
Arduino
für Einsteiger
Massimo Banzi Mitbegründer von Arduino
Übersetzung von Tanja Feder

DIE OPEN-
SOURCE-

ELEKTRONIK-
PROTOTYPING-

PLATTFORM

Für Arduino 1.0

Arduino für
Einsteiger
Massimo Banzi

Deutsche Übersetzung von Tanja Feder

BEIJING � CAMBRIDGE � FARNHAM � KÖLN � SEBASTOPOL � TOKYO

Die Informationen in diesem Buch wurden mit größter Sorgfalt erarbeitet. Dennoch können
Fehler nicht vollständig ausgeschlossen werden. Verlag, Autoren und Übersetzer übernehmen
keine juristische Verantwortung oder irgendeine Haftung für eventuell verbliebene Fehler und
deren Folgen.

Alle Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt und sind
möglicherweise eingetragene Warenzeichen. Der Verlag richtet sich im Wesentlichen nach den
Schreibweisen der Hersteller. Das Werk einschließlich aller seiner Teile ist urheberrechtlich
geschützt. Alle Rechte vorbehalten einschließlich der Vervielfältigung, Übersetzung, Mikrover-
filmung sowie Einspeicherung und Verarbeitung in elektronischen Systemen.

Kommentare und Fragen können Sie gerne an uns richten:
O’Reilly Verlag GmbH & Co. KG
Balthasarstr. 81
50670 Köln
E-Mail: kommentar@oreilly.de
2012 O’Reilly Verlag GmbH & Co. KG

Copyright der deutschen Ausgabe:
� 2012 by O’Reilly Verlag GmbH & Co. KG
1. Auflage 2012

Die Originalausgabe erschien 2011 unter dem Titel
Getting Started with Arduino, 2nd Edition bei O’Reilly Media, Inc.

Bibliografische Information Der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten
sind im Internet über http://dnb.d-nb.de abrufbar.

Übersetzung: Tanja Feder, Köln
Lektorat: Volker Bombien, Köln
Korrektorat: Eike Nitz, Köln
Produktion: Karin Driesen, Köln
Umschlaggestaltung: Micheal Oreal, Köln
Satz: Reemers Publishing Services GmbH, Krefeld, www.reemers.de
Druck: Mediaprint, Paderborn

ISBN: 978-3-86899-232-8

Dieses Buch ist auf 100% chlorfrei gebleichtem Papier gedruckt.

Inhalt

Inhalt . III

Vorwort . V

1/Einführung . 1

An wen sich das Buch richtet. 2

Was ist Physical Computing? . 3

2/Die Philosophie von Arduino . 5

Prototyping . 6

Tüfteln . 7

Patching . 8

Modifizieren von Schaltkreisen . 10

Keyboard-Hacks . 12

Wir lieben Elektroschrott . 14

Hacken von Spielzeug. 15

Kooperation . 16

3/Die Arduino-Plattform. 17

Die Arduino-Hardware . 17

Die Software (IDE). 20

Die Installation von Arduino auf dem Computer . 20

Installation der Treiber unter Macintosh . 21

Installation der Treiber unter Windows. 21

Port-Identifikation unter Macintosh . 23

Port-Identifikation unter Windows . 23

4/Die ersten Schritte mit Arduino . 25

Der Aufbau eines interaktiven Geräts . 25

Sensoren und Aktoren . 26

Eine LED zum Blinken bringen . 26

Reich mir den Parmesan . 31

Arduino ist nichts für Zögerliche . 31

Wirkliche Tüftler schreiben Kommentare. 32

Der Code – Schritt für Schritt . 32

Was wir bauen werden . 35

Was ist Elektrizität? . 36

Inhalt III

Steuerung einer LED mit einem Drucktaster . 39

Erläuterung der Funktionsweise . 43

Ein Schaltkreis – 1000 Verhaltensweisen . 43

5/Erweiterter Input und Output . 51

Der Einsatz anderer Ein/Aus-Sensoren . 51

Steuerung von Licht mittels PWM. 54

Einsatz eines Lichtsensors anstelle eines Drucktasters 61

Analoger Eingang . 62

Der Einsatz anderer analoger Sensoren . 65

Serielle Kommunikation . 66

Der Umgang mit größeren Lasten. 67

Komplexe Sensoren . 68

6/Kommunikation mit der Cloud . 71

Planung . 73

Processing . 73

Der Code . 74

Das Zusammenbauen des Schaltkreises . 81

So funktioniert das Zusammenbauen. 83

7/Troubleshooting . 85

Testen des Boards . 86

Testen des Schaltkreises auf der Steckplatine . 87

Das Isolieren von Problemen . 88

Probleme mit der IDE . 88

So finden Sie Onlinehilfe. 89

Anhang A: Die Steckplatine . 93

Anhang B: Das Lesen von Widerständen und Kondensatoren 95

Anhang C: Kurzreferenz zu Arduino . 97

Anhang D: Das Lesen von Schaltplänen . 113

Index . 117

IV Inhalt

Vorwort

Vor einigen Jahren stand ich vor einer sehr interessanten Herausforderung:
Ich sollte Designern die einfachsten Grundlagen der Elektronik vermitteln,
sodass sie anschließend in der Lage wären, interaktive Prototypen der
Objekte, an denen sie gerade arbeiteten, herzustellen.

Ich folgte unterbewusst meinem Instinkt, Elektronik auf die Weise zu
lehren, wie ich sie von der Schule her kannte. Später realisierte ich dann,
dass das nicht so gut funktionierte, wie ich das gerne gehabt hätte und ich
erinnerte mich an die Stunden im Klassenzimmer, in denen jede Menge
Theorie ohne praktischen Bezug auf mich eingeprasselt war und ich mich
zu Tode gelangweilt hatte.

Eigentlich kannte ich die Elektronik zur Schulzeit bereits, und diese Kennt-
nisse hatte ich auf sehr empirische Weise erworben: mit herzlich wenig
Theorie, aber mit viel praktischer Erfahrung.

Ich begann also, darüber nachzudenken, mittels welcher Prozesse ich
Elektronik wirklich verstanden habe:

» Ich nahm alle elektronischen Geräte auseinander, die ich in die Finger
bekommen konnte.

» So lernte ich langsam all die einzelnen Komponenten kennen.

» Ich begann, mit ihnen herumzubasteln, einige ihrer inneren Verbindun-
gen zu verändern und dann zu beobachten, wie das Gerät reagierte,
üblicherweise mit einer Art von Explosion oder mit einer Rauchwolke.

» Ich baute Bausätze, die Beilagen von Elektrozeitschriften waren, zu-
sammen.

» Ich kombinierte Geräte, die ich gehackt hatte, und zweckentfremdete
Bausätze und andere Schaltungen, die ich in Zeitschriften gefunden
hatte, um aus ihnen etwas Neues herzustellen.

Als kleines Kind war ich fasziniert davon herauszufinden, wie Dinge funk-
tionieren, daher habe ich sie immer auseinandergebaut. Dieses Interesse
wuchs immer weiter, je mehr nicht benutzte elektronische Objekte, derer
ich im Haus irgendwie habhaft werden konnte, ich in ihre Einzelteile zer-

Vorwort V

legte. Schließlich brachten die Leute alle möglichen Geräte zu mir, damit
ich sie auseinandernehmen konnte. Meine größten Objekte zu dieser Zeit
waren eine Geschirrspülmaschine und ein früher Computer aus einem
Versicherungsbüro, der über einen Drucker, Elektronikkarten, Magnetkar-
tenleser und viele andere Teile verfügte, deren komplette Zerlegung sich
als äußerst interessant und knifflig erwies.

Nach umfangreichen Untersuchungen wusste ich, was elektronische Kom-
ponenten sind und auch ungefähr, was sie tun. Obendrein war unser Haus
voll von elektronischen Zeitschriften, die mein Vater irgendwann Anfang
der 1970er gekauft haben musste. Ich habe Stunden damit verbracht, die
Artikel zu lesen und mir die Schaltskizzen anzuschauen, ohne allerdings
sonderlich viel zu begreifen.

Dieser Prozess des immer wieder erneuten Lesens der Artikel auf der
äußerst hilfreichen Grundlage des Wissens, das ich durch das Zerlegen von
Schaltungen erworben hatte, erwies sich als langsamer, wirkungsvoller
Zyklus.

Ein großer Durchbruch kam an einem Weihnachtstag, als mein Vater mir
einen Bausatz schenkte, mit dem Teenagern Wissen über die Elektronik
vermittelt werden sollte. Jede Komponente war in einem Plastikwürfel
untergebracht, der magnetisch an den anderen Würfeln haften konnte,
sodass eine Verbindung entstand. Oben auf diesen Würfeln war das jewei-
lige elektronische Symbol angeführt. Ich wusste noch wenig davon, dass
dieses Spielzeug auch ein Meilenstein von Design Made in Germany war,
denn es war bereits in den 1960ern von Dieter Rams entwickelt worden.

Mit diesem neuen Tool konnte ich auf schnelle Weise Schaltkreise zusam-
menbauen, diese dann ausprobieren und mir das Resultat ansehen. Der
Prototyping-Zyklus wurde dabei immer kürzer.

Danach baute ich Radios, Verstärker, Schaltkreise, die fürchterlichen Lärm
oder auch schöne Töne produzierten, Regensensoren und kleine Roboter.

Ich habe lange nach einem englischen Begriff gesucht, der diese Arbeits-
weise ohne speziellen Plan, bei der einfach von einer bestimmten Idee
ausgegangen wird und bei der man bei einem völlig unerwarteten Resultat
landet, wiedergibt. Schließlich stieß ich auf das Wort „Tinkering“, das sich
etwa mit dem Begriff „Tüfteln“ ins Deutsche übertragen ließe. Ich verstand,
wie dieser Begriff in vielen anderen Bereichen verwendet wurde, um eine
Arbeitsweise zu beschreiben und Menschen zu porträtieren, die ausgetre-
tene Pfade verlassen und Neuland erkundet hatten. Auch die französischen
Regisseure, die die Nouvelle Vague begründeten, wurden im englischen

VI Vorwort

Sprachraum als Tinkerer bezeichnet. Die beste Definition, die ich kenne,
habe ich im Rahmen einer Ausstellung im Exploratorium in San Francisco
gefunden:

Tinkering is what happens when you try something you don't quite know
how to do, guided by whim, imagination, and curiosity. When you tinker,
there are no instructions – but there are also no failures, no right or wrong
ways of doing things. It's about figuring out how things work and reworking
them.

Contraptions, machines, wildly mismatched objects working in harmony –
this is the stuff of tinkering.

Tinkering is, at its most basic, a process that marries play and inquiry..

http://www.exploratorium.edu/tinkering

Von meinen früheren Experimenten wusste ich bereits, wie viel Erfahrung
nötig ist, um einen Schaltkreis von den Basiskomponenten aus aufzubau-
en, der dann auch noch das tut, was Sie möchten.

Ein weiterer Durchbruch erfolgte im Sommer 1982, in dem ich mit meinen
Eltern in London viele Stunden lang das Science Museum besichtigte. Hier
war gerade ein neuer Bereich eröffnet worden, der Computern gewidmet
war und in dem angeleitete Experimente vorgestellt wurden. Indem ich
diesen folgte, lernte ich die Grundlagen der Binärmathematik und der
Programmierung.

Dabei stellte ich fest, dass bei vielen Anwendungen Ingenieure keine
Schaltkreise mehr aus Basiskomponenten bauten, sondern viele intelli-
gente Möglichkeiten mittels Mikroprozessoren in ihre Produkte implemen-
tierten. Software ersparte dabei viele Arbeitsstunden beim elektronischen
Design und ermöglichte kürzere Zyklen beim Tüfteln.

Nach der Rückkehr begann ich damit, Geld zu sparen, weil ich mir einen
Computer kaufen und das Programmieren lernen wollte.

Mein erstes und wichtigstes Objekt war ein brandneuer ZX81-Computer,
mit dem ich eine Schweißmaschine steuerte. Das klingt sicher nicht nach
einem besonders spannenden Projekt, aber es bestand ein gewisser Bedarf
und für mich war es eine große Herausforderung, weil ich gerade erst das
Programmieren erlernt hatte. Zu diesem Zeitpunkt wurde mir klar, dass

Vorwort VII

http://www.exploratorium.edu/tinkering

das Schreiben von Codezeilen weniger zeitaufwendig ist als das Aufbauen
komplexer Schaltungen.

Mehr als 20 Jahre später denke ich, dass diese Erfahrung mir ermöglicht,
Menschen zu unterrichten, die sich nicht einmal daran erinnern, irgendeine
Mathematikstunde besucht zu haben und ihnen die gleiche Begeisterung
für das Tüfteln und die entsprechenden Fähigkeiten zu vermitteln, die ich in
meiner Jugend erworben und seitdem immer bewahrt habe.

Massimo

VIII Vorwort

Danksagung
Dieses Buch ist Luisa und Alexandra gewidmet.

Zuallererst möchte ich meinen Partnern im Arduino-Team danken: David
Cuartielles, David Mellis, Gianluca Martino und Tom Igoe. Jungs, es ist
immer wieder eine erstaunliche Erfahrung, mit Euch zu arbeiten!

Als Nächstes möchte ich mich bei Barbara Ghella bedanken. Sie weiß es
vielleicht nicht, aber ohne ihre präzise Beratung wären Arduino und dieses
Buch vielleicht niemals zustande gekommen.

Ein weiterer Dank gebührt Bill Verplank, der mich weit mehr gelehrt hat als
Physical Computing.

Bei Gillian Crampton-Smith möchte ich mich dafür bedanken, dass sie mir
eine Chance gegeben hat und für all das, was ich von ihr gelernt habe.

Hernando Barragan möchte ich für die Arbeit beim Verdrahten danken.

Ein Dank gebührt auch Brian Jepson für seine großartige Arbeit als Lektor
und für seine unermüdliche enthusiastische Unterstützung.

Mein nächstes Dankeschön gilt Nancy Kotary, Brian Scott, Terry Bronson
und Patti Schiendelman dafür, dass sie noch eingepflegt haben, was ich in
einem bereits fertigen Buch geändert hatte.

Es wären hier sicherlich noch zahlreiche weitere Menschen zu nennen, aber
Brian gibt mir an dieser Stelle zu verstehen, dass ich damit den Rahmen
des Buches sprengen würde, daher hier nur eine kleine Liste von Personen,
denen ich aus vielerlei Gründen danken möchte:

Adam Somlai-Fisher, Ailadi Cortelletti, Alberto Pezzotti, Alessandro Ger-
minasi, Alessandro Masserdotti, Andrea Piccolo, Anna Capellini, Casey
Reas, Chris Anderson, Claudio Moderini, Clementina Coppini, Concetta
Capecchi, Csaba Waldhauser, Dario Buzzini, Dario Molinari, Dario Parravi-
cini, Donata Piccolo, Edoardo Brambilla, Elisa Canducci, Fabio Violante,
Fabio Zanola, Fabrizio Pignoloni, Flavio Mauri, Francesca Mocellin, Fran-
cesco Monico, Giorgio Olivero, Giovanna Gardi, Giovanni Battistini, Heather
Martin, Jennifer Bove, Laura Dellamotta, Lorenzo Parravicini, Luca Rocco,
Marco Baioni, Marco Eynard, Maria Teresa Longoni, Massimiliano Bolondi,

Vorwort IX

Matteo Rivolta, Matthias Richter, Maurizio Pirola, Michael Thorpe, Natalia
Jordan, Ombretta Banzi, Oreste Banzi, Oscar Zoggia, Pietro Dore, Prof
Salvioni, Raffaella Ferrara, Renzo Giusti, Sandi Athanas, Sara Carpentieri,
Sigrid Wiederhecker, Stefano Mirti, Ubi De Feo und Veronika Bucko.

X Vorwort

1/Einführung

Arduino ist eine Open-Source-Plattform für Physical Computing, die auf
einem einfachen Input/Output-(I/O-)Board und einer Enwicklungs-
umgebung basiert, die die Sprache Processing (www.processing.org) im-
plementiert. Mit Arduino lassen sich autonome interaktive Objekte ent-
wickeln, man kann aber auch eine Verbindung mit der Computersoftware
(z.B. Flash, Processing, VVVV oder Max/MSP) herstellen. Man kann das
Board manuell zusammenbauen oder es auch vormontiert kaufen. Die
Open-Source-IDE (Integrated Development Environment, Integrierte Ent-
wicklungsumgebung) steht unter www.arduino.cc zum kostenlosen
Download bereit.

Arduino unterscheidet sich durch folgende Features von andern Plattfor-
men auf dem Markt:

» Arduino ist betriebssystemunabhängig und kann unter Windows,
Macintosh und Linux betrieben werden.

» Arduino basiert auf der Progammier-IDE Processing, einer leicht hand-
habbaren Entwicklungsumgebung, die von Künstlern und Designern
verwendet wird.

» Arduino wird über ein USB-Kabel und nicht über einen seriellen An-
schluss programmiert. Dieses Feature ist äußerst nützlich, da viele
moderne Computer keine seriellen Anschlüsse haben.

» Es handelt sich um eine Open-Source-Software. Sie können Schaltdia-
gramme herunterladen, alle betreffenden Komponenten kaufen oder
eigene herstellen, ohne dass Sie dafür etwas an die Entwickler von
Arduino zahlen müssten.

» Die Hardware ist preisgünstig. Der Preis für das USB-Board liegt bei
etwa 25 Euro. Das Ersetzen von durchgebrannten Chips auf dem Board
ist einfach und kostet nicht mehr als 5 Euro oder 4 US-Dollar. Man kann
es sich also leisten, auch mal einen Fehler zu machen.

» Es gibt eine entsprechende Community, sodass man bei vielen anderen
Nutzern Hilfe finden kann.

Einführung 1

www.processing.org
www.arduino.cc

» Das Arduino-Projekt wurde in einer Lernumgebung entwickelt und eig-
net sich daher bestens für Einsteiger, die Dinge schnell ans Laufen
bringen möchten.

Dieses Buch ist dazu gedacht, Einsteigern ein Verständnis von den Vor-
teilen zu vermitteln, die sie durch das Erlernen der Handhabung der
Arduino-Plattform und das Übernehmen der entsprechenden Philosophie
gewinnen.

An wen sich das Buch richtet
Dieses Buch ist für die ursprünglichen Arduino-Benutzer geschrieben:
Designer und Künstler. Daher werden Dinge in einer Weise erklärt, die
einigen Ingenieuren möglicherweise die Haare zu Berge stehen lassen wird.
Einer nannte die einleitenden Kapitel meines ersten Entwurfs sogar Staub-
flocken. Das ist genau der Punkt, denn seien wir mal ehrlich: Die meisten
Ingenieure können anderen Ingenieuren und erst recht fachfremden Per-
sonen, das, was sie tun, nicht erklären. Wir wollen nun tief in diese „Staub-
flocken“ eintauchen.

Hinweis: Arduino baut auf der Diplomarbeit von Hernando Barragan auf,
bei der er an der Wiring-Plattform arbeitete, während er unter Casey
Reas und mir am IDII Ivrea studierte.

Nachdem Arduino allmählich beliebt wurde, sah ich, wie Experimentatoren,
Hobbybastler und alle Arten von Hackern schöne und verrückte Objekte
herstellten. Ich erkannte, dass Ihr selbst alle Künstler und Designer seid.
Daher ist dieses Buch Euch gewidmet.

Arduino wurde aus der Idee geboren, Interaction Design, eine Designdis-
ziplin, bei der das Prototyping im Zentrum der Methodik steht, zu ver-
mitteln. Es gibt viele Definitionen für den Begriff Interaction Design, ich
bevorzuge die Folgende:

Interaction Design ist das Design einer jeglichen interaktiven Erfahrung.

In unserer heutigen Welt befasst sich Interaction Design mit dem Erzeugen
bedeutsamer Erfahrungen zwischen uns (Menschen) und Objekten. Dies
ist eine gute Methode, um das Entstehen von schönen – und vielleicht auch
kontroversen – Erfahrungen im Umgang mit der Technik zu erschließen.
Beim Interaction Design erfolgt Design in einem Iterationsprozess, basie-
rend auf Prototypen und mit ständig wachsender Präzision. Dieser Ansatz
– der teilweise auch beim konventionellen Design zu finden ist – kann so

2 Einführung

erweitert werden, dass Prototyping in die Technologie eingebunden wird,
speziell im Bereich Elektronik.

Der spezielle Bereich von Interaction Design, der bei Arduino zum Tragen
kommt, ist das Physical Computing (oder auch Physical Interaction De-
sign).

Was ist Physical Computing?
Beim Physical Computing wird Elektronik verwendet, um Prototypen von
neuen Arbeitsmaterialien für Designer und Künstler herzustellen.

Dies umfasst auch das Design von interaktiven Objekten, die über Senso-
ren und Aktoren, die mittels einer vorgegebenen Verhaltensweise gesteu-
ert werden, mit den Menschen kommunizieren können. Diese Verhaltens-
weise ist als Software implementiert, die in einem Mikrocontroller (ein
kleiner Computer auf einem einzelnen Chip) ausgeführt wird.

In der Vergangenheit bedeutete der Einsatz von Elektronik gleichzeitig das
ständige Arbeiten mit Ingenieuren und gleichzeitig den langwierigen Auf-
bau von Schaltkreisen, immer eine kleine Komponente nach der anderen.
Dadurch wurden kreative Menschen daran gehindert, mit dem Medium
direkt zu experimentieren. Die meistens Tools waren für Ingenieure ge-
dacht und setzten ein erhebliches Wissen voraus. In den letzten Jahren
wurden Mikrocontroller billiger und einfacher in der Handhabung, wodurch
die Herstellung besserer Tools ermöglicht wurde.

Der Fortschritt, der mit Arduino erfolgte, bestand darin, dass diese neuen
Tools Neulingen nähergebracht wurden, sodass es ihnen möglich wurde,
nach nur einem zwei- oder dreitägigen Workshop bereits irgendwelche
Dinge zu bauen.

Mit Arduino können sich Designer und Künstler die Grundlagen von Elek-
tronik und von Sensoren sehr schnell aneignen und ohne große Investitio-
nen mit dem Bau von Prototypen beginnen.

Einführung 3

2/Die Philosophie von
Arduino

Die Philosophie von Arduino besteht darin, Designs zu erstellen, anstatt
über sie zu sprechen. Sie besteht in einem andauernden Suchen nach
schnelleren und leistsungsstärkeren Möglichkeiten, um bessere Prototy-
pen zu bauen. Wir haben viele Prototyping-Techniken erkundet und so
quasi mit unseren Händen neue Denkansätze geschaffen.

Das klassische Engineering beruht auf einem strikten Prozess, der von A
nach B führt; bei Arduino besteht der Spaß in der Möglichkeit, auf diesem
Weg verlorenzugehen und stattdessen bei C zu landen.

Dies ist der Prozess des Tüftelns, den wir so lieb gewonnen haben –
genzenlos mit einem Medium herumexperimentieren und dabei das Uner-
wartete entdecken. Bei dieser Suche nach Wegen, bessere Prototypen
herzustellen, haben wir auch eine Reihe von Softwarepaketen ausgewählt,
die einen Prozess der ständigen Veränderung des Software- oder des
Hardwaremediums ermöglichen.

In den nächsten Abschnitten werden einige philosophische Aspekte, Ereig-
nisse und Pioniere vorgestellt, durch die die Philosophie von Arduino
inspiriert wurde.

Die Philosophie von Arduino 5

Prototyping

Prototyping ist das Herzstück der Arduino-Philosophie: Wir stellen Dinge
her und bauen Objekte, die mit anderen Objekten, Menschen oder Netz-
werken interagieren. Wir sind bestrebt, einen einfacheren und schnelleren
Weg für das Prototyping zu finden, der außerdem möglichst kostengünstig
sein soll.

Viele Neulinge gehen zunächst mit der Vorstellung an Elektronik heran,
dass sie lernen müssen, alles von Grund auf selbst zu bauen. Das ist reine
Energieverschwendung: Was man wirklich möchte, ist die Bestätigung,
dass etwas sehr schnell funktioniert, sodass man selbst motiviert ist, den
nächsten Schritt zu unternehmen, oder dass man sogar jemand anderen
motiviert, entsprechend goßzügig in einen selbst zu investieren.

Daher haben wir das »Opportunistische Prototyping« entwickelt: Warum
sollten wir Zeit und Energie darauf verschwenden, Dinge von Grund auf zu
bauen, ein Prozess, der viel Zeit und tiefgehendes technisches Wissen
erfordert, wenn wir fertige Geräte hacken und so die harte Arbeit nutzen
können, die von großen Unternehmen und fähigen Ingenieuren bereits
getan wurde?

Unser Held ist James Dyson, der 5 127 Prototypen seines Vakuumstaub-
saugers baute, bevor er mit dem Resultat zufrieden war (http://www.
international.dyson.com/jd/1947.asp).

6 Die Philosophie von Arduino

http://www.­nohyp;international.dyson.com/jd/1947.asp
http://www.international.dyson.com/jd/1947.asp
http://www.­nohyp;international.dyson.com/jd/1947.asp

Tüfteln

Wir glauben, dass es essentiell ist, mit Technologie herumzuexperimentie-
ren und verschiedene Möglicheiten direkt mit der Hard- oder Software
auszuprobieren – manchmal ohne dabei ein wirklich definiertes Ziel zu
haben.

Das Verwerten von bereits vorhandener Technologie ist eine der besten
Möglichkeiten beim Tüfteln. Durch das Sammeln und Hacken von billigem
Spielzeug und alten, ausgemusterten Geräten lassen sich tolle Resultate
erzielen.

Die Philosophie von Arduino 7

Patching

Ich war immer fasziniert vom Baukastenprinzip und von der Möglichkeit,
durch das Verbinden einfacher Geräte komplexe Systeme aufzubauen.
Dieses System wird sehr gut durch Robert Moog und seine analogen
Synthesizer repräsentiert. Musiker erzeugten Sounds, indem sie verschie-
dene Module mit Kabeln zusammenschusterten und so unzählige Kom-
binationen herstellten. Durch diesen Ansatz hatten Synthesizer oft das
Aussehen von alten Telefon-Switchboards, die aber mit zahlreichen Fines-
sen ausgestattet waren und so eine perfekte Plattform für das Herum-
experimentieren mit Sound und für musikalische Innovationen darstellten.
Moog beschrieb dies als einen Prozess zwischen Beobachten und Ent-
decken. Ich bin sicher, dass die Musiker zu Beginn nicht wussten, wozu all
die Hunderte von Knöpfen dienten, aber sie experimentierten unaufhörlich
und entwickelten ihren Stil ständig weiter, ohne Unterbrechung dieses
Prozesses.

