M a ke : DIE OPIEN-

makezine.com SOURCE-
ELEKTRONIK-

PROTOTYPRPING-
PLATTFORM

Fiir Arduino 1.0

Arduino
fur Einsteiger

Massimo Banzi Mitbegriunder von Arduino
Ubersetzung von Tanja Feder

MADE IV ©

arduino

[s=s]
RY CED

-
a

a

O’REILLY

Arduino fur
Einsteiger

Massimo Banzi

Deutsche Ubersetzung von Tanja Feder

O’REILLY"

BEIJING - CAMBRIDGE - FARNHAM - KOLN - SEBASTOPOL - TOKYO

Die Informationen in diesem Buch wurden mit gréter Sorgfalt erarbeitet. Dennoch kénnen
Fehler nicht vollstandig ausgeschlossen werden. Verlag, Autoren und Ubersetzer tibernehmen
keine juristische Verantwortung oder irgendeine Haftung fur eventuell verbliebene Fehler und
deren Folgen.

Alle Warennamen werden ohne Gewahrleistung der freien Verwendbarkeit benutzt und sind
moglicherweise eingetragene Warenzeichen. Der Verlag richtet sich im Wesentlichen nach den
Schreibweisen der Hersteller. Das Werk einschlieBlich aller seiner Teile ist urheberrechtlich
geschuitzt. Alle Rechte vorbehalten einschlieBlich der Vervielfaltigung, Ubersetzung, Mikrover-
filmung sowie Einspeicherung und Verarbeitung in elektronischen Systemen.

Kommentare und Fragen kénnen Sie gerne an uns richten:
O'Reilly Verlag GmbH & Co. KG

Balthasarstr. 81

50670 Koln

E-Mail: kommentar@oreilly.de

2012 O'Reilly Verlag GmbH & Co. KG

Copyright der deutschen Ausgabe:
© 2012 by O'Reilly Verlag GmbH & Co. KG
1. Auflage 2012

Die Originalausgabe erschien 2011 unter dem Titel
Getting Started with Arduino, 2nd Edition bei O'Reilly Media, Inc.

Bibliografische Information Der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten
sind im Internet Gber http://dnb.d-nb.de abrufbar.

Ubersetzung: Tanja Feder, Kéln

Lektorat: Volker Bombien, Kéln

Korrektorat: Eike Nitz, KoIn

Produktion: Karin Driesen, Kéin

Umschlaggestaltung: Micheal Oreal, KoIn

Satz: Reemers Publishing Services GmbH, Krefeld, www.reemers.de
Druck: Mediaprint, Paderborn

ISBN: 978-3-86899-232-8

Dieses Buch ist auf 100% chlorfrei gebleichtem Papier gedruckt.

Inhalt

e Yo T o

VEINflhrung ..ot ittt e et essssasasesnasannnannnnnns
Anwensichdas Buchrichtet.........
Was ist Physical Computing?

2/Die Philosophievon Arduinoccciiiiiirenenrnrnnasannnnnns
Prototypingo
I = o
Patching o
Modifizieren von Schaltkreisen
Keyboard-Hacks
Wir lieben Elektroschrott
Hackenvon Spielzeug.
Kooperation

3/Die Arduino-Plattform. i i
Die Arduino-Hardware
Die Software (IDE). o
Die Installation von Arduino auf dem Computer
Installation der Treiber unter Macintosh
Installation der Treiber unter Windows.
Port-ldentifikation unter Macintosh L.
Port-ldentifikation unter Windows

4/Die ersten SchrittemitArduino iiiiliia.s.
Der Aufbau eines interaktiven Gerats.
Sensorenund AKtOren
Eine LED zum Blinken bringen.
ReichmirdenParmesan
Arduino ist nichts fur Zogerliche
Wirkliche Tuftler schreiben Kommentare.
Der Code — Schritt fur Schritt
Was wirbauenwerden
Was ist Elektrizitat?

Inhalt

w N

00 N O WU

III

Steuerung einer LED mit einem Drucktaster......................... 39

Erlauterung der Funktionsweise i 43
Ein Schaltkreis — 1000 Verhaltensweisen 43
5/Erweiterter InputundOutput 51
Der Einsatz anderer Ein/Aus-Sensorenc.. ... 51
Steuerung von Licht mittels PWM. o 54
Einsatz eines Lichtsensors anstelle eines Drucktasters................ 61
Analoger Eingang 62
Der Einsatz anderer analoger Sensoren.co ... 65
Serielle Kommunikation 66
Der Umgang mit groBeren Lasten. 67
Komplexe SENSOren 68
6/KommunikationmitderCloud it 71
Planung 73
ProCesSiNg . ..o 73
Der Code . ..o 74
Das Zusammenbauen des Schaltkreises 81
So funktioniert das Zusammenbauen. 83
7/Troubleshootingcciiiiii i i i it eranmnnnnnnns 85
Testendes Boards 86
Testen des Schaltkreises auf der Steckplatine 87
Das Isolierenvon Problemen.............. i 88
Probleme mitder IDE 88
Sofinden Sie Onlinehilfe. 89
Anhang A: Die Steckplatine 93
Anhang B: Das Lesen von Widerstanden und Kondensatoren 95
Anhang C: Kurzreferenzzu Arduino. 97
Anhang D: Das Lesen von Schaltplénen 113
Index 117

Iv Inhalt

Vorwort

Vor einigen Jahren stand ich vor einer sehr interessanten Herausforderung:
Ich sollte Designern die einfachsten Grundlagen der Elektronik vermitteln,
sodass sie anschlieBend in der Lage waren, interaktive Prototypen der
Objekte, an denen sie gerade arbeiteten, herzustellen.

Ich folgte unterbewusst meinem Instinkt, Elektronik auf die Weise zu
lehren, wie ich sie von der Schule her kannte. Spater realisierte ich dann,
dass das nicht so gut funktionierte, wie ich das gerne gehabt hatte und ich
erinnerte mich an die Stunden im Klassenzimmer, in denen jede Menge
Theorie ohne praktischen Bezug auf mich eingeprasselt war und ich mich
zu Tode gelangweilt hatte.

Eigentlich kannte ich die Elektronik zur Schulzeit bereits, und diese Kennt-
nisse hatte ich auf sehr empirische Weise erworben: mit herzlich wenig
Theorie, aber mit viel praktischer Erfahrung.

Ich begann also, dariiber nachzudenken, mittels welcher Prozesse ich
Elektronik wirklich verstanden habe:

» Ich nahm alle elektronischen Gerate auseinander, die ich in die Finger
bekommen konnte.

» Solernteich langsam all die einzelnen Komponenten kennen.

» Ich begann, mit ihnen herumzubasteln, einige ihrer inneren Verbindun-
gen zu verandern und dann zu beobachten, wie das Gerat reagierte,
Ublicherweise mit einer Art von Explosion oder mit einer Rauchwolke.

» Ich baute Bausatze, die Beilagen von Elektrozeitschriften waren, zu-
sammen.

» Ich kombinierte Gerate, die ich gehackt hatte, und zweckentfremdete
Bausatze und andere Schaltungen, die ich in Zeitschriften gefunden
hatte, um aus ihnen etwas Neues herzustellen.

Als kleines Kind war ich fasziniert davon herauszufinden, wie Dinge funk-
tionieren, daher habe ich sie immer auseinandergebaut. Dieses Interesse
wuchs immer weiter, je mehr nicht benutzte elektronische Objekte, derer
ich im Haus irgendwie habhaft werden konnte, ich in ihre Einzelteile zer-

Vorwort Vv

legte. SchlieBlich brachten die Leute alle moglichen Geréate zu mir, damit
ich sie auseinandernehmen konnte. Meine groRten Objekte zu dieser Zeit
waren eine Geschirrsptlmaschine und ein friher Computer aus einem
Versicherungsburo, der Uber einen Drucker, Elektronikkarten, Magnetkar-
tenleser und viele andere Teile verfugte, deren komplette Zerlegung sich
als auBerst interessant und knifflig erwies.

Nach umfangreichen Untersuchungen wusste ich, was elektronische Kom-
ponenten sind und auch ungefahr, was sie tun. Obendrein war unser Haus
voll von elektronischen Zeitschriften, die mein Vater irgendwann Anfang
der 1970er gekauft haben musste. Ich habe Stunden damit verbracht, die
Artikel zu lesen und mir die Schaltskizzen anzuschauen, ohne allerdings
sonderlich viel zu begreifen.

Dieser Prozess des immer wieder erneuten Lesens der Artikel auf der
auBerst hilfreichen Grundlage des Wissens, das ich durch das Zerlegen von
Schaltungen erworben hatte, erwies sich als langsamer, wirkungsvoller
Zyklus.

Ein groBer Durchbruch kam an einem Weihnachtstag, als mein Vater mir
einen Bausatz schenkte, mit dem Teenagern Wissen Uber die Elektronik
vermittelt werden sollte. Jede Komponente war in einem Plastikwurfel
untergebracht, der magnetisch an den anderen Wurfeln haften konnte,
sodass eine Verbindung entstand. Oben auf diesen Wurfeln war das jewei-
lige elektronische Symbol angefuhrt. Ich wusste noch wenig davon, dass
dieses Spielzeug auch ein Meilenstein von Design Made in Germany war,
denn es war bereits in den 1960ern von Dieter Rams entwickelt worden.

Mit diesem neuen Tool konnte ich auf schnelle Weise Schaltkreise zusam-
menbauen, diese dann ausprobieren und mir das Resultat ansehen. Der
Prototyping-Zyklus wurde dabei immer kirzer.

Danach baute ich Radios, Verstarker, Schaltkreise, die furchterlichen Larm
oder auch schoéne Téne produzierten, Regensensoren und kleine Roboter.

Ich habe lange nach einem englischen Begriff gesucht, der diese Arbeits-
weise ohne speziellen Plan, bei der einfach von einer bestimmten Idee
ausgegangen wird und bei der man bei einem voéllig unerwarteten Resultat
landet, wiedergibt. SchlieBlich stie ich auf das Wort ,, Tinkering", das sich
etwa mit dem Begriff , Tufteln" ins Deutsche Ubertragen lieRe. Ich verstand,
wie dieser Begriff in vielen anderen Bereichen verwendet wurde, um eine
Arbeitsweise zu beschreiben und Menschen zu portrétieren, die ausgetre-
tene Pfade verlassen und Neuland erkundet hatten. Auch die franzésischen
Regisseure, die die Nouvelle Vague begrindeten, wurden im englischen

VI Vorwort

Sprachraum als Tinkerer bezeichnet. Die beste Definition, die ich kenne,
habe ich im Rahmen einer Ausstellung im Exploratorium in San Francisco
gefunden:

Tinkering is what happens when you try something you don't quite know
how to do, guided by whim, imagination, and curiosity. When you tinker,
there are no instructions — but there are also no failures, no right or wrong
ways of doing things. It's about figuring out how things work and reworking
them.

Contraptions, machines, wildly mismatched objects working in harmony —
this is the stuff of tinkering.

Tinkering is, at its most basic, a process that marries play and inquiry..

http://www.exploratorium.edu/tinkering

Von meinen fruheren Experimenten wusste ich bereits, wie viel Erfahrung
notig ist, um einen Schaltkreis von den Basiskomponenten aus aufzubau-
en, der dann auch noch das tut, was Sie méchten.

Ein weiterer Durchbruch erfolgte im Sommer 1982, in dem ich mit meinen
Eltern in London viele Stunden lang das Science Museum besichtigte. Hier
war gerade ein neuer Bereich eréffnet worden, der Computern gewidmet
war und in dem angeleitete Experimente vorgestellt wurden. Indem ich
diesen folgte, lernte ich die Grundlagen der Binarmathematik und der
Programmierung.

Dabei stellte ich fest, dass bei vielen Anwendungen Ingenieure keine
Schaltkreise mehr aus Basiskomponenten bauten, sondern viele intelli-
gente Moglichkeiten mittels Mikroprozessoren in ihre Produkte implemen-
tierten. Software ersparte dabei viele Arbeitsstunden beim elektronischen
Design und ermoglichte kurzere Zyklen beim Tufteln.

Nach der Ruckkehr begann ich damit, Geld zu sparen, weil ich mir einen
Computer kaufen und das Programmieren lernen wollte.

Mein erstes und wichtigstes Objekt war ein brandneuer ZX81-Computer,
mit dem ich eine SchweiBmaschine steuerte. Das klingt sicher nicht nach
einem besonders spannenden Projekt, aber es bestand ein gewisser Bedarf
und fur mich war es eine groB3e Herausforderung, weil ich gerade erst das
Programmieren erlernt hatte. Zu diesem Zeitpunkt wurde mir klar, dass

Vorwort VII

http://www.exploratorium.edu/tinkering

das Schreiben von Codezeilen weniger zeitaufwendig ist als das Aufbauen
komplexer Schaltungen.

Mehr als 20 Jahre spéater denke ich, dass diese Erfahrung mir ermoglicht,
Menschen zu unterrichten, die sich nicht einmal daran erinnern, irgendeine
Mathematikstunde besucht zu haben und ihnen die gleiche Begeisterung
fur das Tufteln und die entsprechenden Féhigkeiten zu vermitteln, die ich in
meiner Jugend erworben und seitdem immer bewahrt habe.

Massimo

VIII Vorwort

Danksagung

Dieses Buch ist Luisa und Alexandra gewidmet.

Zuallererst mochte ich meinen Partnern im Arduino-Team danken: David
Cuartielles, David Mellis, Gianluca Martino und Tom Igoe. Jungs, es ist
immer wieder eine erstaunliche Erfahrung, mit Euch zu arbeiten!

Als Nachstes mochte ich mich bei Barbara Ghella bedanken. Sie weil3 es
vielleicht nicht, aber ohne ihre prazise Beratung wéaren Arduino und dieses
Buch vielleicht niemals zustande gekommen.

Ein weiterer Dank gebuhrt Bill Verplank, der mich weit mehr gelehrt hat als
Physical Computing.

Bei Gillian Crampton-Smith moéchte ich mich daftir bedanken, dass sie mir
eine Chance gegeben hat und fur all das, was ich von ihr gelernt habe.

Hernando Barragan moéchte ich fur die Arbeit beim Verdrahten danken.

Ein Dank gebuhrt auch Brian Jepson fur seine groBartige Arbeit als Lektor
und far seine unermudliche enthusiastische Unterstttzung.

Mein nachstes Dankeschon gilt Nancy Kotary, Brian Scott, Terry Bronson
und Patti Schiendelman daftr, dass sie noch eingepflegt haben, was ich in
einem bereits fertigen Buch geédndert hatte.

Es waren hier sicherlich noch zahlreiche weitere Menschen zu nennen, aber
Brian gibt mir an dieser Stelle zu verstehen, dass ich damit den Rahmen
des Buches sprengen wirde, daher hier nur eine kleine Liste von Personen,
denen ich aus vielerlei Griinden danken méchte:

Adam Somlai-Fisher, Ailadi Cortelletti, Alberto Pezzotti, Alessandro Ger-
minasi, Alessandro Masserdotti, Andrea Piccolo, Anna Capellini, Casey
Reas, Chris Anderson, Claudio Moderini, Clementina Coppini, Concetta
Capecchi, Csaba Waldhauser, Dario Buzzini, Dario Molinari, Dario Parravi-
cini, Donata Piccolo, Edoardo Brambilla, Elisa Canducci, Fabio Violante,
Fabio Zanola, Fabrizio Pignoloni, Flavio Mauri, Francesca Mocellin, Fran-
cesco Monico, Giorgio Olivero, Giovanna Gardi, Giovanni Battistini, Heather
Martin, Jennifer Bove, Laura Dellamotta, Lorenzo Parravicini, Luca Rocco,
Marco Baioni, Marco Eynard, Maria Teresa Longoni, Massimiliano Bolondi,

Vorwort IX

Matteo Rivolta, Matthias Richter, Maurizio Pirola, Michael Thorpe, Natalia
Jordan, Ombretta Banzi, Oreste Banzi, Oscar Zoggia, Pietro Dore, Prof
Salvioni, Raffaella Ferrara, Renzo Giusti, Sandi Athanas, Sara Carpentieri,
Sigrid Wiederhecker, Stefano Mirti, Ubi De Feo und Veronika Bucko.

X Vorwort

1/Einfiihrung

Arduino ist eine Open-Source-Plattform fur Physical Computing, die auf
einem einfachen Input/Output-(1/0-)Board und einer Enwicklungs-
umgebung basiert, die die Sprache Processing (www.processing.org) im-
plementiert. Mit Arduino lassen sich autonome interaktive Objekte ent-
wickeln, man kann aber auch eine Verbindung mit der Computersoftware
(z.B. Flash, Processing, VVVV oder Max/MSP) herstellen. Man kann das
Board manuell zusammenbauen oder es auch vormontiert kaufen. Die
Open-Source-IDE (Integrated Development Environment, Integrierte Ent-
wicklungsumgebung) steht unter www.arduino.cc zum kostenlosen
Download bereit.

Arduino unterscheidet sich durch folgende Features von andern Plattfor-
men auf dem Markt:

» Arduino ist betriebssystemunabhangig und kann unter Windows,
Macintosh und Linux betrieben werden.

» Arduino basiert auf der Progammier-IDE Processing, einer leicht hand-
habbaren Entwicklungsumgebung, die von Kunstlern und Designern
verwendet wird.

» Arduino wird Uber ein USB-Kabel und nicht tber einen seriellen An-
schluss programmiert. Dieses Feature ist &uBBerst nttzlich, da viele
moderne Computer keine seriellen Anschltsse haben.

» Es handelt sich um eine Open-Source-Software. Sie kobnnen Schaltdia-
gramme herunterladen, alle betreffenden Komponenten kaufen oder
eigene herstellen, ohne dass Sie daftr etwas an die Entwickler von
Arduino zahlen mussten.

» Die Hardware ist preisglinstig. Der Preis fir das USB-Board liegt bei
etwa 25 Euro. Das Ersetzen von durchgebrannten Chips auf dem Board
ist einfach und kostet nicht mehr als 5 Euro oder 4 US-Dollar. Man kann
es sich also leisten, auch mal einen Fehler zu machen.

» Es gibt eine entsprechende Community, sodass man bei vielen anderen
Nutzern Hilfe finden kann.

Einfihrung 1

www.processing.org
www.arduino.cc

» Das Arduino-Projekt wurde in einer Lernumgebung entwickelt und eig-
net sich daher bestens fur Einsteiger, die Dinge schnell ans Laufen
bringen méchten.

Dieses Buch ist dazu gedacht, Einsteigern ein Verstandnis von den Vor-
teilen zu vermitteln, die sie durch das Erlernen der Handhabung der
Arduino-Plattform und das Ubernehmen der entsprechenden Philosophie
gewinnen.

An wen sich das Buch richtet

Dieses Buch ist fur die urspringlichen Arduino-Benutzer geschrieben:
Designer und Kunstler. Daher werden Dinge in einer Weise erklart, die
einigen Ingenieuren moglicherweise die Haare zu Berge stehen lassen wird.
Einer nannte die einleitenden Kapitel meines ersten Entwurfs sogar Staub-
flocken. Das ist genau der Punkt, denn seien wir mal ehrlich: Die meisten
Ingenieure kdnnen anderen Ingenieuren und erst recht fachfremden Per-
sonen, das, was sie tun, nicht erklaren. Wir wollen nun tief in diese ,Staub-
flocken™ eintauchen.

Hinweis: Arduino baut auf der Diplomarbeit von Hernando Barragan auf,
bei der er an der Wiring-Plattform arbeitete, wahrend er unter Casey
Reas und mir am IDII Ivrea studierte.

Nachdem Arduino allmahlich beliebt wurde, sah ich, wie Experimentatoren,
Hobbybastler und alle Arten von Hackern schone und verrtickte Objekte
herstellten. Ich erkannte, dass |hr selbst alle Kunstler und Designer seid.
Daher ist dieses Buch Euch gewidmet.

Arduino wurde aus der Idee geboren, Interaction Design, eine Designdis-
ziplin, bei der das Prototyping im Zentrum der Methodik steht, zu ver-
mitteln. Es gibt viele Definitionen ftr den Begriff Interaction Design, ich
bevorzuge die Folgende:

Interaction Design ist das Design einer jeglichen interaktiven Erfahrung.

In unserer heutigen Welt befasst sich Interaction Design mit dem Erzeugen
bedeutsamer Erfahrungen zwischen uns (Menschen) und Objekten. Dies
ist eine gute Methode, um das Entstehen von schénen — und vielleicht auch
kontroversen — Erfahrungen im Umgang mit der Technik zu erschlieen.
Beim Interaction Design erfolgt Design in einem lterationsprozess, basie-
rend auf Prototypen und mit standig wachsender Prazision. Dieser Ansatz
— der teilweise auch beim konventionellen Design zu finden ist — kann so

2 Einfiihrung

erweitert werden, dass Prototyping in die Technologie eingebunden wird,
speziell im Bereich Elektronik.

Der spezielle Bereich von Interaction Design, der bei Arduino zum Tragen
kommt, ist das Physical Computing (oder auch Physical Interaction De-
sign).

Was ist Physical Computing?

Beim Physical Computing wird Elektronik verwendet, um Prototypen von
neuen Arbeitsmaterialien fur Designer und Kunstler herzustellen.

Dies umfasst auch das Design von interaktiven Objekten, die Gber Senso-
ren und Aktoren, die mittels einer vorgegebenen Verhaltensweise gesteu-
ert werden, mit den Menschen kommunizieren konnen. Diese Verhaltens-
weise ist als Software implementiert, die in einem Mikrocontroller (ein
kleiner Computer auf einem einzelnen Chip) ausgefuhrt wird.

In der Vergangenheit bedeutete der Einsatz von Elektronik gleichzeitig das
standige Arbeiten mit Ingenieuren und gleichzeitig den langwierigen Auf-
bau von Schaltkreisen, immer eine kleine Komponente nach der anderen.
Dadurch wurden kreative Menschen daran gehindert, mit dem Medium
direkt zu experimentieren. Die meistens Tools waren fur Ingenieure ge-
dacht und setzten ein erhebliches Wissen voraus. In den letzten Jahren
wurden Mikrocontroller billiger und einfacher in der Handhabung, wodurch
die Herstellung besserer Tools ermdéglicht wurde.

Der Fortschritt, der mit Arduino erfolgte, bestand darin, dass diese neuen
Tools Neulingen nahergebracht wurden, sodass es ihnen moglich wurde,
nach nur einem zwei- oder dreitagigen Workshop bereits irgendwelche
Dinge zu bauen.

Mit Arduino kénnen sich Designer und Kunstler die Grundlagen von Elek-

tronik und von Sensoren sehr schnell aneignen und ohne grofBe Investitio-
nen mit dem Bau von Prototypen beginnen.

Einfihrung 3

2/Die Philosophie von
Arduino

Die Philosophie von Arduino besteht darin, Designs zu erstellen, anstatt
Uber sie zu sprechen. Sie besteht in einem andauernden Suchen nach
schnelleren und leistsungsstarkeren Moglichkeiten, um bessere Prototy-
pen zu bauen. Wir haben viele Prototyping-Techniken erkundet und so
quasi mit unseren Handen neue Denkansatze geschaffen.

Das klassische Engineering beruht auf einem strikten Prozess, der von A
nach B fuhrt; bei Arduino besteht der SpaR in der Moglichkeit, auf diesem
Weg verlorenzugehen und stattdessen bei C zu landen.

Dies ist der Prozess des TUftelns, den wir so lieb gewonnen haben —
genzenlos mit einem Medium herumexperimentieren und dabei das Uner-
wartete entdecken. Bei dieser Suche nach Wegen, bessere Prototypen
herzustellen, haben wir auch eine Reihe von Softwarepaketen ausgewahlt,
die einen Prozess der stéandigen Veranderung des Software- oder des
Hardwaremediums ermaéglichen.

In den nachsten Abschnitten werden einige philosophische Aspekte, Ereig-

nisse und Pioniere vorgestellt, durch die die Philosophie von Arduino
inspiriert wurde.

Die Philosophie von Arduino 5

Prototyping

Prototyping ist das Herzstick der Arduino-Philosophie: Wir stellen Dinge
her und bauen Objekte, die mit anderen Objekten, Menschen oder Netz-
werken interagieren. Wir sind bestrebt, einen einfacheren und schnelleren
Weg fur das Prototyping zu finden, der auBerdem maoglichst kostengunstig
sein soll.

Viele Neulinge gehen zunachst mit der Vorstellung an Elektronik heran,
dass sie lernen mussen, alles von Grund auf selbst zu bauen. Das ist reine
Energieverschwendung: Was man wirklich méchte, ist die Bestatigung,
dass etwas sehr schnell funktioniert, sodass man selbst motiviert ist, den
nachsten Schritt zu unternehmen, oder dass man sogar jemand anderen
motiviert, entsprechend go3zligig in einen selbst zu investieren.

Daher haben wir das »Opportunistische Prototyping« entwickelt: Warum
sollten wir Zeit und Energie darauf verschwenden, Dinge von Grund auf zu
bauen, ein Prozess, der viel Zeit und tiefgehendes technisches Wissen
erfordert, wenn wir fertige Gerate hacken und so die harte Arbeit nutzen
kénnen, die von groRen Unternehmen und fahigen Ingenieuren bereits
getan wurde?

Unser Held ist James Dyson, der 5127 Prototypen seines Vakuumstaub-

saugers baute, bevor er mit dem Resultat zufrieden war (http://www.
international.dyson.com/jd/1947.asp).

6 Die Philosophie von Arduino

http://www.­nohyp;international.dyson.com/jd/1947.asp
http://www.international.dyson.com/jd/1947.asp
http://www.­nohyp;international.dyson.com/jd/1947.asp

Tufteln

Wir glauben, dass es essentiell ist, mit Technologie herumzuexperimentie-
ren und verschiedene Moglicheiten direkt mit der Hard- oder Software
auszuprobieren — manchmal ohne dabei ein wirklich definiertes Ziel zu
haben.

Das Verwerten von bereits vorhandener Technologie ist eine der besten
Moglichkeiten beim Tufteln. Durch das Sammeln und Hacken von billigem
Spielzeug und alten, ausgemusterten Geraten lassen sich tolle Resultate
erzielen.

Die Philosophie von Arduino 7

Patching

Ich war immer fasziniert vom Baukastenprinzip und von der Méglichkeit,
durch das Verbinden einfacher Gerate komplexe Systeme aufzubauen.
Dieses System wird sehr gut durch Robert Moog und seine analogen
Synthesizer reprasentiert. Musiker erzeugten Sounds, indem sie verschie-
dene Module mit Kabeln zusammenschusterten und so unzahlige Kom-
binationen herstellten. Durch diesen Ansatz hatten Synthesizer oft das
Aussehen von alten Telefon-Switchboards, die aber mit zahlreichen Fines-
sen ausgestattet waren und so eine perfekte Plattform fir das Herum-
experimentieren mit Sound und fur musikalische Innovationen darstellten.
Moog beschrieb dies als einen Prozess zwischen Beobachten und Ent-
decken. Ich bin sicher, dass die Musiker zu Beginn nicht wussten, wozu all
die Hunderte von Knopfen dienten, aber sie experimentierten unaufhérlich
und entwickelten ihren Stil standig weiter, ohne Unterbrechung dieses
Prozesses.

Das Reduzieren der Anzahl an Unterbrechungen im Prozess ist sehr wich-
tig fur die Kreativitat — je nahtloser der Prozess ist, desto besser funk-
tioniert das Tufteln.

