

Book Title <Chapter No> V1 - MM/DD/2010

ffirs.indd ii

ffirs.indd ii

5/2/2012 6:22:26 PM

5/2/2012 6:22:26 PM

Book Title <Chapter No> V1 - MM/DD/2010

PROFESSIONAL

Android™ Sensor Programming

INTRODUCTION . xxvii PART I

LOCATION SERVICES

CHAPTER 1

Introducing the Android Location Service . 3

CHAPTER 2

Determining a Device’s Current Location . 11

CHAPTER 3

Tracking Device Movement . 27

CHAPTER 4

Proximity Alerts . 45

 PART II

INFERRING INFORMATION FROM PHYSICAL SENSORS

CHAPTER 5

Overview of Physical Sensors . 65

CHAPTER 6

Errors and Sensor Signal Processing . 103

CHAPTER 7

Determining Device Orientation . 121

CHAPTER 8

Detecting Movement .147

CHAPTER 9

Sensing the Environment . 161

CHAPTER 10

Android Open Accessory . 189

 PART III SENSING THE AUGMENTED, PATTERN-RICH EXTERNAL

 WORLD

CHAPTER 11

Near Field Communication (NFC) . 219

CHAPTER 12

Using the Camera . 255

CHAPTER 13

Image-Processing Techniques . 281

CHAPTER 14

Using the Microphone . 303

 PART IV SPEAKING TO ANDROID

CHAPTER 15

Designing a Speech-Enabled App . 333

CHAPTER 16

Using Speech Recognition and Text-To-Speech APIs 349

CHAPTER 17

Matching What Was Said . 407

CHAPTER 18

Executing Voice Actions . 441

CHAPTER 19

Implementing Speech Activation .471

INDEX . 495

ffirs.indd i

ffirs.indd i

5/11/2012 9:36:42 AM

5/11/2012 9:36:42 AM

Book Title <Chapter No> V1 - MM/DD/2010

ffirs.indd ii

ffirs.indd ii

5/11/2012 9:36:43 AM

5/11/2012 9:36:43 AM

Book Title <Chapter No> V1 - MM/DD/2010

PROFESSIONAL

Android™ Sensor Programming

ffirs.indd iii

ffirs.indd iii

5/11/2012 9:36:43 AM

5/11/2012 9:36:43 AM

ffirs.indd iv

ffirs.indd iv

5/11/2012 9:36:43 AM

5/11/2012 9:36:43 AM

Book Title <Chapter No> V1 - MM/DD/2010

PROFESSIONAL

Android™ Sensor Programming

Greg Milette

Adam Stroud

ffirs.indd v

ffirs.indd v

5/11/2012 9:36:43 AM

5/11/2012 9:36:43 AM

Book Title <Chapter No> V1 - MM/DD/2010

Professional Android™ Sensor Programming

Published by

John Wiley & Sons, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-18348-9

ISBN: 978-1-118-22745-9 (ebk)

ISBN: 978-1-118-24045-8 (ebk)

ISBN: 978-1-118-26505-5 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108

of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://

booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2012936847

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries, and may not be used without written permission. Android is a trademark of Google, Inc. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

ffirs.indd vi

ffirs.indd vi

5/11/2012 9:36:46 AM

5/11/2012 9:36:46 AM

Book Title <Chapter No> V1 - MM/DD/2010

 For Tanya and Madison, my inspiration!!!

—G.M.

 To Sabrina, Abigail and Elizabeth...I love you.

—A.S.

ffirs.indd vii

ffirs.indd vii

5/11/2012 9:36:46 AM

5/11/2012 9:36:46 AM

ffirs.indd viii

ffirs.indd viii

5/11/2012 9:36:47 AM

5/11/2012 9:36:47 AM

Book Title <Chapter No> V1 - MM/DD/2010 Page ix

ABOUT THE AUTHORS

GREG MILETTE is a professional Android developer and founder of Gradison Technologies, an app development company. He enjoys building practical apps like Digital Recipe Sidekick and contribut-ing to StackOverfl ow.

ADAM STROUD is the lead developer for the Android version of RunKeeper. He is a self-proclaimed

“phandroid” and is an active participant in the Android virtual community on StackOverfl ow and Android Google groups.

ABOUT THE CONTRIBUTORS

DAVID N. HUTCHISON (http://davidnhutch.com) was born and raised in New Zealand, and is currently a PhD candidate in physics at Cornell University, where he is developing next-generation inertial sensors. He loves to hack up microcontroller-enabled gadgets in the machine shop, ride his motorcycle, and start companies. David wrote Chapters 5 and 6, and contributed to Chapters 7 and 10.

JON WEBB, the developer of Jon’s Java Imaging Library, has been developing software professionally for over three decades. He enjoys programming image processing on Android as it brings back fond memories of his early days. Jon wrote Chapters 12 and 13.

PEARL CHEN takes a cross-disciplinary approach to her work, from HTML to LEDs, Android to Arduino. Both an educator and developer, Pearl teaches programming and electronics, while also acting as CTO of http://thehungryveg.com. To fi nd out more about Pearl’s upcoming workshops and Arduino kits, visit http://klab.ca/arduino. Pearl wrote Chapter 11 and contributed to Chapter 10.

ffirs.indd ix

ffirs.indd ix

5/11/2012 9:36:47 AM

5/11/2012 9:36:47 AM

ffirs.indd x

ffirs.indd x

5/11/2012 9:36:47 AM

5/11/2012 9:36:47 AM

Book Title <Chapter No> V1 - MM/DD/2010

CREDITS

EXECUTIVE EDITOR

PRODUCTION MANAGER

Robert Elliot

Tim Tate

PROJECT EDITOR

VICE PRESIDENT AND EXECUTIVE GROUP

Brian Herrmann

PUBLISHER

Richard Swadley

TECHNICAL EDITOR

Jim Steele

VICE PRESIDENT AND EXECUTIVE

PUBLISHER

PRODUCTION EDITOR

Neil Edde

Christine Mugnolo

ASSOCIATE PUBLISHER

COPY EDITOR

Jim Minatel

Kimberly A. Cofer

PROJECT COORDINATOR, COVER

EDITORIAL MANAGER

Katie Crocker

Mary Beth Wakefi eld

PROOFREADER

FREELANCER EDITORIAL MANAGER

Josh Chase, Word One New York

Rosemarie Graham

INDEXER

ASSOCIATE DIRECTOR OF MARKETING

Robert Swanson

David Mayhew

COVER DESIGNER

MARKETING MANAGER

Ryan Sneed

Ashley Zurcher

COVER IMAGE

BUSINESS MANAGER

© Antonis Papantoniou / iStockPhoto

Amy Knies

ffirs.indd xi

ffirs.indd xi

5/11/2012 9:36:47 AM

5/11/2012 9:36:47 AM

ffirs.indd xii

ffirs.indd xii

5/11/2012 9:36:47 AM

5/11/2012 9:36:47 AM

Book Title <Chapter No> V1 - MM/DD/2010

ACKNOWLEDGMENTS

WE WOULD LIKE TO THANK David Hutchinson, Pearl Chen, and Jon Webb for providing content and guidance throughout the process of authoring this book. Their expertise in physics, AOA, NFC, and image processing allowed us to describe some exciting ways to use Android in a level of detail we would have otherwise been unable to achieve.

We would like to thank our editors for inspiring us to write the book and their hard work in making us sound more human-like and less like little green robots.

Finally, we could not have written this book without the help of people in the Android developer community who share and help us all work towards a common goal. We hope this book and its code help to repay the favor.

ffirs.indd xiii

ffirs.indd xiii

5/11/2012 9:36:47 AM

5/11/2012 9:36:47 AM

ffirs.indd xiv

ffirs.indd xiv

5/11/2012 9:36:47 AM

5/11/2012 9:36:47 AM

Book Title <Chapter No> V1 - MM/DD/2010

CONTENTS

INTRODUCTION xxvii

PART I: LOCATION SERVICES

CHAPTER 1: INTRODUCING THE ANDROID LOCATION SERVICE

3

Methods Used to Determine Location

3

GPS Provider

4

How It Works

4

GPS Improvements

5

Limitations 6

Controlling GPS

7

Network Provider

8

Using Wireless Network Access Points

8

Using Cell IDs

9

Summary 10

CHAPTER 2: DETERMINING A DEVICE’S CURRENT LOCATION

11

Know Your Tools

12

LocationManager 12

LocationProvider 13

Location 13

Criteria 13

LocationListener 15

Setting up the Android Manifest

15

Determining the Appropriate Location Provider

15

GPS Location Provider

16

Network Location Provider

16

Passive Location Provider

16

Accuracy versus Battery Life

17

Receiving Location Updates

18

Receiving Location Updates with a LocationListener

18

Receiving Location Updates with a Broadcast Intent

18

Implementing the Example App

18

Implementing LocationListener

18

onLocationChanged() 19

ftoc.indd xv

5/10/2012 2:18:10 PM

Book Title <Chapter No> V1 - MM/DD/2010

CONTENTS

onProviderDisabled() and onProviderEnabled()

19

onStatusChanged() 20

Obtaining a Handle to LocationManager

20

Requesting Location Updates

23

Cleaning up After Yourself

25

Launching the Location Settings Activity

25

Summary 26

CHAPTER 3: TRACKING DEVICE MOVEMENT

27

Collecting Location Data

28

Receiving Location Updates with a Broadcast Receiver

28

Extending BroadcastReceiver

29

Registering the BroadcastReceiver with Android

30

Requesting Location Updates with a PendingIntent

32

One Intent, Multiple Receivers

33

Why Not Use a Service?

34

Viewing the Tracking Data

35

Google Map Library Components

36

MapView 37

OverlayItem 37

ItemizedOverlay 38

MapActivity 40

Filtering Location Data

40

Continuous Location Tracking and Battery Life

43

Reducing Location Update Frequency

43

Limiting Location Providers

44

Summary 44

CHAPTER 4: PROXIMITY ALERTS

45

App Structure

45

Geocoding 46

android.location.Geocoder 46

Reading the Geocoded Response

48

Setting a Proximity Alert

50

Responding to a Proximity Alert

53

Proximity Alert Limitations

55

Battery Life

55

Permissions 56

More Effi

 cient Proximity Alert

56

xvi

ftoc.indd xvi

5/10/2012 2:18:11 PM

10

Book Title <Chapter No> V1 - MM/DD/2010

CONTENTS

ProximityAlertService 56

Summary 61

PART II: INFERRING INFORMATION FROM PHYSICAL SENSORS

CHAPTER 5: OVERVIEW OF PHYSICAL SENSORS

65

Defi nitions

66

Android Sensor API

68

SensorManager 68

Sensor 68

Sensor Rates

69

Sensor Range and Resolution

70

SensorEventListener 71

SensorEvent 71

Sensor List

72

The Manifest File

72

SensorListActivity 73

SensorSelectorFragment 74

SensorDisplayFragment 76

Sensing the Environment

84

Sensor.TYPE_LIGHT 84

Sensor.TYPE_PROXIMITY 85

Sensor.TYPE_PRESSURE 86

Absolute Altitude

87

Relative Altitude

87

Mean Sea-Level Pressure (MSLP)

87

Where to Find MSLP

88

Sensor Units

88

Sensor Range

88

Common Use Cases

88

Sensor.TYPE_RELATIVE_HUMIDITY 89

Sensor.TYPE_AMBIENT_TEMPERATURE 89

Sensor.TYPE_TEMPERATURE 89

Sensing Device Orientation and Movement

90

Coordinate Systems

90

Global Coordinate System

91

Device Coordinate System

91

Angles 91

Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and

.TYPE_LINEAR_ACCELERATION 92

xvii

ftoc.indd xvii

5/10/2012 2:18:11 PM

Book Title <Chapter No> V1 - MM/DD/2010

CONTENTS

Sensor Units and Resolution

93

Sensor.TYPE_GYROSCOPE 94

Sensor Units

94

Sensor Range

94

Sensor.TYPE_MAGNETIC_FIELD 94

Sensor Units, Range, and Resolution

95

Sensor.TYPE_ROTATION_VECTOR 97

SensorManager.getOrientation() 98

SensorManager.getInclination() 101

Sensor Fusion Schemes

101

Summary 102

CHAPTER 6: ERRORS AND SENSOR SIGNAL PROCESSING

103

Defi nitions

104

Accuracy and Precision

104

Types of Errors

105

Human Error, Systematic Error, and Random Error

105

Noise 105

Drift 105

Zero Off set (or “Off set,” or “Bias”)

105

Time Delays and Dropped Data

105

Integration Error

106

Techniques to Address Error

107

Re-zeroing 107

Filters 107

Sensor Fusion

107

Filters 107

Low-Pass 107

Weighted Smoothing

108

Simple Moving Average (SMA)

108

Choosing the Smoothing Parameter

111

Averaging: Smoothness vs. Response Time

111

Simple Moving Median (SMM)

111

High-Pass 111

Inverse Low-Pass Filter

112

Bandpass

113

Introducing Kalman Filters

114

A Better Determination of Orientation

by Using Sensor Fusion

115

Sensor Fusion: Simple vs. Proprietary

115

xviii

ftoc.indd xviii

5/10/2012 2:18:11 PM

10

Book Title <Chapter No> V1 - MM/DD/2010

CONTENTS

Proprietary Sensor Fusion

116

Simple Sensor Fusion: The Balance Filter

117

Summary 119

CHAPTER 7: DETERMINING DEVICE ORIENTATION

121

Previewing the Example App

121

Determining Device Orientation

122

Gravity Sensor

123

Accelerometer and Magnetometer

123

Gravity Sensor and Magnetometer

124

Rotation Vector

124

Implementation Details

125

Processing Gravity Sensor Data

130

Processing Accelerometer and Magnetic Field Data

130

Processing Rotation Vector Data

132

Notifying the User of Orientation Changes

135

NorthFinder 143

Summary 146

CHAPTER 8: DETECTING MOVEMENT

147

Acceleration Data

148

Accelerometer Data

148

Linear Acceleration Sensor Data

150

Data While Device Is in Motion

150

Total Acceleration

153

Implementation 153

DetermineMovementActivity 153

AccelerationEventListener 156

Summary 159

CHAPTER 9: SENSING THE ENVIRONMENT

161

Barometer vs. GPS for Altitude Data

162

Example App Overview

162

Implementation Details

163

GPS-Based Altitude

169

Barometric Pressure–Based Altitude

170

Relative Altitude

177

Summary 187

xix

ftoc.indd xix

5/10/2012 2:18:11 PM

Book Title <Chapter No> V1 - MM/DD/2010

CONTENTS

CHAPTER 10: ANDROID OPEN ACCESSORY

189

A Short History of AOA

189

USB Host Versus USB Accessory

190

Electrical Power Requirements

190

Supported Android Devices

190

The Android Development Kit (ADK)

191

Hardware Components

194

Software Components

195

AOA Sensors versus Native Device Sensors

196

AOA Beyond Sensors

196

AOA Limitations

196

AOA and Sensing Temperature

197

Implementation 198

Requirements 198

Getting Started with the Arduino Software

198

Arduino Sketch

199

Android Code

205

Communication between Arduino and Android

208

Taking an Android Accessory to the Consumer Market

215

Summary 216

PART III: SENSING THE AUGMENTED, PATTERN-RICH EXTERNAL WORLD

CHAPTER 11: NEAR FIELD COMMUNICATION (NFC)

219

What Is RFID?

220

What Is NFC?

222

The NDEF Data Format

223

How and Where to Buy NFC Tags

224

NDEF-compatible NFC Tags

224

Storage Size versus Price versus Security Trade-off

224

Write Protection

226

Form Factor

226

Retailers 227

General Advantages and Disadvantages of NFC

227

Low Power and Proximity Based

228

Small, Short Data Bursts

228

Singular Scanning

229

Security 229

Card Emulation

229

xx

ftoc.indd xx

5/10/2012 2:18:11 PM

10

Book Title <Chapter No> V1 - MM/DD/2010

CONTENTS

Android-specifi c Advantage: Intents

229

Required Hardware

230

Building an Inventory Tracking System

230

The Scenario

230

The NFC Inventory Demonstration App

230

Enabling NFC in the Settings

231

Debugging Your Tags with Apps

232

Android APIs

233

In Your AndroidManifest.xml File

233

Permissions and Minimum API Level

233

Intent Filters

233

Custom MIME Type Intent Filters

234

URI-based Intent Filters

235

In Your Main Activity Class

236

NfcManager 237

NfcAdapter

237

Foreground Dispatching

237

Foreground NDEF Push

241

Reacting to an NDEF Tag

241

NdefMessage and NdefRecord

243

Parsing and Reading NDEF Tags

245

Getting Ready to Write to a Tag

246

Writing to the Tag

248

Putting it All Together

250

Future Considerations

251

NFC N-Mark

251

Peer-to-Peer NFC Sharing

251

Peer-to-Peer Android APIs

252

Go Forth and NFC!

253

Summary 254

CHAPTER 12: USING THE CAMERA

255

Using the Camera Activity

255

Controlling the Camera with Your Own Activity

256

Claiming and Releasing a Camera

257

The Preview View

258

Controlling the Camera

261

Orientation 261

Zoom 263

Focus 264

xxi

ftoc.indd xxi

5/10/2012 2:18:12 PM

Book Title <Chapter No> V1 - MM/DD/2010

CONTENTS

Switching Cameras

264

Flash 264

Other Camera Parameters

265

Creating a Simple Barcode Reader

267

Understanding Barcodes

267

Parity and Implied First Digit

269

The Check Digit

270

Right Half of the Barcode

271

Autofocus 272

Using the Camera Preview Image and Detecting the Barcode

273

Debugging Image Processing Programs on Android

275

Detecting the Barcode

276

Summary 279

CHAPTER 13: IMAGE-PROCESSING TECHNIQUES

281

The Structure of Image-Processing Programs

281

The Image-Processing Pipeline

281

Common Image-Processing Operations

282

Image-to-Image Operations

282

Image-to-Object Operations

284

Jon’s Java Imaging Library (JJIL)

284

Image 285

PipelineStage 285

Sequence 288

Ladder 289

JJIL and Detecting the Android Logo

291

Choose the Right Image Size

293

Improving Reliability in Image Processing

296

Detecting Faces

299

Image-Processing Resources

300

Summary 301

CHAPTER 14: USING THE MICROPHONE

303

Introducing the Android Clapper

303

Using MediaRecorder to Analyze Maximum Amplitude

304

Recording Maximum Amplitude

305

Asynchronous Audio Recording

310

Implementing a Clapper

312

Analyzing Raw Audio

314

xxii

ftoc.indd xxii

5/10/2012 2:18:12 PM

10

Book Title <Chapter No> V1 - MM/DD/2010

CONTENTS

Setting Audio Input Parameters

315

Preparing AudioRecord

316

Recording Audio

317

Using OnRecordPositionUpdateListener

317

Using Loud Noise Detection

323

Using Consistent Frequency Detection

324

Estimating Frequency

325

Implementing the Singing Clapper

327

Summary 329

PART IV: SPEAKING TO ANDROID

CHAPTER 15: DESIGNING A SPEECH-ENABLED APP

333

Know Your Tools

334

User Interface Screen Flow

336

Voice Action Types

337

Voice User Interface (VUI) Design

338

Deciding Appropriate Tasks for Voice Actions

339

Designing What the App and Users Will Say

340

Constrain Speech Input to Increase Accuracy

340

Train Users to Know What They Can Say

340

Prompt the Users so They Know What to Say

341

Confi rm Success and Help Users Recover from Errors

342

Help Users Recover from Accidental Speech Activation

343

Teach Users Proper Speech Hygiene

344

Use Menus Cautiously

344

After the Design

345

Testing Your Design

346

Summary 347

References 347

CHAPTER 16: USING SPEECH RECOGNITION

AND TEXT-TO-SPEECH APIS

349

Text-To-Speech 349

Initialization 350

Initialization with Locale

351

Check TTS Data Action

361

Speaking 366

Speaking a Script

369

xxiii

ftoc.indd xxiii

5/10/2012 2:18:12 PM

Book Title <Chapter No> V1 - MM/DD/2010

CONTENTS

Speech Recognition

377

Initializing 377

Using the RecognizerIntent

382

The Speech Recording Process

384

Confi guring and Processing the Result

385

RecognizerIntent Use Cases

386

Implementation 391

Direct Speech Recognition Using SpeechRecognizer

403

 Summary

405

CHAPTER 17: MATCHING WHAT WAS SAID

407

Parts of a Voice Command

407

Word Spotting

409

Indexing to Improve Word Spotting

411

Stemming 412

Phonetic Indexing

414

Matching Command Words in Persistent Storage

418

SQLite Full Text Search

418

Using the LIKE Operator

419

Using the FTS MATCH Operator

420

Implementing FTS

421

Word Searching with Lucene

426

Multi-part Commands

431

Ignoring Potential Collisions

432

Considering Ordering

434

Using a Grammar

438

Summary 438

CHAPTER 18: EXECUTING VOICE ACTIONS

441

Food Dialogue VUI Design

442

Defi ning and Executing Voice Actions

443

Executing VoiceActionCommands

448

Implementing an AlertDialog for VoiceActions

451

Implementing Multi-Turn Voice Actions

455

Implementing Multi-Turn AddFood

455

Implementing Multi-Turn RemoveFood

459

Making a Best Guess

461

Relaxing Strictness Between Commands

463

Making an Educated Guess

464

Responding When Recognition Fails

466

xxiv

ftoc.indd xxiv

5/10/2012 2:18:12 PM

10

Book Title <Chapter No> V1 - MM/DD/2010

CONTENTS

Determining Not a Command

468

Determining Inaccurate Recognition

469

Not Understanding

469

Summary 469

CHAPTER 19: IMPLEMENTING SPEECH ACTIVATION

471

Implementing Speech Activation

472

Starting Speech Recognition

473

Implementing Speech Activation within an Activity

475

Activating Speech Recognition with Movement Detection

479

Activating Speech Recognition with the Microphone

481

Activating Speech Recognition with

Continuous Speech Recognition

483

Activating Speech Recognition with NFC

487

Implementing Persistent Speech Activation

488

Using a Service for Persistent Speech Activation

489

Summary 494

INDEX 495

xxv

ftoc.indd xxv

5/10/2012 2:18:12 PM

flast.indd xxvi

flast.indd xxvi

5/10/2012 2:17:55 PM

5/10/2012 2:17:55 PM

INTRODUCTION

ANDROIDS ARE ALIVE. THEY CAN LOCATE THEMSELVES, see, listen, and understand speech. They can sense radio signals and detect orientation, movement, and environmental properties. Can your computer do all of that?

The availability of sensors is one feature Android devices have that makes them different from other computers. Without sensors, an Android device is just an underpowered, mobile web browser with a screen that is too small and has an awkward input mechanism.

Sensors also allow apps to do amazing things. For example, sensors can help save users from pain-fully slow manual input and manipulation, and sensors can help users do tasks that they could never do before. Because of this, it may be essential for an app to incorporate sensors to be successful.

Sensors will continue to be an important part of the Android platform. As the hardware specifi cations of Android devices improve, so do the number of available sensors and their quality. While this happens, users will continue to expect apps to use any existing and new sensors when possible.

Therefore, using Android’s sensors is a crucial skill for any Android programmer to master. This book gives you the knowledge and code you need to develop this skill and make great apps that use sensors.

PROGRAMMING WITH ANDROID SENSORS

Writing apps that use Android’s sensors involves understanding the sensing capabilities of an Android device, selecting which sensors to use in an app, and implementing an app that can acquire sensor data and interpret it.

Android’s Sensing Capabilities

An Android device can have a wide variety of sensors. This book uses a defi nition of sensor that incorporates many of an Android device’s capabilities. In this book a sensor is:

 A capability that can capture measurements about the device and its external

 environment.

Sensing capabilities are derived from the available hardware on Android devices and from creative use of it. A capability may use values directly from hardware that can measure physical quantities, such as the magnetic fi eld sensor. It may use hardware that the user typically interacts with, such as the camera and microphone. A capability may even use a combination of hardware and server-based processing, such as speech recognition. Whatever the source, the resulting data can inform an app about the device’s state and the environment in which it resides.

flast.indd xxvii

flast.indd xxvii

5/10/2012 2:17:56 PM

5/10/2012 2:17:56 PM

INTRODUCTION

This book describes how to program apps that process information from the following sensor types:

‰

Location sensors: Determine a device’s location using a variety of sensors including GPS.

‰

Physical sensors: Detect device-specifi c properties such as orientation, acceleration, and rotation and environmental properties such as light, magnetic fi eld, and barometric pressure.

‰

NFC scanner: Detects near fi eld communication (NFC) tags and shares data with other NFC-enabled Android devices.

‰

Camera: Collects visual images.

‰

Microphone: Records audio.

‰

Speech recognition: Converts audio to text using a combination of recorded audio from the microphone and recognition algorithms.

‰

External sensors: Any sensor connected using the Android Open Accessory (AOA) mechanism.

Selecting Sensing Tasks

Understanding how the sensors work helps you know which of your app’s tasks can benefi t from sensor-related input. It also helps you interpret the sensors’ performance under various conditions and know their limitations. For example:

‰

Location: Knowing how various location sensors work, as described in Chapter 1, may lead you expect poor accuracy while a device is indoors.

‰

Physical sensors: Knowing information about what the physical sensors measure, as discussed in Chapter 5, can help you understand what inferences an app can reasonably make with the

sensor output.

Using API Boilerplate

In any app, acquiring sensor data requires similar code. Each kind of data requires different boilerplate. In many cases, is not trivial to initialize the API and acquire the data. This book provides code examples and libraries to help make it easier to implement. Some examples of the diffi culties involved in using the APIs include:

‰

Camera: Before an app can analyze an image, it must acquire the image from the camera.

However, using a device’s camera requires handling device rotation, hardware constraints,

and using the Camera and View objects properly. Chapters 12 and 13 describe abstract

classes that handle these details.

‰

NFC: Using NFC involves understanding the various steps needed to read and write NFC tags and what data to put in them. Chapter 11 explains a complete code example that is easy to adapt.

Collecting Sensor Data

Once an app can initialize and acquire sensor data, it then needs utilize the APIs to collect the data while the app is running. Data can be collected in different ways depending on how an app uses it.

This book describes different ways to collect data for various tasks. Some examples include: xxviii

flast.indd xxviii

flast.indd xxviii

5/10/2012 2:17:56 PM

5/10/2012 2:17:56 PM

INTRODUCTION

‰

Location: Location tracking is a common use of location sensors. Some apps need to persistently track location while an app performs other tasks. Chapter 3 describes several

approaches for implementing location tracking reliably.

‰

Speech recognition: To acquire speech recognition results an app needs to have other components besides actually running the speech recognizer. An app also needs to allow the user to activate speech and mediate turn taking between when the user can speak and when the app is listening.

Part 4 describes all the necessary software components you need to implement complete voice commands.

Interpreting Sensor Data

After an app has collected some sensor data, it then needs to analyze the data to achieve a desired effect. Each sensor requires different analysis algorithms. Some examples include:

‰

Physical sensors: Interpreting data from physical sensors involves calculations to convert raw data into usable values and algorithms to help detect changes and ignore noise. Part 2

describes how.

‰

Camera: Processing images from the camera involves setting up an image-processing pipeline.

An app must reduce the large image that the camera collects to a manageable size that would otherwise be too large to fi t in memory or too slow to process. Then the app needs to transform the collected image in various ways to detect something within it.

‰

Microphone: Analyzing audio recordings involves signal-processing algorithms. Chapter 14

describes algorithms for volume detection and frequency estimation.

‰

Speech recognition: Executing voice commands involves matching what the user said with command words using text search methods. Chapter 17 describes methods to improve

matching success.

Applications in This Book

This book presents applications that utilize sensors for specifi c purposes. The applications provide practical code components that solve common problems.

Some example applications in this book include:

‰

Chapter 3: Using a database and a BroadcastReceiver to implement persistent, reliable location tracking.

‰

Chapter 4: Using a service to implement an effi cient proximity alert that conserves battery life.

‰

Chapter 7: Using various physical sensors to determine if the device is face up or face down.

‰

Chapter 7: Using the rotation vector sensor to implement features needed for an augmented reality app.

‰

Chapter 8: Using the acceleration sensors to detect movement.

‰

Chapter 9: Using the barometer to detect altitude.

xxix

flast.indd xxix

flast.indd xxix

5/10/2012 2:17:56 PM

5/10/2012 2:17:56 PM

INTRODUCTION

‰

Chapter 10: Using AOA to collect data from an external temperature sensor.

‰

Chapter 11: Using NFC tags with custom data to track inventory.

‰

Chapter 13: Using the camera to detect the Android logo.

‰

Chapter 14: Using the microphone to implement a clapper by detecting loud noises and a singing tone.

‰

Chapters 17 and 18: Using speech recognition and Text-to-Speech to implement voice commands that query and manipulate data in a food database.

ADVANCED ANDROID PROGRAMMING

This book is for developers familiar with programming for Android. It assumes you understand basic Android concepts like Activities and Intents but may have not have used the sensor-related APIs. It also assumes you understand some math concepts and fully explains any physics concepts you need to know.

Additionally, this book focuses on programming sensors. This focus allows suffi cient space to fully describe how to process each kind of data and go beyond explaining simple uses of the APIs.

Beyond sensor programming, this book describes techniques that are applicable in any app.

For example, the chapters in this book show you how to use BroadcastReceivers, Services,

AsyncTasks, and databases for various tasks.

START SENSING!

Apps can utilize sensors to create amazing features that are unique and save a user’s time. Android’s sensing capabilities will only improve over time and continue to be an important component in many apps. This book arms you with the knowledge and code you need to use these capabilities to create great apps.

ANDROID SENSING PLAYGROUND APP

This book comes with an app called Android Sensing Playground. The app enables you to execute most of the applications and example code from this book and also utilize “playgrounds” which allow you to observe the relevant APIs working under various parameter settings.

Download the app from Google Play here: https://play.google.com/store/apps/

details?id=root.gast.playground.

GREAT ANDROID SENSING TOOLKIT (GAST)

The code in this book is part of an open source project called Great Android Sensing Toolkit (GAST). The latest updates and code are available on Github at the following link: https://

github.com/gast-lib.

xxx

flast.indd xxx

flast.indd xxx

5/10/2012 2:17:56 PM

5/10/2012 2:17:56 PM

INTRODUCTION

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code manually, or to use the source code fi les that accompany the book. All the source code used in this book is available for download at www.wrox.com. When at the site, simply locate the book’s title (use the Search box or one of the title lists) and click the Download Code link on the book’s detail page to obtain all the source code for the book. Code that is included on the website is highlighted by the following icon:

Listings include the fi lename in the title. If it is just a code snippet, you’ll fi nd the fi lename in a code note such as this:

 code snippet fi lename

 Because many books have similar titles, you may fi nd it easiest to search by

 ISBN; this book’s ISBN is 978-1-118-18348-9

Once you download the code, just decompress it with your favorite compression tool. Alternately, you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download

.aspx to see the code available for this book and all other Wrox books.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of conventions throughout the book.

 Warnings hold important, not-to-be-forgotten information that is directly rel-

 evant to the surrounding text.

 Notes indicate notes, tips, hints, tricks, and asides to the current discussion.

 TRY THIS

The Try This sections throughout the book highlight how you can use the book’s

app to learn about the concepts being discussed.

xxxi

flast.indd xxxi

5/10/2012 2:17:56 PM

INTRODUCTION

As for styles in the text:

‰

We highlight new terms and important words when we introduce them.

‰

We show keyboard strokes like this: Ctrl+A.

‰

We show fi le names, URLs, and code within the text like so: persistence.properties.

‰

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that is particularly important in the present context

or to show changes from a previous code snippet.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake or faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save another reader hours of frustration, and at the same time you will be helping us provide even higher quality information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box or one of the title lists. Then, on the Book Search Results page, click on the Errata link. On this page, you can view all errata that has been submitted for this book and posted by Wrox editors.

 A complete book list including links to errata is also available at www.wrox.com/

misc-pages/booklist.shtml .

If you don’t spot “your” error on the Errata page, click on the Errata Form link and complete the form to send us the error you have found. We’ll check the information and, if appropriate, post a message to the book’s errata page and fi x the problem in subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based system for you to post messages relating to Wrox books and related technologies and interact with other readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts, and your fellow readers are present on these forums.

At p2p.wrox.com, you will fi nd a number of different forums that will help you, not only as you read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go

to

p2p.wrox.com and click the Register link.

2.

Read the terms of use and click Agree.

xxxii

flast.indd xxxii

flast.indd xxxii

5/10/2012 2:17:57 PM

5/10/2012 2:17:57 PM

INTRODUCTION

3.

Complete the required information to join, as well as any optional information you wish to

provide, and click Submit.

4.

You will receive an email with information describing how to verify your account and

complete the joining process.

 You can read messages in the forums without joining P2P, but in order to post

 your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read messages at any time on the web. If you would like to have new messages from a particular forum e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to questions about how the forum software works, as well as many common questions specifi c to P2P

and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

xxxiii

flast.indd xxxiii

flast.indd xxxiii

5/10/2012 2:17:58 PM

5/10/2012 2:17:58 PM

flast.indd xxxiv

flast.indd xxxiv

5/10/2012 2:17:58 PM

5/10/2012 2:17:58 PM

PART I

Location Services

 CHAPTER 1: Introducing the Android Location Service

 CHAPTER 2: Determining a Device’s Current Location

 CHAPTER 3: Tracking Device Movement

 CHAPTER 4: Proximity Alerts

c01.indd 1

c01.indd 1

5/10/2012 1:05:19 PM

5/10/2012 1:05:19 PM

c01.indd 2

c01.indd 2

5/10/2012 1:05:22 PM

5/10/2012 1:05:22 PM

1

Introducing the Android

Location Service

WHAT’S IN THIS CHAPTER?

‰

Providing overview of how location information is provided in

Android

‰

Presenting an overview of GPS

‰

Discussing why A-GPS is used in Android

‰

Providing an overview of the network location provider

Location information is becoming increasingly important in the world of mobile develop-

ment. Apps that were once location agnostic now make use of location information to provide a richer user experience. Being able to combine a simple web search engine with up-to-the-minute location information allows Android devices to provide a level of functionality that was previously not possible. The capability to easily retrieve and provide location data to apps is becoming a major feature of today’s mobile platforms. Android provides this functionality with its location service.

Android’s location service provides access to facilities that can be used to determine a device’s current location. This information can be used for a wide variety of functions and can allow a device and the software that runs on it to have a better understanding of its surroundings.

METHODS USED TO DETERMINE LOCATION

Android makes use of different methods to provide location information to an app. In

Android, these facilities are called location providers, and each has its own unique set of strengths and weaknesses. In addition, because location providers have such unique characteristics, they each lend themselves to be used differently in different situations.

c01.indd 3

c01.indd 3

5/10/2012 1:05:22 PM

5/10/2012 1:05:22 PM

4 x CHAPTER 1 INTRODUCING THE ANDROID LOCATION SERVICE

The following sections give some high-level explanations as to how the different location acquisition methods work. Although an app has little control over how the providers work, it can decide which location provider to use. Understanding how each provider works goes a long way in understanding its limitations and characteristics.

GPS Provider

The Global Positioning System (GPS) uses a system of satellites orbiting the planet to help a receiver (an Android handset in this case) determine its current location. The term GPS refers to the entire GPS system, which consists of satellites, receivers, and the control stations that monitor and adjust it. The receiver that is located in the phone is useless without the rest of the system.

How It Works

In general, a GPS receiver uses information from the GPS satellites orbiting the earth to calculate its current location. The GPS system contains 27 satellites that continually orbit the earth, transmitting information to would-be receivers. Each satellite follows a defi ned path, ensuring that at least four satellites are “visible” from any point on earth at any given time. Being able to have a “line of sight”

to at least four satellites is necessary to determine location using GPS. Figure 1-1 shows a depiction of the GPS satellite constellation.

Source: http://gps.gov/multimedia/images

FIGURE 1-1: GPS satellite constellation

Each GPS satellite in the constellation continuously transmits its current position (ephemeris data) and almanac data. The almanac data includes data about each satellite in the constellation, including orbiting data as well as information about the overall state of the system as a whole. To say it another way, ephemeris data is information about a single satellite, and almanac data is information about every satellite. Every satellite transmits both. Though both the ephemeris data and almanac data provide location data for a given satellite, the ephemeris data provides accuracy for location calculation.

c01.indd 4

c01.indd 4

5/10/2012 1:05:27 PM

5/10/2012 1:05:27 PM

Methods Used to Determine Location x 5

To calculate its location, a GPS receiver must be able to determine its distance from multiple satellites. It does this using the ephemeris data. Included in the data that is transmitted from the satellite, along with the position data, is the time at which the transmission started. Each GPS satellite contains a highly accurate timekeeping mechanism that allows the satellite to keep its time in sync with the rest of the satellites. To produce an accurate location calculation, the GPS satellites and GPS

receivers must have their clocks highly synchronized. Even the slightest difference in time can cause large errors when computing location.

Using the transmission start time, the GPS receiver can calculate the time it took for the transmission to be received (the receiver knows when the transmission ended). This calculation is made with the assumption that the radio waves that transmit the data travel at the speed of light in a vacuum (which is not always the case). Using the start time, end time, and a constant for the speed of light, a GPS receiver can calculate the distance of the satellite from the receiver.

Using the distance from multiple satellites, the GPS receiver can triangulate its current location.

Essentially, the point at which all the spheres intersect is the location of the receiver. A minimum of three satellites is needed to determine a two-dimensional location (latitude and longitude).

Communications from additional satellites allow a GPS receiver to determine additional positional information such as altitude. A GPS receiver will not limit itself to only four satellites. In general as the number of satellites from which the receiver can receive data increases, so does the accuracy of the location (there is an upper limit, however).

GPS is useful for determining current location, but it does have some drawbacks (especially for mobile platforms), one of which is the time it can take to calculate the current position. Before the location can be calculated, multiple satellites must be found. Many satellites are orbiting the earth, but only a handful can be “seen” at any given time because most will be below the horizon and blocked by the earth (remember, a line of sight is needed). The almanac used by the GPS system can provide assistance in determining which satellites should be used for a given location at a given time.

However, if the GPS does not have a relatively current almanac, it will need to have the almanac data transmitted by a GPS satellite. This can be a slow process.

GPS Improvements

Although standard GPS can provide accurate location data, the limitations it imposes make it diffi cult for mobile devices to use it. To help circumvent some the limitations of standard GPS, modern mobile devices make use of assisted GPS (A-GPS) and possibly simultaneous GPS (S-GPS).

A-GPS

A-GPS uses the mobile network to transmit the GPS almanac along with other pieces of information to a mobile device. This use of the mobile network allows for faster transmission of the almanac, which may lead to faster determination of the device’s current location. In addition, because the almanac contains information about all of the GPS satellites, the device will know the approximate location of the GPS satellites in its line of sight. This will also improve the time it takes to acquire a GPS location.

Examination of the GPS confi guration fi le provides some insight into where the A-GPS data comes from. Listing 1-1 shows an example of a GPS confi guration fi le that is used in Android for a device located in North America.

c01.indd 5

c01.indd 5

5/10/2012 1:05:28 PM

5/10/2012 1:05:28 PM

6 x CHAPTER 1 INTRODUCING THE ANDROID LOCATION SERVICE

LISTING 1-1: An example of a GPS confi guration fi le located in /system/etc/gps.conf

NTP_SERVER=north-america.pool.ntp.org

XTRA_SERVER_1=http://xtra1.gpsonextra.net/xtra.bin

XTRA_SERVER_2=http://xtra2.gpsonextra.net/xtra.bin

XTRA_SERVER_3=http://xtra3.gpsonextra.net/xtra.bin

Listing 1-1 shows that the GPS confi guration fi le can specify the location of the A-GPS data to download (XTRA_SERVER_1, XTRA_SERVER_2, and XTRA_SERVER_3) as well as a Network Time

Protocol (NTP) server that can be used to coordinate time (NTP_SERVER). NTP can be used to force coordination of time. This is important because GPS relies heavily on the clocks of a GPS receiver and the GPS satellites being in sync. Although the use of NTP does not guarantee true time synchronization down to the millisecond, it does help to prevent large time differences. Because of the numbers used in calculating times, like the speed of light, a small difference in time can lead to large inaccuracies in location calculations.

Though most users can read /system/etc/gps.conf, increased permissions are required to write to the fi le. Generally, users should not need to edit this fi le.

S-GPS

Devices that use standard GPS may use the same hardware to communicate with GPS satellites

and make mobile phone calls. This means that only one of these actions can take place at a time.

S-GPS addresses this issue by adding additional hardware that allows the GPS radio and the cellular network radio to be operational simultaneously. The ability to have two radios active can speed up GPS data transmission because it allows the data to be received while the cellular network radio is active.

Limitations

Although GPS can provide the most accurate location data, it does have limitations that may be diffi cult to work around. First is the fact that a GPS receiver needs a clear path to a GPS

satellite. This means that GPS receivers are unlikely to work indoors, and may even have problems outside in areas where the sky is not visible (such as dense forests). Additionally, because multiple GPS satellites are needed to produce location information, it may take a substantial amount of time to acquire a location. This is exacerbated by that fact that devices may contain low-powered GPS radios. For these reasons, other sources of location information are

sometimes needed.

Objects that obstruct a GPS signal may cause the signal to be refl ected before it reaches the GPS

receiver. As stated earlier, the time it takes a signal to reach the GPS receiver is used to calculate the distance between the GPS satellite and the GPS receiver. GPS signals that are refl ected off of objects have a different path from the GPS satellite to the GPS receiver and cause the distance calculation to be erroneous. These types of errors are called multipath errors and can cause the location to appear to jump from one place to another. This is often seen in urban areas where GPS signals frequently bounce off of tall buildings.

c01.indd 6

c01.indd 6

5/10/2012 1:05:28 PM

5/10/2012 1:05:28 PM

Methods Used to Determine Location x 7

Controlling GPS

For most cases, GPS should “just work” as far as app developers are concerned. Typically, there will be no reason to interfere with the source of the A-GPS data, or when the A-GPS data should be purged and reinitialized.

However, Android does provide an API for controlling certain aspects of GPS data. The

LocationManager class (which is introduced in detail in the next chapter) contains a sendExtraCommand() method that can be used to manipulate device GPS state. The LocationManager.send-

ExtraCommand() method takes three parameters: a string specifying the location provider, the extra command, and a Bundle that provides additional information for performing the command.

At the time of this writing, the GPS location provider supports only three extra commands:

‰

delete_aiding_data

‰

force_time_injection

‰

force_extra_injection

The delete_aiding_data command is used to remove the A-GPS data that has been previously

downloaded. It is the only extra command that makes use of the Bundle parameter, which is used to control what A-GPS data should be removed. The Bundle can contain Boolean values with keys to indicate which data to remove. The keys can be any of the following strings:

‰

ephemeris

‰

almanac

‰

position

‰

time

‰

iono

‰

utc

‰

health

‰

svdir

‰

scsteer

‰

sadata

‰

rti

‰

celldb-info

‰

all

Passing a null for the Bundle causes all the A-GPS data to be removed.

The force_time_injection command causes the current time to be retrieved from the confi gured NTP server and updated for the purposes of GPS calculations.

c01.indd 7

c01.indd 7

5/10/2012 1:05:28 PM

5/10/2012 1:05:28 PM

8 x CHAPTER 1 INTRODUCING THE ANDROID LOCATION SERVICE

The force_extra_injection command causes the A-GPS data to be downloaded from one of the

confi gured servers and used by the GPS location provider.

Network Provider

In Android, network-based location can use different methods for determining the location of a device. As of this writing, the network location provider can provide location information using cell towers, or based on wireless network information.

Using Wireless Network Access Points

Providing location information based on wireless network access points is one of the ways that Android supports location resolution with the network provider. Although it does require that the Wi-Fi radio is active, the Wi-Fi radio often consumes less battery power than the GPS hardware.

How It Works

Wi-Fi-based location detection works by having a device track what Wi-Fi access points it can detect and the current signal strength of those access points. The device then makes a query to the Google location service (which is different from the Android location service), which provides location data based on the Wi-Fi information. The Wi-Fi information collected by the device includes the mandatory access control (MAC) addresses of the Wi-Fi access points that are in range and the strength of the signal being received from those access points.

To provide location information based on visible Wi-Fi access

points, the Google location service must obtain information

about Wi-Fi access points and their locations. This informa-

tion is collected by Android devices when a user enables use

of Google’s location service in the Location Settings screen.

Figure 1-2 shows the confi rmation screen that is presented to

a user when enabling the Google location service as a source

of location data.

Pressing Agree on this screen allows the device to record

Wi-Fi information as well as current location information

(possibly provided by GPS) and transmit this information to

Google. This essentially allows Google use each and every

Android device as a way to update the Wi-Fi location infor-

mation and constantly maintain up-to-date data.

One of the main benefi ts of the Wi-Fi location source is that

it allows devices to acquire location information in areas

where GPS cannot provide location data. As stated in the

previous section, GPS is problematic when used indoors or

even in an urban environment where tall buildings can cause

signal problems. In contrast, an urban environment may

increase the accuracy of Wi-Fi-based location because of

FIGURE 1-2: Confi rmation screen

the abundance of Wi-Fi networks available to determine a

displayed when enabling Google’s

device’s current location.

location service

c01.indd 8

c01.indd 8

5/10/2012 1:05:28 PM

5/10/2012 1:05:28 PM

Methods Used to Determine Location x 9

Limitations

As with GPS, using Wi-Fi networks as a source of location information does have its limitations.

First, to determine the location, Wi-Fi networks must be in range. Additionally, the networks must have a publicly broadcasted service set identifi er (SSID) that has not been confi gured to be ignored by Android. Access points that have an SSID that ends in _nomap will not have their information sent to the Google location service.

Additionally, changes to the location of Wi-Fi access points can cause inaccuracies in the location data that is produced. For example, many people now have wireless networks in their homes for daily use. Assuming an Android device has been confi gured to use the Google location service, Android would have sent the access point MAC address and location to the Google location service.

If the user were to change the location of that access point (take it to a vacation home, for example), the location service might determine the device to be in the wrong location when the Wi-Fi location source is used.

Although the location service does allow for access point location to be updated via Android devices, Google does not allow users to explicitly set the location of an access point. An Android device will push the information to the location service, which may wait until other devices can confi rm the change before the location service is updated.

Using Cell IDs

In addition to using Wi-Fi information to determine device location, Android can also use the cellular network. The cellular network is used in a similar way as Wi-Fi access points to determine device location.

How It Works

To function properly, a cellular device must be in contact with a cell tower. As a device moves, it may connect to a different cell tower as the signal strength of an approaching cell tower becomes stronger. Knowing the unique ID of the tower that a device is currently connected to, and possibly the towers that a device was previously connected to, can provide insight to where the device is located assuming the location of a given cell tower is known.

Android and the Google location service work together to map cell tower IDs to location data in a way that is similar to Wi-Fi data. Once a device has been confi gured to use the network provider, it collects data on the current cell tower ID in addition to the visible wireless networks. For cell towers, this data includes the cell tower the device is currently connected to and the device’s current GPS location. With this information, the Google location service can develop a “map” of cell towers that includes their locations.

By again allowing Android devices to update cell ID information, the Google location service can maintain a constantly updated store of information that increases in accuracy as the number of entries increases.

When a device needs to fi nd its current location, it sends the ID of the cell tower it is currently connected to, as well as historic information about past cell towers it has used, to the Google location service. With this information, the Google location service can provide information about the c01.indd 9

c01.indd 9

5/10/2012 1:05:28 PM

5/10/2012 1:05:28 PM

10 x CHAPTER 1 INTRODUCING THE ANDROID LOCATION SERVICE

device’s current location based on the data it has about the cell tower network. If the IDs of multiple cell towers are sent to the Google location service, it can use triangulation to provide increased location accuracy. The Google location service cannot do this if the device submits only a single cell tower ID.

Limitations

The limitations for using cell tower IDs are similar to the limitations that exist when using Wi-Fi networks to determine location. However, because the location of cell towers is less likely to change than the location of wireless access points, some of the complications that may exist when using Wi-Fi access points are removed.

However, just like Wi-Fi access point data, the Google location service must have data on the cell tower IDs that are sent by a device in order to provide location data.

SUMMARY

This chapter presented an overview of how the location providers available in Android work and discussed their limitations. The decision of which location provider to use in which situation can be a complex topic, and is discussed at length in the following chapters.

c01.indd 10

c01.indd 10

5/10/2012 1:05:28 PM

5/10/2012 1:05:28 PM

Milette c02 V2 - 03/21/2012 Page 11

2

Determining a Device’s Current

Location

WHAT’S IN THIS CHAPTER?

‰

Introduction to the Android Location API components

‰

Introduction to the diff erent sources of location information in

Android

‰

Example usage of the Location API to determine a device’s current

location

Mobile app developers often have to determine the device’s current location. Knowing a

device’s location enables app developers to add increased functionality to a wide range of apps.

Location data is a key component to apps like Google Maps and Google Navigator, and is also used in Google search, Twitter, and Facebook to add another dimension to the data they are

already collecting.

For developers who have made the decision to include location data, Android provides a fairly robust API to its location service. Although on the surface this API may seem trivial to use, plenty of details — such as battery life and accuracy of location data — need to be considered.

As an introduction to the topic of location services in Android, this chapter provides a guided tour of the location portions of the API. In addition, the chapter presents an app that answers the most basic Android question (“Where am I?”) and presents location data on the screen.

Figure 2-1 shows the app’s screen.

c02.indd 11

c02.indd 11

5/11/2012 9:36:03 AM

5/11/2012 9:36:03 AM

Milette c02 V2 - 03/21/2012 Page 12

12 x CHAPTER 2 DETERMINING A DEVICE’S CURRENT LOCATION

FIGURE 2-1: Current location app

KNOW YOUR TOOLS

This chapter starts the discussion of the location service by fi rst taking a bird’s-eye view of some of the tools that Android has to offer. One of the fi rst things I do when I need to solve a problem is to take a look at what tools I have to work with. For Android, the majority of the classes that you will need when working with location data are located in the android.location package. For the example app, you will need to use fi ve members of the location package. These just happen to be the fi ve members of that package that you will frequently use when dealing with location data in Android.

Classes:

‰

LocationManager

‰

LocationProvider

‰

Location

‰

Criteria

Interfaces:

‰

LocationListener

Figure 2-2 shows a high-level overview of how the location components fi t together. Because these members are so important and used so frequently, the following sections discuss each one in a little more detail.

LocationManager

The main point of entry when using the location service in Android is the LocationManager. The LocationManager allows an app to tell Android when it is interested in receiving updated location c02.indd 12

c02.indd 12

5/11/2012 9:36:07 AM

5/11/2012 9:36:07 AM

Milette c02 V2 - 03/21/2012 Page 13

Know Your Tools x 13

information and when it no longer wants location updates. In addition, the LocationManager provides information about the current state of the location system such as available location providers, enabled location providers, and GPS status information. The LocationManager can also provide the last known (cached) location of the device.

Reads Location Provider requirements

LocationManager

Criteria

Enables

Notifies with Location Data

LocationProvider

LocationListener

Produces

Consumes

Location

FIGURE 2-2: Android location components

LocationProvider

LocationProvider is an abstraction for the different sources of location information in Android.

Android provides different sources of location data that have drastically different characteristics.

Though each provider generates location data differently, they all communicate with an app the same way and provide similar data to an app in the same manner.

Location

The Location class is what encapsulates the actual location data provided to an app from a location provider. It contains the quantifi able data such as latitude, longitude, and altitude. Once an app has received a Location object, it can start the application-specifi c processing on that data.

One important point about the Location class is that, although it has properties for a wide range of location data, not all location providers will populate all the properties. For example, if an app uses a location provider that does not provide altitude, the Location instance will not contain altitude information. The Location class also provides methods that allow an app to check if an instance contains the information (hasAltitude() in this case).

Criteria

An app can use the Criteria class to query the LocationManager for location providers that contain certain characteristics. This is useful for times when an app is less concerned with which actual providers are used and more concerned that location providers have some common characteristics.

The Criteria class prevents an app from worrying about the implementation details of working c02.indd 13

c02.indd 13

5/11/2012 9:36:07 AM

5/11/2012 9:36:07 AM

Milette c02 V2 - 03/21/2012 Page 14

14 x CHAPTER 2 DETERMINING A DEVICE’S CURRENT LOCATION

with individual location providers directly. Once instantiated, an app can set/unset attributes on a Criteria class to refl ect the characteristics of the location providers that it is interested in. Table 2-1

provides the list of the attributes on the Criteria class that can be used to select a location provider.

TABLE 2-1: Location Criteria Attributes

ATTRIBUTE

EXPLANATION

POSSIBLE VALUES

accuracy

Indicates the overall

Criteria.ACCURACY_FINE or Criteria.

level of accuracy for a

ACCURACY_COURSE

location provider.

altitudeRequired

Indicates whether a

True or false

location provider needs

to provide altitude

information.

bearingRequired

Indicates whether a

True or false

location provider needs

to provide bearing (the

direction being traveled)

information.

bearingAccuracy

Required accuracy for

Criteria.ACCURACY_HIGH or Criteria.

bearing information.

ACCURACY_LOW

costAllowed

Indicates whether the

True or false

location provider is

allowed to cost the user

money.

horizontalAccu-

Required accuracy for

Criteria.ACCURACY_LOW, Criteria.

racy

latitude and longitude

ACCURACY_MEDIUM, or Criteria.

values.

ACCURACY_LOW

powerRequirement

Amount of battery

Criteria.POWER_LOW, Criteria.POWER_

power required by the

MEDIUM, or Criteria.POWER_LOW

location provider.

speedRequired

Indicates whether

True or false

a location provider

needs to provide speed

information.

speedAccuracy

Required accuracy for

Criteria.ACCURACY_HIGH or Criteria.

speed information.

ACCURACY_LOW

verticalAccuracy

Required accuracy for

Criteria.ACCURACY_HIGH or Criteria.

altitude information.

ACCURACY_LOW

c02.indd 14

c02.indd 14

5/11/2012 9:36:08 AM

5/11/2012 9:36:08 AM

Milette c02 V2 - 03/21/2012 Page 15

Determining the Appropriate Location Provider x 15

LocationListener

The LocationListener interface contains a group of callback methods that are called in reaction to changes in a device’s current location or changes in location service state. The LocationManager enables an app to register/unregister a location listener implementation that can be used to process the changes in state.

There are two ways to receive location updates from the location service: a LocationListener and a PendingIntent. This chapter focuses on using a LocationListener; the use of a PendingIntent is deferred until the next chapter.

Now that the tools needed to implement the app have been introduced, the following sections dig into the mechanics of requesting and processing the location information.

SETTING UP THE ANDROID MANIFEST

As with many of the services that Android provides, the location service requires an app to declare its intentions to use it in the Android manifest. The Android manifest declaration must defi ne the precision of the location data that will be requested. Like any other Android permission, the end user will be shown the list of requested permissions at install time and will be able to decline installation upon seeing that list. Some users are a little squeamish at the thought of allowing an app to determine their location if it is not clear why the app would need this information. Adding superfl uous permissions is a good way to scare users away.

The two permissions that deal with live location data are android.permission.ACCESS_FINE_

LOCATION and android.permission.ACCESS_COARSE_LOCATION. As the names might indicate, the

permissions defi ne the level of accuracy that will be provided to an app from the location service.

Ultimately, these permissions defi ne which location providers can be used in an app. Because the android.permission.ACCESS_FINE_LOCATION permission provides more accurate location data, it can be used without explicitly specifying android.permission.ACCESS_COARSE_LOCATION to grant permission for both fi ne-grained and coarse-grained location data. However, android.permission.

ACCESS_COARSE_LOCATION only allows for coarse-grained location data to be provided to an app.

For the app in this chapter, highly accurate location data is desired. So, the following code snippet is added to AndroidManifest.xml:

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

 Failure to request the correct permissions causes a java.lang.

SecurityException to be thrown at run time when requesting location updates.

DETERMINING THE APPROPRIATE LOCATION PROVIDER

Multiple sources of location data in Android provide varying levels of accuracy and battery consumption. Determining when to use the different providers can have a big impact on the overall user experience of an app. The location providers available in Android are:

c02.indd 15

c02.indd 15

5/11/2012 9:36:08 AM

5/11/2012 9:36:08 AM

Milette c02 V2 - 03/21/2012 Page 16

16 x CHAPTER 2 DETERMINING A DEVICE’S CURRENT LOCATION

‰

GPS location provider

‰

Network location provider

‰

Passive location provider

An app can declare which location provider to use in one of two ways: by explicitly registering each desired location provider with the LocationManager, or by specifying attributes in a Criteria object and passing that object to the LocationManager. Using the Criteria object is useful for allowing the user to customize the source of location data at run time. This may be of importance to a user because use of some location providers can cost them money.

GPS Location Provider

The GPS location provider uses orbiting satellites and time to determine the current location of a device, and tends to produce the most accurate location data. However, because it relies on a separate radio, the GPS provider can also consume more battery power than other location providers.

This can be a major issue depending on the length of time an app needs to actively be receiving and processing location data.

In addition to consuming more battery power, the GPS location provider can also take a long time to acquire a fi x (location data). Time to fi rst fi x (TTFF) values of over a minute are common, and can vary drastically from device to device or between different versions of Android. In addition, obtaining a GPS fi x indoors is unlikely because a direct line to the sky is usually required. TTFF is important to pay attention to because it is generally a bad idea to block the user from performing a task while an app is waiting for location data.

Network Location Provider

The network location provider uses two data sources to provide a location fi x: Wi-Fi network location and cell-tower location. The TTFF for the network provider can be substantially less than the TTFF for the GPS provider. However, the network provider produces much less accurate location data. Depending on the needs of an app, it might be worth trading the location accuracy of the GPS

provider for the low TTFF values of the network provider. The network provider may also consume less battery power than the GPS provider because it allows the user to leave the GPS radio and (possibly) the Wi-Fi radio off.

Passive Location Provider

The passive location provider allows an app to receive location information without having to explicitly request location update information from the LocationManager. The passive provider provides location updates when another app has explicitly requested location updates with either the GPS or network providers. This allows an app to piggy-back on the location information

requested from another app and prevent Android from making a special request for location data.

At fi rst glance, it may not be obvious how to use this provider. Essentially, the passive location provider allows an app to receive location updates in the background without consuming any additional battery power, because it receives updates only when something else is receiving updates.

c02.indd 16

c02.indd 16

5/11/2012 9:36:08 AM

5/11/2012 9:36:08 AM

Milette c02 V2 - 03/21/2012 Page 17

Determining the Appropriate Location Provider x 17

This implies that an app does not have any control over which other providers are used to receive location updates, or the frequency at which the updates will arrive (the other apps have defi ned this when setting up the LocationManager). Because of this, use of the passive provider mandates the use of the android.permission.ACCESS_FINE_LOCATION permission so that data from both the

GPS and network providers can be received. The Location object that is received will contain information about the source of the location data.

The passive provider is not guaranteed to receive any location updates. If no other apps are receiving location updates, the passive provider will not receive any either. Because of this, the passive provider is generally not appropriate to use when an app is in the foreground and actively interacting with the user. Use the passive location provider to keep application data up to date while running in the background and without explicitly requesting location data.

It is good form for apps to be a “good citizens” on an Android device and remove requests for location updates when they app exit. If an app makes the distinction of closing as opposed to backgrounding (user clicks “back” as opposed to user pressing “home”), then the app should unregister for updates even when using the passive provider.

Accuracy versus Battery Life

The common theme when choosing location providers is deciding between increased accuracy and increased battery consumption. Although most apps that need location data could benefi t from more accurate data, many of them do not truly need the accuracy, especially at the expense of additional battery power.

Table 2-2 provides a summary of the location providers available in Android.

TABLE 2-2: Location Providers

LOCATION PROVIDER

REQUIRED PERMISSION

BATTERY CONSUMPTION

ACCURACY

GPS Provider

android.permission.

Consumes more bat-

Provides the

ACCESS_FINE_LOCATION

tery power than other

most accu-

or android.permission.

location providers

rate location

ACCESS_COARSE_LOCATION

data

Network Provider

android.permission.

Consumes less battery

Provides less

ACCESS_COARSE_LOCATION

power than the GPS

accuracy

provider

than the GPS

provider

Passive Provider

android.permission.

N/A

N/A

ACCESS_FINE_LOCATION

Determining which location providers are the appropriate the source of location data is an important decision when using location services. As with many other development decisions, trade-offs exist that need to be considered.

c02.indd 17

c02.indd 17

5/11/2012 9:36:09 AM

5/11/2012 9:36:09 AM

Milette c02 V2 - 03/21/2012 Page 18

18 x CHAPTER 2 DETERMINING A DEVICE’S CURRENT LOCATION

RECEIVING LOCATION UPDATES

Before getting knee-deep into Java code, one more topic warrants discussion: how an app actually gets notifi ed about location updates. Recall from an earlier discussion that location data can be delivered to an app in two ways: a direct call to a LocationListener, or by a broadcasted Intent.

The LocationListener approach is the simpler approach (and the one used for this chapter’s example app), but the broadcast Intent approach can offer more fl exibility, especially if location update information needs to be provided to more than one application component.

In either case, an app must tell the LocationManager when it is ready to start receiving updates as well as when it no longer wants location updates. How the location updates get sent to an app is defi ned by how an app registers for location updates with the LocationManager.

Receiving Location Updates with a LocationListener

Objects that implement LocationListener are notifi ed of location updates by a call to their onLocationChanged() method. The specifi c LocationListener instances which will be notifi ed about a location update are registered with LocationManager. When the LocationManager has a new location to offer, it makes a call to onLocationChanged() for each listener. Further discussion of LocationListener usage is deferred to when the Java code for the example app is introduced in the section “Implementing LocationListener.”

Receiving Location Updates with a Broadcast Intent

Having an Intent broadcasted with location updates can offer increased fl exibility in situations where an app needs the update to be received by multiple application components. To make use of the broadcasted Intent, an app needs to implement a BroadcastReceiver and register it to receive location update Intent(s). This can happen either in an Android manifest or at run time. The app created in Chapter 4 includes use of a broadcast Intent.

IMPLEMENTING THE EXAMPLE APP

This section provides the details of how to put all the pieces of the location API together and start getting location data.

The example app has an activity, CurrentLocationActivity, that displays the current location and contains a button that allows the user to enable/disable location providers. Once the app gets a single location, it displays some of the location details on the screen. This will enable the user to see with the location service in action on an actual device and enable the user to start getting a feel for how accurate the various location providers are as well as how their TTFF values differ. It is important to understand the details of accuracy/TTFF and how they correlate to different providers when making app development decisions.

Implementing LocationListener

To implement LocationListener, a class must contain a concrete implementation for the following methods:

c02.indd 18

c02.indd 18

5/11/2012 9:36:09 AM

5/11/2012 9:36:09 AM

Milette c02 V2 - 03/21/2012 Page 19

Implementing the Example App x 19

‰

abstract void onLocationChanged(Location location)

‰

abstract void onProviderDisabled(String provider)

‰

abstract void onProviderEnabled(String provider)

‰

abstract void onStatusChanged(String provider, int status, Bundle extras)

These methods are discussed in the following sections.

onLocationChanged()

The method that an app is most likely to interact with is onLocationChanged(). This is the method that is called when a new location is ready for consumption by an app. The single parameter to this method is a Location object that contains the details of the location (latitude, longitude, altitude, and so on). At times, this will be the only method an app needs to implement from the LocationListener. However, the app will need to provide an implementation for the other methods to avoid compilation errors, the implementations can be left empty (I like to add a comment indicating that they were intentionally left blank for future developers). For this app, the onLocationChanged() method simply takes the Location object it was passed and uses its data to populate the UI views (see Listing 2-1).

LISTING 2-1: Receiving a location update

@Override

public void onLocationChanged(Location location) {

latitudeValue.setText(String.valueOf(location.getLatitude()));

longitudeValue.setText(String.valueOf(location.getLongitude()));

providerValue.setText(String.valueOf(location.getProvider()));

accuracyValue.setText(String.valueOf(location.getAccuracy()));

long timeToFix = SystemClock.uptimeMillis() - uptimeAtResume;

timeToFixValue.setText(String.valueOf(timeToFix / 1000));

findViewById(R.id.timeToFixUnits).setVisibility(View.VISIBLE);

findViewById(R.id.accuracyUnits).setVisibility(View.VISIBLE);

}

onProviderDisabled() and onProviderEnabled()

The onProviderDisabled() and onProviderEnabled() methods provide a way for an app to

be notifi ed when the user enables or disables a location provider from the location settings menu.

Imagine, for example, that a user is currently running an app and decides to put the app in the background by pressing the home button and returning to the desktop. From there, the user can navigate to the device settings and enable or disable different location providers. These actions may be of interest to an app. If the user were to enable the GPS provider, the app would be able to get more accurate location information for the device.

The onProviderDisabled() and onProviderEnabled() methods are Android’s way of letting

an app know when the state of a provider changes. Each method provides a string parameter that c02.indd 19

c02.indd 19

5/11/2012 9:36:09 AM

5/11/2012 9:36:09 AM

Milette c02 V2 - 03/21/2012 Page 20

20 x CHAPTER 2 DETERMINING A DEVICE’S CURRENT LOCATION

specifi es the name of the location provider that was either enabled or disabled. The String provider name can be matched to the static constants in LocationManager to determine which provider had its state changed. These methods work well with LocationManager.getProviders(), which can be used to initially register providers that are currently enabled and dynamically add or remove more providers as they are enabled or disabled when onProviderEnabled() or onProviderDisabled()

is called.

onStatusChanged()

The onStatusChanged() method is called when a provider either goes offl ine or comes back online.

This is a different scenario than in the previous section where the user enabled or disabled the provider. In this scenario, the user has not changed the location settings; instead, the status of the actual provider has changed.

The parameters to this method are a string that represents the provider, an int representing the current status, and a Bundle that has optional data. The provider name is the same string that is passed to both onProviderEnabled() and onProviderDisabled(). The status will be one of the three

values listed in Table 2-3.

TABLE 2-3: onStatusChanged() Status Values

VALUE

STATUS

LocationProvider.OUT_OF_SERVICE

The LocationProvider is currently offl

ine and

probably will not come back online anytime soon.

LocationProvider.

The LocationProvider is currently offl

ine and

TEMPORARILY_UNAVAILABLE

should come back online soon.

LocationProvider.AVAILABLE

The LocationProvider is currently online.

The Bundle parameter contains optional provider-specifi c information. For example, a bundle for the GPS provider will contain the number of satellites used to come up with the location update.

Obtaining a Handle to LocationManager

Because the LocationManager is the front door into the location service, the app needs to get a reference to it. This is done with a call to Activity.getSystemService(LOCATION_SERVICE).

This is generally done in the onCreate() method of an Activity because multiple calls to the LocationManager throughout the lifetime of an Activity are common. Because the onCreate()

method is the fi rst method to be called in an activity’s life cycle, it is appropriate to acquire the location manager reference here. For the example app in this chapter, the remainder of the onCreate() method is spent retrieving references to the UI views that will hold and present the location data.

Listing 2-2 shows the implementation for the onCreate() method.

c02.indd 20

c02.indd 20

5/11/2012 9:36:09 AM

5/11/2012 9:36:09 AM

Milette c02 V2 - 03/21/2012 Page 21

Implementing the Example App x 21

LISTING 2-2: Obtaining a reference to the LocationManager

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.current_location);

locationManager = (LocationManager) getSystemService(LOCATION_SERVICE);

latitudeValue = (TextView) findViewById(R.id.latitudeValue);

longitudeValue = (TextView) findViewById(R.id.longitudeValue);

providerValue = (TextView) findViewById(R.id.providerValue);

accuracyValue = (TextView) findViewById(R.id.accuracyValue);

timeToFixValue = (TextView) findViewById(R.id.timeToFixValue);

enabledProvidersValue = (TextView) findViewById(R.id.enabledProvidersValue);

}

Listing 2-3 shows the layout for the activity that will display the current location data:

latitudeValue, longitudeValue, providerValue, accuracyValue, timeToFixValue, and

enabledProviderValue.

LISTING 2-3: Layout for CurrentLocationActivity

<?xml version=" 1. 0" encoding=" utf- 8"?>

<RelativeLayout xmlns:android=" http:// schemas. android. com/ apk/ res/ android"

android:orientation=" vertical"

android:layout_width=" match _ parent"

android:layout_height=" match _ parent">

<TextView android:id="@+ id/ latitudeLabel"

android:layout_height=" wrap _ content"

android:layout_width=" wrap _ content"

android:text="@ string/ latitudeLabel"

android:layout_alignParentTop=" true"

android:layout_marginRight=" 4dip" />

<TextView android:id="@+ id/ latitudeValue"

android:layout_height=" wrap _ content"

android:layout_width=" wrap _ content"

android:layout_alignTop="@ id/ latitudeLabel"

android:layout_toRightOf="@ id/ latitudeLabel" />

<TextView android:id="@+ id/ longitudeLabel"

android:layout_height=" wrap _ content"

android:layout_width=" wrap _ content"

android:text="@ string/ longitudeLabel"

android:layout_below="@ id/ latitudeLabel"

android:layout_marginRight=" 4dip" />

<TextView android:id="@+ id/ longitudeValue"

 continues

c02.indd 21

c02.indd 21

5/11/2012 9:36:09 AM

5/11/2012 9:36:09 AM

Milette c02 V2 - 03/21/2012 Page 22

22 x CHAPTER 2 DETERMINING A DEVICE’S CURRENT LOCATION

LISTING 2-3 (continued)

android:layout_height=" wrap _ content"

android:layout_width=" wrap _ content"

android:layout_alignTop="@ id/ longitudeLabel"

android:layout_toRightOf="@ id/ longitudeLabel" />

<TextView android:id="@+ id/ providerLabel"

android:layout_height=" wrap _ content"

android:layout_width=" wrap _ content"

android:text="@ string/ providerLabel"

android:layout_below="@ id/ longitudeLabel"

android:layout_marginRight=" 4dip" />

<TextView android:id="@+ id/ providerValue"

android:layout_height=" wrap _ content"

android:layout_width=" wrap _ content"

android:layout_alignTop="@ id/ providerLabel"

android:layout_toRightOf="@ id/ providerLabel" />

<TextView android:id="@+ id/ accuracyLabel"

android:layout_height=" wrap _ content"

android:layout_width=" wrap _ content"

android:text="@ string/ accuracyLabel"

android:layout_below="@ id/ providerLabel"

android:layout_marginRight=" 4dip" />

<TextView android:id="@+ id/ accuracyValue"

android:layout_height=" wrap _ content"

android:layout_width=" wrap _ content"

android:layout_alignTop="@ id/ accuracyLabel"

android:layout_toRightOf="@ id/ accuracyLabel" />

<TextView android:id="@+ id/ accuracyUnits"

android:layout_height=" wrap _ content"

android:layout_width=" wrap _ content"

android:text="@ string/ metersUnit"

android:layout_alignTop="@ id/ accuracyLabel"

android:layout_toRightOf="@ id/ accuracyValue"

android:layout_marginLeft=" 4dip" />

<TextView android:id="@+ id/ timeToFixLabel"

android:layout_height=" wrap _ content"

android:layout_width=" wrap _ content"

android:text="@ string/ timeToFixLabel"

android:layout_below="@ id/ accuracyLabel"

android:layout_marginRight=" 4dip" />

<TextView android:id="@+ id/ timeToFixValue"

android:layout_height=" wrap _ content"

android:layout_width=" wrap _ content"

android:layout_alignTop="@ id/ timeToFixLabel"

android:layout_toRightOf="@ id/ timeToFixLabel" />

<TextView android:id="@+ id/ timeToFixUnits"

c02.indd 22

c02.indd 22

5/11/2012 9:36:09 AM

5/11/2012 9:36:09 AM

Milette c02 V2 - 03/21/2012 Page 23

Implementing the Example App x 23

android:layout_height=" wrap _ content"

android:layout_width=" wrap _ content"

android:text="@ string/ secondsUnit"

android:layout_alignTop="@ id/ timeToFixLabel"

android:layout_toRightOf="@ id/ timeToFixValue"

android:layout_marginLeft=" 4dip" />

<TextView android:id="@+ id/ enabledProvidersLabel"

android:layout_height=" wrap _ content"

android:layout_width=" wrap _ content"

android:text="@ string/ enabledProvidersLabel"

android:layout_below="@ id/ timeToFixLabel"

android:layout_marginRight=" 4dip" />

<TextView android:id="@+ id/ enabledProvidersValue"

android:layout_height=" wrap _ content"

android:layout_width=" wrap _ content"

android:layout_alignTop="@ id/ enabledProvidersLabel"

android:layout_toRightOf="@ id/ enabledProvidersLabel" />

<Button android:id="@+ id/ changeLocationProviderSettings"

android:layout_height=" wrap _ content"

android:layout_width=" match _ parent"

android:text="@ string/ changeLocationProviderSettingsText"

android:onClick=" onChangeLocationProvidersSettingsClick"

android:layout_alignParentBottom=" true" />

</RelativeLayout>

 Code snippet current_location.xml

Now that the app has a reference to the LocationManager, it is ready to request location information for the Location Service.

Requesting Location Updates

The app is now ready to ask Android to provide it with location information when it becomes available. It is important to understand that an app cannot ask Android to provide it with on-demand location information. Apps can only request to be notifi ed when updated location information is available.

This app needs only a single location update, so a call to one of the LocationManager.

requestSingleLocation() methods is needed. Examining the Android reference docs reveals

two fl avors of the LocationManager.requestSingleLocation() methods. One fl avor passes

a PendingIntent in order to broadcast an Intent with location data and the other passes a

LocationListener in order to receive direct callbacks. Again, this app uses the LocationListener approach. The CurrentLocationActivity has been made a LocationListener by having it implement the LocationListener interface. This allows the app to keep all the location code in one class.

Before a LocationListener can be registered with the LocationManager, the app developer must decide which location provider(s) the app will use. For this app, the decision is left to the end user because the app will use only the location providers that the user has enabled. To get the list of enabled location providers, a Criteria object is created and the attributes are set to include both c02.indd 23

c02.indd 23

5/11/2012 9:36:10 AM

5/11/2012 9:36:10 AM

Milette c02 V2 - 03/21/2012 Page 24

24 x CHAPTER 2 DETERMINING A DEVICE’S CURRENT LOCATION

the network and GPS location providers. Both the network and GPS providers provide at least a coarse location fi x, so passing Criteria.ACCURACY_COARSE to Criteria.setAccuracy() will

include both providers for consideration. The initialized Criteria instance is then passed to the getProviders() method along with a boolean (hard-coded to true) to indicate that only enabled location providers should be returned. Each location provider in the returned list is then used to obtain location data.

Because the app needs a new location every time the CurrentLocationActivity is presented to the user (because the user is allowed to enable or disable location providers in-app), the onResume() method is where the LocationManager is formally asked to provide a location update as they

become available, as shown in Listing 2-4.

LISTING 2-4: Registering with the LocationManager

protected void onResume() {

super.onResume();

StringBuffer stringBuffer = new StringBuffer();

Criteria criteria = new Criteria();

criteria.setAccuracy(Criteria. ACCURACY_COARSE);

enabledProviders = locationManager.getProviders(criteria, true);

if (enabledProviders.isEmpty())

{

enabledProvidersValue.setText("");

}

else

{

for (String enabledProvider : enabledProviders)

{

stringBuffer.append(enabledProvider).append(" ");

locationManager.requestSingleUpdate(enabledProvider,

this,

null);

}

enabledProvidersValue.setText(stringBuffer);

}

uptimeAtResume = SystemClock. uptimeMillis();

latitudeValue.setText("");

longitudeValue.setText("");

providerValue.setText("");

accuracyValue.setText("");

timeToFixValue.setText("");

findViewById(R.id. timeToFixUnits).setVisibility(View. GONE);

findViewById(R.id. accuracyUnits).setVisibility(View. GONE);

}

 code snippet CurrentLocation.java

c02.indd 24

c02.indd 24

5/11/2012 9:36:10 AM

5/11/2012 9:36:10 AM

Milette c02 V2 - 03/21/2012 Page 25

Implementing the Example App x 25

Thus far, this chapter has discussed how to register a LocationListener to receive updates.

The fi nal step is unregistering for those location updates when they are no longer required by the app.

Cleaning up After Yourself

At this point, the app is ready to start receiving and processing location data in

CurrentLocationActivity. The last part of the implementation is to have the app clean up after itself by unregistering the location listener when it no longer needs location updates. Forgetting to unregister a location listener could cause the providers and underlying hardware to remain active, thus wasting battery life. Not removing a location listener registration for the GPS provider causes (an enabled) GPS provider to actively retrieve and compute location data. This is visible to the user because the GPS provider has its own icon alerting the user to the issue. Leaving the GPS running when it is no longer needed is bad practice and can result in negative feedback in the Android Market.

The app doesn’t need any location updates when the CurrentLocationActivity is not interacting with the user. As shown in Listing 2-5, it will unregister the LocationListener on the onPause() method.

LISTING 2-5: Removing a LocationListener

@Override

protected void onPause() {

super.onPause();

locationManager.removeUpdates(this);

}

Had the BroadcastReceiver approach been used, the app would have again called

locationManager.removeUpdates(), and would have passed in the PendingIntent that was

passed to registerSingleUpdate().

Now that the app has code to initialize itself, process location updates, and clean up after itself, the next step in the example app implementation is responding to the user enabling/disabling location providers while the app is running.

Launching the Location Settings Activity

The fi nal detail of the app worth discussing is the button on the screen that enables the user to change location provider settings. In order to receive location data from a specifi c location provider, an app should ensure that the location provider is enabled by the user. If the user does not currently have the provider enabled, the location settings activity can be for them and allow them to enable the provider without leaving the app. This occurs in the example app when the Change Location Provider Settings button is pressed. Accomplishing this is actually pretty trivial, as evidenced by Listing 2-6, and it happens in the handler for the button click.

c02.indd 25

c02.indd 25

5/11/2012 9:36:10 AM

5/11/2012 9:36:10 AM

Milette c02 V2 - 03/21/2012 Page 26

26 x CHAPTER 2 DETERMINING A DEVICE’S CURRENT LOCATION

LISTING 2-6: Launching the location settings activity

public void onChangeLocationProvidersSettingsClick(View view)

{

startActivity(new Intent(Settings.ACTION_LOCATION_SOURCE_SETTINGS));

}

The location settings activity screen is displayed in Figure 2-3.

FIGURE 2-3: The location settings screen

Now that you have an app capable of determining your current location, try loading the app on an actual device and spending some time playing with the different location providers, paying special attention to TTFF and accuracy differences. Try running the app in different environments (indoors and outdoors, sunny and overcast, urban and rural) to see how they affect the various location providers. Spending some time getting a feel for how the providers work will give you an idea of their limitations.

SUMMARY

This chapter provided a tour around some of the basic SDK elements that are needed to work with Android location services. The chapter discussed some of the foundation classes, and examined the implementation of a simple app for determining the current location of a device. This app really is the “sunny day” scenario and does not handle some of the real-world problems an app will face when using location services. Although the information in this chapter is enough to get up and running, the next few chapters describe how to take full advantage of Android location services.

c02.indd 26

c02.indd 26

5/11/2012 9:36:10 AM

5/11/2012 9:36:10 AM

3

Tracking Device Movement

WHAT’S IN THIS CHAPTER?

‰

Using the Android location service to continuously track device location

‰

Using the Google Maps library to plot location data on a map

‰

Using broadcast receivers to track location in the background

‰

Considering eff ects on battery life

As an introduction to the Android location service, Chapter 2 discussed how to get the current location of a device. This chapter showcases additional functionality and presents an example app that tracks the location of a device as it moves. The app built in this chapter demonstrates how to receive the device’s current location, persist that location in a database, and plot the path traveled — all the persisted locations — on a map using the Google Maps external

library for Android.

With the additional functionality comes additional complexity. Continuously tracking device location data implies keeping more device hardware (such as Wi-Fi radio or GPS radio) active, which can adversely affect battery life. Also, the app needs to handle cases where it receives incorrect location data, as well as cases where one or all of the location providers are

not available.

The example app for this chapter consists of three Android application components: an

activity to display both the current location and previous locations, a broadcast receiver

that receives location data in the background and stores the new locations in a database,

and another broadcast receiver that receives location updates only when the app is in the

foreground in order to update the display.

c03.indd 27

c03.indd 27

5/10/2012 2:00:05 PM

5/10/2012 2:00:05 PM

28 x CHAPTER 3 TRACKING DEVICE MOVEMENT

The main screen of the app looks like Figure 3-1.

FIGURE 3-1: Main screen for the example app showing the map and the start and stop buttons COLLECTING LOCATION DATA

One of the tasks that the example app needs to perform is the collection and persistence of location data. Additionally, the app should continue to collect and save location data even when not in the foreground. The app should not stop tracking location data simply because the user receives a phone call or decides to respond to an e-mail.

Two of the Android application components that can be used to perform background tasks are

services and broadcast receivers. Each one has a unique list of pros and cons for tracking location data. The decision of which one to use will be heavily based on the needs of the app.

This chapter’s example app uses a broadcast receiver to receive location updates in the background.

However, this chapter also provides the shell of a service for receiving the location updates in the background, and provides some guidance for determining when to use a broadcast receiver and when to use a service.

Receiving Location Updates with a Broadcast Receiver

Using a broadcast receiver to acquire location information is similar to using a broadcast receiver to receive notifi cation of other Android events. A receiver is passed intents based on a fi lter, and those intents contain data for the broadcast receiver to read and process.

c03.indd 28

c03.indd 28

5/10/2012 2:00:10 PM

5/10/2012 2:00:10 PM

Collecting Location Data x 29

To receive location updates with a broadcast receiver, a developer must, in no particular order:

‰

Create a class that extends BroadcastReceiver.

‰

Register the child class as a BroadcastReceiver with Android.

‰

Register an intent to be broadcast when Android receives new location information with the

LocationManager.

The following sections tackle these three musts.

Extending BroadcastReceiver

As stated earlier, the example app uses two broadcast receivers to track and display device location.

Because these two classes will share some common functionality, both broadcast receivers extend LocationBroadcastReceiver. LocationBroadcastReceiver contains the functionality for retrieving location data from an intent and passing it along to its children.

The intent that is passed to LocationBroadcastReceiver can contain more than just the updated location information. Recall from Chapter 2 that the LocationListener interface provides methods that not only allow the Android location service to send location updates, but to also send messages to a LocationListener about the status of location providers as well as when location providers are enabled or disabled. The same information can be retrieved from the intent that is passed to a broadcast receiver. Table 3-1 lists the extras that can reside in an intent’s extras bundle when the intent is sent from the Android location service.

TABLE 3-1: Intent Extra Constants

CONSTANT

DATA T YPE

PROVIDED DATA

LocationManager.KEY_LOCATION_CHANGED

Location

Updated location

information

LocationManager.KEY_PROVIDER_ENABLED

boolean

Flag for broadcast event

when a provider is

enabled/disabled

LocationManager.KEY_PROXIMITY_ENTERING

boolean

Indicates when a

proximity alert is entering

or exiting

LocationManager.KEY_STATUS_CHANGED

int

The updated status of a

location provider when

the change in status is

broadcast

Querying the intent extras for the values presented in Table 3-1 provides the reasons why the intent was broadcast. For example, if LocationManager.KEY_LOCATION_CHANGED exists in the extras, the intent was sent in response to a new device location becoming available.

c03.indd 29

c03.indd 29

5/10/2012 2:00:10 PM

5/10/2012 2:00:10 PM

30 x CHAPTER 3 TRACKING DEVICE MOVEMENT

To handle all of the possible location information, a broadcast receiver must look for all the possible location-based keys in the intent extras. The implementation for LocationBroadcastReceiver.

onReceive() would look similar to Listing 3-1.

LISTING 3-1: Reading a location intent

@Override

public void onReceive(Context context, Intent intent)

{

if (intent.hasExtra(LocationManager.KEY_LOCATION_CHANGED))

{

// ...

}

else if (intent.hasExtra(LocationManager.KEY_PROVIDER_ENABLED))

{

// ...

}

else if (intent.hasExtra(LocationManager.KEY_PROXIMITY_ENTERING))

{

// ...

}

else if (intent.hasExtra(LocationManager.KEY_STATUS_CHANGED))

{

// ...

}

}

Registering the BroadcastReceiver with Android

To have a broadcast receiver receive intents that were broadcast, it needs to be registered with Android. There are two ways to perform the registration: in the manifest for your app or

by calling registerReceiver() on a Context. Although each registration method will

ultimately achieve the same result, they cause Android to interact differently with a broadcast receiver.

Manifest Registration

The manifest registration method allows a broadcast receiver to receive intents as they become available even if no other application components are currently running. With location intents, this means after the LocationManager has been made aware of the desire to receive location information via a call to LocationManager.requestLocationUpdates(). Manifest registration provides an easy method to have an app be notifi ed of location updates in the background, which is one of the requirements of this chapter’s example app.

The broadcast receiver that will receive location updates in the background for the example app is TrackLocationBroadcastReceiver. To register the broadcast receiver in the application manifest, a <receiver> element must be placed in the <application> section of the AndroidManifest.xml.

Though only the name of the class that extends BroadcastReceiver needs to be specifi ed, it makes sense to also specify the fi lter in the manifest as well so the broadcast receiver will only receive intents relevant to the app. The application manifest declaration for the broadcast receiver that tracks location updates is presented in Listing 3-2.

c03.indd 30

c03.indd 30

5/10/2012 2:00:10 PM

5/10/2012 2:00:10 PM

Collecting Location Data x 31

LISTING 3-2: Broadcast receiver manifest declaration

<receiver android:name=".location.TrackLocationBroadcastReceiver">

<intent-filter >

<action android:name="root.gast.playground.location.ACTION_LOCATION_CHANGED"/>

</intent-filter>

</receiver>

In Listing 3-2, the android:name attribute for the receiver is used to declare which class is the broadcast receiver that should receive the location updates. The code also specifi es that intents with the action "root.gast.playground.location.ACTION_LOCATION_CHANGED" should be sent to the receiver by declaring an action in the intent fi lter element.

The name of the action that is specifi ed is unique to this app. The string declared as the name in the manifest will match a string that is used to set up the intent that will be broadcast for location updates.

Registering broadcast receivers in the manifest enables you to “hook in” your broadcast receiver to Android in order to receive intents without needing to do anything with the broadcast receiver in your code. If you scan the example app for references to TrackLocationBroadcastReceiver, you won’t fi nd any. The code does not even need to instantiate a TrackLocationBroadcastReceiver instance because Android will take care of creating the instance and managing its life cycle.

TrackLocationBroadcastReceiver automatically starts receiving location updates when a

pending intent is registered with the LocationManager (and location updates are provided from a location provider) and stops receiving updates when the pending intent is unregistered from the LocationManager. In the example app, the pending intent is registered when the user presses the Start Tracking button and is unregistered when the user presses the Stop Tracking button in the main activity.

One important point to keep in mind when using manifest-registered broadcast receivers is that the actual instance that receives the call to onReceive() is valid only for the duration of the onReceive() call. In fact, each call to onReceive() may be on a different instance of the broadcast receiver. This means that you should avoid making asynchronous calls to other classes, or storing class-level state that may be needed for subsequent calls to onReceive().

Manual BroadcastReceiver Registration

To register a broadcast receiver outside the application manifest, an app needs to call

registerReceiver() on a Context instance. This should be done in application components that have life cycle methods for both starting and stopping a component (such as services and activities) because the broadcast receiver also needs to be unregistered with a call to unregisterReceiver().

Failure to unregister a broadcast receiver in an activity results in an exception where Android warns about a memory leak. This is one of the differences between manifest-based registration and manual registration. When using manual registration, the app is responsible for the life cycle of the broadcast receiver, whereas in manifest-based registration, Android takes care of the life cycle.

The other, more signifi cant difference between manifest-based registration and manual registration is that manual registration causes Android to use the same broadcast receiver instance. For manually registered broadcast receivers, this means an app can store class-level state to be used for subsequent calls to onReceive().

The example app uses a manually registered broadcast receiver to update the display with new location data as it arrives. TrackLocationActivity is responsible for maintaining the state of the display and ensuring new locations are added to the map. Because TrackLocationActivity needs to be made aware of location updates, it contains an inner class broadcast receiver that will receive location updates.

c03.indd 31

c03.indd 31

5/10/2012 2:00:10 PM

5/10/2012 2:00:10 PM

32 x CHAPTER 3 TRACKING DEVICE MOVEMENT

Because the broadcast receiver is needed only while the activity is in the foreground, it makes sense to register a broadcast receiver in the onResume() method and unregister it in the onPause() method of the activity. Listing 3-3 shows the partial implementation of the TrackLocationActivity

.onPause() and TrackLocationActivity .onResume() life cycle methods.

LISTING 3-3: Register/unregister broadcast receiver

@Override

protected void onResume()

{

super.onResume();

registerReceiver(broadcastReceiver, new IntentFilter(ADD_LOCATION_ACTION));

// perform additional onResume tasks

}

@Override

protected void onPause()

{

super.onPause();

unregisterReceiver(broadcastReceiver);

// perform additional onPause tasks

}

 code snippet TrackLocationActivity.java

The registering and unregistering of a broadcast receiver does not affect whether or not location updates in the form of intents are broadcast. It only affects the broadcast receiver’s ability to receive those intents.

Requesting Location Updates with a PendingIntent

Once the broadcast receiver has been implemented and registered with Android, the app needs to request that an intent is broadcast when location data updates are available. Before this request is made, a PendingIntent needs to be created. The example app creates the pending intent in createPendingIntent(), as shown in Listing 3-4.

LISTING 3-4: PendingIntent creation

private PendingIntent createPendingIntent()

{

Intent intent = new Intent(ADD _ LOCATION _ ACTION);

return PendingIntent. getBroadcast(getApplicationContext(),

 REQUEST _ CODE,

intent,

PendingIntent. FLAG _ UPDATE _ CURRENT);

}

 code snippet TrackLocationActivity.java

The parameters passed to getBroadcast() are the context which should perform the broadcast, a user-defi ned request code (which is not used), the intent to be broadcast, and a fl ag that controls which parts of the intent can be set when the intent is broadcast. The intent that will be broadcast is passed an action in its constructor when it is created. This string must match the action in any intent c03.indd 32

c03.indd 32

5/10/2012 2:00:10 PM

5/10/2012 2:00:10 PM

Collecting Location Data x 33

fi lter that is declared to receive this intent; whether it is in a manifest-registered broadcast receiver, or a manually registered broadcast receiver.

Once the pending intent is created, location updates are requested by calling LocationManager.

requestLocationUpdates() in a similar way that was done in Chapter 2 to register a

LocationListener. The code to register for location updates is displayed in Listing 3-5.

LISTING 3-5: Registering enabled location providers

Criteria criteria = new Criteria();

criteria.setAccuracy(Criteria. ACCURACY _ COARSE);

for (String provider : locationManager.getProviders(criteria, true))

{

Log. d(TAG, "Enabling provider " + provider);

locationManager.requestLocationUpdates(provider, 0, 0, pendingIntent);

}

As in Chapter 2, the code uses a criteria object to specify the characteristics of the location providers to use and limits the list of possible location providers to those that are currently enabled by the user.

One Intent, Multiple Receivers

Upon close inspection of the example app, you will notice that it makes use of two broadcast receivers: one that is manifest-registered and will collect location updates in the background, and one that is manually registered/unregistered and will collect location data in the foreground in order to update the UI.

Because both broadcast receivers should process incoming location data in a similar fashion, neither of the broadcast receivers extends BroadcastReceiver directly. Both TrackLocationBroadcastReceiver and UpdateViewBroadcastReceiver instead extend LocationBroadcastReceiver.

LocationBroadcastReceiver provides code to receive the intent that was broadcast, extracts the relevant location data, and calls the correct callback methods on the two broadcast receivers (see Figure 3-2). This may seem a tad superfl uous, but this allows the app to uniformly provide location fi ltering via FilteringLocationBroadcastReceiver, which is discussed later in the chapter.

BroadcastReceiver

LocationBroadcastReceiver

FilteringLocationBroadcastReceiver

UpdateViewBroadcastReceiver

TrackLocationBroadcastReceiver

FIGURE 3-2: BroadcastReceiver class diagram

c03.indd 33

c03.indd 33

5/10/2012 2:00:11 PM

5/10/2012 2:00:11 PM

34 x CHAPTER 3 TRACKING DEVICE MOVEMENT

While it makes sense to use a broadcast receiver to obtain background location updates in this case, a service can also be used. The next section introduces how to implement a service to receive background location updates.

Why Not Use a Service?

Services are a commonly used application component for performing tasks in the background

in Android. Allowing a service to receive location updates is as easy as implementing the

LocationListener and registering or unregistering the service to receive location updates from the LocationManager in the service’s onStartCommand() and onDestroy() lifecycle methods,

respectively. A service that tracks location in the background would look similar to Listing 3-6.

LISTING 3-6: Skeleton service that implements LocationListener

public class LocationTrackingService extends Service implements LocationListener

{

private LocationManager locationManager;

@Override

public IBinder onBind(Intent intent)

{

// ...

}

@Override

public void onLocationChanged(Location location)

{

// ...

}

@Override

public void onProviderDisabled(String provider)

{

// ...

}

@Override

public void onProviderEnabled(String provider)

{

locationManager.requestLocationUpdates(provider, 0, 0, this);

}

@Override

public void onStatusChanged(String provider, int status, Bundle extras)

{

// ...

}

@Override

public void onCreate()

{

super.onCreate();

locationManager = (LocationManager) getSystemService(LOCATION_SERVICE);

c03.indd 34

c03.indd 34

5/10/2012 2:00:11 PM

5/10/2012 2:00:11 PM

Viewing the Tracking Data x 35

}

@Override

public int onStartCommand(Intent intent, int flags, int startId)

{

for (String provider : locationManager.getProviders(true))

{

locationManager.requestLocationUpdates(provider, 0, 0, this);

}

return super.onStartCommand(intent, flags, startId);

}

@Override

public void onDestroy()

{

super.onDestroy();

locationManager.removeUpdates(this);

}

This is very similar to the example presented in Chapter 2 when registering an Activity to be notifi ed of location updates. When an app starts the service, the service will begin receiving location data on its callback methods. When the service is destroyed, it will unregister itself from the LocationManager and no longer receive location updates.

If a broadcast receiver and a service can provide similar functionality for this use case, why choose one over the other? One reason to choose a broadcast receiver over a service for certain background tasks is that they can be a lighter weight application component for passively collecting location data compared to a service. A broadcast receiver that is manifest-registered does not need to exist outside of the call to onReceive(), and therefore, it is available for garbage collection immediately after the method returns. Additionally, because a broadcast receiver can be declared in the application manifest, a broadcast receiver can require less setup code. In the case of this app, the manifest-registered broadcast receiver is not referenced at all in the app outside of the manifest.

The major downside of using manifest-registered broadcast receivers is that they should not maintain state across invocations of onReceive(). Once the onReceive() method has returned, the actual instance is a candidate for garbage collection. This may prevent instance data from being kept for the next call to onReceive(). This can be a tough limitation to overcome. If an app needs to store state across multiple location updates, a service may be a better application component to use. Broadcast receivers can be more convenient for simple computation, but services are better suited to complex routines that require a lot of state.

Now that the app can receive the data, the next step is to present the location data to the user. This will be discussed in the next section.

VIEWING THE TRACKING DATA

In order to present the location data to the user, the TrackLocationActivity will display a Google map with the tracked points plotted on it. While the activity is in the foreground, the app will also update the screen as new points are received in order to present the user with the most up-to-date location information.

c03.indd 35

c03.indd 35

5/10/2012 2:00:11 PM

5/10/2012 2:00:11 PM

36 x CHAPTER 3 TRACKING DEVICE MOVEMENT

Google Map Library Components

To display the Google map with the point data, TrackLocationActivity uses the following classes from the Google Maps external library:

‰

MapView

‰

OverlayItem

‰

ItemizedOverlay

‰

MapActivity

To make use of the maps library, the application manifest needs to contain the following code:

<uses-library android:name="com.google.android.maps" />. In addition to the manifest entry, the maps .jar fi le must be referenced. In Eclipse, this is done by setting the project build to a version of the Google APIs rather than a version of the standard Android platform. Figure 3-3

shows the target build selection screen in Eclipse.

FIGURE 3-3: Selecting the Google API build target in Eclipse

c03.indd 36

c03.indd 36

5/10/2012 2:00:12 PM

5/10/2012 2:00:12 PM

Viewing the Tracking Data x 37

MapView

The MapView is the view that displays the map in TrackLocationActivity. The layout for the

activity includes a <com.google.android.maps.MapView> element with an android:apiKey

attribute (see Listing 3-7). The API key attribute is necessary to use the map view. The key is generated from the certifi cate that is used to sign the APK for your app and can be obtained from the Google Maps external library homepage, which is located at http://code.google.com/android/

add-ons/google-apis/maps-overview.html (see Listing 3-7).

LISTING 3-7: TrackingLocationActivity layout

<com.google.android.maps.MapView

android:id="@+id/mapView"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:clickable="true"

android:apiKey="<app_api_key>"

android:layout_alignParentTop="true"

android:layout_above="@id/buttonsLayout" />

OverlayItem

OverlayItem is an object that is drawn on the map. The overlay item is a container for the location data — latitude, longitude, and accuracy — that needs to be represented on the map.

The class PointOverlayItem extends OverlayItem and is used in the example app as a container for location information that is received from the Android location service. The implementation of PointOverlayItem is shown in Listing 3-8.

LISTING 3-8: PointOverlayItem

public class PointOverlayItem extends OverlayItem

{

private float accuracy;

public PointOverlayItem(double latitude, double longitude, float accuracy)

{

super(createGeoPoint(latitude, longitude),

String. format("(%f, %f)", latitude, longitude),

"");

this.accuracy = accuracy;

}

private static GeoPoint createGeoPoint(double latitude, double longitude)

{

int e6Latitude = (int) (latitude * 1E6);

int e6Longitude = (int) (longitude * 1E6);

return new GeoPoint(e6Latitude, e6Longitude);

}

public float getAccuracy()

{

 continues

c03.indd 37

c03.indd 37

5/10/2012 2:00:12 PM

5/10/2012 2:00:12 PM

38 x CHAPTER 3 TRACKING DEVICE MOVEMENT

LISTING 3-8 (continued)

return accuracy;

}

}

 code snippet PointOverlayItem.java

ItemizedOverlay

ItemizedOverlay holds the list of overlay items that need to be drawn on the overlay, and defi nes how to draw the items. Because ItemizedOverlay is abstract, the example app creates the class TrackLocationOverlay that extends ItemizedOverlay. TrackLocationOverlay maintains a list

of PointOverlayItems that will be plotted in the map by the draw() method.

The draw() method defi nes how each overlay item will be drawn, and in this case will iterate over the list of PointOverlayItems and draw each one on the map. In addition, the method will also draw a line between each point to let the user easily determine the path that was tracked. In addition, a circle is drawn around each point, which indicates the accuracy of the location received from the location services. Listing 3-9 shows the implementation of the draw() method and the constructor that initializes the paint instances used to draw on the map.

LISTING 3-9: TrackLocationOverlay

public class TrackLocationOverlay extends ItemizedOverlay<OverlayItem>

{

private List<PointOverlayItem> pointOverlayList =

new ArrayList<PointOverlayItem>();

private Paint trackingPaint;

private Paint strokePaint;

private Paint fillPaint;

private MapView mapView;

public TrackLocationOverlay(Drawable defaultMarker, MapView mapView)

{

super(boundCenterBottom(defaultMarker));

trackingPaint = new Paint();

trackingPaint.setColor(Color. RED);

trackingPaint.setStrokeWidth(7);

strokePaint = new Paint();

strokePaint.setColor(Color. BLUE);

strokePaint.setStrokeWidth(2);

strokePaint.setStyle(Paint.Style. STROKE);

fillPaint = new Paint();

fillPaint.setColor(Color. BLUE);

fillPaint.setStyle(Style. FILL);

fillPaint.setAlpha(32);

this.mapView = mapView;

}

@Override

c03.indd 38

c03.indd 38

5/10/2012 2:00:12 PM

5/10/2012 2:00:12 PM

Viewing the Tracking Data x 39

protected OverlayItem createItem(int i)

{

return pointOverlayList.get(i);

}

@Override

public int size()

{

return pointOverlayList.size();

}

public void addPoint(double latitude, double longitude, float accuracy)

{

pointOverlayList.add(new PointOverlayItem(latitude,

longitude, accuracy));

populate();

mapView.invalidate();

}

@Override

public void draw(Canvas canvas, MapView mapView, boolean shadow)

{

super.draw(canvas, mapView, shadow);

// If list is empty, then there is nothing to draw

if (!pointOverlayList.isEmpty())

{

PointOverlayItem previous = null;

for (PointOverlayItem pointOverlayItem : pointOverlayList)

{

if (previous != null)

{

Projection projection = mapView.getProjection();

android.graphics.Point previousPoint =

projection.toPixels(previous.getPoint(), null);

android.graphics.Point currentPoint =

projection.toPixels(pointOverlayItem.getPoint(), null);

canvas.drawLine(previousPoint.x,

previousPoint.y,

currentPoint.x,

currentPoint.y,

trackingPaint);

}

previous = pointOverlayItem;

}

PointOverlayItem last =

pointOverlayList.get(pointOverlayList.size() - 1);

android.graphics.Point lastPoint =

mapView.getProjection().toPixels(last.getPoint(), null);

 continues

c03.indd 39

c03.indd 39

5/10/2012 2:00:12 PM

5/10/2012 2:00:12 PM

40 x CHAPTER 3 TRACKING DEVICE MOVEMENT

LISTING 3-9 (continued)

// Draw circle(s) for accuracy. The inner circle will be translucent

// so it does not cover up the point marker.

canvas.drawCircle(lastPoint.x,

lastPoint.y,

last.getAccuracy(),

strokePaint);

canvas.drawCircle(lastPoint.x,

lastPoint.y,

last.getAccuracy(),

fillPaint);

}

}

}

 code snippet: TrackLocationOverlay.java

MapActivity

To use the Google Maps external library, TrackLocationActivity will need to extend

MapActivity. MapActivity adds two methods that deserve some special attention:

isRouteDisplayed() and isLocationDisplayed(). These methods are used by the Google Maps

library for accounting purposes and need to accurately refl ect if the activity is currently displaying route and location information, respectively. The isRouteDisplayed() method should return a value of true if the MapActivity is being used to provide a route for directions. Because this app only displays the historical points received from the GPS, a value of false will be returned. Failure to accurately provide this information is against the terms of service (TOS) for the library.

The MapView is what displays the map and the points on the screen. MapActivity, and any class that extends it, will take care of the initialization and cleanup of the MapView.

Thus far, the book’s companion app can receive and display location data. The next section

discusses how and why location data needs to be fi ltered.

FILTERING LOCATION DATA

Often, it is necessary to fi lter the raw location data that is acquired from the Android location service.

One of the motivations to provide location data fi ltering is that multiple location providers may be providing location data simultaneously. Though this does add robustness to an app, it also adds complexity in that the app must determine which location updates to accept, and which ones to ignore.

For example, if an app is receiving location updates from the GPS provider with high accuracy, and then receives a location update from the network provider with a low accuracy, the app will probably want to ignore the location update from the network provider. Alternatively, if the app has not received any location updates for a long period of time, it may want to accept a location update from any location provider with any accuracy because inaccurate data is often better than no data.

The example app provides the fi ltering algorithms in the FilteringLocationBroadcastReceiver class. This is the parent class for both location broadcast receivers that are directly used in the app, and as such provides common fi ltering for both receivers. This is essential for the app because the user would not want a location to be persisted to the database but not updated on the screen. This c03.indd 40

c03.indd 40

5/10/2012 2:00:13 PM

5/10/2012 2:00:13 PM

Filtering Location Data x 41

architecture allows both broadcast receivers to use the same fi ltering algorithm without having to directly communicate to one another.

The fi ltering code is located in FilteringLocationBroadcastReceiver .onLocationChanged()

(see Listing 3-10) which is the callback method LocationBroadcastReceiver will call when a new location is received.

LISTING 3-10: FilteringLocationBroadcastReceiver

public abstract class FilteringLocationBroadcastReceiver extends

LocationBroadcastReceiver

{

private static final String TAG = "FilteringLocationBroadcastReceiver";

private static final int TIME_THRESHOLD = 30000; // 30 sec.

private static final int ACCURACY_PERCENT = 10;

private static final int VELOCITY_THRESHOLD = 200; // m/s

@Override

public void onLocationChanged(Context context, Location location)

{

Point lastPoint =

PointDatabaseManager. getInstance(context).retrieveLatestPoint();

if (lastPoint == null)

{

Log. d(TAG, "Adding point");

onFilteredLocationChanged(context, location);

}

else

{

float currentAccuracy = location.getAccuracy();

float previousAccuracy = lastPoint.getAccuracy();

Point point =

PointDatabaseManager. getInstance(context).retrieveLatestPoint();

// True IFF accuracy is greater, but limited to 10% of the previous

// accuracy and new point was generated by the same provider

float accuracyDifference = Math.abs(previousAccuracy - currentAccuracy);

boolean lowerAccuracyAcceptable = currentAccuracy > previousAccuracy

&& lastPoint.getProvider().equals(location.getProvider())

&& (accuracyDifference <= previousAccuracy / ACCURACY_PERCENT);

float[] results = new float[1];

Location. distanceBetween(point.getLatitude(),

point.getLongitude(),

location.getLatitude(),

location.getLongitude(),

results);

float velocity =

results[0] / ((location.getTime() - point.getTime()) / 1000);

// Accept the new point if:

 continues

c03.indd 41

c03.indd 41

5/10/2012 2:00:13 PM

5/10/2012 2:00:13 PM

42 x CHAPTER 3 TRACKING DEVICE MOVEMENT

LISTING 3-10 (continued)

// * The velocity seems reasonable (point did not jump)and one of the

// following:

// * It has a better accuracy

// * The app has not accepted a point in TIME_THRESHOLD

// * It's worse accuracy is still acceptable

if (velocity <= VELOCITY_THRESHOLD

&& (currentAccuracy < previousAccuracy

|| (location.getTime() - lastPoint.getTime()) > TIME_THRESHOLD

|| lowerAccuracyAcceptable))

{

Log. d(TAG, "Adding point");

onFilteredLocationChanged(context, location);

}

else

{

Log. d(TAG, "Ignoring point");

}

}

}

protected abstract void onFilteredLocationChanged(Context context,

Location location);

}

 code snippet: FilterintLocationBroadcastReceiver.java

Listing 3-10 provides the code that does the location fi ltering for the app. It compares the recently received location update with the last persisted location update, which needs to be retrieved from the internal app database because the manifest-registered broadcast receiver will not be able to store any instance state across a call to onLocationChanged(). A new location will be persisted only if:

‰

No other points have been persisted yet.

‰

The accuracy of the new point is better than the accuracy of the previous point.

‰

No point has been received in a defi ned time threshold (30 seconds in this example).

‰

The accuracy is slightly worse than the accuracy of the previous point, and the new point

came from the same provider.

The justifi cation for the fi rst two bullet points is fairly obvious. These are the scenarios in which the app is receiving its fi rst location and the app has received more accurate location data, respectively.

The third bullet point is the scenario in which the device may have been using location updates from the GPS provider and suddenly loses the ability to receive further updates. Because the app is receiving location updates from all enabled location providers, it should use less accurate data when more accurate data is not available.

The fourth bullet point handles the case where a given location provider continues to provide location updates. Location accuracy can fl uctuate and the app should not ignore updates with less accuracy as long as the accuracy is bounded.

c03.indd 42

c03.indd 42

5/10/2012 2:00:13 PM

5/10/2012 2:00:13 PM

Continuous Location Tracking and Battery Life x 43

The other fi lter being applied in FilteringLocationBroadcastReceiver is a velocity fi lter. This fi lter will ignore location updates where the location seems to “jump” to a location in a very short amount of time by calculating the velocity and comparing that value to a threshold.

The velocity is determined by calculating the distance between the most recent persisted point and the current location, and the difference in time between the most recent persisted point and the current location. The distance between the two points is retrieved with a call to Location.

distanceBetween(). This method takes the latitude and longitude coordinates of the two points and an array of fl oats, which will hold the results of the calculation. The result array must have a size of at least 1 and will return approximate distance in meters on the zero-ith position in the array.

Distance calculations are defi ned using the WGS84 ellipsoid.

For the example app, the velocity threshold is set to 200 m/s and the time threshold is set to 30

seconds, meaning that any location that would have required a velocity greater than 200 m/sec to reach it will be ignored.

At this point, the example app for this chapter is fully functional. However, a discussion on how continuous location tracking affects battery is in order because the battery life is adversely affected by continuously keeping device hardware active.

CONTINUOUS LOCATION TRACKING AND BATTERY LIFE

Continuously tracking a device’s location can have huge implications on battery life. This is mainly due to enabling hardware components like the GPS radio and the Wi-Fi radio. Chapter 2 briefl y discussed location and battery life, but really downplayed the issues because the app collected only a single point. Because the example app in this chapter is collecting multiple points at the user’s discretion, the issue of battery life can no longer be ignored.

Reducing Location Update Frequency

One of the simplest ways to reduce battery consumption while receiving location data is to reduce the frequency at which location updates need to be acquired from the location services. You do this by confi guring the parameters passed to LocationManager.requestLocationUpdates(). Recall

that when the user presses the Start Tracking button, the click handler made the following call to the LocationManager:

locationManager.requestLocationUpdates(provider, 0, 0, pendingIntent);.

The second and third parameters defi ne minimum time and minimum distance at which location updates should be received. By passing zeros for parameters, the location service will provide location updates as frequently as possible. Although this approach might yield the most

complete data set, it is also the least effi cient from the perspective of battery life. Specifying values greater than zero may prevent the radios for the location providers from constantly

remaining on, which can preserve battery life. Though some apps may absolutely require

location updates as often as they can be provided, this is not always the case. Limiting the time between updates and allowing the radios to rest is a simple way to improve battery consumption of an app.

c03.indd 43

c03.indd 43

5/10/2012 2:00:14 PM

5/10/2012 2:00:14 PM

44 x CHAPTER 3 TRACKING DEVICE MOVEMENT

The minimum time and minimum distance values don’t have to be applied to each location provider uniformly because the requestLocationUpdates() method allows the minimum time and

minimum distance to be specifi ed per location provider.

Limiting Location Providers

Another way to improve battery life is to limit the location providers that are used to acquire location updates. Although the user may have every location provider enabled, an app does not need to request updates from all of them. There may be times when an app can perform its desired task using low-power location providers and work around the reduced accuracy.

Remember from Chapter 2 that parameters to select location providers can be set in the Criteria class. Criteria.setPowerRequirement() will defi ne which location providers may be used by

passing POWER_LOW, POWER_MEDIUM, or POWER_HIGH.

SUMMARY

This chapter described a more complex use case for using location data and provided a runnable solution that demonstrates how Android can be used to track location data. Through the use of broadcast receivers and the Google Maps external library, the example app is able to both record and present location information to the user. This chapter also presented some solutions to common problems that can arise when tracking location data, such as dealing with erroneous location points and loss of connectivity with a location provider.

c03.indd 44

c03.indd 44

5/10/2012 2:00:14 PM

5/10/2012 2:00:14 PM

4

Proximity Alerts

WHAT’S IN THIS CHAPTER?

‰

Using the geocoding API to convert a location to latitude and longi-

tude points

‰

Using Android proximity alerts

‰

Understanding the limitations of the proximity alert API

‰

Achieving better battery life with an alternative proximity alert

implementation

Previous chapters discussed the basics of the Android location service: how to get a device’s current location and how to track a device as it moves. This chapter discusses the proximity alert functionality of the location service. Proximity alerts present a slightly different paradigm in that they allow an app to be notifi ed when a device enters or leaves a defi ned area as opposed to notifying an app when new location data is available. In addition to showcasing the proximity alert functionality, this chapter also presents some of the limitations associated with proximity alerts.

To demonstrate the Android proximity alert functionality, this chapter provides an app that allows a user to set a proximity alert for a target area. Once the device enters or leaves the target area, the app displays a notifi cation to alert the user that the device has either entered or left the target area.

APP STRUCTURE

The example app must perform three main tasks to achieve the overall goal of notifying the

user when the device enters or leaves a user-defi ned area. These tasks are:

‰

To allow the user to defi ne the target location in terms that can be used by the

LocationManager to set a proximity alert

‰

To make a call to the LocationManager to set the proximity alert

c04.indd 45

c04.indd 45

5/10/2012 2:00:45 PM

5/10/2012 2:00:45 PM

46 x CHAPTER 4 PROXIMITY ALERTS

‰

To respond to the proximity alert in order to set the Notification

To accomplish the fi rst task of allowing the user to defi ne the target area for a proximity alert, the app must translate a location entered by the user into a form that can be used by the LocationManager. The complexity here is that the LocationManager needs latitude and longitude coordinates to set a proximity alert, whereas humans tend to refer to locations by name. To help bridge this gap, Android supports geocoding.

Geocoding

 Geocoding is the act of converting a location name to its latitude and longitude coordinates.

Android provides the ability to geocode and reverse geocode (convert from latitude and longitude coordinates to location information) natively without the need for a third-party library. To set a proximity alert for a location on the user’s behalf, the app will allow the user to search for a location and then geocode that location to obtain the latitude and longitude coordinates for the proximity alert.

The example app contains the activity GeocodeActivity that

is responsible for both collecting target location informa-

tion from the user and geocoding the location for use by the

LocationManager. Figure 4-1 depicts the GeocodeActivity

class’s layout used to collect the user’s input.

The UI for GeocodeActivity allows the user to enter free-form

text and perform a location query by pressing the Lookup

Location button. The user will then be presented with a list

of possible matches based on the user’s entry. From here, the

user will be able to select a target location for the proxim-

ity alert. Figure 4-1 shows the app running GeocodeActivity

just after the user has entered a location string and pressed the

Lookup Location button. Notice that the user does not need

to be very specifi c when entering a location. In this case, the

user has simply entered Springfi eld and the app has presented

a list of Springfi eld locations as candidate target locations for

the proximity alert. This list of possible location matches is

generated by passing the location string provided by the user to

the Geocoder class.

FIGURE 4-1: The GeocodeActivity

android.location.Geocoder

screen

The Geocoder class is responsible for both geocoding and reverse geocoding in Android. In the example app, a call to Geocoder is made when the user clicks the Lookup Location button. The manifest for GeocodeActivity specifi es that the method onLookupLocationClick() will be

run when the button is clicked. The implementation for onLookupLocationClick() is shown in

Listing 4-1.

c04.indd 46

c04.indd 46

5/10/2012 2:00:49 PM

5/10/2012 2:00:49 PM

App Structure x 47

LISTING 4-1: Use of Geocoder

private static final int MAX _ ADDRESSES = 30;

public void onLookupLocationClick(View view)

{

if (Geocoder. isPresent())

{

EditText location =

(EditText) findViewById(R.id. enterLocationValue);

try

{

Geocoder geocoder = new Geocoder(this);

List<Address> addressList =

geocoder.getFromLocationName(location.getText().toString(),

 MAX _ ADDRESSES);

List<AddressWrapper> addressWrapperList =

new ArrayList<AddressWrapper>();

for (Address address : addressList)

{

addressWrapperList.add(new AddressWrapper(address));

}

ArrayAdapter<AddressWrapper> arrayAdapter =

new ArrayAdapter<AddressWrapper>(this,

android.R.layout. simple _ list _ item _ single _ choice, addressWrapperList);

setListAdapter(arrayAdapter);

}

catch (IOException e)

{

Log. e(TAG, "Could not geocode address”, e);

new AlertDialog.Builder(this)

.setMessage(R.string. geocodeErrorMessage)

.setTitle(R.string. geocodeErrorTitle)

.setPositiveButton(android.R.string. ok,

new DialogInterface.OnClickListener()

{

@Override

public void onClick(DialogInterface dialog, int which)

{

dialog.dismiss();

}

}).show();

}

}

}

 code snippet GeocodeActivity.java

c04.indd 47

c04.indd 47

5/10/2012 2:00:49 PM

5/10/2012 2:00:49 PM

48 x CHAPTER 4 PROXIMITY ALERTS

The method starts with a call to Geocoder.isPresent() to ensure that the methods needed to

perform geocoding and reverse geocoding (Geocoder.getFromLocationName() and Geocoder.

getFromLocation()) have concrete implementations in the version of Android that the device is running. The isPresent() method is available only in API level 9 and greater. One thing to note is that even when Geocoder.isPresent() returns true, the methods that perform the geocoding may still return empty lists. Though the Geocoder.isPresent() method provides some guidance as to whether geocoding can be performed, it does not offer any guarantees.

After checking the return value from Geocoder.isPresent(), the location string that the user has entered is read from the EditText view and passed to Geocoder.getLocationFromName() along

with the maximum number of locations to return (MAX_ADDRESSES). The example app limits the

Geocoder.getLocationFromName() to 30 addresses. This value should ensure that location that the user wants is included in the return value.

The string parameter that is passed to Geocoder.getLocationFromName() does not need to be a proper address in order to perform geocoding. As shown in Figure 4-1, the user can enter a loosely defi ned location such as the name of a city. In this case,

Geocoder.fromLocationName() will return a list of possible

matches. Naturally, the more specifi c the location string is,

the fewer number of locations will be returned. For example,

a regular street address complete with street number, street

name, city, state, and country will produce a small number

of matches (most likely one). On the other hand, a simple

city name will produce a larger number of matches because

multiple cities can exist with the same name.

The Geocoder.fromLocationName() method is pretty fl ex-

ible when it comes to the query strings that it can resolve. In

addition to locations, it can also resolve the coordinates of

landmarks as shown in Figure 4-2.

Geocoder.fromLocationName() relies on a network lookup to

resolve a location’s coordinates for a query string. If the network

lookup fails due to connectivity problems, an IOException will

be thrown by Geocode.fromLocationName(). In the example

app, An AlertDialog is then displayed to inform the user of

the problem and suggest they resubmit the query. Displaying the

AlertDialog will provide some insight for how often the

call fails.

FIGURE 4-2: Geocoding the Statue

of Liberty

Reading the Geocoded Response

The output of Geocoder.fromLocationName() is a list of Address objects that represent the

possible locations for the string that was passed as a parameter. The Address class contains several pieces of information about a location including the locale-specifi c address representation and latitude and longitude coordinates for the location. The data contained in the Address is based on c04.indd 48

c04.indd 48

5/10/2012 2:00:50 PM

5/10/2012 2:00:50 PM

App Structure x 49

the xAL (eXtensible Address Language) specifi cation (http://www.oasis-open.org/committees/

ciq/ciq.html#6) for representing addresses.

Because the Address class, and the xAL spec, are meant to support addresses in multiple locales (which have different formats), there is a fair amount of member data in the Address class. For the example app, only the latitude and longitude coordinates and enough address information to construct a meaningful string to display to the user are needed.

The example app requires the textual address information (street number, state, and city) for the purpose of displaying a meaningful location address to the user. The simplest way to access the textual address information is through the address line list member of the Address class. The address line list contains the lines of the address that are suitable to be displayed for any locale. The xAL

documentation states that the address list is a free-form list of text-based address lines that maintain order. This allows an app to simply iterate through the address line list and append each line in order to produce a string suitable to display to a user in any locale. Figures 4-3 and 4-4 show examples from locations that were geocoded in different locales. Pay attention to how the different addresses are represented in different areas of the world.

FIGURE 4-3: Geocoding the Taj Mahal

FIGURE 4-4: Geocoding Big Ben

Because the Address list that is returned is displayed in a ListView, the GeocodeActivity

contains an inner class that wraps each returned Address object. This is necessary because the default toString() method provided by Address returns a full string representation of the object.

c04.indd 49

c04.indd 49

5/10/2012 2:00:50 PM

5/10/2012 2:00:50 PM

50 x CHAPTER 4 PROXIMITY ALERTS

Although this is useful to developers in debugging, this is not acceptable data to display to a user.

In the example app, the address lines need to be appended together in order to produce a string that is suitable to show the user. Thus, the AddressWrapper.toString() method has the following

implementation:

@Override

public String toString()

{

StringBuilder stringBuilder = new StringBuilder();

for (int i = 0; i < address.getMaxAddressLineIndex(); i++)

{

stringBuilder.append(address.getAddressLine(i));

if ((i + 1) < address.getMaxAddressLineIndex())

{

stringBuilder.append(", ");

}

}

return stringBuilder.toString();

}

Now that the app has an Address instance, which also contains latitude and longitude for the location, it can set a proximity alert to notify the user when the device is close to

the target location.

Setting a Proximity Alert

Like many other operations that use location data in Android,

an app sets a proximity alert through the LocationManager.

Obtaining a reference to the LocationManager has been

discussed in previous chapters, so the details are left out

of this chapter.

In the example app, the proximity alert is set

in the ProximityAlertActivity class. The

ProximityAlertActivity launches the GeocodeActivity in

order to generate the latitude and longitude coordinates for a

location. These latitude and longitude coordinates are

returned to the ProximityAlertActivity through an Intent

so the proximity alert can be set. Figure 4-5 shows the screen for

ProximityAlertActivity.

Figure 4-5 depicts the ProximityAlertActivity after

it has received the geocoded location information from

GeocodeActivity. From here, ProximityAlertActivity

is ready to set a proximity alert once the user presses the Set

Proximity Alert button. The code then handles the button click

FIGURE 4-5: The

and sets the proximity alert as displayed in Listing 4-2.

ProximityAlertActivity screen

c04.indd 50

c04.indd 50

5/10/2012 2:00:50 PM

5/10/2012 2:00:50 PM

App Structure x 51

LISTING 4-2: Adding a proximity alert

public void onSetProximityAlertClick(View view)

{

EditText radiusView = (EditText)findViewById(R.id. radiusValue);

int radius =

Integer. parseInt(radiusView.getText().toString());

if (androidProximityTypeRadioButton.isChecked())

{

locationManager.addProximityAlert(latitude,

longitude,

radius,

-1,

pendingIntent);

}

else

{

Criteria criteria = new Criteria();

criteria.setAccuracy(Criteria. ACCURACY _ COARSE);

Intent intent = new Intent(this, ProximityAlertService.class);

intent.putExtra(ProximityAlertService. LATITUDE _ INTENT _ KEY, latitude); intent.putExtra(ProximityAlertService. LONGITUDE _ INTENT _ KEY, longitude); intent.putExtra(ProximityAlertService. RADIUS _ INTENT _ KEY, (float)radius); startService(intent);

}

setProximityAlert.setEnabled(false);

clearProximityAlert.setEnabled(true);

}

 code snippet ProximityAlertActivity.java

The else clause in Listing 4-2 is used to set up the custom proximity alert service, which is discussed later in this chapter.

Before a proximity alert can be set, onSetProximityAlertClick() fi rst must read the radius value that was entered by the user. This is necessary because to defi ne a target region for a proximity alert, the LocationManager needs the latitude and longitude coordinates for a location and a value to defi ne a radius (in meters) around that location. Once the radius is read, a call to LocationManager.addProximityAlert() is made. The parameters that are passed to

LocationManager.addProximityAlert() are listed in Table 4-1.

The code in Listing 4-2 sets a proximity alert that never expires for the location and radius that have been specifi ed by the user.

To turn off the proximity alert, the app provides a Clear Proximity Alert button. This is necessary since the proximity alert that is created has no expiration. ProximityAlertActivity

.

onClearProximityAlertClick() is the handler for the click event of the button. The method

clears the proximity alert with a call to LocationManager.removeProximityAlert(). The

implementation of the method is shown in Listing 4-3.

c04.indd 51

c04.indd 51

5/10/2012 2:00:51 PM

5/10/2012 2:00:51 PM

52 x CHAPTER 4 PROXIMITY ALERTS

TABLE 4-1: LocationManager.addProximityAlert() Parameters

T YPE

NAME

EXPLANATION

double

latitude

Latitude coordinate.

double

longitude

Longitude coordinate.

float

radius

The radius (in meters) around the location that should

trigger a proximity alert.

long

expiration

The time limit for the expiration. After the given amount

of time, the proximity alert will no longer be triggered.

A value of –1 indicates that the proximity alert has no

expiration.

PendingIntent

intent

The intent to broadcast when the proximity alert is

triggered.

LISTING 4-3: Clearing a proximity alert

public void onClearProximityAlertClick(View view)

{

if (androidProximityTypeRadioButton.isChecked())

{

locationManager.removeProximityAlert(pendingIntent);

}

setProximityAlert.setEnabled(true);

clearProximityAlert.setEnabled(false);

}

One thing to note in Listing 4-3 is the pendingIntent that is passed to removeProximityAlert().

That is the same intent that was used to create the proximity alert. Because the intent needs to be used in multiple areas through the class, it is created in the onCreate() method and stored in a member variable. Listing 4-4 shows the implementation of the onCreate() method and the creation of the PendingIntent that is used to both set and clear the proximity alert.

LISTING 4-4: onCreate() that creates and sets the PendingIntent used by the proximity alert

@Override

protected void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

setContentView(R.layout. proximity _ alert);

locationManager = (LocationManager) getSystemService(LOCATION _ SERVICE);

pendingIntent = ProximityPendingIntentFactory. createPendingIntent(this);

c04.indd 52

c04.indd 52

5/10/2012 2:00:51 PM

5/10/2012 2:00:51 PM

App Structure x 53

preferences = getPreferences(MODE _ PRIVATE);

androidProximityTypeRadioButton =

(RadioButton)findViewById(R.id. androidProximityAlert);

setProximityAlert = (Button) findViewById(R.id. setProximityAlert);

clearProximityAlert = (Button) findViewById(R.id. clearProximityAlert);

}

The app has now successfully added a proximity alert and will be notifi ed when the device is within the radius of the specifi ed location. To receive the registered intent that will be broadcast, the app needs to have a BroadcastReceiver.

Responding to a Proximity Alert

Once set, a proximity alert broadcasts an intent when it detects that a device has either entered the region defi ned by the location coordinates and the radius, or left that region. This means that to process a proximity alert, the example app will need a broadcastreceiver that is confi gured to receive the intent that was passed to LocationManager.addProximityAlert(). The broadcastreceiver

that is used in the example app extends the LocationBroadcastReceiver that was used in previous chapters. Once again, the LocationBroadcastReceiver saves this app some trouble by determining the why the intent was broadcast and which handler method should be invoked. Listing 4-5 shows the implementation of the LocationBroadcastReceiver.onReceive() method and highlights the code

that is responsible for processing an Intent sent on behalf of a proximity alert.

LISTING 4-5: LocationBroadcastReceiver.onReceive()

@Override

public void onReceive(Context context, Intent intent)

{

Log. d(TAG, "Received Intent”);

if (intent.hasExtra(LocationManager. KEY _ LOCATION _ CHANGED))

{

Log. d(TAG, "Received KEY_LOCATION_CHANGED”);

Location location =

(Location) intent.

getExtras().

get(LocationManager. KEY _ LOCATION _ CHANGED);

onLocationChanged(context, location);

}

else if (intent.hasExtra(LocationManager. KEY _ PROVIDER _ ENABLED))

{

Log. d(TAG, "Received KEY_PROVIDER_ENABLED”);

if (intent.

getExtras().

getBoolean(LocationManager. KEY _ PROVIDER _ ENABLED))

{

onProviderEnabled(null);

 continues

c04.indd 53

c04.indd 53

5/10/2012 2:00:51 PM

5/10/2012 2:00:51 PM

54 x CHAPTER 4 PROXIMITY ALERTS

LISTING 4-5 (continued)

}

else

{

onProviderDisabled(null);

}

}

else if (intent.hasExtra(LocationManager.KEY_PROXIMITY_ENTERING))

 {

 Log.d(TAG, "Received KEY_PROXIMITY_ENTERING");

 if (intent.getBooleanExtra(LocationManager.KEY_PROXIMITY_ENTERING,

 false))

 {

 onEnteringProximity(context);

 }

 else

 {

 onExitingProximity(context);

 }

 }

}

 code snippet LocationBroadcastReceiver.java

In Listing 4-5, the intent is checked for the LocationManager.KEY_PROXIMITY_ENTERING extra.

This extra indicates why the proximity alert was fi red. Proximity alerts can be fi red because the device is entering the target area, or because the device is exiting the target area. The boolean value of the LocationManager.KEY_PROXIMITY_ENTERING extra indicates whether the device is entering or leaving the defi ned area.

The concrete implementations for onEnteringProximity() and onExitingProximity() can be

found in ProximityAlertBroadcastReceiver. In both cases, the example app simply displays a

notifi cation to alert the user that the proximity alert has been received. Both methods are displayed in Listing 4-6.

LISTING 4-6: ProximityAlertBroadcastReceiver

public class ProximityAlertBroadcastReceiver extends LocationBroadcastReceiver

{

private static final int NOTIFICATION _ ID = 9999;

@Override

public void onEnteringProximity(Context context)

{

displayNotification(context, "Entering Proximity”);

}

@Override

c04.indd 54

c04.indd 54

5/10/2012 2:00:52 PM

5/10/2012 2:00:52 PM

Proximity Alert Limitations x 55

public void onExitingProximity(Context context)

{

displayNotification(context, "Exiting Proximity”);

}

private void displayNotification(Context context, String message)

{

String systemService = Context. NOTIFICATION _ SERVICE;

NotificationManager notificationManager =

(NotificationManager)context.getSystemService(systemService);

PendingIntent pi =

PendingIntent. getActivity(context, 0, new Intent(), 0);

Notification notification =

new Notification(R.drawable. icon,

message,

System. currentTimeMillis());

notification.setLatestEventInfo(context, "GAST”, "Proximity Alert”, pi);

notificationManager.notify(NOTIFICATION _ ID, notification);

}

}

The example app will now display a notifi cation when the device enters the defi ned location and when it exits the location.

PROXIMITY ALERT LIMITATIONS

So far, this chapter has presented the mechanics of implementing proximity alerts in Android.

Though proximity alerts can be a useful tool in an Android developer’s toolbox, it is important to understand the limitations and side effects of using them. Utilizing proximity alerts can have adverse effects on battery life as well as require additional permissions.

Battery Life

Although Android’s default proximity alert implementation may be simple to use, it can also be costly in terms of battery life. Notice that neither ProximityAlertActivity nor GeocodeActivity contains a call to LocationManager.requestLocationUpdates(). Recall from previous

chapters that the parameters to LocationManager.requestLocationUpdate() include values

that control the frequency of location updates and desired location providers. Remember that requesting frequent location updates, especially with the GPS location provider, consumes a lot of battery power. The fact that the default proximity implementation does not require a call to LocationManager.requestLocationUpdates() means that the app does not have control over

location update frequency or the location providers that will be used. Under the hood (at least at the time this book was written), Android sets up a LocationListener for each proximity alert that is set. Each proximity alert will use every location provider on a device and make a call to c04.indd 55

c04.indd 55

5/10/2012 2:00:52 PM

5/10/2012 2:00:52 PM

56 x CHAPTER 4 PROXIMITY ALERTS

LocationManager.

requestLocationUpdates() with both the minimum distance and minimum

time parameters set to a value of one. This means that a proximity alert with a long expiration will consume large amounts of battery power because the device will receive location updates frequently and continuously use the GPS location provider. Although this may be acceptable for proximity alerts with a short expiration, it can be problematic for proximity alerts with a long expiration.

Permissions

Remember from Chapter 2 that an app needs to include the android.permission.ACCESS_

FINE_LOCATION permission in order to use the GPS provider. Because Android’s proximity alert implementation uses the GPS provider, an app needs to include this permission in its manifest.

Failure to do so causes a SecurityException to be thrown when the LocationManager

.

addProximityAlert() method is called.

Though this is not inherently a problem, it does not give the app developer much fl exibility.

With regards to permissions in Android, the general rule of thumb is to limit the list of required permissions as much as possible. With the default proximity alert implementation, an app is required to have the android.permission.ACCESS_FINE_LOCATION permission even if it needs only coarse-grained location data.

MORE EFFICIENT PROXIMITY ALERT

Because of the limitations of the default proximity alert functionality, the example app provides an alternative implementation that the user can select. The ProximityAlertActivity screen provides radio buttons that allows the user to toggle between the default proximity alert implementation and the custom implementation (described shortly). The idea behind the custom implementation is to reduce the number of location updates needed to determine how close a device is to a target location, as well as limit the amount of time the GPS location provider is active. By explicitly making the call to LocationManager.requestLocationUpdates(), the app has more control over

which location providers are used as well as how often location updates should be received.

ProximityAlertService

The example app uses ProximityAlertService to notify the user of proximity alerts

in a more effi cient manner than the default Android implementation. As expected, the

ProximityAlertService extends the Service class and overrides the onCreate() and onStart()

methods. As shown in the following code snippet, the onCreate() method is pretty simple and just initializes a LocationManager member variable that will provide access to the location service:

@Override

public void onCreate()

{

super.onCreate();

locationManager = (LocationManager) getSystemService(LOCATION _ SERVICE);

}

The remainder of the initialization happens when the service is stated in the onStartCommand() method, which is shown in Listing 4-7.

c04.indd 56

c04.indd 56

5/10/2012 2:00:52 PM

5/10/2012 2:00:52 PM

More Effi

 cient Proximity Alert x 57

LISTING 4-7: ProximityAlertService.onStartCommand()

public int onStartCommand(Intent intent, int flags, int startId)

{

Location bestLocation = null;

latitude = intent.getDoubleExtra(LATITUDE _ INTENT _ KEY, Double. MIN _ VALUE); longitude = intent.getDoubleExtra(LONGITUDE _ INTENT _ KEY, Double. MIN _ VALUE); radius = intent.getFloatExtra(RADIUS _ INTENT _ KEY, Float. MIN _ VALUE); for (String provider : locationManager.getProviders(false))

{

Location location = locationManager.getLastKnownLocation(provider);

if (bestLocation == null)

{

bestLocation = location;

}

else

{

long locationStaleness =

System. currentTimeMillis() - location.getTime();

if (locationStaleness < AlarmManager. INTERVAL _ HOUR * 3

&& location.getAccuracy() < bestLocation.getAccuracy())

{

bestLocation = location;

}

}

}

if (bestLocation != null)

{

if (getDistance(bestLocation) <= radius)

{

inProximity = true;

}

else

{

inProximity = false;

}

}

locationManager.requestLocationUpdates(LocationManager. NETWORK _ PROVIDER,

0,

0,

this);

return START _ STICKY;

}

 code snippet ProximityAlertService.java

c04.indd 57

c04.indd 57

5/10/2012 2:00:52 PM

5/10/2012 2:00:52 PM

58 x CHAPTER 4 PROXIMITY ALERTS

Once started, the service initialization reads the extras that were passed in the intent that started the service. In the intent, the caller must set the latitude, longitude, and radius for the proximity alert.

These values defi ne the proximity alert in the same way that they would for LocationManager.

addProximityAlert(). In the example app, these extras are set in the else clause of

ProximityAlertActivity.onSetProximityAlertClick().

Once the member data is initialized, the service attempts to determine if the device is within the target area or outside the target area by calling LocationManager.getLastLocation() for each activated location provider. The accuracy of each provider’s last location is compared. The location with the best accuracy is used to determine if the device is currently in the target area.

The LocationManager.getLastLocation() method should not be used blindly. Although the

method is a convenient way to get location information immediately, the location information that is returned is cached. This may result in stale location data if the device has not received any location updates for a long period of time. It is possible for a user to turn off all location providers and then move several miles away before re-enabling the providers. To combat the possibility of stale data, the service checks the time on each cached location returned from LocationManager

.

getLastLocation() via the Location.getTime() method. If the location was received within the last three hours, it is probably safe to use it in this case.

Once the service is started, it starts receiving location updates from the network provider as often as the device can supply them. Because the service implements LocationListener, it needs to implement the onLocationChanged() method. This is where the core business logic is located.

onLocationChanged() is displayed in Listing 4-8.

LISTING 4-8: ProximityAlertService.onLocationChanged() and ProximityAlertService.getDistance()

@Override

public void onLocationChanged(Location location)

{

float distance = getDistance(location);

if (distance <= radius && !inProximity)

{

inProximity = true;

Log. i(TAG, "Entering Proximity”);

Intent intent =

new Intent(ProximityPendingIntentFactory. PROXIMITY _ ACTION);

intent.putExtra(LocationManager. KEY _ PROXIMITY _ ENTERING, true);

sendBroadcast(intent);

}

else if (distance > radius && inProximity)

{

inProximity = false;

Log. i(TAG, "Exiting Proximity”);

Intent intent =

new Intent(ProximityPendingIntentFactory. PROXIMITY _ ACTION);

intent.putExtra(LocationManager. KEY _ PROXIMITY _ ENTERING, true);

c04.indd 58

c04.indd 58

5/10/2012 2:00:53 PM

5/10/2012 2:00:53 PM

More Effi

 cient Proximity Alert x 59

sendBroadcast(intent);

}

else

{

float distanceFromRadius = Math. abs(distance - radius);

// Calculate the distance to the edge of the user-defined radius

// around the target location

float locationEvaluationDistance =

(distanceFromRadius - location.getAccuracy()) / 2;

locationManager.removeUpdates(this);

float updateDistance = Math. max(1, locationEvaluationDistance);

String provider;

if (distanceFromRadius <= location.getAccuracy()

|| LocationManager. GPS _ PROVIDER.equals(location.getProvider()))

{

provider = LocationManager. GPS _ PROVIDER;

}

else

{

provider = LocationManager. NETWORK _ PROVIDER;

}

locationManager.requestLocationUpdates(provider,

0,

updateDistance,

this);

}

}

private float getDistance(Location location)

{

float[] results = new float[1];

Location.distanceBetween(latitude,

longitude,

location.getLatitude(),

location.getLongitude(),

results);

return results[0];

}

 code snippet ProximityAlertService.java

The service achieves improved battery life with two optimizations over the default proximity alert implementation. First, it limits the usage of the GPS. Second, it reduces the frequency of requested location updates.

The last line in the onStartCommand() method in Listing 4-7 registers the service to receive location updates from the network provider. The goal is to use the network provider as long as possible and c04.indd 59

c04.indd 59

5/10/2012 2:00:53 PM

5/10/2012 2:00:53 PM

60 x CHAPTER 4 PROXIMITY ALERTS

enable the GPS provider only when the accuracy of the network provider can no longer provide an accurate estimate of the device’s distance from the target area. onLocationChanged() starts off by computing the distance between the newest location and the target location by making a call to getDistance(), which is displayed in the following code snippet:

private float getDistance(Location location)

{

float[] results = new float[1];

Location. distanceBetween(latitude,

longitude,

location.getLatitude(),

location.getLongitude(),

results);

return results[0];

}

Once the distance is calculated, onLocationChanged() can compare the current distance with the radius that was supplied to the service to determine if an intent should be broadcast to signal a proximity alert. If no alert needs to be broadcast, the method cancels the current request for location updates, calculates a new minimum distance, and re-registers for location updates using the new minimum distance.

The minimum distance calculation is shown here:

float distanceFromRadius = Math. abs(distance - radius);

// Calculate the distance to the edge of the user-defined radius

// around the target location

float locationEvaluationDistance =

(distanceFromRadius - location.getAccuracy()) / 2;

To make the calculation, the method fi rst computes the distance to the radius that encloses the target area. The absolute value for this calculation is needed to support both entering and exiting the target area defi ned by the radius. Once the distance to the radius of the target area is made, the new minimum distance can be computed as the (distanceFromRadius – location accuracy) /

2. Halving the distance from the location to the radius (after subtracting out the accuracy) allows the method request more frequent location updates as the device approaches the target area. This alone should produce better battery life than the default proximity alert implementation included in Android because the location update frequency will be drastically reduced for proximity alerts that need to span large distances.

To improve battery life further, the service also limits when the GPS location provider is used. Before re-registering for location updates, the service compares the accuracy of the latest point with the distance from the radius. Only when the accuracy of the latest point is greater than the distance from the target area, is the GPS provider enabled. In other words, even though the network provider has less accuracy than the GPS provider, it is still good enough if the device is far away from the target area.

This should allow the service to enable the GPS provider only when the network provider is no longer precise enough to any additional proximity determinations. If the newest location came from c04.indd 60

c04.indd 60

5/10/2012 2:00:53 PM

5/10/2012 2:00:53 PM

Summary x 61

the GPS provider, the GPS provider will continue to be used because the device is probably close enough to the target location to warrant its use.

SUMMARY

This chapter discussed parts of the location API that tend to get less attention than the parts discussed in previous chapters. The geocoding and proximity alert functionality can be an

invaluable tool in a developer’s Android toolbox.

Geocoding allows a user to communicate location information to an app in a way that is natural to a human. The ability to transform location and latitude and longitude coordinate information in both directions gives developers another way to communicate location information with a human outside of just a map.

The proximity alert API provides a quick way for Android to notify an app when the device is approaching or departing from a given location. Although it may have negative effects on battery life, the simple API allows it to be useful under the right conditions.

The alternative proximity alert implementation provided in this chapter provides a robust (and more complicated) solution that will reduce the cost of battery life for an app.

c04.indd 61

c04.indd 61

5/10/2012 2:00:54 PM

5/10/2012 2:00:54 PM

c04.indd 62

c04.indd 62

5/10/2012 2:00:54 PM

5/10/2012 2:00:54 PM

PART II

Inferring Information from Physical

Sensors

 CHAPTER 5: Overview of Physical Sensors

 CHAPTER 6: Errors and Sensor Signal Processing

 CHAPTER 7: Determining Device Orientation

 CHAPTER 8: Detecting Movement

 CHAPTER 9: Sensing the Environment

 CHAPTER 10: Android Open Accessory

c05.indd 63

c05.indd 63

5/10/2012 2:01:40 PM

5/10/2012 2:01:40 PM

c05.indd 64

c05.indd 64

5/10/2012 2:01:44 PM

5/10/2012 2:01:44 PM

5

Overview of Physical Sensors

WHAT’S IN THIS CHAPTER?

‰

Understanding the available sensors and how they actually work.

‰

Explaining the physical values the sensors measure and providing a

physical intuition for what these values mean.

‰

Understanding potential applications of each sensor and code for

common use cases.

Before the introduction of smartphones, people would interact with a range of narrowly

focused sensors in daily life. Each sensor usually resided in a single device, and was usu-

ally designed for a single purpose (oven temperature sensors, tire pressure sensors, television remote control systems, and so on). The introduction of smartphones put an exciting range of sensors in the hands of users and developers. Previously, sensors rarely existed in such quantities, or in such close and continuous proximity to the user. The availability of the multiple sensors on a single device adds a wide array of uses for the device.

Starting with Android 1.5 (API level 3), a standard set of sensors and the associated sensor API has been made available. In Android 2.3 (API level 9), new sensors and tools were added to the Android developer’s toolbox. The standard sensors now include the accelerometer,

gyroscope, magnetometer (compass), light sensor, proximity sensor, relative humidity sensor and pressure sensor. The tools added in API level 9 include methods to get rotation matrices, quaternions (an alternate representation of rotations), and “synthetic” sensors. These provide developers with a rich array of options for physical navigation, gaming control, augmented

reality, and many other uses.

Understanding the sensor API is useful, but not enough to develop innovative applications. To avoid pitfalls and common misconceptions, the developer must go beyond the typical “black

box” approach where a sensor’s data is digested by an app with little understanding of what the data represents or how it is produced. Fully understanding how the sensors work allows

c05.indd 65

c05.indd 65

5/10/2012 2:01:44 PM

5/10/2012 2:01:44 PM

66 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

you to select the right sensor for an app’s task, which can be diffi cult because there are sensors with overlapping capabilities and devices with different sensors. It also helps you to use the sensors better by allowing you to know how to interpret the sensor output properly. In addition, understanding how the sensors work allows you to identify new ways to use sensors in your app.

The goal of this chapter is to provide a deeper understanding of how Android sensors work and what type of data they produce.

 Portions of this chapter are reproduced from work created and shared by the

 Android Open Source Project and used according to terms described in the

 Creative Commons 2.5 Attribution License.

DEFINITIONS

Before getting into the discussion of sensors, some of the terms used throughout the chapter need to be introduced.

‰

 Microelectromechanical sensors (MEMS) are sensors that have been made on a tiny scale, usually on silicon chips using techniques borrowed from computer-chip manufacturing. All

Android sensors are made using these techniques, but technically, the term MEMS sensor refers to the ones that incorporate some part of their design that physically moves or vibrates: the pressure sensor, accelerometer, gyroscope, and possibly the compass are true MEMS sensors.

The sensors referenced through the Sensor class may be of two types: a raw sensor or a synthetic (or composite or virtual) sensor. Raw sensors give raw data from a sensor, and one raw sensor corresponds to one actual physical component inside the Android device.

Synthetic sensors provide an abstraction layer between application code and low-level device components by either combining the raw data of multiple raw sensors, or by modifying

the raw sensor data to make it easier to consume. They may report a physical quantity by

referring to two or three sensors (such as reporting orientation by referring to the com-

pass, which gives a north-south-east-west bearing and the accelerometer, which gives tilt).

Synthetic sensors may manipulate the sensor reading before reporting it; for example, by

integrating the gyroscope data before using it in addition to magnetometer and accelero-

meter to get a better determination of orientation. Regardless of the sensor type, the pro-

grammer accesses any type of sensor in the same way using the sensor API.

‰

Raw sensors:

‰

Sensor.TYPE_LIGHT

‰

Sensor.TYPE_PROXIMITY

‰

Sensor.TYPE_PRESSURE

‰

Sensor.TYPE_TEMPERATURE (deprecated)

‰

Sensor.TYPE_ACCELEROMETER

‰

Sensor.TYPE_GYROSCOPE

‰

Sensor.TYPE_MAGNETIC_FIELD

c05.indd 66

c05.indd 66

5/10/2012 2:01:47 PM

5/10/2012 2:01:47 PM

Defi nitions x 67

‰

Sensor.TYPE_RELATIVE_HUMIDITY

‰

Sensor.TYPE_AMBIENT_TEMPERATURE

‰

Synthetic sensors:

‰

Sensor.TYPE_ROTATION_VECTOR

‰

Sensor.TYPE_LINEAR_ACCELERATION

‰

Sensor.TYPE_GRAVITY

‰

Sensor.TYPE_ORIENTATION (deprecated)

Synthetic sensors do not necessarily have consistent implementation across differ-

ent devices. For example, some devices may use the gyroscope to determine rota-

tion vector values while others do not. Differences in hardware or sensor synthesis

implementations can cause synthetic sensors on some devices to provide better

readings than synthetic sensors on other devices. Although these differences exist,

it is still generally preferable to utilize synthetic sensor data over raw sensor data.

Sensors tend to be designed to provide good results for a device’s specifi c sensor

hardware.

However, not all synthetic sensors exist on all versions of Android. Versions of

Android earlier than 2.3 do not support the Sensor.TYPE_ROTATION_VECTOR,

Sensor.TYPE_LINEAR_ACCELERATION, or Sensor.TYPE_GRAVITY sensors.

‰

A binary sensor is a sensor that reports only one of two values. Most proximity sensors and some light sensors are binary sensors, reporting only a near and far measurement.

‰

A continuous sensor measures any of a range of values from its minimum to its maximum.

‰

 Dynamic range is the range of values the sensor can measure. For instance, the dynamic range of a light sensor may be 1 to 10,000 lux.

‰

 Saturation occurs when a sensor attempts to sense an input greater than its maximum mea-surable value. For example, a bright halogen light can saturate the light sensor in an Android device. In that case the sensor just reports the maximum value. When the stimulation is

removed, the signal returns values close to zero (sensor noise prevents a constant value of zero).

‰

In many other situations, resolution means the smallest detectable difference between actual physical values. This detectable difference is limited by noise. However, in Android, resolution (as reported by Sensor.getResolution()) refers to the smallest difference between possible numbers that may be reported by the sensor, even if the noise is greater. For example, an 8-bit accelerometer with a maximum range of 39.24 m/s2 will report a resolution of

39.24 / 28 = 0.15328126 m/s2.

‰

 Sampling frequency is the reciprocal of the time between measurements, and is measured in Hertz (which is equivalent to 1/s, where s is the unit of seconds). In Android, a sensor’s highest possible sampling frequency is measured using the public method Sensor.getMinDelay()which measures the minimum time between two measurements in microseconds.

The minimum delay is reported because the device may not necessarily take measurements as quickly as physically possible, but this minimum delay represents the maximum sampling

frequency possible by the sensor. Minimum delay can also vary across different hardware

sensor implementations and therefore may vary from device to device.

c05.indd 67

c05.indd 67

5/10/2012 2:01:48 PM

5/10/2012 2:01:48 PM

68 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

Now that some of the basic sensor concepts and defi nitions have been presented, the chapter will turn its focus to the different sensors Android supports.

ANDROID SENSOR API

The Android Sensor API consists of classes for requesting and processing sensor information from a device’s hardware. This section outlines the classes within the Android Sensor API and illustrates how to use the classes by providing examples in the form of code.

The entry point to the API is the SensorManager class, which allows an app to request sensor information and register to receive sensor data. When registered, sensor data values are sent to a SensorEventListener in the form of a SensorEvent that contains information produced from

a given Sensor.

SensorManager

SensorManager is the Android system service that gives an app access to hardware sensors. Like other system services, it allows apps to register and unregister for sensor-related events. Once registered, an app will receive sensor data from the hardware.

In addition to allowing an app to register for sensor data, the SensorManager also provides methods that process sensor data. SensorManager.getOrientation() is an example of such a method that uses sensor data to generate device orientation information.

Sensor

The Sensor class is the Android representation of a hardware sensor on a device. This class exposes information about the sensor, such as:

‰

Maximum range

‰

Minimum delay

‰

Name

‰

Power

‰

Resolution

‰

Type

‰

Vendor

‰

Version

SensorManager provides two methods to access Sensor objects: getSensorList() and getDe-

faultSensor(). The getSensorList() method retrieves all the sensors of a given type while

getDefaultSensor() returns the default sensor for the specifi ed type. The sensor returned from getDefaultSensor() may be either a raw sensor or a synthetic sensor that manipulates raw sensor data.

It is import for an app to examine the output from these methods because devices may or may not support a particular sensor that an app needs. The following code sample is a generally foolproof c05.indd 68

c05.indd 68

5/10/2012 2:01:49 PM

5/10/2012 2:01:49 PM

Android Sensor API x 69

method for checking for an accelerometer with getSensorList(). Checks for other sensors follow a similar pattern.

public static boolean isAccelerometerSupported(Context context)

{

SensorManager sm =

(SensorManager) context

.getSystemService(Context.SENSOR_SERVICE);

List<Sensor> sensors = sm.getSensorList(Sensor.TYPE_ACCELEROMETER);

return sensors.size() > 0;

}

Sensor Rates

When you register a listener, you specify the delay or measurement rate for the listener. The predefi ned rates are:

‰

SENSOR_DELAY_FASTEST

‰

SENSOR_DELAY_GAME

‰

SENSOR_DELAY_UI (Suitable for usual user interface functions, like rotating the screen

orientation.)

‰

SENSOR_DELAY_NORMAL (The default value.)

In Android 4.0.3, these are hard-coded to be 0, 20, 67, and 200 milliseconds, respectively. You can also specify your own delay in microseconds by passing a sensor rate value to the registration that is not one of the aforementioned constants. However, these rates are only intended to be hints to the system, as events may be received faster or slower than the specifi ed delay. Events are usually received faster if the hardware and garbage collection can keep up.

Device confi guration may also affect the rate at which events are fi red. For example, the accelerometer on a Nexus S running Android 2.3 with a sensor rate of SENSOR_DELAY_GAME may

fi re rapidly when the device orientation changes rapidly and slowly when the device orientation changes slowly. However, the accelerometer on Droid 2 running the same version of Android (2.3) and using the same sensor rate (SENSOR_DELAY_GAME) produces sensor events at an approximately constant rate. In many cases, this inconsistency in fi ring times across different devices is actually a benefi t to the developer. The timing of the sensor events is optimized for the particular device and returns sensor data as often as needed for different classes of applications (as suggested by the names of the sensor rate constants) without causing undue lag. This allows for the sensor polling procedure to be device-agnostic and future-proofed even as newer and better sensor hardware is released.

Because the data values are not necessarily evenly spaced in time, the SensorEvent.timestamp fi eld is important, and allows you to access the timestamp associated with the data (which is held in the SensorEvent.values fi eld) in nanoseconds.

To fi nd the minimum delay allowed between two events in microseconds, use the Sensor.getMinDelay() method. This returns zero if this sensor returns a value only when the data it is measuring changes (for example, for a binary proximity sensor).

c05.indd 69

c05.indd 69

5/10/2012 2:01:49 PM

5/10/2012 2:01:49 PM

70 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

Sensor Range and Resolution

Perhaps the most useful methods of the Sensor class are Sensor.getMaximumRange() and Sensor.

getResolution(), both of which take no arguments and return a fl oating-point number.

getMaximumRange() returns the maximum range the sensor can measure in the regular units

reported by the sensor. A measured value of 19.6133 m/s2 (equivalent to 2 g, where g is a unit of acceleration) — as in STMicroelectronics’ KR3DM 3-axis accelerometer, for instance — means the sensor can measure accelerations from +2g to –2g. If a sensor is subjected to a larger signal than the maximum range reported here, it will simply saturate and report this maximum range value.

Binary sensors, such as binary proximity sensors that report only a near or far measurement, should report their maximum range value in the far state and a lesser value in the near state (this value is usually either identically 0.0 or some small number like 2E-6). While this is true is most cases, the value from getMaximumRange() is not always reported as the far measurement on a binary proximity sensor. For example, the OSRAM SFH7743 proximity sensor (in the Motorola Droid 2) has a maximum range of 6 cm but reports a “far” value of 2.38 x 107 cm! To catch this, generally an app may sense a near measurement as anything near zero (where near zero may be some number

less than approximately 1/100th of getMaximumRange()) and detect a far measurement as anything equal to or greater than getMaximumRange().

getResolution() reports the resolution of the sensor, in the regular units reported by the sensor.

As described previously, resolution is a word sometimes used to describe the minimum detectable difference between two signals, which is a description that takes into account the noise in the system. However, the resolution here is a digital resolution fi gure that is independent of the sensor noise. Android sensors output digital signals, for example, 8-bit (256 possible values), 10-bit (1024

possible values), and 12-bit (4096 possible values) accelerometers are common. The maximum range divided by the number of possible values gives the resolution reported here.

Other methods are also available that give access to the generic type of the sensor, the sensor’s name string, vendor and version, and the power it consumes when active. This data is typically less useful to developers and is not covered here.

Before moving on, it is important to understand that more data is not always better data. In general apps should collect data only as quickly as necessary, and only let it affect the display (if applicable) as often as necessary. This may sound obvious, but apps can be signifi cantly helped or hurt by consideration of this point. Some sensors produce data faster than the GUI can display it. If an app updates the GUI on every event, the app’s responsiveness will suffer and the app may crash.

For example, if an app needs to update its UI only on events received every 500 milliseconds or more (regardless of when the sensor events are actually received), it can use the following approach.

Remember that an app can also specify the sensor rate as described in the “Sensor Rates” section.

The number specifi ed, however, is only a guideline to the system and an app cannot be assured of receiving events at that rate.

public void onSensorChanged(SensorEvent event)

{

if (event.sensor.getType() == Sensor.TYPE_ACCELEROMETER)

{

long actualTime = System.currentTimeMillis();

c05.indd 70

c05.indd 70

5/10/2012 2:01:49 PM

5/10/2012 2:01:49 PM

Android Sensor API x 71

if (actualTime - lastUpdate > 500)

{

lastUpdate = actualTime;

// update values for app

}

}

}

SensorEventListener

The SensorEventListener is an interface that provides the callbacks to alert an app to sensor-related events. To be made aware of these events, an app registers a concrete class that implements SensorEventListener with the SensorManager.

