierung. Im zweiten Schritt wird der Web-Server gestartet, so dass
er auf eingehende Anfragen reagieren kann. Er lauscht quasi ins
Netz hinein und verharrt solange in Lauerstellung, bis ein Client an

U�	�
V

U����V

U����V

U	
	
�V U�	
	
�V��������
'	

U�	�
V

U����V

U�����V

U	
	
�V U�	
	
�V

U���FV

��������
'	

U��	�
V

U����FV

Bitte verrate mir doch einmal, wie du gerade auf die genannte IP-
Adresse 192.168.2.110 gekommen bist. Das ist mir absolut schleier-
haft.
-- Projekt 32: Netzwerk-Kommunikation632

ihn herantritt und etwas von ihm wissen möchte. Dann nimmt er
seine Arbeit auf und liefert die Daten, um sich anschließend erneut
auf die Lauer zu legen. Kommen wir nun zur eigentlichen Verarbei-
tung innerhalb der loop-Funktion. Zu Beginn wird geprüft, ob eine
Anfrage eines Clients vorliegt:

EthernetClient myClient = myServer.available();
if(myClient){...}

Wenn die if-Abfrage erfolgreich beantwortet wird, kann der Server
damit beginnen, seine Informationen an den Client zu schicken.

Kein Problem, Ardus! Das ist lediglich die Kurzschreibweise für fol-
genden Code:

if(myClient == true){...}

Die Abfrage auf true kann weggelassen werden, denn wenn der
Ausdruck innerhalb der if-Anweisung true ist, wird der nachfol-
gende Block ausgeführt. Du musst dann nicht noch einmal mit ==
prüfen, ob der Ausdruck true ist. Soweit alles klar? Hat also ein Cli-
ent eine Anfrage an den Server gestartet, dann liefert der Server zu
Beginn die folgenden Zeilen zurück:

myClient.println("HTTP/1.1 200 OK");
myClient.println("Content-Type: text/html");
myClient.println();

In der ersten Zeile bestätigt der Server die Client-Anfrage mit der
Übertragung der Version 1.1 des HTTP-Protokolls, gefolgt vom
Status-Code 200, der besagt, dass die Anfrage erfolgreich bearbeitet
wurde und das Ergebnis der Anfrage in der Antwort übertragen
wird. In der zweiten Zeile wird der sogenannte Mime-Type mitge-
teilt, der in unserem Fall text/html lautet. Der Mime-Type gibt Auf-
schluss über die Art der Daten, die der Server sendet. Handelt es
sich um reine Textinformationen, wie in unserem Fall, oder wird
dem Client vielleicht ein Bild geliefert? Dann müssen die übertrage-
nen Daten natürlich entsprechend interpretiert und nicht als Klar-
text angezeigt werden. Nun kommen wir zum Code, der die
gelesenen Daten deines Arduino-Boards versendet:

myClient.println(HTML_TOP); // HTML-Top
showValues(myClient); // HTML-Content

myClient.println(HTML_BOTTOM); // HTML-Bottom

Wie war das noch mit der if-Abfrage? Da ist doch lediglich myClient
zu lesen und kein Ausdruck, den es zu bewerten gilt.
Was ist ein Netzwerk? -- 633

Die Aufgaben von HTML_TOP bzw. HTML_BOTTOM hast du
schon kennengelernt. Das Abrufen der Daten des Boards erledigt
die showValues-Funktion, die wir uns jetzt anschauen:

void showValues(EthernetClient &myClient){

 for(int i = 0; i < 6; i++){

 myClient.print("Analog Pin ");

 myClient.print(i);

 myClient.print(": ");

 myClient.print(analogRead(i));

 myClient.print("<div style=\"height: 25px; background-color: #");

 myClient.print(barColor[i]);

 myClient.print("; width:");

 myClient.print(analogRead(i));

 myClient.println("px; border: 2px solid;\"></div>");

 }

}

Richtig, Ardus! Das ist kein Tippfehler, sondern ein Kennzeichen
dafür, dass es sich um eine Referenz handelt. Wenn ich eine Vari-
able an einen Funktionsparameter übergebe, dann wird in der
Funktion mit einer Kopie dieser Variablen gearbeitet, die keinen
Einfluss auf die Originalvariable hat. Die Funktion kann z.B. den
Wert des Parameters verdoppeln. Das Original bleibt unangetastet.
Damit ich aber innerhalb der Funktion das originale Client-Objekt
nutzen kann, wird durch den Referenzoperator & die Speichera-
dresse des Originals übergeben. Innerhalb der Funktion arbeite ich
quasi mit dem Original. Die Funktion zeigt zum einen die Werte
der analogen Eingänge an und zum anderen horizontale Balken.
Dazu nutze ich den div-TAG, der als Behälter für weitere HTML-
Elemente genutzt werden kann. Ich nutze ihn an dieser Stelle, um
einen bestimmten Bereich mit einer Farbe zu füllen. Es gibt die
Möglichkeit über eine sogenannte Style-Angabe Höhen- bzw. Brei-
teninformationen anzuführen. Eine HTML-Zeile könnte z.B. wie
folgt aussehen:

Analog Pin 0: 168<div style="height: 25px; background-color: #ff0000;
 width:168px; border: 2px solid;"></div>

Zum Glück habe ich heute meinen Restlichtverstärker eingeschaltet,
denn im Funktionskopf sehe ich vor dem Parameter myClient ein
Kaufmanns-Und (&). Ich traue mich erst gar nicht, nach einem Tipp-
fehler zu fragen, denn es ist sicherlich keiner – oder!?
-- Projekt 32: Netzwerk-Kommunikation634

Der div-Bereich hat in diesem Fall eine Höhe von 25 und eine Breite
von 168 Pixeln. Für detailliertere Informationen muss ich auf Fach-
literatur bzw. Internet verweisen.

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• selfhtml

• cascading stylesheets

• div-tag

Nun, Ardus, das ist ja auch ok so. Der Web-Browser ruft eine Seite
beim Web-Server ab und stellt sie dar (dieser Vorgang wird auch
Rendern genannt). Sendet der Browser keine weitere Anfrage, dann
bleibt der Inhalt der Seite natürlich unverändert. Du kannst jedoch
öfter mal die Refresh-Taste (F5) des Browsers drücken. Aber ich
denke, dass das nicht deinen Vorstellungen entspricht. Ich habe
eine Lösung für Dich. Modifiziere doch die Codezeile in deinem
Sketch, in der HTML_TOP definiert wurde, und du wirst sehen,
wie sich das Verhalten deines Browsers ändert.

#define HTML_TOP "<html>\n<head><title>Arduino Web-Server</title></
 head>\n \<meta http-equiv=\"refresh\" content=\"1\">\n<body>"

Der entscheidende Passus ist folgender:

<meta http-equiv=\"refresh\" content=\"1\">

Durch den gezeigten meta-TAG wird der Browser aufgefordert, sei-
nerseits jede Sekunde automatisch einen Refresh durchzuführen.
Der Backslash \, der am Ende der ersten Zeile der Definition von
HTML_TOP angeführt ist, bewirkt übrigens, dass diese Zeile in der
nächsten fortgeführt werden kann. Andernfalls kommt es zu einem
Compilerfehler.

Also eine Sache ist mir nach dem Versuchsaufbau etwas negativ auf-
gefallen. Die Werte der analogen Eingänge werden zwar wunderbar
angezeigt, doch das war’s dann auch. Drehe ich an einem der Potentio-
meter, ändert sich auf der Internetseite überhaupt nichts. Das hätte
ich mir aber gewünscht.
Was ist ein Netzwerk? -- 635

Troubleshooting
Wenn die Seite des Web-Servers nicht angezeigt wird, überprüfe
Folgendes:

• Hast du die korrekte IP-Adresse in die Adresszeile deines
Browsers eingegeben? Sie muss mit der im Sketch übereinstim-
men.

• Kannst du den Web-Server über das Absetzen eines ping-
Befehls in der Kommandozeile erreichen? Falls nicht, über-
prüfe dein Netzwerkkabel oder ggf. auch deine Firewall-Ein-
stellungen. Eine erfolgreiche Ausführung des ping-Befehls
liefert folgendes Ergebnis:

• Das Ethernet-Shield besitzt einige LEDs, die Informationen
über den Zustand liefern:

• Überprüfe die Anzeige der LEDs. Es müssen auf jeden Fall die
PWR- und die LINK-LED leuchten. Die 100M-LED leuchtet
nur bei einem 100MB/s-Netzwerk. Bei 10MB/s bleibt sie dun-
kel. Werden Daten wie im letzten Beispiel im Sekundentakt
gesendet, dann blinken TX- bzw. RX-LED im selben Rhyth-
mus.
-- Projekt 32: Netzwerk-Kommunikation636

Was hast du gelernt?
• Du hast in diesem Kapitel erfahren, wie du einen Web-Server

mit dem Ethernet-Shield realisieren kannst.

• Du hast die analogen Eingänge abgefragt und gesehen, wie
nahezu in Echtzeit die Werte angezeigt werden.

• Das Grundgerüst einer HTML-Seite dürfte dir jetzt ebenfalls
bekannt sein.

Workshop
Schreibe doch einen Sketch, der zusätzlich neben den analogen Ein-
gängen noch den Status der digitalen Eingänge auf deiner Arduino-
Webseite darstellt.
Was ist ein Netzwerk? -- 637

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 33 33Digital ruft analog
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Experiment behandeln wir folgende Themen:

• Die Herstellung eines Shields zur Generierung von analogen
Signalen

• Was ist ein Digital-Analog-Wandler?

• Was ist eine R2R-Widerstandsleiter

• Was sind Portregister?