Diese Technik wurde in Form von Entwicklungsumgebungen fur das visu-
elle Programmieren wie Max, Pure Data oder VVVV in die Welt der Software
Ubertragen. Diese Tools lassen sich als Behalter fur verschiedene Funk-
tionen, die sie bereitstellen, visualisieren, mit denen der Nutzer dann
Patches erstellt, indem er diese Behalter verbindet. Diese Umgebung bietet
dem Nutzer die Moéglichkeit, mit der Programmierung zu experimentieren,
ohne dabei sténdig den Zyklus aus Programmeingabe, Kompilierung,
»Verdammt - da ist ein Fehler”, Fehlerbehebung, Kompilierung und
schlieBlich Programmausfiuhrung zu unterbrechen. Wenn Sie also eher
visuell orientiert sind, empfehle ich Ihnen, solche Entwicklungsumgebun-
gen auszuprobieren.

8 Die Philosophie von Arduino

~
(121456L891o111z1314 1 2 3 4 L R

©0 QOPO ROT

RS \OY O PO ©®

@@OO © ©© @
@) J\jdl o © ©\P ©® 0 ,@
© Plolieldic © @ O@Po© &
odP\llle e eddefd oo 2

re (M) [.

@ d INPUT
NP
lovre @ orer
@ @ INPUT
@ ovreur
= @ i INPOT
@ @ our ovrPUT
0 0 © i ©
© © 0 ®©

Die Philosophie von Arduino

Modifizieren von
Schaltkreisen

Circuit Bending ist eine der interessantesten Formen des Tuftelns. Es
handelt sich um das kreative KurzschlieBen von akustischen Geraten, die
mit einer Niederspannungsbatterie betrieben werden, z. B. Pedale fur
Gitarreneffekt, Kinderspielzeug und kleine Synthesizer, um neue Musik-
instrumente und Schallgeber zu kreieren. Das Herzstiick dieses Prozesses
ist die ,Kunst des Zufalls”. Es begann 1966, als Reed Ghazala zufallig einen
Spielzeugverstarker an einem Metallobjekt an seiner Schreibtischschub-
lade kurzschloss, was in einer Flut von ungewohnlichen Ténen resultierte.
Was ich am Circuit Bending mag, ist die Moglichkeit, durch das Zweck-
entfremden oder Modifizieren von Technologie die wildesten Gerate zu

10 Die Philosophie von Arduino

erschaffen, ohne dass dazu notwendigerweise ein Verstandnis erforderlich
ware, wie sie rein theoretisch funktionieren.

SNIFFIN' GLUE.

+ OTHER Rock N Rowt H
FOR, PONKSYQ@D ~ i 11}

TULS THING 15 NOT MEANT TO BS READ...IT'S FOR SOAKING IN GLUE AND SNIFFPLN'.

PLAT'IN Iy TNE BAND...PIRST AND LAST IK A SERIES

A
(- THIS 1S A CHORD

THIS 15 ANCtAsy
e

s
Thio 15 & THIRD

NOW &sm A E!“E

Es ist ein wenig wie beim Fanzine Sniffin Glue, aus dem hier ein Auszug zu
sehen ist: Wahrend der Punk-Ara war die Kenntnis von drei Gitarrenakkor-
den ausreichend, um eine Band zu griinden. Lassen Sie nicht zu, dass
Experten in einem bestimmten Bereich lhnen vermitteln, dass Sie niemals
zu ihnen gehoéren werden. Ignorieren Sie sie und Uberraschen sie dann.

Die Philosophie von Arduino 11

Keyboard-Hacks

Nach mehr als 60 Jahren sind Computertastaturen immer noch der am
weitesten verbreitete Weg, mit dem Computer zu interagieren. Alex Pent-
land, der akademische Leiter des MIT Media Laboratory, bemerkte einst
Folgendes: ,Entschuldigen Sie die Ausdrucksweise, aber M&nnerurinale
sind intelligenter als Computer. Computer sind von ihrer Umgebung iso-
liert. !

Als Tuftler konnen wir neue Wege fur die Interaktion mit dem Computer
einfuhren, indem wir die Tasten durch Bauteile ersetzen, die ihre Umge-
bung sensorisch erfassen. Beim Auseinandernehmen der Computertas-
tatur offenbart sich ein sehr einfaches (und preiswertes) Gerat. Das Kern-
stick besteht in einem kleinen Brett. Dabei handelt es sich Gblicherweise
um einen Schaltkreis in einem hasslichen Griin oder in Braun, mit zwei
Gruppen von Kontakten, die zu zwei Plastikschichten fuhren, die die Ver-
bindungen zwischen den einzelnen Tasten beherbergen. Wenn Sie den
Schaltkreis entfernen und zwei Kontake mit einem Draht verbinden, er-
scheint ein ganzer Roman auf dem Computerbildschirm. Wenn Sie nun
einen Bewegungssensor kaufen und mit der Tastatur verbinden, sehen Sie,
dass jedes Mal, wenn jemand vor dem Computer herlauft, eine Taste
gedruckt wird. In Verbindung mit der bevorzugten Software wird Ihr Com-
puter so intelligent wie ein Urinal. Keyboard-Hacking ist eine Schlussel-
disziplin beim Prototyping und beim Pysical Computing.

1 Sara Reese Hedberg, MIT Media Lab's quest for perceptive computers, Intelligent
Systems and Their Applications, |IEEE, Jul/Aug 1998.

Die Philosophie von Arduino 13

Wir lieben Elektroschrott

Die Leute werfen heutzutage viel Technologie weg: alte Drucker, Computer,
seltsame Blromaschinen, technisches Equipment und sogar vieles aus
dem militarischen Bereich. Es gab schon immer einen Markt fur diese
ausgemusterte Technologie, besonders bei jungen und/oder wenig ver-
mogenden Hackern oder Geeks, die erst noch Hacker werden wollen.
Dieser Markt wurde augenfallig in lvrea, wo wir Arduino entwickelt haben.
Die Stadt war Hauptsitz des Unternehmens Olivetti, das seit den 1960ern
Computer hergestellt hatte. Mitte der 90er entsorgte die Firma alles auf
Schrottplatzen in der Gegend, unter anderem ganze Computerteile, elekt-
ronische Komponenten und seltsame Geréte aller Art. Wir verbrachten
unzahlige Stunden auf diesen Schrottplatzen, kauften fur kleines Geld
verschiedene Apparate und hackten uns in unsere Prototypen. Wenn man
Tausende von Lautsprechern fur wenig Geld kaufen kann, drangt sich
einem schlieBlich folgende Idee auf: Elektroschrott zu sammeln und ihn
durchzuschauen, bevor man etwas von Grund auf neu baut.

14 Die Philosophie von Arduino

Hacken von Spielzeug

Spielzeug ist eine fantastische Quelle fur billige Technologie zum Hacken
und Weiterverwenden, wie es auch schon vorher beim Circuit Bending
angefthrt wurde. Mit der aktuellen Flut Tausender billiger Spielzeuge aus
China kann man auf schnelle Weise kleine Ideen mit beispielsweise wenigen
Spielzeugkatzen, die Gerausche von sich geben, und einigen Laserschwer-
tern umsetzen. Ich habe das einige Jahre lang getan, um meinen Studenten
zu zeigen, dass Technologie nichts FurchteinfléBendes hat und auch nicht
schwer zu begreifen ist. Eine meiner liebsten Quellen ist das Buch Low Tech
Sensors and Actuators von Usman Haque und Adam Somlai-Fischer
(http://lowtech.propositions.org.uk). Ich denke, dass besagte Technik in

diesem Handbuch perfekt beschrieben wurde, und ich verwende sie schon
seit jeher.

09

L2 <

QD

>Qs*
&8
I\

i
&
»

Lo\ m

Die Philosophie von Arduino 15

http://lowtech.propositions.org.uk

Kooperation

Die Kooperation von Nutzern ist eines der Schltsselprinzipien der Ardui-
no-Welt — Uber das entsprechende Forum unter http://www.arduino.cc
helfen sich Menschen aus aller Welt gegenseitig beim Erkunden der Platt-
form. Das Arduino-Team ermutigt Menschen dazu, auf lokaler Ebene
zusammenzuarbeiten, hilft ihnen aber auch dabei, Benutzergruppen in
jeder Stadt, die sie besuchen, zu griinden. Wir haben auch einen , wie er bei
Wiki genannt wird, Playground eingerichtet (http://www.arduino.cc/
playground), auf dem Benutzer ihre Erkenntnisse dokumentieren kénnen.
Es ist wirklich erstaunlich, wie viele Informationen diese Leute im Web
bereitstellen, sodass sie sich jeder zunutze machen kann. Diese Kultur des
Teilens und gegenseitigen Helfens ist einer der Aspekte, der mich im
Hinblick auf Arduino am meisten mit Stolz erfullt.

16 Die Philosophie von Arduino

http://www.arduino.cc
http://www.arduino.cc/­nohyp;playground
http://www.arduino.cc/playground
http://www.arduino.cc/­nohyp;playground

3/Die
Arduino-Plattform

Arduino besteht aus zwei Hauptteilen: dem Arduino-Board, d. h. der Hard-
ware, mit der man arbeitet, wenn man seine Objekte herstellt, und der
Arduino-IDE, also der Software, die man auf seinem Computer ausfihrt.
Mit der IDE kann man einen Sketch (ein kleines Computerprogramm)
erstellen, der dann auf das Arduino-Board tbertragen wird. Der Sketch
Ubermittelt dem Board, was zu tun ist.

Es ist noch gar nicht lange her, da bedeutete die Arbeit mit Hardware das
Aufbauen von Schaltkreisen mit Hunderten von verschiedenen Kom-
ponenten mit seltsamen Namen wie Widerstand, Kondensator, Induktor,
Transistor usw. — und das von Grund auf.

Jeder Schaltkreis war fur eine bestimmte Verwendung ,verdrahtet” und
Anderungen waren mit dem Zuschneiden von Verbindungsdrahten, dem
Herstellen von Létverbindungen und weiteren Arbeitsschritten verbunden.

Mit dem Aufkommen von digitalen Technologien und Mikroprozessoren
wurden Funktionen, die vorher Uber eine entsprechende Verdrahtung im-
plementiert wurden, nun mittels Softwareprogrammen umgesetzt.

Software lasst sich leichter modifizieren als Hardware. Mit wenigen Tas-
tatureingaben kann die Logik eines Bauteils oder Gerats radikal geéndert
werden und es kdnnen zwei oder drei Versionen mit demselben Zeitauf-
wand ausprobiert werden, der fur das Loten von ein paar Widerstanden
erforderlich ware.

Die Arduino-Hardware

Beim Arduino-Board handelt es sich um ein kleines Mikrocontroller-Board,
d.h. einen kleinen Schaltkreis (das Board), der einen kompletten Computer
auf einem kleinen Chip (der Mikrocontroller) enthalt. Dieser Computer
verflugt Uber eine tausendfach geringere Leistungsfahigkeit als das
MacBook, mit dem ich dieses Buch schreibe, ist aber wesentlich billiger
und sehr natzlich, wenn es darum geht, interessante Gerate herzustellen.
Schauen Sie sich lhr Arduino-Board einmal an: Sie kénnen einen Chip mit

Die Arduino-Plattform 17

28 Beinchen erkennen — dieser Chip ist vom Typ ATmega328 und das
Herzstiuck |hres Boards.

Wir (das Arduino-Team) haben auf diesem Board alle Komponenten plat-
ziert, die ein Mikrocontroller fur eine einwandfreie Funktionsweise und fur
die Kommunikation mit dem Computer benétigt. Es gibt viele Versionen
dieses Boards; wir werden im gesamten Buch Arduino Uno verwenden, das
im Hinblick auf seine Handhabung am einfachsten ist und auf dem man am
besten lernen kann. Die Anweisungen gelten fur frihere Versionen des
Boards, einschlieBlich des Arduino Duemilanove von 2009. Abbildung 3-1
zeigt das Arduino Uno; in Abbildung 3-2 ist das Arduino Duemilanove
dargestellt.

In beiden Abbildungen sehen Sie das Arduino-Board. Auf den ersten Blick
sind all diese Anschltisse moglicherweise ein wenig verwirrend. Hier eine
Erlauterung der Funktion eines jeden Elements auf dem Board:

14 digitale 1/0-Pins (Pins 0-13)
Hierbei kann es sich um Eingangs- oder Ausgangspins handeln, abhangig
davon, wie sie im betreffenden Sketch definiert wurden.

6 analoge In-Pins (Pins 0-5)

Diese dedizierten analogen Eingangspins Gbernehmen analoge Werte (z.B.
elektrische Spannung, die von einem Sensor gemessen und dann ausgelesen
wurde) und wandeln sie in eine Zahl zwischen 0 und 1023 um.

6 analoge Ausgangspins (Pin 3,5,6,9,10 und 11)

Hierbei handelt es sich eigentlich um sechs der digitalen Pins, die mittels
eines Sketches, den Sie in der IDE erstellen, als analoge Ausgangspins
programmiert werden kénnen.

Das Board kann mit dem USB-Anschluss lhres Computers (meistens sind
das USB-Stecker) oder einem AC-Adapter (9 Volt, 2,1-mm-Klinkenstecker,
Zentrum positiv) mit Strom versorgt werden. Wenn keine Verbindung zur
Steckdose besteht, erfolgt die Stromzufuhr Giber das USB-Board. Sobald
aber eine Verbindung zur Steckdose hergestellt wird, wird sie auch auto-
matisch vom Board genutzt.

Hinweis: Wenn Sie das altere Arduino-NG oder Arduino Diecimila nut-
zen, missen Sie den Power Selection Jumper (auf dem Board mit
PWR_Sel gekennzeichnet) fur eine entsprechende Stromversorgung
entweder auf EXT (extern) oder USB einstellen. Den Jumper finden Sie
zwischen dem Anschluss fiir den AC-Adapter und dem USB-Anschluss.

18 Die Arduino-Plattform

MADE IN ©

ITALY / /
0070
“0¥ mw:ammkmm¢muﬁ®
~ SRR R DIGITAL (Pwrt~) & &

RX@ﬁrdU'an - . %

?ESET'E"‘ a RESET

E
wwu,arduino.ce

Abbildung 3-1.
Das Arduino Uno-Board

MADE IN ©

ITALY

[JRESET-EN

vivimj —
[#58

wwu,arduino.ce

POWER ANALOG IN)
5U6nd Uin B 123 485

Abbildung 3-2.
Das Arduino Duemilanove-Board

Die Arduino-Plattform

19

Die Software (IDE)

Die IDE (Integrierte Entwicklungsumgebung) ist ein spezielles Programm,
das auf lhrem Computer ausgefthrt wird und Ihnen ermoglicht, Sketches
far Ihr Arduino-Board in einer einfachen Sprache zu schreiben, die auf der
Sprache Processing (http://www.processing.org) basiert. Die Magie of-
fenbahrt sich, wenn Sie die entsprechende Schaltflache driicken, um den
Sketch auf das Board zu laden: Der Code, den Sie geschrieben haben, wird
in die Sprache C tbersetzt (die im Allgemeinen fur einen Anfanger recht
schwierig zu verstehen ist) und dann zum avr-gcc-Compiler Ubertragen,
bei dem es sich um einen sehr wichtigen Bestandteil von Open-Source-
Software handelt und der die endgiiltige Ubersetzung in die Sprache, die
vom Mikrocontroller verstanden wird, vornimmt. Dieser letzte Schritt ist
sehr wichtig, da genau an dieser Stelle Arduino die Sache erheblich
erleichtert, indem die Komplexitat, die mit der Programmierung von Mi-
krocontrollern verbunden ist, in grétmoglichem Mal3e ausgeblendet wird.

Die Programmierung von Arduino umfasst folgende Schritte:
» Das Board an einen USB-Anschluss lhres Computers anschlieBen.
» Einen Sketch schreiben, der dem Board Leben einhaucht.

) Den Sketch Uber die USB-Verbindung auf Ihr Board laden und einige
Sekunden auf den Restart des Boards warten.

» Das Board fuhrt den von lhnen geschriebenen Sketch aus.

Hinweis: Die Installation unter Linux ist zum Zeitpunkt der Entstehung
dieses Buches sehr kompliziert. Entsprechende Anweisungen finden Sie
unter http://www.arduino.cc/playground/Learning/Linux.

Die Installation von Arduino auf dem Computer

Um das Arduino-Board zu programmieren, mussen Sie zunachst die Ent-
wicklungsumgebung (die IDE) herunterladen. Diese finden Sie unter
http://www.arduino.cc/en/Main/Software. Wahlen Sie die fur lhr Be-
triebssystem passende Version.

Laden Sie die Datei herunter und 6ffnen Sie sie mit einem Doppelklick.
Daraufhin wird ein Ordner mit dem Namen arduino-[Version] erstellt, z.B.
arduino-1.0. Ziehen Sie den Ordner an die gewlinschte Stelle, z.B. auf die
Benutzeroberflache, in den Ordner Program Files (unter Windows) usw.

20 Die Arduino-Plattform

http://www.processing.org
http://www.arduino.cc/playground/Learning/Linux
http://www.arduino.cc/en/Main/Software

Auf einem Mac wird durch den Doppelklick ein Diskettensymbol mit einer
Arduino-Anwendung aufgerufen (ziehen Sie es in den Ordner Applications).
Wenn Sie nun die Arduino-IDE ausfiihren méchten, 6ffnen Sie hierzu den
Ordner arduino (Windows oder Linux) oder den Ordner Applications (Mac)
und fahren dann mit einem Doppelklick auf das Arduino-Symbol fort.
Fuhren Sie dies aber an dieser Stelle noch nicht aus, weil noch ein weiterer
Schritt erforderlich ist.

Hinweis: Falls Probleme bei der Ausfiihrung der Arduino-IDE auftreten,
schauen Sie sich das Kapitel 7 an.

Nun mussen Sie die Treiber installieren, die lnrem Computer ermoglichen,
via USB-Anschluss mit Ihrem Board zu kommunizieren.

Installation der Treiber unter Macintosh

Wenn das Arduino Uno mit einem Mac betrieben wird, werden die vom
Betriebssystem bereitgestellten Treiber verwendet. Die Prozedur ist also
recht simpel. Sie missen einfach das Board an den Computer anschlieRen.

Das PWR-Lampchen sollte nun leuchten und die gelbe LED mit der Bezeich-
nung L sollte zu blinken beginnen.

Moglicherweise wird Ihnen ein Popup-Fenster angezeigt, das Sie dartber
informiert, dass eine neue Netzwerkschnittstelle gefunden wurde.

Klicken Sie in diesem Fall auf Network Preferences und im dann aufgeru-
fenen Dialogfenster auf Apply. Das Uno-Board wird als Not Configured
angezeigt, es funktioniert aber einwandfrei. Schlie3en Sie dann das Fenster
System Preferences.

Falls Sie ein alteres Arduino-Board besitzen, finden Sie hier entsprechende
Anweisungen: http://www.arduino.cc/en/Guide/MacOSX.

Falls das Arduino-Board nicht funktioniert, schauen Sie sich das Kapitel 7
an.

Installation der Treiber unter Windows

SchlieBen Sie das Arduino-Board an lhrem Computer an. Wenn der Found
New Hardware-Wizard angezeigt wird, versucht Windows, die Treiber zu-
nachst auf der Windows Update-Seite zu finden.

Die Arduino-Plattform 21

http://www.arduino.cc/en/Guide/MacOSX

Bei Windows XP werden Sie gefragt, ob Windows Update durchsucht
werden soll. Wenn Sie Windows Update nicht nutzen méchten, wéahlen Sie
die Option No, not at this time aus und klicken Sie auf Next.

Wahlen Sie im nachsten Bildschirm Install from a list or specific location
aus und klicken Sie auf Next.

Navigieren Sie zur Treiberdatei fur das Uno-Board, die ArduinoUNQO.inf
heit und sich im Ordner Drivers (nicht zu verwechseln mit dem Unter-
verzeichnis FTDI USB Drivers) der heruntergeladenen Arduino-Software
befindet, und wahlen Sie sie hier entsprechend aus. Von da an wird Win-
dows die Installation zu Ende bringen.

Falls Sie ein alteres Board haben, finden Sie hier entsprechende Anwei-
sungen: http://www.arduino.cc/en/Guide/Windows.

Sobald die Treiber installiert sind, kann die Arduino-IDE gestartet und
Arduino genutzt werden.

Als Nachstes mussen Sie herausfinden, welcher serielle Anschluss lhrem
Arduino-Board zugewiesen ist — diese Information ist flir dessen spétere
Programmierung erforderlich. Wie Sie an diese Informationen gelangen,
wird in den folgenden Abschnitten beschrieben.

22 Die Arduino-Plattform

http://www.arduino.cc/en/Guide/Windows

Port-ldentifikation unter Macintosh

Wahlen Sie im Ment Tools der Arduino-IDE die Option Serial Port und hier
den Anschluss, der mit /dev/cu.usbmodem beginnt, aus. Mit diesem
Namen referenziert Ihr Computer das Arduino-Board. In Abbildung 3-3
wird eine Liste von Anschllssen gezeigt.

® Arduino File Edit Sketch Help
6 0 6 Auto Format ®T
Archive Sketch
Fix Encoding & Reload
Blinking_LED Serial Monitor 0 8M

/¢ Example @1 : Blinking LED

Board »
const int LED = 13; /¢ LED conected to [NE S /dev/tty.usbmodemfal4l
J¢ digital pin13 /dev/cu.usbmodemfaldl |
void sstun() :L‘I"?'r;;"o“:;der » " /dev/tty.Bluetooth-PDA-Sync
. /dev/cu.Bluetooth-PDA-Sync
pintiode(LED, OUTRUT); 4/ set /dev/tty.BC)-N8-DataTransfer-1
3 ‘ o /dev/cu.BCJ-N8-DataTransfer-1

/dev/tty.Bluetooth-Modem
/dev/cu.Bluetooth-Modem
/dev/tty.SierraNMEA
/dev/cu.SierraNMEA

void loop()

digitaliirite(LED, HIGH);
delay(1008);
digitalWrite(LED, LOW);
delay {1668 ;

Abbildung 3-3.
DieListe der seriellen Anschliisse inder Arduino-IDE

Port-ldentifikation unter Windows

Unter Windows ist der Prozess ein wenig komplizierter — zumindest am
Anfang. Rufen Sie den Device Manager auf, indem Sie im Menu Start mit
der rechten Maustaste auf Computer (Vista) oder My Computer (XP)
klicken und dann Properties auswahlen. Klicken Sie unter Vista dann auf
Device Manager (auf der linken Seite des Fensters wird dann eine Liste mit
allen Features angezeigt).

Das Arduino-Board ist unter Ports (COM & LPT) aufgelistet. Es wird hier als

Arduino UNO angezeigt und wird einen Namen wie beispielsweise COM7
aufweisen, wie es in Abbildung 3-4 zu sehen ist.

Die Arduino-Plattform 23

=4 Device Manager ==l X
File Action View Help

@ | @6 E6m Q@RS
4 =% WIN-GVBNBQLKF89

3P Batteries
48 Computer

s Disk drives

% Display adapters

=y DVD/CD-ROM drives

4 Floppy disk drives

&3 Floppy drive controllers

£ Human Interface Devices

g IDE ATA/ATAPI controllers

== Keyboards

% Mice and other pointing devices

& Monitors

&Y Network adapters

Y3 Ports (COM & LPT)
3 Arduino UNO (COM7)
YF Communications Port (COM1)
YF Communications Port (COM2)
Y3 Printer Port (LPT1)

2 Processors

% Sound, video and game controllers

;- Storage controllers

18 System devices

§ Universal Serial Bus controllers

Abbildung 3-4.

ImWindows Device Manager werden alle verfigbaren seriellen Anschliisse ange-
zeigt

Hinweis: Auf einigen Windows-Computern weist der COM-Anschluss
eine Nummer auf, die gréBer als 9 ist. Diese Nummerierung fiihrt zu
einigen Problemen, wenn Arduino versucht, mit ihnen zu kommunizie-
ren. Eine entsprechende Hilfestellung findeen Sie im Kapitel 7.

Wenn Sie die Zuweisung fur den COM-Anschluss ermittelt haben, kénnen
Sie diesen Anschluss Uber Tools — Serial Portin der Arduino-IDE auswah-
len.

Nun koénnen Sie Uber die Arduino-Entwicklungsumgebung mit dem Ardui-
no-Board kommunizieren und es programmieren.

24 Die Arduino-Plattform

4/Die ersten Schritte
mit Arduino

Als Nachstes werden Sie erfahren, wie Sie ein interaktives Gerat bauen und
programmieren konnen.

Der Aufbau eines interaktiven Gerats

Alle Objekte, die wir bauen werden, basieren auf einem simplen Muster, das
wir Interactive Device nennen. Hierbei handelt es sich um elektronische
Schaltungen, die mithilfe von Sensoren (elektronische Komponenten, die
Messwerte aus der realen Welt in elektrische Signale umwandeln) die
Umgebung erfassen. Das Geréat verarbeitet die Daten, die von den Senso-
ren geliefert werden, mittels eines Verhaltens, das als Software implemen-
tiert wird. Das Gerat ist dann in der Lage, mithilfe von Aktoren, das sind
elektronische Komponenten, die ein elektrisches Signal in physikalisches
Verhalten umwandeln kdnnen, mit der Welt zu interagieren.

Sinn / Wahrnehmung

Verhalten
(Software)

Agieren / Reagieren

Abbildung 4-1.
Das interaktive Gerat

Die ersten Schritte mit Arduino 25

Sensoren und Aktoren

Sensoren und Aktoren sind elektronische Komponenten, mit deren Hilfe
eine elektronische Komponente mit der Umwelt interagieren kann.

Da es sich bei einem Mikrocontroller um einen sehr einfachen Computer
handelt, kann er nur elektrische Signale verarbeiten (dhnlich wie bei elek-
trischen Impulsen, die zwischen den Neuronen unseres Gehirns Ubertragen
werden). Um Licht, Temperatur oder andere physikalische GroRen erfas-
sen zu kénnen, mussen diese in Elektrizitat umgewandelt werden. In
unserem Korper wandelt das Auge Licht in Signale um, die mittels der
Nerven an das Gehirn weitergeleitet werden. In der Elektronik konnen wird
dazu ein spezielles Bauteil verwenden, namlich einen lichtabhéangigen Wi-
derstand (einen LDR oder einen Fotowiderstand), der die auftreffende
Lichtmenge messen und als Signal, das der Mikrocontroller versteht, wie-
dergeben kann.

Wenn die Sensoren ausgelesen wurden, verfugt das Gerat tber die Infor-
mationen, die erforderlich sind, um zu entscheiden, wie es reagieren soll.
Der Prozess der Entscheidungsfindung wird vom Mikrocontroller abge-
wickelt, und die Reaktion erfolgt Gber die Aktoren. In unserem Korper
beispielsweise erhalten die Muskeln elektrische Signale vom Gehirn, die sie
dann in Bewegung umsetzen. Im Bereich der Elektronik kénnten diese
Funktionen z.B. durch Licht oder einen elektrischen Motor ausgefuhrt
werden.

In den folgenden Abschnitten werden Sie erfahren, wie unterschiedliche
Typen von Sensoren ausgelesen und unterschiedliche Arten von Aktoren
gesteuert werden.