SensorEvent

The SensorEvent is the data structure that contains the information that is passed to an app when a hardware sensor has information to report. A SensorEvent object is passed from the sensor system service to callback methods on SensorEventListener. The listener then processes the data in a SensorEvent object in an application-specifi c manner. The data members of the SensorEvent are described next.

‰

SensorEvent.accuracy: Each sensor reports its accuracy as one of four levels. In this case, accuracy refers to how reliable or “trustable” the reported values are, not necessarily how close each value actually is to the physical value.

‰

A SensorEvent can have the following values for SensorEvent.accuracy:

‰

SensorManager.SENSOR_STATUS_ACCURACY_HIGH

‰

SensorManager.SENSOR_STATUS_ACCURACY_MEDIUM

‰

SensorManager.SENSOR_STATUS_ACCURACY_LOW

‰

SensorManager.SENSOR_STATUS_UNRELIABLE

An unreliable accuracy does not mean the sensor is broken. For example, the mag-

netometer reports an unreliable status if it needs calibration, and changes accuracy

level relatively often.

If the sensor is a binary sensor, and therefore cannot give an absolute measurement,

it reports SensorManager.SENSOR_STATUS_UNRELIABLE. For example, the

binary proximity sensor may report a near and far measurement of approximately

0.0 cm and 5.0 cm respectively, but these probably don’t correspond to reality

because the nearest object may be any distance away and not just those two values.

Instead, a near or far measurement simply signifi es that a proximity threshold has

been reached. Thus a binary sensor always reports an unreliable accuracy.

‰

SensorEvent.sensor: An instance of the Sensor class that generated the SensorEvent.

‰

SensorEvent.timestamp: The time in milliseconds when the SensorEvent occurred.

‰

SensorEvent.values: An array of values that represent sensor data. The size of the array

and the meaning of the array values depend on the type of the sensor that produced the data.

c05.indd 71

c05.indd 71

5/10/2012 2:01:49 PM

5/10/2012 2:01:49 PM

72 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

Sensor List

To utilize the Sensor API described in previous sections, an app needs to register a

SensorEventListener to receive sensor data, extract data from SensorEvent depending on the

sensor type, and ensure that an app unregisters at the right time. Each type of sensor requires similar code. This section describes the boiler plate code you need by explaining an app called Sensor List. Sensor List collects and displays the data it gets from all available sensors. Beyond highlighting how to operate the sensor API, it is also an excellent way to explore the data the sensors produce and the effect of different delay rates.

SensorListActivity uses two screens to interact with the user and the screens are illustrated below. The screen illustrated in Figure 5-2 presents the user with the list of sensors that are on the device. Once a sensor is clicked, the screen illustrated in Figure 5-3 displays the details for the selected sensor.

FIGURE 5-1: Showing the list of sensors

FIGURE 5-2: Screenshot showing the

on a device

details of a selected sensor

The Manifest File

The fi rst step in implementing the example app is to declare the intent to use specifi c sensors in the manifest fi le. This is done with the <uses-feature> declaration, and may include an optional android:required attribute indicating whether the app prefers to have the feature or whether it cannot function without a feature. The purpose of this declaration is to inform any external entity of the sensors an app will use. This is informational only: the OS will not check for features before installing an app, but other services such as Google Play will check an application’s <uses-feature> declaration, so it is best to declare all the sensors an app will use. (Google Play will not show c05.indd 72

c05.indd 72

5/10/2012 2:01:50 PM

5/10/2012 2:01:50 PM

Android Sensor API x 73

apps that are not compatible with a user’s device). Each sensor must be specifi ed in a separate tag. A snippet of the AndroidManifest.xml for the example app is shown here:

<uses-feature android:name="android.hardware.sensor.accelerometer"

android:required="true" />

<uses-feature android:name="android.hardware.sensor.compass"

android:required="false" />

The default for the android:required attribute is true, meaning the app cannot run without it. A value of false means that an app prefers to use the feature if available but is designed to run without it.

Here are some of the possible arguments for the android:name attribute that apply to Android sensors:

‰

android.hardware.sensor.accelerometer

‰

android.hardware.sensor.barometer

‰

android.hardware.sensor.compass

‰

android.hardware.sensor.gyroscope

‰

android.hardware.sensor.light

‰

android.hardware.sensor.proximity

If an app requires the synthetic sensors GRAVITY or LINEAR_ACCELERATION, the app should also make android.hardware.sensor.accelerometer required. If an app requires the synthetic sensor ROTATION_

VECTOR, it should also make the accelerometer and compass required and the gyroscope optional, because the gyroscope is sometimes but not always used to calculate this. (The gyro should be used if available, but its presence alone does not require it to be implemented in the rotation vector sensor.)

 SensorListActivity

SensorListActivity lets the user choose a sensor to inspect and then shows the data

it produces interactively. To implement this, SensorListActivity uses two Fragments.

It uses SensorSelectorFragment to allow the user to select a sensor from a list, and

SensorDisplayFragment to show the data values from a selected sensor.

The SensorListActivity class has a short implementation. The code creates the Fragments and then wires them together so that when the user selects a sensor, SensorSelectorFragment can show SensorDisplayFragment. Listing 5-1 shows the code for SensorListActivity.

LISTING 5-1: Sets up Fragments for selecting sensors and viewing their data

public class SensorListActivity extends FragmentActivity

{

@Override

protected void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

 continues

c05.indd 73

c05.indd 73

5/10/2012 2:01:50 PM

5/10/2012 2:01:50 PM

74 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

LISTING 5-1 (continued)

setContentView(R.layout.sensor_main);

// wire up the fragments so selector

// can call display

SensorDisplayFragment sensorDisplay =

(SensorDisplayFragment) getSupportFragmentManager()

.findFragmentById(R.id.frag_sensor_view);

SensorSelectorFragment sensorSelect =

(SensorSelectorFragment) getSupportFragmentManager()

.findFragmentById(R.id.frag_sensor_select);

sensorSelect.setSensorDisplay(sensorDisplay);

}

}

 code snippet SensorListActivity.java

SensorSelectorFragment

When it starts, SensorSelectorFragment displays a list of sensors to the user. To build this list, it obtains all the available sensors from SensorManager during the setSensorDisplay() method. setSensorDisplay() also creates a SensorListAdapter to display the sensor’s

name and register an OnClickListener. When the user clicks, the OnClickListener calls

showSensorFragment() to properly show SensorDisplayFragment. The implementation

for SensorSelectorFragment is shown in listing 5-2.

LISTING 5-2: Allows the user to select a sensor to inspect

public class SensorSelectorFragment extends ListFragment

{

private static final String TAG = "SensorSelectorFragment";

private SensorDisplayFragment sensorDisplay;

/**

* connect with a display fragment to call later when user clicks a sensor

* name, also setup the ListAdapter to show all the Sensors

*/

public void setSensorDisplay(SensorDisplayFragment sensorDisplay)

{

this.sensorDisplay = sensorDisplay;

SensorManager sensorManager =

(SensorManager) getActivity().getSystemService(

Activity.SENSOR_SERVICE);

List<Sensor> sensors = sensorManager.getSensorList(Sensor.TYPE_ALL);

this.setListAdapter(new SensorListAdapter(getActivity()

.getApplicationContext(), android.R.layout.simple_list_item_1,

sensors));

}

c05.indd 74

c05.indd 74

5/10/2012 2:01:51 PM

5/10/2012 2:01:51 PM

Android Sensor API x 75

/**

* hide the list of sensors and show the sensor display fragment

* add these changes to the backstack

*/

private void showSensorFragment(Sensor sensor)

{

sensorDisplay.displaySensor(sensor);

FragmentTransaction ft =

getActivity().getSupportFragmentManager().beginTransaction();

ft.hide(this);

ft.show(sensorDisplay);

ft.addToBackStack("Showing sensor: " + sensor.getName());

ft.commit();

}

/**

* list view adapter to show sensor names and respond to clicks.

*/

private class SensorListAdapter extends ArrayAdapter<Sensor>

{

public SensorListAdapter(Context context, int textViewResourceId,

List<Sensor> sensors)

{

super(context, textViewResourceId, sensors);

}

/**

* create a text view containing the sensor name

*/

@Override

public View getView(final int position, View convertView,

ViewGroup parent)

{

final Sensor selectedSensor = getItem(position);

if (convertView == null)

{

convertView =

LayoutInflater.from(getContext()).inflate(

android.R.layout.simple_list_item_1, null);

}

((TextView) convertView).setText(selectedSensor.getName());

convertView.setOnClickListener(new View.OnClickListener()

{

@Override

public void onClick(View v)

{

if (BuildConfig.DEBUG)

{

Log.d(TAG,

"display sensor! " + selectedSensor.getName());

}

 continues

c05.indd 75

c05.indd 75

5/10/2012 2:01:51 PM

5/10/2012 2:01:51 PM

76 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

LISTING 5-2 (continued)

showSensorFragment(selectedSensor);

}

});

return convertView;

}

}

}

 code snippet SensorSelectFragment.java

SensorDisplayFragment

SensorDisplayFragment receives the selected sensor, starts listening for data, and displays the data it receives. The onCreateView() method does most of the initialization work, such as getting a reference to the SensorManager. Once onCreateView() is complete, SensorDisplayFragment is ready for SensorSelectorFragment to call displaySensor() with the user’s selected sensor.

To receive sensor data, SensorDisplayFragment registers a SensorEventListener with

the SensorManager. Because SensorDisplayFragment implements SensorEventListener,

it can register itself to receive sensor events. In order to implement SensorEventListener, SensorDisplayFragment provides concrete implementations for onAccuracyChanged(), and

onSensorChanged(). Both methods update the display whenever a sensor reports new data or its accuracy changes.

Because SensorDisplayFragment should receive updates only while it is being displayed, it registers itself with the SensorManager in displaySensor() and unregisters itself when it is not being displayed. SensorDisplayFragment will no longer be displayed when SensorSelectorFragment

hides it, or when Android pauses SensorListActivity. Because hiding the fragment does not

trigger a call to onPause(), the call to SensorManager.unregisterListener() must occur in

both the onPause() (to handle any pauses, such as when the user presses the Home button) and onHiddenChanged() (to handle being hidden). Some apps may need to restart listening for sensors when part of it returns from being hidden or paused. To do so, an app may want to restart the sensing by re-registering the SensorEventListener in the onResume() method and possibly onHiddenChanged().

It is important to remember to unregister sensor listeners whenever they are not in use. Not doing so drains the battery and uses system resources including the garbage collector. Android does not take care of this by itself when another Activity comes to the foreground or when the screen is turned off — it is in the hands of the app developer to control listeners wisely. If Android kills the app, however, it also unregisters listeners.

After registering, SensorManager passes data periodically to the onSensorChanged()

method in the form of a SensorEvent. The onSensorChanged() method implementation

in SensorDisplayFragment updates the display with the data in SensorEvent. Since the

 SensorEvent.values array holds different data based on the sensor that produced it, onSensorEvent() c05.indd 76

c05.indd 76

5/10/2012 2:01:51 PM

5/10/2012 2:01:51 PM

Android Sensor API x 77

must fi rst determine which sensor was the source of this data. Once it determines the source, it shows the sensor data by setting the values and labels of the appropriate TextViews.

Listing 5-3 shows the complete implementation for SensorDisplayFragment.

LISTING 5-3: Collects and displays data for a particular Sensor.

public class SensorDisplayFragment extends Fragment implements SensorEventListener

{

private static final String TAG = "SensorDisplayFragment";

private static final String THETA = "\u0398";

private static final String ACCELERATION_UNITS = "m/s\u00B2";

private SensorManager sensorManager;

private Sensor sensor;

private TextView name;

private TextView type;

private TextView maxRange;

private TextView minDelay;

private TextView power;

private TextView resolution;

private TextView vendor;

private TextView version;

private TextView accuracy;

private TextView timestampLabel;

private TextView timestamp;

private TextView timestampUnits;

private TextView dataLabel;

private TextView dataUnits;

private TextView xAxis;

private TextView xAxisLabel;

private TextView yAxis;

private TextView yAxisLabel;

private TextView zAxis;

private TextView zAxisLabel;

private TextView singleValue;

private TextView cosLabel;

private TextView cos;

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,

Bundle savedInstanceState)

{

View layout = inflater.inflate(R.layout. sensor_view, null);

sensorManager =

(SensorManager) getActivity().getSystemService(Context. SENSOR_SERVICE);

name = (TextView) layout.findViewById(R.id. name);

type = (TextView) layout.findViewById(R.id. type);

maxRange = (TextView) layout.findViewById(R.id. maxRange);

minDelay = (TextView) layout.findViewById(R.id. minDelay);

power = (TextView) layout.findViewById(R.id. power);

 continues

c05.indd 77

c05.indd 77

5/10/2012 2:01:52 PM

5/10/2012 2:01:52 PM

78 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

LISTING 5-3 (continued)

resolution = (TextView) layout.findViewById(R.id. resolution);

vendor = (TextView) layout.findViewById(R.id. vendor);

version = (TextView) layout.findViewById(R.id. version);

accuracy = (TextView) layout.findViewById(R.id. accuracy);

timestampLabel = (TextView) layout.findViewById(R.id. timestampLabel);

timestamp = (TextView) layout.findViewById(R.id. timestamp);

timestampUnits = (TextView) layout.findViewById(R.id. timestampUnits);

dataLabel = (TextView) layout.findViewById(R.id. dataLabel);

dataUnits = (TextView) layout.findViewById(R.id. dataUnits);

xAxis = (TextView) layout.findViewById(R.id. xAxis);

xAxisLabel = (TextView) layout.findViewById(R.id. xAxisLabel);

yAxis = (TextView) layout.findViewById(R.id. yAxis);

yAxisLabel = (TextView) layout.findViewById(R.id. yAxisLabel);

zAxis = (TextView) layout.findViewById(R.id. zAxis);

zAxisLabel = (TextView) layout.findViewById(R.id. zAxisLabel);

singleValue = (TextView) layout.findViewById(R.id. singleValue);

cosLabel = (TextView) layout.findViewById(R.id. cosLabel);

cos = (TextView) layout.findViewById(R.id. cos);

layout.findViewById(R.id. delayFastest).setOnClickListener(new OnClickListener()

{

@Override

public void onClick(View v)

{

sensorManager.unregisterListener(SensorDisplayFragment.this);

sensorManager.registerListener(SensorDisplayFragment.this,

sensor,

SensorManager. SENSOR_DELAY_FASTEST);

}

});

layout.findViewById(R.id. delayGame).setOnClickListener(new OnClickListener()

{

@Override

public void onClick(View v)

{

sensorManager.unregisterListener(SensorDisplayFragment.this);

sensorManager.registerListener(SensorDisplayFragment.this,

sensor,

SensorManager. SENSOR_DELAY_GAME);

}

});

layout.findViewById(R.id. delayNormal).setOnClickListener(new OnClickListener()

{

@Override

public void onClick(View v)

{

sensorManager.unregisterListener(SensorDisplayFragment.this);

sensorManager.registerListener(SensorDisplayFragment.this,

sensor,

SensorManager. SENSOR_DELAY_NORMAL);

c05.indd 78

c05.indd 78

5/10/2012 2:01:52 PM

5/10/2012 2:01:52 PM

Android Sensor API x 79

}

});

layout.findViewById(R.id. delayUi).setOnClickListener(new OnClickListener()

{

@Override

public void onClick(View v)

{

sensorManager.unregisterListener(SensorDisplayFragment.this);

sensorManager.registerListener(SensorDisplayFragment.this,

sensor,

SensorManager. SENSOR_DELAY_UI);

}

});

return layout;

}

public void displaySensor(Sensor sensor)

{

if (BuildConfig. DEBUG)

{

Log. d(TAG, "display the sensor");

}

this.sensor = sensor;

name.setText(sensor.getName());

type.setText(String. valueOf(sensor.getType()));

maxRange.setText(String. valueOf(sensor.getMaximumRange()));

minDelay.setText(String. valueOf(sensor.getMinDelay()));

power.setText(String. valueOf(sensor.getPower()));

resolution.setText(String. valueOf(sensor.getResolution()));

vendor.setText(String. valueOf(sensor.getVendor()));

version.setText(String. valueOf(sensor.getVersion()));

sensorManager.registerListener(this,

sensor,

SensorManager. SENSOR_DELAY_NORMAL);

}

@Override

public void onAccuracyChanged(Sensor sensor, int accuracy)

{

switch(accuracy)

{

case SensorManager. SENSOR_STATUS_ACCURACY_HIGH:

this.accuracy.setText("SENSOR_STATUS_ACCURACY_HIGH");

break;

case SensorManager. SENSOR_STATUS_ACCURACY_MEDIUM:

this.accuracy.setText("SENSOR_STATUS_ACCURACY_MEDIUM");

break;

case SensorManager. SENSOR_STATUS_ACCURACY_LOW:

this.accuracy.setText("SENSOR_STATUS_ACCURACY_LOW");

 continues

c05.indd 79

c05.indd 79

5/10/2012 2:01:52 PM

5/10/2012 2:01:52 PM

80 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

LISTING 5-3 (continued)

break;

case SensorManager. SENSOR_STATUS_UNRELIABLE:

this.accuracy.setText("SENSOR_STATUS_UNRELIABLE");

break;

}

}

@Override

public void onSensorChanged(SensorEvent event)

{

onAccuracyChanged(event.sensor, event.accuracy);

timestampLabel.setVisibility(View. VISIBLE);

timestamp.setVisibility(View. VISIBLE);

timestamp.setText(String. valueOf(event.timestamp));

timestampUnits.setVisibility(View. VISIBLE);

switch (event.sensor.getType())

{

case Sensor. TYPE_ACCELEROMETER:

showEventData("Acceleration - gravity on axis",

 ACCELERATION_UNITS,

event.values[0],

event.values[1],

event.values[2]);

break;

case Sensor. TYPE_MAGNETIC_FIELD:

showEventData("Abient Magnetic Field",

"uT",

event.values[0],

event.values[1],

event.values[2]);

break;

case Sensor. TYPE_GYROSCOPE:

showEventData("Angular speed around axis",

"radians/sec",

event.values[0],

event.values[1],

event.values[2]);

break;

case Sensor. TYPE_LIGHT:

showEventData("Ambient light",

"lux",

event.values[0]);

break;

case Sensor. TYPE_PRESSURE:

showEventData("Atmospheric pressure",

"hPa",

event.values[0]);

break;

case Sensor. TYPE_PROXIMITY:

c05.indd 80

c05.indd 80

5/10/2012 2:01:53 PM

5/10/2012 2:01:53 PM

Android Sensor API x 81

showEventData("Distance",

"cm",

event.values[0]);

break;

case Sensor. TYPE_GRAVITY:

showEventData("Gravity",

 ACCELERATION_UNITS,

event.values[0],

event.values[1],

event.values[2]);

break;

case Sensor. TYPE_LINEAR_ACCELERATION:

showEventData("Acceleration (not including gravity)",

 ACCELERATION_UNITS,

event.values[0],

event.values[1],

event.values[2]);

break;

case Sensor. TYPE_ROTATION_VECTOR:

showEventData("Rotation Vector",

null,

event.values[0],

event.values[1],

event.values[2]);

xAxisLabel.setText("x*sin(" + THETA + "/2)");

yAxisLabel.setText("y*sin(" + THETA + "/2)");

zAxisLabel.setText("z*sin(" + THETA + "/2)");

if (event.values.length == 4)

{

cosLabel.setVisibility(View. VISIBLE);

cos.setVisibility(View. VISIBLE);

cos.setText(String. valueOf(event.values[3]));

}

break;

case Sensor.TYPE_ORIENTATION:

showEventData("Angle",

"Degrees",

event.values[0],

event.values[1],

event.values[2]);

xAxisLabel.setText(R.string. azimuthLabel);

yAxisLabel.setText(R.string. pitchLabel);

zAxisLabel.setText(R.string. rollLabel);

break;

case Sensor. TYPE_RELATIVE_HUMIDITY:

showEventData("Relatice ambient air humidity",

"%",

event.values[0]);

break;

 continues

c05.indd 81

c05.indd 81

5/10/2012 2:01:53 PM

5/10/2012 2:01:53 PM

82 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

LISTING 5-3 (continued)

case Sensor. TYPE_AMBIENT_TEMPERATURE:

showEventData("Ambien temperature",

"degree Celcius",

event.values[0]);

break;

}

}

private void showEventData(String label, String units, float x, float y, float z)

{

dataLabel.setVisibility(View. VISIBLE);

dataLabel.setText(label);

if (units == null)

{

dataUnits.setVisibility(View. GONE);

}

else

{

dataUnits.setVisibility(View. VISIBLE);

dataUnits.setText("(" + units + "):");

}

singleValue.setVisibility(View. GONE);

xAxisLabel.setVisibility(View. VISIBLE);

xAxisLabel.setText(R.string. xAxisLabel);

xAxis.setVisibility(View. VISIBLE);

xAxis.setText(String. valueOf(x));

yAxisLabel.setVisibility(View. VISIBLE);

yAxisLabel.setText(R.string. yAxisLabel);

yAxis.setVisibility(View. VISIBLE);

yAxis.setText(String. valueOf(y));

zAxisLabel.setVisibility(View. VISIBLE);

zAxisLabel.setText(R.string. zAxisLabel);

zAxis.setVisibility(View. VISIBLE);

zAxis.setText(String. valueOf(z));

}

private void showEventData(String label, String units, float value)

{

dataLabel.setVisibility(View. VISIBLE);

dataLabel.setText(label);

dataUnits.setVisibility(View. VISIBLE);

dataUnits.setText("(" + units + "):");

c05.indd 82

c05.indd 82

5/10/2012 2:01:53 PM

5/10/2012 2:01:53 PM

Android Sensor API x 83

singleValue.setVisibility(View. VISIBLE);

singleValue.setText(String. valueOf(value));

xAxisLabel.setVisibility(View. GONE);

xAxis.setVisibility(View. GONE);

yAxisLabel.setVisibility(View. GONE);

yAxis.setVisibility(View. GONE);

zAxisLabel.setVisibility(View. GONE);

zAxis.setVisibility(View. GONE);

}

@Override

public void onHiddenChanged(boolean hidden)

{

super.onHiddenChanged(hidden);

if (hidden)

{

if (BuildConfig. DEBUG) {

Log. d(TAG, "Unregistering listener");

}

sensorManager.unregisterListener(this);

}

}

@Override

public void onPause()

{

super.onPause();

if (BuildConfig. DEBUG)

{

Log. d(TAG, "onPause");

Log. d(TAG, "Unregistering listener");

}

sensorManager.unregisterListener(this);

}

}

 code snippet SensorDisplayFragment.java

So far, this chapter has discussed the Sensor API in Android. The rest of the chapter will be dedicated to discussion of the actual sensors and the data they provide.

c05.indd 83

c05.indd 83

5/10/2012 2:01:54 PM

5/10/2012 2:01:54 PM

84 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

TRY THIS

Select the Sensor List button to run SensorListActivity and observe live sensor

values.

SENSING THE ENVIRONMENT

This section introduces the sensors that can be used to sense properties of the physical environment that a device is currently in. The next section describes how to sense device movement and orientation in the environment.

Sensor.TYPE_LIGHT

The light sensor is often visible on the face of the device, under a small opening in the black coloring on the glass. It is simply a photodiode, which operates on the same physical principle as an LED

(light-emitting diode) but in reverse. Instead of generating light when a voltage is applied, it generates a voltage when light is incident on it.

The light sensor reports its values in lux, and has a typical dynamic range between 1 and 30,000

lux. The light sensor also has a resolution of 1 lux. A value of 0.25 lux is like the indirect brightness from a full moon; bright enough to see things, but a basic camera without a fl ash wouldn’t capture enough light to take a photograph. An overcast day is 10,000 lux, full daylight (indirect sun) is around 20,000 lux, and direct sunlight is around 110,000 lux. These values span a wide range and cannot be accurately represented by a qualitative human measure such as “an overcast day” (which may vary in brightness depending on the thickness of cloud cover, the height of the sun in the sky, and so on). However, these numbers do represent the values that can be expected. Here are the constant values (in lux) for the light sensor.

‰

SensorManager.LIGHT_NO_MOON: 0.001

‰

SensorManager.LIGHT_FULLMOON: 0.25

‰

SensorManager.LIGHT_CLOUDY: 100

‰

SensorManager.LIGHT_SUNRISE: 400

‰

SensorManager.LIGHT_OVERCAST: 10000

‰

SensorManager.LIGHT_SHADE: 20000

‰

SensorManager.LIGHT_SUNLIGHT: 110000

‰

SensorManager.LIGHT_SUNLIGHT_MAX: 120000

The light sensor is mostly used to adjust screen brightness according to ambient light. Because screen brightness is managed by the OS and Android’s settings, this is not often something

developers typically need to access.

c05.indd 84

c05.indd 84

5/10/2012 2:01:54 PM

5/10/2012 2:01:54 PM

Sensing the Environment x 85

Some earlier devices do not have a proximity sensor, and therefore some developers have written programs to use the light sensor as a proximity sensor to lock and blank the screen during calls.

Sensor.TYPE_PROXIMITY

The proximity sensor is usually visible on the face of the device only in bright sunlight. It typically looks like a dark hole underneath the blackened part of the glass, usually at the top of the front face of a smartphone. It consists of a weak infrared LED (light-emitting diode) next to a photodetector.

When something (such as the ear of a person making a phone call) comes close enough to the sensor, the photodetector detects the refl ected infrared light.

The LED does not shine continuously, but pulses on and off. The photodetector locks in to this frequency of pulsing in order to make the sensor insensitive to any light that is not changing at that exact frequency. For example, the sensor doesn’t care if you move from a bright room to a dark room because the bright and dark are just background light levels and aren’t picked out by the locked-in photodetector system. The photodector is looking for light that is pulsing at the exact frequency of the LED. The pulsing frequency is not available for control, because the proximity detector is usually a third-party piece of hardware that internally measures the photodetector’s signal, decides on the proximity state, and only makes a near or far state available to the app.

Some proximity sensors report the distance to an object in centimeters. Others are not designed to measure the distance to an object, but only the presence or absence of an object at a distance closer than some threshold (this is the case with proximity sensors in many smartphones today). A typical dynamic range for a binary sensor (reported by the getMaximumRange() method) is around 5 cm; however, a more valuable number is the approximate threshold distance, which is usually around 2–4 cm.

Because the proximity detector is designed to detect refl ections, the actual distance reported depends on the refl ectivity of the object. For those sensors that report only the presence or absence of an object, the combination of the brightness of the LED, the sensitivity of the detector, and the refl ectivity of the object gives a range of around 2–3 cm. For measurements outside of that range, the sensor should report its maximum value (this number can be compared to the maximum range using the method getMaximumRange()). For measurements within that range, the sensor will report a lesser number as discussed earlier.

Proximity sensors that have only binary output are interrupt-based and are not polled apps that make use of these types of sensors will receive an onSensorChanged() callback when a proximity state transition occurs (near-to-far or far-to-near).

The main application of a proximity sensor is detecting the ear of the user in order to shut down or lock the screen during calls.

To prevent rapid back-and-forth state switching when an object is exactly positioned at the distance threshold, the threshold for the sensor switching from far to near state is typically designed to be closer to the device than the threshold for switching from near to far state.

Typical proximity sensor LEDs operate at a wavelength of around 900 nanometers (nm), which is longer than humans can see (typically 750 nm) but shorter than many remote controls (around 1000

nm), and can travel through the black coloring on the glass.

c05.indd 85

c05.indd 85

5/10/2012 2:01:54 PM

5/10/2012 2:01:54 PM

86 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

Some people have reported that very bright light can saturate the detector and trick the sensor into giving a false reading. However, this is not usually a problem unless you are looking for it. If it is found to be a problem, it can be circumvented by appealing to the separate light sensor for a second-ary reading, assuming it is not saturated.

Sensor.TYPE_PRESSURE

This constant refers to a MEMS barometer, which measures air pressure. Its primary use is for determining altitude in places where the device cannot get a GPS fi x, such as locations inside a building. This sensor is currently available only in a few devices.

 There is some misunderstanding around whether this sensor measures pres-

 sure of a fi nger on the screen or the ambient air pressure. This misunder-

 standing probably stems from the fact that there is also a MotionEvent.

getPressure() method, which is designed to return the pressure of a fi nger

 on the screen.

In their simplest incarnation, MEMS pressure sensors look like a drum skin over a chamber with a known pressure inside. As the outside pressure changes, the drum skin bulges in or out with the differential pressure. More accurate MEMS pressure sensors involve a drum skin or other structure that is set into resonant motion, and the amount that the air impedes its motion is measured. This is related to air density, which is related to air pressure at a given temperature.

It is normal for pressure to drift by approximately 0.5 millibar (mbar) in an hour. An intensifying storm may cause pressure to drift by 1 mbar per hour in the same direction for a few consecutive hours. Pressure cycles up and down usually twice daily due to atmospheric tides and other effects such as changes in temperature.

Altitude can be calculated from air pressure using the SensorManager.getAltitude() method,

which returns the altitude above sea level in meters. This uses a standard physics formula to calculate the altitude (elevation) based on the measured pressure p and the pressure at sea level p0. The pressure at sea level can be either:

‰

The standard pressure given by the associated constant PRESSURE_STANDARD_ATMOSPHERE,

which gives decent results for relative elevations but not for absolute elevation.

‰

The effective (or mean) sea-level pressure reported by an airport or other weather-

reporting station, which gives the best results for both relative and absolute elevation

measurements.

Because the latter option is signifi cantly harder to implement, it is advisable to use PRESSURE_

STANDARD_ATMOSPHERE for most cases and use the latter option only when higher absolute accuracy and precision is necessary. However, the latter option is covered with plenty of detail in the “Mean Sea-Level Pressure” section to get you started.

c05.indd 86

c05.indd 86

5/10/2012 2:01:55 PM

5/10/2012 2:01:55 PM

Sensing the Environment x 87

Absolute Altitude

SensorManager.getAltitude() uses the formula shown in Figure 5-3.

 RL

1

 T

 p

 gM

 p

5.255

 h(p , p) = 0 1 −

= 44330 ∗ 1 −

0

 L

 p

 p

0

0

FIGURE 5-3: Computing altitude from atmospheric pressure

In the equation shown in Figure 5-3, h is altitude, T0 is sea-level standard temperature, L is temperature lapse rate, R is the universal gas constant, g is gravitational acceleration, and M is the molar mass of dry air. You can look up these constants online if necessary, but in general you shouldn’t need to look them up because the simplifi ed formula appears on the right-hand side of the equation.

Relative Altitude

Using the formula from the preceding section, you can calculate relative altitude differences such as the difference in altitude between fl oors in a shopping mall. Because pressure drifts over time, the app should look for relative differences that happen over a short enough timescale (such as the timescale corresponding to a person ascending a fl ight of stairs). It is important to calculate the altitudes fi rst and then subtract them rather than trying to compare pressures. This will work quite well even if the absolute altitudes are not accurate. For example:

float altitudeDifference =

getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE,pressureAtPoint2)

-

getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE,pressureAtPoint1);

For instance, a pressure change from 1010 to 1011 mbar corresponds to descending by 8.34 m, and (inverting the formula) an altitude change of 10 m corresponds to 1.2 mbar pressure change at sea level.

Mean Sea-Level Pressure (MSLP)

Assume you don’t want to use PRESSURE_STANDARD_ATMOSPHERE, so you need to fi nd effective sea-level pressure. First, what is effective (or mean) sea-level pressure (MSLP)?

Consider a particular weather station in Chicago that measures an atmospheric pressure of 1000.0

mbar. It will calculate and report an MSLP (sometimes just called sea-level pressure, or SLP) of 1010.0 mbar. MSLP is calculated to be what the air pressure would be if the Chicago station were actually sitting at sea level. We expect it to be higher because pressure gets higher as you go down in altitude. This latter pressure is actually the pressure usually given in weather reports on television, newspapers, and online, because then you can show weather patterns across a country despite the differing terrain and elevations. In addition, home barometers are usually calibrated by the user to track the MSLP rather than report the actual measured pressure — so a home barometer in this example would measure 1010 mbar if the user has calibrated it against MSLP as is usually the case.

This can lead to some confusion because the MEMS barometer in Android is a raw sensor and

would return 1000 mbar in Chicago (assuming it is a good sensor and responds to air pressure in the same way as the Chicago reporting station). To avoid confusion, ignore any home barometers that c05.indd 87

c05.indd 87

5/10/2012 2:01:55 PM

5/10/2012 2:01:55 PM

88 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

may be lying around and trust the value from the Android device, referenced to the reported MSLP

of the nearest reporting station to calculate altitude. The following code shows how to calculate altitude:

float altitude =

mSensorManager.getAltitude(pressure_localReportingStationMSLP,

pressure_measuredOnDevice);

Where to Find MSLP

You can fi nd many sources of meteorological station data online. For example, for the United States go to the ADDS website (http://aviationweather.gov/adds/metars/). A simple web request can be sent (see the details on the website), and a string received for a given station. For instance, the main Chicago station may return the following:

KMDW 171851Z 25014G23KT 10SM SCT150 BKN200 BKN250 12/M01 A2984 RMK AO2 SLP106 T01221006

You will need to parse that string to fi nd the effective sea-level pressure. You can fi nd a detailed interpretation on the ADDS website, but briefl y: KMDW is a code that uniquely identifi es a particular station in Chicago (you can fi nd latitude and longitude at http://aviationweather.gov/adds/

metars/stations.txt), “SLP” stands for sea-level pressure, and 106 is a truncated 1010.6 mbar.

Notice that the decimal point and the fi rst two digits are dropped — this is standard notation. To know whether the fi rst two digits that were dropped were a 09 or a 10, use the number that is closest to 1000, because the other number would be unphysical.

Sensor Units

Although the pressure sensor reports pressure in millibars (mbar), many different units of pressure may be encountered. For instance, all United States reporting stations will report the pressure in inches of mercury (inHg). Other common units of pressure are: 1 mbar (millibar) = 0.001 bar =

0.1 kPa (kilopascal) = 1 hPa (hectopascal) = 1,000 dyn/cm2 (dynes per square cm) = 0.000987 atm (atmospheres) = 0.0295 inHg (inches of mercury) = 0.750 mmHg (mm of mercury) = 0.0145 psi

(pounds per square inch).

Sensor Range

A typical dynamic range of a MEMS pressure sensor is 300–1100 mbar and a typical resolution is 0.01 mbar (for the Bosch BMP085 in the Motorola Xoom, for example). The pressure sensor has one constant, SensorManager.PRESSURE_STANDARD_ATMOSPHERE, with a value (in mbar) of 1013.25.

Common Use Cases

The main area of anticipated use for pressure sensors is in measuring elevation. This can be for either an absolute elevation measurement (meaning the measurement of absolute height above sea level) or relative elevation measurement (meaning the measurement of relative elevation due to fast but small changes in elevation — for instance, detecting fl oor changes, for indoor navigation such as in a shopping mall or other areas where use of GPS would be problematic).

‰

Absolute elevation measurement: GPS can take a long time to get a fi x. Reading the pressure sensor is quick, so an app could use a less accurate elevation measurement from the pressure sensor and use the (possibly) more accurate GPS-based elevation value when it is available.

Alternatively, you may just be interested in fi nding the absolute altitude when GPS is turned off or GPS signals are not available.

c05.indd 88

c05.indd 88

5/10/2012 2:01:56 PM

5/10/2012 2:01:56 PM

Sensing the Environment x 89

‰

Relative elevation measurement: Although GPS provides altitude data, GPS signal is not always available. Using the pressure sensor, however, you may be able to determine which

fl oor in a building a device is on instead of just which building the device is in. Current MEMS pressure sensors are sensitive enough to detect air pressure differences between different fl oors in a building (typically on the order of 0.3–0.4 mbar differences for typical residential buildings and larger for buildings like shopping malls, calculable from the formula given previously), especially buildings like shopping malls where each story is taller than in a residential building. Air pressure may naturally fl uctuate by more than 0.3–0.4

mbar over time, however air pressure changes due to going upstairs or downstairs are usu-

ally faster changes and can be detected. D epending on location, pressure may vary over

the course of a year from approximately 995 to 1030 mbar with an average value of 1013

mbar. However, pressure usually drifts by less than 1 mbar over the course of an hour.

‰

Sensing weather: Although barometers are usually associated with weather measurements, this is actually not as useful for users or developers as it might initially seem. National weather reporting systems have better barometers, Android devices can usually check such

data over the Internet, and weather doesn’t vary on a small enough spatial scale to make

barometric measurement for weather measurement very useful.

Sensor.TYPE_RELATIVE_HUMIDITY

The relative humidity sensor provides the current ambient humidity as the percent of water vapor in the air. More specifi cally, relative humidity is the amount of water vapor in the air compared to the maximum amount of water vapor that the air can hold at a given temperature. A value of 100% indicates that the air is fully saturated. The value returned by this sensor is humidity commonly used in weather reports.

The relative humidity can be used, along with the ambient temperature, to calculate the dew point and the absolute humidity. Dew point is the temperature at which water vapor condenses. Absolute humidity is the mass of water in a given volume of air.

Sensor.TYPE_AMBIENT_TEMPERATURE

The ambient temperature sensor provides the room temperature in degrees Celsius. This sensor is meant to replace the use of Sensor.TYPE_TEMPERATURE, which has been deprecated.

Sensor.TYPE_TEMPERATURE

The temperature sensor in Android devices is designed to detect the temperature of the CPU for internal hardware calibration. It is not designed for measuring environmental temperature, and is therefore not generally useful to developers. As of release 4.0, the sensor has been deprecated in favor of the ambient temperature sensor.

Although the online documentation may not list the temperature sensor as deprecated, the offi cial Android 4.0 Compatibility Defi nition states:

 Device implementations MAY but SHOULD NOT include a thermometer

 (i.e. temperature sensor.) If a device implementation does include a thermometer,

 it MUST measure the temperature of the device CPU. It MUST NOT measure any

 other temperature. (Note that this sensor type is deprecated in the Android 4.0 APIs.)

 (Source: http://source.android.com/compatibility/android-4.0-cdd.pdf .) c05.indd 89

c05.indd 89

5/10/2012 2:01:56 PM

5/10/2012 2:01:56 PM

90 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

The reason for deprecation appears to be that it is an internal system sensor and has no general-purpose use in apps.

Thus far, this chapter has discussed the various concepts surrounding sensors and the Android platform, as well as enumerated the sensors that may be available on a given Android device. The remainder of the chapter will be dedicated to implementing application code that makes use of the sensor data.

SENSING DEVICE ORIENTATION AND MOVEMENT

This section goes into depth describing Android inertial sensors. Inertial is just a term that refers to motion measurement. These are different than the sensors in the previous section in that they describe what the device is doing in its environment as opposed to describing the environment itself.

Coordinate Systems

When using orientation and movement sensors in Android, two coordinate systems are defi ned: the global coordinate system x , y , z , and a device coordinate system x, y, z. Both coordinate systems E

E

E

are illustrated in Figure 5-4. This fi gure shows the device positioned at the equator of Earth, with some tilt with respect to Earth. All coordinate systems for three-axis sensors obey these coordinate systems, except Sensor.TYPE_ORIENTATION, which is deprecated.

y

North magnetic pole

E

Earth

Global coordinate system

xE

zE

South magnetic pole

y

x z

Device coordinate system

Source: http://developer.android.com/reference/

android/hardware/SensorEvent.html

FIGURE 5-4: Android coordinate systems

c05.indd 90

c05.indd 90

5/10/2012 2:01:56 PM

5/10/2012 2:01:56 PM

Sensing Device Orientation and Movement x 91

Note that SensorManager.getOrientation() has reversed x and z axes with respect to the global coordinate system shown here.

Global Coordinate System

All sensors and methods that refer to an absolute orientation with respect to Earth (except the orientation sensor) use the global coordinate system. These include:

‰

The rotation vector sensor, which uses the accelerometer, magnetometer, and possibly the

gyroscope to sense device orientation relative to Earth.

‰

getRotationMatrix(), getRotationMatrixFromVector(), and getQuaternionFromVec-

tor(), which get the rotation matrix or quaternion that can map the device coordinate sys-

tem on to the global coordinate system.

‰

getOrientation(), which takes a rotation matrix generated from getRotationMatrix()

and returns an orientation vector.

‰

getInclination(), which takes a rotation matrix from the getOrientation() method and

returns the magnetic inclination. Magnetic inclination is how much a compass needle would

deviate vertically from a plane horizontal to Earth’s surface.

In the global coordinate system:

‰

y points toward magnetic north, which is approximately true north.

E

‰

x points approximately east — parallel to Earth’s surface but 90 degrees from y .

E

E

‰

z points away from the center of the earth.

E

Device Coordinate System

Raw three-axis inertial sensors (accelerometer, magnetometer, and gyroscope) report values corresponding to the device coordinate system. The device coordinate system is partially defi ned by the default orientation, which differs depending on the type of the device. For example, phones have a portrait default orientation while tables have a landscape default orientation. When the device is viewed in its default orientation, the axes are directed as follows

‰

The x-axis is horizontal with positive values to the right.

‰

The y-axis is vertical with positive values upward.

‰

The z-axis is positive values in front of the screen.

The coordinate system is fi xed to the device — the axis orientations are not changed when the device goes from portrait to landscape mode.

The Android 2D APIs use a different coordinate system, where the origin is in the top-left corner rather than at the center of the screen.

Angles

Angular quantities around axes are given by either a 3-vector, rotation matrix, or quaternion that maps the device coordinate system on to the global coordinate system. Quaternions are an alternate c05.indd 91

c05.indd 91

5/10/2012 2:01:57 PM

5/10/2012 2:01:57 PM

92 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

representation of rotation matrices and are beyond the scope of this book. For example, a 3-vector gyroscope reading of (0.1, –0.2, 0.0) indicates that the rotation rate is +0.1 radians per second around the x-axis, –0.2 radians per second around the y-axis, and not rotating around the z-axis.

The direction of angular three-vectors is determined by the so-called right- hand rule: if the thumb of your right hand points along the positive direction of the axis, your fi ngers will curl around in the direction of positive angle. The components of angular three-vectors may also be called azimuth (or heading or yaw), pitch, and roll. This is covered in more detail later.

Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and

.TYPE_LINEAR_ACCELERATION

MEMS accelerometers (Figure 5-5) are tiny masses on tiny springs. These devices can sense:

‰

Speeding up or slowing down in a straight line (such as the act of throwing or catching the device, during the short time period just before you release it or just after you catch it)

‰

Shaking the device

‰

Holding the device while going around a sharp corner in a car

‰

Earth’s gravity, which is 1 g downward (g is a unit of acceleration and is equal to 9.8 m/s2) Because acceleration is often associated with the feeling of being pushed into a car seat when the gas pedal in a car is depressed, it can be diffi cult to see why there is a constant downward acceleration due to gravity when a mass is standing still. However, remember that F=ma shows that an acceleration a is just the same thing as a force F, related through the proportionality constant m, for mass.

So whenever there is a force there will be a proportional acceleration too, even if acceleration may not be what we call it in everyday terms. How are forces acting on masses measured? By attaching the masses to springs and seeing how far the springs are deformed (see Figure 5-5).

A

B

C

m

m

m

1 g of gravity

1 g of gravity

freefall

+ acceleration

to the right

FIGURE 5-5: Force being applied to a mass attached to springs

Acceleration is measured by attaching a mass to springs and seeing how far the mass deviates from its equilibrium position. In Figure 5-5, A would correspond to the device sitting on a table. B would correspond to the device being thrown to the right, in the instant before it leaves the user’s hand. C

would correspond to the user dropping the device, during its free-fall motion. With this in mind it is easy to see why accelerometers measure both the force of gravity and also linear acceleration. It is also easy to see why an accelerometer in free-fall will report zero acceleration even though it is still subject to Earth’s gravity — this is because both the mass and the frame it is suspended from have the same acceleration acting on them, so the springs do not deform.

c05.indd 92

c05.indd 92

5/10/2012 2:01:57 PM

5/10/2012 2:01:57 PM

Sensing Device Orientation and Movement x 93

Every particle on Earth feels the downward force of gravity and is held against gravity through springy molecular forces and possibly macroscopic springs. MEMS masses are also pulled

downward by gravity and their tiny springs deform, allowing acceleration due to gravity to be measured.

The same inertial forces act, and the MEMS springs bend, when the device is shaken or swung around in a circle (though in the latter case the acceleration is inward, and due to the force applied to pull the device inward), so that is measured as acceleration.

Because force and the physics defi nition of acceleration are related, accelerometers can be thought of as force- meters that measure the force acting on the MEMS mass. At rest, they measure the force of gravity downward. When accelerating, they measure the force that caused them to accelerate (added to the force of gravity by vector addition).

During free-fall, the force of gravity still acts downward, however the MEMS mass and the surrounding frame to which it is attached (by springs) both have this same gravitational acceleration acting equally on them, therefore the MEMS springs no longer bend and the accelerometer measures 0 g.

From Android 2.3 onward, for convenience, developers also have the synthetic sensors Sensor.

TYPE_GRAVITY and Sensor.TYPE_LINEAR_ACCELERATION available. These sensors factor out the

force due to gravity and other accelerations. The sum of the values from the gravity and linear acceleration sensors equals the value from the accelerometer Sensor.TYPE_ACCELEROMETER.APS

Sensor Units and Resolution

Android reports acceleration in m/s2. Earth’s gravity is 9.8 m/s2 or 1 g (gee, a unit of gravity) downwards. However when at rest the sensor reports its z-value to be +9.8 m/s2, because it reports positive values for downwards accelerations. For all three accelerations, the convention is:

‰

 values[0]: Minus gx on the x-axis

‰

 values[1]: Minus gy on the y-axis

‰

 values[2]: Minus gz on the z-axis

where gx, gy, and gz are the three components of the measured acceleration vector.

A typical dynamic range is 0 ± 2 or ± 4 g, and a typical resolution is 0.1 m/s2. A device at rest will often report noise of around 1/20th of a g. Vibration of the internal device vibrator (the notifi cation vibrator) may shake it at an amplitude of 1 g. Shaking the device vigorously by hand will result in changes of around 1–10 g. Here are the associated constants for the accelerometer and their corresponding values in m/s2:

‰

SensorManager.GRAVITY_EARTH: 9.80665

‰

SensorManager.STANDARD_GRAVITY: 9.80665

 A few other constants also exist, such as SensorManager.GRAVITY_SATURN , but

 these are typically not very useful.

c05.indd 93

c05.indd 93

5/10/2012 2:01:57 PM

5/10/2012 2:01:57 PM

94 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

Sensor.TYPE_GYROSCOPE

MEMS gyroscopes are also tiny masses on tiny springs, but instead of measuring acceleration, they are designed to measure a different force — the so-called Coriolis force due to rotation. The Coriolis force is the tendency for a free object to veer off course when viewed from a rotating reference frame. For instance, when you are sitting on a merry-go-round and roll a ball away from you, the ball appears to veer away from a straight line as if there is a force acting on it. This fi ctitious force is called the Coriolis force. It is a “fi ctitious force” because when viewed from someone standing next to the merry-go-round, no force acts on the ball — it is simply rolling in a straight line as you would expect from Newtonian physics.

In the MEMS world, the gyroscope works by pushing a tiny mass back-and-forth along one axis.

When the gyroscope is rotated, the Coriolis force makes the mass veer away from the direction it was vibrating, and it starts to move along a different axis. Movement along this new axis is sensed electrically, using capacitor plates — one capacitor plate is fi xed to the frame and one is fi xed to the moving mass.

The Coriolis force acts only when the device is rotating, therefore gyroscopes measure only angular velocity, or, the speed at which the device is rotating. When the device is stationary, regardless of which direction the device is pointing, all three axes of the gyroscope will measure zero.

You cannot directly measure angle using a gyroscope. However, often the gyroscope values are integrated over time to calculate an angle. The gyroscope noise and offset will introduce large errors in the calculated angle, which if not addressed would make the integrated data be useless within a second or so. These errors may be compensated using the information from other sensors, and are covered in Chapter 6.

Sensor Units

Android reports values in radians per second around the standard x, y, and z axes shown in

Figure 5-4. The standard mathematical convention is followed: if the axis in question is pointing toward you, positive values indicate counterclockwise rotations. This is given by the right-hand rule, discussed previously.

Sensor Range

A typical maximum range to expect is around 35 degrees/second (0.61 rad/s), and a typical resolution is around 0.001 degrees/second (2E-5 rad/s).

Sensor.TYPE_MAGNETIC_FIELD

Magnetic fi eld sensors may operate under a variety of different methods depending on the manufacturer and architecture — they may use the Hall effect, magneto-resistive materials, or the Lorentz force. Hall effect sensors currently comprise the largest market share of magnetometers and work by simply passing a current through a wire. A magnetic fi eld component perpendicular to that wire causes the electrons to have higher density on one side of the wire compared to the other, which results in a voltage across the width of the wire that is proportional to the magnetic fi eld. Lorentz force sensors are similar but measure a mechanical defl ection of the wire rather than voltage across c05.indd 94

c05.indd 94

5/10/2012 2:01:58 PM

5/10/2012 2:01:58 PM

Sensing Device Orientation and Movement x 95

the wire’s width. Regardless of the physical mechanism, magnetic fi eld sensors will report the magnetic fi eld in x, y, and z (by having three separate sensors, one aligned along each axis).

You may notice that the magnetic fi eld readout is quite jumpy and may seem less accurate than other sensors. Magnetometers will undoubtedly continue to improve, but at the time of writing, creating a low-noise, sensitive, accurate, inexpensive MEMS magnetic fi eld sensor is still an open problem in the fi eld of MEMS.

Sensor Units, Range, and Resolution

Android reports magnetic fi elds in microtesla. A typical dynamic range is around 2000 microtesla.

The resolution for the magnetic fi eld sensor is 0.1 microtesla. Earth’s magnetic fi eld can vary from 30 microtesla to 60 microtesla, and over the U.S. the value varies from around 58 microtesla in North Dakota to around 48 microtesla in southern Texas, and these values drift over time.

However, the absolute value does not matter much, and these should be only taken to be ballpark estimates — MEMS-based magnetometers have both poor absolute accuracy and will vary based on the local environment. The local environment (the presence of nearby metal, even many nonmagnetic metals), hysteretic effects (the effect of environmental history; for example, if a metal body or magnet was close to the sensor and then removed, it may have changed the reading on the sensor), and drift cause measured values to change over time.

If better accuracy for the magnitude of the measurement is desired, the class android.hardware.

GeomagneticField will estimate the magnetic fi eld magnitude and direction at a given point on Earth. You supply a latitude, longitude, altitude, and time to instantiate it, and then have access to the following fi elds:

‰

float getDeclination() (Declination is the angle between magnetic north and true north

for a given location.)

‰

float getFieldStrength()

‰

float getHorizontalStrength()

‰

float getInclination() (Inclination is how far downward or upward the magnetic fi eld

should point, compared to the horizon.)

‰

float getX(), float getY(), float getZ() (These give the northward, eastward, and

downward components of the expected magnetic fi eld in nanoteslas [multiply by 1000 to get microteslas].)

Here are the associated constants for Sensor.TYPE_MAGNETIC FIELD and their values (in

microtesla):

‰

SensorManager.MAGNETIC_FIELD_EARTH_MAX: 60.0

‰

SensorManager.MAGNETIC_FIELD_EARTH_MIN: 30.0

Ideally, MEMS magnetometers would always measure the absolute magnetic fi eld of Earth. In reality, the measured values change over time based on both the current local magnetic environment and the history of the device. For instance, the presence of a nearby magnet or nonmagnetic metal object distorts Earth’s magnetic fi elds and results in readings that differ from magnetic north (see Figure 5-6).

c05.indd 95

c05.indd 95

5/10/2012 2:01:58 PM

5/10/2012 2:01:58 PM

96 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

Because the magnetic fi eld sensor can be infl uenced by nearby metal, some people have used the sensor to make an Android device into a crude metal detector. These apps watch for large changes in the magnetic fi eld as you move a piece of metal over your stationary Android device.

North

North

1

1

0.5

0.5

West

East

West

East

0

0

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.5

−0.5

−1

−1

South

South

(A)

(B)

FIGURE 5-6: (A) Device rotated by hand at approximately constant rate,

magnetic sensor readings plotted (normalized azimuth plot)

(B) Device rotated in the same way, but with a metal object nearby

The sensor may report different values before the introduction of a nearby metal object or magnet compared with after it is removed (an effect known as hysteresis — where the sensor reading depends on the history of the sensor’s environment and not always the real value you wish to measure).

Sometimes when interrogating the compass, there may be some “jumpiness” or a large offset in the data. Waving the device in a fi gure eight (away from any metal objects) will usually cause the magnetometer to report better readings. There is nothing special about a fi gure eight other than that it ensures a wide range of rapid data changes, which allows the magnetometer to get back on track.

The fi gure eight should not be performed in just one plane (it’s not just like driving a toy racecar around a fl at fi gure eight track), but the user should to wave it in all three axes to calibrate all axes of the magnetometer.

To determine when the fi gure eight calibration is needed, monitor the accuracy using

SensorEventListener.onAccuracyChanged(Sensor sensor, int accuracy). As previously

mentioned, there are four levels of accuracy: SENSOR_STATUS_ACCURACY_HIGH, SENSOR_STATUS_

ACCURACY_MEDIUM, SENSOR_STATUS_ACCURACY_LOW, and SENSOR_STATUS_UNRELIABLE. Some apps

remind the user to do this when the magnetometer reports an unreliable status, whereas others assume the accuracy is always suffi cient or that the user knows the calibration procedure and when to calibrate. (Another method of calibration may have the user place the device fl at on a table and pointing toward magnetic north, and thereafter using that reading as a constant offset from subsequent measurements; however, it is unlikely that users will perform this procedure.)

Lastly, some people who have reported a stuck compass (stuck pointing in one direction) have said that by waving a magnet around the device, the magnetometer can get unstuck. The magnetic fi eld sensor c05.indd 96

c05.indd 96

5/10/2012 2:01:59 PM

5/10/2012 2:01:59 PM

Sensing Device Orientation and Movement x 97

is often located near the top of a smartphone. The sensor can be found by moving a weak magnet (such as a small piece of fl exible fridge magnet) over the device and watching the sensor readings.

Sensor.TYPE_ROTATION_VECTOR

Available since API level 9, Sensor.TYPE_ROTATION_VECTOR is a synthetic sensor that calculates rotation angle of the global coordinate system with respect to the device coordinate system using the accelerometer, the magnetometer, and possibly the gyroscope if available.

The output of this sensor is in a form similar to a quaternion, which is an alternate representation of a rotation. Quaternions have certain mathematical advantages over expressing rotations in typical Euclidean terms, but they are not easily visualized. To get a true normalized quaternion from the output of this sensor, use the SensorManager.getQuaternionFromVector() method. However, quaternions are beyond the scope of this book, so we will simply skirt the issue by staying with the Euclidean representation, and convert the output immediately to a rotation matrix using the getRotationMatrixFromVector() method, as shown in the following snippet:

private float[] rotationMatrix = new float[16];

private float[] rotationVector = new float[3];

public void onSensorChanged(SensorEvent event){

switch (event.sensor.getType()){

case Sensor.TYPE_ROTATION_VECTOR:{

rotationVals = event.values.clone();

break;

}

case ...

}

getRotationMatrixFromVector (rotationMatrix, rotationVector);

};

As described, rotation matrices can be thought of as just another representation of an orientation vector — in other words, you can specify the orientation using rotationVector, or using the rotationMatrix that maps rotationVector on to the global coordinate system. As such, it may be used in, for example, an augmented reality app to calculate at what angle a virtual reality object should appear on the screen.

SensorManager.getRotationMatrixFromVector() takes two arguments. The fi rst is a 9 or 16

element matrix to hold the desired rotation matrix. The second is the output of the rotation vector sensor. The matrix rotationMatrix describes the rotation necessary to rotate the global coordinate system to the device coordinate system (see Figure 5-4) — thus, it describes the orientation of the device.

This synthetic sensor may be heavily processed depending on the implementation, and you can expect more processing in future devices. The section on “Sensor Fusion Schemes” later in this chapter will go into more detail.

When performing intensive three-dimensional vector calculations for graphical purposes (for example, an augmented reality app), check out OpenGL (Open Graphics Library) — also beyond the scope of this book, but worth learning because it has been designed for such calculations.

c05.indd 97

c05.indd 97

5/10/2012 2:01:59 PM

5/10/2012 2:01:59 PM

98 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

SensorManager.getOrientation()

y

A rotation matrix can be obtained from getRotationMa-

trix() or getRotationMatrixFromVector(), and can

then be passed getOrientation() to get the orientation

z

(azimuth, pitch, and roll in radians). Note that here orienta-

tion means both the north-south-east-west bearing and the

x

tilt angle. It is a vector describing how the device is oriented

with respect to Earth. It is different than screen orientation

(the portrait or landscape orientation) defi ned in the getRe-

sources().getConfiguration().orientation fi eld.

Source: http://developer.android.

com/reference/android/hardware/

Use of the deprecated Sensor.TYPE_ORIENTATION, which

SensorManager.html.

reports azimuth, pitch, and roll in degrees, should be

FIGURE 5-7: The axes for getOri-

avoided. However, Sensor.TYPE_ORIENTATION is still fairly

entation(). The sphere represents

widely implemented by developers and will probably still

Earth and the device is positioned at

work on most devices for some time.

the equator. The y-axis points toward

magnetic north, x points west, and z

The coordinate system used here is shown in Figure 5-7.

points to the center of the earth. (The x

Annoyingly, the x and z axes are inverted with respect to the

and z axes are inverted with respect to

regular global coordinate system in Figure 5-4. The reported

Figure 5-4.) Pitch, roll, and azimuth are

values are all given by the right-hand rule: if your right-hand

defi ned by the right-hand rule around

thumb points along the positive direction of an axis, your

the x, y, and z axes, respectively

fi ngers will curl around in the direction of increasing angle.

getOrientation() returns the following values:

‰

values[0] = Azimuth (or heading or yaw) = Rotation about z-axis: Assume the device is fl at on its back in portrait mode, with the top pointing toward north. The device reports 0 radians in this orientation, P/2 radians when pointing east, –P/2 radians when pointing west,

and ’ radians when pointing south.

‰

values[1] = Pitch = Rotation about x-axis: Assume the device is fl at on its back in portrait mode. The device reports 0 radians in this orientation, –P/2 radians when you lift the top

upward so it is standing upright with the screen facing toward you, +P/2 radians when you

lower the top so it is standing upright with the screen facing away from you, and P radians when the device is face down.

‰

values[2] = Roll = Rotation about y-axis: Assume the device is fl at on its back in portrait mode. The device reports 0 radians in this orientation, –P/2 radians when you lift the right side so it is standing upright on its side with the screen facing west, P/2 radians when you lift the left side so it is standing upright with the screen facing east, and P radians when the device is face down.

The procedure for determining device orientation is given in Listing 5-3.

c05.indd 98

c05.indd 98

5/10/2012 2:01:59 PM

5/10/2012 2:01:59 PM

Sensing Device Orientation and Movement x 99

LISTING 5-4: DETERMINING DEVICE ORIENTATION

private SensorManager sm;

private float[] accelVals;

private float[] magVals;

private float[] rotationMatrix = new float[16];

private float[] orientationVals = new float[3];

/*

* Construct the SensorManager objects and register sensor listeners. Not

* shown here.

*/

// Sensor reading

public void onSensorChanged(SensorEvent event)

{

switch (event.sensor.getType())

{

case Sensor.TYPE_ACCELEROMETER:

{

accelVals = event.values.clone();

break;

}

case Sensor.TYPE_MAGNETIC_FIELD:

{

magVals = event.values.clone();

break;

}

}

SensorManager.getRotationMatrix(rotationMatrix, null, accelVals,

magVals);

SensorManager.getOrientation(rotationMatrix, orientationVals);

// Optionally convert the result from radians to degrees

orientationVals[0] = (float) Math.toDegrees(orientationVals[0]);

orientationVals[1] = (float) Math.toDegrees(orientationVals[1]);

orientationVals[2] = (float) Math.toDegrees(orientationVals[2]);

};

The code in Listing 5-4 passes the accelerometer and magnetometer measurements into

getRotationMatrix(), which populates rotation Matrix. The generated rotation matrix is then passed into getOrientation() to get yaw, pitch, and roll. In most cases (but not in this example), an app may need to check that getRotationMatrix() returns true — it will return true if it succeeded and false if it failed.

For this example, the call to getRotationMatrix() is passed a null inclination matrix as the second parameter. This is because the inclination matrix is not needed for the calculation and this can save execution time.

c05.indd 99

c05.indd 99

5/10/2012 2:02:00 PM

5/10/2012 2:02:00 PM

100 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

rotationMatrix is the matrix that fulfi lls:

[0 0 g] = rotationMatrix * accelVals and the inclination matrix inclinationMatrix (which

we consider in the following section) is the matrix that fulfi lls:

[0 m 0] = inclinationMatrix * rotationMatrix * magVals, where g = 9.8 m/s2 and m = the

magnitude of the magnetometer reading (to get the magnitude you add the squares of mx, my, and mz, and then take the square root).

In other words, rotationMatrix assumes no signifi cant external acceleration other than 1 g downward toward Earth (this means that it assumes the device is not being shaken), and simply maps accelVals (which are taken in the device’s coordinate system, which is fi xed to the device) on to the coordinate system in Figure 5-4 which is fi xed to Earth. When the device is lying fl at on its back with the top of the device in portrait mode pointing to the north, the device’s coordinate system and Earth’s coordinate system align, and rotationMatrix is just the identity matrix.

This method returns true on success, false on failure. Failure will occur if the device is in free fall because the accelerometer’s downward measurement is not defi ned. (Failure will also occur if the device is close to the magnetic north or south of Earth, although admittedly this is not likely to happen.) On failure the output matrices are not modifi ed.

orientationVals is the vector that will hold the azimuth, pitch, and roll in radians.

Notice that the values passed into onSensorChanged() are cloned before they are assigned the class member data. This is because the SensorEvent object that is passed to onSensorChanged() may be reused on subsequent calls. The use of clone() is needed to avoid the values getting overridden as the array points to a reference.

This method for getting the orientation will not fail, but may give incorrect results if the device is accelerating or a nearby magnet is affecting the magnometer.

Once you have found rotationMatrix, remapCoordinateSystem() can be used to cast rotation-

Matrix into a more convenient form. For instance, the matrix that getRotationMatrix() returns is defi ned to have the y-axis pointing out the top of the device, so when the device is sitting fl at on a table pointing north, it will read (0,0,0). If a particular application needs it to read (0,0,0) when pointing north but sitting vertical, the app simply remaps the coordinate system so the x-axis is negative. This can be implemented with the following code right after getRotationMatrix() in onSensorChanged(). The matrix outR holds the result, but an app can make this be rotationMatrix instead if you simply want to overwrite rotationMatrix with the result. So, in other words, the following code takes rotationMatrix, remaps the coordinate system as just described, and spits out the resulting rotation matrix into outR. In subsequent code, outR can be used in the place of rotationMatrix, as if the global coordinate axes have been redefi ned as shown in Figure 5-4: SensorManager.remapCoordinateSystem(rotationMatrix,

SensorManager.AXIS_Y,

SensorManager.AXIS_MINUS_X,

outR);

c05.indd 100

c05.indd 100

5/10/2012 2:02:00 PM

5/10/2012 2:02:00 PM

Sensing Device Orientation and Movement x 101

The difference between using the rotation vector sensor and the getOrientation() method is that getOrientation() has no data smoothing, whereas the rotation vector sensor may have some

smoothing. In general, if the orientation of a device is needed, some smoothing is generally also needed.

SensorManager.getInclination()

Earth’s magnetic fi eld is not perfectly horizontal at each point on Earth — a compass needle will point downward on the northern hemisphere and upward on the southern hemisphere, though it is not noticed because compass needles are constrained to move in a horizontal plane. Magnetic inclination or magnetic dip is the angle that a compass needle will make with the horizontal and is given by the getInclination() method. In the continental United States, inclination may be anywhere from about 60 degrees in Texas to about 70 degrees in North Dakota.

From the defi nition of getInclination() provided in the preceding section, it is clear that if the device is fl at on its back with the top of the screen (in portrait mode) pointing toward magnetic north, then inclinationMatrix will be the identity matrix. In general, inclinationMatrix maps the magnetic fi eld vector (expressed as rotationMatrix * magVals, which is therefore expressed in the global coordinate and not the device coordinate system) onto [0 m 0].

The magnetometer will always be found to point in the global y -z plane in Figure 5-4, because E

E

the only way the device knows which direction y is, is to consult the magnetometer. In other words, E

the global y axis in Figure 5-4 is actually set by the magnetometer’s measurement of magnetic E

north and not of the actual magnetic north. Inclination, then, is the magnetometer’s deviation from the y axis in the y -z plane.

E

E

E

Sensor Fusion Schemes

 Sensor fusion describes the process of combining more than one sensor to get better results.

For example, the accelerometer responds quickly to changes but is noisy. Smoothing it results in response lag. The gyroscope measurement, when integrated over time, provides a low-noise angle measurement but it is useless alone because gyroscope drift means that the integrated gyroscope data quickly becomes unphysical (unphysical meaning it doesn’t correspond to the actual orientation of the device). Therefore, a sensor fusion system may use primarily the integrated gyroscope data, and stop it from drifting by constantly comparing it with the accelerometer (which does not drift).

Invensense, a manufacturer of accelerometers and gyroscopes, has worked with hardware manufacturers that use its sensors (for example, the Samsung Galaxy Tab 10.1, HTC Sensation, EVO 3D, and Galaxy Nexus) to implement its proprietary sensor fusion algorithms on the ROTATION_VECTOR

sensor. (The GRAVITY and LINEAR_ACCELERATION sensors are also heavily processed.) Other vendors may soon follow suit, and open source sensor fusion algorithms may one day become available. Until then, if you need to determine if a device uses Invensense’s sensor fusion algorithms, you can detect the manufacturer of the gyroscope (using the Sensor.getVendor() method) — if it is Invensense then it is probably implemented. You can fi nd more details about sensor fusion in Chapter 6.

c05.indd 101

c05.indd 101

5/10/2012 2:02:00 PM

5/10/2012 2:02:00 PM

102 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

The take-home message is to use the synthetic sensors rather than the raw sensors whenever possible, because these will improve over time as sensor fusion algorithms are implemented in various hardware devices.

SUMMARY

This chapter provided detailed information about the physical sensors on Android devices to help you use physical sensors properly. The chapter described how to collect sensor data with the Sensor API. It also described how the sensor hardware works. Finally, this chapter described what the sensor values mean and how to interpret them.

The next chapters in this part describe sensor applications. The applications go into detail about how to apply the information in this chapter to create useful features that use physical sensors.

c05.indd 102

c05.indd 102

5/10/2012 2:02:01 PM

5/10/2012 2:02:01 PM

6

Errors and Sensor Signal

Processing

WHAT’S IN THIS CHAPTER?

‰

Outlining the errors that occur in sensor data

‰

Explaining algorithms for fi ltering data

‰

Understanding sensor fusion schemes

Sensors do not measure values perfectly. Instead, they can often produce data that is incorrect due to noise or because of degradation that occurs over time. Both of these problems may introduce errors in the resulting data.

Fortunately, algorithms and techniques exist to address these errors. To reduce errors, an

app can fi lter output from individual sensor readings or fuse results from multiple sensors.

Additionally, some of Android’s synthetic sensors execute fi ltering algorithms or perform the sensor fusion for you.

This chapter fi rst explores what kinds of errors can occur. Then, it describes fi ltering techniques that can help remove errors from individual sensor readings. Finally, it describes some sensor fusion schemes to combine outputs of multiple sensors to create improved results.

If Android does not provide a synthetic sensor you need, this chapter gives you the under-

standing you need to develop an approach and improve the quality of sensor data output. If

Android does provide a synthetic sensor you need, this chapter helps you understand how such sensors work.

c06.indd 103

c06.indd 103

5/10/2012 2:02:50 PM

5/10/2012 2:02:50 PM

104 x CHAPTER 6 ERRORS AND SENSOR SIGNAL PROCESSING

DEFINITIONS

Before describing fi ltering algorithms or sensor fusion schemes, it is useful to understand different terminology to describe errors, what types of errors can occur, and what kinds of techniques exist to address them.

Accuracy and Precision

To judge a sensor’s accuracy and precision you need two relevant numbers. One is the actual value (such as the actual humidity or actual acceleration) that the sensor is trying to measure, and one is the measured value that the sensor reports. High accuracy means that the measured value is close to the actual value. In contrast, high precision means that measurements are more tightly clustered around a particular value, regardless of whether it is close to the actual value.

Figure 6-1 shows how the data values would appear under different accuracy and precision conditions. Notice the cluster of values in either high accuracy or low accuracy situations that have high precision, while low precision measurements scatter the data points.

High accuracy, high precision

Low accuracy, high precision

Precision

High accuracy, low precision

Low accuracy, low precision

Accuracy

FIGURE 6-1: Accuracy vs. precision

c06.indd 104

5/10/2012 2:02:54 PM

Defi nitions x 105

 The word precision may sometimes be used to describe the total number of digits a measurement returns; however, in the present usage it is related only to the

 number of signifi cant digits in a measurement.

Types of Errors

When reading sensor data it is important to understand the types of errors you may encounter.

Being familiar with why a sensor reading might return bad data may play a key role in developing algorithms to detect and process the erroneous data. Common causes of error in sensor data are discussed in the following sections.

Human Error, Systematic Error, and Random Error

Human errors are mistakes made by humans in making a measurement (such as incorrectly reading a value from a graph) and are not addressed in this book. Systematic errors are errors that affect the accuracy of a measurement — they are a constant offset from the true value (for instance, taking a measurement with the magnetometer with a magnet nearby). In some cases they can be predicted or removed by calibration or by changing the measurement scheme. On the other hand, random errors such as noise result in imprecise measurements and cannot be removed by these techniques.

Noise

Noise is the random fl uctuation of a measured value. Although noise can be categorized (brown noise, white noise, and so on) and statistically quantifi ed, these details are not usually necessary for programming with Android sensors and are not covered here. Instead, this chapter introduces you to low-pass fi lters to mitigate the effects of noise when necessary.

Drift

Drift describes slow, long-term wandering of data away from the real-world value. Drift may occur due to the sensor reading itself degrading over time. It can also occur if a sensor value is integrated.

In such cases, a small offset (see the next section) will add up in each iteration of the integration to cause the resulting reading to drift away from the real measurement.

Zero Off set (or “Off set,” or “Bias”)

If the output signal is not zero when the measured property is zero, the sensor has an offset or bias.

For example, if the average accelerometer measurement when the device is fl at on a table is not exactly (0, 0, –9.80665 m/s2), the accelerometer has an offset.

If a gyroscope does not measure exactly (0, 0, 0) rad/s when stationary, even a small zero offset will show up as an integration error when the gyro data is integrated to fi nd the angle.

Time Delays and Dropped Data

Because Android is not a real-time operating system (RTOS), some measured data values can be delayed, resulting in incorrect timestamps. Data may even sometimes be dropped when the device is busy. Usually this is not a concern to developers, but is worth noting in a chapter about errors.

c06.indd 105

c06.indd 105

5/10/2012 2:02:54 PM

5/10/2012 2:02:54 PM

106 x CHAPTER 6 ERRORS AND SENSOR SIGNAL PROCESSING

Integration Error

The gyroscope reports angular rotation rate in radians per second, however it would be more useful in many applications to know the amount by which the device has rotated. To fi nd this quantity, you can integrate the gyroscope’s readings and fi nd a rotation angle in radians.

Listing 6-1 shows the code required to fi nd the rotation angle in radians. event.values reports the rate of rotation as angle-per-second. First, the code calculates the time change between sensor readings, converts it from nanoseconds to seconds, and stores it in dT. To convert the angle-per-second value into just angle, the code multiplies each angle in event.values by dT. This conversion works because multiplying the angle-per-second value by a time in seconds results in a measurement with angle units. The resulting output is how far, in terms of angle, the gyroscope has rotated over the time period during dT.

LISTING 6-1: Integrates gyroscope readings to determine rotation angle in radians

//NS2S converts nanoseconds to seconds

private static final float NS2S = 1.0f / 1000000000.0f;

private float timestamp;

public void onSensorChanged(SensorEvent event)

{

float[] valuesClone = event.values.clone();

if (timestamp != 0)

{

final float dT = (event.timestamp - timestamp) * NS2S;

angle[0] += valuesClone[0] * dT;

angle[1] += valuesClone[1] * dT;

angle[2] += valuesClone[2] * dT;

}

timestamp = event.timestamp;

}

However, the zero offset and drift in the gyroscope measurements mean that simple integration will give poor results. Over time, it will quickly explode to give large unphysical numbers even with no actual rotation, because offset and drift are accumulated under the integral, each time the integration executes. If you want to use gyroscope data to fi nd orientation angle, these errors must be compensated for using the readings from other sensors using a “sensor fusion” approach discussed later.

The accumulated offset and drift is one reason why you can’t measure distance by double-integrating the accelerometer measurement. Another reason is that, unless the device is accelerating or decelerating at all points in time, a constant nonzero velocity and a constant zero velocity will both contribute nothing to the double integral and, therefore, you can’t tell a nonzero velocity from zero velocity, so a calculated distance is meaningless. For example, if you measure acceleration while a device is sitting on the table, it will measure 0,0,-g, where g is the constant acceleration due to gravity. If you measure it while it is traveling at a constant speed of 5 meters per second in the x direction, it will also measure 0,0,-g, because it is not “accelerating.” Instead, it is traveling at a constant speed and therefore not accelerating. So the part of its travel where it is traveling at a constant speed contributes nothing to any integrated measurement.

c06.indd 106

c06.indd 106

5/10/2012 2:02:55 PM

5/10/2012 2:02:55 PM

Filters x 107

Techniques to Address Error

The previous section discussed the types of errors that may be encountered when using Android sensor data. In most cases, an app will also need to handle the cases where a sensor error is present.

The next sections discuss some of the methods that can be used to address sensor error.

Re-zeroing

If there is an offset present that is affecting your application, it may be useful to re-zero the sensor measurements. This is as simple as storing a calibrated value (potentially stored when the user clicks a Calibrate button) and subtracting it from each measured value. For instance, the device may be placed fl at on a surface and the “downward” direction as measured by the accelerometer can be calibrated. This is simple enough that it doesn’t need a code example; however, the trick is getting the user to actually perform the calibration, and know how and when to do so.

Filters

Low-pass fi lters fi lter out any high-frequency signal or noise and have a “smoothing” effect on data.

High-pass fi lters fi lter out slow drift and offset and just give the higher frequency changes. The “cutoff frequency” is the approximate transition frequency above or below which the data is fi ltered out.

Bandpass fi lters reject both low-frequency and high-frequency data and just keep the data in some frequency range of interest.

Sensor Fusion

 Sensor fusion refers to using more than one sensor to take advantage of the strengths of each sensor and mitigate the effects of the weaknesses. For example, the accelerometer can give a relatively accurate measurement of the “downward” direction, but it has the disadvantage that it can never tell us the north-south-east-west yaw of the device. However, the compass can supplement that measurement to give yaw. A more complicated sensor fusion approach might be to also add integrated gyroscope data to give an app access to faster and lower-noise changes than the accelerometer and compass can give, but use the accelerometer and compass to reduce the effects of normal gyroscope drift. In effect, an app would primarily use the high-quality gyroscope data to get orientation information, but “nail it down” and prevent it from drifting by continually comparing it to the zero-drift accelerometer and compass data.

FILTERS

Filtering sensor data is another technique that can be used to overcome erroneous data. The following sections discuss a few fi ltering approaches.

Low-Pass

Although the sensors found in mobile devices are continually improving, in many cases an app may rely on some form of smoothing or averaging, also known as low-pass fi ltering (because it fi lters out high-frequency noise and “passes” low-frequency or slowly varying changes).

c06.indd 107

c06.indd 107

5/10/2012 2:02:55 PM

5/10/2012 2:02:55 PM

108 x CHAPTER 6 ERRORS AND SENSOR SIGNAL PROCESSING

If all you want to do is get the gravity component of the accelerometer’s measurement, use Sensor.

TYPE_GRAVITY instead. This is a synthetic sensor that consists of low-pass-fi ltered accelerometer data. It is preferable to use the Gravity sensor rather than to fi lter the accelerometer data yourself because it is easier and chances are it has been optimized for the particular accelerometer on each device that will run your app.

Weighted Smoothing

A common method of implementing a low-pass fi lter to smooth data involves weighting the newest value against the old mean. A smoothing parameter (or weighting value) a is used such that: (New value) = (Last value) + x * a – (Last value) * a

 i

In other words, the last calculated value is added to x (the most recently collected value), which is i

weighted by a, with the weighted previous value being subtracted from the sum. If a is close to 1, the new value will be x , and if a is close to 0 the new value will not change with the calculation — this i

allows x to have any desired level of infl uence on the new value. More concisely for programming i

purposes but perhaps less clearly for understanding, the algorithm may be written as:

 (New mean) = (Last value) * (1– a) + x * a

 i

Or in Java as:

float a = 0.1f;

public void onSensorChanged(SensorEvent event

{

x = event.values[0];

y = event.values[1];

z = event.values[2];

mLowPassX = lowPass(x, mLowPassX);

mLowPassY = lowPass(y, mLowPassY);

mLowPassZ = lowPass(z, mLowPassZ);

}

// simple low-pass filter

float lowPass(float current, float last)

{

return last * (1.0f - a) + current * a;

}

The value of a may need to be adjusted to fi nd the best value for an app. However, a is defi ned here to be 0.1, which is often a decent choice for typical sampling rates when using the accelerometer to control a character in a game, for instance. As you can see in the code snippet, a = 0 results in the mean never changing (the newest data has no effect), whereas a = 1 results in the mean becoming equal to the newest data point each time it is computed (the newest data completely controls the mean). Values between 0 and 1 result in smoothed data.

Simple Moving Average (SMA)

A few extra lines of code to calculate the simple moving average (SMA) will provide a better smoothing against single-data-point spikes. The SMA is sometimes called the rolling average or running average. This simply fi nds the arithmetic mean of the most recent k data values in a stream.

The integer k denotes the size of the averaging “window.”

c06.indd 108

c06.indd 108

5/10/2012 2:02:55 PM

5/10/2012 2:02:55 PM

Filters x 109

This method doesn’t work until k values have been collected. For the fi rst k–1 values, arbitrary values may be supplied for the average (0, for example), or the SMA calculation can be deferred until k values have been collected.

Listing 6-2 is an example of the SMA implemented as its own object. To use it, push the newly collected sensor value using pushValue() and then get the averaged value using getValue().

LISTING: 6-2: SMA implementation

public class MovingAverage

{

private float circularBuffer[];

private float avg;

private int circularIndex;

private int count;

public MovingAverage(int k)

{

circularBuffer = new float[k];

count = 0;

circularIndex = 0;

avg = 0;

}

/* Get the current moving average. */

public float getValue()

{

return avg;

}

public void pushValue(float x)

{

if (count++ == 0)

{

primeBuffer(x);

}

float lastValue = circularBuffer[circularIndex];

avg = avg + (x - lastValue) / circularBuffer.length;

circularBuffer[circularIndex] = x;

circularIndex = nextIndex(circularIndex);

}

public long getCount()

{

return count;

}

private void primeBuffer(float val)

{

for (int i = 0; i < circularBuffer.length; ++i)

{

circularBuffer[i] = val;

}

c06.indd 109

c06.indd 109

5/10/2012 2:02:55 PM

5/10/2012 2:02:55 PM

110 x CHAPTER 6 ERRORS AND SENSOR SIGNAL PROCESSING

avg = val;

}

private int nextIndex(int curIndex)

{

if (curIndex + 1 >= circularBuffer.length)

{

return 0;

}

return curIndex + 1;

}

}

 This code is available under the Apache 2.0 license from http://code.google.com/p/bigwords.

The effect of an SMA and weighted smoothing is shown in Figure 6-2.

1.5

0.5

0

250

500

–0.5

Raw data

Weighted smoothing, a = 0.2

Weighted smoothing, a = 0.5

Weighted smoothing, a = 0.02

1.5

0.5

0

250

500

–0.5

Raw data

SMA, k = 4

SMA, k = 20

SMA, k = 100

FIGURE 6-2: The eff ect of low-pass fi ltering on simulated accelerometer data for the weighted smoothing and SMA approaches. Notice the trade-off between response time and smoothness. Notice also that the weighted smoothing (a = 0.02) has a curving response after the step, versus the linear response of the SMA (k = 100).

c06.indd 110

5/10/2012 2:02:55 PM

Filters x 111

Choosing the Smoothing Parameter

The time constant of a fi lter gives the duration of a signal it will act on. A low-pass fi lter will fi lter out signals much shorter than the time constant and a high-pass fi lter will fi lter out signals much longer than the time constant. The time constant of the fi rst low-pass fi lter that was discussed, (New mean) = (Last value) * (1– a) + x * a

 i

with coeffi cient a and sample period dt is:

 t = adt € a = t

1 - a

 t + dt

If the desired time constant and sample rate are known, the fi lter constant a can be picked. Though the sample rates for a sensor can be specifi ed (as discussed in Chapter 5), Android will treat the requested sample rate as a suggestion and does not guarantee that sensor data will be delivered at the specifi ed rate. However, the approximate sample rate is good enough for our purposes because the cutoff frequency is a soft limit too.

Averaging: Smoothness vs. Response Time

It is clear from Figure 6-1 that choosing a smoothing parameter or window size involves a trade-off. On one hand, a large smoothing parameter or window size means that sudden changes in data values may take too long to be refl ected in the moving average, and on the other hand, the smoothing parameter and window size should be chosen to be large enough to adequately smooth the data.

Additionally, an overly large window size may reduce response time by requiring a longer calculation. A large window size also means that an app cannot get a reading until there is suffi cient data to fi ll the window. Thus, if it takes one minute to fi ll the window size with data, the app has to wait that long before it has a measurement.

Also, data values may not be evenly spaced in time and the time spacing may vary from device to device. Hence, when defi ning a suitable window size, it is better to smooth all data values collected in a given time period rather than just the last, say, 20 values.

Simple Moving Median (SMM)

The simple moving median is, not surprisingly, the median of the most recent k data points. You can fi nd the median by sorting the values in order of size and selecting the value closest to the center.

This will give better tolerance for sharp data spikes than the SMA — sharp spikes in data don’t even show up if they are much narrower than k data points. On the other hand, it is signifi cantly more diffi cult to code, relatively processor-intensive, and not usually worth it, so is not shown here.

High-Pass

A high-pass fi lter de-emphasizes the static or slowly varying background and emphasizes the higher-frequency or transient components. Note that if all you want to do is to fi lter out the constant downward gravity component of the accelerometer data and keep the higher-frequency transient changes, use Sensor.TYPE_LINEAR_ACCELERATION instead. The Linear Acceleration sensor is a synthetic

c06.indd 111

c06.indd 111

5/10/2012 2:02:55 PM

5/10/2012 2:02:55 PM

112 x CHAPTER 6 ERRORS AND SENSOR SIGNAL PROCESSING

sensor that consists of high-pass-fi ltered accelerometer data, and has already been optimized for the particular hardware sensors in each device that will run your app.

Inverse Low-Pass Filter

The simplest way perform high-pass fi ltering is to do a low-pass fi lter and then subtract the result from the sensor data. For example, to fi lter the accelerometer data, the components of the data might be separated and adjusted using the code in Listing 6-3.

LISTING 6-3: Applies low-pass-fi lter to sensor data

public void onSensorChanged(SensorEvent event

{

final float alpha = 0.8;

gravity[0] = a * gravity[0] + (1 - a) * event.values[0];

gravity[1] = a * gravity[1] + (1 - a) * event.values[1];

gravity[2] = a * gravity[2] + (1 - a) * event.values[2];

linear_acceleration[0] = event.values[0] - gravity[0];

linear_acceleration[1] = event.values[1] - gravity[1];

linear_acceleration[2] = event.values[2] - gravity[2];

}

 This code snippet was derived from http://developer.android.com/reference/

 android/hardware/SensorEvent.html, which is available under the Apache 2.0 License.

You can choose the parameter a as described in the “Weighted Smoothing” section. Also, you need to start with an initial measurement or discard any initial measurements that used the initial zero value. One way to do this would be to initialize values with the fi rst measurement.

A simple implementation of a high-pass fi lter is shown in Listing 6-4.

LISTING 6-4: Applies high-pass fi lter to sensor data

public void onSensorChanged(SensorEvent event

{

x = event.values[0];

y = event.values[1];

z = event.values[2];

mHighPassX = highPass(x, mLastX, mHighPassX);

mHighPassY = highPass(y, mLastY, mHighPassY);

mHighPassZ = highPass(z, mLastZ, mHighPassZ);

mLastX = x;

mLastY = y;

mLastZ = z;

}

// simple high-pass filter

float highPass(float current, float last, float filtered)

{

return a * (filtered + current - last);

}

c06.indd 112

c06.indd 112

5/10/2012 2:02:55 PM

5/10/2012 2:02:55 PM

Filters x 113

To understand how this works, notice that if there is some background offset, this will be common to both current and last and will be fi ltered out. If there is some slow background drift, current will still approximately equal last and it will be fi ltered out. However, if there is some rapid change in the value, current will not equal last, and the fl uctuation will survive through the fi lter.

You need to maintain connection with the previous value (so you need the fi ltered variable to appear in the return statement), but you also need for the contribution from fi ltered to dissipate to zero over time. To make the contribution dissipate over time and for the data to ultimately be centered around zero over long time scales as high-pass-fi ltered data should, you need to multiply fi ltered by a, which is some number between 0 and 1.

The effect of high-pass fi ltering is shown in Figure 6-3.

2

2

1

1

0

0

0

100

200

0

100

200

–1

–1

–2

–2

Raw data

Simple high-pass, a = 0.7

Raw data

a = 0.1

a = 0.95

(A)

(C)

2

2

1

1

0

0

0

100

200

0

100

200

–1

–1

–2

–2

Raw data

Simple high-pass, a = 0.7

Raw data

a = 0.1

a = 0.95

(B)

(D)

FIGURE 6-3: The eff ect of high-pass fi ltering on simulated accelerometer data for diff erent values of a.

Notice that high-frequency shaking in (A) passes through but low-frequency drift and off set in (A) and (B) do not pass. (C) and (D) give two extreme values of a for comparison, plotted on a separate graph from (A) and (B) for clarity.

Bandpass

A bandpass fi lter (or its inverse, the band-reject or notch fi lter) is useful to emphasize (or de-emphasize) a certain frequency signal and de-emphasize (or emphasize) higher and lower frequencies.

In its simplest incarnation, and in the form most useful for most Android sensor applications, it is simply a combination of a low-pass and high-pass fi lter. Data is fi rst fi ltered to keep the higher-frequency components, and then the very high-frequency noise is fi ltered out with a low-pass smoothing fi lter.

c06.indd 113

5/10/2012 2:02:55 PM

114 x CHAPTER 6 ERRORS AND SENSOR SIGNAL PROCESSING

Introducing Kalman Filters

A Kalman fi lter can provide excellent signal processing results, but is complicated to implement for all but the simplest examples. To use a Kalman fi lter, prior knowledge about the source of the data is needed. The algorithm is fed noisy measurements, some predictions about how the measurement’s true value is behaving, maybe some knowledge about forces that are causing the system to change, and a Kalman fi lter algorithm can effi ciently fi nd an accurate estimate of something’s true value.

Kalman fi lters are extremely fl exible and can be used to smooth high-frequency noise or to isolate a periodic signal such as a pedometer signal.

Entire textbooks have been written on the subject, and it is easy to get lost in the linear algebra.

This chapter includes a simple introduction to present some exposure to a Kalman fi lter. In this example, a signal that originated from a pressure sensor (either an internal Sensor.TYPE_PRESSURE

or external sensor via Android Open Accessory) will be processed. However, Kalman fi lters can be applied to any signal from any sensor.

For this example, let the actual current air pressure be approximately 1010.0 mbar, plus or minus 0.5 mbar, and the pressure sensor gives uniformly random results within a range of ±1.5 mbar of the true pressure. A Kalman fi lter picks a weighted average of the guess and the actual measurement.

The weight is computed by the following formula:

weight = guess_variance / (guess_variance + sensor_variance);

In this case, the weight computes to 0.5 / (0.5 + 1.5) = 0.25. A weight approaching 1 would mean that the sensor’s readings can be trusted, and a value approaching 0 means the guess is trusted. A value of 0.25 makes sense because the sensor variance is larger than the guess variance, so the guess should be trusted more.

Assume the pressure sensor provides a measurement of 1011.0 mbar. First the weighted average is computed:

estimate = guess + weight * (measurement - guess);

or equivalently:

estimate = (1-weight) * guess + weight * measurement;

You compute 1010 + 0.25 * (1011 – 1010) = 1010.25 mbar. Notice this value is 25 percent of the way from 1010 to 1011 mbar, as expected.

Second, the confi dence of the 1010.25 mbar value is computed:

estimate_variance = guess_variance*sensor_variance / (guess_variance+sensor_variance)

This is 0.5 * 1.5 / (0.5 + 1.5) = 0.375 mbar. The algorithm now has a guess that the pressure is 1010.25 ± 0.375 mbar, and a sensor indicating that the pressure is plus or minus 1.5 mbar. The algorithm is now essentially back to where it started, and can run again. Say another measurement read to be 1010.5 mbar. The algorithm then calculates the three quantities again:

weight = 0.375 / (0.375 + 1.5) = 0.2

estimate = 1010.25 + 0.2 * (1010.5 - 1010.25) = 1010.3

estimate_variance = 0.375 * 1.5 / (0.375 + 1.5) = 0.3

c06.indd 114

c06.indd 114

5/10/2012 2:02:56 PM

5/10/2012 2:02:56 PM

A Better Determination of Orientation by Using Sensor Fusion x 115

So now it guesses that the pressure is 1010.3 ± 0.3 mbar.

In practice, such a simple example offers little advantage over simply smoothing the data using a low-pass fi lter, and doesn’t include any external “forces” that would cause the actual air pressure to change (such as air pressure drift, or the twice-daily air pressure fl uctuation due to atmospheric tides). However, it does provide insight into how a Kalman fi lter compares measurements to an expected physical model that you defi ne with your estimates and weights. A full explanation would fi ll a textbook, but if functionality beyond simple smoothing and simple high-pass fi ltering is needed, a Kalman fi lter will give the best results.

A BETTER DETERMINATION OF ORIENTATION

BY USING SENSOR FUSION

Several apps need to know the current orientation of a device. The angular velocity of the device might be useful too, so the problem is to map the sensor outputs onto these desired quantities (see Figure 6-4). The sensor outputs can indicate which direction is “north” and “down” (and therefore provide pitch, roll, and yaw) and an angular velocity, so it is natural to think that the problem is solved (see Figure 6-5). However, the accelerometer and compass are inherently noisy and give poor results. Note that the GPS can be used to get the heading, instead of the compass, if the device is moving — a device in a car dock in a moving car is a good example.

Pitch and roll

Accelerometer

Orientation

Compass

Yaw

GPS (if moving)

?

Gyro

Angular speed

FIGURE 6-4: Graphical representation of the problem of using sensor fusion to determine orientation Sensor Fusion: Simple vs. Proprietary

Since API level 9, SensorManager has had a getOrientation() method and there has been a

“Rotation sensor” (referenced by Sensor.TYPE_ROTATION) that allows a developer to easily fi nd the orientation of the device (see Chapter 5). However, the actual implementation of these synthetic sensors can be different depending on the hardware sensors and the device manufacturer. For instance, devices since around 2010 that incorporate an Invensense brand gyroscope (and possibly also an Invensense accelerometer) such as the Galaxy Nexus, Samsung Galaxy Tab 10.1, and HTC

EVO 3D, are likely to also incorporate Invensense’s Sensor Fusion algorithms. In short, this means c06.indd 115

5/10/2012 2:02:56 PM

116 x CHAPTER 6 ERRORS AND SENSOR SIGNAL PROCESSING

that they get low-noise orientation data primarily from integrated gyroscope data, but mitigate the effects of gyro drift by constantly comparing that data to the pitch, roll, and yaw reported by the accelerometer and compass, which do not drift.

Most obvious

Pitch and roll

Accelerometer

Orientation

Compass

Yaw

GPS (if moving)

Gyro

Angular speed

FIGURE 6-5: Determining orientation by directly mapping sensor inputs to the desired outputs Proprietary Sensor Fusion

Invensense’s Sensor Fusion algorithms are proprietary — Invensense as a company works with

smartphone manufacturers to get their sensors and algorithms implemented — and the action

happens behind the scenes during product development, so these algorithms are not available for developers to use. Developers just use Sensor.TYPE_ROTATION on participating devices. Older devices, non-participating devices, or devices using a different brand of gyroscope (which includes most devices today) use the algorithms depicted in Figure 6-5 or Figure 6-6 to fi nd orientation.

However, the presence of SensorManager.getOrientation() and Sensor.TYPE_ROTATION in

the API and the success of Invensense’s approach means that other gyroscope and Android device manufacturers will follow suit, and comparable open source Android sensor fusion algorithms will probably become available. This means that it is always a good idea to use the rotation sensor or getOrientation() whenever possible, rather than use raw accelerometer and compass data,

so that in future devices your app will use superior sensor fusion algorithms without any work on your part.

SensorManager.getOrientation() requires a rotation matrix as a parameter. In the Android API, there are multiple ways to produce the rotation matrix. However, for the use of getOrientation(), a rotation matrix should not be produced by passing the sensor readings from the accelerometer and magnetic fi eld sensor to the getRotationMatrix() method. The reason to avoid this method for producing a rotation matrix is that orientation should be relatively static. An app usually wants to know which way the phone is pointing, and not take into account any rapid shaking of the phone.

Any readings from the accelerometer will include shaking of the device.

Because the sensor fusion algorithms are not available to most developers, developers continue to consider other methods to determine orientation. They may naively expect that, knowing the initial orientation, if they integrate the gyro measurement (see Figure 6-7) they can compute any fi nal c06.indd 116

5/10/2012 2:02:56 PM

A Better Determination of Orientation by Using Sensor Fusion x 117

orientation. Unfortunately, if the gyro doesn’t read perfectly zero when stationary (and it doesn’t), this offset and drift will keep adding to the computed angle, and within a second or so, a completely unphysical answer may be produced.

Quick-and-dirty

Pitch and roll

Accelerometer

Low-pass filter

Orientation

Compass

Yaw

GPS (if moving)

Gyro

Angular speed

FIGURE 6-6: Quick and dirty use of a low-pass fi lter to determine orientation

Gyro only

Pitch and roll

Accelerometer

Orientation

Compass

Yaw

GPS (if moving)

Integration

Gyro

Angular speed

FIGURE 6-7: Integrating gyroscope readings to determine orientation

Simple Sensor Fusion: The Balance Filter

A simple sensor fusion algorithm called a balance fi lter or complementary fi lter (though it is not a complementary fi lter in the technical sense) has been promoted by Shane Colton at MIT (see Figure 6-8). This integrates the gyroscope to get angle, then high-pass fi lters the result to remove drift, and adds it to the smoothed accelerometer and compass results. The integrated, high-pass-fi ltered gyro data and the accelerometer/compass data are added in such a way that the two parts add to one, so that the output is an accurate estimate in units that make sense.

For the balance fi lter, the time constant may be tweaked to tune the response. The shorter the time constant, the better the response but the more acceleration noise will be allowed to pass through.

c06.indd 117

5/10/2012 2:02:56 PM

118 x CHAPTER 6 ERRORS AND SENSOR SIGNAL PROCESSING

To see how this works, imagine you have the newest gyro data point (in rad/s) stored in gyro, the newest angle measurement from the accelerometer is stored in angle_acc, and dt is the time from the last gyro data until now. Then your new angle would be calculated using

angle = b * (angle + gyro*dt) + (1 - b) *(angle_acc);

You may start by trying b = 0.98 for instance, because you want to primarily use the gyroscope data. You will also probably want to use a fast gyroscope measurement time dt so the gyro doesn’t drift more than a couple of degrees before the next measurement is taken.

The balance fi lter is useful and simple to implement, but is not the ideal sensor fusion approach.

Invensense’s approach involves some clever algorithms and probably some form of Kalman fi lter (see Figure 6-9) and will provide superior orientation results.

“Balance” filter

Pitch and roll

Accelerometer

Orientation

Low-pass filter

Σ

Compass

Yaw

GPS (if moving)

High-pass filter

Integration

Gyro

Angular speed

FIGURE 6-8: Using a balance fi lter to determine orientation

Kalman filter

Pitch and roll

Accelerometer

Orientation

Compass

Yaw

Kalman filter

GPS (if moving)

Physical model

predictions

and filtering

Gyro

Angular speed

FIGURE 6-9: Use of Kalman fi lters to determine device orientation

c06.indd 118

5/10/2012 2:02:56 PM

Summary x 119

SUMMARY

Sensors produce various types of errors from different sources. In order to use the data that a sensor provides, an app must be able to detect and work around this erroneous data. This chapter provided some techniques for dealing with sensor error in the form of fi ltering and sensor fusion techniques.

Understanding the difference between various fi ltering algorithms will allow you to determine when the use of each algorithm is appropriate. For example, high-pass and low-pass fi lters behave differently and are used in different scenarios. Being able to identify when the various fi ltering algorithms and fusion techniques are appropriate is an important part of utilizing the data that sensors provide.

Furthermore, understanding when proprietary sensor fusion techniques might be “baked” in to an existing Android API call can prevent an author from implementing or using a fusion technique that is home grown like a balance fi lter.

The approaches in the chapter are useful in a wide range of scenarios for interpreting physical sensor data. However, the approaches can also be used on any sensor data that an app is processing.

Chapters 7–10 describe processing different kinds of the sensor data for various tasks and use the algorithms and concepts described in this chapter when appropriate.

c06.indd 119

c06.indd 119

5/10/2012 2:02:57 PM

5/10/2012 2:02:57 PM

c06.indd 120

c06.indd 120

5/10/2012 2:02:57 PM

5/10/2012 2:02:57 PM

7

Determining Device Orientation

WHAT’S IN THIS CHAPTER?

‰

Using the gravity sensor to determine orientation

‰

Using the accelerometer and magnetometer to determine device orientation

‰

Using the rotation vector synthetic sensor to determine device orientation

‰

Using OpenGL to perform simple screen drawing

Determining the orientation of a device is something that is useful to many apps. Games, for example, can use changes in a device’s orientation as a way of allowing humans to interact and control a device. A human can change the orientation of a device and an app can react to that change in orientation. The sensors used to determine device orientation were introduced in

Chapter 5. This chapter goes into more detail on how to effectively use some of these sensors and provides an example app to further demonstrate their usage.

The example app functionality described in this chapter determines whether a device is face up or face down. Multiple sensors can be used to determine device orientation of this nature, and the code presented in this chapter makes use of multiple sensors to detect the desired changes in orientation.

PREVIEWING THE EXAMPLE APP

When the device senses a change in the device orientation (with respect to the face of the

device), the example app for this chapter uses the Text-To-Speech (TTS) facilities to announce that the device is face up or face down, as well as display the current orientation on the screen.

In addition to the current orientation, the app also displays the sensor data on the screen to allow the user to see how manipulating the device affects the sensor data.

The app allows the user to select different sensors to detect the change in orientation and provides a group of radio buttons that the user can toggle to select the desired sensor.

c07.indd 121

c07.indd 121

5/11/2012 9:31:49 AM

5/11/2012 9:31:49 AM

122 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

Because audio feedback is not always convenient (especially while working in a coffee shop), the app also allows the user to disable the TTS alerts as well as control their volume with the standard Android volume keys. The main screen for the app is shown in Figure 7-1.

FIGURE 7-1: The Determine Orientation screen

Now that what the example app will do has been discussed, this chapter will move on to how the example app will perform its task of determining device orientation.

DETERMINING DEVICE ORIENTATION

As discussed in the previous section, the example app uses multiple different sensors to determine the device orientation. The app allows the user to choose one of the following sensors to determine device orientation:

‰

Gravity sensor

‰

Accelerometer and magnetometer

‰

Gravity sensor and magnetometer

‰

Rotation sensor

You might notice that the TYPE_ORIENTATION sensor is missing. This sensor has been

deprecated and therefore will not be used in the example app.

The next few sections discuss how each of the sensors listed will be used.

c07.indd 122

c07.indd 122

5/11/2012 9:31:54 AM

5/11/2012 9:31:54 AM

Determining Device Orientation x 123

Gravity Sensor

Using the gravity sensor (available in API level 9 and greater) to determine whether the device is face up or face down can be one of the easier approaches discussed in this chapter. However, it yields less data on the overall orientation of the device. The gravity sensor yields the force due to gravity on the X, Y, and Z axes. Refer to Figure 5-4 to see how the X, Y, and Z axes are defi ned with respect to an Android device.

One important note about Figure 5-4 is that the depiction is of a device in its default orientation.

The default orientation for phones is portrait, but this is not true of most tablets. However, even for a device that has a default orientation of landscape, the axes will still be orientated as Y pointing up, X pointing to the right, and Z pointing out of the screen.

From Figure 5-4, you can see that to determine if the device is face up or face down, the values of the Z axis need to be considered. The arrow of the Z axis indicates the direction of positive values.

So, when the device is face up, the values are positive, and the values are negative when the device is face down.

The magnitude of the gravity sensor is defi ned by the force of gravity that is being applied to a device. Technically, this is based on where the device is located. Chances are that the device will be located on Earth where the force of gravity is roughly 9.8 m/sec2. So, when the device is lying face up on a table, the gravity sensor should report a magnitude of 9.8 on the Z axis. When the device is face down on a table, the gravity sensor should report a magnitude of –9.8 on the Z axis.

As discussed in Chapter 5, the values reported by the sensor will be affected by noise, so the code that uses the sensor will need to account for the noise when attempting to determine device orientation. For this application of the gravity sensor, this means that values reported when the device is lying face up or face down will not be exactly 9.8 and –9.8 m/sec2. Furthermore, hardware offsets may also prevent the value of 9.8 m/sec2 from being reported by the sensor.

Accelerometer and Magnetometer

The accelerometer and magnetometer can be used together to determine device orientation. The data provided from both of these sensors can be used to generate a rotation matrix via a call to SensorManager.getRotationMatrix(). The generated rotation matrix can then be passed to

SensorManager.getOrientation(), which will compute rotation around the X, Y, and Z axes.

As mentioned in Chapter 5, nearby magnets can infl uence the magnetometer. The magnetometer can also be exceedingly noisy and may not be calibrated correctly. All of these scenarios can lead to incorrect sensor data.

The output from the SensorManager.getOrientation() call is a list of values that contains the azimuth, pitch, and roll for the device. Refer to Figure 5-9 to see how the Earth’s axes are defi ned for the SensorManager.getOrientation() call.

In Figure 5-9, the azimuth is the Z axis, the pitch is the X axis, and the roll is the Y axis. To determine if the device is face up or face down, only the X and Y axes (pitch and roll values) need to be considered. The Z axis (azimuth) gives the orientation of the top of the device with respect to north. Although this can be useful, the application does not care about that orientation.

c07.indd 123

c07.indd 123

5/11/2012 9:31:54 AM

5/11/2012 9:31:54 AM

124 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

The values from the X axis indicate how much the device is rotated up or down on its short edges.

Because the device needs to be fl at to be considered in a face-up or face-down position, the code looks for small values. A value of p/2 radians or –p/2 radians indicates that the device is standing perpendicular to the ground on either its top or bottom, respectively.

Similarly, the Y axis values indicate whether or not the device is standing on one of its long edges.

A value of –p/2 radians indicates that the device is standing perpendicular to the ground on its left edge, and a value of p/2 radians indicates that the device is standing on its right side perpendicular to the ground. Values of 0 or –p indicate that the device is lying fl at.

For this app, the device is considered to be in a face-up or face-down position only if it is lying relatively fl at on a surface. Therefore, the pitch needs to have a value of 0 radians and the roll needs to have a value of 0 radians when face up and p radians when face down. Once again, the sensors used for the calculations will be affected by noise, which the app will need to consider.

While the values provided by the accelerometer can be used to generate a rotation matrix that can be fed to SensorManager.getRotationMatrix(), accelerometer data may not be the best choice. This is because the orientation should be something relatively static, meaning that an app usually wants to know which way the phone is pointing and not take into account any rapid shaking of the phone.

Therefore, instead of using the accelerometer, which would include that fast shaking, use of the gravity sensor may be a better choice because it would isolate the overall orientation of the phone.

Gravity Sensor and Magnetometer

Using the gravity sensor and magnetometer sensors to determine orientation is similar to using the accelerometer and magnetometer. In both cases, a rotation matrix is generated with a call to SensorManager.getRotationMatrix() and the generated rotation matrix is passed to

SensorManager.getRotationMatrix(). The only difference is that values obtained from the gravity sensor are passed to the SensorManager.getRotationMatrix() call instead of values originating from the accelerometer

Rotation Vector

As discussed in Chapter 5, the rotation vector sensor is a synthetic sensor that makes use of the accelerometer, magnetometer, and possibly the gyroscope to produce device orientation information.

Because of the raw sensors used by the rotation vector sensor, its output can be used in much the same way as the output of the accelerometer and magnetometer that was discussed in the previous section. The rotation vector returned from the sensor can be converted to a rotation matrix with a call to SensorManager.getRotationMatrixFromVector() and the resulting rotation matrix can be passed to SensorManager.getOrientation().

Using the rotation vector is often simpler than using the accelerometer and magnetometer to determine device orientation. The rotation vector synthetic sensor hides some of the complexity of using multiple sensors together to produce the data needed to generate a rotation matrix to pass to SensorManager.getOrientation(). Thus, it is often preferable to use the rotation matrix synthetic sensor over the accelerometer and magnetometer to determine device orientation.

While the angles produced by SensorManager.getOrientation() can be a convenient representa-

tion of device rotation, there are related limitations. The Euclidean representation of rotation may not c07.indd 124

c07.indd 124

5/11/2012 9:31:55 AM

5/11/2012 9:31:55 AM

Determining Device Orientation x 125

be suitable for more complex apps where problems such as Gimbal lock may occur. Because of these limitations, a quaternion representation of the current rotation may be preferable. For such cases, the SensorManager.getQuaternionFromVector() can be used to generate the quaternion representation.

Implementation Details

Now it’s time to jump into more of the implementation details of the app. The implementation for this part of the example app is located entirely in DetermineOrientationActivity.

The layout used for the DetermineOrientationActivity presents the user with a set of radio

buttons as well as displays the data returned from the selected sensor in the screen. Listing 7-1

shows the layout for the activity.

LISTING 7-1: Layout for DetermineOrientationActivity

<?xml version= ”1.0” encoding= ”utf-8” ?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width= ”match_parent”

android:layout_height= ”match_parent”

android:orientation= ”vertical” >

<RadioGroup android:id= ”@+id/sensorSelector”

android:layout_width= ”match_parent”

android:layout_height= ”wrap_content”

android:layout_alignParentTop= ”true” >

<RadioButton android:id= ”@+id/gravitySensor”

android:layout_width= ”match_parent”

android:layout_height= ”wrap_content”

android:text= ”@string/gravitySensorLabel”

android:checked= ”true”

android:onClick= ”onSensorSelectorClick” />

<RadioButton android:id= ”@+id/accelerometerMagnetometer”

android:layout_width= ”match_parent”

android:layout_height= ”wrap_content”

android:text= ”@string/accelerometerMagnetometerLabel”

android:checked= ”false”

android:onClick= ”onSensorSelectorClick” />

<RadioButton android:id= ”@+id/gravityMagnetometer”

android:layout_width= ”match_parent”

android:layout_height= ”wrap_content”

android:text= ”@string/gravityMagnetometerLabel”

android:checked= ”false”

android:onClick= ”onSensorSelectorClick” />

<RadioButton android:id= ”@+id/rotationVector”

android:layout_width= ”match_parent”

android:layout_height= ”wrap_content”

android:text= ”@string/rotationVectorLabel”

android:checked= ”false”

 continues

c07.indd 125

c07.indd 125

5/11/2012 9:31:55 AM

5/11/2012 9:31:55 AM

126 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

LISTING 7-1 (continued)

android:onClick= ”onSensorSelectorClick” />

</RadioGroup>

<ToggleButton android:id= ”@+id/ttsNotificationsToggleButton”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:text= ”@string/speakOrientationLabel”

android:checked= ”true”

android:layout_below= ”@id/sensorSelector”

android:textOn= ”@string/ttsNotificationsOn”

android:textOff= ”@string/ttsNotificationsOff”

android:onClick= ”onTtsNotificationsToggleButtonClicked” />

<TextView android:id= ”@+id/selectedSensorLabel”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:text= ”@string/selectedSensorLabel”

android:layout_below= ”@id/ttsNotificationsToggleButton”

android:layout_marginRight= ”5dip” />

<TextView android:id= ”@+id/selectedSensorValue”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:layout_toRightOf= ”@id/selectedSensorLabel”

android:layout_alignTop= ”@id/selectedSensorLabel”

android:layout_alignBottom= ”@id/selectedSensorLabel” />

<TextView android:id= ”@+id/orientationLabel”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:text= ”@string/orientationLabel”

android:layout_below= ”@id/selectedSensorValue”

android:layout_marginRight= ”5dip” />

<TextView android:id= ”@+id/orientationValue”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:layout_toRightOf= ”@id/orientationLabel”

android:layout_alignTop= ”@id/orientationLabel”

android:layout_alignBottom= ”@id/orientationLabel” />

<TextView android:id= ”@+id/sensorXLabel”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:layout_below= ”@id/orientationValue”

android:layout_marginRight= ”5dip” />

<TextView android:id= ”@+id/sensorXValue”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:layout_toRightOf= ”@id/sensorXLabel”

android:layout_alignTop= ”@id/sensorXLabel”

c07.indd 126

c07.indd 126

5/11/2012 9:31:55 AM

5/11/2012 9:31:55 AM

Determining Device Orientation x 127

android:layout_alignBottom= ”@id/sensorXLabel” />

<TextView android:id= ”@+id/sensorYLabel”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:layout_below= ”@id/sensorXLabel”

android:layout_marginRight= ”5dip” />

<TextView android:id= ”@+id/sensorYValue”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:layout_toRightOf= ”@id/sensorYLabel”

android:layout_alignTop= ”@id/sensorYLabel”

android:layout_alignBottom= ”@id/sensorYLabel” />

<TextView android:id= ”@+id/sensorZLabel”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:layout_below= ”@id/sensorYLabel”

android:layout_marginRight= ”5dip” />

<TextView android:id= ”@+id/sensorZValue”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:layout_toRightOf= ”@id/sensorZLabel”

android:layout_alignTop= ”@id/sensorZLabel”

android:layout_alignBottom= ”@id/sensorZLabel” />

</RelativeLayout>

 code snippet determine_orientation.xml

The initialization steps that need to be performed by the DetermineOrientationActivity are:

‰

Get a reference to the SensorManager

‰

Initialize the Text-To-Speech facility (to notify the user of the device’s orientation)

As with most activities, this is done in DetermineOrientationActivity.onCreate(), which is

shown in Listing 7-2.

LISTING 7-2: DetermineOrientationActivity.onCreate()

@Override

protected void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

super.setContentView(R.layout.determine_orientation);

// Keep the screen on so that changes in orientation can be easily

// observed

getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);

// Set up stream to use for Text-To-Speech

 continues

c07.indd 127

c07.indd 127

5/11/2012 9:31:55 AM

5/11/2012 9:31:55 AM

128 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

LISTING 7-2 (continued)

ttsParams = new HashMap<String, String>();

ttsParams.put(Engine.KEY_PARAM_STREAM, String.valueOf(TTS_STREAM));

// Set the volume control to use the same stream as TTS which allows

// the user to easily adjust the TTS volume

this.setVolumeControlStream(TTS_STREAM);

// Get a reference to the sensor service

sensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);

// Initialize references to the UI views that will be updated in the

// code

sensorSelector = (RadioGroup) findViewById(R.id.sensorSelector);

selectedSensorValue = (TextView) findViewById(R.id.selectedSensorValue);

orientationValue = (TextView) findViewById(R.id.orientationValue);

sensorXLabel = (TextView) findViewById(R.id.sensorXLabel);

sensorXValue = (TextView) findViewById(R.id.sensorXValue);

sensorYLabel = (TextView) findViewById(R.id.sensorYLabel);

sensorYValue = (TextView) findViewById(R.id.sensorYValue);

sensorZLabel = (TextView) findViewById(R.id.sensorZLabel);

sensorZValue = (TextView) findViewById(R.id.sensorZValue);

ttsNotificationsToggleButton =

(ToggleButton) findViewById(R.id.ttsNotificationsToggleButton);

// Retrieve stored preferences

preferences = getPreferences(MODE_PRIVATE);

ttsNotifications =

preferences.getBoolean(TTS_NOTIFICATION_PREFERENCES_KEY, true);

}

After the initialization is complete, the next step is to register for the appropriate sensors based on the user’s preferences. Recall from Figure 7-1 that the user can toggle the method that is used to determine the orientation of the device. The code needs to register for the proper sensor events based on the user’s selection. The DetermineOrientationActivity.

updateSelectedSensor()

method is responsible for enabling and disabling the appropriate sensors based on the user’s selection. The method is called from both DetermineOrientationActivity.onResume()and

the code that handles the clicks to the radio buttons. Listing 7-3 shows the implementation of the updateSelectedSensor() method.

LISTING 7-3: DetermineOrientationActivity.UpdateSelectedSensor()

private void updateSelectedSensor()

{

// Clear any current registrations

sensorManager.unregisterListener(this);

// Determine which radio button is currently selected and enable the

// appropriate sensors

selectedSensorId = sensorSelector.getCheckedRadioButtonId();

if (selectedSensorId == R.id. accelerometerMagnetometer)

{

c07.indd 128

c07.indd 128

5/11/2012 9:31:55 AM

5/11/2012 9:31:55 AM

Determining Device Orientation x 129

sensorManager.registerListener(this,

sensorManager.getDefaultSensor(Sensor. TYPE_ACCELEROMETER),

 RATE);

sensorManager.registerListener(this,

sensorManager.getDefaultSensor(Sensor. TYPE_MAGNETIC_FIELD),

 RATE);

}

else if (selectedSensorId == R.id. gravityMagnetometer)

{

sensorManager.registerListener(this,

sensorManager.getDefaultSensor(Sensor. TYPE_GRAVITY),

 RATE);

sensorManager.registerListener(this,

sensorManager.getDefaultSensor(Sensor. TYPE_MAGNETIC_FIELD),

 RATE);

}

else if ((selectedSensorId == R.id. gravitySensor))

{

sensorManager.registerListener(this,

sensorManager.getDefaultSensor(Sensor. TYPE_GRAVITY),

 RATE);

}

else

{

sensorManager.registerListener(this,

sensorManager.getDefaultSensor(Sensor. TYPE_ROTATION_VECTOR),

 RATE);

}

// Update the label with the currently selected sensor

RadioButton selectedSensorRadioButton =

(RadioButton) findViewById(selectedSensorId);

selectedSensorValue.setText(selectedSensorRadioButton.getText());

}

 code snippet DetermineOrientationActivity.java

Notice that the method fi rst makes a call to SensorManager.unregister() to turn off any sensor updates that may already be registered. This is done so that the users can update the method used to determine the orientation as often as they desire and the app will respond appropriately.

Because updateSelectedSensor() registers the current instance of

DetermineOrientationActivity, the class must implement SensorEventListener and contain

implementation for both onSensorChanged() and onAccuracyChanged().

This implementation for determining the device’s orientation does not use the sensor accuracy, so the implementation of onAccuracyChanged() is left blank other than a logging comment.

The onSensorChanged() method must process SensorEvents from multiple different sensors.

The actual sensor data that is received is dependent on the user’s selection. Because the sensor registrations are updated when the user selects a different sensor, the onSensorChanged() method does not need to concern itself with what the user’s selection. The method will receive only the relevant sensor data.

c07.indd 129

c07.indd 129

5/11/2012 9:31:56 AM

5/11/2012 9:31:56 AM

130 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

The sensor data is located in the SensorEvent.values array. Because the data can represent

different quantities depending on what sensor generated it, onSensorChanged() must determine the source of the data before it can determine how to process the data.

Processing Gravity Sensor Data

For the gravity sensor, the SensorEvent.values array contains the magnitude of gravity as applied to the X, Y, and Z axes in the zeroth, fi rst, and second slots in the array, respectively. Because the Z axis goes through the screen of the device and out of the back of the device, the code needs to use the third (offset 2) value in the array. When the device is on its back, the force of gravity being applied to the Z axis should equal the 1 G (9.8 m/sec2), which is stored in the constant SensorManager.STANDARD_GRAVITY. When the phone is on its face, the force of gravity on the Z

axis should be –1 * SensorManager.STANDARD_GRAVITY (–9.8 m/sec2). However, remember that

the sensor does generate a fair amount of noise, causing the actual values reported by the sensor to fl uctuate. To combat the noise, the app uses a value of SensorManager.STANDARD_GRAVITY/2 as the threshold for determining if the device is face up or face down. This provides the added bonus of allowing the user to trigger the face-up and face-down handlers without the device being perfectly parallel to the ground, making it easier for the user to get the triggers to fi re.

The code snippet that processes the gravity sensor data is presented in Listing 7-4.

LISTING 7-4: Determining orientation with the gravity sensor

private static final double GRAVITY _ THRESHOLD =

SensorManager. STANDARD _ GRAVITY / 2;

...

case Sensor. TYPE _ GRAVITY:

...

if (event.values[2] >= GRAVITY _ THRESHOLD)

{

onFaceUp();

}

else if (event.values[2] <= (GRAVITY _ THRESHOLD * -1))

{

onFaceDown();

}

break;

...

 code snippet DetermineOrientationActivity.java

Processing Accelerometer and Magnetic Field Data

The values from the accelerometer and the magnetic sensors are passed to SensorManager

.

getRotationMatrix() to generate a rotation matrix that is used as input to SensorManager

.

getOrientation() to produce the device orientation.

Because both sets of values are needed to determine the device orientation,

DetermineOrientationActivity maintains the most recent array of values from both sensors as c07.indd 130

c07.indd 130

5/11/2012 9:31:56 AM

5/11/2012 9:31:56 AM

Determining Device Orientation x 131

member data for the class. When reading sensor data that may not be consumed before a subsequent call to onSensorEvent(), it is important to copy the event.values instead of just assigning another reference. This is because app code does not “own” the SensorEvent and cannot be sure that the values will not be changed. Cloning the event.values array ensures that app code will maintain the value of the event.values array passed to onSensorEvent() even if it should be overwritten by Android.

When onSensorChanged() is called with updated sensor information from either the accelerometer or the magnetic sensor, the method updates the correct member data to generate a rotation matrix with a call to generateRotationMatrix(). Once the rotation matrix is computed, it is passed to determineOrientation(), which computes the orientation. Being dependent on sensor data from two different sources can make using SensorManager.getOrientation() less convenient than

using data from a single sensor (like the gravity sensor) to detect simple device orientation changes.

Listing 7-5 shows the implementation for generateRotationMatrix(). The method uses the latest accelerometer and magnetometer values to compute a rotation matrix only if both sets of values have been populated with sensor data.

LISTING 7-5: generateRotationMatrix()

private float[] generateRotationMatrix()

{

float[] rotationMatrix = null;

if (accelerationValues != null && magneticValues != null)

{

rotationMatrix = new float[16];

boolean rotationMatrixGenerated;

rotationMatrixGenerated =

SensorManager. getRotationMatrix(rotationMatrix,

null,

accelerationValues,

magneticValues);

if (!rotationMatrixGenerated)

{

Log. w(TAG, getString(R.string. rotationMatrixGenFailureMessage));

rotationMatrix = null;

}

}

return rotationMatrix;

}

 code snippet DetermineOrientationActivity.java

After verifying that accelerationValues and magneticValues (which are updated in onSensor-

Changed()) are non-null, generateRotationMatrix() passes the acceleration and magnetic value arrays to SensorManager.getRotationMatrix(). The initial null check of the acceleration and magnetic values ensures that they both have been updated in onSensorChanged(), meaning that the c07.indd 131

c07.indd 131

5/11/2012 9:31:56 AM

5/11/2012 9:31:56 AM

132 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

class has received data from both sensors. The call to SensorManager.getRotationMatrix() takes four parameters. The fi rst two parameters are fl oat arrays that hold the computed rotation matrix and the inclination matrix. For this app, null is passed for the inclination matrix (parameter two) because those values are not needed. The third and fourth parameters are the acceleration and magnetic values that were set in the onSensorChanged() method.

Once the call to getRotationMatrix() returns, the array passed as the fi rst parameter will contain the rotation matrix that can be used to compute the device orientation. It is good practice to check the return value of getRotationMatrix(). If a value of false is returned, the output arrays will be left untouched.

Processing Rotation Vector Data

The sensor data received from the rotation vector sensor gets processed in much the same way as the data from the accelerometer and magnetometer. The major differences are that there is only one sensor used, eliminating the need to preserve cloned member data, and the rotation matrix is generated differently.

The complete implementation for onSensorChanged(), which processes the SensorEvents for

the accelerometer and the gravity and magnetic fi eld sensors, is shown in Listing 7-6.

 LISTING 7-6: DetermineOrientationActivity.onSensorChanged()

@Override

public void onSensorChanged(SensorEvent event)

{

float[] rotationMatrix;

switch (event.sensor.getType())

{

case Sensor. TYPE_GRAVITY:

sensorXLabel.setText(R.string. xAxisLabel);

sensorXValue.setText(String. valueOf(event.values[0]));

sensorYLabel.setText(R.string. yAxisLabel);

sensorYValue.setText(String. valueOf(event.values[1]));

sensorZLabel.setText(R.string. zAxisLabel);

sensorZValue.setText(String. valueOf(event.values[2]));

sensorYLabel.setVisibility(View. VISIBLE);

sensorYValue.setVisibility(View. VISIBLE);

sensorZLabel.setVisibility(View. VISIBLE);

sensorZValue.setVisibility(View. VISIBLE);

if (selectedSensorId == R.id. gravitySensor)

{

if (event.values[2] >= GRAVITY_THRESHOLD)

{

c07.indd 132

c07.indd 132

5/11/2012 9:31:56 AM

5/11/2012 9:31:56 AM

Determining Device Orientation x 133

onFaceUp();

}

else if (event.values[2] <= (GRAVITY_THRESHOLD * -1))

{

onFaceDown();

}

}

else

{

accelerationValues = event.values.clone();

rotationMatrix = generateRotationMatrix();

if (rotationMatrix != null)

{

determineOrientation(rotationMatrix);

}

}

break;

case Sensor. TYPE_ACCELEROMETER:

accelerationValues = event.values.clone();

rotationMatrix = generateRotationMatrix();

if (rotationMatrix != null)

{

determineOrientation(rotationMatrix);

}

break;

case Sensor. TYPE_MAGNETIC_FIELD:

magneticValues = event.values.clone();

rotationMatrix = generateRotationMatrix();

if (rotationMatrix != null)

{

determineOrientation(rotationMatrix);

}

break;

case Sensor. TYPE_ROTATION_VECTOR:

rotationMatrix = new float[16];

SensorManager. getRotationMatrixFromVector(rotationMatrix,

event.values);

determineOrientation(rotationMatrix);

break;

}

}

 code snippet DetermineOrientationActivity.java

When the user toggles either the accelerometer and magnetometer or the rotation vector sensors, determineOrientation()is called to compute the orientation from a given rotation matrix.

Listing 7-7 shows the implementation of determineOrientation().

c07.indd 133

c07.indd 133

5/11/2012 9:31:57 AM

5/11/2012 9:31:57 AM

134 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

LISTING 7-7: DetermineOrientationActivity.determineOrientation()

private void determineOrientation(float[] rotationMatrix)

{

float[] orientationValues = new float[3];

SensorManager. getOrientation(rotationMatrix, orientationValues);

double azimuth = Math. toDegrees(orientationValues[0]);

double pitch = Math. toDegrees(orientationValues[1]);

double roll = Math. toDegrees(orientationValues[2]);

sensorXLabel.setText(R.string. azimuthLabel);

sensorXValue.setText(String. valueOf(azimuth));

sensorYLabel.setText(R.string. pitchLabel);

sensorYValue.setText(String. valueOf(pitch));

sensorZLabel.setText(R.string. rollLabel);

sensorZValue.setText(String. valueOf(roll));

sensorYLabel.setVisibility(View. VISIBLE);

sensorYValue.setVisibility(View. VISIBLE);

sensorZLabel.setVisibility(View. VISIBLE);

sensorZValue.setVisibility(View. VISIBLE);

if (pitch <= 10)

{

if (Math. abs(roll) >= 170)

{

onFaceDown();

}

else if (Math. abs(roll) <= 10)

{

onFaceUp();

}

}

}

 code snippet DetermineOrientationActivity.java

SensorManager.getOrientation() takes two parameters: a float[] containing the rotation

matrix, and a second float[] that will contain the computed values when the method returns.

Once the call returns, the app has the values that it needs to determine the orientation of the device.

The float[] populated by the SensorManager.getOrientation() call contains the azimuth,

pitch, and roll in slots 0, 1, and 2 of the array. The values will all be in radians. Mainly for display purposes, the app will convert the values to degrees with calls to Math.toDegrees(). The converted values will be written to the UI views so that the user can see the changes in values while changing the orientation of the device. The converted values will also be used to determine if the device is face up or face down.

c07.indd 134

c07.indd 134

5/11/2012 9:31:57 AM

5/11/2012 9:31:57 AM

Determining Device Orientation x 135

As discussed earlier in this chapter, the only values that are needed to determine if the device is face up or face down are the pitch and the roll. The pitch should be zero if the device is perpendicular to the ground. However, just like with the gravity sensor, the noise from the sensors must be factored into the algorithm. Additionally, it may be desirable to widen the window when the face-up handler and the face-down handler will be invoked so that the user can easily trigger the handlers. Because of this, a pitch threshold of 10 degrees is used when processing the pitch value. Also, because this app does not care in which direction the device is tilted, the absolute value of the pitch is used.

For similar reasons, the threshold for the roll value is also a value of 10 degrees. This means that the device can be considered face up when the absolute value of the roll is less than or equal to 10

degrees. The device can be considered face down when the absolute value of the roll is greater than or equal to 170 degrees.

The previous sections explained how the sensor data for determining device orientation was received and how it was processed to determine if the device was face up or face down. The only thing left is to notify the user when the orientation changes. DetermineOrientationActivity contains two methods, onFaceDown() and onFaceUp(), which are called when the device changes orientation.

Notifying the User of Orientation Changes

Once the app has determined that the device is either face up or face down, it uses Text-To-Speech (TTS) to alert the user. This makes it easy for a user to be alerted of orientation changes without having to view the screen. Other, more common use cases may have the handler disable ringers or enable/disable other device functionality. Speaking the orientation just makes operating the app easy for the user. Listing 7-8 shows the implementation for onFaceUp() and onFaceDown().

LISTING 7-8: onFaceUp() and onFaceDown()

/**

* Handler for device being face up.

*/

private void onFaceUp()

{

if (!isFaceUp)

{

if (tts != null && ttsNotificationsToggleButton.isChecked())

{

tts.speak(getString(R.string. faceUpText),

TextToSpeech. QUEUE _ FLUSH,

ttsParams);

}

orientationValue.setText(R.string. faceUpText);

isFaceUp = true;

}

}

/**

* Handler for device being face down.

*/

 continues

c07.indd 135

c07.indd 135

5/11/2012 9:31:57 AM

5/11/2012 9:31:57 AM

136 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

LISTING 7-8 (continued)

private void onFaceDown()

{

if (isFaceUp)

{

if (tts != null && ttsNotificationsToggleButton.isChecked())

{

tts.speak(getString(R.string. faceDownText),

TextToSpeech. QUEUE _ FLUSH,

ttsParams);

}

orientationValue.setText(R.string. faceDownText);

isFaceUp = false;

}

}

 code snippet DetermineOrientationActivity.java

Thusfar, only the parts of DetermineOrientationActivity that deal with Android sensor data or initialization have been discussed. The activity has a few other tricks up its sleeve to keep the screen on and allow the volume buttons to control the volume of the TTS output stream. Because these are out of scope of the discussion of Android sensors, the chapter does not explain that code.

To support the use of TTS, DetermineOrientationActivity extends

SpeechRecognizingAndSpeakingActivity, which allows DetermineOrientationActivity

to easily support multiple languages. SpeechRecognizationAndSpeechActivity is discussed in

Chapter 18.

Listing 7-9 shows the complete DetermineOrientationActivity implementation.

LISTING 7-9: Complete DetermineOrientationActivity implementation

public class DetermineOrientationActivity

extends SpeechRecognizingAndSpeakingActivity implements SensorEventListener

{

private static final String TAG = "DetermineOrientationActivity";

private static final int RATE = SensorManager. SENSOR_DELAY_NORMAL;

private static final int TTS_STREAM = AudioManager. STREAM_NOTIFICATION;

private static final String TTS_NOTIFICATION_PREFERENCES_KEY =

"TTS_NOTIFICATION_PREFERENCES_KEY";

private static final double GRAVITY_THRESHOLD =

SensorManager. STANDARD_GRAVITY / 2;

private SensorManager sensorManager;

private float[] accelerationValues;

private float[] magneticValues;

private TextToSpeech tts;

private boolean isFaceUp;

private RadioGroup sensorSelector;

c07.indd 136

c07.indd 136

5/11/2012 9:31:57 AM

5/11/2012 9:31:57 AM

Determining Device Orientation x 137

private TextView selectedSensorValue;

private TextView orientationValue;

private TextView sensorXLabel;

private TextView sensorXValue;

private TextView sensorYLabel;

private TextView sensorYValue;

private TextView sensorZLabel;

private TextView sensorZValue;

private HashMap<String, String> ttsParams;

private ToggleButton ttsNotificationsToggleButton;

private SharedPreferences preferences;

private boolean ttsNotifications;

private int selectedSensorId;

@Override

protected void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

super.setContentView(R.layout. determine_orientation);

// Keep the screen on so that changes in orientation can be easily

// observed

getWindow().addFlags(WindowManager.LayoutParams. FLAG_KEEP_SCREEN_ON);

// Set up stream to use for Text-To-Speech

ttsParams = new HashMap<String, String>();

ttsParams.put(Engine. KEY_PARAM_STREAM, String.valueOf(TTS_STREAM));

// Set the volume control to use the same stream as TTS which allows

// the user to easily adjust the TTS volume

this.setVolumeControlStream(TTS_STREAM);

// Get a reference to the sensor service

sensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);

// Initialize references to the UI views that will be updated in the

// code

sensorSelector = (RadioGroup) findViewById(R.id. sensorSelector);

selectedSensorValue = (TextView) findViewById(R.id. selectedSensorValue);

orientationValue = (TextView) findViewById(R.id. orientationValue);

sensorXLabel = (TextView) findViewById(R.id. sensorXLabel);

sensorXValue = (TextView) findViewById(R.id. sensorXValue);

sensorYLabel = (TextView) findViewById(R.id. sensorYLabel);

sensorYValue = (TextView) findViewById(R.id. sensorYValue);

sensorZLabel = (TextView) findViewById(R.id. sensorZLabel);

sensorZValue = (TextView) findViewById(R.id. sensorZValue);

ttsNotificationsToggleButton =

(ToggleButton) findViewById(R.id. ttsNotificationsToggleButton);

// Retrieve stored preferences

preferences = getPreferences(MODE_PRIVATE);

ttsNotifications =

preferences.getBoolean(TTS_NOTIFICATION_PREFERENCES_KEY, true);

}

 continues

c07.indd 137

c07.indd 137

5/11/2012 9:31:58 AM

5/11/2012 9:31:58 AM

138 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

LISTING 7-9 (continued)

@Override

protected void onResume()

{

super.onResume();

ttsNotificationsToggleButton.setChecked(ttsNotifications);

updateSelectedSensor();

}

@Override

protected void onPause()

{

super.onPause();

// Unregister updates from sensors

sensorManager.unregisterListener(this);

// Shutdown TTS facility

if (tts != null)

{

tts.shutdown();

}

}

@Override

public void onSensorChanged(SensorEvent event)

{

float[] rotationMatrix;

switch (event.sensor.getType())

{

case Sensor. TYPE_GRAVITY:

sensorXLabel.setText(R.string. xAxisLabel);

sensorXValue.setText(String. valueOf(event.values[0]));

sensorYLabel.setText(R.string. yAxisLabel);

sensorYValue.setText(String. valueOf(event.values[1]));

sensorZLabel.setText(R.string. zAxisLabel);

sensorZValue.setText(String. valueOf(event.values[2]));

sensorYLabel.setVisibility(View. VISIBLE);

sensorYValue.setVisibility(View. VISIBLE);

sensorZLabel.setVisibility(View. VISIBLE);

sensorZValue.setVisibility(View. VISIBLE);

if (selectedSensorId == R.id. gravitySensor)

{

if (event.values[2] >= GRAVITY_THRESHOLD)

{

onFaceUp();

}

c07.indd 138

c07.indd 138

5/11/2012 9:31:58 AM

5/11/2012 9:31:58 AM

Determining Device Orientation x 139

else if (event.values[2] <= (GRAVITY_THRESHOLD * -1))

{

onFaceDown();

}

}

else

{

accelerationValues = event.values.clone();

rotationMatrix = generateRotationMatrix();

if (rotationMatrix != null)

{

determineOrientation(rotationMatrix);

}

}

break;

case Sensor. TYPE_ACCELEROMETER:

accelerationValues = event.values.clone();

rotationMatrix = generateRotationMatrix();

if (rotationMatrix != null)

{

determineOrientation(rotationMatrix);

}

break;

case Sensor. TYPE_MAGNETIC_FIELD:

magneticValues = event.values.clone();

rotationMatrix = generateRotationMatrix();

if (rotationMatrix != null)

{

determineOrientation(rotationMatrix);

}

break;

case Sensor. TYPE_ROTATION_VECTOR:

rotationMatrix = new float[16];

SensorManager. getRotationMatrixFromVector(rotationMatrix,

event.values);

determineOrientation(rotationMatrix);

break;

}

}

@Override

public void onAccuracyChanged(Sensor sensor, int accuracy)

{

Log. d(TAG,

String.format("Accuracy for sensor %s = %d",

sensor.getName(), accuracy));

}

private float[] generateRotationMatrix()

{

 continues

c07.indd 139

c07.indd 139

5/11/2012 9:31:58 AM

5/11/2012 9:31:58 AM

140 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

LISTING 7-9 (continued)

float[] rotationMatrix = null;

if (accelerationValues != null && magneticValues != null)

{

rotationMatrix = new float[16];

boolean rotationMatrixGenerated;

rotationMatrixGenerated =

SensorManager. getRotationMatrix(rotationMatrix,

null,

accelerationValues,

magneticValues);

if (!rotationMatrixGenerated)

{

Log. w(TAG, getString(R.string. rotationMatrixGenFailureMessage));

rotationMatrix = null;

}

}

return rotationMatrix;

}

private void determineOrientation(float[] rotationMatrix)

{

float[] orientationValues = new float[3];

SensorManager. getOrientation(rotationMatrix, orientationValues);

double azimuth = Math. toDegrees(orientationValues[0]);

double pitch = Math. toDegrees(orientationValues[1]);

double roll = Math. toDegrees(orientationValues[2]);

sensorXLabel.setText(R.string. azimuthLabel);

sensorXValue.setText(String. valueOf(azimuth));

sensorYLabel.setText(R.string. pitchLabel);

sensorYValue.setText(String. valueOf(pitch));

sensorZLabel.setText(R.string. rollLabel);

sensorZValue.setText(String. valueOf(roll));

sensorYLabel.setVisibility(View. VISIBLE);

sensorYValue.setVisibility(View. VISIBLE);

sensorZLabel.setVisibility(View. VISIBLE);

sensorZValue.setVisibility(View. VISIBLE);

if (pitch <= 10)

{

if (Math. abs(roll) >= 170)

{

onFaceDown();

}

c07.indd 140

c07.indd 140

5/11/2012 9:31:58 AM

5/11/2012 9:31:58 AM

Determining Device Orientation x 141

else if (Math. abs(roll) <= 10)

{

onFaceUp();

}

}

}

private void onFaceUp()

{

if (!isFaceUp)

{

if (tts != null && ttsNotificationsToggleButton.isChecked())

{

tts.speak(getString(R.string. faceUpText),

TextToSpeech. QUEUE_FLUSH,

ttsParams);

}

orientationValue.setText(R.string. faceUpText);

isFaceUp = true;

}

}

private void onFaceDown()

{

if (isFaceUp)

{

if (tts != null && ttsNotificationsToggleButton.isChecked())

{

tts.speak(getString(R.string. faceDownText),

TextToSpeech. QUEUE_FLUSH,

ttsParams);

}

orientationValue.setText(R.string. faceDownText);

isFaceUp = false;

}

}

private void updateSelectedSensor()

{

// Clear any current registrations

sensorManager.unregisterListener(this);

// Determine which radio button is currently selected and enable the

// appropriate sensors

selectedSensorId = sensorSelector.getCheckedRadioButtonId();

if (selectedSensorId == R.id. accelerometerMagnetometer)

{

sensorManager.registerListener(this,

sensorManager.getDefaultSensor(Sensor. TYPE_ACCELEROMETER),

 RATE);

sensorManager.registerListener(this,

 continues

c07.indd 141

c07.indd 141

5/11/2012 9:31:58 AM

5/11/2012 9:31:58 AM

142 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

LISTING 7-9 (continued)

sensorManager.getDefaultSensor(Sensor. TYPE_MAGNETIC_FIELD),

 RATE);

}

else if (selectedSensorId == R.id. gravityMagnetometer)

{

sensorManager.registerListener(this,

sensorManager.getDefaultSensor(Sensor. TYPE_GRAVITY),

 RATE);

sensorManager.registerListener(this,

sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD),

 RATE);

}

else if ((selectedSensorId == R.id. gravitySensor))

{

sensorManager.registerListener(this,

sensorManager.getDefaultSensor(Sensor. TYPE_GRAVITY),

 RATE);

}

else

{

sensorManager.registerListener(this,

sensorManager.getDefaultSensor(Sensor. TYPE_ROTATION_VECTOR),

 RATE);

}

// Update the label with the currently selected sensor

RadioButton selectedSensorRadioButton =

(RadioButton) findViewById(selectedSensorId);

selectedSensorValue.setText(selectedSensorRadioButton.getText());

}

public void onSensorSelectorClick(View view)

{

updateSelectedSensor();

}

public void onTtsNotificationsToggleButtonClicked(View view)

{

ttsNotifications = ((ToggleButton) view).isChecked();

preferences.edit()

.putBoolean(TTS_NOTIFICATION_PREFERENCES_KEY, ttsNotifications)

.commit();

}

@Override

public void onSuccessfulInit(TextToSpeech tts)

{

super.onSuccessfulInit(tts);

this.tts = tts;

}

c07.indd 142

c07.indd 142

5/11/2012 9:31:59 AM

5/11/2012 9:31:59 AM

NorthFinder x 143

@Override

protected void receiveWhatWasHeard(List<String> heard,

float[] confidenceScores)

{

// no-op

}

}

code snippet DetermineOrientationActivity.java

 code snippet DetermineOrientationActivity.java

NORTHFINDER

The NorthFinder app illustrates how to use the rotation vector sensor to implement an augmented reality app, and how to use OpenGL to change the screen color. When the rear camera is pointed within 20 degrees of north, the app changes the screen’s color from red to green. Because the app knows which direction the user is pointing the camera, it could add camera views or other overlays and make a full augmented reality app.

Getting the correct orientation requires two steps: acquire the rotation vector of the device and remap the rotation vector’s coordinates to be along the camera’s axes. The onSensorChanged() method performs these two steps using SensorManager.getRotationMatrixFromVector() and

SensorManager.remapCoordinateSystem(). If the call to remapCoordinateSystem() is removed,

the app will measure when the top of the device is pointing north instead of when the device’s rear camera is pointing north. Listing 7-10 contains the full implementation.

LISTING 7-10: NorthFinder

public class NorthFinder extends Activity implements SensorEventListener

{

private static final int ANGLE = 20;

private TextView tv;

private GLSurfaceView mGLSurfaceView;

private MyRenderer mRenderer;

private SensorManager mSensorManager;

private Sensor mRotVectSensor;

private float[] orientationVals = new float[3];

private final float[] mRotationMatrix = new float[16];

@Override

protected void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

setContentView(R.layout. sensors _ north _ main);

mRenderer = new MyRenderer();

mGLSurfaceView = (GLSurfaceView) findViewById(R.id. glsurfaceview);

 continues

c07.indd 143

c07.indd 143

5/11/2012 9:31:59 AM

5/11/2012 9:31:59 AM

144 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

LISTING 7-10 (continued)

mGLSurfaceView.setRenderer(mRenderer);

tv = (TextView) findViewById(R.id. tv);

mSensorManager = (SensorManager) getSystemService(SENSOR _ SERVICE);

mRotVectSensor =

mSensorManager.getDefaultSensor(Sensor. TYPE _ ROTATION _ VECTOR);

}

@Override

protected void onResume()

{

super.onResume();

mSensorManager.registerListener(this, mRotVectSensor, 10000);

}

@Override

protected void onPause()

{

super.onPause();

mSensorManager.unregisterListener(this);

}

@Override

public void onSensorChanged(SensorEvent event)

{

// It is good practice to check that we received the proper sensor event

if (event.sensor.getType() == Sensor. TYPE _ ROTATION _ VECTOR)

{

// Convert the rotation-vector to a 4x4 matrix.

SensorManager. getRotationMatrixFromVector(mRotationMatrix,

event.values);

SensorManager

. remapCoordinateSystem(mRotationMatrix,

SensorManager. AXIS _ X, SensorManager. AXIS _ Z,

mRotationMatrix);

SensorManager. getOrientation(mRotationMatrix, orientationVals);

// Optionally convert the result from radians to degrees

orientationVals[0] = (float) Math. toDegrees(orientationVals[0]);

orientationVals[1] = (float) Math. toDegrees(orientationVals[1]);

orientationVals[2] = (float) Math. toDegrees(orientationVals[2]);

tv.setText(" Yaw: " + orientationVals[0] + "\n Pitch: "

+ orientationVals[1] + "\n Roll (not used): "

+ orientationVals[2]);

c07.indd 144

c07.indd 144

5/11/2012 9:31:59 AM

5/11/2012 9:31:59 AM

NorthFinder x 145

}

}

@Override

public void onAccuracyChanged(Sensor sensor, int accuracy)

{

// no-op

}

class MyRenderer implements GLSurfaceView.Renderer

{

public void onDrawFrame(GL10 gl)

{

// Clear screen

gl.glClear(GL10. GL _ COLOR _ BUFFER _ BIT);

// Detect if the device is pointing within +/- ANGLE of north

if (orientationVals[0] < ANGLE && orientationVals[0] > - ANGLE

&& orientationVals[1] < ANGLE

&& orientationVals[1] > - ANGLE)

{

gl.glClearColor(0, 1, 0, 1); // Make background green

}

else

{

gl.glClearColor(1, 0, 0, 1); // Make background red

}

}

@Override

public void onSurfaceChanged(GL10 gl, int width, int height)

{

// no-op

}

@Override

public void onSurfaceCreated(GL10 gl, EGLConfig config)

{

// no-op

}

}

}

 code snippet NorthFinder.java

The rotation vector sensor can be used to control a game or in an augmented reality application.

OpenGL (Open Graphics Library) can also be used in both cases. This example included the basic example showing how to use OpenGL to perform the simple task of changing the screen from red to green.

c07.indd 145

c07.indd 145

5/11/2012 9:31:59 AM

5/11/2012 9:31:59 AM

146 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

SUMMARY

This chapter provided an example of how to make a simple orientation determination, whether the device is face up or face down. To accomplish this, the example in the chapter made use of multiple sensors including the accelerometer, magnetometer, rotation vector, and gravity sensor.

In addition to using TTS to notify the user when the device orientation changes from face up to face down, the DetermineOrientationActivity also displays the values that are used to make the determination to the screen. This also allows the user to see how the values change as the phone is moved. Taking some time to run the app and see the values change would be a good use of time before trying to use the sensors. Becoming familiar with how the different axes’ rotation values change when the device is moved can save a lot of time during implementation.

c07.indd 146

c07.indd 146

5/11/2012 9:31:59 AM

5/11/2012 9:31:59 AM

8

Detecting Movement

WHAT’S IN THIS CHAPTER?

‰

Explaining the diff erence between the accelerometer and the linear

acceleration sensor

‰

Introducing some of the issues involved with using acceleration data

in Android

‰

Providing a method to smooth acceleration data

‰

Providing a functional example of acceleration data being collected

and processed to detect device movement

Chapter 7 discussed ways to determine the current orientation of a device using the gravity sensor and SensorManager.getOrientation(). This chapter discusses methods to detect

device movement using the accelerometer and the linear acceleration sensor. Although both

sensors provide acceleration data, the data has differences that may make one sensor preferable over the other in certain situations. This chapter illustrates the differences in how the acceleration data is represented for each sensor.

To aid in illustrating the use of these sensors, this chapter provides an example in the form of a motion detector that uses Text-To-Speech to indicate when device movement is detected. The example app in this chapter will be provided sensor information in a similar manner to the

way sensor data was read in Chapter 7. The main difference is the actual sensors that are used in this chapter—the accelerometer and the linear acceleration sensor. As explained in Chapter 5, the accelerometer provides raw acceleration data for the X, Y, and Z axes, and the linear acceleration is a synthetic sensor that performs processing on the raw sensor data before

providing it to an app.

The example provided in this chapter will detect linear movement and, similar to the example in Chapter 7, use the Android TTS facility to announce that the device has detected movement. In addition to the audio cues that the device is moving, the example app will also plot c08.indd 147

c08.indd 147

5/10/2012 2:03:49 PM

5/10/2012 2:03:49 PM

148 x CHAPTER 8 DETECTING MOVEMENT

the X, Y, and Z axes values as well as the net acceleration value on a graph in real time. The data for the plot will also be stored on the external storage area so that the data can be analyzed (outside of the app) after the app has fi nished.

Though plotting the data has nothing to do with the detection

of movement, it does help tell the story of the data the acceler-

ometer and linear acceleration sensors provide. Being able to

analyze the change in component acceleration values (X, Y, and

Z axes) and how they affect net acceleration can be extremely

useful when attempting to use the data. Figure 8-1 shows a

screen shot of the example app collecting and plotting accelera-

tion data.

Whereas Chapter 5 gave a broad overview of these two sensors,

this chapter dives into the details of using the sensors and mak-

ing sense of the data they provide.

ACCELERATION DATA

Both the accelerometer and the linear acceleration sensor

provide acceleration data for the X, Y, and Z axes. The accel-

eration data not only provides the magnitude of the acceleration

(in m/sec2), but also the direction of the acceleration. For each

axis, a positive acceleration indicates acceleration in one direc-

tion and a negative value indicates acceleration in the opposite

FIGURE 8-1: Running and plotting

direction. Refer to Figure 5-4 to see how the axes are defi ned

acceleration data

for a device.

As an example, if the device is lying fl at on a surface and is

moved from left to right, a positive acceleration for the X axis would be generated. Conversely, if the device is moved from right to left, a negative acceleration value will be generated. The same logic can be applied to the Y and Z axes as well.

Though both the accelerometer and the linear acceleration sensor produce acceleration data, the major difference between the two is how gravity affects the data values. The accelerometer produces raw acceleration data and is affected by the force of gravity, whereas the linear acceleration sensor factors out the acceleration due to gravity.

Accelerometer Data

Figure 8-2 shows a plot of raw acceleration data that was received from the accelerometer while the device was lying fl at on a table with its screen pointing up. Notice that the value of the Z axis is continuously reading a value of ª9.8 m/sec2. This is because even when the device is lying motionless, it is being affected by gravity.

If the device is rotated up such that the Y axis forms a 90° angle with the ground, the acceleration value along the Z axis will drop to 0, while the acceleration along the Y axis will jump to 9.8 m/sec2. In this way, the raw accelerometer data is related to data that was provided by the gravity sensor in Chapter 7.

c08.indd 148

c08.indd 148

5/10/2012 2:03:53 PM

5/10/2012 2:03:53 PM

Acceleration Data x 149

Accelerometer Data

10

)

5

2

X Axis

0

Y Axis

Z Axis

Acceleration (m/sec –5

–10 0

2000

4000

6000

8000

10000

12000

Elapsed Time (ms)

FIGURE 8-2: Accelerometer data of a device lying in its back

To remove the effect of gravity on the acceleration values, a high-pass fi lter can be applied to the raw accelerometer data. A high-pass fi lter will reduce the offset that is caused by the constant force of gravity being applied to the device. When using the accelerometer data, this is probably a necessity for an app because including gravity can lead to erroneous calculations. Figure 8-3

shows a plot of accelerometer data where a high-pass fi lter has been applied to the raw data.

Notice that with the high-pass fi lter applied, all axes values are ª0 while the device is lying motionless.

Chapter 6 dives much deeper into the details of fi ltering sensor data.

Accelerometer Data

10

)

5

2

X Axis

0

Y Axis

Z Axis

Acceleration (m/sec –5

–10

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Elapsed Time (ms)

FIGURE 8-3: Accelerometer plot with a high-pass fi lter applied

c08.indd 149

5/10/2012 2:03:53 PM

150 x CHAPTER 8 DETECTING MOVEMENT

Linear Acceleration Sensor Data

Compare Figure 5-4 to Figure 8-4, which shows unfi ltered data plotted from the linear acceleration sensor. The data was again collected while the device was lying motionless on its back.

Notice that the X, Y, and Z axes all show continuous values close to zero. This is because the linear acceleration sensor factors out the acceleration due to gravity without the need to apply any additional fi ltering.

Linear Acceleration Sensor Data

10

)

5

2

X Axis

0

Y Axis

Z Axis

Acceleration (m/sec –5

–10 0 1000 1000 3000 4000 5000 6000 7000 8000 9000 10000

Elapsed Time (ms)

FIGURE 8-4: Linear acceleration sensor plotted data

To reiterate a point made in Chapter 5, if your app needs access to acceleration data that is not infl uenced by gravity, it is better to use the linear acceleration sensor and allow it to fi lter the data, than to use the raw accelerometer data.

Though data received when the device is motionless illustrates the differences between raw accelerometer data and data received from the linear acceleration sensor (and the need to fi lter it), it is data while the device is accelerating/decelerating that the example app is really concerned with. Because the linear acceleration sensor data and the fi ltered accelerometer data are similar, most of the images of plots that follow only depict data received from only one of the sensors.

Data While Device Is in Motion

When using either the accelerometer or the linear acceleration sensor, an app will typically be interested in the data that is received while the device is accelerating or decelerating. For example, the example for this chapter will monitor one of the sensors (which the user can select) and use the data c08.indd 150

5/10/2012 2:03:54 PM

Acceleration Data x 151

provided by that sensor to detect changes in device movement. Figure 8-5 shows a plot of data that was recorded while the device went through the following sequence of events:

1 .

Lay the device fl at on its back for 10 seconds.

2.

Move the device left to right along the X axis.

3.

Leave the device motionless for 10 seconds.

4.

Move the device right to left along the X axis.

5.

Leave the device motionless for 10 seconds.

6.

Move the device left to right along the X axis.

7 .

Leave the device motionless for 10 seconds.

8.

Move the device right to left on the X axis.

9.

Leave the device motionless for 10 seconds.

From Figure 8-5, you can see the “spikes” where the device went from motionless to moving. The acceleration values on the X axis went from a value of ª0 to values greater than or less than 0.

Accelerometer Data

10

)

5

2

X Axis

0

Y Axis

Z Axis

Acceleration (m/sec –5

–10 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000

Elapsed Time (ms)

FIGURE 8-5: Acceleration data from moving device along the X axis

Remember that both acceleration sensors not only provide the magnitude of the acceleration, but also the direction as determined by the sign of the acceleration. In Figure 8-5, a move from left to right is shown to have a sharp change in the acceleration value in the positive direction followed by c08.indd 151

5/10/2012 2:03:54 PM

152 x CHAPTER 8 DETECTING MOVEMENT

a sharp change in the negative direction. The positive value indicates a force being applied in the positive direction of the X axis as the device accelerates, and the negative value indicates a force being applied in the negative direction of the X axis as the device decelerates. Conversely, when the device is moved from right to left, fi rst a negative acceleration value is provided from the sensor followed by a positive value.

The same logic can be applied to the Y and Z axes and is depicted in Figure 8-6, which shows plotted data that was recorded by the example app. The data generated for this plot came from a device where the following actions were applied:

1.

Lay the device fl at on its back motionless for 10 seconds.

2.

Shake the device left and right along the X axis for 10 seconds.

3.

Lay the device fl at on its back motionless for 10 seconds.

4.

Shake the device forward and back along the Y axis for 10 seconds.

5.

Lay the device fl at on its back motionless for 10 seconds.

6.

Shake the device up and down along the Z axis for 10 seconds.

7.

Lay the device fl at on its back motionless for 10 seconds.

From Figure 8-6, you can see the drastic change in the acceleration values along each axis when the device is being shaken. This provides the foundation for what is needed to detect motion.

Accelerometer Data

10

)

5

2

X Axis

0

Y Axis

Z Axis

Acceleration (m/sec –5

–100

10000 20000 30000 40000 50000 60000 70000 80000

Elapsed Time (ms)

FIGURE 8-6 Data plot from moving the device in the direction of all three axes

The accelerometer and the linear acceleration sensors provide the acceleration in each direction over a three-dimensional space. The next section describes how to compute the total acceleration.

c08.indd 152

5/10/2012 2:03:54 PM

Implementation x 153

Total Acceleration

The example in this chapter is not concerned with the direction in which the device is accelerating, but the fact that it is accelerating. To determine if the device is accelerating, the acceleration values from the X, Y, and Z axes can be used to compute total acceleration by calculating the square root of the sum of the squares for the axes values.

To detect general device acceleration, this is a better approach than simply looking at each axis individually because this will allow you to set a threshold on the acceleration that your app will respond to. This would allow an app to differentiate between the incidental acceleration produced from a person bumping a sitting device from the intentional acceleration produced by a person shaking a device.

Now that some of the concepts have been introduced, it is time to jump into the details of the code.

IMPLEMENTATION

The classes that implement the movement detection part of the example app are located in the root.gast.playground.movement package, which contains DetermineMovementActivity

and AccelerationEventListener. DetermineMovementActivity is responsible for load-

ing the UI, getting a handle to the SensorManager, and registering for sensor updates.

AccelerationEventListener implements SensorEventListener and will receive and respond to

updates from the acceleration sensors.

DetermineMovementActivity

Recall from Figure 8-1 that the example app for this chapter allows users to select which sensor they want to utilize in order to detect movement, indicate whether or not to fi lter the data, and display a graph of the acceleration data across the X, Y and Z axes. A third-party library

(http://androidplot.com) is used to generate the graph, but that is not the focus of this chapter.

However, for those who are interested, the entire source code is available at this book’s companion website at www.wrox.com.

Once users have selected which sensor to use to report acceleration data, and confi gured the options for processing the sensor data, they can touch the toggle button at the bottom of the screen to start receiving acceleration data. The handler for the toggle button click event starts or stops the data collection based on the button’s current state. The code for the toggle button click handler is shown in Listing 8-1.