• Der komplette Sketch

• Analyse des Schaltplans

• Aufbau der Schaltung

• Workshop

Wie wandele ich digitale in
analoge Signale?
Das Auswerten analoger Signale mit deinem Arduino-Board lässt
sich über die analogen Eingänge denkbar einfach realisieren. Der
umgekehrte Weg, also eine analoge Spannung über den Mikrocont-
roller zu erzeugen und auszugeben, ist lediglich über die digitalen
Ausgänge mit PWM-Funktionalität möglich. Wenn du dir die Kur-
venform der PWM-Signale angeschaut hast, wirst du schon
bemerkt haben, dass sie nicht viel mit der eines analogen Signals
gemeinsam hat. Die meisten Mikrocontroller bieten von Hause aus
keine Umwandlung eines digitalen Signals in ein analoges Signal
an. Dazu müssten sie intern über einen DA-Wandler verfügen.
--- 639

Solch einen Konverter, der auch DAC (Digital-Analog-Converter)
genannt wird, wollen wir in diesem Kapitel mit einfachen Mitteln
herstellen. Das Stichwort hierzu lautet R2R-Netzwerk. Diese
Bezeichnung ist dem Umstand geschuldet, dass der Konverter mit-
tels mehrerer Widerstände realisiert wird, die kaskadenförmig
angeordnet sind und sich in einem bestimmten Verhältnis zueinan-
der befinden müssen. Die Anordnung der Bauelemente erinnert
auch ein wenig an eine Leiter, so dass diese Art der Schaltung auch
unter dem Begriff Widerstandsleiter in der Fachliteratur zu finden
ist. Wir können festhalten, dass das Widerstandsnetzwerk zur Auf-
teilung einer Referenzspannung, die in unserem Fall +5V beträgt,
dient. Die folgende Schaltskizze zeigt eine R2R-Widerstandsleiter
mit einem 6-Bit Eingang.

Abbildung 33-1
R2R-Widerstandsleiter mit 6-Bit

Eingang

Vielleicht hast du dich schon gefragt, woher die Bezeichnung R2R
stammt. Wenn du dir das Schaltbild genauer anschaust, siehst du,
dass die gezeigten Widerstände keine festen Werte besitzen, son-
dern es werden lediglich die Widerstandsverhältnisse angezeigt. Die
Werte der Widerstände (horizontal) an den Anschlüssen E0 bis E5,
die mit den digitalen Ausgängen verbunden werden, sind doppelt
-- Projekt 33: Digital ruft analog640

so groß, wie die Werte an den Widerständen (vertikal), die als Bin-
deglied der Sprossenwiderstände der Leiter dienen und zum Aus-
gangspunkt UAusgang führen. Der untere Widerstand, der mit
Masse verbunden ist, hat das gleiche Verhältnis 2R wie die Spros-
senwiderstände. Zum Ermitteln der Ausgangsspannung kann die
folgende Formel herangezogen werden:

Für dieses Beispiel mit seinen 6 Eingängen kann eine Auflösung
von

erzielt werden. Dabei ist URef die Spannung, mit der die einzelnen
Eingänge angesteuert werden. Für eine URef von 5V würde das
Ergebnis wie folgt lauten:

Dieser Wert bedeutet die kleinste Schrittweite, wenn der 6-Bit-Ein-
gang jeweils um den binären Wert von 1 hochgezählt wird. Die fol-
gende Tabelle zeigt die ersten 4 Werte und den letzten Wert.

Tabelle 33-1
Binärkombinationen und gerundete
Ausgangsspannungen

Für unser geplantes D/A-Wandler-Shield haben wir also eine 6-Bit-
Auflösung (26 = 64).

Das könnte wichtig für dich sein
Hier ein paar Begriffe für die Suchmaschine, die dir sicherlich
weitere interessante Informationen liefern:

• R2R Netzwerk

• Widerstandsleiter

Binärwert Ausgangsspannung

000000 0V

000001 78,13 mV

000010 156,26 mV

000011 234,39 mV

... ...

111111 5V
Wie wandele ich digitale in analoge Signale? --- 641

http://www.arduino.cc/en/Reference/PortManipulation
http://www.arduino.cc/en/Reference/PortManipulation

Vielleicht hast du bemerkt, dass ich dir bisher keine Widerstands-
werte genannt habe. Das ist eigentlich auch nicht notwendig,
solange das Widerstandsverhältnis exakt 2:1 beträgt. Zudem sollte
die Toleranz der einzelnen Widerstände möglichst gering sein, um
relativ genaue Ergebnisse zu erzielen. Für unser Vorhaben lassen
wir das jedoch außer Acht.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Vorüberlegungen
Das R2R-Netzwerk mit den Widerstandsverhältnissen von 2:1 mag
dir vielleicht hinsichtlich der Realisierung Kopfschmerzen bereiten,
da du Widerstandswerte finden musst, die im genannten Verhältnis
zueinander stehen. Die Lösung ist aber recht einfach. Damit die
fließenden Ströme nicht zu hoch werden, habe ich einen Wider-

Benötigte Bauteile

17 x Widerstand 47K

1 x Set stapelbare Buchsenleisten
(2 x 8 + 2 x 6)

1 x Shield-Platine

Litze in ggf. unterschiedlichen
Farben
-- Projekt 33: Digital ruft analog642

stand von 47K gewählt. Nun fragst du dich bestimmt, ob es einen
Widerstandswert von 23,5K gibt. Nun, ich denke nicht, und doch
lässt sich dieser Wert ganz einfach erzielen. Wenn du zwei Wider-
stände mit dem gleichen Wert parallel schaltest, bekommst du
genau die Hälfte des Einzelwiderstandes als Ergebnis. Wenn näm-
lich R1 = R2 ist, gilt Folgendes:

Simpel, nicht wahr!?

Arduino-Sketch-Code
int pinArray[] = {8, 9, 10, 11, 12, 13};

byte R2RPattern;
void setup(){
 for(int i = 0; i < 6; i++)

 pinMode(pinArray[i], OUTPUT);
 R2RPattern = B000001; // Bitmuster zur Ansteuerung der digitalen
 // Ausgänge

}

void loop(){
 for(int i = 0; i < 6; i++){
 digitalWrite(pinArray[i], bitRead(R2RPattern, i) == 1?HIGH:LOW);
 }

}

Mit diesem recht kurzen Sketch werden die digitalen Ausgänge
angesteuert, an denen sich das R2R-Netzwerk befindet. Diese
Ansteuerung erfolgt mittels der Variablen R2RPattern und es wird
am Netzwerk-Ausgang eine entsprechende Spannung geliefert.

Arduino-Code-Review
Für unser Experiment benötigen wir programmtechnisch gesehen
die folgenden Variablen:

Tabelle 33-2
Benötigte Variablen und deren
Aufgabe

Variable Aufgabe

pinArray Eindimensionales Array zur Speicherung der angeschlossenen Pins der Anzeige

R2RPattern Beinhaltet die zur Ansteuerung des R2R-Netzwerkes verwendete Bitkombination
Wie wandele ich digitale in analoge Signale? --- 643

In der folgenden Abbildung siehst du die Schaltung, die ich erst ein-
mal auf einem Breadboard zusammengesteckt habe, bevor ich sie
im Anschluss auf das R2R-Shield übertrage.

Abbildung 33-2
R2R-Netzwerk auf dem Breadboard

(Ausgangsspannung für Binär-
kombination von 000001)

Ich habe das Netzwerk mit der Bitkombination 000001 aus dem
Sketch angesteuert und das Messgerät zeigt eine Spannung von
0,080V an, was natürlich 80mV entspricht. Wenn du noch einmal
einen Blick in die Tabelle mit den Ausgangsspannungen wirfst,
dann findest du dort den Wert 78,13mV für die verwendete Bit-
kombination. Der Ausgangswert von 80mV stimmt also nicht ganz
mit dem kalkulierten Tabellenwert überein, doch das ist schon ok
so, denn das Ergebnis wird z.B. durch die Bauteiltoleranzen der ver-
wendeten Widerstände oder auch durch Anzeigefehler des Mess-
gerätes ein wenig verfälscht. Ich habe schon einmal ein R2R-
Netzwerk aufgebaut, bei dem die Werte fast alle bis auf die zweite
Nachkommastelle stimmten, doch das war reiner Zufall.

Der Schaltplan
Wie du erkennen kannst, besteht die Schaltung lediglich aus
Widerständen, die in einer bestimmten Weise verbunden sind, so
dass das Ergebnis das R2R-Netzwerk ist.
-- Projekt 33: Digital ruft analog644

Abbildung 33-3
Die Ansteuerung des R2R-Netz-
werkes über 6 digitale Ausgänge

Die Widerstände, die mit R gekennzeichnet sind, haben natürlich
den genannten Wert von 47K. Die Widerstandspaare mit der Kenn-
zeichnung R/2 haben als resultierende Größe einen Wert von
23,5K.

Shieldaufbau
Abbildung 33-4

Aufbau des R2R-Netzwerkes mit
einem eigenen Shield

Auf dem Bild kannst du wunderbar die Widerstandsleiter erken-
nen, wobei der einzelne Pin am oberen Ende des Shields der Aus-
gang ist, an dem du dein Multimeter anschließen kannst, um die
Ausgangsspannung zu messen.

Jetzt wird’s interessant –
Ansteuerung der Portregister
Ich erzähle dir nichts Neues, wenn ich hier erwähne, dass die
gesamte Kommunikation des Arduino-Boards über die Ein- bzw.
Ausgänge stattfindet. Das gilt also für die Steuerung der LEDs, der
Wie wandele ich digitale in analoge Signale? --- 645

Motoren, der Servos und das Einlesen von Werten eines Tempera-
tursensors oder eines regelbaren oder lichtempfindlichen Wider-
standes, um nur einige zu nennen. Dein Mikrocontroller
ATmega328p arbeitet intern mit sogenannten Registern, die mit den
Ein- bzw. Ausgängen (Pins) verbunden sind. Als Register werden in
der Computertechnik Speicherbereiche innerhalb eines Prozessors
bezeichnet, die unmittelbar mit der zentralen Recheneinheit ver-
bunden sind. Das hat zur Folge, dass der Zugriff auf diese Bereiche
sehr schnell erfolgt, da nicht der Umweg über externe Speicherbau-
steine genommen werden muss. Die einzelnen Pins deines Ardu-
ino-Boards sind intern mit Portregistern verbunden, die ich in der
folgenden Abbildung farblich (grüne, rote und gelbe Umrandung)
hervorgehoben und mit den Bezeichnungen Port B, C und D verse-
hen habe.