Eine LED zum Blinken bringen

Der Sketch, mit dem eine LED zum Blinken gebracht wird, ist der erste
Sketch, den Sie ausfuhren sollten, um zu testen, ob lhr Board einwandfrei
arbeitet und richtig konfiguriert ist. Dies ist Ublicherweise auch die erste
Ubung fur das Programmieren eines Mikrocontrollers. Eine Leuchtdiode
(LED) ist eine kleine elektronische Komponente, die einer kleinen Gluhbirne
ahnelt, jedoch effektiver ist und eine geringere Betriebsspannung benbtigt.

Ihr Arduino-Board wird mit einer vorinstallierten LED geliefert. Diese ist mit

einem L gekennzeichnet. Sie konnen auch |hre eigene LED hinzuftgen.
SchlieBen Sie sie so an, wie es in Abbildung 4-2 dargestellt ist.

26 Die ersten Schritte mit Arduino

Hinweis: Wenn die LED iiber eine ldngere Zeitdauer leuchten soll, sollten
Sie einen Widerstand verwenden, wie auf Seite 54 beschrieben wird.

K kennzeichnet die Kathode (negativ) oder den kirzeren Anschluss, A die
Anode (positiv) oder den langeren Anschluss.

Abbildung 4-2.
AnschlieBen einer LED an das Arduino-Board

Wenn die LED angeschlossen ist, muss Arduino mitgeteilt werden, was zu
tun ist. Dies erfolgt mithilfe von Code, einer Liste von Anweisungen, die wir
wiederum dem Mikrocontroller tbermitteln und mit der wir ihn dazu brin-
gen, das zu tun, was wir moéchten.

Offnen Sie auf lhrem Computer den Ordner, in den Sie die Arduino-IDE
kopiert haben. Starten Sie die IDE mit einem Doppelklick auf das entspre-
chende Symbol. Wéahlen Sie File - New aus. Sie werden nun aufgefordert,

Die ersten Schritte mit Arduino 27

einen Ordnernamen fur den Sketch anzugeben. Hier wird der Sketch dann
gespeichert. Nennen Sie ihn Blinking_LED und klicken Sie auf OK. Geben
Sie dann die folgenden Zeilen (Beispiel 4-1) in den Sketch-Editor von
Arduino (das Hauptfenster der Arduino-IDE) ein. Sie kénnen den Code
auch unter http://www.makezine.com/getstartedarduino herunter-
laden. Er sollte wie in Abbildung 4-3 aussehen.

// Beispiel 4-1: blinking_led

const int LED = 13; // LED connected to
// digital pin 13

void setup()

{
pinMode(LED, OUTPUT); // sets the digital
// pin as output

void loop()

{
digitalWrite(LED, HIGH); // turns the LED on
delay(1000); // waits for a second
digitalWrite(LED, LOW); // turns the LED off
delay(1000); // waits for a second
}

28 Die ersten Schritte mit Arduino

http://www.makezine.com/getstartedarduino

Verity
upload to I/0 board

e& Blinking LED | Arduino 1.0

Sketch Tools Help

Blinking_LED &
¢ Example 01: Blinking LED ~

const int LED = 13; /¢ LED comnected to
A4 digital pin 13

void setup ()

{

pinMode (LED, OUTPUT): // sets the digital
/f pin as output

}

woid loop ()

{

digitalWrite (LED, HIGH): ;

delay(1000); 4/ waits for a second

digitalllrite (LED, LOW): /4 turns the LED off

delay (10007 ; 7

turns the LED on

waits for a second

Arduina

L » Thr Sketch liuft

Abbildung 4-3.
Die Arduino-IDE mit dem ersten geladenen Sketch

Nun, da sich der Code in |hrer IDE befindet, mtssen Sie ihn auf Fehler
Uberprufen. Klicken Sie auf die Schaltflache Verify (Abbildung 4-3 zeigt, wo
sie sich befindet); wenn alles korrekt ist, wird die Nachricht Done compiling
am unteren Rand der Arduino-IDE angezeigt. Diese Nachricht bedeutet,
dass die Arduino-IDE lhren Sketch in ein ausfuhrbares Programm Utber-
setzt hat, das auf Ihrem Board ausgefuhrt werden kann, éhnlich wie das bei
einer .exe-Datei unter Windows oder bei einer .app-Datei unter Mac der Fall
ist.

Die ersten Schritte mit Arduino 29

Nun koénnen Sie lhren Sketch in Ihr Board laden: Klicken Sie auf die Schalt-
flache Upload to 1/0 Board (siehe Abbildung 4-3). Dadurch wird das Board
zurtickgesetzt und alle laufenden Prozesse werden beendet. Das Board
wartet nun auf Instruktionen, die vom USB-Port kommen. Die Arduino-IDE
sendet den aktuellen Sketch zum Board, das ihn wiederum speichert und
schlieBlich ausfuhrt.

Sie werden einige Nachrichten im schwarzen Bereich am unteren Rand des
Fensters sehen, und genau tber diesem Bereich die Meldung Done uploa-
ding, mit der Sie dartber informiert werden, dass der Prozess erfolgreich
abgeschlossen wurde. Es sind zwei LEDs mit den Bezeichnungen RX und
TX auf dem Board vorhanden. Diese flackern jedes Mal auf, wenn ein Byte
vom Board geschickt oder empfangen wird. Wahrend des Upload-Prozes-
ses flackern sie kontinuierlich.

Falls Sie kein Flackern der LEDs erkennen kénnen oder anstelle der Nach-
richt Done Uploading eine Fehlermeldung erhalten, besteht ein Kommuni-
kationsproblem zwischen Ihrem Computer und Arduino. Vergewissern Sie
sich, dass Sie den richtigen seriellen Anschluss (siehe Kapitel 3) unter
Tools > Serial Port ausgewahlt haben. Uberprifen Sie auBerdem, ob unter
Tools > Board das richtige Arduino-Modell ausgewahlt wurde.

Wenn weiterhin Probleme bestehen, schauen Sie sich das Kapitel 7 an.

Sobald der Code auf Ihr Arduino-Board tbertragen wurde, verbleibt er dort,
bis Sie ihn mit einem anderen Sketch Uberschreiben. Der Code bleibt
gespeichert, wenn Sie beim Board einen Reset duchftihren oder es aus-
schalten, ahnlich wie bei den Daten auf lhrer Computerfestplatte.

Wenn der Sketch korrekt geladen wurde, wird die LED L fur eine Sekunde
aufleuchten und dann fur eine Sekunde dunkel bleiben. Wenn Sie eine
sepatate LED installiert haben, wie vorher in Abbildung 4-6 zu sehen ist,
wird auch diese LED blinken. Das, was Sie geschrieben haben, ist ein
Computerprogramm oder auch Sketch, wie ein Arduino-Programm ge-
nannt wird. Wie schon erwahnt handelt es sich bei Arduino um einen
kleinen Computer, der sich nach Bedarf programmieren lasst. Dazu wird
eine Programmiersprache verwendet, um eine Serie von Anweisungen in
die Arduino-IDE einzugeben, die diese dann so umwandelt, dass sie vom
Arduino-Board ausgefuhrt werden kénnen.

Als Nachstes mochte ich Ihnen ein Vestandnis des Codes vermitteln.
Zunachst ist zu erwahnen, dass Arduino den Code von oben nach unten
ausfuhrt. Die erste Zeile zuoberst ist also die, die zuerst gelesen wird. Dann
wird der Prozess nach unten fortgesetzt. Dies erinnert ein wenig an die

30 Die ersten Schritte mit Arduino

Statusanzeige bei einem Video-Player, z.B. Quick Time Player oder Win-
dows Media Player, bei dem die Statusanzeige allerdings nicht von oben
nach unten, sondern von links nach rechts verlauft um anzuzeigen, wo im
Film Sie sich gerade befinden.

Reich mir den Parmesan

Achten Sie auf die geschweiften Klammern, die dazu dienen, Codezeilen
zusammenzufassen. Diese sind besonders dann sehr nttzlich, wenn Sie
eine Gruppe von Anweisungen mit einem Namen versehen mochten. Mit
der Aufforderung ,Bitte reich mit den Parmesan!” beim Abendessen bei-
spielsweise werden eine Reihe von Aktionen angestofRen, die in diesem
kleinen Satz zusammengefasst sind. Weil wir Menschen sind, erfassen wir
das ganz selbstversténdlich, bei Arduino hingegen mussen alle einzelnen
kleinen Aktionen ausformuliert werden, weil die Plattform nicht so leis-
tungsfahig wie unser Gehirn ist. Um also eine Anzahl von Anweisungen in
einer Gruppe zusammenzufassen, platzieren Sie ein { vor dem Code und
ein }hinter dem Code.

Sie sehen, dass in unserem Beispiel zwei Blocke auf diese Weise definiert
wurden. Vor jedem dieser Blocke ist ein merkwurdiger Befehl angefuhrt:

void

setup()

Mit dieser Zeile wird dem Codeblock ein Name zugewiesen. Wenn Sie eine
Liste von Anweisungen schreiben wirden, die Arduino beibringen, lhnen
den Parmesankase zu reichen, wirden Sie void pass TheParmesan() am
Anfang des Blocks schreiben, und dieser Block wirde zu einer Anweisung,
die Sie von jeder beliebigen Stelle im Arduino-Code aus aufrufen kénnten.
Solche Blécke werden als Funktionen bezeichnet. Wenn Sie also anschlie-
Rend passTheParmesan() irgendwo im Code schreiben, wird Arduino die
betreffenden Anweisungen ausfiihren und dann an der Stelle fortfahren, an
der der Code vor den Anweisungen verlassen wurde.

Arduino ist nichts fiir Zégerliche

Bei Arduino wird das Vorhandensein von zwei Anweisungen erwartet — die
eine heil3t setup() und die andere loop().

setup() ist die Funktion, in der all der Code untergebracht wird, der zu
Beginn des Programms ausgefuhrt werden soll, und /loop() enthalt das
Kernstick des Programms, das kontinuierlich immer wieder ausgefthrt
wird. Dies liegt darin begrundet, dass Arduino sich nicht wie ein normaler
Computer verhalt — es kénnen nicht mehrere Programme gleichzeitig

Die ersten Schritte mit Arduino 31

ausgefuhrt werden, und es ist auch nicht moéglich, ein Programm abzubre-
chen. Wenn das Board an eine Stromversorgung angeschlossen ist, wird
der Code ausgefuhrt. Wenn Sie die Ausfihrung beenden mochten, Sie dazu
einfach das Board ausschalten.

Wirkliche Tiiftler schreiben Kommentare

Jeglicher Text, der mit //beginnt, wird von Arduino ignoriert. Diese Zeilen
sind Kommentare, die Sie fur sich selbst im Programm hinterlassen, um
sich daran zu erinnern, was Sie mit dem Code bezweckt haben, oder die Sie
far andere schreiben, damit sie den Code verstehen.

Es ist sehr Uiblich (und ich weil3 das, weil ich es sténdig tue), einen Code-
abschnitt zu schreiben, ihn auf das Board zu laden und sich dann zu sagen:
,Okay, diesen Kram werde ich nie wieder anfassen!!, nur um sechs
Monate spater festzustellen, dass der Code aktualisiert werden muss oder
noch ein Fehler zu beheben ist. Sie werden sich den Code anzeigen lassen,
und wenn Sie dann keine entsprechenden Kommentare in Ihrem ur-
sprunglichen Programm eingefiligt haben, werden Sie sehr schnell denken:
,Oh Mann, was fur ein Chaos! Wo fange ich denn da blof3 an?" Wenn wir in
diesem Buch weiter voranschreiten, werden Sie noch einige Tricks ken-
nenlernen, wie Sie lhr Programm besser lesbar und einfacher im Hinblick
auf die Wartung gestalten.

Der Code - Schritt fiir Schritt

Womoglich wird Ihnen diese Art von Erlauterung ein wenig tberfllssig
vorkommen, ahnlich wie in meiner Schulzeit, als ich Dantes Géttliche
Komddie lesen musste (jeder italienische Schuler muss sie durcharbeiten,
genauso wie ein anderes Buch mit dem Titel Die Brautleute oder The
Betrothed — oh, was fur ein Albtraum). Fur jede Textzeile gab es hundert
Zeilen an Kommentar. Wenn Sie allerdings damit beginnen, eigene Pro-
gramme zu schreiben, sind solche Erlauterungen wesentlich natzlicher.

// Example 01 : Blinking LED

Ein Kommentar ist eine hilfreiche Moglichkeit, kleine Hinweise anzufuhren.
Der vorangestellte Titelkommentar erinnert uns daran, dass dieses Pro-
gramm, Beispiel 4-1, eine LED zum Blinken bringt.

const int LED = 13; // LED connected to

// digital pin 13
const intbedeutet, dass es sich bei LED um eine Ganzzahl handelt, die nicht
geandert werden kann (d.h. sie ist eine Konstante) und fur die der Wert 13
festgelegt wurde. Das ist vergleichbar mit einem automatischen Suchen-

32 Die ersten Schritte mit Arduino

und-Ersetzen-Vorgang im Code. In unserem Fall wird Arduino angewiesen,
jedes Mal, wenn das Wort LED erscheint, die Zahl 13 zu schreiben. Der
Befehl wird hier verwendet um festzulegen, dass die LED, die wir zum
Blinken bringen, an Pin 13 des Arduino-Boards angeschlossen ist.

void setup()
Mit dieser Zeile wird Arduino mitgeteilt, dass der nachste Codeblock
setup() heil3t.

{
Mit der 6ffnenden geschweiften Klammer wird ein Codeblock eingeleitet.

pinMode(LED, OUTPUT); // sets the digital

// pin as output
Endlich, eine wirklich interessante Anweisung. pinMode teilt Arduino mit,
wie ein bestimmter Pin konfiguriert werden soll. Digitale Pins konnen
entweder als INPUT oder OUTPUT verwendet werden. In unserem Beispiel
bendtigen wir einen Ausgangspin, um die LED zu steuern, daher figen wir
die Pinnummer und den ,Verwendungszweck” in Klammern an.

pinModeist eine Funktion, und die in ihr angegebenen Wérter (oder Zahlen)
sind Argumente . INPUT und OUTPUT werden in der Arduino-Sprache als
Konstanten bezeichnet. (Wie Variablen werden auch Konstanten Werte
zugewiesen, wobei aber die Werte von Konstanten vordefiniert sind und
sich niemals andern.)

}
Die schlieBende geschweifte Klammer zeigt das Ende der setup()-Funktion
an.

void loop()

{

In loop() wird das hauptsachliche Verhalten des interaktiven Gerats fest-
gelegt. Die Funktion wird immer weiter wiederholt, und zwar so lange, bis
Sie das Board ausschalten.

digitalWrite(LED, HIGH); // turns the LED on

Wie der Kommentar schon besagt ist digita/Write() in der Lage, jeden Pin,
der als OUTPUT konfiguriert wurde, ein- oder auszuschalten. Das erste
Argument (in unserem Beispiel LED) gibt an, welcher Pin ein- oder aus-
geschaltet werden soll (erinnern Sie sich daran, dass es sich bei LEDum
einen konstanten Wert handelt, der auf Pin 13 verweist, dies ist also der Pin,

Die ersten Schritte mit Arduino 33

der entsprechend geschaltet wird). Mit dem zweiten Argument wird der Pin
eingeschaltet (HIGH) oder ausgeschaltet (LOW).

Stellen Sie sich vor, dass der Ausgangspin eine kleine Steckdose ist, wie die
in den Wanden Ihrer Wohnung. Europaische Steckdosen liefern 230 Volt,
amerikanische 110 Volt und Arduino arbeitet mit gemaRigten 5 Volt. Die
Magie offenbart sich hier, wenn die Software zur Hardware wird. Wenn Sie
digitalWrite(LED, HIGH) schreiben, wird der Ausgangspin auf 5 V gesetzt.
SchlieBen Sie dann die LED an, leuchtet sie. An dieser Stelle im Code
bewirkt eine Anweisung in der Software eine Reaktion in der physikalischen
Welt, indem der Stromfluss zum Pin gesteuert wird. Das Ein- und Aus-
schalten des Pins lasst sich in etwas fur den Menschen besser Sichtbares
Ubertragen; die LED ist unser Aktator.

delay(1000); // waits for a second

Arduino hat eine sehr elementare Struktur. Wenn Sie daher méchten, dass
irgendetwas mit einer bestimmten RegelmaBigkeit erfolgen soll, weisen Sie
Arduino an, sich ruhig zu verhalten und nichts zu tun, bis es an der Zeit ist,
mit dem nachsten Schritt fortzufahren. Mit delay() weisen Sie im Grunde
genommen den Prozessor an zu pausieren und nichts zu tun, und zwar far
die Zeitdauer in Millisekunden, die Sie als Argument Ubergeben. Eine Milli-
sekunde ist ein Tausendstel einer Sekunde, also sind 1000 Millisekunden
eine Sekunde. In unserem Beispiel wird die LED also eine Sekunde lang
leuchten.

digitalWrite(LED, LOW); // turns the LED off

Mit dieser Anweisung wird die LED, die wir vorher eingeschaltet haben,
ausgeschaltet. Warum verwenden wir eigentlich HIGH oder LOW? Nun, es
handelt sich um eine alte Konvention in der digitalen Elektronik. HIGH
bedeutet, dass der Pin eingeschaltet ist, was im Falle von Arduino bedeutet,
dass er auf 5 V gesetzt ist. Bei LOW ist er auf O V gesetzt. Sie kbnnen diese
beiden Argumente mental einfach durch EIN und AUS ersetzen.

delay(1000); // waits for a second
An dieser Stelle bauen wir eine weitere Verzégerung von einer Sekunde ein.

Die LED bleibt eine Sekunde lang ausgeschaltet.

}
Die schlieBende geschweifte Klammer zeigt das Ende der loop-Funktion an.

34 Die ersten Schritte mit Arduino

Zusammengefasst tut das Programm Folgendes:

» Pin 13 wird als Ausgangspin definiert (nur ein Mal zu Beginn).

» Es erfolgt der Eintritt in eine Schleife.

» Die LED, die mit Pin 13 verbunden ist, wird eingeschaltet.

» Es folgt eine Wartezeit von einer Sekunde.

» Die LED, die mit Pin 13 verbunden ist, wird ausgeschaltet.

) Es folgt eine Wartezeit von einer Sekunde.

» Es wird ein Sprung zurtick an den Anfang der Schleife durchgeftihrt.

Ich hoffe, dass Ihnen dieser Code noch keine allzu groRen Kopfschmerzen
bereitet hat. Sie werden in den spateren Beispielen noch mehr zum Thema
Programmierung erfahren.

Bevor wir zum nachsten Abschnitt kommen, wollen wir noch ein wenig mit
dem Code spielen. Wir konnten zum Beispiel die Anzahl der Verzégerungen
reduzieren und dabei verschiedene Zahlen fur die Ein- und Ausphasen
verwenden, sodass wir unterschiedliche Blinkmuster beobachten kénnen.
Insbesondere sollten Sie darauf achten, was geschieht, wenn die Verzoge-
rungen sehr klein sind und sich bei den Ein- und Ausphasen unterscheiden ...
Sie kénnen dabei namlich fur einen Moment etwas beobachten, das spater
in diesem Buch, wenn wir zum Stichwort Pulsweitenmodulation kommen,
noch sehr nitzlich sein wird.

Was wir bauen werden

Ich war immer fasziniert von Licht und der Méglichkeit, verschiedene
Lichtquellen mittels Technologie zu steuern. Ich hatte das Guick, an einigen
interessanten Projekten zu arbeiten, die damit befasst waren, Licht zu
steuern und es mit lebenden Personen interagieren zu lassen. Arduino
bietet diesbezuglich wirklich gute Moglichkeiten. Im gesamten Buch wer-
den wir uns damit befassen, wie sich ,interaktive Lampen* herstellen
lassen. Anhand von Arduino, das wir hier verwenden, werden wir die
Grundlagen kennenlernen, die erforderlich sind, um interaktive Geréte zu
bauen.

Im nachsten Abschnitt werde ich versuchen, die Grundlagen der Elektrizitat
auf eine Art und Weise zu erlautern, die zwar einen Ingenieur sicherlich

Die ersten Schritte mit Arduino 35

langweilen wurde, aber dafur auch einen neuen Arduino-Programmierer
nicht sofort abschreckt.

Was ist Elektrizitat?

Wenn Sie zu Hause schon mal Klempnerarbeiten durchgeftihrt haben,
werden Sie in puncto Elektronik keine Verstandnisschwierigkeiten haben.
Der beste Weg zu vermitteln, wie Elektrizitat und elektrische Schaltungen
funktionieren, ist die Wasseranalogie. Nehmen wir ein einfaches Gerat wie
den batteriebetriebenen, tragbaren Ventilator, der in Abbildung 4-4 gezeigt
wird.

Abbildung 4-4.
Ein portabler Ventilator

36 Die ersten Schritte mit Arduino

Wenn Sie den Ventilator auseinanderbauen, werden Sie sehen, dass er eine
kleine Batterie, einige Drahte und einen elektrischen Motor enthalt, und
dass einer der Drahte, die zum Motor fuhren, durch einen Schalter unter-
brochen ist. Wenn die Batterie voll ist und Sie den Schalter betatigen und
den Motor einschalten, beginnt dieser, sich zu drehen, und sorgt so fur die
notige Abkuhlung. Wie funktioniert das? Stellen Sie sich einfach vor, die
Batterie sei zugleich ein Wasserreservoir und eine Pumpe, der Schalter ein
Ventil und der Motor eines von diesen Wasserradern, die Sie sicher schon
bei Windmuhlen gesehen haben. Wenn Sie das Ventil 6ffnen, flieRt das
Wasser von der Pumpe zum Waserrad und treibt es an.

Bei diesem einfachen Beispiel, das in Abbildung 4-5 dargestellt ist, sind
zwei Faktoren wichtig: der Wasserdruck (der von der Leistung der Pumpe
bestimmt wird) und die Wassermenge, die durch die Leitung fliet (die vom
Durchmesser der Leitung und vom Widerstand, den das Wasserrad dem
auftreffenden Wasserstrom entgegesetzt, abhangt).

Abbildung 4-5.
EinHydrauliksystem

Sie werden schnell bemerken, dass zur Erhéhung der Drehgeschwindigkeit
des Rades erforderlich ist, den Durchmesser der Leitungen zu vergréfRern
(was nur bis zu einem bestimmten Punkt funktioniert) und den Druck zu
erhohen, der durch die Pumpe erzielt wird. Durch das VergréRern des
Durchmessers der Leitungen kann mehr Wasser durch sie hindurchflieRen.
Durch diesen groBeren Durchmesser wird der Widerstand in Bezug auf den
Wasserdurchfluss verringert. Dieser Ansatz funktioniert bis zu einem be-
stimmten Punkt, ab dem sich das Rad nicht mehr schneller dreht, weil der
Wasserduck nicht ausreicht. Wenn dieser Punkt erreicht wurde, muss die
Pumpleistung erhéht werden. Diese Méglichkeit der Beschleunigung des

Die ersten Schritte mit Arduino 37

Wasserrades funkioniert so lange, bis das Rad wegen des zu starken
Wasserdrucks auseinanderbricht und zerstort wird. Ein anderer Aspekt,
der sich beobachten lasst, ist die Warmeentwicklung an der Achse, die
entsteht, wenn sich das Rad dreht. Egal, wie gut das Wasserrad montiert
ist, durch die Reibung zwischen der Achse und der Vorrichtung, in der sie
montiert ist, wird Warme erzeugt. Es ist wichtig zu verstehen, dass bei
einem System wie diesem nicht alle zugefuihrte Energie in Bewegung
umgewandelt wird, sondern ein Teil der Energie verloren geht. Diese zeigt
sich dann als Warme, die von einzelnen Komponenten im System abge-
geben wird.

Was sind also die wichtigen Aspekte bei diesem System? Einer ist der
durch die Pumpe erzeugte Druck, die anderen sind der Widerstand, der
dem Wasserstrom durch die Leitung und das Wasserrad entgegengesetzt
wird, und der eigentliche Wasserdurchfluss (der dargestellt wird als die
Anzahl an Litern, die pro Sekunde flieB3t). Elektrizitat funktioniert ein wenig
wie Wasser. Man hat eine Art Pumpe (jede Art von Energiequelle, z.B. eine
Batterie oder eine Steckdose in der Wand), die elektrische Ladungen (die
Sie sich am besten als kleine elektrische Tropfen vorstellen) durch Leitun-
gen druckt, die in Form von Dréhten realisert sind — diese werden von
einigen Geraten verwendet, um Warme zu produzieren (GroBmutters
Heizdecke), Licht zu erzeugen (lhre Nachttischlampe), Sound zu pro-
duzieren (lhre Stereoanlage), Bewegung anzustoBen (unser Ventilator)
und fur viele weitere Dinge.

Wenn Sie also auf einer Batterie die Angabe 9 V lesen, dann stellen Sie sich
diese elektrische Spannung einfach als Wasserdruck vor, der mittels einer
kleinen Pumpe erzeugt wird. Elektrische Spannung wird in Volt gemessen.
Diese Einheit wurde nach Alessandro Volta benannt, dem Erfinder der
ersten Batterie.

Wie der Wasserdruck hat auch die Durchflussmenge des Wassers ein
Aquivalent in der Elektrizitat. Sie wird als Strom bezeichnet, der in Ampere
gemessen wird (nach André-Marie Ampere, einem Pionier des Elektro-
magnetismus). Das Verhaltnis von elektrischer Spannung und Strom kann
wieder anhand des Beipiels mit dem Wasserrad veranschaulicht werden:
Ein hoherer Wasserdruck (elektrische Spannung) bewirkt eine schnellere
Drehung des Rades, mit einer hoheren Durchflussrate (Strom) lasst sich
ein groBeres Rad antreiben.

Der Widerstand schlieBlich, der dem Stromfluss auf jedem Weg, den er
zurtcklegt, entgegengesetzt wird, heil3t, wie Sie bestimmt schon erraten
haben, auch in der Elektronik Widerstand und wird in Ohm gemessen (nach
einem deutschen Physiker). Herr Ohm formulierte auch das wichtigste

38 Die ersten Schritte mit Arduino

Gesetz in der Elektrizitat — und die betreffende Formel ist auch die einzige,
die Sie sich wirklich merken mussen. Er konnte nachweisen, dass in jedem
Schaltkreis eine Beziehung zwischen Strom und Widerstand besteht, ge-
nauer gesagt, dass bei einer gegebenen Spannung die Strommenge, die
durch einen Schaltkreis flieRt, vom vorhandenen Widerstand abhangt.

Bei genauerem Nachdenken ist das recht intuitiv zu verstehen. Schlie3en
Sie eine 9-V-Batterie an einen einfachen Schaltkreis an. Wenn Sie nun den
Strom messen, werden Sie feststellen, dass er umso geringer wird, je mehr
Widerstande Sie einbauen. Wenn wir nochmal auf das Beispiel mit dem
Wasserdurchfluss in den Leitungen zurickkommen, hei3t das Folgendes:
Wenn Sie hier ein Ventil einbauen (das sich mit einem variablen Wider-
stand in der Elektrizitat vergleichen lasst) und dieses Ventil immer weiter
schlieBen, erhohen Sie den Widerstand in Bezug auf den Wasserdurchfluss
und es flieBt immer weniger Wasser durch die Leitungen. Ohm hat dieses
Gesetz in folgender Formfel zusammengefasst:

R (Widerstand) = V (Spannung) / I (Strom)

V=R*I

I=V/R

Dies ist die einzige Regel, die Sie sich merken und anwenden kénnen
mussen, weil sie die einzige ist, die Sie fur Ihre Arbeit mit Arduino wirklich
brauchen.