LISTING 8-1: Toggle button handler

public void onReadAccelerationDataToggleButtonClicked(View view)

{

ToggleButton toggleButton = (ToggleButton)view;

if (toggleButton.isChecked())

{

c08.indd 153

c08.indd 153

5/10/2012 2:03:55 PM

5/10/2012 2:03:55 PM

154 x CHAPTER 8 DETECTING MOVEMENT

startReadingAccelerationData();

}

else

{

stopReadingAccelerationData();

}

}

The plotting operation is started in the startReadingAcceleration() method, which is

shown in Listing 8-2. In Listing 8-2, the member variable sensorSelector is a reference to the RadioGroup that allows the user to select the desired sensor. The member variable useHighPassFilter refl ects whether the user has checked the Use High-Pass Filter on the main screen of the activity (see Figure 8-1).

LISTING 8-2: Initialize the AccelerationSensorEventListeners

private void startReadingAccelerationData()

{

if (!readingAccelerationData)

{

// Clear any plot that may already exist on the chart

xyPlot.clear();

xyPlot.redraw();

// Disable UI components so they cannot be changed while plotting

// sensor data

for (int i = 0; i < sensorSelector.getChildCount(); i++)

{

sensorSelector.getChildAt(i).setEnabled(false);

}

ttsNotificationsCheckBox.setEnabled(false);

highPassFilterCheckBox.setEnabled(false);

// Data files are stored on the external cache directory so they can

// be pulled off of the device by the user

File accelerometerDataFile =

new File(getExternalCacheDir(), "accelerometer.csv");

File linearAcceclerationDataFile =

new File(getExternalCacheDir(), "linearAcceleration.csv");

if (selectedSensorType == Sensor. TYPE_ACCELEROMETER)

{

xyPlot.setTitle("Sensor.TYPE_ACCELEROMETER");

accelerometerListener =

new AccelerationEventListener(xyPlot,

useHighPassFilter,

accelerometerDataFile,

(useTtsNotification ? tts : null),

ttsParams,

getString(R.string. movementDetectedText));

c08.indd 154

5/10/2012 2:03:55 PM

Implementation x 155

linearAccelerationListener =

new AccelerationEventListener(null,

useHighPassFilter,

linearAcceclerationDataFile,

(useTtsNotification ? tts : null),

ttsParams,

getString(R.string. movementDetectedText));

}

else

{

xyPlot.setTitle("Sensor.TYPE_LINEAR_ACCELERATION");

accelerometerListener =

new AccelerationEventListener(null,

useHighPassFilter,

accelerometerDataFile,

(useTtsNotification ? tts : null),

ttsParams,

getString(R.string. movementDetectedText));

linearAccelerationListener =

new AccelerationEventListener(xyPlot,

useHighPassFilter,

linearAcceclerationDataFile,

(useTtsNotification ? tts : null),

ttsParams,

getString(R.string. movementDetectedText));

}

sensorManager.registerListener(accelerometerListener,

sensorManager.getDefaultSensor(Sensor. TYPE_ACCELEROMETER),

 RATE);

sensorManager.registerListener(linearAccelerationListener,

sensorManager.getDefaultSensor(Sensor. TYPE_LINEAR_ACCELERATION),

 RATE);

readingAccelerationData = true;

Log. d(TAG, "Started reading acceleration data");

}

 code snippet DetermineMovementActivity.java

Listing 8-2 shows startReadingAcceleration() creating two instances of

AccelerationEventListener and registering them both with SensorManager.registerListener().

There is a listener for the accelerometer and the linear acceleration sensor because both sensors will be receiving acceleration data at the same time and writing the data to two different CSV fi les. However, the data of only one sensor will be plotted to the chart, or be used to detect movement.

The CSV fi les that are written can be used to analyze the sensor data after the app has been closed.

It was these CSV fi les that were used to generate the charts displayed earlier in the chapter.

c08.indd 155

c08.indd 155

5/10/2012 2:03:55 PM

5/10/2012 2:03:55 PM

156 x CHAPTER 8 DETECTING MOVEMENT

From a sensor standpoint, the only other interesting method in DetermineMovementActivity is stopReadingAccelerationData(), which is called when the user touches an activated toggle button or presses the back button. stopReadingAccelerationData() is where the app makes the call to SensorManager.unregisterListener() to stop receiving acceleration data and clean up after itself. Listing 8-3 shows the implementation of stopReadingAccelerationData().

LISTING 8-3: Stop app from receiving acceleration data

private void stopReadingAccelerationData()

{

if (readingAccelerationData)

{

// Re-enable sensor and options UI views

for (int i = 0; i < sensorSelector.getChildCount(); i++)

{

sensorSelector.getChildAt(i).setEnabled(true);

}

ttsNotificationsCheckBox.setEnabled(true);

highPassFilterCheckBox.setEnabled(true);

sensorManager.unregisterListener(accelerometerListener);

sensorManager.unregisterListener(linearAccelerationListener);

// Tell listeners to clean up after themselves

accelerometerListener.stop();

linearAccelerationListener.stop();

readingAccelerationData = false;

Log. d(TAG, "Stopped reading acceleration data");

}

}

DetermineMovementActivity contains the boilerplate code for initializing the app to receive sensor data. The code is similar to the code that was provided in previous chapters for setting up a SensorEventListener, which includes retrieving a reference to the SensorManager and registering a SensorEventListener to receive updated sensor data. Both of these topics were discussed at length in Chapter 5, so an in-depth discussion of the code is not included in this chapter.

Instead, the chapter moves on to the specifi c details for handling and processing acceleration data to accomplish the task at hand — detecting movement — the details for which are in the AccelerationEventListener class.

AccelerationEventListener

The AccelerationEventListener is responsible for receiving and processing the acceleration data.

For the example app, this entails fi ltering the data, computing the total acceleration, writing the data to a CSV fi le, plotting the data on the graph, and detecting movement.

Because the AccelerationEventListener needs to receive sensor data, it implements

SensorEventListener. Therefore, it must provide an implementation for the onSensorChanged() c08.indd 156

c08.indd 156

5/10/2012 2:03:55 PM

5/10/2012 2:03:55 PM

Implementation x 157

and onAccuracyChanged() methods. For the example app, onAccuracyChanged() has an empty

implementation. onSensorChanged() is where the main business logic of the app is located and is shown in Listing 8-4.

LISTING 8-4: onSensorChanged()

private static final int THRESHHOLD = 2;

@Override

public void onSensorChanged(SensorEvent event)

{

float[] values = event.values.clone();

// Pass values through high-pass filter if enabled

if (useHighPassFilter)

{

values = highPass(values[0],

values[1],

values[2]);

}

// Ignore data if the high-pass filter is enabled, has not yet received

// some data to set it

if (!useHighPassFilter || (++highPassCount >= HIGH_PASS_MINIMUM))

{

double sumOfSquares = (values[0] * values[0])

+ (values[1] * values[1])

+ (values[2] * values[2]);

double acceleration = Math. sqrt(sumOfSquares);

// Write to data file

writeSensorEvent(printWriter,

values[0],

values[1],

values[2],

acceleration,

event.timestamp);

// If the plot is null, the sensor is not active. Do not plot the

// data or used the data to determine if the device is moving

if (xyPlot != null)

{

long current = SystemClock. uptimeMillis();

// Limit how much the chart gets updated

if ((current - lastChartRefresh) >= CHART_REFRESH)

{

long timestamp = (event.timestamp / 1000000) - startTime;

// Plot data

addDataPoint(xAxisSeries, timestamp, values[0]);

addDataPoint(yAxisSeries, timestamp, values[1]);

addDataPoint(zAxisSeries, timestamp, values[2]);

 continues

c08.indd 157

5/10/2012 2:03:55 PM

158 x CHAPTER 8 DETECTING MOVEMENT

LISTING 8-4 (continued)

addDataPoint(accelerationSeries, timestamp, acceleration);

xyPlot.redraw();

lastChartRefresh = current;

}

// A "movement" is only triggered of the total acceleration is

// above a threshold

if (acceleration > THRESHHOLD)

{

Log. i(TAG, "Movement detected");

if (tts != null)

{

tts.speak(movementText,

TextToSpeech. QUEUE_FLUSH,

ttsParams);

}

}

}

}

}

 code snippet AccelerationEventListener.java

The data that is passed to onSensorChanged() resides in SensorEvent.values. The values member contains a three-element float array, which contains the values of the X, Y, and Z axes, respectively. Both the accelerometer and the linear acceleration sensor pass data that is formatted the same way, which allows the example app to process the data from the different sources in the same manner (even using the same class).

The fi rst step is to apply the high-pass fi lter if the user has enabled it. If the user has enabled the high-pass fi lter, the values in SensorEvent.values are passed to highPass(), which will apply the high-pass fi lter and return the results. The high-pass fi lter algorithm that is used in this chapter is the one that is presented in the Android javadoc for the SensorEvent class that is provided by Google. Recall from Chapter 6 that a simple way to perform high-pass fi ltering is to perform a low-pass fi lter and then subtract the result from the sensor data. Listing 8-5 shows the implementation for the highPass() method that performs the high-pass fi ltering operation.

LISTING 8-5: Google’s high-pass fi lter algorithm

private static final float ALPHA = 0.8f;

private float[] highPass(float x, float y, float z)

{

float[] filteredValues = new float[3];

gravity[0] = ALPHA * gravity[0] + (1 - ALPHA) * x;

gravity[1] = ALPHA * gravity[1] + (1 - ALPHA) * y;

c08.indd 158

c08.indd 158

5/10/2012 2:03:56 PM

5/10/2012 2:03:56 PM

Summary x 159

gravity[2] = ALPHA * gravity[2] + (1 - ALPHA) * z;

filteredValues[0] = x - gravity[0];

filteredValues[1] = y - gravity[1];

filteredValues[2] = z - gravity[2];

return filteredValues;

}

 This code snippet was derived from http://developer.android.com/reference/android/hardware/SensorEvent.html

 which is available under the Apache 2.0 License.

The discussion of how the high-pass fi lter works is discussed in detail in Chapter 6.

Once the data has been (conditionally) fi ltered, the total acceleration can be computed using the square root of the sum of the squares of the X, Y, and Z axes’ acceleration values. The values of the three axes and the acceleration are then written to the data fi le.

If the listener has a reference to a graph, it will additionally graph the data and then use the acceleration to determine of the device is moving. Once the total acceleration is computed, a simple comparison to a threshold can be used to detect movement. If movement is detected, the TTS is used to indicate the detected movement to the user.

SUMMARY

This chapter discussed how acceleration data can be obtained in Android via the accelerometer and the linear acceleration synthetic sensor. Additionally, the differences in the data provided by each sensor, mainly how gravity affects the data, were also discussed.

Detecting general motion is the foundation for performing many more complex tasks with the acceleration data. From the data provided in this chapter, it is easy see that detecting the device being shaken is the same as detecting general motion with the total acceleration threshold set to a higher value.

Using the real-time graph to see how moving the device affects the acceleration sensors in real time can be incredibly useful in understanding how the acceleration sensors work. The reader is encouraged to spend some time running the example app and examining both the in-app graph and the data CSV fi les that are saved to become more familiar with how the acceleration sensors work.

c08.indd 159

c08.indd 159

5/10/2012 2:03:56 PM

5/10/2012 2:03:56 PM

c08.indd 160

c08.indd 160

5/10/2012 2:03:56 PM

5/10/2012 2:03:56 PM

9

Sensing the Environment

WHAT’S IN THIS CHAPTER?

‰

Providing an example implementation of how to use the barometer

to produce altitude

‰

Comparing the altitude produced by GPS and the altitude produced

using barometric pressure

‰

Showing how to acquire external sea-level pressure data from a web

service

‰

Explaining use cases for barometric data

The past few chapters have discussed how to determine how a device is oriented in its envi-

ronment and whether it is moving. This chapter discusses how a device can make sense of the environment itself. As stated in Chapter 5, Android supports many different sensors that can be used to make sense of the environment. This chapter focuses on one of the newest environment sensors supported by Android, the barometer.

Recall from Chapter 5 that the main purpose for the barometer is to detect the altitude of a given device. This sensor is useful when a device cannot obtain a GPS signal and still needs to provide altitude data.

To showcase the barometer sensor, this chapter adds altimeter functionality to the book’s

example app. The altimeter provides the ability to determine a device’s current altitude as well as compute the relative altitude as the device’s altitude changes. Because it does not rely solely on GPS data (which also provides altitude data), the altimeter will remain fully functional indoors where a GPS signal would probably be lost.

As explained in Chapter 5, altitude can be calculated by passing a barometer reading to the SensorManager.getAltitude() method. SensorManager.getAltitude() takes two fl oat

parameters, which represent the current atmospheric pressure at sea level and the atmospheric pressure as reported by the barometer and returns the altitude in meters. The pressure at

sea level can be obtained by using the SensorManager.PRESSURE_STANDARD_ATMOSPHERE

c09.indd 161

c09.indd 161

5/10/2012 2:04:30 PM

5/10/2012 2:04:30 PM

162 x CHAPTER 9 SENSING THE ENVIRONMENT

constant, or by getting the information from an external source. The example app will compute the altitude using both the standard atmospheric pressure constant and by retrieving the current pressure from a web service. Using both values for the altitude computation showcases the difference between the two values as well as illustrates how to obtain and process both values.

BAROMETER VS. GPS FOR ALTITUDE DATA

Although receiving altitude from the GPS is convenient from a coding perspective, it may not always be possible. For example, should the device be in a location where it cannot get a GPS fi x (indoors, for example), an app will not receive a call to onLocationChanged(). Furthermore, because it can take a signifi cant amount of time to get a GPS fi x, GPS altitude data may not be available in a timely fashion. Use of GPS can also consume more battery power than the barometer, which alone can make the barometer an attractive choice for receiving altitude information.

The barometer, on the other hand, reports pressure readings almost immediately and is almost always able to produce relatively accurate readings. Though it might not be the ideal source of altitude data in all cases, the sensor is certainly useful in a large number of cases where altitude is needed by an app.

EXAMPLE APP OVERVIEW.

Figure 9-1 shows a screen capture of the altimeter activity,

DetermineAltitudeActivity, in the book’s companion app.

The altimeter displays the absolute altitude and relative altitude

using data from both the GPS and the barometer. Because the

altitude can be calculated from barometer readings using the

standard pressure constant and an externally provided sea-

level pressure reading, the activity makes both calculations and

shows them in the UI.

Retrieving barometer data is similar to retrieving data from

other sensors on a device; the activity will get a handle for

the SensorManager and register a SensorEventListener to

receive callbacks when the sensor data is ready to be consumed.

When the barometer data is received, it can be passed to

SensorManager.getAltitude() in order to compute the alti-

tude that can be displayed in the screen.

DetermineAltitudeActivity also provides the altitude that

is provided by the location service so that a comparison can

be made between the barometer-based altitude values and the

location service–based values. To accomplish this, the activity

FIGURE 9-1: The

also needs a reference to the location service and must register a

DetermineAltitudeActivity screen

LocationListener to receive location updates.

In addition to calculating the absolute altitude, DetermineAltitudeActivity also calculates a relative altitude. Relative altitude is the difference between the altitude values at two points in time. To calculate relative altitude, users fi rst press the “Mark Starting Altitude” button. Doing so records the c09.indd 162

c09.indd 162

5/10/2012 2:04:34 PM

5/10/2012 2:04:34 PM

Example App Overview. x 163

device’s current altitude using the GPS and barometer values. When users are ready to calculate relative altitude, they again press the toggle button. The relative altitude is calculated using the GPS and barometer and displayed to the screen.

Implementation Details

Listing 9-1 shows the layout that is used by DetermineAltitudeActivity. The layout has

TextViews for each piece of data that will be displayed to the user, as well as a toggle button that is used to compute relative altitude.

LISTING 9-1: DetermineAltitudeActivity layout

<?xml version= ”1.0” encoding= ”utf-8” ?>

<RelativeLayout xmlns:android= ”http://schemas.android.com/apk/res/android”

android:layout_width= ”match_parent”

android:layout_height= ”match_parent”

android:orientation= ”vertical” >

<!-- GPS Altitude -->

<TextView android:id= ”@+id/gpsAltitudeSectionHeading”

style= ”@style/apptext”

android:text= ”@string/gpsAltitudeLabel”

android:layout_alignParentTop= ”true” />

<TextView android:id= ”@+id/gpsAltitudeSectionDivider”

style= ”@style/line_separator”

android:layout_below= ”@id/gpsAltitudeSectionHeading” />

<TextView android:id= ”@+id/gpsAltitudeLabel”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:text= ”@string/altitudeLabel”

android:layout_below= ”@id/gpsAltitudeSectionDivider” />

<TextView android:id= ”@+id/gpsAltitude”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:layout_alignTop= ”@id/gpsAltitudeLabel”

android:layout_alignBottom= ”@id/gpsAltitudeLabel”

android:layout_toRightOf= ”@id/gpsAltitudeLabel”

android:text= ”@string/notAvailable” />

<TextView android:id= ”@+id/gpsRelativeAltitudeLabel”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:text= ”@string/relativeAltitudeLabel”

android:layout_below= ”@id/gpsAltitude” />

<TextView android:id= ”@+id/gpsRelativeAltitude”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

 continues

c09.indd 163

5/10/2012 2:04:35 PM

164 x CHAPTER 9 SENSING THE ENVIRONMENT

LISTING 9-1 (continued)

android:layout_alignTop= ”@id/gpsRelativeAltitudeLabel”

android:layout_alignBottom= ”@id/gpsRelativeAltitudeLabel”

android:layout_toRightOf= ”@id/gpsRelativeAltitudeLabel”

android:text= ”@string/notAvailable” />

<!-- Standard Pressure Barometer Altitude -->

<TextView android:id= ”@+id/barometerAltitudeSectionHeading”

style= ”@style/apptext”

android:text= ”@string/barometerAltitudeLabel”

android:layout_below= ”@id/gpsRelativeAltitudeLabel”

android:layout_marginTop= ”10dip” />

<TextView android:id= ”@+id/barometerAltitudeSectionDivider”

style= ”@style/line_separator”

android:layout_below= ”@id/barometerAltitudeSectionHeading” />

<TextView android:id= ”@+id/barometerAltitudeLabel”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:text= ”@string/altitudeLabel”

android:layout_below= ”@id/barometerAltitudeSectionDivider” />

<TextView android:id= ”@+id/barometerAltitude”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:layout_alignTop= ”@id/barometerAltitudeLabel”

android:layout_alignBottom= ”@id/barometerAltitudeLabel”

android:layout_toRightOf= ”@id/barometerAltitudeLabel” />

<TextView android:id= ”@+id/barometerRelativeAltitudeLabel”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:text= ”@string/relativeAltitudeLabel”

android:layout_below= ”@id/barometerAltitude” />

<TextView android:id= ”@+id/barometerRelativeAltitude”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:layout_alignTop= ”@id/barometerRelativeAltitudeLabel”

android:layout_alignBottom= ”@id/barometerRelativeAltitudeLabel”

android:layout_toRightOf= ”@id/barometerRelativeAltitudeLabel” />

<TextView android:id= ”@+id/standardPressureLabel”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:text= ”@string/standardPressureLabel”

android:layout_below= ”@id/barometerRelativeAltitude” />

<TextView android:id= ”@+id/standardPressure”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:layout_alignTop= ”@id/standardPressureLabel”

android:layout_alignBottom= ”@id/standardPressureLabel”

c09.indd 164

c09.indd 164

5/10/2012 2:04:35 PM

5/10/2012 2:04:35 PM

Example App Overview. x 165

android:layout_toRightOf= ”@id/standardPressureLabel”

android:text= ”@string/notAvailable” />

<!-- MSLP Barometer Altitude -->

<TextView android:id= ”@+id/mslpBarometerAltitudeSectionHeading”

style= ”@style/apptext”

android:text= ”@string/mslpBarometerAltitudeLabel”

android:layout_below= ”@id/standardPressureLabel”

android:layout_marginTop= ”10dip” />

<TextView android:id= ”@+id/mslpBarometerAltitudeSectionDivider”

style= ”@style/line_separator”

android:layout_below= ”@id/mslpBarometerAltitudeSectionHeading” />

<TextView android:id= ”@+id/mslpBarometerAltitudeLabel”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:text= ”@string/altitudeLabel”

android:layout_below= ”@id/mslpBarometerAltitudeSectionDivider” />

<TextView android:id= ”@+id/mslpBarometerAltitude”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:layout_alignTop= ”@id/mslpBarometerAltitudeLabel”

android:layout_alignBottom= ”@id/mslpBarometerAltitudeLabel”

android:layout_toRightOf= ”@id/mslpBarometerAltitudeLabel”

android:text= ”@string/notAvailable” />

<TextView android:id= ”@+id/mslpRelativeAltitudeLabel”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:text= ”@string/relativeAltitudeLabel”

android:layout_below= ”@id/mslpBarometerAltitude” />

<TextView android:id= ”@+id/mslpBarometerRelativeAltitude”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:layout_alignTop= ”@id/mslpRelativeAltitudeLabel”

android:layout_alignBottom= ”@id/mslpRelativeAltitudeLabel”

android:layout_toRightOf= ”@id/mslpRelativeAltitudeLabel”

android:text= ”@string/notAvailable” />

<TextView android:id= ”@+id/mslpLabel”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:text= ”@string/mslpLabel”

android:layout_below= ”@id/mslpBarometerRelativeAltitude” />

<TextView android:id= ”@+id/mslp”

android:layout_width= ”wrap_content”

android:layout_height= ”wrap_content”

android:layout_alignTop= ”@id/mslpLabel”

android:layout_alignBottom= ”@id/mslpLabel”

android:layout_toRightOf= ”@id/mslpLabel”

android:text= ”@string/notAvailable” />

 continues

c09.indd 165

c09.indd 165

5/10/2012 2:04:35 PM

5/10/2012 2:04:35 PM

166 x CHAPTER 9 SENSING THE ENVIRONMENT

LISTING 9-1 (continued)

<ToggleButton

android:layout_width= ”match_parent”

android:layout_height= ”wrap_content”

android:layout_below= ”@id/mslpLabel”

android:onClick= ”onToggleClick”

android:textOff= ”Mark Starting Altitude”

android:textOn= ”Compute Relative Altitude” />

</RelativeLayout>

 code snippet determine_altitude.xml

Listing 9-2 shows the member data and constants used throughout DetermineAltitudeActivity.

These are presented and referenced in the rest of the code listings throughout the chapter.

LISTING 9-2: DetermineAltitudeActivity member data and constants

private static final String TAG = "DetermineAltitudeActivity";

private static final int TIMEOUT = 1000; //1 second

private static final long NS_TO_MS_CONVERSION = (long)1E6;

// System services

private SensorManager sensorManager;

private LocationManager locationManager;

// UI Views

private TextView gpsAltitudeView;

private TextView gpsRelativeAltitude;

private TextView barometerAltitudeView;

private TextView barometerRelativeAltitude;

private TextView mslpBarometerAltitudeView;

private TextView mslpBarometerRelativeAltitude;

private TextView mslpView;

// Member state

private Float mslp;

private long lastGpsAltitudeTimestamp = -1;

private long lastBarometerAltitudeTimestamp = -1;

private float bestLocationAccuracy = -1;

private float currentBarometerValue;

private float lastBarometerValue;

private double lastGpsAltitude;

private double currentGpsAltitude;

private boolean webServiceFetching;

private long lastErrorMessageTimestamp = -1;

Listing 9-3 shows the onCreate() method for DetermineAltitudeActivity. Most of the code

in onCreate() should be familiar by now because it follows the same pattern that has been used c09.indd 166

c09.indd 166

5/10/2012 2:04:35 PM

5/10/2012 2:04:35 PM

Example App Overview. x 167

throughout the book. The method acquires references to the UI views that will be updated and retrieves a handle to both the location and sensor services.

LISTING 9-3: DetermineAltitudeActivity.onCreate()

@Override

protected void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

setContentView(R.layout.determine_altitude);

getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);

sensorManager =

(SensorManager) getSystemService(Context.SENSOR_SERVICE);

locationManager = (LocationManager) getSystemService(LOCATION_SERVICE);

gpsAltitudeView = (TextView) findViewById(R.id.gpsAltitude);

gpsRelativeAltitude =

(TextView) findViewById(R.id.gpsRelativeAltitude);

barometerAltitudeView = (TextView) findViewById(R.id.barometerAltitude);

barometerRelativeAltitude =

(TextView) findViewById(R.id.barometerRelativeAltitude);

mslpBarometerAltitudeView =

(TextView) findViewById(R.id.mslpBarometerAltitude);

mslpBarometerRelativeAltitude =

(TextView) findViewById(R.id.mslpBarometerRelativeAltitude);

mslpView = (TextView) findViewById(R.id.mslp);

webServiceFetching = false;

TextView standardPressure =

(TextView)findViewById(R.id.standardPressure);

String standardPressureString =

String.valueOf(SensorManager.PRESSURE_STANDARD_ATMOSPHERE);

standardPressure.setText(standardPressureString);

}

The last three statements of the onCreate() method display the value of the standard atmospheric pressure constant to the user. Recall from Figure 9-1 that in addition to the altitude values, the activity also displays the values that were used for sea level. Because the standard atmospheric pressure is a constant, the view can be set once when the activity is created because it will not need to be updated (this is not the case for the externally accessed sea-level value, which will need to be updated later in the activity).

Because both sensor data and location data are needed by DetermineAltitudeActivity, the activity implements both LocationListener and SensorEventListener. This allows the activity to register itself to receive location and sensor updates and conveniently update the UI. The registration for both location and sensor data happens in the onResume() method, which is shown in Listing 9-4.

c09.indd 167

c09.indd 167

5/10/2012 2:04:36 PM

5/10/2012 2:04:36 PM

168 x CHAPTER 9 SENSING THE ENVIRONMENT

LISTING 9-4: DetermineAltitudeActivity.onResume()

@Override

protected void onResume()

{

super.onResume();

List<String> enabledProviders = locationManager.getProviders(true);

if (enabledProviders.isEmpty()

|| !enabledProviders.contains(LocationManager. GPS_PROVIDER))

{

Toast. makeText(this,

R.string. gpsNotEnabledMessage,

Toast. LENGTH_LONG).show();

}

else

{

// Register every location provider returned from LocationManager

for (String provider : enabledProviders)

{

// Register for updates every minute

locationManager.requestLocationUpdates(provider,

60000, // minimum time of 60000 ms (1 minute)

0, // Minimum distance of 0

this,

null);

}

}

Sensor sensor = sensorManager.getDefaultSensor(Sensor. TYPE_PRESSURE);

// Only make registration call if device has a pressure sensor

if (sensor != null)

{

sensorManager.registerListener(this,

sensor,

SensorManager. SENSOR_DELAY_NORMAL);

}

}

Because the user can disable location providers, the onResume() method registers only active location providers by iterating through the array returned from the call to getProviders(true).

Passing the value of true ensures that only active location providers are returned. In addition, the code checks that the GPS location provider is present. At the time of this writing, the GPS provider is the only location provider that can provide altitude information.

Care must be taken when registering for updates from the barometer because not every device has a barometer. To compensate for this, the method makes a call to getDefaultSensor(), passing the constant for the pressure sensor (barometer). If the method returns a value of null, the device does not contain a barometer and the registration can be skipped.

c09.indd 168

c09.indd 168

5/10/2012 2:04:36 PM

5/10/2012 2:04:36 PM

Example App Overview. x 169

Now that the activity is registered to receive location and sensor information, it will receive callbacks when updated location and/or barometer readings are available. The next sections will dive into the details of processing the information that is received.

GPS-Based Altitude

The altitude that is provided by the GPS location provider can be read with a simple call to Location.getAltitude(). The method call returns the altitude in meters. In the example for this chapter, the GPS altitude is read when onLocationChanged() is called. Listing 9-5 shows the implementation of DetermineAltitudeActivity.onLocationChanged().

LISTING 9-5: Retrieving the altitude provided by GPS

@Override

public void onLocationChanged(Location location)

{

if (LocationManager.GPS_PROVIDER.equals(location.getProvider())

 && (lastGpsAltitudeTimestamp == -1

 || location.getTime() - lastGpsAltitudeTimestamp > TIMEOUT))

 {

 double altitude = location.getAltitude();

 gpsAltitudeView.setText(String.valueOf(altitude));

 lastGpsAltitudeTimestamp = location.getTime();

 currentGpsAltitude = altitude;

 }

float accuracy = location.getAccuracy();

boolean betterAccuracy = accuracy < bestLocationAccuracy;

if (mslp == null || (bestLocationAccuracy > -1 && betterAccuracy))

{

bestLocationAccuracy = accuracy;

if (!webServiceFetching)

{

webServiceFetching = true;

new MetarAsyncTask().execute(location.getLatitude(),

location.getLongitude());

}

}

}

Before the altitude is read, the method verifi es that the location object contains altitude information with a call to Location.hasAltitude(). This check is needed because the activity will register all enabled location providers when it’s brought to the foreground (see Listing 9-4), but not every location provider provides altitude data. The reason for using location providers that do not provide altitude data is explained later in the chapter.

Along with verifying that altitude data is present, the code checks to see if lastGpsAltitudeTimestamp contains a value of –1, indicating that it has never been set (Listing 9-2 shows the variable’s c09.indd 169

c09.indd 169

5/10/2012 2:04:36 PM

5/10/2012 2:04:36 PM

170 x CHAPTER 9 SENSING THE ENVIRONMENT

declaration and initialization to a value of –1). Furthermore, the code compares the difference of the current location’s timestamp with the timestamp that was set the last time the UI was updated with the location-based altitude data. If the difference is greater than the value of TIMEOUT (a constant representing 1 sec.), the UI is updated with the current altitude value, and the current altitude is stored in a class member variable (currentGpsAltitude). This check ensures that the screen is not updated more than once a second with location service altitude data.

In Listing 9-5, only the highlighted code deals with location-based altitude. The rest of the method supports retrieving sea-level pressure externally, which is discussed later in the chapter.

Barometric Pressure–Based Altitude

Computing the altitude using the barometer is relatively straightforward. To get a fairly good reading of the altitude, an app only needs to read the barometer in a similar fashion to other sensors and pass the values that were read to SensorManager.getAltitude(). SensorManager.getAltitude() encapsulates the formula needed to perform the actual calculation and returns the altitude in meters.

In the example, the reading of the barometer and call to SensorManager.getAltitude() happens on the onSensorEvent() method that is called when sensor data is available. The method is shown in Listing 9-6.

LISTING 9-6: Reading barometer data and calculating altitude

@Override

public void onSensorChanged(SensorEvent event)

{

float altitude;

currentBarometerValue = event.values[0];

double currentTimestamp = event.timestamp / NS_TO_MS_CONVERSION;

double elapsedTime = currentTimestamp - lastBarometerAltitudeTimestamp;

if (lastBarometerAltitudeTimestamp == -1 || elapsedTime > TIMEOUT)

{

altitude =

SensorManager

. getAltitude(SensorManager. PRESSURE_STANDARD_ATMOSPHERE,

currentBarometerValue);

barometerAltitudeView.setText(String. valueOf(altitude));

if (mslp != null)

{

altitude = SensorManager. getAltitude(mslp,

currentBarometerValue);

mslpBarometerAltitudeView.setText(String. valueOf(altitude));

mslpView.setText(String. valueOf(mslp));

}

lastBarometerAltitudeTimestamp = (long)currentTimestamp;

}

}

c09.indd 170

c09.indd 170

5/10/2012 2:04:36 PM

5/10/2012 2:04:36 PM

Example App Overview. x 171

The method fi rst reads the event.values array to retrieve the raw barometer reading. event.

 values is an array of fl oats, and for the barometer, the sensor data is located in the fi rst (zero-eth) position.

Listing 9-6 makes two calls to SensorManager.getAltitude(). The fi rst call uses the

SensorManager.PRESSURE_STANDARD_ATMOSPHERE constant, and the second call passes the

 mslp variable as the fi rst parameter. Recall from earlier in the chapter that the fi rst parameter of SensorManager.getAltitude() is the altitude at sea level. The fi rst call makes use of the standard pressure constant that will yield fairly accurate altitude results when computing relative altitude.

However, if more accurate altitude data is desired, the mean sea-level pressure (MSLP) should be used. As explained in Chapter 5, the MSLP is the pressure that is reported by an external source such as a weather station. Though using the MSLP can provide increased accuracy when computing altitude, it must fi rst be retrieved from that external source. Luckily, many places on the Internet supply MSLP information through a web service.

DetermineAltitudeActivity makes use of one such web service to retrieve MSLP based on the

device’s current location. Once the value is set, it can be used on onSensorChanged() to update the UI with the MSLP-computed altitude. Because web services should be accessed asynchronously (and off the main thread), onSensorChanged() needs to verify that the mslp variable has been set before accessing it. Hence, the check for a null mslp before its value is used.

The next section discusses how to retrieve the MSLP values.

Retrieving MSLP Values

To use the MSLP, the DetermineAltitudeActivity connects to a remote web service supplying

the device’s current location as parameters to the web service call. The web service responds with weather data that includes the MSLP for the location it was sent. To facilitate access to the web service, DetermineAltitudeActivity contains a private inner class, MetarAsyncTask, that makes the call to the web service in another thread (to avoid blocking the main thread, which can cause an

“Application Not Responding” error) and process the response. Listing 9-7 shows the implementation of the MetarAsyncTask.

LISTING 9-7: Class to access weather web service and retrieve MSLP data

private class MetarAsyncTask extends AsyncTask<Number, Void, Float>

{

private static final String WS_URL =

 "http://ws.geonames.org/findNearByWeatherJSON";

private static final String SLP_STRING = "slp";

@Override

protected Float doInBackground(Number... params)

{

Float mslp = null;

HttpURLConnection urlConnection = null;

 continues

c09.indd 171

5/10/2012 2:04:36 PM

172 x CHAPTER 9 SENSING THE ENVIRONMENT

LISTING 9-7 (continued)

try

{

// Generate URL with parameters for web service

Uri uri =

Uri. parse(WS_URL)

.buildUpon()

.appendQueryParameter("lat", String. valueOf(params[0]))

.appendQueryParameter("lng", String. valueOf(params[1]))

.build();

// Connect to web service

URL url = new URL(uri.toString());

urlConnection = (HttpURLConnection) url.openConnection();

// Read web service response and convert to a string

InputStream inputStream =

new BufferedInputStream(urlConnection.getInputStream());

// Convert InputStream to String using a Scanner

Scanner inputStreamScanner =

new Scanner(inputStream).useDelimiter("\\A");

String response = inputStreamScanner.next();

inputStreamScanner.close();

Log. d(TAG, "Web Service Response -> " + response);

JSONObject json = new JSONObject(response);

String observation =

json

.getJSONObject("weatherObservation")

.getString("observation");

// Split on whitespace

String[] values = observation.split("\\s");

// Iterate of METAR string until SLP string is found

String slpString = null;

for (int i = 1; i < values.length; i++)

{

String value = values[i];

if (value.startsWith(SLP_STRING.toLowerCase())

|| value.startsWith(SLP_STRING.toUpperCase()))

{

slpString =

value.substring(SLP_STRING.length());

break;

}

}

c09.indd 172

c09.indd 172

5/10/2012 2:04:37 PM

5/10/2012 2:04:37 PM

Example App Overview. x 173

// Decode SLP string into numerical representation

StringBuffer sb = new StringBuffer(slpString);

sb.insert(sb.length() - 1, ".");

float val1 = Float. parseFloat("10" + sb);

float val2 = Float. parseFloat("09" + sb);

mslp =

(Math. abs((1000 - val1)) < Math. abs((1000 - val2)))

? val1

: val2;

}

catch (Exception e)

{

Log. e(TAG, "Could not communicate with web service", e);

}

finally

{

if (urlConnection != null)

{

urlConnection.disconnect();

}

}

return mslp;

}

@Override

protected void onPostExecute(Float result)

{

long uptime = SystemClock. uptimeMillis();

if (result == null

&& (lastErrorMessageTimestamp == -1

|| ((uptime - lastErrorMessageTimestamp) > 30000)))

{

Toast. makeText(DetermineAltitudeActivity.this,

R.string. webServiceConnectionFailureMessage,

Toast. LENGTH_LONG).show();

lastErrorMessageTimestamp = uptime;

}

else

{

DetermineAltitudeActivity.this.mslp = result;

}

DetermineAltitudeActivity.this.webServiceFetching = false;

}

}

 code snippet DetermineAltitudeActivity.java

c09.indd 173

c09.indd 173

5/10/2012 2:04:37 PM

5/10/2012 2:04:37 PM

174 x CHAPTER 9 SENSING THE ENVIRONMENT

The web service used in the chapter example is provided by www.geonames.org. GeoNames provides a simple web service (among other things) that takes coordinate values (latitude and longitude) as parameters and returns weather data. The GeoNames web service can return data in both XML

and JSON formats. For this example, the web service returns a response in JSON. For more information on what other services GeoNames provides, take a look at its website.

The GeoNames weather web service returns weather data encoded as a METAR string. METAR

is a commonly used standard for formatting weather data. It is used among pilots and meteorolo-gists to make weather predictions, and is standardized through the International Civil Aviation Organization (ICAO).

A typical METAR string containing weather data looks like:

KNUQ 021756Z 30004KT 10SM CLR 13\/07 A3017 RMK AO2 SLP218 T01280072 10128

20050 58004

A METAR string is separated by white space and contains various components of weather data.

The fi rst string, KNUQ in this case, is the unique identifi er of the reporting station that was the source of the data. The reporting station is followed by encoded weather data. The complete contents of a METAR string are out of the scope of the chapter. For now it is enough to know that the part of a METAR string that contains sea-level pressure begins with SLP. For the preceding METAR string, the encoded sea-level pressure is SLP218.

Although METAR is standardized, various regions around the world do make locale-specifi c addi-tions to the standard. For example, the SLP data located in the preceding METAR string is unique to North America and may not be present in METAR strings in other parts of the world.

To receive METAR-encoded weather data from the GeoNames web service, the MetarAsyncTask

must generate an HTTP request and send it to the web service. It does this in the fi rst part of MetarAsyncTask.doInBackground() with the following code:

// Generate URL with parameters for web service

Uri uri =

Uri. parse(WS_URL)

.buildUpon()

.appendQueryParameter("lat", String. valueOf(params[0]))

.appendQueryParameter("lng", String. valueOf(params[1]))

.build();

// Connect to web service

URL url = new URL(uri.toString());

urlConnection = (HttpURLConnection) url.openConnection();

// Read web service response and convert to a string

InputStream inputStream =

new BufferedInputStream(urlConnection.getInputStream());

// Convert InputStream to String using a Scanner

Scanner inputStreamScanner =

new Scanner(inputStream).useDelimiter("\\A");

String response = inputStreamScanner.next();

inputStreamScanner.close();

c09.indd 174

c09.indd 174

5/10/2012 2:04:37 PM

5/10/2012 2:04:37 PM

Example App Overview. x 175

After the code is executed, the response from the web service is located in the variable name response. A typical response from the GeoNames web service is presented in Listing 9-8.

LISTING 9-8: GeoNames METAR web service response

{

"weatherObservation": {

"weatherCondition": "n\/a",

"clouds": "n\/a",

"observation": "KNUQ 021756Z 30004KT 10SM CLR 13\/07 A3017 RMK AO2 SLP218",

"windDirection": 300,

"ICAO": "KNUQ",

"elevation": 12,

"seaLevelPressure": 1021.8,

"countryCode": "US",

"lng": -122.03333333333333,

"dewPoint": "7.2",

"temperature": "12.8",

"windSpeed": "04",

"humidity": 68,

"datetime": "2012-02-02 17:56:00",

"stationName": "Mountain View, Moffett Field",

"lat": 37.416666666666664

}

}

The response from the web service contains more than just a METAR string. In fact, it contains the decoded sea-level pressure in the fi eld name seaLevelPressure. Though this fi eld does represent the sea-level pressure, this chapter focuses on how to decode the METAR string. Knowing how to decode the SLP part of a METAR string will allow an app to make use of many different weather data sources that may not return the decoded sea-level pressure.

The weather METAR string is located in the “observation” fi eld of the JSON web service response.

After receiving the response, the MetarAsyncTask.doInBackground() method uses the JSON

library in Android to parse the METAR string and locate the sea-level pressure data. It does this in the following code:

JSONObject json = new JSONObject(response);

String observation =

json

.getJSONObject("weatherObservation")

.getString("observation");

// Split on whitespace

String[] values = observation.split("\\s");

// Iterate of METAR sting until SLP string is found

String slpString = null;

for (int i = 1; i < values.length; i++)

{

c09.indd 175

c09.indd 175

5/10/2012 2:04:37 PM

5/10/2012 2:04:37 PM

176 x CHAPTER 9 SENSING THE ENVIRONMENT

String value = values[i];

if (value.startsWith(SLP_STRING.toLowerCase())

|| value.startsWith(SLP_STRING.toUpperCase()))

{

slpString =

value.substring(SLP_STRING.length());

break;

}

}

Upon completion of the code, the sea-level portion of the METAR string is located in the slpString variable. As can be verifi ed by the sample JSON response in Listing 9-8, the slpString should have a value of 218, which is the encoded value of the sea-level pressure.

To decode the sea-level pressure, the code adds a decimal point before the last character and prepends the string with either 10 or 09. The determination of what to prepend the string with is made by determining which value would make the sea-level pressure closer to 1000. The following code snippet decodes the SLP METAR string:

// Decode SLP string into numerical representation

StringBuffer sb = new StringBuffer(slpString);

sb.insert(sb.length() - 1, ".");

float val1 = Float. parseFloat("10" + sb);

float val2 = Float. parseFloat("09" + sb);

mslp =

(Math. abs((1000 - val1)) < Math. abs((1000 - val2)))

? val1

: val2;

At this point MetarAsyncTask.doInBackground() is fi nished processing the sea-level pressure from the GeoNames web service, and has parsed the response. The Android AsynTask handles passing the return value to MetarAsynTask.postExecute(), which either stores the mean sea-level pressure as part of the DetermineAltitudeActivity member data, or displays a toast to the user if there was an error.

Launching MetarAsyncTask

Because device location is needed to retrieve MSLP data from the GeoNames web service, a web service request cannot be made until the app has received location data. Recall from previous chapters that some location providers (especially the GPS provider) may take minutes to return a single location fi x. It is often not desirable to block a user from performing a task in an app until a location is received. To combat long time to fi rst fi x (TTFF) times, DetermineAltitudeActivity makes use of all location providers that are currently enabled (shown in Listing 9-4). Assuming that the user has a location provider other than the GPS provider enabled, the app should receive a location from the location service in a relatively small amount of time. Once a location is received in DetermineAltitudeActivity.onLocationChanged(), the method makes the determination

on whether or not a request needs to be sent to the web service to refresh MSLP. In addition to c09.indd 176

c09.indd 176

5/10/2012 2:04:37 PM

5/10/2012 2:04:37 PM

Example App Overview. x 177

processing location service altitude data, onLocationChanged() also initiates the call to the web service. Listing 9-9 again shows the implementation of DetermineAlltitudeActivity.onLocation-

Changed(), but this time highlights the portion of the method that makes the call to the web service.

LISTING 9-9: Making the web service call from onLocationChanged()

@Override

public void onLocationChanged(Location location)

{

if (LocationManager. GPS_PROVIDER.equals(location.getProvider())

&& (lastGpsAltitudeTimestamp == -1

|| location.getTime() - lastGpsAltitudeTimestamp > TIMEOUT))

{

double altitude = location.getAltitude();

gpsAltitudeView.setText(String. valueOf(altitude));

lastGpsAltitudeTimestamp = location.getTime();

currentGpsAltitude = altitude;

}

float accuracy = location.getAccuracy();

 boolean betterAccuracy = accuracy < bestLocationAccuracy;

 if (mslp == null || (bestLocationAccuracy > -1 && betterAccuracy))

 {

 bestLocationAccuracy = accuracy;

 if (!webServiceFetching)

 {

 webServiceFetching = true;

 new MetarAsyncTask().execute(location.getLatitude(),

 location.getLongitude());

 }

 }

}

Listing 9-9 shows the conditional call to MetarAsynTask.execute() (which makes the call to

MetarAsyncTask.doInBackground() on another thread) only if the MSLP had not yet been

retrieved, or if the latest location has a better accuracy than the previous location used to retrieve the MSLP. There is also a check to ensure that only one call to the web service is made at a time.

Thus far, the main topic of this chapter has been computing absolute altitude. This is useful in some use cases, but a more common use case for the barometer is to calculate relative altitude.

Relative Altitude

Relative altitude is used to determine the change in altitude. For example, by computing the difference between an ending altitude and a starting altitude, an app can determine if a device has changed fl oors in a building. This can be another useful piece of information when performing tasks such as navigation. An app can use GPS to provide a user with general directions to a building, then use the barometer to produce fi ne-grained navigation within the building. Although the c09.indd 177

c09.indd 177

5/10/2012 2:04:38 PM

5/10/2012 2:04:38 PM

178 x CHAPTER 9 SENSING THE ENVIRONMENT

GPS can also provide altitude information, it is unlikely to produce any position information while indoors.

Recall from Figure 9-1 that the screen for DetermineAltitudeActivity has a toggle button

that allows the user to mark a starting altitude when it is pressed, and computes relative altitude when the button is pressed again. The relative altitude calculation is made in the handler for the toggle button click. The layout (shown in Listing 9-1) defi nes the click handler to be DetermineAltitudeActivity.onToggleClick(), which is shown in Listing 9-10.

LISTING 9-10: Calculating relative altitude

public void onToggleClick(View view)

{

if (((ToggleButton)view).isChecked())

{

lastGpsAltitude = currentGpsAltitude;

lastBarometerValue = currentBarometerValue;

gpsRelativeAltitude.setVisibility(View. INVISIBLE);

barometerRelativeAltitude.setVisibility(View. INVISIBLE);

if (mslp != null)

{

mslpBarometerRelativeAltitude.setVisibility(View. INVISIBLE);

}

}

else

{

double delta;

delta = currentGpsAltitude - lastGpsAltitude;

gpsRelativeAltitude.setText(String. valueOf(delta));

gpsRelativeAltitude.setVisibility(View. VISIBLE);

delta = SensorManager

. getAltitude(SensorManager. PRESSURE_STANDARD_ATMOSPHERE,

currentBarometerValue)

- SensorManager

. getAltitude(SensorManager. PRESSURE_STANDARD_ATMOSPHERE,

lastBarometerValue);

barometerRelativeAltitude.setText(String. valueOf(delta));

barometerRelativeAltitude.setVisibility(View. VISIBLE);

if (mslp != null)

{

delta = SensorManager. getAltitude(mslp, currentBarometerValue)

- SensorManager. getAltitude(mslp, lastBarometerValue);

mslpBarometerRelativeAltitude.setText(String. valueOf(delta));

mslpBarometerRelativeAltitude.setVisibility(View. VISIBLE);

}

}

}

c09.indd 178

c09.indd 178

5/10/2012 2:04:38 PM

5/10/2012 2:04:38 PM

Example App Overview. x 179

The fi rst if block of the method is executed when the user wants to mark the current altitude.

Marking the current altitude is as simple as assigning lastGpsAltitude the value of currentGpsAltitude for the GPS-based altitude and lastBarometerValue the value of currentBarometerValue for the barometer data. Both currentGpsAltitude and currentBarometerValue are constantly updated when new calls are made to onLocationChanged() and onSensorEvent(),

respectively. This means that both values always maintain the current values for their respective sensors.

The else block is executed when the user presses the toggle button after the app has marked the starting altitude. Because DetermineAltitudeActivity maintains the current GPS and barometer values as part of its member data, computing relative altitude is as simple as computing the difference between the current and starting altitudes for both GPS and barometer data.

In a similar fashion to onSensorEvent(), onToggleClick() computes the altitude using both the standard pressure constant and the MSLP if it has been populated. Once all the calculations are made, the UI is updated with the values to inform the user.

Figure 9-2 shows a screen capture of DetermineAltitudeActivity after the user has marked the current altitude, walked up a fl ight of stairs, and computed the relative altitude. Figure 9-3 also shows a screen capture of DetermineAltitudeActivity, but this time the relative altitude was calculated as the user walked down that same fl ight of stairs.

FIGURE 9-2: Increasing relative

FIGURE 9-3: Decreasing relative

altitude

altitude

c09.indd 179

c09.indd 179

5/10/2012 2:04:38 PM

5/10/2012 2:04:38 PM

180 x CHAPTER 9 SENSING THE ENVIRONMENT

Notice that the relative altitude values are positive as the altitude increases and negative as the altitude decreases.

For the sake of completeness, Listing 9-11 shows the complete implementation of

DetermineAltitudeActivity. The code is also available on the book’s companion website.

LISTING 9-11: Complete implementation of DetermineAltitudeActivity

public class DetermineAltitudeActivity extends Activity

implements SensorEventListener, LocationListener

{

private static final String TAG = "DetermineAltitudeActivity";

private static final int TIMEOUT = 1000; //1 second

private static final long NS_TO_MS_CONVERSION = (long)1E6;

// System services

private SensorManager sensorManager;

private LocationManager locationManager;

// UI Views

private TextView gpsAltitudeView;

private TextView gpsRelativeAltitude;

private TextView barometerAltitudeView;

private TextView barometerRelativeAltitude;

private TextView mslpBarometerAltitudeView;

private TextView mslpBarometerRelativeAltitude;

private TextView mslpView;

// Member state

private Float mslp;

private long lastGpsAltitudeTimestamp = -1;

private long lastBarometerAltitudeTimestamp = -1;

private float bestLocationAccuracy = -1;

private float currentBarometerValue;

private float lastBarometerValue;

private double lastGpsAltitude;

private double currentGpsAltitude;

private boolean webServiceFetching;

private long lastErrorMessageTimestamp = -1;

@Override

protected void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

setContentView(R.layout. determine_altitude);

getWindow().addFlags(WindowManager.LayoutParams. FLAG_KEEP_SCREEN_ON);

sensorManager =

(SensorManager) getSystemService(Context. SENSOR_SERVICE);

locationManager = (LocationManager) getSystemService(LOCATION_SERVICE);

gpsAltitudeView = (TextView) findViewById(R.id. gpsAltitude);

c09.indd 180

5/10/2012 2:04:39 PM

Example App Overview. x 181

gpsRelativeAltitude =

(TextView) findViewById(R.id. gpsRelativeAltitude);

barometerAltitudeView = (TextView) findViewById(R.id. barometerAltitude);

barometerRelativeAltitude =

(TextView) findViewById(R.id. barometerRelativeAltitude);

mslpBarometerAltitudeView =

(TextView) findViewById(R.id. mslpBarometerAltitude);

mslpBarometerRelativeAltitude =

(TextView) findViewById(R.id. mslpBarometerRelativeAltitude);

mslpView = (TextView) findViewById(R.id. mslp);

webServiceFetching = false;

TextView standardPressure =

(TextView)findViewById(R.id. standardPressure);

String standardPressureString =

String. valueOf(SensorManager. PRESSURE_STANDARD_ATMOSPHERE);

standardPressure.setText(standardPressureString);

}

@Override

protected void onResume()

{

super.onResume();

List<String> enabledProviders = locationManager.getProviders(true);

if (enabledProviders.isEmpty()

|| !enabledProviders.contains(LocationManager. GPS_PROVIDER))

{

Toast. makeText(this,

R.string. gpsNotEnabledMessage,

Toast. LENGTH_LONG).show();

}

else

{

// Register every location provider returned from LocationManager

for (String provider : enabledProviders)

{

// Register for updates every minute

locationManager.requestLocationUpdates(provider,

60000, // minimum time of 60000 ms (1 minute)

0, // Minimum distance of 0

this,

null);

}

}

Sensor sensor = sensorManager.getDefaultSensor(Sensor. TYPE_PRESSURE);

// Only make registration call if device has a pressure sensor

if (sensor != null)

{

sensorManager.registerListener(this,

 continues

c09.indd 181

c09.indd 181

5/10/2012 2:04:39 PM

5/10/2012 2:04:39 PM

182 x CHAPTER 9 SENSING THE ENVIRONMENT

LISTING 9-11 (continued)

sensor,

SensorManager. SENSOR_DELAY_NORMAL);

}

}

@Override

protected void onPause()

{

super.onPause();

sensorManager.unregisterListener(this);

locationManager.removeUpdates(this);

}

@Override

public void onSensorChanged(SensorEvent event)

{

float altitude;

currentBarometerValue = event.values[0];

double currentTimestamp = event.timestamp / NS_TO_MS_CONVERSION;

double elapsedTime = currentTimestamp - lastBarometerAltitudeTimestamp;

if (lastBarometerAltitudeTimestamp == -1 || elapsedTime > TIMEOUT)

{

altitude =

SensorManager

. getAltitude(SensorManager. PRESSURE_STANDARD_ATMOSPHERE,

currentBarometerValue);

barometerAltitudeView.setText(String. valueOf(altitude));

if (mslp != null)

{

altitude = SensorManager. getAltitude(mslp,

currentBarometerValue);

mslpBarometerAltitudeView.setText(String. valueOf(altitude));

mslpView.setText(String. valueOf(mslp));

}

lastBarometerAltitudeTimestamp = (long)currentTimestamp;

}

}

@Override

public void onAccuracyChanged(Sensor sensor, int accuracy)

{

// no-op

}

@Override

public void onLocationChanged(Location location)

{

if (LocationManager. GPS_PROVIDER.equals(location.getProvider())

c09.indd 182

c09.indd 182

5/10/2012 2:04:39 PM

5/10/2012 2:04:39 PM

Example App Overview. x 183

&& (lastGpsAltitudeTimestamp == -1

|| location.getTime() - lastGpsAltitudeTimestamp > TIMEOUT))

{

double altitude = location.getAltitude();

gpsAltitudeView.setText(String. valueOf(altitude));

lastGpsAltitudeTimestamp = location.getTime();

currentGpsAltitude = altitude;

}

float accuracy = location.getAccuracy();

boolean betterAccuracy = accuracy < bestLocationAccuracy;

if (mslp == null || (bestLocationAccuracy > -1 && betterAccuracy))

{

bestLocationAccuracy = accuracy;

if (!webServiceFetching)

{

webServiceFetching = true;

new MetarAsyncTask().execute(location.getLatitude(),

location.getLongitude());

}

}

}

@Override

public void onProviderDisabled(String provider)

{

// no-op

}

@Override

public void onProviderEnabled(String provider)

{

// no-op

}

@Override

public void onStatusChanged(String provider, int status, Bundle extras)

{

// no-op

}

public void onToggleClick(View view)

{

if (((ToggleButton)view).isChecked())

{

lastGpsAltitude = currentGpsAltitude;

lastBarometerValue = currentBarometerValue;

gpsRelativeAltitude.setVisibility(View. INVISIBLE);

barometerRelativeAltitude.setVisibility(View. INVISIBLE);

if (mslp != null)

 continues

c09.indd 183

c09.indd 183

5/10/2012 2:04:40 PM

5/10/2012 2:04:40 PM

184 x CHAPTER 9 SENSING THE ENVIRONMENT

LISTING 9-11 (continued)

{

mslpBarometerRelativeAltitude.setVisibility(View. INVISIBLE);

}

}

else

{

double delta;

delta = currentGpsAltitude - lastGpsAltitude;

gpsRelativeAltitude.setText(String. valueOf(delta));

gpsRelativeAltitude.setVisibility(View. VISIBLE);

delta = SensorManager

. getAltitude(SensorManager. PRESSURE_STANDARD_ATMOSPHERE,

currentBarometerValue)

- SensorManager

. getAltitude(SensorManager. PRESSURE_STANDARD_ATMOSPHERE,

lastBarometerValue);

barometerRelativeAltitude.setText(String. valueOf(delta));

barometerRelativeAltitude.setVisibility(View. VISIBLE);

if (mslp != null)

{

delta = SensorManager. getAltitude(mslp, currentBarometerValue)

- SensorManager. getAltitude(mslp, lastBarometerValue);

mslpBarometerRelativeAltitude.setText(String. valueOf(delta));

mslpBarometerRelativeAltitude.setVisibility(View. VISIBLE);

}

}

}

private class MetarAsyncTask extends AsyncTask<Number, Void, Float>

{

private static final String WS_URL =

 "http://ws.geonames.org/findNearByWeatherJSON";

private static final String SLP_STRING = "slp";

/**

* @see android.os.AsyncTask#doInBackground(Params[])

*/

@Override

protected Float doInBackground(Number... params)

{

Float mslp = null;

HttpURLConnection urlConnection = null;

try

{

// Generate URL with parameters for web service

Uri uri =

c09.indd 184

c09.indd 184

5/10/2012 2:04:40 PM

5/10/2012 2:04:40 PM

Example App Overview. x 185

Uri. parse(WS_URL)

.buildUpon()

.appendQueryParameter("lat", String. valueOf(params[0]))

.appendQueryParameter("lng", String. valueOf(params[1]))

.build();

// Connect to web service

URL url = new URL(uri.toString());

urlConnection = (HttpURLConnection) url.openConnection();

// Read web service response and convert to a string

InputStream inputStream =

new BufferedInputStream(urlConnection.getInputStream());

// Convert InputStream to String using a Scanner

Scanner inputStreamScanner =

new Scanner(inputStream).useDelimiter("\\A");

String response = inputStreamScanner.next();

inputStreamScanner.close();

Log. d(TAG, "Web Service Response -> " + response);

JSONObject json = new JSONObject(response);

String observation =

json

.getJSONObject("weatherObservation")

.getString("observation");

// Split on whitespace

String[] values = observation.split("\\s");

// Iterate of METAR string until SLP string is found

String slpString = null;

for (int i = 1; i < values.length; i++)

{

String value = values[i];

if (value.startsWith(SLP_STRING.toLowerCase())

|| value.startsWith(SLP_STRING.toUpperCase()))

{

slpString =

value.substring(SLP_STRING.length());

break;

}

}

// Decode SLP string into numerical representation

StringBuffer sb = new StringBuffer(slpString);

sb.insert(sb.length() - 1, ".");

 continues

c09.indd 185

c09.indd 185

5/10/2012 2:04:40 PM

5/10/2012 2:04:40 PM

186 x CHAPTER 9 SENSING THE ENVIRONMENT

LISTING 9-11 (continued)

float val1 = Float. parseFloat("10" + sb);

float val2 = Float. parseFloat("09" + sb);

mslp =

(Math. abs((1000 - val1)) < Math. abs((1000 - val2)))

? val1

: val2;

}

catch (Exception e)

{

Log. e(TAG, "Could not communicate with web service", e);

}

finally

{

if (urlConnection != null)

{

urlConnection.disconnect();

}

}

return mslp;

}

@Override

protected void onPostExecute(Float result)

{

long uptime = SystemClock. uptimeMillis();

if (result == null

&& (lastErrorMessageTimestamp == -1

|| ((uptime - lastErrorMessageTimestamp) > 30000)))

{

Toast. makeText(DetermineAltitudeActivity.this,

R.string. webServiceConnectionFailureMessage,

Toast. LENGTH_LONG).show();

lastErrorMessageTimestamp = uptime;

}

else

{

DetermineAltitudeActivity.this.mslp = result;

}

DetermineAltitudeActivity.this.webServiceFetching = false;

}

}

}

 code snippet DeterminAltitudeActivity.java

c09.indd 186

c09.indd 186

5/10/2012 2:04:40 PM

5/10/2012 2:04:40 PM

Summary x 187

SUMMARY

This chapter expanded on the information that was presented in Chapter 5 about the barometer and provided an implementation that made use of pressure data to calculate altitude. This is just one use of the barometer, but will probably end up being one of the most common use cases for pressure data.

Using barometer-based altitude data can add another dimension to location data because it allows devices to provide fi ner-grained location information without the use of the GPS.

The app displayed in the chapter is robust enough to enable users to start experimenting with the barometer right away, assuming they have a device with the sensor. Between the sensor API, the standard atmospheric pressure constant, and the SensorManager.getAltitude() method, making

use of barometric data is fairly straightforward.

The next chapter covers the Android Open Accessory Development Kit (AOA). AOA allows external hardware to communicate with an Android device via USB.

c09.indd 187

c09.indd 187

5/10/2012 2:04:41 PM

5/10/2012 2:04:41 PM

c09.indd 188

c09.indd 188

5/10/2012 2:04:41 PM

5/10/2012 2:04:41 PM

10

Android Open Accessory

WHAT’S IN THIS CHAPTER?

‰

Introducing AOA

‰

Explaining how AOA works and why developers may want to use it

‰

Presenting some of the limitations of AOA

‰

Providing an example of code that uses AOA

Android Open Accessory (AOA) is a protocol that allows an Android device to interact with

external sensors and actuators via USB. This addition to the Android SDK is exciting for both electronics hobbyists and mobile professionals because it opens up the possibilities of reacting to real-world inputs like temperature changes and controlling real-world objects such as lights without being limited to the current form-factor of a mobile phone or its current hardware sensors.

A SHORT HISTORY OF AOA

AOA is a relatively new and underutilized feature of the Android SDK, having only been

announced by Google at the Google I/O developer conference in May 2011. Offi cial Android

SDK support for external hardware such as USB devices (and, to some extent, NFC) is still in the early phases and the infancy of the APIs may help explain why some idiosyncrasies such as power requirements (to be described in a later section) exist.

At the same time as announcing the AOA APIs in the Android SDK, Google also announced

the availability of an Android Development Kit (ADK) microcontroller based on the popular

Arduino hardware platform. In conjunction with external hardware, it is easy to see how

mobile phones have shifted away from simply being cellular-enabled phones to “little computers in your pocket,” which can act as the brains for applications ranging from wearable computing to home automation.

c10.indd 189

c10.indd 189

5/10/2012 2:05:50 PM

5/10/2012 2:05:50 PM

190 x CHAPTER 10 ANDROID OPEN ACCESSORY

Currently AOA projects have remained mostly in the realm of hobbyists, but, as the AOA platform matures and the open source hardware movement grows, we should start to see more commercial projects built on this protocol much like Apple’s MFi (Made for iPhone/iPad/iPod Touch) program which allows third-party developers to create 30-pin dock connector accessories. And, unlike Apple’s MFi program, AOA is free to use, there are no licensing fees, and no non-disclosure agreements to sign. Based on our experiences, it would seem that there are two main barriers to AOA development: lack of Android devices that support AOA and lack of Android developers with electronics experience; hopefully this chapter will help address the latter problem!

USB Host Versus USB Accessory

Without AOA, due to the nature of USB protocols, most Android devices’ USB ports cannot act as a USB host and are therefore incapable of sending commands to an external accessory. AOA uses a clever workaround: the Android device enters a special accessory mode where, although it is technically acting as an accessory to the external hardware, it sends information to the external hardware, which is interpreted by the hardware as commands. Meanwhile, the external hardware can send sensor information to the Android device.

In the actual physical confi guration, the external hardware is the USB host (it powers the bus and enumerates connected devices) and the Android device is the USB accessory. However, in order to avoid confusion, this book refers to the external hardware as the accessory and the Android device as the device even though the master-slave roles are essentially reversed.

Electrical Power Requirements

The accessory must provide 500mA at 5V for charging power to the Android device. Though it may seem strange that a small external device like a temperature sensor is required to charge an Android smartphone or tablet while connected to it, this is a limitation of the underlying USB protocols rather than an oversight by the AOA developers. This is one part of AOA that will almost certainly change in the future as protocol workarounds are developed, or as more devices are released that can natively act as a USB host.

Supported Android Devices

Though most future Android devices will support AOA, Android hardware is not required to support Accessory Mode even if it has a suffi cient OS version. Although AOA was released starting with Android 3.1 for tablets and backported to version 2.3.4 for phones, the decision to include AOA into the OS is made by the device manufacturer. Many custom Android ROMs built by popular fi rmware distributors such as CyanogenMod don’t support AOA (although some versions of CyanogenMod do support it).

To guarantee AOA support, a Google Nexus line of phones running 2.3.4, 3.1, 4.0, and higher is recommended. If you have a non-Nexus phone or an Android tablet, a quick way to check for compatibility is to search for the Basic Accessory Demo app by Microchip Technology, Inc., in c10.indd 190

c10.indd 190

5/10/2012 2:05:54 PM

5/10/2012 2:05:54 PM

The Android Development Kit (ADK) x 191

the Android Market. (Direct links: https://play.google.com/store/apps/details?id=com.

microchip.android.BasicAccessoryDemo_API12 for tablets and https://play.google.com/

store/apps/details?id=com.microchip.android.BasicAccessoryDemo for phones.) If you

are unable to view or install this app, it is an indicator that your phone does not support AOA.

Microchip also maintains a list of compatible devices on their website: http://microchip.

com/android.

So while this may seem like Android fragmentation at its worst, there are alternative external hardware microcontrollers that can be used such as the SparkFun IOIO, which is backwards

compatible to Android 1.5. Or you can consider eschewing a hardwired USB connection and the current AOA API and instead communicate over Bluetooth or WiFi using the proper Arduino shield.

Continue reading for more information about what microcontrollers are supported by Android and when you should look for other solutions.

THE ANDROID DEVELOPMENT KIT (ADK)

As mentioned earlier in this chapter, Google announced an Arduino-based ADK alongside the

release of AOA support in the Android SDK. Arduino is an open-source single-board micro-

controller system that has become popular among hobbyists because it simplifi es the process of using electronics in multidisciplinary projects due to its easy to learn, high level programming language and non-intimidating IDE. Arduinos come in many varying sizes and form factors

which add to its desirability as a microntroller platform. Refer to Figure 10-1 for examples of various Arduinos.

FIGURE 10-1: Various Arduino form factors. The LilyPad (left) for wearable and soft electronics projects, a typical Uno (top right), and the Mega ADK (bottom right). Only the Mega ADK is compatible with AOA.

c10.indd 191

c10.indd 191

5/10/2012 2:05:54 PM

5/10/2012 2:05:54 PM

192 x CHAPTER 10 ANDROID OPEN ACCESSORY

The easiest to use AOA compatible Arduino is the Mega ADK. However, while its mainstream

popularity may make the Arduino “brand” synonymous with electronics tinkering, it’s important to understand that an ADK is also an open-source platform (the protocols for making an Android compatible development kit are licensed under Creative Commons and Apache 2.0 licenses) so

anyone can create their own custom hardware. As long as the hardware has integrated USB host support and implements the Android Accessory Protocol as outlined by Google to establish communication to a USB connected Android device and to indicate to the device to use a special AOA accessory mode, then it can be considered ADK-compatible.

The Android developer portal lists some of the vendors on their ADK information page (http://

accessories.android.com) but the following are some development kits of note:

‰

Arduino Mega ADK (http://store.arduino.cc): By today’s standards, a “typical”

Arduino is an Arduino Uno. An Arduino Mega 2560 is programmed by a developer in

exactly the same manner as an Uno but a Mega 2560 is double the physical size and has

more fl ash memory, SRAM, and EEPROM to perform faster. A step up, the Mega ADK is a

Mega 2560 with integrated USB host controllers.

The instructions and code examples from this chapter will use a Mega ADK.

‰

Seeed Studio Seeeduino (www.seeedstudio.com/depot/seeeduino-adk-main-board-

p-846.html), SparkFun Electric Sheep (www.sparkfun.com/products/10745), and Modern

Device Freeduino USB Host Board (http://shop.moderndevice.com/products/freed-

uino-usb-host-board): The Arduino specifi cations are open-source so anyone can make

Arduino compatible hardware and use the Arduino IDE to program it without learning a

new programming language for each microcontroller. These boards are a great example of

the advantages of open source hardware since it means that various ADKs can be offered

with different specs, be competitively priced, or even be simultaneously backwards compat-

ible for 1.5+ Android devices using non-AOA APIs.

‰

Microchip PIC24F Accessory Development Starter Kit (www.microchip.com/stellent/

idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en553673): Microchip

Technology has been in the semiconductor chip business for a long time. Comparatively

speaking, Arduino is still a new kid on the block at seven years of age (created 2005) and

Microchip is a grizzled veteran at 25 (created in 1987 as a spinoff of now defunct General

Instrument).

Microchip’s line of PIC microcontrollers are widely used in the embedded systems industry

and possibly show up in some commercial electronic gadgets you use today. However, this

long history may explain why most new electronics hobbyists have never heard of a PIC

chip before — Microchip caters to electrical engineers and hasn’t changed their website

much to refl ect the growing popularity of the open source hardware movement. Shopping

on the Microchip website can be confusing and the PIC development environment (the C

programming language and Microchip’s IDE called MPLAB) isn’t as welcoming as the

Arduino IDE.

So while there can be an argument made for the PIC24F and upcoming PIC32, because

they are superior spec-wise due to a better and more tightly integrated USB host support,

many other factors make it hard to recommend PIC chips to newcomers to electronics.

However, if you are already familiar with PIC chips, this would be a great development

board to pick up.

c10.indd 192

c10.indd 192

5/10/2012 2:06:07 PM

5/10/2012 2:06:07 PM

The Android Development Kit (ADK) x 193

On the bright side, hardware developers with more experience have being doing all the “hard work”

for us and many derivative ADKs have been created based on the PIC chipset such as the IOIO to be discussed next and soon-to-be ADK compatible boards such as the Pinguino (http://pinguino.

cc/) which allow you to write fi rmware code in BASIC or C, and even a language that matches the Arduino programming language.

ARDUINO COMPATIBLE

Wondering what the difference between an offi cial Arduino product is and one that

is labeled as “Arduino compatible” is? An offi cial Arduino board is still designed

and manufactured by various companies but they pay a licensing fee to fund con-

tinued work on the Arduino platform. They also work with the Arduino team to

ensure compatibility and quality. However, having stated that, do not assume that

it means that non-offi cial Arduino boards are necessarily inferior products — they

are simply part of the open source ecosystem.

‰

Sparkfun IOIO (www.sparkfun.com/products/10748): The IOIO (pronounced “yo-yo”) is

a very interesting Android-compatible microcontroller because it pre-dated the Google AOA

announcement by a month and uses a completely different communication protocol. Instead

of using the Android Accessory Protocol required for an ADK, the IOIO cleverly uses the

information transferred by the Android Debug Bridge (ADB) commonly used for logging

debug messages while testing Android applications connected to a computer. More recently,

beta AOA support has been added and apps built for the IOIO will attempt to use AOA fi rst

and then gracefully fall back to ADB for non-AOA phones and tablets.

Price-wise, the IOIO is $50 USD compared to $80 USD for a Mega ADK, which can make it very

appealing to the wallet. The IOIO is based on the Microchip PIC chipset discussed in the bullet point immediately above, which partially accounts for the price difference. Firmware has already been pre-installed in the IOIO board (unlike the Arduino based ADKs) so the only code that you need to write is Java code in your Android app.

For all these reasons, IOIO may sound clearly better than AOA, however there are two main drawbacks to IOIO. The fi rst is that ADB is incredibly powerful – you can do almost anything by ADB. An accessory could do damage to the Android device via ADB, either maliciously or through bad coding.

Therefore I, for one, would not be comfortable connecting my device to a IOIO-based accessory that I had not built myself. This poses a serious problem if you want to mass-produce and sell your Android accessory. Secondly, in order to connect to a IOIO-based accessory, the user must open Settings Í

Applications Í Development, and check the box to allow USB debugging (though this only needs to be done once). To sell a IOIO-based product to the non-technically-inclined public you would have to show them how to turn on that feature and have them comfortable enabling it. Google could change ADB to get around these problems, but at this stage that seems unlikely and probably unwise.

For a more thorough comparison, please refer to this blog entry by Ytai Ben-Tsvi, the creator of the IOIO: http://ytai-mer.blogspot.com/2011/06/ioio-over-openaccessory-adk-available.

html.

In addition to these devices, it’s possible to set up almost any microcontroller to be AOA compatible by adding a pre-assembled USB host shield such as these listed on the Circuits@Home

c10.indd 193

c10.indd 193

5/10/2012 2:06:08 PM

5/10/2012 2:06:08 PM

194 x CHAPTER 10 ANDROID OPEN ACCESSORY

website: www.circuitsathome.com/products-page/arduino-shields/. Refer to Figure 10-3 for how an breadboard shield sits on top of an Arduino Mega.

Hardware Components

The Arduino microcontroller board (see Figure 10-2) usually consists of the microcontroller chip, USB or other connectivity interface, and supporting circuitry with notifi cation LEDs (light-emitting diodes). Sensors can be interfaced with the board’s pin headers, often by using a shield. Shields may either be bare breadboards (no electronic components, but an array of holes to solder components on), or have pre-soldered components. (See Figure 10-3.) For example, shields may provide Ethernet/

WiFi/USB/XBee connectivity, provide SD card storage, or hold a wide range of sensors and

actuators. Although the possible voltage supply levels from microcontrollers are low, larger devices (such as large motors) may be controlled using relays. Relays are electronic switches — they allow the controller to turn on or off a large external current with just a small control voltage signal.

FIGURE 10-2: A close up view of the Arduino ADK board

FIGURE 10-3: An Arduino Mega “breadboard” shield. Shields interface with the pin headers and sit atop a microcontroller board. Sensors or other devices may sit on a shield.

c10.indd 194

c10.indd 194

5/10/2012 2:06:08 PM

5/10/2012 2:06:08 PM

The Android Development Kit (ADK) x 195

Software Components

For Android Open Accessory, you need two programs: an Android program running on your

Android device, and another program running on your Arduino. The program running on the

Arduino is referred to as fi rmware in the online Android SDK documentation but most Arduino users will refer to this program as a sketch. (The term sketch is analogous to the idea of being able to pick up a pencil and quickly draw something; Arduino development is meant to be fast and easy.) After the Arduino board is connected to the Android device, communication begins immediately and the relevant application launches (or the user will be taken to the Google Play to download the app if it is not installed).

The Arduino platform is both hardware and software. The Arduino software component consists of a simplifi ed IDE with a standard programming language compiler and the boot loader that runs on the board. Arduino sketches are written in the Arduino programming language, which is a thin layer on top of C++. Programmers with previous experience in C, C++, Java, or a similar open-source project called Processing (www.processing.org) should fi nd Arduino syntax very easy to learn.

Sketches are uploaded to the board by clicking the Upload button on the Arduino IDE. (The

Arduino IDE is not part of Eclipse, it is a separate program that needs to be downloaded from

www.arduino.cc.) Once uploaded, sketches run a setup function fi rst and then will loop infi nitely as long as the Arduino is receiving electrical power and there are no errors in the code. If power is removed, the board will retain the sketch next time it is powered up. Figure 10-4 shows the Arduino IDE and a barebones sketch with two required methods unsurprisingly named setup() and loop().

FIGURE 10-4: The Arduino IDE and a basic Arduino sketch

c10.indd 195

c10.indd 195

5/10/2012 2:06:37 PM

5/10/2012 2:06:37 PM

196 x CHAPTER 10 ANDROID OPEN ACCESSORY

More information about the Arduino environment will be discussed in the “Getting Started with the Arduino Software” section later in this chapter.

AOA SENSORS VERSUS NATIVE DEVICE SENSORS

A developer can do many things using only native sensors, such as the accelerometer, in an Android device. However, at times the sensors on a device cannot provide the data needed for an application.

The device may not have a sensor to provide the data, or the sensor on the device may not provide enough precision and/or sensitivity in the data it reports. For instance, there is no good way to measure wind speed, blood alcohol level, or ambient temperature with an Android device. (The temperature sensor in Android devices measures CPU temperature — if you want room temperature you need an external sensor.) In addition, though in-device sensor sensitivity improves with newer devices, there will always be cases where far more sensitive sensors exist but cannot be integrated into an Android device. For instance, MEMS gyroscopes are nowhere near as good as large, bulky, fi ber-optic gyroscopes, and external light sensors may detect broader levels of light than the built-in light sensor is capable of measuring. In general, AOA sensors have vastly greater sensing possibilities.

AOA BEYOND SENSORS

Common sensors that are easily interfaced with AOA include temperature, light, capacitive (touch) sensors, accelerometers, gyroscopes, and magnetometers. Joysticks or other input devices are also common.

Of course, Arduino isn’t just limited to collecting sensor information — it can also act on the environment. The counterpart to a sensor is an actuator. Actuators include motors, lights, and buzzers, and many larger components that may be switched using relays.

AOA LIMITATIONS

Arduino has a fi nite sampling frequency, which limits the ability to handle sensor signals that rapidly vary. This frequency is different for analog (waveform-like) and digital (step-like) inputs, and varies by the brand and model of the Arduino board. For example, Arduino Mega analog inputs may sample up to 10 kHz (10,000 times per second), whereas its digital inputs can read once per instruction cycle, or 16 MHz (6 million times per second). It is, of course, impossible to measure a signal that varies faster than your sampling frequency (or even one fi fth or one tenth of your sampling frequency, because you often require several data points to adequately defi ne a rapid value fl uctuation). This means, for instance, that the analog input cannot be directly used to sense FM

radio wave frequencies (~100 MHz) or even high-pitched audible sounds via microphone (the frequency limit of human hearing is around 20 kHz). The problems caused by sampling at a slower frequency than the frequency you are trying to measure are called aliasing errors. You can imagine, for instance, that if waves are crashing on a beach every 10 seconds and I only take a measurement of the wave height of the nearest wave every 60 seconds, I’m not going to be able to know exactly where each wave is, nor even know that they crash every 10 seconds — I’d have no idea. Clever electrical engineering workarounds can be used, but these are advanced topics that are not covered here.

c10.indd 196

c10.indd 196

5/10/2012 2:06:37 PM

5/10/2012 2:06:37 PM

AOA and Sensing Temperature x 197

In addition, although AOA can directly sense the outputs of many digital and some analog sensors, not all sensors can simply be plugged into a microcontroller. Often some kind of circuit is needed to interface the sensor with Arduino. These circuits may scale or otherwise operate on the signal from the sensor in order to convert it into voltages that Arduino can handle.

AOA AND SENSING TEMPERATURE

As a simple example of how to use AOA, this chapter discusses how to use AOA to collect readings from an external temperature sensor. In the example, an Arduino board with a 10-bit analog-to-digital converter is used. This means that when the sensor applies a voltage of between 0 and 5 volts on one of the analog input pins, it will be mapped to a value between 0 and 1023. This yields a resolution between readings of 5 volts / 1024 units, or 0.0049 volts (4.9 mV) per unit.

Assume you are using an MCP9701/9701A temperature sensor manufactured by Microchip (www.

microchip.com/wwwproducts/Devices.aspx?dDocName=en022290). If you are buying this component, you will want the one suffi xed TO and not LT or TT. These refer to the package and form factor – the TO has long leads that are easy to connect for our purposes, whereas the other ones are surface-mount and only have short stubby legs. You may verify this by searching for images of these components (e.g. on a component vendor site like http://digikey.com).

Next, download the datasheet from the microchip webpage by looking immediately underneath the blue Data Sheets header in the Documentation section of that webpage (the download link is named MCP9700/01 - Low-Power Linear Active Thermistor ICs) or by doing a web search with the model number of the component. If you are unfamiliar with technical datasheets, there is a brief tutorial on the Sparkfun website (www.sparkfun.com/tutorials/223).

Looking at the datasheet, there is a picture of the sensor (the one with long leads, called 3-Pin TO-92 on the datasheet, is the one you want). The pins are labeled VDD, VOUT, and GND. The

VDD pin is where it gets its electrical power — connect +5 volts to that by connecting it to any of the +5V outputs labeled on the Arduino board. The GND pin is the ground pin, or the other end of the electrical circuit — you connect it to the GND pin header on the Arduino board. The VOUT

pin is where the signal comes out. This signal is a voltage that you will measure and then map back to a real-world temperature as described later. You can connect this pin to any of the numbered pin headers labeled Analog In. For this example, you can connect it to pin number A3.

To make these three electrical connections, you may clip or solder three long wires to the leads and push the free end into the pin headers. Or, if you have a board where +5V, GND, and an analog input pin are close enough together, you may just push the three leads of the unmodifi ed sensor into the pin headers (you may do this on the Arduino Mega, for instance, using Analog Input number 0).

On the datasheet you will notice that the voltage is scaled to a temperature coeffi cient of 19.5 mV/°C

(this is listed as the typical value — you can calibrate your individual sensor if you wish). The output voltage at 0 °C is also scaled to 400 mV (typical). Therefore, the voltage coming out of the sensor is V [mV] = k[mV/°C] * T[°C] + V0 [mV] (the units are written in square brackets), where k is the tem-out

perature coeffi cient, T is the temperature you want to measure, and V0 is the output voltage at 0 C.

In other words, the voltage coming out of the temperature sensor when the actual room temperature is 25°C is V [mV] = 19.5 * 25 + 400 = 887.5 mV. If you convert that from millivolts to volts, 887.5

out

c10.indd 197

c10.indd 197

5/10/2012 2:06:38 PM

5/10/2012 2:06:38 PM

198 x CHAPTER 10 ANDROID OPEN ACCESSORY

mV = 0.8875 V. Next, assume this temperature sensor is directly plugged into the analog input pin described in the fi rst paragraph of this section. You fi nd that 0.8875 volts / (5 volts / 1024 units) =

181.8. So 887.5 mV is between the possible digital values of 181 and 182, and closer to 182. So on a scale of 0 to 1023 units, the microcontroller will register the signal coming from the sensor as being at 182 units. Finding temperature in the code is as simple as getting that 182 number from the microcontroller and calculating backward to fi nd that the temperature is 25°C.

Implementation

Now that this chapter has introduced the example app, it is time to discuss the actual implementation. The implementation includes the Arduino sketch code as well as code that runs on the Android device. The code is based on the ADK package that is available as a download from http://

developer.android.com/guide/topics/usb/adk.html. The ADK package contains code to interact with many kinds of input and output. This section simplifi es the ADK package’s app so that it can explain a complete, simple code example that collects data from a specifi c temperature sensor. Before discussing code, a quick discussion on what is required to use AOA and how to get the Arduino software running is needed.

Requirements

The following is a list of the minimum requirements needed to use AOA:

‰

An AOA-compatible Android device. To test compatibility before trying this example, please

refer to the “Supported Android Devices” section for links to the Microchip AOA demon-

stration apps available on the Google Play.

‰

An Arduino-compatible microcontroller board as discussed in the “The Android

Development Kit (ADK)” section previously. We recommend the Arduino Mega ADK if you

are unsure.

‰

A “breadboard” or breadboard shield (see Figure 10-3). Breadboard shields are available

from many vendors; just search for “prototyping breadboard shield for Arduino Mega.”

For example, the “ProtoShield with breadboard” shown at www.bizoner.com/prototype-

shield-protoshield-with-bread-board-for-arduino-mega-p-183.html has pin

headers already attached, and has the option to solder components to the bare board, or to

push them (without solder) into holes in a white prototyping breadboard allowing for quick

prototyping before components are semi-permanently soldered in place.

‰

A temperature sensor. This example uses a Microchip MCP9701/9701A temperature sensor.

If you choose a different temperature sensor, you may need to adjust your calculations.

Getting Started with the Arduino Software

Before using AOA, you must download the Arduino IDE. You can fi nd the Arduino development

software under the Download tab at http://arduino.cc. An important warning is that Arduino recently had a 1.0 release and saw many major upgrades; some API method names have changed.

The Android AOA libraries supplied by Google have not been upgraded so they are out-of-sync and c10.indd 198

c10.indd 198

5/10/2012 2:06:38 PM

5/10/2012 2:06:38 PM

AOA and Sensing Temperature x 199

the Arduino compiler will produce many errors in version 1.0. You should download version 0023

of the Android IDE instead of the Android 1.0 version for these examples — on the downloads page, scroll down to the Previous IDE Versions section.

Install the Arduino IDE to your Mac, Windows, or Linux machine based your specifi c computer platform instructions linked from the Getting Started page: http://arduino.cc/en/Guide/

HomePage. The driver installation for Windows can be a bit tricky so pay special attention to that part of the instructions.

Arduino is very beginner friendly and comes pre-packaged with code samples available from within the IDE by looking under File Í Examples from the top menu bar. Additional tutorials and reference guides are also available on the Arduino website. Once you are comfortable with uploading one of the example sketches to your board, read on.

The next step is to set up the Android development environment to use with AOA. You can do this by following the instructions at http://developer.android.com/guide/topics/usb/adk.html

under the “Installing the Arduino software and necessary libraries” section of the webpage.

Now that you have the development environment set up, the discussion moves to the actual

implementation. The Arduino code (see Listing 10-1) is discussed fi rst and then the Android code. For the remainder of the implementation, it is assumed that the temperature sensor is connected to pin.

Arduino Sketch

Create an Arduino project by selecting File Í New from the top menu of the Arduino IDE. A new, blank window will appear. Save this fi le as Arduino_Temp_Sensor.pde.

All Arduino projects must have a setup() and a loop() method declared. You should run each one once initially to ensure the microcontroller is clear of previous programs, and the loop() method will also check for presence of the board.

/* The two essential methods for any Arduino sketch:

setup() and loop(). Run both of them once to ensure a

clear and functional board. */

void setup();

void loop();

/* Now declare setup() for real. This method will run

once after the board has been powered on or reset. */

void setup()

{

}

/* Now declare loop() for real. This method will continue

to loop until Arduino is powered down or reset. */

void loop()

{

}

For debugging and message logging, use Arduino’s serial communications monitor. When

your Arduino is hooked up to your computer via USB, you can get useful information from the c10.indd 199

c10.indd 199

5/10/2012 2:06:38 PM

5/10/2012 2:06:38 PM

200 x CHAPTER 10 ANDROID OPEN ACCESSORY

microcontroller using the Serial.print() or Serial.println() commands. To open the serial

monitor, select Tools Í Serial Monitor from the top menu and make sure that it matches the baud rate that you have defi ned in your Arduino sketch using the Serial.begin() command. For more information about serial communications, visit the Arduino documentation: http://arduino.cc/

en/Serial/Begin. For more information about the Serial.print() command, visit: http://

arduino.cc/en/Serial/Print.

The following is an updated setup() method:

void setup()

{

// start serial debugging

Serial.begin(115200);

Serial.print("\r\nADK has run setup().");

Serial.println("Ready to start reading the temp...");

}

As noted previously, we’ll be plugging the temperature sensor’s input pin into the Analog In pin of the Arduino ADK marked A3. Constants are useful because if you ever reorganize the layout of your circuit, it’s only a matter of changing one number. The following line of code defi nes a constant named TEMP_SENSOR and sets it to be pin A3. Much like Java programming, Arduino constants are typically declared at the beginning of a fi le.

#define TEMP_SENSOR A3 // the temperature sensor pin

To get data from the sensor, within the loop() method, use the Arduino analogRead() method to read the voltage of the temperature sensor’s analog input pin and store it as an unsigned 16 bit variable (uint16).

A reading may take 100 microseconds depending on the microcontroller, so in that case, the

maximum reading rate would be 10kHz. You can look up the analog pin read speed for your particular Arduino on the manufacturer’s website. However, temperature doesn’t change much in a fraction of a second so if you don’t want to get data at the maximum reading rate you can slow it down with a time delay using the delay() method. Using a delay is also benefi cial in order to not use system resources unnecessarily; however, the Android device will expect a certain timeliness in order to maintain the AOA connection so a delay of 100 ms is ideal.

The following is an updated loop() method with serial debugging:

void loop()

{

// Read the voltage from the sensor

uint16_t val;

val = analogRead(TEMP_SENSOR);

Serial.println(val,HEX);

Serial.write(val);

// Delay for 100 milliseconds.

delay(100);

}

And that’s all it takes to get data from a temperature sensor! Listing 10-1 shows the full Arduino sketch. As you can see, this is why they are called sketches!

c10.indd 200

c10.indd 200

5/10/2012 2:06:38 PM

5/10/2012 2:06:38 PM

AOA and Sensing Temperature x 201

To test the sketch, upload to your Arduino ADK and open up the Arduino serial monitor. You will see the monitor output ADK has run setup(), followed by Ready to start reading the temp..., then a series of "val=##" where ## will be a number from 0 to 1023. This is a not the actual temperature but a number based on the temperature coeffi cient of your sensor. The Android app discussed in an upcoming section section will take care of the math to convert the sensor data into Celsius readings.

Touch the temperature sensor or shine a warm light bulb on your circuit to see the temperature coeffi cient increase. Remove the source of heat and watch the val variable decrease. If you do not see this change, confi rm that your circuit is wired correctly. It’s very easy to confuse the pins for 5V and GND based on the direction you plugged them into the breadboard, or to confuse the slot for pin A3 with a nearby pin.

LISTING 10-1: The Arduino sketch Arduino_Temp_Sensor.pde for reading temperature data

without an AOA device

#define TEMP_SENSOR A3 // the temperature sensor pin

/* The two essential methods for any Arduino sketch:

setup() and loop(). Run both of them once to ensure a

clear and functional board. */

void setup();

void loop();

/* Now declare setup() for real. This methood will run

once after the board has been powered on or reset. */

void setup()

{

// start serial debugging

Serial.begin(115200);

Serial.println("\r\nADK has run setup().");

Serial.println("Ready to start reading the temp...");

}

/* Now declare loop() for real. This method will continue

to loop until Arduino is powered down or reset. */

void loop()

{

// Read the voltage from the sensor

uint16_t val;

val = analogRead(TEMP_SENSOR);

Serial.print("val=");

Serial.println(val,HEX);

// Delay for 100 milliseconds.

delay(100);

}

Building on the previous sketch, let’s add AOA capabilities. First you must include some Arduino libraries and classes using the #include directive. You should already have installed these librar-c10.indd 201

c10.indd 201

5/10/2012 2:06:39 PM

5/10/2012 2:06:39 PM

202 x CHAPTER 10 ANDROID OPEN ACCESSORY

ies as part of the setup. These statements go at the very top of the sketch. The Max3421e and Usb libraries are for USB Host controlling:

// the USB Host libraries

#include <Max3421e.h>

#include <Usb.h>

AndroidAccessory is the Google-supplied, C++ class for instantiating the Android Accessory

protocol:

// the AOA library

#include <AndroidAccessory.h>

Now you are ready to implement AOA features in your Arduino code! Instantiate a new instance of the AndroidAccessory class named acc and defi ne the metadata associated with the board.

// create an instance of the AndroidAccessory class

AndroidAccessory acc("Manufacturer name",

"Model",

"Description",

"1.0",

 "http://www.example.com",

"Serial number");

Through the use of Android intent fi lters, this metadata can be read by the Android device to determine which app to launched when the phone or tablet is plugged into the ADK board via USB. The Android app will only use the manufacturer, model, and version information to determine when the accessory is connected; description, URI, and serial number are not used by the intent fi lters.

Continuing on, if you recall from much earlier in this chapter, the Arduino is acting as a USB host to the Android device so the Arduino is obligated to supply 5V of power to the phone. The powerOn() method of the AndroidAccessory class is a convenience method that simply calls the powerOn() method in the Max3421e library. Call powerOn() in your setup() method:

void setup()

{

// start serial debugging

Serial.begin(115200);

Serial.println("\r\nADK has run setup().");

Serial.println("Ready to start reading the temp...");

// Power up the USB host controller

acc.powerOn();

}

To check if the Android device is connected via USB and that the Android app has been launched, use the isConnected() method of the AndroidAccessory class your loop(). For our temperature sensor example code, if the AOA device is connected, start reading the temperature sensor.

Otherwise, do nothing.

void loop()

{

if (acc.isConnected())

{

// Read the voltage from the sensor

c10.indd 202

c10.indd 202

5/10/2012 2:06:39 PM

5/10/2012 2:06:39 PM

AOA and Sensing Temperature x 203

uint16_t val;

val = analogRead(TEMP_SENSOR);

Serial.print("val=");

Serial.println(val,HEX);

}

// Delay for 100 milliseconds.

delay(100);

}

For other Arduino projects, you may wish to use the else condition to detect a recently disconnected device and reset the Arduino circuit to its default state. For example, if a button on your Android app turns on a LED, it makes sense to turn the LED off if the device is disconnected from the Arduino board.

if (acc.isConnected())

{

// turn on LED

}

else {

// device may have been disconnected so turn off LED

}

Finally, get the Arduino and Android to send data back and forth. There are two methods available in the AndroidAccessory class that do as their names imply: read() and write(). For the temperature sensor, the data is packaged into three bytes. The reason for this is that the value reported by the analog input pin will be a number from 0 to 1023, so we need at least two bytes to hold a value up to 1023. (One byte (8 bits) can hold a maximum value of 2^8 - 1 = 255.) The method of packaging and unpackaging of the two smaller bytes into the larger number are shown in the Arduino sketch and Android code, respectively. The third byte (actually, the fi rst byte we send) is simply to specify which sensor or actuator the reading refers to. We only have one sensor, so in this simple example we set this byte to be zero, however it is clear how we may choose other numbers to refer to other sensors or actuators.

if (acc.isConnected())

{

// Read the voltage from the sensor

uint16_t val;

val = analogRead(TEMP_SENSOR);

Serial.print("val=");

Serial.println(val,HEX);

// Declare a message to be sent to the Android device

byte msg[3];

// default to 0 for the first sensor

msg[0] = 0x0;

/* Repackage val into two bytes. (This is unpackaged

by the composeInt method in the Android code.)

>> is a right-shift operator, so >> 8 moves all the

bits in val to the right by 8 places.

For more information, look up bitwise operations in

c10.indd 203

c10.indd 203

5/10/2012 2:06:39 PM

5/10/2012 2:06:39 PM

204 x CHAPTER 10 ANDROID OPEN ACCESSORY

the C programming language. */

msg[1] = val >> 8;

msg[2] = val & 0xff;

// Finally, send the message to the Android device

acc.write(msg, 3);

}

The temperature sensor example doesn’t use read() but, for your other Arduino projects, you could use it to read input from the Android phone such as an on/off press on a UI button, a range of numbers from a UI slider, or anything else your app wants to send to the Arduino.

LISTING 10-2: The Arduino sketch Arduino_Temp_Sensor_with_AOA.pde for reading

temperature data without an AOA device

// the USB Host libraries

#include <Max3421e.h>

#include <Usb.h>

// the AOA library

#include <AndroidAccessory.h>

#define TEMP_SENSOR A3 // the temperature sensor pin

// create an instance of the AndroidAccessory class

AndroidAccessory acc(“Manufacturer name",

 “Model",

 “Description",

 “1.0",

 “http://www.example.com",

 “Serial number");

/* The two essential methods for any Arduino sketch:

setup() and loop(). Run both of them once to ensure a

clear and functional board. */

void setup();

void loop();

/* Now declare setup() for real. This methood will run

once after the board has been powered on or reset. */

void setup()

{

// start serial debugging

Serial.begin(115200);

Serial.println("\r\nADK has run setup().");

Serial.println("Ready to start reading the temp...");

// Power up the Android device.

 acc.powerOn();

}

/* Now declare loop() for real. This method will continue

c10.indd 204

c10.indd 204

5/10/2012 2:06:40 PM

5/10/2012 2:06:40 PM

AOA and Sensing Temperature x 205

to loop until Arduino is powered down or reset. */

void loop()

{

if (acc.isConnected())

{

// Read the voltage from the sensor

uint16_t val;

val = analogRead(TEMP_SENSOR);

Serial.print("val=");

Serial.println(val,HEX);

// Declare a message to be sent to the Android device

byte msg[3];

// default to 0 for the first sensor

msg[0] = 0x0;

/* Repackage val into two bytes. (This is unpackaged

by the composeInt method in the Android code.)

>> is a right-shift operator, so >> 8 moves all the

bits in val to the right by 8 places.

For more information, look up bitwise operations in

the C programming language. */

msg[1] = val >> 8;

msg[2] = val & 0xff;

// Finally, send the message to the Android device

 acc.write(msg, 3);

}

// Delay for 100 milliseconds.

delay(100);

}

As you can see by the bolded area of code in Listing 10-2, implementing the Android Accessory Protocol in the Arduino fi rmware only takes about six lines of code — and three of the lines were imports of preexisting libraries. And communicating with the Android device simply uses acc.

write() to send data or acc.read() to write data. It’s that easy to get started on the Arduino end!

Compile the sketch by clicking on the Verify button and confi rm that there are no errors. When the Arduino IDE’s status bar indicates that it is done compiling, make sure that your Arduino is plugged into your computer and upload the sketch to the Arduino by clicking on the Upload button. When the status bar indicates that it is done uploading, it is time to move on to Android code.

Android Code

First an overview: The Android code is located in BaseActivity. Before BaseActivity can access any of the USB accessories, it must gain permission to do so. After receiving permission from the user, BaseActivity initializes the USBManager and uses it to connect to the temperature sensor.

Once connected, BaseActivity reads the data from the sensor and updates the user interface.

To start, make an XML fi le called accessory_filter.xml that provides manufacturer, model,

and version information to allow you to start the app when the correct accessory is connected.

c10.indd 205

c10.indd 205

5/10/2012 2:06:40 PM

5/10/2012 2:06:40 PM

206 x CHAPTER 10 ANDROID OPEN ACCESSORY

Save this fi le to the res/xml folder of your project. This must be an exact match to the manufacturer, model, and version information metadata supplied in the Arduino sketch when you create a AndroidAccessory instance. The contents of the XML fi le are illustrated in Listing 10-3.

LISTING 10-3: xml/accessory_fi lter.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<usb-accessory manufacturer="Manufacturer name" model="Model" version="1.0" />

</resources>

If an accessory is not connected when the user runs the app, the app displays a prompt to connect the accessory. If an accessory is connected without the app running, Android runs the app.

Secondly, make sure the minimum SDK of the application is set to at least API level 10. If you’re deploying to a 2.3.4+ Android phone only, double-check that you are targeting the 2.3.3 Google API libraries as seen in Figure 10-5 since AOA was backported from 3.1 via a library. (No checkbox exists for 2.3.4 in the settings panel!)

FIGURE 10-5: Make sure 2.3.3 Google libraries are checked off when deploying to phones.

In the manifest fi le, check that the device supports AOA. If you’re using a 2.3.4+ Android phone, include both of these elements in the manifest:

<uses-sdk android:minSdkVersion="10" />

<uses-library android:name="com.android.future.usb.accessory" />

c10.indd 206

c10.indd 206

5/10/2012 2:06:40 PM

5/10/2012 2:06:40 PM

AOA and Sensing Temperature x 207

If you’re using a 3.1+ Android phone or tablet, then the <uses-library> isn’t necessary — instead, just set the minimum SDK to at least 12. In that case, the app will be using the platform APIs instead of the add-on library:

<uses-sdk android:minSdkVersion="12" />

<uses-feature android:name="android.hardware.usb.accessory" />

In addition, for all Android OS versions, add an intent fi lter to launch the app immediately when it’s been connected via USB to a matching device listed in the accessory fi lter xml:

<intent-filter>

<action android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED"/>

</intent-filter>

<meta-data

android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED"

android:resource="@xml/accessory_filter" />

Listing 10-4 shows the AndroidManifest.xml fi le in its entirety for a 3.1+ AOA compatible device with the variations for 2.3.4+ devices commented out for your reference.

LISTING 10-4: AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.example.temperaturesensor"

android:versionCode="1"

android:versionName="1.0">

<!-- Android 2.3.4+ devices: -->

<!-- <uses-sdk android:minSdkVersion="10" /> -->

<!-- Android 3.1+ devices -->

<uses-sdk android:minSdkVersion="12" />

<!-- Android 3.1+ devices: -->

<uses-feature android:name="android.hardware.usb.accessory" />

<application android:icon="@drawable/icon" android:label="@string/app_name">

<!-- Android 2.3.4+ devices: -->

<!-- <uses-library android:name="com.android.future.usb.accessory" /> -->

<activity android:name=".BaseActivity"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

<intent-filter>

<action

android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED"/>

</intent-filter>

<meta-data

android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED"

(UsbAccessory) intent.getParcelableExtra(UsbManager.EXTRA_ACCESSORY);

 continues

c10.indd 207

c10.indd 207

5/10/2012 2:06:40 PM

5/10/2012 2:06:40 PM

208 x CHAPTER 10 ANDROID OPEN ACCESSORY

LISTING 10-4 (continued)

android:resource="@xml/accessory_filter" />

</activity>

</application>

</manifest>

In the BaseActivity class, there are two other differences to between 2.3.4 and 3.1 devices, because the android.hardware.usb package is written in such a way that it must instantiate

UsbManager and UsbAccessory objects differently from how you do it if you are using the library.

If you’re using a 2.3.4+ Android phone, you should obtain a reference to UsbManager and

UsbAccessory in the following way:

import com.android.future.usb.UsbAccessory;

import com.android.future.usb.UsbManager;

UsbManager manager = UsbManager.getInstance(this);

UsbAccessory accessory = UsbManager.getAccessory(intent);

If you’re using a 3.1+ Android phone or tablet, you should obtain a reference to UsbManager and UsbAccessory in the following way:

import com.android.hardware.usb.UsbAccessory;

import com.android.hardware.usb.UsbManager;

UsbManager manager = (UsbManager) getSystemService(Context.USB_SERVICE);

UsbAccessory accessory = (UsbAccessory)

intent.getParcelableExtra(UsbManager.EXTRA_ACCESSORY);

The full code follows in Listing 10-5 but here are some highlights that may need some elaboration for all AOA projects.

Communication between Arduino and Android

If you are wondering what the protocol is that allows the Arduino to speak to the Android device, and vice versa, you may be interested to know that it simply uses an instance of an Android FileInputStream when reading sensor data from a connected Arduino device (and FileOutputStream when writing commands to the Arduino device). This is very similar to using native OS protocols to read and write from a system fi le or buffer where, instead of a fi le, it’s a microcontroller!

Because these code statements are not in the same method, the following are some statements to keep an eye out for in BaseActivity.java:

‰

In the openAccessory() method:

mFileDescriptor = mUsbManager.openAccessory(accessory);

// ...

FileDescriptor fd = mFileDescriptor.getFileDescriptor();

mInputStream = new FileInputStream(fd);

‰

And in the run() method:

ret = mInputStream.read(buffer);

c10.indd 208

c10.indd 208

5/10/2012 2:06:41 PM

5/10/2012 2:06:41 PM

AOA and Sensing Temperature x 209

LISTING 10-5: BaseActivity.java

package com.example.temperaturesensor;

import java.io.FileDescriptor;

import java.io.FileInputStream;

import java.io.IOException;

import java.text.DecimalFormat;

import android.app.Activity;

import android.app.PendingIntent;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;

import android.os.Bundle;

import android.os.Handler;

import android.os.Message;

import android.os.ParcelFileDescriptor;

import android.util.Log;

import android.widget.TextView;

//for Android 2.3.4+ devices:

/*

import com.android.future.usb.UsbAccessory;

import com.android.future.usb.UsbManager;

*/

//for Android 3.1+ devices

import android.hardware.usb.UsbAccessory;

import android.hardware.usb.UsbManager;

public class BaseActivity extends Activity implements Runnable

{

private static final String TAG = "AOA,BaseActivity";

private static final String ACTION_USB_PERMISSION =

"com.example.aoaTempSensor.action.USB_PERMISSION";

private static final int MESSAGE_TEMPERATURE = 2;

private static final DecimalFormat TEMP_FORMATTER =

new DecimalFormat("### " + (char) 0x00B0 + "C");

private UsbManager mUsbManager;

private PendingIntent mPermissionIntent;

private boolean mPermissionRequestPending;

private UsbAccessory mAccessory;

private ParcelFileDescriptor mFileDescriptor;

private FileInputStream mInputStream;

private TextView temperatureValue;

private Handler mHandler = new Handler()

{

 @Override

 continues

c10.indd 209

5/10/2012 2:06:41 PM

210 x CHAPTER 10 ANDROID OPEN ACCESSORY

LISTING 10-5 (continued)

public void handleMessage(Message msg)

{

if (msg.what == MESSAGE_TEMPERATURE)

{

handleTemperatureMessage((Integer) msg.obj);

}

}

};

private final BroadcastReceiver mUsbReceiver = new BroadcastReceiver()

{

@Override

public void onReceive(Context context, Intent intent)

{

String action = intent.getAction();

if (ACTION_USB_PERMISSION.equals(action))

{

synchronized (this)

{

// 2.3.4+ devices:

//UsbAccessory accessory = UsbManager.getAccessory(intent);

// 3.1+ devies:

UsbAccessory accessory = (UsbAccessory)

intent.getParcelableExtra(UsbManager.EXTRA_ACCESSORY);

boolean hasPermission =

intent.getBooleanExtra(UsbManager.EXTRA_PERMISSION_GRANTED,

false);

if (hasPermission)

{

openAccessory(accessory);

}

else

{

Log.d(TAG,

"permission denied for accessory " + accessory);

}

mPermissionRequestPending = false;

}

}

else if (UsbManager.ACTION_USB_ACCESSORY_DETACHED.equals(action))

{

// 2.3.4+ devices:

//UsbAccessory accessory = UsbManager.getAccessory(intent);

// 3.1+ devices

UsbAccessory accessory = (UsbAccessory)

intent.getParcelableExtra(UsbManager.EXTRA_ACCESSORY);

if (accessory != null && accessory.equals(mAccessory))

{

c10.indd 210

c10.indd 210

5/10/2012 2:06:41 PM

5/10/2012 2:06:41 PM

AOA and Sensing Temperature x 211

closeAccessory();

}

}

}

};

@Override

public void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

setContentView(R.layout.aoa);

temperatureValue = (TextView) findViewById(R.id.temperatureValue);

// 2.3.4+ devices:

//mUsbManager = UsbManager.getInstance(this);

// 3.1+ devices:

mUsbManager = (UsbManager) getSystemService(Context.USB_SERVICE);

mPermissionIntent =

PendingIntent.getBroadcast(this,

0,

new Intent(ACTION_USB_PERMISSION),

0);

IntentFilter filter = new IntentFilter(ACTION_USB_PERMISSION);

filter.addAction(UsbManager.ACTION_USB_ACCESSORY_DETACHED);

registerReceiver(mUsbReceiver, filter);

if (getLastNonConfigurationInstance() != null)

{

mAccessory = (UsbAccessory) getLastNonConfigurationInstance();

openAccessory(mAccessory);

}

if (mAccessory != null)

{

showTemp();

}

else

{

hideTemp();

}

}

@Override

public void onResume()

{

super.onResume();

UsbAccessory[] accessories = mUsbManager.getAccessoryList();

UsbAccessory accessory = (accessories == null ? null : accessories[0]);

if (accessory != null)

{

 continues

c10.indd 211

c10.indd 211

5/10/2012 2:06:41 PM

5/10/2012 2:06:41 PM

212 x CHAPTER 10 ANDROID OPEN ACCESSORY

LISTING 10-5 (continued)

if (mUsbManager.hasPermission(accessory))

{

openAccessory(accessory);

}

else

{

synchronized (mUsbReceiver)

{

if (!mPermissionRequestPending)

{

mUsbManager.requestPermission(accessory,

mPermissionIntent);

mPermissionRequestPending = true;

}

}

}

}

else

{

Log.d(TAG, "mAccessory is null");

}

}

@Override

public void onPause()

{

super.onPause();

closeAccessory();

}

@Override

public void onDestroy()

{

unregisterReceiver(mUsbReceiver);

super.onDestroy();

}

@Override

public Object onRetainNonConfigurationInstance()

{

if (mAccessory != null)

{

return mAccessory;

}

else

{

return super.onRetainNonConfigurationInstance();

}

}

private void handleTemperatureMessage(Integer temperature)

c10.indd 212

c10.indd 212

5/10/2012 2:06:42 PM

5/10/2012 2:06:42 PM

AOA and Sensing Temperature x 213

{

if (temperature != null)

{

// The calibration factors below (4.9, 400, 19.5) come from the

temperature sensor's datasheet

double voltagemv = temperature * 4.9;

double kVoltageAtZeroCmv = 400;

double kTemperatureCoefficientmvperC = 19.5;

double temperatureC = ((double) voltagemv - kVoltageAtZeroCmv)

/ kTemperatureCoefficientmvperC;

temperatureValue.setText(TEMP_FORMATTER.format(temperatureC));

}

}

private Integer composeInt(byte hi, byte lo)

{

int val = (int) hi & 0xff;

val *= 256;

val += (int) lo & 0xff;

return val;

}

public void run()

{

int ret = 0;

 // As explained on http://developer.android.com/guide/topics/usb/accessory.html,

// "The Android accessory protocol supports packet buffers up to 16384 bytes,

// so you can choose to always declare your buffer to be of this size for

// simplicity."

byte[] buffer = new byte[16384];

int i;

while (ret >= 0)

{

try

{

ret = mInputStream.read(buffer);

}

catch (IOException e)

{

break;

}

i = 0;

while (i < ret)

{

int len = ret - i;

switch (buffer[i])

{

case 0x0:

if (len >= 3)

{

Message m = Message.obtain(mHandler,

 continues

c10.indd 213

c10.indd 213

5/10/2012 2:06:42 PM

5/10/2012 2:06:42 PM

214 x CHAPTER 10 ANDROID OPEN ACCESSORY

LISTING 10-5 (continued)

MESSAGE_TEMPERATURE);

m.obj = composeInt(buffer[i + 1], buffer[i + 2]);

mHandler.sendMessage(m);

}

i += 3;

break;

default:

Log.d(TAG, "unknown msg: " + buffer[i]);

i = len;

break;

}

}

}

}

private void openAccessory(UsbAccessory accessory)

{

mFileDescriptor = mUsbManager.openAccessory(accessory);

if (mFileDescriptor != null)

{

mAccessory = accessory;

FileDescriptor fd = mFileDescriptor.getFileDescriptor();

mInputStream = new FileInputStream(fd);

new Thread(null, this, "AOATempSensor").start();

Log.d(TAG, "accessory opened");

showTemp();

}

else

{

Log.d(TAG, "accessory open fail");

}

}

private void closeAccessory()

{

hideTemp();

try

{

if (mFileDescriptor != null)

{

mFileDescriptor.close();

}

}

catch (IOException e)

{

Log.e(TAG, "Error closing file", e);

}

finally

{

mFileDescriptor = null;

c10.indd 214

c10.indd 214

5/10/2012 2:06:42 PM

5/10/2012 2:06:42 PM

Taking an Android Accessory to the Consumer Market x 215

mAccessory = null;

}

}

private void showTemp()

{

temperatureValue.setText("");

}

private void hideTemp()

{

temperatureValue.setText("Please connect the accessory.");

}

}

 code snippet <BaseActivity.java>

TAKING AN ANDROID ACCESSORY TO THE CONSUMER MARKET

So while the average price tag of an ADK is $80 USD, it may be easy to justify purchasing one to build that Android-powered cat litter box you’ve always dreamed about building, but it doesn’t make sense to include a full ADK in a commercial project like a medical device or home automation system. An important point to keep in mind as you consider developing commercial, external hardware products for Android devices is that the ADK should be considered for prototyping only. If you have expectations to manufacture a run of more than a hundred items, shipping an ADK with each product is not cost effective.

The topic of taking a physical object to market is beyond the scope of this chapter but here are some tips to get you further along after you’ve prototyped on an ADK:

‰

First, make sure that your product has a viable business model and intended audience. To

offset the steep start up costs of getting a production run ready for your cat litter box idea, make sure that more people than just your mom and dad are going to buy it.

‰

Figure out how to much the average person is willing to pay for your product at retail pricing. For example, a frequent jogger who wants to log their runs might be willing to pay $100

for an exercise accessory. However, together, a Nike+ sensor and adapter for an iPod is only $50 so make sure your product is competitive enough by either adjusting price or features.

‰

Related to the previous point, strip down your product into the essential components so you can produce it and still make a profi t. And if you plan on selling your product via a retail outlet, subtract at least 50% from the expected retail price tag to get this breaking point number because a lot goes into markup.

‰

In terms of electronics, if you consider the Arduino Mega ADK, it has almost 60 pins on it

and your product is unlikely to need all of them. The printed curcuit board should be a lot smaller; you also don’t need the extra USB outlet that is used for programming the ADK. The brains of the Mega ADK is a chip called the ATmega2560 by Atmel and they can be bought

individually for $20; however, buy 100 ATmega2560 chips in bulk and you only pay $10

each. If you instead go with the PICs from Microchip, you can get the price down to $4 each and also have integrated USB host controllers in the same chip. The idea is that you must be c10.indd 215

c10.indd 215

5/10/2012 2:06:42 PM

5/10/2012 2:06:42 PM

216 x CHAPTER 10 ANDROID OPEN ACCESSORY

aggressive with cutting manufacturing costs. On the fl ip side, if you have a very unique product that would merit a high markup (e.g. a limited production run featuring artwork from

a famous artist), then you can be more liberal with the cost cutting, but that is why the fi rst two points are important — know your audience!

‰

This particular tip will be harder to accomplish without some previous experience fi rst but you will need to fi nd a manufacturer. Depending on your product, you may be able to get by with local creators or artisans, or send away designs to be 3D printed or laser cut. For some products, you may want to brush up on your Cantonese or Mandarin as Phillip Torrone,

hardware developer and writer at Make Magazine, describes in his blog article entitled

“Why Every Maker Should Learn Chinese”: http://blog.makezine.com/2011/07/07/

why-every-maker-should-learn-chinese/.

‰

As an alternative to traditional manufacturing routes and production cycles, Kickstarter

(www.kickstarter.com) type of sites are cropping up all the time and companies such as

Quirky (www.quirky.com) are taking the crowd sourcing idea and actually putting their

industrial design and manufacturing knowledge into popularly voted projects pitched by

anyone.

So while these tips are not a comprehensive plan for monetizing your AOA app, they should get you started in thinking about taking AOA beyond a hobby activity.

SUMMARY

This chapter introduced the Android AOA. It discussed the how AOA works, what it can accom-

plish, and why it is relevant to Android sensor development. The goal of this chapter was to introduce you to the various parts required to create an Android Accessory. On the hardware end: you learned of several ADKs, including the Arduino Mega ADK, and how they differ from each other, alongside additional external hardware components such as a temperature sensor. On the software end: you learned about ADK fi rmware, namely Arduino sketches, and what APIs are required in the Android app.

Although this chapter did go into enough detail to provide an example of how to use AOA, it is far from a complete overview of all the things you can create using the AOA. Hopefully you have been enticed to increase your knowledge of basic electronics components including other actuators like motors and other sensors like the temperature sensor, and then combining it with the Android programming knowledge you have gained throughout this book.

This chapter completes the discussion of inferring information from physical sensors. It showed that there are various kinds of sensors available on Android devices that give it an awareness of its own state and its immediate environment. You can extend these capabilities using the AOA mechanism.

The next part of this book describes using some of Android’s other sensing capabilities to increase its awareness further. By using the NFC scanner, camera, and microphone an Android app can fi nd things in the world that emit or display identifying information and detect patterns that the device can see and hear.

c10.indd 216

c10.indd 216

5/10/2012 2:06:43 PM

5/10/2012 2:06:43 PM

PART III

Sensing the Augmented,

Pattern-Rich External World

 CHAPTER 11: Near Field Communication (NFC)

 CHAPTER 12: Using the Camera

 CHAPTER 13: Image-Processing Techniques

 CHAPTER 14: Using the Microphone

c11.indd 217

c11.indd 217

5/10/2012 2:07:56 PM

5/10/2012 2:07:56 PM

c11.indd 218

c11.indd 218

5/10/2012 2:07:59 PM

5/10/2012 2:07:59 PM

11

Near Field Communication (NFC)

WHAT’S IN THIS CHAPTER?

‰

Describing NFC and relationship to RFID

‰

Describing how NFCs work

‰

Explaining sample code

If you’ve ever waved your credit card in front of a grocery checkout terminal, entered into your apartment or offi ce building with a tap of a key fob, or installed an electronic toll collector under your car to zoom past the lines at the toll booth, then you are familiar with this seemingly invisible technology called radio frequency identifi cation (RFID) and its subset technology, near fi eld communication (NFC).

With the NFC hardware on the Samsung Nexus S and Samsung Galaxy Nexus, you can

sense electronically enabled objects that come within close range of your device and read

data from these objects. In addition, when two NFC-enabled Android devices meet, they

can use NFC to submit data peer-to-peer. The inclusion of NFC on Android devices enables

developers to create low friction interactions, such as those that are described throughout this chapter.

This chapter also gives you an overview of what these two contactless technologies are, outlines the advantages and disadvantages of NFC with Android, walks you through the

tools and code needed to build a small NFC-enabled inventory system with the Android

SDK, and wraps up by discussing the future of NFC on Android. As a bonus, some sug-

gested use case scenarios are listed at the end of the chapter to jump start your own NFC

development.

c11.indd 219

c11.indd 219

5/10/2012 2:07:59 PM

5/10/2012 2:07:59 PM

220 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

 WHAT IS RFID?

A discussion of NFC would not be possible without fi rst exploring radio frequency identifi cation, because NFC is a subset of RFID. Radio frequency identifi cation tags come in many form factors, such as cards and key fobs, but you’ve probably encountered the very common RFID sticker while shopping at major drugstores such as Walgreens (U.S.) or Shoppers Drug Mart (Canada). They are usually 2.5 cm square white stickers attached to almost all the products on the shelves. Major retail stores use RFID for inventory tracking and theft prevention.

If you look closely enough by holding the sticker up to the light or peeling away the white plastic, you will see a fl at, rectangular coil of metal strips much like that shown in Figure 11-1; these coils are the antennas that “listen” for radio frequency. Within the coils are other larger metal blocks; the circuit layouts vary, but these metal blocks are very small integrated circuits (IC) made of silicon. These ICs can store small amounts of manufacturer defi ned identifi cation data and the logic to allow the tag to transmit data back to the RFID reader via the antenna.

FIGURE 11-1: The internal components of an RFID sticker

Many types of RFID tags exist, with the major categories being active or passive, or a combination of the two. Active RFID tags have built-in batteries and have the advantage of being able to receive and transmit from a much longer distance (up to 10 meters or more) than passive tags. Passive tags, as you might have already guessed, do not have an on-board power supply and are limited to only a few feet at most.

The benefi ts of passive tags mean that they can be cheaper, smaller, and can remain readable as long as the circuit remains in good condition (that is, not cut or severely bent).

Without on-board power, passive RFID tags get activated when they are “interrogated” by an RFID

reader or scanner. The scanner (which must always have an electrical supply) emits short-range radio frequency signals that the antenna in the tags can detect and convert into power.

How does a seemingly innocuous object such as a sticker create power out of thin air? If that seems unbelievable, imagine back to your days in high school science class. An experiment your teacher may have had you try was to create a DIY power generator by wrapping magnetic wire around a magnet and connecting it to a light bulb. When you spin the wires around the magnet at high speed, c11.indd 220

c11.indd 220

5/10/2012 2:08:02 PM

5/10/2012 2:08:02 PM

What Is RFID? x 221

it causes electrons to become excited and activate the light bulb. This electricity is created through a process called electromagnetic induction.

If you’ve never done this experiment before or just want a refresher, visit www.amasci.com/amateur/

coilgen.html to watch a video of a DIY generator in action and read the instructions on how to make your own. Then have a look at the antenna coils in the RFID tag in Figure 11-2. Not that far off, right?

Invisible to the naked eye, the radio waves generated by the RFID scanner are enough to cause the coils of the RFID tag to oscillate, which can be converted to energy.

FIGURE 11-2: An RFID with clear plastic casing lets you see the wire coils easily.

If you own a Samsung Nexus S, take off the back battery cover. Glued onto the plastic is a gray rectangle; that is the hardware antenna of your phone’s NFC reader, as shown in Figure 11-3. The back cover alone won’t be able to scan anything, but when it’s receiving power from the phone via the two metal contacts it has the energy to start scanning.

FIGURE 11-3: The NFC hardware antenna of the Nexus S can be found on the inside of the back cover.

c11.indd 221

c11.indd 221

5/10/2012 2:08:14 PM

5/10/2012 2:08:14 PM

222 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

In contrast, the Samsung Galaxy Nexus has the antenna built into the battery; peeling off the cover of the battery will reveal the NFC antenna. So if you ever replace your Galaxy Nexus’s battery, ensure that the replacement has NFC capabilities!

FIGURE 11-4: The NFC antenna on the Galaxy Nexus comes as part of the battery (right).

The NFC controller (part number PN65N), developed by electronics component manufacturing

company NXP Semiconductors, is soldered onto a printed circuit board with the rest of the internal phone components.

Most RFID tags only store a 40-bit unique identifi er such as 0x12345678AB. When a scanner activates an RFID tag, the tag transmits this unique ID and the middleware of the scanner interprets it.

The middleware may use this information to then pass it on to software that looks it up in an inventory system or, in the case of mall security systems, to trigger an alarm to indicate that you’re carrying around a product whose tag was not deactivated. The read time of an RFID scanner to its tag can happen in less than 100 milliseconds!

WHAT IS NFC?

NFC tags share the same basic technology of those previously mentioned retail RFID stickers in that they are passive and are meant for short-range scanning, specifi cally at a frequency of 13.56MHz.

The biggest comparisons to make between NFC and the wider spectrum of RFID tags is that near fi eld communications, as its name would imply, is meant for very short range scanning of 1–4 cm.

NFC tags are advertised to be scannable at up to a distance of 10 cm, but that would only occur under perfect conditions.

Another large difference between RFID and NFC is the size of the data transaction. As mentioned, most RFID tags contain a 40-bit unique identifi er and are read-only. In comparison, a small NFC

tag can store 48 bytes of data, average around 144 bytes, and go up to 8 kilobytes (8,152 bytes) for larger tags. Its data can also be rewritten by any reader if the tag is not write-protected.

c11.indd 222

c11.indd 222

5/10/2012 2:08:22 PM

5/10/2012 2:08:22 PM

What Is NFC? x 223

 The NDEF Data Format

Unlike RFID technology, which has many proprietary implementations for data exchange,

the NFC standards are regulated by various bodies including the International Organization

for Standardization (ISO), International Electrotechnical Commission (IEC), European

Telecommunications Standards Institute (ETSI), and ECMA (the European association for

standardizing information and communication systems). In addition, the NFC Forum

(www.nfc-forum.org) is a consortium of manufacturers, applications developers, fi nancial services institutions, and other stakeholders created to promote NFC technologies and develop NFC

standards.

As defi ned by the NFC Forum, the standard data format for NFC-compliant devices and tags is a lightweight binary message format named NFC Data Exchange Format, or NDEF for short. This data format is comprised of an encompassing NDEF message container that can contain one or more NDEF records.

An NDEF record carries application data (commonly referred to as the payload) and additional meta data to help NFC applications quickly parse the payload during a data transaction. Alongside the payload, each NDEF record must defi ne meta data values for the payload, such as type and length. An additional identifi er URI is optional.

The following list summarizes these meta data fi elds with a brief explanation of how each relates to the Android NFC APIs. These parameters are discussed in the “NdefMessage and NdefRecord” section of the Building an Inventory Tracking System code example.

‰

Payload length: An unsigned integer indicating the size of the payload measured in octets.

(An octet is 8 bits of computer storage.)

The Android operating system takes care of generating the length value so you don’t need to worry about defi ning it yourself.

‰

Payload type: An arbitrary type as declared by the developer for its specifi c application.

Example types include: URIs such as web addresses; MIME media formats such as text/

 plain-text for plaintext or text/x-vCard for electronic business cards; or NFC-specifi c record types such as the NFC Smart Poster record type defi nition (the ability to encode URLs, SMSs, and phone numbers on an NFC tag) or the NFC Signature record type defi nition (for digitally signing NFC tags).

The Android APIs expect payload type to be converted to a byte array. In addition,

the Android APIs also request higher-level categorization of the payload type

through the use of Type Name Format (TNF) values defi ned by the Android

SDK. These TNF constants indicate to the interpreter what structure to expect

from the payload type so it knows how to handle it. An example TNF might be

NdefRecord.TNF_ABSOLUTE_URI for a URI or NdefRecord.TNF_WELL_KNOWN for

plaintext.

‰

Payload identifi er: An optional and arbitrary URI-based value set by the developer.

Payload identifi ers are rarely used in practice, however the ability for NDEF messages to

contain multiple NDEF records means that you can cross-reference records should such a

scenario arise.

The Android API will accept anything encoded into a byte array for the identifi er.

c11.indd 223

c11.indd 223

5/10/2012 2:08:33 PM

5/10/2012 2:08:33 PM

224 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

It should be noted that the NDEF specifi cations do not provide support for error handling, so it is up to the receiving application parser to determine the validity of the payload. For further information about the NDEF format, a 25-page PDF document entitled NFC Data Exchange Format

 (NDEF) Technical Specifi cation is available on the NFC Forum website by fi lling out the form at

www.nfc-forum.org/specs/spec_license.

Keep in mind that NFC is a 15-year-old evolving technology and the NDEF data specifi cations were defi ned after the creation of the NFC hardware; there exist NFC tags, especially legacy tags, which do not support NDEF and implement their own proprietary formats. You can write to a tag using a format other than NDEF, but that requires you to write your own custom protocol stack to handle reading and writing the raw data on tags. Therefore, NDEF and NDEF-compatible tags are recommended for quicker development and the widest Android support — especially when you want to take advantage of Android’s powerful intent fi lter feature to launch the most appropriate app for the content stored on the tag.

 How and Where to Buy NFC Tags

The type of NFC tag you should acquire depends on its intended usage. Three important questions are: How much data do you want to store on it? Do you want to be able to write-protect it? And what environment will the NFC tag be deployed to?

NDEF-compatible NFC Tags

See Table 11-1 for a chart of compatible, commercially available NFC tags. Each type’s rewrite capability, available memory, communication speed, and price range are also indicated in the chart.

To be the most compatible with Android devices and the Android SDK, buy tags marked as NFC

Forum Type 1, 2, 3, or 4 because they are the most compatible with the NDEF spec discussed in the previous section.

Storage Size versus Price versus Security Trade-off

Design your application with the lowest NFC tag storage footprint as possible considering the cost of the tags and their security features.

Consider a scenario in which you want to share a picture. Attempting to encode even a very

small JPEG thumbnail photo would cause your storage requirements to skyrocket to 3000 bytes, which would increase the costs of the NFC sticker. Instead, it would be better to embed a

link to an online resource that the Android application would then download after scanning

the NFC tag.

Type 1 and Type 2 tags are very similar, however the least expensive and most widely available NFC

chips are the NFC Forum Type 2 tags sold under the MIFARE UltraLights brand owned by NXP

Semiconductors. Many online retailers will carry only the 48- and 144-byte variants, though. The smaller storage size makes the MIFARE UltraLights appropriate for links or plaintext. A shortened URL might consume 23 bytes, a plaintext sentence containing “The quick brown fox jumps over the lazy dog” uses 51 bytes, and a custom MIME type to deep-link to content within an app might use around 100 bytes.

c11.indd 224

c11.indd 224

5/10/2012 2:08:33 PM

5/10/2012 2:08:33 PM

What Is NFC? x 225

TABLE 11-1: Compatible, Commercially Available NFC Tags

NFC

POPULAR

OPERATIONS

REWRITE

AVAILABLE

COMMUNICATION

PRICE RANGE

FORUM

PRODUCTS OF

SPECIFICATIONS

CAPABILITIES

MEMORY

SPEED

(PRICE PER

T YPE

THIS T YPE

UNIT)

1

Broadcom

ISO 14443A

User rewrit-

96 bytes,

106kbit/s

Low

Topaz

able; can be

expand-

(~$1-2 USD)

marked as

able to

read-only by

2KB

user

2

MIFARE

ISO 14443A

User rewrit-

48 bytes,

106kbit/s

Low

UltraLight

able; can be

144 bytes

(~$1-2 USD)

marked as

is com-

read-only by

mon,

user

expand-

able to

2KB

3

Sony FeliCa

JIS X 6319-4

Manufacture

variable,

212kbit/s or

High

pre-confi g-

theoreti-

424kbit/s

(~$8-10 USD

ured to be

cal 1MB

or higher)

read-only or

re-writable.

4

NXP DESFire,

ISO 14443A,

Manufacture

4KB for

Up to 424kbit/s

Medium-

NXP SmartFX

ISO 14443B

pre-confi g-

DESFire,

High (~$3-4

ured to be

up to

USD)

read-only or

32KB for

rewritable.

SmartFX

c11.indd 225

c11.indd 225

5/10/2012 2:08:33 PM

5/10/2012 2:08:33 PM

226 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

An electronic business card in vCard format with your contact information might use up to 300

bytes, so a typical Type 2 tag would not be suffi cient. Two options to explore when you want more storage are to purchase Type 3 or 4 NFC cards or MIFARE Classic tags.

Type 3 Sony FeliCa (which is short for Felicity Card) tags have higher amounts of storage but they are harder to order off the shelf. FeliCa technology has been widely accepted as a secure form of NFC and is used in high-profi le electronic payment systems such as the Octopus transit card system in Hong Kong. Extra security comes at a higher per-unit price tag, however.

Conversely, the Type 4 NXP DESFire can be purchased in 4k and 8k variants, but their encryption scheme was recently proven to be insecure so the additional costs are not worthwhile.

When you need more space but don’t want to pay more, you can fi nd some MIFARE tags sold under the “Classic” label (sometimes called MIFARE Standard) that are currently supported by the Nexus line of phones. They can hold up to 4KB but they may not be supported in the future by other Android devices or the SDK, because the MIFARE Classic tags use a proprietary protocol to format NDEF messages and this requires device manufacturers to pay licensing fees.

If you are controlling the environment and devices that your NFC application is deployed in, there shouldn’t be any foreseeable issue with using MIFARE Classic tags for the time being. Table 11-2

contains a chart on the MIFARE Classic chips.

Write Protection

As indicated in the rewrite capabilities columns of Tables 11-1 and 11-2, some tags are more appropriate for prototyping or controlled environments because their data can be rewritten using any NFC reader/writer, including those found on mobile phones. If you are planning to release these tags into the wild, purchase Type 1 or Type 2 tags so you can set read-only privileges yourself. (Keep in mind the size limitations of these tags, though.)

MIFARE Classics can be write-protected only by the manufacturer. If you are past the prototyping phase, you could work directly with a manufacturer such as NXP or Sony to create tags that are shipped with read-only capabilities.

Form Factor

Another consideration to keep in mind when purchasing NFC stickers is the surface that you will be sticking them onto. Paper, fabric, wood, plastic, and other non-conductive materials shouldn’t cause any problems, but take care if you are applying to metal surfaces. Because metal is conductive, you should look for “metal isolated” tags that are thicker than regular stickers.

For extra environmental protection of your NFC stickers, buy “outdoor” or “laundry” type tags that are water-resistant or waterproof. If you don’t want to use stickers, plastic-encased NFC tags in the form factor of contactless credit cards and key fobs are also an alternative.

In very rare deployment scenarios, note that there exist fabrics and materials that can be coated with specifi c metals to shield out radio waves, including those from NFC tags and readers; this may act in your favor or against it. An example of this fabric in use is in special RFID-shielding passport wallets. Lastly, be conscious of deploying NFC in scientifi c or medical labs that may actively be trying to block out radio waves.

c11.indd 226

c11.indd 226

5/10/2012 2:08:34 PM

5/10/2012 2:08:34 PM

What Is NFC? x 227

TABLE 11-2: Information about Classic MIFARE Chips

MIFARE T YPE

OPERATIONS

REWRITE

AVAILABLE

COMMUNICATION

PRICE RANGE

SPECIFICATIONS

CAPABILITIES

MEMORY

SPEED

(PRICE PER UNIT)

Classic 1K

ISO 14443A

User rewrit-

752 bytes

106kbit/s

Low

compatible,

able; only

(~$1 USD)

but NDEF is

manufacturer

formatted using

can mark as

a proprietary

read-only

protocol

Classic 4K

ISO 14443A

User rewrit-

3440

106kbit/s

Low-Medium

compatible,

able; only

bytes

(~$2 USD)

but NDEF is

manufacturer

formatted using

can mark as

a proprietary

read-only

protocol

Retailers

For the hobbyist or newcomer, shopping for NFC tags might be a bit overwhelming, so here are some suggested online retailers:

‰

For U.S.-based developers, Tagstand (www.tagstand.com) offers NFC starter kits with 15

NFC stickers of four varying sizes. You can order custom logo NFC stickers with a minimum

batch size of 50 stickers.

‰

For Europeans, Finnish company UPM also offers plain and custom-printed NFC stickers

directly or through its TagAge website (www.tagage.net).

‰

You can order high-volume batches of NFC stickers or cards directly from NXP

Semiconductors; especially worth exploring when you want to get MIFARE Classic tags

write-protected.

‰

If you are an open source hardware tinkerer, Adafruit Industries sells NFC tags in card and key fob format. It also sells the PN532 NFC/RFID controller breakout board, which can be used for experimenting with NFC outside of your Android device, for example, with an

Arduino microcontroller. You can fi nd Adafruit’s NFC inventory here: www.adafruit.com/

category/55.

Many other online retailers sell NFC tags and you can fi nd them by doing a web search. An important point to remember when buying NFC tags is that some retailers will simply list them as RFID

tags, so keep an eye out for the specifi c NFC frequency of 13.56 MHz.

Gen eral Advantages and Disadvantages of NFC

Why choose NFC technology for your application? And when should you choose an

alternative such as QR barcodes or Bluetooth? This section goes into the pros and cons of

c11.indd 227

c11.indd 227

5/10/2012 2:08:34 PM

5/10/2012 2:08:34 PM

228 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

NFC. References to any Android applications can be found and downloaded by searching in

Google Play.

Low Power and Proximity Based

The biggest selling feature of NFC interactions is something Google likes to call “low friction”

because the experience of using NFC should be one of instant gratifi cation — just tap and go.

Turning on NFC scanning for your device is described in the “Enabling NFC in the Settings” section later and, once enabled, your device can be left to scan for tags whenever the screen is on with very little power draw on the battery.

The advantage of NFC tags over barcodes or QR codes (aka 3-D barcodes) is that you don’t need line of sight. A 2-D barcode needs to be lined up with the laser or camera that’s reading it and a QR code needs to be decently lit for a camera application to read it. As long as the Android device’s screen is turned on and has been set to detect NFC tags in the Android settings, an NFC tag just needs to be held close to the reader (regardless of orientation) and can be detected through thin amounts of material such as the fabric of your wallet or the plastic on the back of a Samsung Nexus S.

Small, Short Data Bursts

Although NFC-enabled devices such as the Nexus S do enable peer-to-peer transactions, NFC is not to be used for verbose communications between two devices. For scenarios in which you want to transfer more than a kilobyte of data, consider using Bluetooth or Wi-Fi to do the heavy lifting and leave NFC to just get the interaction started.

The NFC standard currently supports data rates of 106kbit/s, 212kbit/s , and 424kbit/s, which is fi ne for data transactions below 4KB. Bluetooth is a mid-range wireless technology that works within a 10-meter range and transfers data at a rate of 2.1Mbps. This higher data transfer rate makes it ideal for ongoing, peer-to-peer communications such as syncing screens of the same app on two different Android phones in scenarios where there is no reliable Wi-Fi.

However, Bluetooth requires a pairing process that can be quite cumbersome, so it makes sense to use NFC to help quickly authenticate the pairing process and then hand it off to Bluetooth to continue the communications. One such example of this is the proposed two-player game mode

of Fruit Ninja in which two NFC-enabled Android devices can tap and quickly launch into a

head-to-head battle mode. (Sadly, this battle mode was only a demo proof of concept at the

Google I/O 2011 developer conference; the Fruit Ninja found in Google Play does not

use NFC.)

When Internet or 3G networks are available, NFC can do the device handshaking and the app can then continue on with the transaction in the cloud. For example, the Hashable mobile app lets you tap phones so you can immediately check in with others on http://hashable.com.

c11.indd 228

c11.indd 228

5/10/2012 2:08:34 PM

5/10/2012 2:08:34 PM

What Is NFC? x 229

Singular Scanning

If you’re considering using NFC for simultaneous inventory tracking of multiple items, or “push cart checkout” in which you are attempting to scan multiple items at once, you should be aware that only one NFC tag can be reliably scanned at a time; and considering the distance limitations of fewer than 10 cm or less, it’s unlikely the scannable space would allow for more than one item to be within range unless it was stacked like a deck of cards.

Security

The short range of the NFC chip is its biggest security feature. Consider that some RFID tags are used for animal tracking over several miles, and therefore the tags can be read from far distances. In contrast, NFC chips must be held within centimeters of the reader, making it harder for “sniffers”

to fi nd out if you are carrying an NFC-enabled device. Manufacturers of NFC chips have also gone the extra step of shielding the tag to further reduce their ability to be read from specialized, long-distance RFID readers.

The NFC on your phone is also turned off when the screen is off so “sniffers” cannot just read the data on your phone.

The data on an NFC tag can also be encrypted before writing to it using your own encryption schema, such as using MD5 or AES, and certain tags can be made read-only by the user or the manufacturer.

Card Emulation

 Card emulation is the capability of an NFC chip on a mobile device to act like a contactless smartcard, such as a PayPass™ or payWave™ credit card, when presented at retail store terminals. The PN65N NFC controller chip installed on the Nexus line of phones has a component called the

 Secure Element (or SmartMX), which is an embedded version of a smartcard.

Google Wallet uses the Secure Element, however, it is important to note that Google has reserved not to open up any public APIs to emulate cards on Android phones. Google advocates developers to design their application with peer-to-peer abilities instead of attempting to emulate cards using the device’s Secure Element hardware.

Android -specifi c Advantage: Intents

The Android intent fi lter system is a huge advantage to building low-friction interactions with NFC.

You don’t need to be redirected to a URL like a QR code might. The detection of an NFC tag can deep-link into an app already installed on your phone or redirect you to Google Play to download the app.

A good example of this is an add-on app to Evernote called Touchanote that launches into specifi c Evernote entries. For example, you could stick an NFC sticker onto a textbook and use Evernote to c11.indd 229

c11.indd 229

5/10/2012 2:08:35 PM

5/10/2012 2:08:35 PM

230 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

type and record your notes. Now, every time you pull that book off the shelf, give it a scan to pick up where you left.

Required Hardware

The biggest disadvantage that NFC has in the Android ecosystem is the availability of phones and tablets that have built-in NFC readers at the moment. Android devices that can currently read and write NFC tags include: the Google Nexus line of phones (Samsung Nexus S and Samsung Galaxy Nexus), the Samsung Galaxy SII, and the HTC Amaze 4G, among others.

There currently exists no off-the-shelf ability to add NFC support to phones that were not shipped with NFC. As a developer, it is recommended to obtain either the Nexus S or Galaxy Nexus to fully test NFC interactions because there is no desktop emulation.

You may have heard of the ability to buy passive NFC stickers or NFC-enabled SIM cards for your phone but these add-ons only enable compatibility with NFC payment systems like Google Wallet, and do not enable your phone to read other NFC tags.

For extreme hardware tinkerers, you may be able to take advantage of the new Android Open

Accessory APIs and an Android ADK to connect an Android phone to a custom, external USB NFC

tag reader (such as a PN532), but this option is not for the faint of heart. (See Chapter 10 for more information on Android Open Accessory.)

It’s unlikely that you would be able to purchase an NFC-enabled device running a version of Android below Gingerbread, but it’s worth noting that the NFC APIs are available only on devices running Android 2.3 (API level 9) and higher.

BUILDIN G AN INVENTORY TRACKING SYSTEM

In this section you apply what you’ve read about NFC theory and start working on the example Android project.

The Sce nario

Consider this scenario: You are an IT support professional. You handle the inventory of various computer systems, but you often swap out the RAM and other internal components and want to

keep track of them. You want a custom app that will let you tag the cases of desktop computers so when you scan them, you can quickly see what’s inside without ever pulling out a screwdriver.

The NFC Inventory Demonstration App

Figure 11-5 shows the screens from the NFC Inventory demo app supplied with this book’s example source code and app.

c11.indd 230

c11.indd 230

5/10/2012 2:08:35 PM

5/10/2012 2:08:35 PM

Building an Inventory Tracking System x 231

FIGURE 11-5: Main activity of the demo NFC app (left); updating an NFC tag with newer specs (right) On the main activity screen, type in a computer name, the amount of RAM, and the processor

speed of the computer you want to track. Clicking the Update button sets the phone into a mode that allows you to write NDEF data to a compatible NFC tag.

Scanning a tag with inventory NDEF data updates the three text fi elds with the currently recorded specs. If you ever upgrade the computer or swap out parts, scan the tag attached to the computer, edit the text fi elds, and click Update to overwrite the tag with the newest specs.

Enablin g NFC in the Settings

In addition to enabling the usual Development Mode settings, you must turn on NFC. On a device running Gingerbread: go to Settings Í Wireless & Network settings. Scroll down and look for the NFC list item toward the bottom. As Figure 11-6 shows, make sure the NFC checkbox is checked in order to read and exchange tags.

On a device running Ice Cream Sandwich: swipe down from the top of any screen to pull down

the notifi cation shade. Next to the date, click on the settings icon (the three sliders). Under the Wireless & Networks heading, click on More. As Figure 11-6 shows, make sure the NFC checkbox is checked off.

c11.indd 231

c11.indd 231

5/10/2012 2:08:35 PM

5/10/2012 2:08:35 PM

232 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

FIGURE 11-6: Turn on NFC in your settings. For both Gingerbread (left) and Ice Cream Sandwich (right), ensure that the NFC option is checked off

Once NFC has been enabled in the settings, and as long as the device’s screen is on, NFC tags that come into range will be detected. For security reasons, the Android OS does not respond to NFC

tags when the screen is turned off. Oddly, the Android OS will still scan tags even when the screen is on but locked.

The power draw of turning on the NFC option is negligible, so there’s no need to turn off NFC

when you’re done developing.

Debuggi ng Your Tags with Apps

As a test, you may want to download and try these two apps created by NXP Semiconductor to

practice reading and writing to your tags:

‰

NFC TagWriter by NXP (https://play.google.com/store/apps/details?id=com.nxp

.nfc.tagwriter) gives you an all-in-one interface to play around with reading NFC stickers

and writing to tags that are not locked. TagWriter gives you four built-in NDEP record data types to write such as vCard, URL, plaintext, and SMS.

‰

NFC TagInfo by NXP (https://play.google.com/store/apps/details?id=com.nxp

.taginfolite) gives you more information about the tag than the TagWriter app. In addi-

tion to showing you any available raw data saved to the sticker, TagInfo also summarizes

the type of NFC tag (for example, MIFARE Classic), who the manufacturer is (for example,

NXP), how much data is used/available, and other interesting tidbits like ISO/IEC compat-

ibility and protocol information. You can also use this app to analyze your credit cards and c11.indd 232

c11.indd 232

5/10/2012 2:08:35 PM

5/10/2012 2:08:35 PM

Android APIs x 233

other contactless smart tags you already own for NFC compatibility, although the data on

them will likely be encrypted.

ANDROID APIS

Now that you’re set up, this section dives into some code! The code in this section is based on

http://nfc.android.com/StickyNotes.zip, which is under the Apache 2.0 license.

In Your AndroidManifest.xml File

Every Android project has a Manifest fi le and this one is no different. Here are some basic addi-tions you will need to make to your project’s AndroidManifest.xml to make your app NFC

compatible.

Permissions and Minimum API Level

To target devices that support the NFC APIs, you must declare android.hardware.NFC as a feature. Depending on your application, you may want to also declare it as a required feature. You also need to indicate that your application requires permission to use the NFC reader hardware by adding code like this:

<uses-feature

android:name="android.hardware.nfc"

android:required="true" />

<uses-permission android:name="android.permission.NFC" />

If NFC is a required feature of your application, be sure to also declare a minimum SDK version of 2.3.3 (level 10) or 4.0 (level 14). Although API level 9 supports NFC, the tag dispatch options are limited and there is no tag writing support, so targeting level 9 is not recommended. API level 10

includes reader/writer support and foreground NDEF pushing.

The latest Ice Cream Sandwich Android SDK provides improved NDEF pushing to other Android

devices via Android Beam and improved NDEF creation. You can fi nd APIs specifi c to Android 4.0’s Beam feature in the “Peer-to-Peer NFC Sharing” section later in this chapter.

This inventory example targets SDK version 2.3.3, so you will need the following code:

<uses-sdk android:minSdkVersion="10" />

Intent Filters

For your Activity, add an IntentFilter to handle the NFC tag scanning event. Three Intents

are available and the Android tag dispatching system prioritizes them. From highest to lowest priority, they are:

‰

android.nfc.action.NDEF_DISCOVERED

‰

android.nfc.action.ACTION_TECH_DISCOVERED.

‰

android.nfc.action.ACTION_TAG_DISCOVERED

c11.indd 233

c11.indd 233

5/10/2012 2:08:35 PM

5/10/2012 2:08:35 PM

234 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

The highest-priority IntentFilter, NDEF_DISCOVERED, should be used for the majority of scenarios because it offers the most precise fi lter for matching the content of a tag to the application that should handle it.

The lowest-priority IntentFilter, ACTION_TAG_DISCOVERED, was introduced with NFC sup-

port in API level 9 and is more of a legacy Intent. If either NDEF_DISCOVERED or ACTION_TECH_

DISCOVERED is set, the probability of an ACTION_TAG_DISCOVERED IntentFilter triggering your application when it is not in the foreground is unlikely, so its use in the manifest fi le is not recommended by the Google Android documentation.

The remaining IntentFilter, ACTION_TECH_DISCOVERED, is generally to be used as a fallback

when the NFC tag is not formatted using NDEF. If you are controlling the content written to the tags and have chosen NDEF, you may never need to use ACTION_TECH_DISCOVERED in your manifest for your application. If you are working with legacy tags and/or non-NDEF data, please refer to the Advanced NFC documentation at http://developer.android.com/guide/topics/nfc/

advanced-nfc.html.

Using the preferred NDEF_DISCOVERED IntentFilter, your declaration would look like this if your NFC tag contained plaintext:

<intent-filter>

<action android:name="android.nfc.action.NDEF_DISCOVERED" />

<category android:name="android.intent.category.DEFAULT" />

<data android:mimeType="text/plain" />

</intent-filter>

However, listening for such a generic MIME type will not allow other NFC-enabled applications to be triggered by scanning this tag. Alternatively, if you leave out the IntentFilter, the scanning of the NFC tag will be handled by the preinstalled Tags application, which will attempt to read the content of your tag. And if multiple NFC-enabled applications are installed, there’s a large possibility that the select-an-action Android OS Activity Chooser will pop up.

To create a friction-less scanning experience for the user, use the most precise IntentFilter as possible for your app. The best way to do that is to create your own custom MIME type for your IntentFilter instead of using something as generic as plaintext.

Custom MIME Type Intent Filters

For example, the following code is registering IntentFilters for the custom MIME type

“application/root.gast.playground.nfc”, which is specifi c to this chapter’s demo application:

<intent-filter>

<action android:name="android.nfc.action.NDEF_DISCOVERED" />

<category android:name="android.intent.category.DEFAULT" />

<data android:mimeType="application/root.gast.playground.nfc" />

</intent-filter>

Note that the MIME type application/root.gast.playground.nfc is arbitrarily defi ned by the developer. It can be anything, however you must be consistent between the IntentFilters defi ned in your Android Manifest and what you write to your tags.

c11.indd 234

c11.indd 234

5/10/2012 2:08:36 PM

5/10/2012 2:08:36 PM

Android APIs x 235

The following is an example of creating an NDEF record with the custom application/root.

gast.playground.nfc MIME type. This example was simplifi ed for readability; the “NdefMessage and NdefRecord” section goes into this code in more detail.

String mimeType = "application/root.gast.playground.nfc";

byte[] mimeBytes = mimeType.getBytes(Charset.forName("UTF-8"));

//...

NdefRecord r = new NdefRecord(NdefRecord.TNF_MIME_MEDIA,

mimeBytes, id, dataBytes);

URI-based Intent Filters

If you want to avoid locking NFC tag creation to your particular app, it’s very useful to instead use the URI MIME type to register IntentFilters. The Foursquare app for Android uses this

to its advantage by allowing individual venue owners to create their own NFC-enabled location check-in tags using any NFC writer (including the NFC TagWriter app mentioned previously in the

“Debugging Your Tags with Apps” section).

As outlined in the Foursquare developer documentation (https://developer.foursquare.com/

client/), a venue owner simply needs to make an NFC tag that links to its venue page, for example, http://m.foursquare.com/venue/VENUE_ID where VENUE_ID is an ID string such as 128530, which is the ID for the Foursquare head offi ce in New York.

If you have the Foursquare app already installed and scan one of these tags, that specifi c venue page will automatically launch within the Foursquare app because of the power of

IntentFilters. Using a URI MIME type also allows the interaction to gracefully fall back to using the preinstalled Tags app to read the URL and give the user an option to launch a web browser to view the mobile website.

When declaring a URI-based IntentFilter for everything within a domain name, set the scheme, host, and (when needed) port of your URI. For example:

<data

android:scheme="http"

android:host="localhost"

android:port="8080" />

If there’s even more specifi c content to fi lter by such as a web folder, you can add a path, pathPat-tern, or pathPrefix attribute to the data element. For more information about the data element,

please visit the Android developer documentation: http://developer.android.com/guide/top-

ics/manifest/data-element.html.

This is how the IntentFilter would appear in Foursquare’s manifest fi le because the Foursquare app will want to react to all tags containing the URL http://m.foursquare.com/venue/:

<intent-filter>

<action android:name="android.nfc.action.NDEF_DISCOVERED" />

<category android:name="android.intent.category.DEFAULT" />

<data

android:host="m.foursquare.com"

android:pathPrefix="/venue/"

android:scheme="http" />

</intent-filter>

c11.indd 235

c11.indd 235

5/10/2012 2:08:36 PM

5/10/2012 2:08:36 PM

236 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

Because the NFC inventory demo app of this chapter is used mainly for reading and writing to NFC

tags, a custom MIME type is used for this chapter’s code examples. Listing 11-1 contains the full AndroidManifest.xml fi le for your reference.

LISTING 11-1: Manifest fi le needed to run NFC example

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="root.gast.playground.nfc"

android:versionCode="1"

android:versionName="1.0" >

<uses-sdk android:minSdkVersion="10" />

<uses-feature

android:name="android.hardware.nfc"

android:required="true" />

<uses-permission android:name="android.permission.NFC" />

<application

android:icon="@drawable/icon"

android:launchMode="singleTask"

android:label="@string/app_name" >

<activity

android:label="@string/app_name"

android:name=".NFCInventoryActivity" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

<!-- Handle NFC tags detected from outside our application -->

<intent-filter>

<action android:name="android.nfc.action.NDEF_DISCOVERED" />

<category android:name="android.intent.category.DEFAULT" />

<data android:mimeType="application/root.gast.playground.nfc" />

</intent-filter>

</activity>

</application>

</manifest>

 code snippet AndroidManifest.xml

Now that your Manifest fi le is set up, the next section examines the demo app’s main Activity class.

In Your Main Activity Class

You can fi nd the full main Activity code of this demonstration app in the root.gast.playground

.nfc.NFCInventoryActivity.java fi le of this book’s source code, but this section goes over some key NFC-related APIs.

c11.indd 236

5/10/2012 2:08:36 PM

Android APIs x 237

NfcManager

NfcManager is a high-level manager used to obtain a reference to an instance of an NFC Adapter.

This class is redundant, so continue to the next section for the real meat.

NfcAdapter

The NFC Adapter is your bridge to the NFC hardware. It lets you check if the NFC option is turned on and it controls the pushing of NDEF data to and from NFC tags.

You should not instantiate an NfcAdapter instance yourself; instead call the static helper

method getDefaultAdapter(), which is a shortcut for getSystemService(), to leverage

the context’s cached NfcAdapter. See the following code for how it is used for the demo NFC

Inventory app:

public class NFCInventoryActivity extends Activity

{

//...

NfcAdapter mNfcAdapter;

//...

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState)

{

//...

// get an instance of the context's cached NfcAdapter

mNfcAdapter = NfcAdapter.getDefaultAdapter(this);

// check if NFC is enabled

Boolean nfcEnabled = mNfcAdapter.isEnabled();

if (nfcEnabled)

{

// show off your fancy NFC feature!

} else

{

// let the user know how to turn NFC on in the Settings

}

//...

}

//...

}

In addition to isEnabled(), two main pairs of methods to be aware of in the NfcAdapter class are enableForegroundDispatch() and disableForegroundDispatch(), and enableForegroundNdefPush() and disableForegroundNdefPush(), which the next sections describe.

Foreground Dispatch ing

enableForegroundDispatch() and disableForegroundDispatch() turn on and off the fore-

ground activity’s priority to receive intent dispatches when NFC tags are scanned.

c11.indd 237

c11.indd 237

5/10/2012 2:08:36 PM

5/10/2012 2:08:36 PM

238 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

To illustrate this, say you have two NFC tags; one is encoded with a URI (http://m.foursquare

.com) and the other is a custom MIME type (application/root.gast.playground.nfc). In addition, the main Activity class has created IntentFilters for the root.gast.playground.nfc

custom MIME type only. When foreground dispatching is enabled, and the app is running and in focus, attempts to scan the tag with the URI will have no visible results — even the Activity Chooser will not be triggered.

Related, if an app such as TagInfo by NXP is listening for all types of tags to be scanned, when the TagInfo app is running and in focus on your device, it will redirect all NFC scanned tag events to itself because it has foreground dispatching enabled. Even if other apps are listening for root.gast

.playground.nfc tag dispatch events, they will not be notifi ed of them by the Android OS.

Where to Declare Intent Filters: Manifest File Versus Activity Class

You may be wondering: What’s the difference between an NFC-related IntentFilter declared in the AndroidManifest.xml and IntentFilters declared in an Activity class? Why declare two

separate instances of them, especially if they are listening for the same thing?

The following are some scenarios for how NFC-related intents react in the Android operating system. All scenarios assume that an NDEF_DISCOVERED IntentFilter is set in the Android manifest of our demo app, and is registered to dispatch whenever a tag matches the MIME type root.gast.playground.nfc and no other types. All scenarios also have a main Activity class in which an onResume() method is defi ned and checks for an ACTION_NDEF_DISCOVERED Intent in order to populate a set of text fi elds.

Scenario #1: The Android device is turned on and is waiting on the homescreen. Foreground dispatching is not enabled:

User scans NFC

Activity

Android sees

onResume()

tag containing

Manager

that MIME type

fired and app

MIME-type

Launches NFC

registered in

updates text

"root.gast.play

Inventory

the manifest

fields

ground.nfc"

Demo

FIGURE 11-7: NFC Scenario #1

Scenario #2: Demo app is already open and foreground dispatching is not enabled:

Android sees

User scans

matching

Activity

NFC tag

MIME type

onResume()

Manager

containing

registered in

fired and app

Launches NFC

MIME-type

the NFC

updates text

Inventory

"root.gast.play

Inventory

fields

Demo

ground.nfc"

Demo app's

manifest

User scans

Android sees

Android sees

NFC tag

that URI types

that tag

Activity

containing URI

are not

content in

Manager

"http://

registered in

Foursquare's

launches

m.foursquare.

NFC Inventory

app matches

Foursquare's

com/veue/

Demo app's

the URI

app

128530"

manifest

scanned.

FIGURE 11-8: NFC Scenario #2

c11.indd 238

5/10/2012 2:08:37 PM

Android APIs x 239

Scenario #3: Demo app is already open and foreground dispatching is enabled:

onNewIntent()

User scans NFC tag

Android see the NFC

handles Intent

containing MIME-

Inventory Demo app

instead of

type

engabled foreground

ActivityManager and

"root.gast.playground

dispatching

the app updates tedt

.ntc"

fields

onNewIntent()

User scans NFC tag

Android sees that the

handles intent

containing URI

NFC Inventory Demo

instead of

"http://

app enabled

ActivityManager and

m.foursquare.com/

foreground

the app displays

venue/128530"

dispatching

proper read error

message

FIGURE 11-9: NFC Scenario #3

As you can see with Scenario #3, some subtle but important differences exist between allowing the Android operating system to handle the Intents declared in the manifest fi le versus handling them via foreground dispatching.

Implementing the Intent Filter in NFCInventoryActivity.java

It is best practice to disable foreground dispatches in your Activity class’s onPause() method.

Enable foreground dispatches in onResume().

It is especially important to enable foreground dispatching when getting ready to write to a tag, otherwise hovering over the URI-based NFC tag would zip you over to the Foursquare app and you would never be able to write to that tag.