Abbildung 33-5
Portregister des Arduino-Boards

Dann greifen wir uns doch einfach einmal Port B und schauen ihn
uns genauer an:

Abbildung 33-6
Portregister B

Du erkennst sicherlich die digitalen Ein- bzw. Ausgänge Pin 8 bis
13 sofort wieder. Die beiden linken Pins sind für unsere Portbe-
trachtung ohne Bedeutung, da sie Aref bzw. Masse zur Verfügung
stellen und nicht manipuliert werden können. Also stehen uns im
Portregister B ganze 6 Bits zur Verfügung, mit denen wir die unter-
schiedlichsten Dinge anstellen können. Was für ein Zufall, denn
unser Widerstandsleiter wird auch mit 6 Bits angesteuert. Doch

%
;
�
;

�*�-��,3< #
��=�./�<�

<"�

(��	+�

(��	+&(��	+

(��	+

�� �� �� �	
 ����A
-- Projekt 33: Digital ruft analog646

dazu später mehr. Jeder der drei gezeigten Ports wird innerhalb
eines Sketches über die folgenden Bezeichner angesprochen:

• PORTB

• PORTC

• PORTD

Ok, dann wissen wir also schon einmal, wie die einzelnen Ports
anzusprechen sind, wobei wir uns in unserem Beispiel – wie schon
erwähnt – mit Port B befassen werden.

Also Ardus. Wenn du nicht wärst, dann hätte ich nicht gewusst,
wie ich zum nächsten Punkt überzuleiten kann, doch das war das
passende Stichwort für mich. Ich muss aber zunächst kurz etwas
klären: Du kannst natürlich jedem einzelnen Bit im Port-Register
die individuelle Datenflussrichtung vorgeben. Das komplette Regis-
ter arbeitet nicht in der Form, dass alle Pins als Ein- oder als Aus-
gänge arbeiten. Jeder Pin kann separat konfiguriert werden. Um
genau das zu ermöglichen, sind weitere Register vorhanden, die die
Datenflussrichtung der einzelnen Pins beeinflussen. Sie tragen den
Namen DDRx, wobei das x für den jeweiligen anzusprechenden
Port steht. Für unseren PORTB lautet das Register dann DDRB.
Die drei ersten Buchstaben stehen für Data Direction Register, was
übersetzt soviel wie Daten-Richtungs-Speicher heißt. Dann wollen
wir mal schauen, wie das Ganze im Detail funktioniert. Bevor ich
also einen Port verwende, muss ich erst die Datenflussrichtung
über das entsprechende DDR definieren. In der folgenden Abbil-
dung wird die Datenflussrichtung, die wir mit unserer Programmie-
rung erreichen wollen, mittels der Pfeile angezeigt.

Abbildung 33-7
Portregister B mit unterschiedli-
chen Datenflussrichtungen der ein-
zelnen Pins

Da habe ich direkt mal eine Frage. Wenn ich die digitalen Pins pro-
grammiere, muss ich doch innerhalb der setup-Funktion festlegen,
wie ich diese verwenden möchte, ob als Ein- oder Ausgang. Wenn ich
also ein Port-Register habe, wie soll ich denn diesem Register mittei-
len, ob es als Ausgang oder als Eingang arbeiten soll?

(��	+

�� �� �� �	
 ����A
Wie wandele ich digitale in analoge Signale? --- 647

Ok, wir haben also folgende Gegebenheiten:

• Eingänge: Pin 8, 9 und 10

• Ausgänge: Pin 11, 12 und 13

Um einem einzelnen Pin die Datenflussrichtung vorzugeben, muss
dieser im DDR mit dem folgenden Wert belegt werden:

Tabelle 33-3
Werte für das DDR

Das bedeutet für das DDR also die folgende Programmierung:

Abbildung 33-8
Initialisierung des DDR für die
unterschiedlichen Datenfluss-

richtungen

Jetzt können wir z.B. die digitalen Ausgänge Pin 11, 12 und 13 auf
HIGH-Pegel setzen, was über den PORTB-Befehl realisiert wird.
Hier der entsprechende Abschnitt aus einem Sketch:

void setup(){
 DDRB = 0b11111000; // Pin 8, 9, 10 als INPUT. Pin 11, 12, 13 als
 // OUTPUT.

 PORTB = 0b00111000; // Pin 11, 12, 13 auf HIGH-Pegel setzen
}

void loop(){/* leer */}

Die beiden höchstwertigen Bits für die nicht verwendbaren Pins habe
ich im DDR einfach mit 1 belegt. Das spielt keine weitere Rolle für uns.
Wenn du dir das Setzen der Ausgänge auf HIGH-Pegel anschaust, was
kannst du im Vergleich zur bisher bekannten Pin-Manipulation fest-
stellen? Ich stelle beide Varianten einmal gegenüber:

Na, keine Idee? Ok. Über die herkömmliche Weise auf der linken
Seite werden die einzelnen Pins nacheinander mit einem HIGH-
Pegel versehen. Dagegen werden auf der rechten Seite mit einen
einzigen Befehl alle Pins gleichzeitig auf HIGH-Pegel gesetzt, da das

Wert Arbeitsweise

0 Pin arbeitet als Eingang – vergleichbar mit pinMode(pin, INPUT);

1 Pin arbeitet als Ausgang – vergleichbar mit pinMode(pin, OUTPUT);

digitalWrite(11, HIGH);
digitalWrite(12, HIGH);
digitalWrite(13, HIGH);

PORTB = 0b00111000;

(��	+

�� �� �� �	
 ����A

��%A � � � 	 	 	��

BB
-- Projekt 33: Digital ruft analog648

Bitmuster unmittelbar auf alle Pins zur gleichen Zeit angewendet
wird. Wenn es also schnell gehen soll, dann ist die neue Variante
über die Port-Manipulation die bessere Wahl. Was hältst du von
dem folgenden Sketch, der am Ausgang der Widerstandsleiter eine
Linie in Form eines Sägeblattes erzeugt:

void setup(){
 DDRB = 0b11111111; // Alle Pins als Ausgang programmiert

}

void loop(){
 for(int i = 0; i <= 63; i++) // 63 = B00111111
 PORTB = i; // Ansteuerung des Port-B Registers
}

Abbildung 33-9
Oszillogramm mit einer
Sägeblattlinie

Was denkst Du, wie der Sketch angepasst werden muss, damit die
folgende Kurve erzeugt wird?

Abbildung 33-10
Oszillogramm mit einer Linie im
Dreiecksverlauf
Wie wandele ich digitale in analoge Signale? --- 649

Wenn du diese Lösung ins Auge gefasst hattest, dann liegst du
goldrichtig.

void loop(){
 for(int i = 0; i <= 63; i++)
 PORTB = i; // Ansteuerung des Port-B Registers (aufsteigende Flanke)

 for(int i = 63; i >= 0; i--)
 PORTB = i; // Ansteuerung des Port-B Registers (abfallende Flanke)

}

Welche anderen Kurvenverläufe gibt es noch? Was ist mit einem
Sinusverlauf? Da die Sinus-Funktion zur Berechnung der Werte
eine gewisse Zeit benötigt, ist man dazu übergegangen, sogenannte
Lookup-Tables (LUT) zu erstellen. Dabei handelt es sich um Tabel-
len, in denen die Ergebnisse einer Berechnung schon hinterlegt
sind. Auf diese Weise kann z.B. der Kurvenverlauf einer Sinus-
Funktion über die auf der Kurve liegenden Punkte abgebildet wer-
den.

Abbildung 33-11
Oszillogramm mit einer Sinuskurve

Der Sketch zur Generierung des Sinusverlaufs ist aufgrund der
umfangreichen LUT recht mühsam abzutippen und darum ver-
weise ich auf meine Internetseite.

byte LUT[] =

{31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 38, 38, 39, 39, 40, 40,
 41, 41, 42, 42, 43, 43, 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 49, 49,
 50, 50, 50, 51, 51, 52, 52, 52, 53, 53, 54, 54, 54, 55, 55, 55, 56, 56,

 56, 57, 57, 57, 58, 58, 58, 59, 59, 59, 59, 60, 60, 60, 60, 60, 61, 61,
 61, 61, 61, 61, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62,
 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 61, 61, 61,

 61, 61, 61, 60, 60, 60, 60, 60, 59, 59, 59, 59, 58, 58, 58, 57, 57, 57,
-- Projekt 33: Digital ruft analog650

 56, 56, 56, 55, 55, 55, 54, 54, 54, 53, 53, 52, 52, 52, 51, 51, 50, 50,
 50, 49, 49, 48, 48, 47, 47, 46, 46, 45, 45, 44, 44, 43, 43, 42, 42, 41,
 41, 40, 40, 39, 39, 38, 38, 37, 36, 36, 35, 35, 34, 34, 33, 33, 32, 32,

 31, 30, 30, 29, 29, 28, 28, 27, 27, 26, 26, 25, 24, 24, 23, 23, 22, 22,
 21, 21, 20, 20, 19, 19, 18, 18, 17, 17, 16, 16, 15, 15, 14, 14, 13, 13,
 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 5, 5,

 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
 0,

 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6,
 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14,
 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,

 24, 24, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31};

void setup(){
 DDRB = 0b11111111; // Alle Pins als Ausgang programmiert
}

void loop(){
 for(int i = 0; i <= 360; i++)
 PORTB = LUT[i]; // Ansteuerung des Port-B Registers

}

Das Programm zur Generierung der LUT findest du ebenfalls auf
meiner Internetseite.