Steuerung einer LED mit einem Drucktaster

Eine LED zum Blinken zu bringen, war recht einfach, aber ich glaube nicht,
dass Sie glucklich werden, wenn Ihre Nachttischlampe standig blinkt,
wéahrend Sie versuchen, ein Buch zu lesen. Daher mussen Sie sie irgendwie
steuern kdnnen. In unserem vorherigen Beispiel war die LED ein Aktator,
der von Arduino gesteuert wurde. Was uns also fehlt, ist ein Sensor.

Far unser Beispiel verwenden wir die einfachste verfligbare Ausfuhrung
eines Sensors: einen Drucktaster.

Wenn Sie einen Drucktaster in seine Einzelteile zerlegen wlrden, ware
Ilhnen sehr schnell klar, dass es sich um ein sehr einfaches Bauteil handelt.
Er besteht aus zwei Metallplattchen, die durch eine Feder voneinander
separiert werden, und einer Plastikkappe, die, wenn sie gedrtckt wird, die
zwei Metallplattchen miteinander verbindet. Wenn keine Verbindung zwi-
schen den Metallplattchen besteht, erfolgt keine Stromzirkulation im
Drucktaster (&dhnlich wie bei einem geschlossenen Ventil). Wenn Sie den
Taster aber driicken, stellen Sie eine Verbindung her.

Die ersten Schritte mit Arduino 39

Um den Status eines Schalters zu Uberwachen, mochte ich hier eine neue
Arduino-Anweisung einfiihren: die Funktion digitalRead().

digitalRead() tberpruft, ob irgendeine Spannung an dem Pin anliegt, den
Sie in den runden Klammern angegeben haben, und gibt einfach den Wert
HIGH oder LOW zurtick, je nachdem, was die Uberpriifung ergeben hat. Die
anderen Anweisungen, die wir bisher verwendet haben, geben keinerlei
Informationen zurtick — sie fuhren nur das aus, was wir von ihnen méchten.
Diese Art von Anweisungen ist aber ein wenig begrenzt, da wir bei einer
sehr leicht vorhersagbaren Abfolge von Anweisungen stehenbleiben, ohne
Input aus der sie umgebenden Welt. Mittels digitalRead() kbnnen wir an
Arduino eine Frage richten und wir erhalten eine Antwort, die wiederum
irgendwo gespeichert und sofort im Anschluss oder auch spéater zur Ent-
scheidungsfindung herangezogen wird.

Bauen Sie die Schaltung, die in Abbildung 4-6 dargestellt ist. Hierzu beno-
tigen Sie einige Bauteile (diese werden auch bei anderen Projekten nutzlich
sein):

» Eine I6tfreie Steckplatine: Maker Shed (http://www.makershed.com),
Teilnummer MKKN3, im Arduino Store (bit.ly/ArduinoStoreBread-
Board). Anhang A bietet eine Einfuhrung zum Thema |6tfreie Steck-
platinen.

) Einen Satz vorgefertigter Steckbrticken: Maker Shed MKKN4, Arduino
Store (sind im Lieferumfang der I6tfreien Steckplatine enthalten).

» Einen 10-K-Ohm-Widerstand: Maker Shed JM691 104 (100er-Pack),
Arduino Store (bit.ly/ArduinoStorelOk, 10er-Pack).

) Einen Drucktastschalter: Maker Shed JM119011, Arduino Store (bit.ly/
ArduinoStorePushButtons)

40 Die ersten Schritte mit Arduino

http://www.makershed.com

i

an\l@ Eocooooodg

+omad
380)00 [N U x %

12 (0

a
Qo
z
(DH

O
e 08

DDD
oD

Anschliefen eines Drucktasters

—

Ll

WD 225 o-d Oid)é'm(:)
U356 &5 ZzTxeoccoccc

Abbildung 4-6.

Hinweis: Alternativ zum Kauf vorgefertigter Steckbriicken kénnen Sie
auch festen Schaltdraht vom Typ 22 AWG, der auf kleinen Spulen

aufgewickelt ist, verwenden und ihn mit Drahtschneider und Abisolier-
zange abisolieren.

Die ersten Schritte mit Arduino 41

Werfen wir nun einen Blick auf den Code, den wir verwenden, um die LED
mit dem Drucktaster zu steuern:

// Beispiel 4-2: turn_on_led_while_the_button_is_pressed

const int LED = 13; // the pin for the LED

const int BUTTON = 7; // the input pin where the
// pushbutton is connected

int val = 0; // val will be used to store the state
// of the input pin

void setup() {
pinMode(LED, OUTPUT); // tell Arduino LED is an output
pinMode (BUTTON, INPUT); // and BUTTON is an input

void loop(){
val = digitalRead(BUTTON); // read input value and store it

// check whether the input is HIGH (button pressed)
if (val == HIGH) {
digitalWrite(LED, HIGH); // turn LED ON
} else {
digitalWrite(LED, LOW);
}

Wahlen Sie in Arduino File > New aus (falls Sie einen anderen Sketch
geoffnet haben, schlieBen Sie ihn gegebenenfalls). Wenn Sie von Arduino
aufgefordert werden, einen Namen fur den neuen Sketch-Ordner anzuge-
ben, geben Sie PushButtonControl ein. Geben Sie dann den Code fur
Beispiel 4-2 ein (oder laden Sie ihn von der Webadresse http://www.
makezine.com/getstartedarduino herunter und kopieren ihn in die Ar-
duino-IDE). Wenn alles korrekt abgelaufen ist, wird die LED leuchten, wenn
Sie den Taster drucken.

42 Die ersten Schritte mit Arduino

http://www.­nohyp;makezine.com/getstartedarduino
http://www.makezine.com/getstartedarduino
http://www.makezine.com/getstartedarduino

Erlauterung der Funktionsweise

Mit diesem Beispielprogramm habe ich zwei neue Konzepte eingefihrt:
Funktionen, die das Ergebnis ihrer Arbeit zurtickliefern, und die i-Anwei-
sung.

Die i-Anweisung ist wahrscheinlich die wichtigste Anweisung in einer Pro-
grammiersprache, weil sie dem Computer (und denken Sie immer daran,
dass Arduino ein kleiner Computer ist) ermoglicht, Entscheidungen zu
treffen. Nach dem Schltsselwort /fmuss eine Frage, die in Klammern
eingeschlossen ist, angefligt werden. Wenn die Antwort bzw. das Ergebnis
wabhr ist, wird der erste Codeblock ausgefihrt, anderenfalls der nachfol-
gende Codeblock. Beachten Sie hier, dass ich das Symbol == anstelle von =
verwendet habe. Das Erstere wird verwendet, wenn zwei Einheiten mit-
einander verglichen werden. Es wird dann entsprechend das Ergebnis
TRUE oder FALSE zuruckgeliefert; mit dem Letzeren wird einer Variablen
ein Wert zugewiesen. Achten Sie darauf, das korrekte Zeichen zu verwen-
den, denn diese Fehlerquelle ist recht grofB3, und im Falle eines Fehlers an
dieser Stelle wird das Programm niemals funktionieren. Ich weif3, wovon ich
spreche, denn nach 25 Jahren Programmiererfahrung unterlauft mir dieser
Fehler immer noch.

Es ist naturlich sehr unpraktisch, mit dem Finger die ganze Zeit den Taster
gedrickt halten zu miassen, wenn Sie Licht benétigen. Auch wenn man
bedenkt, wie viel Energie verschwendet wird, wenn Sie sich von der Lampe
fortbewegen und sie nicht nutzen, sie aber eingeschaltet lassen, wollen wir
doch herausfinden, wie wir bewirken kénnen, dass der Taster im Modus
~gedruckt” fixiert wird.

Ein Schaltkreis — 1000 Verhaltensweisen

Der grof3e Vorteil von digitaler, programmierbarer Elektronik gegentber
klassischer Elektronik wird hier offensichtlich: Ich werde Ihnen nun zeigen,
auf welche Weise viele verschiedene Verhaltensweisen unter Verwendung
desselben Schaltkreises wie im vorherigen Abschnitt implementiert wer-
den konnen, einfach, indem die Software entsprechend geandert wird.

Wie ich bereits erwahnt habe, ist es nicht sehr praktisch, die ganze Zeit den
Taster mit dem Finger gedriickt halten zu mussen, um Licht zu haben. Wir
mussen also eine Art von Gedachtnis implementieren, und zwar in Form
eines Softwaremechanismus, der speichert, wann wir den Taster gedriickt
haben, und der die Lampe weiter leuchten lasst, auch wenn wir den Finger
vom Taster genommen haben.

Die ersten Schritte mit Arduino 43

Hierzu verwenden wir eine sogenannte Variable. (Wir haben sie bereits
einmal verwendet, aber ich habe sie noch nicht erlautert.) Eine Variable ist
ein Ort im Arduino-Speicher, an dem Daten gespeichert werden kénnen.
Sie kénnen sie sich als Post-it vorstellen, das Sie verwenden, um sich an
etwas zu erinnern, z.B. eine Telefonnummer: Sie schreiben beispielsweise
Luisa 02555 1212 darauf und kleben ihn an lhren Computerbildschirm oder
an den Kuhlschrank. In der Arduino-Sprache ist das ahnlich simpel: Sie
entscheiden einfach, welcher Datentyp gespeichert werden soll (z.B. eine
Zahl oder Text) und vergeben einen Namen. Sie kénnen diese Daten dann
speichern oder abrufen. Hier ein Beispiel:

int val = 0;
int bedeutet, dass die Variable eine Ganzzahl speichert. Dabei ist valder
Name der Variablen, und mit = O wird ein Anfangswert von O zugewiesen.

Eine Variable kann, wie der Name schon sagt, tberall im Code geandert
werden, sodass Sie spater im Programm Folgendes schreiben kdnnen,

wodurch lhrer Variable ein neuer Wert, 112, zugewiesen wird:

val = 112;

Hinweis: Haben Sie bemerkt, dass in Arduino jede Anweisung mit einem
Semikolon endet? Auf diese Weise wird dem Compiler (dem Teil von
Arduino, der lhren Sketch in ein vom Mikrocontroller ausfiihrbares
Programm umwandelt) angezeigt, dass eine Anweisung beendet ist und
eine neue beginnt. Vergessen Sie also nicht, immer das Semikolon
anzufligen.

Im folgenden Programm wird val/verwendet, um das Ergebnis von digital-
Read() zu speichern; alle Informationen, die Arduino vom Input-Pin erhélt,
landen in der Variablen und bleiben dort gespeichert, bis sie von einer
anderen Codezeile geandert werden. Beachten Sie, dass Variablen einen
Speichertyp verwenden, der als RAM bezeichnet wird. Diese Art von Spei-
cher ist recht schnell, doch wenn Sie Ihr Board ausschalten, gehen alle im
RAM gespeicherten Daten verloren (d.h. jede Variable wird auf ihren An-
fangswert zurtickgesetzt, wenn das Board wieder mit Energie versorgt
wird). Ihre Programme selbst werden in einem Flash-Speicher — dieselbe
Art von Speicher, wie sie auch bei Mobiltelefonen zum Speichern von
Telefonnummern verwendet wird — gespeichert. Hierin bleiben die Daten
erhalten, auch wenn das Board ausgeschaltet wird.

Nun wollen wir eine andere Variable verwenden, mit der gespeichert wird,
ob die LED ein- oder ausgeschaltet bleiben soll, nachdem wir den Finger

44 Die ersten Schritte mit Arduino

vom Taster genommen haben. Beispiel 4-3 ist ein erster Versuch, dies zu
erreichen:

// Beispiel 4-3: turn_on_led_when_the_button_is_pressed_a

const int LED = 13; // the pin for the LED
const int BUTTON = 7; // the input pin where the
// pushbutton is connected
int val = 0; // val will be used to store the state
// of the input pin
int state =0; // 0 = LED off while 1 = LED on

void setup() {
pinMode(LED, OUTPUT); // tell Arduino LED is an output
pinMode (BUTTON, INPUT); // and BUTTON is an input

void loop() {
val = digitalRead(BUTTON); // read input value and store it

// check if the input is HIGH (button pressed)
// and change the state
if (val == HIGH) {

state = 1 - state;

if (state == 1) {

digitalWrite(LED, HIGH); // turn LED ON
} else {

digitalWrite(LED, LOW);
}

Testen Sie nun diesen Code. Sie werden dann sehen, dass er funktioniert ...
irgendwie. Das Licht wechselt allerdings so schnell, dass Sie es gar nicht
zuverlassig mit einem Tastendruck ein- oder ausschalten kénnen.

Schauen wir uns einmal die interessanten Zeilen des Codes an: state ist
eine Variabe, die entweder O oder 1 speichert, um sich so zu merken, ob die

Die ersten Schritte mit Arduino 45

LED ein- oder ausgeschaltet ist. Wenn der Taster freigegeben wurde, wird
sie auf den Anfangswert O (LED aus) gesetzt.

Spater lesen wir den aktuellen Zustand des Tasters aus, und wenn er
gedruckt ist (val == HIGH), &ndern wir diesen von O in 1 oder umgekehrt. Im
Hinblick darauf, dass state immer nur 1 oder O sein kann, verwende ich hier
einen kleinen Trick. Dieser beinhaltet einen kleinen mathematischen Aus-
druck, der auf der Idee basiert, dass1-0=1ist,und1-1=0:

state = 1 - state;

Die Zeile ergibt mathematisch gesehen vielleicht keinen Sinn, bei der
Programmierung hingegen schon. Das Symbol =bedeutet ,Weise das
Ergebnis von dem, was nach mir folgt, der Variablen zu, die vor mir
angefuhrtist.” —in unserem Beispiel wird state als neuer Wert das Ergebnis
von 1 minus dem alten Wert von state zugewiesen.

Spéater in diesem Programm konnen Sie sehen, dass wir state verwenden,
um zu ermitteln, ob die LED ein- oder ausgeschaltet sein muss. Wie bereits
erwahnt wurde, fuhrt das zu eher ungenauen Ergebnissen.

Dies liegt an der Art und Weise, wie der Taster ausgelesen wird. Arduino ist
wirklich schnell. Die eigenen internen Anweisungen werden mit einer Rate
von 16 Millionen pro Millisekunde ausgefuhrt — das sind gut einige Millionen
Codezeilen pro Sekunde. Wahrend Sie also mit lhrem Finger den Taster
drucken, liest Arduino die Position des Schalters moglicherweise einige
tausend Male und andert dabei state entsprechend. Das Ergebnis wird also
letztendlich unvorhersehbar; es kénnte ,, Aus” lauten, wenn es eigentlich
»An* lauten sollte oder umgekehrt. So wie selbst eine kaputte Uhr zwei Mal
am Tag die Zeit korrekt wiedergibt, kann auch das Programm gelegentlich
ein korrektes Verhalten aufweisen, meistens aber wird es falsch sein.

Wie kénnen wir dieses Problem beheben? Nun, wir mtssen den exakten
Zeitpunkt ermitteln, an dem der Taster gedrickt wird — das ist dann der
einzige Moment, in dem state geandert werden muss. Dazu mochte ich den
Wert von val speichern, bevor ich einen neuen Wert auslese. Dadurch wird
es moglich, die aktuelle Position des Tasters mit der vorherigen zu ver-
gleichen und state nur dann zu andern, wenn fur den Taster ein HIGH nach
einem vorherigen LOW ermittelt wird.

46 Die ersten Schritte mit Arduino

Beispiel 4-4 enthélt den entsprechenden Code:

// Beispiel 4-4: turn_on_led_when_the_button_is_pre-id0el

const int LED = 13; // the pin for the LED
const int BUTTON = 7; // the input pin where the
// pushbutton is connected

int val = 0; // val will be used to store the state
// of the input pin

int old val = 0; // this variable stores the previous
// value of "val"

int state = 0; // 0 = LED off and 1 = LED on

void setup() {
pinMode(LED, OUTPUT); // tell Arduino LED is an output
pinMode (BUTTON, INPUT); // and BUTTON is an input
}
void loop(){
val = digitalRead(BUTTON); // read input value and store it
// yum, fresh

// check if there was a transition
if ((val == HIGH) && (old val == LOW)){
state = 1 - state;

old val = val; // val is now old, let's store it

if (state ==1) {
digitalWrite(LED, HIGH); // turn LED ON
} else {
digitalWrite(LED, LOW);
}
}

Probieren Sie das Programm aus, wir haben es fast geschafft!
Moglicherweise haben Sie bemerkt, dass dieser Ansatz nicht ganz perfekt
ist, was an einem anderen Problem mit mechanischen Schaltern liegt. Bei

Drucktastern handelt es sich um recht einfache Bauteile: zwei Metallplatt-

Die ersten Schritte mit Arduino 47

chen, die durch eine Feder auseinandergehalten werden. Wenn Sie den
Schalter driicken, wird eine Verbindung zwischen diesen beiden Kontakten
hergestellt und Strom flieBt. Dies klingt nach einem einfachen und wirk-
samen Mechanismus, aber in der Realitat ist die Verbindung nicht so
perfekt, besonders dann nicht, wenn der Taster nicht richtig gedriickt
wurde, und es werden einige Storsignale erzeugt. Dieser Effekt wird als
Prellen bezeichnet.

Wenn der Taster geprellt wird, erhélt Arduino eine Reihe von rasch auf-
einanderfolgenden Ein- und Aussignalen. Es wurden viele Moglichkeiten
zum Entprellen entwickelt, aber in diesem einfachen Codeabschnitt ist es
meiner Erfahrung nach vollig ausreichend, eine Verzégerung von 10 bis 50
Millisekunden einzubauen, wenn vom Code ein Wechsel ermittelt wurde.

Beispiel 4-5 enthalt den finalen Code:

// Beispiel 4-5: turn_on_led_when_the_button_is_pre-id062

const int LED = 13; // the pin for the LED
const int BUTTON = 7; // the input pin where the
// pushbutton is connected

int val = 0; // val will be used to store the state
// of the input pin

int old val = 0; // this variable stores the previous
// value of "val"

int state = 0; // 0 = LED off and 1 = LED on

void setup() {
pinMode(LED, OUTPUT); // tell Arduino LED is an output
pinMode (BUTTON, INPUT); // and BUTTON is an input

void loop(){
val = digitalRead(BUTTON); // read input value and store it
// yum, fresh

// check if there was a transition

if ((val == HIGH) && (old_val == LOW)){
state = 1 - state;
delay(10);

}

48 Die ersten Schritte mit Arduino

Die ersten Schritte mit Arduino 49

5/Erweiterter Input
und Output

In Kapitel 4 haben wir die grundlegenden Operationen kennengelernt, die
wir mit Arduino durchfiihren kénnen: Steuern des digitalen Outputs und
Auslesen des digitalen Inputs. Wenn es sich bei Arduino um eine mensch-
liche Sprache handeln wiirde, wéaren dies zwei Buchstaben ihres Alphabets.
Angesichts der Tatsache, dass dieses Aphabet aus nur fiinf Buchstaben
besteht, konnen Sie schon abschatzen, wie viel Arbeit uns bevorsteht,
bevor wir Arduino-Poesie schreiben kdnnen.

Der Einsatz anderer Ein/Aus-Sensoren

Nachdem Sie nun erfahren haben, wie der Drucktastenschalter verwendet
wird, sollten Sie wissen, dass es viele andere sehr einfache Sensoren gibt,
die nach demselben Prinzip funktionieren:

Schalter
Sie funktionieren ahnlich wie ein Drucktaster, allerdings &ndern sie nicht
automatisch den Zustand, wenn sie freigegeben werden.

Thermostate
Hierbei handelt es sich um Schalter, die bei Erreichen eines festgelegten
Wertes gedffnet werden.

Magnetische Schalter (auch als Reed-Relays bekannt))

Sie verflugen Uber zwei Kontake, die verbunden werden, wenn sie sich in der
Nahe eines Magnets befinden. Diese Schalter kommen bei Alarmanlagen
zum Einsatz um festzustellen, ob ein Fenster gedffnet ist.

Sensormatten

Dies sind diinne Matten, die unter einem Teppich oder unter der Tirmatte
platziert werden kdnnen, um die Anwesenheit von Personen (oder einer
schwergewichtigen Katze) festzustellen.

Neigungsschalter

Hierbei handelt es sich um eine einfache elektronische Komponente, die
aus zwei Kontakten und einem kleinen Metallball besteht (oder einem
Quecksilbertropfen, aber ich empfehle, solche Schalter nicht zu verwen-

Erweiterter Input und Output 51

den). Ein Beispiel fur einen Neigungsschalter ist ein Neigungssensor; Ab-
bildung 5-1 zeigt ein typisches Modell. Wenn sich der Sensor in einer
aufrechten Position befindet, werden die beiden Kontakte durch den Ball
verbunden. Es ist dasselbe Prinzip wie beim Drticken eines Drucktasters.
Wenn Sie den Sensor kippen, bewegt sich der Ball und der Kontakt wird
geoffnet. Das hat denselben Effekt wie die Freigabe eines Drucktasters.
Diese einfache Komponente kann zum Beispiel bei gestischen Schnitt-
stellen verwendet werden, die reagieren, wenn ein Objekt bewegt oder
geschuttelt wird (bit.ly/ArduinoStoreTiltSensor).

Innenansicht

Abbildung 5-1.
Das Innere eines Neigungssensors

Ein weiterer Sensor, den Sie vielleicht verwenden mdochten, ist der Infra-
rotsensor, wie Sie ihn bei Alarmanlagen finden (sie werden auch als passive
Infrarotsensoren oder PIR-Sensoren bezeichnet, siehe Abbildung 5-2).
Dieses kleine Bauteil 16st einen Alarm aus, wenn eine Person (oder ein
anderes Lebewesen) sich in der naheren Umgebung bewegt. Es bietet eine
einfache Moglichkeit, Bewegung festzustellen.

52 Erweiterter Input und Output

Abbildung 5-2.
Ein typischer PIR-Sensor

Sie sollten nun ein wenig mit all den moglichen Bauteilen, die tber zwei
solcher nah beieinanderliegenden Kontakte verfligen, herumexperimentie-
ren, z.B. mit dem Thermostat, der die Raumtemperatur festlegt (verwen-
den Sie einen alten, der nicht mehr angeschlossen ist). Sie kénnen auch
zwei Kontakte nebeneinander platzieren und sie mit Wasser bespritzen.

Wenn Sie beispielsweise das letzte Projekt aus dem Kapitel 4 mit einem

PIR-Sensor kombinieren, kénnen Sie eine Lampe bauen, die auf die Anwe-
senheit von Personen reagiert. Sie konnten auch einen Neigungssensor

Erweiterter Input und Output 53

verwenden und so einen Leuchtkérper konzipieren, der sich ausschaltet,
wenn Sie ihn zu einer Seite neigen.

Steuerung von Licht mittels PWM

Mit den bisher erworbenen Kenntnissen kénnten Sie eine interaktive
Lampe bauen — und zwar eine, die nicht nur Uber einen langweiligen
Ein/Aus-Schalter verfugt, sondern vielleicht mit eleganteren Features auf-
wartet. Eine der Beschréankungen unserer Beispiele mit einer blinkenden
LED war die, dass das Licht nur ein- oder ausgeschaltet werden konnte.
Eine schicke Lampe muss aber auch dimmbar sein. Hierzu kénnen wir uns
eines Phanomens bedienen, das viele solcher Dinge wie Fernsehen oder
Kino erst ermoglicht: die Tragheit des Auges.

Nach dem ersten Beispiel in Kapitel 4 wurde schon angedeutet, dass, wenn
Sie die Angaben fur die Verzogerungen im Code so andern, dass Sie kein
Blinken der LED mehr wahrnehmen kénnen, das von den LEDs abgegebene
Licht gegenuber ihrer normalen Helligkeit um 50 % reduziert erscheint.
Andern Sie nun die Angaben so, dass die LED ein Viertel der Zeit aus-
geschaltet ist. Wenn Sie den Sketch ausfuihren, werden Sie sehen, dass die
Helligkeit noch etwa 25% betragt. Diese Technik hei3t Pulsweitenmodula-
tion (PWM), eine hiibsche Bezeichnung dafur, dass wenn Sie die LED nur
schnell genug blinken lassen, Sie das Blinken nicht mehr wahrnehmen,
aber die Helligkeit andern kénnen, indem Sie das Verhaltnis von Ein- und
Ausphasen entsprechend anpassen. In Abbildung 5-3 ist dargestellt, wie
dies funktioniert.

Diese Technik funktioniert auch bei anderen Bauteilen als LEDs. Die
Schnelligkeit eines Motors lasst sich auf dieselbe Weise andern.

Wenn Sie herumexperimentieren, werden Sie bemerken, dass das Erzeu-
gen von Blinkverhalten bei einer LED durch Einfugen von Verzdgerungen im
Code recht unguinstig sein kann, weil, sobald Sie einen Sensor auslesen
oder Daten an den seriellen Anschluss schicken mochten, die LED zu
flackern beginnt, wahrend sie darauf wartet, dass das Auslesen des Sen-
sors beendet wird. Glucklicherweise verfugt der Pozessor, der bei Arduino
verwendet wird, Uber eine spezielle Hardware, die recht effizient drei LEDs
blinken lassen kann, wahrend der Sketch etwas anderes tut. Diese Hard-
ware ist in den Pins 9, 10 und 11 implementiert, die wiederum tber die
Anweisung analogWrite() gesteuert werden kénnen.

54 Erweiterter Input und Output

B -
ON ['—— """"
507 50%
OFF —>
t
R e >
75 %
t
4
______________________ >
ON pbm—m—m—m——————
757% 25%
OFF >
t

Abbildung 5-3.
PWM in Aktion

Wenn Sie zum Beispiel analogWrite(9,128) schreiben, wird die Helligkeit
der LED, die an Pin 9 angeschlossen ist, auf 50% gedimmt. Warum 128?

analogWrite() erwartet als Argument eine Zahl zwischen O und 255, wobei
255 volle Helligkeit bedeutet und bei O die LED ausgeschaltet ist.

Erweiterter Input und Output

55

Hinweis: Es ist eine feine Sache, dass Ilhnen drei Kanale zur Verfiigung
stehen, weil Sie so rote, griine und blaue LEDs kaufen und das Licht dann
nach Belieben mischen kénnen!

Das wollen wir nun einmal ausprobieren. Bauen Sie den Schaltkreis, der in
Abbildung 5-4 abgebildet ist. Beachten Sie, dass die LEDs gepolt sind: Der
lange Pin (positiv) sollte nach rechts zeigen, der kurze Pin (negativ) nach
links. AuBerdem ist bei den meisten Widerstanden die negative Seite
abgeflacht, wie in der Abbildung zu sehen ist. Verwenden Sie einen
270-Ohm-Widerstand (rot-violett-braun).

a LLj ffcooo oo g

a
de®mo new+TmnaTe
EalRal X?I(
v

Abbildung 5-4.
LED am PWM-Pin

56 Erweiterter Input und Output

Erzeugen Sie dann in Arduino einen neuen Sketch und verwenden Sie
Beispiel 5-1 (die Codebeispiele kénnen auch unter http://www.makezi-
ne.com/getstartedarduino heruntergeladen werden):

// Beispiel 5-1: Fade an LED in and out

const int LED = 9; // the pin for the LED
int i = 0; // We'll use this to count up and down

void setup() {
pinMode(LED, OUTPUT); // tell Arduino LED is an output

void loop(){

for (i =0; i <255; i++) { // loop from 0 to 254 (fade in)
analogWrite(LED, 1i); // set the LED brightness
delay(10); // Wait 10ms because analogWrite
// is instantaneous and we would
// not see any change

for (i =255; i >0; i--) { // loop from 255 to 1 (fade out)

analogWrite(LED, i); // set the LED brightness
delay(10); // Wait 10ms
}

Sie haben nun ein nettes Laptop-Feature nachgebildet (vielleicht ist es
auch ein wenig verschwenderisch, Arduino flr so eine simple Angelegen-
heit zu nutzen). Wir wollen nun dieses Wissen einsetzen, um unsere Lampe
Zu verbessern.