The following code example is a modifi ed version (simplifi ed for readability) of how the demo inventory app implements foreground dispatching:

public class NFCInventoryActivity extends Activity

{

// NFC-related variables

NfcAdapter mNfcAdapter;

PendingIntent mNfcPendingIntent;

IntentFilter[] mReadTagFilters;

/* Called when the activity will start interacting with the user. */

@Override

protected void onResume()

{

//...

// Handle foreground NFC scanning in this activity by creating a

// PendingIntent with FLAG_ACTIVITY_SINGLE_TOP flag

mNfcPendingIntent = PendingIntent.getActivity(this, 0, new Intent(this,

getClass()).addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP), 0);

// Create intent filter to handle NDEF NFC tags detected from inside our

// application when in "read mode":

c11.indd 239

5/10/2012 2:08:37 PM

240 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

IntentFilter ndefDetected = new IntentFilter(

NfcAdapter.ACTION_NDEF_DISCOVERED);

try

{

ndefDetected.addDataType("application/root.gast.playground.nfc");

} catch (MalformedMimeTypeException e)

{

throw new RuntimeException("Could not add MIME type.", e);

}

mReadTagFilters = new IntentFilter[] { ndefDetected };

// Enable priority for current activity to detect scanned tags

// enableForegroundDispatch(activity, pendingIntent,

// intentsFiltersArray, techListsArray);

mNfcAdapter.enableForegroundDispatch(this, mNfcPendingIntent,

mReadTagFilters, null);

//...

}

/* Called when the system is about to start resuming a previous activity. */

@Override

protected void onPause() {

//...

mNfcAdapter.disableForegroundDispatch(this);

//...

}

//...

}

To summarize the preceding code:

1. Create

an

IntentFilter (ndefDetected) to listen for root.gast.playground.nfc NDEF

NFC tags.

2.

Create an array of IntentFilters (mReadTagFilters) and populate it with ndefDetected

previously.

3. Create

a

PendingIntent (mNfcPendingIntent) with the FLAG_ACTIVITY_SINGLE_TOP fl ag

set so each new NFC scan doesn’t create multiple instances of the main Activity. (This

makes it so the Android Back button exits the app immediately instead of having to dismiss

several screens of recently scanned NFC tags.)

Related to setting the FLAG_ACTIVITY_SINGLE_TOP fl ag, you may or may not have noticed

that the Activity’s launch mode was set to be "singleTask" to avoid multiple Activity instances.

<activity

android:label="@string/app_name"

android:launchMode="singleTask"

android:name=".NFCInventoryActivity" >

For more information on the Android back stack, visit the Android developer site: http://

developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html.

4.

Enable foreground dispatching using the enableForegroundDispatch() method.

c11.indd 240

c11.indd 240

5/10/2012 2:08:38 PM

5/10/2012 2:08:38 PM

Android APIs x 241

Filtering for generic tags

If you were instead looking to create an IntentFilter for generic tags, you could either add a wildcard data type (*/*) as illustrated in the following code, or use null for the intentFiltersArray parameter. The following two examples are almost equivalent except that the latter will default to NfcAdapter.ACTION_TAG_DISCOVERED instead of NfcAdapter.ACTION_NDEF_DISCOVERED and it

will catch all tags.

Using a wildcard:

IntentFilter ndefDetected = new IntentFilter(

NfcAdapter.ACTION_NDEF_DISCOVERED);

ndefDetected.addDataType("*/*"); //catch all MIME types

mNfcAdapter.enableForegroundDispatch(this, mNfcPendingIntent,

mNdefExchangeFilters, null);

Using null:

mNfcAdapter.enableForegroundDispatch(this, mNfcPendingIntent,

null, null);

Using NDEF_DISCOVERED is preferred in your manifest because TAG_DISCOVERED is the lowest-

priority IntentFilter and will react to all scanned NFC tags. However, inside your Activity class (meaning that your app is running and has focus), it doesn’t make much difference between the previous two IntentFilter examples because no other Activity can receive the intent when foreground dispatching is enabled.

If you were looking to create an IntentFilter on a URI such as the previously mentioned

Foursquare examples, it may look something like this in your app:

IntentFilter ndefDetected = new IntentFilter(

NfcAdapter.ACTION_NDEF_DISCOVERED);

ndefDetected.addDataScheme("http");

ndefDetected.addDataAuthority("m.foursquare.com", null);

ndefDetected.addDataPath("/venue/", 0);

Foreground NDEF Push

The methods enableForegroundNdefPush() and disableForegroundNdefPush() were made

available in API level 10 for sharing NDEF data between Android devices. With the new features of Ice Cream Sandwich, these two methods have been deprecated in favor of setNdefPushMessage() or setNdefPushCallbackMessage() for newer devices. Both of these methods are explored later in the “Peer-to-Peer NFC Sharing” section.

Reacting to an NDEF Tag

As described in the “In Your AndroidManifest.xml File” section, you can create IntentFilters in your manifest for detecting NDEF tags, or you can create them within your application’s main Activity as described in the “Foreground Dispatching” section.

To handle Intents dispatched when your application is not in the foreground, use getIntent().

getAction() in your onResume() method to fi nd out if ACTION_NDEF_DISCOVERED caused the app to start up.

c11.indd 241

c11.indd 241

5/10/2012 2:08:38 PM

5/10/2012 2:08:38 PM

242 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

To handle foreground Intents, create an onNewIntent() method in your Activity. The following code shows the logic fl ow for handling both NDEF tags using ACTION_NDEF_DISCOVERED and non-NDEF tags using the ACTION_TAG_DISCOVERED Intent.

public class NFCInventoryActivity extends Activity

{

//...

/* Called when the activity will start interacting with the user. */

@Override

protected void onResume()

{

//...

// tag received when app is not running and not in the foreground:

if (getIntent().getAction().equals(NfcAdapter.ACTION_NDEF_DISCOVERED))

{

NdefMessage[] msgs = getNdefMessagesFromIntent(getIntent());

//do something with the NDEF messages here

}

//...

}

/*

* This is called for activities that set launchMode to "singleTop" or

* "singleTask" in their manifest package, or if a client used the

* FLAG_ACTIVITY_SINGLE_TOP flag when calling startActivity(Intent).

*/

@Override

protected void onNewIntent(Intent intent)

{

//...

if (intent.getAction().equals(NfcAdapter.ACTION_NDEF_DISCOVERED))

{

NdefMessage[] msgs = getNdefMessagesFromIntent(intent);

// Do something with the NDEF messages here

} else if (intent.getAction().equals(

NfcAdapter.ACTION_TAG_DISCOVERED))

{

Toast.makeText(this,

"This NFC tag currently has no inventory NDEF data.",

Toast.LENGTH_LONG).show();

}

//...

}

//...

}

Note that getNdefMe

ssagesFromIntent() is a custom method that is discussed in the next section

on reading tags.

c11.indd 242

c11.indd 242

5/10/2012 2:08:38 PM

5/10/2012 2:08:38 PM

Android APIs x 243

NdefMessage and NdefRecord

The NdefMessage and NdefRecord classes in the android.nfc.tech package of the Android SDK

relate very closely to the NFC Forum’s specifi cations discussed earlier in “The NDEF Data Format”

section. As a refresher, an NDEF message is a container that can hold one or more NDEF records.

An NDEF record has a payload and additional meta data such as type, length, and optional payload identifi er.

Use getParcelableArrayExtra() on the Intent object with the item keyword name NfcAdapter.

EXTRA_NDEF_MESSAGES to get the raw data in Parcels. Assuming that the raw data is not null, you can create an NdefMessage object by iterating over the raw Parcelable object. Or, because there is typically only one message when working with NDEF, use the value at the fi rst index, for example, msgs[0].

Parcelable[] rawMsgs = intent

.getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);

NdefMessage[] msgs = new NdefMessage[rawMsgs.length];

for (int i = 0; i < rawMsgs.length; i++) {

msgs[i] = (NdefMessage) rawMsgs[i];

}

There are not many methods for NdefMessage but the most important one to know is getRe-

cords(), which simply returns an array of NdefRecords. Again, for NDEF there is typically only one record so create an NdefRecord from the value in the fi rst index unless you know otherwise.

getPayload() will likely be your most used NdefRecord method, but the following are some examples of common getter methods for NdefRecord and its usage:

NdefRecord record = msgs[0].getRecords()[0];

//Returns the variable length payload

byte[] payload = record.getPayload();

Log.d(TAG,new String(payload));

// Returns the optional variable length ID

byte[] id = record.getId();

Log.d(TAG, "id: " + new String(id));

// Returns the variable length Type field

byte[] type = record.getType();

Log.d(TAG, "type: " + new String(type));

// Returns the 3-bit TNF. TNF is the top-level type.

short tnf = record.getTnf();

Log.d(TAG, Short.toString(tnf));

So that is an example of reading NDEF data, but what about creating your own? In the case of the demo app, it has three editable text fi elds in which freeform text strings can be inputted. For readability, the demo app creates a JSON object out of the text fi eld inputs before encoding the values into a byte array to become the NDEF record’s payload.

c11.indd 243

c11.indd 243

5/10/2012 2:08:38 PM

5/10/2012 2:08:38 PM

244 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

JSONObject computerSpecs = new JSONObject();

// use computerSpecs.put(“specTypeName”, specTextFieldValue); to populate JSONObject

String data = computerSpecs.toString();

byte[] dataBytes = data.getBytes(Charset.forName("UTF-8"));

NdefRecord’s instantiation parameters are byte arrays, so you must also encode the custom MIME

type into a byte array:

String mimeType = "application/root.gast.playground.nfc";

byte[] mimeBytes = mimeType.getBytes(Charset.forName("UTF-8"));

And because you are not going to use the optional NDEF record identifi er, set it to be empty bytes: byte[] id = new byte[0];

From there, it is as easy as instantiating a new NdefRecord and passing in:

‰

A 3-bit TNF constant, which is a higher-level constant to indicate what type of payload

is being encoded. In this case, Ndef.TNF_MIME_MEDIA has a value of 0x00000002 and

indicates that it will follow a standards-based MIME type specifi cation. Other options

include:

‰

TNF_ABSOLUTE_URI (0x00000003)

‰

TNF_EMPTY (0x00000000)

‰

TNF_EXTERNAL_TYPE (0x00000004)

‰

TNF_UNKNOWN (0x00000005)

‰

TNF_WELL_KNOWN (0x00000001)

‰

The MIME type as a byte array

‰

The ID as a byte array

‰

The payload data as a byte array

This code creates an NdefMessage by passing in the newly created NdefRecord as a parameter: NdefRecord record = new NdefRecord(NdefRecord.TNF_MIME_MEDIA,

mimeBytes, id, dataBytes);

NdefMessage m = new NdefMessage(new NdefRecord[] { record });

An example of creating an NdefRecord for a URI would look like the following:

byte[] uriBytes = "http://m.foursquare.com/venue/128530"

.getBytes(Charset.forName("US-ASCII"));

byte[] id = new byte[0];

byte[] emptyPayload = new byte[0];

NdefRecord record = new NdefRecord(NdefRecord.TNF_MIME_MEDIA,

uriBytes, id, emptyPayload);

NdefMessage m = new NdefMessage(new NdefRecord[] { record });

For your reference, Listing 11-2 provides the full createNdefFromJson() custom method.

LISTING 11-2: NDEF creation method

public class NFCInventoryActivity extends Activity {

//...

private NdefMessage createNdefFromJson()

c11.indd 244

5/10/2012 2:08:39 PM

Android APIs x 245

{

// get the values from the form's text fields:

Editable nameField = mName.getText();

Editable ramField = mRAM.getText();

Editable processorField = mProcessor.getText();

// create a JSON object out of the values:

JSONObject computerSpecs = new JSONObject();

try

{

computerSpecs.put("name", nameField);

computerSpecs.put("ram", ramField);

computerSpecs.put("processor", processorField);

} catch (JSONException e)

{

Log.d(TAG, "Could not create JSON");

}

// create a new NDEF record and containing NDEF message using the app's

// custom MIME type:

String mimeType = "application/root.gast.playground.nfc";

byte[] mimeBytes = mimeType.getBytes(Charset.forName("UTF-8"));

String data = computerSpecs.toString();

byte[] dataBytes = data.getBytes(Charset.forName("UTF-8"));

byte[] id = new byte[0];

NdefRecord record = new NdefRecord(NdefRecord.TNF_MIME_MEDIA,

mimeBytes, id, dataBytes);

NdefMessage m = new NdefMessage(new NdefRecord[] { record });

// return the NDEF message

return m;

}

//...

}

The preceding example uses a JSON object but you can defi ne the data payload in any manner that is appropriate for your own unique applications. Just remember to keep in mind the storage size of the NFC tag you will be writing to and choose an appropriate payload schema to accommodate the size limitations.

Parsing and Reading NDEF Tags

When an NFC tag is scanned, the Android operating system automatically parses the tag meta data and payload data on the tag and encapsulates it into an Intent. Use getParcelableExtra() on the Intent object with the item keyword name NfcAdapter.EXTRA_TAG to read the Tag object.

Tag detectedTag = intent

.getParcelableExtra(NfcAdapter.EXTRA_TAG);

Log.d(TAG, tag.getID()); //log tag identifier if one is available

To fi nd out more information on this Tag object, such as its type, size, or read/write ability, you need to get an instance of an Ndef object for the given tag. If your tag was using non-NDEF data, you would instead get an instance of another supported tag technology such as IsoDep or NfcV as c11.indd 245

c11.indd 245

5/10/2012 2:08:39 PM

5/10/2012 2:08:39 PM

246 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

outlined in the Advanced NFC documentation online at http://developer.android.com/guide/

topics/nfc/advanced-nfc.html.

The following code snippet shows an example of outputting some of the more useful property getters of an Ndef object such as getType(), getMaxSize(), isWritable(), and canMakeReadOnly(): Ndef ndef = Ndef.get(detectedTag);

// Get the NDEF tag type (such as NFC_FORUM_TYPE_1 through

// NFC_FORUM_TYPE_4 and MIFARE_CLASSIC)

Log.d(TAG, ndef.getType().toString());

// Get the maximum NDEF message size in bytes

Log.d(TAG, Integer.toString(ndef.getMaxSize()));

// Determine if the tag is writable.

Log.d(TAG, ndef.isWritable() ? "true" : "false");

// Indicates whether a tag can be made read-only

Log.d(TAG, ndef.canMakeReadOnly() ? "true" : "false");

As an alternative to parsing the NDEF message from an Intent (for example, you are storing a reference to the tag and not the Intent), you could use the getNdefMessage() method on the

Ndef instance, but it’s more convenient to read the NDEF message immediately upon handling

the Intent as you see in the next example. For your reference, the usage of getNdefMessage() is shown here:

Ndef ndef = Ndef.get(detectedTag);

// Read the current NdefMessage on this tag.

try {

ndef.connect();

NdefMessage ndefMessage = ndef.getNdefMessage();

Log.d(TAG, ndefMessage.toString());

NdefRecord record = ndefMessage.getRecords()[0];

byte[] payload = record.getPayload();

Log.d(TAG, new String(payload));

// Do something with the payload here

ndef.close();

} catch (IOException e) {

Log.e(TAG, "IOException reading tag");

} catch (FormatException e) {

Log.e(TAG, "FormatException reading tag");

}

Getting Ready to Write to a Tag

Because the NFC chip on the Android phone is on a mobile device and mobile devices tend to move around, it is best to immediately attempt to write to an NFC sticker based on an Intent being fi red when a tag has moved into scanning range. If a tag is out of range and you attempt to write to it, you will get an I/O error.

Instead of registering for the more specifi c ACTION_NDEF_DISCOVERED IntentFilter, you should listen for the more generic ACTION_TAG_DISCOVERED IntentFilter. This will give you the fl exibility to format a tag that’s not already in NDEF format.

c11.indd 246

c11.indd 246

5/10/2012 2:08:40 PM

5/10/2012 2:08:40 PM

Android APIs x 247

Similar to what you already did to create a foreground dispatch for reading a tag, you will do something similar for preparing to write to a tag. The demo NFC Inventory app has an Update button that will turn on foreground dispatching.

The custom createNdefFromJson() method is covered in Listing 11-2 and the custom writeTag() method is covered in the section immediately following this code snippet.

public class NFCInventoryActivity extends Activity {

//...

// NFC-related variables

NfcAdapter mNfcAdapter;

PendingIntent mNfcPendingIntent;

IntentFilter[] mReadTagFilters;

IntentFilter[] mWriteTagFilters;

private boolean mWriteMode = false;

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState)

{

//...

// write_tag element is the Update button

findViewById(R.id.write_tag).setOnClickListener(mTagWriter);

// Handle foreground NFC scanning in this activity by creating a

// PendingIntent with FLAG_ACTIVITY_SINGLE_TOP flag

mNfcPendingIntent = PendingIntent.getActivity(this, 0, new Intent(this,

getClass()).addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP), 0);

// Create intent filter to detect any NFC tag when attempting to write

// to a tag in "write mode"

IntentFilter tagDetected = new IntentFilter(

NfcAdapter.ACTION_TAG_DISCOVERED);

// create IntentFilter arrays:

mWriteTagFilters = new IntentFilter[] { tagDetected };

}

/*

* This is called for activities that set launchMode to "singleTop" in their

* package, or if a client used the FLAG_ACTIVITY_SINGLE_TOP flag when

* calling startActivity(Intent).

*/

@Override

protected void onNewIntent(Intent intent)

{

//...

if (intent.getAction().equals(NfcAdapter.ACTION_TAG_DISCOVERED))

{

Tag detectedTag = intent

.getParcelableExtra(NfcAdapter.EXTRA_TAG);

writeTag(createNdefFromJson(), detectedTag);

c11.indd 247

c11.indd 247

5/10/2012 2:08:40 PM

5/10/2012 2:08:40 PM

248 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

}

//...

}

private void enableTagWriteMode()

{

mWriteMode = true;

mNfcAdapter.enableForegroundDispatch(this, mNfcPendingIntent,

mWriteTagFilters, null);

}

private View.OnClickListener mTagWriter = new View.OnClickListener()

{

@Override

public void onClick(View arg0)

{

enableTagWriteMode();

}

};

//...

}

Writing to the Tag

Once you have an NdefMessage object by either creating your own (refer to the “NdefMessage and NdefRecord” section) or storing the NdefMessage from a previously scanned NFC tag, writing to a tag is quite straightforward with the Android SDK.

First, you must open a connection to the Ndef object of a Tag using the connect() method to allow I/O operations on the NFC tag. Once the connection is made, you can write to the tag by using the writeNdefMessage() method and passing in an NdefMessage object. Optionally, you can use makeReadOnly() to write-protect the tag if the tag technology supports it. Finally, use the close() method to close the I/O connection.

The following is the workfl ow in its simplest form:

Ndef ndef = Ndef.get(detectedTag);

// Read the current NdefMessage on this tag.

try {

ndef.connect();

// Overwrite the NdefMessage on this tag

ndef.writeNdefMessage(ndefMessage);

// Make a tag read-only.

ndef.makeReadOnly();

ndef.close();

} catch (IOException e) {

Log.e(TAG,"IOException reading tag");

c11.indd 248

c11.indd 248

5/10/2012 2:08:40 PM

5/10/2012 2:08:40 PM

Android APIs x 249

} catch (FormatException e) {

Log.e(TAG,"FormatException reading tag");

}

However, as with any operation that requires I/O communications, many scenarios can cause the write process to fail, such as:

‰

Attempting to write to a tag that’s already read-only.

‰

Attempting to write to a tag that cannot fi t the data in your NdefMessage object.

‰

Attempting to write to a tag that does not support NDEF.

‰

I/O errors such as moving the device away from the NFC tag during the write process.

Also, if the tag that you are writing to is not already formatted to accept NDEF data (such as a MIFARE Classic tag), it must be formatted fi rst. Following is the custom writeTag() method used in the demo NFC Inventory app, which you can use for all of your projects, too:

LISTING 11-3: Write NDEF data to tag method

boolean writeTag(NdefMessage message, Tag tag)

{

int size = message.toByteArray().length;

try

{

Ndef ndef = Ndef.get(tag);

if (ndef != null)

{

ndef.connect();

if (!ndef.isWritable())

{

Toast.makeText(this,

"Cannot write to this tag. This tag is read-only.",

Toast.LENGTH_LONG).show();

return false;

}

if (ndef.getMaxSize() < size)

{

Toast.makeText(

this,

"Cannot write to this tag. Message size (" + size

+ " bytes) exceeds this tag's capacity of "

+ ndef.getMaxSize() + " bytes.",

Toast.LENGTH_LONG).show();

return false;

}

ndef.writeNdefMessage(message);

Toast.makeText(this,

 continues

c11.indd 249

c11.indd 249

5/10/2012 2:08:40 PM

5/10/2012 2:08:40 PM

250 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

LISTING 11-3 (continued)

"A pre-formatted tag was successfully updated.",

Toast.LENGTH_LONG).show();

return true;

} else

{

NdefFormatable format = NdefFormatable.get(tag);

if (format != null)

{

try

{

format.connect();

format.format(message);

Toast.makeText(

this,

"This tag was successfully formatted and updated.",

Toast.LENGTH_LONG).show();

return true;

} catch (IOException e)

{

Toast.makeText(

this,

"Cannot write to this tag due to I/O Exception.",

Toast.LENGTH_LONG).show();

return false;

}

} else

{

Toast.makeText(

this,

"Cannot write to this tag. This tag does not support NDEF.",

Toast.LENGTH_LONG).show();

return false;

}

}

} catch (Exception e)

{

Toast.makeText(this,

"Cannot write to this tag due to an Exception.",

Toast.LENGTH_LONG).show();

}

return false;

}

If you want to explore writing non-NDEF data, please refer to the Android SDK documentation for the android.nfc.tech classes located on developer.android.com.

Putting it All Togeth er

Throughout this chapter you’ve been gathering the bits and pieces needed to put together a simple NFC inventory tracker, so here’s a quick review.

c11.indd 250

c11.indd 250

5/10/2012 2:08:41 PM

5/10/2012 2:08:41 PM

Future Considerations x 251

In the Android manifest XML fi le, use the <uses-feature android:name="android.hardware.

nfc"/> and <uses-permission android:name="android.permission.NFC" /> options to allow your app to use NFC. Also, create an intent fi lter with an action name of "android.nfc.action

.NDEF_DISCOVERED" to handle NDEF-formatted NFC tags when the application is not open on your device.

In your main Activity, get a reference to the NfcAdapter and enable foreground dispatching of scanned tags by passing in a PendingIntent and a set of IntentFilter arrays via the enableForegroundDispatch() method.

Scanned NFC tags automatically get encapsulated into Intents, so read the data on them by applying getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES) on those Intents to extract

out the NDEF message. Because there’s typically only one NDEF message and one NDEF record

with the tags that you’ll be writing, you can quickly get an NdefRecord payload by getting the fi rst record of an NdefMessage, for example, ndefMessage.getRecords()[0].getPayload();.

Writing to a tag typically means encoding a TNF constant, a MIME type, and payload into separate byte arrays and creating an NdefRecord and NdefMessage out of them. Use the writeNdefMessage() method on an Ndef object of a Tag to write content to the tag.

The NFC Inventory demo application puts these all together and the only extra code is related to handling UI elements. Getting started with the NFC API is simple! Find the full manifest, main Activity code, and supporting layout and string XML fi les of the demonstration app in the supplied example source code and app of this book.

FUTURE CONSIDERATIONS

In addition to the previously covered Android APIs, what else

should you put consideration into to make a successful NFC project?

NFC N-Mark

To make yo ur NFC application or product more visible, you may

want to download the N-Mark, shown in Figure 11-10, from the

NFC Forum. This logo is used in much the same way you might use

FIGURE 11-10: NCF Forum’s

the WiFi or Bluetooth logos. Consider placing the N-Mark on the

N-Mark. The “N-Mark” logo is a

actual NFC sticker to help the users fi nd the sweet spot for placing

trademark or registered trade-

their mobile device for scanning.

mark of NFC Forum, Inc.

Visit http://www.nfc-forum.org/resources/N-Mark/ for more information. You must agree to a click-through license in order to download a zip package of various image formats.

Peer-to-Peer NFC Shar ing

With NXP Semiconductors announcing in a November 2011 press release that they have been

designed into 90 mobile devices, the future for NFC-enabled interactions is only going to change from being novel to becoming mainstream.

c11.indd 251

c11.indd 251

5/10/2012 2:08:42 PM

5/10/2012 2:08:42 PM

252 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

As more devices become NFC enabled, we can move from simply thinking of NFC as being a pas-

sive, one-sided conversation into one that is peer-to-peer. Android Beam, released with the latest Android 4.0 release, should open up new possibilities for interactions on the go.

With the newest Android APIs, if a specifi ed activity is in the foreground and it is touched to another NFC-enabled device with its screen unlocked, a prompt on the device running the

activity will appear requesting to “beam” to the other device. The receiver can then accept or deny the beam request.

Depending on the data format, the receiving phone does not even need to be running Ice Cream Sandwich. It could be a Nexus S running Gingerbread!

Peer-to-Peer Android APIs

Iterating upon the inventory tracking example, imagine that you are in the middle of updating a computer, but you are interrupted by an emergency. You must leave immediately but don’t want to lose your edits to the text fi elds you’ve already made. You have your coworker come over and beam him or her your current text fi eld values.

You need to be aware of only a few new APIs to get your app enabled to send peer-to-peer NFC

data, so if you already have an app NFC-ready, it should only be a few lines of code to get your NFC data sharing working.

In API level 10, a pair of methods were introduced in the NfcAdapter class for peer-to-peer sharing: enableForegroundNdefPush() and disableForegroundNdefPush(). These two methods

have since been deprecated in API level 14 to make way for setNdefPushMessage() to automatically beam a predefi ned NDEF message and setNdefPushMessageCallback() to construct the

NdefMessage object on demand before beaming.

To take advantage of Android Beam, your activity must implement the android.nfc.

NfcAdapter.CreateNdefMessageCallback interface, which means you must implement a creat-

eNdefMessage() method in your Activity.

The following shows how little code you need to add to get the inventory demo working peer-to-peer by leveraging the already existing createNdefFromJson() method! The receiving phone will read the beaming phone exactly like a regular NFC sticker.

import android.nfc.NfcAdapter.CreateNdefMessageCallback;

public class NFCInventoryActivity extends implements

CreateNdefMessageCallback

{

//...

NfcAdapter mNfcAdapter;

//...

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {

//...

c11.indd 252

c11.indd 252

5/10/2012 2:08:42 PM

5/10/2012 2:08:42 PM

Go Forth and NFC! x 253

// get an instance of the context's cached NfcAdapter

// check if NFC is enabled

// register the callback

// usage: setNdefPushMessageCallback(callback, activity,

// optionalExtraActivities)

 mNfcAdapter.setNdefPushMessageCallback(this,this);

//...

}

@Override

public NdefMessage createNdefMessage(NfcEvent event) {

NdefMessage msg = createNdefFromJson();

return msg;

}

//...

}

GO FORTH AND NFC!

This chapter touched upon some interesting implementations of NFC already out there such as Fruit Ninja’s battle mode, Hashable’s networking handshake, Touchanote’s quick launch into Evernote feature, Foursquare check-ins, and Android Beam.

Here are some additional ideas to get you excited to build more NFC-enabled applications for Android!

‰

Other inventory tracking systems.

‰

Keyless door entry systems.

‰

Two-step verifi cation authentication in which you require a passcode plus a physical NFC-

enabled object such as phone or tag.

‰

Time tracking systems: imagine putting your phone next to your desk to sign in and remov-

ing it to sign out.

‰

Notifi cation alarm diffuser: automatically deactivate extraneous sounds originating from

your phone when you’ve already got e-mail and calendar notifi cations on your desktop

computer.

‰

Money exchange applications: keep tabs with friends, or at bars or small businesses.

‰

Customer and table tracking applications: great for restaurants that use a number-based

ordering system.

‰

Frequent shopper and loyalty card replacement using peer-to-peer mode.

‰

Secure coupons for high-end items to thwart counterfeiting.

‰

Innovative retail shopping experiences: Best Buy already attaches QR codes to its product

displays that link to the product page on the Best Buy mobile website, so imagine if it added NFC stickers too. Other retailers should think about using stickers in-store to add meta data to their products to enable potential buyers to build side-by-side comparison charts for products, or to add products to online shopping carts and wish lists.

c11.indd 253

c11.indd 253

5/10/2012 2:08:43 PM

5/10/2012 2:08:43 PM

254 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

‰

Speed up location-based check-ins to services such as Foursquare, Gowalla, or Google Places.

‰

Interactive toys.

‰

NFC-enabled media (music and video) centers.

‰

“Smart” posters and advertisements.

‰

Special events promotions: imagine getting people to visit physical locations to unlock content such as game levels or free music tracks.

What will you make with these new NFC features?

SUMMARY

That was a long journey through the rocky landscape of RFID and NFC technology. Hopefully by now you should remember two key things about the technology itself:

‰

NFC is the special RFID radio frequency of 13.56MHz, and

‰

Always use NDEF data for ease of development on the Android platform!

In terms of implementing NFC in your Android applications, you should have a fi rm grasp on the multiple spots to add your intents fi lters and how to read/write to NFC tags. And, always remember the importance of enabling foreground dispatching.

Moving forward, keep in mind how easy it is to create peer-to-peer experiences with the Android NFC and get your app ready for the steady increase of NFC-enabled devices ready to hit the consumer market over the next 1–3 years. The future looks very bright for NFC!

Despite the potential usefulness of NFC technology, there will likely be some objects that an app needs to detect that are not augmented with NFC tags. The next two chapters describe how to detect such objects using the camera.

c11.indd 254

c11.indd 254

5/10/2012 2:08:43 PM

5/10/2012 2:08:43 PM

12

Using the Camera

WHAT’S IN THIS CHAPTER?

‰

Capturing images with the Android camera

‰

Creating your own Activity for controlling the camera

‰

Capturing images continuously during camera preview

‰

Creating a simple barcode reader that uses camera preview

The Android platform creates an incredible opportunity for image processing, because it offers an image processing system that is universally available, handheld, inexpensive, easy to program, networked, and provides processing power equivalent to a low-end personal computer.

This chapter shows you how to begin to make use of this remarkable platform by focusing on

image processing that happens immediately after capturing the image.

USING THE CAMERA ACTIVITY

If all you want to do is capture an image, things could not be much easier. All you have

to do is create an Intent with the action MediaStore.ACTION_IMAGE_CAPTURE, passing

it a fi lename as extended data with the name MediaStore.EXTRA_OUTPUT. Then call

startActivityForResult(), passing your Intent and an identifi er identifying this Intent

to your onActivityResult() method.

What this does is fi re up the camera application, giving the user the opportunity to control the camera parameters themselves and take a picture. The picture is stored into your chosen fi le, and your onActivityResult() method is called when it is done.

Listing 12-1 shows the key steps, and SimpleCaptureActivity in the provided code gives you

the complete application.

c12.indd 255

c12.indd 255

5/10/2012 2:09:44 PM

5/10/2012 2:09:44 PM

256 x CHAPTER 12 USING THE CAMERA

LISTING 12-1: Taking a photo

private final int PICTURE_ACTIVITY_CODE = 1;

private final String FILENAME = "sdcard/photo.jpg";

private void launchTakePhoto()

{

Intent intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);

mFile = new File(FILENAME);

Uri outputFileUri = Uri.fromFile(mFile);

intent.putExtra(MediaStore.EXTRA_OUTPUT, outputFileUri);

startActivityForResult(intent, PICTURE_ACTIVITY_CODE);

}

protected void onActivityResult(int requestCode, int resultCode,

Intent data)

{

if (requestCode == PICTURE_ACTIVITY_CODE)

{

if (resultCode == RESULT_OK)

{

ImageView imageView =

(ImageView) findViewById(R.id.imageView1);

Uri inputFileUri = Uri.fromFile(mFile);

imageView.setImageURI(inputFileUri);

}

}

}

If a picture is all you need, that’s all you need to do. But you probably want to do more, and that’s what the rest of this chapter is about. In reading it, you’ll learn how to write an Activity that controls every aspect of the camera — focus, fl ash, white balance, and so on — and provides the user with a live preview for feedback. You then learn how to capture and use the preview image, eventually understanding how a complete image processing program, for barcode capture, works.

Controlling the Camera with Your Own Activity

Writing your own camera Activity gives you the opportunity to control everything there is to control about the camera. The developers of Android have provided a useful starting point in the CameraPreview Activity that is included in the API Demos sample code (http://developer

.android.com/resources/samples/ApiDemos/src/com/example/android/apis/graphics/

index.html), which is the basis for this chapter’s fi rst program that controls the camera, called LiveCapture. This section shows how this Activity is constructed and then extends it to control more of the camera functions.

Android gives hardware developers maximum freedom in implementation, and nowhere is this truer than in the camera. Different Android platforms have zero, one, or more cameras, and each camera can have different capabilities. It is therefore essential that you write your Activity in such a way that it adapts to the cameras available to it. If you don’t do that, at best you’ll be limiting what your Activity can do — and, more likely, your Activity will crash when it encounters something it doesn’t expect.

c12.indd 256

c12.indd 256

5/10/2012 2:09:49 PM

5/10/2012 2:09:49 PM

Using the Camera Activity x 257

Claiming and Releasing a Camera

The fi rst thing LiveCaptureActivity has to do is to determine which camera it will

capture with — remember, there can be more than one! The basic process is shown in

Listing 12-2.

LISTING 12-2: Choosing a camera

mNumberOfCameras = Camera.getNumberOfCameras();

CameraInfo cameraInfo = new CameraInfo();

for (int i = 0; i < mNumberOfCameras; i++)

{

Camera.getCameraInfo(i, cameraInfo);

if (cameraInfo.facing == CameraInfo.CAMERA_FACING_BACK)

{

mDefaultCameraId = i;

}

}

if (mDefaultCameraId == -1)

{

// test for no cameras

if (nCameras > 0)

{

mDefaultCameraId = 0;

} else

{

// nothing can be done; tell the user then exit

Toast toast = Toast.makeText(getApplicationContext(),

R.string.no_cameras, Toast.LENGTH_LONG);

toast.show();

finish();

}

}

As Listing 12-2 shows, you start by determining the number of cameras using getNumberOfCameras().

Then you test each camera, reading its characteristics into a CameraInfo object instance created for this purpose. If at least one is facing away from the user (that is, facing toward the back of the Android device), LiveCapture chooses it.

The if statement following the camera-testing loop handles the case where no suitable camera is found. If this is because no camera is backward-facing, you use the fi rst camera, if there is one. If the device has no camera at all, you give up.

Before looking into the internals of how the preview is shown to the user, there is one additional part of the setup. Camera programs must be well behaved, because many programs

may want to use the camera, and only one can use it at a time. As an Android programmer,

you know that your Activity can be stopped permanently whenever it has been paused.

That is why it is essential to release the camera when your Activity is paused, as shown in Listing 12-3.

c12.indd 257

c12.indd 257

5/10/2012 2:09:49 PM

5/10/2012 2:09:49 PM

258 x CHAPTER 12 USING THE CAMERA

LISTING 12-3: Releasing the camera

protected void onPause() {

super.onPause();

if (mCamera != null) {

mPreview.setCamera(null);

mCamera.release();

mCamera = null;

}

}

If you don’t release the camera, it is possible that your Activity could be terminated while still owning the camera — not a good situation, and very likely to result in a RuntimeException that will be hard to interpret (because it will happen when your program is no longer

running).

Likewise, when your Activity starts, you’ll want to resume camera ownership, as shown in

Listing 12-4.

LISTING 12-4: Opening the camera

protected void onResume()

{

super.onResume();

mCamera = Camera.open(mDefaultCameraId);

mPreview.setCamera(mCamera);

}

This is all you have to do to manage the selection and ownership of the camera. The next section discusses how the camera preview display works.

The Preview View

Preview is a View that shows a live preview of the camera image. The full code is in Listing 12-11 at the end of this chapter. You can use it like any other View, inserting it into a Layout by including it an XML layout description fi le, as LiveCapture does in its main.XML:

<jjil.android.Preview

android:id="@+id/preview1"

android:layout_width="match_parent"

android:layout_height="match_parent">

</jjil.android.Preview>

The key thing to understand about Preview (and showing camera previews in Android in gen-

eral) is that it shows the camera preview in a SurfaceView fi eld. SurfaceView is the one class in Android that can show a camera preview. You must have a SurfaceView if you are going to use camera preview.

Preview creates its SurfaceView in its constructor, as shown in Listing 12-5.

c12.indd 258

c12.indd 258

5/10/2012 2:09:49 PM

5/10/2012 2:09:49 PM

Using the Camera Activity x 259

LISTING 12-5: Creating the SurfaceView

public class Preview extends ViewGroup implements SurfaceHolder.Callback {

private SurfaceHolder mHolder;

private SurfaceView mSurfaceView;

public Preview(Context context, AttributeSet attributeSet) {

super(context, attributeSet);

mSurfaceView = new SurfaceView(context, attributeSet);

addView(mSurfaceView);

// Install a SurfaceHolder.Callback so we get notified when the

// underlying surface is created and destroyed.

mHolder = mSurfaceView.getHolder();

mHolder.addCallback(this);

mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

}

The other thing you’ll notice about Preview’s constructor is that it creates a SurfaceHolder (mHolder) to manage the SurfaceView. mHolder is the object that is used to communicate with the camera (through a callback in Preview) and connect it to the SurfaceView. Note that mHolder’s type is set to SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS. In some releases of Android, this was required for a SurfaceView used to show a camera preview (in later releases it is ignored).

Look next at the surfaceCreated() and surfaceDestroyed() methods in Preview, shown in

Listing 12-6. These are the callback methods the SurfaceHolder uses to communicate with the Preview class. You told the SurfaceHolder about them when you invoked mHolder’s addCallback() method in Listing 12-5. The camera can’t start using the SurfaceView until it has been created, which doesn’t happen immediately. So the surfaceCreated() callback connects the camera to the SurfaceView through its SurfaceHolder, and surfaceDestroyed() terminates any camera preview that is going on.

LISTING 12-6: SurfaceHolder callback methods

public void surfaceCreated(SurfaceHolder holder) {

try {

if (mCamera != null) {

mCamera.setPreviewDisplay(holder);

}

} catch (IOException exception) {

Log.e(TAG, "IOException caused by setPreviewDisplay()", exception);

}

}

public void surfaceDestroyed(SurfaceHolder holder) {

if (mCamera != null) {

mCamera.stopPreview();

}

}

c12.indd 259

c12.indd 259

5/10/2012 2:09:49 PM

5/10/2012 2:09:49 PM

260 x CHAPTER 12 USING THE CAMERA

The rest of the Preview class deals with connecting to a particular camera, and, especially, choosing an appropriate preview size. It is important to realize that when you use camera preview you’re ceding control of part of the Android display to the camera. That is the reason for the use of the SurfaceHolder and the callbacks that allow it to tell Preview when the SurfaceView is ready.

SurfaceHolder mediates between the application, embodied in the Preview class, and the camera.

The image the camera gives to SurfaceHolder for display (and, as you’ll see later, for image processing) is supplied by the camera in one of a few fi xed sizes, called preview sizes. Cameras support different preview sizes because an image’s use determines its shape and size (for example, a standard TV image has a small size and a 4:3 aspect ratio, whereas an HDTV image has a large size and a 16:9 aspect ratio). Android’s graphics hardware can stretch the preview image to fi t in whatever View you supply — but you don’t want to change its aspect ratio (that would distort the image) and you do want to exactly fi ll the space you have for Preview, if possible. In other words, the aspect ratio of the camera image should match the aspect ratio of Preview.

Getting the aspect ratios to match is tricky because the camera that is being shown in the preview can change as the result of calls to the setCamera() method, and each camera supports different preview sizes. At the same time, the size of the SurfaceView object can change as the display is rotated and Android rebuilds the user interface.

Preview makes setCamera() available to choose a particular camera to preview, as shown

in Listing 12-7. All setCamera() does is read the supported preview sizes from the camera

and then call requestLayout(). Preview’s overrides of onLayout() and onMeasure() do the

actual work of choosing an appropriate preview size and starting the camera using it based on mSupportedPreviewSizes.

LISTING 12-7: setCamera

public void setCamera(Camera camera) {

mCamera = camera;

if (mCamera != null) {

mSupportedPreviewSizes =

mCamera.getParameters().getSupportedPreviewSizes();

requestLayout();

}

}

The computation needed to choose the best preview size from the ones supported by the camera is done in getOptimalPreviewSize(), which chooses the preview size that matches the aspect ratio (if possible) or, failing that, the one that is closest to the desired height (which will at least give a preview image about the same resolution as your display area). You call getOptimalPreviewSize() from switchCamera() whenever the camera changes and you use the computed size to override

onLayout() and onMeasure(). onLayout() stretches the camera preview image to fi ll Preview’s area as much as possible, centering the image if it doesn’t completely fi ll the space. Finally, surfaceChanged() sets the camera parameters to this size, and starts preview.

 Never try to change the preview size while camera preview is running. If you do,

 you’ll get a RuntimeException .

c12.indd 260

c12.indd 260

5/10/2012 2:09:49 PM

5/10/2012 2:09:49 PM

Using the Camera Activity x 261

Note that you don’t actually interact with the camera drawing code in any way, for example by overriding onDraw(). This is inaccessible, and under the control of the SurfaceHolder. The only way you can alter the display in the preview image area is by putting another (transparent) view in front of it in the z-order and drawing on that. You are also not allowed to modify the camera preview image in other ways common in Android, for example by making it partially transparent.

Controlling the Camera

LiveCapture controls just one camera parameter, the preview size, but you might want to control many camera parameters. Each camera allows you to control some or none of these parameters. The method of controlling them is similar to the technique used in LiveCapture:

1.

Take control of the camera and use getParameters() to get a Camera.Parameters object

for it.

2. Interrogate

the

Camera.Parameters object using get methods to determine what the camera

supports.

3.

Choose appropriate settings based on the requirements of the application and user.

4.

Assign the chosen values by modifying the Camera.Parameters object using set methods and

then call setParameters().

Most camera parameters can be changed while camera preview is running without causing

problems, but you have to stop and start camera preview whenever you switch cameras — otherwise you’ll get the dreaded RuntimeException.

The next section examines how LiveCapturePlus controls more of the camera parameters. To keep things simple, you give the user a button for each different parameter; pressing the button advances the parameter to the next legal value.

Orientation

If you play with LiveCapture on an Android device you’ll notice some disconcerting behavior: in some orientations, the preview image is sideways. This is because Android automatically rotates everything on the screen — text and so on — but it doesn’t automatically do this for the camera preview. That is left for the application to control. You’ll do this in an improved version of LiveCapture, called LiveCapturePlus, which will also allow you to control more of the camera hardware.

The relationship between the display orientation and the camera orientation is diffi cult to understand because it involves rotation around two different axes, of the camera and the display. Android gives you two measurements to determine how to orient the image:

‰

The current orientation of the display, from getDefaultDisplay().getRotation(). It is

measured in a clockwise direction facing the display.

‰

The camera orientation, which is defi ned in the Android documentation as the “angle

that the camera image needs to be rotated clockwise so it shows correctly on the display

in its natural orientation.” It is a fi eld in the CameraInfo object, which is intrinsic to the camera — it doesn’t change as the Android device is rotated.

c12.indd 261

c12.indd 261

5/10/2012 2:09:49 PM

5/10/2012 2:09:49 PM

262 x CHAPTER 12 USING THE CAMERA

Camera orientation needs more explanation. Digital cameras use an image sensor, which captures the image and supplies it as an array of pixels, and in which you may think of coordinate (0, 0) as the top-left corner, as shown in Figure 12-1. However, the pixel at (0, 0) could have come from any corner of the image sensor, depending on the camera design — Figure 12-1 shows an image sensor in which the pixel at (0, 0) comes from the top- right corner of the sensor. So you need to know how much the pixel array must be rotated so that it lines up again with the image sensor. This is the camera orientation.

You might think that the camera orientation in Figure 12-1 is 90°, but this actually depends on whether the camera is on the front or the back of the Android device. If the camera is on the back of the device, rotating the image 90° clockwise around the camera axis is correct. But if the camera is on the front of the device, the camera axis points the other way, so a 90° clockwise rotation will cause the image to be displayed upside down. You actually need to make a 90° counter- clockwise rotation, which is the same thing as a 270° rotation clockwise.

First row

First row

Capture

Image pixel array

Image sensor

Rotate

Camera orientation

FIGURE 12-1: Camera orientation

The calculations for this are done in setCameraDisplayOrientation(), from ManagedCamera

Activity (this is a simplifi ed version of http://developer.android.com/reference/android/

hardware/Camera.html#setDisplayOrientation(int)), shown in Listing 12-8. (LiveCapturePlus

and the rest of the samples in this chapter use this Activity by deriving their own activities from it.) You start by converting the current display orientation from an enumerated to a numeric value. Now, think of the display orientation as doing some of the work required to get the camera image oriented correctly — after all, the user has rotated the display (and image) for you! You have to compute what additional rotation you need. In the case of a backward-facing camera, all you have to do is take the difference between the rotation you want (that is, the camera orientation), and the display orientation.

The calculation is the same for a frontward-facing camera, but you start with a counter-clockwise rotation by the camera orientation (that is, 360 minus the camera orientation). You then call setDisplayOrientation() to apply the calculated rotation to the camera image.

LISTING 12-8: setCameraDisplayOrientation

public void setCameraDisplayOrientation() {

CameraInfo cameraInfo = new CameraInfo();

Camera.getCameraInfo(mCameraCurrentlyLocked, cameraInfo);

c12.indd 262

c12.indd 262

5/10/2012 2:09:50 PM

5/10/2012 2:09:50 PM

Using the Camera Activity x 263

int rotation = getWindowManager().getDefaultDisplay()

.getRotation();

int degrees = 0;

switch (rotation) {

case Surface.ROTATION_0: degrees = 0; break;

case Surface.ROTATION_90: degrees = 90; break;

case Surface.ROTATION_180: degrees = 180; break;

case Surface.ROTATION_270: degrees = 270; break;

}

int desiredRotation =

(cameraInfo.facing == Camera.CameraInfo.CAMERA_FACING_FRONT) ?

(360 - cameraInfo.orientation) : cameraInfo.orientation;

int result = (desiredRotation - degrees + 360) % 360;

mCamera.setDisplayOrientation(result);

}

Zoom

LiveCapturePlus determines whether it should enable the camera zoom button with a simple test in switchCamera():

mButtonZoom.setEnabled(cameraParameters.isZoomSupported()

&& cameraParameters.getMaxZoom() > 0);

The value returned by getMaxZoom() can vary depending on the preview size, which is why

LiveCapturePlus calls it after determining how it’s going to show the preview, and the preview size, in setCameraDisplayOrientation().

 You should never call getMaxZoom() without calling isZoomSupported()

 fi rst to make sure it is allowed. Some cameras do not support zoom at all

 when using certain camera preview sizes, so always test isZoomSupported()

 after setting the preview size. Also, some cameras return 0 for getMaxZoom()

 to indicate that zoom is not supported, rather than returning false for

isZoomSupported() .

In this example, the actual control of zoom is done in the onClickListener for the zoom button: Camera.Parameters cameraParameters = mCamera.getParameters();

cameraParameters.setZoom((cameraParameters.getZoom() + 1)

% cameraParameters.getMaxZoom() + 1);

mCamera.setParameters(cameraParameters);

All that’s going on here is you are advancing zoom to the next level every time the user presses the zoom button. The zoom value is an arbitrary integer value. The actual magnifi cation ratios from zoom are available in getZoomRatios().

c12.indd 263

c12.indd 263

5/10/2012 2:09:50 PM

5/10/2012 2:09:50 PM

264 x CHAPTER 12 USING THE CAMERA

Focus

Focus is defi ned as the distance at which an image of an object will be as sharp as possible. On Android devices focus is controlled by a string, which makes it possible to describe lots of different options for setting focus. You can set it at infi nity, at a fi xed value, or for close-up use with a macro lens (you see how to use autofocus later in this chapter).

First, a word on the importance of the macro lens. In many things you’ll want to do with image processing on Android, you’ll want to look at things close to the camera — barcodes, text, and so on. Doing this with a normal lens is next to impossible, because when you move the camera close to the object, it goes out of focus. You either have to move the camera far enough away so things are focused (but then the image is tiny) or move it up close to get a big enough image (but then it is out of focus.) That is why it is so wonderful that Android devices often have a macro lens, which is designed to focus well at close range, and provide good magnifi cation.

The process for using focus is similar to that for zoom. When you switch to a new camera, you enable focus if any supported focus modes exist:

mlszFocusModes = cameraParameters.getSupportedFocusModes();

mButtonFocus.setEnabled(mlszFocusModes.size() > 0);

You then sequence through the various focus modes supported on the camera in the onClick()

handler for mButtonFocus:

Camera.Parameters cameraParameters = mCamera.getParameters();

mnFocusMode = (mnFocusMode + 1) % mlszFocusModes.size();

cameraParameters.setFocusMode(mlszFocusModes.get(mnFocusMode));

mCamera.setParameters(cameraParameters);

Switching Cameras

The onClick() code for mButtonSwitch uses the switchCamera() method in the Preview class to switch from one camera to the next. It also manages its internal state (which buttons are enabled and so on). The important thing here is to stop camera preview before switching cameras, and to release the previous camera before you open the next.

You should start the camera preview again only after setting the camera preview size and display orientation. onClick() calls the advanceCamera() method in ManageCameraActivity to do this: protected void advanceCamera()

{

mCamera.stopPreview();

mCamera.release();

mDefaultCameraId = (mDefaultCameraId + 1) % mNumberOfCameras;

mCamera = Camera.open(mDefaultCameraId);

setCameraDisplayOrientation();

}

Flash

The fl ash modes that may be available on an Android camera are shown in Table 12-1. Flash is usually not available in live capture so the code for controlling it in LiveCapturePlus, generally, does not have any effect, but the process for controlling the fl ash is illustrated.

c12.indd 264

c12.indd 264

5/10/2012 2:09:50 PM

5/10/2012 2:09:50 PM

Using the Camera Activity x 265

RuntimeExceptions WHEN SETTING CAMERA PARAMETERS

 One quirk of fl ash — and some of the other camera parameters, such as white

 balance — is that setting them may generate a RuntimeException , even though

 you are using a “legal” mode. This is apparently because the camera is in a state

 that is inconsistent with the requested parameter. This use of RuntimeException

 seems to be largely undocumented. The decision to generate RuntimeExceptions

 may be up to the camera manufacturer. This is the reason for catching (and

 ignoring) the RuntimeException in the onClick listener. The application could also report the failure to set the camera parameter to the user, or record that this

 camera does not support the requested parameter and avoid its use in the future.

TABLE 12-1: Android Flash Modes

FLASH MODE

DESCRIPTION

FLASH_MODE_AUTO

Flash is used if required

FLASH_MODE_OFF

Flash will never be used

FLASH_MODE_ON

Flash will be fi red during snapshot

FLASH_MODE_RED_EYE

If required, fl ash will be pre-fi red before capture to reduce red-eye,

then fi red during snapshot

FLASH_MODE_TORCH

Flash is on continuously

Other Camera Parameters

Cameras support many other controllable parameters, which are also controlled in

LiveCapturePlus.

White Balance

The effect of ambient light on the colors of a captured image is striking — without white balance compensation, an indoor scene illuminated with incandescent light looks orange — and one way to compensate for that is by using the camera’s white balance function.

The settings supported in the CameraParameters class for white balance are shown in the following list. LiveCapturePlus controls white balance in the same way as focus, fl ash, and zoom.

‰

WHITE_BALANCE_AUTO

‰

WHITE_BALANCE_CLOUDY_DAYLIGHT

‰

WHITE_BALANCE_DAYLIGHT

‰

WHITE_BALANCE_FLUORESCENT

‰

WHITE_BALANCE_INCANDESCENT

c12.indd 265

c12.indd 265

5/10/2012 2:09:50 PM

5/10/2012 2:09:50 PM

266 x CHAPTER 12 USING THE CAMERA

‰

WHITE_BALANCE_SHADE

‰

WHITE_BALANCE_TWILIGHT

‰

WHITE_BALANCE_WARM_FLUOURESCENT

Except in specifi c situations where you know a lot about the scene, it is best to leave the default white balance setting (WHITE_BALANCE_AUTO, if supported) because you usually don’t know what the ambient light is. If you are really concerned about color you should use algorithmic white balance to try to compensate for lighting changes that may not be detectable with the camera’s automatic settings. Without compensation, colors can be skewed toward the color of the light, and, therefore, diffi cult to recognize. Some such techniques are discussed later.

Advanced Focus and Metering Settings

More advanced cameras allow the defi nition of specifi c areas in the image to control focus and exposure, in order to get the best possible image of an area of interest.

We will leave the choice of these settings to professional photographers, who make use of similar settings when getting the best possible image of a scene. Your program will probably not have access to the information needed to choose appropriate settings.

Scene Mode

Some cameras allow you to use “scene mode” to choose collections of preset values such as white balance, focus, metering, and fl ash. This allows you to take the best possible pictures whether you are taking a portrait, in a dark theater, or at a party. The scene modes available in Android are as follows:

‰

SCENE_MODE_ACTION

‰

SCENE_MODE_AUTO

‰

SCENE_MODE_BARCODE

‰

SCENE_MODE_BEACH

‰

SCENE_MODE_CANDLELIGHT

‰

SCENE_MODE_FIREWORKS

‰

SCENE_MODE_LANDSCAPE

‰

SCENE_MODE_NIGHT

‰

SCENE_MODE_NIGHT_PORTRAIT

‰

SCENE_MODE_PARTY

‰

SCENE_MODE_PORTRAIT

‰

SCENE_MODE_SNOW

‰

SCENE_MODE_SPORTS

‰

SCENE_MODE_STEADYPHOTO

‰

SCENE_MODE_SUNSET

‰

SCENE_MODE_THEATRE

c12.indd 266

c12.indd 266

5/10/2012 2:09:51 PM

5/10/2012 2:09:51 PM

Creating a Simple Barcode Reader x 267

You see how to use scene mode later in the barcode example program. It is best to use an appropriate scene mode, when available, for the type of image being captured if that is known, because you can expect that the camera manufacturer made reasonable choices for the scene type. For example, SCENE_

MODE_FIREWORKS would turn off the fl ash and set for maximum exposure time. SCENE_MODE_PARTY

would turn fl ash to FLASH_MODE_RED_EYE and set focus settings to take portraits and group shots.

GPS

Images captured and stored in fi les in Android have embedded GPS coordinates, which is useful for integration with map applications on the web. The setGps* calls enable you to control the GPS values written to the images.

Color Eff ects

For entertainment purposes, some cameras allow the color values in the image to be manipulated in various ways, such as giving everything a sepia tone, or making it look like a photographic negative.

These modes are of little use for the purposes of this chapter.

CREATING A SIMPLE BARCODE READER

Now it’s time to have some fun and build an interesting image processing application. Image processing is much easier when your application is trying to interpret something that “wants” to be interpreted, and the most common thing that is designed to be interpreted with image processing techniques is a barcode. BarcodeReaderActivity is a complete application that captures a camera preview image, decodes it, and attempts to read an EAN-13 barcode (the most common kind of barcode) from it.

BarcodeReaderActivity includes four interesting features not previously discussed:

‰

Decoding the barcode

‰

Autofocus

‰

Processing — not just displaying — the camera preview image

‰

Detecting the barcode and extracting it for decoding

The following sections explore each of these features in turn.

Understanding Barcodes

You’ve seen barcodes on many products. The most common kind of barcode, the one-dimensional barcode, consists of a number of vertical black and white stripes. EAN-13 barcodes, which are offi cially called International Article Numbers (originally “International” was “European”), encode 13 decimal digits. They are a superset of the Universal Product Code (UPC) barcodes used in the United States, so the example barcode reader will work for UPC codes, too. Such barcodes are typically used to identify a product by number.

In EAN-13 barcodes, each of the 13 digits, except the fi rst (discussed later), is encoded with seven vertical bars (referred to here and in code comments as elementary bars), each of which can be white or black. There’s no spacing between bars, so two adjacent bars of the same color look like one wide c12.indd 267

c12.indd 267

5/10/2012 2:09:51 PM

5/10/2012 2:09:51 PM

268 x CHAPTER 12 USING THE CAMERA

bar. Each digit has two different encodings, one with even parity (that is, an even number of black stripes) and one with odd parity.

For example, the digit 0, in odd parity, is encoded with the pattern 0001101, where 0 stands for a white bar and 1 stands for a black bar. It is shown in Figure 12-2.

0 0 0 1

1 0 1

FIGURE 12-2: Odd parity barcode for zero

BarcodeReader keeps all the information describing EAN-13 barcodes in the Ean13Barcode1D

class. The digit codes for the different odd parity digits are stored in a HashMap, as shown in Listing 12-9.

LISTING 12-9: Odd parity digit codes

/* The odd parity left (character set A) barcodes for the ten

digits are:

0 = 3-2-1-1 = 0001101 = 0x0d

1 = 2-2-2-1 = 0011001 = 0x19

2 = 2-1-2-2 = 0010011 = 0x13

3 = 1-4-1-1 = 0111101 = 0x3d

4 = 1-1-3-2 = 0100011 = 0x23

5 = 1-2-3-1 = 0110001 = 0x31

6 = 1-1-1-4 = 0101111 = 0x2f

7 = 1-3-1-2 = 0111011 = 0x3b

8 = 1-2-1-3 = 0110111 = 0x37

9 = 3-1-1-2 = 0001011 = 0x0b

*/

mhOddLeft = new HashMap<Integer, Character>();

mhOddLeft.put(0x0d, '0');

mhOddLeft.put(0x19, '1');

mhOddLeft.put(0x13, '2');

mhOddLeft.put(0x23, '4');

mhOddLeft.put(0x31, '5');

mhOddLeft.put(0x2f, '6');

mhOddLeft.put(0x3b, '7');

mhOddLeft.put(0x37, '8');

mhOddLeft.put(0x0b, '9');

VARIABLE NAMING CONVENTION

 A brief note on the variable naming conventions used in this and later code:

 the initial prefi x m means the variable is a member variable or fi eld, and the following lowercase characters indicate the type of the variable, using n for int , sz for string , b for byte , h for HashMap , and so on.

c12.indd 268

c12.indd 268

5/10/2012 2:09:51 PM

5/10/2012 2:09:51 PM

Creating a Simple Barcode Reader x 269

An EAN-13 barcode consists of two groups of six individual digit barcodes, one after the

other, with some additional decoration marking the beginning, middle, and end of the barcode.

Ean13Barcode1D describes the overall structure of the barcode in public static fi nal variables: A three-bar pattern at the beginning and end, consisting of a black bar, a white bar, and a black bar:

public static final int LEFT_WIDTH = 3; // number of elementary bars in the

// left-side pattern

public static final int RIGHT_WIDTH = 3; // number of elementary bars in

// the right-side pattern

A fi ve-bar pattern in the middle, consisting of alternating white and black bars, and

beginning and ending with black bars, that separates the two groups of six digits:

public static final int MID_WIDTH = 5; // number of elementary bars in the

// middle pattern

The entire barcode is guaranteed to have some white space surrounding it. That is why,

when you are searching for the barcode in the image, you can look for some white space

followed by the black-white-black pattern at the beginning and end.

The following are three complications in EAN-13 barcodes:

‰

An implied fi rst digit, which is encoded in the parity of the digits in the left half of the pattern (but the fi rst digit in the left half is always guaranteed to have odd parity).

‰

The last digit in the barcode is a check digit whose value is determined by a simple computation based on the other digits.

‰

The right half of the pattern is encoded exclusively with odd parity, and the white and black bars are reversed.

The following sections look at how Ean13Barcode1D handles each of these complications.

Parity and Implied First Digit

When you are decoding the left half of the barcode, you detect and record the parity of each digit in the decodeBarcode() method. At this point, bStripes is a binary encoding of the image (0 =

black, 1 = white) and nCurr is an index into bStripes for the position of the current stripe you are interpreting:

for (int nDigit = 0; nDigit < LEFT_DIGITS; nDigit++) {

int nSum = 0;

// build an index into digitCodes for this pattern

for (int l = 0; l < DIGIT_WIDTH; l++) {

nSum = nSum * 2 + bCompressed[nCurr++];

}

if (nDigit == 0) {

// in EAN-13 the first digit always has odd parity

if (mhOddLeft.containsKey(nSum)) {

sbBarcode.append(mhOddLeft.get(nSum));

nLeftParity = 1;

} else {

c12.indd 269

c12.indd 269

5/10/2012 2:09:51 PM

5/10/2012 2:09:51 PM

270 x CHAPTER 12 USING THE CAMERA

// the first digit didn't match any of the codes

return null;

}

} else {

// determine the parity of the digit

if (mhOddLeft.containsKey(nSum)) {

sbBarcode.append(mhOddLeft.get(nSum));

nLeftParity = (nLeftParity * 2) + 1;

} else if (mhEvenLeft.containsKey(nSum)) {

sbBarcode.append(mhEvenLeft.get(nSum));

nLeftParity = nLeftParity * 2;

} else {

return sbBarcode.toString();

}

}

}

decodeBarcode() works by fi rst building an index in the nSum integer that encodes the bit pattern from the image, using 1 for a black stripe and 0 for a white stripe. The digit 0, encoded in odd parity, will have the bit pattern 0001101, as shown in Figure 12-2, and will be encoded in nSum as the hex value 0x0d. decodeBarcode() then looks up the encoded value in mhOddLeft (the odd parity encoded digits) and mhEvenLeft (the even parity encoded digits). If the encoded value can’t be found in either HashMap, it returns what it did fi nd.

When decodeBarcode() fi nds the encoded value it records the parity in the nLeftParity integer value. After all the digits in the left pattern are read, nLeftPattern is used to fi nd the encoded implied digit, which decodeBarcode() appends to the beginning of the barcode:

if (mhFirstDigit.containsKey(nLeftParity)) {

sbBarcode.insert(0, mhFirstDigit.get(nLeftParity));

} else {

return sbBarcode.toString();

}

Once again, if decodeBarcode() can’t fi nd the encoded parity it returns what barcode it did fi nd.

The philosophy behind Ean13Barcode1D, as a demonstration program, is to return whatever portion of the barcode that has been read, in order to give the user feedback on what is being read. This makes for a better demonstration of barcode reading since the user can see some of the process of barcode reading. In a “real” barcode reading program you would return the complete barcode only after it has been read and the check digit verifi ed.

The Check Digit

The check digit is computed in the verifyCheckDigit() method, which is called from

decodeBarcode(), as shown in Listing 12-10.

LISTING 12-10: verifyCheckDigit

private static boolean verifyCheckDigit(String digits) {

// compute check digit

// add odd digits

c12.indd 270

c12.indd 270

5/10/2012 2:09:51 PM

5/10/2012 2:09:51 PM

Creating a Simple Barcode Reader x 271

int nOddSum = 0;

for (int i=1; i<digits.length()-1; i+=2) {

nOddSum += Character.digit(digits.charAt(i), 10);

}

// add even digits

int nEvenSum = 0;

for (int i=0;i<digits.length()-1; i+=2) {

nEvenSum += Character.digit(digits.charAt(i), 10);

}

// compute odd digit sum * 3 + even digit sum;

int nTotal = nOddSum*3 + nEvenSum;

// check digit is this sum subtracted from the next higher

// multiple of 10

int checkDigit = (nTotal/10 + 1) * 10 - nTotal;

return Character.digit(

digits.charAt(digits.length()-1), 10) == checkDigit;

}

The computation is specifi ed by the design of EAN-13 barcodes. Sums of the odd and even digits are formed, and then the odd sum is multiplied by three and added to the even sum. The difference between the next higher multiple of 10 and this total is then computed. This will be a digit from 0–9. This should match the last digit in the barcode. If it does, ReadBarcode sets a checkmark in the barcode display: mTextViewResult.setText(szBarcode);

mbFoundBarcode = Ean13Barcode1D.verifyCheckDigit(szBarcode);

mCheckBoxResult.setChecked(mbFoundBarcode);

Right Half of the Barcode

The right half of the barcode is decoded similarly to the left half, with two differences: 1) In the right half white and black bars are reversed; 2) The right half uses odd parity exclusively. This simplifi es the code quite a bit; all you have to do is encode the white bars as 1 and the black bars as 0, and then use the odd parity lookup table:

// nCurr points to the end of the left digits

nCurr += MID_WIDTH;

for (int nDigit = 0; nDigit < RIGHT_DIGITS; nDigit++) {

int nSum = 0;

// build an index into digitCodes for this pattern

for (int n = 0; n < DIGIT_WIDTH; n++) {

nSum = nSum * 2 + (1 - bCompressed[nCurr++]);

}

if (mhOddLeft.containsKey(nSum)) {

sbBarcode.append(mhOddLeft.get(nSum));

} else {

// the first digit didn't match any of the codes

return sbBarcode.toString();

}

}

Once again, if decodeBarcode() doesn’t fi nd a match, it just returns the partial match for display.

Now it’s time to take a step back to look at controlling the camera again, and discuss autofocus, which is crucial to processing a barcode.

c12.indd 271

c12.indd 271

5/10/2012 2:09:51 PM

5/10/2012 2:09:51 PM

272 x CHAPTER 12 USING THE CAMERA

Autofocus

To capture a good image of a barcode for processing, you must ensure it is in focus. Unlike camera properties like preview size or fl ash, autofocus is not a property you simply set and forget, putting the camera in autofocus mode indefi nitely. It is, instead, a command you send to the camera, which eventually completes. What is actually happening during autofocus is the camera is physically moving the lens in and out and measuring the sharpness of the image it captures in certain defi ned areas (these areas can be controlled, on some cameras, by setting the focus areas using setFocusAreas()). This goes on for a while, after which the camera reports whether its measurements indicate it achieved good focus.

BarcodeReaderActivity initiates autofocus in its onResume() method, passing it mReadBarcode, which implements Camera.AutoFocusCallback:

mCamera.autoFocus(mReadBarcode);

ReadBarcode’s implementation of the callback is very simple:

@Override

public void onAutoFocus(boolean success, Camera camera) {

if (!success) {

// try again

camera.autoFocus(this);

} else {

mnFocused = 5;

}

}

When the camera calls the callback, it has focused the camera or not, as shown in the state of the success variable. The autofocus callback restarts autofocus if it failed. If it succeeded, it sets a variable (mnFocused) that will count down the number of attempts it makes to read a barcode. The assumption is that as the user moves the camera around, the barcode will stay in focus for a while, so you make several attempts to read it, giving the user time to position the barcode reader just right.

onPreviewCallback() is discussed in more detail soon. But just to complete the discussion of autofocus, the last thing onPreviewCallback() does is to start autofocus again:

} finally {

if (--mnFocused == 0) {

camera.autoFocus(this);

}

}

 mnFocused is decremented so it tries recognize the barcode a few times before giving up and starting autofocus again. (The camera will keep calling onCameraPreview() and you will keep processing images so long as mnFocused is non-zero.)

So, the overall process works like this:

1. Start

autofocus.

2.

When autofocus completes: if it failed, start it again, otherwise make several attempts to

detect a barcode.

3.

When it’s done trying to detect the barcode, restart autofocus.

c12.indd 272

c12.indd 272

5/10/2012 2:09:51 PM

5/10/2012 2:09:51 PM

Creating a Simple Barcode Reader x 273

STOPPING CALLBACKS

 Whenever you release the camera you should manually stop all callbacks —

 otherwise, it’s possible that the callback will be called after the camera is released

 and you will get a hard-to-interpret RuntimeException . ManageCameraActivity does this in its implementation of onPause :

mCamera.autoFocus(null);

mCamera.setErrorCallback(null);

mCamera.setOneShotPreviewCallback(null);

mCamera.setPreviewCallback(null);

mCamera.setPreviewCallbackWithBuffer(null);

mCamera.setZoomChangeListener(null);

mCamera.release();

mCamera = null;

 Note that it is safe to set the callbacks to null without fi rst determining whether

 they have been set to anything else.

Using the Camera Preview Image and Detecting the Barcode

Android calls onPreviewFrame() when a camera preview image is ready for processing. This is set in the onResume() method of BarcodeReaderActivity:

mCamera.setPreviewCallback(mReadBarcode);

Please keep in mind two things about onPreviewFrame():

‰

The camera preview size, camera orientation, and even camera can vary from call to

call, for example when the user changes the orientation of the device. So, it’s impor-

tant not to assume that the last preview image has anything in common with the current

preview image.

‰

All preview image formats are very simple layouts of pixels without compression. The pre-

view format is under control of the program that controls the camera, and it may be possible to choose a format to make your work easier. However, only the NV21 format is supported

by all cameras, so unless you have a good reason to use a different format, you should use

NV21, which is the default format.

Let’s take a look at the NV21 format, because it is so important. It is based on the YUV color space, which is a relic of the conversion from black and white to color television — the Y in YUV is the original black and white television brightness value. U and V were added to the black and white signal so that color could be encoded. To be compatible with black and white televisions, the Y signal was sent fi rst, and then the U and V signals were sent, the signal being structured so existing black and white televisions would ignore the U and V signals and just show Y. Color televisions could decode the U and V signals and use them, together with Y, to create a red, green, and blue (RGB) color value, which they would then show.

c12.indd 273

c12.indd 273

5/10/2012 2:09:52 PM

5/10/2012 2:09:52 PM

274 x CHAPTER 12 USING THE CAMERA

NV21 is structured much like those early color television signals. Y comes fi rst, then U and V, at reduced resolution. (The resolution for U and V doesn’t have to be as high as for Y because the human eye is less sensitive to changes in color than changes in brightness. By providing U and V at reduced resolution, NV21 saves space with little to no observable loss in image quality.)

Figure 12-3 shows NV21 layout in detail. The format consists of an array of N×N U pixels, followed by an N/2×N/2 array of pairs of V and U pixels, V coming fi rst in each pair. All pixels are stored as 8-bit unsigned bytes with minimum value 0x00 and maximum value 0xff.

N

N/2

VU

N/2

N

Y

Y(0,0)

Y(0,1)

Y(0,2)

...

Y(N-1,N-2)

Y(N-1,N-1)

V(0,0)

U(0,0)

V(0,1)

U(0,1)

...

V(N/2-1,N/2-1)

U(N/2-1,N/2-1)

N×N

2×(N/2)×(N/2) = N×N/2

FIGURE 12-3: NV21 layout

In barcode reading you are not interested in color (using the color values from the camera preview image is discussed in the next chapter), so you can ignore the VU matrix and treat the camera preview image as an N×N unsigned byte array.

Take a look at the code in ReadBarcode’s implementation of onPreviewFrame() that makes use of the input camera preview image. It begins by using the camera parameters to determine the dimensions of the preview image:

Parameters cameraParameters = camera.getParameters();

int imageFormat = cameraParameters.getPreviewFormat();

if (imageFormat == ImageFormat.NV21) {

Size size = camera.getParameters().getPreviewSize();

In the barcode reading program you try to be as fl exible as possible, allowing the user to read the barcode horizontally or vertically. This means you have to read the barcode either as a series of columns or as a series of rows from the image. The code to read the image values horizontally (column-wise) is straightforward:

int i = 0;

for (nCol = nStartCol; nCol < nEndCol; nCol++) {

int nValue = 0xff & (int) data[nRowOffset + nCol];

nValues[i++] = nValue;

}

c12.indd 274

c12.indd 274

5/10/2012 2:09:52 PM

5/10/2012 2:09:52 PM

Creating a Simple Barcode Reader x 275

The only interesting thing about this code is the transformation of the input byte value into an integer by a bitwise AND with the mask 0xff. The reason for this is that an image byte value runs from 0 (hex 0x00) (black) to 255 (hex 0xff) (white). Byte values in Java are signed, so if you were to use this value as a byte value directly, any value greater than 128 (0x80) would be sign-extended into a negative number — in other words, brightness values greater than 128 would be misinterpreted. By performing a bitwise AND with 0xff you remove the sign extension bits and convert the image byte into an unsigned integer value. For example, if the image value was 0xff this would be interpreted in Java as the signed byte value –1, and converted to the integer value –1, or 0xffffffff. Applying a bitwise AND of this with 0xff gives the integer value 0x000000ff, or 255, which is the value you want for computation.

You’ll get to the actual search for the barcode shortly. If the barcode is not found horizontally, you repeat the search vertically, taking the image values by rows:

i = 0;

for (nRow = nStartRow; nRow < nEndRow; nRow++) {

int nValue = 0xff & (int) data[nColOffset + nRow

* width];

nValues[i++] = nValue;

}

You may have noticed the odd (unusable) calls to DebugImage in this method. Those are discussed next.

Debugging Image Processing Programs on Android

For the most part, Android’s excellent debugging tools — the emulator and the ability to step into programs running on Android devices, examine variables, and so on — work very well for image processing. However, it is almost impossible to debug an image processing program without controlling the images that are being processed. If you try to use the live images captured from a camera as input to the program, it is just too hard to ensure reliable, consistent input data. Also, sometimes it is necessary to input artifi cial images into image processing programs for testing. It is also very hard to debug image processing programs using the emulator because no live camera is available.

To do this, you need a method to capture good test images and then substitute them during test runs. onPreviewFrame() does this by using DebugImage. The methods in DebugImage enable you to capture the camera preview image and reuse it, or even substitute an artifi cial camera preview image for the one the camera would provide.

onPreviewFrame() uses two calls to DebugImage methods:

boolean bWrite = false, bRead = false;

if (bWrite) {

DebugImage.writeGrayImage(data, width, height,

"barcode.png");

}

if (bRead) {

data = DebugImage.readGrayImage(width, height,

"barcode.png");

}

The two methods from DebugImage (both static, making them easy to drop into a program) are: boolean writeGrayImage(byte[] bData, int nWidth,

int nHeight, String szFilename)

c12.indd 275

c12.indd 275

5/10/2012 2:09:52 PM

5/10/2012 2:09:52 PM

276 x CHAPTER 12 USING THE CAMERA

and

byte[] readGrayImage(Integer nWidth, Integer nHeight, String szFilename)

You can use the writeGrayImage() method to write a gray image of your choice to the Android fi lesystem. All you have to do is set a breakpoint before the conditional test of bWrite and set the value to true, using the debugger, when you have a good test image (you could also do this by setting the value to true in the application source, or through a debug button, of course). Once the image is in the Android fi lesystem, you can upload it to a PC and examine it in detail, or even modify it to produce optimal test data. You can substitute this image for the camera preview image simply by setting the bRead value to true, either in the debugger or by editing the code.

It should be noted that these routines are anything but fast. They are intended to be used only for debugging purposes. Reading and writing images using these routines is much slower than capturing and displaying much higher-resolution images on a device, or writing them to the SD card. This is because the Android routines for writing compressed images to the SD card have been optimized, with hardware support.

Note that writeGrayImage() and readGrayImage() read and write only the gray component of the NV21 camera preview image. The next chapter discusses dealing with the color components.

Now let’s return to discussing the detection and decoding of the barcode.

Detecting the Barcode

The EAN13Barcode1D class provides a method, searchForBarcode(), which searches for the

barcode in a one-dimensional array of image values. searchForBarcode() makes use of some

important image processing concepts to fi nd the barcode:

‰

Local thresholding

‰

Image processing at multiple resolutions

Look at how these concepts are applied in searchForBarcode().

The human eye does a remarkable job of compensating for variations in illumination, so that you can look at a scene that is brightly lit, say, by the sun, yet still make out objects in shadow — even though orders of magnitude more light is reaching the eye from an object in the sun than from an object in shadow. It does such a good job, in fact, that you are unaware of how much variation there is in a scene. But when you try to teach a computer to do image processing it becomes obvious what an incredible job our eyes are doing. A camera captures images with a very narrow range of image values (0 to 255), which are linearly distributed. When you look at an image captured by a camera, even an image of a white sheet of paper, you will see remarkable variation in brightness as the result of changes in illumination, even though the paper looks perfectly white to your eyes. You’ll need to fi nd ways to ignore these unimportant variations in brightness in order to fi nd the things you’re looking for.

Cameras like the ones used in Android devices compensate for brightness changes in a scene by changing the exposure time of the sensor capturing the image — longer exposure gives more light sensitivity. You may have noticed the camera taking a second or so to adjust this when changing c12.indd 276

c12.indd 276

5/10/2012 2:09:52 PM

5/10/2012 2:09:52 PM

Creating a Simple Barcode Reader x 277

from photographing a brightly lit scene to a darker one. But this just affects the overall scene brightness; you need to do more to deal with variations in brightness within the scene. For example, one side of a barcode can be quite a bit brighter than the other side. If you were to use a constant defi nition of “white” and “black” across the barcode, you might well be unable to distinguish the bars on one side or the other, because they would appear all white or all black.

searchForBarcode() uses a simple local averaging technique for comparing each pixel’s brightness with the average brightness of the pixels around it to determine whether it is a white or black bar.

If the brightness is greater than the local average, it is white; if not, it is black. The local average is computed effi ciently by fi rst computing the cumulative sum of the pixels in a row:

int[] nCumulativeSum = new int[nValues.length];

nCumulativeSum[0] = nValues[0];

for (int i = 1; i < nValues.length; i++) {

nCumulativeSum[i] = nCumulativeSum[i - 1] + nValues[i];

}

 nCumulativeSum[i] then contains the sum of pixels 0, 1, …, i. To compute the sum of any series of pixels, say from i+1 to j, all you need to do is to compute the difference between nCumulativeSum[j] and nCumulativeSum[i]. So to compute the average value of the pixels around a given pixel i, all you have to do is take the difference between appropriate values in nCumulativeSum and divide by the number of pixels in the average. This gives a simple, fast way to compute the local threshold:

int nPixelValue = nPixelSum / nPixCount;

int nLocalAverage = (nCumulativeSum[nEnd] - nCumulativeSum[nStart])

/ (nEnd - nStart);

if (nPixelValue > nLocalAverage) {

bCompressed[j++] = 0;

} else {

bCompressed[j++] = 1;

}

The other image processing concept that is being used in searchForBarcode() is processing the data at multiple resolutions. You do not know how close the barcode is to the camera. To adjust for this, you compress the image row into a series of white or black elementary bars (0 or 1 values), using local thresholding, taking fi rst one pixel per elementary bar, then two pixels per elementary bar, and so on. This is done in a straightforward fashion:

// this is the number of pixels we look left and right to determine

// the local average.

final int LOCAL_THRESH = 32;

for (int nPixelsPerBar = 1;

nPixelsPerBar < nValues.length / TotalWidth;

nPixelsPerBar++) {

int nPixVal = 0, nPixCount = 0, j = 0;

byte[] bCompressed = new byte[nValues.length];

for (int i = 0; i < nValues.length; i++) {

nPixVal += nValues[i];

nPixCount++;

if (nPixCount == nPixelsPerBar) {

int nEnd = Math.min(nValues.length - 1,

c12.indd 277

c12.indd 277

5/10/2012 2:09:52 PM

5/10/2012 2:09:52 PM

278 x CHAPTER 12 USING THE CAMERA

i + LOCAL_THRESH);

int nStart = Math.max(0, i - LOCAL_THRESH);

… the code for computing bCompressed goes here …

nPixVal = 0;

nPixCount = 0;

}

}

The scan for the barcode start is very simple — you simply look for the pattern “00101” in the bCompressed array (the black-white-black bar pattern at the beginning of the barcode will always be preceded by some white space). On fi nding it, you look for the corresponding pattern (“10100”) at the position corresponding to the barcode end. If you fi nd both patterns, you attempt to decode the barcode.

Using all this code you can scan a barcode like the one in Figure 12-4.

FIGURE 12-4: Sample barcode

TRY THIS

Select the Barcode button and point the camera at the barcode in Figure 12-4.

Although this method shows some basic image processing concepts, is very fast, and works for well-behaved barcode images, it is far from perfect. The barcode is assumed to be positioned so that its white and dark elementary bars are all exactly the same integral width, and start, approximately, at an integral position in the image. Neither of these assumptions may be true — especially the assumption that the elementary bars are all the same width. When the paper the barcode pattern is printed on is not perpendicular to the line of sight from the camera, the elementary bars at one end of the barcode will be wider than the other. This is especially true because you expect the camera to be quite close to the barcode when scanning. In other words, you need to take into account perspective distortion of the barcode.

The best place to go for further understanding of how to process barcodes is the Zxing Google code site (http://code.google.com/p/zxing/). The code there not only handles perspective distortion and other image processing issues correctly and effi ciently, but it also handles a very wide variety of barcodes, including both one-dimensional and two-dimensional codes. And it has implementations of barcode scanning for Android, J2ME, and many other platforms. This code has become the open source standard for barcode scanning — you’ve probably already used it on your Android device.

c12.indd 278

c12.indd 278

5/10/2012 2:09:52 PM

5/10/2012 2:09:52 PM

Summary x 279

SUMMARY

In this chapter you learned how to build an Activity that controls the camera, including camera selection, zoom, focus, and other hardware camera parameters. The Activity used the camera

preview to show the camera image, and you saw how to control the camera’s autofocus and how to capture the preview image and use it in a simple barcode recognition program. You also learned about the structure of the NV21 format, which is Android’s default preview image format, and the design of EAN-13 barcodes.

The next chapter delves further into image processing, describing how image processing programs are structured, and introduces JJIL, a library designed for image processing on mobile devices.

You’ll learn how to use JJIL to build image processing programs. The chapter concludes with an Android logo recognition program, which shows how to start with the color preview image, turn it into a form useful for processing, detect pixels of a certain color, extract regions of those pixels, pick out the most likely Android logo by size and color, and display its position — all quickly enough to track the logo as the user moves the device.

c12.indd 279

c12.indd 279

5/10/2012 2:09:53 PM

5/10/2012 2:09:53 PM

c12.indd 280

c12.indd 280

5/10/2012 2:09:53 PM

5/10/2012 2:09:53 PM

13

Image-Processing Techniques

WHAT’S IN THIS CHAPTER?

‰

Explaining how image-processing programs work

‰

Using JJIL to do image processing

‰

Example image-processing pipelines

In Chapter 12 you learned how to access and control Android’s camera and to capture and

process images. But there is much more to image processing than merely knowing how

to capture images. Techniques have been developed over decades for dealing with a wide

variety of problems in image processing, and these techniques can be applied directly to

image processing in Android, with some care. This chapter shows you how to employ these

techniques, fi rst by describing the structure of image-processing programs in general, and then by illustrating image-processing program development with example programs.

THE STRUCTURE OF IMAGE-PROCESSING PROGRAMS

Image-processing programs have a characteristic structure that is driven by the need to

transform large input images into a much smaller collection of meaningful results. The

designers of image-processing programs take advantage of this characteristic structure

in two ways: fi rst, by designing data and control structures that match this characteristic structure, and, second, by developing algorithms that can be used again and again in different image-processing programs.

The Image-Processing Pipeline

Image-processing programs are generally structured as an image-processing pipeline: that

is, they operate as a series of steps on images, starting with the input image, and at each c13.indd 281

c13.indd 281

5/11/2012 9:36:55 AM

5/11/2012 9:36:55 AM

282 x CHAPTER 13 IMAGE-PROCESSING TECHNIQUES

stage transforming the image into a more useful — and often, smaller — image, or possibly into a different data structure. For example, in an Android image-processing program you may start with an input image in the NV21 color image format, transform that image into an RGB image, make some measurement (for example, of white balance) on that image, apply that measurement to the RGB image to produce a new RGB image (for example, using the white-balance measurement to do color correction), and then do further processing to extract some object of interest.

With the image-processing pipeline it is possible to consider each step as a separate unit, to make sure it is doing the right thing, and to swap in other steps to improve performance. In the color correction example just mentioned, one white-balance measurement can be substituted for another with little to no impact on the other stages except for, possibly, improved performance.

Common Image-Processing Operations

Broadly speaking, two different types of image-processing operations exist: those that take an image as input and produce a new image, and those that take an image and produce a different type of data structure. This section looks at the different kinds of each of these operations, taking them roughly in the order from the simplest computations to the most complex. You will often see them applied in this order in image pipelines because you want to apply the simplest operations early, when the image is large, reserving the more complex operations for later, when the amount of data has been reduced.

Image-to-Image Operations

 Point operations apply a mathematical operation to the individual image pixels. Examples are:

‰

Thresholding: A simple threshold operation assigns 0 to values less than a certain value, called the threshold, and 1 to values greater than the threshold. You used thresholding in

Chapter 12 to change the input image values (which ranged in value from 0 to 255) to binary values for recognizing the barcode. Figure 13-1 shows a thresholding operation.

FIGURE 13-1: Thresholding an image

c13.indd 282

c13.indd 282

5/11/2012 9:36:59 AM

5/11/2012 9:36:59 AM

The Structure of Image-Processing Programs x 283

‰

Histogram equalization: Histogram equalization is a way of improving image contrast.

A histogram is a frequency count of pixel values. Images with poor contrast tend to have histograms that are “bunched up” in a small portion of the potential image values. An example is shown in Figure 13-2. In the original image the strawberry has low contrast, with pixel

values only in the midrange, as the histogram shows. Histogram equalization reassigns pixel values so the histogram is stretched out over the full range of pixel values. The resulting image has much higher contrast, and it is easier to pick out features that may be of interest, such as the seeds.

Histogram

Histogram equalization

Histogram

FIGURE 13-2: Histogram equalization

‰

Conversion: Conversion operations are point operations of a special kind: you take an image of one type and convert it to another type without interpreting the contents of the image pixels in any other way. For example, you might convert an Android NV21 color image into an

RGB color image, or convert an RGB color image into a gray image. Conversion operations

are usually quite fast and can be implemented with table lookup or heavily optimized calculation. For example, the calculation used to convert the NV21 image, which represents colors

with YUV (input integer values nY, nU, and nV), to the RGB color space (output integer values nR, nG, and nB), used in calculation, is:

int nC = nY - 16;

int nD = nU - 128;

int nE = nV - 128;

int nR = Math.max(0, Math.min(255, ((298 * nC + 409 * nE + 128) >> 8)));

int nG = Math.max(0, Math.min(255, ((298 * nC - 100 * nD - 208 * nE + 128) >> 8)));

int nB = Math.max(0, Math.min(255, ((298 * nC + 516 * nD + 128) >> 8)));

You learn more about the NV21 image later in this chapter.

‰

Reduction: I reduction operations you reduce the size of the image by a constant factor, for example by averaging 2 ¥ 2 square pixel areas to halve the image width and height.

These operations are frequently optimized with mathematical tricks like the one used to

compute the local threshold in barcode detection in Chapter 12. The cumulative sum of

pixels was calculated so you could calculate the sum of pixels from i+1 to j just by subtracting nCumulativeSum[i] from nCumulativeSum[j].

‰

Spatial transformation: Spatial transformation operations rearrange the positions of the pixels without changing their values, for example by rotating or stretching them. You can implement these operations effi ciently using table lookups.

c13.indd 283

c13.indd 283

5/11/2012 9:36:59 AM

5/11/2012 9:36:59 AM

284 x CHAPTER 13 IMAGE-PROCESSING TECHNIQUES

‰

Filtering: Filtering operations apply a two-dimensional mathematical fi lter to enhance some feature of interest, or to fi lter out some unwanted artifact. These operations include edge detection, smoothing, noise reduction, contrast enhancement, and so on. There is a vast lit-erature on these operations, which lend themselves to mathematical as well as computational analysis and optimization.

‰

Grouping: Grouping operations are an important step toward reducing the image into a small collection of features, but they still produce an image as output. An example is connected components, which labels an input binary image so that two pixels have the same

value only if there is a connected path between them in the input. These operations tend to be relatively expensive, and are applied only after other, less expensive, operations have been applied to reduce the image size.

Next you look at operations that transform an image into another type of data structure. This is a key step in extracting useful information from an image. These operations do not naturally fall into groups, so you will simply see some important examples.

Image-to-Object Operations

Perhaps the most important image-to-object operation is computing a histogram. A histogram is a frequency count of pixel values. For gray byte images it is just an array of 256 integer values, with value i equal to the number of occurrences of pixel value i. Histograms are used to enhance the contrast of an image and to choose appropriate values for thresholding.

An important operation for fi nding objects in an image is Hough transform. This operation performs a spatial transformation of an image of a special kind, which is designed to locate objects of a specifi c shape. The simplest, and original, Hough transform was designed to fi nd lines in photographs from cloud chambers. Lines were parameterized in a two-dimensional array by slope and y-intercept. Each pixel that passed a threshold test was mapped to all possible lines that could pass through that point, and array elements corresponding to those lines were incremented. The peaks in the array corresponded to the lines in the image. Hough transforms have been developed to detect all sorts of shapes.

After labeling an image with connected components, the next step is usually to extract descriptions of the connected regions with feature extraction. This algorithm produces a list of the connected regions in the image and measures their area, center, perimeter, and possibly other useful features.

You can use these features to determine where a particular object you are looking for is located.

Because these image-processing operations are so important and do the same kinds of processing, it makes sense to organize them with data and control structures that make them easy to use and develop. I have built such a library, called Jon’s Java Imaging Library (JJIL), which is the subject of the next section.

Jon’s Java Imaging Library (JJIL)

JJIL has been optimized specifi cally for image processing on devices where computation and memory are in limited supply, such as Android devices. JJIL is open source and available at http://

code.google.com/p/jjil/ and includes all the image-processing operations described in the preceding sections. This section explores the structure of JJIL.

c13.indd 284

c13.indd 284

5/11/2012 9:37:00 AM

5/11/2012 9:37:00 AM

The Structure of Image-Processing Programs x 285

Image

Two core concepts in JJIL are defi ned in jjil.core: Image and PipelineStage. An Image is an object that stores image data and has a defi nite width and height. Images also support access to their data as an array. A number of different types of images exist: gray (8-bit, 16-bit, and 32-bit pixel); color (8-bit pixel); and complex (32-bit pixel). More specialized images also exist, such as a sub-image type for taking a portion of an input image and keeping track of the location of that portion.

All Image types support these methods:

‰

The constructor Image(int cWidth, int cHeight) creates a new image of the given width

and height.

‰

Image clone() returns a “deep” copy of the image, that is, one that actually creates a copy of the image pixels. Note that images processed in pipeline stages are usually passed using a

“shallow” copy, allowing reuse of their pixels, for effi ciency in space.

‰

int getHeight() returns the image height.

‰

int getWidth() returns the image width.

Image types also support a method for accessing their pixels. To make this as effi cient as possible, the image data can be accessed directly as a one-dimensional array. This method is called getData(). For example, Gray8Image (an image supporting signed 8-bit image pixels) implements this method:

byte[] getData()

PipelineStage

A PipelineStage is an image-to-image operation. It takes a single image as a parameter and produces another image as output. Other parameters must be supplied through the constructor or aux-iliary methods. The input and output types of PipelineStage are both Image; this makes it easier to compose multiple stages into a sequence (especially in the absence of generic types), but makes it necessary to check parameter types at run time.

A PipelineStage must implement this method:

void push(Image imageIn)

It may also implement these methods, or it can use the default implementations:

boolean isEmpty()

Image getFront()

The semantics of these methods are:

‰

push(Image): Takes an Image as input. After verifying that it is of the right type (for example, Gray8Image or RgbImage), do whatever processing is required for this input. The out-

put, if any, is saved so it can be retrieved using getFront() and the presence of an output, if there is one, is set so it can be retrieved using isEmpty().

c13.indd 285

c13.indd 285

5/11/2012 9:37:00 AM

5/11/2012 9:37:00 AM

286 x CHAPTER 13 IMAGE-PROCESSING TECHNIQUES

‰

isEmpty(): Returns a boolean value indicating whether or not an output is available from

the PipelineStage. Each pipeline stage is allowed to return zero, one, or any other num-

ber of outputs given an input. The user of the PipelineStage must test for the presence

of an output using isEmpty() before attempting to retrieve it — otherwise, an exception is

generated when getFront() is called.

‰

getFront(): Returns the next Image resulting from processing an input using push().

When getFront() is called, the current image is “popped” from the PipelineStage’s

internal storage; calling getFront() again returns a new image, if there is one (which

can be determined using isEmpty()). If there is no image, IllegalStateException is

thrown. When more than one image is provided by a pipeline stage, each new image is

retrieved with a new call to getFront(), after using isEmpty() to detect the

image’s presence.

In addition to these public methods, PipelineStage implements a protected method to help the implementer of PipelineStage-derived classes. This is:

setOutput(Image imageResult)

This method is used in the common case where a push() operation returns a single Image. The implementer of push() calls setOutput(Image imageResult) to set the output of the push()

operation to imageResult, and then the default implementations of isEmpty() and getFront() will correctly provide the image to the caller.

A complete example (from jjil.algorithm) of a simple PipelineStage is shown in the following code. It implements a conversion operation, converting a signed byte image (a Gray8Image) into a 32-bit image (a Gray32Image):

public class Gray82Gray32 extends PipelineStage {

/** Creates a new instance of Gray82Gray32 */

public Gray82Gray32() {

}

/** Converts an 8-bit gray image into a 32-bit image by replicating,

* changing the data range of the bytes from -128->127 to 0->255.

*

* @param image the input image.

* @throws IllegalArgumentException if the input is not a

* Gray8Image

*/

public void push(Image image) throws IllegalArgumentException {

if (!(image instanceof Gray8Image)) {

throw new IllegalArgumentException(image.toString() + "" +

" should be a Gray8Image, but isn't");

}

Gray8Image gray = (Gray8Image) image;

byte[] grayData = gray.getData();

Gray32Image gray32 = new Gray32Image(image.getWidth(), image.getHeight());

int[] gray32Data = gray32.getData();

for (int i=0; i<gray.getWidth() * gray.getHeight(); i++) {

/* Convert from signed byte value to unsigned byte for

* storage in the 32-bit image.

*/

c13.indd 286

c13.indd 286

5/11/2012 9:37:00 AM

5/11/2012 9:37:00 AM

The Structure of Image-Processing Programs x 287

int grayUnsigned = ((int)grayData[i]) - Byte.MIN_VALUE;

/* Assign 32-bit output */

gray32Data[i] = grayUnsigned;

}

super.setOutput(gray32);

}

}

This PipelineStage implements only the push() method. It relies on the default implementations of isEmpty() and getFront().

The fi rst step in push() is to verify that the argument is of the right type. You must do this test at run time because all PipelineStages take Image parameters:

if (!(image instanceof Gray8Image)) {

throw new IllegalArgumentException(image.toString() + "" +

" should be a Gray8Image, but isn't");

}

After this test you can safely get a reference to the input parameter as a Gray8Image:

Gray8Image gray = (Gray8Image) image;

Having the Gray8Image reference enables you to access the data (pixels) in the image:

byte[] grayData = gray.getData();

You will need an output image to store the result. If the output was also a Gray8Image, the normal thing to do would be to reuse the input. (To save on memory, PipelineStages are allowed to modify their input. Callers should not assume the input will not be modifi ed and must use clone() to make a copy of the input if they need to keep the original data.) But this output is a Gray32Image, not a Gray8Image. So, you must create a new image to hold the result:

Gray32Image gray32 = new Gray32Image(image.getWidth(), image.getHeight());

You can get a pointer to the output data just as you did with the input image:

int[] gray32Data = gray32.getData();

Now you will set the output pixels. The loop iterates over all pixels by treating them as one large array (note that, because the input and output images are the same size, there is no possibility of out-of-bounds access). You don’t need to do the arithmetic needed to treat the image as a two-dimensional array because this is a point operation:

for (int i=0; i<gray.getWidth() * gray.getHeight(); i++) {

The actual conversion of an 8-bit signed value to a 32-bit integer adds an offset, so the minimum value in the signed pixel (that is, –128) maps to 0. As a convention, image-processing algorithms manipulate image data as unsigned integer values, with 0 representing black and 255 (in 8-bit image data) representing white. It simplifi es some algorithms to map that special value to and from the minimum byte value:

int grayUnsigned = ((int)grayData[i]) - Byte.MIN_VALUE;

/* Assign 32-bit output */

gray32Data[i] = grayUnsigned;

c13.indd 287

c13.indd 287

5/11/2012 9:37:00 AM

5/11/2012 9:37:00 AM

288 x CHAPTER 13 IMAGE-PROCESSING TECHNIQUES

Note that Byte.MIN_VALUE = –128, so the subtraction in the fi rst statement actually adds 128 to the signed byte value after it is converted to integer.

The fi nal step in the algorithm is to provide the output to the caller. You do this using the protected setOutput() method of PipelineStage:

super.setOutput(gray32);

You use the class as follows:

Gray8Image imGray8 = new Gray8Image(cWidth, cHeight);

/* ... initialize imGray8... */

Gray82Gray32 g8232 = new Gray82Gray32();

g8232.push(imGray8);

if (g8232.isEmpty()) {

/* error, this should never happen */

}

Image imResult = g8232.getFront();

if (!(imResult instanceof Gray32Image)) {

/* error, Gray82Gray32 returned wrong type */

}

Image imGray32 = (Gray32Image) imResult;

/* ... use imGray32 ... */

Now that you understand how to build image-to-image operations in JJIL, take a look at how

they are assembled into image-processing pipelines using two JJIL control structures, Sequence and Ladder.

Sequence

A Sequence is just what its name implies, a sequence of image-to-image operations, in other words, a sequence of PipelineStage operations. Sequence is itself a PipelineStage, so Images can be passed through a series of image-processing algorithms simply by constructing the Sequence, and then using push() on the Sequence.

An example is shown in the following code. This sequence (from a barcode-reading system) converts a color image to gray by selecting the green component, crops the gray image, and then applies a horizontal Canny edge-detection operation to the result:

Sequence seq = new Sequence();

seq.add(new RgbSelect2Gray(RgbSelect2Gray.GREEN));

seq.add(new GrayCrop(dTopLeftX, dTopLeftY, cWidth, cHeight));

seq.add(new CannyHoriz(cCannyWidth));

seq.push(imageInput.clone());

if (seq.isEmpty()) {

/* error -- no output from Canny */

}

Image imageResult = seq.getFront();

Once a Sequence is constructed, it can be used over and over to process images. The logic in the Sequence class’s implementation of push() handles isEmpty() and getFront() properly so that if a PipelineStage produces more than one output, each output will be passed to later stages in the Sequence, so that a Sequence can produce as many outputs as are provided by the PipelineStages it is made from.

c13.indd 288

c13.indd 288

5/11/2012 9:37:00 AM

5/11/2012 9:37:00 AM

The Structure of Image-Processing Programs x 289

Ladde r

Some image-processing pipelines are more complex than a simple linear order: they combine

multiple images to produce a result. Ladder provides a simple mechanism for combining two

PipelineStages (which may, of course, be Sequences) into a new PipelineStage. It takes the two PipelineStage objects as well as a special class derived from the abstract class Ladder.Join. It is constructed as follows:

Ladder(PipelineStage pipeFirst, PipelineStage pipeSecond, Ladder.Join join)

The class inheriting from Ladder.join must implement this method:

Image doJoin(Image imageFirst, Image imageSecond)

This method takes two images as parameters and combines them to produce a single image as an output.

Ladder is itself a PipelineStage. Its push(), method works as shown in Figure 13-3.

First Pipeline Stage

Input

Output

doJoin

Image

Image

clone

Second Pipeline Stage

FIGURE 13-3: Ladder

As Figure 13-3 illustrates, Ladder’s implementation of push(), fi rst copies the input image (using clone()) so that each PipelineStage gets its own copy. This way, one PipelineStage can freely alter the image data without affecting the other. After processing, the resulting Image objects are combined using the doJoin() operation.

The two Sequences do not need to have the same number of steps. One can do a series of operations on its input, while the other might do something much simpler. Ladder handles isEmpty() and push() properly in manipulating the outputs of its PipelineStages, but it does require that an output Image be available from one PipelineStage whenever one is available from the other PipelineStage, so the number of images resulting from a push(), operation on each pipeline must be the same. Otherwise it could not call doJoin() at the appropriate time.

As a simple example of the use of Ladder, suppose you want to detect barcodes in an image but have to do this on a device that does not have an autofocusing camera, like Android devices do. Somehow you have to sharpen the blurry image for better recognition. You might begin by requiring the user to scan the barcode horizontally, so the barcode edges are vertical, and then try to sharpen the vertical edges in the image. One way to do this is to use Gaussian blurring. The idea behind this technique is to blur the image horizontally, and then subtract the blurred image from the original image.

The result is shown in Figure 13-4.

c13.indd 289

c13.indd 289

5/11/2012 9:37:00 AM

5/11/2012 9:37:00 AM

290 x CHAPTER 13 IMAGE-PROCESSING TECHNIQUES

Horizontal

Blur

Subtract

FIGURE 13-4: Enhancing an out-of-focus barcode

The code for this Ladder uses the GraySub class from jjil.algorithm, which implements doJoin() by taking the difference of its two Gray8Image inputs. It also makes use of GaussHoriz, which performs a horizontal blur operation on its Gray8Image, and copy(), a method which does a shallow copy (that is, not creating new pixels; it is not necessary to replicate the pixels because Ladder’s push operation does that) of the input to the output. It also uses Copy, a null PipelineStage (note the case — this is different from the copy method mentioned previously), which just copies its input to its output, so that the blurred image can be subtracted from the original:

/* Create Copy PipelineStage */

Copy c = new Copy();

/* Create Gauss blur PipelineStage */

GaussHoriz gh = new GaussHoriz(10);

/* Create Join object */

GraySub gs = new Gray8Sub();

/* Create Ladder */

Ladder lad = new Ladder(c, gh, gs);

Images can be deblurred using this Ladder simply by:

lad.push(imageIn);

if (lad.isEmpty()) {

/* error, no output */

}

Image imageOut = lad.getFront();

After using this Ladder for a while, you might notice that the output tends to be pretty dark. This is because you are subtracting two images with nearly the same value, giving a result close to 0 (black).

A simple way to fi x this is to perform histogram equalization, using GrayHistEq from jjil.algorithm. You just create a new Sequence, putting the Ladder fi rst, and then adding a histogram equalization stage. The resulting code can be written as simply as:

/* Create Ladder */

Ladder lad = new Ladder(

c13.indd 290

c13.indd 290

5/11/2012 9:37:01 AM

5/11/2012 9:37:01 AM

The Structure of Image-Processing Programs x 291

new Copy(),

new GaussHoriz(10),

new GraySub());

/* Create Sequence */

Sequence seq = new Sequence(lad);

seq.add(new GrayHistEq());

The entire sequence can be executed simply by:

seq.push(imageIn);

if (seq.isEmpty()) {

// error, no output

}

Image imageOut = seq.getFront();

Of course, once a Ladder like this is constructed, it can be used over and over to process images, just as a Sequence can be.

Now that you understand the structure of JJIL, take a step back and see how you can integrate image processing using JJIL into an Android application designed to detect the Android logo.

JJIL and Detecting the Android Logo

As a simple example, write a program to detect the Android logo in an image, keying off the color of the logo and its compactness. Start with the simple ReadBarcode program you developed in Chapter 12 and show how JJIL can be integrated into the onPreviewFrame() method to show the position of the logo.

Start with a simple approach — too simple to work well, but it’s a start:

1.

Take a color image.

2.

Look for pixels that are close to green.

3.

Find the largest connected region of these pixels.

4.

You’ve found the logo. Draw a green rectangle around it.

I’ve built a simple framework for developing this image-processing program in DetectLogo, shown in Figure 13-5. You’ll use it as the basis for other image-processing programs you develop. It shows the camera preview image in the top window and provides another screen area for showing the processed image and any results. You use a class derived from ImageView (called LogoView) to show the image bitmap and any processed results — in this case, a green rectangle showing where you think the logo is.

Take a quick look at some of the tools for debugging image-processing programs. Just as, in the previous chapter, you provided a way to read and write gray images for debugging, here you provide a way to read and write color images in DebugImages.writeNv21Image and DebugImages.

readImage2Nv21. They do the conversion necessary between the YUV color space used in Android and the RGB color space in which you do your processing. The actual code for converting between RGB and Android’s YUV is given in jjil.android.AndroidColors.

c13.indd 291

c13.indd 291

5/11/2012 9:37:01 AM

5/11/2012 9:37:01 AM

292 x CHAPTER 13 IMAGE-PROCESSING TECHNIQUES

FIGURE 13-5: DetectLogo

Look at the image-processing pipeline in DetectLogo and see how each of the preceding steps are implemented. The primary image processing is done in a pipeline you set up in the constructor: RgbAbsDiffGray radg = new RgbAbsDiffGray(Color.GREEN);

Gray8Threshold g8t = new Gray8Threshold(-48, true);

mSeqThreshold = new Sequence(radg);

mSeqThreshold.add(g8t);

 mSeqThreshold has two steps: use RgbAbsDiffGray to calculate the difference between the RGB

pixel color and a target color, in this case green (because the Android logo is green). This is output as a Gray8Image where Byte.MIN_VALUE (that is, –128) represents zero difference, and Byte.MAX_

VALUE is the maximum difference. The next stage in the pipeline uses Gray8Threshold to threshold this image at –48, passing (that is, setting to 255) all pixels less than the threshold and setting pixels greater than the threshold to 0 (black). (The value –48 was chosen experimentally — it isolated the green portions of the image.) The result is similar to that shown in the bottom half of Figure 13-5: notice how the green parts of the Android logo as well as the green apples show up as blobs.

You process the input image just by pushing it into the pipeline:

mSeqThreshold.push(rgb);

Image imThresholded = mSeqThreshold.getFront();

Then you pass the resulting thresholded image to mG8cc, an object of type Gray8ConnComp, to compute the connected components of the image:

mG8cc.push(imThresholded);

Connected components is a key step in fi nding the logo (as it is in many image-processing programs) because it turns the image into a small collection of regions. Each blob of connected pixels in the c13.indd 292

c13.indd 292

5/11/2012 9:37:01 AM

5/11/2012 9:37:01 AM

The Structure of Image-Processing Programs x 293

input image ends up as a distinct item in the output of Gray8ConnComp. The outputs are also sorted in size (number of connected pixels) so you can choose the largest connected region and get its bounding rectangle very simply:

if (mG8cc.getComponentCount() > 0)

{

Rect r = mG8cc.getComponent(0);

This bounding rectangle is passed to the LogoView object for display.

Before you get too far into the algorithm, try running the program as. You can run it in the book app by clicking the Detect Logo button. You may notice two things: 1) It’s slow as molasses; 2) It doesn’t work too well.

The fundamental problem with the speed of the program is that it is processing large images on a computer with limited processing power. Smartphones are nowhere near a modern desktop computer in terms of performance — nor should you expect them to be, given all the limitations the designers had to deal with. But, in fact, they do have enough processing power for image processing.

If you look at the history of image processing, it was in the early 1980s that desktop PCs started taking a major role in image processing for real-time systems — and smartphones do have processing power comparable to, and in many cases greater than, what was available on a desktop PC in the early 1980s. What’s the problem?

The problem, simply, is that the images you are processing are far too large for the task at hand.

When image processing was taken over by desktop PCs in the 1980s they were processing images of size 512 ¥ 512 or even 256 ¥ 256 (which was all the electronic cameras then in use could produce).

The Android camera produces images many times larger than that. You have to limit the image size to achieve the speed you need in an Android application.

Choose the Right Image Size

To detect the Android logo with a simple-minded approach, you do not need a high-resolution image. In fact, because you aren’t looking at the internal structure of the logo, it does not matter if the image is a bit blurry — and a high-resolution image actually slows you down. So you need to reduce the image size as much as possible to process the image quickly.

You have a number of ways to do this. The most obvious, because you are using the image preview function of the camera, is to set an appropriate preview size. Change the switchCamera() method of DetectLogoActivity to the version used in ManageCameraFasterActivity:

Camera.Parameters cameraParameters = mCamera.getParameters();

List<Size> sizes = cameraParameters.getSupportedPreviewSizes();

int width = Integer.MAX_VALUE, height = Integer.MAX_VALUE;

for (int i=0; i<sizes.size(); i++) {

Size s = sizes.get(i);

if (s.width < width) {

width = s.width;

height = s.height;

}

}

cameraParameters.setPreviewSize(width, height);

mCamera.setParameters(cameraParameters);

c13.indd 293

c13.indd 293

5/11/2012 9:37:01 AM

5/11/2012 9:37:01 AM

294 x CHAPTER 13 IMAGE-PROCESSING TECHNIQUES

This code reads the preview sizes available for the camera and chooses the one with the smallest width, which generally gives you the smallest image size available.

Now DetectLogoFaster sets the camera preview size as small as possible, but it’s still too big.

Why? Well, with the device I’m using to test this code, the camera preview sizes available are 1280 ¥ 720, 960 ¥ 544, 800 ¥ 400, 640 ¥ 480, and 480 ¥ 320. Even a 480 ¥ 320 image has 153,600

pixels. That is a lot of pixels to process!

Another way to reduce the image size is with an image-processing operation, such as averaging.

You’ll do this in DetectLogoFaster. Take a look at the image-processing pipeline used there: RgbAbsDiffGray radg = new RgbAbsDiffGray(Color.GREEN);

Gray8Reduce g8r;

try {

g8r = new Gray8Reduce(2,2);

} catch (Error e) {

return;

}

// then pass all pixels less than -84

Gray8Threshold g8t = new Gray8Threshold(-84, true);

// Now build the pipeline

mSeqThreshold = new Sequence(radg);

mSeqThreshold.add(g8r);

mSeqThreshold.add(g8t);

You saw how image-processing pipelines are built using JJIL previously, so, briefl y, this pipeline fi rst compares the color of each color pixel to green (of course, it’s green because you’re looking for the Android logo, which is green) using RgbAbsDiffGray, which computes the absolute value of the difference in color space between a specifi ed color and each pixel. This is returned as a signed byte value, offset by –128. You then average this byte image, reducing its size by a factor of two horizontally and vertically, using Gray8Reduce. You then threshold the image with a fi xed threshold (–84) with Gray8Threshold. This turns the green pixels to white, making them easy to detect, and sets everything else black, making it easy to ignore.

Now DetectLogoFaster is applying two techniques for increasing speed — selecting the closest image size appropriate to the task, and reducing the image size computationally. But it is still not fast enough. What else can you do?

It would be nice if the Android operating system gave us a good way to change the image size using hardware acceleration — but it doesn’t, at least not now (hint, hint). You are left to your own devices.

Start by modifying the NV21 to the RgbImage conversion routine in Nv212RgbImage so that it

doesn’t create an RgbImage that is too big in the fi rst place. Remember that the NV21 image subsamples the V and U color planes at half the resolution of the Y luminance plane. Change getRgbImage() to return an image that is sampled at the resolution of the color planes, instead of the luminance plane. getRgbImageReduced() does this:

public static RgbImage getRgbImageReduced(byte[] data, int width, int height) {

RgbImage rgb = new RgbImage(width / 2, height / 2);

int nVuOffset = width * height;

for (int i = 0; i < height; i += 2) {

for (int j = 0; j < width; j += 2) {

int nY = 0xff & data[i * width + j];

nY += 0xff & data[i * width + j + 1];

c13.indd 294

c13.indd 294

5/11/2012 9:37:02 AM

5/11/2012 9:37:02 AM

The Structure of Image-Processing Programs x 295

nY += 0xff & data[(i + 1) * width + j];

nY += 0xff & data[(i + 1) * width + j + 1];

nY /= 4;

int nV = 0xff & data[nVuOffset + (i / 2) * width + j];

int nU = 0xff & data[nVuOffset + (i / 2) * width + j + 1];

rgb.getData()[i / 2 * width / 2 + j / 2] = AndroidColors.yuv2Color(

nY, nU, nV);

}

}

return rgb;

}

The inner loop starts by taking the four luminance pixels that it will average to produce one output pixel and summing them in the variable nY. Dividing nY by four gives the average luminance value.

It then accesses the color planes to set nV and nU to the color values. It then calls yuv2Color() to compute the RGB color value. By averaging the luminance value before calling yuv2Color(), the code avoids three relatively expensive color calculations — in other words, by moving the image reduction to the earliest stage possible, the total computation is reduced signifi cantly.

With these changes, DetectLogoFaster works with reasonable speed — the update time is a second or less. However, if it was not fast enough, here are some other techniques to reduce the image size and increase processing speed:

‰

Subsample without averaging: In getRgbImageReduced() you take the time to average the four luminance pixels in each 2 ¥ 2 block. You could simply use one of the four pixels without averaging. This may work in some situations, but the technique must be used with care

because you may introduce aliasing into the subsampled image.

Figure 13-6 shows how aliasing can lead to incorrect results when you reduce the size of

an image. The input image has a diagonal stripe pattern, with the stripes running from

the bottom left to the top right. When you reduce the image size by properly averaging the

input pixels, you get an image like that on the top right. The diagonal stripe pattern is still present. When you don’t average the input pixels, you get an image like that on the bottom

right. Here, the diagonal stripe pattern has been replaced by a cross-hatch pattern. The original image content has been replaced with something entirely different — some of the stripes run in the opposite direction.

You don’t have to worry about this effect in the Android logo recognition program because

you are not worried about the internal structure of the logo, so any feature introduced by

subsampling won’t affect your program. But if you were looking in detail at an image fea-

ture, for example to recognize text, aliasing would play an important role.

With anti-aliasing

Without anti-aliasing

FIGURE 13-6: Aliasing

c13.indd 295

c13.indd 295

5/11/2012 9:37:02 AM

5/11/2012 9:37:02 AM

296 x CHAPTER 13 IMAGE-PROCESSING TECHNIQUES

‰

Crop: You can crop the image to a region of interest. This technique doesn’t apply to the search for an Android logo in the image because you don’t know where it is, but it is a key step in image processing where you can give direct feedback to the user on how to position the camera, as you can in Android. In effect, the barcode scanning program works this

way — the user knows to position the camera so the barcode is in the middle of the image,

keeping you from searching all over the image for it.

A simple way to give the user this feedback is to add a partially transparent layer in front of the camera preview image (that is, in front of the Preview object). (Remember, you can’t actually draw on the camera preview image. You must add a layer in front of it to modify

how it looks on the Android screen.) You could obscure the parts of the image you didn’t

want to process and outline the area of interest.

Of course, if you do this, you’ll want to convert just the image pixels in the region of interest, which means you need a different version of getRgbImage().

Now that DetectLogoFaster is fast enough, see what you can do to improve its importance, working in a new program called DetectLogoBetter.

Improving Reliability in Image Processing

The single most important thing image-processing engineers do to improve the reliability of their programs is to control the environment. That is, they set up cameras, illumination, and the objects they are taking pictures of so that the images vary as little as possible. Then, once the image-processing program is optimized for this situation, the same optimization will apply to all images in the future. Barcode detection uses this technique — the barcode symbol has been designed to make image processing of the barcode as easy as possible.

Unfortunately, with Android, you don’t have much control over the imaging environment. Any

Android image-processing program has to deal as best as it can with variations in:

‰

Positioning of the camera

‰

The camera device itself

‰

Luminance

‰

Color balance

You’re already allowing the users to position the camera as they like, and supporting different cameras, so take a look at some ways to handle luminance and color balance. You’ll do this in a new version of DetectLogoFaster called DetectLogoBetter.

To deal with variations in luminance, you normalize the gray image so that the same threshold will apply regardless of the input illumination. In this way a dark and a bright image of the same scene will be recognized in the same way. You do this by adding a histogram equalization step to the code, using Gray8HistEq:

mSeqThreshold = new Sequence(radg);

mSeqThreshold.add(g8r);

mSeqThreshold.add(new Gray8HistEq());

mSeqThreshold.add(g8t);

c13.indd 296

c13.indd 296

5/11/2012 9:37:02 AM

5/11/2012 9:37:02 AM

The Structure of Image-Processing Programs x 297

This enables you to set the threshold to a fi xed value and be reasonably confi dent that it will work.

The second thing you can do is to compensate for the color of the light in the scene. As you saw in Chapter 12, you can set the camera’s white balance to automatically compensate for different kinds of light sources — incandescent, fl uorescent, daylight, and so on. But, generally speaking, you do not want to burden the user with choosing the right setting to make your program work — and anyway, not all Android cameras support white balance. What can you do

algorithmically?

Many techniques for automatic white balance exist, but, generally speaking, they come down to two steps:

1.

Examine the scene and make a guess at the luminance color by looking at the light areas of

the image. In most situations the brightest areas in the image are of something that is white, so if it appears to have a color that must be due to the color of the light.

2.

Modify the color values to compensate.

You’ll try a very simple approach to this in DetectLogoBetter. First, you fi nd the brightest pixel in the image. Next, you adjust the color values before searching for the green pixels.

You use FindBrightestPoint to search for the brightest pixel. You compute the pixel brightness simply by summing the red, green, and blue values for the pixel. You then fi nd the largest sum, saving the color of that pixel:

int nLuminance = Integer.MIN_VALUE;

for (int i = 0; i < rgb.getHeight(); i += mnSkipVert)

{

for (int j = 0; j < rgb.getWidth(); j += mnSkipHoriz)

{

int cColor = rgb.getData()[i * rgb.getHeight() + j];

int nThisLuminance = RgbVal.getR(cColor) + RgbVal.getG(cColor)

+ RgbVal.getB(cColor);

if (nThisLuminance > nLuminance)

{

nLuminance = nThisLuminance;

mcBrightestColor = cColor;

}

}

}

Note that FindBrightestPoint doesn’t actually test every pixel in the image — you skip a number of pixels horizontally (mnSkipHoriz) and vertically (mnSkipVert). Scene illumination varies gradu-ally from point to point so you will probably fi nd the brightest pixel — or one near enough — this way, and you save a lot in computation. Typical values for mnSkipHoriz and mnSkipVert are 8, which means one in every 64 pixels (a little more than one percent) is sampled. The law of large numbers from statistics gives you a very good chance at making a reasonable guess even with such a small sample.

Next, you change RgbAbsDiffGray to take an additional parameter, which you can set

after the pipeline is created, so you can set the white balance. The new PipelineState is

c13.indd 297

c13.indd 297

5/11/2012 9:37:02 AM

5/11/2012 9:37:02 AM

298 x CHAPTER 13 IMAGE-PROCESSING TECHNIQUES

RgbAbsDiffGrayWb. When you build the image-processing pipeline you’ll retain a reference to the RgbAbsDiffGrayWb so you can set the white balance value before processing:

mRadg = new RgbAbsDiffGrayWb(Color.GREEN);

g8r = new Gray8Reduce(2, 2);

Gray8Threshold g8t = new Gray8Threshold(-96, true);

mSeqThreshold = new Sequence(mRadg);

mSeqThreshold.add(g8r);

mSeqThreshold.add(new Gray8HistEq());

mSeqThreshold.add(g8t);

You push the input RgbImage to mFbp, an object of type FindBrightestPoint, to get the white-balance color. Then you set the white-balance color before processing by calling

the setWhiteBalance() method of mRadg:

mFbp.push(rgb);

int nBrightestColor = mFbp.getBrightestColor();

mRadg.setWhiteBalance(nBrightestColor);

...

mSeqThreshold.push(rgb);

To use the white-balance color you’ll compensate for the color of the illumination by modifying the color of each RGB pixel so it has the color it would have if the illumination were white.

Figure 13-7 shows an example. Suppose the illumination was tinted orange, the way it would be under incandescent light. Then the white balance RGB color might be, for example (255, 228, 190). Under this light, a green object the color of the Android logo, which has the offi cial RGB

color (164, 198, 57), would tend to have its green, and especially its blue, color muted. The effect of light color on a surface is multiplicative. So, the Android logo might have the RGB color (165, 146, 42), as shown in Figure 13-7. The Android logo is no longer green, but more of an

olive brown.

Illumination

Original logo

Logo under orange light

FIGURE 13-7: Eff ect of light on the Android logo

c13.indd 298

c13.indd 298

5/11/2012 9:37:02 AM

5/11/2012 9:37:02 AM

Detecting Faces x 299

You compensate for this in RgbAbsDiffGrayWb by undoing the multiplicative effect of the

light — you divide by the color the light has, and multiply by the value it should have (that is, white): int nR = (r * Byte.MAX_VALUE) / mBrightestR;

int nG = (g * Byte.MAX_VALUE) / mBrightestG;

int nB = (b * Byte.MAX_VALUE) / mBrightestB;

The last step in improving the performance of DetectLogoBetter is to take into account the

approximate shape of the Android logo — it is approximately rectangular. You check for this by using an easy-to-compute number, namely the perimeter squared divided by the area. This dimen-sionless number, which is commonly used in image processing for just this purpose, is a measure of the compactness of a shape. A longer, thinner region will have a long perimeter compared to its area and so will have a high value.

The implementation of this is straightforward, given the perimeter and pixel count measures from Gray8ConnComp:

int perimeter = mG8cc.getPerimeter(i);

int area = mG8cc.getPixelCount(i);

int compactness = perimeter * perimeter / area;

if (compactness < nBestCompactness) {

nBestCompactness = compactness;

nBestComponent = i;

}

The result looks for a greenish blob that is more or less rectangular and larger than a certain minimum size. This is a pretty fair description of the Android logo, from an image-processing point of view.

This is as far as you will go in improving the performance of DetectLogoBetter. If you wanted to go further you would change the code to use the actual target color of the Android logo, rather than the system Color.GREEN, and do a more careful job on white balance, rather than just taking the brightest pixel as a guide to the luminance color. You could also take into account the detailed shape of the Android logo by looking at each suspiciously green blob in the image — for example, you could refer back to the original color image to examine the corresponding full-resolution image, and look for the details you would expect to fi nd in the Android logo — the shape outline, the eyes, and the arms.

DETECTING FACES

This chapter has focused on writing image processing programs starting with simple, general operations. But Android also includes some sophisticated image processing routines for face detection, and you should also know about these.

Incidentally, please do not confuse face detection with face recognition. Android introduced some proprietary code for face recognition in the Ice Cream Sandwich release of the operating system by providing a Face Unlock program. You can train your device to recognize your face and unlock when it sees you. This is not the same thing as face detection, and in any case there is, at this writing, no public c13.indd 299

c13.indd 299

5/11/2012 9:37:02 AM

5/11/2012 9:37:02 AM

300 x CHAPTER 13 IMAGE-PROCESSING TECHNIQUES

API for face recognition — you can’t train it to recognize more than one face, or make it do anything other than unlock your device. These capabilities will undoubtedly come in future releases of Android.

In face detection you are simply determining whether there is a face somewhere in the image, and, if so, where it is. The basic process for detecting faces uses the android.media.FaceDetector class.

To use this, you must fi rst create a FaceDetector object:

FaceDetector fd = new FaceDetector(nWidth, nHeight, nFaces);

Here nWidth and nHeight are the size of the image to be processed, and nFaces gives the number of faces that will be searched for. You can use the same FaceDetector object over and over so long as the image size does not change.

To detect the faces you just call the findFaces() method in FaceDetector:

int nFaces = fd.findFaces(bmp, faces);

Here bmp is the Bitmap image where you want to fi nd faces, and faces is an array of FaceDetect.

Face objects which will be set to the detected faces. nFaces is set to the number of faces detected.

The FaceDetect.Face object includes this useful information on detected faces:

‰

The confi dence of the detection, returned as a fl oating-point value. Any value above 0.3 is considered “good.”

‰

The position of the midpoint of the eyes.

‰

The distance between the eyes.

‰

The orientation of the face.

Note that the actual size of the face is not returned — you have to estimate this from the distance between the eyes. And the orientation of the face is returned in three dimensions, measured in terms of the angles around the x, y, and z axes.

IMAGE-PROCESSING RESOURCES

Image processing is an engineering fi eld in itself, and Chapters 12 and 13 have served only as a brief introduction, concentrating on techniques that may be most useful on a mobile platform.

Fortunately, many resources are available for free on the web:

‰

OpenCV (http://tech.groups.yahoo.com/group/OpenCV/) is the preeminent Internet

discussion group on image processing and computer vision. It includes an active mailing list and a large (more than 500 algorithms) library of image-processing programs, as well as

image resources useful for testing, and a book (Learning OpenCV: Computer Vision with the OpenCV Library) introducing computer vision with the library. OpenCV’s image-processing library is written in C++, but it is still a useful starting point for Android programmers.

‰

Many online tutorials on image processing are available; for example, Alan Peters of

Vanderbilt University provides an 18-part lecture series at www.archive.org/details/

Lectures_on_Image_Processing, and Srinivasa Narasimhan and Tai-sing Lee of Carnegie

Mellon University provide their lecture notes at www.cs.cmu.edu/afs/cs.cmu.edu/

academic/class/15385-s06/lectures/ppts/.

c13.indd 300

c13.indd 300

5/11/2012 9:37:03 AM

5/11/2012 9:37:03 AM

Summary x 301

‰

Many image-processing journals are available online, for example Image Processing On Line (www.ipol.im/).

Many good textbooks are also available that introduce the fi eld of image processing. These include:

‰

 Digital Image Processing (3rd edition) by Rafael C. Gonzalez and Robert E. Woods.

‰

 Fundamentals of Digital Image Processing by Anil K. Jain.

‰

 Digital Image Processing by William K. Pratt.

SUMMARY

This chapter took you from a familiarity with the Android camera and Android programming

to a basic understanding of image processing using Android. The chapter introduced the

image-processing pipeline, which is the fundamental way image-processing programs are structured, and described some important image-processing algorithms. Next, you saw how to capture and use the Android color image. You saw how a simple program for detecting the Android logo was structured, and learned how to improve the program’s speed by limiting the size of the image to be processed. Then you saw how to improve the program’s reliability by taking into account variations in illumination and white balance, eventually using the shape of the logo to help guide detection. You also learned about Android’s face detection feature. Finally, you were given a starting point to fi nd out more about image processing, including the many free resources available on the web.

Images are not the only external data an Android device can sense. Devices can also use the microphone to sense audio data. The next chapter shows you how to detect patterns in audio recordings, just as this chapter showed you detect patterns in captured images.

c13.indd 301

c13.indd 301

5/11/2012 9:37:03 AM

5/11/2012 9:37:03 AM

c13.indd 302

c13.indd 302

5/11/2012 9:37:03 AM

5/11/2012 9:37:03 AM

14

Using the Microphone

WHAT’S IN THIS CHAPTER?

‰

Recording maximum amplitude and raw audio data

‰

Processing asynchronously

‰

Implementing a clapper

‰

Signal processing to determine volume and frequency

Many Android devices are also phones, and hence provide a microphone to the user. Apps can

use the microphone as a sensor to record audio and then analyze the resulting recording.

Many apps might benefi t from analyzing the audio recording. For example, an app could

detect a clap or a certain sound to help the user communicate a command. Instrument tuners

and other utilities are also possible.

This chapter describes how to use the MediaRecorder and AudioRecord APIs to record and

analyze audio to detect patterns. It describes some utility classes to help you use the APIs. To demonstrate, this chapter shows how to create several versions of a clapper.

INTRODUCING THE ANDROID CLAPPER

The clapper, shown in Figure 14-1, is a device invented in 1986 that attaches to an electrical socket and turns it on and off in response to a person’s claps. You can implement something similar on Android that improves upon the features of the original clapper. Instead of activating an electrical outlet, though, your app may take another action instead.

c14.indd 303

c14.indd 303

5/10/2012 2:10:39 PM

5/10/2012 2:10:39 PM

304 x CHAPTER 14 USING THE MICROPHONE

Table 14-1 shows the different implementations

of a clapper in this chapter. The clapper and loud

noise clappers perform in a similar way to the origi-

nal clapper: the user triggers them by making a loud

sound. The singing clapper improves the loud noise

clapper by triggering only if it hears a consistent

frequency, such as one that a user might make while

singing. By responding only to a consistent frequency,

the improved clapper ignores unwanted triggering

from sounds such as dogs barking, fi reworks going

off, and other loud noises.

The clapper implementations show how to use

FIGURE 14-1: A clapper plugs into the wall and

MediaRecorder and AudioRecord and describe

controls turning on and off an electrical socket.

signal processing techniques to estimate a signal’s

volume and frequency.

TABLE 14-1: Diff erent Implementations of a Clapper

NAME

HOW

TRIGGER

DETECT WHEN

Clapper

MediaRecorder

Clap hands

High maximum amplitude

Loud Noise

AudioRecord

Clap hands

Sustained high amplitude

Singing

AudioRecord

Singing “oooooo”

Consistent frequency such as what a

person might produce by singing the

same tone. Won’t be triggered by claps,

door slams, dogs barking, or people

talking.

TRY THIS

You can try the three clappers by accessing the “Clapper” button within the book’s

app. The app enables you to try each clapper, view logging output, and use some

provided sound samples to experiment.

USING MEDIARECORDER TO ANALYZE MAXIMUM AMPLITUDE

Of the two ways to collect audio information from Android, MediaRecorder is the most limited and the simplest, yet it is also quite robust. The MediaRecorder handles many of the recording details, such as acquiring audio data and calculating maximum amplitude, and hence makes it easy to use.

Maximum amplitude is quite useful for detecting patterns within an audio recording. To access it, an app calls MediaRecorder.getMaxAmplitude(), which returns its value since the last call to it.

c14.indd 304

c14.indd 304

5/10/2012 2:10:43 PM

5/10/2012 2:10:43 PM

Using MediaRecorder to Analyze Maximum Amplitude x 305

The value ranges from 0 to 32767 (the maximum value that can fi t in a short) and does not represent a specifi c unit. An app can use periodic calls to the method to record maximum amplitude values over time. Also, an app needs to monitor maximum amplitude asynchronously so it can do other tasks while recording and remain responsive to the user.

You can use the following set of three classes and interfaces to collect and analyze maximum amplitude:

‰

MaxAmplitudeRecorder: Executes MediaRecorder, collects maximum amplitude, and

passes it to an AmplitudeClipListener.

‰

AmplitudeClipListener: Listens for new maximum amplitude and possibly stops

recording.

‰

RecordAmplitudeTask: An AsyncTask that executes MaxAmplitudeRecorder asynchro-

nously and updates the user interface before and after execution.

Recording Maximum Amplitude

First, an app needs the right permissions and hardware. Then, it can prepare the MediaRecorder for use and start recording.

To record audio, an app needs following permission:

<uses-permission android:name="android.permission.RECORD_AUDIO" />

Optionally, an app can check if the device has a microphone by using the code in Listing 14-1.

LISTING 14-1: Checks if a device has a microphone

public static boolean hasMicrophone(Context context)

{

return context.getPackageManager().hasSystemFeature(

PackageManager.FEATURE_MICROPHONE);

}

With the correct permissions and the presence of a microphone, an app can safely create and prepare a MediaRecorder for use. Creating the MediaRecorder requires several steps in a particular order.

Listing 14-2 shows a utility method that creates it with the typical parameters.

LISTING 14-2: Creates and prepares a MediaRecorder for use

public static MediaRecorder prepareRecorder(String sdCardPath)

throws IOException

{

if (!isStorageReady())

{

throw new IOException("SD card is not available");

}

 continues

c14.indd 305

c14.indd 305

5/10/2012 2:10:44 PM

5/10/2012 2:10:44 PM

306 x CHAPTER 14 USING THE MICROPHONE

LISTING 14-2 (continued)

MediaRecorder recorder = new MediaRecorder();

//set a custom listener that just logs any messages

RecorderErrorLoggerListener recorderListener =

new RecorderErrorLoggerListener();

recorder.setOnErrorListener(recorderListener);

recorder.setOnInfoListener(recorderListener);

recorder.setAudioSource(MediaRecorder.AudioSource.MIC);

recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);

Log.d(TAG, "recording to: " + sdCardPath);

recorder.setOutputFile(sdCardPath);

recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);

recorder.prepare();

return recorder;

}

Preparing a MediaRecorder proceeds through the following steps:

1.

Check if an SD card is available. Because MediaRecorder requires a fi le to record audio

data and the path is on the SD card, the device must have its SD card available. If it is not available, throw an IOException.

2. Create

the

MediaRecorder object.

3.

Set the default OnError and OnInfo listeners that log output.

4.

Set the audio source to MediaRecorder.AudioSource.MIC.

5.

Set the output format to MediaRecorder.OutputFormat.THREE_GPP. The Android docu-

mentation recommends this format, but others are possible.

6.

Set the output fi le. The MediaRecorder uses this fi le to store all recorded output. Even if your app is not using the recorded fi le, MediaRecorder still needs this to hold temporary

data.

7.

Set the audio encoder to MediaRecorder.AudioEncoder.AMR_NB. The output format of the

audio.

8. Call

prepare(). After this call, the recorder is ready to start.

You can fi nd additional information about the audio formats at http://developer.android.com/

guide/appendix/media-formats.html#core.

While preparing a MediaRecorder, the code may generate several Exceptions. An

IllegalStateException may occur if the code executes the setup in the incorrect order. The

exception should never occur unless calling code misuses the setup routine. An IOException is also possible if the SD card is not available.

Once an app obtains a properly initialized MediaRecorder it can start recording, check maximum amplitude in a loop, and analyze the resulting amplitude. You can implement this process using MaxAmplitudeRecorder, shown in Listing 14-3, and AmplitudeClipListener, shown in

Listing 14-4.

c14.indd 306

c14.indd 306

5/10/2012 2:10:44 PM

5/10/2012 2:10:44 PM

Using MediaRecorder to Analyze Maximum Amplitude x 307

MaxAmplitudeRecorder has a startRecording() which contains the recording loop. Before

running the loop, the code calls getMaxAmplitude(). The code does this because the fi rst getMaxAmplitude() call returns zero and subsequent calls report its value since it was last called. Thus, by calling getMaxAmplitude() once before the loop starts, the code ensures the fi rst value returned is a useful one. The loop waits for a time (and possibly stops if external code indicated so while it was waiting), records the getMaxAmplitude() value, passes it to an AmplitudeClipListener for analysis, and stops recording if the AmplitudeClipListener returns true. Using this procedure the loop periodically collects and analyzes maximum amplitude and ends if one of three conditions occur:

‰

The AmplitudeClipListener returns true.

‰

External code calls stopRecording(), which sets continueRecording to false.

‰

External code cancels the AsyncTask.

LISTING 14-3: Records the maximum amplitude periodically

public class MaxAmplitudeRecorder

{

private static final String TAG = "MaxAmplitudeRecorder";

private static final long DEFAULT_CLIP_TIME = 1000;

private long clipTime = DEFAULT_CLIP_TIME;

private AmplitudeClipListener clipListener;

private boolean continueRecording;

private MediaRecorder recorder;

private String tmpAudioFile;

private AsyncTask task;

/**

*

* @param clipTime

* time to wait in between maxAmplitude checks

* @param tmpAudioFile

* should be a file where the MediaRecorder can write

temporary audio data

*

* @param clipListener

* called periodically to analyze the max amplitude

* @param task

* stop recording if the task is canceled

*/

public MaxAmplitudeRecorder(long clipTime, String tmpAudioFile,

AmplitudeClipListener clipListener, AsyncTask task)

{

this.clipTime = clipTime;

this.clipListener = clipListener;

 continues

c14.indd 307

c14.indd 307

5/10/2012 2:10:45 PM

5/10/2012 2:10:45 PM

308 x CHAPTER 14 USING THE MICROPHONE

LISTING 14-3 (continued)

this.tmpAudioFile = tmpAudioFile;

this.task = task;

}

/**

* start recording maximum amplitude and passing it to the

* {@link #clipListener}

* @throws {@link IllegalStateException} if there is trouble creating

* the recorder

* @throws {@link IOException} if the SD card is not available

* @throws {@link RuntimeException} if audio recording channel is occupied

* @return true if {@link #clipListener} succeeded in detecting something

* false if it failed or the recording stopped for some other reason

*/

public boolean startRecording() throws IOException

{

Log.d(TAG, "recording maxAmplitude");

recorder = AudioUtil.prepareRecorder(tmpAudioFile);

// when an error occurs just stop recording

recorder.setOnErrorListener(new MediaRecorder.OnErrorListener()

{

@Override

public void onError(MediaRecorder mr, int what, int extra)

{

// log it

new RecorderErrorLoggerListener().onError(mr, what, extra);

// stop recording

stopRecording();

}

});

//possible RuntimeException if Audio recording channel is occupied

recorder.start();

continueRecording = true;

boolean heard = false;

recorder.getMaxAmplitude();

while (continueRecording)

{

Log.d(TAG, "waiting while recording...");

waitClipTime();

//in case external code stopped this while read was happening

if ((!continueRecording) || ((task != null) && task.isCancelled()))

{

break;

}

int maxAmplitude = recorder.getMaxAmplitude();

Log.d(TAG, "current max amplitude: " + maxAmplitude);

heard = clipListener.heard(maxAmplitude);

c14.indd 308

c14.indd 308

5/10/2012 2:10:45 PM

5/10/2012 2:10:45 PM

Using MediaRecorder to Analyze Maximum Amplitude x 309

if (heard)

{

stopRecording();

}

Log.d(TAG, "stopped recording max amplitude");

done();

return heard;

}

private void waitClipTime()

{

try

{

Thread.sleep(clipTime);

} catch (InterruptedException e)

{

Log.d(TAG, "interrupted");

}

}

/**

* stop recorder and clean up resources

*/

public void done()

{

Log.d(TAG, "stop recording on done");

if (recorder != null)

{

try

{

recorder.stop();

} catch (Exception e)

{

Log.d(TAG, "failed to stop");

return;

}

recorder.release();

}

}

public boolean isRecording()

{

return continueRecording;

}

public void stopRecording()

{

continueRecording = false;

}

}

 code snippet MaxAmplitudeRecorder.java

c14.indd 309

c14.indd 309

5/10/2012 2:10:45 PM

5/10/2012 2:10:45 PM

310 x CHAPTER 14 USING THE MICROPHONE

LISTING 14-4: Listens for maximum amplitude

public interface AmplitudeClipListener

{

/**

* return true if recording should stop

*/

public boolean heard(int maxAmplitude);

}

You can use MaxAmplitudeRecorder and AmplitudeClipListener to analyze maximum

amplitude over time. One important implementation detail is that the recording loop in

MaxAmplitudeRecorder should be run asynchronously, otherwise an app would be unresponsive

while it was waiting to record another maximum amplitude value. The next section describes how to run MaxAmplitudeRecorder asynchronously using an AsyncTask.

Asynchronous Audio Recording

Most likely, an app needs to do something else while recording audio. For example, it may need to keep the UI responsive. To implement this, an app needs to record audio asynchronously.

Additionally, an app needs to process the results of the recording when it is done. For both these features, an app can use an AsyncTask such as RecordAmplitudeTask.

Listing 14-5 shows the code for RecordAmplitudeTask. When external code calls execute(), Android calls doInBackground(). In that method, RecordAmplitudeTask creates a MaxAmplitudeRecorder

and runs it until the startRecording() method returns. Its onPostExecute() method receives the recording result and updates the UI by setting the text of status and log TextViews

LISTING 14-5: Executes MaxAmplitudeRecorder, passes results to a AmplitudeClipListener, and updates user interface before and after recording

public class RecordAmplitudeTask extends

AsyncTask<AmplitudeClipListener, Void, Boolean>

{

private static final String TAG = "RecordAmplitudeTask";

private TextView status;

private TextView log;

private Context context;

private String taskName;

private static final String TEMP_AUDIO_DIR_NAME = "temp_audio";

/**

* time between amplitude checks

*/

private static final int CLIP_TIME = 1000;

public RecordAmplitudeTask(Context context, TextView status, TextView log,

String taskName)

c14.indd 310

c14.indd 310

5/10/2012 2:10:45 PM

5/10/2012 2:10:45 PM

Using MediaRecorder to Analyze Maximum Amplitude x 311

{

this.context = context;

this.status = status;

this.log = log;

this.taskName = taskName;

}

@Override

protected void onPreExecute()

{

// tell UI recording is starting

status.setText(context.getResources().getString(

R.string.audio_status_recording)

+ " for " + taskName);

AudioTaskUtil.appendToStartOfLog(log, "started " + taskName);

super.onPreExecute();

}

/**

* note: only uses the first listener passed in

*/

@Override

protected Boolean doInBackground(AmplitudeClipListener... listeners)

{

if (listeners.length == 0)

{

return false;

}

Log.d(TAG, "recording amplitude");

// construct recorder, using only the first listener passed in

AmplitudeClipListener listener = listeners[0];

String appStorageLocation =

context.getExternalFilesDir(TEMP_AUDIO_DIR_NAME).getAbsolutePath()

+ File.separator + "audio.3gp";

MaxAmplitudeRecorder recorder =

new MaxAmplitudeRecorder(CLIP_TIME, appStorageLocation,

listener, this);

//set to true if the recorder successfully detected something

//false if it was canceled or otherwise stopped

boolean heard = false;

try

{

// start recording

heard = recorder.startRecording();

} catch (IOException io)

{

Log.e(TAG, "failed to record", io);

heard = false;

} catch (IllegalStateException se)

{

Log.e(TAG, "failed to record, recorder not setup properly", se);

heard = false;

} catch (RuntimeException se)

 continues

c14.indd 311

c14.indd 311

5/10/2012 2:10:45 PM

5/10/2012 2:10:45 PM

312 x CHAPTER 14 USING THE MICROPHONE

LISTING 14-5 (continued)

{

Log.e(TAG, "failed to record, recorder already being used", se);

heard = false;

}

return heard;

}

@Override

protected void onPostExecute(Boolean result)

{

// update UI

if (result)

{

AudioTaskUtil.appendToStartOfLog(log, "heard clap at "

+ AudioTaskUtil.getNow());

}

else

{

AudioTaskUtil.appendToStartOfLog(log, "heard no claps");

}

setDoneMessage();

super.onPostExecute(result);

}

@Override

protected void onCancelled()

{

AudioTaskUtil.appendToStartOfLog(log, "cancelled " + taskName);

setDoneMessage();

super.onCancelled();

}

private void setDoneMessage()

{

status.setText(context.getResources().getString(

R.string.audio_status_stopped));

}

}

 code snippet RecordAmplitudeTask.java

Now that you know how to record maximum amplitude, the next section shows you how to analyze the maximum amplitude to implement a clapper.

IMPLEMENTING A CLAPPER

The previous sections described how to record maximum amplitude. To use the described code, an app needs to provide an AmplitudeClipListener. Listing 14-6 shows the implementation of one that listens for a single clap. The heard() method checks maxAmplitude value against a threshold to determine if it heard a clap.

c14.indd 312

c14.indd 312

5/10/2012 2:10:45 PM

5/10/2012 2:10:45 PM

Implementing a Clapper x 313

Choosing a threshold is dependent on several factors. A low value makes an app very sensitive. It makes it easy for the user to trigger but also increases accidental triggering. A high value makes the app less sensitive, but might require the user to make a very loud sound to activate it.

The environment also can help determine what threshold is appropriate. If the user is in a noisy place, the threshold should be high to minimize false triggering. On the other hand, if the user is in a quiet place where he can’t make too much noise, a low value might be the only way to allow the user to politely trigger it. Knowledgeable users may adjust the sensitivity depending on their circum-stances. In my experience a value of 18000, which is slightly more than 50% of the maximum value, is a good compromise between being too sensitive and making it easy for users to trigger the clap.

LISTING 14-6: Reports if maximum amplitude is above a certain threshold

public class SingleClapDetector implements AmplitudeClipListener

{

private static final String TAG = "SingleClapDetector";

/**

* required loudness to determine it is a clap

*/

private int amplitudeThreshold;

/**

* requires a little of noise by the user to trigger, background noise may

* trigger it

*/

public static final int AMPLITUDE_DIFF_LOW = 10000;

public static final int AMPLITUDE_DIFF_MED = 18000;

/**

* requires a lot of noise by the user to trigger. background noise isn't

* likely to be this loud

*/

public static final int AMPLITUDE_DIFF_HIGH = 25000;

private static final int DEFAULT_AMPLITUDE_DIFF = AMPLITUDE_DIFF_MED;

public SingleClapDetector()

{

this(DEFAULT_AMPLITUDE_DIFF);

}

public SingleClapDetector(int amplitudeThreshold)

{

this.amplitudeThreshold = amplitudeThreshold;

}

@Override

public boolean heard(int maxAmplitude)

{

boolean clapDetected = false;

if (maxAmplitude >= amplitudeThreshold)

 continues

c14.indd 313

c14.indd 313

5/10/2012 2:10:45 PM

5/10/2012 2:10:45 PM

314 x CHAPTER 14 USING THE MICROPHONE

LISTING 14-6 (continued)

{

Log.d(TAG, "heard a clap");

clapDetected = true;

}

return clapDetected;

}

}

An app can use MediaRecorder to collect maximum amplitude values over time. This value is quite useful and easy to acquire. However, for more advanced audio analysis where an app needs access to the raw audio signal and greater control over the recording process, an app must use AudioRecord, which the next section describes.

ANALYZING RAW AUDIO

Sometimes the maximum amplitude value from the MediaRecorder is not enough for certain tasks.

First, MediaRecorder doesn’t have methods to directly retrieve the raw audio data, which makes it inconvenient for immediate analysis. Second, MediaRecorder compresses the audio. This is not a problem if an app is analyzing maximum amplitude. However, if an app is analyzing the raw audio signal it might introduce some unwanted distortion. Thus, for analyzing audio data for information beyond maximum amplitude, an app should use the data from AudioRecord instead of

MediaRecorder.

Using AudioRecord allows an app to collect the raw, uncompressed audio bytes. The bytes contain recorded samples of the signal’s amplitude over time. You can apply many kinds of signal processing algorithms to this data. This section shows how to implement two kinds of clappers that perform two kinds of signal processing: one to determine volume and another to estimate frequency. Also, this section utilizes several classes to help you utilize AudioRecord:

‰

AudioClipRecorder: Executes AudioRecord to record audio clips and pass resulting audio

data to an AudioClipListener.

‰

AudioClipListener: Listens for audio data and possibly stops recording.

‰

RecordAudioTask: An AsyncTask that executes AudioClipRecorder asynchronously and

updates the user interface before and after execution. Similar to code in Listing 14-5.

Listing 14-7 shows the complete AudioClipRecorder and Listings 14-8 and 14-10 show implementations of AudioClipListener for two clappers.

To understand how these classes work, you need to understand how to set the input parameters, how the recording loop works, and how to analyze the resulting audio data.

c14.indd 314

c14.indd 314

5/10/2012 2:10:46 PM

5/10/2012 2:10:46 PM

Analyzing Raw Audio x 315

Setting Audio Input Parameters

AudioRecord provides several parameters an app can set to achieve certain effects:

‰

Achieve a certain audio quality by setting sampling and encoding.

‰

Record for audio clips of a certain time length.

‰

Avoid buffer overfl ows.

Table 14-2 shows the various input parameters needed to create an AudioRecord.

TABLE 14-2: Input Parameters for AudioRecord

VALUE

POSSIBLE VALUES

DESCRIPTION

Encoding

AudioFormat.ENCODING_PCM_16BIT or

Specifi es the size of each audio data

AudioFormat.ENCODING_PCM_8BIT

byte. 16 bit has a bigger range than

8 bit. One audio sample is called a

“frame” by the Android documentation.

Sampling

According to the Android source code,

Number of samples to record per sec-

rate

any value between 4000 and 48000 is

ond in Hz.

valid. Use 8000 for a low quality sound

used in telephones. Use 44100 for CD

recording quality. 44100 is the only value

guaranteed to work on all devices.

Buff erSize

Greater than value returned from

Number of bytes in the recording buf-

AudioRecord.getMinBufferSize()

fer. If the buff er size is too small and

an app doesn’t read it fast enough,

buff er overfl ow occurs and an app

loses data. Apps usually set the buf-

fer higher than needed by a factor of

3 or 10, depending on the application.

Also, for 16-bit encoding, each sample

utilizes two bytes so apps may want to

increase the buff er size to hold enough

samples.

Channel

AudioFormat

The audio channels to record. Mono

.CHANNEL_IN_MONO, AudioFormat.

uses a single audio stream and ste-

CHANNEL_IN_STEREO, or other, more

reo uses two. Using stereo doubles

specifi c mono or stereo CHANNEL from

the data collected. Unless your audio

AudioFormat.

analysis requires it, mono is suffi

cient

for most uses.

c14.indd 315

c14.indd 315

5/10/2012 2:10:46 PM

5/10/2012 2:10:46 PM

316 x CHAPTER 14 USING THE MICROPHONE

To illustrate how you might set these parameters, consider how you would set them to record audio clips containing data for a certain amount of time. For example, if you want an app to collect audio clips containing approximately 2 seconds of audio data with a sample rate of 8000Hz, an encoding of AudioFormat.ENCODING_PCM_16BIT, and a single audio channel the parameter settings would be:

‰

Encoding: AudioFormat.ENCODING_PCM_16BIT

‰

Sampling rate: 8000

‰

BufferSize: Sample rate * 2 * 2 * 3 = 192000

‰

Multiply sample rate by 2 because two seconds of samples would be 16000

samples.

‰

Multiply by 2 again because each sample is 2 bytes big and the buffer size is specifi ed

in bytes.

‰

Multiply by 3 to provide extra buffer space and avoid buffer overfl ow.

‰

Channel: AudioFormat.CHANNEL_IN_MONO

If an app needs to analyze the data as fast as possible it can use a minimum sized buffer. Some example parameters might be:

‰

Encoding: AudioFormat.ENCODING_PCM_16BIT

‰

Sampling rate: 8000

‰

BufferSize: AudioRecord.getMinBufferSize()* 3. Use the minimum buffer size, but

increase it by 3 to prevent buffer overfl ows.

‰

Channel: AudioFormat.CHANNEL_IN_MONO

AudioClipRecorder has methods that help calculate the size of the recording buffer. In particular, startRecordingForTime() makes the calculation necessary to achieve recording clips that contain data for a certain amount of time.

Preparing AudioRecord

The two startRecording() methods in AudioClipRecorder determine the size of the record-

ing and read buffers and then create an AudioRecord that is ready for use. The methods proceed through the following steps:

1.

Determine minimum recording buffer and read buffer sizes:

‰

Use the minimum: startRecording() uses AudioRecord.getMinBufferSize() as

the recording buffer size and also as the read buffer size.

‰

Calculated: startRecordingForTime() calculates how many samples it needs

to create a read buffer that holds enough samples for the desired time. It uses

c14.indd 316

c14.indd 316

5/10/2012 2:10:46 PM

5/10/2012 2:10:46 PM

Analyzing Raw Audio x 317

determineCalculatedBufferSize() to adjust the recording buffer size so that it

holds enough samples for a given encoding and is bigger than the minimum size.

2. Create

AudioRecord within doRecording():

‰

Check if the recording buffer size is an error value. If so, do not proceed.

‰

Increase the size of the recording buffer by a factor.

‰

Set sample rate, encoding, channels, recording buffer.

3.

Create read audio buffer:

‰

Allocates the read buffer as a short [readBufferSize].

Recording Audio

Once AudioClipRecorder properly creates an AudioRecord that is ready for use, doRecord-

ing() starts recording by setting the continueRecording state variable to true and executing AudioRecord.startRecording(). Then it begins the following recording loop:

1.

Read audio data: Execute AudioRecord.read(), which blocks until there is enough data to

fi ll the read buffer.

2.

Possibly stop recording: Exit the loop if external code indicated that recording should stop while the code was blocked. External code can indicate this by calling stopRecording() or

by cancelling the AsyncTask used to construct AudioClipRecorder.

3.

Check for errors: Create a log if read() causes an error.

4.

Do processing: The AudioClipRecorder, clipListener, does some processing based on

the data it received. Meanwhile AudioRecord continues to add to the recording buffer. If

 clipListener takes too long, AudioRecord might fi ll the buffer and log a buffer overfl ow error so it should fi nish quickly

5.

Possibly stop recording: Stop the loop if AudioClipListener returns true.

Using OnRecordPositionUpdateListener

As an alternative, an app may also use an OnRecordPositionUpdateListener to process the audio data. To use it, an app specifi es a number of samples, which the Android documentation calls frames, to wait. When AudioRecord records that many samples, it calls the listener. The recording loop must still call read() but it does not need to process results.

For example, an app might specify that AudioRecord should update

OnRecordPositionUpdateListener every 8000 samples by calling setPositionNotification

Period(8000) If the sample rate is 8000, this causes AudioRecord to call the listener about once every second. Also, an app has to make sure that the recording buffer is big enough to hold 8000

samples. For this, AudioClipRecorder.startRecordingForTime() is useful.

c14.indd 317

c14.indd 317

5/10/2012 2:10:46 PM

5/10/2012 2:10:46 PM

318 x CHAPTER 14 USING THE MICROPHONE

Listing 14-7 contains a setOnPositionUpdate() method that shows how to create and

set an OnRecordPositionUpdateListener. It also contains the complete source code for

AudioClipRecorder.

LISTING 14-7: Records audio with AudioRecord

public class AudioClipRecorder

{

private static final String TAG = "AudioClipRecorder";

private AudioRecord recorder;

private AudioClipListener clipListener;

/**

* state variable to control starting and stopping recording

*/

private boolean continueRecording;

public static final int RECORDER_SAMPLERATE_CD = 44100;

public static final int RECORDER_SAMPLERATE_8000 = 8000;

private static final int DEFAULT_BUFFER_INCREASE_FACTOR = 3;

private AsyncTask task;

private boolean heard;

public AudioClipRecorder(AudioClipListener clipListener)

{

this.clipListener = clipListener;

heard = false;

task = null;

}

public AudioClipRecorder(AudioClipListener clipListener, AsyncTask task)

{

this(clipListener);

this.task = task;

}

/**

* records with some default parameters

*/

public boolean startRecording()

{

return startRecording(RECORDER_SAMPLERATE_8000,

AudioFormat.ENCODING_PCM_16BIT);

}

/**

* start recording: set the parameters that correspond to a buffer that

* contains millisecondsPerAudioClip milliseconds of samples

*/

c14.indd 318

c14.indd 318

5/10/2012 2:10:46 PM

5/10/2012 2:10:46 PM

Analyzing Raw Audio x 319

public boolean startRecordingForTime(int millisecondsPerAudioClip,

int sampleRate, int encoding)

{

float percentOfASecond = (float) millisecondsPerAudioClip / 1000.0f;

int numSamplesRequired = (int) ((float) sampleRate * percentOfASecond);

int bufferSize =

determineCalculatedBufferSize(sampleRate, encoding,

numSamplesRequired);

return doRecording(sampleRate, encoding, bufferSize,

numSamplesRequired, DEFAULT_BUFFER_INCREASE_FACTOR);

}

/**

* start recording: Use a minimum audio buffer and a read buffer of the same

* size.