Achtung
Es besteht ein nicht unerhebliches Risiko, deinen Mikrocontrol-
ler so zu programmieren, dass er anschließend nicht mehr rea-
giert. Wenn du dir Port-D anschaust, wirst du sicherlich
bemerken, dass an Pin 0 bzw. Pin 1 die Steuersignale für RX bzw.
TX liegen. RX ist für das Empfangen, TX für das Senden der
Daten verantwortlich. Die Datenflussrichtung ist also folgende:
RX = INPUT, TX = OUTPUT. Wenn du durch unachtsames Pro-
grammieren über DDRD diese Werte änderst, kannst du mit
Sicherheit keinen Sketch mehr auf dein Arduino-Board übertra-
gen. Du musst dir also ganz sicher, was du hier tust. Überprüfe
deinen Sketch lieber dreimal, bevor du ihn an den Mikrocont-
roller schickst. Nähere Informationen findest du unter http://
www.arduino.cc/en/Reference/PortManipulation.

Troubleshooting
Falls die Ausgangsspannung des R2R-Netzwerkes nicht den
gewünschten Werten der gesendeten Binärkombination entspricht,
überprüfe Folgendes:

• Haben alle verwendeten Widerstände des R2R-Netzwerkes
den gleichen Wert?
Wie wandele ich digitale in analoge Signale? --- 651

http://www.arduino.cc/en/Reference/PortManipulation
http://www.arduino.cc/en/Reference/PortManipulation

• Hast du auch keinen der Anschlüsse zum Netzwerk vergessen?
(Ich spreche aus Erfahrung, denn ich hatte mal einen Knoten-
punkt vergessen und habe dann bestimmt 10 Minuten darauf
ver(sch)wendet, den Fehler zu finden!)

Was hast du gelernt?
• In diesem Kapitel wurde dir ein R2R-Widerstandsnetzwerk

vorgestellt.

• Mit diesem Netzwerk konntest du einen einfachen Digital/
Analog-Wandler realisieren.

• Wir haben die Port-Register deines Mikrocontrollers kennen-
gelernt und du hast über Port-B die digitalen Ausgänge mani-
puliert.

Workshop
Versuche einmal, durch Manipulation des LUT-Arrays unter-
schiedliche Kurvenformen zu erzeugen. Beachte dabei auf jeden
Fall, dass dir lediglich 6-Bit zur Verfügung stehen, um eine Kurve
darzustellen. Das ist ein Wertebereich von 0 bis 63. Wenn du darü-
ber liegst, zerstörst du zwar nicht die Schaltung oder deinen Mikro-
controller, doch die Kurve sieht dann garantiert nicht so aus, wie
du es beabsichtigt hast.
-- Projekt 33: Digital ruft analog652

First

Erstellen au
Arbeitsseite
(siehe Must

Projekt
Hier Mini IVZ eingeben!

Projekt 34 34Shieldbau
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Kapitel wollen wir gemeinsam ein sogenanntes Proto-
shield konstruieren und dann zusammenbauen. Sicherlich kannst
du dir solche universellen Shields fertig oder zum zusammenlöten
in diversen Onlineshops bestellen, doch ich für mein Teil bastele so
etwas gerne selber. Natürlich besitze ich auch ein gekauftes Shield,
doch ich dachte mir, dass ich die Herstellung auch einfach mal
selbst ausprobieren könnte. Hoffentlich kann ich dich mit dieser
Liebe zur Frickelei ein wenig anstecken und dazu animieren, selbst
Dinge zu entwerfen, dann zu löten und schließlich zusammenzu-
bauen. In der folgenden Abbildung siehst du ein fertiges Proto-
shield der Firma Sparkfun. Auf ihm befinden sich sowohl zwei
LEDs als auch Taster. In der Mitte ist unverkennbar ein kleines
Breadboard zu erkennen, auf dem kleinere Schaltungen zusammen-
gesteckt werden können. Das ist eine feine Sache, um auf kleinem
Raum Schaltungen zu realisieren.

Abbildung 34-1
Ein Protoshield der Firma Sparkfun
--- 653

Natürlich kannst du auch auf einem Shield ohne Breadboardaufsatz
Schaltungen für die Ewigkeit zusammenlöten, um sie bei Bedarf auf
der Mutterplatine aufzustecken, so dass du so eine fertige Kompo-
nente besitzt. Ich habe mir die unterschiedlichsten Shields gebaut,
die eben nur für den einen Anwendungszweck zu gebrauchen sind
und sie eignen sich deshalb hervorragend zu Demonstrationszwe-
cken oder weil es Spaß macht, etwas Fertiges vorweisen zu können,
ohne lange mit Bauteilen und Steckbrücken hantieren zu müssen.
Im Anschluss an diese Bauanleitung werde ich dir zeigen, wie wir
den elektronischen Würfel auf einem Shield zusammenbauen.

Protoshield Marke Eigenbau
Wenn du ein bisschen Geschick und Fingerfertigkeit besitzt, und
davon gehe ich aus, dann kannst du dir das folgende Shield selber
bauen. Auf meiner Internetseite findest du ein Video, dass den Bau
des Shields von Anfang bis Ende dokumentiert und dir zeigt, wor-
auf du achten musst. Es ist aber wirklich recht simpel und du wirst
es bestimmt hinbekommen. In der folgenden Abbildung siehst du
das fertige Produkt.

Abbildung 34-2
Das fertige Protoshield

Natürlich befinden sich auf der Platine außer den stapelbaren
Buchsenleisten noch keine Bauteile. Das ist die Spielwiese, auf der
du dich dann austoben kannst und auf der die Schaltungen, die du
dir ausgedacht hast, ihr Zuhause finden.

Was wird so benötigt?
Werkzeug
Am besten ist natürlich eine Lötstation, doch es geht natürlich auch
mit einem einfachen Lötkolben, den du schon für wenig Geld
--- Projekt 34: Shieldbau654

erwerben kannst. Außerdem sind eine kleine gebogene Zange und
etwas Lötzinn erforderlich.

Abbildung 34-3
Die benötigten Werkzeuge zum Bau
eines Protoshields

Material
Neben dem Werkzeug benötigst du das Material zum Bau des
Shields. Es handelt sich dabei um eine Lochrasterplatine und ein Set
stapelbarer Buchsenleisten, die du z.B. bei der Firma Watterott
bestellen kannst. Im Anhang findest du die Adresse, um dir ggf. die
Teile dort zu bestellen.

Abbildung 34-4
Erforderliches Material

Die stapelbaren Buchsenleisten werden in einem Set zu 4 Stück (2 x
6 Pins + 2 x 8 Pins) geliefert.
Was wird so benötigt? -- 655

Verdammt, da stimmt
doch was nicht!
Wir werfen zu Beginn einmal einen Blick auf die Lochrasterplatine,
die es in unterschiedlichen Formaten auf dem Markt gibt. Meine
Platine hat die Maße 100mm x 100mm und sieht folgendermaßen
aus:

Abbildung 34-5
Lochrasterplatine

Die Platine besteht zum einen aus einem isolierenden Trägermate-
rial, das z.B. aus Hartpapier oder Epoxidharz-Glasfasermatten
besteht, und zum anderen aus einer leitenden Kupferschicht. Die
Lochrasterplatine hat, wie der Name schon sagt, zahlreiche Löcher
in einem bestimmten Abstand, die von einer runden Kupferschicht
umrandet sind. Steckst du von der Vorderseite den Anschlussdraht
eines Bauteils zur Rückseite durch, dann wird dieser Draht über das
Lötzinn mit der Kupferschicht verbunden und somit fixiert.

Abbildung 34-6
Vergrößerter Ausschnitt einer

Lochrasterplatine

In diesem Ausschnitt habe ich den Abstand der Löcher zueinander,
der in der Regel 2,54mm beträgt, eingezeichnet. Und da bekommen
wir es auch schon mit einem Problem zu tun. Mit der Lochraster-
platine ist alles in Ordnung, doch unser Arduino-Board hält sich
nicht in jeder Hinsicht an diesen Standard und es ist mir ein Rätsel,
--- Projekt 34: Shieldbau656

warum die Entwickler etwas anderes wollten. Ich habe das Proto-
shield hier mit der Elektronik-CAD-Software Target 3001! entwi-
ckelt und die Lochabstände eingetragen.

Abbildung 34-7
Top-Ansicht des Protoshields mit
Target 3001! erstellt

Die Lochrasterplatine hat dann später folgende Maße:

• Breite: 64mm

• Höhe: 53mm

Wollen wir jetzt mal ein wenig rechnen, um die Entfernungen der
einzelnen Löcher zueinander zu verstehen. Die beiden oberen
Lochreihen von je 6 Bohrungen für Analog In und Power bereiten
uns keine Probleme, denn zwischen den beiden befindet sich ein
freies Loch, das heißt, dass der Abstand 2 x 2,54mm = 5,08mm
beträgt. Für die Lochrasterplatine bedeutet dieser Abstand kein
Problem. Jetzt kommen wir jedoch zu den unteren Bohrreihen für
Digital I/O. Aus einem mir nicht bekannten Grund ist der Abstand
zwischen den beiden Reihen eben nicht ein Vielfaches von 2,54mm,
sondern geringer. Er beträgt ca. 3,81mm. Das bedeutet, dass es
nicht ohne Weiteres möglich ist, die Buchenleisten mit den Steck-
pinnen in der hier vorliegenden Form zu verwenden. Du siehst aber
auf dem fertigen Shield, dass ich sie trotzdem über die vorhandenen
Bohrungen der Lochrasterplatine eingelötet habe.

Genau das ich auch die Lösung des Problems. Du musst die Stifte
der rechten Buchsenleiste etwas modifizieren. Schau’ dir die fol-

Kannst du mir dann verraten, wie das von dir hergestellte Shield auf
die Buchsen der Arduino-Platine passen soll. Da verbiegst du dir aber
ganz schön die Pins!
Verdammt, da stimmt doch was nicht! -- 657

gende Abbildung an, dann siehst du die nach links gebogenen
Stifte.

Abbildung 34-8
Stifte der digitalen Buchsenleisten

Falls das noch etwas zu undeutlich sein sollte, helfen dir sicherlich
die beiden folgenden Abbildungen mit Vorher- und Nachher-
Effekt. Zuerst die Vorher-Grafik:

Abbildung 34-9
Mit diesem Pinabstand von

2x2,54mm = 5,08mm passt das
Shield nicht auf das Arduino-Board.