Fugen Sie auf der Steckplatine die Schaltung hinzu, die wir verwendet
haben, um den Drucktaster auszulesen (siehe weiter vorne in Kapitel 4).
Versuchen Sie dabei, nicht auf die nachste Seite zu schauen, weil ich
mochte, dass Sie damit anfangen, jeden hier gezeigten Basisschaltkreis als
Baustein zu sehen, mit denen sich immer gréRere Projekte realisieren

Erweiterter Input und Output 57

http://www.makezine.com/getstartedarduino
http://www.makezine.com/getstartedarduino

lassen. Wenn Sie doch nachschauen mussen, macht das nichts; wichtig ist,
dass Sie sich vorher ein paar Gedanken dartber gemacht haben, wie das
Ganze aussehen konnte.

Um den gewtinschten Schaltkreis zu bauen, mussen Sie die Schaltung, die
Sie gerade gebaut haben (die aus Abbildung 5-4), mit der Drucktaster-
schaltung, die in Abbildung 4-6 dargestellt ist, kombinieren. Wenn Sie
mochten, kénnen Sie die beiden Schaltkreise auf verschiedene Bereiche
der Platine bauen; es gibt hier viel Platz. Einer der Vorteile der Steckplatine
(siehe Anhang A) besteht in den beiden Leiterbahnen, die horizontal tiber
dem oberen und dem unteren Bereich verlaufen, eine ist rot (positiv) und
die andere blau oder schwarz (Masse) gekennzeichnet.

Diese Leiterbahnen dienen dazu, Energie und Masse so zu verteilen, wie sie
bendtigt werden. Bei dem hier zu bauenden Schaltkreis missen zwei
Komponenten (beide sind Widerstande) mit dem Masse-(GND-)Pin des
Arduino-Boards verbunden werden. Da Arduino Uber drei GND-Pins ver-
fagt, kdnnen Sie die beiden Schaltkreise einfach auf die in jeder der beiden
Abbildungen dargestellte Weise verbinden. SchlieBen Sie einfach beide an
das Arduino-Board an. Sie kdnnen auch einen der Drahte der Masseleiter-
bahn der Steckplatine an einen der GND-Pins auf dem Arduio-Board
anschlieBen und die Drahte, die in den Abbildungen an die GND-Pins
angeschlossen sind, stattdessen mit der Masseleiterbahn auf der Steck-
platine verbinden.

Wenn Sie noch nicht so weit sind, dies auszuprobieren, ist das nicht weiter
schlimm: Verdrahten Sie einfach beide Schaltkreise mit dem Arduino-
Board, wie es in den Abbildungen 4-6 und 5-4 dargestellt ist. Ein Beispiel,
bei dem Masse und positive Leiterbahnen der Steckplatine genutzt werden,
finden Sie im Kapitel 6.

Fahren wir nun mit unserem nachsten Beispiel fort. Wenn wir nur einen
Drucktaster haben, wie kénnen wir dann die Helligkeit der Lampe steuern?
An dieser Stelle werden wir nun eine weitere Technik aus dem Interactive
Design kennenlernen: das Ermitteln, wie lange ein Taster gedriickt wurde.
Hierzu mussen wir ein Upgrade zu Beispiel 4-5 aus dem Kapitel 4 durch-
fahren, um einen Dimm-Effekt einzubauen. Die |dee besteht darin, eine
Schnittstelle herzustellen, tber die mittels Driicken- bzw. Freigabe-Aktio-
nen das Licht ein- oder ausgeschaltet und per Drticken- und Halten-Aktio-
nen die Helligkeit geandert wird.

58 Erweiterter Input und Output

Schauen wir uns den entsprechenden Sketch an:

// Beispiel 5-2: Turn on LED when the button is pressed

const int LED = 9; // the pin for the LED
const int BUTTON = 7; // input pin of the pushbutton

int val = 0; // stores the state of the input pin

int old val = 0; // stores the previous value of "val"
int state =0; // 0 = LED off while 1 = LED on

int brightness = 128; // Stores the brightness value
unsigned long startTime = 0; // when did we begin pressing?

void setup() {
pinMode(LED, OUTPUT); // tell Arduino LED is an output
pinMode (BUTTON, INPUT); // and BUTTON is an input

void loop() {

val = digitalRead(BUTTON); // read input value and store it
// yum, fresh

// check if there was a transition
if ((val == HIGH) & (old val == LOW)) {

state = 1 - state; // change the state from off to on

// or vice-versa

startTime = millis(); // millis() is the Arduino clock
// it returns how many milliseconds
// have passed since the board has
// been reset.

// (this line remembers when the button
// was last pressed)
delay(10);

}

Erweiterter Input und Output 59

// check whether the button is being held down
if ((val == HIGH) && (old_val == HIGH)) {

// If the button is held for more than 500ms.
if (state == 1 && (millis() - startTime) > 500) {

brightness++; // increment brightness by 1
delay(10); // delay to avoid brightness going
// up too fast

if (brightness > 255) { // 255 is the max brightness

brightness = 0; // if we go over 255
// let's go back to 0

old val = val; // val is now old, let's store it

if (state == 1) {
analogWrite(LED, brightness); // turn LED ON at the
// current brightness level

} else {
analogWrite(LED, 0); // turn LED OFF
}

Das wollen wir nun einmal ausprobieren. Wie Sie sehen, nimmt unser
Interaktionsmodell Formen an. Wenn Sie den Taster drticken und sofort
wieder loslassen, schalten Sie die Lampe ein bzw. aus. Wenn Sie den Taster
gedruckt halten, andert sich die Helligkeit. Nehmen Sie einfach den Finger
vom Taster, wenn die gewlinschte Helligkeit erreicht ist.

Als Nachstes wollen wir uns ein wenig naher mit der Verwendung einiger
interessanter Sensoren beschaftigen.

60 Erweiterter Input und Output

Einsatz eines Lichtsensors anstelle eines
Drucktasters

Wir werden nun ein kleines Experiment durchfihren. Dazu benétigen Sie
einen Lichtsensor, wie er in Abbildung 5-5 zu sehen ist. Solche Sensoren
koénnen Sie bei Maker Shed (Teilnummer JM169578) oder unter bit.ly/

ArduinoStoreLDR kaufen.

|

Abbildung 5-5.
Lichtabhdngiger Widerstand (LDR)

Bei Dunkelheit weist der lichtabhangige Widerstand (Light Dependent
Resistor, kurz LDR) einen hohen Widerstand auf. Wenn Licht auf ihn fallt,
sinkt der Widerstand recht schnell und das Bauteil wird zu einem ziemlich
guten Leiter fur Elektrizitat. Es handelt sich also um eine Art durch Licht
aktivierten Schalter.

Bauen Sie den Schaltkreis aus Beispiel 4-2 (siehe Kapitel 4) und laden Sie
dann den entsprechenden Code aus Beispiel 4-2 auf das Arduino-Board.

Stecken Sie nun anstelle des Drucktasters den LDR auf die Steckplatine.
lhnen wird sicherlich auffallen, dass die LED nicht mehr leuchtet, wenn Sie
den LDR mit der Hand zudecken. Ist der LDR hingegen nicht abgedeckt,
dann leuchtet die LED. Sie haben gerade |hre erste sensorgesteuerte LED

Erweiterter Input und Output 61

konstruiert. Dies ist ein wichtiger Schritt, weil wir zum ersten Mal in diesem
Buch eine elektronische Komponente verwenden, bei der es sich nicht
einfach um ein mechanisches Bauteil handelt: Es ist ein wirklich komplexer
Sensor.

Analoger Eingang

Wie Sie aus dem vorherigen Abschnitt bereits wissen, kann Arduino fest-
stellen, ob eine Spannung an einem der Pins anliegt und das Ergebnis
mittels der digitalRead()-Funktion zuriickmelden. Diese Art von Entweder-
oder-Antwort ist in vielen Anwendungen sinnvoll, aber der Lichtsensor, den
wir hier verwenden, kann nicht nur mitteilen, ob Licht vorhanden ist,
sondern auch wie viel. Das ist der Unterschied zwischen einem Ein/Aus-
Sensor (der uns mitteilt, ob etwas vorhanden ist) und einem analogen
Sensor, dessen Wert sich standig andert. Um einen solchen Sensor aus-
zulesen, benotigen wir eine andere Art von Pin.

Im rechten unteren Bereich des Arduino-Boards befinden sich sechs Pins
mit der Bezeichnung ,,Analog In“ Dabei handelt es sich um spezielle Pins,
die uns nicht nur zurtckliefern kénnen, ob eine Spannung an ihnen anliegt,
sondern gegebenenfalls auch den betreffenden Wert. Mithilfe der analog-
Read()-Funktion kénnen wir die an einem der Pins anliegende Spannung
auslesen. Sie liefert einen Wert zwischen O und 1023, der eine Spannung
zwischen O und 5 Volt darstellt. Wenn beispielsweise eine Spannung von
2,5 Volt an Pin O anliegt, gibt analogRead(0) den Wert 512 zuruck.

Wenn Sie nun den Schaltkreis bauen, der in Abbildung 5-6 dargestellt ist,
dabei einen 10k-Widerstand verwenden und den Code ausfthren, der in
Beispiel 5-3 angeftuihrt ist, werden Sie sehen, dass die Board-eigene LED
(Sie konnen auch eine eigene LED verwenden und an Pin 13 und den
GND-Pin anschlieRen, wie in Kapitel 4 dargestellt ist) in einer Geschwindig-
keit blinkt, die von der Lichtmenge abhangt, die auf den Sensor trifft.

62 Erweiterter Input und Output

Abbildung 5-6.
Eine analoge Sensor-Schaltung

// Beispiel 5-3: Blink LED at a rate specified by the
value of the analogue input

const int LED = 13; // the pin for the LED
int val = 0; // variable used to store the value
// coming from the sensor

void setup() {
pinMode(LED, OUTPUT); // LED is as an OUTPUT

Erweiterter Input und Output 63

// Note: Analogue pins are
// automatically set as inputs
}

void loop() {

val = analogRead(0); // read the value from
// the sensor

digitalWrite(LED, HIGH); // turn the LED on

delay(val); // stop the program for

// some time
digitalWrite(LED, LOW); // turn the LED off

delay(val); // stop the program for

// some time

Probieren Sie nun Beispiel 5-4 aus, aber zuvor mussen Sie lhren Schaltkreis
modifizieren. Schauen Sie sich noch einmal Abbildung 5-4 an und verbinden
Sie lhre LED wie gezeigt mit Pin 9. Weil Sie bereits einige Komponenten auf

lhrer Steckplatine angebracht haben, mussen Sie erst eine Stelle finden, an

der die LED, die Drahte und der Widerstand sich nicht mit dem LDR-Schalt-

kreis Uberschneiden.

// Beispiel 5-4: Set the brightness of LED

const int LED = 9; // the pin for the LED

int val = 0; // variable used to store the value

// coming from the sensor
void setup() {
pinMode(LED, OUTPUT); // LED is as an OUTPUT

// Note: Analogue pins are

64 Erweiterter Input und Output

// automatically set as inputs

}

void loop() {

val = analogRead(0); // read the value from
// the sensor
analogWrite(LED, val/4); // turn the LED on at
// the brightness set
// by the sensor

delay(10); // stop the program for
// some time

Hinweis: Wir legen die Helligkeit fest, indem wir val/durch 4 teilen, weil
analogRead() eine Zahl groBer als 1023 zuriickliefert und analogWrite()
nur einen Maximalwert von 255 annehmen kann.

Der Einsatz anderer analoger Sensoren

In dem Schaltkreis aus dem vorherigen Abschnitt lassen sich auch zahlrei-
che andere resistive Sensoren einbauen, die alle mehr oder weniger nach
demselben Prinzip funktionieren. Sie konnten beispielsweise einen Tem-
peraturfuhler anschlieBBen, ein einfaches Bauteil, dessen Widerstand sich
mit der Temperatur dndert. Ich habe bereits erlautert, wie Anderungen bei
den Widerstanden zu Anderungen bei der Spannung fithren, die dann von
Arduino gemessen werden kénnen.

Wenn Sie einen Temperaturfuhler verwenden, beachten Sie bitte, dass kein
direkter Zusammenhang zwischen dem Wert, den Sie auslesen und der
tatsachlich gemessenen Temperatur besteht. Wenn Sie eine exakte An-
gabe bendttigen, sollten Sie die Werte auslesen, die vom analogen Pin
kommen und dabei fur die Messung ein reales Thermometer verwenden.
Die entsprechenden Werte sollten Sie dann nebeneinander in einer Tabelle
eintragen und einen Weg finden, wie sich die analogen Werte mit den realen
Temperaturen abgleichen lassen.

Bis jetzt haben wir eine LED als Ausgabekomponente verwendet. Doch wie
konnen wir die tatsachlichen Werte erhalten, die Arduino vom Sensor
ausliest? Wir konnen das Board nicht veranlassen, die Werte im Morse-
alphabet zu blinken (d.h., das ware schon moglich, es gibt aber einen

Erweiterter Input und Output 65

einfacheren Weg, die Werte zu lesen). Dazu mussen wir Arduino Gber einen
seriellen Anschluss mit einem Computer kommunizieren lassen. Dies wird
im nachsten Abschnitt beschrieben.

Serielle Kommunikation

Zu Beginn des Buches haben Sie erfahren, dass Arduino tber einen USB-
Anschluss verfugt, iber den die IDE Code in den Prozessor ladt. Die gute
Nachricht ist die, dass diese Verbindung auch von den Sketches, die in
Arduino geschrieben werden, genutzt werden kann, um Daten zurtick an
den Computer zu liefern oder um Befehle von diesem zu empfangen. Zu
diesem Zweck verwenden wir ein serielles Objekt (ein Objekt ist eine
Sammlung von Fahigkeiten, die gebundelt wurden, um das Schreiben von
Sketches zu erleichtern).

Dieses Objekt enthalt all den Code, der fur das Senden und Empfangen von
Daten erforderlich ist. Wir werden nun den letzten Schaltkreis mit dem
Fotowiderstand, den wir gebaut haben, verwenden und die ausgelesenen
Daten zurtick an den Computer senden. Erstellen Sie mit dem folgenden
Code einen neuen Sketch (Sie kdnnen ihn auch unter http://www.make-
zine.com/getstartedarduino herunterladen):

// Beispiel 5-5: Send to the computer the values read from
analogue input 0

// Make sure you click on "Serial Monitor"
// after you upload
const int SENSOR = 0; // select the input pin for the

// sensor resistor

int val = 0; // variable to store the value coming

// from the sensor
void setup() {
Serial.begin(9600); // open the serial port to send

// data back to the computer at
// 9600 bits per second

void loop() {

66 Erweiterter Input und Output

http://www.makezine.com/getstartedarduino
http://www.makezine.com/getstartedarduino

val = analogRead(SENSOR); // read the value from
// the sensor

Serial.println(val); // print the value to
// the serial port

delay(100); // wait 100ms between
// each send

Wenn Sie den Code auf das Arduino-Board tbertragen haben, klicken Sie
auf die Schaltflache Serial Monitorin der Arduino-IDE (die letzte Schalt-
flache in der Tool-Leiste). Sie sehen dann die Zahlen an den unteren Rand
des Fensters wandern. Nun kann jede Software, die vom seriellen An-
schluss auslesen kann, auch mit Arduino kommunizieren. Es gibt viele
Programmiersprachen, mit denen Sie Programme auf lhrem Computer
schreiben kdnnen, die mit dem seriellen Anschluss kommunizieren kénnen.
Processing (http://www.processing.org) ist eine groartige Erganzung zu
Arduino, weil die Sprachen und die IDEs sehr &hnlich sind.

Der Umgang mit groBBeren Lasten

Jeder der Pins des Arduino-Boards kann verwendet werden, um Bauteile zu
betreiben, die bis zu 20 Milliampere verbrauchen: Das ist eine sehr geringe
Strommenge, die gerade ausreicht, um eine LED zu betreiben. Wenn Sie
z.B. einen Motor betreiben mochten, wird der Pin sofort seine Arbeit
einstellen und moglicherweise den gesamten Prozessor durchbrennen. Um
also groBere Lasten wie Motoren oder Glihlampen zu betreiben, mussen
wir auf eine externe Komponente zurtickgreifen, die solche Bauteile ein-
oder ausschalten kann und von einem Arduino-Pin betrieben wird. Ein
solches Gerat ist der sogenannte MOSFET-Transistor — ignorieren Sie den
merkwtrdigen Namen einfach. Es handelt sich hierbei um einen elektro-
nischen Schalter, der betrieben werden kann, indem einfach eine Span-
nung an einen seiner drei Pins angelegt wird. Diese Pins werden zusammen
als Gate bezeichnet. Dieser Transistor funktioniert ahnlich wie unser Licht-
schalter zu Hause. Die Fingerbewegung, mit der wir das Licht ein- und
ausschalten, ist allerdings durch einen Pin auf dem Arduino-Board ersetzt,
der elektrische Spannung an das Gate des MOSFET sendet.

Erweiterter Input und Output 67

http://www.processing.org

Hinweis: MOSFET steht fiir Metal Oxide Semiconductor Field Effect
Transistor. Es handelt sich um einen speziellen Transistortyp, der ba-
sierend auf dem Feldeffektprinzip funktioniert. Das heif3t, dass Elektri-
zitat durch einen Bereich aus Halbleitermaterial (zwischen den Drain-
und den Source-Pins) flieBt, wenn Spannung am Gate-Pin anliegt. Da der
Gate-Pin durch eine Metalloxidschicht von den anderen isoliert ist, flie3t
kein Strom vom Arduino-Board in den MOSFET, wodurch dieser sich
sehr einfach als Schnittstelle nutzen lasst. Diese Art von Transistor ist
ideal, um gréBere Lasten in hoher Frequenz ein- oder auszuschalten.

In Abbildung 5-7 ist dargestellt, wie Sie einen MOSFET wie den IRF520
nutzen kdénnen, um einen kleinen Motor eines Ventilators an- oder aus-
zuschalten. Sie sehen auBRerdem, dass der Motor seine Energiezufuhr von
dem 9-V-Anschluss des Arduino-Boards bezieht. Dies ist ein weiterer Vor-
teil des MOSFET: Er ermoglicht das Betreiben von Geraten, deren Energie-
zufuhr sich von der von Arduino genutzten unterscheidet. Weil der MOS-
FET an Pin 9 angeschlossen ist, kdnnen wir auBerdem analogWrite()
verwenden, um die Motorgeschwindigkeit mittels PWM zu steuern. Um den
Schaltkreis nachzubauen, benoétigen Sie einen IRF520 MOSFET
(bit.ly/ArduinoStorelRF520) und eine IN4007-Diode (bit.ly/Arduino-
StorelN4007). Wenn der Motor wahrend des Uploads ungewollt anspringt,
platzieren Sie einen 10-K-Widerstand zwischen Pin 9 und den GND-Pin.

Komplexe Sensoren

Wir definieren komplexe Sensoren als Sensoren, die solche Informationen
produzieren, deren Nutzung ein wenig mehr erfordert als den Einsatz einer
digitalRead()- oder analogRead()-Funktion. Es handelt sich tblicherweise
um kleine Schaltkreise, die einen kleinen Mikrocontroller enthalten, der die
Informationen vorverarbeitet. Einige dieser komplexen Sensoren enthalten
Ultraschall-Ranger, Infrarot-Ranger und Beschleunigungsmesser. Bei-
spiele fur ihre Verwendung finden Sie auf unserer Webseite im Abschnitt
Tutorials (http://www.arduino.cc/en/Tutorial/HomePage).

Im Buch Making Things Talk — Die Welt horen, sehen, fihlen von Tom Igoe

(erschienen bei O'Reilly, ISBN 978-3-86899-162-8) werden diese und an-
dere komplexe Sensoren ausfihrlich erlautert.

68 Erweiterter Input und Output

http://www.arduino.cc/en/Tutorial/HomePage

EUN O AN
COLL LY
SRR LT
Chue s wway PO

LNANEA N\t AVAUAVAUAVAVAVAVA AN
AT T AL L Y
RELENEY— e e s mtnaay

Abbildung 5-7.
Ein Motor-Schaltkreis fir Arduino

Erweiterter Input und Output 69

6/Kommunikation
mit der Cloud

In den vorangegangenen Kapiteln haben Sie die Grundlagen von Arduino
und die grundlegenden zur Verfligung stehenden Bausteine kennengelernt.
Ich moéchte hier noch einmal die Bestandteile das Arduino-Alphabets auf-
listen:

Digitaler Output

Wir verwenden ihn zur Steuerung einer LED, aber mit einem entsprechen-
den Schaltkreis lassen sich hiertiber auch Motoren steuern, Sounds erzeu-
gen und viele weitere Dinge umsetzen.

Analoger Output

Er bietet uns die Moglichkeit, die Helligkeit einer LED zu steuern, anstatt sie
nur ein- oder auszuschalten. Wir konnen hiermit sogar die Geschwindigkeit
eines Motors steuern.

Digitaler Input
Dieser ermoglicht es uns, den Zustand einfacher Sensoren wie Drucktaster
oder Neigungsschalter auszulesen.

Analoger Input

Wir kdnnen Signale von Sensoren auslesen, die kontinuierlich Daten sen-
den, die nicht einfach ,Ein" oder , Aus” bedeuten, z.B. solche von einem
Potentiometer oder einem Lichtsensor.

Serielle Kommunikation

Dies ermoglicht es uns, mit einem Computer zu kommunizieren, Daten mit
diesem auszutauschen oder einfach zu beobachten, was mit dem Sketch
geschieht, der auf dem Arduino-Board ausgefuhrt wird.

In diesem Kapitel werden Sie erfahren, wie wir eine funktionierende An-
wendung zusammenbauen, wobei wir die in den vorherigen Kapiteln ge-
wonnenen Kenntnisse einflieBen lassen. In diesem Kapitel sollte deutlich
werden, wie jedes einzelne Beispiel als Baustein fur ein komplexes Projekt
genutzt werden kann.

Kommunikation mit der Cloud 71

An dieser Stelle wird der Méchtegerndesigner in mir geweckt. Wir werden
eine Version des 21. Jahrhunderts einer Lampe meines italienischen Lieb-
lingsdesigners Joe Colombo bauen. Das Objekt, das wir bauen werden, ist
inspiriert von der Lampe , Aton” aus dem Jahr 1964.

Abbildung 6-1.
Die fertige Lampe

Die Lampe ist, wie Sie in Abbildung 6-1 sehen kénnen, eine einfache Kugel,
die auf einem Sockel sitzt, der ein Loch hat, um zu verhindern, dass die
Kugel von |Ihrem Schreibtisch rollt. Durch dieses Design kann die Lampe in
verschiedene Richtungen ausgerichtet werden.

Hinsichtlich der Funktionalitat méchten wir ein Gerat bauen, das mit dem
Internet verbunden werden kann, die aktuelle Liste der Artikel im Make-
Blog (blog.makezine.com) abruft und zahlt, wie oft die Worter ,,peace”,
Jlove” und ,Arduino” vorkommen. Mit diesen Werten mdchten wir dann
eine Farbe erzeugen, die von der Lampe wiedergegeben wird. Die Lampe

72 Kommunikation mit der Cloud

selbst verfugt Uber einen Drucktaster zum Ein- und Ausschalten und einen
Lichtsensor fur eine automatische Aktivierung.

Planung

Schauen wir uns nun die Umsetzung sowie Bauteile und Komponenten an,
die dazu erforderlich sind. Zuallererst bendétigen wir Arduino, um uns mit
dem Internet zu verbinden. Da Arduino nur Uber einen USB-Anschlusss
verfugt, kdnnen wir keinen direkten Anschluss zum Internet herstellen,
daher mussen wir uns eine entsprechende Uberbriickung einfallen lassen.
Normalerweise wird in einem solchen Fall eine Anwendung auf dem Com-
puter ausgefuhrt, die sich mit dem Internet verbindet, die Daten verarbeitet
und Arduino einige einfache, herausgefilterte Informationen sendet.

Das Arduino-Board ist ein einfacher Computer mit einem kleinen Speicher;
das Verarbeiten von groBen Dateien ist also schwierig, und wenn eine
Verbindung zu einem RSS-Feed hergestellt wird, erhalten wir eine sehr
umfangreiche XML-Datei, die sehr viel RAM erfordert. Wir werden daher
mittels Processing ein Proxy-Programm implementieren, um die XML-Da-
tei zu vereinfachen.

Processing

Processing war der Ursprung von Arduino. Wir lieben diese Sprache und
nutzen sie, um Einsteigern das Programmieren beizubringen und um
schonen Code zu schreiben. Processing und Arduino bilden eine perfekte
Kombination. Ein weiterer Vorteil besteht darin, dass Processing als Open-
Source zur Verfugung steht und auf allen groBReren Plattformen verwendet
werden kann (Mac, Linux und Windows). Es lassen sich hiermit auch
eigenstandige Anwendungen erzeugen, die auf diesen Plattformen aus-
gefuhrt werden kédnnen. DarUber hinaus gibt es eine lebhafte und hilfreiche
Processing-Community und Sie finden Tausende von fertigen Beispielpro-
grammen.

Das Proxy-Programm erledigt folgende Aufgaben: Es l1adt den RSS-Feed
unter makezine.com herunter und extrahiert alle Worter aus der resultie-
renden XML-Datei. Dann durchlauft es alle Wérter und zahlt die Vorkom-
men von ,peace”, ,love” und , Arduino” im Text. Mit diesen drei Zahlen
berechnen wir den Farbwert und senden ihn an Arduino. Das Board liefert
die vom Sensor gemessene Lichtmenge zurtck, die dann auf dem Compu-
terbildschirm angezeigt wird.

Kommunikation mit der Cloud 73

Auf der Hardwareseite kombinieren wir die Beispiele Drucktaster, Licht-
sensor und LED-Steuerung mittels PWM (mal 3!) und serieller Kommuni-
kation.

Weil es sich bei Arduino um ein einfaches Gerat handelt, mussen wir die
Farben auf einfache Weise kodieren. Wir nutzen dabei den Standard, nach
dem Farben in HTML dargestellt werden: # gefolgt von sechs hexadezima-
len Zahlen.

Hexadezimale Zahlen sind sehr praktisch, weil jede 8-Bit-Zahl in genau zwei
Zeichen gespeichert wird; bei Dezimalzahlen reicht die Bandbreite von
einem bis zu drei Zeichen. Vorhersagbarkeit macht den Code ebenfalls
einfacher: Wir warten, bis wir ein # sehen, dann lesen wir die sechs nach-
folgenden Zeichen in einen Puffer (eine Variable, die als temporarer Auf-
bewahrungsort von Daten dient) ein. AnschlieBend wandeln wir jede der
Gruppen, die aus zwei Zeichen bestehen, in ein Byte um, das die Helligkeit
einer der drei LEDs reprasentiert.