*/

public boolean startRecording(final int sampleRate, int encoding)

{

int bufferSize = determineMinimumBufferSize(sampleRate, encoding);

return doRecording(sampleRate, encoding, bufferSize, bufferSize,

DEFAULT_BUFFER_INCREASE_FACTOR);

}

private int determineMinimumBufferSize(final int sampleRate, int encoding)

{

int minBufferSize =

AudioRecord.getMinBufferSize(sampleRate,

AudioFormat.CHANNEL_IN_MONO, encoding);

return minBufferSize;

}

/**

* Calculate audio buffer size such that it holds numSamplesInBuffer and is

* bigger than the minimum size

*

* @param numSamplesInBuffer

* Make the audio buffer size big enough to hold this many

* samples

*/

private int determineCalculatedBufferSize(final int sampleRate,

int encoding, int numSamplesInBuffer)

{

int minBufferSize = determineMinimumBufferSize(sampleRate, encoding);

int bufferSize;

// each sample takes two bytes, need a bigger buffer

if (encoding == AudioFormat.ENCODING_PCM_16BIT)

{

bufferSize = numSamplesInBuffer * 2;

}

else

{

bufferSize = numSamplesInBuffer;

}

 continues

c14.indd 319

c14.indd 319

5/10/2012 2:10:46 PM

5/10/2012 2:10:46 PM

320 x CHAPTER 14 USING THE MICROPHONE

LISTING 14-7 (continued)

if (bufferSize < minBufferSize)

{

Log.w(TAG, "Increasing buffer to hold enough samples "

+ minBufferSize + " was: " + bufferSize);

bufferSize = minBufferSize;

}

return bufferSize;

}

/**

* Records audio until stopped the {@link #task} is canceled,

* {@link #continueRecording} is false, or {@link #clipListener} returns

* true

* records audio to a short [readBufferSize] and passes it to

* {@link #clipListener}

* uses an audio buffer of size bufferSize * bufferIncreaseFactor

*

* @param recordingBufferSize

* minimum audio buffer size

* @param readBufferSize

* reads a buffer of this size

* @param bufferIncreaseFactor

* to increase recording buffer size beyond the minimum needed

*/

private boolean doRecording(final int sampleRate, int encoding,

int recordingBufferSize, int readBufferSize,

int bufferIncreaseFactor)

{

if (recordingBufferSize == AudioRecord.ERROR_BAD_VALUE)

{

Log.e(TAG, "Bad encoding value, see logcat");

return false;

}

else if (recordingBufferSize == AudioRecord.ERROR)

{

Log.e(TAG, "Error creating buffer size");

return false;

}

// give it extra space to prevent overflow

int increasedRecordingBufferSize =

recordingBufferSize * bufferIncreaseFactor;

recorder =

new AudioRecord(AudioSource.MIC, sampleRate,

AudioFormat.CHANNEL_IN_MONO, encoding,

increasedRecordingBufferSize);

c14.indd 320

c14.indd 320

5/10/2012 2:10:46 PM

5/10/2012 2:10:46 PM

Analyzing Raw Audio x 321

final short[] readBuffer = new short[readBufferSize];

continueRecording = true;

Log.d(TAG, "start recording, " + "recording bufferSize: "

+ increasedRecordingBufferSize

+ " read buffer size: " + readBufferSize);

//Note: possible IllegalStateException

//if audio recording is already recording or otherwise not available

//AudioRecord.getState() will be AudioRecord.STATE_UNINITIALIZED

recorder.startRecording();

while (continueRecording)

{

int bufferResult = recorder.read(readBuffer, 0, readBufferSize);

//in case external code stopped this while read was happening

if ((!continueRecording) || ((task != null) && task.isCancelled()))

{

break;

}

// check for error conditions

if (bufferResult == AudioRecord.ERROR_INVALID_OPERATION)

{

Log.e(TAG, "error reading: ERROR_INVALID_OPERATION");

}

else if (bufferResult == AudioRecord.ERROR_BAD_VALUE)

{

Log.e(TAG, "error reading: ERROR_BAD_VALUE");

}

else

// no errors, do processing

{

heard = clipListener.heard(readBuffer, sampleRate);

if (heard)

{

stopRecording();

}

}

}

done();

return heard;

}

public boolean isRecording()

{

return continueRecording;

}

 continues

c14.indd 321

c14.indd 321

5/10/2012 2:10:46 PM

5/10/2012 2:10:46 PM

322 x CHAPTER 14 USING THE MICROPHONE

LISTING 14-7 (continued)

public void stopRecording()

{

continueRecording = false;

}

/**

* need to call this when completely done with recording

*/

public void done()

{

Log.d(TAG, "shut down recorder");

if (recorder != null)

{

recorder.stop();

recorder.release();

recorder = null;

}

}

/**

* @param audioData

* will be filled when reading the audio data

*/

private void setOnPositionUpdate(final short[] audioData,

final int sampleRate, int numSamplesInBuffer)

{

OnRecordPositionUpdateListener positionUpdater =

new OnRecordPositionUpdateListener()

{

@Override

public void onPeriodicNotification(AudioRecord recorder)

{

// no need to read the audioData again since it was just

// read

heard = clipListener.heard(audioData, sampleRate);

if (heard)

{

Log.d(TAG, "heard audio");

stopRecording();

}

}

@Override

public void onMarkerReached(AudioRecord recorder)

{

Log.d(TAG, "marker reached");

}

};

// get notified after so many samples collected

recorder.setPositionNotificationPeriod(numSamplesInBuffer);

recorder.setRecordPositionUpdateListener(positionUpdater);

c14.indd 322

c14.indd 322

5/10/2012 2:10:46 PM

5/10/2012 2:10:46 PM

Using Loud Noise Detection x 323

}

}

 code snippet AudioClipRecorder.java

Now that you know how to record some raw audio data, the next two sections show how to analyze the data to implement different versions of the clapper.

USING LOUD NOISE DETECTION

One way to implement a clapper is to determine if the app heard a loud noise. LoudNoiseDetector is an AudioClipRecorder that implements the required processing. Listing 14-8 shows its

implementation.

Specifi cally, LoudNoiseDetector performs two tasks:

‰

Calculate the current volume: LoudNoiseDetector calculates the root mean squared of the recorded signal. Root mean squared computes a “quadratic mean” value. The advantage of

using root mean squared over fi nding the maximum value is that root mean squared takes

into account all data points. This makes the calculation robust against single or short-lived time periods of high amplitude and allows only meaningful high amplitude signals to have

an effect.

‰

Determine if the recorded sound is loud is enough: LoudNoiseDetector compares the

current volume with a fi xed threshold such as 2000. The volume may range from 0 to 32767.

It is considerably harder, however, to reach the maximum range since all values within a

recording are taken into account. Therefore, in my experience, a value of 2000 seems to

work well.

LISTING 14-8: Determines if audio data contains a loud noise

public class LoudNoiseDetector implements AudioClipListener

{

private static final String TAG = "LoudNoiseDetector";

private double volumeThreshold;

public static final int DEFAULT_LOUDNESS_THRESHOLD = 2000;

public LoudNoiseDetector()

{

volumeThreshold = DEFAULT_LOUDNESS_THRESHOLD;

}

public LoudNoiseDetector(double volumeThreshold)

{

this.volumeThreshold = volumeThreshold;

}

 continues

c14.indd 323

c14.indd 323

5/10/2012 2:10:47 PM

5/10/2012 2:10:47 PM

324 x CHAPTER 14 USING THE MICROPHONE

LISTING 14-8 (continued)

@Override

public boolean heard(short[] data, int sampleRate)

{

boolean heard = false;

// use rms to take the entire audio signal into account

// and discount any one single high amplitude

double currentVolume = rootMeanSquared(data);

if (currentVolume > volumeThreshold)

{

Log.d(TAG, "heard");

heard = true;

}

return heard;

}

private double rootMeanSquared(short[] nums)

{

double ms = 0;

for (int i = 0; i < nums.length; i++)

{

ms += nums[i] * nums[i];

}

ms /= nums.length;

return Math.sqrt(ms);

}

}

The loud noise clapper, presented in this section, is slightly more robust than the clapper presented earlier because it uses the entire recorded signal to determine volume. Despite this, it still uses volume to detect claps and any method that does so can lead to accidental triggering from extraneous loud noises. The next section describes a more sophisticated signal-processing algorithm that makes the clapper more robust.

USING CONSISTENT FREQUENCY DETECTION

Sounds other than a person’s clap could accidentally trigger the original clapper. For example, a dog barking or fi reworks going off could accidentally activate it, which could result in the lights going on in the middle of the night. This section describes ConsistentFrequencyDetector, which is an AudioClipListener. ConsistentFrequencyDetector implements a method that creates a clapper

that triggers only if it hears an intentional sound and does not easily trigger if it hears other loud noises.

Instead of a loud noise, ConsistentFrequencyDetector detects a period of time that has a

consistent frequency. By doing so, ConsistentFrequencyDetector ignores talking, loud noises, and triggers only if it hears a sustained tone that a person can easily create by singing.

To implement this approach, ConsistentFrequencyDetector analyzes the audio to estimate

frequency and records a history of previous frequencies so it can detect if it hears a consistent one.

c14.indd 324

c14.indd 324

5/10/2012 2:10:47 PM

5/10/2012 2:10:47 PM

Using Consistent Frequency Detection x 325

Estimating Frequency

A simple way to analyze for frequency is the zero-crossing method. Listing 14-9 shows the code for calculating frequency using this method. More accurate algorithms exist, such as autocorrela-tion and Fast Fourier Transform, however ConsistentFrequencyDetector uses the zero-crossing method because it does not need an exact frequency and the method is simple to implement.

The zero-crossing method counts how many times the audio signal crosses from positive to negative or from negative to positive. Two zero crossings indicate one cycle in the signal. Hence, the frequency in Hz is how many pairs of zero crossings occur per second.

The algorithm for calculating zero crossing is as follows:

1.

Calculate number of zero crossings.

2.

Determine how many seconds of data the samples represent.

3.

Determine the number of cycles.

4.

Calculate frequency as number of cycles divided by seconds of data.

For example, if the sample size is 8000 and there are 16000 samples, the number of seconds

recorded is 2. If the number of crossings in the data is 2204, the number of cycles is 1102 and the detected frequency is 551.

LISTING 14-9: Estimates frequency by using the zero-crossing method

public class ZeroCrossing

{

public static int calculate(int sampleRate, short [] audioData)

{

int numSamples = audioData.length;

int numCrossing = 0;

for (int p = 0; p < numSamples-1; p++)

{

if ((audioData[p] > 0 && audioData[p + 1] <= 0) ||

(audioData[p] < 0 && audioData[p + 1] >= 0))

{

numCrossing++;

}

}

float numSecondsRecorded = (float)numSamples/(float)sampleRate;

float numCycles = numCrossing/2;

float frequency = numCycles/numSecondsRecorded;

return (int)frequency;

}

}

The zero-crossing method works well for sound waves that have very little noise. To highlight this point, consider the sound wave in Figure 14-2. It shows a 440Hz sine wave, generated by a tone c14.indd 325

c14.indd 325

5/10/2012 2:10:47 PM

5/10/2012 2:10:47 PM

326 x CHAPTER 14 USING THE MICROPHONE

generator and recorded on an Android device. Because a tone generator created the sound, it has very little noise.

It is possible to accurately determine the frequency of this signal with some additional information. First, by looking at Figure 14-2 you can see that the signal repeats about every 100 samples.

Second, the app sampled at a rate of 44100Hz. With this information you can determine that 100

data points represents 0.0023 seconds. Then to determine how many times the signal repeats in 1

second, compute 1/0.0023. The result is equal to 435Hz, which is close to the recorded frequency of 440Hz.

8000

6000

4000

2000

0

1

8

15

22

29

36

43

50

57

64

71

78

85

92

99

Amplitude

106

113

120

127

134

141

148

155

162

169

176

183

190

197

211

204

218

225

232

239

246

253

260

267

274

281

288

295

302

309

316

323

330

337

344

–2000

–4000

–6000

–8000

FIGURE 14-2: 440Hz sine wave tone recorded on an Android phone

Real audio signals are rarely as clean as those generated from a tone generator. Figure 14-3

shows the audio data for a person singing a 440Hz tone. Even though the person is singing

the same tone as the tone generator, the signal is much more complex and does not vary as

regularly. It has too many zero-crossings for the zero-crossing method to determine the precise frequency.

However, the frequency value from the zero-crossing method stays within the same, small range while a person is singing the same tone. When a person is talking, the frequency varies greatly.

When a loud noise occurs, the frequency changes only briefl y. Thus, even though the zero-crossing method cannot produce a precise measurement of frequency, it can still determine if the sound is singing, which is what you need to implement the singing clapper.

c14.indd 326

c14.indd 326

5/10/2012 2:10:47 PM

5/10/2012 2:10:47 PM

Using Consistent Frequency Detection x 327

100

80

60

40

20

0

1

9

17

Amplitude

25

33

41

49

57

65

73

81

89

97

105

113

121

129

137

145

153

161

169

177

185

193

201

209

217

225

233

241

249

257

265

273

281

289

297

305

313

321

329

337

345

–20

–40

–60

–80

–100

FIGURE 14-3: Audio from a person singing a 440Hz tone recorded on an Android phone

Implementing the Singing Clapper

As the previous section explained, the zero-crossing method is the audio processing technique you need to implement the singing clapper, but several other steps are required to create a clapper that triggers when the user sings a loud, consistent tone. Listing 14-10 shows the implementation of the singing clapper by the ConsistentFrequencyDetector class. ConsistentFrequencyDetector performs several steps:

‰

Keeps a history of previous frequencies.

‰

Calculates frequency for a given audio recording using the zero-crossings method.

‰

Detects when the history contains frequencies within a range threshold, such as 100.

‰

Ignores any recordings that are silence, because silence can have a consistent frequency itself.

Silence is any recording that has a root mean squared value below a threshold such as 2000.

Beyond the code in ConsistentFrequencyDetector, it is also useful for an app to confi gure

AudioClipRecorder to record audio for a specifi c amount of time. By doing so, the app can defi ne the length of time it must hear a consistent frequency before triggering.

To set up AudioClipRecorder in this way, AudioClipRecorder has a startRecordingForTime()

method. Calling it with millisecondsPerAudioClip equal to 1000 sets up AudioRecord to pass c14.indd 327

c14.indd 327

5/10/2012 2:10:47 PM

5/10/2012 2:10:47 PM

328 x CHAPTER 14 USING THE MICROPHONE

about 1 second of data to ConsistentFrequencyDetector every time AudioClipRecorder calls it.

If ConsistentFrequencyDetector has a history size of 3, it means that the user must make a singing tone for 3 seconds in order to trigger the clapper.

LISTING 14-10: Analyzes audio data to detect a consistent frequency

public class ConsistentFrequencyDetector implements AudioClipListener

{

private static final String TAG = "ConsistentFrequencyDetector";

private LinkedList<Integer> frequencyHistory;

private int rangeThreshold;

private int silenceThreshold;

public static final int DEFAULT_SILENCE_THRESHOLD = 2000;

public ConsistentFrequencyDetector(int historySize, int rangeThreshold,

int silenceThreshold)

{

frequencyHistory = new LinkedList<Integer>();

// pre-fill so modification is easy

for (int i = 0; i < historySize; i++)

{

frequencyHistory.add(Integer.MAX_VALUE);

}

this.rangeThreshold = rangeThreshold;

this.silenceThreshold = silenceThreshold;

}

@Override

public boolean heard(short[] audioData, int sampleRate)

{

int frequency = ZeroCrossing.calculate(sampleRate, audioData);

frequencyHistory.addFirst(frequency);

// since history is always full, just remove the last

frequencyHistory.removeLast();

int range = calculateRange();

boolean heard = false;

if (range < rangeThreshold)

{

// only trigger it isn't silence

if (AudioUtil.rootMeanSquared(audioData) > silenceThreshold)

{

Log.d(TAG, "heard");

heard = true;

}

else

{

Log.d(TAG, "not loud enough");

}

}

c14.indd 328

c14.indd 328

5/10/2012 2:10:47 PM

5/10/2012 2:10:47 PM

Summary x 329

return heard;

}

private int calculateRange()

{

int min = Integer.MAX_VALUE;

int max = Integer.MIN_VALUE;

for (Integer val : frequencyHistory)

{

if (val >= max)

{

max = val;

}

if (val < min)

{

min = val;

}

}

return max - min;

}

}

 code snippet ConsistentFrequencyDetector.java

This section showed how to use AudioRecord to record raw audio data and some signal processing algorithms you can use to create improved versions of the clapper. The algorithms discussed were just a few of the available algorithms you can use to analyze recorded audio. With an understanding of how AudioRecord works, you can reuse the recording code discussed in this chapter to collect the audio data you need to implement other signal processing algorithms and detect other features within recorded audio.

SUMMARY

This chapter described how to use the microphone as an audio sensor. It showed how to record audio using MediaRecorder and AudioRecord and described some utility classes. Using MediaRecorder, an app can analyze the maximum amplitude of recorded audio during a period of time. Using

AudioRecord, an app can analyze the raw audio data and perform signal processing on it.

This chapter contained one potential application for audio processing: a clapper. It presented three different implementations: one that used MediaRecorder to detect high maximum amplitudes, one that used AudioRecord to detect sustained high amplitudes, and one that used AudioRecord to detect a consistent singing tone. These examples highlight how to use the APIs, utility classes, and some simple signal processing techniques.

Utilizing the microphone ends this part’s discussion of how to sense augmented and non-augmented objects using the NFC scanner, camera, and microphone. With the right algorithms and API usage techniques, Android devices can readily detect objects that are meant to be detected, such as NFC

c14.indd 329

c14.indd 329

5/10/2012 2:10:48 PM

5/10/2012 2:10:48 PM

330 x CHAPTER 14 USING THE MICROPHONE

tags and bar codes. Also, Android devices are powerful enough to recognize some visual and audio patterns, like an image of an Android logo or a singing tone, without the need to augment objects in the world with clues. Being able to detect these things is a powerful feature of Android!

The next, and fi nal, part of this book tackles speech recognition. Like the sensors described in this part, speech recognition enhances the awareness of an app. It allows an app to discern a specifi c kind of information from audio recordings: spoken words.

c14.indd 330

c14.indd 330

5/10/2012 2:10:48 PM

5/10/2012 2:10:48 PM

PART IV

Speaking to Android

 CHAPTER 15: Designing a Speech-enabled App

 CHAPTER 16: Using Speech Recognition and Text-to-Speech APIs

 CHAPTER 17: Matching What Was Said

 CHAPTER 18: Executing Voice Actions

 CHAPTER 19: Implementing Speech Activation

c15.indd 331

c15.indd 331

5/10/2012 2:11:15 PM

5/10/2012 2:11:15 PM

c15.indd 332

c15.indd 332

5/10/2012 2:11:18 PM

5/10/2012 2:11:18 PM

15

Designing a Speech-enabled App

WHAT’S IN THIS CHAPTER?

‰

Understanding Android’s speech capabilities

‰

Introducing the user interface screen fl ow

‰

Designing a voice user interface

‰

Soliciting feedback from users

People love using speech to command their phones for many reasons. One reason is that

they sometimes prefer dictation rather than awkwardly typing text into a small keyboard.

Another reason is that they need access to their devices while they are in the world. For

example, they are pleased when they can be driving and still compose messages to send to

their friends.

These reasons may seem anecdotal, but the proof is in the downloads. Some apps that use

speech are popular. Google Voice Actions, for example, is an app that enables users to

perform a wide variety of tasks from a single voice prompt. It has more than one million

downloads.

The downloads do not come easy, however. Allowing users to speak to their devices is chal-

lenging to design and implement. Android supports speech input and output with APIs for

speech recognition and Text-to-Speech (TTS). Using the APIs effectively is only part of the task. The other part is designing and implementing a complete voice user interface (VUI) with all its supporting components.

A VUI is a user interface that utilizes a user’s speech as input, pre-recorded or synthesized speech for output, or both. A VUI consists of a set of voice actions, where each voice action allows the user to perform a certain task.

c15.indd 333

c15.indd 333

5/10/2012 2:11:18 PM

5/10/2012 2:11:18 PM

334 x CHAPTER 15 DESIGNING A SPEECH-ENABLED APP

A well-designed and -implemented VUI minimizes the chance of speech recognition errors, has intuitive commands, and enables all users to gracefully command their devices even if errors occur.

A poorly designed one contains obscure, hard-to-remember, and hard-to-recognize commands that cause numerous errors.

The ultimate goal of designing a VUI is to prevent users from becoming frustrated and helping them become expert users. This chapter shows you how.

Android provides APIs and user interface components to give you the building blocks you need to construct VUIs. Your design task is to assemble them into a VUI that helps the users accomplish certain tasks. First, you must decide what types of voice actions to include. You may decide to create one-way commands or more complicated back-and-forth conversations between the app and

user, depending on how complex the task is. After you have chosen the voice actions, your next task is to design the spoken dialogue. This entails deciding what the user can say and how the device responds. Your design should consider how humans and machines process language. For humans, the design should take care to provide the right spoken cues, and for machines, the design should make sure that the app can easily understand what the human says. Finally, you can test your design using various techniques that help you refi ne your VUI based on how users react to it. Overall, you can use the suggestions in this chapter to design a tested, well-designed VUI that you can implement using the techniques in Chapters 17–19.

KNOW YOUR TOOLS

Android has built-in APIs for speech recognition and TTS. The speech

recognition API allows devices to collect audio from users and convert

it to text. TTS allows the device to go in the reverse direction, convert-

ing text into audio. Speech recognition and TTS are available on most

devices. Devices with limited functionality, like the Nook, or devices

without Internet connectivity do not support one or both. In addition,

the necessary language data is not pre-installed on all devices, and some

could require confi guring. Still, a developer can assume that a majority

of devices support these APIs. To get speech recognition and TTS work-

ing on unsupported devices, developers must use third-party providers

such as iSpeech (www.ispeech.org/) or Nuance (www.nuance.com/for-

partners/by-solution/mobile-developer-program/index.htm).

FIGURE 15-1: Speech input

Following is a list of speech recognition features:

dialog shown to the user while

collecting speech

‰

It utilizes a remote server to process audio recorded by the

device. This creates a small delay in the recognition and

makes it require Internet access to function.

‰

Android’s speech input dialog, shown in Figure 15-1, is the standard interface for collecting speech, but it is possible to customize the speech collection process.

‰

Android packages the recognition result into a List<String> of potential speech-to-text conversions with a confi dence score attached to each. Chapter 17 describes how to interpret these conversions.

c15.indd 334

c15.indd 334

5/10/2012 2:11:21 PM

5/10/2012 2:11:21 PM

Know Your Tools x 335

Following is a list of TTS features:

‰

Supports a limited set of languages.

‰

Each language has only one voice.

‰

Runs on the device without an Internet connection.

‰

Sometimes mispronounces words, but there is no way to change pronunciation. For exam-

ple, currently it speaks “environment” with an emphasis on the “ron” part of the word.

Fortunately, sometimes new releases of Android contain updates to the TTS functionality

that improve pronunciation.

TRY THIS

Try the Say the Magic Word button. Click the Speak button and attempt to say the

magic word “tree.”

Say the Magic Word shows you how speech recognition and TTS can work together

to create a simple app. It also highlights one limit of speech recognition: it is some-

times inaccurate.

In the Say the Magic Word screen, the user has to say the magic word “tree.”

Figure 15-2 shows a successful attempt on the left and a failed attempt on the right.

If the app fails to recognize the word, it will report what it thought the user said.

In the failed attempt from Figure 15-2, the app thought the user said “three.” Does

the magic word screen always understand you?

Figure 15-2: The Say the Magic Word screens make the user say “tree.”

In summary, Android devices can understand what users say and reply back. Most devices have these capabilities. Chapter 16 describes the mechanics of using the APIs. The remainder of this chapter describes how to design VUIs, while taking these capabilities into account.

c15.indd 335

c15.indd 335

5/10/2012 2:11:21 PM

5/10/2012 2:11:21 PM

336 x CHAPTER 15 DESIGNING A SPEECH-ENABLED APP

USER INTERFACE SCREEN FLOW

Android provides speech recognition and TTS, but an app needs other user interface elements to implement a complete VUI. A VUI can have one or more voice actions. Each voice action requires one or more turns to accomplish a task. A turn consists of a user action or utterance followed by a system action and/or utterance. Figure 15-3 shows the screens the user sees when completing one turn on an Android device.

1

2

3

4

FIGURE 15-3: Sequence of screens to complete one turn of user utterance and app response During the turn, the user activates speech, speaks, waits, and then hears and sees the response. Not all turns have these steps. (Some have only speech output, for example).

 Figure 15- 3, Screen 1, Activation: The app provides a way for the user to activate speech recognition. In this case, it is a button, but other options are available that may work when the user wants to operate the device eyes-free or hands-free.

 Figure 15- 3, Screen 2, Prompt: After the user clicks the button, the app indicates that it is waiting for speech input by showing a Say the Magic Word dialog. The user then speaks.

The dialog is Android’s default speech recognition dialog that should look familiar to users.

There is customizable text within the dialog that the app can use as a prompt to remind the users what they can say. Your design should contain the words for the prompt as well as the words the user can say when presented with the dialog.

 Figure 15- 3, Screen 3, Processing: The speech API controls converting audio to text while the user waits. To do this, the API records audio, sends it to Google servers, and returns

with a list of possible text recognitions. The app processes these possible recognitions to determine which one the user actually said.

 Figure 15- 3, Screen 4, Take action: The app decides what it should do in response. For the app in Figure 15-3, the app displays “Correct! You said the magic word: tree” and speaks it using TTS. Part of your design involves crafting these responses.

As you can see, the user goes through a four-step process to complete a turn. Your voice actions may have one or more of these turns. The next section describes some factors to consider when deciding.

c15.indd 336

c15.indd 336

5/10/2012 2:11:23 PM

5/10/2012 2:11:23 PM

Voice Action Types x 337

VOICE ACTION TYPES

Using speech recognition and TTS, developers can build various types of voice actions for VUIs within their apps. Table 15-1 lists four types. Reader actions read text aloud, Listener actions only record what the user says Commands are single turn actions, and multi-turn Commands can last multiple turns. An app may have a mixture of these voice actions.

TABLE 15-1: Types of Voice Actions with Diff erent Degrees of Complexity

ACTION T YPE

TTS

SPEECH

STATELESS

DESCRIPTION

EX AMPLE TASK

T YPES AND

COMMAND WORDS

Reader

Yes

No

Yes

Reads text.

E-mail reader,

GPS navigator

Listener

No

Yes

Yes

Transcribes everything

E-mail writer

the user says as text.

Command

Maybe

Yes

Yes

The user issues a com-

Recipe reader:

mand to the app via

“Next step”

speech using a single

E-mail reader:

turn. If the command

“Read fi rst”

fails, the user must retry.

The app may speak text

in reply, but does not

ask follow-up questions.

Multi-turn

Yes

Yes

No

The user issues a

To-do List

Command

speech command to the

management

app and the app may

“User: Add

reply with additional

bread”

requests for information.

“App: which list?”

Because the conversa-

tion between the user

“User: grocery”

and the app could have

multiple turns, the app

must maintain state.

The main trade off between Reader, Listener, Command, and Multi-turn Command actions is

 naturalness and power versus accuracy. The more words and phrases a user can use to accomplish a goal, the more natural the action is. The more that the actions accomplish, the more powerful the action is. The more accurate an action is, the easier it is for the app to understand the user. When an app restricts the vocabulary and complexity of the speech input, it becomes more accurate at the cost of naturalness and power.

The four action types cover various degrees of the trade off. A Reader action is always accurate, because the user is using traditional input methods. A Listener is less accurate because speech recognition may not understand the user and transcribe the wrong text. However, a Listener is always accurate in performing the correct function of transcribing everything the user says. A Command c15.indd 337

c15.indd 337

5/10/2012 2:11:23 PM

5/10/2012 2:11:23 PM

338 x CHAPTER 15 DESIGNING A SPEECH-ENABLED APP

action is less accurate, because, like a Listener action, speech recognition may not understand the spoken input. However, a Command action can also cause the app to perform the wrong task or fail outright if the user does not say the correct command words. Despite this possibility of failure, spoken words can be more natural than clicking a button, and a speech action may accomplish a lot in just a few words. A Multi-turn Command action is even less accurate because it may take multiple turns between user and app to accomplish a task. The more turns there are, the higher the chance of a recognition error and task failure. However, a Multi-turn Command action can support complex tasks that take multiple inputs to fully complete. Additionally, Multi-turn Command actions can be more effi cient in some cases because they can ask follow-up questions if needed. Using a Command would require the user to try again without any memory of previous attempts.

Beyond these are open-ended dialogue systems. Such systems are designed to be completely natural, and hence can accept any customary speech input within a domain. They are powerful because they are designed to allow the user to complete complex tasks using a variety of language. For example, an airline scheduling system might start by asking, “How can I help you?” From there, users specify the various constraints and desires for their travel in any order they please. The users use the same language they would if they were speaking to a human. The system understands all user utterances and tracks the parts of the travel the user has specifi ed. If any gaps exist, the system queries the user for additional information. The resulting conversation could take many different paths, have a variety of vocabulary, and potentially be long. The design process is hence more involved than what is described here.

 For more information on the design of open-ended dialogue systems, consult

 Randy Harris’s book Voice Interaction Design.

You can build many useful apps with Reader, Listener, Command, and Multi-turn Command

actions alone.

VOICE USER INTERFACE (VUI) DESIGN

Developing voice interfaces that are natural and powerful requires a well thought out and tested design. This section focuses on the design techniques you need to design a VUI. After using these techniques, your design will include a set of voice actions that have been tested on real users. Your only remaining task will be to implement that design so that Android’s speech recognition

is accurate.

Apps enable users to perform various tasks traditionally using a graphical user interface (GUI) that allows them to tap and view a screen. Any of these tasks could be potentially enhanced or replaced by adding a VUI. In a VUI, the user is speaking, listening, and potentially not looking at a screen.

These two interaction methods are appropriate for different tasks and should be designed using different techniques. This section explores what methods work best for VUIs and contrasts them with some methods that are better suited for GUIs. First, it examines whether or not to add voice actions in the fi rst place.

c15.indd 338

c15.indd 338

5/10/2012 2:11:23 PM

5/10/2012 2:11:23 PM

Voice User Interface (VUI) Design x 339

Deciding Appropriate Tasks for Voice Actions

You have several considerations for determining if your task is appropriate for a voice action. The decision partially depends on the properties of speech input and output.

Using speech input incurs several potentially tedious tasks for the user. It takes extra time to proceed through the process of activating speech recognition, speaking, and waiting for response. The speech recognition can also fail and require the user to retry. However, in certain scenarios, the benefi ts of speech input outweigh the burdens of using it.

Speech output is transient and easily forgotten. If a display is not available, users must remember everything that the app says. Therefore, it is possible the users will forget what the app just said a moment ago.

Given these properties, this section contains some recommendations about what tasks are suitable for voice actions. For more recommendations, see http://java.sun.com/products/java-media/

speech/forDevelopers/jsapi-guide/UserInterface.html. First, you should consider a voice

action if your app addresses one of these two concerns:

‰

 There is no other way to collect input or look at output: When the user’s hands or eyes are busy, the only way to safely use the app may be speech input and output. These conditions

can happen when a user is performing certain activities such as driving, cooking, or fi ghting a war.

‰

 The user gains a large productivity increase compared to using a GUI: Voice actions can be very powerful and let the user accomplish a lot with a single speech input. If the voice action does not provide such a benefi t, the user will prefer to use the reliable and faster GUI alternative. For example, a powerful voice action might allow a user to say one utterance instead

of selecting items from fi ve different selection boxes, or to say one word to select an action instead of scrolling down a long 100-item list.

If your app has a task that satisfi es one of these concerns, a VUI may be appropriate. However, your app’s task may have additional requirements that make a VUI infeasible. Hence, you should consider the following:

‰

 Use speech input only if the user can tolerate occasional errors: Any speech input could result in occasional errors. For some tasks, such as reading e-mail, errors are acceptable. If a read e-mail command fails once in a while, the user can retry without too much distress. For other tasks, such as an app for emergency rescue, errors are unacceptable. In a time-critical app for emergency rescue, delaying an action by even a second could be life threatening.

‰

 Use speech output for small amounts of information: Keep speech output short and do not use it to convey large amounts of information. Speech output is not good at communicating

large amounts of information because users easily forget it. For example, to make certain

conclusions about a table of data, a user would need to analyze it. To communicate a table

of data, a VUI would need to speak every single data item. By the time the app speaks the last data item, the user has likely forgotten it all, leaving the user unable to really do any analysis.

In contrast, a user would have no problem thinking about the spatially organized data in a

GUI all at once.

c15.indd 339

c15.indd 339

5/10/2012 2:11:24 PM

5/10/2012 2:11:24 PM

340 x CHAPTER 15 DESIGNING A SPEECH-ENABLED APP

‰

 Consider the environment: Speech input and output may not be appropriate for the environment. The expected environment for the app could cause speech input or output to function

poorly. In particular, a noisy environment could be problematic. It may not allow the user

to hear speech output. A noisy environment could also cause speech input to fail by allowing any extraneous sounds to enter any speech recordings. Quiet environments could also be a

problem because they are not conducive to listening or speaking out loud.

Designing What the App and Users Will Say

After you have decided which tasks need voice actions, you must then decide what your users and your app will say. The techniques described here give you some ideas about how to design the commands and conversations.

Constrain Speech Input to Increase Accuracy

Apps cannot easily understand unconstrained speech. Human speech is highly variable and entails a large vocabulary. Although this breadth makes speech extremely expressive, it also makes it diffi cult for an app understand, and hence unable to take full advantage of humans’ ability to communicate. Even with the best natural language processing technology, apps are unable to understand unbounded speech.

Developers should consider the complexity of allowed speech input when designing a VUI.

Constraining speech input will increase recognition accuracy at the cost of expressiveness. For example, many ways exist to indicate an affi rmative response — yes, right, OK, sure, fi ne, sure thing, you got it, and so on — but if you limit your app to “yes” it will be easier for the app to recognize. However, as a consequence, users will have to learn to only say “yes” and not the

other words.

Train Users to Know What They Can Say

In a VUI, users don’t know what they can say nor what the app can understand. This is especially true when an app constrains the speech input to a few command words. Some users will expect an app to understand anything they say, and others will be dumbfounded by a speech prompt. These problems do not exist in a GUI, which has visual elements such as buttons and menus that allow users to discover easily what they can do.

Therefore, a VUI must train the users to understand the boundaries of what it can and cannot understand, especially if the app is hands-free and eyes-free. Existing apps accomplish this goal in several ways.

One is to have different kinds of help screens that show you what the commands are or what you might say. Figure 15-4 shows examples from three different speech apps: Google Voice Search, Vlingo, and Edwin. Each has a different help screen. Google Voice Search shows users one command at a time, highlighting in bold what the command words are. Vlingo provides a list and highlights command words in blue, and Edwin provides sample phrases.

c15.indd 340

c15.indd 340

5/10/2012 2:11:24 PM

5/10/2012 2:11:24 PM

Voice User Interface (VUI) Design x 341

FIGURE 15-4: Three help screens from Google Voice Search, Vlingo, and Edwin show diff erent ways to explain to users what they can say.

Another way to train users is to include suggestions within the speech. For example, the Voice Commands app from Nuance leads the user through a series of short commands and then teaches the user shortcuts after the command is done. For example, the user can say “check” and then say

“missed calls” to hear any missed calls. After hearing some results, the app says, “Next time just say check missed calls.”

Another kind of training involves encouraging your users to use certain words or to speak in a certain way. This is called “stealth training” and here is how it works. Say you have a VUI that allows users to “check” or “uncheck” a box, but you prefer them to say “mark” and “clear” because those words are more easily recognized. To accomplish this, the app still recognizes “uncheck.”

However, when the app responds it includes “clear” in the response by saying something like this:

“cleared item 1.” After hearing “cleared” several times, the user may start using “clear” instead of

“uncheck,” which is desirable because the app will recognize “clear” more times than it will recognize “uncheck.”

Beyond training, an app can use prompts to let users know what they can say.

Prompt the Users so They Know What to Say

A prompt is text spoken or displayed to users. Several different kinds of prompts exist:

‰

 Explicit prompts: If the possible input is highly constrained, an app can tell the users what they can say directly and accept only those inputs. For example, the prompt “Say yes or no”

would accept only “yes” or “no.”

c15.indd 341

c15.indd 341

5/10/2012 2:11:24 PM

5/10/2012 2:11:24 PM

342 x CHAPTER 15 DESIGNING A SPEECH-ENABLED APP

‰

 Implicit prompts: Prompts can use the conventions of speech to suggest what the user should say in a reply. For example, a prompt such as “Would you like e-mail or voicemail?” would

encourage the user to say “e-mail” or “voicemail” in response.

‰

 Tapered prompts: Sometimes users do not need prompting to determine what they can say.

Excessive prompting can make a VUI tedious and repetitive to use. To avoid this, an app

can use tapered prompts. For example, if the app has a series of questions it needs to ask the user, the resulting dialogue could easily become repetitive. In tapered prompts, the app would remove the repetitive parts as the conversation progresses and the user will still know what to say. For example, if an app is prompting for an address, it might sound like this:

App: Please say your street.

User: 1 Main St.

App: Please say your state.

User: Massachusetts

App: Please say your zip code.

User: 01808

The conversation continuously says “Please say your X,” which is unnecessary the second

and third time. The following tapered prompts work as well and are shorter:

App: Please say your street.

User: 1 Main St.

App: Your state?

User: Massachusetts

App: Zip code?

User: 01808

Once users have learned what they can say, they must learn to trust that the app produces the correct outcomes in response. The next section describes how to build this trust by properly confi rming actions and dealing with errors.

Confi rm Success and Help Users Recover from Errors

Speaking a voice command is risky because it could fail for many reasons. Errors are possible in a VUI that almost never occur in GUIs. In a GUI, if the users want to hit a button, they almost always are successful. For example, it is relatively rare to accidentally hit the OK button when you are trying to hit the Cancel button on a typical GUI dialog. With a VUI, however, the number of possible selections in a single dialog could be large. Given that and the uncertainty of the recognition accuracy, it can be far more common to accidentally select the wrong button.

Additionally, after something fails or is successful in a GUI, the screen can visually display the result of the action. With an eyes-free VUI, users need another way to determine if their command was successful.

For these two reasons, you need to provide a way for users to recover from any mistakes they or the app make. At the same time, you don’t want to overwhelm users with too many confi rmations, c15.indd 342

c15.indd 342

5/10/2012 2:11:24 PM

5/10/2012 2:11:24 PM

Voice User Interface (VUI) Design x 343

which can be arduous. You also need to allow users to confi rm that their voice command was successful. Here are several suggestions:

‰

 Confi rm visually: If available, display the result of the action on the screen.

‰

 Use implicit confi rmation: For non-critical actions, the app should assume that the recognition was successful. It should implicitly confi rm the result of the action in its response. For example, in response to “Add apple,” the app should respond “Added apple” so the user

knows that the app properly recognized “apple.” If the app says “Added pumpkin,” the user

will know it misrecognized “apple.” If the app just says “OK,” the user has no idea if the app succeeded or failed.

‰

Explicit confi rmation isn’t always necessary. For example, if the system responded, “Would you like to add Apple?” and then required the user to say yes or no, explicit confi rmation would be burdensome and time consuming.

‰

By assuming that the users were successful, and implicitly confi rming, users can work effi -

ciently in full knowledge of the results of their actions, without any needless confi rmations.

‰

 Use explicit confi rmation when necessary: For actions that can’t be undone, explicitly ask the user to confi rm. For example, “Are you sure you want to delete X?”

‰

 Allow for undo: When the app performs the wrong action, allow the user to undo it with another command. This allows your app to continue most of the time and gives the user a

way to correct the app when it fails.

‰

 Give the user a non- speech method for accomplishing the same task: It might be that the user is getting frustrated or simply doesn’t have the time to fi gure out how to use speech. In such cases, it is nice to have a method for manually operating the user interface even if it requires a lot of work for the user. Users will be happy to know they can use a 100 percent effective method if they need to.

‰

 Use progressive assistance to help: Provide additional help the more times the system fails.

For example, on the fi rst failure an app can say “What?” then on the second say, “I don’t

understand” and on the third be explicit and say “Sorry, you can say, ‘send e-mail or cancel to exit.’”

‰

 Fall back to easier to recognize commands: If a user fails to execute a command, an app could fall back to another speech command that is easy to recognize. For example, if a user says “check voicemail” several times without success, the app could offer a list selection voice action like “Would you like to check voicemail or e-mail?” Although the list may be more

cumbersome, the possible responses are fewer and hence will more likely lead to success.

Help Users Recover from Accidental Speech Activation

Recognition errors occur when an app doesn’t understand the user, but the app can also fail if the user accidentally activates speech recognition. Accidental triggering can occur, especially if the speech trigger is based on incoming sound. In such activation, the app starts speech input whenever it hears a certain sound. The user could also accidentally hit a “Speak now” button.

When an accidental speech activation occurs, it puts the user in an awkward situation where the app prompts the user for an input, but the user has nothing to say. To compensate, the VUI should provide a spoken word, such as “cancel,” that allows the user to exit from the speech prompt in case such an error occurs.

c15.indd 343

c15.indd 343

5/10/2012 2:11:24 PM

5/10/2012 2:11:24 PM

344 x CHAPTER 15 DESIGNING A SPEECH-ENABLED APP

In some cases it is possible to prevent recognition errors in the fi rst place by instructing the user on how to properly speak to the speech recognizer.

Teach Users Proper Speech Hygiene

Any behavior that causes people to speak differently than they normally would causes the speech recognizer to be less accurate. Unfortunately, these behaviors usually get worse when more errors occur. However, some ways of speaking, though awkward, improve speech recognition and can

be useful when a user is having trouble. To help make users become experts at speaking to their devices, they should learn the following techniques:

‰

 Try to speak normally: When people get frustrated, they start over-pronouncing words.

They may over-emphasize one word like: “what’s NEXT?” and say “next” much louder

than normal. They might stretch out a particular vowel like “what’s neeeext?” They may

just yell the words. These distortions make it more diffi cult for the speech recognizer

because it is made to recognize normal speech. The unfortunate part of this is that the

angrier users get, the more recognition problems occur. The more problems that occur, the

more upset users get.

‰

 If having trouble, leave a short pause between words: Leaving a short pause between words helps recognition. It relieves the recognizer from having to determine where one word ends

and another begins, and it also lessens the distortion that occurs when you speak two words together. It takes longer and is awkward to speak that way, but it is useful for cases when a user is really having trouble.

TRY THIS

To see the effect of leaving short pauses between words, try using the keyboard

voice input. To access the voice input, open any text soft keyboard (for example, in

the mail program) and tap the microphone icon to the left of the space bar. Speak

“It’s not easy to wreck a nice beach” as you normally would. Then do it again, but

leave a short pause between words. Which did the device recognize best without

changing any words?

Use Menus Cautiously

Constraining speech input and handling and avoiding errors can help the user execute their voice action reliably. However, the required sequence of a voice action’s turns can also affect the user’s ability to execute it. When designing your app’s voice action you should consider that VUIs are temporal, not spatial, which makes certain interaction patterns taxing. For example, navigating menus, a common GUI technique, is poorly suited for VUIs because menus are meant to be seen and allow the users to scan the sectioned contents to quickly fi nd what they want. In a VUI, the users have no way to do so, and hence have to try to keep the menu hierarchy and sections all in their short-term memory to know where to go.

c15.indd 344

c15.indd 344

5/10/2012 2:11:25 PM

5/10/2012 2:11:25 PM

Voice User Interface (VUI) Design x 345

If the VUI forces the user to “go back” or “go to step 5,” it is forcing the user to think spatially, which is diffi cult. Any sequence of list selections may cause this to happen.

Conversations are better structured around building a shared understanding than navigating a menu structure. The closer a VUI can get to that kind of interaction, the easier it will be to operate.

Hence, if possible, a VUI should not force the user into such hierarchies of list selections. However, to do so requires opening up prompts for many different possible inputs. This may not be possible because the more inputs a prompt can accept, the harder it will be to recognize.

For example, consider a pizza ordering VUI that sounds like this:

App: First select a size. You can select small, medium, or large.

User: Large

App: Select a topping. You can select mushrooms or pepperoni.

User: Mushrooms

App: Select a crust. You can select deep dish or normal.

User: Deep dish

App: Is the order complete?

User: Go back to start

… redo the whole conversation.

In this VUI, the user specifi es a certain part of his pizza order one step at a time. If the user gets to the end and wants to change the size, he would have to “go back” twice to get back to the size selection step or “go back to start” to start again. Hopefully, the user remembers where two steps back is. Another way to design this VUI is to sound like this:

User: Size large

App: OK, large.

User: Topping mushrooms.

App: OK, mushrooms.

User: Crust, deep dish.

App: OK, deep dish.

User: Size small.

App: OK, small.

In this other version, the app accepts any of the three pizza attributes from the prompt. Thus, the users can specify their attributes one at a time and, in a similar manner, change one at the end in a single step without having to “go back.” The drawback of this approach is that it is harder for the app to recognize the user’s speech because more possible inputs exist at the prompt.

After the Design

Using the recommendations in this section, you can design voice actions that users desire, are easy to learn, and can operate reliably. Before you release your app, you should consider testing your design fi rst. Doing so can uncover unforeseen obstacles users encounter while trying to use your VUI. The next section describes some ways to accomplish that goal.

c15.indd 345

c15.indd 345

5/10/2012 2:11:25 PM

5/10/2012 2:11:25 PM

346 x CHAPTER 15 DESIGNING A SPEECH-ENABLED APP

TESTING YOUR DESIGN

When designing a VUI, users can help you to identify standard vocabulary and interaction patterns and what users expect the app to understand. This section discusses three techniques that can help gather information from users: natural dialogue studies, Wizard of Oz studies, and beta tests.

Learning the words and interaction patterns requires you to observe users speaking about the topic and trying to interact with your app. For example, if you are adding a “compose” command to an e-mail app, you want to know all the different words people use to initiate sending an e-mail. You may discover that some people prefer to say “write” instead of “compose” and decide to include

“write” as an alternate way to activate the “compose” command. Also, you may discover that it is easier for the speech recognizer to understand “write” instead of “compose” and decide to support only “write” as the command.

One method of observing users is called a natural dialogue study. In this study, you ask a group of people to carry on a dialogue about the subject you are interested in and record a transcript. You can also examine any existing corpora. In the case of an e-mail app, you could have one person try to ask another person to send an e-mail for them. For a cooking app, you might observe one person helping another person follow a recipe.

The advantage of a natural dialogue study is that you can observe a greater variety of words and interactions because the people involved are less infl uenced by any experimental environment.

Natural dialogue studies are helpful for learning generally about what people say, but don’t allow you to test what people might say to the implemented app or how they will react to the app’s responses. For this, you can use a Wizard of Oz study.

In a Wizard of Oz study, users interact with a realistic app, but any app responses are generated by a human, also known as the wizard. The users are unaware that the responses are coming from a human. They think the app is generating them.

Implementing this kind of study involves several details. First, the wizard should respond in such a way that the users cannot tell that they are talking to a human. For example, to make the app more realistic, the experiment may include a way for the wizard to deliver responses via machine-generated speech. Second, to get an accurate glimpse at how the real app would function, the wizard should try to behave like the machine would. The wizard should follow a script that best approximates what the app will be capable of. Also, the wizard should not give the app unreasonable understanding capabilities. For example, if the user says something to the app that it would have no way of understanding, such as a sarcastic statement, the wizard should respond with the app not understanding.

Wizard of Oz studies offer a way to test your VUI while it is being designed and implemented.

You can gauge users’ reactions to the app’s utterances and you can discover additional desires the user may have. For example, while performing such a study for Digital Recipe Sidekick’s voicecontrolled recipe reader, I noticed that users wanted to navigate the recipe steps in random order instead of sequentially. Originally, I limited the user to hearing the steps one after another, but after the study I allowed the user to navigate by step number as well.

c15.indd 346

c15.indd 346

5/10/2012 2:11:25 PM

5/10/2012 2:11:25 PM

References x 347

Besides performing experiments, you can also observe the app performance by collecting transcripts from beta tests or deployed app users. Such information allows you to fi ne-tune the VUI even further. In particular, it helps to expose how effective your design is when increased recognition errors exist due to live speech recognition occurring in various environments.

After completing some or all of these studies, you will have a good understanding of which commands people want and what words they want to use to activate them. From here, you can use the techniques discussed in the remaining chapters to implement them.

SUMMARY

This chapter outlined how to design a VUI that utilizes the speech recognition and TTS tools that Android provides. Your design should include the tasks that need voice actions and the spoken dialogue needed to accomplish them. If it takes into account the suggestions in this chapter, your VUI will use voice actions only for appropriate tasks and be easy for users to use.

Your remaining task is to implement the voice actions you designed. This may involve adjusting the design as you learn which words and interactions work best in practice. Specifi cally, you’ll need to solve several challenges: implement code to operate the Android APIs (Chapter 16), implement code that recognizes the spoken words from the user (Chapter 17), execute voice actions in a modular and user-friendly way (Chapter 18), and select an appropriate speech activation method (Chapter 19).

REFERENCES

Harris, Randy Allen. 2005. Voice Interaction Design: Crafting the New Conversational Speech Systems. San Francisco: Elsevier Inc.

http://java.sun.com/products/java-media/speech/forDevelopers/jsapi-guide/

UserInterface.html (accessed October 10, 2011).

c15.indd 347

c15.indd 347

5/10/2012 2:11:25 PM

5/10/2012 2:11:25 PM

c15.indd 348

c15.indd 348

5/10/2012 2:11:25 PM

5/10/2012 2:11:25 PM

16

Using Speech Recognition and

Text-To-Speech APIs

WHAT’S IN THIS CHAPTER?

‰

Using the Text-To-Speech and Speech Recognition APIs

‰

Checking for device compatibility and language support

‰

Using reusable helper classes

‰

Using Text-To-Speech and Speech Recognition together

Speech recognition enables users to speak to their Android device and Text-To-Speech (TTS)

enables the device to speak back. This chapter explores how to use the speech recognition and TTS APIs and how to properly handle the details of initializing and executing their

various functions. In addition, this chapter describes code you can reuse to handle common

procedures.

TEXT-TO-SPEECH

To use TTS, apps must perform the following steps:

1. Initialize

the

TextToSpeech object. Verify that the device supports the desired

language, download additional data if necessary, and wait for an asynchronous TTS

engine initialization process to complete.

2. Operate

the

TextToSpeech API to play speech, sounds, and silence.

3. Implement

an

Activity that handles managing the TextToSpeech life cycle as well as

any user interactions that are required during initialization or speaking.

c16.indd 349

c16.indd 349

5/10/2012 2:12:03 PM

5/10/2012 2:12:03 PM

350 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

This chapter presents an implementation of TextToSpeech that involves several classes. The classes implement two groups of functionality: initializing and using TTS. The design implements these with three classes and an interface between two of them. Specifi cally, here are the classes and their functions:

‰

TextToSpeechStartupListener: An interface containing methods for the possible outcomes

of the initialization procedure.

‰

TextToSpeechInitializer: A class to execute the initialization procedure and call back to

a TextToSpeechStartupListener.

‰

LanguageDataInstallBroadcastReceiver: Handles tracking when the user completes lan-

guage data installation.

‰

TextToSpeechDemo: An Activity to implement a simple usage of TextToSpeech to read a

short script. It manages the life cycle of the TextToSpeech object and implements any

necessary interactions with the user.

These classes enable you to reuse TextToSpeechInitializer and

LanguageDataInstallBroadcastReceiver within your own Activity, and possibly use

TextToSpeechDemo as a template.

Beyond these classes, three demonstration activities help show all of the TextToSpeech features.

They are located under the Text to Speech heading of the book’s companion app. They are:

‰

Demo: The TextToSpeechDemo Activity. As described in the previous list, it shows a

simple usage of TTS.

‰

Try Text to Speech: A playground where you can set all the different parameters of the TextToSpeech object and observe how they affect the output.

‰

Diagnostics: Has a few functions that show detailed information about the TTS engine for the particular device.

Initialization

Before an app can use TTS, it needs to create a TextToSpeech object. Preparing the object for use requires one of two partially asynchronous procedures. The difference between the two procedures involves how the app checks for language support. One procedure, implemented with

TextToSpeechInitializer, uses on Locales and API calls to TextToSpeech. The other, imple-

mented with TextToSpeechInitializerByAction, uses voice descriptions and an Intent with the ACTION_CHECK_DATA action. The procedure in TextToSpeechInitializer is simpler, but in some

cases you may need the procedure in TextToSpeechInitializerByAction. Both procedures check

for language support and use TextToSpeechStartupListener to return results.

TextToSpeechStartupListener contains methods that represent the various outcomes of the

initialization process. Listing 16-1 shows its code. When the initializer is successful, it calls c16.indd 350

c16.indd 350

5/10/2012 2:12:08 PM

5/10/2012 2:12:08 PM

Text-To-Speech x 351

onSuccessfullInit() to deliver a fully initialized TextToSpeech object that is ready to be used.

Along the way, the initializer may call any of the other methods to deal with contingences.

The code that uses TextToSpeech is a good place to implement TextToSpeechStartupListener.

For example, SayMagicWordDemo shown in Listing 16-22 later in this chapter, contains an example implementation. SayMagicWordDemo is the main Activity and it uses TextToSpeech. By implementing TextToSpeechStartupListener it can receive the TextToSpeech object when it is ready.

Also, SayMagicWordDemo can appropriately respond to any errors or initialization steps that require user intervention.

LISTING 16-1: Callback interface to handle various initialization outcomes

public interface TextToSpeechStartupListener

{

/**

* tts is initialized and ready for use

*

* @param tts

* the fully initialized object

*/

public void onSuccessfulInit(TextToSpeech tts);

/**

* language data is required, to install call

* {@link TextToSpeechInitializer#installLanguageData()}

*/

public void onRequireLanguageData();

/**

* The app has already requested language data, and is waiting for it.

*/

public void onWaitingForLanguageData();

/**

* initialization failed and can never complete.

*/

public void onFailedToInit();

}

Initialization with Locale

Initializing TextToSpeech involves waiting for the asynchronous TTS engine startup to complete, and then setting the TextToSpeech settings. Setting the language setting is complicated by requiring a check fi rst and a potential language data download.

Figure 16-1 describes the procedure from TextToSpeechInitializer. The circles are initialization steps and the squares represent four possible end states.

c16.indd 351

c16.indd 351

5/10/2012 2:12:08 PM

5/10/2012 2:12:08 PM

352 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

TTS Data

new

Google

onInit()

isLangAvailable()

installed

TextToSpeech()

Play

broadcast

Fail

Data

Fail

(onInit() call

install

(language not

Ready

failed)

in progress

available)

FIGURE 16-1: Asynchronous initialization procedure for creating and confi guring TTS

First, the app creates a new TextToSpeech and passes in an OnInitListener. Android immedi-

ately returns control to the app and begins an asynchronous initialization process. Meanwhile, any calls to TextToSpeech, such as setLanguage(), will be ineffective. Therefore, to reliably initialize TextToSpeech, your app should disable TTS functions while initialization is occurring and wait to confi gure it until the initialization is complete.

Second, TextToSpeech fi nishes its asynchronous initialization and it calls OnInitListener.

onInit(). The code needs to execute two tasks during onInit().

The app must check the success variable passed in onInit(). If it is TextToSpeech.FAILURE, the initialization failed and TTS cannot initialize.

Then, the device must check if it supports the desired language. If the device supports the language, TextToSpeech is ready. If the device cannot ever support the language, it fails. If the device supports the language but is missing language data, the user must download it via Google Play. If the user has already begun downloading the language data, the app may end by reporting that data install is in progress. When the user fi nishes installing the language data, the installer broadcasts android.

speech.tts.engine.TTS_DATA_INSTALLED.

Implementing TTS Initialization

TextToSpeechInitializer manages the initialization process just described. The initialization process begins in its createTextToSpeech(), shown in listing 16-2, and continues in its setTextToSpeechSettings() method, shown in Listing 16-3. These methods execute asynchronously.

When complete, they make callbacks to one of the methods in TextToSpeechStartupListener.

If the external code determines language data is required, it may elect to install the data. If so, the code in listings 16-5 and 16-6 show how to activate the language install only once by starting an Intent, using a shared preference, and waiting for a broadcast result.

The following sections explore these steps in detail.

Starting TTS Initialization

First, the initialization code must create the TextToSpeech object. The createTextToSpeech() method handles this. It takes the locale of the desired language as input so the initialization c16.indd 352

5/10/2012 2:12:08 PM

Text-To-Speech x 353

can set it later within the setTextToSpeechSettings() method. It also creates an anony-

mous OnInitListener class as the OnInitListener to handle the onInit() callback from

TextToSpeech.

LISTING 16-2: Creates a TextToSpeech object with an OnInitListener

private void createTextToSpeech(final Locale locale)

{

tts = new TextToSpeech(context, new OnInitListener()

{

@Override

public void onInit(int status)

{

if (status == TextToSpeech.SUCCESS)

{

setTextToSpeechSettings(locale);

} else

{

Log.e(TAG, "error creating text to speech");

callback.onFailedToInit();

}

}

});

}

setTextToSpeechSettings() either succeeds at confi guring TextToSpeech and reports success, or makes a callback depending on whether the device can support the desired language.

Checking for Language Support using a Locale

setTextToSpeechSettings(), shown in Listing 16-3, checks for language availability. It does this by checking the output from TextToSpeech.isLanguageAvailable(). Depending on the result, it makes different callbacks to TextToSpeechInitializer.

TextToSpeech.isLanguageAvailable()takes a Locale as input and returns fi ve possible values. If your app is not changing the default language, it should pass in Locale.getDefault(). Following is a summary of the fi ve possible return values and what they mean.

‰

TextToSpeech.LANG_AVAILABLE: TTS is ready, and supports the language.

‰

TextToSpeech.LANG_COUNTRY_AVAILABLE: TTS is ready, and supports the language and

country.

‰

TextToSpeech.LANG_COUNTRY_VAR_AVAILABLE: TTS is ready, and supports language, coun-

try, and variant.

‰

TextToSpeech.LANG_NOT_SUPPORTED: TTS has failed. The app cannot support the language.

‰

TextToSpeech.LANG_MISSING_DATA: TTS is not ready yet. The app needs make the user

download the language data fi rst.

c16.indd 353

c16.indd 353

5/10/2012 2:12:08 PM

5/10/2012 2:12:08 PM

354 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

LISTING 16-3: Sets TextToSpeech settings or callback to handle contingencies based on

language data availability

private void setTextToSpeechSettings(final Locale locale)

{

Locale defaultOrPassedIn = locale;

if (locale == null)

{

defaultOrPassedIn = Locale.getDefault();

}

// check if language is available

switch (tts.isLanguageAvailable(defaultOrPassedIn))

{

case TextToSpeech.LANG_AVAILABLE:

case TextToSpeech.LANG_COUNTRY_AVAILABLE:

case TextToSpeech.LANG_COUNTRY_VAR_AVAILABLE:

Log.d(TAG, "SUPPORTED");

tts.setLanguage(locale);

callback.onSuccessfulInit(tts);

break;

case TextToSpeech.LANG_MISSING_DATA:

Log.d(TAG, "MISSING_DATA");

// check if waiting, by checking

// a shared preference

if (LanguageDataInstallBroadcastReceiver

.isWaiting(context))

{

Log.d(TAG, "waiting for data...");

callback.onWaitingForLanguageData();

} else

{

Log.d(TAG, "require data...");

callback.onRequireLanguageData();

}

break;

case TextToSpeech.LANG_NOT_SUPPORTED:

Log.d(TAG, "NOT SUPPORTED");

callback.onFailedToInit();

break;

}

}

 code snippet TextToSpeechInitializer.java

Before continuing in this discussion, consider the possible reasons for requiring language data and what happens when a device downloads it. On any given device, an app can get different values from isLanguageAvailable() for each possible Locale. The values depend on how much, if any, language data is installed on the device.

Figure 16-2 shows some output from the code in Listing 16-4. It contains the language, country, and variant, separated by underscores for any Locale that the device supports partially or completely.

The text output after the Locale description describes any lack of device support. If the text says c16.indd 354

5/10/2012 2:12:08 PM

Text-To-Speech x 355

NOT_SUPPORTED it means that the device does not support the Locale at all. If it says MISSING_DATA the device can support the Locale, if it had the TTS data.

If the device partially supports the Locale, the output describes which parts it supports. For example, the output in Figure 16-2 shows that the device supports Spanish with an ES country, but not a AR country. If the device supported the AR country, it would have printed es_AR COUNTRY_

AVAILBLE. Also, the output shows that the device does not support the POSIX variant of en_US_

POSIX, but does support the language and country. In either case, the device supports some form of English and Spanish, if not exactly the one the Locale specifi es.

FIGURE 16-2: isLanguageAvailable() output for various Locales on a particular device LISTING 16-4: Code required to describe which Locales a device supports

public static String getLanguageAvailableDescription(TextToSpeech tts)

{

StringBuilder sb = new StringBuilder();

for (Locale loc : Locale.getAvailableLocales())

{

int availableCheck = tts.isLanguageAvailable(loc);

sb.append(loc.toString()).append(" ");

switch (availableCheck)

{

case TextToSpeech.LANG_AVAILABLE:

break;

case TextToSpeech.LANG_COUNTRY_AVAILABLE:

sb.append("COUNTRY_AVAILABLE");

break;

case TextToSpeech.LANG_COUNTRY_VAR_AVAILABLE:

sb.append("COUNTRY_VAR_AVAILABLE");

break;

 continues

c16.indd 355

c16.indd 355

5/10/2012 2:12:08 PM

5/10/2012 2:12:08 PM

356 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

LISTING 16-4 (continued)

case TextToSpeech.LANG_MISSING_DATA:

sb.append("MISSING_DATA");

break;

case TextToSpeech.LANG_NOT_SUPPORTED:

sb.append("NOT_SUPPORTED");

break;

}

sb.append("\n");

}

return sb.toString();

}

Downloading the language data adds support only for some languages. In the example from Figure 16-2, the device returns NOT_SUPPORTED for the fi Locale. NOT_SUPPORTED means that a device will never support the given Locale, even if the user downloads the language data. The fr Locale has a MISSING_DATA value. MISSING_DATA means that the device needs to download the language data before saying “Bonjour” with the appropriate French accent.

TRY THIS

In the Diagnostics screen, click See Locales Status. The resulting dialog shows the

output from the code in Listing 16-4.

Handling the Language Check Result and Installing Language Data

Now, after the call to isLanguageAvailable(), the initialization could have failed in two ways: via onInit()’s success integer or by isLanguageAvailable() returning LANG_NOT_SUPPORTED.

This leaves one contingency: the device needs to install language data. Most devices will not require downloading the language data because it is pre-installed or because they have already run your app’s initialization. However, you still must include code to download language data to handle the devices that have installed data for only some languages or none at all.

If the device needs language data, the app has to send the user to Google Play to download and install the SpeechSynthesis Data app. During installation, the app copies the necessary language data to the SD card. Meanwhile, if the user starts the app again it is useful to inform the user to wait until the installation is complete. Figure 16-3 shows the screens the user sees when needing to download language data using the implementation this section describes.

First, in screen 1, the app fails a language check and prompts the user with a dialog.

Second, the user clicks Yes on screen 1 and the app sends the user to Google Play to download the language data. Screen 2 shows Google Play page where the user has started the download.

Third, if the user returns to the app before the download is complete, the user sees screen 3. The user will continue to see screen 3 until the installation notifi es the app. After completing the installation and restarting the app, the user will not see these three screens again and TextToSpeech will be available for the app to use.

c16.indd 356

5/10/2012 2:12:09 PM

Text-To-Speech x 357

FIGURE 16-3 Screens a user could see while an app is initializing TextToSpeech

Android makes it easy for an app to move the user to Google Play via sending an Intent with a TextToSpeech.Engine.ACTION_INSTALL_TTS_DATA action. The action executes an android.

intent.action.VIEW action for market://search?q=pname:com.svox.langpack.installer.

To use the Intent external code responds to the onRequireLanguageData() callback. In that callback, the external code can optionally prompt the user, and decide whether or not to proceed with installing the language data. If the app decides that it should install the language data it makes a call to the TextToSpeechInitializer.installLanguage() method. Listing 16-5 shows how the

method sends an Intent with an ACTION_INSTALL_TTS_DATA action.

LISTING 16-5: Launch install language data

public void installLanguageData()

{

// set waiting for the download

LanguageDataInstallBroadcastReceiver.setWaiting(context, true);

Intent installIntent = new Intent();

installIntent.setAction(TextToSpeech.Engine.ACTION_INSTALL_TTS_DATA);

context.startActivity(installIntent);

}

Once an app sends the Intent, Android should take the user to Google Play where they can

start downloading the language data. However, your app should handle the case where the user restarts your app before the device completes the data installation. This situation will cause your app’s language data check to fail, and potentially trigger sending the user to Google Play again.

c16.indd 357

c16.indd 357

5/10/2012 2:12:09 PM

5/10/2012 2:12:09 PM

358 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

Sending the user to the Google Play again will not help the download happen faster nor help the user start using your app. The result could be a loop that confuses and frustrates the user.

To handle this conundrum, the language installer broadcasts an Intent with TextToSpeech.

Engine.ACTION_TTS_DATA_INSTALLED when it completes installation. Your app can listen for this Intent and notify the user to retry after the language is installed.

The code for this chapter handles this by using shared preferences. It sets a “waiting” shared preference before sending the user to the Google Play. Then a BroadcastReceiver switches the preference when the installation completes. When a user starts the data check, the app checks the “waiting”

shared preference and informs the user appropriately before resending the user to the Google Play.

Implementing this plan involves setting and checking the shared preference, a new

LanguageDataInstallBroadcastReceiver class, and code within two parts of

TextToSpeechInitializer. First, the installLanguageData() method from

Listing 16-5 sets the “waiting” preference before initiating the install. Second, the

LanguageDataInstallBroadcastReceiver class, shown in Listing 16-6, clears the “waiting” preference when it receives the appropriate broadcast. It requires the manifest entry, shown in Listing 16-7, to receive the correct broadcast. Third, the isLanguageAvailable() method from Listing 16-3 checks the preference using LanguageDataInstallBroadcastReceiver.isWaiting() and

reports the result to the TextToSpeechStartupListener.

LISTING 16-6: Broadcast listener to track when language data is installed

public class LanguageDataInstallBroadcastReceiver extends BroadcastReceiver

{

private static final String TAG = "LanguageDataInstallBroadcastReceiver";

private static final String PREFERENCES_NAME = "installedLanguageData";

private static final String WAITING_PREFERENCE_NAME =

"WAITING_PREFERENCE_NAME";

private static final Boolean WAITING_DEFAULT = false;

public LanguageDataInstallBroadcastReceiver()

{

}

@Override

public void onReceive(Context context, Intent intent)

{

if (intent.getAction().equals(

TextToSpeech.Engine.ACTION_TTS_DATA_INSTALLED))

{

Log.d(TAG, "language data preference: " + intent.getAction());

// clear waiting state

setWaiting(context, false);

}

}

c16.indd 358

5/10/2012 2:12:10 PM

Text-To-Speech x 359

/**

* check if the receiver is waiting for a language data install

*/

public static boolean isWaiting(Context context)

{

SharedPreferences preferences;

preferences =

context.getSharedPreferences(PREFERENCES_NAME,

Context.MODE_WORLD_READABLE);

boolean waiting =

preferences

.getBoolean(WAITING_PREFERENCE_NAME, WAITING_DEFAULT);

return waiting;

}

/**

* start waiting by setting a flag

*/

public static void setWaiting(Context context, boolean waitingStatus)

{

SharedPreferences preferences;

preferences =

context.getSharedPreferences(PREFERENCES_NAME,

Context.MODE_WORLD_WRITEABLE);

Editor editor = preferences.edit();

editor.putBoolean(WAITING_PREFERENCE_NAME, waitingStatus);

editor.commit();

}

}

 code snippet LanguageDataInstallBroadcastReceiver.java

LISTING 16-7: AndroidManifest.xml entry to activate the BroadcastReceiver

<receiver

android:name="root.gast.speech.tts.LanguageDataInstallBroadcastReceiver">

<intent-filter>

<action

android:name="android.speech.tts.engine.TTS_DATA_INSTALLED"/>

</intent-filter>

</receiver>

Setting TTS Listener

A fi nal part of the setup is to optionally set an OnProgressUpdatedListener. TextToSpeech calls the OnProgressUpdatedListener when it starts speaking, is done speaking, or when there is an error. The methods contain an utteranceId parameter which is useful in various ways to help apps know when speaking a certain utterance has completed. Subsequent sections in this chapter and other chapters utilize it in various ways.

c16.indd 359

c16.indd 359

5/10/2012 2:12:10 PM

5/10/2012 2:12:10 PM

360 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

At the moment, setting the listener is somewhat awkward. First, it is an abstract class that an app must extend. This means your Activity cannot extend it. One way around this is to

use an anonymous class. Second, setting the listener can also produce some error codes that an app may check. Third, an app needs to set the listener only after it is initialized. Fourth, UtteranceProgressListener is a new class in Android 4.0.3. To be backward compatible, an app needs insert a build version check. All this means it takes several lines of code to set the listener in a way that is convenient to use and backward compatible.

Listing 16-22 shows code that sets the listener after successful initialization in its setTtsListener() method. If the app’s API level is greater or equal to than 15, version 4.0.3 or greater, the app uses UtteranceProgressListener. Otherwise, it uses an older OnUtteranceCompletedListener interface. In either case, the resulting listener call an onDone() method.

Summary of Initialization Procedure

In summary, the classes described thus far implement a procedure that initializes the TextToSpeech object using a Locale and callback to an interface implementation that decides how to process the possible outcomes. Using the procedure, an app can reliably obtain an initialized TextToSpeech object that is ready for use. The Testing TTS initialization note shows instructions for how to test the initialization process on an emulator.

The next section discusses an alternate initialization procedure that uses the same code as this one with a different method for checking language availability. The check uses the TextToSpeech.

Engine.ACTION_CHECK_TTS_DATA action. The next section also describes other uses of the action besides initialization.

TESTING THE TTS INITIALIZATION

The initialization process is diffi cult to debug or test. It’s likely that your device has the language data already installed. If so, your device will never need the initialization procedure. Even if your device does not have the language data, once you

install it, there is no way to uninstall it via the Android user interface. Fortunately,

you can still test using an emulator.

The language data fi les reside inside a protected area of the Android operating

system. Therefore, you need to use an emulator to access it. Follow the procedure

outlined here to use adb to accomplish it.

Manual language data uninstallation procedure:

1.

Start an emulator with version greater than 2

2. Execute:

adb remount

3. Execute:

adb shell rm -r /system/tts/lang_pico/*

Next, the emulator requires some additional steps because it cannot run Google

Play. Without Google Play the emulator must get the language data from some-

where else. You can simulate the install by performing a manual install of the data

using the following procedure.

c16.indd 360

c16.indd 360

5/10/2012 2:12:10 PM

5/10/2012 2:12:10 PM

Text-To-Speech x 361

Manually installing language data procedure for an emulator:

1. Download

com.svox.langpack.installer_1.0.1.apk from http://code.

google.com/p/eyes-free/downloads/list

2. Execute:

adb install com.svox.langpack.installer_1.0.1.apk

This install behaves identically to installing from Google Play and installs the lan-

guage data to the SD card.

In summary, with some manual steps it is possible to test the TTS initialization

procedure using an emulator.

Check TTS Data Action

The TextToSpeech.Engine.ACTION_CHECK_TTS_DATA has two uses. First, you can use it to

check for supported languages. Second, you can use it to query for detailed information about the TTS engine. Hence, it can be used as part of an alternative initialization procedure or to gather information.

TRY THIS

Under Diagnostics, click data check to see the output from the ACTION_CHECK_TTS_

DATA action.

Voices

The action works on “voices” instead of Locales. A voice is a three-part string formatted as lang-COUNTRY-variant where COUNTRY and variant are optional. For example, US English is eng-USA. Variant is a completely unspecifi ed fi eld, but may take on values such as FEMALE.

The format of a voice is not the same as what you get from Locale.toString, and there is no robust way to directly derive it from a Locale. Hence, either an app must do a best match between the Locale’s ISO3Country and ISO3Language fi elds and all available voice strings beforehand, or your app must know ahead of time which Locales will map easily.

Listing 16-8 performs a simple mapping from Locale to voice. However, it could result in a voice called eng-AUS, which will not pass the language check because the available voice is called eng-USA not eng-AUS.

LISTING 16-8: Converts Locale to a voice, only works for certain Locales

public static String convertLocaleToVoice(Locale loc)

{

String country = loc.getISO3Country();

String language = loc.getISO3Language();

StringBuilder sb = new StringBuilder();

 continues

c16.indd 361

5/10/2012 2:12:11 PM

362 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

LISTING 16-8 (continued)

sb.append(language);

if (country.length() > 0)

{

sb.append("-");

sb.append(country);

}

return sb.toString();

}

Using the ACTION_CHECK_TTS_DATA Action for Initialization

The ACTION_CHECK_TTS_DATA action differs from the Locale-based initialization in that it

does not need a Locale and does not need to check isLanguageDataAvailable(). Instead,

the app checks the result code from the action to determine whether or not the user needs to download the language data. This results in a different control flow that is summarized in

Figure 16-4. TextToSpeechInitializerByAction implements the initialization procedure

using the action.

new

Intent

OnActivityResult()

onInit()

Ready

TextToSpeech()

Data

TTS Data

Google

install

installed

Play

in progress

broadcast

FIGURE 16-4: Initialization workfl ow using the ACTION_CHECK_TTS_DATA action

To start initialization, an app sends an Intent with the TextToSpeech.Engine.ACTION_CHECK_

TTS_DATA action and processes the result within OnActivityResult(). From there, an app continues the same way it did during the Locale-based initialization. It either creates a new TextToSpeech object or if the app requires language data, it sends the user to Google Play. The only difference is that this procedure does not require checking for language data after onInit() because the procedure has already done that by checking the Intent results.

c16.indd 362

5/10/2012 2:12:11 PM

Text-To-Speech x 363

The responseCode describes the result of the check. If it returns TextToSpeech.Engine.

CHECK_VOICE_DATA_PASS, the device has all the language data and it can continue to create a new TextToSpeech object.

If the Intent returns anything else, the device does not have adequate language data. For example, if a device has the eng-USA and spa-ESP voices but is missing the deu-DEU voice, the data check will return something other than TextToSpeech.Engine.CHECK_VOICE_DATA_PASS and fail.

If an app is interested in only specifi c voices, it may pass in an optional ArrayList of voice strings for EXTRA_CHECK_VOICE_DATA_FOR to check for particular voices. For example, an app might use this to check if the device supports only the eng-USA voice. Even if the app supports eng-USA but doesn’t support deu-DEU, the data check will still succeed and return CHECK_VOICE_DATA_PASS.

TextToSpeechInitializerByAction implements the initialization procedure just described. It

starts by sending the TextToSpeech.Engine.ACTION_CHECK_TTS_DATA Intent with a possible

voice to check. Listing 16-9 shows TextToSpeechInitializer its startDataCheck() method. The method takes in an Activity because it has to call startActivityForResult().

LISTING 16-9: Sends an Intent with ACTION_CHECK_TTS_DATA action with optional EXTRA_

CHECK_VOICE_DATA_FOR extra

public void startDataCheck(Activity activity, String voiceToCheck)

{

Intent check = new Intent();

check.setAction(TextToSpeech.Engine.ACTION_CHECK_TTS_DATA);

Log.d(TAG, "launching speech check");

if (voiceToCheck != null && voiceToCheck.length() > 0)

{

Log.d(TAG, "adding voice check for: " + voiceToCheck);

// needs to be in an ArrayList

ArrayList<String> voicesToCheck = new ArrayList<String>();

voicesToCheck.add(voiceToCheck);

check.putStringArrayListExtra(

TextToSpeech.Engine.EXTRA_CHECK_VOICE_DATA_FOR,

voicesToCheck);

}

activity.startActivityForResult(check,

CommonTtsMethods.SPEECH_DATA_CHECK_CODE);

}

When the Activity returns a result, the calling Activity must execute the handleOnActivityResult() method to complete the initialization. Listing 16-10 shows the handleOnActivityResult() method. Notice that it sets the language without checking isLanguageAvailable(). It also assumes that the calling Activity passed in the right Locale for the particular voice. The calling Activity sets targetLocale in is the constructor for TextToSpeechInitializerByAction.

c16.indd 363

c16.indd 363

5/10/2012 2:12:11 PM

5/10/2012 2:12:11 PM

364 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

LISTING 16-10: Handles the result from ACTION_CHECK_TTS_DATA

private Locale targetLocale;

public void handleOnActivityResult(Context launchFrom,

int requestCode, int resultCode, Intent data)

{

if (requestCode == CommonTtsMethods.SPEECH_DATA_CHECK_CODE)

{

switch (resultCode)

{

case TextToSpeech.Engine.CHECK_VOICE_DATA_PASS:

// success, create the TTS instance

Log.d(TAG, "has language data");

tts = new TextToSpeech(launchFrom, new OnInitListener()

{

@Override

public void onInit(int status)

{

if (targetLocale != null)

{

tts.setLanguage(targetLocale);

}

if (status == TextToSpeech.SUCCESS)

{

callback.onSuccessfulInit(tts);

} else

{

callback.onFailedToInit();

}

}

});

break;

case TextToSpeech.Engine.CHECK_VOICE_DATA_MISSING_VOLUME:

case TextToSpeech.Engine.CHECK_VOICE_DATA_FAIL:

case TextToSpeech.Engine.CHECK_VOICE_DATA_BAD_DATA:

case TextToSpeech.Engine.CHECK_VOICE_DATA_MISSING_DATA:

Log.d(TAG, "no language data");

callback.onRequireLanguageData();

}

}

}

 code snippet TextToSpeechInitializerByAction.java

Either this Intent-based process or the Locale-based initialization may be more convenient for your app. The Intent-based process has the advantage that it allows your app to check language data without creating a TextToSpeech object. It also allows your app to easily query for what voices are available. An app could use the return values to propose with “which language would you like to speak?” to the user, for example.

c16.indd 364

5/10/2012 2:12:12 PM

Text-To-Speech x 365

This approach has some drawbacks, however. First, the Intent-based process involves two asynchronous processes. It must wait for the Intent to fi nish and then wait for the TextToSpeech to initialize. This increases the procedure’s complexity. Second, it requires an Activity and handling an onActivityResult(), which makes it awkward to separate out the functionality into

a separate class. Finally, the Intent-based process needs a Locale to set its language. Because it already needs a Locale, it might as well use the Locale-based initialization instead of dealing with voice strings.

Using the ACTION_CHECK_TTS_DATA Action to Gather TTS Engine Information

In addition to checking for language data, ACTION_CHECK_TTS_DATA returns additional information about the TTS engine via various extras. The information is useful for debugging a TTS

engine and for learning what languages a device supports. The results may be different depending on the implementation. The Android documentation only specifi es the format of EXTRA_

AVAILABLE_VOICES and EXTRA_UNAVAILABLE_VOICES; the others are left for the TTS engine to

decide.

Table 16-1 summarizes the output types and shows some possible results for the default TTS engine installed on Android.

TABLE 16-1: Extra information provided with ACTION_CHECK_DATA for the default TTS engine RETURN

MEANING

EX AMPLE OUTPUT

EXTRA_AVAILABLE_VOICES

Voices installed on the device

eng-USA, spa-ESP,

formatted as lang-country-variant

eng-USA-FEMALE

where country and variant are

optional.

EXTRA_UNAVAILABLE_

Voices not supported by the

deu-DEU, eng-GBR, fra-FRA,

VOICES

device.

ita-ITA

EXTRA_VOICE_DATA_

The voice data location.

/mnt/sdcard/svox

ROOT_DIRECTORY

EXTRA_VOICE_DATA_FILES

Lists data fi le names.

de-DE_gl0_sg.bin,

de-DE_ta.bin, en-GB_

kh0_sg.bin, en-GB_ta.bin,

en-US_lh0_sg.bin

EXTRA_VOICE_DATA_

A list of voices, presumably cor-

deu-DEU, deu-DEU, eng-GBR,

FILES_INFO

related with the data fi les.

eng-GBR, ….

Figure 16-5 shows the output from a device using the “data status” button in the book’s app. The output shows that the device fails the “data status” check because it has only four of six languages installed and describes which voices are available and which are missing.

c16.indd 365

c16.indd 365

5/10/2012 2:12:12 PM

5/10/2012 2:12:12 PM

366 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

An app can use the ACTION_CHECK_TTS_DATA action to initial-

ize TTS and also to gather TTS implementation details. As

discussed previously, an app can also initialize TTS using just a

Locale. The code described in the previous sections helps you

to implement TTS initialization quickly so that you can focus

on using TTS. The next section describes how.

Speaking

After the initialization process the app can readily utilize the

TextToSpeech object to play speech, prerecorded audio, and

silence. This section describes its various methods and demon-

strates their usage within the TextToSpeechDemo Activity and

the Try Text to Speech button in the book’s app.

When speaking, the TextToSpeech object proceeds through the

following steps:

1. App

calls

speak(), playSilence(), or playEarcon().

2. Speaking

begins.

3.

Interrupt speaking if app calls stop(), report true if app

FIGURE 16-5: Output from the

calls isSpeaking().

ACTION_CHECK_TTS_DATA

4. Speaking

ends.

5.

TextToSpeech possibly calls onDone() on its UtteranceProgressListener..

The fi rst step involves playing one of four possible types of audio. You can use various “speak” or

“play” methods. Table 16-2 describes the audio types TextToSpeech can play and the methods needed.

TABLE 16-2: Diff erent Kinds of Audio TextToSpeech Can Play

WHAT

DESCRIPTION

HOW TO CONFIGURE

TTS API

Speech

Synthesized speech from arbitrary

None

speak(text)

text input.

Prerecorded

Audio fi le to play when given certain

addSpeech(key,

speak(key)

speech

text input.

audio fi le)

Earcons

A sound typically used at the start of

addEarcon(name,

playEarcon(name)

an utterance to solicit attention. Does

audio fi le)

not trigger onDone() on versions

of Android before 4.0.

Silence

A period of silence.

None

playSilence()

c16.indd 366

c16.indd 366

5/10/2012 2:12:12 PM

5/10/2012 2:12:12 PM

Text-To-Speech x 367

TextToSpeech may not play the audio immediately, however. It manages a play queue and

plays each piece of audio one at a time as it receives it. The “speak” and “play” methods

add to the queue. An app can control the queue behavior by passing in a queueMode parameter. If the app passes QUEUE_ADD, TextToSpeech adds the audio to its queue. If the app uses QUEUE.FLUSH, TextToSpeech stops anything that is currently playing and starts playing audio immediately.

Figure 16-6 shows the result of speaking an earcon, then two silences, and fi nally the text “Heart”

in the book’s companion app.

The speak and play methods also take a

Map<String,String> as input. The values in the

Map represent additional parameters for the audio

playback. Android defi nes four possible keys for the

parameters, but specifi c TTS engines may have

additional parameters. The possible parameters are:

‰

KEY_PARAM_STREAM: Any of the STREAM constants

from AudioManager. TextToSpeech will send any

audio output to the specifi ed stream.

‰

KEY_PARAM_UTTERANCE_ID: ID to be passed to

onDone() when TTS fi nishes speaking it. If this key is

not present, TextToSpeech does not call onDone().

‰

KEY_PARAM_VOLUME: Value from 0 to 1 representing

the relative volume of spoken text compared to the

current stream.

‰

KEY_PARAM_PAN: Value from –1 to +1 representing

how far left or right to send the spoken text.

One note about streams: you may also set the global volume

FIGURE 16-6: Output from the book’s

stream for the Activity by executing an Activity’s set-

app showing how TextToSpeech

queued, started, and then completed

VolumeControlStream() method. For example, to make

playing various audio

an Activity output all sound to the “music” audio stream,

execute this line: setVolumeControlStream(AudioManager.

STREAM_MUSIC);

Earcons and prerecorded speech require “adding” before your app can use them. To add, you have to call addSpeech() and addEarcon(). Both require a textual name to refer to in later calls to speak() and playEarcon() and a reference to an audio resource or a path to an audio fi le. The audio format must be a format that Android supports, for example, .wav and .mp3. Also, all audio resources should be within the res directory, most likely within res/raw.

c16.indd 367

c16.indd 367

5/10/2012 2:12:12 PM

5/10/2012 2:12:12 PM

368 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

TRY THIS

The Try Text to Speech screen already has an earcon set. Clicking the earcon but-

ton plays a .wav fi le that sounds like a tone.

While TextToSpeech is playing audio, your app can interrupt or monitor the speaking process. If an app calls stop(), TextToSpeech stops speaking. If your app calls isSpeaking(), it reports if the app is currently speaking.

Another way an app can use TextToSpeech is to synthesize text

to a fi le. Instead of immediately speaking the passed-in text,

you can use the TextToSpeech engine to write it as a .wav fi le

via the synthesizeToFile() method.

TextToSpeech has some other parameters that an app might

want to set before speaking. These are speechRate and pitch,

outlined in the following list. An app can set these values after

TextToSpeech calls onInit().

‰

speechRate: How fast to speak. 1 is the normal value,

2 is twice as fast. 0.5 is half as fast.

‰

pitch: Pitch of the voice. 1.0 is the normal value.

Lower values make lower pitches; higher values make

higher pitches. The particular TextToSpeech engine

determines how much of a change this causes.

There is one last consideration to keep in mind. This consid-

eration only applies to devices running versions of Android

before 4.0. In those versions, the users are ultimately in control

of their TTS settings. They can confi gure certain TTS settings

FIGURE 16-7: TTS settings screen for

and if they do, your app cannot override them. Figure 16-7

Android devices before 4.0

shows the “Text-to-speech settings” Activity for an Android

2.3 device.

If the user selects Always use my settings, the settings confi gured override any changes your app makes. Under these conditions, even if your app calls setSpeechRate() or setLanguage(), the TTS will use the user’s settings instead. The only action your app can do is to check if the user has overridden the defaults. If so, TextToSpeech.areDefaultsEnforced() will return true.

c16.indd 368

5/10/2012 2:12:12 PM

Text-To-Speech x 369

TRY THIS

The Try Text to Speech button allows you to experiment with all of the TTS

parameters. Here are some specifi c experiments to try:

See the speaking queue. The Speak, Earcon, and Silence buttons each add some-

thing to the queue. To demonstrate the queue, fi rst select some text to speak. Then,

click the various three buttons multiple times, and listen to TextToSpeech say them

one at a time. You can also view when the various clicks were queued by looking at

the bottom result output.

‰

Prerecorded speech: To hear prerecorded speech, select “android” from the list

of Text to speak. When you click Speak, you will hear a prerecorded low voice

saying “android” instead of the normal synthesized voice.

‰

Stop speaking: Select some long text to speak by selecting (whatisandroid.txt).

Then click the Speak button. While it is speaking the Stop Speaking button

will be enabled. If you click it, the app will halt speaking before it completes

the utterance.

‰

Change settings: Change TextToSpeech settings by clicking the Parameters menu

option. Test changing volume, pan, speechRate, pitch, and synthesizing to fi le. If

you check Synthesize to fi le and then click Speak, the app will output a .wav fi le

within \sdcard\Android\data\root.gast.playground\tts.

Speaking a Script

TextToSpeechDemo assembles the various TextToSpeech method calls together to speak the following script:

1.

Alert user with an earcon.

2.

Wait 1000 milliseconds for the user to start listening. Otherwise the information starts too soon without a pause.

3. Speak

information.

4.

Wait 500 milliseconds.

5.

Speak prerecorded speech to personalize the speech with the author’s voice.

The code to play this script is shown in Listing 16-10. Any required earcons or prerecorded speech are .wav fi les included within the app’s resources.

c16.indd 369

5/10/2012 2:12:13 PM

370 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

LISTING 16-10: Plays a demo script consisting of earcons, silence, and synthesized and

prerecorded speech

private static final String LAST_SPOKEN = "lastSpoken";

private void playScript()

{

Log.d(TAG, "started script");

//setup

//id to send back when saying the last phrase

//so the app can re-enable the "speak" button

HashMap<String, String> lastSpokenWord = new HashMap<String, String>();

lastSpokenWord.put(TextToSpeech.Engine.KEY_PARAM_UTTERANCE_ID, LAST_SPOKEN);

//add earcon

final String EARCON_NAME = "[tone]";

tts.addEarcon(EARCON_NAME, "root.gast.playground", R.raw.tone);

//add prerecorded speech

final String CLOSING = "[Thank you]";

tts.addSpeech(CLOSING, "root.gast.playground", R.raw.enjoytestapplication);

//pass in null to most of these because we do not want a callback to

//onDone

tts.playEarcon(EARCON_NAME, TextToSpeech.QUEUE_ADD, null);

tts.playSilence(1000, TextToSpeech.QUEUE_ADD, null);

tts.speak(

"Attention readers: Use the try button to experiment with" +

" Text to Speech. Use the diagnostics button to see " +

"detailed Text to Speech engine information.",

TextToSpeech.QUEUE_ADD, null);

tts.playSilence(500, TextToSpeech.QUEUE_ADD, null);

tts.speak(CLOSING, TextToSpeech.QUEUE_ADD, lastSpokenWord);

}

 code snippet TextToSpeechDemo.java

First, the playScript() method code defi nes lastSpokenWord to hold an utterance ID. The onDone() method, shown in Listing 16-11, uses the ID to know when to re-enable the Speak button.

For the other utterances, playScript() passes null for a parameter. Not specifying an utterance ID

causes TextToSpeech to not call onDone() at the end of those utterances.

LISTING 16-11: onDone reenables the view

private void onDone(final String utteranceId)

{

Log.d(TAG, "utterance completed: " + utteranceId);

runOnUiThread(new Runnable()

{

 @Override

c16.indd 370

5/10/2012 2:12:14 PM

Text-To-Speech x 371

public void run()

{

if (utteranceId.equals(LAST_SPOKEN))

{

setViewToDoneSpeaking();

}

}

});

}

Next, playScript() adds a mapping for one earcon and one prerecorded speech instance. The

earcon is named “[tone]” and comes from a resource .wav fi le within the raw directory called tone.

The speech is named “[Thank you]” and references a resource called enjoytestapplication.

After adding the earcon and prerecorded speech, the code adds audio to the TextToSpeech queue.

First it plays the earcon with a call to playEarcon() by passing the “[tone]” name. Then, it plays silence for 1000 milliseconds. Next, it calls speak() with some text. This causes TextToSpeech to convert the text to audio and play it. Following that, the app plays silence again and ends with playing prerecorded speech by passing in “[Thank you]” to speak().

TRY THIS

Click the Text-to-Speech “demo” button and click Speak to hear the script.

Thus far, you’ve examined two parts of the TextToSpeech API: initializing and speaking. You need a few other pieces of code to create an app that can use TTS. Listing 16-12 shows the complete code for TextToSpeechDemo that contains the additional code that you need. The code does the following:

‰

Calls shutdown in the onDestroy() method

‰

Uses various dialogs to inform the user what is happening during initialization

‰

Turns on and off the Speak button based on whether or not the app is speaking

‰

Deactivates the Speak button while TextToSpeech is initializing

LISTING 16-12: Demonstrates initializing and using TTS to play a script

public class TextToSpeechDemo extends Activity implements

TextToSpeechStartupListener

{

private static final String TAG = "TextToSpeechDemo";

private Button speak;

private Button stopSpeak;

private static final String LAST_SPOKEN = "lastSpoken";

 continues

c16.indd 371

5/10/2012 2:12:14 PM

372 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

LISTING 16-12 (continued)

private TextToSpeechInitializer ttsInit;

private TextToSpeech tts;

@Override

public void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

setContentView(R.layout.ttsdemo);

hookButtons();

init();

}

private void hookButtons()

{

speak = (Button) findViewById(R.id.btn_speak);

speak.setOnClickListener(new View.OnClickListener()

{

@Override

public void onClick(View v)

{

setViewToWhileSpeaking();

playScript();

}

});

stopSpeak = (Button) findViewById(R.id.btn_stop_speak);

stopSpeak.setOnClickListener(new View.OnClickListener()

{

@Override

public void onClick(View v)

{

setViewToDoneSpeaking();

tts.stop();

}

});

}

private void init()

{

deactivateUi();

ttsInit = new TextToSpeechInitializer(this, Locale.getDefault(), this);

}

@Override

public void onSuccessfulInit(TextToSpeech tts)

{

Log.d(TAG, "successful init");

this.tts = tts;

activateUi();

setTtsListener();

c16.indd 372

c16.indd 372

5/10/2012 2:12:14 PM

5/10/2012 2:12:14 PM

Text-To-Speech x 373

}

/**

* set the TTS listener to call {@link #onDone(String)} depending on the

* Build.Version.SDK_INT

*/

private void setTtsListener()

{

if (Build.VERSION.SDK_INT >= 15)

{

int listenerResult =

tts.setOnUtteranceProgressListener(new UtteranceProgressListener()

{

@Override

public void onDone(String utteranceId)

{

TextToSpeechDemo.this.onDone(utteranceId);

}

@Override

public void onError(String utteranceId)

{

Log.e(TAG, "TTS error");

}

@Override

public void onStart(String utteranceId)

{

Log.d(TAG, "TTS start");

}

});

if (listenerResult != TextToSpeech.SUCCESS)

{

Log.e(TAG, "failed to add utterance progress listener");

}

}

else

{

int listenerResult =

tts.setOnUtteranceCompletedListener(

new OnUtteranceCompletedListener()

{

@Override

public void onUtteranceCompleted(String utteranceId)

{

TextToSpeechDemo.this.onDone(utteranceId);

}

});

if (listenerResult != TextToSpeech.SUCCESS)

{

Log.e(TAG, "failed to add utterance completed listener");

}

}

}

 continues

c16.indd 373

c16.indd 373

5/10/2012 2:12:15 PM

5/10/2012 2:12:15 PM

374 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

LISTING 16-12 (continued)

private void onDone(final String utteranceId)

{

Log.d(TAG, "utterance completed: " + utteranceId);

runOnUiThread(new Runnable()

{

@Override

public void run()

{

if (utteranceId.equals(LAST_SPOKEN))

{

setViewToDoneSpeaking();

}

}

});

}

@Override

public void onFailedToInit()

{

DialogInterface.OnClickListener onClickOk = makeOnFailedToInitHandler();

AlertDialog a =

new AlertDialog.Builder(this).setTitle("Error")

.setMessage("Unable to create text to speech")

.setNeutralButton("Ok", onClickOk).create();

a.show();

}

@Override

public void onRequireLanguageData()

{

DialogInterface.OnClickListener onClickOk =

makeOnClickInstallDialogListener();

DialogInterface.OnClickListener onClickCancel =

makeOnFailedToInitHandler();

AlertDialog a =

new AlertDialog.Builder(this)

.setTitle("Error")

.setMessage(

"Requires Language data to proceed, " +

"would you like to install?")

.setPositiveButton("Ok", onClickOk)

.setNegativeButton("Cancel", onClickCancel).create();

a.show();

}

@Override

public void onWaitingForLanguageData()

{

// either wait for install

DialogInterface.OnClickListener onClickWait =

makeOnFailedToInitHandler();

DialogInterface.OnClickListener onClickInstall =

makeOnClickInstallDialogListener();

c16.indd 374

c16.indd 374

5/10/2012 2:12:15 PM

5/10/2012 2:12:15 PM

Text-To-Speech x 375

AlertDialog a =

new AlertDialog.Builder(this)

.setTitle("Info")

.setMessage(

"Please wait for the language data to finish" +

" installing and try again.")

.setNegativeButton("Wait", onClickWait)

.setPositiveButton("Retry", onClickInstall).create();

a.show();

}

private DialogInterface.OnClickListener makeOnClickInstallDialogListener()

{

return new DialogInterface.OnClickListener()

{

@Override

public void onClick(DialogInterface dialog, int which)

{

ttsInit.installLanguageData();

}

};

}

private DialogInterface.OnClickListener makeOnFailedToInitHandler()

{

return new DialogInterface.OnClickListener()

{

@Override

public void onClick(DialogInterface dialog, int which)

{

finish();

}

};

}

private void playScript()

{

Log.d(TAG, "started script");

// setup

// id to send back when saying the last phrase

// so the app can re-enable the "speak" button

HashMap<String, String> lastSpokenWord = new HashMap<String, String>();

lastSpokenWord.put(TextToSpeech.Engine.KEY_PARAM_UTTERANCE_ID,

LAST_SPOKEN);

// add earcon

final String EARCON_NAME = "[tone]";

tts.addEarcon(EARCON_NAME, "root.gast.playground", R.raw.tone);

// add prerecorded speech

final String CLOSING = "[Thank you]";

tts.addSpeech(CLOSING, "root.gast.playground",

R.raw.enjoytestapplication);

 continues

c16.indd 375

c16.indd 375

5/10/2012 2:12:15 PM

5/10/2012 2:12:15 PM

376 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

LISTING 16-12 (continued)

// pass in null to most of these because we do not want a callback to

// onDone

tts.playEarcon(EARCON_NAME, TextToSpeech.QUEUE_ADD, null);

tts.playSilence(1000, TextToSpeech.QUEUE_ADD, null);

tts.speak("Attention readers: Use the try button to experiment with"

+ " Text to Speech. Use the diagnostics button to see "

+ "detailed Text to Speech engine information.",

TextToSpeech.QUEUE_ADD, null);

tts.playSilence(500, TextToSpeech.QUEUE_ADD, null);

tts.speak(CLOSING, TextToSpeech.QUEUE_ADD, lastSpokenWord);

}

// activate and deactivate the UI based on various states

private void deactivateUi()

{

Log.d(TAG, "deactivate ui");

// don't enable until the initialization is complete

speak.setEnabled(false);

}

private void activateUi()

{

Log.d(TAG, "activate ui");

speak.setEnabled(true);

}

public void setViewToWhileSpeaking()

{

stopSpeak.setVisibility(View.VISIBLE);

speak.setVisibility(View.GONE);

}

public void setViewToDoneSpeaking()

{

stopSpeak.setVisibility(View.GONE);

speak.setVisibility(View.VISIBLE);

}

@Override

protected void onDestroy()

{

if (tts != null)

{

tts.shutdown();

}

super.onDestroy();

}

}

 code snippet TextToSpeechDemo.java

c16.indd 376

c16.indd 376

5/10/2012 2:12:15 PM

5/10/2012 2:12:15 PM

Speech Recognition x 377

This section has explained how to initialize and use the TTS API to allow an app to speak. The next section describes how to allow an app to listen using the speech recognition API.

SPEECH RECOGNITION

Using the speech recognition API involves sending an Intent with the various actions

and extras defined in RecognizerIntent. Even though code never instantiates a

RecognizerIntent, this section still refers to an Intent that has constants from it as a

RecognizerIntent. The RecognizerIntent can accomplish many tasks, and this section

describes its various use cases.

Also, this section describes a set of six classes that demonstrate and implement common speech recognition methods:

‰

SpeechRecognizingActivity: An abstract Activity to handle interpreting the onActivi-

tyResult() response and executing other boilerplate code.

‰

SpeechRecognizerUtil: Has common speech recognition methods.

‰

LanguageDetailsChecker: BroadcastReceiver to receive RecognizerIntent.ACTION_

GET_LANGUAGE_DETAILS result.

‰

OnLanguageDetailsListener: Interface for LanguageDetailsChecker to call after receiv-

ing language details.

‰

SpeechRecognitionResultsActivity: Example of an Activity that handles a receiving

recognition results in a PendingIntent.

‰

SayMagicWordDemo: Demo activity that uses speech recognition and TTS.

If your app either extends SpeechRecognizerActivity or uses the methods in

SpeechRecognizerUtil, your app’s remaining tasks are to confi gure the appropriate

RecognizerIntent, interpret recognition results, and deal with any errors. The subject of interpreting the recognition results and creating complete speech commands is covered in Chapters 17 and 18. Chapter 19 describes different ways to help the user launch the RecognizerIntent besides using a button. This chapter gets you started by showing you how to get your app to the point of receiving recognition results.

Initializing

Before an app can use speech recognition it needs to perform two checks. First, it needs to check if the device supports speech recognition. To check, an app must execute the code in Listing 16-13.

LISTING 16-13: Check to determine if a device supports speech recognition

public boolean isSpeechAvailable(Context context)

{

PackageManager pm = context.getPackageManager();

List<ResolveInfo> activities = pm.queryIntentActivities(

c16.indd 377

c16.indd 377

5/10/2012 2:12:15 PM

5/10/2012 2:12:15 PM

378 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH), 0);

boolean available = true;

if (activities.size() == 0)

{

available = false;

}

return available;

}

Second, an app can optionally check if Android supports

the desired language. If it does not, there is no way to fi x it.

Unfortunately, the RecognizerIntent makes it easy for an app

to set a language, but not to check if Android supports a lan-

guage. To perform a language check, your app must retrieve the

list of supporting languages and then perform string matching

between the list and the desired language’s Locale.

The fi rst part of the language check is to acquire the list of

supported languages and the recognizer’s preferred lan-

guage. To do this, your app can send an Intent with the

RecognizerIntent.ACTION_GET_LANGUAGE_DETAILS action.

The recognizer uses the preferred language when the app does

not specify a language or when it doesn’t support the language

the app specifi es. Figure 16-8 shows the output from the lan-

guage check on one device.

The language check uses an asynchronous call and a

BroadcastIntent. LanguageDetailsChecker handles

the asynchronous nature of the call by calling back to an

OnLanguageDetailsListener when it receives the language

check results.

FIGURE 16-8: ACTION_GET_

LANGUAGE_DETAILS output

Listing 16-14 shows LanguageDetailsChecker.

LISTING 16-14: BroadcastReceiver to receive language details result

public class LanguageDetailsChecker extends BroadcastReceiver

{

private static final String TAG = "LanguageDetailsChecker";

private List<String> supportedLanguages;

private String languagePreference;

private OnLanguageDetailsListener doAfterReceive;

public LanguageDetailsChecker(OnLanguageDetailsListener doAfterReceive)

{

supportedLanguages = new ArrayList<String>();

c16.indd 378

5/10/2012 2:12:15 PM

Speech Recognition x 379

this.doAfterReceive = doAfterReceive;

}

@Override

public void onReceive(Context context, Intent intent)

{

Bundle results = getResultExtras(true);

if (results.containsKey(RecognizerIntent.EXTRA_LANGUAGE_PREFERENCE))

{

languagePreference =

results.getString(RecognizerIntent.EXTRA_LANGUAGE_PREFERENCE);

}

if (results.containsKey(RecognizerIntent.EXTRA_SUPPORTED_LANGUAGES))

{

supportedLanguages =

results.getStringArrayList(

RecognizerIntent.EXTRA_SUPPORTED_LANGUAGES);

}

if (doAfterReceive != null)

{

doAfterReceive.onLanguageDetailsReceived(this);

}

}

public String matchLanguage(Locale toCheck)

{

String matchedLanguage = null;

// modify the returned languages to look like the output from

// Locale.toString()

String targetLanguage = toCheck.toString().replace('_', '-');

for (String supportedLanguage : supportedLanguages)

{

// use contains, so that partial matches are possible

// for example, if the Locale is

// en-US-POSIX, it will still match en-US

// and that if the target language is en, it will match something

Log.d(TAG, targetLanguage + " contains " + supportedLanguage);

if ((targetLanguage.contains(supportedLanguage))

|| supportedLanguage.contains(targetLanguage))

{

matchedLanguage = supportedLanguage;

}

}

return matchedLanguage;

}

/**

* @return the supportedLanguages

*/

public List<String> getSupportedLanguages()

{

return supportedLanguages;

}

 continues

c16.indd 379

c16.indd 379

5/10/2012 2:12:15 PM

5/10/2012 2:12:15 PM

380 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

LISTING 16-14 (continued)

/**

* @return the languagePreference

*/

public String getLanguagePreference()

{

return languagePreference;

}

public String toString()

{

StringBuilder sb = new StringBuilder();

sb.append("Language Preference: ").append(getLanguagePreference())

.append("\n");

sb.append("languages supported: ").append("\n");

for (String lang : getSupportedLanguages())

{

sb.append(" ").append(lang).append("\n");

}

return sb.toString();

}

}

 code snippet LanguageDetailsChecker.java

Listing 16-15 shows the OnLanguageDetailsListener, which receives the result of the language check.

LISTING 16-15: Called by LanguageDetailsChecker with language data

public interface OnLanguageDetailsListener

{

public void onLanguageDetailsReceived(LanguageDetailsChecker data);

}

Listing 16-16 shows the SpeechRecognizingActivity.checkForLanguage() method, which

checks for language support. It does the following:

‰

Defi nes OnLanguageDetailsListener that uses the language check result to tell if the device supports a certain Locale. The OnLanguageDetailsListener passes the language check

result to the abstract languageCheckResult() method.

‰

Creates a LanguageDetailsChecker to receive the language check results and forward them

to the OnLanguageDetailsListener.

‰

Sends a Intent with the RecognizerIntent.ACTION_GET_LANGUAGE_DETAILS action to be

received by the LanguageDetailsChecker.

LISTING 16-16: Executes the language check for a given Locale

protected void checkForLanguage(final Locale language)

{

OnLanguageDetailsListener andThen = new OnLanguageDetailsListener()

c16.indd 380

c16.indd 380

5/10/2012 2:12:15 PM

5/10/2012 2:12:15 PM

Speech Recognition x 381

{

@Override

public void onLanguageDetailsReceived(LanguageDetailsChecker data)

{

// do a best match

String languageToUse = data.matchLanguage(language);

languageCheckResult(languageToUse);

}

};

Intent detailsIntent = new Intent(

RecognizerIntent.ACTION_GET_LANGUAGE_DETAILS);

LanguageDetailsChecker checker = new LanguageDetailsChecker(andThen);

sendOrderedBroadcast(detailsIntent, null, checker, null,

Activity.RESULT_OK, null, null);

}

}

TRY THIS

Click Try Speech, then the Language Details menu option to see the output for

your device.

The “languages” returned by the action do not exactly conform to any standard. The API does not specify the format for these “language” strings. As you can see in Figure 16-8, the supported languages in the RecognizerIntent.GET_LANGUAGE_DETAILS output have a mixed format. They tend

to follow a language-country format, very similar to what Locale.toString() provides, but not exactly. For example, the list of languages contains strings such as cmn-Hans-CN and Pig-Latin, which do not conform to any standard.

This leaves you with a problem. There is no direct way for an app to check if Android supports recognizing the language for a particular Locale. Your app can send a Locale.toString() as a parameter in the RecognizerIntent to specify a language preference. However, if your app manages to send a Locale.toString() to Android that it doesn’t support, the recognizer will just use the default. There is no programmatic way to know if Android is using the default or ignoring the Locale.toString() your app passed in.

Fortunately, Android supports many languages, so most likely Google will support the language you need. However, it doesn’t support all languages, such as Icelandic, whose Locale is is_IS. Until Android provides additional APIs, your app needs some string matching code, such as the matchLanguage() method in Listing 16-14, if it needs to perform the language check.

TRY THIS

In the Try Speech button, use the Set Language menu option to test different lan-

guage support. You can change the language to another such as es-US. Then, you

can select Vamos a la playa from the list of presets and attempt to speak the phrase.

Also, you can use the Test Locale menu option. It shows all available Locales and

passes them to the matchLanguage() method to determine if Android supports it.

c16.indd 381

5/10/2012 2:12:15 PM

382 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

Once an app has checked if a device can support speech recognition and optionally checked if Android supports a particular language, it can then use speech recognition. The next section describes how to do so by sending a RecognizerIntent.

Using the RecognizerIntent

To use speech recognition, apps must create and send a RecognizerIntent. The RecognizerIntent class has an entangled list of extras and actions, which work only in certain combinations. The various uses fall into several categories and cover three possible actions, each with its own usage of extras. Table 16-2 describes the three possible actions in RecognizerIntent. The previous section covered GET_LANGUAGE_DETAILS and this section focuses on the other two.

TABLE 16-3: The Three Diff erent Actions using in RecognizerIntent

ACTION

SEND WITH

DESCRIPTION

RECOGNIZE_SPEECH

startActivityForResult()

Starts speech recognition.

WEB_SEARCH

startActivityForResult()

Starts speech recognition but allows

Android to take an action on the results.

Typically, Android decides to perform a

web search.

GET_LANGUAGE_DETAILS

sendBroadcast()

Returns some information about the sup-

ported and preferred languages.

To perform interactive speech recognition and process the results an app can use ACTION_

RECOGNIZE_SPEECH. Table 16-4 shows the relevant extras.

TABLE 16-4: Extras for ACTION_RECOGNIZE_SPEECH

PURPOSE

EXTRA

How to collect

PROMPT

SPEECH_INPUT_COMPLETE_SILENCE_LENGTH_MILLIS

SPEECH_INPUT_MINIMUM_LENGTH_MILLIS

SPEECH_INPUT_POSSIBLY_COMPLETE_SILENCE_LENGTH_

MILLIS

What to return

LANGUAGE_MODEL (required)

LANGUAGE

MAX_RESULTS

Where to send results

RESULTS_PENDINGINTENT

RESULTS_PENDINGINTENT_BUNDLE

Results

RESULTS

CONFIDENCE_SCORES

c16.indd 382

c16.indd 382

5/10/2012 2:12:16 PM

5/10/2012 2:12:16 PM

Speech Recognition x 383

To allow Android to take an action based on the speech instead of the app, an app can use ACTION_

WEB_SEARCH. Table 16-5 shows the relevant extras.

TABLE 16-5: Extras for ACTION_WEB_SEARCH

PURPOSE

EXTRA

How to collect

PROMPT

SPEECH_INPUT_COMPLETE_SILENCE_LENGTH_MILLIS

SPEECH_INPUT_MINIMUM_LENGTH_MILLIS

SPEECH_INPUT_POSSIBLY_COMPLETE_SILENCE_LENGTH_

MILLIS

What to return

LANGUAGE_MODEL (required)

LANGUAGE

MAX_RESULTS

PARTIAL_RESULTS

ORIGIN

Where to send results

WEB_SEARCH_ONLY

Results

RESULTS

CONFIDENCE_SCORES

To execute the language details check, as described in the previous section, an app can use ACTION_

GET_LANGUAGE_DETAILS. Table 16-6 shows the relevant extras.

TABLE 16-6: Extras for ACTION_GET_LANGUAGE_DETAILS

PURPOSE

EXTRA

How to collect

(none)

What to return

ONLY_RETURN_LANGUAGE_PREFERENCE

Where to send results

(none)

Results

LANGUAGE_PREFERENCE

SUPPORTED_LANGUAGES

The “how to collect” extras in Tables 16-4 and 16-5 control how Android records speech and

what it shows the user while doing so. The “what to return” extras change what values the recognizer returns. The “where to send results” extras determine what receives the results. For ACTION_

RECOGNIZE_SPEECH, the extras enable the developer to specify a PendingIntent to receive the recognition results. In ACTION_WEB_SEARCH, an app can optionally force Android to send the result to the web browser. Finally, an app uses the “results” extras to extract data, such as the speech-to-text conversations, returned from the RecogizerIntent.

c16.indd 383

c16.indd 383

5/10/2012 2:12:16 PM

5/10/2012 2:12:16 PM

384 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

The Speech Recording Process

Once an app sends a RecognizerIntent, Android proceeds through a process of showing dialogs, recording audio, and waiting for silence in order to record a speech utterance. As mentioned previously, the app can use extras in the Intent to control some aspects of how the recognizer executes this process. The speech recording process involves the following steps:

1.

App sends a RecognizerIntent.

2.

User waits up to several seconds.

3.

Speech prompt dialog appears with an optional prompt.

4.

User starts speaking.

5.

App records until a minimum time passes and it hears silence for long enough.

6.

Speech prompt dialog changes to “Working” while app communicates with Google servers.

7.

If an error occurs, the device plays a beeping sound, vibrates, and displays one of three retry dialogs.

8.

Android returns results to the app via onActivityResult().

The extras that affect the speech recording have several categories:

‰

Prompt: Adjusts the words the user sees in the fi rst prompt. In Figure 16-9, the prompt to the left shows the prompt “Speak: My android and I went to the store.” To set the prompt, set

the following extra:

‰

PROMPT: Text to put in the Speech prompt dialog.

‰

Timing: The recognizer determines when to stop recording based on how much silence it hears and a minimum recording time parameter. The “Working” prompt in Figure 16-9

shows a picture of the waveform the user recorded over time. The horizontal line in the

middle is bumpy when user was speaking and fl at when there was silence. Normally, an

app does not change the timing parameters. If it needs to, an app can set the following

extras:

‰

MINIMUM_LENGTH: Controls the minimum amount of time the recognizer records no

matter how much silence it hears. Box 1 in Figure 16-9 shows the minimum length

time.

‰

COMPLETE_SILENCE_LENGTH: Amount of silence needed before the recognizer stops

recording. In Figure 16-9, during box 2 there was silence, but not enough to stop

recording until during box 3.

‰

POSSIBLY_COMPLETE_SILENCE_LENGTH: Amount of silence needed before the recog-

nizer considers stopping recording. This extra works in a similar way to COMPLETE_

SILENCE_LENGTH. If your app specifi es both values, the recognizer uses the smaller

value as the amount of silence it needs.

c16.indd 384

c16.indd 384

5/10/2012 2:12:16 PM

5/10/2012 2:12:16 PM

Speech Recognition x 385

‰

Errors: Various errors can occur. Figure 16-9 shows the dialogs Android shows when they do. The various errors are “No matches found,” “No speech heard,” and “Connection problem.” These conditions all return a resultCode of 0, whereas successful executions return a resultCode of RESULT_OK. Android does not return the error codes referenced in the RecognizerIntent documentation.

1

2

3

FIGURE 16-9: Figure showing fl ow of speech dialogs ending in four possible outcomes Confi guring and Processing the Result

Beyond confi guring how the recognizer records speech, your app can also specify how the recognizer should interpret the recorded speech and what it should return. The possible extras are: c16.indd 385

5/10/2012 2:12:16 PM

386 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

‰

LANGUAGE_MODEL: A required extra having a value of LANGUAGE_MODEL_FREE_FORM or

LANGUAGE_MODEL_WEB_SEARCH. Each value causes the recognizer to use a certain “language

model.”

‰

The results from using either language model are very similar and the recognizer can

recognize any speech using either option. However, the results will differ slightly in

what possible speech-to-text conversions they return and in what order.

‰

Each language model is best suited to recognize the words for a certain manner of

speaking. You should select the model that you think most closely corresponds to

way your users speak in your app. Android’s speech input document advises that free

form is for dictation and web search is for shorter, search-like phrases. (http://

developer.android.com/resources/articles/speech-input.html)

‰

LANGUAGE: A voice string or a Locale.toString().

‰

MAX_RESULTS: The maximum number of possible speech-to-text conversions to return.

When the user completes a recognition, the recognizer returns some results within an Intent that contains two possible extras:

‰

RESULTS: An ArrayList<String> that contains strings representing possible speech-to-text conversions. It lists the strings in descending order of recognition confi dence. For example, if you say “next step” the results could contain the following: “next step, next steps, next stat, next that, next best, nah that, yes that, neck that, nex that.” The correct conversion happens to be fi rst and other possibilities follow. Also, if your app sets RESULTS_PENDINGINTENT, and the RESULTS extra is empty, it means that there was a recognition failure.

‰

CONFIDENCE_SCORES: An optional float [] from 0.0 to 1.0 or –1.0 representing recog-

nition confi dence. Each value corresponds to a speech-to-text conversion in the RESULTS

array in the same array position. A value of 0 means low confi dence and 1.0 means

high confi dence. If the value is –1, it means the confi dence value was unavailable. The

confi dence values are useful in helping the app make decisions about how to respond to

a user’s utterance when an app does not understand it. For example, if the confi dence

scores are low and the possible conversions do not match any expected values, it might

indicate that the app didn’t understand. If the confi dence scores are high and the possible conversions do not match, it might indicate that the user said the wrong thing. Both suggest different app responses. Chapter 19 goes into greater detail about how to use the

confi dence score.

RecognizerIntent Use Cases

You can use the RecognizerIntent in three ways, depending on what your app plans to do with the results. To activate the different use cases, your app uses a combination of an action type and potentially additional extras beyond the common ones already described.

Use case 1 is to return results to the calling Activity’s onActivityResult() method.

This is a basic use case in which an Activity sends a RecognizerIntent and receives the result.

Listing 16-17 shows code that constructs an Intent with two extras, LANGUAGE_MODEL and PROMPT.

c16.indd 386

c16.indd 386

5/10/2012 2:12:17 PM

5/10/2012 2:12:17 PM

Speech Recognition x 387

LISTING 16-17: Creates a typical RecognizerIntent

public static Intent getSimpleRecognizerIntent(String prompt)

{

Intent intent = new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);

intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,

RecognizerIntent.LANGUAGE_MODEL_WEB_SEARCH);

intent.putExtra(RecognizerIntent.EXTRA_PROMPT, prompt);

return intent;

}

Use case 2 is to handle results with a PendingIntent.

Normally, the recognizer returns results to the caller of startActivityForResult(). However, apps can make the recognizer send results along with a PendingIntent instead. To do so, an app sets the following extras:

‰

RESULTS_PENDINGINTENT: A PendingIntent for the recognizer to send with the recognition

results.

‰

RESULTS_PENDINGINTENT_BUNDLE: A Bundle containing additional extras to pass with the

PendingIntent. If an app sets this extra, the Intent’s receiver receives the recognition result extras as well as the contents of the bundle.

Using the PendingIntent could be useful to, for example, handle displaying search query results. In this scenario, your app would start a RecognizerIntent with a PendingIntent that would launch another Activity. The other Activity would interpret the recognition results and display a list of matching database entries.

Listings 16-18 and 16-19 show how to use a PendingIntent to receive recognition

results and display them. The code in Listing 16-18 confi gures a RecognizerIntent

called intentToSend to send a PendingIntent along with data inside an extra named

WHAT_YOU_ARE_TRYING_TO_SAY_INTENT_INPUT.

LISTING 16-18: Confi gures a PendingIntent to receive the recognition results along with another extra

Intent pendingIntentSource =

new Intent(this, SpeechRecognitionResultsActivity.class);

PendingIntent pi =

PendingIntent.getActivity(this, 0, pendingIntentSource, 0);

Bundle extraInfoBundle = new Bundle();

// pass in what you are trying to say so the results activity can

// show it

extraInfoBundle

.putString(

SpeechRecognitionResultsActivity.

WHAT_YOU_ARE_TRYING_TO_SAY_INTENT_INPUT,

whatYouAreTryingToSay.getText().toString());

 continues

c16.indd 387

c16.indd 387

5/10/2012 2:12:17 PM

5/10/2012 2:12:17 PM

388 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

LISTING 16-18 (continued)

// set the variables in the intent this is sending

intentToSend.putExtra(RecognizerIntent.EXTRA_RESULTS_PENDINGINTENT, pi);

intentToSend.putExtra(

RecognizerIntent.EXTRA_RESULTS_PENDINGINTENT_BUNDLE,

extraInfoBundle);

The code in Listing 16-19 is an Activity that receives the Intent, and displays the recognition results and the WHAT_YOU_ARE_TRYING_TO_SAY_INTENT_INPUT value. The Activity reports an

error dialog if the passed-in Intent does not contain EXTRA_RESULTS.

Figure 16-10 shows a possible result of running the code.

LISTING 16-19: Activity to receive the PendingIntent and display its contents

public class SpeechRecognitionResultsActivity extends Activity

{

private static final String TAG = "SpeechRecognitionResultsActivity";

/**

* for passing in the input

*/

public static String WHAT_YOU_ARE_TRYING_TO_SAY_INTENT_INPUT =

"WHAT_YOU_ARE_TRYING_TO_SAY_INPUT";

private ListView log;

private TextView resultsSummary;

@Override

protected void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

setContentView(R.layout.speechrecognition_result);

Log.d(TAG, "SpeechRecognition Pending intent received");

hookButtons();

init();

}

private void hookButtons()

{

log = (ListView) findViewById(R.id.lv_resultlog);

resultsSummary = (TextView) findViewById(R.id.tv_speechResultsSummary);

}

private void init()

{

if (getIntent() != null)

{

if (getIntent().hasExtra(WHAT_YOU_ARE_TRYING_TO_SAY_INTENT_INPUT))

{

String whatSayFromIntent =

c16.indd 388

5/10/2012 2:12:17 PM

Speech Recognition x 389

getIntent().getStringExtra(

WHAT_YOU_ARE_TRYING_TO_SAY_INTENT_INPUT);

resultsSummary.setText(whatSayFromIntent);

}

String whatSayFromIntent =

getIntent().getStringExtra(

WHAT_YOU_ARE_TRYING_TO_SAY_INTENT_INPUT);

resultsSummary.setText(whatSayFromIntent);

if (getIntent().hasExtra(RecognizerIntent.EXTRA_RESULTS))

{

List<String> results =

getIntent().getStringArrayListExtra(

RecognizerIntent.EXTRA_RESULTS);

ArrayAdapter<String> adapter =

new ArrayAdapter<String>(this,

R.layout.speechresultactivity_listitem,

R.id.tv_speech_activity_result, results);

log.setAdapter(adapter);

}

else

{

// if RESULT_EXTRA is not present, the recognition had an

// error

DialogInterface.OnClickListener onClickFinish =

new DialogInterface.OnClickListener()

{

@Override

public void onClick(DialogInterface dialog,

int which)

{

finish();

}

};

AlertDialog a =

new AlertDialog.Builder(this)

.setTitle(

getResources().getString(

R.string.d_info))

.setMessage(

getResources()

.getString(

R.string.

speechRecognitionFailed))

.setPositiveButton(

getResources().getString(R.string.d_ok),

onClickFinish).create();

a.show();

}

}

}

}

 code snippet SpeechRecognitionResultsActivity.java

c16.indd 389

c16.indd 389

5/10/2012 2:12:17 PM

5/10/2012 2:12:17 PM

390 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

Use case 3 is to let the Android device decide what to do with the

results. Most likely, it will decide to start a web search.

Your app can tell the Android to initiate an action of its choosing

based on recognition results, by using the ACTION_WEB_SEARCH

action instead of ACTION_RECOGNIZE_SPEECH. Typically, the rec-

ognizer sends the user to the web browser with the recognized

speech. However, the Android documentation says that it may

“trigger another type of action.” Your app can disable other

actions and force the user to go to a web browser by including the

WEB_SEARCH_ONLY extra.

Android does trigger other actions based on what the user says.

For example, if the user says “e-mail programming is fun,”

Android opens an e-mail prompt with the text “programming is

fun.” If the user just says “programming is fun,” Android sends

“programming is fun” to the web browser. Figure 16-11 shows

both results.

You can use a few other extras with ACTION_WEB_SEARCH. If you

set the ORIGIN fi eld, the recognizer will include the value as the

referring URL in the resulting HTML request.

FIGURE 16-10: Displays the recogni-

tion results sent in a PendingIntent

FIGURE 16-11: Two results from executing ACTION_WEB_SEARCH,

when speaking “e-mail programming is fun” (left) or “Programming is

fun” (right).

c16.indd 390

c16.indd 390

5/10/2012 2:12:17 PM

5/10/2012 2:12:17 PM

Speech Recognition x 391

You can also set the PARTIAL_RESULTS extra in the hopes of getting partial results while the user speaks. However, it may not work in all cases because as the Android documentation states: “The server may ignore a request for partial results in some or all cases.” In my experience, the server does a lot of ignoring.

In summary, by using the three use cases an app can have some control over what happens with the recognition results. Using the typical use case, an Activity sends a RecognizerIntent and then processes the results itself. However, an app can also forward the results to a PendingIntent by specifying one and to Android by using ACTION_WEB_SEARCH. The next section looks at some code that helps you to implement these use cases.

TRY THIS

Use the Try Speech button to adjust the various parameters and observe how

closely Android recognizes your speech. Here are some experiments to try:

‰

Diffi cult-to-recognize phrases: Try selecting “Cumin seeds” or “It’s not easy

to wreck a nice beach” presets, and then trying to speak those words. Observe

how closely the results match what you said.

‰

Timing: Try setting the three timing parameters, to see how long it allows you

to pause your speech and how long the speech recording lasts.

‰

Web search: Check off Web Search in the settings. Then speak something.

‰

PendingIntent: Check “Pending intent for results.” Then speak something and

observe how the recognizer launches another Activity to show the results.

Implementation

Executing speech recognition requires a fair amount of boilerplate code. This section

describes the reusable code you need within two classes. SpeechRecognizingActivity and

SpeechRecognitionUtil combine the pieces described in this section to make a reusable library.

Also, SayTheMagicWordDemo demonstrates how to use these new classes.

SpeechRecognitionUtil contains common speech-recognition-related methods such as initialization. SpeechRecognizingActivity is an abstract class that executes the initialization, sends the RecognizerIntent, and extracts data from the recognition results.

The easiest way to use these two classes is to extend SpeechRecognizingActivity. If your app can do so, almost all boilerplate code will be in the abstract class. If it cannot, your app can use SpeechRecognizingActivity as a template.

c16.indd 391

5/10/2012 2:12:18 PM

392 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

SPEECH RECOGNIZING AND SPEAKING ACTIVITY

If your app needs to use speech recognition and TTS, it may extend

SpeechRecognizingAndSpeakingActivity, which extends

SpeechRecognizingActivity to include TTS. It also handles prompting the user

during initialization if required. The source code for this book includes this handy

class for your use.

Listing 16-20 contains part of SpeechRecognitionUtil. It has two methods for initialization, among other convenient methods. isSpeechAvailable() determines if the device supports speech.

getLanguageDetails() sends an Intent with the ACTION_GET_LANGUAGE_DETAILS action and

calls back to an OnLanguageDetailsListener implementation with the result.

LISTING 16-20: A utility class that contains some common speech recognition methods

public class SpeechRecognitionUtil

{

/**

* checks if the device supports speech recognition

* at all

*/

public static boolean isSpeechAvailable(Context context)

{

PackageManager pm = context.getPackageManager();

List<ResolveInfo> activities = pm.queryIntentActivities(

new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH), 0);

boolean available = true;

if (activities.size() == 0)

{

available = false;

}

return available;

}

/**

* collects language details and returns result to andThen

*/

public static void getLanguageDetails(Context context,

OnLanguageDetailsListener andThen)

{

Intent detailsIntent = new Intent(

RecognizerIntent.ACTION_GET_LANGUAGE_DETAILS);

LanguageDetailsChecker checker = new LanguageDetailsChecker(andThen);

context.sendOrderedBroadcast(detailsIntent, null, checker, null,

Activity.RESULT_OK, null, null);

}

}

c16.indd 392

c16.indd 392

5/10/2012 2:12:18 PM

5/10/2012 2:12:18 PM

Speech Recognition x 393

Listing 16-21 contains the abstract SpeechRecognizingActivity class. It has four methods that the extending class must implement to handle various callbacks from initialization and receiving recognition results. It has two methods the extending class may call.

For initialization, SpeechRecognizingActivity executes the speech availability check during onCreate(). If the device doesn’t support speech recognition, SpeechRecognizingActivity calls speechNotAvailable(). If the extending Activity requests a language check via the checkForLanguage() method, SpeechRecognizingActivity calls languageCheckResult() with the result.

For executing, SpeechRecognizingActivity provides a recognize() method to send a passed-in

RecognizeIntent. Using recognize() ensures that onActivityResult() can properly process the recognition result. When onActivityResult() receives recognition results, it either calls receiveWhatWasHeard() with the results, or recognitionFailure() if there was a recognition problem.

SpeechRecognizingActivity also provides different methods for direct speech recognition using SpeechRecognizer instead of RecognizerIntent. The next section describes how to use those.

LISTING 16-21: Abstract Activity to handle common speech recognition processes

public abstract class SpeechRecognizingActivity extends Activity implements

RecognitionListener

{

private static final String TAG = "SpeechRecognizingActivity";

/**

* code to identify return recognition results

*/

public static final int VOICE_RECOGNITION_REQUEST_CODE = 1234;

public static final int UNKNOWN_ERROR = -1;

private SpeechRecognizer recognizer;

// private VoiceAction active;

@Override

protected void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

boolean recognizerIntent =

SpeechRecognitionUtil.isSpeechAvailable(this);

if (!recognizerIntent)

{

speechNotAvailable();

}

boolean direct = SpeechRecognizer.isRecognitionAvailable(this);

if (!direct)

{

directSpeechNotAvailable();

}

}

 continues

c16.indd 393

5/10/2012 2:12:19 PM

394 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

LISTING 16-21 (continued)

protected void checkForLanguage(final Locale language)

{

OnLanguageDetailsListener andThen = new OnLanguageDetailsListener()

{

@Override

public void onLanguageDetailsReceived(LanguageDetailsChecker data)

{

// do a best match

String languageToUse = data.matchLanguage(language);

languageCheckResult(languageToUse);

}

};

SpeechRecognitionUtil.getLanguageDetails(this, andThen);

}

/**

* execute the RecognizerIntent, then call

* {@link #receiveWhatWasHeard(List, List)} when done

*/

public void recognize(Intent recognizerIntent)

{

startActivityForResult(recognizerIntent,

VOICE_RECOGNITION_REQUEST_CODE);

}

/**

* Handle the results from the RecognizerIntent.

*/

@Override

protected void

onActivityResult(int requestCode, int resultCode, Intent data)

{

if (requestCode == VOICE_RECOGNITION_REQUEST_CODE)

{

if (resultCode == RESULT_OK)

{

List<String> heard =

data.

getStringArrayListExtra

(RecognizerIntent.EXTRA_RESULTS);

float[] scores =

data.

getFloatArrayExtra

(RecognizerIntent.EXTRA_CONFIDENCE_SCORES);

if (scores == null)

{

for (int i = 0; i < heard.size(); i++)

{

Log.d(TAG, i + ": " + heard.get(i));

}

}

else

{

for (int i = 0; i < heard.size(); i++)

c16.indd 394

c16.indd 394

5/10/2012 2:12:19 PM

5/10/2012 2:12:19 PM

Speech Recognition x 395

{

Log.d(TAG, i + ": " + heard.get(i) + " score: "

+ scores[i]);

}

}

receiveWhatWasHeard(heard, scores);

}

else

{

Log.d(TAG, "error code: " + resultCode);

recognitionFailure(UNKNOWN_ERROR);

}

}

super.onActivityResult(requestCode, resultCode, data);

}

/**

* called when speech is not available on this device, and when

* {@link #recognize(Intent)} will not work

*/

abstract protected void speechNotAvailable();

/**

* called when {@link SpeechRecognizer} cannot be used on this device and

* {@link #recognizeDirectly(Intent)} will not work

*/

abstract protected void directSpeechNotAvailable();

/**

* call back the result from {@link #checkForLanguage(Locale)}

*

* @param languageToUse

* the language string to use or null if failure

*/

abstract protected void languageCheckResult(String languageToUse);

/**

* result of speech recognition

*

* @param heard

* possible speech to text conversions

* @param confidenceScores

* the confidence for the strings in heard

*/

abstract protected void receiveWhatWasHeard(List<String> heard,

float[] confidenceScores);

/**

* @param code

* If using {@link #recognizeDirectly(Intent) it will be

* the error code from {@link SpeechRecognizer}

* if using {@link #recognize(Intent)}

* it will be {@link #UNKNOWN_ERROR}.

*/

abstract protected void recognitionFailure(int errorCode);

 continues

c16.indd 395

c16.indd 395

5/10/2012 2:12:19 PM

5/10/2012 2:12:19 PM

396 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

LISTING 16-21 (continued)

//direct speech recognition methods follow

/**

* Uses {@link SpeechRecognizer} to perform recognition and then calls

* {@link #receiveWhatWasHeard(List, float[])} with the results

* check {@link SpeechRecognizer.isRecognitionAvailable(context)} before

* calling this method otherwise if it isn't available the code will report

* an error

*/

public void recognizeDirectly(Intent recognizerIntent)

{

// SpeechRecognizer requires EXTRA_CALLING_PACKAGE, so add if it's not

// here

if (!recognizerIntent.hasExtra(RecognizerIntent.EXTRA_CALLING_PACKAGE))

{

recognizerIntent.putExtra(RecognizerIntent.EXTRA_CALLING_PACKAGE,

"com.dummy");

}

SpeechRecognizer recognizer = getSpeechRecognizer();

recognizer.startListening(recognizerIntent);

}

@Override

public void onResults(Bundle results)

{

Log.d(TAG, "full results");

receiveResults(results);

}

@Override

public void onPartialResults(Bundle partialResults)

{

Log.d(TAG, "partial results");

receiveResults(partialResults);

}

/**

* common method to process any results bundle from {@link SpeechRecognizer}

*/

private void receiveResults(Bundle results)

{

if ((results != null)

&& results.containsKey(SpeechRecognizer.RESULTS_RECOGNITION))

{

List<String> heard =

results.getStringArrayList(SpeechRecognizer.RESULTS_RECOGNITION);

float[] scores =

results.getFloatArray(SpeechRecognizer.CONFIDENCE_SCORES);

receiveWhatWasHeard(heard, scores);

}

}

c16.indd 396

c16.indd 396

5/10/2012 2:12:19 PM

5/10/2012 2:12:19 PM

Speech Recognition x 397

@Override

public void onError(int errorCode)

{

recognitionFailure(errorCode);

}

/**

* stop the speech recognizer

*/

@Override

protected void onPause()

{

if (getSpeechRecognizer() != null)

{

getSpeechRecognizer().stopListening();

getSpeechRecognizer().cancel();

getSpeechRecognizer().destroy();

}

super.onPause();

}

/**

* lazy initialize the speech recognizer

*/

private SpeechRecognizer getSpeechRecognizer()

{

if (recognizer == null)

{

recognizer = SpeechRecognizer.createSpeechRecognizer(this);

recognizer.setRecognitionListener(this);

}

return recognizer;

}

// other unused methods from RecognitionListener...

}

 code snippet SpeechRecognizingActivity.java

Listing 16-22 shows SayMagicWordDemo, which uses both TTS and speech recognition. It contains the code similar to TextToSpeechDemo, only instead of playing a script the Activity records speech and speaks a response back to the user.

The class extends SpeechRecognizingActivity. Therefore, most of the speech recogni-

tion details are in SpeechRecognizingActivity. To execute the speech recognition, the

acquireGuess() method confi gures an Intent and calls recognize() to send it. Then,

SpeechRecognizingActivity calls receiveWhatWasHeard() with the results. receiveWhat-

WasHeard() processes the recognition result by executing a simple if statement.

In SayMagicWordDemo, TTS and speech recognition have one simple interaction. By activating and deactivating the Speak button, SayMagicWordDemo does not allow speech recognition to start until c16.indd 397

c16.indd 397

5/10/2012 2:12:19 PM

5/10/2012 2:12:19 PM

398 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

TTS fi nishes speaking. This is an important feature an app needs if it is using both TTS and speech recognition, because it could lead to the app talking to itself.

LISTING 16-22: Demonstration Activity using TTS and speech recognition

public class SayMagicWordDemo extends SpeechRecognizingActivity implements

TextToSpeechStartupListener

{

private static final String TAG = "SayMagicWordDemo";

private Button speak;

private TextToSpeechInitializer ttsInit;

private TextToSpeech tts;

@Override

public void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

setContentView(R.layout.magicworddemo);

hookButtons();

init();

}

private void hookButtons()

{

speak = (Button) findViewById(R.id.btn_speak);

speak.setOnClickListener(new View.OnClickListener()

{

@Override

public void onClick(View v)

{

acquireGuess();

}

});

}

private void init()

{

deactivateUi();

ttsInit = new TextToSpeechInitializer(this, Locale.getDefault(), this);

}

@Override

public void onSuccessfulInit(TextToSpeech tts)

{

Log.d(TAG, "successful init");

this.tts = tts;

activateUi();

setTtsListener();

}

/**

* set the TTS listener to call {@link #onDone(String)} depending on the

* Build.Version

c16.indd 398

5/10/2012 2:12:20 PM

Speech Recognition x 399

*/

private void setTtsListener()

{

final SayMagicWordDemo callWithResult = this;

if (Build.VERSION.SDK_INT >= 15)

{

int listenerResult =

tts.setOnUtteranceProgressListener(

new UtteranceProgressListener()

{

@Override

public void onDone(String utteranceId)

{

callWithResult.onDone(utteranceId);

}

@Override

public void onError(String utteranceId)

{

Log.e(TAG, "TTS error");

}

@Override

public void onStart(String utteranceId)

{

Log.d(TAG, "TTS start");

}

});

if (listenerResult != TextToSpeech.SUCCESS)

{

Log.e(TAG, "failed to add utterance progress listener");

}

}

else

{

int listenerResult =

tts.setOnUtteranceCompletedListener(

new OnUtteranceCompletedListener()

{

@Override

public void onUtteranceCompleted(String utteranceId)

{

callWithResult.onDone(utteranceId);

}

});

if (listenerResult != TextToSpeech.SUCCESS)

{

Log.e(TAG, "failed to add utterance completed listener");

}

}

}

public void onDone(String utteranceId)

{

 continues

c16.indd 399

c16.indd 399

5/10/2012 2:12:20 PM

5/10/2012 2:12:20 PM

400 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

LISTING 16-22 (continued)

Log.d(TAG, "utterance completed: " + utteranceId);

runOnUiThread(new Runnable()

{

@Override

public void run()

{

activateUi();

}

});

}

@Override

public void onFailedToInit()

{

DialogInterface.OnClickListener onClickOk =

makeOnFailedToInitHandler();

AlertDialog a =

new AlertDialog.Builder(this).setTitle("Error")

.setMessage("Unable to create text to speech")

.setNeutralButton("Ok", onClickOk).create();

a.show();

}

@Override

public void onRequireLanguageData()

{

DialogInterface.OnClickListener onClickOk =

makeOnClickInstallDialogListener();

DialogInterface.OnClickListener onClickCancel =

makeOnFailedToInitHandler();

AlertDialog a =

new AlertDialog.Builder(this)

.setTitle("Error")

.setMessage(

"Requires Language data to proceed," +

" would you like to install?")

.setPositiveButton("Ok", onClickOk)

.setNegativeButton("Cancel", onClickCancel).create();

a.show();

}

@Override

public void onWaitingForLanguageData()

{

// either wait for install

DialogInterface.OnClickListener onClickWait =

makeOnFailedToInitHandler();

DialogInterface.OnClickListener onClickInstall =

makeOnClickInstallDialogListener();

AlertDialog a =

new AlertDialog.Builder(this)

c16.indd 400

c16.indd 400

5/10/2012 2:12:20 PM

5/10/2012 2:12:20 PM

Speech Recognition x 401

.setTitle("Info")

.setMessage(

"Please wait for the language data " +

"to finish installing and try again.")

.setNegativeButton("Wait", onClickWait)

.setPositiveButton("Retry", onClickInstall).create();

a.show();

}

private DialogInterface.OnClickListener makeOnClickInstallDialogListener()

{

return new DialogInterface.OnClickListener()

{

@Override

public void onClick(DialogInterface dialog, int which)

{

ttsInit.installLanguageData();

}

};

}

private DialogInterface.OnClickListener makeOnFailedToInitHandler()

{

return new DialogInterface.OnClickListener()

{

@Override

public void onClick(DialogInterface dialog, int which)

{

finish();

}

};

}

private void acquireGuess()

{

Intent intent = new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);

intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,

RecognizerIntent.LANGUAGE_MODEL_WEB_SEARCH);

intent.putExtra(RecognizerIntent.EXTRA_PROMPT,

"What is the magic word?");

recognize(intent);

}

public void speechNotAvailable()

{

DialogInterface.OnClickListener onClickOk =

makeOnFailedToInitHandler();

AlertDialog a =

new AlertDialog.Builder(this)

.setTitle("Error")

.setMessage(

"This device does not support " +

"speech recognition. Click ok to quit.")

 continues

c16.indd 401

c16.indd 401

5/10/2012 2:12:20 PM

5/10/2012 2:12:20 PM

402 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

LISTING 16-22 (continued)

.setPositiveButton("Ok", onClickOk).create();

a.show();

}

@Override

protected void directSpeechNotAvailable()

{

// not using it

}

protected void languageCheckResult(String languageToUse)

{

// not used

}

/**

* determine if the user said the magic word and speak the result

*/

protected void receiveWhatWasHeard(List<String> heard,

float[] confidenceScores)

{

String magicWord = "tree";

String mostLikelyThingHeard = heard.get(0);

String message = "";

if (mostLikelyThingHeard.equals(magicWord))

{

message =

"Correct! You said the magic word: " + mostLikelyThingHeard;

}

else

{

message = "Wrong! The magic word is not: " + mostLikelyThingHeard;

}

AlertDialog a =

new AlertDialog.Builder(this).setTitle("Result")

.setMessage(message).setPositiveButton("Ok", null)

.create();

a.show();

deactivateUi();

HashMap<String, String> params = new HashMap<String, String>();

params.put(TextToSpeech.Engine.KEY_PARAM_UTTERANCE_ID, "anyid");

tts.speak(message, TextToSpeech.QUEUE_ADD, params);

}

protected void recognitionFailure(int errorCode)

{

AlertDialog a =

new AlertDialog.Builder(this)

.setTitle("Error")

.setMessage(

c16.indd 402

c16.indd 402

5/10/2012 2:12:20 PM

5/10/2012 2:12:20 PM

Speech Recognition x 403

SpeechRecognitionUtil

.diagnoseErrorCode(errorCode))

.setPositiveButton("Ok", null).create();

a.show();

}

// activate and deactivate the UI based on various states

private void deactivateUi()

{

Log.d(TAG, "deactivate ui");

// don't enable until the initialization is complete

speak.setEnabled(false);

}

private void activateUi()

{

Log.d(TAG, "activate ui");

speak.setEnabled(true);

}

@Override

protected void onDestroy()

{

tts.shutdown();

super.onDestroy();

}

}

 code snippet SayMagicWordDemo.java

Thus far, this chapter has covered how to send a RecognizerIntent by using the

recognize() method. There is an alternative method to using speech recognition that

uses the SpeechRecognizer class instead of RecognizerIntent. In addition to support-

ing RecognizerIntent, the code just described in this section also supports the alternative, SpeechRecognizer approach via a recognizeDirectly() method. The next section describes

using it in detail and the code that SpeechRecognizingActivity uses to implement the

recognizeDirectly() method.

Direct Speech Recognition Using SpeechRecognizer

The previous sections discussed how to send a RecognizerIntent to execute speech recognition.

Sending a RecognizerIntent simplifi es the code you need to write because it delegates the speech recognition process to a receiving Activity. However, this process can be insuffi cient for some apps.

Alternately, an app can use the SpeechRecognizer API to access lower-level information and get tighter control while the device is executing speech recognition. This book calls using the API

“direct speech recognition.”

In particular, direct speech recognition is useful when:

c16.indd 403

c16.indd 403

5/10/2012 2:12:20 PM

5/10/2012 2:12:20 PM

404 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

‰

You want to show a different or no dialog while recording speech.

‰

You want your app to respond while recognition is taking place.

‰

You want your app to run speech recognition in the background while the user is doing

something else.

‰

You want to better diagnose errors from the speech recognizer.

‰

You want access to some low-level details of the speech processing.

TRY THIS

In the Try Speech screen you can try SpeechRecognizer by switching on the

Use SpeechRecognizer parameter inside the Speech Parameters menu option.

You can see how SpeechRecognizer gives the same output as sending a

RecognizerIntent. One visible difference is that instead of showing a dialog, the

app makes a toast to alert the user that speech recognition is occurring.

To use SpeechRecognizer an app needs to perform several steps. Listing 16-21, shown in the previous section, shows how SpeechRecognizingActivity does it. The necessary steps are as follows.

For setup:

‰

Check if SpeechRecognizer is available by calling SpeechRecognizer.

isRecognitionAvailable().

‰

Create a SpeechRecognizer by calling SpeechRecognizer.createSpeechRecognizer().

‰

Destroy SpeechRecognizer when done with it.

‰

Set a RecognitionListener.

For execution:

‰

Set a RecognizerIntent.EXTRA_CALLING_PACKAGE.

‰

Call startListening() with a confi gured RecognizerIntent.

‰

Optionally, alert the user that speech recognition is occurring.

The fi rst part of setting up is to create a SpeechRecognizer object using SpeechRecognizer

.createSpeechRecognizer(). SpeechRecognizingActivity creates a SpeechRecognizer once

and maintains a single instance. It also cleans up the object during onPause().

The second part of setting up is to check whether the device supports using SpeechRecognizer. To do this an app needs to call SpeechRecognizer.isRecognitionAvailable(). The method checks

for whether the app can respond to the RecognitionService.SERVICE_INTERFACE action. This

action is different from the ACTION_RECOGNIZE_SPEECH action that apps need to check before sending the RecognizerIntent. Typically, if a device supports ACTION_RECOGNIZE_SPEECH, it will also c16.indd 404

5/10/2012 2:12:20 PM

Summary x 405

support RecognitionService.SERVICE_INTERFACE. Google Voice and other speech recognizers

support both. However, it is possible that a user could activate a speech recognizer that does not support one or the other.

SpeechRecognizingActivity calls SpeechRecognizer.isRecognitionAvailable() when it

checks ACTION_RECOGNIZE_SPEECH during onCreate(). It calls directSpeechNotAvailable() if

it fails.

To execute SpeechRecognizer an app registers a RecognitionListener and calls startListen

ing() with a confi gured RecognizerIntent. An app can confi gure the RecognizerIntent by

setting the various available extras such as EXTRA_SPEECH_INPUT_MINIMUM_LENGTH_MILLIS as previously described in this chapter.

As SpeechRecognizer collects speech, it calls the RecognitionListener with various callbacks.

The callbacks give your app access to low-level details such as onBufferReceived(), which provides raw sound bytes. The callbacks also have state callbacks such as onBeginningOfSpeech() and onEndOfSpeech(), and report errors via onError(). None of these functions are available when sending the RecognizerIntent. The RecognitionListener receives results via onPartialResults() or onResults(). In contrast, when sending the RecognizerIntent, an app receives results in the onActivityResult() method.

To implement this, SpeechRecognizingActivity contains a convenient recognizeDirectly()

method and implements part of the RecognitionListener interface. When executing, recognize

Directly() sets the calling package and starts speech recognition. Then, SpeechRecognizer calls back to SpeechRecognizingActivity when recognition is complete, partially complete, or when there is an error. SpeechRecognizingActivity responds by forwarding results to the abstract receiveWhatWasHeard() method in both cases.

SUMMARY

This chapter showed you the mechanics of using the TTS and speech recognition APIs. It covered how to initialize and check for language support and provided you with reusable code to help you use the APIs in various ways. This chapter also contained a complete Activity that uses both technologies together.

Knowing how to use the APIs is not enough to implement voice actions, however. An app also has to process the list of recognitions and confi dences to arrive at what the user most likely said so that your app can take the appropriate action. It also has to organize the voice action implementation to support multiple commands at a single prompt and to execute a sequence of voice actions if necessary. By using the approaches described in Chapters 17–19, and the mechanics learned in this chapter, you will be able fully implement sophisticated voice actions in your apps.

c16.indd 405

c16.indd 405

5/10/2012 2:12:21 PM

5/10/2012 2:12:21 PM

c16.indd 406

c16.indd 406

5/10/2012 2:12:21 PM

5/10/2012 2:12:21 PM

17

Matching What Was Said

WHAT’S IN THIS CHAPTER?

‰

Matching using word spotting

‰

Matching against command words in persistent storage

‰

Matching single and multi-part commands

The previous chapter showed how to use the speech recognition and TTS APIs. The chapter

provided code that extracts speech recognition results from onActivityResult() and passes

them to the following method:

abstract protected void receiveWhatWasHeard(

List<String> heard, float[] confidenceScores);

Your implementation of the abstract receiveWhatWasHeard() method has to decide if your

app heard any commands. To do this your implementation must iterate over the recognition

results and try to match them with command words. You could implement receiveWhat-

WasHeard() using a Set<String> that succeeds if any heard strings are in the Set. However, that does not allow you to implement all the types of commands you may want, nor does it

allow you to handle all the speech recognition issues that can decrease accuracy.

This chapter reviews the issues involved in reliably matching commands with the user’s

utterances. Also, this chapter presents a word spotting algorithm for matching and an implementation of it that can match various command types. Word spotting works well for simple

commands and the type of information Android returns.

PARTS OF A VOICE COMMAND

Designing commands requires determining what kinds of text the command needs to recognize

to activate it and supply information, how many different parts a command has, and whether or not the parts need to come in a particular order. When executing, the app must match the command words to the users’ utterances.

c17.indd 407

c17.indd 407

5/10/2012 2:13:03 PM

5/10/2012 2:13:03 PM

408 x CHAPTER 17 MATCHING WHAT WAS SAID

Here are the different kinds of command words your command may contain:

‰

Static: Words your app knows before deployment. For instance, names of commands like

“add” or “delete.”

‰

Dynamic: Words your app doesn’t know before deployment, but still require matching

against, such as names of items a user added to a list.

‰

Free text: Portion of an utterance the user specifi es as input — something like the name of new item.

As stated, you know static words before deployment but do not know dynamic words. If your app allows users to enter items in a list, a possible voice command may be to query for those items. In that case, your voice command could be “fi nd <something in list>,” where <something in list> contains dynamic words and fi nd is a static word. In such a command, the app must match <something in list> with any list items the user may have entered and also match the static word fi nd.

Two differences between dynamic and static words infl uence which type of words to include in your command and how to implement them. First, dynamic words are harder to recognize than static words. With static words, you can carefully choose words that are easier for your app to understand. With dynamic words, you have no such luxury. The words can contain any text, some of which may be hard to recognize.

A second difference is that matching the two types of words may require different storage and query mechanisms. Static words often have few enough words to fi t in memory, whereas dynamic commands may have many words and require queries to persistent storage.

Free text could be another part of a voice command. Imagine a voice command where the user

speaks “add <something to add>” to add a new item to a list. In this case <something to add> could be any text. To capture the free text, your app has to select any words after “add” as being the new item text. Thus, capturing free text involves bounding a user’s utterance by position so your app knows what part is the free text.

Instead of trying to locate the free text within a user’s utterance by position, another, more robust way to handle free text is to make the entire command free text. To implement the add command, for instance, you could make a two-step command where the user uses the speech recognition

prompt twice. The fi rst time, the user says “add.” The second time, the user speaks the free text.

The drawback of this approach is that it takes much more time for the user to specify the entire command.

Each of the types of command words just discussed — static words, dynamic words, and free

text — can be combined together to create commands that have multiple parts. For example, “add”

is a single-part command, but “add <something to add>” is a multi-part command. A command with only one part is easier to recognize because it only has one part to match. In contrast, a multi-part command incurs additional diffi culties, such as collisions that increase recognition mistakes.

Multi-part commands can be ordered or unordered based on whether they require one word to

come before another. Requiring the user to speak the words in a certain order adds additional requirements on the user’s speech and additional processing by your app. The result is a command that is more expressive and can accomplish more, but one that may be harder to understand than single-part or unordered commands.

c17.indd 408

c17.indd 408

5/10/2012 2:13:08 PM

5/10/2012 2:13:08 PM

Word Spotting x 409

To address these challenges, an app needs an algorithm that allows it to accurately recognize expressive commands with multiple parts if necessary. The next section describes how to use a word spotting algorithm to do so.

WORD SPOTTING

To recognize static and dynamic command words, apps can use a word-spotting algorithm. A word spotting algorithm scans text for particular whole command words, ignoring all other words. For example, if the command word is “add,” a word-spotting algorithm would fi nd it within utterances such as “add” or “I’d uh like to add maybe” but not “I am addicted to Android” even though

“addicted” contains “add” as a substring.

Word spotting is a robust way to determine if a user said a particular command. A user’s speech may not be grammatically correct, have extra words, or contain words in the wrong order. With word spotting, these abnormalities don’t matter as long as the correct word exists in the spoken utterance.

One issue with word spotting is that it cannot comprehend the semantic meaning of what the user said. For example, word spotting algorithms can’t understand negation. If the user says “do not add” the word spotting algorithm might spot the “add” word and assume the user wanted to add something when he or she really wanted the opposite.

Another potential issue is that any command words become keywords that can’t be used elsewhere in the command. For example, your app might have a two-part command like “add <item>” and another command “remove <item>” where “add” and “remove” are both command words. If the user tries to remove an item named “add,” he might say “remove add.” However, the word spotting algorithm might detect “add” fi rst and assume the user meant “add” instead of “remove.” You can modify the basic word spotting algorithm to handle such errors by handling ordered commands, though doing so complicates processing.

In summary, word spotting is good at scanning for command words within a user’s utterance. It is robust against added words, incorrect word order, and grammatically incorrect speech. Word spotting cannot understand any complex semantic meanings, and multi-part commands introduce additional potential for misrecognitions.

The two classes in Listings 17-1 and 17-2 show code that does word spotting by detecting single, static command words using an in-memory Set object. WordMatcher, shown in Listing 17-1, handles representing the command words in a Set<String> and then checking the Set.

LISTING 17-1: Utility class for matching words to a predefi ned Set

public class WordMatcher

{

private Set<String> words;

public WordMatcher(String... wordsIn)

{

this(Arrays.asList(wordsIn));

 continues

c17.indd 409

c17.indd 409

5/10/2012 2:13:08 PM

5/10/2012 2:13:08 PM

410 x CHAPTER 17 MATCHING WHAT WAS SAID

LISTING 17-1 (continued)

}

public WordMatcher(List<String> wordsIn)

{

words = new LinkedHashSet<String>(wordsIn);

}

public Set<String> getWords()

{

return words;

}

public boolean isIn(String word)

{

return words.contains(word);

}

public boolean isIn(String [] wordsIn)

{

boolean wordIn = false;

for (String word : wordsIn)

{

if (isIn(word))

{

wordIn = true;

break;

}

}

return wordIn;

}

}

 code snippet WordMatcher.java

The code in Listing 17-2 contains a receiveWhatWasHeard() method that creates a WordMatcher and uses it to check against the possible recognitions in heard.

LISTING 17-2: Using WordMatcher to interpret recognition results for an “add” command

protected void receiveWhatWasHeard(List<String> heard,

float[] confidenceScores)

{

WordMatcher command = new WordMatcher("add");

for (String said : heard)

{

if (command.isIn(said.split("\\s")))

{

Log.d(TAG, "heard add");

break;

}

}

}

c17.indd 410

c17.indd 410

5/10/2012 2:13:08 PM

5/10/2012 2:13:08 PM

Word Spotting x 411

Indexing to Improve Word Spotting

Word spotting can only work as well as the speech recognizer can successfully understand the user’s speech. The recognizer is limited because it cannot understand all words. Also, the recognizer’s chance of successful recognition is complicated by the fact that the recognizer is biased toward recognizing certain words more readily than others. The only control your app has over how the recognizer is biased is to select the most appropriate LANGUAGE_MODEL parameter. Usually, the recognizer’s bias helps because it makes Android understand what users commonly say. However, sometimes an app needs to understand uncommon words.

The recognizer’s bias and accuracy of recognizing words can lead to words that an app cannot recognize at all or has a diffi cult time recognizing. If the user expects the app to recognize words that the app is incapable of recognizing, the user may enter a never-ending frustrating loop of the app not understanding and the user not knowing why.

You can avoid such hard-to-understand words if you use static command words that you know

beforehand. However, you cannot know dynamic commands beforehand and hence your app could

eventually encounter a rare word. If you want your app to work in those cases, you need to index the command words so your app can match them regardless.

Unfortunately, the only way to determine which words are hard to understand is trial and error.

Android does not publish the necessary information, and what’s more, the recognizer’s performance is likely to change over time.

Certain types of words are hard to understand:

‰

Rare words: Words people use infrequently. For example, Android almost never understands the word “cumin.” Figure 17-1 shows an attempt to speak “cumin” and what Android

recognized. As you can see in Figure 17-1, the app was unable to match “cumin” exactly,

though the ampersand symbol (&) near the sixth result shows that by using indexing, the app was able to match “cumin” with “canon.”

‰

Invented words: Users may speak invented words or abbreviations and expect the app

to understand. The recognizer recognizes many phrases and even appears to reply with

phonetic interpretations of words it does not know. Still, sometimes the speech recognizer

either does not understand certain words or does not exactly understand in the way you

expect. This situation can be easier to encounter than you might expect. For example,

the common abbreviation “decaf” is diffi cult for the recognizer to understand, and

when it does it returns “decaff” with an extra f. That slight variation of adding an f

would cause WordMatcher from Listing 17-1 to fail. To get a correct match, you need

StemmedWordMatcher or SoundsLikeWordMatcher instead, which this chapter

describes later.

‰

Homophones: Homophones are two words that sound the same although they’re spelled

differently. Your app may have to do more processing if it is searching for a word that is

a homophone and the meaning it requires is rare. Fortunately, Android usually returns all

versions of a homophone. For example, when speaking “thyme” the recognizer returns

“time, timer, times, thyme.” As you can see, the correct word appears in the returned

values. However, the correct word is used less frequently so it is at the end of the list.

c17.indd 411

c17.indd 411

5/10/2012 2:13:08 PM

5/10/2012 2:13:08 PM

412 x CHAPTER 17 MATCHING WHAT WAS SAID

Android doesn’t always return all homophones, however. For example, if you speak

“feint” the recognizer returns “faint” and never returns “feint.” The same is true

for “raze.”