Das Reduzieren der Anzahl an Unterbrechungen im Prozess ist sehr wich-
tig für die Kreativität – je nahtloser der Prozess ist, desto besser funk-
tioniert das Tüfteln.

Diese Technik wurde in Form von Entwicklungsumgebungen für das visu-
elle Programmieren wie Max, Pure Data oder VVVV in die Welt der Software
übertragen. Diese Tools lassen sich als Behälter für verschiedene Funk-
tionen, die sie bereitstellen, visualisieren, mit denen der Nutzer dann
Patches erstellt, indem er diese Behälter verbindet. Diese Umgebung bietet
dem Nutzer die Möglichkeit, mit der Programmierung zu experimentieren,
ohne dabei ständig den Zyklus aus Programmeingabe, Kompilierung,
„Verdammt – da ist ein Fehler“, Fehlerbehebung, Kompilierung und
schließlich Programmausführung zu unterbrechen. Wenn Sie also eher
visuell orientiert sind, empfehle ich Ihnen, solche Entwicklungsumgebun-
gen auszuprobieren.

8 Die Philosophie von Arduino

Die Philosophie von Arduino 9

Modifizieren von
Schaltkreisen

Circuit Bending ist eine der interessantesten Formen des Tüftelns. Es
handelt sich um das kreative Kurzschließen von akustischen Geräten, die
mit einer Niederspannungsbatterie betrieben werden, z. B. Pedale für
Gitarreneffekt, Kinderspielzeug und kleine Synthesizer, um neue Musik-
instrumente und Schallgeber zu kreieren. Das Herzstück dieses Prozesses
ist die „Kunst des Zufalls“. Es begann 1966, als Reed Ghazala zufällig einen
Spielzeugverstärker an einem Metallobjekt an seiner Schreibtischschub-
lade kurzschloss, was in einer Flut von ungewöhnlichen Tönen resultierte.
Was ich am Circuit Bending mag, ist die Möglichkeit, durch das Zweck-
entfremden oder Modifizieren von Technologie die wildesten Geräte zu

10 Die Philosophie von Arduino

erschaffen, ohne dass dazu notwendigerweise ein Verständnis erforderlich
wäre, wie sie rein theoretisch funktionieren.

Es ist ein wenig wie beim Fanzine Sniffin Glue, aus dem hier ein Auszug zu
sehen ist: Während der Punk-Ära war die Kenntnis von drei Gitarrenakkor-
den ausreichend, um eine Band zu gründen. Lassen Sie nicht zu, dass
Experten in einem bestimmten Bereich Ihnen vermitteln, dass Sie niemals
zu ihnen gehören werden. Ignorieren Sie sie und überraschen sie dann.

Die Philosophie von Arduino 11

Keyboard-Hacks

12 Die Philosophie von Arduino

Nach mehr als 60 Jahren sind Computertastaturen immer noch der am
weitesten verbreitete Weg, mit dem Computer zu interagieren. Alex Pent-
land, der akademische Leiter des MIT Media Laboratory, bemerkte einst
Folgendes: „Entschuldigen Sie die Ausdrucksweise, aber Männerurinale
sind intelligenter als Computer. Computer sind von ihrer Umgebung iso-
liert.“ 1

Als Tüftler können wir neue Wege für die Interaktion mit dem Computer
einführen, indem wir die Tasten durch Bauteile ersetzen, die ihre Umge-
bung sensorisch erfassen. Beim Auseinandernehmen der Computertas-
tatur offenbart sich ein sehr einfaches (und preiswertes) Gerät. Das Kern-
stück besteht in einem kleinen Brett. Dabei handelt es sich üblicherweise
um einen Schaltkreis in einem hässlichen Grün oder in Braun, mit zwei
Gruppen von Kontakten, die zu zwei Plastikschichten führen, die die Ver-
bindungen zwischen den einzelnen Tasten beherbergen. Wenn Sie den
Schaltkreis entfernen und zwei Kontake mit einem Draht verbinden, er-
scheint ein ganzer Roman auf dem Computerbildschirm. Wenn Sie nun
einen Bewegungssensor kaufen und mit der Tastatur verbinden, sehen Sie,
dass jedes Mal, wenn jemand vor dem Computer herläuft, eine Taste
gedrückt wird. In Verbindung mit der bevorzugten Software wird Ihr Com-
puter so intelligent wie ein Urinal. Keyboard-Hacking ist eine Schlüssel-
disziplin beim Prototyping und beim Pysical Computing.

1 Sara Reese Hedberg, MIT Media Lab's quest for perceptive computers, Intelligent
Systems and Their Applications, IEEE, Jul/Aug 1998.

Die Philosophie von Arduino 13

Wir lieben Elektroschrott

Die Leute werfen heutzutage viel Technologie weg: alte Drucker, Computer,
seltsame Büromaschinen, technisches Equipment und sogar vieles aus
dem militärischen Bereich. Es gab schon immer einen Markt für diese
ausgemusterte Technologie, besonders bei jungen und/oder wenig ver-
mögenden Hackern oder Geeks, die erst noch Hacker werden wollen.
Dieser Markt wurde augenfällig in Ivrea, wo wir Arduino entwickelt haben.
Die Stadt war Hauptsitz des Unternehmens Olivetti, das seit den 1960ern
Computer hergestellt hatte. Mitte der 90er entsorgte die Firma alles auf
Schrottplätzen in der Gegend, unter anderem ganze Computerteile, elekt-
ronische Komponenten und seltsame Geräte aller Art. Wir verbrachten
unzählige Stunden auf diesen Schrottplätzen, kauften für kleines Geld
verschiedene Apparate und hackten uns in unsere Prototypen. Wenn man
Tausende von Lautsprechern für wenig Geld kaufen kann, drängt sich
einem schließlich folgende Idee auf: Elektroschrott zu sammeln und ihn
durchzuschauen, bevor man etwas von Grund auf neu baut.

14 Die Philosophie von Arduino

Hacken von Spielzeug

Spielzeug ist eine fantastische Quelle für billige Technologie zum Hacken
und Weiterverwenden, wie es auch schon vorher beim Circuit Bending
angeführt wurde. Mit der aktuellen Flut Tausender billiger Spielzeuge aus
China kann man auf schnelle Weise kleine Ideen mit beispielsweise wenigen
Spielzeugkatzen, die Geräusche von sich geben, und einigen Laserschwer-
tern umsetzen. Ich habe das einige Jahre lang getan, um meinen Studenten
zu zeigen, dass Technologie nichts Furchteinflößendes hat und auch nicht
schwer zu begreifen ist. Eine meiner liebsten Quellen ist das Buch Low Tech
Sensors and Actuators von Usman Haque und Adam Somlai-Fischer
(http://lowtech.propositions.org.uk). Ich denke, dass besagte Technik in
diesem Handbuch perfekt beschrieben wurde, und ich verwende sie schon
seit jeher.

Die Philosophie von Arduino 15

http://lowtech.propositions.org.uk

Kooperation

Die Kooperation von Nutzern ist eines der Schlüsselprinzipien der Ardui-
no-Welt – über das entsprechende Forum unter http://www.arduino.cc
helfen sich Menschen aus aller Welt gegenseitig beim Erkunden der Platt-
form. Das Arduino-Team ermutigt Menschen dazu, auf lokaler Ebene
zusammenzuarbeiten, hilft ihnen aber auch dabei, Benutzergruppen in
jeder Stadt, die sie besuchen, zu gründen. Wir haben auch einen , wie er bei
Wiki genannt wird, Playground eingerichtet (http://www.arduino.cc/
playground), auf dem Benutzer ihre Erkenntnisse dokumentieren können.
Es ist wirklich erstaunlich, wie viele Informationen diese Leute im Web
bereitstellen, sodass sie sich jeder zunutze machen kann. Diese Kultur des
Teilens und gegenseitigen Helfens ist einer der Aspekte, der mich im
Hinblick auf Arduino am meisten mit Stolz erfüllt.

16 Die Philosophie von Arduino

http://www.arduino.cc
http://www.arduino.cc/­nohyp;playground
http://www.arduino.cc/playground
http://www.arduino.cc/­nohyp;playground

3/Die
Arduino-Plattform

Arduino besteht aus zwei Hauptteilen: dem Arduino-Board, d. h. der Hard-
ware, mit der man arbeitet, wenn man seine Objekte herstellt, und der
Arduino-IDE, also der Software, die man auf seinem Computer ausführt.
Mit der IDE kann man einen Sketch (ein kleines Computerprogramm)
erstellen, der dann auf das Arduino-Board übertragen wird. Der Sketch
übermittelt dem Board, was zu tun ist.

Es ist noch gar nicht lange her, da bedeutete die Arbeit mit Hardware das
Aufbauen von Schaltkreisen mit Hunderten von verschiedenen Kom-
ponenten mit seltsamen Namen wie Widerstand, Kondensator, Induktor,
Transistor usw. – und das von Grund auf.

Jeder Schaltkreis war für eine bestimmte Verwendung „verdrahtet“ und
Änderungen waren mit dem Zuschneiden von Verbindungsdrähten, dem
Herstellen von Lötverbindungen und weiteren Arbeitsschritten verbunden.

Mit dem Aufkommen von digitalen Technologien und Mikroprozessoren
wurden Funktionen, die vorher über eine entsprechende Verdrahtung im-
plementiert wurden, nun mittels Softwareprogrammen umgesetzt.

Software lässt sich leichter modifizieren als Hardware. Mit wenigen Tas-
tatureingaben kann die Logik eines Bauteils oder Geräts radikal geändert
werden und es können zwei oder drei Versionen mit demselben Zeitauf-
wand ausprobiert werden, der für das Löten von ein paar Widerständen
erforderlich wäre.

Die Arduino-Hardware
Beim Arduino-Board handelt es sich um ein kleines Mikrocontroller-Board,
d.h. einen kleinen Schaltkreis (das Board), der einen kompletten Computer
auf einem kleinen Chip (der Mikrocontroller) enthält. Dieser Computer
verfügt über eine tausendfach geringere Leistungsfähigkeit als das
MacBook, mit dem ich dieses Buch schreibe, ist aber wesentlich billiger
und sehr nützlich, wenn es darum geht, interessante Geräte herzustellen.
Schauen Sie sich Ihr Arduino-Board einmal an: Sie können einen Chip mit

Die Arduino-Plattform 17

28 Beinchen erkennen – dieser Chip ist vom Typ ATmega328 und das
Herzstück Ihres Boards.

Wir (das Arduino-Team) haben auf diesem Board alle Komponenten plat-
ziert, die ein Mikrocontroller für eine einwandfreie Funktionsweise und für
die Kommunikation mit dem Computer benötigt. Es gibt viele Versionen
dieses Boards; wir werden im gesamten Buch Arduino Uno verwenden, das
im Hinblick auf seine Handhabung am einfachsten ist und auf dem man am
besten lernen kann. Die Anweisungen gelten für frühere Versionen des
Boards, einschließlich des Arduino Duemilanove von 2009. Abbildung 3-1
zeigt das Arduino Uno; in Abbildung 3-2 ist das Arduino Duemilanove
dargestellt.

In beiden Abbildungen sehen Sie das Arduino-Board. Auf den ersten Blick
sind all diese Anschlüsse möglicherweise ein wenig verwirrend. Hier eine
Erläuterung der Funktion eines jeden Elements auf dem Board:

14 digitale I/O-Pins (Pins 0-13)
Hierbei kann es sich um Eingangs- oder Ausgangspins handeln, abhängig
davon, wie sie im betreffenden Sketch definiert wurden.

6 analoge In-Pins (Pins 0-5)
Diese dedizierten analogen Eingangspins übernehmen analoge Werte (z.B.
elektrische Spannung, die von einem Sensor gemessen und dann ausgelesen
wurde) und wandeln sie in eine Zahl zwischen 0 und 1023 um.

6 analoge Ausgangspins (Pin 3,5,6,9,10 und 11)
Hierbei handelt es sich eigentlich um sechs der digitalen Pins, die mittels
eines Sketches, den Sie in der IDE erstellen, als analoge Ausgangspins
programmiert werden können.

Das Board kann mit dem USB-Anschluss Ihres Computers (meistens sind
das USB-Stecker) oder einem AC-Adapter (9 Volt, 2,1-mm-Klinkenstecker,
Zentrum positiv) mit Strom versorgt werden. Wenn keine Verbindung zur
Steckdose besteht, erfolgt die Stromzufuhr über das USB-Board. Sobald
aber eine Verbindung zur Steckdose hergestellt wird, wird sie auch auto-
matisch vom Board genutzt.

Hinweis: Wenn Sie das ältere Arduino-NG oder Arduino Diecimila nut-
zen, müssen Sie den Power Selection Jumper (auf dem Board mit
PWR_Sel gekennzeichnet) für eine entsprechende Stromversorgung
entweder auf EXT (extern) oder USB einstellen. Den Jumper finden Sie
zwischen dem Anschluss für den AC-Adapter und dem USB-Anschluss.

18 Die Arduino-Plattform

Abbildung 3-1.

Das Arduino Uno-Board

Abbildung 3-2.

Das Arduino Duemilanove-Board

Die Arduino-Plattform 19

Die Software (IDE)
Die IDE (Integrierte Entwicklungsumgebung) ist ein spezielles Programm,
das auf Ihrem Computer ausgeführt wird und Ihnen ermöglicht, Sketches
für Ihr Arduino-Board in einer einfachen Sprache zu schreiben, die auf der
Sprache Processing (http://www.processing.org) basiert. Die Magie of-
fenbahrt sich, wenn Sie die entsprechende Schaltfläche drücken, um den
Sketch auf das Board zu laden: Der Code, den Sie geschrieben haben, wird
in die Sprache C übersetzt (die im Allgemeinen für einen Anfänger recht
schwierig zu verstehen ist) und dann zum avr-gcc-Compiler übertragen,
bei dem es sich um einen sehr wichtigen Bestandteil von Open-Source-
Software handelt und der die endgültige Übersetzung in die Sprache, die
vom Mikrocontroller verstanden wird, vornimmt. Dieser letzte Schritt ist
sehr wichtig, da genau an dieser Stelle Arduino die Sache erheblich
erleichtert, indem die Komplexität, die mit der Programmierung von Mi-
krocontrollern verbunden ist, in größtmöglichem Maße ausgeblendet wird.

Die Programmierung von Arduino umfasst folgende Schritte:

» Das Board an einen USB-Anschluss Ihres Computers anschließen.

» Einen Sketch schreiben, der dem Board Leben einhaucht.

» Den Sketch über die USB-Verbindung auf Ihr Board laden und einige
Sekunden auf den Restart des Boards warten.

» Das Board führt den von Ihnen geschriebenen Sketch aus.

Hinweis: Die Installation unter Linux ist zum Zeitpunkt der Entstehung
dieses Buches sehr kompliziert. Entsprechende Anweisungen finden Sie
unter http://www.arduino.cc/playground/Learning/Linux.

Die Installation von Arduino auf dem Computer
Um das Arduino-Board zu programmieren, müssen Sie zunächst die Ent-
wicklungsumgebung (die IDE) herunterladen. Diese finden Sie unter
http://www.arduino.cc/en/Main/Software. Wählen Sie die für Ihr Be-
triebssystem passende Version.

Laden Sie die Datei herunter und öffnen Sie sie mit einem Doppelklick.
Daraufhin wird ein Ordner mit dem Namen arduino-[Version] erstellt, z.B.
arduino-1.0. Ziehen Sie den Ordner an die gewünschte Stelle, z.B. auf die
Benutzeroberfläche, in den Ordner Program Files (unter Windows) usw.

20 Die Arduino-Plattform

http://www.processing.org
http://www.arduino.cc/playground/Learning/Linux
http://www.arduino.cc/en/Main/Software

Auf einem Mac wird durch den Doppelklick ein Diskettensymbol mit einer
Arduino-Anwendung aufgerufen (ziehen Sie es in den Ordner Applications).
Wenn Sie nun die Arduino-IDE ausführen möchten, öffnen Sie hierzu den
Ordner arduino (Windows oder Linux) oder den Ordner Applications (Mac)
und fahren dann mit einem Doppelklick auf das Arduino-Symbol fort.
Führen Sie dies aber an dieser Stelle noch nicht aus, weil noch ein weiterer
Schritt erforderlich ist.

Hinweis: Falls Probleme bei der Ausführung der Arduino-IDE auftreten,
schauen Sie sich das Kapitel 7 an.

Nun müssen Sie die Treiber installieren, die Ihrem Computer ermöglichen,
via USB-Anschluss mit Ihrem Board zu kommunizieren.

Installation der Treiber unter Macintosh
Wenn das Arduino Uno mit einem Mac betrieben wird, werden die vom
Betriebssystem bereitgestellten Treiber verwendet. Die Prozedur ist also
recht simpel. Sie müssen einfach das Board an den Computer anschließen.

Das PWR-Lämpchen sollte nun leuchten und die gelbe LED mit der Bezeich-
nung L sollte zu blinken beginnen.

Möglicherweise wird Ihnen ein Popup-Fenster angezeigt, das Sie darüber
informiert, dass eine neue Netzwerkschnittstelle gefunden wurde.

Klicken Sie in diesem Fall auf Network Preferences und im dann aufgeru-
fenen Dialogfenster auf Apply. Das Uno-Board wird als Not Configured
angezeigt, es funktioniert aber einwandfrei. Schließen Sie dann das Fenster
System Preferences.

Falls Sie ein älteres Arduino-Board besitzen, finden Sie hier entsprechende
Anweisungen: http://www.arduino.cc/en/Guide/MacOSX.

Falls das Arduino-Board nicht funktioniert, schauen Sie sich das Kapitel 7
an.

Installation der Treiber unter Windows
Schließen Sie das Arduino-Board an Ihrem Computer an. Wenn der Found
New Hardware-Wizard angezeigt wird, versucht Windows, die Treiber zu-
nächst auf der Windows Update-Seite zu finden.

Die Arduino-Plattform 21

http://www.arduino.cc/en/Guide/MacOSX

Bei Windows XP werden Sie gefragt, ob Windows Update durchsucht
werden soll. Wenn Sie Windows Update nicht nutzen möchten, wählen Sie
die Option No, not at this time aus und klicken Sie auf Next.

Wählen Sie im nächsten Bildschirm Install from a list or specific location
aus und klicken Sie auf Next.

Navigieren Sie zur Treiberdatei für das Uno-Board, die ArduinoUNO.inf
heißt und sich im Ordner Drivers (nicht zu verwechseln mit dem Unter-
verzeichnis FTDI USB Drivers) der heruntergeladenen Arduino-Software
befindet, und wählen Sie sie hier entsprechend aus. Von da an wird Win-
dows die Installation zu Ende bringen.

Falls Sie ein älteres Board haben, finden Sie hier entsprechende Anwei-
sungen: http://www.arduino.cc/en/Guide/Windows.

Sobald die Treiber installiert sind, kann die Arduino-IDE gestartet und
Arduino genutzt werden.

Als Nächstes müssen Sie herausfinden, welcher serielle Anschluss Ihrem
Arduino-Board zugewiesen ist – diese Information ist für dessen spätere
Programmierung erforderlich. Wie Sie an diese Informationen gelangen,
wird in den folgenden Abschnitten beschrieben.

22 Die Arduino-Plattform

http://www.arduino.cc/en/Guide/Windows

Port-Identifikation unter Macintosh
Wählen Sie im Menü Tools der Arduino-IDE die Option Serial Port und hier
den Anschluss, der mit /dev/cu.usbmodem beginnt, aus. Mit diesem
Namen referenziert Ihr Computer das Arduino-Board. In Abbildung 3-3
wird eine Liste von Anschlüssen gezeigt.

Abbildung 3-3.

Die Liste der seriellen Anschlüsse in der Arduino-IDE

Port-Identifikation unter Windows
Unter Windows ist der Prozess ein wenig komplizierter – zumindest am
Anfang. Rufen Sie den Device Manager auf, indem Sie im Menü Start mit
der rechten Maustaste auf Computer (Vista) oder My Computer (XP)
klicken und dann Properties auswählen. Klicken Sie unter Vista dann auf
Device Manager (auf der linken Seite des Fensters wird dann eine Liste mit
allen Features angezeigt).

Das Arduino-Board ist unter Ports (COM & LPT) aufgelistet. Es wird hier als
Arduino UNO angezeigt und wird einen Namen wie beispielsweise COM7
aufweisen, wie es in Abbildung 3-4 zu sehen ist.

Die Arduino-Plattform 23

Abbildung 3-4.

Im Windows Device Manager werden alle verfügbaren seriellen Anschlüsse ange-
zeigt

Hinweis: Auf einigen Windows-Computern weist der COM-Anschluss
eine Nummer auf, die größer als 9 ist. Diese Nummerierung führt zu
einigen Problemen, wenn Arduino versucht, mit ihnen zu kommunizie-
ren. Eine entsprechende Hilfestellung findeen Sie im Kapitel 7.

Wenn Sie die Zuweisung für den COM-Anschluss ermittelt haben, können
Sie diesen Anschluss über Tools → Serial Port in der Arduino-IDE auswäh-
len.

Nun können Sie über die Arduino-Entwicklungsumgebung mit dem Ardui-
no-Board kommunizieren und es programmieren.

24 Die Arduino-Plattform

4/Die ersten Schritte
mit Arduino

Als Nächstes werden Sie erfahren, wie Sie ein interaktives Gerät bauen und
programmieren können.

Der Aufbau eines interaktiven Geräts
Alle Objekte, die wir bauen werden, basieren auf einem simplen Muster, das
wir Interactive Device nennen. Hierbei handelt es sich um elektronische
Schaltungen, die mithilfe von Sensoren (elektronische Komponenten, die
Messwerte aus der realen Welt in elektrische Signale umwandeln) die
Umgebung erfassen. Das Gerät verarbeitet die Daten, die von den Senso-
ren geliefert werden, mittels eines Verhaltens, das als Software implemen-
tiert wird. Das Gerät ist dann in der Lage, mithilfe von Aktoren, das sind
elektronische Komponenten, die ein elektrisches Signal in physikalisches
Verhalten umwandeln können, mit der Welt zu interagieren.

Abbildung 4-1.

Das interaktive Gerät

Die ersten Schritte mit Arduino 25

Sensoren und Aktoren
Sensoren und Aktoren sind elektronische Komponenten, mit deren Hilfe
eine elektronische Komponente mit der Umwelt interagieren kann.

Da es sich bei einem Mikrocontroller um einen sehr einfachen Computer
handelt, kann er nur elektrische Signale verarbeiten (ähnlich wie bei elek-
trischen Impulsen, die zwischen den Neuronen unseres Gehirns übertragen
werden). Um Licht, Temperatur oder andere physikalische Größen erfas-
sen zu können, müssen diese in Elektrizität umgewandelt werden. In
unserem Körper wandelt das Auge Licht in Signale um, die mittels der
Nerven an das Gehirn weitergeleitet werden. In der Elektronik können wird
dazu ein spezielles Bauteil verwenden, nämlich einen lichtabhängigen Wi-
derstand (einen LDR oder einen Fotowiderstand), der die auftreffende
Lichtmenge messen und als Signal, das der Mikrocontroller versteht, wie-
dergeben kann.

Wenn die Sensoren ausgelesen wurden, verfügt das Gerät über die Infor-
mationen, die erforderlich sind, um zu entscheiden, wie es reagieren soll.
Der Prozess der Entscheidungsfindung wird vom Mikrocontroller abge-
wickelt, und die Reaktion erfolgt über die Aktoren. In unserem Körper
beispielsweise erhalten die Muskeln elektrische Signale vom Gehirn, die sie
dann in Bewegung umsetzen. Im Bereich der Elektronik könnten diese
Funktionen z.B. durch Licht oder einen elektrischen Motor ausgeführt
werden.

In den folgenden Abschnitten werden Sie erfahren, wie unterschiedliche
Typen von Sensoren ausgelesen und unterschiedliche Arten von Aktoren
gesteuert werden.

Eine LED zum Blinken bringen
Der Sketch, mit dem eine LED zum Blinken gebracht wird, ist der erste
Sketch, den Sie ausführen sollten, um zu testen, ob Ihr Board einwandfrei
arbeitet und richtig konfiguriert ist. Dies ist üblicherweise auch die erste
Übung für das Programmieren eines Mikrocontrollers. Eine Leuchtdiode
(LED) ist eine kleine elektronische Komponente, die einer kleinen Glühbirne
ähnelt, jedoch effektiver ist und eine geringere Betriebsspannung benötigt.

Ihr Arduino-Board wird mit einer vorinstallierten LED geliefert. Diese ist mit
einem L gekennzeichnet. Sie können auch Ihre eigene LED hinzufügen.
Schließen Sie sie so an, wie es in Abbildung 4-2 dargestellt ist.

26 Die ersten Schritte mit Arduino

Hinweis: Wenn die LED über eine längere Zeitdauer leuchten soll, sollten
Sie einen Widerstand verwenden, wie auf Seite 54 beschrieben wird.

K kennzeichnet die Kathode (negativ) oder den kürzeren Anschluss, A die
Anode (positiv) oder den längeren Anschluss.

Abbildung 4-2.

Anschließen einer LED an das Arduino-Board

Wenn die LED angeschlossen ist, muss Arduino mitgeteilt werden, was zu
tun ist. Dies erfolgt mithilfe von Code, einer Liste von Anweisungen, die wir
wiederum dem Mikrocontroller übermitteln und mit der wir ihn dazu brin-
gen, das zu tun, was wir möchten.

Öffnen Sie auf Ihrem Computer den Ordner, in den Sie die Arduino-IDE
kopiert haben. Starten Sie die IDE mit einem Doppelklick auf das entspre-
chende Symbol. Wählen Sie File → New aus. Sie werden nun aufgefordert,

Die ersten Schritte mit Arduino 27

einen Ordnernamen für den Sketch anzugeben. Hier wird der Sketch dann
gespeichert. Nennen Sie ihn Blinking_LED und klicken Sie auf OK. Geben
Sie dann die folgenden Zeilen (Beispiel 4-1) in den Sketch-Editor von
Arduino (das Hauptfenster der Arduino-IDE) ein. Sie können den Code
auch unter http://www.makezine.com/getstartedarduino herunter-
laden. Er sollte wie in Abbildung 4-3 aussehen.