Der Code

Es werden zwei Sketches ausgefuhrt: ein Processing -Sketch und ein
Arduino-Sketch. Im Folgenden sehen Sie den Code fur den Processing-
Sketch; Sie kénnen ihn unter http://www.makezine.com/getstarted
arduino herunterladen.

// Beispiel 6-1: Arduino networked lamp
// parts of the code are inspired

// by ablogby Tod E. Kurt (todbot.com)
import processing.serial.*;

String feed = "http://blog.makezine.com/index.xml";

int interval = 10; // retrieve feed every 60 seconds;

int lastTime; // the last time we fetched the content
int love =0;
int peace =0;

int arduino = 0;

int light = 0; // light level measured by the lamp

74 Kommunikation mit der Cloud

http://www.makezine.com/getstarted­nohyp;arduino
http://www.makezine.com/getstartedarduino
http://www.makezine.com/getstartedarduino

Serial port;
color c;

String cs;

String buffer = ""; // Accumulates characters coming from Arduino

PFont font;

void setup() {
size(640,480);
frameRate(10); // we don't need fast updates

font = loadFont("HelveticaNeue-Bold-32.vlw");
fill(255);
textFont(font, 32);

// IMPORTANT NOTE:

// The first serial port retrieved by Serial.list()

// should be your Arduino. If not, uncomment the next

// line by deleting the // before it, and re-run the

// sketch to see a list of serial ports. Then, change

// the 0 in between [and] to the number of the port

// that your Arduino is connected to.

//println(Serial.list());

String arduinoPort = Serial.list()[0];

port = new Serial(this, arduinoPort, 9600); // connect to Arduino

lastTime = 0;
fetchData();

void draw() {
background(c);
int n = (interval - ((millis()-lastTime)/1000));

// Build a colour based on the 3 values
c = color(peace, love, arduino);

cs = "#" + hex(c,6); // Prepare a string to be sent to Arduino

text("Arduino Networked Lamp", 10,40);
text("Reading feed:", 10, 100);
text(feed, 10, 140);

Kommunikation mit der Cloud

75

text ("Next update in "+ n + " seconds",10,450);
text ("peace" ,10,200);

text(" " + peace, 130, 200);

rect(200,172, peace, 28);

text("love ",10,240);
text(" " + love, 130, 240);
rect (200,212, love, 28);

text("arduino ",10,280);
text(" " + arduino, 130, 280);
rect (200,252, arduino, 28);

// write the colour string to the screen
text("sending", 10, 340);
text(cs, 200,340);

text("light level", 10, 380);
rect(200, 352,1ight/10.23,28); // this turns 1023 into 100

if (n<=0) {
fetchData();
lastTime = millis();

port.write(cs); // send data to Arduino

if (port.available() > 0) { // check if there is data waiting
int inByte = port.read(); // read one byte
if (inByte != 10) { // if byte is not newline
buffer = buffer + char(inByte); // just add it to the buffer
}

else {

// newline reached, let's process the data
if (buffer.length() > 1) { // make sure there is enough data

// chop off the last character, it's a carriage return
// (a carriage return is the character at the end of a
// line of text)

buffer = buffer.substring(0,buffer.length() -1);

76 Kommunikation mit der Cloud

// turn the buffer from string into an integer number
light = int(buffer);

// clean the buffer for the next read cycle
buffer = "";

// We're likely falling behind in taking readings
// from Arduino. So let's clear the backlog of

// incoming sensor readings so the next reading is
// up-to-date.

port.clear();

void fetchData() {
// we use these strings to parse the feed
String data;
String chunk;

// zero the counters

love =0;

peace =0;

arduino = 0;

try {
URL url = new URL(feed); // An object to represent the URL
// prepare a connection
URLConnection conn = url.openConnection();

conn.connect(); // now connect to the Website

// this is a bit of virtual plumbing as we connect
// the data coming from the connection to a buffered
// reader that reads the data one line at a time.
BufferedReader in = new
BufferedReader (new InputStreamReader(conn.getInputStream()));

// read each line from the feed
while ((data = in.readLine()) != null) {

StringTokenizer st =
new StringTokenizer(data,"\"<>,.()[] ");// break it down

Kommunikation mit der Cloud

77

while (st.hasMoreTokens()) {
// each chunk of data is made lowercase
chunk= st.nextToken().toLowerCase() ;

if (chunk.index0f("love") >= 0) // found "love"?
love++; // increment love by 1

if (chunk.indexOf("peace") >= 0) // found "peace"?
peace++; // increment peace by 1

if (chunk.indexOf("arduino") >= 0) // found "arduino"?

arduino++; // increment arduino by 1

// Set 64 to be the maximum number of references we care about.
if (peace > 64) peace = 64;

if (love > 64) love = 64;

if (arduino > 64) arduino = 64;

peace = peace * 4; // multiply by 4 so that the max is 255,

love = love * 4; // which comes in handy when building a

arduino = arduino * 4; // colour that is made of 4 bytes (ARGB)
}

catch (Exception ex) { // If there was an error, stop the sketch
ex.printStackTrace();
System.out.println("ERROR: "+ex.getMessage());

}

Zwei Dinge gilt es noch zu tun, bevor der Processing-Sketch einwandfrei
lauft. Zunachst muss Processing angewiesen werden, die Schriftart zu
erzeugen, die wir fur den Sketch verwenden. Dazu mussen Sie den Sketch
zunachst erstellen und speichern. Klicken Sie dann bei ge6ffnetem Sketch
auf das Tools-Menu von Processing und dann auf Create Font. Wahlen Sie
die Schrift mit dem Namen HelveticaNeue-Bold aus, und geben Sie als
SchriftgroBe den Wert 32 an. Klicken Sie anschlieBend auf OK.

Als zweiten Schritt mUssen Sie bestéatigen, dass Arduino den korrekten

seriellen Anschluss fur die Kommunikation mit Arduino verwendet. Dazu
mussen Sie zunachst den Arduino-Schaltkreis zusammenbauen und den
Arduino-Sketch hochladen. Auf den meisten Systemen wird der Proces-
sing-Sketch einwandfrei laufen. Wenn allerdings auf dem Arduino-Board

78 Kommunikation mit der Cloud

nichts geschieht und auch keine Informationen vom Lichtsensor auf dem
Bildschirm angezeigt werden, lesen Sie sich den Kommentar unter der
Uberschrift ,IMPORTANT NOTE" im Processing-Sketch durch und folgen
Sie den betreffenden Anweisungen.

Hier nun der Arduino-Sketch (er ist auch unter http://www.makezi-
ne.com/getstartedarduino verfigbar):

// Beispiel 6-2: Arduino Networked Lamp

const int SENSOR = 0;
const int R LED = 9;

const int G LED = 10;
const int B LED = 11;
const int BUTTON = 12;

int val = 0; // variable to store the value coming from the sensor

int btn = LOW;

int old btn = LOW;
int state = 0;
char buffer[7] ;

int pointer = 0;

byte inByte = 0;

byte r = 0;
byte g = 0;
byte b = 0;

void setup() {
Serial.begin(9600); // open the serial port
pinMode (BUTTON, INPUT);

void loop() {
val = analogRead(SENSOR); // read the value from the sensor
Serial.println(val); // print the value to
// the serial port

if (Serial.available() >0) {

Kommunikation mit der Cloud 79

http://www.makezine.com/getstartedarduino
http://www.makezine.com/getstartedarduino

80

// read the incoming byte:

inByte = Serial.read();

// If the marker's found, next 6 characters are the colour
if (inByte == '#') {

while (pointer < 6) { // accumulate 6 chars
buffer[pointer] = Serial.read(); // store in the buffer

pointer++; // move the pointer forward by 1

// now we have the 3 numbers stored as hex numbers
// we need to decode them into 3 bytes r, g and b

r = hex2dec(buffer[1]) + hex2dec(buffer[0]) * 16;
g = hex2dec(buffer[3]) + hex2dec(buffer[2]) * 16;
b = hex2dec(buffer[5]) + hex2dec(buffer[4]) * 16;

pointer = 0; // reset the pointer so we can reuse the buffer

btn = digitalRead(BUTTON); // read input value and store it

// Check if there was a transition
if ((btn == HIGH) && (old btn == LOW)){
state = 1 - state;

old btn = btn; // val is now old, let's store it
if (state == 1) { // if the lamp is on
analogWrite(R LED, r); // turn the leds on
analogWrite(G_LED, g); // at the colour
analogWrite(B_LED, b); // sent by the computer
} else {
analogWrite(R_LED, 0); // otherwise turn off

analogWrite(G_LED, 0);
analogWrite(B_LED, 0);

Kommunikation mit der Cloud

delay(100); // wait 100ms between each send
}

int hex2dec(byte c) { // converts one HEX character into a number
if (c>= '0' & c <= '9") {
return c - '0"';
} else if (c >= 'A' & c <= 'F') {
return c - 'A' + 10;

Das Zusammenbauen des Schaltkreises

In Abbildung 6-2 ist dargestellt, wie der Schaltkreis zusammenzubauen ist.
Bei allen im Diagramm gezeigten und verwendeten Widerstédnden handelt
es sich um 10K-Widerstande, obwohl Sie bei den Widerstanden fur die
LEDs auch mit geringeren Werten arbeiten kénnen.

Von dem PWM-Beispiel in Kapitel 5 wissen Sie, dass LEDs gepolt sind. In
unserem Schaltkreis hier sollte der lange Pin (positiv) nach rechts und der
kurze Pin (negativ) nach links zeigen. (Bei den meisten LEDs ist die
negative Seite abgeflacht, wie auch in der Abbildung zu sehen ist.)

Kommunikation mit der Cloud 81

N

44 pregoaon

[EILTLTY
Al
“ nNY T o
quage® o

AREF [0
BNO |G

J

08

-
i

o

AQ

ol AL
n| a2
ol h3
o) A+

7 g
g

DiReSET
L] B

C

| eno
0] eno
p| vin
0} As,

Abbildung 6-2.
Die "Arduino Networked Lamp" -Schaltung

Bauen Sie die Schaltung wie dargestellt nach und verwenden Sie dabei eine
rote, eine griine und eine blaue LED. Laden Sie die Sketches in Arduino und
Processing und fuhren Sie sie dann aus. Falls Probleme auftreten, schlagen
Sie im Kapitel 7 nach.

Nun wollen wir die Konstruktion vervollstandigen, indem wir die Steck-
platine in einer Glaskugel platzieren. Die preiswerteste Moglichkeit ist dabei
die, bei IKEA einfach eine Tischlampe vom Typ Fado zu kaufen. Sie kostet
zurzeit etwa 19,99 US-Dollar bzw. 14,99/11,99 Euro (ahh, the luxury of
being European).

Anstelle von drei separaten LEDs kdnnen Sie auch eine einzelne RGB-LED
verwenden, die Uber vier Anschltsse verflgt. Sie lasst sich auf dieselbe
Weise anschlieen wie die LEDs aus Abbildung 6-2, mit einem Unterschied:
Anstelle von drei separaten Verbindungen zum Masse-Pin auf dem Ardui-

82 Kommunikation mit der Cloud

no-Board gibt es nur einen einzigen Anschluss zur Masse (der als gemein-
same Kathode bezeichnet wird).

Im Arduino-Store wird eine RGB-LED mit vier Anschlussen recht preis-
gunstig vertrieben (bit.ly/ArduinoStoreRGBLed). Anders als bei den se-
paraten einfarbigen LEDs ist der langste Anschluss der RGB-LED der, der
zur Masse fuhrt. Die anderen drei werden mit Pin 9, 10 und 11 des Arduino-
Boards verbunden (mit jeweils einem Widerstand zwischen den AnschlUs-
sen und den Pins, genau wie bei den separaten roten, griinen und blauen
LEDs).

So funktioniert das Zusammenbauen

Packen Sie die Lampe aus und entfernen Sie das Kabel, das in den Sockel
der Lampe fuhrt. Sie werden sie nicht mehr an die Steckdose anschlieRen.

Befestigen Sie das Arduino-Board auf einer Steckplatine und kleben Sie die
Platine mit HeiBkleber auf der Ruckseite der Lampe fest.

Loten Sie langere Drahte an die RGB-LED und kleben Sie sie an die Stelle,

an der sich normalerweise die Gluhbirne befindet. Verbinden Sie die Drahte
der LED mit dem Breadboard (an der Stelle, an der sie sich befanden, bevor
Sie sie entfernt haben). Denken Sie daran, dass Sie nur eine Verbindung zur
Masse bendétigen, wenn Sie eine RGB-LED mit vier Anschliissen verwenden.

Suchen Sie entweder ein hubsches Holzstlck mit einem Loch in der Mitte,
das als Sockel fur die Kugel dienen kann oder schneiden Sie einfach den
oberen Teil des Pappkartons, in dem die Lampe geliefert wurde, so zurecht,
dass er eine Hohe von etwa 5 cm hat. Schneiden Sie dann ein Loch mit
einem solchen Durchmesser aus, dass die Lampe gehalten wird. Verstar-
ken Sie dann den Karton, indem Sie an den Innenkanten HeiB3leim auf-
tragen, der den Sockel stabiler macht.

Platzieren Sie die Kugel auf dem Sockel, fiihren Sie das USB-Kabel an der
Oberseite heraus und schlieBen es es an lhren Computer an.

Starten Sie lhren Processing-Code, drticken Sie den Ein/Aus-Schalter und
sehen Sie zu, wie die Lampe zum Leben erwacht.

Als kleine Ubung kénnen Sie einmal Code hinzufiigen, mit dem die Lampe

angeschaltet wird, wenn der Raum dunkel wird. Hier einige weitere Mog-
lichkeiten:

Kommunikation mit der Cloud 83

) Bauen Sie Neigungssensoren ein, um die Lampe durch Rotation in
unterschiedliche Richtung ein- oder auszuschalten.

» Fugen Sie einen kleinen PIR-Sensor hinzu um festzustellen, ob jemand
in der Nahe ist und um die Lampe auszuschalten, wenn niemand wahr-

genommen wird.

» Erzeugen Sie verschiedene Modi, sodass Sie die Farbe manuell steuern
oder mehrere Farben tberblenden konnen.

Denken Sie sich verschiedene Projekte aus, experimentieren Sie und haben
Sie Spaf3!

84 Kommunikation mit der Cloud

7/Troubleshooting

Es wird bei lhren Experimenten immer der Moment kommen, an dem
nichts funktioniert und Sie herausfinden mussen, wie sich der Fehler
beheben lasst. Troubleshooting und Debugging sind historische Diszipli-
nen, bei denen ein paar einfache Regeln gelten, die meisten Resultate
werden aber einfach durch viel Arbeit erzielt.

Je mehr Sie mit Elektronik und Arduino arbeiten, desto mehr werden Sie
lernen und desto groBer wird lhr Erfahrungsschatz, wodurch der Prozess
der Fehlerbehebung immer weniger zermirbend wird. Lassen Sie sich
durch die Probleme, die auftreten, nicht entmutigen — alles ist einfacher,
als es am Anfang aussieht.

Da sich jedes Arduino-basierte Projekt aus Hardware und Software zu-
sammensetzt, gibt es immer mehrere Stellen, an denen Sie nachschauen
mussen, ob etwas nicht richtig funktioniert. Wenn Sie einen Fehler suchen,
sollten Sie sich an drei Richtlinen orientieren:

Verstandnis

Versuchen Sie, so weit wie mdglich zu verstehen, wie die Bauteile, die Sie
verwenden, funktionieren und welchen Beitrag sie fur das fertige Projekt
leisten. Dieser Ansatz ermoglicht es Ihnen, Techniken flr das separate
Testen jeder einzelnen Komponente zu entwickeln.

Vereinfachung und Segmentierung

Von den alten Rdmern stammt der Ausspruch Divide et impera, , Teile und
herrsche!* Spalten Sie Ihr Projekt (mental) in seine Komponenten auf,
indem Sie Ihr Wissen anwenden und finden Sie heraus, wo die Zustandig-
keit jeder Komponente beginnt und wo sie endet.

AusschlieBen und Sicherstellen

Testen Sie bei der Fehlersuche jede Komponente einzeln, sodass Sie
absolut sicher sein kénnen, dass jede fur sich genommen einwandfrei
funktioniert. Dadurch werden Sie schrittweise eine Sicherheit erlangen,
welche Komponenten ihren Job erledigen und bei welchen Zweifel beste-
hen.

Debugging wird der Prozess genannt, der sich auf die Software bezieht. Der
Legende nach wurde er erstmals in den 1940ern von Grace Hopper ver-
wendet, als Computer noch groéBtenteils elektromechanisch waren und ein

Troubleshooting 85

Computer seine Arbeit einstellte, weil wirkliche Insekten (engl. bugs) in die
Mechanik eingedrungen waren.

Viele der heutigen ,Bugs" sind nicht mehr physikalischer Natur. Sie sind
virtuell und unsichtbar, jedenfalls teilweise. Daher ist manchmal ein lang-
wieriger und langweiliger Prozess erforderlich, um sie ausfindig zu machen.

Testen des Boards

Nehmen wir einmal an, dass unser erstes Beispiel der blinkenden LED nicht
funktioniert. Ware das nicht ein wenig deprimierend? Wir wollen nun
herausfinden, was in einem solchen Fall zu tun ware.

Bevor Sie mit dem Projekt hadern, sollten Sie sich wie ein Pilot, der vor dem
Start eine Checkliste durchgeht, um die Flugttchtigkeit des Flugzeugs
sicherzustellen, zunachst vergewissern, dass einige Dinge in Ordnung sind:

SchlieBen Sie |hr Arduino-Board an einen USB-Anschluss lhres Computers
an.

) Stellen Sie sicher, dass der Computer eingeschaltet ist (ich weiB, das
klingt dumm, aber hier lag schon des Ofteren ein vermeintlicher Fehler
begriindet). Wenn sich das grune Licht einschaltet, das mit PWR ge-
kennzeichnet ist, heiBt das, dass der Computer das Board mit Strom
versorgt. Ist das Licht sehr schwach, dann stimmt etwas nicht mit der
Stromversorgung: Versuchen Sie es dann mit einem anderen USB-Ka-
bel und inspizieren Sie den USB-Anschluss des Computers und die
USB-Buchse des Arduino-Boards um sicherzustellen, dass sie nicht
beschadigt sind. Wenn alles nichts hilft, verwenden Sie einen anderen
USB-Anschluss lhres Rechners oder gleich einen anderen Computer.

» Bei einem brandneuen Computer wird die gelbe LED mit der Bezeich-
nung L auf eine etwas nervése Weise blinken. Dies ist das von Hause aus
enthaltene Testprogramm, mit dem das Board getestet wird.

)» Wenn Sie eine externe Stromversorgung nutzen und ein altes Arduino-
Board (Extreme, NG oder Diecimila) verwenden, vergewissern Sie sich,
dass der Stecker eingesteckt und die Steckbrticke mit der Bezeichnung
SV1die zwei Pins verbindet, die am nachsten am Anschluss far die
externe Stromversorgung liegen.

86 Troubleshooting

Hinweis: Wenn es Probleme mit anderen Sketches gibt und Sie sicher-
stellen miissen, dass das Board funktioniert, 6ffnen Sie das erste
Beispiel 4-1 in der Arduino-IDE und laden Sie es auf das Board. Die
Board-eigene LED sollte nun in einem regelmaBigen Muster blinken.

Wenn Sie alle diese Schritte erfolgreich absolviert haben, kdnnen Sie
darauf vertrauen, dass Arduino einwandfrei lauft.

Testen des Schaltkreises auf der Steckplatine

Verbinden Sie nun Ihr Board mit der Steckplatine, indem Sie mit einer
Steckbricke eine Verbindung vom 5-V-Anschluss und vom GND-Anschluss
zu der positiven und der negativen Leiterbahn auf der Steckplatine her-
stellen. Wenn die griine PWR-LED nicht mehr leuchtet, entfernen Sie sofort
die Verdrahtung. In diesem Falle gibt es einen gréBeren Fehler im Schalt-
kreis und Sie haben irgendwo einen Kurzschluss verursacht. lhr Board
bezieht dann zu viel Strom und die Energieversorgung wird abgeschnitten,
um das Board zu schitzen.

Hinweis: Wenn Sie nun Angst haben, lhren Computer zu beschadigen,
sollten Sie bedenken, dass bei vielen Computern der Stromschutz sehr
gut ist und auch rasch reagiert. AuBerdem ist das Arduino-Board mit
einer selbstriickstellenden Sicherung ausgestattet, einem speziellen
Bauteil fur den Stromschutz, das sich selbst zuriicksetzt, wenn der
Fehler behoben ist.

Wenn Sie schon fast paranoide Ziige aufweisen, kénnen Sie das Ardui-
no-Board auch immer (iber einen Self-Powered-USB-Hub anschlieRen.
In diesem Fall ware das Schlimmste, was passieren kann, dass der
USB-Hub zerstoért wird. Der Computer bliebe unversehrt.

Wenn Sie einen Kurzschluss verursachen, missen Sie mit dem Prozess
.Vereinfachung und Segmentierung” fortfahren. Uberpriifen Sie jeden
Sensor im Projekt und schlieBen Sie dabei immer nur einen an.

Beginnen Sie immer mit der Stromversorgung (die Verbindungen vom
5-V-Pin und vom GND-Pin). Schauen Sie sich alles an und vergewissere Sie
sich, dass jedes Bauteil im Schaltkreis korrekt mit Strom versorgt wird.

Das Arbeiten in Einzelschritten mit niemals mehr als einer Anderung zur
selben Zeit ist die goldene Regel bei der Behebung von Fehlern. Diese Regel
wurde mir von meinem Dozenten und allerersten Arbeitgeber, Maurizio

Troubleshooting 87

Pirola, eingehdmmert. Wenn es beim Debuggen nicht so gut lauft (und das
geschieht oft), erscheint mir sein Gesicht und sagt: ,Immer nur eine
Anderung zur selben Zeit ... immer nur eine Anderung zur selben Zeit.“ Und
das ist dann der Zeitpunkt, an dem ich das Problem tatsachlich behebe.
(Nur allzu schnell geht der Uberblick dartiber verloren, durch welche
Anderung das Problem tats&chlich behoben wurde. Deshalb ist es so
wichtig, immer nur eine Anderung zur selben Zeit durchzufuhren.) Mit jeder
Debugging-Erfahrung entsteht in Inrem Kopf Schritt ftr Schritt eine Wis-
sensbasis im Hinblick auf Fehler und moégliche Lésungen, und bevor Sie es
wissen, sind Sie schon ein Experte. Das verleiht Innen eine gewisse Souve-
ranitat, denn wenn sich dann ein Neuling dartber beklagt, dass etwas nicht
funktioniert, schauen Sie sich die Sache kurz an und haben im Bruchteil
einer Sekunde eine Losung parat.

Das Isolieren von Problemen

Eine weitere wichtige Regel ist das Finden eines zuverlassigen Weges zur
Problemreduzierung. Wenn Ihr Schaltkreis sich an scheinbar zufélligen
Zeitpunkten merkwurdig verhalt, mussen Sie sehr hart daran arbeiten, den
exakten Zeitpunkt herauszufinden, an dem das Problem auftritt, um den
Grund hierftr zu ermitteln. Dieser Prozess ermoglicht es Ihnen, Gber eine
mogliche Ursache nachzudenken. AuBerdem ist er hilfreich, wenn Sie
jemand anderem erklaren mochten, was eigentlich geschieht.

Eine moglichst prazise Beschreibung des Problems ist auch eine gute
Methode, eine Losung zu finden. Suchen Sie jemanden, dem Sie das
Problem erlautern kénnen — in vielen Fallen wird Ihnen eine Lésung ein-
fallen, sobald Sie das Problem artikulieren. Brian W. Kernighan und Rob
Pike, erzahlen in ihrem Buch The Practice of Programming (Addison-Wes-
ley, 1999) die Geschichte einer Universitat, an der ein Teddybar beim
Help-Desk aufbewahrt wurde. Studenten mit ratselhaften Bugs mussten
zuerst diesem Stofftier das Problem erlautern, bevor sie sich an einen
menschlichen Berater wenden durften.

Probleme mit der IDE

In einigen Fallen treten vielleicht Probleme bei der Verwendung der IDE auf,
insbesondere unter Windows.

Wenn lhnen nach einem Doppelklick auf das Arduino-Symbol eine Fehler-
meldung angezeigt wird oder einfach nichts geschieht, versuchen Sie als
alternative Methode, Arduino mit einem Doppelklick auf die Datei run.bat
zu starten.

88 Troubleshooting

Windows-Nutzer werden auf3erdem mit einem Problem konfrontiert, wenn
das Betriebssystem Arduino eine COM -Anschlussnummer COM10 oder
groBer zuweist. In diesem Fall kénnen Sie normalerweise Windows dazu
veranlassen, Arduino eine kleinere Anschlussnummer zuzuweisen. Offnen
Sie dazu den Device-Manager, indem Sie auf Start und dann mit der
rechten Maustaste auf Computer (Vista) oder My Computer (XP) klicken
und dann Properties auswahlen. Klicken Sie unter Windows XP dann auf
Hardware und wahlen Sie Device Manager aus. Unter Vista mussen Sie auf
Device Manager klicken (er wird in der Task-Liste in der linken Fenster-
halfte aufgelistet).

Suchen Sie in der Liste unter Ports (Com & LPT) die seriellen Geréate.
Wahlen Sie ein serielles Gerat aus, das Sie nicht nutzen und dem COM9
oder niedriger zugewiesen wurde. Wahlen Sie nach einem rechten Maus-
klick auf dieses Gerat Properties aus dem entsprechenden Meni aus.
Klicken Sie auf die Registerkarte Port Settings und dann auf Advanced.
Legen Sie fur die COM- Anschlussnummer COM10 oder hoher fest, klicken
Sie auf OK'und dann nochmal auf OK, um den Dialog Properties wieder zu
schlieBen.

Fthren Sie nun dieselbe Prozedur fur das USB Serial Port-Geréat durch, das
das Arduino-Board repréasentiert, mit einer Ausnahme: Weisen Sie ihm die
COM-Anschlussnummer (COM9 oder niedriger) zu, die Sie gerade freige-
geben haben.

Wenn diese Vorschage alle nicht helfen oder ein Problem auftritt, das hier
nicht beschrieben wurde, rufen Sie die Troubleshooting-Seite von Arduino
unter http://www.arduino.cc/en/Guide/Troubleshooting auf.

So finden Sie Onlinehilfe

Wenn Sie bei einem Problem festhangen, sollten Sie nicht tagelang alleine
herumbasteln — bitten Sie einfach um Hilfe. Einer der gréBten Vorteile bei
Arduino ist seine Community. Sie konnen jederzeit Hilfe finden, wenn Sie

das aufgetretene Problem gut beschreiben.

Gewohnen Sie sich an, per Cut-and-Paste Stichworte in einer Such-
maschine einzugeben und so zu erfahren, ob jemand einen entsprechen-
den Beitrag veroffentlicht hat. Wenn beispielseise die Arduino-IDE eine
merkwurdige Fehlermeldung anzeigt, kobnnen Sie sie einfach in die Google-
Suchmaschine kopieren und sich die Suchergebnisse anschauen. Das
funktioniert auch bei Ausschnitten aus Code, an dem Sie gerade arbeiten
und bei speziellen Funktionsnamen. Schauen Sie sich einfach um: Alles
wurde bereits erfunden und ist auf irgendeiner Webseite gespeichert.