‰

Poorly recorded words: The user could speak poorly or introduce some other audio

interference. In such cases, the recognized words may resemble the command words, but will

not be exactly alike.

As described earlier, some kinds of words and conditions

prevent the recognizer from understanding what the user is

saying. In some cases, the problems can be overcome if the user

tries again. In other cases, no matter how many times the user

tries, the recognizer simply will not work. Additionally, you

may prefer that your app make a best guess at what users said,

rather than cause them to retry.

The only way to recognize the unrecognizable or to make a

best guess is to reduce the command words to more general

forms by indexing them. Indexing can cause two slightly

different words to map to the same general form. The result

is that words that don’t have the exactly same string can still

match. For example, a simple indexing scheme might be to

reduce all words to their fi rst letter. Such a scheme would index

“apple, apples, and appeal” as “a,” which would allow an app

to consider them the same.

Using indexing involves considering the following trade-

off: Allowing matches on indexed forms of words decreases

recognition failure, but potentially increases recognizing the

FIGURE 17-1: Recognition and pho-

wrong commands. Users may be tolerant of or annoyed by

netic matching results from speaking

the app responding incorrectly sometimes. The response you

“cumin”

get from users is dependent on the voice command’s task. For

example, if the result of the command is to change something that is hard to undo, users will not want to tolerate failure and indexing may not be appropriate. However, if the result of the command is just speaking a short phrase, it is possible users can easily ignore the spoken text and not get annoyed by any incorrect responses.

You could use many kinds of string manipulation to index. Two particularly useful methods are stemming and phonetic indexing.

Stemming

Stemming is a language-dependent type of language processing that reduces words to their roots by removing suffi xes. For example, a stemmer reduces all these words to the same root: “walk, walks, walked, walking.” Although the recognizer sometimes includes word variations, such as “walk and walks,” in its recognition results, it may not provide the variations your app needs.

Fortunately, stemmer code is freely available for a variety of languages. Many implementations provide the standard Porter stemmer, but some provide better-performing stemmers. Third-party c17.indd 412

c17.indd 412

5/10/2012 2:13:08 PM

5/10/2012 2:13:08 PM

Word Spotting x 413

libraries like Lucene’s analyzers project (http://lucene.apache.org/core/old_versioned_

docs/versions/3_5_0/api/contrib-analyzers/) have stemmers for many languages, and SQLite has a stemmer option for its Full Text Search (FTS) mechanism. Listing 17-3 shows code that utilizes Lucene’s org.tartarus.

snowball.ext.EnglishStemmer to implement a WordMatcher.

WHICH LUCENE STEMMER TO USE

org.tartarus.snowball.ext.EnglishStemmer is available as a small jar in the

Lucene snowball contrib project. You can download it from http://archive.

apache.org/dist/lucene/java/3.0.3/. In later versions of Lucene the same class

is available as part of the Lucene analyzers contrib project. The drawback of using

analyzers is that it is larger in size than the snowball jar from 3.0.3. However, using

later versions of Lucene allows you to use different stemmer implementations, such

as KStemmer, and other text indexing methods such as EnglishPossessiveFilter.

Therefore, it may be worth it to include the larger analyzer jar in your app.

LISTING 17-3: Compares words by their stems

//Note: org.tartarus is part of the lucene snowball contrib project in 3.0.3 and

//analyzers contrib project in versions 3.1.0 and greater

import org.tartarus.snowball.ext.EnglishStemmer;

public class StemmedWordMatcher extends WordMatcher

{

public StemmedWordMatcher(String... wordsIn)

{

this(Arrays.asList(wordsIn));

}

public StemmedWordMatcher(List<String> wordsIn)

{

super(encode(wordsIn));

}

private static List<String> encode(List<String> input)

{

List<String> encoded = new ArrayList<String>();

for (String in : input)

{

encoded.add(stem(in));

}

return encoded;

}

@Override

public boolean isIn(String word)

{

return super.isIn(stem(word));

 continues

c17.indd 413

c17.indd 413

5/10/2012 2:13:08 PM

5/10/2012 2:13:08 PM

414 x CHAPTER 17 MATCHING WHAT WAS SAID

LISTING 17-3 (continued)

}

/**

* run the stemmer from Lucene

*/

private static String stem(String word)

{

EnglishStemmer stemmer = new EnglishStemmer();

stemmer.setCurrent(word);

boolean result = stemmer.stem();

if (!result)

{

return word;

}

return stemmer.getCurrent();

}

}

 code snippet StemmedWordMatcher.java

Stemming helps an app match words even when the recognizer makes a mistake and recognizes

a different form of the desired words. For example, if the recognizer recognizes a singular verb, using a stemmer allows an app to match the recognized singular form with the plural form.

Another kind of mistake the recognizer can make is to recognize a word that sounds like the word the user said instead of the actual word. To match words in such cases, an app needs to use phonetic indexing.

Phonetic Indexing

Phonetic indexing allows your app to determine word similarity based on how the words sound instead of what characters they have. Phonetic indexing is particularly applicable to processing recognizer results because when the recognizer fails to precisely understand what the user says, it often returns words that sound like the word the user said instead. For example, if the user tries to say

“apple,” but the recognizer makes a mistake and recognizes “appeal” instead, phonetic indexing would allow your app to still match “apple” with “appeal.”

There is a suite of algorithms that perform phonetic indexing in various ways. You can fi nd implementations at http://commons.apache.org/codec/ and www.tangentum.biz/en/products/

phonetix/index/html. Apache’s implementation has the following phonetic matching algorithms: Soundex, Refi nedSoundex, Metaphone, DoubleMetaphone, and Caverphone. Phonetix has alternate implementations. The implementations are somewhat language dependent, and all are rule-based.

Soundex is the simplest phonetic indexing algorithm. Other algorithms are more complicated and came after Soundex was developed. This section explains Soundex to give you a sense for how these algorithms work.

Soundex was designed to help compare names for the U.S. census, but it can also help to compare any two strings. The algorithm reduces any string to a four-character code consisting of a letter followed by three numerical digits. You can fi nd more details here: www.archives.gov/research/

census/soundex.html.

c17.indd 414

c17.indd 414

5/10/2012 2:13:09 PM

5/10/2012 2:13:09 PM

Word Spotting x 415

Soundex executes the following rules to compute a code:

1. The

fi rst letter is the fi rst letter of the string.

2.

Replace the remaining letters with the letter-to-number mapping shown here, ignoring a, e, h, i, o, u, w, and y:

‰

1: B, F, P, V

‰

2: C, G, J, K, Q, S, X, Z

‰

3: D, T

‰

4: L

‰

5: M, N

‰

6: R

3.

Treat double letters as one letter. For example, “ss” would be 2.

4.

Include only one code if two side-by-side letters have the same code.

5.

Use the code for the fi rst consonant if two consonants with the same code are separated by

“H” or “W.”

6.

Use the code for the second consonant if two consonants with the same code are separated a

vowel.

7.

Stop when there is one letter and three numbers. If the fi nal code has fewer than three numbers, add additional 0s until there are three numbers.

You can tweak the Soundex algorithm to increase the number of matches in exchange for increased false matches. For example, you may decide to report a match if the Soundex code only partially overlaps by one or more characters. Another possibility is to compute the variable-length Soundex codes by not stopping after computing a four-character code.

For example, tweaking helps match the word “cumin” with “human.” The Soundex code for cumin is C550 and the Soundex code for human is H550. If code drops the fi rst letter of the Soundex code, it can match the two words.

Listing 17-4 shows a modifi ed SoundListWordMatcher to utilize Apache Commons Codec to com-

pare based on Soundex codes.

LISTING 17-4: WordMatcher variation that uses Soundex comparisons

import org.apache.commons.codec.language.Soundex;

public class SoundsLikeWordMatcher extends WordMatcher

{

protected static Soundex soundex;

static

{

soundex = new Soundex();

}

 continues

c17.indd 415

c17.indd 415

5/10/2012 2:13:09 PM

5/10/2012 2:13:09 PM

416 x CHAPTER 17 MATCHING WHAT WAS SAID

LISTING 17-4 (continued)

public SoundsLikeWordMatcher(String... wordsIn)

{

this(Arrays.asList(wordsIn));

}

public SoundsLikeWordMatcher(List<String> wordsIn)

{

super(encode(wordsIn));

}

@Override

public boolean isIn(String word)

{

return super.isIn(encode(word));

}

protected static List<String> encode(List<String> input)

{

List<String> encoded = new ArrayList<String>();

for (String in : input)

{

encoded.add(encode(in));

}

return encoded;

}

private static String encode(String in)

{

return soundex.encode(in);

}

}

Listing 17-5 shows code that tests SoundsLikeWordMatcher. The tests show that Soundex allows the code to determine that the homophones for beat, faint, and thyme sound the same.

LISTING 17-5: Test code for SoundsLikeMatcher

public class TestSoundsLikeWordMatcher extends TestCase

{

public void testSoundsLikeMatcher()

{

SoundsLikeWordMatcher wd =

new SoundsLikeWordMatcher("beat", "faint", "thyme");

assertTrue(wd.isIn("beat"));

assertTrue(wd.isIn("faint"));

assertTrue(wd.isIn("thyme"));

assertTrue(wd.isIn("beet"));

assertTrue(wd.isIn("feint"));

assertTrue(wd.isIn("time"));

assertFalse(wd.isIn("thy"));

c17.indd 416

c17.indd 416

5/10/2012 2:13:09 PM

5/10/2012 2:13:09 PM

Word Spotting x 417

assertFalse(wd.isIn("trine"));

}

}

Listing 17-6 shows an extension that allows for partial matches needed to more easily recognize

“cumin” using Soundex.

LISTING 17-6: Allows for partial matches if two words sound alike

public class SoundsLikeThresholdWordMatcher extends SoundsLikeWordMatcher

{

private int minimumCharactersSame;

public SoundsLikeThresholdWordMatcher(int minimumCharactersSame,

String... wordsIn)

{

super(wordsIn);

this.minimumCharactersSame = minimumCharactersSame;

}

@Override

public boolean isIn(String wordCheck)

{

boolean in = false;

String compareTo = soundex.encode(wordCheck);

for (String word : getWords())

{

if (sameEncodedString(word, compareTo))

{

in = true;

break;

}

}

return in;

}

private boolean sameEncodedString(String s1, String s2)

{

int numSame = 0;

for (int i = 0; i < s1.length(); i++)

{

char c1 = s1.charAt(i);

char c2 = s2.charAt(i);

if (c1 == c2)

{

numSame++;

}

}

return (numSame >= minimumCharactersSame);

}

}

c17.indd 417

c17.indd 417

5/10/2012 2:13:09 PM

5/10/2012 2:13:09 PM

418 x CHAPTER 17 MATCHING WHAT WAS SAID

TRY THIS

The Try Speech button provides a playground where you can experiment with

speech recognition. Select or type in some words, click Speak, and view the recogni-

tion results. The app marks any successful matches in the right column.

Can you succeed in getting the recognizer to recognize “cumin” or “cumin seeds”?

You can also change various parameters by clicking “speech parameters” within

the menu. Change the Matching Method to Phonetic or Stem, and retry speaking.

Does this improve the matches?

The menu also contains a Compute Index option that allows you to view the

Soundex code and stem for any word.

MATCHING COMMAND WORDS IN PERSISTENT STORAGE

Sometimes voice commands contain dynamic words stored in persistent storage. If the list of words in the command is small enough to fi t in memory, you can use an in-memory approach, such as a WordMatcher. Otherwise, your app must query the persistent storage and rely on it to index and match the words.

This section explores using two persistent storage mechanisms: Android’s SQLite database, and Lucene, a text search engine. Using the SQLite database is convenient for Android because it is a part of the Android operating system and an app may have its data stored in it for other purposes.

By using the Full Text Search (FTS) option, you can add a search capability that you can use for matching.

Lucene is a search engine that has slightly different features than FTS, and accomplishes the same goal. If your app can handle the complexity of maintaining a Lucene index of the command words, it may be a better option. Lucene has more confi guration options and also allows you to scale across multiple languages.

SQLite Full Text Search

FTS allows your app to search all the text within its SQLite database. You can use FTS to fi nd the best match between a user’s utterance and one or more columns in your database. This section shows you how to create an FTS index and then how to best query it for matching users’

utterances.

Android’s SQLite database supports FTS, but to use it you need to fi rst create a VIRTUAL TABLE.

Listing 17-7 shows how to create such a table. The code creates a table with two fi elds: a text fi eld for a food name indexed by a Porter stemmer and a numerical calorie fi eld.

c17.indd 418

c17.indd 418

5/10/2012 2:13:09 PM

5/10/2012 2:13:09 PM

Matching Command Words in Persistent Storage x 419

LISTING 17-7: Creating a virtual FTS table

private static final String TABLE_FOOD = "foodlist";

public static final String COLUMN_FOOD = "food";

public static final String COLUMN_CALORIE = "calorie";

public void createTables(SQLiteDatabase db)

{

db.execSQL("CREATE VIRTUAL TABLE " +

TABLE_FOOD +

" USING fts3(tokenize=porter," +

COLUMN_FOOD + " TEXT, " +

COLUMN_CALORIE + " REAL);");

}

Once your app has created the database, it can utilize the various FTS commands in addition to the normal SQLite queries. The examples in this discussion assume there is a food database with the following data:

‰

Red Concord Grapes

‰

red grape

‰

grape leaves

‰

orangegrapefruit juice

‰

Grapes

‰

Grape

‰

Grapefruit

‰

Red Grapefruit

Using the LIKE Operator

Before explaining how FTS works, it is useful to understand the alternative, using normal SQLite and its LIKE operator. In SQLite you can use LIKE to make pattern-matching comparisons between strings and a pattern. The pattern consists of text and two possible operators. If you include the percent symbol (%), SQLite matches text plus zero or more characters in the string. If you include an underscore (_), it matches any single character in the string.

For example, query Q1 matches any item that starts with “grape,” namely grape leaves, Grapes, Grape, and Grapefruit:

Q1: SELECT * from Food WHERE food LIKE 'grape%'

Query Q2 matches all the data because grape is part of all the strings:

Q2: SELECT * from Food WHERE food LIKE '%grape%'

c17.indd 419

c17.indd 419

5/10/2012 2:13:10 PM

5/10/2012 2:13:10 PM

420 x CHAPTER 17 MATCHING WHAT WAS SAID

The problem with the LIKE operator is that it performs a string comparison between the pattern and the whole text within each database fi eld instead of comparing the pattern with each whole word. This can result in matching strings within words such as matching the grape pattern with Grapefruit. Such matches are not helpful for matching with users’ utterances. Another weakness of the LIKE operator is that it returns results in no particular order.

Using the FTS MATCH Operator

FTS executes a text search query to fi nd matching rows in the database. It matches on individual, whole search terms. Additionally, FTS has other functions that return information you can use to rank results from a search query.

Query Q1 could be written in FTS as the prefi x query Q3 with slightly different results:

Q3: SELECT * from Food WHERE food MATCH 'grape*'

Instead of LIKE, FTS uses MATCH. Query Q3 matches everything except orangegrapefruit juice

because all other rows contain a word that starts with grape. You can make several variations to your MATCH expression to change how strict it is at matching. Some possible variations are as follows:

‰

Term query: Without adding any additional syntax, a query might look like Q4:

Q4: SELECT * from Food WHERE food MATCH 'red grape'

Q4 searches for text fi elds that have the words “red” and “grape” in it. Therefore, it

matches red grape and Red Concord Grapes, but not Red Grapefruit.

‰

Phrase query: Phrase queries allow the query to match multiple words in a row with no words in between. To specify a phrase query you surround the phrase you want to match

with quotes.

Phrase queries are stricter than term queries. If the user happens to add a word within a

command like “red uh grape,” FTS will be unable to match with “red grape.”

Q5 matches red grape, but not Red Grapefruit nor Red Concord Grapes:

Q5: SELECT * from Food WHERE food MATCH "red grape"

‰

Prefi x query: Prefi x queries match strings with variable endings. If you add an asterisk (*) at the end of your pattern, FTS matches any token that has the initial characters before

the *. For example, query Q6 matches red grape, Red Grapefruit, and Red Concord Grapes.

It matches Red Grapefruit because the grape* pattern indicates that as long as the string

starts with grape, match it. It doesn’t match grape leaves because it doesn’t contain a word that starts with red:

Q6: SELECT * from Food WHERE food MATCH 'red* grape*'

‰

Restrict column: Instead of searching all columns, you can search for specifi c columns in your database by specifying “column:” before each of the search terms. For example, Q7 searches

only the food column:

Q7: SELECT * from Food WHERE food MATCH 'food:grape'

‰

OR operator: Normally match uses the AND operator between tokens. If you use OR instead the query can return partial matches. Partial matches could be useful for making a best guess at c17.indd 420

c17.indd 420

5/10/2012 2:13:10 PM

5/10/2012 2:13:10 PM

Matching Command Words in Persistent Storage x 421

what the user said. Query Q8 returns Red Concord Grapes, red grape, grape leaves, Grapes,

Grape, and Red Grapefruit. It doesn’t match orangegrapefruit juice because the matches must contain red or grape. It matches the other words because they contain either red or grape.

Q8: SELECT * from Food WHERE food MATCH 'red OR grape'

Additionally, as the queries this section describes show, FTS queries are case-insensitive. The only way to change this is to change the tokenizer that FTS uses. However, the tokenizers available by default in Android’s SQLite are both case-insensitive. Therefore, to create a case-sensitive FTS

tokenizer you either need to somehow modify the default Android SQLite to add a new tokenizer, written in C, or use your own SQLite version.

Implementing FTS

To implement FTS for speech recognition, your app needs two pieces of code. First, it needs code to query the main SQLite database. Second, it needs code to match query results with a user’s utterances.

Listing 17-8 shows the FtsIndexedFoodDatabase class. It has all the code to create, access, and query the database. For querying, the class contains the following retrieveBestMatch() method: public List<Food> retrieveBestMatch(String input,

boolean prefix, boolean or,

boolean phrase)

retrieveBestMatch() allows an app to specify the different types of queries described earlier. The method creates a query with input text. Then, the method modifi es the query in various ways to add query operators according to the method parameters. For example, if you set the or parameter to true, the method turns the query from an AND query into an OR query by adding add the OR operator between each input word.

In addition to allowing an app to specify a query, retrieveBestMatch() also ranks the query results so that the best match appears fi rst. To do this, the method requests a special FTS return value called offsets for each query. The information in offsets allows the code to determine which terms in the query were matched. retrieveBestMatch() uses the number of matched terms to rank the results.

LISTING 17-8: Queries an FTS indexed food database.

public class FtsIndexedFoodDatabase

{

private static final String TAG = "FtsIndexedFoodDatabase";

private static final int DATABASE_VERSION = 1;

private static final String DATABASE_NAME = "FoodDatabaseFts";

private static final String TABLE_FOOD = "foodlist";

public static final String COLUMN_FOOD = "food";

public static final String COLUMN_CALORIE = "calorie";

private static FtsIndexedFoodDatabase instance;

private DatabaseHelper databaseHelper;

private SQLiteDatabase database;

 continues

c17.indd 421

c17.indd 421

5/10/2012 2:13:10 PM

5/10/2012 2:13:10 PM

422 x CHAPTER 17 MATCHING WHAT WAS SAID

LISTING 17-8 (continued)

private FtsIndexedFoodDatabase(Context context)

{

databaseHelper = new DatabaseHelper(context.getApplicationContext());

database = databaseHelper.getWritableDatabase();

}

public static synchronized FtsIndexedFoodDatabase getInstance(

Context context)

{

if (instance == null)

{

instance =

new FtsIndexedFoodDatabase(context.getApplicationContext());

}

return instance;

}

public List<MatchedFood> retrieveBestMatch(String input)

{

return retrieveBestMatch(input, false, false, false);

}

/**

* return a list of best matching Foods ordered by best match

*/

public List<MatchedFood> retrieveBestMatch(String input, boolean prefix,

boolean or, boolean phrase)

{

final String[] columns =

{ COLUMN_FOOD, COLUMN_CALORIE, "offsets(foodlist) as offsets" };

// sort the food by a score

TreeMap<Integer, List<MatchedFood>> scoredMatches =

new TreeMap<Integer, List<MatchedFood>>();

input = input.trim();

// handle different types

if (prefix)

{

// add start at end of the input words

input = input.replaceAll("\\s", "* ");

input = input + "*";

}

if (or)

{

input = input.replaceAll("\\s", " OR ");

}

if (phrase)

{

input = "\"" + input + "\"";

}

Log.d(TAG, "query: " + input);

c17.indd 422

c17.indd 422

5/10/2012 2:13:10 PM

5/10/2012 2:13:10 PM

Matching Command Words in Persistent Storage x 423

String query = COLUMN_FOOD + " MATCH ?";

Cursor cursor =

database.query(TABLE_FOOD, columns, query,

new String[] { input }, null, null, null);

try

{

if (cursor.getCount() > 0)

{

cursor.moveToFirst();

while (cursor.isAfterLast() == false)

{

String food =

cursor.getString(cursor.getColumnIndex(COLUMN_FOOD));

float cal =

cursor.getFloat(cursor

.getColumnIndex(COLUMN_CALORIE));

String offsets =

cursor.getString(cursor.getColumnIndex("offsets"));

// each matching term consists of 4 integers separated by

// spaces

// offsetTokens[0]: db column number, unused

// offsetTokens[1]: term number of matching term

// offsetTokens[2,3]: byte values, unused

 // for more info, see: http://sqlite.org/fts3.html#offsets

// add 1 because the last integer has no space after it

// divide by 2 because each integer takes up two characters

// divide by 4 because each matching term has 4 integers

int numMatches = ((offsets.length() + 1) / 2) / 4;

// find which tokens matched

String[] offsetTokens = offsets.split("\\s");

int firstMatchTerm = Integer.valueOf(offsetTokens[1]);

int lastMatchTerm =

Integer.valueOf(offsetTokens[offsetTokens.length - 3]);

Log.d(TAG, "food found: " + food + " num matches: "

+ numMatches + " offsets: " + offsets);

MatchedFood found =

new MatchedFood(firstMatchTerm, lastMatchTerm,

new Food(food, cal));

List<MatchedFood> foodsAt;

if (!scoredMatches.containsKey(numMatches))

{

foodsAt = new ArrayList<MatchedFood>();

scoredMatches.put(numMatches, foodsAt);

}

else

{

foodsAt = scoredMatches.get(numMatches);

}

foodsAt.add(found);

cursor.moveToNext();

}

}

} finally

 continues

c17.indd 423

c17.indd 423

5/10/2012 2:13:10 PM

5/10/2012 2:13:10 PM

424 x CHAPTER 17 MATCHING WHAT WAS SAID

LISTING 17-8 (continued)

{

cursor.close();

}

List<MatchedFood> match = new ArrayList<MatchedFood>();

for (List<MatchedFood> foodLists : scoredMatches.descendingMap()

.values())

{

match.addAll(foodLists);

}

Log.d(TAG, match.size() + " matches.");

for (MatchedFood matchedFood : match)

{

Log.d(TAG, matchedFood.getFood().toString());

}

return match;

}

public boolean isEmpty()

{

Cursor cursor = database.rawQuery("SELECT * FROM " + TABLE_FOOD, null);

boolean isEmpty = (cursor.getCount() == 0);

cursor.close();

return isEmpty;

}

public void loadFrom(InputStream csvFile) throws IOException

{

BufferedReader is =

new BufferedReader(new InputStreamReader(csvFile, "UTF8"));

String line;

line = is.readLine();

while (line != null)

{

String[] parts = line.split(",");

String food = parts[0];

float cals = Float.valueOf(parts[1]);

insertFood(food, cals);

Log.d(TAG, "inserted: " + food + " " + cals);

line = is.readLine();

}

}

public long insertFood(String food, float calorie)

{

ContentValues contentValues = new ContentValues();

contentValues.put(COLUMN_FOOD, food);

contentValues.put(COLUMN_CALORIE, calorie);

return database.insert(TABLE_FOOD, null, contentValues);

c17.indd 424

c17.indd 424

5/10/2012 2:13:10 PM

5/10/2012 2:13:10 PM

Matching Command Words in Persistent Storage x 425

}

public int removeFood(String food)

{

return database.delete(TABLE_FOOD, COLUMN_FOOD + " = ?",

new String[] { food });

}

public void close()

{

synchronized (FtsIndexedFoodDatabase.class)

{

databaseHelper.close();

instance = null;

database = null;

}

}

public Cursor getAllFood()

{

Cursor cursor = database.rawQuery("SELECT * FROM " + TABLE_FOOD, null);

return cursor;

}

public void clean(Context context)

{

databaseHelper.dropTables(database);

databaseHelper.createTables(database);

instance = new FtsIndexedFoodDatabase(context.getApplicationContext());

}

private static final class DatabaseHelper extends SQLiteOpenHelper

{

public DatabaseHelper(Context context)

{

super(context, DATABASE_NAME, null, DATABASE_VERSION);

}

@Override

public void onCreate(SQLiteDatabase db)

{

createTables(db);

}

@Override

public void

onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion)

{

dropTables(db);

createTables(db);

}

 continues

c17.indd 425

c17.indd 425

5/10/2012 2:13:10 PM

5/10/2012 2:13:10 PM

426 x CHAPTER 17 MATCHING WHAT WAS SAID

LISTING 17-8 (continued)

public void dropTables(SQLiteDatabase db)

{

db.execSQL("DROP TABLE IF EXISTS " + TABLE_FOOD + ";");

}

public void createTables(SQLiteDatabase db)

{

db.execSQL("CREATE VIRTUAL TABLE " + TABLE_FOOD

+ " USING fts3(tokenize=porter," + BaseColumns._ID

+ " INTEGER PRIMARY KEY AUTOINCREMENT, " + COLUMN_FOOD

+ " TEXT, " + COLUMN_CALORIE + " REAL);");

}

}

}

 code snippet FtsIndexedFoodDatabase.java

To execute FtsIndexedFoodDatabase, an app needs to implement a receiveWhatWasHeard()

method that queries the database with each potential recognition until it fi nds a match or fails.

Listing 17-9 shows the necessary code.

LISTING 17-9: Use FTS to match a food query

protected void receiveWhatWasHeard(List<String> heard,

float[] confidenceScores)

{

FtsIndexedFoodDatabase food = FtsIndexedFoodDatabase.getInstance(this);

for (String said : heard)

{

if (food.retrieveBestMatch(said).size() > 0)

{

Log.d(TAG, "heard a food");

break;

}

}

}

As this section showed, FTS is a useful tool for matching speech recognition results. It has a stemmer and different query options that allow it to fl exibly match possible user utterances with values within a SQLite database. However, it is not the only persistent storage mechanism available. The next section describes Lucene, a search engine library that was built specifi cally for searching and ranking text, and is of particular use for matching.

Word Searching with Lucene

FTS provides a search capability for a SQLite database, but it is somewhat limited in its indexing and searching capabilities. In contrast, Lucene is a search engine library that was specifi cally c17.indd 426

c17.indd 426

5/10/2012 2:13:11 PM

5/10/2012 2:13:11 PM

Matching Command Words in Persistent Storage x 427

designed for searching text. Because of this, Lucene provides a variety of options for matching textual user utterances with parts of a voice command.

Lucene is expandable, offers a wider array of indexing and query types than FTS, and has built-in search result ranking methods. Lucene has text Filters

that perform indexing functions such as converting

Lucene

Lucene

query text to lowercase, stemming, and removing certain

Index

Index

irrelevant characters and words. The source code from

Builder

Searcher

this book contains a Lucene Filter that converts a

query to its phonetic representation.

App

Food

Food

Index

Lucene also has some additional query operators

Searcher

Builder

than FTS. For example, FTS allows an app to perform

prefi x queries via a * operator. Lucene also supports

prefi x queries, however queries can also treat the opera-

Translator

tor as a wildcard and place it anywhere within a

search string, not just at the end. Queries can also use

FIGURE 17-2: Utility and domain classes

the ? operator to require only one wildcard character

needed to create and search an index for

instead of multiple characters. Other types of queries

the food dialogue. The arrows represent

are possible from the Lucene library and third

dependencies between classes.

parties.

To use Lucene your app needs to create an index and then search it. The index can be an in-memory index or can reside on the SD card. Figure 17-2 shows a block diagram of the needed classes to implement a food dialogue.

Listing 17-10 shows code that creates an index and then executes some searchers within a unit test.

Listings 17-11 and 17-12 show the food-related classes.

LISTING 17-10: Creates an index and executes some queries

public void testRunLuceneQuery()

{

boolean overwrite = false;

String outputDir = "testDir";

boolean phonetic = true;

boolean doStem = true;

FoodIndexBuilder builder =

new FoodIndexBuilder(getContext()

.getExternalFilesDir(outputDir).getAbsolutePath(),

overwrite, phonetic, doStem);

builder.addFood("Apple", 100.0f);

FoodSearcher searcher = null;

try

{

searcher = builder.get();

} catch (IOException e)

{

Log.e(TAG, "error", e);

 continues

c17.indd 427

c17.indd 427

5/10/2012 2:13:11 PM

5/10/2012 2:13:11 PM

428 x CHAPTER 17 MATCHING WHAT WAS SAID

LISTING 17-10 (continued)

}

assertTrue(searcher.findMatching("Apple").size() > 0);

assertTrue("stem", searcher.findMatching("Apples").size() > 0);

assertTrue("sounds like", searcher.findMatching("Appeal").size() > 0); assertFalse("not close enough",

searcher.findMatching("peel").size() > 0);

}

First, the test code creates a FoodIndexBuilder. FoodIndexBuilder allows for several options. You change the path to store the index on disk. If you pass a value of true for the overwrite parameter, the class overwrites the existing index; otherwise, if the index already exists, FoodIndexBuilder does nothing. If you pass null, FoodIndexBuilder uses an in-memory index.

Once created, the code adds some Food objects to the index. Behind the scenes,

FoodIndexBuilder uses FoodDocumentTranslator to translate the Food objects to Lucene

Documents. FoodIndexBuilder uses a class called RecognitionIndexer to preprocess any

text and optionally performs the two indexing strategies discussed earlier, stemming and

phonetic indexing. When complete, the test calls get to commit all changes and create a

FoodIndexSearcher.

FoodIndexSearcher contains methods to search the index for Food objects. To initialize,

FoodIndexSearcher uses methods in LuceneSearcher to load the previously built indexes from

whichever Lucene Directory FoodIndexBuilder used. From there, the test can execute some

searches.

LISTING 17-11: Builds a Food index

public class FoodIndexBuilder

{

private static final String TAG = "FoodIndexBuilder";

private LuceneIndexBuilder builder;

private Analyzer analyzer;

public FoodIndexBuilder(boolean phonetic, boolean doStem)

{

analyzer = new RecognitionIndexer(phonetic, doStem);

builder =

new LuceneIndexBuilder(new RecognitionIndexer(phonetic, doStem));

}

public FoodIndexBuilder(String outputDir, boolean overwrite,

boolean phonetic, boolean doStem)

{

analyzer = new RecognitionIndexer(phonetic, doStem);

builder =

new LuceneIndexBuilder(outputDir, overwrite,

new RecognitionIndexer(phonetic, doStem));

}

c17.indd 428

c17.indd 428

5/10/2012 2:13:11 PM

5/10/2012 2:13:11 PM

Matching Command Words in Persistent Storage x 429

public void addFood(String name, float calories)

{

Document doc =

FoodDocumentTranslator.toDocument(new Food(name, calories));

builder.addDocument(doc);

Log.d(TAG, "added: " + doc);

}

public FoodSearcher get() throws IOException

{

builder.doneWriting();

return new FoodSearcher(builder.getDirectory(), analyzer);

}

}

LISTING 17-12: Searches a previously built Food index

public class FoodSearcher

{

private static final String TAG = "FoodSearcher";

private static final int MAX_NUM_RESULTS = 10000;

private LuceneIndexSearcher searcher;

private Analyzer analyzer;

public FoodSearcher(Directory dir, Analyzer analyzer) throws IOException

{

// load the index

searcher = new LuceneIndexSearcher(dir);

this.analyzer = analyzer;

}

/**

* if any documents match return true

*/

public boolean matches(String target)

{

return findMatching(target).size() > 0;

}

public List<Food> findMatching(String target)

{

try

{

//Note: this creates a query using the Lucene query syntax

//by default it OR's all terms in the query

QueryParser parser =

new QueryParser(LuceneParameters.VERSION,

FoodDocumentTranslator.FOOD_NAME, analyzer);

Query query = parser.parse(target);

 continues

c17.indd 429

c17.indd 429

5/10/2012 2:13:11 PM

5/10/2012 2:13:11 PM

430 x CHAPTER 17 MATCHING WHAT WAS SAID

LISTING 17-12 (continued)

return executeQuery(query);

} catch (ParseException e)

{

Log.e(TAG, "error", e);

return new ArrayList<Food>();

}

}

private List<Food> executeQuery(Query query)

{

Log.d(TAG, "searching...");

List<Food> result = new ArrayList<Food>();

TopDocs rs = null;

try

{

Log.d(TAG, "query: " + query);

rs = searcher.getSearcher().search(query, null, MAX_NUM_RESULTS);

Log.d(TAG, "found this many documents: " + rs.totalHits);

} catch (IOException e)

{

Log.e(TAG, "failed to search", e);

return result;

}

// retrieve search docs

List<Document> docs = searcher.getDocs(rs, searcher.getSearcher());

// convert to food objects

for (Document document : docs)

{

result.add(FoodDocumentTranslator.getFood(document));

}

return result;

}

}

 code snippet FoodSearcher.java

Once an app has created a Lucene index, it needs to use it to match a user’s utterances. Listing 17-13

shows the necessary code to implement a food lookup query using Lucene.

LISTING 17-13: Uses Lucene index to match a food query

protected void receiveWhatWasHeardLuceneFood(List<String> heard,

float[] confidenceScores)

{

// create the food index only once

if (luceneSearcher == null)

c17.indd 430

c17.indd 430

5/10/2012 2:13:11 PM

5/10/2012 2:13:11 PM

Multi-part Commands x 431

{

// don't overwrite, but do stemming

FoodIndexBuilder builder =

new FoodIndexBuilder(getExternalFilesDir("foodindex")

.getAbsolutePath(), false, false, true);

try

{

// read the foods file and add foods to the builder

loadLuceneIndex(builder);

} catch (IOException e)

{

Log.e(TAG, "unable to load index", e);

}

try

{

luceneSearcher = builder.get();

} catch (IOException e)

{

Log.e(TAG, "error", e);

}

}

for (String said : heard)

{

if (luceneSearcher.findMatching(said).size() > 0)

{

Log.d(TAG, "heard a food");

break;

}

}

}

TRY THIS

This section shows how the matching techniques perform on test cases. However,

it’s interesting to see how the techniques perform in response to actual speech. Try

the Food Dialogue Matcher Playground button to test out the persistent matching.

Use the Matching Preferences menu option to change various settings. When you

click the Lookup button, you can say a fruit or vegetable it knows about and the

app will report its number of calories.

MULTI-PART COMMANDS

The techniques described thus far assume there is only one command word within a user’s utterance to match. Although it complicates things, sometimes it is necessary to for an app accept a multiple command words create more expressive commands. Each command word makes up a part of a

multi-part command.

This section discusses the issues involved in making code that matches multiple command words within a single possible utterance and presents some possible solutions. It considers two approaches: c17.indd 431

c17.indd 431

5/10/2012 2:13:11 PM

5/10/2012 2:13:11 PM

432 x CHAPTER 17 MATCHING WHAT WAS SAID

ignoring collisions and considering ordering. To illustrate implementing multi-part commands, this section discusses how to implement several example multi-part commands shown in Table 17-1. The example commands contain free text, static, and dynamic words to match.

TABLE 17-1: Multi-part Commands

VOICE COMMAND

FORM

DESCRIPTION

Add

Add <new food name>

User speaks “add” and then some free text

for the name of the new food to add.

Remove

Remove <food name>

User speaks “remove” and then a known

food name.

Compare

<food name 1> <food name 2>

User speaks two foods and the system

reports which food has more calories.

Ignoring Potential Collisions

Collisions occur when a word in the user’s utterance matches more than one command word. If such collisions are rare for your particular voice command, it is safe to ignore them. For example, if you have a command that requires two parts, “add” and “list,” it is unlikely that the word-spotting algorithm would confuse the two so it is fi ne for your code to scan the input twice, once for each command word. However, for dynamic words, it is easy to see how a user’s utterance could match more than one. For example, if a user utters “green” he or she might be referring to either “green onion” or “green bean.”

Listing 17-14 shows the implementation for matching “remove.” First the code uses a WordMatcher to match “remove,” then the code uses FtsIndexedFoodDatabase to look up any food. This code assumes that “remove” is not likely to be part of a food word, and thus, will not disrupt the food name lookup.

LISTING 17-14: Matches remove

public Food removeExistingFood(String toMatch)

{

Food removed = null;

WordMatcher dc = new WordMatcher("remove");

String[] tokens = toMatch.split("\\s");

if (dc.isIn(tokens) && tokens.length > 1)

{

FtsIndexedFoodDatabase food =

FtsIndexedFoodDatabase.getInstance(null);

List<MatchedFood> match =

food.retrieveBestMatch(toMatch, false, true, false);

if (match.size() > 0)

{

Food toRemove = match.get(0).getFood();

Log.d(TAG, "matched remove " + toRemove);

c17.indd 432

c17.indd 432

5/10/2012 2:13:12 PM

5/10/2012 2:13:12 PM

Multi-part Commands x 433

removed = toRemove;

}

}

return removed;

}

Listing 17-15 shows an implementation of “compare.” It executes FtsIndexedFoodDatabase and

then selects the top two matches. It assumes the food names are not easily confused with each other and don’t usually have overlapping words.

LISTING 17-15: Matches compare

public String compareCalories(String toMatch)

{

String comparison = null;

FtsIndexedFoodDatabase food = FtsIndexedFoodDatabase.getInstance(null);

//do or match

List<MatchedFood> match = food.retrieveBestMatch(toMatch, false, true, false);

if (match.size() > 1)

{

Food firstMatch = match.get(0).getFood();

Food secondMatch = match.get(1).getFood();

Log.d(TAG, "matched compare: " + firstMatch + " with " + secondMatch);

comparison = makeComparisonResultString(firstMatch, secondMatch);

}

return comparison;

}

Finally, Listing 17-16 shows the code for “add.” First, the code uses a WordMatcher to match “add”; if it matches, the code takes all the text after the fi rst string to be the free text. It then uses the free text as the name of the food to add. The code makes an assumption that “add” will always be the fi rst word in the user’s utterance.

LISTING 17-16: Matches add

public Food addFreeText(String toMatch)

{

Food toAdd = null;

WordMatcher dc = new WordMatcher("add");

String [] tokens = toMatch.split("\\s");

if (dc.isIn(tokens) && tokens.length > 1)

{

//after the first space

String freeText = toMatch.substring(toMatch.indexOf(" "));

Log.d(TAG, "matched add " + freeText);

toAdd = new Food(freeText);

}

return toAdd;

}

Although the assumptions made by these implementations may make them seem less than optimal, they perform robustly on real speech inputs. The implementations have the benefi ts of word spotting c17.indd 433

c17.indd 433

5/10/2012 2:13:12 PM

5/10/2012 2:13:12 PM

434 x CHAPTER 17 MATCHING WHAT WAS SAID

in that it is resistant to inserted words and the order in which they come. These benefi ts could mean easy input for the user.

Considering Ordering

The previous section showed implementations of multi-part commands that did not require the app to consider order. The approach ignores the potential for collisions and makes assumptions that could lead to some failed recognitions. This section explores several approaches for considering order. The approaches require some processing and more constraint on user input.

Matching multi-part commands considering ordering requires your app to introduce a new object, WordList. The source for WordList is in Listing 17-17. WordList splits the string into tokens and then getStringAfter() allows the matching methods to retrieve strings after a certain index in the source string. getStringWithout() allows code to retrieve versions of the string without certain words.

LISTING 17-17: Extracts parts of an utterance by position

public class WordList

{

private String [] words;

private String source;

public WordList(String source)

{

this.source = source;

words = source.split("\\s");

}

public String getStringAfter(int wordIndex)

{

int startAt = wordIndex + 1;

if (startAt >= words.length)

{

return "";

}

StringBuilder sb = new StringBuilder();

for (int i = startAt; i < words.length; i++)

{

sb.append(words[i]).append(" ");

}

return sb.toString();

}

public String getStringWithout(int indexToRemove)

{

if (indexToRemove >= words.length)

{

return "";

c17.indd 434

c17.indd 434

5/10/2012 2:13:12 PM

5/10/2012 2:13:12 PM

Multi-part Commands x 435

}

StringBuilder sb = new StringBuilder();

for (int i = 0; i < words.length; i++)

{

if (i != indexToRemove)

{

sb.append(words[i]).append(" ");

}

}

return sb.toString();

}

}

You also need some additional methods inside of WordMatcher to help identify the position

of any matches. Listing 17-18 shows the necessary methods and Listing 17-1 shows the rest of WordMatcher.

LISTING 17-18: Additional methods in WordMatcher to identify the location of matches

public int isInAt(String [] wordsIn)

{

int which = NOT_IN;

for (String word : wordsIn)

{

which = isInAt(word);

if (which != NOT_IN)

{

break;

}

}

return which;

}

public int isInAt(String wordCheck)

{

int which = NOT_IN;

int ct = 0;

for (String word : words)

{

if (word.equals(wordCheck))

{

which = ct;

break;

}

ct++;

}

return which;

}

Using these two utilities you can implement position-aware matching. Listing 17-19 shows “add,”

Listing 17-20 shows “remove,” and Listing 17-21 shows “compare calories.”

c17.indd 435

c17.indd 435

5/10/2012 2:13:12 PM

5/10/2012 2:13:12 PM

436 x CHAPTER 17 MATCHING WHAT WAS SAID

Matching “remove” and “add” requires the same fi rst step. First the code recognizes “add” or

“remove.” Then the code processes the remaining text after “add” or “remove” word. For “add,” the code collects all the remaining string as free text and uses that as the new food name. For “remove,”

the code matches the remaining string with the food database and identifi es the best matching as the food to remove. For example, while processing a user utterance of “remove red grapes” the code would recognize “remove” and then pass the remaining “red grapes” string to the food database.

Selecting the text after the command word allows the code to ignore any words the user may have added before the static command word. For example, the user might say something like, “apple remove grapes.” This could happen if the speech prompt appeared while the user was saying something else. The non-ordered approach could potentially have a problem and remove apple instead of grapes because apple appears just as many times as grapes and it appears fi rst. In contrast, using the ordered approach, the code can ignore any words before the command word and hence correctly ignore apple and consider only grapes.

For comparing foods, the code needs to identify two foods within the same search string. Without ordering, incorrect matches could result. For example, if the user executed a compare command by saying

“apple avocado,” it is possible that the FTS query could return two kinds of apple instead of apple and avocado. To handle this, the code in Listing 17-21 executes the query twice. The code removes the fi rst matched word before the second query. For the input “apple avocado,” removing the fi rst match, apple, allows the code to recognize apple during the fi rst query and avocado during the second.

LISTING 17-19: Creates a new Food to add using the free text after the command “add” as the food name

public Food addFreeText(String toMatch)

{

Food toAdd = null;

WordList wordList = new WordList(toMatch);

WordMatcher dc = new WordMatcher("add");

int matchIndex = dc.isInAt(wordList.getWords());

if (matchIndex >= 0)

{

String freeText = wordList.getStringAfter(matchIndex);

if (freeText.length() > 0)

{

Log.d(TAG, "matched add " + freeText);

toAdd = new Food(freeText);

}

}

return toAdd;

}

LISTING 17-20: Selects a food to remove as the one mentioned after the command “remove”

public Food removeExistingFood(String toMatch)

{

Food removed = null;

WordList wordList = new WordList(toMatch);

c17.indd 436

c17.indd 436

5/10/2012 2:13:12 PM

5/10/2012 2:13:12 PM

Multi-part Commands x 437

WordMatcher dc = new WordMatcher("remove");

int matchIndex = dc.isInAt(wordList.getWords());

if (matchIndex >= 0)

{

String freeText = wordList.getStringAfter(matchIndex);

FtsIndexedFoodDatabase food =

FtsIndexedFoodDatabase.getInstance(null);

List<MatchedFood> match =

food.retrieveBestMatch(freeText, false, true, false);

if (match.size() > 0)

{

Food toRemove = match.get(0).getFood();

Log.d(TAG, "matched remove " + toRemove);

removed = toRemove;

}

}

return removed;

}

LISTING 17-21: Compares two foods by running two queries

public String compareCalories(String toMatch)

{

String comparison = null;

FtsIndexedFoodDatabase food = FtsIndexedFoodDatabase.getInstance(null);

List<MatchedFood> match =

food.retrieveBestMatch(toMatch, false, true, false);

if (match.size() > 0)

{

MatchedFood matchedFood = match.get(0);

Food firstMatch = matchedFood.getFood();

// remove the first term of the matched string so

// that the food won't be matched again

WordList wordList = new WordList(toMatch);

String withoutFirstMatch =

wordList.getStringWithout(matchedFood

.getFirstMatchTermIndex());

List<MatchedFood> matchSecond =

food.retrieveBestMatch(withoutFirstMatch, false, true,

false);

if (matchSecond.size() > 0)

{

Food secondMatch = matchSecond.get(0).getFood();

Log.d(TAG, "matched compare: " + firstMatch + " with "

+ secondMatch);

comparison =

makeComparisonResultString(firstMatch, secondMatch);

}

}

return comparison;

}

c17.indd 437

c17.indd 437

5/10/2012 2:13:12 PM

5/10/2012 2:13:12 PM

438 x CHAPTER 17 MATCHING WHAT WAS SAID

TRY THIS

Select the Food Dialogue Matcher Playground button. You can say any of the three

commands described in this section after you click the Edit and Compare button.

You can use the Matching Preferences menu option to experiment with using

ordered and unordered matching.

USING A GRAMMAR

Word spotting is not the only matching algorithm. One alternative you might consider is to use a grammar instead. Grammars are useful for scenarios beyond the ones this chapter describes.

This section briefl y describes how you might use a grammar and provides links for additional information.

One type of grammar you might use is JSGF (Java Speech Grammar Format) (http://java.sun.

com/products/java-media/speech/forDevelopers/JSGF/). A project like Sphinx (http://

cmusphinx.sourceforge.net/2011/05/building-pocketsphinx-on-android/) contains code to work with JSGF grammars.

Using a JSGF grammar, you could defi ne an add command with the following rule:

<addcommand> = <add> <apple | pear | grape>

The preceding grammar specifi es a rule named “addcommand” that matches the word “add”

followed by “apple,” “pear,” or “grape.” Using a grammar with the rule allows an app to match when the user wanted to add one of the three specifi ed foods.

The JSGF grammar is very fl exible. You can expand it further using wildcard operators to allow it to handle words inserted between expected command words. You can create a set of composable, reusable rules. You can weight certain words as being more important than others. You can tag certain rules to help code identify results.

The advantage of a using a grammar is that it can handle complex speech patterns. If you are trying to implement a multi-part command that has many parts and many variants, or want to have many voice commands available from one prompt, a grammar may be a better approach than

word spotting. For simple commands, like the ones this chapter has discussed, restricting the user to follow the grammar’s specifi cations and the processing overhead of using a grammar may not be worth it.

SUMMARY

After executing speech recognition, Android returns a list of strings representing what the user might have said. This chapter described various ways to determine if those strings match desired command words. To implement this matching, your app may need to use in-memory matching,

query persistent storage, match multiple command parts, or determine in what order the parts appeared.

c17.indd 438

c17.indd 438

5/10/2012 2:13:12 PM

5/10/2012 2:13:12 PM

Summary x 439

To handle in-memory matching, this chapter described using an in-memory class that used a Set to represent static keywords. To handle querying persistent storage, this chapter described how to use Android’s built-in FTS search or Lucene. To handle ordered and unordered, multi-part commands, this chapter showed you some possible implementation approaches. To capture free text and to handle multi-part commands with increased accuracy, this chapter showed you how to match command words according to the order in which the words appeared in a user’s utterance. Also, this chapter described how to make it easier to match by using two indexing strategies: stemming and phonetic indexing.

The techniques in this chapter described how to match recognition results to create voice commands. These voice commands represent single functions a user can activate. The next chapter describes techniques to combine these commands together to create voice actions that can have multiple functions and span multiple turns. In addition, it describes the software components you need to execute voice actions in a user-friendly, modular way.

c17.indd 439

c17.indd 439

5/10/2012 2:13:13 PM

5/10/2012 2:13:13 PM

c17.indd 440

c17.indd 440

5/10/2012 2:13:13 PM

5/10/2012 2:13:13 PM

18

Executing Voice Actions

WHAT’S IN THIS CHAPTER?

‰

Software components for defi ning and executing voice actions

‰

AlertDialog for voice actions

‰

Multi-turn voice actions

‰

A best guess to minimize recognition failure

‰

Diagnosing recognition failure

Chapter 17 described matching in detail. Android’s speech recognizer rarely returns a single result. Instead it returns a list of possible strings that represent what the user might have said.

Matching involves comparing those strings with the desired command words your voice user

interface (VUI) expects.

If your VUI is simple enough, you can implement matching in the way that Chapter 17 does

directly within the receiveWhatWasHeard() method. However, to include features that

improve usability and to organize multi-turn voice actions, you can benefi t from some additional code that this chapter describes.

The code in this chapter helps organize your VUI into VoiceAction objects and execute them.

The code also provides some methods for improving the usability of your VUI by showing

how your app can make a best guess and respond when recognition fails. To illustrate these

concepts, the code in this chapter creates an improved version of the food dialogue example that Chapter 17 introduced.

c18.indd 441

c18.indd 441

5/10/2012 2:13:46 PM

5/10/2012 2:13:46 PM

442 x CHAPTER 18 EXECUTING VOICE ACTIONS

FOOD DIALOGUE VUI DESIGN

The food VUI design, implemented in Chapter 17, had several fl aws:

‰

It did not use any indexing, so the app failed to understand commands failed more often than necessary.

‰

It didn’t have any multi-turn voice actions, so users could never add calories for any new

food, nor could they cancel a remove operation.

‰

The app never spoke any replies after any command, so, for example, users would have no

way of knowing if they successfully added or removed a food.

‰

If recognition failed the code simply reported “I don’t understand” instead of attempting to diagnose why or make a best guess.

To address these shortcomings, the refi ned food VUI design consists of two voice actions: Food Lookup and Food Edit. Users activate either by a button press. Table 18-1 describes the turns for the commands within the voice actions.

TABLE 18-1: VUI Design for Multi-turn Food Dialogue

VOICE ACTION

COMMAND

TURNS

Food Lookup

FoodLookup

Turn 1: User says “<foodname>.” App replies “<foodname>

has X calories.”

Food Edit

AddFood

Turn 1: User says “add <new food name>.”

Turn 2: App says “How many calories for <new food name>?”

User says a number or “cancel.” App replies: “Added <new

food name> with <calories>” or “cancelled” if the user said

“cancel.”

Food Edit

RemoveFood

Turn 1: User says “remove <foodname>.”

Turn 2: App says “Are you sure you want to remove <food-

name>?” User says “Yes” or “No” or “Cancel.” App replies

“removed <foodname> or “canceled” if the user said “cancel.”

In addition, the VUI adds several features needed for a more user-friendly conversation:

‰

Uses implicit prompting: To make users aware of the result of their voice action, the design uses implicit prompting in the remove and add commands to report what food was removed

or added.

‰

Provides feedback if recognition fails: If the app can’t match what the user said with any expected inputs, it makes a best guess. If it cannot guess, it tries to diagnose why recognition failed and provides feedback to the user.

‰

Allows for cancel: At any speech prompt, it allows the user to say “cancel” to end the dialog.

c18.indd 442

c18.indd 442

5/10/2012 2:13:48 PM

5/10/2012 2:13:48 PM

Defi ning and Executing Voice Actions x 443

The remaining sections in this chapter show you how to implement this VUI design.

TRY THIS

Use the Multi-turn Food Dialogue button to explore how the VUI works.

DEFINING AND EXECUTING VOICE ACTIONS

In a GUI, apps have various APIs to help them create Dialogs with buttons, show them, and

respond when the user clicks. With VUIs, none of that exists. Additionally, Dialogs run on the UI thread, which keeps them from interfering with each other. Similarly, VUIs must make sure that voice actions do not interfere with each other’s audio input and output. The app must make sure not to be listening and speaking at the same time, or else it may talk to itself. This section describes the missing code you need to defi ne and execute voice action.

Executing a voice action refers to the fi ve-step process shown in Figure 18-1.

Speak

Speak

Activate

Prompt

Listen

Response

Action

(optional)

(optional)

FIGURE 18-1: Flow through the various steps in executing a voice action.

The fi ve steps involved in executing a voice action are:

1.

Activate: User starts the voice action. A simple way the user can do this is by pressing a button, but Chapter 19 describes other options.

2.

Speak Prompt: Optionally speak something.

3.

Listen: Start speech recognition.

4.

Speak Response: Optionally say something in response.

5.

Action: Do something, then possibly begin another speak

prompt or listen step.

VoiceActionExecutor

Executing voice actions requires several classes. Figure 18-2

1

shows how they relate. A VoiceActionExecutor controls speak-

VoiceAction

ing prompts, listening, and activating one active VoiceAction at a

time. A VoiceAction uses one or more VoiceActionCommands to

interpret recognition results. If the

1..*

VoiceActionCommands match

the recognition results, they may take any necessary actions or

VoiceActionCommand

speak any responses. An app activates VoiceActionExecutor in

FIGURE 18-2: Relationship

an app specifi c way, such as by presenting the user with a “push to

between voice action-related

talk” button.

classes

c18.indd 443

5/10/2012 2:13:48 PM

444 x CHAPTER 18 EXECUTING VOICE ACTIONS

A VoiceAction is analogous to a GUI Dialog and a VoiceActionCommand is analogous to a

Button in a GUI Dialog. VoiceActionExecutor has the equivalent of a Dialog’s show() method

for VoiceActions. Listing 18-1 shows the VoiceAction and VoiceActionCommand interfaces and

Listing 18-2 shows the implementation of VoiceActionExecutor.

All of these components are required to implement a VUI. For example, implementing the Food Edit voice action involves confi guring a VoiceAction and executing it using a VoiceActionExecutor.

The confi gured VoiceAction uses one implementation of a VoiceActionCommand for each

possible command the user may say: add food, remove food, or cancel. If any of the three

VoiceActionCommands match the recognition results, they take appropriate action.

Next, this section describes the VoiceActionExecutor implementation. Later sections in this chapter explore how to implement VoiceAction and VoiceActionCommands.

VoiceActionExecutor controls executing speech recognition and speaking for a single active

VoiceAction with several methods. To make VoiceActionExecutor work, the code using

VoiceActionExecutor must pass it results from receiveWhatWasHeard(). The execute() and

reExecute() methods allow apps to start and restart VoiceActions. If a VoiceActionCommand

needs to speak something, it can conveniently call speak(). While speaking a prompt,

VoiceActionExecutor ensures that the app is not listening and speaking at the same time. To implement this it passes EXECUTE_AFTER_SPEAK as the utteranceId to its TTS using the following code: tts.speak(voiceAction.getSpokenPrompt(), TextToSpeech.QUEUE_FLUSH,

TextToSpeechUtils.makeParamsWith(EXECUTE_AFTER_SPEAK));

TTS calls the onDone()method after it is done speaking and VoiceActionExecutor forwards it to onDoneSpeaking(). When onDoneSpeaking() receives an utteranceId equal to EXECUTE_AFTER_

 SPEAK, it can start speech recognition again because it knows that the app has completed speaking the speech prompt.

LISTING 18-1: Interfaces for VoiceAction and VoiceActionCommand

public interface VoiceAction

{

/**

* match String in heard, optionally take action and

* call OnNotUnderstoodListener if cannot match.

* @param heard recognition results

* @param confidenceScores score for each String in heard

*/

boolean interpret(List<String> heard, float[] confidenceScores);

/**

* return the text to show as a prompt when executing

* if there is no prompt, then return null or an empty string

*/

public String getPrompt();

public void setPrompt(String prompt);

/**

* the prompt to speak before presenting the recognition dialog

*/

c18.indd 444

c18.indd 444

5/10/2012 2:13:49 PM

5/10/2012 2:13:49 PM

Defi ning and Executing Voice Actions x 445

public String getSpokenPrompt();

public void setSpokenPrompt(String prompt);

public boolean hasSpokenPrompt();

/**

* to call when interpret cannot understand

*/

public void setNotUnderstood(OnNotUnderstoodListener notUnderstood);

public OnNotUnderstoodListener getNotUnderstood();

/**

* ignore any responses below this minimum confidence

*/

public float getMinConfidenceRequired();

/**

* confidence greater than this means

* {@link OnNotUnderstoodListener#REASON_NOT_A_COMMAND}

*/

public float getNotACommandConfidenceThreshold();

public void setNotACommandConfidenceThreshold(

float notACommandConfidenceThreshold);

/**

* confidence less than this means

* {@link OnNotUnderstoodListener#REASON_INACCURATE_RECOGNITION}

*/

public float getInaccurateConfidenceThreshold();

public void setInaccurateConfidenceThreshold(

float inaccurateConfidenceThreshold);

}

public interface VoiceActionCommand

{

boolean interpret(WordList heard, float [] confidenceScores);

}

LISTING 18-2: Executes VoiceActions

public class VoiceActionExecutor

{

private static final String TAG = "VoiceActionExecutor";

private VoiceAction active;

private SpeechRecognizingActivity speech;

/**

* parameter for TTS to identify utterance

*/

private final String EXECUTE_AFTER_SPEAK = "EXECUTE_AFTER_SPEAK";

private TextToSpeech tts;

public VoiceActionExecutor(SpeechRecognizingActivity speech)

 continues

c18.indd 445

5/10/2012 2:13:49 PM

446 x CHAPTER 18 EXECUTING VOICE ACTIONS

LISTING 18-2 (continued)

{

this.speech = speech;

active = null;

}

/**

* set the tts when it is ready to complete initialization

*/

public void setTts(TextToSpeech tts)

{

this.tts = tts;

if (Build.VERSION.SDK_INT >= 15)

{

tts.setOnUtteranceProgressListener(new UtteranceProgressListener()

{

@Override

public void onDone(String utteranceId)

{

onDoneSpeaking(utteranceId);

}

@Override

public void onError(String utteranceId)

{

}

@Override

public void onStart(String utteranceId)

{

}

});

}

else

{

tts.setOnUtteranceCompletedListener(new OnUtteranceCompletedListener()

{

@Override

public void onUtteranceCompleted(String utteranceId)

{

onDoneSpeaking(utteranceId);

}

});

}

}

/**

* external handleReceiveWhatWasHeard must call this

*/

public void handleReceiveWhatWasHeard(List<String> heard,

float[] confidenceScores)

{

active.interpret(heard, confidenceScores);

c18.indd 446

c18.indd 446

5/10/2012 2:13:49 PM

5/10/2012 2:13:49 PM

Defi ning and Executing Voice Actions x 447

}

private void onDoneSpeaking(String utteranceId)

{

if (utteranceId.equals(EXECUTE_AFTER_SPEAK))

{

doRecognitionOnActive();

}

}

/**

* convenient way to just reply with something spoken

*/

public void speak(String toSay)

{

tts.speak(toSay, TextToSpeech.QUEUE_FLUSH,

TextToSpeechUtils.EMPTY_PARAMS);

}

/**

* execute the current active {@link VoiceAction} again speaking

* extraPrompt before

*/

public void reExecute(String extraPrompt)

{

if ((extraPrompt != null) && (extraPrompt.length() > 0))

{

tts.speak(extraPrompt, TextToSpeech.QUEUE_FLUSH,

TextToSpeechUtils.makeParamsWith(EXECUTE_AFTER_SPEAK));

}

else

{

execute(getActive());

}

}

/**

* change the current voice action to this and then execute it, optionally

* saying a prompt first

*/

public void execute(VoiceAction voiceAction)

{

if (tts == null)

{

throw new RuntimeException("Text to speech not initialized");

}

setActive(voiceAction);

if (voiceAction.hasSpokenPrompt())

{

tts.speak(voiceAction.getSpokenPrompt(), TextToSpeech.QUEUE_FLUSH,

TextToSpeechUtils.makeParamsWith(EXECUTE_AFTER_SPEAK));

}

else

 continues

c18.indd 447

c18.indd 447

5/10/2012 2:13:49 PM

5/10/2012 2:13:49 PM

448 x CHAPTER 18 EXECUTING VOICE ACTIONS

LISTING 18-2 (continued)

{

doRecognitionOnActive();

}

}

private void doRecognitionOnActive()

{

Intent recognizerIntent =

new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);

recognizerIntent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,

RecognizerIntent.LANGUAGE_MODEL_WEB_SEARCH);

recognizerIntent.putExtra(RecognizerIntent.EXTRA_PROMPT, getActive()

.getPrompt());

speech.recognize(recognizerIntent);

}

private VoiceAction getActive()

{

return active;

}

private void setActive(VoiceAction active)

{

this.active = active;

}

}

 code snippet VoiceActionExecutor.java

This section described how you could defi ne a VUI in terms of VoiceActions and

VoiceActionCommands. It also described VoiceActionExecutor and how it executes VoiceActions with it. Now that you’ve seen how to run VoiceActions, the next two sections describe ways to implement them.

EXECUTING VOICEACTIONCOMMANDS

A VoiceAction is responsible for matching the recognition results. If it cannot match the results it calls back to an OnNotUnderstoodListener, described later in listing 18-12.

You can use MultiCommandVoiceAction to implement a VoiceAction. Listing 18-3 shows its

implementation. The implementation uses AbstractVoiceAction, which contains simple getter and setter implementations that the VoiceAction interface requires. MultiCommandVoiceAction has to perform several functions.

First, MultiCommandVoiceAction uses a given List of VoiceActionCommands to match the recognition results. It iterates over each one for each possible recognition result until one matches. When multiple VoiceActionCommands can match a particular utterance, the VoiceAction enforces a

policy, that the fi rst one that matches takes effect.

Second, MultiCommandVoiceAction must handle when no VoiceActionCommands match, by calling

back to an OnNotUnderstoodListener. Later sections in this chapter explain different ways to minimize how many times this occurs and how to handle it when it does.

c18.indd 448

c18.indd 448

5/10/2012 2:13:49 PM

5/10/2012 2:13:49 PM

Executing VoiceActionCommands x 449

Third, repeated tokenizing of the recognition results to split the single string into individual words can be ineffi cient. Therefore, MultiCommandVoiceAction uses a helper class, WordList, to perform the tokenizing once. The previous chapter presented WordList in Listing 17-17.

LISTING 18-3: Executes one or more VoiceActionCommands

public class MultiCommandVoiceAction extends AbstractVoiceAction

{

private static final String TAG = "MultiCommandVoiceAction";

private List<VoiceActionCommand> commands;

public MultiCommandVoiceAction(List<VoiceActionCommand> commands)

{

this.commands = commands;

}

@Override

public boolean interpret(List<String> heard, float[] confidenceScores)

{

boolean understood = false;

//Android version 4.0 and less devices will have null

boolean hasConfidenceScores = (confidenceScores != null);

// halt after understood something

for (int i = 0; i < heard.size() && !understood; i++)

{

String said = heard.get(i);

//only check confidence if the app supports it

boolean exceedsMinConfidence = true;

if (hasConfidenceScores)

{

exceedsMinConfidence =

(confidenceScores[i] > getMinConfidenceRequired());

}

if (exceedsMinConfidence)

{

WordList saidWords = new WordList(said);

for (VoiceActionCommand command : commands)

{

understood = command.interpret(

saidWords, confidenceScores);

if (understood)

{

Log.d(TAG, "Command successful: "

+ command.getClass().getSimpleName());

break;

}

}

 continues

c18.indd 449

5/10/2012 2:13:49 PM

450 x CHAPTER 18 EXECUTING VOICE ACTIONS

LISTING 18-3 (continued)

}

}

if (!understood)

{

if (hasConfidenceScores)

{

Log.d(TAG, "VoiceAction unsuccessful: " + getPrompt());

// interpret confidence so as to provide a reason to

// notUnderstood

// check only the highest confidence score, which should be the

// first

float highestConfidenceScore = confidenceScores[0];

if (highestConfidenceScore < 0.0)

{

getNotUnderstood().notUnderstood(heard,

OnNotUnderstoodListener.REASON_UNKNOWN);

}

else

{

if (highestConfidenceScore <

getInaccurateConfidenceThreshold())

{

getNotUnderstood()

.notUnderstood(

heard,

OnNotUnderstoodListener.

REASON_INACCURATE_RECOGNITION);

}

else if (highestConfidenceScore > =

getNotACommandConfidenceThreshold())

{

getNotUnderstood().notUnderstood(heard,

OnNotUnderstoodListener.REASON_NOT_A_COMMAND);

}

else

{

getNotUnderstood().notUnderstood(heard,

OnNotUnderstoodListener.REASON_UNKNOWN);

}

}

}

else

{

getNotUnderstood().notUnderstood(heard,

OnNotUnderstoodListener.REASON_UNKNOWN);

}

}

return understood;

c18.indd 450

c18.indd 450

5/10/2012 2:13:49 PM

5/10/2012 2:13:49 PM

Implementing an AlertDialog for Voice Actions x 451

}

protected void add(VoiceActionCommand command)

{

commands.add(command);

}

}

 code snippet MultiCommandVoiceAction.java

MultiCommandVoiceAction allows you to execute a given set of VoiceActionCommands that you

develop. However, some kinds of VoiceActions are useful across multiple applications. It is helpful to have a utility class that helps implement those.

While developing GUI Dialogs, a developer does not always create new views, with new buttons in it, for every Dialog he or she wants to show. Instead there is an AlertDialog class that helps create common Dialogs. The next section describes how to extend MultiCommandVoiceAction to implement a class that is similar to an AlertDialog, but designed for voice actions. The class helps you implement common voice actions.

IMPLEMENTING AN ALERTDIALOG FOR VOICE ACTIONS

AlertDialogs are a useful class in GUIs because they make it easy to create many kinds of Dialogs you need in your app. It is also useful to have the same kind of class with VoiceActions. For this purpose, you can use VoiceAlertDialog, which extends MultiCommandVoiceAction, along with

the MatcherCommand helper class and OnUnderstoodListener.

Instead of the buttons that an AlertDialog has, VoiceAlertDialog has spoken command

words. Instead of indicating results with an OnClickListener, it uses an OnUnderstoodListener.

To use a VoiceAlertDialog an app specifi es OnUnderstoodListeners for positive, negative, or neutral words. Also, an app may modify the following parameters:

‰

Change the positive, negative, and neutral command words.

‰

Use “relaxed” matching that uses indexing such as stemmers and phonetic matching to make

it easier to match what the user said. Chapter 17 explains how these work in more detail.

‰

Add new commands beyond positive, negative, and neutral.

Using these classes you might create a voice command using the following code, taken from the RemoveFood VoiceActionCommand:

final VoiceAlertDialog confirmDialog = new VoiceAlertDialog();

// positive, try all possible ways to find it

confirmDialog.addRelaxedPositive(new OnUnderstoodListener()

{

@Override

public void understood()

c18.indd 451

c18.indd 451

5/10/2012 2:13:49 PM

5/10/2012 2:13:49 PM

452 x CHAPTER 18 EXECUTING VOICE ACTIONS

{

Log.d(TAG, "REMOVE!: " + foodToRemove);

FtsIndexedFoodDatabase.getInstance(context).removeFood(

foodToRemove.getName());

String toSayRemoved =

String.format(

context.getResources().getString(

R.string.food_remove_complete),

foodToRemove.getName());

executor.speak(toSayRemoved);

}

});

String toSay =

String.format(

context.getResources().getString(

R.string.food_remove_confirm_prompt),

foodToRemove.getName());

confirmDialog.setPrompt(toSay);

confirmDialog.setSpokenPrompt(toSay);

The code creates a voice-controlled confi rmation dialog that responds when the user responds positively, by saying “yes” or “ok.” It also changes what would be the “title” fi eld in a Dialog by using the setPrompt() and setSpokenPrompt() methods.

Listing 18-4 shows the implementation of VoiceAlertDialog. Listing 18-5 shows the implementation of MatcherCommand and OnUnderstoodListener.

LISTING 18-4: Implements a yes/no/cancel VoiceAction

public class VoiceAlertDialog extends MultiCommandVoiceAction

{

// use match levels to indicate when you want less

// to allow less strict matches

public static final int MATCH_LEVEL_STRICT = 0;

public static final int MATCH_LEVEL_STEM = 1;

public static final int MATCH_LEVEL_PHONETIC = 2;

public static final int MATCH_LEVEL_PHONETIC_LESS_STRICT = 3;

private String[] yesWords = new String[] { "yes", "ok" };

private String[] noWords = new String[] { "no" };

private String[] neutralWords = new String[] { "cancel", "done" };

public VoiceAlertDialog()

{

super(new ArrayList<VoiceActionCommand>());

}

/**

* get the command words from resources

*/

c18.indd 452

5/10/2012 2:13:49 PM

Implementing an AlertDialog for Voice Actions x 453

public VoiceAlertDialog(Context context)

{

super(new ArrayList<VoiceActionCommand>());

yesWords =

context.getResources().getStringArray(

R.array.voiceaction_yeswords);

noWords =

context.getResources().getStringArray(

R.array.voiceaction_nowords);

neutralWords =

context.getResources().getStringArray(

R.array.voiceaction_neutralwords);

}

/**

* add your own command to the dialog here if it consists of words

*/

public void add(OnUnderstoodListener listener, String... words)

{

add(new MatcherCommand(new WordMatcher(words), listener));

}

public void addPositive(OnUnderstoodListener listener)

{

add(listener, yesWords);

}

public void addNegative(OnUnderstoodListener listener)

{

add(listener, noWords);

}

public void addNeutral(OnUnderstoodListener listener)

{

add(listener, neutralWords);

}

public void addRelaxedPositive(OnUnderstoodListener listener)

{

addRelaxedAll(listener, yesWords);

}

public void addRelaxedNegative(OnUnderstoodListener listener)

{

addRelaxedAll(listener, noWords);

}

public void addRelaxedNeutral(OnUnderstoodListener listener)

{

addRelaxedAll(listener, neutralWords);

 continues

c18.indd 453

c18.indd 453

5/10/2012 2:13:50 PM

5/10/2012 2:13:50 PM

454 x CHAPTER 18 EXECUTING VOICE ACTIONS

LISTING 18-4 (continued)

}

/**

* add some command words, but allow for less strict matching

*/

public void addRelaxedAll(OnUnderstoodListener listener, String... words)

{

add(listener, MATCH_LEVEL_STRICT, words);

add(listener, MATCH_LEVEL_STEM, words);

add(listener, MATCH_LEVEL_PHONETIC, words);

add(listener, MATCH_LEVEL_PHONETIC_LESS_STRICT, words);

}

/**

* allow matching at different levels of confidence

*/

private void add(OnUnderstoodListener listener, int matchType,

String... words)

{

WordMatcher matcher;

switch (matchType)

{

case MATCH_LEVEL_STEM:

matcher = new StemmedWordMatcher(words);

break;

case MATCH_LEVEL_PHONETIC:

matcher = new SoundsLikeWordMatcher(words);

break;

case MATCH_LEVEL_PHONETIC_LESS_STRICT:

matcher = new SoundsLikeThresholdWordMatcher(3, words);

break;

case MATCH_LEVEL_STRICT:

default:

matcher = new WordMatcher(words);

break;

}

add(new MatcherCommand(matcher, listener));

}

}

 code snippet VoiceAlertDialog.java

LISTING 18-5: Helper class and interface needed to implement VoiceAlertDialog

public class MatcherCommand implements VoiceActionCommand

{

private WordMatcher matcher;

private OnUnderstoodListener onUnderstood;

public MatcherCommand(WordMatcher matcher,

c18.indd 454

c18.indd 454

5/10/2012 2:13:50 PM

5/10/2012 2:13:50 PM

Implementing Multi-Turn Voice Actions x 455

OnUnderstoodListener onUnderstood)

{

this.matcher = matcher;

this.onUnderstood = onUnderstood;

}

@Override

public boolean interpret(WordList heard, float[] confidence)

{

boolean understood = false;

if (matcher.isIn(heard.getWords()))

{

understood = true;

if (onUnderstood != null)

{

onUnderstood.understood();

}

}

return understood;

}

public OnUnderstoodListener getOnUnderstood()

{

return onUnderstood;

}

}

public interface OnUnderstoodListener

{

public void understood();

}

The VoiceAlertDialog class is a convenient way to implement many voice actions. You can use it or the MultiCommandVoiceAction class, described previously, to construct single turn dialogues.

The next section discusses combining voice actions together to produce multiple turn dialogues.

IMPLEMENTING MULTI-TURN VOICE ACTIONS

Some voice actions require multiple turns. For example, a voice action may require a second turn to allow the user to confi rm before proceeding. Beyond soliciting confi rmation some voice actions require multiple turns in order for the users to input all the information they need.

This section examines how to implement such multi-turn voice actions for food dialogue’s Edit Food voice action. In the dialogue’s fi rst turn, users activate either the AddFood or RemoveFood VoiceActionCommands and specify part of the input each command needs. The VoiceActionCommands then start a second turn to gather the remaining needed input by executing a VoiceAction.

Implementing Multi-Turn AddFood

Adding food requires two pieces of information: a name and a number of calories. The user uses two turns to specify the information one piece at a time. AddFood, shown in Listing 18-6, implements the fi rst turn.

c18.indd 455

c18.indd 455

5/10/2012 2:13:50 PM

5/10/2012 2:13:50 PM

456 x CHAPTER 18 EXECUTING VOICE ACTIONS

LISTING 18-6: Matches add command words then starts a new turn to ask for a number

of calories.

public class AddFood implements VoiceActionCommand

{

private static final String TAG = "AddFood";

private WordMatcher match;

private VoiceActionExecutor executor;

private FtsIndexedFoodDatabase foodFts;

private Context context;

public AddFood(Context context, VoiceActionExecutor executor,

FtsIndexedFoodDatabase foodFts, boolean relaxed)

{

String[] commandWords =

context.getResources().getStringArray(R.array.food_add_command);

Log.d(TAG, "add with words: " + Arrays.toString(commandWords));

if (relaxed)

{

// match "add" if 3 of the 4 soundex characters match

// allows it to match add (code: A3OO) with bad (code: B300)

match = new SoundsLikeThresholdWordMatcher(3, commandWords);

}

else

{

// match only if the use says "add" exactly

match = new WordMatcher(commandWords);

}

this.context = context;

this.executor = executor;

this.foodFts = foodFts;

}

@Override

public boolean interpret(WordList heard, float[] confidenceScores)

{

boolean understood = false;

//match first part: "add"

int matchIndex = match.isInAt(heard.getWords());

if (matchIndex >= 0)

{

//match second part: the food name

String freeText = heard.getStringAfter(matchIndex);

if (freeText.length() > 0)

{

String foodToAdd = freeText;

// first command

c18.indd 456

5/10/2012 2:13:50 PM

Implementing Multi-Turn Voice Actions x 457

VoiceActionCommand askForCalories =

new AskForCalories(context, executor, foodFts,

foodToAdd);

String calPromptFormat =

context.getString(R.string.food_add_calories_prompt);

String calPrompt = String.format(calPromptFormat, foodToAdd);

// second command

CancelCommand cancel = new CancelCommand(context, executor);

// match either command, cancel first

MultiCommandVoiceAction responseAction =

new MultiCommandVoiceAction(Arrays.asList(cancel,

askForCalories));

// speak and display the same prompt when executing

responseAction.setPrompt(calPrompt);

responseAction.setSpokenPrompt(calPrompt);

// retry if did not understood

responseAction.setNotUnderstood(new WhyNotUnderstoodListener(

context, executor, true));

understood = true;

executor.execute(responseAction);

}

}

return understood;

}

}

 code snippet AddFood.java

The fi rst turn involves the user activating the command by saying “add” and specifying part of the required information by saying a food name. If AddFood’s interpret() method can’t fi nd either, it returns false and fails. Otherwise, it starts a a second turn with a MultiCommandVoiceAction that has two VoiceActionCommands. One is a CancelCommand to allow the user to stop the turn and the other is an AskForCalories to query the user a number of calories.

This VoiceAction has two features that help improve usability. First, it speaks the prompt: “How many calories for <foodname>?” The prompt accomplishes two things: it lets the user know what to say next, and it implicitly confi rms that the app understood which food the user wanted to add.

Second, if users do not recognize the name of the food used in the calorie prompt, they can cancel because they know that the voice recognition failed.

Listing 18-7 shows the code for AskForCalories. AskForCalories matches any numbers in the recognition result, completes adding food to the database, and speaks a prompt to notify the user when it is done.

c18.indd 457

c18.indd 457

5/10/2012 2:13:50 PM

5/10/2012 2:13:50 PM

458 x CHAPTER 18 EXECUTING VOICE ACTIONS

LISTING 18-7: Matches the number of calories and adds the new Food

public class AskForCalories implements VoiceActionCommand

{

private String foodToAdd;

private FtsIndexedFoodDatabase foodFts;

private VoiceActionExecutor executor;

private Context context;

public AskForCalories(Context context, VoiceActionExecutor executor,

FtsIndexedFoodDatabase foodFts, String foodToAdd)

{

this.context = context;

this.executor = executor;

this.foodFts = foodFts;

this.foodToAdd = foodToAdd;

}

@Override

public boolean interpret(WordList heard, float[] confidenceScores)

{

boolean understood = false;

// look for a number within "heard"

for (String word : heard.getWords())

{

if (isNumber(word))

{

String responseFormat =

context.getResources().getString(

R.string.food_add_result);

String response =

String.format(responseFormat, foodToAdd, word);

// insert food

foodFts.insertFood(foodToAdd, Float.parseFloat(word));

executor.speak(response);

understood = true;

}

}

return understood;

}

private boolean isNumber(String word)

{

boolean isNumber = false;

try

{

Integer.parseInt(word);

isNumber = true;

} catch (NumberFormatException e)

{

isNumber = false;

}

return isNumber;

}

}

c18.indd 458

c18.indd 458

5/10/2012 2:13:50 PM

5/10/2012 2:13:50 PM

Implementing Multi-Turn Voice Actions x 459

Implementing Multi-Turn RemoveFood

Users remove a food by saying “remove” and the name of a food. RemoveFood recognizes this by matching the “remove” command word and using the database to match the spoken food name.

Because the user cannot undo removing a food, RemoveFood starts a VoiceAlertDialog so the user can confi rm before deleting.

Listing 18-8 shows the RemoveFood implementation.

LISTING 18-8: Matches remove command words and confi rms before taking action

public class RemoveFood implements VoiceActionCommand

{

private static final String TAG = "RemoveFood";

private WordMatcher match;

private Context context;

private VoiceActionExecutor executor;

private FtsIndexedFoodDatabase foodFts;

private boolean relaxed;

public RemoveFood(Context context, VoiceActionExecutor executor,

FtsIndexedFoodDatabase foodFts, boolean relaxed)

{

String[] commandWords =

context.getResources().getStringArray(

R.array.food_remove_command);

if (relaxed)

{

// match "remove" if 3 of the 4 soundex characters match

match = new SoundsLikeThresholdWordMatcher(3, commandWords);

}

else

{

//exact match

match = new WordMatcher(commandWords);

}

this.context = context;

this.executor = executor;

this.foodFts = foodFts;

this.relaxed = relaxed;

}

public boolean interpret(WordList heard, float[] confidence)

{

Food toRemove = null;

//match "remove"

int matchIndex = match.isInAt(heard.getWords());

//match the food to remove

if (matchIndex >= 0)

{

 continues

c18.indd 459

5/10/2012 2:13:50 PM

460 x CHAPTER 18 EXECUTING VOICE ACTIONS

LISTING 18-8 (continued)

String freeText = heard.getStringAfter(matchIndex);

List<MatchedFood> match;

if (relaxed)

{

// for relaxed add prefix matching

match = foodFts.retrieveBestMatch(freeText, true, true, false);

}

else

{

match = foodFts.retrieveBestMatch(freeText, false, true, false);

}

if (match.size() > 0)

{

toRemove = match.get(0).getFood();

}

}

//start another VoiceAction

//to confirm before removing

if (toRemove != null)

{

final Food foodToRemove = toRemove;

final VoiceAlertDialog confirmDialog = new VoiceAlertDialog();

// add listener for positive response

// use relaxed matching to increase chance of understanding user

confirmDialog.addRelaxedPositive(new OnUnderstoodListener()

{

@Override

public void understood()

{

Log.d(TAG, "REMOVE!: " + foodToRemove);

FtsIndexedFoodDatabase.getInstance(context).removeFood(

foodToRemove.getName());

String toSayRemoved =

String.format(

context.getResources().getString(

R.string.food_remove_complete),

foodToRemove.getName());

executor.speak(toSayRemoved);

}

});

//prompt for the confirm VoiceAction

String toSay =

String.format(

context.getResources().getString(

R.string.food_remove_confirm_prompt),

foodToRemove.getName());

confirmDialog.setPrompt(toSay);

confirmDialog.setSpokenPrompt(toSay);

// if the user says anything else besides the yes words cancel

confirmDialog.setNotUnderstood(new OnNotUnderstoodListener()

{

c18.indd 460

c18.indd 460

5/10/2012 2:13:50 PM

5/10/2012 2:13:50 PM

Making a Best Guess x 461

@Override

public void notUnderstood(List<String> heard, int reason)

{

String toSayCancelled = context.getResources().getString(

R.string.voiceaction_cancelled_response);

executor.speak(toSayCancelled);

}

});

executor.execute(confirmDialog);

}

return (toRemove != null);

}

}

 Use Android resources to defi ne all prompts and command words. Also, use the

String.format syntax to construct any prompts. By doing so you can utilize

 Android’s resources mechanism to support multiple languages, even if they have

 different grammatical structure.

AddFood and RemoveFood are two VoiceActionCommands that implement the Food Edit voice

action. When successfully used, the commands allow the user to manipulate the food database.

However, this chapter has not yet described what the app can do to help the user succeed. The next two sections show how to reduce the chances of failure and how to respond if failure occurs so that it does not occur repeatedly.

MAKING A BEST GUESS

If an app cannot match what the user said exactly, perhaps it could make a best guess. When the guess is correct, the app will appear to work as normal. When incorrect, the user will have to wait as the app incorrectly responds. As long as the app guesses correct more times than not and incorrect responses don’t annoy the user too much, continuing to make a best guess is a good idea. An app can make a best guess by relaxing match strictness or by using domain knowledge to make an educated guess.

Relaxing Match Strictness

To highlight how relaxing match strictness works consider the FoodLookup

VoiceActionCommand. FoodLookup is an example of a VoiceActionCommand that is likely to

have trouble understanding what the user said. It needs to match dynamic command words,

which consist of any foods in the food database. There could be a large number of foods in the database and some could be hard to understand. Therefore, FoodLookup must do extra work

to fi nd a match. If it relies on matching that is too strict, the user will have to retry often due to FoodLookup not understanding.

To improve the chances of a match, FoodLookup performs multiple database searches, each with more relaxed search criteria. The more relaxed the criteria, the more the correct result relies on the database’s ranking mechanism. Additionally, the database indexes use FTS’s stemmer for all food c18.indd 461

c18.indd 461

5/10/2012 2:13:50 PM

5/10/2012 2:13:50 PM

462 x CHAPTER 18 EXECUTING VOICE ACTIONS

names. Chapter 17 describes using the FTS database and stemmers. Both these strategies allow FoodLookup to make a best guess and increase the number of times that it understands the user.

Listing 18-9 shows the code.

LISTING 18-9: Searches for a match with relaxed criteria if necessary

public class FoodLookup implements VoiceActionCommand

{

private static final String TAG = "FoodLookup";

private VoiceActionExecutor executor;

private FtsIndexedFoodDatabase foodFts;

private Context context;

public FoodLookup(Context context, VoiceActionExecutor executor,

FtsIndexedFoodDatabase foodFts)

{

this.context = context;

this.executor = executor;

this.foodFts = foodFts;

}

public boolean interpret(WordList heard, float[] confidence)

{

boolean success = false;

boolean or = false;

boolean prefix = false;

boolean phrase = true;

String said = heard.getSource();

List<MatchedFood> foods =

foodFts.retrieveBestMatch(said, prefix, or, phrase);

// phrase query

if (foods.size() == 0)

{

or = false;

prefix = false;

phrase = true;

foods = foodFts.retrieveBestMatch(said, prefix, or, phrase);

}

// word query

if (foods.size() == 0)

{

or = false;

prefix = false;

phrase = false;

foods = foodFts.retrieveBestMatch(said, prefix, or, phrase);

}

// word or query

if (foods.size() == 0)

{

or = true;

prefix = false;

c18.indd 462

5/10/2012 2:13:51 PM

Making a Best Guess x 463

phrase = false;

foods = foodFts.retrieveBestMatch(said, prefix, or, phrase);

}

// word, prefix, or query

if (foods.size() == 0)

{

or = true;

prefix = true;

phrase = false;

foods = foodFts.retrieveBestMatch(said, prefix, or, phrase);

}

if (foods.size() > 0)

{

Food heardFood = foods.get(0).getFood();

String resultFormat =

context.getResources().getString(

R.string.food_lookup_result);

String toSay =

String.format(resultFormat, heardFood.getName(),

heardFood.getFormattedCalories());

Log.d(TAG, "heard a food " + heardFood);

success = true;

executor.speak(toSay);

}

return success;

}

}

 code snippet FoodLookup.java

FoodLookup performs a series of queries in the following order:

1.

Phrase query: Matches the entire recognition phrase with the foods in the database.

2.

Word query: Relaxes the phrase requirement, but all words must still match.

3.

Word or query: Turns the query from an AND to an OR query.

4. Word,

prefi x, or query: Adds prefi x matching.

Beyond these relaxations, the code could use the same queries on phonetic forms of the words. This would require creating and populating a new database fi eld or using Lucene’s indexing mechanism.

The result of these multiple database searches is a VoiceActionCommand that makes a best guess at what the user says using functions available from the database.

Relaxing Strictness Between Commands

FoodLookup shows an example of a single command that relaxes its search criteria. When an app has a VoiceAction with multiple commands, you may prefer that it try all possible commands with strict criteria and then try again with more relaxed criteria only if necessary. That way, each command has an equal chance to match before resorting to relaxed matching. To implement this, your c18.indd 463

c18.indd 463

5/10/2012 2:13:51 PM

5/10/2012 2:13:51 PM

464 x CHAPTER 18 EXECUTING VOICE ACTIONS

app can create multiple versions of a VoiceCommandAction, each with different levels of relaxed matching, and call them in order.

Listing 18-10 shows code that creates the Food Edit voice action. It includes two instances of addCommand and removeCommand with different values of relaxed. The commands that have relaxed set to true use less strict matching criteria. Including both in the list of VoiceActionCommands causes the voiceAction to match strict add and remove fi rst. If it cannot match the strict versions, it then tries the relaxed versions.

LISTING 18-10: Creates a VoiceAction that uses two levels of matching strictness

private VoiceAction makeFoodEdit()

{

FtsIndexedFoodDatabase foodDb =

FtsIndexedFoodDatabase

.getInstance(MultiTurnFoodDialogActivity.this);

// match it with two levels of strictness

boolean relaxed = false;

VoiceActionCommand cancelCommand = new CancelCommand(this, executor);

VoiceActionCommand removeCommand =

new RemoveFood(this, executor, foodDb, relaxed);

VoiceActionCommand addCommand =

new AddFood(this, executor, foodDb, relaxed);

relaxed = true;

VoiceActionCommand removeCommandRelaxed =

new RemoveFood(this, executor, foodDb, relaxed);

VoiceActionCommand addCommandRelaxed =

new AddFood(this, executor, foodDb, relaxed);

VoiceAction voiceAction =

new MultiCommandVoiceAction(Arrays.asList(cancelCommand,

addCommand, removeCommand, addCommandRelaxed,

removeCommandRelaxed));

// don't retry

voiceAction.setNotUnderstood(new WhyNotUnderstoodListener(this,

executor, false));

final String EDIT_PROMPT =

getResources().getString(R.string.food_edit_prompt);

// no spoken prompt

voiceAction.setPrompt(EDIT_PROMPT);

return voiceAction;

}

Making an Educated Guess

Beyond relaxing matching criteria, your app may be able to make an intelligent guess if it takes into account the other information it knows. For example, a calendar app might guess what the c18.indd 464

c18.indd 464

5/10/2012 2:13:51 PM

5/10/2012 2:13:51 PM

Making a Best Guess x 465

user meant based on the current date. How you use such information is dependent on your app.

However, it may allow your app to make an educated guess at what the user said when your app has no other way of guessing.

For example, in Digital Recipe Sidekick’s voice-controlled recipe reader I utilized knowledge of the user’s current progress in the recipe to determine how to respond in ambiguous situations. One example of this is what I call the “green beans problem.”

The “green beans problem” occurs when the app does not know what kind of beans the user is referring to in a recipe that has multiple bean types. For example, minestrone soup has three kinds of beans: kidney beans, white beans, and green beans. If a user says “beans,” to which bean does it refer?

The app could report three answers — one for each bean type — but it could do better because the app knows which step in the recipe the user is most likely on. For example, if the app thinks the user is cooking a step that contains green beans, it can guess that the user meant “green beans” and not the other two.

In the food dialogue example you might use knowledge of what foods a user dislikes to make an educated guess during a food lookup. For example, if the recognizer only recognized “green,”

the food database would return “Green Beans,” “Green Cabbage,” and “Green Onion” and

FoodLookup would pick the fi rst to speak to the user. If the app knows that the user does not like beans or onions, it can guess that the user meant cabbage. You could use code such as the code below to fi lter food lookup results if there are more than one. The code returns the fi rst food, unless it is part of the foods that the user dislikes or if the user dislikes all the recognized foods.

private static final Set<String> foodsDislike;

static

{

foodsDislike = new HashSet<String>();

foodsDislike.add("Green Onion");

foodsDislike.add("Green Beans");

}

public static Food pickMostLikelyFood(List<Food> possibleFoods)

{

if (possibleFoods.size() == 0)

{

return null;

}

Food mostLikely = possibleFoods.get(0);

for (Food food : possibleFoods)

{

if (!foodsDislike.contains(food.getName()))

{

mostLikely = food;

break;

}

}

return mostLikely;

}

c18.indd 465

c18.indd 465

5/10/2012 2:13:51 PM

5/10/2012 2:13:51 PM

466 x CHAPTER 18 EXECUTING VOICE ACTIONS

A best guess can be a way to disambiguate when there are multiple possible matches and to respond when matching is diffi cult. However, there are scenarios when a best guess is not possible such as when recognition failure occurs because of external factors. The next section describes how to diagnose and respond in those situations.

RESPONDING WHEN RECOGNITION FAILS

If an active voice action cannot match any of the recognition results, it fails. In such cases, your app should report failure to the user while providing feedback, if possible, about why it thinks it could not understand. The feedback can help the user be more successful in the future. Without it, a user may continue to make the same mistakes repeatedly and become frustrated.

It is important that an app be conservative when diagnosing why recognition failed. It should send feedback only if it is sure the app will be correct. The trouble is that if an app continually reports feedback to users, they will eventually ignore it, or even worse, become annoyed and uninstall your app.

An app might make several responses when recognition failure occurs:

‰

“That is not a command”: The user said something accurate, but it wasn’t a command.

‰

“I didn’t hear you well”: The user spoke, but the recognizer was not able to clearly recognize what the user said.

‰

“I don’t understand, please try again”: The app cannot determine reliably why it did not understand what the user said. Optionally, the app can show the speech prompt again immediately without requiring the user to reactivate speech recognition.

To handle recognition failure, MultiCommandVoiceAction diagnoses why and

WhyNotUnderstoodListener reports feedback to the user. MultiCommandVoiceAction diag-

noses the cause of the failure by examining the highest confi dence score from the EXTRA_

CONFIDENCE_SCORES recognizer output and using the thresholds shown in Table 18-2. You saw

MultiCommandVoiceAction in Listing 18-3. Listing 18-11 shows WhyNotUnderstoodListener.

Listing 18-12 shows the OnNotUnderstoodListener interface.

TABLE 18-2: Which Confi dence Scores Result in which Diagnosis and Feedback

DIAGNOSIS

CONFIDENCE RANGE

FEEDBACK

Inaccurate recognition

0.0 to 0.3

I did not understand because I did not hear

you well.

Don’t understand

0.3 to 0.9

I did not understand.

Not a command

0.9 to 1.0

<most likely recognition> is not a command.

c18.indd 466

c18.indd 466

5/10/2012 2:13:51 PM

5/10/2012 2:13:51 PM

Responding When Recognition Fails x 467

LISTING 18-11: Determines how to reply if recognition failed

public class WhyNotUnderstoodListener implements OnNotUnderstoodListener

{

private Context context;

private boolean retry;

private VoiceActionExecutor executor;

public WhyNotUnderstoodListener(Context context,

VoiceActionExecutor executor, boolean retry)

{

this.context = context;

this.executor = executor;

this.retry = retry;

}

@Override

public void notUnderstood(List<String> heard, int reason)

{

String prompt;

switch (reason)

{

case OnNotUnderstoodListener.REASON_INACCURATE_RECOGNITION:

prompt =

context.getResources().getString(

R.string.voiceaction_inaccurate);

break;

case OnNotUnderstoodListener.REASON_NOT_A_COMMAND:

String firstMatchingWord = heard.get(0);

String promptFormat =

context.getResources().getString(

R.string.voiceaction_not_command);

prompt = String.format(promptFormat, firstMatchingWord);

break;

case OnNotUnderstoodListener.REASON_UNKNOWN:

default:

prompt =

context.getResources().getString(

R.string.voiceaction_unknown);

break;

}

if (retry)

{

String retryPrompt =

context.getResources().getString(

R.string.voiceaction_retry);

prompt = prompt + retryPrompt;

executor.reExecute(prompt);

 continues

c18.indd 467

c18.indd 467

5/10/2012 2:13:51 PM

5/10/2012 2:13:51 PM

468 x CHAPTER 18 EXECUTING VOICE ACTIONS

LISTING 18-11 (continued)

} else

{

executor.speak(prompt);

}

}

}

LISTING 18-12: Called when a VoiceAction fails to match

public interface OnNotUnderstoodListener

{

/**

* no explanation

*/

public static final int REASON_UNKNOWN = 0;

/**

* Recognition was inaccurate, perhaps because of poor audio quality

*/

public static final int REASON_INACCURATE_RECOGNITION = 1;

/**

* Recognition was accurate, but no match was found

*/

public static final int REASON_NOT_A_COMMAND = 2;

/**

* didn't understand the user's utterance for a particular reason

* and provide some contextual information to construct useful feedback

*/

public void notUnderstood(List<String> heard, int reason);

}

The following sections describe each diagnosis in greater detail.

Determining Not a Command

If users say something that has high recognition confi dence, they may be saying something that is not a command. The high confi dence means they are likely speaking clearly enough for the recognizer to understand. This means that if the voice action didn’t match what the user said, the cause is not likely due to inaccurate recognition. Instead it is likely because the user is saying the wrong words.

Also, because the user is speaking clearly, the recognizer will likely return similar results when the user retries. This can lead to a frustrating situation where the user repeats the same command over and over with the speech recognizer recognizing it each time. Because the user is speaking something that is not a real command, the app will never recognize it.

To avoid this trouble, your app should tell users that they are saying something that is not a command. Two possible ways to provide feedback are:

c18.indd 468

c18.indd 468

5/10/2012 2:13:51 PM

5/10/2012 2:13:51 PM

Summary x 469

‰

Correct the user: An app could tell users what they said is not a command. To do so, it must pick one of the possible recognitions as the text of what the user meant to say, and then proceed to say that the recognized text is not a command. The problem is that, often, the fi rst recognition result is not what the user was trying to say. In such cases, the feedback will not contain the words that the user said.

‰

Instruct the user: An app could tell the user what the possible commands are. This avoids the problem with correcting the user, but could lead to a long lecture that users will fi nd annoying.

Using either of these two feedback approaches, if the recognizer recognizes “broccoli” as “brooklyn, rocklin, or rockledge” in that order, the app can either respond “Brooklyn is not a command” or

“Please say a food name.”

To determine if a user spoke a word that is not a command, MultiCommandVoiceAction

checks if the highest confi dence the recognizer returned is greater than 0.9. If it is,

WhyNotUnderstoodListener tells the user that the fi rst possible recognition is not a command.

Determining Inaccurate Recognition

Inaccurate recognition could occur for several reasons. Inaccurate recognition could result if the app received poor-quality audio. It also could occur because the user did not use proper speech hygiene — by yelling or over-pronouncing, for example. Another reason could be that the user is in a noisy environment and the interference from the environment reduced the recognizer’s accuracy. Whatever the reason, telling the user that inaccurate recognition was the cause of failure may improve success in subsequent tries because if the user speaks more correctly the next time, recognition accuracy will improve.

To check for inaccurate recognition, MultiCommandVoiceAction checks if the highest confi dence the recognizer returned is below a threshold of 0.3.

Not Understanding

If the confi dence scores are in between the thresholds for the inaccurate recognition and not a command diagnoses, the app cannot determine why the recognition failed and must report failure for an unknown reason. One way to potentially help users recover is to restart the voice action. Trying again automatically can be useful when it takes considerable time to activate speech. Also, if users are in the middle of a multi-turn voice action, restarting the current turn is useful because they might get frustrated if failure causes them to have to start all over. On the other hand, a speech recognition prompt that refuses to stop asking can make users upset. To avoid this situation, you should include a way for users to cancel the voice action.

SUMMARY

This chapter armed you with all the code you need to utilize the matching techniques you learned in Chapter 17 to create a modular, user-friendly VUI. Using the techniques this chapter describes, your app can defi ne and execute multi-turn voice action. To improve usability when the speech recognizer c18.indd 469

c18.indd 469

5/10/2012 2:13:51 PM

5/10/2012 2:13:51 PM

470 x CHAPTER 18 EXECUTING VOICE ACTIONS

recognizes poorly, this chapter showed you how an app can make a best guess and give useful feedback about why recognition failed. This chapter also highlighted how you can further improve usability by adding other features to your VUI such as allowing the user to cancel.

In designing a VUI, one usability issue remains to be addressed by this part: how to activate speech recognition. Using a button to start a voice action can be limiting for some tasks. To use Android’s TTS and speech recognition capabilities in a wider variety of scenarios, it is sometimes useful to not require the user to touch a button to activate it. Fortunately, there are many other ways an app can activate speech, beyond just a button press. Chapter 19 describes several techniques you can use to create hands-free and eyes-free VUIs.

c18.indd 470

c18.indd 470

5/10/2012 2:13:52 PM

5/10/2012 2:13:52 PM

19

Implementing Speech Activation

WHAT’S IN THIS CHAPTER?

‰

Activating speech using Android’s sensors and continuous speech

recognition

‰

Persistently running speech activation using a Service

The fi rst thing a user must do to use speech recognition is to tell the app to start recognizing. One way the user could do it, which the previous chapters relied on, is to press a button.

However, pressing a button assumes the user is looking at the screen and can touch it. This is not always the case. For certain tasks, like sending e-mail while driving, users need to activate speech recognition hands-free and eyes-free. In such cases, an app needs different speech activation techniques beyond just a button. Fortunately, Android’s sensors provide you with a wide variety of ways to implement speech activation.

In addition to deciding how your app implements speech activation, you must decide when the user can activate it. Your users may need to activate speech only while using the app, or they may need to activate speech at any time, even if the app is not running.

This chapter presents four speech activation implementations, summarized in Table 19-1, that use the sensor techniques discussed in other chapters of this book. It also describes how to run speech activation persistently using a Service.

TABLE 19-1: Four Diff erent Ways to Use Android Sensors for Speech Activation

NAME

TECH

HOW

Movement

Physical Sensors

Move phone with suffi

cient acceleration

Clap

Microphone

Make a single clap or loud noise

Speak Hello

Direct Speech Recognition

Say “hello”

NFC Scan

NFC

Scan an NFC with a certain MIME type

c19.indd 471

c19.indd 471

5/10/2012 1:58:54 PM

5/10/2012 1:58:54 PM

472 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

TRY THIS

You can try different speech activation approaches by using the Try Speech button

and changing the activation method to other options. You can also use the Write

Speech Activation Tag menu option to write an NFC that activates speech when

you scan it.

IMPLEMENTING SPEECH ACTIVATION

To implement speech activation, an app needs to listen and then start speech recognition if it detects an activation. This section describes the issues involved in starting speech recognition in response to a detected activation. It describes four speech activator implementations that use the Android sensors and concepts from previous chapters. This section also describes how to use these implementations within an Activity.

The speech activators described in this chapter enable the user to activate speech in various ways.

Each requires a slightly different implementation. Most of the speech activators use the callback mechanism specifi ed by the SpeechActivator interface, and some use a sensor-specifi c callback such as MovementDetectionListener. Listing 19-1 shows the SpeechActivator interface. The

behavior of SpeechActivator is:

‰

External code calls detectActivation().

‰

SpeechActivator starts listening for a single speech activation.

‰

If external code calls stop(), the SpeechActivator stops listening and calls

SpeechActivationListener.activated(false).

‰

If the SpeechActivator detects an activation, it calls SpeechActivationListener.

activated(true) and stops.

‰

If SpeechActivator has an error or otherwise stops it calls SpeechActivationListener.

activated(false).

LISTING 19-1: Interface for a class that listens for speech activation

public interface SpeechActivator

{

/**

* listen for speech activation, when heard, call a {@link SpeechActivationListener}

* and stop listening

*/

public void detectActivation();

/**

* stop waiting for activation.

*/

public void stop();

}

c19.indd 472

5/10/2012 1:58:59 PM

Implementing Speech Activation x 473

Starting Speech Recognition

After a SpeechActivator detects an activation, the app must begin the speech recognition process.

However, not all users will be able to see the screen when this occurs. This presents a diffi culty: the app must make users aware that their speech activation was successful and that the app is now recording speech. This diffi culty is complicated by two time delays that occur between when the user activates speech and when the app starts recording. Additionally, the time delays have different lengths depending on the device and its current workload.

The fi rst time delay occurs after the user successfully activates speech and before the app speaks a prompt. The prompt is useful to tell users that their speech activation was successful and that the app is about to start speech recognition, but it is not required. Until users hear the prompt, they do not have any way to know that their activation was successful. This could result in users activating speech multiple times while waiting to hear the prompt. To avoid multiple activations, code that calls the SpeechActivator implementations must respond to only one activation at a time.

The second time delay occurs after the app decides to start the speech recognizer. It occurs after the app fi nishes speaking the prompt and before recognition starts. The delay can result in the user speaking before the app is listening. Unfortunately, it is not easy to address this problem. Here are two ways an app might do it:

‰

Train the user to wait a short amount of time after the prompt completes before speaking.

‰

Make your voice commands long enough so that if the user happens to speak only part of the

command, your app can still recognize it.

Delays inserted within voice commands are periods of awkward inactivity that are not intuitive for the user because they do not occur in normal speech. For example, a person might greet someone else by saying, “Hi, how are you?” When interacting with an app, a user might say, “Hi, send an e-mail” where “Hi” activates the speech recognition and “send an e-mail” is the voice command.

However, when interacting with an Android device, the user has to say “Hi, (one second pause) send an e-mail” to give the app enough time to detect a speech activation and start speech recognition.

This dialogue between the user and the app can be even slower if there is a prompt. Using a prompt, the dialogue would be:

User: Hi

(one second pause)

App: Say a command

(one second pause)

User: Send an e-mail

The dialogue is awkward because if the user were interacting with another person, neither of the two pauses would exist. Prompts are usually necessary to help remind users what they can say, so most likely your app must have both of these pauses and the awkward speech pattern it causes.

Your code has to bring users through the process of activating speech, waiting through the

app’s delays, and fi nally, recording speech for recognition. Apps could handle this in various ways. SpeechActivationLauncher, shown in Listing 19-2, is an example of one way to do it.

c19.indd 473

c19.indd 473

5/10/2012 1:58:59 PM

5/10/2012 1:58:59 PM

474 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

SpeechActivator implementations can use it to trigger speech recognition from an Intent.

SpeechActivationLauncher relies on a prompt to tell the user that speech recognition is about to occur and shows recognition results by forwarding them to SpeechRecognitionResultsActivity.

The implementation uses the abstract SpeechRecognizingAndSpeakingActivity to handle using

speech recognition and TextToSpeech.

SpeechRecognitionLauncher processes an incoming Intent with several steps:

1. Wait

for

TextToSpeech initialization.

2.

Say a prompt.

3.

When the prompt completes, TextToSpeech calls onDone(). onDone() starts speech

recognition.

4.

When Android fi nishes recognizing speech it calls onActivityResult(), which forwards the

recognition results to SpeechRecognitionResultsActivity for display.

5.

onActivityResult() calls finish() to remove the SpeechActivationLauncher

Activity from the user’s view.

LISTING 19-2: Speaks a prompt and then sends results to SpeechRecognitionResultsActivity for display

public class SpeechRecognitionLauncher extends

SpeechRecognizingAndSpeakingActivity

{

private static final String TAG = "SpeechRecognitionLauncher";

private static final String ON_DONE_PROMPT_TTS_PARAM = "ON_DONE_PROMPT";

@Override

protected void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

}

@Override

public void onSuccessfulInit(TextToSpeech tts)

{

super.onSuccessfulInit(tts);

prompt();

}

private void prompt()

{

Log.d(TAG, "Speak prompt");

getTts().speak(getString(R.string.speech_launcher_prompt),

TextToSpeech.QUEUE_FLUSH,

TextToSpeechUtils.makeParamsWith(ON_DONE_PROMPT_TTS_PARAM));

}

/**

c19.indd 474

5/10/2012 1:58:59 PM

Implementing Speech Activation x 475

* super class handles registering the UtteranceProgressListener

* and calling this

*/

@Override

public void onDone(String utteranceId)

{

if (utteranceId.equals(ON_DONE_PROMPT_TTS_PARAM))

{

Intent recognizerIntent =

new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);

recognizerIntent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,

RecognizerIntent.LANGUAGE_MODEL_WEB_SEARCH);

recognizerIntent.putExtra(RecognizerIntent.EXTRA_PROMPT,

getString(R.string.speech_launcher_prompt));

recognize(recognizerIntent);

}

}

@Override

protected void

onActivityResult(int requestCode, int resultCode, Intent data)

{

super.onActivityResult(requestCode, resultCode, data);

if (requestCode == VOICE_RECOGNITION_REQUEST_CODE)

{

if (resultCode == RESULT_OK)

{

Intent showResults = new Intent(data);

showResults.setClass(this,

SpeechRecognitionResultsActivity.class);

startActivity(showResults);

}

}

finish();

}

@Override

protected void receiveWhatWasHeard(List<String> heard,

float[] confidenceScores)

{

// satisfy abstract class, this class handles the results directly

// instead of using this method

}

}

 code snippet SpeechRecognitionLauncher.java

Implementing Speech Activation within an Activity

Using a SpeechActivator in an Activity requires several features to make it work in the way users expect. The Activity has to run SpeechActivator asynchronously so the user can perform other tasks and it must not allow the user to accidently activate speech recognition twice.

c19.indd 475

c19.indd 475

5/10/2012 1:59:00 PM

5/10/2012 1:59:00 PM

476 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

Additionally, the Activity has to manage lifecycle events to handle when the user switches away from the Activity while it is running a SpeechActivator. If this occurs, the Activity needs to stop the SpeechActivator while the user is away and restart it when he or she returns. The SpeechActivatorStartStop class, shown in Listing 19-3, implements the required code.

First, SpeechActivatorStartStop ensures the user cannot accidently activate speech recogni-

tion twice by allowing only one SpeechActivator to run at a time. It also makes sure that

it does not execute its complete activated() method multiple times for a single intended

activation. SpeechActivatorStartStop accomplishes these by using the isListening-

 ForActivation state variable. The code checks it before starting a SpeechActivator in the startActivator() method and before responding to an activation in the activated() method.

SpeechActivatorStartStop needs the check within activated() to make it more robust to

errors that could occur due to the asynchronous nature of running the SpeechActivator. The

check ensures that if a SpeechActivator happens to call activated() twice before it stops itself, SpeechActivatorStartStop will still respond only once. Also, the check handles the race condition that can occur when the SpeechActivator is in the process of calling activated() while the app has intended to stop it. This could occur, for example, when a user hits the Home button and pressing the Home button makes enough sound to trigger a sound based SpeechActivator. In this example, the SpeechActivator may call activated() while the SpeechActivatorStartStop is in

the middle of shutting down.

Second, SpeechActivatorStartStop starts and stops an active SpeechActivator accord-

ing to the appropriate Activity lifecycle events. It does this by remembering whether or not the SpeechActivator was running when it was paused or destroyed. The onPause() method

stores this state within the wasListeningForActivation variable. onResume() restarts the

SpeechActivator depending on the value of wasListeningForActivation. If Android destroys

SpeechActivatorStartStop, the onSaveInstanceState() and onRestoreInstanceState()

methods work to save and restore the wasListeningForActivation value so that onResume() can suffi ciently restart the SpeechActivator if necessary.

LISTING 19-3: Activity to execute a SpeechActivator

public class SpeechActivatorStartStop extends Activity implements

SpeechActivationListener

{

private static final String TAG = "SpeechActivatorStartStop";

/**

* store if currently listening

*/

private boolean isListeningForActivation;

/**

* if paused, store what was happening so that onResume can restart it

*/

private boolean wasListeningForActivation;

private SpeechActivator speechActivator;

c19.indd 476

c19.indd 476

5/10/2012 1:59:00 PM

5/10/2012 1:59:00 PM

Implementing Speech Activation x 477

/**

* for saving {@link #wasListeningForActivation}

* in the saved instance state

*/

private static final String WAS_LISTENING_STATE = "WAS_LISTENING";

@Override

protected void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

setContentView(R.layout.speechactivationstart_stop);

isListeningForActivation = false;

speechActivator = new MovementActivator(this, this);

// start and stop buttons

Button start = (Button) findViewById(R.id.btn_start);

start.setOnClickListener(new View.OnClickListener()

{

@Override

public void onClick(View v)

{

startActivator();

}

});

Button stop = (Button) findViewById(R.id.btn_stop);

stop.setOnClickListener(new View.OnClickListener()

{

@Override

public void onClick(View v)

{

stopActivator();

}

});

}

private void startActivator()

{

if (isListeningForActivation)

{

Toast.makeText(this, "Not started: already started",

Toast.LENGTH_SHORT).show();

Log.d(TAG, "not started, already started");

// only activate once

return;

}

if (speechActivator != null)

{

isListeningForActivation = true;

Toast.makeText(this, "Started movement activator",

Toast.LENGTH_SHORT).show();

Log.d(TAG, "started");

 continues

c19.indd 477

c19.indd 477

5/10/2012 1:59:00 PM

5/10/2012 1:59:00 PM

478 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

LISTING 19-3 (continued)

speechActivator.detectActivation();

}

}

private void stopActivator()

{

if (speechActivator != null)

{

Toast.makeText(this, "Stopped", Toast.LENGTH_SHORT).show();

Log.d(TAG, "stopped");

speechActivator.stop();

}

isListeningForActivation = false;

}

@Override

public void activated(boolean success)

{

Log.d(TAG, "activated...");

//don't allow multiple activations

if (!isListeningForActivation)

{

Toast.makeText(this, "Not activated because stopped",

Toast.LENGTH_SHORT).show();

return;

}

if (success)

{

Toast.makeText(this, "Activated, no longer listening",

Toast.LENGTH_SHORT).show();

//start speech recognition here

}

else

{

Toast.makeText(this, "activation failed, no longer listening",

Toast.LENGTH_SHORT).show();

}

isListeningForActivation = false;

}

@Override

protected void onPause()

{

super.onPause();

Log.d(TAG, "ON PAUSE stop");

// save before stopping

wasListeningForActivation = isListeningForActivation;

stopActivator();

}

c19.indd 478

c19.indd 478

5/10/2012 1:59:00 PM

5/10/2012 1:59:00 PM

Implementing Speech Activation x 479

@Override

protected void onResume()

{

super.onResume();

Log.d(TAG, "ON RESUME was listening: " + wasListeningForActivation);

if (wasListeningForActivation)

{

startActivator();

}

}

// Note: onDestroy not needed since the activator was

// stopped during onPause()

// if the activity was destroyed these two methods are needed

// to restore wasListening

@Override

protected void onSaveInstanceState(Bundle outState)

{

outState.putBoolean(WAS_LISTENING_STATE, isListeningForActivation);

Log.d(TAG, "saved state: " + isListeningForActivation);

super.onSaveInstanceState(outState);

}

@Override

protected void onRestoreInstanceState(Bundle savedInstanceState)

{

wasListeningForActivation =

savedInstanceState.getBoolean(WAS_LISTENING_STATE);

Log.d(TAG, "restored state: " + wasListeningForActivation);

super.onRestoreInstanceState(savedInstanceState);

}

}

SpeechActivatorStartStop shows how to run a SpeechActivator within an Activity. The next

several sections discuss how to implement various SpeechActivators.

Activating Speech Recognition with Movement Detection

To activate speech recognition using movement, users move their device with suffi cient acceleration.

Movement requires hands to operate, but users do not have to touch the screen. Therefore, speech activation using movement can be faster than activating using a button because it does not require a user’s eyes to fi nd the button on the screen. The user can just pick up the device and move it.

To implement movement detection, you need several classes:

‰

MovementActivator (Listing 19-4): Implements SpeechActivator.

‰

MovementDetectionListener (Listing 19-5): Callback from AccelerationEventListener.

‰

MovementDetector (see Chapter 8): Starts and stops the sensors just as in

DetermineMovementActivity from Chapter 8.

‰

AccelerationEventListener (see Chapter 8): Processes the sensor data to determine if

movement occurred.

c19.indd 479

c19.indd 479

5/10/2012 1:59:00 PM

5/10/2012 1:59:00 PM

480 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

Executing these classes requires several steps:

1.

External code calls MovementActivator.detectActivation().

2.

MovementActivator starts MovementDetector.

3.

MovementDetector starts an AccelerationEventListener.

4. When

AccelerationEventListener detects movement, it calls back to

MovementActivator via its MovementDetectionListener interface.

5.

MovementActivator stops detecting movement and calls back to its

SpeechActivationListener.

LISTING 19-4: Detects speech activation based on movement

public class MovementActivator implements SpeechActivator,

MovementDetectionListener

{

private MovementDetector detector;

private SpeechActivationListener resultListener;

public MovementActivator(Context context,

SpeechActivationListener resultListener)

{

detector = new MovementDetector(context);

this.resultListener = resultListener;

}

@Override

public void detectActivation()

{

detector.startReadingAccelerationData(this);

}

@Override

public void stop()

{

detector.stopReadingAccelerationData();

}

@Override

public void movementDetected(boolean success)

{

stop();

resultListener.activated(success);

}

}

LISTING 19-5: Callback for when AccelerationEventListener detects movement

public interface MovementDetectionListener

{

public void movementDetected(boolean success);

}

c19.indd 480

c19.indd 480

5/10/2012 1:59:00 PM

5/10/2012 1:59:00 PM

Implementing Speech Activation x 481

Activating Speech Recognition with the Microphone

To activate speech recognition using the microphone, an app can use the clapper (described in Chapter 14) to detect when the user makes a single clap or makes another loud noise. The clapper is a reliable way to activate speech because it is easy for the user to activate. However, it can be vulner-able to false triggering because other unintended loud noises may trigger it.

The clapper must run asynchronously to continuously check the MediaRecorder to see if any

loud sounds occurred. Therefore, you need two classes: ClapperActivator to implement the

SpeechActivator interface, and ClapperSpeechActivationTask to execute the clapper asynchro-

nously using an AsyncTask. When the task completes, it calls the SpeechActivationListener callback. Listings 19-6 and 19-7 show both implementations.

LISTING 19-6: Detects speech activation by starting a ClapperSpeechActivationTask

public class ClapperActivator implements SpeechActivator

{

private static final String TAG = "ClapperActivator";

private ClapperSpeechActivationTask activeTask;

private SpeechActivationListener listener;

private Context context;

public ClapperActivator(Context context, SpeechActivationListener listener)

{

this.context = context;

this.listener = listener;

}

@Override

public void detectActivation()

{

Log.d(TAG, "started clapper activation");

activeTask = new ClapperSpeechActivationTask(context, listener);

activeTask.execute();

}

@Override

public void stop()

if (activeTask != null)

{

activeTask.cancel(true);

}

}

LISTING 19-7: Reports speech activation when it hears a single clap

public class ClapperSpeechActivationTask extends AsyncTask<Void, Void, Boolean>

{

private static final String TAG = "ClapperSpeechActivationTask";

 continues

c19.indd 481

5/10/2012 1:59:00 PM

482 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

LISTING 19-7 (continued)

private SpeechActivationListener listener;

private Context context;

private MaxAmplitudeRecorder recorder;

private static final String TEMP_AUDIO_DIRECTORY = "tempaudio";

/**

* time between amplitude checks

*/

private static final int CLIP_TIME = 1000;

public ClapperSpeechActivationTask(Context context,

SpeechActivationListener listener)

{

this.context = context;

this.listener = listener;

}

@Override

protected void onPreExecute()

{

super.onPreExecute();

}

@Override

protected Boolean doInBackground(Void... params)

{

boolean heard = detectClap();

return heard;

}

/**

* start detecting a clap, return when done

*/

private boolean detectClap()

{

SingleClapDetector clapper =

new SingleClapDetector(SingleClapDetector.AMPLITUDE_DIFF_MED);

Log.d(TAG, "recording amplitude");

String audioStorageDirectory =

context.getExternalFilesDir(TEMP_AUDIO_DIRECTORY)

+ File.separator + "audio.3gp";

// pass in this so recording can stop if this task is canceled

MaxAmplitudeRecorder recorder =

new MaxAmplitudeRecorder(CLIP_TIME, audioStorageDirectory,

clapper, this);

c19.indd 482

c19.indd 482

5/10/2012 1:59:00 PM

5/10/2012 1:59:00 PM

Implementing Speech Activation x 483

// start recording

boolean heard = false;

try

{

heard = recorder.startRecording();

} catch (IOException io)

{

Log.e(TAG, "failed to record", io);

heard = false;

} catch (IllegalStateException se)

{

Log.e(TAG, "failed to record, recorder not setup properly", se);

heard = false;

} catch (RuntimeException se)

{

Log.e(TAG, "failed to record, recorder already being used", se);

heard = false;

}

return heard;

}

@Override

protected void onPostExecute(Boolean result)

{

listener.activated(result);

super.onPostExecute(result);

}

@Override

protected void onCancelled()

{

Log.d(TAG, "cancelled");

super.onCancelled();

}

}

 code snippet ClapperSpeechActivationTask.java

Activating Speech Recognition with

Continuous Speech Recognition

To activate speech recognition using continuous speech recognition, the app continuously listens for the user to speak a certain target word, such as “hello.” Continuous speech recognition is valuable because saying a certain word is a very specifi c sound. All other sounds and noise will not cause false triggers. However, it may be hard for users to trigger because they must speak the target words such that the app hears it clearly. If users are using the app eyes-free or hands-free, they may be far from the device or the device may be in their pocket. If so, the audio recording quality might be poor and the speech recognizer could have a hard time recognizing target words.

c19.indd 483

c19.indd 483

5/10/2012 1:59:00 PM

5/10/2012 1:59:00 PM

484 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

Implementation requires using direct speech recognition to record speech without showing the speech recognizer dialog. Chapter 16 provides more details about implementing direct speech recognition using SpeechRecognizer. However, to use direct speech recognition for speech activation, an app needs to extend the example from Chapter 16 further so that the recognition occurs continuously until the app hears a certain word rather than stopping after one recording.

Listing 19-8 shows the code for WordActivator, which implements speech activation using continuous speech recognition. The code has several features to help match recognized speech with target words and to keep it running:

‰

Uses indexed matching: SoundsLikeWordMatcher matches any recognition result that

sounds like the target word.

‰

Keeps restarting: The receiveWhatWasHeard() method restarts the speech recognizer if no matches occur. Because the recognizer runs only for a fi xed amount of time before stopping and returning results, receiveWhatWasHeard() needs to restart recognition in order to make

it run continuously.

‰

Restarts on certain errors: WordActivator cannot recover from some SpeechRecognizer

errors, but when others occur the speech recognizer can continue. These errors may happen

when the user does not speak well or does not speak at all. Therefore, the onError() method restarts speech recognition when the recognizer fi nds no matches or when the recognizer

times out.

LISTING 19-8: Detects speech activation by continuously listening for target words

public class WordActivator implements SpeechActivator, RecognitionListener

{

private static final String TAG = "WordActivator";

private Context context;

private SpeechRecognizer recognizer;

private SoundsLikeWordMatcher matcher;

private SpeechActivationListener resultListener;

public WordActivator(Context context,

SpeechActivationListener resultListener, String... targetWords)

{

this.context = context;

this.matcher = new SoundsLikeWordMatcher(targetWords);

this.resultListener = resultListener;

}

@Override

public void detectActivation()

{

recognizeSpeechDirectly();

}

private void recognizeSpeechDirectly()

c19.indd 484

5/10/2012 1:59:00 PM

Implementing Speech Activation x 485

{

Intent recognizerIntent =

new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);

recognizerIntent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,

RecognizerIntent.LANGUAGE_MODEL_WEB_SEARCH);

// accept partial results if they come

recognizerIntent.putExtra(RecognizerIntent.EXTRA_PARTIAL_RESULTS, true);

SpeechRecognitionUtil.recognizeSpeechDirectly(context,

recognizerIntent, this, getSpeechRecognizer());

}

public void stop()

{

if (getSpeechRecognizer() != null)

{

getSpeechRecognizer().stopListening();

getSpeechRecognizer().cancel();

getSpeechRecognizer().destroy();

}

}

@Override

public void onResults(Bundle results)

{

Log.d(TAG, "full results");

receiveResults(results);

}

@Override

public void onPartialResults(Bundle partialResults)

{

Log.d(TAG, "partial results");

receiveResults(partialResults);

}

/**

* common method to process any results bundle from {@link SpeechRecognizer}

*/

private void receiveResults(Bundle results)

{

if ((results != null)

&& results.containsKey(SpeechRecognizer.RESULTS_RECOGNITION))

{

List<String> heard =

results.getStringArrayList(SpeechRecognizer.RESULTS_RECOGNITION);

float[] scores =

results.getFloatArray(SpeechRecognizer.CONFIDENCE_SCORES);

receiveWhatWasHeard(heard, scores);

}

else

{

Log.d(TAG, "no results");

}

}

 continues

c19.indd 485

c19.indd 485

5/10/2012 1:59:01 PM

5/10/2012 1:59:01 PM

486 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

LISTING 19-8 (continued)

private void receiveWhatWasHeard(List<String> heard, float[] scores)

{

boolean heardTargetWord = false;

// find the target word

for (String possible : heard)

{

WordList wordList = new WordList(possible);

if (matcher.isIn(wordList.getWords()))

{

Log.d(TAG, "HEARD IT!");

heardTargetWord = true;

break;

}

}

if (heardTargetWord)

{

stop();

resultListener.activated(true);

}

else

{

// keep going

recognizeSpeechDirectly();

}

}

@Override

public void onError(int errorCode)

{

if ((errorCode == SpeechRecognizer.ERROR_NO_MATCH)

|| (errorCode == SpeechRecognizer.ERROR_SPEECH_TIMEOUT))

{

Log.d(TAG, "didn't recognize anything");

// keep going

recognizeSpeechDirectly();

}

else

{

Log.d(TAG,

"FAILED "

+ SpeechRecognitionUtil

.diagnoseErrorCode(errorCode));

}

}

/**

* lazy initialize the speech recognizer

*/

private SpeechRecognizer getSpeechRecognizer()

c19.indd 486

c19.indd 486

5/10/2012 1:59:01 PM

5/10/2012 1:59:01 PM

Implementing Speech Activation x 487

{

if (recognizer == null)

{

recognizer = SpeechRecognizer.createSpeechRecognizer(context);

}

return recognizer;

}

// other unused methods from RecognitionListener...

}

 code snippet WordActivator.java

Activating Speech Recognition with NFC

The user can scan a custom NFC tag to trigger speech recognition from within the app and from outside the app. Scanning an NFC tag is a fast way to activate speech recognition because the user does not have to start the app to trigger the speech recognition prompt.

Unlike the other speech activation techniques in this section, using an NFC tag does not require a SpeechActivator implementation. Instead, an app writes and reads tags that have application/

root.gast.speech.activation as a MIME type.

To use the custom MIME type for speech activation, an app needs a manifest entry to defi ne the MIME type, a receiving Activity, an Activity that helps the user write a tag with the MIME type in it, and an Activity that can activate speech when the user scans the tag.

The manifest requires one entry to defi ne an Activity that receives any NFCs that have the custom MIME type. Listing 19-9 shows how to specify SpeechActivationNfcTagReceiver as the

receiving Activity for any tags with an application/root.gast.speech.activation

MIME type.

LISTING 19-9: Manifest entry to defi ne new MIME type and to specify an Activity to receive the speech activation tag

<activity android:name=

"root.gast.playground.speech.activation.SpeechActivationNfcTagReceiver">

<intent-filter>

<action android:name="android.nfc.action.NDEF_DISCOVERED" />

<category android:name="android.intent.category.DEFAULT" />

<data android:mimeType="application/root.gast.speech.activation"/>

</intent-filter>

</activity>

Android starts SpeechActivationNfcTagReceiver, shown in Listing 19-10, when the user scans

an NFC tag with the right MIME type. One started, it activates speech recognition by starting SpeechRecognitionLauncher.

c19.indd 487

c19.indd 487

5/10/2012 1:59:01 PM

5/10/2012 1:59:01 PM

488 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

LISTING 19-10: Receives the speech activation NFC tag and starts SpeechRecognitionLauncher public class SpeechActivationNfcTagReceiver extends Activity

{

private static final String TAG = "SpeechActivationNfcTagReceiver";

@Override

protected void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

// manifest filters the intent to make sure it is the

// correct type so it is safe to launch

launchSpeech();

}

private void launchSpeech()

{

Log.d(TAG, "Launching speech activation");

Intent i = new Intent(this, SpeechRecognitionLauncher.class);

i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

this.startActivity(i);

}

}

To help users create the NFC tag, an app can use a modifi ed version of the inventory Activity from Chapter 11. The Activity enables users to write a tag when they click a button. To reuse the implementation, you need to modify the code to write a tag with custom MIME type and no other data using the following method:

private NdefMessage createNdefFromJson()

{

String mimeType = "application/root.gast.speech.activation";

byte[] mimeBytes = mimeType.getBytes(Charset.forName("UTF-8"));

byte[] id = new byte[0];

byte[] data = new byte[0];

NdefRecord record =

new NdefRecord(NdefRecord.TNF_MIME_MEDIA, mimeBytes, id, data);

NdefMessage m = new NdefMessage(new NdefRecord[] { record });

return m;

}

Thus far, this chapter has covered how to implement various kinds of SpeechActivators and run them within an Activity. Running within an Activity may not always be convenient. The next section discusses how to use the same SpeechActivator implementations to execute speech activation in a more persistent way that outlives any particular Activity.

IMPLEMENTING PERSISTENT SPEECH ACTIVATION

The previous section described how to use the SpeechActivator implementations to implement

speech activation asynchronously within a single Activity. However, in some cases, it is useful for c19.indd 488

c19.indd 488

5/10/2012 1:59:01 PM

5/10/2012 1:59:01 PM

Implementing Persistent Speech Activation x 489

an app to listen for speech activation while it is not running or while the user switches Activities within the same app. To implement this, an app can use a Service.

Using a Service for Persistent Speech Activation

A speech activation Service needs to perform two functions. First, it must start and stop speech activation and communicate the resulting activation to the app. Second, it needs to make the user aware when it is active or not.

SpeechActivationService, shown in Listing 19-11, implements a speech activation

Service. External code uses Intents to start and stop the service and receives results using a BroadcastReceiver, such as the one in Listing 19-12. While SpeechActivationService is actively listening for activation, it displays a notifi cation. If the user clicks the notifi cation, it stops the service.

SpeechActivationService has the following features:

‰

It keeps the service running: Android may stop a Service at any time. If Android stops the SpeechActivationService, it could cause the user to try to activate speech when the app

is not listening. This could be especially confusing if the user is not looking at the device and is unaware that the app stopped listening. SpeechActivationService has two features that

help reduce potential confusion. First, to make it less likely that Android stops the service, SpeechActivationService uses startForeground() to give it the same priority as an active

Activity. Second, to make the service automatically restart if it is stopped without user intervention, the service returns the START_REDELIVER_INTENT setting from onStartCommand().

‰

It allows only one activation at a time: It is possible that external code may start the service multiple times, but only one SpeechActivator should run at a time. To prevent multiple

SpeechActivators from running, SpeechActivationService uses isStarted to know if

a SpeechActivator is currently running. Also, if SpeechActivationService receives an

Intent to start a SpeechActivator type it is currently running, it ignores the Intent. If the Intent indicates a different SpeechActivator type than the one that is currently running,

SpeechActivationService stops the current SpeechActivator before starting the new one.

‰

It allows users to stop the service: By clicking on the notifi cation, the users can stop the service. To implement this feature, SpeechActivationService needs to receive a special

Intent extra. The makeServiceStopIntent() method creates the necessary Intent to stop

the service. The Notification sends it when clicked.

LISTING 19-11: Persistently listens for speech activation

public class SpeechActivationService extends Service implements

SpeechActivationListener

{

private static final String TAG = "SpeechActivationService";

public static final String ACTIVATION_TYPE_INTENT_KEY =

"ACTIVATION_TYPE_INTENT_KEY";

public static final String ACTIVATION_RESULT_INTENT_KEY =

"ACTIVATION_RESULT_INTENT_KEY";

public static final String ACTIVATION_RESULT_BROADCAST_NAME =

 continues

c19.indd 489

5/10/2012 1:59:01 PM

490 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

LISTING 19-11 (continued)

"root.gast.playground.speech.ACTIVATION";

/**

* send this when external code wants the Service to stop

*/

public static final String ACTIVATION_STOP_INTENT_KEY =

"ACTIVATION_STOP_INTENT_KEY";

public static final int NOTIFICATION_ID = 10298;

private boolean isStarted;

private SpeechActivator activator;

@Override

public void onCreate()

{

super.onCreate();

isStarted = false;

}

public static Intent makeStartServiceIntent(Context context,

String activationType)

{

Intent i = new Intent(context, SpeechActivationService.class);

i.putExtra(ACTIVATION_TYPE_INTENT_KEY, activationType);

return i;

}

public static Intent makeServiceStopIntent(Context context)

{

Intent i = new Intent(context, SpeechActivationService.class);

i.putExtra(ACTIVATION_STOP_INTENT_KEY, true);

return i;

}

/**

* stop or start an activator based on the activator type and if an

* activator is currently running

*/

@Override

public int onStartCommand(Intent intent, int flags, int startId)

{

if (intent != null)

{

if (intent.hasExtra(ACTIVATION_STOP_INTENT_KEY))

{

Log.d(TAG, "stop service intent");

activated(false);

}

else

{

c19.indd 490

c19.indd 490

5/10/2012 1:59:01 PM

5/10/2012 1:59:01 PM

Implementing Persistent Speech Activation x 491

if (isStarted)

{

// the activator is currently started

// if the intent is requesting a new activator

// stop the current activator and start

// the new one

if (isDifferentType(intent))

{

Log.d(TAG, "is differnet type");

stopActivator();

startDetecting(intent);

}

else

{

Log.d(TAG, "already started this type");

}

}

else

{

// activator not started, start it

startDetecting(intent);

}

}

}

// restart in case the Service gets canceled

return START_REDELIVER_INTENT;

}

private void startDetecting(Intent intent)

{

activator = getRequestedActivator(intent);

Log.d(TAG, "started: " + activator.getClass().getSimpleName());

isStarted = true;

activator.detectActivation();

startForeground(NOTIFICATION_ID, getNotification());

}

private SpeechActivator getRequestedActivator(Intent intent)

{

String type = intent.getStringExtra(ACTIVATION_TYPE_INTENT_KEY);

// create based on a type name

SpeechActivator speechActivator =

SpeechActivatorFactory.createSpeechActivator(this, this, type);

return speechActivator;

}

/**

* determine if the intent contains an activator type

* that is different than the currently running type

*/

private boolean isDifferentType(Intent intent)

{

boolean different = false;

 continues

c19.indd 491

c19.indd 491

5/10/2012 1:59:01 PM

5/10/2012 1:59:01 PM

492 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

LISTING 19-11 (continued)

if (activator == null)

{

return true;

}

else

{

SpeechActivator possibleOther = getRequestedActivator(intent);

different = !(possibleOther.getClass().getName().

equals(activator.getClass().getName()));

}

return different;

}

@Override

public void activated(boolean success)

{

// make sure the activator is stopped before doing anything else

stopActivator();

// broadcast result

Intent intent = new Intent(ACTIVATION_RESULT_BROADCAST_NAME);

intent.putExtra(ACTIVATION_RESULT_INTENT_KEY, success);

sendBroadcast(intent);

// always stop after receive an activation

stopSelf();

}

@Override

public void onDestroy()

{

Log.d(TAG, "On destroy");

super.onDestroy();

stopActivator();

stopForeground(true);

}

private void stopActivator()

{

if (activator != null)

{

Log.d(TAG, "stopped: " + activator.getClass().getSimpleName());

activator.stop();

isStarted = false;

}

}

private Notification getNotification()

{

// determine label based on the class

String name = SpeechActivatorFactory.getLabel(this, activator);

String message =

c19.indd 492

c19.indd 492

5/10/2012 1:59:01 PM

5/10/2012 1:59:01 PM

Implementing Persistent Speech Activation x 493

getString(R.string.speech_activation_notification_listening)

+ " " + name;

String title = getString(R.string.speech_activation_notification_title);

PendingIntent pi =

PendingIntent.getService(this, 0, makeServiceStopIntent(this),

0);

Notification notification;

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB)

{

Notification.Builder builder = new Notification.Builder(this);

builder.setSmallIcon(R.drawable.icon)

.setWhen(System.currentTimeMillis()).setTicker(message)

.setContentTitle(title).setContentText(message)

.setContentIntent(pi);

notification = builder.getNotification();

}

else

{

notification =

new Notification(R.drawable.icon, message,

System.currentTimeMillis());

notification.setLatestEventInfo(this, title, message, pi);

}

return notification;

}

@Override

public IBinder onBind(Intent intent)

{

return null;

}

}

 code snippet SpeechActivationService.java

LISTING 19-12: Receives activation broadcast and if it was successful starts the

SpeechRecognitionLauncher

public class ShowResultsSpeechActivationBroadcastReceiver extends

BroadcastReceiver

{

private static final String TAG =

"ShowResultsSpeechActivationBroadcastReceiver";

@Override

public void onReceive(Context context, Intent intent)

{

if (intent.getAction().equals(

SpeechActivationService.ACTIVATION_RESULT_BROADCAST_NAME))

 continues

c19.indd 493

c19.indd 493

5/10/2012 1:59:01 PM

5/10/2012 1:59:01 PM

494 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

LISTING 19-12 (continued)

{

if (intent

.getBooleanExtra(

SpeechActivationService.ACTIVATION_RESULT_INTENT_KEY,

false))

{

Log.d(TAG,

"ShowResultsSpeechActivationBroadcastReceiver taking action");

// launch something that prompts the user...

Intent i = new Intent(context, SpeechRecognitionLauncher.class);

i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

context.startActivity(i);

}

}

}

}

TRY THIS

You can turn the service on and off for different activation methods using the

Activation Service Control button.

SUMMARY

Speech activation begins the speech recognition process. To implement it, an app needs to allow the user to start a SpeechActivator, detect when a speech activation occurs, and start the speech recognizer when it does.

An app can allow the user to activate speech only within an Activity or allow the user to activate it at any time using a Service. This chapter described how to implement both scenarios.

An app can detect speech activation in many ways. To implement certain voice actions, especially ones that operate hands-free or eyes-free, an app has to allow the user to activate speech using other means than a button. This chapter described four alternative techniques that use the device’s sensors instead.

Besides implementation details, starting speech recognition also involves intelligently handling the time delays that occur between when the app detects speech activation and when the app starts recording speech. The delays can make speech activation awkward to use. Prompts and user training are possible ways to help the user be successful despite the delays.

The discussion of speech activation in this chapter concludes the part of this book that describes how to use speech recognition and Text-To-Speech to implement Voice User Interfaces (VUI).

The chapters in this part showed that implementing VUIs involves much more than starting a

RecognizerIntent. It requires proper design to create usable VUIs, matching techniques to reliably interpret the recognizer’s responses, and supporting code to organize voice action execution and handle speech activation. This part described the strategies and code libraries you need to wisely and quickly implement VUIs in your app. Use them to let your users enjoy the benefi ts of speaking to their Android.

c19.indd 494

5/10/2012 1:59:01 PM

Book Title <Chapter No> V1 - MM/DD/2010

INDEX

 A

accuracy

battery life/accuracy, location providers, 17

absolute altitude

sensor precision/accuracy, 104

DetermineAltitudeActivity, 170–177

accuracy, Criteria class, 14

formula, 87

action, voice execution step, 336, 443

absolute elevation measurement, pressure

ACTION_CHECK_TTS_DATA, 360, 361–366

sensors, 88

ACTION_GET_LANGUAGE_DETAILS, 377, 378,

AbstractVoiceAction, 448, 449

380, 381, 383, 392

acceleration data. See also device movement

ACTION_INSTALL_TTS_DATA, 357

detection

ACTION_RECOGNIZE_SPEECH, 382, 383, 390,

accelerometer data, 148–149

404, 405

device lying on its back, 149

ACTION_TTS_DATA_INSTALLED, 358

high-pass fi lter applied, 149

ACTION_WEB_SEARCH, 383, 390, 391

description, 148

activate, voice execution step, .336, 443

linear acceleration sensor data, 150

Activation Service Control button, 494

moving device, 150–152

active RFID tags, 220

along X axis, 151–152

Activity

along Y and Z axes, 152

camera, 256–261

running/plotting, 148

speech activation implementations, 472,

total acceleration, 153

475–479, 494

AccelerationEventListener, 153–159, 479,

Activity class, NFC inventory tracking system,

480. See also device movement detection

236–250

accelerometers, 92–93

Adafruit Industries, 227

device movement detection (sample app),

“add” command, WordMatcher, 410

148–149

“add” multi-part voice command, 432–433, 436

device orientation determination (example

addEarcon(), 366, 367

app), 123–124, 130–132

AddFood, 442, 445, 455–459, 461

getSensorList(), 69

addProximityAlert(), 51, 52, 53, 56, 58

high-pass fi ltering on data, 113

Address class, 48–49

linear acceleration sensors compared to, 150

addSpeech(), 366, 367

MEMs, 92–93

ADKs (Android Development Kits), 191–196

resolution, 93

AOA support, 189, 191

sensor units, 93

list, 192–193

standard sensor, 65

advanceCamera(), 264

accessory mode, AOA, 190

advanced focus, camera, 266

accessory_filter.xml, 206–207

A-GPS, 5–6

accidental speech activation, VUI design,

AlertDialogs, 451–455

343–344

aliasing, subsampled image, 295

495

bindex.indd 495

bindex.indd 495

5/10/2012 2:17:20 PM

5/10/2012 2:17:20 PM

Book Title <Chapter No> V1 - MM/DD/2010

aliasing errors – Arduinos

aliasing errors, 196

Sensor List, 72–73

altitude. See also DetermineAltitudeActivity

TextToSpeech object initialization, 359

absolute altitude

android.nfc.NfcAdapter.

DetermineAltitudeActivity, 170–177

CreateNdefMessageCallback, 252

formula, 87

android.permission.ACCESS_COARSE_

GPS-based, 169–170

LOCATION, 15, 17

relative altitude

android.permission.ACCESS_FINE_LOCATION,

DetermineAltitudeActivity, 177–180

15, 17, 56

formula, 87

angles, device coordinate system, 91–92

altitudeRequired, Criteria class, 14

angular three-vectors, 91, 92

ambient temperature sensors, 89

angular velocity, 94

AmplitudeClipListener, 305, 306, 307, 310,

antennas, RFID tags, 220

311, 312, 313

AOA (Android Open Accessory), 189–216

analogRead(), 200

AOA sensors compared to native device

Android Accessory Protocol, 192, 193, 202, 205

sensors, 196

Android APIs

barriers to development, 190

peer-to-peer, 252–253

defi ned, 189

Android Beam feature, 233, 252, 253

electrical power requirements, 190

Android code, AOA temperature sensor

history, 189–190

AndroidManifest.xml, 207–208

limitations, 196–197

BaseActivity.java, 209–215

NFC technology, 230

overview, 205–206

supported Android devices, 190–191

xml/accessory_filter.xml, 206–207

taking to consumer market, 215

Android Development Kits. See ADKs

USB host compared to USB accessory, 190

Android intent fi lter system, 229–230

AOA and temperature sensor (example), 197–215

Android logo detection program, 291–299

Android code

debugging tools, 291

AndroidManifest.xml, 207–208

DetectLogo, 291–292

BaseActivity.java, 209–215

DetectLogoActivity, 293

overview, 205–206

DetectLogoBetter, 296–299

xml/accessory_filter.xml, 206–207

DetectLogoFaster, 294–296

Arduino sketch, 199–205

image size reduction, 293–296

Arduino software, 198–199

improve reliability in image processing,

communication between Arduino and

296–299

Android, 208–215

onPreviewFrame(), 291

implementation, 198–215

processing speed increase, 293–296

Microchip MCP9701/9701A temperature

ReadBarcode, 291

sensor, 197, 198

simple framework, 291–293

requirements, 198

Android Market, 25, 191. See also Google Play

Apache 2.0 license, 192, 233

Android Open Accessory. See AOA

Apache Commons Codec, 415

Android Sensor API. See Sensor API

Apache phonetic matching algorithms, 414

AndroidAccessory, 202, 203, 204, 206

Apple’s MFi, 190

android.hardware.GeomagneticField, 95

appropriate tasks, voice actions, 339–340

AndroidManifest.xml

Arduinos, 191–196. See also AOA and

AOA temperature sensor, 207–208

temperature sensor

current location app, 15

AOA, 189

NFC inventory tracking system (example

compatible products, 193

app), 233–236

defi ned, 191

496

bindex.indd 496

bindex.indd 496

5/10/2012 2:17:20 PM

5/10/2012 2:17:20 PM

Book Title <Chapter No> V1 - MM/DD/2010

Arduino_Temp_Sensor.pde – broadcast receivers

fi rmware, 195

barcodes, 267–278

form factors, 191

camera preview image, 273–275

hardware components, 194

Ean13Barcode1D, 268, 269, 270, 271, 276

IDE, 198–199

ReadBarcode, 271, 274, 291

Mega ADK, 191, 192, 193, 198, 215, 216

searchforBarcode(), 276–278

microcontroller board, 194

barcodes

sketch, 195, 199–205

detecting, 276–278

software components, 195–196

EAN-13 barcodes

Arduino_Temp_Sensor.pde, 199, 201

check digit, 270–271

Arduino_Temp_Sensor_with_AOA.pde,

complications, 269–271

204–205

components, 269

AskForCalories, 457–458

elementary bars, 267–268

aspect ratios, 260

implied fi rst digit, 269–270

asynchronous audio recording, MediaRecorder,

right half of barcode, 271

310–312

QR, 227–228

ATmega2560 chip, 215

understanding, 267–276

AudioClipListener

Zxing Google code site, 278

ConsistentFrequencyDetector,

barometers. See pressure sensors

324–329

BaseActivity, 205, 208

loud noise clapper, 304, 314, 323–324

BaseActivity.java, 209–215

purpose, 314

 Basic Accessory Demo app, 190–191

singing clapper, 304, 327–329

battery consumption

AudioClipRecorder

location providers

complete code listing, 318–323

accuracy/battery life, 17

purpose, 314

limiting, 44

AudioRecord

proximity alerts, 55–56

doRecording(), 317

reducing location update frequency, 43–44

input parameters, 315–316

tracking device movement (app), 27, 43–44

MediaRecorder compared to, 304, 314

Beam feature, Android, 233, 252, 253

OnRecordPositionUpdateListener,

bearingAccuracy, Criteria class, 14

317–323

bearingRequired, Criteria class, 14

preparing, 316–317

Ben-Tsvi, Ytai, 193

raw audio signal analysis, 314–323

best guess, matching, 461–466

RecordAudioTask, 314

make educated guess, 464–466

recording audio, 317–323

relax match strictness, 461–463

startRecording(), 316–317

relax strictness between commands, 463–464

startRecordingForTime(), 316–317

beta tests, VUI design, 347

averaging, smoothness compared to response

Big Ben, geocoding, 49

time, 111

binary sensors, 67

black box approach, sensors, 65

Bluetooth

B

AOA API compared to, 191

balance fi lter, 117–118

NFC compared to, 227–228, 251

bandpass fi lter, 113

breadboards, 194, 198

band-reject fi lter, 113

broadcast receivers, 28–34

barcode reader program, 267–278

extending, 29–30

autofocus, 272–276

multiple, one intent, 33

BarcodeReaderActivity, 267, 272, 273

registering, with Android, 30–32

497

bindex.indd 497

bindex.indd 497

5/10/2012 2:17:20 PM

5/10/2012 2:17:20 PM

Book Title <Chapter No> V1 - MM/DD/2010

BroadcastReceiver class diagram – continuous sensors

manifest-based, 30–31

cell tower IDs, 9–10

manual, 31–32

Change Location Provider Settings button, 25

services compared to, 34–35

Channel, AudioRecord, 315–316

BroadcastReceiver class diagram, 33

check digit, EAN-13 barcodes, 270–271

Broadcom Topaz, 225

choosing camera, 257

BufferSize, AudioRecord, 315–316

Circuits@Home website, 193–194

Clapper

description, 304

C

implementation, 312–314

camera preview image, NV21 format, 273–274,

ClapperActivator, 481

276, 279, 282, 283, 294

clappers, 303–304

camera usage, 255–279. See also image processing

consistent frequency detection, 324–329

Activity, 256–261

loud noise clapper

advanced focus, 266

AudioClipListener, 304, 314, 323–324

aspect ratios, 260

description, 304

autofocus, 272–276

singing clapper

camera preview display, 258–261

AudioClipListener, 304, 327–329

capturing images, 255–256

description, 304

choosing camera, 257

implementation, 327–329

color effects, 267

zero-crossing method, 325–327

controlling camera parameters, 256–267

speech activation implementation with

fl ash modes, 264–265

microphone, 471, 481–483

focus, 264, 266

types, 304

GPS values, 267

ClapperSpeechActivationTask, 481–483

image sensor, 262

clearing proximity alerts, 52

LiveCapture, 256, 257, 258, 261

collisions, 432–434

LiveCapturePlus, 261, 262, 263, 264, 265

color balance, image-processing programs,

macro lens, 264

297–299

opening camera, 258

color effects, camera, 267

orientation, display/camera, 261–263

color space, YUV, 273, 283, 291, 295

releasing camera, 258

Colton, Shane, 117

RuntimeException, 258, 260, 261, 265, 273

Command voice action, 337–338

scene modes, 266–267

command words. See voice commands

SimpleCaptureActivity, 255–256

communication, between Arduino and Android,

switching cameras, 264

208–215

white balance, 265–266

“compare” multi-part voice command,

zoom button, 263

432–433, 437

CameraParameters class, 265

compass. See magnetic fi eld sensors

CameraPreview Activity, 256

confi dence scores, 382, 383, 386, 394, 396, 450,

CancelCommand, 457

466, 469

cancellation, food dialogue multi-turn VUI

CONFIDENCE_SCORES, 382, 383, 386, 394,

design, 442

396, 466

cancel/yes/no voice action, 452–454

consistent frequency detection, 324–329

Cantonese, 216

ConsistentFrequencyDetector, 324–329

capturing images, 255–256

constrain speech input, VUI design, 340

card emulation, NFC, 229

consumer market, AOA and, 215–216

Carnegie Mellon University, 300

contactless technologies, 219. See also NFC; RFID

Caverphone, 414

continuous sensors, 67

498

bindex.indd 498

bindex.indd 498

5/10/2012 2:17:21 PM

5/10/2012 2:17:21 PM

Book Title <Chapter No> V1 - MM/DD/2010

continuous speech recognition – device movement detection

continuous speech recognition, 471, 483–487

DetectLogoActivity, 293

continuously tracking device location data, 27,

DetectLogoBetter, 296–299

43–44. See also tracking device movement

DetectLogoFaster, 294–296

controlling environment, image processing,

determine device orientation. See device

296–299

orientation determination

conversion operations, image processing, 283

DetermineAltitudeActivity (example app),

coordinate systems, 90–92

161–187

Coriolis force, 94

altimeter functionality, 161

costAllowed, Criteria class, 14

complete implementation, 180–186

createNdefFromJson(), 244–245, 252

constants, 166

createTextToSpeech(), 352

GPS-based altitude, 169–170

Creative Commons, 192

implementation details, 163–177

Criteria class

layout, 163–166

attributes, 14

member data, 166

described, 13–14

MSLP values, 171–174

location components high-level overview, 13

onCreate(), 166–167

cropping, 296

onLocationChanged(), 169

cumin, 391, 411, 412, 415, 417, 418

onResume(), 168

current location (example app)

onToggleClick(), 178, 179

AndroidManifest.xml, 15

overview, 162–163

Change Location Provider Settings button, 25

pressure sensor

implementing, 18–26

absolute altitude, 170–177

location components, 12–15

relative altitude, 177–180

location settings activity screen, 25–26

screen, 162

requesting location updates, 23–25

DetermineMovementActivity, 153–156, 479

screen, 12

DetermineOrientationActivity

currentGpsAltitude, 170, 179

complete implementation, 136–143

CurrentLocationActivity, 18, 21–23, 24, 25

determineOrientation(), 134–135

custom MIME type intent fi lters, 234–235

initialization steps, 127–128

CyanogenMod, 190

layout, 125–127

onCreate(), 127–128

onSensorChanged(), 132–133

D

UpdateSelectedSensor(), 128–130

debugging

device coordinate system, 90–92

Android logo detection program, 291

device movement detection (example app),

image-processing programs, 275–276

147–159

NFC tags, with apps, 232–233

acceleration data

DebugImage, 275–276

accelerometer data, 148–149

DebugImages.readNv21Image, 291

description, 148

DebugImages.writeNv21Image, 291

linear acceleration sensor data, 150

decodeBarcode(), 269–270

moving device, 150–152

delete_aiding_data, 7

running/plotting, 148

deprecated sensors

total acceleration, 153

Sensor.TYPE_ORIENTATION, 67, 90, 98, 122

AccelerationEventListener, 153–159

Sensor.TYPE_TEMPERATURE, 66, 89–90

DetermineMovementActivity, 153–156

DESFire, NXP, 225, 226

functionality overview, 147–148

detectActivation(), 472, 480

high-pass fi lter algorithm, 158–159

DetectLogo, 291–292

implementation, 153–159

499

bindex.indd 499

bindex.indd 499

5/10/2012 2:17:21 PM

5/10/2012 2:17:21 PM

Book Title <Chapter No> V1 - MM/DD/2010

device orientation determination – Fast Fourier Transform

sensor selection, 148, 153

DoubleMetaphone, 414

toggle button handler, 153–154

drift, 105

TTS facility, 147

dropped data, 105

device orientation determination (example app),

dynamic command words, 408

121–146

dynamic range, 67

DetermineOrientationActivity

complete implementation, 136–143

E

determineOrientation(), 134–135

initialization steps, 127–128

EAN-13 barcodes

layout, 125–127

check digit, 270–271

onCreate(), 127–128

complications, 269–271

onSensorChanged(), 132–133

components, 269

UpdateSelectedSensor(), 128–130

elementary bars, 267–268

implementation details, 125–143

implied fi rst digit, 269–270

main screen, 122

right half of barcode, 271

NorthFinder app, 143–145

Ean13Barcode1D, 268, 269, 270, 271, 276

preview, 121–122

earcons, 366, 367, 369

processing sensor data

Eclipse, 36, 195

accelerometer and magnetic fi eld data,

educated guess, matching, 464–466

130–132

Electric Sheep, SparkFun, 192

gravity sensor data, 130

electrical power requirements, AOA, 190

rotation vector data, 132–135

electromagnetic induction, 221

sensor choices

elementary bars, 267–268

accelerometer and magnetometer,

enableForegroundDispatch(), 237–238, 240

123–124

enableForegroundNdefPush(), 252

gravity sensor, 123

Encoding, AudioRecord, 315–316

gravity sensor and magnetometer, 124

EnglishPossessiveFilter, 413

rotation vector, 124–125

environment, sensing, 84–90

TTS facilities, 121, 122, 135–143, 146

equalization, histogram, 283

device orientation/movement, sensing, 90–102

errors. See sensor data errors

Diagnostics, 350, 356, 361

Errors extra, speech recording, 385

digit codes, odd parity, 268

Evernote, 229–230, 253

digital image processing. See image processing

explicit prompts, 341

 Digital Image Processing (Gonzalez &

extending broadcast receivers, 29–30

Woods), 301

eXtensible Address Language (xAL)

 Digital Image Processing (Pratt), 301

specifi cation, 49

Digital Recipe Sidekick’s voicecontrolled recipe

extras

reader, 346, 465

RecognizerIntent actions, 382–383

direct speech recognition

speech recording, 384–385

continuous speech recognition compared to,

eyes-free/hands-free VUIs, 336, 340, 470, 471,

471, 483–487

483, 494

SpeechRecognizer, 403–405, 484

disableForegroundDispatch(), 237–238

F

disableForegroundNdefPush(), 252

display/camera orientation, 261–263

face detection, 299–300

distanceBetween(), 43

face recognition, 299–300

DIY power generator, 220, 221

 Face Unlock program, 299

doRecording(), 317

Fast Fourier Transform, 325

500

bindex.indd 500

bindex.indd 500

5/10/2012 2:17:21 PM

5/10/2012 2:17:21 PM

Book Title <Chapter No> V1 - MM/DD/2010

feature extraction – getParameters

feature extraction, 284

force_time_injection, 7

FeliCa, Sony, 225, 226

foreground dispatching, 237–241

FileInputStream, 208

form factors

FileOutputStream, 208

Arduino, 191

fi ltering location data, 40–43

NFC tags, 226

fi ltering operations, image processing, 284

free text, 408

FilteringLocationBroadcastReceiver, 33,

Fruit Ninja, 228, 253

40–43

FTS (Full Text Search), 418–426. See also

fi lters, 107–115

matching

balance, 117–118

implementing, 421–426

bandpass, 113

MATCH operator, 420–421

band-reject, 113

virtual table, 418–419

high-pass, 111–113

 Fundamentals of Digital Image Processing

inverse low-pass, 112–113

(Jain), 301

Kalman, 114–115, 118

low-pass, 107–111

G

notch, 113

finish(), 474

GaussHoriz, 290

fi rmware, Arduino, 195

Gaussian blurring, 289

fl ash modes, camera, 264–265

generateRotationMatrix(), 131–132

focus, camera, 264

generic tags, NFC intent fi lters, 241

advanced, 266

GeocodeActivity, 46, 47, 49, 50, 55

autofocus, 272–276

Geocoder class, 46–48

food database

Geocoder.fromLocationName(), 48

data, 419

Geocoder.getFromLocation(), 48

FTS implementation, 421–426

Geocoder.getFromLocationName(), 48

FTS MATCH operator, 420–421

Geocoder.getLocationFromName(), 48

LIKE operator, 419–420

Geocoder.isPresent(), 48

Food Dialogue Matcher Playground button,

geocoding, 46–50, 61. See also proximity alerts

431, 438

Big Ben, 49

food dialogue multi-turn VUI design

defi ned, 46

AddFood, 442, 445, 455–459, 461

reading geocoded response, 48–50

FoodLookup, 442, 461–463, 465

reverse, 46, 48

RemoveFood, 442, 451, 455, 459–461

Statue of Liberty, 48

turns, for voice action commands, 442

Taj Mahal, 49

voice actions, 442

GeoNames METAR web service response, 175–176

food dialogue VUI design

GeoNames web service, 174

classes for implementing, 427

getData(), 285

fl aws, 442

getDefaultDisplay().getRotation(), 261

word searching with Lucene, 427–431

getDefaultSensor(), 68, 168

Food Edit voice action, 442, 444, 461, 464

getDistance(), 58–59

Food Lookup voice action, 442, 465

getFront(), 286

FoodDocumentTranslator, 428

getLanguageDetails(), 392

FoodIndexBuilder, 428

getMaxAmplitude(), 304, 307, 308

FoodIndexSearcher, 428

getMaxZoom(), 263

FoodLookup, 442, 461–463, 465

getNumberOfCameras(), 257

force_extra_injection, 8

getOptimalPreviewSize(), 260

force-meters, 93

getParameters(), 261

501

bindex.indd 501

bindex.indd 501

5/10/2012 2:17:21 PM

5/10/2012 2:17:21 PM

Book Title <Chapter No> V1 - MM/DD/2010

getProviders – image processing

getProviders(), 24

GraySub, 290

getRgbImage(), 294

grouping operations, image processing, 284

getRgbImageReduced(), 294–295, 296

GUIs, VUIs compared to, 342, 344, 443

getSensorList(), 68, 69

gyroscopes

getStringAfter(), 434

description, 94

getStringWithout(), 434

integrating gyroscope readings,

getZoomRatios(), 263

orientation, 117

Gingerbread, 230, 231, 232, 252

integration error, 106

global coordinate system, 90–91

MEMs, 94, 196

Global Positioning System. See GPS

Sensor.TYPE_GYROSCOPE, 66, 94

Gonzalez, Rafael, C., 301

Google. See also AOA

H

high-pass fi lter algorithm, 158–159

location service, 8–10

Hall effect, 94–95

map library components, 36–40

hands-free/eyes-free VUIs, 336, 340, 470, 471,

Navigator, 11

483, 494

Zxing Google code site, 278

hard-to-understand words, 411–412

Google Play

Harris, Randy, 338, 347

Android intent fi lter system, 229

hasAltitude(), 13, 169

AOA-compatible Android device, 195, 198

Hashable mobile app, 228, 253

Fruit Ninja, 228

heard(), 312

NFC, 228

high-pass fi lter algorithm, 158–159

SpeechSynthesis Data app, 356

high-pass fi lters, 111–113

TextToSpeech.Engine.ACTION_INSTALL_

histograms

TTS_DATA, 357

defi ned, 283, 284

TTS initialization, 352, 360

equalization, 283

‹uses-feature declaration›, 72

homophones, 411–412, 416

“waiting” shared preference, 358

horizontalAccuracy, Criteria class, 14

GPS (Global Positioning System), 4–8

Hough transforms, 284

A-GPS, 5–6

“how to collect” extras, 382–383

altitude, DetermineAltitudeActivity,

human error, 105

169–170

hysteresis, 96

battery consumption/accuracy, 17

camera parameter, 267

I

controlling, 7–8

how it works, 4–5, 16

Ice Cream Sandwich, 231, 232, 233, 241,

improvements, 5–6

252, 299

limitations, 5, 6

Image objects, 285

pressure sensors compared to, 162

image processing, 255–301

satellite constellation, 4

camera usage, 255–279

S-GPS, 6

Activity, 256–261

grammar matching algorithm, 438

advanced focus, 266

gravity sensors, 67, 108

aspect ratios, 260

described, 92–93

autofocus, 272–276

device orientation determination (example

camera preview display, 258–261

app), 123, 124, 130

capturing images, 255–256

Gray8ConnComp, 293

choosing camera, 257

Gray8Threshold, 292

color effects, 267

502

bindex.indd 502

bindex.indd 502

5/10/2012 2:17:21 PM

5/10/2012 2:17:21 PM

Book Title <Chapter No> V1 - MM/DD/2010

Image Processing On Line – input parameters

controlling camera parameters, 256–267

defi ned, 281–282

fl ash modes, 264–265

Ladder, 289–291

focus, 264, 266

Sequence, 288

GPS values, 267

image-processing programs

image sensor, 262

Android logo detection program, 291–299

LiveCapture, 256, 257, 258, 261

debugging tools, 291

LiveCapturePlus, 261, 262, 263,

DetectLogo, 291–292

264, 265

DetectLogoActivity, 293

macro lens, 264

DetectLogoBetter, 296–299

opening camera, 258

DetectLogoFaster, 294–296

orientation, display/camera, 261–263

image size reduction, 293–296

releasing camera, 258

improve reliability in image processing,

RuntimeException, 258, 260, 261,

296–299

265, 273

onPreviewFrame(), 291

scene modes, 266–267

processing speed increase, 293–296

SimpleCaptureActivity, 255–256

ReadBarcode, 291

switching cameras, 264

simple framework, 291–293

white balance, 265–266

barcode reader program, 267–278

zoom button, 263

autofocus, 272–276

controlling environment, 296–299

BarcodeReaderActivity, 267, 272, 273

conversion operations, 283

barcodes, 267–278

cropping, 296

camera preview image, 273–275

 Digital Image Processing (Gonzalez &

Ean13Barcode1D, 268, 269, 270,

Woods), 301

271, 276

 Digital Image Processing (Pratt), 301

ReadBarcode, 271, 274, 291

fi ltering operations, 284

searchforBarcode(), 276–278

 Fundamentals of Digital Image Processing

color balance, 297–299

(Jain), 301

debugging, 275–276

grouping operations, 284

face detection, 299–300

histograms

luminance variations, 296–297

defi ned, 283, 284

structure, 281–291

equalization, 283

image-to-image operations

history, 293

building, JJIL, 284–288

image-to-image operations

described, 282–284

building, JJIL, 284–288

image-to-object operations, 284

described, 282–284

implicit prompts, 342

image-to-object operations, 284

implied fi rst digit, EAN-13 barcodes, 269–270

operations, 282–284

inaccurate recognition determination, 469

point operations, 282–283

indexing strategies, 411–417

reduction operations, 283

phonetic indexing, 414–417

resources, 300–301

stemming, 412–414

spatial transformation operations, 283

induction, electromagnetic, 221

textbooks, 301

inertial sensors, 90–102

thresholding operations, 282

initialization process

 Image Processing On Line, 301

speech recognition API, 377–382

image sensor, camera, 262

TTS API, 349, 350–366

image-processing journals, 301image-processing

in-memory matching, 408, 409–410, 418, 439

pipelines

input parameters, AudioRecord, 315–316

503

bindex.indd 503

bindex.indd 503

5/10/2012 2:17:21 PM

5/10/2012 2:17:21 PM

Book Title <Chapter No> V1 - MM/DD/2010

installLanguageData – linear acceleration sensors

installLanguageData(), 358

improve reliability in image processing,

integration error, 106

296–299

intent fi lters

onPreviewFrame(), 291

NFC interactions, 229–230

processing speed increase, 293–296

NFC inventory tracking system, 233–236,

ReadBarcode, 291

238–240

simple framework, 291–293

custom MIME type, 234–235

Image objects, 285

declaration, manifest fi le compared to

Ladder, 289–291

Activity class, 238–239

PipelineStage, 285–288

for generic tags, 241

example, 286–288

implementing, in

getFront(), 286

NFCInventoryActivity.java,

isEmpty(), 286

239–240

push(), 285, 287

URI-based, 235–236

setOutput(), 286, 288

intents. See also RecognizerIntent

structure, 284–291

intent’s extras bundle, 29

jjil.android.AndroidColors, 291

LocationListener approach compared

Jon’s Java Imaging Library. See JJIL

to, 18

JSGF (Java Speech Grammar Format), 438

one intent, multiple broadcast receivers, 33

JSON format, GeoNames web service, 174

PendingIntent, 15, 32–33, 52–53

International Civil Aviation Organization, 174

K

Invensense, 101, 115, 116, 118

invented words, 411

Kalman fi lters, 114–115, 118

inventory tracking system. See NFC inventory

Kickstarter.com, 216

tracking system

KStemmer, 413

inverse low-pass fi lter, 112–113

IOIO, SparkFun, 193

iPhone/iPad/iPod Touch, MFi, 190

L

isConnected(), 202

Ladder, 289–291

isEmpty(), 286

LANGUAGE, 382, 386

isLocationDisplayed(), 40

language support, TTS API initialization, 353–356

isRouteDisplayed(), 40

LanguageDataInstallBroadcastReceiver,

isWaiting(), 358

350, 354, 357, 358–359

isZoomSupported(), 263

LanguageDetailsChecker, 377, 378–380, 381, 392

ItemizedOverlay, 38–40

LANGUAGE_MODEL, 382, 383, 386, 411

LANGUAGE_PREFERENCE, 383

lastGpsAltitudeTimestamp, 169

J

 Learning OpenCV: Computer Vision with the

Jain, Anil K., 301

 OpenCV Library, 300

Java Speech Grammar Format (JSGF), 438

Lee, Tai-sing, 300

JJIL (Jon’s Java Imaging Library)

light sensors, 65, 84–85

Android logo detection program, 291–299

LIKE operator, 419–420

debugging tools, 291

LilyPad Arduino form factor, 191

DetectLogo, 291–292

linear acceleration sensors

DetectLogoActivity, 293

accelerometer compared to, 150

DetectLogoBetter, 296–299

description, 92–93

DetectLogoFaster, 294–296

device movement detection (example app), 150

image size reduction, 293–296

high-pass fi lter, 111–112

504

bindex.indd 504

bindex.indd 504

5/10/2012 2:17:21 PM

5/10/2012 2:17:21 PM

Book Title <Chapter No> V1 - MM/DD/2010

list – manifest-registered broadcast receivers

list, sensor, 72–83

registering with, 24–25

listen, voice execution step, 336, 443

sendExtracommand(), 7

Listener voice action, 337–338

setting proximity alert, 50–53

LiveCapture, 256, 257, 258, 261

LocationManager.KEY_LOCATION_CHANGED, 29

LiveCaptureActivity, 257

LocationManager.KEY_PROVIDER_ENABLED, 29

LiveCapturePlus, 261, 262, 263, 264, 265

LocationManager.KEY_PROXIMITY_ENTERING,

Locale-based initialization, 353–362

29, 54

location app. See current location

LocationManager.KEY_STATUS_CHANGED, 29

Location class, 13

LocationManager.

location data. See also tracking device movement

requestLocationUpdates(), 30, 33, 43, 44,

continuously tracking, 27, 43–44

55, 56

fi ltering, 40–43

LocationProvider class, 13

receiving, 28–35

loop()and setup(), 195, 199, 200, 201, 202, 204

viewing, 35–40

loud noise clapper

location providers, 3–10. See also GPS

AudioClipListener, 304, 314, 323–324

battery life

description, 304

accuracy/battery life, 17

LoudNoiseDetector, 323–324

limiting location providers, 44

low friction interactions, 219, 228

choosing, 3–4, 10, 15–17

low power/proximity based, NFC, 228

defi ned, 3

low-pass fi lters, 107–111

network location providers, 8–10, 16, 17

Lucene search engine library

passive location providers, 16–17

analyzers project, 413

permissions, 17

org.tartarus.snowball.ext.

summary list, 17

EnglishStemmer, 413–414

location services, 3–61

stemmers, 413

defi ned, 3

word searching, 426–431

tools, 12–15

luminance variations, 296–297

location settings activity, 25–26

lux values, 84

location updates

receiving, 18

M

requesting, 23–25

requesting, with PendingIntent, 32–33

MAC address, 8, 9

LocationBroadcastReceiver, 29, 33, 41,

macro lens, 264

53–54

Made for iPhone/iPad/iPod Touch (MFi), 190

Location.hasAltitude(), 13, 169

Magic Word screen, 335, 336

LocationListener interface

magnetic fi eld sensors, 94–97

description, 15

device orientation determination (example

implementing, 18–20

app), 123–124, 130–132

service, 34–35

MEMs, 95

intents compared to, 18

standard sensor, 65

location components high-level overview, 13

units/range/resolution, 95–97

receiving location updates, 18

magnetometers. See magnetic fi eld sensors

removing, 25

 Make Magazine, 216

LocationManager class

ManageCameraActivity, 262, 264, 273

addProximityAlert(), 51, 52, 53, 56, 58

ManageCameraFasterActivity, 293

description, 12–13

Mandarin, 216

location components high-level overview, 13

manifest fi les. See AndroidManifest.xml

obtaining reference to, 20–23

manifest-registered broadcast receivers, 30–31

505

bindex.indd 505

bindex.indd 505

5/10/2012 2:17:21 PM

5/10/2012 2:17:21 PM

Book Title <Chapter No> V1 - MM/DD/2010

manually-registered broadcast receivers – microphone

manually-registered broadcast receivers, 31–32

asynchronous audio recording, 310–312

MapActivity, 40

AudioRecord compared to, 304, 314

MapView, 37

Clapper, 304, 312–314

MATCH operator, FTS, 420–421

MaxAmplitudeRecorder, 305, 306, 307–311

matching (voice commands with user’s utterances),

maximum amplitude values, 305–314

407–439

preparing, 305–307

best guess, 461–466

RecordAmplitudeTask, 305, 310–312

make educated guess, 464–466

Mega ADK Arduino, 191, 192, 193, 198, 215, 216

relax match strictness, 461–463

MEMs (microelectromechanical sensors)

relax strictness between commands,

accelerometers, 92–93

463–464

defi ned, 66

collisions, 432–434

gyroscopes, 94, 196

defi ned, 441

magnetic fi eld sensors, 94–97

FTS, 418–426

magnetometers, 95

implementing, 421–426

pressure sensors, 86–89

MATCH operator, 420–421

menu usage, VUI design, 344–345

virtual table, 418–419

Metaphone, 414

grammar matching algorithm, 438

MetarAsyncTask, 171, 174, 176, 177

hard-to-understand words, 411–412

MetarAsyncTask.doInBackground(), 174, 175,

indexing strategies, 411–417

176, 177

phonetic indexing, 414–417

MFi (Made for iPhone/iPad/iPod Touch), 190

stemming, 412–414

Microchip MCP9701/9701A temperature sensor,

in-memory, 408, 409–410, 418, 439

197, 198

Lucene search engine library

Microchip PIC24F Accessory Development

analyzers project, 413

Starter, 192–193

org.tartarus.snowball.ext.