// Beispiel 4-1: blinking_led

const int LED = 13; // LED connected to

// digital pin 13

void setup()

{

pinMode(LED, OUTPUT); // sets the digital

// pin as output

}

void loop()

{

digitalWrite(LED, HIGH); // turns the LED on

delay(1000); // waits for a second

digitalWrite(LED, LOW); // turns the LED off

delay(1000); // waits for a second

}

28 Die ersten Schritte mit Arduino

http://www.makezine.com/getstartedarduino

Abbildung 4-3.

Die Arduino-IDE mit dem ersten geladenen Sketch

Nun, da sich der Code in Ihrer IDE befindet, müssen Sie ihn auf Fehler
überprüfen. Klicken Sie auf die Schaltfläche Verify (Abbildung 4-3 zeigt, wo
sie sich befindet); wenn alles korrekt ist, wird die Nachricht Done compiling
am unteren Rand der Arduino-IDE angezeigt. Diese Nachricht bedeutet,
dass die Arduino-IDE Ihren Sketch in ein ausführbares Programm über-
setzt hat, das auf Ihrem Board ausgeführt werden kann, ähnlich wie das bei
einer .exe-Datei unter Windows oder bei einer .app-Datei unter Mac der Fall
ist.

Die ersten Schritte mit Arduino 29

Nun können Sie Ihren Sketch in Ihr Board laden: Klicken Sie auf die Schalt-
fläche Upload to I/O Board (siehe Abbildung 4-3). Dadurch wird das Board
zurückgesetzt und alle laufenden Prozesse werden beendet. Das Board
wartet nun auf Instruktionen, die vom USB-Port kommen. Die Arduino-IDE
sendet den aktuellen Sketch zum Board, das ihn wiederum speichert und
schließlich ausführt.

Sie werden einige Nachrichten im schwarzen Bereich am unteren Rand des
Fensters sehen, und genau über diesem Bereich die Meldung Done uploa-
ding, mit der Sie darüber informiert werden, dass der Prozess erfolgreich
abgeschlossen wurde. Es sind zwei LEDs mit den Bezeichnungen RX und
TX auf dem Board vorhanden. Diese flackern jedes Mal auf, wenn ein Byte
vom Board geschickt oder empfangen wird. Während des Upload-Prozes-
ses flackern sie kontinuierlich.

Falls Sie kein Flackern der LEDs erkennen können oder anstelle der Nach-
richt Done Uploading eine Fehlermeldung erhalten, besteht ein Kommuni-
kationsproblem zwischen Ihrem Computer und Arduino. Vergewissern Sie
sich, dass Sie den richtigen seriellen Anschluss (siehe Kapitel 3) unter
Tools > Serial Port ausgewählt haben. Überprüfen Sie außerdem, ob unter
Tools > Board das richtige Arduino-Modell ausgewählt wurde.

Wenn weiterhin Probleme bestehen, schauen Sie sich das Kapitel 7 an.

Sobald der Code auf Ihr Arduino-Board übertragen wurde, verbleibt er dort,
bis Sie ihn mit einem anderen Sketch überschreiben. Der Code bleibt
gespeichert, wenn Sie beim Board einen Reset duchführen oder es aus-
schalten, ähnlich wie bei den Daten auf Ihrer Computerfestplatte.

Wenn der Sketch korrekt geladen wurde, wird die LED L für eine Sekunde
aufleuchten und dann für eine Sekunde dunkel bleiben. Wenn Sie eine
sepatate LED installiert haben, wie vorher in Abbildung 4-6 zu sehen ist,
wird auch diese LED blinken. Das, was Sie geschrieben haben, ist ein
Computerprogramm oder auch Sketch, wie ein Arduino-Programm ge-
nannt wird. Wie schon erwähnt handelt es sich bei Arduino um einen
kleinen Computer, der sich nach Bedarf programmieren lässt. Dazu wird
eine Programmiersprache verwendet, um eine Serie von Anweisungen in
die Arduino-IDE einzugeben, die diese dann so umwandelt, dass sie vom
Arduino-Board ausgeführt werden können.

Als Nächstes möchte ich Ihnen ein Veständnis des Codes vermitteln.
Zunächst ist zu erwähnen, dass Arduino den Code von oben nach unten
ausführt. Die erste Zeile zuoberst ist also die, die zuerst gelesen wird. Dann
wird der Prozess nach unten fortgesetzt. Dies erinnert ein wenig an die

30 Die ersten Schritte mit Arduino

Statusanzeige bei einem Video-Player, z.B. Quick Time Player oder Win-
dows Media Player, bei dem die Statusanzeige allerdings nicht von oben
nach unten, sondern von links nach rechts verläuft um anzuzeigen, wo im
Film Sie sich gerade befinden.

Reich mir den Parmesan
Achten Sie auf die geschweiften Klammern, die dazu dienen, Codezeilen
zusammenzufassen. Diese sind besonders dann sehr nützlich, wenn Sie
eine Gruppe von Anweisungen mit einem Namen versehen möchten. Mit
der Aufforderung „Bitte reich mit den Parmesan!“ beim Abendessen bei-
spielsweise werden eine Reihe von Aktionen angestoßen, die in diesem
kleinen Satz zusammengefasst sind. Weil wir Menschen sind, erfassen wir
das ganz selbstverständlich, bei Arduino hingegen müssen alle einzelnen
kleinen Aktionen ausformuliert werden, weil die Plattform nicht so leis-
tungsfähig wie unser Gehirn ist. Um also eine Anzahl von Anweisungen in
einer Gruppe zusammenzufassen, platzieren Sie ein { vor dem Code und
ein } hinter dem Code.

Sie sehen, dass in unserem Beispiel zwei Blöcke auf diese Weise definiert
wurden. Vor jedem dieser Blöcke ist ein merkwürdiger Befehl angeführt:

void

setup()

Mit dieser Zeile wird dem Codeblock ein Name zugewiesen. Wenn Sie eine
Liste von Anweisungen schreiben würden, die Arduino beibringen, Ihnen
den Parmesankäse zu reichen, würden Sie void passTheParmesan() am
Anfang des Blocks schreiben, und dieser Block würde zu einer Anweisung,
die Sie von jeder beliebigen Stelle im Arduino-Code aus aufrufen könnten.
Solche Blöcke werden als Funktionen bezeichnet. Wenn Sie also anschlie-
ßend passTheParmesan() irgendwo im Code schreiben, wird Arduino die
betreffenden Anweisungen ausführen und dann an der Stelle fortfahren, an
der der Code vor den Anweisungen verlassen wurde.

Arduino ist nichts für Zögerliche
Bei Arduino wird das Vorhandensein von zwei Anweisungen erwartet – die
eine heißt setup() und die andere loop().

setup() ist die Funktion, in der all der Code untergebracht wird, der zu
Beginn des Programms ausgeführt werden soll, und loop() enthält das
Kernstück des Programms, das kontinuierlich immer wieder ausgeführt
wird. Dies liegt darin begründet, dass Arduino sich nicht wie ein normaler
Computer verhält – es können nicht mehrere Programme gleichzeitig

Die ersten Schritte mit Arduino 31

ausgeführt werden, und es ist auch nicht möglich, ein Programm abzubre-
chen. Wenn das Board an eine Stromversorgung angeschlossen ist, wird
der Code ausgeführt. Wenn Sie die Ausführung beenden möchten, Sie dazu
einfach das Board ausschalten.

Wirkliche Tüftler schreiben Kommentare
Jeglicher Text, der mit // beginnt, wird von Arduino ignoriert. Diese Zeilen
sind Kommentare, die Sie für sich selbst im Programm hinterlassen, um
sich daran zu erinnern, was Sie mit dem Code bezweckt haben, oder die Sie
für andere schreiben, damit sie den Code verstehen.

Es ist sehr üblich (und ich weiß das, weil ich es ständig tue), einen Code-
abschnitt zu schreiben, ihn auf das Board zu laden und sich dann zu sagen:
„Okay, diesen Kram werde ich nie wieder anfassen!!“, nur um sechs
Monate später festzustellen, dass der Code aktualisiert werden muss oder
noch ein Fehler zu beheben ist. Sie werden sich den Code anzeigen lassen,
und wenn Sie dann keine entsprechenden Kommentare in Ihrem ur-
sprünglichen Programm eingefügt haben, werden Sie sehr schnell denken:
„Oh Mann, was für ein Chaos! Wo fange ich denn da bloß an?“ Wenn wir in
diesem Buch weiter voranschreiten, werden Sie noch einige Tricks ken-
nenlernen, wie Sie Ihr Programm besser lesbar und einfacher im Hinblick
auf die Wartung gestalten.

Der Code – Schritt für Schritt
Womöglich wird Ihnen diese Art von Erläuterung ein wenig überflüssig
vorkommen, ähnlich wie in meiner Schulzeit, als ich Dantes Göttliche
Komödie lesen musste (jeder italienische Schüler muss sie durcharbeiten,
genauso wie ein anderes Buch mit dem Titel Die Brautleute oder The
Betrothed – oh, was für ein Albtraum). Für jede Textzeile gab es hundert
Zeilen an Kommentar. Wenn Sie allerdings damit beginnen, eigene Pro-
gramme zu schreiben, sind solche Erläuterungen wesentlich nützlicher.

// Example 01 : Blinking LED

Ein Kommentar ist eine hilfreiche Möglichkeit, kleine Hinweise anzuführen.
Der vorangestellte Titelkommentar erinnert uns daran, dass dieses Pro-
gramm, Beispiel 4-1, eine LED zum Blinken bringt.

const int LED = 13; // LED connected to

// digital pin 13

const int bedeutet, dass es sich bei LED um eine Ganzzahl handelt, die nicht
geändert werden kann (d.h. sie ist eine Konstante) und für die der Wert 13
festgelegt wurde. Das ist vergleichbar mit einem automatischen Suchen-

32 Die ersten Schritte mit Arduino

und-Ersetzen-Vorgang im Code. In unserem Fall wird Arduino angewiesen,
jedes Mal, wenn das Wort LED erscheint, die Zahl 13 zu schreiben. Der
Befehl wird hier verwendet um festzulegen, dass die LED, die wir zum
Blinken bringen, an Pin 13 des Arduino-Boards angeschlossen ist.

void setup()

Mit dieser Zeile wird Arduino mitgeteilt, dass der nächste Codeblock
setup() heißt.

{

Mit der öffnenden geschweiften Klammer wird ein Codeblock eingeleitet.

pinMode(LED, OUTPUT); // sets the digital

// pin as output

Endlich, eine wirklich interessante Anweisung. pinMode teilt Arduino mit,
wie ein bestimmter Pin konfiguriert werden soll. Digitale Pins können
entweder als INPUT oder OUTPUT verwendet werden. In unserem Beispiel
benötigen wir einen Ausgangspin, um die LED zu steuern, daher fügen wir
die Pinnummer und den „Verwendungszweck“ in Klammern an.

pinMode ist eine Funktion, und die in ihr angegebenen Wörter (oder Zahlen)
sind Argumente . INPUT und OUTPUT werden in der Arduino-Sprache als
Konstanten bezeichnet. (Wie Variablen werden auch Konstanten Werte
zugewiesen, wobei aber die Werte von Konstanten vordefiniert sind und
sich niemals ändern.)

}

Die schließende geschweifte Klammer zeigt das Ende der setup()-Funktion
an.

void loop()

{

In loop() wird das hauptsächliche Verhalten des interaktiven Geräts fest-
gelegt. Die Funktion wird immer weiter wiederholt, und zwar so lange, bis
Sie das Board ausschalten.

digitalWrite(LED, HIGH); // turns the LED on

Wie der Kommentar schon besagt ist digitalWrite() in der Lage, jeden Pin,
der als OUTPUT konfiguriert wurde, ein- oder auszuschalten. Das erste
Argument (in unserem Beispiel LED) gibt an, welcher Pin ein- oder aus-
geschaltet werden soll (erinnern Sie sich daran, dass es sich bei LED um
einen konstanten Wert handelt, der auf Pin 13 verweist, dies ist also der Pin,

Die ersten Schritte mit Arduino 33

der entsprechend geschaltet wird). Mit dem zweiten Argument wird der Pin
eingeschaltet (HIGH) oder ausgeschaltet (LOW).

Stellen Sie sich vor, dass der Ausgangspin eine kleine Steckdose ist, wie die
in den Wänden Ihrer Wohnung. Europäische Steckdosen liefern 230 Volt,
amerikanische 110 Volt und Arduino arbeitet mit gemäßigten 5 Volt. Die
Magie offenbart sich hier, wenn die Software zur Hardware wird. Wenn Sie
digitalWrite(LED, HIGH) schreiben, wird der Ausgangspin auf 5 V gesetzt.
Schließen Sie dann die LED an, leuchtet sie. An dieser Stelle im Code
bewirkt eine Anweisung in der Software eine Reaktion in der physikalischen
Welt, indem der Stromfluss zum Pin gesteuert wird. Das Ein- und Aus-
schalten des Pins lässt sich in etwas für den Menschen besser Sichtbares
übertragen; die LED ist unser Aktator.

delay(1000); // waits for a second

Arduino hat eine sehr elementare Struktur. Wenn Sie daher möchten, dass
irgendetwas mit einer bestimmten Regelmäßigkeit erfolgen soll, weisen Sie
Arduino an, sich ruhig zu verhalten und nichts zu tun, bis es an der Zeit ist,
mit dem nächsten Schritt fortzufahren. Mit delay() weisen Sie im Grunde
genommen den Prozessor an zu pausieren und nichts zu tun, und zwar für
die Zeitdauer in Millisekunden, die Sie als Argument übergeben. Eine Milli-
sekunde ist ein Tausendstel einer Sekunde, also sind 1000 Millisekunden
eine Sekunde. In unserem Beispiel wird die LED also eine Sekunde lang
leuchten.

digitalWrite(LED, LOW); // turns the LED off

Mit dieser Anweisung wird die LED, die wir vorher eingeschaltet haben,
ausgeschaltet. Warum verwenden wir eigentlich HIGH oder LOW? Nun, es
handelt sich um eine alte Konvention in der digitalen Elektronik. HIGH
bedeutet, dass der Pin eingeschaltet ist, was im Falle von Arduino bedeutet,
dass er auf 5 V gesetzt ist. Bei LOW ist er auf 0 V gesetzt. Sie können diese
beiden Argumente mental einfach durch EIN und AUS ersetzen.

delay(1000); // waits for a second

An dieser Stelle bauen wir eine weitere Verzögerung von einer Sekunde ein.
Die LED bleibt eine Sekunde lang ausgeschaltet.

}

Die schließende geschweifte Klammer zeigt das Ende der loop-Funktion an.

34 Die ersten Schritte mit Arduino

Zusammengefasst tut das Programm Folgendes:

» Pin 13 wird als Ausgangspin definiert (nur ein Mal zu Beginn).

» Es erfolgt der Eintritt in eine Schleife.

» Die LED, die mit Pin 13 verbunden ist, wird eingeschaltet.

» Es folgt eine Wartezeit von einer Sekunde.

» Die LED, die mit Pin 13 verbunden ist, wird ausgeschaltet.

» Es folgt eine Wartezeit von einer Sekunde.

» Es wird ein Sprung zurück an den Anfang der Schleife durchgeführt.

Ich hoffe, dass Ihnen dieser Code noch keine allzu großen Kopfschmerzen
bereitet hat. Sie werden in den späteren Beispielen noch mehr zum Thema
Programmierung erfahren.

Bevor wir zum nächsten Abschnitt kommen, wollen wir noch ein wenig mit
dem Code spielen. Wir könnten zum Beispiel die Anzahl der Verzögerungen
reduzieren und dabei verschiedene Zahlen für die Ein- und Ausphasen
verwenden, sodass wir unterschiedliche Blinkmuster beobachten können.
Insbesondere sollten Sie darauf achten, was geschieht, wenn die Verzöge-
rungen sehr klein sind und sich bei den Ein- und Ausphasen unterscheiden ...
Sie können dabei nämlich für einen Moment etwas beobachten, das später
in diesem Buch, wenn wir zum Stichwort Pulsweitenmodulation kommen,
noch sehr nützlich sein wird.

Was wir bauen werden
Ich war immer fasziniert von Licht und der Möglichkeit, verschiedene
Lichtquellen mittels Technologie zu steuern. Ich hatte das Gück, an einigen
interessanten Projekten zu arbeiten, die damit befasst waren, Licht zu
steuern und es mit lebenden Personen interagieren zu lassen. Arduino
bietet diesbezüglich wirklich gute Möglichkeiten. Im gesamten Buch wer-
den wir uns damit befassen, wie sich „interaktive Lampen“ herstellen
lassen. Anhand von Arduino, das wir hier verwenden, werden wir die
Grundlagen kennenlernen, die erforderlich sind, um interaktive Geräte zu
bauen.

Im nächsten Abschnitt werde ich versuchen, die Grundlagen der Elektrizität
auf eine Art und Weise zu erläutern, die zwar einen Ingenieur sicherlich

Die ersten Schritte mit Arduino 35

langweilen würde, aber dafür auch einen neuen Arduino-Programmierer
nicht sofort abschreckt.

Was ist Elektrizität?
Wenn Sie zu Hause schon mal Klempnerarbeiten durchgeführt haben,
werden Sie in puncto Elektronik keine Verständnisschwierigkeiten haben.
Der beste Weg zu vermitteln, wie Elektrizität und elektrische Schaltungen
funktionieren, ist die Wasseranalogie. Nehmen wir ein einfaches Gerät wie
den batteriebetriebenen, tragbaren Ventilator, der in Abbildung 4-4 gezeigt
wird.

Abbildung 4-4.

Ein portabler Ventilator

36 Die ersten Schritte mit Arduino

Wenn Sie den Ventilator auseinanderbauen, werden Sie sehen, dass er eine
kleine Batterie, einige Drähte und einen elektrischen Motor enthält, und
dass einer der Drähte, die zum Motor führen, durch einen Schalter unter-
brochen ist. Wenn die Batterie voll ist und Sie den Schalter betätigen und
den Motor einschalten, beginnt dieser, sich zu drehen, und sorgt so für die
nötige Abkühlung. Wie funktioniert das? Stellen Sie sich einfach vor, die
Batterie sei zugleich ein Wasserreservoir und eine Pumpe, der Schalter ein
Ventil und der Motor eines von diesen Wasserrädern, die Sie sicher schon
bei Windmühlen gesehen haben. Wenn Sie das Ventil öffnen, fließt das
Wasser von der Pumpe zum Waserrad und treibt es an.

Bei diesem einfachen Beispiel, das in Abbildung 4-5 dargestellt ist, sind
zwei Faktoren wichtig: der Wasserdruck (der von der Leistung der Pumpe
bestimmt wird) und die Wassermenge, die durch die Leitung fließt (die vom
Durchmesser der Leitung und vom Widerstand, den das Wasserrad dem
auftreffenden Wasserstrom entgegesetzt, abhängt).

Abbildung 4-5.

Ein Hydrauliksystem

Sie werden schnell bemerken, dass zur Erhöhung der Drehgeschwindigkeit
des Rades erforderlich ist, den Durchmesser der Leitungen zu vergrößern
(was nur bis zu einem bestimmten Punkt funktioniert) und den Druck zu
erhöhen, der durch die Pumpe erzielt wird. Durch das Vergrößern des
Durchmessers der Leitungen kann mehr Wasser durch sie hindurchfließen.
Durch diesen größeren Durchmesser wird der Widerstand in Bezug auf den
Wasserdurchfluss verringert. Dieser Ansatz funktioniert bis zu einem be-
stimmten Punkt, ab dem sich das Rad nicht mehr schneller dreht, weil der
Wasserduck nicht ausreicht. Wenn dieser Punkt erreicht wurde, muss die
Pumpleistung erhöht werden. Diese Möglichkeit der Beschleunigung des

Die ersten Schritte mit Arduino 37

Wasserrades funkioniert so lange, bis das Rad wegen des zu starken
Wasserdrucks auseinanderbricht und zerstört wird. Ein anderer Aspekt,
der sich beobachten lässt, ist die Wärmeentwicklung an der Achse, die
entsteht, wenn sich das Rad dreht. Egal, wie gut das Wasserrad montiert
ist, durch die Reibung zwischen der Achse und der Vorrichtung, in der sie
montiert ist, wird Wärme erzeugt. Es ist wichtig zu verstehen, dass bei
einem System wie diesem nicht alle zugeführte Energie in Bewegung
umgewandelt wird, sondern ein Teil der Energie verloren geht. Diese zeigt
sich dann als Wärme, die von einzelnen Komponenten im System abge-
geben wird.

Was sind also die wichtigen Aspekte bei diesem System? Einer ist der
durch die Pumpe erzeugte Druck, die anderen sind der Widerstand, der
dem Wasserstrom durch die Leitung und das Wasserrad entgegengesetzt
wird, und der eigentliche Wasserdurchfluss (der dargestellt wird als die
Anzahl an Litern, die pro Sekunde fließt). Elektrizität funktioniert ein wenig
wie Wasser. Man hat eine Art Pumpe (jede Art von Energiequelle, z.B. eine
Batterie oder eine Steckdose in der Wand), die elektrische Ladungen (die
Sie sich am besten als kleine elektrische Tropfen vorstellen) durch Leitun-
gen drückt, die in Form von Drähten realisert sind – diese werden von
einigen Geräten verwendet, um Wärme zu produzieren (Großmutters
Heizdecke), Licht zu erzeugen (Ihre Nachttischlampe), Sound zu pro-
duzieren (Ihre Stereoanlage), Bewegung anzustoßen (unser Ventilator)
und für viele weitere Dinge.

Wenn Sie also auf einer Batterie die Angabe 9 V lesen, dann stellen Sie sich
diese elektrische Spannung einfach als Wasserdruck vor, der mittels einer
kleinen Pumpe erzeugt wird. Elektrische Spannung wird in Volt gemessen.
Diese Einheit wurde nach Alessandro Volta benannt, dem Erfinder der
ersten Batterie.

Wie der Wasserdruck hat auch die Durchflussmenge des Wassers ein
Äquivalent in der Elektrizität. Sie wird als Strom bezeichnet, der in Ampere
gemessen wird (nach André-Marie Ampère, einem Pionier des Elektro-
magnetismus). Das Verhältnis von elektrischer Spannung und Strom kann
wieder anhand des Beipiels mit dem Wasserrad veranschaulicht werden:
Ein höherer Wasserdruck (elektrische Spannung) bewirkt eine schnellere
Drehung des Rades, mit einer höheren Durchflussrate (Strom) lässt sich
ein größeres Rad antreiben.

Der Widerstand schließlich, der dem Stromfluss auf jedem Weg, den er
zurücklegt, entgegengesetzt wird, heißt, wie Sie bestimmt schon erraten
haben, auch in der Elektronik Widerstand und wird in Ohm gemessen (nach
einem deutschen Physiker). Herr Ohm formulierte auch das wichtigste

38 Die ersten Schritte mit Arduino

Gesetz in der Elektrizität – und die betreffende Formel ist auch die einzige,
die Sie sich wirklich merken müssen. Er konnte nachweisen, dass in jedem
Schaltkreis eine Beziehung zwischen Strom und Widerstand besteht, ge-
nauer gesagt, dass bei einer gegebenen Spannung die Strommenge, die
durch einen Schaltkreis fließt, vom vorhandenen Widerstand abhängt.

Bei genauerem Nachdenken ist das recht intuitiv zu verstehen. Schließen
Sie eine 9-V-Batterie an einen einfachen Schaltkreis an. Wenn Sie nun den
Strom messen, werden Sie feststellen, dass er umso geringer wird, je mehr
Widerstände Sie einbauen. Wenn wir nochmal auf das Beispiel mit dem
Wasserdurchfluss in den Leitungen zurückkommen, heißt das Folgendes:
Wenn Sie hier ein Ventil einbauen (das sich mit einem variablen Wider-
stand in der Elektrizität vergleichen lässt) und dieses Ventil immer weiter
schließen, erhöhen Sie den Widerstand in Bezug auf den Wasserdurchfluss
und es fließt immer weniger Wasser durch die Leitungen. Ohm hat dieses
Gesetz in folgender Formfel zusammengefasst:

R (Widerstand) = V (Spannung) / I (Strom)

V = R * I

I = V / R

Dies ist die einzige Regel, die Sie sich merken und anwenden können
müssen, weil sie die einzige ist, die Sie für Ihre Arbeit mit Arduino wirklich
brauchen.

Steuerung einer LED mit einem Drucktaster
Eine LED zum Blinken zu bringen, war recht einfach, aber ich glaube nicht,
dass Sie glücklich werden, wenn Ihre Nachttischlampe ständig blinkt,
während Sie versuchen, ein Buch zu lesen. Daher müssen Sie sie irgendwie
steuern können. In unserem vorherigen Beispiel war die LED ein Aktator,
der von Arduino gesteuert wurde. Was uns also fehlt, ist ein Sensor.

Für unser Beispiel verwenden wir die einfachste verfügbare Ausführung
eines Sensors: einen Drucktaster.

Wenn Sie einen Drucktaster in seine Einzelteile zerlegen würden, wäre
Ihnen sehr schnell klar, dass es sich um ein sehr einfaches Bauteil handelt.
Er besteht aus zwei Metallplättchen, die durch eine Feder voneinander
separiert werden, und einer Plastikkappe, die, wenn sie gedrückt wird, die
zwei Metallplättchen miteinander verbindet. Wenn keine Verbindung zwi-
schen den Metallplättchen besteht, erfolgt keine Stromzirkulation im
Drucktaster (ähnlich wie bei einem geschlossenen Ventil). Wenn Sie den
Taster aber drücken, stellen Sie eine Verbindung her.

Die ersten Schritte mit Arduino 39

Um den Status eines Schalters zu überwachen, möchte ich hier eine neue
Arduino-Anweisung einführen: die Funktion digitalRead().

digitalRead() überprüft, ob irgendeine Spannung an dem Pin anliegt, den
Sie in den runden Klammern angegeben haben, und gibt einfach den Wert
HIGH oder LOW zurück, je nachdem, was die Überprüfung ergeben hat. Die
anderen Anweisungen, die wir bisher verwendet haben, geben keinerlei
Informationen zurück – sie führen nur das aus, was wir von ihnen möchten.
Diese Art von Anweisungen ist aber ein wenig begrenzt, da wir bei einer
sehr leicht vorhersagbaren Abfolge von Anweisungen stehenbleiben, ohne
Input aus der sie umgebenden Welt. Mittels digitalRead() können wir an
Arduino eine Frage richten und wir erhalten eine Antwort, die wiederum
irgendwo gespeichert und sofort im Anschluss oder auch später zur Ent-
scheidungsfindung herangezogen wird.