Troubleshooting 89

http://www.arduino.cc/en/Guide/Troubleshooting

Fur weitere Nachforschungen kénnen Sie auch die Hauptwebseite von
Arduino http://www.arduino.cc besuchen und sich die FAQs unter
http://www.arduino.cc/en/Main/FAQ anschauen und dann zum Play-
ground (http://www.arduino.cc/playground) wechseln. Diese frei edi-
tierbare Wiki-Plattform kann von jedem Nutzer modifiziert werden, um
Dokumentation beizusteuern. Dies ist einer der gré3ten Vorteile der ge-
samten Open-Source-Philosophie. Personen steuern Dokumentation und
Beispiele von allem bei, was sich mit Arduino umsetzen lasst. Bevor Sie mit
einem Projekt beginnen, durchsuchen Sie zunachst den Playground, und
Sie werden sicherlich Codeabschnitte und Schaltdiagramme finden, auf
denen Sie aufbauen kénnen.

Wenn Sie tber all diese Wege immer noch keine Antwort erhalten haben,
besuchen Sie das Forum (http://www.arduino.cc/cgi-bin/
yabb2/YaBB.pl). Wenn Sie dort keine direkte Hilfe finden, kénnen Sie auch
eine entsprechende Frage posten. Wahlen Sie das richtige Board fur |hre
Frage aus: Es gibt verschiedene Bereiche fur Software- und Hardwarepro-
bleme und auBRerdem Foren in funf verschiedenen Sprachen. Posten Sie
bitte moglichst viele Informationen:

)» Welches Arduino-Board verwenden Sie?
» Unter welchem Betriebssystem fuhren Sie die Arduino-IDE aus?

) Fugen Sie eine allgemeine Beschreibung dessen an, was Sie zu tun
versuchen. Wenn Sie ungewdhnliche Bauteile verwenden, posten Sie
Links zu den entsprechenden Datenblattern.

Die Anzahl der Antworten, die Sie erhalten, hangt davon ab, wie gut Sie lhre
Frage formulieren.

Ihre Chancen steigen, wenn Sie folgende Dinge unter allen Umstanden
vermeiden (diese Richtlinien gelten fur alle Foren, nicht nur fr das von
Arduino):

» Das Schreiben der gesamten Nachricht in GROSSBUCHSTABEN. Das
nervt die Leute gewaltig und Sie outen sich sofort als Neuling (bei
Online-Communities wird das Schreiben in GroBbuchstaben als
Schreien aufgefasst).

)» Das Posten ein- und desselben Beitrags in verschiedenen Bereichen des
Forums.

90 Troubleshooting

http://www.arduino.cc
http://www.arduino.cc/en/Main/FAQ
http://www.arduino.cc/playground
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl

»

»

»

»

Das standige Posten nachfassender Kommentare wie ,Hey, warum
antwortet niemand?* oder, noch schlimmer, das nochmalige Senden
derselben Frage. Wenn Sie keine Antwort erhalten, schauen Sie sich Ihr
Posting noch einmal an. Wurde das Thema klar formuliert? War die
Beschreibung Ihres Problems verstandlich? Waren Sie freundlich?
Seien Sie immer nett.

Das Schreiben von Nachrichten wie ,Ich moéchte mit Arduino eine
Raumfahre bauen. Wie mache ich das?" Sie signalisieren damit, dass
andere die Arbeit fur Sie erledigen sollen, und dieser Ansatz ist flr einen
wirklichen Tuftler einfach nicht lustig. Es ist besser, eine spezifische
Frage zu einem Teil des Projekts zu stellen und die bereitgestellten
Informationen dann zu nutzen.

Eine Variation des vorherigen Punktes ist es, wenn durch die Frage
offensichtlich wird, dass die postende Person daftir bezahlt wird. Wenn
Sie eine spezifische Frage stellen, helfen Ihnen die Leute gerne. Wenn
sie aber Ihre Arbeit erledigen sollen (und Sie den betreffenden Lohn
nicht teilen), wird die Antwort wahrscheinlich nicht sehr nett ausfallen.

Das Posten von Nachrichten, die verdachtig nach Hausaufgaben aus-
sehen und mit denen das Forum gebeten wird, Ihre Arbeit fur Sie zu
erledigen. Professoren wie ich durchkdmmen das Netz und strafen
solche Studenten gandenlos ab.

Troubleshooting 91

Anhang A/
Die Steckplatine

Wenn Sie einen Schaltkreis ans Laufen bringen mochten, ist das mit vielen
Anderungen verbunden, bis alles wirklich funktioniert. Es handelt sich dabei
um einen sehr schnellen, sich wiederholenden Prozess, der irgendwie ein
elektronisches Pendant zum Schreiben von Sketches ist. Das Design ent-
wickelt sich unter lhren Handen, wahrend Sie verschiedene Kombinationen
ausprobieren. Um das bestmogliche Resultat zu erzielen, mussen Sie ein
System entwickeln, das es ermoglicht, Verbindungen zwischen Kom-
ponenten auf die schnellstmogliche, praktischste und am wenigsten de-
struktive Weise zu @&ndern. Durch diese Anforderungen ist das Léten klar
ausgeschlossen, weil es sehr zeitaufwendig ist und die Komponenten bei
jedem Erhitzen und Abkuhlen sehr beansprucht werden.

Die Antwort auf dieses Problem ist ein sehr praktisches Bauteil, das 6tfreie
Steckplatine genannt wird. Wie Sie in Abbildung A-1 sehen, handelt es sich
dabei um ein kleines Plastikbrett, das komplett gelocht ist, wobei jedes
Loch tber einen federgelagerten Anschluss verfugt. Wenn Sie den An-
schlusspin einer Komponente in eines der Locher stecken, wird eine elek-
trische Verbindung mit allen anderen Léchern hergestellt, die sich in
derselben vertikalen Spalte befinden. Jedes Loch weist einen Abstand von
2,54 mm zu den anderen Léchern auf.

Da bei den meisten Komponenten die Anschlussbeinchen (die von Geeks
als Pins bezeichnet werden) einen Standardabstand aufweisen, passen
Chips mit mehreren Beinchen gut. Nicht alle Kontakte auf dem Breadboard
sind gleich gestaltet — es gibt einige Unterschiede. Die oberen und die
unteren Reihen (die rot oder blau markiert und mit + oder — gekennzeich-
net sind) sind horizontal verbunden und dienen dazu, den Strom Uber die
Platine zu leiten. Wenn Sie also Strom oder Masse benatigen, kdnnen diese
sehr schnell mittels einer Steckbrticke (ein kurzes Drahtstick, mit dem
sich zwei Punkte auf der Platine verbinden lassen) bereitgestellt werden.
Als letzten Fakt mussen Sie Uber Steckplatinen wissen, dass sich in der
Mitte eine grofRRe Lucke befindet, die so grof3 ist wie ein kleiner Chip. Alle
vertikalen Lochreihen sind hier unterbrochen. Wenn Sie also einen Chip
anbringen, der Gber Pins auf beiden Seiten verfugt, wird bei diesen kein
Kurzschluss erzeugt. Das ist doch mal eine clevere Idee, oder?

Anhang A: Die Steckplatine 93

N
AN LN AR %% ________________ >
AT TS S LW

BN

T USROG

\
AN AKX \\\\T ANV VA WA
e

Abbildung A-1:
Die 16tfreie Steckplatine

94 Anhang A: Die Steckplatine

Anhang B/

Das Lesen von
Widerstanden und
Kondensatoren

Um elektronische Bauteile verwenden zu kénnen, missen Sie in der Lage
sein, sie zu identifizieren, was fur Neulinge eine gro3e Herausforderung
darstellen kann. Die meisten Widersténde, die in Laden erhaltlich sind,
haben einen zylindrischen Kérper, aus dem zwei Anschlussbeinchen he-
rausragen und der ringsherum merkwurdige farbige Markierungen auf-
weist. Als die ersten kommerziellen Widerstande hergestellt wurden, gab
es noch keine Moglichkeit, so kleine Nummern aufzudrucken, dass sie auf
den Koérper des Widerstands passten. Daher kamen clevere Ingenieure auf
die Idee, die Widerstandswerte in Form von farbigen Ringen darzustellen.

Heute mussen Neulinge daher lernen, wie diese Farben zu interpretieren
sind. Der Schlussel hierzu ist recht einfach: Generell gibt es vier Farbringe.
Jede Farbe steht fur eine Zahl. Einer der Ringe ist Gblicherweise goldfarben
und reprasentiert den Genauigkeitsgrad dieses Widerstands. Um die Ringe
in der richtigen Reihenfolge zu lesen, mussen Sie den Widerstand so halten,
dass sich der goldene (oder in einigen Fallen der silberne) Ring rechts
befindet. Schauen Sie sich dann die Farben an und ordnen Sie sie den
entsprechenden Zahlen zu. Die folgende Tabelle zeigt in Ubersichtlicher
Weise die Farben und den jeweils zugeordneten numerischen Wert.

Farbe Wert
Schwarz 0
Braun 1
Rot 2
Orange 3
Gelb 4
Griin 5
Blau 6
Violett 7

Anhang B: Das Lesen von Widerstdnden und Kondensatoren 95

Farbe Wert

Grau 8
Weil 9
Silber 10%
Gold 5%

Eine Markierung mit einem braunen, einem schwarzen, einem orangefar-
benen und einem goldenen Ring beispielsweise bedeutet 1 0 3 +5%. Das ist
doch recht einfach, oder? Nicht ganz, denn es gibt noch eine kleine Falle:
Der dritte Ring gibt die Anzahl der Nullen im Wert an. Daher handelt es sich
bei der Abfolge 1 0 3 um 1 O gefolgt von 3 Nullen, sodass wir hier im
Endeffekt einen Wert von 10.000 Ohm +5% haben. Elektronik-Geeks
verktrzen die Werte, indem sie sie in Kiloohm (ftr tausend Ohm) und
Megaohm (fur eine Million Ohm) angeben, so wird dann aus einem
10.000-Ohm-Widerstand in der Kurzform ein 10k-Widerstand und aus
10.000.000 werden 10M. Bitte beachten Sie dies, denn Ingenieure lieben
die Optimierung und Sie werden unter Umstanden in Schaltskizzen Werte
wie 4k7 finden, was nichts anderes als 4,7 Kiloohm oder 4700 Ohm
bedeutet.

Kondensatoren sind diesbezuglich ein wenig einfacher: Bei den fassférmi-
gen Kondensatoren (elektrolytische Kondensatoren) sind die Werte nor-
malerweise aufgedruckt. Der Wert eines Kondensators wird in Farad (F)
angegeben, doch die meisten Kondensatoren, die Sie finden, weisen einen
Wert in Mikrofarad (pF) auf. Wenn also ein Wert von 100 pF aufgedruckt ist,
handelt es sich um einen 100-Mikrofarad-Kondensator.

Bei vielen der scheibenformigen Kondensatoren (Keramikkondensatoren)
sind die Einheiten nicht angegeben. Es wird ein numerischer Code ange-
fuhrt, der aus drei Ziffern besteht und den Wert in Picofarad wiedergibt.
1.000.000 pF sind ein pF. Ahnlich wie beim Widerstand dient die dritte
Ziffer dazu, die Anzahl der Nullen anzugeben, die hinter den beiden ersten
Ziffern folgen, mit einem Unterschied: Wenn Sie die Ziffern 1-5 lesen,
handelt es sich dabei um die Anzahl an Nullen. Die Ziffern 6 und 7 werden
nicht verwendet, bei den Zahlen 8 und 9 wird in einer anderen Weise
verfahren. Wenn Sie eine 8 lesen, mussen Sie die Zahl, die sich aus den
ersten beiden Ziffern ergibt, mit 0,01 multiplizieren, bei einer 9 lautet der
Multiplikator O,1.

Wenn also ein Kondensator mit 104 beschriftet ist, handelt es sich dabei

um 100.000 pF oder 0,1 pF. Bei einem Kondensator mit der Beschriftung
229 sind es demnach 2,2 pF.

96 Anhang B: Das Lesen von Widerstdnden und Kondensatoren

Anhang C/
Kurzreferenz zu
Arduino

An dieser Stelle soll eine kurze Erlauterung der Standardanweisungen
erfolgen, die von der Arduino-Sprache unterstutzt werden.

Eine detaillierte Referenz steht unter arduino.cc/en/Reference/Home-
Page zur Verfligung.

STRUKTUR

Ein Arduino-Sketch wird in zwei Teilen ausgefuhrt:

void setup()
Hier wird der Initialisierungscode platziert — die Anweisungen, mit denen das
Setup des Boards vor dem Eintritt in die Hauptschleife des Sketch erfolgt.

void loop()

Hier ist der Hauptcode des Sketch untergebracht. Die Schleife enthalt
einen Satz an Anweisungen, die so lange wiederholt werden, bis das Board
ausgeschaltet wird.

SONDERZEICHEN

Arduino enthalt zahlreiche Sonderzeichern, um Codezeilen, Kommentare
und Codeblocke zu kennzeichnen.

; (Semikolon)

Jede Anweisung (Codezeile) wird mit einem Semikolon beendet. Duch
diese Syntax lasst sich der Code frei formatieren. Sie koénnen sogar zwei
Anweisungen in derselben Zeile platzieren, solange Sie sie nur durch ein
Semikolon voneinander trennen. (Allerdings ist dies der Lesbarkeit des
Codes nicht sehr zutraglich.)

Beispiel:
delay(100);

Anhang C: Kurzreferenz zu Arduino 97

{} (Geschweifte Klammern)

Diese werden verwendet, um Codebldcke zu kennzeichnen. Wenn Sie
beispielsweise Code fur die loop()-Funktion schreiben, muss dieser mit der
offnenden geschweiften Klammer eingeleitet und mit der schlieenden
geschweiften Klammer beendet werden.

Beispiel:
void loop() { Serial.println("ciao"); }

Kommentare

Diese Textabschnitte werden vom Arduino-Prozessor ignoriert, sind aber
sehr hilfreich, um fur Sie und andere Nutzer festzuhalten, was der Code tut.

Bei Arduino gibt es zwei Arten von Kommentaren:
// einzelne Zeile: dieser Text wird bis zum Ende der Zeile ignoriert
/* mehrere Zeilen:
Hier findet
ein ganzes Gedicht Platz
*/

KONSTANTEN

Arduino enthalt einen Satz vordefinierter Schlisselworter mit speziellen
Werten.

HIGH und LOW werden verwendet, um beispielsweise einen Arduino-Pin
ein- oder auszuschalten. Mit INPUT und OUTPUT wird definiert, ob es sich
bei einem Pin um einen Eingangs- oder einen Ausgangspin handeln soll.

Die Werte true und false zeigen genau das an, was schon der Name
vermuten lasst, nédmlich ob eine Bedingung oder ein Ausdruck wahr oder
falsch ist.

VARIABLEN

Variablen sind benannte Bereiche des Arduino-Speichers, in denen Daten
gespeichert werden kénnen, die sich im Sketch verwenden und auch
andern lassen. Wie der Name schon sagt, kénnen Variablen beliebig oft
geandert werden.

Weil Arduino ein sehr einfacher Prozessor ist, mtssen Sie bei der Varia-
blendeklaration auch den entsprechenden Typ angeben. Es ist also erfor-
derlich, dem Prozessor die GréBe des zu speichernden Wertes mitzuteilen.

98 Anhang C: Kurzreferenz zu Arduino

Hier die verfugbaren Datatypen:

boolean

Er kann einen von zwei Werten enthalten: wahr oder falsch.

char

Er enthélt ein einzelnes Zeichen, z.B. A. Wie jeder Computer speichert
Arduino dieses Zeichen als Zahl, auch wenn Text angezeigt wird. Wenn
char-Variablen verwendet werden, um Zahlen zu speichern, kénnen sie
Werte von —128 bis 127 enthalten.

Hinweis: Auf Computern stehen zwei gréBBere Zeichenséatze zur Ver-
fagung: ASCIl und UNICODE. ASCIl umfasst 127 Zeichen, die unter
anderem dazu verwendet werden, um Text zwischen seriellen Endgera-
ten und zeitlich verzahnten Computersystemen wie GroBrechnern oder
Minicomputern zu Gibertragen. UNICODE umfasst einen viel gréBeren
Satz an Werten und wird von modernen Computerbetriebssystemen
verwendet, um Zeichen in einer Vielzahl von Sprachen darzustellen.
Dennoch ist auch ASCII niitzlich beim Austauch von kurzen Informatio-
nen in Sprachen wie ltalienisch oder Englisch, bei denen das lateinische
Alphabet, arabische Zahlen und haufig verwendete Schreibmaschinen-
zeichen wie solche zur Interpunktion und dergleichen verwendet wer-
den.

byte

Dieser Datentyp enthalt eine Zahl zwischen O und 255. Wie bei chars wird
auch bei bytes nur ein Byte an Speicher verwendet.

int
Hier werden 2 Byte Speicher genutzt, um eine Zahl zwischen =32.168 und
32.167 darzustellen. Es ist der bei Arduino am haufigsten genutzte Daten-
typ.

unsigned_int

Wie bei int werden auch hier 2 Bytes verwendet, unsigned (vorzeichenlos)
bedeutet aber, dass keine negativen Zahlen gespeichert werden kénnen,
daher reicht der Wertebereich von O bis 65.535.

Anhang C: Kurzreferenz zu Arduino 99

long

Diese Variable ist doppelt so groB wie int und enthalt Werte von
—2.147.483.648 bis 2.147.483.647.

unsigned_long

Dies ist die vorzeichenlose Version von long mit einem Wertebereich von O
bis 4.294.967.295.

float

Hierbei handelt es sich um eine recht grof3e Variable, die FlieBkommawerte
(ein lustiger Ausdruck, um zu beschreiben, dass Zahlen mit einem Dezi-
malkomma gespeichert werden kénnen) enthalten kann. Solche Variablen
nutzen 4 Byte lhres wertvollen RAM, und die Funktionen, die mit ihnen
arbeiten kdnnen, verbrauchen ebenfalls viel Codespeicher. Sie sollten
floats daher sparsam verwenden.

double

Diese Variable speichert eine FlieBkommazahl mit doppelter Genauigkeit,
mit einem maximalen Wert von 1.7976931348623157 x 103°%. Wow, das ist
ein wirklich groBBer Wert!

string

Hierin wird ein Satz von ASCII-Zeichen beherbergt, mit denen Textinfor-
mationen gespeichert werden (wenn beispielsweise mittels einer Zeichen-
folge eine Nachricht tber den seriellen Anschluss gesendet oder auf einem
LCD-Display angezeigt werden soll). Zum Speichern wird dabei ein Byte ftr
jedes Zeichen in der Zeichenfolge verwendet, plus ein Nullzeichen, um
Arduino mitzuteilen, dass es sich um das Ende des Strings handelt.
Folgende Schreibweisen sind gleichbedeutend:

char stringl [] = "Arduino"; // 7 chars + 1 Null-char
char string2[8] = "Arduino"; // wie oben
array

Hierbei handelt es sich um eine Liste, auf die Uber einen Index zugegriffen
werden kann. Diese Variablen werden verwendet, um Wertetabellen zu
erstellen, auf die schnell zugegriffen werden kann. Wenn Sie beispielsweise
verschiedene Helligkeitsstufen speichern méchten, die zum Dimmen einer
LED verwendet werden sollen, kdnnten Sie sechs Variablen mit den Namen
lightO1, lightO2 usw. erzeugen. Besser ist aber die Verwendung einer ein-
zigen Variablen wie der folgenden:

int light[6] = {0, 20, 50, 75, 100};

100 Anhang C: Kurzreferenz zu Arduino

Das Wort array wird bei der Variablendeklaration nicht verwendet. Statt-
dessen kommen die Zeichen [] und {} zum Einsatz.

KONTROLLSTRUKTUREN

Arduino enthalt Schlisselworter fur das Steuern des Logikflusses Ihres
Sketch.

if...else

Mit dieser Struktur werden in Ihrem Programm Entscheidungen gefallt. An
ifmuss eine Frage anschlieen, die als Ausdruck, der in Klammern einge-
schlossen ist, angegeben wird. Wenn der Ausdruck wahr ist, wird alles
Nachfolgende ausgefiihrt. Wenn er falsch ist, wird mit dem nachsten
Codeblock fortgefahren. Es ist auch moglich, nur ifohne Angabe einer
Bedingung zu verwenden. else clause.

Beispiel:

if (val == 1) {
digitalWrite(LED,HIGH);
}

for

Bei dieser Struktur wird der Codeblock mit einer angegebenen Haufigkeit
wiederholt.

Beispiel:
for (int i =0; 1 <10; i++) {
Serial.print("ciao");

}

switch case

Die if-Anweisung ist mit einer Weggabelung vergleichbar. Die Kontroll-
struktur switch case hingegen dhnelt eher einem massiven Kreisel. Sie
ermoglicht dem Programm, eine Vielzahl von Richtungen einzuschlagen, in
Abhéngigkeit vom Wert einer Variablen. Diese Kontrollstruktur ist sehr
hilfreich, wenn es darum geht, lhren Code tbersichtlich zu halten, da sie
lange Listen von i--Anweisungen ersetzt.

Beispiel:

switch (sensorValue) {
case 23:

Anhang C: Kurzreferenz zu Arduino 101

digitalWrite(13,HIGH);

break;

case 46:

digitalWrite(12,HIGH);

break;

default: // wenn nichts zutrifft, wird dies ausgefihrt
digitalWrite(12,L0W);

digitalWrite(13,L0W);

}

while

Sie ahnelt der /f-Anweisung. Es wird ein Codeblock ausgefuhrt, solange eine
Bedingung wahr ist.

Beispiel:

// LED blinkt solange der Sensor-Wert kleiner 512
sensorValue = analogRead(1);

while (sensorValue < 512) {
digitalWrite(13,HIGH);

delay(100);

digitalWrite(13,HIGH);

delay(100);

sensorValue = analogRead(1);

}

do...while

Diese Struktur ahnelt der while-Anweisung, mit der Ausnahme, dass der
Code ausgefuhrt wird, bevor die Bedingung ausgewertet wird. Diese Struk-
tur wird verwendet, wenn der enthaltene Code mindestens einmal aus-
geftihrt werden soll, bevor die Bedingung gepruft wird.

Beispiel:

do {

digitalWrite(13,HIGH);

delay(100);

digitalWrite(13,HIGH);

delay(100); sensorValue = analogRead(1)
} while (sensorValue < 512);

102 Anhang C: Kurzreferenz zu Arduino

break

Bei dieser Anweisung wird eine Schleife verlassen und mit der Ausfiihrung
des Codes fortgefahren, der nach der Schleife folgt. Sie wird auch verwen-
det, um die verschiedenen Abschnitte einer switch case-Anweisung zu
separieren.

Beispiel:

// LED blinkt solange der Sensor-Wert kleiner 512

do {

// Schleife wird verlassen, wenn ein Taster gedriickt wurde
(digitalRead(7) == HIGH)

break;

digitalWrite(13,HIGH);

delay(100);

digitalWrite(13,L0W); delay(100);

sensorValue = analogRead(1);

} while (sensorValue < 512);

continue

Wenn diese Anweisung innerhalb einer Schleife verwendet wird, veranlasst
continue, dass der restliche enthaltene Code Gbersprungen und die Bedin-
gung erneut getestet wird.

Beispiel:

for (light = 0; light < 255; light++)

{

// Uberspringt Intensit&ten zwischen 140 und 200
if ((x > 140) && (x < 200))

continue;

analogWrite(PWMpin, light);

delay(10);

}

return

Bei dieser Anweisung wird die Ausfuhrung einer Funktion gestoppt und ein
entsprechender Wert zurtickgegeben. Sie konnen diese Struktur auch
verwenden, um einen Wert, der aus einer Funktion stammt, zurtckzulie-
fern.

Wenn Sie beispielsweise bei einer Funktion mit dem Namen computeTem-
perature() das Ergebnis an den Teil lhres Codes ausgeben méchten, tUber

den die Funktion aufgerufen wurde, wiirden Sie etwa Folgendes schreiben:

Anhang C: Kurzreferenz zu Arduino 103

int computeTemperature() {

int temperature = 0;

temperature = (analogRead(0) + 45) / 100;
return temperature;

}

ARITHMETIK UND FORMELN

Sie kénnen Arduino fur komplexe Berechnungen verwenden, indem Sie
eine spezielle Syntax verwenden. Die Zeichen + und — funktionieren so, wie
Sie es in der Schule gelernt haben, Multiplikation wird mit einem * und
Division mit einem / dargestellt.

Es gibt noch einen zusatzlichen Operator, der als Modulo (%) bezeichnet
wird und den Rest aus einer Division von Ganzzahlen zuruckliefert. Sie
kénnen beliebig viele Klammern nutzen, um Ausdricke zusammenzufas-
sen und zu schachteln. Im Gegensatz zu dem, was Sie moglicherweise in
der Schule gelernt haben, sind eckige und geschweifte Klammern fur
andere Zwecke reserviert (z.B. fur Array-Indizes und Blocke).

Beispiele:

a=2+2;

light = ((12 * sensorValue) - 5) / 2;
remainder = 3 % 2;

// liefert 1 zuriick

VERGLEICHSOPERATOREN

Zur Angabe von Bedingungen oder Prufungen fur if-, while- und for-Anwei-
sungen stehen folgende Operatoren zur Verfliigung:

== gleich
I= ungleich
kleiner als
groBer als
<= kleiner oder gleich
>= groBer oder gleich

BOOLESCHE OPERATOREN

Dieser Operator wird verwendet, wenn Sie mehrere Bedingungen verknup-
fen mochten. Wenn Sie beispielsweise Uberprifen méchten, ob der von

104 Anhang C: Kurzreferenz zu Arduino

einem Sensor zurtickgelieferte Wert zwsichen 5 und 10 liegt, wirden Sie
Folgendes schreiben:

if ((sensor =>5) && (sensor <=10))
Es gibt drei Operatoren: ,und”, durch && dargestellt, ,,oder", reprasentiert
durch ||, und schlieBlich ,nicht”, dargestellt durch !.

KOMBINIERTE OPERATOREN

Hierbei handelt es sich um spezielle Operatoren, die verwendet werden, um
den Code bei haufig durchgefthrten Operationen, wie z.B. das Hochzahlen
eines Wertes, moglichst kurz zu halten.

Um beispielsweise value um 1 zu inkrementieren, wirden Sie Folgendes
schreiben:

value = value +1;

Unter Verwendung eines kombinierten Operators wird daraus diese ver-
einfachte Version:

value++;

Inkrementieren und Dekrementieren (-- und ++)

Hiermit wird um den Wert 1 hoch- oder heruntergezahlt. Seien Sie aber
vorsichtig: Wenn Sie /++ schreiben, wird /um 1 inkrementiert und in Bezug
auf das Aquivalent von i1 ausgewertet. Bei ++/wird in Bezug auf den Wert
von jausgewertet und anschlieBend /inkrementiert. Dasselbe gilt fur ——.

=, *=und /=

Hierdurch lasst sich die Schreibweise fir bestimmte Ausdriicke verkirzen.
Die beiden folgenden Ausdrticke sind gleichbedeutend:

a=a+?5;
a+=5;

INPUT- UND OUTPUT-FUNKTIONEN

Arduino umfasst Funktionen fur die Handhabung von Input und Output. Sie
haben in diesem Buch bereits einige entsprechende Beispielprogramme
gesehen.