Jetzt kommt die Nachher-Grafik:

Abbildung 34-10
Durch das Zurechtbiegen der Pins
passt das Shield jetzt problemlos

auf das Arduino-Board.

Das Biegen der Pins der rechten Buchsenleiste nach links erfolgt mit
der kleinen Zange, die ich dir am Anfang genannt habe. Gehe dabei
sehr vorsichtig vor und biege die Pins nicht zu oft hin und her, denn
dann kann es nämlich passieren, dass dir der Pin abbricht. Aber
keine Angst! Bei mir hat es auch geklappt und es ist kein Hexen-
werk. Der Biegevorgang pro Pin erfolgt dabei in zwei Schritten.
Zuerst biegst du den Pin nach links und setzt danach die Zange
etwas weiter unten an und biegst ihn wieder nach rechts. Auf diese
Weise erhält er wieder eine senkrechte Ausrichtung, die einfach ein
wenig nach links verschobene ist. Der Pin sollte sich jetzt über
einem Loch der Buchsenleiste befinden. Beginne am besten mit
dem linken äußeren Pin und arbeite dich nach rechts vor.

������ ������

��
�������� ��
��������

	

������

��
�������� ��
��������

	

	��
��
--- Projekt 34: Shieldbau658

Ein erstes Beispiel für eine
Anwendung
Du könntest dich jetzt fragen, warum wir uns die ganze Mühe
gemacht haben, und deswegen möchte ich dir – wie versprochen –
ein erstes Beispiel für eine interessante Anwendung zeigen. Wir
haben doch einen elektronischen Würfel in einem der vorangegan-
gen Kapitel entwickelt. Es wäre doch sicherlich ein lohnendes ers-
tes Projekt, diesen Würfel auf das Shield zu bannen, damit seine
Funktion immer verfügbar ist und du ihn bei Bedarf schnell und
ohne größeren Aufwand vorzeigen kannst. Mit der folgenden
Abbildung möchte ich dich ein wenig auf den Geschmack bringen,
so dass du es selbst einmal versuchst.

Abbildung 34-11
Elektronischer Würfel auf einem
Shield

Damit das auch alles einwandfrei funktioniert, liefere ich dir hier
die notwendigen Informationen.

Benötigte Bauteile
Für dieses Beispiel benötigen wir die folgenden Bauteile:

Benötigte Bauteile

7 x rote LED

7 x Widerstand 330

1 x Widerstand 10K
Ein erstes Beispiel für eine Anwendung --- 659

Sketch-Code
Den Sketch-Code kannst du natürlich aus dem Kapitel über den
elektronischen Würfel übernehmen, denn schaltungstechnisch
haben wir nichts verändert.

Shieldkonstruktion
Die Shieldkonstruktion habe ich mit der CAD-Software Target
3001! durchgeführt. Falls du dich dazu entschließen solltest, die
Schaltung nicht auf einer Lochrasterplatine, sondern auf einer
eigens dafür hergestellten Platine aufzubauen, dann findest du auf
meiner Internetseite die notwendigen Dateien mit Schaltplan und
Layout. Platinen können auf die unterschiedlichsten Weisen herge-
stellt werden. Du kannst sie z.B. ätzen oder auch eine Isolations-
fräse verwenden. Weitere Informationen findest du ebenfalls auf
meiner Internetseite.

Abbildung 34-12
Platinenansicht des elektronischen

Würfels mit Blick auf die Bau-
teilseite

1 x Taster

1 x Protoshield (Lochrasterplatine +
stapelbare Buchsenleisten)

Benötigte Bauteile
--- Projekt 34: Shieldbau660

Diese Abbildung zeigt das Shield mit Blick auf die Oberseite, auf
der sich die Bauteile befinden werden. Die Leiterbahnen befinden
sich natürlich auf der Unterseite, und wenn du die Platine
umdrehst, dann hast du natürlich eine gespiegelte Ansicht der Bau-
teilseite.

Abbildung 34-13
Platinenansicht des elektronischen
Würfels mit Blick auf die Unterseite

Werfen wir jetzt zum Schluss noch einen Blick auf die Unterseite
des fertigen Boards, damit du den Verlauf der gelöteten Leiterbah-
nen erkennen kannst.

Abbildung 34-14
Gelötete Leiterbahnen des
elektronischen Würfels
Ein erstes Beispiel für eine Anwendung --- 661

Falls du genauere Informationen zum Löten benötigst, besuche
meine Internetseite.

Das könnte für dich wichtig sein
Wenn du vorhast, eine ganze Reihe solcher Shields mit den
unterschiedlichsten Schaltungen zu bauen und du nicht immer
eine Pinreihe der Buchsenleiste zurechtbiegen möchtest, dann
kannst du auch einmalig ein Shield als quasi Adapterplatine her-
stellen. Darauf steckst du dann die Shields, bei denen natürlich
der Lochrasterabstand 2,54mm beträgt. Auf diese Weise kannst
du dir das ständige Biegen der einzelnen Pins ersparen.

Die Anordnung der einzelnen Komponenten wäre dann die in der
folgenden Abbildung dargestellte:

Abbildung 34-15
Arduino-Board + Adapterplatine

+ Shield

Alles hat seine Vor- und Nachteile, und für welche Variante du dich
entscheidest, bleibt ganz allein dir überlassen. Hauptsache, du hast
Spaß am Experimentieren und findest deinen eigenen Weg.

Das könnte für dich wichtig sein
Falls du nicht mehrere Shields übereinander stapeln möchtest,
kannst du auch – außer bei der Adapterplatine – auf die stapel-
baren Buchsenleistenverzichten. Es gibt spezielle Stiftleisten
mit überlangen Pins (ca. 13mm) auf einer Seite.

Diese kannst du natürlich ebenfalls verwenden, so dass es u.U.
etwas kostengünstiger wird.

 �!��	"#$"��!

 !�%���#�����	�

�����!
--- Projekt 34: Shieldbau662

First

Erstellen au
Arbeitsseite
(siehe Must

Anhang
Hier Mini IVZ eingeben!

Anhang A ABefehls-Referenz
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Scope
In diesem Kapitel gebe ich einen groben Überblick über die verwen-
deten Befehle. Wenn du dir detaillierte Informationen einholen
möchtest, dann schaue auf der Arduino-Internetseite http://www.
arduino.cc/en/Reference/HomePage nach. Dort findest du auch Be-
fehle bzw. Informationen, die ich aus Platzgründen in diesem Buch
nicht aufnehmen konnte.

Wer macht was?
Sketch-Struktur
Die Struktur eines Arduino-Sketches muss zwingend die beiden fol-
genden Funktionen aufweisen.

setup

Die setup-Funktion wird beim Start des Sketches einmalig ausgeführt
und in der Regel dazu verwendet, Programmteile wie z.B. Variablen
zu initialisieren, d.h. mit Anfangswerten zu versehen. Ebenso werden
z.B. die digitalen Pins an dieser Stelle über pinMode so programmiert,
dass sie entweder als Ein- oder Ausgänge arbeiten.

loop

Die loop-Funktion lässt sich – wie der Name bereits vermuten lässt
– mit einer Schleife vergleichen, die endlos durchlaufen wird. Sie ist
quasi die treibende Kraft jedes Sketches und enthält alle notwendi-
--- 663

http://www.arduino.cc/en/Reference/HomePage
http://www.arduino.cc/en/Reference/HomePage

gen Befehle, wie z.B. das kontinuierliche Abfragen von Pins, um
ggf. auf Einflüsse von außen reagieren zu können.

Kontrollstrukturen
Kontrollstrukturen ermöglichen dir, den Ablauf deines Sketches zu
beeinflussen, und sie reagieren auf formulierte Bedingungen: Wenn
dies oder das zutrifft, dann tue jenes.

if

Die if-Anweisung ist ein würdiger Vertreter dieser Kategorie. Die
Syntax lautet wie folgt:

if(<Bedingung>)

// dann führe diese Zeile aus

Sollen mehrere Befehle ausgeführt werden, dann müssen diese über
eine Blockbildung mittels eines geschweiften Klammernpaares
gruppiert bzw. zusammengefasst werden.

if(<Bedingung>){
// führe diese Zeile aus
// und auch diese, usw.

}

Wird die formulierte Bedingung als wahr bewertet, dann kommt es
zur Ausführung des nachfolgenden Befehls bzw. die nachfolgenden
Befehle.

if- else

Eine Erweiterung der if-Anweisung ist die if-else-Anweisung. Wird
die formulierte Bedingung nicht als wahr bewertet, dann kommt
der else-Zweig zur Ausführung.

if(<Bedingung>)
// wenn wahr, dann führe diese Zeile aus

else

// wenn nicht wahr, dann führe diese Zeile aus

Auch hier kann die gezeigte Blockbildung von Befehlssequenzen
angewendet werden.

switch-case

Das switch-case Konstrukt wird meistens dann verwendet, wenn
für eine formulierte Bedingung bestimmte Ergebnissequenzen
bekannt sind. Zwar käme hier auch eine if-Anweisung in Betracht,
-- Anhang A: Befehls-Referenz664

doch die switch-case Variante ist diesbezüglich als die elegantere
Variante anzusehen.

switch(<Bedingung>){
 case label:
 // Befehle

 break;
 case label:

 // Befehle
 break;
 default:

 // Befehle
}

Die mit dem Doppelpunkt markierten Namen sind sogenannte
Sprungmarken, mit denen gekennzeichnet wird, wo die Ausführung
in Abhängigkeit von der formulierten Bedingung fortgeführt wird.
Die break-Anweisung stellt eine Unterbrechung in der Ausführung
dar. Die default-Sprungmarke ist optional und wird immer dann
angesprungen, wenn keine der vorher definierten Sprungmarken
greift. Sie ist im weitesten Sinne vergleichbar mit dem else-Zweig in
einem if-else-Konstrukt.