Bauen Sie die Schaltung, die in Abbildung 4-6 dargestellt ist. Hierzu benö-
tigen Sie einige Bauteile (diese werden auch bei anderen Projekten nützlich
sein):

» Eine lötfreie Steckplatine: Maker Shed (http://www.makershed.com),
Teilnummer MKKN3, im Arduino Store (bit.ly/ArduinoStoreBread-
Board). Anhang A bietet eine Einführung zum Thema lötfreie Steck-
platinen.

» Einen Satz vorgefertigter Steckbrücken: Maker Shed MKKN4, Arduino
Store (sind im Lieferumfang der lötfreien Steckplatine enthalten).

» Einen 10-K-Ohm-Widerstand: Maker Shed JM691 104 (100er-Pack),
Arduino Store (bit.ly/ArduinoStore10k, 10er-Pack).

» Einen Drucktastschalter: Maker Shed JM119011, Arduino Store (bit.ly/
ArduinoStorePushButtons)

40 Die ersten Schritte mit Arduino

http://www.makershed.com

Abbildung 4-6.

Anschließen eines Drucktasters

Hinweis: Alternativ zum Kauf vorgefertigter Steckbrücken können Sie
auch festen Schaltdraht vom Typ 22 AWG, der auf kleinen Spulen
aufgewickelt ist, verwenden und ihn mit Drahtschneider und Abisolier-
zange abisolieren.

Die ersten Schritte mit Arduino 41

Werfen wir nun einen Blick auf den Code, den wir verwenden, um die LED
mit dem Drucktaster zu steuern:

// Beispiel 4-2: turn_on_led_while_the_button_is_pressed

const int LED = 13; // the pin for the LED

const int BUTTON = 7; // the input pin where the

// pushbutton is connected

int val = 0; // val will be used to store the state

// of the input pin

void setup() {

pinMode(LED, OUTPUT); // tell Arduino LED is an output

pinMode(BUTTON, INPUT); // and BUTTON is an input

}

void loop(){

val = digitalRead(BUTTON); // read input value and store it

// check whether the input is HIGH (button pressed)

if (val == HIGH) {

digitalWrite(LED, HIGH); // turn LED ON

} else {

digitalWrite(LED, LOW);

}

}

Wählen Sie in Arduino File > New aus (falls Sie einen anderen Sketch
geöffnet haben, schließen Sie ihn gegebenenfalls). Wenn Sie von Arduino
aufgefordert werden, einen Namen für den neuen Sketch-Ordner anzuge-
ben, geben Sie PushButtonControl ein. Geben Sie dann den Code für
Beispiel 4-2 ein (oder laden Sie ihn von der Webadresse http://www.
makezine.com/getstartedarduino herunter und kopieren ihn in die Ar-
duino-IDE). Wenn alles korrekt abgelaufen ist, wird die LED leuchten, wenn
Sie den Taster drücken.

42 Die ersten Schritte mit Arduino

http://www.­nohyp;makezine.com/getstartedarduino
http://www.makezine.com/getstartedarduino
http://www.makezine.com/getstartedarduino

Erläuterung der Funktionsweise
Mit diesem Beispielprogramm habe ich zwei neue Konzepte eingeführt:
Funktionen, die das Ergebnis ihrer Arbeit zurückliefern, und die if-Anwei-
sung.

Die if-Anweisung ist wahrscheinlich die wichtigste Anweisung in einer Pro-
grammiersprache, weil sie dem Computer (und denken Sie immer daran,
dass Arduino ein kleiner Computer ist) ermöglicht, Entscheidungen zu
treffen. Nach dem Schlüsselwort if muss eine Frage, die in Klammern
eingeschlossen ist, angefügt werden. Wenn die Antwort bzw. das Ergebnis
wahr ist, wird der erste Codeblock ausgeführt, anderenfalls der nachfol-
gende Codeblock. Beachten Sie hier, dass ich das Symbol == anstelle von =
verwendet habe. Das Erstere wird verwendet, wenn zwei Einheiten mit-
einander verglichen werden. Es wird dann entsprechend das Ergebnis
TRUE oder FALSE zurückgeliefert; mit dem Letzeren wird einer Variablen
ein Wert zugewiesen. Achten Sie darauf, das korrekte Zeichen zu verwen-
den, denn diese Fehlerquelle ist recht groß, und im Falle eines Fehlers an
dieser Stelle wird das Programm niemals funktionieren. Ich weiß, wovon ich
spreche, denn nach 25 Jahren Programmiererfahrung unterläuft mir dieser
Fehler immer noch.

Es ist natürlich sehr unpraktisch, mit dem Finger die ganze Zeit den Taster
gedrückt halten zu müssen, wenn Sie Licht benötigen. Auch wenn man
bedenkt, wie viel Energie verschwendet wird, wenn Sie sich von der Lampe
fortbewegen und sie nicht nutzen, sie aber eingeschaltet lassen, wollen wir
doch herausfinden, wie wir bewirken können, dass der Taster im Modus
„gedrückt“ fixiert wird.

Ein Schaltkreis – 1000 Verhaltensweisen
Der große Vorteil von digitaler, programmierbarer Elektronik gegenüber
klassischer Elektronik wird hier offensichtlich: Ich werde Ihnen nun zeigen,
auf welche Weise viele verschiedene Verhaltensweisen unter Verwendung
desselben Schaltkreises wie im vorherigen Abschnitt implementiert wer-
den können, einfach, indem die Software entsprechend geändert wird.

Wie ich bereits erwähnt habe, ist es nicht sehr praktisch, die ganze Zeit den
Taster mit dem Finger gedrückt halten zu müssen, um Licht zu haben. Wir
müssen also eine Art von Gedächtnis implementieren, und zwar in Form
eines Softwaremechanismus, der speichert, wann wir den Taster gedrückt
haben, und der die Lampe weiter leuchten lässt, auch wenn wir den Finger
vom Taster genommen haben.

Die ersten Schritte mit Arduino 43

Hierzu verwenden wir eine sogenannte Variable. (Wir haben sie bereits
einmal verwendet, aber ich habe sie noch nicht erläutert.) Eine Variable ist
ein Ort im Arduino-Speicher, an dem Daten gespeichert werden können.
Sie können sie sich als Post-it vorstellen, das Sie verwenden, um sich an
etwas zu erinnern, z.B. eine Telefonnummer: Sie schreiben beispielsweise
Luisa 02555 1212 darauf und kleben ihn an Ihren Computerbildschirm oder
an den Kühlschrank. In der Arduino-Sprache ist das ähnlich simpel: Sie
entscheiden einfach, welcher Datentyp gespeichert werden soll (z.B. eine
Zahl oder Text) und vergeben einen Namen. Sie können diese Daten dann
speichern oder abrufen. Hier ein Beispiel:

int val = 0;

int bedeutet, dass die Variable eine Ganzzahl speichert. Dabei ist val der
Name der Variablen, und mit = 0 wird ein Anfangswert von 0 zugewiesen.

Eine Variable kann, wie der Name schon sagt, überall im Code geändert
werden, sodass Sie später im Programm Folgendes schreiben können,
wodurch Ihrer Variable ein neuer Wert, 112, zugewiesen wird:

val = 112;

Hinweis: Haben Sie bemerkt, dass in Arduino jede Anweisung mit einem
Semikolon endet? Auf diese Weise wird dem Compiler (dem Teil von
Arduino, der Ihren Sketch in ein vom Mikrocontroller ausführbares
Programm umwandelt) angezeigt, dass eine Anweisung beendet ist und
eine neue beginnt. Vergessen Sie also nicht, immer das Semikolon
anzufügen.

Im folgenden Programm wird val verwendet, um das Ergebnis von digital-
Read() zu speichern; alle Informationen, die Arduino vom Input-Pin erhält,
landen in der Variablen und bleiben dort gespeichert, bis sie von einer
anderen Codezeile geändert werden. Beachten Sie, dass Variablen einen
Speichertyp verwenden, der als RAM bezeichnet wird. Diese Art von Spei-
cher ist recht schnell, doch wenn Sie Ihr Board ausschalten, gehen alle im
RAM gespeicherten Daten verloren (d.h. jede Variable wird auf ihren An-
fangswert zurückgesetzt, wenn das Board wieder mit Energie versorgt
wird). Ihre Programme selbst werden in einem Flash-Speicher – dieselbe
Art von Speicher, wie sie auch bei Mobiltelefonen zum Speichern von
Telefonnummern verwendet wird – gespeichert. Hierin bleiben die Daten
erhalten, auch wenn das Board ausgeschaltet wird.

Nun wollen wir eine andere Variable verwenden, mit der gespeichert wird,
ob die LED ein- oder ausgeschaltet bleiben soll, nachdem wir den Finger

44 Die ersten Schritte mit Arduino

vom Taster genommen haben. Beispiel 4-3 ist ein erster Versuch, dies zu
erreichen:

// Beispiel 4-3: turn_on_led_when_the_button_is_pressed_a

const int LED = 13; // the pin for the LED

const int BUTTON = 7; // the input pin where the

// pushbutton is connected

int val = 0; // val will be used to store the state

// of the input pin

int state = 0; // 0 = LED off while 1 = LED on

void setup() {

pinMode(LED, OUTPUT); // tell Arduino LED is an output

pinMode(BUTTON, INPUT); // and BUTTON is an input

}

void loop() {

val = digitalRead(BUTTON); // read input value and store it

// check if the input is HIGH (button pressed)

// and change the state

if (val == HIGH) {

state = 1 - state;

}

if (state == 1) {

digitalWrite(LED, HIGH); // turn LED ON

} else {

digitalWrite(LED, LOW);

}

}

Testen Sie nun diesen Code. Sie werden dann sehen, dass er funktioniert ...
irgendwie. Das Licht wechselt allerdings so schnell, dass Sie es gar nicht
zuverlässig mit einem Tastendruck ein- oder ausschalten können.

Schauen wir uns einmal die interessanten Zeilen des Codes an: state ist
eine Variabe, die entweder 0 oder 1 speichert, um sich so zu merken, ob die

Die ersten Schritte mit Arduino 45

LED ein- oder ausgeschaltet ist. Wenn der Taster freigegeben wurde, wird
sie auf den Anfangswert 0 (LED aus) gesetzt.

Später lesen wir den aktuellen Zustand des Tasters aus, und wenn er
gedrückt ist (val == HIGH), ändern wir diesen von 0 in 1 oder umgekehrt. Im
Hinblick darauf, dass state immer nur 1 oder 0 sein kann, verwende ich hier
einen kleinen Trick. Dieser beinhaltet einen kleinen mathematischen Aus-
druck, der auf der Idee basiert, dass 1 - 0 = 1 ist, und 1 - 1 = 0:

state = 1 - state;

Die Zeile ergibt mathematisch gesehen vielleicht keinen Sinn, bei der
Programmierung hingegen schon. Das Symbol = bedeutet „Weise das
Ergebnis von dem, was nach mir folgt, der Variablen zu, die vor mir
angeführt ist.“ – in unserem Beispiel wird state als neuer Wert das Ergebnis
von 1 minus dem alten Wert von state zugewiesen.

Später in diesem Programm können Sie sehen, dass wir state verwenden,
um zu ermitteln, ob die LED ein- oder ausgeschaltet sein muss. Wie bereits
erwähnt wurde, führt das zu eher ungenauen Ergebnissen.

Dies liegt an der Art und Weise, wie der Taster ausgelesen wird. Arduino ist
wirklich schnell. Die eigenen internen Anweisungen werden mit einer Rate
von 16 Millionen pro Millisekunde ausgeführt – das sind gut einige Millionen
Codezeilen pro Sekunde. Während Sie also mit Ihrem Finger den Taster
drücken, liest Arduino die Position des Schalters möglicherweise einige
tausend Male und ändert dabei state entsprechend. Das Ergebnis wird also
letztendlich unvorhersehbar; es könnte „Aus“ lauten, wenn es eigentlich
„An“ lauten sollte oder umgekehrt. So wie selbst eine kaputte Uhr zwei Mal
am Tag die Zeit korrekt wiedergibt, kann auch das Programm gelegentlich
ein korrektes Verhalten aufweisen, meistens aber wird es falsch sein.

Wie können wir dieses Problem beheben? Nun, wir müssen den exakten
Zeitpunkt ermitteln, an dem der Taster gedrückt wird – das ist dann der
einzige Moment, in dem state geändert werden muss. Dazu möchte ich den
Wert von val speichern, bevor ich einen neuen Wert auslese. Dadurch wird
es möglich, die aktuelle Position des Tasters mit der vorherigen zu ver-
gleichen und state nur dann zu ändern, wenn für den Taster ein HIGH nach
einem vorherigen LOW ermittelt wird.

46 Die ersten Schritte mit Arduino

Beispiel 4-4 enthält den entsprechenden Code:

// Beispiel 4-4: turn_on_led_when_the_button_is_pre-id001

const int LED = 13; // the pin for the LED

const int BUTTON = 7; // the input pin where the

// pushbutton is connected

int val = 0; // val will be used to store the state

// of the input pin

int old_val = 0; // this variable stores the previous

// value of "val"

int state = 0; // 0 = LED off and 1 = LED on

void setup() {

pinMode(LED, OUTPUT); // tell Arduino LED is an output

pinMode(BUTTON, INPUT); // and BUTTON is an input

}

void loop(){

val = digitalRead(BUTTON); // read input value and store it

// yum, fresh

// check if there was a transition

if ((val == HIGH) && (old_val == LOW)){

state = 1 - state;

}

old_val = val; // val is now old, let's store it

if (state == 1) {

digitalWrite(LED, HIGH); // turn LED ON

} else {

digitalWrite(LED, LOW);

}

}

Probieren Sie das Programm aus, wir haben es fast geschafft!

Möglicherweise haben Sie bemerkt, dass dieser Ansatz nicht ganz perfekt
ist, was an einem anderen Problem mit mechanischen Schaltern liegt. Bei
Drucktastern handelt es sich um recht einfache Bauteile: zwei Metallplätt-

Die ersten Schritte mit Arduino 47

chen, die durch eine Feder auseinandergehalten werden. Wenn Sie den
Schalter drücken, wird eine Verbindung zwischen diesen beiden Kontakten
hergestellt und Strom fließt. Dies klingt nach einem einfachen und wirk-
samen Mechanismus, aber in der Realität ist die Verbindung nicht so
perfekt, besonders dann nicht, wenn der Taster nicht richtig gedrückt
wurde, und es werden einige Störsignale erzeugt. Dieser Effekt wird als
Prellen bezeichnet.

Wenn der Taster geprellt wird, erhält Arduino eine Reihe von rasch auf-
einanderfolgenden Ein- und Aussignalen. Es wurden viele Möglichkeiten
zum Entprellen entwickelt, aber in diesem einfachen Codeabschnitt ist es
meiner Erfahrung nach völlig ausreichend, eine Verzögerung von 10 bis 50
Millisekunden einzubauen, wenn vom Code ein Wechsel ermittelt wurde.

Beispiel 4-5 enthält den finalen Code:

// Beispiel 4-5: turn_on_led_when_the_button_is_pre-id002

const int LED = 13; // the pin for the LED

const int BUTTON = 7; // the input pin where the

// pushbutton is connected

int val = 0; // val will be used to store the state

// of the input pin

int old_val = 0; // this variable stores the previous

// value of "val"

int state = 0; // 0 = LED off and 1 = LED on

void setup() {

pinMode(LED, OUTPUT); // tell Arduino LED is an output

pinMode(BUTTON, INPUT); // and BUTTON is an input

}

void loop(){

val = digitalRead(BUTTON); // read input value and store it

// yum, fresh

// check if there was a transition

if ((val == HIGH) && (old_val == LOW)){

state = 1 - state;

delay(10);

}

48 Die ersten Schritte mit Arduino

old_val = val; // val is now old, let's store it

if (state == 1) {

digitalWrite(LED, HIGH); // turn LED ON

} else {

digitalWrite(LED, LOW);

}

}

Die ersten Schritte mit Arduino 49

5/Erweiterter Input
und Output

In Kapitel 4 haben wir die grundlegenden Operationen kennengelernt, die
wir mit Arduino durchführen können: Steuern des digitalen Outputs und
Auslesen des digitalen Inputs. Wenn es sich bei Arduino um eine mensch-
liche Sprache handeln würde, wären dies zwei Buchstaben ihres Alphabets.
Angesichts der Tatsache, dass dieses Aphabet aus nur fünf Buchstaben
besteht, können Sie schon abschätzen, wie viel Arbeit uns bevorsteht,
bevor wir Arduino-Poesie schreiben können.

Der Einsatz anderer Ein/Aus-Sensoren
Nachdem Sie nun erfahren haben, wie der Drucktastenschalter verwendet
wird, sollten Sie wissen, dass es viele andere sehr einfache Sensoren gibt,
die nach demselben Prinzip funktionieren:

Schalter
Sie funktionieren ähnlich wie ein Drucktaster, allerdings ändern sie nicht
automatisch den Zustand, wenn sie freigegeben werden.

Thermostate
Hierbei handelt es sich um Schalter, die bei Erreichen eines festgelegten
Wertes geöffnet werden.

Magnetische Schalter (auch als Reed-Relays bekannt))
Sie verfügen über zwei Kontake, die verbunden werden, wenn sie sich in der
Nähe eines Magnets befinden. Diese Schalter kommen bei Alarmanlagen
zum Einsatz um festzustellen, ob ein Fenster geöffnet ist.

Sensormatten
Dies sind dünne Matten, die unter einem Teppich oder unter der Türmatte
platziert werden können, um die Anwesenheit von Personen (oder einer
schwergewichtigen Katze) festzustellen.

Neigungsschalter
Hierbei handelt es sich um eine einfache elektronische Komponente, die
aus zwei Kontakten und einem kleinen Metallball besteht (oder einem
Quecksilbertropfen, aber ich empfehle, solche Schalter nicht zu verwen-

Erweiterter Input und Output 51

den). Ein Beispiel für einen Neigungsschalter ist ein Neigungssensor; Ab-
bildung 5-1 zeigt ein typisches Modell. Wenn sich der Sensor in einer
aufrechten Position befindet, werden die beiden Kontakte durch den Ball
verbunden. Es ist dasselbe Prinzip wie beim Drücken eines Drucktasters.
Wenn Sie den Sensor kippen, bewegt sich der Ball und der Kontakt wird
geöffnet. Das hat denselben Effekt wie die Freigabe eines Drucktasters.
Diese einfache Komponente kann zum Beispiel bei gestischen Schnitt-
stellen verwendet werden, die reagieren, wenn ein Objekt bewegt oder
geschüttelt wird (bit.ly/ArduinoStoreTiltSensor).

Abbildung 5-1.

Das Innere eines Neigungssensors

Ein weiterer Sensor, den Sie vielleicht verwenden möchten, ist der Infra-
rotsensor, wie Sie ihn bei Alarmanlagen finden (sie werden auch als passive
Infrarotsensoren oder PIR-Sensoren bezeichnet, siehe Abbildung 5-2).
Dieses kleine Bauteil löst einen Alarm aus, wenn eine Person (oder ein
anderes Lebewesen) sich in der näheren Umgebung bewegt. Es bietet eine
einfache Möglichkeit, Bewegung festzustellen.

52 Erweiterter Input und Output

Abbildung 5-2.

Ein typischer PIR-Sensor

Sie sollten nun ein wenig mit all den möglichen Bauteilen, die über zwei
solcher nah beieinanderliegenden Kontakte verfügen, herumexperimentie-
ren, z.B. mit dem Thermostat, der die Raumtemperatur festlegt (verwen-
den Sie einen alten, der nicht mehr angeschlossen ist). Sie können auch
zwei Kontakte nebeneinander platzieren und sie mit Wasser bespritzen.

Wenn Sie beispielsweise das letzte Projekt aus dem Kapitel 4 mit einem
PIR-Sensor kombinieren, können Sie eine Lampe bauen, die auf die Anwe-
senheit von Personen reagiert. Sie könnten auch einen Neigungssensor

Erweiterter Input und Output 53

verwenden und so einen Leuchtkörper konzipieren, der sich ausschaltet,
wenn Sie ihn zu einer Seite neigen.

Steuerung von Licht mittels PWM
Mit den bisher erworbenen Kenntnissen könnten Sie eine interaktive
Lampe bauen – und zwar eine, die nicht nur über einen langweiligen
Ein/Aus-Schalter verfügt, sondern vielleicht mit eleganteren Features auf-
wartet. Eine der Beschränkungen unserer Beispiele mit einer blinkenden
LED war die, dass das Licht nur ein- oder ausgeschaltet werden konnte.
Eine schicke Lampe muss aber auch dimmbar sein. Hierzu können wir uns
eines Phänomens bedienen, das viele solcher Dinge wie Fernsehen oder
Kino erst ermöglicht: die Trägheit des Auges.

Nach dem ersten Beispiel in Kapitel 4 wurde schon angedeutet, dass, wenn
Sie die Angaben für die Verzögerungen im Code so ändern, dass Sie kein
Blinken der LED mehr wahrnehmen können, das von den LEDs abgegebene
Licht gegenüber ihrer normalen Helligkeit um 50 % reduziert erscheint.
Ändern Sie nun die Angaben so, dass die LED ein Viertel der Zeit aus-
geschaltet ist. Wenn Sie den Sketch ausführen, werden Sie sehen, dass die
Helligkeit noch etwa 25% beträgt. Diese Technik heißt Pulsweitenmodula-
tion (PWM), eine hübsche Bezeichnung dafür, dass wenn Sie die LED nur
schnell genug blinken lassen, Sie das Blinken nicht mehr wahrnehmen,
aber die Helligkeit ändern können, indem Sie das Verhältnis von Ein- und
Ausphasen entsprechend anpassen. In Abbildung 5-3 ist dargestellt, wie
dies funktioniert.

Diese Technik funktioniert auch bei anderen Bauteilen als LEDs. Die
Schnelligkeit eines Motors lässt sich auf dieselbe Weise ändern.

Wenn Sie herumexperimentieren, werden Sie bemerken, dass das Erzeu-
gen von Blinkverhalten bei einer LED durch Einfügen von Verzögerungen im
Code recht ungünstig sein kann, weil, sobald Sie einen Sensor auslesen
oder Daten an den seriellen Anschluss schicken möchten, die LED zu
flackern beginnt, während sie darauf wartet, dass das Auslesen des Sen-
sors beendet wird. Glücklicherweise verfügt der Pozessor, der bei Arduino
verwendet wird, über eine spezielle Hardware, die recht effizient drei LEDs
blinken lassen kann, während der Sketch etwas anderes tut. Diese Hard-
ware ist in den Pins 9, 10 und 11 implementiert, die wiederum über die
Anweisung analogWrite() gesteuert werden können.

54 Erweiterter Input und Output

Abbildung 5-3.

PWM in Aktion

Wenn Sie zum Beispiel analogWrite(9,128) schreiben, wird die Helligkeit
der LED, die an Pin 9 angeschlossen ist, auf 50% gedimmt. Warum 128?
analogWrite() erwartet als Argument eine Zahl zwischen 0 und 255, wobei
255 volle Helligkeit bedeutet und bei 0 die LED ausgeschaltet ist.

Erweiterter Input und Output 55

Hinweis: Es ist eine feine Sache, dass Ihnen drei Kanäle zur Verfügung
stehen, weil Sie so rote, grüne und blaue LEDs kaufen und das Licht dann
nach Belieben mischen können!

Das wollen wir nun einmal ausprobieren. Bauen Sie den Schaltkreis, der in
Abbildung 5-4 abgebildet ist. Beachten Sie, dass die LEDs gepolt sind: Der
lange Pin (positiv) sollte nach rechts zeigen, der kurze Pin (negativ) nach
links. Außerdem ist bei den meisten Widerständen die negative Seite
abgeflacht, wie in der Abbildung zu sehen ist. Verwenden Sie einen
270-Ohm-Widerstand (rot-violett-braun).

Abbildung 5-4.

LED am PWM-Pin

56 Erweiterter Input und Output

Erzeugen Sie dann in Arduino einen neuen Sketch und verwenden Sie
Beispiel 5-1 (die Codebeispiele können auch unter http://www.makezi-
ne.com/getstartedarduino heruntergeladen werden):

// Beispiel 5-1: Fade an LED in and out

const int LED = 9; // the pin for the LED

int i = 0; // We'll use this to count up and down

void setup() {

pinMode(LED, OUTPUT); // tell Arduino LED is an output

}

void loop(){

for (i = 0; i < 255; i++) { // loop from 0 to 254 (fade in)

analogWrite(LED, i); // set the LED brightness

delay(10); // Wait 10ms because analogWrite

// is instantaneous and we would

// not see any change

}

for (i = 255; i > 0; i--) { // loop from 255 to 1 (fade out)

analogWrite(LED, i); // set the LED brightness

delay(10); // Wait 10ms

}

}

Sie haben nun ein nettes Laptop-Feature nachgebildet (vielleicht ist es
auch ein wenig verschwenderisch, Arduino für so eine simple Angelegen-
heit zu nutzen). Wir wollen nun dieses Wissen einsetzen, um unsere Lampe
zu verbessern.

Fügen Sie auf der Steckplatine die Schaltung hinzu, die wir verwendet
haben, um den Drucktaster auszulesen (siehe weiter vorne in Kapitel 4).
Versuchen Sie dabei, nicht auf die nächste Seite zu schauen, weil ich
möchte, dass Sie damit anfangen, jeden hier gezeigten Basisschaltkreis als
Baustein zu sehen, mit denen sich immer größere Projekte realisieren

Erweiterter Input und Output 57

http://www.makezine.com/getstartedarduino
http://www.makezine.com/getstartedarduino

lassen. Wenn Sie doch nachschauen müssen, macht das nichts; wichtig ist,
dass Sie sich vorher ein paar Gedanken darüber gemacht haben, wie das
Ganze aussehen könnte.

Um den gewünschten Schaltkreis zu bauen, müssen Sie die Schaltung, die
Sie gerade gebaut haben (die aus Abbildung 5-4), mit der Drucktaster-
schaltung, die in Abbildung 4-6 dargestellt ist, kombinieren. Wenn Sie
möchten, können Sie die beiden Schaltkreise auf verschiedene Bereiche
der Platine bauen; es gibt hier viel Platz. Einer der Vorteile der Steckplatine
(siehe Anhang A) besteht in den beiden Leiterbahnen, die horizontal über
dem oberen und dem unteren Bereich verlaufen, eine ist rot (positiv) und
die andere blau oder schwarz (Masse) gekennzeichnet.