Microchip Technology, 190, 191, 192

EnglishStemmer, 413–414

microcontroller board, Arduino, 194

stemmers, 413

microelectromechanical sensors. See MEMs

word searching, 426–431

microphone, 303–330. See also clappers

multi-part voice commands, 431–437

as audio sensor, 303, 329–330

“add,” 432–433, 436

AudioRecord

“compare,” 432–433, 437

doRecording(), 317

example commands, 432–433

input parameters, 315–316

ordered, 408, 434–437

MediaRecorder compared to, 304, 314

“remove,” 432–433, 436–437

OnRecordPositionUpdateListener,

unordered, 408

317–323

querying persistent storage, 418, 439

preparing, 316–317

voice command parts, 407–409

raw audio signal analysis, 314–323

word spotting algorithm, 409–417

RecordAudioTask, 314

MaxAmplitudeRecorder, 305, 306, 307–311

recording audio, 317–323

maximum amplitude recording, MediaRecorder,

startRecording(), 316–317

305–310

startRecordingForTime(), 316–317

MAX_RESULTS, 382, 383, 386

MediaRecorder, 304–314

MCP9701/9701A temperature sensor, 197, 198

AmplitudeClipListener, 305, 306,

mean sea-level pressure. See MSLP

307, 310, 311, 312, 313

MediaRecorder, 304–314

asynchronous audio recording, 310–312

AmplitudeClipListener, 305, 306, 307,

AudioRecord compared to, 304, 314

310, 311, 312, 313

Clapper, 304, 312–314

506

bindex.indd 506

bindex.indd 506

5/10/2012 2:17:21 PM

5/10/2012 2:17:21 PM

Book Title <Chapter No> V1 - MM/DD/2010

MIFARE Classic tags – NFC inventory tracking system

MaxAmplitudeRecorder, 305, 306,

natural dialogue studies, 346

307–311

Navigator, Google, 11

maximum amplitude values, 305–314

NDEF (NFC Data Exchange Format),

preparing, 305–307

223–224

RecordAmplitudeTask, 305, 310–312

NDEF messages, 223, 243–244

speech activation implementation, 471,

NDEF records, 223, 243–244

481–483

NDEF-compatible NFC tags

MIFARE Classic tags, 226, 227, 249

described, 224, 225

MIFARE UltraLights, 224, 225

NFC inventory tracking system

MIME type

parsing/reading NDEF tags, 245–246

intent fi lters, 234–235

preparing to write to tag, 246–248

speech activation with NFC, 487–488

reacting to NDEF tags, 241–242

minimum API level, NFC inventory tracking

writing to tag, 248–250

system, 233

NdefMessage, 243–244

minimum delay, 67

NdefRecord, 243–244

Modern Device Freeduino USB Host Board, 192

near fi eld communication. See NFC

motion detector. See device movement detection

network location providers, 8–10, 16, 17

MovementActivator, 479, 480

Network Time Protocol (NTP) server, 6, 7

MovementDetectionListener, 472, 479, 480

NFC (near fi eld communication), 219–254

MovementDetector, 479, 480. See also device

advantages, 227–230

movement detection

Android intent fi lter system, 229–230

MPLAB, 192

AOA, 230

MSLP (mean sea-level pressure), 87–88, 171–174

applications, ideas for, 253–254

MultiCommandVoiceAction, 448–451

Bluetooth compared to, 227–228, 251

multi-part voice commands, 431–437

card emulation, 229

“add,” 432–433, 436

described, 222

“compare,” 432–433, 437

disadvantages, 227–230

example commands, 432–433

examples, 219

ordered, 408, 434–437

low power/proximity based, 228

“remove,” 432–433, 436–437

PN532 NFC/RFID controller breakout board,

unordered, 408

227, 230

multiple resolutions, searchforBarcode(),

QR barcodes compared to, 227–228

277–278

required hardware, 230

Multi-turn command voice action, 337–338

RFID compared to, 220–222

multi-turn food dialogue VUI design. See food

security, 224, 226, 229

dialogue multi-turn VUI design

singular scanning, 229

multi-turn voice actions

small short data bursts, 228

AddFood, 442, 445, 455–459, 461

speech activation implementation, 471,

food dialogue VUI design, 442

487–488

FoodLookup, 442, 461–463, 465

NFC controller chip, PN65N, 222, 229

implementing, 455–461

NFC Data Exchange Format (NDEF), 223–224

RemoveFood, 442, 451, 455, 459–461

NFC inventory tracking system (example app),

230–253

Activity class, 236–250

N

Android APIs, 233–250

naming convention, variables, 268

AndroidManifest.xml, 233–236

Narasimhan, Srinivasa, 300

debugging NFC tags with apps, 232–233

native device sensors, AOA sensors compared to, 196

enable NFC in settings, 231–232

507

bindex.indd 507

bindex.indd 507

5/10/2012 2:17:22 PM

5/10/2012 2:17:22 PM

Book Title <Chapter No> V1 - MM/DD/2010

NFC N-Mark logo – OnRecordPositionUpdateListener

foreground dispatching, 237–241

NXP Semiconductors, 222, 224, 226, 227, 232,

future considerations, 251–253

238, 251

intent fi lters, 233–236, 238–240

NXP SmartFX, 225

custom MIME type, 234–235

declaration, manifest fi le compared to

O

Activity class, 238–239

for generic tags, 241

obtaining reference to LocationManager, 20–23

implementing, in

odd parity digit codes, 268

NFCInventoryActivity.java,

onAccuracyChanged(), 76, 129, 157

239–240

onActivityResult(), 255, 362, 365, 377, 384,

URI-based, 235–236

386, 393, 405, 407, 474

main activity screen, 231

onCameraPreview(), 256, 272

minimum API level, 233

onClickListener, 263, 451

NDEF tags

onCreate()

parsing/reading NDEF tags, 245–246

DetermineAltitudeActivity, 166–167

preparing to write to tag, 246–248

DetermineOrientationActivity, 127–128

reacting to NDEF tags, 241–242

obtaining reference to LocationManager,

writing to tag, 248–250

20–21

permissions, 233

PendingIntent used by proximity alert,

scenario, 230

52–53

summary review, 250–251

onDestroy(), 34, 371

updating NFC tag (screen), 231

onDone(), 360, 366, 367, 370, 444, 474

NFC N-Mark logo, 251

onDraw(), 261

NFC sharing, peer-to-peer, 251–252

onEnteringProximity(), 54

NFC TagInfo, 232–233

onExitingProximity(), 54

NFC tags, 224–227

onFaceDown(), 135–136

choosing, 224–227

onFaceUp(), 135–136

online retailers, 227

onInit(), 352, 353, 356, 362, 368

storage size, price, security, 224, 226

onInitListener, 352, 353

write protection, 226

OnLanguageDetailsListener, 377, 378, 380,

MIFARE Classic, 226, 227, 249

392, 394

MIFARE UltraLights, 224, 225

onLayout(), 260

NDEF-compatible, 224, 225

online retailers, NFC tags, 227

NFC TagWriter, 232

onLocationChanged(), 19, 41, 42, 58–59, 60,

NfcAdapter, 237

162, 169, 177, 179

NFCInventoryActivity.java, 239–240

onLookupLocationClick(), 46

NfcManager, 237

ONLY_RETURN_LANGUAGE_PREFERENCE, 383

N-Mark logo, NFC, 251

onMeasure(), 260

noise, 105

OnNotUnderstoodListener, 448, 450, 466

NorthFinder app, 143–145

onPause(), 25, 32, 44, 76, 239, 476

not a voice command determination, 468–469

onPreviewCallback(), 272

notch fi lter, 113

onPreviewFrame(), 273, 274, 275, 291

no/yes/cancel voice action, 452–454

onProgressUpdatedListener, 359

NTP (Network Time Protocol) server, 6, 7

onProviderDisabled(), 19–20

NV21 format, camera preview image, 273–274,

onProviderEnabled(), 19–20

276, 279, 282, 283, 294

onReceive(), 30, 31, 35, 53

NXP DESFire, 225, 226

OnRecordPositionUpdateListener, 317–323

508

bindex.indd 508

bindex.indd 508

5/10/2012 2:17:22 PM

5/10/2012 2:17:22 PM

Book Title <Chapter No> V1 - MM/DD/2010

onRestoreInstanceState – pressure sensors

onRestoreInstanceState(), 476

persistent speech activation implementation,

onResume()

489–494

BarcodeReaderActivity, 272

persistent storage mechanisms. See also

broadcast receiver, 32

matching

DetermineAltitudeActivity, 168

FTS, 418–426

LocationManager, 24

implementing, 421–426

SpeechActivator, 476

MATCH operator, 420–421

onSaveInstanceState(), 476

virtual table, 418–419

onSensorChanged(), 132–133, 157–158

Lucene search engine library

onSetProximityAlertClick(), 51

analyzers project, 413

onStartCommand(), 34, 56–58, 59, 489

org.tartarus.snowball.ext.

onStatusChanged(), 20

EnglishStemmer, 413–414

onSuccessfullInit(), 351

stemmers, 413

onToggleClick(), 178, 179

word searching, 426–431

OnUtteranceCompletedListener, 360

Peters, Alan, 300

OpenCV discussion group, 300

Phonetix, 414

open-ended dialogue systems, 338

PIC24F chip, 192

OpenGL, 97, 121, 143, 145

PIC32 chip, 192

opening camera, 258

pin headers, 194

ordered multi-part voice commands, 408, 434–437

PipelineStage, 285–288

org.tartarus.snowball.ext.

example, 286–288

EnglishStemmer, Lucene, 413–414

getFront(), 286

orientation determination. See device orientation

isEmpty(), 286

determination

push(), 285, 287

OverlayItem, 37

setOutput(), 286, 288

playEarcon(), 366, 367, 371

playScript(), 370, 371

P

PN65N NFC controller chip, 222, 229

parsing/reading NDEF tags, 245–246

PN532 NFC/RFID controller breakout board,

PARTIAL_RESULTS, 383, 391, 485

227, 230

passive location provider, 16–17

point operations, image processing,

passive RFID tags, 220

282–283

payload identifi er, 223

PointOverlayItem, 37–38

payload length, 223

poorly recorded words, 412

payload type, 223

Porter stemmer, 412

PC performance, smartphones compared to, 293

powerOn(), 202

peer-to-peer Android APIs, 252–253

powerRequirement, Criteria class, 14

peer-to-peer NFC sharing, 251–252

Pratt, William K., 301

PendingIntent, 15, 32–33, 52–53

precision/accuracy, sensor, 104–105

permissions

prerecorded speech, 366, 367, 369, 370–371

android.permission.ACCESS_COARSE_

pressure sensors, 86–89. See also

LOCATION, 15, 17

DetermineAltitudeActivity

android.permission.ACCESS_FINE_

absolute altitude, formula, 87

LOCATION, 15, 17, 56

DetermineAltitudeActivity

location providers, 17

absolute altitude, 170–177

NFC inventory tracking system, 233

relative altitude, 177–180

proximity alerts, 56

GPS compared to, 162

509

bindex.indd 509

bindex.indd 509

5/10/2012 2:17:22 PM

5/10/2012 2:17:22 PM

Book Title <Chapter No> V1 - MM/DD/2010

Preview – RecognizerIntent

MEMs, 86–89

Q

MSLP, 87–88

range, 88

QR barcodes, 227–228. See also NFC

relative altitude, formula, 87

quaternions, 65, 91, 97–98, 125

standard sensor, 65

querying persistent storage. See also matching

units, 88

FTS, 418–426

use cases, 88–89

implementing, 421–426

Preview, 258–261

MATCH operator, 420–421

preview display, camera, 258–261

virtual table, 418–419

prompts, 341–342

Lucene search engine library

food dialogue multi-turn VUI design, 442

analyzers project, 413

Prompt extra, speech recording, 384

org.tartarus.snowball.ext.

voice execution step, 336, 443

EnglishStemmer, 413–414

proprietary sensor fusion, 115–118

stemmers, 413

ProtoShield, with breadboard, 198

word searching, 426–431

proximity alert (example app)

Quirky.com, 216

alternate effi cient implementation, 26–61

GeocodeActivity screen, 46

R

ProximityAlertService, 56–61

getDistance(), 58–59

radio frequency identifi cation. See RFID

onLocationChanged(), 58–59

random error, 105

onStart(), 57–58

range, sensor, 70–71

structure, 45–53

rare words, 411

proximity alerts, 45–61

rates, sensor, 69

clearing, 52

raw audio signal analysis, 314–323

geocoding, 46–50, 61

raw sensors, 66–67

Big Ben, 49

reacting to NDEF tags, 241–242

defi ned, 46

read(), 203, 204, 205, 317

reading geocoded response, 48–50

ReadBarcode, 271, 274, 291. See also barcode

reverse, 46, 48

reader program

Statue of Liberty, 48

Reader voice action, 337–338

Taj Mahal, 49

readGrayImage(), 276

limitations, 55–56

reading/parsing NDEF tags, 245–246

PendingIntent, 52–53

receiveWhatWasHeard(), 397, 405, 407, 410,

permissions, 56

426, 441, 444, 484

responding to, 53–55

receiving location data, 28–35

setting, 50–53

receiving location updates, 18

proximity based/low power, NFC, 228

recognition failure

proximity sensors, 65, 85–86

food dialogue multi-turn VUI design, 442

ProximityAlertActivity, 50–51, 55,

food dialogue VUI design, 442

56, 58

indexing, 412

ProximityAlertBroadcastReceiver,

RecognizerIntent, 386

54–55

responses for, 466–468

ProximityAlertService, 56–61

RecognitionIndexer, 428

getDistance(), 58–59

recognizeDirectly(), 403, 405

onLocationChanged(), 58–59

RecognizerIntent

onStart(), 57–58

ACTION_GET_LANGUAGE_DETAILS,

push(), 285, 287

377, 378, 380, 381, 383, 392

510

bindex.indd 510

bindex.indd 510

5/10/2012 2:17:22 PM

5/10/2012 2:17:22 PM

Book Title <Chapter No> V1 - MM/DD/2010

RecordAmplitudeTask – sensors

ACTION_RECOGNIZE_SPEECH, 382, 383, 390,

retailers, NFC tags, 227

404, 405

reverse geocoding, 46, 48

actions

re-zeroing, 107

extras, 382–383

RFID (radio frequency identifi cation)

types, 382

described, 220–222

ACTION_WEB_SEARCH, 383, 390, 391

examples, 219

confi guring/processing speech results,

NFC compared to, 220–222

385–396

PN532 NFC/RFID controller breakout board,

speech recognition implementation, 391–403

227, 230

speech recording process, 374–385

RgbAbsDiffGray, 292, 294, 297

SpeechRecognizer compared to, 403–405

right half of barcode, EAN-13 barcodes, 271

use cases, 386–391

right-hand rule, 92, 94, 98

RecordAmplitudeTask, 305, 310–312

rotation matrices, 91–92, 97, 98, 99, 100, 116,

RecordAudioTask, 304

123, 124, 130, 131, 132, 133, 134

recording audio. See AudioRecord

rotation vector sensors

reducing location update frequency, battery life,

described, 97

43–44

device orientation determination (example app)

reduction operations, image processing, 283

rotation vector data, 132–135

Refi nedSoundex, 414

sensor choices, 124–125

registering broadcast receivers, with Android,

NorthFinder app, 143–145

30–32

RuntimeException, 258, 260, 261, 265, 273

manifest-based, 30–31

manual, 31–32

S

registerReceiver(), 30, 31

relative altitude

sampling frequency, 67

DetermineAltitudeActivity, 177–180

Sampling rate, AudioRecord, 315–316

formula, 87

satellite constellation, GPS, 4

relative elevation measurement, pressure sensors,

saturation, 67

89

Say the Magic Word, 335, 336

relative humidity sensors, 65, 89

SayMagicWordDemo, 351, 377, 397, 398–403

relax match strictness, 461–463

scene modes, camera, 266–267

relax strictness between commands, 463–464

SD card, 194, 276, 305, 306, 308, 356, 361, 427

relays, 194

searchforBarcode(), 276–278

releasing camera, 258

Secure Element, 229

“remove” multi-part voice command, 432–433,

security, NFC, 224, 226, 229

436–437

SecurityException, 15, 56

RemoveFood, 442, 451, 455, 459–461

Seeed Studio Seeeduino, 192

requesting location updates, 23–25

semiconductors. See Microchip Technology; NXP

requestLocationUpdates(), 30, 33, 43, 44, 55,

Semiconductors

56

sendBroadcast(), 382

requestSingleLocation(), 23

sendExtracommand(), 7

resolution, sensor, 67, 70–71, 93

sensors (physical sensors), 65–216. See also

response time, smoothness compared to, 111

accelerometers; gyroscopes; specifi c sensors

RESULTS, 382

accuracy/precision, 104

“results” extras, 382–383

ambient temperature, 89

RESULTS_PENDINGINTENT, 382, 386, 387, 388

AOA sensors compared to native device

RESULTS_PENDINGINTENT_BUNDLE, 382,

sensors, 196

387, 388

binary, 67

511

bindex.indd 511

bindex.indd 511

5/10/2012 2:17:22 PM

5/10/2012 2:17:22 PM

Book Title <Chapter No> V1 - MM/DD/2010

Sensor API – Serial.printin

black box approach, 65

screens, 72

continuous, 67

SensorDisplayFragment, 76–83

deprecated

SensorListActivity, 73–74

Sensor.TYPE_ORIENTATION, 67, 90,

SensorSelectorFragment, 74–76

98, 122

sensor units

Sensor.TYPE_TEMPERATURE, 66, 89–90

accelerometer, 93

gravity, 67, 92–93, 108, 123, 124, 130

gravity sensor, 93

inertial, 90–102

gyroscope sensor, 94

light, 65, 84–85

linear acceleration sensors, 93

linear acceleration, 92–93, 150

magnetic fi eld sensors, 95

MEMs

pressure sensors, 88

accelerometers, 92–93

SENSOR_DELAY_FASTEST, 69

defi ned, 66

SENSOR_DELAY_GAME, 69

gyroscopes, 94, 196

SENSOR_DELAY_NORMAL, 69

magnetic fi eld sensors, 94–97

SENSOR_DELAY_UI, 69

magnetometers, 95

SensorDisplayFragment, 76–83

pressure sensors, 86–89

SensorEvent, 71

precision/accuracy, 104

SensorEvent.accuracy, 71

range, 70–71

SensorEventListener, 71

rates, 69

SensorEvent.sensor, 71

raw, 66–67

SensorEvent.timestamp, 71

relative humidity, 65, 89

SensorEvent.values, 69, 71, 76, 130, 158

resolution, 67, 70–71, 93

Sensor.getMaximumRange(), 70–71

sensing device orientation/movement, 90–102

Sensor.getResolution(), 67, 70–71

sensing environment, 84–90

SensorListActivity, 73–74

smartphones

SensorManager, 68

AOA temperature sensor, 190

SensorManager.getAltitude(), 86–87, 161–

magnetic fi eld sensors, 97

162, 169, 170–171, 187

PC performance compared to, 293

SensorManager.getInclination(), 101

physical sensors, 65

SensorManager.getOrientation(), 68, 91,

proximity sensors, 85

98–101, 116, 123, 124, 131, 134, 147

speech activation implementation, 471,

SensorSelectorFragment, 74–76

479–480

Sensor.TYPE_ACCELEROMETER, 66, 92–93

synthetic, 66–67

Sensor.TYPE_AMBIENT_TEMPERATURE, 67, 89

temperature, 89–90

Sensor.TYPE_GRAVITY, 67, 92–93, 108

terms/concepts, 66–68

Sensor.TYPE_GYROSCOPE, 66, 94

Sensor API, Android, 68–84

Sensor.TYPE_LIGHT, 66, 84–85

Sensor class, 68–69

Sensor.TYPE_LINEAR_ACCELERATION, 67,

sensor data errors, 103–119

92–93, 111

addressing, 107–118

Sensor.TYPE_ORIENTATION, 67, 90, 98, 122

recovery, VUI design, 342–343

Sensor.TYPE_PRESSURE, 66, 86–89, 114

types, 105–106

Sensor.TYPE_PROXIMITY, 66, 85–86

sensor fusion

Sensor.TYPE_ROTATION_VECTOR, 67, 97

defi ned, 101, 107

Sensor.TYPE_TEMPERATURE, 66, 89–90

graphical representation, 115

Sequence, 288

simple compared to proprietary, 115–118

Serial.begin(), 200

Sensor List (example app), 72–84

Serial.print(), 200

AndroidManifest.xml, 72–73

Serial.printin(), 200

512

bindex.indd 512

bindex.indd 512

5/10/2012 2:17:22 PM

5/10/2012 2:17:22 PM

Book Title <Chapter No> V1 - MM/DD/2010

service set identifi er – SpeechActivationListener

service set identifi er (SSID), 9

smoothing parameter, low-pass fi lter, 111

services

smoothness, response time compared to, 111

persistent speech activation, 489–494

Sony FeliCa, 225, 226

tracking location movement app, 34–35

Soundex phonetic indexing algorithm,

Set Language menu option, 381

414–416, 417

Set object, in-memory matching, 408, 409–410,

SoundsLikeWordMatcher, 411, 416–417, 484

418, 439

SparkFun Electric Sheep, 192

setCamera(), 260

SparkFun IOIO, 193

setCameraDisplayOrientation(), 262–263

spatial transformation operations, image

setFocusAreas(), 272

processing, 283

setLanguage(), 352, 368

speak(), 366, 367, 371, 444

setNdefPushMessage(), 252

speak response (optional), voice execution

setNdefPushMessageCallback(), 252

step, 443

setOnPositionUpdate(), 318

speaking, TTS API, 366–377

setOutput(), 286, 288

speech activation implementations, 471–494

setParameters(), 261

Activity, 472, 475–479, 494

setPrompt(), 452

continuous speech recognition, 471, 483–487

setSpokenPrompt(), 452

microphone, 471, 481–483

setTextToSpeechSettings(), 352, 353

movement detection (physical sensor), 471,

setTtsListener(), 360

479–480

setup() and loop(), 195, 199, 200, 201,

MovementDetectionListener, 472,

202, 204

479, 480

setWhiteBalance(), 298

NFC, 471, 487–488

S-GPS, 6

Service for persistent speech activation,

shared preference, 352, 354, 358

489–494

shields, 194

starting speech recognition, 473–475, 494

silences, 366, 367

summary list, 471

simple moving average, low-pass fi lters, 108–110

summary of process, 472, 494

simple moving median, low-pass fi lters, 111

time delay handling, 473–475, 494

simple sensor fusion, 115–118

speech hygiene, VUI design, 344

SimpleCaptureActivity, 255–256

speech recognition, 333–494. See also speech

singing clapper

activation implementations

AudioClipListener, 304, 327–329

direct speech recognition

description, 304

continuous speech recognition compared

implementation, 327–329

to, 471, 483–487

zero-crossing method, 325–327

SpeechRecognizer, 403–405, 484

singular scanning, NFC, 229

features, 334

sketch, Arduino, 195, 199–205

popularity, 333

SLP METAR string, 176

starting, 473–475, 494

small short data bursts, NFC, 228

speech recognition API, 377–405

SmartFX, NXP, 225

initialization process, 377–382

smartphones

TTS and speech recognition, demonstration

AOA temperature sensor, 190

activity, 398–403

magnetic fi eld sensors, 97

speech recording process,

PC performance compared to, 293

RecognizerIntent, 384

physical sensors, 65

SpeechActivationLauncher, 473–474

proximity sensors, 85

SpeechActivationListener, 472, 480,

sensor fusion, 116

481–482

513

bindex.indd 513

bindex.indd 513

5/10/2012 2:17:22 PM

5/10/2012 2:17:22 PM

Book Title <Chapter No> V1 - MM/DD/2010

SpeechActivationNfcTagReceiver – TextToSpeech.LANG_COUNTRY_AVAILABLE

SpeechActivationNfcTagReceiver, 487–488

SurfaceHolder, 259–260

SpeechActivationService, 489–493

SurfaceView, 258–259

SpeechActivator. See also speech activation

switchCamera(), 260, 263, 264, 293

implementations

switching cameras, 264

Activity, 472, 475–479, 494

synthesizeToFile(), 368

behavior, 472

synthetic sensors, 66–67

interface, 472

systematic error, 105

SpeechActivatorStartStop, 476, 479

SPEECH_INPUT_COMPLETE_SILENCE_LENGTH_

T

MILLIS, 382, 383

SPEECH_INPUT_MINIMUM_LENGTH_MILLIS, 382,

TagAge.net, 227

383, 405

TagInfo, 232–233

SPEECH_INPUT_POSSIBLY_COMPLETE_SILENCE_

Tagstand, 227

LENGTH_MILLIS, 382, 383

TagWriter, 232

SpeechRecognitionLauncher, 474–475, 487–

Taj Mahal, geocoding, 49

488, 493–494

tapered prompts, 342

SpeechRecognitionResultsActivity, 377,

tasks, voice actions, 339–340

387–389, 474–475

temperature sensors, 89–90. See also AOA and

SpeechRecognitionUtil, 377, 391, 392, 393

temperature sensor

SpeechRecognizer, 403–405. See also

testing

RecognizerIntent

TTS initialization, 360–361

SpeechRecognizingActivity, 377, 380, 391,

VUI design, 346–347

392, 393–398, 403, 404, 405

TextToSpeech, 358

SpeechRecognizingActivity.

classes, 350

checkForLanguage(), 380

object initialization, 349, 350–366

SpeechRecognizingAndSpeakingActivity, 474

SayMagicWordDemo, 351, 377, 397,

SpeechSynthesis Data app, 356

398–403

speedAccuracy, Criteria class, 14

Text-To-Speech. See TTS

speedRequired, Criteria class, 14

TextToSpeech.areDefaultsEnforced(), 368

SQLite FTS. See FTS

TextToSpeechDemo, 350, 366, 369–370, 371–

SSID (service set identifi er), 9

376, 397

startActivator(), 476

TextToSpeech.Engine.ACTION_CHECK_TTS_

startActivityForResult(), 255, 363, 382, 387

DATA, 360, 361–366

startReadingAcceleration(), 154, 155

TextToSpeech.Engine.ACTION_INSTALL_TTS_

startRecording(), 316–317

DATA, 357

startRecordingForTime(), 316–317

TextToSpeech.Engine.ACTION_TTS_DATA_

static command words, 408, 411

INSTALLED, 358

Statue of Liberty, geocoding, 48

TextToSpeech.FAILURE, 352

StemmedWordMatcher, 411, 413–414

TextToSpeechInitializer, 350, 351, 352, 353,

stemming, 412–414

354, 372, 398

stopReadingAccelerationData(), 156

TextToSpeechInitializerByAction, 350, 362,

storage size, NFC tags, 224, 226

363, 364

subsampled image, aliasing, 295

TextToSpeechInitializer.

success confi rmation, VUI design, 342–343

installLanguage(), 357

SUPPORTED_LANGUAGES, 383

TextToSpeech.isLanguageAvailable(), 353,

surfaceChanged(), 260

354, 355, 356, 358, 363

surfaceCreated(), 259

TextToSpeech.LANG_AVAILABLE, 353

surfaceDestroyed(), 259

TextToSpeech.LANG_COUNTRY_AVAILABLE, 353

514

bindex.indd 514

bindex.indd 514

5/10/2012 2:17:22 PM

5/10/2012 2:17:22 PM

Book Title <Chapter No> V1 - MM/DD/2010

TextToSpeech.LANG_COUNTRY_VAR_ AVAILABLE – turns

TextToSpeech.LANG_COUNTRY_VAR_

TTFF (time to fi x fi rst) values, 16, 18, 26, 176

AVAILABLE, 353

TTS (Text-To-Speech)

TextToSpeech.LANG_MISSING_DATA, 353

device movement detection (example

TextToSpeech.LANG_NOT_SUPPORTED, 353

app), 147

TextToSpeechStartupListener, 350, 351, 352,

device orientation determination (example

358, 371, 398

app), 121, 122, 135–143, 146

three-vectors, angular, 91, 92

features, 335

threshold, maximum amplitude, 313–314

TTS API, 349–377

thresholding

initialization process, 349, 350–366

defi ned, 282

LanguageDataInstallBroadcastReceiver,

searchforBarcode(), 276–277

350, 354, 357, 358–359

time delays

speaking, 366–377

sensor error, 105

steps for usage, 349

speech activation implementations,

TextToSpeech.areDefaultsEnforced(),

473–475, 494

368

time to fi x fi rst (TTFF) values, 16, 18, 26, 176

TextToSpeechDemo, 350, 366, 369–370,

Timing extra, speech recording, 384

371–376, 397

toggle button handler, device movement detection,

TextToSpeech.Engine.ACTION_CHECK_

153–154

TTS_DATA, 360, 361–366

Topaz, Broadcom, 225

TextToSpeech.Engine.ACTION_INSTALL_

Torrone, Phillip, 216

TTS_DATA, 357

toString(), 49–50

TextToSpeech.Engine.ACTION_TTS_

total acceleration, 153

DATA_INSTALLED, 358

Touchanote, 229, 253

TextToSpeech.FAILURE, 352

tracking device movement (example app), 27–44

TextToSpeechInitializer, 350, 351, 352,

Android application components, 27

353, 354, 372, 398

battery consumption, 27, 43–44

TextToSpeechInitializerByAction, 350,

broadcast receivers, 28–34

362, 363, 364

continuously tracking device location data,

TextToSpeechInitializer.

27, 43–44

installLanguage(), 357

fi ltering location data, 40–43

TextToSpeech.isLanguageAvailable(),

functionality overview, 27

353, 354, 355, 356, 358, 363

Google map library components, 36–40

TextToSpeech.LANG_AVAILABLE, 353

main screen, 28

TextToSpeech.LANG_COUNTRY_

receiving location data, 28–35

AVAILABLE, 353

services, 34–35

TextToSpeech.LANG_COUNTRY_VAR_

viewing location data, 35–40

AVAILABLE, 353

TrackLocationActivity, 31, 32, 35, 36, 37, 40

TextToSpeech.LANG_MISSING_DATA, 353

TrackLocationBroadcastReceiver, 30, 31, 33

TextToSpeech.LANG_NOT_SUPPORTED, 353

TrackLocationOverlay, 38–40

TextToSpeechStartupListener, 350, 351,

train users, VUI design, 340–341

352, 358, 371, 398

triangulation, 5, 10

TTS and speech recognition, demonstration

Try Speech button

activity, 398–403

RecognizerIntent use cases, 391

turns

Set Language menu option, 381

completion, user interface screen fl ow, 336

speech activation approaches, 472

multi-turn voice actions

speech recognition experiments, 418

AddFood, 442, 445, 455–459, 461

Try Text to Speech, 350, 366, 368, 369

food dialogue VUI design, 442

515

bindex.indd 515

bindex.indd 515

5/10/2012 2:17:23 PM

5/10/2012 2:17:23 PM

Book Title <Chapter No> V1 - MM/DD/2010

Uno Arduino form factor – VUI designs

FoodLookup, 442, 461–463, 465

implementing, 455–461

implementing, 455–461

RemoveFood, 442, 451, 455, 459–461

RemoveFood, 442, 451, 455, 459–461

open-ended dialogue systems, 338

turn completion, 336

types, 337–338

U

yes/no/cancel, 452–454

Uno Arduino form factor, 191

voice commands. See also matching

unordered multi-part voice commands, 408

multi-part, 431–437

unregisterReceiver(), 31

“add,” 432–433, 436

UpdateSelectedSensor(), 128–130

“compare,” 432–433, 437

UpdateViewBroadcastReceiver, 33

example commands, 432–433

UPM, 227

ordered, 408, 434–437

URI-based intent fi lters, 235–236

“remove,” 432–433, 436–437

USB host/USB accessory, AOA, 190

unordered, 408

UsbAccessory, 208

not a voice command determination,

UsbManager, 205, 208

468–469

useHighPassFilter, 154

parts, 407–409

user implicit prompting, food dialogue multi-turn

 Voice Interaction Design (Harris), 338, 347

VUI design, 442

voice user interfaces. See VUIs

user interface screen fl ow, VUI, 336

VoiceAction

user’s utterances. See matching; VUI designs

interface (code), 444–445

‹uses-feature declaration›, 72

voice action-related classes relationship,

UtteranceProgressListener, 360, 366,

443–444

377, 399

VoiceActionCommands

AddFood, 442, 445, 455–459, 461

executing, 448–451

V

FoodLookup, 442, 461–463, 465

interface (code), 444–445

Vanderbilt University, 300

RemoveFood, 442, 451, 455, 459–461

variable naming convention, 268

voice action-related classes relationship,

velocity fi lter, 43

443–444

verifyCheckDigit(), 270–271

VoiceActionExecutor

verticalAccuracy, Criteria class, 14

implementation (code), 445–448

viewing location data, 35–40

voice action-related classes relationship,

virtual FTS table, 418–419

443–444

VIRTUAL TABLE, 418–419

VoiceAlertDialog, 451–455, 459–460

voice actions, 441–470

VUI designs, 338–347

AlertDialogs, 451–455

beta tests, 347

appropriate tasks, 339–340

food dialogue multi-turn VUI design

execution

AddFood, 442, 445, 455–459, 461

steps, 336, 443

FoodLookup, 442, 461–463, 465

voice action-related classes, 443–444

RemoveFood, 442, 451, 455, 459–461

Food Edit, 442, 444, 461, 464

turns, for voice action commands, 442

Food Lookup, 442, 465

voice actions, 442

multi-turn

food dialogue VUI design

AddFood, 442, 445, 455–459, 461

classes for implementing, 427

food dialogue VUI design, 442

fl aws, 442

FoodLookup, 442, 461–463, 465

word searching with Lucene, 427–431

516

bindex.indd 516

bindex.indd 516

5/10/2012 2:17:23 PM

5/10/2012 2:17:23 PM

Book Title <Chapter No> V1 - MM/DD/2010

VUIs – Zxing Google code site

goal, 334

WordList, 434, 449

hands-free/eyes-free, 336, 340, 470, 471,

WordMatcher

483, 494

“add” command, 410

natural dialogue studies, 346

“add” multi-part command, 433

testing, 346–347

additional methods, 435

voice action tasks, 339–340

Lucene’s org.tartarus.snowball.ext.

what app/users will say, 340–345

EnglishStemmer, 413–414

accidental speech activation, 343–344

matching words to predefi ned Set, 409–410

confi rm success, 342–343

“remove” multi-part command, 432–433

constrain speech input, 340

Soundex comparisons, 415–416

error recovery, 342–343

SoundsLikeWordMatcher, 411,

menu usage, 344–345

416–417, 484

prompt users, 341–342

StemmedWordMatcher, 411, 413–414

speech hygiene, 344

write(), 203, 205

train users, 340–341

write protection, NFC tags, 226

Wizard of Oz studies, 346

write to NDEF tags, 246–250

VUIs (voice user interfaces)

writeGrayImage(), 276

defi ned, 333

GUIs compared to, 338, 344, 443

user interface screen fl ow, 336

X

X axis, acceleration data, 151–152

xAL (eXtensible Address Language)

W

specifi cation, 49

“waiting” shared preference, 352, 354, 358

xml/accessory_filter.xml, 206–207

wasListeningForActivation, 476

weather sensing, pressure sensors, 89

WEB_SEARCH_ONLY, 383, 390

Y

weighted smoothing, low-pass fi lters, 108

Y axis, acceleration data, 152

“what to return” extras, 382–383

yes/no/cancel voice action, 452–454

“where to send results” extras, 382–383

YUV color space, 273, 283, 291, 295

white balance, 265–266

“Why Every Maker Should Learn Chinese,” 216

Wi-Fi access points, 8–9

Z

Wizard of Oz studies, 346

Z axis, acceleration data, 152

Woods, Robert E., 301

zero offset, 105

words, hard-to-understand, 411–412. See also

zero-crossing method, singing clapper, 325–327

voice commands

zoom button, camera, 263

word searching, with Lucene, 426–431

Zxing Google code site, 278

word spotting algorithm, 409–417

WordActivator, 484–487

517

bindex.indd 517

bindex.indd 517

5/10/2012 2:17:23 PM

5/10/2012 2:17:23 PM

Try Safari Books Online FREE

for 15 days + 15% off

for up to 12 Months*

Read this book for free online—along with thousands of others—

with this 15-day trial offer

with this 15 d

.

With Safari Books Online, you can experience

searchable, unlimited access to thousands of

technology, digital media and professional

development books and videos from dozens of

leading publishers. With one low monthly or yearly

subscription price, you get:

• Access to hundreds of expert-led instructional

videos on today’s hottest topics.

• Sample code to help accelerate a wide variety

of software projects

• Robust organizing features including favorites,

highlights, tags, notes, mash-ups and more

• Mobile access using any device with a browser

• Rough Cuts pre-published manuscripts

START YOUR FREE TRIAL TODAY!

Visit www.safaribooksonline.com/wrox46 to get started.

*Available to new subscribers only. Discount applies to the

Safari Library and is valid for fi rst 12 consecutive monthly

billing cycles. Safari Library is not available in all countries.

badvert-colour.indd 518

4/28/2012 3:12:36 PM

Related Wrox Books

U P D A T E D F O R A N D R O I D 4

 Join the discussion @ p2p.wrox.com

Professional Android 4 Application Development

ISBN: 978-1-1181-0227-5

This book provides in-depth coverage of the Android SDK, allowing existing Android devel-

opers to take advantage of new features, while providing the fundamentals needed for new

Android developers to get started.

Android™ 4

Application Development

Reto Meier

 Join the discussion @ p2p.wrox.com

Wrox Programmer to Programmer™

Professional Android Programming with Mono for Android and

.NET/C#

ISBN: 978-1-1180-2643-4

Aimed at providing readers with a thorough, reliable resource that guides them through the

field of Android application programming, this must-have book shows how to write applica-

tions using Mono with C# that run on the Android family of devices.

Professional

Android™ Programming

with Mono for Android and .NET/C#

Wallace B. McClure, Nathan Blevins, John J. Croft IV, Jonathan Dick, Chris Hardy

Ivor Horton’s Beginning Java, Java 7 Edition

ISBN: 978-0-470-40414-0

Whether you’re a beginner or an experienced programmer switching to Java, you’ll learn

how to build real-world Java applications using Java SE 7.

[bookmark: outline]

Document Outline

	Professional Android™ Sensor Programming

	Contents

	Introduction

	Part I: Location Services

	Chapter 1: Introducing the Android Location Service

	Methods Used to Determine Location

	GPS Provider

	How It Works

	GPS Improvements

	Limitations

	Controlling GPS

	Network Provider

	Using Wireless Network Access Points

	Using Cell IDs

	Summary

	Chapter 2: Determining a Device’s Current Location

	Know Your Tools

	LocationManager

	LocationProvider

	Location

	Criteria

	LocationListener

	Setting up the Android Manifest

	Determining the Appropriate Location Provider

	GPS Location Provider

	Network Location Provider

	Passive Location Provider

	Accuracy versus Battery Life

	Receiving Location Updates

	Receiving Location Updates with a LocationListener

	Receiving Location Updates with a Broadcast Intent

	Implementing the Example App

	Implementing LocationListener

	onLocationChanged()

	onProviderDisabled() and onProviderEnabled()

	onStatusChanged()

	Obtaining a Handle to LocationManager

	Requesting Location Updates

	Cleaning up After Yourself

	Launching the Location Settings Activity

	Summary

	Chapter 3: Tracking Device Movement

	Collecting Location Data

	Receiving Location Updates with a Broadcast Receiver

	Extending BroadcastReceiver

	Registering the BroadcastReceiver with Android

	Requesting Location Updates with a PendingIntent

	One Intent, Multiple Receivers

	Why Not Use a Service?

	Viewing the Tracking Data

	Google Map Library Components

	MapView

	OverlayItem

	ItemizedOverlay

	MapActivity

	Filtering Location Data

	Continuous Location Tracking and Battery Life

	Reducing Location Update Frequency

	Limiting Location Providers

	Summary

	Chapter 4: Proximity Alerts

	App Structure

	Geocoding

	android.location.Geocoder

	Reading the Geocoded Response

	Setting a Proximity Alert

	Responding to a Proximity Alert

	Proximity Alert Limitations

	Battery Life

	Permissions

	More Efficient Proximity Alert

	ProximityAlertService

	Summary

	Part II: Inferring Information from Physical Sensors

	Chapter 5: Overview of Physical Sensors

	Definitions

	Android Sensor API

	SensorManager

	Sensor

	Sensor Rates

	Sensor Range and Resolution

	SensorEventListener

	SensorEvent

	Sensor List

	The Manifest File

	SensorListActivity

	SensorSelectorFragment

	SensorDisplayFragment

	Sensing the Environment

	Sensor.TYPE_LIGHT

	Sensor.TYPE_PROXIMITY

	Sensor.TYPE_PRESSURE

	Absolute Altitude

	Relative Altitude

	Mean Sea-Level Pressure (MSLP)

	Where to Find MSLP

	Sensor Units

	Sensor Range

	Common Use Cases

	Sensor.TYPE_RELATIVE_HUMIDITY

	Sensor.TYPE_AMBIENT_TEMPERATURE

	Sensor.TYPE_TEMPERATURE

	Sensing Device Orientation and Movement

	Coordinate Systems

	Global Coordinate System

	Device Coordinate System

	Angles

	Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and .TYPE_LINEAR_ACCELERATION

	Sensor Units and Resolution

	Sensor.TYPE_GYROSCOPE

	Sensor Units

	Sensor Range

	Sensor.TYPE_MAGNETIC_FIELD

	Sensor Units, Range, and Resolution

	Sensor.TYPE_ROTATION_VECTOR

	SensorManager.getOrientation()

	SensorManager.getInclination()

	Sensor Fusion Schemes

	Summary

	Chapter 6: Errors and Sensor Signal Processing

	Definitions

	Accuracy and Precision

	Types of Errors

	Human Error, Systematic Error, and Random Error

	Noise

	Drift

	Zero Offset (or “Offset,” or “Bias”)

	Time Delays and Dropped Data

	Integration Error

	Techniques to Address Error

	Re-zeroing

	Filters

	Sensor Fusion

	Filters

	Low-Pass

	Weighted Smoothing

	Simple Moving Average (SMA)

	Choosing the Smoothing Parameter

	Averaging: Smoothness vs. Response Time

	Simple Moving Median (SMM)

	High-Pass

	Inverse Low-Pass Filter

	Bandpass

	Introducing Kalman Filters

	A Better Determination of Orientation by Using Sensor Fusion

	Sensor Fusion: Simple vs. Proprietary

	Proprietary Sensor Fusion

	Simple Sensor Fusion: The Balance Filter

	Summary

	Chapter 7: Determining Device Orientation

	Previewing the Example App

	Determining Device Orientation

	Gravity Sensor

	Accelerometer and Magnetometer

	Gravity Sensor and Magnetometer

	Rotation Vector

	Implementation Details

	Processing Gravity Sensor Data

	Processing Accelerometer and Magnetic Field Data

	Processing Rotation Vector Data

	Notifying the User of Orientation Changes

	NorthFinder

	Summary

	Chapter 8: Detecting Movement

	Acceleration Data

	Accelerometer Data

	Linear Acceleration Sensor Data

	Data While Device Is in Motion

	Total Acceleration

	Implementation

	DetermineMovementActivity

	AccelerationEventListener

	Summary

	Chapter 9: Sensing the Environment

	Barometer vs. GPS for Altitude Data

	Example App Overview

	Implementation Details

	GPS-Based Altitude

	Barometric Pressure–Based Altitude

	Relative Altitude

	Summary

	Chapter 10: Android Open Accessory

	A Short History of AOA

	USB Host Versus USB Accessory

	Electrical Power Requirements

	Supported Android Devices

	The Android Development Kit (ADK)

	Hardware Components

	Software Components

	AOA Sensors versus Native Device Sensors

	AOA Beyond Sensors

	AOA Limitations

	AOA and Sensing Temperature

	Implementation

	Requirements

	Getting Started with the Arduino Software

	Arduino Sketch

	Android Code

	Communication between Arduino and Android

	Taking an Android Accessory to the Consumer Market

	Summary

	Part III: Sensing the Augmented, Pattern-Rich External World

	Chapter 11: Near Field Communication (NFC)

	What Is RFID?

	What Is NFC?

	The NDEF Data Format

	How and Where to Buy NFC Tags

	NDEF-compatible NFC Tags

	Storage Size versus Price versus Security Trade-off

	Write Protection

	Form Factor

	Retailers

	General Advantages and Disadvantages of NFC

	Low Power and Proximity Based

	Small, Short Data Bursts

	Singular Scanning

	Security

	Card Emulation

	Android-specific Advantage: Intents

	Required Hardware

	Building an Inventory Tracking System

	The Scenario

	The NFC Inventory Demonstration App

	Enabling NFC in the Settings

	Debugging Your Tags with Apps

	Android APIs

	In Your AndroidManifest.xml File

	Permissions and Minimum API Level

	Intent Filters

	Custom MIME Type Intent Filters

	URI-based Intent Filters

	In Your Main Activity Class

	NfcManager

	NfcAdapter

	Foreground Dispatching

	Foreground NDEF Push

	Reacting to an NDEF Tag

	NdefMessage and NdefRecord

	Parsing and Reading NDEF Tags

	Getting Ready to Write to a Tag

	Writing to the Tag

	Putting it All Together

	Future Considerations

	NFC N-Mark

	Peer-to-Peer NFC Sharing

	Peer-to-Peer Android APIs

	Go Forth and NFC!

	Summary

	Chapter 12: Using the Camera

	Using the Camera Activity

	Controlling the Camera with Your Own Activity

	Claiming and Releasing a Camera

	The Preview View

	Controlling the Camera

	Orientation

	Zoom

	Focus

	Switching Cameras

	Flash

	Other Camera Parameters

	Creating a Simple Barcode Reader

	Understanding Barcodes

	Parity and Implied First Digit

	The Check Digit

	Right Half of the Barcode

	Autofocus

	Using the Camera Preview Image and Detecting the Barcode

	Debugging Image Processing Programs on Android

	Detecting the Barcode

	Summary

	Chapter 13: Image-Processing Techniques

	The Structure of Image-Processing Programs

	The Image-Processing Pipeline

	Common Image-Processing Operations

	Image-to-Image Operations

	Image-to-Object Operations

	Jon’s Java Imaging Library (JJIL)

	Image

	PipelineStage

	Sequence

	Ladder

	JJIL and Detecting the Android Logo

	Choose the Right Image Size

	Improving Reliability in Image Processing

	Detecting Faces

	Image-Processing Resources

	Summary

	Chapter 14: Using the Microphone

	Introducing the Android Clapper

	Using MediaRecorder to Analyze Maximum Amplitude

	Recording Maximum Amplitude

	Asynchronous Audio Recording

	Implementing a Clapper

	Analyzing Raw Audio

	Setting Audio Input Parameters

	Preparing AudioRecord

	Recording Audio

	Using OnRecordPositionUpdateListener

	Using Loud Noise Detection

	Using Consistent Frequency Detection

	Estimating Frequency

	Implementing the Singing Clapper

	Summary

	Part IV: Speaking to Android

	Chapter 15: Designing a Speech-enabled App

	Know Your Tools

	User Interface Screen Flow

	Voice Action Types

	Voice User Interface (VUI) Design

	Deciding Appropriate Tasks for Voice Actions

	Designing What the App and Users Will Say

	Constrain Speech Input to Increase Accuracy

	Train Users to Know What They Can Say

	Prompt the Users so They Know What to Say

	Confirm Success and Help Users Recover from Errors

	Help Users Recover from Accidental Speech Activation

	Teach Users Proper Speech Hygiene

	Use Menus Cautiously

	After the Design

	Testing Your Design

	Summary

	References

	Chapter 16: Using Speech Recognition and Text-to-Speech APIs

	Text-To-Speech

	Initialization

	Initialization with Locale

	Check TTS Data Action

	Speaking

	Speaking a Script

	Speech Recognition

	Initializing

	Using the RecognizerIntent

	The Speech Recording Process

	Configuring and Processing the Result

	RecognizerIntent Use Cases

	Implementation

	Direct Speech Recognition Using SpeechRecognizer

	Summary

	Chapter 17: Matching What Was Said

	Parts of a Voice Command

	Word Spotting

	Indexing to Improve Word Spotting

	Stemming

	Phonetic Indexing

	Matching Command Words in Persistent Storage

	SQLite Full Text Search

	Using the LIKE Operator

	Using the FTS MATCH Operator

	Implementing FTS

	Word Searching with Lucene

	Multi-part Commands

	Ignoring Potential Collisions

	Considering Ordering

	Using a Grammar

	Summary

	Chapter 18: Executing Voice Actions

	Food Dialogue VUI Design

	Defining and Executing Voice Actions

	Executing VoiceActionCommands

	Implementing an AlertDialog for VoiceActions

	Implementing Multi-Turn Voice Actions

	Implementing Multi-Turn AddFood

	Implementing Multi-Turn RemoveFood

	Making a Best Guess

	Relaxing Strictness Between Commands

	Making an Educated Guess

	Responding When Recognition Fails

	Determining Not a Command

	Determining Inaccurate Recognition

	Not Understanding

	Summary

	Chapter 19: Implementing Speech Activation

	Implementing Speech Activation

	Starting Speech Recognition

	Implementing Speech Activation within an Activity

	Activating Speech Recognition with Movement Detection

	Activating Speech Recognition with the Microphone

	Activating Speech Recognition with Continuous Speech Recognition

	Activating Speech Recognition with NFC

	Implementing Persistent Speech Activation

	Using a Service for Persistent Speech Activation

	Summary

	Index

	Advertisements

Table of Contents

		Professional Android™ Sensor Programming

		Contents

		Introduction

		Part I: Location Services
	
			Chapter 1: Introducing the Android Location Service
		
				Methods Used to Determine Location
			
					GPS Provider
				
						How It Works

						GPS Improvements

						Limitations

						Controlling GPS

					

				

					How It Works

					GPS Improvements

					Limitations

					Controlling GPS

					Network Provider
				
						Using Wireless Network Access Points

						Using Cell IDs

					

				

					Using Wireless Network Access Points

					Using Cell IDs

				

			

				GPS Provider
			
					How It Works

					GPS Improvements

					Limitations

					Controlling GPS

				

			

				How It Works

				GPS Improvements

				Limitations

				Controlling GPS

				Network Provider
			
					Using Wireless Network Access Points

					Using Cell IDs

				

			

				Using Wireless Network Access Points

				Using Cell IDs

				Summary

			

		

			Methods Used to Determine Location
		
				GPS Provider
			
					How It Works

					GPS Improvements

					Limitations

					Controlling GPS

				

			

				How It Works

				GPS Improvements

				Limitations

				Controlling GPS

				Network Provider
			
					Using Wireless Network Access Points

					Using Cell IDs

				

			

				Using Wireless Network Access Points

				Using Cell IDs

			

		

			GPS Provider
		
				How It Works

				GPS Improvements

				Limitations

				Controlling GPS

			

		

			How It Works

			GPS Improvements

			Limitations

			Controlling GPS

			Network Provider
		
				Using Wireless Network Access Points

				Using Cell IDs

			

		

			Using Wireless Network Access Points

			Using Cell IDs

			Summary

			Chapter 2: Determining a Device’s Current Location
		
				Know Your Tools
			
					LocationManager

					LocationProvider

					Location

					Criteria

					LocationListener

				

			

				LocationManager

				LocationProvider

				Location

				Criteria

				LocationListener

				Setting up the Android Manifest

				Determining the Appropriate Location Provider
			
					GPS Location Provider

					Network Location Provider

					Passive Location Provider

					Accuracy versus Battery Life

				

			

				GPS Location Provider

				Network Location Provider

				Passive Location Provider

				Accuracy versus Battery Life

				Receiving Location Updates
			
					Receiving Location Updates with a LocationListener

					Receiving Location Updates with a Broadcast Intent

				

			

				Receiving Location Updates with a LocationListener

				Receiving Location Updates with a Broadcast Intent

				Implementing the Example App
			
					Implementing LocationListener
				
						onLocationChanged()

						onProviderDisabled() and onProviderEnabled()

						onStatusChanged()

					

				

					onLocationChanged()

					onProviderDisabled() and onProviderEnabled()

					onStatusChanged()

					Obtaining a Handle to LocationManager

					Requesting Location Updates

					Cleaning up After Yourself

					Launching the Location Settings Activity

				

			

				Implementing LocationListener
			
					onLocationChanged()

					onProviderDisabled() and onProviderEnabled()

					onStatusChanged()

				

			

				onLocationChanged()

				onProviderDisabled() and onProviderEnabled()

				onStatusChanged()

				Obtaining a Handle to LocationManager

				Requesting Location Updates

				Cleaning up After Yourself

				Launching the Location Settings Activity

				Summary

			

		

			Know Your Tools
		
				LocationManager

				LocationProvider

				Location

				Criteria

				LocationListener

			

		

			LocationManager

			LocationProvider

			Location

			Criteria

			LocationListener

			Setting up the Android Manifest

			Determining the Appropriate Location Provider
		
				GPS Location Provider

				Network Location Provider

				Passive Location Provider

				Accuracy versus Battery Life

			

		

			GPS Location Provider

			Network Location Provider

			Passive Location Provider

			Accuracy versus Battery Life

			Receiving Location Updates
		
				Receiving Location Updates with a LocationListener

				Receiving Location Updates with a Broadcast Intent

			

		

			Receiving Location Updates with a LocationListener

			Receiving Location Updates with a Broadcast Intent

			Implementing the Example App
		
				Implementing LocationListener
			
					onLocationChanged()

					onProviderDisabled() and onProviderEnabled()

					onStatusChanged()

				

			

				onLocationChanged()

				onProviderDisabled() and onProviderEnabled()

				onStatusChanged()

				Obtaining a Handle to LocationManager

				Requesting Location Updates

				Cleaning up After Yourself

				Launching the Location Settings Activity

			

		

			Implementing LocationListener
		
				onLocationChanged()

				onProviderDisabled() and onProviderEnabled()

				onStatusChanged()

			

		

			onLocationChanged()

			onProviderDisabled() and onProviderEnabled()

			onStatusChanged()

			Obtaining a Handle to LocationManager

			Requesting Location Updates

			Cleaning up After Yourself

			Launching the Location Settings Activity

			Summary

			Chapter 3: Tracking Device Movement
		
				Collecting Location Data
			
					Receiving Location Updates with a Broadcast Receiver
				
						Extending BroadcastReceiver

						Registering the BroadcastReceiver with Android

						Requesting Location Updates with a PendingIntent

						One Intent, Multiple Receivers

					

				

					Extending BroadcastReceiver

					Registering the BroadcastReceiver with Android

					Requesting Location Updates with a PendingIntent

					One Intent, Multiple Receivers

					Why Not Use a Service?

				

			

				Receiving Location Updates with a Broadcast Receiver
			
					Extending BroadcastReceiver

					Registering the BroadcastReceiver with Android

					Requesting Location Updates with a PendingIntent

					One Intent, Multiple Receivers

				

			

				Extending BroadcastReceiver

				Registering the BroadcastReceiver with Android

				Requesting Location Updates with a PendingIntent

				One Intent, Multiple Receivers

				Why Not Use a Service?

				Viewing the Tracking Data
			
					Google Map Library Components
				
						MapView

						OverlayItem

						ItemizedOverlay

						MapActivity

					

				

					MapView

					OverlayItem

					ItemizedOverlay

					MapActivity

				

			

				Google Map Library Components
			
					MapView

					OverlayItem

					ItemizedOverlay

					MapActivity

				

			

				MapView

				OverlayItem

				ItemizedOverlay

				MapActivity

				Filtering Location Data

				Continuous Location Tracking and Battery Life
			
					Reducing Location Update Frequency

					Limiting Location Providers

				

			

				Reducing Location Update Frequency

				Limiting Location Providers

				Summary

			

		

			Collecting Location Data
		
				Receiving Location Updates with a Broadcast Receiver
			
					Extending BroadcastReceiver

					Registering the BroadcastReceiver with Android

					Requesting Location Updates with a PendingIntent

					One Intent, Multiple Receivers

				

			

				Extending BroadcastReceiver

				Registering the BroadcastReceiver with Android

				Requesting Location Updates with a PendingIntent

				One Intent, Multiple Receivers

				Why Not Use a Service?

			

		

			Receiving Location Updates with a Broadcast Receiver
		
				Extending BroadcastReceiver

				Registering the BroadcastReceiver with Android

				Requesting Location Updates with a PendingIntent

				One Intent, Multiple Receivers

			

		

			Extending BroadcastReceiver

			Registering the BroadcastReceiver with Android

			Requesting Location Updates with a PendingIntent

			One Intent, Multiple Receivers

			Why Not Use a Service?

			Viewing the Tracking Data
		
				Google Map Library Components
			
					MapView

					OverlayItem

					ItemizedOverlay

					MapActivity

				

			

				MapView

				OverlayItem

				ItemizedOverlay

				MapActivity

			

		

			Google Map Library Components
		
				MapView

				OverlayItem

				ItemizedOverlay

				MapActivity

			

		

			MapView

			OverlayItem

			ItemizedOverlay

			MapActivity

			Filtering Location Data

			Continuous Location Tracking and Battery Life
		
				Reducing Location Update Frequency

				Limiting Location Providers

			

		

			Reducing Location Update Frequency

			Limiting Location Providers

			Summary

			Chapter 4: Proximity Alerts
		
				App Structure
			
					Geocoding
				
						android.location.Geocoder

						Reading the Geocoded Response

					

				

					android.location.Geocoder

					Reading the Geocoded Response

					Setting a Proximity Alert

					Responding to a Proximity Alert

				

			

				Geocoding
			
					android.location.Geocoder

					Reading the Geocoded Response

				

			

				android.location.Geocoder

				Reading the Geocoded Response

				Setting a Proximity Alert

				Responding to a Proximity Alert

				Proximity Alert Limitations
			
					Battery Life

					Permissions

				

			

				Battery Life

				Permissions

				More Efficient Proximity Alert
			
					ProximityAlertService

				

			

				ProximityAlertService

				Summary

			

		

			App Structure
		
				Geocoding
			
					android.location.Geocoder

					Reading the Geocoded Response

				

			

				android.location.Geocoder

				Reading the Geocoded Response

				Setting a Proximity Alert

				Responding to a Proximity Alert

			

		

			Geocoding
		
				android.location.Geocoder

				Reading the Geocoded Response

			

		

			android.location.Geocoder

			Reading the Geocoded Response

			Setting a Proximity Alert

			Responding to a Proximity Alert

			Proximity Alert Limitations
		
				Battery Life

				Permissions

			

		

			Battery Life

			Permissions

			More Efficient Proximity Alert
		
				ProximityAlertService

			

		

			ProximityAlertService

			Summary

		

	

		Chapter 1: Introducing the Android Location Service
	
			Methods Used to Determine Location
		
				GPS Provider
			
					How It Works

					GPS Improvements

					Limitations

					Controlling GPS

				

			

				How It Works

				GPS Improvements

				Limitations

				Controlling GPS

				Network Provider
			
					Using Wireless Network Access Points

					Using Cell IDs

				

			

				Using Wireless Network Access Points

				Using Cell IDs

			

		

			GPS Provider
		
				How It Works

				GPS Improvements

				Limitations

				Controlling GPS

			

		

			How It Works

			GPS Improvements

			Limitations

			Controlling GPS

			Network Provider
		
				Using Wireless Network Access Points

				Using Cell IDs

			

		

			Using Wireless Network Access Points

			Using Cell IDs

			Summary

		

	

		Methods Used to Determine Location
	
			GPS Provider
		
				How It Works

				GPS Improvements

				Limitations

				Controlling GPS

			

		

			How It Works

			GPS Improvements

			Limitations

			Controlling GPS

			Network Provider
		
				Using Wireless Network Access Points

				Using Cell IDs

			

		

			Using Wireless Network Access Points

			Using Cell IDs

		

	

		GPS Provider
	
			How It Works

			GPS Improvements

			Limitations

			Controlling GPS

		

	

		How It Works

		GPS Improvements

		Limitations

		Controlling GPS

		Network Provider
	
			Using Wireless Network Access Points

			Using Cell IDs

		

	

		Using Wireless Network Access Points

		Using Cell IDs

		Summary

		Chapter 2: Determining a Device’s Current Location
	
			Know Your Tools
		
				LocationManager

				LocationProvider

				Location

				Criteria

				LocationListener

			

		

			LocationManager

			LocationProvider

			Location

			Criteria

			LocationListener

			Setting up the Android Manifest

			Determining the Appropriate Location Provider
		
				GPS Location Provider

				Network Location Provider

				Passive Location Provider

				Accuracy versus Battery Life

			

		

			GPS Location Provider

			Network Location Provider

			Passive Location Provider

			Accuracy versus Battery Life

			Receiving Location Updates
		
				Receiving Location Updates with a LocationListener

				Receiving Location Updates with a Broadcast Intent

			

		

			Receiving Location Updates with a LocationListener

			Receiving Location Updates with a Broadcast Intent

			Implementing the Example App
		
				Implementing LocationListener
			
					onLocationChanged()

					onProviderDisabled() and onProviderEnabled()

					onStatusChanged()

				

			

				onLocationChanged()

				onProviderDisabled() and onProviderEnabled()

				onStatusChanged()

				Obtaining a Handle to LocationManager

				Requesting Location Updates

				Cleaning up After Yourself

				Launching the Location Settings Activity

			

		

			Implementing LocationListener
		
				onLocationChanged()

				onProviderDisabled() and onProviderEnabled()

				onStatusChanged()

			

		

			onLocationChanged()

			onProviderDisabled() and onProviderEnabled()

			onStatusChanged()

			Obtaining a Handle to LocationManager

			Requesting Location Updates

			Cleaning up After Yourself

			Launching the Location Settings Activity

			Summary

		

	

		Know Your Tools
	
			LocationManager

			LocationProvider

			Location

			Criteria

			LocationListener

		

	

		LocationManager

		LocationProvider

		Location

		Criteria

		LocationListener

		Setting up the Android Manifest

		Determining the Appropriate Location Provider
	
			GPS Location Provider

			Network Location Provider

			Passive Location Provider

			Accuracy versus Battery Life

		

	

		GPS Location Provider

		Network Location Provider

		Passive Location Provider

		Accuracy versus Battery Life

		Receiving Location Updates
	
			Receiving Location Updates with a LocationListener

			Receiving Location Updates with a Broadcast Intent

		

	

		Receiving Location Updates with a LocationListener

		Receiving Location Updates with a Broadcast Intent

		Implementing the Example App
	
			Implementing LocationListener
		
				onLocationChanged()

				onProviderDisabled() and onProviderEnabled()

				onStatusChanged()

			

		

			onLocationChanged()

			onProviderDisabled() and onProviderEnabled()

			onStatusChanged()

			Obtaining a Handle to LocationManager

			Requesting Location Updates

			Cleaning up After Yourself

			Launching the Location Settings Activity

		

	

		Implementing LocationListener
	
			onLocationChanged()

			onProviderDisabled() and onProviderEnabled()

			onStatusChanged()

		

	

		onLocationChanged()

		onProviderDisabled() and onProviderEnabled()

		onStatusChanged()

		Obtaining a Handle to LocationManager

		Requesting Location Updates

		Cleaning up After Yourself

		Launching the Location Settings Activity

		Summary

		Chapter 3: Tracking Device Movement
	
			Collecting Location Data
		
				Receiving Location Updates with a Broadcast Receiver
			
					Extending BroadcastReceiver

					Registering the BroadcastReceiver with Android

					Requesting Location Updates with a PendingIntent

					One Intent, Multiple Receivers

				

			

				Extending BroadcastReceiver

				Registering the BroadcastReceiver with Android

				Requesting Location Updates with a PendingIntent

				One Intent, Multiple Receivers

				Why Not Use a Service?

			

		

			Receiving Location Updates with a Broadcast Receiver
		
				Extending BroadcastReceiver

				Registering the BroadcastReceiver with Android

				Requesting Location Updates with a PendingIntent

				One Intent, Multiple Receivers

			

		

			Extending BroadcastReceiver

			Registering the BroadcastReceiver with Android

			Requesting Location Updates with a PendingIntent

			One Intent, Multiple Receivers

			Why Not Use a Service?

			Viewing the Tracking Data
		
				Google Map Library Components
			
					MapView

					OverlayItem

					ItemizedOverlay

					MapActivity

				

			

				MapView

				OverlayItem

				ItemizedOverlay

				MapActivity

			

		

			Google Map Library Components
		
				MapView

				OverlayItem

				ItemizedOverlay

				MapActivity

			

		

			MapView

			OverlayItem

			ItemizedOverlay

			MapActivity

			Filtering Location Data

			Continuous Location Tracking and Battery Life
		
				Reducing Location Update Frequency

				Limiting Location Providers

			

		

			Reducing Location Update Frequency

			Limiting Location Providers

			Summary

		

	

		Collecting Location Data
	
			Receiving Location Updates with a Broadcast Receiver
		
				Extending BroadcastReceiver

				Registering the BroadcastReceiver with Android

				Requesting Location Updates with a PendingIntent

				One Intent, Multiple Receivers

			

		

			Extending BroadcastReceiver

			Registering the BroadcastReceiver with Android

			Requesting Location Updates with a PendingIntent

			One Intent, Multiple Receivers

			Why Not Use a Service?

		

	

		Receiving Location Updates with a Broadcast Receiver
	
			Extending BroadcastReceiver

			Registering the BroadcastReceiver with Android

			Requesting Location Updates with a PendingIntent

			One Intent, Multiple Receivers

		

	

		Extending BroadcastReceiver

		Registering the BroadcastReceiver with Android

		Requesting Location Updates with a PendingIntent

		One Intent, Multiple Receivers

		Why Not Use a Service?

		Viewing the Tracking Data
	
			Google Map Library Components
		
				MapView

				OverlayItem

				ItemizedOverlay

				MapActivity

			

		

			MapView

			OverlayItem

			ItemizedOverlay

			MapActivity

		

	

		Google Map Library Components
	
			MapView

			OverlayItem

			ItemizedOverlay

			MapActivity

		

	

		MapView

		OverlayItem

		ItemizedOverlay

		MapActivity

		Filtering Location Data

		Continuous Location Tracking and Battery Life
	
			Reducing Location Update Frequency

			Limiting Location Providers

		

	

		Reducing Location Update Frequency

		Limiting Location Providers

		Summary

		Chapter 4: Proximity Alerts
	
			App Structure
		
				Geocoding
			
					android.location.Geocoder

					Reading the Geocoded Response

				

			

				android.location.Geocoder

				Reading the Geocoded Response

				Setting a Proximity Alert

				Responding to a Proximity Alert

			

		

			Geocoding
		
				android.location.Geocoder

				Reading the Geocoded Response

			

		

			android.location.Geocoder

			Reading the Geocoded Response

			Setting a Proximity Alert

			Responding to a Proximity Alert

			Proximity Alert Limitations
		
				Battery Life

				Permissions

			

		

			Battery Life

			Permissions

			More Efficient Proximity Alert
		
				ProximityAlertService

			

		

			ProximityAlertService

			Summary

		

	

		App Structure
	
			Geocoding
		
				android.location.Geocoder

				Reading the Geocoded Response

			

		

			android.location.Geocoder

			Reading the Geocoded Response

			Setting a Proximity Alert

			Responding to a Proximity Alert

		

	

		Geocoding
	
			android.location.Geocoder

			Reading the Geocoded Response

		

	

		android.location.Geocoder

		Reading the Geocoded Response

		Setting a Proximity Alert

		Responding to a Proximity Alert

		Proximity Alert Limitations
	
			Battery Life

			Permissions

		

	

		Battery Life

		Permissions

		More Efficient Proximity Alert
	
			ProximityAlertService

		

	

		ProximityAlertService

		Summary

		Part II: Inferring Information from Physical Sensors
	
			Chapter 5: Overview of Physical Sensors
		
				Definitions

				Android Sensor API
			
					SensorManager

					Sensor

					Sensor Rates

					Sensor Range and Resolution

					SensorEventListener

					SensorEvent

					Sensor List
				
						The Manifest File

						SensorListActivity

						SensorSelectorFragment

						SensorDisplayFragment

					

				

					The Manifest File

					SensorListActivity

					SensorSelectorFragment

					SensorDisplayFragment

				

			

				SensorManager

				Sensor

				Sensor Rates

				Sensor Range and Resolution

				SensorEventListener

				SensorEvent

				Sensor List
			
					The Manifest File

					SensorListActivity

					SensorSelectorFragment

					SensorDisplayFragment

				

			

				The Manifest File

				SensorListActivity

				SensorSelectorFragment

				SensorDisplayFragment

				Sensing the Environment
			
					Sensor.TYPE_LIGHT

					Sensor.TYPE_PROXIMITY

					Sensor.TYPE_PRESSURE
				
						Absolute Altitude

						Relative Altitude

						Mean Sea-Level Pressure (MSLP)

						Where to Find MSLP

						Sensor Units

						Sensor Range

						Common Use Cases

					

				

					Absolute Altitude

					Relative Altitude

					Mean Sea-Level Pressure (MSLP)

					Where to Find MSLP

					Sensor Units

					Sensor Range

					Common Use Cases

					Sensor.TYPE_RELATIVE_HUMIDITY

					Sensor.TYPE_AMBIENT_TEMPERATURE

					Sensor.TYPE_TEMPERATURE

				

			

				Sensor.TYPE_LIGHT

				Sensor.TYPE_PROXIMITY

				Sensor.TYPE_PRESSURE
			
					Absolute Altitude

					Relative Altitude

					Mean Sea-Level Pressure (MSLP)

					Where to Find MSLP

					Sensor Units

					Sensor Range

					Common Use Cases

				

			

				Absolute Altitude

				Relative Altitude

				Mean Sea-Level Pressure (MSLP)

				Where to Find MSLP

				Sensor Units

				Sensor Range

				Common Use Cases

				Sensor.TYPE_RELATIVE_HUMIDITY

				Sensor.TYPE_AMBIENT_TEMPERATURE

				Sensor.TYPE_TEMPERATURE

				Sensing Device Orientation and Movement
			
					Coordinate Systems

					Global Coordinate System

					Device Coordinate System

					Angles

					Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and .TYPE_LINEAR_ACCELERATION
				
						Sensor Units and Resolution

					

				

					Sensor Units and Resolution

					Sensor.TYPE_GYROSCOPE
				
						Sensor Units

						Sensor Range

					

				

					Sensor Units

					Sensor Range

					Sensor.TYPE_MAGNETIC_FIELD
				
						Sensor Units, Range, and Resolution

					

				

					Sensor Units, Range, and Resolution

					Sensor.TYPE_ROTATION_VECTOR

					SensorManager.getOrientation()

					SensorManager.getInclination()

					Sensor Fusion Schemes

				

			

				Coordinate Systems

				Global Coordinate System

				Device Coordinate System

				Angles

				Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and .TYPE_LINEAR_ACCELERATION
			
					Sensor Units and Resolution

				

			

				Sensor Units and Resolution

				Sensor.TYPE_GYROSCOPE
			
					Sensor Units

					Sensor Range

				

			

				Sensor Units

				Sensor Range

				Sensor.TYPE_MAGNETIC_FIELD
			
					Sensor Units, Range, and Resolution

				

			

				Sensor Units, Range, and Resolution

				Sensor.TYPE_ROTATION_VECTOR

				SensorManager.getOrientation()

				SensorManager.getInclination()

				Sensor Fusion Schemes

				Summary

			

		

			Definitions

			Android Sensor API
		
				SensorManager

				Sensor

				Sensor Rates

				Sensor Range and Resolution

				SensorEventListener

				SensorEvent

				Sensor List
			
					The Manifest File

					SensorListActivity

					SensorSelectorFragment

					SensorDisplayFragment

				

			

				The Manifest File

				SensorListActivity

				SensorSelectorFragment

				SensorDisplayFragment

			

		

			SensorManager

			Sensor

			Sensor Rates

			Sensor Range and Resolution

			SensorEventListener

			SensorEvent

			Sensor List
		
				The Manifest File

				SensorListActivity

				SensorSelectorFragment

				SensorDisplayFragment

			

		

			The Manifest File

			SensorListActivity

			SensorSelectorFragment

			SensorDisplayFragment

			Sensing the Environment
		
				Sensor.TYPE_LIGHT

				Sensor.TYPE_PROXIMITY

				Sensor.TYPE_PRESSURE
			
					Absolute Altitude

					Relative Altitude

					Mean Sea-Level Pressure (MSLP)

					Where to Find MSLP

					Sensor Units

					Sensor Range

					Common Use Cases

				

			

				Absolute Altitude

				Relative Altitude

				Mean Sea-Level Pressure (MSLP)

				Where to Find MSLP

				Sensor Units

				Sensor Range

				Common Use Cases

				Sensor.TYPE_RELATIVE_HUMIDITY

				Sensor.TYPE_AMBIENT_TEMPERATURE

				Sensor.TYPE_TEMPERATURE

			

		

			Sensor.TYPE_LIGHT

			Sensor.TYPE_PROXIMITY

			Sensor.TYPE_PRESSURE
		
				Absolute Altitude

				Relative Altitude

				Mean Sea-Level Pressure (MSLP)

				Where to Find MSLP

				Sensor Units

				Sensor Range

				Common Use Cases

			

		

			Absolute Altitude

			Relative Altitude

			Mean Sea-Level Pressure (MSLP)

			Where to Find MSLP

			Sensor Units

			Sensor Range

			Common Use Cases

			Sensor.TYPE_RELATIVE_HUMIDITY

			Sensor.TYPE_AMBIENT_TEMPERATURE

			Sensor.TYPE_TEMPERATURE

			Sensing Device Orientation and Movement
		
				Coordinate Systems

				Global Coordinate System

				Device Coordinate System

				Angles

				Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and .TYPE_LINEAR_ACCELERATION
			
					Sensor Units and Resolution

				

			

				Sensor Units and Resolution

				Sensor.TYPE_GYROSCOPE
			
					Sensor Units

					Sensor Range

				

			

				Sensor Units

				Sensor Range

				Sensor.TYPE_MAGNETIC_FIELD
			
					Sensor Units, Range, and Resolution

				

			

				Sensor Units, Range, and Resolution

				Sensor.TYPE_ROTATION_VECTOR

				SensorManager.getOrientation()

				SensorManager.getInclination()

				Sensor Fusion Schemes

			

		

			Coordinate Systems

			Global Coordinate System

			Device Coordinate System

			Angles

			Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and .TYPE_LINEAR_ACCELERATION
		
				Sensor Units and Resolution

			

		

			Sensor Units and Resolution

			Sensor.TYPE_GYROSCOPE
		
				Sensor Units

				Sensor Range

			

		

			Sensor Units

			Sensor Range

			Sensor.TYPE_MAGNETIC_FIELD
		
				Sensor Units, Range, and Resolution

			

		

			Sensor Units, Range, and Resolution

			Sensor.TYPE_ROTATION_VECTOR

			SensorManager.getOrientation()

			SensorManager.getInclination()

			Sensor Fusion Schemes

			Summary

			Chapter 6: Errors and Sensor Signal Processing
		
				Definitions
			
					Accuracy and Precision

					Types of Errors
				
						Human Error, Systematic Error, and Random Error

						Noise

						Drift

						Zero Offset (or “Offset,” or “Bias”)

						Time Delays and Dropped Data

						Integration Error

					

				

					Human Error, Systematic Error, and Random Error

					Noise

					Drift

					Zero Offset (or “Offset,” or “Bias”)

					Time Delays and Dropped Data

					Integration Error

					Techniques to Address Error
				
						Re-zeroing

						Filters

						Sensor Fusion

					

				

					Re-zeroing

					Filters

					Sensor Fusion

				

			

				Accuracy and Precision

				Types of Errors
			
					Human Error, Systematic Error, and Random Error

					Noise

					Drift

					Zero Offset (or “Offset,” or “Bias”)

					Time Delays and Dropped Data

					Integration Error

				

			

				Human Error, Systematic Error, and Random Error

				Noise

				Drift

				Zero Offset (or “Offset,” or “Bias”)

				Time Delays and Dropped Data

				Integration Error

				Techniques to Address Error
			
					Re-zeroing

					Filters

					Sensor Fusion

				

			

				Re-zeroing

				Filters

				Sensor Fusion

				Filters
			
					Low-Pass
				
						Weighted Smoothing

						Simple Moving Average (SMA)

						Choosing the Smoothing Parameter

						Averaging: Smoothness vs. Response Time

						Simple Moving Median (SMM)

					

				

					Weighted Smoothing

					Simple Moving Average (SMA)

					Choosing the Smoothing Parameter

					Averaging: Smoothness vs. Response Time

					Simple Moving Median (SMM)

					High-Pass
				
						Inverse Low-Pass Filter

					

				

					Inverse Low-Pass Filter

					Bandpass

					Introducing Kalman Filters

				

			

				Low-Pass
			
					Weighted Smoothing

					Simple Moving Average (SMA)

					Choosing the Smoothing Parameter

					Averaging: Smoothness vs. Response Time

					Simple Moving Median (SMM)

				

			

				Weighted Smoothing

				Simple Moving Average (SMA)

				Choosing the Smoothing Parameter

				Averaging: Smoothness vs. Response Time

				Simple Moving Median (SMM)

				High-Pass
			
					Inverse Low-Pass Filter

				

			

				Inverse Low-Pass Filter

				Bandpass

				Introducing Kalman Filters

				A Better Determination of Orientation by Using Sensor Fusion
			
					Sensor Fusion: Simple vs. Proprietary
				
						Proprietary Sensor Fusion

						Simple Sensor Fusion: The Balance Filter

					

				

					Proprietary Sensor Fusion

					Simple Sensor Fusion: The Balance Filter

				

			

				Sensor Fusion: Simple vs. Proprietary
			
					Proprietary Sensor Fusion

					Simple Sensor Fusion: The Balance Filter

				

			

				Proprietary Sensor Fusion

				Simple Sensor Fusion: The Balance Filter

				Summary

			

		

			Definitions
		
				Accuracy and Precision

				Types of Errors
			
					Human Error, Systematic Error, and Random Error

					Noise

					Drift

					Zero Offset (or “Offset,” or “Bias”)

					Time Delays and Dropped Data

					Integration Error

				

			

				Human Error, Systematic Error, and Random Error

				Noise

				Drift

				Zero Offset (or “Offset,” or “Bias”)

				Time Delays and Dropped Data

				Integration Error

				Techniques to Address Error
			
					Re-zeroing

					Filters

					Sensor Fusion

				

			

				Re-zeroing

				Filters

				Sensor Fusion

			

		

			Accuracy and Precision

			Types of Errors
		
				Human Error, Systematic Error, and Random Error

				Noise

				Drift

				Zero Offset (or “Offset,” or “Bias”)

				Time Delays and Dropped Data

				Integration Error

			

		

			Human Error, Systematic Error, and Random Error

			Noise

			Drift

			Zero Offset (or “Offset,” or “Bias”)

			Time Delays and Dropped Data

			Integration Error

			Techniques to Address Error
		
				Re-zeroing

				Filters

				Sensor Fusion

			

		

			Re-zeroing

			Filters

			Sensor Fusion

			Filters
		
				Low-Pass
			
					Weighted Smoothing

					Simple Moving Average (SMA)

					Choosing the Smoothing Parameter

					Averaging: Smoothness vs. Response Time

					Simple Moving Median (SMM)

				

			

				Weighted Smoothing

				Simple Moving Average (SMA)

				Choosing the Smoothing Parameter

				Averaging: Smoothness vs. Response Time

				Simple Moving Median (SMM)

				High-Pass
			
					Inverse Low-Pass Filter

				

			

				Inverse Low-Pass Filter

				Bandpass

				Introducing Kalman Filters

			

		

			Low-Pass
		
				Weighted Smoothing

				Simple Moving Average (SMA)

				Choosing the Smoothing Parameter

				Averaging: Smoothness vs. Response Time

				Simple Moving Median (SMM)

			

		

			Weighted Smoothing

			Simple Moving Average (SMA)

			Choosing the Smoothing Parameter

			Averaging: Smoothness vs. Response Time

			Simple Moving Median (SMM)

			High-Pass
		
				Inverse Low-Pass Filter

			

		

			Inverse Low-Pass Filter

			Bandpass

			Introducing Kalman Filters

			A Better Determination of Orientation by Using Sensor Fusion
		
				Sensor Fusion: Simple vs. Proprietary
			
					Proprietary Sensor Fusion

					Simple Sensor Fusion: The Balance Filter

				

			

				Proprietary Sensor Fusion

				Simple Sensor Fusion: The Balance Filter

			

		

			Sensor Fusion: Simple vs. Proprietary
		
				Proprietary Sensor Fusion

				Simple Sensor Fusion: The Balance Filter

			

		

			Proprietary Sensor Fusion

			Simple Sensor Fusion: The Balance Filter

			Summary

			Chapter 7: Determining Device Orientation
		
				Previewing the Example App

				Determining Device Orientation
			
					Gravity Sensor

					Accelerometer and Magnetometer

					Gravity Sensor and Magnetometer

					Rotation Vector

					Implementation Details
				
						Processing Gravity Sensor Data

						Processing Accelerometer and Magnetic Field Data

						Processing Rotation Vector Data

						Notifying the User of Orientation Changes

					

				

					Processing Gravity Sensor Data

					Processing Accelerometer and Magnetic Field Data

					Processing Rotation Vector Data

					Notifying the User of Orientation Changes

				

			

				Gravity Sensor

				Accelerometer and Magnetometer

				Gravity Sensor and Magnetometer

				Rotation Vector

				Implementation Details
			
					Processing Gravity Sensor Data

					Processing Accelerometer and Magnetic Field Data

					Processing Rotation Vector Data

					Notifying the User of Orientation Changes

				

			

				Processing Gravity Sensor Data

				Processing Accelerometer and Magnetic Field Data

				Processing Rotation Vector Data

				Notifying the User of Orientation Changes

				NorthFinder

				Summary

			

		

			Previewing the Example App

			Determining Device Orientation
		
				Gravity Sensor

				Accelerometer and Magnetometer

				Gravity Sensor and Magnetometer

				Rotation Vector

				Implementation Details
			
					Processing Gravity Sensor Data

					Processing Accelerometer and Magnetic Field Data

					Processing Rotation Vector Data

					Notifying the User of Orientation Changes

				

			

				Processing Gravity Sensor Data

				Processing Accelerometer and Magnetic Field Data

				Processing Rotation Vector Data

				Notifying the User of Orientation Changes

			

		

			Gravity Sensor

			Accelerometer and Magnetometer

			Gravity Sensor and Magnetometer

			Rotation Vector

			Implementation Details
		
				Processing Gravity Sensor Data

				Processing Accelerometer and Magnetic Field Data

				Processing Rotation Vector Data

				Notifying the User of Orientation Changes

			

		

			Processing Gravity Sensor Data

			Processing Accelerometer and Magnetic Field Data

			Processing Rotation Vector Data

			Notifying the User of Orientation Changes

			NorthFinder

			Summary

			Chapter 8: Detecting Movement
		
				Acceleration Data
			
					Accelerometer Data

					Linear Acceleration Sensor Data

					Data While Device Is in Motion

					Total Acceleration

				

			

				Accelerometer Data

				Linear Acceleration Sensor Data

				Data While Device Is in Motion

				Total Acceleration

				Implementation
			
					DetermineMovementActivity

					AccelerationEventListener

				

			

				DetermineMovementActivity

				AccelerationEventListener

				Summary

			

		

			Acceleration Data
		
				Accelerometer Data

				Linear Acceleration Sensor Data

				Data While Device Is in Motion

				Total Acceleration

			

		

			Accelerometer Data

			Linear Acceleration Sensor Data

			Data While Device Is in Motion

			Total Acceleration

			Implementation
		
				DetermineMovementActivity

				AccelerationEventListener

			

		

			DetermineMovementActivity

			AccelerationEventListener

			Summary

			Chapter 9: Sensing the Environment
		
				Barometer vs. GPS for Altitude Data

				Example App Overview
			
					Implementation Details
				
						GPS-Based Altitude

						Barometric Pressure–Based Altitude

					

				

					GPS-Based Altitude

					Barometric Pressure–Based Altitude

					Relative Altitude

				

			

				Implementation Details
			
					GPS-Based Altitude

					Barometric Pressure–Based Altitude

				

			

				GPS-Based Altitude

				Barometric Pressure–Based Altitude

				Relative Altitude

				Summary

			

		

			Barometer vs. GPS for Altitude Data

			Example App Overview
		
				Implementation Details
			
					GPS-Based Altitude

					Barometric Pressure–Based Altitude

				

			

				GPS-Based Altitude

				Barometric Pressure–Based Altitude

				Relative Altitude

			

		

			Implementation Details
		
				GPS-Based Altitude

				Barometric Pressure–Based Altitude

			

		

			GPS-Based Altitude

			Barometric Pressure–Based Altitude

			Relative Altitude

			Summary

			Chapter 10: Android Open Accessory
		
				A Short History of AOA
			
					USB Host Versus USB Accessory

					Electrical Power Requirements

					Supported Android Devices

				

			

				USB Host Versus USB Accessory

				Electrical Power Requirements

				Supported Android Devices

				The Android Development Kit (ADK)
			
					Hardware Components

					Software Components

				

			

				Hardware Components

				Software Components

				AOA Sensors versus Native Device Sensors

				AOA Beyond Sensors

				AOA Limitations

				AOA and Sensing Temperature
			
					Implementation
				
						Requirements

						Getting Started with the Arduino Software

						Arduino Sketch

						Android Code

						Communication between Arduino and Android

					

				

					Requirements

					Getting Started with the Arduino Software

					Arduino Sketch

					Android Code

					Communication between Arduino and Android

				

			

				Implementation
			
					Requirements

					Getting Started with the Arduino Software

					Arduino Sketch

					Android Code

					Communication between Arduino and Android

				

			

				Requirements

				Getting Started with the Arduino Software

				Arduino Sketch

				Android Code

				Communication between Arduino and Android

				Taking an Android Accessory to the Consumer Market

				Summary

			

		

			A Short History of AOA
		
				USB Host Versus USB Accessory

				Electrical Power Requirements

				Supported Android Devices

			

		

			USB Host Versus USB Accessory

			Electrical Power Requirements

			Supported Android Devices

			The Android Development Kit (ADK)
		
				Hardware Components

				Software Components

			

		

			Hardware Components

			Software Components

			AOA Sensors versus Native Device Sensors

			AOA Beyond Sensors

			AOA Limitations

			AOA and Sensing Temperature
		
				Implementation
			
					Requirements

					Getting Started with the Arduino Software

					Arduino Sketch

					Android Code

					Communication between Arduino and Android

				

			

				Requirements

				Getting Started with the Arduino Software

				Arduino Sketch

				Android Code

				Communication between Arduino and Android

			

		

			Implementation
		
				Requirements

				Getting Started with the Arduino Software

				Arduino Sketch

				Android Code

				Communication between Arduino and Android

			

		

			Requirements

			Getting Started with the Arduino Software

			Arduino Sketch

			Android Code

			Communication between Arduino and Android

			Taking an Android Accessory to the Consumer Market

			Summary

		

	

		Chapter 5: Overview of Physical Sensors
	
			Definitions

			Android Sensor API
		
				SensorManager

				Sensor

				Sensor Rates

				Sensor Range and Resolution

				SensorEventListener

				SensorEvent

				Sensor List
			
					The Manifest File

					SensorListActivity

					SensorSelectorFragment

					SensorDisplayFragment

				

			

				The Manifest File

				SensorListActivity

				SensorSelectorFragment

				SensorDisplayFragment

			

		

			SensorManager

			Sensor

			Sensor Rates

			Sensor Range and Resolution

			SensorEventListener

			SensorEvent

			Sensor List
		
				The Manifest File

				SensorListActivity

				SensorSelectorFragment

				SensorDisplayFragment

			

		

			The Manifest File

			SensorListActivity

			SensorSelectorFragment

			SensorDisplayFragment

			Sensing the Environment
		
				Sensor.TYPE_LIGHT

				Sensor.TYPE_PROXIMITY

				Sensor.TYPE_PRESSURE
			
					Absolute Altitude

					Relative Altitude

					Mean Sea-Level Pressure (MSLP)

					Where to Find MSLP

					Sensor Units

					Sensor Range

					Common Use Cases

				

			

				Absolute Altitude

				Relative Altitude

				Mean Sea-Level Pressure (MSLP)

				Where to Find MSLP

				Sensor Units

				Sensor Range

				Common Use Cases

				Sensor.TYPE_RELATIVE_HUMIDITY

				Sensor.TYPE_AMBIENT_TEMPERATURE

				Sensor.TYPE_TEMPERATURE

			

		

			Sensor.TYPE_LIGHT

			Sensor.TYPE_PROXIMITY

			Sensor.TYPE_PRESSURE
		
				Absolute Altitude

				Relative Altitude

				Mean Sea-Level Pressure (MSLP)

				Where to Find MSLP

				Sensor Units

				Sensor Range

				Common Use Cases

			

		

			Absolute Altitude

			Relative Altitude

			Mean Sea-Level Pressure (MSLP)

			Where to Find MSLP

			Sensor Units

			Sensor Range

			Common Use Cases

			Sensor.TYPE_RELATIVE_HUMIDITY

			Sensor.TYPE_AMBIENT_TEMPERATURE

			Sensor.TYPE_TEMPERATURE

			Sensing Device Orientation and Movement
		
				Coordinate Systems

				Global Coordinate System

				Device Coordinate System

				Angles

				Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and .TYPE_LINEAR_ACCELERATION
			
					Sensor Units and Resolution

				

			

				Sensor Units and Resolution

				Sensor.TYPE_GYROSCOPE
			
					Sensor Units

					Sensor Range

				

			

				Sensor Units

				Sensor Range

				Sensor.TYPE_MAGNETIC_FIELD
			
					Sensor Units, Range, and Resolution

				

			

				Sensor Units, Range, and Resolution

				Sensor.TYPE_ROTATION_VECTOR

				SensorManager.getOrientation()

				SensorManager.getInclination()

				Sensor Fusion Schemes

			

		

			Coordinate Systems

			Global Coordinate System

			Device Coordinate System

			Angles

			Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and .TYPE_LINEAR_ACCELERATION
		
				Sensor Units and Resolution

			

		

			Sensor Units and Resolution

			Sensor.TYPE_GYROSCOPE
		
				Sensor Units

				Sensor Range

			

		

			Sensor Units

			Sensor Range

			Sensor.TYPE_MAGNETIC_FIELD
		
				Sensor Units, Range, and Resolution

			

		

			Sensor Units, Range, and Resolution

			Sensor.TYPE_ROTATION_VECTOR

			SensorManager.getOrientation()

			SensorManager.getInclination()

			Sensor Fusion Schemes

			Summary

		

	

		Definitions

		Android Sensor API
	
			SensorManager

			Sensor

			Sensor Rates

			Sensor Range and Resolution

			SensorEventListener

			SensorEvent

			Sensor List
		
				The Manifest File

				SensorListActivity

				SensorSelectorFragment

				SensorDisplayFragment

			

		

			The Manifest File

			SensorListActivity

			SensorSelectorFragment

			SensorDisplayFragment

		

	

		SensorManager

		Sensor

		Sensor Rates

		Sensor Range and Resolution

		SensorEventListener

		SensorEvent

		Sensor List
	
			The Manifest File

			SensorListActivity

			SensorSelectorFragment

			SensorDisplayFragment

		

	

		The Manifest File

		SensorListActivity

		SensorSelectorFragment

		SensorDisplayFragment

		Sensing the Environment
	
			Sensor.TYPE_LIGHT

			Sensor.TYPE_PROXIMITY

			Sensor.TYPE_PRESSURE
		
				Absolute Altitude

				Relative Altitude

				Mean Sea-Level Pressure (MSLP)

				Where to Find MSLP

				Sensor Units

				Sensor Range

				Common Use Cases

			

		

			Absolute Altitude

			Relative Altitude

			Mean Sea-Level Pressure (MSLP)

			Where to Find MSLP

			Sensor Units

			Sensor Range

			Common Use Cases

			Sensor.TYPE_RELATIVE_HUMIDITY

			Sensor.TYPE_AMBIENT_TEMPERATURE

			Sensor.TYPE_TEMPERATURE

		

	

		Sensor.TYPE_LIGHT

		Sensor.TYPE_PROXIMITY

		Sensor.TYPE_PRESSURE
	
			Absolute Altitude

			Relative Altitude

			Mean Sea-Level Pressure (MSLP)

			Where to Find MSLP

			Sensor Units

			Sensor Range

			Common Use Cases

		

	

		Absolute Altitude

		Relative Altitude

		Mean Sea-Level Pressure (MSLP)

		Where to Find MSLP

		Sensor Units

		Sensor Range

		Common Use Cases

		Sensor.TYPE_RELATIVE_HUMIDITY

		Sensor.TYPE_AMBIENT_TEMPERATURE

		Sensor.TYPE_TEMPERATURE

		Sensing Device Orientation and Movement
	
			Coordinate Systems

			Global Coordinate System

			Device Coordinate System

			Angles

			Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and .TYPE_LINEAR_ACCELERATION
		
				Sensor Units and Resolution

			

		

			Sensor Units and Resolution

			Sensor.TYPE_GYROSCOPE
		
				Sensor Units

				Sensor Range

			

		

			Sensor Units

			Sensor Range

			Sensor.TYPE_MAGNETIC_FIELD
		
				Sensor Units, Range, and Resolution

			

		

			Sensor Units, Range, and Resolution

			Sensor.TYPE_ROTATION_VECTOR

			SensorManager.getOrientation()

			SensorManager.getInclination()

			Sensor Fusion Schemes

		

	

		Coordinate Systems

		Global Coordinate System

		Device Coordinate System

		Angles

		Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and .TYPE_LINEAR_ACCELERATION
	
			Sensor Units and Resolution

		

	

		Sensor Units and Resolution

		Sensor.TYPE_GYROSCOPE
	
			Sensor Units

			Sensor Range

		

	

		Sensor Units

		Sensor Range

		Sensor.TYPE_MAGNETIC_FIELD
	
			Sensor Units, Range, and Resolution

		

	

		Sensor Units, Range, and Resolution

		Sensor.TYPE_ROTATION_VECTOR

		SensorManager.getOrientation()

		SensorManager.getInclination()

		Sensor Fusion Schemes

		Summary

		Chapter 6: Errors and Sensor Signal Processing
	
			Definitions
		
				Accuracy and Precision

				Types of Errors
			
					Human Error, Systematic Error, and Random Error

					Noise

					Drift

					Zero Offset (or “Offset,” or “Bias”)

					Time Delays and Dropped Data

					Integration Error

				

			

				Human Error, Systematic Error, and Random Error

				Noise

				Drift

				Zero Offset (or “Offset,” or “Bias”)

				Time Delays and Dropped Data

				Integration Error

				Techniques to Address Error
			
					Re-zeroing

					Filters

					Sensor Fusion

				

			

				Re-zeroing

				Filters

				Sensor Fusion

			

		

			Accuracy and Precision

			Types of Errors
		
				Human Error, Systematic Error, and Random Error

				Noise

				Drift

				Zero Offset (or “Offset,” or “Bias”)

				Time Delays and Dropped Data

				Integration Error

			

		

			Human Error, Systematic Error, and Random Error

			Noise

			Drift

			Zero Offset (or “Offset,” or “Bias”)

			Time Delays and Dropped Data

			Integration Error

			Techniques to Address Error
		
				Re-zeroing

				Filters

				Sensor Fusion

			

		

			Re-zeroing

			Filters

			Sensor Fusion

			Filters
		
				Low-Pass
			
					Weighted Smoothing

					Simple Moving Average (SMA)

					Choosing the Smoothing Parameter

					Averaging: Smoothness vs. Response Time

					Simple Moving Median (SMM)

				

			

				Weighted Smoothing

				Simple Moving Average (SMA)

				Choosing the Smoothing Parameter

				Averaging: Smoothness vs. Response Time

				Simple Moving Median (SMM)

				High-Pass
			
					Inverse Low-Pass Filter

				

			

				Inverse Low-Pass Filter

				Bandpass

				Introducing Kalman Filters

			

		

			Low-Pass
		
				Weighted Smoothing

				Simple Moving Average (SMA)

				Choosing the Smoothing Parameter

				Averaging: Smoothness vs. Response Time

				Simple Moving Median (SMM)

			

		

			Weighted Smoothing

			Simple Moving Average (SMA)

			Choosing the Smoothing Parameter

			Averaging: Smoothness vs. Response Time

			Simple Moving Median (SMM)

			High-Pass
		
				Inverse Low-Pass Filter

			

		

			Inverse Low-Pass Filter

			Bandpass

			Introducing Kalman Filters

			A Better Determination of Orientation by Using Sensor Fusion
		
				Sensor Fusion: Simple vs. Proprietary
			
					Proprietary Sensor Fusion

					Simple Sensor Fusion: The Balance Filter

				

			

				Proprietary Sensor Fusion

				Simple Sensor Fusion: The Balance Filter

			

		

			Sensor Fusion: Simple vs. Proprietary
		
				Proprietary Sensor Fusion

				Simple Sensor Fusion: The Balance Filter

			

		

			Proprietary Sensor Fusion

			Simple Sensor Fusion: The Balance Filter

			Summary

		

	

		Definitions
	
			Accuracy and Precision

			Types of Errors
		
				Human Error, Systematic Error, and Random Error

				Noise

				Drift

				Zero Offset (or “Offset,” or “Bias”)

				Time Delays and Dropped Data

				Integration Error

			

		

			Human Error, Systematic Error, and Random Error

			Noise

			Drift

			Zero Offset (or “Offset,” or “Bias”)

			Time Delays and Dropped Data

			Integration Error

			Techniques to Address Error
		
				Re-zeroing

				Filters

				Sensor Fusion

			

		

			Re-zeroing

			Filters

			Sensor Fusion

		

	

		Accuracy and Precision

		Types of Errors
	
			Human Error, Systematic Error, and Random Error

			Noise

			Drift

			Zero Offset (or “Offset,” or “Bias”)

			Time Delays and Dropped Data

			Integration Error

		

	

		Human Error, Systematic Error, and Random Error

		Noise

		Drift

		Zero Offset (or “Offset,” or “Bias”)

		Time Delays and Dropped Data

		Integration Error

		Techniques to Address Error
	
			Re-zeroing

			Filters

			Sensor Fusion

		

	

		Re-zeroing

		Filters

		Sensor Fusion

		Filters
	
			Low-Pass
		
				Weighted Smoothing

				Simple Moving Average (SMA)

				Choosing the Smoothing Parameter

				Averaging: Smoothness vs. Response Time

				Simple Moving Median (SMM)

			

		

			Weighted Smoothing

			Simple Moving Average (SMA)

			Choosing the Smoothing Parameter

			Averaging: Smoothness vs. Response Time

			Simple Moving Median (SMM)

			High-Pass
		
				Inverse Low-Pass Filter

			

		

			Inverse Low-Pass Filter

			Bandpass

			Introducing Kalman Filters

		

	

		Low-Pass
	
			Weighted Smoothing

			Simple Moving Average (SMA)

			Choosing the Smoothing Parameter

			Averaging: Smoothness vs. Response Time

			Simple Moving Median (SMM)

		

	

		Weighted Smoothing

		Simple Moving Average (SMA)

		Choosing the Smoothing Parameter

		Averaging: Smoothness vs. Response Time

		Simple Moving Median (SMM)

		High-Pass
	
			Inverse Low-Pass Filter

		

	

		Inverse Low-Pass Filter

		Bandpass

		Introducing Kalman Filters

		A Better Determination of Orientation by Using Sensor Fusion
	
			Sensor Fusion: Simple vs. Proprietary
		
				Proprietary Sensor Fusion

				Simple Sensor Fusion: The Balance Filter

			

		

			Proprietary Sensor Fusion

			Simple Sensor Fusion: The Balance Filter

		

	

		Sensor Fusion: Simple vs. Proprietary
	
			Proprietary Sensor Fusion

			Simple Sensor Fusion: The Balance Filter

		

	

		Proprietary Sensor Fusion

		Simple Sensor Fusion: The Balance Filter

		Summary

		Chapter 7: Determining Device Orientation
	
			Previewing the Example App

			Determining Device Orientation
		
				Gravity Sensor

				Accelerometer and Magnetometer

				Gravity Sensor and Magnetometer

				Rotation Vector

				Implementation Details
			
					Processing Gravity Sensor Data

					Processing Accelerometer and Magnetic Field Data

					Processing Rotation Vector Data

					Notifying the User of Orientation Changes

				

			

				Processing Gravity Sensor Data

				Processing Accelerometer and Magnetic Field Data

				Processing Rotation Vector Data

				Notifying the User of Orientation Changes

			

		

			Gravity Sensor

			Accelerometer and Magnetometer

			Gravity Sensor and Magnetometer

			Rotation Vector

			Implementation Details
		
				Processing Gravity Sensor Data

				Processing Accelerometer and Magnetic Field Data

				Processing Rotation Vector Data

				Notifying the User of Orientation Changes

			

		

			Processing Gravity Sensor Data

			Processing Accelerometer and Magnetic Field Data

			Processing Rotation Vector Data

			Notifying the User of Orientation Changes

			NorthFinder

			Summary

		

	

		Previewing the Example App

		Determining Device Orientation
	
			Gravity Sensor

			Accelerometer and Magnetometer

			Gravity Sensor and Magnetometer

			Rotation Vector

			Implementation Details
		
				Processing Gravity Sensor Data

				Processing Accelerometer and Magnetic Field Data

				Processing Rotation Vector Data

				Notifying the User of Orientation Changes

			

		

			Processing Gravity Sensor Data

			Processing Accelerometer and Magnetic Field Data

			Processing Rotation Vector Data

			Notifying the User of Orientation Changes

		

	

		Gravity Sensor

		Accelerometer and Magnetometer

		Gravity Sensor and Magnetometer

		Rotation Vector

		Implementation Details
	
			Processing Gravity Sensor Data

			Processing Accelerometer and Magnetic Field Data

			Processing Rotation Vector Data

			Notifying the User of Orientation Changes

		

	

		Processing Gravity Sensor Data

		Processing Accelerometer and Magnetic Field Data

		Processing Rotation Vector Data

		Notifying the User of Orientation Changes

		NorthFinder

		Summary

		Chapter 8: Detecting Movement
	
			Acceleration Data
		
				Accelerometer Data

				Linear Acceleration Sensor Data

				Data While Device Is in Motion

				Total Acceleration

			

		

			Accelerometer Data

			Linear Acceleration Sensor Data

			Data While Device Is in Motion

			Total Acceleration

			Implementation
		
				DetermineMovementActivity

				AccelerationEventListener

			

		

			DetermineMovementActivity

			AccelerationEventListener

			Summary

		

	

		Acceleration Data
	
			Accelerometer Data

			Linear Acceleration Sensor Data

			Data While Device Is in Motion

			Total Acceleration

		

	

		Accelerometer Data

		Linear Acceleration Sensor Data

		Data While Device Is in Motion

		Total Acceleration

		Implementation
	
			DetermineMovementActivity

			AccelerationEventListener

		

	

		DetermineMovementActivity

		AccelerationEventListener

		Summary

		Chapter 9: Sensing the Environment
	
			Barometer vs. GPS for Altitude Data

			Example App Overview
		
				Implementation Details
			
					GPS-Based Altitude

					Barometric Pressure–Based Altitude

				

			

				GPS-Based Altitude

				Barometric Pressure–Based Altitude

				Relative Altitude

			

		

			Implementation Details
		
				GPS-Based Altitude

				Barometric Pressure–Based Altitude

			

		

			GPS-Based Altitude

			Barometric Pressure–Based Altitude

			Relative Altitude

			Summary

		

	

		Barometer vs. GPS for Altitude Data

		Example App Overview
	
			Implementation Details
		
				GPS-Based Altitude

				Barometric Pressure–Based Altitude

			

		

			GPS-Based Altitude

			Barometric Pressure–Based Altitude

			Relative Altitude

		

	

		Implementation Details
	
			GPS-Based Altitude

			Barometric Pressure–Based Altitude

		

	

		GPS-Based Altitude

		Barometric Pressure–Based Altitude

		Relative Altitude

		Summary

		Chapter 10: Android Open Accessory
	
			A Short History of AOA
		
				USB Host Versus USB Accessory

				Electrical Power Requirements

				Supported Android Devices

			

		

			USB Host Versus USB Accessory

			Electrical Power Requirements

			Supported Android Devices

			The Android Development Kit (ADK)
		
				Hardware Components

				Software Components

			

		

			Hardware Components

			Software Components

			AOA Sensors versus Native Device Sensors

			AOA Beyond Sensors

			AOA Limitations

			AOA and Sensing Temperature
		
				Implementation
			
					Requirements

					Getting Started with the Arduino Software

					Arduino Sketch

					Android Code

					Communication between Arduino and Android

				

			

				Requirements

				Getting Started with the Arduino Software

				Arduino Sketch

				Android Code

				Communication between Arduino and Android

			

		

			Implementation
		
				Requirements

				Getting Started with the Arduino Software

				Arduino Sketch

				Android Code

				Communication between Arduino and Android

			

		

			Requirements

			Getting Started with the Arduino Software

			Arduino Sketch

			Android Code

			Communication between Arduino and Android

			Taking an Android Accessory to the Consumer Market

			Summary

		

	

		A Short History of AOA
	
			USB Host Versus USB Accessory

			Electrical Power Requirements

			Supported Android Devices

		

	

		USB Host Versus USB Accessory

		Electrical Power Requirements

		Supported Android Devices

		The Android Development Kit (ADK)
	
			Hardware Components

			Software Components

		

	

		Hardware Components

		Software Components

		AOA Sensors versus Native Device Sensors

		AOA Beyond Sensors

		AOA Limitations

		AOA and Sensing Temperature
	
			Implementation
		
				Requirements

				Getting Started with the Arduino Software

				Arduino Sketch

				Android Code

				Communication between Arduino and Android

			

		

			Requirements

			Getting Started with the Arduino Software

			Arduino Sketch

			Android Code

			Communication between Arduino and Android

		

	

		Implementation
	
			Requirements

			Getting Started with the Arduino Software

			Arduino Sketch

			Android Code

			Communication between Arduino and Android

		

	

		Requirements

		Getting Started with the Arduino Software

		Arduino Sketch

		Android Code

		Communication between Arduino and Android

		Taking an Android Accessory to the Consumer Market

		Summary

		Part III: Sensing the Augmented, Pattern-Rich External World
	
			Chapter 11: Near Field Communication (NFC)
		
				What Is RFID?

				What Is NFC?
			
					The NDEF Data Format

					How and Where to Buy NFC Tags
				
						NDEF-compatible NFC Tags

						Storage Size versus Price versus Security Trade-off

						Write Protection

						Form Factor

						Retailers

					

				

					NDEF-compatible NFC Tags

					Storage Size versus Price versus Security Trade-off

					Write Protection

					Form Factor

					Retailers

					General Advantages and Disadvantages of NFC
				
						Low Power and Proximity Based

						Small, Short Data Bursts

						Singular Scanning

						Security

						Card Emulation

						Android-specific Advantage: Intents

						Required Hardware

					

				

					Low Power and Proximity Based

					Small, Short Data Bursts

					Singular Scanning

					Security

					Card Emulation

					Android-specific Advantage: Intents

					Required Hardware

				

			

				The NDEF Data Format

				How and Where to Buy NFC Tags
			
					NDEF-compatible NFC Tags

					Storage Size versus Price versus Security Trade-off

					Write Protection

					Form Factor

					Retailers

				

			

				NDEF-compatible NFC Tags

				Storage Size versus Price versus Security Trade-off

				Write Protection

				Form Factor

				Retailers

				General Advantages and Disadvantages of NFC
			
					Low Power and Proximity Based

					Small, Short Data Bursts

					Singular Scanning

					Security

					Card Emulation

					Android-specific Advantage: Intents

					Required Hardware

				

			

				Low Power and Proximity Based

				Small, Short Data Bursts

				Singular Scanning

				Security

				Card Emulation

				Android-specific Advantage: Intents

				Required Hardware

				Building an Inventory Tracking System
			
					The Scenario

					The NFC Inventory Demonstration App

					Enabling NFC in the Settings

					Debugging Your Tags with Apps

				

			

				The Scenario

				The NFC Inventory Demonstration App

				Enabling NFC in the Settings

				Debugging Your Tags with Apps

				Android APIs
			
					In Your AndroidManifest.xml File
				
						Permissions and Minimum API Level

						Intent Filters

						Custom MIME Type Intent Filters

						URI-based Intent Filters

					

				

					Permissions and Minimum API Level

					Intent Filters

					Custom MIME Type Intent Filters

					URI-based Intent Filters

					In Your Main Activity Class
				
						NfcManager

						NfcAdapter

						Foreground Dispatching

						Foreground NDEF Push

						Reacting to an NDEF Tag

						NdefMessage and NdefRecord

						Parsing and Reading NDEF Tags

						Getting Ready to Write to a Tag

						Writing to the Tag

					

				

					NfcManager

					NfcAdapter

					Foreground Dispatching

					Foreground NDEF Push

					Reacting to an NDEF Tag

					NdefMessage and NdefRecord

					Parsing and Reading NDEF Tags

					Getting Ready to Write to a Tag

					Writing to the Tag

					Putting it All Together

				

			

				In Your AndroidManifest.xml File
			
					Permissions and Minimum API Level

					Intent Filters

					Custom MIME Type Intent Filters

					URI-based Intent Filters

				

			

				Permissions and Minimum API Level

				Intent Filters

				Custom MIME Type Intent Filters

				URI-based Intent Filters

				In Your Main Activity Class
			
					NfcManager

					NfcAdapter

					Foreground Dispatching

					Foreground NDEF Push

					Reacting to an NDEF Tag

					NdefMessage and NdefRecord

					Parsing and Reading NDEF Tags

					Getting Ready to Write to a Tag

					Writing to the Tag

				

			

				NfcManager

				NfcAdapter

				Foreground Dispatching

				Foreground NDEF Push

				Reacting to an NDEF Tag

				NdefMessage and NdefRecord

				Parsing and Reading NDEF Tags

				Getting Ready to Write to a Tag

				Writing to the Tag

				Putting it All Together

				Future Considerations
			
					NFC N-Mark

					Peer-to-Peer NFC Sharing

					Peer-to-Peer Android APIs

				

			

				NFC N-Mark

				Peer-to-Peer NFC Sharing

				Peer-to-Peer Android APIs

				Go Forth and NFC!

				Summary

			

		

			What Is RFID?

			What Is NFC?
		
				The NDEF Data Format

				How and Where to Buy NFC Tags
			
					NDEF-compatible NFC Tags

					Storage Size versus Price versus Security Trade-off

					Write Protection

					Form Factor

					Retailers

				

			

				NDEF-compatible NFC Tags

				Storage Size versus Price versus Security Trade-off

				Write Protection

				Form Factor

				Retailers

				General Advantages and Disadvantages of NFC
			
					Low Power and Proximity Based

					Small, Short Data Bursts

					Singular Scanning

					Security

					Card Emulation

					Android-specific Advantage: Intents

					Required Hardware

				

			

				Low Power and Proximity Based

				Small, Short Data Bursts

				Singular Scanning

				Security

				Card Emulation

				Android-specific Advantage: Intents

				Required Hardware

			

		

			The NDEF Data Format

			How and Where to Buy NFC Tags
		
				NDEF-compatible NFC Tags

				Storage Size versus Price versus Security Trade-off

				Write Protection

				Form Factor

				Retailers

			

		

			NDEF-compatible NFC Tags

			Storage Size versus Price versus Security Trade-off

			Write Protection

			Form Factor

			Retailers

			General Advantages and Disadvantages of NFC
		
				Low Power and Proximity Based

				Small, Short Data Bursts

				Singular Scanning

				Security

				Card Emulation

				Android-specific Advantage: Intents

				Required Hardware

			

		

			Low Power and Proximity Based

			Small, Short Data Bursts

			Singular Scanning

			Security

			Card Emulation

			Android-specific Advantage: Intents

			Required Hardware

			Building an Inventory Tracking System
		
				The Scenario

				The NFC Inventory Demonstration App

				Enabling NFC in the Settings

				Debugging Your Tags with Apps

			

		

			The Scenario

			The NFC Inventory Demonstration App

			Enabling NFC in the Settings

			Debugging Your Tags with Apps

			Android APIs
		
				In Your AndroidManifest.xml File
			
					Permissions and Minimum API Level

					Intent Filters

					Custom MIME Type Intent Filters

					URI-based Intent Filters

				

			

				Permissions and Minimum API Level

				Intent Filters

				Custom MIME Type Intent Filters

				URI-based Intent Filters

				In Your Main Activity Class
			
					NfcManager

					NfcAdapter

					Foreground Dispatching

					Foreground NDEF Push

					Reacting to an NDEF Tag

					NdefMessage and NdefRecord

					Parsing and Reading NDEF Tags

					Getting Ready to Write to a Tag

					Writing to the Tag

				

			

				NfcManager

				NfcAdapter

				Foreground Dispatching

				Foreground NDEF Push

				Reacting to an NDEF Tag

				NdefMessage and NdefRecord

				Parsing and Reading NDEF Tags

				Getting Ready to Write to a Tag

				Writing to the Tag

				Putting it All Together

			

		

			In Your AndroidManifest.xml File
		
				Permissions and Minimum API Level

				Intent Filters

				Custom MIME Type Intent Filters

				URI-based Intent Filters

			

		

			Permissions and Minimum API Level

			Intent Filters

			Custom MIME Type Intent Filters

			URI-based Intent Filters

			In Your Main Activity Class
		
				NfcManager

				NfcAdapter

				Foreground Dispatching

				Foreground NDEF Push

				Reacting to an NDEF Tag

				NdefMessage and NdefRecord

				Parsing and Reading NDEF Tags

				Getting Ready to Write to a Tag

				Writing to the Tag

			

		

			NfcManager

			NfcAdapter

			Foreground Dispatching

			Foreground NDEF Push

			Reacting to an NDEF Tag

			NdefMessage and NdefRecord

			Parsing and Reading NDEF Tags

			Getting Ready to Write to a Tag

			Writing to the Tag

			Putting it All Together

			Future Considerations
		
				NFC N-Mark

				Peer-to-Peer NFC Sharing

				Peer-to-Peer Android APIs

			

		

			NFC N-Mark

			Peer-to-Peer NFC Sharing

			Peer-to-Peer Android APIs

			Go Forth and NFC!

			Summary

			Chapter 12: Using the Camera
		
				Using the Camera Activity
			
					Controlling the Camera with Your Own Activity
				
						Claiming and Releasing a Camera

						The Preview View

					

				

					Claiming and Releasing a Camera

					The Preview View

					Controlling the Camera
				
						Orientation

						Zoom

						Focus

						Switching Cameras

						Flash

						Other Camera Parameters

					

				

					Orientation

					Zoom

					Focus

					Switching Cameras

					Flash

					Other Camera Parameters

				

			

				Controlling the Camera with Your Own Activity
			
					Claiming and Releasing a Camera

					The Preview View

				

			

				Claiming and Releasing a Camera

				The Preview View

				Controlling the Camera
			
					Orientation

					Zoom

					Focus

					Switching Cameras

					Flash

					Other Camera Parameters

				

			

				Orientation

				Zoom

				Focus

				Switching Cameras

				Flash

				Other Camera Parameters

				Creating a Simple Barcode Reader
			
					Understanding Barcodes
				
						Parity and Implied First Digit

						The Check Digit

						Right Half of the Barcode

					

				

					Parity and Implied First Digit

					The Check Digit

					Right Half of the Barcode

					Autofocus
				
						Using the Camera Preview Image and Detecting the Barcode

						Debugging Image Processing Programs on Android

					

				

					Using the Camera Preview Image and Detecting the Barcode

					Debugging Image Processing Programs on Android

					Detecting the Barcode

				

			

				Understanding Barcodes
			
					Parity and Implied First Digit

					The Check Digit

					Right Half of the Barcode

				

			

				Parity and Implied First Digit

				The Check Digit

				Right Half of the Barcode

				Autofocus
			
					Using the Camera Preview Image and Detecting the Barcode

					Debugging Image Processing Programs on Android

				

			

				Using the Camera Preview Image and Detecting the Barcode

				Debugging Image Processing Programs on Android

				Detecting the Barcode

				Summary

			

		

			Using the Camera Activity
		
				Controlling the Camera with Your Own Activity
			
					Claiming and Releasing a Camera

					The Preview View

				

			

				Claiming and Releasing a Camera

				The Preview View

				Controlling the Camera
			
					Orientation

					Zoom

					Focus

					Switching Cameras

					Flash

					Other Camera Parameters

				

			

				Orientation

				Zoom

				Focus

				Switching Cameras

				Flash

				Other Camera Parameters

			

		

			Controlling the Camera with Your Own Activity
		
				Claiming and Releasing a Camera

				The Preview View

			

		

			Claiming and Releasing a Camera

			The Preview View

			Controlling the Camera
		
				Orientation

				Zoom

				Focus

				Switching Cameras

				Flash

				Other Camera Parameters

			

		

			Orientation

			Zoom

			Focus

			Switching Cameras

			Flash

			Other Camera Parameters

			Creating a Simple Barcode Reader
		
				Understanding Barcodes
			
					Parity and Implied First Digit

					The Check Digit

					Right Half of the Barcode

				

			

				Parity and Implied First Digit

				The Check Digit

				Right Half of the Barcode

				Autofocus
			
					Using the Camera Preview Image and Detecting the Barcode

					Debugging Image Processing Programs on Android

				

			

				Using the Camera Preview Image and Detecting the Barcode

				Debugging Image Processing Programs on Android

				Detecting the Barcode

			

		

			Understanding Barcodes
		
				Parity and Implied First Digit

				The Check Digit

				Right Half of the Barcode

			

		

			Parity and Implied First Digit

			The Check Digit

			Right Half of the Barcode

			Autofocus
		
				Using the Camera Preview Image and Detecting the Barcode

				Debugging Image Processing Programs on Android

			

		

			Using the Camera Preview Image and Detecting the Barcode

			Debugging Image Processing Programs on Android

			Detecting the Barcode

			Summary

			Chapter 13: Image-Processing Techniques
		
				The Structure of Image-Processing Programs
			
					The Image-Processing Pipeline

					Common Image-Processing Operations
				
						Image-to-Image Operations

						Image-to-Object Operations

					

				

					Image-to-Image Operations

					Image-to-Object Operations

					Jon’s Java Imaging Library (JJIL)
				
						Image

						PipelineStage

						Sequence

						Ladder

					

				

					Image

					PipelineStage

					Sequence

					Ladder

					JJIL and Detecting the Android Logo
				
						Choose the Right Image Size

						Improving Reliability in Image Processing

					

				

					Choose the Right Image Size

					Improving Reliability in Image Processing

				

			

				The Image-Processing Pipeline

				Common Image-Processing Operations
			
					Image-to-Image Operations

					Image-to-Object Operations

				

			

				Image-to-Image Operations

				Image-to-Object Operations

				Jon’s Java Imaging Library (JJIL)
			
					Image

					PipelineStage

					Sequence

					Ladder

				

			

				Image

				PipelineStage

				Sequence

				Ladder

				JJIL and Detecting the Android Logo
			
					Choose the Right Image Size

					Improving Reliability in Image Processing

				

			

				Choose the Right Image Size

				Improving Reliability in Image Processing

				Detecting Faces

				Image-Processing Resources

				Summary

			

		

			The Structure of Image-Processing Programs
		
				The Image-Processing Pipeline

				Common Image-Processing Operations
			
					Image-to-Image Operations

					Image-to-Object Operations

				

			

				Image-to-Image Operations

				Image-to-Object Operations

				Jon’s Java Imaging Library (JJIL)
			
					Image

					PipelineStage

					Sequence

					Ladder

				

			

				Image

				PipelineStage

				Sequence

				Ladder

				JJIL and Detecting the Android Logo
			
					Choose the Right Image Size

					Improving Reliability in Image Processing

				

			

				Choose the Right Image Size

				Improving Reliability in Image Processing

			

		

			The Image-Processing Pipeline

			Common Image-Processing Operations
		
				Image-to-Image Operations

				Image-to-Object Operations

			

		

			Image-to-Image Operations

			Image-to-Object Operations

			Jon’s Java Imaging Library (JJIL)
		
				Image

				PipelineStage

				Sequence

				Ladder

			

		

			Image

			PipelineStage

			Sequence

			Ladder

			JJIL and Detecting the Android Logo
		
				Choose the Right Image Size

				Improving Reliability in Image Processing

			

		

			Choose the Right Image Size

			Improving Reliability in Image Processing

			Detecting Faces

			Image-Processing Resources

			Summary

			Chapter 14: Using the Microphone
		
				Introducing the Android Clapper

				Using MediaRecorder to Analyze Maximum Amplitude
			
					Recording Maximum Amplitude

					Asynchronous Audio Recording

				

			

				Recording Maximum Amplitude

				Asynchronous Audio Recording

				Implementing a Clapper

				Analyzing Raw Audio
			
					Setting Audio Input Parameters

					Preparing AudioRecord

					Recording Audio

					Using OnRecordPositionUpdateListener

				

			

				Setting Audio Input Parameters

				Preparing AudioRecord

				Recording Audio

				Using OnRecordPositionUpdateListener

				Using Loud Noise Detection

				Using Consistent Frequency Detection
			
					Estimating Frequency

					Implementing the Singing Clapper

				

			

				Estimating Frequency

				Implementing the Singing Clapper

				Summary

			

		

			Introducing the Android Clapper

			Using MediaRecorder to Analyze Maximum Amplitude
		
				Recording Maximum Amplitude

				Asynchronous Audio Recording

			

		

			Recording Maximum Amplitude

			Asynchronous Audio Recording

			Implementing a Clapper

			Analyzing Raw Audio
		
				Setting Audio Input Parameters

				Preparing AudioRecord

				Recording Audio

				Using OnRecordPositionUpdateListener

			

		

			Setting Audio Input Parameters

			Preparing AudioRecord

			Recording Audio

			Using OnRecordPositionUpdateListener

			Using Loud Noise Detection

			Using Consistent Frequency Detection
		
				Estimating Frequency

				Implementing the Singing Clapper

			

		

			Estimating Frequency

			Implementing the Singing Clapper

			Summary

		

	

		Chapter 11: Near Field Communication (NFC)
	
			What Is RFID?

			What Is NFC?
		
				The NDEF Data Format

				How and Where to Buy NFC Tags
			
					NDEF-compatible NFC Tags

					Storage Size versus Price versus Security Trade-off

					Write Protection

					Form Factor

					Retailers

				

			

				NDEF-compatible NFC Tags

				Storage Size versus Price versus Security Trade-off

				Write Protection

				Form Factor

				Retailers

				General Advantages and Disadvantages of NFC
			
					Low Power and Proximity Based

					Small, Short Data Bursts

					Singular Scanning

					Security

					Card Emulation

					Android-specific Advantage: Intents

					Required Hardware

				

			

				Low Power and Proximity Based

				Small, Short Data Bursts

				Singular Scanning

				Security

				Card Emulation

				Android-specific Advantage: Intents

				Required Hardware

			

		

			The NDEF Data Format

			How and Where to Buy NFC Tags
		
				NDEF-compatible NFC Tags

				Storage Size versus Price versus Security Trade-off

				Write Protection

				Form Factor

				Retailers

			

		

			NDEF-compatible NFC Tags

			Storage Size versus Price versus Security Trade-off

			Write Protection

			Form Factor

			Retailers

			General Advantages and Disadvantages of NFC
		
				Low Power and Proximity Based

				Small, Short Data Bursts

				Singular Scanning

				Security

				Card Emulation

				Android-specific Advantage: Intents

				Required Hardware

			

		

			Low Power and Proximity Based

			Small, Short Data Bursts

			Singular Scanning

			Security

			Card Emulation

			Android-specific Advantage: Intents

			Required Hardware

			Building an Inventory Tracking System
		
				The Scenario

				The NFC Inventory Demonstration App

				Enabling NFC in the Settings

				Debugging Your Tags with Apps

			

		

			The Scenario

			The NFC Inventory Demonstration App

			Enabling NFC in the Settings

			Debugging Your Tags with Apps

			Android APIs
		
				In Your AndroidManifest.xml File
			
					Permissions and Minimum API Level

					Intent Filters

					Custom MIME Type Intent Filters

					URI-based Intent Filters

				

			

				Permissions and Minimum API Level

				Intent Filters

				Custom MIME Type Intent Filters

				URI-based Intent Filters

				In Your Main Activity Class
			
					NfcManager

					NfcAdapter

					Foreground Dispatching

					Foreground NDEF Push

					Reacting to an NDEF Tag

					NdefMessage and NdefRecord

					Parsing and Reading NDEF Tags

					Getting Ready to Write to a Tag

					Writing to the Tag

				

			

				NfcManager

				NfcAdapter

				Foreground Dispatching

				Foreground NDEF Push

				Reacting to an NDEF Tag

				NdefMessage and NdefRecord

				Parsing and Reading NDEF Tags

				Getting Ready to Write to a Tag

				Writing to the Tag

				Putting it All Together

			

		

			In Your AndroidManifest.xml File
		
				Permissions and Minimum API Level

				Intent Filters

				Custom MIME Type Intent Filters

				URI-based Intent Filters

			

		

			Permissions and Minimum API Level

			Intent Filters

			Custom MIME Type Intent Filters

			URI-based Intent Filters

			In Your Main Activity Class
		
				NfcManager

				NfcAdapter

				Foreground Dispatching

				Foreground NDEF Push

				Reacting to an NDEF Tag

				NdefMessage and NdefRecord

				Parsing and Reading NDEF Tags

				Getting Ready to Write to a Tag

				Writing to the Tag

			

		

			NfcManager

			NfcAdapter

			Foreground Dispatching

			Foreground NDEF Push

			Reacting to an NDEF Tag

			NdefMessage and NdefRecord

			Parsing and Reading NDEF Tags

			Getting Ready to Write to a Tag

			Writing to the Tag

			Putting it All Together

			Future Considerations
		
				NFC N-Mark

				Peer-to-Peer NFC Sharing

				Peer-to-Peer Android APIs

			

		

			NFC N-Mark

			Peer-to-Peer NFC Sharing

			Peer-to-Peer Android APIs

			Go Forth and NFC!

			Summary

		

	

		What Is RFID?

		What Is NFC?
	
			The NDEF Data Format

			How and Where to Buy NFC Tags
		
				NDEF-compatible NFC Tags

				Storage Size versus Price versus Security Trade-off

				Write Protection

				Form Factor

				Retailers

			

		

			NDEF-compatible NFC Tags

			Storage Size versus Price versus Security Trade-off

			Write Protection

			Form Factor

			Retailers

			General Advantages and Disadvantages of NFC
		
				Low Power and Proximity Based

				Small, Short Data Bursts

				Singular Scanning

				Security

				Card Emulation

				Android-specific Advantage: Intents

				Required Hardware

			

		

			Low Power and Proximity Based

			Small, Short Data Bursts

			Singular Scanning

			Security

			Card Emulation

			Android-specific Advantage: Intents

			Required Hardware

		

	

		The NDEF Data Format

		How and Where to Buy NFC Tags
	
			NDEF-compatible NFC Tags

			Storage Size versus Price versus Security Trade-off

			Write Protection

			Form Factor

			Retailers

		

	

		NDEF-compatible NFC Tags

		Storage Size versus Price versus Security Trade-off

		Write Protection

		Form Factor

		Retailers

		General Advantages and Disadvantages of NFC
	
			Low Power and Proximity Based

			Small, Short Data Bursts

			Singular Scanning

			Security

			Card Emulation

			Android-specific Advantage: Intents

			Required Hardware

		

	

		Low Power and Proximity Based

		Small, Short Data Bursts

		Singular Scanning

		Security

		Card Emulation

		Android-specific Advantage: Intents

		Required Hardware

		Building an Inventory Tracking System
	
			The Scenario

			The NFC Inventory Demonstration App

			Enabling NFC in the Settings

			Debugging Your Tags with Apps

		

	

		The Scenario

		The NFC Inventory Demonstration App

		Enabling NFC in the Settings

		Debugging Your Tags with Apps

		Android APIs
	
			In Your AndroidManifest.xml File
		
				Permissions and Minimum API Level

				Intent Filters

				Custom MIME Type Intent Filters

				URI-based Intent Filters

			

		

			Permissions and Minimum API Level

			Intent Filters

			Custom MIME Type Intent Filters

			URI-based Intent Filters

			In Your Main Activity Class
		
				NfcManager

				NfcAdapter

				Foreground Dispatching

				Foreground NDEF Push

				Reacting to an NDEF Tag

				NdefMessage and NdefRecord

				Parsing and Reading NDEF Tags

				Getting Ready to Write to a Tag

				Writing to the Tag

			

		

			NfcManager

			NfcAdapter

			Foreground Dispatching

			Foreground NDEF Push

			Reacting to an NDEF Tag

			NdefMessage and NdefRecord

			Parsing and Reading NDEF Tags

			Getting Ready to Write to a Tag

			Writing to the Tag

			Putting it All Together

		

	

		In Your AndroidManifest.xml File
	
			Permissions and Minimum API Level

			Intent Filters

			Custom MIME Type Intent Filters

			URI-based Intent Filters

		

	

		Permissions and Minimum API Level

		Intent Filters

		Custom MIME Type Intent Filters

		URI-based Intent Filters

		In Your Main Activity Class
	
			NfcManager

			NfcAdapter

			Foreground Dispatching

			Foreground NDEF Push

			Reacting to an NDEF Tag

			NdefMessage and NdefRecord

			Parsing and Reading NDEF Tags

			Getting Ready to Write to a Tag

			Writing to the Tag

		

	

		NfcManager

		NfcAdapter

		Foreground Dispatching

		Foreground NDEF Push

		Reacting to an NDEF Tag

		NdefMessage and NdefRecord

		Parsing and Reading NDEF Tags

		Getting Ready to Write to a Tag

		Writing to the Tag

		Putting it All Together

		Future Considerations
	
			NFC N-Mark

			Peer-to-Peer NFC Sharing

			Peer-to-Peer Android APIs

		

	

		NFC N-Mark

		Peer-to-Peer NFC Sharing

		Peer-to-Peer Android APIs

		Go Forth and NFC!