Schleifen
Schleifen dienen in der Programmierung dazu, bestimmte Anwei-
sungen immer und immer wieder auszuführen. Die loop-Funktion
gehört z.B. zu dieser Kategorie. Natürlich können wir eigene Schlei-
fen programmieren.

for

Die for-Schleife kommt immer dann zum Einsatz, wenn beim Ein-
tritt in die Schleife bekannt ist, wie oft sie durchlaufen werden soll.

for(<Initialisierung>; <Bedingung>; <Update>)

<BefehlXYZ>; // Diese Zeile wird über die for-Schleife kontrolliert

Die im Schleifenkopf genannten Punkte haben folgende Bedeu-
tung:

• Initialisierung – Festlegung des Startwertes für die Schleife

• Bedingung – Anzahl der Iterationen (Anzahl der Wiederholun-
gen)

• Update – Anpassung der in der Initialisierung genannten Vari-
ablen
Wer macht was? --- 665

Hier ein Beispiel:

for(int i = 0; i < 10; i++)

Serial.println(i); // Ich werde 10 x ausgeführt

while

Die while-Schleife hat im Gegensatz zur for-Schleife lediglich eine
formulierte Bedingung im Schleifenkopf. Das bedeutet zwingend,
dass z.B. die in der Bedingung benannte Variable inhaltlich im
Schleifenkörper verändert werden muss, da wir es sonst ggf. mit
einer Endlosschleife zu tun haben.

while(<Bedingung>){

<BefehlXYZ>; // Diese Zeile wird über die while-Schleife kontrolliert
 <Update>; // Sehr wichtig, da es sonst ggf. zur Endlosschleife kommt

}

Dieser Schleifentyp kommt meistens dann zum Einsatz, wenn zu
Beginn der Schleifenausführung nicht eindeutig klar ist, wie oft die
Schleife durchlaufen werden soll.

break

Hinsichtlich der genannten for- bzw. while-Schleifen, die ihre
Durchläufe solange ausführen, wie es die formulierte Bedingung
zulässt, gibt es noch ein Notausstieg, wie ich es einmal nennen
möchte. Über die break-Anweisung kann eine Schleife vorzeitig ver-
lassen werden, wobei die Sketch-Ausführung an der Stelle fortge-
führt wird, die unmittelbar auf die Schleife folgt, also dort, wo es
nach dem normalem Schleifendurchlauf auch weiter gehen würde.
Hier ein Beispiel:

for(i = 0; i < 10; i ++){

if(i > 5) // vorzeitiger Ausstieg aus der for-Schleife, wenn i > 5
 break;

Serial.println(i);
}

Wichtige Konstanten
Bei der Programmierung eines Sketches kommst du immer wieder
mit sogenannten Konstanten in Berührung. Diese verfügen über für
uns menschliche Wesen recht verständliche Namen, hinter denen
sich aber irgendwelche ominösen Werte verbergen.
-- Anhang A: Befehls-Referenz666

INPUT

Die Konstante INPUT wird bei der Programmierung der digitalen
Pins verwendet, wenn es darum geht, die Datenflussrichtung fest-
zulegen. Soll ein digitaler Pin als Eingang arbeiten, dann wird über
den pinMode-Befehl, auf den ich noch später in dieser Befehls-Refe-
renz zu sprechen kommen werde, diese Konstante als ein weiteres
Argument übergeben. Die folgende Befehlszeile konfiguriert Pin 13
als Eingang:

pinMode(13, INPUT);

OUTPUT

Die Konstante OUTPUT wird ebenfalls bei der Programmierung
der digitalen Pins verwendet, wenn es darum geht, einen digitalen
Pin als Ausgang zu definieren. Die folgende Befehlszeile konfiguriert
Pin 13 als Ausgang:

pinMode(13, OUTPUT);

HIGH

Die Konstante HIGH wird z.B. beim Setzen eines digitalen Aus-
gangs auf HIGH-Pegel verwendet. Die folgende Befehlszeile setzt
Pin 8 auf HIGH-Pegel:

digitalWrite(8, HIGH);

LOW

Die Konstante LOW wird z.B. beim Setzen eines digitalen Ausgangs
auf LOW-Pegel verwendet. Die folgende Befehlszeile setzt Pin 8 auf
LOW-Pegel:

digitalWrite(8, LOW);

true

Die Konstante true kommt z.B. bei Kontrollstrukturen innerhalb
von Bedingungen zum Einsatz:

if(a == true)...

Wenn die boolesche Variable a den Wahrheitswert true aufweist,
wird der Befehl, der der if-Anweisung folgt, ausgeführt.
Wer macht was? --- 667

false

Die Konstante false kommt z.B. bei Kontrollstrukturen innerhalb
von Bedingungen zum Einsatz:

if(a == false)...

Wenn die boolesche Variable a den Wahrheitswert false aufweist,
wird der Befehl, der der if-Anweisung folgt, ausgeführt.

Funktionen
Funktionen werden im Sprachgebrauch der Programmierer teil-
weise auch als Befehle bezeichnet.

Befehle der digitalen Pins

pinMode

Über den pinMode-Befehl wird ein digitaler Pin so programmiert,
dass er entweder als Eingang oder als Ausgang arbeitet. Es werden
dabei die bereits in dieser Befehlsreferenz angesprochenen Kon-
stanten INPUT bzw. OUTPUT verwendet.

digitalWrite

Über den digitalWrite-Befehl wird zum einen der Ausgangspegel eines
digitalen Pins beeinflusst, der mit OUTPUT als Ausgang program-
miert wurde. Es kommen die in dieser Befehlsreferenz schon angespro-
chenen Konstanten HIGH bzw. LOW zum Einsatz. Zum anderen
kann an einem digitalen Pin, der über INPUT als Eingang program-
miert wurde, der interne Pullup-Widerstand aktiviert werden.

digitalRead

Mittels des digitalRead-Befehls kann der Pegel (HIGH bzw. LOW)
eines digitalen Pins abgefragt werden. Die folgende Befehlszeile
liest den Wert des Pins mit der Bezeichnung inputPin ein und spei-
chert das Ergebnis in der Variablen digValue ab:

digValue = digitalRead(inputPin);

Befehle der analogen Pins
analogRead

Über den analogRead-Befehl wird ein analoger Eingang abgefragt,
wobei ein Wert von 0 bis 1023 zurückgeliefert wird. Dieser Werte-
-- Anhang A: Befehls-Referenz668

bereich beruht auf der 10-Bit-Auflösung des analog/digital-Wand-
lers. Die folgende Befehlszeile liest den analogen Wert des Pins mit
der Bezeichnung inputPin ein und speichert ihn in der Variablen
anValue ab:

anValue = analogRead(inputPin);

analogWrite

Über den analogWrite-Befehl wird ein digitaler Ausgang, der mit
PWM (Pulse-Weiten-Modulation) arbeitet, beeinflusst. Es handelt
sich dabei nicht um ein echtes analoges Signal, sondern ein digita-
les Signal mit einem bestimmten Puls-Pausen-Verhältnis. Schaue
dazu in das Kapitel über PWM.

Zeitgemäße Befehle
Es gibt einige Funktionen, die eine zeitliche Komponente beinhal-
ten.

delay

Der delay-Befehl dient zur Unterbrechung der Sketch-Ausführung
für den angegebenen Zeitraum, wobei der übergebene Wert als
Angabe in Millisekunden interpretiert wird. Die folgende Befehls-
zeile bewirkt eine Unterbrechung für 3 Sekunden:

delay(3000);

delayMicroseconds

Falls der delay-Befehl aufgrund seiner Spezifikation hinsichtlich der
Interpretation des Wertes als Angabe in Millisekunden zu grob ist,
kann der delayMicroseconds-Befehl verwendet werden. Die Sketch-
Ausführung wird für den angegeben Zeitraum unterbrochen, wobei
der Wert in Mikrosekunden interpretiert wird. Die folgende
Befehlszeile bewirkt eine Unterbrechung für 100 Mikrosekunden:

delayMicroseconds(100);

millis

Der millis-Befehl liefert einen Wert zurück, der die Zeit, die seit
Sketchstart vergangen ist, in Millisekunden angibt. Es ist zu beach-
ten, dass dieser Wert nach ca. 50 Tagen eine Größe erreicht hat,
der dazu führt, dass die zur Speicherung verwendete Variable über-
läuft und die Zählung wieder bei 0 beginnt.
Wer macht was? --- 669

Zufallswerte

random

Über den random-Befehl können Pseudo-Zufallswerte erzeugt wer-
den.

random(10); // Generierung von Zufallszahlen von 0 bis 9
random(10, 20); // Generierung von Zufallszahlen von 10 bis 19

Es ist zu beachten, dass der angegebene Maximalwert immer exklu-
sive ist.

randomSeed

Über den randomSeed-Befehl wird die Initialisierung der Zufalls-
zahlengenerierung neu gestartet. Auf diese Weise werden nicht
immer die gleichen Zufallszahlen erzeugt.

randomSeed(analogRead(0));

Es wird der unbenutzte und offene analoge Eingang Pin 0 verwen-
det, der nicht vorhersehbare Werte an randomSeed liefert.

Die serielle Schnittstelle
Hinsichtlich der seriellen Schnittstelle, die über das Serial-Objekt
angesprochen wird, stehen unterschiedliche Methoden zur Verfü-
gung.

begin

Die begin-Methode initialisiert das Serial-Objekt mit der gewünsch-
ten Übertragungsrate.

Serial.begin(9600); // Übertragungsrate von 9600 Baud

print

Die print-Methode versendet eine Nachricht an die serielle Schnitt-
stelle, einmal ohne und einmal mit Zeilenvorschub:

Serial.print("Hier spricht Arduino!!!"); // ohne Zeilenvorschub
Serial.println("Hier spricht Arduino!!!"); // mit Zeilenvorschub

available

Die available-Methode überprüft, ob bei der seriellen Schnittstelle
Daten zum Abholen bereitliegen.

if(Serial.available() > 0) {...}
-- Anhang A: Befehls-Referenz670

read

Die read-Methode liest Daten von der seriellen Schnittstelle.

data = Serial.read();

Präprozessor-Direktiven
Wir haben in unseren Sketches zwei Präprozessor-Direktiven ver-
wendet, die den Compiler zu einem bestimmtem Verhalten zwingt.