Diese Leiterbahnen dienen dazu, Energie und Masse so zu verteilen, wie sie
benötigt werden. Bei dem hier zu bauenden Schaltkreis müssen zwei
Komponenten (beide sind Widerstände) mit dem Masse-(GND-)Pin des
Arduino-Boards verbunden werden. Da Arduino über drei GND-Pins ver-
fügt, können Sie die beiden Schaltkreise einfach auf die in jeder der beiden
Abbildungen dargestellte Weise verbinden. Schließen Sie einfach beide an
das Arduino-Board an. Sie können auch einen der Drähte der Masseleiter-
bahn der Steckplatine an einen der GND-Pins auf dem Arduio-Board
anschließen und die Drähte, die in den Abbildungen an die GND-Pins
angeschlossen sind, stattdessen mit der Masseleiterbahn auf der Steck-
platine verbinden.

Wenn Sie noch nicht so weit sind, dies auszuprobieren, ist das nicht weiter
schlimm: Verdrahten Sie einfach beide Schaltkreise mit dem Arduino-
Board, wie es in den Abbildungen 4-6 und 5-4 dargestellt ist. Ein Beispiel,
bei dem Masse und positive Leiterbahnen der Steckplatine genutzt werden,
finden Sie im Kapitel 6.

Fahren wir nun mit unserem nächsten Beispiel fort. Wenn wir nur einen
Drucktaster haben, wie können wir dann die Helligkeit der Lampe steuern?
An dieser Stelle werden wir nun eine weitere Technik aus dem Interactive
Design kennenlernen: das Ermitteln, wie lange ein Taster gedrückt wurde.
Hierzu müssen wir ein Upgrade zu Beispiel 4-5 aus dem Kapitel 4 durch-
führen, um einen Dimm-Effekt einzubauen. Die Idee besteht darin, eine
Schnittstelle herzustellen, über die mittels Drücken- bzw. Freigabe-Aktio-
nen das Licht ein- oder ausgeschaltet und per Drücken- und Halten-Aktio-
nen die Helligkeit geändert wird.

58 Erweiterter Input und Output

Schauen wir uns den entsprechenden Sketch an:

// Beispiel 5-2: Turn on LED when the button is pressed

const int LED = 9; // the pin for the LED

const int BUTTON = 7; // input pin of the pushbutton

int val = 0; // stores the state of the input pin

int old_val = 0; // stores the previous value of "val"

int state = 0; // 0 = LED off while 1 = LED on

int brightness = 128; // Stores the brightness value

unsigned long startTime = 0; // when did we begin pressing?

void setup() {

pinMode(LED, OUTPUT); // tell Arduino LED is an output

pinMode(BUTTON, INPUT); // and BUTTON is an input

}

void loop() {

val = digitalRead(BUTTON); // read input value and store it

// yum, fresh

// check if there was a transition

if ((val == HIGH) && (old_val == LOW)) {

state = 1 - state; // change the state from off to on

// or vice-versa

startTime = millis(); // millis() is the Arduino clock

// it returns how many milliseconds

// have passed since the board has

// been reset.

// (this line remembers when the button

// was last pressed)

delay(10);

}

Erweiterter Input und Output 59

// check whether the button is being held down

if ((val == HIGH) && (old_val == HIGH)) {

// If the button is held for more than 500ms.

if (state == 1 && (millis() - startTime) > 500) {

brightness++; // increment brightness by 1

delay(10); // delay to avoid brightness going

// up too fast

if (brightness > 255) { // 255 is the max brightness

brightness = 0; // if we go over 255

// let's go back to 0

}

}

}

old_val = val; // val is now old, let's store it

if (state == 1) {

analogWrite(LED, brightness); // turn LED ON at the

// current brightness level

} else {

analogWrite(LED, 0); // turn LED OFF

}

}

Das wollen wir nun einmal ausprobieren. Wie Sie sehen, nimmt unser
Interaktionsmodell Formen an. Wenn Sie den Taster drücken und sofort
wieder loslassen, schalten Sie die Lampe ein bzw. aus. Wenn Sie den Taster
gedrückt halten, ändert sich die Helligkeit. Nehmen Sie einfach den Finger
vom Taster, wenn die gewünschte Helligkeit erreicht ist.

Als Nächstes wollen wir uns ein wenig näher mit der Verwendung einiger
interessanter Sensoren beschäftigen.

60 Erweiterter Input und Output

Einsatz eines Lichtsensors anstelle eines
Drucktasters
Wir werden nun ein kleines Experiment durchführen. Dazu benötigen Sie
einen Lichtsensor, wie er in Abbildung 5-5 zu sehen ist. Solche Sensoren
können Sie bei Maker Shed (Teilnummer JM169578) oder unter bit.ly/
ArduinoStoreLDR kaufen.

Abbildung 5-5.

Lichtabhängiger Widerstand (LDR)

Bei Dunkelheit weist der lichtabhängige Widerstand (Light Dependent
Resistor, kurz LDR) einen hohen Widerstand auf. Wenn Licht auf ihn fällt,
sinkt der Widerstand recht schnell und das Bauteil wird zu einem ziemlich
guten Leiter für Elektrizität. Es handelt sich also um eine Art durch Licht
aktivierten Schalter.

Bauen Sie den Schaltkreis aus Beispiel 4-2 (siehe Kapitel 4) und laden Sie
dann den entsprechenden Code aus Beispiel 4-2 auf das Arduino-Board.

Stecken Sie nun anstelle des Drucktasters den LDR auf die Steckplatine.
Ihnen wird sicherlich auffallen, dass die LED nicht mehr leuchtet, wenn Sie
den LDR mit der Hand zudecken. Ist der LDR hingegen nicht abgedeckt,
dann leuchtet die LED. Sie haben gerade Ihre erste sensorgesteuerte LED

Erweiterter Input und Output 61

konstruiert. Dies ist ein wichtiger Schritt, weil wir zum ersten Mal in diesem
Buch eine elektronische Komponente verwenden, bei der es sich nicht
einfach um ein mechanisches Bauteil handelt: Es ist ein wirklich komplexer
Sensor.

Analoger Eingang
Wie Sie aus dem vorherigen Abschnitt bereits wissen, kann Arduino fest-
stellen, ob eine Spannung an einem der Pins anliegt und das Ergebnis
mittels der digitalRead()-Funktion zurückmelden. Diese Art von Entweder-
oder-Antwort ist in vielen Anwendungen sinnvoll, aber der Lichtsensor, den
wir hier verwenden, kann nicht nur mitteilen, ob Licht vorhanden ist,
sondern auch wie viel. Das ist der Unterschied zwischen einem Ein/Aus-
Sensor (der uns mitteilt, ob etwas vorhanden ist) und einem analogen
Sensor, dessen Wert sich ständig ändert. Um einen solchen Sensor aus-
zulesen, benötigen wir eine andere Art von Pin.

Im rechten unteren Bereich des Arduino-Boards befinden sich sechs Pins
mit der Bezeichnung „Analog In“ Dabei handelt es sich um spezielle Pins,
die uns nicht nur zurückliefern können, ob eine Spannung an ihnen anliegt,
sondern gegebenenfalls auch den betreffenden Wert. Mithilfe der analog-
Read()-Funktion können wir die an einem der Pins anliegende Spannung
auslesen. Sie liefert einen Wert zwischen 0 und 1023, der eine Spannung
zwischen 0 und 5 Volt darstellt. Wenn beispielsweise eine Spannung von
2,5 Volt an Pin 0 anliegt, gibt analogRead(0) den Wert 512 zurück.

Wenn Sie nun den Schaltkreis bauen, der in Abbildung 5-6 dargestellt ist,
dabei einen 10k-Widerstand verwenden und den Code ausführen, der in
Beispiel 5-3 angeführt ist, werden Sie sehen, dass die Board-eigene LED
(Sie können auch eine eigene LED verwenden und an Pin 13 und den
GND-Pin anschließen, wie in Kapitel 4 dargestellt ist) in einer Geschwindig-
keit blinkt, die von der Lichtmenge abhängt, die auf den Sensor trifft.

62 Erweiterter Input und Output

Abbildung 5-6.

Eine analoge Sensor-Schaltung

// Beispiel 5-3: Blink LED at a rate specified by the
value of the analogue input

const int LED = 13; // the pin for the LED

int val = 0; // variable used to store the value

// coming from the sensor

void setup() {

pinMode(LED, OUTPUT); // LED is as an OUTPUT

Erweiterter Input und Output 63

// Note: Analogue pins are

// automatically set as inputs

}

void loop() {

val = analogRead(0); // read the value from

// the sensor

digitalWrite(LED, HIGH); // turn the LED on

delay(val); // stop the program for

// some time

digitalWrite(LED, LOW); // turn the LED off

delay(val); // stop the program for

// some time

}

Probieren Sie nun Beispiel 5-4 aus, aber zuvor müssen Sie Ihren Schaltkreis
modifizieren. Schauen Sie sich noch einmal Abbildung 5-4 an und verbinden
Sie Ihre LED wie gezeigt mit Pin 9. Weil Sie bereits einige Komponenten auf
Ihrer Steckplatine angebracht haben, müssen Sie erst eine Stelle finden, an
der die LED, die Drähte und der Widerstand sich nicht mit dem LDR-Schalt-
kreis überschneiden.

// Beispiel 5-4: Set the brightness of LED

const int LED = 9; // the pin for the LED

int val = 0; // variable used to store the value

// coming from the sensor

void setup() {

pinMode(LED, OUTPUT); // LED is as an OUTPUT

// Note: Analogue pins are

64 Erweiterter Input und Output

// automatically set as inputs

}

void loop() {

val = analogRead(0); // read the value from

// the sensor

analogWrite(LED, val/4); // turn the LED on at

// the brightness set

// by the sensor

delay(10); // stop the program for

// some time

}

Hinweis: Wir legen die Helligkeit fest, indem wir val durch 4 teilen, weil
analogRead() eine Zahl größer als 1023 zurückliefert und analogWrite()
nur einen Maximalwert von 255 annehmen kann.

Der Einsatz anderer analoger Sensoren
In dem Schaltkreis aus dem vorherigen Abschnitt lassen sich auch zahlrei-
che andere resistive Sensoren einbauen, die alle mehr oder weniger nach
demselben Prinzip funktionieren. Sie könnten beispielsweise einen Tem-
peraturfühler anschließen, ein einfaches Bauteil, dessen Widerstand sich
mit der Temperatur ändert. Ich habe bereits erläutert, wie Änderungen bei
den Widerständen zu Änderungen bei der Spannung führen, die dann von
Arduino gemessen werden können.

Wenn Sie einen Temperaturfühler verwenden, beachten Sie bitte, dass kein
direkter Zusammenhang zwischen dem Wert, den Sie auslesen und der
tatsächlich gemessenen Temperatur besteht. Wenn Sie eine exakte An-
gabe benötigen, sollten Sie die Werte auslesen, die vom analogen Pin
kommen und dabei für die Messung ein reales Thermometer verwenden.
Die entsprechenden Werte sollten Sie dann nebeneinander in einer Tabelle
eintragen und einen Weg finden, wie sich die analogen Werte mit den realen
Temperaturen abgleichen lassen.

Bis jetzt haben wir eine LED als Ausgabekomponente verwendet. Doch wie
können wir die tatsächlichen Werte erhalten, die Arduino vom Sensor
ausliest? Wir können das Board nicht veranlassen, die Werte im Morse-
alphabet zu blinken (d.h., das wäre schon möglich, es gibt aber einen

Erweiterter Input und Output 65

einfacheren Weg, die Werte zu lesen). Dazu müssen wir Arduino über einen
seriellen Anschluss mit einem Computer kommunizieren lassen. Dies wird
im nächsten Abschnitt beschrieben.

Serielle Kommunikation
Zu Beginn des Buches haben Sie erfahren, dass Arduino über einen USB-
Anschluss verfügt, über den die IDE Code in den Prozessor lädt. Die gute
Nachricht ist die, dass diese Verbindung auch von den Sketches, die in
Arduino geschrieben werden, genutzt werden kann, um Daten zurück an
den Computer zu liefern oder um Befehle von diesem zu empfangen. Zu
diesem Zweck verwenden wir ein serielles Objekt (ein Objekt ist eine
Sammlung von Fähigkeiten, die gebündelt wurden, um das Schreiben von
Sketches zu erleichtern).

Dieses Objekt enthält all den Code, der für das Senden und Empfangen von
Daten erforderlich ist. Wir werden nun den letzten Schaltkreis mit dem
Fotowiderstand, den wir gebaut haben, verwenden und die ausgelesenen
Daten zurück an den Computer senden. Erstellen Sie mit dem folgenden
Code einen neuen Sketch (Sie können ihn auch unter http://www.make-
zine.com/getstartedarduino herunterladen):

// Beispiel 5-5: Send to the computer the values read from
analogue input 0

// Make sure you click on "Serial Monitor"

// after you upload

const int SENSOR = 0; // select the input pin for the

// sensor resistor

int val = 0; // variable to store the value coming

// from the sensor

void setup() {

Serial.begin(9600); // open the serial port to send

// data back to the computer at

// 9600 bits per second

}

void loop() {

66 Erweiterter Input und Output

http://www.makezine.com/getstartedarduino
http://www.makezine.com/getstartedarduino

val = analogRead(SENSOR); // read the value from

// the sensor

Serial.println(val); // print the value to

// the serial port

delay(100); // wait 100ms between

// each send

}

Wenn Sie den Code auf das Arduino-Board übertragen haben, klicken Sie
auf die Schaltfläche Serial Monitor in der Arduino-IDE (die letzte Schalt-
fläche in der Tool-Leiste). Sie sehen dann die Zahlen an den unteren Rand
des Fensters wandern. Nun kann jede Software, die vom seriellen An-
schluss auslesen kann, auch mit Arduino kommunizieren. Es gibt viele
Programmiersprachen, mit denen Sie Programme auf Ihrem Computer
schreiben können, die mit dem seriellen Anschluss kommunizieren können.
Processing (http://www.processing.org) ist eine großartige Ergänzung zu
Arduino, weil die Sprachen und die IDEs sehr ähnlich sind.

Der Umgang mit größeren Lasten
Jeder der Pins des Arduino-Boards kann verwendet werden, um Bauteile zu
betreiben, die bis zu 20 Milliampere verbrauchen: Das ist eine sehr geringe
Strommenge, die gerade ausreicht, um eine LED zu betreiben. Wenn Sie
z.B. einen Motor betreiben möchten, wird der Pin sofort seine Arbeit
einstellen und möglicherweise den gesamten Prozessor durchbrennen. Um
also größere Lasten wie Motoren oder Glühlampen zu betreiben, müssen
wir auf eine externe Komponente zurückgreifen, die solche Bauteile ein-
oder ausschalten kann und von einem Arduino-Pin betrieben wird. Ein
solches Gerät ist der sogenannte MOSFET-Transistor – ignorieren Sie den
merkwürdigen Namen einfach. Es handelt sich hierbei um einen elektro-
nischen Schalter, der betrieben werden kann, indem einfach eine Span-
nung an einen seiner drei Pins angelegt wird. Diese Pins werden zusammen
als Gate bezeichnet. Dieser Transistor funktioniert ähnlich wie unser Licht-
schalter zu Hause. Die Fingerbewegung, mit der wir das Licht ein- und
ausschalten, ist allerdings durch einen Pin auf dem Arduino-Board ersetzt,
der elektrische Spannung an das Gate des MOSFET sendet.

Erweiterter Input und Output 67

http://www.processing.org

Hinweis: MOSFET steht für Metal Oxide Semiconductor Field Effect
Transistor. Es handelt sich um einen speziellen Transistortyp, der ba-
sierend auf dem Feldeffektprinzip funktioniert. Das heißt, dass Elektri-
zität durch einen Bereich aus Halbleitermaterial (zwischen den Drain-
und den Source-Pins) fließt, wenn Spannung am Gate-Pin anliegt. Da der
Gate-Pin durch eine Metalloxidschicht von den anderen isoliert ist, fließt
kein Strom vom Arduino-Board in den MOSFET, wodurch dieser sich
sehr einfach als Schnittstelle nutzen lässt. Diese Art von Transistor ist
ideal, um größere Lasten in hoher Frequenz ein- oder auszuschalten.

In Abbildung 5-7 ist dargestellt, wie Sie einen MOSFET wie den IRF520
nutzen können, um einen kleinen Motor eines Ventilators an- oder aus-
zuschalten. Sie sehen außerdem, dass der Motor seine Energiezufuhr von
dem 9-V-Anschluss des Arduino-Boards bezieht. Dies ist ein weiterer Vor-
teil des MOSFET: Er ermöglicht das Betreiben von Geräten, deren Energie-
zufuhr sich von der von Arduino genutzten unterscheidet. Weil der MOS-
FET an Pin 9 angeschlossen ist, können wir außerdem analogWrite()
verwenden, um die Motorgeschwindigkeit mittels PWM zu steuern. Um den
Schaltkreis nachzubauen, benötigen Sie einen IRF520 MOSFET
(bit.ly/ArduinoStoreIRF520) und eine 1N4007-Diode (bit.ly/Arduino-
Store1N4007). Wenn der Motor während des Uploads ungewollt anspringt,
platzieren Sie einen 10-K-Widerstand zwischen Pin 9 und den GND-Pin.

Komplexe Sensoren
Wir definieren komplexe Sensoren als Sensoren, die solche Informationen
produzieren, deren Nutzung ein wenig mehr erfordert als den Einsatz einer
digitalRead()- oder analogRead()-Funktion. Es handelt sich üblicherweise
um kleine Schaltkreise, die einen kleinen Mikrocontroller enthalten, der die
Informationen vorverarbeitet. Einige dieser komplexen Sensoren enthalten
Ultraschall-Ranger, Infrarot-Ranger und Beschleunigungsmesser. Bei-
spiele für ihre Verwendung finden Sie auf unserer Webseite im Abschnitt
Tutorials (http://www.arduino.cc/en/Tutorial/HomePage).

Im Buch Making Things Talk – Die Welt hören, sehen, fühlen von Tom Igoe
(erschienen bei O’Reilly, ISBN 978-3-86899-162-8) werden diese und an-
dere komplexe Sensoren ausführlich erläutert.

68 Erweiterter Input und Output

http://www.arduino.cc/en/Tutorial/HomePage

Abbildung 5-7.

Ein Motor-Schaltkreis für Arduino

Erweiterter Input und Output 69

6/Kommunikation
mit der Cloud

In den vorangegangenen Kapiteln haben Sie die Grundlagen von Arduino
und die grundlegenden zur Verfügung stehenden Bausteine kennengelernt.
Ich möchte hier noch einmal die Bestandteile das Arduino-Alphabets auf-
listen:

Digitaler Output
Wir verwenden ihn zur Steuerung einer LED, aber mit einem entsprechen-
den Schaltkreis lassen sich hierüber auch Motoren steuern, Sounds erzeu-
gen und viele weitere Dinge umsetzen.

Analoger Output
Er bietet uns die Möglichkeit, die Helligkeit einer LED zu steuern, anstatt sie
nur ein- oder auszuschalten. Wir können hiermit sogar die Geschwindigkeit
eines Motors steuern.

Digitaler Input
Dieser ermöglicht es uns, den Zustand einfacher Sensoren wie Drucktaster
oder Neigungsschalter auszulesen.

Analoger Input
Wir können Signale von Sensoren auslesen, die kontinuierlich Daten sen-
den, die nicht einfach „Ein“ oder „Aus“ bedeuten, z.B. solche von einem
Potentiometer oder einem Lichtsensor.

Serielle Kommunikation
Dies ermöglicht es uns, mit einem Computer zu kommunizieren, Daten mit
diesem auszutauschen oder einfach zu beobachten, was mit dem Sketch
geschieht, der auf dem Arduino-Board ausgeführt wird.

In diesem Kapitel werden Sie erfahren, wie wir eine funktionierende An-
wendung zusammenbauen, wobei wir die in den vorherigen Kapiteln ge-
wonnenen Kenntnisse einfließen lassen. In diesem Kapitel sollte deutlich
werden, wie jedes einzelne Beispiel als Baustein für ein komplexes Projekt
genutzt werden kann.

Kommunikation mit der Cloud 71

An dieser Stelle wird der Möchtegerndesigner in mir geweckt. Wir werden
eine Version des 21. Jahrhunderts einer Lampe meines italienischen Lieb-
lingsdesigners Joe Colombo bauen. Das Objekt, das wir bauen werden, ist
inspiriert von der Lampe „Aton“ aus dem Jahr 1964.

Abbildung 6-1.

Die fertige Lampe

Die Lampe ist, wie Sie in Abbildung 6-1 sehen können, eine einfache Kugel,
die auf einem Sockel sitzt, der ein Loch hat, um zu verhindern, dass die
Kugel von Ihrem Schreibtisch rollt. Durch dieses Design kann die Lampe in
verschiedene Richtungen ausgerichtet werden.

Hinsichtlich der Funktionalität möchten wir ein Gerät bauen, das mit dem
Internet verbunden werden kann, die aktuelle Liste der Artikel im Make-
Blog (blog.makezine.com) abruft und zählt, wie oft die Wörter „peace“,
„love“ und „Arduino“ vorkommen. Mit diesen Werten möchten wir dann
eine Farbe erzeugen, die von der Lampe wiedergegeben wird. Die Lampe

72 Kommunikation mit der Cloud

selbst verfügt über einen Drucktaster zum Ein- und Ausschalten und einen
Lichtsensor für eine automatische Aktivierung.

Planung
Schauen wir uns nun die Umsetzung sowie Bauteile und Komponenten an,
die dazu erforderlich sind. Zuallererst benötigen wir Arduino, um uns mit
dem Internet zu verbinden. Da Arduino nur über einen USB-Anschlusss
verfügt, können wir keinen direkten Anschluss zum Internet herstellen,
daher müssen wir uns eine entsprechende Überbrückung einfallen lassen.
Normalerweise wird in einem solchen Fall eine Anwendung auf dem Com-
puter ausgeführt, die sich mit dem Internet verbindet, die Daten verarbeitet
und Arduino einige einfache, herausgefilterte Informationen sendet.

Das Arduino-Board ist ein einfacher Computer mit einem kleinen Speicher;
das Verarbeiten von großen Dateien ist also schwierig, und wenn eine
Verbindung zu einem RSS-Feed hergestellt wird, erhalten wir eine sehr
umfangreiche XML-Datei, die sehr viel RAM erfordert. Wir werden daher
mittels Processing ein Proxy-Programm implementieren, um die XML-Da-
tei zu vereinfachen.

Processing
Processing war der Ursprung von Arduino. Wir lieben diese Sprache und
nutzen sie, um Einsteigern das Programmieren beizubringen und um
schönen Code zu schreiben. Processing und Arduino bilden eine perfekte
Kombination. Ein weiterer Vorteil besteht darin, dass Processing als Open-
Source zur Verfügung steht und auf allen größeren Plattformen verwendet
werden kann (Mac, Linux und Windows). Es lassen sich hiermit auch
eigenständige Anwendungen erzeugen, die auf diesen Plattformen aus-
geführt werden können. Darüber hinaus gibt es eine lebhafte und hilfreiche
Processing-Community und Sie finden Tausende von fertigen Beispielpro-
grammen.

Das Proxy-Programm erledigt folgende Aufgaben: Es lädt den RSS-Feed
unter makezine.com herunter und extrahiert alle Wörter aus der resultie-
renden XML-Datei. Dann durchläuft es alle Wörter und zählt die Vorkom-
men von „peace“, „love“ und „Arduino“ im Text. Mit diesen drei Zahlen
berechnen wir den Farbwert und senden ihn an Arduino. Das Board liefert
die vom Sensor gemessene Lichtmenge zurück, die dann auf dem Compu-
terbildschirm angezeigt wird.

Kommunikation mit der Cloud 73

Auf der Hardwareseite kombinieren wir die Beispiele Drucktaster, Licht-
sensor und LED-Steuerung mittels PWM (mal 3!) und serieller Kommuni-
kation.

Weil es sich bei Arduino um ein einfaches Gerät handelt, müssen wir die
Farben auf einfache Weise kodieren. Wir nutzen dabei den Standard, nach
dem Farben in HTML dargestellt werden: # gefolgt von sechs hexadezima-
len Zahlen.

Hexadezimale Zahlen sind sehr praktisch, weil jede 8-Bit-Zahl in genau zwei
Zeichen gespeichert wird; bei Dezimalzahlen reicht die Bandbreite von
einem bis zu drei Zeichen. Vorhersagbarkeit macht den Code ebenfalls
einfacher: Wir warten, bis wir ein # sehen, dann lesen wir die sechs nach-
folgenden Zeichen in einen Puffer (eine Variable, die als temporärer Auf-
bewahrungsort von Daten dient) ein. Anschließend wandeln wir jede der
Gruppen, die aus zwei Zeichen bestehen, in ein Byte um, das die Helligkeit
einer der drei LEDs repräsentiert.

Der Code
Es werden zwei Sketches ausgeführt: ein Processing -Sketch und ein
Arduino-Sketch. Im Folgenden sehen Sie den Code für den Processing-
Sketch; Sie können ihn unter http://www.makezine.com/getstarted
arduino herunterladen.

// Beispiel 6-1: Arduino networked lamp

// parts of the code are inspired

// by a blog by Tod E. Kurt (todbot.com)

import processing.serial.*;

String feed = "http://blog.makezine.com/index.xml";

int interval = 10; // retrieve feed every 60 seconds;

int lastTime; // the last time we fetched the content

int love = 0;

int peace = 0;

int arduino = 0;

int light = 0; // light level measured by the lamp

74 Kommunikation mit der Cloud

http://www.makezine.com/getstarted­nohyp;arduino
http://www.makezine.com/getstartedarduino
http://www.makezine.com/getstartedarduino

Serial port;

color c;

String cs;

String buffer = ""; // Accumulates characters coming from Arduino

PFont font;

void setup() {

size(640,480);

frameRate(10); // we don't need fast updates

font = loadFont("HelveticaNeue-Bold-32.vlw");

fill(255);

textFont(font, 32);

// IMPORTANT NOTE:

// The first serial port retrieved by Serial.list()

// should be your Arduino. If not, uncomment the next

// line by deleting the // before it, and re-run the

// sketch to see a list of serial ports. Then, change

// the 0 in between [and] to the number of the port

// that your Arduino is connected to.