Anhang C: Kurzreferenz zu Arduino 105

pinMode(pin, mode)

Hiermit wird ein digitaler Pin neu definiert, sodass er dann als Eingangs-
oder Ausgangspin dient.

Beispiel:
pinMode(7,INPUT); // definiert Pin 7 als Input

digitalWrite(pin, value)

Hiermit wird ein digitaler Pin ein- oder ausgeschaltet. Pins mtssen mittels
pinMode explizit als Output definiert werden, bevor mit digita/Write irgend-
ein Effekt erzielt werden kann.

Beispiel:
digitalWrite(8,HIGH); // schaltet den digitalen Pin 8 ein

int digitalRead(pin)

Hiermit wird der Zustand eines Eingangspins ausgelesen. Dabei wird HIGH
zuruckgeliefert, wenn vom Pin eine Spannung festgestellt wurde, und LOW,
wenn keine Spannung anliegt.

Beispiel:
val = digitalRead(7); // liest Pin 7 in val ein

int analogRead(pin)

Diese Funktion liest die Spannung an einem analogen Pin aus und liefert
einen Wert zwischen O und 255 zurtick, der eine Spannung zwischen O und
5V reprasentiert.

Beispiel:
val = analogRead(0); // liest analogen Input O in val ein

analogWrite(pin, value)

Hiermit wird die PWM-Frequenz fur einen der Pins, die als PWM definiert
wurden, geandert. Dabei kann pin 11,10, 9,6,5 oder 3 sein. Die Variable
value kann Werte zwischen O und 255 enthalten, die eine Skala von O und 5
V fur die Spannung am Output-Pin reprasentieren.

Beispiel:
analogWrite(9,128); // Dimmt eine LED an Pin 9 auf 50%

106 Anhang C: Kurzreferenz zu Arduino

shiftOut(dataPin, clockPin, bitOrder, value)

Diese Funktion sendet Daten an ein Schieberegister, ein logisches Schalte-
werk, das verwendet wird, um die Anzahl der digitalen Outputs zu erwei-
tern. Dieses Protokoll nutzt einen Pin fur Daten und einen als Taktgeber.
Mit bitOrder wird die Reihenfolge der Abarbeitung (least significant bit
oder most significant bit) bestimmt und in value ist das zu sendende Byte
gespeichert.

Beispiel:
shiftOut(dataPin, clockPin, LSBFIRST, 255);

unsigned long pulseln(pin, value)

Hiermit wird die von einem der digitalen Pins eingehende Pulsdauer ge-
messen. Dies ist zum Beispiel dann niatzlich, wenn ein Infrarotsensor oder
ein Beschleunigungsmesser ausgelesen werden soll, bei dem die Werte in
Form von Impulsen bezogen auf die Anderungsdauern ausgegeben wer-
den.

Beispiel:
time = pulsein(7,HIGH); // misst die Zeitdauer, die der nachste
// Impuls HIGH bleibt

ZEITFUNKTIONEN

Arduino umfasst Funktionen fur das Messen von abgelaufener Zeit und fur
Pausenzeiten von Sketches.

unsigned long millis()

Diese Funktion gibt die Anzahl an Millisekunden zurtick, die seit dem Start
des Sketch vergangen sind.

Beispiel:
duration = millis()-lastTime; // berechnet die vergangene Zeitdauer seit
// "lastTime"

delay(ms)

Hiermit wird eine Pause des Programms fir die angegebene Zeit in Milli-
sekunden veranlasst.

Beispiel:
delay (500); // das Programm wird fir eine halbe Sekunde gestoppt

Anhang C: Kurzreferenz zu Arduino 107

delayMicroseconds(us)

Das Programm wird veranlasst, flr eine gegebene Anzahl an Millisekunden
ZU pausieren.

Beispiel:
delayMicroseconds (1000); // wartet eine 1 Millisekunde

MATHEMATISCHE FUNKTIONEN

In Arduino sind viele haufig genutzte mathematische und trigonometrische
Funktionen enthalten:

min(x, y)

Es wird ein Wert kleiner als x und y zurtickgeliefert.

Beispiel:
val = min(10,20); // val ist nun 10

max(x, y)

Es wird ein Wert groBer als x und y ausgegeben.

Beispiel:
val = max(10,20); // val ist nun 20

abs(x)

Es wird der absolute Wert von x zurtickgeliefert, der negative Zahlen in
positive umwandelt. Wenn also x5 ist, wird 5 zurtickgeliefert, und wenn x —
5ist, lautet der Ruckgabewert ebenfalls 5.

Beispiel:
val = abs(-5); // val ist nun 5

constrain(x, a, b)

Gibt den Wert von x zurtick, der aber auf einen Bereich zwischen a und b
beschrankt ist. Wenn x kleiner als aist, wird einfach a zurtickgeliefert, und
wenn x gréBer als bist, wird b ausgegeben.

Beispiel:

val = constrain(analogRead(0), 0, 255); // weist Werte groBer als 255
// zurick

108 Anhang C: Kurzreferenz zu Arduino

map(value, fromLow, fromHigh, toLow, toHigh)

Hiermit wird ein Wert aus dem Bereich fromLow und maxLow dem Bereich
toLow und toHigh zugewiesen. Dies ist sehr nttzlich bei der Verarbeitung
von Werten, die von analogen Sensoren stammen.

Beispiel:
val = map(analogRead(0),0,1023,100, 200); // weist den Wert von
// analog 0 einem Wert
// zwischen 100 und 200 zu

double pow(base, exponent)

Es wird das Ergebnis einer Zahl (Basis) im Hinblick auf eine Potenz (£x-
ponent) zuruckgeliefert.

Beispiel:
double x = pow(y, 32); // setzt x auf den um die Potenz 32 erhohten Wert von y

double sqrt(x)

Es wird die Quadratwurzel einer Zahl zurtickgeliefert.

Beispiel:
double a = sqrt(1138); // etwa 33.73425674438

double sin(rad)

Es wird der Sinus eines Winkels als Bogenmaf zurlckgeliefert.

Beispiel:
double sine = sin(2); // etwa 0.90929737091

double cos(rad)

Es wird der Kosinus eines Winkels als Bogenmal3 zurtickgeliefert.

Beispiel:
double cosine = cos(2); // etwa -0.41614685058

double tan(rad)
Es wird die Tangente eines Winkels als Bogenmal zuriickgeliefert.

Beispiel:
double tangent = tan(2); // etwa -2.18503975868

Anhang C: Kurzreferenz zu Arduino 109

ZUFALLSZAHLENFUNKTIONEN

Zum Erzeugen von Zufallszahlen kénnen Sie den Pseudozufallszahlen-Ge-
nerator von Arduino verwenden.

randomSeed(seed)

Hiermit wird der Pseudozufallszahlen-Generator von Arduino zurtick-
gesetzt. Die Verteilung der von random() zurtckgelieferten Zahlen ist zwar
grundsatzlich zufallig, aber die Abfolge ist vorhersehbar. Daher sollten Sie
den Generator auf einen Zufallswert zurticksetzen. Wenn ein nicht verbun-
dener analoger Pin vorhanden ist, wird er einige zufallige Gerausche aus
der Umgbebung auffangen (Radiowellen, kosmische Strahlung, elektro-
magnetische Interferenzen von Mobiltelefonen und fluoreszierendem Licht
usw.).

Beispiel:
randomSeed (analogRead(5)); // erzeugt Zufallszahlen mithilfe von Geréu-

// schen an Pin 5

long random(max)

long random(min, max)

Es wird ein ganzzahliger Zufallswert vom Typ long zwischen minund max -
1 zuruckgeliefert. Wenn kein Minimum angegeben wurde, ist die untere
Grenze 0.

Beispiel:
long randnum = random(0, 100); // eine Zahl zwischen 0 und 99

long randnum = random(11); // eine Zahl zwischen 0 und 10

SERIELLE KOMMUNIKATION

Wie Sie in Kapitel 5 gesehen haben, kénnen Sie tiber den USB-Port mit
anderen Geraten kommunizieren, wobei ein serielles Kommunikationspro-
tokoll zum Einsatz kommt. Im Folgenden sind die seriellen Funktionen
aufgelistet.

Serial.begin(speed)

Mit dieser Funktion wird Arduino darauf vorbereitet, serielle Daten zu
versenden und zu empfangen. Normalerweise arbeitet der serielle Monitor
der Arduino-IDE mit einer Geschwindigkeit von 9600 Bit pro Sekunde

110 Anhang C: Kurzreferenz zu Arduino

(bps), es stehen aber auch andere Werte zur Verfligung, Ublicherweise
aber nicht mehr als 115.200 bps.

Beispiel:
Serial.begin(9600);

Serial.print(data)

Serial.print(data, encoding)

Diese Funktion schickt Daten an den seriellen Anschluss. Die Zeichenco-
dierung ist dabei optional; wenn keine Angaben getroffen werden, werden
die Daten so weit wie moglich als Klartext behandelt.

Beispiele:
Serial.print(75); // druckt "75"
Serial.print(75, DEC); // wie oben
Serial.print (75, HEX); // "4B" (75 als Hexadezimalzahl)
Serial.print(75, OCT); // "113" (75 als Oktalzahl)
Serial.print(75, BIN); // "1001011" (75 als Binarzahl)
Serial.print(75, BYTE); // "K" (das Byte
// das zufallig 75 im ASCII-Zeichensatz ist)

Serial.printin(data)

Serial.printin(data, encoding)

Diese Funktion arbeitet wie Serial.print() mit der Ausnahme, dass ein
Wagenrucklauf und ein Zeilenvorschub (\r\n) angefugt wird, als ob nach
der Dateneingabe die Return- oder Enter-Taste gedrtckt worden wére.

Beispiele:

Serial.println(75); // druckt "75\r\n"
Serial.println(75, DEC); // wie oben
Serial.println(75, HEX); // "4B\r\n"
Serial.println(75, OCT); // "113\r\n"
Serial.println(75, BIN); // "1001011\r\n"
Serial.println(75, BYTE); // "K\r\

int Serial.available()

Diese Funktion liefert zurtick, wie viele Daten am seriellen Anschluss fur
das Auslesen mittels der read()-Funtion bereitstehen. Nachdem mit read()
alle verfugbaten Daten ausgelesen wurden, liefert Serial.available() so
lange O zurlck, bis neue Daten am seriellen Anschluss vorliegen.

Anhang C: Kurzreferenz zu Arduino 111

Beispiel:
int count = Serial.available();

int Serial.read()

Es wird ein Byte der eingehenden seriellen Daten abgerufen.

Beispiel:
int data = Serial.read();

Serial.flush()

Da die Daten uber den seriellen Anschluss moglicherweise schneller ein-
treffen, als dein Programm sie verarbeiten kann, speichert Arduino alle
eingehenden Daten in einem Puffer. Wenn der Puffer geléscht und Platz fur
neue Daten geschaffen werden soll, wird hierzu die flush()-Funktion ver-
wendet.

Beispiel:
Serial.flush();

112 Anhang C: Kurzreferenz zu Arduino

Anhang D/
Das Lesen von
Schaltplanen

Bisher haben wir noch keine sehr detaillierten Illustrationen verwendet, um
zu beschreiben, wie lhr Schaltkreis aufgebaut werden muss. Sie konnen
sich aber bestimmt vorstellen, dass es schon recht zeitaufandig ist, zu
Dokumentationszwecken fur jedes Projekt eine Schaltskizze zu zeichnen.

Ahnliche Probleme werden friiher oder spater in jeder Disziplin auftauchen.
Wenn Sie beispielsweise im Bereich Musik einen schénen Song geschrie-
ben haben, mussen Sie ihn mittels Musiknoten zu Papier bringen.

Da Ingenieure praktisch veranlagte Menschen sind, haben sie einen Weg
entwickelt, die Essenz eines Schaltkeises zu erfassen, um sie spater zu
dokumentieren oder an andere Personen weiterzuleiten.

Im Bereich Elektronik ermoglichen Schaltdiagrarmme Schaltungen in einer
Weise zu beschreiben, dass sie von den anderen Personen in einer Com-
munity verstanden werden. Einzelne Komponenten werden in Form von
Symbolen dargestellt, bei denen es sich um eine Art Abstraktion der
tatséchlichen Form der Komponente oder ihrer Essenz handelt. Der Kon-
densator beispielsweise besteht aus zwei Metallplattchen, die durch Luft
oder Plastik voneinander separiert werden. Das entsprechende Symbol

sieht demnach wie folgt aus:

Anhang D: Das Lesen von Schaltplanen 113

Ein weiteres schénes Beispiel ist der Induktor,
der aus einem um einen Zylinder gewickelten
Kupferdraht besteht. Daher sieht das entspre-
chende Symbol folgerichtig wie das auf der lin-
ken Seite dargestellte aus.

Die Verbindungen zwischen den Komponenten
bestehen Ublicherweise aus Drahten oder Lei-
terbahnen auf der Platine und werden in der
Schaltskizze als einfache Linien dargestellt.
Wenn zwei Drahte verbunden werden, wird
diese Verbindung als groBer Punkt an der Kreu-
zung der beiden Linien dargestellt, wie in der
Abbildung links dargestellt.

Dies sind alle Informationen, die Sie fur das Verstandnis von Basis-Schalt-
skizzen benotigen. Hier eine Liste mit weitern Symbolen und den entspre-
chenden Bedeutungen:

= 43y

=

Widerstand Kondensator Thermistor LDR Licht-
sensor
Diode LED Drucktaster Potentiometer

114 Anhang D: Das Lesen von Schaltplanen

Moglicherweise werden Sie Variationen dieser Symbole begegnen (z.B.
beide hier aufgefuhrten Symbole fur den Widerstand). Eine umfangreichere
Liste von Elektronik-Symbolen finden Sie unter en.wikipedia.org/wiki/
Electronic_symbol. Konventionell werden Schaltdiagramme von links nach
rechts gezeichnet. Beim Zeichnen eines Radios wirden Sie demnach mit
der Antenne auf der linken Seite beginnen und dann mit dem Weg fort-
fahren, den das Radiosignal bis zum Lautsprecher (der auf der rechten
Seite gezeichnet wird) zurticklegt.

In der folgenden Schaltskizze ist der weiter vorne in diesem Buch erlauterte
Drucktaster-Schaltkreis beschrieben:

‘-‘ Arduino

GND GND

Anhang D: Das Lesen von Schaltplanen 115

Index

Symbole

(Rautenzeichen), in HTML-Farb-
codes 74

% (Modulo), Operator 104

&& (und), Operator 105

>= (groBer oder gleich), Operator
104

< (groBer als), Operator 104

< (kleiner als), Operator 104

<= (kleiner oder gleich), Opera-
tor 105

() (runde Klammern) 33
folgend auf if-Schlusselwort 43

/ (Division), Operator 104

/* */ (Kommentar) 98

*= (Multiplikation und Zuweisung),
Operator 105

+ (Addition), Operator 104

++ (Inkrementieren), Operator 105

+= (Addition und Zuweisung), Ope-
rator 105

// (Trennzeichen fur Kommentare)
32,98

10-K-Ohm-Widerstande 40

10-Kiloohm-Widerstande 62

270-Ohm-Widerstand 56

; (Semikolon)
Beenden von Codezeilen 97

/= (Division und Zuweisung), Ope-
rator 105

== (gleich), Operator 46, 104

[1 (eckige Klammern), in Arrays
100

{} (geschweifte Klammern) 33, 98

A

abs(), Funktion 107
AC-Adapter 18
Aktoren 26

Alarmanlagen, Infrarot-Sensoren
52

Ampere 38
analog
Input 62, 71
Output 71
Sensorschaltkeis 64
Sensorschaltkreis 65
analogRead(), Funktion 62
Helligkeitswerte 65
analogRead() function 106
analogWrite(), Funktion 55, 106
Anode 27
Arabische Zahlen 99
Arduino
FAQs auf der Hauptwebseite 90
grundlegende Bausteine 71
Hardware 17-18
Hauptteile, Board und IDE 17
Installation 20
Philosophie 5
Testen des Boards 86
Uno-Board 21
Unterschiede zu anderen Platt-
formen1
Verbindung zum Internet 73
Arduino Store 40
Arduino, die Philosophie von 5
Arduino, Sprache 97-98, 100, 105,
107-108, 110, 114
Input- und Output-Funktionen
105
serielle Kommunikation 110
Variablen 98
ArduinoUNO.inf, Datei 22
Argumente 33-34
ASCII 99
Aton, Lampe 72
avr-gcc-Compiler 20

Benutzergrupen 16
Beschleunigungsmesser 68

Index 117

Bewegungsmelder, passive Infra-
rotsensoren (PIR-Sensoren) 52
blinkende LED, Sketch 26-31
Code, Schritt far Schritt 34-35
der Code, Schritt fur Schritt 32,
35
blinkende LEDs
Code, LEDs in einer Geschwin-
digkeit blinken lassen, die am
analogen Input-Pin festgelegt
wurde 64
Steuerung mittels PWM 54
Boolean, Datatyp 99
byte, Datentyp 99

C
C, Sprache 20
char, Datatyp 99
Code
Arduino, eine vernetzte Lampe
mit Arduino 81-82
Arduino, vernetzte Lampe mit
Processing 78
Einschalten der LED, wenn der
Taster gedruckt ist 45
Einschalten einer LED bei ge-
drucktem Drucktaster und sie
anschlieBend am Leuchten
halten 47
Einschalten einer LED bei ge-
dricktem Taster, mit Entprel-
len 48
Festlegen der Helligkeit einer
LED mittels analogen Inputs
65
Codeblocke 30-31, 33
Colombo, Joe 72
COM-Port, unter Windows 24
Computertastaturen 13
constrain(), Funktion 108
continue, Anweisung 103
cos(), Funktion 109

D

Datatypen 99, 101
Debugging 86

118 Index

delay(), Funktion 34, 107
Andern der Zeiten 54
delayMicroseconds(), Funktion
108
Design, Interaction Design 2
Device Manager (Windows) 23, 89
Dezimalzahlen 74
Diecimila-Board 18, 86
digital
Input 71
INPUT oder OUTPUT, Modi far
Pins 33
Output 71
Pins 18, 33
programmierbare Elektronik,
Vorteile 43
digitalRead(), Funktion 40
Speichern eines zurtickgeliefer-
ten Ergebnisses in einer Va-
riablen 44
digitalRead(), Funktion 106
digitalWrite(), Funktion 34, 106
Dioden
IN4007 68
do ... while-Anweisung 102
double, Datentyp 100
Drucktaster, Schaltskizzensymbol
far 115
Duemilanove-Board 18
Dyson, James 6

E

Ein/Aus-Sensoren 51-52
elektrische Spannung

auslesen 18
Elektrizitat 36, 38, 40
Elektroschrott, Verwenden von 14
externe Stromversorgung 18
Extreme-Board 86

F

FALSE 43

false 98

Farben, HTML-Kodierung 74
Flash-Speicher 44

float, Datentyp 100

Forum 90

Fotowiderstand 26

Funktionen 31
Input und Output 105
serielle Kommunikation 110
Zeit 107

G

gemeinsame Kathode 83
gestische Schnittstelle 52
Ghazala, Reed 10

H
Hacken
Elektroschrott 14
Spielzeug 15
Haque, Usman 15
Hardware, Arduino 17-18
Helligkeit
andern fur blinkende LEDs 54
Festlegen fur LED mittels analo-
gen Inputs 65
hexadezimale Zahlen 74
HIGH 33, 40
Hilfe, Onlinequellen 89
Hopper, Grace 85
HTML, Darstellung von Farben in 74

|

IDE (Integrated Development Envi-
ronment, Integrierte Entwick-
lungsumgebung
Processing, Tools-Ment, Create

Font 78

IDE (Integrated Development Envi-
ronment, Integrierte Entwick-
lungsumgebung) 20
Uberprufung des Codes 29

if ... else-Anweisung 100

if-Anweisungen 43

IKEA, Tischlampe FADO 82

Induktor, Symbol fur 114

Infrarot-Ranger 68

INPUT 33

Input
analog 62

digital 71

Funktionen fur 105
Input/Output-(1/0-)Board 1
int, Datentyp 99
int, Variable 44
Interaktives Gerat 25
Interpunktion 99

K

K (Kathode) 27

Kathode 27

Kernighan, Brian W. 88

Kommentare 32, 98

komplexe Sensoren 68

Konstanten 33, 98

Kontrollstrukturen 101, 105

Kooperation von Arduino-Nutzern
16

L
L (LED) 26, 86
Lampen 83
interaktiv 35
kugelformige, vernetzte Lampe
72,83-84
Lateinisches Alphabet 99
LEDs
anschlieBen an Arduino 27
blinkende LED, Erlauterung des
Sketch-Codes 35
blinkende LED, Erlauterung
des Sketch-Codes 32, 36
eine blinkene LED, Erlauterung
des Sketch-Codes 33
LED, Konstante 32
RGB 83
Lesen von Schaltskizzen 113
Lesen von Widerstanden und
Kondensatoren 95
Licht
Steuerung und Erméglichung
einer Interaktion 35
Lichtsensoren 61-62, 65

Index 119

Linux
Installieren von Arduino 20
Onlinehilfe beim Installieren von
Arduino 20
long datatype 100
loop(), Funktion 31, 33, 97
|6tfreie Steckplatine 40, 93
LOW 34, 40

M

Macintosh
Installation der Treiber 21
Installieren von Arduino 20
Magnetische Schalter 51
Make-Blog 72
Maker Shed, Bauteile 40
map(), Funktion 109
mathematische und trigonometri-
sche Funktionen 108
max(), Funktion 108
Mikrocontroller 3
millis(), Funktion 107
Millisekunden 34
min(), Funktion 108
mittels Drucktaster gesteuerte
LEDs
Code 42
Code, Einschalten der LED,
wenn der Taster gedruckt
ist 45
Moog, Robert 8
MOSFET-Transistor 67
IRF520 68

Neigungsschalter 51
NG-Board 18, 86

0
Objekt, definiert 66
Ohm 38
Ohmsches Gesetz, Formel 39
Opportunistisches Prototyping 6
Output

digital 71

Funktionen far 105

120 Index

OUTPUT 33

P

passive Infrarotsensoren (PIR-Sen-
soren) 52
Patching 8
Physical Computing 3
Pike, Rob 88
pinMode(), Funktion 33, 106
Pins, Arduino-Board 18, 93
20 Milliampere Maximumkapazi-
tat 67
analog 106
Analog In 62
Konfigurieren digitaler Pins 106
LED, angeschlossen an PWM-Pin
57
Prufen auf anliegende
Spannung 39
Playground (Wiki) 16
Playground-Wiki 90
Port-ldentifikation 23-24
Windows COM-Port-Nummer 88
Potentiometer, Symbol fur 115
Power Selection Jumper
(PWR_SEL) 18
Praxis der Programmierung 88
Prellen 48
Entprellen bei durch Drucktaster
gesteuerten LEDs 48
Processing, Sprache 1, 20, 67
Sketch, eine vernetzte Lampe
mit Arduino 74, 79
Vorteile der Verwendung mit
Arduino 73
Programmierung
Zyklus 20
Prototyping 6
Pseudozufallszahlen-Generator 110
pulseln(), Funktion 107
PWM (Pulsweitenmodulation) 54
LED, angeschlossen an PWM-Pin
57
PWR_SEL 18

R

R (Widerstand) = V (Spannung) / |
(Strom) 39

RAM 44

random(), Funktion 110

randomSeed()-Zahl 110

Reed-Relays 51

return, Anweisung 103

RGB-LED 82

RSS-Feeds 73

run.bat file, Verwendung zum Start
von Arduino 88

RXund TX (LEDs) 30

S
Satz vorgefertigter Steckbrticken
40
Schalter 51
Neigung 52
Schaltkreise
ein Schaltkreis, viele Verhaltens-
weisen 43
eine vernetzte Lampe mit
Arduino 82
modifizieren 11
Motorschaltkreis fur Arduino 68
Verhéltnis von Spannung, Strom
und Widerstand 38
Sensoren 25
Ein/Aus im Vergleich zu analog
62
Funktionsweise 26
komplexe 68
Sensormatte 51
Serial Monitor, Schaltflache 67
Serial.begin(), Funktion 111
Serial.print(), Funktion 110
Serial.printin(), Funktion 111
serielle Anschlisse 30
Identifikation unter Windows 23
serielle Kommunikation 66, 71, 110
serielle Objekte 66
setup(), Funktion 31
setup(), Funktion 97
shiftOut(), Funktion 106
sin(), Funktion 109
Sketches

Auf- und Abblenden einer LED 57
blinkende LED 26-28, 31
blinkende LED, Codeerlauterung
35
blinkende LED, Erlauterung des
Sketch-Codes 33, 36
blinkende LED, Codeerlaute-
rung 33
Probleme beim Upload 87
Struktur 97
Sniffin Glue 11
Somlai-Fischer, Adam 15
Sonderzeichen 97
—— (Dekrementieren) Operator
105
/* */, Kommentarbegrenzer 98
; (Semikolon) 44, 97
{} (Geschweifte Klammern) 100
Spannung 38
am Pin, Uberprtfen mit analog
Read() 62
anliegend an einem Pin, Prufung
mit der digitalRead()-Funk-
tion 40
Speicher, RAM und Flash 44
Spielzeug, Hacken von 15
sqrt(), Funktion 109
Strom 38
Stromversorgung 18
SV1-Steckbricke, Verbindungen 86
switch case-Anweisung 101
Switches
MOSFET-Transistoren 67
Synthesizer
Circuit Bending mit 10
Moog, analoge Synthesizer 8

T
tan(), Funktion 109
Teiber, Installation 21
Teile und herrsche 85
Thermostate 51
Transistor, MOSFET 68
Troubleshooting 89, 91
IDE (Integrated Development
Environment, Integrierte Ent-
wicklungsumgebung) 88

Index 121

Isolieren von Problemen 88
Onlinehilfen far Arduino 90
Separieren jeder Komponente
fur das Testen 85
Testen des Boards 86
Vereinfachen und Segmentieren
des Projekts 85
Verstandnis der Funktions- und
Interaktionweise von Bautei-
len 85
TRUE 43
true und false 98
Tufteln 5

U
Ultraschall-Ranger 68
UNICODE 99
Uno-Board 18
unsigned int, Datentyp 99
Upload to I/0 Board, Schaltflache
30
USB
Arduino-Verbindung 65
Port-ldentifikation unter Wind-
ows 89
Programmieren von Arduino
mittels 1
Troubleshooting, Arduino-
Anschluss 86

v
Variablen 98

Vereinfachung und Segmentierung,

Prozesse 85
Verzbgerungen
Anpassung zur Verhinderung
von Prellen beim Drucktaster
48

122 Index

Verringerung der Anzahl zum
Erzielen unterschiedlicher
Blinkmuster 35

Vista (Windows)

Troubleshooting bei der Port-

Identifikation 89
visuelles Programmieren, Entwick-

lungsumgebungen 8

vorgefertigte Steckbrticken, Satz

40

w
Widerstand 38
Widerstande
Anzahl der, und Stromfluss 38
lichtabhangiger Widerstand
(Light Dependent Resistor,
LDR) 26, 61
Wiederverwenden von vorhandener
Technologie 7
Wiki, Playground 16
Windows
COM-Anschlussnummer fur
Arduino 89
Installation der Treiber 21
Installieren von Arduino 20

X

XML-Datei von einem RSS-Feed 73
XP (Windows)
Installation der Treiber 21

Z

Zeichensatze 99

Zeit, Funktionen fur 107
Zufallszahlenfunktionen 110