#include

Die include-Direktive veranlasst den Compiler, die angegebene
Library mit in den aktuellen Sketch einzubinden. Da es sich um
eine Direktive handelt, wird die Zeile nicht mit einem Semikolon
abgeschlossen. Beispiel:

#include <Stepper.h>

#define

Über die define-Direktive können Konstanten mit einem Namen
versehen werden. Der Compiler ersetzt beim Kompilieren inner-
halb des gesamten Sketches den Namen durch die angegebene
Definition. Da es sich um eine Direktive handelt, wird die Zeile
nicht mit einem Semikolon abgeschlossen. Beispiel:

#define ledPin 8
Wer macht was? --- 671

First

Erstellen au
Arbeitsseite
(siehe Must

Anhang
Hier Mini IVZ eingeben!

Anhang B BWo bekomme ich was?
Abstand untere Tabellenlinie zu Textanfang 1,8 cm
-> also: manuell auf den Arbeitsseiten ziehen!!!

f den
n
er)
Bezugsquellen
Natürlich ist es gerade am Anfang sehr wichtig, den einen oder
anderen Hinweis zu erhalten, wo ich bestimmte Hardware bzw.
Software beziehen kann. Deswegen möchte ich an dieser Stelle eine
Liste mit Bezugsquellen zur Verfügung stellen, wobei die Reihen-
folge rein willkürlich ist. Außerdem kann ich natürlich aufgrund
der Vielzahl der Anbieter nur eine kleine Anzahl nennen.

Hardware

Arduino-Equipment (Inland)
www.komputer.de

www.tinkersoup.de

www.watterott.com

www.lipoly.de/arduino

Arduino-Equipment (Ausland)
www.sparkfun.com

www.seeedstudio.com

http://store.arduino.cc/eu/index.php?main_page=index

www.robotshop.com

www.adafruit.com

www.makershed.com
--- 673

http://www.komputer.de
http://www.tinkersoup.de
http://www.watterott.com
http://www.lipoly.de/arduino
http://www.sparkfun.com
http://www.seeedstudio.com
http://store.arduino.cc/eu/index.php?main_page=index
http://www.robotshop.com
http://www.adafruit.com
http://www.makershed.com

Elektronik-Bauteile
www.pollin.de

www.reichelt.de

www.conrad.de

www.voelkner.de

www.sander-electronic.de

www.segor.de

Software
www.arduino.cc

http://fritzing.org/

http://kicad.sourceforge.net/
-- Anhang B: Wo bekomme ich was?674

http://www.pollin.de
http://www.reichelt.de
http://www.conrad.de
http://www.voelkner.de
http://www.sander-electronic.de
http://www.segor.de
http://www.arduino.cc
http://fritzing.org/
http://kicad.sourceforge.net/

Index
Symbole
275
#define 671
#include 671
% (Modulo-Operator) 310
%-Operator 214, 310
& (UND-Operator) 286
++-Operator 227
+-Operator 486
. (Punktoperator) 230
==-Operator 185
=-Operator 184
>> (Shift-Operator) 260
?(Bedingungsoperator) 287
\ (Backslash) 468

A
A/D-Wandler 160
Abbruchbedingung 146
Abisolierzange 119, 123
Absolutfunktion 516
adafruit 673
Adapterplatine 662
Aktive Bauelemente 61
Algorithmus 133
Alphanumerische Anzeige 471
Ampelschaltung 271
Analog 40
Analog/Digital-Wandler 160
analoge Ausgänge 162
analoge Eingänge 159
analoger Port 159
analoges Signal 160
analogRead 350, 668

Analog-Tracker 577
analogWrite 669
AND (Operator) 262
Android 613
Android Software Development Kit 611
Android-Smartphone 607
Anode 75, 176
Anschlüsse 78
App 608, 615
App-Inventor 615
Application Programming Interface (API) 317
Arbeitsspeicher 3
ArduBot 521, 613

ferngesteuert 613
ArduBotBT 615
Arduino

API 316
Befehls-Referenz 663
Board 12
Entwicklungsumgebung 27
Library 316
programmieren 22
Programmierung 157
serielle Schnittstelle 167
Sketch 35, 133

Arduino Uno 12
Arduino-Board

+-Pol 513
Arduino-Control 582
Arduino-Talker 581
Argumente

Reihenfolge 288
Array

eindimensional 297
zweidimensional 297
--- 675

Array-Variable 232
AT (Befehl) 598
ATmega 328 12
Atome 535
attach 381
Aufzählung 530
Ausführungsblock 154
Ausgabeport 17
Ausgang 43, 173
available 670

B
Backslash 468
Baudrate 598
Bauplan 325
Bauteile XIV
Bedingungsoperator 287
Befehl 45
begin 670
Betragsfunktion 516
Betriebsspannung 16
Bibliothek 216
Bibliotheken

programmieren 315
BIN 261
binäres System 250
Bitmanipulation 258
Black-Box 40
Blockbildung 233
Bluetooth 593, 607, 613
Bluetooth-Adapter 595, 600
Bluetooth-Shield 595, 614
Bounce 217
Bounce-Library 216
Breadboard

siehe Steckbrett 115
break 346, 666
byte 405

C
C# 2010 Express-Edition 581
Carriage Return 587
Cast-Operator 500
CD/DVD-ROM-Laufwerk 514
Coderedundanz 243
Combi-Tracker 577
Compiler 217
COM-Port 595
conrad 674

const 545
Container 321
CPU 3, 4
CR (Carriage Return) 569

D
Darlington-Leistungstransistor 541
Data Monitoring 567
Daten 134
Datenbus 5
Datenerfassung 567
Datenspeicher 3
Datenstrom 584
Datentypen 136
Datenübertragungsrichtung 178
Datenverarbeitung 135
DDR 648
Debugging 167
Deklaration 172
Deklarierung 153
delay 174, 434, 669
delayMicroseconds 669
Designtime 17
Dezimalpunkt 400
Dielektrikum 68
Digital 40
Digital-Analog-Converter (DAC) 640
digitale Ausgänge 158
digitale Eingänge 157
digitaler Port 157
digitalRead 668
digitalWrite 172, 668
Diode 74
Distanzhülsen 349
Doppeltes Anführungszeichen 468
Dot-Matrix 472
Drahtgitter 442

E
Eclipse 611
Editor 33
Einerkomplementbildung 139
Eingang 42, 157, 183
Einstiegspunkte 155
Elektronenfluss 50
Elektronik 49
elektronischer Würfel 293
Elementnamen 628
Empfänger 570
-- Index676

EN (siehe Enable) 512
Enable 512
Entlötpumpe 130
Entwicklungsumgebung

Arduino 23
enum 530
Enumeration 530
EPROM 490, 492
Equipment 121
Escape-Sequenz 468
Ethernet 623
Ethernet-Shield 623
EVA 135
EVA (Eingabe, Verarbeitung, Ausgabe) Prinzip 18

F
false 668
Feldvariablen 321
Festwiderstand 61
Feuerzeug 119
Finite State Machine 271
Floppy-Laufwerk 510
Flussdiagramm 145
Folien-KeyPad 440
for 665
for-Schleife 145, 226
Frame 569
Freilaufdiode 111, 513, 541
Freischaum 340
Fritzing 190
fritzing 674
FTDI-Chip 597
Funk-Kommunikation 593
Funkortung 388
Funktion 152
Funktionen 668
Funktionsrumpf 243
Funktionssignatur 241
Fußgesteuerte Schleife 147

G
Gateway 625
Gerätemanager 602
geschlossene Stromkreise 57
Gleichheitsoperator 185
Gleichstrom 16, 54
globale Variable 172
Grenzwert 461
Grundschaltungen 97

H
Halbleiter 55, 78
Halbleiterelement 78
Hartpapier 113
H-Bridge 523
Header-Datei 324
Hertz 553
HIGH 667
HIGH-Pegel 41
Hochsprache 20
H-Schaltung 523
Hysterese 545
Hz

siehe Hertz 553

I
I2C 489
IC-Ausziehwerkzeug 124
IDE (Integrated Development Environment) 22
if 664
if- else 664
if-Anweisung 184
if-else-Abfrage 184
Impulsdauer 178
Index 232
Initialisierung 153, 172

hart verdrahtete 449
INPUT 42, 667
Input-Shield 568
Instanziierung 325
int 447
Integrated Circuit 1
integrierter Schaltkreis 82
Interface 39
Interrupt 7
interval 201
Intervalsteuerung 202
IP-Adresse 624
Isolatoren 55
ITead Studio 607

J
Java 21, 611

K
Kapselung 317, 322
Kathode 75, 176
Kaufmanns-Und (&) 262
Index -- 677

KeyPad 439
Klammernpaar 233
Klasse 320

Member 321
Mitglieder 321

Klassendefinition 325
Kommentar 151
Kommunikation

drahtlose 593
unidirektional 360

Kommunikationswege 17
komputer 673
Kondensator 68
Kondensatorschaltungen 105
Konstante 275
Konstanten 172, 666
Konstruktor 448
Kontrollstrukturen 148, 664
Kugelrotation 345

L
Ladung 50
Ladungsmangel 53
Ladungsunterschied 53
Laufvariable 145, 227, 232, 233
Laufzeitfehler 47
LCD-Anzeige 471
LDR 65
Least-Significant-Bit (LSB) 251
LED 170

Anode 176
Kathode 176
Kette 219
Pegeländerung 211

ledStatus 201, 203
Lego 521
Leiter 55
Leitwert 55
Leuchtdiode 84
LF (Line Feed) 569
Library 216, 316
Lichtradar 387
Lichtsensoren 353
Light Dependent Resistor (LDR) 353
lipoly 673
Liquid Cristal Display (LCD) 471
LiquidCrystal 477
Lochrasterplatine 114, 656
logische Fehler 46
logische Zustände 397

logisches Verschieben 260
lokale Variable 226, 289
loop 175
loop-Funktion 154
Lötkolben 119, 130
Lötzinn 119, 130
LOW 667
LOW-Pegel 40
LSB 408