//println(Serial.list());

String arduinoPort = Serial.list()[0];

port = new Serial(this, arduinoPort, 9600); // connect to Arduino

lastTime = 0;

fetchData();

}

void draw() {

background(c);

int n = (interval - ((millis()-lastTime)/1000));

// Build a colour based on the 3 values

c = color(peace, love, arduino);

cs = "#" + hex(c,6); // Prepare a string to be sent to Arduino

text("Arduino Networked Lamp", 10,40);

text("Reading feed:", 10, 100);

text(feed, 10, 140);

Kommunikation mit der Cloud 75

text("Next update in "+ n + " seconds",10,450);

text("peace" ,10,200);

text(" " + peace, 130, 200);

rect(200,172, peace, 28);

text("love ",10,240);

text(" " + love, 130, 240);

rect(200,212, love, 28);

text("arduino ",10,280);

text(" " + arduino, 130, 280);

rect(200,252, arduino, 28);

// write the colour string to the screen

text("sending", 10, 340);

text(cs, 200,340);

text("light level", 10, 380);

rect(200, 352,light/10.23,28); // this turns 1023 into 100

if (n <= 0) {

fetchData();

lastTime = millis();

}

port.write(cs); // send data to Arduino

if (port.available() > 0) { // check if there is data waiting

int inByte = port.read(); // read one byte

if (inByte != 10) { // if byte is not newline

buffer = buffer + char(inByte); // just add it to the buffer

}

else {

// newline reached, let's process the data

if (buffer.length() > 1) { // make sure there is enough data

// chop off the last character, it's a carriage return

// (a carriage return is the character at the end of a

// line of text)

buffer = buffer.substring(0,buffer.length() -1);

76 Kommunikation mit der Cloud

// turn the buffer from string into an integer number

light = int(buffer);

// clean the buffer for the next read cycle

buffer = "";

// We're likely falling behind in taking readings

// from Arduino. So let's clear the backlog of

// incoming sensor readings so the next reading is

// up-to-date.

port.clear();

}

}

}

void fetchData() {

// we use these strings to parse the feed

String data;

String chunk;

// zero the counters

love = 0;

peace = 0;

arduino = 0;

try {

URL url = new URL(feed); // An object to represent the URL

// prepare a connection

URLConnection conn = url.openConnection();

conn.connect(); // now connect to the Website

// this is a bit of virtual plumbing as we connect

// the data coming from the connection to a buffered

// reader that reads the data one line at a time.

BufferedReader in = new

BufferedReader(new InputStreamReader(conn.getInputStream()));

// read each line from the feed

while ((data = in.readLine()) != null) {

StringTokenizer st =

new StringTokenizer(data,"\"<>,.()[] ");// break it down

Kommunikation mit der Cloud 77

while (st.hasMoreTokens()) {

// each chunk of data is made lowercase

chunk= st.nextToken().toLowerCase() ;

if (chunk.indexOf("love") >= 0) // found "love"?

love++; // increment love by 1

if (chunk.indexOf("peace") >= 0) // found "peace"?

peace++; // increment peace by 1

if (chunk.indexOf("arduino") >= 0) // found "arduino"?

arduino++; // increment arduino by 1

}

}

// Set 64 to be the maximum number of references we care about.

if (peace > 64) peace = 64;

if (love > 64) love = 64;

if (arduino > 64) arduino = 64;

peace = peace * 4; // multiply by 4 so that the max is 255,

love = love * 4; // which comes in handy when building a

arduino = arduino * 4; // colour that is made of 4 bytes (ARGB)

}

catch (Exception ex) { // If there was an error, stop the sketch

ex.printStackTrace();

System.out.println("ERROR: "+ex.getMessage());

}

}

Zwei Dinge gilt es noch zu tun, bevor der Processing-Sketch einwandfrei
läuft. Zunächst muss Processing angewiesen werden, die Schriftart zu
erzeugen, die wir für den Sketch verwenden. Dazu müssen Sie den Sketch
zunächst erstellen und speichern. Klicken Sie dann bei geöffnetem Sketch
auf das Tools-Menü von Processing und dann auf Create Font. Wählen Sie
die Schrift mit dem Namen HelveticaNeue-Bold aus, und geben Sie als
Schriftgröße den Wert 32 an. Klicken Sie anschließend auf OK.

Als zweiten Schritt müssen Sie bestätigen, dass Arduino den korrekten
seriellen Anschluss für die Kommunikation mit Arduino verwendet. Dazu
müssen Sie zunächst den Arduino-Schaltkreis zusammenbauen und den
Arduino-Sketch hochladen. Auf den meisten Systemen wird der Proces-
sing-Sketch einwandfrei laufen. Wenn allerdings auf dem Arduino-Board

78 Kommunikation mit der Cloud

nichts geschieht und auch keine Informationen vom Lichtsensor auf dem
Bildschirm angezeigt werden, lesen Sie sich den Kommentar unter der
Überschrift „IMPORTANT NOTE“ im Processing-Sketch durch und folgen
Sie den betreffenden Anweisungen.

Hier nun der Arduino-Sketch (er ist auch unter http://www.makezi-
ne.com/getstartedarduino verfügbar):

// Beispiel 6-2: Arduino Networked Lamp

const int SENSOR = 0;

const int R_LED = 9;

const int G_LED = 10;

const int B_LED = 11;

const int BUTTON = 12;

int val = 0; // variable to store the value coming from the sensor

int btn = LOW;

int old_btn = LOW;

int state = 0;

char buffer[7] ;

int pointer = 0;

byte inByte = 0;

byte r = 0;

byte g = 0;

byte b = 0;

void setup() {

Serial.begin(9600); // open the serial port

pinMode(BUTTON, INPUT);

}

void loop() {

val = analogRead(SENSOR); // read the value from the sensor

Serial.println(val); // print the value to

// the serial port

if (Serial.available() >0) {

Kommunikation mit der Cloud 79

http://www.makezine.com/getstartedarduino
http://www.makezine.com/getstartedarduino

// read the incoming byte:

inByte = Serial.read();

// If the marker's found, next 6 characters are the colour

if (inByte == '#') {

while (pointer < 6) { // accumulate 6 chars

buffer[pointer] = Serial.read(); // store in the buffer

pointer++; // move the pointer forward by 1

}

// now we have the 3 numbers stored as hex numbers

// we need to decode them into 3 bytes r, g and b

r = hex2dec(buffer[1]) + hex2dec(buffer[0]) * 16;

g = hex2dec(buffer[3]) + hex2dec(buffer[2]) * 16;

b = hex2dec(buffer[5]) + hex2dec(buffer[4]) * 16;

pointer = 0; // reset the pointer so we can reuse the buffer

}

}

btn = digitalRead(BUTTON); // read input value and store it

// Check if there was a transition

if ((btn == HIGH) && (old_btn == LOW)){

state = 1 - state;

}

old_btn = btn; // val is now old, let's store it

if (state == 1) { // if the lamp is on

analogWrite(R_LED, r); // turn the leds on

analogWrite(G_LED, g); // at the colour

analogWrite(B_LED, b); // sent by the computer

} else {

analogWrite(R_LED, 0); // otherwise turn off

analogWrite(G_LED, 0);

analogWrite(B_LED, 0);

}

80 Kommunikation mit der Cloud

delay(100); // wait 100ms between each send

}

int hex2dec(byte c) { // converts one HEX character into a number

if (c >= '0' && c <= '9') {

return c - '0';

} else if (c >= 'A' && c <= 'F') {

return c - 'A' + 10;

}

}

Das Zusammenbauen des Schaltkreises
In Abbildung 6-2 ist dargestellt, wie der Schaltkreis zusammenzubauen ist.
Bei allen im Diagramm gezeigten und verwendeten Widerständen handelt
es sich um 10K-Widerstände, obwohl Sie bei den Widerständen für die
LEDs auch mit geringeren Werten arbeiten können.

Von dem PWM-Beispiel in Kapitel 5 wissen Sie, dass LEDs gepolt sind. In
unserem Schaltkreis hier sollte der lange Pin (positiv) nach rechts und der
kurze Pin (negativ) nach links zeigen. (Bei den meisten LEDs ist die
negative Seite abgeflacht, wie auch in der Abbildung zu sehen ist.)

Kommunikation mit der Cloud 81

Abbildung 6-2.

Die "Arduino Networked Lamp"-Schaltung

Bauen Sie die Schaltung wie dargestellt nach und verwenden Sie dabei eine
rote, eine grüne und eine blaue LED. Laden Sie die Sketches in Arduino und
Processing und führen Sie sie dann aus. Falls Probleme auftreten, schlagen
Sie im Kapitel 7 nach.

Nun wollen wir die Konstruktion vervollständigen, indem wir die Steck-
platine in einer Glaskugel platzieren. Die preiswerteste Möglichkeit ist dabei
die, bei IKEA einfach eine Tischlampe vom Typ Fado zu kaufen. Sie kostet
zurzeit etwa 19,99 US-Dollar bzw. 14,99/11,99 Euro (ahh, the luxury of
being European).

Anstelle von drei separaten LEDs können Sie auch eine einzelne RGB-LED
verwenden, die über vier Anschlüsse verfügt. Sie lässt sich auf dieselbe
Weise anschließen wie die LEDs aus Abbildung 6-2, mit einem Unterschied:
Anstelle von drei separaten Verbindungen zum Masse-Pin auf dem Ardui-

82 Kommunikation mit der Cloud

no-Board gibt es nur einen einzigen Anschluss zur Masse (der als gemein-
same Kathode bezeichnet wird).

Im Arduino-Store wird eine RGB-LED mit vier Anschlüssen recht preis-
günstig vertrieben (bit.ly/ArduinoStoreRGBLed). Anders als bei den se-
paraten einfarbigen LEDs ist der längste Anschluss der RGB-LED der, der
zur Masse führt. Die anderen drei werden mit Pin 9, 10 und 11 des Arduino-
Boards verbunden (mit jeweils einem Widerstand zwischen den Anschlüs-
sen und den Pins, genau wie bei den separaten roten, grünen und blauen
LEDs).

So funktioniert das Zusammenbauen
Packen Sie die Lampe aus und entfernen Sie das Kabel, das in den Sockel
der Lampe führt. Sie werden sie nicht mehr an die Steckdose anschließen.

Befestigen Sie das Arduino-Board auf einer Steckplatine und kleben Sie die
Platine mit Heißkleber auf der Rückseite der Lampe fest.

Löten Sie längere Drähte an die RGB-LED und kleben Sie sie an die Stelle,
an der sich normalerweise die Glühbirne befindet. Verbinden Sie die Drähte
der LED mit dem Breadboard (an der Stelle, an der sie sich befanden, bevor
Sie sie entfernt haben). Denken Sie daran, dass Sie nur eine Verbindung zur
Masse benötigen, wenn Sie eine RGB-LED mit vier Anschlüssen verwenden.

Suchen Sie entweder ein hübsches Holzstück mit einem Loch in der Mitte,
das als Sockel für die Kugel dienen kann oder schneiden Sie einfach den
oberen Teil des Pappkartons, in dem die Lampe geliefert wurde, so zurecht,
dass er eine Höhe von etwa 5 cm hat. Schneiden Sie dann ein Loch mit
einem solchen Durchmesser aus, dass die Lampe gehalten wird. Verstär-
ken Sie dann den Karton, indem Sie an den Innenkanten Heißleim auf-
tragen, der den Sockel stabiler macht.

Platzieren Sie die Kugel auf dem Sockel, führen Sie das USB-Kabel an der
Oberseite heraus und schließen es es an Ihren Computer an.

Starten Sie Ihren Processing-Code, drücken Sie den Ein/Aus-Schalter und
sehen Sie zu, wie die Lampe zum Leben erwacht.

Als kleine Übung können Sie einmal Code hinzufügen, mit dem die Lampe
angeschaltet wird, wenn der Raum dunkel wird. Hier einige weitere Mög-
lichkeiten:

Kommunikation mit der Cloud 83

» Bauen Sie Neigungssensoren ein, um die Lampe durch Rotation in
unterschiedliche Richtung ein- oder auszuschalten.

» Fügen Sie einen kleinen PIR-Sensor hinzu um festzustellen, ob jemand
in der Nähe ist und um die Lampe auszuschalten, wenn niemand wahr-
genommen wird.

» Erzeugen Sie verschiedene Modi, sodass Sie die Farbe manuell steuern
oder mehrere Farben überblenden können.

Denken Sie sich verschiedene Projekte aus, experimentieren Sie und haben
Sie Spaß!

84 Kommunikation mit der Cloud

7/Troubleshooting

Es wird bei Ihren Experimenten immer der Moment kommen, an dem
nichts funktioniert und Sie herausfinden müssen, wie sich der Fehler
beheben lässt. Troubleshooting und Debugging sind historische Diszipli-
nen, bei denen ein paar einfache Regeln gelten, die meisten Resultate
werden aber einfach durch viel Arbeit erzielt.

Je mehr Sie mit Elektronik und Arduino arbeiten, desto mehr werden Sie
lernen und desto größer wird Ihr Erfahrungsschatz, wodurch der Prozess
der Fehlerbehebung immer weniger zermürbend wird. Lassen Sie sich
durch die Probleme, die auftreten, nicht entmutigen – alles ist einfacher,
als es am Anfang aussieht.

Da sich jedes Arduino-basierte Projekt aus Hardware und Software zu-
sammensetzt, gibt es immer mehrere Stellen, an denen Sie nachschauen
müssen, ob etwas nicht richtig funktioniert. Wenn Sie einen Fehler suchen,
sollten Sie sich an drei Richtlinen orientieren:

Verständnis
Versuchen Sie, so weit wie möglich zu verstehen, wie die Bauteile, die Sie
verwenden, funktionieren und welchen Beitrag sie für das fertige Projekt
leisten. Dieser Ansatz ermöglicht es Ihnen, Techniken für das separate
Testen jeder einzelnen Komponente zu entwickeln.

Vereinfachung und Segmentierung
Von den alten Römern stammt der Ausspruch Divide et impera, „Teile und
herrsche!“ Spalten Sie Ihr Projekt (mental) in seine Komponenten auf,
indem Sie Ihr Wissen anwenden und finden Sie heraus, wo die Zuständig-
keit jeder Komponente beginnt und wo sie endet.

Ausschließen und Sicherstellen
Testen Sie bei der Fehlersuche jede Komponente einzeln, sodass Sie
absolut sicher sein können, dass jede für sich genommen einwandfrei
funktioniert. Dadurch werden Sie schrittweise eine Sicherheit erlangen,
welche Komponenten ihren Job erledigen und bei welchen Zweifel beste-
hen.

Debugging wird der Prozess genannt, der sich auf die Software bezieht. Der
Legende nach wurde er erstmals in den 1940ern von Grace Hopper ver-
wendet, als Computer noch größtenteils elektromechanisch waren und ein

Troubleshooting 85

Computer seine Arbeit einstellte, weil wirkliche Insekten (engl. bugs) in die
Mechanik eingedrungen waren.

Viele der heutigen „Bugs“ sind nicht mehr physikalischer Natur. Sie sind
virtuell und unsichtbar, jedenfalls teilweise. Daher ist manchmal ein lang-
wieriger und langweiliger Prozess erforderlich, um sie ausfindig zu machen.

Testen des Boards
Nehmen wir einmal an, dass unser erstes Beispiel der blinkenden LED nicht
funktioniert. Wäre das nicht ein wenig deprimierend? Wir wollen nun
herausfinden, was in einem solchen Fall zu tun wäre.

Bevor Sie mit dem Projekt hadern, sollten Sie sich wie ein Pilot, der vor dem
Start eine Checkliste durchgeht, um die Flugtüchtigkeit des Flugzeugs
sicherzustellen, zunächst vergewissern, dass einige Dinge in Ordnung sind:

Schließen Sie Ihr Arduino-Board an einen USB-Anschluss Ihres Computers
an.

» Stellen Sie sicher, dass der Computer eingeschaltet ist (ich weiß, das
klingt dumm, aber hier lag schon des Öfteren ein vermeintlicher Fehler
begründet). Wenn sich das grüne Licht einschaltet, das mit PWR ge-
kennzeichnet ist, heißt das, dass der Computer das Board mit Strom
versorgt. Ist das Licht sehr schwach, dann stimmt etwas nicht mit der
Stromversorgung: Versuchen Sie es dann mit einem anderen USB-Ka-
bel und inspizieren Sie den USB-Anschluss des Computers und die
USB-Buchse des Arduino-Boards um sicherzustellen, dass sie nicht
beschädigt sind. Wenn alles nichts hilft, verwenden Sie einen anderen
USB-Anschluss Ihres Rechners oder gleich einen anderen Computer.

» Bei einem brandneuen Computer wird die gelbe LED mit der Bezeich-
nung L auf eine etwas nervöse Weise blinken. Dies ist das von Hause aus
enthaltene Testprogramm, mit dem das Board getestet wird.

» Wenn Sie eine externe Stromversorgung nutzen und ein altes Arduino-
Board (Extreme, NG oder Diecimila) verwenden, vergewissern Sie sich,
dass der Stecker eingesteckt und die Steckbrücke mit der Bezeichnung
SV1 die zwei Pins verbindet, die am nächsten am Anschluss für die
externe Stromversorgung liegen.

86 Troubleshooting

Hinweis: Wenn es Probleme mit anderen Sketches gibt und Sie sicher-
stellen müssen, dass das Board funktioniert, öffnen Sie das erste
Beispiel 4-1 in der Arduino-IDE und laden Sie es auf das Board. Die
Board-eigene LED sollte nun in einem regelmäßigen Muster blinken.

Wenn Sie alle diese Schritte erfolgreich absolviert haben, können Sie
darauf vertrauen, dass Arduino einwandfrei läuft.

Testen des Schaltkreises auf der Steckplatine
Verbinden Sie nun Ihr Board mit der Steckplatine, indem Sie mit einer
Steckbrücke eine Verbindung vom 5-V-Anschluss und vom GND-Anschluss
zu der positiven und der negativen Leiterbahn auf der Steckplatine her-
stellen. Wenn die grüne PWR-LED nicht mehr leuchtet, entfernen Sie sofort
die Verdrahtung. In diesem Falle gibt es einen größeren Fehler im Schalt-
kreis und Sie haben irgendwo einen Kurzschluss verursacht. Ihr Board
bezieht dann zu viel Strom und die Energieversorgung wird abgeschnitten,
um das Board zu schützen.

Hinweis: Wenn Sie nun Angst haben, Ihren Computer zu beschädigen,
sollten Sie bedenken, dass bei vielen Computern der Stromschutz sehr
gut ist und auch rasch reagiert. Außerdem ist das Arduino-Board mit
einer selbstrückstellenden Sicherung ausgestattet, einem speziellen
Bauteil für den Stromschutz, das sich selbst zurücksetzt, wenn der
Fehler behoben ist.

Wenn Sie schon fast paranoide Züge aufweisen, können Sie das Ardui-
no-Board auch immer über einen Self-Powered-USB-Hub anschließen.
In diesem Fall wäre das Schlimmste, was passieren kann, dass der
USB-Hub zerstört wird. Der Computer bliebe unversehrt.

Wenn Sie einen Kurzschluss verursachen, müssen Sie mit dem Prozess
„Vereinfachung und Segmentierung“ fortfahren. Überprüfen Sie jeden
Sensor im Projekt und schließen Sie dabei immer nur einen an.

Beginnen Sie immer mit der Stromversorgung (die Verbindungen vom
5-V-Pin und vom GND-Pin). Schauen Sie sich alles an und vergewissere Sie
sich, dass jedes Bauteil im Schaltkreis korrekt mit Strom versorgt wird.

Das Arbeiten in Einzelschritten mit niemals mehr als einer Änderung zur
selben Zeit ist die goldene Regel bei der Behebung von Fehlern. Diese Regel
wurde mir von meinem Dozenten und allerersten Arbeitgeber, Maurizio

Troubleshooting 87

Pirola, eingehämmert. Wenn es beim Debuggen nicht so gut läuft (und das
geschieht oft), erscheint mir sein Gesicht und sagt: „Immer nur eine
Änderung zur selben Zeit ... immer nur eine Änderung zur selben Zeit.“ Und
das ist dann der Zeitpunkt, an dem ich das Problem tatsächlich behebe.
(Nur allzu schnell geht der Überblick darüber verloren, durch welche
Änderung das Problem tatsächlich behoben wurde. Deshalb ist es so
wichtig, immer nur eine Änderung zur selben Zeit durchzuführen.) Mit jeder
Debugging-Erfahrung entsteht in Ihrem Kopf Schritt für Schritt eine Wis-
sensbasis im Hinblick auf Fehler und mögliche Lösungen, und bevor Sie es
wissen, sind Sie schon ein Experte. Das verleiht Ihnen eine gewisse Souve-
ränität, denn wenn sich dann ein Neuling darüber beklagt, dass etwas nicht
funktioniert, schauen Sie sich die Sache kurz an und haben im Bruchteil
einer Sekunde eine Lösung parat.

Das Isolieren von Problemen
Eine weitere wichtige Regel ist das Finden eines zuverlässigen Weges zur
Problemreduzierung. Wenn Ihr Schaltkreis sich an scheinbar zufälligen
Zeitpunkten merkwürdig verhält, müssen Sie sehr hart daran arbeiten, den
exakten Zeitpunkt herauszufinden, an dem das Problem auftritt, um den
Grund hierfür zu ermitteln. Dieser Prozess ermöglicht es Ihnen, über eine
mögliche Ursache nachzudenken. Außerdem ist er hilfreich, wenn Sie
jemand anderem erklären möchten, was eigentlich geschieht.

Eine möglichst präzise Beschreibung des Problems ist auch eine gute
Methode, eine Lösung zu finden. Suchen Sie jemanden, dem Sie das
Problem erläutern können – in vielen Fällen wird Ihnen eine Lösung ein-
fallen, sobald Sie das Problem artikulieren. Brian W. Kernighan und Rob
Pike, erzählen in ihrem Buch The Practice of Programming (Addison-Wes-
ley, 1999) die Geschichte einer Universität, an der ein Teddybär beim
Help-Desk aufbewahrt wurde. Studenten mit rätselhaften Bugs mussten
zuerst diesem Stofftier das Problem erläutern, bevor sie sich an einen
menschlichen Berater wenden durften.

Probleme mit der IDE
In einigen Fällen treten vielleicht Probleme bei der Verwendung der IDE auf,
insbesondere unter Windows.

Wenn Ihnen nach einem Doppelklick auf das Arduino-Symbol eine Fehler-
meldung angezeigt wird oder einfach nichts geschieht, versuchen Sie als
alternative Methode, Arduino mit einem Doppelklick auf die Datei run.bat
zu starten.

88 Troubleshooting

Windows-Nutzer werden außerdem mit einem Problem konfrontiert, wenn
das Betriebssystem Arduino eine COM -Anschlussnummer COM10 oder
größer zuweist. In diesem Fall können Sie normalerweise Windows dazu
veranlassen, Arduino eine kleinere Anschlussnummer zuzuweisen. Öffnen
Sie dazu den Device-Manager, indem Sie auf Start und dann mit der
rechten Maustaste auf Computer (Vista) oder My Computer (XP) klicken
und dann Properties auswählen. Klicken Sie unter Windows XP dann auf
Hardware und wählen Sie Device Manager aus. Unter Vista müssen Sie auf
Device Manager klicken (er wird in der Task-Liste in der linken Fenster-
hälfte aufgelistet).

Suchen Sie in der Liste unter Ports (Com & LPT) die seriellen Geräte.
Wählen Sie ein serielles Gerät aus, das Sie nicht nutzen und dem COM9
oder niedriger zugewiesen wurde. Wählen Sie nach einem rechten Maus-
klick auf dieses Gerät Properties aus dem entsprechenden Menü aus.
Klicken Sie auf die Registerkarte Port Settings und dann auf Advanced.
Legen Sie für die COM- Anschlussnummer COM10 oder höher fest, klicken
Sie auf OK und dann nochmal auf OK, um den Dialog Properties wieder zu
schließen.

Führen Sie nun dieselbe Prozedur für das USB Serial Port-Gerät durch, das
das Arduino-Board repräsentiert, mit einer Ausnahme: Weisen Sie ihm die
COM-Anschlussnummer (COM9 oder niedriger) zu, die Sie gerade freige-
geben haben.

Wenn diese Vorschäge alle nicht helfen oder ein Problem auftritt, das hier
nicht beschrieben wurde, rufen Sie die Troubleshooting-Seite von Arduino
unter http://www.arduino.cc/en/Guide/Troubleshooting auf.

So finden Sie Onlinehilfe
Wenn Sie bei einem Problem festhängen, sollten Sie nicht tagelang alleine
herumbasteln – bitten Sie einfach um Hilfe. Einer der größten Vorteile bei
Arduino ist seine Community. Sie können jederzeit Hilfe finden, wenn Sie
das aufgetretene Problem gut beschreiben.

Gewöhnen Sie sich an, per Cut-and-Paste Stichworte in einer Such-
maschine einzugeben und so zu erfahren, ob jemand einen entsprechen-
den Beitrag veröffentlicht hat. Wenn beispielseise die Arduino-IDE eine
merkwürdige Fehlermeldung anzeigt, können Sie sie einfach in die Google-
Suchmaschine kopieren und sich die Suchergebnisse anschauen. Das
funktioniert auch bei Ausschnitten aus Code, an dem Sie gerade arbeiten
und bei speziellen Funktionsnamen. Schauen Sie sich einfach um: Alles
wurde bereits erfunden und ist auf irgendeiner Webseite gespeichert.

Troubleshooting 89

http://www.arduino.cc/en/Guide/Troubleshooting

Für weitere Nachforschungen können Sie auch die Hauptwebseite von
Arduino http://www.arduino.cc besuchen und sich die FAQs unter
http://www.arduino.cc/en/Main/FAQ anschauen und dann zum Play-
ground (http://www.arduino.cc/playground) wechseln. Diese frei edi-
tierbare Wiki-Plattform kann von jedem Nutzer modifiziert werden, um
Dokumentation beizusteuern. Dies ist einer der größten Vorteile der ge-
samten Open-Source-Philosophie. Personen steuern Dokumentation und
Beispiele von allem bei, was sich mit Arduino umsetzen lässt. Bevor Sie mit
einem Projekt beginnen, durchsuchen Sie zunächst den Playground, und
Sie werden sicherlich Codeabschnitte und Schaltdiagramme finden, auf
denen Sie aufbauen können.