		Summary

		Chapter 12: Using the Camera
	
			Using the Camera Activity
		
				Controlling the Camera with Your Own Activity
			
					Claiming and Releasing a Camera

					The Preview View

				

			

				Claiming and Releasing a Camera

				The Preview View

				Controlling the Camera
			
					Orientation

					Zoom

					Focus

					Switching Cameras

					Flash

					Other Camera Parameters

				

			

				Orientation

				Zoom

				Focus

				Switching Cameras

				Flash

				Other Camera Parameters

			

		

			Controlling the Camera with Your Own Activity
		
				Claiming and Releasing a Camera

				The Preview View

			

		

			Claiming and Releasing a Camera

			The Preview View

			Controlling the Camera
		
				Orientation

				Zoom

				Focus

				Switching Cameras

				Flash

				Other Camera Parameters

			

		

			Orientation

			Zoom

			Focus

			Switching Cameras

			Flash

			Other Camera Parameters

			Creating a Simple Barcode Reader
		
				Understanding Barcodes
			
					Parity and Implied First Digit

					The Check Digit

					Right Half of the Barcode

				

			

				Parity and Implied First Digit

				The Check Digit

				Right Half of the Barcode

				Autofocus
			
					Using the Camera Preview Image and Detecting the Barcode

					Debugging Image Processing Programs on Android

				

			

				Using the Camera Preview Image and Detecting the Barcode

				Debugging Image Processing Programs on Android

				Detecting the Barcode

			

		

			Understanding Barcodes
		
				Parity and Implied First Digit

				The Check Digit

				Right Half of the Barcode

			

		

			Parity and Implied First Digit

			The Check Digit

			Right Half of the Barcode

			Autofocus
		
				Using the Camera Preview Image and Detecting the Barcode

				Debugging Image Processing Programs on Android

			

		

			Using the Camera Preview Image and Detecting the Barcode

			Debugging Image Processing Programs on Android

			Detecting the Barcode

			Summary

		

	

		Using the Camera Activity
	
			Controlling the Camera with Your Own Activity
		
				Claiming and Releasing a Camera

				The Preview View

			

		

			Claiming and Releasing a Camera

			The Preview View

			Controlling the Camera
		
				Orientation

				Zoom

				Focus

				Switching Cameras

				Flash

				Other Camera Parameters

			

		

			Orientation

			Zoom

			Focus

			Switching Cameras

			Flash

			Other Camera Parameters

		

	

		Controlling the Camera with Your Own Activity
	
			Claiming and Releasing a Camera

			The Preview View

		

	

		Claiming and Releasing a Camera

		The Preview View

		Controlling the Camera
	
			Orientation

			Zoom

			Focus

			Switching Cameras

			Flash

			Other Camera Parameters

		

	

		Orientation

		Zoom

		Focus

		Switching Cameras

		Flash

		Other Camera Parameters

		Creating a Simple Barcode Reader
	
			Understanding Barcodes
		
				Parity and Implied First Digit

				The Check Digit

				Right Half of the Barcode

			

		

			Parity and Implied First Digit

			The Check Digit

			Right Half of the Barcode

			Autofocus
		
				Using the Camera Preview Image and Detecting the Barcode

				Debugging Image Processing Programs on Android

			

		

			Using the Camera Preview Image and Detecting the Barcode

			Debugging Image Processing Programs on Android

			Detecting the Barcode

		

	

		Understanding Barcodes
	
			Parity and Implied First Digit

			The Check Digit

			Right Half of the Barcode

		

	

		Parity and Implied First Digit

		The Check Digit

		Right Half of the Barcode

		Autofocus
	
			Using the Camera Preview Image and Detecting the Barcode

			Debugging Image Processing Programs on Android

		

	

		Using the Camera Preview Image and Detecting the Barcode

		Debugging Image Processing Programs on Android

		Detecting the Barcode

		Summary

		Chapter 13: Image-Processing Techniques
	
			The Structure of Image-Processing Programs
		
				The Image-Processing Pipeline

				Common Image-Processing Operations
			
					Image-to-Image Operations

					Image-to-Object Operations

				

			

				Image-to-Image Operations

				Image-to-Object Operations

				Jon’s Java Imaging Library (JJIL)
			
					Image

					PipelineStage

					Sequence

					Ladder

				

			

				Image

				PipelineStage

				Sequence

				Ladder

				JJIL and Detecting the Android Logo
			
					Choose the Right Image Size

					Improving Reliability in Image Processing

				

			

				Choose the Right Image Size

				Improving Reliability in Image Processing

			

		

			The Image-Processing Pipeline

			Common Image-Processing Operations
		
				Image-to-Image Operations

				Image-to-Object Operations

			

		

			Image-to-Image Operations

			Image-to-Object Operations

			Jon’s Java Imaging Library (JJIL)
		
				Image

				PipelineStage

				Sequence

				Ladder

			

		

			Image

			PipelineStage

			Sequence

			Ladder

			JJIL and Detecting the Android Logo
		
				Choose the Right Image Size

				Improving Reliability in Image Processing

			

		

			Choose the Right Image Size

			Improving Reliability in Image Processing

			Detecting Faces

			Image-Processing Resources

			Summary

		

	

		The Structure of Image-Processing Programs
	
			The Image-Processing Pipeline

			Common Image-Processing Operations
		
				Image-to-Image Operations

				Image-to-Object Operations

			

		

			Image-to-Image Operations

			Image-to-Object Operations

			Jon’s Java Imaging Library (JJIL)
		
				Image

				PipelineStage

				Sequence

				Ladder

			

		

			Image

			PipelineStage

			Sequence

			Ladder

			JJIL and Detecting the Android Logo
		
				Choose the Right Image Size

				Improving Reliability in Image Processing

			

		

			Choose the Right Image Size

			Improving Reliability in Image Processing

		

	

		The Image-Processing Pipeline

		Common Image-Processing Operations
	
			Image-to-Image Operations

			Image-to-Object Operations

		

	

		Image-to-Image Operations

		Image-to-Object Operations

		Jon’s Java Imaging Library (JJIL)
	
			Image

			PipelineStage

			Sequence

			Ladder

		

	

		Image

		PipelineStage

		Sequence

		Ladder

		JJIL and Detecting the Android Logo
	
			Choose the Right Image Size

			Improving Reliability in Image Processing

		

	

		Choose the Right Image Size

		Improving Reliability in Image Processing

		Detecting Faces

		Image-Processing Resources

		Summary

		Chapter 14: Using the Microphone
	
			Introducing the Android Clapper

			Using MediaRecorder to Analyze Maximum Amplitude
		
				Recording Maximum Amplitude

				Asynchronous Audio Recording

			

		

			Recording Maximum Amplitude

			Asynchronous Audio Recording

			Implementing a Clapper

			Analyzing Raw Audio
		
				Setting Audio Input Parameters

				Preparing AudioRecord

				Recording Audio

				Using OnRecordPositionUpdateListener

			

		

			Setting Audio Input Parameters

			Preparing AudioRecord

			Recording Audio

			Using OnRecordPositionUpdateListener

			Using Loud Noise Detection

			Using Consistent Frequency Detection
		
				Estimating Frequency

				Implementing the Singing Clapper

			

		

			Estimating Frequency

			Implementing the Singing Clapper

			Summary

		

	

		Introducing the Android Clapper

		Using MediaRecorder to Analyze Maximum Amplitude
	
			Recording Maximum Amplitude

			Asynchronous Audio Recording

		

	

		Recording Maximum Amplitude

		Asynchronous Audio Recording

		Implementing a Clapper

		Analyzing Raw Audio
	
			Setting Audio Input Parameters

			Preparing AudioRecord

			Recording Audio

			Using OnRecordPositionUpdateListener

		

	

		Setting Audio Input Parameters

		Preparing AudioRecord

		Recording Audio

		Using OnRecordPositionUpdateListener

		Using Loud Noise Detection

		Using Consistent Frequency Detection
	
			Estimating Frequency

			Implementing the Singing Clapper

		

	

		Estimating Frequency

		Implementing the Singing Clapper

		Summary

		Part IV: Speaking to Android
	
			Chapter 15: Designing a Speech-enabled App
		
				Know Your Tools

				User Interface Screen Flow

				Voice Action Types

				Voice User Interface (VUI) Design
			
					Deciding Appropriate Tasks for Voice Actions

					Designing What the App and Users Will Say
				
						Constrain Speech Input to Increase Accuracy

						Train Users to Know What They Can Say

						Prompt the Users so They Know What to Say

						Confirm Success and Help Users Recover from Errors

						Help Users Recover from Accidental Speech Activation

						Teach Users Proper Speech Hygiene

						Use Menus Cautiously

					

				

					Constrain Speech Input to Increase Accuracy

					Train Users to Know What They Can Say

					Prompt the Users so They Know What to Say

					Confirm Success and Help Users Recover from Errors

					Help Users Recover from Accidental Speech Activation

					Teach Users Proper Speech Hygiene

					Use Menus Cautiously

					After the Design

				

			

				Deciding Appropriate Tasks for Voice Actions

				Designing What the App and Users Will Say
			
					Constrain Speech Input to Increase Accuracy

					Train Users to Know What They Can Say

					Prompt the Users so They Know What to Say

					Confirm Success and Help Users Recover from Errors

					Help Users Recover from Accidental Speech Activation

					Teach Users Proper Speech Hygiene

					Use Menus Cautiously

				

			

				Constrain Speech Input to Increase Accuracy

				Train Users to Know What They Can Say

				Prompt the Users so They Know What to Say

				Confirm Success and Help Users Recover from Errors

				Help Users Recover from Accidental Speech Activation

				Teach Users Proper Speech Hygiene

				Use Menus Cautiously

				After the Design

				Testing Your Design

				Summary

				References

			

		

			Know Your Tools

			User Interface Screen Flow

			Voice Action Types

			Voice User Interface (VUI) Design
		
				Deciding Appropriate Tasks for Voice Actions

				Designing What the App and Users Will Say
			
					Constrain Speech Input to Increase Accuracy

					Train Users to Know What They Can Say

					Prompt the Users so They Know What to Say

					Confirm Success and Help Users Recover from Errors

					Help Users Recover from Accidental Speech Activation

					Teach Users Proper Speech Hygiene

					Use Menus Cautiously

				

			

				Constrain Speech Input to Increase Accuracy

				Train Users to Know What They Can Say

				Prompt the Users so They Know What to Say

				Confirm Success and Help Users Recover from Errors

				Help Users Recover from Accidental Speech Activation

				Teach Users Proper Speech Hygiene

				Use Menus Cautiously

				After the Design

			

		

			Deciding Appropriate Tasks for Voice Actions

			Designing What the App and Users Will Say
		
				Constrain Speech Input to Increase Accuracy

				Train Users to Know What They Can Say

				Prompt the Users so They Know What to Say

				Confirm Success and Help Users Recover from Errors

				Help Users Recover from Accidental Speech Activation

				Teach Users Proper Speech Hygiene

				Use Menus Cautiously

			

		

			Constrain Speech Input to Increase Accuracy

			Train Users to Know What They Can Say

			Prompt the Users so They Know What to Say

			Confirm Success and Help Users Recover from Errors

			Help Users Recover from Accidental Speech Activation

			Teach Users Proper Speech Hygiene

			Use Menus Cautiously

			After the Design

			Testing Your Design

			Summary

			References

			Chapter 16: Using Speech Recognition and Text-to-Speech APIs
		
				Text-To-Speech
			
					Initialization
				
						Initialization with Locale

						Check TTS Data Action

					

				

					Initialization with Locale

					Check TTS Data Action

					Speaking
				
						Speaking a Script

					

				

					Speaking a Script

				

			

				Initialization
			
					Initialization with Locale

					Check TTS Data Action

				

			

				Initialization with Locale

				Check TTS Data Action

				Speaking
			
					Speaking a Script

				

			

				Speaking a Script

				Speech Recognition
			
					Initializing

					Using the RecognizerIntent
				
						The Speech Recording Process

						Configuring and Processing the Result

						RecognizerIntent Use Cases

						Implementation

					

				

					The Speech Recording Process

					Configuring and Processing the Result

					RecognizerIntent Use Cases

					Implementation

					Direct Speech Recognition Using SpeechRecognizer

					Summary

				

			

				Initializing

				Using the RecognizerIntent
			
					The Speech Recording Process

					Configuring and Processing the Result

					RecognizerIntent Use Cases

					Implementation

				

			

				The Speech Recording Process

				Configuring and Processing the Result

				RecognizerIntent Use Cases

				Implementation

				Direct Speech Recognition Using SpeechRecognizer

				Summary

			

		

			Text-To-Speech
		
				Initialization
			
					Initialization with Locale

					Check TTS Data Action

				

			

				Initialization with Locale

				Check TTS Data Action

				Speaking
			
					Speaking a Script

				

			

				Speaking a Script

			

		

			Initialization
		
				Initialization with Locale

				Check TTS Data Action

			

		

			Initialization with Locale

			Check TTS Data Action

			Speaking
		
				Speaking a Script

			

		

			Speaking a Script

			Speech Recognition
		
				Initializing

				Using the RecognizerIntent
			
					The Speech Recording Process

					Configuring and Processing the Result

					RecognizerIntent Use Cases

					Implementation

				

			

				The Speech Recording Process

				Configuring and Processing the Result

				RecognizerIntent Use Cases

				Implementation

				Direct Speech Recognition Using SpeechRecognizer

				Summary

			

		

			Initializing

			Using the RecognizerIntent
		
				The Speech Recording Process

				Configuring and Processing the Result

				RecognizerIntent Use Cases

				Implementation

			

		

			The Speech Recording Process

			Configuring and Processing the Result

			RecognizerIntent Use Cases

			Implementation

			Direct Speech Recognition Using SpeechRecognizer

			Summary

			Chapter 17: Matching What Was Said
		
				Parts of a Voice Command

				Word Spotting
			
					Indexing to Improve Word Spotting
				
						Stemming

						Phonetic Indexing

					

				

					Stemming

					Phonetic Indexing

				

			

				Indexing to Improve Word Spotting
			
					Stemming

					Phonetic Indexing

				

			

				Stemming

				Phonetic Indexing

				Matching Command Words in Persistent Storage
			
					SQLite Full Text Search
				
						Using the LIKE Operator

						Using the FTS MATCH Operator

						Implementing FTS

					

				

					Using the LIKE Operator

					Using the FTS MATCH Operator

					Implementing FTS

					Word Searching with Lucene

				

			

				SQLite Full Text Search
			
					Using the LIKE Operator

					Using the FTS MATCH Operator

					Implementing FTS

				

			

				Using the LIKE Operator

				Using the FTS MATCH Operator

				Implementing FTS

				Word Searching with Lucene

				Multi-part Commands
			
					Ignoring Potential Collisions

					Considering Ordering

				

			

				Ignoring Potential Collisions

				Considering Ordering

				Using a Grammar

				Summary

			

		

			Parts of a Voice Command

			Word Spotting
		
				Indexing to Improve Word Spotting
			
					Stemming

					Phonetic Indexing

				

			

				Stemming

				Phonetic Indexing

			

		

			Indexing to Improve Word Spotting
		
				Stemming

				Phonetic Indexing

			

		

			Stemming

			Phonetic Indexing

			Matching Command Words in Persistent Storage
		
				SQLite Full Text Search
			
					Using the LIKE Operator

					Using the FTS MATCH Operator

					Implementing FTS

				

			

				Using the LIKE Operator

				Using the FTS MATCH Operator

				Implementing FTS

				Word Searching with Lucene

			

		

			SQLite Full Text Search
		
				Using the LIKE Operator

				Using the FTS MATCH Operator

				Implementing FTS

			

		

			Using the LIKE Operator

			Using the FTS MATCH Operator

			Implementing FTS

			Word Searching with Lucene

			Multi-part Commands
		
				Ignoring Potential Collisions

				Considering Ordering

			

		

			Ignoring Potential Collisions

			Considering Ordering

			Using a Grammar

			Summary

			Chapter 18: Executing Voice Actions
		
				Food Dialogue VUI Design

				Defining and Executing Voice Actions

				Executing VoiceActionCommands

				Implementing an AlertDialog for VoiceActions

				Implementing Multi-Turn Voice Actions
			
					Implementing Multi-Turn AddFood

					Implementing Multi-Turn RemoveFood

				

			

				Implementing Multi-Turn AddFood

				Implementing Multi-Turn RemoveFood

				Making a Best Guess
			
					Relaxing Strictness Between Commands

					Making an Educated Guess

				

			

				Relaxing Strictness Between Commands

				Making an Educated Guess

				Responding When Recognition Fails
			
					Determining Not a Command

					Determining Inaccurate Recognition

					Not Understanding

				

			

				Determining Not a Command

				Determining Inaccurate Recognition

				Not Understanding

				Summary

			

		

			Food Dialogue VUI Design

			Defining and Executing Voice Actions

			Executing VoiceActionCommands

			Implementing an AlertDialog for VoiceActions

			Implementing Multi-Turn Voice Actions
		
				Implementing Multi-Turn AddFood

				Implementing Multi-Turn RemoveFood

			

		

			Implementing Multi-Turn AddFood

			Implementing Multi-Turn RemoveFood

			Making a Best Guess
		
				Relaxing Strictness Between Commands

				Making an Educated Guess

			

		

			Relaxing Strictness Between Commands

			Making an Educated Guess

			Responding When Recognition Fails
		
				Determining Not a Command

				Determining Inaccurate Recognition

				Not Understanding

			

		

			Determining Not a Command

			Determining Inaccurate Recognition

			Not Understanding

			Summary

			Chapter 19: Implementing Speech Activation
		
				Implementing Speech Activation
			
					Starting Speech Recognition

					Implementing Speech Activation within an Activity

					Activating Speech Recognition with Movement Detection

					Activating Speech Recognition with the Microphone

					Activating Speech Recognition with Continuous Speech Recognition

					Activating Speech Recognition with NFC

				

			

				Starting Speech Recognition

				Implementing Speech Activation within an Activity

				Activating Speech Recognition with Movement Detection

				Activating Speech Recognition with the Microphone

				Activating Speech Recognition with Continuous Speech Recognition

				Activating Speech Recognition with NFC

				Implementing Persistent Speech Activation
			
					Using a Service for Persistent Speech Activation

				

			

				Using a Service for Persistent Speech Activation

				Summary

			

		

			Implementing Speech Activation
		
				Starting Speech Recognition

				Implementing Speech Activation within an Activity

				Activating Speech Recognition with Movement Detection

				Activating Speech Recognition with the Microphone

				Activating Speech Recognition with Continuous Speech Recognition

				Activating Speech Recognition with NFC

			

		

			Starting Speech Recognition

			Implementing Speech Activation within an Activity

			Activating Speech Recognition with Movement Detection

			Activating Speech Recognition with the Microphone

			Activating Speech Recognition with Continuous Speech Recognition

			Activating Speech Recognition with NFC

			Implementing Persistent Speech Activation
		
				Using a Service for Persistent Speech Activation

			

		

			Using a Service for Persistent Speech Activation

			Summary

		

	

		Chapter 15: Designing a Speech-enabled App
	
			Know Your Tools

			User Interface Screen Flow

			Voice Action Types

			Voice User Interface (VUI) Design
		
				Deciding Appropriate Tasks for Voice Actions

				Designing What the App and Users Will Say
			
					Constrain Speech Input to Increase Accuracy

					Train Users to Know What They Can Say

					Prompt the Users so They Know What to Say

					Confirm Success and Help Users Recover from Errors

					Help Users Recover from Accidental Speech Activation

					Teach Users Proper Speech Hygiene

					Use Menus Cautiously

				

			

				Constrain Speech Input to Increase Accuracy

				Train Users to Know What They Can Say

				Prompt the Users so They Know What to Say

				Confirm Success and Help Users Recover from Errors

				Help Users Recover from Accidental Speech Activation

				Teach Users Proper Speech Hygiene

				Use Menus Cautiously

				After the Design

			

		

			Deciding Appropriate Tasks for Voice Actions

			Designing What the App and Users Will Say
		
				Constrain Speech Input to Increase Accuracy

				Train Users to Know What They Can Say

				Prompt the Users so They Know What to Say

				Confirm Success and Help Users Recover from Errors

				Help Users Recover from Accidental Speech Activation

				Teach Users Proper Speech Hygiene

				Use Menus Cautiously

			

		

			Constrain Speech Input to Increase Accuracy

			Train Users to Know What They Can Say

			Prompt the Users so They Know What to Say

			Confirm Success and Help Users Recover from Errors

			Help Users Recover from Accidental Speech Activation

			Teach Users Proper Speech Hygiene

			Use Menus Cautiously

			After the Design

			Testing Your Design

			Summary

			References

		

	

		Know Your Tools

		User Interface Screen Flow

		Voice Action Types

		Voice User Interface (VUI) Design
	
			Deciding Appropriate Tasks for Voice Actions

			Designing What the App and Users Will Say
		
				Constrain Speech Input to Increase Accuracy

				Train Users to Know What They Can Say

				Prompt the Users so They Know What to Say

				Confirm Success and Help Users Recover from Errors

				Help Users Recover from Accidental Speech Activation

				Teach Users Proper Speech Hygiene

				Use Menus Cautiously

			

		

			Constrain Speech Input to Increase Accuracy

			Train Users to Know What They Can Say

			Prompt the Users so They Know What to Say

			Confirm Success and Help Users Recover from Errors

			Help Users Recover from Accidental Speech Activation

			Teach Users Proper Speech Hygiene

			Use Menus Cautiously

			After the Design

		

	

		Deciding Appropriate Tasks for Voice Actions

		Designing What the App and Users Will Say
	
			Constrain Speech Input to Increase Accuracy

			Train Users to Know What They Can Say

			Prompt the Users so They Know What to Say

			Confirm Success and Help Users Recover from Errors

			Help Users Recover from Accidental Speech Activation

			Teach Users Proper Speech Hygiene

			Use Menus Cautiously

		

	

		Constrain Speech Input to Increase Accuracy

		Train Users to Know What They Can Say

		Prompt the Users so They Know What to Say

		Confirm Success and Help Users Recover from Errors

		Help Users Recover from Accidental Speech Activation

		Teach Users Proper Speech Hygiene

		Use Menus Cautiously

		After the Design

		Testing Your Design

		Summary

		References

		Chapter 16: Using Speech Recognition and Text-to-Speech APIs
	
			Text-To-Speech
		
				Initialization
			
					Initialization with Locale

					Check TTS Data Action

				

			

				Initialization with Locale

				Check TTS Data Action

				Speaking
			
					Speaking a Script

				

			

				Speaking a Script

			

		

			Initialization
		
				Initialization with Locale

				Check TTS Data Action

			

		

			Initialization with Locale

			Check TTS Data Action

			Speaking
		
				Speaking a Script

			

		

			Speaking a Script

			Speech Recognition
		
				Initializing

				Using the RecognizerIntent
			
					The Speech Recording Process

					Configuring and Processing the Result

					RecognizerIntent Use Cases

					Implementation

				

			

				The Speech Recording Process

				Configuring and Processing the Result

				RecognizerIntent Use Cases

				Implementation

				Direct Speech Recognition Using SpeechRecognizer

				Summary

			

		

			Initializing

			Using the RecognizerIntent
		
				The Speech Recording Process

				Configuring and Processing the Result

				RecognizerIntent Use Cases

				Implementation

			

		

			The Speech Recording Process

			Configuring and Processing the Result

			RecognizerIntent Use Cases

			Implementation

			Direct Speech Recognition Using SpeechRecognizer

			Summary

		

	

		Text-To-Speech
	
			Initialization
		
				Initialization with Locale

				Check TTS Data Action

			

		

			Initialization with Locale

			Check TTS Data Action

			Speaking
		
				Speaking a Script

			

		

			Speaking a Script

		

	

		Initialization
	
			Initialization with Locale

			Check TTS Data Action

		

	

		Initialization with Locale

		Check TTS Data Action

		Speaking
	
			Speaking a Script

		

	

		Speaking a Script

		Speech Recognition
	
			Initializing

			Using the RecognizerIntent
		
				The Speech Recording Process

				Configuring and Processing the Result

				RecognizerIntent Use Cases

				Implementation

			

		

			The Speech Recording Process

			Configuring and Processing the Result

			RecognizerIntent Use Cases

			Implementation

			Direct Speech Recognition Using SpeechRecognizer

			Summary

		

	

		Initializing

		Using the RecognizerIntent
	
			The Speech Recording Process

			Configuring and Processing the Result

			RecognizerIntent Use Cases

			Implementation

		

	

		The Speech Recording Process

		Configuring and Processing the Result

		RecognizerIntent Use Cases

		Implementation

		Direct Speech Recognition Using SpeechRecognizer

		Summary

		Chapter 17: Matching What Was Said
	
			Parts of a Voice Command

			Word Spotting
		
				Indexing to Improve Word Spotting
			
					Stemming

					Phonetic Indexing

				

			

				Stemming

				Phonetic Indexing

			

		

			Indexing to Improve Word Spotting
		
				Stemming

				Phonetic Indexing

			

		

			Stemming

			Phonetic Indexing

			Matching Command Words in Persistent Storage
		
				SQLite Full Text Search
			
					Using the LIKE Operator

					Using the FTS MATCH Operator

					Implementing FTS

				

			

				Using the LIKE Operator

				Using the FTS MATCH Operator

				Implementing FTS

				Word Searching with Lucene

			

		

			SQLite Full Text Search
		
				Using the LIKE Operator

				Using the FTS MATCH Operator

				Implementing FTS

			

		

			Using the LIKE Operator

			Using the FTS MATCH Operator

			Implementing FTS

			Word Searching with Lucene

			Multi-part Commands
		
				Ignoring Potential Collisions

				Considering Ordering

			

		

			Ignoring Potential Collisions

			Considering Ordering

			Using a Grammar

			Summary

		

	

		Parts of a Voice Command

		Word Spotting
	
			Indexing to Improve Word Spotting
		
				Stemming

				Phonetic Indexing

			

		

			Stemming

			Phonetic Indexing

		

	

		Indexing to Improve Word Spotting
	
			Stemming

			Phonetic Indexing

		

	

		Stemming

		Phonetic Indexing

		Matching Command Words in Persistent Storage
	
			SQLite Full Text Search
		
				Using the LIKE Operator

				Using the FTS MATCH Operator

				Implementing FTS

			

		

			Using the LIKE Operator

			Using the FTS MATCH Operator

			Implementing FTS

			Word Searching with Lucene

		

	

		SQLite Full Text Search
	
			Using the LIKE Operator

			Using the FTS MATCH Operator

			Implementing FTS

		

	

		Using the LIKE Operator

		Using the FTS MATCH Operator

		Implementing FTS

		Word Searching with Lucene

		Multi-part Commands
	
			Ignoring Potential Collisions

			Considering Ordering

		

	

		Ignoring Potential Collisions

		Considering Ordering

		Using a Grammar

		Summary

		Chapter 18: Executing Voice Actions
	
			Food Dialogue VUI Design

			Defining and Executing Voice Actions

			Executing VoiceActionCommands

			Implementing an AlertDialog for VoiceActions

			Implementing Multi-Turn Voice Actions
		
				Implementing Multi-Turn AddFood

				Implementing Multi-Turn RemoveFood

			

		

			Implementing Multi-Turn AddFood

			Implementing Multi-Turn RemoveFood

			Making a Best Guess
		
				Relaxing Strictness Between Commands

				Making an Educated Guess

			

		

			Relaxing Strictness Between Commands

			Making an Educated Guess

			Responding When Recognition Fails
		
				Determining Not a Command

				Determining Inaccurate Recognition

				Not Understanding

			

		

			Determining Not a Command

			Determining Inaccurate Recognition

			Not Understanding

			Summary

		

	

		Food Dialogue VUI Design

		Defining and Executing Voice Actions

		Executing VoiceActionCommands

		Implementing an AlertDialog for VoiceActions

		Implementing Multi-Turn Voice Actions
	
			Implementing Multi-Turn AddFood

			Implementing Multi-Turn RemoveFood

		

	

		Implementing Multi-Turn AddFood

		Implementing Multi-Turn RemoveFood

		Making a Best Guess
	
			Relaxing Strictness Between Commands

			Making an Educated Guess

		

	

		Relaxing Strictness Between Commands

		Making an Educated Guess

		Responding When Recognition Fails
	
			Determining Not a Command

			Determining Inaccurate Recognition

			Not Understanding

		

	

		Determining Not a Command

		Determining Inaccurate Recognition

		Not Understanding

		Summary

		Chapter 19: Implementing Speech Activation
	
			Implementing Speech Activation
		
				Starting Speech Recognition

				Implementing Speech Activation within an Activity

				Activating Speech Recognition with Movement Detection

				Activating Speech Recognition with the Microphone

				Activating Speech Recognition with Continuous Speech Recognition

				Activating Speech Recognition with NFC

			

		

			Starting Speech Recognition

			Implementing Speech Activation within an Activity

			Activating Speech Recognition with Movement Detection

			Activating Speech Recognition with the Microphone

			Activating Speech Recognition with Continuous Speech Recognition

			Activating Speech Recognition with NFC

			Implementing Persistent Speech Activation
		
				Using a Service for Persistent Speech Activation

			

		

			Using a Service for Persistent Speech Activation

			Summary

		

	

		Implementing Speech Activation
	
			Starting Speech Recognition

			Implementing Speech Activation within an Activity

			Activating Speech Recognition with Movement Detection

			Activating Speech Recognition with the Microphone

			Activating Speech Recognition with Continuous Speech Recognition

			Activating Speech Recognition with NFC

		

	

		Starting Speech Recognition

		Implementing Speech Activation within an Activity

		Activating Speech Recognition with Movement Detection

		Activating Speech Recognition with the Microphone

		Activating Speech Recognition with Continuous Speech Recognition

		Activating Speech Recognition with NFC

		Implementing Persistent Speech Activation
	
			Using a Service for Persistent Speech Activation

		

	

		Using a Service for Persistent Speech Activation

		Summary

		Index

		Advertisements

	

	Contents

	Introduction

	Part I: Location Services

		Chapter 1: Introducing the Android Location Service
	
			Methods Used to Determine Location
		
				GPS Provider
			
					How It Works

					GPS Improvements

					Limitations

					Controlling GPS

				

			

				How It Works

				GPS Improvements

				Limitations

				Controlling GPS

				Network Provider
			
					Using Wireless Network Access Points

					Using Cell IDs

				

			

				Using Wireless Network Access Points

				Using Cell IDs

			

		

			GPS Provider
		
				How It Works

				GPS Improvements

				Limitations

				Controlling GPS

			

		

			How It Works

			GPS Improvements

			Limitations

			Controlling GPS

			Network Provider
		
				Using Wireless Network Access Points

				Using Cell IDs

			

		

			Using Wireless Network Access Points

			Using Cell IDs

			Summary

		

	

		Methods Used to Determine Location
	
			GPS Provider
		
				How It Works

				GPS Improvements

				Limitations

				Controlling GPS

			

		

			How It Works

			GPS Improvements

			Limitations

			Controlling GPS

			Network Provider
		
				Using Wireless Network Access Points

				Using Cell IDs

			

		

			Using Wireless Network Access Points

			Using Cell IDs

		

	

		GPS Provider
	
			How It Works

			GPS Improvements

			Limitations

			Controlling GPS

		

	

		How It Works

		GPS Improvements

		Limitations

		Controlling GPS

		Network Provider
	
			Using Wireless Network Access Points

			Using Cell IDs

		

	

		Using Wireless Network Access Points

		Using Cell IDs

		Summary

		Chapter 2: Determining a Device’s Current Location
	
			Know Your Tools
		
				LocationManager

				LocationProvider

				Location

				Criteria

				LocationListener

			

		

			LocationManager

			LocationProvider

			Location

			Criteria

			LocationListener

			Setting up the Android Manifest

			Determining the Appropriate Location Provider
		
				GPS Location Provider

				Network Location Provider

				Passive Location Provider

				Accuracy versus Battery Life

			

		

			GPS Location Provider

			Network Location Provider

			Passive Location Provider

			Accuracy versus Battery Life

			Receiving Location Updates
		
				Receiving Location Updates with a LocationListener

				Receiving Location Updates with a Broadcast Intent

			

		

			Receiving Location Updates with a LocationListener

			Receiving Location Updates with a Broadcast Intent

			Implementing the Example App
		
				Implementing LocationListener
			
					onLocationChanged()

					onProviderDisabled() and onProviderEnabled()

					onStatusChanged()

				

			

				onLocationChanged()

				onProviderDisabled() and onProviderEnabled()

				onStatusChanged()

				Obtaining a Handle to LocationManager

				Requesting Location Updates

				Cleaning up After Yourself

				Launching the Location Settings Activity

			

		

			Implementing LocationListener
		
				onLocationChanged()

				onProviderDisabled() and onProviderEnabled()

				onStatusChanged()

			

		

			onLocationChanged()

			onProviderDisabled() and onProviderEnabled()

			onStatusChanged()

			Obtaining a Handle to LocationManager

			Requesting Location Updates

			Cleaning up After Yourself

			Launching the Location Settings Activity

			Summary

		

	

		Know Your Tools
	
			LocationManager

			LocationProvider

			Location

			Criteria

			LocationListener

		

	

		LocationManager

		LocationProvider

		Location

		Criteria

		LocationListener

		Setting up the Android Manifest

		Determining the Appropriate Location Provider
	
			GPS Location Provider

			Network Location Provider

			Passive Location Provider

			Accuracy versus Battery Life

		

	

		GPS Location Provider

		Network Location Provider

		Passive Location Provider

		Accuracy versus Battery Life

		Receiving Location Updates
	
			Receiving Location Updates with a LocationListener

			Receiving Location Updates with a Broadcast Intent

		

	

		Receiving Location Updates with a LocationListener

		Receiving Location Updates with a Broadcast Intent

		Implementing the Example App
	
			Implementing LocationListener
		
				onLocationChanged()

				onProviderDisabled() and onProviderEnabled()

				onStatusChanged()

			

		

			onLocationChanged()

			onProviderDisabled() and onProviderEnabled()

			onStatusChanged()

			Obtaining a Handle to LocationManager

			Requesting Location Updates

			Cleaning up After Yourself

			Launching the Location Settings Activity

		

	

		Implementing LocationListener
	
			onLocationChanged()

			onProviderDisabled() and onProviderEnabled()

			onStatusChanged()

		

	

		onLocationChanged()

		onProviderDisabled() and onProviderEnabled()

		onStatusChanged()

		Obtaining a Handle to LocationManager

		Requesting Location Updates

		Cleaning up After Yourself

		Launching the Location Settings Activity

		Summary

		Chapter 3: Tracking Device Movement
	
			Collecting Location Data
		
				Receiving Location Updates with a Broadcast Receiver
			
					Extending BroadcastReceiver

					Registering the BroadcastReceiver with Android

					Requesting Location Updates with a PendingIntent

					One Intent, Multiple Receivers

				

			

				Extending BroadcastReceiver

				Registering the BroadcastReceiver with Android

				Requesting Location Updates with a PendingIntent

				One Intent, Multiple Receivers

				Why Not Use a Service?

			

		

			Receiving Location Updates with a Broadcast Receiver
		
				Extending BroadcastReceiver

				Registering the BroadcastReceiver with Android

				Requesting Location Updates with a PendingIntent

				One Intent, Multiple Receivers

			

		

			Extending BroadcastReceiver

			Registering the BroadcastReceiver with Android

			Requesting Location Updates with a PendingIntent

			One Intent, Multiple Receivers

			Why Not Use a Service?

			Viewing the Tracking Data
		
				Google Map Library Components
			
					MapView

					OverlayItem

					ItemizedOverlay

					MapActivity

				

			

				MapView

				OverlayItem

				ItemizedOverlay

				MapActivity

			

		

			Google Map Library Components
		
				MapView

				OverlayItem

				ItemizedOverlay

				MapActivity

			

		

			MapView

			OverlayItem

			ItemizedOverlay

			MapActivity

			Filtering Location Data

			Continuous Location Tracking and Battery Life
		
				Reducing Location Update Frequency

				Limiting Location Providers

			

		

			Reducing Location Update Frequency

			Limiting Location Providers

			Summary

		

	

		Collecting Location Data
	
			Receiving Location Updates with a Broadcast Receiver
		
				Extending BroadcastReceiver

				Registering the BroadcastReceiver with Android

				Requesting Location Updates with a PendingIntent

				One Intent, Multiple Receivers

			

		

			Extending BroadcastReceiver

			Registering the BroadcastReceiver with Android

			Requesting Location Updates with a PendingIntent

			One Intent, Multiple Receivers

			Why Not Use a Service?

		

	

		Receiving Location Updates with a Broadcast Receiver
	
			Extending BroadcastReceiver

			Registering the BroadcastReceiver with Android

			Requesting Location Updates with a PendingIntent

			One Intent, Multiple Receivers

		

	

		Extending BroadcastReceiver

		Registering the BroadcastReceiver with Android

		Requesting Location Updates with a PendingIntent

		One Intent, Multiple Receivers

		Why Not Use a Service?

		Viewing the Tracking Data
	
			Google Map Library Components
		
				MapView

				OverlayItem

				ItemizedOverlay

				MapActivity

			

		

			MapView

			OverlayItem

			ItemizedOverlay

			MapActivity

		

	

		Google Map Library Components
	
			MapView

			OverlayItem

			ItemizedOverlay

			MapActivity

		

	

		MapView

		OverlayItem

		ItemizedOverlay

		MapActivity

		Filtering Location Data

		Continuous Location Tracking and Battery Life
	
			Reducing Location Update Frequency

			Limiting Location Providers

		

	

		Reducing Location Update Frequency

		Limiting Location Providers

		Summary

		Chapter 4: Proximity Alerts
	
			App Structure
		
				Geocoding
			
					android.location.Geocoder

					Reading the Geocoded Response

				

			

				android.location.Geocoder

				Reading the Geocoded Response

				Setting a Proximity Alert

				Responding to a Proximity Alert

			

		

			Geocoding
		
				android.location.Geocoder

				Reading the Geocoded Response

			

		

			android.location.Geocoder

			Reading the Geocoded Response

			Setting a Proximity Alert

			Responding to a Proximity Alert

			Proximity Alert Limitations
		
				Battery Life

				Permissions

			

		

			Battery Life

			Permissions

			More Efficient Proximity Alert
		
				ProximityAlertService

			

		

			ProximityAlertService

			Summary

		

	

		App Structure
	
			Geocoding
		
				android.location.Geocoder

				Reading the Geocoded Response

			

		

			android.location.Geocoder

			Reading the Geocoded Response

			Setting a Proximity Alert

			Responding to a Proximity Alert

		

	

		Geocoding
	
			android.location.Geocoder

			Reading the Geocoded Response

		

	

		android.location.Geocoder

		Reading the Geocoded Response

		Setting a Proximity Alert

		Responding to a Proximity Alert

		Proximity Alert Limitations
	
			Battery Life

			Permissions

		

	

		Battery Life

		Permissions

		More Efficient Proximity Alert
	
			ProximityAlertService

		

	

		ProximityAlertService

		Summary

	

	Chapter 1: Introducing the Android Location Service

		Methods Used to Determine Location
	
			GPS Provider
		
				How It Works

				GPS Improvements

				Limitations

				Controlling GPS

			

		

			How It Works

			GPS Improvements

			Limitations

			Controlling GPS

			Network Provider
		
				Using Wireless Network Access Points

				Using Cell IDs

			

		

			Using Wireless Network Access Points

			Using Cell IDs

		

	

		GPS Provider
	
			How It Works

			GPS Improvements

			Limitations

			Controlling GPS

		

	

		How It Works

		GPS Improvements

		Limitations

		Controlling GPS

		Network Provider
	
			Using Wireless Network Access Points

			Using Cell IDs

		

	

		Using Wireless Network Access Points

		Using Cell IDs

		Summary

	

	Methods Used to Determine Location

		GPS Provider
	
			How It Works

			GPS Improvements

			Limitations

			Controlling GPS

		

	

		How It Works

		GPS Improvements

		Limitations

		Controlling GPS

		Network Provider
	
			Using Wireless Network Access Points

			Using Cell IDs

		

	

		Using Wireless Network Access Points

		Using Cell IDs

	

	GPS Provider

		How It Works

		GPS Improvements

		Limitations

		Controlling GPS

	

	How It Works

	GPS Improvements

	Limitations

	Controlling GPS

	Network Provider

		Using Wireless Network Access Points

		Using Cell IDs

	

	Using Wireless Network Access Points

	Using Cell IDs

	Summary

	Chapter 2: Determining a Device’s Current Location

		Know Your Tools
	
			LocationManager

			LocationProvider

			Location

			Criteria

			LocationListener

		

	

		LocationManager

		LocationProvider

		Location

		Criteria

		LocationListener

		Setting up the Android Manifest

		Determining the Appropriate Location Provider
	
			GPS Location Provider

			Network Location Provider

			Passive Location Provider

			Accuracy versus Battery Life

		

	

		GPS Location Provider

		Network Location Provider

		Passive Location Provider

		Accuracy versus Battery Life

		Receiving Location Updates
	
			Receiving Location Updates with a LocationListener

			Receiving Location Updates with a Broadcast Intent

		

	

		Receiving Location Updates with a LocationListener

		Receiving Location Updates with a Broadcast Intent

		Implementing the Example App
	
			Implementing LocationListener
		
				onLocationChanged()

				onProviderDisabled() and onProviderEnabled()

				onStatusChanged()

			

		

			onLocationChanged()

			onProviderDisabled() and onProviderEnabled()

			onStatusChanged()

			Obtaining a Handle to LocationManager

			Requesting Location Updates

			Cleaning up After Yourself

			Launching the Location Settings Activity

		

	

		Implementing LocationListener
	
			onLocationChanged()

			onProviderDisabled() and onProviderEnabled()

			onStatusChanged()

		

	

		onLocationChanged()

		onProviderDisabled() and onProviderEnabled()

		onStatusChanged()

		Obtaining a Handle to LocationManager

		Requesting Location Updates

		Cleaning up After Yourself

		Launching the Location Settings Activity

		Summary

	

	Know Your Tools

		LocationManager

		LocationProvider

		Location

		Criteria

		LocationListener

	

	LocationManager

	LocationProvider

	Location

	Criteria

	LocationListener

	Setting up the Android Manifest

	Determining the Appropriate Location Provider

		GPS Location Provider

		Network Location Provider

		Passive Location Provider

		Accuracy versus Battery Life

	

	GPS Location Provider

	Network Location Provider

	Passive Location Provider

	Accuracy versus Battery Life

	Receiving Location Updates

		Receiving Location Updates with a LocationListener

		Receiving Location Updates with a Broadcast Intent

	

	Receiving Location Updates with a LocationListener

	Receiving Location Updates with a Broadcast Intent

	Implementing the Example App

		Implementing LocationListener
	
			onLocationChanged()

			onProviderDisabled() and onProviderEnabled()

			onStatusChanged()

		

	

		onLocationChanged()

		onProviderDisabled() and onProviderEnabled()

		onStatusChanged()

		Obtaining a Handle to LocationManager

		Requesting Location Updates

		Cleaning up After Yourself

		Launching the Location Settings Activity

	

	Implementing LocationListener

		onLocationChanged()

		onProviderDisabled() and onProviderEnabled()

		onStatusChanged()

	

	onLocationChanged()

	onProviderDisabled() and onProviderEnabled()

	onStatusChanged()

	Obtaining a Handle to LocationManager

	Requesting Location Updates

	Cleaning up After Yourself

	Launching the Location Settings Activity

	Summary

	Chapter 3: Tracking Device Movement

		Collecting Location Data
	
			Receiving Location Updates with a Broadcast Receiver
		
				Extending BroadcastReceiver

				Registering the BroadcastReceiver with Android

				Requesting Location Updates with a PendingIntent

				One Intent, Multiple Receivers

			

		

			Extending BroadcastReceiver

			Registering the BroadcastReceiver with Android

			Requesting Location Updates with a PendingIntent

			One Intent, Multiple Receivers

			Why Not Use a Service?

		

	

		Receiving Location Updates with a Broadcast Receiver
	
			Extending BroadcastReceiver

			Registering the BroadcastReceiver with Android

			Requesting Location Updates with a PendingIntent

			One Intent, Multiple Receivers

		

	

		Extending BroadcastReceiver

		Registering the BroadcastReceiver with Android

		Requesting Location Updates with a PendingIntent

		One Intent, Multiple Receivers

		Why Not Use a Service?

		Viewing the Tracking Data
	
			Google Map Library Components
		
				MapView

				OverlayItem

				ItemizedOverlay

				MapActivity

			

		

			MapView

			OverlayItem

			ItemizedOverlay

			MapActivity

		

	

		Google Map Library Components
	
			MapView

			OverlayItem

			ItemizedOverlay

			MapActivity

		

	

		MapView

		OverlayItem

		ItemizedOverlay

		MapActivity

		Filtering Location Data

		Continuous Location Tracking and Battery Life
	
			Reducing Location Update Frequency

			Limiting Location Providers

		

	

		Reducing Location Update Frequency

		Limiting Location Providers

		Summary

	

	Collecting Location Data

		Receiving Location Updates with a Broadcast Receiver
	
			Extending BroadcastReceiver

			Registering the BroadcastReceiver with Android

			Requesting Location Updates with a PendingIntent

			One Intent, Multiple Receivers

		

	

		Extending BroadcastReceiver

		Registering the BroadcastReceiver with Android

		Requesting Location Updates with a PendingIntent

		One Intent, Multiple Receivers

		Why Not Use a Service?

	

	Receiving Location Updates with a Broadcast Receiver

		Extending BroadcastReceiver

		Registering the BroadcastReceiver with Android

		Requesting Location Updates with a PendingIntent

		One Intent, Multiple Receivers

	

	Extending BroadcastReceiver

	Registering the BroadcastReceiver with Android

	Requesting Location Updates with a PendingIntent

	One Intent, Multiple Receivers

	Why Not Use a Service?

	Viewing the Tracking Data

		Google Map Library Components
	
			MapView

			OverlayItem

			ItemizedOverlay

			MapActivity

		

	

		MapView

		OverlayItem

		ItemizedOverlay

		MapActivity

	

	Google Map Library Components

		MapView

		OverlayItem

		ItemizedOverlay

		MapActivity

	

	MapView

	OverlayItem

	ItemizedOverlay

	MapActivity

	Filtering Location Data

	Continuous Location Tracking and Battery Life

		Reducing Location Update Frequency

		Limiting Location Providers

	

	Reducing Location Update Frequency

	Limiting Location Providers

	Summary

	Chapter 4: Proximity Alerts

		App Structure
	
			Geocoding
		
				android.location.Geocoder

				Reading the Geocoded Response

			

		

			android.location.Geocoder

			Reading the Geocoded Response

			Setting a Proximity Alert

			Responding to a Proximity Alert

		

	

		Geocoding
	
			android.location.Geocoder

			Reading the Geocoded Response

		

	

		android.location.Geocoder

		Reading the Geocoded Response

		Setting a Proximity Alert

		Responding to a Proximity Alert

		Proximity Alert Limitations
	
			Battery Life

			Permissions

		

	

		Battery Life

		Permissions

		More Efficient Proximity Alert
	
			ProximityAlertService

		

	

		ProximityAlertService

		Summary

	

	App Structure

		Geocoding
	
			android.location.Geocoder

			Reading the Geocoded Response

		

	

		android.location.Geocoder

		Reading the Geocoded Response

		Setting a Proximity Alert

		Responding to a Proximity Alert

	

	Geocoding

		android.location.Geocoder

		Reading the Geocoded Response

	

	android.location.Geocoder

	Reading the Geocoded Response

	Setting a Proximity Alert

	Responding to a Proximity Alert

	Proximity Alert Limitations

		Battery Life

		Permissions

	

	Battery Life

	Permissions

	More Efficient Proximity Alert

		ProximityAlertService

	

	ProximityAlertService

	Summary

	Part II: Inferring Information from Physical Sensors

		Chapter 5: Overview of Physical Sensors
	
			Definitions

			Android Sensor API
		
				SensorManager

				Sensor

				Sensor Rates

				Sensor Range and Resolution

				SensorEventListener

				SensorEvent

				Sensor List
			
					The Manifest File

					SensorListActivity

					SensorSelectorFragment

					SensorDisplayFragment

				

			

				The Manifest File

				SensorListActivity

				SensorSelectorFragment

				SensorDisplayFragment

			

		

			SensorManager

			Sensor

			Sensor Rates

			Sensor Range and Resolution

			SensorEventListener

			SensorEvent

			Sensor List
		
				The Manifest File

				SensorListActivity

				SensorSelectorFragment

				SensorDisplayFragment

			

		

			The Manifest File

			SensorListActivity

			SensorSelectorFragment

			SensorDisplayFragment

			Sensing the Environment
		
				Sensor.TYPE_LIGHT

				Sensor.TYPE_PROXIMITY

				Sensor.TYPE_PRESSURE
			
					Absolute Altitude

					Relative Altitude

					Mean Sea-Level Pressure (MSLP)

					Where to Find MSLP

					Sensor Units

					Sensor Range

					Common Use Cases

				

			

				Absolute Altitude

				Relative Altitude

				Mean Sea-Level Pressure (MSLP)

				Where to Find MSLP

				Sensor Units

				Sensor Range

				Common Use Cases

				Sensor.TYPE_RELATIVE_HUMIDITY

				Sensor.TYPE_AMBIENT_TEMPERATURE

				Sensor.TYPE_TEMPERATURE

			

		

			Sensor.TYPE_LIGHT

			Sensor.TYPE_PROXIMITY

			Sensor.TYPE_PRESSURE
		
				Absolute Altitude

				Relative Altitude

				Mean Sea-Level Pressure (MSLP)

				Where to Find MSLP

				Sensor Units

				Sensor Range

				Common Use Cases

			

		

			Absolute Altitude

			Relative Altitude

			Mean Sea-Level Pressure (MSLP)

			Where to Find MSLP

			Sensor Units

			Sensor Range

			Common Use Cases

			Sensor.TYPE_RELATIVE_HUMIDITY

			Sensor.TYPE_AMBIENT_TEMPERATURE

			Sensor.TYPE_TEMPERATURE

			Sensing Device Orientation and Movement
		
				Coordinate Systems

				Global Coordinate System

				Device Coordinate System

				Angles

				Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and .TYPE_LINEAR_ACCELERATION
			
					Sensor Units and Resolution

				

			

				Sensor Units and Resolution

				Sensor.TYPE_GYROSCOPE
			
					Sensor Units

					Sensor Range

				

			

				Sensor Units

				Sensor Range

				Sensor.TYPE_MAGNETIC_FIELD
			
					Sensor Units, Range, and Resolution

				

			

				Sensor Units, Range, and Resolution

				Sensor.TYPE_ROTATION_VECTOR

				SensorManager.getOrientation()

				SensorManager.getInclination()

				Sensor Fusion Schemes

			

		

			Coordinate Systems

			Global Coordinate System

			Device Coordinate System

			Angles

			Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and .TYPE_LINEAR_ACCELERATION
		
				Sensor Units and Resolution

			

		

			Sensor Units and Resolution

			Sensor.TYPE_GYROSCOPE
		
				Sensor Units

				Sensor Range

			

		

			Sensor Units

			Sensor Range

			Sensor.TYPE_MAGNETIC_FIELD
		
				Sensor Units, Range, and Resolution

			

		

			Sensor Units, Range, and Resolution

			Sensor.TYPE_ROTATION_VECTOR

			SensorManager.getOrientation()

			SensorManager.getInclination()

			Sensor Fusion Schemes

			Summary

		

	

		Definitions

		Android Sensor API
	
			SensorManager

			Sensor

			Sensor Rates

			Sensor Range and Resolution

			SensorEventListener

			SensorEvent

			Sensor List
		
				The Manifest File

				SensorListActivity

				SensorSelectorFragment

				SensorDisplayFragment

			

		

			The Manifest File

			SensorListActivity

			SensorSelectorFragment

			SensorDisplayFragment

		

	

		SensorManager

		Sensor

		Sensor Rates

		Sensor Range and Resolution

		SensorEventListener

		SensorEvent

		Sensor List
	
			The Manifest File

			SensorListActivity

			SensorSelectorFragment

			SensorDisplayFragment

		

	

		The Manifest File

		SensorListActivity

		SensorSelectorFragment

		SensorDisplayFragment

		Sensing the Environment
	
			Sensor.TYPE_LIGHT

			Sensor.TYPE_PROXIMITY

			Sensor.TYPE_PRESSURE
		
				Absolute Altitude

				Relative Altitude

				Mean Sea-Level Pressure (MSLP)

				Where to Find MSLP

				Sensor Units

				Sensor Range

				Common Use Cases

			

		

			Absolute Altitude

			Relative Altitude

			Mean Sea-Level Pressure (MSLP)

			Where to Find MSLP

			Sensor Units

			Sensor Range

			Common Use Cases

			Sensor.TYPE_RELATIVE_HUMIDITY

			Sensor.TYPE_AMBIENT_TEMPERATURE

			Sensor.TYPE_TEMPERATURE

		

	

		Sensor.TYPE_LIGHT

		Sensor.TYPE_PROXIMITY

		Sensor.TYPE_PRESSURE
	
			Absolute Altitude

			Relative Altitude

			Mean Sea-Level Pressure (MSLP)

			Where to Find MSLP

			Sensor Units

			Sensor Range

			Common Use Cases

		

	

		Absolute Altitude

		Relative Altitude

		Mean Sea-Level Pressure (MSLP)

		Where to Find MSLP

		Sensor Units

		Sensor Range

		Common Use Cases

		Sensor.TYPE_RELATIVE_HUMIDITY

		Sensor.TYPE_AMBIENT_TEMPERATURE

		Sensor.TYPE_TEMPERATURE

		Sensing Device Orientation and Movement
	
			Coordinate Systems

			Global Coordinate System

			Device Coordinate System

			Angles

			Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and .TYPE_LINEAR_ACCELERATION
		
				Sensor Units and Resolution

			

		

			Sensor Units and Resolution

			Sensor.TYPE_GYROSCOPE
		
				Sensor Units

				Sensor Range

			

		

			Sensor Units

			Sensor Range

			Sensor.TYPE_MAGNETIC_FIELD
		
				Sensor Units, Range, and Resolution

			

		

			Sensor Units, Range, and Resolution

			Sensor.TYPE_ROTATION_VECTOR

			SensorManager.getOrientation()

			SensorManager.getInclination()

			Sensor Fusion Schemes

		

	

		Coordinate Systems

		Global Coordinate System

		Device Coordinate System

		Angles

		Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and .TYPE_LINEAR_ACCELERATION
	
			Sensor Units and Resolution

		

	

		Sensor Units and Resolution

		Sensor.TYPE_GYROSCOPE
	
			Sensor Units

			Sensor Range

		

	

		Sensor Units

		Sensor Range

		Sensor.TYPE_MAGNETIC_FIELD
	
			Sensor Units, Range, and Resolution

		

	

		Sensor Units, Range, and Resolution

		Sensor.TYPE_ROTATION_VECTOR

		SensorManager.getOrientation()

		SensorManager.getInclination()

		Sensor Fusion Schemes

		Summary

		Chapter 6: Errors and Sensor Signal Processing
	
			Definitions
		
				Accuracy and Precision

				Types of Errors
			
					Human Error, Systematic Error, and Random Error

					Noise

					Drift

					Zero Offset (or “Offset,” or “Bias”)

					Time Delays and Dropped Data

					Integration Error

				

			

				Human Error, Systematic Error, and Random Error

				Noise

				Drift

				Zero Offset (or “Offset,” or “Bias”)

				Time Delays and Dropped Data

				Integration Error

				Techniques to Address Error
			
					Re-zeroing

					Filters

					Sensor Fusion

				

			

				Re-zeroing

				Filters

				Sensor Fusion

			

		

			Accuracy and Precision

			Types of Errors
		
				Human Error, Systematic Error, and Random Error

				Noise

				Drift

				Zero Offset (or “Offset,” or “Bias”)

				Time Delays and Dropped Data

				Integration Error

			

		

			Human Error, Systematic Error, and Random Error

			Noise

			Drift

			Zero Offset (or “Offset,” or “Bias”)

			Time Delays and Dropped Data

			Integration Error

			Techniques to Address Error
		
				Re-zeroing

				Filters

				Sensor Fusion

			

		

			Re-zeroing

			Filters

			Sensor Fusion

			Filters
		
				Low-Pass
			
					Weighted Smoothing

					Simple Moving Average (SMA)

					Choosing the Smoothing Parameter

					Averaging: Smoothness vs. Response Time

					Simple Moving Median (SMM)

				

			

				Weighted Smoothing

				Simple Moving Average (SMA)

				Choosing the Smoothing Parameter

				Averaging: Smoothness vs. Response Time

				Simple Moving Median (SMM)

				High-Pass
			
					Inverse Low-Pass Filter

				

			

				Inverse Low-Pass Filter

				Bandpass

				Introducing Kalman Filters

			

		

			Low-Pass
		
				Weighted Smoothing

				Simple Moving Average (SMA)

				Choosing the Smoothing Parameter

				Averaging: Smoothness vs. Response Time

				Simple Moving Median (SMM)

			

		

			Weighted Smoothing

			Simple Moving Average (SMA)

			Choosing the Smoothing Parameter

			Averaging: Smoothness vs. Response Time

			Simple Moving Median (SMM)

			High-Pass
		
				Inverse Low-Pass Filter

			

		

			Inverse Low-Pass Filter

			Bandpass

			Introducing Kalman Filters

			A Better Determination of Orientation by Using Sensor Fusion
		
				Sensor Fusion: Simple vs. Proprietary
			
					Proprietary Sensor Fusion

					Simple Sensor Fusion: The Balance Filter

				

			

				Proprietary Sensor Fusion

				Simple Sensor Fusion: The Balance Filter

			

		

			Sensor Fusion: Simple vs. Proprietary
		
				Proprietary Sensor Fusion

				Simple Sensor Fusion: The Balance Filter

			

		

			Proprietary Sensor Fusion

			Simple Sensor Fusion: The Balance Filter

			Summary

		

	

		Definitions
	
			Accuracy and Precision

			Types of Errors
		
				Human Error, Systematic Error, and Random Error

				Noise

				Drift

				Zero Offset (or “Offset,” or “Bias”)

				Time Delays and Dropped Data

				Integration Error

			

		

			Human Error, Systematic Error, and Random Error

			Noise

			Drift

			Zero Offset (or “Offset,” or “Bias”)

			Time Delays and Dropped Data

			Integration Error

			Techniques to Address Error
		
				Re-zeroing

				Filters

				Sensor Fusion

			

		

			Re-zeroing

			Filters

			Sensor Fusion

		

	

		Accuracy and Precision

		Types of Errors
	
			Human Error, Systematic Error, and Random Error

			Noise

			Drift

			Zero Offset (or “Offset,” or “Bias”)

			Time Delays and Dropped Data

			Integration Error

		

	

		Human Error, Systematic Error, and Random Error

		Noise

		Drift

		Zero Offset (or “Offset,” or “Bias”)

		Time Delays and Dropped Data

		Integration Error

		Techniques to Address Error
	
			Re-zeroing

			Filters

			Sensor Fusion

		

	

		Re-zeroing

		Filters

		Sensor Fusion

		Filters
	
			Low-Pass
		
				Weighted Smoothing

				Simple Moving Average (SMA)

				Choosing the Smoothing Parameter

				Averaging: Smoothness vs. Response Time

				Simple Moving Median (SMM)

			

		

			Weighted Smoothing

			Simple Moving Average (SMA)

			Choosing the Smoothing Parameter

			Averaging: Smoothness vs. Response Time

			Simple Moving Median (SMM)

			High-Pass
		
				Inverse Low-Pass Filter

			

		

			Inverse Low-Pass Filter

			Bandpass

			Introducing Kalman Filters

		

	

		Low-Pass
	
			Weighted Smoothing

			Simple Moving Average (SMA)

			Choosing the Smoothing Parameter

			Averaging: Smoothness vs. Response Time

			Simple Moving Median (SMM)

		

	

		Weighted Smoothing

		Simple Moving Average (SMA)

		Choosing the Smoothing Parameter

		Averaging: Smoothness vs. Response Time

		Simple Moving Median (SMM)

		High-Pass
	
			Inverse Low-Pass Filter

		

	

		Inverse Low-Pass Filter

		Bandpass

		Introducing Kalman Filters

		A Better Determination of Orientation by Using Sensor Fusion
	
			Sensor Fusion: Simple vs. Proprietary
		
				Proprietary Sensor Fusion

				Simple Sensor Fusion: The Balance Filter

			

		

			Proprietary Sensor Fusion

			Simple Sensor Fusion: The Balance Filter

		

	

		Sensor Fusion: Simple vs. Proprietary
	
			Proprietary Sensor Fusion

			Simple Sensor Fusion: The Balance Filter

		

	

		Proprietary Sensor Fusion

		Simple Sensor Fusion: The Balance Filter

		Summary

		Chapter 7: Determining Device Orientation
	
			Previewing the Example App

			Determining Device Orientation
		
				Gravity Sensor

				Accelerometer and Magnetometer

				Gravity Sensor and Magnetometer

				Rotation Vector

				Implementation Details
			
					Processing Gravity Sensor Data

					Processing Accelerometer and Magnetic Field Data

					Processing Rotation Vector Data

					Notifying the User of Orientation Changes

				

			

				Processing Gravity Sensor Data

				Processing Accelerometer and Magnetic Field Data

				Processing Rotation Vector Data

				Notifying the User of Orientation Changes

			

		

			Gravity Sensor

			Accelerometer and Magnetometer

			Gravity Sensor and Magnetometer

			Rotation Vector

			Implementation Details
		
				Processing Gravity Sensor Data

				Processing Accelerometer and Magnetic Field Data

				Processing Rotation Vector Data

				Notifying the User of Orientation Changes

			

		

			Processing Gravity Sensor Data

			Processing Accelerometer and Magnetic Field Data

			Processing Rotation Vector Data

			Notifying the User of Orientation Changes

			NorthFinder

			Summary

		

	

		Previewing the Example App

		Determining Device Orientation
	
			Gravity Sensor

			Accelerometer and Magnetometer

			Gravity Sensor and Magnetometer

			Rotation Vector

			Implementation Details
		
				Processing Gravity Sensor Data

				Processing Accelerometer and Magnetic Field Data

				Processing Rotation Vector Data

				Notifying the User of Orientation Changes

			

		

			Processing Gravity Sensor Data

			Processing Accelerometer and Magnetic Field Data

			Processing Rotation Vector Data

			Notifying the User of Orientation Changes

		

	

		Gravity Sensor

		Accelerometer and Magnetometer

		Gravity Sensor and Magnetometer

		Rotation Vector

		Implementation Details
	
			Processing Gravity Sensor Data

			Processing Accelerometer and Magnetic Field Data

			Processing Rotation Vector Data

			Notifying the User of Orientation Changes

		

	

		Processing Gravity Sensor Data

		Processing Accelerometer and Magnetic Field Data

		Processing Rotation Vector Data

		Notifying the User of Orientation Changes

		NorthFinder

		Summary

		Chapter 8: Detecting Movement
	
			Acceleration Data
		
				Accelerometer Data

				Linear Acceleration Sensor Data

				Data While Device Is in Motion

				Total Acceleration

			

		

			Accelerometer Data

			Linear Acceleration Sensor Data

			Data While Device Is in Motion

			Total Acceleration

			Implementation
		
				DetermineMovementActivity

				AccelerationEventListener

			

		

			DetermineMovementActivity

			AccelerationEventListener

			Summary

		

	

		Acceleration Data
	
			Accelerometer Data

			Linear Acceleration Sensor Data

			Data While Device Is in Motion

			Total Acceleration

		

	

		Accelerometer Data

		Linear Acceleration Sensor Data

		Data While Device Is in Motion

		Total Acceleration

		Implementation
	
			DetermineMovementActivity

			AccelerationEventListener

		

	

		DetermineMovementActivity

		AccelerationEventListener

		Summary

		Chapter 9: Sensing the Environment
	
			Barometer vs. GPS for Altitude Data

			Example App Overview
		
				Implementation Details
			
					GPS-Based Altitude

					Barometric Pressure–Based Altitude

				

			

				GPS-Based Altitude

				Barometric Pressure–Based Altitude

				Relative Altitude

			

		

			Implementation Details
		
				GPS-Based Altitude

				Barometric Pressure–Based Altitude

			

		

			GPS-Based Altitude

			Barometric Pressure–Based Altitude

			Relative Altitude

			Summary

		

	

		Barometer vs. GPS for Altitude Data

		Example App Overview
	
			Implementation Details
		
				GPS-Based Altitude

				Barometric Pressure–Based Altitude

			

		

			GPS-Based Altitude

			Barometric Pressure–Based Altitude

			Relative Altitude

		

	

		Implementation Details
	
			GPS-Based Altitude

			Barometric Pressure–Based Altitude

		

	

		GPS-Based Altitude

		Barometric Pressure–Based Altitude

		Relative Altitude

		Summary

		Chapter 10: Android Open Accessory
	
			A Short History of AOA
		
				USB Host Versus USB Accessory

				Electrical Power Requirements

				Supported Android Devices

			

		

			USB Host Versus USB Accessory

			Electrical Power Requirements

			Supported Android Devices

			The Android Development Kit (ADK)
		
				Hardware Components

				Software Components

			

		

			Hardware Components

			Software Components

			AOA Sensors versus Native Device Sensors

			AOA Beyond Sensors

			AOA Limitations

			AOA and Sensing Temperature
		
				Implementation
			
					Requirements

					Getting Started with the Arduino Software

					Arduino Sketch

					Android Code

					Communication between Arduino and Android

				

			

				Requirements

				Getting Started with the Arduino Software

				Arduino Sketch

				Android Code

				Communication between Arduino and Android

			

		

			Implementation
		
				Requirements

				Getting Started with the Arduino Software

				Arduino Sketch

				Android Code

				Communication between Arduino and Android

			

		

			Requirements

			Getting Started with the Arduino Software

			Arduino Sketch

			Android Code

			Communication between Arduino and Android

			Taking an Android Accessory to the Consumer Market

			Summary

		

	

		A Short History of AOA
	
			USB Host Versus USB Accessory

			Electrical Power Requirements

			Supported Android Devices

		

	

		USB Host Versus USB Accessory

		Electrical Power Requirements

		Supported Android Devices

		The Android Development Kit (ADK)
	
			Hardware Components

			Software Components

		

	

		Hardware Components

		Software Components

		AOA Sensors versus Native Device Sensors

		AOA Beyond Sensors

		AOA Limitations

		AOA and Sensing Temperature
	
			Implementation
		
				Requirements

				Getting Started with the Arduino Software

				Arduino Sketch

				Android Code

				Communication between Arduino and Android

			

		

			Requirements

			Getting Started with the Arduino Software

			Arduino Sketch

			Android Code

			Communication between Arduino and Android

		

	

		Implementation
	
			Requirements

			Getting Started with the Arduino Software

			Arduino Sketch

			Android Code

			Communication between Arduino and Android

		

	

		Requirements

		Getting Started with the Arduino Software

		Arduino Sketch

		Android Code

		Communication between Arduino and Android

		Taking an Android Accessory to the Consumer Market

		Summary

	

	Chapter 5: Overview of Physical Sensors

		Definitions

		Android Sensor API
	
			SensorManager

			Sensor

			Sensor Rates

			Sensor Range and Resolution

			SensorEventListener

			SensorEvent

			Sensor List
		
				The Manifest File

				SensorListActivity

				SensorSelectorFragment

				SensorDisplayFragment

			

		

			The Manifest File

			SensorListActivity

			SensorSelectorFragment

			SensorDisplayFragment

		

	

		SensorManager

		Sensor

		Sensor Rates

		Sensor Range and Resolution

		SensorEventListener

		SensorEvent

		Sensor List
	
			The Manifest File

			SensorListActivity

			SensorSelectorFragment

			SensorDisplayFragment

		

	

		The Manifest File

		SensorListActivity

		SensorSelectorFragment

		SensorDisplayFragment

		Sensing the Environment
	
			Sensor.TYPE_LIGHT

			Sensor.TYPE_PROXIMITY

			Sensor.TYPE_PRESSURE
		
				Absolute Altitude

				Relative Altitude

				Mean Sea-Level Pressure (MSLP)

				Where to Find MSLP

				Sensor Units

				Sensor Range

				Common Use Cases

			

		

			Absolute Altitude

			Relative Altitude

			Mean Sea-Level Pressure (MSLP)

			Where to Find MSLP

			Sensor Units

			Sensor Range

			Common Use Cases

			Sensor.TYPE_RELATIVE_HUMIDITY

			Sensor.TYPE_AMBIENT_TEMPERATURE

			Sensor.TYPE_TEMPERATURE

		

	

		Sensor.TYPE_LIGHT

		Sensor.TYPE_PROXIMITY

		Sensor.TYPE_PRESSURE
	
			Absolute Altitude

			Relative Altitude

			Mean Sea-Level Pressure (MSLP)

			Where to Find MSLP

			Sensor Units

			Sensor Range

			Common Use Cases

		

	

		Absolute Altitude

		Relative Altitude

		Mean Sea-Level Pressure (MSLP)

		Where to Find MSLP

		Sensor Units

		Sensor Range

		Common Use Cases

		Sensor.TYPE_RELATIVE_HUMIDITY

		Sensor.TYPE_AMBIENT_TEMPERATURE

		Sensor.TYPE_TEMPERATURE

		Sensing Device Orientation and Movement
	
			Coordinate Systems

			Global Coordinate System

			Device Coordinate System

			Angles

			Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and .TYPE_LINEAR_ACCELERATION
		
				Sensor Units and Resolution

			

		

			Sensor Units and Resolution

			Sensor.TYPE_GYROSCOPE
		
				Sensor Units

				Sensor Range

			

		

			Sensor Units

			Sensor Range

			Sensor.TYPE_MAGNETIC_FIELD
		
				Sensor Units, Range, and Resolution

			

		

			Sensor Units, Range, and Resolution

			Sensor.TYPE_ROTATION_VECTOR

			SensorManager.getOrientation()

			SensorManager.getInclination()

			Sensor Fusion Schemes

		

	

		Coordinate Systems

		Global Coordinate System

		Device Coordinate System

		Angles

		Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and .TYPE_LINEAR_ACCELERATION
	
			Sensor Units and Resolution

		

	

		Sensor Units and Resolution

		Sensor.TYPE_GYROSCOPE
	
			Sensor Units

			Sensor Range

		

	

		Sensor Units

		Sensor Range

		Sensor.TYPE_MAGNETIC_FIELD
	
			Sensor Units, Range, and Resolution

		

	

		Sensor Units, Range, and Resolution

		Sensor.TYPE_ROTATION_VECTOR

		SensorManager.getOrientation()

		SensorManager.getInclination()

		Sensor Fusion Schemes

		Summary

	

	Definitions

	Android Sensor API

		SensorManager

		Sensor

		Sensor Rates

		Sensor Range and Resolution

		SensorEventListener

		SensorEvent

		Sensor List
	
			The Manifest File

			SensorListActivity

			SensorSelectorFragment

			SensorDisplayFragment

		

	

		The Manifest File

		SensorListActivity

		SensorSelectorFragment

		SensorDisplayFragment

	

	SensorManager

	Sensor

	Sensor Rates

	Sensor Range and Resolution

	SensorEventListener

	SensorEvent

	Sensor List

		The Manifest File

		SensorListActivity

		SensorSelectorFragment

		SensorDisplayFragment

	

	The Manifest File

	SensorListActivity

	SensorSelectorFragment

	SensorDisplayFragment

	Sensing the Environment

		Sensor.TYPE_LIGHT

		Sensor.TYPE_PROXIMITY

		Sensor.TYPE_PRESSURE
	
			Absolute Altitude

			Relative Altitude

			Mean Sea-Level Pressure (MSLP)

			Where to Find MSLP

			Sensor Units

			Sensor Range

			Common Use Cases

		

	

		Absolute Altitude

		Relative Altitude

		Mean Sea-Level Pressure (MSLP)

		Where to Find MSLP

		Sensor Units

		Sensor Range

		Common Use Cases

		Sensor.TYPE_RELATIVE_HUMIDITY

		Sensor.TYPE_AMBIENT_TEMPERATURE

		Sensor.TYPE_TEMPERATURE

	

	Sensor.TYPE_LIGHT

	Sensor.TYPE_PROXIMITY

	Sensor.TYPE_PRESSURE

		Absolute Altitude

		Relative Altitude

		Mean Sea-Level Pressure (MSLP)

		Where to Find MSLP

		Sensor Units

		Sensor Range

		Common Use Cases

	

	Absolute Altitude

	Relative Altitude

	Mean Sea-Level Pressure (MSLP)

	Where to Find MSLP

	Sensor Units

	Sensor Range

	Common Use Cases

	Sensor.TYPE_RELATIVE_HUMIDITY

	Sensor.TYPE_AMBIENT_TEMPERATURE

	Sensor.TYPE_TEMPERATURE

	Sensing Device Orientation and Movement

		Coordinate Systems

		Global Coordinate System

		Device Coordinate System

		Angles

		Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and .TYPE_LINEAR_ACCELERATION
	
			Sensor Units and Resolution

		

	

		Sensor Units and Resolution

		Sensor.TYPE_GYROSCOPE
	
			Sensor Units

			Sensor Range

		

	

		Sensor Units

		Sensor Range

		Sensor.TYPE_MAGNETIC_FIELD
	
			Sensor Units, Range, and Resolution

		

	

		Sensor Units, Range, and Resolution

		Sensor.TYPE_ROTATION_VECTOR

		SensorManager.getOrientation()

		SensorManager.getInclination()

		Sensor Fusion Schemes

	

	Coordinate Systems

	Global Coordinate System

	Device Coordinate System

	Angles

	Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and .TYPE_LINEAR_ACCELERATION

		Sensor Units and Resolution

	

	Sensor Units and Resolution

	Sensor.TYPE_GYROSCOPE

		Sensor Units

		Sensor Range

	

	Sensor Units

	Sensor Range

	Sensor.TYPE_MAGNETIC_FIELD

		Sensor Units, Range, and Resolution

	

	Sensor Units, Range, and Resolution

	Sensor.TYPE_ROTATION_VECTOR

	SensorManager.getOrientation()

	SensorManager.getInclination()

	Sensor Fusion Schemes

	Summary

	Chapter 6: Errors and Sensor Signal Processing

		Definitions
	
			Accuracy and Precision

			Types of Errors
		
				Human Error, Systematic Error, and Random Error

				Noise

				Drift

				Zero Offset (or “Offset,” or “Bias”)

				Time Delays and Dropped Data

				Integration Error

			

		

			Human Error, Systematic Error, and Random Error

			Noise

			Drift

			Zero Offset (or “Offset,” or “Bias”)

			Time Delays and Dropped Data

			Integration Error

			Techniques to Address Error
		
				Re-zeroing

				Filters

				Sensor Fusion

			

		

			Re-zeroing

			Filters

			Sensor Fusion

		

	

		Accuracy and Precision

		Types of Errors
	
			Human Error, Systematic Error, and Random Error

			Noise

			Drift

			Zero Offset (or “Offset,” or “Bias”)

			Time Delays and Dropped Data

			Integration Error

		

	

		Human Error, Systematic Error, and Random Error

		Noise

		Drift

		Zero Offset (or “Offset,” or “Bias”)

		Time Delays and Dropped Data

		Integration Error

		Techniques to Address Error
	
			Re-zeroing

			Filters

			Sensor Fusion

		

	

		Re-zeroing

		Filters

		Sensor Fusion

		Filters
	
			Low-Pass
		
				Weighted Smoothing

				Simple Moving Average (SMA)

				Choosing the Smoothing Parameter

				Averaging: Smoothness vs. Response Time

				Simple Moving Median (SMM)

			

		

			Weighted Smoothing

			Simple Moving Average (SMA)

			Choosing the Smoothing Parameter

			Averaging: Smoothness vs. Response Time

			Simple Moving Median (SMM)

			High-Pass
		
				Inverse Low-Pass Filter

			

		

			Inverse Low-Pass Filter

			Bandpass

			Introducing Kalman Filters

		

	

		Low-Pass
	
			Weighted Smoothing

			Simple Moving Average (SMA)

			Choosing the Smoothing Parameter

			Averaging: Smoothness vs. Response Time

			Simple Moving Median (SMM)

		

	

		Weighted Smoothing

		Simple Moving Average (SMA)

		Choosing the Smoothing Parameter

		Averaging: Smoothness vs. Response Time

		Simple Moving Median (SMM)

		High-Pass
	
			Inverse Low-Pass Filter

		

	

		Inverse Low-Pass Filter

		Bandpass

		Introducing Kalman Filters

		A Better Determination of Orientation by Using Sensor Fusion
	
			Sensor Fusion: Simple vs. Proprietary
		
				Proprietary Sensor Fusion

				Simple Sensor Fusion: The Balance Filter

			

		

			Proprietary Sensor Fusion

			Simple Sensor Fusion: The Balance Filter

		

	

		Sensor Fusion: Simple vs. Proprietary
	
			Proprietary Sensor Fusion

			Simple Sensor Fusion: The Balance Filter

		

	

		Proprietary Sensor Fusion

		Simple Sensor Fusion: The Balance Filter

		Summary

	

	Definitions

		Accuracy and Precision

		Types of Errors
	
			Human Error, Systematic Error, and Random Error

			Noise

			Drift

			Zero Offset (or “Offset,” or “Bias”)

			Time Delays and Dropped Data

			Integration Error

		

	

		Human Error, Systematic Error, and Random Error

		Noise

		Drift

		Zero Offset (or “Offset,” or “Bias”)

		Time Delays and Dropped Data

		Integration Error

		Techniques to Address Error
	
			Re-zeroing

			Filters

			Sensor Fusion

		

	

		Re-zeroing

		Filters

		Sensor Fusion

	

	Accuracy and Precision

	Types of Errors

		Human Error, Systematic Error, and Random Error

		Noise

		Drift

		Zero Offset (or “Offset,” or “Bias”)

		Time Delays and Dropped Data

		Integration Error

	

	Human Error, Systematic Error, and Random Error

	Noise

	Drift

	Zero Offset (or “Offset,” or “Bias”)

	Time Delays and Dropped Data

	Integration Error

	Techniques to Address Error

		Re-zeroing

		Filters

		Sensor Fusion

	

	Re-zeroing

	Filters

	Sensor Fusion

	Filters

		Low-Pass
	
			Weighted Smoothing

			Simple Moving Average (SMA)

			Choosing the Smoothing Parameter

			Averaging: Smoothness vs. Response Time

			Simple Moving Median (SMM)

		

	

		Weighted Smoothing

		Simple Moving Average (SMA)

		Choosing the Smoothing Parameter

		Averaging: Smoothness vs. Response Time

		Simple Moving Median (SMM)

		High-Pass
	
			Inverse Low-Pass Filter

		

	

		Inverse Low-Pass Filter

		Bandpass

		Introducing Kalman Filters

	

	Low-Pass

		Weighted Smoothing

		Simple Moving Average (SMA)

		Choosing the Smoothing Parameter

		Averaging: Smoothness vs. Response Time

		Simple Moving Median (SMM)

	

	Weighted Smoothing

	Simple Moving Average (SMA)

	Choosing the Smoothing Parameter

	Averaging: Smoothness vs. Response Time

	Simple Moving Median (SMM)

	High-Pass

		Inverse Low-Pass Filter

	

	Inverse Low-Pass Filter

	Bandpass

	Introducing Kalman Filters

	A Better Determination of Orientation by Using Sensor Fusion

		Sensor Fusion: Simple vs. Proprietary
	
			Proprietary Sensor Fusion

			Simple Sensor Fusion: The Balance Filter

		

	

		Proprietary Sensor Fusion

		Simple Sensor Fusion: The Balance Filter

	

	Sensor Fusion: Simple vs. Proprietary

		Proprietary Sensor Fusion

		Simple Sensor Fusion: The Balance Filter

	

	Proprietary Sensor Fusion

	Simple Sensor Fusion: The Balance Filter

	Summary

	Chapter 7: Determining Device Orientation

		Previewing the Example App

		Determining Device Orientation
	
			Gravity Sensor

			Accelerometer and Magnetometer

			Gravity Sensor and Magnetometer

			Rotation Vector

			Implementation Details
		
				Processing Gravity Sensor Data

				Processing Accelerometer and Magnetic Field Data

				Processing Rotation Vector Data

				Notifying the User of Orientation Changes

			

		

			Processing Gravity Sensor Data

			Processing Accelerometer and Magnetic Field Data

			Processing Rotation Vector Data

			Notifying the User of Orientation Changes

		

	

		Gravity Sensor

		Accelerometer and Magnetometer

		Gravity Sensor and Magnetometer

		Rotation Vector

		Implementation Details
	
			Processing Gravity Sensor Data

			Processing Accelerometer and Magnetic Field Data

			Processing Rotation Vector Data

			Notifying the User of Orientation Changes

		

	

		Processing Gravity Sensor Data

		Processing Accelerometer and Magnetic Field Data

		Processing Rotation Vector Data

		Notifying the User of Orientation Changes

		NorthFinder

		Summary

	

	Previewing the Example App

	Determining Device Orientation

		Gravity Sensor

		Accelerometer and Magnetometer

		Gravity Sensor and Magnetometer

		Rotation Vector

		Implementation Details
	
			Processing Gravity Sensor Data

			Processing Accelerometer and Magnetic Field Data

			Processing Rotation Vector Data

			Notifying the User of Orientation Changes

		

	

		Processing Gravity Sensor Data

		Processing Accelerometer and Magnetic Field Data

		Processing Rotation Vector Data

		Notifying the User of Orientation Changes

	

	Gravity Sensor

	Accelerometer and Magnetometer

	Gravity Sensor and Magnetometer

	Rotation Vector

	Implementation Details

		Processing Gravity Sensor Data

		Processing Accelerometer and Magnetic Field Data

		Processing Rotation Vector Data

		Notifying the User of Orientation Changes

	

	Processing Gravity Sensor Data

	Processing Accelerometer and Magnetic Field Data

	Processing Rotation Vector Data

	Notifying the User of Orientation Changes

	NorthFinder

	Summary

	Chapter 8: Detecting Movement

		Acceleration Data
	
			Accelerometer Data

			Linear Acceleration Sensor Data

			Data While Device Is in Motion

			Total Acceleration

		

	

		Accelerometer Data

		Linear Acceleration Sensor Data

		Data While Device Is in Motion

		Total Acceleration

		Implementation
	
			DetermineMovementActivity

			AccelerationEventListener

		

	

		DetermineMovementActivity

		AccelerationEventListener

		Summary

	

	Acceleration Data

		Accelerometer Data

		Linear Acceleration Sensor Data

		Data While Device Is in Motion

		Total Acceleration

	

	Accelerometer Data

	Linear Acceleration Sensor Data

	Data While Device Is in Motion

	Total Acceleration

	Implementation

		DetermineMovementActivity

		AccelerationEventListener

	

	DetermineMovementActivity

	AccelerationEventListener

	Summary

	Chapter 9: Sensing the Environment

		Barometer vs. GPS for Altitude Data

		Example App Overview
	
			Implementation Details
		
				GPS-Based Altitude

				Barometric Pressure–Based Altitude

			

		

			GPS-Based Altitude

			Barometric Pressure–Based Altitude

			Relative Altitude

		

	

		Implementation Details
	
			GPS-Based Altitude

			Barometric Pressure–Based Altitude

		

	

		GPS-Based Altitude

		Barometric Pressure–Based Altitude

		Relative Altitude

		Summary

	

	Barometer vs. GPS for Altitude Data

	Example App Overview

		Implementation Details
	
			GPS-Based Altitude

			Barometric Pressure–Based Altitude

		

	

		GPS-Based Altitude

		Barometric Pressure–Based Altitude

		Relative Altitude

	

	Implementation Details

		GPS-Based Altitude

		Barometric Pressure–Based Altitude

	

	GPS-Based Altitude

	Barometric Pressure–Based Altitude

	Relative Altitude

	Summary

	Chapter 10: Android Open Accessory

		A Short History of AOA
	
			USB Host Versus USB Accessory

			Electrical Power Requirements

			Supported Android Devices

		

	

		USB Host Versus USB Accessory

		Electrical Power Requirements

		Supported Android Devices

		The Android Development Kit (ADK)
	
			Hardware Components

			Software Components

		

	

		Hardware Components

		Software Components

		AOA Sensors versus Native Device Sensors

		AOA Beyond Sensors

		AOA Limitations

		AOA and Sensing Temperature
	
			Implementation
		
				Requirements

				Getting Started with the Arduino Software

				Arduino Sketch

				Android Code

				Communication between Arduino and Android

			

		

			Requirements

			Getting Started with the Arduino Software

			Arduino Sketch

			Android Code

			Communication between Arduino and Android

		

	

		Implementation
	
			Requirements

			Getting Started with the Arduino Software

			Arduino Sketch

			Android Code

			Communication between Arduino and Android

		

	

		Requirements

		Getting Started with the Arduino Software

		Arduino Sketch

		Android Code

		Communication between Arduino and Android

		Taking an Android Accessory to the Consumer Market

		Summary

	

	A Short History of AOA

		USB Host Versus USB Accessory

		Electrical Power Requirements

		Supported Android Devices

	

	USB Host Versus USB Accessory

	Electrical Power Requirements

	Supported Android Devices

	The Android Development Kit (ADK)

		Hardware Components

		Software Components

	

	Hardware Components

	Software Components

	AOA Sensors versus Native Device Sensors

	AOA Beyond Sensors

	AOA Limitations

	AOA and Sensing Temperature

		Implementation
	
			Requirements

			Getting Started with the Arduino Software

			Arduino Sketch

			Android Code

			Communication between Arduino and Android

		

	

		Requirements

		Getting Started with the Arduino Software

		Arduino Sketch

		Android Code

		Communication between Arduino and Android

	

	Implementation

		Requirements

		Getting Started with the Arduino Software

		Arduino Sketch

		Android Code

		Communication between Arduino and Android

	

	Requirements

	Getting Started with the Arduino Software

	Arduino Sketch

	Android Code

	Communication between Arduino and Android

	Taking an Android Accessory to the Consumer Market

	Summary

	Part III: Sensing the Augmented, Pattern-Rich External World

		Chapter 11: Near Field Communication (NFC)
	
			What Is RFID?

			What Is NFC?
		
				The NDEF Data Format

				How and Where to Buy NFC Tags
			
					NDEF-compatible NFC Tags

					Storage Size versus Price versus Security Trade-off

					Write Protection

					Form Factor

					Retailers

				

			

				NDEF-compatible NFC Tags

				Storage Size versus Price versus Security Trade-off

				Write Protection

				Form Factor

				Retailers

				General Advantages and Disadvantages of NFC
			
					Low Power and Proximity Based

					Small, Short Data Bursts

					Singular Scanning

					Security

					Card Emulation

					Android-specific Advantage: Intents

					Required Hardware

				

			

				Low Power and Proximity Based

				Small, Short Data Bursts

				Singular Scanning

				Security

				Card Emulation

				Android-specific Advantage: Intents

				Required Hardware

			

		

			The NDEF Data Format

			How and Where to Buy NFC Tags
		
				NDEF-compatible NFC Tags

				Storage Size versus Price versus Security Trade-off

				Write Protection

				Form Factor

				Retailers

			

		

			NDEF-compatible NFC Tags

			Storage Size versus Price versus Security Trade-off

			Write Protection

			Form Factor

			Retailers

			General Advantages and Disadvantages of NFC
		
				Low Power and Proximity Based

				Small, Short Data Bursts

				Singular Scanning

				Security

				Card Emulation

				Android-specific Advantage: Intents

				Required Hardware

			

		

			Low Power and Proximity Based

			Small, Short Data Bursts

			Singular Scanning

			Security

			Card Emulation

			Android-specific Advantage: Intents

			Required Hardware

			Building an Inventory Tracking System
		
				The Scenario

				The NFC Inventory Demonstration App

				Enabling NFC in the Settings

				Debugging Your Tags with Apps

			

		

			The Scenario

			The NFC Inventory Demonstration App

			Enabling NFC in the Settings

			Debugging Your Tags with Apps

			Android APIs
		
				In Your AndroidManifest.xml File
			
					Permissions and Minimum API Level

					Intent Filters

					Custom MIME Type Intent Filters

					URI-based Intent Filters

				

			

				Permissions and Minimum API Level

				Intent Filters

				Custom MIME Type Intent Filters

				URI-based Intent Filters

				In Your Main Activity Class
			
					NfcManager

					NfcAdapter

					Foreground Dispatching

					Foreground NDEF Push

					Reacting to an NDEF Tag

					NdefMessage and NdefRecord

					Parsing and Reading NDEF Tags

					Getting Ready to Write to a Tag

					Writing to the Tag

				

			

				NfcManager

				NfcAdapter

				Foreground Dispatching

				Foreground NDEF Push

				Reacting to an NDEF Tag

				NdefMessage and NdefRecord

				Parsing and Reading NDEF Tags

				Getting Ready to Write to a Tag

				Writing to the Tag

				Putting it All Together

			

		

			In Your AndroidManifest.xml File
		
				Permissions and Minimum API Level

				Intent Filters

				Custom MIME Type Intent Filters

				URI-based Intent Filters

			

		

			Permissions and Minimum API Level

			Intent Filters

			Custom MIME Type Intent Filters

			URI-based Intent Filters

			In Your Main Activity Class
		
				NfcManager

				NfcAdapter

				Foreground Dispatching

				Foreground NDEF Push

				Reacting to an NDEF Tag

				NdefMessage and NdefRecord

				Parsing and Reading NDEF Tags

				Getting Ready to Write to a Tag

				Writing to the Tag

			

		

			NfcManager

			NfcAdapter

			Foreground Dispatching

			Foreground NDEF Push

			Reacting to an NDEF Tag

			NdefMessage and NdefRecord

			Parsing and Reading NDEF Tags

			Getting Ready to Write to a Tag

			Writing to the Tag

			Putting it All Together

			Future Considerations
		
				NFC N-Mark

				Peer-to-Peer NFC Sharing

				Peer-to-Peer Android APIs

			

		

			NFC N-Mark

			Peer-to-Peer NFC Sharing

			Peer-to-Peer Android APIs

			Go Forth and NFC!

			Summary

		

	

		What Is RFID?

		What Is NFC?
	
			The NDEF Data Format

			How and Where to Buy NFC Tags
		
				NDEF-compatible NFC Tags

				Storage Size versus Price versus Security Trade-off

				Write Protection

				Form Factor

				Retailers

			

		

			NDEF-compatible NFC Tags

			Storage Size versus Price versus Security Trade-off

			Write Protection

			Form Factor

			Retailers

			General Advantages and Disadvantages of NFC
		
				Low Power and Proximity Based

				Small, Short Data Bursts

				Singular Scanning

				Security

				Card Emulation

				Android-specific Advantage: Intents

				Required Hardware

			

		

			Low Power and Proximity Based

			Small, Short Data Bursts

			Singular Scanning

			Security

			Card Emulation

			Android-specific Advantage: Intents

			Required Hardware

		

	

		The NDEF Data Format

		How and Where to Buy NFC Tags
	
			NDEF-compatible NFC Tags

			Storage Size versus Price versus Security Trade-off

			Write Protection

			Form Factor

			Retailers

		

	

		NDEF-compatible NFC Tags

		Storage Size versus Price versus Security Trade-off

		Write Protection

		Form Factor

		Retailers

		General Advantages and Disadvantages of NFC
	
			Low Power and Proximity Based

			Small, Short Data Bursts

			Singular Scanning

			Security

			Card Emulation

			Android-specific Advantage: Intents

			Required Hardware

		

	

		Low Power and Proximity Based

		Small, Short Data Bursts

		Singular Scanning

		Security

		Card Emulation

		Android-specific Advantage: Intents

		Required Hardware

		Building an Inventory Tracking System
	
			The Scenario

			The NFC Inventory Demonstration App

			Enabling NFC in the Settings

			Debugging Your Tags with Apps

		

	

		The Scenario

		The NFC Inventory Demonstration App

		Enabling NFC in the Settings

		Debugging Your Tags with Apps

		Android APIs
	
			In Your AndroidManifest.xml File
		
				Permissions and Minimum API Level

				Intent Filters

				Custom MIME Type Intent Filters

				URI-based Intent Filters

			

		

			Permissions and Minimum API Level

			Intent Filters

			Custom MIME Type Intent Filters

			URI-based Intent Filters

			In Your Main Activity Class
		
				NfcManager

				NfcAdapter

				Foreground Dispatching

				Foreground NDEF Push

				Reacting to an NDEF Tag

				NdefMessage and NdefRecord

				Parsing and Reading NDEF Tags

				Getting Ready to Write to a Tag

				Writing to the Tag

			

		

			NfcManager

			NfcAdapter

			Foreground Dispatching

			Foreground NDEF Push

			Reacting to an NDEF Tag

			NdefMessage and NdefRecord

			Parsing and Reading NDEF Tags

			Getting Ready to Write to a Tag

			Writing to the Tag

			Putting it All Together

		

	

		In Your AndroidManifest.xml File
	
			Permissions and Minimum API Level

			Intent Filters

			Custom MIME Type Intent Filters

			URI-based Intent Filters

		

	

		Permissions and Minimum API Level

		Intent Filters

		Custom MIME Type Intent Filters

		URI-based Intent Filters

		In Your Main Activity Class
	
			NfcManager

			NfcAdapter

			Foreground Dispatching

			Foreground NDEF Push

			Reacting to an NDEF Tag

			NdefMessage and NdefRecord

			Parsing and Reading NDEF Tags

			Getting Ready to Write to a Tag

			Writing to the Tag

		

	

		NfcManager

		NfcAdapter

		Foreground Dispatching

		Foreground NDEF Push

		Reacting to an NDEF Tag

		NdefMessage and NdefRecord

		Parsing and Reading NDEF Tags

		Getting Ready to Write to a Tag

		Writing to the Tag

		Putting it All Together

		Future Considerations
	
			NFC N-Mark

			Peer-to-Peer NFC Sharing

			Peer-to-Peer Android APIs

		

	

		NFC N-Mark

		Peer-to-Peer NFC Sharing

		Peer-to-Peer Android APIs

		Go Forth and NFC!

		Summary

		Chapter 12: Using the Camera
	
			Using the Camera Activity
		
				Controlling the Camera with Your Own Activity
			
					Claiming and Releasing a Camera

					The Preview View

				

			

				Claiming and Releasing a Camera

				The Preview View

				Controlling the Camera
			
					Orientation

					Zoom

					Focus

					Switching Cameras

					Flash

					Other Camera Parameters

				

			

				Orientation

				Zoom

				Focus

				Switching Cameras

				Flash

				Other Camera Parameters

			

		

			Controlling the Camera with Your Own Activity
		
				Claiming and Releasing a Camera

				The Preview View

			

		

			Claiming and Releasing a Camera

			The Preview View

			Controlling the Camera
		
				Orientation

				Zoom

				Focus

				Switching Cameras

				Flash

				Other Camera Parameters

			

		

			Orientation

			Zoom

			Focus

			Switching Cameras

			Flash

			Other Camera Parameters

			Creating a Simple Barcode Reader
		
				Understanding Barcodes
			
					Parity and Implied First Digit

					The Check Digit

					Right Half of the Barcode

				

			

				Parity and Implied First Digit

				The Check Digit

				Right Half of the Barcode

				Autofocus
			
					Using the Camera Preview Image and Detecting the Barcode

					Debugging Image Processing Programs on Android

				

			

				Using the Camera Preview Image and Detecting the Barcode

				Debugging Image Processing Programs on Android

				Detecting the Barcode

			

		

			Understanding Barcodes
		
				Parity and Implied First Digit

				The Check Digit

				Right Half of the Barcode

			

		

			Parity and Implied First Digit

			The Check Digit

			Right Half of the Barcode

			Autofocus
		
				Using the Camera Preview Image and Detecting the Barcode

				Debugging Image Processing Programs on Android

			

		

			Using the Camera Preview Image and Detecting the Barcode

			Debugging Image Processing Programs on Android

			Detecting the Barcode

			Summary

		

	

		Using the Camera Activity
	
			Controlling the Camera with Your Own Activity
		
				Claiming and Releasing a Camera

				The Preview View

			

		

			Claiming and Releasing a Camera

			The Preview View

			Controlling the Camera
		
				Orientation

				Zoom

				Focus

				Switching Cameras

				Flash

				Other Camera Parameters

			

		

			Orientation

			Zoom

			Focus

			Switching Cameras

			Flash

			Other Camera Parameters

		

	

		Controlling the Camera with Your Own Activity
	
			Claiming and Releasing a Camera

			The Preview View

		

	

		Claiming and Releasing a Camera

		The Preview View

		Controlling the Camera
	
			Orientation

			Zoom

			Focus

			Switching Cameras

			Flash

			Other Camera Parameters

		

	

		Orientation

		Zoom

		Focus

		Switching Cameras

		Flash

		Other Camera Parameters

		Creating a Simple Barcode Reader
	
			Understanding Barcodes
		
				Parity and Implied First Digit

				The Check Digit

				Right Half of the Barcode

			

		

			Parity and Implied First Digit

			The Check Digit

			Right Half of the Barcode

			Autofocus
		
				Using the Camera Preview Image and Detecting the Barcode

				Debugging Image Processing Programs on Android

			

		

			Using the Camera Preview Image and Detecting the Barcode

			Debugging Image Processing Programs on Android

			Detecting the Barcode

		

	

		Understanding Barcodes
	
			Parity and Implied First Digit

			The Check Digit

			Right Half of the Barcode

		

	

		Parity and Implied First Digit

		The Check Digit

		Right Half of the Barcode

		Autofocus
	
			Using the Camera Preview Image and Detecting the Barcode

			Debugging Image Processing Programs on Android

		

	

		Using the Camera Preview Image and Detecting the Barcode

		Debugging Image Processing Programs on Android

		Detecting the Barcode

		Summary

		Chapter 13: Image-Processing Techniques
	
			The Structure of Image-Processing Programs
		
				The Image-Processing Pipeline

				Common Image-Processing Operations
			
					Image-to-Image Operations

					Image-to-Object Operations

				

			

				Image-to-Image Operations

				Image-to-Object Operations

				Jon’s Java Imaging Library (JJIL)
			
					Image

					PipelineStage

					Sequence

					Ladder

				

			

				Image

				PipelineStage

				Sequence

				Ladder

				JJIL and Detecting the Android Logo
			
					Choose the Right Image Size

					Improving Reliability in Image Processing

				

			

				Choose the Right Image Size

				Improving Reliability in Image Processing

			

		

			The Image-Processing Pipeline

			Common Image-Processing Operations
		
				Image-to-Image Operations

				Image-to-Object Operations

			

		

			Image-to-Image Operations

			Image-to-Object Operations

			Jon’s Java Imaging Library (JJIL)
		
				Image

				PipelineStage

				Sequence

				Ladder

			

		

			Image

			PipelineStage

			Sequence

			Ladder

			JJIL and Detecting the Android Logo
		
				Choose the Right Image Size

				Improving Reliability in Image Processing

			

		

			Choose the Right Image Size

			Improving Reliability in Image Processing

			Detecting Faces

			Image-Processing Resources

			Summary

		

	

		The Structure of Image-Processing Programs
	
			The Image-Processing Pipeline

			Common Image-Processing Operations
		
				Image-to-Image Operations

				Image-to-Object Operations

			

		

			Image-to-Image Operations

			Image-to-Object Operations

			Jon’s Java Imaging Library (JJIL)
		
				Image

				PipelineStage

				Sequence

				Ladder

			

		

			Image

			PipelineStage

			Sequence

			Ladder

			JJIL and Detecting the Android Logo
		
				Choose the Right Image Size

				Improving Reliability in Image Processing

			

		

			Choose the Right Image Size

			Improving Reliability in Image Processing

		

	

		The Image-Processing Pipeline

		Common Image-Processing Operations
	
			Image-to-Image Operations

			Image-to-Object Operations

		

	

		Image-to-Image Operations

		Image-to-Object Operations

		Jon’s Java Imaging Library (JJIL)
	
			Image

			PipelineStage

			Sequence

			Ladder

		

	

		Image

		PipelineStage

		Sequence

		Ladder

		JJIL and Detecting the Android Logo
	
			Choose the Right Image Size

			Improving Reliability in Image Processing

		

	

		Choose the Right Image Size

		Improving Reliability in Image Processing

		Detecting Faces

		Image-Processing Resources

		Summary

		Chapter 14: Using the Microphone
	
			Introducing the Android Clapper

			Using MediaRecorder to Analyze Maximum Amplitude
		
				Recording Maximum Amplitude

				Asynchronous Audio Recording

			

		

			Recording Maximum Amplitude

			Asynchronous Audio Recording

			Implementing a Clapper

			Analyzing Raw Audio
		
				Setting Audio Input Parameters

				Preparing AudioRecord

				Recording Audio

				Using OnRecordPositionUpdateListener

			

		

			Setting Audio Input Parameters

			Preparing AudioRecord

			Recording Audio

			Using OnRecordPositionUpdateListener

			Using Loud Noise Detection

			Using Consistent Frequency Detection
		
				Estimating Frequency

				Implementing the Singing Clapper

			

		

			Estimating Frequency

			Implementing the Singing Clapper

			Summary

		

	

		Introducing the Android Clapper

		Using MediaRecorder to Analyze Maximum Amplitude
	
			Recording Maximum Amplitude

			Asynchronous Audio Recording

		

	

		Recording Maximum Amplitude

		Asynchronous Audio Recording

		Implementing a Clapper

		Analyzing Raw Audio
	
			Setting Audio Input Parameters

			Preparing AudioRecord

			Recording Audio

			Using OnRecordPositionUpdateListener

		

	

		Setting Audio Input Parameters

		Preparing AudioRecord

		Recording Audio

		Using OnRecordPositionUpdateListener

		Using Loud Noise Detection

		Using Consistent Frequency Detection
	
			Estimating Frequency

			Implementing the Singing Clapper

		

	

		Estimating Frequency

		Implementing the Singing Clapper

		Summary

	

	Chapter 11: Near Field Communication (NFC)

		What Is RFID?

		What Is NFC?
	
			The NDEF Data Format

			How and Where to Buy NFC Tags
		
				NDEF-compatible NFC Tags

				Storage Size versus Price versus Security Trade-off

				Write Protection

				Form Factor

				Retailers

			

		

			NDEF-compatible NFC Tags

			Storage Size versus Price versus Security Trade-off

			Write Protection

			Form Factor

			Retailers

			General Advantages and Disadvantages of NFC
		
				Low Power and Proximity Based

				Small, Short Data Bursts

				Singular Scanning

				Security

				Card Emulation

				Android-specific Advantage: Intents

				Required Hardware

			

		

			Low Power and Proximity Based

			Small, Short Data Bursts

			Singular Scanning

			Security

			Card Emulation

			Android-specific Advantage: Intents

			Required Hardware

		

	

		The NDEF Data Format

		How and Where to Buy NFC Tags
	
			NDEF-compatible NFC Tags

			Storage Size versus Price versus Security Trade-off

			Write Protection

			Form Factor

			Retailers

		

	

		NDEF-compatible NFC Tags

		Storage Size versus Price versus Security Trade-off

		Write Protection

		Form Factor

		Retailers

		General Advantages and Disadvantages of NFC
	
			Low Power and Proximity Based

			Small, Short Data Bursts

			Singular Scanning

			Security

			Card Emulation

			Android-specific Advantage: Intents

			Required Hardware

		

	

		Low Power and Proximity Based

		Small, Short Data Bursts

		Singular Scanning

		Security

		Card Emulation

		Android-specific Advantage: Intents

		Required Hardware

		Building an Inventory Tracking System
	
			The Scenario

			The NFC Inventory Demonstration App

			Enabling NFC in the Settings

			Debugging Your Tags with Apps

		

	

		The Scenario

		The NFC Inventory Demonstration App

		Enabling NFC in the Settings

		Debugging Your Tags with Apps

		Android APIs
	
			In Your AndroidManifest.xml File
		
				Permissions and Minimum API Level

				Intent Filters

				Custom MIME Type Intent Filters

				URI-based Intent Filters

			

		

			Permissions and Minimum API Level

			Intent Filters

			Custom MIME Type Intent Filters

			URI-based Intent Filters

			In Your Main Activity Class
		
				NfcManager

				NfcAdapter

				Foreground Dispatching

				Foreground NDEF Push

				Reacting to an NDEF Tag

				NdefMessage and NdefRecord

				Parsing and Reading NDEF Tags

				Getting Ready to Write to a Tag

				Writing to the Tag

			

		

			NfcManager

			NfcAdapter

			Foreground Dispatching

			Foreground NDEF Push

			Reacting to an NDEF Tag

			NdefMessage and NdefRecord

			Parsing and Reading NDEF Tags

			Getting Ready to Write to a Tag

			Writing to the Tag

			Putting it All Together

		

	

		In Your AndroidManifest.xml File
	
			Permissions and Minimum API Level

			Intent Filters

			Custom MIME Type Intent Filters

			URI-based Intent Filters

		

	

		Permissions and Minimum API Level

		Intent Filters

		Custom MIME Type Intent Filters

		URI-based Intent Filters

		In Your Main Activity Class
	
			NfcManager

			NfcAdapter

			Foreground Dispatching

			Foreground NDEF Push

			Reacting to an NDEF Tag

			NdefMessage and NdefRecord

			Parsing and Reading NDEF Tags

			Getting Ready to Write to a Tag

			Writing to the Tag

		

	

		NfcManager

		NfcAdapter

		Foreground Dispatching

		Foreground NDEF Push

		Reacting to an NDEF Tag

		NdefMessage and NdefRecord

		Parsing and Reading NDEF Tags

		Getting Ready to Write to a Tag

		Writing to the Tag

		Putting it All Together

		Future Considerations
	
			NFC N-Mark

			Peer-to-Peer NFC Sharing

			Peer-to-Peer Android APIs

		

	

		NFC N-Mark

		Peer-to-Peer NFC Sharing

		Peer-to-Peer Android APIs

		Go Forth and NFC!

		Summary

	

	What Is RFID?

	What Is NFC?

		The NDEF Data Format

		How and Where to Buy NFC Tags
	
			NDEF-compatible NFC Tags

			Storage Size versus Price versus Security Trade-off

			Write Protection

			Form Factor

			Retailers

		

	

		NDEF-compatible NFC Tags

		Storage Size versus Price versus Security Trade-off

		Write Protection

		Form Factor

		Retailers

		General Advantages and Disadvantages of NFC
	
			Low Power and Proximity Based

			Small, Short Data Bursts

			Singular Scanning

			Security

			Card Emulation

			Android-specific Advantage: Intents

			Required Hardware

		

	

		Low Power and Proximity Based

		Small, Short Data Bursts

		Singular Scanning

		Security

		Card Emulation

		Android-specific Advantage: Intents

		Required Hardware

	

	The NDEF Data Format

	How and Where to Buy NFC Tags

		NDEF-compatible NFC Tags

		Storage Size versus Price versus Security Trade-off

		Write Protection

		Form Factor

		Retailers

	

	NDEF-compatible NFC Tags

	Storage Size versus Price versus Security Trade-off

	Write Protection

	Form Factor

	Retailers

	General Advantages and Disadvantages of NFC

		Low Power and Proximity Based

		Small, Short Data Bursts

		Singular Scanning

		Security

		Card Emulation

		Android-specific Advantage: Intents

		Required Hardware

	

	Low Power and Proximity Based

	Small, Short Data Bursts

	Singular Scanning

	Security

	Card Emulation

	Android-specific Advantage: Intents

	Required Hardware

	Building an Inventory Tracking System

		The Scenario

		The NFC Inventory Demonstration App

		Enabling NFC in the Settings

		Debugging Your Tags with Apps

	

	The Scenario

	The NFC Inventory Demonstration App

	Enabling NFC in the Settings

	Debugging Your Tags with Apps

	Android APIs

		In Your AndroidManifest.xml File
	
			Permissions and Minimum API Level

			Intent Filters

			Custom MIME Type Intent Filters

			URI-based Intent Filters

		

	

		Permissions and Minimum API Level

		Intent Filters

		Custom MIME Type Intent Filters

		URI-based Intent Filters

		In Your Main Activity Class
	
			NfcManager

			NfcAdapter

			Foreground Dispatching

			Foreground NDEF Push

			Reacting to an NDEF Tag

			NdefMessage and NdefRecord

			Parsing and Reading NDEF Tags

			Getting Ready to Write to a Tag

			Writing to the Tag

		

	

		NfcManager

		NfcAdapter

		Foreground Dispatching

		Foreground NDEF Push

		Reacting to an NDEF Tag

		NdefMessage and NdefRecord

		Parsing and Reading NDEF Tags

		Getting Ready to Write to a Tag

		Writing to the Tag

		Putting it All Together

	

	In Your AndroidManifest.xml File

		Permissions and Minimum API Level

		Intent Filters

		Custom MIME Type Intent Filters

		URI-based Intent Filters

	

	Permissions and Minimum API Level

	Intent Filters

	Custom MIME Type Intent Filters

	URI-based Intent Filters

	In Your Main Activity Class

		NfcManager

		NfcAdapter

		Foreground Dispatching

		Foreground NDEF Push

		Reacting to an NDEF Tag

		NdefMessage and NdefRecord

		Parsing and Reading NDEF Tags

		Getting Ready to Write to a Tag

		Writing to the Tag

	

	NfcManager

	NfcAdapter

	Foreground Dispatching

	Foreground NDEF Push

	Reacting to an NDEF Tag

	NdefMessage and NdefRecord

	Parsing and Reading NDEF Tags

	Getting Ready to Write to a Tag

	Writing to the Tag

	Putting it All Together

	Future Considerations

		NFC N-Mark

		Peer-to-Peer NFC Sharing

		Peer-to-Peer Android APIs

	

	NFC N-Mark

	Peer-to-Peer NFC Sharing

	Peer-to-Peer Android APIs

	Go Forth and NFC!

	Summary

	Chapter 12: Using the Camera

		Using the Camera Activity
	
			Controlling the Camera with Your Own Activity
		
				Claiming and Releasing a Camera

				The Preview View

			

		

			Claiming and Releasing a Camera

			The Preview View

			Controlling the Camera
		
				Orientation

				Zoom

				Focus

				Switching Cameras

				Flash

				Other Camera Parameters

			

		

			Orientation

			Zoom

			Focus

			Switching Cameras

			Flash

			Other Camera Parameters

		

	

		Controlling the Camera with Your Own Activity
	
			Claiming and Releasing a Camera

			The Preview View

		

	

		Claiming and Releasing a Camera

		The Preview View

		Controlling the Camera
	
			Orientation

			Zoom

			Focus

			Switching Cameras

			Flash

			Other Camera Parameters

		

	

		Orientation

		Zoom

		Focus

		Switching Cameras

		Flash

		Other Camera Parameters

		Creating a Simple Barcode Reader
	
			Understanding Barcodes
		
				Parity and Implied First Digit

				The Check Digit

				Right Half of the Barcode

			

		

			Parity and Implied First Digit

			The Check Digit

			Right Half of the Barcode

			Autofocus
		
				Using the Camera Preview Image and Detecting the Barcode

				Debugging Image Processing Programs on Android

			

		

			Using the Camera Preview Image and Detecting the Barcode

			Debugging Image Processing Programs on Android

			Detecting the Barcode

		

	

		Understanding Barcodes
	
			Parity and Implied First Digit

			The Check Digit

			Right Half of the Barcode

		

	

		Parity and Implied First Digit

		The Check Digit

		Right Half of the Barcode

		Autofocus
	
			Using the Camera Preview Image and Detecting the Barcode

			Debugging Image Processing Programs on Android

		

	

		Using the Camera Preview Image and Detecting the Barcode

		Debugging Image Processing Programs on Android

		Detecting the Barcode

		Summary

	

	Using the Camera Activity

		Controlling the Camera with Your Own Activity
	
			Claiming and Releasing a Camera

			The Preview View

		

	

		Claiming and Releasing a Camera

		The Preview View

		Controlling the Camera
	
			Orientation

			Zoom

			Focus

			Switching Cameras

			Flash

			Other Camera Parameters

		

	

		Orientation

		Zoom

		Focus

		Switching Cameras

		Flash

		Other Camera Parameters

	

	Controlling the Camera with Your Own Activity

		Claiming and Releasing a Camera

		The Preview View

	

	Claiming and Releasing a Camera

	The Preview View

	Controlling the Camera

		Orientation

		Zoom

		Focus

		Switching Cameras

		Flash

		Other Camera Parameters

	

	Orientation

	Zoom

	Focus

	Switching Cameras

	Flash

	Other Camera Parameters

	Creating a Simple Barcode Reader

		Understanding Barcodes
	
			Parity and Implied First Digit

			The Check Digit

			Right Half of the Barcode

		

	

		Parity and Implied First Digit

		The Check Digit

		Right Half of the Barcode

		Autofocus
	
			Using the Camera Preview Image and Detecting the Barcode

			Debugging Image Processing Programs on Android

		

	

		Using the Camera Preview Image and Detecting the Barcode

		Debugging Image Processing Programs on Android

		Detecting the Barcode

	

	Understanding Barcodes

		Parity and Implied First Digit

		The Check Digit

		Right Half of the Barcode

	

	Parity and Implied First Digit

	The Check Digit

	Right Half of the Barcode

	Autofocus

		Using the Camera Preview Image and Detecting the Barcode

		Debugging Image Processing Programs on Android

	

	Using the Camera Preview Image and Detecting the Barcode

	Debugging Image Processing Programs on Android

	Detecting the Barcode

	Summary

	Chapter 13: Image-Processing Techniques

		The Structure of Image-Processing Programs
	
			The Image-Processing Pipeline

			Common Image-Processing Operations
		
				Image-to-Image Operations

				Image-to-Object Operations

			

		

			Image-to-Image Operations

			Image-to-Object Operations

			Jon’s Java Imaging Library (JJIL)
		
				Image

				PipelineStage

				Sequence

				Ladder

			

		

			Image

			PipelineStage

			Sequence

			Ladder

			JJIL and Detecting the Android Logo
		
				Choose the Right Image Size

				Improving Reliability in Image Processing

			

		

			Choose the Right Image Size

			Improving Reliability in Image Processing

		

	

		The Image-Processing Pipeline

		Common Image-Processing Operations
	
			Image-to-Image Operations

			Image-to-Object Operations

		

	

		Image-to-Image Operations

		Image-to-Object Operations

		Jon’s Java Imaging Library (JJIL)
	
			Image

			PipelineStage

			Sequence

			Ladder

		

	

		Image

		PipelineStage

		Sequence

		Ladder

		JJIL and Detecting the Android Logo
	
			Choose the Right Image Size

			Improving Reliability in Image Processing

		

	

		Choose the Right Image Size

		Improving Reliability in Image Processing

		Detecting Faces

		Image-Processing Resources

		Summary

	

	The Structure of Image-Processing Programs

		The Image-Processing Pipeline

		Common Image-Processing Operations
	
			Image-to-Image Operations

			Image-to-Object Operations

		

	

		Image-to-Image Operations

		Image-to-Object Operations

		Jon’s Java Imaging Library (JJIL)
	
			Image

			PipelineStage

			Sequence

			Ladder

		

	

		Image

		PipelineStage

		Sequence

		Ladder

		JJIL and Detecting the Android Logo
	
			Choose the Right Image Size

			Improving Reliability in Image Processing

		

	

		Choose the Right Image Size

		Improving Reliability in Image Processing

	

	The Image-Processing Pipeline

	Common Image-Processing Operations

		Image-to-Image Operations

		Image-to-Object Operations

	

	Image-to-Image Operations

	Image-to-Object Operations

	Jon’s Java Imaging Library (JJIL)

		Image

		PipelineStage

		Sequence

		Ladder

	

	Image

	PipelineStage

	Sequence

	Ladder

	JJIL and Detecting the Android Logo

		Choose the Right Image Size

		Improving Reliability in Image Processing

	

	Choose the Right Image Size

	Improving Reliability in Image Processing

	Detecting Faces

	Image-Processing Resources

	Summary

	Chapter 14: Using the Microphone

		Introducing the Android Clapper

		Using MediaRecorder to Analyze Maximum Amplitude
	
			Recording Maximum Amplitude

			Asynchronous Audio Recording

		

	

		Recording Maximum Amplitude

		Asynchronous Audio Recording

		Implementing a Clapper

		Analyzing Raw Audio
	
			Setting Audio Input Parameters

			Preparing AudioRecord

			Recording Audio

			Using OnRecordPositionUpdateListener

		

	

		Setting Audio Input Parameters

		Preparing AudioRecord

		Recording Audio

		Using OnRecordPositionUpdateListener

		Using Loud Noise Detection

		Using Consistent Frequency Detection
	
			Estimating Frequency

			Implementing the Singing Clapper

		

	

		Estimating Frequency

		Implementing the Singing Clapper

		Summary

	

	Introducing the Android Clapper

	Using MediaRecorder to Analyze Maximum Amplitude

		Recording Maximum Amplitude

		Asynchronous Audio Recording

	

	Recording Maximum Amplitude

	Asynchronous Audio Recording

	Implementing a Clapper

	Analyzing Raw Audio

		Setting Audio Input Parameters

		Preparing AudioRecord

		Recording Audio

		Using OnRecordPositionUpdateListener

	

	Setting Audio Input Parameters

	Preparing AudioRecord

	Recording Audio

	Using OnRecordPositionUpdateListener

	Using Loud Noise Detection

	Using Consistent Frequency Detection

		Estimating Frequency

		Implementing the Singing Clapper

	

	Estimating Frequency

	Implementing the Singing Clapper

	Summary

	Part IV: Speaking to Android

		Chapter 15: Designing a Speech-enabled App
	
			Know Your Tools

			User Interface Screen Flow

			Voice Action Types

			Voice User Interface (VUI) Design
		
				Deciding Appropriate Tasks for Voice Actions

				Designing What the App and Users Will Say
			
					Constrain Speech Input to Increase Accuracy

					Train Users to Know What They Can Say

					Prompt the Users so They Know What to Say

					Confirm Success and Help Users Recover from Errors

					Help Users Recover from Accidental Speech Activation

					Teach Users Proper Speech Hygiene

					Use Menus Cautiously

				

			

				Constrain Speech Input to Increase Accuracy

				Train Users to Know What They Can Say

				Prompt the Users so They Know What to Say

				Confirm Success and Help Users Recover from Errors

				Help Users Recover from Accidental Speech Activation

				Teach Users Proper Speech Hygiene

				Use Menus Cautiously

				After the Design

			

		

			Deciding Appropriate Tasks for Voice Actions

			Designing What the App and Users Will Say
		
				Constrain Speech Input to Increase Accuracy

				Train Users to Know What They Can Say

				Prompt the Users so They Know What to Say

				Confirm Success and Help Users Recover from Errors

				Help Users Recover from Accidental Speech Activation

				Teach Users Proper Speech Hygiene

				Use Menus Cautiously

			

		

			Constrain Speech Input to Increase Accuracy

			Train Users to Know What They Can Say

			Prompt the Users so They Know What to Say

			Confirm Success and Help Users Recover from Errors

			Help Users Recover from Accidental Speech Activation

			Teach Users Proper Speech Hygiene

			Use Menus Cautiously

			After the Design

			Testing Your Design

			Summary

			References

		

	

		Know Your Tools

		User Interface Screen Flow

		Voice Action Types

		Voice User Interface (VUI) Design
	
			Deciding Appropriate Tasks for Voice Actions

			Designing What the App and Users Will Say
		
				Constrain Speech Input to Increase Accuracy

				Train Users to Know What They Can Say

				Prompt the Users so They Know What to Say

				Confirm Success and Help Users Recover from Errors

				Help Users Recover from Accidental Speech Activation

				Teach Users Proper Speech Hygiene

				Use Menus Cautiously

			

		

			Constrain Speech Input to Increase Accuracy

			Train Users to Know What They Can Say

			Prompt the Users so They Know What to Say

			Confirm Success and Help Users Recover from Errors

			Help Users Recover from Accidental Speech Activation

			Teach Users Proper Speech Hygiene

			Use Menus Cautiously

			After the Design

		

	

		Deciding Appropriate Tasks for Voice Actions

		Designing What the App and Users Will Say
	
			Constrain Speech Input to Increase Accuracy

			Train Users to Know What They Can Say

			Prompt the Users so They Know What to Say

			Confirm Success and Help Users Recover from Errors

			Help Users Recover from Accidental Speech Activation

			Teach Users Proper Speech Hygiene

			Use Menus Cautiously

		

	

		Constrain Speech Input to Increase Accuracy

		Train Users to Know What They Can Say

		Prompt the Users so They Know What to Say

		Confirm Success and Help Users Recover from Errors

		Help Users Recover from Accidental Speech Activation

		Teach Users Proper Speech Hygiene

		Use Menus Cautiously

		After the Design

		Testing Your Design

		Summary

		References

		Chapter 16: Using Speech Recognition and Text-to-Speech APIs
	
			Text-To-Speech
		
				Initialization
			
					Initialization with Locale

					Check TTS Data Action

				

			

				Initialization with Locale

				Check TTS Data Action

				Speaking
			
					Speaking a Script

				

			

				Speaking a Script

			

		

			Initialization
		
				Initialization with Locale

				Check TTS Data Action

			

		

			Initialization with Locale

			Check TTS Data Action

			Speaking
		
				Speaking a Script

			

		

			Speaking a Script

			Speech Recognition
		
				Initializing

				Using the RecognizerIntent
			
					The Speech Recording Process

					Configuring and Processing the Result

					RecognizerIntent Use Cases

					Implementation

				

			

				The Speech Recording Process

				Configuring and Processing the Result

				RecognizerIntent Use Cases

				Implementation

				Direct Speech Recognition Using SpeechRecognizer

				Summary

			

		

			Initializing

			Using the RecognizerIntent
		
				The Speech Recording Process

				Configuring and Processing the Result

				RecognizerIntent Use Cases

				Implementation

			

		

			The Speech Recording Process

			Configuring and Processing the Result

			RecognizerIntent Use Cases

			Implementation

			Direct Speech Recognition Using SpeechRecognizer

			Summary

		

	

		Text-To-Speech
	
			Initialization
		
				Initialization with Locale

				Check TTS Data Action

			

		

			Initialization with Locale

			Check TTS Data Action

			Speaking
		
				Speaking a Script

			

		

			Speaking a Script

		

	

		Initialization
	
			Initialization with Locale

			Check TTS Data Action

		

	

		Initialization with Locale

		Check TTS Data Action

		Speaking
	
			Speaking a Script

		

	

		Speaking a Script

		Speech Recognition
	
			Initializing

			Using the RecognizerIntent
		
				The Speech Recording Process

				Configuring and Processing the Result

				RecognizerIntent Use Cases

				Implementation

			

		

			The Speech Recording Process

			Configuring and Processing the Result

			RecognizerIntent Use Cases

			Implementation

			Direct Speech Recognition Using SpeechRecognizer

			Summary

		

	

		Initializing

		Using the RecognizerIntent
	
			The Speech Recording Process

			Configuring and Processing the Result

			RecognizerIntent Use Cases

			Implementation

		

	

		The Speech Recording Process

		Configuring and Processing the Result

		RecognizerIntent Use Cases

		Implementation

		Direct Speech Recognition Using SpeechRecognizer

		Summary

		Chapter 17: Matching What Was Said
	
			Parts of a Voice Command

			Word Spotting
		
				Indexing to Improve Word Spotting
			
					Stemming

					Phonetic Indexing

				

			

				Stemming

				Phonetic Indexing

			

		

			Indexing to Improve Word Spotting
		
				Stemming

				Phonetic Indexing

			

		

			Stemming

			Phonetic Indexing

			Matching Command Words in Persistent Storage
		
				SQLite Full Text Search
			
					Using the LIKE Operator

					Using the FTS MATCH Operator

					Implementing FTS

				

			

				Using the LIKE Operator

				Using the FTS MATCH Operator

				Implementing FTS

				Word Searching with Lucene

			

		

			SQLite Full Text Search
		
				Using the LIKE Operator

				Using the FTS MATCH Operator

				Implementing FTS

			

		

			Using the LIKE Operator

			Using the FTS MATCH Operator

			Implementing FTS

			Word Searching with Lucene

			Multi-part Commands
		
				Ignoring Potential Collisions

				Considering Ordering

			

		

			Ignoring Potential Collisions

			Considering Ordering

			Using a Grammar

			Summary

		

	

		Parts of a Voice Command

		Word Spotting
	
			Indexing to Improve Word Spotting
		
				Stemming

				Phonetic Indexing

			

		

			Stemming

			Phonetic Indexing

		

	

		Indexing to Improve Word Spotting
	
			Stemming

			Phonetic Indexing

		

	

		Stemming

		Phonetic Indexing

		Matching Command Words in Persistent Storage
	
			SQLite Full Text Search
		
				Using the LIKE Operator

				Using the FTS MATCH Operator

				Implementing FTS

			

		

			Using the LIKE Operator

			Using the FTS MATCH Operator

			Implementing FTS

			Word Searching with Lucene

		

	

		SQLite Full Text Search
	
			Using the LIKE Operator

			Using the FTS MATCH Operator

			Implementing FTS

		

	

		Using the LIKE Operator

		Using the FTS MATCH Operator

		Implementing FTS

		Word Searching with Lucene

		Multi-part Commands
	
			Ignoring Potential Collisions

			Considering Ordering

		

	

		Ignoring Potential Collisions

		Considering Ordering

		Using a Grammar

		Summary

		Chapter 18: Executing Voice Actions
	
			Food Dialogue VUI Design

			Defining and Executing Voice Actions

			Executing VoiceActionCommands

			Implementing an AlertDialog for VoiceActions

			Implementing Multi-Turn Voice Actions
		
				Implementing Multi-Turn AddFood

				Implementing Multi-Turn RemoveFood

			

		

			Implementing Multi-Turn AddFood

			Implementing Multi-Turn RemoveFood

			Making a Best Guess
		
				Relaxing Strictness Between Commands

				Making an Educated Guess

			

		

			Relaxing Strictness Between Commands

			Making an Educated Guess

			Responding When Recognition Fails
		
				Determining Not a Command

				Determining Inaccurate Recognition

				Not Understanding

			

		

			Determining Not a Command

			Determining Inaccurate Recognition

			Not Understanding

			Summary

		

	

		Food Dialogue VUI Design

		Defining and Executing Voice Actions

		Executing VoiceActionCommands

		Implementing an AlertDialog for VoiceActions

		Implementing Multi-Turn Voice Actions
	
			Implementing Multi-Turn AddFood

			Implementing Multi-Turn RemoveFood

		

	

		Implementing Multi-Turn AddFood

		Implementing Multi-Turn RemoveFood

		Making a Best Guess
	
			Relaxing Strictness Between Commands

			Making an Educated Guess

		

	

		Relaxing Strictness Between Commands

		Making an Educated Guess

		Responding When Recognition Fails
	
			Determining Not a Command

			Determining Inaccurate Recognition

			Not Understanding

		

	

		Determining Not a Command

		Determining Inaccurate Recognition

		Not Understanding

		Summary

		Chapter 19: Implementing Speech Activation
	
			Implementing Speech Activation
		
				Starting Speech Recognition

				Implementing Speech Activation within an Activity

				Activating Speech Recognition with Movement Detection

				Activating Speech Recognition with the Microphone

				Activating Speech Recognition with Continuous Speech Recognition

				Activating Speech Recognition with NFC

			

		

			Starting Speech Recognition

			Implementing Speech Activation within an Activity

			Activating Speech Recognition with Movement Detection

			Activating Speech Recognition with the Microphone

			Activating Speech Recognition with Continuous Speech Recognition

			Activating Speech Recognition with NFC

			Implementing Persistent Speech Activation
		
				Using a Service for Persistent Speech Activation

			

		

			Using a Service for Persistent Speech Activation

			Summary

		

	

		Implementing Speech Activation
	
			Starting Speech Recognition

			Implementing Speech Activation within an Activity

			Activating Speech Recognition with Movement Detection

			Activating Speech Recognition with the Microphone

			Activating Speech Recognition with Continuous Speech Recognition

			Activating Speech Recognition with NFC

		

	

		Starting Speech Recognition

		Implementing Speech Activation within an Activity

		Activating Speech Recognition with Movement Detection

		Activating Speech Recognition with the Microphone

		Activating Speech Recognition with Continuous Speech Recognition

		Activating Speech Recognition with NFC

		Implementing Persistent Speech Activation
	
			Using a Service for Persistent Speech Activation

		

	

		Using a Service for Persistent Speech Activation

		Summary

	

	Chapter 15: Designing a Speech-enabled App

		Know Your Tools

		User Interface Screen Flow

		Voice Action Types

		Voice User Interface (VUI) Design
	
			Deciding Appropriate Tasks for Voice Actions

			Designing What the App and Users Will Say
		
				Constrain Speech Input to Increase Accuracy

				Train Users to Know What They Can Say

				Prompt the Users so They Know What to Say

				Confirm Success and Help Users Recover from Errors

				Help Users Recover from Accidental Speech Activation

				Teach Users Proper Speech Hygiene

				Use Menus Cautiously

			

		

			Constrain Speech Input to Increase Accuracy

			Train Users to Know What They Can Say

			Prompt the Users so They Know What to Say

			Confirm Success and Help Users Recover from Errors

			Help Users Recover from Accidental Speech Activation

			Teach Users Proper Speech Hygiene

			Use Menus Cautiously

			After the Design

		

	

		Deciding Appropriate Tasks for Voice Actions

		Designing What the App and Users Will Say
	
			Constrain Speech Input to Increase Accuracy

			Train Users to Know What They Can Say

			Prompt the Users so They Know What to Say

			Confirm Success and Help Users Recover from Errors

			Help Users Recover from Accidental Speech Activation

			Teach Users Proper Speech Hygiene

			Use Menus Cautiously

		

	

		Constrain Speech Input to Increase Accuracy

		Train Users to Know What They Can Say

		Prompt the Users so They Know What to Say

		Confirm Success and Help Users Recover from Errors

		Help Users Recover from Accidental Speech Activation

		Teach Users Proper Speech Hygiene

		Use Menus Cautiously

		After the Design

		Testing Your Design

		Summary

		References

	

	Know Your Tools

	User Interface Screen Flow

	Voice Action Types

	Voice User Interface (VUI) Design

		Deciding Appropriate Tasks for Voice Actions

		Designing What the App and Users Will Say
	
			Constrain Speech Input to Increase Accuracy

			Train Users to Know What They Can Say

			Prompt the Users so They Know What to Say

			Confirm Success and Help Users Recover from Errors

			Help Users Recover from Accidental Speech Activation

			Teach Users Proper Speech Hygiene

			Use Menus Cautiously

		

	

		Constrain Speech Input to Increase Accuracy

		Train Users to Know What They Can Say

		Prompt the Users so They Know What to Say

		Confirm Success and Help Users Recover from Errors

		Help Users Recover from Accidental Speech Activation

		Teach Users Proper Speech Hygiene

		Use Menus Cautiously

		After the Design

	

	Deciding Appropriate Tasks for Voice Actions

	Designing What the App and Users Will Say

		Constrain Speech Input to Increase Accuracy

		Train Users to Know What They Can Say

		Prompt the Users so They Know What to Say

		Confirm Success and Help Users Recover from Errors

		Help Users Recover from Accidental Speech Activation

		Teach Users Proper Speech Hygiene

		Use Menus Cautiously

	

	Constrain Speech Input to Increase Accuracy

	Train Users to Know What They Can Say

	Prompt the Users so They Know What to Say

	Confirm Success and Help Users Recover from Errors

	Help Users Recover from Accidental Speech Activation

	Teach Users Proper Speech Hygiene

	Use Menus Cautiously

	After the Design

	Testing Your Design

	Summary

	References

	Chapter 16: Using Speech Recognition and Text-to-Speech APIs

		Text-To-Speech
	
			Initialization
		
				Initialization with Locale

				Check TTS Data Action

			

		

			Initialization with Locale

			Check TTS Data Action

			Speaking
		
				Speaking a Script

			

		

			Speaking a Script

		

	

		Initialization
	
			Initialization with Locale

			Check TTS Data Action

		

	

		Initialization with Locale

		Check TTS Data Action

		Speaking
	
			Speaking a Script

		

	

		Speaking a Script

		Speech Recognition
	
			Initializing

			Using the RecognizerIntent
		
				The Speech Recording Process

				Configuring and Processing the Result

				RecognizerIntent Use Cases

				Implementation

			

		

			The Speech Recording Process

			Configuring and Processing the Result

			RecognizerIntent Use Cases

			Implementation

			Direct Speech Recognition Using SpeechRecognizer

			Summary

		

	

		Initializing

		Using the RecognizerIntent
	
			The Speech Recording Process

			Configuring and Processing the Result

			RecognizerIntent Use Cases

			Implementation

		

	

		The Speech Recording Process

		Configuring and Processing the Result

		RecognizerIntent Use Cases

		Implementation

		Direct Speech Recognition Using SpeechRecognizer

		Summary

	

	Text-To-Speech

		Initialization
	
			Initialization with Locale

			Check TTS Data Action

		

	

		Initialization with Locale

		Check TTS Data Action

		Speaking
	
			Speaking a Script

		

	

		Speaking a Script

	

	Initialization

		Initialization with Locale

		Check TTS Data Action

	

	Initialization with Locale

	Check TTS Data Action

	Speaking

		Speaking a Script

	

	Speaking a Script

	Speech Recognition

		Initializing

		Using the RecognizerIntent
	
			The Speech Recording Process

			Configuring and Processing the Result

			RecognizerIntent Use Cases

			Implementation

		

	

		The Speech Recording Process

		Configuring and Processing the Result

		RecognizerIntent Use Cases

		Implementation

		Direct Speech Recognition Using SpeechRecognizer

		Summary

	

	Initializing

	Using the RecognizerIntent

		The Speech Recording Process

		Configuring and Processing the Result

		RecognizerIntent Use Cases

		Implementation

	

	The Speech Recording Process

	Configuring and Processing the Result

	RecognizerIntent Use Cases

	Implementation

	Direct Speech Recognition Using SpeechRecognizer

	Summary

	Chapter 17: Matching What Was Said

		Parts of a Voice Command

		Word Spotting
	
			Indexing to Improve Word Spotting
		
				Stemming

				Phonetic Indexing

			

		

			Stemming

			Phonetic Indexing

		

	

		Indexing to Improve Word Spotting
	
			Stemming

			Phonetic Indexing

		

	

		Stemming

		Phonetic Indexing

		Matching Command Words in Persistent Storage
	
			SQLite Full Text Search
		
				Using the LIKE Operator

				Using the FTS MATCH Operator

				Implementing FTS

			

		

			Using the LIKE Operator

			Using the FTS MATCH Operator

			Implementing FTS

			Word Searching with Lucene

		

	

		SQLite Full Text Search
	
			Using the LIKE Operator

			Using the FTS MATCH Operator

			Implementing FTS

		

	

		Using the LIKE Operator

		Using the FTS MATCH Operator

		Implementing FTS

		Word Searching with Lucene

		Multi-part Commands
	
			Ignoring Potential Collisions

			Considering Ordering

		

	

		Ignoring Potential Collisions

		Considering Ordering

		Using a Grammar

		Summary

	

	Parts of a Voice Command

	Word Spotting

		Indexing to Improve Word Spotting
	
			Stemming

			Phonetic Indexing

		

	

		Stemming

		Phonetic Indexing

	

	Indexing to Improve Word Spotting

		Stemming

		Phonetic Indexing

	

	Stemming

	Phonetic Indexing

	Matching Command Words in Persistent Storage

		SQLite Full Text Search
	
			Using the LIKE Operator

			Using the FTS MATCH Operator

			Implementing FTS

		

	

		Using the LIKE Operator

		Using the FTS MATCH Operator

		Implementing FTS

		Word Searching with Lucene

	

	SQLite Full Text Search

		Using the LIKE Operator

		Using the FTS MATCH Operator

		Implementing FTS

	

	Using the LIKE Operator

	Using the FTS MATCH Operator

	Implementing FTS

	Word Searching with Lucene

	Multi-part Commands

		Ignoring Potential Collisions

		Considering Ordering

	

	Ignoring Potential Collisions

	Considering Ordering

	Using a Grammar

	Summary

	Chapter 18: Executing Voice Actions

		Food Dialogue VUI Design

		Defining and Executing Voice Actions

		Executing VoiceActionCommands

		Implementing an AlertDialog for VoiceActions

		Implementing Multi-Turn Voice Actions
	
			Implementing Multi-Turn AddFood

			Implementing Multi-Turn RemoveFood

		

	

		Implementing Multi-Turn AddFood

		Implementing Multi-Turn RemoveFood

		Making a Best Guess
	
			Relaxing Strictness Between Commands

			Making an Educated Guess

		

	

		Relaxing Strictness Between Commands

		Making an Educated Guess

		Responding When Recognition Fails
	
			Determining Not a Command

			Determining Inaccurate Recognition

			Not Understanding

		

	

		Determining Not a Command

		Determining Inaccurate Recognition

		Not Understanding

		Summary

	

	Food Dialogue VUI Design

	Defining and Executing Voice Actions

	Executing VoiceActionCommands

	Implementing an AlertDialog for VoiceActions

	Implementing Multi-Turn Voice Actions

		Implementing Multi-Turn AddFood

		Implementing Multi-Turn RemoveFood

	

	Implementing Multi-Turn AddFood

	Implementing Multi-Turn RemoveFood

	Making a Best Guess

		Relaxing Strictness Between Commands

		Making an Educated Guess

	

	Relaxing Strictness Between Commands

	Making an Educated Guess

	Responding When Recognition Fails

		Determining Not a Command

		Determining Inaccurate Recognition

		Not Understanding

	

	Determining Not a Command

	Determining Inaccurate Recognition

	Not Understanding

	Summary

	Chapter 19: Implementing Speech Activation

		Implementing Speech Activation
	
			Starting Speech Recognition

			Implementing Speech Activation within an Activity

			Activating Speech Recognition with Movement Detection

			Activating Speech Recognition with the Microphone

			Activating Speech Recognition with Continuous Speech Recognition

			Activating Speech Recognition with NFC

		

	

		Starting Speech Recognition

		Implementing Speech Activation within an Activity

		Activating Speech Recognition with Movement Detection

		Activating Speech Recognition with the Microphone

		Activating Speech Recognition with Continuous Speech Recognition

		Activating Speech Recognition with NFC

		Implementing Persistent Speech Activation
	
			Using a Service for Persistent Speech Activation

		

	

		Using a Service for Persistent Speech Activation

		Summary

	

	Implementing Speech Activation

		Starting Speech Recognition

		Implementing Speech Activation within an Activity

		Activating Speech Recognition with Movement Detection

		Activating Speech Recognition with the Microphone

		Activating Speech Recognition with Continuous Speech Recognition

		Activating Speech Recognition with NFC

	

	Starting Speech Recognition

	Implementing Speech Activation within an Activity

	Activating Speech Recognition with Movement Detection

	Activating Speech Recognition with the Microphone

	Activating Speech Recognition with Continuous Speech Recognition

	Activating Speech Recognition with NFC

	Implementing Persistent Speech Activation

		Using a Service for Persistent Speech Activation

	

	Using a Service for Persistent Speech Activation

	Summary

	Index

	Advertisements

OEBPS/Images/image00832.jpeg

OEBPS/Images/image00954.jpeg

OEBPS/Images/image00833.png

OEBPS/Images/image00955.jpeg
Join the discussion @

Greg Milette, Adam Stroud

OEBPS/Images/image00830.jpeg
P EREE OFAD N5
Android Sensing Playground
Erer oo
Taj mahal
Taj Mahal, SH 62, Agra, Uttar Pradesh
282001
Taj Mahal, SH 62, Tajganj, Agra, Uttar
Pradesh
Taj Mahal, Agra, Uttar Pradesh 282002

Taj Mahal, Agra, Uttar Pradesh 282001

o D 9

OEBPS/Images/image00952.jpeg

OEBPS/Images/image00831.png

OEBPS/Images/image00953.jpeg

OEBPS/Images/image00836.png

OEBPS/Images/image00834.png

OEBPS/Images/image00956.png

OEBPS/Images/image00835.png

OEBPS/Images/image00957.jpeg

OEBPS/Images/image00958.jpeg

OEBPS/Images/image00839.jpeg
YA E 0w
Determine Orientation
© Gravity Sensor
Accelerometer & Magnetometer
Gravity Sensor & Magnetometer
Rotation Vector
TTS Notifications On
Seected Sensor, Graviy Snsor
Orentaton: Face Up
X i 014385086

Y Axis: 457793
2 Axis: 867506

& 1052m

OEBPS/Images/image00961.jpeg

OEBPS/Images/image00840.png

OEBPS/Images/image00962.png

OEBPS/Images/image00837.jpeg

OEBPS/Images/image00959.png

OEBPS/Images/image00838.jpeg
R B AE 9= O 4D 110m
Android Sensing Playground
Erter Location

the statue of liberty|

Statue of Liberty, Liberty Island, New
York, NY 10004-1467

Statue of Liberty, New York, NY 11231

OEBPS/Images/image00960.jpeg

OEBPS/Images/image00821.jpeg
Connection problem

A

Cancel Speak again

OEBPS/Images/image00943.png

OEBPS/Images/image00822.jpeg
¢ o © .4 W 9:35

Android Sensing Play

hat you are trying to say
Cumin

Results: matched at 5 (Phonetic)

0 0.63 komen

1 1 chillin
2 1 kimis
3 1 kimin

41 gymin

5 1 &P1
G jimin

7 jimis

8 1 jilis

9 1 gym is

0 1 jenis

OEBPS/Images/image00944.png

OEBPS/Images/image00819.png

OEBPS/Images/image00941.png

OEBPS/Images/image00820.png

OEBPS/Images/image00942.jpeg

OEBPS/Images/image00825.png

OEBPS/Images/image00947.jpeg

OEBPS/Images/image00826.jpeg
BRI N X XX ¥ I
R ERY X Y T
. s s 0o 0000 EEL

OEBPS/Images/image00823.png

OEBPS/Images/image00945.png

OEBPS/Images/image00824.png

OEBPS/Images/image00946.jpeg

OEBPS/Images/image00828.jpeg

OEBPS/Images/image00950.jpeg
. @._ e

Ij|=
:
o EE
.m

OEBPS/Images/image00829.png

OEBPS/Images/image00951.png

OEBPS/Images/image00948.jpeg
and blogs and find exactly what you need

Contact Us.

We love feedback! Have a book idea? Need col
Let us know by e-mailing wrox-partnerwithus

OEBPS/Images/image00827.jpeg
aes

OEBPS/Images/image00949.jpeg
Send email...

to:

message: programming is
fun

subject cc

News more

oogle | Image

Programming Is Not F
c2.com/cgi/wiki?ProgramminglsNotFun

Jan 4, 2012 - As everyone remembers from
some time in their life, programming is.
fantastic fun when ...

vy Pro
Dobt
drdobbs.com/architecture-and.../196603871
Dec 13,2006 ~ Programming legend David
1. lists his top reasons why programming

has always

ning |

un | Or

Computer Progra ing is Fun!
www.handysoftware.com/cpif/

Computer Programming is Fun! Beginning
Computer Programming with Python by
David Handy ..

Why is program
from Fred Brook

ing fun? An extrac

www.grok2.com/progfun. htmi
Why is programming fun? An extract from

OEBPS/Images/image00854.jpeg
Say the Magic Word

Speak

Wrong! The magic word is
not: 3

OEBPS/Images/image00976.jpeg
12

OEBPS/Images/image00855.jpeg

OEBPS/Images/image00977.png

OEBPS/Images/image00852.jpeg
Weather

Location

“What's the weather in London?”

“What's tomorrows forecast for
Washington D.C.?”

Current
“What's the weather?”
“What's the temperature?”
“What are the wind conditions?”
“What's the humidity?”

Forecast

“What's todays forecast?”

OEBPS/Images/image00974.png

OEBPS/Images/image00853.jpeg

OEBPS/Images/image00975.jpeg

OEBPS/Images/image00856.png

OEBPS/Images/image00857.png

OEBPS/Images/image00979.jpeg

OEBPS/Images/image00858.png

OEBPS/Images/image00980.png

OEBPS/Images/image00978.png

OEBPS/Images/image00861.png

OEBPS/Images/image00983.png

OEBPS/Images/image00862.jpeg

OEBPS/Images/image00984.jpeg

OEBPS/Images/image00859.png

OEBPS/Images/image00981.png

OEBPS/Images/image00860.jpeg
kptme 4:45em

Determine Altitude

GPS Altitude

Altitude (m):
Relative Altitude (m):

Barometer Altitude (Standard Pressure)
Altitude (m):-8 989016

Relative Altitude (m):

Standard Pressure (millibar):1013.25

Barometer Altitude (MSLP)

Altitude (m)34.59529
Aelative Altitude (m):
MSLP (millbar)1018.5

OEBPS/Images/image00982.jpeg
4

Say the magic word

Cancel

an
&~

OEBPS/Images/image00843.jpeg
b Resource

Android Lint Preferenc

Builders
Git
Java Build Path

b Java Code Style

b Java Compiler

b Java Editor
Javadoc Location
Project Facets
Project References
Run/Debug Settings

b Task Repository
Task Tags

b Validation
WikiText

Android

Target Name Vendor Platform | API Level
‘Android 2.0 Android Open Source Project 2.0 i
[J Google APls Google Inc. 20 5
[J Android 2.0.1 Android Open Source Project 2.0.1 6
[J Google APl Google Inc. 201 6
[J Android 2.1 Android Open Source Project 2.1 7
[J Google APls Google Inc. 21 i
J Android 2.2 Android Open Source Project 2.2 8
[J Google APIs Google Inc. 22 8
[J Android 2.3.1 Android Open Source Project 2.3.1 9
[J Google APIs Google Inc. 231 9
[Android 2.3.3 Android Open Source Project 233 10
[J Google APIs Google Inc. 233 10
[J Android 3.0 Android Open Source Project 3.0 1
[J Google APl Google Inc. 30 1
[Android 3.1 Android Open Source Project 3.1 12
[J Google APIs Google Inc. 31 12
[J Google TV Addon ~ Google Inc. 31 12
[J Android 3.2 Android Open Source Project 3.2 13
[J Google APls Google Inc. 32 13
J Android 4.0 Android Open Source Project 4.0 14
Google APIs Google Inc. 40 14
[Android 4.0.3 Android Open Source Project ~ 4.0.3 15
[J Google APIs Google Inc. 403 15
standard Android platform 2.0
Library
[Is Library
Reference Project
« flibrary GastLibraryActivity

OEBPS/Images/image00965.png

OEBPS/Images/image00844.png

OEBPS/Images/image00966.jpeg
B O a17 Ful #2:03
Wireles: S [::—l Wireless & networks
oL I6.J _

Set up & manage wireless access points Airplane mode
Bluetooth
Turn on Bluetooth VPN
Bluetooth settings R
Manage connections, set device name & ethering & portable hotspot
discoverability

NFC

v

Allow data exchange when the phone
touches another device

Tethering & portable hotspot

Share your phone's mobile data connection

via USB or as a portable Wi-Fi hotspot Android Beam

Ready to transmit app content via NFC

VPN settings

Set up & manage Virtual Private Networks
(VPNs)

NFC

Use Near Field Communication to read
and exchange tags

WiFi direct

Mobile networks

Mobile networks

Set options for roaming, networks, APNs

OEBPS/Images/image00841.png

OEBPS/Images/image00963.jpeg
¢ © Tl 446 ¢ G
Inventory Inventory
Scan the NFC tag on the computer for information
on its internals. Use the editable text fields below
to make changes and click the update button to re-

flash the NFC tag.

Computer Name Andy Bot

RAM (GB) 4 .
Ready to write to NFC tag!

Processor speed (MHz) 1.2

——

Touch your device to a
Update computer’s tag to update its
inventory.

Cancel

OEBPS/Images/image00842.png

OEBPS/Images/image00964.png

OEBPS/Images/image00845.jpeg

OEBPS/Images/image00967.jpeg

OEBPS/Images/image00846.png

OEBPS/Images/image00725.jpeg

OEBPS/Images/image00968.png

OEBPS/Images/image00724.png

OEBPS/Images/image00847.jpeg

OEBPS/Images/image00969.png

OEBPS/Images/image00726.png

OEBPS/Images/image00850.jpeg
P

OEBPS/Images/image00972.jpeg
aes

OEBPS/Images/image00851.jpeg

OEBPS/Images/image00973.jpeg

OEBPS/Images/image00848.jpeg

OEBPS/Images/image00970.jpeg
15

OEBPS/Images/image00849.jpeg
o)

[3F &~ t
Determine Movement
Selec Sensor
Accelerometer
Linear Acceleration Sensor
options
Speak Movement Detected

Enable High-Pass Filter
e

OEBPS/Images/image00971.jpeg

OEBPS/Images/image00876.png

OEBPS/Images/image00874.png

OEBPS/Images/image00996.jpeg
41153
Location services

Google's location service
Let apps use data from sources

such as Wi-Fi and mobile Cf
networks to determine your
approximate location
GPS satellites

v

Let apps use GPS to pinpoint your
location

Location & Google search

Let Google use your location to v
improve search results and other
services

OEBPS/Images/image00875.jpeg
feem © F.48909m

Determine Altitude

GPS Altitude

Altitude (m):
Relative Alttude (m)0.0

Barometer Altitude (Standard Pressure)
Altitude (m):-29.429647

Relative Altitude (m):-1.9922752380371094

Standard Pressure (millibar):1013.25

Barometer Altitude (MSLP)
Alttude (m):33,192245.

Relative Alttude (m):-1.9896316528320313.
MSLP (millbar):1020.8

OEBPS/Images/image00997.png

OEBPS/Images/image00796.png

OEBPS/Images/image00795.png

OEBPS/Images/image00794.jpeg

OEBPS/Images/image00793.png

OEBPS/Images/image00792.jpeg

OEBPS/Images/image00791.jpeg
NP PYEX O 4D 1108w

Android Sensing Playground
Erer oo

springfield
Springfield, MO
Springfield, MA .
Springfield, IL
Springfield, OH

Springfield, OR (e

OEBPS/Images/image00790.png

OEBPS/Images/image00789.png

OEBPS/Images/image00788.png

OEBPS/Images/image00787.jpeg
code

User Group Program
Become a member and take advantage
the benefits

Wrox on Ewikter

Follow @wrox on Twitter and be in the
on the latest news in the world of Wrox

Wrox on

Join the Wrox Facebook page at
facebook.com/wroxpress and get upda
on new books and publications as well
as upcoming programmer conferences
and 1<er arolin events

OEBPS/Images/image00998.png

OEBPS/Images/image00879.png

OEBPS/Images/image01001.png

OEBPS/Images/image00880.jpeg

OEBPS/Images/image01002.png

OEBPS/Images/image00877.jpeg
& 12:06

SR —

North
America

Atlantic
Ocean

South

S t
| Pacific Amerlca
| Ocean
!
|
|
|
|

.

Google

Start Tracking

OEBPS/Images/image00999.png

OEBPS/Images/image00878.jpeg
r to Progra

OEBPS/Images/image01000.jpeg
Try saying...

listen to

beethoven

“send text" “listen to" “navigate to"

Cancel Speak now &

OEBPS/Images/image00883.jpeg

OEBPS/Images/image01005.png

OEBPS/Images/image00884.jpeg

OEBPS/Images/image01006.png

OEBPS/Images/image00881.jpeg
¢ @ ©
Text-to-Speech Playground

completed: speak_3
started: speak_3
completed: silence_2
started: silence_2
completed: silence_1
queued speak_3 Heart
queued silence_2
started: silence_1
completed: earcon_0
queued silence_1
started: earcon_0
queued earcon_0

OEBPS/Images/image01003.jpeg

OEBPS/Images/image00882.png

OEBPS/Images/image01004.jpeg
No speech heard

A

Cancel Speak again

OEBPS/Images/image00865.jpeg
BareMinimum | Arduino 0023

ot Setun) {
77 ity setup code hers, to run onces

3

vatd toop()
/7 put your wain code here, ta run repeatedly:

OEBPS/Images/image00987.png

OEBPS/Images/image00866.png

OEBPS/Images/image00863.png
data status:

fail

extra info:
available voices:
deu-DEU
eng-GBR
eng-USA
spa-ESP
unavailable voices:
fra-FRA

ita-ITA

data root directory:
/mnt/sdcard/svox/
data files:
de-DE_gl0_sg.bin
de-DE_ta.bin
en-GB_kh0_sg.bin
en-GB_ta.bin
en-US_Ih0_sg.bin

OK

36

& 5:46

OEBPS/Images/image00985.png

OEBPS/Images/image00864.png

OEBPS/Images/image00986.jpeg
9 771473|!68

©) e—

1

n

>

OEBPS/Images/image00786.png

OEBPS/Images/image00785.png

OEBPS/Images/image00784.png

OEBPS/Images/image00783.jpeg
17

OEBPS/Images/image00782.jpeg
19

OEBPS/Images/image00781.png

OEBPS/Images/image00780.png

OEBPS/Images/image00779.png

OEBPS/Images/image00778.jpeg

OEBPS/Images/image00777.png

OEBPS/Images/image00868.jpeg

OEBPS/Images/image00990.png

OEBPS/Images/image00869.jpeg
L © ¥.408848m
Determine Altitude

GPS Altitude

Altitude (m):
Relative Alttude (m)0.0

Barometer Altitude (Standard Pressure)
Altitude (m):-25.360544

Relative Altitude (m):2.9910526275634766

Standard Pressure (millibar):1013.25

Barometer Altitude (MSLP)
Alttude (m):37,253418

Relative Alttude (m):2.985767364501953
MSLP (millbar):1020.8

OEBPS/Images/image00991.jpeg
aes

OEBPS/Images/image00988.jpeg

OEBPS/Images/image00867.png

OEBPS/Images/image00989.jpeg
Say the magic word

Cancel

OEBPS/Images/image00872.png

OEBPS/Images/image00994.png

OEBPS/Images/image00873.png

OEBPS/Images/image00995.jpeg
EEm o

3 12:47em
[=] Location services

Google's location service

Let apps use data from sources such as
Wi-Fl and mobile networks o determine
your approximate ocation

GPS satellites

o Location consent

Allow Google's location service to
collect anonymous location data.
Some data may be stored on your
device. Collection may occur even
‘when no apps are running.

Disagree Agree

OEBPS/Images/image00870.jpeg
P vEeHNE ©
Android Sensing Playground

e Location
_big bent

Houses of Parliament, Bridge St, City

of Westminster, SW1A 0AA

Ben been
o ERENERR

o [|=

o (o | (=1

OEBPS/Images/image00992.jpeg
16

OEBPS/Images/image00871.jpeg

OEBPS/Images/image00993.png

OEBPS/Images/image00896.png

OEBPS/Images/image00816.jpeg

OEBPS/Images/image00815.jpeg

OEBPS/Images/image00814.jpeg

OEBPS/Images/image00813.png

OEBPS/Images/image00812.png

OEBPS/Images/image00811.png

OEBPS/Images/image00810.png

OEBPS/Images/image00809.png

OEBPS/Images/image00808.jpeg
T4 W 436
<8 Apps Q=<

SpeechSynthesis Data ..
ANDROID TEXTTOSPEECH

142

Downloading

X

Confirm Info

Please wait for the language
data to finish installing and try
again.

Requires Language data to
proceed, would you like to
install2

No Yes Wwait Retry.

Hkdk
10,000000+ downloa

31K people

Allow autoh—<pdating

OEBPS/Images/image00897.jpeg

OEBPS/Images/image00807.jpeg
ettt bttt ree

OEBPS/Images/image00898.png

OEBPS/Images/image00901.png

OEBPS/Images/image00902.jpeg

OEBPS/Images/image00899.jpeg
P PERNE UPIO NS5

Android Sensing Playground

Cocaton Sprvgheld WA
Lottude: 421014831
Longiude: 72589811
enter Racius () 19

OEBPS/Images/image00900.png

OEBPS/Images/image00905.png

OEBPS/Images/image00906.jpeg
BRI N X XX ¥ I
R ERY X Y T
. s s 0o 0000 EEL

OEBPS/Images/image00903.jpeg
aes

OEBPS/Images/image00904.png

OEBPS/Images/image00885.png
Ivor Horton’s

Beginning

Java

Java 7 Edition

Ivor Horton

OEBPS/Images/image01007.png

OEBPS/Images/image00886.png

OEBPS/Images/image00806.png

OEBPS/Images/image00805.jpeg

OEBPS/Images/image00804.png

OEBPS/Images/image00803.jpeg
Speak: My android and |
went to the store *

English (Gener)

Cancel

OEBPS/Images/image00802.jpeg

OEBPS/Images/image00801.png

OEBPS/Images/image00800.jpeg
Say the Magic Word

Speak

OEBPS/Images/image00799.png

OEBPS/Images/image00798.jpeg
No matches found

A

Cancel Speak again

OEBPS/Images/image00797.jpeg

OEBPS/Images/image01008.jpeg

OEBPS/Images/image00887.png

OEBPS/Images/image01009.png

OEBPS/Images/image00890.jpeg

OEBPS/Images/image01012.png

OEBPS/Images/image00891.png

OEBPS/Images/image01013.png

OEBPS/Images/image00888.jpeg

OEBPS/Images/image01010.png

OEBPS/Images/image00889.png

OEBPS/Images/image01011.jpeg
AL <.l & 8:49
Language Details Results

Language Preference: en-US
languages supported:
ar-EG

ar-IL

ar-JO

ar-KW

ar-LB

ar-QA

ar-AE

af-ZA

cmn-Hans-CN
cmn-Hans-HK
cmn-Hant-TW
yue-Hant-HK

cs-CZ

nl-NL

en-AU

OK

OEBPS/Images/image00894.jpeg

OEBPS/Images/image01016.png

OEBPS/Images/image00895.png

OEBPS/Images/image01017.png

OEBPS/Images/image00892.png

OEBPS/Images/image01014.jpeg

OEBPS/Images/image00893.png

OEBPS/Images/image01015.png

OEBPS/Images/image00756.jpeg
13

OEBPS/Images/image00755.png

OEBPS/Images/image00754.png

OEBPS/Images/image00753.jpeg

OEBPS/Images/image00752.jpeg
ul B 1118

OEBPS/Images/image00751.png

OEBPS/Images/image00750.png

OEBPS/Images/image00749.jpeg
4 LE
Android Sensing Play

o v

OEBPS/Images/image00748.jpeg

OEBPS/Images/image00747.jpeg
O8000s . - .

OEBPS/Images/image00746.png

OEBPS/Images/image00745.jpeg

OEBPS/Images/image00744.png

OEBPS/Images/image00743.png

OEBPS/Images/image00742.jpeg
Say the Magic Word

Speak

Correct! You said the magic
word: tree

OEBPS/Images/image00741.jpeg
« s esoe

*e0Q@ETH
(T T 1T
(R XY X 1T
cco®@0
ce0oO@®BD
cco@BO0

OEBPS/Images/image00740.png

OEBPS/Images/image00739.jpeg

OEBPS/Images/image00738.png

OEBPS/Images/image00737.png

OEBPS/Images/image00908.jpeg
New Android Project

Select Build Target

Choose an SDK to target

Build Target

& Google APl
() Android 3.0
() Google APls
) Android 3.1

Android + Google APls

Vendor
Android Open Source Project
Google Inc.
Android Open Source Project
Google Inc.
Android Open Source Project
Google Inc.
Android Open Source Project
Goagle Inc.
Android Open Source Project

Google Inc.
Android Open Source Project
Google Inc.

Platform
233
233
30
30
31
31
32
32
a0
a0
403
403

APl Leve
10
10
1
1
12
12
1
13
1
14

©) (<o) e Ganca |

Finish

OEBPS/Images/image00909.jpeg

OEBPS/Images/image00907.jpeg
' ; ; o .O.g;.gggg:g@gg.'I

OEBPS/Images/image00913.jpeg
BRI N X XX ¥ I
R ERY X Y T
. s s 0o 0000 EEL

OEBPS/Images/image00914.jpeg
T & ¢ ¥oall B 319

Listen to an example
Play a short demonstration of speech synthesis

Always use my settings

Default settings below override
application settings

Default settings

Default Engine @

Sets the speech synthesis engine to be
used for spoken text

Install voice data
In

syntt

Speech rate @

Speed at which the text is spoken

the voice data required for speech
is

Language
Sets the language-specific voice for the @
spoken text

Encinec

OEBPS/Images/image00910.png

OEBPS/Images/image00917.png

OEBPS/Images/cover00911.jpeg
Join the discussion @ Wrox

Greg Milette, Adam Stroud

OEBPS/Images/image00915.jpeg

OEBPS/Images/image00916.png

OEBPS/Images/image00776.jpeg
o
OB B
222222

OEBPS/Images/image00775.jpeg
#5513

Locales Status

en_TT

en_US COUNTRY_AVAILABLE
en_US_POSIX
COUNTRY_AVAILABLE

en.Vl

en ZA

enZW

es

es AR

es_BO

es CL

s CO

es CR

s DO

es EC

es_ES COUNTRY_AVAILABLE
s GT

Locales Status

fa NOT_SUPPORTED
fa_AF NOT_SUPPORTED
fa_IR NOT_SUPPORTED
fi NOT_SUPPORTED
fi_FI NOT_SUPPORTED
il NOT_SUPPORTED
fil_PH NOT_SUPPORTED
fr MISSING_DATA

fr_BE MISSING_DATA
fr_CA MISSING_DATA
fr_CH MISSING_DATA
fr_FR MISSING_DATA
fr_LU MISSING_DATA
fr_MC MISSING_DATA
iw NOT_SUPPORTED
iw_IL NOT_SUPPORTED
hi NOT_SUPPORTED

ok

#5503

OEBPS/Images/image00774.png

OEBPS/Images/image00773.png

OEBPS/Images/image00772.jpeg

OEBPS/Images/image00771.jpeg

OEBPS/Images/image00770.jpeg

OEBPS/Images/image00769.png

OEBPS/Images/image00768.jpeg
¢ © Tl 115
<< Vinge® ®
What would you like to do?

Send Messages

"Text Donna Congratulations on the new
condo!"

"Dial Lisa"

Find Restaurants
"Find Pizza Hut"

=
t Call Someone
&

9 Find Businesses
"Find WalMart"

OEBPS/Images/image00767.png

OEBPS/Images/image00766.jpeg
¢

Speech Recognition Results

My android and | went to the store

my android and | went to the store
my android as | went to the store

my android is the | went to the store
my android | went to the store

my android and I'm going to the store

my android is I'm going to the store

OEBPS/Images/image00765.jpeg
mmunity support?
@wrox.com

OEBPS/Images/image00764.png

OEBPS/Images/image00763.png

OEBPS/Images/image00762.jpeg
o P4 N55m
Sensor List
SENSOR_DELAY_FASTEST
SENSOR_DELAY_GAME
© SENSOR_DELAY_NORMAL

SENSOR_DELAY_UI

Name: MPL Orfentation
Type: 3

Max Range: 360.0

Min Delay: 10000

Power. 10.239 mA

Resolution: 1.0E-5

Vendor. Invensense.

Version: 1

Accuracy: SENSOR_STATUS_ACCURACY_HIGH
Timestamp: 596599549508989 (ns)

Angle (Degrees).

Azimuth (Z Axs): 7.095401

Pitch (X Axis): -43 150787

Roll (Y Axis): -6.141493

OEBPS/Images/image00761.png

OEBPS/Images/image00760.png

OEBPS/Images/image00759.jpeg

OEBPS/Images/image00758.jpeg
D 11:55m

Sensor List
GP2A Light sensor

GP2A Proximity sensor
BMP180 Pressure sensor
MPL Gyroscope

MPL Accelerometer

MPL Magnetic Field

MPL Orientation

MPL Rotation Vector
MPL Linear Acceleration
MPL Gravity

Ratafion Vantar Sensor

L~ TR === —

OEBPS/Images/image00757.jpeg

OEBPS/Images/image01031.png

OEBPS/Images/image01032.jpeg

OEBPS/Images/image01029.jpeg
« s esoe

*e0Q@ETH
(T T 1T
(R XY X 1T
cco®@0
ce0oO@®BD
cco@BO0

OEBPS/Images/image01030.png

OEBPS/Images/image00918.png

OEBPS/Images/image01020.png

OEBPS/Images/image01021.jpeg
O8000s . - .

OEBPS/Images/image01018.png

OEBPS/Images/image01019.jpeg
« s esoe

*e0Q@ETH
(T T 1T
(R XY X 1T
cco®@0
ce0oO@®BD
cco@BO0

OEBPS/Images/image01024.png

OEBPS/Images/image01025.png

OEBPS/Images/image01022.png

OEBPS/Images/image01023.png

OEBPS/Images/image01026.png

OEBPS/Images/image01027.jpeg
S i LS04,

OEBPS/Images/image01028.jpeg

OEBPS/Images/image00932.jpeg
14

OEBPS/Images/image00933.jpeg
Cancel

OEBPS/Images/image00930.jpeg

OEBPS/Images/image00931.jpeg
O8000s . - .

OEBPS/Images/image00736.png

OEBPS/Images/image00936.png

OEBPS/Images/image00735.png

OEBPS/Images/image00937.png

OEBPS/Images/image00734.png

OEBPS/Images/image00934.png

OEBPS/Images/image00733.jpeg
of all

know

OEBPS/Images/image00935.png
9771473968012 >

OEBPS/Images/image00732.jpeg

OEBPS/Images/image00731.png

OEBPS/Images/image00730.png

OEBPS/Images/image00729.jpeg
Say the Magic Word

Speak

Correct! You said the magic
word: tree

OEBPS/Images/image00728.jpeg
L

OEBPS/Images/image00727.jpeg

OEBPS/Images/image00817.png

OEBPS/Images/image00939.jpeg

OEBPS/Images/image00818.png

OEBPS/Images/image00940.png
A& 11:52

Get Current Location

Latitude: 37.422005
Longitude: -122.084095
Provider: gps

Accuracy: 0.0 meters(s)
Time to Fix: 1 second(s)
Enabled Providers: gps

Change Location Provider Settings

OEBPS/Images/image00938.jpeg
11

OEBPS/Images/image00921.jpeg

OEBPS/Images/image00922.png

OEBPS/Images/image00919.jpeg

OEBPS/Images/image00920.png

OEBPS/Images/image00925.png

OEBPS/Images/image00926.png

OEBPS/Images/image00923.jpeg

OEBPS/Images/image00924.png

OEBPS/Images/image00927.png

OEBPS/Images/image00928.png

OEBPS/Images/image00929.jpeg
to AL AR

Say the Magic Word