M
Mac 133
MAC-Adresse 625
Magic-Numbers 562
makershed 673
map 352
mapping 351
Maske 262
Masse 177
Master 491
Matrix 440
MAX7221 422
Messgenauigkeit 161
Methode

Rückgabetyp 327
Methoden 230
Methodenname 325
Methoden-Signatur 325
Mikrocontroller 1
millis 201, 434, 669
Millisekunden 201
Miniroulette 339
Most-Significant-Bit (MSB) 251
Motor 88

Drehrichtung 523
Motor-Shield 614
MSB 407
Multimeter 125
Multiplexing 412, 441

N
Netzwerk 621
Netzwerk-Kommunikation 621
Netzwerkmaske 624
Neutronen 535
noTone 555
NOT-Operator 266
Not-Operator 204
NOT-Operator (Ausrufezeichen) 430
NPN 81
-- Index678

O
Objekt

Eigenschaften 230
Methode 230
Verhalten 230

Objektorientierte Programmierung 230, 318
ODER-Operator 268
Ohmsches Gesetz 56, 188
Onboard-LED 171
OOP

siehe Objektorientierte Programmierung 230,
318

Operatoren
bitweise 260

Oszilloskop 126
OUTPUT 43, 158, 667

P
Parallelschaltung 98, 100
Parameter 155
Parameterliste 325
Pascal 320
Passive Bauelemente 60
Payload 614
PC 133
Periodendauer 178
Pertinax 113
Physical Computing X
Piezo 551
Piezo-Element 96
ping-Befehl 636
pinMode 158, 172, 668
Pinnummer 157
Pins 1
PL15S-020 513
Platine 113, 656
PNP 81
PNP-Transistor 420
pollin 674
Pollin Electronic 514
Portdefinition 631
Porterweiterung 235, 255
Port-Expander 422
Portkommunikation 39
Portregister 645
Potentiometer 64, 568
Power-Jack 15
Präprozessoranweisung 217
Präprozessordirektive 274

Präprozessor-Direktiven 671
Prellen 209
prev 201
print 670
private 324
Processing 167, 567
Programm 133
Programmierparadigma 318
Programmiersprachen 19
Protokoll 568
Protonen 535
Protoshield 653
prozeduralen Programmierung 320
Prozeduren 320
Pseudozufallszahl 347
PTC 67
public 322
Pull-Down-Widerstand 186
Pullen 195
Pullup-Widerstand 193
Pulsbreite 378
Pulse-Width-Modulation 162
Pulsweitenmodulation 377
Punktoperator 230, 336
PuTTY 595
PWM 162

R
R2R-Netzwerk 644
Radar 388
random 233, 670
randomSeed 670
RC-Glied 216
read 671
Reaktionstester 423
Register 646
reichelt 674
Reichweite 594
Reihenschaltung 98
Relais 81, 87
Release Notes 22
Rendern 635
Richtungsdetektor 367
Roboterfahrzeug 522
robotshop 673
Roulette 339
Roulettespiel 339
Rückgabetyp 325
Runtime 17
Index -- 679

S
sander-electronic 674
Schablone 262, 325
Schalter 85
Schaltlitze 118
Schieberegister 236
Schleife

verschachtelte 299
Schleifen 143, 665

kopfgesteuerte 144
Schleifenfuß 147
Schleifenkopf 226
Schnittstelle 39, 317

seriell 670
Schnittstellen 318
Schrägstrich 629
Schraubendreher 123
Schrittmotor 90, 509

bipolarer 511
Schutzdiode 513
SD-Card 623
seeedstudio 673
segor 674
Seitenschneider 119
Semikolon 564
Sender 570
Serial Clock Line 491
Serial Data Line 491
Serial Monitor 167, 312
Serial Peripheral Interface 422
Serial-Monitor 444
serielle Schnittstelle 167
Servo 93, 377

Ansteuerung eines 377
Pulsbreite 378

setup-Funktion 154
Shield 653

Eigenbau 654
Shieldbau 653
Shift-Operator 260
Siebensegmentanzeige 397
Signalkopplung 70
Signalleitung 205
Signatur 325
sizeof 554
Sketch

Struktur 663
Slave 491
Sound 551
Spannung 52
Spannungsabfall 99

Spannungsteiler 102, 356
Spannungsverhalten

temperaturproportionales 537
Spannungsversorgung 16
sparkfun 673
Speicherbereiche 5
SPI (Serial Peripheral Interface) 422
Standardkonstruktor 327
Statemachine 271
Steckbrett 115
Steckbrücken 118
Stepper 518
Stream 584
Strom 51
Stromversorgung 15, 127
Supraleitung 55
Switch 622
switch-case 664
symbolische Namen 275
syntaktische Fehler 46

T
Taktgeber 3
Tastatur 440
Taster 86

prellen 210
Tasterabfrage 199
tasterWert 213
Tastgrad 165, 178
TCP/IP 624
threshold 461
Tilde-Zeichen (~) 18
tinkersoup 673
Toggeln 203, 210
tone 553
Transistor 78

PNP 420
Transistorschaltungen 107
Treiber

Symbol 512
Treiberdatei 24
Trimmer 64
true 667

U
Überladung 327
Überlauf 201
Übertragungsprotokoll 568

Ende-Kennung 569
Start-Kennung 569
-- Index680

Übertragungsrate 598
Ubuntu 25
Umlenkrolle 520
UND-Operator 267
UND-Operator (&) 286
unsigned long 203
Unterprogramm 241
Update 227
Update-Ausdruck 227
USB-Port 17

V
Validierung 323
Variable

Lebensdauer 289
lokale 289
vorzeichenlos 447

Variablen 135
Update 227

Variablendeklaration 544
Verdrahtung

fliegende 481
Verhaltensregeln XV
Versorgungsspannung 196
Verstärker 78
voelkner 674
Volt 53
Vorwiderstand 177, 188

W
watterott 673
Web-Browser 627

Web-Server 627
Wechselstrom 54
while 666
while-Schleife 146
Widerstand 55
Widerstands-Biegelehre 128
Widerstandsleiter 640
Widerstandsregler 458
Widerstandsschaltungen 97
Widerstandsverhältnisse 640
Wiederverwendbarkeit 318
Windows 7 23
Wire-Library 500
WLAN 594
Wrapper 317

X
XY-Schreiber 520

Z
zaehler 212
Zahnriemen 520
Zangen 122
Zeichenketten

konkatenieren 486
Zeilenvorschub 468
Zugriffsmodifizierer 322
Zuordnung

siehe mapping 351
Zuweisungsoperator 172, 184, 185, 530
Zweierkomplementbildung 139
Index -- 681

	Inhalt
	Grußwort von Wolfgang Rudolph
	Einleitung
	Kapitel 1: Was ist ein Mikrocontroller
	Wozu kann man ihn verwenden?
	Allgemeiner Aufbau

	Kapitel 2: Das Arduino-Board
	Die Stromversorgung
	Die Kommunikationswege
	Die Programmiersprachen C/C++
	Wie und womit kann ich Arduino programmieren?
	Die Arduino-Entwicklungsumgebung
	Das Starten der Entwicklungsumgebung
	Die Portkommunikation
	Befehl und Gehorsam

	Kapitel 3: Die Elektronik
	Scope
	Was ist Elektronik eigentlich?
	Bauteile
	Weitere interessante Bauteile

	Kapitel 4: Elektronische Grundschaltungen
	Scope
	Widerstandsschaltungen
	Kondensatorschaltungen
	Transistorschaltungen

	Kapitel 5: Das Zusammenfügen der Bauteile
	Scope
	Was ist eine Platine?
	Das Steckbrett (Breadboard)
	Die flexiblen Steckbrücken

	Kapitel 6: Nützliches Equipment
	Scope
	Nützliches Equipment

	Kapitel 7: Grundlegendes zur Programmierung
	Was ist ein Programm bzw. ein Sketch?
	Was bedeutet Datenverarbeitung?
	Die Struktur eines Arduino-Sketches
	Wie lange läuft ein Sketch auf dem Board?

	Kapitel 8: Die Programmierung des Arduino-Boards
	Scope
	Die digitalen Ports
	Die analogen Ports
	Die serielle Schnittstelle

	Projekt 1: Der erste Sketch
	Projekt 2: Einen Sensor abfragen
	Projekt 3: Blinken mit Intervallsteuerung
	Projekt 4: Der störrische Taster
	Projekt 5: Ein Lauflicht
	Projekt 6: Porterweiterung
	Projekt 7: Porterweiterung mal 2
	Projekt 8: Die Statemachine
	Projekt 9: Der elektronische Würfel
	Projekt 10: Der elektronische Würfel (und wie erstelle ich eine Bibliothek?)
	Projekt 11: Das Miniroulette
	Projekt 12: Lichtsensoren
	Projekt 13: Der Richtungsdetektor
	Projekt 14: Die Ansteuerung eines Servos
	Projekt 15: Das Lichtradar
	Projekt 16: Die Siebensegmentanzeige
	Projekt 17: Die Siebensegmentanzeige (mir gehen die Pins aus)
	Projekt 18: Der Reaktionstester
	Projekt 19: Das KeyPad
	Projekt 20: Das KeyPad (Diesmal ganz anders)
	Projekt 21: Eine Alphanumerische Anzeige
	Projekt 22: Kommunikation über I2C
	Projekt 23: Der Schrittmotor
	Projekt 24: Der ArduBot
	Projekt 25: Die Temperatur
	Projekt 26: Der Sound und mehr
	Projekt 27: Data Monitoring
	Projekt 28: Der Arduino-Talker
	Projekt 29: Die drahtlose Kommunikation über Bluetooth
	Projekt 30: Bluetooth und das Android-Smartphone
	Projekt 31: Der ArduBot wird funkgesteuert
	Projekt 32: Netzwerk- Kommunikation
	Projekt 33: Digital ruft analog
	Projekt 34
: Shieldbau
	Anhang A: Befehls-Referenz
	Anhang B: Wo bekomme ich was?
	Index