Wenn Sie über all diese Wege immer noch keine Antwort erhalten haben,
besuchen Sie das Forum (http://www.arduino.cc/cgi-bin/
yabb2/YaBB.pl). Wenn Sie dort keine direkte Hilfe finden, können Sie auch
eine entsprechende Frage posten. Wählen Sie das richtige Board für Ihre
Frage aus: Es gibt verschiedene Bereiche für Software- und Hardwarepro-
bleme und außerdem Foren in fünf verschiedenen Sprachen. Posten Sie
bitte möglichst viele Informationen:

» Welches Arduino-Board verwenden Sie?

» Unter welchem Betriebssystem führen Sie die Arduino-IDE aus?

» Fügen Sie eine allgemeine Beschreibung dessen an, was Sie zu tun
versuchen. Wenn Sie ungewöhnliche Bauteile verwenden, posten Sie
Links zu den entsprechenden Datenblättern.

Die Anzahl der Antworten, die Sie erhalten, hängt davon ab, wie gut Sie Ihre
Frage formulieren.

Ihre Chancen steigen, wenn Sie folgende Dinge unter allen Umständen
vermeiden (diese Richtlinien gelten für alle Foren, nicht nur für das von
Arduino):

» Das Schreiben der gesamten Nachricht in GROSSBUCHSTABEN. Das
nervt die Leute gewaltig und Sie outen sich sofort als Neuling (bei
Online-Communities wird das Schreiben in Großbuchstaben als
Schreien aufgefasst).

» Das Posten ein- und desselben Beitrags in verschiedenen Bereichen des
Forums.

90 Troubleshooting

http://www.arduino.cc
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/playground
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl

» Das ständige Posten nachfassender Kommentare wie „Hey, warum
antwortet niemand?“ oder, noch schlimmer, das nochmalige Senden
derselben Frage. Wenn Sie keine Antwort erhalten, schauen Sie sich Ihr
Posting noch einmal an. Wurde das Thema klar formuliert? War die
Beschreibung Ihres Problems verständlich? Waren Sie freundlich?
Seien Sie immer nett.

» Das Schreiben von Nachrichten wie „Ich möchte mit Arduino eine
Raumfähre bauen. Wie mache ich das?“ Sie signalisieren damit, dass
andere die Arbeit für Sie erledigen sollen, und dieser Ansatz ist für einen
wirklichen Tüftler einfach nicht lustig. Es ist besser, eine spezifische
Frage zu einem Teil des Projekts zu stellen und die bereitgestellten
Informationen dann zu nutzen.

» Eine Variation des vorherigen Punktes ist es, wenn durch die Frage
offensichtlich wird, dass die postende Person dafür bezahlt wird. Wenn
Sie eine spezifische Frage stellen, helfen Ihnen die Leute gerne. Wenn
sie aber Ihre Arbeit erledigen sollen (und Sie den betreffenden Lohn
nicht teilen), wird die Antwort wahrscheinlich nicht sehr nett ausfallen.

» Das Posten von Nachrichten, die verdächtig nach Hausaufgaben aus-
sehen und mit denen das Forum gebeten wird, Ihre Arbeit für Sie zu
erledigen. Professoren wie ich durchkämmen das Netz und strafen
solche Studenten gandenlos ab.

Troubleshooting 91

Anhang A/
Die Steckplatine

Wenn Sie einen Schaltkreis ans Laufen bringen möchten, ist das mit vielen
Änderungen verbunden, bis alles wirklich funktioniert. Es handelt sich dabei
um einen sehr schnellen, sich wiederholenden Prozess, der irgendwie ein
elektronisches Pendant zum Schreiben von Sketches ist. Das Design ent-
wickelt sich unter Ihren Händen, während Sie verschiedene Kombinationen
ausprobieren. Um das bestmögliche Resultat zu erzielen, müssen Sie ein
System entwickeln, das es ermöglicht, Verbindungen zwischen Kom-
ponenten auf die schnellstmögliche, praktischste und am wenigsten de-
struktive Weise zu ändern. Durch diese Anforderungen ist das Löten klar
ausgeschlossen, weil es sehr zeitaufwendig ist und die Komponenten bei
jedem Erhitzen und Abkühlen sehr beansprucht werden.

Die Antwort auf dieses Problem ist ein sehr praktisches Bauteil, das lötfreie
Steckplatine genannt wird. Wie Sie in Abbildung A-1 sehen, handelt es sich
dabei um ein kleines Plastikbrett, das komplett gelocht ist, wobei jedes
Loch über einen federgelagerten Anschluss verfügt. Wenn Sie den An-
schlusspin einer Komponente in eines der Löcher stecken, wird eine elek-
trische Verbindung mit allen anderen Löchern hergestellt, die sich in
derselben vertikalen Spalte befinden. Jedes Loch weist einen Abstand von
2,54 mm zu den anderen Löchern auf.

Da bei den meisten Komponenten die Anschlussbeinchen (die von Geeks
als Pins bezeichnet werden) einen Standardabstand aufweisen, passen
Chips mit mehreren Beinchen gut. Nicht alle Kontakte auf dem Breadboard
sind gleich gestaltet – es gibt einige Unterschiede. Die oberen und die
unteren Reihen (die rot oder blau markiert und mit + oder – gekennzeich-
net sind) sind horizontal verbunden und dienen dazu, den Strom über die
Platine zu leiten. Wenn Sie also Strom oder Masse benätigen, können diese
sehr schnell mittels einer Steckbrücke (ein kurzes Drahtstück, mit dem
sich zwei Punkte auf der Platine verbinden lassen) bereitgestellt werden.
Als letzten Fakt müssen Sie über Steckplatinen wissen, dass sich in der
Mitte eine große Lücke befindet, die so groß ist wie ein kleiner Chip. Alle
vertikalen Lochreihen sind hier unterbrochen. Wenn Sie also einen Chip
anbringen, der über Pins auf beiden Seiten verfügt, wird bei diesen kein
Kurzschluss erzeugt. Das ist doch mal eine clevere Idee, oder?

Anhang A: Die Steckplatine 93

Abbildung A-1:
Die lötfreie Steckplatine

94 Anhang A: Die Steckplatine

Anhang B/
Das Lesen von
Widerständen und
Kondensatoren

Um elektronische Bauteile verwenden zu können, müssen Sie in der Lage
sein, sie zu identifizieren, was für Neulinge eine große Herausforderung
darstellen kann. Die meisten Widerstände, die in Läden erhältlich sind,
haben einen zylindrischen Körper, aus dem zwei Anschlussbeinchen he-
rausragen und der ringsherum merkwürdige farbige Markierungen auf-
weist. Als die ersten kommerziellen Widerstände hergestellt wurden, gab
es noch keine Möglichkeit, so kleine Nummern aufzudrucken, dass sie auf
den Körper des Widerstands passten. Daher kamen clevere Ingenieure auf
die Idee, die Widerstandswerte in Form von farbigen Ringen darzustellen.

Heute müssen Neulinge daher lernen, wie diese Farben zu interpretieren
sind. Der Schlüssel hierzu ist recht einfach: Generell gibt es vier Farbringe.
Jede Farbe steht für eine Zahl. Einer der Ringe ist üblicherweise goldfarben
und repräsentiert den Genauigkeitsgrad dieses Widerstands. Um die Ringe
in der richtigen Reihenfolge zu lesen, müssen Sie den Widerstand so halten,
dass sich der goldene (oder in einigen Fällen der silberne) Ring rechts
befindet. Schauen Sie sich dann die Farben an und ordnen Sie sie den
entsprechenden Zahlen zu. Die folgende Tabelle zeigt in übersichtlicher
Weise die Farben und den jeweils zugeordneten numerischen Wert.

Farbe Wert

Schwarz 0

Braun 1

Rot 2

Orange 3

Gelb 4

Grün 5

Blau 6

Violett 7

Anhang B: Das Lesen von Widerständen und Kondensatoren 95

Farbe Wert

Grau 8

Weiß 9

Silber 10%

Gold 5%

Eine Markierung mit einem braunen, einem schwarzen, einem orangefar-
benen und einem goldenen Ring beispielsweise bedeutet 1 0 3�5%. Das ist
doch recht einfach, oder? Nicht ganz, denn es gibt noch eine kleine Falle:
Der dritte Ring gibt die Anzahl der Nullen im Wert an. Daher handelt es sich
bei der Abfolge 1 0 3 um 1 0 gefolgt von 3 Nullen, sodass wir hier im
Endeffekt einen Wert von 10.000 Ohm �5% haben. Elektronik-Geeks
verkürzen die Werte, indem sie sie in Kiloohm (für tausend Ohm) und
Megaohm (für eine Million Ohm) angeben, so wird dann aus einem
10.000-Ohm-Widerstand in der Kurzform ein 10k-Widerstand und aus
10.000.000 werden 10M. Bitte beachten Sie dies, denn Ingenieure lieben
die Optimierung und Sie werden unter Umständen in Schaltskizzen Werte
wie 4k7 finden, was nichts anderes als 4,7 Kiloohm oder 4700 Ohm
bedeutet.

Kondensatoren sind diesbezüglich ein wenig einfacher: Bei den fassförmi-
gen Kondensatoren (elektrolytische Kondensatoren) sind die Werte nor-
malerweise aufgedruckt. Der Wert eines Kondensators wird in Farad (F)
angegeben, doch die meisten Kondensatoren, die Sie finden, weisen einen
Wert in Mikrofarad (µF) auf. Wenn also ein Wert von 100 µF aufgedruckt ist,
handelt es sich um einen 100-Mikrofarad-Kondensator.

Bei vielen der scheibenförmigen Kondensatoren (Keramikkondensatoren)
sind die Einheiten nicht angegeben. Es wird ein numerischer Code ange-
führt, der aus drei Ziffern besteht und den Wert in Picofarad wiedergibt.
1.000.000 pF sind ein µF. Ähnlich wie beim Widerstand dient die dritte
Ziffer dazu, die Anzahl der Nullen anzugeben, die hinter den beiden ersten
Ziffern folgen, mit einem Unterschied: Wenn Sie die Ziffern 1-5 lesen,
handelt es sich dabei um die Anzahl an Nullen. Die Ziffern 6 und 7 werden
nicht verwendet, bei den Zahlen 8 und 9 wird in einer anderen Weise
verfahren. Wenn Sie eine 8 lesen, müssen Sie die Zahl, die sich aus den
ersten beiden Ziffern ergibt, mit 0,01 multiplizieren, bei einer 9 lautet der
Multiplikator 0,1.

Wenn also ein Kondensator mit 104 beschriftet ist, handelt es sich dabei
um 100.000 pF oder 0,1 µF. Bei einem Kondensator mit der Beschriftung
229 sind es demnach 2,2 pF.

96 Anhang B: Das Lesen von Widerständen und Kondensatoren

Anhang C/
Kurzreferenz zu
Arduino

An dieser Stelle soll eine kurze Erläuterung der Standardanweisungen
erfolgen, die von der Arduino-Sprache unterstützt werden.

Eine detaillierte Referenz steht unter arduino.cc/en/Reference/Home-
Page zur Verfügung.

STRUKTUR

Ein Arduino-Sketch wird in zwei Teilen ausgeführt:

void setup()

Hier wird der Initialisierungscode platziert – die Anweisungen, mit denen das
Setup des Boards vor dem Eintritt in die Hauptschleife des Sketch erfolgt.

void loop()

Hier ist der Hauptcode des Sketch untergebracht. Die Schleife enthält
einen Satz an Anweisungen, die so lange wiederholt werden, bis das Board
ausgeschaltet wird.

SONDERZEICHEN

Arduino enthält zahlreiche Sonderzeichern, um Codezeilen, Kommentare
und Codeblöcke zu kennzeichnen.

; (Semikolon)

Jede Anweisung (Codezeile) wird mit einem Semikolon beendet. Duch
diese Syntax lässt sich der Code frei formatieren. Sie können sogar zwei
Anweisungen in derselben Zeile platzieren, solange Sie sie nur durch ein
Semikolon voneinander trennen. (Allerdings ist dies der Lesbarkeit des
Codes nicht sehr zuträglich.)

Beispiel:
delay(100);

Anhang C: Kurzreferenz zu Arduino 97

{} (Geschweifte Klammern)

Diese werden verwendet, um Codeblöcke zu kennzeichnen. Wenn Sie
beispielsweise Code für die loop()-Funktion schreiben, muss dieser mit der
öffnenden geschweiften Klammer eingeleitet und mit der schließenden
geschweiften Klammer beendet werden.

Beispiel:
void loop() { Serial.println("ciao"); }

Kommentare

Diese Textabschnitte werden vom Arduino-Prozessor ignoriert, sind aber
sehr hilfreich, um für Sie und andere Nutzer festzuhalten, was der Code tut.

Bei Arduino gibt es zwei Arten von Kommentaren:
// einzelne Zeile: dieser Text wird bis zum Ende der Zeile ignoriert

/* mehrere Zeilen:

Hier findet

ein ganzes Gedicht Platz

*/

KONSTANTEN

Arduino enthält einen Satz vordefinierter Schlüsselwörter mit speziellen
Werten.

HIGH und LOW werden verwendet, um beispielsweise einen Arduino-Pin
ein- oder auszuschalten. Mit INPUT und OUTPUT wird definiert, ob es sich
bei einem Pin um einen Eingangs- oder einen Ausgangspin handeln soll.

Die Werte true und false zeigen genau das an, was schon der Name
vermuten lässt, nämlich ob eine Bedingung oder ein Ausdruck wahr oder
falsch ist.

VARIABLEN

Variablen sind benannte Bereiche des Arduino-Speichers, in denen Daten
gespeichert werden können, die sich im Sketch verwenden und auch
ändern lassen. Wie der Name schon sagt, können Variablen beliebig oft
geändert werden.

Weil Arduino ein sehr einfacher Prozessor ist, müssen Sie bei der Varia-
blendeklaration auch den entsprechenden Typ angeben. Es ist also erfor-
derlich, dem Prozessor die Größe des zu speichernden Wertes mitzuteilen.

98 Anhang C: Kurzreferenz zu Arduino

Hier die verfügbaren Datatypen:

boolean

Er kann einen von zwei Werten enthalten: wahr oder falsch.

char

Er enthält ein einzelnes Zeichen, z.B. A. Wie jeder Computer speichert
Arduino dieses Zeichen als Zahl, auch wenn Text angezeigt wird. Wenn
char-Variablen verwendet werden, um Zahlen zu speichern, können sie
Werte von –128 bis 127 enthalten.

Hinweis: Auf Computern stehen zwei größere Zeichensätze zur Ver-
fügung: ASCII und UNICODE. ASCII umfasst 127 Zeichen, die unter
anderem dazu verwendet werden, um Text zwischen seriellen Endgerä-
ten und zeitlich verzahnten Computersystemen wie Großrechnern oder
Minicomputern zu übertragen. UNICODE umfasst einen viel größeren
Satz an Werten und wird von modernen Computerbetriebssystemen
verwendet, um Zeichen in einer Vielzahl von Sprachen darzustellen.
Dennoch ist auch ASCII nützlich beim Austauch von kurzen Informatio-
nen in Sprachen wie Italienisch oder Englisch, bei denen das lateinische
Alphabet, arabische Zahlen und häufig verwendete Schreibmaschinen-
zeichen wie solche zur Interpunktion und dergleichen verwendet wer-
den.

byte

Dieser Datentyp enthält eine Zahl zwischen 0 und 255. Wie bei chars wird
auch bei bytes nur ein Byte an Speicher verwendet.

int

Hier werden 2 Byte Speicher genutzt, um eine Zahl zwischen –32.168 und
32.167 darzustellen. Es ist der bei Arduino am häufigsten genutzte Daten-
typ.

unsigned_int

Wie bei int werden auch hier 2 Bytes verwendet, unsigned (vorzeichenlos)
bedeutet aber, dass keine negativen Zahlen gespeichert werden können,
daher reicht der Wertebereich von 0 bis 65.535.

Anhang C: Kurzreferenz zu Arduino 99

long

Diese Variable ist doppelt so groß wie int und enthält Werte von
–2.147.483.648 bis 2.147.483.647.

unsigned_long

Dies ist die vorzeichenlose Version von long mit einem Wertebereich von 0
bis 4.294.967.295.

float

Hierbei handelt es sich um eine recht große Variable, die Fließkommawerte
(ein lustiger Ausdruck, um zu beschreiben, dass Zahlen mit einem Dezi-
malkomma gespeichert werden können) enthalten kann. Solche Variablen
nutzen 4 Byte Ihres wertvollen RAM, und die Funktionen, die mit ihnen
arbeiten können, verbrauchen ebenfalls viel Codespeicher. Sie sollten
floats daher sparsam verwenden.

double

Diese Variable speichert eine Fließkommazahl mit doppelter Genauigkeit,
mit einem maximalen Wert von 1.7976931348623157 x 10308. Wow, das ist
ein wirklich großer Wert!

string

Hierin wird ein Satz von ASCII-Zeichen beherbergt, mit denen Textinfor-
mationen gespeichert werden (wenn beispielsweise mittels einer Zeichen-
folge eine Nachricht über den seriellen Anschluss gesendet oder auf einem
LCD-Display angezeigt werden soll). Zum Speichern wird dabei ein Byte für
jedes Zeichen in der Zeichenfolge verwendet, plus ein Nullzeichen, um
Arduino mitzuteilen, dass es sich um das Ende des Strings handelt.
Folgende Schreibweisen sind gleichbedeutend:
char string1 [] = "Arduino"; // 7 chars + 1 Null-char

char string2[8] = "Arduino"; // wie oben

array

Hierbei handelt es sich um eine Liste, auf die über einen Index zugegriffen
werden kann. Diese Variablen werden verwendet, um Wertetabellen zu
erstellen, auf die schnell zugegriffen werden kann. Wenn Sie beispielsweise
verschiedene Helligkeitsstufen speichern möchten, die zum Dimmen einer
LED verwendet werden sollen, könnten Sie sechs Variablen mit den Namen
light01, light02 usw. erzeugen. Besser ist aber die Verwendung einer ein-
zigen Variablen wie der folgenden:
int light[6] = {0, 20, 50, 75, 100};

100 Anhang C: Kurzreferenz zu Arduino

Das Wort array wird bei der Variablendeklaration nicht verwendet. Statt-
dessen kommen die Zeichen [] und {} zum Einsatz.

KONTROLLSTRUKTUREN

Arduino enthält Schlüsselwörter für das Steuern des Logikflusses Ihres
Sketch.

if...else

Mit dieser Struktur werden in Ihrem Programm Entscheidungen gefällt. An
if muss eine Frage anschließen, die als Ausdruck, der in Klammern einge-
schlossen ist, angegeben wird. Wenn der Ausdruck wahr ist, wird alles
Nachfolgende ausgeführt. Wenn er falsch ist, wird mit dem nächsten
Codeblock fortgefahren. Es ist auch möglich, nur if ohne Angabe einer
Bedingung zu verwenden. else clause.

Beispiel:
if (val == 1) {

digitalWrite(LED,HIGH);

}

for

Bei dieser Struktur wird der Codeblock mit einer angegebenen Häufigkeit
wiederholt.

Beispiel:
for (int i = 0; i < 10; i++) {

Serial.print("ciao");

}

switch case

Die if-Anweisung ist mit einer Weggabelung vergleichbar. Die Kontroll-
struktur switch case hingegen ähnelt eher einem massiven Kreisel. Sie
ermöglicht dem Programm, eine Vielzahl von Richtungen einzuschlagen, in
Abhängigkeit vom Wert einer Variablen. Diese Kontrollstruktur ist sehr
hilfreich, wenn es darum geht, Ihren Code übersichtlich zu halten, da sie
lange Listen von if-Anweisungen ersetzt.

Beispiel:
switch (sensorValue) {

case 23:

Anhang C: Kurzreferenz zu Arduino 101

digitalWrite(13,HIGH);

break;

case 46:

digitalWrite(12,HIGH);

break;

default: // wenn nichts zutrifft, wird dies ausgeführt

digitalWrite(12,LOW);

digitalWrite(13,LOW);

}

while

Sie ähnelt der if-Anweisung. Es wird ein Codeblock ausgeführt, solange eine
Bedingung wahr ist.

Beispiel:
// LED blinkt solange der Sensor-Wert kleiner 512

sensorValue = analogRead(1);

while (sensorValue < 512) {

digitalWrite(13,HIGH);

delay(100);

digitalWrite(13,HIGH);

delay(100);

sensorValue = analogRead(1);

}

do...while

Diese Struktur ähnelt der while-Anweisung, mit der Ausnahme, dass der
Code ausgeführt wird, bevor die Bedingung ausgewertet wird. Diese Struk-
tur wird verwendet, wenn der enthaltene Code mindestens einmal aus-
geführt werden soll, bevor die Bedingung geprüft wird.

Beispiel:
do {

digitalWrite(13,HIGH);

delay(100);

digitalWrite(13,HIGH);

delay(100); sensorValue = analogRead(1);

} while (sensorValue < 512);

102 Anhang C: Kurzreferenz zu Arduino

break

Bei dieser Anweisung wird eine Schleife verlassen und mit der Ausführung
des Codes fortgefahren, der nach der Schleife folgt. Sie wird auch verwen-
det, um die verschiedenen Abschnitte einer switch case-Anweisung zu
separieren.

Beispiel:
// LED blinkt solange der Sensor-Wert kleiner 512

do {

// Schleife wird verlassen, wenn ein Taster gedrückt wurde

(digitalRead(7) == HIGH)

break;

digitalWrite(13,HIGH);

delay(100);

digitalWrite(13,LOW); delay(100);

sensorValue = analogRead(1);

} while (sensorValue < 512);

continue

Wenn diese Anweisung innerhalb einer Schleife verwendet wird, veranlasst
continue, dass der restliche enthaltene Code übersprungen und die Bedin-
gung erneut getestet wird.

Beispiel:
for (light = 0; light < 255; light++)

{

// überspringt Intensitäten zwischen 140 und 200

if ((x > 140) && (x < 200))

continue;

analogWrite(PWMpin, light);

delay(10);

}

return

Bei dieser Anweisung wird die Ausführung einer Funktion gestoppt und ein
entsprechender Wert zurückgegeben. Sie können diese Struktur auch
verwenden, um einen Wert, der aus einer Funktion stammt, zurückzulie-
fern.

Wenn Sie beispielsweise bei einer Funktion mit dem Namen computeTem-
perature() das Ergebnis an den Teil Ihres Codes ausgeben möchten, über
den die Funktion aufgerufen wurde, würden Sie etwa Folgendes schreiben:

Anhang C: Kurzreferenz zu Arduino 103

int computeTemperature() {

int temperature = 0;

temperature = (analogRead(0) + 45) / 100;

return temperature;

}

ARITHMETIK UND FORMELN

Sie können Arduino für komplexe Berechnungen verwenden, indem Sie
eine spezielle Syntax verwenden. Die Zeichen + und – funktionieren so, wie
Sie es in der Schule gelernt haben, Multiplikation wird mit einem * und
Division mit einem / dargestellt.

Es gibt noch einen zusätzlichen Operator, der als Modulo (%) bezeichnet
wird und den Rest aus einer Division von Ganzzahlen zurückliefert. Sie
können beliebig viele Klammern nutzen, um Ausdrücke zusammenzufas-
sen und zu schachteln. Im Gegensatz zu dem, was Sie möglicherweise in
der Schule gelernt haben, sind eckige und geschweifte Klammern für
andere Zwecke reserviert (z.B. für Array-Indizes und Blöcke).

Beispiele:
a = 2 + 2;

light = ((12 * sensorValue) - 5) / 2;

remainder = 3 % 2;

// liefert 1 zurück

VERGLEICHSOPERATOREN

Zur Angabe von Bedingungen oder Prüfungen für if-, while- und for-Anwei-
sungen stehen folgende Operatoren zur Verfügung:

== gleich

!= ungleich

< kleiner als

> größer als

<= kleiner oder gleich

>= größer oder gleich

BOOLESCHE OPERATOREN

Dieser Operator wird verwendet, wenn Sie mehrere Bedingungen verknüp-
fen möchten. Wenn Sie beispielsweise überprüfen möchten, ob der von

104 Anhang C: Kurzreferenz zu Arduino

einem Sensor zurückgelieferte Wert zwsichen 5 und 10 liegt, würden Sie
Folgendes schreiben:

if ((sensor => 5) && (sensor <=10))

Es gibt drei Operatoren: „und“, durch && dargestellt, „oder“, repräsentiert
durch ||, und schließlich „nicht“, dargestellt durch !.

KOMBINIERTE OPERATOREN

Hierbei handelt es sich um spezielle Operatoren, die verwendet werden, um
den Code bei häufig durchgeführten Operationen, wie z.B. das Hochzählen
eines Wertes, möglichst kurz zu halten.

Um beispielsweise value um 1 zu inkrementieren, würden Sie Folgendes
schreiben:

value = value +1;

Unter Verwendung eines kombinierten Operators wird daraus diese ver-
einfachte Version:

value++;

Inkrementieren und Dekrementieren (–– und ++)

Hiermit wird um den Wert 1 hoch- oder heruntergezählt. Seien Sie aber
vorsichtig: Wenn Sie i++ schreiben, wird i um 1 inkrementiert und in Bezug
auf das Äquivalent von i+1 ausgewertet. Bei ++i wird in Bezug auf den Wert
von i ausgewertet und anschließend i inkrementiert. Dasselbe gilt für ––.

+=, *= und /=

Hierdurch lässt sich die Schreibweise für bestimmte Ausdrücke verkürzen.
Die beiden folgenden Ausdrücke sind gleichbedeutend:

a = a + 5;

a += 5;

INPUT- UND OUTPUT-FUNKTIONEN

Arduino umfasst Funktionen für die Handhabung von Input und Output. Sie
haben in diesem Buch bereits einige entsprechende Beispielprogramme
gesehen.

Anhang C: Kurzreferenz zu Arduino 105

pinMode(pin, mode)

Hiermit wird ein digitaler Pin neu definiert, sodass er dann als Eingangs-
oder Ausgangspin dient.

Beispiel:
pinMode(7,INPUT); // definiert Pin 7 als Input

digitalWrite(pin, value)

Hiermit wird ein digitaler Pin ein- oder ausgeschaltet. Pins müssen mittels
pinMode explizit als Output definiert werden, bevor mit digitalWrite irgend-
ein Effekt erzielt werden kann.

Beispiel:
digitalWrite(8,HIGH); // schaltet den digitalen Pin 8 ein

int digitalRead(pin)

Hiermit wird der Zustand eines Eingangspins ausgelesen. Dabei wird HIGH
zurückgeliefert, wenn vom Pin eine Spannung festgestellt wurde, und LOW,
wenn keine Spannung anliegt.

Beispiel:
val = digitalRead(7); // liest Pin 7 in val ein

int analogRead(pin)

Diese Funktion liest die Spannung an einem analogen Pin aus und liefert
einen Wert zwischen 0 und 255 zurück, der eine Spannung zwischen 0 und
5 V repräsentiert.

Beispiel:
val = analogRead(0); // liest analogen Input 0 in val ein

analogWrite(pin, value)

Hiermit wird die PWM-Frequenz für einen der Pins, die als PWM definiert
wurden, geändert. Dabei kann pin 11,10, 9,6,5 oder 3 sein. Die Variable
value kann Werte zwischen 0 und 255 enthalten, die eine Skala von 0 und 5
V für die Spannung am Output-Pin repräsentieren.

Beispiel:
analogWrite(9,128); // Dimmt eine LED an Pin 9 auf 50%

106 Anhang C: Kurzreferenz zu Arduino

shiftOut(dataPin, clockPin, bitOrder, value)

Diese Funktion sendet Daten an ein Schieberegister, ein logisches Schalte-
werk, das verwendet wird, um die Anzahl der digitalen Outputs zu erwei-
tern. Dieses Protokoll nutzt einen Pin für Daten und einen als Taktgeber.
Mit bitOrder wird die Reihenfolge der Abarbeitung (least significant bit
oder most significant bit) bestimmt und in value ist das zu sendende Byte
gespeichert.

Beispiel:
shiftOut(dataPin, clockPin, LSBFIRST, 255);

unsigned long pulseIn(pin, value)

Hiermit wird die von einem der digitalen Pins eingehende Pulsdauer ge-
messen. Dies ist zum Beispiel dann nützlich, wenn ein Infrarotsensor oder
ein Beschleunigungsmesser ausgelesen werden soll, bei dem die Werte in
Form von Impulsen bezogen auf die Änderungsdauern ausgegeben wer-
den.

Beispiel:
time = pulsein(7,HIGH); // misst die Zeitdauer, die der nächste

// Impuls HIGH bleibt

ZEITFUNKTIONEN

Arduino umfasst Funktionen für das Messen von abgelaufener Zeit und für
Pausenzeiten von Sketches.

unsigned long millis()

Diese Funktion gibt die Anzahl an Millisekunden zurück, die seit dem Start
des Sketch vergangen sind.

Beispiel:
duration = millis()-lastTime; // berechnet die vergangene Zeitdauer seit

// "lastTime"

delay(ms)

Hiermit wird eine Pause des Programms für die angegebene Zeit in Milli-
sekunden veranlasst.

Beispiel:
delay(500); // das Programm wird für eine halbe Sekunde gestoppt

Anhang C: Kurzreferenz zu Arduino 107

delayMicroseconds(us)

Das Programm wird veranlasst, für eine gegebene Anzahl an Millisekunden
zu pausieren.

Beispiel:
delayMicroseconds(1000); // wartet eine 1 Millisekunde

MATHEMATISCHE FUNKTIONEN

In Arduino sind viele häufig genutzte mathematische und trigonometrische
Funktionen enthalten:

min(x, y)

Es wird ein Wert kleiner als x und y zurückgeliefert.

Beispiel:
val = min(10,20); // val ist nun 10

max(x, y)

Es wird ein Wert größer als x und y ausgegeben.

Beispiel:
val = max(10,20); // val ist nun 20

abs(x)

Es wird der absolute Wert von x zurückgeliefert, der negative Zahlen in
positive umwandelt. Wenn also x 5 ist, wird 5 zurückgeliefert, und wenn x –
5 ist, lautet der Rückgabewert ebenfalls 5.

Beispiel:
val = abs(-5); // val ist nun 5

constrain(x, a, b)

Gibt den Wert von x zurück, der aber auf einen Bereich zwischen a und b
beschränkt ist. Wenn x kleiner als a ist, wird einfach a zurückgeliefert, und
wenn x größer als b ist, wird b ausgegeben.

Beispiel:
val = constrain(analogRead(0), 0, 255); // weist Werte größer als 255

// zurück

108 Anhang C: Kurzreferenz zu Arduino

map(value, fromLow, fromHigh, toLow, toHigh)

Hiermit wird ein Wert aus dem Bereich fromLow und maxLow dem Bereich
toLow und toHigh zugewiesen. Dies ist sehr nützlich bei der Verarbeitung
von Werten, die von analogen Sensoren stammen.

Beispiel:
val = map(analogRead(0),0,1023,100, 200); // weist den Wert von

// analog 0 einem Wert

// zwischen 100 und 200 zu

double pow(base, exponent)

Es wird das Ergebnis einer Zahl (Basis) im Hinblick auf eine Potenz (Ex-
ponent) zurückgeliefert.

Beispiel:
double x = pow(y, 32); // setzt x auf den um die Potenz 32 erhöhten Wert von y

double sqrt(x)

Es wird die Quadratwurzel einer Zahl zurückgeliefert.

Beispiel:
double a = sqrt(1138); // etwa 33.73425674438

double sin(rad)

Es wird der Sinus eines Winkels als Bogenmaß zurückgeliefert.

Beispiel:
double sine = sin(2); // etwa 0.90929737091

double cos(rad)

Es wird der Kosinus eines Winkels als Bogenmaß zurückgeliefert.

Beispiel:
double cosine = cos(2); // etwa -0.41614685058

double tan(rad)

Es wird die Tangente eines Winkels als Bogenmaß zurückgeliefert.

Beispiel:
double tangent = tan(2); // etwa -2.18503975868

Anhang C: Kurzreferenz zu Arduino 109

ZUFALLSZAHLENFUNKTIONEN

Zum Erzeugen von Zufallszahlen können Sie den Pseudozufallszahlen-Ge-
nerator von Arduino verwenden.

randomSeed(seed)

Hiermit wird der Pseudozufallszahlen-Generator von Arduino zurück-
gesetzt. Die Verteilung der von random() zurückgelieferten Zahlen ist zwar
grundsätzlich zufällig, aber die Abfolge ist vorhersehbar. Daher sollten Sie
den Generator auf einen Zufallswert zurücksetzen. Wenn ein nicht verbun-
dener analoger Pin vorhanden ist, wird er einige zufällige Geräusche aus
der Umgbebung auffangen (Radiowellen, kosmische Strahlung, elektro-
magnetische Interferenzen von Mobiltelefonen und fluoreszierendem Licht
usw.).

Beispiel:
randomSeed(analogRead(5)); // erzeugt Zufallszahlen mithilfe von Geräu-

// schen an Pin 5

long random(max)
long random(min, max)

Es wird ein ganzzahliger Zufallswert vom Typ long zwischen min und max –
1 zurückgeliefert. Wenn kein Minimum angegeben wurde, ist die untere
Grenze 0.

Beispiel:
long randnum = random(0, 100); // eine Zahl zwischen 0 und 99

long randnum = random(11); // eine Zahl zwischen 0 und 10

SERIELLE KOMMUNIKATION

Wie Sie in Kapitel 5 gesehen haben, können Sie über den USB-Port mit
anderen Geräten kommunizieren, wobei ein serielles Kommunikationspro-
tokoll zum Einsatz kommt. Im Folgenden sind die seriellen Funktionen
aufgelistet.

Serial.begin(speed)

Mit dieser Funktion wird Arduino darauf vorbereitet, serielle Daten zu
versenden und zu empfangen. Normalerweise arbeitet der serielle Monitor
der Arduino-IDE mit einer Geschwindigkeit von 9600 Bit pro Sekunde

110 Anhang C: Kurzreferenz zu Arduino

(bps), es stehen aber auch andere Werte zur Verfügung, üblicherweise
aber nicht mehr als 115.200 bps.

Beispiel:
Serial.begin(9600);

Serial.print(data)
Serial.print(data, encoding)

Diese Funktion schickt Daten an den seriellen Anschluss. Die Zeichenco-
dierung ist dabei optional; wenn keine Angaben getroffen werden, werden
die Daten so weit wie möglich als Klartext behandelt.

Beispiele:
Serial.print(75); // druckt "75"

Serial.print(75, DEC); // wie oben

Serial.print(75, HEX); // "4B" (75 als Hexadezimalzahl)

Serial.print(75, OCT); // "113" (75 als Oktalzahl)

Serial.print(75, BIN); // "1001011" (75 als Binärzahl)

Serial.print(75, BYTE); // "K" (das Byte

// das zufällig 75 im ASCII-Zeichensatz ist)

Serial.printIn(data)
Serial.printIn(data, encoding)

Diese Funktion arbeitet wie Serial.print() mit der Ausnahme, dass ein
Wagenrücklauf und ein Zeilenvorschub (\r\n) angefügt wird, als ob nach
der Dateneingabe die Return- oder Enter-Taste gedrückt worden wäre.

Beispiele:
Serial.println(75); // druckt "75\r\n"

Serial.println(75, DEC); // wie oben

Serial.println(75, HEX); // "4B\r\n"

Serial.println(75, OCT); // "113\r\n"

Serial.println(75, BIN); // "1001011\r\n"

Serial.println(75, BYTE); // "K\r\

int Serial.available()

Diese Funktion liefert zurück, wie viele Daten am seriellen Anschluss für
das Auslesen mittels der read()-Funtion bereitstehen. Nachdem mit read()
alle verfügbaten Daten ausgelesen wurden, liefert Serial.available() so
lange 0 zurück, bis neue Daten am seriellen Anschluss vorliegen.

Anhang C: Kurzreferenz zu Arduino 111

Beispiel:
int count = Serial.available();

int Serial.read()

Es wird ein Byte der eingehenden seriellen Daten abgerufen.

Beispiel:
int data = Serial.read();

Serial.flush()

Da die Daten über den seriellen Anschluss möglicherweise schneller ein-
treffen, als dein Programm sie verarbeiten kann, speichert Arduino alle
eingehenden Daten in einem Puffer. Wenn der Puffer gelöscht und Platz für
neue Daten geschaffen werden soll, wird hierzu die flush()-Funktion ver-
wendet.

Beispiel:
Serial.flush();

112 Anhang C: Kurzreferenz zu Arduino

Anhang D/
Das Lesen von
Schaltplänen

Bisher haben wir noch keine sehr detaillierten Illustrationen verwendet, um
zu beschreiben, wie Ihr Schaltkreis aufgebaut werden muss. Sie können
sich aber bestimmt vorstellen, dass es schon recht zeitaufändig ist, zu
Dokumentationszwecken für jedes Projekt eine Schaltskizze zu zeichnen.

Ähnliche Probleme werden früher oder später in jeder Disziplin auftauchen.
Wenn Sie beispielsweise im Bereich Musik einen schönen Song geschrie-
ben haben, müssen Sie ihn mittels Musiknoten zu Papier bringen.

Da Ingenieure praktisch veranlagte Menschen sind, haben sie einen Weg
entwickelt, die Essenz eines Schaltkeises zu erfassen, um sie später zu
dokumentieren oder an andere Personen weiterzuleiten.

Im Bereich Elektronik ermöglichen Schaltdiagramme Schaltungen in einer
Weise zu beschreiben, dass sie von den anderen Personen in einer Com-
munity verstanden werden. Einzelne Komponenten werden in Form von
Symbolen dargestellt, bei denen es sich um eine Art Abstraktion der
tatsächlichen Form der Komponente oder ihrer Essenz handelt. Der Kon-
densator beispielsweise besteht aus zwei Metallplättchen, die durch Luft
oder Plastik voneinander separiert werden. Das entsprechende Symbol
sieht demnach wie folgt aus:

Anhang D: Das Lesen von Schaltplänen 113

Ein weiteres schönes Beispiel ist der Induktor,
der aus einem um einen Zylinder gewickelten
Kupferdraht besteht. Daher sieht das entspre-
chende Symbol folgerichtig wie das auf der lin-
ken Seite dargestellte aus.

Die Verbindungen zwischen den Komponenten
bestehen üblicherweise aus Drähten oder Lei-
terbahnen auf der Platine und werden in der
Schaltskizze als einfache Linien dargestellt.
Wenn zwei Drähte verbunden werden, wird
diese Verbindung als großer Punkt an der Kreu-
zung der beiden Linien dargestellt, wie in der
Abbildung links dargestellt.

Dies sind alle Informationen, die Sie für das Verständnis von Basis-Schalt-
skizzen benötigen. Hier eine Liste mit weitern Symbolen und den entspre-
chenden Bedeutungen:

114 Anhang D: Das Lesen von Schaltplänen

Möglicherweise werden Sie Variationen dieser Symbole begegnen (z.B.
beide hier aufgeführten Symbole für den Widerstand). Eine umfangreichere
Liste von Elektronik-Symbolen finden Sie unter en.wikipedia.org/wiki/
Electronic_symbol. Konventionell werden Schaltdiagramme von links nach
rechts gezeichnet. Beim Zeichnen eines Radios würden Sie demnach mit
der Antenne auf der linken Seite beginnen und dann mit dem Weg fort-
fahren, den das Radiosignal bis zum Lautsprecher (der auf der rechten
Seite gezeichnet wird) zurücklegt.

In der folgenden Schaltskizze ist der weiter vorne in diesem Buch erläuterte
Drucktaster-Schaltkreis beschrieben:

Anhang D: Das Lesen von Schaltplänen 115

Index

Symbole
(Rautenzeichen), in HTML-Farb-

codes 74
% (Modulo), Operator 104
&& (und), Operator 105
>= (größer oder gleich), Operator

104
< (größer als), Operator 104
< (kleiner als), Operator 104
<= (kleiner oder gleich), Opera-

tor 105
() (runde Klammern) 33

folgend auf if-Schlüsselwort 43
/ (Division), Operator 104
/* */ (Kommentar) 98
*= (Multiplikation und Zuweisung),

Operator 105
+ (Addition), Operator 104
++ (Inkrementieren), Operator 105
+= (Addition und Zuweisung), Ope-

rator 105
// (Trennzeichen für Kommentare)

32, 98
10-K-Ohm-Widerstände 40
10-Kiloohm-Widerstände 62
270-Ohm-Widerstand 56
; (Semikolon)

Beenden von Codezeilen 97
/= (Division und Zuweisung), Ope-

rator 105
== (gleich), Operator 46, 104
[] (eckige Klammern), in Arrays

100
{ } (geschweifte Klammern) 33, 98

A
abs(), Funktion 107
AC-Adapter 18
Aktoren 26
Alarmanlagen, Infrarot-Sensoren

52

Ampere 38
analog

Input 62, 71
Output 71
Sensorschaltkeis 64
Sensorschaltkreis 65

analogRead(), Funktion 62
Helligkeitswerte 65

analogRead() function 106
analogWrite(), Funktion 55, 106
Anode 27
Arabische Zahlen 99
Arduino

FAQs auf der Hauptwebseite 90
grundlegende Bausteine 71
Hardware 17–18
Hauptteile, Board und IDE 17
Installation 20
Philosophie 5
Testen des Boards 86
Uno-Board 21
Unterschiede zu anderen Platt-

formen 1
Verbindung zum Internet 73

Arduino Store 40
Arduino, die Philosophie von 5
Arduino, Sprache 97–98, 100, 105,

107–108, 110, 114
Input- und Output-Funktionen

105
serielle Kommunikation 110
Variablen 98

ArduinoUNO.inf, Datei 22
Argumente 33–34
ASCII 99
Aton, Lampe 72
avr-gcc-Compiler 20

B
Benutzergrupen 16
Beschleunigungsmesser 68

Index 117

Bewegungsmelder, passive Infra-
rotsensoren (PIR-Sensoren) 52

blinkende LED, Sketch 26–31
Code, Schritt für Schritt 34–35
der Code, Schritt für Schritt 32,

35
blinkende LEDs

Code, LEDs in einer Geschwin-
digkeit blinken lassen, die am
analogen Input-Pin festgelegt
wurde 64

Steuerung mittels PWM 54
Boolean, Datatyp 99
byte, Datentyp 99

C
C, Sprache 20
char, Datatyp 99
Code

Arduino, eine vernetzte Lampe
mit Arduino 81–82

Arduino, vernetzte Lampe mit
Processing 78

Einschalten der LED, wenn der
Taster gedrückt ist 45

Einschalten einer LED bei ge-
drücktem Drucktaster und sie
anschließend am Leuchten
halten 47

Einschalten einer LED bei ge-
drücktem Taster, mit Entprel-
len 48

Festlegen der Helligkeit einer
LED mittels analogen Inputs
65

Codeblöcke 30–31, 33
Colombo, Joe 72
COM-Port, unter Windows 24
Computertastaturen 13
constrain(), Funktion 108
continue, Anweisung 103
cos(), Funktion 109

D
Datatypen 99, 101
Debugging 86

delay(), Funktion 34, 107
Ändern der Zeiten 54

delayMicroseconds(), Funktion
108

Design, Interaction Design 2
Device Manager (Windows) 23, 89
Dezimalzahlen 74
Diecimila-Board 18, 86
digital

Input 71
INPUT oder OUTPUT, Modi für

Pins 33
Output 71
Pins 18, 33
programmierbare Elektronik,

Vorteile 43
digitalRead(), Funktion 40

Speichern eines zurückgeliefer-
ten Ergebnisses in einer Va-
riablen 44

digitalRead(), Funktion 106
digitalWrite(), Funktion 34, 106
Dioden

1N4007 68
do . . . while-Anweisung 102
double, Datentyp 100
Drucktaster, Schaltskizzensymbol

für 115
Duemilanove-Board 18
Dyson, James 6

E
Ein/Aus-Sensoren 51–52
elektrische Spannung

auslesen 18
Elektrizität 36, 38, 40
Elektroschrott, Verwenden von 14
externe Stromversorgung 18
Extreme-Board 86

F
FALSE 43
false 98
Farben, HTML-Kodierung 74
Flash-Speicher 44
float, Datentyp 100

118 Index

Forum 90
Fotowiderstand 26
Funktionen 31

Input und Output 105
serielle Kommunikation 110
Zeit 107

G
gemeinsame Kathode 83
gestische Schnittstelle 52
Ghazala, Reed 10

H
Hacken

Elektroschrott 14
Spielzeug 15

Haque, Usman 15
Hardware, Arduino 17–18
Helligkeit

ändern für blinkende LEDs 54
Festlegen für LED mittels analo-

gen Inputs 65
hexadezimale Zahlen 74
HIGH 33, 40
Hilfe, Onlinequellen 89
Hopper, Grace 85
HTML, Darstellung von Farben in 74

I
IDE (Integrated Development Envi-

ronment, Integrierte Entwick-
lungsumgebung
Processing, Tools-Menü, Create

Font 78
IDE (Integrated Development Envi-

ronment, Integrierte Entwick-
lungsumgebung) 20
Überprüfung des Codes 29

if . . . else-Anweisung 100
if-Anweisungen 43
IKEA, Tischlampe FADO 82
Induktor, Symbol für 114
Infrarot-Ranger 68
INPUT 33
Input

analog 62

digital 71
Funktionen für 105

Input/Output-(I/O-)Board 1
int, Datentyp 99
int, Variable 44
Interaktives Gerät 25
Interpunktion 99

K
K (Kathode) 27
Kathode 27
Kernighan, Brian W. 88
Kommentare 32, 98
komplexe Sensoren 68
Konstanten 33, 98
Kontrollstrukturen 101, 105
Kooperation von Arduino-Nutzern

16

L
L (LED) 26, 86
Lampen 83

interaktiv 35
kugelförmige, vernetzte Lampe

72, 83–84
Lateinisches Alphabet 99
LEDs

anschließen an Arduino 27
blinkende LED, Erläuterung des

Sketch-Codes 35
blinkende LED, Erläuterung

des Sketch-Codes 32, 36
eine blinkene LED, Erläuterung

des Sketch-Codes 33
LED, Konstante 32
RGB 83

Lesen von Schaltskizzen 113
Lesen von Widerständen und

Kondensatoren 95
Licht

Steuerung und Ermöglichung
einer Interaktion 35

Lichtsensoren 61–62, 65

Index 119

Linux
Installieren von Arduino 20
Onlinehilfe beim Installieren von

Arduino 20
long datatype 100
loop(), Funktion 31, 33, 97
lötfreie Steckplatine 40, 93
LOW 34, 40

M
Macintosh

Installation der Treiber 21
Installieren von Arduino 20

Magnetische Schalter 51
Make-Blog 72
Maker Shed, Bauteile 40
map(), Funktion 109
mathematische und trigonometri-

sche Funktionen 108
max(), Funktion 108
Mikrocontroller 3
millis(), Funktion 107
Millisekunden 34
min(), Funktion 108
mittels Drucktaster gesteuerte

LEDs
Code 42
Code, Einschalten der LED,

wenn der Taster gedrückt
ist 45

Moog, Robert 8
MOSFET-Transistor 67

IRF520 68

N
Neigungsschalter 51
NG-Board 18, 86

O
Objekt, definiert 66
Ohm 38
Ohmsches Gesetz, Formel 39
Opportunistisches Prototyping 6
Output

digital 71
Funktionen für 105

OUTPUT 33

P
passive Infrarotsensoren (PIR-Sen-

soren) 52
Patching 8
Physical Computing 3
Pike, Rob 88
pinMode(), Funktion 33, 106
Pins, Arduino-Board 18, 93

20 Milliampere Maximumkapazi-
tät 67

analog 106
Analog In 62
Konfigurieren digitaler Pins 106
LED, angeschlossen an PWM-Pin

57
Prüfen auf anliegende

Spannung 39
Playground (Wiki) 16
Playground-Wiki 90
Port-Identifikation 23–24

Windows COM-Port-Nummer 88
Potentiometer, Symbol für 115
Power Selection Jumper

(PWR_SEL) 18
Praxis der Programmierung 88
Prellen 48

Entprellen bei durch Drucktaster
gesteuerten LEDs 48

Processing, Sprache 1, 20, 67
Sketch, eine vernetzte Lampe

mit Arduino 74, 79
Vorteile der Verwendung mit

Arduino 73
Programmierung

Zyklus 20
Prototyping 6
Pseudozufallszahlen-Generator 110
pulseIn(), Funktion 107
PWM (Pulsweitenmodulation) 54

LED, angeschlossen an PWM-Pin
57

PWR_SEL 18

120 Index

R
R (Widerstand) = V (Spannung) / I

(Strom) 39
RAM 44
random(), Funktion 110
randomSeed()-Zahl 110
Reed-Relays 51
return, Anweisung 103
RGB-LED 82
RSS-Feeds 73
run.bat file, Verwendung zum Start

von Arduino 88
RX und TX (LEDs) 30

S
Satz vorgefertigter Steckbrücken

40
Schalter 51

Neigung 52
Schaltkreise

ein Schaltkreis, viele Verhaltens-
weisen 43

eine vernetzte Lampe mit
Arduino 82

modifizieren 11
Motorschaltkreis für Arduino 68
Verhältnis von Spannung, Strom

und Widerstand 38
Sensoren 25

Ein/Aus im Vergleich zu analog
62

Funktionsweise 26
komplexe 68

Sensormatte 51
Serial Monitor, Schaltfläche 67
Serial.begin(), Funktion 111
Serial.print(), Funktion 110
Serial.println(), Funktion 111
serielle Anschlüsse 30

Identifikation unter Windows 23
serielle Kommunikation 66, 71, 110

serielle Objekte 66
setup(), Funktion 31
setup(), Funktion 97
shiftOut(), Funktion 106
sin(), Funktion 109
Sketches

Auf- und Abblenden einer LED 57
blinkende LED 26–28, 31
blinkende LED, Codeerläuterung

35
blinkende LED, Erläuterung des

Sketch-Codes 33, 36
blinkende LED, Codeerläute-

rung 33
Probleme beim Upload 87
Struktur 97

Sniffin Glue 11
Somlai-Fischer, Adam 15
Sonderzeichen 97

–– (Dekrementieren) Operator
105

/* */, Kommentarbegrenzer 98
; (Semikolon) 44, 97
{ } (Geschweifte Klammern) 100

Spannung 38
am Pin, überprüfen mit analog

Read() 62
anliegend an einem Pin, Prüfung

mit der digitalRead()-Funk-
tion 40

Speicher, RAM und Flash 44
Spielzeug, Hacken von 15
sqrt(), Funktion 109
Strom 38
Stromversorgung 18
SV1-Steckbrücke, Verbindungen 86
switch case-Anweisung 101
Switches

MOSFET-Transistoren 67
Synthesizer

Circuit Bending mit 10
Moog, analoge Synthesizer 8

T
tan(), Funktion 109
Teiber, Installation 21
Teile und herrsche 85
Thermostate 51
Transistor, MOSFET 68
Troubleshooting 89, 91

IDE (Integrated Development
Environment, Integrierte Ent-
wicklungsumgebung) 88

Index 121

Isolieren von Problemen 88
Onlinehilfen für Arduino 90
Separieren jeder Komponente

für das Testen 85
Testen des Boards 86
Vereinfachen und Segmentieren

des Projekts 85
Verständnis der Funktions- und

Interaktionweise von Bautei-
len 85

TRUE 43
true und false 98
Tüfteln 5

U
Ultraschall-Ranger 68
UNICODE 99
Uno-Board 18
unsigned int, Datentyp 99
Upload to I/O Board, Schaltfläche

30
USB

Arduino-Verbindung 65
Port-Identifikation unter Wind-

ows 89
Programmieren von Arduino

mittels 1
Troubleshooting, Arduino-

Anschluss 86

V
Variablen 98
Vereinfachung und Segmentierung,

Prozesse 85
Verzögerungen

Anpassung zur Verhinderung
von Prellen beim Drucktaster
48

Verringerung der Anzahl zum
Erzielen unterschiedlicher
Blinkmuster 35

Vista (Windows)
Troubleshooting bei der Port-

Identifikation 89
visuelles Programmieren, Entwick-

lungsumgebungen 8
vorgefertigte Steckbrücken, Satz

40

W
Widerstand 38
Widerstände

Anzahl der, und Stromfluss 38
lichtabhängiger Widerstand

(Light Dependent Resistor,
LDR) 26, 61

Wiederverwenden von vorhandener
Technologie 7

Wiki, Playground 16
Windows

COM-Anschlussnummer für
Arduino 89

Installation der Treiber 21
Installieren von Arduino 20

X
XML-Datei von einem RSS-Feed 73
XP (Windows)

Installation der Treiber 21

Z
Zeichensätze 99
Zeit, Funktionen für 107
Zufallszahlenfunktionen 110

122 Index

